FILED JUL 26, 2013 DOCUMENT NO. 04323-13 FPSC - COMMISSION CLERK

BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION

DOCKET NO. 13 <u>0198</u>-EI FLORIDA POWER & LIGHT COMPANY

IN RE: PETITION FOR PRUDENCE DETERMINATION REGARDING NEW PIPELINE SYSTEM

COM 6	DIRECT TESTIMONY & EXHIBITS OF:
AFD	
APA	
ECO	JUAN E. ENJAMIO
ENG 1	
GCL 1	
IDM	
TEL	
CLK	

1	BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION					
2	FLORIDA POWER & LIGHT COMPANY					
3	PETITION FOR PRUDENCE DETERMINATION					
4	REGARDING NEW PIPELINE SYSTEM					
5	DIRECT TESTIMONY OF JUAN E. ENJAMIO					
6	DOCKET NO. 13EI					
7	JULY 26, 2013					
8						
9						
10						
11						
12						
13						
14						
15						
16						
17						
18						
19						
20						
21						
22						
23						
24						

1		TABLE OF CONTENTS
2	I.	INTRODUCTION
3	II.	NEED FOR ADDITIONAL GAS TRANSPORTATION CAPACITY7
4	III.	DETERMINATION OF THE AMOUNT OF INCREMENTAL GAS
5		TRANSPORTATION CAPACITY13
6	IV.	DESCRIPTION OF ECONOMIC ANALYSIS
7	V.	RESULTS OF THE ECONOMIC ANALYSIS
8	VI.	CONCLUSION
9		
10		
11		
12		
13		
14		
15		
17		
18		
19		
20		
21		
22		

1		I. INTRODUCTION					
2							
3	Q.	Please state your name and business address.					
4	А.	My name is Juan E. Enjamio. My business address is Florida Power & Light					
5		Company, 9250 West Flagler Street, Miami, Florida 33174.					
6	Q.	By whom are you employed and what is your position?					
7	А.	I am employed by Florida Power & Light Company ("FPL") as Supervisor of					
8		Integrated Analysis in the Resource Assessment & Planning Department					
9		("RAP").					
10	Q.	Please describe your educational background and professional					
11		experience.					
12	А.	I graduated from the University of Florida in 1979 with a Bachelor of Science					
13		degree in Electrical Engineering. I joined FPL in 1980 as a Distribution					
14		Engineer. Since my initial assignment in FPL, I have held positions as a					
15		Transmission System Planner, Power System Control Center Engineer, Bulk					
16		Power Markets Engineer, Supervisor of Transmission Planning and					
17		Supervisor of Supply and Demand Analysis. In 2004, I became Supervisor of					
18		Integrated Analysis – Resource Planning.					
19	Q.	Please describe your duties and responsibilities in your current position.					
20	А.	In my current position as Supervisor of Integrated Analysis, I am responsible					
21		for supervision and coordination of economic analysis of alternatives to meet					
22		FPL's resource needs and maintain system reliability.					
23							

1	Q.	Are you sponsoring any exhibits in this case?
2	А.	Yes. I am sponsoring the following exhibits which are attached to my direct
3		testimony:
4		JEE-1 Generation Resource Plans
5		JEE-2 Gas Price Forecasts
6		JEE-3 Financial Assumptions
7		JEE-4 Economic Results
8		JEE-5 Economic Results- Four Combinations
9		JEE-6 Economic Results- Gas Price Sensitivities
10		JEE-7 Economic Results of Non-Compliant Bid
11		JEE-8 Projection of Approximate Bill Impacts
12	Q.	What is the purpose of your testimony in this proceeding?
13	А.	The purpose of my testimony is twofold: first, to present FPL's projection of
14		the amount of incremental natural gas transportation that will be needed to
15		fuel FPL's generation fleet and how FPL made that determination, and,
16		second, to present the results of the comparative economic evaluation of the
17		gas transportation proposals received in response to FPL's Request for
18		Proposals ("RFP"). Based upon the economic evaluation I present, I conclude
19		that Combined Project 1 is the most cost-effective gas transportation
20		alternative.
21	Q.	Please summarize your testimony.
22	А.	In 2002, FPL's energy generated from gas was 33.1% of total energy

23 generated. In 2012, FPL's energy generated from gas was 72.6%, an increase

1 of 119% since 2002. This dramatic increase in FPL's use of natural gas has 2 been driven by recent economically driven decisions to meet the need for new generation capacity by building new highly efficient gas-burning combined 3 4 cycle units as well as by modernizing many of FPL's old and inefficient steam 5 units. FPL expects that its reliance on cost-effective natural gas-fired generation will continue in the near future. In fact, FPL plans to add 8,143 6 7 MW of additional gas-fired combined cycle units between 2013 and 2030. 8 9 FPL forecasts that the FPL system will require 405 million cubic feet per day 10 ("MMcf/d") of incremental firm gas transportation capacity in 2017. This incremental need will grow to 575 MMcf/d in 2020 and 870 MMcf/d by 2030. 11 As described further in the testimony of FPL witness Morley, these 12 13 projections of incremental gas transportation needed were established using a 14 risk-adjusted load forecast based upon historic differences between FPL's 15 actual and forecasted summer peak and net energy for load. Use of this risk-16 adjusted load forecast increases the likelihood that FPL will have adequate gas transportation to meet its future requirements. The use of a risk-adjusted load 17 18 forecast as a reserve measure for purposes of ensuring adequate gas supply is 19 similar in concept to using a 20% reserve margin as is done for generation 20 resource planning.

