

030000-PG

710 NE 30TH AVE OCALA, FLORIDA 34470 (352) 622-1171

July 1, 2003

Florida Public Service Commission 2540 Shumard Oak Blvd. Tallahassee, FL 32399 Attn: Records and Recording

Enclosed are copies of our 2002 Consumer Confidence Reports that have been prepared and distributed in accordance with Rule 62-550.840 FAC.

Sincerely, Tim E. Thompson

<u>Tim E.</u> Thompson President, Marion Utilities, Inc.

AUS _____ CAF _____ COM _____ CTR _____ ECR _____ GCL ____ OPC _____ SEC ____ OTH ____

88 6 W L- THE EO EBINGS HONDERNAME TRADE TO THE 05957 JUL -7 8

Pine Ridge Estates 2002 Annual Drinking Water Quality Report

We're very pleased to provide you with this year's Annual Water Quality Report. We want to keep you informed about the excellent water and services we have delivered to you over the past year. Our goal is and always has been, to provide to you a dependable supply of drinking water. Our water source is groundwater and our well(s) draw from the Floridan Aquifer.

We're pleased to report that our drinking water meets federal and state requirements.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include

.

(A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

(B) Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, and residential uses.

(C) Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.

(D) Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.

(E) Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791

Marion Utilities Inc. routinely monitors for contaminants in your drinking water according to Federal and State laws. This table shows the results of our monitoring for the period of January 1st to December 31st, 2000 The state allows us to monitor for some contaminants less than once per year because the concentration of these contaminants do not change frequently Some of our data, though representative, are more than one year old All water analysis is the most recent sampling in accordance with the Safe Drinking Water Act.

In this table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions:

Non-Detects (ND) - laboratory analysis indicates that the constituent is not present

Non-Applicable (n/a) - does not apply.

Parts per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per billion (ppb) or Micrograms per liter - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

Picocuries per liter (pCi/L) - picocuries per liter is a measure of the radioactivity in water.

Action Level (AL) - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology

Maximum Contaminant Level Goal - The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MCLs are set at very stringent levels. To understand the possible health effects described for many regulated contaminants, a person would have to drink 2 liters of water every day at the MCL level for a lifetime to have a one-in-a-million chance of having the described health effect.

TEST RESULTS TABLE										
Contaminant and Unit of Measurement	Date of sample analysis	MCL/AL Violation Y/N	Level Detected	Range	MCLG	MCL .	Likely Source of Contamination			
Radiological Contaminant	S									
Gross Alpha (pCi/l)	7/2000	No	09	N/A	0	15	Erosion of natural deposits			
Inorganic Contaminants										
Barium (ppm)	7/2000	No	0 01 1	N/A	2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits			
Chromium (ppb)	7/2000	No	3.0	N/A	100	100	Discharge from steel and pulp mills; erosion of natural deposits			
Fluoride (ppm)	7/2000	No	0.17	N/A	4	4	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories			
Nitrate (as Nitrogen) (ppm)	3/2002	No	1.46	N/A	10	10	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits			
Sodium (ppm)	7/2000	No	7.48	N/A	N/A	160	The standard is set at 160 ppm to protect those who are susceptible to high blood pressure or to diseases causing difficulty in regulating body fluid volumes. It is important to recognize that sodium enters the body in a number of ways, including food, and that drinking water contributes less than 10 percent to the overall sodium intake.			
Lead and Copper Home S	ampling									
Lead (lap water) (ppb)	8/2002	No	2.1 (90 th percentile)	N/A	0	AL=15	Corrosion of household plumbing systems, erosion of natural deposits			
Copper (tap water) (ppm)	8/2002	No	0.22 (90 th percentile)	N/A	1.3	AL=1.3	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives			

As you can see by the table, our system had no violations. We're proud that your drinking water meets or exceeds all Federal and State requirements. We have learned through our monitoring and testing that some contaminates have been detected.

Thank you for allowing us to continue providing your family with clean, quality water this year. In order to maintain a safe and dependable water supply we sometimes need to make improvements that will benefit all of our customers. These improvements are sometimes reflected as rate structure adjustments. Thank you for understanding.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-comptomised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800 426-4791)

If you have any questions about this report or concerning your water utility, please contact Jim Thompson at (352) 622-1171. We want our valued customers to be informed about their water utility.

Cedar Hills 2002 Annual Drinking Water Quality Report

We're very pleased to provide you with this year's Annual Water Quality Report We want to keep you informed about the excellent water and services we have delivered to you over the past year. Our goal is and always has been, to provide to you a dependable supply of drinking water. Our water source is groundwater and our well(s) draw from the Floridian Aquifer.

We're pleased to report that our drinking water meets federal and state requirements.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include-

(A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

(B) Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, and residential uses.

(C) Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses

(D) Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.

(E) Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

Marion Utilities Inc. routinely monitors for contaminants in your drinking water according to Federal and State laws This table shows the results of our monitoring for the period of January 1st to December 31st, 2001. The state allows us to monitor for some contaminants less than once per year because the concentration of these contaminants do not change frequently. Some of our data, though representative, are more than one year old. All water analysis is the most recent sampling in accordance with the Safe Drinking Water Act.

In this table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions: Non-Detects (ND) - laboratory analysis indicates that the constituent is not present.

Non-Applicable (n/a) - does not apply.

Parts per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per billion (ppb) or Micrograms per liter - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

Picocuries per liter (pCi/L) - picocuries per liter is a measure of the radioactivity in water.

Action Level (AL) - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow. Maximum Contaminant Level - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal - The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MCLs are set at very stringent levels. To understand the possible health effects described for many regulated contaminants, a person would have to drink 2 liters of water every day at the MCL level for a lifetime to have a one-in-a-million chance of having the described health effect

TEST RESULTS TABLE

Microbiological Contaminants

6						
Contaminant and Unit of Measurement	Dates of sampling (mo./yr.)	MCL Violation Y/N	Highest Monthly Number of Positive Samples	MCLG	MCL	Likely Source of Contamination
Total Coliform Bacteria	08/2002	No	l	0	presence of coliform bacteria in 1 sample collected during a month	Naturally present in the environment
Contaminant and Unit of Measurement	Dates of sampling (mo./yr.)	MCL Violation Y/N	Highest Monthly Number of Positive Samples	MCLG	MCL	Likely Source of Contamination
Fecal coliform and E.coli	07/2002	No	I	0	A routine sample is fecal coliform positive or <u>E coli</u> positive and the repeat samples are negative	Human and animal fecal waste

Contaminant and Unit of Measurement	Date of sample analysis	MCL/AL Violation Y/N	Level Detect ed	Range	MCLG	MCL	Likely Source of Contamination
Radiological C	Contamina	nts					
Gross Alpha (pCi/l)	8/2000	No	0.2	N/A	0	15	Erosion of natural deposits
Inorganic Cor	ntaminants						
Fluoride (ppm)	8/2000	No	018	N/A	4	4	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
Nitrate (as Nitrogen) (ppm)	3/2002	No	2.33	N/A	10	10	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Sodium (ppm)	8/2000	No	5.69	N/A	N/A	160	Salt water intrusion, leaching from soil.
Lead and Copper I	Iome Samplin	g					
Contaminant and Unit of Measurement	Dates of Sampling	AL Violation Y/N	90 th Percen tile	No. of Sampling sites exceeding the AL	MCLG	AL (Action Level)	Likely Source of Contamination
Lead (tap water) (ppb)	8/2002	No	4.3	N/A	0	AL=15	Corrosion of household plumbing systems, erosion of natural deposits
Copper (tap water) (ppm)	8/2002	No	0.58	N/A	13	AL=1.3	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives

As you can see by the table, our system had no MCL violations. We're proud that your drinking water meets or exceeds all Federal and State requirements. We have learned through our monitoring and testing that some contaminates have been detected. We did have a violation of our monitoring and reporting for bacteria sampling in the month of January. Due to a previous positive line sample, we were required to obtain five line samples but only took two as the two samples were absent of contamination. We do not think that there was any health risk.

Thank you for allowing us to continue providing your family with clean, quality water this year. In order to maintain a safe and dependable water supply we sometimes need to make improvements that will benefit all of our customers. These improvements are sometimes reflected as rate structure adjustments. Thank you for understanding.

Some people may be more vulnerable to contaminants in drinking water than the general population Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800 426-4791)

If you have any questions about this report or concerning your water utility, please contact Tim Thompson at (352) 622-1171. We want our valued customers to be informed about their water utility.

Fore Acres 2002 Annual Drinking Water Quality Report

We're very pleased to provide you with this year's Annual Water Quality Report We want to keep you informed about the excellent water and services we have delivered to you over the past year. Our goal is and always has been, to provide to you a dependable supply of drinking water Our water source is groundwater and our well(s) draw from the Floridan Aquifer.

We're pleased to report that our drinking water meets federal and state requirements

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

.

(A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

(B) Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, and residential uses. (C) Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.

(D) Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.

(E) Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

Marion Utilities Inc. routinely monitors for contaminants in your drinking water according to Federal and State laws This table shows the results of our monitoring for the period of January 1st to December 31st, 2000. The state allows us to monitor for some contaminants less than once per year because the concentration of these contaminants do not change frequently. Some of our data, though representative, are more than one year old. All water analysis is the most recent sampling in accordance with the Safe Drinking Water Act.

In this table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions:

Non-Detects (ND) - laboratory analysis indicates that the constituent is not present

Non-Applicable (n/a) - does not apply.

