

IOII3 SEP 20 8 FPSC-COMMISSION CLERK.

1		BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION
2		FLORIDA POWER & LIGHT COMPANY
3		TESTIMONY OF GERARD YUPP
4		DOCKET NO. 020001-EI
5		SEPTEMBER 20, 2002
б	Q.	Please state your name and address.
7	Α.	My name is Gerard Yupp. My business address is 11770 U.S.
8		Highway One, North Palm Beach, Florida, 33408.
9		
10	Q.	By whom are you employed and what is your position?
11	Α.	I am employed by Florida Power & Light Company (FPL) as
12		Manager of Regulated Wholesale Power Trading in the Energy
13		Marketing and Trading Division.
14		
15	Q.	Have you previously testified in this docket?
16	Α.	Yes.
17		
18	Q.	What is the purpose of your testimony?
19	Α.	The purpose of my testimony is to present and explain FPL's
20		projections for (1) the dispatch costs of heavy fuel oil, light fuel oil,
21		coal, petroleum coke, and natural gas, (2) the availability of natural
22		gas to FPL, (3) generating unit heat rates and availabilities, (4) the

.

-

1

DOCUMENT NUMBER - DATE

FPSC-COMMISSION CLERK

1quantities and costs of wholesale (off-system) power and purchased2power transactions, and (5) FPL's Risk Management Plan for fuel3procurement for 2003. The projected values for items (1) through (4)4were used as input values to the POWRSYM model that FPL uses5to calculate the fuel costs to be included in the proposed fuel cost6recovery factors for the period of January through December, 2003.

7

8

Q. How is your testimony organized?

Α. My testimony first describes the basis for the "Base Case" fuel price 9 forecast for oil, coal and petroleum coke, and natural gas, as well 10 as, the projection for natural gas availability. The second part of the 11 testimony describes the "Low" and "High" price forecasts for fuel oil 12 and natural gas. Next, my testimony addresses plant heat rates, 13 outage factors, planned outages, and changes in generation 14 capacity followed by projected wholesale (off-system) power and 15 purchased power transactions. The testimony concludes with a 16 presentation of FPL's Risk Management Plan for fuel procurement 17 for 2003, as outlined in Component No. 2 of Staff's Resolution of 18 Issues in Docket No. 011605-EI, as approved by the Commission at 19 the August 12, 2002 Hearing. This presentation also includes a 20 description of FPL's fuel hedging objectives and an itemization of 21 prudently-incurred, 22 projected, incremental operating and maintenance expenses for enhancing and maintaining FPL's non-23

1	speculative financial and physical hedging program for the projected
2	period.

3

4	Q.	Are you sponsoring and/or co-sponsoring any portion of the
5		appendices for this proceeding?

A. Yes. I sponsor all exhibits in Appendix I and Schedules E7, E8 and
E9 of Appendix II. Additionally, I co-sponsor Schedules E2, E3, E4
E5 and E6 of Appendix II.

9

10 **"BASE CASE" FUEL PRICE FORECAST**

Q. What are the key factors that could affect FPL's price for heavy
 fuel oil during the January through December, 2003 period?

A. The key factors are (1) demand for crude oil and petroleum products (including heavy fuel oil), (2) non-OPEC crude oil production, (3) the extent to which OPEC production matches actual demand for OPEC crude oil, (4) the price relationship between heavy fuel oil and crude oil, and (5) the terms of FPL's heavy fuel oil supply and transportation contracts.

19

In the "Base Case", world demand for crude oil and petroleum products is projected to be somewhat stronger in 2003 than in 2002 due to an assumed economic recovery starting in early 2003, especially in Asia, and continued strong petroleum product demand in the United States and Europe. Although crude oil production
 capacity will be more than adequate to meet the projected strong
 crude oil and petroleum product demand, general adherence by
 OPEC members to its most recent production accord should prevent
 significant overproduction, and keep the supply of crude oil and
 petroleum products somewhat tight during most of 2003.

7

Q. What is the projected relationship between heavy fuel oil and
 crude oil prices during the January through December, 2003
 period?

- A. The price of heavy fuel oil on the U. S. Gulf Coast (1.0% sulfur) is
 projected to be approximately 86% of the price of West Texas
 Intermediate (WTI) crude oil during this period.
- 14

Q. Please provide FPL's projection for the dispatch cost of heavy
 fuel oil for the January through December, 2003 period.

A. FPL's "Base Case" projection for the system average dispatch cost
 of heavy fuel oil, by sulfur grade, by month, is provided on page 3 of
 Appendix I.

20

Q. What are the key factors that could affect the price of light fuel
oil?

A. The key factors that affect the price of light fuel oil are similar to

- those described above for heavy fuel oil.
- 2

1

- Q. Please provide FPL's projection for the dispatch cost of light
 fuel oil for the period from January through December, 2003.
- A. FPL's "Base" Case projection for the system average dispatch cost
 of light oil, by sulfur grade, by month, is shown on page 4 of
 Appendix I.
- 8

10

9 Q. What is the basis for FPL's projections of the dispatch cost for

St. Johns' River Power Park (SJRPP) and Scherer Plant?

A. FPL's projected dispatch cost for SJRPP is based on FPL's price
 projection for spot coal and petroleum coke delivered to SJRPP.
 The dispatch cost for Scherer is based on FPL's price projection for
 spot coal delivered to Scherer Plant.

15

For SJRPP, annual coal volumes delivered under long-term contracts are fixed on October 1st of the previous year. For Scherer Plant, the annual volume of coal delivered under long-term contracts is set by the terms of the contracts. Therefore, the price of coal delivered under long-term contracts does not affect the daily dispatch decision.

22

23

In the case of SJRPP, FPL will continue to blend petroleum coke

with coal in order to reduce fuel costs. It is anticipated that
 petroleum coke will represent 19% of the fuel blend at SJRPP
 during 2003. The lower price of petroleum coke is reflected in the
 projected dispatch cost for SJRPP, which is based on this projected
 fuel blend.

6

Q. Please provide FPL's projection for the dispatch cost of SJRPP
 and Scherer Plant for the January through December, 2003
 period.

A. FPL's projected system weighted average dispatch cost of "solid
 fue!" for this period, by month, is shown on page 5 of Appendix I.

12

Q. What are the factors that can affect FPL's natural gas supply prices during the January through December, 2003 period?

In general, the key factors are (1) North American natural gas Α. 15 demand and domestic production, (2) LNG and Canadian natural 16 gas imports, (3) heavy fuel oil prices, and (4) the terms of FPL's 17 natural gas supply and transportation contracts. The dominant 18 factors influencing the projected price of natural gas in 2003 are: (1) 19 projected natural gas demand in North America will continue to grow 20 moderately in 2003, primarily in the electric generation sector; and 21 (2) while domestic natural gas production in 2003 is projected to be 22 essentially unchanged from average 2002 levels, increased imports 23

of natural gas from Canada, as well as, imports of LNG on the U.S.
 Gulf and East coasts will be available to meet these projected
 modest increases in demand.

4

Q. What are the factors that affect the availability of natural gas to
 FPL during the January through December, 2003 period?

Α. The key factors are (1) the existing capacity of the Florida Gas 7 Transmission (FGT) pipeline system into Florida, (2) the existing 8 capacity of the Gulfstream natural gas pipeline system into Florida, 9 (3) the portion of FGT capacity that is contractually allocated to FPL. 10 on a firm, "guaranteed" basis each month, (4) the assumed volume 11 of natural gas which can move from the Gulfstream pipeline into 12 FGT at the Hardee and Osceola interconnects, and (5) the natural 13 gas demand in the State of Florida. 14

15

The current capacity of FGT into the State of Florida is about 16 2,030,000 million BTU per day and the current capacity of 17 Gulfstream is about 1,100,000 million BTU per day. FPL currently 18 only has firm natural gas transportation capacity on FGT ranging 19 from 750,000 to 874,000 million BTU per day, depending on the 20 month. Total demand for natural gas in the state during the January 21 through December, 2003 period (including FPL's firm allocation) is 22 projected to be between 700,000 and 900,000 million BTU per day 23

below the total pipeline capacity into the state. FPL estimates that
based on the capability of the two interconnections between
Gulfstream and FGT pipeline systems, and the availability of
capacity on each pipeline, FPL could acquire, if economic, about
425,000 to 650,000 million BTU per day of natural gas
transportation capability beyond FPL's 750,000 to 874,000 million
BTU per day of firm, "guaranteed" allocation.

8

9 Q. Please provide FPL's projections for the dispatch cost and
 availability (to FPL) of natural gas for the January through
 December, 2003 period.

A. FPL's "Base Case" projections of the system average dispatch cost
 and availability of natural gas, by month, are provided on page 6 of
 Appendix I.

15

"LOW" and "HIGH" PRICE FORECASTS FOR FUEL OIL AND
 NATURAL GAS SUPPLY

Q. In addition to the "Base Case" fuel price forecast, has FPL
 prepared alternative fuel price forecasts?

A. Yes. In addition to the "Base Case" fuel price forecast, FPL has prepared a "Low" and a "High" price forecast for fuel oil and natural gas supply.

Q. Why does FPL prepare "Low" and "High" price forecasts for fuel oil and natural gas supply?

Α. The factors that impact fuel oil and natural gas prices can change 3 significantly between the time the forecast is developed and the date 4 of the filing in September. While FPL revises its short-term fuel 5 price forecast monthly, and more often if needed, in order to support 6 7 fuel purchase decisions, it is not possible to wait until the early August or early September fuel price forecast update to rerun the 8 POWRSYM model and meet the September filing date. 9 Furthermore, while FPL has, in the past, rerun its projections and re-10 filed its fuel cost recovery factor after its initial filing, to reflect late 11 changes in fuel market conditions, this approach does not provide 12 the same flexibility as the use of a banded forecast. Trying to 13 incorporate such "last minute" changes puts FPL at risk of not 14 15 having adequate time to produce new computer simulations and all of the associated documentation required for filing. 16

17

Therefore, in addition to the "Base Case" forecast of fuel prices, FPL prepared "Low" and "High" fuel price forecasts to define a reasonable range of fuel oil and natural gas prices for the upcoming recovery period. FPL then used these alternate forecasts as inputs to the POWRSYM model to determine a Fuel Factor at each end of the range. This gives flexibility to propose the Fuel Factor that most

appropriately reflects FPL's view of future fuel oil and natural gas
 prices at the time of the projection filing.

3

Q. Why are alternate price forecasts prepared for fuel oil and
 natural gas supply only?

A. FPL only prepares a "Low" and "High" price forecast for fuel oil and
 natural gas supply because coal and petroleum coke prices have
 been, and are expected to continue to be steady, and natural gas
 transportation costs are well defined.

10

Q. What is the basis for the "Low" price forecast for fuel oil and natural gas supply?

A. The "Low" price forecasts for fuel oil and natural gas supply were set such that based on the consensus among FPL's fuel traders and energy market analysts, there is less than a 5% likelihood that the actual monthly average price of each fuel for each month in the January through December, 2003 period will be below the "Low" price forecast.

19

Q. Please provide the "Low" price forecasts for fuel oil and
 natural gas supply.

A. FPL's projection for the average dispatch cost of heavy fuel oil, by sulfur grade, by month, based on the "Low" price forecast is provided on page 7 of Appendix I. FPL's projection for the average
 dispatch cost of light fuel oil, by sulfur grade, by month, based on
 the "Low" price forecast is shown on page 8 of Appendix I. FPL's
 projection of the system average dispatch cost of natural gas, by
 month, based on the "Low" price forecast is provided on page 9 of
 Appendix I.

7

Q. What is the basis for the "High" price forecast for fuel oil and natural gas supply?

A. The "High" price forecasts for fuel oil and natural gas supply were set such that based on the consensus among FPL's fuel traders and energy market analysts, there is less than a 5% likelihood that the actual average monthly price of each fuel for each month in the January through December, 2003 period will be above the "High" price forecast.

16

Q. Please provide the "High" price forecasts for fuel oil and natural gas.

A. FPL's projection for the average dispatch cost of heavy fuel oil, by sulfur grade, by month, based on the "High" price forecast is provided on page 10 of Appendix I. FPL's projection for the average dispatch cost of light fuel oil, by sulfur grade, by month, based on the "High" price forecast is shown on page 11 of Appendix I. FPL's

projection of the system average dispatch cost of natural gas, by 1 month, based on the "High" price forecast is provided on page 12 of 2 Appendix I. 3

4

Q. Based on FPL's current (September, 2002) view of the fuel oil 5 and natural gas markets, at what level do you now project 6 7 prices will be during the January through December, 2003 period? 8

9 Α. Based on current market conditions, and consistent with our September, 2002 forecast update, FPL now projects that actual fuel 10 oil and natural gas prices during the January through December, 11 2003 period will be closest to those projected in the "Base Case" 12 price forecast. Therefore, the projected fuel costs calculated by the 13 POWRSYM model using the "Base Case" fuel oil and natural gas 14 supply price forecast are the most appropriate projected costs for 15 the January through December, 2003 period. As stated in the 16 testimony of Korel M. Dubin, the "Base Case" fuel oil and natural 17 18 gas supply price forecast was used to calculate the proposed Fuel Factor for the period January through December, 2003. 19

20

23

PLANT HEAT RATES. OUTAGE FACTORS. 21PLANNED OUTAGES, and CHANGES IN GENERATING CAPACITY 22 Q.

Please describe how FPL developed the projected Average Net

1		Operating Heat Rates shown on Schedule E4 of Appendix II.
2	A.	The projected Average Net Operating Heat Rates were calculated
3		by the POWRSYM model. The current heat rate equations and
4		efficiency factors for FPL's generating units, which present heat rate
5		as a function of unit power level, were used as inputs to POWRSYM
6		for this calculation. The heat rate equations and efficiency factors
7		are updated as appropriate, based on historical unit performance
8		and projected changes due to plant upgrades, fuel grade changes,
9		and/or from the results of performance tests.
10		
11	Q.	Are you providing the outage factors projected for the period
12		January through December, 2003?
13	A.	Yes. This data is shown on page 13 of Appendix I.
14		
15	Q.	How were the outage factors for this period developed?
16	A.	The unplanned outage factors were developed using the actual
17		historical full and partial outage event data for each of the units.
18		The historical unplanned outage factor of each generating unit was
19		adjusted, as necessary, to eliminate non-recurring events and
20		recognize the effect of planned outages to arrive at the projected
21		factor for the January through December, 2003 period.
22		
23	Q.	Please describe significant planned outages for the January

,

ł,

ſ

į

.

,

13

1

through December, 2003 period.

Α. Planned outages at our nuclear units are the most significant in 2 relation to Fuel Cost Recovery. Turkey Point Unit No. 3 is scheduled 3 to be out of service for refueling from March 3, 2003, until April 2, 4 2003, or thirty days during the projected period. Turkey Point Unit 5 No. 4 is scheduled to be out of service for refueling from October 6, б 7 2003, until November 5, 2003, or thirty days during the projected period. St. Lucie Unit No. 2 will be out of service for refueling from 8 April 21, 2003, until May 21, 2003, or thirty days during the projected 9 period. There are no other significant planned outages during the 10 projected period. 11

12

Q. Please list any changes to FPL's generation capacity projected
 to take place during the January through December, 2003
 period.

A. The repowering of Sanford Unit No. 4 will increase both the Net Winter Continuous Capability (NWCC) and the Net Summer Continuous Capability (NSCC) by 612 MW and 586 MW respectively. Also, the addition of two combustion turbines at the Ft. Myers plant will increase both the Net Winter Continuous Capability (NWCC) and the Net Summer Continuous Capability (NSCC) by 326 MW and 314 MW respectively.

WHOLESALE (OFF-SYSTEM) POWER AND PURCHASED 1 POWER TRANSACTIONS 2 Are you providing the projected wholesale (off-system) power Q. 3 and purchased power transactions forecasted for January 4 through December, 2003? 5 Yes. This data is shown on Schedules E6, E7, E8, and E9 of Α. 6 Appendix II of this filing. 7 8 Q. What fuel price forecast for fuel oil and natural gas supply was 9 10 used to project wholesale (off-system) power and purchased 11 power transactions? Α. The wholesale (off-system) power and purchased power 12 transactions presented on Schedules E6, E7, E8 and E9 of 13 Appendix II of this filing were developed using the "Base Case" fuel 14 price forecast for fuel oil and natural gas supply. 15 16 Q. In what types of wholesale (off-system) power transactions 17 does FPL engage? 18 Α. FPL purchases power from the wholesale market when it can 19 displace higher cost generation with lower cost power from the 20

;

market. FPL will also sell excess power into the market when its
 cost of generation is lower than the market. Purchasing and selling
 power in the wholesale market allows FPL to lower fuel costs for its

customers as all savings and gains are flowed back to the customer 1 through the Fuel Cost Recovery Clause. Power purchases and 2 sales are executed under specific tariffs that allow FPL to transact 3 with a given entity. Although FPL primarily transacts on a short-term 4 basis, hourly and daily transactions, FPL continuously searches for 5 all opportunities to lower fuel costs through purchasing and selling 6 wholesale power, regardless of the duration of the transaction. FPL 7 can also purchase and sell power during emergency conditions 8 under several types of Emergency Interchange agreements that are 9 in place with other utilities within Florida. 10

11

Q. Does FPL have additional agreements for the purchase of
 electric power and energy that are included in your
 projections?

Yes. FPL purchases coal-by-wire electrical energy under the 1988 Α. 15 Unit Power Sales Agreement (UPS) with the Southern Companies. 16 FPL has contracts to purchase nuclear energy under the St. Lucie 17 Plant Nuclear Reliability Exchange Agreements with Orlando 18 Utilities Commission (OUC) and Florida Municipal Power Agency 19 (FMPA). FPL also purchases energy from JEA's portion of the 20 SJRPP Units. Additionally, FPL has a 50 MW purchase of firm 21 capacity and energy from Florida Power Corporation for 2003. FPL 22 has also purchased exclusive dispatch rights for the output from 23

seven combustion turbines (this is reduced to six beginning on May
 1, 2003) totaling approximately 1,000 MW. The agreements for the
 combustion turbines are with Progress Energy Ventures, Reliant
 Energy Services, and Oleander Power Project L.P. FPL provides
 fuel for the operation of each of these facilities. Lastly, FPL
 purchases energy and capacity from Qualifying Facilities under
 existing tariffs and contracts.

8

9 Q. Please provide the projected energy costs to be recovered
 10 through the Fuel Cost Recovery Clause for the power
 11 purchases referred to above during the January through
 12 December, 2003 period.

Α. Under the UPS agreement, FPL's capacity entitlement during the 13 projected period is 929 MW from January through December, 2003. 14 Based upon the alternate and supplemental energy provisions of 15 UPS, an availability factor of 100% is applied to these capacity 16 entitlements to project energy purchases. The projected UPS 17 energy (unit) cost for this period, used as an input to POWRSYM, is 18 based on data provided by the Southern Companies. For the 19 period, FPL projects the purchase of 7,325,154 MWH of UPS 20 Energy at a cost of \$121,594,000. The total UPS Energy 21 projections are presented on Schedule E7 of Appendix II. 22

23

Energy purchases from the JEA-owned portion of the St. Johns 1 2 River Power Park generation are projected to be 3,015,542 MWH 3 for the period at an energy cost of \$40,629,000. FPL's cost for energy purchases under the St. Lucie Plant Reliability Exchange 4 Agreements is a function of the operation of St. Lucie Unit 2 and the 5 б fuel costs to the owners. For the period, FPL projects purchases of 493,511 MWH at a cost of \$1,615,843. These projections are 7 shown on Schedule E7 of Appendix II. 8

Energy purchases from Florida Power Corporation, under the 50
 MW purchase agreement, are projected to be 438,000 MWH at a
 cost of \$8,599,800. These projections are shown on Schedule E7
 of Appendix II.

13

FPL projects to dispatch 96,487 MWH from its combustion turbine
 agreements at a cost of \$5,609,892. These projections are shown
 on Schedule E7 of Appendix II.

17

In addition, as shown on Schedule E8 of Appendix II, FPL projects
 that purchases from Qualifying Facilities for the period will provide
 6,394,616 MWH at a cost to FPL of \$118,177,160.

21

Q. How were energy costs related to purchases from Qualifying
 Facilities developed?

A. For those contracts that entitle FPL to purchase "as-available" energy, FPL used its fuel price forecasts as inputs to the POWRSYM model to project FPL's avoided energy cost that is used to set the price of these energy purchases each month. For those contracts that enable FPL to purchase firm capacity and energy, the applicable Unit Energy Cost mechanism prescribed in the contract is used to project monthly energy costs.

8

ļ

ł

- 9 Q. Please describe the method used to forecast wholesale (off 10 system) power purchases and sales.
- A. The quantity of wholesale (off-system) power purchases and sales
 are projected based upon estimated generation costs and expected
 market conditions.
- 14
- Q. What are the forecasted amounts and costs of wholesale (off system) power sales?

A. FPL has projected 1,250,000 MWH of wholesale (off-system) power sales for the period of January through December, 2003. The projected fuel cost related to these sales is \$44,788,550. The projected transaction revenue from these sales is \$54,867,500. The projected gain for these sales is \$6,014,524 and is credited to our customers.

Q. In what document are the fuel costs for wholesale (off-system)
 power sales transactions reported?

A. Schedule E6 of Appendix II provides the total MWH of energy, total
 dollars for fuel adjustment, total cost and total gain for wholesale
 (off-system) power sales.

6

Ļ

Q. What are the forecasted amounts and cost of energy being
sold under the St. Lucie Plant Reliability Exchange Agreement?
A. FPL projects the sale of 537,378 MWH of energy at a cost of
\$1,038,192. These projections are shown on Schedule E6 of
Appendix II.

12

Q. What are the forecasted amounts and costs of wholesale (off system) power purchases for the January to December, 2003
 period?

A. The costs of these purchases are shown on Schedule E9 of Appendix II. For the period, FPL projects it will purchase a total of 1,550,000 MWH at a cost of \$51,036,250. If generated, FPL estimates that this energy would cost \$55,890,250. Therefore, these purchases are projected to result in savings of \$4,854,000.

21

22 2003 RISK MANAGEMENT PLAN

23 Q. Has FPL completed its risk management plan as outlined in

Component No. 2 of Staff's Resolution of Issues in Docket No.
 011605-El, as approved by the Commission at the August 12,
 2002 Hearing?

A. Yes. FPL's 2003 Risk Management Plan is provided on pages 14
 and 15 of Appendix I.

6

7

ł

ł

Q. Please describe FPL's hedging objectives.

FPL's fuel hedging objectives are to effectively execute a well-Α. 8 disciplined and independently controlled fuel procurement strategy 9 10 to manage fuel price stability (volatility minimization), to potentially achieve fuel cost minimization and to achieve asset optimization. 11 FPL's fuel procurement strategy aims to mitigate fuel price 12 increases and reduce fuel price volatility, while maintaining the 13 opportunity to benefit from price decreases in the marketplace for 14 FPL's customers. 15

16

17Q.Does FPL project to have prudently-incurred, incremental18operating and maintenance expenses with respect to19maintaining and/or initiating a non-speculative financial and/or20physical hedging program for which it is seeking recovery for21the projected period, January through December, 2003?

A. Yes. As outlined in Component No. 4 of Staff's Resolution of Issues
 in Docket No. 011605-EI, which was approved by the Commission

at the August 12, 2002 Hearing, FPL projects it will incur \$1,000,000 1 of incremental operating and maintenance expenses as a result of 2 enhancing and maintaining a non-speculative financial and physical 3 hedging program for the 2003 recovery period. FPL projects to 4 incur incremental expenses of \$500,000 for its Trading and 5 Operations group, \$100,000 for its Accounting group, \$150,000 for 6 its Risk Management group and \$250,000 for the enhancement and 7 maintenance of its trading and reporting systems. The expenses 8 projected for the Trading and Operations, Accounting and Risk 9 Management groups are for the addition of personnel. The expense 10 projected for systems is for modifications and upgrades to make 11 deal capture, reporting and evaluation more comprehensive. 12

13

14

SUMMARY

15 Q. Would you please summarize your testimony?

Yes. In my testimony I have presented FPL's fuel price projections Α. 16 for the fuel cost recovery period of January through December, 17 2003, including FPL's "Base Case" and "Low" and "High" price 18 forecasts for fuel oil and natural gas supply. I have explained why 19 the projected fuel costs developed using the "Base Case" fuel price 20 forecast are the most appropriate for the January through 21 December, 2003 period. In addition, I have presented FPL's 22 projections for generating unit heat rates and availabilities, the 23

1	quantities and costs of wholesale (off-system) power and other
2	power transactions for the same period. These projections were
3	based on the best information available to FPL and they were used
4	as inputs to the POWRSYM model in developing the projected Fuel
5	Cost Recovery Factors for the January through December, 2003
6	period. I have also presented FPL's Risk Management Plan for fuel
7	procurement for 2003. As part of this presentation, I have provided
8	a description of FPL's hedging objectives, as well as, an itemization
9	of projected, prudently-incurred operating and maintenance
10	expenses for enhancing and maintaining FPL's non-speculative
11	financial and physical hedging program for the projected period.
12	

13 Q. Does this conclude your testimony?

- 14 A. Yes, it does.
- 15

•

I

- 16
- 17
- 18
- 19

.

1		BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION
2		FLORIDA POWER & LIGHT COMPANY
3		TESTIMONY OF J. R. HARTZOG
4		DOCKET NO. 020001-EI
5		SEPTEMBER 20, 2002
6		
7	Q.	Please state your name and address.
8	Α.	My name is John R. Hartzog. My business address is 700 Universe
9		Boulevard, Juno Beach, Florida 33408.
10		
11	Q.	By whom are you employed and what is your position?
12	Α.	I am employed by Florida Power & Light Company (FPL) as Manager,
13		Nuclear Financial & Information Services in the Nuclear Business Unit.
14		
15	Q.	Have you previously testified in this docket?
16	Α.	Yes, I have.
17		
18	Q.	What is the purpose of your testimony?
19	А.	The purpose of my testimony is to present and explain FPL's projections
20		of nuclear fuel costs for the thermal energy (MMBTU) to be produced by
21		our nuclear units, costs of disposal of spent nuclear fuel, costs of
22		decontamination and decommissioning (D&D), additional plant security
23		costs resulting from the events on 9/11, and costs for repairs to the

÷

reactor pressure vessel head in light of NRC Bulletin (IEB) 2002-02. Both
 nuclear fuel and disposal of spent nuclear fuel costs were input values to
 POWERSYM used to calculate the costs to be included in the proposed
 fuel cost recovery factors for the period January 2003 through December
 2003.

6

ļ

Ì

ì

7

Q. What is the basis for FPL's projections of nuclear fuel costs?

A. FPL's nuclear fuel cost projections are developed using energy
 production at our nuclear units and their operating schedules, for the
 period January 2003 through December 2003.

11

Q. Please provide FPL's projection for nuclear fuel unit costs and energy for the period January 2003 through December 2003.

A. FPL projects the nuclear units will produce 250,846,392 MMBTU of energy at a cost of \$0.3053 per MMBTU, excluding spent fuel disposal costs for the period January 2003 through December 2003. Projections by nuclear unit and by month are in Appendix II, on Schedule E-3, starting on page 12.

19

Q. Please provide FPL's projections for spent nuclear fuel disposal
 costs for the period January 2003 through December 2003 and
 explain the basis for FPL's projections.

A. FPL's projections for spent nuclear fuel disposal costs of approximately
 \$22.2 million are provided in Appendix II, on Schedule E-2, starting on
 page 10. These projections are based on FPL's contract with the U.S.
 Department of Energy (DOE), which sets the spent fuel disposal fee at
 0.9291 mills per net Kwh generated, which includes transmission and
 distribution line losses.

7

Q. Please provide FPL's projection for Decontamination and
 Decommissioning (D&D) costs to be paid in the period January
 2003 through December 2003 explain the basis for FPL's projection.
 A. FPL's projection of \$6.48 million for D&D costs is based on the amount to
 be paid during the Period January 2003 through December 2003 and is
 included in Appendix II, on Schedule E-2 starting on page 10.

14

Q. Please provide FPL's projection for heightened security costs to be
 paid in the period January 2003 through December 2003 and
 explain the basis for FPL's projection.

A. FPL's projection of \$4.7 million for heightened security costs is based on
 the amount to be paid during the period January 2003 through
 December 2003. These costs are necessary to ensure FPL is in
 compliance with NRC Order No. EA-02-26 dated February 25, 2002.
 They relate to additional security personnel and equipment. Detail on

these security measures cannot be disclosed due to the security safeguards imposed by the NRC.

3

4

5

2

1

Q. Please describe the background and issue regarding the Reactor Pressure Vessel Head (RPVH) penetration cracking.

Pressurized Water Reactor (PWR) control rod drive mechanism (CRDM) Α. 6 nozzles and other vessel head penetration nozzles fabricated from Alloy 7 600 are susceptible to primary water stress corrosion cracking 8 (PWSCC). French plants of the early Westinghouse design had 9 discovered Control Rod Drive Mechanism head penetrations cracking 10 since the early 1990s. Prior to 2001, all the cracking had been axial in 11 12 orientation and, as such, did not present a significant safety issue, because the crack would leak and be detected prior to a complete 13 failure. The NRC issued General Letter (GL) 97-01, "Degradation of 14 Control Rod Drive Mechanism Nozzle and other Vessel Closure Head 15 Penetrations (VHP)", and the industry responded with a ranking matrix 16 of plant susceptibility and an integrated industry wide inspection 17 program. FPL's units were ranked relatively low in the susceptibility 18 matrix, and therefore, FPL was not required to perform inspections as 19 a result of GL 97-01. 20

21

In early 2001, inspections of the reactor nozzles at Duke Power's
 Oconee Nuclear Station identified circumferential cracking of the

nozzles. This type of cracking is considered a safety concern because 1 of the possibility of a failure and nozzle ejection, should the cracking 2 not be detected and corrected. Additionally, boron deposits were 3 found on the Reactor Pressure Vessel Head (RPVH) of Oconee Unit 4 5 3. After investigation, it was found that nine head penetrations were leaking, which required weld repair. Duke expended approximately 6 7 \$20 million in repairs in order to restart the reactor. Duke has ordered replacement RPVHs for Oconee. 8

9

In response, the NRC issued Bulletin (IEB) 2001-01 on August 3,
 2001, requesting that utilities inspect RPVH penetrations for potential
 cracking and leakage.

13

FPL was required by IEB 2001-01 to perform visual inspections of the 14 top of the reactor head to look for boric acid deposits. The presence 15 of boric acid could indicate a leak, which would require additional 16 actions by FPL. FPL committed to perform these inspections during 17 the next refueling outage at each unit. Visual inspections of both 18 Turkey Point Units and St. Lucie Unit 2 have been completed with no 19 boric acid leakage detected. The St. Lucie Unit 1 visual inspection 20 was planned for the October 2002 outage. 21

22

In early March 2002, while conducting RPVH nozzle inspections that 1 were prompted by NRC Bulletin 2001-01, the Davis-Besse Nuclear 2 Power Station identified a large cavity in the RPVH near the top of the 3 dome. The cavity was adjacent to a nozzle which was leaking as a 4 result of through-wall cracking, and was located in an area of the 5 RPVH that First Energy Nuclear operations personnel had left covered б with boric acid deposits. As a result, the NRC lost confidence in the 7 susceptibility - determination process that was being utilized and the 8 ability of visual inspections to identify all RPVH damage mechanisms. 9 10 The NRC issued IEB 2002-02 on August 9, 2002 to address its 11 concerns.

12

IEB 2002-02 has resulted in all four FPL units being categorized as 13 high susceptibility. This will require FPL to perform 100% Non 14 Destructive Examination (NDE) including Ultrasonic (UT) and 15 Penetrant Dye Testing (PT) of the penetrations in addition to the visual 16 inspections. FPL's RPVHs have never been examined utilizing UT or 17 PT. In addition, repair crews and equipment will be staged and ready 18 for repairs should volumetric results identify flaws or cracking. Repair 19 crews will be deployed since, of the 11 units with higher susceptibility 20 than Turkey Point Units 3 and 4, nine have performed volumetric 21 examinations and all nine required repairs. Based on this prior 22 industry experience, there is clearly a high probability that the units will 23

have NDE indicators and require repairs to correct the problem. It should be noted that, if code-rejectable indications were found and not eliminated or reduced to code-acceptable levels at a unit, FPL would not be permitted to restart the unit without prior NRC approval. The 100% NDE must be performed during every outage until the RPVHs are replaced.

Q. When does FPL anticipate that it will be able to replace the
 RPVHs?

The RPVH replacement is planned for Turkey Point Units 3 & 4 in Α. 10 2004 and 2005 and St. Lucie Units 1 & 2 in 2005 and 2006. FPL 11 cannot schedule the RPVH replacements earlier than these dates 12 because of the long lead-time for procuring the new RPVHs and 13 associated equipment and services. Therefore, in the meantime it is 14 essential to the continued operation of FPL's nuclear plants that FPL 15 perform the inspections required by IEB 2002-02 and make whatever 16 repairs are indicated by those inspections. 17

18

7

Q. How much does FPL anticipate that it will have to spend in order
to comply with IEB 2002-02 and keep its nuclear units in service?
A. FPL currently projects that it will spend the following amounts in 2002,
2003, and 2004 for inspections and repairs in compliance with IEB
2002-02: approximately \$13.5 million in 2002, \$39.1 million in 2003,

and \$14.7 million in 2004. Of course, due to the uncertainty of the inspection findings, costs may be higher than these estimates.

3

4

2

1

Q. Is FPL presently recovering these expenses in its base rates?

Α. FPL is recovering only a small fraction of these expenses through 5 base rates, based on completely different assumptions about the 6 inspection and repair work that might be required. FPL's 2002 MFRs 7 in Docket No. 001148-El included \$5 million per outage for visual 8 9 inspections and for possible additional inspections and/or repairs that might have been necessitated by the visual inspections. FPL 10 originally planned for 2 outages in 2002, therefore a total of \$10 million 11 was included in the 2002 MFRs (\$5 million per outage times 2 12 outages). This was the anticipated scope of work to comply with the 13 NRC's IEB 2001-01. As I just explained, the scope of work required 14under the NRC's IEB 2002-02 is completely different. FPL currently 15 projects \$13.5 million per outage for work required under the NRC's 16 IEB 2002-02, almost three times the cost of the scope of work 17 originally projected to comply with NRC's IEB 2001-01. 18

19

Q. Would it be fair to FPL not to allow recovery of the costs it will
 spend complying with IEB 2002-02 based on the fact that FPL's
 2002 MFRs included costs to comply with IEB 2001-01?

A. No, it would not. The event at Davis-Besse was an extraordinary discovery that prompted the NRC to take extreme measures. It is an unprecedented event that FPL could not anticipate or plan for. As such, FPL believes it is appropriate to recover the costs through the fuel cost recovery clause on the basis described in the testimony of Korel M. Dubin.

7

8

9

Q. Is it possible that the NRC will require even further actions to be taken in the future concerning the problem with the RPVHs?

A. Yes. NRC IEB 82-02 states that additional regulatory action will be
 taken on this issue when appropriate.

12

Q. Are there currently any unresolved disputes under FPL's nuclear
 fuel contracts?

15 A. Yes.

16

171.Spent Fuel Disposal Dispute.The first dispute is under FPL's18contract with the Department of Energy (DOE) for final disposal of spent19nuclear fuel. In 1995, FPL along with a number of electric utilities, states,20and state regulatory agencies filed suit against DOE over DOE's denial21of its obligation to accept spent nuclear fuel beginning in 1998. On July2223, 1996, the U.S. Court of Appeals for the District of Columbia Circuit23(D.C. Circuit) held that DOE is required by the Nuclear Waste Policy Act

(NWPA) to take title and dispose of spent nuclear fuel from nuclear power plants beginning on January 31, 1998.

Since our last testimony filed with the Commission, the following events
 related to spent fuel have occurred: On January 11, 2002, based on the
 Federal Circuit's ruling, the Court of Federal Claims granted FPL's
 motion for partial summary judgement in favor of FPL on contract
 liability.

9

1

2

3

All of the spent fuel damages cases have been referred to a judge for administration of discovery. The case is currently in discovery and there is no trial date scheduled at this time for the FPL damages claim.

13

14 2(a). <u>Uranium Enrichment Pricing Disputes – FY 1993 Overcharges.</u>
 15 FPL is currently seeking to resolve a pricing dispute concerning uranium
 16 enrichment services purchased from the United States (U.S.)
 17 Government, prior to July 1, 1993.

18

Since our last testimony filed with the Commission, the following events
 related to Uranium Enrichment pricing have occurred: On August 20,
 2001, the Court entered judgment for FPL for \$6.075 million. DOE has
 appealed the judgement to the Federal Circuit. FPL and the other utility
 plaintiffs have cross-appealed, arguing that the Court erred in not ruling

for the utilities on all of their claims (the additional claims are discussed in
 further detail below) and in not awarding prejudgment interest on the
 amount awarded. Briefing in the appeal has been completed, and the
 case was argued to the Court on August 7, 2002. A decision is expected
 by the end of 2002.

6

2(b). Uranium Enrichment Pricing Disputes - Challenge to D&D 7 Assessment. Yankee Atomic Electric Company had challenged the 8 authority of the United States to impose the D&D fees. On May 6, 9 1997, a panel of the U.S. Court of Appeals for the Federal Circuit held 10 that the D&D special assessment was lawful under the Energy Policy 11 Act. Since our last testimony filed with the Commission, the following 12 events related to D&D Assessment have occurred: On November 21, 13 2001, a panel of the Federal Circuit held that such claims filed by 14 Commonwealth Edison Company were properly dismissed by the 15 Court of Federal Claims. On May 28, 2002, the U.S. Supreme Court 16 denied review of that decision. 17

18

Since FPL's protective complaint filed in the Court of Federal Claims is
 virtually identical to the complaint filed by Commonwealth Edison
 Company and complaints filed by more than 20 other utilities, it is certain
 that the Court of Federal Claims would follow the law of the Federal
 Circuit set forth in the Commonwealth Edison and Yankee Atomic cases

and dismiss FPL's challenge to the D&D assessment as well as the challenges filed by the other utilities. Given the inevitability of this result, and in order to conserve further resources, FPL filed a notice of voluntary dismissal of its protective complaint with the Court of Federal Claims on August 2, 2002, thus bringing FPL's challenge to the D&D assessment to a close.

7

8

Q. Is there a new dispute involving FPL's fuel contracts?

DOE was required under FPL's uranium enrichment services Α. Yes. 9 contract with DOE to establish a price for enrichment services pursuant 10 to DOE's established pricing policy, based on recovery of DOE's 11 appropriate costs over a reasonable period of time. In the course of 12 discovery in the FY1993 overcharge case discussed above, FPL and the 13 other utility plaintiffs uncovered two other cost components that DOE 14 improperly included in its cost recovery calculation. At trial in the FY1993 15 case, FPL and the other plaintiffs asserted that these additional costs 16 had been improperly included in DOE's cost recovery calculation for its 17 FY1993 SWU price. The Court denied recovery on these issues, 18 concluding that ruling on the merits of these issues would prejudice DOE 19 in the particular chronology of the FY1993 litigation. 20

21

22 On October 10, 2001, FPL and 21 other U.S. and foreign utility plaintiffs 23 filed new lawsuits in the U.S. Court of Federal Claims alleging that DOE breached the uranium enrichment services contract by inappropriately
 including two amounts in its cost recovery calculation in violation of the
 pricing provisions of the contracts: Imputed interest on the Gas
 Centrifuge Enrichment Project (GCEP) for FY1986 through FY1993, and
 costs relating to the production of high assay uranium (i.e., uranium
 produced primarily for military customers) (High Assay Costs) for
 FY1992 through FY1993.

