JAMES S. ALVES BRIAN H. BIBEAU ROCHELLE A. BIRNBAUM RICHARD S. BRIGHTMAN KEVIN B. COVINGTON PETER C. CUNNINGHAM RALPH A. DEMEO JODY L. FINKLEA WILLIAM H. GREEN WADE L. HOPPING GARY K. HUNTER, JR. JONATHAN T. JOHNSON LEIGH H. KELLETT ROBERT A. MANNING FRANK E. MATTHEWS RICHARD D. MELSON ANGELA R. MORRISON SHANNON L. NOVEY

بسر

HOPPING GREEN SAMS & SMITH PROFESSIONAL ASSOCIATION ATTORNEYS AND COUNSELORS 123 SOUTH CALHOUN STREET POST OFFICE BOX 6526 TALLAHASSEE, FLORIDA 32314 (850) 222-7500 FAX (850) 224-8551 FAX (850) 425-3415 WWW.hgss.com

ERIC T, OLSEN GARY V. PERKO MICHAEL P. PETROVICH DAVID L. POWELL JOHN K. POWELL WILLIAM D. PRESTON CAROLYN S. RAEPPLE DOUGLAS S. ROBERTS D. KENT SAFRIET GARY P. SAMS TIMOTHY G. SCHOENWALDER REFERT P. SMITH TAR R. STENGLE EHHERG. STUART W. STEVE SYKES

Writer's Direct Dial No. (850) 425-2313

March 12, 2001

By Hand Delivery

Blanca Bayó Director, Records and Reporting Florida Public Service Commission 2540 Shumard Oak Boulevard Tallahassee, FL 32399

RECEIVED-FP50 MAR 12 PM 4:

OF COUNSEL

ELIZABETH C. BOWMAN

Re: Docket No. 000075-TP (Phase II)

Dear Ms. Bayó:

Enclosed for filing on behalf of MCI WorldCom are the original and fifteen copies of the Direct Testimony of Mark Argenbright for Phase II of this docket.

By copy of this letter, this testimony has been furnished to the parties on the attached service list.

If you have any questions regarding this filing, please call.

			Very truly yours,	
		REDEIVED & LILLO	Dudo nom	
APP	e	Men	s por 0.1	
CAF .		FPSC-BUREAU OF RECOMM	Richard D Melsor	
COM			Richard D. Merbon	
CTR .	RDM/m	ee		
LEG	Enclo	sure		· · · ·
OPC		Certificate of Service		
RGO				DOCUMENT NUMBER-DATE
SEC				03153 MAR 125
OTH				03133 marine B
-				FPSC-RECORDS/REPORTING

I HEREBY CERTIFY that a true and correct copy of the foregoing has been served upon the following parties by Hand Delivery (*) and/or U.S. Mail this 12th day of March, 2001.

Felicia Banks* Division of Legal Services, Room 370 Florida Public Service Commission 2540 Shumard Oak Blvd. Tallahassee, FL 32399-0850

,

Nancy B. White c/o Nancy H. Sims BellSouth Telecommunications, Inc. 150 South Monroe Street, Suite 400 Tallahassee, FL 32301

Marsha Rule, Esq. AT&T 101 N. Monroe Street Suite 700 Tallahassee, FL 32301

Michael A. Gross Vice President, Regulatory Affairs & Regulatory Counsel Florida Telecommunications Assoc., Inc. 310 North Monroe Street Tallahassee, FL 32301

Global NAPS, Inc. 10 Merrymount Road Quincy, MA 02169

Kimberly Caswell Verizon Select Services, Inc. P.O. Box 110, FLTC0007 Tampa, FL 33601-0110

Genevieve Morelli Kelley Drye Warren 1200 19th Street NW 5th Floor Washington, DC 20036 Jon Moyle Cathy Sellers Moyle Law Firm 118 North Gadsden Street Tallahassee, FL 32301

Peter M. Dunbar, Esq. Karen Camechis Pennington, Moore, Wilkinson, Bell & Dunbar, P.A. P.O. Box 10095 Tallahassee, FL 32302-2095