Parts per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per billion (ppb) or Micrograms per liter - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

Picocuries per liter (pCi/L) - picocuries per liter is a measure of the radioactivity in water.

Action Level (AL) - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal - The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MCLs are set at very stringent levels To understand the possible health effects described for many regulated contaminants, a person would have to drink 2 liters of water every day at the MCL level for a lifetime to have a one-in-a-million chance of having the described health effect

	_	TEST	RESULTS	TABLE			
taminant and it of Measurement	Date of sample analysis	MCL/AL Violation Y/N	Level Detected	Range	MCLG	MCL	Likely Source of Contamination
liological Contaminants	3						
ss Alpha (pCi/l)	8/2000	No	2.6	N/A	0	15	Erosion of natural deposits
rganic Contaminants					<u></u>		
ate (as Nitrogen)(ppm)	3/2002	No	2.22	N/A	10	10	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
oride (ppm)	8/2000	No	0.16	N/A	4	4	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
Jium (ppm)	8/2000	No	6.42	N/A	N/A	160	The standard is set at 160 ppm to protect those who are susceptible to high blood pressure or to diseases causing difficulty in regulating body fluid volumes. It is important to recognize that sodium enters the body in a number of ways, including food, and that drinking water contributes less than 10 percent to the overall sodium intake.
ad and Copper Home Sa	ampling						
ad (tap water) (ppb)	9/2001	No	2.0 (90 th percentile)	No sampling sites exceeded AL	0	AL=15	Corrosion of household plumbing systems, erosion of natural deposits
opper (tap water) (ppm)	9/2001	No	1.3 (90 th percentile)	Two sampling sites exceeded AL	13	AL=1.3	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives

s you can see by the table, our system had no violations. We're proud that your drinking water neets or exceeds all Federal and State requirements. We have learned through it monitoring and testing that some contaminates have been detected.

hank you for allowing us to continue providing your family with clean, quality water this year. In order to maintain a safe and dependable water supply we sometimes need to take improvements that will benefit all of our customers. These improvements are sometimes reflected as rate structure adjustments. Thank you for understanding.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800 426-4791)

If you have any questions about this report or concerning your water utility, please contact Jim Thompson at (352) 622-1171. We want our valued customers to be informed about their water utility.

Golden Holiday 2002 Annual Drinking Water Quality Report

We're very pleased to provide you with this year's Annual Water Quality Report. We want to keep you informed about the excellent water and services we have delivered to you over the past year. Our goal is and always has been, to provide to you a dependable supply of drinking water. Our water source is groundwater and our well(s) draw from the Floridan Aquifer.

We're pleased to report that our drinking water meets federal and state requirements.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include.

.

(A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. (B) Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, and residential uses.

(C) Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses

(D) Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems

(E) Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health

All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

Marion Utilities Inc. routinely monitors for contaminants in your drinking water according to Federal and State laws This table shows the results of our monitoring for the period of January 1st to December 31st, 2001. The state allows us to monitor for some contaminants less than once per year because the concentration of these contaminants do not change frequently. Some of our data, though representative, are more than one year old. All water analysis is the most recent sampling in accordance with the Safe Drinking Water Act.

In this table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions:

Non-Detects (ND) - laboratory analysis indicates that the constituent is not present.

Non-Applicable (n/a) - does not apply.

Parts per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per billion (ppb) or Micrograms per liter - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

Picocuries per liter (pCi/L) - picocuries per liter is a measure of the radioactivity in water.

Action Level (AL) - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal - The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety

MCLs are set at very stringent levels To understand the possible health effects described for many regulated contaminants, a person would have to drink 2 liters of water every day at the MCL level for a lifetime to have a one-in-a-million chance of having the described health effect

		TEST F	RESULTS	TABLE			
ontaminant and nit of Measurement	Date of sample analysis	MCL/AL Violation Y/N	Level Detected	Range	MCLG	MCL .	Likely Source of Contamination
adiological Contaminants	}						
ross Alpha (pCi/l)	10/2000	No	2.2	1.6 - 2.2	0	15	Erosion of natural deposits
organic Contaminants							
luoride (ppm)	10/2000	No	.26	.2226	4	4	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
litrate (as Nitrogen) opm)	3/2002	No	1.57	0 84 - 1.57	10	10	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
ođium (ppm)	10/2000	No	7.64	7.07 - 7 64	N/A	160	The standard is set at 160 ppm to protect those who are susceptible to high blood pressure or to diseases causing difficulty in regulating body fluid volumes. It is important to recognize that sodium enters the body in a number of ways, including food, and that drinking water contributes less than 10 percent to the overall sodium intake.
ead and Copper Home Sa	mpling			· · · · · · · · · · · · · · · · · · ·		·•	· · · · · · · · · · · · · · · · · · ·
.ead (tap water) (ppb)	8/2002	No	13.0 (90 th percentile)	No sampling sites exceeded AL	0	AL=15	Corrosion of household plumbing systems, erosion of natural deposits
Copper (tap water) (ppm)	8/2002	No	0.565 (90 th percentile	No sampling sites exceeded AL	1.3	AL=1.3	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives

As you can see by the table, our system had no violations. We're proud that your drinking water meets or exceeds all Federal and State requirements. We have learned through our monitoring and testing that some contaminates have been detected

Thank you for allowing us to continue providing your family with clean, quality water this year. In order to maintain a safe and dependable water supply we sometimes need to make improvements that will benefit all of our customers These improvements are sometimes reflected as rate structure adjustments. Thank you for understanding.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800 426-4791)

If you have any questions about this report or concerning your water utility, please contact Jim Thompson at (352) 622-1171. We want our valued customers to be informed about their water utility.

Ft King Forest 2002 Annual Drinking Water Quality Report

We're very pleased to provide you with this year's Annual Water Quality Report We want to keep you informed about the excellent water and services we have delivered to you over the past year. Our goal is and always has been, to provide to you a dependable supply of drinking water. Our water source is groundwater and our well(s) draw from the Floridan Aquifer.

We're pleased to report that our drinking water meets federal and state requirements

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

(A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. (B) Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, and residential uses.

(C) Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses

(D) Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.

(E) Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

Marion Utilities Inc. routinely monitors for contaminants in your drinking water according to Federal and State laws. This table shows the results of our monitoring for the period of January 1st to December 31st, 2000. The state allows us to monitor for some contaminants less than once per year because the concentration of these contaminants do not change frequently. Some of our data, though representative, are more than one year old. All water analysis is the most recent sampling in accordance with the Safe Drinking Water Act.

In this table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions:

Non-Detects (ND) - laboratory analysis indicates that the constituent is not present

Non-Applicable (n/a) - does not apply.

Parts per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per billion (ppb) or Micrograms per liter - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

Picocuries per liter (pCi/L) - picocuries per liter is a measure of the radioactivity in water.

Action Level (AL) - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal - The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MCLs are set at very stringent levels. To understand the possible health effects described for many regulated contaminants, a person would have to drink 2 liters of water every day at the MCL level for a lifetime to have a one-in-a-million chance of having the described health effect.

TEST RESULTS TABLE												
Contaminant and Unit of Measurement	Dates of sampling (mo./yr.)	MCL Violation Y/N	Highest Monthly Number of Positive Samples		MCLG	MCL	Likely Source of Contamination					
Total Coliform Bacteria	8/2002	No	l		0	presence of coliform bacteria in 1 sample collected during a month	Naturally present in the environment.					
Contaminant and Unit of Measurement	Dates of sampling (mo./yr.)	MCL Viiolation Y/N	Total Number of Positive Samples for the Year		MCLG	MCL	Likely Source of Contamination					
Fecal Coliform and E.coli	07/2002	No	1		0	A routine sample is fecal coliform positive or <u>E.coli</u> positive and the repeat samples are negative	Human and animal fecal waste					
Contaminant and Unit of Measurement	Dates of sampling (mo./yr.)	MCL/AL Violation Y/N	Level Detected	Range	MCLG	MCL	Likely Source of Contamination					
Inorganic Contaminants												
Fluoride (ppm)	9/2000	No	0.12	N/A	4	4	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories					
Nitrate (as Nitrogen) (ppm)	3/2002	No	2.17	N/A	10	10	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits					
Sodium (ppm)	9/2000	No	9 04	N/A	N/A	160	Salt water intrusion, leaching from soil.					
Lead and Copper Home	Sampling					· · · · · · · · · · · · · · · · · · ·						
Copper (tap water) (ppm)	2002	No	0.735 (90 th percentile	N/A	1.3	AL=1.3	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives					
Lead (tap water) (ppb)	2002	No	1.6	N/A	0	15	Corrosion of household plumbing systems, erosion of natural deposits					

As you can see by the table, our system had no violations. We're proud that your drinking water meets or exceeds all Federal and State requirements. We have learned through our monitoring and testing that some contaminates have been detected.

Thank you for allowing us to continue providing your family with clean, quality water this year. In order to maintain a safe and dependable water supply we sometimes need to make improvements that will benefit all of our customers. These improvements are sometimes reflected as rate structure adjustments. Thank you for understanding.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800 426-4791)

If you have any questions about this report or concerning your water utility, please contact Jim Thompson at (352) 622-1171 We want our valued customers to be informed about their water utility.

Hi-Cliff Estates 2002 Annual Drinking Water Quality Report

We're very pleased to provide you with this year's Annual Water Quality Report We want to keep you informed about the excellent water and services we have delivered to you over the past year. Our goal is and always has been, to provide to you a dependable supply of drinking water. Our water source is groundwater and our well(s) draw from the Floridan Aquifer.