21

FPL issued an RFP to solicit bids to meet the projected future needs foradditional gas transportation. The overall project is now known as the new

1 Pipeline System. The RFP requested separate bids for both an Upstream 2 Pipeline Project and a Downstream Pipeline Project. After completing the 3 evaluation of proposals, FPL adopted new terminology to further clarify the distinction between the two pipeline projects. For the purpose of this 4 5 proceeding the Upstream Project and Downstream Project are identified as the "Northern Pipeline Project" and "Southern Pipeline Project," respectively. 6 7 The RFP evaluation team reviewed the proposed alternatives and developed 8 every possible combination of Northern and Southern Pipeline Projects 9 ("Combined Projects"). Twelve such Combined Projects, which represent all 10 combinations of four proposals for the Northern Pipeline Proposals and three 11 proposals for the Southern Pipeline Project, were developed and forwarded to 12 RAP which then conducted a blind (without knowledge of the bidders' 13 identities) economic evaluation. The economics of these twelve Combined 14 Projects were compared both under a Base Resource Plan and under a Four 15 Year Nuclear Delay Resource Plan and are presented in Exhibit JEE-4.

16

17 Since the three proposals for the Southern Pipeline Project consisted of bids 18 from the same company, the number of Combined Projects useful in the 19 determination of the best Pipeline System alternative can be narrowed to four 20 combinations. Each of these four Combined Projects includes one of the 21 Northern Pipeline Project Proposals, paired with the best proposal for the 22 Southern Pipeline Project. The comparison of these four Combined Projects 23 shows that Combined Project 1 results in the lowest cost to FPL customers

1		with CPVRR savings of \$580 million, \$937 million and \$1,356 million
2		CPVRR, respectively, when compared to the other three Northern Pipeline
3		Project Proposals, under the Base Resource Plan. Similarly, Combined Project
4		1 results in CPVRR savings of \$513 million, \$919 million, and \$1,289
5		million, respectively, when compared to the other three Northern Pipeline
6		Project Proposals, under the Four Year Nuclear Delay Resource Plan. These
7		results are presented in Exhibit JEE-5. Based on its large economic advantage,
8		I conclude that Combined Project 1 is the best alternative to meet the future
9		gas requirements of FPL's customers.
10		
11		II. NEED FOR ADDITIONAL GAS TRANSPORTATION
12		CAPACITY
13		
14	Q.	What has been the trend in FPL's historical use of natural gas?
14 15	Q. A.	What has been the trend in FPL's historical use of natural gas?In 2002, 33.1% of FPL's total energy generated was produced using natural
14 15 16	Q. A.	What has been the trend in FPL's historical use of natural gas?In 2002, 33.1% of FPL's total energy generated was produced using natural gas. In 2012 the amount of FPL's total energy generated from gas was 72.6%,
14 15 16 17	Q. A.	What has been the trend in FPL's historical use of natural gas?In 2002, 33.1% of FPL's total energy generated was produced using natural gas. In 2012 the amount of FPL's total energy generated from gas was 72.6%, an increase of 119% since 2002.
14 15 16 17 18	Q. A. Q.	 What has been the trend in FPL's historical use of natural gas? In 2002, 33.1% of FPL's total energy generated was produced using natural gas. In 2012 the amount of FPL's total energy generated from gas was 72.6%, an increase of 119% since 2002. What has driven the increase in FPL's historical use of natural gas?
 14 15 16 17 18 19 	Q. A. Q. A.	 What has been the trend in FPL's historical use of natural gas? In 2002, 33.1% of FPL's total energy generated was produced using natural gas. In 2012 the amount of FPL's total energy generated from gas was 72.6%, an increase of 119% since 2002. What has driven the increase in FPL's historical use of natural gas? The dramatic increase in FPL's use of natural gas has been driven by recent
 14 15 16 17 18 19 20 	Q. A. Q. A.	 What has been the trend in FPL's historical use of natural gas? In 2002, 33.1% of FPL's total energy generated was produced using natural gas. In 2012 the amount of FPL's total energy generated from gas was 72.6%, an increase of 119% since 2002. What has driven the increase in FPL's historical use of natural gas? The dramatic increase in FPL's use of natural gas has been driven by recent economics-driven decisions to meet the need for new generation capacity by
 14 15 16 17 18 19 20 21 	Q. A. Q. A.	 What has been the trend in FPL's historical use of natural gas? In 2002, 33.1% of FPL's total energy generated was produced using natural gas. In 2012 the amount of FPL's total energy generated from gas was 72.6%, an increase of 119% since 2002. What has driven the increase in FPL's historical use of natural gas? The dramatic increase in FPL's use of natural gas has been driven by recent economics-driven decisions to meet the need for new generation capacity by building new highly efficient gas-burning combined cycle units as well as by
 14 15 16 17 18 19 20 21 22 	Q. A. Q. A.	 What has been the trend in FPL's historical use of natural gas? In 2002, 33.1% of FPL's total energy generated was produced using natural gas. In 2012 the amount of FPL's total energy generated from gas was 72.6%, an increase of 119% since 2002. What has driven the increase in FPL's historical use of natural gas? The dramatic increase in FPL's use of natural gas has been driven by recent economics-driven decisions to meet the need for new generation capacity by building new highly efficient gas-burning combined cycle units as well as by modernizing many of FPL's old and inefficient steam units. These decisions
 14 15 16 17 18 19 20 21 22 23 	Q. A. Q. A.	 What has been the trend in FPL's historical use of natural gas? In 2002, 33.1% of FPL's total energy generated was produced using natural gas. In 2012 the amount of FPL's total energy generated from gas was 72.6%, an increase of 119% since 2002. What has driven the increase in FPL's historical use of natural gas? The dramatic increase in FPL's use of natural gas has been driven by recent economics-driven decisions to meet the need for new generation capacity by building new highly efficient gas-burning combined cycle units as well as by modernizing many of FPL's old and inefficient steam units. These decisions were reviewed and approved by the Commission. In total, 10,751 MW of new

1

2

Q.

What benefits have FPL customers received from the addition of this highly efficient gas-fired generation capacity?