Kenneth A. Hoffman, Esq. John R. Ellis, Esq. Rutledge, Ecenia, Purnell & Hoffman, P.A. P.O. Box 551 Tallahassee, FL 32302

Charles J. Rehwinkel Susan Masterton F. Ben Poag Sprint-Florida, Incorporated MC FLTHO0107 P.O. Box 2214 Tallahassee, FL 32399-2214

Carolyn Marek Vice President of Regulatory Affairs Southeast Region Time Warner Communications 233 Bramerton Court Franklin, TN 37069

Ms. Wanda Montano US LEC of Florida, Inc. 401 North Tryon Street, Suite 1000 Charlotte, NC 28202 Patrick Wiggins Charles Pellegrini Katz Kutter Law Firm 12th Floor 106 E. College Ave. Tallahassee, FL 32301

Norman Horton, Jr. Messer Law Firm 215 S. Monroe Street, Suite 701 Tallahassee, FL 32301-1876

James C. Falvey, Esq. e.spire Communications, Inc. 133 National Business Parkway Suite 200 Annapolis Junction, MD 20701

Morton Posner, Esq. 1150 Connecticut Avenue, N.W. Suite 205 Washington, Dc 20036

Jeffry Wahlen Ausley Law Firm P.O. Box 391 Tallahassee, FL 32302

Michael P. Goggin BellSouth Telecommunications, Inc. 150 West Flagler St., Suite 1910 Miami, FL 33130

Douglas Lackey/Earl Edenfield Bellsouth Telecommunications, Inc. 675 W. Peachtree St., #4300 Atlanta, Ga 30375

Vicki Kaufman/Joe McGlothlin McWhirter Law Firm 117 S. Gadsden Street Tallahassee, FL 32301 Charles Hudak/Ronald V. Jackson Gerry Law Firm 3 Ravinia Dr., #1450 Atlanta, GA 30346-2131

Scott Sapperstein Intermedia Communications, Inc. One Intermedia Way Tampa, FL 336476

Scheffel Wright Landers Law Firm P.O. Box 271 Tallahassee, Fl 32302

Michael R. Romano, Esq. Level 3 Communications, LLC 1025 Eldorado Blvd. Bloomfield, CO 80021-8869

Donna C. McNulty MCI WorldCom 325 John Knox Road, Suite 105 Tallahassee, FL 32303-4131

Herb Bornack Orlando Telephone Company 4558 S.W. 35th Street, Suite 100 Orlando, FL 32811-6541

Brian Chaiken Supra Telecom 2620 S.W. 27th Ave. Miami, FL 33133-3001

The D. M

Attorney

1		BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION
2		DIRECT TESTIMONY OF MARK ARGENBRIGHT
3		ON BEHALF OF MCI WORLDCOM
4		DOCKET NO. 000075-TP
5		MARCH 12, 2001
6		- -
7	Q	Please state your name and business address.
8	A.	My name is Mark E. Argenbright. My business address is Six Concourse
9		Parkway, Suite 3200, Atlanta, Georgia 30328.
10	Q.	By whom are you employed and in what capacity?
11	A.	I am employed by WorldCom, Inc. in the Law and Public Policy group and hold
12		the position of Senior Staff Specialist, State Regulatory Policy. In my current
13		position, I assist in the development and coordination of WorldCom's regulatory
14		and public policy initiatives for the company's domestic operations. These
15		responsibilities require that I work closely with our state regulatory groups
16		across the various states, including Florida.
17	Q.	Please summarize your telecommunications background and education.
18	A.	My previous position within WorldCom was Senior Manager, Regulatory
19		Analysis, in which I was responsible for performing regulatory analysis in
20		support of a wide range of company activities. Prior to that, I was employed by
21		the Anchorage Telephone Utility (now known as Alaska Communications
22		Systems) as a Senior Regulatory Analyst and American Network, Inc. as a Tariff
23		Specialist. I have worked in the telecommunications industry for sixteen years,
24		with the majority of my positions in the area of regulatory affairs. I received a
25		Bachelor of Science Degree in Business Administration from the University of

8

·

.

