

JAMES A. MCGEE SENIOR COUNSEL

March 31, 1999

Ms. Blanca S. Bayó, Director Division of Records and Reporting Florida Public Service Commission 2540 Shumard Oak Boulevard Tallahassee, Florida 32399-0850

Re: Ten-Year Site Plan

Dear Ms. Bayó:

Pursuant to Rule 25-22.071, F.A.C., enclosed for filing are 25 copies of Florida Power Corporation's Ten-Year Site Plan as of December 31, 1998.

Please acknowledge your receipt of the above filing on the enclosed copy of this letter and return to the undersigned. Thank you for your assistance in this matter.

Verv truly yours.

10#	Ja alun S	
(2. 3)	James A. McGee	
JAM/kma Enclosure	RECEIVED & FILED	66 1
2) Hoff	FPSC-BUREAU OF RECORDS	3 APR
.LN	LE NI NHEN N	1421
)PC	DOC	
SEC VASene Progress Plaza • Post Office Box 14042	GENERAL OFFICE • St. Petersburg, Florida 33733-4042 • (727) 820-5184 • Fax: (727) 820-5519 4 Elorida Bragerosa Company	

Site Plan

APRIL, 1999

DOCUMENT NUMBER-DATE 04213 APR-18

COSC-DECORDER REPORTING

Florida Power CORPORATION

Ten-Year Site Plan

1999-2008

Submitted To :

State of Florida Public Service Commission

APRIL, 1999

TABLE OF CONTENTS

List of Required Schedulesi Code Identification Sheetii

CHAPTER 1 Description of EXISTING FACILITIES

Α.	Existing Facilities Overview	1
B.	Area of Service Map	3
C.	Electric System Map	4
D.	Existing Generating Facilities (Schedule 1)	5

CHAPTER 2 Forecast of ELECTRIC POWER DEMAND and ENERGY CONSUMPTION

Α.	Overview	. 7
B.	Energy Consumption and Forecast of Electric Power Demand Schedules	. 9
	History and Forecast of Energy Consumption (Schedules 2.1 through 2.3)	10
	History and Forecast of Summer Peak Demand (Schedules 3.1.1 through 3.1.3)	13
	History and Forecast of Winter Peak Demand (Schedules 3.2.1 through 3.2.3)	16
	History and Forecast of Annual Peak Demand (Schedules 3.3.1 through 3.3.3)	19
	Peak Demand and Net Energy for Load by Month (Schedule 4)	22
	Fuel Requirements and Energy Sources	23
	Fuel Requirements (Schedule 5)	24
	Energy Sources – GWh (Schedule 6.1)	25
	Energy Sources – Percent (Schedule 6.2)	26

Page

TABLE OF CONTENTS (continued)

Page

C. Forecasting Methods and Procedures

1.	Introduction	.27
2.	Forecast Assumptions	.29
3.	Forecast Methodology	.36
4.	Short-Term Econometric Model	.36
5.	Long-Term SHAPES-PC Model	44
6.	High and Low Forecast Scenarios	.51
7.	Conservation	53

CHAPTER 3 Forecast of FACILITIES REQUIREMENTS

Α.	Fore	ecast of Capacity and Demand Overview61									
	Cap	acity, Demand and Maintenance at Time of Summer Peak (Schedule 7.1)66									
	Cap	acity, Demand and Maintenance at Time of Winter Peak (Schedule 7.2)67									
	Planned Generating Facility Additions and Changes (Schedule 8)6										
	Status Report of Proposed Generating Facilities (Schedule 9)6										
	Stati	as Report of Proposed Directly Associated Transmission Lines (Schedule 10)73									
B.	(Other Planning Assumptions and Information									
	1.	Integrated Resource Planning Overview75									
	2.	Fuel Forecast									
	3.	Financial Forecast									
	4.	Base Expansion Plan									
	5.	Base Expansion Plan Sensitivities									
	6.	Transmission Planning									

TABLE OF CONTENTS (continued)

Page

CHAPTER 4 ENVIRONMENTAL and LAND USE INFORMATION

A.	Preferred Sites	.91
	Hines Energy Complex	.92
	Area Map – Polk County, Florida	.94
	Intercession City Site	.95
	Area Map - Osceola County, Florida	.96

This page intentionally left blank.

LIST OF REQUIRED SCHEDULES

<u>Schedule</u>	<u> </u>	'age
1	Existing Generating Facilities	. 5
2.1	History and Forecast of Energy Consumption (Residential and Commercial)	10
2.2	History and Forecast of Energy Consumption (Industrial and Other)	11
2.3	History and Forecast of Energy Consumption (Net Energy for Load and Customers)	12
3.1.1	History and Forecast of Summer Peak Demand (Base Case)	13
3.1.2	History and Forecast of Summer Peak Demand (High Load Forecast)	14
3.1.3	History and Forecast of Summer Peak Demand (Low Load Forecast)	15
3.2.1	History and Forecast of Winter Peak Demand (Base Case)	16
3.2.2	History and Forecast of Winter Peak Demand (High Load Forecast)	17
3.2.3	History and Forecast of Winter Peak Demand (Low Load Forecast)	18
3.3.1	History and Forecast of Annual Net Energy for Load (Base Case)	19
3.3.2	History and Forecast of Annual Net Energy for Load (High Load Forecast)	20
3.3.3	History and Forecast of Annual Net Energy for Load (Low Load Forecast)	21
4	Peak Demand and Net Energy for Load by Month	22
5	Fuel Requirements	24
6.1	Energy Sources – GWh	25
6.2	Energy Sources – Percent	26
7.1	Capacity, Demand, and Maintenance at Time of Summer Peak	66
7.2	Capacity, Demand, and Maintenance at Time of Winter Peak	.67
8	Generating Capability Changes, Removals and Additions	.68
9	Proposed Generating Facilities	.69
10	Proposed Directly Associated Transmission Lines	.73

FLORIDA POWER CORPORATION CODE IDENTIFICATION SHEET

Generating Unit Type

- ST Steam Turbine Non-Nuclear
- NP Steam Power Nuclear
- GT Combustion Turbine (Gas Turbine)
- CC Combined Cycle
- SPP Small Power Producer
- COG Cogeneration Facility

Fuel Type

- UR Nuclear (Uranium)
- NG Natural Gas
- F06 No. 6 Fuel Oil
- F02 No. 2 Fuel Oil
- BIT Bituminous Coal
- MSW Municipal Solid Waste
- WH Waste Heat
- **BIO Biomass**

Fuel Transportation

- WA Water
- TK Truck
- RR Railroad
- PL Pipeline
- UN Unknown

Future Generating Unit Status

- CA Capability increase
- FC Conversion to alternate fuel
- P Planned but not authorized
- RE Scheduled for retirement
- RP Proposed for repowering
- TS Construction complete, but not yet in commercial operation
- U Under construction, less than 50% complete
- V Under construction, more than 50% complete

CHAPTER 1

Description of EXISTING FACILITIES

CHAPTER 1 Description of EXISTING FACILITIES

EXISTING FACILITIES OVERVIEW

OWNERSHIP

Florida Power Corporation (FPC) is an investor-owned electric utility. The company's common stock is held by Florida Progress Corporation which has over 44,000 registered shareholders. Approximately 19,000 of FPC shareholders live in Florida. In addition, millions of other people have an interest in the company due to investments made by insurance companies, mutual savings banks, and pension funds.

AREA OF SERVICE

The company's area of service (see Area of Service Map) encompasses approximately 20,000 square miles in over 30 Florida counties and is serviced by local business offices. The company supplies electricity at retail to approximately 350 communities and at wholesale to about 8 municipalities. Wholesale supplemental electric service also is supplied to Seminole Electric Cooperative, Inc. (SECI), Florida Municipal Power Agency (FMPA), and Reedy Creek Improvement District (Walt Disney World).

TRANSMISSION/DISTRIBUTION

The company is part of a nationwide interconnected power network that enables power to be exchanged between utilities. FPC has approximately 4,600 miles of transmission lines and over 80 transmission substations. The distribution system includes over 24,000 circuit miles, with approximately 6,000 of those miles underground. FPC has over 270 distribution substations.

ENERGY MANAGEMENT

Florida Power customers participating in the company's Energy Management program are managing future growth and costs. Over 500,000 customers participated in the Energy Management program during the year. This excellent participation level provides over 875,000 KW of peak shaving capacity for use during high load periods.

TOTAL CAPACITY RESOURCE

Florida Power has a total capacity resource of 9,027 MW. This capacity resource includes utility and non-utility purchased power, peaking facilities, nuclear, and fossil steam and combined cycle plants. Additional information on FPC's existing generating facilities are shown on Schedule 1.

Florida Power Corporation • Area of Service

SCHEDULE 1 EXISTING GENERATING FACILITIES AS OF DECEMBER 31, 1998

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)
				FUI	EL	FUEL TRANSPORT.		ISPORT. ALT.	COMMERCIAL	FXPECTED	GEN. MAX	NET CAPA	ABILITY
PLANT NAME	UNIT NO.	LOCATION	UNIT TYPE	PRIMARY	ALT.	PRIMARY	ALT.	DAYS USE	IN-SERVICE MONTH/YEAR	RETIREMENT MONTH/YEAR	NAMEPLATE KW	SUMMER MW	WINTER MW
												1,006	1,034
ANCLOTE	1	PASCO CO.	ST	F06		PL			10/1974		556,200	503	517
	2	SECT.33,34 T26S,R15E	ST	F06	NG	PL	PL		10/1978		556,200	503	517
			CT		500	DI.	-		10/10/0	10/2004	11 700	58	64
AVON PARK	P1 P2	HIGHLANDS CO.	GT	F02	F02	TK	IK		12/1968	12/2004	33,790	29 29	32 32
												627	666
BARTOW	1	PINELLAS CO.	ST	F06		WA			09/1958		127.500	115	117
Dincion	2	SECT 20.21.22	ST	F06		WA			08/1961		127.500	117	119
	3	T30S.R16E	ST	NG	F06	PL	WA		07/1963		239.360	208	213
	PIPA	1500,1100	GT	F02	100	WA			06/1972		111,400	92	106
	P2, P4		GT	NG	F02	PL	WA		06/1972		111,400	95	111
												188	232
BAYBORO	P1-P4	PINELLAS CO. SECT. 30 T31S,R17E	GT	F02		WA,TK			04/1973		226,800	188	232
												2,961	3,031
CRYSTAL	1	CITRUS CO.	ST	BIT		WA,RR			10/1966		440,550	369	373
RIVER	2	SECT.33	ST	BIT		WA,RR			11/1 969		523,800	464	469
	3 •	T17S,R16E	NP	UR		тк			03/1977		890,460	734	755
	4		ST	BIT		WA,RR			12/1982		739,260	697	717
	5		ST	BIT		WA,RR			10/1984		739,260	697	717
		VOLUELA CO	CT	502		7 77/ D.D.			04/1076		401.000	656	786
DEBARY	PI-PO	VULUSIA CU.	GT	FU2	E01	IK,KK	מת עד		04/19/0		401,220	324	390
	P7, P9 P8, P10	28-30,T18S,R30E	GT	F02	F02	TK,RR	IK,KK		11/1992		230,000	166	198
												128	148
HIGGINS	P1-P2	PINELLAS CO.	GT	NG	F02	PL	тк		04/1969	12/2003	67.580	58	64
moonto	P3-P4	T25S,R16E	GT	NG	F02	PL	ТК		12/1970	12/2003	85,850	70	84
												757	912
INTERCESSION	P1-P6	OSCEOLA CO.	GT	F02		PL,TK			05/1974		340,200	282	348
CITY	P7-P10	SECT. 31	GT	NG	F02	PL	PL,TK		11/1993		460,000	332	396
	P 11	T25S,R28E	GT	F02		PL,TK			01/1997		165,000	143	168
												15	18
RIO PINAR	P1	ORANGE CO.	GT	F02		ТК			11/1 97 0	12/2003	19,290	15	18
												307	348
SUWANNEE	1	SUWANNEE CO.	ST	NG	F06	PL	TK		11/1953	12/2001	34,500	33	34
RIVER	2	SECT. 26,	ST	NG	F06	PL	TK		11/1954	12/2001	37,500	32	33
	3	T1S,R11E	ST	NG	F06	PL	TK		10/1 95 6	12/2001	75,000	80	80
	P1, P3		GT	NG	F02	PL	ТК		11/1980		122,400	108	134
	P2		GT	F02		ТК			11/1 98 0		61,200	54	67
									00/			206	246
TIGER BAY	1	POLK CO.	CC	NG		PL			08/1997		233,000	206	246
	D1 D2	VOLUEL CO	GT	EOO		TV			10/1970	12/2004	29 600	160	200
TURNER	P1-P2	VULUSIA CO.	GT	F02		IN TV			08/19/0	12/2004	142 400	120	30 164
	r3-r4	T19S,R30E	01	F02		IK			00/17/4		192,400	150	104
	P 1	ALACHUA CO	GT	NG		PL			01/1994		43.000	36 36	42 42
UNIT. OF FLA.		ALACHOA CO.									,500		74

* REPRESENTS 90.4 % FPC OWNERSHIP OF UNIT

7,105 7,727

This page intentionally left blank.

CHAPTER 2

Forecast of ELECTRIC POWER DEMAND and ENERGY CONSUMPTION

<u>CHAPTER 2</u> Forecast of ELECTRIC POWER DEMAND and ENERGY CONSUMPTION

OVERVIEW

The following Schedules 2, 3 and 4 represent FPC's history and forecast of customers, energy sales (GWh), and peak demand (MW). High and low scenarios are also presented for sensitivity purposes.

The base case was developed using both econometric and end-use forecasting methodologies to predict a forecast with a 50/50 probability, or most likely scenario. The high and low scenarios, which have a 90/10 probability of occurrence or an 80 percent probability of an outcome falling between the high and low cases, employed a Monte Carlo simulation procedure that studied 1,000 possible outcomes of retail demand and energy.

FPC's customer growth is expected to average 1.7 percent between 1999 and 2008, less than the ten-year historical average of 2.2 percent. Slower population growth -- based on the latest projection from the University of Florida's Bureau of Economic and Business Research -results in a lower base case customer projection when compared to the rapid growth of the 1980's.

Net energy for load, which had grown at an average of 3.4 percent between 1989 and 1998, is expected to increase by 1.7 percent per year from 1999-2008 in the base case, 2.1 percent in the high case and 1.3 percent in the low case.

Summer net firm demand is expected to grow an average of 0.9 percent per year during the next ten years. This compares to the 2.8 percent (weather adjusted) average annual growth rate experienced throughout the last ten years. Winter net firm demand is projected to grow at 1.3 percent per year after having increased by 2.1 percent (weather adjusted) per year from 1989 to 1998. High and low summer growth rates for net firm demand are 1.3 percent and 0.5 percent per year, respectively, while high and low winter net firm demand growth rates are 1.7 percent and 0.9 percent, respectively.

The reduction in the projected energy and demand growth rates from historical rates is mainly due to an assumed loss of a short-term wholesale contract with Seminole Electric Cooperative, Incorporated. Projected retail sector growth is below the historical average due to slower population growth, less rapid economic expansion and improved appliance efficiencies in electric end-uses.

ENERGY CONSUMPTION SCHEDULES

FPC's History and Forecast of Energy Consumption and Number of Customers by Customer Class are shown on Schedules 2.1, 2.2 and 2.3.

FORECAST OF ELECTRIC POWER DEMAND SCHEDULES

FPC's History and Forecast of Base, High and Low Summer Peak Demand are shown on Schedules 3.1.1, 3.1.2 and 3.1.3.

FPC's History and Forecast of Base, High, and Low Winter Peak Demand are shown on Schedules 3.2.1, 3.2.2 and 3.2.3.

FPC's History and Forecast of Base, High and Low Annual Net Energy for Load are shown on Schedules 3.3.1, 3.3.2 and 3.3.3.

FPC's Previous Year Actual and Two-Year Forecast of Peak Demand and Net Energy for Load by Month are shown on Schedule 4.