3 The addition of 10,751 MW of new highly efficient gas-fired generation A. 4 capacity combined with generally low natural gas price over the last ten years 5 have resulted in both significantly lower costs to our customers and a cleaner 6 generation fleet with much lower air emissions. FPL has estimated that from 7 2001 to 2012 FPL customers have saved approximately \$6 billion nominal 8 due to lower fuel costs. These savings in lower fuel costs reflect the higher 9 efficiency of FPL's generation fleet, the switch from higher cost oil to natural 10 gas, as well as lower gas prices. In addition, the emission rates for FPL's 11 fossil-fueled generation fleet have decreased dramatically as a result of the 12 addition of these gas fired units. Since 2002, the emission rates for FPL's 13 fossil-fueled generation fleet have declined 94% for SO₂, 81% for NO₂, and 14 31% for CO₂.

15 Q. Does FPL intend to bring additional gas-fired generation capacity into its 16 fleet?

A. Yes. In addition to placing the Cape Canaveral Next Generation Clean Energy
Center (1,210 MW) into service in April 2013, FPL has already obtained the
Commission's approval to build an additional 2,489 MW of new combined
cycle capacity: the Riviera Beach Next Generation Clean Energy Center
(1,212 MW) will be in-service in 2014; and the Port Everglades Next
Generation Clean Energy Center (1,277 MW) will be in-service in 2016. This

1

new combined cycle capacity is needed to meet new load and to replace aging, less efficient, oil and gas fired generation capacity.

3

2

Moreover, after constructing the three units just described, as well as 2,200
MW of new nuclear unit capacity at Turkey Point in 2022 and 2023, FPL
projects that it will need to add another 4,444 MW of generation by 2030.
Total gas generation projected to be added between 2013 and 2030 totals
8,143 MW. Currently available information indicates that gas-fired combined
cycle units will continue to be the least-cost, non-nuclear alternative for
meeting that need.

11 Q Please address how FPL has assessed its need for 8,143 MW of gas-fired 12 generation by 2030.

13 As part of its regular resource planning process, FPL assesses its future А. generation resource needs. In performing its assessment, FPL employs two 14 reliability criteria: Loss of Load Probability ("LOLP") of 0.1 days per year 15 and a 20% Reserve Margin. For many years now, the 20% Reserve Margin 16 has been driving FPL's resource need determination. Under the 20% Reserve 17 18 Margin approach, FPL projects the resources necessary to meet its forecasted peak load while accounting for the potential for load forecast error as well as 19 20 for unplanned unit outages.

21

22 Once FPL's resource needs are assessed, then FPL performs an analysis to 23 choose among available types of technologies to determine which combination of resources, including DSM, is most cost-effective. It is this
 process that FPL has used to determine that it will need to add 8,143 MW of
 gas-fired capacity between 2013 and 2030.

4 Q. Why does FPL believe that gas-fired generation will continue to be the
5 generation of choice in the foreseeable future?

- A. While FPL evaluates a wide variety of resource alternatives within its
 resource planning process, after the addition of the Turkey Point nuclear units,
 natural gas-fired generation continues to emerge as the most attractive nonnuclear generation resource choice. This is true for both economic and
 practical reasons.
- 11

Under current planning assumptions, natural gas-fired combined cycle units consistently emerge as the most cost-effective, non-nuclear generation option addition after the planned Turkey Point nuclear unit additions. FPL has significant experience with this technology, and it is projected to continue to have a lower overall cost than other fossil generation alternatives. Moreover, it enjoys a lower cost than renewable generation alternatives, including wind and solar.

19

From a practical perspective, there are other factors that limit the potential of adding other types of technologies to FPL's system. Even if coal were an economically superior option, which it is not, attempting to permit a coal plant in Florida is not practical or feasible in the foreseeable future. Plus, there is

great uncertainty about the cost of greenhouse gas emission controls for new 1 2 coal technologies. The State of Florida has had a policy in place for over 3 thirty years discouraging reliance on oil-fired generation, and its costs and emissions also make it an impractical option. Analysis results clearly indicate 4 5 that renewable options, such as wind and solar photovoltaics, are more expensive for FPL to build than combined cycle natural gas facilities and 6 7 these renewable resources are treated as non-firm capacity options. Planning for additional nuclear development after Turkey Point units 6 and 7 is also 8 impractical while these two nuclear units are under development. 9 While additional nuclear capacity would improve fuel diversity and reduce FPL's 10 11 reliance on natural gas, it would be challenging to finance on top of other on-12 going nuclear development, and it would present political challenges as well. What is FPL's current generation resource plan? 13 0. FPL's generation resource plan consists of the following generation resources: 14 A.

- Cape Canaveral Next Generation Clean Energy Center (1,210 MW),
 placed in-service April 2013
- Riviera Beach Next Generation Clean Energy Center (1,212 MW), inservice June 2014
- Port Everglades Next Generation Clean Energy Center (1,277 MW),
 in-service June 2016
- Turkey Point 6 Nuclear Unit (1,100 MW) in-service June 2022
- Turkey Point 7 Nuclear Unit (1,100 MW) in-service June 2023

After the planned 2023 addition of Turkey Point 7, the resource plan currently projects that gas-fired combined cycle units will be used to meet reserve margin requirements. This resource plan is shown in Exhibit JEE-1.

