

# BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION

# DOCKET NO. 080001-EI IN RE: TAMPA ELECTRIC'S FUEL & PURCHASED POWER COST RECOVERY AND CAPACITY COST RECOVERY PROJECTIONS JANUARY 2009 THROUGH DECEMBER 2009

# TESTIMONY AND EXHIBIT

OF

BRIAN S. BUCKLEY

DOCUMENT NUMBER-DATE

08017 SEP -2 8 FPSC-COMMISSION CLERK

TAMPA ELECTRIC COMPANY DOCKET NO. 080001-EI FILED: 9/2/2008

| 1  |    | BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION             |
|----|----|----------------------------------------------------------|
| 2  |    | PREPARED DIRECT TESTIMONY                                |
| 3  |    | OF                                                       |
| 4  |    | BRIAN S. BUCKLEY                                         |
| 5  |    |                                                          |
| 6  | Q. | Please state your name, business address, occupation and |
| 7  |    | employer.                                                |
| 8  |    |                                                          |
| 9  | A. | My name is Brian S. Buckley. My business address is 702  |
| 10 |    | North Franklin Street, Tampa, Florida 33602. I am        |
| 11 |    | employed by Tampa Electric Company ("Tampa Electric" or  |
| 12 |    | "company") in the position of Supervisor, Performance    |
| 13 |    | Planning & Analysis in the Resource Planning Department. |
| 14 |    |                                                          |
| 15 | Q. | Please provide a brief outline of your educational       |
| 16 |    | background and business experience.                      |
| 17 |    |                                                          |
| 18 | A. | I received a Bachelor of Science degree in Mechanical    |
| 19 |    | Engineering in 1997 from the Georgia Institute of        |
| 20 |    | Technology and a Master of Business Administration from  |
| 21 |    | the University of South Florida in 2003. I began my      |
| 22 |    | career with Tampa Electric in 1999 as an Engineer in     |
| 23 |    | Plant Technical Services. I have held a number of        |
| 24 |    | different engineering positions at Tampa Electric's      |
| 25 |    | power generating stations including Operations Engineer  |

| 1          |                                                         | at Gannon Station, Instrumentation and Controls Engineer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 2          |                                                         | at Big Bend Station, and Senior Engineer in Asset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| -          |                                                         | Management In August 2007 I was promoted to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| <b>.</b>   |                                                         | Renaminante Destamone Dispring and Applysic in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| 4          |                                                         | Supervisor, Performance Planning and Analysis in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| 5          |                                                         | Resource Planning department, where I am currently                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| 6          | responsible for unit performance analysis and reporting |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 7          |                                                         | of generation statistics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| 8          |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 9          | Q.                                                      | What is the purpose of your testimony?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| 10         |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 11         | А.                                                      | My testimony describes Tampa Electric's maintenance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| 12         |                                                         | planning processes and presents Tampa Electric's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| 13         |                                                         | methodology for determining the various factors required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| 1.0        |                                                         | to compute the Concreting Performance Incentive Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| 14         |                                                         | (happene) a black of the second secon |  |  |  |  |
| 15         | ĺ                                                       | ("GPIF") as ordered by the Commission.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| 16         |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 1 <b>7</b> | Q.                                                      | Have you prepared any exhibits to support your                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| 18         |                                                         | testimony?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| 19         |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 20         | А.                                                      | Yes, Exhibit No (BSB-1), consisting of two                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| 21         |                                                         | documents, was prepared under my direction and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| 22         |                                                         | supervision. Document No. 1 contains the GPIF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| 23         |                                                         | schedules. Document No. 2 is a summary of the GPIF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| 24         |                                                         | targets for the 2009 period.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| 25         |                                                         | - •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| ات بند     |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |

| 1  |    | • · · ·                                                  |
|----|----|----------------------------------------------------------|
| 1  | Q. | Which generating units on Tampa Electric's system are    |
| 2  |    | included in the determination of the GPIF?               |
| 3  |    |                                                          |
| 4  | А. | Four of the company's coal-fired units, one integrated   |
| 5  |    | gasification combined cycle unit and two natural gas     |
| 6  |    | combined cycle units are included. These are Big Bend    |
| 7  |    | Units 1 through 4, Polk Unit 1 and Bayside Units 1 and   |
| 8  |    | 2.                                                       |
| 9  |    |                                                          |
| 10 | Q. | Do the exhibits you prepared comply with Commission-     |
| 11 |    | approved GPIF methodology?                               |
| 12 |    |                                                          |
| 13 | А. | Yes, the documents are consistent with the GPIF          |
| 14 |    | Implementation Manual previously approved by the         |
| 15 |    | Commission. To account for the concerns presented in     |
| 16 |    | the testimony of Commission Staff witness Sidney W.      |
| 17 |    | Matlock during the 2005 fuel hearing, Tampa Electric     |
| 18 | -  | removes outliers from the calculation of the GPIF        |
| 19 | 1  | targets. Section 3.3 of the GPIF Implementation Manual   |
| 20 |    | allows for removal of outliers, and the methodology was  |
| 21 |    | approved by the Commission in Order No. PSC-06-1057-FOF- |
| 22 |    | EI issued in Docket No. 060001-EI on December 22, 2006.  |
| 23 |    |                                                          |
| 24 | Q. | Did Tampa Electric identify any outages as outliers?     |
| 25 |    |                                                          |
|    | l  |                                                          |

|     | •  | Non one where from Die Dand Whit 2 and outage from       |  |  |  |
|-----|----|----------------------------------------------------------|--|--|--|
| 1   | А. | res. One outage from sig send onit 2, one outage from    |  |  |  |
| 2   |    | Big Bend Unit 3, and one outage from Big Bend Unit 4     |  |  |  |
| 3   |    | were identified as outlying outages; therefore, the      |  |  |  |
| 4   |    | associated forced outage hours were removed from the     |  |  |  |
| 5   |    | study.                                                   |  |  |  |
| 6   |    |                                                          |  |  |  |
| 7   | Q. | Please describe how Tampa Electric developed the various |  |  |  |
| 8   |    | factors associated with the GPIF.                        |  |  |  |
| 9   |    |                                                          |  |  |  |
| 10  | A. | Targets were established for equivalent availability and |  |  |  |
| 11  |    | heat rate for each unit considered for the 2009 period.  |  |  |  |
| 12  |    | A range of potential improvements and degradations were  |  |  |  |
| 13  |    | determined for each of these metrics.                    |  |  |  |
| 14  |    |                                                          |  |  |  |
| 15  | Q. | How were the target values for unit availability         |  |  |  |
| 16  | 1  | determined?                                              |  |  |  |
| 17. |    |                                                          |  |  |  |
| 18  | A. | The Planned Outage Factor or POF and the Equivalent      |  |  |  |
| 19  |    | Unplanned Outage Factor or EUOF were subtracted from 100 |  |  |  |
| 20  |    | percent to determine the target Equivalent Availability  |  |  |  |
| 21  |    | Factor or EAF. The factors for each of the seven units   |  |  |  |
| 22  |    | included within the GPIF are shown on page 5 of Document |  |  |  |
| 23  |    | No. 1.                                                   |  |  |  |
| 24  |    |                                                          |  |  |  |
| 25  |    | To give an example for the 2009 period, the projected    |  |  |  |

Equivalent Unplanned Outage Factor for Big Bend Unit 1 1 is 18.2 percent, and the Planned Outage Factor is 9.3 2 Therefore, the target equivalent availability 3 percent. factor for Big Bend Unit 1 equals 72.5 percent or: 4 5 (18.2% + 9.3%)100% 72.5% 6 7 This is shown on page 4, column 3 of Document No. 1. 8 9 How was the potential for unit availability improvement Q. 10 determined? 1.1 12 Maximum equivalent availability is derived by using the A. 13 following formula: 14 15  $EAF_{MAX} = 1 - [0.8 (EUOF_T) + 0.95 (POF_T)]$ 16 17 The factors included in the above equations are the same 18 factors determine that the target equivalent 19 determine the maximum incentive 20 availability. То points, a 20 percent reduction in Equivalent Forced 21 Outage Factor or EUOF and Equivalent Maintenance Outage 22 Factor or EMOF, plus a five percent reduction in the 23 Planned Outage Factor are necessary. Continuing with 24 the Big Bend Unit 1 example: 25

| 1  |    | EAF $_{MAX} = 1 - [0.8 (18.2\%) + 0.95 (9.3\%)] = 76.6\%$  |
|----|----|------------------------------------------------------------|
| 2  |    |                                                            |
| 3  |    | This is shown on page 4, column 4 of Document No. 1.       |
| 4  |    |                                                            |
| 5  | Q. | How was the potential for unit availability degradation    |
| 6  |    | determined?                                                |
| 7  |    |                                                            |
| 8  | А. | The potential for unit availability degradation is         |
| 9  |    | significantly greater than the potential for unit          |
| 10 |    | availability improvement. This concept was discussed       |
| 11 |    | extensively during the development of the incentive. To    |
| 12 |    | incorporate this biased effect into the unit               |
| 13 |    | availability tables, Tampa Electric uses a potential       |
| 14 |    | degradation range equal to twice the potential             |
| 15 |    | improvement. Consequently, minimum equivalent              |
| 16 |    | availability is calculated using the following formula:    |
| 17 |    |                                                            |
| 18 |    | EAF $MIN = 1 - [1.40 (EUOF_T) + 1.10 (POF_T)]$             |
| 19 |    |                                                            |
| 20 |    | Again, continuing with the Big Bend Unit 1 example,        |
| 21 |    |                                                            |
| 22 |    | EAF $_{MIN} = 1 - [1.40 (18.2\%) + 1.10 (9.3\%)] = 64.3\%$ |
| 23 |    |                                                            |
| 24 |    | The equivalent availability maximum and minimum for the    |
| 25 |    | other six units are computed in a similar manner.          |

Q. How did Tampa Electric determine the Planned Outage, 1 Maintenance Outage, and Forced Outage Factors? 2 3 company's planned outages for January through 4 Α. The December 2009 are shown on page 21 of Document No. 1. 5 Four GPIF units have a major outage of 28 days or 6 greater in 2009; therefore, four Critical Path Method 7 Planned Outage Factors are diagrams are provided. 8 calculated for each unit. For example, Big Bend Unit 1 9 is scheduled for a planned outage from November 28, 2009 10 to December 31, 2009. There are 816 planned outage 11 hours scheduled for the 2009 period, and a total of 12 8,760 hours during this 12-month period. Consequently, 13 the Planned Outage Factor for Big Bend Unit 1 is 9.3 14 15 percent or: 16  $816 \times 100\% = 9.3\%$ 17 8,760 18 19 The factor for each unit is shown on pages 5 and 14 20 through 20 of Document No. 1. Big Bend Unit 1 has a 21 Planned Outage Factor of 9.3 percent. Big Bend Unit 2 22 has a Planned Outage Factor of 32.6 percent. Big Bend 23 Unit 3 has a Planned Outage Factor of 3.8 percent. Big 24 Bend Unit 4 has a Planned Outage Factor of 15.3 percent. 25

Polk Unit 1 has a Planned Outage Factor of 9.8 percent. 1 Bayside Unit 1 has a Planned Outage Factor of 3.8 2 percent, and Bayside Unit 2 has a Planned Outage Factor З of 3.8 percent. 4 5 How did you determine the Forced Outage and Maintenance 6 Q. Outage Factors for each unit? 7 8 For each unit the most current 12-month ending value, 9 Α. June 2008, was used as a basis for the projection. A11 10 based upon historical unit projected factors are 11 performance unless adjusted for outlying forced outages. 12 These target factors are additive and result in an 13 Equivalent Unplanned Outage Factor of 18.2 percent for 14 Big Bend Unit 1. The Equivalent Unplanned Outage Factor 15 for Big Bend Unit 1 is verified by the data shown on 16 page 14, lines 3, 5, 10 and 11 of Document No. 1 and 17 calculated using the following formula: 18 19  $EUOF = (EFOH + EMOH) \times 100\%$ 20  $\mathbf{PH}$ 21 Or 22 23  $EUOF = (1, 368 + 224) \times 100\% = 18.2\%$ 24 8,760 25