We're pleased to report that our drinking water meets federal and state requirements.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

(A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. (B) inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, and tesidential uses.

(C) Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.

(D) Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water tunoff, and septic systems.

(E) Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

All drinking water, including bothed water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

Marion Utilities Inc. routinely monitors for contaminants in your drinking water according to Federal and State laws. This table shows the results of our monitoring for the period of January 1st to December 31st, 2001. The state allows us to monitor for some contaminants less than once per year because the concentration of these contaminants do not change frequently. Some of our data, though representative, are more than one year old. All water analysis is the most recent sampling in accordance with the Safe Drinking Water Act.

In this table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions:

Non-Detects (ND) - laboratory analysis indicates that the constituent is not present.

Non-Applicable (n/a) - does not apply.

Parts per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per billion (ppb) or Micrograms per liter - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

Picocuries per liter (pCi/L) - picocuries per liter is a measure of the radioactivity in water.

Action Level (AL) - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal - The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MCLs are set at very stringent levels. To understand the possible health effects described for many regulated contaminants, a person would have to drink 2 liters of water every day at the MCL level for a lifetime to have a one-in-a-million chance of having the described health effect

		TEST I	RESULTS	TABLE			
Contaminant and Unit of Measurement	Date of sample analysis	MCL/AL Violation Y/N	Level Detected	Range	MCLG	MCL	Likely Source of Contamination
Radiological Contaminants		· · · · · · · · · · · · · · · · · · ·					
Gross Alpha (pCi/l)	7/2000	No	0.9	N/A	0	15	Erosion of natural deposits
Inorganic Contaminants							
Barium (ppm)	7/2000	No	0.011	N/A	2	2	Discharge of drilling wastes; discharge from metal refineries; crosion of natural deposits
Chromium (ppb)	7/2000	No	3.0	N/A	100	100	Discharge from steel and pulp mills; erosion of natural deposits
Fluoride (ppm)	7/2000	No	0.13	N/A	4	4	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
Nitrate (as Nitrogen) (ppm)	3/2002	No	2.43	N/A	10	10	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Sodium (ppm)	7/2000	No	13.4	N/A	N/A	160	The standard is set at 160 ppm to protect those who are susceptible to high blood pressure or to diseases causing difficulty in regulating body fluid volumes. It is important to recognize that sodium enters the body in a number of ways, including food, and that drinking water contributes less than 10 percent to the overall sodium intake.
Lead and Copper Home Sa	mpling						
Lead (Iap water) (ppb)	8/2002	No	5.7 (90 th percentile)	One Sampling site exceeded	0	AL=15	Corrosion of household plumbing systems, erosion of natural deposits

ŧ

As you can see by the table, our system had no violations. We're proud that your drinking water meets or exceeds all Federal and State requirements. We have learned through our monitoring and testing that some contaminates have been detected.

0.940

(90th

percentile)

No

8/2002

Copper (tap water) (ppm)

N/A

1.3

AL=1.3

Corrosion of household plumbing systems;

erosion of natural deposits; leaching from

wood preservatives

Thank you for allowing us to continue providing your family with clean, quality water this year. In order to maintain a safe and dependable water supply we sometimes need to make improvements that will benefit all of our customers. These improvements are sometimes reflected as rate structure adjustments. Thank you for understanding.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800 426-4791)

If you have any questions about this report or concerning your water utility, please contact Tim Thompson at (352) 622.1171. We want our valued customers to be informed about their water utility.

Rainbow Lakes Estates - PWS#6424083 2002 Annual Drinking Water Quality Report

We're very pleased to provide you with this year's Annual Water Quality Report. We want to keep you informed about the excellent water and services we have delivered to you over the past year. Our goal is and always has been, to provide to you a dependable supply of drinking water. Our water source is groundwater and our well(s) draw from the Floridan Aquifer.

We're pleased to report that our drinking water meets federal and state requirements.

The sources of drinking water (both tap water and bottled water) include rivers, takes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

(A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

(B) Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, and residential uses.

(C) Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.

(D) Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.

(E) Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health

All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

Marion Utilities Inc. routinely monitors for contaminants in your drinking water according to Federal and State laws. This table shows the results of our monitoring for the period of January 1st to December 31st, 2000. The state allows us to monitor for some contaminants less than once per year because the concentration of these contaminants do not change frequently. Some of our data, though representative, are more than one year old. All water analysis is the most recent sampling in accordance with the Safe Drinking Water Act.

In this table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions:

Non-Detects (ND) - laboratory analysis indicates that the constituent is not present.

Non-Applicable (n/a) - does not apply.

Parts per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per billion (ppb) or Micrograms per liter - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

Picocuries per liter (pCi/L) - picocuries per liter is a measure of the radioactivity in water.

Action Level (AL) - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal - The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MCLs are set at very stringent levels. To understand the possible health effects described for many regulated contaminants, a person would have to drink 2 liters of water every day at the MCL level for a lifetime to have a one-in-a-million chance of having the described health effect.

					_		
		TEST	RESULTS	TABLE			
minant and of Measurement	Date of sample analysis	MCL/AL Violation Y/N	Level Detected	Range of Results	MCLG	MCL	Likely Source of Contamination
janic Contaminants							
te (as Nitrogen))	4/2002	No	.61	N/A	10	10	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
cury(Inorganic) (ppb)	6/2000	No	.5	N/A	2ррb	2	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills; runoff from cropland
d and Copper (Tap Wa	_1	_ <u>L</u> ,,,			.		
taminant and Unit of isurement	Dates of sampling (mo./yr.)	AL Violation Y/N	90 th Percentile Result	No of sampling sites exceeding the AL	MCLG	AL Action Level	Likely Source of Contamination
d (tap water) (ppb)	8/2002	No	3.1	1	0	AL=15	Corrosion of household plumbing systems, erosion of natural deposits
oper (tap water) (ppm)	8/2002	No	.053	0	1.3	AL=1.3	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives

you can see by the table, our system had no violations. We're proud that your drinking water meets or exceeds all Federal and State requirements. We have learned through monitoring and testing that some contaminates have been detected.

ank you for allowing us to continue providing your family with clean, quality water this year. In order to maintain a safe and dependable water supply we sometimes need to ike improvements that will benefit all of our customers. These improvements are sometimes reflected as rate structure adjustments. Thank you for understanding.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing themotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800 426-4791)

Yyou have any questions about this report or concerning your water utility, please contact Jim Jhompson at (352) 622-1171. We want our valued customers to be informed about their water 'ility.

Stone Oaks Estates 2002 Annual Drinking Water Quality Report

We're very pleased to provide you with this year's Annual Water Quality Report We want to keep you informed about the excellent water and services we have delivered to you over the past year. Our goal is and always has been, to provide to you a dependable supply of drinking water. Our water source is groundwater and our well(s) draw from the Floridan Aquifer.

We're pleased to report that our drinking water meets federal and state requirements

The sources of drinking water (both tap water and bottled water) include rivers. lakes, streams, ponds, reservoirs, springs, and wells As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include

.

(A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. (B) Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, and residential uses

(C) Pesticides and herbicides, which may come from a variety of sources such as agriculture; the the storm water runoff, and residential uses.

(D) Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems

(E) Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health

All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791

Marion Utilities Inc. routinely monitors for contaminants in your drinking water according to Federal and State laws This table shows the results of our monitoring for the period of January 1st to December 31st, 2000 The state allows us to monitor for some contaminants less than once per year because the concentration of these contaminants do not change frequently. Some of our data, though representative, are more than one year old. All water analysis is the most recent sampling in accordance with the Safe Drinking Water Act.

In this table you will find many terms and abbreviations you might not be familiar with To help you better understand these terms we've provided the following definitions

Non-Detects (ND) - laboratory analysis indicates that the constituent is not present.

Non-Applicable (n/a) - does not apply

Parts per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in \$10,000

Parts per billion (ppb) or Micrograms per liter - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

Picocuries per liter (pCi/L) - picocuries per liter is a measure of the radioactivity in water

Action Level (AL) - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow

Maximum Contaminant Level - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water MCLs are set as close to the MCLGs as feasible using the best available treatment technology

Maximum Contaminant Level Goal - The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety

MCLs are set at very stringent levels. To understand the possible health effects described for many regulated contaminants, a person would have to drink 2 liters of water every day at the MCL level for a lifetime to have a one-in-a-million chance of having the described health effect

		TEST	RESULTS	TABLE			
Contaminant and Unit of Measurement	Date of sample analysis	MCL/AL Violation Y/N	Level Detected	Range	MCLG	MCL	Likely Source of Contamination
Radiological Contaminants	S		•	·		•	
Gross Alpha (pCi/l)	9/2000	No	0.7	N/A	0	15	Erosion of natural deposits
Inorganic Contaminants							
Mercury (inorganic) (ppb)	9/2000	No	0.4	N/A	2	2	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills; runoff from cropland
Nitrate (as Nitrogen) (ppm)	3/2002	No	3 51	N/A	10	10	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Sodium (ppm)	9/2000	No	10.2	N/A	N/A	160	The standard is set at 160 ppm to protect those who are susceptible to high blood pressure or to diseases causing difficulty in regulating body fluid volumes. It is important to recognize that sodium enters the body in a number of ways, including food, and that drinking water contributes less than 10 percent to the overall sodium intake.
Lead and Copper Home Sa	ampling	- 			4	- L	
Lead (tap water) (ppb)	8/2002	No	6.6 (90 th percentile)	N/A	0	AL=15	Corrosion of household plumbing systems, erosion of natural deposits
Copper (tap water) (ppm)	8/2002	No	0.37 (90 th percentile)	N/A	1.3	AL=1.3	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives

As you can see by the table, our system had no violations We're proud that your drinking water meets or exceeds all Federal and State requirements We have learned through our monitoring and testing that some contaminates have been detected.