SCHEDULE 2.1 HISTORY AND FORECAST OF ENERGY CONSUMPTION AND NUMBER OF CUSTOMERS BY CUSTOMER CLASS

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
YEAR		RUR		COMMERCIAL				
	FPC POPULATION	MEMBERS PER HOUSEHOLD	GWh	AVERAGE NO. OF CUSTOMERS	AVERAGE KWh CONSUMPTION PER CUSTOMER	GWh	AVERAGE NO. OF CUSTOMERS	AVERAGE KWh CONSUMPTION PER CUSTOMER
1989	2.404.525	2.46	11.787	977.448	12.059	6.990	111.079	62.928
1990	2,492,186	2.47	12.416	1.007.806	12.320	7,329	113.595	64.519
1991	2.537.012	2,46	12.624	1,029,901	12,257	7,489	114,657	65,317
1992	2,588,540	2.47	12,826	1,050,077	12,214	7,544	116,727	64,629
1993	2,653,485	2.46	13,373	1,076,657	12,421	7,885	119,811	65,812
1994	2,720,931	2.47	13,863	1,100,537	12,597	8,252	122,987	67,097
1995	2,786,332	2.48	14,938	1,124,679	13,282	8,612	126,189	68,248
1996	2,830,566	2.48	15,481	1,141,671	13,560	8,848	129,441	68,356
1997	2,881,169	2.48	15,080	1,160,611	12,993	9,257	132,504	69,864
1998	2,917,242	2.47	16,526	1,182,786	13,972	9,999	136,345	73,339
1999	2,977,469	2.47	16,456	1,207,592	13,627	10,003	139,076	71,928
2000	3,028,435	2.46	16,977	1,229,424	13,809	10,369	141,906	73,069
2001	3,079,584	2.46	17,483	1,250,941	13,976	10,721	144,694	74,096
2002	3,129,842	2.46	17,982	1,272,229	14,134	11,050	147,453	74,939
2003	3,179,051	2.46	18,456	1,293,290	14,270	11,378	150,184	75,763
2004	3,227,026	2.46	18,889	1,314,121	14,374	11,709	152,883	76,585
2005	3,273,606	2.45	19,316	1,334,725	14,472	12,046	155,554	77,442
2006	3,320,254	2.45	19,738	1,355,333	14,563	12,358	158,226	78,102
2007	3,366,359	2.45	20,148	1,375,989	14,642	12,668	160,903	78,732
2008	3,412,384	2.44	20,552	1,396,715	14,714	12,977	163,590	79,325

SCHEDULE 2.2 HISTORY AND FORECAST OF ENERGY CONSUMPTION AND NUMBER OF CUSTOMERS BY CUSTOMER CLASS

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
		INDUSTRIA	L				
YEAR	GWh	AVERAGE NO. OF CUSTOMERS	AVERAGE KWh CONSUMPTION PER CUSTOMER	RAILROADS AND RAILWAYS GWh	STREET & HIGHWAY LIGHTING GWh	OTHER SALES TO PUBLIC AUTHORITIES GWh	TOTAL SALES TO ULTIMATE CONSUMERS GWh
						****************	*****************
1989	3,766	3,021	1,246,607	0	19	1,561	24,123
1990	3,456	3,115	1,109,470	0	21	1,658	24,880
1991	3,303	3,124	1,057,298	0	23	1,740	25,179
1992	3,254	3,137	1,037,297	0	24	1,765	25,413
1993	3,381	3,107	1,088,188	0	25	1,865	26,529
1994	3,580	3,186	1,123,666	0	26	1,954	27,675
1995	3,864	3,143	1,229,532	0	27	2,058	29,499
1996	4,224	2,927	1,443,011	0	26	2,205	30,785
1997	4,188	2,830	1,479,783	0	27	2,299	30,850
1998	4,375	2,707	1,616,324	0	27	2,459	33,387
1999	4,088	2,733	1,495,887	0	29	2,465	33,042
2000	4,060	2,738	1,482,812	0	30	2,550	33,986
2001	4,026	2,743	1,467,809	0	31	2,636	34,897
2002	4,058	2,748	1,476,567	0	32	2,722	35,843
2003	4,124	2,753	1,498,113	0	33	2,808	36,799
2004	4,141	2,758	1,501,541	0	33	2,902	37,673
2005	4,207	2,763	1,522,700	0	34	2,997	38,601
2006	4,264	2,768	1,540,622	0	35	3,082	39,476
2007	4,321	2,773	1,558,243	0	35	3,169	40,341
2008	4,375	2,778	1,574,949	0	36	3,258	41,197

SCHEDULE 2.3 HISTORY AND FORECAST OF ENERGY CONSUMPTION AND NUMBER OF CUSTOMERS BY CUSTOMER CLASS

(1)	(2)	(3)	(4)	(5)	(6)
			NET ENERCY	OTHER	TOTAL
	SALES FOR	A LOSSES	FOR LOAD	CUSTOMEDS	NO OF
VEAD	CWh	& LOSSES	FUR LUAD	(AVERACE NO.)	NU. UF
IEAK	Gwn	Gwn	Gwn	(AVERAGE NO.)	CUSIOMERS
1989	1,529	2,195	27,847	10,269	1,101,817
1990	1,548	1,377	27,805	10,983	1,135,499
1991	1,411	1,799	28,389	11,555	1,159,237
1992	1,471	1,817	28,702	12,229	1,182,170
1993	1,695	2,020	30,243	15,077	1,214,652
1994	1,819	1,680	31,174	17,181	1,243,891
1995	1,846	2,322	33,667	17,774	1,271,785
1996	2,089	1,841	34,715	18,034	1,292,073
1 99 7	1,758	1,997	34,605	18,562	1,314,507
1 998	2,340	2,036	37,763	19,013	1,340,851
1999	2.975	2.376	38 393	19.616	1.369.017
2000	2,913	2.329	39.228	20.171	1.394.239
2001	3.083	2.387	40.367	20.729	1.419.107
2002	1.582	2.101	39.525	21.286	1.443.716
2003	924	2.325	40.048	21.842	1.468.069
2004	891	2,402	40.967	22,400	1,492,162
2005	864	2,447	41,911	22,955	1,515,997
2006	881	2,499	42,856	23,510	1,539,837
2007	900	2,548	43,789	24,066	1,563,731
2008	919	2,598	44,714	24,621	1,587,704

SCHEDULE 3.1.1 HISTORY AND FORECAST OF SUMMER PEAK DEMAND (MW) BASE CASE

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(OTH)	(10)

					RESIDENTIAL		COMM. / IND.		OTHER	
					LOAD	RESIDENTIAL	LOAD	COMM. / IND.	DEMAND	NET FIRM
YEAR	TOTAL	WHOLESALE	RETAIL	INTERRUPTIBLE	MANAGEMENT	CONSERVATION	MANAGEMENT	CONSERVATION	REDUCTIONS	DEMAND
				·····					*****	
1989	6,045	623	4,633	276	300	34	N/A	46	133	5,256
1990	6,166	641	4,733	230	342	35	N/A	49	136	5,374
1991	6,128	684	4,699	207	313	36	N/A	53	136	5,383
1992	6,465	827	4,927	186	287	39	N/A	58	141	5,754
1993	6,913	848	5,016	274	502	48	N/A	70	155	5,864
1994	6,880	801	5,003	262	527	52	N/A	81	154	5,804
1995	7,510	886	5,522	284	502	55	N/A	101	160	6,408
1996	7,464	824	5,416	309	528	67	37	116	167	6,240
1997	7,786	872	5,696	285	509	78	46	130	170	6,568
1 998	8,367	941	6,276	291	453	95	43	144	124	7,217
			<			100		1.50	-/	
1999	8,455	1,458	6,096	324	457	108	44	159	76	7,554
2000	8,345	1,197	6,262	313	450	118	47	160	76	7,459
2001	8,570	1,276	6,465	301	402	129	50	162	76	7,741
2002	8,301	854	6,680	298	341	142	53	162	75	7,534
2003	7,891	289	6,874	300	297	155	56	163	75	7,163
2004	7,968	219	7,056	297	262	169	59	164	75	7,275
2005	8,165	265	7,233	299	231	184	62	164	75	7,498
2006	8,375	325	7,405	301	204	198	65	166	75	7,730
2007	8,590	388	7,576	303	180	212	68	167	75	7,964
2008	8,805	451	7,744	305	159	226	71	167	75	8,195

NOTE : COLUMN (OTH) INCLUDES DEMAND REDUCTIONS FOR LOAD CONTROL PROGRAMS (HEATWORKS AND VOLTAGE REDUCTION) AND CUSTOMER-OWNED SELF-SERVICE COGENERATION.

SCHEDULE 3.1.2 HISTORY AND FORECAST OF SUMMER PEAK DEMAND (MW) HIGH LOAD FORECAST

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(OTH)	(10)
					RESIDENTIAL		COMM. / IND.		OTHER	
YEAR	TOTAL	WHOLESALE	RETAIL	INTERRUPTIBLE	LOAD MANAGEMENT	RESIDENTIAL CONSERVATION	LOAD MANAGEMENT	COMM. / IND. CONSERVATION	DEMAND REDUCTIONS	NET FIRM DEMAND
						• ••••••				
1989	6,045	623	4,633	276	300	34	N/A	46	133	5,256
1990	6,166	641	4,733	230	342	35	N/A	49	136	5,374
1991	6,128	684	4,699	207	313	36	N/A	53	136	5,383
1992	6,465	827	4,927	186	287	39	N/A	58	141	5,754
1993	6,913	848	5,016	274	502	48	N/A	70	155	5,864
1994	6,880	801	5,003	262	527	52	N/A	81	154	5,804
1995	7,510	886	5,522	284	502	55	N/A	101	160	6,408
1 996	7,464	824	5,416	309	528	67	37	116	167	6,240
1997	7,786	872	5,696	285	509	78	46	130	170	6,568
1998	8,367	941	6,276	291	453	95	43	144	124	7,217
1999	8,609	1,458	6,250	324	457	108	44	159	76	7,708
2000	8,500	1,197	6,417	313	450	118	47	160	76	7,614
2001	8,767	1,276	6,662	301	402	129	50	162	76	7,938
2002	8,531	854	6,910	298	341	142	53	162	75	7,764
2003	8,125	289	7,108	300	297	155	56	163	75	7,397
2004	8,255	219	7,343	297	262	169	59	164	75	7,562
2005	8,482	265	7,550	299	231	184	62	164	75	7,815
2006	8,728	325	7,758	301	204	198	65	166	75	8,083
2007	8,966	388	7,952	303	180	212	68	167	75	8,340
2008	9,246	451	8,185	305	159	226	71	167	75	8,636

NOTE : COLUMN (OTH) INCLUDES DEMAND REDUCTIONS FOR LOAD CONTROL PROGRAMS (HEATWORKS AND VOLTAGE REDUCTION) AND CUSTOMER-OWNED SELF-SERVICE COGENERATION.

SCHEDULE 3.1.3 HISTORY AND FORECAST OF SUMMER PEAK DEMAND (MW) LOW LOAD FORECAST

(1) (2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(OTH)	(10)

OTHER

					RESIDENTIAL		COMM. / IND.		OTHER	
					LOAD	RESIDENTIAL	LOAD	COMM. / IND.	DEMAND	NET FIRM
YEAR	TOTAL	WHOLESALE	RETAIL	INTERRUPTIBLE	MANAGEMENT	CONSERVATION	MANAGEMENT	CONSERVATION	REDUCTIONS	DEMAND
1989	6,045	623	4,633	276	300	34	N/A	46	133	5,256
1990	6,166	641	4,733	230	342	35	N/A	49	136	5,374
1991	6,128	684	4,699	207	313	36	N/A	53	136	5,383
1992	6,465	827	4,927	186	287	39	N/A	58	141	5,754
1 993	6,913	848	5,016	274	502	48	N/A	70	155	5,864
1 99 4	6,880	801	5,003	262	527	52	N/A	81	154	5,804
1995	7,510	886	5,522	284	502	55	N/A	101	160	6,408
1996	7,464	824	5,416	309	528	67	37	116	167	6,240
1997	7,786	872	5,696	285	509	78	46	130	170	6,568
1 998	7,577	941	5,486	291	453	95	43	144	124	6,427
1000	0.212	1 459	E 054	324	457	108	44	150	74	7.410
2000	8,313	1,458	5,954	324	437	108	44	159	76	7,412
2000	8,170	1,19/	6,08/	313	450	118	47	160	76	7,284
2001	8,383	1,2/6	6 462	301	402	129	50	162	76	7,554
2002	8,084	854	0,403	298	341	142	53	162	75	7,317
2003	7,643	289	0,020	300	297	155	56	163	75	6,915
2004	7,685	219	6,773	297	262	169	39	164	75	6,992
2005	7,853	265	6,921	299	231	184	62	164	75	7,186
2006	8,018	325	7,048	301	204	198	65	166	75	7,373
2007	8,204	388	7,190	303	180	212	68	167	75	7,578
2008	8,351	451	7,290	305	159	226	71	167	75	7,741

NOTE : COLUMN (OTH) INCLUDES DEMAND REDUCTIONS FOR LOAD CONTROL PROGRAMS (HEATWORKS AND VOLTAGE REDUCTION) AND CUSTOMER-OWNED SELF-SERVICE COGENERATION.

SCHEDULE 3.2.1 HISTORY AND FORECAST OF WINTER PEAK DEMAND (MW) BASE CASE

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(OTH)	(10)

					RESIDENTIAL		COMM. / IND.		OTHER	
					LOAD	RESIDENTIAL	LOAD	COMM. / IND.	DEMAND	NET FIRM
YEAR	TOTAL	WHOLESALE	RETAIL	INTERRUPTIBLE	MANAGEMENT	CONSERVATION	MANAGEMENT	CONSERVATION	REDUCTIONS	DEMAND
1988/89	6,873	639	5,261	237	493	52	N/A	44	147	5,900
1989/90	7,366	958	5,656	0	503	52	N/A	47	150	6,614
1990/91	6,312	796	4,574	196	490	51	N/A	52	153	5,370
1991/92	7,159	1,005	5,063	210	611	60	N/A	55	155	6,068
1992/93	6,516	876	4,608	150	599	67	N/A	57	159	5,484
1993/94	7,185	1,004	4,901	199	759	90	N/A	67	165	5,905
1994/95	8,975	1,169	6,223	280	99 7	101	N/A	74	131	7,392
1995/96	10,350	1,486	7,263	45	1,146	105	10	94	201	8,749
1996/97	8,486	1,228	5,624	290	90 1	133	16	104	190	6,852
1997/98	7,717	908	5,419	318	645	119	18	122	168	6,327
1 998/99	9,420	1,527	6,489	322	874	183	18	120	190	8,016
1999/00	9,611	1,575	6,646	312	865	204	21	120	192	8,221
2000/01	9,837	1,668	6,791	300	859	228	24	121	195	8,459
2001/02	9,575	1,266	7,005	297	790	254	27	121	190	8,271
2002/03	9,170	720	7,193	299	743	281	30	122	185	7,913
2003/04	9,248	66 6	7,354	296	713	310	33	123	186	8,020
2004/05	9,445	728	7,504	298	690	339	36	124	189	8,232
2005/06	9,656	806	7,649	300	670	369	39	125	192	8,455
2006/07	9,868	883	7,794	302	652	399	42	125	195	8,677
2007/08	10,084	963	7,937	304	637	428	45	125	198	8,900
2008/09	10,304	1,046	8,079	306	623	456	49	126	201	9,125

NOTE : COLUMN (OTH) INCLUDES DEMAND REDUCTIONS FOR LOAD CONTROL PROGRAMS (HEATWORKS AND VOLTAGE REDUCTION) AND CUSTOMER-OWNED SELF-SERVICE COGENERATION.

