

Florida Power & Light Company, 215 S. Monroe St., Suite 810, Tallahassee, FL 32301

John T. Butler Senior Attorney Florida Power & Light Company 700 Universe Boulevard Juno Beach, FL 33408-0420 (561) 304-5639 (561) 691-7135 (Facsimile) E-mail: john butler@fpl.com

May 7, 2007

-VIA HAND DELIVERY -

Ms. Ann Cole Commission Clerk Florida Public Service Commission 2540 Shumard Oak Blvd. Tallahassee, FL 32399-0850

Re: Florida Power & Light Company's Electric Infrastructure Storm Hardening Plan, filed in compliance with Rule 25-6.0342, F.A.C.

Dear Ms. Cole:

10,083

I am enclosing for filing in the above docket the original and seven (7) copies of the Petition of Florida Power & Light Company for Approval of Storm Hardening Plan, together with a diskette containing the electronic version of same. The enclosed diskette is HD density, the operating system is Windows XP, and the word processing software in which the document appears is Word 2003.

New Apartment in considering the second strained in the second strained in the second strained strain		
(1) and (1)	If there are any questions regarding this transmittal, please co 5639.	ntact me at 561-304-
na trent an transformation an transformation		
$eq:static_stat$	Sincerely,	
na sana ana ana ana ana ana ana ana ana		
$ \begin{array}{l} & \left(\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{$	AL / Ha	
and a second sec	what sha	
$ \begin{split} & \tilde{\mathcal{T}}(t) = \frac{1}{2} \frac{\partial \mathcal{T}_{t}}{\partial t} \frac{\partial \mathcal{T}_{t}}{\partial t} \\ & \tilde{\mathcal{T}}(t) = \frac{1}{2} \frac{\partial \mathcal{T}_{t}}{\partial t} \frac{\partial \mathcal{T}_{t}}{\partial t} \\ & \tilde{\mathcal{T}}(t) = \frac{1}{2} \frac{\partial \mathcal{T}_{t}}{\partial t} \frac{\partial \mathcal{T}_{t}}{\partial t} \\ & \tilde{\mathcal{T}}(t) = \frac{1}{2} \frac{\partial \mathcal{T}_{t}}{\partial t} \frac{\partial \mathcal{T}_{t}}{\partial t} \\ & \tilde{\mathcal{T}}(t) = \frac{1}{2} \frac{\partial \mathcal{T}_{t}}{\partial t} \frac{\partial \mathcal{T}_{t}}{\partial t} \\ & \tilde{\mathcal{T}}(t) = \frac{1}{2} \frac{\partial \mathcal{T}_{t}}{\partial t} \frac{\partial \mathcal{T}_{t}}{\partial t} \\ & \tilde{\mathcal{T}}(t) = \frac{1}{2} \frac{\partial \mathcal{T}_{t}}{\partial t} \frac{\partial \mathcal{T}_{t}}{\partial t} \\ & \tilde{\mathcal{T}}(t) = \frac{1}{2} \frac{\partial \mathcal{T}_{t}}{\partial t} \frac{\partial \mathcal{T}_{t}}{\partial t} \\ & \tilde{\mathcal{T}}(t) = \frac{1}{2} \frac{\partial \mathcal{T}_{t}}{\partial t} \frac{\partial \mathcal{T}_{t}}{\partial t} \\ & \tilde{\mathcal{T}}(t) = \frac{1}{2} \frac{\partial \mathcal{T}_{t}}{\partial t} \frac{\partial \mathcal{T}_{t}}{\partial t} \\ & \tilde{\mathcal{T}}(t) = \frac{1}{2} \frac{\partial \mathcal{T}_{t}}{\partial t} \frac{\partial \mathcal{T}_{t}}{\partial t} \\ & \tilde{\mathcal{T}}(t) = \frac{1}{2} \frac{\partial \mathcal{T}_{t}}{\partial t} \frac{\partial \mathcal{T}_{t}}{\partial t} \\ & \tilde{\mathcal{T}}(t) = \frac{1}{2} \frac{\partial \mathcal{T}_{t}}{\partial t} \frac{\partial \mathcal{T}_{t}}{\partial t} \\ & \tilde{\mathcal{T}}(t) = \frac{1}{2} \frac{\partial \mathcal{T}_{t}}{\partial t} \frac{\partial \mathcal{T}_{t}}{\partial t} \\ & \tilde{\mathcal{T}}(t) = \frac{1}{2} \frac{\partial \mathcal{T}_{t}}{\partial t} \\ & \tilde{\mathcal{T}}(t) = $	John T. Butler	
CAN		
jilon maayug jiroo gaari laafii aa iinga	Enclosures	
oth KP.	RECEIVED & FILED	DOCUMENT NUMBER-DATE

an FPL Group company

03831 MAY-75

BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION

)

In re: approval of Florida Power & Light Company's storm hardening plan pursuant to Rule 25-6.0342, F.A.C. Docket No. Filed: May 7, 2007

PETITION OF FLORIDA POWER & LIGHT COMPANY FOR APPROVAL OF STORM HARDENING PLAN

Florida Power & Light Company ("FPL") hereby petitions the Commission for approval of its Electric Infrastructure Storm Hardening Plan attached hereto as Exhibit 1 (the "FPL Plan"), which is submitted in compliance with Rule 25-6.0342, F.A.C. In support of this Petition, FPL states as follows:

1. FPL is a public utility subject to the regulatory jurisdiction of the Commission under Chapter 366, Florida Statutes. The Company's principal offices are located at 9250 West Flagler Street, Miami, Florida.

2. All notices, pleadings and other communications required to be served on the petitioner should be directed to:

John T. Butler, Esq. Senior Attorney Florida Power & Light Company 700 Universe Boulevard Juno Beach, Florida 33408-0420 Telephone: (561) 304-5639 Facsimile: (561) 691-7135 e-mail: john_butler@fpl.com

3. Subsection (2) of Rule 25-6.0342 requires each Florida investor-owned electric utility such as FPL to file a detailed storm hardening plan within ninety days of the rule's effective date. Pursuant to Order No. PSC-07-0043A-FOF-EI, issued in Docket Nos. 060172-

DOCUMENT NUMBER-DATE

03831 MAY-75

EDCO CONTRACTO

EU and 060173-EU on January 17, 2007, Rule 25-6.0342 became effective on February 5, 2007. The filing deadline is thus May 7, 2007, and the FPL Plan is timely filed.

4. Subsections (3), (4) and (5) of Rule 25-6.0342 set forth the required elements of storm hardening plans. The FPL Plan contains all of the required elements. With respect to the deployment strategy contemplated by subsection (4), the FPL Plan contains a detailed description of FPL's deployment plans for 2007, which is the only year for which FPL's planning and budgeting process has progressed to the point that such details are known. The Plan also includes a higher-level discussion of FPL's current expectations for deployment in 2008 and 2009. FPL intends to file updates to the FPL Plan annually, in which it will provide a detailed description of its deployment plans for the then-current year and a higher-level discussion of its current expectations for deployment plans for 2008 FPL will file an update containing a detailed description of its deployment plans for 2008 and higher-level discussions of its current expectations for deployment in 2008 and higher-level discussions of its current expectations for deployment in the subsequent two years. For example, in 2008 FPL will file an update containing a detailed description of its deployment plans for 2008 and higher-level discussions of its current expectations for deployment plans for 2008 and higher-level discussions of its current expectations for deployment plans for deployment plans for 2008 and higher-level discussions of its current expectations for deployment in 2009 and 2010.

5. As contemplated by subsection (6) of Rule 25-6.0342, FPL has sought input from joint users and third-party attachers, and FPL has attempted in good faith to accommodate their concerns. On March 22, 2007, FPL sent a detailed information package on its storm hardening plans to representatives of all known attachers, including all individuals whose contact information had been provided to FPL pursuant to subsection (6). FPL's information package, including the distribution list to which it was sent, is attached hereto as Exhibit 2. The cover letter for the information package invited comments by April 23, 2007. In addition, FPL held a meeting on April 12, 2007 to assist attachers in understanding FPL's plans for storm hardening and to answer their questions. The cover letter for the information package invited all recipients to that meeting. At the meeting, several of the attaching entities requested, and FPL agreed to

-2-

provide, additional details concerning the electric circuits that will be affected by FPL's 2007 deployment plans. On April 16, 2007, FPL provided to those attaching entities a CD containing engineering drawings, where completed, or asset management circuit drawings for those designs not completed, for all 72 circuits that FPL is planning to harden in 2007. Finally, in order to implement subsection (4)(e) of Rule 25-6.0342, the cover letter also solicited input from attachers on what the costs and benefits of FPL's storm hardening plans will be for them. To date, FPL has received comments from six attachers with only one (the Florida Cable Television Association, or FCTA) providing specific comments on FPL's construction and attachment standards. FPL has incorporated several of the FCTA's recommended changes into its standards.

6. The FPL Plan will result in an increase in the storm resilience of FPL's transmission and distribution system, with a significant part of that increase occurring in the early years of implementation. At the same time, the FPL Plan is carefully structured to achieve this increased storm resilience in a cost-effective manner. Implementation of the FPL Plan is expected to benefit FPL customers during and after future storm events by reducing the extent of power outages, especially for critical functions such as hospitals and governmental services as well as businesses such as grocery stores, gas stations and pharmacies that meet essential community needs. Moreover, to the extent that FPL's hardened electric service facilities are better able to survive storm events undamaged, customers will also benefit due to a reduction in storm restoration costs. And because of the emphasis in the FPL Plan on cost-effective implementation, the cost of achieving these benefits will be minimized.

7. In order to deliver storm resilience benefits cost-effectively, the FPL Plan contemplates a three-pronged approach to storm hardening FPL's distribution system:

-3-

a. In the first prong, FPL intends to apply the National Electrical Safety Code ("NESC") extreme wind loading ("EWL") design criteria to the electric facilities that serve critical infrastructure such as hospitals, 911 centers, special needs shelters, water treatment plants and fire stations (these critical services, and the electric facilities that serve them, are referred to as "CIFs") as well as specific poles that are important to overall restoration and relief efforts (these poles are referred to as "Targeted Critical Poles"). FPL believes that the expense of EWL design is warranted for these categories of electric facilities because the resulting storm resilience will be especially beneficial to FPL's customers.

b. In the next prong, which is referred to as "Incremental Hardening," FPL will be increasing the overall wind profile of certain main distribution lines (called "feeders") to a higher wind rating, up to and including EWL. Incremental hardening will apply appropriate combinations of cost-effective engineering options (e.g., storm guying, relocation, adding intermediate poles, upgrading the pole) to eliminate weak links and take advantage of the existing storm resilience of a circuit. The focus of Incremental Hardening will be on feeders serving businesses that meet essential community needs, such as grocery stores, gas stations and pharmacies. Additionally, Incremental Hardening will focus on poles other than Targeted Critical Poles that are nonetheless critical during storm restoration. This would include poles with additional electrical equipment attached, e.g., automated feeder switches and capacitor banks.

c. The final prong in FPL's storm hardening approach is the adoption of new design guidelines for poles that are set or replaced in conjunction with new construction, major planned work, relocation projects and daily work. The FPL Plan includes standardized pole size/type specifications to be used in those circumstances. The specifications reflect the

utilization of stronger poles and shorter span lengths for the facilities that are subject to the new design guidelines. This will result in stronger designs that are consistent with EWL and are intended to facilitate the evolution of FPL's overall distribution system to EWL criteria over time.

FPL's transmission system is already built to EWL standards and generally fared 8. well in the 2004 and 2005 storm seasons. Nonetheless, based on experience with the performance of the system, including specific lessons learned from those storm seasons, FPL has commenced two initiatives system-wide to further improve the storm resilience of its transmission and substation system: replacement of single pole un-guved wood transmission structures; and replacement of ceramic post insulators on all concrete transmission poles. These types of poles and insulators were involved in a high percentage of transmission system damage in the 2004 and 2005 storm seasons. Replacing them has previously been approved by the Commission as part of FPL's "Storm Preparedness Initiatives," in Order No. PSC-06-0781-PAA-EI, Docket No. 060198-EI, dated September 19, 2006 (the "Storm Initiatives Order"). FPL incorporates its Storm Preparedness Initiatives and the Commission's Storm Initiatives Order herein by reference. FPL forecasts completion of these two transmission system hardening initiatives over the next 10 to 15 years and will prioritize the work based on factors including proximity to high wind areas, system importance, customer count, and coordination with the distribution CIF storm initiative. Other economic efficiencies, such as performing work on multiple transmission line sections within the same corridor, will also be considered.

9. As contemplated by subsection (5) of Rule 25-6.0342, the FPL Plan also addresses FPL's standards and procedures applicable to joint users and third-party attachers. These standards and procedures are intended to ensure that attachments do not interfere with or

degrade the storm resilience achieved by FPL's storm hardening initiatives. As discussed in Paragraph 5 above, FPL has solicited comments from the attachers on the FPL Plan, specifically including comments on the attachment standards and procedures.

In 2007, FPL plans to spend approximately \$40-70 million on deploying its 10. hardening plans for the distribution system. The CIF initiative will focus on EWL hardening of the electric circuits that serve 28 acute care facilities located throughout FPL's service territory plus four feeders critical to the operation of FPL's system. In addition, FPL plans to EWL harden Critical Poles in 43 highway crossings of I-75 and the Florida Turnpike, as well as 78 additional Critical Poles locations elsewhere in the service territory. The Incremental Hardening Initiative will focus on 34 feeder circuits that are located in the east and south regions, primarily in the Tri-County Area (i.e., Miami-Dade, Broward and Palm Beach Counties). The Tri-County Area is being addressed first because it has the highest population density and is located in an area that is especially vulnerable to hurricanes (for example, it is within the highest NESC The Design Guidelines will be utilized system-wide for all new extreme wind zone). construction and daily work. In total, FPL's 2007 deployment plan for its distribution system will impact approximately 145 miles of overhead electric circuits. In addition, FPL expects to replace approximately 300 single pole un-guyed wood transmission structures and to replace ceramic insulators on about 450 concrete transmission poles in 2007. The cost of this work is projected to be approximately \$7 million.

11. As discussed in Paragraph 4 above, FPL's planning and budgeting process cannot provide equivalent detail at this time about deployment plans for 2008 and 2009. In general, FPL expects to harden approximately 85-125 feeders in 2008 and to harden in the range of 80-150 feeders in 2009. For both years, most of the hardened feeders will serve CIF customers and community projects. Of course, FPL's 2008 and 2009 deployment plans may change based on FPL's experience with deployment in 2007 and other factors. For the transmission system, FPL expects to continue implementing the two initiatives described above, at approximately the same rate in 2008 and 2009 as it is in 2007.

The FPL Plan should result in less storm damage to the electrical infrastructure 12. and therefore less restoration time and cost, especially when one considers the interaction among all of FPL's Storm Secure initiatives, including the FPL Plan, pole inspections, and increased vegetation management activities.¹ The costs and benefits of FPL's "Storm Preparedness Initiatives" have been previously reviewed and approved by the Commission.² Of course, FPL's ability to identify and estimate benefits from storm hardening are necessarily incomplete and imprecise at this time. Actions that FPL is taking and proposing to adopt represent industry leading changes in construction standards, maintenance practices and restoration processes. While the analyses and forensic observations performed after Hurricanes Katrina and Wilma serve as the foundation for FPL's hardening efforts, there is presently limited or no historical data available for purposes of conducting overall cost/benefit analyses today on many of these actions. Nonetheless, in spite of these limitations, it is clear that FPL's Storm Secure initiatives will benefit the FPL system and FPL's customers in both storm and day-to-day operational conditions. As additional storm experience, more and better data, and new improved processes, products and materials become available, FPL will be in a better position to perform detailed cost

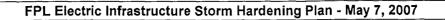
Of course, FPL's system is very diverse and geographically large. As a result, it will take many years of sustained effort to achieve these changes in the resiliency of FPL's system.
 The City of North Miami protested the application of a portion of FPL vegetation management initiative within the City. Staff has recommended that the City's protest be denied, and the Commission is scheduled to consider that recommendation at its May 8, 2007 agenda conference.

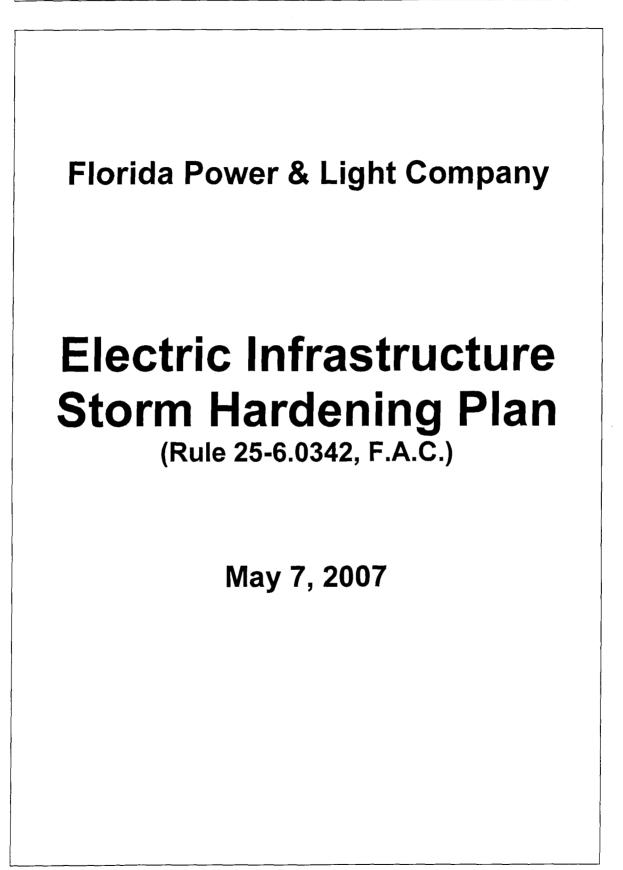
/benefit analyses, and these may also indicate that additional and/or different cost-effective hardening solutions can be implemented.

13. The FPL Plan also summarizes the input that FPL received from attachers about what they estimate the costs and benefits of those measures to be for them. In general, the attachers perceive that implementation of the FPL Plan will impose costs on them for relocating, modifying and/or replacing their attachments to existing poles that will be hardened to EWL or Incremental Hardening standards, as well as potential charges and increased pole rental fees associated with the hardened FPL poles.³ They generally see the FPL Plan as benefiting them through improved service reliability that they will experience as FPL customers and through reduced damage to their equipment when it is attached to hardened FPL poles.

14. In summary, the FPL Plan is a cost-effective approach to increasing storm resilience in ways that will most benefit FPL's customers. Its deployment is structured to focus initially on providing the most critical and essential benefits to the greatest number of customers, with broader based implementation thereafter. This is the most efficient approach to achieving useful storm resilience as promptly as possible at a reasonable cost. The FPL Plan complies with

Two attachers, AT&T Florida and Fibernet, provided cost estimates specifically for 2007. AT&T Florida estimated costs of \$4.4 million and Fibernet estimated costs of approximately \$15,600. AT&T Florida and Fibernet did not provide cost estimates for 2008 or 2009. In addition, Embarq provided cost estimates ranging from \$14.0 million to \$35.0 million for the period 2007-2009. At this time, FPL has not closely scrutinized the basis for the attaching entities' cost estimates. However FPL notes that Embarq's \$14 million cost estimate is based on an assumption that FPL will harden 20% of its poles in the first 3 years of the plan, while the \$35 million estimate is based on hardening 50% of the poles during that period. Both of these pole replacement assumptions are inconsistent with FPL's hardening plan and are substantially overstated. FPL has approximately 1.1 million poles, so Embarq's 20%-50% pole replacement assumptions would imply that FPL would replace between 220,000 and 550,000 poles over the period 2007-2009. In fact, FPL estimates that its replacements over that period will total only about 5 to 10 percent of Embarq's assumptions. The FCTA, AT&T Florida and Embarq noted that pole rental rates would likely be impacted by implementation of the FPL Plan as well.


all of the requirements of Rule 25-6.0343 and should be approved by the Commission expeditiously as a prudent commitment of resources to meeting the Commission's storm hardening goals.


WHEREFORE, FPL respectfully requests the Commission to approve FPL's storm hardening plan attached hereto as Exhibit 1.

Respectfully submitted,

R. Wade Litchfield, Esq. Associate General Counsel John T. Butler, Esquire Senior Attorney Florida Power & Light Company 700 Universe Boulevard Juno Beach, FL 33408-0420 Telephone: (561) 304-5639 Facsimile: (561) 691-7135

John T. Butler Fla. Bar No. 283479

Florida Power & Light Company Electric Infrastructure Storm Hardening Plan

EXECUTIVE SUMMARY

The 2004 and 2005 hurricane seasons were the most extraordinary and challenging on record for FPL and its customers. Five direct landfalls and two indirect impacts in the service territory, resulting in significant customer outages and requiring extraordinary efforts to rebuild and restore the electric infrastructure compels us to examine and evaluate the facts from this experience. A change in design, construction and operation of the electrical system infrastructure is indicated as we face, according to forecasters, two decades of heightened tropical cyclonic activity.

On January 30, 2006, FPL responded to this challenge by filing its Storm Secure Plan with the Florida Public Service Commission (FPSC). This comprehensive plan for increased storm preparedness included the following four areas: hardening the electric network; investing in underground conversions; modifying the pole inspection program; and enhancing vegetation management activities. The FPSC has subsequently approved FPL's plan for:

- 8 year distribution and 6 year transmission pole inspection cycles
- continue a three year average cycle for feeders, implement a six year average tree trimming cycle for lateral circuits, and trim all circuits serving critical customers before each storm season
- a Governmental Adjustment Factor (GAF), 25% investment, to promote applicable local government sponsored overhead to underground conversions.

On February 1, 2007, the FPSC adopted Rule 25-6.0342 which directs FPL and other investor owned utilities to file detailed electric infrastructure hardening plans by May 7, 2007. This document contains FPL's detailed plan.

Two key conclusions drawn by FPL from the 2004 and 2005 storms experience and FPL forensic data analysis form the basis for the FPL plan. They are that:

- 1. For Hurricane Wilma, wind was the predominant root cause of distribution pole breakage.
- FPL's transmission poles, which are already built to the National Electrical Safety Code (NESC) extreme wind loading criteria (EWL), performed well overall.

FPL Electric Infrastructure Storm Hardening Plan - May 7, 2007

Although no electrical system can be made fully resistant to hurricane impacts, we believe that FPL's proposed hardening plan will mitigate the impact of future storms. The following highlights FPL's proposed hardening plan for its distribution system:

- Implement a three prong approach for distribution infrastructure hardening. The three prongs, each of which serves a different purpose under the plan, are EWL; Incremental Hardening, and Design Guidelines. This approach will allow FPL to begin obtaining hardening benefits across our entire service territory promptly and cost-effectively.
- Apply EWL to existing and new feeders (main distribution lines) as well as any associated laterals directly serving Critical Infrastructure Facilities (CIF) (i.e., critical customers such as hospitals and 911 centers, and certain poles critical to operations and efficient restoration). Feeders are the backbone and therefore a critical component of FPL's overhead distribution system. Feeder performance can have a substantial impact on the overall service reliability to our customers.
- Apply Incremental Hardening to certain existing feeders so that, with targeted cost-effective modifications, the entire feeders' wind profile can be increased, up to and including EWL. Initially, Incremental Hardening will focus on "community projects", meaning feeders serving essential community needs such as grocery stores, gas stations and pharmacies.
- Implement system-wide FPL Design Guidelines containing criteria which will apply EWL to the design and construction of all new overhead facilities, major planned work, relocation projects, as well as daily work activities. These guidelines primarily are associated with changes in pole class, pole type and desired span lengths.

FPL's filing also includes information regarding research and development projects and initiatives being pursued in order to identify new ways of strengthening our electrical infrastructure. These initiatives include seeking out and evaluating new products, work methods, and construction techniques. This also includes collaborative research efforts with the Public Utility Research Center (PURC), where initial focus areas are undergrounding, wind testing and vegetation management.

In 2007, FPL plans to utilize EWL to harden 34 feeders and any associated laterals directly serving 28 CIF customers. Additionally, FPL plans to EWL harden Critical Poles in 43 highway crossings of I-75 and the Florida Turnpike, as well as 78 additional Critical Poles at locations elsewhere in the service territory. FPL plans to apply Incremental Hardening to feeders associated with 34 community projects. In total, the proposed 2007 deployment plan corresponds to approximately 145 overhead circuit miles. FPL estimates its 2007 expenditures will range from \$40 - \$70 million. These

estimates are based upon current work methods, products, and equipment and assume the necessary resources will be available to execute the plan.

FPL has not yet finalized hardening plans for 2008 and 2009. At this time, our preliminary 2008 and 2009 plans propose hardening an additional 80 -150 feeders each year, impacting approximately 300-600 miles per year. Costs are estimated at this time to be \$75 - \$125 million in 2008 and \$100 - \$150 million in 2009.

As noted, FPL's transmission system is already built to EWL standards and performed well in the 2004 and 2005 storm seasons. However to further improve its transmission and substation system, FPL has commenced the replacement of single pole un-guyed wood transmission structures and ceramic post insulators on concrete poles to meet higher, more current design standards. Replacing them has previously been approved by the Commission as part of FPL's "Storm Preparedness Initiatives," in Order No. PSC-06-0781-PAA-EI, Docket No. 060198-EI, dated September 19, 2006 (the "Storm Initiatives Order"). Based on replacement over a 10-15 year period, the estimated annual cost will range from \$5 million - \$8 million. For 2007, FPL estimates these costs to be \$7 million.

FPL's storm hardening plan should result in less storm damage to the electrical infrastructure and therefore less restoration time and cost. For example, in another Hurricane Wilma type event, FPL estimates that hardened feeder pole failure rates and associated restoration time, based on construction man-hours, will be reduced. More generally, FPL's Storm Secure initiatives, including its storm hardening plan, pole inspections, and increased vegetation management activities, can be reasonably expected to reduce future storm restoration costs compared to what they would be without those initiatives. The costs and benefits of FPL's response to the Commission's requirement in Docket No. 060198-El for 10-point storm implementation plans are discussed in FPL's "Storm Preparedness Initiatives" document, which was filed, reviewed and approved in that docket and is incorporated herein by reference. Hardening the system, increasing pole inspections, enhancing line clearing activities, promoting underground, along with various storm preparedness initiatives will all have an impact on reducing storm damage, reducing or preventing outages, and reducing the overall storm restoration times. Additionally, there will be day-to-day reliability benefits realized. Finally, improved systems and processes, including improved storm forensics, will allow for more and better data to be collected, evaluated and analyzed. Of course, FPL's system is very diverse and geographically large so it will take many years of sustained effort to achieve the full benefits of storm hardening.

While there will be benefits from FPL's Storm Secure initiatives, it is impossible at this time to estimate the full extent of the benefits with any

precision. The actions that FPL is taking and proposing to adopt pursuant to this storm hardening plan represent industry leading changes in construction standards, maintenance practices and restoration processes. The analyses and forensic observations performed after Hurricanes Katrina and Wilma serve as the foundation for FPL's hardening efforts, but there is presently limited or no historical data available for purposes of conducting overall cost/benefit analyses on many of these new actions. As additional storm experience, more and better data, new improved processes, products and materials become available, better detailed cost /benefit analysis will be able to be performed and more cost-effective hardening solutions implemented. In the meantime, FPL believes that implementing its current hardening approach (targeting critical infrastructure for EWL, the application of Incremental Hardening for community projects, and the utilization of the Design Guidelines) is in the best interest of its customers.

In conclusion, without fundamental and significant changes in the way we construct and harden our infrastructure to prevent outages, FPL believes the level of disruptions to its infrastructure from future storms would be much like that experienced in the 2004 and 2005 hurricanes season. It is important to note, however, that regardless of FPL's Storm Secure initiatives, when severe weather events impact our state – outages will occur. It is FPL's intention, however, to take the steps necessary to mitigate such impact. The tactical and strategic initiatives and plans FPL is pursuing, including the hardening plans included in this filing, not only address the resiliency of FPL's system to future severe weather events, but also provide for an increased level of day-to-day reliability for our customers. As new technologies become available and process enhancements and other improvement opportunities are identified, FPL will continue to make refinements to these plans.

INTRODUCTION

In compliance with Rule 25-6.0342, the following provides details on Florida Power & Light's (FPL) electric distribution and transmission infrastructure storm hardening plans.

DISTRIBUTION

1.0 HISTORY / BACKGROUND

Two extraordinary hurricane seasons in 2004 and 2005 have made it clear that significant changes are required in the way that Florida utilities design, construct and operate their electrical systems. This is particularly true for FPL's service territory, which during this time frame experienced the direct hit of five hurricanes and the indirect impact of two others. Standards that have worked well and provided customers with reliable service in the past need to be enhanced going forward. Florida generally, and South Florida in particular, are much more heavily and densely populated than they were at the time of Hurricane Andrew; customers' expectations have changed; and there is evidence that we are in a more active part of a multi-decade hurricane cycle and can expect more frequent storm events. Even if 2004 and 2005 were anomalies, as long-term statistics suggest, FPL must be prepared for further, significant storm activity in the years ahead.

The issue is not whether changes should be made, but what those changes should be. Although no electrical system can be rendered fully resistant to hurricane impacts, FPL's Storm Secure Plan, which was filed on January 30, 2006, outlined changes that FPL proposes to make to benefit our customers and the communities it serves. FPL's approach to new construction, system upgrades and maintenance will provide significant improvements in FPL's system's resiliency to storms and our restoration time after a storm passes. Additionally, it will ensure that a critical mass of providers of basic services, essential to the health and safety of our communities, will have electric service as promptly as possible after a hurricane strike.

The foundation for FPL's detailed hardening plan is the extensive analyses that FPL conducted either directly, or with the aid of external resources, such as KEMA Incorporated. These analyses included detailed forensic observations of how the system performed after Hurricanes Katrina and Wilma. One key finding from the Hurricane Wilma forensic data was that "wind" was the predominant root cause of distribution pole breakage as opposed to, for example, trees or other flying debris. This key data and the overall performance of FPL's transmission poles, which are already built to the NESC extreme wind criteria, forms the basis for FPL's proposal that certain parts of its distribution system be built to this highest criteria. FPL's Storm Secure Plan contains 4 key elements: (1) hardening the electric infrastructure; (2) investing in underground conversions; (3) increasing the pole inspection program activities; and (4) enhancing our line clearing and vegetation management activities.

In 2006, FPL began to address each one of these 4 elements. For example: (1) FPL initiated and completed several "hardening" pilot projects, including work done at the Port Everglades, as well as several major hospitals; (2) FPL developed and filed a tariff, the Governmental Adjustment Factor (GAF), to promote the conversion of overhead distribution to underground, by providing a 25% investment for applicable local government-sponsored conversions; (3) FPL initiated its 8 year pole inspection program for distribution wood poles and 6 year inspection program for transmission structures; (4) FPL obtained approval to continue its 3 year average cycle for main-line feeders and implement a 6 year average trim cycle for its lateral lines. Additionally, FPL completed all of the 2005 storm repair follow-up work.

It is important to keep in mind that in order to achieve changes to the resiliency of FPL's system, it will take many years of sustained effort. FPL's system cannot be changed overnight. It is very large, geographically diverse and all parts of the system are susceptible to hurricane impact.

Additionally, it is important to not focus on any one aspect. Electrical systems are exposed to a variety of different failure modes under the stress of hurricane conditions and typically each specific failure mode only accounts for a relative small proportion of the total damage. For example, FPL and every other utility experience pole breakage during hurricane conditions. However, even if FPL had experienced zero pole failures during the 2004 and 2005 storms, there still would have been millions of customers without power.

Overtime, substantial improvements to FPL's system will have cost implications for customers. To help control those costs and to get the most system improvement possible, as soon as possible, we have carefully developed our programs to focus early efforts on those parts of the system where the greatest impacts for a given level of investment can be achieved.

2.0 NATIONAL ELECTRICAL SAFETY CODE (NESC) REQUIREMENTS

The NESC is an American National Standard Institute (ANSI – C2) standard that has evolved over the years. As stated in the NESC, "The purpose of these standards is the practical safeguarding of persons during the installation, operation, or maintenance of electric supply and communication lines and associated equipment." The standards cover a wide range of topics including grounding, overhead lines, clearances, strength and loading, underground, and rules for the operation of lines and equipment. The NESC

FPL Electric Infrastructure Storm Hardening Plan - May 7, 2007

is currently revised on a 5 year cycle, with the latest edition being 2007. This is the edition presently adopted by the Florida Administrative Code.

The NESC specifies grades of construction on the basis of the required strengths for safety. The relative order of grades of distribution construction is B, C, and N, with Grade B being the highest or strongest. The grade of construction required is determined by the voltage of the circuits involved and what they cross over. Grade C is typically the NESC minimum standard for most electrical distribution facilities. Grade B is only required when crossing railroad tracks, limited-access highways, and navigable waterways requiring waterway crossing permits.

FPL has historically designed its distribution facilities based on the loading as specified in the NESC- Rule 250 B. Combined ice and wind loading for Grade B construction. While this has resulted in a very strong and reliable distribution system, the Rule 250 B criterion is not intended to design facilities for the sorts of extreme wind speed that can be experienced during hurricanes.

2.1 Extreme Wind Loading Criteria (EWL)

EWL is calculated using the wind speeds shown in Figure 250-2(d) of the NESC for Florida. The loading increases significantly with an increase in the wind speed since the wind loading formula uses the square of the wind speed.

Once the load is determined, it is multiplied by the appropriate Load Factor based on the Grade of Construction. This "factored" load is then used to determine the required structure (pole) strength. The strength of various poles is dependent on the material from which they are made. The strength of wood poles is published in ANSI 0.5. The strength of poles made from other materials is provided by the manufacturer. Once the strength of a pole is known, it is multiplied by a Strength Factor based on the grade of construction and the material from which the pole is made. This "factored" strength then has to be equal to or greater than the "factored" load.

All facilities that are to be attached to the pole must also be accounted for when determining the desired strength of the structure. This includes the wind load on the pole itself, as well as the conductors, transformers, communication cables and equipment on the pole. The design loading impact to meet EWL usually requires some combination of stronger poles and shorter span lengths (distance between poles) to reduce the wind loading imposed on the conductors and cables. The NESC requires the use of EWL for facilities that exceed 60 feet above ground or water level – normally transmission level structures.

2.2 FPL Compliance

FPL has historically utilized Grade B construction for all distribution lines, other than during a brief period (1993-2004) when, based on a probabilistic study of hurricanes at that time, a portion of FPL's territory utilized Grade C construction. Since Grade B is stronger than Grade C construction, FPL's distribution facilities comply with and, in most cases, exceed the minimum requirements of the NESC. FPL's Distribution Engineering Reference Manual (DERM) and Distribution Construction Standards (DCS) are revised as required to ensure compliance with all applicable rules and regulations. For the purpose of implementing FPL's hardening plan, addenda to the DERM and DCS have been developed to address the specific requirements needed to meet the NESC EWL.

3.0 INFRASTRUCTURE HARDENING STRATEGY

FPL's distribution infrastructure consists of feeders (main distribution lines) and laterals (fused circuits that run off feeder lines), both of which carry primary voltage, as well as lines that carry secondary voltage (e.g., services). To harden its distribution infrastructure, FPL is proposing a three pronged approach: EWL; Incremental Hardening; and revised Design Guidelines. The initial focus of applying EWL will be on feeders and any associated laterals directly serving critical customers, as well as, certain critical poles. Feeders are the backbone and therefore a critical component of FPL's overall distribution overhead system. Feeder reliability can have a substantial impact on overall service reliability to our customers. The next prong, Incremental Hardening, will target existing feeders, that with targeted modifications, the entire feeder's wind profile can be increased, up to and including EWL. The third prong will be the system-wide implementation of FPL's proposed Design Guidelines, which apply EWL criteria to the design and construction of all new overhead facilities, major planned work, relocation projects and daily work activities. This three pronged approach allows FPL to obtain hardening benefits more promptly and cost-effectively across its entire electric system. FPL will continue to evaluate its approach as new products and more costeffective work methods are developed. The application of this three pronged approach is explained in Section 5.0 below.

4.0 EXTREME WIND SPEED REGIONS FOR APPLICATION OF EWL

To apply the NESC extreme wind map for Florida, FPL proposes to implement the application of EWL into three wind regions, corresponding to expected extreme winds of 105, 130 and 145 mph.

FPL reviewed its practices and procedures and determined that the most effective option for implementation of the extreme wind map would also be by county. Each of the counties that FPL serves was evaluated by applying the highest wind rating for that county.

FPL decided on the three extreme wind regions of 105, 130 and 145 mph for the following reasons:

- A smaller number of wind regions generate advantages through efficiency of work methods, training, engineering and administrative aspects such as standards development and deployment.
- 105, 130 and 145 mph is a well balanced approach to meet the EWL criteria in the counties within each region.

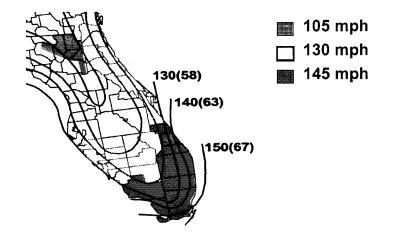


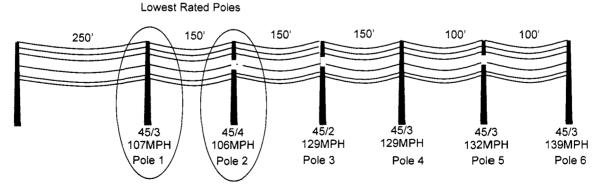
Figure 4-1 FPL Extreme Wind Regions (Meter/Sec)

Note: One exception will be made to the three wind regions, for the sparsely populated extreme southern tip of FPL's service territory. The design EWL wind speed for this area will be 150 mph.

5.0 APPLICATION OF NEW DESIGN AND CONSTRUCTION STANDARDS

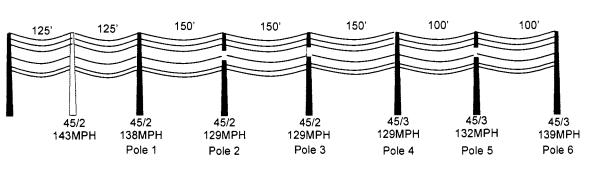
5.1 EWL

EWL will be applied to Top CIF feeders and any associated laterals directly serving critical customers. These facilities are critical and essential to the health, safety, welfare and security of the public. Examples of customers served by these facilities include hospitals, 911 Centers, special needs shelters, water treatment plants, police and fire stations. To help identify these facilities, FPL has established a partnership with local Emergency Operations Centers, who assisted in providing input and selecting the most critical facilities. Based on this list, FPL's proposed plan is to harden these


facilities to EWL where feasible, practical, and cost-effective. In the first phase of applying EWL, FPL is targeting acute care facilities, i.e. major hospitals.

EWL will also be applied to poles included in FPL's Targeted Critical Pole (TCP) Program. FPL's TCP Program focuses on poles that can impact restoration efforts. The initial focus of this program includes poles associated with overhead limited access highway crossings. If these poles fail they can impede the flow of traffic and emergency vehicles. Priority will be given to potential evacuation routes or those highways used to provide relief efforts soon after the storm. TCP's also include the first distribution pole out of a substation. If these poles fail, an entire feeder and associated laterals would lose service. All TCP's will be hardened to EWL where feasible, practical, and cost-effective.

5.2 Incremental Hardening


The objective of Incremental Hardening is to optimize the existing distribution infrastructure and increase the overall wind profile of a feeder to a higher wind rating, up to and including EWL. Incremental hardening will apply appropriate combinations of cost-effective engineering options (e.g., storm guying, relocation, adding intermediate poles, upgrading the pole, etc.) to eliminate weaker links and take advantage of the existing storm resilience of a feeder. Incrementally hardening a feeder may not always achieve EWL, however, this approach will position FPL to do so in the future.

Figures 5-1 and 5-2 illustrate an example of incremental hardening. In this example the wind rating of the two highlighted poles falls below the wind profile of the remaining portion of the feeder. The wind rating gap between Pole 2 and Pole 3 is considered the "natural breakpoint." All poles whose wind rating is below the rating on Pole 3 will be upgraded.

Before Incremental Hardening

Figure 5-1: Feeder Wind Profile Before Incremental Hardening

After Incremental Hardening

By targeting poles 1 and 2 for upgrading and installing an intermediate pole before pole 1, the feeder's overall wind profile has been raised to a higher wind rating in a cost-effective manner.

Initially, incremental hardening will target "community projects". Community Projects are associated with feeders that serve community needs such as grocery stores, gas stations and pharmacies. These types of services have also been identified as an essential need within the communities FPL serves. Typically these types of businesses are located nearby major thoroughfares and provide easy access to the community.

FPL will also focus on incremental hardening of poles that are critical during restoration events, but are not TCP's. These critical poles have additional electrical equipment or facilities attached such as automated feeder switches, capacitor banks and multiple circuits.

5.3 Design Guidelines for New Construction

FPL is proposing to utilize its revised Design Guidelines and processes to apply EWL for new construction, major planned work, relocation projects and daily work activities. Depending on the scope of the work that is performed in a particular project, this could result in EWL hardening for an entire circuit (in the case of large-scale projects) or in EWL hardening of one or a small number of poles (in the case of small projects) so that the affected circuit will be in a position to be fully EWL hardened in the future. These guidelines primarily are associated with changes in pole class, pole type and desired span lengths to be utilized. Standardizing these processes will ensure that this type of construction work aligns with FPL's hardening strategy.

FPL's pole sizing guidelines now provide for a minimum installation of Class 2 wood poles for all new feeder and three-phase lateral work in cases where previous designs might have called for a Class 3 wood pole. For two-phase and single-phase lateral work, a Class 3 wood pole is now required, where

FPL Electric Infrastructure Storm Hardening Plan - May 7, 2007

previous designs might have called for a Class 5 wood pole. For service and secondary work, a minimum of a Class 4 wood pole is to be used, where previously Class 5 or 6 wood poles could have been used. For critical poles, FPL is proposing to install concrete poles at accessible locations. These changes position FPL for hardening complete existing circuits to EWL in the future.

The following Table 5-1 illustrates a sample comparison of the Present Standard vs. Proposed Hardening Guidelines and the average percentage increase in wind rating. MPH calculations are dependent on various factors, including span length, equipment and attachments, framing, etc. Variations in any of these factors may yield different results.

Pole Type	Present Guideline	New Guideline	Average % Increase in Wind Rating
Critical Pole	Class 3 (wood)	Class III-H (concrete)	23%
Feeder Pole	Class 3 (wood)	Class 2 (wood)	11%
Lateral Pole	Class 5 (wood)	Class 3 (wood)	22%
Service Pole	Class 5 (wood)	Class 4 (wood)	11%

Table 5-1 Design Guidelines Pole Recommendations

FPL's Distribution Design Guidelines are included in the Appendix, which is attached to this filing.

5.4 Hardening Existing Facilities

To determine how a circuit or critical pole will be hardened, a field survey of the circuit facilities must be performed. By capturing detailed information at each pole location such as pole type, class, span distance, attachments, wire size and framing, a comprehensive windloading analysis can be performed to determine the current wind rating of each pole, and ultimately the circuit itself. This data is then used to identify the specific pole locations within the circuit that do not meet the desired wind rating. Once locations have been identified, recommendations to increase the allowable wind rating of the pole can be made.

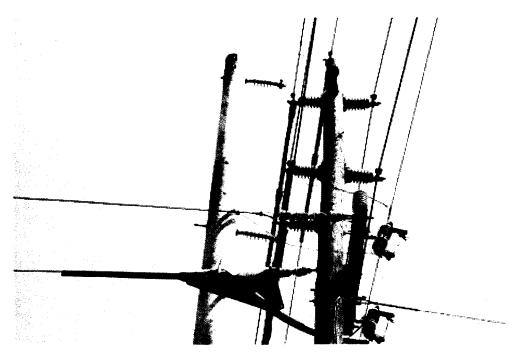
FPL proposes to utilize a "design toolkit" that focuses on evaluating and using cost-effective hardening options for each location. Examples of options in the toolkit include the following:

- Storm Guying Install one guy in each direction perpendicular to the line of lead. This is a very cost-effective option; however, proper field conditions need to be present to allow for installation.
- Equipment Relocation Equipment on a pole may be moved to a near-by stronger pole or one with a higher allowable wind rating.
- Intermediate Pole Install a single pole when long span lengths are present. By reducing the span length, the wind rating of both adjacent poles is increased.
- Upgrading Pole Class Replace the existing pole for a higher class pole to increase the pole's wind rating.
- Undergrounding Facilities Utilize if there are significant barriers to build overhead or if it is a more cost-effective option for a specific application

These options are not mutually exclusive and when used in combination with sound engineering practices, can provide a cost-effective method to harden a circuit.

Design recommendations on any given project, will take into account hardening (making facilities more resilient to storm force winds), mitigation (if circuit fails, how can damage be minimized), as well as restoration (improving the efficiency of restoration in the event of failure). Since multiple factors can contribute to losing power after a storm, utilizing this pronged approach will help in reducing the amount of work required to restore power to a damaged circuit.

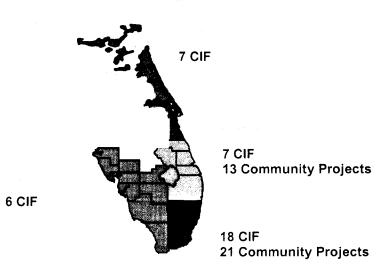
6.0 DEPLOYMENT PLANS


2006 Projects

In 2006, FPL made an industry-leading move by piloting EWL, the standard for transmission construction, in four distribution infrastructure hardening projects. These projects included hardening the distribution facilities serving: Port Everglades; Port of Palm Beach; St. Mary's Hospital; Jackson Memorial Hospital and Mount Sinai Medical Center. These facilities were initially selected because they are part of the critical South Florida infrastructure network that provides fuel and emergency health care after a hurricane. In total, these four projects required more than 30,000 man hours of work, retrofitting 14 feeders and replacing more than 500 poles. These projects brought additional challenges, such as installing larger poles in established neighborhoods, coordination with customers and maintenance of traffic. However, completing these pilot projects not only increased the storm resilience of some of Florida's most vital infrastructure, it also provided valuable insight into implementing storm hardening on a broader, system-wide effort.

FPL Electric Infrastructure Storm Hardening Plan - May 7, 2007

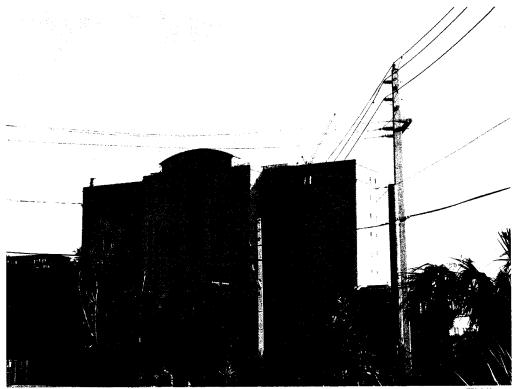
Mount Sinai Hospital project on Miami Beach required special equipment, traffic control and coordination with the community.


Wood poles replaced with spun concrete on Jackson Memorial Hospital project

2007 Deployment Plan

In 2007, FPL proposes to utilize EWL to harden thirty four (34) feeders and the associated laterals directly serving (28) twenty eight CIF customers and four system critical facilities. The TCP Program will also focus on hardening to EWL approximately 43 overhead Highway Crossings on Interstate 75 and the Turnpike in Miami-Dade and Broward counties and seventy eight (78) additional critical poles, each being the first feeder pole outside of a substation. These 78 poles have been targeted because of their criticality in expediting restoration efforts and have been prioritized so that circuits with the largest customer counts are completed first.

In addition to the facilities serving CIF customers, FPL plans to complete Incremental Hardening on feeders associated with thirty-four (34) community projects. The majority of these are located in the Tri-County area (Miami-Dade, Broward, and Palm Beach counties) where FPL has its highest density of customers.


Lists of the CIF Customers and Community Projects' feeders planned for 2007 are included in the Appendix to this filing. Below is map which helps to identify where these projects are located.

Deployment plans and estimates utilizing the application of design guidelines were developed based upon historical new pole installations and replacements, expansion plans, as well as known relocation projects. The proposed 2007 deployment plan corresponds to approximately 145 overhead circuit miles and includes approximately 5,800 poles. It is estimated that over 50% of the 5,800 poles included in the 145 overhead circuit miles already meet EWL and will not require any additional hardening.

FPL Electric Infrastructure Storm Hardening Plan - May 7, 2007

CIF Feeder serving VA Hospital in Palm Beach County hardened to EWL

EWL hardening CIF Feeder serving Halifax Hospital in Central Florida

2008 Deployment Plan

In 2008, FPL will continue to address CIF hardening, critical poles, and community projects, and will continue to utilize the Design Guidelines. FPL estimates it will harden approximately 85-125 feeders, most of which serve CIF customers and community projects.

2009 Deployment Plan

In 2009, FPL will continue to address CIF hardening, critical poles and community projects, and will continue to utilize the Design Guidelines. FPL estimates it will harden in the range of 80-150 feeders, most of which will serve CIF customers and community projects.

7.0 DESIGN AND CONSTRUCTION STANDARDS

7.1 Distribution Engineering Reference Manual (DERM)

FPL publishes its DERM to convey the standards of distribution design. The DERM provides FPL's designers with a reference for designing distribution facilities. This reference manual contains background information, engineering considerations, examples of necessary calculations and tables developed from the calculations. The tables are a guide for general applications whereas the examples provide the designers with the method to design facilities not included in the Tables. When the proposed criteria are adopted, FPL will publish and issue an "Addendum" to its DERM as a supplemental publication to enable the designers to design distribution facilities based on the 2007 NESC EWL criteria. A copy of the proposed DERM Addendum is included in the Appendix attached to this filing.