Relative to Big Bend Unit 1, the EUOF of 18.2 percent 1 forms the basis of the equivalent availability target 2 development as shown on pages 4 and 5 of Document No. 1. 3 4 Big Bend Unit 1 5 The projected Equivalent Unplanned Outage Factor for 6 this unit is 18.2 percent. The unit will have a planned 7 outage in 2009, and the Planned Outage Factor is 9.3 8 percent. Therefore, the target equivalent availability 9 for this unit is 72.5 percent. 10 11 Big Bend Unit 2 12 The projected Equivalent Unplanned Outage Factor for 13 this unit is 11.3 percent. The unit will have a planned 14 outage in 2009, and the Planned Outage Factor is 32.6 15 percent. Therefore, the target equivalent availability 16 17 for this unit is 56.1 percent. 18 Big Bend Unit 3 19 The projected Equivalent Unplanned Outage Factor for 20 this unit is 41.8 percent. The unit will have a planned 21 outage in 2009, and the Planned Outage Factor is 3.8 22 percent. Therefore, the target equivalent availability 23 for this unit is 54.3 percent. 24 25

| 1  | Big Bend Unit 4                                         |
|----|---------------------------------------------------------|
| 2  | The projected Equivalent Unplanned Outage Factor for    |
| 3  | this unit is 17.2 percent. The unit will have a planned |
| 4  | outage in 2009, and the Planned Outage Factor is 15.3   |
| 5  | percent. Therefore, the target equivalent availability  |
| 6  | for this unit is 67.5 percent.                          |
| 7  |                                                         |
| 8  | Polk Unit 1                                             |
| 9  | The projected Equivalent Unplanned Outage Factor for    |
| 10 | this unit is 10.6 percent. The unit will have a planned |
| 11 | Outage in 2009, and the Planned Outage Factor is 9.8    |
| 12 | percent. Therefore, the target equivalent availability  |
| 13 | for this unit is 79.7 percent.                          |
| 14 |                                                         |
| 15 | Bayside Unit 1                                          |
| 16 | The projected Equivalent Unplanned Outage Factor for    |
| 17 | this unit is 2.8 percent. The unit will have a planned  |
| 18 | outage in 2009, and the Planned Outage Factor is 3.8    |
| 19 | percent. Therefore, the target equivalent availability  |
| 20 | for this unit is 93.4 percent.                          |
| 21 |                                                         |
| 22 | Bayside Unit 2                                          |
| 23 | The projected Equivalent Unplanned Outage Factor for    |
| 24 | this unit is 2.0 percent. The unit will have a planned  |
| 25 | outage in 2009, and the Planned Outage Factor is 3.8    |

| .1 |    | percent. Therefore, the target equivalent availability   |
|----|----|----------------------------------------------------------|
| 2  |    | for this unit is 94.1 percent.                           |
| 3  |    | · ·                                                      |
| 4  | Q. | Please summarize your testimony regarding Equivalent     |
| 5  |    | Availability Factor.                                     |
| 6  |    |                                                          |
| 7  | A. | The GPIF system weighted Equivalent Availability Factor  |
| 8  |    | of 62.7 percent is shown on Page 5 of Document No. 1.    |
| 9  |    | This target is comparable to the 2007 January through    |
| 10 |    | December actual performance.                             |
| 11 |    |                                                          |
| 12 | Q. | Why are Forced and Maintenance Outage Factors adjusted   |
| 13 |    | for planned outage hours?                                |
| 14 |    |                                                          |
| 15 | Α. | The adjustment makes the factors more accurate and       |
| 16 | 1  | comparable. A unit in a planned outage stage or reserve  |
| 17 |    | shutdown stage will not incur a forced or maintenance    |
| 18 |    | outage. To demonstrate the effects of a planned outage,  |
| 19 |    | note the Equivalent Unplanned Outage Rate and Equivalent |
| 20 |    | Unplanned Outage Factor for Big Bend Unit 1 on page 14   |
| 21 |    | of Document No. 1. During the months of January through  |
| 22 |    | October and December, the Equivalent Unplanned Outage    |
| 23 |    | Rate and the Equivalent Unplanned Outage Factor are      |
| 24 |    | equal. This is because no planned outages are scheduled  |
| 25 |    | during these months. During the month of November, the   |
|    |    |                                                          |

Equivalent Unplanned Outage Rate exceeds the Equivalent 1 Unplanned Outage Factor due to a scheduled planned 2 Therefore, the adjusted factors apply to the outage. 3 period hours after the planned outage hours have been 4 extracted. 5 6 7 **Q**. Does this mean that both rate and factor data are used in calculated data? 8 9 Rates provide a proper and accurate method of Α. Yes. 10 determining the unit metrics, which are subsequently 11 converted to factors. 12 Therefore, 13 EFOF + EMOF + POF + EAF = 100%14 15 Since factors are additive, they are easier to work with 16 and to understand. 17 18 Q. Has Tampa Electric prepared the necessary heat rate data 19 required for the determination of the GPIF? 20 21 Α. Yes. Target 22 heat rates and ranges of potential operation have been developed as required and have been 23 adjusted to reflect the aforementioned agreed upon GPIF 24 methodology. 25

| 1          |    |                                                          |
|------------|----|----------------------------------------------------------|
| 1          | Q. | How were these targets determined?                       |
| 2          |    |                                                          |
| 3          | A. | Net heat rate data for the three most recent July        |
| 4          |    | through June annual periods formed the basis of the      |
| 5          |    | target development. The historical data and the target   |
| 6          |    | values are analyzed to assure applicability to current   |
| 7          |    | conditions of operation. This provides assurance that    |
| 8          |    | any periods of abnormal operations or equipment          |
| 9          |    | modifications having material effect on heat rate can be |
| 10         |    | taken into consideration.                                |
| 11         |    |                                                          |
| 1 <b>2</b> | Q. | How were the ranges of heat rate improvement and heat    |
| 13         |    | rate degradation determined?                             |
| 14         |    |                                                          |
| 15         | А. | The ranges were determined through analysis of           |
| 16         | ļ  | historical net heat rate and net output factor data.     |
| 17         |    | This is the same data from which the net heat rate       |
| 19         |    | versus net output factor curves have been developed for  |
| 19         | [  | each unit. This information is shown on pages 33         |
| 20         |    | through 39 of Document No. 1.                            |
| 21         | ĺ  |                                                          |
| 22         | Q. | Please elaborate on the analysis used in the             |
| 23         |    | determination of the ranges.                             |
| 24         |    |                                                          |
| 25         | A. | The net heat rate versus net output factor curves are    |
|            | I  |                                                          |

the result of a first order curve fit to historical data. The standard error of the estimate of this data was determined, and a factor was applied to produce a band of potential improvement and degradation. Both the curve fit and the standard error of the estimate were performed by computer program for each unit. These curves are also used in post-period adjustments to actual heat rates to account for unanticipated changes in unit dispatch.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Q. Please summarize your heat rate projection (Btu/Net kWh) and the range about each target to allow for potential improvement or degradation for the 2009 period.

The heat rate target for Big Bend Unit 1 is 10,774 Α. 15 The range about this value, to allow for 16 Btu/Net kWh. potential improvement or degradation, is ±302 Btu/Net 17 kWh. The heat rate target for Big Bend Unit 2 is 10,396 18 Btu/Net kWh with a range of ±291 Btu/Net kWh. The heat 19 rate target for Big Bend Unit 3 is 10,751 Btu/Net kWh, 20 with a range of ±293 Btu/Net kWh. The heat rate target 21 for Big Bend Unit 4 is 10,598 Btu/Net kWh with a range 22 23 of ±454 Btu/Net kWh. The heat rate target for Polk Unit 1 is 10,707 Btu/Net kWh with a range of ±753 Btu/Net 24 The heat rate target for Bayside Unit 1 is 7,264 kWh. 25

. 14

Btu/Net kWh with a range of  $\pm 102$  Btu/Net kWh. The heat 1 rate target for Bayside Unit 2 is 7,378 Btu/Net kWh with 2 a range of  $\pm 101$  Btu/Net kWh. A zone of tolerance of  $\pm 75$ 3 Btu/Net kWh is included within the range for each 4 This is shown on page 4, and pages 7 through 13 target. 5 of Document No. 1. 6 7 Do the heat rate targets and ranges in Tampa Electric's Q. 8 the GPIF projection meet the criteria of and the 9 philosophy of the Commission? 10 11 Α. Yes. 12 13 determining the target values and ranges for After 14 ο. average net operating heat rate and equivalent 15 availability, what is the next step in the GPIF? 16 17 The next step is to calculate the savings and weighting Α. 18 factor to be used for both average net operating heat 19 rate and equivalent availability. This is shown on 20 The baseline production costing pages 7 through 13. 21 analysis was performed to calculate the total system 22 fuel cost if all units operated at target heat rate and 23 target availability for the period. This total system 24 fuel cost of \$1,492,425.10 is shown on page 6, column 2. 25

Multiple production cost simulations were performed to calculate total system fuel cost with each unit individually operating at maximum improvement in equivalent availability and each station operating at maximum improvement in average net operating heat rate. The respective savings are shown on page 6, column 4 of Document No. 1.

After all of the individual savings are calculated, 9 column 4 totals \$60,487,101 which reflects the savings 10 if all of the units operated at maximum improvement. A 11 weighting factor for each metric is then calculated by 12 dividing individual savings by the total. For Big Bend 13 Unit 1, the weighting factor for equivalent availability 14 is 8.9 percent as shown in the right-hand column on page 15 6. Pages 7 through 13 of Document No. 1 show the point 16 table, the Fuel Savings/(Loss) and the equivalent 17 availability or heat rate value. The individual 18 weighting factor is also shown. For example, on Big 19 Bend Unit 1, page 7, if the unit operates at 76.6 20 percent equivalent availability, fuel savings 21 would equal \$5,381,600, and 10 equivalent availability points 22 would be awarded. 23

24 25

1

2

3

4

5

6

7

8

The GPIF Reward/Penalty table on page 2 is a summary of

the tables on pages 7 through 13. The left-hand column 1 of this document shows the incentive points for Tampa 2 The center column shows the total fuel Electric. 3 savings and is the same amount as shown on page 6, 4 The right hand column of page column 4, or \$60,487,101. 5 2 is the estimated reward or penalty based upon 6 7 performance. 8 How was the maximum allowed incentive determined? 9 Q. 10 Referring to page 3, line 14, the estimated average 11 Α. common equity for the period January through December 12 This produces the maximum 2009 is \$2,071,043,308. 13 allowed jurisdictional incentive of \$8,123,043 shown on 14 line 21. 15 16 Are there any other constraints set forth by the 17 Q. Commission regarding the magnitude of incentive dollars? 18 19 Incentive dollars are not to exceed 50 percent of Yes. 20 Α. Page 2 of Document No. 1 demonstrates fuel savings. 21 that this constraint is met. 22 23 Please summarize your testimony. Q. 24 25

Tampa Electric has complied with the Commission's 1 A. philosophy, directions, and methodology in its 2 determination of the GPIF. The GPIF is determined by З the following formula for calculating Generating 4 Performance Incentive Points (GPIP): 5 6 GPIP: = (  $0.0890 \text{ EAP}_{BB1} + 0.0704$ EAP<sub>BB2</sub> 7 + 0.2222 EAP<sub>BB3</sub> + 0.1042EAP<sub>BB4</sub> 8 9 + 0.0309 EAP<sub>PK1</sub> + 0.0067 EAP<sub>BAY1</sub> + 0.0070 EAP<sub>BAY2</sub> + 0.0451 HRP<sub>BB1</sub> 10 + 0.0329 + 0.0342 HRP<sub>BB3</sub>  $HRP_{BB2}$ 11 + 0.0711 HRP<sub>BB4</sub> 12 + 0.1081HRP<sub>PK1</sub> + 0.0906 HRP<sub>BAY1</sub> + 0.0876  $HRP_{BAY2}$ ) 13 14 Where: 15 Generating Performance Incentive Points. GPIP = 16 Equivalent Availability Points 17 EAP = awarded/ deducted for Big Bend Units 1, 2, 3, and 4, 18 Polk Unit 1 and Bayside Units 1 and 2. 19 Average Net Heat Rate Points awarded/deducted HRP = 20 21 for Big Bend Units 1, 2, 3, and 4, Polk Unit 1 and Bayside Units 1 and 2. 22 23 24 Q. Have you prepared a document summarizing the GPIF targets for the January through December 2009 period? 25

| 1  | A. | Yes. Document No. 2 entitled "Summary of GPIF Targets"   |
|----|----|----------------------------------------------------------|
| 2  |    | provides the availability and heat rate targets for each |
| 3  |    | unit.                                                    |
| 4  |    |                                                          |
| 5  | Q. | Does this conclude your testimony?                       |
| 6  |    |                                                          |
| 7  | A. | Yes.                                                     |
| B  |    |                                                          |
| 9  |    |                                                          |
| 10 |    |                                                          |
| 11 |    |                                                          |
| 12 |    |                                                          |
| 13 |    |                                                          |
| 14 |    |                                                          |
| 15 |    |                                                          |
| 16 |    |                                                          |
| 17 |    |                                                          |
| 18 |    |                                                          |
| 20 |    |                                                          |
| 21 |    | · · ·                                                    |
| 22 |    |                                                          |
| 23 |    |                                                          |
| 24 |    |                                                          |
| 25 |    |                                                          |
| ļ  |    |                                                          |

DOCKET NO. 080001-EI GPIF 2009 PROJECTION FILING EXHIBIT NO. (BSB-1) DOCUMENT NO. 1

# EXHIBIT TO THE TESTIMONY OF

. '

BRIAN S. BUCKLEY

DOCUMENT NO. 1

GPIF SCHEDULES

JANUARY 2009 - DECEMBER 2009

DOCKET NO. 080001 - EI GPIF 2009 PROJECTION EXHIBIT NO. \_\_\_\_ (BSB-1) DOCUMENT NO. 1 PAGE 1 OF 42

# TAMPA ELECTRIC COMPANY GENERATING PERFORMANCE INCENTIVE FACTOR JANUARY 2009 - DECEMBER 2009 TARGETS TABLE OF CONTENTS

.

| SCHEDULE                                                      | PAGE           |
|---------------------------------------------------------------|----------------|
| GPIF REWARD / PENALTY TABLE                                   | 2              |
| GPIF CALCULATION OF MAXIMUM ALLOWED INCENTIVE DOLLARS         | 3              |
| GPIF TARGET AND RANGE SUMMARY                                 | 4              |
| COMPARISON OF GPIF TARGETS VS PRIOR PERIOD ACTUAL PERFORMANCE | 5              |
| DERIVATION OF WEIGHTING FACTORS                               | 6              |
| GPIF TARGET AND RANGE SUMMARY                                 | 7 - 13         |
| ESTIMATED UNIT PERFORMANCE DATA                               | 14 - 20        |
| ESTIMATED PLANNED OUTAGE SCHEDULE                             | 21             |
| CRITICAL PATH METHOD DIAGRAMS                                 | 22 - 25        |
| FORCED & MAINTENANCE OUTAGE FACTOR GRAPHS                     | <b>26</b> - 32 |
| HEAT RATE VS NET OUTPUT FACTOR GRAPHS                         | 33 - 39        |
| GENERATING UNITS IN GPIF (TABLE 4.2 IN THE MANUAL)            | 40             |
| UNIT RATINGS AS OF APRIL 2008                                 | 41             |
| PROJECTED PERCENT GENERATION BY UNIT                          | 42             |