4 Q. Does the addition of a third pipeline represent an unexpected cost to 5 FPL's customers?

- 6 A. No. FPL's strategy to rely on gas-fired generation to meet most of its future 7 generation needs has been based on the recognition that a significant amount 8 of incremental gas transportation will be required over the foreseeable future. 9 All of FPL's recent resource planning decisions, resulting from studies 10 comparing gas generation options such as an analysis of unit retirements, unit 11 modernizations and new combined cycle units, have reflected this assumption. 12 The objective of FPL's RFP for pipeline capacity is to ensure that FPL secures 13 the required amount of incremental gas transportation to meet this need at the 14 lowest cost to its customers, while also enhancing the reliability of its gas 15 supply network.
- 16
- 17
- 18
- 19
- 20
- 21
- . .
- 23

1		III. DETERMINATION OF THE AMOUNT OF INCREMENTAL
2		GAS TRANSPORTATION CAPACITY
3		
4	Q.	Earlier you testified that FPL projects it will need an additional 8,143
5		MW of natural gas generation on its system between 2013 and 2030. How
6		much natural gas transportation capacity would be needed for such
7		generation?
8	А.	Based on FPL's plans to meet future needs largely with those natural gas unit
9		additions, the FPL system will require 405 MMcf/d of incremental firm gas
10		transportation capacity in 2017. This incremental need will grow to 575
11		MMcf/d in 2020 and about 870 MMcf/d by 2030.
12	Q.	Please explain how FPL developed these projections of incremental
13		natural gas need.
14	А.	In planning both its generation and transmission resources, FPL uses
15		reliability criteria or standards to protect its customers against risks that could
16		affect the reliability of their service. FPL followed a similar approach in
17		assessing the amount of gas transportation capacity needed to meet projected
18		load and unit fuel needs.
19		
20		As I noted earlier, the reliability criterion that has been driving FPL's
21		generation planning need in recent years has been the use of a 20% reserve
22		margin. Planning to maintain a 20% reserve margin above projected peak
23		load, as a minimum, protects customers from a host of potential

contingencies: actual load in excess of forecasted load, unit outages,
temporary unit de-ratings, lower-than-projected load reductions from DSM
and transmission line outages being the primary risks. For instance, if at the
time of system peak a 1,000 MW nuclear unit trips and hot weather results in
an actual peak that is 1,500 MW higher than forecasted, having a reserve
margin of at least 20% protects customers against service interruptions.

7

8 Similarly, when FPL conducts transmission planning, it also employs 9 reliability protection measures. The planning for the adequacy of the 10 electrical transmission system is based on the concept of stressing the system 11 in order to assure its reliability. The need to provide sufficient electrical 12 transmission capacity and redundancy to account for the loss of various 13 components under stress conditions results in a system that is not only able to 14 withstand facility outages but also has an implicit capacity to deal, from a 15 transmission perspective, with higher than projected loads.

16

Just as FPL needs to have sufficient generation resources to provide an adequate reserve margin and a transmission system that can overcome multiple contingencies to assure customer reliability, FPL also needs to have natural gas transportation reserves available to meet customer needs even under unexpected conditions. It does customers little good to assure the reliability, of the generation resources if there is not similarly reliable gas transportation in place

FPL has chosen as its gas transportation reliability measure the use of an adjusted load forecast that quantifies the uncertainty of higher than forecasted levels of peak demand and energy in the future based upon the historic differences between forecasted and actual levels of peak demand and energy. This is the risk-adjusted forecast that has been prepared by FPL witness Morley.

1

8 Q. Has FPL historically employed such a reliability criterion to determine 9 gas transportation capacity?

10 FPL has not previously applied a reliability reserve or other reliability A. criterion to determine gas transportation adequacy. However, FPL recognizes 11 that its system now presents a unique challenge because of the recent increase 12 in FPL's reliance on natural gas and gas transportation for electric generation. 13 FPL is now the largest user of natural gas for generating electricity in the 14 15 country. In most other areas where gas is a primary fuel for electric generation, gas is delivered through well connected networks that provide gas 16 supply reliability both in terms of capacity and redundancy. Conversely, 17 peninsular Florida primarily relies on just two pipelines from outside the state, 18 with very limited connectivity between them. Even with the addition of the 19 new Pipeline System, there will still be only three major pipeline systems into 20 21 peninsular Florida, which will provide less optionality and redundancy than exists in other states with major reliance on gas as a power plant fuel. 22

- Q. In the event that FPL found itself short of gas capacity due to high loads
 or other reasons could it reasonably rely on short term gas transportation
 purchases to meet the unexpected need?
- A. No. In the past FPL has at times purchased gas transportation in the spot
 market. However, as explained in the testimony of FPL witnesses Forrest and
 Sexton, Florida's gas transportation infrastructure is almost completely
 utilized, and FPL cannot depend on spot gas transportation capacity being
 available in sufficient quantities when needed.

9 Q. Doesn't FPL have the ability to switch to oil operation in case of a gas 10 interruption?

11 A. Yes, but only on a very limited basis. Most, but not all, of FPL's gas-fired 12 combined cycle units have distillate oil backup capability for use in short-13 term, emergency situations limited to a few days of operation. As a result, this 14 oil backup capability is insufficient to provide an adequate reserve in case of 15 extended periods of high gas requirements due to high loads or outages of 16 large units that are not gas-fired that would cause a need for substantially 17 higher gas-fired electric output.

18 Q. Please elaborate on FPL's proposal to address the need for a reliability
 19 reserve in the evaluation of incremental gas transportation requirements.

A. FPL believes that the greatest risk of under-forecasting the actual future needs of gas transportation capacity relates to the potential for under-forecasting the load that FPL will have to serve. Therefore, it is reasonable to provide a reliability reserve in planning for gas transportation capacity based on using a higher, risk-adjusted load forecast for which the probability of the actual load being lower. The base case load forecast has a 50% probability of underestimating the load, and therefore will have a 50% probability of underestimating the system gas requirements. For purposes of determining its gas needs, FPL proposes to use a risk-adjusted load forecast that has a lower probability of underestimating the load.

7

8 As explained in the testimony of FPL witness Morley, the risk-adjusted load 9 forecast that FPL proposes to use is designed to reflect the higher values of net 10 energy for load and summer peak demands that may occur in the future given 11 past forecasting variances. The risk-adjusted load projections are expected to 12 have a 75% probability of being equal to or higher than the actual loads. It is 13 important to point out that even when using this risk-adjusted load forecast, there will still be a 25% chance that actual loads will be higher than 14 forecasted, so it is by no means an unduly aggressive view of what FPL's gas 15 16 transportation needs might turn out to be. The annual summer peak loads 17 projected under both the base case and the risk-adjusted load forecasts are 18 shown in FPL witness Morley's Exhibit RM-4.