7.2 Distribution Construction Standards (DCS)

FPL's DCS provides the designers and the construction crews with information needed to build the distribution facilities. Designers use the manual to convey instructions to the field. The field crews use the manual to construct the facilities. The DCS contains drawings and instructions on clearances, framing (how facilities will be arranged on the pole), grounding, guying, equipment, and the assembly of the various parts. When the proposed criteria are adopted, FPL will publish and issue an "Addendum" to its DCS as a supplemental publication to enable the field crews to build distribution facilities based on the 2007 NESC EWL criteria. A copy of the proposed DCS Addendum is included in the Appendix attached to this filing.

7.3 Design Guidelines

FPL has developed Design Guidelines and a Quick Reference Guide to allow the field designers a simple reference document when the details provided in the DERM and DCS are not needed to develop the design plan. The intention of this document is to standardize designs for hardening as it relates to new construction, major planned work, relocations as well as daily work activities. These guidelines are primarily associated with changes in pole class, pole type and desired span lengths for overhead construction. In addition, FPL has proposed additional hardening guidelines for poles that are deemed critical for general operations or during restoration events. A copy of the Design Guidelines and the Quick Reference Guide are included in the Appendix.

8.0 ATTACHMENTS BY OTHER ENTITIES

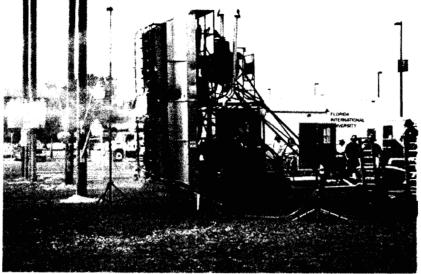
8.1 Attachment Standards and Procedures

There are attachments by other entities to FPL poles throughout its service area. These attachments are made by Incumbent Local Exchange Carriers (ILEC), Cable TV Companies (CATV), Telecommunication Carriers and Governmental Entities (Non-ILEC). Additionally, FPL attaches to ILEC poles. The standards and procedures for these attachments, created to ensure conformance to FPL's standards and hardening plans as required by the FPSC, are attached and included in the Appendix.

8.2 Input from Attaching Entities

On March 22, 2007, FPL mailed an informational package regarding its 2007-2009 hardening plans as well as the current draft of its "Attachment Standards and Procedures" to all attaching entities. In total, over 95 packages were sent to these entities which included cable TV, telecommunication, and telephone companies as well as city and county agencies. FPL requested attaching entities to provide their input to FPL by April 23, 2007, including their costs and benefits associated with FPL's proposed hardening plans. Additionally, to provide these attaching entities an opportunity to better understand FPL's plans, FPL held a meeting at its General Offices in Miami, Florida on April 12, 2007. 15 representatives from cable TV, telephone and telecommunication companies, as well as one city agency, attended. At the meeting, several of the attaching entities requested, and FPL agreed to provide, additional details concerning FPL's 2007 deployment plans. On April 16, 2007, FPL provided to these attaching entities a CD containing engineering drawings, where completed, or asset management circuit

drawings for those designs not completed, for all 72 circuits that FPL is planning to harden in 2007.


To date. FPL has received comments from 6 attaching entities. FCTA was the only attaching entity to provide specific comments on FPL's construction and attachment standards. FPL has incorporated several of the FCTA's recommended changes into its standards. For example, at FCTA's suggestion, FPL has clarified the language in its attachment standards regarding overlashing of cable. AT&T Florida (BellSouth) and Embarg expressed difficulties with providing accurate estimated cost impacts, stating that more time and/or information is required. Both AT&T Florida and FCTA also suggested further dialogue to better understand the plans and provide more accurate cost estimates. FPL agrees that a meeting or workshop would be beneficial. Palm Beach County suggested further discussions between the County and FPL regarding the selection of critical facilities and community projects in Palm Beach County. FPL will be contacting the County in the near future to have those discussions. Cost impacts and benefits that were provided are included in Section 11, Costs and Benefits. The complete comments received from attaching entities are attached and included in the Appendix.

9.0 RESEARCH AND DEVELOPMENT

Design and construction to NESC EWL involves more than just engineering reference manuals and construction standards. Efforts are also underway to seek out and evaluate new products, work methods, and construction techniques that will enable FPL to cost-effectively build to this increased standard. Concurrent with this effort, FPL is also evaluating its existing construction practices to ensure they are adequate to meet EWL. Examples of these efforts include:

- FPL conducted a supplier symposium in June 2006 that included over 50 companies that manufacture and supply electrical transmission and distribution equipment. This event highlighted FPL's effort to build to extreme wind and solicited input and assistance from these organizations to become innovative as FPL makes changes to its construction standards and methods. Some examples of ideas generated during this meeting included lighter concrete poles and composite material poles
- As part of the KEMA involvement with FPL's Storm Secure effort, additional data was gathered regarding other utilities hardening efforts. Some of the companies included in this effort were Tokyo and Chubu Electric, Guam Power, Hydro Quebec, Arizona Public Service, Southern California Edison, and Kansas City Power and Light.
- Different types of pole technologies; including steel, iron, several formulations of concrete, wood and composite materials; are presently under various stages of evaluation.

- A comprehensive evaluation of available composite material poles is underway. This has included inspections of manufacturing facilities, observation of certified strength testing to ANSI standards, installation of several poles at FPL's Miami Training and Methods Center, and engineering calculations involving flexibility of these poles.
- FPL is evaluating heavy-duty field equipment that will allow for the installation of heavier concrete poles without the use of costly cranes. At the same time, joint efforts between FPL and concrete manufacturers to develop a lighter weight/same strength concrete pole are on-going.
- Utilizing lessons learned from previous storms, FPL is also evaluating: design changes to streetlight brackets; stronger bracing of steel crossarms on wood poles; attachment of riser shields to poles; construction techniques for slack spans: mechanical service disconnect devices. FPL is also performing tests on how best to attach wire to insulators
- As part of the efforts to strengthen existing installations, specifications and application guidelines are being written to use a newly developed pole reinforcement method called the ET Truss. This enables a pole to be strengthened cost-effectively, avoiding a pole replacement.
- For underground facilities, FPL is piloting the use of a below-grade switch that could be better able to withstand the affects of wind and flooding.
- FPL is actively engaged in a collaborative research effort with the Public Utility Research Center (PURC), all Florida investor owned utilities, Coops, and Municipalities. Initial focus areas are undergrounding, wind testing and vegetation management.
- FPL is involved with the Florida International University "Wall of Wind" storm hardening research project. This 2-fan system generates up to 120 mph winds and includes a water-injection system to simulate horizontally-flowing rainfall under hurricane conditions. FPL has already tested certain equipment including single and three phase transformers, capacitor bank, riser u-guard, and various streetlight brackets. Over time, this test facility will be able to generate wind speeds up to 150 mph.

Testing wind resilience of streetlights at FIU Wall of Wind

FPL expects that these efforts will lead to new standards, processes, products and work methods that will provide cost-effective measures to strengthen the electrical infrastructure.

10.0 UNDERGROUND DISTRIBUTION FACILITIES

10.1 Underground Systems

FPL's current underground construction systems include the following design applications:

- Pad-mounted, above grade transformers and switch gear for typical URD subdivision and small commercial areas.
- Concrete encased duct and manhole systems with above grade vaults in designated areas of high load density, where it is feasible, practical and cost-effective, for example, in Miami Beach, Fort Lauderdale and Sarasota.
- Secondary network systems with redundant throw-over, as in downtown Miami.

The current FPL system has approximately 66,300 total miles of distribution infrastructure. Underground power lines make up 37% (24,700 miles) of this total with about 7% (1,700 miles) being in concrete encased duct bank. In the past five years, over 60% of all new distribution construction throughout the FPL service territory has been installed underground. In the tri-county area of Miami-Dade, Broward and Palm Beach Counties, where local ordinances for Underground Residential Distribution (URD) construction exist, approximately 90% of new construction was installed underground.

10.2 Equipment Technologies

The standard FPL URD equipment for all new underground residential distribution (pad-mounted transformers, switch cabinets, etc.) is dead-front made from stainless steel, or in combination with mild steel. Stainless steel equipment has the advantage of extended service life due to its resistance to weathering and corrosion, but has a considerably higher initial cost. Dead-front equipment (i.e., without energized parts exposed on the operating side of the equipment) is more reliable, and more resistant to flooding.

FPL does not presently use submersible equipment. Past installations which were in high-density downtown sidewalk vaults have experienced reliability issues, require large installation spaces and are costly to build and maintain.

Currently, FPL has a pilot project on Jupiter Island to test a Vista Gear (i.e., a below grade, submersible URD type switch) to determine whether if offers some added storm flooding resiliency.

10.3 Installation Practices

FPL complies with existing local ordinances when constructing underground systems. The Florida Building Code leaves the responsibility of determining adequate floodplains to each municipality which usually base their local ordinances on Federal Emergency Management Agency 100-year flood criteria.

10.4 Hardening and Storm Preparedness

Approximately 20% of FPL's underground distribution infrastructure is within the Category 1 - Category 3 floodplain as defined by the Florida Department of Community Affairs. However, FPL has not historically been as severely impacted by storm surge from hurricanes as it has been by wind. Recognizing that underground equipment is less impacted by predominantly wind events, FPL proposed the Governmental Adjustment Factor (GAF) tariff to promote conversion of electric facilities from overhead to underground. Through the GAF, which was approved by the Commission on April 24, 2007, FPL provides a 25% investment for the cost of qualified local governmentsponsored conversion projects.

FPL has guidelines in place for the prompt post-storm inspection and mitigation of damage to equipment exposed to flooding or storm surge. These guidelines outline the necessary steps to purge any sand and water that has invaded the equipment and to restore it to service.

11.0 PROJECTED COSTS AND BENEFITS

11.1 Costs

<u>FPL</u>

In 2007, FPL plans to harden 72 feeders, which provide service to critical infrastructure and special community needs. Additionally, FPL is beginning to implement hardening criteria for new construction, major relocations and other work. Utilizing current work methods, products and equipment, this work is estimated to cost from \$40 to \$70 million.

In 2008 and 2009, FPL expects to continue this strategy for hardening its infrastructure, including targeting 85-125 circuits in 2008 and 80-150 in 2009. Each year the plan focuses on circuits with increasing lengths, potentially translating into higher program costs. The projected costs for 2008 and 2009 are \$75 to \$125 million and \$100 to \$150 million, respectively. These estimates are based upon current work methods, products, and equipment and assume the necessary resources will be available to execute the plan.

Attaching Entities

Two of the attaching entities, AT&T Florida and Fibernet, provided cost estimates specifically for 2007. AT&T Florida estimated costs of \$4.4 million and Fibernet estimated costs of approximately \$15,600. AT&T Florida and Fibernet did not provide cost estimates for 2008 and 2009. In addition, Embarg provided cost estimates ranging from \$14.0 million to \$35.0 million for the period 2007-2009. At this time, FPL has not closely scrutinized the basis for the attaching entities' cost estimates. However FPL notes that Embarg's \$14 million cost estimate is based on an assumption that FPL will harden 20% of its poles in the first 3 years of the plan, while the \$35 million estimate is based on hardening 50% of the poles during that period. Both of these pole replacement assumptions are inconsistent with FPL's hardening plan and are substantially overstated. FPL has approximately 1.1 million poles, so Embarg's 20%-50% pole replacement assumptions would imply that FPL would replace between 220,000 and 550,000 poles over the period 2007-2009. In fact, FPL estimates that its replacements over that period will total only about 5 to 10 percent of Embarg's assumptions. FCTA, AT&T Florida and Embarg also noted that pole rental rates would likely be impacted. The FCTA, City of Hollywood and Palm Beach County did not quantify any estimated cost impacts. The complete comments received from attaching entities are attached and included in the Appendix.

11.2 Benefits

FPL

For category 1, 2 and 3 hurricanes, FPL's storm hardening plan should result in less storm damage to the electrical infrastructure and therefore less restoration time and cost. For example, in another Hurricane Wilma type event, FPL estimates that hardened feeder pole failure rates and associated restoration time, based on construction man-hours, will be reduced. More generally, FPL's Storm Secure initiatives, including its storm hardening plan, pole inspections, and increased vegetation management activities, can be reasonably expected to reduce future storm restoration costs compared to what they would be without those initiatives. The costs and benefits of FPL's response to the Commission's requirement in Docket No. 060198-EI for 10point storm implementation plans are discussed in FPL's "Storm Preparedness Initiatives" document, which was filed, reviewed and approved in that docket and is incorporated herein by reference. Hardening the system, increasing pole inspections, enhancing line clearing activities, promoting underground, along with various storm preparedness initiatives will all have an impact on reducing storm damage, reducing or preventing outages, and reducing the overall storm restoration times. Additionally, there will be day-today reliability benefits realized. Finally, improved systems and processes, including improved storm forensics, will allow for more and better data to be collected, evaluated and analyzed. Of course, FPL's system is very diverse and geographically large so it will take many years of sustained effort to achieve the full benefits of storm hardening.

While there will be benefits from FPL's Storm Secure initiatives, it is impossible at this time to estimate the full extent of the benefits with any precision. The actions that FPL is taking and proposing to adopt pursuant to this storm hardening plan represent industry leading changes in construction standards, maintenance practices and restoration processes. The analyses and forensic observations performed after Hurricanes Katrina and Wilma serve as the foundation for FPL's hardening efforts, but there is presently limited or no historical data available for purposes of conducting overall cost/benefit analyses on many of these new actions. As additional storm experience, more and better data, new improved processes, products and materials become available, better detailed cost /benefit analysis will be able to be performed and more cost-effective hardening solutions implemented. In the meantime, FPL believes that implementing its current hardening approach (targeting critical infrastructure for EWL, the application of Incremental Hardening for community projects, and the utilization of the Design Guidelines is in the best interest of its customers.

6

Attaching Entities

AT&T Florida noted that the most significant benefit would be the potential reduction of storm outages at its commercial facilities; however, the benefit could not be quantified at this time. Embarg commented that benefits will not be known until the next storm. The remaining attaching entities provided no comments on benefits.

TRANSMISSION

1.0 HISTORY / BACKGROUND

While FPL's transmission facilities were also affected by the 2004 and 2005 storms, the damage experienced was significantly less than the damage experienced by distribution facilities. A primary reason for this is due to the fact that transmission structures are already constructed to meet EWL. However, FPL's Storm Secure Plan identifies several initiatives specifically addressing the transmission infrastructure. In 2006, FPL increased its inspection cycle of transmission structures to a six year cycle, consistent with the FPSC order issued in April 2006.

2.0 NESC REQUIREMENTS AND COMPLIANCE

FPL transmission line structural designs are mandated by Florida Statute Section 366.04, which requires that all high voltage transmission structures satisfy the requirements specified by the NESC. ANSI C2 addresses EWL criteria (Rule 250C) and covers all wind sensitive factors and wind related effects that need to be considered in the design calculations. FPL transmission structures are designed to meet EWL under NESC Rule 250 C and are constructed to meet Grade B Construction under NESC Sections 25 and 26.

3.0 DETERMINATION OF EXTREME WIND SPEEDS FOR APPLICATION OF EWL

For transmission structures, FPL interpolates the NESC wind load contours (Figure 250-2d) into 5 mph intervals. Based on the global position system (GPS) coordinates, transmission structures are designed for the upper wind speed of each interpolated 5 mph wind contour interval.

4.0 DESIGN AND CONSTRUCTION STANDARDS

FPL's transmission and substation system is already designed for EWL using the following design standards:

NESC

• As required by Florida Statute Section 366.04

American Society of Civil Engineers (ASCE)

 Minimum Design Loads for Buildings & Other Structures "ASCE/SEI 7-05"

- Design of Steel Transmission Pole Structures "ASCE/SEI 48-05"
- No. 74: Guidelines for Electrical Transmission Line Structural Loading
- No. 91: Design of Guyed Electrical Transmission Structures
- ASCE/PCI, Guide for the Design of Prestressed Concrete Poles

Institute of Electrical and Electronics Engineers

• IEEE Standard 751 – 1990, IEEE Trial-Use Design Guide for Wood Transmission Structures

FPL's transmission construction standards are incorporated into the following two books as summarized below:

Transmission Structure Standards (TSS)

The TSS includes drawings showing the framing and configuration of both current and historical transmission structures. Each structure standard drawing includes dimensions, material lists, and any applicable transmission installation specification (TIS) standards.

Transmission Installation Specification (TIS)

The TIS includes installation and testing procedures for various transmission components. The book contains the following sections:

- 1. Anchors & Foundations
- 2. Bonding & Grounding
- 3. Conductor & Conductor Fittings
- 4. Poles & Structures
- 5. Right-of-Way Items
- 6. Insulator & Arrester
- 7. Fiber Optics

Construction or installation specifications that are unique to a particular location and not incorporated in either standard referenced above are incorporated in the construction package for the individual project.

5.0 DEPLOYMENT STRATEGY

Since FPL's transmission and substation system is already designed for EWL, FPL does not believe there is a general need for further hardening of that system. However, based on experience with the performance of the system, including specific lessons learned from the 2004-2005 storm seasons FPL has the following two transmission Storm Secure initiatives which have been previously approved by the Commission as part of FPL's "Storm Preparedness Initiatives" in Order NO. PSC-06-0781-PAA-EI, Docket No. 060198-EI, dated September 19, 2006.

1. Single Pole Un-Guyed Wood Transmission Structures

FPL has implemented a comprehensive plan for replacing existing single pole un-guyed wood transmission structures with FPL's current design standards. Although designed for EWL, these structures accounted for 68% of all the transmission structures requiring replacement during the 2004-2005 storm seasons.

2. Ceramic Post Transmission Line Insulators

FPL has implemented a comprehensive plan for replacing existing ceramic post insulators on concrete poles with FPL's current design standards. Although designed for EWL, ceramic post insulators on concrete poles accounted for 68% of all the insulators replaced as a result of the 2004-2005 storm seasons.

FPL forecasts completion of these two storm secure initiatives over the next 10 to 15 years. For the single pole un-guyed wood transmission structure initiative, approximately 300 structures will be targeted for replacement each year. For the replacement of ceramic post insulators on square concrete poles, approximately 450 structures will be targeted for re-insulation each year.

FPL will prioritize its two transmission storm secure initiatives based on factors including proximity to high wind areas, system importance, customer count, and coordination with the distribution CIF storm initiative. Other economic efficiencies, such as performing work on multiple transmission line sections within the same corridor, are also considered.

In 2007, transmission has focused efforts starting in the tri-county areas of Miami-Dade, Broward, and Palm Beach Counties where the code specified wind speeds are higher.

FPL will provide updates of these transmission storm secure initiatives in its annual March 1 filing with the FPSC.

6.0 COSTS AND BENEFITS

FPL estimates the total cost for the two transmission structure hardening initiatives to be approximately \$80 million. Based on replacement over a 10-15 year period, the estimated annual cost of the program will range from approximately \$5 million to \$8 million. For 2007, FPL estimates these costs to be \$7 million.

DESIGN GUIDELINES

Distribution Design Guidelines

The following guidelines will be used to standardize the design of FPL's overhead distribution facilities when practical, feasible and cost effective.

General

- 1. Every attempt should be made to place new or replacement poles in private easements or as close to the front edge of property (right of way line) as practical.
- 2. Overhead pole lines should be placed in front lot lines or accessible locations where feasible.
- 3. Concrete poles are not to be placed in inaccessible locations or locations that could potentially become inaccessible.
- 4. When performing work that will affect an existing Top CIF feeder, always contact Storm Secure regional project manager prior to design.
- 5. When performing new construction, the new pole line will be designed to meet Extreme Wind Load (EWL).

As always, good engineering judgment, safety, reliability, and cost effectiveness should be considered.

In addition to these guidelines, all distribution facilities shall be engineered to meet the minimum requirements set forth in all applicable standards and codes including but not limited to the National Electrical Safety Code (NESC), and Utility Accommodation Guide.

New Construction / Existing / Maintenance

- 1. When installing and/or replacing a feeder, lateral or service pole on an existing pole line, please reference the pole sizing guidelines listed under the Hardening Design Guidelines section (page 5 of 6) to determine pole class and type.
- 2. When performing work that will affect a Top CIF feeder, always contact Storm Secure regional project manager prior to design.
- 3. When extending an existing pole line, the existing pole type, wood or concrete, should be used as a guide for the new poles, while still maintaining the minimum requirements as set forth in these guidelines.

Relocation

- 1. When relocating either a concrete or wood pole line for a highway improvement project, the existing type pole line should be used as a guide for replacements.
- 2. When performing work that will affect a Top CIF feeder, always contact Storm Secure regional project manager prior to design.
- 3. Agency relocation projects should be coordinated with Distribution Planning to take into account potential feeder boundary changes.

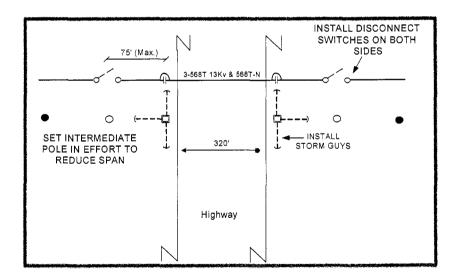
Hardening Design Guidelines

The following hardening guidelines will standardize the design of FPL's overhead distribution facilities when feasible, practical and cost effective. Foreign pole owners are required to discuss design requirements with FPL prior to construction. FPL will assist with identifying the critical poles.

- 1. Concrete poles are preferred in the cases where replacement costs would be extremely high (i.e. Duct system riser pole, corner poles with multiple circuits, critical poles, etc). Please reference the Critical Pole list below for more information.
- 2. The following list comprises what will be considered critical poles. When installing and/or replacing an accessible critical pole, use concrete. If the pole is inaccessible, use a Class 2 wood pole, or consider relocating the equipment to an accessible concrete pole.

 Critical Pole List
1 st switch out of the substation ¹
Automated Feeder Switches (AFS)
Interstate / Highway Crossings 1,2
Capacitor Banks
Poles with multiple primary risers
3 Phase Reclosers
Aerial Auto Transformers
Multi-Circuit Poles ³
 3 phase transformer banks (3-100 kVA and larger)
Regulators
Primary Meter

¹⁾ Every attempt should be made to install storm guys where feasible and practical.


²⁾ Refer to the Crossing Multi-Lane Limited Access Highways section for details (pg.4 of 6)

³⁾ Contact Storm Secure regional project manager before designing a new multi-circuit line.

Crossing Multi-Iane Limited Access Highways

- 1. Underground installation is the preferred design for all NEW crossings (1, 2 or 3 phase) of multi-lane limited access highways. If underground construction is not feasible or if working on an existing overhead crossing, reference the Overhead Highway Crossing schematic as shown below.
- 2. Underground crossing for 1 or 2 phases should be designed for potential three phase feeder size cable.
- 3. For accessible overhead crossings, use concrete poles (III-H or Spun) for the crossing poles and Class 2 wood poles for the adjacent poles. For inaccessible overhead crossings, Class 2 wood poles should be used for the crossing poles and adjacent poles.
- 4. Every attempt should be made to install storm guys for the highway crossing poles. Storm guys are not required on the adjacent poles.
- 5. Install disconnect switches on adjacent poles on both sides of the crossing to isolate the feeder section in case of a restoration event. Disconnect switches are to be installed in accessible locations that can be reached with aerial equipment. If there is no load between the nearest existing disconnect switch and the crossing, an additional switch is not required.

Overhead Highway Crossing Schematic

Pole Sizing Guidelines

- 1. The following tables should be used as guidelines to help determine pole class and type, when installing and/or replacing a feeder, lateral or service pole.
- 2. When performing work that will affect a Top CIF feeder/customer always contact Storm Secure regional project manager prior to design.

Feeder or Three Phase Lateral:

Pole Line Description	New Construction ¹	Existing Infrastructure ²	Installing or Replacing a Critical Pole ³
Existing Wood	Use Class 2 Wood Pole to meet EWL	Use Class 2 Wood Poles	Use III-H (Accessible) or Use Class 2 Wood (Inaccessible)
Existing Concrete	Use III-H Concrete Pole to meet EWL	Use III-H Concrete Poles	Use III-H Concrete Poles

Single or Two Phase Lateral:

Pole Line Description	New Construction ¹	Existing Infrastructure ²	Installing or Replacing a Critical Pole ³
Existing Wood	Use Class 3 Wood Pole to meet EWL	Use Class 3 Wood Poles	Use III-H (Accessible) or Use Class 2 Wood (Inaccessible)
Existing Concrete	Use III-G ⁴ or III-H poles to meet EWL	Use III-G ⁴ or III-H poles to match existing line	Use III-H Concrete Poles

¹⁾ To be used when extending or relocating a pole line. For span length details, see table below.

²⁾ To be used when replacing a pole or installing an intermediate pole within an existing pole line.

³⁾ Reference Critical Pole List on pg.3 of 6.

⁴⁾ Use of III-G poles should be limited to existing concrete lateral pole lines whose wire size is less than or equal to #1/0 Aluminum.

Facility	Phases(s)	Wire size	Pole size	Recommended Span Length [°] (FPL with 2 attachments – FPL ONLY)		
				105 MPH	130 MPH	145 MPH
Feeder		3#568 ACAR	Class 2	180' - 230'	135' - 200'	100' - 150'
		3#3/0 AAAC	Class 2	180' - 250'	180' - 250'	125' - 250'
Lateral	3 PH	3#1/0 AAAC	Class 2	180' - 250'	180' - 250'	155' - 250'
	2 PH	2#1/0 AAAC	Class 3	180' - 250'	180' - 250'	170' - 250'
	1 PH	1#1/0 AAAC	Class 3	180' - 250'	180' - 250'	180 - 250'

⁵The lower number equates to the maximum span for FPL primary and 2 foreign attachments. The higher number equates to the maximum span for FPL primary only. Reference the addendum DERM tables when adding additional attachment(s) or equipment. Remember to always contact the Storm Secure regional project manager when working on a Top CIF feeder.

Service / Secondary / Street Light / Outdoor Light Poles

When installing or replacing a secondary, service or street light pole, a minimum Class 4 Wood pole should be used. Specific calculations may require a higher class pole for large Quadruplex wire.

As always, good engineering judgment, safety, reliability, and cost effectiveness should be considered.

In addition to these guidelines, all distribution facilities shall be engineered to meet the minimum requirements set forth in all applicable standards and codes including but not limited to the National Electrical Safety Code (NESC) and Utility Accommodation Guide.

2007 Hardening Design Guidelines Quick Reference Guide

Feeder or Three

Phase	Lateral:

Pole Line Description	New Construction ¹	Existing Infrastructure ²	Installing or Replacing a Critical Pole
Existing Wood	Use Class 2 Wood Pole to meet EWL	Use Class 2 Wood Poles	Use III-H (Accessible) or Use Class 2 Wood (Inaccessible)
Existing Concrete	Use III-H Concrete Pole to meet EWL	Use III-H Concrete Poles	Use III-H Concrete Poles

Single or Two Phase

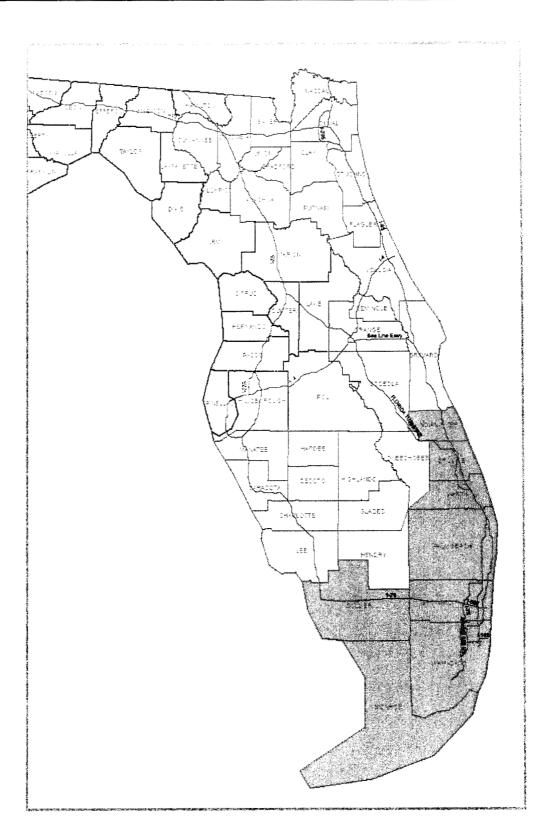
Pole Line Description	New Construction ¹	Existing Infrastructure ²	Installing or Replacing a Critical Pole	
Existing Wood	Use Class 3 Wood Pole to meet EWL	Use Class 3 Wood Poles	Use III-H (Accessible) or Use Class 2 Wood (Inaccessible)	
Existing Concrete	Use III-G or III-H poles to meet EWL	Use III-G or III-H poles to match existing line	Use III-H Concrete Poles	

¹To be used when extending or relocating a pole line. For span length details, use the table below. ²To be used when replacing a pole or installing an intermediate pole within an existing pole line.

Facility	Phases(s)	Phases(s) Wire size	Pole size	Recommended Span Length ³ (FPL with 2 attachments – FPL ONLY)		
				105 MPH	130 MPH	145 MPH
Feeder		3#568 ACAR	Class 2	180' - 230'	135' - 200'	100' - 150'
		3#3/0 AAAC	Class 2	180' - 250'	180' - 250'	125' - 250'
Lateral	3 PH	3#1/0 AAAC	Class 2	180' - 250'	180' - 250'	155' - 250'
	2 PH	2#1/0 AAAC	Class 3	180' - 250'	180' - 250'	170' - 250'
	1 PH	1#1/0 AAAC	Class 3	180' - 250'	180' - 250'	180 - 250'

³The lower number equates to the maximum span for FPL primary and 2 foreign attachments. The higher number equates to the maximum span for FPL primary only. Reference the addendum DERM tables when adding additional attachment(s) or equipment. Remember to always contact the Storm Secure regional project manager when working on a Top CIF feeder. As always, good engineering judgment, safety, reliability, and cost effectiveness should be considered.

	Critical P	ole Identifier	
Replace wi	th III-H Square Con	crete Pole (Class 2 if inaccessible)
Critical Poles	DCS Reference ⁴	Critical Poles	DCS Reference ⁴
1 st switch out of substation	UH-15.0.0 Fig 2 UH-15.3.1	Automated Feeder Switches (AFS)	C-9.2.0
Interstate Crossings	E-10.0.0 Fig 3	Aerial Auto Transformers	1-9.0.0
Poles with two 3 phase risers	UH-15.2.0	3 phase transformer banks 3 – 100 kVA and larger	1-52.0.2
Multi-circuit poles	Frame as existing	Capacitor Banks	J-2.0.2 & J-2.0.3
Three-phase reclosers	C-8.0.0	Regulators	I-10.1.1
Primary Meter	K-28.0.0		
⁴ All references are to the Distributi-	on Construction Standar	ds (DCS).	



2007 Hardening Design Guidelines Quick Reference Guide

105 MPH 130 MPH 145 MPH

Wind Zone	County
130	Alachua
105	Baker
105	Bradford
130	Brevard
145	Broward
130	Charlotte
130	Clay
145	Collier
105	Columbia
145	Miami-Dade
130	De Soto
130	Duval
130	Flagler
130	Glades
130	Hardee
130	Hendry
130	Highlands
145	Indian River
130	Lee
130	Manatee
145	Martin
145	Monroe
130	Nassau
130	Okeechobee
130	Osceola
130	Orange
145	Palm Beach
130	Putnam
130	Sarasota
130	Seminole
130	St Johns
145	St Lucie
105	Suwannee
105	Union
130	Volusia

2007 CIF Customer Circuits Planned for Hardening to EWL

2007 Community Project feeders planned for Incremental Hardening

Region North	County Brevard Brevard Columbia Union Volusia Volusia	CIF Customer Cape Canaveral Hospital Holmes Regional Medical Center Holmes Regional Medical Center VA Hospital Lake Butler Hospital Halifax Hospital Halifax Hospital
East	Palm Beach Palm Beach Palm Beach Palm Beach St Lucie St Lucie	Bethesda Memorial Hospital Columbia Hospital Good Samaritan Hospital Good Samaritan Hospital VA Hospital St. Lucie Medical Center FPL System Critical
South	Broward Broward Broward Miami-Dade Miami-Dade Miami-Dade Miami-Dade Miami-Dade Miami-Dade Miami-Dade Miami-Dade Miami-Dade Miami-Dade Miami-Dade	Cleveland Clinic Florida Medical Center Imperial Point Medical Center Memorial Regional Hospital Aventura Hospital Aventura Hospital Baptist Hospital Baptist Hospital Coral Gables Hospital Jackson South Community Hospital Larkin Community Hospital Mercy Hospital North Shore Medical Center Palmetto General Hospital Parkway Regional Medical Center
West	Miami-Dade Collier Lee Manatee Manatee Manatee Sarasota	FPL System Critical (3) Naples Community Hospital Lee Memorial Hospital Blake Medical Center Manatee Memorial Hospital Manatee Memorial Hospital Sarasota Memorial Hospital

2007 Community Project feeders planned for Incremental Hardening

Region	County	Feeder Number
East	Martin	401133
	Martin	407164
	Martin	408764
	Palm Beach	400433
	Palm Beach	400537
	Palm Beach	402831
	Palm Beach	403931
	Palm Beach	404032
	Palm Beach	405265
	Palm Beach	408032
	Palm Beach	409631
	Palm Beach	410663
	West Palm	407736
South	Broward	700139
	Broward	700440
	Broward	700639
	Broward	700937
	Broward	701931
	Broward	702033
	Broward	703032
	Broward	703631
	Broward	705866
	Broward	706533
	Broward	707663
	Miami-Dade	800432
	Miami-Dade	802431
	Miami-Dade	803938
	Miami-Dade	804432
	Miami-Dade	807034
	Miami-Dade	807431
	Miami-Dade	807834
	Miami-Dade	808268
	Miami-Dade	808269
	Miami-Dade	809036

Distribution Engineering Reference Manual (DERM)

Section 4 – Overhead Line Design

ADDENDUM FOR EXTREME WIND LOADING

Distribution Engineering Reference Manual (DERM)

Section 4 – Overhead Line Design

ADDENDUM FOR EXTREME WIND LOADING

DATE: March 21, 2007

PREPARED BY: Distribution Product Engineering

ADDENDUM FOR EXTREME WIND LOADING

Table of Contents

Introdu	uction	.4
4.2.2	Poles Structures and Guying	.5
A. P	oles, General Information	.5
1.	Pole Brands	.5
2.	Design Specifications	.5
Fi	igure 4.2.2 –1 Wind Regions by County	.7
	Wood Pole Strength	
4.	Concrete Pole Strength	.8
B. W	/ind Loading1	1
1.	Wind Loading on poles1	
2.	Wind Loading on conductors1	17
3.	Wind Loading on equipment1	18
C. S	torm Guving	11
4.2.3	Pole Framing	14
Α.	Slack Span Construction	14
B.	Targeted Poles	15
C.	Distribution Design Guidelines	
	-	

DATE: March 21, 2007

PREPARED BY: Distribution Product Engineering

ADDENDUM FOR EXTREME WIND LOADING

<u>Tables</u>

Table Number	Description	Page		
	Extreme Wind			
4.2.2.1	Strength Factors & Load Factors	5		
	Velocity pressure Exposure coefficient (k _z)			
4.2.2.2	and Gust Response Factors (G _{RF})	6		
4.2.2.3	Concrete Pole Ratings	9		
4.2.2.4	Allowable Ground Line Moments for Poles	15		
4.2.2.5	Wind Force on Conductors and Equipment - 105 MPH	20		
4.2.2.6	Wind Force on Conductors and Equipment - 130 MPH	21		
4.2.2.7	4.2.2.7 Wind Force on Conductors and Equipment - 145 MPH			
	Transverse Pole Loading Due to Extreme Wind - 105 MPH			
4.2.2.8	Maximum Span Length	29		
	Transverse Pole Loading Due to Extreme Wind - 130 MPH			
4.2.2.9	Maximum Span Length	33		
	Transverse Pole Loading Due to Extreme Wind - 145 MPH			
4.2.2.10	Maximum Span Length	37		
4.2.2.11	Storm Guy Strength	42		
4.2.2.12	Slack Span Length & Sag	44		

PREPARED BY: Distribution Product Engineering

ADDENDUM FOR EXTREME WIND LOADING

Storm Secure

Distribution Overhead Line Design for Extreme Wind Loading

ADDENDUM TO DISTRIBUTION ENGINEERING REFERENCE MANUAL (DERM)

Introduction

In 2006, FPL introduced the concept of "STORM SECURE". One part of this concept is to harden the electrical system by adopting new standards based on extreme wind velocity criteria. The Florida Public Service Commission and the Florida Administrative Code have adopted the 2007 NESC for the applicable standard of construction.

FPL designs its distribution facilities based on the loading as specified in the 2007 National Electrical Safety Code (NESC) using Grade B Construction. The NESC specifies three weather conditions to consider for calculating loads:

- Rule 250 B. Combined ice and wind loading (FPL current standard construction)
- Rule 250 C. Extreme wind loading
- Rule 250 D. Extreme ice with concurrent wind loading (this is a new loading condition in the 2007 NESC that will not impact FPL).

Prior to the hardening effort, FPL has been designing overhead distribution using the loads calculated under Rule 250 B. This addendum provides the designers the information needed to design projects using Rule 250 C, grade B (extreme wind loading) to calculate the loads, when it is determined that the particular pole line is to be designed to meet extreme wind loading (EWL) requirements. The NESC extreme wind map identifies 7 Basic Wind Speeds throughout Florida. In order to minimize the design effort to accommodate these 7 wind speeds, FPL has created 3 wind regions with designated wind speeds of 105 mph, 130 mph, and 145 mph. The Map shown in Figure 4.2.2-1 identifies the counties within our service territory that fall into the 3 wind regions. Whenever extreme wind designs are deployed, they will be designed to the identified wind speed for the location of the work to be done.

PREPARED BY: Distribution Product Engineering

ADDENDUM FOR EXTREME WIND LOADING

4.2.2 Poles Structures and Guying

A. Poles, General Information

1. Pole Brands

The pole brand includes the pole length & class, the type of treatment, the manufacturer, the date the pole was manufactured and FPL. **Wood Poles** –This brand is located at 15' from the bottom of the pole. **Square (cast) Concrete poles** – the brand up until 2007 was located 15' from the bottom. New specifications now require the brand to be at 20' from the bottom of the pole.

Distribution Spun Concrete poles – The brand information is on a metal tag that is located 20' from the bottom of the pole.

2. Design Specifications

The NESC specifies 3 Grades of construction: Grade B, Grade C, and Grade N with Grade B being the strongest of the three. These grades of construction are the basis for the required strengths for safety. FPL uses Grade B Construction for all distribution facilities. This means that the calculated loads must be multiplied by "Load Factors" and the calculated or specified strength of structures must be multiplied by "Strength Factors". The Strength multiplied by the Strength Factor (SF) must be equal to, or greater than the Load multiplied by the Load Factor (LF).

Equation 4.2.2-1

Strength x Strength Factor ≥ Load x Load Factor

Table 4.2.2 – 1 below lists the Load Factors and Strength Factors for Grade B Construction from NESC Table 253-1 and Table 261-1A.

Strength Factors & Load Factors						
Strength Factor						
0.75						
1.00						
1.00						
1.00						
0.90						
1.00						
Load Factor						
1.00						

Table 4.2.2 - 1 Extreme Wind	
Strength Factors & Load Factors	

ADDENDUM FOR EXTREME WIND LOADING

FPL uses the NESC Extreme Wind Loading for its design criteria. As such, identify the wind speed for the job location and determine the load based on the following formula.

Equation 4.2.2-2

Load in pounds = $0.00256 \times (V_{mph})^2 \times k_z \times G_{RF} \times I \times C_f \times A(ft^2)$

Where,

0.00256 - Velocity-Pressure Numerical Coefficient

- V -Velocity of wind in miles per hour (3 second gust)
- kz -Velocity Pressure Exposure Coefficient
- G_{RF} -Gust Response Factor
- I -Importance Factor, 1.0 for utility structures and their supported facilities.
- C_f Force Coefficient (Shape Factor) For Wood & Spun Concrete Poles = 1.0 For Square Concrete Poles = 1.6
- A Projected Wind Area, ft².

The NESC provides formulas for calculating k_z and G_{RF} . However, Tables are also provided and Table 4.2.2-2 below shows the values needed for most distribution structures.

	Stru	cture	Equip	oment		Wire	
Listable (b)	L 1	C 4	k ²	G 5	k _z ³	G _{RF} ⁴ (L ≤ 250 ft)	G _{RF} ⁴ (250 < L ≤ 500 ft)
Height (h) ≤ 33	k_z ' 0,9	G _{RF} ⁴ 1.02	k _z ²	G _{RF} ^o 1.02	 1.0	0.93	0.86
>33 to 50	1	0.97	1.1	0.97	1.1	0.88	0.82
>50 to 80	1.1	0.93	1.2	0.93	1.2	0.86	0.80

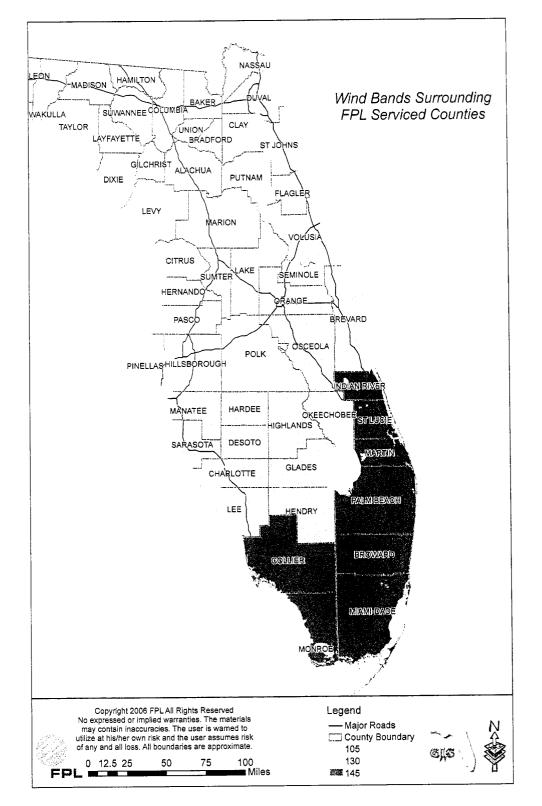
Table 4.2.2-2 Velocity pressure Exposure coefficient (k_z) and Gust Response Factors (G_{RF})

1. h for the pole k_z is to be the height of the pole above ground

2. h for the equipment k_z is the height of the center of the area of the equipment above ground

3. h for the wire k_z is the height of the wire above ground

4. h for the G_{RF} is the height above ground for the structure and the wire


5. h for the G_{RF} for the equipment is based on the height of the structure above ground

6. L = design wind span (average of span on both sides of structure)

The wind speeds to be used are shown in Figure 4.2.2 - 1

ADDENDUM FOR EXTREME WIND LOADING

Figure 4.2.2 –1 Wind Regions by County

DATE: March 21, 2007

PREPARED BY: Distribution Product Engineering

ADDENDUM FOR EXTREME WIND LOADING

3. Wood Pole Strength

The strength of wood poles is specified in the American National Standard – ANSI 05.1-2002. In addition to strength of wood poles, this standard specifies dimensions, shape, sweep spiral grain, knots, and many other characteristics of wood poles.

A change from previous calculations shown in the DERM for allowable pole strength is that the circumference to be used is now considered to be the ground line circumference rather than the "fixity" point circumference. Another change is the strength factor to be used. For extreme wind the strength factor for wood poles is 0.75 (see Table 4.2.2-1)

Example 4.2.2-1:

Determine the pole strength for wind loading on a 45'/2 wood pole that is set 7 feet.

Equation 4.2.2-3 $M_r = 0.000264 fC^3$

Where

Mr	=	Moment (ultimate or long term bowing)
		measured in foot-pounds
f	=	Fiber Stress (8000 or 1000 psi for Southern
		Yellow Pine)
С	=	Circumference at ground Line

From Table G (DERM 4.2.2) circumference at Ground line = 40.1 inches

 M_r = 0.000264 x (8,000) x (40.1)³ = 136,184 ft.-lbs.

This is the strength for the 45'/2 wood pole. However for design, apply the NESC Strength Factor of 0.75.

The strength of the 45'/2 wood pole = $136,184 \ge 0.75 = 102,138$ ft.-lbs.

4. Concrete Pole Strength

The strength of concrete poles is based on the application of a designated load at a specified location on the pole. This load is measured in KIPS = 1,000 pounds per KIP. A 5 KIP pole is rated based on applying 5,000 pounds of load at two feet below the top of the pole. Most distribution

ADDENDUM FOR EXTREME WIND LOADING

poles are rated by applying the load at two feet down from the top. However, for the type "O", "S", and "SU" poles, this load is applied at one foot down from the top. Like wood poles, concrete poles have a continuous rating (loads that are always on the pole) and a temporary rating (wind loads that come and go). Spun concrete poles (unlike other FPL distribution concrete poles) are designated by their KIP rating rather than a type (i.e., O, S, SU, III, III-G, III- H). Table 4.2.2-3 List the ratings (in KIPS) for the various concrete poles.

	Temporary	Continuous	
Pole Type	Rating	Rating	
0	0.85	0.26	
S & SU	0.90	0.30	
	1.30	0.56	
III-A	1.30	0.60	
III-G	2.40	0.90	
III-H	4.20	1.20	
12 KIP (square)	8.40	2.40	
Spun Concrete			
4.0 KIP	4.00	1.73	
4.7 KIP	4.70	2.54	
5.0 KIP	5.00	3.03	

Table 4.2.2-3	Concrete	Pole	Ratings
---------------	----------	------	---------

To calculate the strength of the pole use the following:

For O, S, SU, Rating (Table 4.2.2-3) x (Pole Length – setting Mr = depth - 1 foot) Example: 35' Type SU for extreme wind loading 0.9 KIPS x (35 - 7.5 - 1) = 23,850 ft-lbs Mr = For III, III-A, III-G, III-H Mr Rating (Table 4.2.2-3) x (Pole Length – setting = depth - 2 feet) Example: 50' Type III-H for extreme wind loading Mr 4.2 KIPS x (50 - 11.5 - 2)) = 153,300 ft-lbs=

PREPARED BY: Distribution Product Engineering

ADDENDUM FOR EXTREME WIND LOADING

Mr

Rating (Table 4.2.2-3) x (Pole Length – setting depth - 2 feet)

Example: 50'/ 4.7 KIP for extreme wind loading

 M_r = 4.7 KIPS x (50 - 11 - 2) = 173,900 ft-lbs

For pre-stressed concrete poles, the NESC extreme wind strength factor = 1.0. The values calculated above will be the correct strength for concrete poles.

ADDENDUM FOR EXTREME WIND LOADING

B. Wind Loading

1. Wind Loading on poles.

To calculate the wind load on the pole (see DERM 4.2.2 C3.a):

a. Calculate the area of the pole exposed to the wind

Equation 4.2.2-4
$$A = H_1(\frac{a+b}{2})(\frac{1}{12}'')$$

A = projected area above ground line in square feet.

 H_1 = the pole's height above the ground line in feet.

For wood and spun concrete poles,

- a = diameter at top of pole in inches.
- b = diameter of pole at ground line in inches.

For square concrete poles, dimensions a and b are the widths of one face at top and ground line respectively.

b. Calculate the center of the area.

Equation 4.2.2-5 $H_{CA} = \frac{H_1(b+2a)}{3(b+a)}$

 H_{CA} is used to calculate the ground line moment due to the wind force.

c. Calculate the wind force acting on the area (see Equation 4.2.2-2 with explanation of terms)

Load in pounds = $0.00256 \cdot (V_{mph})^2 \cdot k_z \cdot G_{RF} \cdot I \cdot C_f \cdot A(ft^2)$

Example Calculation for Wood Pole

Pole Length/Class = 45'/2 Setting depth = 7' (from DCS D-3.0) Wind Region = 145 mph

DATE: March 21, 2007

PREPARED BY: Distribution Product Engineering

ADDENDUM FOR EXTREME WIND LOADING

Projected Area. $A = H_1(ft.)x \frac{1 ft}{12 in} x \left[\frac{a + b(inches)}{2} \right]$

From Table G, Page 71, the circumference at the top of a 45'/2 pole is 25",

$$a = \frac{25''}{\pi} = 7.96'$$

The circumference at 38 ft.below the pole top 40.1", $b = \frac{40.1"}{\pi} = 12.76"$

$$A = \frac{38}{12} x \left[\frac{7.96 + 12.76}{2} \right] = 32.81 \, sq. \, ft.$$

Height of center of area, $H_{CA} = \frac{H_1(b+2a)}{3(b+a)} = \frac{38(12.76 + 15.92)}{3(12.76 + 7.96)}$

 $H_{CA} = Moment Arm = 17.53 ft.$

Wind Load on Pole = $0.00256 \times (145)^2 \times 1.0 \times 0.97 \times 1.0 \times 1.0 \times 32.81 =$ **1713 lbs** Where: k_z is based on h = 38'; $k_z = 1.0$ G_{RF} is based on h = 38'; $G_{RF} = 0.97$ $C_f = 1.0$ for wood and spun concrete poles $C_f = 1.6$ for square concrete poles

This load must then be multiplied by the Load Factor, which for extreme wind equals 1.0 and the moment arm to obtain the Ground Line Moment (M_P) of the wind acting on the pole only.

Equation 4.2.2-6

 M_P = Wind Load x Load Factor x Moment Arm. M_P = 1713 lbs x 1 x 17.53 ft. = 30,030 ft. lbs.

The strength of this pole, previously calculated is 102,138 ft.-lbs. The pole itself has used up 29% (30,030/102,138) of its capacity for 145 mph extreme wind. Subtracting the wind load from the strength leaves 72,108 ft-lbs (102,138 - 30,030) for conductors and other attachments.