 $\mathbf{21}$ 

# TAMPA ELECTRIC COMPANY GENERATING PERFORMANCE INCENTIVE FACTOR REWARD / PENALTY TABLE JANUARY 2009 - DECEMBER 2009

-

;

| GENERATING<br>PERFORMANCE<br>INCENTIVE<br>POINTS<br>(GPIP) | FUEL<br>SAVINGS / (LOSS)<br>(\$000) | GENERATING<br>PERFORMANCE<br>INCENTIVE<br>FACTOR<br>(\$000) |
|------------------------------------------------------------|-------------------------------------|-------------------------------------------------------------|
| +10                                                        | 60,487.1                            | 8,123.0                                                     |
| +9                                                         | 54,438.4                            | 7,310.7                                                     |
| +8                                                         | 48,389.7                            | 6,498.4                                                     |
| +7                                                         | 42,341.0                            | 5,686.1                                                     |
| +6                                                         | 36,292.3                            | 4,873.8                                                     |
| +5                                                         | 30,243.6                            | 4,061.5                                                     |
| +4                                                         | 24,194.8                            | 3,249.2                                                     |
| +3                                                         | 18,146.1                            | 2,436.9                                                     |
| +2                                                         | 12,097.4                            | 1,624.6                                                     |
| +1                                                         | 6,048.7                             | 812.3                                                       |
| 0                                                          | 0.0                                 | 0.0                                                         |
| -1                                                         | (10,975.5)                          | (812.3)                                                     |
| -2                                                         | (21,950.9)                          | (1,624.6)                                                   |
| -3                                                         | (32,926.4)                          | (2,436.9)                                                   |
| -4                                                         | (43,901.9)                          | (3,249.2)                                                   |
| -5                                                         | (54,877.4)                          | (4,061.5)                                                   |
| -6                                                         | (65,852.8)                          | (4,873.8)                                                   |
| -7                                                         | (76,828.3)                          | (5,686.1)                                                   |
| -8                                                         | (87,803.8)                          | (6,498.4)                                                   |
| -9                                                         | (98,779.2)                          | (7,310.7)                                                   |
| -10                                                        | (109,754.7)                         | (8,123.0)                                                   |

# TAMPA ELECTRIC COMPANY GENERATING PERFORMANCE INCENTIVE FACTOR CALCULATION OF MAXIMUM ALLOWED INCENTIVE DOLLARS JANUARY 2009 - DECEMBER 2009

| Line 21 | 1 Maximum Allowed Jurisdictional Incentive Dollars<br>(line 17 times line 20)   |                          |    | 8,123,043         |     |
|---------|---------------------------------------------------------------------------------|--------------------------|----|-------------------|-----|
| Line 20 | Jurisdictional Separation Fa<br>(line 18 divided by line 19)                    | ctor                     |    | 96.30%            |     |
| Line 19 | Total Sales                                                                     |                          |    | 20,760,002        | MWH |
| Line 18 | Jurisdictional Sales                                                            |                          |    | 19,991,680        | MWH |
| Line 17 | Maximum Allowed Incentive Dollars<br>(line 14 times line 15 divided by line 16) |                          |    | <b>8</b> ,435,228 |     |
| Line 16 | Revenue Expansion Factor                                                        |                          |    | 61.38%            |     |
| Line 15 | 25 Basis points                                                                 |                          |    | 0.0025            |     |
| Line 14 | (Summation of line 1 throug                                                     | h line 13 divided by 13) | \$ | 2,071,043,308     |     |
| Line 13 | Month of December                                                               | 2009                     | \$ | 2,156,923,000     |     |
| Line 12 | Month of November                                                               | 2009                     | \$ | 2,153,373,000     |     |
| Line 11 | Month of October                                                                | 2009                     | \$ | 2,148,509,000     |     |
| Line 10 | Month of September                                                              | 2009                     | \$ | 2,168,532,000     |     |
| Line 9  | Month of August                                                                 | 2009                     | \$ | 2,133,572,000     |     |
| Line 8  | Month of July                                                                   | 2009                     | \$ | 2,114,125,000     |     |
| Line 7  | Month of June                                                                   | 2009                     | \$ | 2,097,586,000     |     |
| Line 6  | Month of May                                                                    | 2009                     | \$ | 2,060,785,000     |     |
| Line 5  | Month of April                                                                  | 2009                     | \$ | 2,048,958,000     |     |
| Line 4  | Month of March                                                                  | 2009                     | \$ | 2,022,168,000     |     |
| Line 3  | Month of February                                                               | 2009                     | \$ | 1,977,816,000     |     |
| Line 2  | Month of January                                                                | 2009                     | \$ | 1,956,933,000     |     |
| Line 1  | Beginning of period balance of common equity:<br>End of month common equity:    |                          | \$ | 1,884,283,000     |     |

.

### TAMPA ELECTRIC COMPANY GPIF TARGET AND RANGE SUMMARY JANUARY 2009 - DECEMBER 2009

.

,

# EQUIVALENT AVAILABILITY

| PLANT / UNIT | WEIGHTING<br>FACTOR<br>(%) | EAF<br>TARGET<br>(%) | EAF RA<br>MAX.<br>(%) | NGE<br>MIN.<br>(%) | MAX. FUEL<br>SAVINGS<br>(\$000) | MAX. FUEL<br>LOSS<br>(\$000) |
|--------------|----------------------------|----------------------|-----------------------|--------------------|---------------------------------|------------------------------|
| BIG BEND 1   | 8.90%                      | 72.5                 | 76.6                  | 64.3               | 5,381.6                         | (13,607.0)                   |
| BIG BEND 2   | 7.04%                      | 56.1                 | 60.0                  | 48.4               | 4,256.1                         | (10,743.9)                   |
| BIG BEND 3   | 22,22%                     | 54.3                 | 62.9                  | 37.2               | 13,438.2                        | (34,614.0)                   |
| BIG BEND 4   | 10.42%                     | 67.5                 | 71.7                  | 59.1               | 6,305.2                         | (15,453.2)                   |
| POLK 1       | 3.09%                      | 79.7                 | 82.3                  | 74.6               | 1,866.1                         | (4,526.3)                    |
| BAYSIDE 1    | 0.67%                      | 93.4                 | 94.1                  | 91.9               | 405.7                           | (1,190.9)                    |
| BAYSIDE 2    | 0,70%                      | 94.1                 | 94.7                  | 92.9               | 423.0                           | (1,208.2)                    |
| GPIF SYSTEM  | 53.03%                     |                      |                       |                    |                                 |                              |

### AVERAGE NET OPERATING HEAT RATE

|              | WEIGHTING<br>FACTOR<br>(%) | ANOHR<br>Btu/kwb |      |         | RANGE  | MAX. FUEL<br>SAVINGS<br>(\$000) | MAX. FUEL<br>LOSS<br>(\$000) |
|--------------|----------------------------|------------------|------|---------|--------|---------------------------------|------------------------------|
| T CANTI ONLY |                            | <u>Dianteri</u>  |      |         |        |                                 | ((()))                       |
| BIG BEND 1   | 4.51%                      | 10,774           | 90.9 | 10,472  | 11,077 | 2,730.6                         | (2,730.6)                    |
| BIG BEND 2   | 3.29%                      | 10,396           | 90.5 | 10,105  | 10,688 | 1,990.2                         | (1,990.2)                    |
| BIG BEND 3   | 3.42%                      | 10,751           | 77.3 | 10,458  | 11,044 | 2,071.3                         | (2,071.3)                    |
| BIG BEND 4   | 7.11%                      | 10,598           | 90.1 | 10,144  | 11,052 | 4,299.7                         | (4,299.7)                    |
| POLK 1       | 10.81%                     | 10,707           | 86.9 | 9,955   | 11,460 | 6,540.5                         | (6,540.5)                    |
| BAYSIDE 1    | 9.06%                      | 7,264            | 84.4 | · 7,163 | 7,366  | 5,480.0                         | (5,480.0)                    |
| BAYSIDE 2    | 8.76%                      | 7,378            | 77.7 | 7,277   | 7,479  | 5,298.9                         | (5,298.9)                    |
| GPIF SYSTEM  | 46.97%                     |                  |      |         |        |                                 |                              |

# TAMPA ELECTRIC COMPANY COMPARISON OF GPIF TARGETS VS PRIOR PERIOD ACTUAL PERFORMANCE

|                           |                            |                                   |                   |                                 | EQUIVAL          | ENT AVAILAB                 | <u>ILITY (%</u> ) |                   |                    |                                 |                     |   |                    |             |                     |
|---------------------------|----------------------------|-----------------------------------|-------------------|---------------------------------|------------------|-----------------------------|-------------------|-------------------|--------------------|---------------------------------|---------------------|---|--------------------|-------------|---------------------|
| PLANT / UNIT              | WEIGHTING<br>FACTOR<br>(%) | NORMALIZED<br>WEIGHTING<br>FACTOR | TAF<br>JAI<br>PDF | RGET PERM<br>N 09 - DEC<br>EUOF | DD<br>D9<br>EUOR | ACTUAL<br>JAN<br><u>POF</u> | PERFORM           | ANCE<br>7<br>EUOR | ACTUA<br>JA<br>POF | L PERFORI<br>N 06 - DEC<br>EUOF | MANCE<br>D6<br>EUOR | _ | ACTUA<br>JA<br>POF | N 05 - DEC  | MANCE<br>05<br>EUOR |
| BIG BEND 1                | 8.90%                      | 15.8%                             | 9.3               | 18.2                            | 20.0             | 0.0                         | 23.7              | 23.7              | 18.5               | 26,3                            | 32.2                |   | 8.6                | 30.4        | 33.2                |
| BIG BEND 2                | 7,04%                      | 13.3%                             | 32.6              | 11.3                            | 16.7             | 2.5                         | 16.0              | 18.4              | 0.0                | 17,2                            | 17.2                |   | 16.0               | 19.2        | 22.8                |
| BIG BEND 3                | 22.22%                     | 41.9%                             | 3.8               | 41.8                            | 43.5             | 11.8                        | 41.7              | 47.3              | 7.9                | 30.2                            | 32.8                |   | 7.1                | 41.4        | 44.6                |
| BIG BEND 4                | 10.42%                     | 19.7%                             | 15.3              | 17.2                            | 20.3             | 27.0                        | 19.8              | 27.0              | 8,3                | 17.0                            | 18.6                |   | 7.8                | 21.5        | 23.3                |
| POLK 1                    | 3.09%                      | 5.8%                              | 9,8               | 10.6                            | 11,7             | 4.1                         | 11.0              | 12.8              | 12.0               | 9.2                             | 10.7                |   | 0.0                | 31.5        | 33.4                |
| BAYSIDE 1                 | 0.67%                      | 1.3%                              | 3.8               | 2.8                             | 2,9              | 11.5                        | 3.3               | 3.9               | 2.5                | 10.3                            | 11.1                | ۲ | 3.1                | 4.4         | 4.5                 |
| BAYSIDE 2                 | 0.70%                      | 1.3%                              | 3.8               | 2.0                             | 2.1              | 2.0                         | 1.7               | 1.7               | 10,0               | 1.4                             | 1.5                 |   | 2.9                | 4.2         | 4.2                 |
| GPIF SYSTEM               | 53.03%                     | 100.0%                            | 11.2              | 26.1                            | 28.5             | 11.0                        | 28.4              | 32.4              | 8,9                | 23.4                            | 25.8                | - | 8.2                | 31.2        | 33.9                |
| GPIF SYSTEM WEIGHTED EQUI | VALENT AVAIL               | ABILITY (%)                       |                   | <u>62.7</u>                     |                  |                             | <u>60.6</u>       |                   |                    | <u>67.7</u>                     |                     |   |                    | <u>60.7</u> |                     |

3 PERIOD AVERAGE S PERIOD AVERAGE FOF 63.D 9,4 27.7 30.7

| PLANT / UNIT             | WEIGHTING<br>FACTOR<br>{%) | NORMALIZED<br>WEIGHTING<br>FACTOR | TARGET<br>HEAT RATE<br>JAN 09 - DEC 09 | ADJUSTED<br>ACTUAL PERFORMANCE<br>HEAT RATE<br>JAN 67 - DEC 07 | ADJUSTED<br>ACTUAL PERFORMANCE<br>HEAT RATE<br>JAN 06 - DEC 06 | ADJUSTED<br>ACTUAL PERFORMANCE<br>HEAT RATE<br>JAN 05 - DEC 05 |
|--------------------------|----------------------------|-----------------------------------|----------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|
| BIG BEND 1               | 4.51%                      | 9.5%                              | 10,774                                 | 10,681                                                         | 10,749                                                         | 10,663                                                         |
| BIG BEND 2               | 3.29%                      | 7.0%                              | 10,396                                 | 10,350                                                         | 10,344                                                         | 10,409                                                         |
| BIG BEND 3               | 3.42%                      | 7.3%                              | 10,751                                 | 10,693                                                         | 10,787                                                         | 10,838                                                         |
| BIG BEND 4               | 7.11%                      | 15.1%                             | 10,598                                 | 10,603                                                         | 10,576                                                         | 10,431                                                         |
| POLK 1                   | 10.81%                     | 23.0%                             | 10,707                                 | 10,697                                                         | 10,454                                                         | 10,520                                                         |
| BAYSIDE 1                | 9.06%                      | 19.3%                             | 7,254                                  | 7,310                                                          | 7,329                                                          | 7,405                                                          |
| BAYSIDE 2                | 8.76%                      | 18.7%                             | 7,378                                  | 7,378                                                          | 7.428                                                          | 7,388                                                          |
| GPIF SYSTEM              | 46.97%                     | 100.0%                            |                                        |                                                                |                                                                |                                                                |
| GPIF SYSTEM WEIGHTED AVE | RAGE HEAT RAT              | E (Btu/kWh)                       | 9,394                                  | 9,384                                                          | 9,350                                                          | 9,351                                                          |

AVERAGE NET OPERATING HEAT RATE (Btu/kWh)

ORIGINAL SHEET NO. 8.401.09E PAGE 5 OF 42

.