19 Q. Do you believe that the risk-adjusted load forecast as described above will 20 provide an adequate reliability reserve for determining the need for 21 incremental gas transportation?

A. Yes. When considering what the appropriate level of gas transportation
 reliability reserve should be, FPL looked at the 20% reserve margin level used

1 for generation resource planning. This 20% generation reserve margin 2 addresses the potential differences between actual and forecasted load, as well 3 as other risks such as generation unit and transmission line outages. Instead of 4 using a 20% gas transportation reserve margin, FPL proposes to base its gas 5 transportation reserve margin on the use of the higher risk-adjusted load 6 forecast, which primarily focuses on the potential load forecast variances. 7 However, although the application of this higher load forecast, is primarily 8 aimed at protecting FPL's customers from some higher than forecasted loads, 9 the reserve margin thus created protects customers to some extent also from 10 other gas supply risks such as pipeline and other gas supply interruptions. It 11 should be noted, however, that FPL is being conservative in this approach 12 because its methodology addresses some but not all, of the potential load 13 forecast variances.

14

15 In her testimony, FPL witness Morley explains that the risk-adjusted load 16 forecast is never higher than the base case forecast by more than 11.8%; on 17 average the risk-adjusted forecast is about 9.8% higher than the base case 18 forecast for the 2016 to 2025 period. See Exhibit RM-4 in the testimony of 19 FPL witness Morley. FPL therefore concluded that the use of the risk-20 adjusted forecast results in a gas transportation margin which provides FPL's 21 customers with a modest but reasonable level of insurance from potentially 22 under-forecasted peak loads.

1Q.FPL is proposing to use the risk-adjusted load forecast as well as building2a third, geographically diverse pipeline to provide enhanced gas3transportation reliability. Are both these measures of additional4reliability necessary?

5 A. Yes. These two measures work effectively together to provide the necessary 6 level of gas delivery reliability. Meeting the incremental gas transportation 7 needs established with the use of the risk-adjusted load forecast without adding a third pipeline system would provide additional supply reliability by 8 9 offering more protection from high peak loads, but would only provide very 10 limited protection from the effects of losing a pipeline. Conversely, the 11 construction of a third pipeline system without contracting for incremental capacity would provide protection against loss of pipe, but would not protect 12 13 from higher gas needs resulting from loads that are higher than expected. For these reasons it is appropriate to add a third pipeline system, sized to 14 15 accommodate the incremental gas transportation resulting from the use of the risk-adjusted forecast. 16

Q. What other assumptions, other than load forecast, did you use in the
process of establishing the need for incremental gas transportation?

A. Other than the load forecast, all other major assumptions used in this process
were consistent with the assumptions shown in FPL's 2013 Ten Year Power
Plant Site Plan ("Site Plan").

22

23

1

2

Q.

How was the impact of incremental DSM treated in the analysis of incremental gas transportation?

3 A. The assumptions and treatment of incremental DSM are the same as that 4 shown and described in the Site Plan. For the period of 2013 to 2019, FPL's 5 incremental additions of DSM are projected to average about 124 MW a year, 6 consistent with the FPSC's direction in the last DSM Plan docket. For the 7 period of 2020 to 2026, FPL assumed 100 MW of incremental DSM would be added every year. At present FPL's planning basis does not project further 8 9 additions of incremental DSM beyond 2026. Consistent with FPL's normal 10 practice, incremental DSM in 2013 through 2026 is not reflected in the load 11 forecasts prepared by FPL witness Morley, but is later subtracted from the 12 load forecast by RAP.

Q. Once you established the load forecast and other assumptions to be used, what procedure did you use to establish the need for incremental gas transportation capacity?

The P-MAREA production-costing model from P-Plus Corporation was used 16 A. 17 to determine the incremental need for gas transportation in the future. This model has been used by FPL for a number of years in fuel cost recovery 18 19 proceedings as well as need proceedings before the Commission. The P-20 MAREA model simulates the operation of FPL's system on an hourly basis. 21 The model captures variable costs (such as fuel, variable O&M and environmental compliance costs) in its production costing calculations, 22 projects the annual emission levels associated with the resource plans, 23

incorporates the effects of system transmission transfer limits on the dispatch
 of the generating units and recognizes existing and projected gas delivery
 constraints to the various plants in FPL's system. This model was used to
 establish the annual peak gas use requirements for the FPL system.

5 Q. How do FPL's current gas transportation requirements compare to its 6 gas transportation requirements at the time FPL sought a determination 7 of need for the Florida EnergySecure pipeline in 2009?

A. Under current assumptions, FPL projects an incremental need of
approximately 870 MMcf/d of incremental gas transportation capacity by
2030 to support expected load growth and the addition of 8,143 MW of gasdependent generation capacity by that year. This is a significant decrease
from the projections utilized in the analysis for the Florida EnergySecure Line
which, by 2030 forecasted a need for 1,625 MMcf/d of incremental gas
transportation capacity to support 10,170 MW of new gas-dependent capacity.

15

IV. DESCRIPTION OF ECONOMIC ANALYSIS

17

16

18 Q. How did FPL determine which proposals would be included in the 19 economic evaluation?

A. As described by FPL witness Stubblefield, the evaluation team reviewed all proposals submitted to FPL in response to the RFP and determined if these proposals met FPL's minimum requirements as stated in the RFP. All the

1 proposals that met these minimum requirements were included in the 2 economic evaluation.

Q. Did FPL perform separate economic evaluations, one for the Northern Pipeline Project and one for the Southern Pipeline Project?