1 Montana in 1980.

2 Q. What is the purpose of your testimony?

3 A. I am going to address Issues 11, 12 and 18. First I will discuss the types of 4 network architectures utilized by ILECs and ALECs, with a focus on the 5 differences. Then I will review the FCC's rules regarding reciprocal 6 compensation and explain their proper application with regard to geographic 7 comparability and functional similarity. Next I will suggest a method for 8 determining the geographic scope of an ALEC's network and address functions 9 that may be considered in reviewing the functionality of an ALEC's network for 10 similarities with the ILEC's tandem. Finally I will propose an efficient way for 11 the Commission to implement the payment, where appropriate, of the tandem 12 interconnection rate.

13

14 Issue 11 What types of local network architectures are currently employed by
15 ILECs and ALECs and what factors affect their choice of architectures?

16

17 Q. Please describe the network architecture generally deployed by ILECs. 18 A. ILECs have deployed a hierarchical network architecture that consists of end 19 office switches, tandem switches and transport facilities. End office switches 20 provide connectivity for all of the ILEC's customers within a particular 21 geographic area. These end office switches, in turn, are connected to each other 22 and to tandems via interoffice transport. The mix of these components in the 23 ILEC's network is dependent on a variety of factors including the number of 24 customers to be served and where they are located relative to the existing network. 25

Q. From a historical perspective, please address the demand, technology and
 cost factors that influenced the ILECs' network design.

3 A. Being the monopoly provider of local telephone service required the ILECs to 4 choose a network architecture that would allow them to serve the entire market. 5 Based on the technologies available at the time, and the economic relationships 6 among those technologies, the ILECs selected and deployed an architecture that 7 would enable them to serve the entire market in the most efficient manner 8 possible. At the time, engineers were faced with technological challenges, with 9 distance limitations on the capability of copper facilities (i.e., the transport 10 element) being a significant factor. These technological challenges were 11 balanced against the need to serve a large customer base. This resulted in the 12 ILECs' decision to deploy networks that placed switching facilities (i.e., end 13 offices) far out into the network, near concentrations of the customer base.

14 Of course, the need to have connectivity between and among all these 15 customers required further placement of higher capacity transport facilities 16 between and among these end office switches. In connecting these end offices it 17 was also more efficient to place another level of switching (i.e., tandem 18 switches), creating a "hub and spoke" arrangement, than it was to provide 19 transport between each and every combination of end offices.

20 Q. How does this historical choice of network architecture impact the ILECs'
21 choices today for meeting new demand?

A. Today, the economic relationship between switching and transport has changed
 due to the availability of fiber transport, which is relatively inexpensive and can
 transport traffic over great distances. However, the ILECs cannot simply
 abandon their existing networks in favor of technology available today. Instead,

1		the ILECs are incorporating the new technologies in the context of their existing
2		architecture. For example, additional interoffice transport capacity may well be
3		accomplished through the use of fiber technologies (e.g., SONET transmission
4		systems), and the extension of the network to a new or expanding area of the
5		market may be accomplished with the use of host / remote switching
6		arrangements, where the host switch provides the actual switching functionality
7	-	to the remote.
8	Q.	Please generally describe the process used by ALECs to develop their
9		network architecture.
10	A.	While the ILECs must incorporate the available technologies and their economic
11		relationships into their existing networks, ALECs have only recently been faced
12		with the making the decisions necessary to plan and deploy a local network.
13		Accordingly, while the ALECs use the same general planning process as the
14		ILECs (i.e., considering what technologies are available to serve their existing
15		and anticipated customer base in the most efficient manner possible), the
16		ALECs' decisions on network architecture yield a different answer due to their
17		level of anticipated demand and their lack of an embedded "hub and spoke"
18		network.
19	Q.	What is the general network architecture deployed by ALECs?
20	A.	Because fiber has overcome the distance limitations of copper and provides a
21		much higher capacity of transport, ALECs typically have deployed networks
22		which rely on expansive fiber transport networks combined with a limited
23		number of switches. This network design also reflects the ALEC's position in
24		the local market, that of new entrant. While the ILECs still serve virtually 100%
25		of their respective local markets, ALECs must invest and build networks to

,

.

