AUSLEY & MCMULLEN

ATTORNEYS AND COUNSELORS AT LAW

123 SOUTH CALHOUN STREET P.O. BOX 391 (ZIP 32302) TALLAHASSEE, FLORIDA 32301 (850) 224-9115 FAX (850) 222-7560

September 1, 2010

HAND DELIVERED

Ms. Ann Cole, Director Office of Commission Clerk Florida Public Service Commission 2540 Shumard Oak Boulevard Tallahassee, FL 32399-0850

> Re: Fuel and Purchased Power Cost Recovery Clause with Generating Performance Incentive Factor; FPSC Docket No. 100001-EI

Dear Ms. Cole:

Enclosed for filing in the above docket on behalf of Tampa Electric Company are the original and fifteen (15) copies of each of the following:

- 1. Petition of Tampa Electric Company.
- 2. Prepared Direct Testimony and Exhibit (CA-3) of Carlos Aldazabal.
- 3. Prepared Direct Testimony and Exhibit (BSB-2) of Brian S. Buckley.

4. Prepared Direct Testimony of Benjamin F. Smith II.

5. Prepared Direct Testimony of Joann T. Wehle.

Please acknowledge receipt and filing of the above by stamping the duplicate copy of this letter and returning same to this writer.

Thank you for your assistance in connection with this matter.

Sincerely,

James D. Beasley

GCL _____ RAD _____ SSC ______ JDB/pp Enclosures OPC ______ CLK _____R All Parties of Record (w/encls.)

CON

07381 SEP-19 FPSC-COMMISSION OF FRM

RECEIVED-FPSC

10 SEP -1 PM 2: 34

COMMISSION CLERK

BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION

ì

)

)

In re: Fuel and Purchased Power Cost Recovery Clause with Generating Performance Incentive Factor.

DOCKET NO. 100001-EI FILED: September 1, 2010

PETITION OF TAMPA ELECTRIC COMPANY

Tampa Electric Company ("Tampa Electric" or "company"), hereby petitions the Commission for approval of the company's proposals concerning fuel and purchased power factors, capacity cost factors, generating performance incentive factors, and the projected wholesale sales incentive benchmark set forth herein, and in support thereof, says:

Fuel and Purchased Power Factors

1. Tampa Electric projects a fuel and purchased power net true-up amount for the period January 1, 2010 through December 31, 2010 will be an over-recovery of \$67,087,873 (See Exhibit No. ____ (CA-3), Document No. 2, Schedule E1-C).

2. The company's projected expenditures for the period January 1, 2011 through December 31, 2011, when adjusted for the proposed GPIF reward and true-up over-recovery amount and spread over projected kilowatt-hour sales for the period January 1, 2011 through December 31, 2011, produce a fuel and purchased power factor for the new period of 4.225 cents per kWh before the application of time of use multipliers for on-peak or off-peak usage. (See Exhibit No. (CA-3), Document No. 2, Schedule E1-E).

3. The company's projected benchmark level for calendar year 2011 for gains on non-separated wholesale energy sales eligible for the shareholder incentive as set forth by Order

DCCUMENT NUMPER-CATE 0738 | SEP-L2 FPSC-CGMMISSION CLERK No. PSC-00-1744-PAA-EI, in Docket No. 991779 is \$2,325,363, as provided in the direct testimony of Tampa Electric witness Carlos Aldazabal.

Capacity Cost Factor

4. Tampa Electric estimates that its net true-up amount applicable for the period January 1, 2010 through December 31, 2010 will be an under-recovery of \$53,091, as shown in Exhibit No. ____ (CA-3), Document No. 1, page 3 of 5.

5. As described in the direct testimony of Carlos Aldazabal, the company's proposed capacity factor for January through December 2011 reflects the rate modifications approved in Order No. PSC-09-0283-FOF-EI in Docket No. 080317-EI, issued April 30, 2009. The company's projected expenditures for the period January 1, 2011 through December 31, 2011, when adjusted for the true-up under-recovery amount and spread over projected kilowatt-hour sales for the period, produce a capacity cost recovery factor for the period of 0.291 cents per kWh. For demand-measured customers, the factor Tampa Electric proposes to recover is \$1.07 per billed kW as set forth in Exhibit No. (CA-3), Document No. 1, page 4 of 5.

<u>GPIF</u>

6. Tampa Electric has calculated that it is subject to a GPIF reward of \$1,830,855 for performance experienced during the period January 1, 2009 through December 31, 2009.

7. The company is also proposing GPIF targets and ranges for the period January 1, 2011 through December 31, 2011 with such proposed targets and ranges being detailed in the testimony and exhibits of Tampa Electric witness Brian S. Buckley filed herewith.

WHEREFORE, Tampa Electric Company requests that its proposals relative to fuel and purchased power cost recovery, capacity cost recovery and GPIF be approved as they relate to

prior period true-up calculations and projected cost recovery charges, and that the Commission

approve the company's projected wholesale sales incentive benchmark.

DATED this $/ \underline{st}$ day of September 2010.

•

Respectfully submitted,

42

JAMES D. BEASLEY J. JEFFRY WAHLEN Ausley & McMullen Post Office Box 391 Tallahassee, Florida 32302 (850) 224-9115

ATTORNEYS FOR TAMPA ELECTRIC COMPANY

CERTIFICATE OF SERVICE

I HEREBY CERTIFY that a true copy of the foregoing Petition, filed on behalf of Tampa Electric Company, has been furnished by U. S. Mail or hand delivery (*) on this $2 + \frac{1}{2} + \frac{1}{2}$ day of

September, 2010 to the following:

Ms. Lisa C. Bennett* Senior Attorney Office of General Counsel Florida Public Service Commission 2540 Shumard Oak Boulevard Tallahassee, FL 32399-0863

Mr. John T. Burnett Associate General Counsel Progress Energy Service Co., LLC Post Office Box 14042 St. Petersburg, FL 33733-4042

Mr. Paul Lewis, Jr. Progress Energy Service Co., LLC 106 East College Avenue Suite 800 Tallahassee, FL 32301-7740

Ms. Vicki Kaufman Mr. Jon C Moyle Keefe Anchors Gordon & Moyle, PA 118 N. Gadsden Street Tallahassee, FL 32301

Mr. John W. McWhirter, Jr. Post Office Box 3350 Tampa, FL 33601-3350

Ms. Patricia A. Christensen Associate Public Counsel Office of Public Counsel 111 West Madison Street – Room 812 Tallahassee, FL 32399-1400 Ms. Beth Keating Akerman Senterfitt 106 East College Avenue, Suite 1200 Tallahassee, FL 32302-1877

Mr. George Bachman Ms. Cheryl Martin Florida Public Utilities Company P. O. Box 3395 West Palm Beach, FL 33402-3395

Mr. John T. Butler Managing Attorney - Regulatory Florida Power & Light Company 700 Universe Boulevard Juno Beach, FL 33408-0420

Mr. R. Wade Litchfield Florida Power & Light Company 215 South Monroe Street, Suite 810 Tallahassee, FL 32301-1859

Ms. Susan Ritenour Secretary and Treasurer Gulf Power Company One Energy Place Pensacola, FL 32520-0780

Mr. Jeffrey A. Stone Mr. Russell A. Badders Mr. Steven R. Griffin Beggs & Lane Post Office Box 12950 Pensacola, FL 32591-2950 Mr. Robert Scheffel Wright Mr. John T. LaVia, III Young van Assenderp, P.A. 225 South Adams Street, Suite 200 Tallahassee, FL 32301

Shayla L. McNeill, Capt, USAF Air Force Legal Operations Agency Utility Litigation Field Support Center 139 Barnes Drive, Suite 1 Tyndall Air Force Base, FL 32403-5319

Ms. Cecilia Bradley Senior Assistant Attorney General Office of the Attorney General The Capitol – PL01 Tallahassee, FL 32399-1050 Mr. James W. Brew Mr. F. Alvin Taylor Brickfield, Burchette, Ritts & Stone, P.C. 1025 Thomas Jefferson Street, NW Eighth Floor, West Tower Washington, D.C. 20007-5201

Mr. Randy B. Miller White Springs Agricultural Chemicals, Inc. Post Office Box 300 White Springs, FL 32096

(spenty TORNEY

FPSC-COMMISSION CLERK

07381 SEP-12

DOCUMENT Nº MEER DATE.

CARLOS ALDAZABAL

OF

TESTIMONY AND EXHIBIT

JANUARY 2011 THROUGH DECEMBER 2011

PROJECTIONS

CAPACITY COST RECOVERY

AND

IN RE: FUEL & PURCHASED POWER COST RECOVERY

DOCKET NO. 100001-EI

FLORIDA PUBLIC SERVICE COMMISSION

BEFORE THE

1		BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION
2		PREPARED DIRECT TESTIMONY
3		OF
4		CARLOS ALDAZABAL
5		
6	Q.	Please state your name, address, occupation and employer.
7		
8	A.	My name is Carlos Aldazabal. My business address is 702
9		North Franklin Street, Tampa, Florida 33602. I am
10		employed by Tampa Electric Company ("Tampa Electric" or
11		"company") in the position of Director, Regulatory
12		Affairs in the Regulatory Affairs Department.
13		
14	Q.	Please provide a brief outline of your educational
15		background and business experience.
16		
17	A.	I received a Bachelor of Science Degree in Accounting in
18		1991, and received a Masters of Accountancy in 1995 from
19		the University of South Florida in Tampa. I am a CPA in
20		the State of Florida and have accumulated 15 years of
21		electric utility experience working in the areas of fuel
22		and interchange accounting, surveillance reporting, and
23		budgeting and analysis. In April 1999, I joined Tampa
24		Electric as Supervisor, Regulatory Accounting. In
25		January 2004, I became Manager, Regulatory Affairs where

1

1 my duties included managing cost recovery for fuel and 2 purchased power, interchange sales, and capacity In August 2009, I was promoted to Director 3 payments. Regulatory Affairs with primary responsibility 4 for overseeing all cost recovery clauses. 5 6 Have you previously testified before this Commission? 7 Q. 8 9 A. Yes. I have submitted written testimony in the annual 10 fuel docket since 2004, and I testified before this Florida Public Service Commission ("FPSC" 11 or "Commission") in Docket Nos. 060001-EI and 080001-EI 12 regarding the appropriateness and prudence of 13 Tampa Electric's recoverable fuel and purchased power costs as 14well as capacity costs. 15 16 What is the purpose of your testimony? 17 Q. 18Α. The purpose of my testimony is to present, for Commission 19 review and approval, the proposed annual capacity cost 20 recovery factors, the proposed annual levelized fuel and 21 purchased power cost recovery factors 22 including an 23 inverted two-tiered residential fuel or charge to encourage energy efficiency and conservation and the 24 25 projected wholesale incentive benchmark for January 2011

1 through December 2011. I will also describe significant events that affect the factors and provide an overview of 2 the composite effect from the various cost recovery 3 factors for 2011. 4 5 Have you prepared an exhibit to support your testimony? 6 Q. 7 Exhibit No. (CA-3), consisting of three Yes. Α. 8 under my direction documents, prepared and 9 was supervision. Document No. 1, consisting of four pages, 10 is furnished as support for the projected capacity cost 11 recovery factors utilizing the Commission approved 12 allocation methodology from Order No. PSC-09-0283-FOF-EI 13 issued April 30, 2009, in Docket No. 080317-EI based on 14 12 Coincident Peak ("CP") and 25 percent Average Demand 15 Document No. 2, which is furnished as support 16 ("AD"). for the proposed levelized fuel and purchased power cost 17 recovery factors, is comprised of Schedules E1 through 18 E10 for January 2011 through December 2011 as well as 19 Schedule H1 for January through December, 2008 through 20 2011. Document No. 3 provides a comparison of retail 21 residential fuel revenues under the inverted or tiered 22 fuel rate and a levelized fuel rate, which demonstrates 23 that the tiered rate is revenue neutral. 24 25

1

2

3

4

5

12

16

Capacity Cost Recovery

Q. Are you requesting Commission approval of the projected capacity cost recovery factors for the company's various rate schedules?

6 Α. Yes. The capacity cost recovery factors, prepared under my direction and supervision, are provided in Exhibit No. 7 8 (CA-3), Document No. 1, page 3 of 4. The capacity factors reflect the 9 company's approved rate design 10 modifications approved as part of Order No. PSC-09-0283-11 FOF-EI in Docket No. 080317-EI, issued April 30, 2009.

Q. Please describe the changes to the 2011 capacity cost
 recovery factors related to Tampa Electric's approved
 rate design approved in Order No. PSC-09-0283-FOF-EI.

As a result of Tampa Electric's base rate case, 17 Α. the Commission approved the consolidation of the company's 18 General Service - Demand ("GSD") and General Service -19 Large Demand ("GSLD") rate customers into one new GSD 20 21 rate class. Additionally, the allocation of production 22 demand costs was modified to the 12 CP and 25 percent AD to better reflect cost causation. The Commission also 23 24 approved the recovery of capacity costs through a factor 25 applied to billed kW demand for demand-measured customers

because that recovery method would be consistent with the 1 recovery of production plant that otherwise would have 2 been built. 3 4 What payments are included in Tampa Electric's capacity Q. 5 cost recovery factors? 6 7 Α. Tampa Electric is requesting recovery of capacity 8 for power purchased for retail customers, payments . 9 excluding optional provision purchases for interruptible 10 customers, through the capacity cost recovery factors. 11 12 13 Q. Please summarize the proposed capacity cost recovery factors by metering voltage level for January 2011 14 through December 2011. 15 16 Capacity Cost Recovery Factor Rate Class and 17 Α. Metering Voltage Cents per kWh Cents per kW 18 RS Secondary 0.336 19 GS and TS Secondary 0.294 20 GSD, SBF Standard 21 1.07 Secondary 22 1.06 23 Primary Transmission 1.05 24 IS, IST, SBI 25

1 Primary 0.87 Transmission 2 0.86 3 GSD Optional Secondary 4 0.255 5 Primary 0.253 6 LS1 Secondary 0.078 7 These factors are shown in Exhibit 8 No. (CA-3), 9 Document No. 1, page 3 of 4. 10How does Tampa Electric's proposed average capacity cost 11 Q. recovery factor of 0.291 cents per kWh compare to the 12 13 factor for January 2010 through December 2010? 14 Α. The proposed capacity cost recovery factor is 0.181 cents 15 per kWh (or \$1.81 per 1,000 kWh) lower than the average 16 17 capacity cost recovery factor of 0.472 cents per kWh for the January 2010 through December 2010 period. 18 19 Fuel and Purchased Power Cost Recovery Factor 20 21 Q. What is the appropriate amount of the levelized fuel and 22 purchased power cost recovery factor for the year 2011? 23 24 Α. The appropriate amount for the 2011 period is 4.225 cents 25 per kWh before any application of time of use multipliers

for on-peak or off-peak usage. Schedule E1-E of Exhibit 1 No. (CA-3), Document No. 2, shows the appropriate 2 value for the total fuel and purchased power cost 3 recovery factor for each metering voltage level as 4 projected for the period January 2011 through December 5 2011. 6 7 Q. Please describe the information provided on Schedule E1-8 С. 9 10 The Generating Performance Incentive Factor ("GPIF") and Α. 11 true-up factors are provided on Schedule E1-C. 12 Tampa 13 Electric has calculated a GPIF reward of \$1,830,855, which is included in the calculation of the total fuel 14 and purchased power cost recovery factors. Additionally, 15 E1-C indicates the net true-up amount for the January 16 2010 through December 2010 period. 17 The net true-up for amount this period is 18 an over-recovery of \$67,087,873. 19 20 Please describe the information provided on Schedule E1-Q. 21 22 D. 23 24 Α. Schedule E1-D presents Tampa Electric's on-peak and off-25 peak fuel adjustment factors for January 2011 through

December The schedule also presents Tampa 2011. 1 Electric's levelized fuel cost factors at each metering 2 voltage level. 3 4 Please describe the information provided on Schedule E1-Q. 5 Ε. 6 7 Schedule E1-E presents the standard, tiered, on-peak and 8 Α. off-peak fuel adjustment factors at each metering voltage 9 to be applied to customer bills. 10 11 Q. Please describe the information provided in Document No. 12 3. 13 14 15 Α. Exhibit No. (CA-3), Document No. 3 demonstrates that the tiered rate structure is designed to be revenue 16 17 neutral so that the company will recover the same fuel costs as it would under the traditional levelized fuel 18 approach. 19 20 Q. Please summarize the proposed fuel and purchased power 21 cost recovery factors by metering voltage level for 22 January 2011 through December 2011. 23 24 25

1					
2	A.		Fue	1 Charge	
3		Metering Voltage Level	Factor (c	cents per	kWh)
4	1	Secondary	4.22	5	
5		Tier I (Up to 1,000 kWh)	3.87	5	
6	-	Tier II (Over 1,000 kWh)	4.87	5	
7		Distribution Primary	4.18	3	
8		Transmission	4.14	1	
9		Lighting Service	4.13	4	
10		Distribution Secondary	4.81	7 (on-pe	ak)
11			3.99	4 (off-p	eak)
12		Distribution Primary	4.76	9 (on-pe	ak)
13			3.95	4 (off-p	eak)
14		Transmission	4.72	1 (on-pe	ak)
15			3.91	4 (off-p	eak)
16		·			
17	Q.	How does Tampa Electric'	s propos	sed leve	elized fuel
18		adjustment factor of 4.225	cents per	kWh com	npare to the
19	4 2	levelized fuel adjustment	factor fo	or the J	January 2010
20	-	through December 2010 period	?		
21					
22	A.	The proposed fuel charge fa	actor is	0.292 ce	ents per kWh
23		(or \$2.92 per 1,000 kWh)	lower that	an the a	average fuel
24		charge factor of 4.517 cents	per kWh	for the	January 2010
25		through December 2010 period			
		<u></u>			

1

Events Affecting the Projection Filing

2 Are there any significant events Q. reflected in the calculation of the 2011 fuel and purchased power 3 and capacity cost recovery projections? 4 5 Yes. There are two significant events. These are 1) the 6 A. 7 continued decline in natural gas prices and related hedge and 2) the expiration of two existing firm 8 results: purchase power cogeneration agreements with Hillsborough 9 10 County and the City of Tampa. 11 describe first Q. Please the event that affects the 12 company's projection filing. 13 14 With the addition of Bayside Station in 2004 and more 15Α. the combustion turbines ("CT's") at Polk, recently 16 Bayside and Big Bend Stations, Tampa Electric has 17 increased its reliance on natural gas as a fuel source. 18 In the fall of 2008 the prolonged economic downturn 19 resulted in a dramatic decline in fuel commodity prices, 20 particularly natural gas, which has resulted in a 21 significant decrease in fuel and purchased power costs. 22 In order to minimize fuel price volatility and comply 23 with the company's Commission approved Risk Management 24 Plan, financial hedges were entered into for natural gas 25

1 in 2010 and 2011 which have partially mitigated some of that benefit. 2 Witness J. T. Wehle's direct testimony 3 describes the decrease in natural qas costs and associated hedge results in more detail. 4 5 6 Q. Please describe the second event. 7 Entering 2010 Tampa Electric had firm purchase power 8 Α. agreements with Hillsborough County for 23 MW and the 9 City of Tampa for 19 MW, respectively. 10 On March 1, 2010, the Hillsborough County agreement expired as both 11 the County and Tampa Electric were unable to reach 12 13 agreement on terms that would be acceptable to both Similarly, Tampa Electric and the City of 14 parties. Tampa agreed to mutually terminate a December 2008 15 renegotiated extension of their agreement beyond August 16 1, 2011 when the parties were unable to successfully 17 renegotiate some of the terms of that extension. The 18 expiration of both agreements results in a significant 19 reduction in capacity costs as well as a reduction in 20 21 as-available energy payments. 22

23 Wholesale Incentive Benchmark Mechanism

Q. What is Tampa Electric's projected wholesale incentivebenchmark for 2011?

1	A.	The company's projected 2011 benchmark is \$2,325,363,
2		which is the three-year average of \$1,676,141, \$3,533,488
3		and \$1,766,461 in gains on the company's non-separated
4		wholesale sales, excluding emergency sales, for 2008,
5		2009 and 2010 (estimated/actual), respectively.
6		
7	Q.	Does Tampa Electric expect gains in 2011 from non-
8		separated wholesale sales to exceed its 2011 wholesale
9		incentive benchmark?
10		
11	A.	No. Tampa Electric anticipates that sales will not
12		exceed the projected benchmark for 2011. Therefore, all
13		sales margins will flow back to customers.
14		
15	Cost	Recovery Factors
16	Q.	What is the composite effect of Tampa Electric's proposed
17		changes in its capacity, fuel and purchased power,
18		environmental and energy conservation cost recovery
19		factors on a 1,000 kWh residential customer's bill?
20		
21	A.	The composite effect on a residential bill for 1,000 kWh
22		is a decrease of \$5.22 beginning January 2011. These
23		charges are shown in Exhibit No (CA-3), Document
24		No. 2, on Schedule E10.
25		
•		10

J		
1	Q.	When should the new rates go into effect?
2		
3	A.	The new rates should go into effect concurrent with meter
4		reads for the first billing cycle for January 2011.
5		
6	Q.	Does this conclude your testimony?
7		
8	A.	Yes, it does.
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
	1	-

Docket No. 100001-EI CCR 2011 Projection Filing Exhibit No.____(CA-3) Document No. 1 Page 1 of 5

EXHIBIT TO THE TESTIMONY OF

.

CARLOS ALDAZABAL

DOCUMENT NO. 1

PROJECTED CAPACITY COST RECOVERY

JANUARY 2011 - DECEMBER 2011

---- -----

TAMPA ELECTRIC COMPANY CAPACITY COST RECOVERY CLAUSE CALCULATION OF ENERGY & DEMAND ALLOCATION BY RATE CLASS JANUARY 2011 THROUGH DECEMBER 2011 PROJECTED

	RATE CLASS	(1) AVG 12 CP LOAD FACTOR AT METER (%)	(2) PROJECTED SALES AT METER (MWH)	(3) PROJECTED AVG 12 CP AT METER (MW)	(4) DEMAND LOSS EXPANSION FACTOR	(5) ENERGY LOSS EXPANSION FACTOR	(6) PROJECTED SALES AT GENERATION (MWH)	AVG 12 CP	OF SALES AT	(9) PERCENTAGE OF DEMAND AT GENERATION (%)
	RS,RSVP	54.79%	8,863,147	1,847	1.08070	1.05580	9,357,688	1,996	46.99%	56.74%
	GS, TS	65.43%	1,064,630	186	1.08070	1.05578	1,124,019	201	5.64%	5.71%
	GSD Optional	4.00%	390,057	56	1.07588	1.05197	410,326	61	2.06%	1.73%
	GSD, SBF	75.00%	7,310,448	1,056	1.07588	1.05197	7,690,338	1,137	38.62%	32.32%
	IS,SBI	103.01%	1,066,368	118	1.03248	1.01870	1,086,314	122	5.46%	3.47%
Ц	LS1	2445.31%	231,963	1	1.08070	1.05580	244,906	1	1.23%	0.03%
CΠ	TOTAL		18,926,613	3,264			19,913,591	3,518	100.00%	100.00%

(1) AVG 12 CP load factor based on 2010 projected calendar data.

(2) Projected MWH sales for the period January 2011 thru December 2011.

(3) Based on 12 months average CP at meter.

(4) Based on 2010 projected demand losses.

(5) Based on 2010 projected energy losses.

(6) Col (2) * Col (5).

(7) Col (3) * Col (4).

(8) Based on 12 months average percentage of sales at generation.

(9) Based on 12 months average percentage of demand at generation.

TAMPA ELECTRIC COMPANY CAPACITY COST RECOVERY CLAUSE CALCULATION OF ENERGY & DEMAND ALLOCATION BY RATE CLASS JANUARY 2011 THROUGH DECEMBER 2011 PROJECTED

		January	February	March	April	May	June	July	August	September	October	November	December	Total
1	UNIT POWER CAPACITY CHARGES	3,998,430	3,998,430	3,998,430	3,998,420	3,381,330	3,381,320	3,381,330	3,381,330	3,381,330	3,381,330	3,381,320	3,381,330	43,044,330
2	CAPACITY PAYMENTS TO COGENERATORS	1,308,470	1,308,470	1,308,470	1,308,470	1,308,470	1,308,470	1,308,470	1,308,470	986,010	986,010	986,010	986,010	14,411,800
3	(UNIT POWER CAPACITY REVENUES)	(66,627)	(66,627)	(66,627)	(66,627)	(66,627)	(66,627)	(66,627)	(66,627)	(66,627)	(66,627)	(66,627)	(66,621)	(799,518)
4	TOTAL CAPACITY DOLLARS	\$5,240,273	\$5,240,273	\$5,240,273	\$5,240,263	\$4,623,173	\$4,623,163	\$4,623,173	\$4,623,173	\$4,300,713	\$4,300,713	\$4,300,703	\$4,300,719	\$56,656,612
5	SEPARATION FACTOR	0.9674819	0.9674819	0.9674819	0.9674819	0.9674819	0.9674819	0. 9674 819	0.9674819	0.9674819	0.9674819	0.9674819	0.9674819	
6	JURISDICTIONAL CAPACITY DOLLARS	\$5,069,869	\$5,069,869	\$5,069,869	\$5,069,860	\$4,472,836	\$4,472,827	\$4,472,836	\$4,472,836	\$4,160,862	\$4,160,862	\$4,160,852	\$4,160,868	\$54,814,246
7	ACTUAL/ESTIMATED TRUE-UP FOR THE PERIOD JAN. 2010 - DEC. 2010												-	<u>53,0</u> 91
8	TOTAL													\$54,867,337
9	REVENUE TAX FACTOR													1.00072
10	TOTAL RECOVERABLE CAPACITY DOLLARS												=	\$54,906,841

TAMPA ELECTRIC COMPANY CAPACITY COST RECOVERY CLAUSE CALCULATION OF ENERGY & DEMAND ALLOCATION BY RATE CLASS JANUARY 2011 THROUGH DECEMBER 2011 PROJECTED

RATE CLASS	(1) PERCENTAGE OF SALES AT GENERATION (%)	(2) PERCENTAGE OF DEMAND AT GENERATION (%)	(3) ENERGY RELATED COSTS (\$)	(4) DEMAND RELATED COSTS (\$)	(5) TOTAL CAPACITY COSTS (\$)	(6) PROJECTED SALES AT METER (MWH)	(7) EFFECTIVE AT SECONDARY LEVEL (MWH)	(8) BILLING KW LOAD FACTOR (%)	(9) PROJECTED BILLED KW AT METER (kw)	(10) CAPACITY RECOVERY FACTOR (\$/kw)	(11) CAPACITY RECOVERY FACTOR (\$/kwh)
RS	46.99%	56.74%	6,450,182	23,365,607	29,815,789	8,863,147	8,863,147				0.00336
GS, TS	5.64%	5.71%	774,186	2,351,385	3,125,571	1,064,630	1,064,630				0.00294
GSD, SBF Secondary Primary Transmission						6,025,287 1,275,989 9,172	6,025,287 1,263,229 8,989			1.07 1.06 1.05	
GSD, SBF - Standard	38.62%	32.32%	5,301,255	13,309,418	18,610,673	7,310,448	7,297,505	57.63%	17,347,485		
GSD - Optional Secondary Primary	2.06%	1.73%	282,770	712,416	995,186	380,665 9,392	380,665 9,298				0.00255 0.00253
IS, SBI Primary Transmission						302,459 763,909	299,434 748,631			0.87 0.86	
Total IS, SBI	5.46%	3.47%	749,478	1,428,951	2,178,429	1,066,368	1,048,065	58.29%	2,462,951		
LS1	1.23%	0.03%	168,839	12,354	181,193	231,963	231,963				0.00078
TOTAL	100.00%	100.00%	13,726,710	41,180,131	54,906,841	18,926,613	18,895,273			<u> </u>	0.00291

(1) Obtained from page 1.

(2) Obtained from page 1.

(3) Total capacity costs * .25 * Col (1).

(4) Total capacity costs * .75 * Col (2).

(5) Col (3) + Col (4).

17

(6) Projected kWh sales for the period January 2011 through December 2011.

(7) Projected kWh sales at secondary for the period January 2011 through December 2011.

(8) Col 7 / (Col 9 * 730)*1000

(9) Projected kw demand for the period January 2011 through December 2011.

(10) Total Col (5) / Total Col (9).

(11) {Col (5) / Total Col (7)} / 1000.

TAMPA ELECTRIC COMPANY CAPACITY COSTS ESTIMATED FOR THE PERIOD: JANUARY 2011 THROUGH DECEMBER 2011

TERM CONTRACT START END CONTRACT TYPE MCKAY BAY REFUSE QF 8/26/1982 7/31/2011 ORANGE COGEN LP 4/17/1989 12/31/2015 QF HARDEE POWER PARTNERS 12/31/2012 1/1/1993 LT SEMINOLE ELECTRIC 6/1/1992 12/31/2012 LT CALPINE LT 5/1/2006 4/30/2011 RELIANT 1/1/2009 5/31/2012 LT PASCO COGEN 1/1/2009 12/31/2018 LT

QF = QUALIFYING FACILITY

LT = LONG TERM

ST = SHORT TERM

CONTRACT	JANUARY	FEBRUARY	MARCH	APRIL	MAY	JUNE	JULY	AUGUST	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER
YEAR 2011	MW	MW	<u>ww</u>	MW	MW	MW	MW	MW	MW	MW	MW	MW
MCKAY BAY REFUSE	19.0	19.0	19.0	19.0	19.0	19.0	19.0	19.0	0.0	0.0	0.0	0.0
ORANGE COGEN LP	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0
HARDEE POWER PARTNERS	370.0	370.0	370.0	370.0	370.0	370.0	370.0	370.0	370.0	370.0	370.0	370.0
CALPINE	170.0	170.0	170.0	170.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
RELIANT	158.0	158.0	158.0	158.0	158.0	158.0	158.0	158.0	158.0	158.0	158.0	158.0
PASCO COGEN	121.0	121.0	121.0	121.0	121.0	121.0	121.0	121.0	121.0	121.0	121.0	121.0
SEMINOLE ELECTRIC	4.6	4.6	5.0	6.0	4.2	4.6	5.0	5.8	4.7	4.6	3.9	3.9

CAPACITY YEAR 2011	JANUARY (\$)	FEBRUARY (\$)	MARCH (\$)	APRIL (\$)	MAY (\$)	JUNE (\$)	JULY (\$)	AUGUST (\$)	SEPTEMBER (\$)	OCTOBER (\$)	NOVEMBER (\$)	DECEMBER (\$)	TOTAL (\$)
MCKAY BAY REFUSE	322,460	322,460	322,460	322,460	322,460	322,460	322,460	322,460	0	G	0	0	2,579,680
ORANGE COGEN LP	986,010	986,010	986,010	986,010	986,010	986,010	986,010	986,010	986,010	986,010	986,010	986,010	11,832,120
TOTAL COGENERATION	1,308,470	1,308,470	1,308,470	1,308,470	1,308,470	1,308,470	1,308,470	1,308,470	986,010	986,010	986,010	986,010	14,411,800

HARDEE POWER PARTNERS CALPINE - D RELIANT ENERGY SERVICES PASCO COGEN - D SUBTOTAL CAPACITY PURC

TOTAL CAPACITY	\$5,306,900	\$5,306,900	\$5,306,900	\$5,306,890	\$4,689,800	\$4,689,790	\$4,689,800	\$4,689,800	\$4,367,340	\$4,367,340	\$4,367,330	\$4,367,340	\$57,456,130	
TOTAL PURCHASES AND (SALES)	3,998,430	3,998,430	3,998,430	3,998,420	3,381,330	3,381,320	3,381,330	3,381,330	3,381,330	3,381,330	3,381,320	3,381,330	43,044,330	
SEMINOLE ELECTRIC - D VARIOUS MARKET BASED SUBTOTAL CAPACITY SALES														
PASCO COGEN - D SUBTOTAL CAPACITY PURCHASES														
CALPINE - D RELIANT ENERGY SERVICES - D														

SCHEDULE E12

.

Docket No. 100001-EI FAC 2011 Projection Filing Exhibit No. ____ (CA-3) Document No. 2

EXHIBIT TO THE TESTIMONY OF

.

CARLOS ALDAZABAL

DOCUMENT NO. 2

PROJECTED FUEL AND PURCHASED POWER COST RECOVERY JANUARY 2011 - DECEMBER 2011

SCHEDULES E1 THROUGH E10 SCHEDULE H1

Docket No. 100001-EI FAC 2011 Projection Filing Exhibit No. ____ (CA-3) Document No. 2 Page 1 of 31

TAMPA ELECTRIC COMPANY

TABLE OF CONTENTS

PAGE NO.	DESCRIPTION	REDIOD
<u>- NO.</u>		PERIOD
2	Schedule E1 Cost Recovery Clause Calculation	(JAN. 2011 - DEC. 2011)
3	Schedule E1-A Calculation of Total True-Up	(")
4	Schedule E1-C GPIF & True-Up Adj. Factors	ì " í
5	Schedule E1-D Fuel Adjustment Factor for TOD	(")
6	Schedule E1-E Fuel Recovery Factor-with Line Losses	(°°)
7	Schedule E2 Cost Recovery Clause Calculation (By Month)	(")
8-9	Schedule E3 Generating System Comparative Data	(")
10-21	Schedule E4 System Net Generation & Fuel Cost	(")
22-23	Schedule E5 Inventory Analysis	(")
24-25	Schedule E6 Power Sold	(")
26-27	Schedule E7 Purchased Power	(")
28	Schedule E8 Energy Payment to Qualifying Facilities	(")
29	Schedule E9 Economy Energy Purchases	(")
30	Schedule E10 Residential Bill Comparison	(")
31	Schedule H1 Generating System Comparative Data	(JAN DEC. 2008-2011)

TAMPA ELECTRIC COMPANY FUEL AND PURCHASED POWER COST RECOVERY CLAUSE CALCULATION ESTIMATED FOR THE PERIOD: JANUARY 2011 THROUGH DECEMBER 2011

SCHEDULE E1

		DOLLARS	MWH	CENTS/KWH
1.	Fuel Cost of System Net Generation (E3)	809,526,621	18,989,720	4.26297
2.	Nuclear Fuel Disposal Cost	0	0	0.00000
3.	Coal Car Investment	0	0	0.00000
4 a .	Adjustments to Fuel Cost (Wauchula Wheeling)	(72,000)	18,989,720 (1)	(0.00038)
5.	TOTAL COST OF GENERATED POWER (LINES 1 THROUGH 4a)	809,454,621	18,989,720	4.26259
6.	Fuel Cost of Purchased Power - System (Exclusive of Economy)(E7)	25,521,760	395,670	6.45026
7.	Energy Cost of Economy Purchases (E9)	13,530,260	291,570	4.64048
8.	Demand and Non-Fuel Cost of Purchased Power	0	0	0.00000
9.	Energy Payments to Qualifying Facilities (E8)	30,022,870	571,920	5.24949
10.	TOTAL COST OF PURCHASED POWER (LINES 6 THROUGH 9)	69,074,890	1,259,160	5.48579
11.	TOTAL AVAILABLE KWH (LINE 5 + LINE 10)		20,248,880	
12.	Fuel Cost of Schedule D Sales - Jurisd. (E6)	620,420	13,720	4.52201
	Fuel Cost of Market Based Sales - Jurisd. (E6)	7,707,893	162,000	4.75796
14.	Gains on Sales	771,637	NA	NA
15.	TOTAL FUEL COST AND GAINS OF POWER SALES	9,099,950	175,720	5.17866
16.	Net Inadvertant Interchange		0	
17.	Wheeling Received Less Wheeling Delivered		0	
18.	Interchange and Wheeling Losses		2,865	
19.	TOTAL FUEL AND NET POWER TRANSACTIONS (LINE 5+10-15+16+17-18)	869,429,561	20,070,295	4.33192
20.	Net Unbilled	NA (1)(a)	NA ^(a)	NA
21.	Company Use	1,559,491 ⁽¹⁾	36,000	0.00817
22.	T & D Losses	40,939,165 ⁽¹⁾	945,058	0.21446
23	System MWH Sales	869,429,561	19.089,236	4,55455
	Wholesale MWH Sales	(7,316,440)	(162,623)	4.49901
	Jurisdictional MWH Sales	862,113,121	18,926,613	4.55503
26.	Jurisdictional Loss Multiplier			1.00098
27.	Jurisdictional MWH Sales Adjusted for Line Loss	862,959,690	18,926,613	4.55950
	True-up ⁽²⁾	(67,087,873)	18,926,613	(0.35446)
	Total Jurisdictional Fuel Cost (Excl. GPIF and Incl. WCT)	795,871,817	18,926,613	4.20504
30.	Revenue Tax Factor			1.00072
31.	Fuel Factor (Excl. GPIF) Adjusted for Taxes	796,444,844	18,926,613	4.20807
32.	GPIF Adjusted for Taxes (2)	1,830,855	18,926,613	0.00967
33.	Fuel Factor Adjusted for Taxes Including GPIF	798,275,699	18,926,613	4.21774
34.	Fuel Factor Rounded to Nearest .001 cents per KWH			4.218

34. Fuel Factor Rounded to Nearest .001 cents per KWH

^(a) Data not available at this time.

(1) Included For Informational Purposes Only

(2) Calculation Based on Jurisdictional KWH Sales

	TAMPA ELECTRIC COMPANY CALCULATION OF PROJECTED PERIOD TOTAL TRUE-UP FOR THE PERIOD: JANUARY 2011 THROUGH DECEMBER 2011	SCHEDULE E1-A
1.	ESTIMATED OVER/(UNDER) RECOVERY (SCH. E1-B) January 2010 - December 2010 (6 months actual, 6 months estimated)	\$52,979,582
2.	FINAL TRUE-UP (January 2009 - December 2009) (Per True-Up filed March 12, 2010)	14,108,291
3.	TOTAL OVER/(UNDER) RECOVERY (Line 1 + Line 2) To be included in the 12-month projected period January 2011 through December 2011 (Schedule E1, line 28)	\$67,087,873
4.	JURISDICTIONAL MWH SALES (Projected January 2011 through December 2011)	18,926,613
5.	TRUE-UP FACTOR - cents/kWh (Line 3 / Line 4 * 100 cents / 1,000 kWh)	(0.3545)

TAMPA ELECTRIC COMPANY SCHEDULE E1-C INCENTIVE FACTOR AND TRUE-UP FACTOR FOR THE PERIOD: JANUARY 2011 THROUGH DECEMBER 2011

.