### TAMPA ELECTRIC COMPANY DERIVATION OF WEIGHTING FACTORS JANUARY 2009 - DECEMBER 2009 PRODUCTION COSTING SIMULATION FUEL COST (\$000)

| UNIT<br>PERFORMANCE<br>INDICATOR | AT TARGET (1) | AT MAXIMUM<br>IMPROVEMENT<br>(2) | SAVINGS<br>(3) | WEIGHTING<br>FACTOR<br>(% OF SAVINGS) |
|----------------------------------|---------------|----------------------------------|----------------|---------------------------------------|
| EQUIVALENT AVAILABILITY          |               |                                  |                |                                       |
| EA <sub>1</sub> BIG BEND I       | 1,492,425.1   | 1,487,043.5                      | 5,381.6        | 8.90%                                 |
| EA <sub>2</sub> BIG BEND 2       | 1,492,425.1   | 1,488,169.0                      | 4,256.1        | 7.04%                                 |
| EA <sub>3</sub> BIG BEND 3       | 1,492,425.1   | 1,478,986.9                      | 13,438.2       | 22.22%                                |
| EA4 BIG BEND 4                   | 1,492,425.1   | 1,486,119.9                      | 6,305.2        | 10.42%                                |
| EA <sub>7</sub> POLK 1           | 1,492,425.1   | 1,490,559.0                      | 1,866.1        | 3.09%                                 |
| EA <sub>B</sub> BAYSIDE 1        | 1,492,425.1   | 1,492,019.4                      | 405.7          | 0.67%                                 |
| EA, BAYSIDE 2                    | 1,492,425.1   | 1,492,002.1                      | 423.0          | 0.70%                                 |
| AVERAGE HEAT RATE                |               |                                  |                |                                       |
| AHR <sub>1</sub> BIG BEND 1      | 1,492,425.1   | 1,489,694.5                      | 2,730.6        | 4.51%                                 |
| AHR <sub>2</sub> BIG BEND 2      | 1,492,425.1   | 1,490,434.9                      | 1,990.2        | 3.29%                                 |
| AHR3 BIG BEND 3                  | 1,492,425.1   | 1,490,353.8                      | 2,071.3        | 3.42%                                 |
| AHR <sub>4</sub> BIG BEND 4      | 1,492,425.1   | 1,488,125.4                      | 4,299.7        | 7.11%                                 |
| AHR, POLK 1                      | 1,492,425.1   | 1,485,884.6                      | 6,540.5        | 10.81%                                |
| AHR BAYSIDE 1                    | 1,492,425.1   | 1,486,945.1                      | 5,480.0        | 9.06%                                 |
| AHR, BAYSIDE 2                   | 1,492,425.1   | 1,487,126.2                      | 5,298.9        | 8.76%                                 |
| TOTAL SAVINGS                    |               | -                                | 60.487.101     | 100.00%                               |

(1) Fuel Adjustment Base Case - All unit performance indicators at target.

(2) All other units performance indicators at target.

(3) Expressed in replacement energy cost.

.

.

.

# GPIF TARGET AND RANGE SUMMARY

# JANUARY 2009 - DECEMBER 2009

# BIG BEND 1

| EQUIVALENT<br>AVAILABILITY<br>POINTS | FUEL<br>SAVINGS / (LOSS)<br>(\$000) | ADJUSTED ACTUAL<br>EQUIVALENT<br>AVAILABILITY | AVERAGE<br>HEAT RATE<br>POINTS | FUEL<br>SAVINGS / (LOSS)<br>(\$000) | ADJUSTED ACTUAL<br>AVERAGE<br>HEAT RATE |
|--------------------------------------|-------------------------------------|-----------------------------------------------|--------------------------------|-------------------------------------|-----------------------------------------|
| +10                                  | 5,381.6                             | 76.6                                          | +10                            | 2,730.6                             | 10,472                                  |
| +9                                   | 4,843.4                             | 76.2                                          | +9                             | 2,457.5                             | 10,495                                  |
| +8                                   | 4,305.3                             | 75.8                                          | +8                             | 2,184.5                             | 10,518                                  |
| +7                                   | 3,767.1                             | 75.4                                          | +7                             | 1,911.4                             | 10,540                                  |
| +6                                   | 3,229.0                             | 75.0                                          | +6                             | 1,638.4                             | 10,563                                  |
| +5                                   | 2,690.8                             | 74.6                                          | +5                             | 1,365.3                             | 10,586                                  |
| +4                                   | 2,152.6                             | 74.1                                          | +4                             | 1,092.2                             | 10,608                                  |
| +3                                   | 1,614.5                             | 73.7                                          | +3                             | 819.2                               | 10,631                                  |
| +2                                   | 1,076.3                             | 73.3                                          | +2                             | 546.1                               | 10,654                                  |
| +1                                   | 538.2                               | 72.9                                          | +1                             | 273.1                               | 10,677                                  |
|                                      |                                     |                                               |                                |                                     | 10,699                                  |
| 0                                    | 0.0                                 | 72.5                                          | 0                              | 0.0                                 | 10,774                                  |
|                                      |                                     |                                               |                                |                                     | 10,849                                  |
| -1                                   | (1,360.7)                           | 71.7                                          | -1                             | (273.1)                             | 10,872                                  |
| -2                                   | (2,721.4)                           | 70.9                                          | -2                             | (546.1)                             | 10,895                                  |
| -3                                   | (4,082.1)                           | 70.0                                          | -3                             | (819.2)                             | 10,918                                  |
| -4                                   | (5,442.8)                           | 69.2                                          | -4                             | (1,092.2)                           | 10,940                                  |
| -5                                   | (6,803.5)                           | 68.4                                          | -5                             | (1,365.3)                           | 10,963                                  |
| -6                                   | (8,164.2)                           | 67.6                                          | -6                             | (1,638.4)                           | 10,986                                  |
| -7                                   | (9,524.9)                           | 66.8                                          | -7                             | (1,911.4)                           | 11,009                                  |
| -8                                   | (10,885.6)                          | 65.9                                          | -8                             | (2,184.5)                           | 11,031                                  |
| -9                                   | (12,246.3)                          | 65.1                                          | -9                             | (2,457.5)                           | 11,054                                  |
| -10                                  | (13,607.0)                          | 64.3                                          | -10                            | (2,730.6)                           | 11,077                                  |
|                                      | Weighting Factor =                  | 8.90%                                         | •                              | Weighting Factor =                  | 4.51%                                   |

### TAMPA ELECTRIC COMPANY

# **GPIF TARGET AND RANGE SUMMARY**

# JANUARY 2009 - DECEMBER 2009

# BIG BEND 2

| EQUIVALENT<br>AVAILABILITY<br>POINTS | FUEL<br>SAVINGS / (LOSS)<br>(\$000) | ADJUSTED ACTUAL<br>EQUIVALENT<br>AVAILABILITY | AVERAGE<br>HEAT RATE<br>POINTS | FUEL<br>SAVINGS / (LOSS)<br>(\$000) | ADJUSTED ACTUAL<br>AVERAGE<br>HEAT RATE |
|--------------------------------------|-------------------------------------|-----------------------------------------------|--------------------------------|-------------------------------------|-----------------------------------------|
| +10                                  | 4,256.1                             | 60.0                                          | +10                            | 1,990.2                             | 10,105                                  |
| +9                                   | 3,830.5                             | 59.6                                          | +9                             | 1,791.1                             | 10,126                                  |
| +8                                   | 3,404.9                             | 59.2                                          | +8                             | 1,592.1                             | 10,148                                  |
| +7                                   | 2,979.3                             | 58.8                                          | +7                             | 1,393.1                             | 10,170                                  |
| +6                                   | 2,553.7                             | 58.4                                          | +6                             | 1,194.1                             | 10,191                                  |
| +5                                   | 2,128.1                             | 58.1                                          | +5                             | 995.1                               | 10,213                                  |
| +4                                   | 1,702.4                             | 57.7                                          | +4                             | 796.1                               | 10,235                                  |
| +3                                   | 1,276.8                             | 57.3                                          | +3                             | 597.0                               | 10,256                                  |
| +2                                   | 851.2                               | 56.9                                          | +2                             | 398.0                               | 10,278                                  |
| +1                                   | 425.6                               | 56.5                                          | +1                             | 199.0                               | 10,300                                  |
|                                      |                                     |                                               |                                |                                     | 10,321                                  |
| 0                                    | 0.0                                 | 56.1                                          | 0                              | 0.0                                 | 10,396                                  |
|                                      |                                     |                                               |                                |                                     | 10,471                                  |
| -1                                   | (1,074.4)                           | 55.3                                          | -1                             | (199.0)                             | 10,493                                  |
| -2                                   | (2,148.8)                           | 54.6                                          | -2                             | (398.0)                             | 10,514                                  |
| -3                                   | (3,223.2)                           | 53.8                                          | -3                             | (597.0)                             | 10,536                                  |
| -4                                   | (4,297.6)                           | 53.0                                          | -4                             | (796.1)                             | 10,558                                  |
| -5                                   | (5,371.9)                           | 52.2                                          | -5                             | , (995.1)                           | 10,579                                  |
| -6                                   | (6,446.3)                           | 51.5                                          | -6                             | (1,194.1)                           | 10,601                                  |
| -7                                   | (7,520.7)                           | 50.7                                          | -7                             | (1,393.1)                           | +0,623                                  |
| -8                                   | (8,595.1)                           | 49.9                                          | -8                             | (1,592.1)                           | 10,644                                  |
| -9                                   | (9,669.5)                           | 49.1                                          | -9                             | (1,791.1)                           | 10,666                                  |
| -10                                  | (10,743.9)                          | 48.4                                          | -10                            | (1,990.2)                           | 10,688                                  |
|                                      | Weighting Factor =                  | 7.04%                                         |                                | Weighting Factor =                  | 3.29%                                   |

.

# TAMPA ELECTRIC COMPANY

# GPIF TARGET AND RANGE SUMMARY

# JANUARY 2009 - DECEMBER 2009

# **BIG BEND 3**

| EQUIVALENT<br>AVAILABILITY<br>POINTS | FUEL<br>SAVINGS / (LOSS)<br>(\$000) | ADJUSTED ACTUAL<br>EQUIVALENT<br>AVAILABILITY | AVERAGE<br>HEAT RATE<br>POINTS | FUEL<br>SAVINGS / (LOSS)<br>(\$000) | ADJUSTED ACTUAL<br>AVERAGE<br>HEAT RATE |
|--------------------------------------|-------------------------------------|-----------------------------------------------|--------------------------------|-------------------------------------|-----------------------------------------|
| +10                                  | 13,438.2                            | 62.9                                          | +10                            | 2,071.3                             | 10,458                                  |
| +9                                   | 12,094.4                            | 62.0                                          | +9                             | 1,864.2                             | 10,480                                  |
| +8                                   | 10,750.6                            | 61.2                                          | +8                             | 1,657.0                             | 10,502                                  |
| +7                                   | <b>9,40</b> 6.7                     | 60.3                                          | +7                             | 1,449.9                             | 10,523                                  |
| +6                                   | 8,062.9                             | 59.5                                          | +6                             | 1,242.8                             | 10,545                                  |
| +5                                   | 6,719.1                             | 58.6                                          | +5                             | 1,035.7                             | 10,567                                  |
| +4                                   | 5,375.3                             | 57.8                                          | +4                             | 828.5                               | 10,589                                  |
| +3                                   | 4,031.5                             | 56.9                                          | +3                             | 621.4                               | 10,611                                  |
| +2                                   | 2,687.6                             | 56.0                                          | +2                             | 414.3                               | 10,632                                  |
| +1                                   | 1,343.8                             | 55.2                                          | +1                             | 207.1                               | 10,654                                  |
|                                      |                                     |                                               |                                |                                     | 10,676                                  |
| 0                                    | 0.0                                 | 54.3                                          | 0                              | 0.0                                 | 10,751                                  |
|                                      |                                     |                                               |                                |                                     | 10,826                                  |
| -1                                   | (3,461.4)                           | 52.6                                          | -1                             | (207.1)                             | 10,848                                  |
| -2                                   | (6,922.8)                           | 50.9                                          | -2                             | (414.3)                             | 10,870                                  |
| -3                                   | (10,384.2)                          | 49.2                                          | -3                             | (621.4)                             | 10,892                                  |
| -4                                   | (13,845.6)                          | 47.5                                          | -4                             | (828.5)                             | 10,913                                  |
| -5                                   | (17,307.0)                          | 45.8                                          | -5                             | (1,035.7)                           | 10,935                                  |
| -6                                   | (20,768.4)                          | 44.}                                          | -6                             | (1,242.8)                           | 10,957                                  |
| -7                                   | (24,229.8)                          | 42.4                                          | -7                             | (1,449.9)                           | 10,979                                  |
| -8                                   | (27,691.2)                          | 40.6                                          | -8                             | (1,657.0)                           | 11,001                                  |
| -9                                   | (31,152.6)                          | 38.9                                          | -9                             | (1,864.2)                           | 11,023                                  |
| -10                                  | (34,614.0)                          | 37.2                                          | -10                            | (2,071.3)                           | 11,044                                  |
|                                      | Weighting Factor =                  | 22.22%                                        |                                | Weighting Factor =                  | 3.42%                                   |

.