Thank you for allowing us to continue providing your family with clean, quality water this year. In order to maintain a safe and dependable water supply, we sometimes need to make improvements that will benefit all of our customers. These improvements are sometimes reflected as rate structure adjustments. Thank you for understanding

Some people may be more vulnerable to contaminants in drinking water than the general population Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections These people should seek advice about drinking water from their health care providers EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800 426-4791)

If you have any questions about this report or concerning your water utility, please contact Jim Thompson at (352) 622-1171 We want our valued customers to be informed about their water utility.

Ponderosa 2002 Annual Drinking Water Quality Report

We're very pleased to provide you with this year's Annual Water Quality Report. We want to keep you informed about the excellent water and services we have delivered to you over the past year. Our goal is and always has been, to provide to you a dependable supply of drinking water. Our water source is groundwater and our well(s) draw from the Floridan Aquifer.

We're pleased to report that our drinking water meets federal and state requirements.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

.

(A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. (B) Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, and residential uses.

(C) Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.

(D) Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.

(E) Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health

All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

Marion Utilities Inc. routinely monitors for contaminants in your drinking water according to Federal and State laws. This table shows the results of our monitoring for the period of January 1st to December 31st, 2000. The state allows us to monitor for some contaminants less than once per year because the concentration of these contaminants do not change frequently. Some of our data, though representative, are more than one year old. All water analysis is the most recent sampling in accordance with the Safe Drinking Water Act.

In this table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions:

Non-Detects (ND) - laboratory analysis indicates that the constituent is not present

Non-Applicable (n/a) - does not apply.

Parts per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per billion (ppb) or Micrograms per liter - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000

Picocuries per liter (pCi/L) - picocuries per liter is a measure of the radioactivity in water.

Action Level (AL) - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal - The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MCLs are set at very stringent levels. To understand the possible health effects described for many regulated contaminants, a person would have to drink 2 liters of water every day at the MCL level for a lifetime to have a one-in-a-million chance of having the described health effect.

		TEST R	ESULTS	TABLE			
ontaminant and Jnit of Measurement	Date of sample analysis	MCL/AL Violation Y/N	Level Detected	Range	MCLG	MCL	Likely Source of Contamination
adiological Contaminant	8					•	
iross Alpha (pCi/l)	9/2000	No	1.1	N/A	0	15	Erosion of natural deposits
norganic Contaminants							
larium (ppm)	9/2000	No	0 018	N/A	2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
luoride (ppm)	9/2000	No	02	N/A	4	4	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
odium (ppm)	9/2000	No	12.6	N/A	N/A	160	The standard is set at 160 ppm to protect those who are susceptible to high blood pressure or to diseases causing difficulty in regulating body fluid volumes. It is important to recognize that sodium enters the body in a number of ways, including food, and that drinking water contributes less than 10 percent to the overall sodium intake.
read and Copper Home Si	ampling						
.ead (tap water) (ppb)	8/2002	No	2.0 (90 th percentile	N/A	0	AL=15	Corrosion of household plumbing systems, erosion of natural deposits
Copper (tap water) (ppm)	8/2002	No	.035 (90 ^u) percentile	N/A	1.3	AL=1.3	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives

As you can see by the table, our system had no violations. We're proud that your drinking water meets or exceeds all Federal and State requirements. We have learned through our monitoring and testing that some contaminates have been detected.

Thank you for allowing us to continue providing your family with clean, quality water this year. In order to maintain a safe and dependable water supply we sometimes need to make improvements that will benefit all of our customers. These improvements are sometimes reflected as rate structure adjustments. Thank you for understanding.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800 426-4791)

If you have any questions about this report or concerning your water utility, please contact Jim Thompson at (352) 622-1171. We want our valued customers to be informed about their water utility.

Buckskin Estates 2002 Annual Drinking Water Quality Report

We're very pleased to provide you with this year's Annual Water Quality Report We want to keep you informed about the excellent water and services we have delivered to you over the past year. Our goal is and always has been, to provide to you a dependable supply of drinking water Our water source is groundwater and our well(s) draw from the Floridan Aquifer.

We're pleased to report that our drinking water meets federal and state requirements.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

(A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. (B) Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, and residential uses.

(C) Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.

(D) Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.

(E) Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health

All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

Marion Utilities Inc. routinely monitors for contaminants in your drinking water according to Federal and State laws. This table shows the results of our monitoring for the period of January 1" to December 31", 2001. The state allows us to monitor for some contaminants less than once per year because the concentration of these contaminants do not change frequently. Some of our data, though representative, are more than one year old. All water analysis is the most recent sampling in accordance with the Safe Drinking Water Act.

In this table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions:

Non-Detects (ND) - laboratory analysis indicates that the constituent is not present.

Non-Applicable (n/a) - does not apply.

Parts per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per billion (ppb) or Micrograms per liter - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

Picocuries per liter (pCi/L) - picocuries per liter is a measure of the radioactivity in water

Action Level (AL) - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal - The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MCLs are set at very stringent levels. To understand the possible health effects described for many regulated contaminants, a person would have to drink 2 liters of water every day at the MCL level for a lifetime to have a one-in-a-million chance of having the described health effect

TEST RESULTS TABLE										
ntaminant and nit of Measurement	Date of sample analysis	MCL/AL Violation Y/N	Level Detected	Range	MCLG	MCL .	Likely Source of Contamination			
diological Contaminan	ts	- b		I	•		.			
oss Alpha (pCi/l)	9/2000	No	0.5	N/A	0	15	Erosion of natural deposits			
organic Contaminants										
ioride (ppm)	9/2000	No	0.11	N/A	4	4	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories			
dium (ppm)	9/2000	No	18. i	N/A	N/A	160	The standard is set at 160 ppm to protect those who are susceptible to high blood pressure or to diseases causing difficulty in regulating body fluid volumes. It is important to recognize that sodium enters the body in a number of ways, including food, and that drinking water contributes less than 10 percent to the overall sodium intake.			
ad and Copper Home mpling										
ad (tap water) (ppb)	8/2002	No	2 5 (90 th percentile)	N/A	0	AL=15	Corrosion of household plumbing systems, erosion of natural deposits			
opper (tap water)(ppb)	8/2002	No	026 (90 th percentile)	N/A	0	AL=15	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives			

s you can see by the table, our system had no violations We're proud that your drinking water meets or exceeds all Federal and State requirements. We have learned through it monitoring and testing that some contaminates have been detected.

nank you for allowing us to continue providing your family with clean, quality water this year. In order to maintain a safe and dependable water supply we sometimes need to ake improvements that will benefit all of our customers. These improvements are sometimes reflected as rate structure adjustments. Thank you for understanding.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800 426-4791)

If you have any questions about this report or concerning your water utility, please contact Tim Thompson at (352) 622-1171. We want our valued customers to be informed about their water utility.

Libra Oaks-PWS#6424590 2002 Annual Drinking Water Quality Report

We're very pleased to provide you with this year's Annual Water Quality Report. We want to keep you informed about the excellent water and services we have delivered to you over the past year. Our goal is and always has been, to provide to you a safe and dependable supply of drinking water. Our water source is ground water from one well. The well draws from the Floridan Aquifer. This report shows our water quality results and what they mean.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

(A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

(B) Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

(C) Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.

(D) Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.

(E) Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

Marion Utilities routinely monitors for contaminants in your drinking water according to Federal and State laws, rules, and regulations. Except where indicated otherwise, this report is based on the results of our monitoring for the period of January 1st to December 31st 2001. As authorized and approved by EPA, the State has reduced monitoring requirements for certain contaminants to less often than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year. Some of our data [e.g., for organic contaminants], though representative, is more than one year old. All water analysis is the most recent sampling in accordance with the Safe Drinking Water Act.

In the table below you will find terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions:

Maximum Contaminant Level or MCL: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal or MCLG: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

"ND" means not detected and indicates that the substance was not found by laboratory analysis.

Parts per million (ppm) or Milligrams per liter (mg/l) - one part by weight of analyte to 1 million parts by weight of the water sample.

Parts per billion (ppb) or Micrograms per liter ($\mu g/l$) - one part by weight of analyte to 1 billion parts by weight of the water sample.

Picocurie per liter (pCi/L) - measure of the radioactivity in water.