1.	TO	TAL AMOUNT OF ADJUSTMENTS		
	A.	GENERATING PERFORMANCE INCENTIVE REWARD / (PENALTY) (January 2011 through December 2011)	\$1,830,855	
	₿.	TRUE-UP OVER / (UNDER) RECOVERED (January 2010 through December 2010)	\$67,087,873	
2.	то	TAL SALES (January 2011 through December 2011)	18,926,613	MWh
3.	AD.	JUSTMENT FACTORS		
	Α.	GENERATING PERFORMANCE INCENTIVE FACTOR	0.0097	Cents/kWh
	В.	TRUE-UP FACTOR	(0.3545)	Cents/kWh

DETERMINATION OF FUEL RECOVERY FACTOR TIME OF USE RATE SCHEDULES TAMPA ELECTRIC COMPANY ESTIMATED FOR THE PERIOD: JANUARY 2011 THROUGH DECEMBER 2011

SCHEDULE E1-D

				NET ENERGY FOR LOAD (%)	FUEL COST (%)
			ON PEAK OFF PEAK	28.05 71.95 100.00	\$38.82 <u>\$32.19</u> 1.2060
1 2 2a 3	Total Fuel & Net Power Trans (Jurisd) MWH Sales (Jurisd) Effective MWH Sales (Jurisd) Cost Per KWH Sold	(Sch E1 line 25) (Sch E1 line 25) (line 1 / line 2)	TOTAL \$862,113,121 18,926,613 18,895,273 4.5550	ON PEAK	OFF PEAK
4 5 6 7	Jurisdictional Loss Factor Jurisdictional Fuel Factor True-Up TOTAL	(Sch E1 line 28) (line 1 x line 4)+line 6	1.00098 na (\$67,087,873) \$705 871 817		
8 9 10 11 12	Revenue Tax Factor Recovery Factor GPIF Factor Recovery Factor Including GPIF Recovery Factor Rounded to	(line 7 x line 4)+line 8 (line 7 x line 8) / line 2a / 10 (Sch E1-C line 3a) (line 9 + line 10)	\$795,871,817 1.00072 4.2150 0.0097 4.2247 4.225	4.8165 4.817	3.9939 3.994
13 14	the Nearest .001 cents/KWH Hours: ON PEAK OFF PEAK			25.19% % 74.81% %	

25.19%	%
74.81%	%
100.00%	

	Jurisdictional Sales (MWH)						
Metering Voltage:	Meter	Secondary					
Distribution Secondary	16,565,692	16,565,692					
Distribution Primary	1,587,840	1,571,962					
Transmission	773,081	757,619					
Total	18,926,613	18,895,273					

PAGE 5 OF 31

SCHEDULE E1-E

TAMPA ELECTRIC COMPANY FUEL COST RECOVERY FACTORS ESTIMATED FOR THE PERIOD: JANUARY 2011 THROUGH DECEMBER 2011

METERING VOLTAGE	LEVELIZED FUEL RECOVERY FACTOR cents/kWh	FIRST TIER (Up to 1000 kWh) cents/kWh	SECOND TIER (OVER 1000 kWh) cents/kWh
STANDARD			
Distribution Secondary (RS only)		3.875	4.875
Distribution Secondary	4.225		
Distribution Primary	4.183		
Transmission	4.141		
Lighting Service ⁽¹⁾	4.134		
TIME-OF-USE			
Distribution Secondary - On-Peak Distribution Secondary - Off-Peak	4.817 3.994		
Distribution Primary - On-Peak Distribution Primary - Off-Peak	4.769 3.954		
Transmission - On-Peak Transmission - Off-Peak	4.721 3.914		

(1) Lighting service is based on distribution secondary, 17% on-peak and 83% off-peak

		(a)	(5)	(c)	(d)	(6)	(f) ESTIMATI	(g) ED	(h)	(i)	(1)	(k)	(1)	(m) TOTAL
_		Jan-11	Feb-11	Mar-11	Apr-11	May-11	Jun-11	Jul-11	Aug-11	Sep-11	Oct-11	Nov-11	Dec-11	PERIOD
1.	Fuel Cost of System Net Generation	57,908,232	53,397,612	57,165,461	57,245,790	69,622,965	76,737,390	81,836,606	84,309,941	77,845,877	71,742,781	60,315,232	61,398,733	809,526,621
2.	Nuclear Fuel Disposal	Û	٥	0	o	o	o	o	0	0	0	0	0	o
3.	Fuel Cost of Power Sold (1)	680,310	454,020	580,730	407,670	566,250	777,210	1,101,130	1,129,890	983,560	984,180	601,590	833,410	9,099,950
4.	Fuel Cost of Purchased Power	90,990	148,400	562,900	1,938,700	4,313,020	3,767,290	3,025,400	3,134,420	3,197,390	1,738,550	1,299,210	2,305,490	25,521,760
5.	Demand and Non-Fuel Cosl of Purchased Power	0	0	0	0	o	0	0	D	0	0	0	0	0
6.	Payments to Qualifying Facilities	2,508,910	2,181,240	2,466,530	2,592,030	3,139,560	2,810,410	2,852,930	2,438,450	2,338,620	2,237,610	2,185.010	2,271,570	30,022,870
7.	Energy Cost of Economy Purchases	542,330	213,290	557,610	1,320,530	2,927,600	821,450	556,390	634,430	2,134,630	1,542,740	256,810	2,022,450	13,530,260
8a.	Adj. to Fuel Cost (Wauchula Wheeling)	(6,000)	(6,000)	(6,000)	(6,000)	(6,000)	(6,000)	(6,000)	(6,000)	(6,000)	(6,000)	(6,000)	(6,000)	(72,000)
9.	TOTAL FUEL & NET POWER TRANSACTIONS	60,364,152	55,480,522	60,165,771	62,663,380	79,430,895	83,353,330	87,164,196	89,381,351	84,526,957	76,271,501	63,448,672	67,158,833	869,429,561
10.	Jurisdictional MWH Sold	1,483,475	1,354,779	1,322,134	1,376,953	1,517,691	1,762,146	1,841,191	1,842,518	1,877,687	1,679,981	1,441,389	1,426,669	18,926,613
11.	Jurisdictional % of Total Sales	0.9933091	0.9780148	0.9917797	0.9906489	0.9908908	0.9927556	0.9926640	0.9922011	0.9938509	0.9951954	0.9910567	0.9923774	
12.	Jurisdictional Total Fuel & Net Power Transactions (Line 9 * Line 11)	59,960,262	54,260,771	59,671,191	62,097,222	78,707,343	82,749,485	86,542,193	88,684,275	84,007,192	75,905,047	62,881,232	66,646,908	862,113,121
13.	Jurisdictional Loss Multiplier	1.00098	1.00098	1.00098	1.00098	1.00098	1.00098	1.00098	1.00098	1.00098	1.00098	1.00098	1.00098	
14.	JURISD. TOTAL FUEL & NET PWR. TRANS. Adjusted for Line Losses (Line 12 * Line 13)	60,019,141	54,314,053	59,729,786	62,158,200	78,784,631	82,830,742	86,627,175	88,771,360	84,089,684	75,979,583	62,942,979	66,712,353	862,959,687
15.	Cost Per kWh Sold (Cents/kWh)	4.0458	4.0091	4.5177	4.5142	5.1911	4.7006	4.7050	4.8179	4.4784	4,5226	4.3668	4.6761	4.5595
16.	True-up (Cents/kWh) ⁽²⁾	-0.3545	-0.3545	-0.3545	-0.3545	-0.3545	-0.3545	-0.3545	-0.3545	-0.3545	-0.3545	-0.3545	-0.3545	-0.3545
17.	Total (Cents/kWh) (Line 15+16)	3.6913	3.6546	4.1632	4.1597	4.8366	4.3461	4.3505	4.4634	4.1239	4.1681	4.0123	4.3216	4.2050
18.	Revenue Tax Factor	1.00072	1.00072	1.00072	1.00072	1.00072	1.00072	1.00072	1.00072	1.00072	1.00072	1.00072	1.00072	1.00072
19.	Recovery Factor Adjusted for Taxes (Cents/kWh) (Excluding GPIF)	3.6940	3.6572	4.1662	4.1627	4.8401	4.3492	4.3536	4.4666	4.1269	4.1711	4.0152	4.3247	4.2080
20.	GPIF Adjusted for Taxes (Cents/kWtı) (2)	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097	0.0097
21.	TOTAL RECOVERY FACTOR (LINE 19+20)	3.7037	3.6669	4.1759	4.1724	4.8498	4.3589	4.3633	4.4763	4.1366	4.1808	4.0249	4.3344	4.2177
22.	RECOVERY FACTOR ROUNDED TO NEAREST 0.001 CENTS/KWH	3.704	3.667	4.176	4.172	4.850	4.359	4.363	4.476	4.137	4.181	4.025	4.334	4.218

TAMPA ELECTRIC COMPANY FUEL AND PURCHASED POWER COST RECOVERY CLAUSE CALCULATION ESTIMATED FOR THE PERIOD: JANUARY 2011 THROUGH DECEMBER 2011

(1) Includes Gains

26

(2) Based on Jurisdictional Sales Only

SCHEDULE E2

SCHEDULE E3

TAMPA ELECTRIC COMPANY GENERATING SYSTEM COMPARATIVE DATA BY FUEL TYPE ESTIMATED FOR THE PERIOD: JANUARY 2011 THROUGH JUNE 2011

	Jan-11	Feb-11	Mar-11	Apr-11	May-11	Jun-11
FUEL COST OF SYSTEM NET GENER	RATION (S)					
1. HEAVY OIL	ΰo	0	0	0	0	0
2. LIGHT OIL	719,708	281,010	717,065	787,819	970,490	960,945
3. COAL 4. NATURAL GAS	36,159,451	26,386,406	32,115,581	35,026,597	37,974,298	37,610,989
4. NATURAL GAS 5. NUCLEAR	21,029,073 0	26,730,196 0	24,332,815 0	21,431,374	30,678,177	38,165,456
6. OTHER	0	0	0	0 0	0	0
7. TOTAL (\$)	57,908,232	53,397,612	57,165,461	57,245,790	69,622,965	76,737,390
OVOTEM NET OFNEDATION (ARM)						
SYSTEM NET GENERATION (MWH) 8. HEAVY OIL	0	0	0	0	<u>,</u>	
9. LIGHT OIL	4,060	1,580	4,000	4,340	0 5,310	0 5,220
10. COAL	1,066,300	758,990	912,240	995,940	1,077,060	1.058.270
11. NATURAL GAS	393,750	546,720	487,000	382,390	524,600	716,060
12. NUCLEAR	0	0	0	0	0	0
13. OTHER 14. TOTAL (MWH)	0 1,464,110	0 1,307,290	0 1,403,240	1 292 670	1 606 070	4 770 550
	1,404,110	1,307,290	1,403,240	1,382,670	1,606,970	1,779,550
UNITS OF FUEL BURNED						
15. HEAVY OIL (BBL)	0	0	0	0	0	0
16. LIGHT OIL (BBL)	10,970	8,220	13,500	12,380	13,270	14,000
17. COAL (TON) 18. NATURAL GAS (MCF)	471,700 2,873,390	339,580 3,908,270	401,630 3,494,140	439,870	475,830	467,410
19. NUCLEAR (MMBTU)	2,073,390	3,500,270	3,494,140	2,867,860 0	4,060,030 0	5,444,730 0
20. OTHER	õ	ŏ	Ő	Ö	õ	0
BTUS BURNED (MMBTU)	0	-			_	
21. HEAVY OIL 22. LIGHT OIL	0 42,960	0 16,720	0	0	0	0
23. COAL	42,900	7,956,080	42,140 9,537,640	45,970 10,417,820	56,340 11,256,620	55,330 11,052,820
24. NATURAL GAS	2,953,840	4,017,740	3,591,930	2,948,190	4,173,710	5,597,190
25. NUCLEAR	0	0	0	0	0	0
26. OTHER	0	0	0	0	0	0
27. TOTAL (MMBTU)	14,157,770	11,990,540	13,171,710	13,411,980	15,486,670	16,705,340
GENERATION MIX (% MWH)						
28. HEAVY OIL	0.00	0.00	0.00	0.00	0.00	0.00
29. LIGHT OIL	0.28	0.12	0.29	0.31	0.33	0.29
30. COAL	72.83	58.06	65.00	72.03	67.02	59.47
31. NATURAL GAS	26.89	41.82	34.71	27.66	32.65	40.24
32. NUCLEAR 33. OTHER	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
34. TOTAL (%)	100.00	100.00	100.00	100.00	100.00	100.00
FUEL COST PER UNIT						
35. HEAVY OIL (\$/BBL)	0.00	0.00	0.00	0.00	0.00	0.00
36. LIGHT OIL (\$/BBL) 37. COAL (\$/TON)	65.61 76.66	34.19 77.70	53.12 79.96	63.64 79.63	73.13 79.81	68.64 80.47
38. NATURAL GAS (\$/MCF)	7.32	6.84	6.96	7.47	7.56	7.01
39. NUCLEAR (\$/MMBTU)	0.00	0.00	0.00	0.00	0.00	0.00
40. OTHER	0.00	0.00	0.00	0.00	0.00	0.00
FUEL COST PER MMBTU (\$/MMBTU) 41. HEAVY OIL	0.00	0.00	0.00	0.00	0.00	0.00
42. LIGHT OIL	16.75	16.81	17.02	17.14	17.23	17.37
43. COAL	3.24	3.32	3.37	3.36	3.37	3.40
44. NATURAL GAS	7.12	6.65	6.77	7.27	7.35	6.82
45. NUCLEAR	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00
47. TOTAL (\$/MMBTU)	4.09	4.45	4.34	4.27	4.50	4.59
BTU BURNED PER KWH (BTU/KWH)						
48. HEAVY OIL	0	0	0	0	0	0
49. LIGHT OIL	10.581	10,582	10,535	10,592	10,610	10,600
50. COAL 51. NATURAL GAS	10,467 7,502	10,482 7,349	10,455	10,460	10,451	10,444
52. NUCLEAR	7,502	7,349	7,376 0	7,710 0	7,956 0	7,817 0
53. OTHER	ō	ō	ŏ	ŏ	õ	ŏ
54. TOTAL (BTU/KWH)	9,670	9,172	9,387	9,700	9,637	9,387
GENERATED EUEL COST DED 2011						
GENERATED FUEL COST PER KWH (55. HEAVY OIL	CENTS/KWH) 0.00	0.00	0.00	0.00	0.00	0.00
56. LIGHT OIL	17.73	17.79	17.93	18.15	18.28	18.41
57. COAL	3.39	3.48	3.52	3.52	3.53	3.55
58. NATURAL GAS	5.34	4.89	5.00	5.60	5.85	5.33
59. NUCLEAR	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00
61. TOTAL (CENTS/KWH)	3.96	4.08	4.07	4.14	4.33	4.31

SCHEDULE E3

TAMPA ELECTRIC COMPANY GENERATING SYSTEM COMPARATIVE DATA BY FUEL TYPE ESTIMATED FOR THE PERIOD: JULY 2011 THROUGH DECEMBER 2011

		Jui-11	Aug-11	Sep-11	Oct-11	Nov-11	Dec-11	TOTAL
EUE	L COST OF SYSTEM NET G				00011		000-11	TOTAL
1.	HEAVY OIL		0	0	0	0	0	0
2.	LIGHT OIL	951,813	942,418	917,741	737.872	803,043	811,467	9,601,392
3.	COAL	38,887,681	38,975,363	30,816,760	27,517,245	28,678,916	34,490,643	404,639,930
4.	NATURAL GAS	41, 9 97,112	44,392,160	46,111,376	43,487,664	30,833,273	26,096,623	395,285,299
5.	NUCLEAR	0	0	0	0	0	0	0
6. 7.	OTHER TOTAL (\$)	0 81,836,606	0 84,309,941	0 77,845,877	71,742,781	0 60,315,232	0 61,398,733	0 809,526,621
			04,000,041	11,040,017	11,142,101	00,313,232	01,330,733	009,328,821
SYS 8.	TEM NET GENERATION (MV HEAVY OIL	VH) 0	0	0				-
о. 9.		5,150	5,070	0 4,920	0 3,940	0	0	0
10.	COAL	1,093,810	1,095,140	855,240	764,800	4,230 792,090	4,220 961,870	52,040 11,431,750
11.	NATURAL GAS	809,220	858,060	909,680	860,890	573,680	443,880	7,505,930
12.	NUCLEAR	0	0	0	0	0	0	0
13. 14,	OTHER TOTAL (MWH)	0 1,908,180	0	<u> </u>	0	0	0	0
		1,500,100	1,300,270	1,703,040	1,629,630	1,370,000	1,409,970	18,989,720
UNIT 15.	S OF FUEL BURNED HEAVY OIL (BBL)	0	0	0	0	0	0	0
16.	LIGHT OIL (BBL)	12,960	12,810	12,510	9,820	13,950	13,080	0 147,470
17.	COAL (TON)	483,050	483,600	379,570	340,700	349,630	423,240	5,055,810
18.	NATURAL GAS (MCF)	6,058,700	6,436,730	6,797,020	6,349,770	4,237,300	3,276,400	55,804,340
19.	NUCLEAR (MMBTU)	0	0	0	0	0	0	0
20.	OTHER	0	0	0	0	0	0	0
	S BURNED (MMBTU)							
21.	HEAVY OIL	0	0	0	0	0	0	0
22.		54,480	53,600	51,880	41,440	44,750	44,890	550,500
23. 24.	COAL NATURAL GAS	11,423,090 6,228,300	11,436,020	8,947,600 6,987,370	8,011,530	8,289,700	10,048,830	119,538,720
25.	NUCLEAR	0,220,300	6,616,940 0	0,967,370	6,527,640 0	4,355,980 0	3,368,100 0	57,366,930 0
26.	OTHER	0	õ	Ŏ	, õ	ő	ő	Ő
27.	TOTAL (MMBTU)	17,705,870	18,106,560	15,986,850	14,580,610	12,690,430	13,461,820	177,456,150
GEN	ERATION MIX (% MWH)							
28.	HEAVY OIL	0.00	0.00	0.00	0.00	0.00	0.00	0.00
29.	LIGHT OIL	0.27	0.26	0.28	0.24	0.31	0.30	0.27
30.	COAL	57.32	55.92	48.32	46.93	57.82	68.22	60.20
31. 32.	NATURAL GAS NUCLEAR	42.41 0.00	43.82 0.00	51.40 0.00	52.83 0.00	41.87 0.00	31.48 0.00	39.53 0.00
33.	OTHER	0.00	0.00	0.00	0.00	0.00	0.00	0.00
34.	TOTAL (%)	100.00	100.00	100.00	100.00	100.00	100.00	100.00
FUE	COST PER UNIT							
35.	HEAVY OIL (\$/BBL)	0.00	0.00	0.00	0.00	0.00	0.00	0.00
36.	LIGHT OIL (\$/BBL)	73.44	73.57	73.36	75.14	57.57	62.04	65.11
37.	COAL (\$/TON)	80.50	80.59	81.19	80.77	82.03	81.49	80.03
38. 39.	NATURAL GAS (\$/MCF) NUCLEAR (\$/MMBTU)	6.93 0.00	6.90 0.00	6.78 0.00	6.85	7.28	7.97	7.08
40.	OTHER	0.00	0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
			0.00	0.00	0.00	0.00	0.00	0.00
FUEL 41.	. COST PER MMBTU (\$/MME HEAVY OIL	BTU) 0.00	0.00	0.00	0.00	0.00	0.00	0.00
42.		17.47	17.58	17.69	17.81	17.95	18.08	17.44
43.	COAL	3.40	3.41	3.44	3.43	3.46	3.43	3.39
44.	NATURAL GAS	6.74	6.71	6.60	6.66	7.08	7.75	6.89
45.	NUCLEAR	0.00	0.00	0.00	0.00	0.00	0.00	0.00
46. 47.	OTHER	<u>0.00</u> 4.62	0.00	0.00	0.00	0.00	0.00	0.00
	TOTAL (\$/MMBTU)	4.02	4.66	4.87	4.92	4.75	4.56	4.56
	BURNED PER KWH (BTU/K)		_		-	-		_
48. 49.	HEAVY OIL LIGHT OIL	0 10,579	0 10,572	0 10,545	0 10,518	0	0	0
50.	COAL	10,443	10,443	10,345	10,475	10,579 10,466	10,637 10,447	10,578 10,457
51.	NATURAL GAS	7,697	7,712	7,681	7,582	7,593	7,588	7,643
52.	NUCLEAR	0	0	0	0	0	0	0
53. 54.	OTHER TOTAL (BTU/KWH)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 246	0 022	0	0	0	0
		9,279	9,246	9,033	8,947	9,263	9,548	9,345
	ERATED FUEL COST PER K	· /	0.00	0.00				
55. 56.	HEAVY OIL LIGHT OIL	0.00 18.48	0.00 18.59	0.00 18.65	0.00 18.73	0.00 18.98	0.00 19.23	0.00 18.45
57.	COAL	3.56	3.56	3.60	3.60	3.62	3.59	18.45
58.	NATURAL GAS	5.19	5.17	5.07	5.05	5.37	5.88	5.27
59.	NUCLEAR	0.00	0.00	0.00	0.00	0.00	0.00	0.00
60.	OTHER	0.00	0.00	0.00	0.00	0.00	0.00	0.00
61.	TOTAL (CENTS/KWH)	4.29	4.31	4.40	4.40	4.40	4.35	4.26

TAMPA ELECTRIC COMPANY SYSTEM NET GENERATION AND FUEL COST ESTIMATED FOR THE PERIOD: JANUARY 2011

(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(L)	(K)	(L)	(M)	(N)
PLANT/UNIT	NET CAPA- BILITY	NET GENERATION	NET CAPACITY FACTOR	EQUIV. AVAIL. FACTOR	NET OUTPUT FACTOR	AVG. NET HEAT RATE	FUEL TYPE	FUEL BURNED	FUEL HEAT VALUE	FUEL BURNED	AS BURNED FUEL COST	FUEL COST PER KWH	COST OF FUEL
	<u>(MW)</u>	(MWH)	(%)	(%)	(%)	(BTU/KWH)		(UNITS)	(BTU/UNIT)	(MM BTU)	(\$)	(cents/KWH)	(\$/UNIT)
1. B.B.#1	395	237,580	80.8	85.0	89.4	10,330	COAL	103,510	23,710,946	2,454,320.0	7,629,748	3.21	73.71
2. B.B.#2	395	238,220	81.1	83.4	90.8	10,349	COAL	103,030	23,927,497	2,465,250.0	7,594,367	3.19	73,71
3. B.B.#3	365	207,060	76.2	85.4	84.4	10,585	COAL	95,470	22,957,264	2,191,730.0	7,037,118	3.40	73.71
4. B.B.#4	427	252,150	79.4	88.4	86.7	10,552	COAL	116,250	22,887,656	2,660,690.0	8,615,623	3.42	74.11
B.B. IGNITION		-	-	-	-	-	LGT OIL	3,560	-	-	342,406	-	96.18
5. B.B. COAL	1,582	935,010	79.4	85.6	87.9	10,451			•	9,771,990.0	31,219,262	3.34	-
6. POLK #1 GASIFIER	220	131,290	80.2	-	-	10,579	COAL	53,440	25,991,392	1,388,980.0	4,940,189	3.76	92.44
7. POLK #1 CT OIL	235	4,060	2.3	-		10,581	LGT OIL	7,410	5,797,571	42,960.0	719,708	17.73	97.13
8. POLK #1 TOTAL	220	135,350	82.7	85.9	96.1	10,580		•	: •	1,431,940.0	5,659,897	4.18	-
9. POLK #2 CT GAS	183	0	0.0		-	0	GAS	0	0	0.0	0	0.00	0.00
10. POLK #2 CT OIL	187	0	0.0		-	0	LGT OIL	0	0	0.0	0	0.00	0.00
11. POLK #2 TOTAL	187	0	0.0	0.0	0.0	0		•	-	0.0	0	0.00	•
12. POLK #3 CT GAS	183	0	0.0	-	-	0	GAS	0	0	0.0	0	0.00	0.00
13. POLK #3 CT OIL	187	0	0.0	-		0	LGT OIL	0	0	0.0	0	0.00	0.00
14. POLK #3 TOTAL	187	0	0.0	0.0	0.0	0		•		0.0	0	0.00	-
15. POLK #4 CT GAS	183	0	0.0	0.0	0.0	0	GAS	0	0	0.0	0	0.00	0.00
16. POLK #5 CT GAS	183	0	0.0	0.0	0.0	0	GAS	0	0	0.0	C	0.00	0.00
17. CITY OF TAMPA GAS	6	0	0.0	0.0	0.0	0	GAS	0	0	0.0	0	0.00	0.00
18. BAYSIDE #1	792	310,110	52.6	96.7	71.5	7,472	GAS	2,253,970	1,028,004	2,317,090.0	16,495,811	5.32	7.32
19. BAYSIDE #2	1,047	80,310	10.3	97.3	80.1	7,429	GAS	580,360	1,027,983	596,600.0	4,247,399	5.29	7.32
20. BAYSIDE #3	61	630	1.4	98.6	86.1	11,810	GAS	7,240	1,027,624	7,440.0	52,986	8.41	7.32
21. BAYSIDE #4	61	100	0.2	98.6	82.0	12,500	GAS	1,220	1,024,590	1,250.0	8,929	8.93	7.32
22. BAYSIDE #5	61	1,710	3.8	98.6	71.9	11,947	GAS	19,870	1,028,183	20,430.0	145,420	8.50	7.32
23. BAYSIDE #6	61	890	2.0	98.6	63.4	12,393	GAS	10,730	1,027,959	11,030.0	<u>78,52</u> 8	8.82	7.32
24. BAYSIDE TOTAL	2,083	393,750	25.4	97.2	73.1	7,502	GAS	2,873,390	1,027,998	2,953,840.0	21,029,073	5.34	7.32
25. B.B.C.T.#4 OIL	61	0	0.0	-	-	0	LGT OIL	0	0	0.0	0	0.00	0.00
26. B.B.C.T.#4 GAS	61	0	0.0			0	GAS	0	0	0.0	0	0.00	0.00
27. B.B.C.T.#4 TOTAL	61	0	0.0	0.0	0.0	0		-	•	0.0	0	0.00	•
28. SYSTEM	4,692	1,464,110	41.9	76.0	84.0	9,670	-	-	-	14,157,770.0	57,908,232	3.96	

LEGEND:

B.B. = BIG BEND

C.T. = COMBUSTION TURBINE

SCHEDULE E4

.

TAMPA ELECTRIC COMPANY SYSTEM NET GENERATION AND FUEL COST ESTIMATED FOR THE PERIOD: FEBRUARY 2011

(A)	(B)	(C)	(D)	(Ë)	(F)	(G)	(H)	(6)	(J)	(K)	(L)	(M)	(N)
PLANT/UNIT	NET CAPA- BILITY (MW)	NET GENERATION (MWH)	NET CAPACITY FACTOR	EQUIV. AVAIL. FACTOR	NET OUTPUT FACTOR	AVG. NET HEAT RATE	FUEL TYPE	FUEL BURNED		FUEL BURNED	AS BURNED FUEL COST	FUEL COST PER KWH	COST OF FUEL
	(11144)	(MITT)	(%)	(%)	(%)	(BTU/KWH)		(UNITS)	(BTU/UNIT)	(MM BTU)	(\$)	(cents/KWH)	(\$/UNIT)
1. B.B.#1	395	137,900	52.0	54.7	89.3	10,336	COAL	60,110	23,712,194	1,425,340.0	4,494,830	3.26	74.78
2. B.B.#2	395	141,490	53.3	56.6	88.0	10,364	COAL	61,290	23,925,763	1,466,410.0	4,583,067	3.24	74.78
3. B.B.#3	365	192,120	78.3	67.1	86.7	10,572		88,480	22,956,374	2,031,180.0	6,616,246	3.44	74.78
4. B.B.#4	427	236,300	82.4	88.4	90.0	10,548	COAL	108,900	22,888,522	2,492,560.0	8,189,994	3.47	75.21
B.B. IGNITION	<u> </u>		<u> </u>			<u>.</u>	LGT OIL	5,340	-	•	517,913	-	96.99
5. B.B. COAL	1,582	707,810	66.6	67.1	88.5	10,477		-	-	7,415,490.0	24,402,050	3.45	
6. POLK #1 GASIFIER	220	51,180	34.6	-	-	10,563	COAL	20,800	25,989,904	540,590.0	1,984,356	3.88	95.40
POLK #1 CT OIL	235	1,580	1.0	-	-	10,582	LGT OIL	2,880	5,805,556	16,720.0	281.010	17.79	97.57
8. POLK #1 TOTAL	220	52,760	35.7	36.8	96.7	10,563		-	-	557,310.0	2,265,366	4.29	•
9. POLK #2 CT GAS	183	0	0.0	-	-	D	GAS	0	0	0.0	0	0.00	0.00
10. POLK #2 CT OIL	187	0	0.0	-	-	0	LGT OIL	0	0	0.0	(0)	0.00	0.00
11. POLK #2 TOTAL	187	0	0.0	0.0	0.0	0		•	-	0.0	(0)	0.00	
12. POLK #3 CT GAS	183	0	0.0			0	GAS	0	o	0.0	0	0.00	0.00
13. POLK #3 CT OIL	187	0	0.0	-	-	0	LGT OIL	0	0	0.0	0	0.00	0.00
14. POLK #3 TOTAL	187	0	0.0	0.0	0.0	0		-	-	0.0	0	0.00	•
15. POLK #4 CT GAS	183	0	0.0	0.0	0.0	0	GAS	0	Û	0.0	0	0.00	0.00
16. POLK #5 CT GAS	183	0	0.0	0.0	0.0	0	GAS	0	0	0.0	0	0.00	0.00
17. CITY OF TAMPA GAS	6	0	0.0	0.0	0.0	0	GAS	0	0	0.0	0	0.00	0.00
18. BAYSIDE #1	792	364,290	68.4	96.7	81.1	7,322	GAS	2,594,510	1,028,009	2,667,180.0	17,744,874	4.87	6.84
19. BAYSIDE #2	1,047	178,020	25.3	97.3	87.1	7,291	GAS	1,262,510	1,028,008	1,297,870.0	8,634,803	4.85	6.84
20. BAYSIDE #3	61	630	1.5	98.6	86.1	11,873	GAS	7,280	1,027,473	7,480.0	49,791	7.90	6.84
21. BAYSIDE #4	61	260	0.6	98.6	85.2	11,923	GAS	3,000	1,033,333	3,100.0	20,518	7.89	6.84
22. BAYSIDE #5	61	2,540	6.2	98.6	63.1	11, 79 9	GAS	29,160	1,027,778	29,970.0	199,437	7.85	6.84
23. BAYSIDE #6	61	980	2.4	98.6	57.4	12,388	GAS	11,810	1,027,942	12,140.0	80,773	8.24	6.84
24. BAYSIDE TOTAL	2,083	546,720	39.1	97.2	82.8	7,349	GAS	3,908,270	1,028,010	4,017,740.0	26,730,196	4.89	6.84
25. B.B.C.T.#4 OIL	61	0	0.0	•		0	LGT OIL	0	0	0.0	0	0.00	0.00
26. B.B.C.T.#4 GAS	61	0_	0.0		-	0	GAS	0	0	0.0	0	0.00	0.00
27. B.B.C.T.#4 TOTAL	61	0	0.0	0.0	0.0	0		•	•	0.0	0	0.00	-
28. SYSTEM	4,692	1,307,290	41.5	67.5	86.3	9,172			-	11,990,540.0	53,397,612	4.08	

LEGEND:

30

B.B. = BIG SEND

C.T. = COMBUSTION TURBINE

TAMPA ELECTRIC COMPANY SYSTEM NET GENERATION AND FUEL COST ESTIMATED FOR THE PERIOD: MARCH 2011

(A)	(8)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)	(K)	(L)	(M)	(N)
PLANT/UNIT	NET CAPA- BILITY	NET GENERATION	NET CAPACITY FACTOR	EQUIV. AVAIL. FACTOR	NET OUTPUT FACTOR	AVG. NET HEAT RATE	FUEL TYPE	FUEL. BURNED	FUEL HEAT VALUE	FUEL BURNED	AS BURNED FUEL COST	FUEL COST PER KWH	COST OF FUEL
	(MW)	(MWH)	(%)	(%)	(%)	(BTU/KWH)		(UNITS)	(BTU/UNIT)	(MM BTU)	(\$)	(cents/KWH)	(\$/UNIT)
1. B.B.#1	395	205,850	70.0	74.1	88.9	10,340	COAL	89,760	23,713,124	2,128,490.0	6,803,254	3.30	75.79
2. B.B.#2	395	229,700	78.2	80.7	90.4	10,352	COAL	99,380	23,925,740	2,377,740.0	7,532,391	3.28	75.79
3. B.B.#3	365	172,030	63.3	74.4	87.0	10,571	COAL	79,220	22,955,188	1,818,510.0	6,004,387	3.49	75.79
4. B.B.#4	427	175,270	55.2	59.9	88.8	10,557	COAL	80,830	22,890,511	1,850,240.0	6,223,222	3.55	76.99
B.B. IGNITION	-		_	-	-		LGT OIL	6,230	-	<u> </u>	609,690	-	97.86
5. B.B. COAL	1,582	782,850	66.5	72.0	88.9	10,443		-	-	8,174,980.0	27,172,944	3.47	-
6. POLK #1 GASIFIER	220	129,390	79.1		-	10,531	COAL	52,440	25,985,126	1,362,660.0	4,942,637	3.82	94.25
POLK #1 CT OIL	235	4,000	2.3	-		10,535	LGT OIL	7,270	5,796,424	42,140.0	717,065	17.93	98.63
8. POLK #1 TOTAL	220	133,390	81.5	83.1	98.0	10,532		•	-	1,404,800.0	5,659,702	4.24	•
9. POLK #2 CT GAS	183	0	0.0	-	-	0	GAS	0	0	0.0	0	0.00	0.00
10. POLK #2 CT OIL	187	0	0.0	-	-	0	LGT OIL	Û	Ō	0.0	ů	0.00	0.00
11. POLK #2 TOTAL	187	0	0.0	0.0	0.0	0		•	-	0.0	0	0.00	-
12. POLK #3 CT GAS	183	0	0.0	-	-	0	GAS	0	0	0.0	0	0,00	0.00
13. POLK #3 CT OIL	187	0	0.0	-	-	ō	LGT OIL	ō	Ū	0.0	õ	0.00	0.00
14. POLK #3 TOTAL	187	0	0.0	0.0	0.0	0		-		0.0	0	0.00	
15. POLK #4 CT GAS	183	Û	0.0	0.0	0.0	0	GAS	0	O	0.0	0	0.00	0.00
16. POLK #5 CT GAS	183	0	0.0	0.0	0.0	0	GAS	o	0	0.0	0	0.00	0.00
17. CITY OF TAMPA GAS	6	0	0.0	0.0	0.0	0	GAS	0	0	0.0	C	0.00	0.00
18. BAYSIDE #1	792	367,900	62.4	96.7	79.9	7,349	GAS	2,630,180	1,028,002	2,703,830.0	18,316,290	4.98	6.96
19. BAYSIDE #2	1,047	116,790	15.0	75.3	87.5	7,363	GAS	836,530	1,027,973	859,930.0	5,825,505	4.99	6.96
20. BAYSIDE #3	61	400	0.9	76.3	72. 9	12,125	GAS	4,730	1,025,370	4,850.0	32,939	8.23	6.96
21. BAYSIDE #4	61	330	0.7	76.3	90.2	11,727	GAS	3,780	1,023,810	3,870.0	26,324	7.98	6.96
22. BAYSIDE #5	61	1,040	2.3	76.3	63.1	12,346	GAS	12,490	1,028,022	12,840.0	86,979	8.36	6.96
23. BAYSIDE #6	61	540	1.2	82.7	63.2	12,241	GAS	6,430	1,027,994	6,610.0	44,778	8.29	6.96
24. BAYSIDE TOTAL	2,083	487,000	31.4	83.7	81.5	7,376	GAS	3,494,140	1,027,987	3,591,930.0	24,332,815	5.00	6.96
25. B.B.C.T.#4 OIL	61	0	0.0	-	-	0	LGT OIL	0	0	0.0	0	0.00	0.00
26. B.B.C.T.#4 GAS	61	0	0.0		<u> </u>	0	GAS	0	0	0.0	0	0.00	0.00
27. B.B.C.T.#4 TOTAL	61	0	0.0	0.0	0.0	0		•	-	0.0	0	0.00	•
28. SYSTEM	4,692	1,403,240	40.2	65.3	86.9	9,387		-		13,171,710.0	57,165,461	4.07	

LEGEND:

B.B. = BIG BEND

C.T. = COMBUSTION TURBINE

31

.