1		serve a realistic and obtainable level of customers and to meet their associated
2		demands on the network.
3	Q.	How does this chosen network architecture impact an ALEC's future
4		network choices relative to increased demand?
5	A.	Of course, in a competitive market, increased demand is not guaranteed.
6		Nevertheless, in meeting present and future demand requirements, ALECs will
7	-	to continue to use their existing architecture, which relies on extensive fiber
8		transport facilities combined with few switches. Just as ILECs must always
9		consider their existing network architecture, so too must an ALEC. While both
10		ALECs and ILECs continue to engineer their networks for anticipated and
11		realized demand utilizing available technologies, neither entity can avoid the
12		impact of its historical choices in network architecture. The goal is to seek
13		efficiencies in the context of the existing network.
14	Q.	Are there any other factors that drive differences in ILEC and ALEC
15		network architecture, other than differences in the technologies available
16		
10		when those networks were first being deployed?
17	A.	when those networks were first being deployed? Yes, another difference between ILECs and ALECs is that ALECs have had to
17 18	A.	when those networks were first being deployed?Yes, another difference between ILECs and ALECs is that ALECs have had to make all network decisions in the context of a competitive marketplace. An
10 17 18 19	A.	when those networks were first being deployed?Yes, another difference between ILECs and ALECs is that ALECs have had to make all network decisions in the context of a competitive marketplace. AnILEC has only recently been faced with this added factor. ALECs have always
17 18 19 20	A.	 when those networks were first being deployed? Yes, another difference between ILECs and ALECs is that ALECs have had to make all network decisions in the context of a competitive marketplace. An ILEC has only recently been faced with this added factor. ALECs have always sought to control costs, knowing that such control impacts the ability to
17 18 19 20 21	A.	 when those networks were first being deployed? Yes, another difference between ILECs and ALECs is that ALECs have had to make all network decisions in the context of a competitive marketplace. An ILEC has only recently been faced with this added factor. ALECs have always sought to control costs, knowing that such control impacts the ability to compete. Over time, assuming that the market is allowed to operate, the ILEC
17 18 19 20 21 22	A.	 when those networks were first being deployed? Yes, another difference between ILECs and ALECs is that ALECs have had to make all network decisions in the context of a competitive marketplace. An ILEC has only recently been faced with this added factor. ALECs have always sought to control costs, knowing that such control impacts the ability to compete. Over time, assuming that the market is allowed to operate, the ILEC too will be faced with responding to such competitive pressures in its network
10 17 18 19 20 21 22 23	A.	when those networks were first being deployed?Yes, another difference between ILECs and ALECs is that ALECs have had to make all network decisions in the context of a competitive marketplace. An ILEC has only recently been faced with this added factor. ALECs have always sought to control costs, knowing that such control impacts the ability to compete. Over time, assuming that the market is allowed to operate, the ILEC too will be faced with responding to such competitive pressures in its network decisions.

.

• .

25 Issue 12: Pursuant to the Act and FCC's rules and orders:

1		(a) Under what condition(s), if any, is an ALEC entitled to be
2		compensated at the ILEC's tandem interconnection rate?
3		(b) Under either a one-prong or two-prong test, what is "similar
4		functionality?"
5		(c) Under either a one-prong or two-prong test, what is
6		"comparable geographic area?"
7		-
8	Q.	As a threshold matter, is there an obligation for an ALEC to be
9		compensated at any rate for the use of its network by another local
10		exchange carrier?
11	A.	Absolutely. Section 251(b)(5) of the Telecommunications Act of 1996 ("Act")
12		imposes on each local exchange carrier "[t]he duty to establish reciprocal
13		compensation arrangements for the transport and termination of
14		telecommunications." Section 252(d)(2)(A) of the Act further provides as
15		follows:
16		For the purposes of compliance by an incumbent local exchange carrier
17		with section 251(b)(5), a State commission shall not consider the terms
18		and conditions for reciprocal compensation to be just and reasonable
19		unless –
20		(i) Such terms and conditions provide for the mutual and
21		reciprocal recovery by each carrier of costs associated
22		with the transport and termination on each carrier's
23		network facilities of calls that originate on the network
24		facilities of the other carrier; and
25		(ii) such terms and conditions determine such costs on the

.