SCHEDULE 3.2.2 HISTORY AND FORECAST OF WINTER PEAK DEMAND (MW) HIGH LOAD FORECAST

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(OTH)	(10)
x - <i>y</i>	~ -/									

					RESIDENTIAL		COMM. / IND.		OTHER	
					LOAD	RESIDENTIAL	LOAD	COMM. / IND.	DEMAND	NET FIRM
YEAR	TOTAL	WHOLESALE	RETAIL	INTERRUPTIBLE	MANAGEMENT	CONSERVATION	MANAGEMENT	CONSERVATION	REDUCTIONS	DEMAND
1988/89	6,873	639	5,261	237	493	52	N/A	44	147	5,900
1989/90	7,366	958	5,656	0	503	52	N/A	47	150	6,614
1990/91	6,312	796	4,574	196	490	51	N/A	52	153	5,370
1991/92	7,159	1,005	5,063	210	611	60	N/A	55	155	6,068
1992/93	6,516	876	4,608	150	599	67	N/A	57	159	5,484
1993/94	7,185	1,004	4,901	199	759	90	N/A	67	165	5,905
1994/95	8,975	1,169	6,223	280	997	101	N/A	74	131	7,392
1995/96	10,350	1,486	7,263	45	1,146	105	10	94	201	8,749
1996/97	8,486	1,228	5,624	290	901	133	16	104	190	6,852
1997/98	7,717	908	5,419	318	645	119	18	122	168	6,327
1998/99	9,594	1,527	6,663	322	874	183	18	120	190	8,190
1999/00	9,785	1,575	6,820	312	865	204	21	120	192	8,395
2000/01	10,058	1,668	7,012	300	859	228	24	121	195	8,680
2001/02	9,832	1,266	7,262	297	790	254	27	121	190	8,528
2002/03	9,430	720	7,453	299	743	281	30	122	185	8,173
2003/04	9,567	666	7,673	296	713	310	33	123	186	8,339
2004/05	9,795	728	7,854	298	690	339	36	124	189	8,582
2005/06	10,044	806	8,037	300	670	369	39	125	192	8,843
2006/07	10,280	883	8,206	302	652	399	42	125	195	9,089
2007/08	10,566	963	8,419	304	637	428	45	125	198	9,382
2008/09	10,854	1,046	8,629	306	623	456	49	126	201	9,675

NOTE : COLUMN (OTH) INCLUDES DEMAND REDUCTIONS FOR LOAD CONTROL PROGRAMS (HEATWORKS AND VOLTAGE REDUCTION) AND CUSTOMER-OWNED SELF-SERVICE COGENERATION.

SCHEDULE 3.2.3 HISTORY AND FORECAST OF WINTER PEAK DEMAND (MW) LOW LOAD FORECAST

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(OTH)	(10)

					RESIDENTIAL		COMM. / IND.		OTHER	
					LOAD	RESIDENTIAL	LOAD	COMM. / IND.	DEMAND	NET FIRM
YEAR	TOTAL	WHOLESALE	RETAIL	INTERRUPTIBLE	MANAGEMENT	CONSERVATION	MANAGEMENT	CONSERVATION	REDUCTIONS	DEMAND
1988/89	6,873	639	5,261	237	493	52	N/A	44	147	5,900
1989/90	7,366	958	5,656	0	503	52	N/A	47	150	6,614
1990/91	6,312	796	4,574	196	490	51	N/A	52	153	5,370
1 991/92	7,159	1,005	5,063	210	611	60	N/A	55	155	6,068
1992/93	6,516	876	4,608	150	599	67	N/A	57	159	5,484
1993/94	7,185	1,004	4,901	199	759	90	N/A	67	165	5,905
1994/95	8,975	1,169	6,223	280	997	101	N/A	74	131	7,392
1995/96	10,350	1,486	7,263	45	1,146	105	10	94	201	8,749
1996/97	8,486	1,228	5,624	290	901	133	16	104	190	6,852
1997/98	7,717	908	5,419	318	645	119	18	122	168	6,327
1998/99	9,259	1,527	6,328	322	874	183	18	120	190	7,855
1999/00	9,414	1,575	6,449	312	865	204	21	120	192	8.024
2000/01	9,627	1,668	6,581	300	859	228	24	121	195	8,249
2001/02	9,332	1,266	6,762	297	790	254	27	121	190	8,028
2002/03	8,894	720	6,917	299	743	281	30	122	185	7,637
2003/04	8,934	666	7,040	· 296	713	310	33	123	186	7,706
2004/05	9,100	728	7,159	298	690	339	36	124	189	7,887
2005/06	9,263	806	7,256	300	670	369	39	125	192	8,062
2006/07	9,445	883	7,371	302	652	399	42	125	195	8,254
2007/08	9,588	963	7,441	304	637	428	45	125	198	8,404
2008/09	9,772	1,046	7,547	306	623	456	49	126	201	8,593

NOTE : COLUMN (OTH) INCLUDES DEMAND REDUCTIONS FOR LOAD CONTROL PROGRAMS (HEATWORKS AND VOLTAGE REDUCTION) AND CUSTOMER-OWNED SELF-SERVICE COGENERATION.

SCHEDULE 3.3.1 HISTORY AND FORECAST OF ANNUAL NET ENERGY FOR LOAD (GWh) BASE CASE

(1)	(2)	(3)	(4)	(OTH)	(5)	(6)	(7)	(8)	(9)
				OTHER					
		RESIDENTIAL	COMM. / IND.	ENERGY			UTILITY USE	NET ENERGY	LOAD
YEAR	TOTAL	CONSERVATION	CONSERVATION	REDUCTIONS	RETAIL	WHOLESALE	& LOSSES	FOR LOAD	FACTOR %
1989	28,606	165	131	463	24,123	1,529	2,195	27,847	51.8
1990	28,629	173	145	506	24,880	1,548	1,377	27,805	46.6
1991	29,219	166	156	509	25,179	1,411	1,799	28,389	53.5
1992	29,561	174	170	516	25,414	1,471	1,817	28,702	46.8
1993	31,150	188	195	524	26,528	1,695	2,020	30,243	55.5
1994	32,135	205	220	536	27,675	1,819	1,680	31,174	51.2
1995	34,682	219	246	549	29,499	1,846	2,322	33,667	49.8
1996	35,797	235	285	562	30,785	2,089	1,841	34,715	44.9
1 997	35,739	254	317	563	30,850	1,758	1,997	34,605	57.7
1 99 8	38,936	275	333	565	33,387	2,340	2,036	37,763	68.1
1999	39,601	297	344	568	33,042	2,975	2,376	38,393	54.7
2000	40,456	313	345	570	33,986	2,913	2,329	39,228	54.3
2001	41,612	329	347	569	34,897	3,083	2,387	40,367	54.5
2002	40,790	347	348	569	35,843	1,582	2,101	39,525	54.6
2003	41,333	366	350	569	36,799	924	2,325	40,048	57.8
2004	42,275	385	351	572	37,673	891	2,402	40,967	58.2
2005	43,239	405	353	570	38,601	864	2,447	41,911	58.1
2006	44,206	425	354	571	39,476	881	2,499	42,856	57.9
2007	45,160	444	356	571	40,341	900	2,548	43,789	57.6
2008	46,108	463	357	573	41,197	919	2,598	44,714	57.2

NOTE : COLUMN (OTH) INCLUDES CONSERVATION ENERGY FOR LIGHTING AND PUBLIC AUTHORITY CUSTOMERS, CUSTOMER-OWNED SELF-SERVICE COGENERATION AND LOAD CONTROL PROGRAMS.

SCHEDULE 3.3.2 HISTORY AND FORECAST OF ANNUAL NET ENERGY FOR LOAD (GWh) HIGH LOAD FORECAST

(1)	(2)	(3)	(4)	(OTH)	(5)	(6)	(7)	(8)	(9)
				OTHER					
YEAR	TOTAL	RESIDENTIAL CONSERVATION	COMM. / IND. CONSERVATION	ENERGY REDUCTIONS	RETAIL	WHOLESALE	UTILITY USE & LOSSES	FOR LOAD	LOAD FACTOR %

1989	28,606	165	131	463	24,123	1,529	2,195	27,847	51.8
1990	28,629	173	145	506	24,880	1,548	1,377	27,805	46.6
1991	29,219	166	156	509	25,179	1,411	1,799	28,389	53.5
1992	29,561	174	170	516	25,414	1,471	1,817	28,702	46.8
1993	31,150	188	195	524	26,528	1,695	2,020	30,243	55.5
1994	32,135	205	220	536	27,675	1,819	1,680	31,174	51.2
1995	34,682	219	246	549	29,499	1,846	2,322	33,667	49.8
1996	35,797	235	285	562	30,785	2,089	1,841	34,715	44.9
1 997	35,739	254	317	563	30,850	1,758	1,997	34,605	57.7
1998	38,936	275	333	565	33,387	2,340	2,036	37,763	68.1
1999	40,381	297	344	568	33,779	2,975	2,419	39,173	54.6
2000	41,253	313	345	570	34,730	2,913	2,382	40,024	54.3
2001	42,626	329	347	569	35,849	3,083	2,449	41,381	54.4
2002	41,966	347	348	569	36,961	1,582	2,160	40,702	54.5
2003	42,553	366	350	569	37,941	924	2,402	41,268	57.6
2004	43,772	385	351	572	39,084	891	2,489	42,464	58.0
2005	44,900	405	353	570	40,165	864	2,544	43,572	58.0
2006	46,054	425	354	571	41,222	881	2,603	44,705	57.7
2007	47,147	444	356	571	42,206	900	2,669	45,776	57.5
2008	48,443	463	357	573	43,393	919	2,738	47,049	57.1

NOTE : COLUMN (OTH) INCLUDES CONSERVATION ENERGY FOR LIGHTING AND PUBLIC AUTHORITY CUSTOMERS, CUSTOMER-OWNED SELF-SERVICE COGENERATION AND LOAD CONTROL PROGRAMS.

SCHEDULE 3.3.3 HISTORY AND FORECAST OF ANNUAL NET ENERGY FOR LOAD (GWh) LOW LOAD FORECAST

(1)	(2)	(3)	(4)	(OTH)	(5)	(6)	(7)	(8)	(9)
				OTHER					
		RESIDENTIAL	COMM. / IND.	ENERGY			UTILITY USE	NET ENERGY	LOAD
YEAR	TOTAL	CONSERVATION	CONSERVATION	REDUCTIONS	RETAIL	WHOLESALE	& LOSSES	FOR LOAD	FACTOR %
1989	28,606	165	131	463	24,123	1,529	2,195	27,847	51.8
1990	28,629	173	145	506	24,880	1,548	1,377	27,805	46.6
1991	29,219	166	156	509	25,179	1,411	1,799	28,389	53.5
1992	29,561	174	170	516	25,414	1,471	1,817	28,702	46.8
1 993	31,150	188	195	524	26,528	1,695	2,020	30,243	55.5
1994	32,135	205	220	536	27,675	1,819	1,680	31,174	51.2
1995	34,682	219	246	549	29,499	1,846	2,322	33,667	49.8
1996	35,797	235	285	562	30,785	2,089	1,841	34,715	44.9
1997	35,739	254	317	563	30,850	1,758	1,997	34,605	57.7
1998	38,936	275	333	565	33,387	2,340	2,036	37,763	68.1
1999	38,874	297	344	568	32,363	2,975	2,328	37,665	54.7
2000	39,563	313	345	570	33,144	2,913	2,278	38,335	54.4
2001	40,648	329	347	569	33,992	3,083	2,328	39,403	54.5
2002	39,672	347	348	569	34,787	1,582	2,038	38,407	54.6
2003	40,042	366	350	569	35,584	924	2,248	38,757	57.9
2004	40,800	385	351	572	36,284	891	2,316	39,492	58.3
2005	41,600	405	353	570	37,059	864	2,349	40,272	58.3
2006	42,332	425	354	571	37,709	881	2,393	40,982	58.0
2007	43,121	444	356	571	38,427	900	2,423	41,751	57.7
2008	43,715	463	357	573	38,940	919	2,463	42,321	57.3

NOTE : COLUMN (OTH) INCLUDES CONSERVATION ENERGY FOR LIGHTING AND PUBLIC AUTHORITY CUSTOMERS, CUSTOMER-OWNED SELF-SERVICE COGENERATION AND LOAD CONTROL PROGRAMS.

SCHEDULE 4 PREVIOUS YEAR ACTUAL AND TWO-YEAR FORECAST OF PEAK DEMAND AND NET ENERGY FOR LOAD BY MONTH

(1)	(2)	(3)	(4)	(4) (5)		(7)		
	ACTUA	L	FORECA	ST	F O R E C A S T 2000			
	1998		1999					
	PEAK DEMAND	NEL	PEAK DEMAND	NEL	PEAK DEMAND	NEL		
MONTH	MW	GWh	MW	GWh	MW	GWh		
JANUARY	6,097	2,639	8,016	2,935	8,221	2,996		
FEBRUARY	6,156	2,478	7,350	2,669	7,558	2,708		
MARCH	6,885	2,726	6,418	2,816	6,579	2,828		
APRIL	5,630	2,612	5,395	2,640	5,482	2,750		
MAY	7,066	3,281	6,440	3,458	6,547	3,567		
JUNE	7,906	4,054	7,258	3,631	7,159	3,713		
JULY	8,004	3,991	7,424	3,990	7,328	4,072		
AUGUST	7,808	3,962	7,554	3,995	7,459	4,073		
SEPTEMBER	7,235	3,450	7,187	3,618	7,088	3,691		
OCTOBER	7,034	3,231	6,057	2,973	6,213	3,042		
NOVEMBER	5,387	2,619	5,797	2,678	5,926	2,719		
DECEMBER	5,948	2,720	7,327	2,990	7,455	3,069		
				20.202		20.000		

TOTAL

37,763

38,393

39,228

FUEL REQUIREMENTS and ENERGY SOURCES

FPC's two-year actual and ten-year projected nuclear, coal, oil, and gas requirements (by fuel units) are shown on Schedule 5. FPC's two-year actual and ten-year projected energy sources in GWh and percent, are shown by fuel type on Schedules 6.1 and 6.2, respectively. FPC's fuel requirements and energy sources reflect a diverse fuel supply system which is not dependent on any one fuel source. FPC expects its fuel diversity to be further enhanced with the addition of future planned combined cycle generation units fueled by natural gas. Natural gas consumption is projected to increase as plants are added to meet future load growth. FPC's coal, nuclear, and purchased power requirements are projected to remain relatively stable over the planning horizon.

SCHEDULE 5

FUEL REQUIREMENTS

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
				-ACTUAL	ACTUAL	-									
	FUEL REQUIREMENTS		UNITS	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
(1) NU	JCLEAR		TRILLION BTU	0	60	58	65	62	65	65	62	65	62	65	62
(2) CO	AL		1,000 TON	6,080	5,713	5,533	5,369	5,505	5,452	5,580	5,645	5,412	5,521	5,308	5,442
(3) RE	SIDUAL	TOTAL	1,000 BBL	9,124	10,906	5,667	5,289	6,013	5,299	5,760	5,933	5,059	5,575	4,376	5,248
(4)		STEAM	1,000 BBL	9,124	10, 9 06	5,667	5,289	6,013	5,299	5,760	5,933	5,059	5,575	4,376	5,248
(5)		сс	1,000 BBL	0	0	0	0	0	0	0	0	0	0	0	0
(6)		СТ	1,000 BBL	0	0	0	0	0	0	0	0	0	0	0	0
(7)		DIESEL	1,000 BBL	0	0	0	0	0	0	0	0	0	0	0	0
(8) DIS	STILLATE	TOTAL	1,000 BBL	1,108	1,873	916	719	702	516	371	515	276	335	237	272
(9)		STEAM	1,000 BBL	81	111	132	124	136	109	9 9	102	109	105	112	107
(10)		сс	1,000 BBL	0	0	0	0	0	0	0	0	0	0	0	0
(11)		СТ	1,000 BBL	1,027	1,762	784	595	5 66	407	272	413	167	230	125	165
(12)		DIESEL	1,000 BBL	0	0	0	0	0	0	0	0	0	0	0	0
(13) NA	TURAL GAS	TOTAL	1,000 MCF	23,644	25,348	54,524	55,195	61,450	56,310	53,450	61,115	69,478	75,215	86,719	89,583
(14)		STEAM	1,000 MCF	3,599	1,260	5,689	5,713	5,434	4,344	3,070	3,810	2,409	2,618	2,429	2,471
(15)		сс	1,000 MCF	5,793	11,200	27,113	31,962	31,978	32,559	32,478	35,637	53,685	55,675	72,725	72,625
(16)		СТ	1,000 MCF	14,252	12,888	21,722	17,520	24,038	19,407	17,902	21,668	13,384	16,922	11,565	14,487
(17) OTHER (SPECIFY)				0	0	0	0	0	0	0	0	0	0	0	0

SCHEDULE 6.1

ENERGY SOURCES (GWh)