8

GCEP Claim. In 1976, Congress first authorized the construction of 9 GCEP as additional Government uranium enrichment capacity to meet 10 the then-projected future demand. This future demand never 11 materialized and, by 1985, DOE found itself in a plant over capacity 12 position and the highest cost worldwide producer of enrichment services. 13 In 1985, DOE cancelled the GCEP and wrote-off the entire \$3.6 billion 14 from the DOE Uranium Enrichment Activity's 1986 financial statements 15 relating to accumulated costs of plant construction, termination costs, 16 and imputed interest associated with GCEP. DOE failed to exclude the 17 entire \$3.6 billion from its calculation in setting the uranium enrichment 18 services price. Beginning in FY1986, DOE improperly left approximately 19 \$773 million of imputed interest in its cost recovery calculations and price 20 determination. This amount is reflected in the calculation of the 21 Contract's SWU price for FY1986 through FY1993. DOE determined 22 that none of the capital costs of GCEP were used to provide enrichment 23

services to customers. Additionally, Under well-recognized economic
 and accounting principles, imputed interest should have been treated as
 inseparable from the underlying GCEP costs. Therefore, none of the
 capital investment in GCEP – neither the underlying principal nor the
 imputed interest - should have been included in the cost recovery
 calculation for the contract prices.

High Assay Costs. In 1991, DOE adjusted the financial statements of 8 the Uranium Enrichment Activity by removing approximately \$1.14 billion 9 in accumulated losses and other costs relating to the production of High 10 11 Assay uranium. DOE made this adjustment based on its conclusion that 12 the Uranium Enrichment Activity no longer had any responsibility for the High Assay program, which produced uranium for military purposes. 13 Despite removing such costs from the financial statements, DOE 14 improperly included approximately \$394 million of High Assay costs in 15 calculating the price for uranium enrichment services for FY1992 through 16 FY1993. 17

18

7

FPL's lawsuit alleges that DOE breached the contract by including these costs in the uranium enrichment services price changed to FPL. FPL is claiming that it is owed a refund of \$16,086,328.91 plus interest. FPL's lawsuit has been stayed by the Court of Federal Claims pending the

- 1 outcome of the appeal of the judgment concerning the FY93 uranium
- 2 enrichment claims, discussed in item 2(a) above.
- 3

.

í

ı.

4 Q. Does this conclude your testimony?

5 A. Yes, it does.

1		BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION
2		FLORIDA POWER & LIGHT COMPANY
3		TESTIMONY OF KOREL M. DUBIN
4		DOCKET NO. 020001-EI
5		September 20, 2002
6		
7	Q.	Please state your name and address.
8	A.	My name is Korel M. Dubin and my business address is 9250 West
9		Flagler Street, Miami, Florida 33174.
10		
11	Q.	By whom are you employed and in what capacity?
12	A.	I am employed by Florida Power & Light Company (FPL) as Manager
13		of Regulatory Issues in the Regulatory Affairs Department.
14		
15	Q.	Have you previously testified in this docket?
16	A.	Yes, I have.
17		
18	Q.	What is the purpose of your testimony?
19	A.	The purpose of my testimony is to present for Commission review
20		and approval the Fuel Cost Recovery factors (FCR) and the Capacity
21		Cost Recovery factors (CCR) for the Company's rate schedules for
22		the period January 2003 through December 2003. The calculation of
23		the fuel factors is based on projected fuel cost, using the "base case"
24		forecast as described in the testimony of FPL Witness Gerry Yupp,

.

1 and operational data as set forth in Commission Schedules E1 through E10, H1 and other exhibits filed in this proceeding and data 2 previously approved by the Commission. My testimony also 3 describes the basis for requesting recovery of the Reactor Pressure 4 Vessel Head (RPVH) Project, presented in the testimony of FPL 5 witness John Hartzog, through the Fuel Cost Recovery Clause. I am 6 also providing projections of avoided energy costs for purchases 7 8 from small power producers and cogenerators and an updated ten 9 year projection of Florida Power & Light Company's annual 10 generation mix and fuel prices.

11

Q. Have you prepared or caused to be prepared under your
direction, supervision or control an exhibit in this proceeding?
A. Yes, I have. It consists of various schedules included in Appendices
II and III. Appendix II contains the FCR related schedules and
Appendix III contains the CCR related schedules.

17

FCR Schedules A-1 through A-9 for January 2002 through August 2002 have been filed monthly with the Commission, are served on all parties and are incorporated herein by reference.

21

Q. What is the source of the data that you will present by way of
 testimony or exhibits in this proceeding?

A. Unless otherwise indicated, the actual data is taken from the books

1		and records of FPL. The books and records are kept in the regular
2		course of our business in accordance with generally accepted
3		accounting principles and practices and provisions of the Uniform
4		System of Accounts as prescribed by this Commission.
5		
6		FUEL COST RECOVERY CLAUSE
7		
8	Q.	What is the proposed levelized fuel factor for which the
9		Company requests approval?
10	A.	2.608¢ per kWh. Schedule EI, Page 3 of Appendix II shows the
11		calculation of this twelve-month levelized fuel factor. Schedule E2,
12		Pages 10 and 11 of Appendix II indicates the monthly fuel factors for
13		January 2003 through December 2003 and also the twelve-month
14		levelized fuel factor for the period.
15		
16	Q.	Has the Company developed a twelve-month levelized fuel
17		factor for its Time of Use rates?
18	Α.	Yes. Schedule E1-D, Page 8 of Appendix II, provides a twelve-
19		month levelized fuel factor of 2.849¢ per kWh on-peak and 2.501¢
20		per kWh off-peak for our Time of Use rate schedules.
21		
22	Q.	Were these calculations made in accordance with the
23		procedures previously approved in this Docket?
24	A.	Yes, they were.

Q. What is the true-up amount that FPL is requesting to be
 included in the fuel factor for the January 2003 through
 December 2003 period?

Α. FPL is requesting to include a net true-up overrecovery of 4 \$74,471,089 in the fuel factor for the January 2003 through 5 December 2003 period. This Estimated/Actual True-up overrecovery 6 of \$74,471,089 for the period January 2002 through December 2002 7 has been revised, as described later in my testimony, from that which 8 was filed on August 20, 2002. The Final True-up overrecovery of 9 \$103,006,559 for the period January 2001 through December 2001 10 that was filed on April 1, 2002 was included in the midcourse 11 correction for April 15, 2002 through December 2002. Therefore, the 12 total net true-up amount to be included in the 2003 fuel factor is only 13 14 the 2002 Estimated/Actual overrecovery of \$74,471,089.

15

Q. What adjustments are included in the calculation of the twelve month levelized fuel factor shown on Schedule E1, Page 3 of
 Appendix II?

A. As shown on line 29 of Schedule E1, Page 3 of Appendix II, the total
net true-up to be included in the 2003 factor is an overrecovery of
\$74,471,089. This amount divided by the projected retail sales of
95,753,426 MWh for January 2003 through December 2003 results
in a decrease of 0.0778¢ per kWh before applicable revenue taxes.
The Generating Performance Incentive Factor (GPIF) Testimony,

1filed on April 1, 2002 and adopted by FPL Witness Frank Irizarry,2calculated a reward of \$7,049,431 for the period ending December32001 which is being applied to the January 2003 through December42003 period. This \$7,049,431 divided by the projected retail sales of595,753,425 MWh during the projected period results in an increase of60.0074¢ per kWh, as shown on line 33 of Schedule E1, Page 3 of7Appendix II.

8

9 Q. Has FPL included any additional costs in its factors for the 10 period January 2003 through December 2003 as a result of 11 Docket No. 011605-El?

Yes. At the August 12, 2002 Hearing in Docket No. 011605-El, the Α. 12 Commission approved the recovery through the Fuel and Purchased 13 Power Cost Recovery Clause of prudently-incurred incremental 14 operating and maintenance expenses incurred for the purpose of 15 initiating and/or maintaining a new or expanded non-speculative 16 financial and/or physical hedging program designed to mitigate fuel 17 and purchased power price volatility for its retail customers each year 18 until December 31, 2006, or the time of the utility's next rate 19 proceeding, whichever comes first. As stated in the testimony of FPL 20 witness Gerry Yupp, FPL projects \$1 million for services to modify 21 and upgrade FPL's current systems in order to make deal capture, 22 reporting and evaluation more comprehensive. As illustrated in my 23 August 20, 2002 testimony in this docket, \$250,000 was included in 24

FPL's MFR filing in Docket No. 001148-EI. Therefore, FPL is requesting \$750,000 (\$1 million minus \$250,000) in projected incremental hedging costs in its Fuel Cost Recovery calculations for the period January 2003 through December 2003. This amount is shown on line 3b of Schedule E1, page 3 of Appendix II.

6

Q. Is FPL requesting recovery of any other cost through the Fuel Cost Recovery Clause?

Α. Yes. FPL is requesting recovery of the costs associated with the 9 RPVH project at FPL's Turkey Point and St. Lucie nuclear plants. 10 The evolution of the NRC requirements for this project is described in 11 12 the testimony of FPL witness John Hartzog. As noted by Mr. Hartzog, 13 the problems associated with the RPVHs were just evolving in 2001 14 when FPL was projecting its expenditures for the 2002 MFRs that 15 were filed in Docket No. 001148-El. Therefore, FPL assumed only 16 \$10 million in limited inspections and repairs in its 2002 MFRs. In contrast, FPL currently projects that reactor vessel head inspections 17 18 and repair work will cost approximately \$67.3 million for the outages that are presently scheduled to occur before the RPVHs are replaced 19 (\$13.5 million in 2002, \$39.1 million in 2003 and \$14.7 million in 2004). 20 21 FPL anticipates that the RPVHs will be replaced in 2004 for Turkey Point Unit 3, in 2005 for Turkey Point Unit 4 and St. Lucie Unit 1 and in 22 23 2006 for St. Lucie Unit 2.

24

25 FPL believes it is appropriate to seek recovery of these expenditures

(less the amount for limited inspections and repairs included in the MFR 1 2 filing) through the Fuel Cost Recovery Clause. FPL has included \$32.6 million in the factor calculation for 2003. This includes \$3.5 million for 3 2002 (\$13.5 million less \$10 million included in the MFR filing) and 4 \$29.1 million for 2003 (\$39.1 million less \$10 million included in the 5 MFR filing). The \$3.5 million for 2002 is reflected in FPL's revised 6 Estimated/Actual True-up Calculation provided on Schedule E1b, Line 7 A1g, page 6 of Appendix II. The \$29.1 million for 2003 is included on 8 Schedule E1, line 3c, page 3 of Appendix II. 9

10

Mr, Hartzog explains that, until the RPVHs are replaced, inspecting and 11 repairing the existing RPVHs is the only viable option available to keep 12 the nuclear units operating safely and providing low cost nuclear 13 generation to FPL's customers. From October 2002 through the 14 installation of the last replacement reactor head in 2006, nuclear 15 generation is projected to save FPL's customers \$1.8 billion when 16 compared to fossil fuels. Therefore, FPL is seeking recovery of the 17 inspection and repair costs (less the amount for limited inspections and 18 19 repairs that are included in the MFR filing) through the Fuel Cost Recovery Clause. 20

21

Q. What is the basis for requesting recovery of this reactor head
 replacement project through the Fuel Cost Recovery Clause?
 A. The Commission in Docket No. 850001-EI-B, Order No. 14546
 issued July 8, 1985, regarding the charges appropriately included in

1 the calculation of fuel, stated:

"Fossil fuel-related costs normally recovered through base
rates but which were not recognized or anticipated in the cost
levels used to determine current base rates and which, if
expended, will result in fuel savings to customers. Recovery
of such costs should be made on a case by case basis after
Commission approval".

The Commission has applied this concept to both nuclear and fossil 8 fuels. The costs for which FPL is seeking recovery through the fuel 9 clause were not recognized or anticipated in the cost levels included in 10 the 2002 MFR's. Moreover, while waiting for the replacement heads to 11 be fabricated and installed, the inspections and repairs of the reactor 12 heads keep the nuclear units up and running safely in order to continue to 13 provide low cost nuclear generation to FPL's customers. From October 142002 through the installation of the last replacement reactor head in 15 16 2006, nuclear generation is projected to save FPL's customers \$1.8 17 billion when compared to fossil fuels. For these reasons, FPL believes that recovery of the incremental inspection and repair costs associated 18 with the RPVH project through the Fuel Cost Recovery Clause is 19 20 appropriate.

- 21
- 22

CAPACITY COST RECOVERY CLAUSE

- 23
- 24 Q. Please describe Page 3 of Appendix III.

Α. Page 3 of Appendix III provides a summary of the requested capacity 1 payments for the projected period of January 2003 through 2 3 December 2003. Total recoverable capacity payments amount to \$570,138,284 (line 15) and include payments of \$288,435,445 to 4 5 non-cogenerators (line1). Total recoverable Capacity payments (line 15) also include payments of \$344,845,248 to cogenerators (line 2), 6 7 \$37,308,244 of Okeelanta/Osceola Settlement payments (line 4), and \$7,999,536 relating to the St. John's River Power Park (SJRPP) 8 Energy Suspension Accrual (line 6). This amount is offset by 9 10 transmission revenues from capacity sales of \$4,064,426 (line 5), \$3,193,708 of return requirements on Energy Suspension payments 11 (line 7) and \$56,945,592 of jurisdictional capacity related payments 12 included in base rates (line 11) less a net overrecovery of 13 \$46,612,090 (line 12). The net overrecovery of \$46,612,090 includes 14 the final underrecovery of \$2,528,058 for the January 2001 through 15 December 2001 period that was filed with the Commission on April 1, 16 2002, plus the estimated/actual overrecovery of \$49,140,148 for the 17 January 2002 through December 2002 period, which was filed with 18 the Commission on August 20, 2002. 19

20

21 Q. Please describe Page 4 of Appendix III.

A. Page 4 of Appendix III calculates the allocation factors for demand
 and energy at generation. The demand allocation factors are
 calculated by determining the percentage each rate class contributes

1		to the monthly system peaks. The energy allocators are calculated
2		by determining the percentage each rate contributes to total kWh
3		sales, as adjusted for losses, for each rate class.
4		
5	Q.	Please describe Page 5 of Appendix III.
6	Α.	Page 5 of Appendix III presents the calculation of the proposed
7		Capacity Payment Recovery Clause (CCR) factors by rate class.
8		
9	Q.	What effective date is the Company requesting for the new
10		factors?
11	A.	The Company is requesting that the new FCR and CCR factors
12		become effective with customer bills for January 2003 through
13		December 2003. This will provide for 12 months of billing on the
14		FCR and CCR factors for all our customers.
15		
16	Q.	What will be the charge for a Residential customer using 1,000
17		kWh effective January 2003?
18	A.	The total residential bill, excluding taxes and franchise fees, for 1,000
19		kWh will be \$75.70. The base bill for 1,000 Residential kWh is
20		\$40.22, the fuel cost recovery charge from Schedule E1-E, Page 9 of
21		Appendix II for a residential customer is \$26.13, the Conservation
22		charge is \$1.87, the Capacity Cost Recovery charge is \$6.50, the
23		Environmental Cost Recovery charge is \$0.21 and the Gross
24		Receipts Tax is \$0.77. A Residential Bill Comparison (1,000 kWh) is

ı.

.

-

- 1 presented in Schedule E10, Page 79 of Appendix II.
- 2
- 3 Q. Does this conclude your testimony.
- 4 A. Yes, it does.

APPENDIX I

FUEL COST RECOVERY

r

į

.

GY-1 DOCKET NO. 020001-EI EXHIBIT_____ PAGES 1-15

SEPTEMBER 20, 2002

APPENDIX I

.

FUEL COST RECOVERY

TABLE OF CONTENTS

PAGE	DESCRIPTION	<u>SPONSOR</u>
3	Projected Dispatch Costs – Heavy Oil	G. Yupp
	(BASE CASE)	
4	Projected Dispatch Costs – Light Oil	G. Yupp
	(BASE CASE)	
5	Projected Dispatch Costs – Solid Fuels	G. Yupp
6	Projected Natural Gas Price & Availability	G. Yupp
	(BASE CASE)	
7	Projected Dispatch Costs - Heavy Oil	G. Yupp
	(LOW CASE)	
8	Projected Dispatch Costs – Light Oil	G. Yupp
	(LOW CASE)	
9	Projected Natural Gas Price & Availability	G. Yupp
	(LOW CASE)	
10	Projected Dispatch Costs – Heavy Oil	G. Yupp
	(HIGH CASE)	
11	Projected Dispatch Costs – Light Oil	G. Yupp
	(HIGH CASE)	
12	Projected Natural Gas Price & Availability	G. Yupp
	(HIGH CASE)	
13	Projected Unit Availabilities and	G. Yupp
	Outage Schedules	
14, 15	2003 Risk Management Plan	G. Yupp

.

.

PROJECTED DISPATCH COSTS

HEAVY FUEL OIL (\$/BBL)

JANUARY THROUGH DECEMBER, 2003

BASE CASE

ω 2003 ---------JUNE JULY SULFUR GRADE JANUARY FEBRUARY MARCH APRIL MAY AUGUST SEPTEMBER OCTOBER NOVEMBER DECEMBER _____ \$25.78 \$26.03 \$24.54 0.7% SULFUR \$23.45 \$24.58 \$24.71 \$25.24 \$25.40 \$23.25 \$22.75 \$22.88 \$24.21 \$23.01 1.0% SULFUR \$21.85 \$21.59 \$21.83 \$22.38 \$23.10 \$23.45 \$23.63 \$24.17 \$24.71 \$24.80 \$23.97

.

. - -

-

PROJECTED DISPATCH COSTS

LIGHT FUEL OIL (\$/BBL)

JANUARY THROUGH DECEMBER, 2003

BASE CASE

4 _____ ___ 2003 JUNE AUGUST SEPTEMBER OCTOBER NOVEMBER DECEMBER JANUARY FEBRUARY MARCH APRIL MAY JULYSULFUR GRADE ______ \$30.62 \$31.53 \$31.58 \$30.59 0.5% SULFUR \$29.07 \$28.75 \$28.38 \$28.38 \$28.70 \$28.87 \$29.42 \$30.11 \$30.17 \$30.72 \$31.92 \$32.84 \$32.89 \$31.89 \$31.42 \$30.00 0.05% SULFUR \$30.36 \$30.05 \$29.67 \$29.68

.

.

PROJECTED DISPATCH COSTS

SOLID FUELS (\$/MMBTU)

JANUARY THROUGH DECEMBER, 2003

BASE CASE

1						200	3					
FUEL TYPE	JANUARY	FEBRUARY	MARCH	APRIL	МАУ	JUNE	JULY	AUGUST	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER
SCHERER	\$1.82	\$1.82	\$1.82	\$1.78	\$1.76	\$1.76	\$1.75	\$1.75	\$1.76	\$1.73	\$1.73	\$1.72
SJRPP	\$1.25	\$1.23	\$1.22	\$1.22	\$1.23	\$1.24	\$1.22	\$1.22	\$1.22	\$1.22	\$1.22	\$1.23

.

-

.

PROJECTED TOTAL NATURAL GAS PRICES

PROJECTED TRANSPORTATION CAPACITY AVAILABILITY

JANUARY THROUGH DECEMBER, 2003

BASE CASE

•

NATURAL GAS TRANSPORTATION CAPACITY													
AVAILABILITY TO FPL BY SERVICE TYPE (MMBTU/DAY) (000'S)	JANUARY	FEBRUARY	MARCH	APRIL	МАҮ	JUNE	JULY	AUGUST	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER	
FIRM TRANSPORTATION (FGT)	750	750	750	839	874	874	874	874	874	839	750	750	
NON-FIRM (FGT and GULFSTREAM)	650	650	650	550	425	425	425	425	425	525	625	625	
WEIGHTED-AVERAGE DISPATCH PRICE BY TYPE OF TRANSPORTATION SERVICE (\$/MMBTU)													
FIRM TRANSPORTATION (FGT)	\$4.13	\$4.12	\$4.02	\$3.83	\$3.86	\$3.89	\$3.87	\$3.99	\$3.92	\$3.91	\$4.09	\$4.26	
NON-FIRM (FGT)	\$4.44	\$4.43	\$4.33	\$4.14	\$4.16	\$4.20	\$4.18	\$4.30	\$4.23	\$4.22	\$4.40	\$4.58	

.

.....

.

.

-

PROJECTED DISPATCH COSTS

HEAVY FUEL OIL (\$/BBL)

JANUARY THROUGH DECEMBER, 2003

LOW CASE

-							200	3					
	SULFUR GRADE	JANUARY	FEBRUARY	MARCH	APRIL	МАҮ	JUNE	JULY	AUGUST	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER
-	0.7% SULFUR	\$11.62	\$11.38	\$11.44	\$11.72	\$12.10	\$12.29	\$12.35	\$12.62	\$12.89	\$13.01	\$12.70	\$12.27
	1.0% SULFUR	\$10.93	\$10.80	\$10.92	\$11.19	\$11.55	\$11.73	\$11.82	\$12.08	\$12.35	\$12.40	\$11.98	\$11.51

.

.

PROJECTED DISPATCH COSTS

LIGHT FUEL OIL (\$/BBL)

JANUARY THROUGH DECEMBER, 2003

LOW CASE

ω												
						20	03					
	JANUARY	FEBRUARY	MARCH	APRIL	MAY	JUNE	JULY	AUGUST	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER
0.5% SULFUR	\$14.53	\$14.38	\$14.19	\$14.19	\$14.35	\$14.43	\$14.71	\$15.31	\$15.77	\$15.79	\$15.29	\$15.06
0.05% SULFUR	\$15.18	\$15.02	\$14.84	\$14.84	\$15.00	\$15.08	\$15.36	\$15.96	\$16.42	\$16.44	\$15.95	\$15.71

.

-

.

PROJECTED TOTAL NATURAL GAS PRICES

PROJECTED TRANSPORTATION CAPACITY AVAILABILITY

JANUARY THROUGH DECEMBER, 2003

LOW CASE

ø

NATURAL GAS TRANSPORTATION CAPACITY		2003												
(AVAILABILITY TO FPL BY SERVICE TYPE (MMBTU/DAY) (000'S)	JANUARY	FEBRUARY	MARCH	APRIL	МАҮ	JUNE	JULY	AUGUST	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER		
FIRM TRANSPORTATION (FGT)	750	750	750	839	874	874	874	874	874	839	750	750		
NON-FIRM (FGT and GULFSTREAM)	650	650	650	550	425	425	425	425	425	525	625	625		
WEIGHTED-AVERAGE DISPATCH PRICE BY TYPE OF TRANSPORTATION SERVICE (\$/MMBTU)														
FIRM TRANSPORTATION (FGT)	\$2.09	\$2.10	\$2.05	\$1.93	\$1.96	\$2.00	\$1.95	\$2.04	\$1.98	\$1.96	\$2.04	\$2.14		
NON-FIRM (FGT)	\$2.40	\$2.41	\$2.36	\$2.25	\$2.27	\$2.31	\$2.26	\$2.35	\$2.29	\$2.28	\$2.36	\$2.45		

.

.

PROJECTED DISPATCH COSTS

HEAVY FUEL OIL (\$/BBL)

JANUARY THROUGH DECEMBER, 2003

HIGH CASE

-							200)3					
	 SULFUR GRADE	JANUARY	FEBRUARY	MARCH	APRIL	МАҮ	JUNE	JULY	AUGUST	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER
-	0.7% SULFUR	\$34.87	\$34.13	\$34.32	\$35.17	\$36.31	\$36.88	\$37.06	\$37.86	\$38.68	\$39.04	\$38.09	\$36.81
	1.0% SULFUR	\$32.78	\$32.39	\$32.75	\$33.57	\$34.65	\$35.18	\$35.45	\$36.25	\$37.06	\$37.20	\$35.95	\$34.52

.

.

PROJECTED DISPATCH COSTS

LIGHT FUEL OIL (\$/BBL)

JANUARY THROUGH DECEMBER, 2003

HIGH CASE

.

		2003												
 SULFUR GRADE	JANUARY	FEBRUARY	MARCH	APRIL	 MAY	JUNE	JULY	AUGUST	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER		
0.5% SULFUR	\$43.60	\$43.13	\$42.57	\$42.57	\$43.04	\$43.30	\$44.13	\$45.93	\$47.30	\$47.37	\$45.88	\$45.17		
0.05% SULFUR	\$45.55	\$45.07	\$44.51	\$44.51	\$44.99	\$45.25	\$46.08	\$47.88	\$49.25	\$49.33	\$47.84	\$47.13		

B/C

1

FLORIDA POWER & LIGHT COMPANY

.

PROJECTED TOTAL NATURAL GAS PRICES

PROJECTED TRANSPORTATION CAPACITY AVAILABILITY

JANUARY THROUGH DECEMBER, 2003

HIGH CASE

NATURAL GAS TRANSPORTATION CAPACITY														
AVAILABILITY TO FPL BY SERVICE TYPE (MMBTU/DAY) (000'S)	JANUARY	FEBRUARY	MARCH	APRIL	MAY	JUNE	JULY	AUGUST	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER		
FIRM TRANSPORTATION (FGT)	750	750	750	839	874	874	874	874	874	839	750	750		
NON-FIRM (FGT and GULFSTREAM)	650	650	650	550	425	425	425	425	425	525	625	625		
WEIGHTED-AVERAGE DISPATCH PRICE BY TYPE OF TRANSPORTATION SERVICE (\$/MMBTU)														
FIRM TRANSPORTATION (FGT)	\$6.18	\$6.14	\$5.98	\$5.72	\$5.75	\$5.78	\$5.78	\$5.93	\$5.86	\$5.85	\$6.13	\$6.39		
NON-FIRM (FGT)	\$6.49	\$6.45	\$6.30	\$6.03	\$6.06	\$6.09	\$6.09	\$6.24	\$6.17	\$6.16	\$6.45	\$6.70		

FLORIDA POWER & LIGHT PROJECTED UNIT AVAILABILITIES & OUTAGE SCHEDULES <u>PERIOD OF: JANUARY THROUGH DECEMBER, 2003</u>

PLANT/UNIT	PROJECTED FORCED OUTAGE FACTOR (%)	PROJECTED MAINTENANCE OUTAGE FACTOR (%)	PLANNED OUTAGE FACTOR (%)	OVERHAUL DATES *	OVERHAUL DATES *
Cape Canaveral 1	1.2	3.6	7.7	03/29/03 - 04/25/03	_
Cape Canaveral 2	1.3	3.9	0.0	-	-
Cutler 5	0.9	1.3	0.0	-	-
Cutler 6	1.2	1.8	0.0	-	-
Lauderdale 4	0.6	4.9	2.7	04/05/03 - 04/14/03	-
Lauderdale 5	0.6	4.9	2.7	10/11/03 - 10/20/03	-
Ft. Myers Repower	1.8	4.8	1.6		** 10/01/03 - 10/18/03 **
Ft. Myers 3	0.8	1.2	0.0	-	-
Manatee 1	0.9	3.2	11.5	03/01/03 - 04/11/03	-
Manatee 2	1.0	3.4	7.7	04/26/03 - 05/23/03	-
Martin 1	0.9	3.1	3.8	10/18/03 - 10/31/03	-
Martin 2	0.8	2.8	9.6	11/01/03 - 12/05/03	-
Martin 3	0.6	4.9	2.2	04/12/03 - 04/17/03	** 10/04/03 - 10/13/03 **
Martin 4	0.7	5.0	2.2	10/18/03 - 10/27/03	
Martin 8	0.5	0.7	1.6	03/15/03 - 03/20/03	
Port Everglades 1	1.5	2.1	15.3	10/04/03 - 11/28/03	-
Port Everglades 2	1.8	2.7	0.0	-	-
Port Everglades 3	1.1	3.3	8.5	03/01/03 - 03/31/03	-
Port Everglades 4	1.2	3.7	0.0	-	-
Putnam 1	1.0	3.4	12.1	03/01/03 - 04/04/03	** 10/18/03 - 11/21/03 **
Putnam 2	1.0	3.4	6.3	03/01/03 - 03/05/03	11/08/03 - 12/05/03 **
Riviera 3	1.6	2.4	32.9	02/15/03 - 06/14/03	-
Riviera 4	2.4	3.5	3.8	12/10/03 - 12/23/03	-
Sanford 3	1.7	2.5	0.0	-	-
Sanford Repower 4	3.9	5.2	0.0	-	-
Sanford Repower 5	1.9	4.9	1.6	10/04/03 - 10/27/03	** -
Turkey Point 1	1.3	4.0	9.6	03/08/03 - 04/11/03	-
Turkey Point 2	1.2	3.5	0.0	-	-
Turkey Point 3	1.1	1.1	8.2	03/03/03 - 04/02/03	-
Turkey Point 4	1.1	1.1	8.2	10/06/03 - 11/05/03	-
St. Lucie 1	1.3	1.3	0.0	_	-
St. Lucie 2	1.1	1.1	8.2	04/21/03 - 05/21/03	-
St. Johns River 1	1.6	4.2	8.2	03/01/03 - 03/30/03	-
St. Johns River 2	1.9	5.0	0.0	-	-
Scherer 4	1.4	5.0	0.0	-	-

** Partial Planned Outage

Components of FPL's Fuel Procurement Risk Management Plan for 2003

- 1. Identify overall quantitative and qualitative risk management objectives.
 - A. FPL's risk management objectives are to effectively execute a well-disciplined and independently controlled fuel procurement strategy to achieve the goals of fuel price stability (volatility minimization), to potentially achieve fuel cost minimization and to achieve asset optimization. FPL's fuel procurement strategy aims to mitigate fuel price increases and reduce fuel price volatility, while maintaining the opportunity to benefit from price decreases in the marketplace for FPL's customers.

FPL plans to hedge a percentage of its residual fuel oil and natural gas purchases, up to 50%, when market opportunities arise, consistent with its dynamic view of the oil and natural gas markets, using forward contracts and options to meet its risk management objectives.

- 3. Identify and quantify each risk, general and specific, that the utility may encounter with its fuel procurement.
 - A. The potential risks that FPL encounters with its fuel procurement are supplier credit, fuel supply and transportation availability, product quality, delivery timing, weather, environmental and supplier failure to deliver. The utility determines acceptable levels of risk for fuel procurement by performing various analyses that include forecasted/expected levels of activity, forecasted price levels and price changes, price volatility, and Value-at-Risk (VaR) calculations. The analyses are then presented to the Exposure Management Committee for review and approval. Approval is given to remain within specified VaR limits. These VaR limits are specified in FPL's policies and procedures that were filed on a confidential basis with the Commission on June 24, 2002 as part of FPL's response to Staff's Second Request for Production of Documents in Docket No. 011605-EI.
- 4. Describe the utility's oversight of its fuel procurement activities.
 - A. The utility has a separate and independent middle office risk management department that provides oversight of fuel procurement activities at the deal level. In addition, an executive-level, exposure management committee meets monthly to review performance and discuss current trading activities and monitors daily results of trading activity.
- 5. Verify that the utility provides its fuel procurement activities with independent and unavoidable oversight.
 - A. Please see response to No. 4.
- 6. Describe the utility's corporate risk policy regarding fuel procurement activities.
 - A. The utility has a written policy and procedures that define VaR, stop -loss, and duration limits for all forward activity by portfolio. FPL's policies and procedures were filed on a confidential basis with the Commission on June 24, 2002 as part of FPL's response to Staff's Second Request for Production of Documents in Docket No. 011605-El. In addition, individual trading strategies must be documented and approved by front and middle office management prior to deal execution.

- Verify that the utility's corporate risk policy clearly delineates individual and group transaction limits and authorizations for all fuel procurement activities.
 A. Please see response to No. 6.
- Describe the utility's strategy to fulfill its risk management objectives.
 A. Please see response to No. 1.
- Verify that the utility has sufficient policies and procedures to implement its strategy.
 A. Please see response to No. 6.
- 13. Describe the utility's reporting system for fuel procurement activities.
 - A. The utility has sufficient systems capability for identifying, measuring, and monitoring all types of risk associated with fuel procurement activities, including: a trade capture system, a database for maintaining current and historical pricing, deal information, and valuation models, and a reporting system that utilizes the information in the trade capture system and the database.
- Verify that the utility's reporting system consistently and comprehensively identifies, measures, and monitors all forms of risk associated with fuel procurement activities.
 A. Please see response to No. 13.
- 15. If the utility has current limitations in implementing certain hedging techniques that would provide a net benefit to ratepayers, provide the details of a plan for developing the resources, policies, and procedures for acquiring the ability to use effectively the hedging techniques.
 - A. The stipulation that was approved by the Commission at the August 12, 2002 Hearing in Docket No. 011605-EI, removes several major disincentives to the development and implementation of an effective hedging program. Consistent with the stipulation, FPL intends to implement an active, sophisticated and effective hedging program in 2003. FPL continues to believe, however, that an appropriately structured incentive mechanism may be useful to encourage utilities to explore all available hedging opportunities that could benefit customers. FPL understands that the Commission Staff wants to gather additional information on how hedging programs work in practice before acting on any incentive proposals. To that end, FPL agreed to accept the stipulation's limitation that approval will not be sought for any hedging incentive proposal earlier than March 2003.

APPENDIX II FUEL COST RECOVERY E SCHEDULES

i

KMD-5 DOCKET NO. 020001-EI FPL WITNESS: K. M. DUBIN EXHIBIT PAGES 1-82 SEPTEMBER 20, 2002

APPENDIX II FUEL COST RECOVERY E SCHEDULES January 2003 – December 2003

, ·

13

1

.

TABLE OF CONTENTS

PAGE(S)	DESCRIPTION	SPONSOR
3	Schedule E1 Fuel & Purchased Power Cost Recovery Clause Calculation	K. M. Dubin
4	Schedule E1-A Calculation of Total True-up (Projected Period)	K. M. Dubin
5-6	Schedule E1-B Calculation of Estimated/Actual True-up	K. M. Dubin
7	Schedule E1-C Calculation Generating Performance Incentive Factor and True-Up Factor	K. M. Dubin
8	Schedule E1-D Time of Use Rate Schedule	K. M. Dubin
9	Schedule E1-E Factors by Rate Group	K. M. Dubin
9a-b	2001 Actual Energy Losses by Rate Class	K. M. Dubin
10-11	Schedule E2 Monthly Summary of Fuel & Purchased Power Cost Recovery Clause Calculation	K. M. Dubin/ G. Yupp/J. Hartzog
12-15	Schedule E3 Monthly Summary of Generating System Data	G. Yupp/J. Hartzog
16-68	Schedule E4 Monthly Generation and Fuel Cost by Unit	G. Yupp/J. Hartzog
69-70	Schedule E5 Monthly Fuel Inventory Data	G. Yupp/J. Hartzog
71-72	Schedule E6 Monthly Power Sold Data	G. Yupp/J. Hartzog
73-74	Schedule E7 Monthly Purchased Power Data	G. Yupp
75-76	Schedule E8 Energy Payment to Qualifying Facilities	G. Yupp
77-78	Schedule E9 Monthly Economy Energy Purchase Data	G. Yupp
79	Schedule E10 Residential Bill Comparison	K. M. Dubin
80	Schedule H1 Three Year Historical Comparison	K. M. Dubin
81-82	Cogeneration Tariff Sheets	K. M. Dubin

.

i

į

FUEL AND PURCHASED POWER COST RECOVERY CLAUSE CALCULATION

ESTIMATED FOR THE PERIOD: JANUARY 2003 - DECEMBER 2003 (a)

	ESTIMATED FOR	THE PERIOD: JANUARY 2003 - DEC		4.5	
			(a)	(b)	(c)
			DOLLARS	MWH	¢/KWH
1	Fuel Cost of System	n Net Generation (E3)	\$2,192,755,708	86,494,622	2.5351
2	Nuclear Fuel Dispo	sal Costs (E2)	22,177,984	23,870,395	0.0929
3	Fuel Related Trans	actions (E2)	11,790,433	0	0.0000
3a	Security Costs (E2)	•	4,702,875	0	0.0000
Зb	Incremental Hedgin	g Costs (E2)	750,000	0	
3c	Reactor Vessel Hea	ad Project (E2)	29,084,000	0	
4	Fuel Cost of Sales t	to FKEC / CKW (E2)	(31,141,385)	(1,028,430)	3.0281
5	TOTAL COST OF C	GENERATED POWER	\$2,230,119,615	85,466,192	2.6094
6		ased Power (Exclusive of	178,048,535	11,368,694	1.5661
7	Economy) (E7) Energy Cost of Sch	ed C & X Econ Purch (Florida) (E9)	18,056,250	540,000	3.3438
8	Energy Cost of Oth	er Econ Purch (Non-Florida) (E9)	32,980,000	1,010,000	3.2653
9	Energy Cost of Sch	ed E Economy Purch (E9)	0	0	0.0000
10	Capacity Cost of Sc	hed E Economy Purchases	0	0	0.0000
11	Mission Settlement	(E2)	0	0	0.0000
11a	Okeelanta/Osceola	Settlement (E2)	\$9,917,382	0	0.0000
12	Payments to Qualify	ying Facilities (E8)	118,177,160	6,394,616	1.8481
13	TOTAL COST OF F	PURCHASED POWER	\$357,179,327	19,313,310	1 8494
14	TOTAL AVAILABLE	KWH (LINE 5 + LINE 13)		104,779,502	
15	Fuel Cost of Econor	my Sales (E6)	(44,788,550)	(1,250,000)	3.5831
16	Gain on Economy S	ales (E6A)	0	0	0.0000
17	Fuel Cost of Unit Po	ower Sales (SL2 Partpts) (E6)	(1,038,192)	(537,378)	0.1932
18 18a	Fuel Cost of Other F Revenues from Off-		0 (6,014,524)	0 (1,787,378)	0.0000 0.3365
19	TOTAL FUEL COS	TAND GAINS OF POWER SALES	(\$51,841,266)	(1,787,378)	2.9004
19a	Net Inadvertent Inte	rchange	0	0	
20	TOTAL FUEL & NE (LINE 5 + 13 + 19	T POWER TRANSACTIONS) + 19a)	\$2,535,457,676 =======	102,992,124	2.4618
21	Net Unbilled Sales		(4,578,559) **	(185,984)	(0.0048)
22	Company Use		7,606,373 **	308,976	0 0079
23	T & D Losses		164,804,749 **	6,694,488	0.1714
24	SYSTEM MWH SAL	ES (Excl sales to FKEC / CKW)	\$2,535,457,676	 96,174,644	2.6363
25	Wholesale MWH Sa	les (Excl sales to FKEC / CKW)	\$11,104,544	421,218	2.6363
26	Jurisdictional MWH	Sales	\$2,524,353,132	95,753,425	2 6363
27	Jurisdictional Loss N	Aultipher	-	-	1 00049
28	Jurisdictional MWH Line Losses	Sales Adjusted for	\$2,525,590,065	95,753,425	2.6376
29	FINAL TRUE-UP JAN 01 - DEC 01	EST/ACT TRUE-UP JAN 02 - DEC 02			<i></i>
	\$0	\$74,471,089 overrecovery	(74,471,089)	95,753,425	(0.0778)
30	TOTAL JURISDICT	IONAL FUEL COST	\$2,451,118,976	95,753,425	2.5598
31	Revenue Tax Factor	r			1.01597
32	Fuel Factor Adjusted	d for Taxes			2.6007
33	GPIF ***		\$7,049,431	95,753,425	0.0074
34	Fuel Factor including	g GPIF (Line 32 + Line 33)			2 6081
35	FUEL FACTOR RO	UNDED TO NEAREST .001 CENTS/	кwн		2 608

,

** For Informational Purposes Only *** Calculation Based on Jurisdictional KWH Sales

SCHEDULE E - 1A

CALCULATION OF TOTAL TRUE-UP (PROJECTED PERIOD) FLORIDA POWER AND LIGHT COMPANY FOR THE PERIOD: JANUARY 2003 - DECEMBER 2003

1. Estimated/Actual over/(under) recovery (January 2002 - December 2002) (Schedule E-1B revised)	\$ 74,471,089
2.Over/(under) recovery from January 2001 - December 2001 \$103,006,559 overrecovery included in Midcourse Correction April 15, 2002	\$ -
3.Total over/(under) recovery to be included in the January 2003 - December 2003 projected period (Schedule E1, Line 29)	\$ 74,471,089
4. TOTAL JURISDICTIONAL SALES (MWH) (Projected period)	95,753,425

5. True-Up Factor (Lines 3/4) c/kWh:

.