-

1		basis of a reasonable approximation of the additional
2		costs of terminating such calls.
3	Q.	Given that there is to be reciprocal compensation by the originating carrier
4		to the terminating carrier for the transport and termination functions
5		performed by that carrier, has the FCC addressed the level of compensation
6		that is to be applied?
7	A	Yes. After establishing how reciprocal compensation rates would be determined
8		for ILECs, the FCC turned to the question of what rates should apply to ALECs.
9		The FCC concluded that the ILECs' reciprocal compensation rates should be
10		adopted as the "presumptive proxy" for the ALEC's rates - in other words, the
11		rates were required to be the same. In re: Implementation of the Local
12		Competition Provisions in the Telecommunications Act of 1996, First Report and
13		Order, CC Docket No. 96-98, released August 8, 1996 (the "Local Competition
14		<i>Order</i> ,") ¶ 1085. The only exception to this rule arises when an ALEC
15		establishes that its transport and termination costs are higher than those of the
16		ILEC. Local Competition Order, ¶ 1089; FCC Rule 51.711(b).
17	Q.	What reasons did the FCC give for ordering symmetrical treatment?
18	A.	The FCC provided a number of reasons for ordering symmetrical treatment,
19		including the following:
20		1. Typically the ILEC and ALEC will be providing service in the same
21		geographic area, so their forward-looking costs should be the same in
22		most cases. Local Competition Order, ¶ 1085.
23		2. Imposing symmetrical rates would not reduce carriers' incentives to
24		minimize their internal costs. ALECs would have the correct incentives
25		to minimize their costs because their termination revenues would not

.

. .

1		vary directly with changes in their costs. At the same time, ILECs would
2		have the incentive to reduce their costs because they could be expected to
3		transport and terminate much more traffic originating on their own
4		networks than on ALEC's networks. Thus, even assuming ILEC cost
5		reductions were immediately translated into lower transport and
6		termination rates, any reduction in reciprocal compensation revenues
7	-	would be more than offset by having a more cost-effective network.
8		Local Competition Order, ¶ 1086.
9		3. Symmetrical rates might reduce ILEC's ability to use their bargaining
10		power to negotiate high termination rates for themselves and low
11		termination rates for ALECs. Local Competition Order, ¶1087.
12	Q.	How does the FCC's reasoning in establishing symmetrical treatment for
13		reciprocal compensation relate to your earlier discussion about network
14		decisions made by ILECs and ALECs?
15	A.	As I indicated above, ALECs have always made network decisions with a focus
16		on controlling costs due, in part, to their new entrant status in the marketplace
17		whereas ILECs are just beginning address network decisions with a heightened
18		sensitivity to cost control as they face these new competitors. The FCC
19		correctly views the application of symmetrical rates as providing both ALECs
20		and ILECs the proper incentives to reduce costs. Abandoning symmetrical rates
21		removes the incentives for cost control and would give a competitive advantage
22		to one of the carriers.
23		Payment of the lower end office rate to an ALEC when the tandem rate
24		should apply is an abandonment of symmetrical rates and would result in both of
25		these negative outcomes. Simply put, the ILEC will not be driven to reduce its

.

