Attachment B

FPSC DOCKET 950984-TP RESPONSE TO ORDER No. PSC-96-0444-FOF-TP COST STUDIES

PUBLIC VERSION

2 REDACTED COPIES

DOCUMENT NUMBER-DATE

06524 JUN 17 %

FPSC-RECORDS/REPORTING

FLORIDA

UNBUNDLED PORTS AND LOCAL MEASURED USAGE

COST STUDY DOCUMENTATION

SECTIONS A THRU 6

DOCUMENT NUMBER-DATE

FLORIDA UNBUNDLED PORTS COST STUDY DOCUMENTATION

CONTENTS

SECTION A	PROPRIETARY RATIONALE
SECTION 1	INTRODUCTION AND OVERVIEW
SECTION 2	DESCRIPTION OF STUDY PROCEDURES
SECTION 3	SUMMARY OF RESULTS
SECTION 4	COST DEVELOPMENT - RECURRING & NONRECURRING
	2W ANALOG PORT
	2W ISDN DIGITAL PORT
	2W ANALOG DID PORT
	4W DS1 DIGITAL DID PORT
	4W DS1 DIGITAL ISDN PORT
	LOCAL MEASURED USAGE
SECTION 5	SPECIFIC STUDY ASSUMPTIONS
SECTION 6	FACTORS AND LOADINGS

TAB A

SECTION A

PROPRIETARY RATIONALE

FLORIDA UNBUNDLED PORTS COST STUDY DOCUMENTATION

The Florida Unbundled Ports Cost Study contains actual unit cost information for discrete cost elements. These costs reflect BellSouth's long run incremental cost of providing this element on a going forward basis. Public disclosure of this information would provide BellSouth's competitors with an advantage in that they would know the price or rate below which BellSouth could not provide the service. The data is valuable to competitors and potential competitors in formulating strategic plans for entry, pricing, marketing and overall business strategies concerning access services. This information relates to the competitive interests of BellSouth and disclosure would impair the competitive business of BellSouth.

Additionally, the study contains information which reflects vendor-specific prices negotiated by BellSouth. Public disclosure of this information would impair BellSouth's ability to contract for goods and/or services on favorable terms. For these reasons, The Florida Unbundled Port Study is considered proprietary.

INTRODUCTION AND OVERVIEW

FLORIDA UNBUNDLED PORTS COST STUDY DOCUMENTATION

This Long Run Incremental Cost study for Unbundled Ports in the state of Florida is being provided in response to Docket No. 950984-TP, Order No. PSC-96-0444-FOF-TP Issued March 29, 1996.

Unbundled Ports include local networking and various types of switch terminations which allow access to switch features and functions. (Section 5 contains detailed drawings of the network components.) Unbundled ports provide the Alternative Local Exchange Companies (ALECs) with a physical presence in the switch and use of the local switched network ¹.

Recurring costs presented in this study are directly assigned, incremental and levelized to be appropriate for the 1996-1998 study period. Nonrecurring costs follow the same convention and represent 1996-1998 level costs also. These long-run incremental costs are developed by using 1995 level incremental loadings and annual cost factors based on 13.2% Cost of Money and directly assigned labor rates.

1 The 2-wire digital ISDN port usage is strictly for circuit-switched traffic. The nonrecurring cost to configure ISDN channels per individual customer specifications is not included.

DESCRIPTION OF STUDY PROCEDURES

FLORIDA UNBUNDLED PORTS COST STUDY DOCUMENTATION

This section describes the general principles for the development of costs supporting the Florida Unbundled Ports.

All costs are developed utilizing Long Run Incremental Cost In determining these costs, direct incremental methodology. costing techniques are used that are in accordance with accepted economic theory. Direct incremental costs are based on cost causation and include all of the costs directly caused by expanding production, or, alternately, costs that would be saved if the production levels were reduced. Costs are forward-looking in nature because only future costs can be saved. Incremental costs are long run to insure that the time period studied is sufficient to capture all forward-looking costs affected by the business decision. Shared and common costs are not incremental and therefore are not included. Incremental costs include both recurring (capital and operating expenses) and nonrecurring (service provisioning) costs. Incremental costs account for the expected change in cost to the firm resulting from a new service offering or a change in demand for an existing service.

THE DEVELOPMENT OF RECURRING COSTS

The monthly costs to BellSouth Telecommunications, Inc., resulting from the capital investments, necessary to provide a service are called recurring costs. Recurring costs include capital and operating costs. While capital costs include depreciation, cost of money and income tax, operating costs are the expenses of maintenance, ad valorem and other taxes. These expenses contribute to the ongoing cost to the company associated with the initial capital investment. Recurring costs are developed using incremental economic study applications, representing a forward-looking view of technology and deployment.

The first step in developing an incremental study of recurring costs for the Unbundled Ports is to determine the forward-looking Vendor EF&I (engineered, furnished and installed) investments. This is accomplished through the use of Bellcore's proprietary modeling tool, SCIS, Switching Cost Information System, version 2.1. In-plant factors are applied to vendor investments to develop installed investments which include engineering and installation labor.

Plant account specific Investment Inflation Factors are applied to the installed investments to trend the base year, or study year, investments to levelized amounts that are valid for a three to five year planning period. Appropriate loadings for land, building and miscellaneous common equipment and power are then applied.

Next, 1995-level Florida Intrastate Incremental Annual Cost Factors are used to calculate the direct cost of capital (in this case, 13.2%), ongoing maintenance and operating expenses, and taxes. These factors (specific factors for each USOA FRC) are applied to levelized investments by account code, yielding an annual cost per account code. These costs are then divided by twelve to arrive at a monthly cost per cost element.

THE DEVELOPMENT OF NONRECURRING COSTS

Nonrecurring costs are "one-time" costs incurred as a result of provisioning, installing, and disconnecting the Unbundled Ports. The work function times, identified by subject matter experts, are used to describe the flow of work within the various work centers Installation and provisioning costs are developed by multiplying the work time for each work function by the directly assigned labor rate for the work group performing the function. Disconnect costs are calculated in the same manner, utilizing work functions, work times and labor rates. However, a disconnect factor associated with the projected location life of the cost element is applied to the disconnect cost. The disconnect factor inflates the labor cost to the period of the future disconnect, discounts these costs to the present, since the money is received up-front, and adjusts for the income tax effect due to the difference in time between the receipt of money and the disconnect The disconnect cost is added to the installation cost to develop the total nonrecurring cost.

DEVELOPMENT OF LOCAL USAGE COSTS

The study utilizes Bellcore's Network Cost Analysis Tool (NCAT) model to develop these costs. The version used in this study is 4.1. Refer to Section 4 for a detailed explanation of the NCAT model.

SUMMARY OF RESULTS

FLORIDA UNBUNDLED PORTS COST STUDY DOCUMENTATION

This section contains a cost summary for both recurring and nonrecurring cost elements studied for 1996-1998 Unbundled Ports for Florida and the Local Measured Usage, as required.

Recurring

Nonrecurring¹

Ports

10

Cost Element

2W Analog Port²

•		,	*
H	2W ISDN Digital Port ²	\$	\$
12	2W DID Analog Port	\$	\$
13	4W DID DS1 Digital Port	\$	\$
14	4W ISDN DS1 Digital Port2	\$	\$
	1 First item on service orde physical location, have the fo	r. Additional portable of the control of the contro	s, for the same costs:
18	Cost Element 2W Analog Port	Nonrecurring - Addit \$	ional
19	2W ISDN Digital Port	\$	
20	2W DID Analog Port	\$	
21	4W 0ID DS1 Digital Port	\$	
22	4W ISDN DS1 Digital Port	\$	
	Local Measured Usage - per Cal Cost Element		Additional MOU
25	2W Analog Port	\$	\$
26	2W ISDN Digital Port	\$	\$
27	4W ISDN DS1 Digital Port	\$	\$
	MOU = Minute of Use		
31 32	² Usage costs are in additional average usage characteristics an additional average monthly of	for a 2W analog port	would indicate

F18G01Q 00012

NOT FOR USE OR DISCLOSURE OUTSIDE
BELLSOUTH OR ANY OF ITS SUBSIDIARIES
EYCEPT LINDER WRITTEN AGGREEMENT.

COST DEVELOPMENT - RECURRING & NONRECURRING

FLORIDA UNBUNDLED PORTS COST STUDY DOCUMENTATION

This section defines the cost development for the Florida Unbundled Ports.

Recurring Cost Development

The basic economic cost development is outlined in Section 2. Network architecture is determined, the necessary equipment is identified, vendor EF&I investments are calculated, factors and loadings are applied and the result is levelized for the study period. Annual cost factors are applied to convert the investment to cost. An internally developed model, ACE, is used to perform the mathematical calculations necessary to convert investments to costs. Since the results are linear with respect to the investment, a conversion factor by plant account code (and in-plant factor) can be developed. Tab 6 outlines the development of the factor; a \$10,000 investment was run through the ACE model. To obtain the factor, the monthly cost is divided by 10,000.

As mentioned in Section 2, the SCIS (Switching Cost Information System) model lays the foundation for developing the vendor EF&I investments. The model outputs reflect vendor design criteria, BellSouth engineering rules, and customer usage characteristics.

Workpapers 20-24, where applicable, develop the investment and convert the investment to monthly costs.

Nonrecurring Cost Development

Nonrecurring costs are one-time costs incurred as a result of provisioning, installing and disconnecting service and completion of orders for Unbundled Ports.

Company subject matter experts identify the work functions involved in the provisioning of the Unbundled Ports. These work functions are then used to describe the flow of work within the various work centers involved in provisioning the element.

The next step in the development of nonrecurring costs is to determine work times for each work function associated with the nonrecurring costs of the Unbundled Ports. The work times of the various work groups are determined from Subject Matter Expert inputs.

A spreadsheet model is used to incorporate the specific work functions and labor rates. In order to arrive at the nonrecurring cost for the element studied, the work times for each work function required is multiplied by the appropriate directly assigned labor rate. The labor inflation factor is used to bring the labor rate to the study period and gross receipts tax is added.

Next, the individual work function costs are accumulated into the total cost for the cost element studied.

The basic process by which nonrecurring costs are calculated consists of combining unit work times with hourly costs of each specific service category. These labor times, and service order related work times, are multiplied by the directly assigned labor rates for the work groups performing the activities. Disconnect costs are calculated in the same manner, utilizing work functions, work times, and labor rates. However, a disconnect factor associated with the projected location life of the service is applied to the disconnect cost. The disconnect factor inflates the labor cost to the period of the future disconnect, discounts these costs to the present and adjusts for the income tax effect due to the difference in time between the receipt of money and the disconnect expense. The disconnect cost is added to the installation cost to develop the total nonrecurring cost.

Workpapers 30-31 (if needed) detail the development of the nonrecurring costs.

Local Measured Usage

Local measured usage costs were developed through the utilization of the Network Cost Analysis Tool (NCAT), version 4.1. This model was developed and is maintained by Bellcore.

Bellcore's Network Cost Analysis Tool - Production Module (NCAT) is used to develop long run incremental costs for various services, including Local, MTS, WATS, WatsSaver service, 800, and Switched Access. The NCAT application has four modules. They are the report system, calculator, usage and the database modules. The database module contains files that must be populated in order to use the application. More specifically, the end office, tandem, facility, tandem homing arrangement, point of termination (POT), POT homing arrangement, alias, annual cost factor, facility/termination unit investment, SCIS Model Office Results Transfer (SMORT), switch mix and study parameters files must be either built or obtained from appropriate sources for input to NCAT.

The end office, tandem, tandem homing arrangement, point of termination, and switch mix files are developed from Company databases such as Local Switching Demand and Facility (LSDF), Local Exchange Routing Guide (LERG), General Trunk Forecast (GTF), and Interexchange Carrier Access Database System (ICADS). The information in the study

parameter files is obtained from the Call Setup application and the Network department. Some of the fields are user defined.

The SMORT file is obtained from the Switching Cost Information System (SCIS) module. This file contains the necessary information to develop switch investments for DMS, DCO and 5ESS technologies and their corresponding remotes.

The facility or TIRKS file is obtained from the Information Technologies (IT) organization. This file contains the trunking information for toll and switched access services for the state under study.

The investments in the Facility Termination Unit Investment (FTUI) file are obtained from the Economic Costs Fundamental Interoffice Group. This file contains banded facility and termination investments for each plant account used in the service under study.

The point-to-point usage data for toll and switched access is obtained from the IT department. The data is preprocessed into usage file format defined and required by NCAT. Local service point-to-point usage is developed using Subscriber Line Usage Study (SLUS) data and NCAT's LOCALPRO module.

Once all the files in the database are populated and the usage files are obtained and loaded, the NCAT calculator can be invoked. The calculator's main function is to produce long run incremental costs in the form of the costs for the initial and additional minute of use by distance band and by time of day or rate period; but, in order to develop the long run incremental cost, a selected demand change percent or stimulation factor is used to determine "offered load" (messages and minutes) for the service under study. The network component costs are based on the amount of resources necessary to carry this "offered load". This cost is structured into two components: setup and duration.

The setup and duration costs are used to develop costs for an initial and an additional minute in the following manner; the duration cost is the cost for the additional minute. The costs for an initial minute is the sum of the setup cost per message, the volume sensitive expense per message and the duration cost per minute.

The results from the NCAT model are contained in a separate tab labeled Local Usage. The development of incremental cost above Local Measured Usage is outlined in Workpapers 40-42, if required.

SECTION 4 2-WIRE ANALOG

Summary of Costs

State: Florida

Workpaper: 10

Page: 1 of 1 Date:

05/17/96

 \mathcal{B} Nonrecurring

Firet

Additional

Rate Element

Monthly

2W Analog Port

Usage

9 10

First Minute of Use

Additional Conversation Minutes (per Minute)

F18G010 00018

C:\WORK\2WA.WK3

State: Florida Workpaper: 20 Page: 1 of 1 Date:

LN	Description	Source	Amount
1	5ESS Calculations		,
2	Investment	SCIS/MO - 5ESS Line Termination Report	
3	MDF & Protector	•	
4	NTS Switching investment		
5	Excess Capacky		
6	Investment per Port	LN3+LN4+LN5	
7			
8	Account Code for Investment		377C
9			
10	Conversion Factor - Investment to Cost	ACE Report 20, Total Monthly Cost/10,000	0.027047
11			
	5ESS Monthly Cost	LN6*LN10	
13			
14	DMS Calculations		
15	Investment	SCIS/MO - DMS Line Termination Report	
16	MDF & Protector		
17	NTS Switching Investment		
18	Excess Capacity		
19	Investment per Port	LN16+LN17+LN18	
20	•		
21	Account Code for investment	•	377C
22			
23	Conversion Factor - Investment to Cost	ACE Report 20, Total Monthly Cost/10,000	0.027047
24			
25	DMS Monthly Cost	LN19*LN23	
26	•		
27	Meld Calculations		
28	Technology Distribution	D&F Database - NALs	
29	5ESS		68.5%
30	DMS		31.5%
31			
32	Melded Monthly Cost	LN12*LN29+LN25*LN30	
33	·		
34			
35 C	:\WORK\2WA.WK3		

State: Florida Workpaper: 30
Page: 1 of 1
Date:

LN	Description	Source	Amount
1	Nonrecurring Cost - First	WP31, LN30	
2 3	Alexander Ones Addataset	W000 1 M00	
	Nonrecurring Cost - Additional	WP32, LN30	
4	07115	14/200 11/14	
5	RTU Fees	WP33, LN14	
6	Takat Class	I his . i his	
7	Total First	LN1+LN5	
8	Total Additional	LN3+LN5	
10	I OTAL AUGILIONEI	2401240	
11			
12		,	
13			1
14			
15			
16			
17			
18			
19		•	
20			
21			
22			
23			ĺ
24 25	,		
26			
27			
28			
29			
30			
31			
32			
33			
34			
35			

State: Florida Workpaper: 31
Page: 1 of 1
Date:

	•	A	${f B}$	\mathcal{C}	\mathcal{D}	E	<i>F</i>
		•	Labor	Inflation	GRT	Disconnect	Nonrecurrin
N	Description	Hours	Rate	Factor	Factor	Factor	Cost
1	Local Carrier Service Center (LCSC)						
2	Installation		\$38.30	1.096	1.0152		
3	Disconnect		\$38.30	1.096	1.0152	0.802	
4							
5	Line and Number Administration ¹						
6	Installation		\$30.21	1.096	1.0152		
7	Disconnect		\$30.21	1.096	1.0152	0.802	
8							
8	Line Translations (RCMAC)						
0	installation		\$37.38	1.096	1.0152		
1	Disconnect		\$37.38	1.096	1.0152	0.802	
5							
3							
4							
5							
B							
7		•					
B							
9							
Ġ	Note:						
1	Function performed by Network Clerical.						
2							
3	•						
4							
5							
6							
7							
8							
9							
٥	Total Nonrecurring Cost	Sum (LN2LN11)					
1							
2							
3							
4							

State: Florida Workpaper: 32
Page: 1 of 1
Date:

		A	B Labor	 Inflation	<i>₽</i>	Disconnect	Nonrecurring
LN	Description	Hours	Rate	Factor	Factor	Factor	Cost
1	Local Carrier Service Center (LCSC)						
2	Installation		\$38.30	1.096	1.0152		
3	Disconnect		\$38.30	1.096	1.0152	0.802	
5	Line and Number Administration ¹						
6	installation		\$30.21	1.096	1.0152		
7 8	Disconnect		\$30.21	1.096	1.0152	0.802	
9	Line Translations (RCMAC)						
10	Installation		\$37.38	1.096	1.0152		
11 12	Disconnect .		\$37.38	1.096	1.0152	0.802	
13	•						
14 15							
16							
17		•					
18							
19							
20	Note:						
21 22	Function performed by Network Clerical.						
23	•						
24							
25							
26							
27 28							
29							
30	Total Nonrecurring Cost	Sum (LN2LN11)					
31							
32 33							
34							
	C:\WORK\2WA.WK3						

2W Analog Port Development of RTU Fees

State: Florida Workpaper: 33
Page: 1 of 1
Date:

LN	Description	Source	Amount
1	5ESS RTU per Line 1	Contract PR -6700-B	
2	•	,	
3	DMS		
4	A		ļ
5	Meld Calculations	D&F Database - NALs	ļ
6 7	Technology Distribution 5ESS	Del Paternes Inter	68.5%
8	DMS		31.5%
9			
10	Melded RTU fee	LN1*LN7+LN3*LN8	
11			. 2452
12	GRT Tax Factor	Fundamental Cost Group	1.0152
13			
14	Melded RTU w/GRT	LN10*LN12	
15			
16			
18			
19			
20			
21			
22			
23			
24			
25 26	·		
27			
28			
29			
30		·	
31			
32			
33			
34			
35			

SECTION 4 2-WIRE DIGITAL ISDN

Summary of Costs

State: Florida Workpaper: 10

Page: 1 of 1 Date:

05/17/96

A

B

0

Rate Element

Monthly

Nonrecurring First Nonrecutting Additional

フ

2W ISDN Digital Port

Usage

9

First Minute of Use

Additional Conversation Minutes (per Minute)

C:\WORK\2WI.WK3

F18G01Q 00025

State: Florida Workpaper: 20 Page: 1 of 1 Date:

LN	Description	Source	Amount
1	Switching Costs	WP21, LN36	
2 3			
3	RTU Fees	WP22, LN65	
4			
5	Total Monthly Cost	LN1+LN3	
6			
7			
8			
9			
10			
11 12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22		_	
23			
24			
25		•	
26			
27			
28	,		
29			
30			
31 32			
33			
34			
35			
36			
37			
38			
39			
	C:\WORK\2WI.WK3		

State: Florida Workpaper: 21
Page: 1 of 1
Date:

LN	Description	Source '	Amount
1	SESS Calculations		
2	investment	SCIS/MO - 5ESS ISDN Line Termination Report	
3	Moundian rue		
4	Excess Capacity		
5	Getting Started	i	
6			
7			
8	Investment per Port	Sum(LN3LN7)	
9	•		
10	Account Code for investment		377C
11			
12	Conversion Factor - Investment to Cost	ACE Report 20, Total Monthly Cost/10,000	0.027047
13			
14	5ESS Monthly Cost	LN8°LN12	
15	•		
16	DMS Calculations		
17	Investment	SCIS/MO — DMS ISDN Line Termination Report	
18	Working ISDN Line		
19	Excess Capacity		
20	Getting Started		
21	•		
22			
23	investment per Port	Sum(LN18LN22)	
24	·		
25	Account Code for Investment		377C
26			
27	Conversion Factor - Investment to Cost	ACE Report 20, Total Monthly Cost/10,000	0.027047
28		-	
29	DMS Monthly Cost	LN23*LN27	
30	•		
31	Meld Calculations		
32	Technology Distribution	D&F Database - NALs	
33	5ES8		68.5%
34	DMS		31.5%
35			
36	Melded Monthly Cost	LN14*LN33+LN29*LN34	
37	•		
38			
39			
	D:\WORK\2WI.WK3		

State: Florida Workpaper: 22
Page: 1 of 2
Date:

LN	ORK\2WI.WK3 Description	Source	Amount
้ สาบ	Packages - Discounted Cost	······································	
2 5ES			
	onal ISDN i Package	Per Office	
	18SW National ISDN Base		
	ISBB Standard BRI Base		
	1DAT Basic Data for Standard BRI	•	
	ICSD Deluxe CSD for Standard BRI		
	1PSD Deluxe PSD for BRI		
	RIDS BRI Data Service Package		
	onal ISDN II Package	Per Office	
	one office	LN3+LN10	
• • • • • • • • • • • • • • • • • • • •	NOAM ISON OA&M Package	Per SM	
	SRTU X.75' Packet Galeway Access	Per SM	
	SORTU Q831/SS7 interworking	per SM	
		LN12+LN13+LN14	
15 Tot	tal per SM RTU Fees	Per BRI	
	RIDS BRI Data Services Package		
17			
	\$100		
	750AB ISDN Basic Access		
	r 2B+D		
	r 18+D		
	r Switch		
	753AB ISDN Advanced Signalling		
_ , , , , , , , , , , , , , , , , , , ,	7754AB ISDN EKTS		
	755AC ISDN Supplementary Services	•	
	(756AA ISDN Display Services		
	(757AA ISDN/ISUP Interworking		
	(767AA ISDN Routing & Digital Analysis		
	S-IPH Software Packages		
30 NT	XP47AA — Packet Handler base		
31 NT	DCH77AA - Channelized Access on LPP/LIS		
	IXP75AA — DMS PH SERVORD '		
	(158AA ISDN Automatic Message Accounting		
	CJ51AA ISDN Digital Test Access	Per Office	
35 NT)	CI51AA ISDN Digital Test Access	Per BRI	
36 NT)	(119AA MDC Message Waiting		
37 NT	(N8GAA Testing ISDN Services		
38 NT	KN91AA TL-1 Testing Interface Base		
39 NT	KN93AA TL-1 Testing ISDN Services		
	KRSSAA TL-1 Parsing Interface Base		
	K167AB CCS7 Trunk Signaling		
	KF92AA ISDN OA&M Base		
	National ISDN II		
	otal per Switch Expenses	@SUM(LN19LN43) - LN21 - LN20 - LN35	
45	F		

State: Florida Workpaper: 22 Page: 2 of 2 Date:

ile:	C:\WORK\2WI.WK3		
LN	Description	Source	Amount
46	Model Office Statistics		
47			
48	Number of SM's per Office		
49	Total BRI's	Melded 5ESS & DMS	
50	1B+D		
51	2B+D	·	
52			
53	RTU Cost per Office		
54	5ESS	LN11+LN15*LN48+LN16*LN49	
55	DMS100	LN20°LN51+LN21°LN50+LN35°LN49+LN44	
	EMS 100		
56	em 001		
57	RTU per BRI	LN54/LN49	
58	5ESS		
59	DMS100	LN55/LN49	
60			
61	Monthly RTU per BRi		4
62	5ESS	@PMT(LN58,.132/12,10°12)	
63	DMS100	@PMT(LN59,.132/12,10*12)	
64			
65	Melded * GRT	(LN62*.685+LN63*.315)*1.0152	
66		•	
67			
-			
68			
69			
70			
71			
72			
73			
74			
75			
76	1		
77	•		
78			
79			
60			
81			
82			
83			
64			
85			
86			
87			
88			
89			
90			

State: Florida Workpaper: 30 Page: 1 of 1 Date:

LN	Description	Source	Amount
1	Nonrecurring Cost - Firet	WP31, LN30	
2	•		
3	Nontecurring Cost - Additional	WP32, LN30	
4			
5			
6			
7 8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
16			
19 20			
21			
22			
23		•	
24		,	
25			
26			
27			
28			
29	•		
30			
31			
32			
33 34			
35			
36			
37			
38			
39			
40	C:\WORK\2WI.WK3		

		A	\mathcal{B}	0	\mathcal{D}	E	/=
			Labor	Inflation	GRT	Disconnect	Nonrecurring Cost
LN	Description	Hours	Rate	Factor	Factor	Factor	COSI
1	Local Carrier Service Center (LCSC)	`	200.00	1.096	1.0152		
2	Installation		\$38.30 \$38.30	1.096	1.0152	0.802	
3	Disconnect		\$30.30	1.030	1.0.02	5.552	
5	Circuit Provisioning Center (CPC)		6 24.41	1.096	1.0152		
6	Installation		\$34.41	1.096	1.0152	0.802	
7	Disconnect		\$34.41	1.030	1.0132	0.002	
8			***	1.000	1.0152		
10			\$31.28	1.096		0.802	
11 12			\$31.28	1.096	1.0152	0.602	
13	CO Frame - Design (NTEL)		\$39.09	1.096	1.0152		
14			\$39.09 \$39.09	1.096	1.0152	0.802	
15 16			\$38.00	1.030	1.0102	0.002	
17	Network Plug-in (PICS)		041 CE	1.096	1.0152		
18			\$41.65	1.096	1.0152	0.802	
19			\$41.65 •	1.090	1.0102	0.002	
21	Line Translation (RCMAC)		607.00	1.096	1.0152		
22			\$37.38	1.096	1.0152	0.802	
23 24			\$37.38	1.050	1.0102	0.002	
2				4 000	1.0152		
2			\$30.21	1.096	1.0152	0.802	
27 28			\$30 .21	1.096	1.0132	0.802	
25		SC)					
30		•	\$36.41	1.096	1.0152		
3	1 Disconnect		\$36.41	1.096	1.0152	0.802	
33		Sum(LN2LN31)					
3							
-	5 C:\WORK\2WI.WK3						

State: Florida Workpaper: 32 Page: 1 of 1 Date:

		A	₿	C	\mathcal{D}	ϵ	<i>(</i> =
		<i>Y</i> \	Labor	Inflation	GRT	Disconnect	Nonrecurring
LN	Description	Hours	Rate	Factor	Factor	Factor	Cost
1	Local Carrier Service Center (LCSC)						
2	Installation		\$38.30	1.096	1.0152		
3	Disconnect		\$38.30	1.096	1.0152	0.802	
4	Otes to Describing to a Control (ODO)						
5	Circuit Provisioning Center (CPC)		\$34.41	1.096	1.0152		
6	Installation		\$34.41 \$34.41	1.096	1.0152	0.802	
7	Disconnect		\$37.71	1.000	1.0132	0.802	
8	Facilities Assignment (FACS)						
10	installation		\$31.28	1.096	1.0152		
11	Disconnect		\$31.28	1.096	1.0152	0.802	
12	Digodalaot		40	,,,,,,			
13	CO Frame - Design (NTEL)						
14	Installation		\$39.09	1.096	1.0152		
15	Disconnect		\$39.09	1.096	1.0152	0.802	
16			•				
17	Network Plug-in (PICS)						
18	Installation		\$41.65	1.096	1.0152		
19	Disconnect		\$ 41. 6 5	1.096	1.0152	0.802	
20							
21	Line Translation (RCMAC)						
22	Installation		\$37.38	1.096	1.0152		
23	Disconnect		\$37.38	1.096	1.0152	0.802	
24							
25	Network Services Clerical (SOP89)			4.000	4.0450		
26	Installation		\$30.21	1.096	1.0152	0.000	
27	Disconnect		\$30.21	1.096	1.0152	0.802	
28	Special Services Coordinate 2 Test /C	60)					
29 30	Special Services Coordinate & Test (S Installation	3U)	\$36.41	1.096	1.0152		
31	Disconnect		\$36.41	1.096	1.0152	0.802	
32	MINOR RIPOR		φου. 1 1	1.030	1.0132	0.002	
33	Total Nonrecurring	Sum(LN2LN31)					
34	tentimenting	(
	C:\WORK\2WLWK3						

ilo:	C:\WORK\2WI.WK3		
LN	Description	Source	Amount
1	Call Set—up incremental IIII (avestme nt	12/044 12/40	
2	5ESS	WP41, LN16	
3	DMS	WP42, LN6	
5	Account Code for Investment		3770
6 7	Conversion Factor - Investment to Cost	ACE Report 20, Total Monthly Cost/10,000	0.02704
8	Monthly Cost		
10	5ESS		
11	DMS		
12			
13	Technology Distribution	D&F Database - NALs	
14	5ESS		68.5%
15	DMS		31.5%
16			
17	Melded BH Call Set-up Cost	LN10*LN14+LN11*LN15	
18	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
19	MOU incremental BH investment		
20	5ESS		
21	DMS	WP42, LN11	
22			
23	Monthly Cost		
24	5ESS	LN7*LN20	
25	DMS	LN7*LN21	
26			
27	Molded BH MOU Cost	LN14*LN24+LN15*LN25	
28			
29	Conversion of BH Cost to Any Time, Any Day		
30	Factors		
31	BH/Full Day Ratio	Network Study (NCAT)	10%
32	Days per Month	365/12	30.4
33			
34	Calculation		
35	Call Set-up	LN17*LN31/LN32	
36	MOU	LN27*LN31/LN32	
37			
38	Cost for First Minute of Use (Incremental to POTS)	LN35+LN36	
39	Cost for Additional Minute (Incremental to POTS)	LN36	
40	Contaction Nieuway (NOTC)	NCAT	
41	Cost for First Minute of Use (POTS)	NCAT	
42 43	Cost for Additional Minute (POTS)	11071	
43	Total Cost for First Minute of Use	LN38+LN41	
		_ · · · · · · · · · · · · · · · · · · ·	
45	Total Cost for Additional Minute	LN39+LN42	

State: Florida Workpaper: 41 Page: 1 of 1 Date:

N Description	Source	Amount
1 Incremental Cost of ISDN Usage		
2 5ESS Calculations		
3 Call Set-up		
4 EPHC	IMO2*IP1*RS569/AT3+	
5	IMO2*IP2*RS569.02/AT3+	
6	IMO2*IP3*RS569.03/AT3+	
7	MO2*IP4*RS569.06/AT3+	
å	IMO2*IP5*RS569.07/AT3	
9		
0 Packet		
11	IMO5*IP1*PT569/3600+	
12	IMO5*(IP2+IP3)*PT569.01/3600+	
3	IMO5*IP4*PT569.02/3600+	
13 14	IMO5*IP5*PT569.03/3600	
17 15		
15 16 Incremental Call Set—up investment	LN8+LN14	
io inciemental Car Set-up investment io		
17 18 Model Office Outputs	SCIS/MO Output	
19 IMO2 SM Realtime (ISDN SMs)	colorino curput	
21 ~		
22 22	Network	
23 User Input	Manacir	
24 IP1 BH ISDN-ISDN IAO Calls		
25 IP2 BH ISDN-POTS IAO Calle		
26 IP3 BH POTS-ISDN IAO Calle	•	
27 IP4 BH ISDN—Trunk Calls		
28 IPS BH Trunk-ISDN Calls		
29		
30 SCIS/IN Database Items		
31 AT3 Poeltime per EPHC		
32 RS569 BRI - BRI increment		
33 RS569.02 BRI - Line Increment		
34 RS569.03 Line - BRI Increment		
35 RS569.06 BRI-Trunk Increment		
36 RS569.07 Trunk - BRI Increment		
37 PT569 BRI-BRI IAO		
38 PT569.01 BRI-POTS; POTS-BRI IAO		
39 PT569.02 BRI-Trunk		
40 PT569.03 Trunk-BRI		
41		
42		
43		
44	•	
45		

State: Florida Workpaper: 42
Page: 1 of 1
Date:

ilo:	C:\WORK\2WI.WK3	LARIE:	USATIA
LN	Description	Source	Amount
1	incremental Cost of ISDN Lipage		
2	DMS Calculations		
3	Call Set-up		
4	Getting Started	MO1*IP1*RT569+	
5		MO1*IP2*RT569.02+	
6		MO1*IP3*RT569.03+	
7		MO1*IP4*RT569.06+	
8		MO1*IP5*RT569.07	
9			
10	WOU 1		
11	Line CCS	If IMO4>MO4 (IMO4-MO4)/100*60	
12			
13	Model Office Outputs	SCIS/MO Output	
14	IMO4 ISDN Line CCS		
15	MO1 Getting Started		
16	MO4 Line CCS		
17			
18	User Input	Network	
19	IP1 BH ISDN-ISDN IAO Calls		
20	IP2 BH ISON—POTS IAO Calla		
21	IP3 BH POTS-ISDN IAO Calle		
22	. IP4 BH ISON—Trunk Calls		
23	IPS BH Trunk-ISDN Calls		
24			
25	SCIS/IN Database Items		
26	RT569 BRI - BRI Increment		
27	RT569.02 BRI - Line Increment		
28	RT569.03 Line - BRI Increment		
29	RT560.06 BRI - Trunk Increment		
30	RT569.07 Trunk-BRI Increment		
31			
32	•		
33			
34			
35			
36			
37			
38			
39			
40	Note:		
41	I In the 5ESS, the ISDN line CCS is < POTS Line CCS.		
42	Thus, there is no incremental cost for MOU in the 5E	SS.	
43			
44			
45			

SECTION 4 2-WIRE ANALOG DID

Ξ.

Summary of Costs

State: Florida Workpaper: 10

Page: 1 of 1 Date:

05/17/96

A

B

0

Rate Element Monthly First Additional

7

2W DID Port

Note:

Costs do not include establishing the first trunk group and groups of numbers.

C:\WORK\2WDID.WK3

State: Florida Workpaper: 20 Page: 1 of 1 Date:

LN	Description	Source	Amount
LN 2	Switching Costs	WP21, LN15	
3	Circuit Equipment	WP22, LN25	
5		LN1+LN3	
6 7	Total Monthly Cost	LM1+LM3	
8			
9			
10 11			
12			
13			
15			
16			
17 18			
19	-		
20 21 22 23			
22			
23		·	
25			
24 25 26 27 28 29 30			
27			
29	•		
30			
31 32 33			
33			
34 35			
36			
37 38			
39			
40	C:\WORK\2WDID.WK3		

State: Florida Workpaper: 21

Page: 1 of 1 Date:

LN	Description	Source	Amount
1	Investments per 2W DID Pest		
2	5ESS	WP23, LN6	
3	DMS	WP24, LN10	
4			
5	Meided investment	LN2*LN12 +LN3*LN13	
6			
7	Account Code for investment		377C
8			
9	Conversion Factor - Investment to Cost	ACE Report 20, Total Monthly Cost/10,000	0.027047
10			
11	Technology Distribution	D&F Database - NALs	
12	5ESS		68.5%
13	DMS		31.5%
14			
15	Monthly Cost	LN5*LN9	
16	montally code		
17	•		
18			
19	•		
20			
21			
22			
23		•	
24			
25 26			
27			
26	•		
29			
30			
31			
32			
33			
34			
35			
36			
37			
38			
39			
40	C:\WORK\2WDID.WK3		

State: Florida Workpaper: 22
Page: 1 of 1
Date:

LN	Description	Source	Amount
1	Circuit Equipment Required to Terminate 21	W DID Port	
2			
3	D4 Hardwire	Fundamental Study	
4	DSX Bay	Fundamental Study	
5		•	
6	Total Hardwire Investment	LN3+LN4	
7	• • • • • • • • • • • • • • • • • • • •		
8	Account for Investment I		357C
9			
10	Conversion Factor - Investment to Cost	ACE Report 20, Total Monthly Cost/10,000	0.041306
11			
12	Monthly Cost - Hardwire	LN6*LN10	
13			
14	Common Plug-in	Fundamental Study	
15	2WR DPO Plug—in	Fundamental Study	
16	SMM DEO FINGE-III	. distantina dia ay	
17	Total Hardwire investment	LN14+LN15	
	I OTS! LISTOMISS INASSITUOUS		
18	Account for Investment 2		357C
19	Account for investment "		35/6
20	0	ACE Report 20, Total Monthly Cost/10,000	0.023414
21	Conversion Factor - Investment to Cost	ACE hapon 20, rotal monthly Coat to, ood	0.023414
22		1 114 701 1104	
23	Monthly Cost - Plug-in	LN17*LN21	
24			
25	Total Circuit Equipment Monthly Cost		
26			
27			
28			
29	· •		
30	Note:		
31	¹ Requires hardwire in — plant factor.		
32			
33			
34			
35			
36			
37			
38			
39	•		
40 (C:\WORK\2WDID:WK3		

2W DID Port **Development of SESS Investments**

State: Florida Workpaper: 23
Page: 1 of 1
Date:

: C:\WORK\2WDID.WK3 Description	Source	Amount
5ESS Investment Calculations		
2 EPHC	MO2*IP1*IP2*RS22.03/AT3	
3		
4 Hardware	ME6*IP2	
5		
6 Total investment	LN2+LN4	
7		
8		
•		
- 0		
1		
2		
3		
4		
5		
6		
7		
8 Model Office Outputs	SCIS/MO Output	
9 MO2 SM Realtime		
0 ´		
21		
2		
3 User Input	Network	
4 IP1 BH DID Calls per Trunk		
5 IP2 Number of Trunks	•	
6		
27		
28		
9		
30 SCIS/IN Database Items		
31 AT3 Realtime per EPHC	Assumption Table Item 3	
32 RS22.03 DID Call per Trunk	Realtime Table Item 22.03	
33 ME6 Digital Trunk	Miscellaneous Equation item 6	
4		
15		
96		
37		
38		
39 EPHC = Equivalent POTS half-call		
10		

State: Florida

Workpaper: 24
Page: 1 of 1
Date:

lo:	C:\WORK\2WDID.WK3		
N	Description	Source	Amount
1	DMS investment Calculations		
2	Getting Started	MO1*IP1*RT22	
3			
4	Hardware	ME6*IP2	
5		v.	
6	Memory		
7	Data Store	MD22*IT15	
8	Data Fili	MF22*IT16*IP2	
9			
10	Total Investment	LN2+LN4+LN7+LN8	
11			
12			
13	Model Office Outputs		
14	MO1 Getting Started	SCIS/MO Output	
15		•	
16			
17			
18	User Input	Network	
19	IP1 BH DID Calls per Trunk		
20	IP2 Number of Trunks		
21			
22			
23			
24			
25	SCIS/IN Database Items		
26	RT22 DID	Realtime Table Item 22	
27	MD22 DID Words	Memory Table Item MD22	
28	MF22 DID Words	Memory Table Item MF22	
29	IT15 Data Store Words	Investment Table Item 15	
30	IT16 Data Fill Words	Investment Table Item 16	
31	MES Digital Trunk	Miscellaneous Equation Item 6	
32			
33			
34			
35			
36			
37			
38			
39			
33			

2W DID Port Nonrecurring Costs — Summary

State: Florida Workpaper: 30
Page: 1 of 1
Date:

LN		Description		Source	 Amount
1	Nonrecurring Cost	- First	WP31, LN30		
2					
3	Nonrecurring Cost	- Additional	WP32, LN30		
4					
5					
6 7					
8					
9					
10					
11					
12					
13		•			
14					
15					
16 17					
18					
1 19			•		
20 21 22 23			•		
21					
22					
23		,			
24		·			
24 25 26 27					
20					
28					
29					
28 29 30					
31					
32					
33					
34					
35			· · · · · · · · · · · · · · · · · · ·		

State: Florida Workpaper: 31
Page: 1 of 1
Date:

05/17/96

C:\WORK2WDID WK3

		A	${\cal B}$	C	D	ϵ	/=
	:	/ 1	Labor	Inflation	GRT	Disconnect	Nonrecurring
LN	Description	Hours	Rate	Factor	Factor	Factor	Cost
1	Local Carrier Service Center (LCSC)	•					
2	installation		\$38.30	1.096	1.0152		
3	Disconnect		\$38.30	1.096	1.0152	0.802	
4	Circuit Province in a Contar (CDC)						
5	Circuit Provisioning Center (CPC) Installation		\$34.41	1.096	1.0152		
6 7	Disconnect		\$34.41	1.096	1.0152	0.802	
8	Discontect		40 3.31	1.555	1.0102	U.UUL	
9	Network Services Clerical (SOP89)						
10	Installation		\$30.21	1.096	1.0152		
11	Disconnect		\$30.21	1.096	1.0152	0.802	
12							
13	Switching Control Center (SCC)						
14	Installation		\$37,38	1.096	1.0152		
15	Disconnect		\$37.38	1.096	1.0152	0.802	
16							
17	Circuit & Facility (NTEL)		e 00.00	4.000	1.0160		
18	Installation		\$39.09 \$ 39.09	1.096 1. 09 6	1.0152 1.0152	0.802	
19	Disconnect		\$39.08	1.090	1.0192	0.002	
20 21	CO Administration						
22	Installation		\$36.05	1.096	1.0152		
23	Disconnect		\$36.05	1.096	1.0152	0.802	
24	,		V 03.00	,,,,,,		5.552	
25	RTU Fees	WP33, LN19					
26		-					
27							
28							
29							
30	Total Nonrecurring	Sum(LN2LN21)					
31							
32							
33 34							
35							
		T:					

State: Florida Workpaper: 32 Page: 1 of 1 Date:

05/17/96

CHWORKISMOID WK3

.	Description	A	B Labor Rate	Inflation Factor	GRT Factor	Disconnect Factor	Nonrecurring Cost
LN	Description	HOULD	(reto	(, 607/1)	racio	ractor	COSI
1	Local Carrier Service Center (LCSC)	•					
2	Installation		\$38.30	1.096	1.0152		
3	Disconnect		\$38.30	1.096	1.0152	0.802	
4	Oleveit Bendining Contact (CDC)						
	Circuit Provisioning Center (CPC)		\$34.41	1.096	1.0152		
6 7	Disconnect		\$34.41	1.096	1.0152	0.802	
8	DISCONIECT		401.11	1.000	1.0102	0.002	
	Network Services Clerical (SOP89)						
10	Installation		\$30.21	1.096	1.0152		
11	Disconnect		\$30.21	1.096	1.0152	0.802	
12							
	Switching Control Center (SCC)						
14	installation		\$37.38	1.096	1.0152		
15	Disconnect		\$37.38	1.096	1.0152	0.802	
16							
	Circuit & Facility (NTEL)		***	4 000	4.0450		
18	Installation		\$39.09	1.096	1.0152	0.000	
19	Disconnect		\$39.09	1.096	1.0152	0.802	
20	CO Administration						
21 22	Installation		\$36.05	1.096	1.0152		
23	Disconnect		\$36.05	1.096	1.0152	0.802	
24	DIAGONIACE ,		400.00	1,000		0.002	
25	RTU Fees	WP33, LN19					
26							
27							
28							
29							
30	Total Nonrecurring	Sum(LN2LN21)					
31							
32							
33							
34 35							

State: Florida

Workpaper: 33
Page: 1 of 1
Date:

C:\WORK\2WDID.WK3 N Description	Source	Amount
1 DMS100 RTU Fees	Contract PR6900	
2 Per 100 Lines		
3 NTX100AA		
4		
5 Per Line	LN3/100	
6		
7		
8		
9 5ESS RTU Fees		
10		
1 Technology Distribution	D&F Database NALs	
2 5ESS		68.5
3 DMS		31.5
4		
15 Meided RTU Fee	LN5*LN13+LN9*LN12	
16		
7 GRT Tax Factor	Fundamental Cost Group	1.015
16		
9 RTU w/GRT	LN15*LN17	
20		
21		
22		
23	•	
24		
25	1	
26		
27		
28		
29		
30		
31		
32		
33		
34		
35		
36		
37		
38		
39		
40		

SECTION 4 4-WIRE DIGITAL DID

Summary of Costs

State: Florida Workpaper: 10

Page: 1 of 1 Date:

05/17/96

A

 \mathcal{B}

0

Rate Element

Monthly

Nonrecurring First Nonrecurring Additional

7

4W D81 DID Port

Note:

F18G01Q 00048

Costs do not include establishing the first trunk group and groups of numbers. Nonrecurring costs do not include service activation.