ł

ſ

1

.

0.0778

	TION OF THE ESTIMATED/ACTUAL TRUE-UP AMOUNT						Schedule E1B	
ORIDA	POWER & LIGHT COMPANY						Revised	
RTHE	PERIOD JANUARY THROUGH DECEMBER 2002							
VEN M	ONTHS ACTUAL FIVE MONTHS NEW ESTIMATES							
		(1)	(2)	(3)	(4)	(5)	(6)	(7)
LINE		ACTUAL	ACTUAL	ACTŲAL	ACTUAL	ACTUAL	ACTUAL	ACTUAL
NO.		JAN	FEB	MAR	APR	MAY	JUN	NL.
	Fuel Costs & Net Power Transactions							
1 4	Fuel Cost of System Net Generation	S 119,974,068 25	S 89,346,972 49	\$ 138,814,883 44	\$ 167,505,301 20	\$ 195,936,128 14		\$ 193,534,02
	Incremental Hedging Costs	0 00	0.00	0.00	0.00	0.00	0 00	
	Nuclear Fuel Disposal Costs	2,081,228 83	1,864,713 17	1.979.318 86	1,891,727 83	1,988,689 43		2,084,84
	Coal Cars Depreciation & Return	301,618 26	299,885 64	298,153 03	296,420 41	294,687 80		291,22
	Gas Pipelmes Depreciation & Return	197,127 20	195,671 65	194,216 13	192,760 60	191,305 04		188,39
	DOE D&D Fund Payment	0.00	0.00	0.00	0.00	0.00		
	Reactor Vessel Head Project	0.00	0.00	0.00	0.00	0.00	0.00	
	Fuel Cost of Power Sold (Per A6)	(3,849,406 00)	(3,408,651 00)	(4,434,786 00)	(4,091,052 00)	(2,657,087.00		(3,560,3
	Revenues from Off-System Sales	(1,166.838 00)	(1.036,336 00)	(1,233,478 00)	(840,787 00)	(454,950 00)		(672,6
	Fuel Cost of Purchased Power (Per A7)	10.829,821 00	13,048,269 00	13,284,773 00	20,803,756 00	20,635,095 00		19,297,2
	Energy Payments to Qualifying Facilities (Per A8)	8,189,432 00	10,322,866 00	12,292,058 00	9,710,032 00	8,260,614 00		12,826,2
	Cypress Settlement Payment	0.00	0.00	0.00	1,108,358 00	0 00		
	Okeelanta Settlement Amoruzation including interest	847.288 11	1,624,316 75	844,797 73	843,649 08	842,140 25		839,1
4	Energy Cost of Economy Purchases (Per A9)	2,902,470 00	1,682,472 00	5,231,159 00	12,208,207 00	10,492,065 00		3,628,3
5	Total Fuel Costs & Net Power Transactions	\$ 140,306 809 65	<u>\$ 113,940,179 70</u>	\$ 167,271,095 19	\$ 209,628,373 12	\$ 235,528,687 66	S 211 275,465 88	S 228,456,5
6	Adjustments to Fuel Cost	(1.662.252.)	(1.000.000.00	(1.504.500.55)	(0.000 000 000	(3.000.000.00	(0.052.555.55)	
	a Sales to Fla Keys Elect Coop (FKEC) & City of Key West (CKW)	(1 668,359 47)	(1,803,030 51)	(1,594,602 42)	(2,325,539 45)	(2,875,733 69		(2,570,2
	Reactive and Voltage Control / Energy Imbalance Fuel Revenues	(38,886 74)	(112,856 74)	(62,140 56)	(47,054 46)	56,550 74		(24,0
	Inventory Adjustments	13,503 78	(12,980 17)	(56,061 30)		88,738 01	(1,099 73)	(16,9
	Non Recoverable Oil/Tank Bottoms	(48,494 70)	231,386 83	(209,559 78) 190,407 92	494,349 65	463,698 82		(35,1
7	e Incremental Plant Security Costs per Order No PSC -01-2516 Adjusted Total Fuel Costs & Net Power Transactions	124,507 26 \$ 138,689,079 78	231,659 71 \$ 112,474,358 82					627,6 \$ 226,437,7
	Adjusted Total Fuel Costs & Net Fower Transactions	3 138,089,07978	3 112,474,338.62	15 103,339,139 03	3 207,087,033 74	3 233,201,941 34	13 209,291,044 33	220,437,7
	kWh Sales							
	Junsdictional kWh Sales (RTP @ CBL) (a)	7,536,411,301	6,792,202,174	6,468,512,323	7,206,304,174	8,075,468,188	8,526,048,757	8,354,42
1	Sale for Resale (excluding FKEC & CKW)	595,255	603,523	454,158	422,978	507,980		8,334,42
+	Sub-Total Sales (excluding FKEC & CKW)	7,537,006,556	6,792,805,697	6,468,966,481	7,206,727,152	8,075,976,168		8,386,87
3	Sub-Total Sales (excluding FKEC & CKW)	7,337,000,330	0,792.803,097	0,406,900,481	7,200,727,132	6,075,970,106	8,528,502,052	0,380.87
	Jurisductional % of Total Sales (B1/B3)	99 99210%	99 99112%	99 99298%	99 99413%	99 99371%	99 99468%	99.6
6	Jurisquestional % of Local Sales (BI/B3)	99 99210%	99 9911270	99 99298%	79 7941370	99 993/17	39 39400%	
+ +-	See Footnotes on page 2	·						
+	True-up Calculation							
1	Juns Fuei Revenues (Incl RTP @ CBL) Net of Revenue Taxes	\$ 213,314,794 63	\$ 191,080,079 34	\$ 181,934 007 90	\$ 194,695,686 62	\$ 209.058.996 71	\$ 220,750,206 22	\$ 216,200,6
2								-
-	Fuel Adjustment Revenues Not Applicable to Period Amortize 1/24 of \$518,005,376 per Order PSC-00-2385-FOF	(21,583,557 33)	(21,583,557 33)	(21 583,557 33)	(21,583,557 33)	(21,583,557 33	(21,583,557 33)	(21,583,5
		1,149,505 58	1,149,505 58	1,149,505 58	1,149,505 58	1,149,505 58		1.149.5
	Phor Period True-up (Collected)/Refunded This Period	1.145,505 58	1,149,505.58	0.00	6,104,092 37	12,112,808 30		12,112,8
	3 2001 Final True-up Refunded per Order PSC-02-0501-AS-EI			(738,596 58)	(738,596 58)	(738,596 58		(738,
	b GPIF, Net of Revenue Taxes (b)	(738,596 58)	(738,596 58)	(738,590 58)		(738,398 38		(736,.
	c Oil Backout Revenues, Net of revenue taxes	107 56						5 207,140,
3	Jurisdictional Fuel Revenues Applicable to Period	\$ 192,142,253 87						
	Adjusted Total Fuel Costs & Net Power Transactions (Line A-7)	\$ 138,689,079 78				\$ 233,261,941 54 0.00		S 226,437,5
	Nuclear Fuel Expense - 100% Retail (Acct 518 111)	0 00	0 00	0.00	0 00 (34,599 19)			(43,0
c		(4,163 97)	(24,963 90)	(13,815 13) 0 00	(34,599 19)	(1,598 18		(43,0
	D&D Fund Payments -100% Retarl	0.00	0.00	0.00	0.00	000		l
0	Adj Total Fuel Costs & Net Power Transactions - Excluding 100% Retail Items			165,552,954 18	207,722,233 14	233,263,539 72	209,245,140 93	226,480,
	(C4a-C4b-C4c-C4d)	138,693,243 75	112,499,322 72			99 99371 9		99 613
5	Junsdictional Sales % of Total kWh Sales (Line B-6)	99 99210 %	99 99112 %	99 99 298 %	99 99413 %	7 1766666	37 37 408 78	57 01.
6	Jurisdictional Total Fuel Costs & Net Power Transactions (Line C4e x C5 x	6 129 740 220 220 22	\$ 112,522,863 LO	\$ 165,613,598 87	\$ 207,783,449 81	S 233,368,558 82	S 209,388,714 62	\$ 225,678,5
	1 00052(c)) +(Lmes C4b.c,d)	s 138,750,238 03	112,322,803 10	a 10,013,3968/	μ 201,703,447 δl	<u>10 200,000,000</u>	207,200,714 02	I 223,078,
7					e (10) (C 224 07)	s (33,369,299 50) S 2,301,651 62	\$ (18,538,0
	True-up Provision for the Month - Over/(Under) Recovery (Line C3 - Line C6)	S 53,392,015 84				237,134 24		\$ (18,538, 162,
8	Interest Provision for the Month (Line D10)	211,410 05	289,485 64 66,247,987 30			81,988,013 42		24,828,
	True-up & Interest Provision Beg of Period - Over/(Under) Recovery					103,006,558 76		103,006,:
	Deferred True-up Beginning of Period - Over/(Under) Recovery	103,006,558 76	103,006,558 76			(1,149,505.58		(1.149,
	Prior Period True-up Collected/(Refunded) This Period	(1,149,505 58)	(1,149,505 58	(1,149,505 58)				(1.149,
t			·	<u> </u>	(6,104.092 37)	(12,112,808 30	(12,312,808 30)	(12,112,
11	End of Period Net True-up Amount Over/(Under) Recovery (Lines C7 through			-		S 138,600,093 04	\$ 127,834,677 52	\$ 96,196,
	C10)	\$ 169,254,546.06	S 225,779,114 19	\$ 220,105,963 53	\$ 184,994,572 18	138,000,093 04	121,834,0// 32	13 90,190,1
			I	1				
							1	1
DTES	(a) Real Time Pricing (RTP) sales are shown at the Customer Base Loan	d (CBL) KWH. The is	cremental/decremental	kwn sales are excluded	· · · · · · · · · · · · · · · · · · ·			1
DTES	(a) Real Time Pricing (RTP) sales are shown at the Customer Base Loa The incremental/decremental RTP fuel revenues (net of revenue tax (b) Generation Performance Incentive Factor is ((\$9,004,713/12) x 98.42	es) are included in jur	isdictional fuel revenues	kwii sales are excluded	·			

.

-

· ·

-

ORI		ULATION OF THE ESTIMATED/ACTUAL TRUE-UP AMOUNT DA POWER & LIGHT COMPANY						Schedule E1B Revised
		IE PERIOD JANUARY THROUGH DECEMBER 2002						I tevised
		MONTHS ACTUAL FIVE MONTHS NEW ESTIMATES						
		MONTHS ACTORE THE MONTHS HER ESTIMATES	(8)	(9)	(10)	(11)	(12)	(13)
LIN	IF.	E .	NEW ESTIMATE	TOTAL				
NO			AUG	SEP	OCT	NOV	DEC	PERIOD
		Fuel Costs & Net Power Transactions						
1	1-		206,707,912 30	\$ 179,759,699 15	\$ 184,252,186 61	\$ 132,659,512 37	143,048,371 96	\$ 1,933,289,58
<u> </u>		b Incremental Hedging Costs	0.00	2,113,084 50	\$ 211,687 50	\$ 211,687 50	\$ 211,687.50	2,748,14
		c Nuclear Fuel Disposal Costs	1,980,798 46	1,898,659 52	1,451,817 23	1,965,094 81	2,030,598 22	23,186,48
		d Coal Cars Depreciation & Return	289,490 00	287,757 00	286,025 00	284,292 00	282,560 00	3,505,06
		e Gas Pipelines Depreciation & Return	186,938 00	185,483 00	184,027 00	182,572 00	181,116 00	2,269,464
	†-	f DOE D&D Fund Payment	0 00	0.00	0.00	6,287,000 00	0.00	6 287,00
-	†	g Reactor Vessel Head Project	0 00	0.00	3,492,000 00	0.00	0.00	3,492,00
2		a Fuel Cost of Power Sold (Per A6)	(8,118 686 00)	(6,990,634.00)	(3,030,524 00)	(3,709,266 00)	(5,434,258 00)	(53,184,80
		b Revenues from Off-System Sales	(2,255,504 00)	(1,258,621 00	(105,762.00)	(29,580 00)	(279,735 00)	(10,390,79
3		a Fact Cost of Purchased Power (Per A7)	17,909,210 00	16,676,940 00	14,298,648 00	13,121,031 00	12,880,314 00	187,974,34
		b Energy Payments to Qualifying Facilities (Per A8)	11,635,870 00	8,646,870 00	6,279,870 00	6,807,870 00	10,024,870 00	115,878,71
	1	b Cypress Settlement Payment	0.00	0.00	1,108,357 65	123,356 50	0.00	2,340,07
	+-	c Okeelanta Settlement Amortization including interest	937,905 80	836,757 14	835,608 48	834,459 83	833,830 34	10,960,91
4	t	Energy Cost of Economy Purchases (Per A9)	4,203,695 00	8,161,145 00	5,819,945 00	4,498,645 00	3,019,945 00	
5	_	Total Fuel Costs & Net Power Transactions \$		\$ 210,317,140.30				
6			222 411 027 30	210,517,140.30	212,063,080 48	3 103,230,075 01	a 100,799,300 02	\$ 2,295,321,81
0	-	a Sales to Fla Keys Elect Coop (FKEC) & City of Key West (CKW)	(2,930,042 00)	(2,936,047 00	(3 867 678 80	(2 (57 707 64)	(0.00) (222.00)	/20.000.0
-		b Reactive and Voltage Control / Energy Imbalance Fuel Revenues				(2,657,303 00)	(2,384 656 00)	(29,555,74
-	+ -	c Inventory Adjustments	0.00	0 00	0.00	0.00	0.00	(248,81
	+-	d Non Recoverable Oil/Tank Bottoms						(47,33
			0.00	0 00	0.00	0.00	0.00	(96,45
		e Incremental Plant Security Costs per Order No PSC -01-2516	1,137,660 20	1,137,660 20	1,137,660 20	1,137,660 20	1,137,660 20	
7	4	Adjusted Total Fuel Costs & Net Power Transactions	5 231,685,247 76	\$ 208,518,753 50	\$ 213,364,978 68	\$ 161,717,032.21	\$165,552,304 22	\$ 2,274,219,29
	4.							<u> </u>
	1_	kWh Sales						1
1	ч.	Junsdictional kWh Sales (RTP @ CBL) (a)	9,462,778,000	8,884,884,000	8,256,513,000	7,338,205,000	7,261,986,000	94,163,738
2			33,546,000	34,616,000	34,569 000	33,549,000	34.614.000	206,378
3	<u> </u>	Sub-Total Sales (excluding FKEC & CKW)	9,496,324,000	8,919,500,000	8,291,082,000	7,371,754,000	7,296,600,000	94,370,117
6	5	Jurisdictional % of Total Sales (B1/B3)	99 64675%	99 61 191%	99 58306%	99 54490%	99 52561%	N/A
		See Footnotes on page 2.						
	1	True-up Calculation						
1		Juris Fuel Revenues (Incl RTP @ CBL) Net of Revenue Taxes	\$ 244,958,808 31	\$ 229,999,118 30	\$ 213,732,752 19	S 189,960,913 38	\$ 187,987,865 36	\$ 2,493,673,92
2	1	Fuel Adjustment Revenues Not Applicable to Period						
_	a	a Amortize 1/24 of \$518,005,376 per Order PSC-00-2385-FOF	(21,583,557 33)	(21,583,557 33	(21,583,557 33)	(21,583,557 33)	(21,583,557 50)	(259,002,61
1		a 2 Prior Period True-up (Collected)/Refunded This Period	1,149,505 58	1,149,505 58	1,149,505 58	1,149,505 58		
		a 3 2001 Final True-up Refunded per Order PSC-02-0501-AS-EI	12,112,808 30	12,112,808 30		12,112,808 30		
i	t	b GPIF, Net of Revenue Taxes (b)	(738,596 58)	(738,596 58				
	+-	c Oil Backont Revenues, Net of revenue taxes	0.00	0.00	0.00	0.00		20
3	51-	Jurisdictional Fuel Revenues Applicable to Period		\$ 220,939,278 27				
	_	a Adjusted Total Fuel Costs & Net Power Transactions (Line A-7)	5 231,685,247 76	\$ 208,518,753 50		S 161.717,032 21		
-		b Nuclear Fuel Expense - 100% Retail (Acct 518 111)	0 00	0 00	0 00	0.00	0 00	<u> </u>
1		c RTP Incremental Fuel -100% Retail	0.00	0.00	0.00	0.00	0.00	(76,3
		d D&D Fund Payments -100% Retail	0.00	0.00	0.00	6,287,000 00		6,287,0
-		e Adj Total Fuel Costs & Net Power Transactions - Excluding 100% Retail Items			1	-,	1	1
		(C4a-C4b-C4c-C4d)	231,685,247 76	208,518,753 50	213,364,978 68	155,430,032 21	165,552,304 22	2,268,008,6
5	+		99 64675 %	99 61191 9		99 54490 %		
6	_		7704075 70			1	1	1
6	1	1 00052(c)) +(Lines C4b,c,d)	\$ 230,986,870.00	S 207,817,522 00	\$ 212,585,862.00	\$ 161,090,126.00	\$ 164,852,619.00	5 2,270,439,30
	+		2 200,000,070.00	201,011,022.00	1 212,000,002.00	101,030,120 00	1	, <u></u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,
7	1					10 00000705	14.075 405 15	S 72,169,6
	+	True-up Provision for the Month - Over/(Under) Recovery (Line C3 - Line C6)		\$ 13,121,756 27				
8			132,667 44	126,738 14		101,172 57		
9		• • • • • • • • • • • • • • • • • • •	(6,809,917 54)					
		b Deferred True-up Beginning of Period - Over/(Under) Recovery	103,006,558 76	103,006,558 76				
10		a Prior Period True-up Collected/(Refunded) This Period	(1,149,505 58)	(1,149,505 58				
	T	b 2001 Final True-up Refunded per Rate Case Order PSC-02-0501-AS-El	(12,112,808 30)	(12,112,808 30	1 (12,112,808 30	(12,112,808 30) (12,112,808 30) (103,006,5
11		End of Period Net True-up Amount Over/(Under) Recovery (Lines C7 through						1
1		C10)	\$ 87,979,093 07	S 87,965,273 60	\$ 66,901,565 23	\$ 73,551,371 28	S 74,471,088 69	\$ 74,471,0
1	1				·			
ÓTE	ES	S (a) Real Time Pricing (RTP) sales are shown at the Customer Base Load (1			
Ĩ	Ť	The incremental/decremental RTP fuel revenues (net of revenue taxes)						
	1	(b) Generation Performance Incentive Factor is ((59,004,713/12) x 98.4280			1		1	1
-								

.

.

.

.

SCHEDULE E - 1C

CALCULATION OF GENERATING PERFORMANCE INCENTIVE FACTOR AND TRUE - UP FACTOR FLORIDA POWER AND LIGHT COMPANY FOR THE PERIOD: JANUARY 2003 - DECEMBER 2003

1. TOTAL AMOUNT OF ADJUSTMENTS:	74,471,089
A. GENERATING PERFORMANCE INCENTIVE REWARD (PENALTY)	\$7,049,431
B. TRUE-UP (OVER)/UNDER RECOVERED	\$ 81,520,520
•	
2. TOTAL JURISDICTIONAL SALES (MWH)	95,753,425

3. ADJUSTMENT FACTORS c/kWh:	0.0778
A. GENERATING PERFORMANCE INCENTIVE FACTOR	0.0074
B. TRUE-UP FACTOR	0.0851

FLORIDA POWER & LIGHT COMPANY

SCHEDULE E - 1D

DETERMINATION OF FUEL RECOVERY FACTOR TIME OF USE RATE SCHEDULES

JANUARY 2003 - DECEMBER 2003

NET ENERGY FOR LOAD (%)

		FUEL COST (%)
ON PEAK	30,88	33.65
OFF PEAK	69.12	66.35
	100.00	100.00

FUEL RECOVERY CALCULATION

	TOTAL	ON-PEAK	OFF-PEAK
 1 TOTAL FUEL & NET POWER TRANS 2 MWH SALES 3 COST PER KWH SOLD 4 JURISDICTIONAL LOSS FACTOR 5 JURISDICTIONAL FUEL FACTOR 6 TRUE-UP 	\$2,535,457,676 96,174,644 2.6363 1.00049 2.6376 (0.0778)	\$853,181,508 29,698,730 2.8728 1.00049 2.8742 (0.0778)	\$1,682,276,168 66,475,914 2.5307 1.00049 2.5319 (0.0778)
 7 8 TOTAL 9 REVENUE TAX FACTOR 10 RECOVERY FACTOR 11 GPIF 12 RECOVERY FACTOR including GPIF 13 RECOVERY FACTOR ROUNDED TO NEAREST .001 c/KWH 	2.5598 1.01597 2.6007 0.0074 2.6081 2.608	2.7964 1.01597 2.8411 0.0074 2.8485 2.849	2.4541 1.01597 2.4933 0.0074 2.5007 2.501

HOURS:	ON-PEAK	25.16	%
	OFF-PEAK	74.84	%

FLORIDA POWER & LIGHT COMPANY

FUEL RECOVERY FACTORS - BY RATE GROUP (ADJUSTED FOR LINE/TRANSFORMATION LOSSES)

JANUARY 2003 - DECEMBER 2003

Ţ

ì

(1) GROUP	(2) RATE SCHEDULE	(3) AVERAGE FACTOR	(4) FUEL RECOVERY LOSS MULTIPLIER	(5) FUEL RECOVERY FACTOR
A	RS-1, GS-1, SL-2	2.608	1.00206	2.613
A-1*	SL-1, OL-1, PL-1	2.556	1.00206	2.561
В	GSD-1	2.608	1.00199	2.613
С	GSLD-1 & CS-1	2.608	1.00083	2.610
D	GSLD-2, CS-2, OS-2 & MET	2.608	0.99417	2.593
E	GSLD-3 & CS-3	2.608	0.95413	2.488
A	RST-1, GST-1 ON-PEAK OFF-PEAK	2.849 2.501	1.00206 1.00206	2.854 2.506
В	GSDT-1 ON-PEAK CILC-1(G) OFF-PEAK	2.849 2.501	1.00199 1.00199	2.854 2.506
С	GSLDT-1 & ON-PEAK CST-1 OFF-PEAK	2.849 2.501	1.00083 1.00083	2.851 2.503
D	GSLDT-2 & ON-PEAK CST-2 OFF-PEAK	2.849 2.501	0.99417 0.99417	2.832 2.486
E	GSLDT-3,CST-3, ON-PEAK CILC -1(T) OFF-PEAK & ISST-1(T)	2.849 2.501	0.95413 0.95413	2.718 2.386
F	CILC -1(D) & ON-PEAK ISST-1(D) OFF-PEAK	2.849 2.501	0.99300 0.99300	2.829 2.483

* WEIGHTED AVERAGE 16% ON-PEAK AND 84% OFF-PEAK

Florida Power & Light Company 2001 Actual Energy Losses by Rate Class

a.

.

Line No	Rate Class	Delivered MWH Sales	Expansion Factor	Delivered Energy at Generation	Delivered Efficiency	Losses	Fuel Cost Recovery Multiplier
1	RS-1 Sec	47,697,085	1.073915762	51,222,651	0.931172	3,525,566	1.00206
2 3	GS-1 Sec	5,475,512	1.073915762	5,880,238	0.931172	404,727	1.00206
· 5 6	GSD-1 Pri GSD-1 Sec	56,826 20,606,821	1.045886865 1.073915762	59,434 22,129,990	0.956126 0.931172	2,608 1,523,169	
7	Subtotal GSD-1	20,663,647	1.073838681	22,189,423	0.931239	1,525,776	1.00199
8 9 10	OS-2 Pri OS-2 Sec	20,282	1.045886865	21,213	0.956126 0.000000	931	
. 11	Subtotal OS-2	20,282	1.045886865	21,213	0.956126	931	0.97590
12 13 14		396,471 8,724,523	1.045886865 1.073915762	414,663 9,369,403	0.956126 0.931172	18,193 644,880	
15	Subtotal GSLD-1	9,120,994	1.072697404	9,784,067	0.932229	663,073	1.00092
	CS-1 Pri CS-1 Sec	41,156 165,932	1.045886865 1.073915762	43,045 178,197	0.956126 0.931172	1,889 12,265	
19	Subtotal CS-1	207,088	1.068345386	221,242	0.936027	14,154	0.99686
20 21	Subtotal GSLD-1 / CS-1	9,328,082	1.072600787	10,005,309	0.932313	677,226	1.00083
22 23 24	GSLD-2 Pri GSLD-2 Sec	270,125 858,161	1.045886865 1.073915762	282,520 921,593	0.956126 0.931172	12,395 63,432	
25	Subt GSLD-2	1,128,286	1.067205316	1,204,113	0.937027	75,827	0.99580
	CS-2 Pri CS-2 Sec	17,229 55,218	1.045886865 1.073915762	18,020 59,300	0.956126 0.931172	791 4,081	
29	Subtotal CS-2	72,448	1.067249947	77,320	0.936988	4,872	0.99584
30 31	Subtotal GSLD-2 / CS-2	1,200,734	1.067208009	1,281,433	0.937024	80,699	0.99580
. 32 33 34	GSLD-3 Trn	174,694	1.022546340	178,633	0.977951	3,939	0.95413
35 36	CS-3 Trn	0	1.022546340	0	0.000000	0	0.00000
37	Subtotal GSLD-3 / CS-3	174,694	1.022546340	178,633	0.977951	3,939	0.95413
38 39 40	ISST-1 Sec	0	1.073915762	0	0.000000	0	0.00000
41	SST-1 Pri SST-1 Sec	45,035 15,236	1.045886865 1.073915762	47,101 16,362	0.956126 0.931172	2,066 1,126	
43	Subtotal SST-1 (D)	60,271	1.052972443	63,464	0.949692	3,193	0.98252
44 45 46	SST-1 Trn	148,018	1.022546340	151,355	0.977951	3,337	0.95413
47	CILC-1D Pri CILC-1D Sec	1,027,430 1,940,072	1.045886865 1.073915762	1,074,576 2,083,474	0.956126 0.931172	47,146 143,402	
49	Subtotal CILC-1D	2,967,502	1.064211394	3,158,050	0.939663	190,547	0.99300
50 51 52	CILC-1G Pri CILC-1G Sec	1,608 254,002	1.045886865 1.073915762	1,681 272,776	0.956126 0.931172	74 18,775	
53	Subtotal CILC-1G	255,609	1.073739490	274,458	0.931325	18,848	1.00189
54 55	Subtotal CILC-1D / CILC-1G	3,223,112	1.064967021	3,432,508	0.938996	209,396	0.99371
56							

Florida Power & Light Company 2001 Actual Energy Losses by Rate Class

,

1

			Delivered		Delivered			Fuel Cost
N	ne Io	Rate Class	MWH Sales	Expansion Factor	Energy at Generation	Delivered Efficiency	Losses	Recovery Multiplier
Ę	58 59 50	CILC-1T Tm	1,491,068	1.022546340	1,524,686	0.977951	33,618	0.95413
e	51	Subtotal ISST-D & CILC-1D	2,967,502	1.064211394	3,158,050	0.939663	190,547	0.99300
; 6	52 53 54	MET Pri	86,492	1.045886865	90,460	0.956126	3,969	0.97590
		Subtotal OS-2, GSLD-2, CS-2, & MET	1,307,507	1.065466882	1,393,106	0.938556	85,598	0.99417
6	56 57 58	OL-1 Sec	110,640	1.073915762	118,818	0.931172	8,178	1.00206
. e		SL-1 Sec	398,359	1.073915762	427,804	0.931172	29,445	1.00206
7	71	Subtotal OL-1 / SL-1	509,000	1.073915762	546,623	0.931172	37,623	1.00206
. 7	72 [°] 73 74	SL-2 Sec	81,128	1.073915762	87,125	0.931172	5,997	1.00206
7	75	RTP-1 Pri RTP-1 Sec	0 66,579	1.045886865 1.073915762	0 71,500	0.000000 0.931172	0 4,921	
		Subtotal RTP-1	66,579	1.073915762	71,500	0.931172	4,921	1.00206
	78				<u> </u>			
		RTP-2 Pri RTP-2 Sec	124,556 144,871	1.045886865 1.073915762	130,271 155,579	0.956126 0.931172	5,715 10,708	
		Subtotal RTP-2	269,427	1.060958024	285,851	0.942544	16,424	0.98997
8	32 ' 33 34	RTP-3 Trn	0	1.022546340	0	0.000000	0	0.00000
8	35	Total FPSC	90,495,128	1.072239705	97,032,469	0.932627	6,537,341	1.00049
8	36 37 38	Total FERC Sales	979,647	1.022546340	1,001,734	0.977951	22,087	
	39	Total Company	91,474,775	1.071707515	98,034,203	0.933090	6,559,429	
_ <u></u>	90 ° 91 92	Company Use	141,989	1.073915762	152,484	0.931172	10,495	
g		Total FPL	91,616,764	1.071710937	98,186,688	0.933087	6,569,924	1.00000
		Summary of Sales by Voltage:	<u></u>	· · · · · · · · · · · · · · · · · · ·				
9	96 97 98	Transmission	2,793,426	1.022546340	2,856,408	0.977 9 51	62,982	
ç	99	Primary	2,087,209	1.045886865	2,182,984	0.956126	95,775	
10 10 10		Secondary	86,594,139	1.073915762	92,994,811	0.931172	6,400,672	
		Total	91,474,775	1.071707515	98,034,203	0.933090	6,559,429	

FLORIDA POWER & LIGHT COMPANY FUEL & PURCHASED POWER COST RECOVERY CLAUSE CALCULATION FOR THE PERIOD JANUARY 2003 - DECEMBER 2003

-

· .

SCHEDULE E2 Page 1 of 2

· - · · · ·

LINE	(a)	(b)	(c) ESTIMATED	(d)	(e)	(f)	(g) 6 MONTH	LINE
NO.	JANUARY	FEBRUARY	MARCH	APRIL	MAY	JUNE	SUB-TOTAL	NO.
A1 FUEL COST OF SYSTEM GENERATION	\$143,499,242	\$133,965,528	\$163,553,086	\$154,825,774	\$193,711,172	\$199,548,252	\$989,103,054	A1
1a NUCLEAR FUEL DISPOSAL	2,030,598	1,834,089	1,578,541	1,746,607	1,670,344	1,916,901	10,777,080	1a
1b COAL CAR INVESTMENT	280,827	279,094	277,362	275,629	273,896	272,164	1,658,972	1b
1c NUCLEAR THERMAL UPRATE	0	0	0	0	0	0	0	1c
1d GAS LATERAL ENHANCEMENTS	179,661	178,205	176,750	175,294	173,839	172,383	1,056,132	1d
1e DOE DECONTAMINATION AND DECOMMISSIONING COSTS	0	0	0	0	0	0	0	1e
1f SECURITY COSTS	204 000	204 000	201.000	204 000	004 000	201 000	0.054.400	
1g INCREMENTAL HEDGING COSTS	391,906	391,906	391,906	391,906	391,906	391,906	2,351,438	1f
5	62,500	62,500	62,500	62,500	62,500	62,500	375,000	1g
1h REACTOR VESSEL HEAD PROJECT	2,423,667	2,423,667	2,423,667	2,423,667	2,423,667	2,423,667	14,542,000	1h
2 FUEL COST OF POWER SOLD	(4,781,434)	(4,846,218)	(4,887,283)	(2,725,075)	(2,956,731)	(3,735,976)	(23,932,717)	
2a REVENUES FROM OFF-SYSTEM SALES	(910,782)	(691,832)	(238,612)	(269,775)	(191,775)	(536,000)	(2,838,776)	
3 FUEL COST OF PURCHASED POWER	15,210,789	13,281,016	13,483,731	14,145,609	16,701,987	15,151,914	87,975,046	3
3a MISSION SETTLEMENT	0	0	0	0	0	0	0	3a
3b OKEELANTA/OSCEOLA SETTLEMENT	832,695	831,559	830,423	829,288	828,152	827,016	4,979,133	3b
3c QUALIFYING FACILITIES	9,775,430	9,459,430	10,626,430	9,302,430	10,983,430	10,407,430	60,554,580	3c
4 ENERGY COST OF ECONOMY PURCHASES	4,500,000	3,717,500	3,912,500	6,537,500	7,025,000	4,408,750	30,101,250	4
4a FUEL COST OF SALES TO FKEC / CKW	(2,144,042)	(2,195,556)	(1,996,760)	(2,611,692)	(2,720,208)	(2,775,287)	(14,443,545)	4a
5 TOTAL FUEL & NET POWER TRANSACTIONS ○ (SUM OF LINES A-1 THRU A-4)	\$171,351,056	\$158,690,888	\$190,194,241	\$185,109,662	\$228,377,179	\$228,535,620	\$1,162,258,646	5
6 SYSTEM KWH SOLD (MWH) (Excl sales to FKEC / CKW)	7,557,733	7,328,797	6,730,534	6,997,017	7,415,785	8,580,917	44,610,783	6
7 COST PER KWH SOLD (¢/KWH)	2.2672	2.1653	2.8258	2.6456	3.0796	2.6633	2.6053	7
7a JURISDICTIONAL LOSS MULTIPLIER	1.00049	1.00049	1.00049	1.00049	1.00049	1.00049	1.00049	7a
7b JURISDICTIONAL COST (¢/KWH)	2.2683	2.1664	2.8272	2.6468	3.0811	2.6646	2.6066	7b
9 TRUE-UP (¢/KWH)	(0.0825)	(0.0851)	(0.0928)	(0.0891)	(0.0840)	(0.0726)	(0.0839)	9
10 TOTAL	2.1858	2.0813	2.7344	2.5577	2.9971	2.5920	2.5227	10
11 REVENUE TAX FACTOR 0.01597	0.0349	0.0332	0.0437	0.0408	0.0479	0.0414	0.0403	11
12 RECOVERY FACTOR ADJUSTED FOR TAXES	2.2207	2.1145	2.7781	2.5985	3.0450	2.6334	2.5630	12
13 GPIF (¢/KWH)	0.0078	0.0081	0.0088	0.0084	0.0080	0.0069	0.0079	13
14 RECOVERY FACTOR including GPIF	2.2285	2.1226	2.7869	2.6069	3.0530	2.6403	2.5709	14
15 RECOVERY FACTOR ROUNDED TO NEAREST .001 ¢/KWH	2.229	2.123	2.787	2.607	3.053	2.640	2.571	15

SCHEDULE E2 Page 2 of 2

FLORIDA POWER & LIGHT COMPANY FUEL & PURCHASED POWER COST RECOVERY CLAUSE CALCULATION FOR THE PERIOD JANUARY 2003 - DECEMBER 2003

.

-

.