1		own network costs because the use of another carrier's "tandem network" is
2		available for the price of the ILEC's own end office cost. And, of course, the
3		ILEC's new competitor, the ALEC, is now under-compensated for the transport
4		and termination services being provided.
5	Q.	What did the FCC conclude concerning symmetry of tandem
6		interconnection rates?
7	A	The FCC stated the following in paragraph 1090 of the Local Competition
8		Order:
9		We find that the "additional costs" incurred by a LEC when transporting
10		and terminating a call that originated on a competing carrier's network
11		are likely to vary depending on whether tandem switching is involved.
12		We, therefore, conclude that states may establish transport and
13		termination rates in the arbitration process that vary according to whether
14		the traffic is routed through a tandem switch or directly to the end-office
15		switch. In such event, states shall also consider whether new
16		technologies (e.g., fiber ring or wireless networks) perform functions
17		similar to those performed by an incumbent LEC's tandem switch and
18		thus, whether some or all calls terminating on the new entrant's network
19		should be priced the same as the sum of transport and termination via the
20		incumbent LEC's tandem switch. Where the interconnecting carrier's
21		switch serves a geographic area comparable to that served by the
22		incumbent LEC's tandem switch, the appropriate proxy for the
23		interconnecting carrier's additional costs is the LEC tandem
24		interconnection rate.
25		(Emphasis added)

.

• • •

• .

-

.

1 **Q.** Please explain what this language means in practical terms.

2	A.	The FCC read	ched three conclusions. First, it is appropriate to establish an
3		additional rat	e for ILECs when they use a tandem switch in the transport and
4		termination o	f ALECs' local traffic. Second, states may consider whether some
5		or all calls ter	minated by an ALEC may be priced at that higher rate if the ALEC
6		uses alternativ	ve technologies or architectures to perform functions similar to
7	-	those perform	ed by the ILEC's tandem switch. Third, the higher rate must be
8		applied when	the ALEC's switch serves a geographic comparable to that served
9		by the ILEC's	s tandem switch.
10	Q.	Does this FC	C ruling have a bearing on the proper definition of "similar
11		functionality	" and "comparable geographic area?"
12	A.	Yes. It is imp	portant to note that under the FCC's approach, an ALEC need rely
13		on proving the	e similar functionality of its network in order to be compensated at
14		the tandem ra	te only if its network does not serve a geographic area comparable
15		to that served	by the ILEC's tandem. If the ALEC serves a comparable
16		geographic ar	ea, the "functionality" inquiry is simply unnecessary.
17	Q.	Does the FCO	C's codification of this principle confirm your reading of the
18		Local Compe	etition Order?
19	A.	Yes, it confirm	ns my analysis. FCC Rule 51.711(a) provides as follows:
20		(a)	Rates for transport and termination of local telecommunications
21			traffic shall be symmetrical, except as provided in paragraphs (b)
22			and (c) of this section. [These exceptions do not apply here.]
23		(1)	For purposes of this subpart, symmetrical rates are rates that a
24			carrier other than an incumbent LEC assesses upon an incumbent
25			LEC for transport and termination of local telecommunications

1			traffic equal to those that the incumbent LEC assesses upon the
2			other carrier for the same services.
3		(2)	In cases where both parties are incumbent LECs, or neither party
4			is an incumbent LEC, a state commission shall establish the
5			symmetrical rates for transport and termination based on the
6			larger carrier's forward-looking costs.
7	-	(3)	Where the switch of a carrier other than an incumbent LEC
8			serves a geographic area comparable to the area served by the
9			incumbent LEC's tandem switch, the appropriate rate for the
10			carrier other than an incumbent LEC is the incumbent LEC's
11			tandem interconnection rate.
12			(Emphasis added)
13		The FCC coul	d not have been more clear. The geographic comparability rule
14		was adopted v	vithout exception or qualification.
15	Q.	Do the ILEC:	s share this understanding of the FCC's order and rule?
16	A.	No, at least Bo	ellSouth does not. BellSouth has argued that the FCC did not
17		establish an oi	ne-prong "either-or" test for determining entitlement to
18		compensation	at the tandem rate, but instead established a two-prong "both-and"
19		test." In decid	ling Issue 12, it is critical for the Commission to clearly state its
20		understanding	that the FCC has announced an "either-or" test. Without a clear
21		decision, Bell	South will continue to refuse to pay tandem compensation to
22		ALECs.	
23	Q.	Does the choi	ce of network architectures selected by the ILEC and ALEC
24		impact an an	alysis of similar functionality?
25	A.	Absolutely.	Based on the network descriptions above, the comparison of ILEC

.