PAGE 12 OF 31

SCHEDULE E4

TAMPA ELECTRIC COMPANY SYSTEM NET GENERATION AND FUEL COST ESTIMATED FOR THE PERIOD: APRIL 2011

(A)	(8)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)	(K)	(L)	(M)	(N)
PLANT/UNIT	NET CAPA- BILITY (MW)	NET GENERATION (MWH)	NET CAPACITY FACTOR (%)	EQUIV. AVAIL. FACTOR (%)	NET OUTPUT FACTOR (%)	AVG. NET HEAT RATE (BTU/KWH)	FUEL TYPE	FUEL BURNED (UNITS)	FUEL HEAT VALUË (BTU/UNIT)	FUEL BURNED (MM BTU)	AS BURNED FUEL COST (\$)	FUEL COST PER KWH (cents/KWH)	COST OF FUEL (\$/UNIT)
	()	((///	1.07		Dionany		(anno)	(010/0411)			(centerny	(avoint)
1. B.B.#1	385	230,270	83.1	85.0	91.9	10,310	ĊOAL	100,120	23,712,944	2,374,140.0	7,664,468	3.33	76.55
2. B.B.#2	385	227,330	82.0	83.4	91.8	10,350	COAL	98,340	23,925,564	2,352,840.0	7,528,204	3.31	76.55
3. B.B.#3	365	167,190	63.6	85.4	81.2	10,594	COAL	77,160	22,955,936	1,771,280.0	5,906,815	3.53	76.55
4. B.B.#4	417	244,110	81.3	88.4	88.8	10,550	COAL	112,520	22,887,842	2,575,340.0	8,660,529	3.55	76.97
B.B. IGNITION		· <u> </u>	<u> </u>				LGT OIL	4,450	<u> </u>	<u> </u>	438,364	<u> </u>	98.51
5. B.B. COAL	1,552	868,900	77.8	85.6	88.8	10,443		•	-	9,073,600.0	30,198,380	3.48	-
6. POLK #1 GASIFIER	220	127,040	80.2	-	-	10,581	COAL	51,730	25,985,308	1,344,220.0	4,828,217	3.80	93.33
7. POLK #1 CT OIL	215	3,930	2.5		<u> </u>	10,578	LGT OIL	7,170	5,797,768	41,570.0	712,952	18.14	99.44
8. POLK #1 TOTAL	220	130,970	82.7	85.9	96.2	10,581		•	-	1,385,790.0	5,541,169	4.23	-
9. POLK #2 CT GAS	151	0	0.0		-	0	GAS	٥	0	0.0	O	0.00	0.00
10. POLK #2 CT OIL	159	0	0.0	<u> </u>	•	0	LGT OIL	0	0	0.0	0	0.00	0.00
11. POLK #2 TOTAL	159	0	0.0	0.0	0.0	0		•	-	0.0	0	0.00	•
12. POLK #3 CT GAS	151	0	0.0		-	0	GAS	0	0	0.0	0	0.00	0.00
13. POLK #3 CT OIL	159	0	0.0		-	0	LGT OIL	0_	0	0.0	0	0.00	0.00
14. POLK #3 TOTAL	159	0	0.0	0.0	0.0	0		-	-	0.0	0	0.00	-
15. POLK #4 CT GAS	151	300	0.3	99.4	99.3	13,000	GAS	3,790	1,029,024	3,900.0	28,322	9,44	7.47
16. POLK #5 CT GAS	151	0	0.0	0.0	0.0	0	GAS	0	0	0.0	0	0.00	0.00
17. CITY OF TAMPA GA	S 6	0	0.0	0.0	0.0	0	GAS	0	0	0.0	0	0.00	0.00
18. BAYSIDE #1	701	0	0.0	0.0	0.0	0	GAS	0	0	0.0	o	0.00	0.00
19. BAYSIDE #2	929	367,870	55.0	97.3	83.7	7,563	GAS	2,706,330	1,028,008	2,782,130.0	20,224,269	5.50	7.47
20. BAYSIDE #3	56	2,300	5.7	98.6	100.2	11,322	GAŞ	25,330	1,028,030	26,040.0	189,290	8.23	7.47
21. BAYSIDE #4	56	780	1.9	98. 6	99.5	11,500	GAS	8,720	1,028,670	8,970.0	65,164	8.35	7.47
22. BAYSIDE #5	56	4,670	11.6	98.6	98.1	11,246	GAS	51,090	1,027,990	52,520.0	381,793	8.18	7.47
23. BAYSIDE #6	56	2,800	6.9	92.0	100.0	11,421	GAS	31,110	1,027,965	31,980.0	232,483	8.30	7.47
24. BAYSIDE TOTAL	1,854	378,420	28.3	60.4	84.1	7,668	GAS	2,822,580	1,028,010	2,901,640.0	21,092,999	5.57	7.47
25. B.B.C.T.#4 OIL	56	410	1.0	•	-	10,732	LGT OIL	760	5,789,474	4,400.0	74,867	18.26	98.51
26. B.B.C.T.#4 GAS	56	3,670	9.1			11,621	GAS	41,490	1,027,959	42,650.0	310,053	8.45	7.47
27. B.B.C.T.#4 TOTAL	56	4,080	10.1	76.2	98.5	11,532		-	-	47,050.0	384,920	9.43	-
28. SYSTEM	4,308	1,382,670	44.6	65.7	88.3	9,700		· _	-	13,411,980.0	57,245,790	4,14	

32

B.B. = BIG BEND

C.T. = COMBUSTION TURBINE

SCHEDULE E4

•

PAGE 13 OF 31

TAMPA ELECTRIC COMPANY SYSTEM NET GENERATION AND FUEL COST ESTIMATED FOR THE PERIOD: MAY 2011

PLANTUINT CAPA GENERATION CAPACITY VARL OUTPUT HEAT RATE TYPE BURNED HEAT VALUE BURNED FUEL COST PER KVH FUE 1. B.B.#1 385 238,9890 83.5 85.0 97.6 103.39 COAL 104,340 23,710.468 2,473.800.0 8.045.488 3.35 2. B.B.#2 385 228,030 82.4 83.4 92.3 10,337 COAL 104,340 23,710.468 2,472.800.0 7.458.551 3.55 3. B.B.#3 395 209.420 77.1 85.4 85.4 10.371 COAL 104.340 22,158.645 2,214.240.0 7.458.551 3.55 3.55 3.55 3.55 3.55 3.55 3.56 3.57 3.55.6 3.56 3.56 3.56 3.57 3.57.4895 3.258.786 1.402.550.0 5.045.575 3.78 3.74 10.555 107.01 7.480 5.3880.0 5.258.756 3.78.9 1.423.580.0 5.045.575	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(L)	(K)	(L)	(M)	(N)
1 B.B./f1 385 239,890 83.8 85.0 92.6 10,309 COAL 104,340 23,710,466 2,473,850.0 8,045,488 3.35 2 B.B./2 385 229,030 82.4 83.4 92.3 10,371 COAL 102,070 23,927,109 2,442,240.0 7,670,452 3.33 3 B.B./3 365 229,0420 77.1 85.4 85.4 10,571 COAL 106,020 2,2885,66 2,273,490.0 7,355,61 3.55 8 B.B./0110N - - - 10,564 COAL 119,020 22,888,506 2,724,190.0 32,282,623 3.46 6 POLK #1 GASIFIER 20 132,990 81.3 - - 10,556 LGT OIL 3.460.0 749,200 12,23 1 8 POLK #1 CO LI 215 4,1100 26 - 10,556 LGT OIL 7,480.0 7,690.0 5,045,675 3.79 9. POLK #1 CO AL 159 7710 0.5 - 10,259 7,580 10,275,68 80.00	PLANT/UNIT	CAPA- BILITY	GENERATION	CAPACITY FACTOR	AVAIL. FACTOR	OUTPUT	HEAT RATE		BURNED	HEAT VALUE	BURNED	FUEL COST		COST OF FUEL
2. B.B.#2 386 238,030 82.4 83.4 92.3 101,347 COAL 102,070 23.927,109 2.442,240.0 7.870,452 33.3 3. B.B.#3 355 250,9420 7.71 85.4 85.4 10,571 COAL 96,430 22.964.45 2.21,800.0 7.435,561 3.55 8.B.GOAL 1,552 944,070 81.8 85.6 90.4 10,338 COAL 118,020 22,888,506 2.724,190.0 9.224,244 3.57 5. B.B.GOAL 1,552 944,070 81.8 85.6 90.4 10,438 LTOIL 3.569 - - 9,854,070.0 32,928,823 3.46 6. POLK #1 GASIFIER 220 132,990 81.3 - 10,555 LGTOIL 7.480 5.799,465 43,380.0 7.794,320 18,23 + 42.33 7. POLK #1 CTOIL 220 137,190 83.8 85.9 97.4 10,547 - - 1,445,980.0 5.794,985 42.33 1 9. POLK #2 CT CL & ST 151 670 0.6 9.85 99.3 10,277,568		(MW)	(MVVH)	(%)	(%)	(%)	(BTU/KWH)		(UNITS)	(BTU/UNIT)	(MM BTU)	(\$)	(cents/KWH)	(\$/UNIT)
2. 8.8.72 386 236,030 82.4 83.4 92.3 10,047 COAL 102,070 23.927,109 2.442,240 7.870,452 3.33 8.8.73 355 250,9420 7.71 85.4 85.4 10,571 COAL 96,430 22.986,445 2.213,680.0 7.435,561 3.55 8.8.6 1.552 944,070 81.8 85.5 90.4 10,133 COAL 196,430 22.986,445 2.213,680.0 7.445,561 3.55 7. 1.552 944,070 81.8 85.5 90.4 10,346 COAL 53,870 22,987,586 1,402,550.0 5.045,675 3.79 8.8.60.4L 1.522 137,100 83.8 85.9 97.4 10,556 LGT OL 7.480 5,798,485 43,980.0 7,794,320 18,23 1 9. POLK #1 CT OL 159 670 0.6 - 10,250 LGT OL 7.0 5,657,143 4100 6,713,20 17,53 11 9. POLK #2 CT OL 159 500 0.5 - 11,577 <t< td=""><td>1. B.B.#1</td><td>385</td><td>239,990</td><td>83.8</td><td>85.0</td><td>92.6</td><td>10,309</td><td>COAL</td><td>104,340</td><td>23,710,466</td><td>2,473,950.0</td><td>8.045,488</td><td>3.35</td><td>77.11</td></t<>	1. B.B.#1	385	239,990	83.8	85.0	92.6	10,309	COAL	104,340	23,710,466	2,473,950.0	8.045,488	3.35	77.11
3. B.B./R3 386 209,420 77.1 85.4 85.4 10,71 COAL 96,430 22,256,445 22,213,690.0 7,435,561 3.55 B.B./GNITON - - - - - 35.2 7.7 0.00 10,533 COAL 116,020 22,885,606 2,721,90.0 92,224,244 3.57 3.58 B.B./GOAL 11,552 944,670 81.8 85.6 90.4 10,438 - - 9,854,070.0 32,227.84 3.49 - - 9,854,070.0 32,228,862.3 3.49 - - 10,546 COAL 17,800.0 5,798,405 5,728,405.0 7,435,561 3.57 3.79 18,23 18 - - 10,547 COAL 17,800.0 7,930.0 1,402,550.0 5,045,675 3.79 18,23 18 3.67 18,23 18 3.67 18,23 18 3.67 10,27,589 6,200.00 60,298 9.00 - - 14,45,930.0 7,71,939,453 14,22 16,231 11,10,10 7,12,51 11,10,10 7,12,51 11,10,10 <	2. B.B.#2		236,030	82.4	83.4	92.3	10,347	COAL	102,070	23,927,109	2,442,240.0	7,870,452		77,11
4. B.8.44 417 228,630 83.4 88.4 91.1 10,633 COAL 119,020 22,888,506 2.724,190.0 9,224,244 3.57 5. B.8.COAL 1,552 944,670 81.8 85.6 90.4 10,438 CTOLL 3.560 - - 9,854,070.0 32,287.632 3.49 6. POLK #1 GASIFIER 220 132,990 81.3 - - 10,555 LGTOLL 5.3,970 25,987,586 1,402,550.0 5,045,677 3.79 8. POLK #1 CTOLL 220 137,100 83.8 85.9 97.4 10,555 LGTOLL 7.480 5,799,465 43,380.0 749,320 1442,530.0 5,794,995 4.22 - 9. POLK #2 CT OLL 159 40 0.0 - - 10,220 LGTOLL 70 5,867,143 410.0 7,715 1 11. POLK #2 CT OLL 159 710 0.6 - - 10,233 LGTOLL - - 6,330.0 49,212 8.50 12. POLK #2 CT OLL 159 500 5.7 - 11,217 <td>3. B.B.#3</td> <td>365</td> <td>209,420</td> <td>77.1</td> <td>85.4</td> <td>85.4</td> <td>10,571</td> <td>COAL</td> <td>96,430</td> <td>22,956,445</td> <td>2,213,690.0</td> <td>7,435,561</td> <td></td> <td>77.11</td>	3. B.B.#3	365	209,420	77.1	85.4	85.4	10,571	COAL	96,430	22,956,445	2,213,690.0	7,435,561		77.11
B. B. IGNTION - - LCTOIL 3.560 - - 35.2278 - - 35.2278 - - 35.2278 - - 35.2278 - - 35.2278 - - 35.2278 - - 9.854/0700 332,228,823 - - 9.854/0700 332,228,823 - - 9.854/0700 332,228,823 - - 9.854/0700 332,228,823 - - 9.854/0700 332,228,823 - - 9.854/0700 332,228,823 - - - 9.854/0700 332,228,823 - - - - 9.854/0700 332,228,823 - - - - 9.854/0700 332,228,823 -<	4. B.B.#4			83.4	88.4	91.1		COAL	119,020	22,888,506	2,724,190,0			77,50
5. 8.8. COAL 1,552 944,070 81.8 85.6 90.4 10,438 - - 9,854,070.0 32,928,823 3.49 6. POLK #1 GASIFIER 220 132,990 81.3 - - 10,555 IGT OIL 7,480 5,799,455 43380.0 749,320 18,23 1 7. POLK #1 TOTAL 215 4,110 2.6 - - 10,555 IGT OIL 7,480 5,799,455 43380.0 749,320 18,23 1 9. POLK #2 CT GAS 151 670 0.6 - - 10,220 LGT OIL 70 5,877,143 410.0 7,712 17,53 1 10. POLK #2 CT GAS 151 570 0.5 - 11,577 GAS 5,850 1,022,060 6,020.0 44,203 8,50 1 11. POLK #2 CT GAS 151 520 0.5 - 11,577 GAS 5,850 1,029,060 6,020.0 44,203 8,50 1 1,912 50 5,020,000 310.0 5,009,0 16,70 <td>B.B. IGNITION</td> <td>-</td> <td>-</td> <td></td> <td>•</td> <td>-</td> <td></td> <td>LGT OIL</td> <td></td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td>99.12</td>	B.B. IGNITION	-	-		•	-		LGT OIL		-	-		-	99.12
7. POLK #1 CT OIL 215 4,110 2.6 - - 10,555 LGT OIL 7.480 5,799,485 43,80.0 749,320 18,23 1 8. POLK #1 TOTAL 137,100 83.8 85.5 97.4 10,547 - - 1,445,930.0 5,794,995 42.30 5,794,995 42.33 - - 1,2239 GAS 7,980 1,027,569 8,200.0 60,298 90.00 - - 10,200 LGT OIL 70 5,687,143 410.0 7,010 9,48 -		1,552	944,070	81.8	85.6	90.4	10,438	<u> </u>		-	9,854,070.0		3.49	•
7. POLK #1 CT OIL 215 4,110 2.6 - - 10,555 LGT OIL 7,480 5,799,485 43,380.0 749,320 18,23 1 8. POLK #1 TOTAL 137,100 83.8 85.5 97.4 10,547 - - 1,445,930.0 5,794,995 42.33 - 9. POLK #2 CT GAS 151 670 0.6 - - 12,299 GAS 7,980 1,027,569 8,200.0 60,298 90.00 7,033 1 17,63 1 17,63 1 17,63 1 17,63 1 17,63 1 17,63 1 17,63 1 17,63 1 17,63 1 17,63 1 17,63 1 17,63 1 17,63 1 17,63 1 17,63 1 17,63 1 17,63 10,03 16,70 1 1 16,70 1 1 1,63 1,63 1,610 1,027,961 110,02,04 1,251,222 8,76 1 1 1,912 GAS 1,027,913 7,4,020.0 544,118	6 POLK #1 GASIFIER	220	132 990	81.3			10 546	COAL	53 970	25 987 586	1 402 550 0	5 045 675	370	93.49
8. POLK #1 TOTAL 220 $137,100$ 83.8 85.5 97.4 $10,547$ - . $1,445,930.0$ $5,794,995$ 4.23 9. POLK #2 CT GAS 151 670 0.5 - . $12,239$ GAS $7,980$ $1.027,569$ $8,200.0$ $60,298$ $9,000$ 10. POLK #2 CT GAL 159 40 0.0 - . $10,250$ LGT OIL 70 $5,857,143$ 4100 $7,012$ $17,53$ 11 11. POLK #2 CT GAL 159 30 0.5 - . $10,230$ LGT OIL 70 $5,857,143$ 4100 $7,012$ $17,53$ 11 12. POLK #3 CT GAS 151 520 0.5 - . $10,333$ LGT OIL 500 $6,200,000$ 310.0 $5,009$ 16.70 11 14. POLK #3 CT GAS 151 $14,290$ 12.7 99.4 95.5 $11,912$ GAS 165.99 $1,027,961$ $170,22.0$ $1,251,222$ 8.76 16.70 <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>100.18</td>						_								100.18
9. POLK #2 CT GAS 151 670 0.6 - - 12.239 GAS 7,880 1,027,569 8,200.0 60,288 9.00 10. POLK #2 CT OIL 159 40 0.0 - - 10,250 LGT OIL 70 5,857,143 410.9 7,012 17,53 11 11. POLK #2 CT OIL 159 710 0.6 98.8 89.3 12,127 - - 8,810.0 67,310 9.46 - 12. POLK #3 CT GAS 151 520 0.5 - 11,577 GAS 5,850 1,029,060 6,020.00 344,203 8.50 11 13. POLK #3 CT OIL 159 30 0.0 - - 10,333 LGT OIL 50 6,200,000 310.0 5,009 16.70 11 14. POLK #3 CT GAS 151 14,290 12.7 95.4 95.8 11,912 GAS 165.590 1,027,961 170,220.0 1,251,222 8.76 15. POLK #4 CT GAS 151 6,250 5.6 99.4 96.3 11,843 GAS 72,010						97.4		201 012						100.10
10. POLK #2 CT OIL 159 40 0.0 - 10.250 LGT OIL 70 5,857,143 410.0 7012 17.53 11 11. POLK #2 TOTAL 159 710 0.6 98.8 89.3 12,127 - - - 8,610.0 67,310 9.48 - 12. POLK #3 CT OIL 159 30 0.0 - - 10.333 LGT OIL 50 6,200.000 310.0 5.09 16,70 11 14. POLK #3 TOTAL 159 550 0.5 98.9 86.5 11,509 - - 6,330.0 49,212 8.95 - 15. POLK #3 TOTAL 159 550 0.5 98.9 86.5 11,912 GAS 165,590 1,027,961 170,220.0 1,251,222 8.76 16. POLK #3 CT GAS 151 6,250 5.6 99.4 96.3 11,843 GAS 72,010 1,027,913 74,020.0 544,118 8.71 17. CITY OF TAMPA GAS 6 0 0.0 0.0 0 <td>0. FOLK #TTOTAL</td> <td>220</td> <td>137,100</td> <td>05.0</td> <td>00.9</td> <td>31.4</td> <td>10,347</td> <td></td> <td>-</td> <td>-</td> <td>1,443,830.0</td> <td>3,194,993</td> <td>4.23</td> <td>•</td>	0. FOLK #TTOTAL	220	137,100	05.0	00.9	31.4	10,347		-	-	1,443,830.0	3,194,993	4.23	•
10. POLK #2 CT OIL 158 40 0.0 - 10.250 LGT OIL 70 5.857,143 410.0 7.012 17.53 11. 11. POLK #3 CT GAS 151 520 0.5 - 11.577 GAS 5.860 1.029,060 6.020.0 44,203 8.50 12. POLK #3 CT GAS 151 520 0.5 - 11.577 GAS 5.860 1.029,060 6.020.0 44,203 8.50 13. POLK #3 CT GAS 151 14.290 12.7 99.4 95.6 11,509 - - 6.330.0 49,212 8.95 - 15. POLK #3 CT GAS 151 14.290 12.7 99.4 95.6 11,912 GAS 165,590 1,027,961 170,220.0 1,251,222 8.76 16. POLK #5 CT GAS 151 6,250 5.6 99.4 96.3 11,843 GAS 72,010 1,027,913 74,020.0 544,118 8.71 17. CITY OF TAMPA GAS 6 0 0.0 0.0 0.0 0.0 0.0	9. POLK #2 CT GAS	151	670	0.6	-	-	12,239	GAS	7,980	1,027,569	8.200.0	60,298	9.00	7.56
11. POLK #2 TOTAL 159 710 0.6 98.8 69.3 12,127 - - 8,610.0 67,310 9.48 12. POLK #3 CT GAS 151 520 0.5 - - 11,577 GAS 5,850 1,029,060 6,020.0 44,203 8,50 11 13. POLK #3 CT GAS 159 30 0.0 - - - 6,330.00 310.0 5,009 16.70 11 14. POLK #3 CT GAS 151 14.290 12.7 99.4 95.6 11,912 GAS 165.590 1,027,961 170,220.0 1,251,222 8.76 15. POLK #3 CT GAS 151 6,250 5.6 99.4 96.3 11,843 GAS 72,010 1,027,913 74,020.0 544,118 8.71 17. CITY OF TAMPA GAS 6 0 0.0 0.0 0 GAS 0 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 <	10. POLK #2 CT OIL	159	40	0.0	-			LGT OIL	70	5,857,143	410.0			100.18
13. POLK #3 CT OIL 159 30 0.0 - - 10,333 LGT OIL 50 6,220,000 310.0 5,009 16.70 11 14. POLK #3 TOTAL 159 550 0.5 98.9 86.5 11,509 - - 6,330.0 49,212 8.95 - 15. POLK #4 CT GAS 151 14,290 12.7 99.4 95.6 11,912 GAS 165,590 1,027,961 170,220.0 1,251,222 8.76 16. POLK #5 CT GAS 151 6,250 5.6 99.4 96.3 11,843 GAS 72,010 1,027,913 74,020.0 544,118 8.71 17. CITY OF TAMPA GAS 6 0 0.0 0.0 0.0 GAS 0 0 0.00 0.00 18. BAYSIDE #1 701 0 0.0 0.0 0.0 GAS 0 0 0.00 0.00 18. BAYSIDE #2 929 463,510 67.1 97.3 88.7 7.493 GAS 3,378,520 1.028,000 3,473,120.0 25,528,589 5.5.1 20. BA	11. POLK #2 TOTAL		710	0.6	98.8	89.3	12,127			•	8,610.0	67,310		•
13. POLK #3 CT OIL 159 30 0.0 - - 10,33 LGT OIL 50 6,220,000 310.0 5,009 16.70 11 14. POLK #3 TOTAL 159 550 0.5 98.9 86.5 11,509 - - 6,330.0 49,212 8.95 - 15. POLK #4 CT GAS 151 14,290 12.7 99.4 95.6 11,912 GAS 165,590 1,027,961 170,220.0 1,251,222 8.76 16. POLK #5 CT GAS 151 6,250 5.6 99.4 96.3 11,843 GAS 72,010 1,027,913 74,020.0 544,118 8.71 17. CITY OF TAMPA GAS 6 0 0.0 0.0 0.0 GAS 0 0 0.00 0.00 18. BAYSIDE #1 701 0 0.0 0.0 0.0 0.0 0.00	12. POLK #3 CT GAS	151	520	0.5		-	11.577	GAS	5.850	1.029.060	6.020.0	44,203	8.50	7.56
14. POLK #3 TOTAL 153 550 0.5 98.9 86.5 11,509 - - 6,330.0 49,212 8.95 15. POLK #4 CT GAS 151 14,290 12.7 99.4 95.6 11,912 GAS 165,590 1,027,961 170,220.0 1,251,222 8.76 16. POLK #5 CT GAS 151 6,250 5.6 99.4 96.3 11,843 GAS 72,010 1,027,913 74,020.0 544,118 8.71 17. CITY OF TAMPA GAS 6 0 0.0 0.0 0.0 GAS 0 0 0.00 0.00 18. BAYSIDE #1 701 0 0.0 0.0 0.0 GAS 0 0 0.00 0.00 18. BAYSIDE #2 929 463,510 67.1 97.3 88.7 7.493 GAS 3,378,520 1,028,000 3,473,120.0 25,528,589 5,51 20. BAYSIDE #4 56 6,090 14.6 98.6 99.4 11,103 GAS 41,570 1,028,000 3,473,120.0 25,528,589 5,51 25,228,589 5,51					-	-								100,18
16. POLK #5 CT GAS 151 6,250 5.6 99.4 96.3 11,843 GAS 72,010 1,027,913 74,020.0 544,118 8.71 17. CITY OF TAMPA GAS 6 0 0.0 0.0 0.0 0.0 0 GAS 0 0 0.0 0.00 0 GAS 0 0 0.00 <					98.9	86.5			•					
17. CITY OF TAMPA GAS 6 0 0.0 0.0 0.0 0.0 0.0 66S 0 0.0 0.00 18. BAYSIDE #1 701 0 0.00 0.00<	15. POLK #4 CT GAS	151	14,290	12.7	99.4	95.6	11,912	GAS	165,590	1,027,961	170,220.0	1,251,222	8.76	7.56
18. BAYSIDE #1 701 0 0.0 0.0 0 GAS 0 0 0.0 0 0.00 19. BAYSIDE #2 929 463,510 67.1 97.3 88.7 7,493 GAS 3,378,520 1,028,000 3,473,120.0 25,528,589 5.51 20. BAYSIDE #3 56 6,090 14.6 98.6 98.0 11,059 GAS 65,520 1,027,930 67,350.0 495,079 8.13 21. BAYSIDE #3 56 3,840 9.2 98.6 99.4 11,130 GAS 41,570 1,028,145 42,740.0 314,109 8.18 22. BAYSIDE #5 56 10,960 26.3 98.6 98.3 11,026 GAS 11,7550 1,028,073 120,850.0 888,225 8.10 23. BAYSIDE #6 56 8,270 19.8 98.6 98.5 11,074 GAS 89,080 1,028,065 91,580.0 673,101 8.14 24. BAYSIDE TOTAL 1,854 492,670 35.7 60.6 89.2 7,704 GAS 3,692,240 1,028,005 3,795,640.0	16. POLK #5 CT GAS	151	6,250	5.6	99.4	96.3	11,843	GAS	72,010	1,027,913	74,020.0	544,118	8.71	7.56
19. BAYSIDE #2 929 463,510 67.1 97.3 88.7 7,493 GAS 3,378,520 1,028,000 3,473,120.0 25,528,589 5.51 20. BAYSIDE #3 56 6,090 14.6 98.6 98.0 11,059 GAS 65,520 1,027,930 67,350.0 495,079 8.13 21. BAYSIDE #4 56 3,840 9.2 98.6 99.4 11,130 GAS 41,570 1,028,145 42,740.0 314,109 8.18 22. BAYSIDE #4 56 10,960 26.3 98.6 98.4 11,026 GAS 41,570 1,028,1073 120,850.0 888,225 8.10 23. BAYSIDE #5 56 10,960 26.3 98.6 98.5 11,074 GAS 89,080 1,028,065 91,580.0 673,101 8.14 24. BAYSIDE #76 56 8,270 35.7 60.6 89.2 7,704 GAS 3,592,240 1,028,005 3,795,640.0 27,899,103 5.66 25. B.B.C.T.#4 OIL 56 1,130 2.7 - - 10,832 LGT OIL 2,1	17. CITY OF TAMPA GAS	6	Q	0.0	0.0	0.0	0	GAS	0	Q	0.0	o	0.00	0.00
19. BAYSIDE #2 929 463,510 67.1 97.3 88.7 7,493 GAS 3,378,520 1,028,000 3,473,120.0 25,528,589 5.51 20. BAYSIDE #3 56 6,090 14.6 98.6 98.0 11,059 GAS 65,520 1,027,930 67,350.0 495,079 8.13 21. BAYSIDE #4 56 3,840 9.2 98.6 99.4 11,130 GAS 41,570 1,028,017 314.109 8.18 22. BAYSIDE #5 56 10,960 26.3 98.6 98.3 11,026 GAS 41,570 1,028,073 120,850.0 88,225 8.10 23. BAYSIDE #5 56 8,270 19.8 98.6 98.5 11,074 GAS 89,080 1,028,065 91,580.0 673,101 8.14 24. BAYSIDE #5 56 1,130 2.7 - - 10,832 LGT OIL 2,110 5,800,948 12,240.0 209,149 18.51 56 25. B.B.C.T.#4 OIL 56 11,330 2.7 - - 11,726 GAS 16,360 1,027	18. BAYSIDE #1	701	0	0.0	0.0	0.0	٥	GAS	o	0	0.0	0	0.00	0.00
20. BAYSIDE #3 56 6,090 14.6 98.6 98.0 11,059 GAS 65,520 1,027,930 67,350.0 495,079 8.13 21. BAYSIDE #4 56 3,840 9.2 98.6 99.4 11,130 GAS 41,570 1,028,145 42,740.0 314,109 8.18 22. BAYSIDE #5 56 10,960 26.3 98.6 98.3 11,026 GAS 11,750 1,028,145 42,740.0 314,109 8.18 23. BAYSIDE #6 56 8,270 19.8 98.6 98.5 11,074 GAS 89,080 1,028,065 91,580.0 673,101 8.14 24. BAYSIDE #6 56 8,270 35.7 60.6 89.2 7,704 GAS 3,692,240 1,028,005 3,795,640.0 27,899,103 5.66 25. B.B.C.T.#4 OIL 56 1,130 2.7 - - 10,832 LGT OIL 2,110 5,800,948 12,240.0 209,149 18.51 56 26. B.B.C.T.#4 GAS 56 10,200 24.5 - - 11,726 GAS 1	19. BAYSIDE #2	929	463,510	67.1	97.3	88.7	7,493	GAS	3,378,520	1,028,000	3,473,120.0	25,528,589	5.51	7,56
21. BAYSIDE #4 56 3,840 9.2 98.6 99.4 11,130 GAS 41,570 1,028,145 42,740,0 314,109 8.18 22. BAYSIDE #5 56 10,960 26.3 98.6 98.3 11,026 GAS 117,550 1,028,145 42,740,0 314,109 8.18 23. BAYSIDE #6 56 8,270 19.8 98.6 98.5 11,074 GAS 89,080 1,028,065 91,580,0 673,101 8.14 24. BAYSIDE #6 56 1,854 492,670 35.7 60.6 89.2 7,704 GAS 89,080 1,028,005 3,795,640,0 27,899,103 5.66 25. B.B.C.T.#4 OIL 56 1,130 2.7 - 10,832 LGT OIL 2,110 5,800,948 12,240,0 209,149 18.51 56 26. B.B.C.T.#4 GAS 56 11,330 2.7 - - 11,726 GAS 116,360 1,027,931 119,610.0 879,233 8.62 - 27. B.B.C.T.#4 GAS 56 11,330 27.2 99.4 97.7 11,637	20. BAYSIDE #3		6,090	14.6	98.6	98.0	11,059	GAS	65,520	1,027,930	67,350.0	495,079		7.56
23. BAYSIDE #6 56 8,270 19.8 98.6 98.5 11,074 GAS 89,080 1,028,065 91,580.0 673,101 8.14 24. BAYSIDE TOTAL 1,854 492,670 35.7 60.6 89.2 7,704 GAS 89,080 1,028,065 91,580.0 673,101 8.14 25. B.B.C.T.#4 OIL 56 1,130 2.7 - - 10,832 LGT OIL 2,110 5,800,948 12,240.0 209,149 18.51 91 26. B.B.C.T.#4 GAS 56 10,200 24.5 - - 11,726 GAS 116,360 1,027,931 119,610.0 879,233 8.62 27. B.B.C.T.#4 TOTAL 56 11,330 27.2 99.4 97.7 11,637 - - 131,850.0 1,088,382 9.61	21. BAYSIDE #4	56	3,840	9.2	98.6	99.4	11,130	GAS	41,570	1,028,145	42,740.0	314,109	8.18	7.56
23. BAYSIDE #6 56 8,270 19.8 98.6 98.5 11,074 GAS 89,080 1,028,065 91,580.0 673,101 8.14 24. BAYSIDE TOTAL 1,854 492,670 35.7 60.6 89.2 7,704 GAS 89,080 1,028,065 91,580.0 673,101 8.14 25. B.B.C.T.#4 OIL 56 1,130 2.7 - - 10,832 LGT OIL 2,110 5,800,948 12,240.0 209,149 18.51 91 26. B.B.C.T.#4 GAS 56 10,200 24.5 - - 11,726 GAS 116,360 1,027,931 119,610.0 879,233 8.62 27. B.B.C.T.#4 TOTAL 56 11,330 27.2 99.4 97.7 11,637 - - 131,850.0 1,088,382 9.61	22. BAYSIDE #5	56	10,960	26.3	98.6	98.3	11,026	GAS	117,550	1,028,073	120,850.0		8,10	7.56
24. BAYSIDE TOTAL 1,854 492,670 35.7 60.6 89.2 7,704 GAS 3,692,240 1,028,005 3,795,640.0 27,899,103 5.66 25. B.B.C.T.#4 OIL 56 1,130 2.7 - - 10,832 LGT OIL 2,110 5,800,948 12,240.0 209,149 18.51 9 26. B.B.C.T.#4 GAS 56 10,200 24.5 - - 11,726 GAS 116.360 1,027,931 119,610.0 879,233 8.62 27. B.B.C.T.#4 TOTAL 56 11,330 27.2 99.4 97.7 11,637 - - 131,850.0 1,088,382 9.61	23. BAYSIDE #6			19.8	98.6	98.5	11,074	GAS	89,080					7.56
26. B.B.C.T.#4 GAS 56 10,200 24.5 - - 11,726 GAS 116,360 1,027,931 119,610.0 879,233 8.62 27. B.B.C.T.#4 TOTAL 56 11,330 27.2 99.4 97.7 11,637 - 131,850.0 1,088,382 9.61 -														7.56
26. B.B.C.T.#4 GAS 56 10,200 24.5 - 11,726 GAS 116,360 1,027,931 119,610.0 879,233 8.62 27. B.B.C.T.#4 TOTAL 56 11,330 27.2 99.4 97.7 11,637 - 131,850.0 1,088,382 9.61 -	25. B.B.C.T.#4 OIL	56	1,130	2.7		-	10,832	LGT OIL	2,110	5,800,948	12,240.0	209,149	18,51	99.12
27. B.B.C.T.#4 TOTAL 56 11,330 27.2 99.4 97.7 11,637 • • 131,850.0 1,088,382 9.61 -					-	-								7.56
					99.4	97.7			•					
28. SYSTEM 4.308 1.606.970 50.1 76.9 91.3 9.637 15.486.670.0 69.622.965 4.33	28. SYSTEM	4,308	1,606,970	50.1	76.9	91.3	9,637	-	-		15,486,670.0	69,622,965	4.33	

LEGEND:

B.B. = BIG BEND

C.T. = COMBUSTION TURBINE

33

PAGE 14 OF 31

SCHEDULE E4

•

TAMPA ELECTRIC COMPANY SYSTEM NET GENERATION AND FUEL COST ESTIMATED FOR THE PERIOD: JUNE 2011

(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(L)	(K)	(L)	(M)	(N)
PLANT/UNIT	NET CAPA- BILITY	NET GENERATION	NET CAPACITY FACTOR	EQUIV. AVAIL. FACTOR	NET OUTPUT FACTOR	AVG. NET HEAT RATE	FUEL TYPE	FUEL BURNED	FUEL HEAT VALUE	FUEL BURNED	AS BURNED FUEL COST	FUEL COST PER KWH	cost of Fuel
	(MW)	(MWH)	(%)	(%)	(%)	(BTU/KWH)	·····	(UNITS)	(BTU/UNIT)	(MM ØTU)	(\$)	(cents/KWH)	(\$/UNIT)
1. B.B.#1	385	230,950	83.3	85.0	92.1	10,317	COAL	100,490	23,710,419	2.382.660.0	7.791.994	3.37	77.54
2. B.B.#2	385	228,020	82.3	83.4	92.1	10,347	COAL	98,610	23,925,870	2,359,330.0	7,646,219	3.35	77.54
3. B.B.#3	365	212,790	81.0	85.4	89.6	10,545	COAL	97,750	22,954,680	2,243,820.0	7,579,534	3.56	77.54
4. B.8.#4	417	256,510	85.4	88.4	93.3	10,524	COAL	117,940	22,889,096	2,699,540.0	9,191,873	3.58	77.94
B.B. IGNITION	-	-	-	-	-	-	LGT OIL	4,450	-	-	443,870	-	99.75
5. B.B. COAL	1,552	928,270	83.1	85.6	91.9	10,434		-	-	9,685,350.0	32,653,490	3.52	
6. POLK #1 GASIFIER	220	130,000	82.1	-		10,519	COAL	52,620	25,987,647	1,367,470.0	4,957,499	3.81	94.21
7. POLK #1 CT OIL	215	4,020	2.6		-	10,520	LGT OIL	7,300	5,793,151	42,290.0	736,238	18.31	100.85
8. POLK #1 TOTAL	220	134,020	84.6	85.9	98.4	10,519		-		1,409,760.0	5,693,737	4.25	-
9. POLK #2 CT GAS	151	2,150	2.0	-	-	11,967	GAS	25,030	1,027,966	25,730.0	175,451	8.16	7.01
10. POLK #2 CT OIL	159	110	0.1			11,545	LGT OIL	220	5,772,727	1,270.0	22,179	20.16	100.81
11. POLK #2 TOTAL	159	2,260	2.0	98.8	94.8	11,947		-	-	27,000.0	197,630	8.74	-
12. POLK #3 CT GAS	151	430	0.4	-	•	12,419	GAS	5,200	1,026,923	5,340.0	36,450	8.48	7.01
13. POLK #3 CT OIL	159	20	0.0	-	-	12,500	LGT OIL	40	6,250,000	250.0	4,033	20.17	100.83
14. POLK #3 TOTAL	159	450	0.4	98.9	94.3	12,422		-		5,590.0	40,483	9.00	-
15. POLK #4 CT GAS	151	14,350	13.2	99.4	99.0	11,666	GAS	162,850	1,028,001	167,410.0	1,141,516	7.95	7.01
16. POLK #5 CT GAS	151	8,130	7.5	99.4	96.1	12,043	GAS	95,240	1,028,034	97,910.0	667,596	8.21	7.01
17. CITY OF TAMPA GAS	6	0	0.0	0.0	0.0	0	GAS	0	0	0.0	C	0.00	0.00
18. BAYSIDE #1	701	149,810	29.7	67.7	95.0	7,508	GAS	1,094,160	1,027,994	1,124,790.0	7,669,639	5.12	7.01
19. BAYSIDE #2	929	504,460	75.4	97.3	88.7	7,467	GAS	3,664,280	1,028,006	3,766,900.0	25,685,188	5.09	7.01
20. BAYSIDE #3	56	6,160	15.3	98.6	100.0	10,948	GAS	65,610	1,027,892	67,440.0	459,901	7.47	7.01
21. BAYSIDE #4	56	4,640	11.5	98.6	99.8	10,955	GAS	49,450	1,027,907	50,830.0	346,625	7.47	7.01
22. BAYSIDE #5	56	9,020	22.4	98.6	100.0	10,980	GAS	96,340	1,028,026	99,040.0	675,306	7.49	7.01
23. BAYSIDE #6	56	7,290	18.1	98.6	99.4	10,982	GAS	77,880	1,027,992	80,060.0	545,909	7.49	7.01
24. BAYSIDE TOTAL	1,854	681,380	51.0	86.2	90.4	7,616	GAS	5,047,720	1,028,001	5,189,060.0	35,382,568	5.19	7.01
25. B.B.C.T.#4 OIL	56	1,070	2.7	-	-	10,766	LGT OIL	1,990	5,788,945	11,520.0	198,495	18.55	99.75
26. B.B.C.T.#4 GAS	56	9,620	23.9			11,615	GAS	108,690	1,028,061	111,740.0	761,875	7.92	7.01
27. B.B.C.T.#4 TOTAL	56	10,690	26.5	99.4	98.4	11,530		-	•	123,260.0	960,370	8.98	
28. SYSTEM	4,308	1,779,550	57.4	87.9	92.4	9,387		-	-	16,705,340.0	76,737,390	4.31	

LEGEND:

34

B.B. = BIG BEND C.T. = COMBUSTION TURBINE

SCHEDULE E4

TAMPA ELECTRIC COMPANY SYSTEM NET GENERATION AND FUEL COST ESTIMATED FOR THE PERIOD: JULY 2011

(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(1)	(K)	(L)	(M)	(N)
PLANT/UNIT	NET CAPA- BILITY	NET GENERATION	NET CAPACITY FACTOR	EQUIV. AVAIL. FACTOR	NET OUTPUT FACTOR	AVG. NET HEAT RATE	FUEL TYPE	FUËL BURNED	FUEL HEAT VALUE	FUEL BURNED	AS BURNED FUEL COST	FUEL COST PER KWH	COST OF FUEL
	(MW)	(MWH)	(%)	(%)	(%)	(BTU/KWH)		(UNITS)	(BTU/UNIT)	(MM BTU)	(\$)	(cents/KWH)	(\$/UNIT)
1. B.B.#1	385	241,190	84.2	85.0	93.1	10,309	COAL	104,860	23,711,425	2,486,380.0	8,167,332	3,39	77.89
2. B.B.#2	385	234,300	81.8	83.4	91.7	10,353	COAL	101,390	23,925,042	2,425,760.0	7,897,061	3.37	77.89
3. B.B.#3	365	218,420	80.4	85.4	89.0	10,548	COAL	100,360	22,956,158	2,303,880,0	7,816,837	3.58	77.89
4. B.B.#4	417	265,550	85.6	88.4	93.5	10,521	COAL	122,060	22,888,743	2,793.800.0	9,603,812	3.62	78.68
B.B. IGNITION	-	-	-	•	-	-	LGT OIL	3,560		-	356,889		100.25
5. B.B. COAL	1,552	959,460	83.1	85.6	91.9	10,433		•		10,009,820.0	33,841,931	3.53	
6. POLK #1 GASIFIER	220	134,350	82.1		-	10,519	COAL	54,380	25,988,783	1,413,270.0	5,045,750	3.76	92.79
7. POLK #1 CT OIL	215	4,160	2.6	-		10,507	LGT OIL	7,540	5,797,082	43,710.0	765,010	18.39	101.46
8. POLK #1 TOTAL	220	138,510	84.6	85.9	98.4	10,519				1,456,980.0	5,810,760	4.20	
9. POLK #2 CT GAS	151	1,580	1,4	-	_	11,570	GAS	17.790	1.027.544	18,280.0	123,315	7.80	6.93
10. POLK #2 CT OIL	159	80	0.1	-	-	11,625	LGT OIL	160	5,812,500	930.0	16,234	20.29	101.46
11. POLK #2 TOTAL	159	1,650	1.4	98.8	94.9	11,572				19,210.0	139,549	8.41	
12. POLK #3 CT GAS	151	1,120	1.0			12,232	GAS	13,330	1,027,757	13,700.0	92,400	8,25	6.93
13. POLK #3 CT OIL	159	60	0.1	_	_	11,167	LGT OIL	120	5,583,333	670.0	12,175	20.29	101.46
14. POLK #3 TOTAL	159	1,180	1.0	98.9	92.8	12,178	<u></u>			14,370.0	104,575	8.86	
15. POLK #4 CT GAS	151	8,370	7.5	99.4	99.0	11,925	GAS	97,100	1,027,909	99,810.0	673,068	8.04	6.93
16. POLK #5 CT GAS	151	5,860	5.2	99.4	97.0	11,850	GAS	67,550	1,027,979	69,440.0	468,237	7.99	6.93
17. CITY OF TAMPA GAS	6	0	0.0	0.0	0.0	0	GAS	0	0	0.0	O	0.00	0.00
18. BAYSIDE #1	701	241,800	46.4	96,7	95.0	7,492	GAS	1,762,270	1,027,992	1,811,600.0	12,215,533	5.05	6.93
19. BAYSIDE #2	929	522,570	75.6	97.3	88.7	7,467	GAS	3,795,730	1,028,003	3,902,020.0	26,310,874	5.03	6.93
20. BAYSIDE #3	56	4,140	9.9	98.6	99.9	11,010	GAS	44,340	1,027,966	45,580.0	307,352	7.42	6.93
21. BAYSIDE #4	56	3,400	8.2	98.6	97.9	10,991	GAS	36,360	1,027,778	37,370.0	252,037	7.41	6.93
22. BAY\$IDE #5	56	7,300	17.5	98.6	96.6	11,048	GAS	78,450	1,028,043	80,650.0	543,792	7.45	6.93
23. BAYSIDE #6	56	5,430	13.0	98.6	100.0	11,013	GAS	58,170	1,028,021	59,800.0	403,217	7.43	6.93
24. BAYSIDE TOTAL	1,854	784,640	56.9	97.2	90.8	7,567	GAS	5,775,320	1,027,998	5,937,020.0	40,032,805	5.10	6.93
25. B.B.C.T.#4 OIL	56	850	2.0	-	-	10,788	LGT OIL	1,580	5,803,797	9,170.0	158,394	18.63	100.25
26. B.B.C.T.#4 GAS	56	7,650	18.4		-	11,771	GAS	87,610	1,027,851	90,050.0	607,287	7.94	6.93
27. B.B.C.T.#4 TOTAL	56	8,500	20.4	99.4	97.9	11,673		•		99,220.0	765,681	9.01	•
28. SYSTEM	4,308	1,908,180	59.5	92.6	92.3	9,279	-		· · · ·	17,705,870.0	81,836,606	4.29	

LEGEND:

.