•

# **GPIF TARGET AND RANGE SUMMARY**

### JANUARY 2009 - DECEMBER 2009

# **BIG BEND 4**

| EQUIVALENT<br>AVAILABILITY<br>POINTS | FUEL<br>SAVINGS / (LOSS)<br>( <b>\$0</b> 00) | ADJUSTED ACTUAL<br>EQUIVALENT<br>AVAILABILITY | AVERAGE<br>HEAT RATE<br>POINTS | FUEL<br>SAVINGS / (LOSS)<br>( <b>\$00</b> 0) | ADJUSTED ACTUAL<br>AVERAGE<br>HEAT RATE |
|--------------------------------------|----------------------------------------------|-----------------------------------------------|--------------------------------|----------------------------------------------|-----------------------------------------|
| +10                                  | 6,305.2                                      | 71.7                                          | +10                            | 4,299.7                                      | 10,144                                  |
| +9                                   | 5,674.7                                      | 71.2                                          | +9                             | 3,869.7                                      | 10,182                                  |
| +8                                   | 5,044.2                                      | 70.8                                          | +8                             | 3,439.7                                      | 10,220                                  |
| +7                                   | 4,413.6                                      | 70.4                                          | +7                             | 3,009.8                                      | 10,258                                  |
| +6                                   | 3,783.1                                      | 70.0                                          | +6                             | 2,579.8                                      | 10,296                                  |
| +5                                   | 3,1\$2.6                                     | 69.6                                          | +5                             | 2,149.8                                      | 10,334                                  |
| +4                                   | 2,522.1                                      | 69.1                                          | +4                             | 1,719.9                                      | 10,372                                  |
| +3                                   | 1,891.6                                      | 68.7                                          | +3                             | 1,289.9                                      | . 10,410                                |
| +2                                   | 1,261.0                                      | 68.3                                          | +2                             | 859.9                                        | 10,447                                  |
| +1                                   | 630.5                                        | 67.9                                          | +1                             | 430.0                                        | 10,485                                  |
|                                      |                                              |                                               |                                |                                              | 10,523                                  |
| 0                                    | 0.0                                          | 67.5                                          | 0                              | 0.0                                          | 10,598                                  |
|                                      |                                              |                                               |                                |                                              | 10,673                                  |
| -1                                   | (1,545.3)                                    | 66.6                                          | -1                             | (430.0)                                      | 10,711                                  |
| -2                                   | (3,090.6)                                    | 65.8                                          | -2                             | (859.9)                                      | 10,749                                  |
| -3                                   | (4,636.0)                                    | 64.9                                          | -3                             | (1,289.9)                                    | 10,787                                  |
| -4                                   | (6,181.3)                                    | 64.1                                          | -4                             | (1,719.9)                                    | 10,825                                  |
| -5                                   | (7,726.6)                                    | 63.3                                          | -5                             | (2,149.8)                                    | 10,863                                  |
| -6                                   | (9,271.9)                                    | 62.4                                          | -6                             | (2,579.8)                                    | 10,900                                  |
| -7                                   | (10,817.2)                                   | 61.6                                          | -7                             | (3,000.8)                                    | 10,938                                  |
| -8                                   | (12,362.6)                                   | 60.7                                          | -8                             | (3,439.7)                                    | 10,976                                  |
| -9                                   | (1 <b>3,90</b> 7.9)                          | 59.9                                          | -9                             | (3,869.7)                                    | 11,014                                  |
| -10                                  | (15,453.2)                                   | 59.1                                          | -10                            | (4,299.7)                                    | 11,052                                  |
|                                      | Weighting Factor =                           | 10.42%                                        |                                | Weighting Factor =                           | 7.11%                                   |

.

# TAMPA ELECTRIC COMPANY

.

•

# GPIF TARGET AND RANGE SUMMARY

### JANUARY 2009 - DECEMBER 2009

# POLK 1

.

| EQUIVALENT<br>AVAILABILITY<br>POINTS | FUEL<br>SAVINGS / (LOSS)<br>(\$000) | ADJUSTED ACTUAL<br>EQUIVALENT<br>AVAILABILITY | AVERAGE<br>HEAT RATE<br>POINTS | FUEL<br>SAVINGS / (LOSS)<br>(\$000) | ADJUSTED ACTUAL<br>AVERAGE<br>HEAT RATE |
|--------------------------------------|-------------------------------------|-----------------------------------------------|--------------------------------|-------------------------------------|-----------------------------------------|
| +10                                  | 1,866.1                             | 82.3                                          | +10                            | 6,540.5                             | 9,955                                   |
| +9                                   | 1,679.5                             | <b>82.</b> I                                  | +9                             | 5,886.4                             | 10,022                                  |
| +8                                   | 1,492.9                             | 81.8                                          | +8                             | 5,232.4                             | 10,090                                  |
| +7                                   | 1,306.3                             | 81.5                                          | +7                             | 4,578.3                             | 10,158                                  |
| +6                                   | 1,119.7                             | 81.3                                          | +6                             | 3,924.3                             | 10,226                                  |
| +5                                   | 933.1                               | 81.0                                          | +5                             | 3,270.2                             | 10,294                                  |
| +4                                   | 746.4                               | 80.8                                          | +4                             | 2,616.2                             | 10,361                                  |
| +3                                   | 559.8                               | 80.5                                          | +3                             | 1,962.1                             | 10,429                                  |
| +2                                   | 373.2                               | 80.2                                          | +2                             | 1,308.1                             | 10,497                                  |
| +1                                   | 186.6                               | 80.0                                          | +1                             | 654.0                               | 10,565                                  |
|                                      |                                     |                                               |                                |                                     | 10,632                                  |
| 0                                    | 0.0                                 | 79.7                                          | 0                              | 0.0                                 | 10,707                                  |
|                                      |                                     |                                               |                                |                                     | 10,782                                  |
| -1                                   | (452.6)                             | 79.2                                          | -1                             | (654.0)                             | 10,850                                  |
| -2                                   | (905.3)                             | 78.7                                          | -2                             | (1,308.1)                           | 10,918                                  |
| -3                                   | (1,357.9)                           | <b>78.</b> 1                                  | -3                             | (1,962.1)                           | 10,986                                  |
| -4                                   | (1,810.5)                           | 77.6                                          | -4                             | (2,616.2)                           | 11,054                                  |
| -5                                   | (2,263.1)                           | 77.1                                          | -5                             | (3,270.2)                           | 11,121                                  |
| -6                                   | (2,715.8)                           | 76.6                                          | -6                             | (3,924.3)                           | 11,189                                  |
| -7                                   | (3,168.4)                           | 76.1                                          | -7                             | (4,578.3)                           | 11,257                                  |
| -8                                   | (3,621.0)                           | 75.6                                          | -8                             | (5,232.4)                           | 11,325                                  |
| -9                                   | (4,073.7)                           | 75.1                                          | -9                             | (5,886.4)                           | 11,392                                  |
| -10                                  | (4,526.3)                           | 74.6                                          | -10                            | (6,540.5)                           | 11,460                                  |
|                                      | Weighting Factor =                  | 3.09%                                         |                                | Weighting Factor =                  | 10.81%                                  |

,

.

# GPIF TARGET AND RANGE SUMMARY

# JANUARY 2009 - DECEMBER 2009

# **BAYSIDE** 1

| EQUIVALENT<br>AVAILABILITY<br>POINTS | FUEL<br>SAVINGS / (LOSS)<br>(\$000) | ADJUSTED ACTUAL<br>EQUIVALENT<br>AVAILABILITY | AVERAGE<br>HEAT RATE<br>POINTS | FUEL<br>SAVINGS / (LOSS)<br>(\$000) | ADJUSTED ACTUAL<br>AVERAGE<br>HEAT RATE |
|--------------------------------------|-------------------------------------|-----------------------------------------------|--------------------------------|-------------------------------------|-----------------------------------------|
| +10                                  | 405.7                               | 94.1                                          | +10                            | 5,480.0                             | 7,163                                   |
| +9                                   | 365.1                               | 94.0                                          | +9                             | 4,932.0                             | 7,165                                   |
| +8                                   | 324.6                               | 94.0                                          | +8                             | 4,384.0                             | 7,168                                   |
| +7                                   | 284.0                               | 93.9                                          | +7                             | 3,836.0                             | 7,171                                   |
| +6                                   | 243.4                               | 93.8                                          | +6                             | 3,288.0                             | 7,173                                   |
| +5                                   | 202.9                               | 93.7                                          | +5                             | 2,740.0                             | 7,176                                   |
| +4                                   | 162.3                               | 93.7                                          | +4                             | 2,192.0                             | 7,179                                   |
| +3                                   | 121.7                               | 93.6                                          | +3                             | 1,644.0                             | 7,181                                   |
| +2                                   | 81.1                                | 93.5                                          | +2                             | 1,096.0                             | 7,184                                   |
| +1                                   | 40.6                                | 93.4                                          | +1                             | 548.0                               | 7,187                                   |
|                                      |                                     |                                               |                                |                                     | 7,189                                   |
| 0                                    | 0.0                                 | 93.4                                          | 0                              | 0.0                                 | 7,264                                   |
|                                      |                                     |                                               |                                |                                     | 7,339                                   |
| •1                                   | (119.1)                             | 93.2                                          | - t                            | (548.0)                             | 7,342                                   |
| -2                                   | (238.2)                             | 93.1                                          | -2                             | (1,096.0)                           | 7,345                                   |
| -3                                   | (357.3)                             | 92.9                                          | -3                             | (1,644.0)                           | 7,347                                   |
| -4                                   | (476.4)                             | 92.8                                          | -4                             | (2,192.0)                           | 7,350                                   |
| -5                                   | (595.4)                             | 92.6                                          | -5                             | (2,740.0)                           | 7,352                                   |
| -6                                   | (714.5)                             | 92.5                                          | 6                              | (3,288.0)                           | 7,355                                   |
| -7                                   | (833.6)                             | 92.3                                          | -7                             | (3,836.0)                           | 7,358                                   |
| -8                                   | (952.7)                             | 92.2                                          | -8                             | (4,384.0)                           | 7,360                                   |
| -9                                   | (1,071.8)                           | 92.0                                          | -9                             | (4,932.0)                           | 7,363                                   |
| -10                                  | (1,190.9)                           | 91.9                                          | -10                            | (5,480.0)                           | 7,366                                   |
|                                      | Weighting Factor =                  | 0.67%                                         |                                | Weighting Factor =                  | 9.06%                                   |

,

•

.

### GPIF TARGET AND RANGE SUMMARY

# JANUARY 2009 - DECEMBER 2009

# BAYSIDE 2

| EQUIVALENT<br>AVAILABILITY<br>POINTS | FUEL<br>SAVINGS / (LOSS)<br>(\$000) | ADJUSTED ACTUAL<br>EQUIVALENT<br>AVAILABILITY | AVERAGE<br>HEAT RATE<br>POINTS | FUEL<br>SAVINGS / (LOSS)<br>(\$000) | ADJUSTED ACTUAL<br>AVERAGE<br>HEAT RATE |
|--------------------------------------|-------------------------------------|-----------------------------------------------|--------------------------------|-------------------------------------|-----------------------------------------|
| +10                                  | 423.0                               | 94.7                                          | +10                            | 5,298.9                             | 7,277                                   |
| +9                                   | 380.7                               | 94.7                                          | +9                             | 4,769.0                             | 7,279                                   |
| +8                                   | 338.4                               | 94.6                                          | +8                             | 4,239.1                             | 7,282                                   |
| +7                                   | 296.1                               | 94.5                                          | +7                             | 3,709.3                             | 7,285                                   |
| +6                                   | 253.8                               | 94.5                                          | +6                             | 3,179.4                             | 7,287                                   |
| +5                                   | 211.5                               | 94.4                                          | +5                             | 2,649.5                             | 7,290                                   |
| +4                                   | 169.2                               | 94.4                                          | +4                             | 2,119.6                             | 7,292                                   |
| +3                                   | 126.9                               | 94.3                                          | +3                             | 1,589.7                             | 7,295                                   |
| +2                                   | 84.6                                | 94.2                                          | +2                             | 1,059.8                             | 7,298                                   |
| +1                                   | 42.3                                | 94.2                                          | +1                             | 529.9                               | 7,300                                   |
|                                      |                                     |                                               |                                |                                     | 7,303                                   |
| 0                                    | 0.0                                 | 94.1                                          | 0                              | 0.0                                 | 7,378                                   |
|                                      |                                     |                                               |                                |                                     | 7,453                                   |
| -1                                   | (120.8)                             | 94.0                                          | -1                             | (529.9)                             | 7,455                                   |
| -2                                   | (241.6)                             | 93.9                                          | -2                             | (1,059.8)                           | 7,458                                   |
| -3                                   | (362.5)                             | 93.8                                          | -3                             | (1,589.7)                           | 7,461                                   |
| -4                                   | (483.3)                             | 93.7                                          | -4                             | (2,119.6)                           | 7,463                                   |
| -5                                   | (604.1)                             | 93.5                                          | -5                             | (2,649.5)                           | 7,466                                   |
| -6                                   | (724.9)                             | 93.4                                          | -6                             | (3,179.4)                           | 7,468                                   |
| -7                                   | (845.7)                             | 93.3                                          | -7                             | (3,709.3)                           | 7,471                                   |
| 8                                    | (966.6)                             | 93.2                                          | -8                             | (4,239.1)                           | 7,474                                   |
| -9                                   | (1,087.4)                           | 93.1                                          | -9                             | (4,769.0)                           | 7,476                                   |
| -10                                  | (1,208.2)                           | 92.9                                          | -10                            | (5,298.9)                           | 7,479                                   |
|                                      | Weighting Factor =                  | 0.70%                                         |                                | Weighting Factor =                  | 8.76%                                   |