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
				-ACTUALACTUAL-											
	ENERGY SOURCES			1 997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
(1) ANNUAL FIRM INTERCHANGE 1/			GWb	1 138	-477	-197	73	93	77	72	85	102	106	89	98
			0	1,120										••	
(2) NUCLEAR			GWh	0	5,863	5,473	6,085	5,800	6,068	6,068	5,813	6,068	5,795	6,068	5,813
(3)	COAL		GWh	15,977	14,892	14,591	14,171	14,602	14,469	14,855	15,026	14,356	14,657	14,039	14,411
(4)	RESIDUAL	TOTAL	GWh	5,875	7,031	3,695	3,488	3,955	3,499	3,832	3,942	3,353	3,675	2,906	3,466
(5)		STEAM	GWh	5,875	7,031	3,695	3,488	3,955	3,499	3,832	3,942	3,353	3,675	2,906	3,466
(6)		сс	GWh	0	0	0	0	0	0	0	0	0	0	0	0
(7)		СТ	GWh	0	0	0	0	0	0	0	0	0	0	0	0
(8)		DIESEL	GWh	0	0	0	0	0	0	0	0	0	0	0	0
(9)]	DISTILLATE	TOTAL	GWh	436	762	357	270	259	184	123	186	76	105	57	75
10)		STEAM	GWh	0	0	0	0	0	0	0	0	0	0	0	0
11)		сс	GWh	0	0	0	0	0	0	0	0	0	0	0	0
12)		СТ	GWh	436	762	357	270	259	184	123	186	76	105	57	75
13)		DIESEL	GWh	0	0	0	0	0	0	0	0	0	0	0	0
14) I	NATURAL GAS	TOTAL	GWh	2,283	2,498	5,469	5,899	6,405	6,041	5,917	6,679	8,737	9,299	11,462	11,641
15)		STEAM	GWh	351	140	189	182	182	68	40	65	11	24	10	11
16)		сс	GWh	789	1,216	3,639	4,317	4,340	4,405	4,396	4,873	7,587	7,889	10,456	10,430
17)		СТ	GWh	1,143	1,142	1,641	1,400	1,883	1,568	1,481	1,741	1,139	1,386	996	1,200
18) (OTHER 2/														
(QF PURCHASES		GWh	6,311	5,419	6,085	6,101	6,085	6,085	6,085	6,101	6,085	6,085	6,085	6,101
J	IMPORT FROM OUT OF S	TATE	GWh	2,649	2,179	2,920	3,141	3,168	3,102	3,096	3,135	3,134	3,134	3,083	3,109
1	EXPORT TO OUT OF STA	TE	GWh	-64	-459	0	0	0	0	0	0	0	0	0	0
19) NET ENERGY FOR LOAD			GWh	34,605	37,763	38,393	39,228	40,367	39,525	40,048	40,967	41,911	42,856	43,789	44,714

1 / NET ENERGY PURCHASED (+) OR SOLD (-) WITHIN PENINSULAR FLORIDA.

2 / NET ENERGY PURCHASED (+) OR SOLD (-).
FLORIDA POWER CORPORATION

SCHEDULE 6.2 ENERGY SOURCES (PERCENT)

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
			-ACTUALACTUAL-												
	ENERGY SOUL	RCES	UNITS	1997	1 9 98	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
(1) ANNUAL FIRM INTERCHANGE 1 /			%	3.3%	-1.1%	-0.5%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%
(2) NUCLEAR			%	0.0%	15.5%	14.3%	15.5%	14.4%	15.4%	15.2%	14.2%	14.5%	13.5%	13.9%	13.0%
(3) C	OAL		%	46.2%	39.4%	38.0%	36.1%	36.2%	36.6%	37.1%	36.7%	34.3%	34.2%	32.1%	32.2%
(4) R	ESIDUAL	TOTAL	%	17.0%	18.6%	9.6%	8.9%	9.8%	8.9%	9.6%	9.6%	8.0%	8.6%	6.6%	7.8%
(5)		STEAM	%	17.0%	18.6%	9.6%	8.9%	9.8%	8.9%	9.6%	9.6%	8.0%	8.6%	6.6%	7.8%
(6)		сс	%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
(7)		СТ	%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
(8)		DIESEL	%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
(9) DI	ISTILLATE	TOTAL	%	1.3%	2.0%	0. 9 %	0.7%	0.6%	0.5%	0.3%	0.5%	0.2%	0.2%	0.1%	0.2%
10)		STEAM	%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
11)		сс	%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
12)		ст	%	1.3%	2.0%	0.9%	0.7%	0.6%	0.5%	0.3%	0.5%	0.2%	0.2%	0.1%	0.2%
13)		DIESEL	%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
14) N/	ATURAL GAS	TOTAL	%	6.6%	6.6%	14.2%	15.0%	15.9%	15.3%	14.8%	16.3%	20.8%	21.7%	26.2%	26.0%
15)		STEAM	%	1.0%	0.4%	0.5%	0.5%	0.5%	0.2%	0.1%	0.2%	0.0%	0.1%	0.0%	0.0%
16)		сс	%	2.3%	3.2%	9.5%	11.0%	10.8%	11.1%	11.0%	11.9%	18.1%	18.4%	23.9%	23.3%
17)		СТ	%	3.3%	3.0%	4.3%	3.6%	4.7%	4.0%	3.7%	4.2%	2.7%	3.2%	2.3%	2.7%
18) OT	THER 2/														
QF	FPURCHASES		%	18.2%	14.4%	15.8%	15.6%	15.1%	15.4%	15.2%	14.9%	14.5%	14.2%	13.9%	13.6%
IMPORT FROM OUT OF STATE		%	7.7%	5.8%	7.6%	8.0%	7.8%	7.8%	7.7%	7.7%	7.5%	7.3%	7.0%	7.0%	
EXPORT TO OUT OF STATE			%	-0.2%	-1.2%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
19) NET ENERGY FOR LOAD			%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%

1 / NET ENERGY PURCHASED (+) OR SOLD (-) WITHIN PENINSULAR FLORIDA.

2 / NET ENERGY PURCHASED (+) OR SOLD (-).

FORECASTING METHODS AND PROCEDURES

INTRODUCTION

The need for accurate forecasts of long-range electric energy consumption, customer growth, peak demand and system load shape is a crucial planning function for any electric utility. Accurate projections of a utility's future load growth require forecasting methodologies with the ability to account for a variety of factors influencing electric energy usage in both the short- and long-term planning horizons. FPC's forecasting framework utilizes the System for Hourly and Annual Peak and Energy Simulation (SHAPES-PC) end-use forecasting system as well as short-term econometric models to achieve this end. This chapter will describe the underlying methodology of both the econometric and end-use models including the assumptions incorporated within each. Also included is a description as to how Demand-Side Management (DSM) impacts affect the forecast, the development of high and low forecast scenarios and a review of DSM programs.

The following flow diagram entitled "Customer, Energy and Demand Forecast" gives a general description of FPC's forecasting process. Highlighted in the diagram is the blending of short-term and long-term modeling techniques based on a specific set of assumptions. Also accounted for is some direct contact with large customers. These inputs provide the forecaster at FPC with the tools needed to frame the most likely scenario of the company's future demand.

FORECAST ASSUMPTIONS

The first step in any forecasting effort is the development of assumptions upon which the forecast is based. The Load Forecasting section of the Financial Analysis Department develops these assumptions based on discussions with a number of departments within FPC, as well as through the research efforts of a number of external sources. These assumptions specify major factors that influence the level of customers, energy sales, or peak demand over the forecast horizon. The following set of assumptions form the basis for the forecast presented in this document.

GENERAL ASSUMPTIONS

- 1. Normal weather conditions are assumed. Normal weather reflects a ten-year average of service-area-weighted degree days in order to project kilowatt-hour sales. A twenty-year average of service area weighted temperatures at time of system seasonal peak is assumed to forecast megawatt peak demand.
- 2. The population projection produced by the Bureau of Economic and Business Research (BEBR) at the University of Florida provides the basis for development of the customer forecast. This forecast incorporates "Population Studies," Bulletin No. 120, February 1998 as well as The Florida Long Term Forecast 1998.
- 3. FPC's energy intensive phosphate mining customers consumed 33 percent of total industrial class energy sales in 1997. This industry has consolidated in the past few years leaving just a handful of players influencing supply conditions in the marketplace. A reduction in power consumption in this sector is assumed in this forecast as IMC-Agrico mines out several locations within FPC territory. The return of some portion of this load in the Hardee county mining area is possible before the end of the forecast horizon but is not assumed. Some loss of off-peak energy sales to Cargill has been factored into the forecast due to the rearrangement of output from their self-service generator and corresponding purchase power agreement with FPC. The outlook for increased power consumption in this industry recognizes the risks brought on by current and expected competitive pressures to serve high-use customers as well as political risks in dealing with foreign markets. Consequently, the projection of possible load additions has been tempered in the post-2000 time period.
- 4. Florida Power Corporation supplies capacity and energy service to wholesale customers on a "full", "partial" and "supplemental" requirements basis. Full requirements customers' demand and energy are assumed to grow at rates determined by projected population levels as well as projected economic activity. Partial requirements customers' load is assumed to

reflect the current contractual obligations received by FPC. The forecast of energy and demand from partial requirements customers reflect their ability to receive dispatched energy from the Florida broker system any time it is more economical to do so. FPC's arrangement with Seminole Electric Cooperative, Incorporated is to serve "supplemental" service over and above committed levels of self-generation and firm purchase contracts. SECI's projection of their system's demand and energy requirements serves as the basis for our projection of this customer's supplemental service requirements.

This forecast also includes four wholesale bulk power contracts. The first is a multi-part contract with SECI to serve 605 MW for three years beginning in 1999. An option to extend 455 MW of this load for an additional seven years existed but was not exercised. The remaining 150 MW, a stratified intermediate contract transferred from the supplemental service contract, is assumed to continue through the year 2002. A second 3-year agreement with SECI to sell up to 300 MW of peaking capacity beginning in 2000 has also been reflected in the forecast. The other two bulk power contracts are summer 1999 firm contract sales for 200 MW and 75 MW with Georgia Power Company and the Municipal Electric Authority of Georgia, respectively.

- 5. This forecast incorporates demand and energy reductions from FPC'S dispatchable and nondispatchable DSM programs that have been proposed to the Florida Public Service Commission in the 1999 Conservation Goals Docket.
- 6. The expected energy and demand impacts of self-service cogeneration are subtracted from the forecast. The forecast assumes that FPC will supply the supplemental load of self-service cogeneration customers. Supplemental load is defined as the cogeneration customers' total electric load requirements less their normal generation output. While FPC offers "standby" service to all cogeneration customers, this forecast does not assume an unplanned need for standby power during peak periods.
- 7. This forecast assumes that the regulatory environment and the obligation to serve will continue throughout the forecast horizon. Wholesale customers that have given notice of contract termination are not included in the projections of energy and demand once their contract term expires.
- 8. The economic outlook for this 20-year forecast attempts to reflect the short-term outlook for the current business cycle as well as the long-term trend behavior for the economy. It is important to note however, that identification of the long-term trend in economic/demographic conditions represents the primary focus of this forecast. The purpose of the short-term outlook is only to show how the current business cycle is expected to evolve and eventually blend into the long-term. Beyond the short-term time horizon, only the long-run trends in economic and demographic conditions that cut through the peaks and troughs of future business cycles are considered in this forecast.

SHORT-TERM ECONOMIC ASSUMPTIONS

The economic outlook for this 5-year forecast calls for moderating economic growth throughout the forecast horizon. No "shocks" to any supply or demand conditions in the national economy are expected and thus no economic recession is incorporated in this forecast. The unemployment rate nationwide has reached a 28-year low. This has resulted in greater spending power for the consumer and a high level of optimism in the economy. Looking ahead however, growth will be slower than recently experienced for either of the two following reasons. First, Federal Reserve Board (FRB) efforts to restrain inflationary pressures will ultimately result in the application of tighter monetary policy. This will lead to higher interest rates in the short-term thereby slowing the economy. Secondly, the crisis in Asia, which has significantly dampened U.S. exports to that area and increased the level of imports, will hurt the U.S. manufacturing sector, lower overall consumer optimism and possibly restrict credit growth. Increased domestic pessimism will restrict lending as well as spending.

Beyond 1999, Federal government efforts to balance the federal budget and maintain fiscal restraint will continue to place downward pressure on interest rates. Lower government spending means it will be less of a consumer in the national economy and lighten demand for credit in the marketplace.

On a regional basis, interest rate levels will continue to influence the pace of economic growth in Florida through their impacts on the construction, retirement and tourism industries. Personal income growth is expected to continue growing but not at the torrid pace

experienced in recent years. Employment growth will moderate from the strong pace experienced in past years resulting in slower growth in total wages. Slower growth in hourly earnings as well as transfer payments should also hold down income growth in the years ahead. Export related job growth is expected to fair well in the future as the state has positioned itself well for trade with Latin America. The strong dollar of late may stall further job gains in this sector temporarily, but the globalization of the world economy will encourage Florida exports as well as attract higher numbers of foreign tourists to Florida.

Average use per residential customer will continue to grow as electricity prices are projected to decline in real dollar terms. Also contributing to this trend are homebuilders' surveys reporting increased median square footage in new homes and new apartments constructed. New housing preferences have continued to reflect larger living quarters than that seen in the existing housing stock.

LONG-TERM ECONOMIC ASSUMPTIONS

The long-term economic outlook assumes that changes in economic and demographic conditions will follow a trended behavior pattern. The main focus involves identifying these trends. No attempt is made to predict business cycle fluctuations during this period.

Population Growth Trends

This forecast assumes Florida will experience slower in-migration and population growth over the long term, as reflected in the BEBR projections.

- Florida's climate and low cost of living have historically attracted a major share of the retirement population from the eastern half of the United States. This will continue to occur, but at less than historic rates for two reasons. First, Americans entering retirement age during the late 1990s and early twenty-first century were born during the Great Depression era of the 1930s. This decade experienced a low birth rate due to the economic conditions at that time. Sixty years later, there now exists a smaller pool of retirees capable of migrating to Florida. Second, the enormous growth in population and corresponding development of the 1980s made portions of Florida less desirable for retirement living. This diminished the quality of retiree life, and along with increasing competition from neighboring states, is expected to cause a slight decline in Florida's share of these prospective new residents over the long term.
- With the bulk of Florida's in-migrants under age 45, the baby boom generation born between 1945 and 1963 helped fuel the rapid population increase Florida experienced

during the 1980s. Coupling this with two other events of the 1980s -- airline deregulation that lowered airfares, increasing accessibility to Florida, and a recession in the oilproducing states that historically pulled a percentage of their labor pools from Florida -one begins to realize that these conditions will not recur in the foreseeable future. In fact, slower population in-migration to Florida can be expected as the baby boom generation enters the 40's and 50's age bracket. This age group has been significantly characterized as immobile when studies focusing on interstate population flows or job changes are conducted.

Economic Growth Trends

Florida's rapid population growth of the 1980s created a period of strong job creation, especially in the service sector industries. While the service-oriented economy expanded to support an increasing population level, there were also significant numbers of corporations migrating to Florida capitalizing on the low cost, low tax business environment. In this situation, increased job opportunities in Florida created greater inmigration among the nation's working age population. Florida's ability to attract businesses from other states because of its "comparative advantage" is expected to continue throughout the forecast period. Of long-term concern, however, is the passage of the North American Free Trade Agreement (NAFTA). At risk here is the bypassing of Florida by companies looking to relocate to a lower cost foreign environment. Mexico is expected to attract a formidable share of American manufacturing jobs that may have moved to Florida. Also, the stability of Florida's citrus and vegetable industry may be threatened when faced with greater competition from Mexico as tariffs are eliminated.

- The forecast assumes negative growth in real electricity price. That is, the change in the nominal, or current dollar, price of electricity over time is expected to be less than the overall rate of inflation. This also implies that fuel price escalation will track at or below the general rate of inflation throughout the forecast horizon.
- Real personal incomes are assumed to increase throughout the forecast period thereby boosting the average customer's ability to purchase electricity -- especially since the price of electricity is expected to increase at a rate below general inflation. As incomes grow faster than the price of electricity, consumers will remain inclined to purchase additional electric appliances and increase their utilization of existing end-uses.