LINE	(h)	(i)	(j) ESTIMATED	(k)	(1)	(m)	(n) 12 MONTH	LINE
NO.	JULY	AUGUST	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER	PERIOD	NO.
A1 FUEL COST OF SYSTEM GENERATION	\$219,925,976	\$242,260,786	\$212,372,436	\$208,006,928	\$153,588,260	\$167,498,268	\$2,192,755,708	A1
1a NUCLEAR FUEL DISPOSAL	1,980,798	1,980,798	1,916,901	1,589,066	1,902,743	2,030,598	\$22,177,984	1a
1b COAL CAR INVESTMENT	270,431	268,699	266,966	265,233	263,501	261,768	\$3,255,570	1b
1c NUCLEAR THERMAL UPRATE	0	0	0	0	0	0	\$0	1c
1d GAS LATERAL ENHANCEMENTS	170,927	169,472	168,016	166,561	165,105	163,650	\$2,059,863	1d
1e DOE DECONTAMINATION AND DECOMMISSIONING COSTS	0	0	0	0	6,475,000	0	\$6,475,000 \$0	1e
1f SECURITY COSTS	391,906	391,906	391,906	391,906	391,906	391,906	\$4,702,875	1f
1g INCREMENTAL HEDGING COSTS	62,500	62,500	62,500	62,500	62,500	62,500	\$750,000	1g
1h REACTOR VESSEL HEAD PROJECT	2,423,667	2,423,667	2,423,667	2,423,667	2.423.667	2,423,667	\$29,084,000	1h
2 FUEL COST OF POWER SOLD	(4,717,576)	(5,090,692)	(3,540,438)	(2,983,362)	(2,106,571)	(3,455,386)	(\$45,826,742)	
2a REVENUES FROM OFF-SYSTEM SALES	(1,215,870)	(1,093,370)	(489,330)	(84,562)	(94,470)	(198,146)	(\$6,014,524)	
3 FUEL COST OF PURCHASED POWER	16,358,749	17,367,467	14,395,521	14,621,073	12,973,244	14,357,435	\$178,048,535	3
3a MISSION SETTLEMENT	0	0	0	0	0	0	\$0	3a
3b OKEELANTA/OSCEOLA SETTLEMENT	825,881	824,745	823,609	822.474	821,338	820.202	\$9,917,382	3b
3c QUALIFYING FACILITIES	10,243,430	11,002,430	10,364,430	10,154,430	7,208,430	8,649,430	\$118,177,160	3c
4 ENERGY COST OF ECONOMY PURCHASES	3,600,000	3,800,000	5,130,000	3,300,000	2,900,000	2,205,000	\$51,036,250	4
4a FUEL COST OF SALES TO FKEC / CKW	(2,835,019)	(2,950,947)	(2,956,994)	(2,876,949)	(2,676,262)	(2,401,670)	(\$31,141,385)	
	\$247,485,800	\$271,417,461	\$241,329,190	\$235,858,965	\$184,298,391	\$192,809,222	\$2,535,457,676	5
6 SYSTEM KWH SOLD (MWH) (Excl sales to FKEC / CKW)	8,786,760	9,402,730	9,484,580	8,679,853	7,711,788	7,498,150	96,174,644	6
7 COST PER KWH SOLD (¢/KWH)	2.8166	2.8866	2.5444	2.7173	2.3898	2.5714	2.6363	7
7a JURISDICTIONAL LOSS MULTIPLIER	1.00049	1.00049	1.00049	1.00049	1.00049	1.00049	1.00049	7a
7b JURISDICTIONAL COST (¢/KWH)	2.8180	2.8880	2.5457	2.7186	2.3910	2.5727	2.6376	7b
9 TRUE-UP (¢/KWH)	(0.0709)	(0.0662)	(0.0657)	(0.0718)	(0.0808)	(0.0832)	(0.0778)	9
10 TOTAL	2.7471	2.8218	2.4800	2.6468	2.3102	2.4895	2.5598	10
11 REVENUE TAX FACTOR 0.01597	0.0439	0.0451	0.0396	0.0423	0.0369	0.0398	0.0409	11
12 RECOVERY FACTOR ADJUSTED FOR TAXES	2.7910	2.8669	2.5196	2.6891	2.3471	2.5293	2.6007	12
13 GPIF (¢/KWH)	0.0067	0.0063	0.0062	0.0068	0.0077	0.0079	0.0074	13
14 RECOVERY FACTOR including GPIF	2.7977	2.8732	2.5258	2.6959	2.3548	, 2.5372	2.6081	14
15 RECOVERY FACTOR ROUNDED TO NEAREST .001 ¢/KWH	2.798	2.873	2.526	2.696	2.355	2.537	2.608	15

Florida Power & Light Company 9/9/2002

Generating System Comparative Data by Fuel Type

Schedule E 3 Page 1 of 4

Oche	ating byste	an oompa		a by i uei i	ype	i ugo	
	Jan-03	Feb-03	Mar-03	Apr-03	May-03	Jun-03	
Fuel Cost of System Net Generation (\$)				-	-		
1 Heavy Oil	\$33,161,150	\$33,081,170	\$46,019,680	\$39,898,340	\$60,845,550	\$60,726,770	
2 Light Oil	\$102,960	\$2,690	\$59,460	\$196,260	\$1,023,400	\$169,140	
3 Coal	\$9,981,620	\$8,933,150	\$9,546,780	\$9,899,370	\$10,841,540	\$9,439,190	
4 Gas	\$93,349,282	\$85,734,458	\$102,528,156	\$99,142,334	\$115,359,062	\$122,524,692	
5 Nuclear	\$6,904,230	\$6,214,060	\$5,399,010	\$5,689,470	\$5,641,620	\$6,688,460	
6 Total	\$143,499,242	\$133,965,528	\$163,553,086	\$154,825,774	\$193,711,172	\$199,548,252	
System Net Generation (MWH)							
7 Heavy Oil	. 925,370	948,031	1,323,163	1,153,537	1,729,225	1,689,497	
8 Light Oil	1,774	37	806	2,713	14,387	2,380	
9 Coal	599,363	537,195	511,920	562,541	620,057	544,790	
10 Gas	2,538,438	2,355,461	2,794,822	2,784,579	3,244,204	3,580,942	
11 Nuclear	2,185,554	1,974,049	1,699,000	1,879,891	1,797,809	2,063,180	
12 Total	6,250,499	5,814,773	6,329,711	6,383,261	7,405,682	7,880,789	
Units of Fuel Burned							
13 Heavy Oil (BBLS)	1,428,089	1,461,786	2,054,102	1,778,670	2,667,665	2,622,782	
14 Light Oil (BBLS)	3,053	83	1,827	6,071	32,342	5,363	
15 Coal (TONS)	311,232	279,578	277,879	289,907	321,896	282,207	
16 Gas (MCF)	17,957,499	16,664,263	20,728,118	20,538,823	24,400,517	26,495,546	
17 Nuclear (MBTU)	23,354,982	20,985,370	18,081,074	19,106,534	18,409,146	21,565,824	
BTU Burned (MMBTU)							
18 Heavy Oil	9,139,767	9,355,430	13,146,252	11,383,487	17,073,054	16,785,806	
19 Light Oil	17,802	482	10,650	35,395	188,551	31,267	
20 Coal	5,931,710	5,351,974	5,103,799	5,535,890	6,112,842	5,405,167	
21 Gas	17,957,499	16,664,263	20,728,118	20,538,823	24,400,517	26,495,546	
22 Nuclear	23,354,982	20,985,370	18,081,074	19,106,534	18,409,146	21,565,824	
23 Total	56,401,760	52,357,519	57,069,893	56,600,129	66,184,110	70,283,610	
						-	

Florida Power & Light Company 9/9/2002

.

Schedule E 3 Page 2 of 4

2002 Genera	Generating System Comparative Data by Fuel Type							
Genera	Jan-03	Feb-03	Mar-03	Apr-03		Page 2 Jun-03		
	Jan-05	Feb-03	Mar-05	Αμι-03	May-03	Jun-03		
Generation Mix (%MWH)								
24 Heavy Oil	14.80%	16.30%	20.90%	18.07%	23.35%	21.44%		
25 Light Oil	0.03%	0.00%	0.01%	0.04%	0.19%	0.03%		
26 Coal	9.59%	9.24%	8.09%	8.81%	8.37%	6.91%		
27 Gas	40.61%	40.51%	44.15%	43.62%	43.81%	45.44%		
28 Nuclear	34.97%	33.95%	26.84%	29.45%	24.28%	26.18%		
29 Total	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%		
Fuel Cost per Unit								
30 Heavy Oil (\$/BBL)	23.2206	22.6307	22.4038	22.4316	22.8085	23.1536		
31 Light Oil (\$/BBL)	33.7242	32.4096	32.5452	32.3275	31.6431	31,5383		
32 Coal (\$/ton)	32.0713	31.9523	34.3559	34.1467	33.6803	33.4478		
33 Gas (\$/MCF)	5.1983	5.1448	4.9463	4.8271	4.7277	4.6244		
34 Nuclear (\$/MBTU)	0.2956	0.2961	0.2986	0.2978	0.3065	0.3101		
Fuel Cost per MMBTU (\$/MMBTU)								
35 Heavy Oil	3.6282	3.5360	3.5006	3.5049	3.5638	3.6177		
36 Light Oil	5.7836	5.5809	5.5831	5.5449	5.4277	5.4095		
37 Coal	1.6828	1.6691	1.8705	1.7882	1.7736	1.7463		
38 Gas	5.1983	5.1448	4.9463	4.8271	4.7277	4.6244		
39 Nuclear	0.2956	0.2961	0.2986	0.2978	0.3065	0.3101		
BTU burned per KWH (BTU/KWH)								
40 Heavy Oil	9,877	9,868	9,935	9,868	9,873	9,935		
41 Light Oil	10,035	13,027	13,213	13,046	13,106	13,137		
42 Coal	9,897	9,963	9,970	9,841	9,859	9,922		
43 Gas	7,074	7,075	7,417	7,376	7,521	7,399		
44 Nuclear	10,686	10,631	10,642	10,164	10,240	10,453		
Generated Fuel Cost per KWH (cents/KWH)								
45 Heavy Oil	3.5836	3.4895	3.4780	3.4588	3.5187	3.5944		
46 Light Oil	5.8038	7.2703	7.3772	7.2341	7.1134	7.1067		
47 Coal	1.6654	1.6629	1.8649	1.7598	1.7485	1.7326		
⁻ 48 Gas	3.6774	3.6398	3.6685	3.5604	3.5559	3.4216		
49 Nuclear	0.3159	0.3148	0.3178	0.3026	0.3138	0.3242		
50 Total	2.2958	2.3039	2.5839	2.4255	2.6157	2.5321		

.

· · · ·

Florida Power & Light Company Schedul 9/9/2002 Generating System Comparative Data by Fuel Type Page 1									
	Jul-03	Aug-03	Sep-03	Oct-03	Nov-03	Dec-03	Total		
Fuel Cost of System Net Generatio	on (\$)								
1 Heavy Oil	\$72,498,080	\$82,332,690	\$68,838,880	\$72,705,510	\$31,504,530	\$38,720,500	\$640,332,850		
2 Light Oil	\$261,650	\$786,580	\$204,720	\$306,100	\$440	\$2,110	\$3,115,510		
3 Coal	\$10,565,350	\$11,154,930	\$10,231,650	\$10,539,670	\$7,862,230	\$9,560,880	\$118,556,360		
4 Gas	\$129,734,666	\$141,076,796	\$126,442,756	\$119,030,148	\$107,358,150	\$111,899,288	\$1,354,179,788		
5 Nuclear	\$6,866,230	\$6,909,790	\$6,654,430	\$5,425,500	\$6,862,910	\$7,315,490	\$76,571,200		
6 Total	\$219,925,976	\$242,260,786	\$212,372,436	\$208,006,928	\$153,588,260	\$167,498,268	\$2,192,755,708		
System Net Generation (MWH)									
7 Heavy Oil	1,989,491	2,213,127	1,824,874	1,916,816	833,371	1,045,857	17,592,359		
8 Light Oil	3,688	11,001	2,878	4,306	6	29	44,005		
9 Coal	597,173	620,938	573,677	594,111	451,081	545,586	6,758,432		
10 Gas	3,817,513	4,013,168	3,675,266	3,306,967	3,050,385	3,067,686	38,229,431		
11 Nuclear	2,131,954	2,131,954	2,063,180	1,710,328	2,047,942	2,185,554	23,870,395		
12 Total	8,539,819	8,990,188	8,139,875	7,532,528	6,382,785	6,844,712	86,494,622		
Units of Fuel Burned									
13 Heavy Oil (BBLS)	3,093,352	3,447,559	2,827,893	2,954,339	1,290,676	1,621,344	27,248,257		
14 Light Oil (BBLS)	8,319	24,939	6,472	9,641	14	66	98,190		
15 Coal (TONS)	311,390	327,086	298,265	307,244	227,988	283,899	3,518,571		
16 Gas (MCF)	28,338,759	30,146,071	27,288,692	25,061,350	21,793,039	21,822,002	281,234,679		
17 Nuclear (MBTU)	22,464,410	22,587,132	21,626,864	17,564,156	21,843,480	23,257,420	250,846,392		
BTU Burned (MMBTU)									
18 Heavy Oil	19,797,452	22,064,378	18,098,518	18,907,774	8,260,325	10,376,602	174,388,845		
19 Light Oil	48,498	145,393	37,734	56,206	81	388	572,447		
20 Coal	5,925,596	6,190,795	5,679,830		4,468,528		67,013,974		
21 Gas	28,338,759	30,146,071	27,288,692		21,793,039	21,822,002	281,234,679		
22 Nuclear	22,464,410	22,587,132	21,626,864		21,843,480		250,846,392		
23 Total	76,574,715	81,133,769	72,731,638	67,456,712	56,365,453	60,897,029	774,056,337		

.

.

-

.

Florida Power & Light Company 9/9/2002	Generating Syste	em Compa	rative Data	a by Fuel T	уре		Schedule E 3 Page 4 of 4
	Jul-03	Aug-03	Sep-03	Oct-03	Nov-03	Dec-03	Total
Generation Mix (%MWH)			•				
24 Heavy Oil	23.30%	24.62%	22.42%	25.45%	13.06%	15.28%	20.34%
25 Light Oil	0.04%	0.12%	0.04%	0.06%	0.00%	0.00%	0.05%
26 Coal	6.99%	6.91%	7.05%	7.89%	7.07%	7.97%	7.81%
27 Gas	44.70%	44.64%	45.15%	43.90%	47.79%	44.82%	44.20%
28 Nuclear	24.96%	23.71%	25.35%	22.71%	32.09%	31.93%	27.60%
29 Total	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
Fuel Cost per Unit							
30 Heavy Oil (\$/BBL)	23.4367	23.8814	24.3428	24.6097	24.4093	23.8817	23.5000
31 Light Oil (\$/BBL)	31.4521	31.5402	31.6316	31.7498	31.4286	31.9697	31.7294
32 Coal (\$/ton)	33.9296	34.1040	34.3039	34.3039	34.4853	33.6770	33.6945
33 Gas (\$/MCF)	4.5780	4.6798	4.6335	4.7496	4.9263	5.1278	4.8151
34 Nuclear (\$/MBTU)	0.3056	0.3059	0.3077	0.3089	0.3142	0.3145	0.3053
Fuel Cost per MMBTU (\$/MMBTU)							
35 Heavy Oil	3.6620	3.7315	3.8036	3.8453	3.8140	3.7315	3.6719
36 Light Oil	5.3951	5.4100	5.4253	5.4460	5.4321	5.4381	5.4424
37 Coal	1.7830	1.8019	1.8014	1.7964	1.7595	1.7573	1.7691
38 Gas	4.5780	4.6798	4.6335	4.7496	4.9263	5.1278	4.8151
39 Nuclear	0.3056	0.3059	0.3077	0.3089	0.3142	0.3145	0.3053
BTU burned per KWH (BTU/KWH)							
40 Heavy Oil	9,951	9,970	9,918	9,864	9,912	9,922	9,913
41 Light Oil	13,150	13,216	13,111	13,053	13,500	13,379	13,009
42 Coal	9,923	9,970	9,901	9,876	9,906	9,972	9,916
43 Gas	7,423	7,512	7,425	7,578	7,144	7,114	7,356
44 Nuclear	10,537	10,595	10,482	10,269	10,666	10,641	10,509
Generated Fuel Cost per KWH (cent	s/KWH)						
45 Heavy Oil	3.6441	3.7202	3.7723	3.7930	3.7804	3.7023	3.6398
46 Light Oil	7.0946	7.1501	7.1133	7.1087	7.3333	7.2759	7.0799
47 Coal	1.7692	1.7965	1.7835	1.7740	1.7430	1.7524	1.7542
48 Gas	3.3984	3.5153	3.4404	3.5994	3.5195	3.6477	3.5422
49 Nuclear	0.3221	0.3241	0.3225	0.3172	0.3351	0.3347	0.3208
50 Total	2.5753	2.6947	2.6090	2.7614	2.4063	2.4471	2.5351

· · · · · ·

-

Schedule E4

- -

,

					Estimated F	or The Pe	riod of :	Jan-03					
	 (A)	(B)	(C)	(D)	(E)	 (F)	(G)	 (H)	 (I)	 (J)	 (K)	 (L)	(M)
	Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate BTU/KWH)	Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
1 2 2	TRKY O 1	398	 83,095 0	28.1	94.8	90.1	9,789	Heavy Oil BBLS -> Gas MCF ->	 126,423 4,343	6,400,001 1,000,000	 809,108 4,343	 2,927,300 17,900	3.5228
3 4 5	TRKY O 2	398	 110,824 0	37.4	95.4	91.5	9,743	Heavy Oil BBLS -> Gas MCF ->	167,263 9,275	6,399,999 1,000,000	1,070,485 9,275	3,872,900 38,300	3.4946
	TRKY N 3	717	520,110	97.5	97.5	100.0	10,726	Nuclear Othr ->	5,578,680	1,000,000	5,578,680	1,602,800	0.3082
	TRKY N 4	717	520,110	97.5	97.5	100.0	10,681	Nuclear Othr ->	5,555,190	1,000,000	5,555,190	1,609,900	0.3095
11 12		440	 322 121,988	37.4	94.5	88.5	7,807	Light Oil BBLS -> Gas MCF ->	409 952,456	5,830,152 1,000,000	2,382 952,456	 14,500 3,935,400	4.5073 3.2261
14 15		440	622 157,035	48.2	94.5	91.8	7,675	Light Oil BBLS -> Gas MCF ->	777 1,205,496	5,829,815 1,000,000	4,529 1,205,496	27,600 4,981,000	4.4409 3.1719
17 18		212	 1,909 0	1.2	96.5	93.2	10,607	Heavy Oil BBLS -> Gas MCF ->	 3,140 154	6,400,025 1,000,000	20,098 154	72,900 600	3.8184
20 21	PT EVER2	212	 10,821 0	6.9	95.6	88.4	10,095	Heavy Oil BBLS -> Gas MCF ->	 16,971 624	6,400,006 1,000,000	 108,611 624	393,800 2,600	3.6393
23 24	PT EVER3	392	59,872 6,652	22.8	95.7	91.2	9,927	Heavy Oil BBLS -> Gas MCF ->	91,806 72,804	6,400,003 1,000,000	 587,557 72,804	2,130,600 300,800	3.5586 4.5217
	PT EVER4	404	46,879 5,209	17.3	95.2	92.1	9,971	Heavy Oil BBLS -> Gas MCF ->	 72,190 57,365	6,400,001 1,000,000	462,018 57,365	1,675,300 237,000	3.5737 4.5500

.

				Estimated F	For The Pe	riod of :	Ja	ın-03					
(A)	(B)	(C)	 (D)	 (E)	 (F)	(G)		 (H)	 (I)	 (J)	 (К)	 (L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate BTU/KWH)	Т	⁻ uel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
29 RIV 3 30	280	1,997 222	1.1	96.0	92.6	10,099		Dil BBLS -> MCF ->	 3,106 2,534	6,399,981 1,000,000	 19,878 2,534	 71,600 10,500	3.5848 4.7319
31 32 RIV 4 33 34	292	154,859 17,207	79.2	94.3	84.9	10,051	Heavy C Gas)il BBLS -> MCF ->	 241,867 181,404	6,400,001 1,000,000	 1,547,948 181,404	5,573,500 749,600	3.5991 4.3565
35 ST LUC 1	853	618,763	97.5	97.5	100.0	10,687	Nuclea	r Othr->	6,612,811	1,000,000	6,612,811	2,091,000	0.3379
36 37 ST LUC 2	726	526,572	97.5	97.5	100.0	10,651	Nuclea	r Othr->	5,608,303	1,000,000	5,608,303	1,600,600	0.3040
√ 38 39 CAP CN 1 40	398	95,134 10,570	35.7	95.3	89.7	9,700		Dil BBLS -> MCF ->	 142,786 111,554	6,400,000 1,000,000	913,831 111,554	3,272,300 460,900	3.4397 4.3603
41 42 CAP CN 2 43 44	398	125,150 13,906	47.0	94.9	88.9	9,676	-)il BBLS -> MCF ->	187,385 146,234	6,399,999 1,000,000	1,199,266 146,234	4,294,400 604,200	3.4314 4.3450
44 45 SANFRD 3 46 47	144	756 0	0.7	95.9	92.1	10,969	Heavy C Gas	Dil BBLS -> MCF ->	1,277 124	6,400,000 1,000,000	8,170 124	29,400 500	3.8884
48 SANFRD 4	374		0.0	0.0		0							
49 50 SANFRD 5	384		0.0	0.0		0				****			
51 52 PUTNAM 1	250	3,669	2.0	95.7	90.4	9,036	Gas	MCF ->	33,154	1,000,000	33,154	137,000	3.7341
53 54 PUTNAM 2 55	250	3,340 	1.8	95.7	90.5	9,043	Gas 	MCF ->	30,205 	1,000,000	30,205	 124,800 	3.7361

•

18

Schedule E4

				Estimated F	For The Pe	riod of :		Jan-03						
 (A)	(B)	(C)	 (D)	(E)	 (F)	(G)		(H)		(I)	(J)	 (K)	(L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate BTU/KWH)	Fuel Type		Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
56 MANATE 1	805	20,859	3.5	95.9	89.4	10,481	Heavy	Oil BBLS	->	34,159	6,400,004	218,617	807,400	3.8707
57 58 MANATE 2	805	85,846	14.3	95.8	87.2	10,269	Heavy	Oil BBLS	->	137,750	6,400,002	881,598	3,256,000	3.7928
59 60 FT MY 1	0		0.0	0.0	L-4844444444	0			•					
61 62 FT MY 2	0		0.0	0.0		0			•		**			
63 64 CUTLER 5	72	214	0.4		89.5	13,212	Gas	MCF ·	->	2,822	1,000,000	2,822	11,600	5.4307
65 66 CUTLER 6	145	469	0.4	97.0	88.9	11,924	Gas	MCF ·	->	5,587	1,000,000	5,587	23,100	4.9296
67 68 MARTIN 1 69	833	24,365 10,442	5.6	96.0	89.5	10,381	Heavy Gas	Oil BBLS MCF		38,823 112,888	6,400,007 1,000,000	248,466 112,888	919,600 466,500	3.7742 4.4674
70 71 MARTIN 2 72	821	103,003 44,144	24.1	96.5	86.8	10,313	Heavy Gas	Oil BBLS MCF		163,143 473,465	6,400,001 1,000,000	1,044,115 473,465	3,864,300 1,956,300	3.7517 4.4316
73 74 MARTIN 3	470	228,878	65.5	94.5	95.5	7,036	Gas	MCF ·	.>	1,610,350	1,000,000	1,610,350	6,653,800	2.9071
75 76 MARTIN 4	470	205,324	58.7		94.8	7,055	Gas	MCF ·	.>	1,448,459	1,000,000	1,448,459	5,984,900	2.9149
77 78 FM GT	624	831	0.2	 97.2	94.6	13,108	Light	Oil BBLS	->	1,868	5,829,934	 10,891	60,900	7.3303
79 80 FL GT 81	768	 195	0.0	90.7	93.1	19,819	Gas 	MCF ·	->	3,871	1,000,000	3,871	 16,000	8.1925

.

· · · ·

Schedule E4

.

_

				Estimated I	For The Pe	riod of :		Jan-03					
(A)	 (B)	 (C)	(D)	 (E)	 (F)	(G)		(H)	 (l)	(J)	 (K)	 (L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate BTU/KWH)		Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
82 PE GT	384	234	0.1	88.3	95.3	19,462	Gas	MCF ->	4,557	1,000,000	 4,557		8.0273
83 84 SJRPP 10	130	90,616	93.7	94.3	100.0	9,543	Coal	TONS ->	35,455	24,390,010	864,736	1,165,300	1.2860
85 86 SJRPP 20 87	130	90,037	93.1	93.2	100.0	9,470	Coal	TONS ->	34,958	24,390,028	852,634	1,149,000	1.2761
88 SCHER #4	648	418,710	86.9	93.7	98.6	10,065	Coal	TONS ->	240,819	17,500,006	4,214,341	7,667,300	1.8312
	1,498	1,039,844	93.3	93.5	100.0	6,546	Gas	MCF ->	6,806,356	1,000,000	6,806,356	32,330,200	3.1091
92 SNREP4	986		0.0	0.0		0						<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	**************
93 94 SNREP5 95	986	666,831	90.9	93.3	98.6	6,988	Gas	MCF ->	4,659,905	1,000,000	4,659,905	19,254,100	2.8874
96 FM SC	362		0.0	0.0		0							
97 98 MR SC	362	2,065	0.8	98.8	94.7	10,418	Gas	MCF ->	21,515	1,000,000	21,515	88,900	4.3045
99 100 FMCT	0		0.0			0		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	*****		****		
101 102 TOTAL	19978 ======	6250498.4				9023.562					56401762.4 ======	128555500	2.056724

· _ ·

				Estimated F	For The Pe	riod of :	Feb-03					
 (A)	(B)	(C)	(D)	(E)	 (F)	(G)	(H)	(!)	(J)	 (K)	 (L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate BTU/KWH		Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
1 TRKY O 1 2	398	 98,180 0	36.7	94.8	87.6	9,785	Heavy Oil BBLS -> Gas MCF ->	 149,341 4,935	6,399,998 1,000,000	955,785 4,935	 3,346,300 20,300	3.4083
4 TRKY O 2 5	398	 126,550 0	47.3	95.4	92.7	9,718	Heavy Oil BBLS -> Gas MCF ->	190,972 7,638	6,399,999 1,000,000	1,222,223 7,638	 4,279,100 31,400	3.3814
7 TRKY N 3	717	469,777	97.5	 97.5	100.0	10,610	Nuclear Othr ->	4,984,227	1,000,000	4,984,227	1,439,900	0.3065
8 9 TRKY N 4	717	469,777	97.5	97.5	100.0	10,613	Nuclear Othr ->	4,985,538	1,000,000	4,985,538	1,445,800	0.3078
10 11 FT LAUD4	440	152,464	51.6		93.7	7,875	Gas MCF ->	1,200,613	1,000,000	1,200,613	4,943,000	3.2421
12 13 FT LAUD5	440	 176,719	59.8	94.5	96.0	7,726	Gas MCF ->	1,365,281	1,000,000	1,365,281	5,620,900	3.1807
14 15 PT EVER1	212	282	0.2	 96.5	80.2	10,552	Heavy Oil BBLS ->	465	6,399,398	2,977	10,500	3.7221
16 17 PT EVER2 18	212	13,959 0	9.8	95.6	82.2	10,075	Heavy Oil BBLS -> Gas MCF ->	21,950 156	6,400,014 1,000,000	 140,477 156	496,200 600	3.5548
19 20 PT EVER3 21	392	75,463 8,385	31.8	95.7	87.4	9,937	Heavy Oil BBLS -> Gas MCF ->	115,874 91,585	6,400,001 1,000,000	741,591 91,585	2,619,700 377,100	3.4715 4.4974
22 23 PT EVER4 24	404	63,067 7,008	25.8	95.2	88.2	9,965	Heavy Oil BBLS -> Gas MCF ->	97,142 76,606	6,399,998 1,000,000	621,711 76,606	2,196,300 315,400	3.4825 4.5009
25 26 RIV 3 27 28	280	68,610 7,623	40.5	50.9	86.7	10,088	Heavy Oil BBLS -> Gas MCF ->	107,583 80,544	6,399,999 1,000,000	688,532 80,544	2,436,500 331,600	3.5512 4.3498

.

. . . .

				Estimated F	or The Pe	riod of :	Feb-03					
(A)	(B)	(C)	 (D)	 (E)	(F)	(G)	(H)	 (I)	(J)	 (K)	 (L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate BTU/KWH	Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
29 RIV 4 30 31	292	502 56	0.3	94.3	76.8	9,986	Heavy Oil BBLS -> Gas MCF ->	 779 582	6,400,308 1,000,000	 4,988 582	17,700 2,400	3.5259 4.3011
32 ST LUC 1	853	558,883	97.5	97.5	100.0	10,652	Nuclear Othr ->	5,953,166	1,000,000	5,953,166	1,883,000	0.3369
34 ST LUC 2	726	475,613	97.5	97.5	100.0	10,644	Nuclear Othr ->	5,062,438	1,000,000	5,062,438	 1,445,3 <u>0</u> 0	0.3039
35 36 CAP CN 1 37	398	114,718 12,747	47.7	95.3	92.8	9,685	Heavy Oil BBLS -> Gas MCF ->	171,888 134,358	6,400,000 1,000,000	1,100,080 134,358	3,846,600 553,200	3.3531 4.3400
38 39 CAP CN 2 40 41	398	126,139 14,015	52.4	94.9	93.6	9,657	Heavy Oil BBLS -> Gas MCF ->	188,483 147,251	6,399,999 1,000,000	1,206,289 147,251	4,218,000 606,200	3.3439 4.3252
12 SANFRD 3	144	142	0.1	95.9	84.4	10,825	Heavy Oil BBLS ->	240	6,398,834	1,537	5,500	3.8732
43 44 SANFRD 4	374		0.0	0.0		0						
45 46 SANFRD 5	384		0.0	0.0	**********	0						
17 18 PUTNAM 1	250	1,426	0.8	95.7	89.8	9,114	Gas MCF ->	12,992	1,000,000	12,992	53,500	3.7531
19 50 PUTNAM 2	 250	 707	0.4	95.7	80.7	9,049	Gas MCF ->	6,393	1,000,000	6,393	26,300	3.7226
51 52 MANATE 1	 805	13,686	2.5	95.9	76.1	10,471	Heavy Oil BBLS ->	22,392	6,399,994	143,309	513,600	3.7527
53 54 MANATE 2 55	805	187,961	34.7	95.8	84.2	10,259	Heavy Oil BBLS ->	301,308	6,400,000	1,928,373	6,910,100	3.6763

.

Schedule E4

-

-

				Estimated F	or The Pe	riod of :	F	eb-03						
 (A)	(B)	(C)	 (D)	(E)	 (F)	(G)		(H)		(1)	 (J)	(K)	(L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate BTU/KWH)		Fuel Type		Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
56 FT MY 1	0		0.0	0.0		0								
57 58 FT MY 2	0		0.0	0.0		0								
59 60 CUTLER 5	72	24	0.0	97.8	91.0	12,795	Gas	MCF	->	308	1,000,000	308	1,300	5.4167
61 62 CUTLER 6	145	58	0.1	97.0	84.4	11,688	Gas	MCF	->	675	1,000,000	675	2,800	4.8443
8 63 64 MARTIN 1 65	833	11,703 5,016	3.0	96.0	76.1	10,377	Heavy Gas	Oil BBLS MCF		18,656 54,089	6,400,003 1,000,000	119,399 54,089	436,600 222,700	
66 67 MARTIN 2 68	821	47,068 20,172	12.2	96.5	82.1	10,333	Heavy Gas	Oil BBLS MCF		74,712 216,616	6,400,000 1,000,000	478,157 216,616	1,748,500 891,800	
69 70 MARTIN 3	470	222,248	70.4	94.5	97.0	7,089	Gas	MCF	->	1,575,547	1,000,000	1,575,547	6,486,600	2.9186
71 72 MARTIN 4	470	206,787	65.5	94.5	96.8	7,107	Gas	MCF	->	1,469,584	1,000,000	1,469,584	6,050,300	2.9259
73 74 FM GT	624	37	0.0		91.8	13,096	Light	Oil BBLS	->	83	5,830,508	482	2,700	7.3370
75 76 FL GT	768	2	0.0	90.7		19,819	Gas	MCF	->	34	1,000,000	34	100	5.8824
77 78 PE GT	384	6	0.0	88.3	92.3	19,462	Gas	MCF	->	110	1,000,000	 110	 500	8.9286
79 80 SJRPP 10 81	130	 81,547	93.3	94.3	100.0	9,564	Coal	TONS	->	31,359	24,870,004	779,908	1,018,700	1.2492

_ ...

- .

23

-

Schedule E4

-

.

- ---

				Estimated I	For The Pe	riod of :		Feb-03					
 (A)	(B)	(C)	(D)	(E)	(F)	(G)		(H)	 (l)	 (J)	 (K)	 (L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate BTU/KWH)		Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
82 SJRPP 20	130	81,051	92.8	93.2	100.0	9,503	 Coal	TONS ->	 30,970	24,869,951	770,217	1,006,000	1.2412
83 84 SCHER #4	648	374,598	86.0	93.7	98.6	10,149	Coal	TONS ->	 217,249	17,499,995	3,801,848	6,908,400	1.8442
85 86 FMREP 1	1,498	939,215	93.3	93.5	100.0	6,546	Gas	MCF ->	6,147,668	1,000,000	6,147,668	29,139,900	3.1026
87 88 SNREP4	986		0.0	0.0		0							
89 90 SNREP5	986	580,551	87.6	93.3	97.3	7,008	Gas	MCF ->	4,068,255	1,000,000	4,068,255	16,749,100	2.8850
91 92 FM SC	 362		0.0	0.0		0							
93 94 MR SC	362	235	0.1	98.8	81.0	10,418	 Gas	MCF ->	2,443	1,000,000	2,443	 10,100	4.3070
95 96 FMCT	0		0.0			0							
97 98 TOTAL		5814772.6 === = ==				9004.224					52357513.8 ======	 120668100 =======	2.075199

.

-

. ..

-

-

				Estimated F	or The Pe	riod of :	Mar-03					
 (A)	 (B)	(C)	(D)	(E)	 (F)	(G)	 (H)	 (I)	(J)	 (K)	 (L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate BTU/KWH	Fuel Type)	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
1 TRKY O 1	398	 23,841 0	8.1	17.4	91.1	9,780	Heavy Oil BBLS -> Gas MCF ->	 36,276 987	6,400,008 1,000,000	 232,169 987	 804,300 4,000	3.3736
3 4 TRKY O 2 5	398	 162,204 0	54.8	95.4	95.9	9,721	Heavy Oil BBLS -> Gas MCF ->	244,957 9,002	6,400,001 1,000,000	1,567,728 9,002	5,431,000 36,100	3.3483
6 7 TRKY N 3	717	33,556	6.3	9.4	100.0	10,616	Nuclear Othr ->	356,213	1,000,000	356,213	106,800	0.3183
8 9 TRKY N 4	717	520,110	97.5	97.5	100.0	10,619	Nuclear Othr ->	5,523,227	1,000,000	5,523,227	1,602,800	0.3082
0 1 FT LAUD4	440	195,352	 59.7	 94.5	95.0	7,857	Gas MCF ->	1,534,794	1,000,000	1,534,794	6,162,700	3.1547
12 13 FT LAUD5 14	440	 9 218,524	66.8	94.5	97.1	7,708	Light Oil BBLS -> Gas MCF ->	 11 1,684,435	5,851,852 1,000,000	63 1,684,435	400 6,763,500	4.6512 3.0951
5 6 PT EVER1 7	212	12,507 0	7.9	96.5	90.7	10,608	Heavy Oil BBLS -> Gas MCF ->	20,609 769	6,400,013 1,000,000	131,899 769	459,900 3,100	3.6772
8 9 PT EVER2 20	212	27,734 0	17.6	95.6	84.6	10,084	Heavy Oil BBLS -> Gas MCF ->	43,577 780	6,399,999 1,000,000	278,895 780	972,500 3,100	3.5065
21 22 PT EVER3	392		0.0	0.0		0						
23 24 PT EVER4 25 26	404	115,122 12,791	42.6	95.2	92.6	9,950	Heavy Oil BBLS -> Gas MCF ->	177,262 138,263	6,399,999 1,000,000	1,134,479 138,263	3,955,800 555,100	3.4362 4.3397
26 27 RIV 3 28	280		0.0	0.0		0						

.

. .

Schedule E4

_

				Estimated F	For The Per	iod of :		ar-03 						
 (A)	(B)	(C)	(D)	(E)	 (F)	 (G)	((H)		(1)	 (J)	 (K)	(L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate BTU/KWH)	т	uel ype		Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
29 RIV 4 30	292	166,075 18,453	84.9	94.3	90.5	10,016	Heavy C Gas	Dil BBL		258,580 193,275	6,400,001 1,000,000	1,654,909 193,275	5,767,500 776,000	3.4728 4.2053
31 32 ST LUC 1	853	618,763	97.5	97.5	100.0	10,668	Nuclea	r Othr	r ->	6,600,826	1,000,000	6,600,826	2,089,800	0.3377
33 34 ST LUC 2	726	526,572	97.5	97.5	100.0	10,636	Nuclea	r Othr	r ->	5,600,807	1,000,000	5,600,807	1,599,600	0.3038
35 36 CAP CN 1 37	398	129,360 14,373	48.5	85.6	94.9	9,680	Heavy C Gas	il BBL MCF		 193,865 150,552	6,400,000 1,000,000	1,240,734 150,552	4,302,400 604,500	3.3259 4.2057
38 39 CAP CN 2 40	398	158,497 17,611	59.5	94.9	95.6	9,650	Heavy C Gas	Dil BBL: MCF		236,931 183,032	6,399,999 1,000,000	1,516,359 183,032	5,258,200 734,900	3.3175 4.1730
41 42 SANFRD 3 43	144	 4,611 0	4.3	95.9	88.6	10,932	Heavy C Gas	il BBL MCF		7,798 497	6,399,967 1,000,000	49,910 497	179,500 2,000	3.8929
44 45 SANFRD 4	374		0.0	0.0		0			•	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
46 47 SANFRD 5	384		0.0	0.0		0								
48 49 PUTNAM 1	250	5,044	2.7		35.7	12,585	Gas	MCF	->	63,478	1,000,000	 63,478	254,900	5.0536
50 51 PUTNAM 2	250	 36,859	 19.8	 79.6	83.5	9,067	 Gas	MCF	->	334,218	1,000,000	334,218	1,342,000	3.6409
52 53 MANATE 1 54	805		0.0	0.0		0								

26

Schedule E4

-. -

.- -- --

				Estimated F	For The Pe	riod of :	!	Vlar-03					ł
 (A)	 (B)	(C)	(D)	(E)	(F)	(G)	··	(H)	(1)	(J)	 (K)	 (L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate BTU/KWH)	Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
55 MANATE 2	805	232,683	38.9	95.8	87.7	10,264	Heavy	Oil BBLS ->	373,155	6,399,999	2,388,194	8,398,400	3.6094
57 FT MY 1	0		0.0	0.0		0							
58 59 FT MY 2	0		0.0	0.0		0							
60 61 CUTLER 5	72	 1,494	2.8		90.0	12,937	Gas	MCF ->	19,322	1,000,000	19,322	77,500	5.1892
62 63 CUTLER 6		3,620	3.4	97.0	86.0	11,740	Gas	MCF ->	42,502	1,000,000	42,502	170,600	4.7124
64 65 MARTIN 1 66	833	 103,808 44,489	23.9	96.0	86.1	10,352	Heavy Gas	Oil BBLS -> MCF ->	 165,038 478,902	6,399,999 1,000,000	1,056,241 478,902	3,754,800 1,922,900	3.6171 4.3222
67 68 MARTIN 2 69	821	 186,723 80,024	43.7	96.5	88.7	10,327	Heavy Gas	Oil BBLS -> MCF ->	296,053 859,858	6,400,000 1,000,000	1,894,737 859,858	6,735,500 3,452,600	3.6072 4.3145
70 71 MARTIN 3	470	265,355	75.9	94.5	97.6	7,072	Gas	MCF ->	1,876,577	1,000,000	1,876,577	7,535,000	2.8396
72 73 MARTIN 4	470	251,535	71.9	94.5	97.7	7,090	Gas	MCF ->	1,783,350	1,000,000	1,783,350	7,160,700	2.8468
74 75 FM GT	624	 797	0.2	97.2	91.0	13,283	Light	Oil BBLS ->	1,816	5,829,892	 10,587	59,100	7.4153
76 77 FL GT	768	44	0.0	90.7	85.1	19,819	Gas	MCF ->	867	1,000,000	867	3,500	8.0092
78 79 PE GT	 384		0.0	88.3	92.3	19,462	Gas	MCF ->	2,494	1,000,000	 2,494	 10,000	7.8064
80 81 SJRPP 10 82	 130 	2,473	2.6	0.0	97.6	9,557	Coal 	TONS ->		24,129,875	23,633	32,900 	1.3304

.

Schedule E4

				Estimated I	For The Pe	riod of :	۱	Mar-03					
(A)	(B)	(C)	(D)	(E)	 (F)	(G)		(H)	 (I)	(J)	 (K)	 (L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate BTU/KWH)		Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
83 SJRPP 20	130	90,037	93.1	93.2	 100.0	9,476	Coal	TONS ->	35,358	24,130,020	853,180	1,189,400	1.3210
84 85 SCHER #4	648	419,410	87.0	93.7	98.4	10,078	Coal	TONS ->	241,542	17,500,004	4,226,986	8,324,500	1.9848
86 87 FMREP 1	1,498	939,698	84.3	74.2	90.4	6,912	Gas	MCF ->	6,495,369	1,000,000	6,495,369	30,138,500	3.2073
88 89 SNREP4	986		0.0	0.0		0			L&=&L&p======				
[№] 90 [№] 91 SNREP5	986	672,260	91.6	93.3	99.2	6,985	Gas	MCF ->	4,695,958	1,000,000	4,695,958	18,855,700	2.8048
92 93 FM SC	362		0.0	0.0		0							
94 95 MR SC	362	17,167	6.4	89.2	91.4	10,418	Gas	MCF ->	178,840	1,000,000	178,840	718,100	4.1831
96 97 FMCT	0		0.0			0							
98 99 TOTAL	 19978 ======	6329709.7 === = ==				9016.194 =======					57069892	 148312100 =======	2.343111

...