C:\WORK\4WDID.WK3

State: Florida Workpaper: 20
Page: 1 of 1
Date:

LN	Description	Source	Amount
LN 2	Switching Costs	WP21, LN15	
3	, ti		
4	DSX	WP22, LN7	
5		1.844 - 1.840	
6	Total Monthly Cost	LN1+LN3	
7			
8 9		·	
10			
11		•	
12			
13			
14			
15			
16			
17			
18			İ
19			į
20 21 22	•		
22			
23			
24			
25			
26			ļ
27			
23 24 25 26 27 28 29 30	,		
29	•		
30			
31 32 33			
32			
34			
34 35 36 37 38 39			
36			
37			
38			
39			
40	C:\WORK\4WDID.WK3		

State: Florida Workpaper: 21 Page: 1 of 1 Date:

LN	Description	Source	Amount
1	Investments per 4W D\$1 DID Port		-
2	5ESS	WP23, LN6	
3	DMS	WP24, LN10	
4			
5	Melded Investment	LN2*LN12 +LN3*LN13	
6			
7	Account Code for Investment		377C
8			
9	Conversion Factor - Investment to Cost	ACE Report 20, Total Monthly Cost/10,000	0.027047
10 .			
- 11	Technology Distribution	D&F Database - NALs	
12	5E\$\$		68.5%
13	DMS		31.5%
14			
15	Monthly Cost	LN5*LN9	
16			
17			
18			
19			
20	•		
21			
22			
23		•	
24			
25			
26			
27			
28			
29	•	·	
30			
31			
32			
33			
34			
35			
36			
37			
38			
39			
40 (C:\WORK\4WDID.WK3		

State: Florida Workpaper: 22
Page: 1 of 1
Date:

LN	Description	Source '	Amount
1	DSX Investment ¹	Fundamental Cost	
2			
3	Account Code		257C
4			
5	Conversion Factor — Investment to Cost	ACE Report 20, Total Monthly Cost/10,000	0.030121
6			
7	Monthly Cost	LN1*LN5	
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19		·	
20			
21			
22 23			
24			
25			
26		1	
27			
28			
29	•		
30	Note:		
31	¹ This is for 1/2 DSX bay termination.		
32			
33			
34			
35			
36			
37			
38			
39			
	C:\WORK\4WDID.WK3		

State: Florida Workpaper: 23

Page: 1 of 1 Date:

Hardware ME6*IP2 Total Investment LN2+LN4 Model Office Outputs SCIS/MO Output MO2 SM Restrime User Input IP1 BH DID Calls per Trunk IP2 Number of Trunks	
### MO2*IP1*IP2*RS22.03/AT3 ###################################	
Hardware ME6*IP2 Total Investment LN2+LN4 Model Office Outputs SCIS/MO Output MO2 SM Realtime User Input IP1 BH DID Calls per Trunk IP2 Number of Trunks	
Total Investment LN2+LN4 Total Investment LN2+LN4 LN2	
Total Investment LN2+LN4 LN2	
7 8 9 1 1 2 3 4 5 6 6 7 8 Model Office Outputs SCIS/MO Output 9 MO2 SM Realtime 10 11 12 13 User Input Network 1P1 BH DID Calls per Trunk 1P2 Number of Trunks 1P3 Number of Trunks	
8 9 0 1 1 2 2 3 3 4 4 5 5 6 6 7 8 Model Office Outputs SCIS/MO Output MO2 SM Realtime	
9 0 1 1 2 2 3 3 4 5 5 6 6 7 7 8 Model Office Outputs SCIS/MO Output 99 MO2 SM Realtime 90 11 22 1	
1	
SCIS/MO Output Model Office Outputs MO2 SM Resitime User Input IP1 BH DID Calls per Trunk IP2 Number of Trunks	
2 3 4 5 6 6 7 8 Model Office Outputs SCIS/MO Output 9 MO2 SM Resitime 8 9 10 11 12 12 12 13 User Input Network 1P2 Number of Trunks 1P2 Number of Trunks 1P2 Number of Trunks 1P3 Number of Trunks 1P4 Number of Trunks 1P5	
3 4 5 6 6 7 8 Model Office Outputs SCIS/MO Output 9 MO2 SM Restrime 80 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Model Office Outputs Mo2 SM Restime User Input IP1 BH DID Calls per Trunk IP2 Number of Trunks	
SCIS/MO Output Model Office Outputs MO2 SM Redtime User Input IP1 BH DID Calls per Trunk IP2 Number of Trunks Red Red Red Red Red Red Red Re	
6 7 8 Model Office Outputs SCIS/MO Output 9 MO2 SM Realtime 80 81 82 82 83 84 84 84 84 84 84 84 84 84 84 84 84 84	
Model Office Outputs MO2 SM Restime User Input Network IP1 BH DID Calls per Trunk IP2 Number of Trunks	
Model Office Outputs MO2 SM Restime User Input Network IP1 BH DID Calls per Trunk IP2 Number of Trunks Restimate to the service of t	
MO2 SM Realtime Network	
0 21 22 3 User Input Network 24 IP1 BH DID Calls per Trunk 25 IP2 Number of Trunks 26 27	
Network Network P2 Number of Trunks Network Network Network Network Network Network	
22 3 User Input Network 24 IP1 BH DID Calls per Trunk 25 IP2 Number of Trunks 26 27 28	
Network Plant input Network Plant in put Network Plant in put input Network Plant input Number of Trunks Plant input Network P	
P1 BH DID Calls per Trunk P2 Number of Trunks P3 P2 Number of Trunks P5 P7 P8	
25 IP2 Number of Trunks 26 27 28	
6 27 26	
27 28	
28	
9	
30 SCIS/IN Database items	
ATS Realtime per EPHC Assumption Table Item 3	
32 RS22.03 DID Call per Trunk Realtime Table Item 22.03	
33 ME6 Digital Trunk Miscellaneous Equation Item 6	
34 	
95 	
36	
97 	
38	
39 40	

State: Florida Workpaper: 24
Page: 1 of 1
Date:

LN	C:\WORK\4WDID.WK3 Description	Source	Amount
1	DMS Investment Calculations		
2	Getting Started	MO1*IP1*RT22	
3	•		
4	Hardware	ME6*IP2	
5		•	
6	Memory		
7	Data Store	MD22*IT15	
8	Data Fill	MF22*IT16*IP2	
9			
10	Total Investment	LN2+LN4+LN7+LN8	
11			
12			
13	Model Office Outputs		
14	MO1 Getting Started	SCIS/MO Output	
15			
16			
17			
18	User Input .	Network	
19	iP1 BH DiD Calls per Trunk		
20	iP2 Number of Trunks		
21			
22			
23		•	
24			
25	SCIS/IN Database Items	D. W. T. I. I. D.	
26	RT22 DID	Realtime Table Item 22	
27	MD22 DID Words	Memory Table Item MD22	
28	MF22 DID Words	Memory Table Item MF22	
29	IT15 Data Store Words	Investment Table Item 15	
30	IT16 Data Fill Words	Investment Table Item 16	
31	ME6 Digital Trunk	Miscellaneous Equation Item 6	
32			
33			
34			
35			
36			
37			
38 39			
40			
O			

4W DS1 DID Port Nonrecurring Costs — Summary

State: Florida Workpaper: 30
Page: 1 of 1
Date:

ĽŅ	Description	Source	Amount
_1	Nonrecurring Cost — First	WP31, LN30	
2	Nonrecurring Cost - Additional	WP32, LN30	
4			
5			
6			
7 8			
9			
10			
11			
12 13			
14			
15			
16			
17			
18 19			
20			
21			
20 21 22			
23 24 25 26 27			
24	•		
26			
27			
28			
29			
30 31			
31 32			
33			
34			
35			

State: Florida Workpaper: 31
Page: 1 of 1
Date:

C:\W(DRK(4WDID.WK3						
		A	\mathcal{B}	\mathcal{C}	\mathcal{D}	ϵ	-
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Labor	Inflation	GRT	Disconnect	Nonrecurring
LN	Description	Hours	Rate	Factor	Factor	Factor	Cost
1	Local Carrier Service Center (LCSC)	,					
2	Installation		\$38.30	1.096	1.0152		
3	Disconnect		\$38.30	1.096	1.0152	0.802	
4							
5	Circuit Provisioning Center (CPC)						
6	Installation		\$34.41	1.096	1.0152		
7	Disconnect		\$34.41	1.096	1.0152	0.802	
8							
9	Network Services Clerical (SOP89)						
10	Installation		\$30.21	1.096	1.0152		
11	Disconnect		\$30.21	1.096	1.0152	0.802	
12							
13	Switching Control Center (SCC)			4 000	4.0450		
14	Installation		\$37.38	1.096	1.0152	0.000	
15	Disconnect		\$37.38	1.096	1.0152	0.802	
16							
17							
18							
19							
20		11000 11140					
21	RTU Fees	WP33, LN19					
22							
23							
24	•						
25							
26							
27							
28							
29	Total Magazanisian	Sum(LN2LN21)					
30		20111(L142L1421)					
32							
32							
34							
35							

State: Florida Workpaper: 32 Page: 1 of 1 Date:

05/17/96

CHWORKAWDID WK3

	IK(4WDID.WK3	A	\mathcal{B}	\mathcal{C}	Ð	ϵ	F
	•		Labor	Inflation	GRT	Disconnect	Nonrecurring
LN	Description	Hours	Rate	Factor	Factor	Factor	Cost
	ocal Carrier Service Center (LCSC)			4 000	4.0450		
	Installation		\$38.30	1.096	1.0152	0.000	
3 1	Disconnect		\$38.30	1.096	1.0152	0.802	
5 C	Strouit Provisioning Center (CPC)		•				
6	Installation		\$34.41	1.096	1.0152		
	Disconnect		\$34.41	1.096	1.0152	0.802	
8							
	letwork Services Clerical (SOP89)		\$30.21	1.096	1.0152		
	Installation		\$30.21	1.096	1.0152	0.802	
11 12	Disconnect		400.21	1.555			
13 S	Switching Control Center (SCC)						
	Installation		\$ 37. 38	1.096	1.0152		
	Disconnect		\$37.38	1.096	1.0152	0.802	
16							
17 18							
19							
20							
21 F	RTU Fees	WP33, LN19					
22							
23	,						
24	1						
25 26							
27							
28							
29							
30 7	Total Nonrecurring	Sum(LN2LN21)					
31							
32							
33							
34 35							

4W DS1 DID Port Development of RTU Fee Costs

State: Florida Workpaper: 33
Page: 1 of 1
Date:

: C:\WORK	4WDID.WK3		DEG. 05/17/5
N C.WOIII	Description	Source	Amount
1 DMS100	RTU Fees	Contract PR6900	
2 Per 100			
3 NTX100	DAA ' "		
4			
5 Per Line		LN3/100	
6			
7 Per DS1		LN5*24	
8			
9 5E88 RT	U Fees		
0			
	gy Distribution	D&F Detabase - NALs	68.5
2 5ESS			31.5
3 DMS			31.5
4			
5 Melded R	TU Fee	LN7*LN13+LN9*LN12	
6	_	Eurada — antal Cont Oraun	1.019
7 GRT Tex F	actor	Fundamental Cost Group	1.01.
8		1 114 5 41 114 7	
9 RTU w/G	RT	LN15*LN17	
20			
21			
22			
23			
24			
25		•	
26			
27			
28	•		
29			
30			
31 32			
32 33			
33 34			
34 35			
36			
36 37			
3 <i>1</i> 38			
39			
40			

SECTION 4

4-WIRE DIGITAL DS1 ISDN

Summary of Costs

State: Florida

Workpaper: 10

Page: 1 of 1 Date:

05/23/96

A

 \mathcal{B}

<u>C</u>

Rate Element

Monthly

Nonrecurring First Nonrecurring Additional

7

4W ISDN DS1 Port (PRI)

Usage

9

F18G01Q 00059

First Minute of Use
Additional Conversation Minutes (per Minute)

C:\WORK\PRI.WK3

State: Florida Workpaper: 20 Page: 1 of 1 Date:

LN	Description	Source	Amount
1	Switching Costs ¹	WP21, LN36	
2			
3	DSX	WP22, LN7	
4		1814 - 1819	
5	Total Monthly Cost	LN1+LN3	
6			
7			
8			
9			
10 11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21	•		
22 23			
24			
25			
26			
27			
28			
29	1		
30	Note:		u : a - sis - sis - are not included
31	The switching costs only include the phy	sical termination, i.e. call—by—call access and incoming	call identification are not included.
32			
33			
34			
35			
36			
37			
38 39			
	C:\WORK\PRI.WK3		

LN	Description	Source	Amount
1	5ESS Calculations		
2	investment	SCIS/MO - 5ESS ISDN Line Termination Report	
3	Minimum Cost per D Channel		
4			
5	Minimum Cost per B Channel	V	
6	Number of B Channels		23
7			
8	investment per Port	LN3+LN5*LN6	
9			
10	Account Code for Investment		377C
11			
12	Conversion Factor — Investment to Cost	ACE Report 20, Total Monthly Cost/10,000	0.027047
13			
14	5ESS Monthly Cost	LN8*LN10	
15			
16	DMS Calculations	0010/110 01101001111	
17	Investment	SCIS/MO - DMS ISDN Line Termination Report	
18	Minimum Cost per D Channel		
19	Malana Osakasa B.Ohaasal		
20	Minimum Cost per B Channel		
21	Number of B Channels		23
22	towards and man David	I NIAO . I AIGDAI NIGA	
23	Investment per Port	LN18+LN20*LN21	
24 25	Account Code for Investment		377C
25 26	Account Code for investment		3776
20 27	Conversion Factor - Investment to Cost	ACE Deposit On Total Manufally Constitution	0.027047
28	Contactation - Magazinatif to Cost	ACE Report 20, Total Monthly Cost/10,000	0.027047
20 29	DMS Monthly Cost	LN23*LN27	
30	Day Mouthly Cost	FILES FILE!	
31	Meld Calculations		
32	Technology Distribution	D&F Detabase NALs	
33	5ESS	Car Descript Mary	68.5%
34	DMS		31.5%
35			4
36	Melded Monthly Cost	LN14*LN33+LN29*LN34	
37			
38			
39			
	:\WORK\PRI.WK3		

State: Florida Workpaper: 22
Page: 1 of 1
Date:

LN	Description	Source '	Amount
1	DSX investment ¹	Fundamental Cost	
2	•		
3	Account Code		257C
4			
5	Conversion Factor — Investment to Cost	ACE Report 20, Total Monthly Cost/10,000	0.030121
6			
7	Monthly Cost	LN1*LN5	
8			
9			
10			
11			
12			
13			
14			
15			
16 17			
18			
19	•		
20			
21			
22			
23		T.	
24			
25		•	
26		·	
27			
28			
29	1		
30	Note:		
31	¹ This is for 1/2 DSX bay termination.		
32			
33			
34			
35			
36			
37			
38			
39		•	
40	C:\WORK\PRI.WK3		

State: Florida Workpaper: 30
Page: 1 of 1
Date:

LN	Description	Source	Amount
1	Nonrecurring Cost - First	WP31, LN30	
2	<u>.</u>		
3	Nonrecurring Cost — Additional	` WP32, LN30	
4			
5			
6 7			
8			
9			
10			
11			
12			
13			
14			
15			
16 17			
18			
19			
20			
21			
22		•	
23			
24	•		
25	·		
26			
27 28			
29			
30			
31			
32			
33			
34			
35			

State: Florida Workpaper: 31 Page: 1 of 1 Date:

		A	B	C	D	E	<i>F</i>
LN	Description (Hours	Labor Rate	Inflation Factor	GRT Factor	Disconnect Factor	Nonrecurring ¹ Cost
1	Local Carrier Service Center (LCSC)						
2	Instaliation		\$38.30	1.096	1.0152		
3	Disconnect		\$38.30	1.096	1.0152	0.802	
4							
5	Circuit Provisioning Center (CPC)		***	4 000	4.0450		
6	Installation		\$34.41	1.096	1.0152	0.000	
7	Disconnect		\$34.41	1.096	1.0152	0.802	
8	Mahwark Ohio in (DICC)						
9 10	Network Plug-in (PICS) Installation		\$41.65	1.096	1.0152		
11	Disconnect		\$41.65	1.096	1.0152	0.802	
12	Disconsider		4 11.00	1.000	1.0102	0.002	
13	Switching Control Center (SCC)						
14	Installation		\$37.38	1.096	1.0152		
15	Disconnect		\$37.38	1.096	1.0152	0.802	
16			•				
17	RTU Fees	WP33, LN32					
18		•					
19							
20							
21							
22							
23							
24	*						
25 26							
27							
28							
29							
30	Total Nonrecurring	Sum(LN2LN17)					
31							
32							
33							
34							
35	C:\WORK\PRI.WK3						

State: Florida Workpaper: 32
Page: 1 of 1
Date:

		A	${\cal B}$	0	\mathcal{D}	E	<i>E</i>
LN	Description	Hours	Labor Rate	Inflation Factor	GRT F act or	Disconnect Factor	Nonrecurring Cost
1	Local Carrier Service Center (LCSC)						
2	Installation		\$38.30	1.096	1.0152		
3	Disconnect		\$38.30	1.096	1.0152	0.802	
5	Circuit Provisioning Center (CPC)						1
6	Installation		\$34.41	1.096	1.0152		
7 8	Disconnect		\$34.41	1.096	1.0152	0.802	
9	Network Plug-in (PICS)						
10	Installation		\$41.65	1.096	1.0152		
11 12	Disconnect		\$4 1.65	1.096	1.0152	0.802	
13	Switching Control Center (SCC)						
14	Installation		\$37.38	1.096	1.0152		
15 16	Disconnect		\$37.38	1.096	1.0152	0.802	
17 18	RTU Fees	WP33, LN32					
19							
20							
21 22							
23							
24	,						
25							
26							
27							
28							
29	Total Managements	0 .0440 4444					
30 31	Total Nonrecurring	Sum(LN2LN17)					
32							
33							
34							
	C:\WORK\PRI.WK3						

State: Florida Workpaper: 33 Page: 1 of 1 Date:

ile:	C:\WORK\PRI.WK3		Dale.	03/23/9
LN	Description	Source		Amount
1	DMS100 RTU Fees	Contract PR6900		
2	Per Office			
3	NTX790AB	PRI Interface Base		
4	NTX793AA	Integrated Services Access		
5	NTX794AA	PRI/CCS7 Interworking		
6	NTN53AA	D Channel Back-up		
7	Total per Office	LN3+LN4+LN5+LN6		
8				
9	Per PRI			
10	NTX790AB	PRI Interface Base		
11				
12	Average PRIs per office	Model Office Input		
13		·		
14	DMS RTU per PRI	LN10+LN7/LN12		
15				
16				
17	5ESS RTU Fees	Contract PR6700B		
18	Per PRI			
19	ISRIPRT (includes ISCCART)	ISDN Primary Rate Interface		
20	NISSPRI	Ni2 - Basic (1% of Interfaces)		
21	5ESS RTU per PRI	• • • • • • • • • • • • • • • • • • • •		
22	•			
23	Melded RTU Fee per PRI			
24	Distribution	NALs		
25	DMS	, 		31.59
26	5E88			68.59
27				30.0
28	Melded Cost per PRI	LN14*LN25+LN21*LN26		
29	1			
30	GRT	Fundamental Cost Group		1.015
31				,,,,,,
32	Melded Cost w/GRT	LN28*LN30		
33				
34				
35				
36				
37				
38				
39				
40				

State: Florida Workpaper: 40 Page: 1 of 1 Date:

Filo:	C:\WORK\PRI.WK3	Date:	05/23/96
LN	Description	Source	Amount
1	Call Set-up Incremental BH Investment		
2	5ESS	WP41, LN6	
3	DMS	WP42, LN6	
4	•		
5	Account Code for investment		3770
6			
7	Conversion Factor — Investment to Cost	ACE Report 20, Total Monthly Cost/10,000	0.027047
8			
9	Monthly Cost		
10	5ESS		
11	DMS		
12			
13	Technology Distribution	D&F Database - NALs	
14	5ESS		68.5%
15	DMS		31.5%
16			
17	Melded BH Call Set-up Cost	LN10*LN14+LN11*LN15	
18			
19	MOU incremental BH investment		
20	5ESS .	No Incremental Cost	
21	DMS	No Incremental Cost	
22			
23	Monthly Cost	1 1 24 1 1 1 1 1	
24	5ESS	LN7*LN20	
25	DMS	LN7*LN21	
26 27	4	144441 1104 - 1514541 1105	
	Melded BH MOU Cost	LN14*LN24+LN15*LN25	
28 29	Construction of City Contact Any Time Any Day		
30	Conversion of BH Cost to Any Time, Any Day		
31	Factors	Alabamata Charles (BICAT)	400
31	BH/Full Day Ratio	Network Study (NCAT) 365/12	10% 30.4
33	Days per Month ,	300/12	30.4
34	Calculation		
35	Call Set~up	LN17*LN31/LN32	
36	MOU	LN27*LN31/LN32	
37	MOO	U451, (1431/11495	
38	Cost for First Minute of Use (Incremental to POTS)	LN35+LN36	
39	Cost for Additional Minute (Incremental to POTS)	LN36	
40	Cost on versionism sentral functionism to LO (2)	700	
41	Cost for First Minute of Use (POTS)	NCAT	
42	Cost for Additional Minute (POTS)	NCAT	
43	COST INT VARIABILITY (LO19)	HON	
44	Total Cost for First Minute of Use	LN38+LN41	
45	Total Cost for Additional Minute	LN39+LN42	
40	IONEL COST DOL VOCHDOLLER WILLIAM	U100TU114	

State: Florida Workpaper: 41 Page: 1 of 1 Date:

File:	C:\WORK\PRI.WK3		Date.	0002000
LN	Description	Source		Amount
1	Incremental Cost of ISDN Usage			
2	5ESS Calculations			
3	Call Set-up			
4	EPHC	IMO2*IP1*RS192/AT3+		
5		IMO2*IP2*RS192.01/AT3+		
6		IMO2*IP3*RS192.02/AT3		
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18	Model Office Outpute	SCIS/MO Output		
19	IMO2 SM Realtime (ISDN SMs)			
20				
21				
22				
23	User input	Network		
24	IP1 BH Originating IAO Calls			
25	1P2 BH Originating IEO Calls			
26	IP3 BH Terminating Calls			
27	•			
28				
29				
30	SCIS/IN Database Items			
31	AT3 Resitime per EPHC	Assumption Table Item 3		
32	RS192 IAO Increment	Resitime Table Item 192		
33	RS192.01 IEO Increment	Resitime Table Item 192.01		
34	RS192.02 Terminating increment	Resitime Table Item 192.02		
35	•			
36				
37				
38				
39	EPHC = Equivalent POTS half-call.			
40	·			

State: Florida Workpaper: 42 Page: 1 of 1

Date:

File:	C:\WORK\PRI.WK3		00,243
LN	Description	Source	Amount
1	Incremental Cost of ISDN Usage		
2	DMS Calculations		
3	Can get_nb		
4	Getting Started	MO1*IP1*RT192+	
5		MO1*IP2*RT192.01+	
6		MO1*IP3*RT192.02	
7			
8			
9			
10			
11			
12	11-1-1-0-0		
13	Model Office Outputs	2010/4/2 0 4 4	
14	MO1 Getting Started	SCIS/MO Output	
15			
16			
18	H-sala-ut	Market and	
19	User Input	Network	
20	IP1 BH Origin eting IAO Calls IP2 BH Origin eting IEO Calls	•	
20			
22	IP3 BH Terminating Calls		
23			
24			
25	SCIS/IN Database Items		
26	RT192 IAO Incremental to L-L	Realtime Table Item 192	
27	RT192.01 L-T Increment	Realtime Table Item 192.01	
28	RT192.02 Terminating Increment	Realtime Table Item 192,02	
29	At 198.02 teliminaning meternions	Describe 1 Total Nation 195,05	
30	•		
31			
32			
33			
34			
35			
36			
37			
38			
39			
40			

SECTION 4 LOCAL USAGE

```
NETWORK COST ANALYSIS TOOL (NCAT)
 1
                                   FL LOCAL MEASURED RATE (13.24COM)
 2
 3 DB : FL
                                                                              STATE: FLORIDA
 4 VER : 4.1
                                                                              WORKPAPER: 100
 5
    CALC TYPE: MARGINAL
                                                                              PAGE: 1 OF 1
   STUDY: FLLOCMS
                                                                              DATE: 17-MAY-96
 6
 7
 8
                       UNIT COST SUMMARY
 9
10
                                               (F)
                                                      (G)
             (B)
   (A)
                    (C)
                            (0)
                                     (2)
                                            =(C+D+E) =(E)
11
              RP COST/MSG EXP/MSG COST/MIN COST / COST /
12 DISTANCE
   BAND
              (HTB.) (SETUP) DURATION FIRST MIN ADDL MIN
13
14 -----
15
16
   IAO
              08-19
17
              20-07
18
              AVG
19
    0.0-9999.9 08-19
20
              20-07
21
              AVG
22
23
             08-19
24 ALL
              20-07
25
              AVG
26
27
28
٠,
0
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
                 PRIVATE/PROPRIETARY: NO DISCLOSURE OUTSIDE BELLSOUTH EXCEPT BY WRITTEN AGREEMENT
3
6 د
                               BELLCORE CONFIDENTIAL - RESTRICTED ACCESS
57
```

F18G01Q 00071

```
NETWORK COST ANALYSIS TOOL (NCAT)
 1
                                  FL LOCAL MEASURED RATE (13.2%COM)
 3 DB : FL
                                                                          STATE: FLORIDA
 4 VER : 4.1
                                                                          WORKPAPER: 200
 5 CALC TYPE: MARGINAL
                                                                          PAGE: 1 OF 3
 6 STUDY: FLLOCMS
                                                                          DATE: 17-MAY-96
 8
 9
                                 TRAFFIC SENSITIVE UNIT COST - SETUP RELATED
10
                    (C)
              (B) = (D+E+F+G+H+I) (D) (E)
                                            (F) (G) (H)
11
12 DISTANCE
                  TOTAL -----SWITCHING---- | ----TRUNKING----
                          EO TOM
13 BAND
              PP
                                          MEAS
                                                    FAC TERM
                                                                    SS7
14 -----
15
      IAO 08-19
16
17
              20-07
              AVG
18
19
20
   0.0-9999.9 08-19
21
              20-07
22
              AVG
23
24
   ALL
             08-19
             20-07
25
26
             AVG
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
                PRIVATE/PROPRIETARY: NO DISCLOSURE OUTSIDE BELLSOUTH EXCEPT BY WRITTEN AGREEMENT
55
56
                               BELLCORE CONFIDENTIAL - RESTRICTED ACCESS
```

F18G01Q 00072

```
FL LOCAL MEASURED RATE (13.24COM)
 1
 2 DB : FL
                                                                      STATE: FLORIDA
 3 VER : 4.1
                                                                      WORKPAPER: 200
 4 CALC TYPE: MARGINAL
                                                                      PAGE: 2 OF 3
 5 STUDY: FLLOCMS
                                                                      DATE: 17-MAY-96
 7
                         TRAFFIC SENSITIVE UNIT COST - DURATION RELATED
                   (C)
 9
                                                 (G)
   (A) (B) = (D+E+F+G+H) (D)
10
                                 (E)
                                          (F)
                                                        (H)
                 TOTAL |----TRUNKING----|
11 DISTANCE
             RP
                         EO TDM
                                         meas fac term
13 -----
14
15
   IAO 08-19
16
            20-07
17
            AVG
18
   0.0-9999.9 08-19
19
20
             20-07
             AVG
21
22
            08-19
23
   ALL
            20-07
24
25
             AVG
26
27
28
29
10
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
               PRIVATE/PROPRIETARY: NO DISCLOSURE OUTSIDE BELLSOUTH EXCEPT BY WRITTEN AGREEMENT
54
5
                             BELLCORE CONFIDENTIAL - RESTRICTED ACCESS
56
```

57

F18G01Q 00073

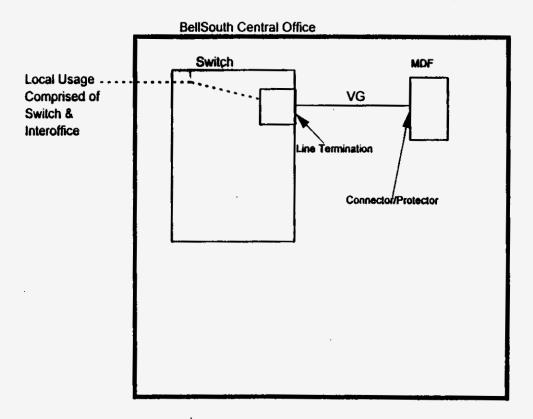
1	DB : FL	NETWORK CO	ST ANALYSIS TO	OL (NCAT)	STATE: FLORID.	A
2	VER: 4.1	ANNUAL,	COST FACTOR R	EPORT	WORKPAPER: 20	0
3		_			PAGE: 3 OF 3	
4					DATE: 17-MAY-	96
5						
6						
7		ANNUAL				
8			INDEX			
9						
10		0.19510				
11		0.17720				
13		0.23540				
14	377C	0.25200	0.9927			
15	811C	0.21450	0.3327			
16	822C	0.20810				
17	845C	0.20560				
18	84C	0.16860				
19	850	0.20630				
20						
21						
22						
23						
24						
25						
26						
27						
28						
29						
0						
-						
32						
33						
34						
35						
36		•			•	
37						
38						
39						
40						
41					•	
42						
43						
45						-
46						
47						
48					•	
49						
50	PRIVATE/PROPRI	ETARY: NO DIS	CLOSURE OUTSI	DE BELLSOUTH	EXCEPT BY WRITTEN	AGREEMENT
51						
52		BELLCORE CO	NFIDENTIAL - 1	RESTRICTED AC	CESS	
53						
54						
55						

SPECIFIC STUDY ASSUMPTIONS

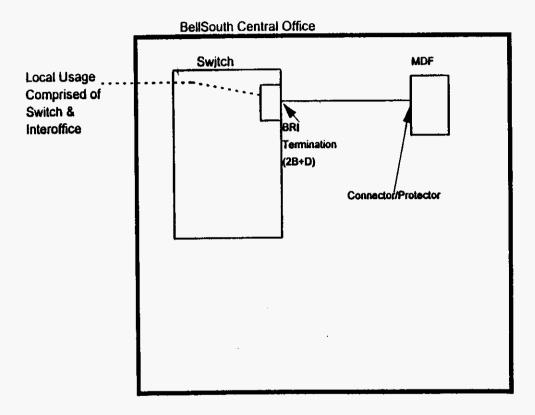
FLORIDA UNBUNDLED PORTS COST STUDY DOCUMENTATION

The cost studies are based on incremental economic theory and assumptions, plus specific Network deployment strategies, first choice provisioning guidelines, and equipment purchasing information.

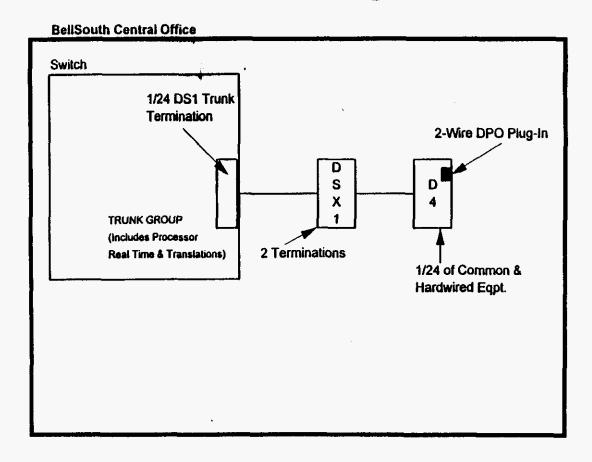
Cost study assumptions are as follows: Ports

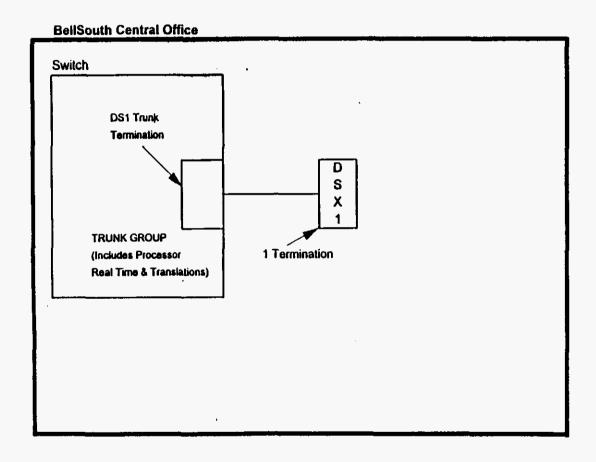

- 1. The cost of money is 13.2%, the forward-looking incremental cost to the firm.
- 2. The port costs developed do not provide any feature functionality. Only the cost to provide a physical connection to the switch have been considered.
- 3. Network usage is required to gain access to the switch network. The 2-wire digital ISDN port usage is strictly for circuit-switched traffic. The nonrecurring cost to configure ISDN channels per individual customer specifications is not included.
- 4. RTU fees have been included where applicable to account for the expense which must be paid to the switch vendors upon termination.
- 5. The nonrecurring cost development utilizes a location life of 60 months was assumed; impacts discounted disconnect factor. The nonrecurring costs for the 2W & 4W Analog ports and the 2W ISDN port include the establishment of telephone numbers.
- 6. Alternative Network Serving Arrangements, ANSA, have not been considered in the ISDN ports.

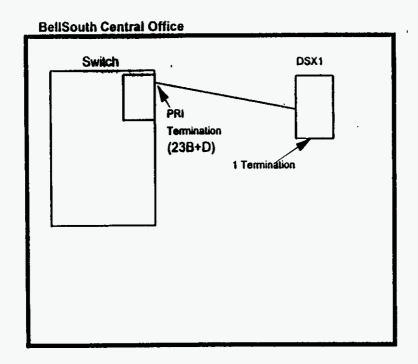
Local Measured Usage


- 1. Trunk attempt and CCS (Centum (100) Call Seconds) busy hours are the same as the originating office attempt and CCS busy hours.
- 2. Measurement equipment attempt and CCS busy hours are the same as the attempt and CCS busy hours for the corresponding switch. The measurement equipment is assumed to be LAMA, Local Automatic Message Accounting.
- 3. The ratio of average busy season daily traffic load to average business day traffic load is 1.1:1.

- 4. All tandems are assumed to perform both originating and terminating functions.
- 5. Signaling System 7 (SS7) is assumed for all trunks.
- 6. Interoffice trunks are engineered to overflow six percent of the peak traffic load.
- 7. Trunk utilization is eighty-five percent.
- 8. A stimulation rate of ten percent is used to obtain a meaningful and manageable increment of usage.
- 9. When switch-specific investments are not available, a technology-specific weighted investment is used.
 - 10. Replacement switch technology is assumed for each end office and tandem office.
 - 11. The number of digits sent per outgoing call is 7.
 - 12. The number of digits received is 7.
 - 13. The grade of service is 0.01.
 - 14. The number of annual business days is 250 (i.e., excludes weekends and holidays).
 - 15. Average business day load to average calendar day load is 1.177:1.
 - 16. The number of digits dialed is 7.


Unbundled 2-Wire Analog Port


Unbundled 2-Wire ISDN Digital Line Port


Unbundled 2-Wire Analog DID Trunk Port

Unbundled 4-Wire DS1 DIGITAL DID Trunk Port

Unbundled 4-Wire ISDN DS1 Digital Trunk Port

FACTORS AND LOADINGS

FLORIDA UNBUNDLED PORTS COST STUDY DOCUMENTATION

Following are the incremental annual cost factors, miscellaneous loadings and labor rates used in the Unbundled Ports cost study for Florida.

SECTION 6 LABOR RATES

1995 Directly Assigned Labor Rates Florida

Plant Work Centers	Job Function Code	Rate
Facilities Assignment Center CO Installation & Maintenance — Circuit & Facility CO Installation & Maintenance & Administration — Software CO Administration — Circuit, Carrier, & Facility Circuit Provisioning Center Special Services — Coordinate & Test	400X 431X (NTEL) 432X (RCMAC & SCC) 434X 470X (CPC) 471X (SSC)	\$31.28 \$39.09 \$37.38 \$36.05 \$34.41
Engineering Work Centers	Job Function Code	Rate
Network Plug-in Administration	341X (PICS)	\$41.65
Cost Groups	Job Function Code	Rate
Local Carrier Center Network Services Clerical	2300 (LCSC) 270X (SOP69)	\$38.30 \$30.21

INFLATION LEVELIZING FACTOR PROGRAM LABOR INFLATION FEN

YEAR	IN-MOVEMENT	INFLATION
_		1 032000
1	1	1.032000
2	1	1.035000
3	1	1.034000
4	1	1.033000
5	1	1.034000

FEN = 1.09596

FACTOR DEVELOPED ON 13.2 * DISCOUNT RATE

SECTION 6 377C

USOC ANNUAL COST DETAILS

Study Number:

FL.

Study Name: SAMPLE OF \$10,000 Tariff Element: SAMPLE OF \$10,000 ACE REPORT 20 Page 1

5/15/96

State Tariff Ref

\$10,000

USOC

Modifier

Technology Volume Sensitivity Economic Type Investment Basis

٧S

DIR

	INVESTMENT DATA						ANNUAL	COST F	ACTORS						AL EXPENS			
Pield Code	St	Capital Investment	Operating Investment	Date	•		Inc Tax			AdVal	GRT	Depr.	C.O.M.	Inc Tax		Admin		GRT Expense
10C	FL	503.57	503.57		.0302	.0986	.0452	.0069	0.0000	.0113	.0152	15.21	49.65	22.76	3.47	0.00	5.69	1.47
30C	FL	37.39	37.39		0.0000	.1118	.0514	0.0000	0.0000	.0113	.0152	0.00	4.10	1.92	0.00	0.00	.42	.10
377C	PL	12,464.71	12,464.71		. 1134	.0651	.0302	.0262	0.0000	.0113	.0152	1,413.50	811.45	376.43	351.50	0.00	140.85	47.02
SUMMA	MMARY: ADJUSTED TOTAL INVESTMENT ANNUAL CAPITAL COSTS;			13,005.67 Depreciation Expense 1,428.71										*******				
		ANNUAL	CAPITAL COST	rs:	-		pense											
					Cost of	•			865.2 401.1									
					Income T	_												
		ANNUAL	OPERATING EX	LPENSES:		•			354.9									
				•	Administ		-		0.0									
					Ad Valor	em and	Other Ta	xes	146.9	6								
		Gross R	eceipta Tax					48.6	0									
		TOTAL ANNUAL COSTS				3,245.6	5	TOTAL	MONTHLY	COST:	270.47							

F18G01Q 00089

NOTES: 1. Capital and Operating Investments are the BOOKED INVESTMENTS from ACE Report 10.

- 2. Depreciation, Cost of Money, and Income Tax Expenses . Capital Investment multiplied by the corresponding Annual Cost Factor.
- 3 Maintenance, Administrative, and Ad Valorem Expenses . Operating Investment multiplied by the corresponding Annual Cost Factor.
- 4. Gross Receipts Tax = Gross Receipts Tax Factor multiplied by the sum of Capital Costs and Operating Expenses.

USOC INVESTMENT DETAILS

Study Number:

Study Name: SAMPLE OF \$10,000 Tariff Element: SAMPLE OF \$10,000 ACE REPORT 10

Page 1

5/15/96

State Tariff Ref USOC Modifier Technology Vol. Sens. Economic Type Investment Basis

, \$10,000 VS DIR

	PRIMARY INVEST		INV	ESTMENT L	OADING FA	CTORS	SUPPORT	STRUCTURE LOA	DINGS	BOOKED I	NVESTMENTS'		
Field Code	Description	Capital Investment	Operating Investment		. FC Factor	InPlant Factor	InPlant Type	CE&P Factor	Loading Factor	Loading Type	Field Code	Capital Investment	Operating Investment
377C	SAMPLE OF \$10,000 - Support Loading> - Support Loading>	10,000.00	10,000.00	5/07/96 5/07/96 5/07/96		1.1236	T	1.0962	.0404	switch_bldg	10C 20C	12,464.71 503.57 37,39	12,464.71 503.57 37.39
									ADJUS	TED TOTAL INVE	STMENT:	13,005.67	13.005.67

13,003.67

F18G01Q 00090

NOTES: 1. The BOOKED INVESTMENT for PRIMARY INVESTMENTS is calculated by multiplying the PRIMARY INVESTMENT by the applicable INVESTMENT LOADING FACTORS.

- 2. The BOOKED INVESTMENT for SUPPORT STRUCTURE LOADINGS is calculated by multiplying the applicable Loading Factor by the sum of INVESTMENTS for each primary Field Code.
- i InPlant Factor types: T = Telco, C = Material Composite, H = Material Hardwire, P = Material Plugin
- 4 The FC factor is the levelized inflation factor for investments.

SECTION 6 257C

USOC INVESTMENT DETAILS

Study Number:

Scudy Name: SAMPLE OF \$10,000 Tariff Element: SAMPLE OF \$10,000 ACE REPORT 10 Page 1 5/15/96

State Tariff Ref

FL

USOC

Modifier

Technology Vol. Sens. Economic Type Investment Basis

VS DIR

	PRIMARY INVEST	DERNT DATA			INV	estment L	OADING FA	crors	SUPPORT	STRUCTURE LOAD	INGS	BOOKED I	NVESTMENTS
Field Code	Description	Capital Investment	Operating Investment	Date	FC Factor	InPlant Pactor	InPlant Type	•	Loading Pactor	Loading Type	Field Code	Capital Investment	Operating Investment
257C	SAMPLE OF \$10,000 - Support Loading> - Support Loading>	10,000.00	10,000.00	5/08/96 5/08/96 5/08/96	.9620	1.5212	ĸ	1.0159	.0404	circuit_bldg	10C 20C	14,866.62 600.61 44.60	14,866.62 600.61 44.60
					•••••				ADJUS	TED TOTAL INVES	TMENT:	15,511.84	15,511.84

NOTES: 1. The BOOKED INVESTMENT for PRIMARY INVESTMENTS is calculated by multiplying the PRIMARY INVESTMENT by the applicable INVESTMENT LOADING FACTORS.

- 1. InPlant Factor types: T Telco, C Material Composite, H Material Hardwire, P Material Plugin
- 4. The FC factor is the levelized inflation factor for investments.

^{2.} The BOOKED INVESTMENT for SUPPORT STRUCTURE LOADINGS is calculated by multiplying the applicable Loading Factor by the sum of INVESTMENTS for each primary Field Code.

Study Number:

Study Name: SAMPLE OF \$10,000 Tariff Element: SAMPLE OF \$10,000

ACE REPORT 20

Page 1 5/15/96

State Tariff Ref USQC Technology Volume Sensitivity Economic Type Investment Basis Modifier

FL

In	IVESTMENT	DATA			ANNUAL	COST F	ACTORS					LIMMA	AL EXPENS	ES			
	Capital nvestment	Operating Investment	Date	•		Inc Tax Pactor		Pactor	Factor	Pactor	Expense	Expense	-	Expense	•	Adval Expense	
10C FL 20C FL 257C FL 14	600.61 44.60	600.61 44.60 14,866.62		.0302 0.0000 ,1134	.1118	.0452 .0514 .0288	0.0000	0.0000	.0113		18.14 0.00 1,685.88	59.22 4.99 945.52	27.15 2.29 428.16	0.00 132.31	0.00 0.00 77.31	,50 167.99	.12 52.24
SUMMARY:	ADJUSTED TOTAL INVESTMENT ANNUAL CAPITAL COSTS: Depreciation Expense Cost of Money Income Tax Expense ANNUAL OPERATING EXPENSES: Maintenance Expense Administration Expense Ad Valores and Other Taxes Gross Receipts Tax TOTAL ANNUAL COSTS				: K é g	5,511.84 1,704.03 1,009.73 457.66 136.46 77.33 175.26 54.13	1 2 0 5 1 8		. MONTHLY		301.21			•			

F18G01Q 00094

NOTES: 1. Capital and Operating Investments are the BOOKED INVESTMENTS from ACE Report 10.

- 2. Depreciation, Cost of Money, and Income Tax Expenses Capital Investment multiplied by the corresponding Annual Cost Factor.
- 1. Maintenance, Administrative, and Ad Valorem Expenses Operating Investment multiplied by the corresponding Annual Cost Factor.
- 4. Gross Receipts Tax Gross Receipts Tax Factor multiplied by the sum of Capital Costs and Operating Expenses.

SECTION 6 357C

Note:

The .0052 factor in the Administration column is to account for use of TIRKS.

USOC INVESTMENT DETAILS

Study Number:

FL

Study Name: SAMPLE OF \$10,000 Tariff Element: SAMPLE OF \$10,000 ACE REPORT 10

Page 1 5/15/96

State Tariff Ref

USOC

Modifier

Technology Vol. Sens. Economic Type Investment Basis

٧S DIR

	PRIMARY INVEST	INDIT PATA	•		INV	estment i	OADING PA	CTORS	SUPPORT	STRUCTURE LOAD			NVESTMENTS '
Field Code	Description	Capital Investment	Operating Investment		FC Factor	InPlant Pactor	InPlant Type		Loading Factor	Loading Type	Field Code	Capital Investment	Operating Investment
357C 357C 357C	SAMPLE OF \$10,000 - Support Loading>	10,000.00	10,000.00	5/08/96 5/08/96 5/08/96	.9700	1.8700	Н	1.1202	.0404	circuit_bldg circuit_land	10C 20C	20,319.31 820.90 60.96	20,319.31 820.90 60.96
									ADJUS	STED TOTAL INVES	TMENT:	21,201.17	21,201.17

F18G01Q 00097

NOTES: 1. The BOOKED INVESTMENT for PRIMARY INVESTMENTS is calculated by multiplying the PRIMARY INVESTMENT by the applicable INVESTMENT LOADING FACTORS.

- 2. The BOOKED INVESTMENT for SUPPORT STRUCTURE LOADINGS is calculated by multiplying the applicable Loading Pactor by the sum of INVESTMENTS for each primary Field Code.
- 3. InPlant Factor types: T = Telco, C = Material Composite, H = Material Hardwire, P = Material Plugin
- 4. The FC factor is the levelized inflation factor for investments.

USOC INVESTMENT DETAILS

Study Number:

Study Name: SAMPLE OF \$10,000 Tariff Element: SAMPLE OF \$10,000 REPORT 10 Page 2

5/15/96

State Tariff Ref USOC Modifier

Technology Vol. Sens. Economic Type Investment Basis

FL

B VS DIR

	PRIMARY INVEST	••••			CADING FA	-		STRUCTURE LOAD	DINGS	BOOKED I	nvestments		
Field Code	Description	Capital Investment	Operating		FC	InPlant Factor	-	CELP	Loading Factor	Loading Type	Field Code	Capital Investment	Operating Investment
357C 357C 357C	SAMPLE OF \$10,000 - Support Loading> - Support Loading>	10,000.00	10,000.00	5/08/96 5/08/96 5/08/96	. 9700	1.0600	P	1.1202	.0404	circuit_bldg circuit_land	19C 20C	11,517.90 465.32 34.55	11,517.90 465.32 34.55
									ADJUS	TED TOTAL INVES	STMENT :	12,017.77	12,017.77

F18G01Q 00098

NOTES: 1. The BOOKED INVESTMENT for PRIMARY INVESTMENTS is calculated by multiplying the PRIMARY INVESTMENT by the applicable INVESTMENT LOADING FACTORS.

- 2. The BCOKED INVESTMENT for SUPPORT STRUCTURE LOADINGS is calculated by multiplying the applicable Loading Factor by the sum of INVESTMENTS for each primary Field Code.
- 1. InPlant Factor types: T * Telco, C * Material Composite, H * Material Hardwire, P * Material Plugin
- 4. The FC factor is the levelized inflation factor for investments.