#### ESTIMATED UNIT PERFORMANCE DATA

#### JANUARY 2009 - DECEMBER 2009

| PLANT/UNIT          | MONTH OF:       | MONTH OF: | MONTH OF: | MONTH OF: | PERIOD    |
|---------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------------|-----------|-----------|-----------|-----------|
| BIG BEND 1          | Jan-09    | Feb-09    | Mar-09    | Apr-09    | May-09    | Jun-09    | Jul-09    | Aug-09    | 5 <b>cp-0</b> 9 | 0a-09     | Nov-09    | Dec-09    | 2009      |
| I. EAF (%)          | 80.0      | 80.0      | - 80.0    | 80.0      | 80.0      | \$0.0     | 80.0      | 80.6      | 80.0            | 80.0      | 72.0      | 0.0       | 72,5      |
| 2. POF              | 6.0       | 0.0       | 0.0       | 0.0       | 0.0       | 0.0       | 0.0       | 0.0       | 0.0             | 0.0       | 10.0      | 100.0     | 9.3       |
| 3. EUOF             | 20.0      | 20.0      | 20.0      | 20.0      | 20.0      | 20.0      | 20.0      | 20.0      | 20,0            | 20.0      | 18.0      | 0.0       | 18.2      |
| 4. EUOR             | 20.0      | 20.0      | 20.0      | 20.0      | 20.0      | 20.0      | 20.0      | 20.0      | 20.0            | 20.0      | 20.0      | 0.0       | 20.0      |
| 5. PH               | 744       | 672       | 744       | 720       | 744       | 720       | 744       | 744       | 720             | 744       | 720       | 744       | 8,760     |
| 6, SH               | 649       | 586       | 649       | 628       | 649       | 628       | 649       | 649       | 628             | 649       | 565       | 0         | 6,925     |
| 7. RSH              | ٥         | 0         | ٥         | ٥         | 0         | Ó         | ٥         | 0         | ٥               | 0         | 0         | 0         | o         |
| 8. UH               | 95        | 86        | 95        | 92        | 95        | 92        | 95        | 95        | 92              | 95        | 155       | 744       | 1835      |
| 9. POH              | 0         | 0         | ¢         | 0         | 0         | 0         | 0         | 0         | 0               | 0         | 72        | 744       | 816       |
| IO. EFOH            | 128       | 116       | 128       | 124       | 128       | 124       | 128       | 128       | 124             | 128       | 112       | 0         | . 1,368   |
| 11. EMOH            | 21        | 19        | 21        | 20        | 23        | 20        | 21        | 21        | 20              | 21        | 18        | 0         | 224       |
| 12. OPER BTU (GBTU) | 2,484     | 2,237     | 2,487     | 2,348     | 2,440     | 2,367     | 2,446     | 2,443     | 2,361           | 2,445     | 2,125     | 0         | 26,192    |
| 13. NET GEN (MWH)   | 230,369   | 207,327   | 230,692   | 217,874   | 226,585   | 219,971   | 227,300   | 226,994   | 219,301         | 227,241   | 197,291   | 0         | 2,430,945 |
| 14. ANOHR (Btu/kwh) | 10,784    | 10,791    | 10,782    | 10,779    | 10,767    | 10,761    | 10,761    | 10,764    | 10,767          | 10,762    | 10,769    | · 0       | 10,774    |
| 15. NOF (%)         | 90.4      | 90.1      | 90.5      | 90.6      | 91.2      | 91.5      | 91.5      | 91.4      | 91.2            | 91.5      | 91.1      | 0.0       | 90.9      |
| 16. NPC (MW)        | 393       | 393       | 393       | 383       | 383       | 383       | 383       | 383       | 383             | 383       | 383       | 393       | 386       |
| 17. ANOHR EQUATION  | ANO       | HR = NOF( | -20.702   | )+        | 12,655    |           |           |           |                 |           |           |           |           |

.

.

### ESTIMATED UNIT PERFORMANCE DATA

#### JANUARY 2009 - DECEMBER 2009

| PLANT/UNIT          | MONTH OF:    | MONTH OF: | MONTH OF:           | MONTH OF: | MONTH OF:    | MONTH OF:     | MONTH OF: | MONTH OF: | PERIOD    |  |
|---------------------|-----------|-----------|-----------|-----------|--------------|-----------|---------------------|-----------|--------------|---------------|-----------|-----------|-----------|--|
| BIG BEND 2          | Jan-09    | Feb-09    | Mar-09    | Apr-09    | May-09       | Jun-09    | Ju <del> </del> -09 | Aug-09    | Sep-09       | Oct-09        | Nov-09    | Dec-09    | 2009      |  |
| 1. EAF (%)          | 0.0       | 0.0       | 0.0       | 61.1      | 83.3         | 83.3      | 83.3                | 83.3      | 83.J         | <b>8</b> 3.3  | 80.5      | 29.5      | 56.1      |  |
| 2. POF              | 100.0     | 100,0     | 100.0     | 26.7      | 0.0          | 0.0       | 0.0                 | 0.0       | 0.0          | 0.0           | 3.3       | 64.5      | 32.6      |  |
| 3. EUOF             | 0.0       | 0.0       | 0.0       | 12.3      | 1 <b>6.7</b> | 16.7      | 16.7                | 16.7      | 1 <b>6.7</b> | l <b>6.</b> 7 | 16.2      | 5.9       | 11.3      |  |
| 4. EUOR             | 0.0       | 0.0       | 0.0       | 16.7      | 16.7         | 16.7      | 16.7                | 16.7      | 1 <b>6.7</b> | 16.7          | 16.7      | 16.7      | 16.7      |  |
| S. PH               | 744       | 672       | 744       | 720       | 744          | 720       | 744                 | 744       | 720          | 744           | 720       | 744       | 8,760     |  |
| 6. SH               | o         | 0         | 0         | 486       | 686          | 664       | 686                 | 686       | 664          | 686           | 641       | 244       | 5,441     |  |
| 7. RSH              | o         | 0         | 0         | 0         | 0            | D         | 0                   | 0         | 0            | 0             | 0         | 0         | 0         |  |
| 8. UH               | 744       | 672       | 744       | 234       | 58           | 56        | 58                  | 58        | 56           | 58            | 79        | 500       | 3,319     |  |
| 9. POH              | 744       | 672       | 744       | 192       | 0            | 0         | 0                   | 0         | 0            | Ð             | 24        | 480       | 2,856     |  |
| IQ. EFOH            | ٥         | 0         | . 0       | 60        | 85           | 82        | 85                  | 85        | 82           | 85            | 79        | 30        | 674       |  |
| 11. EMOH            | ¢         | 0         | 0         | 28        | 40           | 38        | 40                  | 40        | 38           | 40            | 37        | 14        | 314       |  |
| 12. OPER BTU (GBTU) | 0         | 0         | 0         | 1,743     | 2,462        | 2,383     | 2,462               | 2,462     | 2,383        | 2,452         | 2,302     | 891       | 19,579    |  |
| 13. NET GEN (MWH)   | C         | 0         | 0         | 167,830   | 237,197      | 229,579   | 237,231             | 237,231   | 229,548      | 237,226       | 221,753   | 85,687    | 1,883,282 |  |
| 14. ANOHR (Btu/kwh) | 0         | 0         | 0         | 10,383    | 10,380       | 10,380    | 10,380              | 10,380    | 10,380       | 10,380        | 10,380    | 10,395    | 10,396    |  |
| 15. NOF (%)         | 0.0       | 0.0       | 0.0       | 91.3      | 91.5         | 91.5      | 91.5                | 91.5      | 91.5         | 91.5          | 91.5      | 90.6      | 90.5      |  |
| IS. NPC (MW)        | 393       | 393       | 393       | 378       | 378          | 378       | 378                 | 378       | 378          | 378           | 378       | 388       | 383       |  |
| 17. ANOHR EQUATION  | ANOL      | IR = NOF( | -15.533   | )+        | 11,302       |           |                     |           |              |               |           |           |           |  |

ORIGINAL SHEET NO. 8.401.09E PAGE 15 OF 42

.

.

,

.

.

### ESTIMATED UNIT PERFORMANCE DATA

### JANUARY 2009 - DECEMBER 2009

| PLANT/UNIT          | MONTH OF: | MONTH OF: | MONTH OF: | MONTH OF:    | MONTH OF: | MONTH OF: | MONTH OF: | MONTH OF: | MONTH OF: | MONTH OF: | MONTH OF: | MONTH OF: | PERIOD    |
|---------------------|-----------|-----------|-----------|--------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| BIG BEND 3          | Jan-09    | Feb-09    | Mar-09    | Apr-09       | May-09    | Jun-09    | Jal-09    | Aug-09    | Sep-09    | Oct-09    | Nov-09    | Dec-09    | 2009      |
| 1. EAF (%)          | 56.5      | 56.5      | 56.5      | 56.5         | 56,5      | 56.5      | 56.5      | 56.5      | 56.5      | 31.0      | 56.5      | \$6.5     | 54.3      |
| 2. POF              | 0.0       | 0.0       | 0.0       | 0.0          | 0.0       | 0.0       | 0.0       | 0.0       | 0.0       | 45.2      | 0.0       | 0.0       | 3.8       |
| 3. EUOF             | 43.5      | 43.5      | 43.5      | 43.5         | 43.5      | 43.5      | 43.5      | 43.5      | 43.5      | 23.9      | 43.5      | 43.5      | 41.8      |
| 4. EUOR             | 43.5      | 43.5      | 43.5      | 43.5         | 43.5      | 43.5      | 43.5      | 43.5      | 43.5      | 43.5      | 43.5      | 43.5      | 43.5      |
| 5. PH               | 744       | 672       | 744       | 720          | 744       | 720       | 744       | 744       | 720       | 744       | 720       | 744       | 8,760     |
| 6. SH               | 549       | 496       | \$49      | 531          | 549       | 531       | 549       | 549       | 531       | 301       | 531       | 549       | 6,214 .   |
| 7. RSH              | o         | 0         | 0         | D            | ٥         | 0         | 0         | 0         | C         | 0         | 0         | 0         | 0         |
| 8. UH               | 195       | 176       | 195       | 189          | 195       | 189       | 195       | 195       | 189       | 443       | 189       | 195       | 2,546     |
| 9. POH              | 0         | 0         | Þ         | D            | D         | o         | 0         | o         | o         | 336       | 0         | 0         | 336       |
| IO. EFOH            | 208       | 187       | 208       | 201          | 208       | 201       | 208       | 208       | · 201     | 114       | 201       | 208       | 2,350     |
| II. EMOH            | 116       | 105       | 116       | 112          | 116       | 112       | 216       | 116       | 112       | 64        | 112       | 116       | 1,314     |
| 12. OPER BTU (GBTU) | 1,763     | 1,572     | 1,775     | 1,672        | 1,762     | 1,718     | 1,775     | 1,770     | 1,707     | 973       | 1,702     | 1,765     | 19,953    |
| 13. NET GEN (MWH)   | 163,764   | 145,861   | 164,986   | 155,359      | 163,964   | 160,006   | 165,339   | 164,817   | 158,865   | 90,597    | 158,375   | 163,953   | 1,855,886 |
| 14. ANOHR (Baukwh)  | 10,764    | 10,774    | 10,759    | 10,760       | 10,745    | 10,738    | 10,738    | 10,741    | 10,744    | 10,739    | 10,746    | 10,763    | 10,751    |
| 15. NOF (%)         | 75.9      | 74.9      | 76.5      | 7 <b>6.4</b> | 78.0      | 78.7      | 78.7      | 78.4      | 78.1      | 78.6      | 77.9      | 76.0      | 77.3      |
| 16. NPC (MW)        | 393       | 393       | 393       | 383          | 383       | . 383     | 383       | 383       | 383       | 383       | 383       | 393       | 386       |
| 17. ANOHR EQUATION  | ANO       | HR = NOF( | -9.516    | <b>}</b> +   | 11,487    |           |           |           |           |           |           |           |           |

ORIGINAL SHEET NO. 8.401.09E PAGE 16 OF 42

.

.