- --

-

.

Schedule E4

				Estimated F	or The Pe	riod of :	Ap	or-03					
(A)	(B)	(C)	 (D)	(E)	 (F)	(G)	(H)	(I)	 (J)	 (K)	(L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate BTU/KWH	Т	uel ype	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cos per KWH (C/KWH)
1 TRKY 0 1 2	394	 78,493 0	27.7	59.3	94.0	9,714		MCF ->	118,612 3,356	6,399,999 1,000,000	 759,115 3,356	2,644,100 12,800	3.368
4 TRKY O 2 5	394	128,590 0	45.3	95.4	95.5	9,644	Heavy C Gas	MCF ->	192,711 6,820	6,399,999 1,000,000	1,233,350 6,820	4,296,000 26,100	3.340
6 7 TRKY N 3	693	470,274	94.3		100.0	10,212	Nuclea	r Othr ->	4,802,536	1,000,000	4,802,536	1,477,700	0.314
8 9 TRKY N 4	693	486,491	97.5		100.0	10,225	Nuclea	r Othr ->	4,974,601	1,000,000	4,974,601	1,421,700	0.292
10 11 FT LAUD4	422	126,991	41.8		96.0	7,762	Gas	MCF ->	985,726	1,000,000	985,726	3,772,100	2.970
12 13 FT LAUD5	442	215,045	67.6		96.5	7,590	Gas	MCF ->	1,632,285	1,000,000	1,632,285	6,246,200	2.904
14 15 PT EVER1 16	211	9,439 0	6.2	96.5	91.0	10,540	Heavy C Gas	il BBLS -> MCF ->	15,449 615	6,400,009 1,000,000	 98,876 615	345,300 2,400	3.658
17 18 PT EVER2 19	211	27,600 0	18.2	95.6	85.6	10,015	Heavy C Gas	MCF ->	43,068 780	6,400,008 1,000,000	275,638 780	962,500 3,000	3.487
20 21 PT EVER3 22 23	390	104,543 11,616	41.4	95.7	92.5	9,863	Heavy C Gas	MCF ->	159,570 124,414	6,400,000 1,000,000	1,021,249 124,414	3,566,000 476,100	3.411 4.098
23 24 PT EVER4 25 26	402	97,839 10,871	37.6	95.2	91.6	9,917	Heavy C Gas	011 BBLS -> MCF ->	150,103 117,372	6,400,001 1,000,000	960,659 117,372	3,354,400 449,200	
27 RIV 3 28	278		0.0	0.0		0							

.

				Estimated F	For The Pe	riod of :	Α	pr-03					
 (A)	(B)	(C)	 (D)		 (F)	(G)		(H)	(1)	 (J)	 (K)	 (L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate BTU/KWH		Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
29 RIV 4 30 31	290	14,363 1,596	7.6	94.3	90.1	9,944	Heavy Gas	Dil BBLS -> MCF ->	 22,064 17,488	6,399,998 1,000,000	 141,207 17,488	492,500 66,900	3.4290 4.1920
32 ST LUC 1 33	839	588,980	97.5	97.5	100.0	10,140	Nuclea	ar Othr->	5,972,320	1,000,000	5,972,320	1,862,800	0.3163
34 ST LUC 2 35	714	334,146	65.0	65.0	100.0	10,047	Nuclea	ar Othr->	3,357,077	1,000,000	3,357,077	927,200	0.2775
36 CAP CN 1 37 38	394	15,261 1,696	6.0	14.7	96.6	9,628	Heavy Gas	Dil BBLS -> MCF ->	22,753 17,633	6,400,009 1,000,000	 145,619 17,633	508,200 67,500	3.3301 3.9809
39 CAP CN 2 10	394	144,612 16,068	56.6	94.9	95.7	9,580	Heavy Gas	Dil BBLS -> MCF ->	214,550 166,122	6,399,999 1,000,000	1,373,122 166,122	4,791,700 635,700	3.3135 3.9563
2 SANFRD 3 3 4	142	3,427 0	3.4	95.9	89.4	10,781	Heavy Gas	Dil BBLS -> MCF ->	5,714 373	6,399,965 1,000,000	36,569 373	131,600 1,400	3.8405
5 SANFRD 4	374		0.0	0.0		0							
7 SANFRD 5	384		0.0	0.0		0							
18 19 PUTNAM 1	239	92,223	53.6	 87.4	91.7	9,174	Gas	MCF ->	846,015	1,000,000	846,015	3,237,400	3.5104
0 1 PUTNAM 2	239	92,689	53.9	95.7	95.0	9,065	Gas	MCF ->	840,183	1,000,000	 840,183	3,215,100	3.4687
52 53 MANATE 1 54	798	46,037	8.0	60.4	81.2	10,261	 Heavy (Dil BBLS ->	73,808	6,399,999	472,374	1,655,700	3.5965

				Estimated I	For The Pe	riod of :		Apr-03					
(A)	(B)	(C)	(D)		(F)	(G)	·	(H)	 (l)	(J)	 (K)	 (L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate BTU/KWH		Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
55 MANATE 2	798	204,412	35.6	79.6	88.3	10,077	Heavy	Oil BBLS ->	 321,869	6,400,001	2,059,963	7,220,500	3.5323
56 57 FT MY 1 58	0		0.0	0.0		0							
59 FT MY 2	0		0.0	0.0		0							*********
60 61 CUTLER 5	71	1,307	2.6		91.0	12,722	 Gas	MCF ->	16,626	1,000,000	16,626	63,600	4.8665
62 63 CUTLER 6	144	3,088	3.0		86.4	11,744	 Gas	MCF ->	36,262	1,000,000	36,262	138,800	4.4953
용 64 65 MARTIN 1 66	814	129,067 55,315	31.5	96.0	85.8	10,245	 Heavy Gas	Oil BBLS ->	203,127 588,959	6,399,999 1,000,000	1,300,013 588,959	4,600,900 2,253,700	3.5647 4.0743
67 68 MARTIN 2 69	806	149,855 64,223	36.9	96.5	86.6	10,227	 Heavy Gas	Oil BBLS -> MCF ->	235,271 683,722	6,400,001 1,000,000	1,505,732 683,722	5,329,000 2,616,400	3.5561 4.0739
70 71 MARTIN 3	448	236,673	73.4	84.8	89.0	7,057	Gas	MCF ->	1,670,290	1,000,000	1,670,290	6,391,600	2.7006
72 73 MARTIN 4	448	239,894	74.4	<u></u> 94.5	96.0	7,013	Gas	MCF ->	1,682,479	1,000,000	1,682,479	6,438,300	2.6838
74 75 FM GT	552	2,713	0.7	97.2	92.9	13,044	Light	 Oil BBLS ->	6,071	5,830,031	35,395	<u>-</u> 196,300	7.2345
76 77 FL GT	684	1,223	0.2	90.7	92.0	15,439	Gas	MCF ->	 18,879	1,000,000	18,879	72,200	5.9045
78 79 PE GT		224	0.1	88.3	93.7	 17,514	Gas	MCF ->	 3,924	1,000,000	3,924	15,000	6.6934
80 81 SJRPP 10 82	127		93.4	94.3	100.0	9,447	Coal	TONS ->	32,822	24,589,957 	807,084	1,046,400	1.2249

 $\underline{\omega}$

Schedule E4

.

-

- - -

.

				Estimated I	For The Per	riod of :		Apr-03	`				
 (A)	(B)	(C)	 (D)	(E)	 (F)	(G)		(H)	 (I)	 (J)	 (K)	 (L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate BTU/KWH)		Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
83 SJRPP 20	127	85,122	93.1	93.2	100.0	9,364	 Coal	TONS ->	32,415	24,590,011	797,080	1,033,400	1.2140
84 85 SCHER #4	643	391,988	84.7		96.1	10,030	 Coal	TONS ->	224,670	17,499,996	3,931,726	7,819,500	1.9948
86 87 FMREP 1	1,473	989,508	93.3	93.5	100.0	6,690	Gas	MCF ->	6,619,915	1,000,000	6,619,915	29,392,400	2.9704
88 89 SNREP4	957	************	0.0	0.0		0							
90 91 SNREP5	957	614,383	89.2	93.3	98.5	7,080	Gas	MCF ->	4,350,101	1,000,000	4,350,101	16,646,400	2.7095
92 93 FM SC	298		0.0	0.0		0					u===== ;,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
94 95 MR SC		9,948	4.6	98.8	91.4	10,906	Gas	MCF ->	108,484	1,000,000	108,484	415,100	4.1729
96 97 FMCT	0		0.0			0				#+			
98 99 TOTAL	19330 =======	6383259.8 ======				8866.963					56600126.9	138338800 ======	2.167212

				Estimated F	or The Pe	riod of :	May-03					
 (A)	 (B)	(C)	(D)	(E)	 (F)	(G)	(H)	(I)	 (J)	 (K)	(L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate BTU/KWH	Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
1 TRKY O 1 2	394	 165,951 0	56.6	94.8	. 97.8	9,712	Heavy Oil BBLS -> Gas MCF ->	250,869 6,119	6,400,000 1,000,000	1,605,564 6,119	 5,718,400 23,600	
4 TRKY O 2 5	394	 167,673 0	57.2	95.4	98.3	9,640	Heavy Oil BBLS -> Gas MCF ->	251,365 7,638	6,400,000 1,000,000	1,608,734 7,638	5,729,700 29,500	3.4172
6 7 TRKY N 3 8	693	502,707	97.5	97.5	100.0	10,241	Nuclear Othr ->	5,148,095	1,000,000	5,148,095	1,611,900	0.3206
9 TRKY N 4	693	502,707	97.5	97.5	100.0	10,256	Nuclear Othr ->	5,155,715	1,000,000	 5,155,715	 1,473,500	0.2931
10 11 FT LAUD4	422	242,473	77.2	94.5	98.3	7,771	Gas MCF ->	1,884,345	1,000,000	1,884,345	7,265,500	2.9964
12 13 FT LAUD5 14	442	 61 305,978	93.1	94.5	98.7	7,597	Light Oil BBLS -> Gas MCF ->	 76 2,324,432	5,831,357 1,000,000	 443 2,324,432	2,700 8,962,400	4.4118 2.9291
15 16 PT EVER1 17	211	28,167 0	17.9	96.5	95.1	10,564	Heavy Oil BBLS -> Gas MCF ->	46,135 2,308	6,400,005 1,000,000	295,262 2,308	1,049,800 8,900	3.7270
18 19 PT EVER2 20	211	46,205 0	29.4	95.6	90.8	10,049	Heavy Oil BBLS -> Gas MCF ->	72,157 2,497	6,399,999 1,000,000	461,807 2,497	1,642,000 9,600	3.5537
21 22 PT EVER3 23	390	124,375 13,820	47.6	95.7	94.8	9,865	Heavy Oil BBLS -> Gas MCF ->	189,876 148,057	6,400,000 1,000,000	1,215,207 148,057	4,320,800 570,800	3.4740 4.1304
24 25 PT EVER4 26 27	402	110,575 12,286	41.1	95.2	93.5	9,917	Heavy Oil BBLS -> Gas MCF ->	169,641 132,775	6,399,999 1,000,000	1,085,699 132,775	3,860,300 512,000	3.4911 4.1673
27 28 RIV 3 29	278		0.0	0.0		0						

-

Schedule E4

				Estimated F	or The Per	riod of :	May-03					
 (A)	 (B)	(C)	(D)	 (E)	(F)	(G)	(H)	(1)	(J)	 (K)	 (L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)		Avg Net Heat Rate BTU/KWH)		Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
30 RIV 4 31 32	290	165,986 18,443		94.3	91.0	9,932	Heavy Oil BBLS -> Gas MCF ->	256,301 191,371	6,399,999 1,000,000	1,640,324 191,371	5,840,300 737,900	
33 ST LUC 1	839	608,613	97.5	97.5	100.0	10,243	Nuclear Othr ->	6,233,787	1,000,000	6,233,787	1,945,600	0.3197
34 35 ST LUC 2	714	183,780	34.6		100.0) 10,184	Nuclear Othr ->	1,871,549	1,000,000	1,871,549	610,700	0.3323
36 37 CAP CN 1 38	394	142,315 15,813		95.3	94.9	9,633	Heavy Oil BBLS -> Gas MCF ->	 212,216 165,114		1,358,181 165,114	4,847,200 636,700	
39 40 CAP CN 2 41	394	 163,946 18,216		94.9	96.5	9,581	Heavy Oil BBLS -> Gas MCF ->	243,346 187,822		1,557,416 187,822	5,558,300 724,200	
42 43 SANFRD 3 44	142	 11,022 0		95.9	91.6	10,794	Heavy Oil BBLS -> Gas MCF ->	18,453 870	6,399,985 1,000,000	118,100 870	424,900 3,400	
45 46 SANFRD 4	374		0.0	0.0		0	••••••••••••••••••••••••••••••••••••••					
47 48 SANFRD 5	384		0.0	0.0		0						
49 50 PUTNAM 1	239	 104,457	 58.7	95.7	91.1	9,216	Gas MCF ->	962,719	1,000,000	 962,719	3,712,000	3.5536
51 52 PUTNAM 2		105,008	 59.1	95.7	94.8	9,089	Gas MCF ->	954,369	1,000,000	954,369	3,679,800	3.5043
53 54 MANATE 1 55	798	193,033	32.5	95.9	89.8	10,310	Heavy Oil BBLS ->	310,970	6,400,000	1,990,206	7,046,000	3.6502

- .

34

Schedule E4

.

- - - --

-

¢

					Estimated F	or The Per	iod of :	1	May-03						
	(A)	(B)	(C)	(D)		 (F)	(G)		(H)		 (I)	(J)	(K)	(L)	(M)
	Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate BTU/KWH		Fuel Type		Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
	MANATE 2	798	53,062	8.9	21.6	89.3	10,104	Heavy	Oil BBL	S ->	83,769	6,400,000	536,121	1,898,000	3.5770
58 F	 -T MY 1	0		0.0	0.0		0								
	FT MY 2	0		0.0	0.0		0								
	CUTLER 5	71	4,295	8.1	97.8	91.6	12,807	 Gas	MCF	->	55,008	1,000,000	55,008	212,100	4.9381
· · · ·	CUTLER 6	144	9,726	9.1		89.6	11,689	 Gas	MCF	->	113,685	1,000,000	113,685	438,300	4.5067
66 67	MARTIN 1	814	178,609 76,547	42.1	96.0	91.0	10,281	 Heavy Gas	Oil BBL: MCF		281,816 819,536	6,400,000 1,000,000	1,803,622 819,536	6,467,200 3,159,900	3.6209 4.1281
68 69 70	MARTIN 2	806	178,306 76,417	42.5	96.5	91.3	10,261	Heavy Gas	Oil BBLS		280,752 816,875	6,400,000 1,000,000	1,796,810 816,875	6,442,800 3,149,600	3.6133 4.1216
	MARTIN 3	448	279,476	83.8	94.5	98.0	7,012	Gas	MCF	->	1,959,788	1,000,000	1,959,788	7,556,500	2.7038
	MARTIN 4	448	252,723	75.8		96.1	7,033	Gas	MCF	->	1,777,387	1,000,000	1,777,387	6,853,200	2.7117
	 FM GT	552	 14,326	 3.5		94.6	13,130	 Light	Oil BBLS	:->	32,266	5,829,999	188,108	1,020,700	7.1247
	 FL GT	· 684	 7,223	 1.4	90.7	93.0	 15,439	 Gas	MCF	->	111,522	1,000,000	 111,522	430,000	5.9529
80	PE GT	348	 1,488 	0.6	88.3	95.0 	17,514	 Gas 	MCF	->	26,052	1,000,000	26,052	 100,500 	6.7563

.

_____.

				Estimated F	For The Pe	riod of :		May-03					
 (A)	 (B)	(C)	(D)	 (E)	 (F)	(G)		(H)	(1)	 (J)	 (К)	(L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate BTU/KWH)		Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuei Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
82 SJRPP 10	127	 88,527	93.7	94.3	100.0	9,500	Coal	TONS ->	 34,258	24,550,010	 841,042	1,086,100	1.2269
83 84 SJRPP 20	127	87,959	93.1	93.2	100.0	9,428	Coal	TONS ->	33,780	24,549,999	829,292	1,070,900	1.2175
85 86 SCHER #4 87	643	443,571	92.8	93.7	99.9	10,015	Coal	TONS ->	253,858	17,500,003	4,442,509	8,684,400	1.9578
87 88 FMREP 1 89	1,473	1,022,491	93.3	93.5	100.0	6,690	Gas	MCF ->	6,840,579	1,000,000	6,840,579	30,577,400	2.9905
وه 99 ی 90 SNREP4 91	957		0.0	0.0		0			******				
92 SNREP5	957	646,701	90.8	93.3	99.2	7,075	Gas	MCF ->	4,575,704	1,000,000	4,575,704	17,642,700	2.7281
93 94 FM SC	298		0.0	0.0		0				*****		e 7 3 6 6 7 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	
95 96 MR SC	298	30,622	13.8	98.8	94.3	10,906	Gas	MCF ->	333,946	1,000,000	333,946	1,287,600	4.2049
97 98 FMCT	0		0.0			0						**************************************	
99 100 TOTAL	19330 ======	 7405681.1 ======				8936.938 ======					66184109.3 ======	176636300 ======	2.385146

. -

- .

Schedule E4

~

,

				Estimated F	or The Pe	riod of :	Ju	n-03					
(A)	(B)	(C)	 (D)	 (E)	 (F)	(G)	(H)	 (l)	(J)	 (K)	 (L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate BTU/KWH)	T	uel ype	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
1 TRKY O 1	394	161,925 0	57.1	94.8	98.0	9,733	Heavy O Gas	MCF ->	245,317 5,922	6,399,999 1,000,000	1,570,028 5,922	5,697,200 23,000	3.5184
3 4 TRKY O 2 5	394	200,259 0	70.6	95.4	96.9	9,666	Heavy O Gas	MCF ->	301,212 7,911	6,400,001 1,000,000	 1,927,757 7,911	6,995,400 30,800	3.4932
5 7 TRKY N 3	693	486,491	97.5	97.5	100.0	10,419	Nuclear	 r Othr ->	5,068,714	1,000,000	5,068,714	1,602,200	0.3293
9 TRKY N 4	693	486,491	97.5	97.5	100.0	10,432	Nuclear	r Othr ->	5,075,290	1,000,000	5,075,290	1,451,500	0.2984
10 11 FT LAUD4	422	274,910	90.5	94.5	98.5	7,813	Gas	MCF ->	2,147,946	1,000,000	2,147,946	8,358,700	3.0405
12 13 FT LAUD5	442	296,326	93.1	94.5	98.8	7,631	Gas	MCF ->	2,261,378	1,000,000	2,261,378	8,800,100	2.9697
14 15 PT EVER1 16	211	11,806 0	7.8	96.5	92.0	10,588	Heavy O Gas	MCF ->	19,411 769	6,400,007 1,000,000	 124,230 769	448,600 3,000	3.7997
17 18 PT EVER2 19 20	211	36,346 0	23.9	95.6	89.9	10,087	Heavy O Gas	MCF ->	56,991 1,873	6,400,000 1,000,000	364,744 1,873	1,317,000 7,300	3.6235
20 21 PT EVER3 22 23	390	119,623 13,291	47.3	95.7	97.3	9,888	Heavy O Gas	IBBLS -> MCF ->	183,044 142,752	6,400,000 1,000,000	1,171,479 142,752	4,230,000 555,600	3.5361 4.1801
23 24 PT EVER4 25 26	402	98,978 10,998	38.0	95.2	95.1	9,930	Heavy O Gas	il BBLS -> MCF ->	152,008 119,202	6,400,002 1,000,000	972,852 119,202	3,512,800 463,900	3.5491 4.2182
26 27 RIV 3 28 29	278	83,251 9,250	46.2	50.9	92.2	9,988	Heavy O Gas	il BBLS -> MCF ->	129,241 96,715	6,399,998 1,000,000	827,144 96,715	2,985,100 376,300	3.5857 4.0681

37

Schedule E4

- _ - _ ·

					Estimated F	or The Pe	riod of :	Jun-03					
	 (A)	(B)	(C)	 (D)	(E)	 (F)	(G)	 (H)	(I)	(J)	 (K)	 (L)	(M)
	Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate BTU/KWH	Fuel Type)	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
31		290	17,030 1,892	9.1	94.3	90.1	9,983	Heavy Oil BBLS -> Gas MCF ->	26,262 20,825	6,400,005 1,000,000	 168,078 20,825	606,600 81,000	3.5620 4.2807
	ST LUC 1	839	588,980	97.5	97.5	100.0	10,486	Nuclear Othr ->	6,176,157	1,000,000	6,176,157	1,928,800	0.3275
35	ST LUC 2	714	501,219	97.5	97.5	100.0	10,466	Nuclear Othr ->	5,245,664	1,000,000	5,245,664	1,705,900	0.3404
37 3 38		394	106,628 11,848	41.8	95.3	94.3	9,658	Heavy Oil BBLS -> Gas MCF ->	159,198 125,313	6,399,999 1,000,000	1,018,868 125,313	3,694,800 487,700	3.4651 4.1165
40 41		394	121,424 13,492	47.6	94.9	94.9	9,611	Heavy Oil BBLS -> Gas MCF ->	180,616 140,785	6,400,000 1,000,000	1,155,943 140,785	4,191,900 547,900	3.4523 4.0611
43	SANFRD 3	142	2,665	2.6	95.9	88.2	10,777	Heavy Oil BBLS ->	4,488	6,400,045	28,723	103,300	3.8760
45	SANFRD 4	374		0.0	0.0		0		•••••••••••				******
47	SANFRD 5	384		0.0	0.0		0						
49	PUTNAM 1	239	79,119	46.0	95.7	91.1	9,203	Gas MCF ->	728,148	1,000,000	 728,148	2,833,600	3.5814
51	PUTNAM 2	239	79,655	 46.3	95.7	93.7	9,121	Gas MCF ->	726,526	1,000,000	726,526	2,827,300	3.5494
	MANATE 1	 798	133,016	23.2	 95.9		10,402	Heavy Oil BBLS ->	216,202	6,399,999	1,383,695	4,976,800	3.7415
55	 MANATE 2	 798 	268,199	46.7	95.8	93.2	10,221	Heavy Oil BBLS ->	428,341	6,400,001	2,741,383	9,860,200 	3.6764

.

. .

Schedule E4

.

				Estimated F	or The Pe	riod of :		Jun-03					
(A)	(B)	(C)	(D)	(E)	 (F)	(G)	··	(H)	(I)	 (J)	 (K)	(L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate BTU/KWH)	Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
57 FT MY 1	0		0.0	0.0		0							
58 59 FT MY 2 60	0		0.0	0.0		0	<u></u>						************
61 CUTLER 5	71	967	1.9	97.8	92.3	12,701	Gas	MCF ->	 12,276	1,000,000	 12,276	47,800	4.9452
62 63 CUTLER 6	144	2,264	2.2		87.6	11,622	Gas	MCF ->	26,312	1,000,000	26,312	102,400	4.5232
64 65 MARTIN 1 66	814	160,231 68,671	39.1	96.0	90.0	10,329	Heavy Gas	Oil BBLS -> MCF ->	254,110 737,947	6,400,001 1,000,000	1,626,307 737,947	5,911,300 2,871,700	3.6892 4.1819
67 68 MARTIN 2 69	806	168,116 72,050	41.4	96.5	92.5	10,324	Heavy Gas	Oil BBLS -> MCF ->	266,340 775,008	6,400,001 1,000,000	1,704,576 775,008	6,195,800 3,015,900	3.6854 4.1859
70 71 MARTIN 3	448	221,930	68.8	 94.5	95.5	7,041	Gas	MCF ->	1,562,654	1,000,000	1,562,654	6,081,000	2.7400
72 73 MARTIN 4	448	191,812	59.5	94.5	96.1	7,059	Gas	MCF ->	1,353,986	1,000,000	1,353,986	5,269,000	2.7470
74 75 FM GT	552	2,380	0.6		93.9	13,138	Light	Oil BBLS ->	5,363	5,829,990	31,267	169,100	7.1053
76 77 FL GT	684	1,074	0.2	90.7	92.5	15,439	Gas	MCF ->	 16,575	1,000,000	 16,575	 64,500	6.0078
78 79 PE GT	348	183	0.1	88.3	94.3	17,514	Gas	MCF ->	3,210	1,000,000	3,210	12,500	6.8194
80 81 SJRPP 10 82	127	85,671	93.7	94.3	100.0	9,517	Coal	TONS ->	33,170	24,579,997	815,306	1,052,300	1.2283

-

.

--

-

. . .

				Estimated I	For The Pe	riod of :		Jun-03					
(A)	(B)	(C)	(D)	(E)	 (F)	(G)		(H)	 (I)	 (J)	 (K)	 (L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate BTU/KWH)		Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
83 SJRPP 20	127	85,122	93.1	93.2	100.0	9,451	Coal	TONS ->	32,728	24,579,990	804,449	1,038,300	1.2198
84 85 SCHER #4	643	373,997	80.8	 93.7	96.8	10,121	Coal	TONS ->	216,309	17,500,002	3,785,412	7,348,600	1.9649
86 87 FMREP 1	1,473	989,508	93.3	93.5	100.0	6,690	Gas	MCF ->	6,619,915	1,000,000	6,619,915	29,855,800	3.0172
88 89 SNREP4	957	 616,723	89.5	0.0	98.9	7,075	Gas	MCF ->	4,363,229	1,000,000	4,363,229	16,979,300	2.7531
မ္မွ 90 91 SNREP5	957	605,133	87.8	93.3	98.9	7,076	Gas	MCF ->	4,281,916	1,000,000	4,281,916	16,662,900	2.7536
92 93 FM SC	298	 8,342	3.9	0.0	90.4	10,906	Gas	MCF ->	90,978	1,000,000	90,978	354,000	4.2434
94 95 MR SC	298	11,505	5.4		 91.7	10,906	Gas	MCF ->	125,473	1,000,000	125,473	488,300	4.2441
96 97 FMCT 98	0		0.0			0						************	
98 99 TOTAL	19330 ======	 7880787.7 =======				8918.348 ======					70283608.7	184224800 ======	2.337644 ======

.

-

. . .

					Estimated For The Period of :			Jul-03						
	 (A)	(B)	(C)	 (D)		 (F)	(G))	 H)	(I)	 (J)	 (K)	(L)	 (M)
	Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate BTU/KWH)	Ту	uel /pe	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
1 2	 TRKY O 1	394	 165,444 0	56.4	94.8	98.6	9,738	•	IBBLS -> MCF ->	250,768 6,119	6,400,000 1,000,000	1,604,912 6,119	 5,894,100 23,700	3.5626
3 4 5	TRKY O 2	394	204,030 0	69.6	95.4	98.4	9,665	•	il BBLS -> MCF ->	306,805 8,457	6,400,000 1,000,000	1,963,553 8,457	7,211,300 32,700	3.5344
+	TRKY N 3	693	502,707	97.5	97.5	100.0	10,440	Nuclear	Othr ->	5,248,296	1,000,000	5,248,296	1,625,900	0.3234
9	TRKY N 4	693	502,707	97.5	97.5	100.0	10,452	Nuclear	Othr ->	5,254,502	1,000,000	5,254,502	1,480,200	0.2944
11	FT LAUD4	422	289,526	92.2	94.5	99.3	7,801	Gas	MCF ->	2,258,696	1,000,000	2,258,696	8,733,500	3.0165
13	FT LAUD5	442	307,743	93.6	 94.5	99.3	7,625	Gas	MCF ->	2,346,629	1,000,000	2,346,629	9,073,500	2.9484
15 16		211	 16,268 0	 10.4	96.5	90.7	10,589		il BBLS -> MCF ->	26,771 923	6,399,997 1,000,000	 171,336 923	626,000 3,600	3.8480
18 19	PT EVER2	211	38,051 0	24.2	95.6	90.2	10,086		il BBLS -> MCF ->	59,721 1,561	6,400,003 1,000,000	382,213 1,561	1,396,400 6,000	3.6698
21 22	PT EVER3	390	123,432 13,715	47.3	95.7	97.3	9,894		il BBLS -> MCF ->	188,997 147,401	6,400,000 1,000,000	1,209,582 147,401	4,419,200 569,900	
	PT EVER4	402	104,164 11,574	38.7	95.2	95.9	9,936	Heavy O Gas	il BBLS -> MCF ->	160,028 125,802	6,400,001 1,000,000	1,024,179 125,802	3,741,900 486,400	
	RIV 3	278	22,403 2,489	12.0	96.0	88.6	10,016		il BBLS -> MCF ->	34,677 27,396	6,399,995 1,000,000	221,931 27,396	813,700 105,900	

1

Schedule E4

~

	(B) Net Capb (MW)	(C) Net Gen (MWH)	(D) Capac FAC (%)	Estimated For The Period of :			Jul-03						
 (A)					 (F)	(G)	(H)		(i)	 (J)	 (K)	 (L)	 (M)
Plant Unit				Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate BTU/KWH	~ 1		Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
1 TRKY O 1 2	394	 165,444 0	56.4	94.8	98.6	9,738	Heavy Oil BBL Gas MCF		250,768 6,119	6,400,000 1,000,000	 1,604,912 6,119	5,894,100 23,700	3.5626
3 4 TRKY O 2 5	394	204,030 0	69.6	95.4	98.4	9,665	Heavy Oil BBL Gas MCF		306,805 8,457	6,400,000 1,000,000	1,963,553 8,457	7,211,300 32,700	3.5344
7 TRKY N 3	693	502,707	97.5		100.0	10,440	Nuclear Oth	 Ir ->	5,248,296	1,000,000	5,248,296	1,625,900	0.3234
* 8 9 TRKY N 4	693	502,707	97.5	97.5	100.0	10,452	Nuclear Oth	 Ir ->	5,254,502	1,000,000	5,254,502	1,480,200	0.2944
10 11 FT LAUD4	422	289,526	92.2	 94.5	99.3	7,801	Gas MCF		2,258,696	1,000,000	2,258,696	8,733,500	3.0165
12 13 FT LAUD5	442	307,743	93.6	 94.5	99.3	7,625	Gas MCF	 :->	2,346,629	1,000,000	2,346,629	9,073,500	2.9484
14 15 PT EVER1 16	211	 16,268 0	10.4	96.5	90.7	10,589	Heavy Oil BBL Gas MCF		26,771 923	6,399,997 1,000,000	 171,336 923	626,000 3,600	3.8480
17 18 PT EVER2 19	211	 38,051 0	24.2	95.6	90.2	10,086	Heavy Oil BBL Gas MCF		59,721 1,561	6,400,003 1,000,000	382,213 1,561	1,396,400 6,000	3.6698
20 21 PT EVER3 22	390	123,432 13,715	47.3	95.7	97.3	9,894	Heavy Oil BBL Gas MCF		188,997 147,401	6,400,000 1,000,000	1,209,582 147,401	4,419,200 569,900	3.5803 4.1554
23 24 PT EVER4 25	402	 104,164 11,574	38.7	95.2	95.9	9,936	Heavy Oil BBL Gas MCF		160,028 125,802	6,400,001 1,000,000	1,024,179 125,802	3,741,900 486,400	3.5923 4.2026
26 27 RIV 3 28 29	278	22,403 2,489	12.0	96.0	88.6	10,016	Heavy Oil BBL Gas MCF		34,677 27,396	6,399,995 1,000,000	221,931 27,396	813,700 105,900	

.

42

Schedule E4

~

				Estimated F	For The Pe	riod of :	Jul-03					
 (A)	 (B)	(C)	 (D)	 (E)	 (F)	(G)	· (H)	(1)	 (J)	 (K)	 (L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate BTU/KWH	Fuel Type)	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
30 RIV 4 31	290	169,281 18,809	87.2	94.3	. 93.1	9,957	Heavy Oil BBLS -> Gas MCF ->	262,017 195,842	6,399,999 1,000,000	 1,676,909 195,842	 6,148,400 757,300	3.6321 4.0262
32 33 ST LUC 1	839	608,613	97.5	97.5	100.0	10,620	Nuclear Othr ->	6,463,477	1,000,000	6,463,477	1,987,500	0.3266
34 35 ST LUC 2	714	517,926	97.5	97.5	100.0	10,616	Nuclear Othr ->	5,498,135	1,000,000	5,498,135	1,772,600	0.3422
36 37 CAP CN 1 38	394	114,725 12,747	43.5	95.3	94.1	9,654	Heavy Oil BBLS -> Gas MCF ->	171,266 134,537	6,400,002 1,000,000	1,096,100 134,537	4,025,400 520,300	3.5087 4.0817
39 40 CAP CN 2 41	394	132,974 14,775	50.4	94.9	95.3	9,607	Heavy Oil BBLS -> Gas MCF ->	197,766 153,788	6,400,002 1,000,000	1,265,703 153,788	4,648,300 594,700	3.4957 4.0251
42 43 SANFRD 3 44	142	 4,141 0	3.9	95.9	89.4	10,830	Heavy Oil BBLS -> Gas MCF ->	6,968 249	6,400,043 1,000,000	 44,592 249	 160,400 1,000	3.8738
45 46 SANFRD 4	374		0.0	 0.0		0						
47 48 SANFRD 5	384		0.0	0.0		0						#================
49 50 PUTNAM 1	239	87,126	 49.0	95.7	89.4	9,249	Gas MCF ->	805,815	1,000,000	 805,815	3,115,800	3.5762
51 52 PUTNAM 2	239	87,994	 49.5		94.1	9,126	Gas MCF ->	803,015	1,000,000	803,015	3,104,900	3.5286
53 54 MANATE 1 55	798	251,359	42.3	95.9 	90.3	10,342	Heavy Oil BBLS ->	406,166	6,400,000	2,599,460	9,476,500 	3.7701

.

Schedule E4

- . -

				Estimated F	For The Pe	riod of :		Jul-03						
(A)	(B)	(C)	 (D)	 (E)	 (F)	(G)		(H)		 (I)	(J)	 (K)	(L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate BTU/KWH))	Fuel Type		Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
56 MANATE 2	798	292,537	49.3	95.8	94.8	10,172	Heavy	Oil BBLS	S ->	464,967	6,400,000	2,975,789	10,848,500	3.7084
57 58 FT MY 1		*****	0.0	0.0		0								
59 60 FT MY 2	0		0.0	0.0		0					*****			****
61 62 CUTLER 5	· 71	1,509	2.9	97.8	92.2	12,757	 Gas	MCF	->	 19,254	1,000,000	19,254	 74,400	4.9291
63 64 CUTLER 6	14 4	3,484	3.3	97.0	88.5	11,651	 Gas	MCF	->	40,587	1,000,000	40,587	157,000	4.5068
65 3 66 MARTIN 1 67	814	157,985 67,708	37.3	96.0	91.4	10,353	Heavy Gas	Oil BBLS MCF		250,889 730,823	6,399,999 1,000,000	1,605,686 730,823	5,901,200 2,825,800	3.7353 4.1735
68 69 MARTIN 2 70	806	192,698 82,585	 45.9	96.5	93.4	10,334	 Heavy Gas	Oil BBLS		305,548 889,374	6,400,000 1,000,000	1,955,509 889,374	7,186,800 3,438,800	3.7296 4.1639
71 72 MARTIN 3	448	226,685	68.0	94.5	95.0	7,047	Gas	MCF	->	1,597,554	1,000,000	1,597,554	6,177,100	2.7250
73 74 MARTIN 4	448	206,792	62.0	94.5	95.7	7,065	Gas	MCF	->	1,461,034	1,000,000	1,461,034	5,649,200	2.7318
75 76 FM GT	552	3,688	0.9	 97.2	93.9	13,151	 Light	Oil BBLS	->	8,319	5,830,034	48,498	261,700	7.0966
77 78 FL GT	684	 1,598	0.3		92.5	15,439	 Gas	MCF	->	 24,671	1,000,000	24,671	 95,400	5.9703
79 80 PE GT 81	348	283 	0.1		94.8	17,514	 Gas 	MCF	->	 4,956 	1,000,000	 4,956 	 19,200	6.7845

.

•

-

44

Schedule E4

.

- ----

					Estimated F	or The Per	riod of :		Jul-03					
	 (A)	(B)	(C)	 (D)	(E)	 (F)	(G)		(H)	(1)	 (J)	 (K)	(L)	 (M)
	Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate BTU/KWH)	1	Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
	SJRPP 10	127	88,527	93.7	94.3	100.0	9,556	 Coal	TONS ->	 34,641	24,419,991	845,933	1,192,200	1.3467
84	SJRPP 20	127	87,959	93.1	93.2	100.0	9,491	Coal	TONS ->	34,185	24,420,015	834,786	1,176,400	1.3374
85 86 87	SCHER #4	643	420,687	88.0	93.7	98.9	10,090	Coal	TONS ->	242,564	17,500,002	4,244,878	8,196,800	1.9484
88	FMREP 1	1,473	1,022,491	93.3	93.5	100.0	6,690	Gas	MCF ->	6,840,579	1,000,000	6,840,579	30,645,800	2.9972
90	SNREP4	957	674,044	94.7	90.9	100.0	7,074	Gas	MCF ->	4,768,323	1,000,000	4,768,323	18,437,200	2.7353
	SNREP5	957	655,772	92.1	93.3	99.7	7,075	Gas	MCF ->	4,639,331	1,000,000	4,639,331	17,938,400	2.7355
	FM SC	298	11,656	5.3	97.7	90.1	10,906	Gas	MCF ->	127,116	1,000,000	127,116	491,500	4.2167
	MR SC	298	16,407	7.4	98.8	91.2	10,906	Gas	MCF ->	178,930	1,000,000	178,930	691,800	4.2164
	FMCT	0		0.0			0							
99 100	TOTAL	19330	8539818.6				8966.785					76574717.4 ======	203962200 ======	2.388367

.

.....

- - -

					Estimated F	or The Per	riod of :	Aug-03					
	 (A)	 (B)	(C)	 (D)	(E)	 (F)	(G)	 (H)	(1)	(J)	(K)	(L)	 (M)
	Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate BTU/KWH)	Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
1 2	 TRKY 0 1	394	 179,292 0	61.2	94.8	98.1	9,742	Heavy Oil BBLS -> Gas MCF ->	271,965 6,119	6,400,001 1,000,000	1,740,574 6,119	6,513,800 24,400	3.6331
3 4 5	TRKY 0 2	394	213,677 0	72.9	95.4	98.0	9,673	Heavy Oil BBLS -> Gas MCF ->	321,644 8,457	6,400,000 1,000,000	2,058,524 8,457	7,703,700 33,700	3.6053
44	TRKY N 3	693	502,707	97.5	97.5	100.0	10,483	Nuclear Othr ->	5,269,758	1,000,000	5,269,758	1,633,100	0.3249
9	TRKY N 4	693	502,707	97.5	97.5	100.0	10,493	Nuclear Othr ->	5,274,712	1,000,000	5,274,712	1,485,900	0.2956
11	FT LAUD4	422	289,927	92.3	94.5	98.8	7,822	Gas MCF ->	2,267,875	1,000,000	2,267,875	9,039,400	3.1178
13	FT LAUD5	442	306,596	93.2		98.9	7,644	Gas MCF ->	2,343,701	1,000,000	2,343,701	9,341,600	3.0469
15 16	PT EVER1	211	30,480 0	 19.4	96.5	94.2	10,616	Heavy Oil BBLS -> Gas MCF ->	50,197 2,308	6,400,004 1,000,000	321,263 2,308	1,196,800 9,200	3.9265
18 19	PT EVER2	211	 56,453 0	36.0	95.6	93.2	10,114	Heavy Oil BBLS -> Gas MCF ->	88,675 3,434	6,400,002 1,000,000	567,519 3,434	2,114,100 13,700	3.7449
21 22	PT EVER3	390	146,417 16,269	 56.1	95.7	97.7	9,893	Heavy Oil BBLS -> Gas MCF ->	224,325 173,778	6,400,001 1,000,000	1,435,679 173,778	5,348,200 692,600	3.6527 4.2573
24 25	PT EVER4	402	130,256 14,473	48.4	95.2	96.0	9,929	Heavy Oil BBLS -> Gas MCF ->	200,182 155,783	6,400,001 1,000,000	1,281,163 155,783	4,772,600 621,000	
26 27 28	RIV 3	278	 162,546 18,061	87.3	96.0	92.9	9,999	Heavy Oil BBLS -> Gas MCF ->	252,694 188,678	6,399,999 1,000,000	1,617,239 188,678	6,049,700 752,000	

.