USOC ANNUAL COST DETAILS

Study Number:

Study Name: SAMPLE OF \$10,000 Tariff Element: SAMPLE OF \$10,000

ACE REPUR. 40

Page 1

5/15/96

Technology Volume Sensitivity Economic Type Investment Basis State Tariff Ref USOC Modifier

۴L DIR

	INVESTMENT DATA						ANNUAL	COST F	ACTORS						AL EXPENS			
Field Code	St	Capital	Operating Investment		Depr.		Inc Tax Factor					Depr. Expense	C.O.N.	Inc Tax		Admin	Adval Expense	GRT Expense
 10C	FL.	820.90	820.90		.0302	.0986	.0452	.0069	0.0000	.0113	.0152				5.66			2.40
20C	PL	60.96	60.96		0.0000	.1118	.0514	0.0000	0.0000	.0113	.0152	0.00	6.82	3.13	4.00	0.00	. 69	.16
357C	FL	20,319.31	20,319.31		.1134	.0638	.0297	.0086	. 0052	.0113	.0152	2,304.21	1,296.37	603.48	174.75	105.66	229.61	71.65
SUMMA	RY:	ADJUSTE	D TOTAL INVE	STMENT				2	1,201.1	7								******
		ANNUAL	CAPITAL COST	S:	Deprecia	tion Ex	pense	:	2,329.0	0								
					Cost of I	Honey			1,384.1	3								
					Income To	ax Expe	nse		643.7	3								
		ANNUAL	OPERATING EX	PENSES:	Maintena	nce Exp	ense		180.4	ı								
					Administ	ration	Expense		105.6	6								
				-	Ad Valor	em and	Other Ta	xes	239.5	ל								
		Grosa R	eceipts Tax						74.2	ı								
		TOTAL A	NNUAL COSTS						4,956.7	ı	TOTAL	MONTHLY	COST:	413.06				

F18G01Q 00099

NOTES: 1. Capital and Operating Investments are the BOOKED INVESTMENTS from ACE Report 10.

- 2. Depreciation, Cost of Money, and Income Tax Expenses Capital Investment multiplied by the corresponding Annual Cost Factor.
- 3. Maintenance, Administrative, and Ad Valorem Expenses Operating Investment multiplied by the corresponding Annual Cost Factor.
- 4. Gross Receipts Tax Gross Receipts Tax Factor multiplied by the sum of Capital Costs and Operating Expenses.

USOC ANNUAL COST DETAILS

Study Number:

PL

Study Name: SAMPLE OF \$10,000 Tariff Slement: SAMPLE OF \$10,000 ACE REFULL 20

Page 2 5/15/96

State Tariff Ref

USOC

Modifier

Technology Volume Sensitivity Economic Type Investment Basis

VS

DIR

	INVESTMENT DATA						AMMUAL	COST F	ACTORS					ANNU	AL EXPENS	ES		
Field Code	St	Capital Investment	Operating Investment	Date	Depr.		Inc Tax					Depr.	C.O.M. Expense	Inc Tax Expense	Mice. Expense	Admin Expense	Adval Expense	GRT Expense
10C	FL	465.32	465.32		.0302	.0986	.0452	.0069	0.0000	.0113	.0152	14.05	45.88	21.03	3.21	0.00	5.26	1.36
20C	FL	34.55	34.55		0.0000	.1118	.0514	0,0000	0.0000	.0113	.0152	0.00	3.86	1.78	0.00	0.00	. 39	. 09
357C	FL	11,517.90	11,517.90		.1134	. 0638	. 0297	.0086	.0052	.0113	.0152	1,396.13	734.84	342.08	99.05	59.89	130.15	40.62
SUMMAI	RY:	ADJUSTED TOTAL INVESTMENT						1	2,017.7	 7								
		ANNUAL	CAPITAL COSTS	S:	Deprecia	tion Ex	pense		1,320.1	6 '								
					Cost of I	Money			784.5	9								
					Income T	ах Ехре	nse		364.8	9								
		ANNUAL	OPERATING EXE	PENSES:	Maintena	nce Exp	ense		102.2	6								
					Administ	ration	Expense		59.8	9								
					Ad Valore	em and	Other Ta	xės	135.8	G								
		Gross R	Gross Receipts Tax						42.0	7								
		TOTAL A	NNUAL COSTS						2,809.6	ð	TOTAL	L MONTHLY	COST:	234.14				

F18G01Q 00100

- NOTES: 1. Capital and Operating Investments are the BOOKED INVESTMENTS from ACE Report 10.
 - 2. Depreciation, Cost of Money, and Income Tax Expenses Capital Investment multiplied by the corresponding Annual Cost Factor.
 - 3. Maintenance, Administrative, and Ad Valorem Expenses Operating Investment multiplied by the corresponding Annual Cost Factor.
 - 4. Gross Receipts Tax Gross Receipts Tax Factor multiplied by the sum of Capital Costs and Operating Expenses.

FLORIDA

UNBUNDLED 4-WIRE DS1 DIGITAL GRADE LOOP

COST STUDY
DOCUMENTATION

SECTIONS A THRU 7

FLORIDA UNBUNDLED 4-WIRE DS1 DIGITAL GRADE LOOP COST STUDY DOCUMENTATION

CONTENTS

SECTION A	PROPRIETARY RATIONALE
SECTION 1	INTRODUCTION AND OVERVIEW
SECTION 2	DESCRIPTION OF STUDY PROCEDURES
SECTION 3	SUMMARY OF RESULTS
SECTION 4	COST DEVELOPMENT - RECURRING
SECTION 5	COST DEVELOPMENT - NONRECURRING
SECTION 6	SPECIFIC STUDY ASSUMPTIONS
SECTION 7	FACTORS AND LOADINGS

SECTION A

SECTION A

FLORIDA UNBUNDLED 4-WIRE DS1 DIGITAL GRADE LOOP PROPRIETARY RATIONALE

The Florida Unbundled 4-Wire DS1 Digital Grade Loop Cost Study contains actual unit cost information for discrete cost elements. These costs reflect BellSouth's long run incremental cost of providing this element on a going forward basis. Public disclosure of this information would provide BellSouth's competitors with an advantage in that they would know the price or rate below which BellSouth could not provide the service. The data is valuable to competitors and potential competitors in formulating strategic plans for entry, pricing, marketing and overall business strategies concerning access services. This information relates to the competitive interests of BellSouth and disclosure would impair the competitive business of BellSouth. For these reasons, the Florida Unbundled 4-Wire DS1 Digital Grade Loop Cost Study is considered proprietary.

Additionally, the study contains information which reflects vendor-specific prices negotiated by BellSouth. Public disclosure of this information would impair BellSouth's ability to contract for goods and/or services on favorable terms. For these reasons, the Florida Unbundled Loop Cost Study is considered proprietary.

FLORIDA UNBUNDLED 4-WIRE DS1 DIGITAL GRADE LOOP

INTRODUCTION AND OVERVIEW

This Long Run Incremental Cost study for the Unbundled 4-Wire DS1 Digital Grade Loop in the state of Florida is being provided in response to Docket No. 950984-TP Order No. PSC-96-0444-FOF-TP Issued March 29, 1996.

The Unbundled 4-Wire DS1 Digital Grade Loop provides for simultaneous two-way transmission of isochronous digital signals at speeds of 1.544 Mbps. When the facility is used with a standard channel bank or direct integration equipment, it provides the equivalent of 24 voice grade channels. The facility extends from the network interface at the Alternative Local Exchange Company's (ALEC) customer premises to a DSX-1 cross-connect panel termination in the central office.

A long run incremental cost study considers the network architectures and technologies that will be used to provide the service being studied in the future. BellSouth Network provided the following five designs as representative of the forward looking network architectures which will be used to deploy DS1 service from the central office to a customer premises.

- Design #1 Central Office to Customer Premises
 on all copper
- ♦ Design #2 Central Office to Customer Premises on an OC-3 SONET Ring
- ♦ Design #3 Central Office to Customer Premises on an OC-3+ SONET Ring
- O Design #4 Central Office through an Intermediate Hub on an OC-3 SONET Ring to Customer Premises on a Copper Extension
- ♦ Design #5 Central Office through an Intermediate Hub on an OC-12 SONET Ring to Customer Premises on an OC-3 SONET Ring Extension

Recurring costs were developed for each design and then weighted by the probability of occurrence.

Recurring costs presented in this study are directly assigned, incremental and levelized so as to be appropriate for the 1996-1998 study period. Nonrecurring costs follow the same convention and represent 1996-1998 level costs also. These long-run incremental costs are developed by using 1995 level incremental loadings and annual cost factors based on 13.2% Cost of Money and directly assigned labor rates.

SECTION 2

FLORIDA UNBUNDLED 4-WIRE DS1 DIGITAL GRADE LOOP

DESCRIPTION OF STUDY PROCEDURES

This section describes the general principles for the development of costs supporting the Florida Unbundled 4-Wire DS1 Digital Grade Loop.

All costs are developed utilizing Long Run Incremental Cost methodology. In determining these costs, direct incremental costing techniques are used that are in accordance with accepted economic theory. Direct incremental costs are based on cost causation and include all of the costs directly caused by expanding production, or, alternately, costs that would be saved if the production levels were reduced. Costs are forward looking in nature because only future costs can be saved. Incremental costs are long run to insure that the time period studied is sufficient to capture all forward looking costs affected by the business decision. Shared and common costs are not incremental and therefore are not included. Incremental costs include both recurring (capital and operating expenses) and nonrecurring (service provisioning) costs. Incremental costs account for the expected change in cost to the firm resulting from a new service offering or a change in demand for an existing service.

THE DEVELOPMENT OF RECURRING COSTS

The monthly costs to BellSouth Telecommunications, Inc., resulting from the capital investments necessary to provide a service are called recurring costs. Recurring costs include capital and operating costs. While capital costs include depreciation, cost of money and income tax, operating costs are the expenses of maintenance and ad valorem and other taxes. These expenses contribute to the ongoing cost to the company associated with the initial capital investment. Recurring costs are developed using incremental economic study applications, representing a forward-looking view of technology and deployment.

The first step in developing an incremental study of recurring costs for the Unbundled 4-Wire DS1 Digital Grade Loop is to determine the forward-looking network architecture. Material prices for the equipment are defined. Next, account specific Telephone Plant Indices are applied, when necessary, to trend investments to the base study period. In-plant factors are applied to material prices to develop installed investments which include engineering

and installation labor. The deployment probabilities, capacity, spare stock and utilization of the equipment are also considered.

Plant account specific Investment Inflation Factors are applied to the installed investments to trend the base year, or study year, investments to levelized amounts that are valid for a three to five year planning period. Appropriate loadings for land, building and miscellaneous common equipment and power are then applied.

Next, 1995 level Florida Intrastate Incremental Annual Cost Factors are used to calculate the direct cost of capital (in this case, 13.2%), ongoing maintenance and other operating expenses and taxes. These factors (specific factors for each USOA FRC) are applied to levelized investments by account code, yielding an annual cost per account code. These costs are then divided by twelve to arrive at a monthly cost per cost element.

THE DEVELOPMENT OF NONRECURRING COSTS

Nonrecurring costs are "one-time" costs incurred as a result of provisioning, installing, and disconnecting the Unbundled 4-Wire DS1 Digital Grade Loop. The first step in developing nonrecurring costs is to determine the cost elements related to the study. These cost elements are then described by all of the individual work functions required to provision the cost element. The work functions can be grouped into four categories. These are service order, engineering, connect and test, and technician travel time. The work function times, identified by subject matter experts, are used to describe the flow of work within the various work centers involved. Installation and provisioning costs are developed by multiplying the work time for each work function by the directly assigned labor rate for the work group performing the function.

Disconnect costs are calculated in the same manner, utilizing work functions, work times and labor rates. However, a disconnect factor associated with the projected location life of the cost element is applied to the disconnect cost. The disconnect factor inflates the labor cost to the period of the future disconnect, discounts these costs to the present, since the money is received up-front, and adjusts for the income tax effect due to the difference in time between the receipt of money and the disconnect expense. The disconnect cost is added to the installation cost to develop the total nonrecurring cost.

SECTION 3

SECTION 3

FLORIDA UNBUMBLED 4-WIRE DS1 DIGITAL GRADE LOOP SUMMARY OF RESULTS

This section contains a cost summary for both recurring and nonrecurring cost elements studied for the 1996-1998 Unbundled 4-Wire DS1 Digital Grade Loop for Florida.

FLORIDA UNBUNDLED 4-WIRE DS1 DIGITAL GRADE LOOP SUMMARY OF RESULTS

Monthly Cost

Nonrecurring Cost First Additional

First

Lne! Flat Rate DS1 Digital Loop

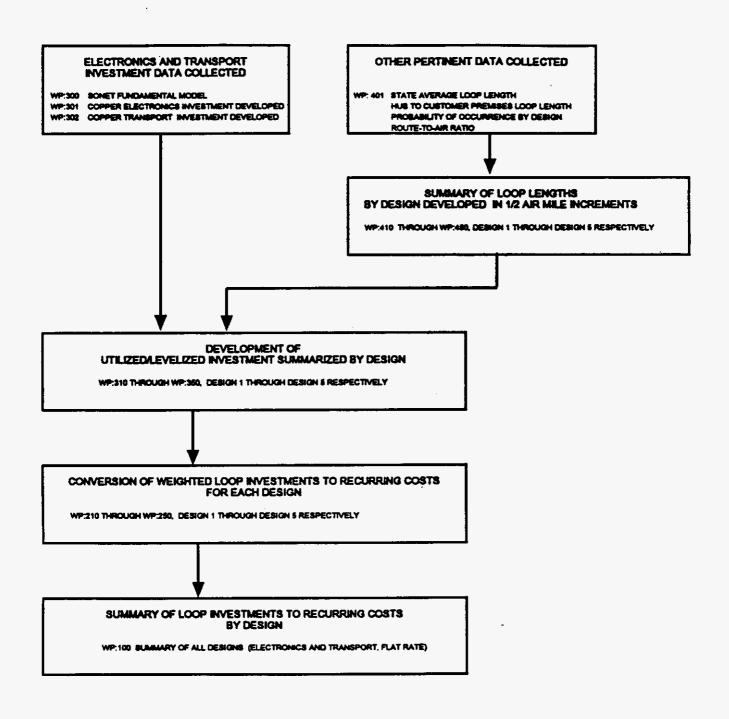
SECTION 4

SECTION 4

FLORIDA UNBUNDLED 4-WIRE DS1 DIGITAL GRADE LOOP

COST DEVELOPMENT - RECURRING

This section defines the cost development of the recurring costs for the Florida Unbundled 4-Wire DS1 Digital Grade Loop.


Generally, economic cost development is outlined in Section 2. Network architecture is determined, the necessary equipment is identified, material prices are obtained, factors, utilization and loadings are applied and the result is levelized for the study period. Annual cost factors are applied to convert the investment to cost.

Recurring costs are developed for each of the five network designs. The costs are developed for fixed electronics, which includes all hardwired and common plug-ins in the central office, any intermediate hubbing, and at the customer premises. The working DS1 cards are only included at the central office and customer premises. Recurring costs for the transport are also developed on a per half-mile which includes the fiber and all support structures.

Since the service is flat rated, a flat rate cost is developed for each design based on the average length of the local channel. The designs are weighted by probability of occurrence to determine the cost of the 4-Wire DS1 Digital Grade Loop offering.

The following workpapers develop the investment, convert the investment to monthly costs, and summarize the results.

4-WIRE DS1 DIGITAL GRADE LOOP

STATE: FLORIDA WORKPAPER: 100

PAGE 1 OF 1 DATE: APRIL, 1996

LINE NO.	DESIGN 1	(A) INVESTMENT	(B) DEPREC.	(C) COM	(D) IT EXPENSE	(E)=(B)+(C)+(D) TOTAL CAPITAL COSTS	(F) Maint.	(G) AD VALOREM AND OTHER TAXES	(H) TIPICS EXPENSE	(I)=(F)+(G)+(I-B) TOTAL OPERATING COUTE	(J) GRT	#Q=(E)+(I)+(J) TOTAL UNIT MANUAL COSTS	E)-BQ/12 TOTAL UNIT MONTHLY COUTE	BOURCES
2 3 4 5 6 7	ELECTRONICS TRANSPORT (FLAT RATE)	:				1	1	:	1			į		WP:210. Page 1 of 2, Line 48 4 WP:210. Page 1 of 2, Line 49
10 10 11 12 13	DESIGN 2 ELECTRONICS TRANSPORT (FLAT RATE)					-			1					WP:220. Page 1 of 2, Line 43 WP:220. Page 1 of 2, Line 44
15 18 17 18 18	DESIGN 3 ELECTRONICS TRANSPORT (FLAT RATE)													WP:230. Page 1 of 2, Line 43 WP:230. Page 1 of 2, Line 44
21 22 23 24 25 26	DESIGN 4 ELECTRONICS TRANSPORT (FLAT RATE)	1												WP:240. Page 2 of 3, Line 80 WP:240. Page 2 of 3, Line 81
28 29 30 31 32	DESIGN 5	· 												-
39 34 35 38 37	ELECTRONICS _, TRANSPORT (FLAT RATE)	ı			1	!		:	1				-	WP:250, Page 2 of 3, Line 74 WP:250, Page 2 of 3, Line 75
30 40 41 42 43	TOTAL ALL DESIGNS ELECTRONICS TRANSPORT (FLAT RATE)		,							!				WP:100,Pg 1 of 1, Lines 5,12,19,26,33 WP:100,Pg 1 of 1, Lines 6,13,20,27,34
45	TOTAL FLAT RATE													WP:100,Pg 1 of 1, Lines 42,43

MONTHLY COST DEVELOPMENT

UNBUNDLED 4-WIRE BSI DIGITAL GRADE LOOP 1994-1998 LEVEL

DESIGN 1 INVESTMENT/COST SUMMARY ELECTRONICS and TRANSPORT (cost.) STATE: FLORIDA WORKPAPER 210 PAGE 2 OF 2 DATE: APRIL 1996

```
SOURCES:
```

```
ELECTRONICS WP 210, PAGE 1 OF 2, LINES 1 THRU 8
                                            WP:310, Page 1 of 2, Lines 32 thru 36 (acct code specific)
                               COLUMN (A)
                                            WP:210, Page 1 of 2, Column (A) (acct code specific) multiplied by WP:FACTORS, Page 1 of 1, Lines 1 thru 13, Column (A) (acct code specific)
                               COLUMN (B)
                                            WP:210, Page 1 of 2, Column (A) (acct code specific) multiplied by WP:FACTORS, Page 1 of 1, Lines 1 thru 13, Column (B) (acct code specific )
                               COLUMN (C)
                                            WP:210, Page 1 of 2, Column (A) (acct code specific) multiplied by WP:FACTORS, Page 1 of 1, Lines 1 thru 13, Column (C) (acct code specific)
                                            WP:210, Page 1 of 2, Column (A) (acct code specific) multiplied by WP:FACTORS, Page 1 of 1, Lines 1 thru 13, Column (D) (acct code specific)
                                COLUMN (E)
                                            WP:210, Page 1 of 2, Column (A) (acct code specific) multiplied by WP:FACTORS, Page 1 of 1, Lines 1 thru 13, Column (E) (acct code specific )
                                             WP:210, Page 1 of 2, Column (A) (acct code specific) multiplied by WP:FACTORS, Page 1 of 1, Lines 1 thru 13, Column (F) (acct code specific)
                                             WP:210, Page 1 of 2, Column (A) (acet code specific) multiplied by WP:FACTORS, Page 1 of 1, Lines 1 thru 13, TIRKS expense (acet code specific )
                                             WP:210, Page 1 of 2, Column (A) (acct code specific) multiplied by WP:FACTORS, Page 1 of 1, Lines 1 thru 13, Column (H) (acct code specific)
                                             WP:210, Page 1 of 2, Column (A) (acct code specific) multiplied by WP:FACTORS, Page 1 of 1, Lines 1 thru 13, Column (I) (acct code specific)
                               COLUMN (K) WP:210, Page 1 of 2, Column (A) (acct code specific) multiplied by WP:FACTORS, Page 1 of 1, Lines 1 thru 13, Column (J) (acct code specific)
                                COLUMN (L) Calculation
SOURCES
        TRANSPORT WP:210, PAGE 1 OF 2, LINES 10 THRU 16
                                             WP:310, Page 2 of 2, Lines 67 thru 72 (acct code specific)
                                             WP:210, Page 1 of 2, Column (A) (acct code specific) multiplied by WP:FACTORS, Page 1 of 1, Lines 1 thru 13, Column (A) (acct code specific)
                                             WP:210, Page 1 of 2, Column (A) (acct code specific) multiplied by WP:FACTORS, Page 1 of 1, Lines 1 thru 13, Column (B) (acct code specific)
                                COLUMN (C)
                                             WP:210, Page 1 of 2, Column (A) (acct code specific) multiplied by WP:FACTORS, Page 1 of 1, Lines 1 thru 13, Column (C) (acct code specific)
                                             WP:210, Page 1 of 2, Column (A) (acct code specific) multiplied by WP:FACTORS, Page 1 of 1, Lines 1 thru 13, Column (D) (acct code specific )
                                COLUMN (E)
                                             WP:210, Page 1 of 2, Column (A) (acct code specific) multiplied by WP:FACTORS, Page 1 of 1, Lines 1 thru 13, Column (E) (acct code specific)
                                             WP:210, Page 1 of 2, Column (A) (acct code specific) multiplied by WP:FACTORS, Page 1 of 1, Lines 1 thru 13, Column (F) (acct code specific)
                                COLUMN (G)
                                             WP:210, Page 1 of 2, Column (A) (acct code specific) multiplied by WP:FACTORS, Page 1 of 1, Lines 1 thru 13, TIRKS expense (acct code specific)
                                COLIMANION
                                             WP:210, Page 1 of 2, Column (A) (acct code specific) multiplied by WP:FACTORS, Page 1 of 1, Lines 1 thru 13, Column (H) (acct code specific)
                                             WP:210, Page 1 of 2, Column (A) (acct code specific) multiplied by WP:FACTORS, Page 1 of 1, Lines 1 thru 13, Column (I) (acct code specific)
                                COLUMN (K) WP:210, Page 1 of 2, Column (A) (acct code specific) multiplied by WP:FACTORS, Page 1 of 1, Lines 1 thru 13, Column (J) (acct code specific)
                                             Calculation
                                 COLUMN (L)
 SOURCES
         TOTALS WP 210, PAGE 1 OF 2 LINES 24 THRU 53
                                              WP:210, Page 1 of 2, Line 8 (Column (A) thru (L) (category specific)
               TOTAL HEST MALE HELE - ELECTRONICS
                                              WP:210, Page 1 of 2, Line 18 (Column (A) thru (L) (category specific)
                TOTAL PILET HALF HELE - TRANSPORT
                                              WP:210, Page 1 of 2, Line 18 (Column (A) thru (L) (category specific)
               TOTAL MICCHO MALF MILE - TRANSPORT
                                              WP:210, Page 1 of 2, Line 8 (Column (A) thru (L) (category specific)
                    TOTAL PLAT BATE - ELECTRONICS
                                              WP:210, Page 1 of 2, Line 18 (Column (A) thru (L) (category specific) multiplied by WP:410, Line 16
                     TOTAL FLAT BATE - TRANSPORT
                                               WP:401, Page 1 of 1, Line 12
                       PROBABILITY OF OCCURENCE
                                              WP:210, Page 1 of 2, Line 24 (Column (A) thru (L) (category specific) multiplied by WP:210, Page 1 of 2, Line 38
          WESCHITED FIRST HALF AR MALE - PLECTRONGER
                                              WP:210, Page 1 of 2, Line 25 (Column (A) thru (L) (category specific) multiplied by WP:210, Page 1 of 2, Line 38
           WEIGHTED FRIST HALF AR MILE - TRANSFORT
     က
     മ
                                              WP:210, Page 1 of 2, Line 30 (Column (A) thru (L) (category specific) multiplied by WP:210, Page 1 of 2, Line 38
     0
                 WEIGHTED PLAT BATE - ELECTRONICS
                                              WP:210, Page 1 of 2, Line 31 (Column (A) thru (L) (category specific) multiplied by WP:210, Page 1 of 2, Line 38
            WEIGHTED FLAT HATE AR MELE - TRANSPORT
```

0 00118

13

8 i 02

83

187

F18G
0
\vdash
\circ
0
0
-
-
9

	2 INVESTMENT/COST SUMMARY ONECS and TRANSPORT	······································	ACCT	(A)	(B)	(C)	(D)	#)+(#)+(C)+(P) TOTAL CAPITAL	(F)	(G) ADVALOREM AND OTHER	(H)	()-(F)+(G)+(H) TOTAL OPERATING	(J)	PAGE 1 OF DATE: APF \$2-\$9-\$9-\$1 UNIT ANNUAL	₹₩.,
			CODE	MATERIAL PROPERTY AND ADDRESS OF THE PARTY AND	DEPREC.	COM	EXPENSE	COSTS	MANT.	TAKES	EXPENSE	COST	CERT	COSTS	W
	ELECTRONICS SOURCE FOR COL (A) INV. WP.320, PAGE 1 OF 2, LINES 40 THRU 4)		257C 20C 10C 012C	*********							-	-	-		•
	Т	OTAL ELECTRON	ICS DESIGN 2												
	TRANSPORT 1/1 MILE (AIR MILE) SOURCE FOR COL (A) WAY. WP-320, PAGE 2 OF 2, LINES 93 THRU 99		823C 1C 85C 4C 945C												
		TOTAL TRANSPO	RT DESKIN 2		,										
	TOTAL FIRST HALF AIR MILE	ELECTRONICS TRANSPORT	SOURCE LINE 7 LINE 10	\$											
	TOTAL, SECOND HALF MILE	TRANSPORT	LINE 10	\$											
	TOTAL FLAT BATE	ELECTRONICS TRANSPORT	LINE 7 LINE 16 WP:420 LINE 18	\$.											
1	WEIGHTED INVESTMENTACOST SU	MMARY								· · · · ·		•			
	PROBABILITY OF OCCURENCE		SOURCE 4P:401, LINE 13												
	WEIGHTED FIRST HALF AIR MILE	ELECTRONICS TRANSPORT	LINE 20 * LINE 33	-											
!	WEIGHTED SECOND HALF MILE	TRANSPORT	LINE 24 * LINE 33												
	FLAT RATE WEIGHTED INVESTME	NT/COST SUMMA	RY												
		ELECTRONICS THANSPORT	LINE 26 ' LINE 33												

MONTALI COST DEVILOPMENT

```
UNBUNDLED 4 WIRE DEI DIGITAL GRADE LOOP

1994 1999 LEVEL

DIRIGIN 2 LINVERTRORIT/CORT GUNDMARY

ELECTRORICS and TRANSPORT (cont.)

SOURCES

COLUMN (A) WP-320, Page 1 of 2, Ca

COLUMN (C) WP-220, Page 1 of 2, Ca
```

STATE: FLORIDA WORKPAPER: 220 PAGE 2 OF 2 DATE: APRIL, 1998

```
COLUMN (A) WP-320, Page 1 of 2, Lines 38 thru 42 (acct code specific)
                                                        WP:220, Page 1 of 2, Column (A) (noct code specific) multiplied by WP:FACTORS, Page 1 of 1, Lines 1 thru 13, Culumn (A) (noct code specific)
                                                        WP:220, Page 1 of 2, Column (A) (sect code specific) multiplied by WP:FACTORS, Page 1 of 1, Lines 1 thru 13, Column (B) (sect code specific)
                                                        WP:220, Page 1 of 2, Column (A) (noct code specific) multiplied by WP:FACTORS, Page 1 of 1, Lines 1 thru 13, Column (C) (noct code specific)
                                                        WP:220, Page 1 of 2, Column (A) (acct code specific) multiplied by WP:FACTORS, Page 1 of 1, Lines 1 thru 13, Column (D) (acct code specific)
                                                        WP-220, Page 1 of 2, Column (A) (soct code specific) assimpled by WP-FACTORS, Page 1 of 1, Lines 1 fars 13, Column (E) (soct code specific) WP-220, Page 1 of 2, Column (A) (soct code specific) assimplied by WP-FACTORS, Page 1 of 1, Lines 1 fars 13, Column (F) (soct code specific)
                                         COLUMN (III)
                                                        WP:220, Page 1 of 2, Cohenn (A) (non code specific) multiplied by WP:FACTORS, Page 1 of 1, Lines 1 thru 13, TIRKS expense (not code specific )
                                                        WP-220, Page 1 of 2, Cohumn (A) (noct code specific) multiplied by WP-FACTOR3, Page 1 of 1, Lines 1 thru 13, Cohumn (H) (noct code specific)
WP-220, Page 1 of 2, Cohumn (A) (noct code specific) multiplied by WP-FACTOR3, Page 1 of 1, Lines 1 thru 13, Cohumn (I) (noct code specific)
WP-220, Page 1 of 2, Cohumn (A) (noct code specific) multiplied by WP-FACTOR3, Page 1 of 1, Lines 1 thru 13, Cohumn (I) (noct code specific)
                                         COLUMN (2)
                                         COLUMN (K)
                                                        Calculation
                                         COLUMN (L)
     SOURCES.
2
               TRANSPORT WP.236, PAGE 1 OF 2, LINES 9 THRU 13
13
                                                        WP:320, Page 2 of 2, Lines 95 thru 99 (acct code specific)
                                         COLUMN (A)
                                                        WP:220, Page 1 of 2, Column (A) (acct code specific) multiplied by WP:FACTORS, Page 1 of 1, Lines 1 thru 13, Column (A) (acct code specific)
                                                        WP:220, Page 1 of 2, Column (A) (sect code specific) multiplied by WP:FACTORS, Page 1 of 1, Lines 1 thru 13, Column (B) (sect code specific)
                                                        WP:220, Page 1 of 2, Cohann (A) (acct code specific) multiplied by WP:FACTORS, Page 1 of 1, Lines 1 thru 13, Cohann (C) (acct code specific)
                                         COLUMNICON
                                                        WP:220, Page 1 of 2, Cohumn (A) (acct code specific) multiplied by WP:FACTORS, Page 1 of 1, Lines 1 thru 13, Cohumn (D) (acct code specific)
                                         COLUMN (E)
                                                        WP:220, Page 1 of 2, Cohumn (A) (acct code specific) multiplied by WP:FACTORS, Page 1 of 1, Lines 1 thru 13, Cohumn (E) (acct code specific)
                                         COLUMNITY
                                                        WP:220. Page 1 of 2. Column (A) (acct code specific) multiplied by WP:FACTORS, Page 1 of 1, Lines 1 thru 13, Column (F) (acct code specific)
Je
                                                        WP:220, Page 1 of 2, Column (A) (acct code specific) multiplied by WP:FACTORS, Page 1 of 1, Lines 1 thru 13. TIRKS expense (acct code specific)
                                         COLUMN OF
11
                                                        WP:220, Page 1 of 2, Column (A) (acet code specific) multiplied by WP:FACTORS, Page 1 of 1, Lines 1 thru 13, Column (H) (acet code specific )
                                         COLUMN (I)
                                                        WP:220, Page 1 of 2, Column (A) (acct code specific) multiplied by WP:FACTORS, Page 1 of 1, Lines 1 thru 13, Column (I) (acct code specific )
                                         COLUMN (I)
/2
                                                        WP:220, Page 1 of 2, Cohamn (A) (acct code specific) multiplied by WP:FACTORS, Page 1 of 1, Lines 1 thru 13, Cohamn (I) (acct code specific)
                                         COLUMN (IC)
74
                                         COLUMN (L)
                                                        Calculation
75
'n
     SOURCES
H
               TOTALS WP 230, PAGE I OF 2, LINES 30 THRU 46
                                                        WP:220, Page 1 of 2, Line 7 (Column (A) thru (L) (category specific)
                   TOTAL PRINT HALF HELE - MIRCTROHICS
                     TOTAL PRINT BALF MILE - TRANSPORT WP:220, Page 1 of 2, Line 16 (Column (A) thru (L) (category specific)
                                                        WP:220, Page 1 of 2, Line 16 (Column (A) thru (L) (category specific)
                   TOTAL SECOND BALF MILE - TRANSPORT
                                                        WP:220, Page 1 of 2, Line 7 (Column (A) thru (L) (category specific)
                        TOTAL FLAT BATE - BLECTBONGS
                          TOTAL PLAT BATE - TRAINFORT WP:220, Page 1 of 2, Line 16 (Column (A) thru (L) category specific multiplied by WP:420, Line 12
                            PROBABILITY OF OCCURRENCE
                                                        WP:220, Page 1 of 2, Line 20 (Column (A) thru (L) (category specific) multiplied by WP:220, Page 1 of 2, Line 33
             WINDSTED PROT BALF ARE MELT - BLECTHORICS
                                                        WP:220, Page 1 of 2, Line 21 (Cohem (A) thru (L) (category specific) multiplied by WP:220, Page 1 of 2, Line 33
              WHOSTED FRAT SALE ARE THANKFORT
                     WP:220, Page 1 of 2, Line 26 (Column (A) thru (L) (category specific) multiplied by WP:220, Page 1 of 2, Line 33
               WE-220, Page 1 of 2, Line 27 (Cohumn (A) thru (L) (category specific) multiplied by WP-220, Page 1 of 2, Line 33
  т,
```

MONTELY COST DEVELOPMENT

UNBUNDLED 4 WIRE DEI DIGITAL GRADE LOOF 1996-1998 LEVEL

> DESIGN 3 ENVESTMENT/COST SUMMARY ELECTRONICS and TRANSPORT (cont.)

STATE FLORIDA WORKPAPER: 230 PAGE 2 OF 2 DATE: APRIL, 1996

```
SOLUCES
ELECTRONICS WP:200, PAGE ( OF 2, LINES ) THRU 6
                         COLUMN (A) WP-330 Page 1 of 2 Lines 38 thru 41 (acct code specific)
                                       WP.230, Page 1 of 2. Column (A) (sect code specific) smultiplied by WP.FACTORS, Page 1 of 1, Lines 1 thru 13. Column (A) (sect code specific)
                         COLUMN (III)
                                       WP:230, Page 1 of 2, Column (A) (acct code specific) multiplied by WP:FACTORS, Page 1 of 1, Lines 1 thru 13, Column (B) (acct code specific )
                                       WP.230, Page 1 of 2, Column (A) (noct code specific) multiplied by WP.FACTORS, Page 1 of 1, Lines 1 thru 13. Column (C) (noct code specific)
                         COLUMN (E)
                                       WP:230, Page 1 of 2, Column (A) (noct code specific) multiplied by WP:FACTORS, Page 1 of 1, Lines 1 thru 13, Column (D) (noct code specific)
                                      WP-230, Page 1 of 2, Column (A) (next code specific) multiplied by WP-FACTORS, Page 1 of 1, Lines 1 thru 13, Column (E) (next code specific)
                         COLUMN (F)
                                       WP:230, Page 1 of 2, Column (A) (acct code specific) multiplied by WP:FACTORS, Page 1 of 1, Lines 1 thru 13, Column (F) (acct code specific)
                         COLUMN (O)
                         COLUMN (III)
                                       WP-230, Page 1 of 2, Column (A) (not code specific) multiplied by WP-FACTORS, Page 1 of 1, Lines 1 thru 13, TIRKS appears (not code specific)
                         COLUMN (I)
                                       WP:230, Page 1 of 2, Column (A) (acct code specific) multiplied by WP-FACTORS, Page 1 of 1, Limm 1 thru 13, Column (H) (acct code specific)
                                       WP-230, Pass 1 of 2. Column (A) (acct code specific) multiplied by WP-FACTORS, Page 1 of 1, Lines 1 thru 1 3, Column (I) (acct code specific )
                         COLUMN (K) WP-230, Page 1 of 2, Column (A) (sect code specific) multiplied by WP-FACTORS, Page 1 of 1, Linux 1 thru 1 3, Column (f) (acct code specific)
                         COLUMN (IL) Calculation
SOURCES
TRANSPORT WP 230, PAGE I OF 2, LINES 9 THRU I6
                         COLUMNIA)
                                      WP:330, Page 2 of 2, Lines 98 thru 103 (acct code specific)
                                       WP-230, Page 1 of 2, Column (A) (soct code specific) multiplied by WP-FACTORS, Page 1 of 1, Lines 1 thru 13. Column (A) (soct code specific )
                                       WP-230, Pase 1 of 2, Column (A) (sect code specific) multiplied by WP FACTORS, Pase 1 of 1, Lines 1 thru 13, Column (B) (sect code specific )
                                       WP 230, Page 1 of 2, Column (A) (sect code specific) multiplied by WP.FACTORS, Page 1 of 1, Lines 1 thru 13, Column (C) (sect code specific)
                                       WP-230, Page 1 of 2, Column (A) (noct code specific) multiplied by WP-FACTORS, Page 1 of 1, Lines 1 thru 13, Column (D) (noct code specific)
                         COLUMN (E)
                                      WP-230, Page 1 of 2, Column (A) (acct code specific) multiplied by WP-FACTORS, Page 1 of 1, Lines 1 thru 13, Column (B) (acct code specific)
                         COLUMN (F)
                                      WP:230, Page 1 of 2, Column (A) (acct code specific) multiplied by WP:FACTORS, Page 1 of 1, Lines 1 thru 13, Column (F) (acct code specific)
                         COLUMN (O)
                                      WP 230, Page 1 of 2, Column (A) (next code specific) multiplied by WP-FACTORS, Page 1 of 1, Lines 1 thru 13, TIRKS expense (next code specific)
                         COLUMN (III)
                         COLUMP! (1) WP-230, Page 1 of 2, Column (A) (acct code specific) multiplied by WP-FACTORS, Page 1 of 1, Lines 1 thrus 13, Column (H) (acct code specific)
                         COLUMN (I) WP 230, Page 1 of 2, Column (A) (acct code specific) multiplied by WP FACTORS, Page 1 of 1, Lines 1 thru 12, Column (I) (acct code specific)
                         COLUMN (K) WP-230, Page 1 of 2, Column (A) (seet code specific) multiplied by WP-FACTORS, Page 1 of 1, Lines 1 thru 13, Column (J) (seet code specific)
                         COLUMN (L) Calculation
TOTALS WP.236, PAGE 1 OF 2, LINES 20 THRU 45
     TOTAL PRINT BALE - MECTRONICS WP:230, Page 1 of 2, Line 7 (Column (A) thru (L) (cutegory specific)
      TOTAL PRINT MALE AREA, TRANSFORT WP:230, Page 1 of 2, Line 16 (Column (A) thru (L) (estagory specific)
     TOTAL SECOND HALF HERE TRANSFORT WP 230, Page 1 of 2, Line 16 (Column (A) thru (L) (category specific)
         TOTAL PLAT BATE - PLACTHORECE WP:230, Page 1 of 2, Line 7 (Column (A) thru (L) (cutegory specific)
           TOTAL PLAT BAYS - TRAMPORT WP.230, Page 1 of 2, Line 16 (Column (A) thru (L) category specific multiplied by WP.430, Line 16
                                       WP:401, Page 1 of 1, Line 14
                                       WP:230, Page 1 of 2, Line 20 (Column (A) thru (L) (category specific) multiplied by WP:230, Page 1 of 2, Line 33
WHOSEHO FIRST BALF AN MEA . MACTROSCA
                                      WP:230, Page 1 of 2. Line 21 (Column (A) thru (L) (category specific) multiplied by WP:230, Page 1 of 2, Line 33
 TEOPERAST - LINE AND THAT THAT GETTENDEN
       WP:230, Page 1 of 2, Line 26 (Column (A) thru (L) (category specific) multiplied by WP:230, Page 1 of 2, Line 33
 WP:230, Page 1 of 2, Line 27 (Column (A) thru (L) (category specific) multiplied by WP:230, Page 1 of 2, Line 33
```

(B)

(C)

(D)

EXPENSE

(F)

 $(B)\!\!-\!\!(B)\!\!+\!\!(C)\!\!+\!\!(D)$

TOTAL

CAPITAL

(O)

TAKES

AND OTHER TIRKS OPERATING

EUPENSE COST

(H) $(I) \rightarrow (P) \rightarrow (Q) \rightarrow (R)$ (J)

TOTAL

(A)- (AA) *(P0)

LINET

(E)=(B)=(I)=(I) (L)=(E)(I)

COSTS (AIR MILES)

MONTHLY

COST3

	unbundled 4-wire DS1 Digital Grade Loop 1994-1998 Level
	DESIGN 4 INVESTMENT/COST SUMMEARY ELECTRONICS and TRANSPORT
LIME [
•	
7	ELECTRONICS
1	SOURCE FOR COL (AN) INV. WP: 140,
•	PAGE I OF 3, EDIES 39 THRU 43
1	
٠	
,	TO
•	
٠	
10	TRANSPORT (CO TO HUM) - PINER
91	1/2 MELE (ARI MELE)
12	SOURCE POR COL (A4) DAY. NT: 140,
19	PAGE 1 OF A, LINES 96 THRU 102
14	SOURCE FOR COL (BB) N 87:401
15	PAGE I OF I, LINE)
10	TOTAL TRANS
17	
19	TRANSPORT GIUR TO CP) - COPPER
26	1/2 MOLE (ARE MOLE)
31	SOURCE POR COL GAU DRY, NY: 140
22	PAGE 1 OF 1 LINES 142 THRU 147
29	SOURCE FOR COLUMN WIFE 401
24	PAGE I OF I. LINE I
25	
24	TOTAL TRANSP
27	
26	
79	
*	
31	TOTAL TRANSPORT DESIGN 4
23	1/2 MELE (AIR MELE)
35	SUM OF LINES 31 THRU 19 (ACCOUNT
34	CODE SPECIFIC)

F18G01Q 00123

IGN 4 INVESTMENT/COST SUMMARY CTRONICS and TRANSPORT		(AA)	(BB)
	ACCT	BOYESTS APAT	Minde
	CODE		
ELECTRONICS	2170	•	N/A
SOURCE FOR COL (AN) INV. WY: 140.	20C		N/A
PAGE 1 OF 3, LINES 39 THRU 43	10C		N/A
	130		N/A
TOTAL	ELECTRONICS DESIGN 4		N/A
TRANSPORT (CO TO HUM) - FINER	ED3C		61.17%
1/2 MELE (ARI MELE)	IC		61.17%
SOURCE FOR COL (AN INV. 87: 146.	BC		61.17%
PAGE LOF & LINES 90 THRU 102	4C		61.17%
SOURCE FOR COL (BB) % 87-401	845C		61.17%
PAGE 1 OF I, LINE 3			
TOTAL TRANSPOR	IT (CO TO HUB) DESIGN 4		61.17%
TRANSPORT SHUE TO CP) -COPPER	23C		38.83%
I/I MILE (ARE MILE)	1C		38.83%
SOURCE POR COL (A4) DNY, NY: 340,	ж		38.83%
PAGE 3 OF 1, LINES 142 THRU 147	4C		38 83%
SOURCE FOR COL (BB) % NT: 401	45C		38.83%
PAGE 1 OF 1, LINE 1	257C		38.83%
TOTAL TRANSPORT	T (HUB TO CP) DESIGN 4		38.83%
TOTAL TRANSPORT DESIGN 4	633C		
1/2 MELE (AIR MELE)	1C		
SUM OF LINES 31 THRU 10 (ACCOUNT	85C		
CODE SPECIFIC)	4C		
	845C		
	22C		

TOTAL TRANSPORT DESKIN 4

45C 5C 257C

STATE FLORIDA WOHKPAPER 240 PAGE 2 OF 5 DATE APPIL 1995

DESIGN 4 INVESTMENT SUMMART ELECTRONICS and TRANSPORT (cont.)