B.B. = BIG BEND

C.T. = COMBUSTION TURBINE

35

PAGE 16 OF 31

SCHEDULE E4

•

TAMPA ELECTRIC COMPANY SYSTEM NET GENERATION AND FUEL COST ESTIMATED FOR THE PERIOD: AUGUST 2011

	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)	(K)	(L)	(M)	(N)
	PLANT/UNIT	NET CAPA- BILITY	NET GENERATION	NET CAPACITY FACTOR	EQUIV. AVAIL. FACTOR	NET OUTPUT FACTOR	AVG. NET HEAT RATE	FUEL TYPE	FUEL BURNED	FUEL HEAT VALUE	FUEL BURNED	AS BURNED FUEL COST	FUEL COST PER KWH	COST OF FUEL
	·····	(MW)	(MWH)	(%)	(%)	(%)	(BTU/KWH)		(UNITS)	(BTU/UNIT)	(MM BTU)	(\$)	(cents/KWH)	(\$/UNIT)
1. 8	J.B.#1	385	240,530	84.0	85.0	92.8	10,310	COAL	104,590	23,709,724	2,479,800.0	8,165,572	3.39	78.07
	3.B.#2	385	236,620	82.6	83.4	92.6	10,346	COAL	102,320	23,925,625	2,448,070.0	7,988,348	3.38	78.07
3. B	.B.#3	365	218,830	80.6	85.4	89.2	10,547	COAL	100,540	22,956,336	2,308,030.0	7,849,379	3.59	78.07
	9.B.#4	417	264,810	85.4	88.4	93.3	10,524	COAL	121,760	22,887,319	2,786,760.0	9,552,877	3.61	78.46
	B. IGNITION		<u> </u>	-	<u> </u>	-	<u> </u>	LGT OIL	3,560		•	358,739	-	100.77
5. B	S.B. COAL	1,552	960,790	83.2	85.6	92.0	10,432		•	-	10,022,660.0	33,914,915	3.53	•
6. P	OLK #1 GASIFIER	220	134,350	82.1		-	10,520	COAL	54,390	25,985,659	1,413,360.0	5,060,448	3.77	93.04
	OLK #1 CT OIL	215	4,160	2.6	<u> </u>		10,507	LGT OIL	7,540	5,797,082	43,710.0	769,889	18.51	102.11
8. P	OLK #1 TOTAL	220	138,510	84.6	85.9	98.4	10,520		-	-	1,457,070.0	5,830,337	4.21	-
9. F	OLK #2 CT GAS	151	1,470	1.3		-	12,435	GAS	17,780	1,028,121	18,280.0	122,623	8.34	6.90
10. P	OLK #2 CT OIL	159	80	0.1	-		11,375	LGT OIL	160	5,687,500	910.0	16,337	20.42	102.11
11. P	OLK #2 TOTAL	159	1,550	1.3	98.8	81.2	12,381		-		19,190.0	138,960	8.97	
12. F	OLK #3 CT GAS	151	0	0.0	-	-	0	GAS	0	0	0.0	0	0.00	0.00
	OLK #3 CT OIL	159	0	0.0	-	-	0	LGT OIL	D	0	0.0	0	0.00	0.00
14. P	OLK #3 TOTAL	159	0	0.0	0.0	0.0	0		•	- <u>-</u>	0.0	0	0.00	•
15. P	OLK #4 CT GAS	151	11,960	10.6	99.4	9 9.0	11,776	GAS	137,020	1,027,879	140,840.0	944,985	7.90	6.90
16. P	OLK #5 CT GAS	151	6,970	6.2	99.4	98.2	11,956	GAS	81,070	1,027,877	83,330.0	559,115	8.02	6.90
17. C	TTY OF TAMPA GAS	6	0	0.0	0.0	0.0	0	GAS	0	0	0.0	0	0.00	0.00
18. B	AYSIDE #1	701	256,860	49.2	96.7	94.6	7,490	GAS	1,871,560	1,028,003	1,923,970.0	12,907,577	5.03	6.90
	AYSIDE #2	929	548,840	79.4	97.3	88.5	7,461	GAS	3,983,100	1,028,003	4,094,640.0	27,470,224	5.01	6.90
	AYSIDE #3	56	5,220	12.5	98.6	98.1	10,983	GAS	55,780	1,027,788	57,330.0	384,698	7.37	6.90
	AYSIDE #4	56	3,450	8.3	98.6	99.4	10,986	GAS	36,870	1,027,936	37,900.0	254,281	7.37	6.90
	AYSIDE #5	56	8,840	21.2	98.6	99.9	10,945	GAS	94,110	1,028,052	96,750.0	649,048	7.34	6,90
	AYSIDE #6		6,950	16.7	98.6	99.3	10,947	GAS	74,010	1,027,969	76,080.0	510,424	7.34	6,90
24. B	AYSIDE TOTAL	1,854	830,160	60.2	97.2	90.6	7,573	GAS	6,115,430	1,028,001	6,286,670.0	42,176,252	5.08	6.90
	B.B.C.T.#4 OIL	56	830	2.0	•	-	10,819	LGT OIL	1,550	5,793,548	8,980.0	156,192	18.82	100.77
	B.C.T.#4 GAS	56	7,500	18.0		-	11,709	GAS	85,430	1,027,976	87,820.0	589,185	7.86	6.90
27. B	3.B.C.T.#4 TOTAL	56	8,330	20.0	99.4	98.5	11,621		-	-	96,800.0	745,377	8.95	*
28	SYSTEM	4,308	1,958,270	61.1	89.0	92.3	9,246	-			18,106,560.0	84,309,941	4.31	

36

LEGEND; B.B. ≃ BIG BEND

C.T. = COMBUSTION TURBINE

SCHEDULE E4

TAMPA ELECTRIC COMPANY SYSTEM NET GENERATION AND FUEL COST ESTIMATED FOR THE PERIOD: SEPTEMBER 2011

(A)	(8)	(C)	(D)	(Ē)	(F)	(G)	(H)	(1)	(L)	(K)	(L)	(M)	(N)
₽LANT/UNIT	NET CAPA- BILITY (MW)	NET GENERATION (MWH)	NET CAPACITY FACTOR (%)	EQUIV. AVAIL. FACTOR (%)	NET OUTPUT FACTOR (%)	AVG. NET HEAT RATE (BTU/KWH)	FUEL TYPE	FUEL BURNED (UNITS)	FUEL HEAT VALUE (BTU/UNIT)	FUEL BURNED (MM BTU)	AS BURNED FUEL COST	FUEL COST PER KWH	COST OF FUEL
	(1897)	(11111)	(78)	(70)		(BTO/KITA)	<u> </u>	(ONITS)		(MM BTU)	(\$)	(cents/KWH)	(\$/UNIT)
1. B.B.#1	385	233,130	84.1	85.0	93.0	10,309	COAL	101,360	23,711,227	2,403,370.0	7,902,952	3.39	77.97
2. B.B.#2	385	12,380	4.5	5.6	74.8	10,466	COAL	5,420	23,905,904	129,570.0	422,593	3.41	77.97
3. B.B.#3	365	219,350	83.5	85.4	92.3	10,529	COAL	100,600	22,957,256	2,309,500.0	7,843,696	3.58	77.97
4. B.B.#4	417	259,440	86.4	88.4	94.4	10,523	COAL	119,280	22,888,078	2,730,090.0	9,346,965	3.60	78.36
B.B. IGNITION	<u>-</u>						LGT OIL	3,560			360,740		101.33
5. B.B. COAL	1,552	724,300	64.8	66.3	92.9	10,455		-	•	7,572,530.0	25,876,946	3.57	-
6. POLK #1 GASIFIER	220	130,940	82.7	-	-	10.502	COAL	52,910	25,988,849	1,375,070.0	4,939,814	3.77	93.36
7. POLK #1 CT OIL	215	4,050	2.6	-	-	10,501	LGT OIL	7,340	5,794,278	42.530.0	754,597	18.63	102.81
8. POLK #1 TOTAL	220	134,990	85.2	85.9	99.1	10,502				1,417,600.0	5,694,411	4.22	- 102.01
9. POLK #2 CT GAS	151	0	0.0			٥	GAS	0	0	0.0			
10. POLK #2 CT OIL	151	0	0.0	-	•	0	LGT OIL	0	0	0.0	0	0.00	0.00
11. POLK #2 TOTAL	159	0	0.0	0.0	0.0	0				0.0	(0)	0.00	0.00
11. FULK #2 TOTAL	139	v	0.0	0.0	0.0	Ŭ		•	•	0.0	(0)	0.00	•
12. POLK #3 CT GAS	151	0	0.0	-	-	0	GAS	0	0	0.0	0	0.00	0.00
13. POLK #3 CT OIL	159_	0	0.0			0	LGT OIL	0	0	0.0	0	0.00	0.00
14. POLK #3 TOTAL	159	0	0.0	0.0	0.0	0		-	•	0.0	0	0.00	-
15. POLK #4 CT GAS	151	11,260	10.4	99.4	90.9	12,210	GAS	133,740	1,027,965	137,480.0	907,300	8.06	6.78
16. POLK #5 CT GAS	151	5,760	5.3	99.4	93.0	12,345	GAS	69,160	1,028,195	71,110.0	469,185	8.15	6.78
17. CITY OF TAMPA GAS	6	0	0.0	0.0	0.0	0	GAS	0	0	0.0	Ð	0.00	0.00
18. BAYSIDE #1	701	287,280	56,9	96.7	92.9	7,474	GAS	2.088.510	1.028.006	2,147,000.0	14,168,573	4.93	6.78
19. BAYSIDE #2	929	571,930	85.5	97.3	88.9	7,439	GAS	4,138,830	1,028,005	4,254,740.0	28,078,062	4.91	6.78
20. BAYSIDE #3	56	5,360	13.3	98.6	97.7	11,235	GAS	58,580	1,027,996	60,220.0	397,410	7.41	6.78
21. BAYSIDE #4	56	3,550	8.8	98.6	97.5	11,299	GAS	39,020	1,027,934	40,110.0	264,714	7,46	6.78
22. BAYSIDE #5	56	9,370	23.2	98.6	97.8	11,077	GAS	100,960	1,028,031	103,790.0	684,918	7.31	6.78
23. BAYSIDE #6	56_	7,350	18.2	98.6	99.4	11,121	GAS	79,520	1,027,918	81,740.0	539,468	7.34	6.78
24. BAYSIDE TOTAL	1,854	884,840	66.3	97.2	90.4	7,558	GAS	6,505,420	1,028,004	6,687,600.0	44,133,145	4.99	6.78
25. B.B.C.T.#4 OIL	56	870	2.2		-	10.747	LGT OIL	1,610	5,807,453	9,350.0	163,144	18.75	101.33
26. B.B.C.T.#4 GAS	56	7,820	19.4			11,660	GAS	88,700	1,027,959	91,180.0	601,746	7.69	6.78
27. B.B.C.T.#4 TOTAL	56	8,690	21.6	99.4	98.8	11,568				100,530.0	764,890	8.80	
28. SYSTEM	4,308	1,769,840	57.1	78.4	92.5	9,033	•	<u> </u>	-	15,986,850,0	77,845,877	4.40	-

LEGEND:

.

37

1

B.B. = BIG BEND

C.T. = COMBUSTION TURBINE

SCHEDULE E4

TAMPA ELECTRIC COMPANY SYSTEM NET GENERATION AND FUEL COST ESTIMATED FOR THE PERIOD: OCTOBER 2011

(A)	(8)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(L)	(K)	(L)	(M)	(N)
PLANT/UNIT	NET CAPA- BILITY	NET GENERATION	NET CAPACITY FACTOR	EQUIV. AVAIL. FACTOR	NET OUTPUT FACTOR	AVG. NET HEAT RATE	FUEL TYPE	FUEL BURNED	FUEL HEAT VALUE	FUEL BURNED	AS BURNED FUEL COST	FUEL COST PER KWH	COST OF FUEL
	<u>(MW)</u>	(MWH)	(%)	(%)	(%)	(BTU/KWH)		(UNITS)	(BTU/UNIT)	(MM BTU)	(\$)	(cents/KWH)	(\$/UNIT)
1. B.B.#1	385	182,460	63.7	65.8	91.0	10,323	COAL	79,440	23,709,215	1,883,460.0	6,184,728	3.39	77,85
·2. B.B.#2	385	0	0.0	0.0	0.0	0	COAL	0	0	0.0	0	0.00	0.00
3. B.B.#3	365	201,540	74.2	77.2	91.0	10,537	COAL	92,500	22,957,405	2,123,560.0	7,201,502	3.57	77.85
4. B.B.#4	417	267,790	86.3	88.4	94.3	10,518	COAL	123,050	22,889,069	2,816,500.0	9,626,750	3.59	78.23
B.B. IGNITION		-	-	-	-	-	LGT OIL	2,670			271,667	-	101.75
5. B.B. COAL	1,552	651,790	56.4	58.2	92.3	10,469		<u> </u>		6,823,520.0	23,284,647	3.57	
6. POLK #1 GASIFIER	220	113,010	69.0		-	10,512	COAL	45,710	25,990,155	1,188,010.0	4,232,598	3.75	92.60
7. POLK #1 CT OIL	215	3,500	2.2		-	10,497	LGT OIL	6,340	5,794,953	36,740.0	655,456	18.73	103.38
8. POLK #1 TOTAL	220	116,510	71.2	72.0	98.6	10,512		•		1,224,750.0	4,888,054	4.20	-
9. POLK #2 CT GAS	151	0	0.0		-	0	GAS	0	0	0.0	a	0.00	0.00
10. POLK #2 CT OIL	159	0	0.0	-	-	0	LGT OIL	0	0	0.0	0	0.00	0.00
11. POLK #2 TOTAL	159	0	0.0	0.0	0.0	0				0.0	0	0.00	-
12. POLK #3 CT GAS	151	D	0.0		-	0	GAS	0	0	0.0	0	0.00	0.00
13. POLK #3 CT OIL	1 59	0	0.0	-			LGT OIL	0	0	0.0	Ō	0.00	0.00
14. POLK #3 TOTAL	159	0	0.0	0.0	0.0	0				0.0	0	0.00	
15. POLK #4 CT GAS	151	3,200	2.8	99.4	84.8	12,722	GAS	39,600	1,028,030	40,710.0	271,208	8.48	6.85
16. POLK #5 CT GAS	151	240	0.2	99.4	79.5	14,167	GAS	3,310	1,027,190	3,400.0	22,669	9.45	6.85
17. CITY OF TAMPA GAS	6	O	0.0	0.0	0.0	0	GAS	0	O	0.0	0	0.00	0.00
18. BAYSIDE #1	701	264,240	50.7	96.7	91.1	7,510	GAS	1,930,380	1,028,005	1,984,440.0	13,220,592	5.00	6.85
19. BAYSIDE #2	929	575,000	83.2	97.3	87.3	7,461	GAS	4,173,450	1,028,010	4,290,350.0	28,582,703	4.97	6.85
20. BAYSIDE #3	56	2,550	6.1	98.6	99.0	11,510	GAS	28,540	1,028,381	29,350.0	195,462	7.67	6.85
21. BAYSIDE #4	56	940	2.3	98.6	93.3	12,053	GAS	11,030	1,027,199	11,330.0	75,541	8.04	6.85
22. BAYSIDE #5	56	6,450	15.5	98.6	96.8	11,271	GAS	70,710	1,028,143	72,700.0	484,272	7.51	6.85
23. BAY\$IDE #6	. 56	4,350	10.4	98.6	98.3	11,391	GAS	48,200	1,028,008	49,550.0	330,107	7.59	6.85
24. BAYSIDE TOTAL	1,854	853,530	61.9	97.2	88.6	7,542	GAS	6,262,310	1,028,010	6,437,720.0	42,888,677	5.02	6.85
25. B.B.C.T.#4 OIL	56	440	1.1	-	-	10,682	LGT OIL	810	5,802,469	4,700.0	82,416	18.73	101,75
26. B.B.C.T.#4 GAS	56_	3,920	9.4		•	11,686	GAS	44,550	1,028,283	45,810.0	305,110	7.78	6.85
27. B.B.C.T.#4 TOTAL	56	4,360	10.5	99.4	96.1	11,585		-		50,510.0	387,526	8.89	•
28. SYSTEM	4,308	1,629,630	50.8	74.7	90.9	8,947				14,580,610.0	71,742,781	4.40	-

LEGEND:

38

B.B. # BIG BEND C.T. = COMBUSTION TURBINE

TAMPA ELECTRIC COMPANY SYSTEM NET GENERATION AND FUEL COST ESTIMATED FOR THE PERIOD: NOVEMBER 2011

(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(L)	(K)	(L)	(M)	(N)
PLANT/UNIT	NET CAPA- BILITY	NET GENERATION	NET CAPACITY FACTOR	EQUIV. AVAIL. FACTOR	NET OUTPUT FACTOR	AVG. NET HEAT RATE	FUEL TYPE	FUEL BURNED	FUEL HEAT VALUE	FVEL BURNED	AS BURNED FUEL COST	FUEL COST PER KWH	COST OF FUEL
	(MW)	(MWH)	(%)	(%)	(%)	(BTU/KWH)		(UNITS)	(BTU/UNIT)	(MM BTU)	(\$)	(cents/KWH)	(\$/UNIT)
1. B.B.#1	385	231,260	83.4	85.0	92.3	10,312	COAL	100,580	23,709,286	2,384,680.0	7,837,548	3.39	77.92
2. B.B.#2	385	86,740	31.3	33.3	87.7	10,369	COAL	37,590	23,927,906	899,450.0	2,929,145	3.38	77.92
3. B.B.#3	365	121,290	46.2	54.1	80.7	10,596	COAL	55,980	22,957,128	1,285,140.0	4,362,159	3.60	77.92
4. B.B.#4	417	224,390	74.7	79.5	90.7	10,539	COAL	103,320	22,889,566	2,364,950.0	8,097,864	3.61	78.38
B.B. IGNITION				-			LGT OIL	6,230	<u> </u>		638,989		102.57
5. B.B. COAL	1,552	663,680	59.4	63.5	88.8	10,448		-	•	6,934,220.0	23,865,705	3.60	•
6. POLK #1 GASIFIER	220	128,410	81.1		-	10,556	COAL	52,160	25,986,963	1,355,480.0	4,813,211	3.75	92.28
7. POLK #1 CT OIL	215	3,970	2.6	•		10,559	LGT OIL	7,230	5,798,064	41,920.0	752,785	18.96	104.12
8. POLK #1 TOTAL	220	132,380	83.6	85.9	97,2	10,556		•	· · ·	1,397,400.0	5,565,996	4.20	
9. POLK #2 CT GAS	151	0	0.0	-	-	0	GAS	0	0	0.0	0	0.00	0.00
10. POLK #2 CT OIL	159	0	0.0			0	LGT OIL	0	0	0.0	0	0.00	0.00
11. POLK #2 TOTAL	159	0	0.0	0.0	0.0	0		-	•	0.0	0	0.00	
12. POLK #3 CT GAS	151	0	0.0	-	-	0	GAS	0	0	0.0	O	0.00	0.00
13. POLK #3 CT OIL	159	0	0.0	-	-	0	LGT OIL	0	0	0.0	0	0.00	0.00
14. POLK #3 TOTAL	159	0	0.0	0.0	0.0	0	:	•	-	0.0	0	0.00	•
15. POLK #4 CT GAS	151	1,870	1.7	99.4	88.5	12,155	GAS	22,120	1,027,577	22,730.0	160,959	8.61	7.28
16. POLK #5 CT GAS	151	790	0.7	99.4	87.2	11,734	GAS	9,010	1,028,857	9,270.0	65,562	8.30	7.28
17. CITY OF TAMPA GAS	6	0	0.0	0.0	0.0	0	GAS	0	0	0.0	0	0.00	0.00
18. BAYSIDE #1	701	110,740	21.9	74.1	92.2	7,502	GAS	808,090	1,028,004	830,720.0	5,880,174	5.31	7.28
19. BAYSIDE #2	929	450,890	67.4	97.3	85.4	7,511	GAS	3,294,400	1,028,008	3,386,670.0	23,972,137	5.32	7.28
20. BAYSIDE #3	56	1,020	2.5	98.6	95.9	11,549	GAS	11,460	1,027,923	11,780.0	83,390	8.18	7.28
21. BAYSIDE #4	56	520	1.3	98.6	92.9	11,365	GAS	5,750	1,027,826	5,910.0	41,841	8.05	7.28
22. BAYSIDE #5	56	3,260	8.1	98.6	98.7	11,239	GAS	35,640	1,028,058	36,640.0	259,339	7.96	7.28
23. BAYSIDE #6	56	2,220	5.5	98.6	94.4	11,396	GAS	24,610	1,028,037	25,300.0	179,078	8.07	7.28
24. BAYSIDE TOTAL	1,854	568,650	42.6	86./	86.8	7,557	GAS	4,179,950	1,028,008	4,297,020.0	30,415,959	5.35	7.28
25. B.B.C.T.#4 OIL	56	260	0.6	•	-	10,885	LGT OIL	490	5,775,510	2,830.0	50,258	19.33	102.57
26. B.B.C.T.#4 GAS	56	2,370	5.9		-	11,376	GAS	26,220	1,028,223	26,960.0	190,793	8.05	7.28
27. B.B.C.T.#4 TOTAL	56	2,630	6.5	99.4	99.9	11,327		-	-	29,790.0	241,051	9.17	-
28. SYSTEM	4,308	1,370,000	44.2	73.7	88.9	9,263	-		-	12,690,430.0	60,315,232	4.40	_

LEGEND:

39

B.B. = BIG BEND

C.T. = COMBUSTION TURBINE

TAMPA ELECTRIC COMPANY SYSTEM NET GENERATION AND FUEL COST ESTIMATED FOR THE PERIOD: DECEMBER 2011

	{ A }	(B)	(C)	(D)	(E)	(門)	(G)	(H)	(1)	(J)	(K)	(L)	(M)	(N)
	PLANT/UNIT	NET CAPA- BILITY (MW)	NET GENERATION (MWH)	NET CAPACITY FACTOR (%)	EQUIV. AVAIL. FACTOR (%)	NET OUTPUT FACTOR (%)	AVG. NET HEAT RATE (BTU/KWH)	FUEL	FUEL BURNED (UNITS)	FUEL HEAT VALUE (BTU/UNIT)	FUEL BURNED (MM BTU)	AS BURNED FUEL COST	FUEL COST PER KWH	COST OF FUEL
		(1914)	(89971)	(74)	(76)	(70)	(BIU/NIT)			(BTO/ONIT)		(\$)	(cents/KWH)	(\$/UNIT)
1.	B.B.#1	395	235,830	80.2	85.0	88.7	10,340	COAL	102,830	23,712,924	2,438,400.0	8,038,721	3.41	78,17
2.	B.8.#2	395	237,290	80.7	83.4	90.5	10,340	COAL	102,550	23,925,012	2,453,510.0	8,016,832	3.38	78.17
	B.B.#3	365	204,640	75.4	85.4	83.4	10,545	COAL	94,010	22,954,898	2,157,990.0	7,349,219	3.59	78.17
	B.B.#4	427	154,370	48.6	57.0	82.2	10,503	COAL	70,840	22,886,505	1,621,280.0	5,634,717	3.65	79.54
	B.B. IGNITION	-	-	-	-		<u> </u>	LGT OIL	5,340	-		551,522	-	103.28
5.	B.B. COAL	1,582	832,130	70.7	77.1	86.6	10,420	_	•	•	8,671,180.0	29,591,011	3.56	-
	POLK #1 GASIFIER	220	129,740	79.3		-	10,619	COAL	53,010	25,988,493	1,377,650.0	4,899,632	3.78	92.43
	POLK #1 CT OIL	235	4,010	2.3			10,626	LGT OIL	7,350	5,797,279	42,610.0	771,187	19.23	104.92
8.	POLK #1 TOTAL	220	133,750	81.7	85.9	95.0	10,619		•		1,420,260.0	5,670,819	4.24	•
	POLK #2 CT GAS	183	0	0.0		-	0	GAS	0	0	0.0	σ	0.00	0.00
	POLK #2 CT OIL	187	0	0.0		<u> </u>	0	LGT OIL	0	0	0.0	(0)	0.00	0.00
11.	POLK #2 TOTAL	187	0	0.0	0.0	0.0	0		•	-	0.0	(0)	0.00	•
	POLK #3 CT GAS	183	0	0.0	-	-	0	GAS	0	0	0.0	O	0.00	0.00
	POLK #3 CT OIL	187	0	0.0	-		0	LGT OIL	0	0	0.0	0_	0.00	0.00
14.	POLK #3 TOTAL	187	0	0.0	0.0	0.0	٥		-	-	0.0	0	0.00	•
15.	POLK #4 CT GAS	183	3,810	2.8	8.68	99.1	11,478	GAS	42,550	1,027,732	43,730.0	338,912	8.90	7.97
16.	POLK #5 CT GAS	183	1,770	1.3	89.8	96.7	11,571	GAS	19,920	1,028,112	20,480.0	158,663	8.96	7.97
17.	CITY OF TAMPA GAS	6	0	0.0	0.0	0.0	o	GAS	0	0	0.0	0	0.00	0.00
	BAYSIDE #1	792	364,350	61.8	96.7	77.4	7,392	GAS	2,619,770	1,027,999	2,693,120.0	20,866,546	5.73	7.97
1 9 .	BAYSIDE #2	1,047	58,440	7.5	75.3	77.8	7,425	GAS	422,070	1,028,005	433,890.0	3,361,800	5.75	7.97
20.	BAYSIDE #3	61	3,040	6.7	98.6	90.6	11,270	GAS	33,340	1,027,594	34,260.0	265,554	8.74	7.97
	BAYSIDE #4	61	1,620	3.6	98.6	85.7	11,148	GAS	17,570	1,027,888	18,060.0	139,946	8.64	7.97
	BAYSIDE #5	61	5,330	11.7	98.6	80.2	11,443	GAS	59,330	1,027,979	60,990.0	472,565	8.87	7.97
	BAYSIDE #6	61	3,590	7.9	98.6	85.3	11,429	GAS	39,920	1,027,806	41,030.0	317,964	8.86	7.97
24.	BAYSIDE TOTAL	2,083	436,370	28.2	86.1	77.7	7,520	GAS	3,192,000	1,027,992	3,281,350.0	25,424,375	5.83	7.97
	B.B.C.T.#4 OIL	61	210	0.5	-	-	10,857	LGT OIL	390	5,846,154	2,280.0	40,280	19.18	103.28
	B.B.C.T.#4 GAS	61	1,930	4.3			11,679	GAS	21,930	1,027,816	22,540.0	174,673	9.05	7.97
27.	B.B.C.T.#4 TOTAL	61	2,140	4.7	99.4	97.4	11,598		-	-	24,820.0	214,953	10.04	-
28.	SYSTEM	4,692	1,409,970	40.4	76.6	84.5	9,548	-		<u> </u>	13,461,820.0	61,398,733	4.35	-

LEGEND:

40

B.8, ≠ BIG BEND

C.T. = COMBUSTION TURBINE

SCHEDULE E4

PAGE 21 OF 31

.

SCHEDULE E5

TAMPA ELECTRIC COMPANY SYSTEM GENERATED FUEL COST INVENTORY ANALYSIS ESTIMATED FOR THE PERIOD: JANUARY 2011 THROUGH JUNE 2011

		Jan-11	Feb-11	Mar-11	Apr-11	May-11	Jun-11
	HEAVY OIL						
1.	PURCHASES:						
2.	UNITS (BBL)	0	0	0	0	0	0
3.	UNIT COST (\$/BBL)	0.00	0.00	0.00	0.00	0.00	0.00
4. 5.	AMOUNT (\$) BURNED:	C	0	0	0	o	0
6.	UNITS (BBL)	0	0	0	0	0	
7.	UNIT COST (\$/BBL)	0.00	0.00	0.00	0.00	0.00	0 D. 00
8.	AMOUNT (\$)	0	0	0	0.00	0.00	0.00
9.	ENDING INVENTORY:					-	•
	UNITS (BBL)	0	0	0	0	0	0
	UNIT COST (\$/BBL) AMOUNT (\$)	0.00	0.00	00.0	0.00	0.00	0.00
		0	0	0	0	0	0
13.	DAYS SUPPLY:	0	0	0	0	0	0
	LIGHT OIL						
	PURCHASES:						
	UNITS (BBL)	10,970	8,220	13,500	12,380	13,270	14,000
	UNIT COST (\$/BBL)	103.85	104.75	105.10	104.88	104.70	104.72
	AMOUNT (\$) BURNED:	1,139,197	861,074	1,418,816	1,298,429	1,389,311	1,466,145
	UNITS (BBL)	10,970	8,220	13,500	10.000	40.070	44.000
	UNIT COST (\$/BBL)	65.61	34.19	53.12	12,380 63.64	13,270	14,000
	AMOUNT (\$)	719,708	281,010	717,065	787,819	73.13 970,490	68.64 960,945
	ENDING INVENTORY:		Longoto	,,	107,015	370,400	566,545
23.	UNITS (BBL)	97,797	97,797	97,797	97,797	97,797	97, 7 97
24.	UNIT COST (\$/BBL)	96.63	97.26	98.21	98.95	99.62	100.25
25.	AMOUNT (\$)	9,450,069	9,512,220	9,604,575	9,676,820	9,742,763	9,804,387
26	DAYS SUPPLY: NORMAL	242	242	248	249	249	252
	DAYS SUPPLY: EMERGENCY	14	14	14	14	14	14
	COAL				, ,		
28	PURCHASES:						
	UNITS (TONS)	404,167	356,667	381,667	447,667	401,667	429,167
	UNIT COST (\$/TON)	80.26	79.28	79.74	80.31	79.47	79.58
	AMOUNT (\$)	32,438,911	28,276,081	30,432,299	35,950,256	31,921,678	34,153,490
	BURNED:			00,000,000	00,000,200	01,021,070	01,100,100
33.	UNITS (TONS)	471,700	339,580	401,630	439,870	475,830	467,410
34.	UNIT COST (\$/TON)	76.66	77.70	79.96	79.63	79.81	80.47
	AMOUNT (\$)	36,159,451	26,386,406	32,115,581	35,026,597	37,974,298	37,610,989
	ENDING INVENTORY:	700 0 47	000 404	700 474	707 000	700 405	C04 000
	UNITS (TONS)	792,347 77.03	809,434 78.52	789,471 79.38	797,269 80.45	723,105 80.98	684,863 81.27
	UNIT COST (\$/TON) AMOUNT (\$)	61,034,834	63,557,914	62,666,329	64,143,509	58,558,816	55,660,198
40.	DAYS SUPPLY:	59	61	55	52	47	44
	NATURAL GAS						
41.	PURCHASES:						
	UNITS (MCF)	2,877,184	3,908,270	3,494,140	2,867,860	4,460,906	5,444,730
	UNIT COST (\$/MCF)	7.29	6.84	6.96	7.47	7.34	7.02
	AMOUNT (\$)	20,973,904	26,730,196	24,332,814	21,431,375	32,763,640	38,222,252
	BURNED: UNITS (MCF)	2,873,390	3,908,270	3,494,140	2,867,860	4.060.030	5,444,730
	UNIT COST (\$/MCF)	7.32	6.84	6.96	7,47	7,56	7.01
	AMOUNT (\$)	21,029,073	26,730,196	24,332,815	21,431,374	30,678,177	38,165,456
	ENDING INVENTORY:						
	UNITS (MCF)	674,027	674,027	674,027	674,027	1,074,903	1,074,903
	UNIT COST (\$/MCF)	5.14	5.14	5.14	5.14	5,17	5.22
52.	AMOUNT (\$)	3,467,826	3,467,826	3,467,826	3,467,826	5,553,288	5,610,085
53.	DAYS SUPPLY:	4	4	4	5	7	7
	NUCLEAR						
54	BURNED:						
	UNITS (MMBTU)	0	0	0	O	0	0
56.	UNIT COST (\$/MMBTU)	0.00	0.00	0.00	0.00	0.00	0.00
57.	AMOUNT (\$)	0	0	0	0	D	0
	OTHER						
58.	PURCHASES:						
59.	UNITS (MMBTU)	0	0	0	0	0	0
	UNIT COST (\$/MMBTU)	0.00	0.00	0.00	0.00	0.00	0.00
	AMOUNT (\$)	0	0	0	0	0	0
61.		<u>^</u>		<u>^</u>	_	~	
61. 62 <i>.</i>	BURNED:	0	0	0	0	0	0
61. 62. 63.	UNITS (MMBTU)			0.00	0.00	0.00	0.00
61. 62. 63. 64.	UNITS (MMBTU) UNIT COST (\$/MMBTU)	0.00	0.00	0	0	0	0
61. 62. 63. 64. 65.	UNITS (MMBTU) UNIT COST (\$/MMBTU) AMOUNT (\$)		0.00	0	0	0	0
61. 62. 63. 64. 65. 66.	UNITS (MMBTU) UNIT COST (\$/MMBTU) AMOUNT (\$) ENDING INVENTORY:	0.00 0	0				
61. 62. 63. 64. 65. 66. 67.	UNITS (MMBTU) UNIT COST (\$/MMBTU) AMOUNT (\$) ENDING INVENTORY: UNITS (MMBTU)	0.00		0 0 0.00	0	0 0 0.00	0 0 0.00
61. 62. 63. 64. 65. 65. 65. 65.	UNITS (MMBTU) UNIT COST (\$/MMBTU) AMOUNT (\$) ENDING INVENTORY:	0.00 0 0	0 0	0		0	0
61. 62. 63. 64. 65. 66. 67. 68. 69.	UNITS (MMBTU) UNIT COST (\$/MMBTU) AMOUNT (\$) ENDING INVENTORY: UNITS (MMBTU) UNIT COST (\$/MMBTU)	0.00 0 0 0.00	0 0 0.00	0 0.00	0 0.00	0 0.00	0 0.00

NOTE: BEGINNING & ENDING INVENTORIES MAY NOT BALANCE BECAUSE OF THE FOLLOWING (1) LIGHT OIL-OTHER USAGE NOT INCLUDED. (2) COAL-ADDITIVES, IGNT

(2) COAL-ADDITIVES, IGNITOR AND/OR INVENTORY ADJUSTMENT ARE INCLUDED.