. .

Schedule E4

- -

					Estimated F	or The Per	riod of :	Aug-03					
-	(A)	 (B)	(C)	 (D)	(E)	 (F)	(G)	(H)	(1)	(J)	(K)	(L)	(M)
	Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate BTU/KWH)	Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
	 RIV 4		 44,640	23.0	94.3	94.3	10,009	Heavy Oil BBLS ->	 68,954	6,399,997	441,305	 1,650,800	3.6980
31			4,960					Gas MCF ->	55,134	1,000,000	55,134	219,700	4.4294
33 5	ST LUC 1	839	608,613	97.5	97.5	100.0	10,689	Nuclear Othr ->	6,505,169	1,000,000	6,505,169	2,001,600	0.3289
35 8	ST LUC 2	714	517,926	97.5	97.5	100.0	10,692	Nuclear Othr ->	5,537,496	1,000,000	5,537,496	1,789,200	0.3455
37 C ති 38	CAP CN 1	394	143,309 15,923	54.3	95.3	95.0	9,651	Heavy Oil BBLS -> Gas MCF ->	 214,107 166,527	6,400,000 1,000,000	1,370,285 166,527	5,129,500 663,700	3.5793 4.1681
40 C 41	CAP CN 2	394	 161,018 17,891	61.0	94.9	96.1	9,612	Heavy Oil BBLS -> Gas MCF ->	239,758 185,141	6,399,999 1,000,000	1,534,450 185,141	5,744,000 737,900	3.5673 4.1245
44	SANFRD 3	142	 10,140 0	9.6	95.9	91.1	10,840	Heavy Oil BBLS -> Gas MCF ->	17,058 746	6,399,984 1,000,000	 109,172 746	392,700 3,000	3.8729
46 5	SANFRD 4	374		0.0	0.0		0				********		
	SANFRD 5	384		0.0	0.0		0						
50 F	PUTNAM 1	239	 104,040	 58.5		90.6	9,239	Gas MCF ->	961,206	1,000,000	961,206	3,831,200	3.6824
52 F	PUTNAM 2	239	104,719	58.9		94.6	9,117	Gas MCF ->	954,773	1,000,000	954,773	3,805,600	3.6341
	MANATE 1	798	 217,709	36.7	95.9	90.7	10,435	Heavy Oil BBLS ->	354,984	6,400,001	2,271,899	8,437,600	3.8756

.

Schedule E4

- --

. . . .

				Estimated F	For The Pe	riod of :		Aug-03						
 (A)	(B)	(C)	(D)	 (E)	(F)	(G)		(H)		 (I)	(J)	(K)	 (L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate BTU/KWH)	I	Fuel Type		Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
55 56 MANATE 2	798	 317,962	 53.6		· 96.0	10,236	 Heavy	Oil BBL	S ->	 508,539	6,400,000	3,254,649	12,087,500	3.8016
57 58 FT MY 1	0		0.0	0.0		0		********					** **-~pp #* ===	
59 60 FT MY 2	0		0.0	0.0	-	0								
61 62 CUTLER 5	71	3,925	7.4	97.8	93.0	12,800	Gas	MCF	->	50,234	1,000,000	 50,234	200,300	5.1037
63 64 CUTLER 6	144	8,943	8.3	97.0	90.0	11,665	 Gas	MCF	->	104,312	1,000,000	104,312	 415,700	4.6485
65 66 MARTIN 1 67 68	814	193,071 82,745	45.5	96.0	92.9	10,362	 Heavy Gas	Oil BBL MCF		307,049 892,925	6,400,001 1,000,000	1,965,113 892,925	7,351,900 3,559,100	3.8079 4.3013
56 59 MARTIN 2 70 71	806	206,159 88,354	49.1	96.5	94.4	10,354	Heavy Gas	Oil BBL MCF		327,429 953,836	6,400,000 1,000,000	2,095,545 953,836	7,839,900 3,801,800	3.8029 4.3029
72 MARTIN 3	448	266,148	79.8	94.5	96.1	7,059	Gas	MCF	->	1,878,696	1,000,000	1,878,696	7,488,100	2.8135
73 74 MARTIN 4	448	243,021	72.9	94.5	96.0	7,076	Gas	MCF	->	1,719,698	1,000,000	1,719,698	6,854,400	2.8205
75 76 FM GT	552	11,001	2.7		94.4	13,216	 Light	Oil BBLS	S ->	24,939	5,829,992	145,393	786,600	7.1501
77 78 FL GT	684	5,369	1.1	90.7	93.3	15,439	Gas	MCF	->	82,893	1,000,000	82,893	330,400	6.1537
79 80 PE GT 81	348	 1,119 	0.4		95.3	17,514	Gas 	MCF	_>	19,600	1,000,000	 19,600	78,100	6.9788

.

-

· ·

Schedule E4

.....

--- -

				Estimated F	For The Pe	riod of :		Aug-03					
 (A)	(B)	(C)	(D)	(E)	 (F)	(G)		 (H)	(1)	 (J)	 (K)	(L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate BTU/KWH)		Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
82 SJRPP 10	127	88,527	93.7	94.3	100.0	9,575	Coal	TONS ->	35,012	24,210,023	847,639	1,246,400	1.4079
84 SJRPP 20	127	87,959	93.1	93.2	100.0	9,510	Coal	TONS ->	34,553	24,209,992	836,533	1,230,000	1.3984
85 86 SCHER #4	643	444,452	92.9	93.7	99.9	10,140	Coal	TONS ->	257,521	17,500,002	4,506,623	8,678,500	1.9526
87 88 FMREP 1	1,473	1,022,491	93.3	93.5	100.0	6,690	Gas	MCF ->	6,840,579	1,000,000	6,840,579	31,466,700	3.0775
89 90 SNREP4	957	673,967	94.7	90.9	100.0	7,074	Gas	MCF ->	4,767,863	1,000,000	4,767,863	19,003,900	2.8197
91 92 SNREP5	957	 662,138	93.0	93.3	99.9	7,075	Gas	MCF ->	4,684,647	1,000,000	4,684,647	18,672,200	2.8200
93 94 FM SC	298	27,483	12.4	 97.7	92.7	10,906	Gas	MCF ->	299,714	1,000,000	299,714	1,194,600	4.3467
95 96 MR SC	298	 34,608	15.6	 98.8	93.9	10,906	 Gas	MCF ->	377,415	1,000,000	377,415	1,504,300	4.3467
97 98 FMCT	0		0.0		<u>***</u> *********	0							
99 100 TOTAL	19330	 8990188.5				9024.702					81133767.9	225542400	2.508762

.

49

Schedule E4

•

.

					Estimated F	For The Pe	riod of :	Sep-03					
	 (A)	 (B)	(C)	 (D)	(E)	(F)	(G)	 (H)	(i)	 (J)	(K)	(L)	 (M)
	Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate BTU/KWH	Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
1 2	TRKY O 1	394	157,300 0	55.4	94.8	98.4	9,729	Heavy Oil BBLS -> Gas MCF ->	238,202 5,922	6,400,002 1,000,000	1,524,492 5,922	5,820,800 23,200	3.7004
3 4 5 6	TRKY 0 2	394	 195,153 0	68.8	95.4	98.3	9,656	Heavy Oil BBLS -> Gas MCF ->	293,154 8,184	6,400,000 1,000,000	1,876,187 8,184	7,163,700 32,100	3.6708
7	TRKY N 3	693	486,491	97.5	97.5	100.0	10,383	Nuclear Othr ->	5,051,286	1,000,000	5,051,286	1,565,900	0.3219
0 9	TRKY N 4	693	486,491	97.5	97.5	100.0	10,398	Nuclear Othr ->	5,058,631	1,000,000	5,058,631	1,448,800	0.2978
	FT LAUD4	422	275,833	90.8	94.5	98.7	7,792	Gas MCF ->	2,149,209	1,000,000	2,149,209	8,426,600	3.0550
	FT LAUD5	442	295,708	92.9	 94.5	98.6	7,617	Gas MCF ->	2,252,366	1,000,000	2,252,366	8,831,000	2.9864
16		211	 6,952 0	4.6	96.5	88.6	10,569	Heavy Oil BBLS -> Gas MCF ->	11,431 308	6,399,981 1,000,000	 73,160 308	277,500 1,200	3.9919
18 19	PT EVER2	211	34,106 0	22.5	95.6	89.4	10,078	Heavy Oil BBLS -> Gas MCF ->	53,489 1,405	6,400,001 1,000,000	342,329 1,405	1,298,600 5,500	3.8075
22	PT EVER3	390	118,676 13,186	47.0	95.7	97.3	9,888	Heavy Oil BBLS -> Gas MCF ->	181,624 141,490	6,400,000 1,000,000	1,162,392 141,490	4,409,400 554,700	3.7155 4.2066
24 25		402	102,201 11,356	39.2	95.2	95.5	9,931	Heavy Oil BBLS -> Gas MCF ->	156,968 123,109	6,400,002 1,000,000	1,004,595 123,109	3,810,800 482,700	3.7287 4.2508
26 27 28	RIV 3	278	 10,706 1,190	5.9	96.0	86.9	10,006	Heavy Oil BBLS -> Gas MCF ->	 16,565 13,013	6,399,983 1,000,000	 106,014 13,013	 404,400 51,000	3.7773 4.2872

.

50

Schedule E4

· ---

- - --

				Estimated F	or The Per	iod of :	Sep						
 (A)	(B)	(C)	 (D)	 (E)	 (F)	(G)	(⊣)	(I)	(J)	(K)	(L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate BTU/KWH)	Ту	uel /pe	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
9 0 RIV 4 1	290	162,274 18,030	86.4		92.3	9,958	•	il BBLS -> MCF ->	251,178 187,952	6,400,000 1,000,000	1,607,539 187,952	6,131,800 736,900	3.7787 4.0870
2 3 ST LUC 1	839	588,980	97.5	97.5	100.0	10,569	Nuclear	Othr ->	6,224,773	1,000,000	6,224,773	1,916,600	0.3254
4 5 ST LUC 2	714	501,219	97.5	 97.5	100.0	10,559	Nuclear	Othr ->	5,292,174	1,000,000	5,292,174	1,723,100	0.3438
6 7 CAP CN 1 8	394	112,528 12,503	44.1	95.3	94.1	9,645	-	il BBLS -> MCF ->	167,874 131,576	6,399,999 1,000,000	1,074,391 131,576	4,096,900 515,900	3.6408 4.1261
9 0 CAP CN 2 1	394	130,189 14,465	51.0	94.9	95.3	9,597		il BBLS -> MCF ->	193,417 150,342	6,400,001 1,000,000	1,237,868 150,342	4,720,300 589,400	3.6257 4.0746
2 3 SANFRD 3	142	3,069	3.0	95.9	88.2	10,733	Heavy O	il BBLS ->	 5,147	6,399,984	32,942	118,500	3.8609
4 5 SANFRD 4	374		0.0	0.0		0			*****				
6 7 SANFRD 5	384		0.0	0.0		0							
8 9 PUTNAM 1	239	 94,865	55.1	95.7	95.7	9,085	Gas	MCF ->	861,846	1,000,000	861,846	3,379,100	3.5620
0 1 PUTNAM 2	239		49.2		93.9	9,095	Gas	MCF ->	770,535	1,000,000	770,535	3,021,100	3.5661
2 3 MANATE 1 4	798	185,972	32.4		88.0	10,333	Heavy O	il BBLS ->	300,254	6,399,999	1,921,623	7,275,000	3.9119

.

ភ

- - · ·

Schedule E4

					Estimated F	or The Per	iod of :	5	Sep-03						
A)	A)	 (B)	(C)	 (D)	(E)	 (F)	(G)		(H)		(1)	(J)	(K)	(L)	 (M)
Pla Ur	ant nit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate BTU/KWH		Fuel Type		Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
55 MANA		798	270,198	47.0	95.8	93.6	10,153	Heavy	Oil BBL	S ->	428,630	6,400,000	2,743,234	10,385,600	3.8437
56 57 FT MY	1	0		0.0	0.0		0								
58 59 FT MY	2	0		0.0	0.0		0				##*****				
60 61 CUTLE	ER 5	71	1,121	2.2	97.8	92.5	12,666	Gas	MCF	->	14,194	1,000,000	14,194	55,700	4.9706
62 63 CUTLE	ER 6	144	2,612	2.5	97.0	87.7	11,638	Gas	MCF	->	30,394	1,000,000	30,394	119,200	4.5644
64 65 MARTI 66	IN 1	814	155,011 66,433	37.8	96.0	90.8	10,301	 Heavy Gas	Oil BBLS MCF		245,037 712,893	6,399,999 1,000,000	1,568,236 712,893	5,976,400 2,795,100	3.8555 4.2074
67 68 MARTI 69	IN 2	806	180,539 77,374	 44.4	96.5	92.6	10,284	Heavy Gas	Oil BBL MCF		284,924 828,892	6,400,001 1,000,000	1,823,515 828,892	6,949,200 3,249,900	3.8491 4.2003
70 71 MARTI	IN 3	448	230,871	 71.6	94.5	95.7	7,034	Gas	MCF	->	1,623,979	1,000,000	1,623,979	6,367,200	2.7579
72 73 MARTI	IN 4	448	200,273	62.1	94.5	95.9	7,053	Gas	MCF	->	1,412,495	1,000,000	1,412,495	5,538,100	2.7653
74 75 FM GT	-	552	2,878	0.7		93.8	13,113	Light	Oil BBLS	;->	6,473	5,829,973	37,735	204,700	7.1136
76 77 FL GT		 684	 1,238	0.3	90.7	92.3	15,439	Gas	MCF	->	 19,108	1,000,000	19,108	74,900	6.0515
78 79 PE GT		348	 204	0.1		94.4	17,514	 Gas	MCF	->	3,580	1,000,000	3,580	14,000	6.8493
80 81 SJRPF	 P 10		85,671	 93.7	94.3	100.0	9,541	 Coal	TONS	; ->	33,472	24,419,994	817,384	1,213,400	1.4164

Schedule E4

- ·

				Estimated F	or The Pe	riod of :	<u> </u>	Sep-03					
(A)	(B)	(C)	 (D)	 (E)	 (F)	(G)		(H)	 (I)	 (J)	 (K)	 (L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate BTU/KWH)		Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
82 83 SJRPP 20	127		 93.1	93.2		9,475	Coal	TONS ->	 33,029	24,419,986	806,573	1,197,300	1.4066
84 85 SCHER #4	643	402,885	 87.1	93.7	98.4	10,067	Coal	TONS ->	231,764	17,499,997	4,055,875	7,820,900	1.9412
86 87 FMREP 1	1,473	989,508	93.3	 93.5	100.0	6,690	Gas	MCF ->	6,619,915	1,000,000	6,619,915	30,054,400	3.0373
88 89 SNREP4	957	 636,179	 92.3		99.2	7,076	 Gas	MCF ->	4,501,510	1,000,000	4,501,510	17,649,300	2.7743
の 90 91 SNREP5	957	610,427	 88.6	93.3	99.0	7,076	 Gas	MCF ->	4,319,082	1,000,000	4,319,082	16,934,100	2.7741
92 93 FM SC	298	 15,962	7.4	97.7	 91.7	10,906	 Gas	MCF ->	174,071	1,000,000	174,071	682,500	4.2759
94 95 MR SC	298	 21,211	9.9	98.8	 92.5	10,906	 Gas	MCF ->	231,322	1,000,000	231,322	907,000	4.2760
96 97 FMCT	0		0.0			0							
98 100 TOTAL	 19330 === ===	 8139874.9 ======				8935.228				-	 72731636.1 ======	 197021400 ======	2.420448 ======

•

-

				Estimated F	or The Pe	riod of :	Oct-03					
(A)	 (B)	(C)	(D)		 (F)	(G)	(H)	(1)	(J)	(K)	(L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate BTU/KWH		Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
1 TRKY O 1	394	210,111 0	71.7	94.8	97.0	9,692	Heavy Oil BBLS -> Gas MCF ->	 317,467 4,540	6,400,000 1,000,000	2,031,791 4,540	 7,844,300 17,700	3.7334
3 4 TRKY O 2 5	394	249,408 0	85.1	95.4	96.3	9,605	Heavy Oil BBLS -> Gas MCF ->	373,823 3,001	6,399,999 1,000,000	2,392,465 3,001	9,236,700 11,700	3.7035
7 TRKY N 3	693	502,707	97.5	97.5	100.0	10,212	Nuclear Othr ->	5,133,898	1,000,000	5,133,898	1,567,400	0.3118
8 9 TRKY N 4	693	81,081	15.7	18.9	100.0	10,226	Nuclear Othr ->	829,124	1,000,000	829,124	249,200	0.3073
战 10 11 FT LAUD4	422	293,212	93.4	94.5	99.5	7,764	Gas MCF ->	2,276,557	1,000,000	2,276,557	8,892,700	3.0329
12 13 FT LAUD5	442	206,729	62.9	62.3	99.4	7,591	Gas MCF ->	1,569,354	1,000,000	1,569,354	6,130,300	2.9654
14 15 PT EVER1	211	412	0.3	6.2	82.8	10,498	Heavy Oil BBLS ->	· 675	6,400,267	4,322	16,600	4.0321
16 17 PT EVER2 18	211	 38,490 0	24.5	95.6	94.9	10,076	Heavy Oil BBLS -> Gas MCF ->	 60,206 2,497	6,400,004 1,000,000	 385,317 2,497	1,478,900 9,800	3.8423
19 20 PT EVER3 21	390	158,015 17,557	60.5	95.7	98.3	9,862	Heavy Oil BBLS -> Gas MCF ->	· 241,407 186,533	6,400,000 1,000,000	1,545,006 186,533	5,930,000 728,600	
22 23 PT EVER4 24	402	120,907 13,434	44.9	95.2	98.0	9,910	Heavy Oil BBLS -> Gas MCF ->	 185,550 143,839	6,400,000 1,000,000	1,187,517 143,839	4,557,900 561,900	
25 26 RIV 3 _ 27	278	 163,458 18,162	87.8	96.0	93.9	9,959	Heavy Oil BBLS -> Gas MCF ->	253,051 189,160	6,399,999 1,000,000	1,619,525 189,160	6,250,600 738,900	

.

.

.

				Estimated F	or The Pe	riod of :	Oct-	-03					
 (A)	 (B)	(C)	 (D)	 (E)	(F)	(G)	 (H	 1)	(I)	 (J)	 (K)	 (L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate BTU/KWH)	Fu Typ		Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
28													
29 RIV 4 30	290	29,283 3,254	15.1	94.3	95.9	9,987	Heavy Oil Gas I	MCF ->	45,097 36,308	6,400,004 1,000,000	288,622 36,308	1,113,900 141,800	3.8039 4.3581
31 32 ST LUC 1	839	608,613	97.5	97.5	100.0	10,319	Nuclear	Othr ->	6,280,041	1,000,000	6,280,041	1,903,500	0.3128
33 34 ST LUC 2	714	517,926	97.5	97.5	100.0	10,274	Nuclear	Othr ->	5,321,094	1,000,000	5,321,094	1,705,400	0.3293
35 36 CAP CN 1 37	394	 122,184 13,576		95.3	93.7	9,638	Heavy Oil Gas I	BBLS -> MCF ->	182,184 142,476	6,400,001 1,000,000	1,165,979 142,476	4,494,700 556,600	3.6786 4.0999
40 41 40 40 40	394	 102,254 11,362		94.9	94.0	9,585	Heavy Oil Gas I	BBLS -> MCF ->	151,719 118,023	6,399,999 1,000,000	971,000 118,023	3,743,100 461,000	
41 42 SANFRD 3 43	142	5,077 0	4.8	95.9	88.7	10,707	Heavy Oil Gas I	BBLS -> MCF ->	8,455 249	6,399,995 1,000,000	54,109 249	194,700 1,000	
44 45 SANFRD 4	374	8	0.0	0.0		0							
46 47 SANFRD 5	384	*	0.0	0.0		0							
48 49 PUTNAM 1	239	 64,880	36.5	66.8	75.3	9,638	Gas I	MCF ->	625,286	1,000,000	625,286	2,442,500	3.7646
50 51 PUTNAM 2	239	88,605	49.8	95.7	93.8	9,067	Gas I	MCF ->	803,396	1,000,000	803,396	3,138,200	3.5418
52 53 MANATE 1	798	 178,495	 30.1	 95.9	86.8	10,266	Heavy Oil	BBLS ->	286,328	6,400,000	1,832,497	7,014,400	3.9297

وياقعه وجولين وخادهمهم وانخده محج وفخاهد عبد

					Estimated F	or The Per	iod of :	(Dct-03						
	(A)	(B)	(C)	(D)	(E)	 (F)	(G)		(H)	-	(1)	(J)	 (K)	(L)	(M)
	Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate BTU/KWH)		Fuel Type		Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
55	MANATE 2	798	293,944	 49.5	 95.8	90.3		 Heavy	Oil BBLS	S ->	463,178	 6,400,000	2,964,342	11,346,900	3.8602
	 FT MY 1	0		0.0	0.0		0								
	FT MY 2	0		0.0	0.0	****	0								****
61	CUTLER 5	71	2,446	4.6	 97.8	90.4	12,731	Gas	MCF	->	 31,133	1,000,000	 31,133	121,600	4.9724
63	CUTLER 6	144	 6,459	6.0	 97.0	90.0	11,732	Gas	MCF	->	75,779	1,000,000	 75,779	296,000	4.5825
^ਲ 65 66	MARTIN 1	814	88,418 37,894	20.9	50.9	91.0	10,267	Heavy Gas	Oil BBLS MCF		139,278 405,432	6,399,997 1,000,000	891,377 405,432	3,428,700 1,583,700	3.8778 4.1793
69	MARTIN 2	806	156,360 67,012	37.2	96.5	88.6	10,249	Heavy Gas	Oil BBLS MCF		245,922 715,482	6,400,000 1,000,000	1,573,902 715,482	6,054,000 2,794,800	3.8718 4.1706
71	MARTIN 3	448	190,293	57.1	78.4	80.4	7,131	Gas	MCF	->	1,356,922	1,000,000	1,356,922	5,300,500	2.7854
73	MARTIN 4	448	179,418	53.8	78.4	81.4	7,116	Gas	MCF	->	1,276,815	1,000,000	1,276,815	4,987,600	2.7799
75	FM GT	552	4,306	1.0		93.4	13,053	Light	Oil BBLS	->	9,641	5,830,014	56,206	306,100	7.1087
77	FL GT	684	3,135	0.6	90.7	94.4	15,509	Gas	MCF	->	48,620	1,000,000	48,620	189,900	6.0574
79	PE GT	348	 349	0.1		94.3	17,514	 Gas	MCF	->	 6,116	1,000,000	6,116	23,900	6.8442
80 81	 SJRPP 10	127	 87,898	93.0	. <u></u> 94.3	99.9	9,528	 Coal	TONS	->	33,798	24,780,002	837,515	1,273,800	1.4492

. . .

.

				Estimated F	for The Pe	riod of :		Oct-03					
 (A)	 (B)	(C)	 (D)	(E)	 (F)	(G)		(H)	 (l)	 (J)	 (K)	(L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate BTU/KWH)		Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
82 83 SJRPP 20 84	127	 87,959	93.1	93.2	100.0	9,458	Coal	TONS ->	 33,572	24,780,029	 831,918	 1,265,300	1.4385
85 SCHER #4	643	418,253	87.5	93.7	98.7	10,036	Coal	TONS ->	239,874	17,500,001	4,197,794	8,000,500	1.9128
86 87 FMREP 1	1,473	923,955	84.3	93.5	90.4	7,052	 Gas	MCF ->	6,516,181	1,000,000	6,516,181	29,518,300	3.1948
88 දු 89 SNREP4	957	 629,160	88.4	90.9	98.9	7,075	 Gas	MCF ->	4,451,024	1,000,000	4,451,024	17,386,700	2.7635
90 91 SNREP5	957	495,639	69.6	 74.0	79.7	7,335	Gas	MCF ->	3,635,636	1,000,000	3,635,636	14,201,600	2.8653
92 93 FM SC	298	- 16,863	7.6		89.9	10,906	Gas	MCF ->	183,902	1,000,000	183,902	718,400	4.2602
94 95 MR SC	298	23,575	10.6	89.2	91.8	10,906	 Gas	MCF ->	257,095	1,000,000	257,095	1,004,300	4.2601
96 97 FMCT	0		0.0	~		0							QFH = = = = = = = = = = = = = = = = = = =
98 100 TOTAL	19330	 7532528.4 ======	**********	6687-1-744		8955.388			<u>+</u>		67456711.3	190936600 ======	2.534827 ======

57

Schedule E4

				Estimated F	For The Pe	riod of :	Nov-03					
 (A)	 (B)	(C)	 (D)	(E)	 (F)	(G)	 (H)	(1)	(J)	 (K)	 (L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate BTU/KWH	Fuel Type)	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
1 TRKY O 1 2	398	86,143 0	30.1	94.8	. 91.5	9,783	Heavy Oil BBLS -> Gas MCF ->	131,055 3,948	6,399,998 1,000,000	838,751 3,948	3,195,300 16,100	3.7093
3 4 TRKY O 2 5 6	398	 119,156 0	41.6	95.4	92.5	9,736	Heavy Oil BBLS -> Gas MCF ->	180,030 7,911	6,400,001 1,000,000	1,152,193 7,911	4,389,300 32,300	3.6837
7 TRKY N 3	717	503,332	97.5	97.5	100.0	10,584	Nuclear Othr ->	5,327,201	1,000,000	5,327,201	1,626,900	0.3232
8 9 TRKY N 4	717	436,222	84.5	81.3	100.0	10,579	Nuclear Othr ->	4,614,924	1,000,000	4,614,924	1,531,700	0.3511
10] 11 FT LAUD4	440	177,919	56.2	94.5	97.3	7,881	Gas MCF ->	1,402,175	1,000,000	1,402,175	5,731,200	3.2212
12 13 FT LAUD5	440	243,262	76.8	94.5	95.8	7,759	Gas MCF ->	1,887,392	1,000,000	1,887,392	7,714,600	3.1713
14 15 PT EVER1	212		0.0	6.2		0						~~~~ <i>~~</i> ******
16 17 PT EVER2 18	212	 14,008 0	9.2	95.6	86.9	10,109	Heavy Oil BBLS -> Gas MCF ->	22,030 624	6,399,990 1,000,000	 140,991 624	537,500 2,600	3.8370
19 20 PT EVER3 21	392	58,638 6,515	23.1	95.7	87.7	9,935	Heavy Oil BBLS -> Gas MCF ->	90,238 69,809	6,399,998 1,000,000	577,520 69,809	2,201,700 285,300	3.7547 4.3789
22 23 PT EVER4 24 25	404	26,424 2,936	10.1	95.2	92.3	9,966	Heavy Oil BBLS -> Gas MCF ->	40,685 32,211	6,399,998 1,000,000	260,384 32,211	992,700 131,700	3.7568 4.4857
25 26 RIV 3 27	280	940 104	0.5	96.0	75.5	10,020	Heavy Oil BBLS -> Gas MCF ->	1,464 1,093	6,400,191 1,000,000	9,369 1,093	35,700 4,500	3.7995 4.3103

• =

					Estimated F	For The Per	riod of :	No	<i>-</i> -03					
	 (A)	(B)	(C)	 (D)		(F)	(G)		 H)	(!)	(L)	 (K)	 (L)	 (M)
	Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate BTU/KWH	Ту	lel ope	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
	 RIV 4	292	146,303 16,256	77.3	94.3	83.9	10,082	Heavy Oi Gas	 II BBLS -> MCF ->	229,242 171,776	6,400,000 1,000,000	 1,467,149 171,776	5,597,300 702,100	3.8258 4.3191
32	ST LUC 1	853	598,803	97.5	97.5	100.0	10,725	Nuclear	Othr ->	6,421,902	1,000,000	6,421,902	1,946,500	0.3251
34	ST LUC 2	726	509,586	97.5	97.5	100.0	10,753	Nuclear	Othr ->	5,479,454	1,000,000	5,479,454	1,757,800	0.3449
	CAP CN 1	398	66,171 7,352	25.7	95.3	88.6	9,695	Heavy Oi Gas	I BBLS -> MCF ->	99,113 78,516	6,400,001 1,000,000	634,325 78,516	2,427,000 320,900	3.6678 4.3646
	CAP CN 2	398	82,731 9,192		94.9	89.5	9,662		BBLS -> MCF ->	123,585 97,215	6,400,000 1,000,000	790,946 97,215	3,026,200 397,400	3.6579 4.3232
42	SANFRD 3	144	93	0.1	95.9	81.8	10,855	Heavy Oi	BBLS ->	158	6,399,114	1,012	3,600	3.8627
44	SANFRD 4	374		0.0	0.0		0			<u>***</u>			-	
46	SANFRD 5	384		0.0	0.0		0							
48	PUTNAM 1	250	55,487	30.8	52.3	89.8	9,246	Gas	MCF ->	513,029	1,000,000	513,029	2,097,000	3.7793
	PUTNAM 2	 250	 26,1 4 2	14.5	 48.3	59.0	10,558	Gas	MCF ->	275,994	1,000,000	275,994	1,128,100	4.3153
	MANATE 1	 805	 21,630	3.7	 95.9	71.6	10,456	Heavy Oi	I BBLS ->	35,337	6,400,004	226,160	859,600	3.9741
	MANATE 2	805	 141,136	24.4	95.8	82.7	10,266	Heavy Oi	I BBLS ->	226,397	6,399,999	1,448,939	5,507,200	3.9020

.

59

Schedule E4

.

				Estimated I	For The Pe	riod of :		Nov-03						
 (A)	(B)	(C)	(D)	(E)	 (F)	(G)		(H)		(1)	(J)	(K)	 (L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate BTU/KWH)		Fuel Type		Fuel Burned (Units)	Fue! Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
55 56 FT MY 1			0.0	0.0		0								********
57 58 FT MY 2	 0		0.0		*********	 0		<u>-</u>						************
59 60 CUTLER 5	72	 27	0.1	97.8	88.5	12,802	 Gas	MCF	->	 342	1,000,000	 342	 1,400	5.2434
61 62 CUTLER 6	145	69	0.1	97.0	 81.1	11,673	 Gas	MCF	->	 807	1,000,000	 807	 3,300	4.7688
63 64 MARTIN 1 65	833	69,998 29,999	16.7	96.0	83.8	10,351	 Heavy Gas	Oil BBLS		 111,342 322,462	6,399,999 1,000,000	712,589 322,462	 2,731,400 1,318,000	
66 67 MARTIN 2	821		0.0	0.0		0								
68 69 MARTIN 3	470	 128,445	 38.0	94.5	78.5	7,221	 Gas	MCF	->	 927,517	1,000,000	927,517	3,791,200	2.9516
70 71 MARTIN 4	470	 120,492	 35.6	84.8		7,172	 Gas	MCF	->	 864,178	1,000,000	864,178	3,532,200	2.9315
72 73 FM GT	 624	6	0.0	97.2	 87.7	13,264	 Light	Oil BBLS	->	14	5,812,950	81	400	6.5574
74 75 FL GT	 768	0	0.0	90.7		0	 Gas	MCF	->	1	1,000,000	1	 0	0.0000
76 77 PE GT		0	0.0	88.3		0	 Gas	MCF	->	7	1,000,000	 7	0	0.0000
78 79 SJRPP 10		 85,353	 91.2	94.3	 99.7	9,597	 Coal	TONS	->	 33,164	24,699,984	 819,155	 1,225,000	1.4352
80 81 SJRPP 20		 86,249	92.1	93.2	 99.8	9,544	 Coal	TONS	->	 33,326	24,700,054	 823,154	 1,231,000	1.4273

.

Schedule E4

				Estimated F	or The Pe	riod of :		Nov-03					
(A)	(B)	(C)	 (D)		 (F)	(G)		(H)	(I)	(J)	 (K)	 (L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate BTU/KWH)		Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
82 83 SCHER #4	 648	279,479	 59.9	93.7	95.1		 Coal	TONS ->	 161,498	 17,499,998	 2,826,218	5,406,200	1.9344
84 85 FMREP 1	1,498	990,053	91.8	93.5	99.3	6,546	Gas	MCF ->	6,480,795	1,000,000	6,480,795	30,524,600	3.0831
86 87 SNREP4	986	628,501	88.5	 90. 9	98.2	6,993	Gas	MCF ->	4,395,343	1,000,000	4,395,343	17,965,600	2.8585
88 89 SNREP5	986	606,379	85.4		97.3	7,004	Gas	MCF ->	4,246,840	1,000,000	4,246,840	17,358,600	2.8627
90 ס 91 FM SC	362	 421	0.2	97.7	79.7	10,418	Gas	MCF ->	4,384	1,000,000	4,384	 17,900	4.2538
^O 92 93 MR SC	362	 833	0.3		81.3	10,418	- Gas	MCF ->	8,682	1,000,000	8,682	35,500	4.2597
94 95 FMCT	0		0.0	******		0	-						
96 97 TOTAL	19978 =======	 6382784.4 ======			*****	8830.858 ======	-				56365461.4 ======	 139342100 ======	2.183093

.

<u>6</u>

Schedule E4

- - - -

.

_. ___

.....

				Estimated F	For The Per	iod of :	Dec-03					
 (A)	(B)	(C)	(D)	(E)	 (F)	(G)	 (H)	(1)	(J)	 (K)	(L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate BTU/KWH	• •	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
1 TRKY 0 1 2	398	 104,390 0	35.3	94.8	93.0	9,776	Heavy Oil BBLS -> Gas MCF ->	158,806 4,145	6,400,000 1,000,000	1,016,360 4,145	 3,765,900 17,700	3.6075
3 4 TRKY O 2 5	398	130,457 0	44.1	95.4	91.2	9,728	Heavy Oil BBLS -> Gas MCF ->	197,192 7,093	6,400,001 1,000,000	1,262,026 7,093	4,676,200 30,200	3.5845
6 7 TRKY N 3	717	520,110	97.5	97.5	100.0	10,583	Nuclear Othr ->	5,504,465	1,000,000	5,504,465	1,673,900	0.3218
8 9 TRKY N 4	717	520,110	97 .5	97.5	100.0	10,579	Nuclear Othr ->	5,502,021	1,000,000	5,502,021	1,826,700	0.3512
10 2 11 FT LAUD4	440	175,291	53.5	94.5	96.9	7,870	Gas MCF ->	1,379,573	1,000,000	1,379,573	5,880,300	3.3546
12 13 FT LAUD5	440	244,846	 74.8	 94.5	97.3	7,731	Gas MCF ->	1,892,886	1,000,000	1,892,886	8,068,300	3.2953
14 15 PT EVER1	212	559	0.4	96.5		10,549	Heavy Oil BBLS ->	 921	6,400,152	 5,894	22,000	3.9377
16 17 PT EVER2 18	212	 13,225 0	8.4	95.6	86.1	10,096	Heavy Oil BBLS -> Gas MCF ->	20,789 468	6,399,984 1,000,000	 133,050 468	496,500 2,000	3.7542
19 20 PT EVER3 21 22	392	74,628 8,292	28.4	95.7	89.9	9,935	Heavy Oil BBLS -> Gas MCF ->	114,759 89,335	6,400,000 1,000,000	734,460 89,335	2,740,800 380,700	3.6726 4.5911
22 23 PT EVER4 24 25	404	65,047 7,228	24.0	95.2	92.7	9,962	Heavy Oil BBLS -> Gas MCF ->	100,175 78,871	6,399,998 1,000,000	641,120 78,871	2,392,500 336,200	3.6781 4.6517
26 RIV 3 27	280	149,753 16,639	79.9	96.0	86.5	10,100	Heavy Oil BBLS -> Gas MCF ->	235,043 176,358	6,400,001 1,000,000	1,504,274 176,358	5,594,800 751,800	3.7360 4.5182

.

Schedule E4

.....