(G) (H) a-an-an-an-an (I) (C) (D) (E)=(B)=(I)=(I) (E)=(E)=(E) (B)+(C)+(D) TOTAL AD WALDREM TOTAL MONTHLY UNIT CAPITAL AND OTHER OPERATING. MERM **COSTS** TARR EFFENSE COST COSTS (AIR MLES) CO878

TOTAL PRET HALF ARE MILE

SOLECE **ELECTRONICS** LINE 7

TRANSPORT LDE 41

TOTAL SECOND HALF MILE

TRANSPORT

TOTAL PLATBATE

34

ELECTRONICS LOG? TRANSPORT LINE 41 * 87:440

100 17

LDE 41

WEIGHTED INVESTMENT/COST SUMMARY

SOURCE WP:401, LINE 15

PROBABILITY OF OCCURENCE WEIGHTED FIRST HALF AR MILE

ELECTRONICS LINE 17 * LINE 74

TRANSPORT LINE 18 * LINE 76

WEIGHTED SECOND HALF MILE

TRANSPORT LINE 61 * LINE 70

FLAT RATE WEIGHTED INVESTMENT/COST SUMMARY

ELECTRONICS LINE 63 * LINE 79

TRANSPORT LINE 44 * LINE 70

F18G01Q 00124

MOSTRIX COST DEVELOPMENT

STATE FLORIDA

WORKPAPER 240 PAGE S OF S

```
UNBUNDLED 4 WIRE DSI DICITAL GRADE LOOF
       1996 1999 LEVEL
                       ELECTRONICS WF.246, PAGE 1 OF 3, LINES THRU 5
                                                           COLUMN (AA) WP-340, Page 1 of 3, Lines 39 thru 42 (acct code specific)
##
87
                                                           COLUMN (MB) N/A
                                                           COLUMN (A)
                                                                               Calculation
                                                                               WP:240, Page 1 of 3, Column (A) (acct code specific) multiplied by WP:FACTORS, Page 1 of 1, Lines 1 thru 13, Column (A) (acct code specific) WP:240, Page 1 of 3, Column (A) (acct code specific) multiplied by WP:FACTORS, Page 1 of 1, Lines 1 thru 13, Column (B) (acct code specific) WP:240, Page 1 of 3, Column (A) (acct code specific) multiplied by WP:FACTORS, Page 1 of 1, Lines 1 thru 13, Column (C) (acct code specific) WP:240, Page 1 of 3, Column (A) (acct code specific) multiplied by WP:FACTORS, Page 1 of 1, Lines 1 thru 13, Column (D) (acct code specific)
                                                           COLUMN (III)
                                                           COLLEGE
                                                           COLUMN (E)
                                                                               WP.240, Page 1 of 3, Column (A) (acct code specific) multiplied by WP.FACTORS, Page 1 of 1, Lines 1 thru 13, Column (E) (acct code specific)
                                                           COLUMNIA
                                                                               WP-240, Page 1 of 3, Cohumn (A) (acct code specific) multiplied by WP-FACTORS, Page 1 of 1, Lines 1 thru 13, Cohumn (F) (acct code specific)
WP-240, Page 1 of 3, Cohumn (A) (acct code specific) multiplied by WP-FACTORS, Page 1 of 1, Lines 1 thru 13, TIRKS expense (acct code specific)
                                                           COLUMEN (O)
                                                           COLLBAND
WP.240, Page 1 of 3, Cohemn (A) (acct code specific) multiplied by WP.FACTORS, Page 1 of 1, Lines I thru 13, Cohemn (B) (acct code specific)
COLLBAND
WP.240, Page 1 of 3, Cohemn (A) (acct code specific) multiplied by WP.FACTORS, Page 1 of 1, Lines I thru 13, Cohemn (B) (acct code specific)
                                                           COLUMN (6) WP-240, Page 1 of 3, Column (A) (acct code specific) multiplied by WP-FACTORS, Page 1 of 1, Lines 1 thru 13, Column (A) (acct code specific)
                                                           COLUMN (L) Calculation
.
       WHEE
                       TRANSPORT (FINER INVESTMENTS) WP:144, PAGE 1 OF 3, LINES 14 THRU 14
192
                                                           COLUMN (AA) WP:340, Page 2 of 3, Lines 96 thru 102 (acct code specific)
                                                           COLUMN (30) WP:401, Page 1 of 1, Line 3, Column (B)
.
                                                           COLUMN (A) Calculation
100
108
167
                      TRANSPORT (COPPER INVESTMENTS) WP:344, PAGE I OF 5, LINES 19 THRU 34
                                                          COLUMN (AA) WP:340, Page 3 of 3, Lines 142 thru 147 (acct code specific)
ю
                                                           COLUMN (38) WP:401, Page 1 of 1, Line 1, Column (3)
100
110
                                                           COLUMN (A) Calculation
111
117
        MUNICES
                       TRANSPORT (TOTAL COPPER AND FIBER INVESTMENTS) WP 144, PAGE 1 OF 3, LINES 34 THRU IS
121
                                                           COLUMN (A) WP 240, Page 1 of 3, Sum of Lines 10 thru 24, Column (A) (acct code specific)
122
                                                           COLUMN (24) Page 1 of 3. Column (A) (acct code specific) multiplied by WP: FACTORS, Page 1 of 1, Lines 1 thru 13. Column (A) (acct code specific)
123
                                                           COLUMN (C) WP.240. Page 1 of 3. Column (A) (acct code specific) multiplied by WP:FACTORS, Page 1 of 1, Lines 1 thru 13, Column (B) (acct code specific)
114
                                                           COLUMN (D) WP:240, Page 1 of 3, Column (A) (acct code specific) multiplied by WP:FACTORS, Page 1 of 1, Lines 1 thru 13, Column (C) (acct code specific)
124
                                                           COLUMN (2) WP:240, Page 1 of 3, Column (A) (acct code specific) multiplied by WP:FACTORS, Page 1 of 1, Lines 1 thru 13, Column (D) (acct code specific)
                                                            COLUMN 07 WP:240, Page 1 of 3, Column (A) (acet code specific) multiplied by WP:FACTORS, Page 1 of 1, Lines 1 thru 13, Column (E) (acet code specific)
                                                           COLUMN (0) WP:240, Page 1 of 3, Column (A) (acct code specific) multiplied by WP:FACTORS, Page 1 of 1, Lines 1 thru 13, Column (F) (acct code specific)
                                                           COLUMN (D) Page 1 of 3, Column (A) (acct code specific) multiplied by WP-FACTORS, Page 1 of 1, Lines 1 thru 13, TIRKS expense (acct code specific)
                                                             COLUMN (M.) 240, Page 1 of 3, Column (A) (acct code specific) multiplied by WP:FACTORS, Page 1 of 1, Lines 1 thru 13, Column (H) (acct code specific)
                                                             COLLINE (9) WP:240, Page 1 of 3, Column (A) (sect code specific) multiplied by WP:FACTORS, Page 1 of 1, Lines 1 thru 13, Column (I) (sect code specific)
122
                                                            COLUMN (2) WP:240. Page 1 of 3. Column (A) (acct code specific) multiplied by WP.FACTORS, Page 1 of 1, Lines 1 thru 13. Column (3) (acct code specific)
121
                                                            COLUMN 41 Calculation
154
        SOURCES
110
                                  toral rear mail mail macraonics WP:240, Page 2 of 3, Line $ (Column (A) thru (L) (entegory specific)
19
                                    TOTAL PRINT MALE TRANSPORT WP 240, Page 2 of 3, Line 41 (Column (A) thru (L) (category specific)
187
.
                                total meconomials sales manegions WP:240, Page 2 of 3, Line 41 (Columns (A) thru (L) (entegory specific)
130
144
141
                                        TOTAL PLAT BACK BEACTHORICE WP 240, Page 2 of 3, Line 8 (Column (A) thru (L) (category specific)
                                          NOTAL PLATE TRANSPORT WP:240, Page 2 of 3, Line 41 (Column (A) thru (L) entegory specific multiplied by WP:440, Line 20
143
143
144
                                            monager or occurates. WP:401, Page 1 of 1, Line 15
                          wishings from the first and the first and the first of th
                            with the following reservoirs and the matter of the WP:240, Page 2 of 3, Line 58 (Column (A) thru (L) (category specific) multiplied by WP:240, Page 2 of 3, Line 70
14
147
               8
146
                                    Q.
                            WP:240, Page 2 of 3, Line 64 (Column (A) thru (L) (estegory specific) multiplied by WP:240, Page 2 of 3, Line 70
               Ó
               10
                00
```

N U

MONTHLY COST DEVELOPMENT

STATE FLORIDA WOPKPAPER 250 PAGE 1 OF 3 DATE APPIL 1886

OOSTS

UNIT MONTHLY ANNEXAL

COSTS

(AUR MALES)

The state of the s	St.	ision 5 investment/cost summary actroduce and trampost	İ	(AA)	(BB)	N)- (14/198)	(B)	(C)	(D)	(B+(B+(C)+(P) TOTAL	Œ	(G) AD VALOPEM	(14)	(D) (D)
	_		ACCT	DIVERTMENT	Minoris	Wilderick							THREE	OPERATO
			cong			Seattle Control of the DEPREC	DOM	EXPENSE	COUTS	MARI	TANES	EFFENSE	COST	
SOURCE FOR COLONS IN 197-158 19C		ELECTRONICS	257C											
# FAGE 1 OF A LINES 16 TRULU 4	,													
TRANSPORT (CO. TO DELED SECOND	4	PAGE 1 OF 1, LINES 16 TIGHU 41												
TRANSPORT ACO TO HEID EXIC 61.17% 10 TRANSPORT ACO TO HEID EXIC 61.17% 11 UT MALE UNIX MILES) 12 SOURCE PROC (AM) NY 197-190 13 SOURCE PROC COL (AM) NY 19-190 14 SOURCE POR COL (AM) NY 19-190 15 PAGE 1 OF 1, LORE 9 TOTAL TRANSPORT (CO TO HEID) DESICN 5 16 TRANSPORT BRILL TO, CD: 17 TRANSPORT BRILL TO, CD: 18 SOURCE POR COL (AM) NY 197-194 19 SOURCE POR COL (AM) NY 197-194 20 SOURCE POR COL (AM) NY 197-194 20 SOURCE POR COL (AM) NY 197-194 21 SOURCE POR COL (AM) NY 197-194 22 SOURCE POR COL (AM) NY 197-194 23 SOURCE POR COL (AM) NY 197-194 24 TOTAL TRANSPORT (HUB TO CY) DESICN 5 25 SOURCE POR COL (AM) NY 197-194 26 CODE LPSCUPC) 27 LY MILE (LANE MILES) 28 SAM OF LORES 1 19 TRULU 19 29 SOURCE POR COL (AM) NY 197-194 20 SOURCE POR COL (AM) NY 197-194 20 SOURCE POR COL (AM) NY 197-194 20 SOURCE POR COL (AM) NY 197-194 21 TOTAL TRANSPORT (HUB TO CY) DESICN 5 22 SOURCE POR COL (AM) NY 197-194 23 SAM OF LORES 1 19 TRULU 19 (ACCOUNT 24 SAM OF LORES 1 19 TRULU 19 (ACCOUNT 25 SOURCE POR COL (AM) NY 197-194 26 CODE LPSCUPIC) 27 LY MILE (LANE MILES) 28 TOTAL TRANSPORT DESICN 5 TOTAL TRANSPORT DESICN 5	•		813C											
TRANSPORT ACO TO HEID EXIC 61.17% 10 TRANSPORT ACO TO HEID EXIC 61.17% 11 UT MALE UNIX MILES) 12 SOURCE PROC (AM) NY 197-190 13 SOURCE PROC COL (AM) NY 19-190 14 SOURCE POR COL (AM) NY 19-190 15 PAGE 1 OF 1, LORE 9 TOTAL TRANSPORT (CO TO HEID) DESICN 5 16 TRANSPORT BRILL TO, CD: 17 TRANSPORT BRILL TO, CD: 18 SOURCE POR COL (AM) NY 197-194 19 SOURCE POR COL (AM) NY 197-194 20 SOURCE POR COL (AM) NY 197-194 20 SOURCE POR COL (AM) NY 197-194 21 SOURCE POR COL (AM) NY 197-194 22 SOURCE POR COL (AM) NY 197-194 23 SOURCE POR COL (AM) NY 197-194 24 TOTAL TRANSPORT (HUB TO CY) DESICN 5 25 SOURCE POR COL (AM) NY 197-194 26 CODE LPSCUPC) 27 LY MILE (LANE MILES) 28 SAM OF LORES 1 19 TRULU 19 29 SOURCE POR COL (AM) NY 197-194 20 SOURCE POR COL (AM) NY 197-194 20 SOURCE POR COL (AM) NY 197-194 20 SOURCE POR COL (AM) NY 197-194 21 TOTAL TRANSPORT (HUB TO CY) DESICN 5 22 SOURCE POR COL (AM) NY 197-194 23 SAM OF LORES 1 19 TRULU 19 (ACCOUNT 24 SAM OF LORES 1 19 TRULU 19 (ACCOUNT 25 SOURCE POR COL (AM) NY 197-194 26 CODE LPSCUPIC) 27 LY MILE (LANE MILES) 28 TOTAL TRANSPORT DESICN 5 TOTAL TRANSPORT DESICN 5	•													
11	,	TOTAL	L BLECTRONICS DEBICH S											
11	•												•	
11	•													
20 20 20 20 20 20 20 20		TRANSPORT ACO TO HEIR)	623C		61.17%									
15 PAGE 1 OF 1, LIMES 7 & TREAT LIME 3 OF 1, LIMES 7 & TREAT LIME 3 OF 1, LIMES 7 & TREAT LIME 3 OF 1, LIMES 7 & TREAT LIME 3 OF 1, LIMES 7 & TREAT LIME 3 OF 1, LIMES 7 & TREAT LIME 3 OF 1, LIMES 7 & TREAT LIME 3 OF 1, LIMES 1	11	1/2 MELE (AİR MELE)	IC		61.17%									
SOURCE POR COL (RB) % RF. 461 B45C 61.17%	12	BOUNCE FOR COL (A4) BAY, NY: 330	89C		61.17%									
PAGE 1 OF 1, LOW 9 TOTAL TRANSPORT (CO TO HER) DEBIGN 3 61,17%	13	PAGE 2 OF 3, LINES 76 TRIKU B2	4C		61.17%									
19 TRANSPORT GRIR TO CD 1 820C 38 83% 10 ITRANSPORT GRIR TO CD 10 820C 38 83% 10 ITRANSPORT GRIR TO CD 10 820C 38 83% 10 ITRANSPORT GRIR TO CD 10 80C 38 83% 10 ITRANSPORT GRIR TO CD 10 80C 38 83% 10 ITRANSPORT GRIR TO CD 10 80C 38 83% 10 ITRANSPORT GRIR TO CD 10 80C 38 83% 10 ITRANSPORT GRIR TO CD 10 80C 38 83% 10 ITRANSPORT GRIR TO CD 10 80C 38 83% 10 ITRANSPORT GRIR TO CD 10 80C 38 83% 10 ITRANSPORT GRIR TO CD 10 80C 38 83% 10 ITRANSPORT GRIR TO CD 10 80C 38 83% 10 ITRANSPORT GRIR TO CD 10 80C 38 83% 10 ITRANSPORT GRIR TO CD 10 80C 38 83% 10 ITRANSPORT GRIR TO CD 10 80C 38 80C 40 80 80 80 80 80 80 80 80 80 80 80 80 80	14	SOURCE FOR COL (BA) % FF: 461	DASC		61.17%									
17 18 TRANSPORT GRIR TO CD 19 10 MELE (ARE MELE) 10 SOURCE POR COL (AA) DP. NT-334 SSC 38.83% 11 PAGE 1 OF 1, LINES 134 TRIBU 158 4C 38.83% 12 SOURCE POR COL (BA) % NTP-601 MSC 38.83% 13 PAGE 1 OF 1, LINE 1 1 TOTAL TRANSPORT (HUB TO CP) DESIGN 5 38.83% 14 TOTAL TRANSPORT DESIGN 2 823C 15 SUM OF LINES 13 TRIBU 23 (ACCOUNT 83C 16 CODE SPECIFIC) 4C 17 GODE SPECIFIC) 4C 18 SUM OF LINES 13 TRIBU 23 (ACCOUNT 83C 18 SUM OF LINES 13 TRIBU 23 (ACCOUNT 83C 19 TOTAL TRANSPORT DESIGN 2 TOTAL TRANSPORT DESIGN 5	15													
## TRANSPORT BRIDE OCT BESC 38 83% ## 1/4 MELE (ARE MELE) C 38 83% ## 20 URCE POR COL (AID MF. FF. 314 83C 38 83% ## 20 URCE POR COL (AID N RFP. 401 45C 38 83% ## 20 URCE POR COL (AID N RFP. 401 45C 38 83% ## 20 URCE POR COL (AID N RFP. 401 45C 38 83% ## 20 URCE POR COL (AID N RFP. 401 45C 38 83% ## 20 URCE POR COL (AID N RFP. 401 45C 38 83% ## 20 URCE POR COL (AID N RFP. 401 45C 38 83% ## 20 URCE POR COL (AID N RFP. 401 45C 38 83% ## 20 URCE POR COL (AID N RFP. 401 45C 45C 45C 45C 45C 45C 45C 45C 45C 45C	16	TOTAL TRANSPO	RT (CO TO HEAD) DEMICH (61.17%									
10 1/2 MELE (ARE MELE) 10 20 MICE POR COL (A) DW. FF-314 85 38.83% 11 PAGE 10F L MASS 11 PROL 134 4C 38.83% 12 SOURCE FOR COL (A) DW. FF-861 BISC 38.83% 13 PAGE 1 OF L LINE 1 14 TOTAL TRANSPORT (HUB TO CP) DESIGN 5 38.83% 15 TOTAL TRANSPORT DESIGN 2 822C 17 1/2 MELE (A) MELE) 1 SHEU 23 (ACCOUNT 85C 85C 86C 85C 85C 85C 85C 85C 85C 85C 85C 85C 85	17													
20 SURCE POR COL (A)-DP. NT-33R, SC 38.83% 11 PAGE 1 OF 1, LINES 134 TRIBU 138 4C 38.83% 12 SURCE POR COL (BID % NTP-40) 4C 38.83% 13 PAGE 1 OF 1, LINE 5 14 TOTAL TRANSPORT (HUB TO CP) DESIGN 5 38.83% 15 TOTAL TRANSPORT DESIGN 2 823C 17 1/3 MBLE (ABI MBLE) 1 TRIBU 23 (ACCOUNT 85C 18 CODE SPECIFIC) 4C 19 TOTAL TRANSPORT DESIGN 5 10 TRIBU 23 (ACCOUNT 85C 19 TOTAL TRANSPORT DESIGN 5 10 TRIBU 23 (ACCOUNT 85C 10 CODE SPECIFIC) 4C 11 TOTAL TRANSPORT DESIGN 5	16													
PAGE 1 OF S, LINES 114 TRICU 138 4C 38.83% 20 SOURCE FOR COLUMN 98 FFF-961 845C 38.83% 21 PAGE 1 OF L, LINES 1 TOTAL TRANSPORT (HUB TO CP) DESIGN 5 38.83% 23 TOTAL TRANSPORT DESIGN 2 813C 24 SUM OF LINES 12 THERU 23 (ACCOUNT 85C 25 CODE SPECIFIC) 4C 26 SUM OF LINES 12 THERU 23 (ACCOUNT 85C 26 CODE SPECIFIC) 4C 27 TOTAL TRANSPORT DESIGN 5	10													
22	7 0													
29			•-											
74 TOTAL TRANSPORT (HUB TO CP) DEBIGN 5 38.83% 75 76 TOTAL TRANSPORT DEBIGN 2 872C 77 1/2 MILE (AIR MILE) (CCOUNT 85C 78 SUM OF LOUIS 1/2 TURU 23 (ACCOUNT 85C 79 ODE SPECIFIC) 4C 79 843C 79 70 TOTAL TRANSPORT DEBIGN 5			BISC		38.83%									
75 70 TOTAL TRANSPORT DESIGN 2 873 C 77 1/3 MILE (AM MILE) 12 THEU 23 (ACCOUNT 85 C 78 CODE SPECIFIC) 4C 79 945 C 79 170 TOTAL TRANSPORT DESIGN 5														
77 TOTAL TRANSPORT DESIGN 2 1720C 78 SUM OF LINES 12 TRULU 3 (ACCOUNT 85C 79 CODE SPECIFIC) 4C 79 MISC 79 70 TOTAL TRANSPORT DESIGN 5		TOTAL TRANSPO	RT (HUB TO CP) DESIGN 5		38.83%									
27 1/2 MILE (AUS MILE) 1C 28 SUM OF LINES 12 THEO 23 (ACCOUNT BSC 29 ODE SPECIFIC) 4C 29 ODE SPECIFIC 29 TOTAL TRANSPORT DESIGN 5														
78 SUM OF LINES 13 YERU 33 (ACCOUNT BSC 76 CODE SPECIFIC) 4C 78 845C 79 70 TOTAL TRANSPORT DESIGN 5														
76 CODE SPECIFIC) 4C 29 BASC 51 52 TOTAL TRANSPORT DESIGN 5			· ·											
39 945C 31 32 TOTAL TRANSPORT DESIGN 5	10													
91 TOTAL TRANSPORT DESIGN S	10	CODE SPECIFIC)	· -											
ST TOTAL TRANSPORT DESIGN S			945C											
		TOT	AL TRANSPORT DESIGN 5											

\$1 \$2

83 84

#5 #6 #7

70 71 72

75

75

STATE FLORIDA WORKPAPER 250 PAGE 2 OF 9 DATE APPIL, 1986

DESIGN 5 INVESTMENT/COST SUMMARY (cost.) ELECTRONICS cod TRAMPOST	
--	--

W	(B)	(C)	(ID)	(M=(M+(C)+(M) TOTAL	(F)	(G)		(0-47)+(6)+(8) TOTAL	Ø	(E)-(E)+(E)+(E) Unit	(A)= (AT)/18 MONTHLY
WINDOW			67	CAPITAL		AND OTHER	INFIELS.	OPERATING		AMMENT	COSTS
DATE OF THE PERSONS.	DEPREC	COM	EXPENSE	00818	MAINT	TAXES	EXPENSE	COST	ORT	COSTS	MIR MILES

TOTAL FORST HALF AIR MILE	ELECTRONICA TRANSPORT	<u>Bource</u> Line 7 Line 8
TOTAL, SECOND HALF MELE	TRANSPORT	LDE 8
TOTAL PLAT BATE	ELECTRONICS TRANSPORT	LINE 7 LINE 8 * 177:450 LINE 14

PICHTEDI	NVESTMEN	TACOST 1	CIMMARY

PROBABILITY OF OCCUBENCE

WEIGHTED FERST HALF AIR MILE	ELECTROPICS	LINE \$2 "LINE 64
	TRANSPORT	LINE \$3 " LINE 44

WEIGHTED SECOND HALF MILE TRANSPORT LINE SS * LINE 64

FLAT RATE WEIGHTED INVESTMENT/COST SUMMARY

ELECTRONICS LINE 87 * LINE 64
TRANSPORT LINE 80 * LINE 64

VP:401, LINE 18

F18G010 00127

 \sim

MONTHLY COST BEVELOPMENT

STATE FLORIDA WORKPAPER 250 PAGE 3 OF 3 DATE APRIL 1888

```
DESIGN S INVESTMENT/COST SUMMARY (cond.)
BLECTRONICS and TRANSPORT
```

```
MOURCES
                                        ELECTRONICS WP: 250, PAGE LOF 3, LINES 1 THRU 6
                                                                                                                COLLANI (AA) WP.350, Page 1 of 3, Lines 39 thru 42 (noct code specific)
                                                                                                                COLUMN (BB) NA
.
                                                                                                                COLUMN(A) Coloration
                                                                                                                 COLUMNIES
                                                                                                                                                      WP-250, Page 1 of 3, Column (A) (acct code specific) multiplied by WP-FACTORS, Page 1 of 1, Lines 1 thru 13, Column (A) (acct code specific)
                                                                                                               COLLMH (C) WP.254, Page 1 of 3, Column (A) (cost code specific) multiplied by WP-FACTORS, Page 1 of 1, Lines 1 thru 13, Column (B) (cost code specific) multiplied by WP-FACTORS, Page 1 of 1, Lines 1 thru 13, Column (C) (cost code specific) multiplied by WP-FACTORS, Page 1 of 1, Lines 1 thru 13, Column (C) (cost code specific) multiplied by WP-FACTORS, Page 1 of 1, Lines 1 thru 13, Column (C) (cost code specific) multiplied by WP-FACTORS, Page 1 of 1, Lines 1 thru 13, Column (D) (cost code specific)
                                                                                                               COLLANT (E) WP.250, Page 1 of 3, Column (A) (seed each specific) multipled by WP.FACTORS, Page 1 of 1, Lines 1 five 13, Column (D) (seed each specific) COLLANT (E) WP.250, Page 1 of 3, Column (A) (seed each specific) multipled by WP.FACTORS, Page 1 of 1, Lines 1 five 13, Column (E) (seed each specific) Multipled by WP.FACTORS, Page 1 of 1, Lines 1 five 13, Column (E) (seed each specific) COLLANT (E) WP.250, Page 1 of 3, Column (A) (seed each specific) multipled by WP.FACTORS, Page 1 of 1, Lines 1 five 13, Column (A) (seed each specific) COLLANT (E) WP.250, Page 1 of 3, Column (A) (seed each specific) multipled by WP.FACTORS, Page 1 of 1, Lines 1 five 13, Column (B) (seed each specific) COLLANT (E) WP.250, Page 1 of 3, Column (A) (seed each specific) multipled by WP.FACTORS, Page 1 of 1, Lines 1 five 13, Column (B) (seed each specific) COLLANT (E) WP.250, Page 1 of 3, Column (A) (seed each specific) multipled by WP.FACTORS, Page 1 of 1, Lines 1 five 13, Column (B) (seed each specific) WP.250, Page 1 of 3, Column (A) (seed each specific) will be seed to the specific of the seed specific) will be seed to the specific of the seed specific (SCLANT) (E) WP.250, Page 1 of 3, Column (A) (seed each specific) will be seed to the seed specific) will be seed to the specific (SCLANT) (E) WP.250, Page 1 of 3, Column (A) (seed each specific) will be seed to the seed specific (SCLANT) (E) WP.250, Page 1 of 3, Column (A) (seed each specific) will be seed to the seed specific (SCLANT) (E) WP.250, Page 1 of 3, Column (A) (seed each specific) will be seed to the seed specific (SCLANT) (E) WP.250, Page 1 of 3, Column (A) (seed each specific) will be seed to the seed specific (SCLANT) (E) WP.250, Page 1 of 3, Column (A) (seed each specific) will be seed to the seed specific (SCLANT) (E) WP.250, Page 1 of 3, Column (A) (seed each specific) will be seed to the seed specific (SCLANT) (E) WP.250, Page 1 of 3, Column (A) (seed each specific) will be seed to the seed specific (SCLANT) (E) WP.250, Page 1 of 3, Column (A) (seed each specifi
                                                                                                                 COLUMNIA) Calvalidas
              SOLECES
                                        TRANSPORT (OC -12 FIBER INVESTIMENTS) WP. 250, PAGE 1 OF 3, LINES 10 THRU 14
                                                                                                                COLLBAN (AA) WP:350, Page 2 of 3, Lines 74 Box 78 (seet code specific)
                                                                                                                COLUMN (86) WP-W1, Page 1 of 1, Line 3 Column (8)
                                                                                                                COLUMN(A) Columbia
 .
              SOURCES
                                        TRANSPORT (OC-3 FIBER INVESTMENTS) WP 250, PAGE 1 OF 3, LINES 16 THRU 24
 102
                                                                                                                COLUMN (AA) WP.356, Page 3 of 3, Lines 129 Bru 133 (soct code specific)
                                                                                                                COLUMN (BB) WP:401, Page 1 of 1, Line 1, Column (B)
104
100 1112
                                                                                                                COLUMN(A) Coloubsion
 111
 112
                SOURCES
                                         TRANSPORT (OC-12 AND OC-3 FEBER INVESTMENTS) WP 250, PAGE 1 OF 3, LINES 26 THRU 31
 115
 114
 115
                                                                                                                COLUMN (A) WP.256, Page 1 of 3, Sum of Lines 18 thru 24, Column (A) (accil code specific)
 116
                                                                                                                COLLERY (B) WP-259, Page 1 of 3, Column (A) (soot code specific) multiplied by WP-FACTORS, Page 1 of 1, Lines 1 thru 13, Column (A) (soot code specific) COLLERY (C) WP-250, Page 1 of 3, Column (A) (soot code specific) multiplied by WP-FACTORS, Page 1 of 1, Lines 1 thru 13, Column (B) (soot code specific)
117
 110
                                                                                                               COLLANY (C) WP-250, Page 1 of 3, Column (A) (anot seek specific) multipled by WP-FACTORS, Page 1 of 1, Lines 1 thm 13, Column (C) (anot seek specific) multipled by WP-FACTORS, Page 1 of 1, Lines 1 thm 13, Column (A) (anot seek specific) multipled by WP-FACTORS, Page 1 of 1, Lines 1 thm 13, Column (B) (anot seek specific) multipled by WP-FACTORS, Page 1 of 1, Lines 1 thm 13, Column (B) (anot seek specific) multipled by WP-FACTORS, Page 1 of 1, Lines 1 thm 13, Column (B) (anot seek specific) COLLANY (F) WP-250, Page 1 of 3, Column (A) (anot seek specific) multipled by WP-FACTORS, Page 1 of 1, Lines 1 thm 13, Column (B) (anot seek specific)
 ...
 136
125
                                                                                                                 CCLLANGS WP-250, Page 1 of 3, Column (A) (cost code specific) multiplied by WP-FACTORS, Page 1 of 1, Lines 1 thru 13, TRKE separate (and code specific)
COLLANGS WP-250, Page 1 of 3, Column (A) (cost code specific) multiplied by WP-FACTORS, Page 1 of 1, Lines 1 thru 13, Column (A) (cost code specific)
COLLANG (A) WP-250, Page 1 of 3, Column (A) (cost code specific) multiplied by WP-FACTORS, Page 1 of 1, Lines 1 thru 12, Column (A) (cost code specific)
                                                                                                                COLUMNISM
 128
 124
 125
  126
                                                                                                                 COLUMN (II) WP-250, Page 1 of 3, Cohom (A) (post code specific) multiplied by WP-FACTORS, Page 1 of 1, Lines 1 thru 13, Cohom (A) (post code specific)
 137
                                                                                                                 COLUMNIA) Calculation
              SOLRCES
 130
 120
                                             TOTAL FIRST HALF MILE - ELECTRONICS WP.250, Page 1 of 3, Line 7 (Column (A) Bru (L.) (cologory opecific)
 130
131
                                                TOTAL FIRST HALF MILE - TRANSPORT WP.250, Page 1 of 3, Line 32 (Column (A) thru (L.) (cologory specific)
111
                                          TOTAL SECOND HALF MILE - TRANSPORT WP-250, Page 1 of 3, Line 32 (Column (A) Bare (L.) (cologory specific)
111
124
196
                                                           TOTAL FLAT RATE - ELECTRONICS WP:254, Page 1 of 3 Line 7 (Column (A) thru (L) (collegery apocific)
                                                              TOTAL PLAT PLAT PLATE - TRANSPORT WP-250, Page 1 of 2, Line 32 (Column (A) thru (L) entagory specific multiplied by WP-450, Line 16
130
1 57
                                                                     PROBABLITY OF OCCURENCE WP.401, Page 1 of 1, Line 16
18
                                               wisomis restricts an one macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosist with the macrosi
 136
                            \infty
 140
                                                   WE 250, Page 2 of 3, Line 53 (Column (A) thru (L) (category specific) multiplied by WP:250, Page 2 of 3, Line 64
                            G)
 161
                            Ö
                                                                     WINDHIM FLAT BATK SESCREDUCES WP:250, Page 2 of 3, Line 57 (Column (A) thru (L) (estegory specific) multiplied by WP:250, Page 2 of 3, Line 64
 142
                           Ö
                                                      WP.250, Page 2 of 3, Line 58 (Column (A) thru (L) (category specific) multiplied by WP.250, Page 2 of 3, Line 64
                            C
                           O.
                          _
```

INE					STATE: FLORIDA
NO	DESCRIPTION		UTILIZED / LEVELIZED		WORKPAPER: 300
		ACCT NO.	INVESTMENT	SOURCES	PAGE 1 OF 3
1	ELECTRONICS				DATE APRIL, 1995
2	Battery Back-up - OC3 (CP)	257C	• / *	FUNDAMENTAL SONET MODEL	
3	CO Node - OC3	257C		•	
4	MCE & P	257C		•	
5	Land	20C		•	
6	Building	10C		•	
7	CO Node - OC12	257C		*	
	MCE & P	257C		•	
	Land	20C		•	
10	Building	10C		•	
11	CP NODE - OC3	257C		•	
12	CO INT. DS1 ON OC-3 DIRECT	257C		•	
	MCE & P	257C		•	
13 14	Land	20C		•	
-	Building	10C		•	
15	CO INT. DS1 ON OC-3 JOINT	257C		•	
18	MCE & P	257C		•	
17		20C		•	
18	Land Building	10C		4	
19	CP INT. DS1 ON OC-3 DIRECT	257C		•	
20	CP INT. DS1 ON OC-3 JOINT	257C		•	
21	CO DS1 ON OC-12 DIRECT	257C		•	
22	MCE & P	257C		•	
23		20C		•	
24	Land .	10C		•	
25	Building	257C		•	
20	CO DS1 ON OC-12 JOINT	257C		•	•
27	MCE & P	20C		•	
28	Land	10C		•	
28	Building OC-3	257C		•	
30		257C		•	
31	MCE & P	20C		•	
32	Land	10C		•	
33	Building CO ; OC-12	257C		•	
34	••	257C		•	
35	MCE & P	20C		•	
30	Land	10C		•	
37	Building	257C		•	
36	CP NETWORK INTERFACE	257C		•	
39	HUB INTERFACE STS-1 OC3	257C		•	
40		20C			
41					
42	Building	10C			

				WORKPAPER. 300
:NE			UTILIZED / LEVELIZED	PAGE 2 OF 3
Ю	DESCRIPTION	ACCT NO.	INVESTMENT SOURCES	DATE: APRIL, 1995
		1001 110		
13	HUB INTERFACE STS-1 OC12	257C	FUNDAMENTAL SONET MODEL	
14	MCE & P	257C	•	
, T	Land	20C	•	
1 6	Building	10C	•	
17	CP BUILDING ENTRANCE CABLE OC3	812C	•	
18	CP BUILDING ENTRANCE CABLE OC12	812C	•	
19	CO INTERFACE DS1 ON OC3 DIRECT	257C	•	•
	MCE & P	257C	•	
50	Land	20C	•	
51	Building	10C	•	
52	CO INTERFACE DS1 ON OC3 JOINT	257C		
53	MCE & P	257C	•	
54	Land	20C	•	
55	- - · · ·	10C	•	
56	Building	257C	•	
57	CO NODE OC3 MCE & P	257C	•	
58		20C	•	
59	Land	10C	•	
60	Building CP INTERFACE DS1 ON OC3: 1 DIRECT	257C	•	
61		257C	•	
62	01 11/12/11/12	257C	•	
63	CP NODE OC3	257C	•	
64	HUB CONN STS-1 ON OC-3 DIRECT	257C	•	
85	MCE & P	20C	•	
66	Land	10C	•	
87	Building	257C	•	
66	HUB INTERFACE DS1 ON OC-3 DIRECT	257C 257C	•	
60	MCE & P	20C	•	
70	Land	10C	•	
71	Building	257C	•	
72	HUB INTERFACE DS1 ON OC-3 JOINT	257C 257C		
73	MCE & P	257C 20C	•	
74	Land		•	,
75	Building	10C	•	
78	HUB INTERFACE DS1 ON OC-3 DIRECT	257C	•	
77	MCE & P	257C	•	
78	Land	20C		
79	Building	10C		
80	HUB INTERFACE DS1 ON OC-3 JOINT,	257C		
81	MCE & P	257C		
62	Land	20C		
83	Building	10C		
	-			

STATE: FLORIDA

F18G01Q 00130

ıε		•			WORKPAPER 300
	DESCRIPTION		UTILIZED/LEVELIZED		PAGE 3 OF 3
, ,	DESCRIPTION	ACCT NO.	INVESTMENT	SOURCES	DATE: APRIL, 1995
		0570		FUNDAMENTAL SONET MODEL	
1	HUB NODE-OC3	257C		FUNDAMENTAL SOMET MODEL	
,	MCE & P	257C		•	
1	Land	20C		<u> </u>	
ţ	Building	10C		-	
	HUB NODĚ-OC3:	257C		•	. '
3	MCE & P	257C		•	•
,)	Land	20C		•	
	Building	10C		•	
'	HUB NODE-OC12	257C		•	
	MCE & P	257C			
3	Land	20C		•	
4	=	10C		•	
5	Building	,,,,			
5	TD 1 100007				
7	TRANSPORT				
8	FIBER - OC3 PER MILE PER STRAND	40		•	
9	POLE	1C		•	
ж.	AERIAL FIBER	822C		•	
31	BURIED FIBER	845C		_	
32	CONDUIT	4C		<u>.</u>	
03	UNDERGROUND FIBER	85C		•	
04	FIBER - OC12 PER MILE PER STRAND				
05	POLE	1C		•	
	AERIAL FIBER	822C		•	
06	BURIED FIBER	845C		c c	
07	CONDUIT	4C		•	
06		85C		a	
00	UNDERGROUND FIBER				

STATE FLORIDA

111 112

VELOPMENT OF COPPER ELECTRONICS LEVELIZED, UTILIZED INVESTMENT

			W	(8)	(C)=(A)*(B)	(D)	(E)=(C)^(D)	(F)	(G)=(E)(F)	(4)	(H)*(D)*(H)
Æ)	DESCRIPTION	ACCT	MATERIAL PRICE PER T1	IN PLANT FACTOR	INSTALLED INV	INFLATION FACTOR	98-96 LEVELIZED INV	UTILIZATION	LEVELIZED UTIL INVESTMENT BEFORE LOADINGS	MISC LOAD	LEVELIZED UTIL INVESTMENT WITH LOADINGS
	CENTRAL OFFICE										
,	OSX-1 PANEL	257C 257C 20C 10C	i	1.2107	\$	0.962	1	0.85		0.0159 0.0030 0.0404	
, , , 0	OFFICE REPEATER BAY	257C 257C 20C 10C	\$	1.2107	\$	0.962	\$	0.85		0.0159 0.0030 0.0404	
2											
3 4 5 6	MDF .	377C 377C 377C 377C									
8		377C 20C		1.3574	\$	1.012	!	0.85		0.0962 0.0030	
:1		10C								0.0404	
:2 ≥3	CUSTOMER PREMISES										
24 25 26 27	BLDG ENTRANCE CABLE	12C			\$	1.061	;	0.70			
28 29											
30	SOURCES										
	COLUMN A COLUMN B COLUMN C COLUMN C		ION (NOTE: BLI	DG ENTRANC	E CABLE SOU	RCE WAS ECO	HOMIC ANAL	YSIS DEPT.)			
	8 COLUMN C COLUMN D COLUMN E COLUMN F COLUMN G	ECONOMIC CALCULATI NETWORK CALCULATI	ION					•			
	COLUMN G COLUMN I COLUMN I	ECONOMIC	: ANALYSIS ION (NOTE: 200	: AND 10C LO	ADINGS WERE	BASED ON TO	OTAL 257C PE	R CATEGORY)			

DEVELOPMENT OF COPPER TRANSPORT LEVELIZED, UTILIZED INVESTMENT

			W	W-W.5	(C)+ (5) + 2010	(A)	EI-IGNDI	en 	(G)-EYFACTOR	#II- #II-FI-FI COPPER CABLE	n POLE/CONDUIT	(/*(I*E) POLE/CONDUIT
	GAUGE PPER CABLE	ACCT COOE	INSTALLED INV PER PAIR PER FOOT	2 PAIR PER FOOT	INV PER 1/2 MILE (2640 * (8))	DIST TO CODE	COPPER CABLE WEIGHTED INVESTMENT	ADJ FOR AJR DRYER	ADJ FOR DROP WIRE	WEIGHTED INVESTMENT WITH ADJ.	FACTOR	INVESTMENT .
	AERIAL BURIED UNDERGROUND POLE CONDUIT	22C 45C 5C 1C 4C				0.152777 0.633938 0.213285 1		N/A N/A N/A	1	1	0.2522 0.3895	1
	AIR DRYER DROP WIRE ADJ.											
			ø,	N	#4-40%) REPEATER							
RE	PEATER		INV	DIST TO CODE	WEIGHTED INVESTMENT							
	AERIAL BURIED UNDERGROUND	257C 257C 257C 257C	\$ \$ \$	0.152777 0.633938 0.213285 1	:							
25 26 27 28 29	PPER TRANSPORT	ACCT), (TILIZED INV PA TOTAL INV PER DS1	ESTMENT (O) TPI	BUMMARY PT-99YO TOTAL BASE YR INV PER DS1	E3 IMPLANT	FO-FYICE INSTALLED INVESTMENT	(NI INFLATION FACTOR	(T)-FUTE LEVELIZED INVESTMENT	en Utilization Factor	M-(I)"N UTILLEV INVESTMENT PER DS1 & PER V2 MILE	
31 32 33	REPEATER	257C	1	1	\$	1.2107	1	0.962	1	0.85	\$	257C
34 35 36 37 38 39 40	AERIAL BURIED UNDERGROUND POLE CONDUIT	22C 45C 5C 1C 4C	\$ \$ \$	1 . f 1 1	\$ \$:	NVA NVA NVA NVA	1	1.061 1.058 1.069 1.072 1.044	1	0,70 0,70 0,70 0,70 0,70		22C 45C 5C 1C 4C
	SOURCES											
FIREGIO OOI	COLUMN B COLUMN C COLUMN D COLUMN E COLUMN F COLUMN G COLUMN H	CALCULATE	on Analysis - Vruc On On		COLUMN I COLUMN K COLUMN K COLUMN M COLUMN N COLUMN O COLUMN P	CALCULAT NETWORK ECONOMIC CALCULAT COLUMNS	CANALYSIS - VRUC ION (IQ, (H), and (J) CANALYSIS - FACTO	s	COLUMN Q COLUMN R COLUMN T COLUMN U COLUMN V	ECONOMIC ANALY CALCULATION ECONOMIC ANALY CALCULATION NETWORK CALCULATION		

STATE: FLORIDA WORKPAPER: 310 PAGE 1 OF 2 DATE: APRIL, 1996

, 1

Drsign #1 Electronic investments

INE			ACCT CODE	LEVELIZED UTILIZED INVESTMENT	SOURCES
	CENTRAL	OFFICE - ELECTRONICS		.,,,,,	
1	0	SX1 PANEL	257C		WP:301, Page 1 of 1, Line 1
2		MCEAP	257C		WP:301, Page 1 of 1, Line 2
3		LAND	20C		WP:301, Page 1 of 1, Line 3
4		BUILDING	10C		WP:301, Page 1 of 1, Line 4
5					•
•	_	SELECT DEDCATED DAY	8690		WP:301, Page 1 of 1, Line 7
7	u	FFICE REPEATER BAY	257C 257C		WP:301, Page 1 of 1, Line 5
•		MCE&P LAND	29/C 20/C		WP:301, Page 1 of 1, Line 9
10		BUILDING	10C		WP:301, Page 1 of 1, Line 10
11		Бопфию	,,,,		***
12					
13	M	IAIN DISTRIBUTION FRAME	377C		WP:301, Page 1 of 1, Line 18
14		MCE&P	377C		WP:301, Page 1 of 1, Line 19
15		LAND	20C		WP:301, Page 1 of 1, Line 20
16		BUILDING	10C		WP:301, Page 1 of 1, Line 21
17					
18			•		
19	CUSTOME	PREMISES - ELECTRONICS			
20					
21	_		***		WP:301, Page 1 of 1, Line 25
22	8	LDG ENTRANCE CABLE - COPPER	12C		WF:301, Fage 1 of 1, Cite 25
23		ETWORK INTERFACE	257C		WP:300, Page 1 of 3, Line 38
24 25	N	BIWORK INIEGACE	2,7,0		
26					
27			•		
28					
20					
30	TOTAL PLE	CTRONIC INVESTMENT BY FRC			
31	IOINT PLE	KIRUNGE INVESTMENT BITTHE	257C		SUM WP:310, Page 1 of 2, Lines 1,2,7,8,24
32					•••
33	71)		377C		SUM WP:310, Page 1 of 2, Lines 13,14
34	3 1		20C		SUM WP:310, Page 1 of 2, Lines 3,9,15
35	ହ		10C		SUM WP:310, Page 1 of 2, Lines 4,10,16
36	8G01Q		12C		SUM WP:310, Page 1 of 2, Line 22
37	0				
38	0013	TOTAL DESIGN I ELECTRONIC INVE	STMENT		SUM WP:310, Page 1 of 2, Line 32 thru 36
	134				

UNBUNDLED 4-WIRE DSI DIGITAL GRADE LOOP 1996-1990 LEVEL

DESIGN #1 TRANSPORT INVESTMENTS STATE: FLORIDA WORKPAPER: 310 PAGE 2 OF 2 DATE: APRIL, 1998

į,			(A)	(B)	(C)=(A)*(B)			
3	CENTRAL OFFICE TO CUSTOMER PREMISES							
1 1		CODE	TOTAL INVESTMENT PER 1/2 MILE (ROUTE MILES)	ROUTE TO AIR RATIO	TOTAL INVESTMENT PER I/Z MILE (AIR MILES)	SOURCES COLUMN A	SOURCES COLUMN B	,
ا د	26 GAUGE						·	
8								
7	AERIAL COPPER	22C		1.43				
8	POLE	IC		1.43		WP:302, Page 1 of 1, Line 34	WP:401, Page 1 of 1, Line 22	
è	UNDERGROUND COPPER	SC		1.43		WP:302, Page 1 of 1, Line 37	•	
3	CONDUIT	4C		1.43 1.43		WP:302, Page 1 of 1, Line 36 WP:302, Page 1 of 1, Line 38	•	
1	BURIED COPPER	45C		1.43 1.43		WP:302, Page 1 of 1, Line 35	•	
2	REPEATER	257C		1.73		WP:302, Page 1 of 1, Line 32	•	
3								
•								
8								
1								
4	TOTAL TRANSPORT BY FRC	22C				WP:310, Page 2 of 2	t, Line 56	
و		10				WP:310, Page 2 of 2	t, Line 57	
•		SC				WP:310, Page 2 of 2	t, Line 58	
′1		4C				WP:310, Page 2 of 2	2, Line 59	
· 2		45C				WP:310, Page 2 of 2	?, Line 60	
_		257C				WP:310, Page 2 of 2	?, Line 61	
/3								
74								
75						SUM WP:310, Page	2 of 2, Line 67 thru 72	
76	TOTAL DESIGN #1 TRANSPORT INVESTMENTS						-	
Π	1/2 MILE (AIR MILE)							