FORECAST METHODOLOGY

The long-term forecast of MWh sales is produced utilizing SHAPES-PC, a large-scale end-use computer model. FPC has also developed short-term econometric models as a supplement to the long-term SHAPES-PC methodology. These short-term models are expressly designed to better capture the short-term business cycle fluctuations preceding the long-term trend path of customers' energy usage and peak demand. In particular, the monthly periodicity studied in this approach better captures near-term perturbations than the end-use forecasting framework. Also, easier and more timely model updates enable the short-term econometric model to more readily incorporate the most recent projections of input variables. Output from these short-term econometric models is used to develop the first five years of the load forecast. The SHAPES-PC model output is then used as the basis for the remaining years of the forecast horizon.

SHORT-TERM ECONOMETRIC MODEL

In the short-term econometric models, energy sales in major revenue classes that have historically shown a relationship to weather and economic/demographic indicators are modeled using monthly equations. Sales are regressed against "driver" variables that best explain monthly fluctuations over a historical sample period. Forecasts of these input variables are either derived internally or come from a review of the latest projections made by several independent forecasting concerns. These include Data Resources Incorporated (DRI), the University of Florida's Bureau of Economic and Business Research and <u>Blue Chip Economic Indicators</u>. Internal company forecasts are used for projections of electric price, weather conditions and the average number of monthly billing days. Projections of FPC's energy efficiency program

impacts (conservation program reductions) and direct load control reductions are also incorporated into the forecast. Specific sectors are modeled as follows:

Residential Sector

Residential kWh usage per customer is modeled as a function of real Florida personal income, cooling degree days, heating degree days, the real price of electricity to the residential class and the average number of billing days in each sales month. This equation captures short-term movements in customer usage. Projections of kWh usage per customer combined with the customer forecast provide the forecast of total residential energy sales. The residential customer forecast is developed by correlating annual net new customers with FPC service area population growth. County level population projections are provided by the BEBR.

Commercial Sector

Commercial kWh use per customer is forecast based on commercial (non-agricultural, nonmanufacturing and non-governmental) employment, the average number of billing days in each sales month and heating and cooling degree days. The measure of cooling degree days utilized here differs slightly from that used in the residential sector reflecting the unique behavior pattern of this class with respect to its cooling needs. Commercial customers are projected as a function of the number of residential customers served.

Industrial Sector

Energy sales to this sector are separated into two sub-sectors. A significant portion of industrial energy use, 33 percent in 1997, was consumed by the phosphate mining industry. Because this one industry dominates such a significant share of the total industrial class, it is separated and modeled apart from the rest of the class. The term "non-phosphate industrial" is used to refer to those customers who comprise the remaining portion of total industrial class sales. Both groups are impacted by changes in short-term economic activity. However, adequately explaining sales levels require separate explanatory variables. Non-phosphate industrial energy sales are modeled using the U.S. industrial production index for manufacturing (excluding motor vehicles), the real price of electricity to the industrial class, and the average number of sales month billing days. The particular industrial production index used in this equation best characterizes the industry make-up of the FPC service area that lacks a significant automotive manufacturing sector.

The industrial phosphate mining industry is modeled using customer-specific information with respect to expected market conditions. Since this sub-sector is comprised of only five customers, the final forecast is heavily dependent upon information received from direct customer contact. FPC industrial customer representatives provide specific phosphate customer information regarding customer production schedules, area mine-out and start-up predictions, and changes in self-generation or energy supply situations over the near-term forecast horizon.

Other Retail Sectors

Street Lighting

Electricity sales to the street lighting class are projected to increase due to growth in the service area population base. Residential customers provide an excellent source of FPC specific data with which to capture the trends in historic and future population growth over time. A linear regression model based on the number of residential customers as well as the number of daylight hours per month is used to forecast street lighting MWh sales.

Public Authorities

Energy sales to public authorities (SPA), comprised mostly of government operated services, is also projected using the short-term monthly econometric approach. The level of government services, and thus energy use per customer, can be tied to the population base, as well as to the state of the economy. Factors affecting population growth will impact the need for additional governmental services (i.e., schools, city services, etc.) thereby increasing SPA energy usage per customer. Monthly government employment has been determined to be the best indicator of the level of government services provided. This variable, adjusted for the number of SPA customers, along with heating and cooling degree days the real price of electricity and the average number of sales month billing days, result in a significant level of explained variation over the historical sample period. Intercept shift variables are also included in this model to account for the large change in school-related energy use in the billing months of January, July and August. SPA customers are projected linearly as a function of a time-trend.

Sales For Resale Sector

The Sales for Resale sector encompasses all firm sales to other electric power entities. This includes sales to other utilities (municipal or investor owned) as well as power agencies (Rural Electric Authority or Municipal).

Seminole Electric Cooperative, Incorporated (SECI) is a wholesale, or sales for resale, customer of FPC on both a supplemental contract basis and contract demand basis. Under the supplemental contract FPC provides service for those energy requirements above the level of generation capacity served by either SECI's own facilities or firm purchase obligations. SECI provides FPC with a forecast of total monthly peak demands and energy for their load within the FPC control area. Monthly supplemental demands are calculated from the total demand levels they project in FPC's control area less their own ("committed") resources. Beyond supplemental service, FPC has signed two bulk power or "contract demand" agreements with SECI to serve stratified intermediate and peaking load. The first contract, an October 1995 agreement, has three pieces that impact the load and energy forecast in the years 1999 to 2001. The first two parts of this contract involve a 300 MW structured capacity sale and a 155 MW stratified peaking sale. The option to extend this sale for seven additional years beginning in 2002 was not exercised by SECI. The third piece of the contract involves serving 150 MW of stratified intermediate demand and is assumed to end in 2002. The load tied to this piece of the contract was carved out of the supplemental "pay as you take" contract and restructured to a contract demand. The second bulk power agreement with SECI, a three year contract signed in July 1997, also involves load that would otherwise have been served via the supplemental service agreement. Beginning in the year 2000, FPC will supply 150 MW of stratified peaking demand. The amount of load increases to 300 MW in 2001 and 2002.

One remaining year on a contract demand agreement with Georgia Power Company (GPC) is also included in the forecast. This contract is for FPC to supply GPC summer peaking capacity of 200 MW in 1999. The full amount of the contracted MW is expected to be called upon by the customer, but with a low load factor. An additional summer sales contract to serve the Municipal Electric Authority of Georgia in 1999 is also incorporated into the summer demand forecast at 75 MW.

The municipal sales for resale class includes a number of customers, divergent not only in scope of service, (i.e., full or partial requirement), but also in composition of ultimate consumers. Each customer is modeled separately in order to accurately reflect its individual profile. The majority of customers in this class are municipalities whose full energy requirements are met by FPC. The full requirement customers are modeled individually using local weather station data and population growth trends for that vicinity. Since the ultimate consumers of electricity in this sector are, to a large degree, residential and commercial customers, it is assumed that their use patterns will follow those of the FPC retail-based residential and commercial customer classes. FPC serves partial requirement service (PR) to a municipality, New Smyrna Beach, a power authority (Florida Municipal Power Agency) and a utility district (Reedy Creek Improvement District). In each case, these customers contract with FPC for a specific level and type of demand needed to provide their particular electrical system with an appropriate level of reliability. The terms of each contract are subject to change each year. This means that the level

and type of demand under contract can increase or decrease for each year of their contract. The demand forecast for each PR wholesale customer is derived using its historical coincident demand to contract demand relationship (including transmission delivery losses). The demand projections for the Florida Municipal Power Agency (FMPA) also include a "losses service" MW amount to account for the transmission losses FPC incurs when "wheeling" power to their customers in FPC's transmission area. The contract demand level for each PR customer in its last contract year determines the load upon the FPC system for the remaining years of the forecast horizon unless the customer has notified FPC of a willingness to not renew their contract.

The methodology for projecting MWh energy usage for the partial requirement (PR) customers differs slightly from customer to customer. This category of service is sporadic in nature and exceptionally difficult to forecast because PR customers are capable of "brokering" their FPC capacity to purchase energy from other lower cost resources. For example, FMPA utilizes FPC's wholesale energy service only when more economical energy is unavailable. The forecast for FMPA is derived using annual historical load factor calculations to provide the expected level of energy sales based on the level of contracted MW nominated by FMPA. Average monthly-to-annual energy ratios are applied to the forecast in order to obtain monthly profiles. For Reedy Creek and New Smyrna Beach, recent growth trends and historic load factor calculations are utilized to provide the expected level of MWh sales. Again, these customers have alternative sources of supply to meet their needs. Purchases of energy from FPC will depend heavily on the price of available energy from other sources in the marketplace.

Demand-Side Management

Each projection of every retail class-of-business MWh energy sales forecast is reduced by estimated future energy savings due to FPC-sponsored and Florida Public Service Commission (FPSC)-approved dispatchable and non-dispatchable Demand-Side Management programs. Estimated energy savings for every non-dispatchable DSM program are calculated on a program-by-program basis and aggregated for each class-of-business on the program. Dispatchable DSM program energy savings are estimated within the Resource Planning Department's production costing models. These models determine the most cost-effective means to meet system requirements, including load control. The DSM projections incorporated in this demand and energy forecast match the proposed goals submitted in February 1999 as required under Docket No. 971005-EG Adoption of Numeric Conservation Goals.

LONG-TERM SHAPES-PC MODEL

Energy Forecast

In the SHAPES-PC model the projections of the various economic and demographic parameters are combined with consumption estimates and patterns of electricity usage to produce projections of annual energy consumption. The basic concept underlying the model's structure involves breaking out numerous end-use categories for electricity consumption in order to establish homogeneous groups to forecast. SHAPES-PC is partitioned into three consumer categories: residential, commercial and industrial.

Residential Sector

The electricity consuming units in the residential sector are major household appliances. A total of seventeen major household appliances are explicitly treated in the model. The first step in estimating demand is to predict the number of units of each appliance type in the service area in a given year. The appliance stock is estimated as the saturation rate for a given appliance multiplied by the total number of residential customers. Appliance saturation rates are projected using an S-shaped logistic saturation function based on historical data from appliance saturation surveys and service area real personal income. The second major factor in the demand estimation equation is the connected load of the appliance. The term "connected load" is defined here as the power requirements or wattage of the appliance. This will tend to change over time as relative energy prices, appliance efficiencies and features change.

The last factor in the demand equation is the probability of the appliance operating at a given time. This term is called the use factor. It is necessary to distinguish between temperature, or weather sensitive use factors, and temperature insensitive use factors. The temperature insensitive use factors depend only on time, i.e., time of day, type of day and season. The type of day is important since weekday energy usage for many appliances differs from that of weekend and holiday usage. Similarly, there are seasonal variations in the use of many temperature insensitive appliances such as lighting. For other appliances, such as air conditioners, electric space heaters, and heat pumps, use factors depend not only on time of day, but also on temperature. These use factors indicate the probability of a space-conditioning device operating at a given time of day, day type and temperature. Combining the heating and cooling use factors with the expected occurrence of temperature conditions in a given period yields the energy requirements for that period. By specifying a temperature profile for a given day, the model is capable of simulating the weather sensitive load corresponding to that temperature profile.

Industrial Sector

The industrial sector model is designed to forecast energy consumption levels associated with selected manufacturing industries. Electric energy consumption in the industrial sector is significantly tied to the level of economic activity. The major driving forces affecting energy consumption are the real price of electricity, the level of economic activity in the service area, and the technologies, or processes, of the industries involved. Since energy requirements for a given measure of economic activity vary from one industry to another, it is necessary to assess the mix of the industrial sector. To capture the effect of industrial mix, the industrial sector is disaggregated into twelve categories. Thus, by projecting energy usage independently for each

2-digit Standard Industrial Code (SIC) category, the model captures changes in energy consumption due to changes in the industrial base.

There are numerous ways of measuring economic activity in the industrial sector. Due to the ready availability of historic employment data on a 2-digit SIC level, employment was used as this measure of activity. The level of annual energy consumption in any one of the twelve industries is calculated by multiplying the projected level of economic activity (expressed in employment) by the projected energy intensity (expressed as KWh usage per employee) of that sector. The calculation of energy intensity for each sector also incorporates the industrial production and capacity utilization indices for each sector to "normalize" the level of electric energy used per unit of output.

Commercial Sector

In the commercial sector, forecasts of annual energy consumption are derived for those customers falling into private, non-manufacturing business-types. Historic commercial energy sales are categorized into ten separate "building types" (e.g., retail, office, grocery, etc.) which are modeled individually. Commercial electricity consumption is determined by multiplying the floor space in each of these ten building categories by the energy intensity per square foot by category. This is done for three distinct end-uses: base (non-weather sensitive), heating and cooling. Floor space projections are developed based on a combination of historic and projected floor space per employee and employment projections by building type. Energy intensity per square foot is projected by building type using time trends with considerations for the three end-uses (i.e., weather sensitivity and base use). The model also factors in the influence of electric

price on energy usage decisions as well as expected end-use saturation levels. Projections of KWh usage per square foot along with projected square footage for each building type yield commercial sector energy sales.

Customer Forecast

An increasing service area population translates directly into a greater number of homes requiring electricity and, consequently, into a greater number of commercial establishments to service these residences. Service area population serves as the driver for residential and (implicitly) commercial customers, which comprise 98.4 percent of FPC total customers. The Bureau of Economic and Business Research at the University of Florida provides population estimates and projections for the FPC service area that are used in the development of the residential customer forecast. In order to determine future residential customer growth, historic growth in residential customers is regressed against historic growth in service area population. The resulting statistical coefficients are then applied to the population growth forecast. Future commercial and street lighting customers are modeled as a function of total residential customers. Industrial and public authority sector customers are forecast via a time-trend approach given their relatively stable nature.

In the short-term, deviations from trend in the most recent time periods are scrutinized. This analysis, along with any specific input from regional field personnel regarding growth expectations, forms the basis for developing a short-term outlook that is consistent with recent history as well as the long-term projections for all customer classes.

- 47 -

Peak Demand Forecast

The forecast of peak demand also employs a dual methodology framework. The SHAPES-PC end-use model is used to develop class-of-business load shapes and an econometric approach is used to project specific disaggregated pieces of the demand forecast. Both techniques provide a unique perspective as to the make-up of total system demand.

The SHAPES-PC end-use model uses FPC load research sampled class of business load shapes to develop a weather normalized 8,760 hour (yearly) load shape for the residential, commercial, industrial, and "all other" classes to calibrate historic benchmarks. Projections in MW demand and energy are then based upon growth in residential customers, manufacturing employees, commercial floor space, increased saturation of class end-uses or energy intensity, and price elasticity.

The econometric approach to projecting seasonal peak demand employs a disaggregation technique that separates seasonal (winter and summer) peak hour system demand into five major components. These components consist of potential firm retail load, demand-side management program capability, wholesale demand, company use demand and interruptible demand.

Potential firm retail load refers to projections of FPC retail hourly seasonal peak demand (excluding interruptible/curtailable/standby services) before the cumulative effects of any conservation activity or the activation of FPC's Load Management (LM) program. The historical values of this series are constructed to show the size of FPC's firm retail peak demand had no utility-induced conservation or load control ever taken place. The value of constructing

such a "clean" series enables the forecaster to observe and correlate the underlying trend in retail peak demand in the service area to total system customer levels and coincident weather conditions without the impacts of year-to-year variation in conservation activity or load control reductions.

Energy conservation and direct load control estimates from FPC's DSM goals proposed in the 1999 FPSC Conservation Goals Docket are incorporated into the MW forecast. Projections of dispatchable and cumulative non-dispatchable DSM are subtracted from the projection of potential firm retail demand.

Sales For Resale demand projections represent load supplied by FPC to other electric utilities such as Seminole Electric Cooperative, Incorporated, the Florida Municipal Power Agency, and other electric distribution companies. The SECI supplemental demand projection is based on their forecast of their service area within the FPC control area. The level of MW to be served by FPC is dependent upon the amount of resources SECI supplies to itself or contracts with others. An assumption has been made that beyond 2004 - the last year of committed capacity declaration - SECI will hold constant their level of self-serve resources. For the partial requirements customers demand projections, historical ratios of coincident-to-contract levels of demand are applied to future MW contract levels. Demand requirements continue out at the level indicated by the final year in their respective contracts. The full requirement municipal demand forecast is estimated for individual cities using linear econometric equations modeling both weather and economic impacts specific to each locale. The seasonal (winter and summer) projections become the January and August peak values, respectively. The non-seasonal peak

months are calculated using monthly allocation factors derived from applying the historical relationship between each winter month (November to March) relative to the winter peak, and each summer month (April to October) in relation to the summer peak demand.