SCHEDULE E5

TAMPA ELECTRIC COMPANY SYSTEM GENERATED FUEL COST INVENTORY ANALYSIS ESTIMATED FOR THE PERIOD: JULY 2011 THROUGH DECEMBER 2011

		Jul-11	Aug-11	Sep-11	Oct-11	Nov-11	Dec-11	TOTAL
	HEAVY OIL						000-11	TUTAL
1.	PURCHASES:							
2. 3.	UNITS (BBL) UNIT COST (\$/BBL)	0	D	0	0	0	0	0
4.	AMOUNT (\$)	0.00 0	0.00	0.00	0.00	0.00	0.00	0.00
5.	BURNED:	v	0	0	0	0	0	0
6.	UNITS (BBL)	0	0	0	0	0	0	0
7.	UNIT COST (\$/BBL)	0.00	0.00	0.00	0.00	0.00	0.00	0.00
8. 9.	AMOUNT (\$) ENDING INVENTORY:	0	0	0	0	0	0	0.00
10.	UNITS (BBL)	0	Q	0	-			
11.	UNIT COST (\$/BBL)	0.00	0.00	0 0.00	0 0.00	0	0	0
12.	AMOUNT (\$)	0	0	0.00	0.00	0.00 0	0.00 D	0.00 0
13.	DAYS SUPPLY:	0	0	0	0	ů O	0	U
	LIGHT OIL					-	Ŭ	-
	PURCHASES:							
15. 16.	UNITS (BBL)	12,960	12,810	12,510	9,820	13,950	13,080	147,470
17.	UNIT COST (\$/BBL) AMOUNT (\$)	105.29 1,364,542	106.00 1,357,882	106.93	107.90	108.83	109.70	106.09
18.	BURNED:	1,004,042	1,357,062	1,337,646	1,059,615	1,518,234	1,434,869	15,645,760
19.	UNITS (BBL)	12,960	12,810	12,510	9,820	13,950	13,080	147,470
20.	UNIT COST (\$/BBL)	73.44	73.57	73.36	75.14	57.57	62.04	65.11
21.	AMOUNT (\$)	951,813	942,418	917,741	737,872	803,043	811,467	9,601,392
22. 23.	ENDING INVENTORY:	07 707						
23. 24.	UNITS (BBL) UNIT COST (\$/BBL)	97,797	97,797	97,797	97,797	97,797	97,797	97,7 9 7
25.	AMOUNT (\$)	100.82 9,860,227	101.40 9,916,952	102.01 9,976,411	102.52 10,026,486	103.30	104.04	104.04
						10,102,689	10,174,863	10,174,863
26. 27.	DAYS SUPPLY: NORMAL DAYS SUPPLY: EMERGENCY	255 14	254 14	252 14	253	249	254	-
	COAL	14	14	14	14	14	14	-
28.	PURCHASES:							
	UNITS (TONS)	467,667	433,500	381,667	422,667	376,667	444 867	4 04 4 007
	UNIT COST (\$/TON)	79.94	79.43	79.76	79.68	79.61	411,667 80.33	4,914,837 79,79
31.	AMOUNT (\$)	37,384,952	34,431,848	30,440,182	33,677,654	29,985,789	33,071,135	392,164,275
	BURNED:							
	UNITS (TONS) UNIT COST (\$/TON)	483,050	483,600	379,570	340,700	349,630	423,240	5,055,810
	AMOUNT (\$)	80.50 38,887,681	80.59 38,975,363	81.19 30,816,760	80.77 27,517,245	82.03 28,678,916	81.49	80.03
36.	ENDING INVENTORY:	00,007,007	00,070,000	50,010,700		20,076,910	34,490,643	404,639,930
	UNITS (TONS)	669,479	619,379	621,477	703,443	730,481	718,908	718,908
	UNIT COST (\$/TON) AMOUNT (\$)	81.67 54 570 200	81.71	81.59	81.42	81.23	81.56	81.56
		54,679,390	50,609,708	50,709,055	57,273,123	59,334,310	58,631,705	58,631,705
40.	DAYS SUPPLY:	46	47	53	58	58	53	-
	NATURAL GAS							
	PURCHASES:		A 400 700					
	UNITS (MCF) UNIT COST (\$/MCF)	6,058,700 6.94	6,436,730 6.90	6,797,020 6.79	5,945,101	4,237,300	3,276,400	55,804,341
	AMOUNT (\$)	42,068,937	44,441,222	46,142,759	6.96 41,377,837	7.32 30,998,908	8.02 26,281,826	7.09 395,765,670
	BURNED:			-,			20,201,020	000,100,010
	UNITS (MCF)	6,058,700	6,436,730	6,797,020	6,349,770	4,237,300	3,276,400	55,804,340
	UNIT COST (\$/MCF)	6.93	6.90	6.78	6.85	7.28	7, 9 7	7.08
	AMOUNT (\$) ENDING INVENTORY:	41,997,112	44,392,160	46,111,376	43,487,664	30,833,273	26,096,623	395,285,299
	UNITS (MCF)	1,074,903	1,074,903	1,074,903	670,233	670,233	670,233	670,233
	UNIT COST (\$/MCF)	5.29	5.33	5.36	5.45	5.70	5.97	0.00
	AMOUNT (\$)	5,681,910	5,730,972	5,762,354	3,652,527	3,818,162	4,003,366	4,003,366
53.	DAYS SUPPLY:	7	7	7	4	4	4	-
	NUCLEAR					•	7	
	BURNED:							
55.	UNITS (MMBTU)	0	0	0	0	0	0	0
	UNIT COST (\$/MMBTU)	0.00	0.00	0.00	0.00	0.00	0.00	0.00
57.	AMOUNT (\$)	0	0	0	0	0	0	0
	OTHER							
	PURCHASES:	_	_	_				
	UNITS (MMBTU) UNIT COST (\$/MMBTU)	0 0.00	0 0.00	0	0	0	0	0
	AMOUNT (\$)	0.00	0.00	0.00 0	0.00 0	0.00 0	0.00	0.00
	BURNED:	Ŭ	0	U	U	U	0	0
3 .	UNITS (MMBTU)	0	0	0	0	0	0	0
	UNIT COST (\$/MMBTU)	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	AMOUNT (\$)	0	0	۰o	0	0	0	0
	ENDING INVENTORY: UNITS (MMBTU)	~		~	-	_		
	UNIT COST (\$/MMBTU)	0 0.00	0 0.00	0 0.00	0 0.00	0 0.00	0	0
	AMOUNT (\$)	0.00	0.00	0.00	0.00	0.00	0.00 0	0.00 0
	DAYS SUPPLY:	0	ů	0				U
<i></i>		U	v	U	0	0	0	-

NOTE: BEGINNING & ENDING INVENTORIES MAY NOT BALANCE BECAUSE OF THE FOLLOWING (1) LIGHT OIL-OTHER USAGE NOT INCLUDED. (2) COAL-ADDITIVES, IGNITOR AND/OR INVENTORY ADJUSTMENT ARE INCLUDED.

TAMPA ELECTRIC COMPANY POWER SOLD ESTIMATED FOR THE PERIOD: JANUARY 2011 THROUGH JUNE 2011

.

SCHEDULE E6

(1)	(2)		(3)	(4)	(5)	(6)	(/)	(8)	(9)	(10)
MONTH	SOLD TO	TYPE & SCHEDULE		TOTAL MWH SOLD	MWH WHEELED FROM OTHER SYSTEMS	MWH FROM OWN GENERATION	CENT: (A) FUEL COST	S/KWH (B) TOTAL COST	TOTAL \$ FOR FUEL ADJUSTMENT	TOTAL COST	GAINS ON SALES
Jan-11	SEMINOLE	JURISD	SCHD	1,130.0	0.0	1.130.0	4.237	4.237	47,880.00	47,880.00	0.00
	VARIOUS	JURISD.	MKT. BASE	13,030.0	0.0	13,030.0	4.412	5.243	<u>574,879.00</u>	<u>683,110.00</u>	<u>57,551.00</u>
	TOTAL			14,160.0	0.0	14,160.0	4.398	5.1 62	622,759.00	730,990.00	57,551.00
Feb-11	SEMINOLE	JURISD.	SCHD	840.0	0.0	840.0	4.532	4.532	38,070.00	38,070.00	0.00
	VARIOUS	JURISD.	MKT. BAŞE	7,950.0	0.0	7,950.0	4 <u>.7</u> 56	<u>5,621</u>	378,099.00	446,880.00	37,851.00
	TOTAL			8,790.0	0.0	8,790.0	4.735	5.517	416,169.00	484,950.00	37,851.00
Mar-11	SEMINOLE	JURISD.	SCHD	1,240.0	0.0	1,240.0	4.241	4.241	52,590.00	52,590.00	0.00
	VARIOUS	JURISD.	MKT. BASE	10,720.0	0.0	10,720.0	4.478	5.316	480,079.00	569,850.00	48,061.00
	TOTAL			11,960.0	0.0	11,960.0	4.454	5.204	532,669.00	622,440.00	48,061.00
Apr-11	SEMINOLE	JURISD.	SCHD	1,330.0	0.0	1,330.0	4.199	4.199	55,850.00	55,850.00	0.00
	VARIOUS	JURISD.	MKT. BASE	6,600.0	0.0	6,600.0	4.846	5.720	319,804.00	377,490.00	32,016.00
	TOTAL			7,930.0	0.0	7,930.0	4.737	5.465	375,654.00	433,340.00	32,016.00
May-11	SEMINOLE	JURISD.	SCHD	1,240.0	0.0	1,240.0	4.575	4.575	56,730.00	56,730.00	0.00
	VARIOUS	JURISD.	MKT. BASE	9,950.0	0.0	9,950.0	4.655	5.510	463,154.00	548,240.00	46,366.00
	TOTAL			11,190.0	0.0	11,190.0	4.646	5.406	519,884.00	604,970.00	46,366.00
Jun-11	SEMINOLE	JURISD.	SCHD	1,330.0	0.0	1,330.0	4.602	4.602	61,200.00	61,200.00	0.00
	VARIOUS	JURISD.	MKT. BASE	13,150.0	<u>0</u> .0	13,150.0	4.949	5.834	650,853.00	767,140.00	65,157.00
	TOTAL			14,480.0	0.0	14,480.0	4.917	5.721	712,053.00	828,340.00	65,157.00

SCHEDULE E6

(1)	(2)		(3)	(4)	(5) MWH	(6)		7)	(8)	(9)	(10)
MONTH	TYPE & NONTH SOLD TO SCHEDULE		&	TOTAL MWH SOLD	WHEELED FROM OTHER SYSTEMS	MWH FROM OWN GENERATION	CENT: (A) FUEL COST	S/KWH (B) TOTAL COST	TOTAL \$ FOR FUEL ADJUSTMENT	TOTAL COST	GAINS ON
Jul-11	SEMINOLE	JURISD.	SCHD	1,340.0	0.0	1,340.0	4.655	4.655	62,380.00	62,380.00	0.00
	VARIOUS	JURISD.	MKT. BASE	19,600.0	0.0	19,600.0	4.817	5.689	944,224.00	1,114,990.00	94,526.00
	TOTAL			20,940.0	0.0	20,940.0	4.807	5.623	1,006,604.00	1,177,370.00	94,526.00
Aug-11	SEMINOLE	JURISD.	SCHD	1,320.0	0.0	1,320.0	4.678	4.678	61,750.00	61,750.00	0.00
	VARIOUS	JURISD.	MKT. BASE	20,670.0	0.0	20,670.0	4.697	5.557	970,939.00	1,148,540.00	97,201.00
	TOTAL			21,990.0	0.0	21,990.0	4.696	5.504	1,032,689.00	1,210,290.00	97,201.00
Sep-11	SEMINOLE	JURISD.	SCHD	1,350.0	0.0	1,350.0	4.613	4.613	62,280.00	62,280.00	0.00
	VARIOUS	JURISD.	MKT. BASE	17,360.0	0.0	17,360.0	4.824	5.696	837,444.00	988,800.00	83,836,00
	TOTAL			18,710.0	0.0	18,710.0	4.809	5.618	899,724.00	1,051,080.00	83,836.00
Oct-11	SEMINOLE	JURISD.	SCHD	970.0	0.0	970.0	4.568	4.568	44,310.00	44,310.00	0.00
	VARIOUS	JURISD.	MKT. BASE	18,470.0	0.0	18,470.0	4.626	5.478	854,342.00	1,011,730.00	85,528.00
	TOTAL			19,440.0	0.0	19,440.0	4.623	5.432	898,652.00	1,056,040.00	85,528.00
Nov-11	SEMINOLE	JURISD.	SCHD	810.0	0.0	810.0	4.512	4.512	36,550.00	36,550.00	0.00
	VARIOUS	JURISD.	MKT. BASE	10,800.0	0.0	10,800.0	4.756	5.621	513,621.00	607,050.00	51,419.00
	TOTAL			11,610.0	0.0	11,610.0	4.739	5.543	550,171.00	643,600.00	51,419.00
Dec-11	SEMINOLE	JURISD.	SCHD	820.0	0.0	820.0	4.979	4.979	40,830.00	40,830.00	0.00
	VARIOUS	JURISD.	MKT. BASE	13,700.0	0.0	13,700.0	5.259	6.174	720,455.00	845,870.00	72,125.00
	TOTAL			14,520.0	0.0	14,520.0	5.243	6.107	761,285.00	886,700.00	72,125.00
TOTAL	SEMINOLE	JURISD	SCHD	13,720.0	0.0	13,720.0	4.522	4.522	620,420.00	620,420.00	0.00
Jan-11 THRU	VARIOUS	JURISD.	MKT. BASE	162,000.0	0.0	162,000.0	4.758	5.623	7,707,893.00	9,109,690.00	771,637.00
Dec-11	TOTAL			175,720.0	0.0	175,720.0	4.740	5.537	8,328,313.00	9,730,110.00	771,637.00

TAMPA ELECTRIC COMPANY POWER SOLD ESTIMATED FOR THE PERIOD: JULY 2011 THROUGH DECEMBER 2011

44

.

TAMPA ELECTRIC COMPANY PURCHASED POWER EXCLUSIVE OF ECONOMY AND QUALIFYING FACILITIES ESTIMATED FOR THE PERIOD: JANUARY 2011 THROUGH JUNE 2011

٠

SCHEDULE E7

(1)	(2)	(3)	(4)	(5)	(6)	(7)		(8)	(9)
				MWH	MWH		CENT	S/KWH	
MONTH	PURCHASED FROM	TYPE & SCHEDULE	TOTAL MWH PURCHASED	FOR OTHER UTILITIES	FOR INTERRUP- TIBLE	MWH FOR FIRM	(A) FUEL COST	(B) TOTAL COST	TOTAL \$ FOR FUEL ADJUSTMENT
Jan-11									
	HPP	IPP	0.0	0.0	0.0	0,0	0.000	0.000	0.00
	CALPINE	SCH. D	0.0	0.0	0.0	0.0	0.000	0.000	0.00
	RELIANT	SCH. D	0.0	0.0	0.0	0.0	0.000	0.000	0.00
	PASCO COGEN	SCH. D	1,360.0	0.0	0.0	1,360.0	6.690	6.690	90,990.00
	TOTAL		1,360.0	0.0	0.0	1,360.0	6.690	6.690	90,990.00
Feb-11									
	HPP	IPP	0.0	0.0	0.0	0.0	0.000	0.000	0.00
	CALPINE	SCH. D	0.0	0.0	0.0	0.0	0.000	0.000	0.00
	RELIANT	SCH. D	0.0	0.0	0.0	0.0	0.000	0.000	0.00
	PASCO COGEN	SCH. D	2,420.0	0.0	0.0	2,420.0	6.132	6.132	148,400.00
	TOTAL		2,420.0	0.0	0.0	2,420.0	6.132	6.132	148,400.00
Mar-11									
	HPP	IPP	4,230.0	0.0	0.0	4,230.0	6.259	6.259	264,740.00
	CALPINE	SCH. D	220.0	0.0	0.0	220.0	9.118	9.118	20,060.00
	RELIANT	SCH. D	0.0	0.0	0.0	0.0	0.000	0.000	0.00
	PASCO COGEN	SCH. D	4,410.0	0 <u>.</u> 0	0.0	<u>4,410.0</u>	6.306	6.306	278,100.00
	TOTAL		8,860.0	0.0	0.0	8,860.0	6.353	6.353	562,900.00
Apr-11		· .							
	HPP	IPP	12,500.0	0.0	0.0	12,500.0	6.367	6.367	795,890.00
	CALPINE	SCH. D	2,330.0	0.0	0.0	2,330.0	8.383	8.383	195,330.00
	RELIANT	SCH. D	0.0	0.0	0.0	0.0	0.000	0.000	0.00
	PASCO COGEN	SCH. D	14,160.0	0.0	0.0	14,160.0	6.691	6.691	947,480.00
	TOTAL		28,990.0	0.0	0.0	28,990.0	6.687	6.687	1,938,700.00
May-11									
	HPP	IPP	43,480.0	0.0	0.0	43,480.0	6.146	6.146	2,672,470.00
	CALPINE	SCH. D	0.0	0.0	0.0	0.0	0.000	0.000	0.00
	RELIANT	SCH. D	1,640.0	0.0	0.0	1,640.0	8.662	8.662	142,050.00
	PASCO COGEN	SCH. D	22,460.0	0.0	0.0	22,460.0	6.672	6.672	1,498,500.00
	TOTAL		67,580.0	0.0	0.0	67,580.0	6.382	6.382	4,313,020.00
Jun-11									
	HPP	IPP	35,160.0	0.0	0.0	35,160.0	6.265	6.265	2,202,650.00
	CALPINE	SCH. D	0.0	0.0	0.0	0.0	0.000	0.000	0.00
	RELIANT	SCH. D	3,730.0	0.0	0.0	3,730.0	8.523	8.523	317,920.00
	PASCO COGEN	SCH. D	20,060.0	0.0	0.0	20,060.0	6.215	6.215	1,246,720.00
	TOTAL		58,950.0	0.0	0.0	58,950.0	6.391	6.391	3,767,290.00

. .

TAMPA ELECTRIC COMPANY PURCHASED POWER EXCLUSIVE OF ECONOMY AND QUALIFYING FACILITIES ESTIMATED FOR THE PERIOD: JULY 2011 THROUGH DECEMBER 2011

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8	3)	(9)
				MWH	MWH		CENTS		
MONTH	PURCHASED FROM	TYPE & SCHEDULE	TOTAL MWH PURCHASED	FOR OTHER UTILITIES	FOR INTERRUP- TIBLE	MWH FOR FIRM	(A) FUEL COST	(B) TOTAL COST	TOTAL \$ FOR FUEL ADJUSTMENT
Jul-11									
	HPP	IPP	27,670.0	0.0	0.0	27,670.0	6.375	6.375	1,763,860.00
	CALPINE	SCH. D	0.0	0.0	0.0	0.0	0.000	0.000	0.00
	RELIANT	SCH. D	2,220.0	0.0	0.0	2,220.0	8.350	8.350	185,370.00
	PASCO COGEN	SCH. D	17,390.0	0.0	0.0	17,390.0	6.188	6.188	1,076,170.00
	TOTAL		47,280.0	0.0	0.0	47,280.0	6.399	6.399	3,025,400.00
Aug-11									
Aug-17	HPP	IPP	32,140.0	0.0	0.0	32,140.0	6.396	6.396	2,055,810.00
	CALPINE	SCH. D	0.0	0.0	0.0	0.0	0.000	0.000	0.00
	RELIANT	SCH. D	400.0	0.0	0.0	400.0	13.838	13.838	55,350.00
	PASCO COGEN	SCH. D	16,670.0	0.0	0.0	16,670.0	6.138	6.138	1,023,260.00
	TOTAL		49,210.0	0.0	0.0	49,210.0	6.369	6.369	3,134,420.00
Sep-11									
	HPP	IPP	29,510.0	0.0	0.0	29,510.0	6.473	6.473	1,910,250.00
	CALPINE	SCH. D	0.0	0.0	0.0	0.0	0.000	0.000	0.00
	RELIANT	SCH. D	960.0	0.0	0.0	960.0	13.697	13.697	131,490.00
	PASCO COGEN	SCH. D	19,090.0	0.0	0.0	19,090.0	6.054	6.054	1,155,650.00
	TOTAL	-	49,560.0	0.0	0.0	49,560.0	6.452	6.452	3,197,390.00
Oct-11									
	HPP	IPP	15,350.0	0.0	0.0	15,350.0	6.507	6.507	998,790.00
	CALPINE	SCH. D	0.0	0.0	0.0	0.0	0.000	0.000	0.00
	RELIANT	SCH. D	0.0	0.0	0.0	0.0	0.000	0.000	0.00
	PASCO COGEN	SCH. D	12,090.0	0.0	0.0	12,090.0	6.119	6.11 9	739,760.00
	TOTAL		27,440.0	0.0	0.0	27,440.0	6.336	6.336	1,738,550.00
Nov-11									
	HPP	IPP	8,400.0	0.0	0.0	8,400.0	6.783	6.783	569,730.00
	CALPINE	SCH. D	0.0	0.0	0.0	0.0	0.000	0.000	0.00
	RELIANT	SCH. D	0.0	0.0	0.0	0.0	0.000	0.000	0.00
	PASCO COGEN	SCH. D	11,120.0	0.0	0.0	11,120.0	6.560	6.560	729,480.00
	TOTAL		19,520.0	0.0	0.0	19,520.0	6.656	6.656	1,299,210.00
Dec-11									
	HPP	IPP	21,550.0	0.0	0.0	21,550.0	6.411	6.411	1,381,520.00
	CALPINE	SCH. D	0.0	0.0	0.0	0.0	0.000	0.000	0.00
	RELIANT	SCH. D	410.0	0.0	0.0	410.0	11.627	11.627	47,670.00
	PASCO COGEN TOTAL	SCH. D	12,540.0 34,500.0	0.0	0.0	<u>12,540.0</u> 34,500.0	<u>6.988</u> 6.683	<u>6.988</u> 6.683	876,300.00 2,305,490.00
	, UTAL		·						
TOTAL	HPP	IPP	229,990.0	0.0	0.0	229,990.0	6.355	6.355	14,615,710.00
Jan-11	CALPINE	SCH. D	2,550.0	0.0	0.0	2,550.0	8.447	8.447	215,390.00
THRU	RELIANT	SCH. D	9,360.0	0.0	0.0	9,360.0 153,770.0	9.400	9.400	879,850.00
Dec-11	PASCO COGEN	SCH. D	153,770.0	. 0.0	0.0	153.770.0	6.380	6.380	9,810,810.00

TAMPA ELECTRIC COMPANY ENERGY PAYMENT TO QUALIFYING FACILITIES ESTIMATED FOR THE PERIOD: JANUARY 2011 THROUGH DECEMBER 2011

-

.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
				MWH	MWH		CENTS	(17)AH 1	
MONTH	PURCHASED FROM	TYPE & SCHEDULE	TOTAL MWH PURCHASED	FOR OTHER UTILITIES	FOR INTERRUP- TIBLE	MWH - FOR FIRM	(A) FUEL COST	(B) TOTAL COST	TOTAL \$ FOR FUEL ADJUST- MENT
Jan-11	VARIOUS	CO-GEN.							
	141000	FIRM	19,590.0	0.0	0.0	19,590.0	0.000		
		AS AVAIL.	34,340.0	0.0	0.0	34,340.0	3.368 5.385	3.368 5.385	659,870.0 1,849,040.0
	TOTAL		53,930.0	0.0	0.0	53,930.0	4.652	4.652	2,508,910.0
Feb-11	VARIOUS	CO-GEN.							
		FIRM	17,690.0	0.0	0.0	17,690.0	3.470	3.470	613,900.0
		AS AVAIL.	30,790.0	0.0	0.0	30,790.0	5.090	5.090	1,567,340.00
	TOTAL		48,480.0	0.0	0.0	48,480.0	4.499	4.499	2,181,240.0
Mar-11	VARIOUS	CO-GEN.							
		FIRM	19,600.0	0.0	0.0	19,600.0	3.532	3.532	692,190.00
		AS AVAIL.	34,410.0	0.0	0.0	34,410.0	5.156	5.156	1,774,340.00
	TOTAL		54,010.0	0.0	0.0	54,010.0	4.567	4.567	2,466,530.0
Apr-11	VARIOUS	CO-GEN.							
		FIRM	19,640.0	0.0	0.0	19,640.0	3.495	3.495	686,500.00
	TOTAL	AS AVAIL.	32,840.0	0.0	0.0	32,840.0	5.802	5.802	1,905,530.00
	TOTAL		52,480.0	0.0	0.0	52,480.0	4.939	4.939	2,592,030.0
May-11	VARIOUS	CO-GEN.							
		FIRM	20,230.0	0.0	0.0	20,230.0	3.515	3.515	711,130.00
	TOTAL	AS AVAIL.	33,940.0 54,170.0	0.0	0.0	33,940.0 54,170.0	7.155	7.155	2,428,430.00
			34,170.0	0.0	0.0	54,170.0	5.796	5.796	3,139,560.0
Jun-11	VARIOUS	CO-GEN.							
		FIRM AS AVAIL.	19,720.0 33,390.0	- 0.0	0.0	19,720.0	3.533	3.533	696,730.00
	TOTAL		53,110.0	0.0	<u>0.0</u>	33,390.0 53,110.0	6.330 5.292	6.330 5.292	2,113,680.00
			,			00,110.0	U.LUL	JILJE	2,010,410.0
Jul-11	VARIOUS	CO-GEN.	00.030.0						
		FIRM AS AVAIL.	20,270.0 33,950.0	0.0 0.0	0.0 0.0	20,270.0 33,950.0	3.552 6.283	3.552 6.283	719,970.00
	TOTAL		54,220.0	0.0	0.0	54,220.0	5.262	5.262	2,132,960.00 2,852,930.0
Aug-11	VARIOUS	CO-GEN. FIRM	8,370.0	0.0	0.0	8,370.0	3 667	0.557	007 700 00
		AS AVAIL.	34,000.0	0.0	0.0	8,370.0 34,000.0	3.557 6.296	3.557 6.296	297,720.00 2,140,730.00
	TOTAL	-	42,370.0	0.0	0.0	42,370.0	5.755	5.755	2,438,450.0
Sep-11	VARIOUS	CO-GEN.							
oeb-11		FIRM	6,210.0	0.0	0.0	6,210.0	3.581	3.581	222,380.00
		AS AVAIL.	33,280.0	0.0	0.0	33,280.0	6.359	6.359	2,116,240.00
	TOTAL	_	39,490.0	0.0	0.0	39,490.0	5.922	5.922	2,338,620.00
Oct-11	VARIOUS	CO-GEN.							
		FIRM	6,420.0	0.0	0.0	6,420.0	3.545	3.545	227,610.00
		AS AVAIL.	34,140.0	0.0	0.0	34,140.0	5.888	5.888	2,010,000.00
	TOTAL		40,560.0	0.0	0.0	40,560.0	5.517	5.517	2,237,610.00
Nov-11	VARIOUS	CO-GEN.							
		FIRM	6,210.0	0.0	0.0	6,210.0	3.612	3.612	224,310.00
		AS AVAIL.	32,840.0	0.0	0.0	32,840.0	5.970	5.970	1,960,700.00
	TOTAL		39,050.0	0.0	0.0	39,050.0	5.595	5.595	2,185,010.00
Dec-11	VARIOUS	CO-GEN.							
		FIRM	5,700.0	0.0	0.0	5,700.0	3.639	3.639	207,400.00
		AS AVAIL	34,350.0 40,050.0	0.0	0.0	34,350.0	6.009	6.009	2,064,170.00
				17.0	0.0	40,050.0	5.672	5.672	2,271,570.00
	TOTAL		40,000,0	••					_, ,
AL	TOTAL VARIOUS	CO-GEN.	40,000.0	••					_, , , , ,
	TOTAL VARIOUS	CO-GEN. FIRM AS AVAIL,	169,650.0 402,270.0	0.0 0.0	0.0	169,650.0 402,270.0	3.513 5.982	3.513	5,959,710.00 24,063,160.00

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9))	(10)
		n		MWH				COST IF GE		
MONTH	PURCHASED FROM	TYPE & SCHEDULE	TOTAL MWH PURCHASED	FOR INTERRUP- TIBLE	MWH FOR FIRM	TRANSACT. COST cents/KWH	TOTAL \$ FOR FUEL ADJUSTMENT	(A) CENTS PER KWH	(B) (\$000)	FUEL SAVINGS (9B)-(8)
Jan-11	VARIOUS	ECONOMY	11,980.0	0.0	11,980.0	4.527	542,330.00	4.527	542,330.00	0.00
Feb-11	VARIOUS	ECONOMY	5,120.0	0.0	5,120.0	4.166	213,290.00	4.166	213,290.00	0.00
Mar-11	VARIOUS	ECONOMY	13,070.0	0.0	13,070.0	4.266	557,610.00	4.266	557,610.00	0.00
Apr-11	VARIOUS	ECONOMY	32,120.0	0.0	32,120.0	4.111	1,320,530.00	4.111	1,320,530.00	0.00
May-11	VARIOUS	ECONOMY	60,000.0	0.0	60,000.0	4.879	2,927,600.00	4.879	2,927,600.00	0.00
Jun-11	VARIOUS	ECONOMY	16,170.0	0.0	16,170.0	5.080	821,450.00	5.080	821,450.00	0.00
Jul-11	VARIOUS	ECONOMY	10,880.0	0.0	10,880.0	5.114	556,390.00	5.114	556,390.00	0.00
Aug-11	VARIOUS	ECONOMY	13,270.0	0.0	13,270.0	4.781	634,430.00	4.781	634,430.00	0.00
Sep-11	VARIOUS	ECONOMY	45,100.0	0.0	45,100.0	4.733	2,134,630.00	4.733	2,134,630.00	0.00
Oct-11	VARIOUS	ECONOMY	33,200.0	0.0	33,200.0	4.647	1,542,740.00	4.647	1,542,740.00	0.00
Nov-11	VARIOUS	ECONOMY	5,390.0	0.0	5,390.0	4.765	256,810.00	4.765	256,810.00	0.00
Dec-11	VARIOUS	ECONOMY	45,270.0	0.0	45,270.0	4.468	2,022,450.00	4.468	2,022,450.00	0.00
TOTAL	VARIOUS	ECONOMY	2 <u>91,5</u> 70.0	0.0	291,570.0	4.640	13,530,260.00	4.640	13,530,260.00	0.00

TAMPA ELECTRIC COMPANY ECONOMY ENERGY PURCHASES ESTIMATED FOR THE PERIOD: JANUARY 2011 THROUGH DECEMBER 2011

SCHEDULE E10

TAMPA ELECTRIC COMPANY RESIDENTIAL BILL COMPARISON FOR MONTHLY USAGE OF 1,000 KWH

	Current	Projected	Differer	ICe
	Jan 10 - Dec 10	Jan 11 - Dec 11	\$	%
Base Rate Revenue	55.45	55.45	0.00	0%
Fuel Recovery Revenue	41.67	38.75	(2.92)	-7%
Conservation Revenue	2.54	3.22	0.68	27%
Capacity Revenue	5.39	3.36	(2.03)	-38%
Environmental Revenue	4.86	4.04	(0.82)	-17%
Florida Gross Receipts Tax Revenue	2.82	2.69	(0.13)	5%
TOTAL REVENUE	\$112.73	\$107.51	(\$5.22)	5%

TAMPA ELECTRIC COMPANY GENERATING SYSTEM COMPARATIVE DATA BY FUEL TYPE PERIOD: JANUARY THROUGH DECEMBER

.

SCHEDULE H1

		ACTUAL 2009	ACTUAL 2000	ACTIERT ANA	COT DO 44		DIFFERENCE (%)	
-		ACTUAL 2008	ACTUAL 2009	ACT/EST 2010	EST 2011	2009-2008	2010-2009	2011-2010
FUI	EL COST OF SYSTEM NE		(\$)					
1	HEAVY OIL (1)	3,030,195	3,015,616	0	0	-0.5%	400.00	
2	LIGHT OIL (1)	7,265,628	6,186,693	8,210,479	9,601,392	-14.8%	-100.0%	0.0%
3	COAL	316,207,516	305,837,556	350,032,342	404,639,930	-14.8%	32.7% 14.5%	16.9%
4	NATURAL GAS	593,652,315	519,527,349	430,646,133	395,285,299	-12.5%	-17.1%	15.6% -8.2%
	NUCLEAR	0	0	0	0	0.0%	0.0%	-0.2 %
	OTHER	0	0	0	0	0.0%	0.0%	0.0%
7	TOTAL (\$)	920,155,654	834,567,214	788,888,954	809,526,621	-9.3%	-5.5%	2.6%
eve	STEM NET GENERATION	(181 a 1)						
	HEAVY OIL (1)	(-				
	LIGHT OIL (1)	18,437	23,796	0	0	29.1%	-100.0%	0.0%
	COAL	33,159	33,256	49,534	52,040	0.3%	48.9%	5.1%
	NATURAL GAS	10,193,095 7,535,297	9,619,445 8,660,347	10,837,080	11,431,750	-5.6%	12.7%	5.5%
	NUCLEAR	7,000,291	0,000,347	8,471,552 0	7,505,930 0	14.9% 0.0%	-2.2%	-11.4%
	OTHER	ő	0	0	0	0.0%	0.0% 0.0%	0.0% 0.0%
14	TOTAL (MWH)	17,779,988	18,336,844	19,358,166	18,989,720	3.1%	5.6%	-1.9%
					,			
	TS OF FUEL BURNED							
	HEAVY OIL (BBL) (1)	31,690	39,682	0	Û	25.2%	-100.0%	0.0%
	LIGHT OIL (BBL) (1)	60,655	62,998	114,725	147,470	3.9%	82.1%	28.5%
	COAL (TON)	4,621,065	4,238,624	4,711,333	5,055,810	-8.3%	11.2%	7.3%
	NATURAL GAS (MCF)	54,408,485	63,535,787	62,615,706	55,804,340	16.8%	-1.4%	-10.9%
	NUCLEAR (MMBTU)	0	0	0	Û	0.0%	0.0%	0.0%
20	OTHER	0	0	٥	0	0.0%	0.0%	0.0%
BTL	JS BURNED (MMBTU)							
	HEAVY OIL (1)	198,802	248.834	0	0	25.2%	-100.0%	0.0%
		327,063	351,269	490,525	550, 5 00	7.4%		
	COAL	109,791,173	101,367,908	490,525 112,329,879	550,500 119,538,720	-7.7%	39.6% 10.8%	12.2%
	NATURAL GAS	56,000,801	65,028,004	64,046,452	57,366,930	-7.7%		6.4%
	NUCLEAR	30,000,001	03,028,004	04,040,452	37,300,930 Ş	0.0%	-1.5% 0.0%	-10.4%
	OTHER	0	0	ő	0	0.0%	0.0%	0.0% 0.0%
	TOTAL (MMBTU)	166,317,839	166,996,015	176,866,856	177,456,150	0.4%	5.9%	0.0%
	· · · · · · · · · · · · · · · · · · ·				,			0.071
	VERATION MIX (% MWH)							
28	HEAVY OIL (1)	0.10	0.13	0.00	0.00	30.0%	-100.0%	0.0%
29	LIGHT OIL ⁽¹⁾	0.19	0.18	0.26	0.27	-5.3%	44.4%	3.8%
30	COAL	57.33	52.46	55.98	60.20	-8.5%	6.7%	7.5%
31	NATURAL GAS	42.38	47.23	43.76	39.53	11.4%	-7.3%	-9.7%
32	NUCLEAR	0.00	0.00	0.00	0.00	0.0%	0.0%	0.0%
33	OTHER	0.00	0.00	0.00	0.00	0.0%	0.0%	0.0%
34	TOTAL (%)	100.00	100.00	100.00	100.00	0.0%	0.0%	0.0%
	L COST PER UNIT							
	HEAVY OIL (\$/BBL) (1)	95.62	75.99	0.00	0.00	-20,5%	100.01	0.00
	LIGHT OIL (\$/BBL) (1)						-100.0%	0.0%
	COAL (\$/TON)	119.79	98.20 72.15	71.57	65.11	-18.0%	-27.1%	-9.0%
	NATURAL GAS (\$/MCF)	68.43 10.91	8.18	74.30	80.03 7.08	5.4% -25.0%	3.0%	7.7%
	NUCLEAR (\$/MMBTU)	0.00	0.00	6.88 0.00	0.00	-25.0%	-15.9% 0.0%	2.9% 0.0%
	OTHER	0.00	0.00	0.00	0.00	0.0%	0.0%	0.0%
	OTHER	0.00	0.00	0.00	0.00	0.078	0.0 /d	V.U /4
	L COST PER MMBTU (\$/	MMBTU)						
41 :	HEAVY OIL ⁽¹⁾	15.24	12.12	0.00	0.00	-20.5%	-100.0%	0.0%
42	LIGHT OIL ⁽¹⁾	22.21	17.61	16.74	17.44	-20.7%	-4.9%	4.2%
43 -	COAL	2.88	3.02	3.12	3.39	4.9%	3.3%	8.7%
44	NATURAL GAS	10.60	7.99	6.72	6.89	-24.6%	-15. 9 %	2.5%
45 I	NUCLEAR	0.00	0.00	0.00	0.00	0.0%	0.0%	0.0%
	OTHER	0.00	0.00	0.00	0.00	0.0%	0.0%	0.0%
47 -	TOTAL (\$/MMBTU)	5.53	5.00	4.46	4.56	-9.6%	-10.8%	2.2%
вти								
	I BURNED PER KWH (BT HEAVY OIL ⁽¹⁾		40.457	•				
		10,783	10,457	0	0	-3.0%	-100.0%	0.0%
		9,863	10,563	9,903	10,578	7.1%	-6.2%	6.8%
	COAL NATURAL GAS	10,771	10,538 7,509	10,365	10,457	-2.2%	-1.6%	0.9%
	NUCLEAR	7,432 0	7,509	7,560 0	7,643 0	1.0% 0.0%	0.7%	1.1%
	OTHER	0.00	0.00	0.00	0.00	0.0%	0.0% 0.0%	0.0% 0.0%
	TOTAL (BTU/KWH)	9,354	9,107	9,137	9,345	-2.6%	0.0%	2.3%
	IERATED FUEL COST PE			-,	,		/	
	HEAVY OIL (1)	16.44	12.67	0.00	0.00	-22.9%	-100.0%	0.0%
		21.91	18.60	16.58	18.45	-15.1%		
	COAL	3.10	3.18				-10.9% 1.6%	11.3%
	NATURAL GAS	7.88	3.18 6.00	3.23	3.54 5.27	2.6% -23.9%	1.6%	9.6% 3.7%
	NUCLEAR	0.00	0.00	5.0B 0.00	5.27	-23.9%	-15.3%	3.7%
							0.0%	0.0%
	OTHER	0.00	0.00	0.00				
50 C	OTHER TOTAL (cents/KWH)	0.00		0.00 4.08	0.00	0.0%	<u></u>	<u> </u>

() DISTILLATE (BBLS, MWH & \$) USED FOR FIRING, HOT STANDBY, ETC. IS INCLUDED IN FOSSIL STEAM PLANTS.