DESIGN #2

ELECTRONIC INVESTMENTS

STATE: FLORIDA WORKPAPER: 320 PAGE 1 OF 2 DATE: APRIL, 1996

J.			CODE	(LEVELIZED UTILIZED DNYESTMENT	SOURCES
	CENTRA	LOFFICE - ELECTRONICS		NA A PROFILEMENT	
		DSI ON OC3 - DIRECT	257C		WP:300, Page 1 of 3, Line 12
š		MCEAP	257C		WP 300, Page 1 of 3, Line 13
i		LAND	20C		WP:300, Page 1 of 3, Line 14
,		BUILDING	10C		WP:300, Page 1 of 3, Line 15
;		DSI ON OC3 - JOINT	257C		WP:300, Page 1 of 3, Line 16
		MCEAP	257C		WP:300, Page 1 of 3, Line 17
)		LAND	20C	•	WP:300, Page 1 of 3, Line 18
0		BUILDING	10C		WP:300, Page 1 of 3, Line 19
2		CO NODE - OC3	257C		WP:300, Page 1 of 3, Line 3
3		мсефр	257C		WP:300, Page 1 of 3, Line 4
4		LAND	20C		WP:300, Page 1 of 3, Line 5
5		BUILDING	10C		WP:300, Page 1 of 3, Line 6
7		, • 0C3	257C		WP:300, Page 1 of 3, Line 30
8		MCEAP	257C		WP:300, Page 1 of 3, Line 31
9		LAND	20C		WP:300, Page 1 of 3, Line 32
<u>:0</u>		BUTE DING	10C		WP:300, Page 1 of 3, Line 33
и ?2	CUSTOM	ER PREMISES ELECTRONICS -			
14 14		CP NODE - OC3 (5 Nodes)	257C		WP:300, Page 1 of 3, Line 11 multiplied by 5
:6 #		DS1 ON OC3 - DIRECT	237C		WP:300, Page 1 of 3, Line 20
≀8		DS1 ON OC3 - JOINT	257C		WP:300, Page 1 of 3, Line 21
30 n		BLDG ENTRANCE CABLE - OC3	812C		WP:300, Page 2 of 3, Line 47
32		NETWORK INTERFACE	257C		WP:300, Page 1 of 3, Line 38
34		BATTERY BACK-UP	257C		WP:300, Page 1 of 3, Line 2
#					
39 40	IOTAL	LECTRONIC INVESTMENT BY FRC	257C		SUM WP:320, Page 1 of 2, Lines 1,2,6,7,11,12,16,17,23,25,27,31,33
			20C		SUM WP:320, Page 1 of 2, Lines 3,8,13,18
41			IOC		SUM WP:320, Page 1 of 2, Lines 7,9,14,19
42	177		\$12C		SUM WP:320, Page 1 of 2, Line 29
43	81		•12C		Com til '650's all a c' rain de
44	Ğ			ſ	DUMANA 000 D 4 - (0 4 l-+ 00 4 40
45	109	TOTAL DESIGN 2 ELECTRONIC INVESTMENT		l	SUM WP:320, Page 1 of 2, Line 38 thru 42
	Ö				
	0				
	0		4		
	13				
	6				

1/2 MILE (AIR MILE)

102

UNBUNDLED 4-WIRE DS1 DIGITAL GRADE LOOP 1996-1998 LEVEL

DESIGN #8

ELECTRONIC INVESTMENTS

STATE: FLORIDA WORKPAPER: 330 PAGE 1 OF 2 DATE: APRIL, 1996

LINE NO		ACCT CODE	LEVELIZED UTILIZED RNVESTMENT	SOURCES
0	CENTRAL OFFICE - ELECTRONICS		6114	
1	DS1 ON OC3 - DIRECT	257C		WP:300, Page 2 of 3, Line 49
2	MCEAP	257C		WP:300, Page 2 of 3, Line 50
3	LAND	20C		WP:300, Page 2 of 3, Line 51
4	BUILDING	10C		WP:300, Page 2 of 3, Line 52
6	DSI ON OC3 - JOINT	257C		WP:300, Page 2 of 3, Line 63
7	MCEAP	257C		WP:300, Page 2 of 3, Line 54
•	LAND	20C	`	WP:300, Page 2 of 3, Line 65
9	BUILDING	10C		WP:300, Page 2 of 3, Line 56
11	CO NODE - OC3	257C		WP:300, Page 2 of 3, Line 57
12	MCEAP	257C		WP:300, Page 2 of 3, Line 58
13	LAND	20C		WP:300, Page 2 of 3, Line 69
14	BUTLDING	10C		WP:300, Page 2 of 3, Line 60
16	0C3	257C		WP:300, Page 1 of 3, Line 30
16 17	MCEAP	257C		WP:300, Page 1 of 3, Line 31
18	LAND	20C		WP:300, Page 1 of 3, Line 32
19	BUELDING	10C		WP:300, Page 1 of 3, Line 33
21				
29	CUSTOMER PREMISES ELECTRONICS			
23	CP NODE - OC3 (5 Nodes)	257C		WP:300, Page 2 of 3, Line 63 multiplied by 6
25	DSI ON OC3 - DIRECT	257C		WP:300, Page 2 of 3, Line 61
27	DSI ON OC3 - JOINT	257C		WP:300, Page 2 of 3, Line 62
29	BLDG ENTRANCE CABLE - OC12	812C		WP:300, Page 2 of 3, Line 48
31	NETWORK INTERFACE	257C		WP:300, Page 1 of 3, Line 38
33	BATTERY BACK-UP	257C		WP:300, Page 1 of 3, Line 2
35				
36 37	TOTAL ELECTRONIC INVESTMENT BY FRC			
38		257C		SUM WP:330, Page 1 of 2, Lines 1,2,6,7,11,12,16,17,23,25,27,31,33
39		20C		SUM WP:330, Page 1 of 2, Lines 3,6,13,18
40	F)	19C		SUM WP:330, Page 1 of 2, Lines 7,9,14,19
41	œ	812C		SUM WP:330, Page 1 of 2, Line 29
42	.G 0			and the same and a same of section that
	1			
43	O TOTAL DESIGN 3 ELECTRONIC INVESTME	NT		SUM WP:330, Page 1 of 2, Lines 37 thru 41
44	0			
	01			
	ယ္က			
	œ			

51

52

53

54 55 STATE: FLORIDA WORKPAPER: 330 PAGE 2 OF 2 DATE: APRIL, 1996

22										
56 57	CENTRAL OFFICE TO CUSTOMER PREMISES OC3									
54			(A)	(B)- (A)/2						
50 60		ACCT CODE	INVESTMENT PER MILE	INVESTMENT PER 1/2 MILE						
61		CODE	PER STRAND	PER STRAND	SOURCES COLUMN (A	0		SOURCES COLU	MN (B)	,
62			(ROUTE MILES)	(ROUTE MILES)		7				·
83										
64	ACDIAL CINCO	822C			WP:300, Page 3 d			Calautatian		
6 5	AERIAL FIBER POLE	1C			WP:300, Page 3 o			Calculation		
86 87	UNDERGROUND FIBER	85C			WP:300, Page 3 (-		•		
56	CONDUIT	4C		·	WP:300, Page 3	-		•		
89	BURIED FIBER	845C			WP:300, Page 3	-		•		
25	portate a service	0,20								
R C C D										
74			47	a	dt - 400 a dt	_				
75 78		ACCT	(C) INVESTMENT	(D) TOTAL NUMBER	(E)= (C) * (D) INVESTMENT	(F) ROUTE	(G) = (E) * (F) TOTAL			
77		CODE	PER 1/2 MILE	OF STRANDS	PER 1/2 MILE	To	INVESTMENT			
76			PER STRAND	PER	PER	AIR	PER 1/2 MILE	SOURCES	_	
79			(ROUTE MILES)	ARRANGEMENT		RATIO	PER ARRANGEMENT			
80 81	TOTAL TRANSPORT - OC 3				(ROUTE MILES)		(AIR MILES)			
82	STANDARD ARRANGEMENT BY FRC	\$22C		3		1.43		COLUMN (C)	Calculation	
83	A LANGUAGE CONTRACTOR AND LANGUAGE	IC		3		1.43		COLUMN (D)	Network	
84		85C		3		1.43		COLUMN (E)	Calculation	
85		4C		3		1.43		COLUMN (F)	WP:401, Pg 1 of 1, Ln 22	
86		845C		3	•	1.43		COLUMN (G)	Calculation	
Ľ								, , ,		
**	TOTAL TRANSPORT - OC 3									
90	DIVERSITY ARRANGEMENT BY FRC	822C	\$0.00	3		1.43				
91		1C	\$0.00	3		1.43				
92		85C	00.02	3		1.43				
83		4C	\$0.00	3		1.43				
94		845C	\$0.00	3		1.43				
Ë									•	
98	TOTAL TRANSPORT BY FRC (6 STRANDS)	822C						SUM WP:330	, Page 2 of 2, Lines 82,90	
90		1C						SUM WP:330	, Page 2 of 2, Lines 63,91	
100		85C						SUM WP:330,	, Page 2 of 2, Lines 64,92	
101		4C						SUM WP:330,	Page 2 of 2, Lines 85,93	
102		845C						SUM WP:330,	Page 2 of 2, Lines 86,94	
104	TOTAL DESIGN #3 TRANSPORT INVESTMENTS							SUM WP:330,	, Page 2 of 2, Lines 98 thru 16)3

105 1/2 MILE (AIR MILE)

Design #4 Electronic investments STATE: FLORIDA WORKPAPER: 340 PAGE 1 OF 3 DATE: APRIL, 1996

.INE NO		ACCT	(TEVELIZED	SCARCES		ACCT CODE	PEAETISED	50/4CE3
1	CENTRAL OFFICE - ELECTRONICS		THÉMELET VIII		FIRER HUB - ELECTRONICS -		INVESTMENT	
ž	DS1 ON OC3 - DIRECT	257C		WP-300, Pg 1 of 3, La 12	HUB NODE - OC3 (5 Nodes)	257C	.	WP:300, Pg 3 of 3, Ln 84 x 5
3	MCEAP	257C		WP:300, Pg i of 3, La 13	MCEAP	257C		WP:300, Pg 3 of 3, La 85 x 5 +
4	LAND	20C		WP:300, Pg 1 of 3, La 14	LAND	20C		WP:300, Pg 3 of 3, La 86 x 5
•	BUILDING	10C		WP:300, Pg 1 of 3, La 15	BUILDING	10C		WP:300, Pg 3 of 3, La 87 x 5
•								-
7	DSI ON OC3 - JOINT	257C		WP:300, Pg 1 of 3, La 16	DSX1 PANEL (2)	257C		WP:301, Pg 1 of 1, La 1 x 2
	MCEAP	257C		WP:300, Pg 1 of 3, La 17	MCERP	257C		WP:301, Pg 1 of 1, Ln 2 x 2
9	LAND	20C		WP:300, Pg 1 of 3, La 18	1.AND	20C		WP:301, Pg 1 of 1, La 3 x 2
10	BUILDING	IOC		WP:300, Pg 1 of 3, Ln 19	BUILDING	10C		WP:301, Pg 1 of 1, La 4 x 2
11								
12	CO NODE - OC1	257C		WP:300, Pg 1 of 3, La 3	OFFICE REPEATER BAY	257C		WP:301, Pg 1 of 1, Ln 7
13	MCEAP	257C		WP:300, Pg 1 of 3, Ln 4	MCEAP	257C		WP:301, Pg 1 of 1, La 8
14	LAND	20C		WP:300, Pg 1 of 3, La 5	LAND	20C		WP:301, Pg 1 of 1, La 9
15	BUILDING	10C		WP:300, Pg i of 3, La 6	BUILDING	10C		WP:301, Pg 1 of 1, Ln 10
16	202	3430		Nm 200 0 1 . (2 1 . 12	HUB INTERFACE - DS1 ON OC-3			
17	-OC3	257C 257C		WP:300, Pg I of 3, La 30	DIRECT	257C		UM-200 B- 0 - C 2 1 - 40
18 19	MCE&P LAND	20C		WP:300, Pg 1 of 3, La 31 WP:300, Pg 1 of 3, La 32	MCEAP	257C		WP:300, Pg 2 of 3, Ln 68 WP:300, Pg 2 of 3, Ln 69
20	BUILDING	10C		WP:300, Pg 1 of 3, La 33	LAND	20C		WP:300, Pg 2 of 3, Ln 70
20 21	POTTNIC	100		W1 200, FB 1 of 2, LE 22	BUILDING	10C		WP:300, Pg 2 of 3, Ln 71
22	CUSTOMER PREMISES ELECTRONICS :				5025 1112			
25				•	HUB INTERFACE - DS1 ON OC-3			
24	BLDG ENTRANCE CABLE - COPPER	12C		WP:301, Pg 1 of 1, La 25	DIRECT	257C		WP:300, Pg 2 of 3, Ln 72
25					MCEAP	257C		WP:300, Pg 2 of 3, La 73
20	NETWORK INTERFACE	257C		WP:300, Pg I of 3, La 38	LAND	20C		WP:300, Pg 2 of 3, La 74
27	:				BUILDING	10C		WP:300, Pg 2 of 3, Ln 75
=			•					
:								
34		•						
36								
50								
37 36								
30 30	TOTAL ELECTRONIC INVESTMENT BY FRC							
40		257C		SUM WP:340, Page 1 of 3,	Lines 1,2,6,7,11,12,16,17,25			
41	¹ 77	20C		SUM WP:340, Page 1 of 3,	Lines 3,8,13,18			
42	18	10C		SUM WP:340, Page 1 of 3,	Lines 4.9.14.19			
	ଦି							
43	1001	12C		SUM WP 340, Page 1 of 3,	, Lilia 12			
44	Ö			!				
45	TOTAL DESIGN 4 ELECTRONIC INVESTMENT			SUM WP:340, Page 1 of 3,	Line 38 thru 42			
	100			·	,			
	40							
	_							

DESIGN #4 TRANSPORT INVESTMENTS

57 54 50 80 81 82 83 84 85 86 67 80 70	CENTRAL OFFICE TO FIBER HUB OC.3 AERIAL FIBER POLE UNDERGROUND FIBER CONDUIT BURIED FIBER	ACCT CODE 822C 1C 85C 4C 84SC	(A) INVESTMENT PER MILE PER STRAND (ROUTE MILES)	(B)-(A)/2 INVESTMENT PER 17 MILE PER STRAND (ROUTE MILES)	WP:300, Page 3 6 WP:300, Page 3 6 WP:300, Page 3 6 WP:300, Page 3 6 WP:300, Page 3 6	of 3, Line 99 of 3, Line 103 of 3, Line 102		SOURCES COLU	
77 74 76 78 77 78 79 80 81 82 83 84	CO TO HUB STANDARD ARRANGEMENT BY FRC	ACCT CODE 822C IC BSC 4C 845C	(C) INVESTMENT HER IV! MALE PER STRAND (ROUTE MILES)	(D) TOTAL NUMBER OF STRANDS PER AMEANORMENT 3 3 3 3 3 3	(E)= (C) * (D) RYESTMENT PER 1/2 MELE PER ARRANGEMENT (ROUTE MELES)	(F) ROUTS TO AR RATIO 1.43 1.43 1.43 1.43	(G) = (E) * (F) TOTAL INVESTMENT PER IZ MELE PER ARRANGIMENT (ARR MELEN)	COLUMN (D)	Calculation WP:401, Pg 1 of 1, Ln 22
86 80 81 82 83 84 86 86 100 101	CO TO HUB DIVERSITY ARRANGEMENT BY FRC CO TO HUB TRANSPORT BY FRC (6 STRANDS)	#22C 1C #5C #C #45C #22C 1C #5C #65C		3 3 3 3 3		1.43 1.43 1.43 1.43 1.43		SUM WP:34 SUM WP:34 SUM WP:34 SUM WP:34	6, Page 2 of 3, Lines 82,90 0, Page 2 of 3, Lines 83,91 0, Page 2 of 3, Lines 84,92 0, Page 2 of 3, Lines 85,93
102 101 104 105	CO TO HUB DESIGN #2 TRANSPORT INVESTMENTS 1/2 MILE (AIR MILE)	\$45C						1	0, Page 2 of 3, Lines 86,94 0, Page 2 of 3, Lines 98 thru 102

DBSIGN #4

112

113

114

TRANSPORT INVESTMENTS

STATE FLORIDA WORKPAPER 340 PAGE 3 OF 3 DATE: APRIL, 1998

<u></u>						
FIBER HUB TO CUSTOMER PREMISES COPPER		(A)	(B)	(C)-(A)*(B)		
	ACCT	BIVESTMENT	ROUTE	INVESTMENT		
	COLLE				Shipres	\$OURCES
		(1/24)1 =====)	RATIO	(COLUMN B
26 GAUGE						
						·
AERIAL COPPER						WP:401, Page 1 of 1, Line 22
•					-	•
UNDERGROUND COPPER						•
CONDUIT			•		- -	•
BURIED COPPER	•				• •	•
REPEATER	257C		1.43		WP:302, Page 1 of 1, Line 32	•
•						
HUB TO CP COPPER TRANSPORT BY FRC	22C					SUM WP:340, Page 3 of 3, Line 124
	IC					SUM WP:340, Page 3 of 3, Line 125
	SC					SUM WP:340, Page 3 of 3, Line 126
	4C	•				SUM WP:340, Page 3 of 3, Line 127
•	45C					SUM WP:340, Page 3 of 3, Line 128
	257C					SUM WP:340, Page 3 of 3, Line 129
						1
HUB TO CP DESIGN 14 COPPER TRANSPORT INVEST	MENTS					SUM WP:340, Page 3 of 3, Line 142 thru 147
	26 GAUGE AERIAL COPPER POLE UNDERGROUND COPPER CONDUIT BURIED COPPER REPEATER HUB TO CP COPPER TRANSPORT BY FRC	ACCT CODE 26 GAUGE AERIAL COPPER 22C POLE IC UNDERGROUND COPPER 5C CONDUIT 4C BURIED COPPER 45C REPEATER 257C HUB TO CP COPPER TRANSPORT BY FRC 22C IC 5C 4C 4C 45C	ACCT BIVESTMENT CODE PER IZIMBLE (ROUTE MILES) 26 GAUGE AERIAL COPPER 22C POLE IC UNDERGROUND COPPER 5C CONDUIT 4C BURIED COPPER 45C REPEATER 257C HUB TO CP COPPER TRANSPORT BY FRC 22C IC 5C 4C 4C 45C 257C	ACCT RIVESTMENT ROUTE CODE PER 1/2 MILE TO (ROUTE MILES) AR RATIO 26 GAUGE AERIAL COPPER 22C 11.43 POLE 1C 11.43 LINDERGROUND COPPER 5C 1.43 CONDUST 4C 11.43 BURIED COPPER 45C 1.43 REPEATER 257C 1.43 REPEATER 257C 1.43 HUB TO CP COPPER TRANSPORT BY FRC 2C 4C 45C 257C	ACCT CODE PRESTMENT TO ARE STREET TO PER 12 MILE TO PER 12 MILE TO PER 12 MILE (ARE MILES) 26 GAUGE AERIAL COPPER 22C 11.43 POLE 1C 11.43 UNDERGROUND COPPER 5C 1.43 ECONDUIT 4C 11.43 BURIED COPPER 45C 1.43 REPEATER 257C 1.43 REPEATER 257C 1.43 HUB TO CP COPPER TRANSPORT BY FRC 22C 1C 5C 4C 45C 257C	ACCT CODE PER IZABLE TO PER VALUE SOURCES (ROUTE MALES) ARE (AR MALES) SOURCES (ROUTE MALES) ARE (AR MALES) SOURCES (ROUTE MALES) ARE (AR MALES) SOURCES (COLUMN A. (AR MALES) SOURCES (COLUMN A. (AR MALES) SOURCES (COLUMN A. (AR MALES) SOURCES (COLUMN A. (AR MALES) SOURCES (COLUMN A. (AR MALES) SOURCES (COLUMN A. (AR MALES) SOURCES (COLUMN A. (AR MALES) (AR MALE

F18G010 00142

1/2 MILE (AIR MILE)

STATE: FLORIDA WORKPAPER: 350 PAGE 1 OF 3 DATE: APRIL, 1996

DESIGN #8 ELECTRONIC INVESTMENTS

LINÉ NO.		ACCT CODE	LEVELIZED UTILIZED INVESTMENT	SOURCES		ACCT CODE	LEVELIZED VTILIZED INVESTMENT	SOURCES
	CENTRAL OFFICE - ELECTRONICS -				FIBER HUB - ELECTRONICS -			
1	DS1 ON OC12 - DIRECT	257C		WP:300,Pg 1 of 3, Ln 22	HUB NODE - OC12	257C		WP:300,Pg 3 of 3, Ln 92
2	MCEAP	257C		WP:300,Pg 1 of 3, Ln 23	MCEAP	257C		WP:300,Pg 3 of 3, Ln 93
3	LAND	20C		WP:300,Pg 1 of 3, Ln 24	LAND	20C		WP:300,Pg 3 of 3, Ln 94
4	BUILDING	10C		WP:300,Pg 1 of 3, Ln 25	BUILDING	10C		WP:300,Pg 3 of 3, Ln 95
	DS1 ON OC12 - JOINT	257C		WP:300,Pg 1 of 3, Ln 26	HUB INTERFACE STS-1 OC12	257C		WP:300,Pg 2 of 3, Ln 43
7	MCE&P	257C		WP:300,Pg 1 of 3, Ln 27	MCE&P	257C		WP:300,Pg 2 of 3, Ln 44
	LAND	20C		WP:300,Pg 1 of 3, Ln 28	LAND	20C		WP:300,Pg 2 of 3, Ln 45
9	BUILDING	10C		WP:300,Pg 1 of 3, Ln 29	BUILDING	10C		WP:300,Pg 2 of 3, Ln 46
11	CO NODE - OC12	257C		WP:300,Pg 1 of 3, Ln 7	HUB INTERFACE STS-1 OC3	257C		WP:300,Pg 1 of 3, Ln 39
12	MCE&P	257C		WP:300,Pg 1 of 3, Ln 8	MCE&P	257C		WP:300,Pg 1 of 3, Ln 40
13	LAND	20C		WP:300,Pg 1 of 3, Ln 9	LAND	20C		WP-300,Pg 1 of 3, Ln 41
14	BUILDING	10C		WP:300,Pg 1 of 3, Ln 10	BUILDING	10C		WP:300,Pg 1 of 3, Ln 42
18	Ç- OC12	257C		WP:300,Pg 1 of 3, Ln 34	HUB NODE - OC3	257C	l	WP:300,Pg 3 of 3, Ln 84
17	MCE&P	257C		WP:300,Pg 1 of 3, Ln 35	MCE&P	257C	I	WP:300,Pg 3 of 3, Ln 85
18	LAND	20C		WP:300,Pg 1 of 3, Ln 36	LAND	20C		WP:300,Pg 3 of 3, Ln 86
19	BUILDING	10C		WP:300,Pg 1 of 3, Ln 37	BUILDING	10C		WP:300,Pg 3 of 3, Ln 87
20								
21	CUSTOMER PREMISES ELECTRONICS:							
23	CP NODE - OC3 (5 Nodes)	257C		WP:300,Pg 1 of 3, Ln 11 x 5				
25	DS1 ON OC3 - DIRECT	257C		WP:300,Pg t of 3, Ln 20				
27	DSI ON OC3 - JOINT	257C		WP:300,Pg 1 of 3, Ln 21				
29	BLDG ENTRANCE CABLE - OC3	\$12C		WP:300,Pg 2 of 3, Ln 47				
91	NETWORK INTERFACE	. 257C		WP:300,Pg 1 of 3, Ln 38				
33	BATTERY BACK-UP	257C		WP:300,Pg 1 of 3, Ln 2				
≨ 97								
38	TOTAL ELECTRONIC INVESTMENT BY FRC							
39		257C			3, Lines 1,2,6,7,11,12,16,17,23,25,31,33			
40	, 11	20C		SUM WP:350, Page 1 of	3, Lines 3,8,13,18			
41	\vdash	10C SUM WP:350, Page 1 of 3, Lines 4,9,14,19						
42	8 G	812C		SUM WP:350, Page 1 of	3, Line 29			
43	01							
44	O TOTAL ELECTRONIC DE	SIGN 5 INVESTMENT	SUM WP:350, Page 1 of	3, Lines 36 thru 42				
44	(011 2 M20110111-1-							
	00							
	— ਮੇ⇒							
	$\overline{\omega}$							

STATE: FLORIDA WORKPAPER: 350 PAGE 2 OF 3 DATE: APRIL, 1996

DESIGN #5 TRANSPORT INVESTMENTS

CENTRAL OFFICE TO FIBER HUB OC-12

	CENTRAL OFFICE TO FIBER HUB OF -13								
		ACCT CODE	(A) INVESTMENT PER MILE PER STRAND (ROUTE MILES)	(II)(A)/2 DIVESTMENT PER I/2 MILE PER STRAND (ROUTE MELES)	SOURCES COLUMN (A)			SOURCES COLLEGE (II)	, ⁽¹)
					WP:300, Page 3 (of 3. Line 106		Calculation	
45	AERIAL FIBER	822C			WP:300, Page 3			•	
48	POLE	1C			WP:300, Page 3 (•	
47	UNDERGROUND FIBER	85C			WP:300, Page 3 (of 3, Line 108		•	
44	CONDUIT	4C			WP:300, Page 3 (of 3, Line 107		•	
49	BURIED FIBER	\$45C							
40									
61 62									
13									
64									
65 66		ACCT	(C) INVEXTMENT	(D) Total N umbe r	(E)= (C) * (D)	(F) ROUTE	(Q) = (E) * (F)		
57		CODE	PER 1/2 MILE	OF STEAMES	MEN NS PARTE	10	TOTAL INVESTMENT		
54			PER STRAND	PER	763.	AIR	PER 1/2 MOLE	\$OURCES	
50			(ROUTE MILES)	AKKANOFARIT	ANKANDEMENT.	RATIO	PER ARRANGEMENT		-
90 81	СО ТО НИВ				(BOUTE MELES)		(AIR MILES)		
42	STANDARD ARRANGEMENT BY FRC	\$22C		3	:	1.43		COLUMN (C)	Calculation
83		IC ·		3	:	1.43		COLUMN (D)	Network
64		#SC		3		1.43		COLUMN (E)	Calculation
86		4C		3		1.43		COLUMN (F)	WP:401, Pg 1 of 1, Ln 22
64		845C		3		1.43		COLUMN (G)	Calculation
=	_								
**	СО ТО НИВ			_					
70	DIVERSITY ARRANGEMENT BY FRC	822C		3		1.43			
71		1C		3		1.43			
72 75		85C		3 3		1.43			
74		4C 845C		3		1.43 1.43			
7		8430		,		1.43			
ï									
78	CO TO HUB TRANSPORT BY FRC (6 STRANDS)	\$22C						SUM WP:3 50, P	nge 2 of 3, Lines 58,66
79		IC							age 2 of 3. Lines 59.67
90	•	85C							age 2 of 3, Lines 60,68
#1		4C							
82		#45C							age 2 of 3, Lines 61,69
83		\$4.XL						SUM 197:350, P	age 2 of 3, Lines 62,70
84 85	CO TO HUB DESIGN IS TRANSPORT INVESTMENTS 1/2 MILE (AIR MILE)						[SUM WP:350, P	19e 2 of 3, Lines 98 thru 102

STATE: FLORIDA WORKPAPER: 350 PAGE 3 OF 3 DATE: APRIL, 1996

DESIGN #8 TRANSPORT INVESTMENTS

FIBER HUB TO	CUSTOMER	PREMISES	OC 1
--------------	----------	----------	------

94 95 96 97 98		ACCT CODE	(A) INVESTMENT PER MILE PER STRAND (ROUTE MILES)	INVESTMENT PER 1/2 MELS PER STRAND (ROUTE MILES)	SOURCES COLUBON (A)			SOURCES COL	IBO (B)
100 101	AERIAL FIBER	\$22C			WP:300, Page 3 (of 3, Line 100		Calculation	· .
102	POLE	IC			WP:300, Page 3 d	of 3, Line 99		•	
103	UNDERGROUND FIBER	85C			WP:300, Page 3 o	of 3, Line 103		•	
104	CONDUIT	4C		,	WP:300, Page 3 d	of 3, Line 102		•	
105	BURLED FIBER	845C			WP:300, Page 3 o	of 3, Line 101		•	
108									
107 108									
100									
110			(C)	(D)	(E)= (C) * (D)	(F)	(G) = (E) * (F)		
111		ACCT	INVESTMENT	TOTAL MARBER	INVESTMENT	ROUTE	TOTAL		
113		CODE	PER 1/2 MOLE	OF STRANDS	PER I/2 MILE	10	THEMTERVIS		
114			PER STRAND (ROUTE MILES)	PER ARKANGEMENT	PER ARRANGEMENT	AUR RATIO	PER 1/2 MILE PER ARRANGEMENT	SOURCES	•
116 118			(tron 10 telepis)	AGOUTOLES.	(ROUTE MELES)	MAI NO	(AR MELES)		
117	HUB TO CP								
118	STANDARD ARRANGEMENT BY FRC	822C		3		1.43		COLUMN (C)	
110		ıc		3		1.43		COLUMN (D)	
120		#5C		3		1.43		COLUMN (E)	
121		4C		3 3		1.43 1.43			WP:401, Pg 1 of 1, Ln 22
122		845C		3		1.43		COLUMN (G)	Calculation
123									
124 128	HUB TO CP								
120	DIVERSITY ARRANGEMENT BY FRC	\$22C		3		1.43			
127	PHI SHALL ASSOCIATED IN PACE	1C		3		1.43			
128		#SC		3		1.43			
129		' 4C		3		1.43			
130		845C		3		1.43			
131									
133									
134	HUB TO CP TRANSPORT BY FRC (6 STRANDS)	#22C						SUM WP:35	50, Page 3 of 3, Lines 113,121
135		IC							50, Page 3 of 3, Lines 114,122
136		85C							50, Page 3 of 3, Lines 115,123
137		4C						SUM WP:38	50, Page 3 of 3, Lines 116,124
138		845C						SUM WP:35	50, Page 3 of 3, Lines 117,125
140	HUB TO CP DESIGN #5 TRANSPORT INVESTMENTS 1/2 MILE (AIR MILE)							SUM WP.35	50, Page 3 of 3, Lines 98 thru 102

(B)=(A)/2

LINE NO.	DESCRIPTION	SOURCES	W LENGTHS	(B)=(A)/LINE 2	STATE: FLORIDA WORKPAPER: 401 PAGE 1 OF 1 DATE: APRIL, 1995
1 2 3 4 6	HUB TO CP LOOP LENGTH (feet) STATE AVG LOOP LENGTH (feet) CO TO HUB (feet)	NETWORK ECONOMIC ANALYSIS LINE 2 - LINE1		38.83% 61.17% 100.00%	, •
6 7 6 9		,	(A)		
11 12 13 14 15 16 17 18 19	PROBABILITY OF OCCURRENCE DESIGN #1 DESIGN #2 DESIGN #3 DESIGN #4 DESIGN #5	BBS NETWORK			
21 22 23 24 26 26 27 28	ROUTE-TO-AIR RATIO	ECONOMIC ANALYSIS	1.43		
	F18G010 (
	00146				

STATE: FLORIDA WORKPAPER: 410 PAGE 1 OF 1 DATE: APRIL, 1996

UNBUNDLED 4-WIRE DS1 DIGITAL GRADE LOOP 1996-1998 LEVEL

			•
DESIGN #1			
LOOP LENGTH SUMMARY			
	_	_	

LINE NO		(A) (ROUTE MILES) FEET	(B)-(A)/34-4 (ROUTE MILES) HALF MILES	(C) (D)-(B)(C) ROUTE-TO (AIR MILES) AIR HALF MILES RATIO
1	STATE AVG LOOP LENGTH			
2				
3				
4	DESIGN I			·
6	CO TO CP LOOP LENGTH		5	1.43 4

ESIGN 1		
DESIGN 1 STATE AVG. AIR 1/2 MILES	4	

SOURCES

COLUMN (A) WP:401, Page 1 of 1, Line 2
COLUMN (C) Calculation
COLUMN (D) WP:401, Page 1 of 1, Line 22
Colculation

UNBUNDLED 4-WIRE DSI DIGITAL GRADE LOOP
1994-1998 LEVEL
DBSIGN #2
LOOP LENGTH SUMMARY

SOURCES

COLUMN (A)

COLUMN (B) Calculation

COLUMN (D) Calculation

LINE 1 WP:401, Page 1 of 1, Line 2

COLUMN (C) WP:401, Page 1 of 1, Line 22

LINES WP:401, Page 1 of 1, Line 2 multiplied by 3.14

STATE. FLORIDA WORKPAPER: 420 PAGE 1 OF 1 DATE: APRIL, 1998

(D)=(B)((C)

,INE NO.		(ROUTE MILES) FRET	(ROUTE MILES) HALF MILES	ROUTE-TO ARR RATIO	(AIR MEES) Malf Mees		
1	STATE AVG LOOP LENGTH						
2							
3	DESIGN 2						
•	CO TO CP LOOP LENGTH						
6	(CIRCUMFERENCE OF STATE AVG)		14	1.43	10		
•							
7							
•							
9							
10							
11 12							
13							
14				· Ł			
15						_	
10				DESIGN 3 STAT	E AVG. AIR 1/2 MILES	10	
17							

(B)=(A)/2646

F18G01Q 00148

18 19

20

21

22

29

24

25

UNBUNDLED 4-WIRE DSI DIGITAL GRADE LOOP 1996-1998 LEVEL DESIGN #8 LOOP LENGTH SUMMARY

STATE FLORIDA WORKPAPER 430 PAGE 1 OF 1 DATE APRIL, 1996

LINE NO:		(A) (ECUTE M	LES) (ROL	-(A)/3640 (C /TE MELES) ROUT! LF MELES AI BAT	E-TO (ARL MRLES) L HALF MRLES	
•	STATE AVG LOOP LENGTH					
2						
3	DESIGN 3	1				
4	CO TO CP LOOP LENGTH	•				_
	(CIRCUMFERENCE OF STATE AVG)		i.	14 1.4	3 10	
•						
7						
•						
•						

DESIGN 3

DESIGN 3 STATE AVG. AIR 1/2 MILES

10

SOURCES

COLUMN (A)

LINE 1 WP:401, Page 1 of 1, Line 2 LINE 6 WP:401, Page 1 of 1, Line 2 multiplied by 3.14

COLUMN (B) Calculation
COLUMN (C) WP:401, Page 1 of 1, Line 22

COLUMN (D) Calculation

11 13

> 14 15

COLUMN(A) X3.14

COLUMN (B) Calculation

COLUMN (D) Calculation

COLUMN (C) WP:401, Page 1 of 1, Line 22

Line 1 WP:401, Page 1 of 1, Column (A), Line 2

Line 11 WP:401, Page 1 of 1, Column (A), Line 1

STATE: FLORIDA WORKPAPER: 440 PAGE: 1 OF 1 DATE APRIL 1996

DESIGN #4 LOOP LENGTH SUMMART

26

27

28

29

30

31 32

33 34

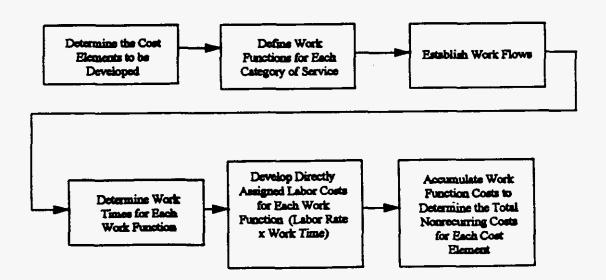
F18G010

00150

LINE NO		(AA)	(A) (ROUTE MILES) FEET	(B)=(A)2444 (ROUTE MELES) HALF MELES		(C) ROUTS-TO AM RATIO	(D)=(B)(C) (AIR MILES) HALF MILES			ì
1	STATE AVG LOOP LENGTH			,						
2										
3	CO TO HUB WEIGHT	61.17%								
4	DESIGN 4									
	(CIRCUMFERENCE OF STATE AVG)									
•				9		1.43	7			
7										
•	HUB TO CP WEIGHT	38.83%								
9	DESIGN 4									
10	HUB TO CP LOOP LENGTH								٠	
11	(POINT TO POINT)			2		1.43	2			
12 13										_
14					DESIGN 4					
16			•		l .					1
18					•			•		l l
17	·					DESIGN 4 STAT	E AVG. AIR 1/2 MILES	9		1
10										
10 20					L					
21		1								
22	SOURCES									
23	COLUMN (AA)	WP:401, Page 1 of	(B) Lie	ne i						
24 25	Line 8	WP:401, Page 1 of	1, Column (B), Lit	ne l						

Line 6 WP:440, Page 1 of 1, Column (A), Line 1 multiplied by WP:440, Page 1 of 1, Column (AA) Line 3

1996-1998 LEVE	-WIRE DSI DIGITAL GRADE LOOP L	(AA)	(A)	(B)=(A)/1640		(C)	(D) -(B)/(C)	STATE. FLORIDA WORKPAPER. 450 PAGE 1 OF 1 DATE: APRIL, 1906
LINE NO			(NOUTE MELES) FEET	(ROUTE MILES) HALF MILES		ADUTE-TO AR	(AIR MELES) HALF MELES	
						MATIO	1000 Mg.D	
,	STATE AVO LOOP LENGTH							
2	STATE AND DATE LEWIS							
	CO TO LESS MENCIOS	61.17%						
3	CO TO HUB WEIGHT	01.1776						
4	DESIGN 2							
5	CO TO HUB LOOP LENGTH							
•	(POINT TO POINT)			3		1.43	3	
7								
•	HUB TO CP WEIGHT	38.83%						
•	DESIGN 2							
10	HUB TO CP LOOP LENGTH							
11	(CTRCUMFERENCE OF STATE AVO))		6		1.43	5	
12								
13				4	D. D. G. L.			
14 15					DESIGN 5			
						DESIGN C STAT	TE AVG. AUR 1/2 MILES	: 8
1 6 17						DESIGN S SIA!	EAVO. ALK DI MULEA	'
18								
10				•				
20 21								
22								
23 24		SOURCES COLUMN (AA)						
25			WP:401, Page 1	of 1. Column (B). Line 3			
26			WP:401, Page 1					
27		COLUMN (A)						
28	•		WP:401, Page 1			C 41. 11m 455	D1-64-01-1	
29 20			WP:450, Page 1 (WP:401, Page 1 (Page I of 1, Column (A	A) Line 3
30 31			Calculation	PE 1, CONSISS (A), Lane 1 / \	0 17		
32		COLUMN (C)	WP:401, Page 1	of I, Line 22				
33			Calculation					


FLORIDA UNBUMBLED 4-WIRE DS1 DIGITAL GRADE LOOP

COST DEVELOPMENT - NONRECURRING

Nonrecurring costs are one-time costs incurred as a result of provisioning, installing, disconnecting and completion of orders initiated by a customer request for the Unbundled 4-Wire DS1 Digital Grade Loop. The Nonrecurring Cost Study is performed to determine the service order, provisioning and disconnect costs associated with the cost elements listed below. Calculations for the nonrecurring costs are included in this section.

Figure 7-1 shows a generalized flow of the steps necessary for developing nonrecurring costs. Each part of this flow will be explained in more detail in this section.

Figure 7-1
Generalized Flow Diagram for Developing Monrecurring Costs

The first step in developing nonrecurring costs is to determine the cost elements to be studied. Each cost element is then described by all of the individual work functions required to provision the element. An example of a work function is the designing of a circuit in the Circuit Provisioning Group.

The work functions required to provide the Unbundled 4-Wire DS1 Digital Grade Loop can be grouped into four categories. These are:

- 1) Service Order
- 2) Engineering
- 3) Connect and Test
- 4) Technician Travel Time

Work functions included in these categories range from clerical activities to installation activities.

The next step in developing nonrecurring costs requires that Company subject matter experts identify the work functions involved in the provisioning of the Unbundled 4-Wire DS1 Digital Grade Loop (an example of a work function is making a cross-connect in the central office). These work functions are then used to describe the flow of work within the various work centers involved in provisioning the element.

The next step in the development of nonrecurring costs is to determine work times for each work function associated with the nonrecurring costs of the Unbundled 4-Wire DS1 Digital Grade Loop. The work times of the various work groups are determined from Subject Matter Expert inputs. Each work time estimate is made by a subject matter expert who thoroughly understands how each activity is done.

A spreadsheet model is used to incorporate the specific work functions and labor rates. In order to arrive at the nonrecurring cost for the element studied, the work times for each work function required is multiplied by the appropriate labor rate. The labor inflation factors (LIF) are used to bring the labor rate to the study period. The levelized labor rate is expressed on a per minute basis on workpaper 750, as are the worktimes. The labor rates and the labor inflation factors are shown in Section 7. Next, the individual work function costs are accumulated into the total cost for the cost element studied.

To recognize cost reductions on orders with loops, costs are calculated separately for the first and additional loop. "First" refers to the first item on a service order. "Additional" costs are the incremental costs of providing one or more duplicates of the item on the same service order at the same time as the first.

The basic process by which nonrecurring costs are calculated consists of combining unit work times with hourly costs of each specific service category. These labor times, and service order related work times, are multiplied by the directly assigned labor rates for the work groups performing the activities. Disconnect costs are calculated in the same manner, utilizing work functions, work times, and labor rates. However, a disconnect factor associated with the projected location life of the service is applied to the disconnect cost. The disconnect factor inflates the labor cost to the period of the future disconnect, discounts these

labor cost to the period of the future disconnect, discounts these costs to the present (since the money is received up-front) and adjusts for the income tax effect due to the difference in time between the receipt of money and the disconnect expense. The disconnect cost is added to the installation cost to develop the total nonrecurring cost.

The following workpapers reflect the cost development.

SUMMARY OF NONRECURRING COSTS

STATE: WORKPAPER: PAGE: DATE: 700 1 OF 1 May-96

4 WIRE DS1 DIGITAL GRADE LOOP

(1996-1998 Level Incremental Costs at 13.2% Cost of Money)

1 DESCRIPTION	SOURCE	<u>FIRST</u>	ADDTL
2 3 Service Order	WP750 Col G LN7 thru LN21		
4 5 Engineering	WP750 Col G LN26 thru LN30		
6 7 Connect & Test	WP750 Col G LN30 thru LN37		
8 9 Technician Travel Time 10	LN40		
11 12 Total Nonrecurring Cost 13 14 15 16 17	Sum of L3, L5, L7, L9		
19 20			

STATE: WORKPAPER: PAGE: DATE: FLORIDA 750 1 OF 1 May-96

LEVEL 1996 -- 1996 |

F18G010

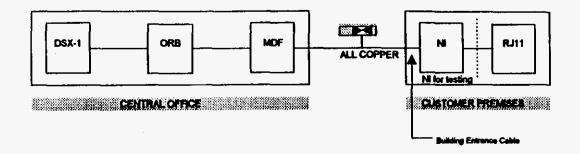
00157

DIRECTLY ASSIGNED

1 2 3 4 5 DESCRIPTION 6 SERVICE ORDER 7 ICSC 8 9 ISC TEAM MEMBER 10 11 ISC CLERICAL SUPPORT 12 13 CPG 14 15 PICS 16 17 NETWORK ADMIN 18 19 NTEL 20	(A) INSTALL WORKTIMES (MINS) FIRST ADDTL	(8) DISCONNECT (WOFIKTIMES (MINS) FIRST ADDTL	\$0.6800 \$0.7011 \$0.5244 \$0.6109 \$0.7427 \$0.5839 \$0.6940	(D) INSTALL COST (A*C) FIRST ADDIL	(E) DISCONINECT COST (B*C) FIRST ADOTL	(F) DISCOUNTED DISCONNECT COST (E*DOF) FIRST ADDTL	(G) (D+F)*(1+ TOTAL FIRST :	+GRT) TOTAL ADDTL
21 SSDAC 22 23 24 25 ENGINEERING 26 FACS 27 28 CPG 29 30 OSPE 31 32 CONNECT & TEST 33 NETWORK ADMIN 34 35 NTEL 36 37 SSIM 38 39 TRAVEL 40 SSIM 41 42 43 TOTAL NONRECURRING COST 44 45			\$0.5986 \$0.5553 \$0.6109 \$0.8070 \$0.5839 \$0.6940 \$0.7359 \$0.7359					1

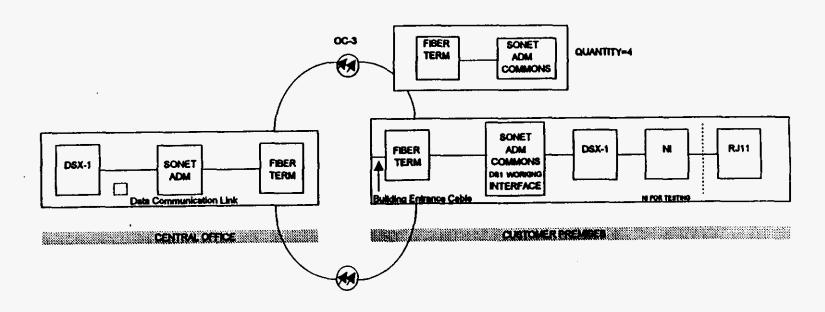
FLORIDA UNBUNDLED 4-WIRE DS1 DIGITAL GRADE LOOP

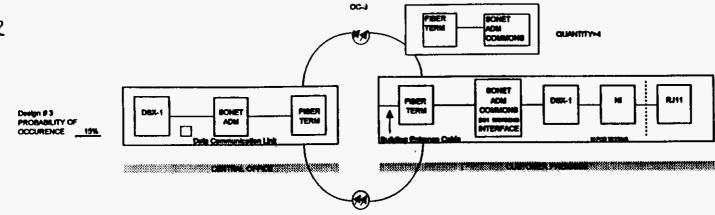
SPECIFIC STUDY ASSUMPTIONS

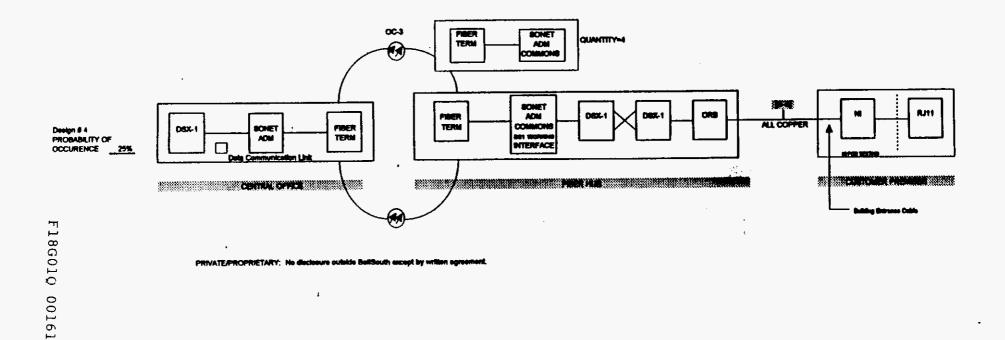

The cost study for the Unbundled 4-Wire DS1 Digital Grade Loop for the state of Florida is based on incremental economic theory and assumptions, plus specific Network deployment strategies, first choice provisioning guidelines, and equipment purchasing information.

Cost study assumptions are as follows.