TEST RESULTS TABLE

** Results in the Level Detected column for radiological contaminants, inorganic contaminants, synthetic organic contaminants including pesticides and herbicides, and volatile organic contaminants are the highest average at any of the sampling points or the highest detected level at any sampling point, depending on the sampling

Contaminant and Unit of Measurement	Date of sampling Analysis	MCL/AL Violation Y/N	Level Detected	Range of Results	MCLG	MCL	Likely Source of Contamination
Inorganic Contaminants							
Barium (ppm)	5/2000	N	.011	N/A	2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits

ontaminant and Unit of	Date of sampling	MCL/AL Violation	Level	Range	MCLG	MCL	Likely Source of
leasurement	Analysis	1719	Delected	of Results			
litrate (Ås nitrogen) (ppm)	4/2002	N	1.99	N/A	10	10	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
luoride (ppm)	5/2000	N	.22	N/A	4	4	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
Sodium (ppm)	5/2000	Ň	13.1	N/A	N/A	160	Salt water intrusion, leaching from soil
Volatile Organics Contaminants			<u> </u>				
Contaminant and Unit of Measurement	Date of sampling Analysis	MCL/AL Violation Y/N	Level Detected	Range	MCLG	MCL	Likely Source of Contamination
Xylenes (ppm)	5/2000	N	4.0	N/A	10	10	Discharge from petroleum factories; discharge from chemical factories
Ethylbenzene (ppb)	5/2000	N	0.70	N/A	700	700	Discharge from petroleum refineries
Toulene (ppm)	5/2000	N	0.76	N/A	1	1	Discharge from petroleum factories
Lead and Copper (Tap Water)	<u></u>			<u> </u>	<u></u>		
Contaminant and Unit of Measurement	Dates of Sampling (Mo./Yr.)	AL Violation Y/N	90 th Percentil Result	No. of sampling sites exceeding the AL	MCLG	AL Action Level	Likely Source of Contamination
Lead (tap water) (ppb)	8/2002	N	2.5	0	1.3	1.3	Corrosion of household plumbing systems; erosion of natural deposits;
Copper (tap water) (ppm)	8/2002	Ň	.37	0	0	15	Corresion of household plumbing systems; erosion of natural deposits;
Secondary Contaminants							
Contaminant and Unit of Measurement	Dates of Sampling (Mo./Yr.)	MCL Violation Y/N	Highest Result	Range of Results	MCLG	MCL	Likely source of Contamination
Total Dissolved Solids (ppm)	3/2002, 5/2002, 8/2002, 11/20/02	Y	608	490-608	N/A	500**	Natural occurrence from soil leaching
Sulfates (ppm)	3/2002, 5/2002, 8/2002, 11/2002	Ŷ	254	158-254	N/A	250	Natural occurrence from soil leaching
Chloride (ppm)	3/2002, 5/2002, 8/2002, 11/2002	N	23.2	20.5-23.2	N/A	250	Natural occurrence from soil leaching
** Note: TDS may be greater than 50	00, if no other MCL is exc	ceeded.					

Ve have leg med through our monitoring and testing that some contaminates have been detected. You may have noted that we exceeded the MCL for total dissolved solids nd suffates. Total dissolved solids normally cause cloudy water and calcium deposits on dishes and silverware. People that are not used to drinking water with sulfates resent may experience stomach upset or diarrhea for a short period of time. The levels continue to exceed the MCL and quarterly monitoring is being done to see if there are ny changes in the levels. The City of Ocala has been contacted as a possible source of drinking water. Meanwhile, we are flushing the distribution system on a more requent basis tohelp alleviate the problem.

hank you for allowing us to continue providing your family with clean, quality water this year. In order to maintain a safe and dependable water supply we sometimes need make improvements that will benefit all of our customers. These improvements are sometimes reflected as rate structure adjustments. Thank you for understanding.

Some people may be more vulnerable to contaminants in drinking water that the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800 426-4791)

If you have any questions about this report or concerning your water utility, please contact Tim Thompson at (352)622-1171. We want our valued customers to be informed about their water utility.

International Villas-PWS#6424589 2002 Annual Drinking Water Quality Report

We're very pleased to provide you with this year's Annual Water Quality Report. We want to keep you informed about the excellent water and services we have delivered to you over the past year. Our goal is and always has been, to provide to you a safe and dependable supply of drinking water. Our water source is ground water from one well. The well draws from the Floridan Aquifer. This report shows our water quality results and what they mean.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

هر ۲۰۰۹ به

(A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

(B) Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

(C) Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.

(D) Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.

(E) Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

Marion Utilities routinely monitors for contaminants in your drinking water according to Federal and State laws, rules, and regulations. Except where indicated otherwise, this report is based on the results of our monitoring for the period of January 1" to December 31" 2001. As authorized and approved by EPA, the State has reduced monitoring requirements for certain contaminants to less often than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year. Some of our data [e.g., for organic contaminants], though representative, is more than one year old. All water analysis is the most recent sampling in accordance with the Safe Drinking Water Act.

In the table below you will find terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions:

Maximum Contaminant Level or MCL: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal or MCLG: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

"ND" means not detected and indicates that the substance was not found by laboratory analysis.

Parts per million (ppm) or Milligrams per liter (mg/l) - one part by weight of analyte to 1 million parts by weight of the water sample.

Parts per billion (ppb) or Micrograms per liter (18/1) - one part by weight of analyte to 1 billion parts by weight of the water sample.

Picocurie per liter (pCi/L) - measure of the radioactivity in water.

		TEST RESULT	IS TABLE							
** Results in the Level Detected column for radiological contaminants, inorganic contaminants, synthetic organic contaminants including pesticides and herbicides, and volatile organic contaminants are the highest average at any of the sampling points or the highest detected level at any sampling point, depending on the sampling										
Contaminant and Unit of Measurement	Date of sampling Analysis	MCL/AL Violation Y/N	Level Detected	Range of Results	MCLG	MCL	Likely Source of Contamination			
Radiological Contaminants										
Gross Alpha (pCi/l)	6/2000	N	2.9	N/A	N/A	15	Erosion of natural Deposits			

norganic Contaminants

Date of Sampling Analysis	MCL/AL Violation Y/N	Level Detected	Range of Results	MCLG	MCL	Likely Source of Contamination
6/2000	N	0.017	N/A	2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
6/2000	N	.41	N/A	4	4	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
6/2000	N	27.8	N/A	N/A	160	Salt water intrusion, leaching from soil
3/2002	N	0.1	N/A	10	10	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Date of Sampling Analysis	MCL/AL Violation YN	Level Detected	Range of Results	MCLG	MCL	Likely Source of Contamination
6/2000	N	4.0	N/A	10	10	Discharge from petroleum factories; discharge from chemical factories
6/2000	N	0.70	N/A	700	700	Discharge from petroleum refineries
ter)	_ <u>_</u>	i	<u> </u>	_II		· · · · · · · · · · · · · · · · · · ·
Dates of Sampling (Mo./Yr.)	AL Violation Y/N	90 th Percentil e Result	No. of sampling sites exceeding the AL	MCLG	AL Action Level	Likely Source of Contamination
8/2002	N	1.04	0	1.3	1.3	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
Dates of sampling (mo./yr.)	MCL Violation Y/N	Highest Result	Range of Results	MCLG	MCL	Likely Source of Contamination
3/2002, 5/2002, 8/2002, 11/2002	Y	565	517-565	N/A	250	Natural occurrence from soil leaching
3/2002, 5/2002, 8/2002 11/2002	Y	1058	1025-1058	N/A	500**	Natural occurrence from soil leaching
3/2002, 5/2002,	N	40.9	10-40.9	N/A	250	Natural occurrence from
	Date of Sampling Analysis 6/2000 6/2000 6/2000 3/2002 3/2002 Date of Sampling Analysis 6/2000 6/2000 6/2000 6/2000 6/2000 6/2000 8/2002 8/2002 Sampling (Mo./Yr.) 8/2002 8/2002 3/2002, 5/2002, 8/2002, 11/2002 3/2002, 5/2002, 8/2002, 5/2002,	Date of Sampling AnalysisMCL/AL Violation Y/N6/2000N6/2000N6/2000N6/2000N3/2002NJ2002N6/2000NJ2002N6/2000N6/2000NJ2002NAnalysisMCL/AL Violation YN6/2000N6/2000N6/2000N6/2000N6/2000N8/2002N8/2002NJ2002, 5/2002, 8/2002, 11/2002Y3/2002, 5/2002, 8/2002, 11/2002Y3/2002, 5/2002, 8/2002, 11/2002N	Date of Sampling AnalysisMCL/AL Violation Y/NLevel Detected6/2000N0.0176/2000N416/2000N27.86/2000N27.83/2002N0.1Date of Sampling AnalysisMCL/AL Violation YNLevel Detected6/2000N4.06/2000N4.06/2000N0.70ColoredN0.70Date of Sampling (Mo./Yr.)AL Violation Y/N90 th Percentil c ResultBates of Sampling (Mo./Yr.)AL Violation Y/N90 th Percentil c ResultDates of sampling (Mo./Yr.)MCL Violation Y/N Y is a state of sampling (Mo./Yr.)1.04Dates of sampling (mo./yr.)MCL Violation Y/N Y is a state of sampling (Mo./Yr.)1.04Dates of sampling (mo./yr.)MCL Violation Y/N Y is a state of state of sampling (mo./yr.)MCL Violation Y/N Y is a state of stat	Date of Sampling AnalysisMCL/AL Violation Y/NLevel DetectedRange of Results6/2000N0.017N/A6/2000N4.1N/A6/2000N27.8N/A6/2000N27.8N/A3/2002N0.1N/AJate of Sampling AnalysisMCL/AL Violation YNLevel DetectedRange of Results6/2000N27.8N/AJate of Sampling AnalysisMCL/AL Violation YNLevel DetectedRange of Results6/2000N4.0N/A6/2000N0.70N/A6/2000N0.70N/A6/2000N0.70N/A6/2000N1.040bates of Sampling (Mo./Yr.)AL Violation Y/N90th ResultBates of Sampling (mo./yr.)MCL Violation Y/NNo. of sampling sites exceeding the ALB/2002N1.040Dates of Sampling (mo./yr.)MCL Violation Y/NRange of ResultJ/2002, 5/2002, 8/2002, 11/2002Y565517-5653/2002, 5/2002, 8/2002, 11/2002Y10581025-10583/2002, 5/2002, 8/2002, 11/2002N40.910-40.9	Date of Sampling AnalysisMCL/AL Violation Y/NLevel DetectedRange of ResultsMCL/G6/2000N0.017N/A26/2000N.41N/A46/2000N.41N/A46/2000N27.8N/AN/A6/2000N27.8N/AN/A3/2002N0.1N/A10Date of Sampling AnalysisMCL/AL Violation YNLevel DetectedRange of ResultsMCLG6/2000N4.0N/A10Date of Sampling (Mo./Yr.)AL Violation Y/N90° Percentil e ResultNo. of sampling sites exceeding the AL ResultMCLGDates of Sampling (Mo./Yr.)AL Violation Y/N90° Percentil sampling sites exceeding the AL ResultMCLGDates of sampling (mo./yr.)MCL Violation Y/N11 Highest 	Date of Sampling Analysis MCL/AL Violation Y/N Level Detected Range of Results MCLG MCL 6/2000 N 0.017 N/A 2 2 6/2000 N 0.017 N/A 2 2 6/2000 N .41 N/A 4 4 6/2000 N .41 N/A 4 4 6/2000 N .27.8 N/A N/A 160 3/2002 N 0.1 N/A 10 10 Date of Sampling Analysis MCL/AL Violation YN Level Detected Range of Results MCLG MCL 6/2000 N 4.0 N/A 10 10 6/2000 N 0.70 N/A 700 700 bates of S