FPC "company use" at the time of system peak is estimated using load research metering studies and is assumed to remain stable over the forecast horizon. The interruptible and curtailable service load component is developed from historic trends, as well as the incorporation of specific information obtained from FPC's industrial service representatives.

Each of the peak demand components described above is a positive value except for the DSM program MW impacts. Since DSM program impacts represent a reduction in peak demand, they are assigned a negative value. Total system peak demand is then calculated as the arithmetic sum of these five components.

Both the end-use methodology and the disaggregated econometric methodology supply necessary information that go into the final projection of system peak demand.

HIGH AND LOW FORECAST SCENARIOS

The high and low bandwidth scenarios around the base MWh energy sales forecast are developed using a Monte Carlo simulation applied to a multivariate regression model that closely replicates the base retail MWh energy forecast in aggregate. This model accounts for variation in Gross Domestic Product, retail customers and electric price. The base forecasts for these variables were developed based on input from Data Resources Inc. and internal company price projections. Variation around the base forecast predictor variables used in the Monte Carlo simulation was based on an 80 percent confidence interval calculated around variation in each variable's historic growth rate. While the total number of degree days (weather) were also incorporated into the model specification, the high and low scenarios do not attempt to capture extreme weather conditions. Normal weather conditions were assumed in all three scenarios.

The Monte Carlo simulation was produced through the estimation of 1,000 scenarios for each year of the forecast horizon. These simulations allowed for random normal variation in the growth trajectories of the economic input variables (while accounting for cross-correlation amongst these variables), as well as simultaneous variation in the equation (model error) and coefficient estimates. These scenarios were then sorted and rank ordered from one to a thousand, while the simulated scenario with no variation was adjusted to equal the base forecast.

The low retail scenario was chosen from among the ranked scenarios resulting in a bandwidth forecast reflecting an approximate probability of occurrence of .10. The high retail scenario similarly represents a bandwidth forecast with an approximate probability of occurrence of .90.

In both scenarios the high and low peak demand bandwidth forecasts are projected from the energy forecasts using the load factor implicit in the base forecast scenario.

CONSERVATION

In June 1994, FPC participated in FPSC hearings in Docket No. 930549-EG. A final order, PSC-94-1313-FOF-EG, was issued on October 25, 1994. Pursuant to this order, the FPSC approved the DSM goals for FPC, and required that FPC submit for approval a DSM plan designed to meet the goals. The following tables are the approved DSM goals as well as the achieved results through 1998.

	Cumulative	Total	Cumulative	Total	Cumulative	Total
	Summer MW	Summer MW	Winter MW	Winter MW	GWh	GWh
Year	Goal	Achieved	Goal	Achieved	Goal	Achieved
1994	11	24	43	46	12	15
1995	30	43	86	85	24	29
1996	50	70	133	137	38	45
1997	71	100	184	196	60	66
1998	93	126	236	252	78	89

Residential Conservation Goals

Commercial/Industrial Conservation Goals

	Cumulative	Total	Cumulative	Total	Cumulative	Total
	Summer MW	Summer MW	Winter MW	Winter MW	GWh	GWh
Year	Goal	Achieved	Goal	Achieved	Goal	Achieved
1994	0.3	10	0.05	10	2	32
1995	3	33	3	32	19	81
1996	8	48	7	46	40	137
1997	15	55	13	52	71	147
1998	24	63	20	58	110	158

In 1999, the FPSC is planning to set new conservation goals for the ten-year period from 2000 through 2009. In compliance with that docket, FPC has prepared and submitted to the Commission a new conservation goals proposal that is cost effective and reasonably achievable through demand side management. The forecasts presented in this Ten-Year Site Plan

document reflect the impacts of those proposed DSM goals. Currently, FPC's DSM plan consists of four residential programs, eight commercial and industrial programs, and one research and development program. These programs were designed using the end-use measures identified during FPC's Integrated Resource Planning process. The programs are also subject to periodic monitoring and evaluation for the purpose of ensuring that all DSM resources are acquired in a cost-effective manner and that the program savings are durable. Following is a brief description of these programs.

Residential Programs

Home Energy Check Program

This energy audit program provides customers with an analysis of their current energy use and recommendations on how they can save on their electricity bill through lowcost or no-cost energy-saving practices and measures. The program provides customers with three types of energy audits: Level 1 - customer-completed mail-in audit; Level 2 - free walk-through audit; and Level 3 - paid walk-through audit. The Home Energy Check Program serves as the foundation of the Home Energy Improvement Program in that the audit is a prerequisite for participation in the retrofit of water heaters, heating and air conditioning units.

Home Energy Improvement Program

This is the umbrella program to improve energy efficiency for existing homes. It combines efficiency improvements to the thermal envelope with upgraded home energy equipment and appliances. The program provides incentives for ceiling insulation upgrades, reduced duct leakage, high efficiency electric heat pumps, heat recovery units, and dedicated heat pump water heaters.

Residential New Construction Program

This program promotes energy efficient new home construction in order to provide customers with more efficient cooling and heating consumption combined with improved environmental comfort. The program provides education and information to the design and building community on energy efficient building design and construction. The program promotes the sealing of air conditioning duct systems using mastic for lasting results. The program provides incentives to the builder for high efficiency electric heat pumps, heat recovery units and heat pump water heaters. The highest level of the program incorporates the Environmental Protection Agency's Energy Star Homes Program and qualifies participants for cooperative advertising.

Residential Energy Management Program

This is a voluntary customer program that allows FPC to reduce peak demand and thus defer generation construction. Peak demand is reduced by interrupting service to selected electrical equipment with radio controlled switches installed on the customer's

premises. These interruptions are at FPC's option, during specified time periods, and coincident with hours of peak demand. Participating customers receive a monthly credit on their electricity bill.

Commercial/Industrial (C/I) Programs

Business Energy Check Program

This energy audit program provides commercial and industrial customers with an assessment of the current energy usage at their facility, recommendations on how they can improve the environmental conditions of their facility while saving on their electricity bill, and information on low-cost energy efficiency measures. The Business Energy Check consists of two types of audits: Level 1 - free walk-through audit, and Level 2 - paid walk-through audit. In most cases, this program is a prerequisite for participation in the other C/I programs.

Better Business Program

This is the umbrella efficiency program for existing commercial and industrial customers. The program provides customers with information, education, and advice on energy-related issues and incentives on efficiency measures that are cost-effective to FPC and its customers. The Better Business Program promotes energy efficient heating, ventilation, air conditioning (HVAC), motors, and water heating equipment,

as well as some building retrofit measures (in particular, roof insulation upgrade, duct leakage test and repair, and window film retrofit).

Commercial/Industrial New Construction Program

The primary goal of this program is to foster the design and construction of energy efficient buildings. The new construction program will: 1) provide education and information to the design community on all aspects of energy efficient building design; 2) require that the building design, at a minimum, surpass the state energy code; 3) provide financial incentives for specific energy efficient equipment; and 4) provide energy design awards to building design teams. Incentives will be provided for high efficiency HVAC equipment, motors, heat recovery units, and duct leakage testing and repair.

Innovation Incentive Program

This program promotes a reduction in demand and energy by subsidizing energy conservation projects for customers in FPC's service territory. The intent of the program is to encourage legitimate energy efficiency measures that reduce KW demand and/or KWh energy, but are not addressed by other programs. Energy efficiency opportunities are identified by FPC representatives during a Business Energy Check audit. If a candidate project meets program specifications, it will be eligible for an incentive payment, subject to FPC approval.

Commercial Energy Management Program (Rate Schedule GSLM-1)

This direct load control program reduces FPC's demand during peak or emergency conditions. The program is available to customers who have electric space cooling equipment suitable for interruptible operation, and are eligible for service under the Rate Schedule GS-1, GST-1, GSD-1, or GSDT-1. The program is also applicable to customers who have any of the following electrical equipment installed on permanent residential structures and utilized for domestic (household) purposes: 1) water heater(s), 2) central electric heating systems(s), 3) central electric cooling system(s), and/or 4) swimming pool pump(s). The customer will receive a monthly credit on their bill depending on the type of equipment in the program and the interruption schedule.

Standby Generation Program

This demand control program reduces FPC's demand based upon the indirect control of customer generation equipment. This is a voluntary program available to all commercial, industrial and agricultural customers who have on-site generation capability and are willing to reduce their FPC demand when FPC deems it necessary. The customers participating in the Standby Generation program receive a monthly credit on their electricity bill according to the demonstrated ability of the customer to reduce demand at FPC's request.

Interruptible Service Program

This direct load control program reduces FPC's demand at times of capacity shortage during peak or emergency conditions. The program is available to qualified non-residential customers who are willing to have their power interrupted. FPC will have remote control of the circuit breaker or disconnect switch supplying the customer's equipment. Customers participating in the Interruptible Service program receive a monthly interruptible demand credit based on their billing demand.

Curtailable Service

This direct load control program reduces FPC's demand at times of capacity shortage during peak or emergency conditions. The program is available to qualified nonresidential customers who are willing to curtail their demand. Customers participating in the Curtailable Service program receive a monthly curtailable demand credit based on their curtailable demand amount.

Research and Development Program

Technology Development Program

The purpose of this program is to establish a system to "pursue research, development, and demonstration projects jointly with others as well as individual projects" (Rule 25-17.001, $\{5\}(f)$, Florida Administrative Code). FPC will undertake certain development and demonstration projects that have promise to become cost-effective demand and energy efficiency programs. In most cases, each demand reduction and energy efficiency project that is proposed and investigated under this program requires field testing with actual customers.

CHAPTER 3

Forecast of FACILITIES REQUIREMENTS
CHAPTER 3 Forecast of FACILITIES REQUIREMENTS

FORECAST OF CAPACITY AND DEMAND OVERVIEW

FPC has a "Total Capacity Resource" of 9,027 MW, as shown in Table 3.1. This capacity resource includes utility (469 MW) and non-utility purchased power (831 MW), peaking facilities (2,820 MW), nuclear (755 MW), and fossil steam and combined cycle plants (4,152 MW). Table 3.2 shows FPC's contracts for firm capacity provided by QFs.

FPC has experienced an excellent level of participation in its Demand-Side Management Programs. Total DSM resources are shown in Schedules 3.1.1 and 3.2.1 of Chapter 2. These programs include Non-Dispatchable DSM, Interruptible Load, and Dispatchable Load Control Resources. FPC's 1999 Ten-Year Site Plan Demand-Side Management projections are consistent with the proposed DSM Goals submitted by FPC in the 1999 FPSC Conservation Goals Docket #971005-EG.

FPC's forecast of capacity and demand is based on serving expected growth in regulated retail load and commitments to existing wholesale customers. As deregulation occurs in the electric industry, customers with choice, such as the wholesale market, are switching to new generation suppliers. This creates an added dimension of uncertainty which a traditional utility is not accustomed to planning for. FPC realizes that the long-term obligation to serve the total wholesale market no longer exists. FPC's remaining wholesale market customers are expected to exercise their option of receiving power from alternative suppliers around the year 2002. To date, a significant amount of the wholesale load has been evaluated through competitive Requests For Proposals by wholesale customers in Florida. As a result, the company assumes that the wholesale business will be very competitive. FPC is not committing long-term generation resources to serve the wholesale market until a viable plan is in place. FPC believes that the long-term interests of both wholesale and retail customers are being served by this plan.

FPC's forecast of capacity and demand for the summer and winter peaks are shown on Schedules 7.1 and 7.2, respectively. Planned and prospective generating facility additions and changes are shown on Schedule 8 and are referred to as FPC's Base Expansion Plan.

The first phase of FPC's generation expansion plan includes a combined cycle plant at the Hines Energy Complex (HEC) in Polk County. The HEC #1 unit is a state-of-the-art, high efficiency combined cycle plant of approximately 470 MW fueled primarily by natural gas with distillate oil as the back-up fuel. The HEC #1 unit will be one of the most efficient combined cycle plants in the nation.

The second phase of FPC's generation expansion plan includes 300 MW of combustion turbine capacity to be placed in-service by December 2000 at the existing Intercession City (IC) Site. The combustion turbine capacity will consist of three units, or IC P12, 13 & 14, and will be similar to the existing IC units P7-10.

A third phase of FPC's generation expansion plan projects requirements for a second and third unit at the Hines Energy Complex with in-service dates of 2004 and 2006, respectively. A status report and specification for proposed generation and directly associated transmission lines are shown in Schedules 9 and 10, respectively.

Changes in FPC's existing resources include a fossil steam gas conversion at Anclote, peaking gas conversions at Debary P8 and Suwannee P2, and Crystal River capacity upgrades. Also included are plant retirements consistent with FPC's latest plant Depreciation and Dismantlement filing.

The proposed Base Expansion Plan utilizes natural gas and high efficiency combined cycle generation to help meet the requirements of the 1990 Clean Air Act Amendments. Fuel switching, SO_2 emission allowance purchases, re-dispatching of generation, and technology changes are other options available to FPC to insure compliance with the 1990 Clean Air Act Amendments.

TABLE 3.1

FLORIDA POWER CORPORATION TOTAL CAPACITY RESOURCE Power Plants, Peaking Units And Purchased Power

	Number	Net Dependable
	Of	Capability KW
Plants	Units	Winter
Nuclear Steam Plant		
Crystal River	1	755,000*
Fossil Steam & Combined Cycle Pla	nts	
Crystal River	4	2,276,000
Anclote	2	1,034,000
Paul L. Bartow	3	449,000
Suwannee River	3	147,000
Tiger Bay	_1	246,000
Total Fossil	13	4,152,000
Total Steam (Nuclear & Fossil)	14	4,907,000
Peaking Units		
DeBary	10	786,000
Intercession City	11	912,000
Bayboro	4	232,000
Bartow	4	217,000
Suwannee	3	201,000
Turner	4	200,000
Higgins	4	148,000
Avon Park	2	64,000
University of Florida	1	42,000
Rio Pinar	_1	18,000
Total Peaking	44	2,820,000
Total Units	58	
Total Net Generating Capability		7,727,000
* Adjusted for sale of 9.6% of total cap	pacity	
Purchased Power		
Qualifying Facilities	15	831,000
Investor Owned Utilities	2	469,000
TOTAL CAPACITY RESOURCE		9,027,000

TABLE 3.2 FLORIDA POWER CORPORATION QUALIFYING FACILITY GENERATION CONTRACTS AS OF DECEMBER 31, 1998					
FACILITY NAME	FIRM CAPACITY – MW				
BAY COUNTY RES. RECOV.	11				
CARGILL	15				
CFR-BIOGEN	74				
DADE COUNTY RES. RECOV.	43				
EL DORADO	114				
LAKE COGEN	110				
LAKE COUNTY RES. RECOV.	13				
LFC JEFFERSON	8				
LFC MADISON	8				
MULBERRY	79				
ORLANDO COGEN	79				
PASCO COGEN	109				
PASCO COUNTY RES. RECOV.	23				
PINELLAS COUNTY RES. RECOV. 1	40				
PINELLAS COUNTY RES. RECOV. 2	15				
RIDGE GENERATING STATION	40				
ROYSTER	31				
TIMBER ENERGY 1	13				
US AGRICHEM	6				
TOTAL	831				

SCHEDULE 7.1 FORECAST OF CAPACITY, DEMAND AND SCHEDULED MAINTENANCE

AT TIME OF SUMMER PEAK

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
	TOTAL	FIRM	FIRM		TOTAL	SYSTEM FIRM					
	INSTALLED	CAPACITY	CAPACITY		CAPACITY	SUMMER PEAK	RESERV	E MARGIN	SCHEDULED	RESERV	E MARGIN
	CAPACITY	IMPORT	EXPORT	QF	AVAILABLE	DEMAND	BEFORE M	IAINTENANCE	MAINTENANCE	AFTER MAINTENANCE	
YEAR	MW	MW	MW	MW	MW	MW	MW	% OF PEAK	MW	MW	% OF PEAK
1 99 9	7,444	469	275	831	8,744	7,554	1,190	16%	0	1,190	16%
2000	7,510	469	0	831	8,810	7,459	1,351	18%	0	1,351	18%
2001	7,759	469	0	831	9,059	7,741	1,318	17%	0	1,318	17%
2002	7,631	469	0	831	8,931	7,534	1,397	19%	0	1,397	19%
2003	7,631	469	0	831	8,931	7,163	1,768	25 %	0	1,768	25%
2004	7,488	469	0	831	8,788	7,275	1,513	21%	0	1,513	21%
2005	7,895	479	0	831	9,205	7,498	1,707	23 %	0	1,707	23%
2006	7,895	479	0	831	9,205	7,730	1,475	19%	0	1,475	19%
2007	8,390	479	0	831	9,700	7,964	1,736	22 %	0	1,736	22%
2008	8,390	479	0	831	9,700	8,195	1,505	18%	0	1,505	18%