5 A. No. FPL evaluates the economics of gas transportation proposals using 6 production-cost simulations of its power supply system. To properly capture 7 all economic effects in the simulation, FPL's model must include the costs 8 and volumes of gas for combined Northern/Southern Pipeline Projects. As 9 described by FPL witness Stubblefield, the RFP evaluation team developed 10 several Combined Projects from the proposal alternatives, for economic 11 evaluation. Each Combined Project consisted of one proposal for the Northern 12 Pipeline Project and one proposal for the Southern Pipeline Project. All 13 proposals that met FPL's minimum requirements were included in the development of the combinations; all combinations were then submitted to the 14 15 comparative economic evaluation. Therefore, FPL's economic analysis 16 evaluated twelve combinations of proposals for both the Northern and Southern Pipeline Projects. 17

18 Q. Did you know the identity of the bidders included in the initial economic 19 evaluation?

A. No. In the initial economic evaluation that determined the most cost-effective
 combination of Projects, the RAP received a coded list of combinations in
 order to ensure objectivity and eliminate even the appearance of bias.

Subsequent economic evaluations of refined bids, which did not meaningfully
 change results, were performed with knowledge of the bidders' identities.

3 Q. Did FPL receive a proposal for a Southern Pipeline Project that was 4 deemed non-compliant with the terms of the RFP?

5 Α. Yes. FPL received one proposal for the Southern Pipeline Project which did not need the Minimum Requirements of the RFP as explained in the testimony 6 7 of FPL witness Stubblefield. Nevertheless, FPL performed an economic analysis of this non-compliant proposal to provide a further reference point for 8 9 evaluating the reasonableness of the gas transportation charges for the best of 10 the compliant Southern Pipeline Project proposals. In this analysis, the noncompliant proposal was compared to the best Southern Pipeline Project 11 proposal; both proposals were paired with the same, best proposal for the 12 13 Northern Pipeline Project. It was determined that this non-compliant bid would be from \$69 million to \$105 million more expensive that the other 14 proposal for the Southern Pipeline project and, therefore, the inclusion of this 15 non-compliant proposal would not have changed the choice for the best 16 Combined Project. These results are shown in Exhibit JEE-7. 17

18 Q. Which load forecast was used in the simulation models for the economic 19 evaluation?

A. FPL based its simulation modeling used in the economic analysis on the riskadjusted load forecast, which is the same forecast used to determine the need
for incremental gas transportation capacity.

1	Q.	Please describe the evaluation process used by FPL when determining
2		which of the various combinations of proposals was the most cost-
3		effective for its customers?
4	А.	Step 1- EMT provided RAP a list identifying by alphanumeric code each
5		Combined Project together with the information on each Combined Project
6		required to perform the economic evaluation. The identity of the bidders was
7		not disclosed to RAP in the initial evaluation. For each of the combinations
8		to be evaluated, the following information was provided to RAP:
9		1. Volume and timing of gas transportation added.
10		2. Fixed costs for the pipeline combination, expressed both in dollars
11		per MMBtu and annual costs (\$ millions). These fixed costs are not
12		a function of the volume of gas that flows through the pipeline.
13		3. Variable cost (commodity, fuel and transportation surcharges) of
14		gas that would flow on the pipeline combination, expressed in
15		\$/MMBtu.
16		
17		Step 2- RAP quantified the fuel and other variable costs for each combination.
18		Each gas transportation combination resulted in slightly different variable
19		costs. The P-MAREA production-costing model was used to determine the
20		resulting difference in FPL's total system fuel and other variable costs.
21		
22		Step 3- FPL aggregated all components of system cost and determined the
23		CPVRR of each Combined Project.

1 This economic analysis was performed under two resource planning 2 scenarios: the first scenario consisted of the resource plan previously 3 described in this testimony ("Base Resource Plan") and the second scenario 4 consisted of a plan which assumed a four year delay in the in-service dates of 5 the Turkey Point 6 and 7 nuclear units ("Four Year Nuclear Delay Plan").

6 Q. Did FPL analyze the impact of fuel price sensitivities on the
7 economic evaluation of the different proposals?

- 8 Yes. FPL performed a sensitivity analysis of the effects of low and high gas A. 9 price forecasts on the results of the economic evaluation. This sensitivity analysis showed that the gas price forecast had a relatively low impact on the 10 difference in CPVRR between the various Combined Projects. This result is 11 12 consistent with expectations, because the great majority of the payments that 13 FPL will make for gas transportation on the Northern and Southern Pipeline 14 Projects are for fixed costs that are not dependent on fuel prices. Only the 15 projected fuel cost for compression that is needed to move the gas through the pipelines is sensitive to fuel prices. The fuel price forecasts used are shown in 16 17 Exhibit JEE-2.
- 18

Q. What financial assumptions did you use for this economic analysis?

- A. Exhibit JEE-3 shows the long-term financial assumptions used in this
 economic analysis.
- 21
- 22
- 23

1

2

RESULTS OF THE ECONOMIC ANALYSIS

3 Q. What are the results of the economic analysis?

V.

In the initial economic evaluation, it was determined that Combined Project 1 4 Α. 5 was the lowest cost project (i.e., it had the lowest CPVRR). Combined Project 1 consists of a proposal from Company 1 for the Northern Pipeline Project 6 7 combined with a proposal from Company Aii for the Southern Pipeline Project. Without revealing the outcome of the economic analysis FPL then 8 gave all eligible bidders the opportunity to improve their proposals. The 9 economics of the twelve Combined Projects were updated with the revised 10 information provided by the bidders. The updated economic analysis showed 11 12 that Combined Project 1 remained the most cost-effective combination.