#### ESTIMATED UNIT PERFORMANCE DATA

#### JANUARY 2009 - DECEMBER 2009

| PLANT/UNIT          | MONTH OF: | MONTH OF: | MONTH OF:      | MONTH OF: | MONTH OF: | MONTH OF: | MONTH OF: | MONTH OF: | MONTH OF: | MONTH OF: | MONTH OF: | MONTH OF: | PERIOD        |
|---------------------|-----------|-----------|----------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---------------|
| BIG BEND 4          | Jan-09    | Feb-09    | Mar-09         | Apr-09    | May-09    | Jun-09    | Jul-09    | Aug+09    | Sep-09    | Oct-09    | Nov-09    | Dec-09    | 2009          |
| 1. EAF (%)          | 79.7      | 79.7      | 79.7           | 8,0       | 5.1       | 79.7      | 79.7      | 79.7      | 79.7      | 79.7      | 79.7      | 79.7      | 67.5          |
| 2. POF              | 0.0       | 0.0       | 0.0            | 90.0      | 93.5      | 0.0       | 0.0       | 0.0       | 0.0       | 6.0       | 0.0       | 0.0       | 15.3          |
| 3. EUOF             | 20.3      | 20.3      | 20.3           | 2,0       | 1.3       | 20.3      | 20.3      | 20.3      | 20.3      | 20.3      | 20-3      | 20.3      | 17.2          |
| 4. EUOR             | 20.3      | 20.3      | 20.3           | 20.3      | 20.3      | 20_3      | 20.3      | 20.3      | 20.3      | 20.3      | 20.3      | 20.3      | 20.3          |
| 5. PH               | 744       | 672       | 744            | 720       | 744       | 720       | 744       | 744       | 720       | 744       | 720       | 744       | 8,760         |
| 6. SH               | 656       | · 593     | 656            | 54        | 42        | 635       | 656       | 656       | 635       | 656       | 635       | 656       | 6,542         |
| 7. RSH              | 0         | 0         | 0              | o         | 0         | 0         | 0         | o         | 0         | 0         | 0         | ٥         | 0             |
| 8. UH               | 88        | 79        | 88             | 656       | 702       | 85        | 88        | BS        | 85        | 88        | 85        | 88        | 2,218         |
| 9. POH              | G         | C         | ø              | 648       | 696       | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 1,344         |
| 10. EFOH            | (3)       | 118       | 131            | 13        | 8         | 127       | 131       | 131       | 127       | 131       | 127       | 131       | 1 <b>,306</b> |
| 11. EMOH            | 20        | 18        | 20             | 2         | 1         | 19        | 20        | 20        | 19        | 20        | 19        | 20        | 200           |
| 12. OPER BTU (GBTU) | 2,716     | 2,445     | 2,718          | 261       | 175       | 2,634     | 2,722     | 2,719     | 2,627     | 2,721     | 2,625     | 2,762     | 27,133        |
| 13. NET GEN (MWH)   | 258,660   | 232,238   | 259,006        | 24,403    | 16,474    | 248,202   | 256,480   | 255,929   | 247,014   | 256,304   | 246,692   | 258,738   | 2,560,140     |
| 14. ANOHR (Sturkwh) | 10,501    | (0,528    | i <b>0,494</b> | 10,693    | 10,629    | 10,614    | 10,614    | 10,623    | 10,636    | 10,617    | 10,641    | 10,677    | 10,598        |
| 15. NOF (%)         | 92.1      | 91.5      | 92.2           | 88.3      | 89.5      | 89.8      | 89.5      | 89.6      | 89.4      | 89.8      | 89.3      | 88.6      | 90.1          |
| 16. NPC (MW)        | 428       | 428       | 428            | 435       | 435       | 435       | 435       | 435       | 435       | 435       | 435       | 445       | 434           |
| 17. ANOHR EQUATION  | ANOF      | (R = NOF( | -50.422        | )+        | 15,144    |           |           |           |           |           |           |           |               |

.

.

.

#### ESTIMATED UNIT PERFORMANCE DATA

#### JANUARY 2009 - DECEMBER 2009

| PLANT/UNIT          | MONTH OF: | MONTH OF: | MONTH OF: | MONTH OF:      | MONTH OF: | MONTH OF: | MONTH OF: | MONTH OF: | MONTH OF: | MONTH OF: | MONTH OF: | MONTH OF: | PERIOD             |  |
|---------------------|-----------|-----------|-----------|----------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--------------------|--|
| POLK I              | Jan-09    | Feb-09    | Mar-09    | Apr-09         | May-09    | Jan-09    | Ju1-09    | Aug-09    | Sep-09    | Oct-09    | Nov-09    | Dec-09    | 2009               |  |
| 1. EAF (%)          | 88.3      | 0.0       | 68.4      | 88,3           | E.88      | 88.3      | 88.3      | \$8.3     | 88.3      | 88.3      | 86.6      | 88.3      | 79.7               |  |
| 2. POF              | 0.0       | 100.0     | 22.6      | 0.0            | 0.0       | 0.0       | 0,0       | 0.0       | 0.0       | 0.0       | 2.0       | 0.0       | 9.8                |  |
| 3. EUOF             | 11.7      | 0.0       | 9.1       | 11.7           | 11.7      | 11.7      | 11.7      | 11.7      | 11.7      | 11.7      | 11.5      | 11.7      | 10.6               |  |
| 4. EUOR             | 11.7      | 0.0       | 11.7      | 11.7           | 11.7      | 11.7      | 11.7      | 11.7      | 11.7      | 11.7      | 11.7      | 11.7      | 11.7               |  |
| 5. PH               | 744       | 672       | 744       | 720            | 744       | 720       | 744       | 744       | 720       | 744       | 720       | 744       | 8,760              |  |
| 6. SH               | 722       | 0         | \$59      | 698            | 722       | 698       | 722       | 722       | 698       | 722       | 582       | 722       | 7,564              |  |
| 7. RSH              | 0         | 0         | ٥         | 0              | 0`        | 0         | 0         | 0         | ٥         | 0         | 0         | ٥         | 0                  |  |
| 8. UH               | 22        | 672       | 185       | 22             | 22        | 22        | 22        | 22        | 22        | 22        | 138       | 22        | 1,196              |  |
| 9. РОН              | o         | 672       | 163       | 0              | o         | 0         | ٥         | 0         | 0         | 0         | 14        | 0         | 854                |  |
| la. EFOH            | 80        | Q         | 62        | 78             | 80        | 78        | 80        | 80        | 78        | 80        | 76        | 80        | 853                |  |
| II. EMOH            | 7         | o         | 5         | 7              | 7         | 7         | 7         | 7         | 7         | 7         | 6         | 7         | 72                 |  |
| 12. OPER BTU (GBTU) | 1,655     | 0         | 1,313     | 1,530          | 1,583     | 1,533     | 1,584     | 1,583     | 1,531     | 1,584     | 1,276     | 1,613     | 16,910             |  |
| 13. NET GEN (MWH)   | 139,476   | 0         | 117,700   | 144,920        | 151,687   | 147,941   | 152,921   | 152,157   | 146,365   | 152,607   | 121,696   | 151,847   | 1 <b>,579,3</b> 17 |  |
| 14. ANOHR (Btu/kwh) | 11,868    | 0         | 11,152    | 1 <b>0,555</b> | 10,435    | 10,362    | 10,359    | 10,406    | 10,463    | 10,378    | 10,482    | 10,621    | 10,707             |  |
| 15. NOF (%)         | 75.8      | 0.0       | 82.6      | 88.3           | 89.5      | 90.2      | 90.2      | 89.7      | 89.2      | 90.D      | 89.0      | 87.7      | 86.9               |  |
| 16. NPC (MW)        | 255       | 255       | 255       | 235            | 235       | 235       | 235       | 235       | 235       | 235       | 235       | 240       | 240                |  |
| 17. ANOHR EQUATION  | ANOF      | (R = NOF( | -104.957  | <b>}</b> +     | 19,824    |           |           |           |           |           |           |           |                    |  |

.

\*

ORIGINAL SHEET NO. 8.401.09E PAGE 18 OF 42 .

.

### ESTIMATED UNIT PERFORMANCE DATA

### JANUARY 2009 - DECEMBER 2009

| PLANT/UNIT          | MONTH OF: | MONTH OF:    | MONTH OF: | MONTH OF: | MONTH OF: | MONTH OF: | MONTH OF: | MONTH OF:   | MONTH OF: | MONTH OF: | MONTH OF: | MONTH OF:    | PERIOD    |
|---------------------|-----------|--------------|-----------|-----------|-----------|-----------|-----------|-------------|-----------|-----------|-----------|--------------|-----------|
| BAYSIDE 1           | Jan-09    | Feb-09       | Mar-09    | Apr-09    | May-09    | Jun-09    | Jul-09    | Aug-09      | Sep-09    | Oct-09    | Nov-09    | Dec-09       | 2009      |
| I. EAF (%)          | 97.1      | <b>97.</b> 1 | 75.2      | 97.1      | 97.1      | 97.1      | 97.1      | 97.1        | 97.1      | 75.2      | 97.]      | <b>97.</b> 1 | 93.4      |
| 2. POF              | 0.0       | 0.0          | 22,6      | 0.0       | 0.0       | 0.0       | 0.0       | 0.0         | 0.0       | 22.6      | 0.0       | 0.0          | 3.8       |
| 3. EUOF             | 2.9       | 2,9          | 2.3       | 2.9       | 2.9       | 2.9       | 2.9       | 2.9         | 2.9       | 2.3       | 2.9       | 2.9          | 2.8       |
| 4. EUOR             | 2.9       | 2.9          | 2.9       | 2.9       | 2.9       | 2.9       | 2.9       | 2 <i>.9</i> | 2.9       | 2.9       | 2.9       | 2.9          | 2.9       |
| 5. PH               | 744       | 672          | 744       | 720       | 744       | 720       | 744       | 744         | 720       | 744       | 720       | 744          | 8,760     |
| 6. SH               | 695       | 646          | \$4z      | 572       | 616       | 668       | 696 -     | 697         | 680       | 424       | 601       | 716          | 7,553     |
| 7. RSH              | 0         | 0            | 0         | ٥         | ٥         | ٥         | 0         | 0           | 0         | D         | 0         | . 0          | 0         |
| 8. UH               | 49        | 26           | 202       | 143       | 128       | 52        | 48        | 47          | 40        | 320       | 119       | 28           | 1,207     |
| 9. POH              | 0         | 0            | 168       | Q         | 0         | 0         | 0         | D           | 0         | 168       | đ         | a            | . 336     |
| IO. EFOH            | 2         | 2            | 2         | 2         | 2         | 2         | 2         | 2           | 2         | 2         | 2         | 2            | 23        |
| II. EMOH            | 20        | 18           | 15        | 19        | 20        | 19        | 20        | 20          | 19        | 15        | 19        | 20           | 222       |
| 12. OPER BTU (GBTU) | 2,756     | 3,058        | 2,550     | 2,489     | 2,813     | 2,958     | 3,113     | 3,134       | 3,017     | 1,938     | 2,415     | 3,556        | 33,804    |
| 13. NET GEN (MWH)   | 375,128   | 420,310      | 350,370   | 342,977   | 388,777   | 407,976   | 429,681   | 432,788     | 416,211   | 267,844   | 331,139   | 490,330      | 4,653,531 |
| 14. ANOHR (Bau/kwh) | 7,346     | 7,275        | 7,278     | 7,258     | 7,235     | 7,250     | 7,245     | 7,242       | 7,249     | 7,235     | 7,293     | 7,253        | 7,264     |
| 15. NOF (%)         | 68.2      | 52.2         | 81.7      | 85.6      | 90.2      | 87_2      | 88.2      | 88.5        | 87.4      | 90.2      | 78.7      | 86.6         | 84.4      |
| 16. NPC (MW)        | 791       | 791          | 791       | 700       | 700       | 700       | 700       | 700         | 700       | 700       | 700       | 791.         | 730       |
| 17. ANOHR EQUATION  | ANO       | fR = NOF(    | -5.067    | )+        | 7,692     |           |           |             |           |           |           |              |           |

.

ORIGINAL SHEET NO. 8.401.09E PAGE 19 OF 42

.

.

.

39

.

.

### ESTIMATED UNIT PERFORMANCE DATA

### JANUARY 2009 - DECEMBER 2009

| PLANT/UNIT          | MONTH OF: | MONTH OF:    | MONTH OF: | MONTH OF: | MONTH OF: | MONTH OF: | MONTH OF:    | MONTH OF: | MONTH OF: | MONTH OF: | MONTH OF:          | MONTH OF: | PERIÓD           |  |
|---------------------|-----------|--------------|-----------|-----------|-----------|-----------|--------------|-----------|-----------|-----------|--------------------|-----------|------------------|--|
| BAYSIDE 2           | Jan-09    | Feb-09       | Mar-09    | Apr-09    | May-09    | Jun-09    | Jul-09       | Aug-09    | Sep-09    | Oct-09    | No <del>v-09</del> | Dec-09    | 2009             |  |
| 1. EAF (%)          | 97.9      | <b>9</b> 7.9 | 75.8      | 97.9      | 97.9      | 97.9      | 97.9         | 97.9      | 97.9      | 75.8      | 97.9               | 97.9      | <del>94</del> .1 |  |
| 2. POF              | 0.0       | 0.0          | 22.6      | 0.0       | 0.0       | 0.0       | 0.0          | 0.0       | 0.0       | 22.6      | 0.0                | 0.0       | 3.8              |  |
| 3. EUOF             | 2.1       | 2.1          | 1.6       | 2.1       | 2.1       | 2.1       | 2.1          | 2.1       | 2.1       | 1.6       | <b>2.</b> 1        | 2.1       | 2.0              |  |
| 4. EUOR             | 2.1       | 2.1          | 2.1       | 2.1       | 0.0       | 2.1       | 2.1          | 2.1       | 2.1       | 2.1       | 2.1                | 2.1       | 2.1              |  |
| 5. PH               | 744       | 672          | 744       | 720       | 744       | 720       | 744          | 744       | 720       | 744       | 720                | 744       | 8,760            |  |
| 6. SH               | 438       | 475          | 411       | 587       | 661       | 510       | 543          | 546       | 516       | 586       | 250                | 562       | 6,086            |  |
| 7. RSH              | 0         | 0            | 0         | 0         | đ         | 0         | 0            | 0         | 0         | 0         | 0                  | 0         | 0                |  |
| 8. UH               | 306       | 197          | 333       | 133       | 83        | 210       | 201          | 198       | 204       | 158       | 470                | 182       | 2,674            |  |
| 9. POH              | 0         | 0            | 168       | . 0       | 0         | 0         | ¢            | ٥         | ٥         | 168       | Ŷ                  | 0         | 336              |  |
| IO. EFOH            | 6         | 6            | 5         | 6         | 6         | 6         | 6            | 6         | 6         | 5         | 6                  | 6         | 70               |  |
| 11. EMOH            | 10        | 9            | 7         | 9         | 10        | 9         | 10           | 10        | 9         | 7         | 9                  | 10        | 109              |  |
| 12. OPER BTU (GBTU) | 2,055     | 2,471        | 2,376     | 3,106     | 3,944     | 2,959     | 3,191        | 3,236     | 2,926     | 3,319     | 1,249              | 2,898     | 33,746           |  |
| 13. NET GEN (MWH)   | 276,759   | 333,595      | 321,767   | 420,869   | \$36,555  | 402,166   | 433,917      | 440,102   | 397,339   | 450,672   | 169,039            | 391,208   | 4,573,988        |  |
| 14. ANOHR (Bu/kwh)  | 7,425     | 7,407        | 7,386     | 7,379     | 7,351     | 7,358     | 7,355        | 7,353     | 7_364     | 7,364     | 7,391              | 7,408     | 7,378            |  |
| 15. NOF (%)         | 60.4      | 67.1         | 74.8      | 77.2      | 87.5      | 84.9      | <b>86</b> .1 | 86.9      | 82.9      | 82.9      | 72.7               | 66.6      | 77.7             |  |
| 16. NPC (MW)        | 1,046     | 1,046        | 1,046     | 928       | 928       | 928       | 923          | 928       | 928       | 928       | 928                | 1,046     | 967              |  |
| 17. ANOHR EQUATION  | ANOP      | (R = NOF(    | -2.713    | }+        | 7,589     |           |              |           |           |           |                    |           |                  |  |

ORIGINAL SHEET NO. 8.401.09E PAGE 20 OF 42 .