50

Docket No. 100001-EI FAC 2011 Projection Filing Exhibit CA-3, Page 1 of 2 Document No. 3

EXHIBIT TO THE TESTIMONY OF

CARLOS ALDAZABAL

DOCUMENT NO. 3

LEVELIZED AND TIERED FUEL RATE

JANUARY 2011 - DECEMBER 2011

Tampa Electric Company Comparison of Levelized and Tiered Fuel Revenues For the Period Janury 2011 through December 2011

	Annual Units MWH	Levelized Fuel Rate Cen <u>ts</u> /kW <u>h</u>	Annual Fuel Revenues \$	Tiered Fuel Rates Cents/kWh	Annual Fuel Revenues \$
Residential Excluding TOU:	·				
TIER I (Up to 1,000) kWh	5,751,510	4.225	243,001,300	3.875	222,871,015
TIER II (Over 1,000) kWh	3,096,967	4.225	130,846,854	4.875	150,977,139
Total	8,848,477		373,848,153		373,848,154

BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION

DOCKET NO. 100001-EI IN RE: TAMPA ELECTRIC'S FUEL & PURCHASED POWER COST RECOVERY AND CAPACITY COST RECOVERY PROJECTIONS JANUARY 2011 THROUGH DECEMBER 2011

> TESTIMONY AND EXHIBIT OF BRIAN S. BUCKLEY

> > STACHMENT REMERADORS

-07381 SEP 12

FPSC-COMMISSION CLERK

1		BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION
2		PREPARED DIRECT TESTIMONY
3		OF
4		BRIAN S. BUCKLEY
5		
6	Q.	Please state your name, business address, occupation and
7		employer.
8		
9	A.	My name is Brian S. Buckley. My business address is 702
10		North Franklin Street, Tampa, Florida 33602. I am
11		employed by Tampa Electric Company ("Tampa Electric" or
12		"company") in the position of Manager, Operations
13		Planning.
14		
15	Q.	Please provide a brief outline of your educational
16		background and business experience.
17		
18	A.	I received a Bachelor of Science degree in Mechanical
19		Engineering in 1997 from the Georgia Institute of
20		Technology and a Master of Business Administration from
21		the University of South Florida in 2003. I began my
22		career with Tampa Electric in 1999 as an Engineer in
23		Plant Technical Services. I have held a number of
24		different engineering positions at Tampa Electric's
25		power generating stations including operations,

instrumentation and controls, performance planning and 1 asset management. In October 2008, I was promoted to 2 Manager, Operations Planning, where I am currently 3 responsible for unit commitment and 4 reporting of generation statistics. 5 6 What is the purpose of your testimony? 7 Q. 8 My testimony describes Tampa Electric's maintenance Α. 9 planning processes and presents Tampa Electric's 10 methodology for determining the various factors required 11 to compute the Generating Performance Incentive Factor 12 ("GPIF") as ordered by the Commission. 13 14prepared any exhibits to support your Q. Have you 15 16 testimony? 17 Α. Yes, Exhibit No. (BSB-2), consisting of two 18 prepared under direction and 19 documents, was my GPIF supervision. Document No. 1 contains the 20 Document No. 2 is a summary of the GPIF schedules. 21 targets for the 2011 period. 22 23 Which generating units on Tampa Electric's system are Q. 24 included in the determination of the GPIF? 25

A. Four of the company's coal-fired units, one integrated
gasification combined cycle unit and two natural gas
combined cycle units are included. These are Big Bend
Units 1 through 4, Polk Unit 1 and Bayside Units 1 and
2.

Q. Do the exhibits you prepared comply with Commissionapproved GPIF methodology?

6

7

8

9

22

consistent with the GPIF documents are Α. Yes. the 10 Implementation Manual previously approved by the 11 Commission. To account for the concerns presented in 12 the testimony of Commission Staff witness Sidney W. 13 Matlock during the 2005 fuel hearing, Tampa Electric 14 outliers from the calculation of the GPIF removes 15 Section 3.3 of the GPIF Implementation Manual targets. 16 allows for removal of outliers, and the methodology was 17 approved by the Commission in Order No. PSC-06-1057-FOF-18 EI issued in Docket No. 060001-EI on December 22, 2006. 19 20 Did Tampa Electric identify any outages as outliers? Q. 21

A. Yes. One outage from Big Bend Unit 1, one outage from
 Big Bend Unit 2, one outage from Big Bend Unit 3 and one
 outage from Polk Unit 1 were identified as outlying

outages; therefore, the associated forced outage hours 1 were removed from the study. 2 3 Please describe how Tampa Electric developed the various Q. 4 factors associated with the GPIF. 5 6 Targets were established for equivalent availability and Α. 7 heat rate for each unit considered for the 2011 period. 8 A range of potential improvements and degradations were 9 determined for each of these metrics. 10 11 target values for unit availability 12 Q. How were the determined? 13 14 The Planned Outage Factor ("POF") and the Equivalent 15 Α. Unplanned Outage Factor ("EUOF") were subtracted from 16 percent to determine the target Equivalent 100 17 The factors for each of Availability Factor ("EAF"). 18 the seven units included within the GPIF are shown on 19 page 5 of Document No. 1. 20 To give an example for the 2011 period, the projected 21 EUOF for Big Bend Unit 3 is 11.3 percent, and the POF is 22 Therefore, the target EAF for Big Bend 6.6 percent. 23 Unit 3 equals 82.1 percent or: 24 25

1		100% - $(11.3% + 6.6%)$ = $82.1%$
2		
3		This is shown on page 4, column 3 of Document No. 1.
4		
5	Q.	How was the potential for unit availability improvement
6		determined?
7		
8	A.	Maximum equivalent availability is derived by using the
9		following formula:
10		
11		EAF $_{MAX} = 1 - [0.8 (EUOF_T) + 0.95 (POF_T)]$
12		
13		The factors included in the above equations are the same
14		factors that determine the target equivalent
15		availability. To determine the maximum incentive
16		points, a 20 percent reduction in EUOF and Equivalent
17		Maintenance Outage Factor ("EMOF"), plus a five percent
18		reduction in the POF are necessary. Continuing with the
19		Big Bend Unit 3 example:
20		
21		EAF $_{MAX} = 1 - [0.8 (11.3\%) + 0.95 (6.6\%)] = 84.7\%$
22		This is shown on page 4, column 4 of Document No. 1.
23		
24	Q.	How was the potential for unit availability degradation
25		determined?

Α. 1 The potential for unit availability degradation is 2 significantly greater than the potential for unit This concept was discussed availability improvement. 3 extensively during the development of the incentive. То 4 effect incorporate this biased into the unit 5 availability tables, Tampa Electric uses a potential 6 7 degradation range equal to twice the potential minimum Consequently, improvement. equivalent 8 availability is calculated using the following formula: 9 10 $EAF_{MIN} = 1 - [1.40 (EUOF_T) + 1.10 (POF_T)]$ 11 12 Again, continuing with the Big Bend Unit 3 example, 13 14 EAF $_{MIN} = 1 - [1.40 (11.3\%) + 1.10 (6.6\%)] = 76.9\%$ 15 16 The equivalent availability maximum and minimum for the 17 other six units are computed in a similar manner. 18 19 How did Tampa Electric determine the Planned Outage, 20 Q. 21 Maintenance Outage, and Forced Outage Factors? 22 company's planned outages for January through Α. The 23 December 2011 are shown on page 21 of Document No. 1. 24 Two GPIF units have a major outage of 28 days or greater 25

1 in 2011; therefore, two Critical Path Method diagrams 2 are provided. Planned Outage Factors are calculated for each unit. For example, Big Bend Unit 2 is scheduled 3 4 for a planned outage from February 20, 2011 to March 1, 2011 and September 3, 2011 to November 18, 2011. 5 There are 2,089 planned outage hours scheduled for the 2011 6 period, and a total of 8,760 hours during this 12-month 7 Consequently, the POF for Big Bend Unit 2 is period. 8 23.8 percent or: 9 10 $2,089 \times 100\% = 23.8\%$ 11 8,760 12 13 The factor for each unit is shown on pages 5 and 14 14through 20 of Document No. 1. Big Bend Unit 1 has a POF 15 16 of 5.8 percent. Big Bend Unit 2 has a POF of 23.8 percent. Big Bend Unit 3 has a POF of 6.6 percent. Big 17 Bend Unit 4 has a POF of 6.6 percent. Polk Unit 1 has a 18 POF of 6.0 percent. Bayside Unit 1 has a POF of 21.1 19 percent, and Bayside Unit 2 has a POF of 3.8 percent. 20 21 How did you determine the Forced Outage and Maintenance 22 Q. Outage Factors for each unit? 23 24 For each unit the most current 12-month ending value, 25 Α.

1 June 2011, was used as a basis for the projection. A11 projected factors are based upon historical unit 2 performance unless adjusted for outlying forced outages. 3 These target factors are additive and result in a EUOF 4 of 11.3 percent for Big Bend Unit 3. The EUOF for Big 5 Bend Unit 3 is verified by the data shown on page 16, 6 lines 3, 5, 10 and 11 of Document No. 1 and calculated 7 using the following formula: 8 9 $EUOF = (EFOH + EMOH) \times 100\%$ 10 ΡH 11 Or 12 $EUOF = (702 + 292) \times 100\% = 11.3\%$ 13 8,760 14 15 Relative to Big Bend Unit 3, the EUOF of 11.3 percent 16 forms the basis of the equivalent availability target 17 development as shown on pages 4 and 5 of Document No. 1. 18 19 Big Bend Unit 1 20 The projected EUOF for this unit is 26.3 percent. The 21 unit will have a planned outage in 2011, and the POF is 22 Therefore, the target equivalent 5.8 percent. 23 availability for this unit is 67.9 percent. 24 25

Big Bend Unit 2 1 2 The projected EUOF for this unit is 13.8 percent. The unit will have a planned outage in 2011, and the POF is 3 23.8 Therefore, the target 4 percent. equivalent availability for this unit is 62.4 percent. 5 6 Big Bend Unit 3 7 The projected EUOF for this unit is 11.3 percent. The 8 unit will have a planned outage in 2011, and the POF is 9 Therefore, the 6.6 target equivalent 10 percent. availability for this unit is 82.1 percent. 11 12 Big Bend Unit 4 13 The projected EUOF for this unit is 15.5 percent. The 14 unit will have a planned outage in 2011, and the POF is 15 6.6 Therefore, the target equivalent percent. 16 availability for this unit is 77.9 percent. 17 18 Polk Unit 1 19 The projected EUOF for this unit is 5.3 percent. The 20 unit will have a planned outage in 2011, and the POF is 21 6.0 Therefore, the target equivalent percent. 22 availability for this unit is 88.6 percent. 23 24

9

Bayside Unit 1 1 2 The projected EUOF for this unit is 0.7 percent. The unit will have a planned outage in 2011, and the POF is 3 4 21.1 percent. Therefore, the target equivalent availability for this unit is 78.2 percent. 5 6 Bayside Unit 2 7 The projected EUOF for this unit is 1.8 percent. 8 The unit will have a planned outage in 2011, and the POF is 9 3.8 Therefore, the percent. target equivalent 10 availability for this unit is 94.4 percent. 11 12 Please summarize your testimony regarding EAF. Q. 13 14 Α. The GPIF system weighted EAF of 74.2 percent is shown on 15 Page 5 of Document No. 1. This target is greater than 16 the 2007, 2008 and 2009 January through December actual 17 18 performances. 19 Why are Forced and Maintenance Outage Factors adjusted 20 Q. for planned outage hours? 21 22 The adjustment makes the factors more accurate and 23 Α. 24 comparable. A unit in a planned outage stage or reserve 25 shutdown stage will not incur a forced or maintenance

To demonstrate the effects of a planned outage, 1 outage. note the Equivalent Unplanned Outage Rate and Equivalent 2 Unplanned Outage Factor for Big Bend Unit 3 on page 16 3 4 of Document No. 1. Except for the months of March, April, October and November, the Equivalent Unplanned 5 Outage Rate and the EUOF are equal. This is because no 6 planned outages are scheduled during these months. 7 During the months of March, April, October and November, 8 the Equivalent Unplanned Outage Rate exceeds the EUOF 9 Therefore, scheduled planned outages. the 10 due to adjusted factors apply to the period hours after the 11 planned outage hours have been extracted. 12 13 Does this mean that both rate and factor data are used 14Q. in calculated data? 15 16 Rates provide a proper and accurate method of A. Yes. 17 determining the unit metrics, which are subsequently 18 converted to factors. Therefore, 19 20 EFOF + EMOF + POF + EAF = 100%21 22 Since factors are additive, they are easier to work with 23 and to understand. 24 25

1 Q. Has Tampa Electric prepared the necessary heat rate data required for the determination of the GPIF? 2 3 Α. Yes. 4 Target heat rates and ranges of potential 5 operation have been developed as required and have been 6 adjusted to reflect the aforementioned agreed upon GPIF 7 methodology. 8 9 Q. How were these targets determined? 10Net heat rate data for the three most recent July 11 Α. 12 through June annual periods formed the basis of the 13 target development. The historical data and the target 14 values are analyzed to assure applicability to current conditions of operation. This provides assurance that 15 16 any periods of abnormal operations or equipment 17 modifications having material effect on heat rate can be 18 taken into consideration. 19 20 Q. How were the ranges of heat rate improvement and heat 21 rate degradation determined? 22 23 Α. The ranges were determined through analysis of 24 historical net heat rate and net output factor data. 25 This is the same data from which the net heat rate

versus net output factor curves have been developed for each unit. This information is shown on pages 31 through 37 of Document No. 1.

Q. Please elaborate on the analysis used in the
determination of the ranges.

The net heat rate versus net output factor curves are Α. 8 the result of a first order curve fit to historical 9 The standard error of the estimate of this data data. 10was determined, and a factor was applied to produce a 11 band of potential improvement and degradation. Both the 12 curve fit and the standard error of the estimate were 13 performed by computer program for each unit. These 14 curves are also used in post-period adjustments to 15 actual heat rates to account for unanticipated changes 16 in unit dispatch. 17

18

22

1

2

3

4

7

Q. Please summarize your heat rate projection (Btu/Net kWh)
 and the range about each target to allow for potential
 improvement or degradation for the 2011 period.

A. The heat rate target for Big Bend Unit 1 is 10,676
 Btu/Net kWh. The range about this value, to allow for
 potential improvement or degradation, is ±431 Btu/Net

kWh. The heat rate target for Big Bend Unit 2 is 10,350 1 2 Btu/Net kWh with a range of ±410 Btu/Net kWh. The heat rate target for Big Bend Unit 3 is 10,582 Btu/Net kWh, 3 with a range of ± 404 Btu/Net kWh. The heat rate target 4 for Big Bend Unit 4 is 10,538 Btu/Net kWh with a range 5 of ± 384 Btu/Net kWh. The heat rate target for Polk Unit 6 7 1 is 9,820 Btu/Net kWh with a range of ± 703 Btu/Net kWh. The heat rate target for Bayside Unit 1 is 7,212 Btu/Net 8 kWh with a range of ± 93 Btu/Net kWh. The heat 9 rate target for Bayside Unit 2 is 7,311 Btu/Net kWh with a 10 range of ±89 Btu/Net kWh. A zone of tolerance of ±75 11 kWh is included within the range for each 12 Btu/Net This is shown on page 4, and pages 7 through 13 target. 13 of Document No. 1. 1415 Do the heat rate targets and ranges in Tampa Electric's 16 Q. projection meet the criteria of the GPIF 17 and the philosophy of the Commission? 1819 20 Yes. Α. 21 After determining the target values and ranges for 22 Q. equivalent 23 average net operating heat rate and

availability, what is the next step in the GPIF?

24

25

1 The next step is to calculate the savings and weighting Α. factor to be used for both average net operating heat 2 rate and equivalent availability. This is shown on 3 4 pages 7 through 13. The baseline production costing analysis was performed to calculate the total system 5 fuel cost if all units operated at target heat rate and 6 7 target availability for the period. This total system fuel cost of \$872,944,300 is shown on page 6, column 2. 8 Multiple production cost simulations were performed to 9 calculate total system fuel cost with each unit 10 individually operating at maxìmum improvement in 11 equivalent availability and each station operating at 12 maximum improvement in average net operating heat rate. 13 The respective savings are shown on page 6, column 4 of 14 Document No. 1. 15

After all of the individual savings are calculated, 17 column 4 totals \$29,671,000 which reflects the savings 18 if all of the units operated at maximum improvement. А 19 weighting factor for each metric is then calculated by 20 dividing individual savings by the total. For Big Bend 21 Unit 3, the weighting factor for equivalent availability 22 is 6.2 percent as shown in the right-hand column on page 23 6. Pages 7 through 13 of Document No. 1 show the point 24 25 table, the Fuel Savings/(Loss) and the equivalent

16

availability or heat rate value. The individual weighting factor is also shown. For example, on Big Bend Unit 3, page 9, if the unit operates at 84.7 percent equivalent availability, fuel savings would equal \$1,833,900, and 10 equivalent availability points would be awarded.

1

2

3

4

5

6

7

16

18

24

The GPIF Reward/Penalty table on page 2 is a summary of 8 the tables on pages 7 through 13. The left-hand column 9 of this document shows the incentive points for Tampa 10 The center column shows the total fuel 11 Electric. savings and is the same amount as shown on page 6, 12 column 4, or \$29,671,000. The right hand column of page 13 the estimated reward or penalty based upon 2 is 14 15 performance.

17 **Q.** How was the maximum allowed incentive determined?

19 A. Referring to page 3, line 14, the estimated average 20 common equity for the period January through December 21 2011 is \$1,902,870,049. This produces the maximum 22 allowed jurisdictional incentive of \$7,711,175 shown on 23 line 21.

25 **Q.** Are there any other constraints set forth by the

Commission regarding the magnitude of incentive dollars? 1 2 Incentive dollars are not to exceed 50 percent of Α. Yes. 3 fuel savings. Page 2 of Document No. 1 demonstrates 4 that this constraint is met. 5 6 Please summarize your testimony. 7 Q. 8 Tampa Electric has complied with the Commission's Α. 9 directions, philosophy, and methodology in its 10 The GPIF is determined by determination of the GPIF. 11 Generating following formula for calculating the 12 Performance Incentive Points (GPIP): 13 14 GPIP: = $(0.0458 \text{ EAP}_{BB1} + 0.0595)$ EAP_{BB2} 15 $+ 0.0618 \text{ EAP}_{BB3} + 0.0788$ EAP_{BB4} 16 + 0.0067 EAP_{PK1} + 0.0134 EAP_{BAY1} 17 + 0.0032 EAP_{BAY2} + 0.1138 HRP_{BB1} 18 + 0.1160+ 0.0963 HRP_{BB2} HRP_{BB3} 19 + 0.1248 HRP_{BB4} + 0.1559 HRP_{PK1} 20 + 0.0492 HRP_{BAY1} + 0.0748 HRP_{BAY2}) 21 22 Where: 23 Generating Performance Incentive Points. 24 GPIP = Availability Points awarded/ Equivalent 25 EAP =

1		deducted for Big Bend Units 1, 2, 3, and 4,
2		Polk Unit 1 and Bayside Units 1 and 2.
3		HRP = Average Net Heat Rate Points awarded/deducted
4		for Big Bend Units 1, 2, 3, and 4, Polk Unit 1
5		and Bayside Units 1 and 2.
6		
7	Q.	Have you prepared a document summarizing the GPIF
8		targets for the January through December 2011 period?
9	ļ	
10	A .	Yes. Document No. 2 entitled "Summary of GPIF Targets"
11		provides the availability and heat rate targets for each
12		unit.
13		
14	Q.	Does this conclude your testimony?
15		
16	A.	Yes.
17		
18		
19		
20		
21		
22		
23		
24		
25		

DOCKET NO. 100001-EI GPIF 2011 PROJECTION FILING EXHIBIT NO. ____ (BSB-2) DOCUMENT NO. 1

EXHIBIT TO THE TESTIMONY OF

....

.

BRIAN S. BUCKLEY

DOCUMENT NO. 1

GPIF SCHEDULES

JANUARY 2011 - DECEMBER 2011

_ . _ _ . .

TAMPA ELECTRIC COMPANY GENERATING PERFORMANCE INCENTIVE FACTOR JANUARY 2011 - DECEMBER 2011 TARGETS TABLE OF CONTENTS

SCHEDULE	<u>PAGE</u>
GPIF REWARD / PENALTY TABLE	2
GPIF CALCULATION OF MAXIMUM ALLOWED INCENTIVE DOLLARS	3
GPIF TARGET AND RANGE SUMMARY	4
COMPARISON OF GPIF TARGETS VS PRIOR PERIOD ACTUAL PERFORMANCE	5
DERIVATION OF WEIGHTING FACTORS	6
GPIF TARGET AND RANGE SUMMARY	7 - 13
ESTIMATED UNIT PERFORMANCE DATA	14 - 20
ESTIMATED PLANNED OUTAGE SCHEDULE	21
CRITICAL PATH METHOD DIAGRAMS	22 - 23
FORCED & MAINTENANCE OUTAGE FACTOR GRAPHS	24 - 30
HEAT RATE VS NET OUTPUT FACTOR GRAPHS	31 - 37
GENERATING UNITS IN GPIF (TABLE 4.2 IN THE MANUAL)	38
UNIT RATINGS AS OF JULY 2010	39
PROJECTED PERCENT GENERATION BY UNIT	40

TAMPA ELECTRIC COMPANY GENERATING PERFORMANCE INCENTIVE FACTOR REWARD / PENALTY TABLE JANUARY 2011 - DECEMBER 2011

GENERATING PERFORMANCE INCENTIVE POINTS (GPIP)	FUEL SAVINGS / (LOSS) (\$000)	GENERATING PERFORMANCE INCENTIVE FACTOR (\$000)
+10	29,671.0	7,711.2
+9	26,703.9	6,940.1
+8	23,736.8	6,168.9
+7	20,769.7	5,397.8
+6	17,802.6	4,626.7
+5	14,835.5	3,855.6
+4	11,868.4	3,084.5
+3	8,901.3	2,313.4
+2	5,934.2	1,542.2
+1	2,967.1	771.1
0	0.0	0.0
-1	(3,412.1)	(771.1)
-2	(6,824.2)	(1,542.2)
-3	(10,236.3)	(2,313.4)
-4	(13,648.5)	(3,084.5)
-5	(17,060.6)	(3,855.6)
-6	(20,472.7)	(4,626.7)
-7	(23,884.8)	(5,397.8)
-8	(27,296.9)	(6,168.9)
-9	(30,709.0)	(6,940.1)
-10	(34,121.2)	(7,711.2)

TAMPA ELECTRIC COMPANY GENERATING PERFORMANCE INCENTIVE FACTOR CALCULATION OF MAXIMUM ALLOWED INCENTIVE DOLLARS JANUARY 2011 - DECEMBER 2011

Line 1	Beginning of period balance End of month common equ	\$	1,876,746,000	
Line 2	Month of January	2011	\$	1,827,320,000
Line 3	Month of February	2011	\$	1,844,451,125
Line 4	Month of March	2011	\$	1,861,742,854
Line 5	Month of April	2011	\$	1,894,199,839
Line 6	Month of May	2011	\$	1,911,957,963
Line 7	Month of June	2011	\$	1,929,882,569
Line 8	Month of July	2011	\$	1,879,835,503
Line 9	Month of August	2011	\$	1,897,458,961
Line 10	Month of September	2011	\$	1,915,247,639
Line 11	Month of October	2011	\$	1,947,838,015
Line 12	Month of November	2011	\$	1,966,098,997
Line 13	Month of December	2011	\$	1,984,531,175
Line 14	(Summation of line 1 throug	h line 13 divided by 13)	\$	1,902,870,049
Line 15	25 Basis points			0.0025
Line 16	Revenue Expansion Factor			61.17%
Line 17	Maximum Allowed Incentive (line 14 times line 15 divide		\$	7,777,432
Line 18	Jurisdictional Sales			18,926,613 MWH
Line 19	Total Sales			19,089,236 MWH
Line 20	Jurisdictional Separation Fa (line 18 divided by line 19)	octor		99.15%
Line 21	Maximum Allowed Jurisdictional Incentive Dollars (line 17 times line 20)			7,711,175

TAMPA ELECTRIC COMPANY GPIF TARGET AND RANGE SUMMARY JANUARY 2011 - DECEMBER 2011

•

EQUIVALENT AVAILABILITY

PLANT / UNIT	WEIGHTING FACTOR (%)	EAF TARGET (%)	EAF RA MAX. (%)	NGE MIN. (% <u>)</u>	MAX, FUEL SAVINGS (\$000)	MAX. FUEL LOSS (\$000)
BIG BEND 1	4.58%	67.9	73.5	56.8	1,359.3	(5,657.4)
BIG BEND 2	5.95%	62.4	66.3	54.5	1,765.3	(1,487.8)
BIG BEND 3	6.18%	82.1	84.7	76.9	1,833.9	(1,379.9)
BIG BEND 4	7.88%	77.9	81.3	71.0	2,339.2	(2,354.1)
POLK 1	0.67%	88.6	90.0	85. 9	198.3	(455.9)
BAYSIDE 1	1.34%	78.2	79.4	75.9	397.4	(821.4)
BAYSIDE 2	0.32%	94.4	95.0	93.3	93.8	(280.8)
GPIF SYSTEM	26.92%					

AVERAGE NET OPERATING HEAT RATE

	WEIGHTING FACTOR	ANOHR	TARGET	ANOHR	RANGE	MAX. FUEL SAVINGS	MAX. FUEL LOSS
PLANT / UNIT	(%)	Btu/kwh	NOF	Min.	MAX.	(\$000)	(\$000)
BIG BEND 1	11.38%	10,676	91.3	10,245	11,107	3,376.5	(3,376.5)
BIG BEND 2	9.63%	10,350	91.2	9,940	10,759	2,858.3	(2,858.3)
BIG BEND 3	11.60%	10,582	86.9	10,179	10,986	3,442.7	(3,442.7)
BIG BEND 4	12.48%	10,538	90.8	10,153	10,922	3,703.5	(3,703.5)
POLK 1	15.59%	9,820	97.5	9,117	10,522	4,624.5	(4,624.5)
BAYSIDE 1	4.92%	7,212	86.6	7,120	7,305	1,459.8	(1,459.8)
BAYSIDE 2	7.48%	7,311	84.7	7,222	7,400	2,218.6	(2,218.6)
GPIF SYSTEM	73.08%						

TAMPA ELECTRIC COMPANY COMPARISON OF GPIF TARGETS VS PRIOR PERIOD ACTUAL PERFORMANCE

EQUIVALENT AVAILABILITY (%)

PLANT / UNIT	WEIGHTING FACTOR (%)	NORMALIZED WEIGHTING FACTOR		RGET PERK N 11 - DEC ⁻ EUOF			L PERFORN N 09 - DEC (EUOF			L PERFORM N 08 - DEC (EUOF			L PERFOR N 07 - DEC EUOF	
BIG BEND 1	4.58%	17,0%	5.8	26.3	27.9	14.0	30.3	35.3	4.9		20.4	0.0	23.7	23.7
BIG BEND 2	5.95%	22.1%	23.8	13.8	18.1	26.5	36.7	49.9	10.2	18.8	20.8	2.5	18.0	18.4
BIG BEND 3	6.18%	23.0%	6.6	11.3	12.1	5.0	16.2	17.0	32.4	23.1	34.2	11.8	41,7	47.3
BIG BEND 4	7.88%	29.3%	6.6	15.5	16.6	1.9	18.6	19.0	5.8	21.4	22.7	27.0	19.8	27.0
POLK 1	0.67%	2.5%	6.0	5.3	5.7	14.1	9.4	12.7	3.0	13.8	16.9	4.1	0.0	0.0
BAYSIDE 1	1.34%	5.0%	21.1	0.7	0.9	5.6	1.3	1.4	2.4	2.8	3.1	11.5	3.3	3.9
BAYSIDE 2	0.32%	1.2%	3.8	1.8	1.8	6.8	1.3	1.4	14.5	1.9	2.4	2.0	1.7	1.7
GPIF SYSTEM	26.92%	100.0%	10.9	14.9	16.6	10.7	22.7	26.9	12.6	19.5	23.2	11.9	23.6	27.1
GPIF SYSTEM WEIGHTED EQUIVALENT AVAILABILITY (%)				<u>74.2</u>			<u>66.6</u>			<u>67.9</u>			<u>64.6</u>	

	3 P6	3 PERIOD AVERAGE		
Ň	POF	EUOF	EUOR	EAF
4	11.7	21.9	25.7	66.3

AVERAGE NET OPERATING HEAT RATE (Btu/kWh)

PLANT / UNIT	WEIGHTING FACTOR (%)	NORMALIZED WEIGHTING FACTOR	TARGET HEAT RATE JAN <u>11 - DEC 11</u>	ADJUSTED ACTUAL PERFORMANCE HEAT RATE JAN 09 - DEC 09	ADJUSTED ACTUAL PERFORMANCE HEAT RATE JAN 08 - DEC 08	ADJUSTED ACTUAL PERFORMANCE HEAT RATE JAN 07 - DEC 07
BIG BEND 1	11.38%	15.6%	10,676	10,598	10,889	10,740
BIG BEND 2	9.63%	13.2%	10,350	10,178	10,579	10,355
BIG BEND 3	11.60%	15.9%	10,582	10,540	10,708	10,514
BIG BEND 4	12.48%	17.1%	10,538	10,500	10,669	10,830
POLK 1	15.59%	21.3%	9,820	9,795	9,527	9,744
BAYSIDE 1	4.92%	6.7%	7,212	7,274	7,250	7,310
BAYSIDE 2	7,48%	10.2%	7,311	7,353	7,373	7,378
GPIF SYSTEM	73.08%	100.0%				
GPIF SYSTEM WEIGHTED A	VERAGE HEAT RAT	E (Btu/kWh)	9,834	9,790	9,887	9,881

TAMPA ELECTRIC COMPANY **DERIVATION OF WEIGHTING FACTORS** JANUARY 2011 - DECEMBER 2011 PRODUCTION COSTING SIMULATION FUEL COST (\$000)

UNIT PERFORMANCE INDICATOR	AT TARGET (1)	AT MAXIMUM IMPROVEMENT (2)	SAVINGS (3)	WEIGHTING FACTOR (% OF SAVINGS)
EQUIVALENT AVAILABILITY				
EA ₁ BIG BEND 1	872,944.3	871,585.0	1,359.3	4.58%
EA ₂ BIG BEND 2	872,944.3	871,179.0	1,765.3	5.95%
EA ₃ BIG BEND 3	872,944.3	871,110.4	1,833.9	6.18%
EA ₄ BIG BEND 4	872,944.3	870,605.1	2,339.2	7.88%
EA ₇ POLK 1	872,944.3	872,746.0	198.3	0.67%
EA ₈ BAYSIDE 1	872,944.3	872,546.9	397.4	1.34%
EA ₉ BAYSIDE 2	872,944.3	872,850.5	93.8	0.32%
AVERAGE HEAT RATE				
AHR ₁ BIG BEND 1	872,944.3	869,567.7	3,376.5	11.38%
AHR ₂ BIG BEND 2	872,944.3	870,086.0	2,858.3	9.63%
AHR ₃ BIG BEND 3	872,944.3	869,501.5	3,442.7	11.60%
AHR ₄ BIG BEND 4	872,944.3	869,240.8	3,703.5	12.48%
AHR ₇ POLK 1	872,944.3	868,319.7	4,624.5	15.59%
AHR ₈ BAYSIDE 1	872,944.3	871,484.5	1,459.8	4.92%
AHR ₉ BAYSIDE 2	872,944.3	870,725.7	2,218.6	7.48%
TOTAL SAVINGS		-	29,671.0	100.00%

(1) Fuel Adjustment Base Case - All unit performance indicators at target.
 (2) All other units performance indicators at target.

(3) Expressed in replacement energy cost.

.

GPIF TARGET AND RANGE SUMMARY

JANUARY 2011 - DECEMBER 2011

BIG BEND 1

EQUIVALENT AVAILABILITY POINTS	FUEL SAVINGS / (LOSS) (\$000)	ADJUSTED ACTUAL EQUIVALENT AVAILABILITY	AVERAGE HEAT RATE POINTS	FUEL SAVINGS / (LOSS) (\$000)	ADJUSTED ACTUAL AVERAGE HEAT RATE
+10	1,359.3	73.5	+10	3,376.5	10,245
+9	1,223.4	72.9	+9	3,038.9	10,281
+8	1,087.4	72.4	+8	2,701.2	10,316
+7	951.5	71.8	+7	2,363.6	10,352
+6	815.6	71.3	+6	2,025.9	10,388
+5	679.6	70.7	+5	1,688.3	10,423
+4	543.7	70.2	+4	1,350.6	10,459
+3	407.8	69.6	+3	1,013.0	10,494
+2	271.9	69.0	+2	675.3	10,530
+1	135.9	68.5	+1	337.7	10,566
					10,601
0	0.0	67.9	0	0.0	10,676
					10,751
-1	(565.7)	66.8	-1	(337.7)	10,787
-2	(1,131.5)	65.7	-2	(675.3)	10,822
-3	(1,697.2)	64.6	-3	(1,013.0)	10,858
-4	(2,262.9)	63.5	-4	(1,350.6)	10,894
-5	(2,828.7)	62.4	-5	(1,688.3)	10,929
-6	(3,394.4)	61.3	-6	(2,025.9)	10,965
-7	(3,960.2)	60.2	-7	(2,363.6)	11,000
-8	(4,525.9)	59.1	-8	(2,701.2)	11,036
-9	(5,091.6)	57.9	-9	(3,038.9)	11,072
-10	(5,657.4)	56.8	-10	(3,376.5)	11,107
	Weighting Factor =	4.58%		Weighting Factor =	11.38%

Þ

GPIF TARGET AND RANGE SUMMARY

JANUARY 2011 - DECEMBER 2011

BIG BEND 2

EQUIVALENT AVAILABILITY POINTS	FUEL SAVINGS / (LOSS) (\$000)	ADJUSTED ACTUAL EQUIVALENT AVAILABILITY	AVERAGE HEAT RATE POINTS	FUEL SAVINGS / (LOSS) (\$000)	ADJUSTED ACTUAL AVERAGE HEAT RATE
+10	1,765.3	66.3	+10	2,858.3	9,940
+9	1,588.8	65.9	+9	2,572.4	9,974
+8	1,412.2	65.5	+8	2,286.6	10,007
+7	1,235.7	65.1	+7	2,000.8	10,040
+6	1,059.2	64.7	+6	1,715.0	10,074
+5	882.7	64.4	+5	1,429.1	10,107
+4	706.1	64.0	+4	1,143.3	10,141
+3	529.6	63.6	+3	857.5	10,174
+2	353.1	63.2	+2	571.7	10,208
+1	176.5	62.8	+1	285.8	10,241
					10,275
0	0.0	62.4	0	0.0	10,350
					10,425
-1	(148.8)	61.6	-1	(285.8)	10,458
-2	(297.6)	60.8	-2	(571.7)	10,492
-3	(446.3)	60.0	-3	(857.5)	10,525
-4	(595.1)	59.2	-4	(1,143.3)	10,559
-5	(743.9)	58.4	-5	(1,429.1)	10,592
-6	(892.7)	57.6	-6	(1,715.0)	10,626
-7	(1,041.5)	56.8	-7	(2,000.8)	10,659
-8	(1,190.2)	56.1	-8	(2,286.6)	10,693
-9	(1,339.0)	55.3	-9	(2,572.4)	10,726
-10	(1,487.8)	54.5	-10	(2,858.3)	10,759
	Weighting Factor =	5.95%		Weighting Factor =	9.63%

GPIF TARGET AND RANGE SUMMARY

JANUARY 2011 - DECEMBER 2011

BIG BEND 3

EQUIVALENT AVAILABILITY POINTS	FUEL SAVINGS / (LOSS) (\$000)	ADJUSTED ACTUAL EQUIVALENT AVAILABILITY	AVERAGE HEAT RATE POINTS	FUEL SAVINGS / (LOSS) (\$000)	ADJUSTED ACTUAL AVERAGE HEAT RATE
+10	1,833.9	84.7	+10	3,442.7	10,179
+9	1,650.5	84.4	+9	3,098.5	10,211
+8	1,4 67.1	84.1	+8	2,754.2	10,244
+7	1,283.7	83.9	+7	2,409.9	10,277
+6	1,100.3	83.6	+6	2,065.6	10,310
+5	916.9	83.4	+5	1,721.4	10,343
+4	733.6	83.1	+4	1,377.1	10,376
+3	550.2	82.8	+3	1,032.8	10,409
+2	366.8	82.6	+2	688.5	10,442
+1	183.4	82.3	+1	344.3	10,474
					10,507
0	0.0	82.1	0	0.0	10,582
					10,657
-1	(138.0)	81.6	-1	(344.3)	10,690
-2	(276.0)	81.0	-2	(688.5)	10,723
-3	(414.0)	80.5	-3	(1,032.8)	10,756
-4	(551.9)	80.0	-4	(1,377.1)	10,789
-5	(689.9)	79.5	-5	(1,721.4)	10,822
-6	(827.9)	79.0	-6	(2,065.6)	10,855
-7	(965.9)	78.4	-7	(2,409.9)	10,887
-8	(1,103.9)	77.9	-8	(2,754.2)	10,920
-9	(1,241.9)	77.4	-9	(3,098.5)	10,953
-10	(1,379.9)	76.9	-10	(3,442.7)	10,986

Weighting Factor =

3

6.18%

Weighting Factor =

11.60%

.