13

14 Under the Base Resource Plan, using the updated bidder information, the economic analysis shows that Combined Project 1 is the most economically 15 16 beneficial alternative with an advantage ranging from \$34 million to \$1,397 17 million CPVRR when compared to all the other eleven Combined Projects. 18 Under the Four Year Nuclear Delay Plan, using the updated bidder 19 information, the economic analysis shows that Combined Project 1 is the most 20 economically beneficial with an advantage ranging between \$41 million and \$1,347 million CPVRR over the other eleven Combined Projects. 21 FPL Exhibit JEE-4 shows the economic results of each proposal combinations 22 under the two different resource plans. 23

2 After the initial blind economic analysis, which resulted in the initial 3 determination that Combined Project 1 was the best alternative was 4 completed, the RAP economic analysis team learned that the three bids for the 5 Southern Pipeline Project, identified as Ai, Aii, and Aiii, were three different 6 proposals from the same company, with proposal Aii being the lowest cost of 7 the three. A comparison of the four Northern Pipeline Projects combined with 8 the best Southern Pipeline Project proposal (i.e., Aii) provides a direct 9 comparison of the economics of the four proposals for the Northern Pipeline 10 Project. In this comparison, Combined Project 1 had an economic advantage 11 ranging from \$580 million to \$1,356 million CPVRR over the other three 12 Combined Projects under the Base Resource Plan, and an economic advantage ranging from \$513 million to \$1,289 million CPVRR under the Four Year 13 14 Nuclear Delay Resource Plan. FPL Exhibit JEE-5 shows the economic results 15 of each of these four proposal combinations under the two different resource 16 plans.

17 Q. What are the results of the fuel sensitivity analysis?

1

A. The economic analysis of the twelve Combined Projects for both low and high gas price scenarios, using the Base Resource Plan, confirmed that Combined Project 1 was the lowest cost option. Combined Project 1 was \$676 million CPVRR lower than the next best option with the low gas price forecast, and \$479 million CPVRR lower than the next best option with the high gas price forecast. These results are shown in Exhibit JEE-6.

1Q.Did you develop projections of the estimated bill impact to FPL2customers?

FPL developed projections of the approximate system bill impact 3 A. Yes. 4 comparing Combined Project 1 to Combined Projects 2, 3 and 4. As 5 previously explained in this testimony, these four Combined Projects include 6 the four different proposals for the Northern Pipeline Project paired with the 7 same, lowest cost proposal for the Southern Pipeline Project. These bill 8 impact projections were performed for both the Base Resource Plan and the 9 Four Year Nuclear Delay Resource Plan. Exhibit JEE-8 shows the projections of these bill impacts, including the specific impact of the fixed gas 10 11 transportation charges, for an average customer using a typical bill of 1,000 12 kWh per month.

Q. How do the transportation costs of the best Combined Project resulting from the current RFP compare to the transportation costs that were projected for the Florida EnergySecure Line?

- A. For every year of the analysis period, the annual transportation cost of the best proposal resulting from the RFP (Combined Project 1) is lower than the annual transportation costs that were projected for the Florida Energy Secure Line in Docket No. 090172-EI. For example, the transportation cost for 2017, which is the first year of the new pipeline system, is \$2.02/MMBtu, which is \$0.24/MMBtu lower than the 2017 transportation cost for the Florida EnergySecure Line of \$2.26/MMBtu.
- 23

VI.	CONCL	USION
-----	-------	-------

2

1

Q. Is the combination of Northern and Southern Pipeline Projects described
as Combined Project 1 the lowest cost gas transportation option available
to FPL and FPL's customers?

6 A. Yes.

7 The comparison of the four Northern Pipeline Project proposals received in 8 the FPL RFP, all paired with the same, best Southern Pipeline Project 9 proposal, shows that Combined Project 1 results in the lowest cost to FPL 10 customers with CPVRR savings of \$580 million, \$937 million and \$1,356 11 million CPVRR when compared to the other three Northern Pipeline Project 12 Proposals under the Base Resource Plan. Similarly, Combined Project 1 13 results in CPVRR savings of \$513 million, \$919 million, and \$1,289 million 14 when compared to the other three Northern Pipeline Project Proposals under 15 the Four Year Nuclear Delay Resource Plan. Based on its economic 16 advantage, I conclude that Combined Project 1 is the best alternative to meet 17 the future gas requirements of FPL's customers.

18 Q. Are FPL's future gas transportation requirements effectively met by
 19 Combined Project 1?

A. Yes. After the addition of Turkey Point Units 6 and 7, natural gas will be
FPL's major fuel source for the foreseeable future, and gas-fired generation
capacity will continue to be a major part of FPL's future resource plan. As
described by FPL witnesses Forrest and Sexton, the existing gas infrastructure

1		in Florida will be inadequate to meet the long-term needs for gas
2		transportation capacity to support the anticipated increase in gas generation,
3		expected to as much as 8,143 MW of new gas-fired generation by 2030.
4		Does this conclude your direct testimony?
5	А.	Yes.
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		

Generation Resource Plans Utilized in the Analyses Base Resource Plan

Year	Unit	Incremental MW added	Cumulative MW added	Gas dependent cumulative MW added	Generation Reserve Margin
2013	Cape Canaveral	1,210	1,210	1,210	28.0%
2014	Riviera Beach	1,212	2,422	2,422	28.5%
2015		0	2,422	2,422	31.2%
2016	PEEC	I,277	3,699	3,699	31.3%
2017		0	3,699	3,699	27.5%
2018		0	3,699	3,699	24.3%
2019		0	3,699	3,699	22.7%
2020		0	3,699	3,699	21.1%
2021		0	3,699	3,699	21.0%
2022	Turkey Point 6	1,100	4,799	3,699	23.5%
2023	Turkey Point 7	1,100	5,899	3,699	25.1%
2024		0	5,899	3.699	22.0%
2025	3x1 GFCC	1,269	7,168	4,968	23.3%
2026	Filler CC	635	7,803	5,603	21.8%
2027	Filler CC	635	8,438	6.238	21.1%
2028	Filler CC	635	9,073	6.873	20.6%
2029	Filler CC	635	9,708	7.508	20.4%
2030	Filler CC	635	10,343	8,143	20.3%

GFCC= greenfield combined cycle unit

Filler CC = smaller combined cycle units assumed after 2025

Generation Resource Plans Utilized in the Analyses Four Year Nuclear Delay Resource Plan