.

40

•

• •

### TAMPA ELECTRIC COMPANY ESTIMATED PLANNED OUTAGE SCHEDULE GPIF UNITS JANUARY 2009 - DECEMBER 2009

| . PLANT/UN | PLA      | NNED O<br>DATES | UTAGE                                 | OUTAGE DESCRIPTION                         |
|------------|----------|-----------------|---------------------------------------|--------------------------------------------|
|            |          |                 | · · · · · · · · · · · · · · · · · · · |                                            |
| BIG BEN    | ID 1 Nov | 28 -            | Dec 31                                | SCR Outage                                 |
| + BIG BEN  | ID 2 Jan | 01 -            | Apr 08                                | SCR Outage                                 |
|            | Nov      | 30              | Dec 20                                | FGD Scrubber Outage                        |
| + BIG BEN  | ID 3 Oct | 03 -            | Oct 16                                | Fuel System Clean-up                       |
| BIG BEN    | ND 4 Apr | 04 -            | May 29                                | Major Outage                               |
| + POLK 1   | Feb      | 01 -            | Mar 07                                | Gasifier / CT Outage                       |
|            | Nov      | - 80            | Nov 12                                | Gasifier Outage                            |
| + BAYSID   | E1 Mar   | 21 -            | Mar 27                                | Fuei System Clean-up                       |
|            | Oct      | 17 -            | Oct 23                                | Fuel System Clean-up                       |
| + BAYSID   | E2 Mar   | 08 -            | Mar 14                                | Combustion Path Inspection & Steam Turbine |
|            | Oct      | 31 -            | Nov 06                                | Fuel System Clean-up                       |

+ CPM for units with less than or equal to 4 weeks are not included.

08/01/08

### TAMPA ELECTRIC COMPANY CRITICAL PATH METHOD DIAGRAMS GPIF UNITS > FOUR WEEKS JANUARY 2009 - DECEMBER 2009

,



08/01/08

### TAMPA ELECTRIC COMPANY CRITICAL PATH METHOD DIAGRAMS GPIF UNITS > FOUR WEEKS JANUARY 2009 - DECEMBER 2009





08/01/08

### TAMPA ELECTRIC COMPANY CRITICAL PATH METHOD DIAGRAMS GPIF UNITS > FOUR WEEKS JANUARY 2009 - DECEMBER 2009





Big Bend Unit 1







Note: Big Bend Unit 3 was offline for SCR installation from 11/18/2007 to 4/28/2008; therefore, data is not available for this time period.



Note: Big Bend Unit 4 was offline for SCR installation from 2/1/2007 to 5/19/2007; therefore, data is not available for this time period.



.









ORIGINAL SHEET NO. 8.401.09E PAGE 33 OF 42



ORIGINAL SHEET NO. 8.401.09E PAGE 34 OF 42





ORIGINAL SHEET NO. 8,401.09E PAGE 36 OF 42



.



.

.



Tampa Electric Company Heat Rate vs Net Output Factor Bayside Unit 1

ORIGINAL SHEET NO. 8.401.09E PAGE 38 OF 42



# TAMPA ELECTRIC COMPANY GENERATING UNITS IN GPIF TABLE 4.2 JANUARY 2009 - DECEMBER 2009

.

.

| PLANT / UNIT |                   | ANNUAL<br>GROSS<br>MDC (MW) | ANNUAL<br>NET<br>NDC (MW) |
|--------------|-------------------|-----------------------------|---------------------------|
| BIG BEND 1   |                   | 401                         | 386                       |
| BIG BEND 2   |                   | 404                         | 383                       |
| BIG BEND 3   |                   | 409                         | 386                       |
| BIG BEND 4   |                   | 466                         | 434                       |
| POLK 1       |                   | 310                         | 240                       |
| BAYSIDE 1    |                   | 740                         | 730                       |
| BAYSIDE 2    |                   | 979                         | 967                       |
|              | GPIF TOTAL        | <u>3.710</u>                | <u>3.527</u>              |
|              | SYSTEM TOTAL      | 4,647                       | 4,454                     |
|              | % OF SYSTEM TOTAL | 79.8%                       | 79.2%                     |

# TAMPA ELECTRIC COMPANY UNIT RATINGS JANUARY 2009 - DECEMBER 2009

•

|              |                     | ANNUAL<br>GROSS | ANNUAL<br>NET |
|--------------|---------------------|-----------------|---------------|
| PERIOT       |                     |                 |               |
| BAYSIDE 1    |                     | 740             | 730           |
| BAYSIDE 2    |                     | 979             | 967           |
| BAYSIDE 3    |                     | 44              | 43            |
| BAYSIDE 4    |                     | 4 <b>4</b>      | 43            |
| BAYSIDE 5    |                     | 44              | 43            |
| BAYSIDE 6    |                     | 44              | 43            |
|              | BAYSIDE TOTAL       | <u>1.895</u>    | <u>1.870</u>  |
| BIG BEND 1   |                     | 401             | 386           |
| BIG BEND 2   |                     | 404             | 383           |
| BIG BEND 3   |                     | 409             | 386           |
| BIG BEND 4   |                     | 466             | 434           |
|              | BIG BEND COAL TOTAL | <u>1,680</u>    | <u>1,589</u>  |
| BIG BEND CT1 |                     | 11              | 10            |
| BIG BEND CT4 |                     | 44              | 43            |
|              | BIG BEND CT TOTAL   | <u>55</u>       | <u>54</u>     |
| COT 1        |                     | 3               | 3             |
| COT 2        |                     | 3               | 3             |
|              | COT TOTAL           | <u>6</u>        | <u>6</u>      |
| PHILLIPS 1   |                     | 18              | 17            |
| PHILLIPS 2   |                     | 18              | 17            |
|              | PHILLIPS TOTAL      | <u>36</u>       | <u>35</u>     |
| POLK 1       |                     | 310             | 240           |
| POLK 2       |                     | 168             | 167           |
| POLK 3       |                     | 172             | <b>17</b> 1   |
| POLK 4       |                     | 162             | 161           |
| POLK 5       |                     | 162             | 161           |
|              | POLK TOTAL          | <u>974</u>      | <u>900</u>    |
|              | SYSTEM TOTAL        | 4,647           | 4,454         |

.

### TAMPA ELECTRIC COMPANY PERCENT GENERATION BY UNIT JANUARY 2009 - DECEMBER 2009

,

.

| PLANT        | UNIT            |                       | NET OUTPUT<br>MWH | PERCENT OF<br>PROJECTED<br>OUTPUT | PERCENT<br>CUMULATIVE<br>PROJECTED<br>OUTPUT |
|--------------|-----------------|-----------------------|-------------------|-----------------------------------|----------------------------------------------|
| BAYSIDE      | 2               |                       | 4,653,531         | 23.31%                            | 23.31%                                       |
| BAYSIDE      | 1               |                       | 4,573,988         | 22.91%                            | 46.23%                                       |
| BIG BEND     | 4               |                       | 2,560,140         | 12.83%                            | 59.05%                                       |
| BIG BEND     | 1               |                       | 2,430,945         | 12.18%                            | 71.23%                                       |
| BIG BEND     | 2               |                       | 1,883,282         | 9.43%                             | 80.66%                                       |
| POLK         | 1               |                       | 1,855,886         | 9.30%                             | 89.96%                                       |
| BIG BEND     | 3               |                       | 1,579,317         | 7.91%                             | 97.87%                                       |
| POLK         | 4               |                       | 119,515           | 0.60%                             | 98.47%                                       |
| POLK         | 5               |                       | 80,572            | 0.40%                             | 98.87%                                       |
| POLK         | 3               |                       | 53,545            | 0.27%                             | 99.14%                                       |
| BAYSIDE      | 5               |                       | 50,069            | 0.25%                             | 99.39%                                       |
| BAYSIDE      | 6               |                       | 48,525            | 0.24%                             | 99.64%                                       |
| POLK         | 2               |                       | 45,781            | 0.23%                             | 99.87%                                       |
| BAYSIDE      | 3               |                       | 10,605            | 0.05%                             | 99.92%                                       |
| BAYSIDE      | 4               |                       | 9,512             | 0.05%                             | 99.97%                                       |
| BIG BEND CT  | 4               |                       | 3,634             | 0.02%                             | 99.99%                                       |
| PHILLIPS     | 2               |                       | 1,347             | 0.01%                             | 99.99%                                       |
| PHILLIPS     | 1               |                       | 1,336             | 0.01%                             | 100.00%                                      |
| BIG BEND CT  | 1               |                       | 19                | 0.00%                             | 100.00%                                      |
| TOTAL GENERA | TION            |                       | 19,961,749        | 100.00%                           |                                              |
| GENERATION B | Y COAL UNITS:   | <u>10,309,570</u> MWH | GENERATION BY NA  | TURAL GAS UNITS:                  | 9,649,477 MWH                                |
| % GENERATION | N BY COAL UNITS | 51.65%                | % GENERATION BY I | NATURAL GAS UNITS:                | 48.34%                                       |
| GENERATION B | Y OIL UNITS:    | <u>2,702_</u> MWH     | GENERATION BY GP  | IF UNITS:                         | 19,537,089 MWH                               |
| % GENERATION | NBY OIL UNITS:  | 0.01%                 | % GENERATION BY   | GPIF UNITS:                       | 97.87%                                       |

DOCKET NO. 080001-EI GPIF 2009 PROJECTION FILING EXHIBIT NO. (BSB-1) DOCUMENT NO. 2

# EXHIBIT TO THE TESTIMONY OF

Ŧ

BRIAN S. BUCKLEY

DOCUMENT NO. 2

.

SUMMARY OF GPIF TARGETS JANUARY 2009 - DECEMBER 2009

DOCKET NO. 080001 - EI GPIF 2009 PROJECTION EXHIBIT NO. \_\_\_\_ (BSB-1) DOCUMENT NO. 2 PAGE 1 OF 1

# TAMPA ELECTRIC COMPANY SUMMARY OF GPIF TARGETS JANUARY 2009 - DECEMBER 2009

|                         | Availability |      |      |           |  |  |  |  |  |  |  |
|-------------------------|--------------|------|------|-----------|--|--|--|--|--|--|--|
| Unit                    | EAF          | POF  | EUOF | Heat Rate |  |  |  |  |  |  |  |
| Big Bend 1 <sup>1</sup> | 72.5         | 9.3  | 18.2 | 10,774    |  |  |  |  |  |  |  |
| Big Bend 2 <sup>2</sup> | 56.1         | 32.6 | 11.3 | 10,396    |  |  |  |  |  |  |  |
| Big Bend 3 <sup>3</sup> | 54.3         | 3.8  | 41.8 | 10,751    |  |  |  |  |  |  |  |
| Big Bend 4 <sup>4</sup> | 67.5         | 15.3 | 17.2 | 10,598    |  |  |  |  |  |  |  |
| Polk 1 <sup>5</sup>     | 79.7         | 9.8  | 10.6 | 10,707    |  |  |  |  |  |  |  |
| Bayside 1 <sup>6</sup>  | 93.4         | 3.8  | 2.8  | 7,264     |  |  |  |  |  |  |  |
| Bayside 2 <sup>7</sup>  | 94,1         | 3.8  | 2.0  | 7,378     |  |  |  |  |  |  |  |

<sup>1</sup>Original Sheet 8.401.09E, Page 14

<sup>2</sup> Original Sheet 8.401.09E, Page 15

<sup>3</sup> Original Sheet 8.401.09E, Page 16

<sup>4</sup> Original Sheet 8.401.09E, Page 17

<sup>5</sup> Original Sheet 8.401.09E, Page 18

<sup>6</sup> Original Sheet 8.401.09E, Page 19

<sup>7</sup> Original Sheet 8.401.09E, Page 20