				Estimated F	or The Per	iod of :	Dec-03					
(A)	 (B)	(C)	(D)	(E)	(F)	(G)	 (H)	(I)	 (J)	(K)	(L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate BTU/KWH)	Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
28	292	 897 100	0.5	49.1	`76.8	9,992	Heavy Oil BBLS -> Gas MCF ->	1,393 1,040	6,400,201 1,000,000	 8,917 1,040	 33,200 4,400	3.7016 4.4132
31 · · · · · · · · · · · · · · · ·	853	618,763	97.5	97.5	100.0	10,689	Nuclear Othr ->	6,614,262	1,000,000	6,614,262	2,006,100	0.3242
33 · · · · · · · · · · · · · · · ·	726	526,572	97.5	97.5	100.0	10,704	 Nuclear Othr ->	5,636,672	1,000,000	5,636,672	 1,808,800	0.3435
35 36 CAP CN 1 37	398	84,499 9,389	 31.7	95.3	91.6	9,700	Heavy Oil BBLS -> Gas MCF ->	126,586 100,533	6,399,999 1,000,000	810,152 100,533	3,033,800 428,500	3.5903 4.5639
38	398	97,570 10,841	36.6	94.9	91.1	9,664	Heavy Oil BBLS -> Gas MCF ->	145,764 114,762	6,400,001 1,000,000	932,892 114,762	3,493,500 489,200	3.5805 4.5125
42 SANFRD 3	144	163	0.2	95.9	85.6	10,845	Heavy Oil BBLS ->	276	6,400,581	1,764	6,300	3.8722
43 44 SANFRD 4	374		0.0	0.0		0						*****
45 46 SANFRD 5	384		0.0	0.0		0						
47 · · · · · · · · · · · · · · · ·	250	 5,844	3 .1	95.7	82.1	9,068	Gas MCF ->	52,995	1,000,000	52,995	225,900	3.8656
49 · · · · · · · · · · · · · · · ·	250	 4,1 4 7	2.2	85.4	79.2	9,052	Gas MCF ->	37,536	1,000,000	37,536	160,000	3.8587
51 52 MANATE 1	805	 45,163	7.5	95.9	87.5	10,449	Heavy Oil BBLS ->	73,737	6,399,996	471,915	1,760,600	3.8983
53 54 MANATE 2	805	 148,481	24.8	95.8	86.3	10,261	Heavy Oil BBLS ->	238,049	6,399,999	1,523,512	5,683,900	3.8280

-

· · ·

Schedule E4

				Estimated F	or The Pe	riod of :	[Dec-03						
 (A)	(B)	(C)	(D)	 (E)	 (F)	(G)		(H)		 (i)	(J)	 (K)	 (L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate BTU/KWH		Fuel Type		Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
55 56 FT MY 1			0.0	 0.0						***********				
57 58 FT MY 2			0.0	0.0		0					<u></u>			
59 60 CUTLER 5 61	72	 29	0.1	97.8	90.2	12,801	 Gas	MCF ·	->	370	1,000,000	 370	 1,600	5.5363
62 CUTLER 6 63	145	71	0.1	97.0	84.3	11,674	Gas	MCF ·	->	823	1,000,000	823	3,500	4.9645
64 MARTIN 1	833	49,761 21,326	11.5	96.0	87.9	10,345	Heavy Gas	Oil BBLS MCF		 79,092 229,223	6,400,004 1,000,000	506,191 229,223	1,910,400 977,000	3.8392 4.5812
66 67 MARTIN 2 68	821	81,264 34,827	19.0	80.4	85.4	10,315	Heavy Gas	Oil BBLS MCF		128,762 373,363	6,400,000 1,000,000	 824,074 373,363	 3,110,100 1,591,500	3.8272 4.5697
69 70 MARTIN 3	470	132,261	37.8	94.5	76.9	7,213	Gas	MCF ·	->	953,934	1,000,000	953,934	4,066,100	3.0743
71 72 MARTIN 4	470	117,403	33.6	94.5	80.4	7,179	Gas	MCF ·	->	842,802	1,000,000	842,802	3,592,400	3.0599
73 74 FM GT	624	29	0.0	 97.2	89.5	13,201	Light	Oil BBLS	->	67	5,828,571	388	2,100	7.1429
75 76 FL GT	768	1	0.0	90.7		0	 Gas	MCF ·	->	13	1,000,000	13	100	14.2857
77 78 PE GT	384	3	0.0	88.3	*********	19,462	Gas	MCF ·	->	56	1,000,000	56	200	6.8966
79 80 SJRPP 10 81	130	90,025	93.1	94.3	100.0	9,584	Coal	TONS	->	35,727	24,149,964	862,794	1,290,700	1.4337

· · · · · · · · · ·

.

i

				Estimated f	or The Per	riod of :	Jan-03	Thru	Dec-03			
 (A)	 (B)	(C)	(D)	(E)	 (F)	(G)	(H)	(1)	 (J)	(K)	(L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate BTU/KWH	Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
TRKY O 1	396	1,514,164 0	43.7	85.1	95.5	9,738	Heavy Oil BBLS - Gas MCF ->		6,400,000 1,000,000	14,688,648 56,456	54,171,800 224,400	3.5777 0.0000
TRKY O 2	396	2,007,979 0	57.9	95.3	95.8	9,675	Heavy Oil BBLS - Gas MCF ->		6,400,000 1,000,000	19,335,223 91,385	70,985,000 364,900	3.5351 0.0000
TRKY N 3	703	5,500,970	89.3	89.5	99.8	10,448	Nuclear Othr ->	57,473,367	1,000,000	57,473,367	17,534,400	0.3188
TRKY N 4	703	5,515,004	89.6	89.5	100.0	10,481	Nuclear Othr ->	57,803,473	1,000,000	57,803,473	17,027,700	0.3088
FT LAUD4	430	322 2,615,885	69.5	91.7	96.9	7,814	Light Oil BBLS -> Gas MCF ->		5,830,152 1,000,000	2,382 20,439,964	14,500 81,141,100	4.5073 3.1019
FT LAUD5	441	691 2,974,510	77.0	91.7	97.7	7,653	Light Oil BBLS -> Gas MCF ->			5,034 22,765,633	30,700 90,533,400	4.4409 3.0436
PT EVER1	211	118,781 0	6.4	81.1	92.6	10,586	Heavy Oil BBLS - Gas MCF ->		6,400,004 1,000,000	1,249,317 8,155	4,525,900 32,000	3.8103 0.0000
PT EVER2	211	 356,999 0	19.3	95.5	89.5	10,079	Heavy Oil BBLS - Gas MCF ->		6,400,001 1,000,000	3,581,592 16,700	13,106,000 65,800	3.6712 0.0000
PT EVER3	391	1,163,684 129,298	37.8	87.1	94.6	9,892	Heavy Oil BBLS - Gas MCF ->			11,401,721 1,387,957	41,916,400 5,492,200	3.6020 4.2477

.

-

-

.

Schedule E4

- -

.

- -

				Estimated F	or The Per	riod of :		Dec-03					
 (A)	(B)	(C)	(D)	(E)	 (F)	(G)		(H)	 (I)	(J)	(K)	 (L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate BTU/KWH)		Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
82 SJRPP 20		89,493	92.5	93.2	99.9	9,529	Coal	TONS ->	35,310	24,150,017	852,740	1,275,600	1.4254
83 84 SCHER #	4 648	366,069	75.9	93.7	97.4	10,176	 Coal	TONS ->	212,862	17,500,005	3,725,084	6,994,500	1.9107
85 86 FMREP 1	1,498	1,013,412	90.9	93.5	99.1	6,546	 Gas	MCF ->	6,633,808	1,000,000	6,633,808	32,439,300	3.2010
87 88 SNREP4	986	642,032	87.5	90.9	98.6	6,989	Gas	MCF ->	4,487,252	1,000,000	4,487,252	19,126,600	2.9791
89 90 SNREP5	986	 622,792	84.9	93.3	97.8	6,993	 Gas	MCF ->	4,355,240	1,000,000	4,355,240	18,563,900	2.9808
91 92 FM SC	362	 283	0.1	97.7		10,418	 Gas	MCF ->	2,947	1,000,000	2,947	 12,600	4.4554
93 94 MR SC	362	632	0.2	98.8	83.0	10,418	 Gas	MCF ->	 6,589	1,000,000	6,589	28,100	4.4434
95 96 FMCT	0		0.0			0					862		
97 98 TOTAL		 6844714 ======				8896.944					60897038.9	152777000	2.232044

-- -

-

				Estimated F	For The Pe	riod of :	Jan-03	Thru	Dec-03			
 (A)	(B)	(C)	 (D)	 (E)	 (F)	(G)	 (H)	(1)	(J)	 (K)	(L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate BTU/KWH)	Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
1 TRKY O 1	396	1,514,164 0	43.7	85.1	95.5	9,738	Heavy Oil BBLS - Gas MCF ->		6,400,000 1,000,000	14,688,648 56,456	54,171,800 224,400	3.5777
3 4 TRKY O 2	396	2,007,979 0	57.9	95.3	95.8	9,675	Heavy Oil BBLS - Gas MCF ->		6,400,000 1,000,000	19,335,223 91,385	70,985,000 364,900	3.5351 0.0000
7 TRKY N 3	703	5,500,970	89.3	89.5	99.8	10,448	Nuclear Othr ->	57,473,367	1,000,000	57,473,367	17,534,400	0.3188
3 9 TRKY N 4	703	5,515,004	89.6	89.5	100.0	10,481	Nuclear Othr ->	57,803,473	1,000,000	57,803,473	17,027,700	0.3088
) 1 FT LAUD4 2	430	322 2,615,885	69.5	91.7	96.9	7,814	Light Oil BBLS -> Gas MCF ->		5,830,152 1,000,000	2,382 20,439,964	14,500 81,141,100	4.5073 3.1019
3 4 FT LAUD5 5	441	691 2,9 74, 510	77.0	91.7	97.7	7,653	Light Oil BBLS -> Gas MCF ->			5,034 22,765,633	30,700 90,533,400	4.4409 3.0436
7 PT EVER1	211	118,781 0	6.4	81.1	92.6	10,586	Heavy Oil BBLS - Gas MCF ->		6,400,004 1,000,000	1,249,317 8,155	4,525,900 32,000	3.8103 0.0000
) 1 PT EVER2 2	211	356,999 0	19.3	95.5	89.5	10,079	Heavy Oil BBLS - Gas MCF ->		6,400,001 1,000,000	3,581,592 16,700	13,106,000 65,800	3.6712 0.0000
3 4 PT EVER3 5	391	1,163,684 129,298	37.8	87.1	94.6	9,892	Heavy Oil BBLS - Gas MCF ->		6,400,000 1,000,000	11,401,721 1,387,957	41,916,400 5,492,200	3.6020 4.2477

.

.

Schedule E4

-

				Estimated F	For The Per	riod of :	Jan-03	Thru	Dec-03			
 (A)	 (B)	(C)	(D)	(E)	 (F)	(G)	 (H)	(1)	 (J)	 (K)	(L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate BTU/KWH)	Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
PT EVER4	403	1,081,459 120,162	34.1	95.1	94.0	9,935	Heavy Oil BBLS - Gas MCF ->		6,400,000 1,000,000	10,636,376 1,301,198	38,823,300 5,152,500	3.5899 4.2880
RIV 3	279	663,664 73,741 0	30.2	63.1	90.5	10,021	Heavy Oil BBLS Gas MCF ->		6,399,999 1,000,000	6,613,905 775,490 0	24,642,100 3,122,500 0	3.7130 4.2344 0.0000
RIV 4	291	1,071,491 119,055	46.7	90.3	89.7	9,996	Heavy Oil BBLS Gas MCF ->		6,400,000 1,000,000	10,647,897 1,252,998	38,973,500 4,976,000	3.6373 4.1796
ST LUC 1	845	7,215,366	97.5	97.5	100.0	10,541	Nuclear Othr ->	> 76,058,688	1,000,000	76,058,688	23,562,800	0.3266
ST LUC 2	719	5,639,057	89.5	89.5	100.0	10,553	Nuclear Othr ->	> 59,510,861	1,000,000	59,510,861	18,446,200	0.3271
CAP CN 1	396	1,246,831 138,537	40.0	87.5	93.4	9,663	Heavy Oil BBLS Gas MCF ->		6,400,000 1,000,000	11,928,545 1,458,689	43,678,800 5,816,400	3.5032 4.1985
CAP CN 2	396	1,546,503 171,834	49.6	94.8	94.2	9,621	Heavy Oil BBLS Gas MCF ->		6,400,000 1,000,000	14,741,254 1,790,516	53,687,900 7,122,700	3.4716 4.1451
SANFRD 3	143	45,305 0	3.6	95.8	89.6	10,809	Heavy Oil BBLS - Gas MCF ->		6,399,988 1,000,000	486,601 3,107	1,750,400 12,300	3.8636 0.0000
SANFRD 4	374	0	0.0	0.0	0.0	0		0		0	0	0.0000
SANFRD 5	384	0	0.0	0.0	0.0	0		0		0	0	0.0000

.

.

.

.

Schedule E4

				Estimated F	For The Pe	riod of :		Jan-03	Thru	Dec-03			
(A)	(B)	(C)	(D)	(E)	 (F)	(G)		(H)	 (I)	 (J)	(K)	(L)	(M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate BTU/KWH)	Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
55 PUTNAM 1	244	698,179	32.7	83.5	87.4	9,262	Gas	MCF ->	6,466,682	1,000,000	6,466,682	25,319,900	3.6266
56 57 PUTNAM 2	244	714,581	33.5	89.4	, 90.3	9,148	Gas	MCF ->	6,537,142	1,000,000	6,537,142	25,573,200	3.5788
58 59 MANATE 1 60	801	1,306,959	18.6	84.3	87.6	10,354	Heavy	Oil BBLS ->	> 2,114,337	6,400,000	13,531,755	49,823,200	3.8121
61 62 MANATE 2	801	2,496,421	35.6	88.0	90.3	10,193	Heavy	Oil BBLS ->	> 3,975,953	6,400,000	25,446,097	93,402,800	3.7415
63 64 FT MY 1	0	0	0.0	0.0	0.0	0			0		0	0	0.0000
65 66 FT MY 2	0	0	0.0	0.0	0.0	0			0		0	0	0.0000
67 68 CUTLER 5	71	17,356	2.8	97.7	92.1	12,785	Gas	MCF ->	221,889	1,000,000	221,889	868,900	5.0065
69 70 CUTLER 6	144	40,861	3.2	97.0	88.4	11,692	Gas	MCF ->	477,725	1,000,000	477,725	1,870,700	4.5782
71 72 MARTIN 1 73	822	1,322,028 566,584	26.2	92.1	89.1	10,319	Heavy Gas	Oil BBLS -> MCF ->	> 2,094,256 6,086,076	6,400,000 1,000,000	13,403,240 6,086,076	49,390,400 23,956,100	3.7360 4.2282
74 75 MARTIN 2 76 77	812	1,650,090 707,182	33.1	86.9	90.0	10,301	Heavy Gas	Oil BBLS ->	> 2,608,855 7,586,489	6,400,000 1,000,000	16,696,673 7,586,489	61,455,900 29,959,400	3.7244 4.2364
78 79 MARTIN 3	457	2,629,265	65.7	92.2	91.9	7,072	Gas	MCF ->	18,593,807	1,000,000	18,593,807	73,894,700	2.8105
80 81 MARTIN 4	457	 2,415,473	60.3	92.2	93.1	7,076	Gas	MCF ->	17,092,267	1,000,000	17,092,267	67,910,300	2.8115
82 83 FM GT	582	 42,992	0.8	97.2	91.2	13,143	Light	Oil BBLS ->	 96,918	5,829,995	565,030	3,070,400	7.1418
84 85 FL GT	719	 21,101	0.3	90.7	88.9	15,499	Gas	MCF ->	327,054	1,000,000	327,054	1,277,000	6.0518

.

-

.

Schedule E4

				Estimated I	For The Pe	riod of :		Jan-03	Thru	Dec-03			
(A)	(B)	 (C)	 (D)	(E)	(F)	(G)		(H)	 (l)	(J)	 (K)	 (L)	 (M)
Plant Unit	Net Capb (MW)	Net Gen (MWH)	Capac FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate BTU/KWH)	I	Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)
87 PE GT	363	4,222	0.1	88.3	83.1	17,685	 Gas	MCF ->	74,663	1,000,000	74,663	292,700	6.9331
88 89 SJRPP 10	128	960,265	85.5	86.0	99.8	9,541	Coal	TONS ->	373,856	24,507,084	9,162,128	12,843,200	1.3375
90 91 SJRPP 20	128	1,044,069	92.9	93.1	99.9	9,475	Coal	TONS ->	404,183	24,475,428	9,892,554	13,862,600	1.3277
92 93 SCHER #4	645	4,754,098	84.1	93.5	98.1	10,088	 Coal	TONS ->	2,740,531	17,500,001	47,959,292	91,850,100	1.9320
94 95 FMREP 1	1,483	11,882,175	91.4	91.8	98.2	6,687	Gas	MCF ->	79,461,658	1,000,000	79,461,658	366,083,300	3.0809
96 97 SNREP4	969	4,500,607	53.0	90.9	98.7	7,051	Gas	MCF ->	31,734,542	1,000,000	31,734,542	126,548,600	2.8118
98 99 SNREP5	969	7,439,005	87.6	91.6	97.2	7,059	Gas	MCF ->	52,512,611	1,000,000	52,512,611	209,479,700	2.8160
100 101 FM SC	325	81,010	5.7	98.0	100.0	10,901	Gas	MCF ->	883,111	1,000,000	883,111	3,471,500	4.2853
102 103 MR SC	325	168,808	11.9	97.2	100.0	10,845	Gas	MCF ->	1,830,732	1,000,000	1,830,732	7,179,100	4.2528
104 105 FMCT	0	0	0.0		0.0	0			0		0	0	0.0000
106 107 TOTAL	19,600 ======	86,494,618 ======				8949.185					774,056,346 ======	2,006,317,300	2.319586

-

System Generated Fuel Cost Inventory Analysis Estimated For the Period of - January 2003 thru December 2003

-------.

			January 2003	February 2003	March 2003	April 2003	May 2003	June 2003
	Heavy Oil							
2 3	Purchases Units Unit Cost Amount	(BBLS) (\$/BBLS) (\$)	1,426,811 21 9412 31,306,000	1,461,545 21 6531 31,647,000	2,046,307 21.9151 44,845,000	1,772,957 22.4365 39,779,000	2,649,215 23 1725 61,389,000	2,618,294 23 5069 61,548,000
6 7 8	Burned [.] Units Unit Cost Amount	(BBLS) (\$/BBLS) (\$)	1,428,087 23,2207 33,161,149	1,461,785 22.6307 33,081,150	2,054,105 22 4038 46,019,748	1,778,671 22 4315 39,898,342	2,667,668 22 8085 60,845,598	2,622,782 23 1536 60,726,751
12 13 14 15	Ending Invent Units Unit Cost Amount	ory (BBLS) (\$/BBLS) (\$)	2,773,934 23 3281 64,710,718	2,773,694 22.8132 63,276,832	2,765,900 22 4525 62,101,244	2,760,181 22 4560 61,982,597	2,741,730 22 8052 62,525,827	2,737,242 23 1425 63,346,755
17 · 18	Light Qil							
20 21	Purchases Units Unit Cost Amount	(BBLS) (\$/BBLS) (\$)	1,868 30 5139 57,000	83 24 0964 2,000	1,816 29 7357 54,000	6,071 29 6492 180,000	32,266 29 9076 965,000	5,363 30 0205 161,000
25 26	Burned Units Unit Cost Amount	(BBLS) (\$/BBLS) (\$)	3,053 33 7252 102,963	83 32.4458 2,693	1,827 32 5463 59,462	6,071 32 3276 196,261	32,342 31.6430 1,023,397	5,363 31.5389 169,143
29 (30 31	Ending Inventi Units Unit Cost Amount	ory (BBLS) (\$/BBLS) (\$)	391275 37 2554 14,577,089	391275 37 2548 14,576,870	391264 37.2412 14,571,151	391264 37 1989 14,554,604	391188 37 0577 14,496,512	391188 37 0379 14,488,774
	Coal - SJRPP							
37 38 39	^o urchases: Units Unit Cost Amount	(Tons) (\$/Tons) (\$)	70,412 34.3833 2,421,000	62,330 31 7343 1,978,000	36,337 36.2716 1,318,000	65,236 30 2134 1,971,000	68,038 31 6147 2,151,000	70,420 31 7097 2,233,000
42 (43 44	Burned Units Unit Cost Amount	(Tons) (\$/Tons) (\$)	70,412 32.8681 2,314,309	62,330 32 4841 2,024,737	36,337 33 6393 1,222,352	65,236 31 8817 2,079,837	68,038 31,7037 2,157,059	65,898 31 7246 2,090,588
47 48 49	Ending Inventi Units Unit Cost Amount	ory. (Tons) (\$/Tons) (\$)	45,216 32.7939 1,482,811	45,217 31,7626 1,436,211	45,217 33.8843 1,532,146	45,217 31 4852 1,423,667	45,216 31.3602 1,417,982	49,740 31 3757 1,560,627
52 0	Coal - SCHER							
55 F 56 57	Purchases Units Unit Cost Amount	(MBTU) (\$/MBTU) (\$)	4,214,333 1 8155 7,651,000	3,801,840 1.8154 6,902,000	4,226,985 2 0741 8,767,000	3,931,725 2.0032 7,876,000	4,442,515 1 9327 8,586,000	4,075,960 1 9316 7,873,000
60 E 61 62	Burned Units Unit Cost Amount	(MBTU) (\$/MBTU) (\$)	4,214,333 1 8193 7,667,296	3,801,840 1 8171 6,908,430	4,226,985 1.9694 8,324,426	3,931,725 1 9888 7,819,532	4,442,515 1 9549 8,684,465	3,785,408 1 9413 7,348,616
65 (66 67	Ending Invento Units Unit Cost Amount	ory (MBTU) (\$/MBTU) (\$)	2,905,508 1.8194 5,286,155	2,905,525 1 8171 5,279,732	2,905,543 1.9694 5,722,038	2,905,543 1 9888 5,778,630	2,905,595 1 9548 5,679,919	3,196,113 1.9413 6,204,580
70 (71 - 72								
74 75	Burned Units Unit Cost Amount	(MCF) (\$/MCF) (\$)	17,957,499 5 1983 93,349,282	16,664,263 5 1448 85,734,458	20,728,118 4 9463 102,528,156	20,538,823 4 8271 99,142,334	24,400,517 4 7277 115,359,062	26,495,546 4 6244 122,524,692
78 f	Nuclear							
81 E 82 83	Burned Units Unit Cost Amount	(MBTU) (\$/MBTU) (\$)	23,354,984 0 2956 6,904,230	20,985,369 0.2961 6,214,061	18,081,073 0 2986 5,399,009 69	19,106,534 0 2978 5,689,472	18,409,146 0 3065 5,641,623	21,565,825 0 3101 6,688,457

ı.

.

System Generated Fuel Cost Inventory Analysis Estimated For the Period of : January 2003 thru December 2003

		July 2003	August 2003	September 2003	October 2003	November 2003	December 2003	Total
Heavy Oil								
Purchases: 2 Units 3 Unit Cost 4 Amount	(BBLS) (\$/BBLS) (\$)	3,086,388 23 6850 73,101,000	3,430,510 24 2226 83,096,000	2,822,748 24 7656 69,907,000	2,945,881 24 8479 73,199,000	1,290,516 24 0338 31,016,000	1,621,066 23 0799 37,414,000	27,172,238 23 4889 638,247,000
5 5 Burned 7 Units 8 Unit Cost 9 Amount	(BBLS) (\$/BBLS) (\$)	3,093,356 23.4367 72,498,160	3,447,568 23 8814 82,332,910	2,827,895 24.3428 68,838,904	2,954,336 24.6097 72,705,429	1,290,674 24.4093 31,504,504	1,621,342 23 8817 38,720,468	27,248,269 23 5000 640,333,113
) Ending Inven 2 Units 3 Unit Cost Amount 5	tory. (BBLS) (\$/BBLS) (\$)	2,730,274 23 4222 63,949,038	2,713,223 23 8510 64,713,052	2,708,067 24 2906 65,780,471	2,699,610 24 5496 66,274,404	2,699,453 24 3700 65,785,597	2,699,178 23 8883 64,478,739	2,699,178 23 8883 64,478,739
Light Oil								
 Purchases Units Unit Cost Amount 	(BBLS) (\$/BBLS) (\$)	8,319 30 6527 255,000	24,939 31 8377 794,000	6,472 32 7565 212,000	9,641 32 7767 316,000	14 0.0000 0	66 30 3030 2,000	96,918 30 9334 2,998,000
Burned Units Unit Cost Amount	(BBLS) (\$/BBLS) (\$)	8,319 31 4522 261,651	24,939 31 5403 786,584	6,472 31 6312 204,717	9,641 31 7499 306,101	14 31 4286 440	66 31.9848 2,111	98,190 31 7295 3,115,523
Ending Inven Units Unit Cost Amount	(BBLS) (\$/BBLS) (\$)	391188 37.0206 14,482,008	391188 37.0385 14,489,007	391188 37 0565 14,496,069	391188 37 0814 14,505,798	391188 37 0814 14,505,799	391188 37 0813 14,505,769	341188 42 5155 14,505,769
Coal - SJRPF								
Purchases Units Unit Cost Amount	(Tons) (\$/Tons) (\$)	68,827 36 5118 2,513,000	69,566 36 6558 2,550,000	66,501 36 5107 2,428,000	62,848 38 4101 2,414,000	66,490 36 5017 2,427,000	71,036 36,1366 2,567,000	778,041 34 6653 26,971,000
Burned Units Unit Cost Amount	(Tons) (\$/Tons) (\$)	68,827 34 4144 2,368,642	69,566 35 5982 2,476,426	66,501 36.2509 2,410,720	67,370 37.6889 2,539,101	66,490 36 9375 2,455,976	71,036 36.1276 2,566,362	778,04 34.3248 26,706,109
Ending Invent Units Unit Cost Amount	tory (⊺ons) (\$/⊺ons) (\$)	49,740 34 2722 1,704,697	49,740 35 7518 1,778,294	49,739 36.0962 1,795,388	45,217 36,9309 1,669,904	45,217 36 3011 1,641,425	45,216 36 3146 1,641,999	45,216 36.3146 1,641,999
Coal - SCHE	RER							
Purchases Units Unit Cost Amount	(MBTU) (\$/MBTU) (\$)	4,244,870 1 9233 8,164,000	4,506,618 1 9221 8,662,000	4,055,870 1 9303 7,829,000	3,907,243 1 8875 7,375,000	2,826,215 1 9202 5,427,000	3,725,085 1 8502 6,892,000	47,959,258 1 9184 92,004,000
Burned Units Unit Cost Amount	(MBTU) (\$/MBTU) (\$)	4,244,870 1 9310 8,196,740	4,506,618 1 9257 8,678,524	4,055,870 1.9283 7,820,925	4,197,795 1.9059 8,000,563	2,826,215 1.9129 5,406,258	3,725,085 1 8777 6,994,502	47,959,258 1 9152 91,850,277
Ending Invent Units Unit Cost Amount Gas	(MBTU) (\$/MBTU) (\$)	3,196,078 1 9310 6,171,573	3,196,078 1.9257 6,154,806	3,196,078 1 9283 6,163,019	2,905,560 1.9059 5,537,668	2,905,560 1 9129 5,558,000	2,905,560 1 8777 5,455,670	2,905,560 1 8777 5,455,670
Burned Units Unit Cost Amount	(MCF) (\$/MCF) (\$)	28,338,759 4 5780 129,734,666	30,146,071 4 6798 141,076,796	27,288,692 4 6335 126,442,756	25,061,350 4 7496 119,030,148	21,793,039 4 9263 107,358,150	21,822,002 5 1278 111,899,288	281,234,679 4 815 1,354,179,788
Burned Units Unit Cost Amount	(MBTU) (\$/MBTU) (\$)	 22,464,410 0 3056 6,866,233	22,587,135 0.3059 6,909,789	21,626,864 0.3077 6,654,431	17,564,157 0 3089 5,425,505	21,843,481 0 3142 6,862,907	23,257,420 0,3145 7,315,492	250,846,398 0 3053 76,571,209

POWER SOLD

.

Estimated For the Period of : January 2003 Through December 2003

					2						
	(1) Month	(2) Sold To	(3) Type & Schedule	(4) Total MWh Sold	(5) MWh Wheeled From Other Systems	(6) MWH From Own Generation	(7A) Fuel Cost (Cents / KWh		(8) Total \$ For Fuel Adjustmen (6) * (7A)	(9) Total Cost \$ (6) * (7B)	(10) \$ Gain From Off System Sales
1 2 3	January 2003	St. Lucie Reliability	OS	145,000 46,085		145,000 46,085	3.234 0.200	4.200 0.200	4,689,300 92,134	6,090,000 92,134	910,782 0
4	Total			191,085	0	191,085	2.502	3.235	4,781,434	6,182,134	910,782
5 6 7	February 2003	St. Lucie Reliability	OS	145,000 41,624		 145,000 41,624	3.285 0.199	4.100 0.199	4,763,250 82,968	5,945,000 82,968	 691,832 0
8 9	Total			186,624	0	186,624	2.597	3.230	4,846,218	6,027,968	⁻ 691,832
10 11 12	March 2003	St. Lucie Reliability	OS	135,000 46,083		135,000 46,083	3.552 0.200	4.050 0.200	4,795,200 92,083	5,467,500 92,083	 238,612 0
13 14	Total			181,083	0	181,083	2.699	3.070	4,887,283	5,559,583	238,612
15 16 17	April 2003	St. Lucie Reliability	OS	75,000 43,866		75,000 43,866	3.524 0.187	4.200 0.187	2,643,000 82,075	3,150,000 82,075	 269,775 0
18 19	Total			118,866	0	118,866	2.293	2.719	2,725,075	3,232,075	269,775
20 21 22	May 2003	St. Lucie Reliability	OS	75,000 45,326		 75,000 45,326	 3.828 0.189	4.400 0.189	2,871,000 85,731	3,300,000 85,731	 191,775 0
23 24	Total			120,326	0	120,326	2.457	2.814	2,956,731	3,385,731	191,775
25 26 27	June 2003	St. Lucie Reliability	OS	100,000 43,867		 100,000 43,867	 3.651 0.194	4.500 0.194	3,651,000 84,976	4,500,000 84,976	 536,000 0
28 29 30	Total			143,867	0	143,867	2.597	3.187	3,735,976	4,584,976	536,000

. .

1 72

34

35

Total

POWER SOLD

.

1,787,378

			Estimated For	the Period	of : January 2003	Through Dece	mber 2003				
	(1) Month	(2) Sold To	(3) Type & Schedule	(4) Total MWh Sold	(5) MWh Wheeled From Other Systems	(6) MWH From Own Generation	(7A) Fuel Cost (Cents / KWh (C		(8) Total \$ For Fuel Adjustmen (6) * (7A)	(9) Total Cost \$ (6) * (7B)	(10) \$ Gain From Off System Sales
1 2 3	July 2003	St. Lucie Reliability	OS	125,000 45,328		125,000 45,328	3.704 0.193	5.000 0.193	4,630,000 87,576	6,250,000 87,576	1,215,870 0
4 5	Total			170,328	• 0	170,328	2.770	3.721	4,717,576	6,337,576	1,215,870
5 6 7 8	August 2003	St. Lucie Reliability	OS	125,000 45,326		125,000 45,326	4.002 0.195	5.200 0.195	5,002,500 88,192	6,500,000 88,192	 1,093,370 0
9	Total			170,326	0	170,326	2.989	3.868	5,090,692	6,588,192	1,093,370
10 11 12	September 2003	St. Lucie Reliability	OS	90,000 43,865		90,000 43,865	3.840 0.192	4.700 0.192	3,456,000 84,438	4,230,000 84,438	 489,330 0
13 14	Total			133,865	i 0	133,865	2.645	3.223	3,540,438	4,314,438	489,330
⁵ 15 16 17	October 2003	St. Lucie Reliability	OS	75,000 45,326		 75,000 45,326	3.866 0.185	4.300 0.185	2,899,500 83,862	3,225,000 83,862	 84,562 0
18 19	Total			120,326	i 0	120,326	2.479	2.750	2,983,362	3,308,862	84,562
20 21 22	November 2003	St. Lucie Reliability	OS	60,000 44,596		60,000 44,596	3.368 0.192	3.850 0.192	2,020,800 85,771	2,310,000 85,771	 94,470 0
23 24	Total			104,596	5 O	104,596	2.014	2.290	2,106,571	2,395,771	94,470
25 26 27	December 2003	St. Lucie Reliability	OS	100,000 46,086		 100,000 46,086	3.367 0.192	3.900 0.192	3,367,000 88,386	3,900,000 88,386	 198,146 0
28 29	Total			146,086	6 0	146,086	2.365	2.730	3,455,386	3,988,386	198,146
30 31 32	Period Total	St. Lucie Reliability	OS	1,250,000 537,378		1,250,000 537,378	3.583 0.193	4.389 0.193	44,788,550 1,038,192	54,867,500 1,038,192	6,014,524 0
33	T			1 797 379	р П	1 787 378	2 564	3 128	45 826 742	55 905 692	6 014 524

2.564

1,787,378

0

45,826,742

3.128

55,905,692

Schedule: E6 Page : 2

6,014,524

-

.

÷

,

Purchased Power

(Exclusive of Economy Energy Purchases)

Estimated for the Period of , January 2003 thru December 2003

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8A)	(8B)	(9)
Month	Purchase From	Type & Schedule	Total Mwh Purchased	Mwh For Other Utilities	Mwh For Interruptible	Mwh For Firm	Fuel Cost (Cents/Kwh)	Total Cost (Cents/Kwh)	Total \$ For Fuel Adj (7) x (8A)
2003	Sou. Co. (UPS + R)		628,063			628,063	1.660		10,425,000
January	St. Lucie Rel.		46,083			46,083	0 305		140,358
	SJRPP		270,980			270,980	1.340		3,631,000
	PPAs		4,951			4,951	5.760		285,181
	FPC		37,200		_	37,200	1.960	-	729,250
Total			987,277			987,277	1.541		15,210,789
2003	Sou. Co. (UPS + R)		572,942			572,942	1 660		9,511,000
February	St. Lucie Rel.		41,625			41,625	0 304		126,566
	SJRPP		244,757			244,757	1.216		2,977,000
	PPAs		50			50	4.000		2,000
	FPC		33,600		_	33,600	1 978	-	664,450
Total			892,974			892,974	1.487		13,281,016
2003	Sou. Co (UPS + R)		602,433			602,433	1.660		10,000,000
March	St Lucie Rel.		46,086			46,086	0,304		140,235
	SJRPP		139,103			139,103	1.425		1,982,000
	PPAs		11,550			11,550	5.474		632,246
	FPC		37,200			37,200	1.960	-	729,250
Total			836,372			836,372	1.612		13,483,731
2003	Sou. Co. (UPS + R)		598,860			598,860	1.660		9,941,000
April	St. Lucie Rel.		29,243			29,243	0.279		81,586
	SJRPP		256,189			256,189	1.156		2,961,000
	PPAs		8,662			8,662	5 246		454,373
	FPC	-	36,000			36,000	1.966	-	707,650
Total			928,954			928,954	1.523		14,145,609
2003	Sou. Co (UPS + R)		667,019			667,019	1.660		11,072,000
Мау	St. Lucie Rel.		16,083			16,083	0.333		53,637
	SJRPP		264,729			264,729	1.219		3,227,000
	PPAs		31,775			31,775	5.099		1,620,100
	FPC	-	37,200			37,200	1.960	-	729,250
Total			1,016,806		***********	1,016,806	1.643		16,701,987
2003	Sou. Co. (UPS + R)		658,207			658,207	1 660		10,926,000
June	St. Lucie Rel.		43,865			43,865	0.341		149,459
	SJRPP		256,189			256,189	1.224		3,135,000
	PPAs		4,358			4,358	5.365		233,805
	FPC	-	36,000			36,000	1.966		707,650
Total			998,619			998,619	1 517		15,151,914
	Sou Co. (UPS + R)		3,727,524			3,727,524	1.660		61,875,000
Period	St Lucie Rel.		222,984			222,984	0.310		691,841
Total	SJRPP		1,431,947			1,431,947	1.251		17,913,000
	PPAs		61,346			61,346	5.261		3,227,705
_	FPC	-	217,200			217,200	1 965		4,267,500
Total			5,661,001			5,661,001	1 554		87,975,046
			5,661,001			5,661,001			• 87,975,046

Purchased Power

(Exclusive of Economy Energy Purchases)

Estimated for the Period of , January 2003 thru December 2003

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8A)	(8B)	(9)
		Туре	Total	Mwh	Mwh	Mwh	Fuel	Total	Total \$ For
Month	Purchase From	&	Mwh	For Other	For	For	Cost	Cost	Fuel Adj
		Schedule	Purchased	Utilities	Interruptible	Firm	(Cents/Kwh)	(Cents/Kwh)	(7) x (8A)
2003	Sou. Co. (UPS + R)		681,631			681,631	1.660		11,315,000
July	St. Lucie Rel.		45,326			45,326	0.342		155,151
	SJRPP		264,729			264,729	1.424		3,769,000
	PPAs		7,374			7,374	5.294		390,348
	FPC		37,200		-	37,200	1 960	-	729,250
Total			1,036,260			1,036,260	1.579	**-******	16,358,749
2003	Sou. Co. (UPS + R)		687,131			687,131	1.660		11,406,000
August	St. Lucie Rel.		45,326			45,326	0.345		156,541
Juguet	SJRPP		264,729			264,729	1.445		3,825,000
	PPAs		13,274			13,274	9.422		1,250,676
	FPC		37,200			37,200	1.960		729,250
Total			1,047,660			1,047,660	1.658	-	17,367,467
2003	Sou Co (UPS + R)		581,344			 581,344	 1.660		9,650,000
	St Lucie Rel.		43,864			43,864	0 344		150,871
	SJRPP		256,189			256,189	1 422		3,642,000
	PPAs		4,931			4,931	4.969		245,000
	FPC		36,000			36,000	1.966		707,650
Total			922,328			922,328	1 561	-	14,395,521
2003	Sou. Co. (UPS + R)		563,325			563,325	 1 660	410098999777	9,351,000
October	St Lucie Rel.		45,327			45,327	0 330		149,660
	SJRPP		264,729			264,729	1.471		3,895,000
	PPAs		9,562			9,562	5.189		496,163
	FPC		37,200			37,200	1.960		729,250
Total			920,143		_	920,143	1 589	-	14,621,073
2003	Sou. Co. (UPS + R)		506,161	****		 506,161	 1 660		8,402,000
November	St. Lucie Rel		44,597			44,597	0.344		153,594
	SJRPP		262,239			262,239	1.415		3,710,000
	PPAs		0			0	0.000		0
	FPC		36,000			36,000	1.966		707,650
Total			848,997			848,997	1.528	-	12,973,244
2003	Sou. Co (UPS + R)		578,038			578,038	1.660		9,595,000
December	St Lucie Rel		46,086			46,086	0 343		158,185
	SJRPP		270,980			270,980	1.430		3,875,000
	PPAs		0			0	0.000		0
	FPC		37,200			37,200	1 960		729,250
Total		-	932,304			932,304	1 540	-	14,357,435
	Sou, Co, (UPS + R)		7,325,154			7,325,154	1.660		 121,594,000
Period	St. Lucie Rel.		493,511			493,511	0.327		1,615,843
Total	SJRPP		3,015,542			3,015,542	1.347		40,629,000
rotar	PPAs		96,487			96,487	5.814		5,609,892
	FPC		438,000			438,000	1.963		8,599,800
Total		-	11,368,694		_	11,368,694	1,903		178,048,535
			11,368,694			11,368,694			 178,048,535

,

.

			Estimated fo	or the Period	of : January 20	03 thru Decer	nber 2003		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8A)	(8B)	(9)
Month	Purchase From	Type & Schedule	Total Mwh Purchased	Mwh For Other Utilities	Mwh For Interruptible	Mwh For Firm	Fuel Cost (Cents/Kwh)	Total Cost (Cents/Kwh)	Total \$ For Fuel Adj (7) x (8A)
2003 January	Qual. Facilities		532,715			532,715	1.835	1.835	9,775,430
Total			532,715			532,715	1.835	1.835	9,775,430
2003 February	Qual. Facilities		515,715			515,715	1 834	1.834	9,459,430
Total			515,715			515,715	1.834	1.834	9,459,430
2003 March	Qual. Facilities		574,532			574,532	1.850	1 850	10,626,430
Total			574,532			574,532	1 850	1.850	10,626,430
2003 April	Qual, Facilities		492,900			492,900	1.887	1.887	9,302,430
Total			492,900			492,900	1.887	1.887	9,302,430
2003 May	Qual Facılities		592,383			592,383	1.854	1.854	10,983,430
Total			592,383			592,383	1.854	1.854	10,983,430
2003 June	Qual. Facilities		563,221			563,221	1 848	1 848	10,407,430
Total			563,221			563,221	1.848	1.848	10,407,430
Period Total	Qual. Facilities		3,271,466			3,271,466	1.851	1.851	60,554,580
Total			3,271,466			3,271,466	1.851	1.851	60,554,580

Energy Payment to Qualifying Facilities

Company. Florida Power & Light _____

i

1 í

.

				nent to Qua	lifying Facilities				
					of : January 20	003 thru Decen	nber 2003		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8A)	(8B)	(9)
Month	Purchase From	Type & Schedule	Total Mwh Purchased	Mwh For Other Utilities	Mwh For Interruptible	Mwh For Firm	Fuel Cost (Cents/Kwh)	Total Cost (Cents/Kwh) 	Total \$ For Fuel Adj (7) x (8A)
2003 July	Qual. Facılities		555,013			555,013	1.846	1 846	10,243,430
Total			555,013			555,013	1.846	1.846	10,243,430
2003 August	Qual. Facilities		593,045			593,045	1.855	1.855	11,002,430
Total			593,045			593,045	1.855	1.855	11,002,430
2003 September	Qual. Facilities		560,744			560,744	1.848	1.848	10,364,430
Total			560,744			560,744	1.848	1 848	10,364,430
2003 October	Qual Facilities		552,307			552,307	1.839	1.839	10,154,430
Total			552,307			552,307	1.839	1.839	10,154,430
2003 November	Qual. Facilities		385,331			385,331	1.871	1.871	7,208,430
Total			385,331			385,331	1.871	1 871	7,208,430
2003 December	Qual Facilities		476,710			476,710	1.814	1 814	8,649,430
Total			476,710			476,710	1.814	1.814	8,649,430
Period Total	Qual. Facilities		6,394,616			6,394,616	1.848	1.848	118,177,160
Total			6,394,616			6,394,616 	1.848	1 848	118,177,160

Schedule: E9 Page : 1 .