1		and ALEC networks is an "apples to oranges" comparison. As I stated, both the
2		ILEC and ALEC are committed to their network architectures and adjust those
3		architectures to meet demand. Adoption of a test for "similar functionality"
4		which requires the networks to be "technically identical" would force the ILEC's
5		network architecture on ALECs which, as described, are committed to a
6		technically different architecture.
7	-	For example, this testimony was created through the use of a computer
8		and word processing software. When reading a hard copy of this testimony it is
9		impossible to tell whether it was created with an Apple or IBM compatible
10		computer. A review of the technical treatment by these two types of computers
11		of the keystrokes involved in creating this document would reveal technical
12		differences in their processors and operating systems. However, at the end of
13		the day, both computers can produce the document. Even in light of their
14		technical differences, it can be said that these computers share similar
15		functionality.
16	Q.	What is one of the potential consequence of adopting a "technically
17		identical" standard for comparing an ILEC tandem switch and an ALEC
18		network?
19	A.	Comparison of functionality must recognize and accept the technical differences
20		between ILEC and ALEC networks. Failure to do so creates the situation where
21		the ILEC would be able to avoid the cost of using of its own tandem for
22		transport and termination while receiving the similar functionality from the
23		ALEC's network and paying only the lower cost of end office transport and
24		termination. This structure would remove the incentives that the FCC found in
25		directing that rates are to be symmetrical.

.

•

1	Q.	Given this, are there functional similarities that exist between the ALEC
2		network and the ILEC's tandem switch?
3	A.	Yes. Network differences aside, there are several functions performed by the
4		ALEC's network that are performed by the ILEC's tandem switch as well. One
5		of these is the function of traffic aggregation. An ALEC's network collects
6		traffic from across many exchanges in various rate centers allowing the efficient
7		switching and transporting of traffic originating and terminating among these
8		exchanges and rate centers. Traffic aggregation is a central function of the
9		ILEC's tandem switch.
10		Also similar to the ILEC tandem, an ALEC's network provides for a
11		centralized point of interconnection for access to operator services platforms and
12		facilities, allowing all operator traffic to be aggregated and routed for processing
13		by a common platform(s).
14		An ALEC's network also measures and records traffic, creating call
15		records for billing purposes, just as is done by the ILEC's tandem switch.
16		An ALEC's network that performs these functions should be found to be
17		providing "similar functionality" for purposes of determining the appropriate
18		rate the ALEC should receive for the transport and termination functions
19		provided to the ILEC. In recognition of the network differences discussed
20		above, if these activities are performed by the ALEC's network, it must be
21		entitled to compensation at the tandem rate without the additional requirement to
22		physically include a tandem switch in that network.
23	Q.	What is the relationship between "similar functionality" and "comparable
24		geographic area?"
25	A.	While these both require an analysis of the characteristics of the ALEC's

-

-

24	Q.	Explain what you mean by physical reach of the network.
23		reach of the network.
22		acquired and opened up for those rate centers which were within the physical
21		Once the switch was deployed, numbering resources (NPA/NXXs) were
20		that reached a sufficient potential market share, a local switch was deployed.
19		facilities, perhaps supplemented with additional fiber, had a geographic scope
18		demand for local switched services. If it was determined that the existing fiber
17		geographic reach of those fiber facilities matched the location of the perceived
16		WorldCom, looked at their CAP operations and determined how well the
15		for customers in the switched services market, many companies, such as
14		access services. When changes in the law gave them the opportunity to compete
13		utilized to provide competitive offerings of dedicated private line / special
12		vendors (AAVs). CAPs originally had fiber transmission resources that were
11		access providers (CAPs), which were known in Florida as alternative access
10	A.	Going back in time somewhat, many ALECs today were once competitive
9		geographic area their networks will serve.
0	v	resource of the potential will some
, 8	0	As background please describe generally how ALECs determine what
7		specific meaning of the FCC's Rule 51,711(a)
6		no additional review of functionality is required. As cited above, this is the
5		network provides transport and termination to a "comparable geographic area"
4		ILEC's tandem. However, it is exactly that, an alternative. If the ALEC's
3		in the event its network did not serve a geographic area comparable to that of the
2		was established by the FCC as an alternative showing that an ALEC could make
1		network relative to the ILEC's tandem switch, the "similar functionality" review

.