/e have learned through our monitoring and testing that some contaminates have been detected. You may have noted that we exceeded the MCL for total dissolved solids nd sulfates. Total dissolved solids normally cause cloudy water and calcium deposits on dishes and silverware. People that are not used to drinking water with sulfates resent may experience stomach upset or diarrhea for a short period of time. The levels continue to exceed the MCL and quarterly monitoring is being done to see if there are ny changes in the levels. The City of Ocala has been contacted as a possible source of drinking water. Meanwhile, we are flushing the distribution system on a more equent basis to help alleviate the problem. Thank you for allowing us to continue providing your family with clean, quality water this year. In order to maintain a safe and dependable water supply we sometimes need to make improvements that will benefit all of our customers. These improvements are sometimes reflected as rate structure adjustments. Thank you for understanding.

. •

•

Some people may be more vulnerable to contaminants in drinking water that the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800 426-4791)

If you have any questions about this report or concerning your water utility, please contact Tim Thompson at (352)622-1171. We want our valued customers to be informed about their water utility.

Greenfields/Indian Pines 2002 Annual Drinking Water Quality Report

We're very pleased to provide you with this year's Annual Water Quality Report. We want to keep you informed about the excellent water and services we have delivered to you over the past year. Our goal is and always has been, to provide to you a dependable supply of drinking water Our water source is groundwater and our well(s) draw from the Floridan Aquifer.

We're pleased to report that our drinking water meets federal and state requirements

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include.

(A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

(B) Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, and residential uses. (C) Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.

(D) Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems

(E) Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791

Marion Utilities Inc. routinely monitors for contaminants in your drinking water according to Federal and State laws This table shows the results of our monitoring for the period of January 1st to December 31st, 2000 The state allows us to monitor for some contaminants less than once per year because the concentration of these contaminants do not change frequently. Some of our data, though representative, are more than one year old. All water analysis is the most recent sampling in accordance with the Safe Drinking Water Act.

In this table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions:

Non-Detects (ND) - laboratory analysis indicates that the constituent is not present

Non-Applicable (n/a) - does not apply.

Parts per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per billion (ppb) or Micrograms per liter - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000

Picocuries per liter (pCi/L) - picocuries per liter is a measure of the radioactivity in water.

Action Level (AL) - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal - The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health MCLGs allow for a margin of safety.

MCLs are set at very stringent levels. To understand the possible health effects described for many regulated contaminants, a person would have to drink 2 liters of water every day at the MCL level for a lifetime to have a one-in-a-million chance of having the described health effect

	TEST RESULTS TABLE										
Contaminant and Unit of Measurement	Dates of Sampling (mo./yr.)	MCL Violation Y/N	Highest Monthly Number of Positive Samples		MCLG	MCL .	Likely Source of Contamination				
Total Coliform Bacteria	07/2002	NO	l		0	presence of coliform bacteria in 1 sample collected during a month	Naturally present in the environment.				
Contaminant and Unit of Measurement	Date of sample analysis	MCL/AL Violation Y/N	Level Detected	Range	MCLG	MCL	Likely Source of Contamination				
Radiological Contaminants											
Gross Alpha (pCi/l)	10/2000	No	0.5	N/A	0	15	Erosion of natural deposits				
Inorganic Contaminants							······				
Fluoride (ppm)	10/2000	No	0.13	N/A	4	4	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories				
Nitrate (as Nitrogen) (ppm)	3/2002	No	1.40	N/A	10	10	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits				
Sodium (ppm)	10/2000	No	7.84	N/A	N/A	160	Salt water intrusion, leaching from soil.				
Lead and Copper Home S	Sampling										
Lead (tap water) (ppb)	8/2002	No	4.7	No sampling sites exceeded AL	Ð	AL=15	Corrosion of household plumbing systems, erosion of natural deposits				
Copper (tap water) (ppm)	8/2002	No	0.31	No sampling sites exceeded AL	1.3	AL=1.3	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives				

As you can see by the table, our system had no violations. We're proud that your drinking water meets or exceeds all Federal and State requirements. We have learned through our monitoring and testing that some contaminates have been detected.

Thank you for allowing us to continue providing your family with clean, quality water this year in order to maintain a safe and dependable water supply we sometimes need to make improvements that will benefit all of our customers. These improvements are sometimes reflected as rate structure adjustments. Thank you for understanding

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800 426-4791)

If you have any questions about this report or concerning your water utility, please contact Jim Thompson at (352) 622-1171. We want our valued customers to be informed about their water utility.

Oak Creek Caverns 2002 Annual Drinking Water Quality Report

We're very pleased to provide you with this year's Annual Water Quality Report. We want to keep you informed about the excellent water and services we have delivered to you over the past year. Our goal is and always has been, to provide to you a safe and dependable supply of drinking water. Our water source is groundwater and our well(s) draw from the Floridan Aquifer.

I'm pleased to report that our drinking water is safe and meets federal and state requirements.

Marion Utilities Inc. routinely monitors for contaminants in your drinking water according to Federal and State laws. This table shows the results of our monitoring for the period of January 1st to December 31st 1999. The state allows us to monitor for some contaminants less than once per year because the concentration of these contaminants do not change frequently. Some of our data, though representative, are more than one year old. All water analysis is the most recent sampling in accordance with the Safe Drinking Water Act.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

(A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

(B) Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

(C) Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.

(D) Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.

(E) Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

In this table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions:

Non-Detects (ND) - laboratory analysis indicates that the constituent is not present.

Non-Applicable (N/A) - does not apply.

Parts per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per billion (ppb) or Micrograms per liter - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

Picocuries per liter (pCi/L) - picocuries per liter is a measure of the radioactivity in water.

Action Level (AL) - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal - The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MCLs are set at very stringent levels. To understand the possible health effects described for many regulated contaminates, a person would have to drink 2 liters of water every day at the MCL level for a lifetime to have a one-in-a-million chance of having the described health effect.

		r	EST RES	ULTS TA	BLE		
Contaminant and Unit of Measurement	Date of sample analysis	MCL/AL Violation Y/N	Level Detected	Range	MCLG	MCL	Likely Source of Contamination
Radiological Conta	minants						
Gross Alpha (pCi/l)	10/2000	No	0.9	N/A	0	15	Erosion of natural deposits
Inorganic Contami	nants	<u> </u>	L	1	<u></u>	<u></u>	
Floride (ppm)	10/2000	No	0.16	N/A	N/A	4.0	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories.
Mercury (inorganic)(ppb)	10/2000	No	0.3	N/A	2	2	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills; runoff from cropland
Chromium (ppb)	10/2000	No	2.0	N/A	100	100	Discharge from steel and pulp mills; erosion of natural deposits
Nitrate (as Nitrogen) (ppm)	3/2002	No	1.81	N/A	10	10	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Sodium (ppm)	10/2000	No	7.93	N/A	N/A	160	Salt water intrusion, leaching from soil
Lead and Copper	Home San	pling		· · · · · · · · · · · · · · · · · · ·			
Lead (tap water) (ppb)	8/2002	No	4.5 (90 th percentile)	No sites exceeded the AL	0	AL=15	Corrosion of household plumbing systems, erosion of natural deposits
Copper (tap water) (ppm)	8/2002	No	0.595 (90 th percentile)	No sites exceeded the AL	1.3	AL=1.3	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives

As you can see by the table, our system had no violations. We're proud that your drinking water meets or exceeds all Federal and State requirements. We have learned through our monitoring and testing that some contaminates have been detected.

All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

Thank you for allowing us to continue providing your family with clean, quality water this year. In order to maintain a safe and dependable water supply we sometimes need to make improvements that will benefit all of our customers. These improvements are sometimes reflected as rate structure adjustments. Thank you for understanding.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

If you have any questions about this report or concerning your water utility, please contact Tim Thompson at (352) 622-1171. We want our valued customers to be informed about their water utility.

McAteer Acres 2002 Annual Drinking Water Quality Report

We're very pleased to provide you with this year's Annual Water Quality Report We want to keep you informed about the excellent water and services we have delivered to you over the past year. Our goal is and always has been, to provide to you a dependable supply of drinking water Our water source is groundwater and our well(s) draw from the Floridan Aquifer

We're pleased to report that our drinking water meets federal and state requirements

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include

(A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. (B) Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, and residential uses.