SCHEDULE 7.2 FORECAST OF CAPACITY, DEMAND AND SCHEDULED MAINTENANCE AT TIME OF WINTER PEAK

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	
	TOTAL	FIRM	FIRM		TOTAL	SYSTEM FIRM						
	INSTALLED	CAPACITY	CAPACITY		CAPACITY	WINTER PEAK	RESERV	E MARGIN	SCHEDULED	RESERV	E MARGIN	
	CAPACITY	IMPORT	EXPORT	QF	AVAILABLE	DEMAND	BEFORE M	AINTENANCE	MAINTENANCE AFTER M		ER MAINTENANCE	
YEAR	MW	MW	MW	MW	MW	MW	MW	% OF PEAK	MW	MW	% OF PEAK	
1999/00	8,265	469	0	831	9,565	8,221	1,344	16%	0	1,344	16%	
2000/01	8,603	469	0	831	9,903	8,459	1,444	17%	0	1,444	17%	
2001/02	8,473	469	0	831	9,773	8,271	1,502	18%	0	1,502	18%	
2002/03	8,473	469	0	831	9,773	7,913	1,860	24%	0	1,860	24%	
2003/04	8,307	469	0	831	9,607	8,020	1,587	20%	0	1,587	20%	
2004/05	8,774	479	0	831	10,084	8,232	1,852	22%	0	1,852	22%	
2005/06	8,774	479	0	831	10,084	8,455	1,629	19%	0	1,629	19%	
2006/07	9,341	479	0	831	10,651	8,677	1,974	23 %	0	1,974	23%	
2007/08	9,341	479	0	831	10,651	8,900	1,751	20%	0	1,751	20%	
2008/09	9,341	479	0	831	10,651	9,125	1,526	17%	0	1,526	17%	

SCHEDULE 8 PLANNED AND PROSPECTIVE GENERATING FACILITY ADDITIONS AND CHANGES (JANUARY 1, 1999 THROUGH DECEMBER 31, 2008)

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
								00107				NET CAF	ABILITY		
	LINUT		UNIT	FUE	L	FUEL IRA	NSPORT	STADT		DETIDEMENT	GEN. MAX.	SIDMED	WINTED		
PLANT NAME	NO.	LOCATION	TYPE	PRIMARY	ALT.	PRIMARY	ALT.	MONTH/YEAR	MONTH/YEAR	MONTH/YEAR	KW	MW	MW	STATUS	NOTES
HINES ENERGY COMPLEX	1	POLK CO.	сс	NG	FO2	PL	тк	08/1995	04/1999			470	505	тѕ	
CRYSTAL RIVER	3	CITRUS CO.	NP	UR		тк			05/1999			20	16	CA	2
ANCLOTE	1	PASCO CO.	ST	F06	NG	PL	PL		05/1999		556,200	503	517	FC	1
CRYSTAL RIVER	5	CITRUS CO.	ST	BIT		WA,RR			05/1999			17	17	CA	2
DEBARY	P8	VOLUSIA CO.	GT	NG	FO2	PL	TK,RR		06/1999		115,000	83	99	FC	1
CRYSTAL RIVER	4	CITRUS CO.	ST	BIT		WA,RR			04/2000			17	17	CA	2
CRYSTAL RIVER	2	CITRUS CO.	ST	BIT		WA,RR			04/2000			24	24	CA	2
INTERCESSION CITY	P12-14	OSCEOLA CO.	GT	NG	FO2	PL	PL,TK	03/1999	12/2000			249	297	U	
SUWANNEE RIVER	P2	SUWANNEE CO.	GT	FO2	NG	тк	PL		05/2001		61,200	54	67	FC	1
CRYSTAL RIVER	1	CITRUS CO.	ST	BIT		WA,RR			12/2001			17	17	CA	2
SUWANNEE RIVER	1-3	SUWANNEE CO.	ST	FO6	NG	тк	PL			12/2001	147,000	(145)	(147)	RE	3
HIGGINS	P1-4	PINELLAS CO.	GT	FO2	NG	тк	PL			12/2003	153,430	(128)	(148)	RE	3
RIO PINAR	P1	ORANGE CO.	GT	FO2		тк				12/2003	19,290	(15)	(18)	RE	3
HINES ENERGY COMPLEX	2	POLK CO.	сс	NG	FO2	PL	тк	08/2001	11/2004			495	567	P	
AVON PARK	P 1	HIGHLANDS CO.	GT	FO2	NG	тк	PL			12/2004	33,790	(29)	(32)	RE	3
AVON PARK	P2	HIGHLANDS CO.	GT	FO2		тк				12/2004	33,790	(29)	(32)	RE	3
TURNER	P1-2	VOLUSIA CO.	GT	FO2		TK,WA				12/2004	38,580	(30)	(36)	RE	3
HINES ENERGY COMPLEX	3	POLK CO.	сс	NG	FO2	PL	тк	08/2003	11/2006			495	567	P	

NOTES :

1 / FUEL CONVERSION TO NATURAL GAS.

2 / CAPABILITY INCREASE.

3 / RETIREMENT CAPACITIES ARE IN PARENTHESES. CONSIDERATION FOR POTENTIAL LIFE EXTENSIONS OF THESE FACILITIES WILL BE INCLUDED IN FUTURE STUDIES.

(1)	PLANT NAME AND UNIT NUMBER:	HINES ENERGY COMPLEX UNIT #1
(2)	CAPACITY	
	a. SUMMER:	470 MW
	b. WINTER:	505 MW
(3)	TECHNOLOGY TYPE:	COMBINED CYCLE
(4)	ANTICIPATED CONSTRUCTION TIMING	
	a. FIELD CONSTRUCTION START-DATE:	8/1995
	b. COMMERCIAL IN-SERVICE DATE:	4/1999 (EXPECTED)
(5)	FUEL	
	a. PRIMARY FUEL:	NATURAL GAS
	b. ALTERNATE FUEL:	DISTILLATE OIL
(6)	AIR POLLUTION CONTROL STRATEGY:	DRY LOW NOX COMBUSTION
(7)	COOLING METHOD:	COOLING PONDS
(8)	TOTAL SITE AREA:	8,200 ACRES
(9)	CONSTRUCTION STATUS:	CONSTRUCTION COMPLETE
(10)	CERTIFICATION STATUS:	FILED 8/1992, RECEIVED 2/1994 (DEP/EPA)
(11)	STATUS WITH FEDERAL AGENCIES:	AIR PERMIT APPROVAL OBTAINED 2/1994 (DEP)
(12)	PROJECTED UNIT PERFORMANCE DATA	
	PLANNED OUTAGE FACTOR (POF):	4.50 %
	FORCED OUTAGE FACTOR (FOF):	3.70 %
	EQUIVALENT AVAILABILITY FACTOR (EAF):	91.00 %
	ASSUMED CAPACITY FACTOR (%):	70.00 %
	AVERAGE NET OPERATING HEAT RATE (ANOHR):	6,962 BTU/KWH

(1)	PLANT NAME AND UNIT NUMBER:	INTERCESSION CITY P12 - 14
(2)	CAPACITY	
	a. SUMMER:	249 MW
	b. WINTER:	297 MW
(3)	TECHNOLOGY TYPE:	COMBUSTION TURBINE
(4)	ANTICIPATED CONSTRUCTION TIMING	
	a. FIELD CONSTRUCTION START-DATE:	3/1999
	b. COMMERCIAL IN-SERVICE DATE:	12/2000 (EXPECTED)
(5)	FUEL	
	a. PRIMARY FUEL:	NATURAL GAS
	b. ALTERNATE FUEL:	DISTILLATE OIL
(6)	AIR POLLUTION CONTROL STRATEGY:	WATER INJECTION
(7)	COOLING METHOD:	AIR
(8)	TOTAL SITE AREA:	165 ACRES
(9)	CONSTRUCTION STATUS:	UNDER CONSTRUCTION
(10)	CERTIFICATION STATUS:	SITE PERMITTED
(11)	STATUS WITH FEDERAL AGENCIES:	SITE PERMITTED
(11) (12)	STATUS WITH FEDERAL AGENCIES: PROJECTED UNIT PERFORMANCE DATA	SITE PERMITTED
(11) (12)	STATUS WITH FEDERAL AGENCIES: PROJECTED UNIT PERFORMANCE DATA PLANNED OUTAGE FACTOR (POF):	SITE PERMITTED
(11) (12)	STATUS WITH FEDERAL AGENCIES: PROJECTED UNIT PERFORMANCE DATA PLANNED OUTAGE FACTOR (POF): FORCED OUTAGE FACTOR (FOF):	SITE PERMITTED 3.00 % 3.00 %
(11) (12)	STATUS WITH FEDERAL AGENCIES: PROJECTED UNIT PERFORMANCE DATA PLANNED OUTAGE FACTOR (POF): FORCED OUTAGE FACTOR (FOF): EQUIVALENT AVAILABILITY FACTOR (EAF):	SITE PERMITTED 3.00 % 3.00 % 91.00 %
(11) (12)	STATUS WITH FEDERAL AGENCIES: PROJECTED UNIT PERFORMANCE DATA PLANNED OUTAGE FACTOR (POF): FORCED OUTAGE FACTOR (FOF): EQUIVALENT AVAILABILITY FACTOR (EAF): ASSUMED CAPACITY FACTOR (%):	SITE PERMITTED 3.00 % 3.00 % 91.00 % 15.00 %

(1)	PLANT NAME AND UNIT NUMBER:	HINES ENERGY COMPLEX UNIT #2
(2)	CAPACITY	
	a. SUMMER:	495 MW
	b. WINTER:	567 MW
(3)	TECHNOLOGY TYPE:	COMBINED CYCLE
(4)	ANTICIPATED CONSTRUCTION TIMING	
	a. FIELD CONSTRUCTION START-DATE:	8/2001
	b. COMMERCIAL IN-SERVICE DATE:	11/2004 (EXPECTED)
(5)	FUEL	
	a. PRIMARY FUEL:	NATURAL GAS
	b. ALTERNATE FUEL:	DISTILLATE OIL
(6)	AIR POLLUTION CONTROL STRATEGY:	DRY LOW NOX COMBUSTION
(7)	COOLING METHOD:	COOLING PONDS
(8)	TOTAL SITE AREA:	8,200 ACRES
(9)	CONSTRUCTION STATUS:	PLANNED
(10)	CERTIFICATION STATUS:	SITE PERMITTED
(11)	STATUS WITH FEDERAL AGENCIES:	SITE PERMITTED
(12)	PROJECTED UNIT PERFORMANCE DATA	
	PLANNED OUTAGE FACTOR (POF):	4.50 %
	FORCED OUTAGE FACTOR (FOF):	3.70 %
	EQUIVALENT AVAILABILITY FACTOR (EAF):	91.00 %
	ASSUMED CAPACITY FACTOR (%):	70.00 %
	AVERAGE NET OPERATING HEAT RATE (ANOHR):	6,800 BTU/KWH

(1)	PLANT NAME AND UNIT NUMBER:	HINES ENERGY COMPLEX UNIT #3
(2)	CAPACITY a. SUMMER: b. WINTER:	495 MW 567 MW
(3)	TECHNOLOGY TYPE:	COMBINED CYCLE
(4)	ANTICIPATED CONSTRUCTION TIMING a. FIELD CONSTRUCTION START-DATE: b. COMMERCIAL IN-SERVICE DATE:	8/2003 11/2006 (EXPECTED)
(5)	FUEL a. PRIMARY FUEL: b. ALTERNATE FUEL:	NATURAL GAS DISTILLATE OIL
(6)	AIR POLLUTION CONTROL STRATEGY:	DRY LOW NOx COMBUSTION
(7)	COOLING METHOD:	COOLING PONDS
(8)	TOTAL SITE AREA:	8,200 ACRES
(9)	CONSTRUCTION STATUS:	PLANNED
(10)	CERTIFICATION STATUS:	SITE PERMITTED
(11)	STATUS WITH FEDERAL AGENCIES:	SITE PERMITTED
(12)	PROJECTED UNIT PERFORMANCE DATA PLANNED OUTAGE FACTOR (POF): FORCED OUTAGE FACTOR (FOF): EQUIVALENT AVAILABILITY FACTOR (EAF): ASSUMED CAPACITY FACTOR (%): AVERAGE NET OPERATING HEAT RATE (ANOHR):	4.50 % 3.70 % 91.00 % 70.00 % 6,800 BTU/KWH

SCHEDULE 10 STATUS REPORT AND SPECIFICATIONS OF PROPOSED DIRECTLY ASSOCIATED TRANSMISSION LINES

HINES ENERGY COMPLEX SITE

(1)	POINT OF ORIGIN AND TERMINATION:	BARCOLA SUBSTATION - HINES ENERGY COMPLEX
(2)	NUMBER OF LINES:	1 (SECOND CIRCUIT OF DOUBLE CIRCUIT CONSTRUCTION)
(3)	RIGHT-OF-WAY:	EXISTING TRANSMISSION LINE AND HINES ENERGY COMPLEX SITE
(4)	LINE LENGTH:	3 MILES
(5)	VOLTAGE:	230 KV
(6)	ANTICIPATED CONSTRUCTION TIMING:	MID 2004 IN-SERVICE, START CONSTRUCTION EARLY 2003
(7)	ANTICIPATED CAPITAL INVESTMENT:	\$ 1,800,000
(8)	SUBSTATIONS:	N/A
(9)	PARTICIPATION WITH OTHER UTILITIES:	N/A

SCHEDULE 10 STATUS REPORT AND SPECIFICATIONS OF PROPOSED DIRECTLY ASSOCIATED TRANSMISSION LINES

HINES ENERGY COMPLEX SITE

(1)	POINT OF ORIGIN AND TERMINATION:	WEST LAKE WALES SUBSTATION - HINES ENERGY COMPLEX
(2)	NUMBER OF LINES:	1 (FIRST CIRCUIT OF DOUBLE CIRCUIT CONSTRUCTION)
(3)	RIGHT-OF-WAY:	EXISTING TRANSMISSION LINE AND HINES ENERGY COMPLEX SITE
(4)	LINE LENGTH:	21 MILES
(5)	VOLTAGE:	230 KV
(6)	ANTICIPATED CONSTRUCTION TIMING:	MID 2006 IN-SERVICE, START CONSTRUCTION EARLY 2005
(7)	ANTICIPATED CAPITAL INVESTMENT:	\$ 16,500,000
(8)	SUBSTATIONS:	N/A
(9)	PARTICIPATION WITH OTHER UTILITIES:	N/A

OTHER PLANNING ASSUMPTIONS AND INFORMATION

INTEGRATED RESOURCE PLANNING OVERVIEW

FPC employs an Integrated Resource Planning (IRP) process to determine the most cost-effective mix of generation and Demand-Side Management programs that will reliably satisfy our customer's future energy needs as required by the Energy Policy Act of 1992 (EPACT).

FPC's IRP process incorporates state-of-the-art computer hardware and models to evaluate future generation alternatives and cost-effective conservation and dispatchable demand-side management programs on a consistent and integrated basis. Integrated resource planning involves a wide diversity of departments and company resources. A full range of generation and demand side alternatives are considered for incorporation into the company's resource mix. The IRP process is carried out in full or in part every few years. This allows the company the flexibility to re-evaluate resources that are in the current plan prior to their construction or implementation, and to evaluate the addition of new resources not previously examined.