GPIF TARGET AND RANGE SUMMARY

JANUARY 2011 - DECEMBER 2011

BIG BEND 4

EQUIVALENT AVAILABILITY POINTS	FUEL SAVINGS / (LOSS) (\$000)	ADJUSTED ACTUAL EQUIVALENT AVAILABILITY	AVERAGE HEAT RATE POINTS	FUEL SAVINGS / (LOSS) (\$000)	ADJUSTED ACTUAL AVERAGE HEAT RATE
+10	2,339.2	81.3	+10	3,703.5	10,153
+9	2,105.3	81.0	+9	3,333.2	10,184
+8	1,871.4	80.6	+8	2,962.8	10,215
+7	1,637.4	80.3	+7	2,592.5	10,246
+6	1,403.5	79.9	+6	2,222.1	10,277
+5	1,169.6	79.6	+5	1,851.8	10,308
+4	935.7	79.3	+4	1,481.4	10,339
+3	701.8	78.9	+3	1,111.1	10,370
+2	467.8	78.6	+2	740.7	10,401
+1	233.9	78.2	+1	370.4	10,432
					10,463
0	0.0	77.9	0	0.0	10,538
					10,613
-1	(235.4)	77.2	-1	(370.4)	10,643
-2	(470.8)	76.5	-2	(740.7)	10,674
-3	(706.2)	75.8	-3	(1,111.1)	10,705
-4	(941.6)	75.1	-4	(1,481.4)	10,736
-5	(1,177.0)	74.4	-5	(1,851.8)	10,767
-6	(1,412.4)	73.8	-6	(2,222.1)	10,798
-7	(1,647.8)	73.1	-7	(2,592.5)	10,829
-8	(1,883.2)	72.4	-8	(2,962.8)	10,860
-9	(2,118.7)	71.7	-9	(3,333.2)	10,891
-10	(2,354.1)	71.0	-10	(3,703.5)	10,922
	Weighting Factor =	7.88%		Weighting Factor =	12.48%

GPIF TARGET AND RANGE SUMMARY

JANUARY 2011 - DECEMBER 2011

POLK 1

EQUIVALENT AVAILABILITY POINTS	FUEL SAVINGS / (LOSS) (\$000)	ADJUSTED ACTUAL EQUIVALENT AVAILABILITY	AVERAGE HEAT RATE POINTS	FUEL SAVINGS / (LOSS) (\$000)	ADJUSTED ACTUAL AVERAGE HEAT RATE
+10	198.3	90.0	+10	4,624.5	9,117
+9	178.4	89.9	+9	4,162.1	9,179
+8	158.6	89.7	+8	3,699.6	9,242
+7	138.8	89.6	+7	3,237.2	9,305
+6	119.0	89.5	+6	2,774.7	9,368
+5	99.1	89.3	+5	2,312.3	9,431
+4	79.3	89.2	+4	1,849.8	9,493
+3	59.5	89.1	+3	1,387.4	9,556
+2	39.7	88.9	+2	924.9	9,619
+1	19.8	88.8	+1	462.5	9,682
					9,745
0	0.0	88.6	0	0.0	9,820
					9,895
-1	(45.6)	88.4	-1	(462.5)	9,957
-2	(91.2)	88.1	-2	(924.9)	10,020
-3	(136.8)	87.8	-3	(1,387.4)	10,083
-4	(182.4)	87.6	-4	(1,849.8)	10,146
-5	(227.9)	87.3	-5	(2,312.3)	10,208
-6	(273.5)	87.0	-6	(2,774.7)	10,271
-7	(319.1)	86.7	-7	(3,237.2)	10,334
-8	(364.7)	86.5	-8	(3,699.6)	10,397
-9	(410.3)	86.2	-9	(4,162.1)	10,460
-10	(455.9)	85.9	-10	(4,624.5)	10,522
	Weighting Factor =	0.67%		Weighting Factor =	15.59%

GPIF TARGET AND RANGE SUMMARY

JANUARY 2011 - DECEMBER 2011

BAYSIDE 1

EQUIVALENT AVAILABILITY POINTS	FUEL SAVINGS / (LOSS) (\$000)	ADJUSTED ACTUAL EQUIVALENT AVAILABILITY	AVERAGE HEAT RATE POINTS	FUEL SAVINGS / (LOSS) (\$000)	ADJUSTED ACTUAL AVERAGE HEAT RATE
+10	397.4	79.4	+10	1,459.8	7,120
+9	357.6	79.3	+9	1,313.8	7,121
+8	317.9	79.2	+8	1,167.8	7,123
+7	278.2	79.1	+7	1,021.8	7,125
+6	238.4	78.9	+6	875.9	7,127
+5	198.7	78.8	+5	729.9	7,128
+4	159.0	78.7	+4	583.9	7,130
+3	119.2	78.6	+3	437.9	7,132
+2	79.5	78.5	+2	292.0	7,134
+1	39.7	78.4	+1	146.0	7,136
					7,137
0	0.0	78.2	0	0.0	7,212
					7,287
-1	(82.1)	78.0	-1	(146.0)	7,289
-2	(164.3)	77.8	-2	(292.0)	7,291
-3	(246.4)	77.5	-3	(437.9)	7,293
-4	(328.6)	77.3	-4	(583.9)	7,295
-5	(410.7)	77.0	-5	(729.9)	7,296
-6	(492.9)	76.8	-6	(875.9)	7,298
-7	(575.0)	76.6	-7	(1,021.8)	7,300
-8	(657.1)	76.3	-8	(1,167.8)	7,302
-9	(739.3)	76.1	-9	(1,313.8)	7,304
-10	(821.4)	75.9	-10	(1,459.8)	7,305
	Weighting Factor =	1.34%		Weighting Factor =	4.92%

GPIF TARGET AND RANGE SUMMARY

JANUARY 2011 - DECEMBER 2011

BAYSIDE 2

EQUIVALENT AVAILABILITY POINTS	FUEL SAVINGS / (LOSS) (\$000)	ADJUSTED ACTUAL EQUIVALENT AVAILABILITY	AVERAGE HEAT RATE POINTS	FUEL SAVINGS / (LOSS) (\$000)	ADJUSTED ACTUAL AVERAGE HEAT RATE
+10	93.8	95.0	+10	2,218.6	7,222
+9	84.4	94.9	+9	1,996.7	7,223
+8	75.1	94.8	+8	1,774.8	7,224
+7	65.7	94.8	+7	1,553.0	7,226
+6	56.3	94.7	+6	1,331.1	7,227
+5	46.9	94.7	+5	1,109.3	7,229
+4	37.5	94.6	+4	887.4	7,230
+3	28.1	94.6	+3	665.6	7,231
+2	18.8	94.5	+2	443.7	7,233
+1	9.4	94.5	+1	221.9	7,234
					7,236
0	0.0	94.4	0	0.0	7,311
					7,386
-1	(28.1)	94.3	-1	(221.9)	7,387
-2	(56.2)	94.2	-2	(443.7)	7,388
-3	(84.2)	94.1	-3	(665.6)	7,390
-4	(112.3)	94.0	-4	(887.4)	7,391
-5	(140.4)	93.9	-5	(1,109.3)	7,393
-6	(168.5)	93.8	-6	(1,331.1)	7,394
-7	(196.6)	93.7	-7	(1,553.0)	7,395
-8	(224.7)	93.5	-8	(1,774.8)	7,397
-9	(252.7)	93.4	-9	(1,996.7)	7,398
-10	(280.8)	93.3	-10	(2,218.6)	7,400
	Weighting Factor =	0.32%		Weighting Factor =	7.48%

ESTIMATED UNIT PERFORMANCE DATA

JANUARY 2011 - DECEMBER 2011

	PLANT/UNIT	MONTH OF:	MONTH OF:	MONTH OF:	MONTH OF:	MONTH OF:	MONTH OF:	MONTH OF:	MONTH OF:	MONTH OF:	MONTH OF:	MONTH OF:	MONTH OF:	PERIOD
	BIG BEND 1	Jan-11	Feb-11	Mar-11	Apr-11	May-11	Jun-1 I	Jul-11	Aug-11	Sep-11	Oct-11	Nov-11	Dec-11	2011
	1. EAF (%)	72.1	46.3	62.8	72.1	72.1	72.1	72.1	72.1	72.1	55.8	72.1	72.1	67.9
	2. POF	0.0	35.7	12.9	0.0	0.0	0.0	0.0	0.0	0.0	22.6	0.0	0.0	5.8
	3. EUOF	27.9	17. 9	24.3	27.9	27.9	27.9	27.9	27.9	27.9	21.6	27.9	27.9	26.3
	4. EUOR	27.9	27.9	27.9	27.9	27.9	27.9	27.9	27.9	27.9	27.9	27.9	27.9	27.9
	5. PH	744	672	743	720	744	720	744	744	720	744	721	744	8,760
C.		673	391	586	651	673	651	673	673	651	521	651	673	7,467
6	7. RSH	0	0	0	0	0	0	0	0	0	0	0	0	0
	8. UH	71	281	157	69	71	69	71	71	69	223	70	71	1,293
	9. POH	0	240	96	0	0	0	0	0	0	168	0	0	504
	10. EFOH	135	78	117	1.30	135	130	135	135	130	104	131	135	1,496
	11. EMOH	73	42	63	71	73	71	73	73	71	56	71	73	809
	12. OPER BTU (GBTU)	2,539	1,474	2,200	2,458	2,561	2,465	2,573	2,566	2,487	1,948	2,468	2,521	28,259
	13. NET GEN (MWH)	237,580	137,900	205,850	230,270	239,990	230,950	241,190	240,530	233,130	182,460	231,260	235,830	2,646,940
	14. ANOHR (Btu/kwh)	10,686	10,686	10,688	10,673	10,669	10,672	10,667	10,668	10,668	10,678	10,671	10,689	10,676
	15. NOF (%)	89.4	89.3	88.9	91.9	92.6	92.1	93.1	92.8	93.0	91.0	92.3	88.7	91.3
	16. NPC (MW)	395	395	395	385	385	385	385	385	385	385	385	395	388
	17. ANOHR EQUATION	ANOH	R = NOF(~5.001) +	11,133								

ORIGINAL SHEET NO. 8.401.11E PAGE 14 OF 40

ESTIMATED UNIT PERFORMANCE DATA

JANUARY 2011 - DECEMBER 2011

	PLANT/UNIT	MONTH OF:	PERIOD											
	BIG BEND 2	Jan-11	Feb-11	Mar-11	Apr-11	May-11	Jun-11	Jul-11	Aug-11	Sep-11	Oct-11	Nov-11	Dec-11	2011
	1. EAF (%)	81.9	55.6	79.3	81.9	81.9	81.9	81.9	81.9	5.5	0.0	32.7	81.9	62.4
	2. POF	0.0	32.1	3.2	0.0	0.0	0.0	0.0	0.0	93.3	100.0	60.1	0.0	23.8
	3. EUOF	18.1	12.3	17.5	18.1	18.1	18.1	18.1	18.1	1.2	0.0	7.2	18.1	13.8
	4. EUOR	18.1	18.1	18.1	18.1	18.1	18.1	18.1	18.1	18.1	0.0	18.1	18.1	18.1
	5. PH	~ 744	672	743	720	744	720	744	744	720	744	721	744	8,760
Č	6. SH	664	407	643	643	664	643	664	664	43	0	257	664	5,956
4	7. RSH	0	0	0	0	0	0	0	0	0	0	0	0	0
	8. UH	80	265	100	77	80	77	80	80	677	744	464	80	2,804
	9. POH	0	216	24	0	0	0	0	0	672	744	433	0	2,089
	10. EFOH	117	72	113	114	117	114	117	117	8	0	45	117	1,052
	11. EMOH	17	μ	17	17	17	17	17	17	1	0	7	17	155
	12. OPER BTU (GBTU)	2,466	1,470	2,379	2,351	2,440	2,357	2,424	2,445	131	0	901	2,458	21,819
	13. NET GEN (MWH)	238,220	141,490	229,700	227,330	236,030	228,020	234,300	236,620	12,380	0	86,740	237,290	2,108,120
	14. ANOHR (Btu/kwh)	10,354	10,387	10,358	10,342	10,336	10,338	10,344	10,333	10,545	0	10,391	10,358	10,350
	15. NOF (%)	90.8	88.0	90.4	91.8	92.3	92.1	91.7	92.6	74.8	0.0	87.7	90.5	91.2
	16. NPC (MW)	395	395	395	385	385	385	385	385	385	385	385	395	388
	17. ANOHR EQUATION	ANOI	HR = NOF(-11.920)+	11,436								

ORIGINAL SHEET NO. 8.401.11E PAGE 15 OF 40

18

ESTIMATED UNIT PERFORMANCE DATA

JANUARY 2011 - DECEMBER 2011

	PLANT/UNIT	MONTH OF:	PERIOD											
	BIG BEND 3	Jan-t 1	Feb-11	Mar-11	Apr-11	May-11	Jun-11	Jul-1 1	Aug-11	Sep-11	Oct-11	Nov-11	Dec-11	2011
	1. EAF (%)	87.9	87.9	70.8	76.1	87.9	87.9	87.9	87.9	87.9	79.4	55.6	87.9	82.1
	2. POF	0.0	0.0	19.4	13.3	0,0	0.0	0.0	0.0	0.0	9.7	36.8	0.0	6.6
	3. EUOF	12.1	12.1	9.8	10.5	12.1	12.1	12.1	12.1	12.1	11.0	7.7	12.1	11.3
	4. EUOR	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1
	5. PH	744	672	743	720	744	720	744	744	720	744	721	744	8,760
ω	6. SH	672	607	542	564	672	651	672	672	651	607	412	672	7,394
(J	7. RSH	0	0	0	0	0	0	0	0	0	0	0	0	0
	8. UH	72	65	201	156	72	69	72	72	69	137	309	72	1,366
	9. POH	0	0	144	96	0	0	0	0	0	72	265	0	577
	10. EFOH	64	58	51	54	64	62	64	64	62	58	39	64	702
	11. EMOH	27	24	21	22	27	26	27	27	26	24	16	27	292
	12. OPER BTU (GBTU)	2,198	2,034	1,820	1,783	2,221	2,244	2,305	2,309	2,305	2,121	1,294	2,175	24,812
	13. NET GEN (MWH)	207,060	192,120	172,030	167,190	209,420	212,790	218,420	218,830	219,350	201,540	121,290	204,640	2,344,680
	14. ANOHR (Btu/kwh)	10,617	10,585	10,581	10,662	10,603	10,545	10,552	10,550	10,506	10,525	10,669	10,631	10,582
	15. NOF (%)	84.4	86.7	87.0	81.2	85.4	89.6	89.0	89.2	92.3	91.0	80.7	83.4	86.9
	16. NPC (MW)	365	365	365	365	365	365	365	365	365	365	365	365	365
	17. ANOHR EQUATION	ANOI	HR = NOF(-13.984)+	11,797								

ORIGINAL SHEET NO. 8.401.11E PAGE 16 OF 40

.

ESTIMATED UNIT PERFORMANCE DATA

JANUARY 2011 - DECEMBER 2011

	PLANT/UNIT	MONTH OF:	PERIOD											
	BIG BEND 4	Jan-11	Feb-11	Mar-11	Apr-11	May-11	Jun-11	Jul-11	Aug-11	Sep-11	Oct-11	Nov-11	Dec-11	2011
	1. EAF (%)	83.4	83.4	56.4	83.4	83.4	83.4	83.4	83.4	83.4	83.4	75.0	53.8	77.9
	2. POF	0.0	0.0	32.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10.0	35.5	6.6
	3. EUOF	16.6	16.6	11.3	16.6	16.6	16.6	16.6	16.6	16.6	16.6	15.0	10.7	15.5
	4. EUOR	16.6	16.6	16.6	16.6	16.6	16.6	16.6	16.6	16.6	16.6	16.6	16.6	16.6
	5. PH	744	672	743	720	744	720	744	744	720	744	721	744	8,760
ω		681	615	462	659	681	659	681	681	659	681	593	440	7,492
9	7. RSH	0	0	0	0	0	0	0	0	0	0	0	0	0
	8. UH	63	57	281	61	63	61	63	63	61	63	128	304	1,268
	9. POH	0	0	240	0	0	0	0	0	0	0	72	264	576
	10. EFOH	112	101	76	109	112	109	112	112	109	112	98	72	1,233
	t1. EMOH	12	11	8	11	12	11	12	12	U	12	10	8	128
	12. OPER BTU (GBTU)	2,693	2,497	1,859	2,589	2,723	2,680	2,773	2,768	2,701	2,789	2,365	1,674	30,130
	13. NET GEN (MWH)	252,150	236,300	175,270	244,110	258,630	256,510	265,550	264,810	259,440	267,790	224,390	154,370	2,859,320
	14. ANOHR (Btu/kwh)	10,682	10,566	10,607	10,607	10,528	10,448	10,442	10,451	10,410	10,414	10,540	10,842	10,538
	15. NOF (%)	86.7	90.0	88.8	88.8	91.1	93.3	93.5	93.3	94.4	94.3	90.7	82.2	90.8
	16. NPC (MW)	427	427	427	417	417	417	417	417	417	417	417	427	420
	17. ANOHR EQUATION	ANOF	IR = NOF(-35.305) +	13,743								

.

ŧ

ESTIMATED UNIT PERFORMANCE DATA

JANUARY 2011 - DECEMBER 2011

PLANT/UNIT	MONTH OF	MONTH OF:	PERIOD										
POLK 1	Jan-11	Feb-11	Mar-11	Apr-11	May-11	Jun-11	Jul-11	Aug-11	Sep-11	Oct-11	Nov-11	Dec-11	2011
1. EAF (%)	94.3	37.1	94.3	94.3	94.3	94.3	94.3	94.3	94.3	79.1	94.3	94.3	88.6
2. POF	0.0	60.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	16.1	0.0	0.0	6.0
3. EUOF	5.7	2.2	5.7	5.7	5.7	5.7	5.7	5.7	5.7	4.8	5.7	5.7	5.3
4. EUOR	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7
5. PH	744	672	743	720	744	720	744	744	720	744	721	744	8,760
6. SH	640	248	619	619	640	619	640	640	619	537	619	640	7,080
1 7. RSH	0	0	0	0	0	0	0	0	0	0	92	0	92
8. UH	104	424	124	101	104	101	104	104	101	207	10	104	1,588
9. POH	0	408	0	0	0	0	0	0	0	120	0	0	528
10. EFOH	40	14	40	39	40	39	40	40	39	34	39	40	446
11. EMOH	2	1	2	2	2	2	2	2	2	2	2	2	20
12. OPER BTU	(GBTU) 1,345	522	1,304	1,301	1,347	1,305	1,349	1,349	1,306	1,132	1,303	1,343	14,908
13. NET GEN (MWH) 135,350	52,760	133,390	130,970	137,100	134,020	138,510	138,500	134,980	116,500	132,380	133,750	1,518,210
14. ANOHR (B	tu/kwh) 9,940	9,888	9,777	9,936	9,828	9,735	9,739	9,739	9,672	9,717	9,843	10,041	9,820
15. NOF (%)	96.1	96.7	98.0	96.2	97.4	98.4	98.4	98.4	99.1	98.6	97.2	95.0	97.5
16. NPC (MW)	220	220	220	220	220	220	220	220	220	220	220	220	220
17. ANOHR EQ	UATION ANO	HR = NOF(-89.476)+	18,541								

ORIGINAL SHEET NO. 8.401.11E PAGE 18 OF 40

ESTIMATED UNIT PERFORMANCE DATA

JANUARY 2011 - DECEMBER 2011

	PLANT/UNIT	MONTH OF:	PERIOD											
	BAYSIDE 1	Jan-11	Feb-11	Mar-1]	Apr-11	May-11	Jun-11	Jul-11	Aug-11	Sep-11	Oct-11	Nov-11	Dec-11	2011
	1. EAF (%)	99. l	99.1	99.1	0.0	0.0	69.4	99.1	99.1	99.1	99.1	76.0	99.1	78.2
	2. POF	0.0	0.0	0.0	100.0	100.0	30.0	0.0	0.0	0.0	0.0	23.3	0.0	21.1
	3. EUOF	0.9	0.9	0.9	0.0	0.0	0.6	0.9	0.9	0.9	0.9	0.7	0.9	0.7
	4. EUOR	0.9	0.9	0.9	0.0	0.0	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
	5. PH	744	672	743	720	744	720	744	744	720	744	721	744	8,760
Ç		548	567	581	0	0	225	363	387	441	414	171	594	4,292
0	7. RSH	190	99	155	0	0	275	375	350	273	324	377	144	2,561
	8. UH	6	6	6	720	744	220	6	6	6	6	173	6	1,907
	9. POH	0	0	0	720	744	216	0	0	0	0	168	0	1,848
	10. EFOH	1	1	1	0	0	1	1	1	i	1	1	1	12
	11. EMOH	5	5	5	0	0	3	5	5	5	5	4	5	47
	12. OPER BTU (GBTU)	2,259	2,637	2,665	0	0	1,074	1,734	1,843	2,063	1,900	796	2,644	19,599
	13. NET GEN (MWH)	310,110	364,290	367,900	0	0	149,810	241,800	256,860	287,280	264,240	110,740	364,350	2,717,380
	14. ANOHR (Btu/kwh)	7,285	7,239	7,245	0	0	7,172	7,172	7,174	7,182	7,191	7,185	7 ,257	7,212
	15. NOF (%)	71.5	81.1	79.9	0.0	0.0	95.0	95.0	94.6	92.9	91,1	92.2	77.4	86.6
	16. NPC (MW)	792	792	792	701	701	701	701	701	701	701	701	792	731
	17. ANOHR EQUATION	ANO	HR = NOF(-4.817)+	7,630								

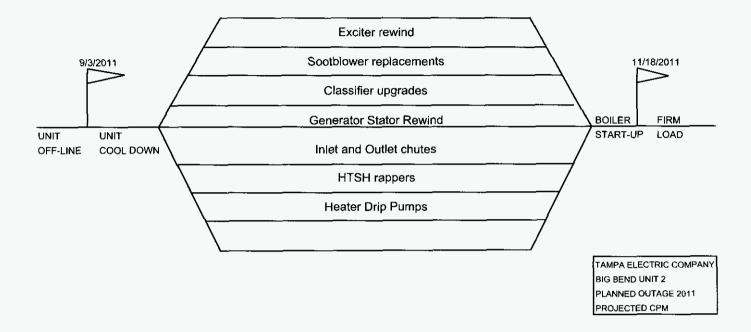
.

ESTIMATED UNIT PERFORMANCE DATA

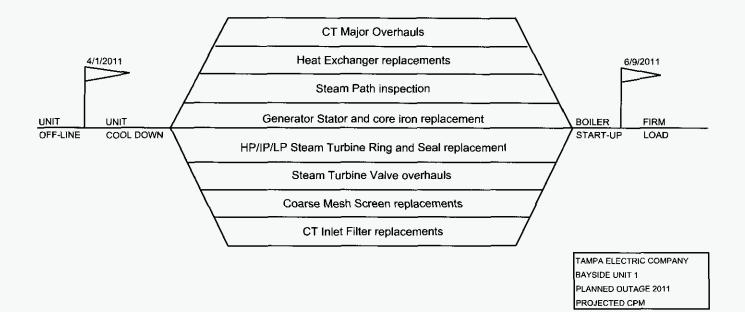
JANUARY 2011 - DECEMBER 2011

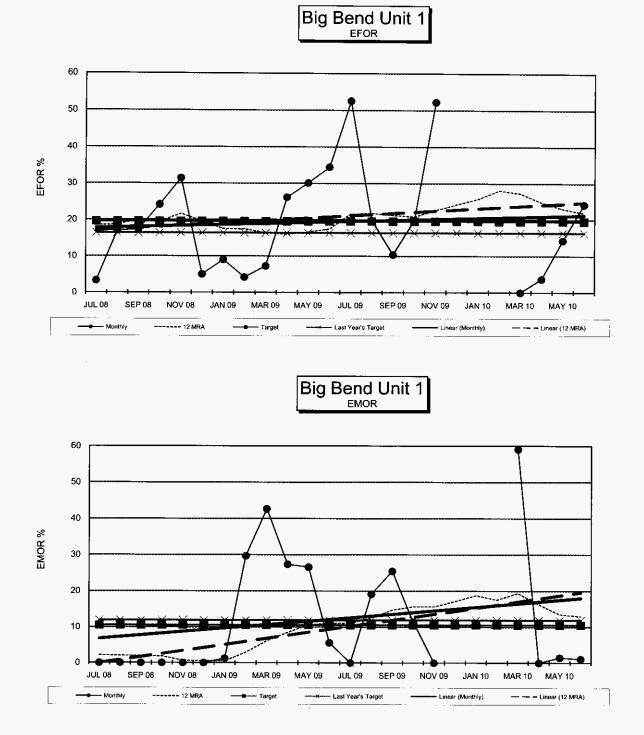
	PLANT/UNIT	MONTH OF:	PERIOD											
	BAYSIDE 2	Jan-11	Feb-11	Mar-11	Apr-11	May-11	Jun-11	Jul-11	Aug-11	Sep-11	Oct-11	Nov-11	Dec-11	2011
	1. EAF (%)	98.2	98.2	76.0	98.2	98.2	98.2	98.2	98.2	98.2	98.2	98.2	76.0	94.4
	2. POF	0.0	0.0	22.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	22.6	3.8
	3. EUOF	1.8	1.8	1,4	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.4	1.8
	4. EUOR	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8
	5. PH	744	672	743	720	744	720	744	744	720	744	721	744	8,760
	6. SH	96	195	128	473	563	612	634	668	693	709	568	72	5,410
C	7. RSH	635	465	437	234	168	95	96	63	14	21	140	494	2,861
	8. UH	14	12	178	13	14	13	14	14	13	14	13	178	489
	9. POH	0	0	168	0	0	0	0	0	0	0	0	168	336
	10. EFOH	2	2	2	2	2	2	2	2	2	2	2	2	25
	II. EMOH	11	10	9	11	11	11	11	11	11	11	11	9	128
	12. OPER BTU (GBTU)	590	1,299	852	2,692	3,376	3,674	3,806	3,998	4,165	4,193	3,294	430	32,449
	13. NET GEN (MWH)	80,310	178,020	116,790	367,870	463,510	504,460	522,570	548,840	571,930	575,000	450,890	58,440	4,438,630
	14. ANOHR (Btu/kwh)	7,343	7,294	7,291	7,318	7,283	7,283	7,283	7,284	7,282	7,293	7,306	7,360	7,311
	15. NOF (%)	80.1	87.1	87.5	83.7	88.7	88.7	88.7	88.5	88.9	87.3	85.4	77.8	84.7
	16. NPC (MW)	1,047	1,047	1,047	929	929	929	929	929	929	929	929	1,047	968
	17. ANOHR EQUATION	ANOF	IR = NOF(-7.036)+	7,907								

TAMPA ELECTRIC COMPANY ESTIMATED PLANNED OUTAGE SCHEDULE GPIF UNITS JANUARY 2011 - DECEMBER 2011

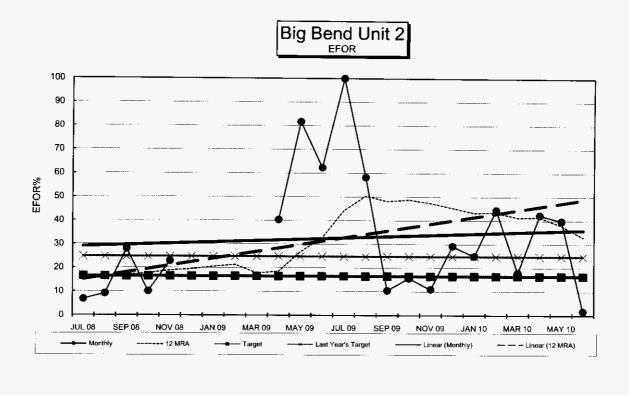

.

3

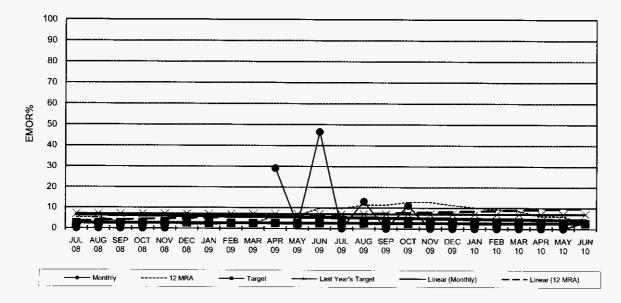

PLANT / UNIT	PLANNED OUTAGE	OUTAGE DESCRIPTION			
BIG BEND 1	Feb 19 - Mar 04 Oct 15 - Oct 21	Fuel System Cleanup and Scrubber work Fuel System Cleanup			
+ BIG BEND 2	Feb 20 - Mar 01 Sep 03 - Nov 18	Fuel System Cleanup and Scrubber work Major outage - Generator Stator Rewind, Classifier upgrades, Inlet and Outlet chutes, Sootblower replacements, Excitier rewind and Heater Drip Pumps			
BIG BEND 3	Mar 26 - Apr 04 Oct 29 - Nov 11	Fuel System Cleanup Fuel System Cleanup and Scrubber work			
BIG BEND 4	Mar 12 - Mar 21 Nov 28 - Dec 11	Fuel System Cleanup Fuel System Cleanup and Scrubber work			
POLK 1	Feb 13 - Feb 26 Oct 16 - Oct 20	Gasifier / CT Outage Gasifier Outage			
+ BAYSIDE 1	Apr 01 - Jun 09	Generator Stator and core iron replacement, Steam Path inspection, HP/IP/LP Steam Turbine Ring and Seal replacements, Steam Turbine Valve overhauls, Heat Exchanger replacements, Coarse Mesh Screen replacements, CT Major Overhauls and CT Inlet Filter replacements			
	Nov 14 - Nov 20	Fuel System Cleanup			
BAYSIDE 2	Mar 05 - Mar 11 Dec 03 - Dec 09	Fuel System Cleanup Fuel System Cleanup			

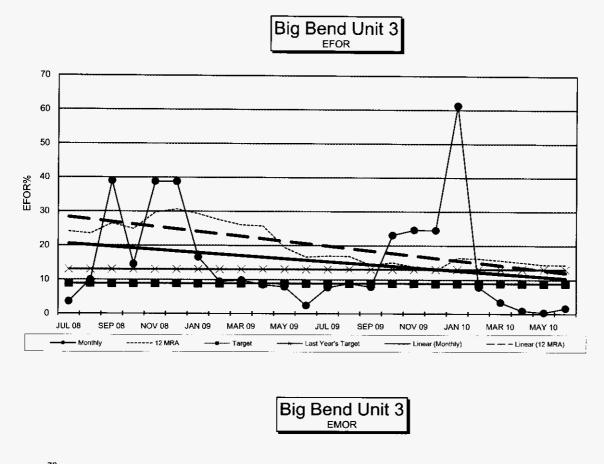

+ These units have CPM included. CPM for units with less than or equal to 4 weeks are not included.

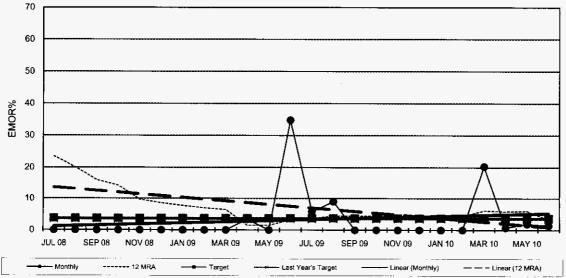
TAMPA ELECTRIC COMPANY CRITICAL PATH METHOD DIAGRAMS GPIF UNITS > FOUR WEEKS JANUARY 2011 - DECEMBER 2011

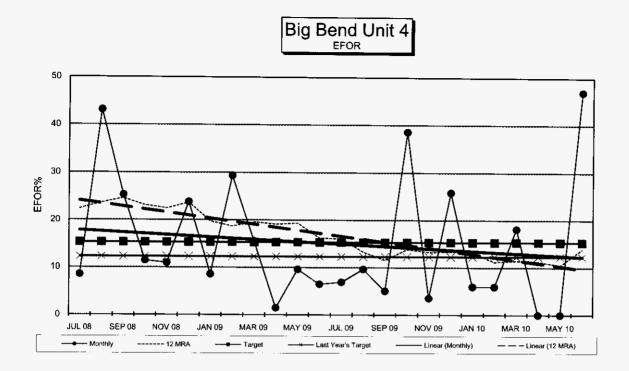


TAMPA ELECTRIC COMPANY CRITICAL PATH METHOD DIAGRAMS GPIF UNITS > FOUR WEEKS JANUARY 2011 - DECEMBER 2011

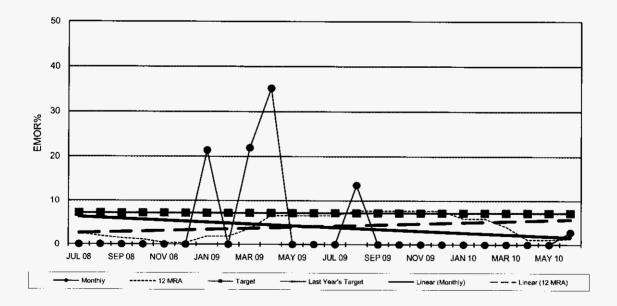


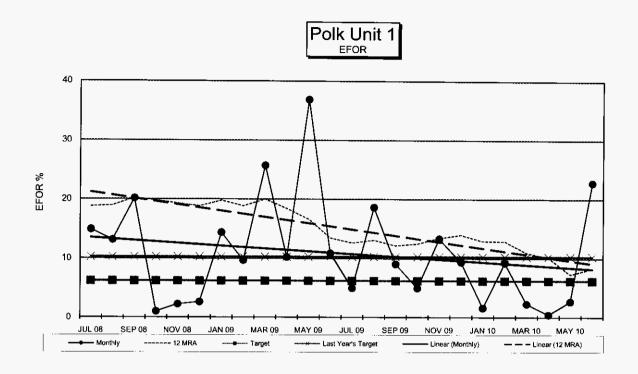

Note: Big Bend Unit 1 was offline for SCR installation from 11/23/2009 to 4/6/2010; therefore, data is not available for this time period.

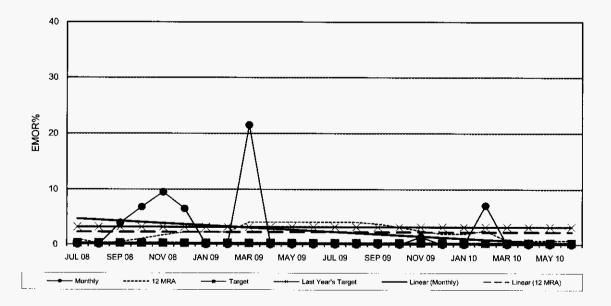


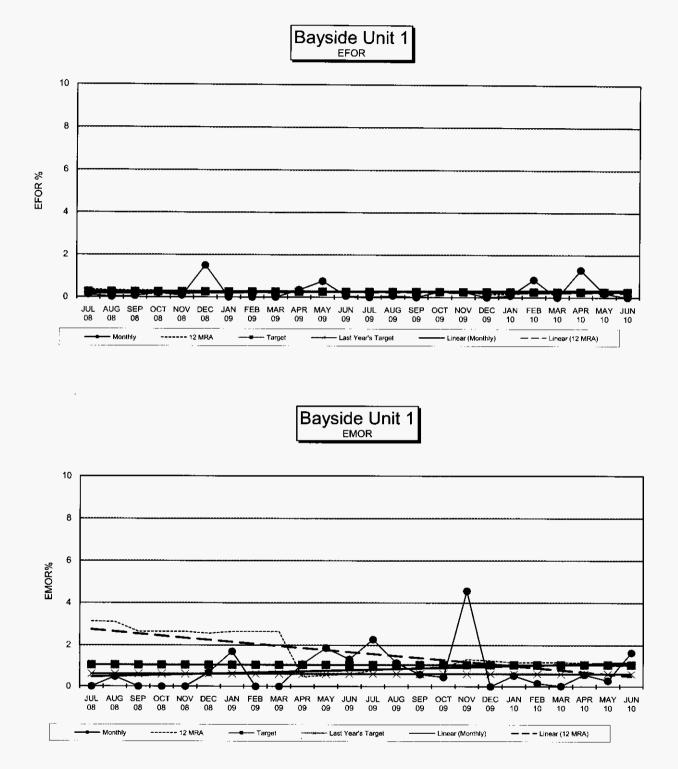

Big	Bend	Unit	2			
EMOR						

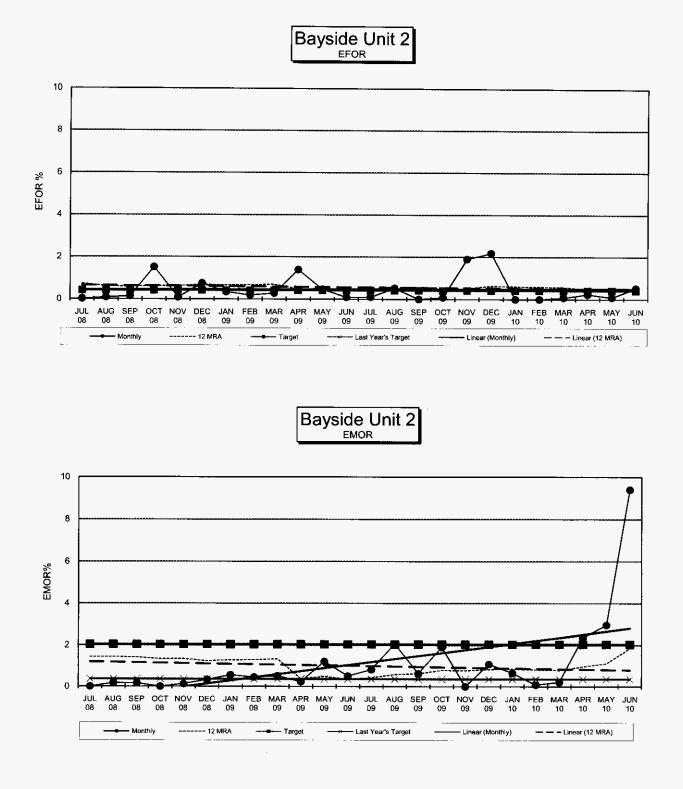
Note: Big Bend Unit 2 was offline for SCR installation from 11/24/2008 to 4/7/2009; therefore, data is not available for this time period.