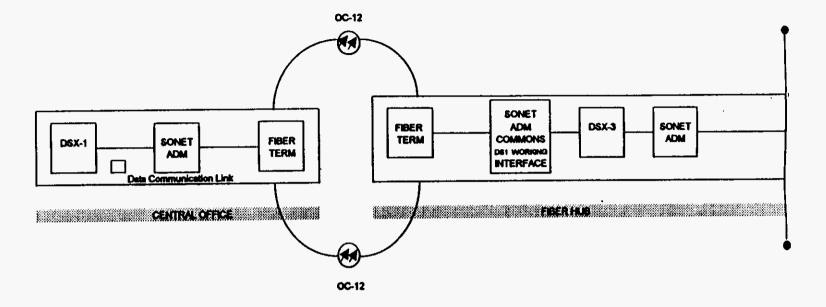
- 1. The cost of money is 13.2%, the forward-looking incremental cost to the firm.
- 2. The 4-Wire DS1 Digital Grade Loop is deployed just like MegaLink® Service; it is deployed on the same network architecture designs as MegaLink® Service and the same provisioning guidelines are used for both. Also, customer distribution is assumed to be similar, so MegaLink® Service loop lengths are used to determine the flat rate cost.
- 3. Five network architectures will be used to deploy DS1 local channels. The designs are based on Network Strategic Planning's Deployment Guidelines. These designs are found on the following pages of this section.
- 4. The probabilities of occurrence for the designs are based on estimates by BellSouth Network Subject Matter Experts. They are as following:
 - Design #1 Probability of Occurrence -
 - Design #2 Probability of Occurrence -
 - Design #3 Probability of Occurrence -
 - Design #4 Probability of Occurrence -
 - Design #5 Probability of Occurrence -
- 5. The SONET Fundamental Investment Model provided the equipment investments.

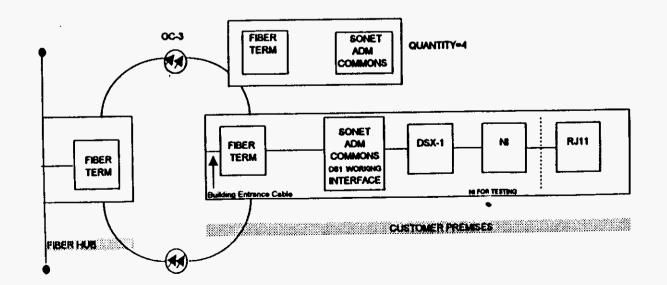

UNBUNDLED 4-WIRE DS1 LIGITAL GRADE LOOP


Design # 1



Design # 2


F18G010 00160



UNBUNDLED 4-WIRE DS1 DIGITAL GRADE LOOP

Design # 5

F18G01Q 00162

FLORIDA UNBUNDLED 4-WIRE DS1 DIGITAL GRADE LOOP FACTORS AND LOADINGS

Following are the incremental annual cost factors and labor rates used in the Unbundled 4-Wire DS1 Digital Grade Loop cost study for Florida.

Florida Unbundled 4-Wire DS1 Digital Grade Loop

Pactors and Loadings

Distribution to Code	22C 45C 5C	0.152777 0.633938 0.213285
Route to Air Ratio		1.43
In Plant Factor	257C	1.2107
Levelization Factor	257C	0.962
Gross Receipts Tax Factor	r	0.0152
Discounted Disconnect Fac	ctor	0.854007
Annual Cost Factors:		
Digital Circuit Depreciation Cost of Money Income Tax Maintenance Ad Valorem Tax TIRKS Expense Gross Receipts Tax	257C	0.1134 0.0636 0.0288 0.0089 0.0113 0.0052 0.0035
Dig Elec Switch Depreciation Cost of Money Income Tax Maintenance Ad Valorem Tax TIRKS Expense Gross Receipts Tax	377C K	0.1134 0.0651 0.0302 0.0282 0.0113 0.0000 0.0038
Aerial Cable - Metal Depreciation Cost of Money Income Tax Maintenance Ad Valorem Tax TIRKS Expense Gross Receipts Tax	·	0.0917 0.0797 0.0338 0.0571 0.0113 0.0000 0.0042

Florida Unbundled 4-Wire DS1 Digital Grade Loop Factors and Loadings

Underground Cable - SC	
Depreciation	0.1036
Cost of Money	0.0813
Income Tax	0.0342
Maintenance	0.0291
Ad Valorem Tax	0.0113
TIRKS Expense	0.0000
Gross Receipts Tax	0.0039
Buried Cable - Metal 45C	
Depreciation	0.0876
Cost of Money	0.0809
Income Tax	0.0354
Maintenance	0.0543
Ad Valorem Tax	0.0113
TIRKS Expense	0.0000
Gross Receipts Tax	0.0041
Aerial Cable - Fiber 812C, 822C	
Depreciation	0.0667
Cost of Money	0.0784
Income Tax	0.0347
Maintenance	0.0139
Ad Valorem Tax	0.0113
TIRKS Expense	0.0000
Gross Receipts Tax	0.0031
Underground Cable -	
Fiber 85C	
Depreciation	0.0626
Cost of Money	0.0800
Income Tax	0.0358
Maintenance	0.0135
Ad Valorem Tax	0.0113
TIRKS Expense	0.0000
Gross Receipts Tax	0.0031
Buried Cable - Fiber 845C	0.0505
Depreciation	0.0585
Cost of Money	0.0816
Income Tax	0.0367
Maintenance	0.0144
Ad Valorem Tax	0.0113
TIRKS Expense	0.0000
Gross Receipts Tax	0.0031

Florida Unbundled 4-Wire DS1 Digital Grade Loop Factors and Loadings

Poles 1C	
Depreciation	0.0671
Cost of Money	0.0725
Income Tax	0.0325
Maintenance	0.0279
Ad Valorem Tax	0.0113
TIRKS Expense	0.0000
Gross Receipts Tax	0.0032
Conduit 4C	
Depreciation	0.0242
Cost of Money	0.0877
Income Tax	0.0401
Maintenance	0.0028
Ad Valorem Tax	0.0113
TIRKS Expense	0.0000
Gross Receipts Tax	0.0025
Land 20C	
Depreciation	0.0000
Cost of Money	0.1118
Income Tax	0.0514
Maintenance	0.0000
Ad Valorem Tax	0.0113
TIRKS Expense	0.0000
Gross Receipts Tax	0.0027
Building 10C	
Depreciation	0.0302
Cost of Money	0.0986
Income Tax	0.0452
Maintenance	0.0069
Ad Valorem Tax	0.0113
TIRKS Expense	0.0000
Gross Receipts Tax	0.0029
1995 Directly Assigned Hourly Labor Rates	
Customer Point of Contact (ICSC)	\$38.30
ISC Team Member	\$39.49
ISC Clerical Support	\$29.54
CO Install & Maintenance (NTEL)	\$39.09
Circuit Provisioning Center	\$34.41
Network Planning & Eng (PICS)	\$41.65
Spec Srvcs Disp & Admin Ctr (SSDAC)	\$33.72
Network Admin	\$32.89
Facilties Assignment (FACS)	\$31.28
Outside Plant Engineering (OSPE)	\$45.26
Install & Mtce - Spec Svcs (SSIM)	\$41.45

Florida Unbundled 4-Wire DS1 Digital Grade Loop Factors and Loadings

Labor Inflation

Telco Eng	
Year 1	3.4%
Year 2	3.8%
Year 3	3.6%
Telco COE	
Year 1	3.2%
Year 2	3.5%
Year 3	3.4%

FLORIDA

UNBUNDLED LOOPS

- 2-WIRE ANALOG VOICE GRADE LOOP
- 4-WIRE ANALOG VOICE GRADE LOOP
- 2-WIRE ISDN DIGITAL GRADE LOOP

COST STUDY DOCUMENTATION

SECTIONS A THRU 7

FLORIDA

UNBUNDLED LOOPS

COST STUDY DOCUMENTATION

CONTENTS

SECTION A	PROPRIETARY RATIONALE
SECTION 1	INTRODUCTION AND OVERVIEW
SECTION 2	DESCRIPTION OF STUDY PROCEDURES
SECTION 3	SUMMARY OF RESULTS
SECTION 4	COST DEVELOPMENT - RECURRING
SECTION 5	COST DEVELOPMENT - NONRECURRING
SECTION 6	SPECIFIC STUDY ASSUMPTIONS
SECTION 7	FACTORS AND LOADINGS

SECTION A

SECTION A

FLORIDA UNBUNDLED LOOPS

PROPRIETARY RATIONALE

The Florida Unbundled Loop Cost Study for 2-Wire and 4-Wire Analog Voice Grade Loops and 2-Wire ISDN Digital Grad Loop contains actual unit cost information for discrete cost elements. These costs reflect BellSouth's long run incremental cost of providing this element on a going forward basis. Public disclosure of this information would provide BellSouth's competitors with an advantage in that they would know the price or rate below which BellSouth could not provide the service. The data is valuable to competitors and potential competitors in formulating strategic plans for entry, pricing, marketing and overall business strategies concerning access services. This information relates to the competitive interests of BellSouth and disclosure would impair the competitive business of BellSouth.

Additionally, the study contains information which reflects vendorspecific prices negotiated by BellSouth. Public disclosure of this information would impair BellSouth's ability to contract for goods and/or services on favorable terms. For these reasons, the Florida Unbundled Loop Cost Study is considered proprietary.

FLORIDA UNBUNDLED LOOPS

INTRODUCTION AND OVERVIEW

This Long Run Incremental Cost study for Voice Grade Loops (2-Wire and 4-Wire) and 2-Wire ISDN Digital Loops is being provided in response to orders set forth by the Florida Public Service Commission in Docket No. 950984-TP Order No. PSC-96-0444-FOF-TP (Unbundling), issued March 29, 1996.

The Unbundled cost elements referred to as loops (2-wire analog voice grade, 4-wire analog voice grade, and 2-wire ISDN digital) represent the cost of the physical transmission facilities (or channel or group of channels on such facility) which extend from the end office to a demarcation point at the customer's premises, (i.e. the network interface). The cost of each facility is determined by loop characteristics as follows:

- type of cable(fiber or copper)
- plant type (aerial, buried, underground)
- size/gauge
- length
- electronic equipment

Loop costs represent both feeder and distribution outside plant in a single line residence/single line business serving environment. The transmission facility terminates on the main distribution frame and does not enter the BellSouth switch. If the loop is served via digital loop carrier, a central office digital loop carrier terminal is required to convert the digital signal to voice grade analog for delivery to the Alternate Local Exchange Carrier.

The Loop Cost Model is a database tool that houses all the facility characteristics described above and produces an average cost. Spreadsheets are used to convert the loop investments into recurring cost.

Recurring costs presented in this study are directly assigned, incremental and levelized so as to be appropriate for the 1996 - 1998 study period. Nonrecurring costs follow the same convention and represent 1996 - 1998 levelized costs also. These long-run incremental costs are developed by using 1995 level incremental loadings and annual cost factors based on 13.2% Cost of Money and directly assigned labor rates.

FLORIDA UNBUNDLED LOOPS

DESCRIPTION OF STUDY PROCEDURES

This section describes the general principles for the development of costs supporting the Florida 2-Wire Analog Voice Grade Loop, the 4-Wire Analog Voice Grade Loop, and the 2-Wire ISDN Digital Loop.

All costs are developed utilizing Long Run Incremental Cost methodology. In determining these costs, direct incremental costing techniques are used that are in accordance with accepted economic theory. Direct incremental costs are based on cost causation and include all of the costs directly caused by expanding production, or, alternately, costs that would be saved if the production levels were reduced. Costs are forward looking in nature because only future costs can be saved. Incremental costs are long run to insure that the time period studied is sufficient to capture all forward looking costs affected by the business decision. Shared and common costs are not incremental and therefore are not included. Incremental costs include both recurring (capital and operating expenses) and nonrecurring (service provisioning) costs. Incremental costs account for the expected change in cost to the firm resulting from a new service offering or a change in demand for an existing service.

DEVELOPMENT OF RECURRING COSTS

The monthly costs to BellSouth Telecommunications, Inc., resulting from the capital investments necessary to provide a service are called recurring costs. Recurring costs include capital and operating costs. While capital costs include depreciation, cost of money and income tax, operating costs are the expenses of maintenance and ad valorem and other taxes. These expenses contribute to the ongoing cost to the company associated with the initial capital investment. Recurring costs are developed using incremental economic study applications, representing a forward-looking view of technology and deployment.

The first step in developing an incremental study of recurring costs for the Unbundled Loop costs is to determine the forward-looking network architecture. Material prices for the cables and associated equipment are defined. Next, account specific Telephone Plant Indices are applied, when necessary, to trend investments to the base study period. In-plant factors are applied to material prices to develop installed investments which include engineering and installation (both telephone company and contractor) labor. The deployment probabilities and utilization factors are also considered.

Plant account specific Investment Inflation Factors are applied to the installed investments to trend the base year, or study year, investments to levelized amounts that are valid for a three to five year planning period. Appropriate loadings for land, building and miscellaneous equipment, and right-of-way fees are then applied.

Next, 1995 level Florida Intrastate Incremental Annual Cost Factors are used to calculate the direct cost of capital (in this case, 13.2t), ongoing maintenance and other operating expenses and taxes. These factors (specific factors for each USOA FRC) are applied to levelized investments by account code, yielding an annual cost per account code. These costs are then divided by twelve to arrive at a monthly cost per cost element.

DEVELOPMENT OF NONRECURRING COSTS

Nonrecurring costs are "one-time" costs incurred as a result of provisioning, installing, and disconnecting the 2-Wire Analog Voice Grade Loop, the 4-Wire Analog Voice Grade Loop, and the 2-Wire ISDN Digital Loop. The first step in developing nonrecurring costs is to determine the cost elements related to the study. These cost elements are then described by all of the individual work functions required to provision the cost element. The work functions can be grouped into four categories. These are service order, engineering, connect and test, and technician travel time. The work function times, identified by subject matter experts, are used to describe the flow of work within the various work centers involved. Installation and provisioning costs are developed by multiplying the work time for each work function by the directly assigned labor rate for the work group performing the function.

Disconnect costs are calculated in the same manner, utilizing work functions, work times and labor rates. However, a disconnect factor associated with the projected location life of the cost element is applied to the disconnect cost. The disconnect factor inflates the labor cost to the period of the future disconnect, discounts these costs to the present, since the money is received up-front, and adjusts for the income tax effect due to the difference in time between the receipt of money and the disconnect expense. The disconnect cost is added to the installation cost to develop the total nonrecurring cost.

FLORIDA UNBUNDLED LOOPS

SUMMARY OF RESULTS

This section contains a cost summary for both recurring and nonrecurring cost elements studied for the 1996 - 1998 Unbundled 2-Wire Analog Voice Grade Loop, the 4-Wire Analog Voice Grade Loop, and the 2-Wire ISDN Digital Loop.

FLORIDA UNBUMDLED LOOPS

SUMMARY OF RESULTS

Monthly Nonrecurring Cost First Additional

Wire Analog Voice Grade Loop

Wire ISDN Digital Loop

Private/Proprietary:
No disclosure outside BellSouth except by written agreement

SECTION 4

SECTION 4

FLORIDA UNBUNDLED LOOPS

COST DEVELOPMENT - RECURRING

Generally, economic cost development is outlined in Section 2. Network architecture is determined, the necessary equipment is identified, material prices are obtained, factors, utilization and loadings are applied and the result is levelized for the study period. Annual cost factors are applied to convert the investment to cost.

The following workpapers show how a typical loop cost investment is developed. From all loop investments an average loop investment is created and then, as described above, annual and monthly costs are developed.

LOOP COST DEVELOPMENT PROCEDURES

Loop Survey Data Collected and Entered into the Loop Investment Model

Tab A - Sample Survey Circuit Data

Tab B - Sample Circuit entered into Model

Loop Investment Model

Calculations

Tab C - Conversion of cable sheath-level investments to circuit-level investments.

Tab D - Development of installation, engineering, electronic equipment and exempt materials associated with cable placement.

Tab E - Sample circuit investment results.

Computation of Average Loop Investments by Class of Service Tab F - Overview of methodology.

Conversion of Loop Investments to Recurring Costs

Tab G - Overview of Recurring Cost spreadsheet methodology.

TAB A

J	Dis	tricti	Brow	erd - l	fort Laud	erdale			
HPLE 4: 0002	407147					W.C USO	CI IF	BHFLMA R	
C Cat.: REBI	DENCE			Inform	-t i on			praation	
F1 I	nformation		.			-			
ble PG28			1575 1105		w 55TH BL	ub j			
år 5751 WI	NSTON PARK	DLVD	.						
FRC 1 Facill	ty j Se	c. 8	ze !	6. [Length	Plat	<u> </u> -		
JIC PECKNY	!	=			i I		2] ـــــ	<u> </u>	
			Q.	}	971_		-		
	i		Ø		845				
	<u></u> i		60		931		 -		!
FOL CABL			ā.		3236		-		
	!:	(-	60		3386) 	-		
			36		3149	 	 		· ļ
	32 j:		36	 	とうづり) !		
اغد رياك	4= {		36		4653	}	ì		
Fac CAB		늗	狐		3757)		
_==-	t		36	 	ےما				
	758		30	ļ	786Q.		i		
-225	:===i		30	ļ	1600		j		
		F !	3 0		740				!
	.=	F !_	78		1818		i		
-3C (N3	1	.F	78		الهج كـ		j		
£36 CNS	i	.X	18		ካል				
	7.7 <u>-</u>	. <u>.</u>	だ		17236	!			
ric CVS		.Fj.	17Ř	1	209	!			
Tre CAR	_	-Σ(F	18	 	482	!			
LIL! LAC	يات	τ	_	. Í	1		F		

```
"9543609149",2,1,"45C","Buried Copper Cable",1,600,24,20,"",""
"9543609149",2,2,"45C","Buried Copper Cable",1,900,26,950,"",""
"9543609149",2,3,"45C","Buried Copper Cable",1,400,26,325,"",""
"9543609149",2,4,"45C","Buried Copper Cable",1,200,26,1700,"",""
"9543609149",2,5,"12C","Building Entrance Copper Cable",1,50,26,190,"",""
"9543609149",3,1,"5C","Building Entrance X-Box",1,50,0,0,"MR 5460 NW 55TH BLVD",""
"9543609149",3,1,"5C","Underground End Section or Bridged Tap",4,600,26,645,"","=D"
"9543609149",3,3,"45C","Buried End Section or Bridged Tap",4,600,24,20,"",""
"9543609149",3,3,"45C","Buried End Section or Bridged Tap",4,600,24,20,"",""
"9543609149",3,3,"45C","Underground End Section or Bridged Tap",4,1200,26,20,"",""
```

						<u> </u>	
FRC	: Facility	Sec.	Size	Ga.	Length	Flat	:
FASC	CABUZ	E	18_		<u>512.</u>		
<u>ڄغڍ</u>	CABUE	F	12		692	: :	!
F.454	CABUE		12		2604		:
١ <u>- ددد</u>	CABLE	=	12	: ! -	<u> 7554</u>		
-450	CABUE		12		909		
F45C	CHBLE	_=	12		790		!
<u> </u>	CHBLE	=	18	! =====	<u>5276</u>	· !	:
تعاد	REGEN ENATOR					CLL!	MUK AT RT.
51.	CABUE	_E	<u> ೧೧</u> ಎ	<u> </u>	40		
<u>۽ د</u>	CHBUE	-F	(۵۵۵	74	25		
454	<u> </u>	<u> </u>	<u> </u>			! !	
	 					! !	: :
						` 	
		-					
						;	
	:			:			
•							
·				 -	: 		
			:		:	:	
*- **	:						
,	:		:		:		

TAB B

STATE: FL SVC DESC: Florida Loop Survey Circuit JOOP#:200

CIRCUIT ID: 3053609149

CLLE: DRBHFLMA

CIRCUIT TYPE: V

CIRCUH LEVEL: DS0

DESIGN: 13 CLASS OF SVC: RESIDENCE

DLC & MUX LOADINGS :B

	^	_	_		ROUTELEN	4C/111: 52,908 ROULEMILE: 10.02	AIR MILES:	6. H	16 工	7	K	1
	A	B	Category	D Field Code	₽id	Description	Feeder/Dist		Gauge/Mode	255	Units	Unit Inv
,	1		Fiber	F5C	FOCALLAUDB60	CABLE FB-OPT ALL 40DB 60	F	60	Sgl	.40db	971.00	
	2	1	Fiber	F5C	FOCALLAODB60	CABLE FB-OPT ALL 40DB 60	F	60	Sgl	.40db	845.00	
H	3	1	Fiber	F5C	FOCALLAODB60	CABLE FB-OPT ALL 40DB 60	F	60	Sgl	40db	951,00	 [
H	4	ī	Fiber	F5C	FOCALLA0DB60	CABLE FB-OPT ALL 40DB 60	F	60	Sgl	.40db	3,256.00	
H	5		Fiber	F5C	FOCALLAODB60	CABLE FB-OPT ALL, 40DB 60	F	60	Sgl	40.16	3,886,00	
+	6	1	Fiber	F5C	FOCALLAUDB36	CABLE FB-OPT ALL 40DB 36	F	36	Sgl	.40Aib	3,148.00	
H	7	1	Fiber	F5C	FOCALLAODB36	CABLE FB-OPT ALL 40DB 36	F	36	Sgl	40db	2,359.00	
\vdash	8	1	Fiber	F5C	FOCALL40D836	CABLE FB-OPT ALL 40DB 36	F	36	Sgl	40db	4,653.00	
H	y	1	Fiber	F5C	FOCALLAODB36	CABLE FB-OPT ALL 40DB 36	F	36	Sgl	.40db	3,757.(X)	<u>-</u>
H	10	1	Fiber	F5C	FOCALL40DB36	CABLE FB-OPT ALL 40DB 36	F	36	Sgl	40db	62.00	
H	11)	Fiber	F5C	FOCALL40DB30	CABLE FB-OPT ALL 40DB 30	F	30	Sgl	40db	2,860.00	
	12	1	Fiber	F22C	FOCALL40DB30	CABLE FB-OPT ALL 40DB 30	F	30	Sgl	40db	1,600.00	
Ħ	13	1	Fiber	F5C	FOCALL40DB30	CABLE FB-OPT ALL 40DB 30	F	30	Sgl	40db	240.00	
	14	ī	Fiber	F5C	FOCALLIODB18	CABLE FB-OPT ALL 40DB 18	F	18	Sgl	.40db	1,818 00	
	15	ī	fiber	F5C	FOCALL40DB18	CABLE FB-OPT ALL 40DB 18	F	18	Sgl	.40db	1,652.00	
	16	7	Fiber	F45C	FOCALL40DB18	CABLE FB-OPT ALL 40DB 18	F	18	Sgi	.40Jb	700.00	
	17	1	Fiber	F22C	FOCALL40DB18	CABLE FB-OPT ALL 40DB 18	F	18	Sgl	.4UJb	2,232.00	_
П	18	1	Fiber	F22C	FOCALLAUDB18	CABLE FB-OPT ALL 40DB 18	F	18	Sgi	40db	509 00	
	19		Fiber	F22C	FOCALLAUDBI8	CABLE FB-OPT ALL 40DB 18	F	18	Sgl	.40Jb	482.00	
	20	ī	Fiber	F45C	FOCALLAODB18	CABLE FB-OPT ALL 40DB 18	F	18	Sgl	40db	572.00	
	21	١	Fiber	F5C	FOCALLAODB12	CABLE FB-OPT ALL 40DB 12	F	12	Sgl	.40x1b	692.00	_
<u> </u>	22	l	Fiber	F45C	FOCALLAODB12	CABLE FB-OPT ALL 40DB 12	F	12	Sgl	40.40	2,6(14.00)	
1860	21	L	fiber	F22C	FOCALL40DB12	CABLE FB-OPT ALL 40DB 12	F	12	Sgl	.40db	2,834.00	
010	24		fiber	F45C	FOCALLARDB12	CABLE FB-OPT ALL 40DB 12	F	12	Sgl	40klb	909.00	
	25	L	Fiber	F45C	FOCALL40DB12	CABLE FB-OPT ALL 40DB 12	F	12	Sgl	40Ab	290.00	
001	26		Faber	F5C	FOCALLADOBIB	CABLE FROM ALL HODB IS	F	18	Sgl	.40db	5,276 (0)	
189	28	L	Copper	SC:	600ULRIC	LRIC max of 22,24,26 gauge	F	600	MIX	u	40.00	
		<u> </u>	Сорукт	150	MOBLERIC	1.RIC mix of 22,24,26 gauge	F	600	MIX	В	25 (0)	
4		ا ا	Copper	45C	600BLRIC	LRIC oux of 22,24,26 gauge	D	600	MIX	B	20 00	

F18G01Q 00190

LOOP#:200

STATE: FL SVC DESC: Florida Loop Survey Circuit

CIRCUIT ID: 3053609149

CLLI: DRBHFLMA

Page 2

CIRCUIT TYPE: V

DEC & MUX FOADINGS (B)

CIRCUIT LEVEL: DS0

DESIGN: 13 CLASS OF SVC: RESIDENCE

	Λ	2	C	\mathcal{T}	ROUTE DEN	R. 111 : 52,908 ROUTE MILE : 10.02 AT	IR MILLS:	H .	<u>T</u>	J	K	<u>L</u>
S	eg	lein	Category	Tield Code	Pid	Description	Feeder/Dist	Size	Gauge/Mode	Plemnt/DB	Units	Unit Inv
	32	1	Copper	45C	900BLRIC	LRIC mix of 22,24,26 gauge	D	900	міх	В	950.00	
H	33	1	Copper	45C	400BLRIC	LRIC mix of 22,24,26 gauge	D	400	MIX	В	325.00	
 - -	34		Copper	45C	200BLRIC	LRIC mix of 22,24,26 gauge	D	200	MIX	В	1,700.00	
H	35	ŀ	Copper	12C	333892750	Copper Riser Cable ARTM	D	50	26	R	190.00	

TAB C

Conversion of Cable Sheath Investments to DS0-equivalent Investments

The Loop Investment Model stores cable investments at the actual price which BellSouth Telecommunications currently pays each cable type. The investments are maintained at a "sheath foot" level and must be converted to a circuit-level investment before loop costs can be developed.

The first step in developing a circuit-level cable investment is to determine the number of copper pairs or fiber strands which are typically utilized for a given cable. This is accomplished by applying the following utilization percentages to the cable size (# of pairs or strands):

	A <u>Cable Type</u>	13. Placement	Utilization Percentages
٠,١	Copper	Feeder	
12	Copper	Distribution	
13	Fiber	Feeder	
14	Fiber	Distribution	

For example:

1678

The second step in developing a circuit-level cable investment is to determine the number of DS0-level circuits supported by the utilized copper pairs or fiber strands as determined above. This is accomplished by applying the following typical DS0 circuit counts to the number of utilized copper pairs or fiber strands:

	A Cable Type	Placement B	DS0-equivalent Circuits
£.4	Copper	Feeder	
2 5	Copper -	Distribution	•
26	DLC* on Copper	Feeder	
27	DLC on Fiber	Feeder	
28	DLC on Fiber	Feeder	
~ •	DLC = Digital Loop Car	rrier	

For example:

31 32 33

Private/Proprietary: No disclosure outside BellSouth except by written agreement.

The third step in developing a circuit-level cable investment is to divide the sheath foot investment by the DS0-equivalent count for the cable and multiply the circuit-foot investment by the number of cable feet.

For example:

7 8 9		900 pair buried copper distribution cable: # of DS0-equivalent circuits: Conversion from sheath to circuit investment: # of cable feet: Total circuit-level cable investment:	\$ 900 * \$ 950 950 *		heath =		-equivalent circuits per circuit foot
		{Loop segment #32. Item #1 in the sample circuit	data and	result	s}		
13		60 strand underground fiber feeder cable:	\$	per :	heath	foot	_
•		# of DSO-equivalent circuits:	60 •				DS0-equivalent circuits
1.5	•	Conversion from sheath to circuit investment:	971			,	per circuit foot
17		# of cable feet: Total circuit-level cable investment:	971 •	ı			
1 [
		{Loop segment #1, item #1 in the sample circuit d	ata and re	esults.	}		

TAB D

Development of Installation, Engineering, Electronic Equipment and Exempt Material Investments Associated with Cable Placement

After developing circuit-level cable investments, the model computes installation, engineering, and exempt material investments associated with cable placements. This is accomplished through the use of inplant factors which are state and field reporting code specific.

	A	呂	\sim
9	<u>Field Code</u> 45C	Investment Description Telco Installation Labor -	Inplant Factor
,	430	underground fiber feeder	
11	45C	Telco Engineering Labor-	
		underground fiber feeder	
13	45C	Contractor Installation Laborator	r-
\ -		underground fiber feeder	
12	45C	Exempt Material-	
17	200	underground fiber feeder Right-of-Way	
1 1	20C	KIBIII-01- way	
18	{950ft of 900	cable investment: \$ pair copper distribution cable circuit data and results.}	e; Loop segment #32, item #1
	Calculations:		
	Compute t	he Total Material Investment	•
23	\$	/(1-exempt material factor	
24		S	
27		Saterial Investment: material investment - Cable i \$	nvestment =
30		allation Labor Investment: material investment * Telco i	installation factor =
33		gineering Labor Investment: material investment * Telco \$	engin ee ring factor =

For example:

Private/Proprietary: No disclosure outside BellSouth except by written agreement.

Contractor Installation Labor Investment:

Total material investment • Contractor installation factor =

.

Right-of-Way Investment:

Total material investment • ROW factor =

3

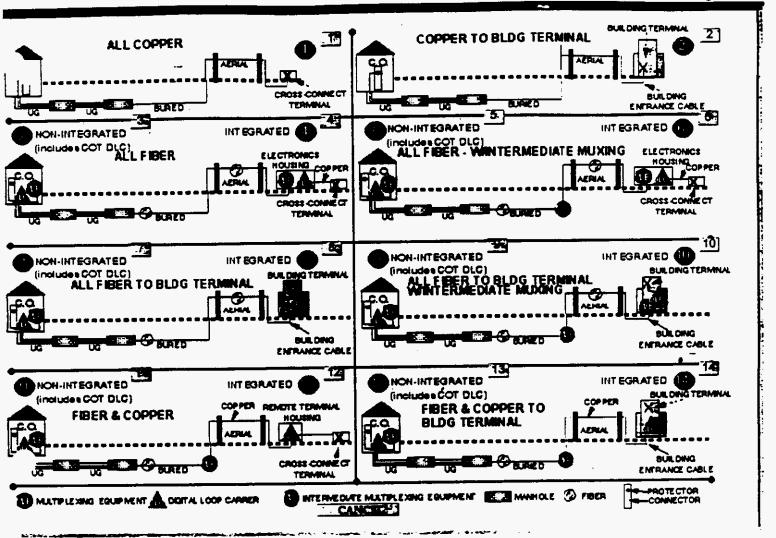
TOTAL INVESTMENTS FOR THIS CABLE SEGMENT:

10 20C S

1 \ 45C \$

ELECTRONIC EQUIPMENT:

Following the development of total cable segment investments, the model pulls-in electronic investments which have been developed in the Fundamental Digital Loop Carrier Investment Model and the Fundamental Multiplexer Investment Model. These investments are stored in the model at a DSO-equivalent level and are design specific.


A loop design number is assigned to each survey circuit as it is initially loaded into the Loop Investment Model. Each survey circuit's design is determined by the characteristics of the cable segments (copper/fiber, feeder/distribution, presence of a building terminal, presence of intermediate muxing, etc.) The fourteen possible designs are listed below:

- 1 All copper loop (no electronic equipment)
- 2 All copper loop which terminates in a building terminal (no electronic equipment)
- 3 All fiber in the feeder route non-integrated digital loop carrier
- 4 All fiber in the feeder route integrated digital loop carrier
- 5 #3 with intermediate muxing
- 6 #4 with intermediate muxing
- 7 #3 terminates in a building terminal
- 8 #4 terminates in a building terminal
- 9 #7 with intermediate muxing
- 10 #8 with intermediate muxing

Design descriptions continued:

- Fiber feeder to a remote terminal with copper feeder to the interface non-integrated digital loop carrier
- 12 Fiber feeder to a remote terminal with copper feeder to the interface integrated digital loop carrier
- 13 #11 terminates in a building terminal
- 14 #12 terminates in a building terminal

The sample circuit shown in this documentation is a design # 13. The electronic investments shown for this circuit in TAB E are on page #5, Segment #35 and #36. See page #4 for a diagram of these designs.

TAB E

Page 1

LOOP INVESTMENT RESULTS FOR

CIRCUIT ID: 3053609149 CLLI: DRBHFLMA SVC DESC: Florida Loop Survey Circuit STATE: FL 1001 4 - 2.00 CLASS OF SVC: RESIDENCE DLC & MUX LOADINGS :B DESIGN: 13 CIRCUIT LEVEL: DS0 CIRCUIT TYPE: V AIR MILES **ROUTE MILE:** 10.02 6.16 **ROUTE LENGTH:** 52 908 B 0 Gg/Md Pl/db Units Unit Inv Totaliny Description F/D Size l'id Type Item M/L FRC Seg CABLE FB-OPT ALL 40DB 60 Sgl 40d 971 F 60 FOCALL40D D۷ F3C 1 M Exempt materials loadings n/a DV n/a n/aı EXEMPT_MA F5C 2 M F n/a n/a n/a ī Conduit ldg for undg SUPPORT L 4C 3 B n/a n/a n/a 1 Telco engineering labor F INPLANT E עמ F5C J L n/a n/a Telco installation labor n/a 1 INPLANT IN DV F5C 3 L Contractor engineering & installation labor n/a ī n/a n/a INPLANT_C F3C 6 L 845 CABLE FB-OPT ALL 40DB 60 40d 60 Sgl DV F5C FOCALL40D 1 M 2 F 1 n/a n/a n/a Exempt materials loadings EXEMPT MA DV F5C 2 M n/a n/a n/a 1 Conduit ldg for undg 40 SUPPORT_L Ď۷ 3 B 2 Telco engineering labor n/a 1 n/an/a INPLANT E חע F5C 2 4 L n/a n/a n/a Telco installation labor INPLANT IN DV F5C 2 3 L Contractor engineering & installation labor n/a n/a n/a INPLANT_C DV 6 L F5C , 951 CABLE FB-OPT ALL 40DB 60 H 60 Sgi 104 FOCALL40D F5C 3 1 M n/a n/a n/a 1 F5C EXEMPT_MA D۷ Exempt materials loadings 2 M 3 F n/a n/a n/a 1 Conduit ldg for undg SUPPORT L nv В 40 3 3 F n/a Ω/a n/a ı INPLANT E DV Telco engineering labor F5C 3 4 L ĎΫ Telco installation labor n/a n/a n/a 1 INPLANT_IN F5C 5 L 3 n/a 1 Contractor engineering & installation labor n/a DV n/a F5C INPLANT_C Ĺ 6 60 Sgl 40d 3,256 CABLE FB-OPT ALL 40DB 60 FOCALL40D DV F5C 1 M 1 DV F n/a n/a n/a Exempt materials loadings EXEMPT MA F3C 2 M n/a n/a n/a ī SUPPORT L DΫ Conduit ldg for undg 4C В 1 Telco engineering labor n/a n/a n/a INPLANT_E DΫ F 4 L F5C 1 DV Telco installation labor n/a n/a n/a F3C INPLANT_IN ī n/a n/a n/a Contractor engineering & installation labor

F18G01Q 00200

F

F

F

F

F

F

F

F

F

F

F

F

F

F

60

n/a

n/a

n/a

n/a

n/a

36

n/a

n/a

n/a

n/a

n/a

34

n/a

n/a

n/a

n/a

Sgl

n/a

n/a

n/a

n/a

n/a

Sgl

n/a

n/a

n/a

n/a

n/a

Sgl

n/a

n/a

n/a

n/a

3.886

1

1

1

1

1

1

ī

1

1

1

1

1

1

2.359

3.148

40d

n/a

n/a

n/a

n/a

n/a

40d

n/a

n/a

n/a

n/a

n/a

40d

n/a

n/a

n/a

n/a

F5.

FSC

F5C

4C

F5C

F5C

F5C

Fic

F5C

10

F5C

F3C

F5C

F5C

F5C

40

F5C

F5C

+

5

5

5

5

5

5

6

6

6

6

6

6

6 L

1 M

2 M

3 B

111

5 L

6 L

1 M

2 M

31 B

4 L

5 L

6 L

3 В

41 L

м

м

INPLANT C

FOCALL40D

EXEMPT_MA

SUPPORT L

INPLANT_E

INPLANT_IN

INPLANT_C

FOCALL40D

EXEMPT MA

SUPPORT_L

INPLANT E

INPLANT_C

FOCALL40D

EXEMPT MA

SUPPORT L

INPLANT E

INPLANT_IN

INPLANT_IN DV

DV

DV

DV

DΫ

DV

DΥ

DV

Dν

DV

DV

Ďν

DV

DV

D۷

חע

CABLE FB-OPT ALL 40DB 60

Exempt materials loadings

Conduit ldg for undg Teko engineering labor

Telco installation labor

CABLE FB-OPT ALL 40DB 36

CABLE FB-OPT ALL 40DB 36

Exempt materials loadings

Conduit ldg for undg

Telco engineering labor

Teico installation labor

Exempt materials loadings

Conduit ldg for undg

Telco engineering labor

Telco installation labor

Contractor engineering & installation labor

Contractor engineering & installation labor

TOOP #: 2.00 STATE: FL SVC DESC: Florida Loop Survey Circuit CTRCUTT ID: 3053609149 CLLI: DRBHFLMA

CIRCUIT TYPE: V CIRCUIT LEVEL: DS0 DESIGN: 13 CLASS OF SVC: RESIDENCE DLC & MUX LOADINGS B

	^	\sim	\sim		ROUTE LE	NGTH	f: 52,908 ROUTE MILE: 10	0.02	र्गंध र	III. <u>Es</u> :	K	6.16	₩.	
1	See	R	M/L	IRC	Pid	Туре	Description	₽/D	Size	Gg/Md		Units	Unit Inv	Totaliny
	7		L.	F5C	INPLANT_C	DV	Contractor engineering & installation labor	F	n/a	n/a	n/a	1	+	<u> </u>
<i>○</i>	- 8		M	F5C	FOCALL40D	DV	CABLE FB-OPT ALL 10DB 36	F	36	Sgi	40d	4,633		
ŀ	8		М	F5C	EXEMPT_MA	DV	Exempt materials loadings	F	n/a	n/a	n/a	i	- †	 .
ŀ	8	3		1C	SUPPORT_L	DV	Conduit ldg for undg	F	n/a	n/a	n/a	1	<u> </u>	•
ŀ	8	4	L	F5C	INPLANT_E	DV	Telco engineering labor	F	n/a	n/a	n/a	1		
}	8		L	F3C	INPLANT_IN	DV	Telco installation labor	F	n/a	n/a	n/a	1		,
}	8	- 6	L	F5C	INPLANT_C	DV	Contractor engineering & installation labor	F	n/a	n/a	n/a	1		•
-	9	1	M	F5C	FOCALL40D	DV	CABLE FB-OPT ALL 40DB 36	F	36	Sgi	.40d	3,757	<u> </u>	 ·
-	9	2	М	F5C	EXEMPT_MA	DV	Exempt materials loadings	£	n/a	n/a	n/a	1		
ŀ	9	3	В	4C	SUPPORT_L	DV	Conduit ldg for undg	F	n/a	n/a	n/a	1		,
h	9	4	L	F3C	INPLANT_E	DV	Telco engineering labor	F	n/a	n/a	π/a	1		
ŀ	9	5	Ĺ	F5C	INPLANT_IN	DV	Telco installation labor	F	n/a	n/a	n/a	1		
ŀ	9	6	L	F5C	INPLANT_C	DV	Contractor engineering & installation labor	F	n/a	n/a	n/a	1		<u> </u>
ŀ	10	1	м	F5C	FOCALL40D	DV	CABLE FB-OPT ALL 40DB 36	F	36	Sgl	. 1 0d	62		,
ŀ	10	2	М	F5C	EXEMPT_MA	DV	Exempt materials loadings	F	n/a	n/a	n/a	1		•
ŀ	10	3	В	‡C	SUPPORT_L	DV	Conduit ldg for undg	F	n/a	n/a	n/a	1		
t	10	4	L	F5C	INPLANT_E	DV	Telco engineering labor	F	n/a	n/a	n/a	1		
f	_ '	5	Ĺ	F5C	INPLANT_IN	DV	Telco installation labor	F	n/a	n/a	n/a	1		-
t		6	L	F5C	INPLANT_C	DV	Contractor engineering & installation labor	F	n/a	n/a	n/a	1		-
ľ	11	1	М	F5C	FOCALL40D	DV	CABLE FB-OPT ALL 40DB 30	F	30	Sgi	.40d	2,860		-
-	11	2	М	F5C	EXEMPT_MA	DV	Exempt materials loadings	F	n/a	n/a	n/a	1		
Ì	11	3	В	+C	SUPPORT_L	DV	Conduit ldg for undg	F	n/a	п/а	n/a	1		
Ì	11	4	L	F5C	INPLANT_E	DV	Telco engineering labor	F	n/a	π/a	n/a	1		
Ī	11	5	Ļ	F5C	INPLANT_IN	DV	Telco installation labor	F	n/a	n/a	n/a	1		
1	11	6	L	F3C	INPLANT_C	DV	Contractor engineering & installation labor	F	n/a	n/a	n/a	1		
	12	1	М	F22C	FOCALL40D	DV	CABLE FB-OPT ALL 40DB 30	F	30	Sgl	.404	1,600		
Ī	12	2	М	F22C	EXEMPT_MA	DV	Exempt materials loadings	F	n/a	n/a	n/a	1		
Ì	12	3	В	10	SUPPORT_L	DV	Pole idg for aerial	F	n/a	n/a	n/a	1		
	12	4	L,	F22C	INPLANT_E	.1	Telco engineering labor	F	n/a	n/a-	n/a	1		
	12	5	Ĺ	F22C	INPLANT_IN		Telco installation labor	F	n/a	n/a	n/a	1		
	12	6	L	F22C	INPLANT_C	DV	Contractor engineering & installation labor		n/a	n/a	n/a	1		
	13		М	F5C	FOCALL40D	1	CABLE FB-OPT ALL 40DB 30	F	30	Sgi	10d	240		
	13	2	М	F5C	EXEMPT_MA		Exempt materials loadings	F	n/a	n/a	n/a	1		
	13		В	4C	SUPPORT_L		Conduit ldg for undg	F	n/a	n/a	n/a	1		-
	13		Ĺ	F5C		1	Telco engineering labor	F	n/a	n/a	n/a	1		
	13		L	F5C	INPLANT_IN	<u> </u>	Telco installation labor	F	n/a	n/a	n/a	1	<u> </u>	
	13 -		L	F5C	INPLANT_C	1	Contractor engineering & installation labor		n/a	n/a	n/a	1		
	_		М	F5C	FOCALL40D		CABLE FB-OPT ALL 400B 18	F	18	Sgl	40d	1,818		
		<u> </u>	М	F5C	EXEMPT_MA	1	Exempt materials loadings	F	n/a	n/a	n/4	1		
	14		В	4C	SUPPORT_L		Conduit ldg for undg	F	n/a	n/a	n/a	1	-	
0	14		Ĺ	F5C	INPLANT_E	DV	Telco engineering labor	F	n/a	n/a	n/a	1		1

46

F18G01Q 00201

LOOP *: 2.00 STATE: FL SVC DESC: Florida Loop Survey Circuit

CIRCUIT ID: 3053609149 CLLL: DRBHFLMA

EO	റ് *	: 2.00	ST.	ATE: FL S	VC DE	SC: Florida Loop Survey Circuit			. [] [] [_	RBHFLMA
	C	IRCUIT	TYPE			VEL: DS0 DESIGN: 13 CLASS C				Ω		UXTOADU	VG5 :8
Λ	0	\sim		RQUTE LE	NGTH	1: 52,908 ROUTE MILE: 10.	02	坐~	IIL <u>ES</u> :	K	6.16 ∟	W	N
Gar.	B	ı M/L	D ERC	Pid	Туре	Description	F/D	Size	Gg/Md	РУдь	Units	Unit Inv	Tatalinv
تبر	Γ.	_		INPLANT_IN		Telco installation labor	F	n/a	n/a	n/a	1		
14	ļ.—	5 L	F5C		DV	Contractor engineering & installation labor	F	n/a	n/a	n/a	1		
14		6 L	F3C	INPLANT_C		CABLE FB-OPT ALL 40DB 18	F	18	Sgl	404	1,632		
15	<u> </u>	1 M	F5C	FOCALL40D	DV		F	n/a	n/a	n/a	1,052		
15		2 M	F5C	EXEMPT_MA	DV	Exempt materials loadings	F				1	;	
15		3 B	¥	SUPPORT_L	DV	Conduit ldg for undg	ļ	n/a	n/a	n/a			
15		4 L	F5C	INPLANT_E	DV	Telco engineering labor	F	n/a	n/a	n/a	1		
15		3 L	F5C	INPLANT_IN	DV	Telco installation labor	F	n/a	n/a	n/a	1		
15		6 L	F5C	INPLANT_C	DV	Contractor engineering & installation labor	F	n/a	n/a	n/a	ì		
16		1 M	F45C	FOCALL40D	DV	CABLE FB-OPT ALL 40D8 18	F	18	Sgl	101	700		
16		2 M	F45C	EXEMPT_MA	DV	Exempt materials loadings	F	n/a	n/a	n/a	1		
16		3 B	20C	SUPPORT_L	D۷	ROW ldg for buried	F	n/a	n/a	n/a	1		
16	 	 	F45C	INPLANT_E	DV	Telco engineering labor	F	n/a	n/a	n/a	1		
16		3 L	F45C	INPLANT_IN	DV	Teico installation labor	F	n/a	n/a	n/a	1		
16	+	6 L	F+5C	INPLANT_C	DV	Contractor engineering & installation labor	F	n/a	n/a	n/a	I		
17	l	1 M	F22C	FOCALL-10D	DV	CABLE FB-OPT ALL 40DB 18	F	18	Sgl	101	2,232		
17	<u></u>	2 M	F22C	EXEMPT_MA	DV	Exempt materials loadings	F	n/a	n/a	n/a	1	 	
17	1	3 B	10	SUPPORT_L	DV	Pole ldg for aerial	F	n/a	n/a	n/a	ì		
Ļ '′	'	4 L	F22C	INPLANT_E	DV	Telco engineering labor	F	n/a	n/a	n/a	1	 	
<u> </u>	,			INPLANT_IN		Telco installation labor	F	n/a	n/a	n/a	1	 	
L .		5 L	F22C			Contractor engineering & installation labor	F	n/a	n/a	n/a	1	 	
17	4	6 L	F22C	INPLANT_C	DV	CABLE FB-OPT ALL 40DB 18	F	18	5gl	40d	309	 	
18	3	1 M	F22C	FOCALL40D	DV					n/a	1		
11	3	2 M	F22C	EXEMPT_MA		Exempt materials loadings	↓F	n/a	n/a	<u> </u>	<u> </u>		
	3	3 B	10	SUPPORT_L	DV	Pole ldg for aerial	F	n/a	n/a	n/a	1	 	
Ti	3	↓ L	F22C	INPLANT_E	DV	Telco engineering labor	F	n/a	n/a	n/a	1		
13	8	5 L	F22C	INPLANT_IN	DV	Telco installation labor	F	n/a	Π/a	n/a	1	 	
1.	8	6 L	F22C	INPLANT_C	DV	Contractor engineering & installation labor		n/a	n/a	n/a	1		
T	9	1 M	F22C	FOCALL40D	DV	CABLE FB-OPT ALL 40DB 18	F	18	Sgl	101	482		
1	9	2 M	F22C	EXEMPT_MA	DV	Exempt materials loadings	F	n/a	n/a	n/a	1	<u> </u>	:
1	9	3 8	1C	SUPPORT_L	DV	Pole ldg for aerial	F	n/a	n/a	n/a	1	<u></u>	
1	9	4 L	F22C	INPLANT_E	DV	Telco engineering labor	F	n/a	n/a	n/a	1		
1	9	5 L	F22C	INPLANT_IN	1 DV	Telco installation labor	F	n/a	n/a	n/a	1		
1	9	6 L	F22C	INPLANT_C	DV	Contractor engineering & installation labor	F	n/a	n/a	n/a	1		
1	0	1 M	F45C	FOCALL40D	DV	CABLE FB-OPT ALL 4008 18	F	18	Sgi	404	572		
	0	2 M	F45C			Exempt materials loadings	F	n/a	n/a	n/a	1		
	0	3 B	20C	SUPPORT_L		ROW ldg for buried	F	n/a	n/a	n/a	1		
<u> </u>	0	4 6	F45C			Telco engineering labor	F	n/a	n/a	n/a	1		
	20	3 L	F45C			Telco unstallation labor	F	n/a	n/a	n/a	1		
1	-	6 L	F45C			Contractor engineering & installation labor	F	n/a	n/a	n/a	1		
-	'	1 M	F5C	FOCALL40D	1	CABLE FB-OPT ALL 40DB 12	F	12	Sgi	.404	692		
_	21	2 M	F5C	EXEMPT_M		Exempt materials loadings	F	n/a	n/a	n/a	1		
<u> </u>	1	3 B	4C	SUPPORT_L		Conduit ldg for undg	F	n/a	n/a	n/a	1		
	21	`` □	1.0	JOI PORT_L	. 0	Co221. 125 101 2125	L_		1			<u>ـ</u> ا	10 002