An overview of FPC's IRP process is shown in Figure 1. The process begins with the development of various forecasts, including demand and energy, fuel prices, and economic assumptions. Future supply- and demand-side resource alternatives are identified and extensive cost and operating data is collected to enable these to be modeled in detail. These alternatives are optimized together to determine the most cost-effective plan for FPC to pursue over the next ten years that meets the company's reliability criteria. This is called the Integrated Optimal Plan. This plan is then evaluated within the company's financial model to determine its effect on the

overall financial health of the corporation. The 1999 Ten-Year Site Plan utilized an IRP process that incorporated the proposed DSM Goals submitted by FPC in the 1999 Conservation Goals Docket. This process is discussed further in the section titled The IRP Process.

Figure 1

THE IRP PROCESS

Forecasts and Assumptions:

The evaluation of possible supply-side and demand-side alternatives, and development of the optimal plan, is the longest and most demanding part of the IRP process. These steps together comprise the integration process and begin with the development of forecasts and collection of input data. Base forecasts that reflect FPC's view of the most likely future scenarios are developed, along with high and low forecasts that reflect alternative future scenarios. Computer models used in the process are brought up-to-date to reflect this data, along with the latest operating parameters and maintenance schedules for FPC's existing generating units. This establishes a consistent starting point for all further analysis.

FPC plans its resources to meet dual reliability criteria of 15 percent reserve margin over forecasted firm peak demand and 0.1 days per year Loss of Load Probability (LOLP). The reserve margin criterion is deterministic and provides a measure of FPC's ability to meet its forecasted seasonal peak load. The LOLP is a probabilistic criterion, which is a measure of FPC's ability to meet its load throughout the year taking into consideration unit failures, unit maintenance, and assistance from other utilities. Short-term fluctuations in reliability criteria, which typically do not require long-term generation resources, will be addressed in the years prior to the need.

Supply-Side Screening:

Potential supply-side resources are screened to determine those that are the most cost-effective. Data used for the screening analysis is compiled from various industry sources and FPC's experiences. Resource options are "pre-screened" to set aside those that do not warrant a detailed cost-effectiveness analysis. Typical screening criteria are costs, fuel source, technology maturity, environmental parameters, and overall resource feasibility. Generating units' performance was typically modeled based on three-year averages for availability and periodic performance testing for heat rates.

Economic evaluation of generation alternatives is performed using the PROVIEW optimization program. The optimization program evaluates revenue requirements for specific resource plans generated from combinations of future resource additions that meet system reliability criteria and other system constraints. All resource plans are then ranked by system revenue requirements. Multiple optimization runs may be required to screen a large selection of future resource additions. The screening process proceeds until all of the alternatives that are left can be evaluated in a single optimization run. The final optimization run then produces an optimal supply-side resource plan, which is called the "Base Optimal Supply-Side Plan."

Demand-Side Screening:

Like supply-side resources, data about large numbers of potential demand-side resources is collected. These resources are "pre-screened" to eliminate those alternatives that are still in research and development, addressed by other regulation (building code), or not applicable to

FPC's customers. The demand-side screening model, DSVIEW, is updated with cost data and load impact parameters for each potential DSM measure to be evaluated.

The base optimal supply-side plan is used as the basis for screening future demand-side resources. The future supply-side alternatives that are selected for the base optimal supply-side plan are the stream of avoidable units that future demand-side programs are screened against. Each future demand-side alternative is individually added to the base optimal supply-side plan and the amount of generation in the plan is reduced to equalize the reliability between the cases. The system is then re-dispatched over the ten year planning period. Comparison of this case, with the demand-side program included, to the base optimal supply-side plan is used to determine the benefit or detriment that the addition of this demand-side resource provides to the overall system. DSVIEW calculates the benefits and costs for each demand-side measure evaluated and reports the appropriate ratios for the Rate Impact Measure (RIM), the Total Resource Cost Test (TRC), and the Participant Test.

Demand-side programs that pass the RIM test are then bundled together into portfolios. Portfolios of DSM programs are considered together, rather than individually, in the integration process that follows. This is necessary to reduce the number of possible future scenarios and make the optimization solvable with the computing resources available.

RESOURCE INTEGRATION AND FINAL OPTIMAL PLAN

The cost-effective generation alternatives as determined by the supply-side screening and the demand-side portfolios developed in the demand-side screening process are optimized together to formulate an integrated optimal plan. The optimization program considers all possible future mixes of supply-side and demand-side alternatives that meet the company's reliability criteria in each year over a ten-year period. The economic operation of each future scenario is additionally evaluated over forty years. The program will again consider many tens or hundreds of thousands of combinations, and report those that provide the lowest rates to FPC's ratepayers.

The plan that provides the lowest rates is further tested using sensitivity analysis. The economics of the plan are evaluated under high and low forecast scenarios to ensure that the plan does not unduly burden the company or the ratepayers if the future unfolds in a way very different from the base forecast. If the plan is judged robust under sensitivity analysis, it becomes the final optimal plan.

The final optimal plan passes from the optimization process to the company financial model. It is evaluated to ensure that the company can finance it adequately and that it will not have a detrimental impact on the company's stock or bond rating. A plan that has a detrimental impact on the company's financial health will be returned to the integration process. At this point, it may be necessary to re-assess part of the screening process, or it may only be necessary to repeat the integration and sensitivity analyses with appropriate constraints included.

FUEL FORECAST

The base case fuel price forecast was developed from the expected or most likely course of events. General market conditions for all fuels are expected to be relatively stable when viewed from an average annual cost basis. Coal prices are also expected to be relatively stable month to month; however, oil and natural gas prices are expected to be highly volatile on a day to day and month to month basis.

The base cost for coal is based on the existing contractual structure between Electric Fuels Corporation (EFC) and FPC and both contract and spot market coal and transportation arrangements between EFC and its various suppliers. Oil and natural gas prices are estimated based on current and expected contracts and spot purchase arrangements. Oil and natural gas commodity prices are driven primarily by open market forces of supply and demand. Natural gas firm transportation cost is determined primarily by Tariff and rates tend to change less frequently than commodity prices.

The high case fuel forecast is based on the premise that fuel prices are high in a relatively high inflation economic environment on a worldwide basis. The forecast is based on an approximate probability of 25 percent (vs. 50 percent for the base case). Coal prices in the high case were developed based on the effect the coal market and inflation have on contract supply, spot supply, quality differences and the various transportation cost drivers. FPC developed the high case oil and natural gas forecast based on the same general market environment and inflation levels as those used for coal. Since oil and natural gas supply are primarily purchased at market prices.

consideration for current contract escalation was not required. Any expected increase in transportation cost is also included in the overall projected price increases.

The low case fuel forecast is based on the premise that fuel prices are low in a low inflation economic environment on a worldwide basis. The forecast is based on an approximate probability of 25 percent (vs. 50 percent for the base case). Coal prices in the low case were developed based on the effect the coal market and inflation have on contract supply, spot supply, quality differences and the various transportation cost drivers. FPC developed the low case oil and natural gas forecast based on the same general market environment and inflation levels as those used for coal. Since oil and natural gas supply are primarily purchased at market prices, no consideration is given for current contract escalation. Any expected change in transportation cost is also included in the overall projected price variations.

A constant oil and gas to coal differential fuel sensitivity forecast was also developed based on the premise that the current differential price of oil and gas to coal remains constant over time.

FINANCIAL FORECAST

Financial Assumptions

The Base Financial Case was a combination of FPC's current financial assumptions for incremental costs and standard accounting practices, and DRI/McGraw-Hill's *Long-Range Focus*. The income tax, depreciation rates and capital structure were based on FPC's corporate financial assumptions. The inflation rate and debt interest rates were based on DRI/McGraw Hill's *Long-Range Focus, Winter 1997-1998 Trend*. In general, the economy has a balanced growth path and a stable inflation rate.

In the Optimistic Financial Case there is high growth and low stable inflation rate. DRI/McGraw Hill's *Long-Range Focus* was used for forecasted interest rates and inflation rates. Due to low inflation, interest rates remain low, which enhances business development. FPC's composite cost of capital was adjusted to reflect the low inflation rates.

In the Pessimistic Financial Case there is low growth and high inflation. DRI/McGraw Hill's *Long-Range Focus* was used for forecasted interest rates and inflation rates. Due to high inflation, interest rates remain high, which depresses consumer expenditures. FPC's composite cost of capital was adjusted to reflect the high inflation rates.

BASE EXPANSION PLAN

The base expansion plan consists mainly of three generation expansion phases. The first expansion phase is the commercial operation of the Hines Energy Complex (HEC) combined cycle Unit #1 by April 1999. The second phase is the construction of three combustion turbine units at the Intercession City (IC) Site by December 2000. The third phase is the projected expansion of the Hines Energy Complex Unit #2 & #3 by 2004 and 2006, respectively.

The HEC #2 and #3 units are state-of-the-art combined cycle units with similar characteristics as HEC #1. Accepting associated risks, future advancements in combined cycle technologies will provide for a higher efficiency combined cycle plan that challenges today's state-of-the-art combined cycle expansion plan. Given FPC's base expansion resource of combined cycle generation, the state-of-the-art and future advanced combined cycle technologies would be pursued simultaneously to ensure the lowest possible expansion costs.

FPC plans to provide a market-based analysis to insure that future expansion resources are procured in a just and reasonable manner. The procurement process for future resources would consider self-build alternatives as well as market based alternatives. Self-build alternatives would consider competitively bidding FPC's equipment, engineering and construction costs. Market alternatives would consider various types of market contracts as well as competitively bidding these resources. Each expansion resource must adapt well to FPC's other portfolio resources and bring a value added service beyond just price. FPC fully

intends to offer valued products at reasonable costs to insure a stable, adequate generation supply for its native load.

BASE EXPANSION PLAN SENSITIVITIES

Sensitivities to Load, Fuel and Financial Forecasts were analyzed against the base plan. The base expansion plan of constructing combined cycles on gas was determined to be robust with respect to changes in the load, fuel and financial forecasts. The low load forecast sensitivity required one less combined cycle unit. The high-load forecast, which included continuing to serve wholesale customers with choice as well as increased retail demand, indicated that additional combined cycles and combustion turbine units would be required. The high load expansion plan is consistent with the base expansion plan technologies, but in greater magnitude. Combustion turbines have shorter lead times than combined cycles and continue to provide flexibility in meeting demand changes. FPC's base expansion plan could be modified with combustion turbines to meet uncertainty in the demand forecast.

The high and low fuel forecast sensitivities indicated that the base expansion plan was robust to sensitivities in those forecasts and would require no changes to the base expansion plan. The low fuel forecast indicated no changes to the base expansion plan. The high fuel forecast indicated an increase in savings for the future advanced technology combined cycle versus the state-of-the-art combined cycle presently being planned. In addition, a sensitivity to holding the current differential price of oil and gas to coal constant over time indicated lower benefits for high efficiency combined cycle units and a greater value for simple cycle combustion turbines. However, these fuel sensitivities were not significant enough to depart from the base expansion plan of utilizing state-of-the-art combined cycle technology. The high and low financial forecast sensitivities indicated that the base plan was robust to sensitivities in those forecasts and would require no change to the base expansion plan. In general, all the high sensitivity cases indicated an increase in total revenue requirements while the low sensitivities indicated lower total revenue requirements.

TRANSMISSION PLANNING

Florida Power Corporation's Transmission Planning Criteria complies with the Florida Reliability Coordinating Council's (FRCC) "Principles and Guides for Planning Reliable Bulk Electric Systems." This criteria is currently filed with FERC as a part of the FERC 715 Filing made by the FRCC. This information is publicly available, including FRCC load flow databank models.

Presently, FPC uses the following reference documents to calculate Available Transfer Capability (ATC) for required transmission path postings on the Florida OASIS (Open Access Same Time Information System):

- FRCC: ATC Calculation and Coordination Procedures, November 4, 1998, or as amended
- NERC: Transmission Transfer Capability, May 1995
- NERC: Available Transfer Capability Definitions and Determination, May 1996

Currently, FPC proposes no bulk transmission additions that must be certified under the Florida Transmission Line Siting Act (TLSA). FPC's proposed future bulk transmission line additions are shown below:

FLORIDA POWER CORPORATION LIST OF PROPOSED BULK TRANSMISSION LINE ADDITIONS 1999-2008									
LINE OWNERSHIP TERMINALS		TERMINALS	LINE LENGTH CKT. MILES	COMMERCIAL IN-SERVICE DATE (MO/YR)	NOMINAL OPERATING VOLTAGE (kV)				
FPC	LAKE BRYAN	INTERCESSION CITY	10	10/2000	230				
FPC	TAYLOR CREEK	HOLOPAW	1	11/2002	230				
FPC	LAKE BRYAN	WINDERMERE	10	12/2003	230				
FPC	BARCOLA #2	HINES ENERGY COMPLEX	3	5/2004	230				
FPC	CENTRAL FLORIDA	SILVER SPRINGS	3	5/2005	230				
FPC	WEST LAKE WALES	HINES ENERGY COMPLEX	21	5/2006	230				

This page intentionally left blank.

٠

CHAPTER 4

ENVIRONMENTAL and LAND USE INFORMATION

CHAPTER 4 ENVIRONMENTAL and LAND USE INFORMATION

PREFERRED SITES

FPC's base expansion plan proposes new generation at the Hines Energy Complex (HEC) site in Polk County and the Intercession City (IC) site in Osceola County. The HEC site has been certified through the rules of the Power Plant Siting Act. The first combined cycle unit is scheduled for commercial operation by April 1999. The IC site is an existing site with three additional combustion turbine units planned for December 2000. The preferred sites of HEC and IC meet all of FPC's siting requirements for capacity throughout the planning horizon. FPC's existing sites, as identified in Table 3.1 of Chapter 3, have been permitted and include the capability to further enhance their generation and still operate within their individual site permit limits. All appropriate permitting requirements have been obtained for FPC's preferred sites. Therefore, detail environmental or land use data is not included. The base expansion plan does not include any potential sites for new generating facilities.

HINES ENERGY COMPLEX IN POLK COUNTY

In 1990, FPC completed a state-wide search for a new 3,000 MW coal capable power plant site. As a result of this work, a large tract of mined out phosphate land in south-central Polk County was selected as the primary alternative. This 8,200 acre site is located near the cities of Fort Meade and Homeland, south of S. R. 640 and west of U.S. 17/98 (reference the Polk County Site map). It is an area that has been extensively mined and remains predominantly unreclaimed.

The governor and cabinet approved site certification for ultimate site development and construction of the first 470 MW increment on January 25, 1994, in accordance with the rules of the Power Plant Siting Act. Due to the thorough screening during the selection process, and the disturbed nature of the site, there were no major environmental limitations. As would be the situation at any location in the state, air emissions and water consumption were significant issues during the licensing process.

As future generation units are added, the remaining network of on-site clay settling ponds will be converted to cooling ponds and combustion waste storage areas to support power plant operations. Given the disturbed nature of the property, considerable development has been required in order to make it usable for electric utility application. An industrial rail network and an adequate road system service the site.

Construction of site improvements began in October 1994. The first combined cycle unit, with a summer capacity of 470 MW, is scheduled for commercial operation by April 1999. The transmission improvements associated with the first unit at this site were the rebuilding of the

existing 230/115 kV double circuit Barcola - Ft. Meade line by increasing the conductor sizes and converting the line to double circuit 230 kV operation. The new lines were located on the plant site to avoid conflicts with plant facilities, and are looped into the plant substation.

Hines Energy Complex (Polk County)

INTERCESSION CITY SITE IN OSCEOLA COUNTY

Intercession City was chosen as the preferred site for installation of three additional combustion turbine peaking units by December 2000. The seasonal ratings for the Intercession City capacity addition are projected to be 249 MW summer (83 MW each) and 297 MW winter (99 MW each). The Intercession City Site consists of 165 acres in Osceola County (reference DWG IV-4), two miles west of Intercession City. The site is immediately west of Reedy Creek and the adjacent Reedy Creek Swamp. The site is adjacent to a secondary effluent pipeline from a municipal wastewater treatment plant, an oil pipeline, and a natural gas lateral serving the Kissimmee Utility Authority Cane Island facility. The Florida Department of Environmental Protection air rules currently list all of Osceola County as attainment for ambient air quality standards. The environmental impact on the site will be minimized by FPC's close coordination with regulatory agencies to ensure compliance with all applicable environmental regulations. The existing 230 kV transmission grid will accommodate these additional combustion turbine peaking units.