DATE: March 21, 2007

PREPARED BY: Distribution Product Engineering

ADDENDUM FOR EXTREME WIND LOADING

Example Calculation for Square Concrete Pole

Pole Length/Class = 50'/III-H Setting depth = 11.5' (from DCS D-3.0) Wind Region = 145 mph

Projected Area.
$$A = H_1(ft.)x \frac{1 ft}{12 in} x \left[\frac{a + b(inches)}{2} \right]$$

From Table H, the width of the pole at the top $a = 9.00^{\circ}$ The width at ground line, $b = 15.75^{\circ}$

$$A = \frac{38.5}{12} x \left[\frac{15.75 + 9.00}{2} \right] = 39.70 \, sq. \, ft.$$

Height of center of area, $H_{CA} = \frac{H_1(b + 2a)}{3(b + a)} = \frac{38.5(15.75 + 18.00)}{3(15.75 + 9.00)}$

 $H_{CA} = Moment Arm = 17.5 ft.$

Wind Load on Pole = $0.00256 \times (145)^2 \times 1.0 \times 0.97 \times 1.0 \times 1.6 \times 39.7 = 3317$ lbs Where: k_z is based on h = 38.5'; $k_z = 1.0$ G_{RF} is based on h = 38.5'; $G_{RF} = 0.97$ $C_f = 1.0$ for wood and spun concrete poles $C_f = 1.6$ for square concrete poles

This load must then be multiplied by the Load Factor, which for extreme wind equals 1.0 and the moment arm to obtain the Ground Line Moment (M_P) of the wind acting on the pole only.

 M_P = Wind Load x Load Factor x Moment Arm. M_P = 3317 lbs x 1 x 17.5 ft. = 58,040 ft. lbs.

The strength of this pole, previously calculated is 153,300 ft.-lbs. The pole itself has used up 38% (58,040/153,300) of its capacity for 145 mph extreme wind. Subtracting the wind load from the strength leaves 95,260 ft-lbs (153,300 – 58,040) for conductors and other attachments.

ADDENDUM FOR EXTREME WIND LOADING

Example Calculation for Spun Concrete Pole

Pole Length/Class = 50'/4.7 KIP Setting depth = 11' (from DCS D-3.0) Wind Region = 145 mph

Projected Area.
$$A = H_1(ft.) x \frac{1 ft}{12 inc.} x \left[\frac{a + b(inches)}{2} \right]$$

From Table H, the diameter of the pole at the top a = 9.55"

The diameter at ground line, b = 16.57"

$$So A = \frac{39}{12} x \left[\frac{9.55 + 16.57}{2} \right] = 42.45 \, sq. \, ft.$$

Height of center of area, $H_{CA} = \frac{H_1(b + 2a)}{3(b + a)} = \frac{39(16.57 + 19.1)}{3(16.57 + 9.55)}$
 $H_{CA} = Moment \, Arm = 17.75 \, ft.$

Wind Load on Pole = $0.00256 \times (145)^2 \times 1.0 \times 0.97 \times 1.0 \times 1.0 \times 42.45 = 2,216$ lbs Where: k_z is based on h = 39'; $k_z = 1.0$ G_{RF} is based on h = 39'; $G_{RF} = 0.97$ $C_f = 1.0$ for wood and spun concrete poles $C_f = 1.6$ for square concrete poles

This load must then be multiplied by the Load Factor, which for extreme wind equals 1.0 and the moment arm to obtain the Ground Line Moment (M_P) of the wind acting on the pole only.

 $\begin{array}{l} M_{\mathsf{P}} = \text{Wind Load x Load Factor x Moment Arm.} \\ M_{\mathsf{P}} = 2,216 \mbox{ lbs x 1 x 17.75 ft. } = 39,341 \mbox{ ft. lbs.} \end{array}$ The strength of this pole, previously calculated is 173,900 ft.-lbs. The pole itself has used up 23% (39,341/173,900) of its capacity for 145 mph extreme wind. Subtract the wind load from the strength leaves 134,559 ft-lbs (173,900 - 39341) for conductors and other attachments. \end{array}

Table 4.2.2-4 Lists the allowable groundline moments for various pole sizes.

.

ADDENDUM FOR EXTREME WIND LOADING

Wood Poles						
		(in earth)				
Pole Size	Setting	Allowable	Moment for At	ttachments		
	Depth	at Desi	gnated Wind	Speeds		
		105 mph	130 mph	145 mph		
35/5	6	32178	28738	26324		
35/4	6	42429	38656	36007		
40/5	6.5	36936	31956	28460		
40/4	6.5	48263	42812	38986		
40/3	6.5	61567	55646	51489		
40/2	6.5	76998	70607	66119		
45/3	7	66363	58624	53190		
45/2	7	86391	78000	72108		
50/2	7	93535	82611	74941		
55/2	7.5	99693	86174	76682		
60/1	8	131634	113020	99951		

Table 4.2.2-4 Allowable Ground Line Moments

ADDENDUM FOR EXTREME WIND LOADING

Square Concrete Poles							
	(in earth)						
Pole Size	Pole Size Setting Allowable Moment for Attachments						
	Depth	at Desi	gnated Wind	Speeds			
		105 mph	130 mph	145 mph			
35/Type O	7	15426	11417	8602			
35/SU	7.5	15323	10778	7588			
35/III-G	9	48907	44275	41022			
40/111-A	10	23777	17050	12327			
40/111-G	9	56781	49950	45154			
40/III-H	11.5	96450	88537	82981			
40/12 KIP	13	191480	181610	174681			
45/III-A	10	24142	14146	7127			
45/III-G	9	62676	52592	45511			
45/III-H	11.5	110053	98198	89874			
45/12 KIP	13.5	222175	208520	198933			
50/III-A	10	24111	10635	1173			
50/III-G	9.5	67701	54539	45297			
50/III-H	11.5	123164	107106	95831			
50/12 KIP	13.5	252789	233067	219219			
55/III-G	9.5	72176	55004	42947			
55/III-H	12	133764	113283	98902			
55/12 KIP	14	280155	254873	237121			
60/III-H	12	144138	117993	99637			
60/12 KIP	14	308835	276454	253719			
65/III-H	12	149613	115197	91032			

Spun Concrete Poles							
	(in earth)						
Pole Size	Pole Size Setting Allowable Moment for Attachments						
	Depth	at Desi	gnated Wind	Speeds			
	105 mph 130 mph 145 mph						
50/4.7 KIP	11	153270	142277	134559			
55'/4.7 KIP	12	167116	153482	143910			
60'/5.0 KIP	12.5	190953	171477	157803			
65'/5.0 KIP	13	202928	177845	160233			
70'/5.0 KIP	13.5	214369	183392	161642			

ADDENDUM FOR EXTREME WIND LOADING

2. Wind Loading on conductors.

The wind loading on conductors is calculated in a similar method to the wind loading on the pole. The load in pounds per conductor uses Equation 4.2.2-2 with the appropriate factors for the attachment heights a shown in Table 4.2.2-2.

To calculate the wind load on the conductor:

- a. Determine the wind region (105 mph, 130 mph, or 145 mph)
- b. Calculate the attachment height to determine the k_z and G_{RF} (Table 4.2.2-2)
- c. The Importance Factor (I) and the Force Coefficient (C_f) are both equal to 1 for conductors.
- d. Calculate the area per foot of conductor
- e. Calculate the wind load per foot of conductor
- f. Calculate the total wind load on the conductor for the length of conductor exposed to the wind (Average of the Spans on either side of the pole).

Example:

Determine the wind load on a 170 foot length [(180'span + 160'span)/2] of 568.3 ACAR conductor that is attached at 30 feet above the ground in the 145 mph wind region.

From Table 4.2.2-2:

Calculate the area per foot of conductor Diameter = 0.879 inches (ref DCS F-7.0.0)

For a 1 foot length of conductor: *Projected Area.*

$$A = 1(ft.)x \left[\frac{Conductor \ Diameter(inches)}{12(inches \ / \ ft)}\right]$$

$$A = 1(ft.)x \left[\frac{0.879(inches)}{12(inches / ft)} \right]$$

A = 0.073 Square Ft. for each foot of span length

The wind load in pounds per foot of span length (from Equation 4.2.2-2) is

Load in pounds = 0.00256 x
$$(Vmph)^2$$
 x $k_z \times G_{RF} \times I \times C_f \times A(ft^2)$

ADDENDUM FOR EXTREME WIND LOADING

Load in pounds = $0.00256 \times (145)^2 \times 1 \times .93 \times 1 \times 1 \times .073$ Load = 3.667 pounds per foot

Total Load	=	Length of conductor x Load per foot of conductor
	=	170 x 3.667
Total Load	=	623.3 pounds

This is the load that the wind exerts on the conductor attached at 30 above ground. This load will have to be applied to the pole to determine if the pole has the strength to support the load.

The wind load per foot of conductor for the three wind regions can be found in Table 4.2.2-5, Table 4.2.2-6 and Table 4.2.2-7.

3. Wind Loading on equipment.

The wind loading on equipment is calculated in a similar method to the wind loading on the pole and the conductors. The load in pounds uses Equation 4.2.2-2 with the appropriate factors for the attachment heights a shown in Table 4.2.2-2 and the area of the equipment.

To calculate the wind load on the equipment:

- a. Determine the wind region (105 mph, 130 mph, or 145 mph)
- b. Calculate the attachment height to determine the k_z (Table 4.2.2-2) (For equipment, use the top mounting hole of the equipment bracket.)
- c. Use the height of the pole above ground to determine G_{RF} (Table 4.2.2-2)
- d. The Importance Factor (I) is equal to 1.
- e. The Force Coefficient (C_f) is equal to 1.0 for cylindrical equipment and 1.6 for rectangular equipment.
- f. Calculate the area of the equipment
- g. Calculate the wind load on the equipment

Example:

Determine the wind load on a 50 kVA transformer mounted at 28 feet on a pole that is 38 feet above the ground in the 145 mph wind region.

From Table 4.2.2-2:

 $K_z = 1.0$ (Equipment ≤ 33 ' above ground) $G_{RF} = 0.97$ (Equipment based on Pole height > 33' to 50' above ground) $C_f = 1.0$ A = 4.44 square feet

ADDENDUM FOR EXTREME WIND LOADING

The wind load in pounds from Equation 4.2.2-2 is

Load in pounds = $0.00256 \times (Vmph)^2 \times k_z \times G_{RF} \times I \times C_f \times A(ft^2)$

Load in pounds = $0.00256 \times (145)^2 \times 1 \times .97 \times 1 \times 1 \times 4.44$ Load = 231.8 pounds

This is the load that the wind exerts on the transformer attached at 28 feet above ground. This load will have to be applied to the pole to determine if the pole has the strength to support the load.

The wind load on equipment for the three wind regions can be found in Table 4.2.2-5 (105 mph), Table 4.2.2-6 (130 mph) and Table 4.2.2-7 (145 mph).

ADDENDUM FOR EXTREME WIND LOADING

Table 4.2.2-5 Wind Force on Conductors & Equipment

	CONDUCT	ORS		
	Force in pounds per foot Conductor Height Above Ground			
Conductor	Diameter	≤33′	>33' to 50'	>50' to 80'
568.3 MCM ACAR	0.879	1.923	2.001	2.134
3/0 AAAC	0.502	1.098	1.143	1.218
1/0 AAAC	0.398	0.871	0.906	0.966
#4 AAAC	0.250	0.547	0.569	0.607
3/0 TPX	1.238	2.708	2.819	3.005
1/0 TPX	1.026	2.244	2.336	2.490
6 DPX	0.496	1.085	1.129	1.204
CATV				
Feeder w/1/4"Msgnr	0.750	1.641	1.708	1.820
Trunk w/1/4"Msgnr	1.000	2.187	2.277	2.427
Telephone				
100 pr (24 GA BKMS) Self-Support	0.960	2.100	2.186	2.330
600 pr (24 GA BKMA w/3/8" Msgnr	2.295	5.020	5.225	5.571

Wind Speed = 105 mph CONDUCTORS

Wind Speed = 105 mph EQUIPMENT

	EQUIPIV				
		Pole Height i	Pole height		
	Force in pounds at top mounting			>33' to 50'	
	Bolt Height Above Ground			Equipment Ht	
Transformers	Sq. Ft.	≤33'	>33' to 50'	>50' to 80'	≤33'
25	3.75	108.0	112.9	118.1	102.7
50	4.44	127.8	133.7	139.9	121.6
75	4.81	138.5	144.9	151.5	131.7
100	6.55	188.6	197.3	206.3	179.3
167	10.83	311.8	326.1	341.1	296.5
Capacitors					
Switched (1)	19.91	573.2	599.6	627.1	545.1
Fixed (1)	16.89	486.2	508.6	532.0	462.4
Reclosers					
1 phase	4.00	115.2	120.5	126.0	109.5
3 phase (1)	16.89	486.2	508.6	532.0	462.4
Automation Switches					
Joslyn	8.89	255.9	267.7	280.0	243.4
Cooper	10.56	304.0	318.0	332.6	289.1
S&C	15.60	449.1	469.8	491.4	427.1
		Force in pounds per foot of riser			
Riser - PVC U-Guard	Height Above Ground			1	
2" U-Guard	0.19	5.4	5.6	5.9	5.1
5" U-Guard	0.46	12.8	13.8	14.4	13.2

(1) The 1.6 Cf factor for rectangular shape is included in the Area shown for Capacitors and 3 Phase Recloser

ADDENDUM FOR EXTREME WIND LOADING

Table 4.2.2-6 Wind Force on Conductors & Equipment

	CONDUCT	ORS		
		rce in pounds pe ctor Height Abo		
Conductor	Diameter	≤33'	>33' to 50'	>50' to 80'
568.3 MCM ACAR	0.879	2.947	3.068	3.270
3/0 AAAC	0.502	1.683	1.752	1.868
1/0 AAAC	0.398	1.334	1.389	1.481
#4 AAAC	0.250	0.838	0.872	0.930
3/0 TPX	1.238	4.151	4.321	4.606
1/0 TPX	1.026	3.440	3.581	3.817
6 DPX	0.496	1.663	1.731	1.845
CATV				
Feeder w/1/4"Msgnr	0.750	2.515	2.617	2.791
Trunk w/1/4"Msgnr	1.000	3.353	3.490	3.721
Telephone				
100 pr (24 GA BKMS) Self-Support	0.960	3.219	3.350	3.572
600 pr (24 GA BKMA w/3/8" Msgnr	2.295	7.695	8.009	8.539

Wind Speed = 130 mph CONDUCTORS

Wind Speed = 130 mph EQUIPMENT

	1 1 1 mil			
	Pole Heigh	t in same range	as Equipment	Pole height
	Force	>33' to 50'		
	Bol	Equipment Ht		
Sq. Ft.	≤33'	>33' to 50'	>50' to 80'	≤33'
3.75	165.5	173.1	181.1	157.4
4.44	195.9	205.0	214.4	186.3
4.81	212.3	222.0	232.2	201.9
6.55	289.0	302.4	316.3	274.9
10.83	477.9	499.9	522.9	454.5
19.91	878.6	919.1	961.3	835.5
16.89	745.3	779.7	815.5	708.8
4.00	176.5	184.7	193.1	167.9
16.89	745.3	779.7	815.5	708.8
8.89	392.3	410.4	429.2	373.1
10.56	466.0	487.5	509.9	443.2
15.60	688.4	720.1	753.2	654.7
	Force	in pounds per fo	oot of riser	
	F	leight Above Gr	ound	
0.19	8.3	8.7	9.1	7.9
0.46	20.2	21.2	22.1	19.2
	Sq. Ft. 3.75 4.44 4.81 6.55 10.83 19.91 16.89 4.00 16.89 8.89 10.56 15.60	Force Bol Sq. Ft. ≤33' 3.75 165.5 4.44 195.9 4.81 212.3 6.55 289.0 10.83 477.9 19.91 878.6 16.89 745.3 4.00 176.5 16.89 745.3 8.89 392.3 10.56 466.0 15.60 688.4 Force H 0.19 8.3	Pole Height in same range Force in pounds at top Bolt Height Above (3.75 Sq. Ft. ≤33' >33' to 50' 3.75 165.5 173.1 4.44 195.9 205.0 4.81 212.3 222.0 6.55 289.0 302.4 10.83 477.9 499.9 19.91 878.6 919.1 16.89 745.3 779.7 4.00 176.5 184.7 16.89 745.3 779.7 8.89 392.3 410.4 10.56 466.0 487.5 15.60 688.4 720.1 Force in pounds per for Height Above Gr 0.19 8.3 8.7	Pole Height in same range as Equipment Force in pounds at top mounting Bolt Height Above GroundSq. Ft. $\leq 33'$ >33' to 50'>50' to 80'3.75165.5173.1181.14.44195.9205.0214.44.81212.3222.0232.26.55289.0302.4316.310.83477.9499.9522.919.91878.6919.1961.316.89745.3779.7815.54.00176.5184.7193.116.89745.3779.7815.58.89392.3410.4429.210.56466.0487.5509.915.60688.4720.1753.2Force in pounds per foot of riser Height Above Ground0.198.38.79.1

(1) The 1.6 C_f factor for rectangular shape is included in the Area shown for Capacitors and 3 Phase Recloser

DATE: March 21, 2007

PREPARED BY: Distribution Product Engineering

ADDENDUM FOR EXTREME WIND LOADING

Table 4.2.2-7 Wind Force on Conductors & Equipment

W	ind Speed = CONDUC	•									
Force in pounds per foot Conductor Height Above Ground											
Conductor	Diameter	≤33'	>33' to 50'	>50' to 80'							
568.3 MCM ACAR	0.879	3.667	3.816	4.069							
3/0 AAAC	0.502	2.094	2.180	2.324							
1/0 AAAC	0.398	1.660	1.728	1.842							
#4 AAAC	0.250	1.043	1.085	1.157							
3/0 TPX	1.238	5.164	5.375	5.731							
1/0 TPX	1.026	4.280	4.455	4.749							
6 DPX	0.496	2.069	2.154	2.296							
CATV											
Feeder w/1/4"Msgnr	0.750	3.129	3.256	3.472							
Trunk w/1/4"Msgnr	1.000	4.171	4.342	4.629							
Telephone											
100 pr (24 GA BKMS) Self-Support	0.960	4.005	4.168	4.444							
600 pr (24 GA BKMA w/3/8" Msgnr	2.295	9.573	9.964	10.623							

Wind Speed = 145 mph EQUIPMENT

	LQOIL				
		Pole Height i	n same range a	as Equipment	Pole height
		Force in	>33' to 50'		
		Bolt H	Equipment Ht		
Transformers	Sq. Ft.	≤33'	>33' to 50'	>50' to 80'	≤33'
25	3.750	205.9	215.4	225.3	195.8
50	4.440	243.8	255.0	266.7	231.8
75	4.810	264.1	276.2	288.9	251.1
100	6.550	359.6	376.2	393.4	342.0
167	10.830	594.6	622.0	650.5	565.4
Capacitors	· · · · · · · ·				
Switched (1)	19.910	1093.1	1143.4	1195.9	1039.5
Fixed (1)	16.890	927.3	970.0	1014.5	881.8
Reclosers					
1 phase	4.000	219.6	229.7	240.3	208.8
3 phase (1)	16.890	927.3	970.0	1014.5	881.8
Automation Switches					
Joslyn	8.890	488.1	510.6	534.0	464.1
Cooper	10.560	579.7	606.5	634.3	551.3
S&C	15.600	856.4	895.9	937.1	814.5
		Force in	pounds per foo	ot of riser	
Riser - PVC U-Guard		He	ight Above Gro	und	
2" U-Guard	0.188	10.3	10.8	11.3	9.8
5" U-Guard	0.458	25.2	26.3	27.5	23.9

(1) The 1.6 C_f factor for rectangular shape is included in the Area shown for Capacitors and 3 Phase Recloser

ADDENDUM FOR EXTREME WIND LOADING

The methodology to determine if a pole has the strength for a specific design or to determine the maximum span distance a specific size pole can support for framing, is the same as shown in the DERM 4.2.2 pages 12-15. The examples shown below show the calculations based on using the new tables for extreme wind loading. Note that the ground line is now the point used for the calculations rather than the "fixity" point.

Example:

Conductor:3-568.3 MCM ACAR and #3/0 AAAC - NeutralFraming:DCS page E-5.0.0 (Modified Vertical) and I-41.0.1 (for single
phasephasetransformer)Transformer:50 kVACATV:TrunkTelephone:1-600 pair, 24 gauge, BKMAAverage Span Length = 150 feetAttachment heights must be calculated using the framing identified and the
pole setting depths as shown in the Revised DCS page D-3.0.0

PREPARED BY: Distribution Product Engineering

ADDENDUM FOR EXTREME WIND LOADING

Case I: Determine if a 45'/2 wood pole is strong enough for this design.

Calculate the moments on the pole.

	· · · · ·		Wind Load		Avg.		Height		-	
CONDUCTORS	Number of		Per Ft.		Span		Above			
	Conductors	х	(Table 4.2.2-7)	х	Length	х	Ground	8	MOMENT	(ftlb.)
Primary										
568.3	1	х	3.816	Х	150	х	39.00	=	22324	
568.3	1	Х	3.816	Х	150	х	36.60	=	20950	
568.3	1	Х	3.816	Х	150	х	34.60	8	19805	
Neut., Sec., St Lt										
3/0	1	х	2.094	х	150	х	29.4	8	9235	
CATV - PROPOSED										
Trunk	1	х	4.171	х	150	х	23.6	z	14765	
TELEPHONE										
600 pr 24 Ga BKMA	1	x	9.573	х	150	х	22.6	8	32452	
					TOTAL N	NOMENT	DUE TO CONDUCTO	R =	119531	
EQUIPMENT			Wind Load				Height			
			Force in lbs				Above			
							Ground	=	MOMENT	(ftlb.)
TRANSFORMERS	(SEE TABLE FO	DR IN	STRUCTIONS)				· · · · · · · · · · · · ·			
1 Phase	50 kva		231.8		х		29.9	8	6931	
					TOTAL	MOMENT	DUE TO EQUIPMENT		6931	ftlb.
						TOTAL	ALL MOMENTS	=	126462	ftlb.

From Table 4.2.2-4, the allowable moment for attachments to a 45'/2 wood pole in a 145 mph wind region is 72,108 ft-lbs. A 45'/2 wood pole cannot be used.

PREPARED BY: Distribution Product Engineering

ADDENDUM FOR EXTREME WIND LOADING

Case II: Determine if a 50'/III-H square concrete pole is strong enough for this design

DCS D-3.0.0 shows a revised setting depth for square concrete poles. The new setting depth is generally 5 feet deeper than previous. A 50'/III-H square concrete pole is set 11.5 feet deep.

Re-calculate the moments based on attachment heights.

			Wind Load		Avg.		Height		
CONDUCTORS	Number of		Per Ft.		Span		Above		
	Conductors	х	(Table 4.2.2-7)	х	Length	х	Ground		MOMENT (ftlb.)
Primary Primary									
568.3	1	х	3.816	х	150	x	39.50	=	22610
568.3	1	х	3.816	Х	150	х	37.08	8	21225
568.3	1	х	3.816	Х	150	x	35.08	8	20080
Neut., Sec., St Lt									
3/0	1	х	2.094	х	150	х	29.92	8	9398
CATV - PROPOSED									
Trunk	1	х	4.171	х	150	х	24.08		15066
TELEPHONE									
600 pr 24 Ga BKMA	11	x	9.573	х	150	х	23.08	Ξ	33142
					TOTAL M	OMENT	DUE TO CONDUCTOR	=	121519
EQUIPMENT			Wind Load				Height		
			Force in lbs				Above		
							Ground	۰	MOMENT (ftlb.)
TRANSFORMERS	(SEE TABLE FO	DR IN	STRUCTIONS)						
1 Phase	50 kva		231.8		x		30.42	Ħ	7051
					TOTAL M	OMENT	DUE TO EQUIPMENT	8	7051 ftlb.
						TOTAL	ALL MOMENTS	=	128571 ftlb.

From Table 4.2.2-4, the allowable moment for attachments to a 50'/III-H square concrete pole in a 145 mph wind region is 95,831 ft-lbs. A 50'/III-H square concrete pole cannot be used.

ADDENDUM FOR EXTREME WIND LOADING

Case III: Determine if a 50'/4.7 KIP spun concrete pole is strong enough for this design.

DCS D-3.0.0 shows the setting depths for spun concrete poles. A 50'/4.7 KIP spun concrete pole is set 11 feet deep.

Re-calculate the moments based on attachment heights.

	·		Wind Load		Avg.		Height		
CONDUCTORS	Number of		Per Ft.		Span		Above		
	Conductors	х	(Table 4.2.2-7)	х	Length	х	Ground		MOMENT (ftlb.)
Primary									
568.3	1	х	3.816	х	150	х	40.00		22896
568.3	1	х	3.816	Х	150	х	37.58		21511
568.3	1	х	3.816	х	150	х	35.58		20366
Neut., Sec., St Lt			······································				· · · · · · · · · · · · · · · · · · ·		····
3/0	1	х	2.094	х	150	х	30.42		9555
CATV - PROPOSED									
Trunk	1	х	4.171	х	150	х	24.58	=	15378
TELEPHONE									
600 pr 24 Ga BKMA	11	x	9.573	х	150	х	23.58		33860
					TOTAL N	IOMENT	DUE TO CONDUCTOR		123566
EQUIPMENT			Wind Load				Height		
			Force in Ibs				Above		
							Ground		MOMENT (ftlb.)
TRANSFORMERS	(SEE TABLE FO	DR IN	STRUCTIONS)					-	
1 Phase	50 kva		231.8		x		30.92		7167
					TOTAL M	OMENT	DUE TO EQUIPMENT	=	7167 ftlb.
						TOTAL	ALL MOMENTS	=	130733 ftlb.

From Table 4.2.2-4, the allowable moment for attachments to a 50'/4.7 KIP spun concrete pole in a 145 mph wind region is 134,559 ft-lbs. A 50'/4.7 KIP spun concrete pole can be used.

Using similar calculations from DERM 4.2.2 page 13, the maximum span distance for each of the poles above can be determined.

Determine the moment due to 1 foot of conductor moments Subtract the moment due to the transformer from the total allowable moment Divide the remaining allowable moment by the total 1 foot conductor moments.

DATE: March 21, 2007

PREPARED BY: Distribution Product

ADDENDUM FOR EXTREME WIND LOADING

Engineering	I								1
CONDUCTORS	Number of Conductors	×	Wind Load Per Ft. (Table 4.2.2-7)	x	Avg. Span Length	x	Height Above Ground	=	MOMENT (ftlb.)
Primary				_					
568.3	1	x	3.816	X	1	х	39.00	=	149
568,3	1	x	3.816	x	1	x	36.60	=	140
568.3	1	×	3.816	x	1	x	34.60	=	132
Neut., Sec., St Lt 3/0	1	×	2.094	x	1	×	29.4	=	62
CATV - PROPOSED					-				
Trunk	1	х	4.171	<u>x</u>	1	x	23.6	=	98
TELEPHONE 600 pr 24 Ga BKMA	1	×	9.573	x	1	x	22.6	=	216
<u></u>					TOTAL M	OMENT	DUE TO CONDUCTOR	=	797
EQUIPMENT	······································		Wind Load Force in lbs				Height Above Ground	=	MOMENT (ft1b.)
TRANSFORMERS	(SEE TABLE FO	OR IN	STRUCTIONS)						
1 Phase	50 kva		231.8		x		29.9	=	6931
					TOTAL M	OMENT	DUE TO EQUIPMENT	=	6931 ftlb.
				_		TOTAL	ALL MOMENTS	_=	7728 ftIb.
Maximum Allowable n	noment on 45'/2 p	ole =	72108						
Transformer Moment			6931						
Available for conducto	ors		65177						
Conductor Moments r	per foot of span =		797						

Conductor Moments per foot of span = 797 Maximum span distance = 82 ft.

			Wind Load		Avg.		Height		
CONDUCTORS	Number of		Per Ft.		Span		Above		
	Conductors	х	(Table 4.2.2-7)	x	Length	x	Ground	=	MOMENT (ftlb.)
Primary									
568.3	1	х	3.816	х	1	х	39.50	=	151
568.3	1	х	3.816	Х	1	х	37.08	=	141
568.3	1	X	3.816	X	1	X	35.08	=	134
Neut., Sec., St Lt									
3/0	1	x	2.094	x	1	x	29.92	=	63
CATV - PROPOSED									
Trunk	1	х	4.171	X	1	х	24.08	=	100
TELEPHONE									
600 pr 24 Ga BKMA	1	X	9.573	x	1	х	23.08	=	221
					TOTAL M	OMENT	DUE TO CONDUCTO	R =	810
EQUIPMENT			Wind Load				Height		
			Force in lbs				Above		
							Ground	=	MOMENT (ftlb.)
TRANSFORMERS	(SEE TABLE FO	DR IN	STRUCTIONS)						
1 Phase	50 kva		231.8		×		30.42	=	7051
					TOTAL M	OMENT	DUE TO EQUIPMENT	=	7051 ftlb.
						TOTAL	ALL MOMENTS	=	7861 ftlb.
						-	· · · · · · · · · · · · · · · · · · ·		
Maximum Allowable m	noment on 50/111-F	i pole							
Transformer Moment			7051						
Available for conducto			88780						
Conductor Moments p	er toot of span =		810						

Maximum span distance = 110 ft.

PREPARED BY: Distribution Product

ADDENDUM FOR EXTREME WIND LOADING

umber of inductors	x	Wind Load Per Ft.		Avg. Span		Height			
	x			Span					
nductors	x					Above			
	~	(Table 4.2.2-7)	х	Length	х	Ground	=	MOMENT	(ftlb.)
1	х	3.816	Х	11	x	40.00	=		
1	х		Х	1	x		=		
1	х	3.816	X	1	x	35.58	=	136	
1	х	2.094	х	1	х	30.42	=	64	
1	x	4.171	Х	1	x	24.58	=	103	
1	x	9.573	Х	1	X	23.58	=	226	
							_		
				TOTAL N	IOMENT)R =	824	
						÷			
		Force in lbs							
<u>.</u>						Ground	=	MOMENT	(ftlb.)
E TABLE FO	DR IN	STRUCTIONS)							
50 kva		231.8		x		30.92	=	7167	
				TOTAL N	IOMENT	DUE TO EQUIPMEN	T =	7167	ftlb.
					TOTAL	ALL MOMENTS	=	7991	ftlb.
	1 1 1 1 1 50 kva	1 x 1 x 1 x 1 x 1 x 1 x 1 x	1 x 3.816 1 x 3.816 1 x 3.816 1 x 2.094 1 x 4.171 1 x 9.573 Wind Load Force in Ibs ETABLE FOR INSTRUCTIONS)	1 x 3.816 x 1 x 3.816 x 1 x 2.094 x 1 x 4.171 x 1 x 9.573 x Wind Load Force in lbs ETABLE FOR INSTRUCTIONS)	1 x 3.816 x 1 1 x 2.094 x 1 1 x 4.171 x 1 1 x 9.573 x 1 1 x 9.573 x 1 TOTAL N Wind Load Force in lbs ETABLE FOR INSTRUCTIONS) 50 kva 231.8 x	1 x 3.816 x 1 x 1 x 2.094 x 1 x 1 x 4.171 x 1 x 1 x 4.171 x 1 x 1 x 9.573 x 1 x 1 x 9.573 x 1 x TOTAL MOMENT Wind Load Force in lbs TOTAL MOMENT 50 kva 231.8 x TOTAL MOMENT	1 x 3.816 x 1 x 37.58 1 x 3.816 x 1 x 35.58 1 x 3.816 x 1 x 35.58 1 x 2.094 x 1 x 30.42 1 x 4.171 x 1 x 30.42 1 x 4.171 x 1 x 24.58 1 x 9.573 x 1 x 23.58 TOTAL MOMENT DUE TO CONDUCTO Wind Load Height Force in lbs Above Ground ETABLE FOR INSTRUCTIONS) 50 kva 231.8 x 30.92	1 x 3.816 x 1 x 37.58 = 1 x 3.816 x 1 x 35.58 = 1 x 2.094 x 1 x 30.42 = 1 x 4.171 x 1 x 30.42 = 1 x 4.171 x 1 x 24.58 = 1 x 9.573 x 1 x 23.58 = TOTAL MOMENT DUE TO CONDUCTOR Wind Load Height Force in lbs Above Ground = TABLE FOR INSTRUCTIONS) 50 kva 231.8 x 30.92 = TOTAL MOMENT DUE TO EQUIPMENT	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Maximum span distance = 155 ft.

Maximum span distances for Modified Vertical Framing with various pole sizes and types, conductor sizes, CATV and Telephone Cables are listed in Table 4.2.2-8 (105 mph), Table 4.2.2-9 (130 mph), and Table 4.2.2-10 (145 mph). The span distances shown were calculated using 95% of the span distance calculated using the KEMA" Pole Design Calculation Toolkit" program. This will allow for slight variation in field conditions and rounding of values. Using the calculations described in this document may be slightly different than the table values. In some cases, the limiting factor is not the wind loading, but the required clearance above the ground and above other conductors or cables. For all joint use clearance calculations, the top joint user is considered to be attached at 23 feet above ground. When clearance is the limiting factor, the maximum span length for a specific pole is shown in bold italics. In some cases, the joint use clearance criteria cannot be met using the pole height indicated.

One other criterion incorporated in the tables is a maximum design span of 350 feet. Longer spans may be achieved, but need to be addressed on an individual basis.

ADDENDUM FOR EXTREME WIND LOADING

Table 4.2.2-8

Transverse Pole Loading due to Extreme Wind - 105 MPH Maximum Span Length in Feet

Modified Vertical Construction (DCS E-5.0.0)

Conductors			Wo	od Pole He	ight and C	lass	
		40/3	45/3	45/2	50/2	55/2	60/1
3-568 ACAR	FPL Only	296	281	350	342	324	350
& 3/0 AAAC-N	FPL With						
	1-100 pair	100	211	250	275	259	307
	1-600 pair	100	165	216	200	191	223
	1-CATV	100	209	250	273	257	304
	1-100 pair & 1 CATV	100	176	230	213	202	255
	1-600 pair & 1 CATV	100	144	188	174	166	194
3-568 ACAR	FPL Only	206	195	273	256	224	283
& 3/0 AAAC-N	FPL With	(2)					
& 3/0 TPX	1-100 pair		150	150	202	191	224
	1-600 pair		137	150	166	158	184
	1-CATV		150	150	200	190	222
	1-100 pair & 1 CATV		144	150	175	166	194
	1-600 pair & 1 CATV		123	150	148	142	164
3-3/0	FPL Only	350	350	350	350	350	350
& 1/0 N	FPL With						
	1-100 pair	100	250	250	350	350	350
	1-600 pair	100	223	250	290	276	322
	1-CATV	100	250	250	350	350	350
	1-100 pair & 1 CATV	100	250	250	350	300	350
	1-600 pair & 1 CATV	100	186	250	283	215	268
3-3/0	FPL Only	250	299	350	350	344	350
& 1/0 N	FPL With	(2)					
& 3/0 TPX	1-100 pair		150	150	250	276	323
	1-600 pair		150	150	212	201	234
	1-CATV		150	150	250	275	320
]	1-100 pair & 1 CATV		150	150	225	214	268
	1-600 pair & 1 CATV		143	150	172	164	190

(1) Span Lengths Shown in *Italic* are Limited by Clearance Criteria

ADDENDUM FOR EXTREME WIND LOADING

Table 4.2.2-8

Transverse Pole Loading due to Extreme Wind - 105 MPH

Maximum Span Length in Feet

Modified Vertical Construction (DCS E-5.0.0)

Conductors			Woo	od Pole He	ight and Cl	ass	
	7 [40/3	45/3	45/2	50/2	55/2	60/1
3-1/0	FPL Only	350	350	350	350	350	350
& 1/0 N	FPL With						
	1-100 pair	100	250	250	350	350	350
	1-600 pair	100	250	250	325	311	350
	1-CATV	100	250	250	350	350	350
	1-100 pair & 1 CATV	100	250	250	350	340	350
	1-600 pair & 1 CATV	100	205	250	265	237	295
3-1/0	FPL Only	250	348	350	350	350	350
& 1/0 N	FPL With	(2)					
& 3/0 TPX	1-100 pair		150	150	250	311	350
	1-600 pair		150	150	232	220	275
	1-CATV		150	150	250	308	350
	1-100 pair & 1 CATV		150	150	250	236	295
	1-600 pair & 1 CATV		150	150	199	189	219
2-1/0	FPL Only	350	350	350	350	350	350
& 1/0 N	FPL With						
	1-100 pair	150	350	350	350	350	350
	1-600 pair	150	290	350	350	333	350
	1-CATV	150	350	350	350	350	350
	1-100 pair & 1 CATV	150	322	350	350	350	350
	1-600 pair & 1 CATV	150	214	301	284	266	308
2-1/0	FPL Only	300	350	350	350	350	350
& 1/0 N	FPL With	(2)					
& 3/0 TPX	1-100 pair		200	200	300	333	350
	1-600 pair		198	200	262	229	285
1	1-CATV		200	200	300	331	350
	1-100 pair & 1 CATV		200	200	281	265	308
	1-600 pair & 1 CATV		167	200	204	193	224
1-1/0	FPL Only	350	350	350	350	350	350
& 1/0 N	FPL With						
	1-100 pair	250	350	350	350	350	350
	1-600 pair	250	306	350	350	350	350
	1-CATV	250	350	350	350	350	350
1	1-100 pair & 1 CATV	250	345	350	350	350	350
	1-600 pair & 1 CATV	235	218	307	291	274	317
1-1/0	FPL Only	350	350	350	350	350	350
& 1/0 N	FPL With	150	250	250	300	350	350
& 3/0 TPX	1-100 pair	150 150	250	250	300	350	350
	1-600 pair	150	202	250	268	234	294
	1-CATV	150	250	250	300	350	350
	1-100 pair & 1 CATV	150	220	250	290	273	317
	1-600 pair & 1 CATV	150	168	219	207	194	226

(1) Span Lengths Shown in *Italic* are Limited by Clearance Criteria

DATE: March 21, 2007

DISTRIBUTION ENGINEERING REFERENCE MANUAL

PREPARED BY: Distribution Product Engineering

ADDENDUM FOR EXTREME WIND LOADING

Table 4.2.2-8

Transverse Pole Loading due to Extreme Wind - 105 MPH Maximum Span Length in Feet

Modified Vertical Construction (DCS E-5.0.0)

Conductors	Attachments	SQUAR	E CONCRE	TE POLE H	EIGHT AND	CLASS
		45111G	45IIIH	50IIIH	55111H	60111H
	FPL Only	274	350	350	350	350
	FPL With					
3-568	1-100 pair	208	100	250	350	350
& 3/0 N	1-600 pair	165	100	250	305	289
3/0 N	1-CATV	206	100	250	350	350
	1-100 pair & 1 CATV	176	100	250	325	307
	1-600 pair & 1 CATV	144	100	250	266	235
	FPL Only	192	250	300	350	339
3-568	FPL With	(2)	(2)	1.50	250	
&	1-100 pair			150	250	289
3/0 N	1-600 pair			150	237	223
&	1-CATV			150	250	287
3/0 TPX	1-100 pair & 1 CATV			150	250	235
	1-600 pair & 1 CATV			150	211	200
	FPL Only	350	350	350	350	350
	FPL With 1-100 pair	200	100	300	350	350
3-3/0		200	100	300	350	350
&	1-600 pair					
1/0 N	1-CATV	200	100	300	350	350
	1-100 pair & 1 CATV	200	100	300	350	350
	1-600 pair & 1 CATV FPL Only	187 	100 250	300 350	<u>350</u> 350	325 350
	FPL With	237	(2)	330		
3-3/0	1-100 pair	100	(2)	150	250	350
& 1/0 N	1-600 pair	100		150	250	305
8	1-CATV	100		150	250	350
3/0 TPX	1-100 pair & 1 CATV	100		150	250	325
	1-600 pair & 1 CATV	100		150	250	266
	FPL Only	350	350	350	350	350
	FPL With					
3-1/0	1-100 pair	200	100	300	350	350
&	1-600 pair	200	100	300	350	350
1/0 N	1-CATV	200	100	300	350	350
ļ	1-100 pair & 1 CATV	200	100	300	350	350
	1-600 pair & 1 CATV	200	100	300	350	350
	FPL Only	350	250	350	350	350
2 1/0	FPL With		(2)		<u> </u>	
3-1/0 &	1-100 pair	100		150	250	350
1/0 N	1-600 pair	100		150	250	350
&	1-CATV	100		150	250	350
3/0 TPX	1-100 pair & 1 CATV	100		150	250	350
}	1-600 pair & 1 CATV	100		150	250	297
	1-000 pair & 1 CATV	100	L	1.50	430	291

(1) Span Lengths Shown in *Italic* are Limited by Clearance Criteria

ADDENDUM FOR EXTREME WIND LOADING

Table 4.2.2-8

Transverse Pole Loading due to Extreme Wind - 105 MPH

Maximum Span Length in Feet

Modified Vertical Construction (DCS E-5.0.0)

Conductors	Attachments	SPUN CC	NCRETE POL	E HEIGHT AN	D CLASS
		50' 4.7kip	55' 4.7kip	60' 5kip	65' 5kip
	FPL Only	350	350	350	350
	FPL With				
3-568	1-100 pair	250	350	350	350
& 3/0 N	1-600 pair	250	350	350	350
5/011	1-CATV	250	350	350	350
	1-100 pair & 1 CATV	250	350	350	350
	1-600 pair & 1 CATV	250	333	339	321
	FPL Only	350	350	350	350
3-568	FPL With	150	250	200	250
&	1-100 pair	150	250	300	350
3/0 N	1-600 pair	150	250	300	305
&	1-CATV	150	250	300	350
3/0 TPX	1-100 pair & 1 CATV	150	250	300	321
	1-600 pair & 1 CATV	150	250	288	272
	FPL Only	350	350	350	350
	FPL With 1-100 pair	300	350	350	350
3-3/0		300 300		350	350
&	1-600 pair		350		
1/0 N	1-CATV	300	350	350	350
	1-100 pair & 1 CATV	300	350	350	350
	1-600 pair & 1 CATV	300	429	438	411 350
	FPL Only FPL With	350	350	350	
3-3/0	1-100 pair	150	250	350	350
&	1-600 pair	150	250	350	350
1/0 N &	1-CATV	150	250	350	350
3/0 TPX	1-100 pair & 1 CATV	150	250	350	350
	1-600 pair & 1 CATV	150	250	350 350	334
	FPL Only	350	350	350	350
	FPL With				
3-350 CU	1-100 pair	250	350	350	350
3-350 CO	1-600 pair	250	350	350	350
2/0 CU N	1-CATV	250	350	350	350
	1-100 pair & 1 CATV	250	350	350	350
	1-600 pair & 1 CATV	250	350	350	350
	FPL Only	350	350	350	350
3-350 CU	FPL With				
3-350 CU	1-100 pair	200	250	350	350
2/0 CU N	1-600 pair	200	250	350	343
&	1-CATV	200	250	350	350
3/0 TPX	1-100 pair & 1 CATV	200	250	350	350
	1-600 pair & 1 CATV	200	250	323	302

(1) Span Lengths Shown in *Italic* are Limited by Clearance Criteria

ADDENDUM FOR EXTREME WIND LOADING

Table 4.2.2-9

Transverse Pole Loading due to Extreme Wind - 130 MPH Maximum Span Length in Feet

Modified Vertical Construction (DCS E-5.0.0)

Conductors	Attachments		WOOD	POLE HE	GHT AND	CLASS	
		40/3	45/3	45/2	50/2	55/2	60/1
	FPL Only	162	151	201	183	170	200
	FPL With						
3-568	1-100 pair	100	122	162	147	137	160
&	1-600 pair	100	95	127	115	107	125
3/0 N	1-CATV	100	121	161	146	136	159
	1-100 pair & 1 CATV	100	102	135	123	114	133
	1-600 pair & 1 CATV	91	83	111	100	94	108
	FPL Only	122	112	149	137	126	148
3-568	FPL With	(2)					
&	1-100 pair		95	127	116	107	125
3/0 N	1-600 pair		79	105	96	89	104
&	1-CATV		95	126	116	107	124
3/0 TPX	1-100 pair & 1 CATV		83	110	101	93	108
	1-600 pair & 1 CATV FPL Only	295	70 274	94 364	86 333	80 308	92 350
	FPL With	295	274	304	333	300	350
	1-100 pair	100	181	250	219	203	237
3-3/0	1-600 pair	100	128	171	155	145	167
&							
1/0 N	1-CATV	100	179	250	216	201	234
Í	1-100 pair & 1 CATV	100	140	186	168	158	182
	1-600 pair & 1 CATV	100	107	143	128	_121	139
	FPL Only	175	161	214	198	181	211
3-3/0	FPL With	(2)					
&	1-100 pair		128	171	157	145	168
1/0 N	1-600 pair		101	134	122	113	131
&	1-CATV		127	169	156	143	166
3/0 TPX	1-100 pair & 1 CATV 1-600 pair & 1 CATV		106 87	143 117	130 105	121 99	139 113
	FPL Only	350	350	350	350	99 350	350
	FPL With						- 550
2.4/0	1-100 pair	100	214	250	278	258	301
3-1/0 &	1-600 pair	100	144	193	174	163	188
1/0 N	1-CATV	100	211	250	275	256	297
	1-100 pair & 1 CATV	100	159	212	191	180	207
	1-600 pair & 1 CATV	100	118	158	142	133	153

(1) Span Lengths Shown in *Italic* are Limited by Clearance Criteria

ADDENDUM FOR EXTREME WIND LOADING

Table 4.2.2-9

Transverse Pole Loading due to Extreme Wind - 130 MPH Maximum Span Length in Feet

Modified Vertical Construction (DCS E-5.0.0)

Conductors	Attachments		WOOD	POLE HEI	GHT AND	CLASS	
		40/3	45/3	45/2	50/2	55/2	60/1
0.4/0	FPL Only	203	186	267	230	211	264
3-1/0 &	FPL With	(2)					
∝ 1/0 N	1-100 pair		144	150	177	163	189
&	1-600 pair		110	146	134	124	143
3/0 TPX	1-CATV		143	150	175	162	187
	1-100 pair & 1 CATV		118	150	143	133	153
	1-600 pair & 1 CATV	-	94	126	114	106	123
	FPL Only	350	350	350	350	350	350
	FPL With						
2-1/0	1-100 pair	200	265	350	325	298	348
&	1-600 pair	170	155	206	192	175	202
1/0 N	1-CATV	200	261	347	318	294	340
	1-100 pair & 1 CATV	189	172	230	213	195	225
	1-600 pair & 1 CATV	136	123	163	153	139	161
	FPL Only	226	208	298	276	236	296
2-1/0	FPL With	(2)	455	200	101	175	000
& 1/0 N	1-100 pair		155	200	191	175	203
&	1-600 pair 1-CATV		114 153	151 204	142 189	129 173	149 201
3/0 TPX	1-00 pair & 1 CATV		123	163	151	173	161
	1-600 pair & 1 CATV		96	128	118	109	125
· · · · · · · · · · · · · · · · · · ·	FPL Only	350	350	350	350	350	350
	FPL With						
1-1/0	1-100 pair	250	308	350	350	349	350
&	1-600 pair	179	163	218	202	186	216
1/0 N	1-CATV	250	348	350	350	350	350
	1-100 pair & 1 CATV	222	203	292	271	232	288
1	1-600 pair & 1 CATV	147	134	179	166	153	177
	FPL Only	274	257	341	309	285	333
1-1/0	FPL With						
&	1-100 pair	150	166	221	202	187	217
1/0 N	1-600 pair	126	117	156	143	132	153
&	1-CATV	150	178	250	217	200	233
3/0 TPX	1-100 pair & 1 CATV	146	135	181	166	152	177
	1-600 pair & 1 CATV	110	102	135	125	115	133

(1) Span Lengths Shown in *Italic* are Limited by Clearance Criteria

PREPARED BY: Distribution Product Engineering

ADDENDUM FOR EXTREME WIND LOADING

Table 4.2.2-9

Transverse Pole Loading due to Extreme Wind - 130 MPH Maximum Span Length in Feet

Modified Vertical Construction (DCS E-5.0.0)

Conductors	Attachments	SQUAF	E CONCRE	TE POLE H	EIGHT AND	CLASS
		45111G	45111H	50IIIH	55111H	60111H
	FPL Only	143	308	290	268	227
	FPL With					
3-568	1-100 pair	115	100	216	200	182
&	1-600 pair	90	100	170	156	143
3/0 N	1-CATV	114	100	215	198	181
	1-100 pair & 1 CATV	96	100	181	166	153
	1-600 pair & 1 CATV	79	100	148	136	125
	FPL Only	105	213	200	186	169
3-568	FPL With	(2)	(2)			
&	1-100 pair			150	158	143
3/0 N	1-600 pair			141	130	119
&	1-CATV			150	157	143
3/0 TPX	1-100 pair & 1 CATV			147	137	124
	1-600 pair & 1 CATV			125	116	106
	FPL Only	259	350	350	350	350
	FPL With 1-100 pair	171	100	300	318	291
3-3/0			100			
&	1-600 pair	123		228	210	194
1/0 N	1-CATV	169	100	300	314	287
	1-100 pair & 1 CATV	133	100	267	228	210
	1-600 pair & 1 CATV	103	100	190_	174	162
	FPL Only	152	150	308	286	259
3-3/0	FPL With	(2)	(2)	150	213	194
&	1-100 pair				-	
1/0 N	1-600 pair			150	165	151
&	1-CATV			150	211	192
3/0 TPX	1-100 pair & 1 CATV			150	176	161
	1-600 pair & 1 CATV			150	143	131
	FPL Only	332	350	350	350	350
	FPL With	200	100	300	250	245
3-1/0	1-100 pair	200	100		350	345
&	1-600 pair	138	100	277	236	218
1/0 N	1-CATV	200	100	300	350	340
	1-100 pair & 1 CATV	151	100	300	280	257
	1-600 pair & 1 CATV	113	100	210	192	178
	FPL Only	177	250	350	334	302
3-1/0	FPL With	(2)	(2)			
&	1-100 pair			150	250	218
1/0 N	1-600 pair			150	181	166
&	1-CATV			150	237	216
3/0 TPX	1-100 pair & 1 CATV			150	194	178
	1-600 pair & 1 CATV			150	155	143
	1-600 pair & I CATV	i		150	100	143