FOOP 6:200 STATE: FL

SVC DESC: Florida Loop Survey Circuit

CIRCUIT ID: 3053609149

CLLI: DRBHFLMA

CIRCUIT TYPE: V CIRCUIT LEVEL: DS0 DESIGN: 13 CLASS OF SVC: RESIDENCE DLC & MUX LOADINGS: 8

	A	В. В	<u></u>	T)	ROUTELE		I: 52,908 ROUTE MILE: 10:	02	AIR S	ur z	K	6.16	M	N
1	Seg		M/L	FRC	Pid	Fype	Description	F/D	Size	Gg/Md		Units	Unit Inv	Totalinv
	21		Ĺ,	F5C	INPLANT_E	DV	Teico engineering labor	F	n/a	n/a	π/a	1	7	**
٤,	21	5	L	F5C	INPLANT_IN	DV	Telco installation labor	F	n/a	n/a	n/a	l	-	
ŀ	21	6	Ĺ	F5C	INPLANT_C	DV	Contractor engineering & installation labor	F	n/a	n/a	n/a	1		
-	22	1	М	F45C	FOCALL40D	DV	CABLE FB-OPT ALL 40DB 12	۴	12	Sgl	40d	2,604	— †	
F	22	2	М	F45C	EXEMPT_MA	DV	Exempt materials loadings	F	n/a	n/a	n/a	1		
t	22	3	В	20C	SUPPORT_L	DV	ROW ldg for buried	F	n/a	n/a	n/a	1		
ŀ	22		L	F45C	INPLANT_E	DV	Telco engineering labor	F	n/a	n/a	n/a	1		
- }	22	5	L	F45C	INPLANT_IN	DV	Telco installation labor	F	n/a	n/a	n/a	1		
ı	22	6	Ļ	F45C	INPLANT_C	DV	Contractor engineering & installation labor	F	n/a	n/a	n/a	1		-
1	23	1	М	F22C	FOCALL40D	DV	CABLE FB-OPT ALL 40DB 12	F	12	Sgl	.40d	2,834		
ı	23	2	М	F22C	EXEMPT_MA	D۷	Exempt materials loadings	F	n/a	n/a	n/a	1		
- 1	23	3	В	10	SUPPORT_L	DV	Pole ldg for aenal	F	n/a	n/a	n/a	1		
Ī	23	4	L	F22C	INPLANT_E	DV	Telco engineering labor	F	n/a	n/a	n/a	l		
ſ	23	5	L	F22C	INPLANT_IN	DV	Telco installation labor	F	n/a	n/a	n/a	1		
	23	6	L.	F22C	INPLANT_C	DV	Contractor engineering & installation labor	F	n/a	n/a	n/a	1		
ı	24	1	М	F45C	FOCALL40D	DV	CABLE FB-OPT ALL 40DB 12	F	12	Sgl	.40d	909		
	24	2	М	F45C	EXEMPT_MA	DV	Exempt materials loadings	F	n/a	n/a	n/a	1		
Ī	_	3	В	20C	SUPPORT_L	DV	ROW ldg for buried	F	n/a	n/a	n/a	1		
Ī	- •	4	L	F45C	INPLANT_E	DV	Telco engineering labor	F	n/a	n/a	n/a	1		
ı	24	5	L	F45C	INPLANT_IN	DV	Telco unstallation labor	F	n/a	n/a	n/a	1		
Ì	24	6	L	F45C	INPLANT_C	DV	Contractor engineering & installation labor	F	n/a	n/a	n/a	1		
ľ	25	1	М	F45C	FOCALL40D	DV	CABLE FB-OPT ALL 40DB 12	F	12	Sgl	404	790		
ı	25	2	М	F45C	EXEMPT_MA	DV	Exempt materials loadings	F	n/a	n/a	n/a	1		
Ì	25	3	В	20C	SUPPORT_L	DV	ROW ldg for buried	F	n/a	n/a	n/a	ι		
Ì	25	4	L	F45C	INPLANT_E	DV	Telco engineering labor	F	n/a	n/a	n/a	1		
Ì	25	5	L	F45C	INPLANT_IN	DV	Telco installation labor	F	n/a	n/a	n/a	1		
	25	6	L	F45C	INPLANT_C	DV	Contractor engineering & installation labor	F	n/a	n/a	n/a	1		
	26	1	М	F5C	FOCALL40D	DV	CABLE FB-OPT ALL 4008 18	F	18	Sgl	.10d	5.276		<u> </u>
	26	2	М	F5C	EXEMPT_MA	DV	Exempt materials loadings	F	n/a	n/a	n/a	1		
	26	3	В	4C	SUPPORT_L	DV	Conduit ldg for undg	F	n/a	n/a	Π/a	1	<u></u>	
	26	+	L	F5C	INPLANT_E	DV	Telco engineering labor	F	n/a	n/a	n/a	1	<u> </u>	
	26	5	L	F5C	INPLANT_IN		Telco installation labor	F	n/a	n/a	n/a	1		<u> </u>
	26	<u> </u>	Ĺ,	F5C	INPLANT_C	1	Contractor engineering & installation labor	F	n/a	n/a	n/a	1	 	<u> </u>
	28		L	5C	600ULRIC	DV	LRIC mix of 22,24,26 gauge	F	600	MIX	U	40	 	
	28		М	5C	EXEMPT_MA		Exempt materials loadings	F	n/a	n/a	n/a	1	 	<u> </u>
	28		В	4C	SUPPORT_L	DV	Conduit idg for undg	F	n/a	n/a	n/a	1		
	7.8		l L	5C	INPLANT_E	_L	Telco engineering labor	F	n/a	n/a	n/a	1		
	Γ.	·	L	5C	INPLANT_IN		Telco installation labor	F	n/a	n/a	n/a	1		
		1	5 L	5C	INPLANT_C		Contractor engineering & installation labor		600	n/a MIX	n/a B	25	 	
	25		I M	45C	600BLRIC	DV	LRIC mux of 22,24,26 gauge	F	n/a	n/a	n/a	1		
-6	25	1	2 M	45C	EXEMPT_MA	DV	Exempt materials loadings					<u> </u>	1	

F18G01Q 00203

INVESTMENT SUBTOTAL FOR FEEDER

FOOP ●: 2.00 STATE: FL SVC DESC: Florida Loop Survey Circuit CIRCUIT ID: 3053609149

CLI1: DRBHFLMA

CIRCUIT TYPE: V CIRCUIT LEVEL: DS0 DESIGN: 13 CLASS OF SVC: RESIDENCE DLC & MUX LOADINGS .B

	A	18		n	ROUTE LE	NGTI	I: 52,908 ROUTE MILE	:: 10.02 H	ALP.	MILES:	K	6.16	Μ	N
1			M/L	FRC	Pid	Гуре	Description	F/L) Size	Gg/Md	РУаь	Units	Unit Inv	Totalinv
6	29	3	В	20C	SUPPORT_L	DV	ROW ldg for buried	F	n/a	n/a	n/a	1		
	29	4	Ĺ	45C	INPLANT_E	DV	Telco engineering labor	F	n/a	n/a	n/a	1	i	
Ì	29	5	L,	15C	INPLANT_IN	DV	Telco installation labor	F	n/a	n/a	n/a	l		
ŀ	29	6	L	45C	INPLANT_C	DV	Contractor engineering & instal	lanon labor F	n/a	n/a	п/а	1		
ŀ	35	2	8	257C	DLC Equipm	DΫ	Channel unit plug-in	F	n/a	n/a	RT	1	Ī	
	35	3	В	257C	DLC Equipm	DV	DLC CO, DSX-1 Panel	F	n/a	n/a	co	1	_	
	35	4	В	257C	DLC Equipm	DV	DLC RT, D5X-1 Panel	F	n/a	n/a	RT	1	_	
	36	1	8	257C	MUX Equipm	DV	LRIC mux of 22,24,26 gauge	F	n/a	n/a	co	1	-	
ł	36	2	В	10C	MUX Equipm	DV	Hut	F	n/a	n/a	RT-	1	_	
	.36	3	В	257C	MUX Equipm	DV	LRIC mux of 22,24.26 gauge	F	n/a	n/a	RT-	1		
طا	36	+	В	1C	MUX Equipm	DV	CEV	F	n/a	n/a	RT-	ι		
17				<u> </u>	l			INVESTMENT S	UBTOT	AL FOR	NV TY	PE: DV		

Seg	Item	M/L	FRC	Pid	Гуре	Description	F/D	Size	Gg/Md	ГУдь	Units	Unit Inv	Totalinv
31	1	M	45C	600BLRIC	DV	LRIC mix of 22,24,26 gauge	D	600	MIX	8	20	7	
	2	M	45C	EXEMPT_MA	DV	Exempt materials loadings	D	n/a	n/a	n/a	1		
•	3	8	20C	SUPPORT_L	DV	ROW ldg for buried	D	n/a	n/a	n/a	1		
31	4	L	45C	INPLANT_E	DV	Telco engineering labor	D	n/a	n/a	n/a	1		
31	5	Ļ	45C	INPLANT_IN	DV	Telco installation labor	D	n/a	n/a	n/a	1		
31	6	L	45C	INPLANT_C	DV	Contractor engineering & installation labor	D	n/a	n/a	n/a	1		
32	1	М	45C	900BLRIC	DV	LRIC mix of 22,24,26 gauge	D	900	MIX	В	950		
32	2	М	45C	EXEMPT_MA	DV	Exempt materials loadings	D	n/a	n/a	n/a	1		
32	3	8	20C	SUPPORT_L	DV	ROW ldg for buried	D	n/a	n/a	n/a	1	_	
32	4	L	↓5C	INPLANT_E	DV	Telco engineering labor	P	n/a	n/a	n/a	1		
32	5	L	45C	INPLANT_IN	DV	Telco installation labor	D	n/a	n/a	n/a	1		
32	6	L	45C	INPLANT_C	DV	Contractor engineering & installation labor	D	n/a	n/a	n/a	l	[.	
33	1	M	45C	400BLRIC	DV	LRIC mix of 22,24,26 gauge	D	400	MIX	В	325		
33	2	М	45C	EXEMPT_MA	DV	Exempt materials loadings	D	n/a	n/a	n/a	1		
33	3	В	20C	SUPPORT_L	DV	ROW ldg for buried	D	n/a	n/a	n/a	1	<u>_</u>	
33.	+	L	45C	INPLANT_E	DV	Telco engineering labor	D	n/a	n/a	n/a	1		
33	5	L	45C	INPLANT_IN	DV	Telco installation labor	D	n/a	n/a	n/a	1	L	
33	6	L	45C	INPLANT_C	DV	Contractor engineering & installation labor	D	n/a	n/a	n/a	1		<u></u>
34	ī	М	45C	200BLRIC	DV	LRIC mix of 22,24,26 gauge	D	200	MIX	В	1,700		
34	2	М	45C	EXEMPT_MA	DV	Exempt materials loadings	D	n/a	n/a	n/a	1	L	
11	3	В	20C	SUPPORT_L	DV	ROW ldg for buried	D	n/a	n/a	n/a	1		
		L	45C	INPLANT_E	DV	Telco engineering labor	D	n/a	n/a	n/a	1		
	, ===	L	45C	INPLANT_IN	I DV	Telco installation labor	D	n/a	n/a	n/a	1	L	
34	6	, [45C	INPLANT_C	DV	Contractor engineering & installation labor	D	n/a	n/a	n/a	1		
33	1	M	120	333892750	DV	Copper Riser Cable ARTM	D	50	26	R	190		:

18

LOOP INVESTMENT RESULTS FOR

LAFT.2WNI

Page o

Δ	-сп В		t type D	ROUTE LE			CLASS O 10.0		AIR !	AILES:	Κ,	6.16	DAOLXJI M	
	_	M/L		Pid	Lype			F/D		Gg/Md	РУЛЬ	Units	Unit Inv	Totalinv
35	5	М	12C	EXEMPT_MA	DV	Exempt materials loadings		D	n/a	n/a	π/a	1		
35	6	L	12C	INPLANT_E	עם	Telco engineering labor		D	n/a	n/a	n/a	1	-	
35	7	L	12C	INPLANT_IN	ĎV	Telco installation labor		D	n/a	n/a	n/a	1	_	
35	8	L	12C	INPLANT_C	DV	Contractor engineering & installation	n labor	D	n/a	n/a	n/a	1	_	
	,				· · · · · · · · · · · · · · · · · · ·	INV	ESTMEN	r T St)BTOT/	AL FOR I	NV TYI	PE: DV	- - (
						IN	VESTME	NT	SUBTO	TAL FO	R DIST	RIBUTIO	NC	
						<u></u>		-						-
	_					***************************************	L	00	P MAI	EUP IN	VEST	MENT	TOTAL:	_

F18G01Q 00205

TAB F

Computation of Average Loop Investments by Class of Service

After developing investments for each circuit in the loop survey, investment dollars are totaled by field reporting code for Residence and Business circuits separately. The totals are then divided by the number of survey circuits for residence and business. The results represent the average or typical investment for each field reporting code for a Residence and Business circuit.

The weighted loop investment is developed by multiplying the average investment for Residence and Business by the number of lines in service at the time the survey circuits were randomly selected for the loop survey. For example, the resulting average investment for buried aerial metallic cable (45C - feeder and distribution) is \$ for the 2 wire 100% non-integrated study.

TAB G

Overview of Recurring Cost Spreadsheet Methodology

The following cost summary spreadsheets are developed as follows:

- 1) LRIC / 100% Nonintegrated 2 Wire
- 2) LRIC / 100% Nonintegrated 4 Wire
- 3) LRIC / 100% Nonintegrated 2 Wire ISDN

Cost Methodology:

- 1) The average investment (Column C) by Field Reporting Code (FRC) is provided by the loop investment model. The average investment represents the combined feeder and distribution average investment per circuit. The average investment per circuit includes the appropriate state sales tax.
- 2) The annual cost associated with each investment is determined by multiplying the average investment by the capital and operating expense annual cost factors. The total annual cost is divided by 12 to determine the monthly cost. The monthly cost is multiplied by the 3-5 year levelized investment factor to determine the levelized monthly cost.
- 3) Spreadsheets I and 3 provide for a Weighted Residential and Business Loop Cost ** and Spreadsheet 2 provides for a Business Loop Cost only.
- 4) The total levelized monthly cost for each spreadsheet includes loop associated cost additives (i.e., levelized monthly computer system cost, distributing frame cost, and TIRKS cost).
- ** The weighted residential and business loop investment (Column C) is developed by weighting the combined feeder and distribution average investment for Residence and the combined feeder and distribution average investment for Business by the respective residence or business number of access lines in service at the time the circuits were randomly selected for the loop survey.

NOTE: The terms "monthly" and "recurring" are interchangeable.

	A	В	С	D	E F	G H	i 1 k	L M	N O	Р (a R S	, т ч	u v w
104 105 106 107	Combined Feeder & Distribution LRIC / 100% Nonntegrated - 2 Wire Weighted Residential & Business Lot	op Cost											
108 109 110 111	State:	FLORIDA	Average Investment	Deprec	G O M. 13 2%	Income Tax	Total Cap (D+F+H)	Mice	Adval Tax	Oper Exp (L+N)	Local GRT 0 0152 (J+P)*R111	Total Monthly Cost	Levelized Monthly Cost
112	-+==================================		: ::::::::	232222##	=======================================	********				, .	******		
114	A	В	C	(D116'\$C11	in E	F	<u>6</u>	H	エ	ゴ	X	(J+P+R¥12 ∟	(T*V factor)
115 116	Land	20C	r	a 0000	0 1118	0.0514	0 1632	0.0000	0.0113	0 0113	0.0027	_	1.059
117 118	Buildings	10C, 110C, 810C	L.	0.0302	0.0986	0.0452	0.1740	0.0089	U.UU7 /	Q.U146	0 0029		1.059
119 120	Digit Circ-Pair Gain	257C,D257C,F257C	L	0 1134	0.0636	0.0288	0.2058	0.0069	0.0113	0.0202	0.0034	_	0.962
121 122	Poles	1C, 811C		0.0671	0.0725	0.0325	0.1721	0.0279	0.0113	0 0392	0.0032		1.072
123 124	Aerial Ca-Metallic	22C, 12C, 602C	L_ :	0.0917	0.0797	0.0336	0.2052	0.0571	0 0113	0.0684	0.0042		1.061
125 126 127	Aerial Ca-Fiber	822C, 812C, 882C, 982C,D22C, F22C,T22C,D12C,F12C,T12C	L	0.0667	0.0764	0.0347	0.17 98	0.0139	0.0113	0 0252	0.0031	-	1.003
128 129	Unground Ca-Metallic	5C, 805C		0 1036	0.0813	0.0342	0 2191	0.0291	0.0113	0 0404	0 0039		1.069
130	Unground Ca-Fiber	85C,885C,985C,D5C,F5C,T5C	E.L.	0.0626	0.0000	0.0356	0.1784	0.013\$	0 0113	0.0248	0 0031		1.000
132	Buried Ca-Metallic	45C, 846C	13	0 0876	0 0809	0.0354	0 2039	0.0543	0 0113	0.0656	0.0041		1 058
134 135 136	Buried Ca-Fiber	845C,856C,956C,D45C, F45C,T45C	L	0.0585	0.0616	0.0367	0 1768	0 0144	0 0113	0.0257	0 0031		1.041
137	Submarine Ca-Metallic	6C, 806C		0 0860	0.0814	0.0366	0.2040	0.0150	0 0113	0 0263	0.0035		1 054
139 140	Submarine Ca-Fiber	86C,886C,D6C,F6C,T6C	land Frank	0 0860	0.0814	0.0355	0.2029	0.0150	0.0113	0.0263	0 0035		1 000
141 142 143	Introld Newk-Metallic	52C	l	0.0661	0.0785	0.0340	0.1786	0.0320	0.0113	0.0433	0.0034		1.069
144	Introld Newl-Fiber	852C,D52C,F52C,T52C	Kezz.	0.0661	0.0765	0.0340	0.1786	0.0320	0.0113	0.0433	0.0034	•	1 000
146 147	Conduit Systems	4C, 84C, 94C	L	0 0242	0.0677	0 0401	0 1520	0 0028	0.0113	0 0141	0 0025		1 044
148 149	Aerial Drop	22C	Lini Lini	0 0917	0 0797	0 0338	0 2052	0 0571	0.9113	0.0684	0 0042		1 061
150 151 152	Buried Crop	45C	Lili	0.0876	0.0809	0 0354	0 2039	0 0543	0 0113	D 0656	0 0041		1 058
153 154 155	Total Investment Subtotal Levelized Monthly Cost Levelized Monthly Computer Sys Cost	SUM(C117 C151) Sum Cost (Column V)	\$										
156 157 158	Levelized Monthly Disbributing Frame C Levelized Monthly TIRKS Cost Total Levelized Monthly Cost	ost _(((0 0052*(1+\$R\$111)*\$C121)/12 _SUM(V154_V157)	?} *\$ ∨120)										1 ! !

A 1 2 3	Combined Feeder & Distribution LRIC / 100% Nonintegrated - 4 Wire BUSINESS LOOP	В	c	D E	F G	н	i j K	L M	N 0	Р () R (5 T 1	N A r
4 5 6 7 8	State:	FLORIDA	Average Investment		C O M 13 2%	income Tax	Total Cap (D+F+H)	Mice	Adval Tax	Oper Exp (L+N)	Local GRT 0 0152 (J+P)*R7	Total Monthly Cost	t.evekred Monthly Cost
9 10 11	A	3	C	(D12°\$C13)—	E	F	G	H	エ	- - - -	K,	(J+P+R)/12	(T*V lactor)
12 13	Land	20C 10C, 110C, 810C		0 0000 0.0302	0 1118	0 0514 0 0452	0 1632 0 1740	2 000G 0.0069	0 0113 0.0077	0 0113 0 0146	0 0027		1 059
14 15 16	Buildings Digit Circ-Pair Gain	257C.D257C.F257C		0.1134	0.0636	0.0288	0.2058	0 0049	0.0113	0 0202	0 0034		0 962
17 18	Poles	1C, 811C		0.0671	0.0725	0 0325	0.1721	0.0279	0 0113	0 0392	0 0032		1 072
19 20	Aerial Ca-Metallic	22C, 12C, 802C		9.0917	0.0797	0.0338	0 2052	0.0571	0 0113	0 0664	0 0042		1 061
21 22 23	Aerus Ca-Fiber	822C, 612C, 862C, 962C,D22C, F22C,T22C,D12C,F12C,T12C		0.0667	0.0764	0.0347	0.1796	0.0139	0 0113	0 0252	0 0031		1 003
24 25	Unground Ca-Metallic	5C, 805C		0.1036	0.0813	0.0342	0 2191	0.0291	0 0113	0 0404	0 0039		1 069
26 27 28	Unground Ca-Fiber	a5C,885C,985C,D5C,F5C,T5C		0.0526	0 0000	0.0358	0.1784	0 0135	0 0113	0 6248	0 0031		1 000
29 30	Burind Ca-Motalic	45C, 846C		0 0e74	6.0000	0 0354	0 2030	0 0543	0 0113	0 0656	0 0041	•	1 058
31 32	Burred Ca-Fiber	845C,856C,956C,D45C, F45C,T45C		9.0585	0.0816	0.0367	0.1768	0 0144	0.0113	0 0257	0 0031		1 041
33 34 35	Submarine Ca-Metallic	6C, 806C		0 0860	0 0814	0.0366	9.2040	0.0150	0 0113	0 0263	0 0035		1 054
36 37	Submarine Ca-Fiber	86C,886C,D6C,F6C,T6C		0.0860	0 0014	0.0355	0.2029	0.0150	0 0113	0 0263	0 0035		1 000
38 39	inirbid Htwk-Melalic	52C		0.0661	0.0785	0.0340	0.1786	0.0320	0.0113	0.0433	0.0034		1 069
40 41	Introld News-Fater	652C,D62C,F52C,T52C		0.0661	0.0786	0.0340	0.1786	0.0320	0 0113	0.0433	0 0034		1 000
42 43 44	Conduit Systems Aerial Drop	4C, 84C, 94C 22C		0.0242 0.0017	0.0977	0.0401	u. 1520 0.2052	0.0028	0 0113	0.0141	0 0025		1 044
45 46	Buried Drop	45C		0.0076	0.0000	0.0354	0 2039	0.0543	0.0113	0 0656	0 0042 0 0041		1 061
47 48					2.000	V. 3227	~ 2445	, 4.4343	00113		u wa i		1 058
49 50 51	Total Investment Subtotal Levelized Monthly Cost Levelized Monthly Computer Sys Cost	SUM(C12 C47) Sum Cost (Column V)											
52 53 54	Levelzed Monthly Disbributing Frame C Levelzed Monthly TiRKS Cost Total Levelzed Monthly Cost	ost {((0 0052*(1*\$R\$7)*\$C17)/12)*\$V SUM(V50: V53)	16)										1

NOTICE
NOT FOR USE OR DISCLOSURE OUTSIDE
BELLSOUTH OR ANY OF ITS SUBSIDIARIES
EXCEPT UNDER WRITTEN AGGREEMENT.

F18G01Q 00211

W

R

0

В

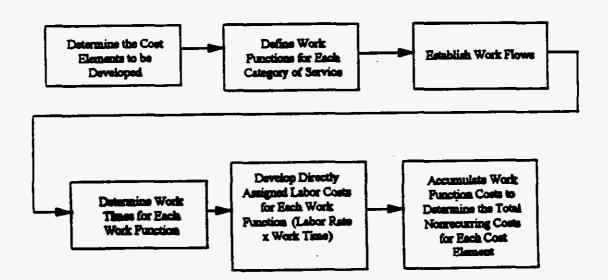
Combined Feeder & Distribution LRIC / 100% Nonintegrated - 2 Wire ISDN Weighted Residential & Business Loop Cost Levelized Local Total **FLORIDA** State GRT Monthly Monthly Oper Adval COM Income Total Cost 0.0152 Cost Mice Tax Ехр 13.2% Tax Cao Deprec Average (J+P)'R111 (L+N) (D+F+H) investment (J+P+R)/12 (T"V factor) (D116'\$C117)-H Μ G ᆮ P 00113 0 0113 0.0027 1 059 0.0000 0 0514 0.1632 0 0000 0.1118 20C Land 1.059 0 0029 0 0077 0 0146 0.0452 0.1740 0.00690 0302 0 0986 10C, 110C, 810C Buildings 0.962 0 0113 0.0202 0 0034 0.2058 0.0089 0.02860.1134 0 0636 257C.D257C.F257C Digit Circ-Pair Gain 0.0392 0.0032 1.072 0.0279 0.0113 0.0725 0.0325 0 1721 0.0671 1C. 811C Poles 0 0113 0.0684 0.0042 1.061 0.0797 0.0571 0.0338 0.2052 0.0917 22C, 12C, 802C Aerial Ca-Metalic 0.0031 1 003 0.1798 0.0139 0.0113 0.0252 0.0784 0.0347 0.0667 822C, 812C, 882C, 982C, D22C, Aerial Ca-Fiber F22C, T22C, D12C, F12C, T12C 1 069 0.0113 0.0404 0.0039 0 2191 0 0291 0.0342 0 1036 0.0813 5C, 805C Unground Ca-Metallic 0 0113 0.0248 0 0031 1.000 0.0800 0.0358 0.1784 0.0135 0 0626 85C,885C,985C,D5C,F5C,T5C Unground Ca-Fiber 0.0041 1 058 0.0656 0.0354 0 2039 0.0543 0 0113 0.0809 0.0876 45C. 846C **Buried Ca-Metallic** 1041 0.0031 0 0367 0.1768 0.0144 00113 0 0257 0 0616 0 0585 845C,856C,956C,D45C, **Buried Ca-Fiber** F45C.T45C 0.0113 0 0263 0 0035 1 054 0.2040 0.0150 0.0860 0.0814 0.0366 6C, 806C Submarine Ca-Metallic 0.2029 0.0113 0 0263 0 0035 1 000 0.0355 0 0150 0 0860 0.0814 86C.886C.D6C.F6C.T6C Submarine Ca-Fiber 0.0113 0.0433 0 0034 1 069 0.0785 0 0340 0.1786 0.0320 0.0661 52C Introid Ntwk-Melalic 0.0320 0.0113 0 0433 0 0034 1 000 0.0340 0.1786 0 0661 0 0785 852C,D52C,F52C,T52C Introld Niwk-Fiber 0 0025 1 044 0 0028 0 0113 0 0141 0 0242 0 0877 0.0401 0 1520 4C, 84C, 94C Conduit Systems 1 061 0.0338 0.2052 0.0571 0.0113 0.0584 0 0042 0 0797 0 0917 22C Aerial Drop --- --0 0041 1 058 00113 0 0656 0.0876 0.0809 0.0354 0.2039 0.0543 **Buried Drop** 45C SUM(C117 C151) Total Investment Sum Cost (Column V) Subtotal Levelized Monthly Cost Levelized Monthly Computer Sys Cost 5 Levelized Monthly Disbributing Frame Cost 6 (((0 0052*(1+\$R\$111)*\$C121)/12)*\$V120) Levelized Monthly TIRKS Cost .7 SUM(V154 V157) Total Levelized Monthly Cost

1

SECTION 5

SECTION 5

FLORIDA UMBUNDLED LOOPS


COST DEVELOPMENT - NONRECURRING

Nonrecurring costs are one-time costs incurred as a result of provisioning, installing, disconnecting and completion of orders initiated by a customer request for the Unbundled Analog Loops. The Nonrecurring Cost Study is performed to determine the service order, provisioning and disconnect costs associated with the cost elements listed below. Calculations for the nonrecurring costs are included in this section.

Figure 7-1 shows a generalized flow of the steps necessary for developing nonrecurring costs. Each part of this flow will be explained in more detail in this section.

Figure 7-1

Generalized Flow Diagram for Developing Monracurring Costs

The first step in developing nonrecurring costs is to determine the cost elements to be studied. Each cost element is then described by all of the individual work functions required to provision the element. An example of a work function is the designing of a circuit in the Circuit Provisioning Group.

The work functions required to provide the Unbundled Analog Loops can be grouped into four categories. These are:

- 1) Service Order
- 2) Engineering
- 3) Connect and Test
- 4) Technician Travel Time

Work functions included in these categories range from clerical activities to installation activities.

The next step in developing nonrecurring costs requires that Company subject matter experts identify the work functions involved in the provisioning of the Unbundled Analog Loops (an example of a work function is making a cross-connect in the central office). These work functions are then used to describe the flow of work within the various work centers involved in provisioning the element.

The next step in the development of nonrecurring costs is to determine work times for each work function associated with the nonrecurring costs of the Unbundled Analog Loops. The work times of the various work groups are determined from Subject Matter Expert inputs. Each work time estimate is made by a subject matter expert who thoroughly understands how each activity is done.

A spreadsheet model is used to incorporate the specific work functions and labor rates. In order to arrive at the nonrecurring cost for the element studied, the work times for each work function required is multiplied by the appropriate labor rate. The labor inflation factors (LIF) are used to bring the labor rate to the study period. The levelized labor rate is expressed on a per minute basis, as are the worktimes. The labor rates and the labor inflation factors are shown in Section 7. Next, the individual work function costs are accumulated into the total cost for the cost element studied.

To recognize cost reductions on orders with loops, costs are calculated separately for the first and additional system and/or interface. "First" refers to the first item on a service order. "Additional" costs are the incremental costs of providing one or more duplicates of the item on the same service order at the same time as the first.

The basic process by which nonrecurring costs are calculated consists of combining unit work times with hourly costs of each specific service category. These labor times, and service order related work times, are multiplied by the directly assigned labor rates for the work groups performing the activities. Disconnect costs are calculated in the same manner, utilizing work functions, work times, and labor rates. However, a disconnect factor associated with the projected location life of the service is applied to the disconnect cost. The disconnect factor inflates the labor cost to the period of the future disconnect, discounts these

costs to the present (since the money is received up-front) and adjusts for the income tax effect due to the difference in time between the receipt of money and the disconnect expense. The disconnect cost is added to the installation cost to develop the total nonrecurring cost.

The following workpapers reflect the cost development.

Ś	SUMMARY OF NONRECURRING	NG COSTS	STATE: WORKPAPER: PAGE: DATE:	FLORIDA 700 1 OF 1 May-96
2	WIRE ANALOG VOICE GRAD	DE LOOP		
(1996-1998 Level Incrementa	I Costs at 13.2% Cost of Mon	ey)	
	A	3	\subset	\mathfrak{D}
_	DESCRIPTION	SOURCE		ADDTL
2 3 5 4	Service Order	WP750 Col G LN8		
5 E	Engineering	WP750 Col G LN10 and LN1	2	
6 7 (8	Connect & Test	WP750 Col G LN14 thrU LN1	18	
97 10	Technician Travel Time	LN20		
11 12 13 14 15 16 17	Total Nonrecurring Cost	Sum of L3, L5, L7, L9		
19 20				

LEVEL 1996 - 1998

DIRECTLY ASSIGNED

STATE: WORKPAPER: PAGE: DATE: FLORIDA 750 1 OF 1 May-96

	W	(B)	(C)	(0)		Œ	3	(F DISCO	DINTED	(G)
	INSTALL WORKTIMES (MINS)	DISCONNECT WORKTIMES (MIN		INSTALL COST (A*	_	DISCO COST	NNECT (B°C)		NNECT (E*DOF)	(D+F)*(TOTAL	(1+GRT) TOTAL
DESCRIPTION	<u>first</u> <u>addil</u>	FIRST ADDI	L RATE	FIRST A	TICK	FIRST	VOOIL	FIRST	ADDIL	<u>FRST</u>	ADDTL

0.7359

\$ ICSC (SVC ORD CONTROL)

\$ 1.6800

\$ 1.6800

\$ 2.6800

\$ 2.6800

\$ 2.6800

\$ 3.6800

\$ 3.6800

\$ 3.6800

\$ 3.6800

\$ 4.6800

\$ 4.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

\$ 5.6800

O SSIM (TRAVEL)

2 TOTAL NONRECURRING COST

24

26 29 30

186010

00218

SUMMARY OF NONRECURR	ING COSTS	STATE: WORKPAPER: PAGE: DATE:	FLORIDA 800 1 OF 1 May-96					
4 WIRE ANALOG VOICE GRA	DE LOOP							
(1996-1998 Level Increment	al Costs at 13.2% Cost of Mone	y)						
λ	3	\Box	\Box					
1 DESCRIPTION	SOURCE	FIRST	ADDTL					
2 3 Service Order 4	WP850 Col G LN8							
5 Engineering	WP850 Col G LN10 and LN12	VP850 Col G LN10 and LN12						
6 7 Connect & Test 8	WP850 Col G LN14 thrU LN18							
9 Technician Travel Time 10	LN20							
11 12 Total Nonrecurring Cost 13 14 15 16 17 18 19 20	Sum of L3, L5, L7, L9							

STATE: FLORIDA WORKPAPER: 850 PAGE: 1 OF 1 DATE: May-96

TOTAL FIRST

(G) (D+F)*(1+GAT)

TOTAL

ADDTL

1 2	(A)	(B)	(C)	(D) Install	(E) DISCONNECT	(F) DISCOUNTED DISCONNECT
3 4 5 <u>DESCRIPTION</u>	WORKTIMES (MINS) FIRST ADDTL	DISCONNECT WORKTIMES (MINS) FIRST ADDTL	LABOR	COST (A*C) FIRST ADDIL	COST (B*C) FIRST ADDTL	COST (E*DOF) FIRST ADDTL
6 7 8 ICSC (SVC ORD CONTROL)	1 (m)		60.8800			
9 10 FACS(LOOP ASGNT)			\$0.5553			
11 12 CPG(DESIGN)			\$0.6109			
13 14 NETWORK ADMIN			\$0.5839			
15 16 NTEL(CO ACTION) 17			\$0.6940			
16 SSIM(CONN & TEST) 19			\$0.735 0			
20 SSIM (TRAVEL) 21			\$0.7360			
22 23 TOTAL NONFECURRING COST						
24 25						
26 27						
28 29 30						

TS # 960028 -

SERVICE: UNBUNDLING

STATE: FLORIDA

NONRECURRING COST SUMMARY

WORKSHEET 413 PAGE 1 5/15/96

12.53 pm

	COST	RTU FEE COST	TOTAL
2 WIRE (SDN UNBUNDLED LOOP - FIRST	A		B

USOC:

ITEM NUMBER: 1 APPLICABLE? YES

- 8 INITIAL INSTALLATION
- 9 SUBSEQUENT INSTALLATION
- 10 ADD/CHANGE
- // DISCONNECT W/CUSTOMER SERVICE
- 12 DISCONNECT W/O CUSTOMER SERVICE
- /3 2 WIRE ISON UNBUNDLED LOOP ADDITIONAL

- 14 USOC: ITEM NUMBER: 2 APPLICABLE? YES
- 15 INITIAL INSTALLATION
- 16 SUBSEQUENT INSTALLATION
- 17 ADD/CHANGE
- // DISCONNECT W/CUSTOMER SERVICE
- 19 DISCONNECT W/O CUSTOMER SERVICE

SERVICE: UNBUNDLING STATE: FLORIDAT

32

DISCONNECT W/O SYSTEM

NONRECURRING LABOR COST CALCULATIONS

HORKSHEET 450 PAGE : 5/15/96 12:53 pm

2	WIRE ISDN UNBUNDLED LOOP	- FIRST						
ប	SOC: ITEM NUMBER:	, A	В	C	J	E	F	G
		EFFORT	LABOR	FEN	GRT	30C	DISCOUNT	NONRECURRING
		HOURS	RATE	FACTOR	FACTOR	FACTOR	FACTOR	COST
		*******	404500	******	******		*******	********
I	c sc	23 YY						
n	INITIAL INSTALLATION		30.30	1.0960	1.0152	1.0000		
12	SUBSEQUENT INSTALLATION		38.30	1.0960	1.0152	1.0000		
13	ADD/CHANGE		38.20	1.0960	1.0152	1.0000		
ر. س،	DISCONNECT W/SYSTEM		30.30	1.0960	1.0152	1.0000	8020	
15	DISCONNECT W/O SYSTEM		38.30	1.0960	1.0152	1.0000	. 8020	
16 C	KT PROVISIONING CENTER	CPC			•			
17	INITIAL INSTALLATION		34.41	1.0960	1.0152	1.0000		
1.8°	SUBSEQUENT INSTALLATION		34.41	1.0960	1.0152	1.0000		
19	ADD/CHANGE		34.41	1.0960	1.0152	1.0000		
ه کړ	DISCONNECT W/SYSTEM		34.41	1.0960	1.0152	1.0000	.8020	
الد	DISCONNECT W/O SYSTEM		34.41	1.0960	1.0152	1.0000	. 8020	
ه ډډ	UTSIDE WORK GRP DED SPEC S	DSS						
ود	INITIAL INSTALLATION		41.45	1.0960	1.0152	1.0000		
24	SUBSEQUENT INSTALLATION		41.45	1.0960	1.0152	1.0000		
25	ADD/CHANGE		41.45	1.0960	1.0152	1.0000		
26	DISCONNECT W/SYSTEM		41.45	1.0960	1.0152	1.0000	.8020	
スマ	DISCONNECT W/O SYSTEM		41.45	1.0960	1:0152	1.0000	. 8020	
28 E	ACILITIES ASSIGNMENT	FACS						
وړ	INITIAL INSTALLATION		31.28	1.0960	1.0152	1.0000		
30	SUBSEQUENT INSTALLATION		31.26	1.0960	1.0152	1.0000		
.31	ADD/CHANGE		31.28	1.0960	1.0152	1.0000		
32	DISCONNECT W/SYSTEM		31.20	1.0960	1.0152	1,0000	. 8020	
33	DISCONNECT W/O SYSTEM		31.28	1.0960	1.0152	1.0000	.8020	
34 o	utside plany engineering	PG30				-		
35	INITIAL INSTALLATION		45.26	1.0960	1.0152	1.0000		•
36	SUBSEQUENT INSTALLATION		45.26	1.0960	1.0152	1.0000		
37	ADD/CHANGE		45.26	1.0960	1.0152	1.0000		
38	DISCONNECT W/SYSTEM		45.26	1.0960	1.0152	1.0000	. 8020	
-	DISCOURSE MIA SYSTEM		45 76	1 0940	1 0152	1 0000	8020	

NOTICE: NOT FOR USE OR DISCLOSURE OUTSIDE BELLSOUTH EXCEPT UNDER WRITTEN AGREEMENT.

45.26 1.0960 1.0152 1.0000

. 8020

2 WIRE ISON UNBUNDLED LOOP - FIRST

WORKSHEET 453 PAGE 2 5/15/36 12.53 pm

		HOURS	RATE	FACTOR	FACTOR	FACTOR	FACTOR	NONRECURRIN COST
•		LABOR EFFORT	LABOR	FÉN	GRT	80C	DISCONNECT DISCOUNT	7
೮ಽ೦೦:	ITEM NUMBER:	ı A	B	۷	D	Ε	F	6

		LABOR				_	DISCONNECT	,
		EFFORT	LABOR	FEN	GRT	BOC	DISCOUNT	NONRECURRING
		HOURS	RATE	FACTOR	FACTOR	FACTOR	FACTOR	COST
		*******			******	******	********	••••
C	ONTROL OUTSIDE WORK-SPEC S	NICS						
θ	INITIAL INSTALLATION		33.72	1.0960	1.0152	1.0000		
12	SUBSEQUENT INSTALLATION		33.72.	1.0960	1.0152	1.0000		
13	ADD/CHANGE		33.72	1.0960	1.0152	1.0000		
14	DISCONNECT W/SYSTEM		33.72	1.0960	1.0152	1.0000	8020	
15	DISCONNECT W/O SYSTEM		33.72	1.0960	1.0152	1.0000	. 8020	
16 00	ADMIN CKT, CARRIER & FAC	NTEC						
14	INITIAL INSTALLATION		36.05	1.0960	1.0152	1.0000		
18	SUBSEQUENT INSTALLATION		36.05	1.0960	1.0152	1.0006		
19	ADD/CHANGE		36.05	1.0960	1.0152	1.0000		
مُدِ	DISCONNECT W/SYSTEM		36.05	1.0960	1.0152	1.0000	.8020	
۱ ډير	DISCONNECT W/O SYSTEM		16.05	1.0960	1.0152	1.0000	.8020	
ון גַגַ	TWORK PLUG-IN ADMINISTRAT	PICS			-			
23	INITIAL INSTALLATION		41.65	1.0960	1.0152	1.0000		
24	SUBSEQUENT INSTALLATION		41.65	1.0960	1.0152	1.0000		
25	ADD/CHANGE		41.65	1.0960	1.0152	1.0000		
26	DISCONNECT W/SYSTEM		41.65	1.0960	1.0152	1.0000	. 8020	
27	DISCONNECT N/O SYSTEM		41.65	1.0960	1.0152	1.0000	. 8020	
28 NE	TWORK SERVICES CLERICAL	SOP89						
23	INITIAL INSTALLATION		30.21	1.0960	1.0152	1.0000		
30	SUBSEQUENT INSTALLATION		30.21	1.0960	1.0152	1.0000		
31	ADD/CHANGE		30.21	1.0960	1.0152	1.0000		
32	DISCONNECT W/SYSTEM		30.21	1.0960	1.0152	1.0000	. 8020	
33 33	DISCONNECT W/O SYSTEM		30.21	1.0960	1.0152	1.0000	. 8020	
24 58	PEC SVCS COORD & TESTING	SSC						
-	INITIAL INSTALLATION		36.41	1.0960	1.0152	1.0000		
36	SUBSEQUENT INSTALLATION		36.41	1.0960	1.0152	1.0000		
37	ADD/CHANGE		36.41	1.0960		1.0000		
38	DISCONNECT W/SYSTEM		36.41	1.0960	1.0152	1.0000	. 8020	
39	DISCONNECT W/O SYSTEM		36.41	1.0960	1.0152	1.0000	. 6020	

	028 : UNBUNDLING FLORIDA-		NCHRECURRI	WCRKSHEET 45: PAGE 3 5/15/35 12 53 pm				
2 WIRE I	ISON UNBUNDLED LOOP	- FIRST	÷					
USOC:	TTEM NUMBER:	1 A LABOR	8	۷	D	Ε	F DISCONNECT	4
		EFFORT	LABOR	FEN	GRT	BOC	DISCOUNT	NONRECURRING
		HOURS	RATE	FACTOR	FACTOR	FACTOR	FACTOR	COST
		.,,,,,,,	******	*******	*****		********	**********
SUMMARY	- ITEM NUMBER	1						
, INIT	IAL INSTALLATION							
•	EQUENT INSTALLATION			<i>.</i>				
13 400/0	CHANGE			<i></i>				
14 DISCO	ONNECT W/SYSTEM					· · · · · · · · · · · · ·		
DISC	ONNECT W/O SYSTEM							• • • •

NOTICE: NOT FOR USE OR DISCLOSURE OUTSIDE BELLSOUTE EXCEPT UNDER WRITTEN AGREEMENT.