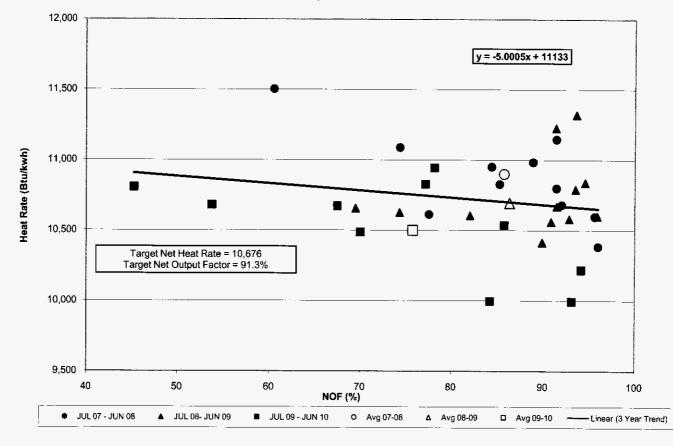


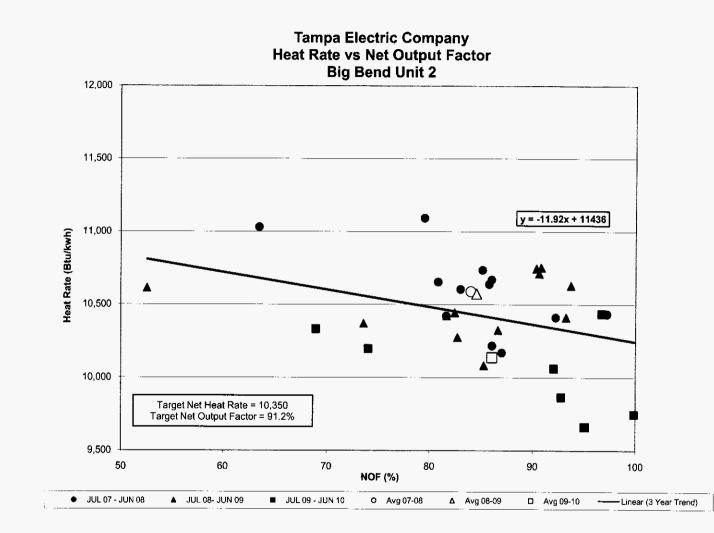



3

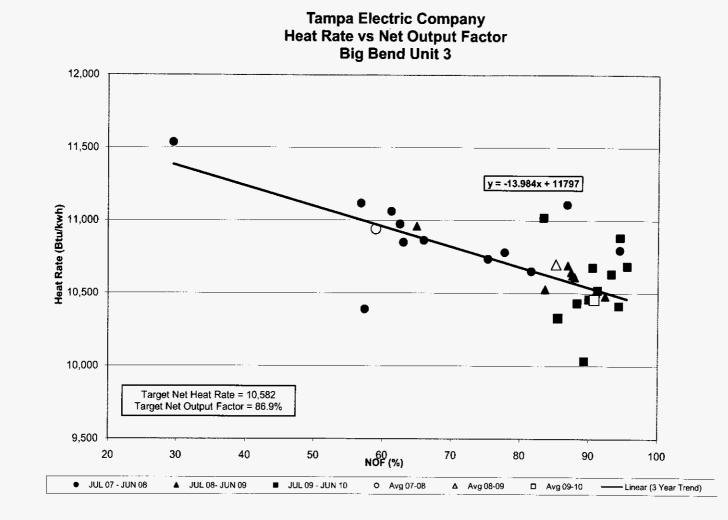

Big Bend Unit 4

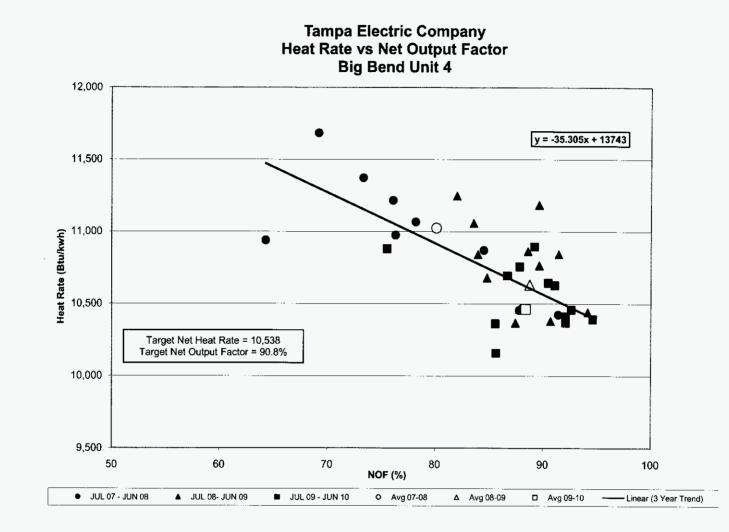


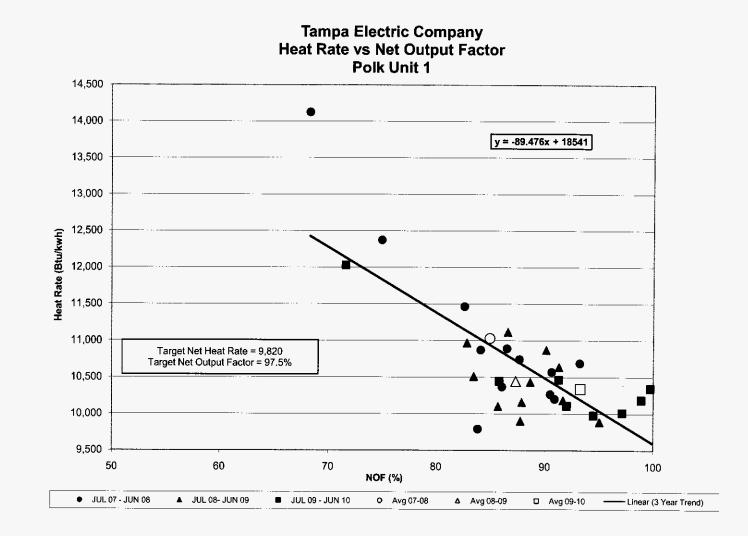


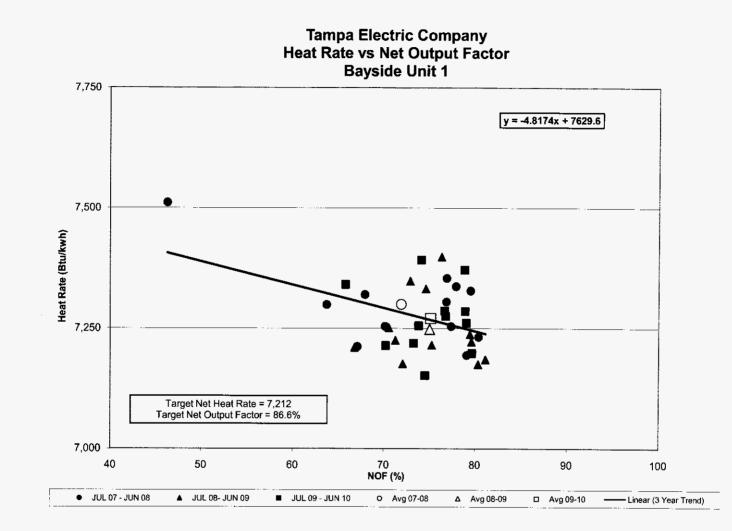


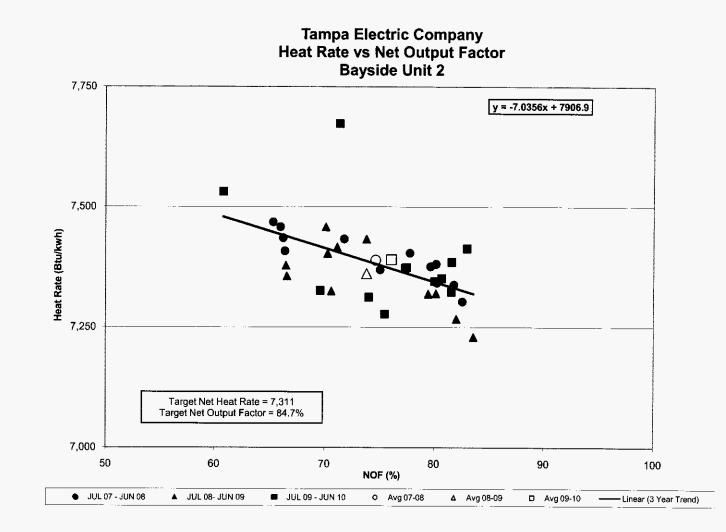
¥


Tampa Electric Company Heat Rate vs Net Output Factor Big Bend Unit 1




ORIGINAL SHEET NO. 8.401.11E PAGE 31 OF 40




-

TAMPA ELECTRIC COMPANY GENERATING UNITS IN GPIF TABLE 4.2 JANUARY 2011 - DECEMBER 2011

PLANT / UNIT		ANNUAL GROSS MDC (MW)	ANNUAL NET NDC (MW)
BIG BEND 1		413	388
BIG BEND 2		413	388
BIG BEND 3		390	365
BIG BEND 4		453	420
POLK 1		290	220
BAYSIDE 1		740	731
BAYSIDE 2		979	968
	GPIF TOTAL	<u>3,680</u>	<u>3,482</u>
	SYSTEM TOTAL	4,624	4,417
	% OF SYSTEM TOTAL	79.6%	78.8%

TAMPA ELECTRIC COMPANY UNIT RATINGS JANUARY 2011 - DECEMBER 2011

×,

۶¢,

PLANT / UNIT		ANNUAL GROSS MDC (MW)	ANNUAL NET NDC (MW)
BAYSIDE 1		740	731
BAYSIDE 2		979	968
BAYSIDE 3		59	58
BAYSIDE 4		59	58
BAYSIDE 5		59	58
BAYSIDE 6		59	58
	BAYSIDE TOTAL	<u>1,954</u>	<u>1,930</u>
BIG BEND 1		413	388
BIG BEND 2		413	388
BIG BEND 3		390	365
BIG BEND 4		453	420
	BIG BEND COAL TOTAL	<u>1,670</u>	<u>1,562</u>
BIG BEND CT4		59	58
	BIG BEND CT TOTAL	<u>59</u>	<u>58</u>
POLK 1		290	220
POLK 2		163	162
POLK 3		163	162
POLK 4		163	162
POLK 5		163	162
	POLK TOTAL	<u>941</u>	<u>867</u>
	SYSTEM TOTAL	4,624	4,417

TAMPA ELECTRIC COMPANY PERCENT GENERATION BY UNIT JANUARY 2011 - DECEMBER 2011

£

•

PLANT	UNIT		NET OUTPUT MWH	PERCENT OF PROJECTED OUTPUT	PERCENT CUMULATIVE PROJECTED OUTPUT
BAYSIDE	2		4,438,630	23.37%	23.37%
BIG BEND	4		2,859,320	15.06%	38.43%
BAYSIDE	1		2,717,380	14.31%	52.74%
BIG BEND	1		2,646,940	13.94%	66.68%
BIG BEND	3		2,344,680	12.35%	79.03%
BIG BEND	2		2,108,120	11.10%	90.13%
POLK	1		1,518,210	7.99%	98.12%
BAYSIDE	5		70,490	0.37%	98.49%
POLK	4		69,380	0.37%	98.86%
BIG BEND CT	4		60,750	0.32%	99.18%
BAYSIDE	6		50,660	0.27%	99.45%
BAYSIDE	3		37,540	0.20%	99.64%
POLK	5		35,780	0.19%	99.83%
BAYSIDE	4		23,430	0.12%	99.96%
POLK	2		6,190	0.03%	99.99%
POLK	3		2,170	0.01%	100.00%
TOTAL GENERA	TION		18,989,670	100.00%	
GENERATION B	Y COAL UNITS:	<u>11,477,270</u> MWH	GENERATION BY	NATURAL GAS UNITS:	7,512,400 MWH
% GENERATION	I BY COAL UNITS	60.44%	% GENERATION	BY NATURAL GAS UNITS:	39.56%
GENERATION B	Y OIL UNITS:	MWH	GENERATION BY	GPIF UNITS:	18,633,280MWH
% GENERATION	I BY OIL UNITS:	0.00%	% GENERATION	BY GPIF UNITS:	98.12%

DOCKET NO. 100001-EI GPIF 2011 PROJECTION FILING EXHIBIT NO. (BSB-2) DOCUMENT NO. 2

EXHIBIT TO THE TESTIMONY OF

5

.

.

BRIAN S. BUCKLEY

DOCUMENT NO. 2

SUMMARY OF GPIF TARGETS

JANUARY 2011 - DECEMBER 2011

_....

DOCKET NO. 100001 - EI GPIF 2011 PROJECTION EXHIBIT NO. BSB-1 , PAGE 1 OF 1 DOCUMENT NO. 2

TAMPA ELECTRIC COMPANY SUMMARY OF GPIF TARGETS JANUARY 2011 - DECEMBER 2011

	Availability			Net
Unit	EAF	POF	EUOF	Heat Rate
Big Bend 1 ¹	67.9	5.8	26.3	10,676
Big Bend 2 ²	62.4	23.8	13.8	10,350
Big Bend 3 ³	82.1	6.6	11.3	10,582
Big Bend 4 ⁴	77.9	6.6	15.5	10,538
Polk 1 ⁵	88.6	6.0	5.3	9,820
Bayside 1 ⁶	78.2	21.1	0.7	7,212
Bayside 2 ⁷	94.4	3.8	1.8	7,311

1 Original Sheet 8.401.11E, Page 14

2 Original Sheet 8.401.11E, Page 15

3 Original Sheet 8.401.11E, Page 16

4 Original Sheet 8.401.11E, Page 17

5 Original Sheet 8.401.11E, Page 18

6 Original Sheet 8.401.11E, Page 19

7 Original Sheet 8.401.11E, Page 20

BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION

DOCKET NO. 100001-EI IN RE: FUEL & PURCHASED POWER COST RECOVERY AND CAPACITY COST RECOVERY

PROJECTIONS

JANUARY 2011 THROUGH DECEMBER 2011

TESTIMONY

OF

BENJAMIN F. SMITH II

DOCUMENT NI MRER-EAL

0738| SEP-I≘

FPSC-COMMISSION CLERK

1	2	BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION
2		PREPARED DIRECT TESTIMONY
3		OF
4		BENJAMIN F. SMITH II
5		
б	Q.	Please state your name, address, occupation and employer.
7		
8	A.	My name is Benjamin F. Smith II. My business address is
9		702 North Franklin Street, Tampa, Florida 33602. I am
10		employed by Tampa Electric Company ("Tampa Electric" or
11		"company") in the Wholesale Marketing group within the
12		Fuels Management Department.
13		
14	Q.	Please provide a brief outline of your educational
15		background and business experience.
16		
17	A.	I received a Bachelor of Science degree in Electric
18		Engineering in 1991 from the University of South Florida
19	•	in Tampa, Florida and am a registered Professional
20		Engineer within the State of Florida. I joined Tampa
21		Electric in 1990 as a cooperative education student.
22		During my years with the company, I have worked in the
23		areas of transmission engineering, distribution
24		engineering, resource planning, retail marketing, and
25		wholesale power marketing. I am currently the Manager of

. .

÷

1 Energy Products and Structures in the Wholesale Marketing 2 group. My responsibilities are to evaluate short-term 3 and long-term purchase and sale opportunities within the 4 wholesale power market, assist in wholesale contract structure and help evaluate the processes used to value 5 6 wholesale power opportunities. In this capacity, I 7 interact with wholesale power market participants such as utilities, municipalities, electric cooperatives, power 8 9 marketers and other wholesale generators. 10 11 Q. Have you previously testified before the Florida Public 12 Service Commission ("Commission")? 13 14 Α. Yes. I have submitted written testimony in the annual fuel docket since 2003, and I testified before this 15 Commission in Docket Nos. 030001-EI, 040001-EI, 16 and 17 080001-EI regarding the appropriateness and prudence of 18 Tampa Electric's wholesale purchases and sales. 19 20 Q. What is the purpose of your direct testimony in this 21 proceeding? 22 The purpose of my testimony is to provide a description 23 Α. 24 of Tampa Electric's purchased power agreements that the company has entered into and for which it is seeking cost 25

recovery through the Fuel and Purchased Power Cost Recovery Clause ("fuel clause") and the Capacity Cost Recovery Clause. I also describe Tampa Electric's purchased power strategy for mitigating price and supplyside risk, while providing customers with a reliable supply of economically priced purchased power.

Q. Please describe the efforts Tampa Electric makes to ensure that its wholesale purchases and sales activities are conducted in a reasonable and prudent manner.

12 Α. Tampa Electric evaluates potential purchased power needs sale opportunities by analyzing 13 and the expected 14 available amounts of generation and the power required to meet the projected demand and energy of its customers. 15 Purchases made to achieve 16 are reserve margin 17 requirements, meet customers' demand and energy needs, supplement generation 18 during unit outages, and for 19 economical purposes. When there is a purchased power 20 need, the company aggressively polls the marketplace for 21 wholesale capacity or energy, searching for reliable supplies at the best possible price from creditworthy 22 23 counterparties.

24

25

1

2

3

4

5

6

7

8

9

10

11

Conversely, when there is a sales opportunity, the

company offers profitable wholesale capacity or energy products to creditworthy counterparties. The company has wholesale power purchase and sale transaction enabling agreements with numerous counterparties. This process helps to ensure that the company's wholesale purchase and sale activities are conducted in a reasonable and prudent manner.

1

2

3

4

5

6

7

8

9

10

11

12

21

Q. Has Tampa Electric reasonably managed its wholesale power purchases and sales for the benefit of its retail customers?

Tampa Electric has fully complied with, and Α. Yes, it has. 13 continues to fully comply with, the Commission's March 14 11, 1997 Order, No. PSC-97-0262-FOF-EI, issued in Docket 15 No. 970001-EI, which governs the treatment of separated 16 17 and non-separated wholesale sales. The company's wholesale purchase and sale activities and transactions 18 are also reviewed and audited on a recurring basis by the 19 Commission. 20

22 In addition, Tampa Electric actively manages its wholesale purchases and sales with the qoal 23 of capitalizing on opportunities to reduce customer costs. 24 The company monitors its contractual rights 25 with

purchased power suppliers as well as with entities to 1 which wholesale power is sold to detect and prevent any 2 breach of the company's contractual rights. Also, Tampa 3 Electric continually strives to improve its knowledge of 4 wholesale power markets and the available opportunities 5 within the marketplace. The company uses this knowledge 6 to minimize the costs of purchased power and to maximize 7 savings the company provides retail customers by the 8 9 making wholesale sales when excess power is available on Tampa Electric's system and market conditions allow. 10 11Please describe Tampa Electric's 2010 wholesale energy Q. 12 purchases. 13 14 Tampa Electric assessed the wholesale power market and Α. 15 entered into short-term and long-term purchases based on 16 supply. Approximately 8 price and availability of 17

percent of the expected energy needs for 2010 will be met 18 using purchased power. This purchased power energy 19 includes economy purchases and existing firm purchased 20 power agreements with Hardee Power Partners, qualifying 21 facilities, Calpine, RRI Energy Services (formally known 22 as Reliant), and Pasco Cogen. The testimony in previous 23 describes each existing firm purchased power 24 years subsequently approved by the agreement, which were 25

Commission as being cost-effective for Tampa Electric customers. Hillsborough County chose not to extend the sale of its firm capacity and energy from its waste facility to Tampa Electric as of March 2010. All of the aforementioned purchases provide supply reliability and help reduce fuel price volatility.

1

2

3

4

5

б

7

9

10

Tampa Electric entered into any other 8 Ο. Has wholesale energy purchases for 2010 and beyond?

11 Α. No. However, the company projects approximately 6 -12 percent of the expected energy needs for 2011 will be met using economy purchases and existing purchased power 13 14 agreements. This projection includes energy from both 15 the Calpine and City of Tampa firm purchased power agreements through their respective 2011 contract end 16 dates. The Calpine agreement for firm peaking capacity 17 and energy expires May 2011, and the City of 18Tampa agreement for firm capacity and energy out of its waste 19 facility expires August 2011. 20 Electric will Tampa 21 continue to evaluate economic combinations of forward and 22 spot market energy purchases during its spring and fall generation maintenance periods and peak periods. 23 This purchasing strategy provides a reasonable and diversified 24 approach to serving customers. 25

 Q. Does Tampa Electric engage in physical or financial hedging of its wholesale energy transactions to mitigate wholesale energy price volatility?

Physical and financial hedges can provide measurable 5 Α. 6 market price volatility protection. Tampa Electric purchases physical wholesale power products. The company 7 not engaged in financial hedging 8 has for wholesale transactions because 9 the availability of financial instruments within the Florida market is limited. 10 The Florida wholesale power market currently operates through 11 bilateral contracts between various counterparties and 12 13 there is not a Florida trading hub where standard financial transactions can occur with enough volume to 14 15 create a liquid market. Due to this lack of liquidity, the appropriate financial instruments to 16 meet the company's needs do not currently exist. 17 Tampa Electric 18 has not purchased any wholesale energy derivatives but the company does employ a diversified power 19 supply strategy which includes self-generation and short-term 20 21 and long-term capacity and energy purchases. This 22 strategy provides the company the opportunity to take advantage of favorable 23 spot market pricing while maintaining reliable service to its customers. 24

25

4

Q. Does Tampa Electric's risk management strategy for power
 transactions adequately mitigate price risk for purchased
 power for 2010?

Electric expects its physical wholesale Yes, Tampa 5 Δ purchases to continue to reduce its customers' purchased 6 power price risk. For example, the 170 MW Calpine 7 purchase and the 158 MW purchase from Reliant in 2010 are 8 reliable, cost-based call options for peaking power. 9 serve as both a physical hedge These purchases and 10 reliable source of economical power in 2010. The 11 availability of these purchases is high, and their price 12 structures provide some protection from rising market 13 prices, which are largely influenced by supply and the 14volatility of natural gas prices. 15

Mitigating price risk is a dynamic process and Tampa Electric continually evaluates its options in light of changing circumstances and new opportunities. Tampa Electric also strives to maintain an optimum level and mix of short- and long-term capacity and energy purchases to augment the company's own generation for the year 2010 and beyond.

24

16

4

25

Q. How does Tampa Electric mitigate the risk of disruptions

to its purchased power supplies during major weather related events such a hurricane?

Α. During hurricane season, Tampa Electric continues 4 to 5 utilize a purchased power risk management strategy to minimize potential power supply disruptions during major 6 weather related events. The strategy includes monitoring 7 8 storm activity; evaluating the impact of storms on the 9 wholesale power market; purchasing power on the forward for reliability 10 market and economics; evaluating 11transmission availability and the geographic location of electric resources; reviewing the seller's fuel sources 12 and dual fuel capabilities; and focusing 13 on fueldiversified purchases. 14 Notably, both the RRI Energy Cogen purchases 15 Services and Pasco are dual-fuel resources. This allows these resources to run on either 16 17 natural gas or oil, which enhances supply reliability 18during а potential hurricane-related disruption in natural gas supply. 19 Absent the threat of a hurricane, and for all other months of the year, 20 the company 21 continues its strategy of evaluating economic combinations 22 of shortand long-term purchase opportunities identified in the marketplace. 23

25 **Q**.

24

1

2

3

Please describe Tampa Electric's wholesale energy sales

1 2 for 2010 and 2011.

3 Α. Tampa Electric entered into various non-firm, nonseparated wholesale sales in 2010, and the company 4 anticipates making additional non-separated sales during 5 the balance of 2010 and in 2011. In accordance with 6 Order No. PSC-01-2371-FOF-EI, issued on December 7, 2001 7 8 in Docket No. 010283-EI, all gains from non-separated sales are returned to customers through the fuel clause, 9 up to the three-year rolling average threshold. For all 10 gains above the three-year rolling average threshold, 11 customers receive 80 percent and the company retains the 12 2010, 13 remaining 20 percent. In Tampa Electric anticipates its gains from non-separated wholesale sales 14 to be \$1,766,461, of which 100 percent would flow back to 15 customers since they are less than the three-year rolling 16 17 average threshold of \$2,002,890. Similarly, in 2011, the company's projected gains from non-separated wholesale 18 sales are \$771,637, of which 100 percent would flow back 19 to customers since they are less than the projected 2011 20 three-year rolling average threshold of \$2,325,363. 21 22

23 **Q.** Please summarize your testimony.

25

24

A. Tampa Electric monitors and assesses the wholesale power

market to identify and take advantage of opportunities in 1 the marketplace, and those efforts benefit the company's 2 Tampa Electric's energy supply strategy customers. 3 includes self-generation and short- and long-term power 4 The company purchases in both the physical purchases. 5 forward and spot wholesale power markets to provide 6 customers with a reliable supply at the lowest possible 7 It also enters into wholesale sales that benefit 8 cost. Tampa Electric does not purchase wholesale 9 customers. energy derivatives in the Florida wholesale power market 10 due to a lack of financial instruments appropriate for 11 the company's operations. It does, however, employ a 12 13 diversified power supply strategy to mitigate price and supply risks. 14 15 Does this conclude your testimony? 16 Q. 17 Α. Yes. 18 19 20 21 22 23

11

24

DOCTATING NOT REAL

07381 SEP-19

JOANN T. WEHLE

TESTIMONY

OF

JANUARY 2011 THROUGH DECEMBER 2011

PROJECTIONS

CAPACITY COST RECOVERY

DOCKET NO. 100001-EI IN RE: FUEL & PURCHASED POWER COST RECOVERY AND

BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION

TECC TAMPA ELECTRIC

1		BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION
2		PREPARED DIRECT TESTIMONY
3		OF
4		JOANN T. WEHLE
5		
6	Q.	Please state your name, address, occupation and
7		employer.
8		
9	A.	My name is Joann T. Wehle. My business address is 702 N.
10		Franklin Street, Tampa, Florida 33602. I am employed by
11		Tampa Electric Company ("Tampa Electric" or "company") as
12		Director, Wholesale Marketing & Fuels.
13		
14	Q.	Please provide a brief outline of your educational
15		background and business experience.
16		
17	A.	I received a Bachelor of Business Administration Degree in
18		Accounting in 1985 from St. Mary's College in Notre Dame,
19		Indiana. I am a CPA in the State of Florida and worked in
20		several accounting positions prior to joining Tampa
21		Electric. I began my career with Tampa Electric in 1990
22		as an auditor in the Audit Services Department. I became
23		Senior Contracts Administrator, Fuels in 1995. In 1999, I
24		was promoted to Director, Audit Services and subsequently
25		rejoined the Fuels Department as Director in April 2001.

•

I became Director, Wholesale Marketing and Fuels in August 1 2002. I am responsible for managing Tampa Electric's 2 wholesale energy marketing and fuel-related activities. З 4 5 Q. Please state the purpose of your testimony. 6 The purpose of my testimony is to discuss Tampa Electric's Α. 7 fuel mix, fuel price forecasts, potential impacts to fuel 8 9 prices, and the company's fuel procurement strategies. Ι will address steps Tampa Electric takes to manage fuel 10 supply reliability and price volatility and describe 11 projected hedging activities. I also sponsor Tampa 12 Electric's 2011 risk management plan submitted on August 13 2, 2010 in this docket. 14 15 Have you previously testified before this Commission? Q. 16 17 Yes. I have testified or filed testimony before this 18 Α. 19 Commission in several dockets, including Docket No. 011605-EI, 031033-EI and 080317-EI as well as the annual 20 fuel and purchased power cost recovery dockets from 2001 21 through 2009. My testimony in these dockets described the 22 appropriateness and prudence of Tampa Electric's fuel 23 procurement activities, fuel supply risk management, fuel 24 volatility hedging activities, price and fuel 25

	1	
l		transportation costs.
2		
3	2011	Fuel Mix and Procurement Strategies
4	Q.	What fuels will Tampa Electric's generating stations use
5		in 2011?
6		
7	А.	In 2011, Tampa Electric expects its fuel mix to be
8		comparable to 2010. In 2011, natural gas-fired and coal-
9		fired generation is expected to be 40 percent and 60
10		percent of total generation, respectively. Generation
11		from No. 2 oil is less than one percent of the total
12		expected generation.
13		
14	Q.	How does Tampa Electric's natural gas procurement and
15		transportation strategy achieve competitive natural gas
16		purchase prices for long and short term deliveries?
17		
18	A.	Tampa Electric uses a portfolio approach to natural gas
19		procurement. This consists of a blend of pre-arranged
20		base load, intermediate and swing supply complemented with
21		daily spot purchases. The contracts have various time
22		lengths to help secure needed supply at competitive prices
23		and maintain the ability to take advantage of favorable
24		natural gas price movements. Tampa Electric purchases its
25		physical natural gas supply from approved counterparties,
	I	2

•

enhancing the liquidity and diversification of its natural gas supply portfolio. The natural gas prices are based on monthly and daily price indices, further increasing pricing diversification.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

19

Tampa Electric has improved the reliability of the physical delivery of natural gas to its power plants by diversifying its pipeline transportation assets, including receipt points, and utilizing pipeline and storage tools to enhance access to natural gas supply during hurricanes or other events that constrain supply. On a daily basis, Tampa Electric strives to obtain reliable supplies of natural gas at favorable prices in order to mitigate costs to its customers. Additionally, Tampa Electric's risk management activities reduce natural gas price volatility.

17 Q. Please describe Tampa Electric's diversified natural gas
 18 transportation arrangements.

Α. Tampa Electric receives natural gas via the Florida Gas 20 Transmission ("FGT") pipeline and Gulfstream Natural Gas 21 System, LLC ("Gulfstream"). The ability to deliver 22 natural gas directly from two pipelines enhances the fuel 23 delivery reliability of the Bayside Power Station, the 24 largest natural gas units on Tampa Electric's system. 25

Natural gas can also be delivered to Big Bend Station 1 directly from Gulfstream 2 to support the new aero derivative combustion turbine. З 4 Q. Will there be any changes to Tampa Electric's pipeline 5 capacity for the balance of 2010 or 2011? 6 7 A. Yes. Tampa Electric has contracted for FGT Phase VIII 8 9 capacity. Tampa Electric has reserved an additional 10 45,000 MMBtu of winter only capacity beginning in November 2010 and an additional 50,000 MMBtu beginning 11 in April of 2011. The Phase VIII capacity provides 12 enhanced reliability delivery of gas supply and allows 13 14 Tampa Electric to meet its peak system demands. 15 What actions does Tampa Electric take to enhance 16 Q. the reliability of its natural gas supply? 17 18 Tampa Electric has maintained natural gas storage capacity 19 Α. with Bay Gas Storage near Mobile, Alabama since 2005. 20 21 Currently the company reserves 850,000 MMBtu of storage capacity, which enhances access to natural gas in the case 22 of severe weather or other events that disrupt supply. 23 Tampa Electric's storage capacity at Bay Gas Storage will 24 increase to 1,200,000 MMBtu when the fourth cavern is 25

ı		completed in the fall 2011.
2		
3		In addition to storage, Tampa Electric maintains
4		diversified natural gas supply receipt points in FGT Zones
5		1, 2 and 3. Diverse receipt points reduce the company's
6		vulnerability to hurricane impacts and provide access to
7		lower priced gas supply.
8		
9		Tampa Electric also participated in the Southeast Supply
10		Header ("SESH") project. SESH connects the receipt points
11		of FGT and other Mobile Bay area pipelines with natural
12		gas supply in the mid-continent. Mid-continent natural
13		gas production has grown and continues to increase through
14		non-conventional shale gas and the Rockies Express. Thus,
15		SESH gives Tampa Electric access to secure, competitively
16		priced on-shore gas supply for a portion of its portfolio.
17		
18	Q.	What is Tampa Electric's coal procurement strategy?
19		
20	A .	Tampa Electric's two coal-fired plants are Big Bend
21		Station and Polk Station. Big Bend Station is a fully
22		scrubbed plant whose design fuel is high-sulfur Illinois
23		Basin coal. Polk Station is an integrated gasification
24		combined cycle plant currently burning a mix of petroleum
25		coke and low sulfur coal. The plants have varying

•

operational and environmental restrictions and require fuel with custom quality characteristics such as ash, fusion temperature, sulfur, heat content and chlorine. Since coal is not a homogenous product, fuel selection is based on these unique characteristics, along with price, availability, deliverability and creditworthiness of the supplier.

1

2

3

4

5

6

7

8

23

24

25

Tampa Electric maintains 9 а portfolio of bilateral contracts varying in term lengths of long, intermediate, 10 11 and short for coal supply. Tampa Electric monitors the market to obtain the most favorable prices from sources 12 that meet the needs of the generating stations. 13 The use 14 of daily and weekly publications, independent research analyses from industry experts, discussions 15 with suppliers, and coal solicitations aid the company in 16 monitoring the coal market and shaping the company's coal 17 procurement strategy to reflect current market conditions. 18 This allows for stable supply sources while providing 19 flexibility to take advantage of favorable spot market 20 The company's efforts to obtain the most 21 opportunities. 22 favorable coal prices directly benefit its customers.

Q. Has Tampa Electric entered into coal and natural gas supply transactions for 2011 delivery?

Yes, Tampa Electric has contracted over half of its 2011 1 Α. 2 expected coal needs through bilateral agreements with coal suppliers mitigate price volatility to and ensure 3 reliability of supply. Additionally, the majority of the 4 company's 2011 expected natural gas requirements are 5 already under contract. Tampa Electric anticipates the 6 remaining purchases will be procured by the fourth quarter 7 of 2010 or in the spot market. 8 9 Has Tampa Electric reasonably managed its fuel procurement 10 Q. 11 practices for the benefit of its retail customers? 12 Α. Tampa Electric diligently manages its mix of long, 13 Yes. intermediate, and short term purchases of fuel in a manner 14 designed to reduce overall fuel costs while maintaining 15 electric service reliability. The company's fuel 16 17 activities and transactions are reviewed and audited on a recurring basis by the Commission. In addition, the 18 company monitors its rights under contracts with fuel 19 suppliers to detect and prevent any breach of those 20 rights. Tampa Electric continually strives to improve its 21 knowledge of fuel markets and to take advantage of 22 opportunities to minimize the costs of fuel. 23 24

25

Coal Transportation Costs 1 Q. Are there any changes to Tampa Electric's coal 2 transportation portfolio in 2011? 3 4 In 2009, Tampa Electric completed a rail delivery 5 Α. Yes. and unloading facility at Big Bend Station and rail 6 deliveries commenced in December of 2009. Tampa Electric 7 expects to receive 1.8 and 2.1 million tons of coal for 8 use at Big Bend and Polk Stations through this rail 9 facility in 2010 and 2011, respectively. 10 11 As part of the CSX transportation agreement, Tampa 12 Electric receives a per ton reimbursement for each ton of 13 delivered, all of which is flowed through to coal 14 customers through the fuel and purchased power cost 15 recovery clause pursuant to the company's most recent rate 16 case final order. Tampa Electric anticipates these 17 amounts to be \$13.5 million and \$8.4 million for 2010 and 18 2011, respectively. 19 20 What benefits exist from rail transportation of coal for Q. 21 Tampa Electric and its customers? 22 23 Bimodal solid fuel transportation to Big Bend Station Α. 24 affords the company and its customers 1) access to more 25

potential coal suppliers providing a more competitive, 1 overall delivered cost, 2) the flexibility to switch to 2 either water or rail in the event of a transportation 3 breakdown or interruption on the other mode, and 3) 4 competition for solid fuel transportation contracts for 5 future periods. 6 7 Did the Commission agree that there are customer benefits Q. 8 associated with bi-modal waterborne and rail deliveries? 9 10 In the 080001 Docket, the Commission determined Α. Yes. 11 that the company complied with all requirements of Order 12 PSC-04-0999-FOF-EI in procuring its fuel No. 13 transportation contracts, which required a fair and open 14 competitive procurement process to ensure the lowest 15 possible delivered costs through the use of a bimodal 16 17 fuel delivery system. 18 Projected 2011 Fuel Prices 19 How does Tampa Electric project fuel prices? 20 Q. 21 Tampa Electric reviews fuel price forecasts from sources Α. 22 widely used in the industry, including Wood Mackenzie, the 23 Energy Information Administration, the New York Mercantile 24 Exchange ("NYMEX") and other energy market information 25

sources. Futures prices for energy commodities as traded on the NYMEX form the basis of the natural gas and No. 2 oil market commodity price forecasts. The commodity price projections are then adjusted to incorporate expected transportation costs and location differences.

1

2

3

4

5

6

15

18

22

25

Coal prices and coal transportation prices are projected 7 using contracted pricing and information from industry-8 recognized consultants and published indices and are 9 specific to the particular quality and mined location of 10 coal utilized by Tampa Electric's Big Bend Station and 11 Final as-burned prices are derived using Polk Unit 1. 12 expected commodity prices and associated transportation 13 costs. 14

16 Q. How do the 2011 projected fuel prices compare to the fuel
 17 prices projected for 2010?

A. Projected fuel prices are expected to increase slightly in
 20 2011 compared to 2010 as the global economy is projected
 to improve and inventory surpluses diminish.

Q. What are the market drivers of the expected 2011 price of
 natural gas?

The current market forecasts are projecting a slight Α. 1 increase to natural gas pricing in 2011 as compared to 2 2010. Once again, an improving economy and market 3 adjustment to shale gas production is expected to raise 4 the price slightly but not dramatically. 5 6 What are the market drivers of the change in the price of Q. 7 coal? 8 9 Coal prices dropped dramatically in 2009 as the global Α. 10 economy deteriorated and inventories rose. Additionally, 11 low natural gas prices caused higher cost coal-fired 12 generation to be displaced by lower cost natural gas 13 combined cycle units. The reduced demand for coal caused 14 inventories to increase throughout the nation. Recently, 15 for coal has increased international demand and 16 inventories are beginning to decline. These changes 17 should lead to small increases in coal pricing. 18 19 Did Tampa Electric consider the impact of higher than 20 Q. expected or lower than expected fuel prices? 21 22 Tampa Electric prepared a scenario in which the Α. Yes. 23 forecasted fuel prices were 30 percent higher for both 24 natural gas and No. 2 oil. Similarly, Tampa Electric 25

prepared a scenario in which the forecasted fuel prices 1 were 30 percent lower for both natural gas and No. 2 oil. 2 3 Risk Management Activities 4 Electric's risk management Please describe Tampa Q. 5 activities. 6 7 Tampa Electric complies with its risk management plan as 8 Α. approved by the company's Risk Authorizing Committee. 9 Tampa Electric's plan is described in detail in the Risk 10 Management plan filed August 2, 2010 in this docket. 11 12 Has Tampa Electric used financial hedging in an effort to Q. 13 help mitigate the price volatility of its 2010 and 2011 14 natural gas requirements? 15 16 Tampa Electric hedged a significant portion of its Α. Yes. 17 2010 natural gas supply needs and a portion of its 18 expected 2011 natural gas supply needs in accordance with 19 Tampa Electric will continue to take advantage its plan. 20 of available natural gas hedging opportunities in an 21 effort to benefit its customers, while complying with the 22 company's approved Risk Management Plan. The current 23 market position for natural gas hedges was provided in the 24 Risk Management Plan submitted on August 2, 2010. 25

1	Q.	Are the company's strategies adequate for mitigating price
2		risk for Tampa Electric's 2010 and 2011 natural gas
3		purchases?
4		
5	A.	Yes, the company's strategies are adequate for mitigating
6		price risk for Tampa Electric's natural gas purchases.
7		Tampa Electric's strategies balance the desire for reduced
8		price volatility and reasonable cost with the uncertainty
9		of natural gas volumes. These strategies are described in
10		detail in Tampa Electric's Risk Management Plan filed
11		August 2, 2010.
12		
13	Q.	How does Tampa Electric determine the volume of natural
14		gas it plans to hedge?
15		
16	A.	Tampa Electric projects the quantity or volume of natural
17		gas expected to be consumed in its power plants. The
18		volume hedged is driven primarily by the projected total
19		gas consumption in the plants by month and the time until
20		that natural gas is needed. Based on those two
21		parameters, the amount hedged is maintained within a range
22		authorized by the company's Risk Authorizing Committee.
23		The market price of natural gas does not affect the
24		percentage of natural gas requirements that the company
25		hedges since the objective is price volatility reduction,
		14

,		
1		not price speculation.
2		
3	Q.	Were Tampa Electric's efforts through July 31, 2010 to
4		mitigate price volatility through its non-speculative
5		hedging program prudent?
6		
7	A.	Yes. Tampa Electric has executed hedges according to the
8		risk management plan filed with this Commission, which was
9		approved by the company's Risk Authorizing Committee. On
10		April 1, 2010, the company filed its 2009 hedging results
11		as part of the final true-up process. Additionally, the
12		Commission Order No. PSC-08-0316-PAA-EI, issued May 14,
13		2008, requires the utilities to file a Hedging Information
14		Report showing the results of hedging activities from
15		January through July of the current year. The Hedging
16		Information Report facilitates prudence reviews through
17		July 31 of the current year and allows for the
18		Commission's prudence determination at the annual fuel
19		hearing. Tampa Electric filed its Hedging Information
20		Report showing the results of its prudent hedging
21		activities from January through July 2010 in this docket
22		on August 16, 2010.
23		
24	Q.	Does Tampa Electric expect its hedging program to provide
25		fuel savings?

2 3		program is to reduce fuel price volatility as approved by the Commission. Tampa Electric employs a well-disciplined
3		the Commission. Tampa Electric employs a well-disciplined
4		hedging program. This discipline requires consistent
5		hedging based on expected needs and avoidance of
6		speculative hedging strategies aimed at out-guessing the
7		market. This discipline insures hedges will be in place
8		should prices spike and also means hedges are in place
9		when prices decline. Using this disciplined approach
10		means that much of the volatility and uncertainty in
11		natural gas prices are removed from the fuel cost used to
12		generate electricity for our customers.
13		
14	Q.	Does this conclude your testimony?
15		
16	A.	Yes, it does.
17		
18		
19		
20		
21		
22		
23		
24	i	
25		