- -

Company: Florida Power & Light

.

Economy Energy Purchases

Estimated For the Period of : January 2003 Thru December 2003

	(1) Month	(2) Purchase From	(3) Type &	(4) Total MWH	(5) Transaction Cost	(6) Total \$ For Fuel ADJ	(7A) Cost If Generated	(78) Cost If Generated	(8) Fuel Savings
			Schedule	Purchased	(Cents/KWH)	(4) * (5)	(Cents / KWH)	(\$)	(7B) - (6)
1	loouoor	Florida	OS	75,000	2 000	2 250 000	0.004	0.405.500	475 500
1 2	January 2003	Non-Florida	OS	75,000	3.000 3.000	2,250,000 2,250,000	3.234 3.234	2,425,500 2,425,500	175,500 175,500
3 4	Total			150,000	3.000	4,500,000	3.234	4,851,000	351,000
5 6									
7	February	Florida	OS	60,000	3.000	1,800,000	3.285	1,971,000	171,000
8 9	2003	Non-Florida	OS	65,000	2.950	1,917,500	3.285	2,135,250	217,750
10 11	Total			125,000	2.974	3,717,500	3.285	4,106,250	388,750
12									
13 14	March 2003	Florida Non-Florida	OS OS	50,000 75,000	3.400 2.950	1,700,000 2,212,500	3.552 3.552	1,776,000 2,664,000	76,000 451,500
15	T . I . I			,					
16 17	Total			125,000	3.130	3,912,500	3.552	4,440,000	527,500
18 19	April	Florida	OS	50,000	3.475	1,737,500	3.524	1,762,000	24,500
20 21	2003	Non-Florida	OS	150,000	3.200	4,800,000	3.524	5,286,000	486,000
21 22 23	Total			200,000	3.269	6,537,500	3.524	7,048,000	510,500
24 25	Мау	Florida	OS	50,000	3.700	1,850,000	3.828	1,914,000	64,000
26	2003	Non-Florida	os	150,000	3.450	5,175,000	3.828	5,742,000	567,000
27 28 29	Total			200,000	3.513	7,025,000	3.828	7,656,000	631,000
30									
31 32	June 2003	Florida Non-Florida	OS OS	45,000 80,000	3.575 3.500	1,608,750 2,800,000		1,642,950 2,920,800	34,200 120,800
33						,			
34 35	Total			125,000	3 527	4,408,750	3.651 	4,563,750	155,000
36 37	Period	Florida	OS	330,000	3.317	10,946,250	3.482	11,491,450	545,200
38	Total	Non-Florida	OS	595,000	3.219	19,155,000	3.559	21,173,550	2,018,550
39 40 41	Total			925,000	3.254	30,101,250	3.531	32,665,000	2,563,750
41									

.

Schedule: E9 Page : 2 .

. .

Economy Energy Purchases

-		
Estimated For the Period of : Janua	ary 2003 Thru December 2003	

.

					_				
	(1)	(2)	(3) Type	(4) Total	(5) Transaction	(6) Total \$ For	(7A) Cost If	(7B) Cost If	(8) Fuel
	Month	Purchase From	& Schedule	MWH Purchased	Cost (Cents/KWH)	Fuel ADJ (4) [•] (5)	Generated (Cents / KWH)	Generated (\$)	Savings (7B) - (6)
1 2	July 2003	Florida Non-Florida	OS OS	25,000 75,000	3.600	900,000	3.704	926,000	26,000
2	2003	NOII-FIORUA	03	75,000	3.600	2,700,000	3.704	2,778,000	78,000
4 5 6	Total			100,000	3.600	3,600,000	3.704	3,704,000	104,000
7	August	Florida	OS	25,000	3.800	950,000	4.002	1,000,500	50,500
8	2003	Non-Florida	OS	75,000	3.800	2,850,000	4.002	3,001,500	151,500
9 10 11	Total		.	100,000	3.800	3,800,000	4.002	4,002,000	202,000
12 13	September	Florida	OS	30,000	3.700	1,110,000	3.840	1,152,000	42.000
14	2003	Non-Florida	OS	120,000	3.350	4,020,000	3.840	4,608,000	42,000 588,000
15 16 17	Total			150,000	3.420	5,130,000	3.840	5,760,000	630,000
18 19	October	Florida	os	50,000	3.500	1 750 000	2,866	1 022 000	492.000
20	2003	Non-Florida	OS	50,000	3.100	1,750,000 1,550,000	3.866 3.866	1,933,000 1,933,000	183,000 383,000
21									
22 23	Total			100,000	3.300	3,300,000	3.866	3,866,000	566,000
24				50.000	0.000	4 500 000	0.000	4 004 000	404.000
25 26	November 2003	Florida Non-Florida	OS OS	50,000 50.000	3.000 2.800	1,500,000 1,400,000	3.368 3.368	1,684,000 1,684,000	184,000 284,000
27									·
28 29	Total			100,000	2.900	2,900,000	3.368	3,368,000	468,000
30									
31 32	December 2003	Florida Non-Florida	OS OS	30,000 45,000	3.000 2.900	900,000 1,305,000	3.367 3.367	1,010,100 1,515,150	110,100 210,150
33	2003	NUL-LIULUA	00	40,000	2.500	1,000,000	3.307	1,515,150	210,100
34 35	Total			75,000	2.940	2,205,000	3.367	2,525,250	320,250
36 37	Period	Florida	os	540,000	3.344	18,056,250	3.555	19,197,050	1,140,800
38	Total	Non-Florida	OS	1,010,000	3.265	32,980,000	3.633	• •	3,713,200
39 40 41	Total			1,550,000	3.293	51,036,250	3.606	55,890,250	4,854,000
41									

-

COMPANY: FLORIDA POWER & LIGHT COMPANY

SCHEDULE E10

....

			DIFFER	ENCE
	April 15, 2002 - Dec 2002	<u> Jan 2003 - Dec 2003</u>	<u>\$</u>	<u>%</u>
BASE	\$40.22	\$40.22	\$0.00	0.00%
FUEL	\$26.35	\$26.13	-\$0.22	-0.83%
CONSERVATION	\$1.87	\$1.87	\$0.00	0.00%
CAPACITY PAYMENT	\$7.01	\$6.50	-\$0.51	-7.28%
ENVIRONMENTAL	\$0.00	\$0.21	\$0.21	0.00%
SUBTOTAL	\$75.45	\$74.93	-\$0.52	-0.69%
GROSS RECEIPTS TAX	<u>\$0.77</u>	<u>\$0.77</u>	<u>\$0.00</u>	<u>0.00%</u>
TOTAL	<u>\$76.22</u>	<u>\$75.70</u>	<u>-\$0.52</u>	<u>-0.68%</u>

-

۰ ۱

.

GENERATING SYSTEM COMPARATIVE DATA BY FUEL TYPE

			PERIOD	
	ACTUAL	ACTUAL	ESTIMATED/ACTUAL	PROJECTED
	JAN - DEC	JAN - DEC	JAN - DEC	JAN - DEC
	2000 - 2000	2001 - 2001	2002 - 2002	2003 - 2003
	(COLUMN 1)	(COLUMN 2)	(COLUMN 3)	(COLUMN 4)
FUEL COST OF SYSTEM NET GE	910.227.585	993,639,285	540,120,851	640,332,850
LIGHT OIL	36,040,961	14,088,154	11,124,937	3,115.510
COAL	115,539,152	104,731,935	103,237,213	118,556,360
GAS	868,918,201	1,018,816,753	1.206,855,511	1.354,179,788
NUCLEAR	79 212,105	69,855,439	71,951,076	76 571,200
OTHER	0	0	0	0
TOTAL (\$)	2,009,938,004	2,201,131,566	1,933,289,588	2,192,755,708
SYSTEM NET GENERATION				
HEAVY OIL	22.644.991	25,802,011	16,044,044	17,592,359
	455.227 7 086.367	6,266,830	6,197,348	6,758,432
GAS	24,103 109	24,497,016	36,521,742	38,229,431
NUCLEAR	24,316,923	24,069,938	24.958.674	23,870,395
OTHER	0	0	0	0
TOTAL (MWH)	78,606,617	80,797,388	83,856,770	86 494,622
UNITS OF FUEL BURNED				
HEAVY OIL (Bbl)	35,766,850	40,994.892	25,340.156	27,248,257
LIGHT OIL (Bbl)	1,083,983	381.359	317,257	97,190
COAL (TON)	690,985	772,666	769,796	778,041
GAS (MCF)	201,564,340	212,955,990	301,930,387	281,234,679
NUCLEAR (MMBTU)	257,902,609	262,850,564	268.257.869	250,846,392
OTHER (TONS)	0	0	0	0
BTU'S BURNED (MMBTU)				
HEAVY OIL	228,572,995	260,958,241	161,884,556	174.388.845
LIGHT OIL	6,310,701	2,195,828	1,834,099	572.447
COAL	70,095,286	61,112,685	61,085,906	67,013,974
GAS	207.356.808	222,327,090	308,022,405	281.234.679
NUCLEAR	257,902,607	262,850,563	268.257.868	250,846,392
OTHER	0	0	0	0
	770 000 001			774 054 003
TOTAL (MMBTU)	770,238,396	809,444 406	801.084,834	774.056.337
GENERATION MIX (%MWH) HEAVY OIL	28 81	31 93	19 13	20 34
		0 20		
	0.58	7 76	0 16	0 05
GAS	30.66	30 32	43 55	44 20
	30.93	29 79	29 76	27 60
NUCLEAR	0.00	0.00	0.00	0.00
UTILIK			0.00	
TOTAL (%)	100 00	100.00	100.00	100.00
FUEL COST PER UNIT				
HEAVY OIL (\$/Bbl)	25 4489	24 2381	21 3148	23 5000
LIGHT OIL (\$/Bbl)	33 2486	36 9419	35 0660	31 7294
COAL (\$/TON)	40 1472	34 7820	33 9342	34 3248
GAS (\$/MCF)	4 3109	4 7842	3 9971	4 8151
NUCLEAR (\$/MMBTU)	0 3071	0 2658	0 2682	0 3053
OTHER (\$/TON)	0 0000	0 0000	0 0000 0	0 0000
FUEL COST PER MMBTU (\$/MM	BTU)			
HEAVY OIL	3 9822	3 8077	3 3365	3 6719
LIGHT OIL	5 7111	6 4159	6 0656	5 4424
COAL	1 6483	1 7138	1 6900	1 7691
GAS	4 1904	4 5825	3 9181	4 8151
NUCLEAR	0 3071	0 2658	0 2682	0 3053
OTHER	0 0000	0 0000	0 0000	0 0000
	0.0007	0.7100		0.000
TOTAL (\$/MMBTU)	2 6095	2 7193	2 4133	2 832
BTU BURNED PER KWH (BTU/KW		10,114	10.000	0.014
HEAVY OIL	10.094	13 589	10,090	9,913
LIGHT OIL COAL	9 892	9 752	9,857	9,916
COAL	8,603	9,076	8,434	7,356
GAS NUCLEAR	10,606	9,078	10,748	10,509
OTHER	0	0 420	10,748	10,304
OTHER				
TOTAL (BTU/KWH)	9,799	10,018	9,553	8.949
GENERATED FUEL COST PER KV				
HEAVY OIL	4 0196	3 8510	3 3665	3 6398
LIGHT OIL	7 9171	8 7183	8 2430	7 0799
COAL	1 6304	1 6712	1 6658	1 7542
	3 6050	4 1589	3 3045	3 5422
GAS			0 2883	0 3208
GAS NUCLEAR	0 3257	0 2902	0 2000	
	0 3257 0 0000	0 2902	0 0000	0 0000
NUCLEAR				0 0000

	%) FROM PRIC	
(COLUMN 2)	(COLUMN 3)	(COLUMN 4)
(COLUMN 1)	(COLUMN 2)	(COLUMN 3)
92	(45 6)	
(60 9)	(21 0)	
(94)	(14)	
17.3	18 5	12.2
(11.8)	30	64
00	00	00
95	(12 2)	13.4
13 9	(37 8)	97
(64 5)	(165)	(67.4)
(11.6)	(11)	91
16	491	47
(10)	37	(4 4
00	00	00
28	38	3 2
146	(38 2)	7 5
(64 8)	(16.8)	
11 8	(0 4)	11
57	418	(69
19	21	(65
00	00	00
14 2 (65 2)	(38.0) (16.5)	
(12.8)	(00)	97
72	38.5	(87
19	2,1	(65
00	00	00
51	(1 0)	(3 4
	· ·	-
•		
-		
• • •	-	
- - - -		
(4 8)		
(4 8)	(12 l) (5 l) (2 4)	- - - 103 (95 12
(4 8) 11 1 (13 4) 11 0	(12 1) (5 1) (2 4) (16 5)	- - - - - - - - - - - - - - - - - - -
(4 8) 11 1 (13 4) 11 0 (13 5)	(12 1) (5 1) (2 4) (16 5) 09	- - - - - - - - - - - - - - - - - - -
(4 8) 11 1 (13 4) 11 0	(12 1) (5 1) (2 4) (16 5)	- - - - - - - - - - - - - - - - - - -
(4 8) 11 1 (13 4) 11 0 (13 5) 0 0	(12 1) (5 1) (2 4) (16 5) 09 00	
(4 8) 11 1 (13 4) 11 0 (13 5) 00 (4 4)	(12 1) (5 1) (2 4) (16 5) 0 9 0 0 (12 4)	
(4 8) 11 1 (13 4) 11 0 (13 5) 0 0 (4 4) 12 3	(12 l) (5 l) (2 4) (16 5) 0 9 0 0 (12 4) (15 5)	10 3 (9 5 1 2 20 5 1 3 6 0 0 0 0 0
(4 8) 11 1 (13 4) 11 0 (13 5) 0 0 (4 4) 12 3 4 0	(12 1) (5 1) (2 4) (16 5) 0 9 0 0 (12 4) (5 5) (1 4)	
(4 8) 11 1 (13 4) 11 0 (13 5) 00 (4 4) 12 3 4 0 9 4	(121) (51) (24) (165) 09 00 (124) (55) (145)	
(4 8) 11 1 (13 4) 11 0 (13 5) 0 0 (4 4) 12 3 4 0 9 4 (13 5)	(12 1) (5 1) (6 5) (16 5) 0 9 0 0 (12 4) (12 4) (14 5) (1 4) (14 5) 0 9	
(4 8) 11 1 (13 4) 11 0 (13 5) 00 (4 4) 12 3 40 9 4 (13 5) 00 0	(12 1) (5 1) (2 4) (16 5) 0 9 0 0 (12 4) (5 5) (1 4) (14 5) 0 9 0 0	
(4 8) 11 1 (13 4) 11 0 (13 5) 0 0 (4 4) 12 3 4 0 9 4 (13 5)	(12 1) (5 1) (6 5) (16 5) 0 9 0 0 (12 4) (12 4) (14 5) (1 4) (14 5) 0 9	
(4 8) 11 1 (13 4) 11 0 (13 5) 00 (4 4) 12 3 40 9 4 (13 5) 00 0	(12 1) (5 1) (2 4) (16 5) 0 9 0 0 (12 4) (5 5) (1 4) (14 5) 0 9 0 0	
(4 8) 11 1 (13 4) 11 0 (13 5) 0 0 (4 4) 12 3 4 0 9 4 (13 5) 0 0 9 4 (13 5) 0 0	(12 1) (5 1) (6 5) (16 5) (16 5) (14 5) (14 5) (14 5) (14 5) (14 5) (14 5) (14 5) (14 5) (14 5) (11 3) (0 2)	
(4 8) 11 1 (13 4) 11 0 (13 5) 00 (4 4) 12 3 40 9 4 (13 5) 00 42 02	(12 1) (5 1) (6 5) (16 5) (16 5) 09 00 (12 4) (14 5) (14 5) (14 5) (14 5) (14 5) (14 5) (14 5) (14 5) (14 5) (11 3) (11 3) (0 2)	
(4 8) 11 1 (13 4) 11 0 (13 5) 00 (4 4) 12 3 40 94 (13 5) 00 94 (13 5) 00 92 (20)	(12 1) (5 1) (6 5) (16 5) (17 2) (17	
(4 8) 11 1 (13 4) 11 0 (13 5) 00 (4 4) 12 3 40 94 (13 5) 00 94 (13 5) 00 92 (20) (1 4)	(12 1) (5 1) (2 4) (16 5) 0 9 0 0 (12 4) (5 5) (1 4) (14 5) 0 9 (11 3) (11 3) (1 1 3) (0 2) 0 0 (1 1 1)	
(4 8) 11 1 (13 4) (13 5) (13 5) 00 (4 4) 12 3 4 0 9 4 (13 5) 00 	(12 1) (5 1) (2 4) (16 5) 0 9 0 0 (12 4) (5 5) (1 4) (14 5) 0 9 0 0 (11 3) (11 3) (0 2) 0 0 (11 3) (0 2) 0 0 (1 1) (7 1)	
(4 8) 11 1 (13 4) 11 0 (13 5) 00 (4 4) 12 3 4 0 9 4 (13 5) 00 9 4 (13 5) 00 00 00 00 00 00 00 00 00 0	(12 1) (5 1) (6 5) (16 5) (17 4) (16 5) (17 4) (17	
(4 8) 11 1 (13 4) 11 0 (13 5) 00 (4 4) 12 3 40 9 4 (13 5) 00 (4 4) 12 3 40 9 4 (13 5) 00 0 4 (13 5) 00 0 4 (13 5) 00 0 4 (13 5) 00 0 4 (13 5) 00 0 4 (13 5) 00 0 4 (13 5) 00 0 (14 5) 00 0 (13 5) 00 0 (13 5) 00 0 (13 5) 00 0 (13 5) 00 0 (14 5) 00 0 (14 5) 00 0 (14 5) 00 0 0 (14 5) 00 0 0 0 0 0 0 0 0 0 0 0 0	(12 1) (5 1) (2 4) (16 5) (1 4) (16 5) (1 4) (14 5) (1 4) (14 5) (1 4) (14 5) (1 4) (14 5) (1 4) (1 3) (1 3) (1 3) (1 3) (1 1) (1 6) (1 6) (1 1) (1 6) (1 6)	
(4 8) 11 1 (13 4) 11 0 (13 5) 00 (4 4) 12 3 4 0 9 4 (13 5) 00 9 4 (13 5) 00 00 00 00 00 00 00 00 00 0	(12 1) (5 1) (2 4) (16 5) 0 9 (12 4) (16 5) 0 9 (12 4) (14 5) (14 5) (14 5) 0 9 (11 3) (11 4) (11 4)	
(4 8) 11 1 (13 4) 11 0 (13 5) 00 (44) 12 3 40 94 (13 5) 00 94 (13 5) 00 94 (13 5) 00 02 (220) (14) 55 30 00 02 22	(12 1) (5 1) (2 4) (16 5) 0 9 (12 4) (16 5) 0 9 (12 4) (14 5) (14 5) (14 5) 0 9 (11 3) (11 4) (11 4)	
(4 8) 11 1 (13 4) 11 0 (13 5) 00 (4 4) 12 3 4 0 9 4 (13 5) 00 4 2 (2 0) (1 4) 5 5 3 0 00 2 2 (4 2)	(12 1) (5 1) (6 1) (2 4) (16 5) (1 4) (1 5 5) (1 4) (1 4 5) (1 4) (1 4 5) (1 4) (1 4 5) (1 4) (1 4 5) (1 4) (1 3) (1 3) (1 1 3) (1 6) (1 2) (1 6) (1 7) (1 6) (1 7) (1 6) (1 7) (1 7) (1 6) (1 7) (1 7	
(4 8) 11 1 (13 4) 11 0 (13 5) 00 (4 4) 12 3 4 0 9 4 (13 5) 00 02 (2 0) (1 4) 5 5 3 0 00 02 (2 2) (2 2) (4 2) 10 1 10 0 10 0 1	(12 1) (5 1) (2 4) (16 5) 0 9 0 0 (12 4) (14 5) (14 5) (14 5) (14 5) (14 5) (14 5) (14 5) (14 5) (14 5) (11 3) (11	
(4 8) 11 1 (13 4) 11 0 (13 5) 00 (44) 12 3 40 94 (13 5) 00 94 (13 5) 00 00 94 (13 5) 00 00 94 (13 5) 00 00 94 (13 5) 00 00 94 (13 5) 00 00 02 (20) (14 4) 02 02 (20) (14 4) 05 00 00 02 (20) (14 4) 02 02 (20) (14 4) 02 02 (22) (14 4) 02 02 (22) (14 4) 00 00 00 00 00 00 00 00 00 0	(12 1) (5 1) (6 1) (16 5) (16 5) (16 5) (14 5) (12 4) (11 3) (0 2) (0 2) (0 2) (0 2) (11 3) (1 5) (1 6) (1 7) (1 6) (1 7) (1 6) (1 7) (1 7)	

(15 4)

10.0

65

(Continued from Sheet No. 10.100)

ESTIMATED AS-AVAILABLE AVOIDED ENERGY COST

For informational purposes only, the estimated incremental As-Available Energy costs for the next five periods are as follows. In addition, As-Available Energy cost payments will include .0006¢/kWh for variable operation and maintenance expenses.

Applicable Period	On-Peak ¢/KWH	Off-Peak ¢∕KWH	Average ¢/KWH
January 1, 2003 – March 31, 2003	3.57	3.23	3.33
April 1, 2003 – September 30, 2003	4.10	3.34	3.56
October 1, 2003 – December 31, 2003	3.69	3.30	3.41
January 1, 2004 – March 31, 2004	3 37	2.99	3.10
April 1, 2004 – September 30, 2004	4.00	3.26	3.48
October 1, 2004 – December 31, 2004	3 69	3.32	3 43

A MW block size ranging from 31 MW to 35 MW has been used to calculate the estimated As-Available Energy cost.

DELIVERY VOLTAGE ADJUSTMENT

The Company's actual hourly As-Available Energy costs shall be adjusted according to the delivery voltage by the following multipliers:

Delivery Voltage	Adjustment Factor
Transmission Voltage Delivery	1.0000
Primary Voltage Delivery	1.0228
Secondary Voltage Delivery	1.0502

For informational purposes the Company's projected annual generation mix and fuel prices are as follows:

PROJECTED ANNUAL GENERATION MIX AND FUEL PRICES

Generation by Fuel Type (%)					Price by Fuel Type (\$/MMBTU)				
<u>Year</u>	Nuclear	<u>Oil</u>	Gas	Coal	Purchased Power	Nuclea	<u>r Oil</u>	Gas	Coal
2003	24	17	38	7	14	.31	3.68	4.80	1.78
2004	23	14	43	6	14	.31	3.67	4.35	1.65
2005	23	10	49	5	13	.33	3.65	4.14	1.63
2006	21	7	54	5	12	.33	3.77	4.08	1.65
2007	21	6	57	5	12	.42	3.81	4.04	1.66
2008	21	5	57	5	12	.43	3.93	4.28	1.69
2009	20	5	60	4	11	.44	4.01	4.31	1 68
2010	19	4	64	4	8	.44	4.17	4.34	1.71
2011	19	3	68	4	5	.45	4 24	4.37	1.75
2012	19	4	68	4	5	.46	4 42	4.44	1.77

NOTE: The Company's forecasts are for illustrative purposes, and are subject to frequent revision. Amounts may not add to 100% due to rounding.

(Continued on Sheet No. 10.102)

Customer Rate Schedule	Charge(\$)	Customer Rate Schedule	Charge(\$)
GS-1	8.37	CST-1	102.27
GST-1	11.44	GSLD-2	158.05
GSD-1	32.54	GSLDT-2	158.05
GSDT-1	38.58	CS-2	158.05
RS-1	5.25	CST-2	158.05
RST-1	8.32	GSLD-3	371.88
GSLD-1	38.12	CS-3	371.88
GSLDT-1	38.12	CST-3	371.88
CS-1	102.27	GSLDT-3	371.88

(Continued from Sheet No. 10.102)

B. Interconnection Charge for Non-Variable Utility Expenses:

The Qualifying Facility shall bear the cost required for interconnection, including the metering. The Qualifying Facility shall have the option of (i) payment in full for the interconnection costs upon completion of the interconnection facilities (including the time value of money during the construction) and providing a surety bond, letter of credit or comparable assurance of payment acceptable to the Company adequate to cover the interconnection costs, (ii) payment of monthly invoices from the Company for actual costs progressively incurred by the Company in installing the interconnection facilities, or (iii) upon a showing of credit worthiness, making equal monthly installment payments over a period no longer than thirty-six (36) months toward the full cost of interconnection. In the latter case, the Company shall assess interest at the rate then prevailing for the thirty (30) days highest grade commercial paper rate, such rate to be specified by the Company thirty (30) days prior to the date of each installment payment by the Qualifying Facility.

C. Interconnection Charge for Variable Utility Expenses:

The Qualifying Facility shall be billed monthly for the cost of variable utility expenses associated with the operation and maintenance of the interconnection facilities. These include (a) the Company's inspections of the interconnection facilities and (b) maintenance of any equipment beyond that which would be required to provide normal electric service to the Qualifying Facility if no sales to the Company were involved.

In lieu of payments for actual charges, the Qualifying Facility may pay a monthly charge equal to a percentage of the installed cost of the interconnection facilities necessary for the sale of energy to the Company. The applicable percentages are as follows:

Equipment Type	Charge
Metering Equipment	0.224%
Distribution Equipment	0.284%
Transmission Equipment	0.112%

D. Taxes and Assessments

The Qualifying Facility shall be billed monthly an amount equal to any taxes, assessments or other impositions, for which the Company is liable as a result of its purchases of As-Available Energy produced by the Qualifying Facility. In the event the Company receives a tax benefit as a result of its purchases of As-Available Energy produced by the Qualifying Facility, the Qualifying Facility shall be entitled to a refund in an amount equal to such benefit.

TERMS OF SERVICE

(1) It shall be the Qualifying Facility's responsibility to inform the Company of any change in the Qualifying Facility's electric generation capability.

(Continue on Sheet No. 10.104)

APPENDIX III

CAPACITY COST RECOVERY

Т

.

1

1

KMD-6 DOCKET NO. 020001-EI FPL WITNESS: K. M. DUBIN EXHIBIT PAGES 1-5 SEPTEMBER 20, 2002

APPENDIX III CAPACITY COST RECOVERY

4

ł

1

1

TABLE OF CONTENTS

PAGE(S)	DESCRIPTION	<u>SPONSOR</u>
3	Projected Capacity Payments	K. M. Dubin
4	Calculation of Energy & Demand Allocation % By Rate Class	K. M. Dubin
5	Calculation of Capacity Recovery Factor	K. M. Dubin

							PROJECTED						
	JANUARY	FEBRUARY	MARCH	APRIL	MAY	JUNE	JULY	AUGUST	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER	TOTAL
1 CAPACITY PAYMENTS TO NON-COGENERATORS	\$21,903,521	\$21,905 ,6 50	\$19,281,834	\$19,342,844	\$21,975,693	\$32,355,693	\$32,367,692	\$32,362,757	\$26,333,210	\$19,137,162	\$19,363,940	\$22,105,449	\$288,435,445
2. CAPACITY PAYMENTS TO COGENERATORS	\$28,737,104	\$28,737,104	\$28,737,104	\$28,737,104	\$28,737,104	\$28,737,104	\$28,737,104	\$28,737,104	\$28,737,104	\$28,737,104	\$28,737,104	\$28,737,104	\$344,845,248
3 CAPACITY PAYMENTS FOR MISSION SETTLEMENT	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
4 CAPACITY PAYMENTS FOR OKEELANTA/OSCEOLA SETTLEMENT	\$3,132,518	\$3,128,246	\$3,123,973	\$3,119,701	\$3,115,429	\$3,111,156	\$3,106,884	\$3,102,612	\$3,098,340	\$3,094,067	\$3,089,795	\$3,085,523	\$37,308,244
5 TRANSMISSION REVENUES FROM CAPACITY SALES	\$489,918	\$489,918	\$433,688	\$237,225	\$237,225	\$313,000	\$404,130	\$404,130	\$284,670	\$240,938	\$194,730	\$334,854	\$4,064,426
6 SJRPP SUSPENSION ACCRUAL	\$666,628	\$666,628	\$666,628	\$666,628	\$666,628	\$666,628	\$666,628	\$666,628	\$666,628	\$666,628	\$666,628	\$666,628	\$7,999,536
7 RETURN REQUIREMENT ON SUSPENSION PAYMENT	\$230,046	\$236,609	<u>\$243,172</u>	<u>\$249,735</u>	<u>\$256,298</u>	<u>\$262,861</u>	<u>\$269,424</u>	<u>\$275,987</u>	<u>\$282,550</u>	<u>\$289,113</u>	\$2 <u>95,675</u>	<u>\$302,238</u>	<u>\$3,193,708</u>
8 SYSTEM TOTAL (Lines 1+2+3+4-5+6-7)	\$50,587,289	\$50,582,855	\$48,008,706	\$48,259,616	\$50,885,902	\$61,183,564	\$61,097,870	\$61,086,372	\$55,169,722	\$48,010,843	\$48,277,267	\$50,872,089	\$671,330,339
9 JURISDICTIONAL % *													99 01742%
10 JURISDICTIONALIZED CAPACITY PAYMENTS													\$664,733,981
ω 11 SJRPP CAPACITY PAYMENTS INCLUDED IN THE 1988 TAX SAVINGS REFUND DOCKET													(\$56,945,592)
12 FINAL TRUE-UP overrecovery/(underrecovery) JANUARY 2001 - DECEMBER 2001 (\$2,528,058)		EST \ ACT TRUE JANUAR	E-UP overrecov Y 2002 - DECEI \$49,140,148		y)								\$46,612,090
(32,526,036) 13 TOTAL (Lines 10+11+12)			010,110,110										\$561,176,299
14 REVENUE TAX MULTIPLIER													1 01597
15 TOTAL RECOVERABLE CAPACITY PAYMENTS													\$570,138,284
15 TUTAL RECOVERABLE CAPACITE PATIMENTS													
*CALCULATION OF JURISDICTIONAL % AVG 12 CP													
AT <u>GEN (MW) %</u> FPSC 16,372 99 01742%													
FERC 162 0.98258% TOTAL 16,535 100.00000%													

.....

PROJECTED

FLORIDA POWER & LIGHT COMPANY PROJECTED CAPACITY PAYMENTS JANUARY 2003 THROUGH DECEMBER 2003

.

* BASED ON 2001 ACTUAL DATA

FLORIDA POWER & LIGHT COMPANY CALCULATION OF ENERGY & DEMAND ALLOCATION % BY RATE CLASS JANUARY 2003 THROUGH DECEMBER 2003

.

. . . .

Rate Class	(1) AVG 12CP Load Factor at Meter (%)	(2) Projected Sales at Meter (kwħ)	(3) Projected AVG 12 CP at Meter (kW)	(4) Demand Loss Expansion Factor	(5) Energy Loss Expansion Factor	(6) Projected Sales at Generation (kwh)	(7) Projected AVG 12 CP at Generation (kW)	(8) Percentage of Sales at Generation (%)	(9) Percentage of Demand at Generation (%)
RS1	62.616%	50,471,039,871	9,201,377	1.094827488	1.073915762	54,201,645,242	10,073,920	52.79090%	57.91053%
GS1	68.676%	5,793,955,050	963,088	1.094827488	1.073915762	6,222,219,653	1,054,415	6.06027%	6.06137%
GSD1	73.696%	21,865,398,011	3,386,955	1.094723515	1.073838681	23,479,910,160	3,707,779	22.86878%	21.31439%
OS2	105.150%	21,461,533	2,330	1.058079498	1.045886865	22,446,335	2,465	0.02186%	0.01417%
GSLD1/CS1	79.862%	9,938,252,955	1,420,580	1.093047752	1.072600787	10,659,777,941	1,552,762	10.38233%	8.92614%
GSLD2/CS2	81.244%	1,553,745,889	218,316	1.086373648	1.067208009	1,658,170,057	237,173	1.61501%	1.36340%
GSLD3/CS3	91.313%	184,853,894	23,110	1.027640676	1.022546340	189,021,673	23,749	0.18410%	0.13652%
ISST1D	80.766%	0	0	1.094827488	1.073915762	0	0	0.00000%	0.00000%
SST1T	121.750%	156,626,041	14,686	1.027640676	1.022546340	160,157,385	15,092	0.15599%	0.08676%
SST1D	80.766%	63,776,080	9,014	1.064343398	1.052972443	67,154,455	9,594	0.06541%	0.05515%
CILC D/CILC G	91.552%	3,410,560,539	425,259	1.082801970	1.064967021	3,632,134,497	460,471	3.53760%	2.64704%
CILC T	100.265%	1,577,785,426	179,636	1.027640676	1.022546340	1,613,358,713	184,601	1.5713 7 %	1.06119%
MET	67.043%	91,521,766	15,584	1.058079498	1.045886865	95,721,413	16,489	0.09323%	0.09479%
OL1/SL1/PL1	145.050%	538,601,843	42,388	1.094827488	1.073915762	578,413,009	46,408	0.56336%	0.26678%
SL2	99.861%	85,846,103	9,813	1.094827488	1.073915762	92,191,483	10,744	0.08979%	0.06176%
TOTAL		95,753,425,000	15,912,136			102,672,322,016	17,395,662	100.00%	100.00%

(1) AVG 12 CP load factor based on actual calendar data.
(2) Projected kwh sales for the period January 2003 through December 2003.
(3) Calculated: Col(2)/(8760 hours * Col(1))
(4) Based on 2001 demand losses.
(5) Based on 2001 energy losses.
(6) Col(2) * Col(5).
(7) Col(3) * Col(4).
(8) Col(6) / total for Col(6)

(9) Col(7) / total for Col(7)

-

FLORIDA POWER & LIGHT COMPANY CALCULATION OF CAPACITY PAYMENT RECOVERY FACTOR JANUARY 2003 THROUGH DECEMBER 2003

.

Rate Class	(1) Percentage of Sales at Generation (%)	(2) Percentage of Demand at Generation (%)	(3) Energy Related Cost (\$)	(4) Demand Related Cost (\$)	(5) Total Capacity Costs (\$)	(6) Projected Sales at Meter (kwh)	(7) Billing KW Load Factor (%)	(8) Projected Billed KW at Meter (kw)	(9) Capacity Recovery Factor (\$/kw)	(10) Capacity Recovery Factor (\$/kwh)
RS1	52.79090%	57.91053%	\$23,152,396	\$304,772,400	\$327,924,796	50,471,039,871	-	-	-	0.00650
GS1	6.06027%	6.06137%	\$2,657,840	\$31,899,855	\$34,557,695	5,793,955,050	-	-	-	0.00596
GSD1	22.86878%	21.31439%	\$10,029,514	\$112,173,683	\$122,203,197	21,865,398,011	47.76122%	52,218,164	2.34	-
OS2	0.02186%	0.01417%	\$9,588	\$74,575	\$84,163	21,461,533	-	-	-	0.00392
GSLD1/CS1	10.38233%	8.92614%	\$4,553,356	\$46,976,649	\$51,530,005	9,938,252,955	61.56193%	22,114,390	2.33	-
GSLD2/CS2	1.61501%	1.36340%	\$708,292	\$7,175,338	\$7,883,630	1,553,745,889	62.15381%	3,424,439	2.30	-
GSLD3/CS3	0.18410%	0.13652%	\$80,741	\$718,493	\$799,234	184,853,894	73.25446%	345,678	2.31	-
ISST1D	0.00000%	0.00000%	\$0	\$0	\$0	0	61.35882%	0	**	_
SST1T	0.15599%	0.08676%	\$68,412	\$456,587	\$524,999	156,626,041	19.10388%	1,123,103	**	-
SST1D	0.06541%	0.05515%	\$28,685	\$290,253	\$318,938	63,776,080	61.35882%	142,383	**	-
CILC D/CILC G	3.53760%	2.64704%	\$1,551,477	\$13,930,908	\$15,482,385	3,410,560,539	73.42662%	6,362,816	2.43	-
CILC T	1.57137%	1.06119%	\$689,151	\$5,584,846	\$6,273,997	1,577,785,426	80.75281%	2,676,501	2.34	-
MET	0.09323%	0.09479%	\$40,888	\$498.852	\$539,740	91,521,766	56.59241%	221,536	2.44	-
OL1/SL1/PL1	0.56336%	0.26678%	\$247,071	\$1,404,009	\$1,651,080	538,601,843	-	-	-	0.00307
SL2	0.08979%	0.06176%	\$39,380	\$325,045	\$364,425	85,846,103	-	-	-	0.00425
TOTAL			\$43,856,791	\$526,281,493	\$570,138,284	95,753,425,000		88,629,010		

	CAPACITY RECOVERY FACTORS FOR STANDBY RATES						
Note:There are currently no customers taking service on Schedule ISST1(T). Should any customer b taking service on this schedule during the period, they will be billed using the ISST(D) Factor.	e Reservation Demand = Charge (RDC)	(Total col 5)/(Doc 2, Total col 7)(.10) (Doc 2, col 4) 12 months					
 (1) Obtained from Page 2, Col(8) (2) Obtained from Page 2, Col(9) (3) (Total Capacity Costs/13) * Col (1) (4) (Total Capacity Costs/13 * 12) * Col (2) 	Sum of Daily Demand = Charge (SDD)	(Total col 5)/(Doc 2, Total col 7)/(21 onpeak days) (Doc 2, col 4) 12 months					
 (5) Col (3) + Col (4) (6) Projected kwh sales for the period January 2003 through December 2003 (7) (kWh sales / 8760 hours)/((avg customer NCP)(8760 hours)) (8) Cel (6) / ((7) *730) For GSD-1, only 83.265% of KW are billed due to 10 KW exemption (9) Col (5) / (8) (10) Col (5) / (6) 	ISST1 (D) SST1 (T)	CAPACITY RECOVERY FACTOR RDC SDD ** (\$/kw) ** (\$/kw) \$0.30 \$0.14 \$0.28 \$0.13					
Totals may not add due to rounding.	SST1 (D)	\$0.29 \$0.14					