37 ADD/CHANGE 38 DISCONNECT W/SYSTEM

39 DISCONNECT W/O SYSTEM

NONRECURRING LABOR COST CALCULATIONS

#CRKSHEET 453 PAGE 4 5/15/96 12:53 pm

	2 WIRE ISON UNBUNDLED LOOP	- ADDITIONA	L					
	USOC. ITEM NUMBER:	2 A	B	c	Œ	E	DISCONNECT	4
		EFFORT	LABOR	FEN	GRT	80C	DISCOUNT	NONRECURRING
		HOURS	RATE	FACTOR	FACTOR	FACTOR	FACTOR	COST
		******		******	*****			***********
	ICSC	23YY						
11	INITIAL INSTALLATION		38.30	1.0960	1.0152	1.0000		
12	SUBSEQUENT INSTALLATION	Ī	36.30	1.0960	1.0152	1.0000		
13	ADD/CHANGE		18.30	1.0960	1.0152	1.0000		
14	DISCONNECT W/SYSTEM		36.30	1.0960	1.0152	1.0000	.8020	
15	DISCONNECT W/O SYSTEM		36.30	1.0960	1.0152	1.0000	.8020	
16	CKT PROVISIONING CENTER	CPC						
17	INITIAL INSTALLATION		34.43	1.0960	1.0152	1.0000		
18	SUBSEQUENT INSTALLATION	t .	34.41	1.0960	1.0152	1.0000		
	ADD/CHANGE		34.41	1.0960	1.0152	1.0000		
15	DISCONNECT W/SYSTEM		34.41	1.0960	1.0152	1.0000	. 8020	
ن <u>ت</u> ا نے	DISCONNECT W/O SYSTEM		34.41	1.0960	1.0152	1.0000	. 8020	
	OUTSIDE WORK GRP DED SPEC	S DSS	_					
23	INITIAL INSTALLATION	-	41.45	1.0960	1.0152	1.0000		
24	SUBSEQUENT INSTALLATION	I	41.45	1.0960	1.0152	1.0000		
25	ADD/CHANGE		41.45	1.0960	1.0152	1.0000		
26	DISCONNECT W/SYSTEM		41.45	1.0960	1.9152	1.0000	.8020	
27	DISCONNECT W/O SYSTEM		41.45	1.0960	1.9152	1.0000	. 8020	
28	FACILITIES ASSIGNMENT	FACS						
وہے	INITIAL INSTALLATION		31.26	1.0960	1.0152	1.0000		
ەد	SUBSEQUENT INSTALLATION	r	31.28	1.0960	1.0152	1.0000		
31	ADD/CHANGE		31.28	1.0960	1.0152	1.0000		
3 -			31.28	1.0960	1.0152	1.0000	. 8020	
33	•		31.28	1.0960	1.0152	1.0000	. 8020	
34	OUTSIDE PLANT ENGINEERING	PG30						
کد	INITIAL INSTALLATION		45.26	1.0960	1.0152	1.0000		
36		•	45.26	1.0960	1.0152	1.0000		
36								

NOTICE: NOT FOR USE OR DISCLOSURE OUTSIDE BELLSOUTH EXCEPT UNDER WRITTEN AGREEMENT.

45.26 1.0960 1.0152 1.0000 45.26 1.0960 1.0152 1.0000

45.26 1.0960 1.0152 1.0000

. 8020

. 8020

SERVICE: UNBUNDLING

STATE: FLORIDAT NONRECURRING LABOR COST CALCULATIONS

PAGE 5 9/15/96

12:53 pm

2	WIRE	ISDN	CALCINUENU	LOOP	-	ADDITIONAL
---	------	------	------------	------	---	------------

:	:soc	ITEM NUMBER:	2 A	Ø	c	D	Ε	DISCONNECT	\$
			EFFORT	LABOR	FEN	GRT	800	DISCOUNT	NONRECURRING
			HOURS	RATE	FACTOR	FACTOR	FACTOR	FACTOR	COST
			*******	*****			*****	********	**********
c	CONTROL OUT	SIDE WORK-SPEC S	NICS						
n		INSTALLATION		33.72	1.0960	1.0152	1.0000		
12	SUBSEQUE	NT INSTALLATION		33.72	1.0960	1.0152	1.0000		
13	ADD/CHAN	GE		33.72	1.0960	1.0152	1.0000		
14	DISCONNE	CT W/SYSTEM		33.72	1.0960	1.0152	1.0000	. 6020	
15	DISCONNE	CT W/O SYSTEM		33.72	1.0960	1.0152	1.0000	. 8020	
16 C	O ADMIN CX	T, CARRIER & FAC	NTEC						
17	INITIAL	INSTALLATION		36.05	1.0960	1.0152	1.0000		
18	SUBSEQUE	NT INSTALLATION		36.05	1.0960	1.0152	1.0000		
15	ADD/CHAN	GE		36.05	1.0960	1.0152	1.0000		
ەرب	DISCONNE	CT W/SYSTEM		36.05	1.0960	1.0152	1.0000	. 8020	
اد	DISCONNE	CT W/O SYSTEM		36.05	1.0960	1.0152	1.0000	.0020	
77 ×	ETWORK PLU	G-IN ADMINISTRAT	PICS						
23	INITIAL	INSTALLATION		41.65	1.0960	1.0152	1.0000		
24	SUBSEQUE	NT INSTALLATION		41.65	1.0960	1.0152	1.0000		
25	ADD/CHAN	GE		41.65	1.0960	1.0152	1.0000		
26	DISCONNE	CT W/SYSTEM		41.65	1.0960	1.0152	1.0000	.8020	
27	DISCONNE	CT W/O SYSTEM		41.65	1.0960	1.0152	1.0000	. 8020	
28 x	ETWORK SER	VICES CLERICAL	SOP89						
ود	INITIAL	INSTALLATION		30.21	1.0960	1.0152	1.0000		
30	SUBSEQUE	NT INSTALLATION		30.21	1.0960	1.0152	1.0000		
31	ADD/CHAN	g e		30.21	1.0960	1.0152	1.0000		
3.7	DISCONNE	CT W/SYSTEM		30.21	1.0960	1.0152	1.0000	.8020 *	
33	DISCONNE	CT W/O SYSTEM		30.21	1.0960	1.0152	1.0000	. 6020	
34 s	PEC SVCS O	OCHE & TESTING	SSC				•		
35	INITIAL	Installation		36.41	1.0960	1.0152	1.0000		
36	SUBSEQUE	MF INSTALLATION		36.41	1.0960	1.0152	1.0000		
3.7	ADD/CHAM	GB.		36.41	1.0960	1.0152	1.0000		
38	DISCONNE	CT W/SYSTEM		36.41	1.0960	1.0153	1.0000	. 8020	
33	DISCONNE	CT W/O SYSTEM		36.41	1.0960	1.0152	1,0000	. 0020	

NOTICE: NOT FOR USE OR DISCLOSURE OUTSIDE RELLSOUTE EXCEPT UNDER WRITTEN AGREEMENT.

SE:	#960028 RVICE: UNBUNDLING ATE: FLORIDAT		ngnrecurr i		#ORKSHEET 432 PAGE 5 5/15/96 12 53 pm			
-	WIRE ISON UNBUNDLED LOOP OC: ITEM NUMBER:	2 A LABOR EFFORT HOURS	LABOR RATE	FEN FACTOR	GRT FACTOR	E BOC FACTOR	DISCONNECT DISCOUNT FACTOR	NONRECURRING COST
su 11 12 13 14 15	MMARY - ITEM NUMBER INITIAL INSTALLATION SUBSEQUENT INSTALLATION ADD/CHANGE DISCONNECT W/SYSTEM DISCONNECT W/O SYSTEM				,			

NOTICE: NOT FOR USE OR DISCLOSURE OUTSIDE BELLSOUTH EXCEPT UNDER WRITTEN AGREEMENT.

FLORIDA UNBUNDLED LOOPS

SPECIFIC STUDY ASSUMPTIONS

The cost study for the Unbundled Loops for the state of Florida is based on incremental economic theory and assumptions, plus specific Network deployment strategies, first choice provisioning guidelines, and equipment purchasing information.

Cost study assumptions are as follows.

150 C 50 E

- 1. Forward-looking technology is represented in the following manner:
 - . all feeder sections of the loop will be fiber placements
 - . all distribution sections of the loop will include a mix of 22,24,26 gauge copper cable based on a projection of placement over the next five years
- 2. Utilization of cable segments is applied as follows:

Cable Pair/Strand Cable Pair/Strand Utilization Equivalent DSO Circuits

copper (SLC) copper (feeder) copper (dist'n)	utilization = utilization = utilization =	DSO circuits DSO circuit DSO circuit
fiber (feeder) fiber (dist'n)	utilization = utilization =	DSO circuits DSO circuits

- 3. Study period is 1996 to 1998 based on 1995 investments and factors
- 4. The cost of money applied is 13.2%.

NOTICE
NOT FOR USE OR DISCLOSURE OUTSIDE
BELLSOUTH OR ANY OF ITS SUBSIDIARIES
EXCEPT UNDER WRITTEN AGGREEMENT.

F18G01Q 00229

FLORIDA UNBUNDLED LOOPS

FACTORS AND LOADINGS

Following are the incremental annual cost factors, miscellaneous loadings and labor rates used in the 2-Wire Analog Voice Grade Loop, the 4-Wire Analog Voice Grade Loop, and the 2-Wire ISDN Digital Loop.

Florida Unbundled Loops Factors and Loadings

	Miscellaneous Loadings (see attached data	abase worksheet)
4	Computer Regional Monthly Systems Cost	
15,0	Distributing Frame Weighted Monthly Cost	(2-wire) (4-wire)
	TIRKS Regional Annual Expense Factor	.0052
	Sales Tax	.06
	Annual Cost Factors: (see attached spr	eadsheet)
	Gross Receipts Tax Factor	0.0152
	Discounted Disconnect Factor	0.854007
	1995 Directly Assigned Hourly Labor Rates	
	Customer Point of Contact (ICSC) CO Install & Maintenance (NTEL) Circuit Provisioning Group (CPG) Network Admin Facilties Assignment (FACS) Install & Mtce - Spec Svcs (SSIM) Outside Plant Engineering Spec Svcs (NICS) CO Admin Ckt, Carrier & Fac (NTEC) Network Planning & Eng (PICS) Network Services Clerical Special Svc Coord & Testing (SSC) Outside Work Group Ded Spec (DSS) Labor Inflation	\$38.30 \$39.09 \$34.41 \$32.89 \$31.28 \$41.45 \$45.26 \$33.72 \$36.05 \$41.65 \$30.21 \$36.41 \$41.45
	Telco Eng Year 1 Year 2 Year 3	3.4% 3.8% 3.6%
·	Telco COE Year 1 Year 2 Year 3	3.2% 3.5% 3.4%

NOTICE
NOT FOR USE OR DISCLOSURE OUTSIDE
BELLSOUTH OR ANY OF ITS SUBSIDIARIES
EXCEPT UNDER WRITTEN AGGREEMENT.

F18G01Q 00232

Investment Inplant Factors

Α	\mathcal{D}		D	E	F	<u>G</u>	+	I
FRC	State	Distiplion	%Nonexempt	%Exempt	%Teico Eng	%Telco Lust	%Labor-Contr	%Support
120	FL	Aenal Cable - Metailic (Entrance Cable)				i		
22C	FL	Aenal Cable - Metallic				ī		1
248	FL	Aerial Cable - Metallic (Service Drop)				1		1
45C	FL	Buned Cable - Metallic			<u> </u>			i
52C	FL	Intrabidg Newk Cable - Metallic						1
548	FL	Buried Cable - Metallic (Service Drop)						1
5C	FL.	Underground - Metallic				•		į
6C	FL	Submarine Cable - Metallic			_			Ī
D12	FL	Aenal Cable - Non-Metallic (Entrance Cable)			_			1
F12	FL	Aerial Cable - Non-Metallic (Entrance Cable)			_			1
T12	FL	Aerial Cable - Non-Metallic (Entrance Cable)			_	•		j
D22	FL	Aenal Cable - Non-Metallic (Distr)				•]
F22	FL	Aenai Cable - Non-Metallic (Feeder)					<u> </u>	j
T22	FL	Aenai Cable - Non-Metallic (Interofc)					<u> </u>	
D45	FL	Buried Cable - Non-Metallic (Distr)			_]
F45	FL.	Buried Cable - Non-Metallic (Feeder)			_			
T45	FL	Buried Cable - Non-Metallic (Interofc)			_]
D52	FL.	Intrabldg Ntwk Cable - Non-Metallic (Distr)			_		<u> </u>	1
F52	FL	Intrabidg Ntwk Cable - Non-Metallic (Feeder)			_			1
T32	FL	Intrabidg Ntwk Cable - Non-Metallic (Interofc)			_			1
D5C	FL	Underground Cable - Non-Metallic (Distr)			_]
F5C	FL	Underground Cable - Non-Metallic (Feeder)			_		1	3
اعر	FL	Underground Cable - Non-Metallic (Interofc)			_			
ا عضر	FL	Submarine Cable - Non-Metallic (Distr)						
_		Submarine Cable - Non-Metallic (Feeder)						
T6C	FL	Submarine Cable - Non-Metallic (Interofc)						
				l				

,s^

100

120 120 130

131

B C D E F G H I J K L M N D P Q R S I U V W X Y Z AA AB AC AD

ACCOUNT AVERAGE ANNUAL COST FACTORS

WCREMENTAL

WCREMENTAL

101 WCREMENTAL																
102					•											
103 104		field_code	decrecation	actc com	add inclus	Cao exp	acic mice	acic advattax	admin de	actic oper exp	actic ort comb	tot combined	acic on total	IOL IOCAI	acic on so	tot tur
105				b	c	d	_	1	a T	- , - ,			h	1	m m	0
105										***************************************						
107											0.0152		0.0152		0.0152	
108				13.2%		(a+D+c)				(Q+1+a)	₄ (d+h)	(d+h+i)	# (d+h)	(4+n+k)	A (4+N)	(d) B (m)
100	******************			********		********	*********	************		*				********	**********	******
110	LAND	20C	0.0000	G 1116	0 0514	0 1632	0 0000	0 01 13	0 0000	0 0113	0 0027	0 1772				
111	BUILDINGS	10C, 110C, 810C	0.0302	0 0986	0 0452	0 1740	0 0069	0 0113	0 0000	0 0 162	0 0029	0 1951				
112	DIGTL CIRC-PAIR GAIN	257C D257C F257C	0 1134	0 0636	0 0288	0 2058	0 0088	00113	0 0000	0 0202	0,0034	0 2294				
113	POLES	1C. 611C	0.0671	0 0725	0 0325	0 1721	0 0279	0 0 1 1 3	0 0000	0 0392	0.0032	0 2145				
114	AERIAL CA - METAL	22C, 12C, 002C	0017	0 0797	0 0336	0 2052	0 0571	0.0113	0 0000	0 0684	0 0042	0 2778				
115	AERIAL CA - FIBER	822C, 812C, 862C, 962C,D22C,	0.0867	0 0784	0 0347	0 1796	Ø G136	0 01 13	0 0000	0 0252	0 0031	0 208 1				
116		F22C,T22C,D12C,F13C,T13C				_										
117	UNGROUND CA - METAL	5C, 005C	0.1036	0.0613	0 0342	0 2191	0 0291	0 0113	0 0000	0.0404	6 0039	0 2634				
118	UNGROUND CA - FIBER	85C,885C,985C,D5C,F6C,T5C	0.0626	0.0000	Q Q35 8	0 1784	0 0135	0 0113	0 0000	0 0240	0.0031	0 2063				
119	BURIED CA - METAL	45C, 646C	0.0076	0 0000	0 0354	D 2038	0.0543	0 01 13	0 0000	0.0656	0 0041	0 2736				
120	BURIED CA - FIBER	845C,858C,868C,D45C,	0.0506	0.0816	0 0367	0 1766	0 0144	0 0113	0 0000	0 0257	0 0031	0 2056				
121		F45C,T45C							•							
122	SUBMARINE CA-METAL	6C, 806C	0 0000	0 0814	0.0366	0 2040	0 0150	0 0113	0 0000	0 0263		0 2338				
123	SUBMARINE CA-FIBER	86C,886C,D6C,F6C,T6C	0.0000	0 0614	0 0355	0 2028	0.0150	0 0113	0 0000	0 0263	0 0035	0 2327				
124	INTROLD NTWK-METAL	\$2C	0 0061	0 0706	0 0340	0 1786	0 0320	0 0113	0 0000	0 0433	0 0034	8 2253				
125	INTROLD NTWK-FIBER	052C,052C,F52C,T52C	0 0061	0.0786	0.0340	0 1706	0 0320	0.0113	0 0000	0 0433	0 0034	0 2253				
126	CONDUIT SYSTEMS	AC, SAC, SAC	0 0242	0 0677	0 0401	Q 1520	0 0026	08113	0 0000	0 0141	0 0025	û 16 8 6				
127				- ant. on 700		or those state		or to an inhala Taccal	"onudia ina	and toll" and "comb	med factors					

NOTE: Certain states in the BetSouth region (GA & NC) assess gross receipts tax only on "local" revenues. For those states, it is necessary to publish "local", "private line and toll", and "combined" factors flowers that the definitions of "local" and "private line and toll" are defined by the leaving authority for gross receipts tax purposes and may vary from state to Male according to tax line.

For those states which assess gross recepts tax on local, private tine, and tod revenues, the gross recepts tax factor is based on this overall effective tax rate

F18G01Q 00234

FLORIDA

UNBUNDLED LOOP CHANNELIZATION SYSTEM AND CENTRAL OFFICE CHANNEL INTERFACE

COST STUDY
DOCUMENTATION

SECTIONS A THRU 7

FLORIDA

UNBUNDLED LOOP CHANNELIZATION SYSTEM AND CENTRAL OFFICE CHANNEL INTERFACE

COST STUDY DOCUMENTATION

CONTENTS

SECTION A	PROPRIETARY RATIONALE
SECTION 1	INTRODUCTION AND OVERVIEW
SECTION 2	DESCRIPTION OF STUDY PROCEDURES
SECTION 3	SUMMARY OF RESULTS
SECTION 4	COST DEVELOPMENT - RECURRING
SECTION 5	COST DEVELOPMENT - NONRECURRING
SECTION 6	SPECIFIC STUDY ASSUMPTIONS
SECTION 7	FACTORS AND LOADINGS

SECTION A

SECTION A

PLORIDA UNBUNDLED LOOP CHARMELIZATION SYSTEM AND CENTRAL OFFICE CHARMEL INTERFACE

PROPRIETARY RATIONALE

The Florida Unbundled Loop Channelization System and Central Office Channel Interface Cost Study contains actual unit cost information for discrete cost elements. These costs reflect BellSouth's long run incremental cost of providing this element on a going forward basis. Public disclosure of this information would provide BellSouth's competitors with an advantage in that they would know the price or rate below which BellSouth could not provide the service. The data is valuable to competitors and potential competitors in formulating strategic plans for entry, pricing, marketing and overall business strategies concerning access services. This information relates to the competitive interests of BellSouth and disclosure would impair the competitive business of BellSouth.

Additionally, the study contains information which reflects vendorspecific prices negotiated by BellSouth. Public disclosure of this information would impair BellSouth's ability to contract for goods and/or services on favorable terms. For these reasons, the Florida Unbundled Loop Channelization System and Central Office Channel Interface Cost Study is considered proprietary.

FLORIDA UNBUNDLED LOOP CHANNELIZATION SYSTEM AND CENTRAL OFFICE CHANNEL INTERPACE

INTRODUCTION AND OVERVIEW

This Long Run Incremental Cost study for the Unbundled Loop Channelization System and Central Office Channel Interface in the state of Florida is being provided in response to Docket No. 950984-TP Order No. PSC-96-0444-FOF-TP Issued March 29, 1996.

The Unbundled Loop Channelization System and Central Office Channel Interface is an arrangement offered to the Alternative Local Exchange Companies (ALECs) for the purpose of channelizing multiple Digital Loop Carrier 1.544 Mbps channels on a non-concentrated or concentrated basis up to a maximum of 96 channels per system. These channels are only available for connection to Unbundled Access Loops, voice grade only. Included in this cost study and associated with the Unbundled Loop Channelization System is the Central Office Channel Interface. The Unbundled Loop Channelization System requires a Central Office Channel Interface for each channel of lesser (voice grade) capacity.

Recurring costs presented in this study are directly assigned, incremental and levelized so as to be appropriate for the 1996-1998 study period. Nonrecurring costs follow the same convention and represent 1996-1998 level costs also. These long-run incremental costs are developed by using 1995 level incremental loadings and annual cost factors based on 13.2% Cost of Money and directly assigned labor rates.

FLORIDA UNBUNDLED LOOP CHANNELIZATION SYSTEM AND CENTRAL OFFICE CHANNEL INTERFACE

DESCRIPTION OF STUDY PROCEDURES

This section describes the general principles for the development of costs supporting the Florida Unbundled Loop Channelization System and Central Office Channel Interface.

All costs are developed utilizing Long Run Incremental Cost methodology. In determining these costs, direct incremental costing techniques are used that are in accordance with accepted economic theory. Direct incremental costs are based on cost causation and include all of the costs directly caused by expanding production, or, alternately, costs that would be saved if the production levels were reduced. Costs are forward looking in nature because only future costs can be saved. Incremental costs are long run to insure that the time period studied is sufficient to capture all forward looking costs affected by the business decision. Shared and common costs are not incremental and therefore are not included. Incremental costs include both recurring (capital and operating expenses) and nonrecurring (service provisioning) costs. Incremental costs account for the expected change in cost to the firm resulting from a new service offering or a change in demand for an existing service.

THE DEVELOPMENT OF RECURRING COSTS

The monthly costs to BellSouth Telecommunications, Inc., resulting from the capital investments necessary to provide a service are called recurring costs. Recurring costs include capital and operating costs. While capital costs include depreciation, cost of money and income tax, operating costs are the expenses of maintenance and ad valorem and other taxes. These expenses contribute to the ongoing cost to the company associated with the initial capital investment. Recurring costs are developed using incremental economic study applications, representing a forward-looking view of technology and deployment.

The first step in developing an incremental study of recurring costs for the Unbundled Loop Channelization System and Central Office Channel Interface is to determine the forward-looking network architecture. Material prices for the equipment are defined. Next, account specific Telephone Plant Indices are applied, when necessary, to trend investments to the base study period. In-plant factors are applied to material prices to develop installed investments which include engineering and installation labor. The deployment probabilities, capacity, spare stock and utilization of the equipment are also considered.

plant account specific Investment Inflation Factors are applied to the installed investments to trend the base year, or study year, investments to levelized amounts that are valid for a three to five year planning period. Appropriate loadings for land, building and miscellaneous common equipment and power are then applied.

Next, 1995 level Florida Intrastate Incremental Annual Cost Factors are used to calculate the direct cost of capital (in this case, 13.2%), ongoing maintenance and other operating expenses and taxes. These factors (specific factors for each USOA FRC) are applied to levelized investments by account code, yielding an annual cost per account code. These costs are then divided by twelve to arrive at a monthly cost per cost element.

THE DEVELOPMENT OF NONRECURRING COSTS

Nonrecurring costs are "one-time" costs incurred as a result of provisioning, installing, and disconnecting the Unbundled Loop Channelization System and Central Office Channel Interface. The first step in developing nonrecurring costs is to determine the cost elements related to the study. These cost elements are then described by all of the individual work functions required to provision the cost element. The work functions can be grouped into four categories. These are service order, engineering, connect and test, and technician travel time. The work function times, identified by subject matter experts, are used to describe the flow of work within the various work centers involved. Installation and provisioning costs are developed by multiplying the work time for each work function by the directly assigned labor rate for the work group performing the function.

Disconnect costs are calculated in the same manner, utilizing work functions, work times and labor rates. However, a disconnect factor associated with the projected location life of the cost element is applied to the disconnect cost. The disconnect factor inflates the labor cost to the period of the future disconnect, discounts these costs to the present, since the money is received up-front, and adjusts for the income tax effect due to the difference in time between the receipt of money and the disconnect expense. The disconnect cost is added to the installation cost to develop the total nonrecurring cost.

FLORIDA UNBUNDLED LOOP CHANNELIZATION SYSTEM AND CENTRAL OFFICE CHANNEL INTERFACE

SUMMARY OF RESULTS

This section contains a cost summary for both recurring and nonrecurring cost elements studied for the 1996-1998 Unbundled Loop Channelization System and Central Office Channel Interface for Florida.

FLORIDA UNBUNDLED LOOP CHANNELIZATION SYSTEM AND CENTRAL OFFICE CHANNEL INTERFACE

SUNCCERT OF RESULTS

Monthly Cost Nonrecurring Cost
First Additional

Channelization System

Central Office Channel Interface - Voice

Private/Proprietary:
No disclosure outside BellSouth except by written agreement

YLORIDA UMBUNDLED LOOP CHANNELIZATION SYSTEM AND CENTRAL OFFICE CHANNEL INTERPACE

COST DEVELOPMENT - RECURRING

This section defines the cost development of the recurring costs for the Florida Unbundled Loop Channelization System and Central Office Channel Interface.

Generally, economic cost development is outlined in Section 2. Network architecture is determined, the necessary equipment is identified, material prices are obtained, factors, utilization and loadings are applied and the result is levelized for the study period. Annual cost factors are applied to convert the investment to cost.

Recurring costs are developed for the system and for the voice grade feature activation. The system is a TR303 96 capacity digital loop carrier remote terminal. Since the system is located in the central office, bulk power is not required. The system cost includes the hardwired equipment and the common plug-ins. The Voice (Unbundled Exchange Access) Central Office Channel Interface is based on a Plain Old Telephone (POTS) plug-in. Since the interface cost element is per circuit and the plug-in serves two voice grade circuits, the monthly cost is divided by two.

The following workpapers develop the investment, convert the investment to monthly costs, and summarize the results.

UNBUNDLED LOOP CHANNELIZATION SYSTEM AND CENTRAL OFFICE CHANNEL INTERFACE COST SUMMARY

State: Florida
Workpaper: 100
Page: 1 OF 1
Date: May-96

<u>Ln</u> 1		MONTHLY COST	SOURCE		
3	System - Capacity 96 Voice Grade Circuits	s	Wp200 Pg1 Ln 10 Coi O		
7 8		: <u>.</u>	Wp200 Pg2 Ln 10 Col C		
9 10 11 12					
	Note:				
	Concentrated is Mode II. Non-concentrated is Mode I.				
20 21 22					
23 24 25 26	·				
27 28 29					
30					

State. Workpaper: Page: Date Florida 200 1 OF 2 May-96

MONTHLY

RATE ELEMENT: System Capacity 96 Voice Grade Circuits

									<u>ANNUAL CO</u>	STS					COST
	A	B Account	С	D '	E=C*FACTOR	F=C*FACTOR	G=C*FACTOR Income	H=E+F+G Capital	I=C*FACTOR	J=C*FACTOR Ad Valorum	K=C*FACTOR	L=I+J+K Operating	M=C"FACTOR	N=H+L+M	O=N/12
Ln Descript	<u>lon;</u>	Code	investment	Source	Depreciation	COM	Iax	•	Maintenance		TIRKS Exp.	Expense	QRI	Total	
2 Installed 3 96 capac 4 (Mode I i		357C	\$	Wp300 Pg1 Ln 30	\$	\$	1 \$ 7	\$:	\$: ,	\$	•	?	\$
6 Land 7		20C	\$	Np300 Pg1 Ln 33	\$	\$	\$.	>	\$	\$	\$	\$		\$	\$
8 Buildings	i	10C	5	₩p300 Pg1 Ln 36	*	\$	*	:	\$	\$	\$	\$		t	\$
10 Total			\$		\$	\$.	\$	'	\$	\$	\$	\$	Total per Circui		

11 12

13 NOTE

14 FACTOR = ACF Located in Wp201pg1 16

16 17 18

19 20

21 22

23 24

20

27 28

29 30

£180010 00250

State: Workpaper: Page:

Date:

Florida 200 2 OF 2 May-96

RATE ELEMENT: Working Plug-in for 96 capacity system - Serves 2 POTS lines

MONTHLY

								ANNUAI	COSTS					COST
A	B Account	С	D	E=C'FACTOR	F=C*FAC	CTOR G=C*FACTOR	H=E+F+G Capital			K=C*FACTOR	L=i+J+K & Operating	#C'FACTOR	N=H+L+M	COST O=N/12
<u>Ln Description:</u>	Code	investment	Source	<u>Depreciation</u>	COA	M Tax	Expense	Maintenance	Iax	TIRKS Exp.	Expense	GRI	Total	
2 Installed investment	357C	\$ ₹	Wp300 Pg2 Ln 24	\$ 1	\$	\$	\$	\$	\$	\$	\$		\$	\$
4 Land	20C		Wp300 Pg2 Ln 27	\$	\$	\$	\$	\$	\$	\$	\$		\$	\$
6 Buildings	10C	\$	Wp300 Pg2 Ln 30	\$	\$	\$	\$	\$	\$	\$	\$		s	\$
7 8 Total		\$	Total Ln 2, 4, 6	\$	\$	\$	\$	\$	\$	\$	\$		s	\$.
9 10 Total per Circuit		\$	Ln 8 Col 0/2											•

11 12

13 NOTE:

14 FACTOR = ACF Located in Wp201pg1

16 16 17

16

19

20 21

22 23

24

26 26

27

28 29

30

UNBUNDLED LOOP CHANNELIZATION SYSTEM AND CENTRAL OFFICE CHANNEL INTERFACE ANNUAL COST FACTORS

State: Florida Workpaper: 201 Page: 1 OF 1 Date: May-96

Ln Description	Code	<u>Depreciation</u>	COM	Inc. Tax	Cap. Expense	<u>Maintenance</u>	<u>Adval. Tax</u>	TIRKS Exp.	Opr. Expense	<u>GRT</u>	<u>Total</u>
1 2 Digital Circuit 3 Buildings 4 Land	357C	0.1134	0.0638	0.0297	0.2069	0.0086	0.0113	0.0052	0.0251	0.0035	0.2355
	10C	0.0302	0.0986	0.0452	0.1740	0.0069	0.0113	0.0000	0.0182	0.0029	0.1951
	20C	0.0000	0.1118	0.0514	0.1632	0.0000	0.0113	0.0000	0.0113	0.0027	0.1772

F18G010 00252

UNBUNDLED LOOP CHANNELIZATION SYSTEM AND CENTRAL OFFICE CHANNEL INTERFACE Development of investment

State Florida
Work Paper 300
Page 1 of 2
Date May 96

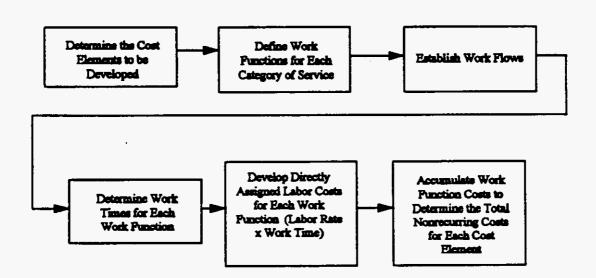
Ln	Description	Result		FRC	Source
1	Material Price			•	
2	Hardwired	\$		357C	Network
3	Common Plug-Ins	\$		357C	Network
4					
5	Misc Material Loadings for Common Plug-Ins		0.10		Network
6	Total Material Price for Common Plugs	\$		357C	(1+Line 5)*Line 3
7					
8	Telephone Plant Index		1.00	357C	Network
9	Hardwired Material Price-Base Year	\$		357C	Line 2°Line 8
10	Common Plug-In Material Price-Base Year	\$		357C	Line 6*Line 8
	In-Plant-Factors				
13	Hardwired		1.50	357C	Network
14	Common Plug-ins			357C	Network
15					
16	Installed Investment				
17	Hardwired	\$		357C	Line 13°Line 9
18	Common Plugs	\$	1	357C	Line 14*Line 10
19	2 DSX-1 Terminations (installed/Utilized)	\$		357C	Fundamental Investment Model
	Total installed investment	\$	•	357C	Line 17+Line 18+Line 19
21				•	
22	Levelization Factor (Inflation)		0.970	357C	Economic Analysis
23	Inflated Investment	\$		357C	Line 20°Line 22
24					
25	Utilization Factor		1.00		Tariff Structure
	Utilized/Inflated Circuit	\$		357C	(Line 23)/Line 25
27					
	Misc. Common Equipment & Power Factor		0.1202		Economic Analysis
	MCE&P Investment in CKT	\$		357C	Line 26°Line 28
	Total Investment in CKT	\$		357C	Line 26+Line 29
31				222	Formula Anabata
	Land Factor		0.0030	20 C	Economic Analysis
	Land investment	\$			Line 30*Line 32
34	Building France		0.0404	100	Economic Anchesia
35	Building Factor		0.0404	100	Economic Analysis Line 30*Line 35
36	Building Investment	\$			⊓ue 20. Filié 22

UNBUNDLED LOOP CHANNELIZATION SYSTEM AND CENTRAL OFFICE CHANNEL INTERFACE Development of Investment

State	Florida
Work Paper	300
Page	2 of 2
Date	May 96

Ln	Description	Result		FRC	Source
1	Material Price				
2 3	POTS Plug-Ins	\$		357C	Network
4	Telephone Plant Index		1.00	357C	Network
5 6	POTS Plug-In Material Cost-Base Year	\$		357C	Line 2*Line 4
7	In-Plant-Factors				
8 9	Deferrable Plug-ins		1.17	357C	Economic Analysis
10	Installed Investment				
11 12	POTS	\$		357C	Line 5°Line 8
13	Levelization Factor (Inflation)		0.970	357C	Economic Analysis
14 15	Inflated Investment	\$		357C	Line 11*Line 13
16	Utilization Factor		1.00	357C	Tariff Structure
17 18	Utilized/Inflated Circuit	S		357C	(Line 14)/Line 16
19	Spare Stock Factor		0.0925	357C	Economic Analysis
20 21	Deferrable POTS Plugs	\$		157C	Line 19*Line 17
22	Misc. Common Equipment & Power Factor		0.1202	357C	Economic Analysis
23	MCE&P Investment in CKT	\$		357C	(Line 17+Line 20)*Line 22
24 25	Total Investment in CKT	\$		357C	Line 17+Line 20+Line 23
26	Land Factor		0.003	20C	Economic Analysis
27 28	Land Investment	\$		20C	Line 26*Line 24
29	Building Factor		0.0404	10C	Economic Analysis
	Building Investment	\$		10C	Line 29*Line 24

FLORIDA UNBUNDLED LOOP CHANNELIZATION SYSTEM AND CENTRAL OFFICE CHANNEL INTERFACE


COST DEVELOPMENT - NONRECURRING

Nonrecurring costs are one-time costs incurred as a result of provisioning, installing, disconnecting and completion of orders initiated by a customer request for the Unbundled Loop Channelization System and Central Office Channel Interface. The Nonrecurring Cost Study is performed to determine the service order, provisioning and disconnect costs associated with the cost elements listed below. Calculations for the nonrecurring costs are included in this section.

Figure 7-1 shows a generalized flow of the steps necessary for developing nonrecurring costs. Each part of this flow will be explained in more detail in this section.

Figure 7-1

Generalized Flow Discress for Developing Monrecurring Costs

The first step in developing nonrecurring costs is to determine the cost elements to be studied. Each cost element is then described by all of the individual work functions required to provision the element. An example of a work function is the designing of a circuit in the Circuit Provisioning Group.

The work functions required to provide the Unbundled Loop Channelization System and Central Office Channel Interface can be grouped into four categories. These are:

- 1) Service Order
- 2) Engineering
- 3) Connect and Test
- 4) Technician Travel Time

Work functions included in these categories range from clerical activities to installation activities.

The next step in developing nonrecurring costs requires that Company subject matter experts identify the work functions involved in the provisioning of the Unbundled Loop Channelization System and Central Office Channel Interface (an example of a work function is making a cross-connect in the central office). These work functions are then used to describe the flow of work within the various work centers involved in provisioning the element.

The next step in the development of nonrecurring costs is to determine work times for each work function associated with the nonrecurring costs of the Unbundled Loop Channelization System and Central Office Channel Interface. The work times of the various work groups are determined from Subject Matter Expert inputs. Each work time estimate is made by a subject matter expert who thoroughly understands how each activity is done.

A spreadsheet model is used to incorporate the specific work functions and labor rates. In order to arrive at the nonrecurring cost for the element studied, the work times for each work function required is multiplied by the appropriate labor rate. The labor inflation factors (LIF) are used to bring the labor rate to the study period. The levelized labor rate is expressed on a per minute basis on workpapers 750 and 850, as are the worktimes. The labor rates and the labor inflation factors are shown in Section 7. Next, the individual work function costs are accumulated into the total cost for the cost element studied.

To recognize cost reductions on orders with multiple systems and/or interfaces, costs are calculated separately for the first and additional system and/or interface. "First" refers to the first item on a service order. "Additional" costs are the incremental costs of providing one or more duplicates of the item on the same service order at the same time as the first.

The basic process by which nonrecurring costs are calculated consists of combining unit work times with hourly costs of each specific service category. These labor times, and service order related work times, are multiplied by the directly assigned labor rates for the work groups performing the activities. Disconnect costs are calculated in the same manner, utilizing work functions, work times, and labor rates. However, a disconnect factor

associated with the projected location life of the service is applied to the disconnect cost. The disconnect factor inflates the labor cost to the period of the future disconnect, discounts these costs to the present (since the money is received up-front) and adjusts for the income tax effect due to the difference in time between the receipt of money and the disconnect expense. The disconnect cost is added to the installation cost to develop the total nonrecurring cost.

The following workpapers reflect the cost development.

SUMMARY OF NONRECURRI	NG COSTS	STATE: WORKPAPER: PAGE: DATE:	FLORIDA 700 1 OF 1 May-96
UNBUNDLED LOOP CHANNE	LIZATION SYSTEM, PER SYST	EM	
(1996-1998 Level Incrementa	al Costs at 13.2% Cost of Mone	y)	
		A	B
1 DESCRIPTION	SOURCE	FIRST	ADDTL
3 Service Order	WP750 Col G LN7 THRU LN19	9	
5 Engineering 6	WP750 Col G LN25 and LN27	,	
7 Connect & Test 8	LN31		
9 Travel Technician Time 10 11	NA NA	NA .	NA NA
12 Total Nonrecurring Cost 13 14 15	Sum of L3, L5, L7, L9		·
17			
18 19			
20			

DEVELOPMENT OF NONRE UNBUNDLED LOOP CHANN	CUPRING COST IELIZATION SYSTEM, PER S	SYSTEM				STATE: WORKPAPER: PAGE:	FLORIDA 750 1 OF 1
LEVEL 1996 - 1998	DIRECTLY ASSIGNED					DATE:	May-96
1 2	W	(B)	(C)	(D)	(E)	(F) DISCOUNTED	(G)
3 4 5 <u>DESCRIPTION</u> 6 <u>SERVICE ORDER</u> 7 ICSC 8	INSTALL WORKTIMES (MINS) \(\frac{FIRST}{ADOTL}\)	DISCONNECT WORKTIMES (MINS) <u>FIRST</u> <u>AOOTL</u>	LABOR	INSTALL COST (A*C) <u>FIRST ADDIL</u>	DISCONNECT COST (8°C) <u>FIRST ADDTL</u>	DISCONNECT COST (E*DOF) FIRST ADDIL	(D+F)*(1+GRT) TOTAL TOTAL FIRST ADDIL
9 ISC TEAM MEMBER			\$0.7011				
11 ISC CLERICAL SUPPORT 12			\$0.5244				
12 13 CPG 14			\$0.6109				
15 NETWORK ADMIN 16			\$0.5839				
17 NTEL			\$0.6940				
18 19 NETWORK PLANYENG			\$0.9738	:			
20 21 22							
23 24 ENGINEERING							
25 PICS 26			\$0.7427				
27 CPG 28			\$0.610 9				
29 30 CONNECT & TEST							
31 NTEL			\$0.6940				
32 33							
34 35	•						
36 37 TOTAL NONRECURRING CO	osī						
38 39							
40							

SUMMARY OF NONRECURRING COSTS

20

STATE: WORKPAPER: PAGE:

DATE:

FLORIDA 800 1 OF 1 May-96

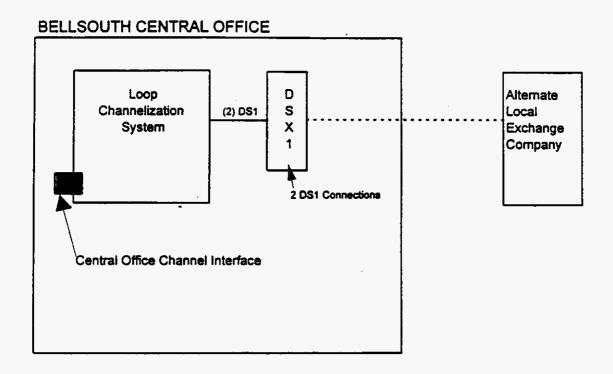
UNBUNDLED LOOP CHANNELIZATION SYSTEM CENTRAL OFFICE CHANNEL INTERFACE - VOICE

(1996-1998 Level Incremental Costs at 13.2% Cost of Money)

		A	3
1 DESCRIPTION	SOURCE	FIRST	ADDTL
2 3 Service Order 4	WP850 Col G LN9		
5 Engineering 6	WP850 Col G LN13		
7 Connect & Test	WP850 Col G LN17 and LN19		
8 9 Technician Travel Time 10	NA	NA	NA .
11 12 Total Nonrecurring Cost 13 14 15 16 17 18	Sum of L3, L5, L7, L9		

DEVELOPMENT OF NONREC UNBUNDLED LOOP CHANNE CENTRAL OFFICE CHANNEL LEVEL 1996 ~ 1998	LIZATION SYSTEM			,		STATE: WORKPAPER: PAGE: DATE:	FLORIDA 650 1 OF 1 May-96
1	W	(B)	(C)	(D)	Æ	Ð	(G)
2 3 4 5 <u>DESCRIPTION</u> 6	INSTALL WORKTIMES (MINS) FIRST ADOIL	DISCONNECT I WORKTIMES (MINS) FIRST ADDIL		INSTALL COST (A*C) FIRST ADDTL	DISCONNECT COST (B*C) FIRST ADDIL	DISCOUNTED DISCONNECT COST (E*DOF) FIRST ADDIL	(D+F)*(1+GRT) TOTAL TOTAL FIRST ADDIL
8 SERVICE ORDER 9 PICS 10 11			\$0.7427				
12 <u>ENGINEERING</u> 13 PICS 14 15			\$0.7427				
16 <u>CONNECT & TEST</u> 17 NETWORK ADMIN			\$0.5839				
18 19 NTEL			\$0.6940				
20 21 22 TOTAL NONRECURRING COX 23 24 25 26 27 28 29 30	SI						

FLORIDA UNBUNDLED LOOP CHANNELIZATION SYSTEM AND CENTRAL OFFICE CHANNEL INTERFACE


SPECIFIC STUDY ASSUMPTIONS

The cost study for the Unbundled Loop Channelization System and Central Office Channel Interface for the state of Florida is based on incremental economic theory and assumptions, plus specific Network deployment strategies, first choice provisioning guidelines, and equipment purchasing information.

Cost study assumptions are as follows.

- 1. The cost of money is 13.2%, the forward-looking incremental cost to the firm.
- 2. The equipment that will be deployed is an AT&T TR303, 96 capacity.
- 3. Only connection to Unbundled Exchange Access Loops, voice grade, will be allowed. Therefore, the deferrable plug-in is a voice grade Plain Old Telephone (POTS) plug-in.
- 4. Since the remote terminal is located in the central office, bulk power is not required.
- 5. The equipment will be predominantly concentrated at a 2:1 ratio. Two DSX-1 panel terminations are included.
- A diagram of the architecture is found on the following page.

UNBUNDLED LOOP CHANNELIZATION SYSTEM AND CENTRAL OFFICE CHANNEL INTERFACE

FLORIDA UNBUNDLED LOOP CHANNELIZATION SYSTEM AND CENTRAL OFFICE CHANNEL INTERFACE

FACTORS AND LOADINGS

Following are the incremental annual cost factors, miscellaneous loadings and labor rates used in the Unbundled Loop Channelization System and Central Office Channel Interface cost study for Florida.

FLORIDA UNBUNDLED LOOP CHANNELIZATION SYSTEM AND CENTRAL OFFICE CHANNEL INTERFACE

FACTORS AND LOADINGS

	·	
Telphone Plant Index	357C	1.00
In Plant Factors Hardwired Common Plug-ins Deferrable Plug-ins	357C	1.50 1.25 1.17
Levelization Factor	357C	0.9700
Misc. Common Equipment and Power Factor	357C	0.1202
Gross Receipts Tax Facto	or	0.0152
Discounted Disconnect (I	ODF)	0.854007
Land Loading	20C	0.0030
Building Loading	10C	0.0404
Annual Cost Factors:		
Digital Circuit Depreciation Cost of Money Income Tax Maintenance Ad Valorem Tax TIRKS Expense Gross Receipts Ta	357C	0.1134 0.0638 0.0297 0.0086 0.0113 0.0052 0.0035
Land Depreciation Cost of Money Income Tax Maintenance Ad Valorem Tax TIRKS Expense Gross Receipts Ta	20C	0.0000 0.1118 0.0514 0.0000 0.0113 0.0000 0.0027
Building Depreciation Cost of Money Income Tax Maintenance Ad Valorem Tax TIRKS Expense Gross Receipts Ta	10C	0.0302 0.0986 0.0452 0.0069 0.0113 0.0000 0.0029

PLORIDA UNBUNDLED LOOP CHANNELIZATION SYSTEM AND CENTRAL OFFICE CHANNEL INTERFACE

FACTORS AND LOADINGS

1995 Directly Assigned Hourly Labor Rates

Customer Point of Contact (ICSC)	\$38.30
ISC Team Member	\$39.49
ISC Clerical Support	\$29.54
CO Install & Maintenance (NTEL)	\$39.09
Circuit Provisioning Center (CPG)	\$34.41
Network Planning & Eng (PICS)	\$41.65
Network Planning & Eng (ENG)	\$54.61
Network Admin	\$32.89

Lak

bor Inflation	•
Telco Eng	
Year 1	3.48
Year 2	3.8%
Year 3	3.6%
Telco COE	
Year 1	3.2
Year 2	3.5%
Year 3	3.4%