(C) Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses

(D) Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.

(E) Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some containnants. The presence of containinants does not necessarily indicate that the water poses a health risk. More information about containinants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

Marion Utilities Inc. routinely monitors for contaminants in your drinking water according to Federal and State laws This table shows the results of our monitoring for the period of January 1ⁿ to December 31ⁿ, 2000. The state allows us to monitor for some contaminants less than once per year because the concentration of these contaminants do not change frequently. Some of our data, though representative, are more than one year old All water analysis is the most recent sampling in accordance with the Safe Drinking Water Act.

In this table you will find many terms and abbreviations you might not be familiar with To help you better understand these terms we've provided the following definitions:

Non-Detects (ND) - laboratory analysis indicates that the constituent is not present

Non-Applicable (n/a) - does not apply

Parts per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per billion (ppb) or Micrograms per liter - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000

Picocuries per liter (pCi/L) - picocuries per liter is a measure of the radioactivity in water

Action Level (AL) - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal - The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health MCLGs allow for a margin of safety.

MCLs are set at very stringent levels. To understand the possible health effects described for many regulated contaminants, a person would have to drink 2 liters of water every day at the MCL level for a lifetime to have a one-in-a-million chance of having the described health effect

TEST RESULTS TABLE									
Contaminant and Unit of Measurement	Date of sample analysis	MCL/AL Violation Y/N	Level Detected	Range	MCLG	MCL	Likely Source of Contamination		
Radiological Contaminant	ts								
Gross Alpha (pCi/l)	11/2000	No	13	N/A	0	15	Erosion of natural deposits		
Inorganic Contaminants									
Chromium (ppb)	1 1/2000	No	4 0	N/A	100	100	Discharge from steel and pulp mills; erosion of natural deposits		
Nitrate (as Nitrogen) (ppm)	3/2002	No	1 88	N/A	10	10	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits		
Sodium (ppm)	11/2000	No	5.59	N/A	N/A	160	The standard is set at 160 ppm to protect those who are susceptible to high blood pressure or to diseases causing difficulty in regulating body fluid volumes. It is important to recognize that sodium enters the body in a number of ways, including food, and that drinking water contributes less than 10 percent to the overall sodium intake.		
Fluori de (ppm)	11/2000	No	0.13	N/A	N/A	4.0	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories.		
Lead and Copper Home S	ampling	- -	i						
Lead (tap water) (ppb)	8/2002	No	3.1 (90 th percentile)	No sampling sites exceeded AL	0	AL=15	Corrosion of household plumbing systems, erosion of natural deposits		
Copper (tap water) (ppm)	8/2002	No	.845 (90 th percentile)	No sampling sites exceeded AL	1.3	AL=1.3	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives		

As you can see by the table, our system had no violations. We're proud that your drinking water meets or exceeds all Federal and State requirements. We have learned through our monitoring and testing that some contaminates have been detected

Thank you for allowing us to continue providing your family with clean, quality water this year In order to maintain a safe and dependable water supply we sometimes need to make improvements that will benefit all of our customers. These improvements are sometimes reflected as rate structure adjustments. Thank you for understanding

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800 426-4791)

If you have any questions about this report or concerning your water utility, please contact Jim Thompson at (352) 622-1171. We want our valued customers to be informed about their water utility

Woods & Meadows-PWS#6424632 2002 Annual Drinking Water Quality Report

We're very pleased to provide you with this year's Annual Water Quality Report. We want to keep you informed about the excellent water and services we have delivered to you over the past year. Out goal is and always has been, to provide to you a dependable supply of drinking water. Our water source is groundwater and our well(s) draw from the Floridan Aquifer.

We're pleased to report that out drinking water meets federal and state requirements.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land of through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals of from human activity.

Contaminants that may be present in source water include:

-

(A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

(B) Inorganic contaminants, such as sails and metals, which can be naturally-occurring or result from urban storm water runoff, and residential uses. (C) Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.

(D) Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.

(E) Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

All drinking water, including bottled water, may teasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

Marion Utilities Inc. routinely monitors for contaminants in your drinking water according to Federal and State laws. This table shows the results of our monitoring for the period of January 1" to December 31", 2001. The state allows us to monitor for some contaminants less than once per year because the concentration of these contaminants do not change frequently. Some of our data, though representative, are more than one year old. All water analysis is the most recent sampling in accordance with the Safe Drinking Water Act.

In this table you will find many lerms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions:

Non-Detects (ND) - laboratory analysis indicates that the constituent is not present.

Non-Applicable (n/a) - does not apply.

Parts per million (ppm) of Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per billion (ppb) of Micrograms per liter - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

Picocuries per liter (pCl/L) - picocuries per liter is a measure of the radioactivity in water.

Action Level (AL) - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLOs as feasible using the best available licatment technology.

Maximum Contaminant Level Goal - The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected tisk to health. MCLOs allow for a margin of safety.

MCLs are set at very stringent levels. To understand the possible health effects described for many regulated contaminants, a person would have to drink 2 liters of water every day at the MCL level for a lifetime to have a one-in-a-million chance of having the described health effect.

	· · · · · · · · · · · · · · · · · · ·	······					······································
		TEST F	RESULTS	TABLE			
taminant and t of Measurement	Date of sample analysis	MCL/AL Violation Y/N	Level Detected	Range of Results	MCLG	MCL	Likely Source of Contamination
liological Contaminanți	5						
ss Alpha (pCi/l)	7/2000	No	0.9	N/A	0	15	Erosion of natural deposits
rganic Contaminanta							
rate (as Nitrogen) m)	4/2002	No	1.34	N/A	10	10	Runoff from fertilizer use; leaching from septic tanks, sewage; crosion of natural deposits
lium (ppm)	7/2000	No	6.06	N/A	N/A	160	The standard is set at 160 ppm to protect those who are susceptible to high blood pressure or to diseases causing difficulty in regulating body fluid volumes. It is important to recognize that sodium enters the body in a number of ways, including food, and that drinking water contributes less than 10 percent to the overall sodium intake.
ad and Copper (Tap Wa			<u></u>				•
ntaminant and Unit of asurement	Dates of sampling (mo./yr.)	Al Violation Y/N	90 th Percentile Result	No.of Sampling sites exceeeding the AL	MCLQ	AL Action Level	Likely Source of Contamination
ad (tap water) (ppb)	8/2002	No	3.5	0	0	AL=15	Corrosion of household plumbing systems, erosion of natural deposits
				•			

3 you can see by the table, our system had no violations. We're proud that your drinking water meets or exceeds all Federal and State requirements. We have learned through It monitoring and testing that some contaminates have been detected.

.62

No

AL=1.3

1.3

0

Corrosion of household plumbing

systems; crosion of natural deposits; leaching from wood preservatives

8/2002

opper (tap water) (ppm)

vank you for allowing us to continue providing your family with clean, quality water this year. In order to maintain a safe and dependable water supply we sometimes need to ake improvements that will benefit all of our customers. These improvements are sometimes reflected as rate structure adjustments. Thank you for understanding.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800 426-4791)

If you have any questions about this report or concerning your water utility, please contact Jim Thompson at (352) 622-1171. We want our valued customers to be informed about their water utility.

Spruce Creek North-PWS #6424652 2002 Annual Drinking Water Quality Report

We're very pleased to provide you with this year's Annual Waler Quality Report. We want to keep you informed about the excellent water and services we have delivered to you over the past year. Our goal is and always has been, to provide to you a dependable supply of drinking water. Our water source is groundwater and our well(s) draw from the Floridan Aquifer.

We'te pleased to tepoil that out dilinking water meets federal and state requirements.

The sources of drinking water (both lap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves haturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

(A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. (B) Inorganic contaminants, such as salls and metals, which can be naturally-occurring or tesult from urban storm water runoff, and residential uses.

(C) Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.

(D) Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.

(E) Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health tisk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Sale Drinking Water Hotline at 1-800-426-4791.

Marion Utilities Inc. toutinely monitors for contaminants in your drinking water according to Federal and State laws. This table shows the results of our monitoring for the period of January 1st to December 31st, 2000. The state allows us to monitor for some contaminants less than once per year because the concentration of these contaminants do not change frequently. Some of our data, though representative, are more than one year old. All water analysis is the most recent sampling in accordance with the Safe Drinking Water Act.

In this table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions:

Non-Detects (ND) - laboratory analysis indicates that the constituent is not present.

Non-Applicable (n/a) - does not apply.

Parts per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per billion (ppb) or Micrograms per liter - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

Picocuries pet liter (pCi/L) - picocuries per liter is a measure of the radioactivity in water.

Action Level (AL) - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLG: as feasible using the best available treatment technology.

Maximum Contaminant Level Goal - The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MCLs are set at very stringent levels. To understand the possible health effects described for many regulated contaminants, a person would have to drink 2 liters of water very day at the MCL level for a lifetime to have a one-in-a-million chance of having the described health effect.