(1) Span Lengths Shown in $\it Italic$ are Limited by Clearance Criteria

(2) Required clearance cannot be met with Pole length

DATE: March 21, 2007

 $\{\sigma_i \sigma_i\}_{i=1}^{n}$

ADDENDUM FOR EXTREME WIND LOADING

Table 4.2.2-9

Transverse Pole Loading due to Extreme Wind - 130 MPH Maximum Span Length in Feet

Modified Vertical Construction (DCS E-5.0.0)

Conductors	Attachments	SPUN CO	DNCRETE POLE HEIGHT AND CLASS			
		50' 4.7kip	55' 4.7kip	60' 5kip	65' 5kip	
	FPL Only	350	350	350	337	
3-568	FPL With					
3-568 &	1-100 pair	250	294	289	270	
3/0 N	1-600 pair	223	214	213	197	
0,010	1-CATV	250	292	287	268	
	1-100 pair & 1 CATV	250	227	225	209	
	1-600 pair & 1 CATV	195	185	185	170	
	FPL Only	284	274	269	232	
3-568	FPL With 1-100 pair	150	216	213	197	
&	J · · ·					
3/0 N	1-600 pair	150	178	176	162	
&	1-CATV	150	215	211	196	
3/0 TPX	1-100 pair & 1 CATV	150	187	184	170	
	1-600 pair & 1 CATV	150	159	158	144	
	FPL Only	350	350	350	350	
	FPL With	300	250	350	250	
3-3/0	1-100 pair		350		350	
&	1-600 pair	300	310	307	282	
1/0 N	1-CATV	300	350	350	350	
	1-100 pair & 1 CATV	300	336	333	307	
	1-600 pair & 1 CATV	270	257	256	219	
	FPL Only FPL With	350	350	350	350	
3-3/0	1-100 pair	150	250	307	283	
&	1-600 pair	150	226	224	205	
1/0 N &	1-CATV	150	250	305	280	
3/0 TPX	1-100 pair & 1 CATV	150	250	256	219	
		150		238 195	ſ	
	1-600 pair & 1 CATV	350	196	350	178	
	FPL Only FPL With	300	350	350	350	
2 250 011	1-100 pair	250	350	350	328	
3-350 CU &	1-600 pair	250	267	266	228	
2/0 CU N	1-CATV	250	350	350	325	
	1-100 pair & 1 CATV	250	287	284	263	
	1-600 pair & 1 CATV	221	207	204	194	
	FPL Only	339	328	321	298	
2 250 011	FPL With					
3-350 CU &	1-100 pair	200	250	266	228	
2/0 CU N	1-600 pair	200	201	200	183	
&	1-CATV	200	250	262	226	
3/0 TPX	1-100 pair & 1 CATV	200	230	210	194	
	1-600 pair & 1 CATV	184	177	176	194	
		104	1//			

(1) Span Lengths Shown in *Italic* are Limited by Clearance Criteria

 $\propto p_{2}$

ADDENDUM FOR EXTREME WIND LOADING

Table 4.2.2-10

Transverse Pole Loading due to Extreme Wind - 145 MPH Maximum Span Length in Feet

Modified Vertical Construction (DCS E-5.0.0)

Conductors			Wo	od Pole He	ight and Cl	ass	
		40/3	45/3	45/2	50/2	55/2	60/1
3-568 ACAR	FPL Only	121	110	150	134	122	143
& 3/0 AAAC-N	FPL With						
	1-100 pair	98	88	121	107	98	114
	1-600 pair	78	69	94	84	77	88
	1-CATV	97	87	120	106	97	113
	1-100 pair & 1 CATV	83	74	101	89	82	94
	1-600 pair & 1 CATV	68	61	83	73	67	77
3-568 ACAR	FPL Only	90	82	111	100	90	105
& 3/0 AAAC-N	FPL With	(2)					
& 3/0 TPX	1-100 pair		69	94	85	77	89
	1-600 pair		57	78	69	64	73
	1-CATV		69	94	85	76	88
	1-100 pair & 1 CATV		61	82	73	67	77
	1-600 pair & 1 CATV		51	70	62	57	66
3-3/0	FPL Only	203	186	272	226	205	257
& 1/0 N	FPL With						
	1-100 pair	146	131	179	160	145	168
	1-600 pair	105	93	127	113	104	119
	1-CATV	144	130	177	158	143	166
	1-100 pair & 1 CATV	114	102	138	123	113	129
	1-600 pair & 1 CATV	88	78	106	94	86	99
3-3/0	FPL Only	130	117	159	143	130	150
& 1/0 N	FPL With	(2)					,
& 3/0 TPX	1-100 pair		93	127	114	104	120
1	1-600 pair		73	100	88	81	93
	1-CATV		93	126	113	103	119
	1-100 pair & 1 CATV		78	105	95	86	99
	1-600 pair & 1 CATV		64	86	77	70	81

(1) Span Lengths Shown in *Italic* are Limited by Clearance Criteria

ADDENDUM FOR EXTREME WIND LOADING

Table 4.2.2-10

Transverse Pole Loading due to Extreme Wind - 145 MPH Maximum Span Length in Feet

Modified Vertical Construction (DCS E-5.0.0)

Conductors			Wo	od Pole He	ight and C	lass	
		40/3	45/3	45/2	50/2	55/2	60/1
3-1/0	FPL Only	282	256	_348	311	282	330
& 1/0 N	FPL With						
	1-100 pair	100	156	212	188	173	200
	1-600 pair	100	105	143	126	117	134
	1-CATV	100	154	209	186	170	197
	1-100 pair & 1 CATV	100	•	157	140	128	146
	1-600 pair & 1 CATV	98	116 86	117	104	95	148
2.1/0	FPL Only	151	136	184	167	151	174
3-1/0 8-1/0 N	FPL With		130	104	107	151	./4
& 1/0 N	1-100 pair	(2)	105	143	128	117	134
& 3/0 TPX	1-600 pair		80	108	97	89	102
	1-CATV		105	142	127	116	133
	1-100 pair & 1 CATV		86	117	105	95	108
	1-600 pair & 1 CATV		68	93	84	76	86
2-1/0	FPL Only	350	334	350	350	350	350
& 1/0 N	FPL With						
	1-100 pair	200	180	262	220	199	230
	1-600 pair	126	113	153	140	125	143
	1-CATV	196	177	258	217	195	226
	1-100 pair & 1 CATV	141	125	170	155	140	161
	1-600 pair & 1 CATV	101	89	122	111	100	114
2-1/0	FPL Only	168	152	206	187	169	196
& 1/0 N	FPL With	(2)					
& 3/0 TPX	1-100 pair		113	153	140	125	144
	1-600 pair		83	112	103	92	105
			111	151	138	124	143
	1-100 pair & 1 CATV		89 70	122	110 86	100	114 89
4.4.0	1-600 pair & 1 CATV	350	350	95 350	350	78 350	350
1-1/0	FPL Only FPL With	350	350	350	350	350	350
& 1/0 N	1-100 pair	231	208	305	276	232	288
	1-600 pair	133	119	162	147	133	154
	1-CATV	226	203	297	270	227	282
	1-100 pair & 1 CATV	150	135	182	167	151	174
	1-600 pair & 1 CATV	103	91	124	114	103	118
1-1/0	FPL Only	188	174	237	210	191	221
& 1/0 N	FPL With		·				
& 3/0 TPX	1-100 pair	133	122	164	147	134	154
	1-600 pair	94	86	116	105	94	108
	1-CATV	131	120	162	146	132	152
	1-100 pair & 1 CATV	103	92	125	114	103	118
	1-600 pair & 1 CATV	78	70	96	87	78	90

(1) Span Lengths Shown in *Italic* are Limited by Clearance Criteria

(2) Required clearance cannot be met with Pole length

i

ADDENDUM FOR EXTREME WIND LOADING

Table 4.2.2-10

Transverse Pole Loading due to Extreme Wind - 145 MPH Maximum Span Length in Feet

Modified Vertical Construction (DCS E-5.0.0)

Conductors	Attachments	SQUAF		TE POLE H	EIGHT AND	CLASS
		45111G	45111H	50111H	55IIIH	60111H
	FPL Only	99	209	193	174	154
	FPL With					
3-568	1-100 pair	80	100	155	139	124
&	1-600 pair	63	100	122	109	97
3/0 N	1-CATV	79	100	154	138	123
	1-100 pair & 1 CATV	67	100	129	116	104
	1-600 pair & 1 CATV	55	100	105	95	85
	FPL Only	73	157	143	130	114
3-568	FPL With	(2)	(2)	143	100	
&	1-100 pair	(2)		122	110	97
3/0 N	1-600 pair			101	90	81
&	1-CATV			121	109	97
3/0 TPX	1-100 pair & 1 CATV			105	95	85
5/0 H X	1-600 pair & 1 CATV			90	81	72
	FPL Only	167	350	349	314	278
	FPL With					
	1-100 pair	119	100	230	206	184
3-3/0	1-600 pair	85	100	163	146	131
& 1/0 N	1-CATV	118	100	227	204	181
170 N			100			
	1-100 pair & 1 CATV	92		178	159	143
·····	1-600 pair & 1 CATV	71	100	136	122	109
	FPL Only	105	225	204	186	164
3-3/0	FPL With 1-100 pair	(2)	(2)	150	148	131
&						
1/0 N	1-600 pair			127	115	103
&	1-CATV			150	147	130
3/0 TPX	1-100 pair & 1 CATV			136	123	109
	1-600 pair & 1 CATV			111	100	89
	FPL Only	214	350	350	350	350
	FPL With					
3-1/0	1-100 pair	142	100	294	264	219
&	1-600 pair	96	100	184	164	147
1/0 N	1-CATV	140	100	290	260	215
	1-100 pair & 1 CATV	105	100	202	181	162
	1-600 pair & 1 CATV	79	100	150	134	121
	FPL Only	123	250	257	218	191
3-1/0	FPL With	123		207	210	191
&		~~	(2)	150		
∝ 1/0 N	1-100 pair	96		150	167	147
	1-600 pair	73		140	126	112
& 200 TDV	1-CATV	95		150	165	146
3/0 TPX	1-100 pair & 1 CATV	78		150	135	121
	1-600 pair & 1 CATV	63		121	108	96

(1) Span Lengths Shown in Italic are Limited by Clearance Criteria

ADDENDUM FOR EXTREME WIND LOADING

Table 4.2.2-10

Transverse Pole Loading due to Extreme Wind - 145 MPH Maximum Span Length in Feet

Modified Vertical Construction (DCS E-5.0.0)

Conductors	Attachments	SPUN CC	NCRETE POL	E HEIGHT AN	ID CLASS
		50' 4.7kip	55' 4.7kip	60' 5kip	65' 5kip
	FPL Only	291	276	267	227
3-568	FPL With				
&	1-100 pair	217	205	200	181
3/0 N	1-600 pair	170	161	157	143
0,0,11	1-CATV	215	203	198	181
	1-100 pair & 1 CATV	181	171	166	151
	1-600 pair & 1 CATV	148	140	137	124
	FPL Only	200	192	184	168
3-568	FPL With	150	100	457	140
&	1-100 pair	150	162	157	143
3/0 N	1-600 pair	141	134	130	118
&	1-CATV	150	162	156	142
3/0 TPX	1-100 pair & 1 CATV	147	141	137	124
	1-600 pair & 1 CATV	125	120	116	105
	FPL Only	350	350	350	350
	FPL With	300	328	217	288
3-3/0	1-100 pair		217	317 212	200 191
&	1-600 pair	229			
1/0 N	1-CATV	300	324	314	285
	1-100 pair & 1 CATV	267	235	230	207
	1-600 pair & 1 CATV FPL Only	191 309	180 296	<u>177</u> 283	158 257
	FPL With	309	230	200	207
3-3/0	1-100 pair	150	219	212	191
&	1-600 pair	150	170	165	148
1/0 N	· · ·				
& 2/0 TDX	1-CATV	150	218	210	189
3/0 TPX	1-100 pair & 1 CATV	150	181	176	158
	1-600 pair & 1 CATV	150	147	143	128
	FPL Only	350	350	341	313
	FPL With			0.55	
3-350 CU	1-100 pair	250	269	259	220
&	1-600 pair	198	187	182	165
2/0 CU N	1-CATV	250	266	257	219
	1-100 pair & 1 CATV	212	200	196	177
	1-600 pair & 1 CATV	168	159	156	140
	FPL Only	257	230	220	200
3-350 CU	FPL With	400	100	400	405
& 2/0 CU N	1-100 pair	198	189	182	165
2/0 CU N	1-600 pair	159	151	147 191	132
& 3/0 TPX	1-CATV 1-100 pair & 1 CATV	196 168	187 161	181 156	164 140
3/0 151	1-600 pair & 1 CATV	100	133	130	140
	Shown in <i>Italic</i> are Lin			100	110

(1) Span Lengths Shown in *Italic* are Limited by Clearance Criteria

PREPARED BY: Distribution Product Engineering

ADDENDUM FOR EXTREME WIND LOADING

C. Storm Guying

One method to overcome the overload on a pole due to transverse wind load is to add storm guys. Storm guys are installed in pairs(back to back) – one on each side of the pole perpendicular to the pole line. These guys should typically be installed 6 inches to 2 feet below the primary attachments.

Calculating the size of the guy wire is very much like calculating a deadend guy.

- 1. Calculate the transverse wind load on the pole, conductors and all attachments and equipment.
- 2. The load is then used to size the guy wire based on the load, the attachment height and lead length.
- 3. A final check should be made to verify that the strength of the pole above the guy attachment is adequate.

Using the example of Case I above for the 45'/2 pole, calculate the size of the storm guys and anchors required for extreme wind loading.

1. Transverse wind loads:

1.	11011040			143.							
	Pole		=	Wi	nd loa	d on	pole				
	Primary		=	Wi	nd Loa	ad pe	r ft x s	span	length	n x number	of
	conduct	ors						•	•		
	Neutral			=	W	ind L	oad p	er ft	x spar	n length	
	CATV		=	Wi	nd Loa	ad pe	r ft x s	span	length	า	
	Telepho	ne	=	Wind Load per ft x span length							
	Transfor	rmer	=	Wi	nd Loa	ad			•		
Load	on Pole	Ξ							1713	pounds	
Prima	ry	=	3.816	х	170	х	3	=	1946	pounds	
Neutra	al	=	2.094	х	170	х	1	=	356	pounds	
CATV	,	=	4.171	х	170	х	1	=	709	pounds	
Telep	hone	=	9.573	х	170	х	1	=	1627	pounds	
Trans	former	=	231.8	х	1			=	232	pounds	
					Total	Load		=	6583	pounds	
2	Determi	ne th	e auv v	vire	size a	and a	nchor	size	requi	ed for this	

2. Determine the guy wire size and anchor size required for this installation.

To calculate the tension in the guy wire use the equation below

Equation 4.2.2-7
$$T_{DG} = \frac{T_{TWL}}{L} x \sqrt{H_G^2 + L^2}$$

ADDENDUM FOR EXTREME WIND LOADING

Where:

 T_{DG} = Tension in down guy T_{TWL} = Transverse Wind Load L = The down guy Lead length H_G = The attachment Height of the down guy

Use the total transverse wind load for the load to be guyed with the guy attached 6 inches below C phase primary (34.1') and a lead length of 20 feet.

$$T_{DG} = \frac{6583}{20}\sqrt{(34.1)^2 + (20)^2}$$

 $T_{DG} = 13,013$ Pounds

For extreme wind loading, the required strength of the guy wire is equal to the rated breaking strength of the guy wire x 0.9.

	Rated Breaking	Allowable Guy
Guy	Strength	Tension
Size	(RBS)	.9 X RBS
5/16	11200	10080
7/16	20800	18720
9/16	33700	30330

Table 4.2.2-11 Storm Guy Strength

For this example, a 7/16" guy will be installed in each direction perpendicular to the pole line. Use the tension in the down guy to select the appropriate anchor from DCS D-4.0.2. In this case, a 10" screw anchor will do the job.

3. One final check is to be sure that the pole length above the storm guy attachment has sufficient strength to support the load above it. Basically, this is just like calculating the strength of the total pole but now the "ground line" is at the storm guy attachment height and all of the facilities above this point will create a moment here.

With the top of the pole at 38' and the down guy at 34.1 feet, the length of pole exposed to the wind is now 38-34.1 = 3.9 ft.

Use equation 4.2.2-3 to determine the strength of this section of pole.

DATE: March 21, 2007

ADDENDUM FOR EXTREME WIND LOADING

From Table G (DERM 4.2.2) circumference at 3.9 feet down from the top of the pole = 26.5 inches

 $M_r = 0.000264 \times (8,000) \times (26.5)^3 \times 0.75 = 29,478 \text{ ft.-lbs.}$

Use equation 4.2.2-4 to find the area of this section of pole

 $A = 3.9(\frac{25+26.5}{2})(\frac{1}{12}") = 2.66 sqft$

Use equation 4.2.2-5 to find the center of the area of this section of pole

Height of center of area,
$$H_{CA} = \frac{3.9(8.44 + 2(7.96))}{3(8.44 + 7.96)} = 1.93 \, ft$$

Use equation 4.2.2-2 to find the wind load on this section of pole Load in pounds = $0.00256 \times (145)^2 \times 1.0 \times 0.97 \times 1 \times 1 \times 2.66 = 139$ pounds

Use equation 4.2.2-6 to determine the moment due to the wind load on this section of the pole at the guy attachment point $Moment = 1.93 \times 139 = 269 \text{ ft lbs}$

Determine the	mo	ment cr	ea	ted by	the	wind	load	on the	con	ductors	
Primary	Ξ	3.816	х	170	х	1	х	4.9	=	3179	Ft-Lbs
	=	3.816	х	170	х	1	х	2.5	=	1622	Ft-Lbs
	=	3.816	х	170	х	1	х	0.5	=	324	Ft-Lbs
										5125	Ft-Lbs
Total Moment	Ξ	269	+	5125	=	5393	Ft-L	.bs			

This load is well under the strength calculated above and the design using storm guys will meet requirements.

ADDENDUM FOR EXTREME WIND LOADING

4.2.3 Pole Framing

A. Slack Span Construction

Slack span construction is employed where it is impractical to follow conventional guying practices. The proper application is a pull-off from either a tangent pole or a properly guyed deadend pole to another properly guyed deadend pole. The intent is not to slack span to a stand alone (self-support) pole unless that pole has been properly sized for this application. Improper use of slack span construction can cause a pole to bow or lean which then can cause more slack in the conductors. More slack in the conductors can result in improper clearances and increased potential for conductors to make contact with each other.

DERM 4.4.5 page 1 shows the initial sag to be used when installing slack spans. The amount of sag shown, limits the per conductor tension to 50 pounds.

Slack Span design criteria:

1. Vertical construction is preferred for two and three phase installations (DCS E-5.7.1).

Maintain 36" separation between phases at the poles.

2. Limit the span lengths to

Table I.E	E TE Oldok opull Eoliga	i a dag				
SLACK SPAN						
CONDUCTOR	MAXIMUM LENGTH	INITIAL SAG				
568.3 ACAR	50'	3'-7"				
3/0 AAAC	75'	2'-9"				
1/0 AAAC	95'	2'-10"				

Table 4.2.2-12 Slack Span Length & Sag

- 3. Use class 2 poles minimum.
- 4. If crossarm construction is used, use the 9 foot heavy duty wood crossarms or the 8'6" steel crossarm for added horizontal spacing (DCS E-29.0.0 and E-29.1.0).

DATE: March 21, 2007

PREPARED BY: Distribution Product Engineering

ADDENDUM FOR EXTREME WIND LOADING

B. Targeted Poles

There are many poles in the distribution system identified as Targeted Poles. These poles are deemed critical by virtue of the equipment mounted on them or their importance to maintaining the system. As stated in <u>The Distribution Design Guide</u> "The following list comprises what will be considered targeted poles. When installing and/or replacing an accessible targeted pole, use a III-H concrete pole or a spun concrete pole for spans greater than 300 feet. If the pole is inaccessible, use a Class 2 pole, or consider relocating the equipment to an accessible concrete pole."

Targeted Pole List

"01" Feeder Switch Poles (first pole outside the substation) Automated Feeder Switches Interstate/Highway Crossings Capacitor Banks Multiple Primary Risers 3 Phase Reclosers Aerial Auto Transformers Multiple Circuits 3 phase Transformer Banks (3-100 kVA and larger) Regulators Primary Meter

The targeted pole also should meet the design criteria for wind loading as previously shown.

C. Distribution Design Guidelines

The Storm Secure Organization has developed a set of guidelines for Distribution Designers to use when designing or maintaining distribution facilities. The designer can go online to see the most current version.

Power Systems

Distribution Construction Standards

ADDENDUM TO DECEMBER 2005 EDITION (FOR 2007 HARDENING APPLICATIONS)

Power Systems

Distribution Construction Standards

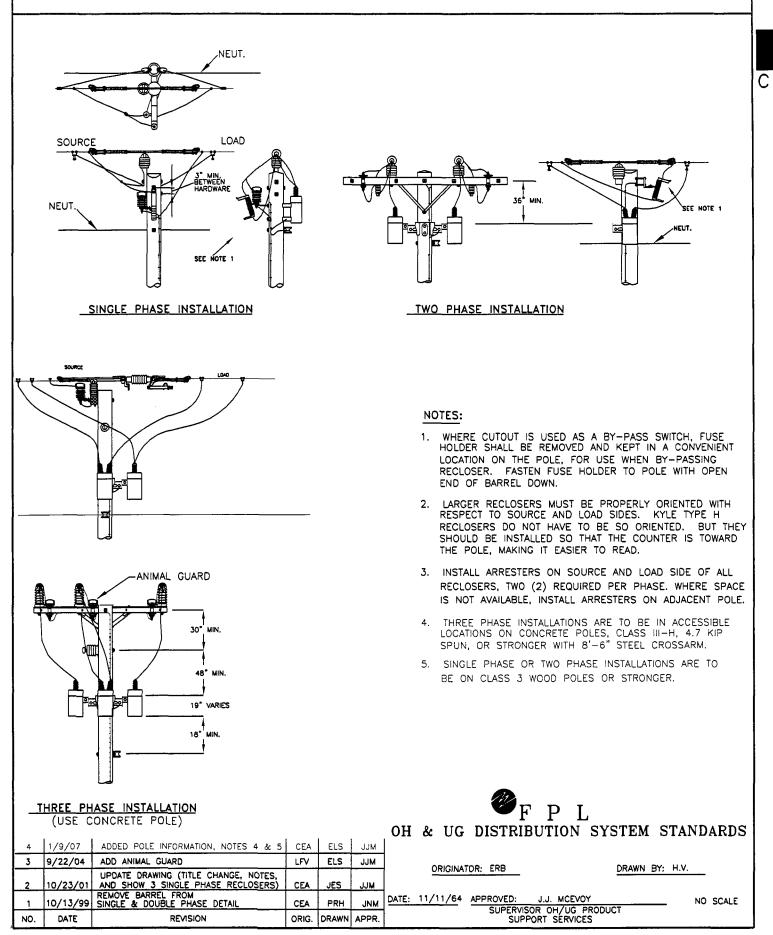
ADDENDUM TO DECEMBER 2005 EDITION

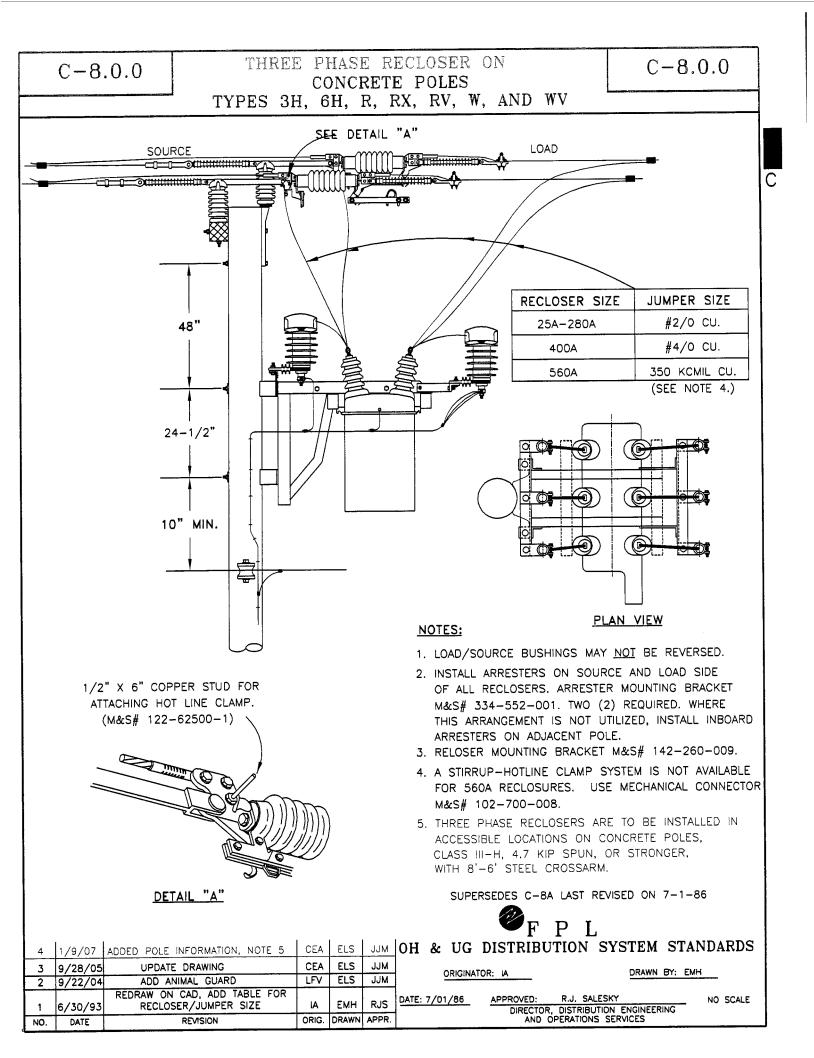
(FOR 2007 HARDENING APPLICATIONS)

This book contains the current standards of distribution construction that have been updated to accommodate "Hardened" installations for Florida Power & Light Company. These standards are updated periodically by the staff of the Distribution Product Engineering and Reliabilty Engineering departments. Changed or updated standards are denoted with an asterisk (*) in the table of contents. Non-standard field situations may arise that are not covered by this book. In those instances, please contact the Distribution Product Engineering department at 561 845-4831for assistance. Current information on individual Product Engineers Responsibilities can be found in IN-FPL under Business Units Power Systems Distribution Reliability Products. This publication is also available in IN-FPL under Business Units Power Systems Reference Information Distribution Manuals Distribution Construction Standards (DCS) Drawings.

The Power Systems-Distribution Construction Standards are the sole and exclusive property of Florida Power & Light Co (FPL). These standards were developed by FPL to establish uniform standards for construction and equipment applications throughout FPL's electric system.

The Distribution Construction Standards are proprietary business documents and are not to be duplicated or disclosed to any third party without the express written consent of Florida Power & Light Co.

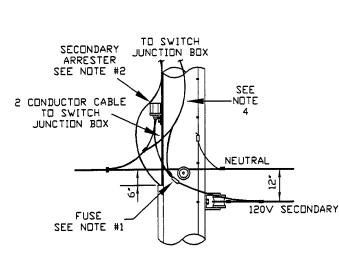

DISTRIBUTION CONSTRUCTION STANDARDS ADDENDUM TO DECEMBER 2005 EDITION

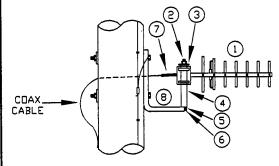

Section-Page	<u>Title</u>	Description of Revision			
C-7.0.0	Single Phase Recloser Three Phase Recloser on Concrete	1 or 2 phases on class 3 and 3 phase on Concrete Pole			
C-8.0.0 C-9.0.4 C-9.0.5 C-9.1.0 C-9.1.1 C-9.2.0 C-9.2.1 C-9.2.2	Poles Distribution Automation Switches Distribution Automation Switches Commercial/Industrial Load Control Wiring Diagram for CILC SCADA-MATE Switch SCADA-MATE Switch SCADA-MATE Radio Repeater	3 Phase on concrete poles New or Replacement poles to be concrete New or Replacement poles to be concrete New or Replacement poles to be concrete New drawing Added notes New page with notes Update drawing and notes			
D-2.0.0 D-3.0.0 D-7.0.0 D-7.0.1 D-13.0.0	Pole Setting, Guying & Bracing Pole Setting Depths Method of attaching guys Method of attaching guys Storm Guying	Revised criteria for guy strain insulators New setting Depths and Soil Conditions Added spun concrete installation Revised criteria for guy strain insulators New standard for storm guys			
E-3.0.0 E-5.0.0 E-5.0.2	Overhead Equipment Dimensions Post Insulator Construction Installation of Hardware	Add drawing for spun concrete pole Add insulator bracket for spun concrete pole Add insulator bracket for spun concrete pole			
E-5.7.1	Slack Span Construction Vertical	Add table and minimum pole size. Revised note for FGI's			
E-6.0.0	Tangent Construction Wood Crossarm	Added note for use of Steel Crossarm Change for mounting Pole top bracket opposite of steel			
E-6.0.1	Tangent Construction Steel Crossarm	crossarm Change for mounting Pole top bracket opposite of steel			
E-8.0.0	Angle Construction Concrete Pole	crossarm			
E-5.29.0.0	Slack Span Construction Slack Span Construction Concrete	Add table and minimum pole size. Revised note for FGI's			
E-5.29.1.0	Pole Installation Only	Add table			
G-3.0.2	Pole Grounding	Added figure for spun concrete pole			
H-4.0.0	Street Light Pole Weights	New setting depths			
1-3.2.0	Transformer Pole Weight Loading	Revised Table and added note for New or Replacement Poles for 3-100kVA Transformer Banks to be concrete poles			
1-3.2.0	Transformer Pole Weight Loading Single Phase Step Down Transformer	poles			
1-9.0.0	on URD Terminator Pole Single Phase Line Regulator	Removed wood pole class			
l-10.0.0	installation (Alternate Method) Wye Closed Delta Bank - Modified	Removed wood pole class New or Replacement Poles for 3-100kVA and larger			
1-51.0.0	Vertical Wye-Wye Bank Crossarm	Transformer Banks to be concrete poles New or Replacement Poles for 3-100kVA and larger			
1-52.0.0	Construction Wye-Wye Bank Modified Vertical Construction	Transformer Banks to be concrete poles New or Replacement Poles for 3-100kVA and larger			
1-52.0.2		Transformer Banks to be concrete poles			
J-1.0.2 J-2.0.2	Capacitor Banks General Capacitor Banks Single Phase Units	New or Replacement poles to be concrete			
J-2.0.2	Capacitor Banks Single Phase w/Puts	New or Replacement poles to be concrete			
3-2.0.3	Capacitor Danks Cingle 1 hase with the	Changed to Maintenance Only for underground - use			
K-28.0.0	Outdoor Primary Metering Cluster Mounted Underground Service Outdoor Primary Metering Cluster	URD primary to pad mounted metering cabinet. Replacement poles to be concrete.			
K-28.1.0	Outdoor Primary Metering Cluster Mounted Overhead Service	New or Replacement poles to be concrete			
M-2.0.0	Distribution Circuits on Transmission Poles Universal Spun Concrete Pole	Added notes to reflect that no additional holes can be added to a Universal Spun Concrete Transmission Pole			
UH-15.0.0 UH-15.3.1	Primary and Feeder Riser Pole Three Phase Feeder Riser	New or Replacement poles to be concrete New or Replacement poles to be concrete			
Z-12.0.1	Spun Concrete Pole Diameter & weight	New page with spun concrete pole information			

C - 7.0.0

INSTALLATION OF SINGLE PHASE POLE MOUNTED RECLOSERS

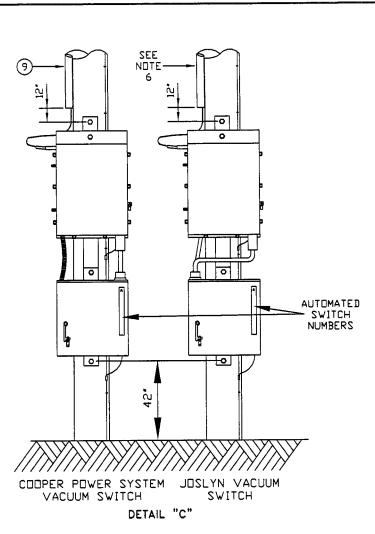
C - 7.0.0



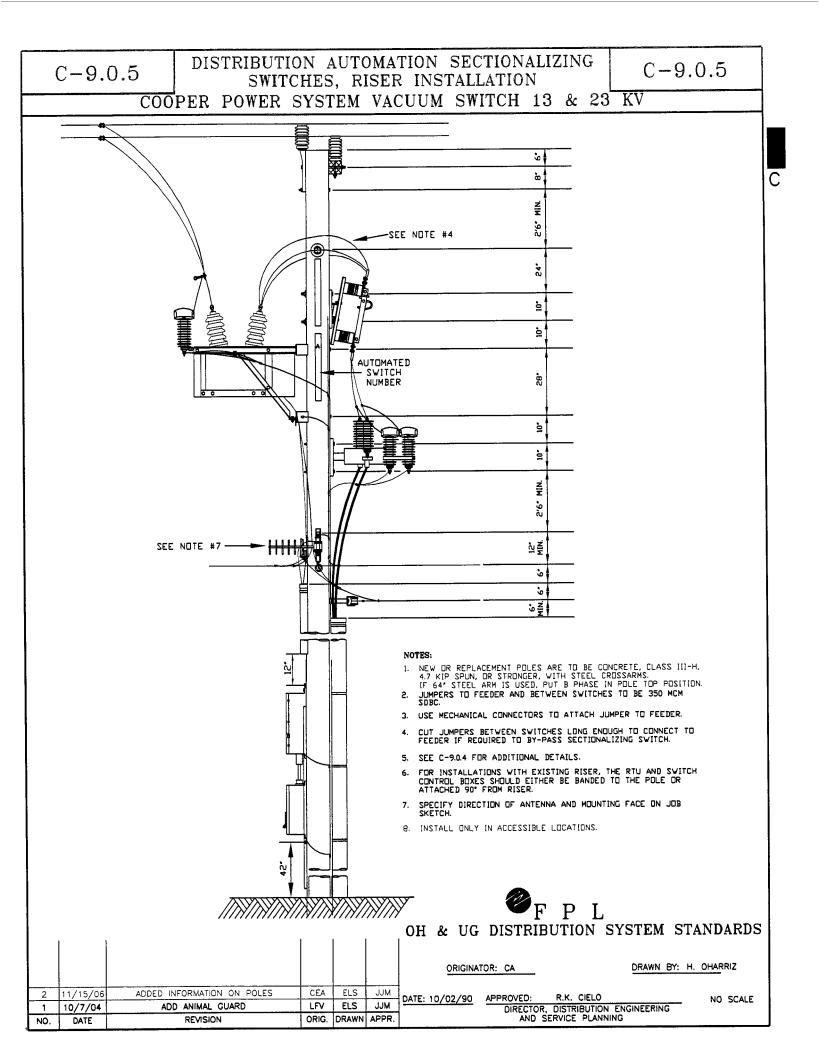

DISTRIBUTION AUTOMATION SECTIONALIZING SWITCHES NOTES AND DETAILS

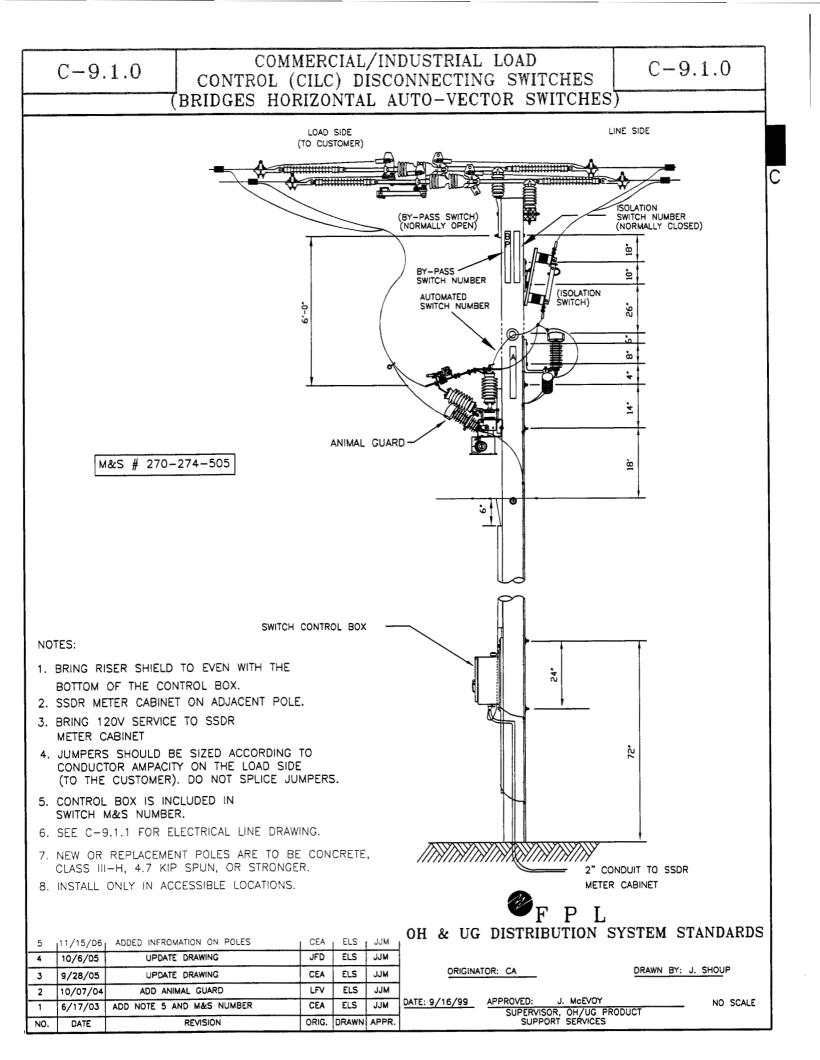
C - 9.0.4

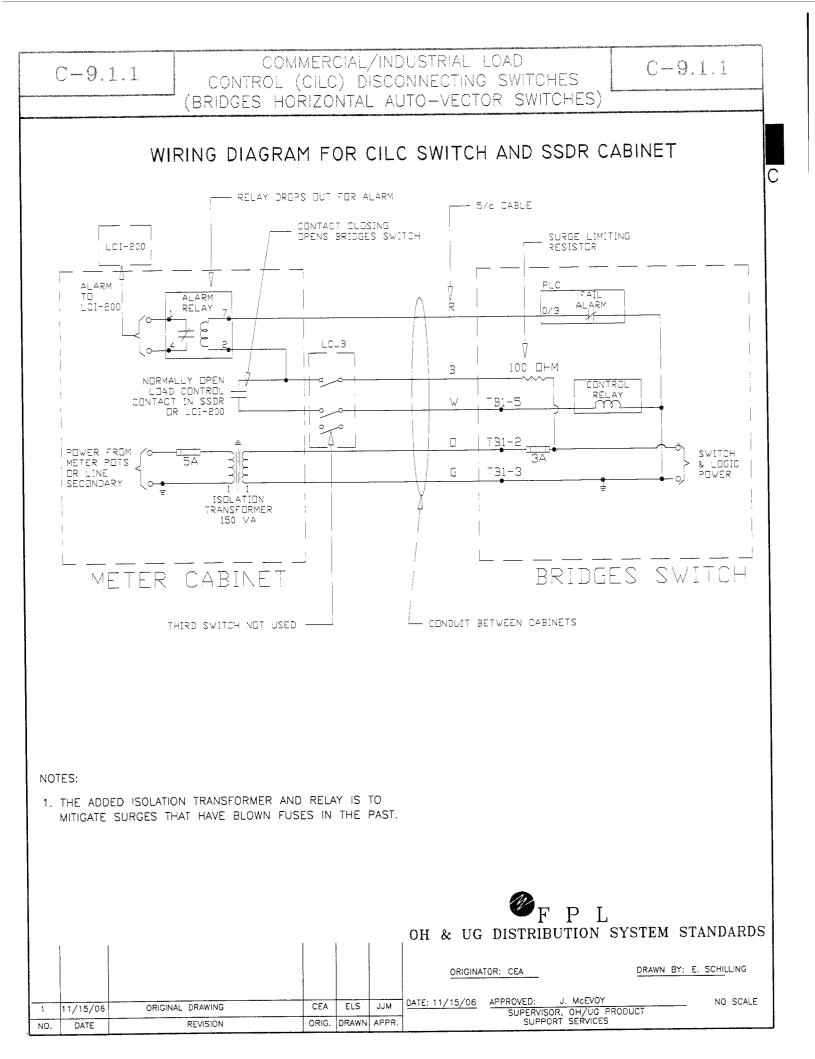
С

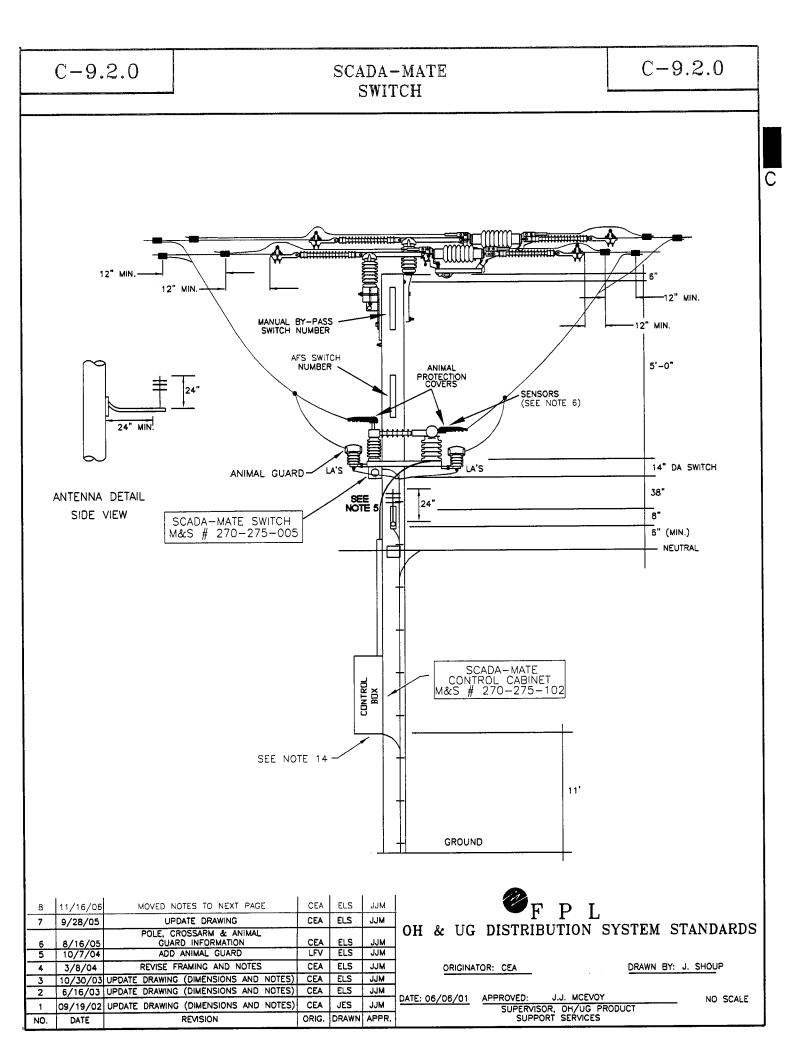


DESCRIPTION						
YAGI ANTENNA						
10" X 1/2" BOLT						
1 1/2" ROUND FLAT WASHER						
1 1/4" GALVANIZED PIPE						
1/2" SPRING WASHER						
1/2" NUT						
COAX CABLE						
8" L-BRACKET						
2' GALVANIZED PIPE						


NOTES:


- USE M&S #531-57000-4, AND 8A FUSE, M&S #531-07800-2. 1.
- USE SECONDARY ARRESTER M&S #334-08500-3. INSTALL CONTROL CABINETS OPPOSITE TO VEHICLE TRAFFIC FLOW. 2. 3.
- TRAFFIC FLUW. DUE TO IMPEDANCE REQUIREMENTS, LENGTH OF 120V AC LINE CONDUCTOR SHALL BE 54 INCHES MINIMUM BETWEEN SECONDARY AND SWITCH JUNCTION BOX. INSTALL SWITCHES IN ACCESSIBLE AREAS ONLY. BOND 2" CONDUIT SIMILAR TO STANDARD G-9 AND G-10. DESIGNER TO SPECIFY DIRECTION OF ANTENNA. 4.
- 5.
- 6.
- 7.
- DUE TO CONTROL CABLE LENGTHS, POLE LENGTHS SHOULD NOT EXCEED 45' FOR WOOD POLES AND 50' FOR CONCRETE POLES. GROUND DISTRIBUTION AUTOMATION SWITCH BRACKETS, 8.
- 9. SWITCH CONTROL CABINETS, AND RTU CABINETS.
- NEW OR REPLACEMENT POLES ARE TO BE CONCRETE, 10. CLASS III-H, 4.7 KIP SPUN, OR STRONGER.




OH & UG DISTRIBUTION SYSTEM STANDARDS

						I SISIM SIMUMUS	
						ORIGINATOR: C.A.	DRAWN BY: H. OHARRIZ
1	12/15/06	ADDED INFORMATION ON POLES	CEA	ELS	JJM	DATE: 4/18/90 APPROVED: J. McEV SUPERVISOR, OH/L	
NO.	DATE	REVISION	ORIG.	DRAWN	APPR.		

C - 9.2.1

SCADA-MATE SWITCH

C - 9.2.1

NEW STANDARD,

NOTES:

1. SCADA-MATE SWITCHES ARE TO BE INSTALLED IN ACCESSIBLE LOCATIONS ONLY.

2. ALL NEW OR REPLACEMENT POLES ARE TO BE CONCRETE, CLASS III-H, 4.7 KIP SPUN CONCRETE, OR STRONGER. POLE CLASSES ARE TO BE INCREASED IF WIND LOADING GUILDLINES DICTATE.

3. USE 8'-6" STEEL CROSSARMS.

4. FRAME IN-LINE BY-PASS SWITCHES ON CROSSARM WITH B PHASE IN POLE TOP POSITION (SIMILAR TO C-4.1.1, EXCEPT NO ARRESTERS ON CROSSARM).

5. BY-PASS SWITCHES MAY BE LOCATED ON EITHER SIDE OF POLE.

6. CONTACT DISTRIBUTION RELIABILITY PLANNING FOR SWITCH AND VOLTAGE SENSOR ORIENTATION.

7. ANIMAL PROTECTION COVERS FOR THE TERMINAL PADS ARE STANDARD FOR NEW AND RETROFIT INSTALLATIONS AND ARE INCLUDED WITH THE SWITCH.

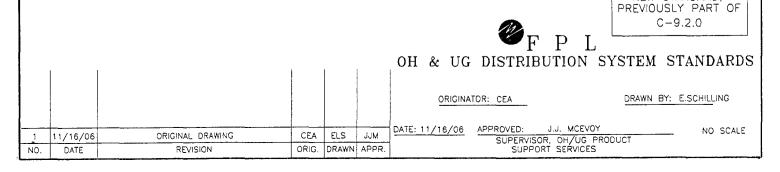
8. INSTALL RISER POLE TYPE ARRESTERS, ONE PER PHASE, ON EACH SIDE OF THE AFS SWITCH BRACKET (TOTAL OF SIX ARRESTERS).

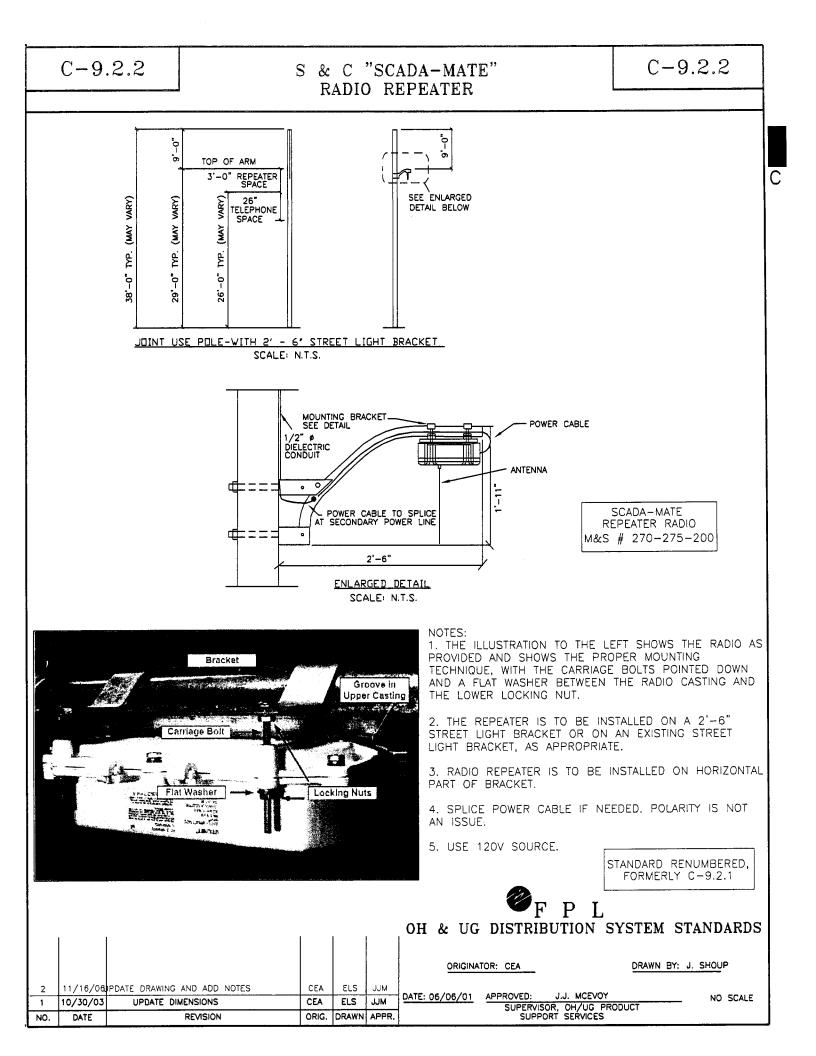
- 18KV FOR USE IN 23KV AREAS, M&S # 334-228-556

9. JUMPERS TO BE 568T FOR ALUMINUM FEEDERS, AMPACT TO FEEDER.

10. GROUND AFS SWITCH BRACKETS, CONTROL CABINET, AND ASSOCIATED EQUIPMENT (ANTENNA BRACKET, ETC.)

11. MOUNT ANTENNA VERTICALLY ON INVERTED 2'-6" STREET LIGHT BRACKET ON STREET SIDE OF POLE. CLAMP ANTENNA SO FIBERGALASS PORTION IS FULLY ABOVE THE FLAT STEEL MOUNTING PLATE.