. .

25 A. Simply that if an ALEC has opened an NPA/NXX and established network

1		facili	ities which allow end users within rate centers to originate and terminate				
2		local exchange service, such rate centers would be considered within the physical					
3		or ge	or geographic reach of the ALEC's network regardless of the number of				
4		custo	omers the ALEC has been able to attract.				
5	Q.	How	How does an ALEC go about expanding the geographic reach of its local				
6		netw	rork?				
7	A	Most	ALECs look to four methods of placement and/or leasing of facilities to				
8		expa	nd their geographic service areas:				
9		a)	establishment of a collocation arrangement within an ILEC wire center				
10			and the provision of transport facilities between the collocation				
11			arrangement and the ALEC switch;				
12		b)	establishment of a local node which establishes a physical point on the				
13			fiber transport facilities that allows customer access to local switched				
14			services;				
15		c)	extension of the fiber network (also potentially a component of the				
16			previous two options); and				
17		d)	the purchase of enhanced extended links (EELs) which are used to reach				
18			geographic areas where the network does not currently reach.				
19		It is in	mportant to note that, due to the ALEC's choice of network architecture,				
20		place	ment of a new switch is not considered in conjunction with expanding the				
21		geogr	raphic reach of the local network. Consistent with the network architecture				
22		discu	ssions above, the reason for this is that the cost of placing a new switch to				
23		expan	nd geographic reach is cost prohibitive relative to the deployment of				
24		additional fiber. Accordingly any requirement to have multiple switches as					
25		evide	nce of a "geographically comparable" network is not only inconsistent with				

.

. .

25		"similar functionality" tests be implemented?				
24		compensation and the proper application of the "geographic coverage" and				
23	Q.	How should the Commission's decision on the payment of tandem				
22						
21	Issue	18 How should the policies established in this docket be implemented?				
20						
19		comparability via alternative methods to the rate center review.				
18		that an ALEC should not be precluded from demonstrating geographic				
17		network. Additionally, it is this goal of technological neutrality that would direct				
16		accommodate present and future technologies that might be deployed in the local				
15		This standard is (and should be) technologically neutral and should				
14		therefore compensated at the tandem rate.				
13		ALEC must be found to be providing geographically comparable coverage and				
12		is served by the ILEC with a tandem switch (and subtending end offices) the				
11		by the combination of rate centers that have been opened on an ALEC's network				
10		customers in those rate centers. Accordingly, if the geographic area represented				
9		allows the ALEC to provide originating and terminating local exchange service to				
8		activated for the rate centers that are within the "reach" of that network. This				
7	-	geographic reach, an investment in the network is made and then NPA/NXXs are				
6		by an ALEC. As described above, when an ALEC establishes or extends its				
5	A.	Of course, the proper review should take into consideration the network utilized				
4		comparability?				
3	C C	entitled to reciprocal compensation at the tandem rate based on geographic				
2	0.	What would be a reasonable approach in considering whether an ALEC is				
1		the FCC's rules but fails to recognize the differences in network architectures.				

- A. The Commission should implement a procedure that can proceed with little or no
 further Commission involvement. If Commission involvement is required to
 settle disputes, the Commission should resolve those disputes on an expedited
 basis.
- 5 Q. What type of procedure would minimize Commission involvement?
- 6 A. If the Commission is clear that the FCC rule establishes a "one-prong" test and is 7 also clear that the "geographic comparability" standard is met when an ALEC has _ 8 opened NPA/NXXs that give its switch the ability to serve a combination of the 9 rate centers served by an ILEC's tandem, it should be a simple matter for the 10 ILECs to determine what ALECs meet the geographic coverage test by examining the list of NPA/NXXs that an ALEC has opened. If the parties are 11 12 unable to reach agreement within a short period of time -- say 30 days from the Commission's order -- then the parties should be permitted to bring their dispute 13 14 to the Commission for resolution on an expedited basis.
- 15 Q. Does this conclude your testimony?
- 16 A. Yes it does.