TEST RESULTS TABLE									
minant and of Measurement	Date of sample analysis	MCL/AL Violation Y/N	Level Detected	Range of Results	MCLG	MCL	Likely Source of Contamination		
ological Contaminants	<u>1 </u>			<u> </u>					
i Alpha (pCj/l)	7/2000	No	1.1	N/A	0	15	Erosion of natural deposits		
ganiç Contaminanta									
mium (ppb)	7/2000	No	2	N/A	100	100	Discharge from steel and pulp mills; erosion of natural deposits		
ite (as Nitrogen) (ppm)	4/2002	No	1.40	N/A	10	10	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits		
and Copper (Tap Wa	ler)	······································							
laminant and Unit of Measurement	Dates of sampling (Mo./Yr.)	AL Vialation Y/N	90 th Percentile Result	No. of Sampling sites exceeding the AL	MCLG	AL Action Level	Likely Source of Contamination		
l (tap water) (ppb)	8/2002	No	3.4	Ø	0	AL=15	Corroșion of household plumbing systems, crosion of natural deposits		
per (tap water) (ppm)	8/2002	No	.80	0	1.3	AL=1.3	Corrosion of household plumbing systems; crosion of natural deposits; leaching from wood preservatives		

you can see by the table, our system had no violations. We're proud that your drinking water meets or exceeds all Federal and State requirements. We have learned through monitoring and testing that some contaminates have been detected.

ink you for allowing us to continue providing your family with clean, quality water this year. In order to maintain a safe and dependable water supply we sometimes need to ke improvements that will benefit all of our customers. These improvements are sometimes reflected as rate structure adjustments. Thank you for understanding.

gine people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing here rapy, persons who have undergone organ transplants, people with HIV/A(DS or other immune system disorders, some elderly, and infants can be particularly at risk om injections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800 426-4791)

I you have any questions about this report or concerning your water utility, please contact Tim Thompson at (352) 622–1171. We want our valued customers to be informed about their water

Deer Creek -PWS#6424653 2002 Annual Drinking Water Quality Report

We're very pleased to provide you with this year's Annual Water Quality Report. We want to keep you informed about the excellent water and services we have delivered to you over the past year. Our goal is and always has been, to provide to you a dependable supply of drinking water. Our water source is groundwater and our well(s) draw from the Floridan Aquifer.

We're pleased to report that our drinking water meets federal and state requirements.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

(A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

(B) Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, and residential uses. (C) Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.

(D) Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also

come from gas stations, urban storm water runoff, and septic systems.

(E) Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

Marion Utilities Inc. routinely monitors for contaminants in your drinking water according to Federal and State laws. This table shows the results of our monitoring for the period of January 1st to December 31st, 2001. The state allows us to monitor for some contaminants less than once per year because the concentration of these contaminants do not change frequently. Some of our data, though representative, are more than one year old. All water analysis is the most recent sampling in accordance with the Safe Drinking Water Act.

In this table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions:

Non-Detects (ND) - laboratory analysis indicates that the constituent is not present.

Non-Applicable (n/a) - does not apply.

Parts per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per billion (ppb) or Micrograms per liter - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

Picocuries per liter (pCi/L) - picocuries per liter is a measure of the radioactivity in water.

Action Level (AL) - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal - The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MCLs are set at very stringent levels. To understand the possible health effects described for many regulated contaminants, a person would have to drink 2 liters of water every day at the MCL level for a lifetime to have a one-in-a-million chance of having the described health effect.

Turning Pointe 2002 Annual Drinking Water Quality Report

We're very pleased to provide you with this year's Annual Water Quality Report We want to keep you informed about the excellent water and services we have delivered to you over the past year. Our goal is and always has been, to provide to you a dependable supply of drinking water. Our water source is groundwater and our well(s) draw from the Floridan Aquifer.

We're pleased to report that our drinking water meets federal and state requirements

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include.

•

(A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. (B) Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, and residential uses.

(C) Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.

(D) Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.

(E) Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

Marion Utilities Inc. routinely monitors for contaminants in your drinking water according to Federal and State laws This table shows the results of our monitoring for the period of January 1" to December 31", 2000. The state allows us to monitor for some contaminants less than once per year because the concentration of these contaminants do not change frequently. Some of our data, though representative, are more than one year old. All water analysis is the most recent sampling in accordance with the Safe Drinking Water Act.

In this table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions:

Non-Detects (ND) - laboratory analysis indicates that the constituent is not present

Non-Applicable (n/a) - does not apply.

Parts per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per billion (ppb) or Micrograms per liter - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

Picocuries per liter (pCi/L) - picocuries per liter is a measure of the radioactivity in water.

Action Level (AL) - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal - The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MCLs are set at very stringent levels. To understand the possible health effects described for many regulated contaminants, a person would have to drink 2 liters of water every day at the MCL level for a lifetime to have a one-in-a-million chance of having the described health effect

		TEST	RESULTS	TABLE			
ontaminant and Jnit of Measurement	Date of sample analysis	MCL/AL Violation Y/N	Level Detected	Range	MCLG	MCL .	Likely Source of Contamination
ladiological Contaminant	ts			<u></u> ,			
iross Alpha (pCi/l)	11/2000	No	0 5	N/A	0	15	Erosion of natural deposits
norganic Contaminants							
Chromium (ppb)	11/2000	No	3.0	N/A	100	100	Discharge from steel and pulp mills; erosion of natural deposits
Vitrate (as Nitrogen) ppm)	3/2002	No	1.59	N/A	10	10	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Sodium (ppm)	11/2000	No	5.67	N/A	N/A	160	The standard is set at 160 ppm to protect those who are susceptible to high blood pressure or to diseases causing difficulty in regulating body fluid volumes. It is important to recognize that sodium enters the body in a number of ways, including food, and that drinking water contributes less than 10 percent to the overall sodium intake.
Lead and Copper Home S	ampling					.	***************************************
Lead (tap water) (ppb)	8/2002	No	3.2 (90 th percentile)	No sampling Sites exceeded AL	0	AL=15	Corrosion of household plumbing systems; erosion of natural deposits
Copper (tap water) (ppm)	8/2002	No	0.29 (90 th percentile)	No sampling sites exceeded AL	1.3	AL=1.3	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives

As you can see by the table, our system had no violations. We're proud that your drinking water meets or exceeds all Federal and State requirements. We have learned through our monitoring and testing that some contaminates have been detected.

Thank you for allowing us to continue providing your family with clean, quality water this year. In order to maintain a safe and dependable water supply we sometimes need to make improvements that will benefit all of our customers. These improvements are sometimes reflected as rate structure adjustments. Thank you for understanding.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800 426-4791)

If you have any questions about this report or concerning your water utility, please contact Jim Thompson at (352) 622-1171. We want our valued customers to be informed about their water utility.

Windgate Estates 2002 Annual Drinking Water Quality Report

We're very pleased to provide you with this year's Annual Water Quality Report. We want to keep you informed about the excellent water and services we have delivered to you over the past year. Our goal is and always has been, to provide to you a dependable supply of drinking water. Our water source is groundwater and our well(s) draw from the Floridan Aquifer.

We're pleased to report that our drinking water meets federal and state requirements

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include

•

•

(A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. (B) Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, and residential uses.

(C) Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.

(D) Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.

(E) Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

Marion Utilities Inc. routinely monitors for contaminants in your drinking water according to Federal and State laws This table shows the results of our monitoring for the period of January 1st to December 31st, 2000. The state allows us to monitor for some contaminants less than once per year because the concentration of these contaminants do not change frequently. Some of our data, though representative, are more than one year old. All water analysis is the most recent sampling in accordance with the Safe Drinking Water Act.

In this table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions:

Non-Detects (ND) - laboratory analysis indicates that the constituent is not present

Non-Applicable (n/a) - does not apply.

Parts per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per billion (ppb) or Micrograms per liter - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

Picocuries per liter (pCi/L) - picocuries per liter is a measure of the radioactivity in water.

Action Level (AL) - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal - The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MCLs are set at very stringent levels. To understand the possible health effects described for many regulated contaminants, a person would have to drink 2 liters of water every day at the MCL level for a lifetime to have a one-in-a-million chance of having the described health effect

		TEST	RESULTS	TABLE			
ontaminant and Jnit of Measurement	Date of sample analysis	MCL/AL Violation Y/N	Level Detected	Range	MCLG	MCL .	Likely Source of Contamination
adiological Contaminant	s		<u></u>	<u></u>	·	· · · · · · · · · · · · · · · · · · ·	
ross Alpha (pCi/l)	10/2000	No	2.0	N/A	0	15	Erosion of natural deposits
norganic Contaminants							
luoride (ppm)	10/2000	No	0.26	N/A	4	4	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
litrate (as Nitrogen) ppm)	3/2002	No	0 63	N/A	10	10	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Sodium (ppm)	10/2000	No	5.86	N/A	N/A	160	The standard is set at 160 ppm to protect those who are susceptible to high blood pressure or to diseases causing difficulty in regulating body fluid volumes. It is important to recognize that sodium enters the body in a number of ways, including food, and that drinking water contributes less than 10 percent to the overall sodium intake.
Lead and Copper Home S	ampling			.	•	· · · · · · · · · · · · · · · · · · ·	<u> </u>
Lead (tap water) (ppb)	8/2002	No	3.7 (90 th percentile)	One sampling site exceeded AL	0	AL=15	Corrosion of household plumbing systems, erosion of natural deposits
Copper (tap water) (ppm)	8/2002	No	0.2 (90 th percentile)	N/A	1.3	AL=1.3	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives

As you can see by the table, our system had no violations. We're proud that your drinking water meets or exceeds all Federal and State requirements. We have learned through our monitoring and testing that some contaminates have been detected.

Thank you for allowing us to continue providing your family with clean, quality water this year. In order to maintain a safe and dependable water supply we sometimes need to make improvements that will benefit all of our customers. These improvements are sometimes reflected as rate structure adjustments. Thank you for understanding.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800 426-4791)

If you have any questions about this report or concerning your water utility, please contact Jim Thompson at (352) 622-1171. We want our valued customers to be informed about their water utility.