12. MAINTAIN AT LEAST 18 INCHES CLEARANCE FROM TOP AND SIDE OF ANTENNA.


13. PUT AFS SWITCH NUMBER ON DOOR OF CONTROL BOX.

14. BOND #6 CU TO POLE BOND, USING CONNECTOR AT BOTTOM OF THE CONTROL BOX.

15. SCADA-MATE VISIBLE AIR-GAP TO REMAIN CLOSED, UNLESS REQUIRED FOR VISIBLE ISOLATION.

16. CONNECT THE BATTERY TO THE CHARGING CIRCUIT INSIDE THE CONTROLLER BY FIRST OPENING THE CONTROL CABINET DOOR, OPENING THE SWING-OUT CONTROL PANEL, THEN CONNECTING THE BATTERY PLUG CONNECTOR TO THE BATTERY.

	D-2	.0.0	POLE SE	ETTI	NG,	GUY	YING AND	BRACING	D-2.0.0
			·						
THE I	METHODS	S AND DATA	GIVEN SHOULD BE	ADHER	RED TO	D AS	CLOSELY AS F	ETTING, GUYING AND I IELD CONDITIONS PEM SUPPORTING STRUCTU	IT IN THE INTEREST OF
REFER POLES	SHALL	ANDARD D- BE LOCATE ANGLES, TER		D SHA	LL BE	SET	TO STAND VER		E IS COMPLETED. POLES FULLY SELECTED FOR
UPON COND AS A	AS AN	ADEQUATE ND IF SPLIN	SUPPORT, MAY BE S TING IS NOT OBJEC SURE, A POLE MAY I	SPLINT TIONAB	ED WH LE FR	IERE I OM TH	PRACTICABLE II	F THEIR UPPER PORTI NT OF APPERANCE OR	NO LONGER BE RELIED
AT TH ATTAC AS P (GUY	ANCHOR HE GROU CHED TO OSSIBLE GUARD)	JND LINE TO THE POLE. WITH LINEN INSTALLED	O THE GUY ANCHOR GUYS SHALL BE A IEN CLIMBING OR WI AT ALL LOCATIONS.	WILL TTACHE ORKING	BE EQ ID TO FHEF	UAL T THE REON.	O THE HEIGHT POLES IN SUC THE GROUND	ABOVE GROUND AT H A MANNER AS TO END OF GUYS SHALL	INTERFERE AS LITTLE HAVE A GUY MARKER
			ND ANCHORS IN OR E ENVIRONMENTAL S					S MAY REQUIRE ENVIR EMENTS.	ONMENTAL CONTROL
NESC CONI TO T	REQUI	THE GUY W	LL GUYS BE EFFECT	ND WH HE GU	ERE T Y IS	HE BO NOT	ND IS CONNE REQUIRED IF		GROUND OR CONNECTED
GUY AND ARE	ABOVE TYPICAL	INSULATORS	NTAMINATED AREAS.	UNLES	S REC AREAS	OR C	DUE TO RED	UCED CLEARANCES, G POLES SINCE ALL THE	E NEUTRAL FOR 13KV UY STRAIN INSULATORS HARDWARE INCLUDING
		NO POLE BOND FIG. 1	GI POLE I FIG.	TO PO		ED st	POLE BONI LOWER OF	ON THE POLE USED. THE FO ENOUGH SO WILL BE BELC CONDUCTOR.	BOND STOPS LOWER AN FGI SHOULD BE I MUST BE LONG HAT THE METAL END W THE LAST ENERGIZED
GU ST DO	JY AND RAIN IN WNGUY	CONDUCTOR SULATOR WH GOES BETWI	S) WHERE NEEDED	(SEE E NDUCT	3-6, N ORS A	NOTE RE AD	8). ALL SLACK DJACENT TO TH	HE DOWNGUY. INSTALL	S ARE TO USE A GUY
WH TO	THE GL	E GUY IS TO) BE BONDED, ATTAC NG CONNECTOR M&S WIRE TO PREFORME	5 #120)-447	00-9.	<u>ک</u>	rsedes D-2.0.0 i	AST REVISED ON 1-29-92
,	I	ł		1	I	1	OH & UG	DISTRIBUTION	SYSTEM STANDARDS
3		UPDATE NOTES	G AND NOTES	JNM JNM	ELS ELS	JJM JJM	ADIOB11	TOD, ADD	DRAWN DV. END
1		ADD REF TO WE		JNM	ELS	JJM	ORIGINA	TOR: ARR	DRAWN BY: EMR
0 NO,	9-30-94 DATE	REDRAWN ON C REQUIREMENT	AD AND ADDED NESC	ARR	EMR DRAWN		DATE: 9-30-94	APPROVED: R.J. SALESK DIRECTOR, DISTRIBUTION	I ENGINEERING
T NO 1	UNIE				100000		1	AND OPERATIONS SE	

D - 3.0.0

POLE SETTING DEPTHS AND SOIL CONDITIONS

D-3.0.0

WOOD

POLE SETTING DEPTHS

MINIMUM POLE SETTING DEPTHS IN EARTH / GOOD SOIL (FT)

		POLES						
POLE LENGTH	TYPE "0"	SU	IIIG	IIIA	ШН	12 KIP	SPUN	WOOD
20								4.5
25								5
30								5.5
35	7	7.5	9					6
40			9	10	11.5	13		6.5
45			9	10	11.5	13.5		7
50			9.5	10	11.5	13.5	11	7
55			9.5		12	14	12	7.5
60					12	14	12.5	8
65					12		13	8.5
70							13.5	9
75				<u> </u>				9.5
80								10

		POLES						
POLE LENGTH	TYPE "O"	SU	IIIG	IIIA	ШН	12 KIP	SPUN	WOOD
20								4
25								4.5
30								5
35	6 6 7.5							5.5
40			7.5	8	9.5	11		5.5
45			7.5	8.5	9.5	11		6
50			7.5	8.5	9.5	11	11	6
55			8		9.5	11.5	12	6
60					10	11.5	12.5	6.5
65					10		13	6.5
70							13.5	7
75								7.5
80								8

MINIMUM POLE SETTING DEPTHS IN ROCK* (FT)

POLE SETTING DETAILS AND SOIL CONDITIONS:

* FOR SOILS THAT ARE 90% ROCK OR HARD CLAY.

UNDER NORMAL CONDITIONS, A CONCRETE POLE CAN BE SET DIRECTLY INTO AN AUGURED HOLE, BACKFILLING WITH THE SOIL AUGURED FROM THE HOLE, TAMPING THE SOIL IN LAYERS FOR A GOOD TIGHT FIT.

IN SITUATIONS WHERE POLES HAVE A LARGE LOAD, IMBALANCE LOAD OR WHERE SOIL CONDITIONS ARE QUESTIONABLE, IT MAY REQUIRE ADDITIONAL CONSIDERATIONS, IN MOST CASES, ALL THAT MAY BE REQUIRED IS TO INCREASE THE BEARING SURFACE BELOW GRADE. THIS CAN BE ACHIVED IN A NUMBER OF WAYS. THE EASIEST IS SETTING THE POLE DEEPER. ANOTHER METHOD IS TO AUGER THE SETTING HOLE, 8" TO 10" GREATER IN DIAMETER THAN THE POLE BUTT. BACKFILL WITH CONCRETE OR A FLOWABLE FILL, THIS WILL HELP MEET THE STRENGTH REQUIREMENTS AND ALLOW FOR EASY REMOVAL IF DAMAGE OCCURS TO THE POLE. FLOWABLE FILL IS A LOW STRENGTH, SLURRY-LIKE MATERIAL WITH THE CONSISTENCY OF PANCAKE BATTER, WHICH ARRIVES ON THE JOB SITE IN A READY MIX TRUCK. THE MATERIAL IS SELF-LEVELING AND REACHES 95 PERCENT OR MORE COMPACTION WITHIN A FEW HOURS OF PLACEMENT. IT GENERALLY IS MADE FROM A BLEND OF CEMENT, FLY ASH, SAND AND WATER.

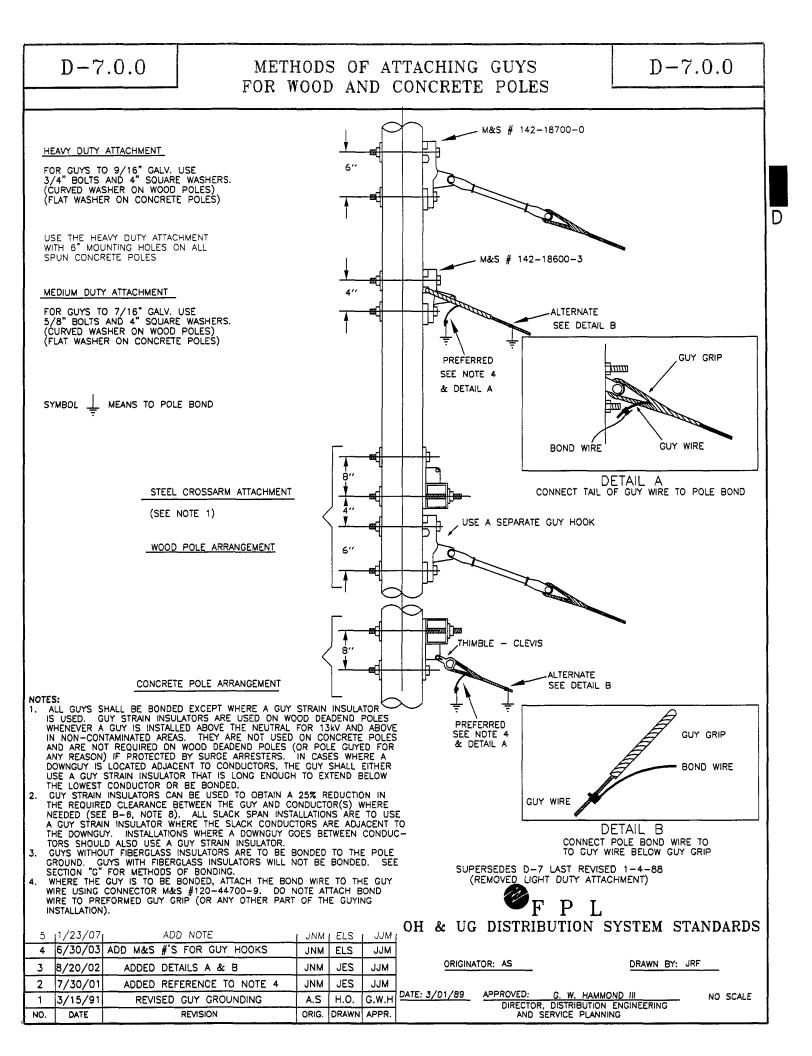
IF FIELD CONDITIONS DICTATE THE NEED TO MAINTAIN THE WALLS OF AN AUGURED HOLE, USE A SOIL STABILIZER, M&S #522-125-575. A SODA ASH COMPOUND M&S #522-126-571 MAY BE NEEDED IN CONJUCTION WITH THIS SOIL STABILIZER.

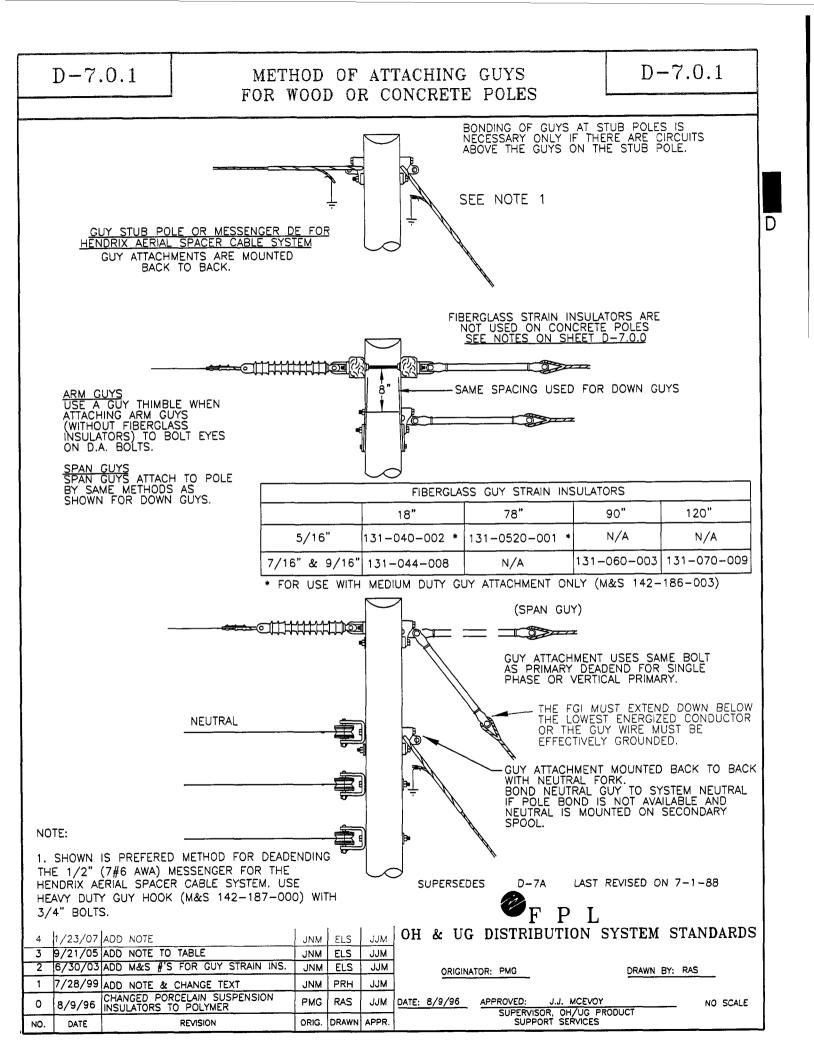
FOR LEANING POLES IN AREAS WITH NO STANDING WATER, A POLE SETTING FOAM IS AVAILABLE, M&S #522-100-000. IT EXPANDS TO FILL THE PERIPHERAL VOID BETWEEN THE POLE AND THE HOLE.

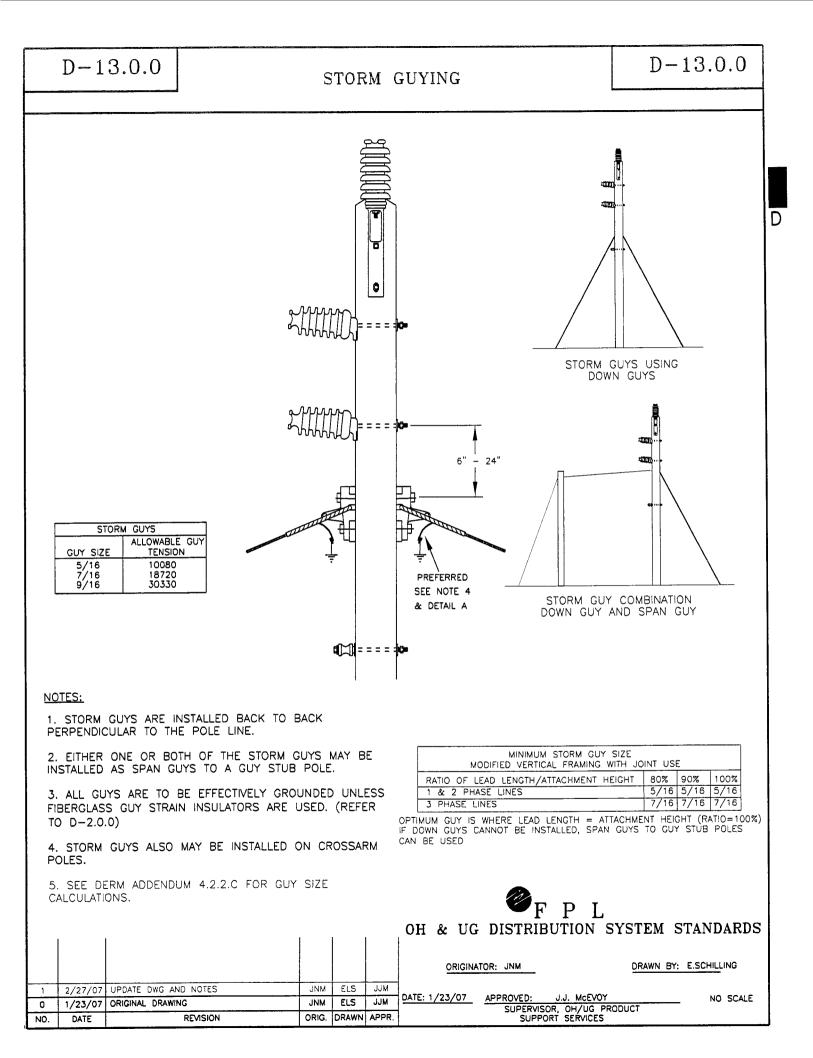
GENERAL GUILDLINES FOR TYPICAL SOILS:

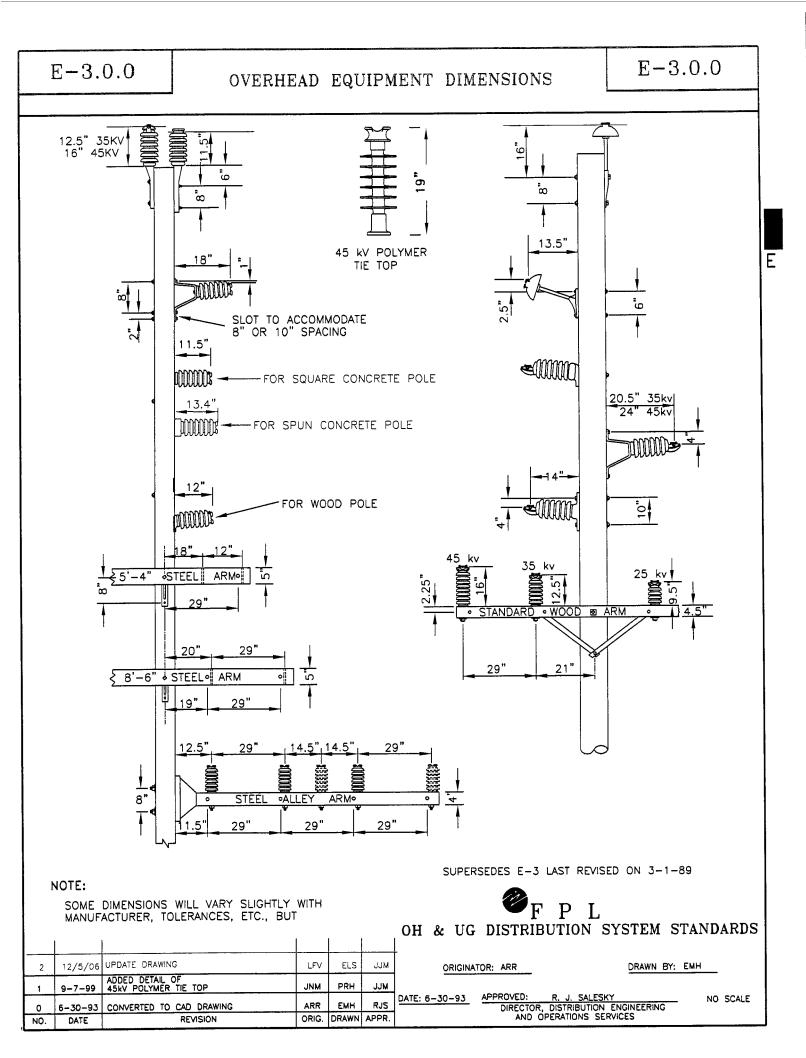
GOOD SOIL

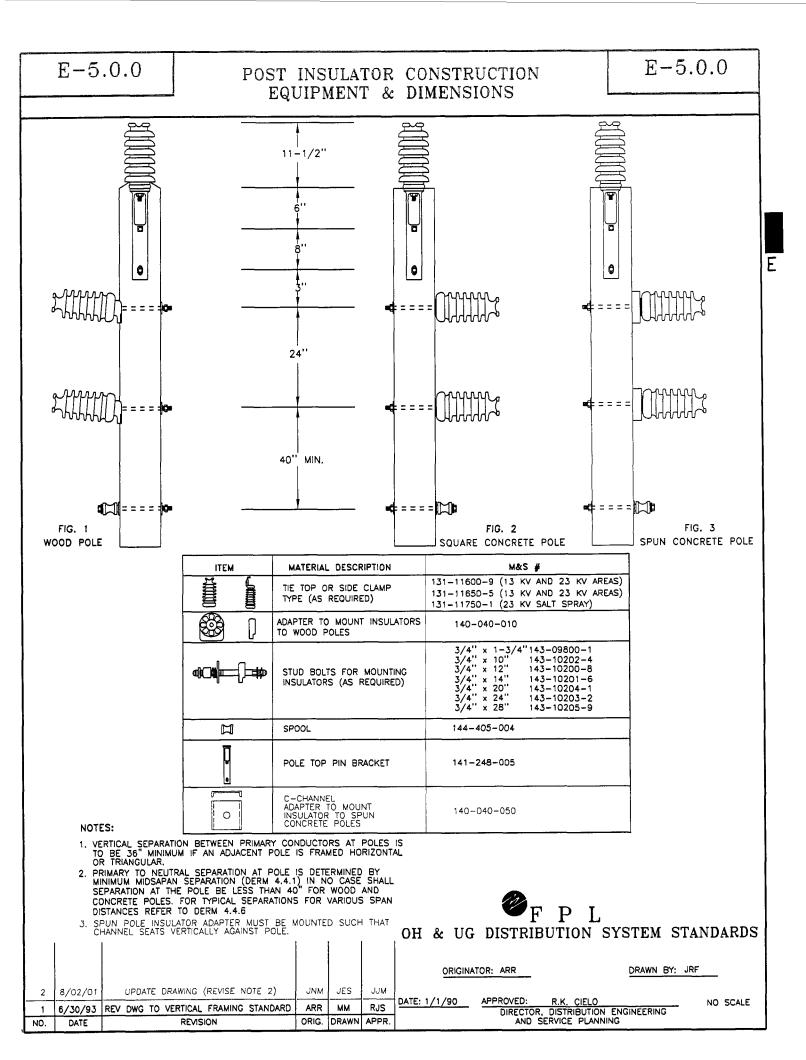
COMPACT WELL GRADED SAND AND GRAVEL, HARD CLAY OR WELL GRADED FINE AND COARSE SAND AND NO STANDING WATER. USE AS IS FOR BACKFILL.

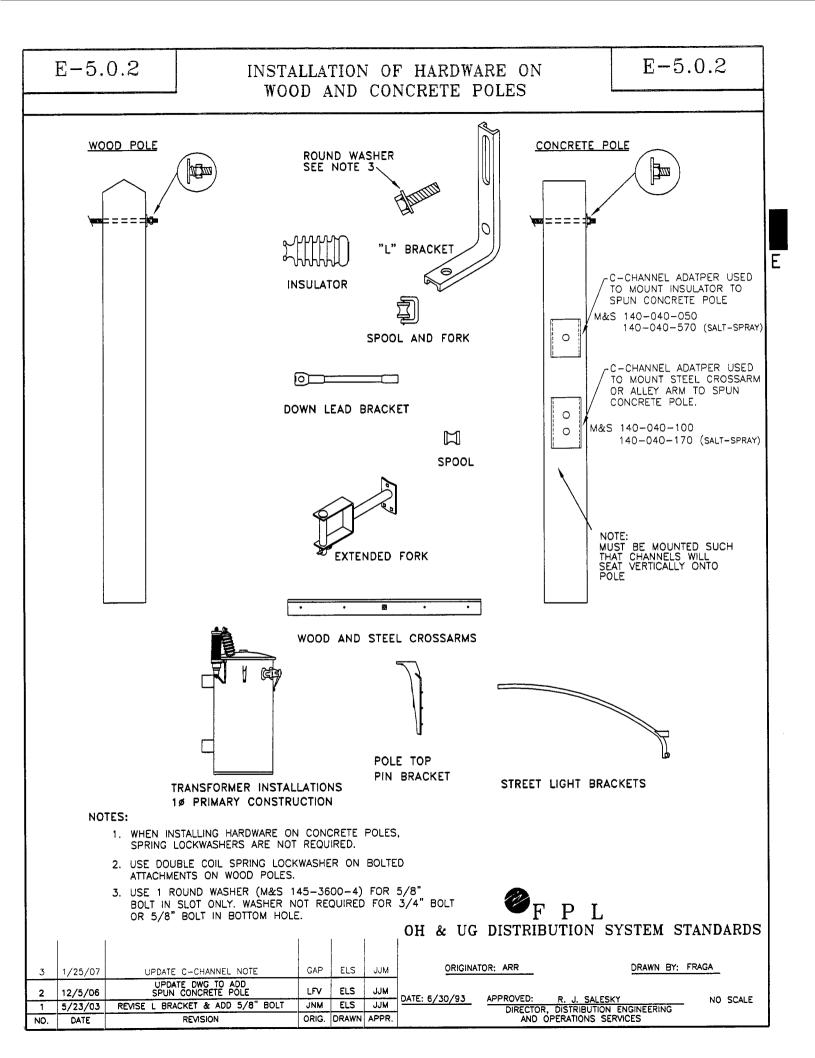

MEDIUM SOIL

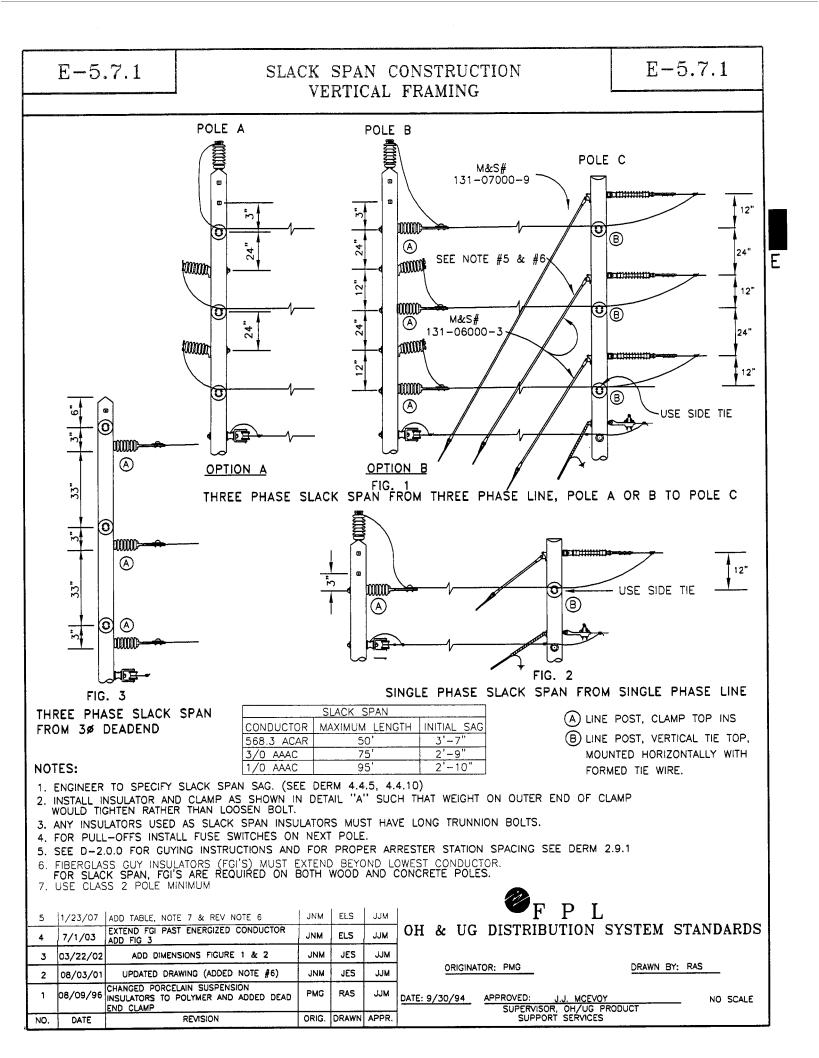

COMPACT FINE SAND AND CLAY, COMPACT SANDY LOAM, LOOSE COARSE SAND AND GRAVEL AND NO STANDING WATER. BACKFILL WITH ROCK, A 57 STONE OR SMALLER AND TAMPING EACH LAYER VERY WELL.

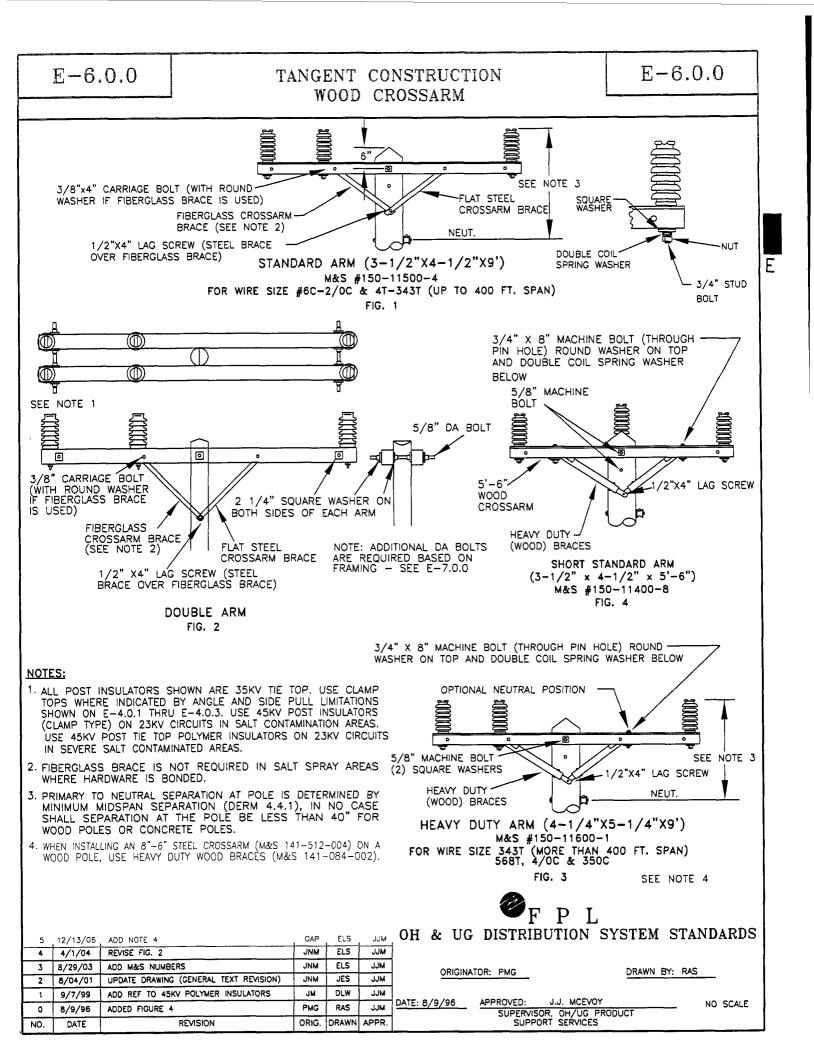

POOR SOIL

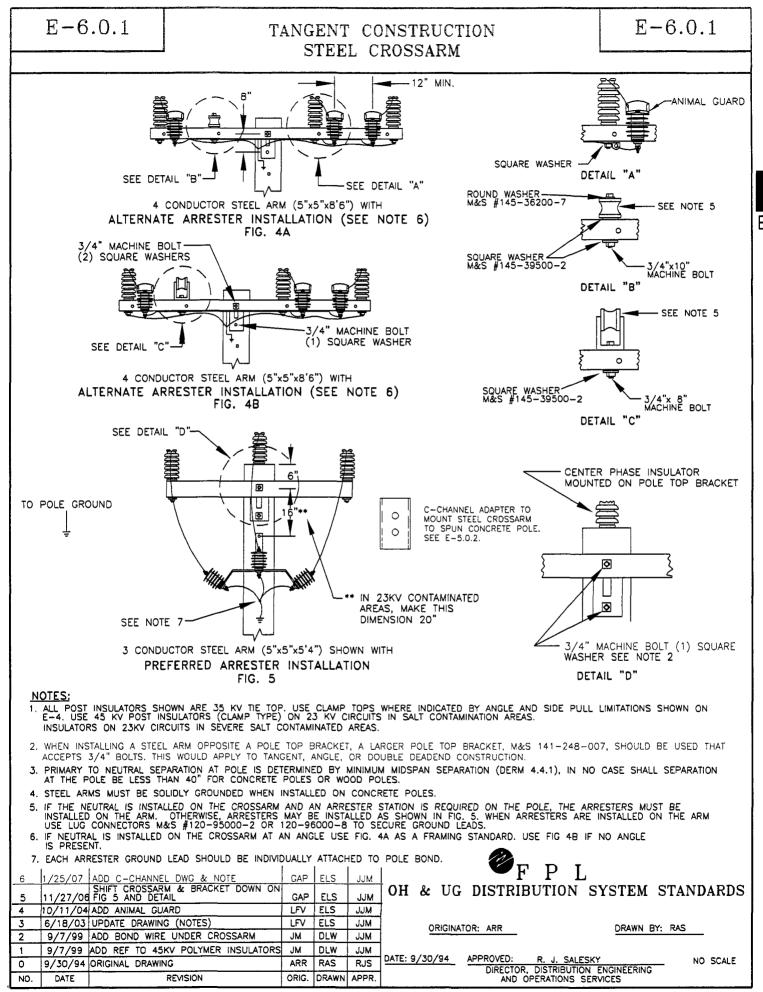

SOFT CLAY, CLAY LOAM, POORLY COMPACTED SAND OR CLAYS CONTAINING LARGE AMOUNTS OF SILTS, STANDING WATER DURING WET SEASON. MAY REQUIRE BACKFILLING THE HOLE WITH CONCRETE OR A FLOWABLE FILL.

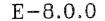




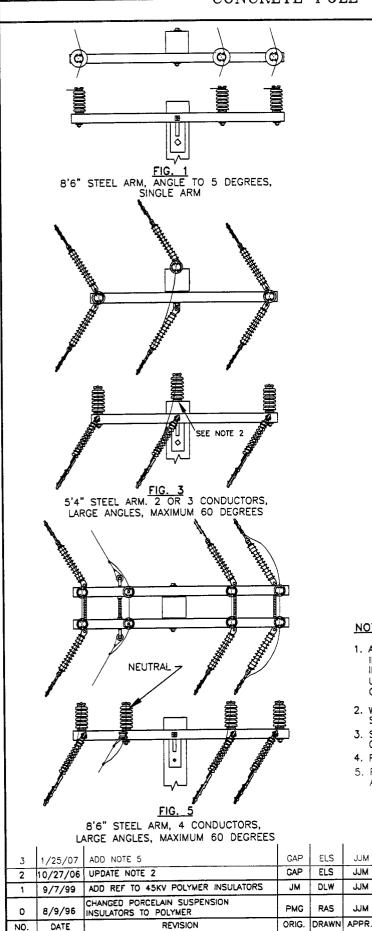




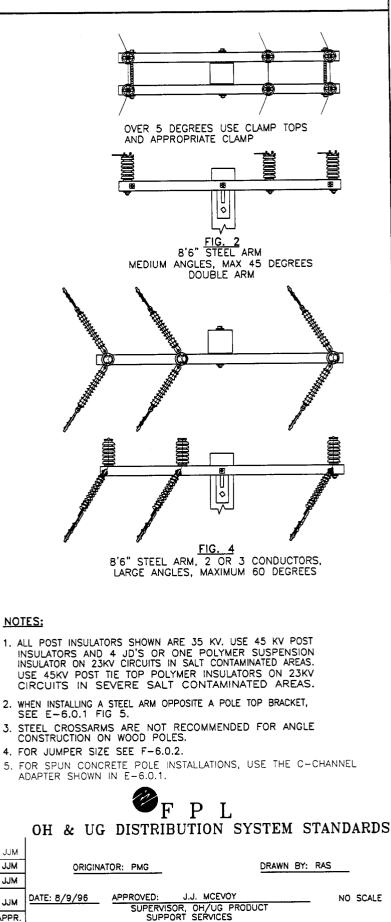




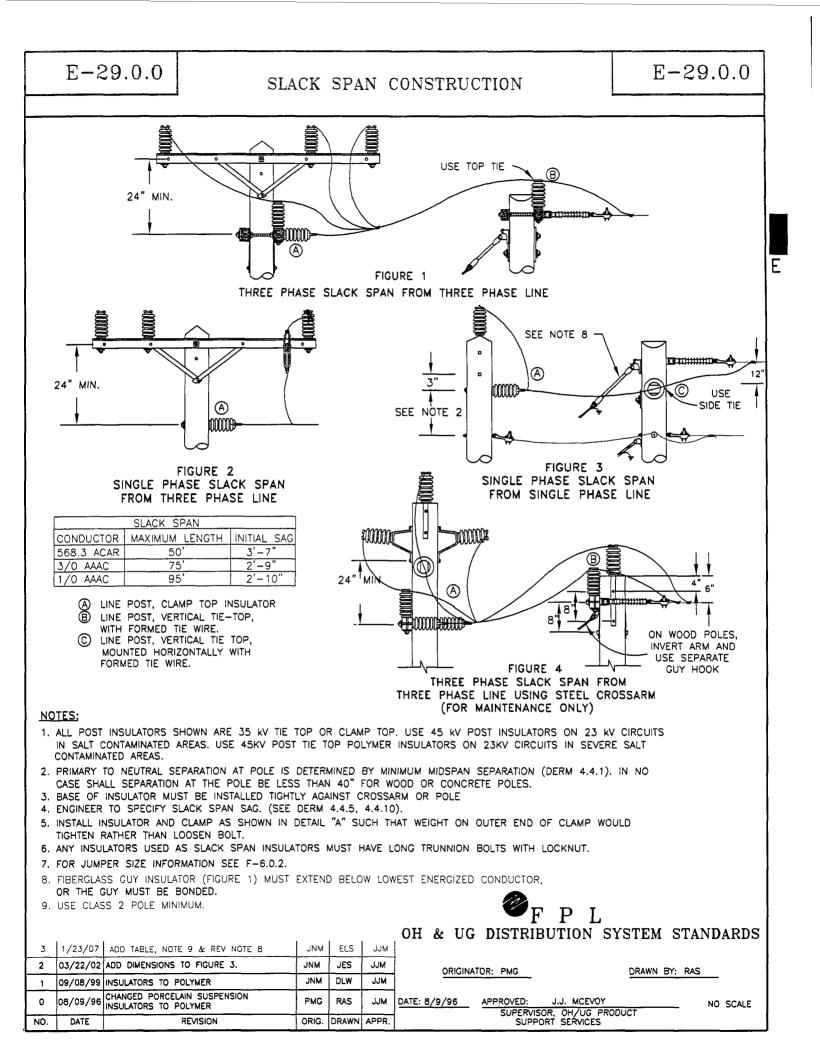
ANGLE CONSTRUCTION CONCRETE POLE-STEEL CROSSARM

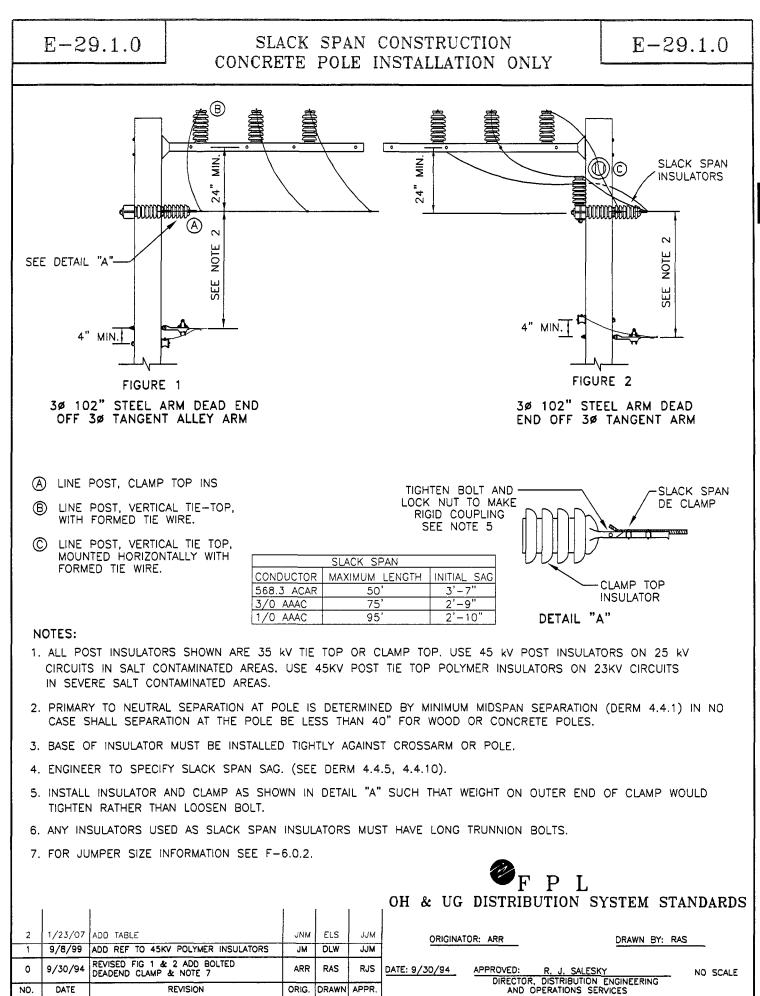

JJM

JJM

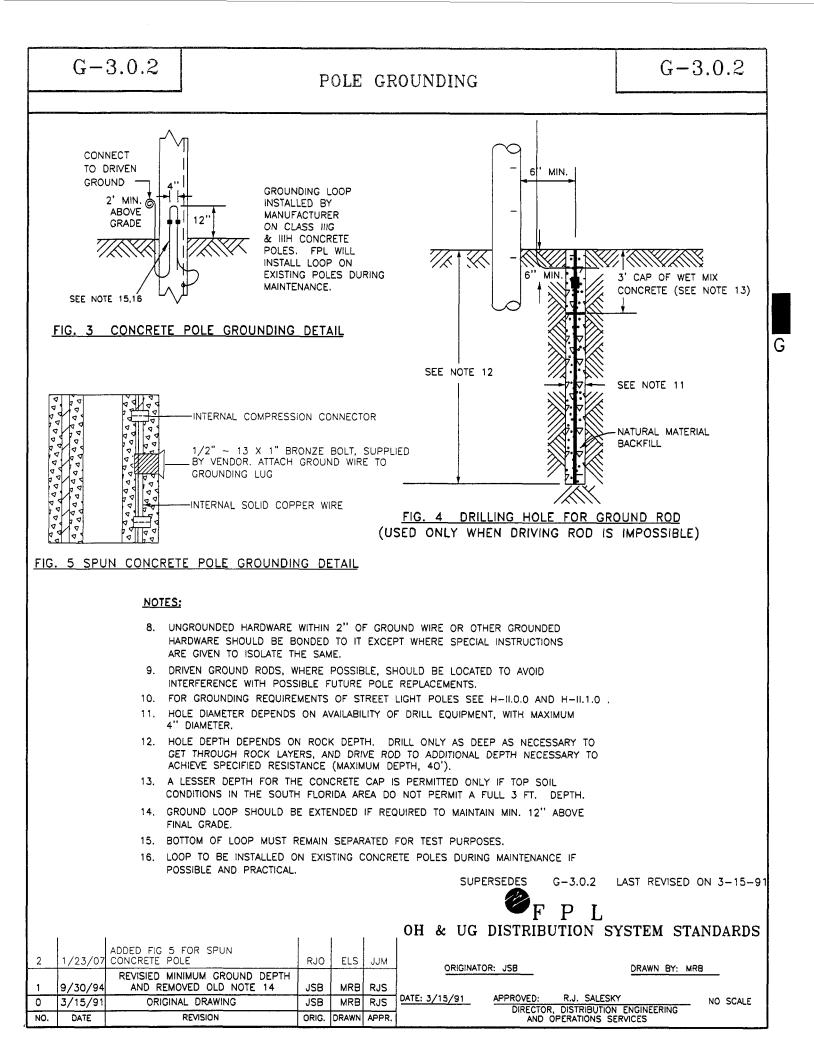

MLL

J.IM


E - 8.0.0



NO.



Ε

E

H - 4.0.0

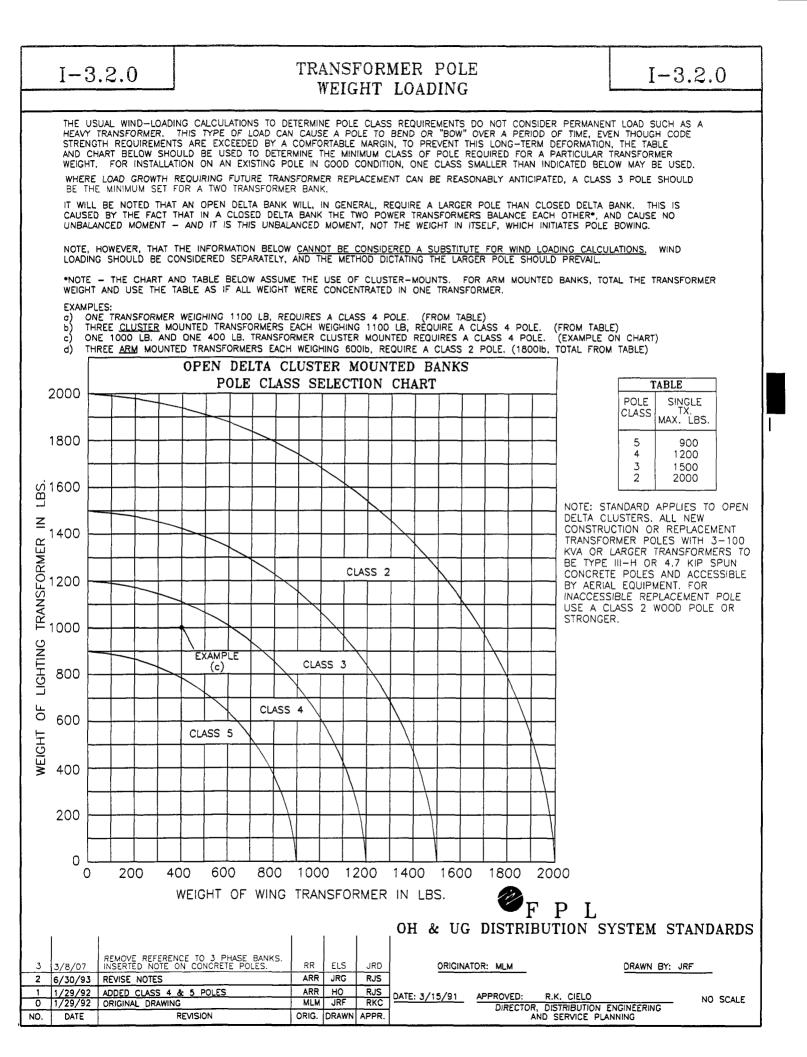
STREET LIGHT POLE WEIGHTS AND SETTING DEPTHS

H - 4.0.0

FIBERGLASS POLES									
LENGTH OF POLE AND FINISH	M&S NUMBER	APPROXIMATE WEIGHT	MINIMUM SETTING DEPTH IN EARTH	MINIMUM SETTING DEPTH IN ROCK					
20' WITH NATURAL FINISH	154-119-004	38 lbs.	4' - 6"	4' - 0"					
13' WITH SMOOTH FINISH	154-118-008	23 lbs.	3' - 0"	3' - 0"					

STANDARD CONCRETE POLES								
LENGTH OF POLE AND TYPE	M&S NUMBER	APPROXIMATE WEIGHT	MINIMUM SETTING DEPTH IN EARTH	MINIMUM SETTING DEPTH IN ROCK				
20' TYPE "0"	152-220-000	750 lbs.	4' – 6"	4' – 0"				
35' TYPE "SU"	152-239-002	2,240 lbs.	7' – 6"	6' – O"				
35' TYPE "0"	152-225-001	2,240 lbs.	7'– 0"	6' - 0"				
40' TYPE "IIIA"	152-351-007	4,674 lbs.	10' - 0"	8' - 0"				
45' TYPE "IIIA"	152-352-003	4,924 lbs.	10' - 0"	8' – 6"				
50' TYPE "IIIA"	152-353-000	5,324 lbs.	10' - 0"	8' – 6"				

	DECORATIVE CONCRETE POLES (SEE NOTE 1)									
LENGTH OF POLE AND TYPE	M&S NUMBER	APPROXIMATE WEIGHT	MINIMUM SETTING DEPTH IN EARTH	MINIMUM SETTING DEPTH IN ROCK						
18' -6" WASHINGTON	152-230-005 152-231-508 152-231-605 152-231-700	970 lbs.	4' – 0"	4' - 0"						
17" – 3" VICTORIAN	152-233-000 152-233-200 152-233-300	575 lbs.	4' - 3"	4' - 3"						
37' OCTAGONAL	152-232-008	1,730 lbs.	7'0"	6' - 0"						


NOTES:

- 1) THE USE OF A NYLON SLING IS REQUIRED FOR DECORATIVE CONCRETE POLES. THIS IS NECESSARY TO AVOID DAMAGING THE SURFACE OF POLES.
- 2) THE SETTING DEPTHS IN ROCK APPLY TO HOLES CONSISTING OF NOT LESS THAN 90% ROCK. THEY ARE ALSO APPLICABLE TO HOLES IN HARD CLAY.

OH & UG DISTRIBUTION SYSTEM STANDARDS

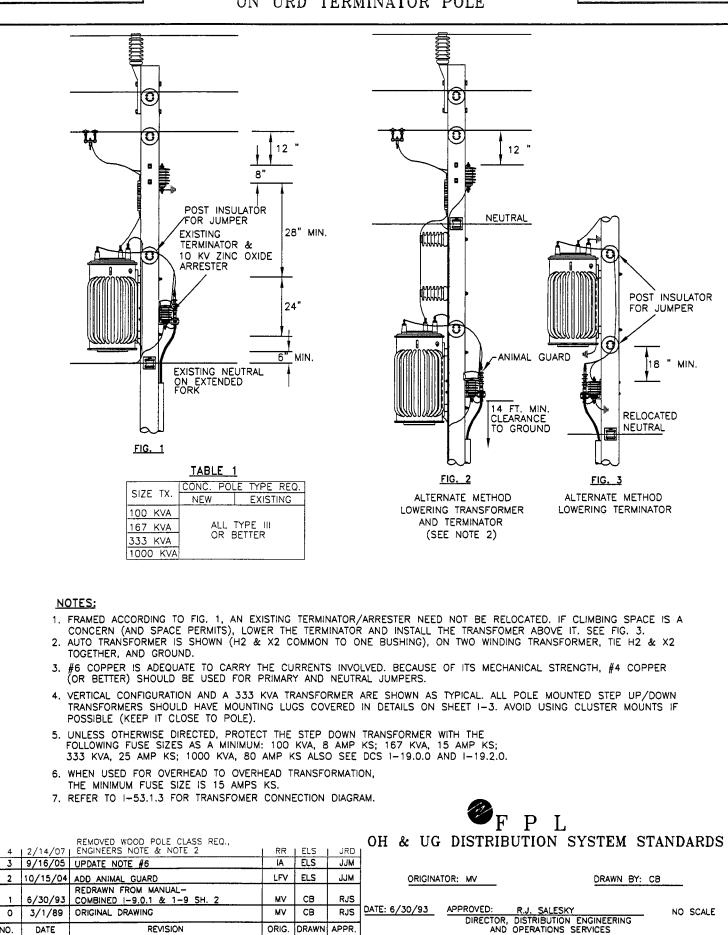
3	1/9/07	UPDATE CHARTS	FLM	ELS	JJМ	
2	8/15/05	UPDATE CHARTS	SMS	ELS	JJM	ORIGINATOR: SMS DRAWN BY: ELS
1	6/29/05	UPDATE CHARTS	SMS	ELS	JJM	
0	5/29/03	ORIGINAL DRAWING	SMS	ELS	JJM	DATE: 5/29/03 APPROVED: J.J. MCEVOY NO SCALE
NO.	DATE	REVISION	ORIG.	DRAWN	APPR.	SUPERVISOR, OH/UG PRODUCT SUPPORT SERVICES

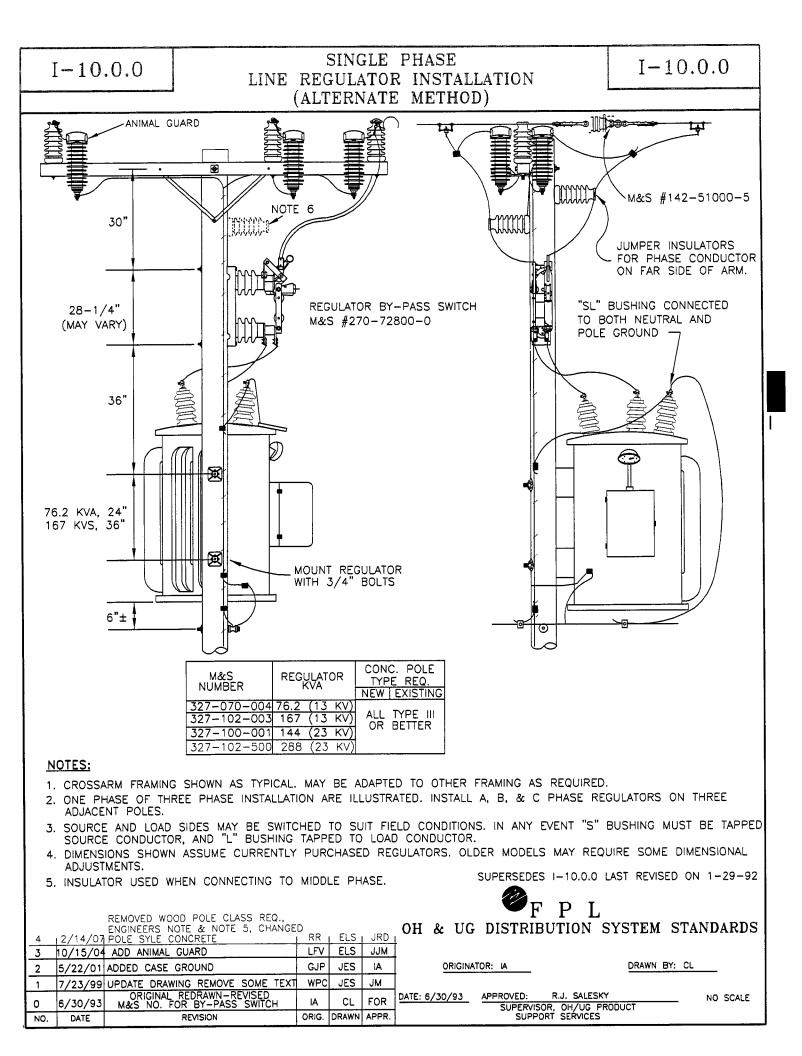
I - 9.0.0

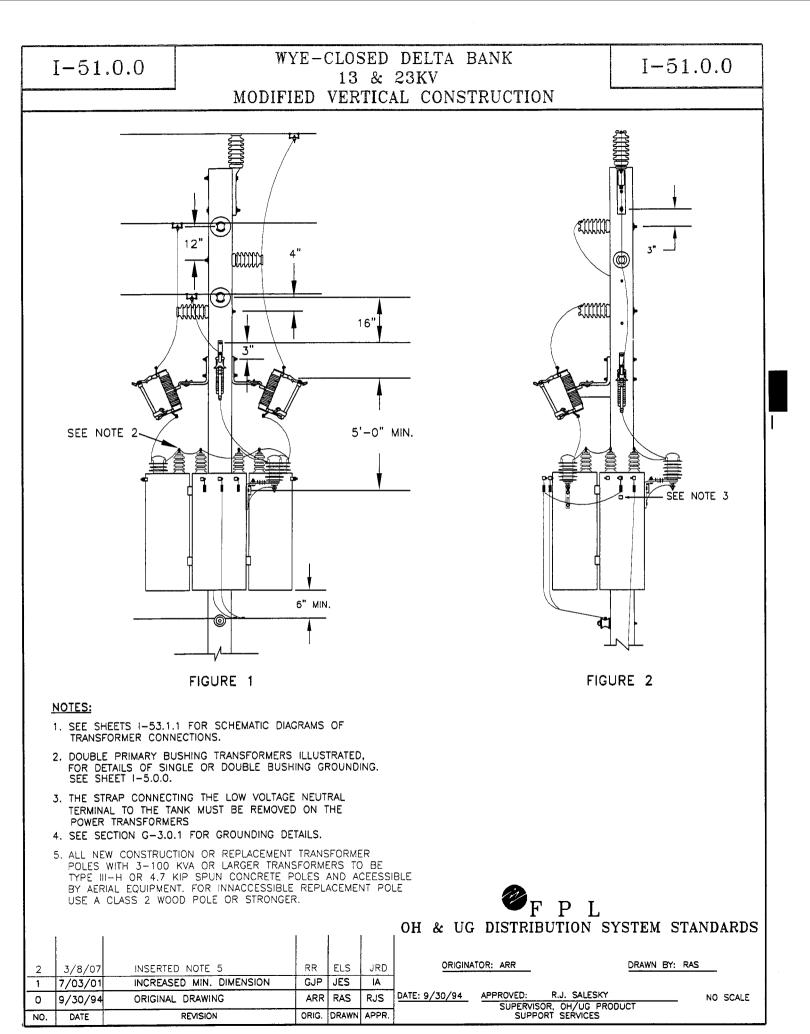
DATE

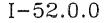
NO.

REVISION

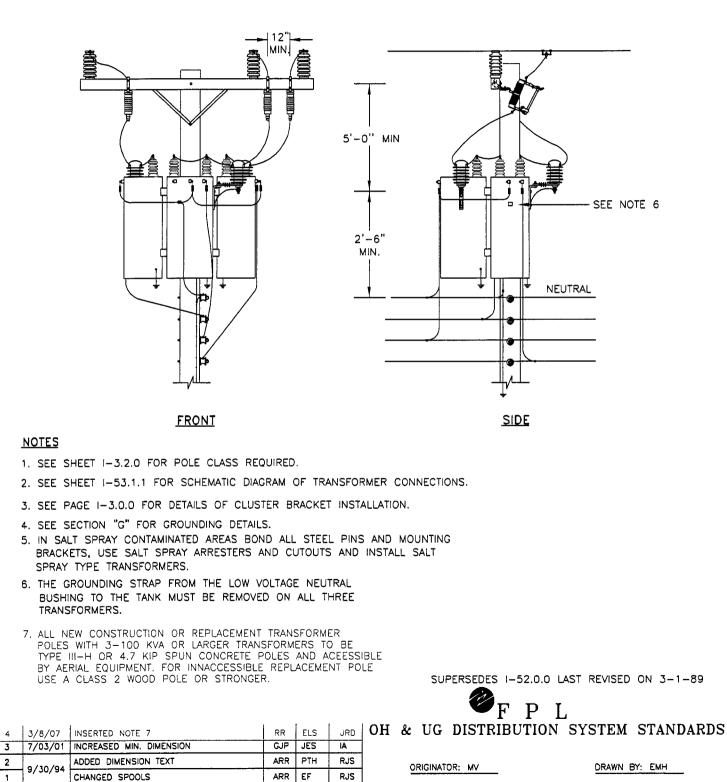

ORIG.


DRAWN


APPR.

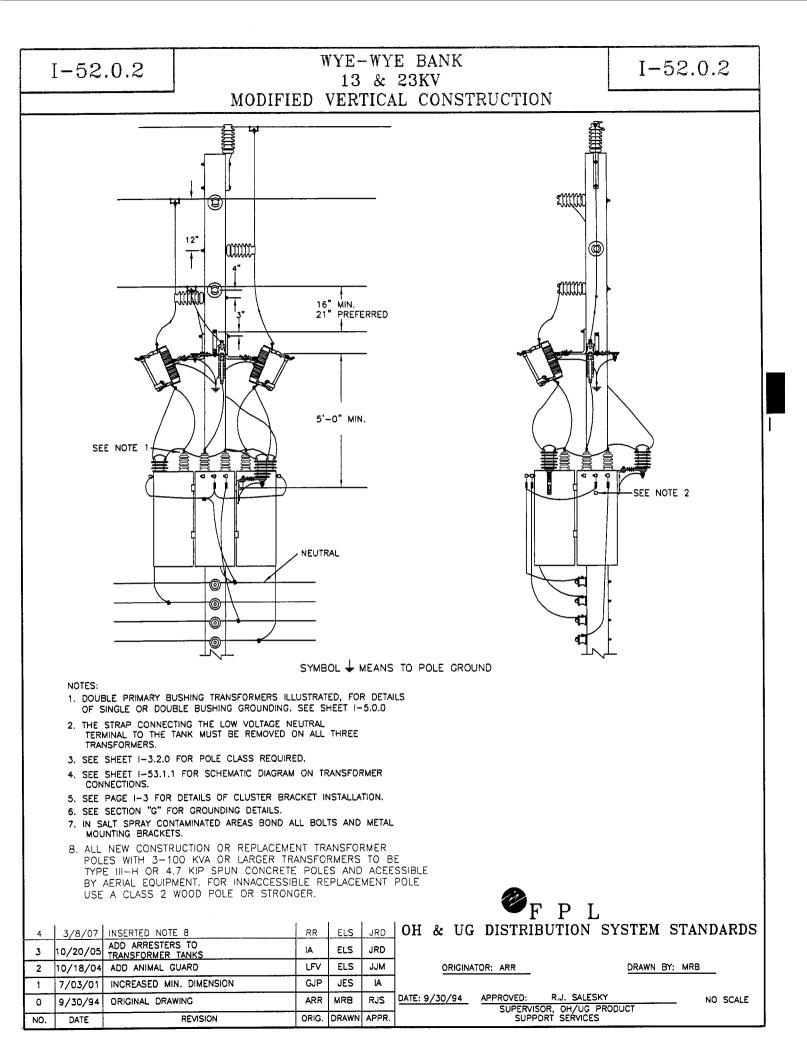

SINGLE PHASE STEPDOWN TRANSFORMER ON URD TERMINATOR POLE

I - 9.0.0



WYE-WYE BANK 13 & 23KV CROSSARM CONSTRUCTION

I - 52.0.0



 0
 5/13/93
 REDRAWN FROM MANUAL AND ADDED NEW FRAME
 MV
 EMH
 RJS

 NO.
 DATE
 REVISION
 ORIG.
 DRAWN
 APPR.

 DATE
 REVISION
 ORIG.
 DRAWN
 APPR.

 ADDED
 NO.
 SUPPORT SERVICES
 NO.
 SCALE

CAPACITOR BANKS GENERAL

CUTOUTS AND FUSING

FOR NEW INSTALLATIONS FUSED AT 80K OR LESS, 100 AMP CUTOUTS SHALL BE USED. EXISTING 200 AMP CUTOUTS SHOULD REMAIN IN SERVICE AS LONG AS THEY ARE IN GOOD CONDITION. (FUSES RATED AT 100 AMPS OR LESS, AND USED IN A 200 AMP. BARREL, REQUIRE A SPECIAL 200 AMP BUTTONHEAD. M&S #531-8100-5). IF THE FUSETUBE ON AN EXISTING CUTOUT NEEDS TO BE REPLACED, THEN THE ENTIRE CUTOUT SHALL BE CHANGED OUT TO 100 AMPS.

CUTOUT INSTALLATION RECOMMENDATIONS

TO MINIMIZE CORROSION ON CONTACTS, CUTOUT FUSE BARRELS MUST ALWAYS REMAIN CLOSED WHEN THE BANK IS DE-ENERGIZED.

DO NOT WIREBRUSH THE CONTACTS ON THE CUTOUTS. THIS MAY DESTROY THE CONTACT PLATING AND LEAD TO POOR PERFORMANCE.

DO NOT USE INHIBITOR PASTE ON THE CONTACTS. ONLY APPROVED SWITCH LUBRICANT SHOULD BE USED WHEN REQUIRED.

FUSING TABLES

PROTECTED BY STATION BREAKER BANK SIZE FUSE FUSE (3 PHASE KVAR 65 K 531-81300-4 600 KVAR 50 K 531-81200-8 300 KVAR 40 K 531-81700-0

13 KV

	2.	3	K	<u>v</u>			
 					_		

	_		
PROTECTED	ΒY	STATION	BREAKER

BANK SIZE (3 PHASE KVAR)	FUSE	FUSE M&S #
1200 KVAR	40 K	531-81700-0
600 KVAR	40 K	531-81700-0

LARGEST SIZE OF THREE-PHASE CAPACITOR BANK BEYOND A RECLOSER.

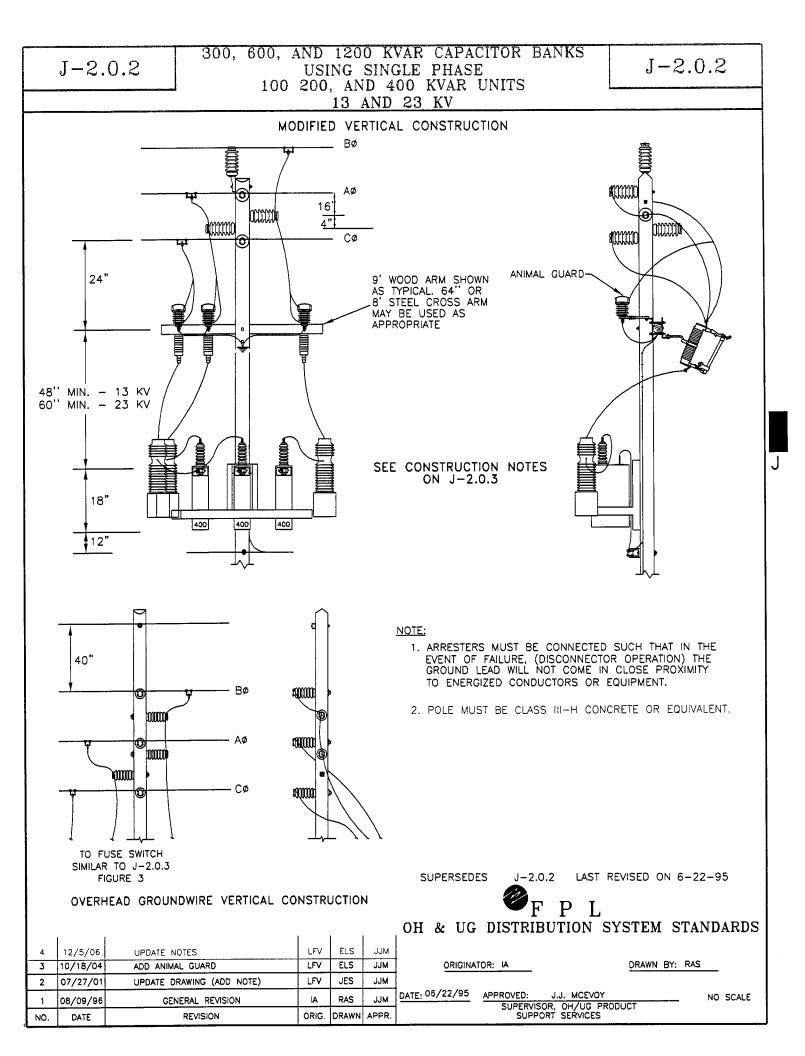
PROTECTED BY RECLOSER (13KV)

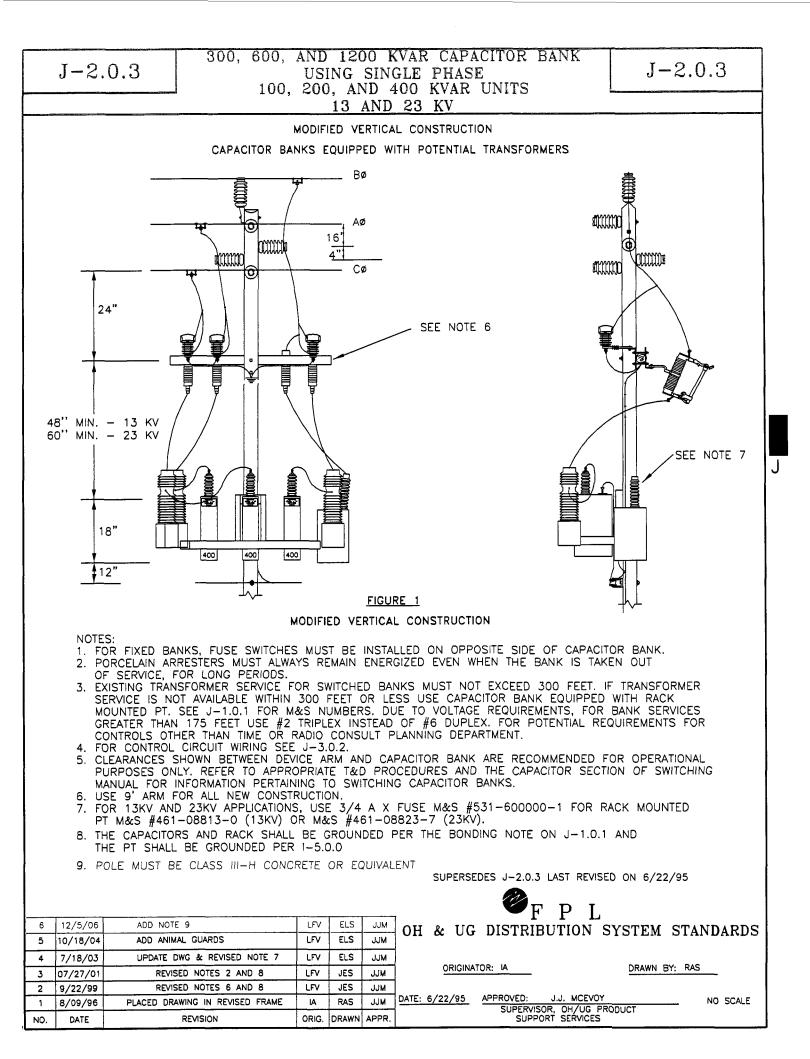
	GROUND		MAX	
BEYOND	TRIP	FUSE	KVAR	FUSE
RECLOSER	SETTING	SIZE	(3ø)	M&S #
160 RX	_ 154	65 K 50 K	1200 600	531-81300-4 531-81200-8
140 RX	- 110 154	65 K 40 K 50 K	1200 300 600	531-81300-4 531-81700-0 531-81200-8
100 RX	110	50 K 40 K	600 300	531-81200-8 531-81700-0
70 RX	1	40 K	300	531-81700-0

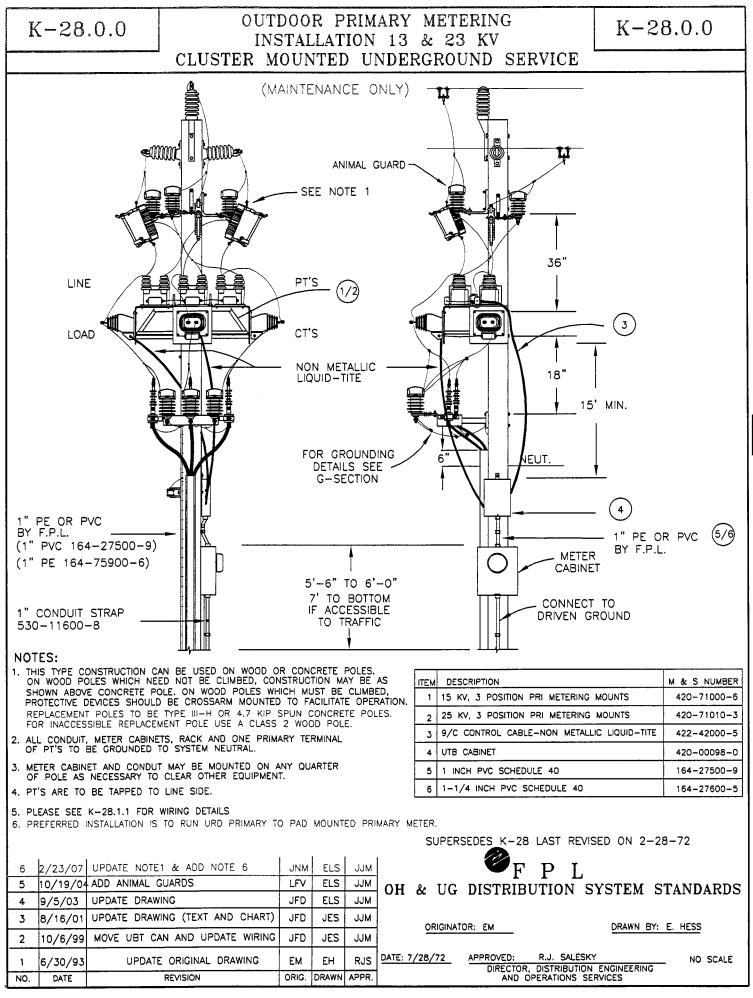
PROTECTED BY RECLOSER (23KV)

	GROUND		MAX	
BEYOND	TRIP	FUSE	KVAR	FUSE
RECLOSER	SETTING	SIZE	(3ø)	M&S #
160 RV THROUGH 70 RV	ALL VALUES	40 K	1200	531-81700-0

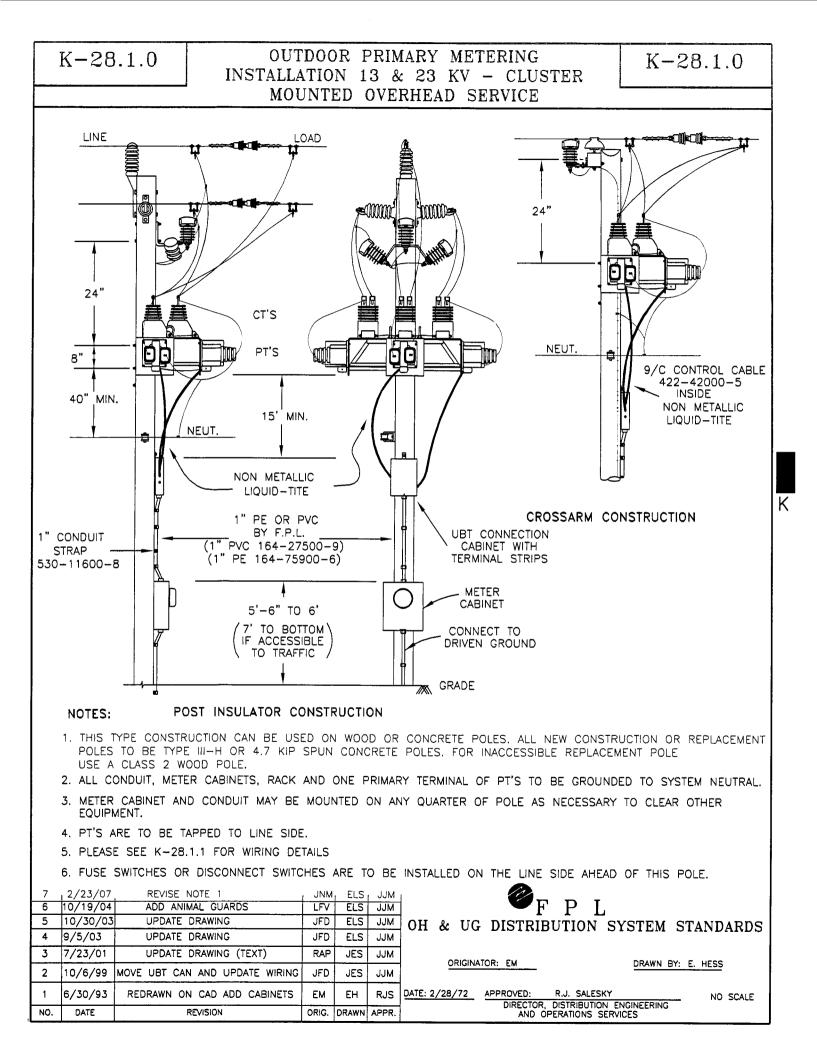
MOUNTING INSTALLATION:

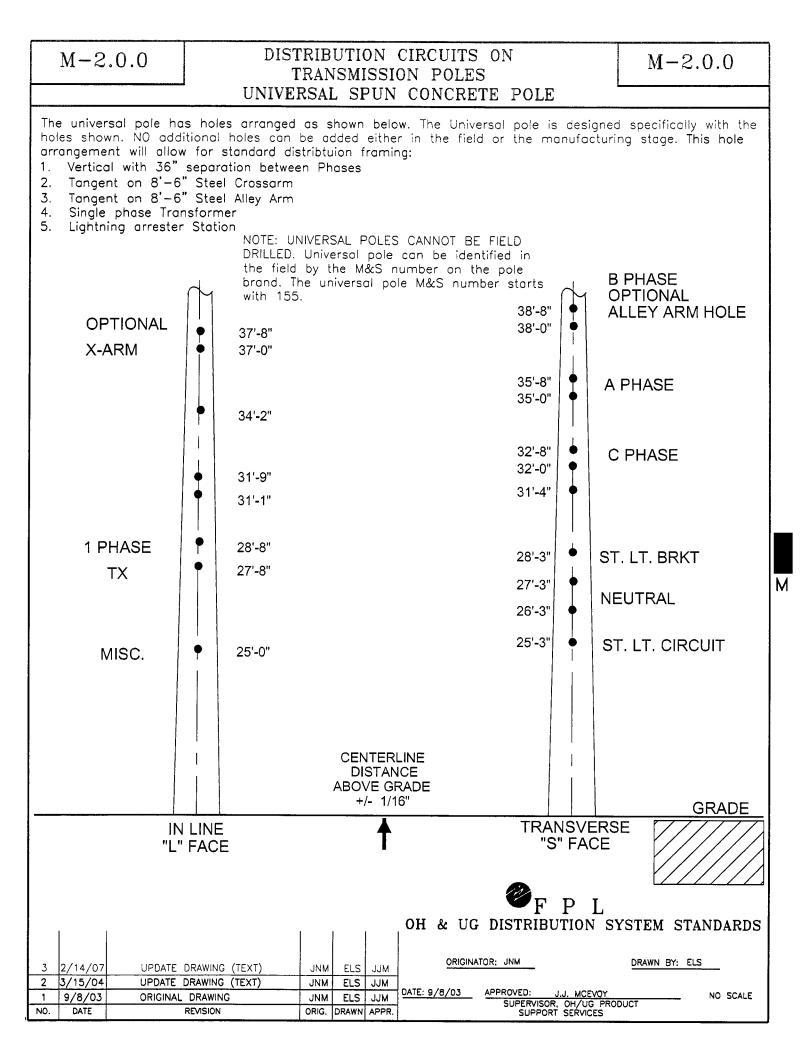

ALL NEW OH CAPACITOR BANKS MUST BE INSTALLED ON CLASS III-H CONCRETE POLE OR EQUIVALENT.

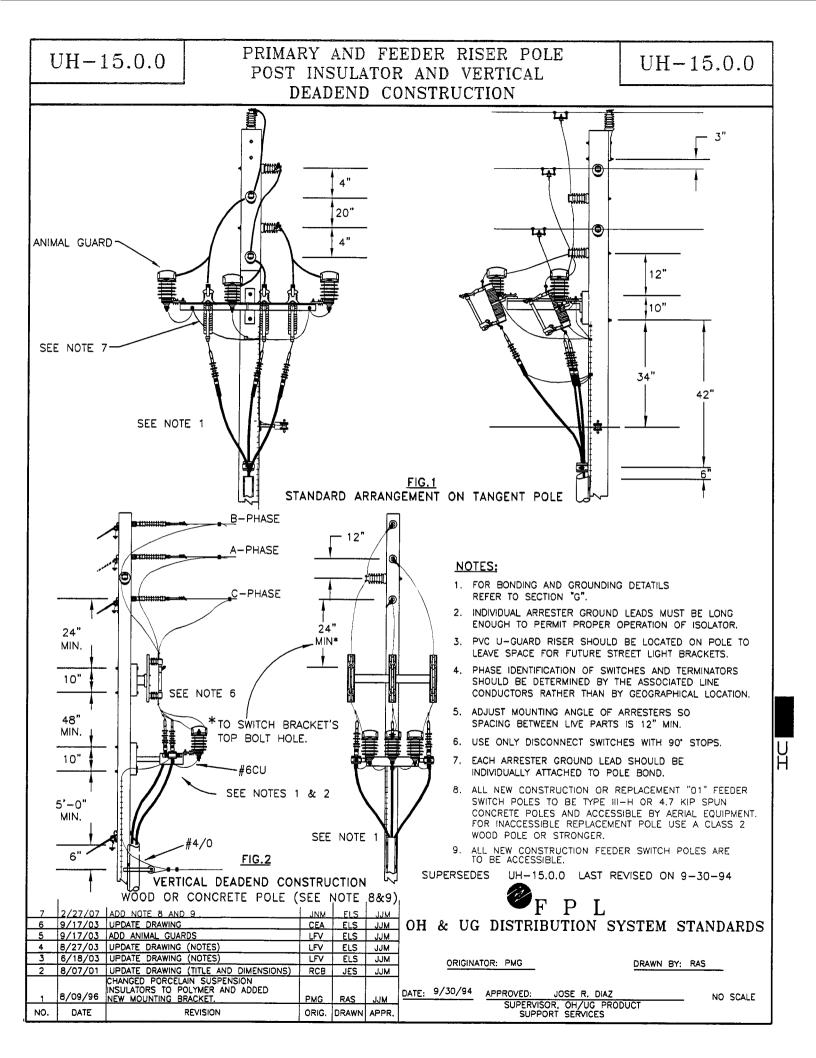

SUPERSEDES J

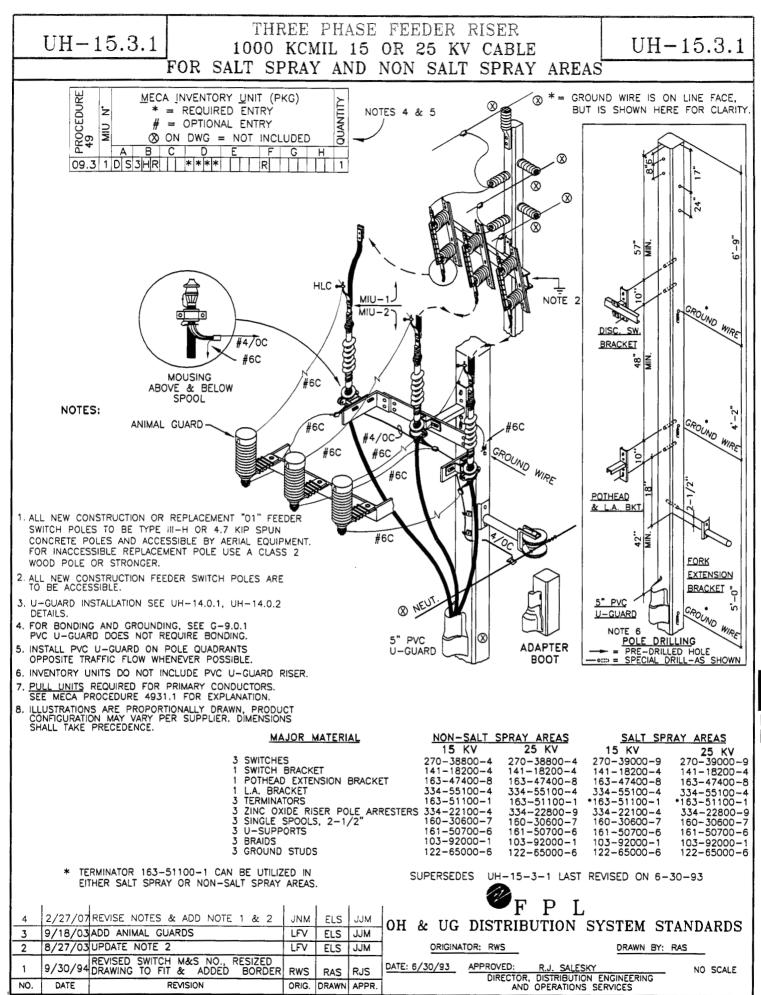

J-1.0.2 LAST REVISED ON 6-22-95

						OH & UG DISTRIBUTION SYSTEM STANDARDS				
						ORIGINATOR: IA DRAWN BY: RAS				
1	12/5/06	ADD MOUNTING INSTALLATION NOTES	LFV	ELS	JJM	8/0/06				
0	8/9/96	GENERAL REVISIONS	IA	RAS	JJM	DATE: 8/9/96 APPROVED: J.J. MCEVOY NO SCALE				
NO.	DATE	REVISION	ORIG.	DRAWN	APPR.	- SUPERVISOR, OH/UG PRODUCT SUPPORT SERVICES				


J







K

U H Z-12.0.1

SPUN CONCRETE POLE POLE DIAMETER AND WEIGHT

Z-12.0.1

Ζ

					Spun Concrete Poles					
		· · · · · · · · · · · · · · · · · · ·	Poles Dimension	3 Dimensions			Weights in Pounds			
			60' and 65' Spun Concrete Pole	70' Spun Concrete Pole	Length of Pole		Pole Weights			
	Distance From Top		Outside Dia.	Outside Dia.		50'	5,650			
		(Inches)	(Inches)	(Inches)		55'	6,410]		
	0 (Top)	9.55	11.35	11.07		60'	8,770			
	2	9,91	11.71	11.50		65'	9,790			
4 10.27 1		12.07	11.93	:	70'	12,230	_			
	6	10.63	12.43	12.37						
	8	10.99	12.79	12.80				1		
	10	11.35	13.15	13.23						
	12	11.71	13.51	13.66						
	14	12.07	13.87	14.09						
	16	12.43	14.23	14.53				_		
	18	12.79	14.59	14.96				4		
	20	13.15	14.95	15.39				4		
	22	13.51	15.31	15.82				4		
	24	13.87	15.67	16.25				4		
L	26	14.23	16.03	16.69				4		
	28	14.59	16.39	17.12				4		
	_30	14.95	16.75	17.55				4		
	32	15.31	17.11	17.98				_		
	34	15.67	17.47	18.41				-		
	36	16.03	17.83	18.85		: 		-		
	38	16.39	18.19	19.28				-		
	40	16.75	18.55	19.71						
	42	17.11	18.91	20.14				-		
	44	17.47	19.27	20.57				-		
	46	17.83	19.63	21.01			·····	4		
	48	18.19	19.99	21.44		· · · · · · · · · · · · · · · · · · ·		-		
	50	18.55	20.35	21.87				_		
	52	18.91	20.71	22.30				-		
	54	19.27	21.07	22.73				-		
	56	19.63	21.43	23.17				-		
	58		21.79	23.60				-		
	60		22.15	24.03				-		
-	62		22.51	24.46				-		
	64		22.87	24.89			-1 <u>6</u>	-		
	66		23.23	25.33 25.76				-		
	68			25.76				4		
	70			20.13				1		
	Taper (in/ft)	0.18	0.18	0.216]		
	DLE BRAND IS LO	CATED 20' FROM 1	HE BUTT OF THE		[& U(J DISIR	FPL IBUTION SY	STEM ST		۶D۶
10/00	UPDATE CHART		RJO EL	S JJM	ORIGIN	ATOR: RJO		DIAMIN DI: 0		
			RJO EL	DATE	6/7/06	APPROVED:	J.J. McEVOY		NO SC	ALE
100	0.10.010		1.00 22			SUPERV	ISOR, OH / UG PRO	DUCT		

Attachment Guidelines and Procedures

ADDENDUM

TO FPL'S PERMIT APPLICATION PROCESS MANUALS, ATTACHMENT AGREEMENTS AND JOINT USE AGREEMENTS

FPL ATTACHMENT STANDARDS AND PROCEDURES

MAY 4, 2007

.

TABLE OF CONTENTS

1.	SAF	SAFETY			
11.	STA	NDARDS	5		
	A.	ATTACHMENT CRITERIA	5		
	В.	ATTACHMENT CLEARANCES	7		
	C.	WINDLOADING CRITERIA AND CALCULATIONS	9		
111.	PRC	OCEDURES	46		
	A.	PROCEDURES FOR JOINT USERS	47		
	В.	PROCEDURES FOR THIRD PARTIES (CATV AND TELECOM)	48		
	C.	PROCEDURES FOR GOVERNMENTAL ATTACHMENTS	50		
	D.	PROCEDURES FOR ATTACHMENTS TO TRANSMISSION POLES	51		

I. SAFETY

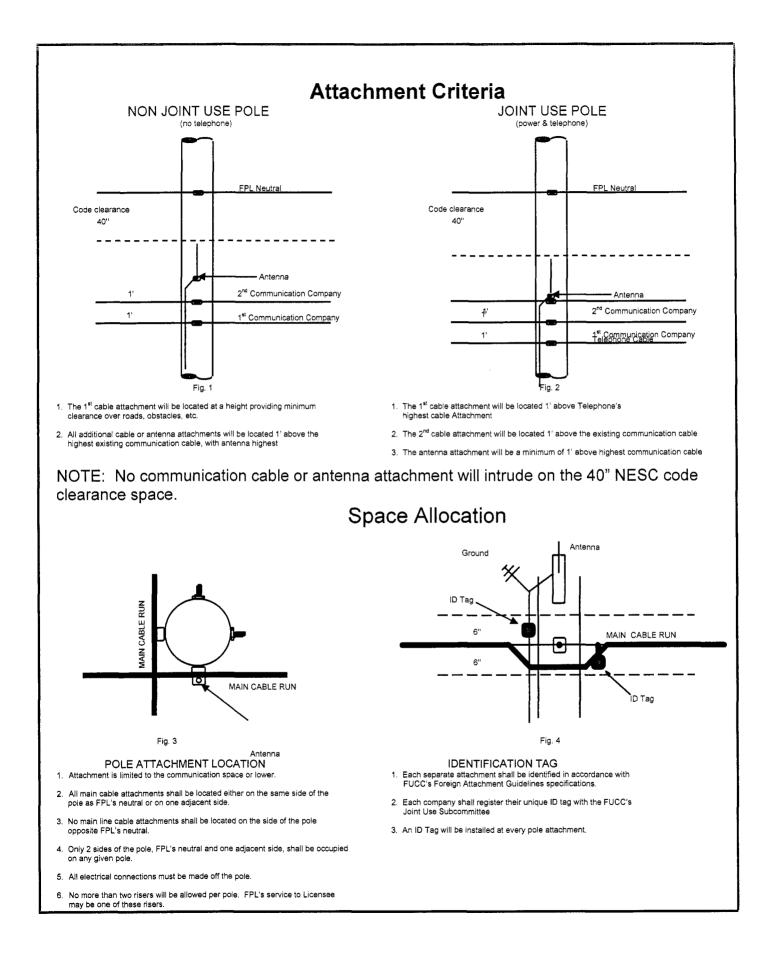
SAFETY

It is the responsibility of the attacher to ensure that all persons involved with the application for attachment to FPL poles, and all persons involved with the field engineering, design, installation, construction and ongoing maintenance of these attachments, comply with all applicable federal, state and local safety laws and regulations including the Occupational Safety and Health Act, the National Electrical Safety Code (NESC), any requirements of FPL and any additional safety requirements requested by FPL.

It is also the responsibility of the attacher to warn its employees and contractors that electrical facilities are high voltage facilities and to inform these persons as to safety and precautionary measures which he or she must use when working on or near FPL poles and other facilities.

Proper guying of cables must be accomplished by the attacher.

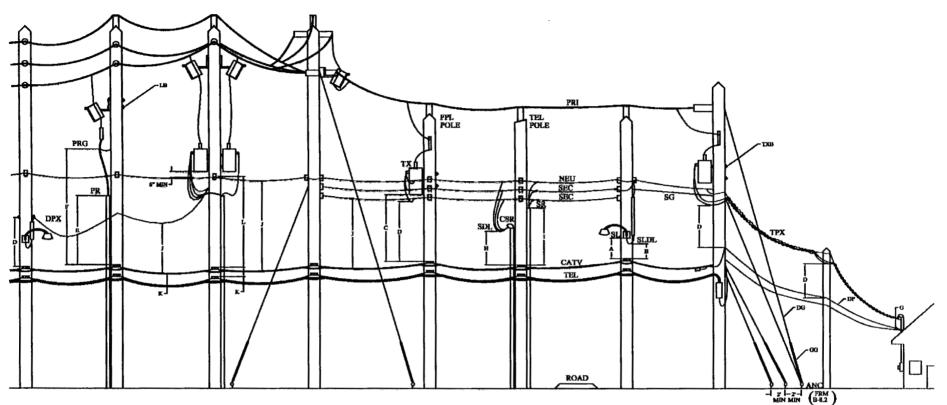
To ensure that poles are always accessible for workers, particularly in locations inaccessible to bucket trucks, cable risers installed on FPL poles must not interfere with climbing space on the pole.


In all cases, second and third party attachments will be limited to the NESC designated communication space below the electrical supply space on all distribution carried poles with FPL attached. At no time may the communication/CATV worker encroach upon the electric supply space on the pole. Governmental Entities requesting attachments to FPL street light facilities may have certain attachments (i.e. banners, holiday decorations, etc) to those facilities provided that the attachments are installed in accordance with the terms and conditions of their agreements for the use of such facilities.

For any device emitting radio frequency (RF) radiation, to ensure the health and safety of utility workers, attacher shall install electric service disconnects as part of attacher's equipment to enable utility crews and personnel to disconnect power when working on the poles used for attacher's devices. FPL crews will be instructed to disconnect power to attacher's devices prior to working on the pole and to reconnect power to the devices when the work is complete. Furthermore, the attacher MUST label the device with language that advises the utility worker of the emission of RF radiation and advises the utility worker to disable the device.

II. STANDARDS

II. A. ATTACHMENT CRITERIA


No attachment or increase in bundle size of an existing attachment may be made to an FPL pole without prior approval by FPL's permit application vendor or an FPL engineer. (See the Procedures section.) Wireline and telecommunication antenna attachments may only be made to FPL distribution poles. Wireline attachments may be made to transmission poles ONLY if FPL distribution facilities are also attached to the pole. Electric service will be provided to an off-pole location. Power Supplies are not allowed on the pole. Governmental Entities requesting attachments to FPL street light facilities may have certain attachments (i.e. banners, holiday decorations, etc) to those facilities provided that the attachments are installed in accordance with the terms and conditions of their agreements for the use of such facilities.

II.B. ATTACHMENT CLEARANCES

It is the responsibility of the attacher to ensure that attachments are designed and constructed in accordance with the National Electrical Safety Code and these guidelines, and to secure any necessary permit, consent or certification from state, county or municipal authorities or from the owners of the property to construct and maintain attachments to FPL poles. Wireless antenna clearance requirements are the same as the clearance requirements for CATV and telecommunications facilities.

CLEARANCES OF COMMUNICATION CABLES TO FPL & OTHER FOREIGN UTILITIES

			ES TO FPL & OTHER FOREIGN UTILITIES	
DIMENSION	SEPARATION FROM	* FPL MINIMUM	** NESC MINIMUM	NESC APPLICABLE
(LETTER)	FOREIGN UTILITIES TO	REQUIREMENT	REQUIREMENT	REFERENCE SECTION
Α	STREETLIGHT BRACKET	4 INCHES	4 INCHE8	238 C, TABLE 238-2
B	STREETLIGHT DRIP LOOP	12 INCHES	12 INCHES	238 D
С	TRANSFORMER BOTTOM	30 INCHES	30 INCHES	238 B. TABLE 238-1
a	SVC DRF LF, SECONDARY	40 INCHES	40 INCHES	235, TABLE 235-5
E	PRIMARY RISER SHIELD	3 INCHES	NONE	239 G1, EXCEPTION 1
P	PRIMARY RISER GROUND	40 INCHES	40 INCHES	239 Gi
G	SVC DROP AND DRIP LOOP	12 INCHES	12 INCHES	235 C1, EXCEPTION 3
	CUSTOMER OWNED	40 INCHES	40 INCHES	TABLE 235-5
н	SERVICE DRIP LOOP	16" IF COMMUNICATION CABLE AN	D RISER OPERATED BY SAME UTILITY	TABLE 235-5 EXCEPTION 3
I	SERVICE RISER	40 INCHES	40 INCHES	239 G7
J	MID SPAN	30 INCHES	30 INCHES	238-1
ĸ	FOREIGN UTILITIES	12 INCHES	12 INCHES AT POLE; 4 INCHES ALONG SPAN	235 H
L	NEUTRAL	40 INCHES ***	30 INCHES	TABLE 235-5 EXCEPTION 6

* FOLLOW FPL MINIMUM ** NIRC DIPORMATION PROVIDED FOR REPRESENCE ONLY *** WHERE NO SEC IN FLANNED BY FPL, WY MIN CLEARANCE IS PRIMERABLE & COMMUNICATION IS BONDED TO FPL'S GROUNDING SYSTEM

II.C. WINDLOADING CRITERIA AND CALCULATIONS

Distribution Design Guidelines

The following guidelines will be used to standardize the design of FPL's overhead distribution facilities when practical, feasible and cost effective.

General

- 1. Every attempt should be made to place new or replacement poles in private easements or as close to the front edge of property (right of way line) as practical.
- 2. Overhead pole lines should be placed in front lot lines or accessible locations where feasible.
- 3. Concrete poles are not to be placed in inaccessible locations or locations that could potentially become inaccessible.
- 4. When performing work that will affect an existing Top CIF feeder, always contact Storm Secure regional project manager prior to design.
- 5. When performing new construction, the new pole line will be designed to meet Extreme Wind Load (EWL).

As always, good engineering judgment, safety, reliability, and cost effectiveness should be considered.

In addition to these guidelines, all distribution facilities shall be engineered to meet the minimum requirements set forth in all applicable standards and codes including but not limited to the National Electrical Safety Code (NESC), and Utility Accommodation Guide.

New Construction / Existing / Maintenance

- 1. When installing and/or replacing a feeder, lateral or service pole on an existing pole line, please reference the pole sizing guidelines listed under the Hardening Design Guidelines section (page 5 of 6) to determine pole class and type.
- 2. When performing work that will affect a Top CIF feeder, always contact Storm Secure regional project manager prior to design.
- 3. When extending an existing pole line, the existing pole type, wood or concrete, should be used as a guide for the new poles, while still maintaining the minimum requirements as set forth in these guidelines.

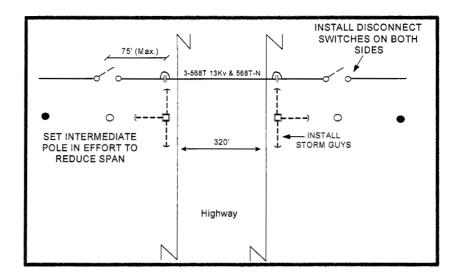
Relocation

- 1. When relocating either a concrete or wood pole line for a highway improvement project, the existing type pole line should be used as a guide for replacements.
- 2. When performing work that will affect a Top CIF feeder, always contact Storm Secure regional project manager prior to design.
- 3. Agency relocation projects should be coordinated with Distribution Planning to take into account potential feeder boundary changes.

Hardening Design Guidelines

The following hardening guidelines will standardize the design of FPL's overhead distribution facilities when feasible, practical and cost effective. Foreign pole owners are required to discuss design requirements with FPL prior to construction. FPL will assist with identifying the critical poles.

- 1. Concrete poles are preferred in the cases where replacement costs would be extremely high (i.e. Duct system riser pole, corner poles with multiple circuits, critical poles, etc). Please reference the Critical Pole list below for more information.
- 2. The following list comprises what will be considered critical poles. When installing and/or replacing an accessible critical pole, use concrete. If the pole is inaccessible, use a Class 2 wood pole, or consider relocating the equipment to an accessible concrete pole.


Critical Pole List
1 st switch out of the substation ¹
Automated Feeder Switches (AFS)
Interstate / Highway Crossings ^{1,2}
 Capacitor Banks
Poles with multiple primary risers
 3 Phase Reclosers
Aerial Auto Transformers
 Multi-Circuit Poles ³
3 phase transformer banks (3-100 kVA and larger)
 Regulators
 Primary Meter

Every attempt should be made to install storm guys where feasible and practical.
 Refer to the Crossing Multi-Lane Limited Access Highways section for details (pg.4 of 6)

³⁾ Contact Storm Secure regional project manager before designing a new multi-circuit line.

Crossing Multi-lane Limited Access Highways

- Underground installation is the preferred design for all NEW crossings (1, 2 or 3 phase) of multi-lane limited access highways. If underground construction is not feasible or if working on an existing overhead crossing, reference the Overhead Highway Crossing schematic as shown below.
- 2. Underground crossing for 1 or 2 phases should be designed for potential three phase feeder size cable.
- For accessible overhead crossings, use concrete poles (III-H or Spun) for the crossing poles and Class 2 wood poles for the adjacent poles. For inaccessible overhead crossings, Class 2 wood poles should be used for the crossing poles and adjacent poles.
- 4. Every attempt should be made to install storm guys for the highway crossing poles. Storm guys are not required on the adjacent poles.
- 5. Install disconnect switches on adjacent poles on both sides of the crossing to isolate the feeder section in case of a restoration event. Disconnect switches are to be installed in accessible locations that can be reached with aerial equipment. If there is no load between the nearest existing disconnect switch and the crossing, an additional switch is not required.

Overhead Highway Crossing Schematic

Pole Sizing Guidelines

- 1. The following tables should be used as guidelines to help determine pole class and type, when installing and/or replacing a feeder, lateral or service pole.
- 2. When performing work that will affect a Top CIF feeder/customer always contact Storm Secure regional project manager prior to design.

Feeder or Three Phase Lateral:

Pole Line Description	New Construction ¹	Existing Infrastructure ²	Installing or Replacing a Critical Pole ³
Existing Wood	Use Class 2 Wood Pole to meet EWL	Use Class 2 Wood Poles	Use III-H (Accessible) or Use Class 2 Wood (Inaccessible)
Existing Concrete	Use III-H Concrete Pole to meet EWL	Use III-H Concrete Poles	Use III-H Concrete Poles

Single or Two

Pole Line Description	New Construction ¹	Existing Infrastructure ²	Installing or Replacing a Critical Pole ³
Existing Wood	Use Class 3 Wood Pole to meet EWL	Use Class 3 Wood Poles	Use III-H (Accessible) or Use Class 2 Wood (Inaccessible)
Existing Concrete	Use III-G ⁴ or III-H poles to meet EWL	Use III-G ⁴ or III-H poles to match existing line	Use III-H Concrete Poles

¹⁾ To be used when extending or relocating a pole line. For span length details, see table below.

²⁾ To be used when replacing a pole or installing an intermediate pole within an existing pole line.

³⁾ Reference Critical Pole List on pg.3 of 6.

⁴⁾ Use of III-G poles should be limited to existing concrete lateral pole lines whose wire size is less than or equal to #1/0 Aluminum.

Facility	Phases(s)	Wire size	Pole size	Recommended Span Length⁵ (FPL with 2 attachments – FPL ONLY)		
				105 MPH	130 MPH	145 MPH
Feeder		3#568 ACAR	Class 2	180' - 230'	135' - 200'	100' - 150'
		3#3/0 AAAC	Class 2	180' - 250'	180' - 250'	125' - 250'
Lateral	3 PH	3#1/0 AAAC	Class 2	180' - 250'	180' - 250'	155' - 250'
	2 PH	2#1/0 AAAC	Class 3	180' - 250'	180' - 250'	170' - 250'
	1 PH	1#1/0 AAAC	Class 3	180' - 250'	180' - 250'	180 - 250'

⁵The lower number equates to the maximum span for FPL primary and 2 foreign attachments. The higher number equates to the maximum span for FPL primary only. Reference the addendum DERM tables when adding additional attachment(s) or equipment. Remember to always contact the Storm Secure regional project manager when working on a Top CIF feeder.

Service / Secondary / Street Light / Outdoor Light Poles

When installing or replacing a secondary, service or street light pole, a minimum Class 4 Wood pole should be used. Specific calculations may require a higher class pole for large Quadruplex wire.

As always, good engineering judgment, safety, reliability, and cost effectiveness should be considered.

In addition to these guidelines, all distribution facilities shall be engineered to meet the minimum requirements set forth in all applicable standards and codes including but not limited to the National Electrical Safety Code (NESC) and Utility Accommodation Guide.

Storm Secure

Distribution Overhead Line Design for Extreme Wind Loading

ADDENDUM TO DISTRIBUTION ENGINEERING REFERENCE MANUAL (DERM)

Introduction

In 2006, FPL introduced the concept of "STORM SECURE". One part of this concept is to harden the electrical system by adopting new standards based on extreme wind velocity criteria. The Florida Public Service Commission and the Florida Administrative Code have adopted the 2007 NESC for the applicable standard of construction.

FPL designs its distribution facilities based on the loading as specified in the 2007 National Electrical Safety Code (NESC) using Grade B Construction. The NESC specifies three weather conditions to consider for calculating loads:

- Rule 250 B. Combined ice and wind loading (FPL current standard construction)
- Rule 250 C. Extreme wind loading
- Rule 250 D. Extreme ice with concurrent wind loading (this is a new loading condition in the 2007 NESC that will not impact FPL).

Prior to the hardening effort, FPL has been designing overhead distribution using the loads calculated under Rule 250 B. This addendum provides the designers the information needed to design projects using Rule 250 C, grade B (extreme wind loading) to calculate the loads, when it is determined that the particular pole line is to be designed to meet extreme wind loading (EWL) requirements. The NESC extreme wind map identifies 7 Basic Wind Speeds throughout Florida. In order to minimize the design effort to accommodate these 7 wind speeds, FPL has created 3 wind regions with designated wind speeds of 105 mph, 130 mph, and 145 mph. The Map shown in Figure 4.2.2-1 identifies the counties within our service territory that fall into the 3 wind regions. Whenever extreme wind designs are deployed, they will be designed to the identified wind speed for the location of the work to be done.

4.2.2 Poles Structures and Guying

A. Poles, General Information

1. Pole Brands

The pole brand includes the pole length & class, the type of treatment, the manufacturer, the date the pole was manufactured and FPL.

Wood Poles –This brand is located at 15' from the bottom of the pole.

Square (cast) Concrete poles – the brand up until 2007 was located 15' from the bottom. New specifications now require the brand to be at 20' from the bottom of the pole.

Distribution Spun Concrete poles – The brand information is on a metal tag that is located 20' from the bottom of the pole.

2. Design Specifications

The NESC specifies 3 Grades of construction: Grade B, Grade C, and Grade N with Grade B being the strongest of the three. These grades of construction are the basis for the required strengths for safety. FPL uses Grade B Construction for all distribution facilities. This means that the calculated loads must be multiplied by "Load Factors" and the calculated or specified strength of structures must be multiplied by "Strength Factors". The Strength multiplied by the Strength Factor (SF) must be equal to, or greater than the Load multiplied by the Load Factor (LF).

Equation 4.2.2-1

Strength x Strength Factor \geq Load x Load Factor

Table 4.2.2 – 1 below lists the Load Factors and Strength Factors for Grade B Construction from NESC Table 253-1 and Table 261-1A.

Strength of	Strength Factor
Wood Poles	0.75
Concrete Poles	1.00
Composite Poles	1.00
Support Hardware	1.00
Guy Wire	0.90
Guy Anchor and Foundation	1.00
	Load Factor
Extreme Wind Loads	1.00

Table 4.2.2 - 1	Extreme Wind
Strength Factors	& Load Factors

FPL uses the NESC Extreme Wind Loading for its design criteria. As such, identify the wind speed for the job location and determine the load based on the following formula.

Equation 4.2.2-2

Load in pounds = $0.00256 \times (V_{mph})^2 \times k_z \times G_{RF} \times I \times C_f \times A(ft^2)$

Where,

0.00256 - Velocity-Pressure Numerical Coefficient

- V -Velocity of wind in miles per hour (3 second gust)
- kz -Velocity Pressure Exposure Coefficient
- G_{RF} -Gust Response Factor
- I -Importance Factor, 1.0 for utility structures and their supported facilities.
- C_f Force Coefficient (Shape Factor) For Wood & Spun Concrete Poles = 1.0 For Square Concrete Poles = 1.6
- A Projected Wind Area, ft².

The NESC provides formulas for calculating k_z and G_{RF} . However, Tables are also provided and Table 4.2.2-2 below shows the values needed for most distribution structures.

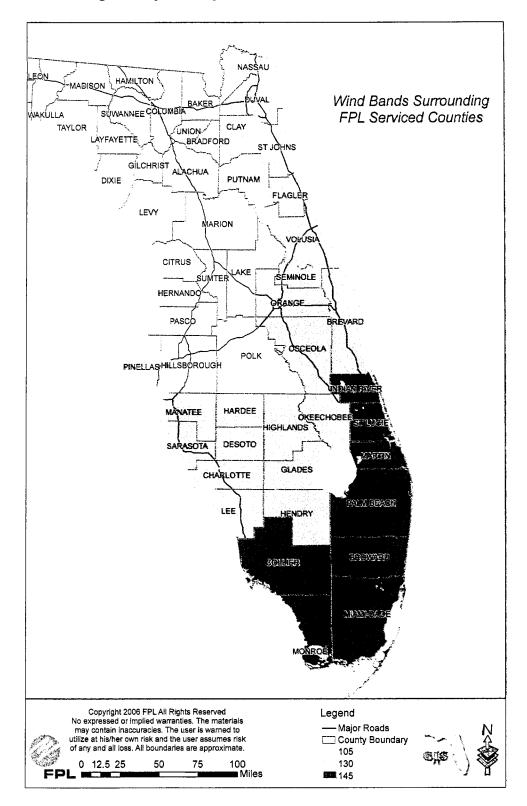
	Stru	cture	Equi	oment		Wire	
				-		G _{RF} ⁴	G _{RF} ⁴
Height (h)	k _z 1	G _{RF} ⁴	k_z^2	G _{RF} ⁵	k _z ³	(L ≤ 250 ft)	(250 < L ≤ 500 ft)
≤ 33	0.9	1.02	1.0	1.02	1.0	0.93	0.86
>33 to 50	1	0.97	1.1	0.97	1.1	0.88	0.82
>50 to 80	1.1	0.93	1.2	0.93	1.2	0.86	0.80

Table 4.2.2-2 Velocity pressure Exposure coefficient (k_z) and Gust Response Factors (G_{RF})

1. h for the pole k_z is to be the height of the pole above ground

2. h for the equipment k_z is the height of the center of the area of the equipment above ground

3. h for the wire k_z is the height of the wire above ground


4. h for the G_{RF} is the height above ground for the structure and the wire

5. h for the G_{RF} for the equipment is based on the height of the structure above ground

6. L = design wind span (average of span on both sides of structure)

The wind speeds to be used are shown in Figure 4.2.2 - 1

Figure 4.2.2 –1 Wind Regions by County

3. Wood Pole Strength

The strength of wood poles is specified in the American National Standard – ANSI 05.1-2002. In addition to strength of wood poles, this standard specifies dimensions, shape, sweep spiral grain, knots, and many other characteristics of wood poles.

A change from previous calculations shown in the DERM for allowable pole strength is that the circumference to be used is now considered to be the ground line circumference rather than the "fixity" point circumference. Another change is the strength factor to be used. For extreme wind the strength factor for wood poles is 0.75 (see Table 4.2.2-1)

Example 4.2.2-1:

Determine the pole strength for wind loading on a 45'/2 wood pole that is set 7 feet.

Equation 4.2.2-3 $M_r = 0.000264 fC^3$

Where

Mr	=	Moment (ultimate or long term bowing) measured in foot-pounds
f	=	Fiber Stress (8000 or 1000 psi for Southern Yellow Pine)
С	=	Circumference at ground Line (in this example circumference = 40.1 inches)
M _r	=	0.000264 x (8,000) x (40.1) ³ = 136,184 ftlbs.

This is the strength for the 45'/2 wood pole. However for design, apply the NESC Strength Factor of 0.75.

The strength of the 45'/2 wood pole = 136,184 x 0.75 = 102,138 ft.-lbs.

4. Concrete Pole Strength

The strength of concrete poles is based on the application of a designated load at a specified location on the pole. This load is measured in KIPS = 1,000 pounds per KIP. A 5 KIP pole is rated based on applying 5,000 pounds of load at two feet below the top of the pole. Most distribution poles are rated by applying the load at two feet down from the top. However, for the type "O", "S", and "SU" poles, this load is applied at one foot down from the top. Like wood poles, concrete poles have a continuous rating (loads that are

always on the pole) and a temporary rating (wind loads that come and go). Spun concrete poles (unlike other FPL distribution concrete poles) are designated by their KIP rating rather than a type (i.e., O, S, SU, III, III-G, III- H). Table 4.2.2-3 List the ratings (in KIPS) for the various concrete poles.

	Temporary	Continuous
Pole Type	Rating	Rating
0	0.85	0.26
S & SU	0.90	0.30
111	1.30	0.56
III-A	1.30	0.60
III-G	2.40	0.90
і ІІ-Н	4.20	1.20
12 KIP (square)	8.40	2.40
Spun Concrete		
4.0 KIP	4.00	1.73
4.7 KIP	4.70	2.54
5.0 KIP	5.00	3.03

Table 4.2.2-3 Concrete Pole Ratings

To calculate the strength of the pole use the following:

For O, S, SU, Rating (Table 4.2.2-3) x (Pole Length -Mr = setting depth - 1 foot) Example: 35' Type SU for extreme wind loading 0.9 KIPS x (35 - 7.5 - 1) = 23,850 ft-lbsМr = For III, III-A, III-G, III-H Mr = Rating (Table 4.2.2-3) x (Pole Length setting depth - 2 feet) Example: 50' Type III-H for extreme wind loading 4.2 KIPS x (50 - 11.5 - 2)) = 153,300 ft-Mr = lbs For Spun Concrete Mr Rating (Table 4.2.2-3) x (Pole Length – Ξ setting depth - 2 feet)

Example: 50'/ 4.7 KIP for extreme wind loading

$$M_r$$
 = 4.7 KIPS x (50 – 11 - 2) = 173,900 ft-lbs

For pre-stressed concrete poles, the NESC extreme wind strength factor = 1.0. The values calculated above will be the correct strength for concrete poles.

B. Wind Loading

1. Wind Loading on poles.

To calculate the wind load on the pole:

a. Calculate the area of the pole exposed to the wind

Equation 4.2.2-4
$$A = H_1(\frac{a+b}{2})(\frac{1}{12}")$$

- A = projected area above ground line in square feet.
- H_1 = the pole's height above the ground line in feet.

For wood and spun concrete poles,

- a = diameter at top of pole in inches.
- b = diameter of pole at ground line in inches.

For square concrete poles, dimensions a and b are the widths of one face at top and ground line respectively.

b. Calculate the center of the area.

Equation 4.2.2-5
$$H_{CA} = \frac{H_1(b+2a)}{3(b+a)}$$

 H_{CA} is used to calculate the ground line moment due to the wind force.

c. Calculate the wind force acting on the area (see Equation 4.2.2-2 with explanation of terms)

Load in pounds = $0.00256 \cdot (V_{mph})^2 \cdot k_z \cdot G_{RF} \cdot I \cdot C_f \cdot A(ft^2)$

Example Calculation for Wood Pole

Pole Length/Class =	45'/2
Setting depth =	7'
Wind Region =	145 mph

Projected Area. $A = H_1(ft.)x \frac{1 ft}{12 in} x \left[\frac{a+b(inches)}{2}\right]$

The circumference at the top of a 45'/2 pole is 25",

$$a = \frac{25''}{\pi} = 7.96'$$

The circumference at 38 ft.below the pole top 40.1", $b = \frac{40.1"}{\pi} = 12.76"$ $A = \frac{38}{12}x \left[\frac{7.96+12.76}{2}\right] = 32.81 \, sq. ft.$ Height of center of area, $H_{CA} = \frac{H_1(b+2a)}{3(b+a)} = \frac{38(12.76+15.92)}{3(12.76+7.96)}$ $H_{CA} = Moment Arm = 17.53 \ ft.$

Wind Load on Pole =

 $0.00256 \times (145)^2 \times 1.0 \times 0.97 \times 1.0 \times 1.0 \times 32.81 =$ **1713 lbs** Where: k_z is based on h = 38'; $k_z = 1.0$ G_{RF} is based on h = 38'; $G_{RF} = 0.97$ $C_f = 1.0$ for wood and spun concrete poles $C_f = 1.6$ for square concrete poles

This load must then be multiplied by the Load Factor, which for extreme wind equals 1.0 and the moment arm to obtain the Ground Line Moment (M_P) of the wind acting on the pole only.

Equation 4.2.2-6

 M_P = Wind Load x Load Factor x Moment Arm. M_P = 1713 lbs x 1 x 17.53 ft. = 30,030 ft. lbs.

The strength of this pole, previously calculated is 102,138 ft.-lbs. The pole itself has used up 29% (30,030/102,138) of its capacity for 145 mph extreme wind. Subtracting the wind load from the strength leaves 72,108 ft-lbs (102,138 - 30,030) for conductors and other attachments.

Example Calculation for Square Concrete Pole

Pole Length/Class =	50'/III-H
Setting depth =	11.5'
Wind Region =	145 mph

Projected Area. $A = H_1(ft.)x \frac{1 ft}{12 in} x \left[\frac{a+b(inches)}{2}\right]$	
---	--

From Table H, the width of the pole at the top $a = 9.00^{\circ}$ The width at ground line, $b = 15.75^{\circ}$

$$A = \frac{38.5}{12} x \left[\frac{15.75 + 9.00}{2} \right] = 39.70 \, sq. \, ft.$$

Height of center of area, $H_{CA} = \frac{H_1(b+2a)}{3(b+a)} = \frac{38.5(15.75 + 18.00)}{3(15.75 + 9.00)}$

 $H_{CA} = Moment Arm = 17.5 ft.$

Wind Load on Pole =

 $0.00256 \times (145)^2 \times 1.0 \times 0.97 \times 1.0 \times 1.6 \times 39.7 = 3317$ lbs Where: k_z is based on h = 38.5'; k_z = 1.0 G_{RF} is based on h = 38.5'; G_{RF} = 0.97 C_f = 1.0 for wood and spun concrete poles C_f = 1.6 for square concrete poles

This load must then be multiplied by the Load Factor, which for extreme wind equals 1.0 and the moment arm to obtain the Ground Line Moment (M_P) of the wind acting on the pole only.

 M_P = Wind Load x Load Factor x Moment Arm. M_P = 3317 lbs x 1 x 17.5 ft. = 58,040 ft. lbs.

The strength of this pole, previously calculated is 153,300 ft.-lbs. The pole itself has used up 38% (58,040/153,300) of its capacity for 145 mph extreme wind. Subtracting the wind load from the strength leaves 95,260 ft-lbs (153,300 – 58,040) for conductors and other attachments. Example Calculation for Spun Concrete Pole

Pole Length/Class =	50'/4.7 KIP
Setting depth =	11'
Wind Region =	145 mph

Projected Area. $A = H_1(ft.)x$	1 ft	a+b(inches)
I = I = I = I = I = I = I = I = I = I =	12 inc. x	2

From Table H, the diameter of the pole at the top a = 9.55" The diameter at ground line, b = 16.57"

$$So A = \frac{39}{12} x \left[\frac{9.55 + 16.57}{2} \right] = 42.45 \, sq. \, ft.$$

Height of center of area, $H_{CA} = \frac{H_1(b + 2a)}{3(b + a)} = \frac{39(16.57 + 19.1)}{3(16.57 + 9.55)}$
 $H_{CA} = Moment \, Arm = 17.75 \, ft.$

Wind Load on Pole = $0.00256 \times (145)^2 \times 1.0 \times 0.97 \times 1.0 \times 1.0 \times 42.45 = 2,216$ lbs

Where: k_z is based on h = 39'; $k_z = 1.0$ G_{RF} is based on h = 39'; $G_{RF} = 0.97$ $C_f = 1.0$ for wood and spun concrete poles $C_f = 1.6$ for square concrete poles

This load must then be multiplied by the Load Factor, which for extreme wind equals 1.0 and the moment arm to obtain the Ground Line Moment (M_P) of the wind acting on the pole only.

M_P = Wind Load x Load Factor x Moment Arm.

 $M_P = 2,216$ lbs x 1 x 17.75 ft. = 39,341 ft. lbs.

The strength of this pole, previously calculated is 173,900 ft.-lbs. The pole itself has used up 23% (39,341/173,900) of its capacity for 145 mph extreme wind. Subtract the wind load from the strength leaves 134,559 ft-lbs (173,900 – 39341) for conductors and other attachments.

Table 4.2.2-4 Lists the allowable groundline moments for various pole sizes.

Wood Poles (in earth)							
Pole Size	Setting	······································	Moment for At	tachments			
1 010 0120	Depth		gnated Wind				
		105 mph	130 mph	145 mph			
35/5	6	32178	28738	26324			
35/4	6	42429	38656	36007			
40/5	6.5	36936	31956	28460			
40/4	6.5	48263	42812	38986			
40/3	6.5	61567	55646	51489			
40/2	6.5	76998	70607	66119			
45/3	7	66363	58624	53190			
45/2	7	86391 78000 72108					
50/2	7	93535 82611 74941					
55/2	7.5	99693	99693 86174 76682				
60/1	8	131634	113020	99951			

Table 4.2.2-4 Allowable Ground Line Moments

Square Concrete Poles						
	•	(in earth)				
Pole Size	Setting	Allowable	Moment for At	tachments		
	Depth		gnated Wind	Speeds		
		105 mph	<u>130 mph</u>	145 mph		
35/Type O	7	15426	11417	8602		
35/SU	7.5	15323	10778	7588		
35/III-G	9	48907	<u>44</u> 275	41022		
40/III-A	10	23777	17050	12327		
40/III-G	9	56781	49950	45154		
40/III-H	11.5	96450	88537	82981		
40/12 KIP	13	191480 181610 174681				
45/III-A	10	24142	7127			
45/III-G	9	62676	52592	45511		
45/III-H	11.5	110053	98198	89874		
45/12 KIP	13.5	222175	208520	198933		
50/III-A	10	24111	10635	1173		
50/III-G	9.5	67701	54539	45297		
50/III-H	11.5	123164	107106	95831		
50/12 KIP	13.5	252789	233067	219219		
55/III-G	9.5	72176	55004	42947		
55/III-H	12	133764	113283	98902		
55/12 KIP	14	280155	254873	237121		
60/III-H	12	144138	117993	99637		
60/12 KIP	14	308835	276454	253719		
65/III-H	12	149613	115197	91032		

Table 4.2.2-4 Allowable Ground Line Moments (cont.)

Spun Concrete Poles (in earth)							
Pole Size Setting Allowable Moment for Attachments Depth at Designated Wind Speeds							
105 mph 130 mph 145 mph							
50/4.7 KIP	11	153270 142277 13455					
55'/4.7 KIP	12	167116 153482 143910					
60'/5.0 KIP	12.5	190953 171477 157803					
65'/5.0 KIP	13	202928 177845 160233					
70'/5.0 KIP	13.5	214369	183392	161642			

2. Wind Loading on conductors.

The wind loading on conductors is calculated in a similar method to the wind loading on the pole. The load in pounds per conductor uses Equation 4.2.2-2 with the appropriate factors for the attachment heights a shown in Table 4.2.2-2.

To calculate the wind load on the conductor:

- a. Determine the wind region (105 mph, 130 mph, or 145 mph)
- b. Calculate the attachment height to determine the k_z and G_{RF} (Table 4.2.2-2)
- c. The Importance Factor (I) and the Force Coefficient (C_f) are both equal to 1 for conductors.
- d. Calculate the area per foot of conductor
- e. Calculate the wind load per foot of conductor
- f. Calculate the total wind load on the conductor for the length of conductor exposed to the wind (Average of the Spans on either side of the pole).

Example:

Determine the wind load on a 170 foot length [(180'span + 160'span)/2] of 568.3 ACAR conductor that is attached at 30 feet above the ground in the 145 mph wind region.

From Table 4.2.2-2:

$$K_z = 1.0$$

 $G_{RF} = 0.93$

Calculate the area per foot of conductor Diameter = 0.879 inches

For a 1 foot length of conductor: *Projected Area*.

$$A = 1(ft.)x \left[\frac{Conductor \ Diameter(inches)}{12(inches / ft)} \right]$$

$$A = 1(ft.)x \left[\frac{0.879(inches)}{12(inches / ft)} \right]$$

A = 0.073 Square Ft. for each foot of span length

The wind load in pounds per foot of span length (from Equation 4.2.2-2) is

Load in pounds = 0.00256 x (Vmph)² x $k_z \times G_{RF} \times I \times C_f \times A(ft^2)$

Load in pounds = $0.00256 \times (145)^2 \times 1 \times .93 \times 1 \times 1 \times .073$ Load = 3.667 pounds per foot

Total Load	=	Length of conductor x Load per foot of
		conductor
	=	170 x 3.667
Total Load	=	623.3 pounds

This is the load that the wind exerts on the conductor attached at 30 above ground. This load will have to be applied to the pole to determine if the pole has the strength to support the load.

The wind load per foot of conductor for the three wind regions can be found in Table 4.2.2-5, Table 4.2.2- 6 and Table 4.2.2-7.

3. Wind Loading on equipment.

The wind loading on equipment is calculated in a similar method to the wind loading on the pole and the conductors. The load in pounds uses Equation 4.2.2-2 with the appropriate factors for the attachment heights a shown in Table 4.2.2-2 and the area of the equipment.

To calculate the wind load on the equipment:

- a. Determine the wind region (105 mph, 130 mph, or 145 mph)
- b. Calculate the attachment height to determine the k_z (Table 4.2.2-2)

(For equipment, use the top mounting hole of the equipment bracket.)

- c. Use the height of the pole above ground to determine G_{RF} (Table 4.2.2-2)
- d. The Importance Factor (I) is equal to 1.
- e. The Force Coefficient (C_f) is equal to 1.0 for cylindrical equipment and 1.6 for rectangular equipment.
- f. Calculate the area of the equipment
- g. Calculate the wind load on the equipment

Example:

Determine the wind load on a 50 kVA transformer mounted at 28 feet on a pole that is 38 feet above the ground in the 145 mph wind region.

From Table 4.2.2-2:

 $K_z = 1.0$ (Equipment $\leq 33'$ above ground) $G_{RF} = 0.97$ (Equipment based on Pole height > 33' to 50' above ground) $C_f = 1.0$ A = 4.44 square feet

The wind load in pounds from Equation 4.2.2-2 is

Load in pounds = $0.00256 \times (Vmph)^2 \times k_z \times G_{RF} \times I \times C_f \times A(ft^2)$

Load in pounds = $0.00256 \times (145)^2 \times 1 \times .97 \times 1 \times 1 \times 4.44$ Load = 231.8 pounds

This is the load that the wind exerts on the transformer attached at 28 feet above ground. This load will have to be applied to the pole to determine if the pole has the strength to support the load. The wind load on equipment for the three wind regions can be found in Table 4.2.2-5 (105 mph), Table 4.2.2-6 (130 mph) and Table 4.2.2-7 (145 mph).

Table 4.2.2-5 Wind Force on Conductors & Equipment

	CONDUCT	UNU		
	ļ	Force in pounds per foot Conductor Height Above Ground		
Conductor	Diameter	<u>≤33'</u>	>33' to 50'	>50' to 80'
568.3 MCM ACAR	0.879	1.923	2.001	2.134
3/0 AAAC	0.502	1.098	1.143	1.218
1/0 AAAC	0.398	0.871	0.906	0.966
#4 AAAC	0.250	0.547	0.569	0.607
3/0 TPX	1.238	2.708	2.819	3.005
1/0 TPX	1.026	2.244	2.336	2.490
6 DPX	0.496	1.085	1.129	1.204
CATV				
Feeder w/1/4"Msgnr	0.750	1.641	1.708	1.820
Trunk w/1/4"Msgnr	1.000	2.187	2.277	2.427
Telephone				
100 pr (24 GA BKMS) Self-Support	0.960	2.100	2.186	2.330
600 pr (24 GA BKMA w/3/8" Msgnr	2.295	5.020	5.225	5.571

Wind Speed ■105 mph CONDUCTORS

Wind Speed = 105 mph EQUIPMENT

	LQUIFI				
		Pole Height	in same range a	as Equipment	Pole height
	Force in	>33' to 50'			
		Boit H	leight Above G		Equipment Ht
Transformers	Sq. Ft.	≤33'	>33' to 50'	>50' to 80'	≤33'
25	3.75	108.0	112.9	118.1	102.7
50	4.44	127.8	133.7	139.9	121.6
75	4.81	138.5	144.9	151.5	131.7
100	6.55	188.6	197.3	206.3	179.3
167	10.83	311.8	326.1	341.1	296.5
Capacitors					
Switched (1)	19.91	573.2	599.6	627.1	545.1
Fixed (1)	16.89	486.2	508.6	532.0	462.4
Reclosers					
1 phase	4.00	115.2	120.5	126.0	109.5
3 phase (1)	16.89	486.2	508.6	532.0	462.4
Automation Switches					
Joslyn	8.89	255.9	267.7	280.0	243.4
Cooper	10.56	304.0	318.0	332.6	289.1
S&C	15.60	449.1	469.8	491.4	427.1
		Force in	pounds per foo	ot of riser	
Riser - PVC U-Guard	Height Above Ground				
2" U-Guard	0.19	5.4	5.6	5.9	5.1
5" U-Guard	0.46	12.8	13.8	14.4	13.2

(1) The 1.6 C_f factor for rectangular shape is included in the Area shown for Capacitors and 3 Phase Recloser

Table 4.2.2-6 Wind Force on Conductors & Equipment

CONDUCTORS							
	Force in pounds per foot						
		Condu	ctor Height Aboy	ve Ground			
Conductor	Diameter	≤33'	>33' to 50'	>50' to 80'			
568.3 MCM ACAR	0.879	2.947	3.068	3.270			
3/0 AAAC	0.502	1.683	1.752	1.868			
1/0 AAAC	0.398	1.334	1.389	1.481			
#4 AAAC	0.250	0.838	0.872	0.930			
3/0 TPX	1.238	4.151	4.321	4.606			
1/0 TPX	1.026	3.440	3.581	3.817			
6 DPX	0.496	1.663	1.731	1.845			
CATV							
Feeder w/1/4"Msgnr	0.750	2.515	2.617	2.791			
Trunk w/1/4"Msgnr	1.000	3.353	3.490	3.721			
Telephone							
100 pr (24 GA BKMS) Self-Support	0.960	3.219	3.350	3.572			
600 pr (24 GA BKMA w/3/8" Msgnr	2.295	7.695	8.009	8.539			

Wind Speed = 130 mph CONDUCTORS

Wind Speed = 130 mph EQUIPMENT

	EQUIFIN				
		Pole Heigh	t in same range	as Equipment	Pole height
	Force	>33' to 50'			
		Bol	t Height Above (Ground	Equipment Ht
Transformers	Sq. Ft.	≤33'	>33' to 50'	>50' to 80'	≤33'
25	3.75	165.5	173.1	181.1	157.4
50	4.44	195.9	205.0	214.4	186.3
75	4.81	212.3	222.0	232.2	201.9
100	6.55	289.0	302.4	316.3	274.9
167	10.83	477.9	499.9	522.9	454.5
Capacitors					
Switched (1)	19.91	878.6	919.1	961.3	835.5
Fixed (1)	16.89	745.3	779.7	815.5	708.8
Reclosers					
1 phase	4.00	176.5	184.7	193.1	167.9
3 phase (1)	16.89	745.3	779.7	815.5	708.8
Automation Switches					
Joslyn	8.89	392.3	410.4	429.2	373.1
Cooper	10.56	466.0	487.5	509.9	443.2
S&C	15.60	688.4	720.1	753.2	654.7
		Force	in pounds per fo	oot of riser	
Riser - PVC U-Guard		Height Above Ground			
2" U-Guard	0.19	8.3	8.7	9.1	7.9
5" U-Guard	0.46	20.2	21.2	22.1	19.2

(1) The 1.6 C₁ factor for rectangular shape is included in the Area shown for Capacitors and 3 Phase Recloser

Table 4.2.2-7 Wind Force on Conductors & Equipment

Wind Speed = 145 mph CONDUCTORS

	Force in pounds per foot						
	Conductor Heigh						
Conductor	Diameter	≤33'	>33' to 50'	>50' to 80'			
568.3 MCM ACAR	0.879	3.667	3.816	4.069			
3/0 AAAC	0.502	2.094	2.180	2.324			
1/0 AAAC	0.398	1.660	1.728	1.842			
#4 AAAC	0.250	1.043	1.085	1.157			
3/0 TPX	1.238	5.164	5.375	5.731			
1/0 TPX	1.026	4.280	4.455	4,749			
6 DPX	0.496	2.069	2.154	2.296			
CATV							
Feeder w/1/4"Msgnr	0.750	3.129	3.256	3.472			
Trunk w/1/4"Msgnr	1.000	4.171	4.342	4.629			
Telephone							
100 pr (24 GA BKMS) Self-Support	0.960	4.005	4.168	4.444			
600 pr (24 GA BKMA w/3/8" Msgnr	2.295	9.573	9.964	10.623			

Wind Speed = 145 mph EQUIPMENT

	Edon w		n same range a	as Equipment	Pole height			
		Force in	>33' to 50'					
		Bolt H	Equipment Ht					
Transformers	Sq. Ft.	≤33'	>33' to 50'	>50' to 80'	≤33'			
25	3.750	205.9	215.4	225.3	195.8			
50	4.440	243.8	255.0	266.7	231.8			
75	4.810	264.1	276.2	288.9	251.1			
100	6.550	359.6	376.2	393.4	342.0			
167	10.830	594.6	622.0	650.5	565.4			
Capacitors								
Switched (1)	19.910	1093.1	1143.4	1195.9	1039.5			
Fixed (1)	16.890	927.3	970.0	1014.5	881.8			
Reclosers								
1 phase	4.000	219.6	229.7	240.3	208.8			
3 phase (1)	16.890	927.3	970.0	1014.5	881.8			
Automation Switches		• <u> </u>						
Joslyn	8.890	488.1	510.6	534.0	464.1			
Cooper	10.560	579.7	606.5	634.3	551.3			
S&C	15.600	856.4	895.9	937.1	814.5			
		Force in pounds per foot of riser						
Riser - PVC U-Guard		He						
2" U-Guard	0.188	10.3	10.8	11.3	9.8			
5" U-Guard	0.458	25.2	26.3	27.5	23.9			

 5" U-Guard
 0.458
 25.2
 26.3
 27.5

 (1) The 1.6 C_f factor for rectangular shape is included in the Area shown for Capacitors and 3 Phase Recloser

The methodology to determine if a pole has the strength for a specific design or to determine the maximum span distance a specific size pole can support for framing, is shown in the examples below. The calculations are based on using the new tables for extreme wind loading. Note that the ground line is now the point used for the calculations rather than the "fixity" point.

Example:

Conductor: 3-568.3 MCM ACAR and #3/0 AAAC - Neutral Framing: Modified Vertical and single phase transformer Transformer: 50 kVA CATV: Trunk Telephone: 1-600 pair, 24 gauge, BKMA Average Span Length = 150 feet Attachment heights must be calculated using the framing identified and the pole setting depths as shown in table 4.2.2-4.

Case I: Determine if a 45'/2 wood pole is strong enough for this design.

Calculate the moments on the pole.

			Wind Load		Avg.		Height		
CONDUCTORS	Number of		Per Ft.		Span		Above		
	Conductors	x	(Table 4.2.2-7)	x	Length	x	Ground	=	MOMENT (ftlb.)
Primary									
568.3	1	X	3.816	х	150	x	39.00	8	22324
568.3	1	х	3.816	Х	150	х	36.60	8	20950
568.3	1	Х	3.816	Х	150	х	34.60	=	19805
Neut., Sec., St Lt	· · · · · · · · · · · · · · · · · · ·								
3/0	1	х	2.094	х	150	x	29.4	=	9235
CATV - PROPOSED									
Trunk	1	х	4.171	х	150	х	23.6	8	14765
TELEPHONE									
600 pr 24 Ga BKMA	1	х	9.573	х	150	x	22.6	8	32452
					TOTAL	MOMENT	DUE TO CONDUCTO	R 🖬	119531
EQUIPMENT			Wind Load				Height		
			Force in lbs				Above		
							Ground	8	MOMENT (ftlb.)
TRANSFORMERS	(SEE TABLE FO	DR IN	STRUCTIONS)						
1 Phase	50 kva		231.8		х		29.9	8	6931
					TOTAL	MOMENT		Ē	6931 ftlb.
								_	400400 6 14
						TOTAL	ALL MOMENTS	=	126462 ftlb.

From Table 4.2.2-4, the allowable moment for attachments to a 45'/2 wood pole in a 145 mph wind region is 72,108 ft-lbs. A 45'/2 wood pole cannot be used.

Case II: Determine if a 50'/III-H square concrete pole is strong enough design

Table 4.2.2-4 shows a revised setting depth for square concrete poles. The new setting depth is generally 5 feet deeper than previous. A 50'/III-H square concrete pole is set 11.5 feet deep.

Re-calculate the moments based on attachment heights.

			Wind Load		Avg.		Height		
<u>CONDUCTORS</u>	Number of		Per Ft.		Span		Above		
	Conductors	x	(Table 4.2.2-7)	х	Length	x	Ground	=	MOMENT (ftlb.)
Primary									
568.3	1	х	3.816	х	150	х	39.50	=	22610
568.3	1	x	3.816	X	150	х	37.08	8	21225
568.3	1	х	3.816	Х	150	х	35.08	#	20080
Neut., Sec., St Lt									
3/0	1	х	2.094	х	150	х	29.92	=	9398
CATV - PROPOSED									
Trunk	1	х	4.171	х	150	х	24.08	=	15066
TELEPHONE									
600 pr 24 Ga BKMA	1	x	9.573	х	150	x	23.08	=	33142
					TOTAL M	OMENT	DUE TO CONDUCTOR	=	121519
EQUIPMENT			Wind Load				Height		
			Force in lbs				Above		
							Ground	8	MOMENT (ftlb.)
TRANSFORMERS	(SEE TABLE FO	DR IN	STRUCTIONS)						
1 Phase	50 kva		231.8		x		30.42		7051
					TOTAL M	OMENT	DUE TO EQUIPMENT	•	7051 ftlb.
						TOTAL	ALL MOMENTS	=	128571 ftlb.

From Table 4.2.2-4, the allowable moment for attachments to a 50'/III-H square concrete pole in a 145 mph wind region is 95,831 ft-lbs. A 50'/III-H square concrete pole cannot be used.

Case III: Determine if a 50'/4.7 KIP spun concrete pole is strong enough for this design.

Table 4.2.2-4 shows the setting depths for spun concrete poles. A 50'/4.7 KIP spun concrete pole is set 11 feet deep.

Re-calculate the moments based on attachment heights.

			Wind Load		Avg.		Height			
CONDUCTORS	Number of		Per Ft.		Span		Above			
	Conductors	х	(Table 4.2.2-7)	х	Length	X	Ground	=	MOMENT	(ftlb.)
Primary										
568.3	1	х	3.816	х	150	x	40.00	8	22896	
568.3	1	х	3.816	Х	150	х	37.58	8	21511	
568.3	1	Х	3.816	Х	150	x	35.58	=	20366	
Neut., Sec., St Lt										
3/0	1	х	2.094	х	150	x	30.42	=	9555	
CATV - PROPOSED										
Trunk	1	х	4.171	х	150	х	24.58	8	15378	
TELEPHONE										
600 pr 24 Ga BKMA	11	х	9.573	х	150	x	23.58	8	33860	
					TOTAL N	NOMENT	DUE TO CONDUCTOR	2 =	123566	
EQUIPMENT			Wind Load				Height			
			Force in lbs				Above			
							Ground	8	MOMENT	(ftlb.)
TRANSFORMERS	(SEE TABLE FO	DR IN	STRUCTIONS)							
1 Phase	50 kva		231.8		х		30.92	=	7167	
					TOTAL N	NOMENT	DUE TO EQUIPMENT	8	7167	ftlb.
						TOTAL	ALL MOMENTS	=	130733	ftlb.

From Table 4.2.2-4, the allowable moment for attachments to a 50'/4.7 KIP spun concrete pole in a 145 mph wind region is 134,559 ft-lbs. A 50'/4.7 KIP spun concrete pole can be used.

The maximum span distance for each of the poles above can be determined.

Determine the moment due to 1 foot of conductor moments Subtract the moment due to the transformer from the total allowable moment

Divide the remaining allowable moment by the total 1 foot conductor moments.

Maximum span dista	nce ≈		82 1	ft.	1					
Conductor Moments p			797		_					
Available for conductors		65177								
Transformer Moment		6931								
Maximum Allowable m	oment on 45'/2 po	íe ≈	72108							
	<u></u>					TOTAL	ALL MOMENTS	=	7728	ftIb.
· · · · · · · · · · · · · · · · · · ·					TOTAL N	OMENT	DUE TO EQUIPMENT	=	6931	ftlb.
TRANSFORMERS 1 Phase	(SEE TABLE FO 50 kva	R IN	STRUCTIONS) 231.8		×		29.9	=	6931	
EQUIPMENT			Wind Load Force in Ibs				Height Above Ground	=	MOMENT	(ftlb.)
						OMENT	DUE TO CONDUCTOR	=	797	
T ELEPHONE 500 pr 24 Ga BKMA	1	<u>×</u>	9.573	x	1	x	22.6	=	216	
Trunk	1	×	4.171	x	1	x	23.6	=	98	
Neut., Sec., St Lt 3/0 CATV - PROPOSED	1	_ <u>x</u> _	2.094	x	1	×	29.4	-	62	
568.3	1	<u>×</u>	3.816	×	1	X	34.60	=	132	
568.3	11	x	3.816	х	1	×	36.60	=	140	
Primary 568.3	1	×	3.816	x	1	x	39.00	=	149	
	Conductors	×	(Table 4.2.2-7)	x	Length	x	Ground	=	MOMENT	(ftlb.)
CONDUCTORS	Number of		Wind Load Per Ft.		Avg. Span		Height Above			

····			Wind Load		Avg.		Height		
CONDUCTORS	Number of		Per Ft.		Span		Above		
	Conductors	х	(Table 4.2.2-7)	X	Length	×	Ground		MOMENT (ftlb
Primary									
568.3	1	X	3.816	х	1	x	39.50	=	151
568.3	1	х	3.816	х	1	x	37.08	=	141
568.3	1	х	3.816	Х	1	х	35.08	H	134
Neut., Sec., St Lt									
3/0	1	х	2.094	х	1	x	29.92	=	63
CATV - PROPOSED									
Trunk	1	X	4.171	х	1	x	24.08	=	100
TELEPHONE									
600 pr 24 Ga BKMA	1	x	9.573	х	1	x	23.08	=	221
					TOTAL M	OMENT	DUE TO CONDUCTOR	<u>२ =</u>	810
EQUIPMENT			Wind Load				Height		
			Force in lbs				Above		
							Ground	=	MOMENT (ftlb
TRANSFORMERS	(SEE TABLE FO	DR İN	STRUCTIONS)						
1 Phase	50 kva		231.8		x		30.42	=	7051
					TOTAL M	OMENT	DUE TO EQUIPMENT	=	7051 ftlb.
· · · · ·						TOTAL		_	7064 64 14
					-	IOTAL	ALL MOMENTS	=	7861 ftlt
Maximum Allowable m	oment on 50/III-H	l pole	= 95831						
Transformer Moment			7051						
Available for conductor	rs		88780						
Conductor Moments p			810						

Maximum span distance =	110 ft.
Conductor Moments per foot of span =	810
Available for conductors	88780

Maximum span dista			155 1	-	1					
Conductor Moments p			824							
Available for conductors		127392								
Maximum Allowable moment on 50'/4.7 KIP po Transformer Moment		7167								
Aaximum Allowable m	oment on 50'/4 7	KIP r	134559		<u> </u>					
						TOTAL	ALL MOMENTS	=	7991	ftlb
	····				TOTAL N	IOMENT	DUE TO EQUIPMEN	Ť =	7167	ftlb.
TRANSFORMERS 1 Phase	(SEE TABLE FC 50 kva)K IN	231.8		x		30.92	=	7167	
							Ground	=	MOMENT	(ftIb.
			Force in lbs				Above			
			Wind Load				Height	<u> </u>	024	
)R =	824	
600 pr 24 Ga BKMA	1	x	9.573	x	1	x	23.58	=	226	
FELEPHONE			.	<u> </u>		<u> </u>				
CATV - PROPOSED Trunk	4	x	4.171	x	1	x	24.58	=	103	
3/0	1	x	2.094	x	1	х	30.42	=	64	
Neut., Sec., St Lt		_							<u></u>	
568.3	1	- <u>x</u>	3.816	x	1	X	35.58	=	136	
568.3 568.3	1	x x	3.816	x	1	X	37.58		143	
Primary	4		3.816	.,	4		40.00	=	153	
	Conductors	X	(Table 4.2.2-7)	x	Length	X	Ground	=	MOMENT	(ftlb.)
CONDUCTORS	Number of		Per Ft.		Span		Above			
CONDUCTORS	Number of		Wind Load Per Ft.		Avg. Span		Height Above			

Note: In some cases, the limiting factor for maximum span distance is not the wind loading, but the required clearance above the ground and above other conductors or cables. The attachment heights on the pole must be determined for all facilities at the appropriate operating temperatures and sags as defined by the NESC.

C. Storm Guying

One method to overcome the overload on a pole due to transverse wind load is to add storm guys. Storm guys are installed in pairs(back to back) – one on each side of the pole perpendicular to the pole line. These guys should typically be installed 6 inches to 2 feet below the primary attachments.

Calculating the size of the guy wire is very much like calculating a deadend guy.

- 1. Calculate the transverse wind load on the pole, conductors and all attachments and equipment.
- 2. The load is then used to size the guy wire based on the load, the attachment height and lead length.
- 3. A final check should be made to verify that the strength of the pole above the guy attachment is adequate.

Using the example of Case I above for the 45'/2 pole, calculate the size of the storm guys and anchors required for extreme wind loading.

P				ads: Wind load on pole Wind Load per ft x span length x number of conductors						
C. Te	eutral ATV elepho ransfor		= = =	Wi Wi Wi	ind Loa ind Loa	ad pe ad pe ad pe	r ft x r ft x	span span	length length length	า
	Dele	_							1713	pounds
Load on	Pole	Ξ	0.040		470		~	_		•
Primary		=	3.816		170	х	3	=		pounds
Neutral		=	2.094	Х	170	Х	1	=	356	pounds
CATV		=	4.171	х	170	х	1	=	709	pounds
Telepho	ne	=	9.573	х	170	х	1	=	1627	pounds
Transfor	mer	=	231.8	х	1			=	232	pounds
					Total	Load		=	6583	pounds
2 0	otormi	na th		wire	o cizo 4	and a	ncha	or eize	requir	red for thi

2. Determine the guy wire size and anchor size required for this installation.

To calculate the tension in the guy wire use the equation below

Equation 4.2.2-7
$$T_{DG} = \frac{T_{TWL}}{L} x \sqrt{H_G^2 + L^2}$$

Where:

T_{DG}	= Tension in down guy
T_{TWL}	= Transverse Wind Load
L	= The down guy Lead length
H_{G}	= The attachment Height of the down guy

Use the total transverse wind load for the load to be guyed with the guy attached 6 inches below C phase primary (34.1') and a lead length of 20 feet.

$$T_{DG} = \frac{6583}{20}\sqrt{(34.1)^2 + (20)^2}$$

$$T_{DG} = 13,013$$
 Pounds

For extreme wind loading, the required strength of the guy wire is equal to the rated breaking strength of the guy wire x 0.9.

	Rated Breaking	Allowable Guy					
Guy	Strength	Tension					
Size	(RBS)	.9 X RBS					
5/16	11200	10080					
7/16	20800	18720					
9/16	33700	30330					

Table 4.2.2-11 Storm Guy Strength

For this example, a 7/16" guy will be installed in each direction perpendicular to the pole line. Use the tension in the down guy to select the appropriate anchor. In this case, a 10" screw anchor will do the job.

3. One final check is to be sure that the pole length above the storm guy attachment has sufficient strength to support the load above it. Basically, this is just like calculating the strength of the total pole but now the "ground line" is at the storm guy attachment height and all of the facilities above this point will create a moment here.

With the top of the pole at 38' and the down guy at 34.1 feet, the length of pole exposed to the wind is now 38-34.1 = 3.9 ft.

Use equation 4.2.2-3 to determine the strength of this section of pole.

The circumference at 3.9 feet down from the top of the pole = 26.5 inches

 $M_r = 0.000264 \times (8,000) \times (26.5)^3 \times 0.75 = 29,478$ ft.-lbs.

Use equation 4.2.2-4 to find the area of this section of pole

$$A = 3.9(\frac{25+26.5}{2})(\frac{1}{12}'') = 2.66sqft$$

Use equation 4.2.2-5 to find the center of the area of this section of pole

Height of center of area,
$$H_{CA} = \frac{3.9(8.44 + 2(7.96))}{3(8.44 + 7.96)} = 1.93 \, ft$$

Use equation 4.2.2-2 to find the wind load on this section of pole

Load in pounds = $0.00256 \times (145)^2 \times 1.0 \times 0.97 \times 1 \times 1 \times 2.66 = 139$ pounds

Use equation 4.2.2-6 to determine the moment due to the wind load on this section of the pole at the guy attachment point

Moment = 1.93 x 139 = 269 ft lbs

Determine the moment created by the wind load on the conductors

Primary	=	3.816	х	170	х	1	х	4.9	=	3179	Ft-Lbs
·	=	3.816	х	170	х	1	х	2.5	=	1622	Ft-Lbs
	=	3.816	х	170	х	1	х	0.5	=	324	Ft-Lbs
										5125	Ft-Lbs
Total Moment	=	269	+	5125	=	5393	3 Ft-l	bs			

This load is well under the strength calculated above and the design using storm guys will meet requirements.

4.2.3 Pole Framing

A. Slack Span Construction

Slack span construction is employed where it is impractical to follow conventional guying practices. The proper application is a pull-off from either a tangent pole or a properly guyed deadend pole to another properly guyed deadend pole. The intent is not to slack span to a stand alone (self-support) pole unless that pole has been properly sized for this application. Improper use of slack span construction can cause a pole to bow or lean which then can cause more slack in the conductors. More slack in the conductors can result in improper clearances and increased potential for conductors to make contact with each other.

The initial sag when installing slack spans limits the per conductor tension to 50 pounds.

Slack Span design criteria:

- 1. Vertical construction is preferred for two and three phase installations. Maintain 36" separation between phases at the poles.
- 2. Limit the span lengths to

	SLACK SPAN				
CONDUCTOR	MAXIMUM LENGTH	INITIAL SAG			
568.3 ACAR	50'	3'-7"			
3/0 AAAC	75'	2'-9"			
1/0 AAAC	95'	2'-10"			

Table 4.2.2-12 Slack Span Length & Sag

- 3. Use class 2 poles minimum.
- 4. If crossarm construction is used, use the 9 foot heavy duty wood crossarms or the 8'6" steel crossarm for added horizontal spacing.

B. Targeted Poles

There are many poles in the distribution system identified as Targeted Poles. These poles are deemed critical by virtue of the equipment mounted on them or their importance to maintaining the system. As stated in <u>The Distribution Design Guide</u> "The following list comprises what will be considered targeted poles. When installing and/or replacing an accessible targeted pole, use a III-H concrete pole or a spun concrete pole for spans greater than 300 feet. If the pole is inaccessible, use a Class 2 pole, or consider relocating the equipment to an accessible concrete pole."

Targeted Pole List

"01" Feeder Switch Poles (first pole outside the substation) Automated Feeder Switches Interstate/Highway Crossings Capacitor Banks Multiple Primary Risers 3 Phase Reclosers Aerial Auto Transformers Multiple Circuits 3 phase Transformer Banks (3-100 kVA and larger) Regulators Primary Meter

The targeted pole also should meet the design criteria for wind loading as previously shown.

C. Distribution Design Guidelines

The Storm Secure Organization has developed a set of guidelines for Distribution Designers to use when designing or maintaining distribution facilities. The designer can go online to see the most current version.

III. PROCEDURES

III.A. PROCEDURES FOR JOINT USERS

FPL and Incumbent Local Exchange Carriers (ILEC) explore the benefits of joint use and share the cost of pole ownership.

New Construction

- 1. Before facilities are designed and put into place, the FPL engineer and the ILEC engineer discuss the needs of both companies and the requirements for design by either the detail plans filed with the FPSC or the existing joint use agreement.
- 2. The joint use agreement for each company dictates which company sets the new pole(s)
- 3. If FPL is building the pole line, a notice of build is sent by FPL to all CATV companies and telecommunication carriers with attachment agreements in the area.
- 4. If FPL is building the new pole line CIAC will be collected for the increased size and strength required to accommodate the facilities of all parties requesting attachments.

There are times when the ILEC determines they would like to attach to a pole they previously were not attached to or they wish to modify their facilities, which would in turn increase the loading on a pole

Existing Poles

- If the ILEC is increasing load on the pole, it is imperative for the ILEC engineer to learn if the pole has been hardened or if the pole now has stronger windloading requirements due to detail plans filed with the FPSC. This is true if the pole is owned by FPL or the ILEC. Discussion with the FPL engineer will help determine the design criteria of the pole.
- 2. If the new attachment would compromise the loading standard, the ILEC engineer may request make-ready from the FPL engineer to accommodate their attachments. A contribution will be charged in accordance with our agreement.

III.B. PROCEDURES FOR THIRD PARTIES (CATV AND TELECOMMUNICATION CARRIERS (non-ILECs))

- 1) **APPLY** for permit.
- When making new attachments or overlashing to existing attachments where the resulting bundle is heavier than the existing attachment or has an increased diameter over that of the existing attachment, apply for permit for attachments to FPL poles. Apply for a permit for Non-FPL poles that require FPL make-ready.
- Remember that permits are not granted for attachments to poles that are exclusively part of an FPL street lighting system.
- The attachment permit is for CATV cables, wires and supporting hardware only, not for power supplies, amplifiers or similar equipment.
- Create appropriate permit application package(s):
 - Non-make ready
 - Make ready (requires design, cost approval, invoice, payment, and construction of FPL work order prior to FPL permit approval)
 - Major rebuild or upgrade
- Review permit application package for accuracy and completeness to avoid rejection.
- Submit complete permit package.
- 2) **RECEIVE** approved permit. (Exhibit "A")
- 3) **CONSTRUCT** attachments.
- You must have an approved permit. (Exhibit "A")
- You must complete construction within 60 days of permit approval (180 days if Major rebuild permit), or permit will automatically expire, and you will need to re-apply.
- Build facilities as designed in approved permit package.

- Conform to FPL requirements (clearances, tagging, bonding, etc.) and NESC standards.
- Field review facilities for compliance upon completion of construction.
- 4) **NOTIFY** of construction completion. (Exhibit "B")
- Send notice monthly (provided there have been attachments/removals during that month). Remember to include all routine attachments to drop or lift poles.
- Notice (Exhibit "B") must be sent to permit process contractor (Alpine).
- Notice (Exhibit "B") must be sent within 30 days after construction of the attachments is complete.

III.C. PROCEDURES FOR GOVERNMENTAL ATTACHMENTS

Attachment Permits are required for:

- New attachments to FPL poles
- Overlashings of existing attachments to FPL poles where the resulting bundle is heavier than the existing attachment or has an increased diameter over that of the existing attachment
- Major rebuilds or upgrades
- Attachments to non-FPL poles that require FPL make-ready

The attachment permit is for Licensee cables, wires and supporting hardware only, not for power supplies, amplifiers or similar equipment.

Wireline attachments are not allowed to poles exclusively a part of an FPL street lighting system.

Permits requiring FPL make-ready will not be approved until FPL design, payment by the Applicant, and construction is completed by FPL.

PERMIT APPLICATION PROCESS

- 1. Field Survey Identify ownership and pole size and existing attachments, conductor sizes, and span lengths.
- 2. Complete the Pole & Midspan Measurement Form
- 3. Ensure that all minimum clearances will be maintained.
- 4. Calculate windloading.
- 5. Complete the "Attachment and Application and Permit Exhibit A".
- 6. Assemble permit package (which may or may not include request for make ready.
- 7. Review completed package for accuracy
- 8. Submit package to FPL for approval
- 9. Once approved make attachments
- 10. When complete return Exhibit B to FPL

III.D. PROCEDURES FOR ATTACHMENTS TO TRANSMISSION POLES

Application Requirements

All applications for attachment to transmission poles require complete structural calculations. Applicant shall demonstrate that the poles can withstand the additional proposed mechanical and environmental loads. Calculations shall be provided with GT-STRUDL output forms, with non-linear analysis results, signed and sealed by a Professional Engineer – Structural, licensed in the State of Florida.

Application Costs

The cost associated with reviewing the application calculations will be the responsibility of the applicant. Review of calculations for approval is performed by FPL Transmission at a cost of \$96 per manhour (regardless of final approval or disapproval of the request). A deposit of \$2,000 dollars, payable to FPL, is required for quantities of up to 50 poles.

Application Process

Submit completed application to FPL Representative (same as for distribution attachments). Your representative will review the application for completeness. Completed applications will be forwarded to FPL's Transmission Projects Group for review.

1.0 DESIGN CRITERIA

When more than one code applies, the more stringent criteria shall govern.

1.1 <u>CLEARANCES</u>

Any overhead cable installation shall comply with FPL 2007 NESC Basic Clearances for Overhead Transmission Lines, the National Electric Safety Code (NESC)-2007 or other governmental agency codes.

1.2 DESIGN LOADS

1.2.1 POLE DESIGN

Design loads shall meet the specifications defined in the National Electric Safety Code (NESC)-2007, the American Society of Civil Engineer (ASCE) latest edition "Minimum Design Loads for Buildings and Other Structures" and ASCE Manuals #74, "Guidelines for Electrical Transmission Line Structural Loading".

STEEL TRANSMISION STRUCTURES

Designs shall meet the specifications defined in the ASCE/SEI 48-05 "Design of Steel Transmission Pole Structures" latest edition, and ASCE Standard latest edition, "Design of Latticed Steel Transmission Structures".

CONCRETE TRANSMISSION POLES

Designs shall meet the specification defined in the ASCE-PCI "Guide for the Design of Prestressed Concrete Pole".

WOOD TRANSMISSION POLES

Designs shall meet the specification defined in the IEEE Standard 751 "Trial-Use Design Guide for Wood Transmission Structures".

1.2.2 WEATHER RELATED LOADS

Transmission poles are required to resist the weather-related loads (Extreme Wind and Ice/Wind). The applied wind load cases that need to be considered for transmission structures from ALL angles are defined as follows:

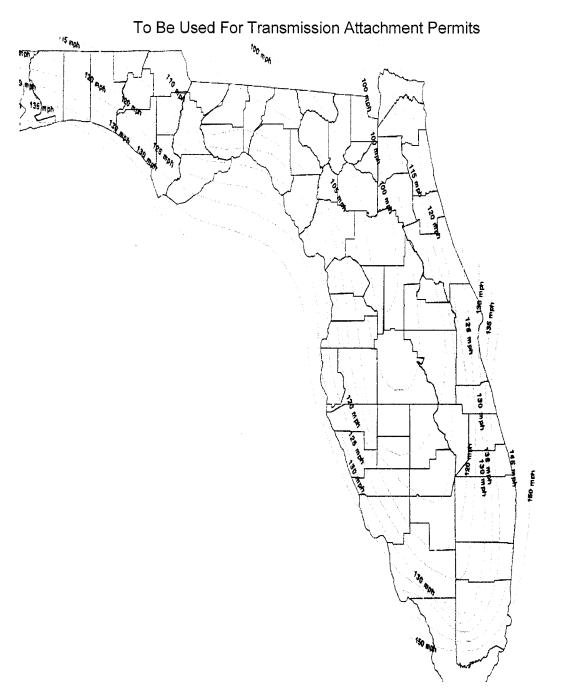
- Under Combined Ice/Wind loads (NESC Section 250 B) FPL service territory is classified as the "Light Loading District".
- Under Extreme Wind Loads (NESC Section 250 C) ASCE latest edition "Minimum Design Loads for buildings and Other Structures" and ASCE Manuals #74, "Guidelines for Electrical Transmission Line Structural Loading" are the basis of this control criteria.

Under Serviceability Requirements (FPL Policy for Concrete Pole)

45 mph wind load is considered as the minimum wind load applied for this zero-tension condition, which is only applied to prestressed concrete poles. The calculation of the wind pressure also follows the requirements of ASCE latest edition "Minimum Design Loads for Buildings and Other Structures" and ASCE latest edition Manuals #74, "Guidelines for Electrical Transmission Line Structural Loading". Basic Wind Speeds (ANS/ASCE latest edition). Refer to enclosed drawings showing Basic Wind Speeds(within FPL Service Territory. Map file name: wind_cont_FL-1.g12 created 10-22-02 attached.

1.2.3 OSHA REQUIREMENTS

This project shall be designed to meet all Occupations Safety and Health Administration (OSHA) rules and regulations.


2.0 PERMIT PACKAGE

A permit application shall consist of two (2) complete packages in the following order:

- 1) Payment for Permit (payable to FPL)
- 2) Original, signed Exhibit "A" (front and back)
- 3) Calculations (signed and sealed)
- 4) Field Notes
- 5) Pictures of all affected poles, with corresponding pole identification numbers (photographs or jpeg files)
- 6) Licensee maps (plan/profile) showing route, spans, pole heights, and the Licensee facilities proposed for installation
- 7) Copy of the FPL Primary Map, with the affected area highlighted

3.0 APPROVAL / DISAPPROVAL

Upon review of the permit application, a response stating approval or disapproval will be communicated by the FPL – Transmission Projects Department

FLORIDA WIND ZONES-2002

44.17 miles

THIRD PARTY ATTACHERS COMMENTS

BellSouth Telecommunications, Inc.

R. E. Christian, Jr. State Manager – Joint Use/Right of Way

Email: earl.christian@bellsouth.com

April 23, 2007

Mr. R. L. Valdez Senior Regulatory Analyst Florida Power & Light Company 9250 West Flagler Street Miami, Florida 33174,

Subject: Florida Power and Light Company (FPL) 2007-2009 Hardening Plans

Dear Mr. Valdez:

In response to your March 22 request for BellSouth Telecommunications, Inc., d/b/a AT&T Florida (AT&T Florida) to review and provide input to FPL's 2007-2009 Hardening Plans, attached is our initial response. Due to the scope of information provided to AT&T Florida and the timeframe in which AT&T Florida had to respond, AT&T Florida reserves its right to supplement this response.

AT&T Florida thanks FPL for the opportunity to review the hardening plans, for the opportunity to meet and discuss the various issues. AT&T Florida looks forward to continuing a dialogue with FPL regarding its hardening efforts so that the most accurate cost information and feedback can be provided to the Florida Public Service Commission prior to its review of the Hardening Plan.

Sincerely,

State Manager - Joint Use/Right of Way

Attachment

301 W. Bay Street, 15HH1 Jacksonville, FL 32202 Tel. No. (904) 798-7812 Fax No. (904) 350-2720

BellSouth Telecommunications, Inc. d/b/a AT&T Florida's Initial Response to FPL's Proposed Electric Infrastructure Hardening Plan for 2007 – 2009

BellSouth Telecommunications, Inc. d/b/a AT&T Florida ("AT&T Florida") provides the following initial response to FPL's Electric Infrastructure Hardening Plan forwarded to AT&T Florida on March 22, 2007 ("Hardening Plan"). Due to the scope of information provided to AT&T Florida and the timeframe in which AT&T Florida had to respond, AT&T Florida reserves its right to supplement this response.

FPL's Hardening Plan

FPL plans to harden its infrastructure during 2007 through 2009 through three primary methods by: building to Extreme Wind Loading criteria ("EWL"), engaging in "incremental hardening," and implementing new design guidelines and processes for new construction and major planned work.

2007 Deployment

1. EWL:

In 2007, FPL plans to use EWL to harden twenty-eight (28) Critical Infrastructure Facilities (CIF) which are served by thirty-four (34) primary circuits. The costs that AT&T Florida potentially faces in connection with this aspect of FPL's Hardening Plan can be broken down into the following major categories:

- Costs to transfer facilities from an existing pole to a replacement pole
- Costs to replace cable in instances where FPL moves a pole line such that transfers of existing cable are not feasible
- Contribution costs FPL may seek from AT&T Florida for the replacement poles
- Increased pole rental rates

With regard to the first two items, AT&T Florida cannot accurately estimate costs because AT&T Florida does not know how many of its attachments will be impacted and the type of work that would need to be performed on those attachments. The level of detail regarding the proposed hardening projects that AT&T would need to perform this analysis is not contained in FPL's Hardening Plan. While FPL did provide more detailed information on many of the CIF projects to AT&T Florida on Tuesday, April 17, 2007, AT&T Florida has not had sufficient time to analyze this information before FPL's April 23, 2007 deadline for a response. Accordingly, AT&T Florida reserves its right to supplement this response and to request additional information from FPL if needed.

With this caveat, to facilitate the exchange of information contemplated by Rule 25-6.0342(6), however, AT&T Florida estimates that the transfer of facilities and the replacement of cable owned by AT&T Florida in connection with FPL's proposed hardening of 28 CIFs in 2007 would cost approximately \$4.3 million. In developing this

rough estimate, AT&T Florida assumed that it would have aerial facilities on 18 of the 34 circuits to be hardened, translating into 3,600 spans of AT&T Florida aerial facilities. AT&T Florida further assumed that approximately 20% of the 3,600 spans (720 spans) would involve replacing cable at an estimated cost of \$4,000 per span. AT&T Florida estimated that the remaining 80% (2,880 spans) would involve transfer work at an estimated cost of \$500 per span.

AT&T Florida may face additional costs if FPL seeks contribution toward the cost of new poles. In Section III(A) of its Proposed Hardening Plan entitled "Procedures for Joint Users," FPL states that Contribution In Aid of Construction (CIAC) will be collected "for the increased size and strength required to accommodate the facilities of all parties requesting attachments" and that contribution will be charged in accordance with existing joint use agreements. (*See Hardening Plan* at 47.) In the informational meeting held by FPL on April 12, 2007, FPL indicated that it was still evaluating the contribution issue. Without more specific information on this issue, AT&T Florida remains concerned of the potential for unjustified cost shifting under its existing joint use agreement with FPL.¹ AT&T Florida reserves the right to supplement this response pending further clarification of this issue.

Lastly, hardening of the electric infrastructure will likely result in increased pole rental rates. Because AT&T Florida cannot estimate the potential cost impact of increased rates until rate negotiations are initiated, AT&T Florida reserves the right to supplement its response on this issue.

2. Incremental Hardening

FPL proposes to address thirty-four (34) community projects, which FPL defines as feeders that serve community needs (e.g., grocery stores, gas stations), through incremental hardening. Again, AT&T Florida cannot accurately estimate how many of its attachments will be impacted and the type of work that would need to be performed on those attachments until it receives and analyzes more detailed information on these proposed projects. Assuming that it will have aerial facilities at ten (10) of these sites comprised of ten (10) poles per site, AT&T estimates an additional \$80,000 in cable replacement costs and \$40,000 in transfer costs in connection with FPL's proposed incremental hardening plans for 2007. Again, this is a rough estimate based on limited information.

3. New Design Guidelines

While AT&T Florida has communicated to FPL that AT&T Florida will voluntarily increase the class size of wood poles in its distribution system under certain circumstances, AT&T Florida objects to any references in FPL's Addendum to FPL's

¹ The existing joint use agreement between FPL and AT&T Florida addresses the responsibility for pole replacement costs, as well as transfer costs. AT&T Florida will attempt to resolve these issues relative to hardening projects with FPL prior to the Florida Public Service Commission's review of FPL's Hardening Plan so that more accurate cost information can be provided and considered.

Permit Application Process Manuals, Attachment Agreements and Joint Use Agreements that implies that AT&T Florida's poles are governed by FPL's design criteria. Additionally, AT&T Florida would like to have further discussions with FPL regarding how the Addendum will impact current joint use operating procedures. AT&T Florida reserves the right to provide further input on the Addendum following this dialogue.

2008 & 2009 Deployment

AT&T Florida is not able to estimate the potential cost impact of FPL's Hardening Plan for 2008 and 2009. FPL has not yet identified the locations to be hardened or the method by which the hardening will be accomplished (i.e. EWL vs. incremental hardening). AT&T Florida requests that FPL provide these detailed plans as soon as they are developed so that AT&T Florida can provide the input contemplated by Rule 25-6.0342(6). AT&T Florida reserves the right to comment on these plans once they are finalized.

Benefits of Hardening Plan

The most significant benefit AT&T Florida may recognize from implementation of the Hardening Plan would be from the potential reduction of commercial power outages. As a customer of FPL, AT&T Florida relies on electric service to power its remote terminals. AT&T Florida cannot quantify this potential benefit as it would be difficult to determine how many remote terminals are served by the circuits that will be hardened.

Conclusion

AT&T Florida's input is limited by the scope of the information provided and the timeframe in which AT&T Florida had to respond. AT&T Florida looks forward to continuing a dialogue with FPL regarding its hardening efforts so that the most accurate cost information and feedback can be provided to the Florida Public Service Commission prior to its review of the Hardening Plan.

A

Davis Wright Tremaine LLP

April 23, 2007

Via Electronic and First Class Mail

Bob Valdez Florida Power & Light Company Regulatory Affairs Room No. 6047 9250 West Flagler Street Miami, Florida 33174

Re: FPL 2007-2009 Storm Hardening Plans

Dear Mr. Valdez:

I am writing on behalf of the Florida Cable Telecommunications Association (FCTA) concerning the Florida Power and Light Company Electric Infrastructure Storm Hardening Plan ("Plan") dated March 22, 2007. Florida Administrative Code, Rule 25-6.0342(6) requires pole owning utilities, such as FPL, to seek input from and attempt in good faith to accommodate concerns raised by other entities with existing agreements to share the use of its electric facilities. In your cover letter accompanying the Plan, you asked that FCTA member cable operators provide input concerning the Plan by no later than today, April 23, 2007. In an email dated April 9, 2007, FCTA asked for additional information as well as additional time to review the data and compile cost data for input, but FPL responded that it unable to grant FCTA's request due to the deadline imposed by the Public Service Commission (PSC) of May 7, 2007 for submission of plans to the PSC.

As a preliminary matter, FCTA appreciates the substantial responsibility that FPL has as a pole owner and respects the management decisions FPL has reached in its Plan. The information presented by FPL in the Plan and in additional materials sent via compact disc on April 16, 2007 address substantial portions of FPL's plant to which cable operators are attached and cover a large geographic area. As you know, Comcast is the largest cable operator in FPL's service territory. Comcast has distributed the information to its field representatives in numerous geographic areas for their analysis and review. These representatives have initiated a review of the proposed plans and the impact that such Plan will have on its attachments. However, given

R

Bob Valdez Florida Power & Light Company April 23, 2007 Page 2

the volume of information presented, it will be some time before Comcast will have a true sense of the impact that FPL's Plan will have on its attachments and related activities.

Moreover, while a significant amount of information was included in the plans, additional information was not included that would greatly aid Comcast in providing constructive information to FPL about the costs and benefits of such plans, including the effect on reducing storm restoration costs and customer outages. For example, FPL: provided information only for some example communities not all, only included information about its own attachments to the poles and not those of third party attachers, fails to explain the precise work that will be necessary for third party attachers (i.e., it may state that the pole needs to be replaced but does not further indicate whether the attachments will be transferred to the new pole or re-routed, does not indicate why a particular action is being taken (i.e., whether the pole is being replaced because it is overloaded or rotten), does not indicate the extent to which its storm hardening efforts will delay construction of new third party attachments, and does not give an estimate of the costs for the proposed work or what costs it expects to shift to attaching entities.

We realize that the Plan cannot be extremely detailed as illustrated by the wide ranging estimate of \$40 million to \$70 million in anticipatory hardening related costs that FPL projects for 2007 alone. FPL has stated that it does not yet know what portion of these costs will be billed to cable operators or other third party attachers. We agree that many of the details of costs and benefits of storm hardening must be resolved after the May 7, 2007 filing deadline. However, without this type of information, third party attachers cannot discern the possible cost to them associated with the Plan.

Moreover, as discussed at the meeting held April 13, 2007, third party attachers initially were not consulted in determining what would constitute critical infrastructure and targeted poles. As a result, it does not appear that poles carrying main line cable operator feeders were included. Cable operators now provide life-line services to Florida residents, including valuable communications infrastructure that is relied upon in storm restoration and 911 services. Accordingly, it is possible that certain poles carrying cable facilities should be added to the list of critical infrastructure and targeted poles. FPL stated that it was willing to consider recommendations from cable operators and other third party attachers concerning proposed additions to FPL's list of critical infrastructure and targeted poles. Again, this issue will likely be resolved after the May 7, 2007 filing deadline.

Comcast understands that it may have been difficult for FPL, in the timeframes established by the PSC, to have anticipated and provided all of the detail necessary for third party attachers to give meaningful input. However, given the broad scope of information addressed in the Plan and the limited amount of cost-related detail provided, it would be counterproductive to limit third party input to a one-time response. Instead, FCTA suggests that this plan be only the starting point for discussion between pole owners and third party attachers. FCTA

A

Bob Valdez Florida Power & Light Company April 23, 2007 Page 3

members believe it would be extremely beneficial to all parties to the proceeding and to Florida consumers to hold regularly scheduled workshops to ensure that as specific plans are implemented, third party attachers have an opportunity to participate in the decision making process. Such workshops would also allow third party attachers an opportunity to propose some additional facilities that they believe should be included as critical infrastructure and/or targeted poles. These workshops have worked well in the past to promote good working relationships and good project results, and should be beneficial in working through the storm hardening issues.

While FCTA was not able to provide precise costing data in response to FPL's Plan for the reasons set forth above, FCTA nevertheless has the following comments on the general features of the Plan, which FCTA believes should be treated as initial comments in an ongoing dialogue between cable attachers and FPL.

Electric Infrastructure Storm Hardening Plan

- Page 7, Hardening Existing Facilities. This section explains the process of capturing detailed information at each pole location of a storm hardening project. If the detailed information can be shared with cable operator personnel for the purpose of designing cable operator work associated with the project, much duplication of field work can be eliminated and good results can be expedited.
- Page 7, Examples of Hardening Options: Storm Guying. FCTA agrees that storm guying where practical is a very cost effective means of strengthening poles up to and including extreme wind standards. We also believe that more emphasis on identifying lines or portions of lines which should be strengthened by storm guying will be a good addition to the FPL plan. In addition, the storm guying effects of crossing power and communications lines should be left in the wind loading calculations for poles being hardened. Both crossing lines and lateral pull-off lines whose pull is balanced by down guy wires serve the same purpose as storm guys on existing poles. Ignoring the effects of such lines on wind loading substantially increases the cost of individual projects.
- Some areas of proposed storm hardening of critical infrastructure circuits are shielded to a great extent by tall trees above the height of the distribution lines while others are shielded by tall buildings. The shielding effects of trees and buildings have not been considered by FPL. Clearly, if the trees or buildings do not blow down they shield the line from high winds. If they do blow down they take the storm hardened poles with them. Trees and buildings should be considered, at least in some circumstances. Inclusion of this additional information in the Plan would be helpful.
- It would be very helpful if FPL could provide the number of poles it proposes to change out and the proposed type of replacement pole (i.e., wood, concrete, steel) for each of the categories identified by FPL i.e., Critical Infrastructure, Community Project, Critical Poles. Gulf Power recently provided this level of detail in its third draft of its Plan at page 10, which is attached hereto for your convenience.

Bob Valdez Florida Power & Light Company April 23, 2007 Page 4

• It would be helpful to include in the Plan additional information concerning storm restoration coordination.

FPL Attachment Standards and Procedures Addendum

Section I: Safety

- Page 4. To the extent that FPL adopts requirements they should be reasonable implementations of applicable codes.
- Also on page 4 in the 5th paragraph please explain what is meant by "At no time may the CATV worker encroach upon the electric supply space." It would be best to state that communications workers must at all times comply with applicable NESC and OSHA work rules.
- Also on page 4 in the 6th paragraph concerning RF emitting devices, please provide for at least 48 hours advance notice to the device owner before disconnecting power except in emergencies. Moreover, most wireless (RF emitting) devices attached by cable operators are line powered through the existing cable system and do not require FPL meters. Would this still require a termination switch?

Section II: Standards

- Overlashing a fiber optic cable to an existing cable should not require a permit, notification of FPL only. It is our understanding based upon conversations with FPL that in fact FPL only intends to require approval for overlashing where diameter size of existing facility will be increased. The Plan should so state.
- Page 8, Clearances of communications cables to FPL. At dimension letter B, add an asterisk and refer to NESC Rule 238D Exception which allows reduction of the 12" clearance to 3" if the loop is covered.
- Page 10, Clarification of installation of poles in private easements. If FPL places pole in private easement do third party attachers require a separate easement or is the language of the FPL easement agreement include cable operator?
- At dimension letter F the new requirement in the 2007 NESC is 40". See NESC Rule 239G1. (The change was to Exception 1). The FPL 3" requirement should be referenced for grandfathering of facilities installed prior to 2007.
- At dimension letter K, the 12" separation between cable messengers became effective in NESC 2002 with a requirement for 4" separation between cables in the span under the specified conditions. Please reference NESC Rule 235H l. and 2.
- At dimension letter L, the recognition of the NESC exception allowing 30" separation is good. Please add reference to NESC Rule 235.2.b.(1)(a). Exception 1. This rule reduces

HA

Bob Valdez Florida Power & Light Company April 23, 2007 Page 5

the required clearance between the neutral and cable to 12 inches in the span, not 30." The rule also applies to separation between fiber optic cable (supply) and communications cables in the communication space.

- Section II.C. Windload Criteria and Calculations. It would be helpful if this section explained criteria for determining which party is responsible for pole overloading, and how costs for any necessary work to bring pole into compliance will be allocated.
- Section III.B. Procedures for Third Parties (CATV and Telecommunication Carriers). It would be informative if the Addendum included timeframes for the pole makeready process including but not limited to the permit process and completion of work specified by Make Ready engineering approval, so that attachers would have a sense of whether storm hardening activities will impact speed to market.

In addition, there are certain provisions included in the Plan that do not appear to be related to storm hardening but instead appear to be standard terms and conditions of attachment. For example, Section III.B. provides that when overlashing to existing attachments or increasing wire diameter, third parties (CATV and non-ILEC telecommunications carriers) must obtain a permit.¹ Similarly, the same section implies that power supplies, amplifiers and similar equipment will be subject to separate permitting requirements, and thus additional rent. However, permitting is required for rental rate purposes and the rates, terms and conditions of attachment are not before the PSC in this proceeding. Florida Administrative Code, Rule 25-6.0342(8). Accordingly, FCTA believes that these provisions should not be included in the Plan.

FCTA commends FPL on its reliance on the NESC requirements to a great degree for the engineering guidelines for separation between electric and communications attachments. FCTA believes that the suggested changes are consistent with FPL's intentions when these standards were established before recent revisions of the NESC and that most, if not all, the suggestions will be acceptable to FPL. Moreover, FCTA members do see a significant benefit from several of the ten initiatives being deployed by FPL including its three year cycle for vegetation management and eight year inspection plan. Ensuring that wires are not endangered by tree limbs and that poles are not rotten or overloaded, should significantly assist in efforts to prevent storm outages and in storm restoration. Rotten poles in particular are a serious problem in high wind situations because they can cause a cascading effect.

FCTA members would like to work with FPL to ensure that distribution pole infrastructure is hardened to withstand stronger winds and to improve storm restoration. To that end, FCTA members strongly believe that continued open lines of communication and workshops in details of storm hardening plans are provided and input from third parties is solicited extending over the course of the Plan's implementation would significantly contribute

¹ In a subsequent conversation it was explained that in fact permits would only be required where the diameter of wire is increased, as is currently the case.

Bob Valdez Florida Power & Light Company April 23, 2007 Page 6

to state's efforts to ensure the availability of power and communications services in extreme weather situations.

Please feel free to contact me if you have any questions or comments related to these initial responsive comments. We look forward to an ongoing dialogue and working together to hardening FPL's infrastructure in a manner that is beneficial to all involved.

Sincerely,

Maria T.Brorene

A

Maria T. Browne

ATTACHMENT

Gulf Power Company Storm Hardening Plan – DRAFT 4/19/07 pumping/treatment plants and major sewage treatment plants. The planned projects are shown in the table below.

2007 - 2008	District Western Central Eastern	Critical Load Fuel Depot Fuel Depot I-10 Crossings	Total Main Miles 1.38 2.83 N.A.	Estimated Number of Pole Changeouts 46 100 16
TOTAL ALL				162
2008 - 2009	District	Critical Load	Total Main Miles	Estimated Number of Pole Changeouts
:	Western	Hospital	3.56	125
	Central	I-10 Crossings	<u>N.A.</u>	14
TOTAL ALL	<u> </u>	1		139

2009 - 2010	District Central	Critical Load Hospital	Total Main Miles 2.14	Estimated Number of Pole Changeouts 75
	Central	Hospital	1.08	38
	Western	I-10 Crossings	N.A.	56
TOTAL ALL				169
Three Year Plan Totals	Company			470

The estimated poles which may be subject to replacement based on the above and possible impact from Joint-Use Assessments are as follows:

	Extreme Wind	Joint-Use	Total Estimated
Year	Loading	Assessments	Poles Impacted
2007-2008	162	500	662
2008-2009	139	500	639
2009-2010	169	500	669

9.1.2 Transmission

Gulf Power transmission utilizes overload and strength factors greater than or equal to those required in Section 26 of the National Electric Safety Code. Gulf's loading criteria for new line design is derived from Section 25 of the National Electric Safety Code. These design criteria are used on all new installation and complete rebuild projects throughout the Gulf Power service territory.

Embarg Corporation Mailstop: FLTLHO0201 1313 Blair Stone Road Tallahassee, FL 32301 EMBARQ com

Voice Data Internet Wireless Entertainment

May 2, 2007

Mr. Bill Walker Florida Power & Light Company 215 South Monroe Street, Suite 810 Tallahassee, FL 32301-1859

In RE: Florida Power & Light Storm Hardening Plan

Dear Mr. Valdez:

Embarq has reviewed the Florida Power & Light Electric Infrastructure Storm Hardening Plan dated March 22, 2007 for the years 2007 through 2009 and which was discussed in the April 23, 2007 meeting in Miami. While the plan provided some specifics, e.g. the intent to harden the facilities serving Naples Community Hospital and Lee Memorial Hospital in 2007, most of the plan is non-specific. Therefore, in order to respond regarding the impact of this plan on Embarq, certain assumptions have been made. If additional details are provided regarding the plan, Embarq will review this response and provide a more targeted estimation of the costs and benefits.

Based on the assumption from the plan that FP&L will harden approximately 20% of their poles in the first three years of this plan, Embarq applied that 20% factor times the number of FP&L poles with Embarq attachments in order to arrive at an estimate of the direct and immediate costs to Embarq. Using the formula in the current Joint Use Agreement between FP&L and Embarq and the costs of transferring attachments as well as the costs of existing and new joint use poles, the estimated cost to Embarq is \$13,967,200.00 in years 2007 through 2009 of the plan. If 50% of FP&L's poles are hardened within ten years, the cost to Embarq would be almost \$35,000,000.00 for the ten years (2007 - 2016). Another potential cost which may not be as immediate nor as direct would be increases in pole attachment fees charged by FP&L.

FP&L's Hardening Plan may benefit Embarq by reducing the amount of damage to our facilities, thereby reducing the number of customer outages and reducing the time to restore service. The extent of these benefits will not be known until the next storm and they cannot be readily quantified in dollar savings; however, Embarq does not believe that it is likely these benefits will outweigh the costs.

Sincerely,

Sander & Khapper

Sandra A. Khazraee

cc: Mr. Bob Valdez, FP&L Mr. Henry Bowlin, Embarq Mr. Bill Radel, Embarq

 Sandra A. Khazraee

 REGULATORY MANAGER

 LAW AND EXTERNAL AFFAIRS

 Voice:
 (850) 847-0173

 Fax:
 (850) 878-0777

Bob ValdezTo: "Dave Bromley" <Dave_Bromley@fpl.com>05/02/2007 06:13 PMcc:Subject: Fw: Fwd: 2007 Hardening projects

----- Original Message -----From: "Denise Yoezle" [DYOEZLE@hollywoodfl.org] Sent: 05/02/2007 04:33 PM To: Bob Valdez Subject: Fwd: 2007 Hardening projects

Hi Bob, Is there another person I can contact for this information?

Denise Yoezle Operations Manager Streets & Highways City of Hollywood 954-967-4526

>>> Denise Yoezle 4/30/2007 9:37 AM >>> Hi Bob,

I see on your March 22, 2007 correspondence that Memorial Regional Hospital is on the list of 28 Critical Facilities to be hardened. Do you have a schedule for completion of the work at this facility?

Also, of the 34 Community Projects, 11 are located in Broward County. Are any of these located in the City of Hollywood?

We have reviewed the criteria and have no comments, other than to welcome all such efforts for a speedy and effective post-storm recovery.

Regards,

Denise Yoezle Operations Manager Streets & Highways City of Hollywood 954-967-4526

Tony Newbold 04/18/2007 11:27 AM

To: Bob Valdez/RAD/FPL@FPL cc: Subject: Fw: Hardening Plans

"Paul W. Milelli" <pmilelli@psd.co.palm-beac h.fl.us> 04/11/2007 12:01 PM

To bob_valdex@fpl.com cc Greg_Cope@fpl.com, Tony_Newbold@fpl.com, "Charles Tear" <ctear@psd.co.palm-beach.fl.us> Subject Hardening Plans

Mr. Valdez:

After reviewing the plans provided to Palm Beach County, we offer the following comments:

1. The 2007 Deployment Plan identified four "Acute Care Facilities" in Palm Beach County for "EWL" activities. While we support any activities that will harden the electical grid leading to all of our facilities, we question how the hospitals were selected, in particular, Good Samaritan Hospital and the Veteran's Administration Hospital.

Good Samaritan Hospital is within the County's Hurricane Vulnerability and Surge Zones and must evacuate in the event of a landfalling hurricane. St. Mary's Hospital (it's sister facility) rests on higher elevation, is one of our County's Trauma Centers, lies outside of the evacuation zones, and is the reciepient of Good Samaritan's patients. We would believe that our hospitals outside of the surge and vulnerability zones would take priority over those within the hurricane zones.

The V.A. Hospital, while outside of the surge and vulnerability zones, does not accept patients from the general public. Similarly, we would believe that hospitals serving the general public would take priority.

2. The 2007 Deployment Plan identified ten (10) "Community Projects" for "EWL" activities. While we support any actitivities that will harden the electrical grid leading to all of our critical infrastructure, we question how FPL selected the listed Feeder's. Of the over 400 Feeders within Palm Beach County serving critical infrastructure, we have identified the top 20% of the feeders for priority restoration immediately following a hurricane. None of the ten feeders identified in the 2007 Deployment Plan is within our top 20%. We have worked with our account executives from FPL to create the list (please see attached) and we would suggest that the Deployment Plan recognize this list as a generator of FPL's Community Project hardening.

The 2007 Deployment Plan speaks to the 2008 and 2009 deployment plans and the critical facilities and community projects selected for upgrading during those years. We would suggest that FPL partner with our County Emergency Management Division staff to review, and possibly modify the "Targeted Facilities" lists for 2008 and 2009. Again, we support FPL's aggressive hardening plans. We strongly suggest and encourage FPL's consideration of partnering with the County in selecting future feeders and facilities for the electrical grid hardening.

Should you have any questions, please feel free to contact me.

Paul W. Milelli, Director Department of Public Safety Palm Beach County 20 South Military Trail West Palm Beach, FL 33415

561-712-6470 (Office) 561-712-6490 (Fax)

x

PBTop20PercentFdrs04022007.xls

Barbara Gilbreath

04/30/2007 09:22 AM

To: Bob Valdez/RAD/FPL@FPL cc: timothy young Subject: FiberNet Cost Estimates

Bob,

Attached is a summary of costs associated with the hardening of the circuits supplied on the CD. The total cost to FN is estimated at \$15,584.00.

Should you require additional information, please advise.

Barbara Gilbreath Manager-OSP Engineering and Construction 305-552-2879

FN Cost Summary.x

FPL FiberNet Cost - 2007 FPL Network Hardening

FPL Circuit Number	FPL FN Cost
404032	\$2,381
803835	\$1,800
804535	\$1,200
101539	\$3,303
501137	\$6,900
	\$15,584

THIRD PARTY ATTACHERS LIST

EXHIBIT II

- Mr. Henry Bowlin Process Specialist II Embarq, Florida, Inc. MS: LAPKA0241-2191 555 Lake Border Drive Apopka, Fl 32703-5815
- Ms. Maria Browne Esquire 1919 Pennsylvania Ave NW Suite 200 Washington D.C. 20006
- Mr. Cody Harrison Sabin, Bermant & Gould LLP Four Times Square New York, New York 10036
- Mr. Douglas C. Nelson 233 Peachtree Street N.E. Suite 2200 Atlanta, GA. 30303
- Mr. Christopher McDonald Comcast Direct or State Government Affairs-Florida 300 West Pensacola Street Tallahassee, Florida 32301
- Mr. Steve R. Lindsay Staff Consultant-Network Engineering Verizon 8800 Adamo Drive Mail Code: FLTP0937 Tampa, Fl 33601
- Mr. R.E. Christian, Jr. State Manager-Joint Use/Right of Way Bell South Telecommunications, Inc. 301 W. Bay Street, 15hh1 Jacksonville, Fl 32202

- Mr. Gary Cary Windstream Florida, Inc. 206 White Ave. Live Oak, Fl 326064
- Mr. Jimmy Albritton Northeast Florida Telephone Company 130 North 4th Street Macclenny, Fl 32063-0485
- Ms. MaryAnn Holt Indiantown Telephone Systems 15925 S.W. Warfield Blvd. Indiantown, Fl 33456
- Mr. Terry Ray Vice President and CFO ExteNet, System, Inc. 1901 s. Meyers Rd. Suite 190 Oakbrook Terrace, IL 60181
- Ms. Carla Hicks e.spire/ACSI/Fiberlight 6230 Shiloh Rd. Suite 210 Alpharetta, GA. 30005
- Mr. John Hunt FDN Communications 2301 Lucien Way, Suite 200 Maitland, Fl 32751
- Mr. Sheldon S. Jordan FPL Fibernet LLC 9250 West Flagler Street Miami, Fl 333174
- Ms. Kristin Johnson, President Hotwire Communications, LLC 300 E. Lancaster Avenue, Suite 208 Wynnewood, PA 19803

- Ms. Tricia Brekenridge KMC Telecom 994 Explorer Blvd. Huntsville, Al 35801
- Mr. Steve Mako Level 3 Communications 2121 West Prospect Rd. Tamarac, Fl 33309
- Mr. Jay Malinowski Level 3 Communications 5907 F Hampton Oaks Pkwy Tampa, Fl 33610
- Pat Fernandez Level 3 Communications 1800 Pembroke Dr. Orlando, Fl 32810
- Mr. Michael Hughes Lightstream Tech 3550 West Waters Ave. Tampa, fl 33614
- Mr. Virgil Springer MCI 6929 N. Lakewood Ave. Tulsa, OK 74117
- Mr. Joe Faber PT Wireless 444 Hight Street, Suite 400 Palo Alto, CA 94301
- Mr. Gary Hunt Qwest Communications Corporation 700 West Mineral Avenue UT H27.19 Littleton, Colorado 80120
- Mr. Ken Kirkland SETEL 1165 South 6 Street Macclenny, Fl 32063

- Mr. Paul T. Bradshaw Sunesys, LLC 202 Titus Av Warrington, PA 19876
- Mr. Tom Terwilliger S.F.M. & T., INC. 15398 S.W. 153 St. Miami, Fl 33187
- Mr. Thoomas J. Farrell TAPCO 23170 Harborview Road Charlotte Harbor, Fl 33980
- TCG South Florida Attn: V.P. of Operations 1001 West Cypress Creek Rd. Suite #209 Fort Lauderdale, Fl 33309
- Ms. Janet Livengood Telcov
 DDI Plaza Two
 500 Thomas Street, Suite 400 Bridgeville, PA 1507-2838
- Ms. Loren Rosenthal Tier 3 Communications 2235 First Street Suite 217 Fort Myers, Florida 33901
- Carlie Ancor
 U.S. Metropolitan Telecom, LLC
 2407 Production Circle
 Bonita Springs, Fl 34135
- Ms. Leslie Strickland-Corporate Accounting XO Communications 11111 Sunset Hills Road Reston, VA 20190

- City of Cocoa Beach Mr. Thiel, I.T. Director 2 South Orlando Avenue Cocoa Beach, Fl 32931
- City of Stuart Attn: City Clerk 121 S.W. Flagler Avenue Stuart, Fl 34944
- City of Miami Beach Attn: City Clerk 1700 Convention Center Drive Miami Beach, Florida 33139
- Mr. Jack Yaghdjian WLRN 172 N.E. 15 Street Miami, Fl 33132
- City of South Daytona Attn: City Clerk 1672 S. Ridgewood ave. South Daytona, Fl 32119
- Collier County Attn: Board of Commissioners 3301 E. Tamiami Trail Naples, Fl 34112
- Myakka River State Park 13207 S.R. 72 Sarasota, Fl 34241
- Sarasota County Chairman of Board of Commissioners 1001 Sarasota Center Blvd. Sarasota, Fl 34240
- City of Palm Beach Gardens Attn: City Clerk 10500 North Military Trail Palm Beach Gardens, Fl 33410

- Town of Juno beach Attn: City Clerk 340 Ocean Drive Juno Beach, Fl 33408
- Village of Wellington Attn: City Clerk 14000 Greenbriar Blvd. Wellington, Fl 33414
- Seminole County Attn: Board of Commissioners 1101 East First Street Sanford, Fl 32771
- City of Hollywood Attn: City Clerk
 26000 Hollywood Boulevard Hollywood, Florida 33020-4807
- City of Vero Beach Attn: City Clerk 1053 20th Place Vero Beach, Fl 32960
- Volusia County Attn: Board of Commissioners 123 W. Indiana Ave. Deland, Fl 327320
- Broward County Attn: Board of Commissioners 2300 West Commercial Boulevard Fort Lauderdale, Florida 33309
- West Palm Beach Attn: Board of Commissioners 200 2nd Street, Fifth Floor West Palm Beach, Fl 33401
- City of Boca Raton Attn: City Clerk 201 W. Palmetto Park Rd. Boca Raton, Fl 33432

- Brevard County Attn: Board of Commissioners 2725 Judge Fran Jamieson Way Suite A-204 Viera, Fl 32940
- City of Cape Canaveral Attn: Cit Clerk 105 Polk Avenue Cape Canaveral, Fl 32930
- Charlotte County Attn: Board of Commissioners 18500 Murdock Circle Port Charlotte, Fl 33948
- Indian River County Attn: Board of Commissioners 1028 20th Place Vero Beach, Fl 32960
- Manatee County Attn: Board of Commissioners 1112 Manatee Avenue West Bradenton, Fl 34205
- Martin County Attn: Board of Commissioners 2401 SE Monterey Road Stuart, Fl 34996-3322
- City of Melbourne Attn: City Clerk 900 E. Strawbridge Ave. Melbourne, Fl 32901
- Palm Beach County Attn: Board of Commissioners 301 N. Olive Avenue West Palm Beach, Fl 33401

- City of Port St. Lucie City Clerk's Office 121 SW Port St. Lucie Blvd. 1st Floor, Building "A", Room 187 Port St. Lucie, Fl 34984-5099
- City of Rockledge Attn: City Clerk 1600 Huntington Lane Rockledge, Fl 32955-2660
- St. Lucie County Attn: Board of Commissioners 2300 Virginia Avenue Fort Pierce, Fl 34982
- State of Florid, Department of Transportation Ms. Ruth Yanks
 FDOT Utility Section 3400 W Commercial Blvd
 Fort Lauderdale, Fl 33309
- Town of Lake Park Attn: City Clerk 535 Park Avenue Lake Park, Fl 33403
- Hendry County Attn: Board of Commissioners 25 E. Hickpoochee Ave. Labelle, Florida 33935
- City of Deltona Attn: City Clerk
 2345 Providence Boulevard Deltona, Fl 32725
- City of Fort Myers City Clerk's Office 2200 Second Street Fort Myers, Florida 33902

- City of Lauderdale Lakes Attn: City Clerk
 4300 NW 36th Street Lauderdale Lakes, Fl 33319
- City of Coral Springs Attn: City Attorney 9551 W. Sample Road Coral Springs, Fl 33065
- City of Boynton Beach City Clerk's Office 100 E. Boynton Beach Blvd. Boynton Beach, Fl 33435-3838
- City of Delray Beach Assistant City Manager 100 NW 1st Ave. Delray Beach, Fl 33444
- City of West Melbourne City Attorney
 2285 Minton Road West Melbourne, Fl 32904-4928
- Town of Indialantic by the Sea Attn: City Clerk 100 N Andres Avenue Fort Lauderdale, Fl 33301
- City of Fort Lauderdale Attn: City Clerk 100 N Andrews Avenue Fort Lauderdale, Fl 33301
- Columbia County Attn: Board of Commissioners 607 NW Quinten St. Lake City, Fl 32055
- City of Miami Attn: City Clerk 3500 Pan American Drive Miami, Fl 33133

- City of Riviera Beach Attn: City Clerk 600 West Blue Heron Blvd. Rivera Beach, Fl 33404
- City of Pompano Beach Attn: City Clerk 100 West Atlantic, Boulevard Pompano Beach, Florida 33060
- Mr. Rick Scheller Advanced Cable Communications 12409 NW 35 Street Coral Springs, Fl 33065
- Mr. Dave Floberg Atlantic Broadband 1681 Kennedy Causeway North Bay Village, Fl 33141
- Mr. Darrell Larid Communication Services 17774 NW US HWY 441 High Springs, Fl 32643
- Mr. Gary English Florida Cable 23505 SR 40 Astor, Fl 32102
- Nextel South Corp. Attn: Legal Services
 851 Trafalgar Court suite 300E Maitland, Florida 32751
- Mr. Tim Thompson, Regional Vice President Nextel South Corp.
 Field Engineering and Operations 6575 the Corners Parkway Norcross, GA 30092
- Nextel South Corp. Attn: Contracts Manager 2001 Edmund Halley Dr. Reston, VA 20191-3436

- NEXT G NETWORKS, INC. Attn: Contracts Administrator 2216 O'Toole Avenues San Jose, CA 95131
- Ms. Rosanne Gervasi Esquire Office of the General Counsel Florida Public Service Commission 2540 Shumard Oak Boulevard Tallahassee, Florida 32339-0850