Year	Unit	Incremental MW added	Cumulative MW added	Gas dependent cumulative MW added	Generation Reserve Margin
2013	Cape Canaveral	1,210	1,210	1,210	28.0%
2014	Riviera Beach	1,212	2,422	2,422	28.5%
2015		0	2,422	2,422	31.2%
2016	PEEC	1,277	3,699	3,699	31.3%
2017		0	3,699	3,699	27.5%
2018		0	3,699	3,699	24.3%
2019		0	3,699	3,699	22.7%
2020		0	3,699	3,699	21.1%
2021		0	3,699	3,699	21.0%
2022	3x1 GFCC	1,269	4,968	4,968	24.2%
2023		0	4,968	4,968	21.2%
2024	Filler CC	635	5,603	5,603	20.8%
2025	Filler CC	1,270	6,873	6,873	22.1%
2026	Turkey Point 6	1,100	7,973	6,873	22.5%
2027	Turkey Point 7	1,100	9,073	6,873	23.6%
2028		0	9,073	6,873	20.6%
2029	Filler CC	635	9,708	7,508	20.4%
2030	Filler CC	635	10,343	8,143	20.3%

GFCC= greenfield combined cycle unit

Filler CC = smaller combined cycle units assumed after 2024

Docket No. 13____-EI Gas Price Forecasts Exhibit JEE-2, Page 1 of 1

Henry Hub Price Forecast \$/MMbtu

1	Medium Price	Low Price	High Price
2017	\$4.82	\$3.82	\$5.82
2018	\$5.62	\$4.45	\$6.79
2019	\$6.15	\$4.87	\$7.43
2020	\$6.67	\$5.29	\$8.06
2021	\$7.06	\$5.59	\$8.53
2022	\$7.36	\$5.83	\$8.89
2023	\$7.97	\$6.31	\$9.63
2024	\$8.33	\$6.59	\$10.06
2025	\$8.68	\$6.87	\$10.48
2026	\$8.99	\$7.12	\$10.86
2027	\$9.30	\$7.36	\$11.23
2028	\$9.61	\$7.61	\$11.61
2029	\$9.93	\$7.86	\$11.99
2030	\$10.22	\$8.09	\$12.34
2031	\$10.65	\$8.44	\$12.87
2032	\$11.07	\$8.76	\$13.37
2033	\$11.50	\$9.10	\$13.89
2034	\$11.94	\$9.46	\$14.43
2035	\$12.41	\$9.83	\$14.99
2036	\$12.89	\$10.21	\$15.57
2037	\$13.39	\$10.60	\$16.17
2038	\$13.91	\$11.01	\$16.80
2039	\$14.45	\$11.44	\$17.45
2040	\$15.01	\$11.89	\$18.13

Docket No. 13____-EI Financial Assumptions Exhibit JEE-3, Page 1 of 1

COST OF CAPITAL

	L	ONG LIVE		
		ASSETS		
SOURCE	WEIGHT	COST	WTD COST	AFTER TAX
DEBT	40.38%	4.79%	1.93%	1.19%
PREFERRED	0.00%	0.00%	0.0%	0.0%
COMMON	59.62%	10.50%	6.26%	6.26%
TOTAL	100.0%		8.19%	7.45%
			1	
DISCOUNT RA	TE:		7.45%	

Results of the Economic Analysis Base Resource Plan CPVRR thru 2057 (2013\$)

Combined Project	Northern Pipeline Proposal	Southern Pipeline Proposal	Fixed Transportation Costs \$ Million	Variable System Costs (fuel and other) \$ Million	Total \$ Million	Difference from Least Cost Combined Project 1 \$ Million
1	1	Aii	\$3,788	\$117,336	\$121,123	-
5	1	Ai	\$3,804	\$117,354	\$121,158	\$34
9	1	Aiii	\$3,828	\$117,336	\$121,164	\$41
4	4	Aii	\$4,838	\$116,866	\$121,703	\$580
12	4	Aiii	\$4,878	\$116,866	\$121,744	\$621
8	4	Ai	\$4,854	\$116,892	\$121,746	\$622
3	3	Aii	\$4,809	\$117,252	\$122,061	\$937
7	3	Ai	\$4,825	\$117,270	\$122,096	\$972
11	3	Aiii	\$4,850	\$117,252	\$122,101	\$978
2	2	Aii	\$5,667	\$116,813 \$122,480		\$1,356
6	2	Ai	\$5,683	\$116,836 \$122,519		\$1,395
10	2	Aiii	\$5,708	\$116,813	\$122,520	\$1,397

Docket No. 13____EI Economic Results Exhibit JEE-4, Page 1 of 2

Results of the Economic Analysis Four Year Nuclear Delay Resource Plan CPVRR thru 2057 (2013\$)

Combined Project	Northern Pipeline Proposal	Southern Pipeline Proposal	Fixed Transportation Costs \$ Million	Variable System Costs (fuel and other) \$ Million	Total \$ Million	Difference from Least Cost Combined Project 1 \$ Million	
1	1	Aii	\$3,922	\$119,099	\$123,021	-	
5	1	Aiii	\$3,963	\$119,099	\$123,061	\$41	
9	1	Ai	\$3,952	\$119,120	\$123,072	\$51	
4	4	Aii	\$4,919	\$118,615	\$123,534	\$513	
8	4	Aiii	\$4,960	\$118,615	\$123,575	\$554	
12	4	Ai	\$4,949	\$118,646	\$123,596	\$575	
3	3	Aii	\$4,934	\$119,005	\$123,940	\$919	
7	3	Aiii	\$4,975	\$119,005	\$123,980	\$960	
11	3	Ai	\$4,965	\$119,027	\$123,992	\$971	
2	2	Aii	\$5,737	\$118,573	\$124,310	\$1,289	
6	2	Aiii	\$5,778	\$118,573	\$124,351	\$1,330	
10	2	Ai	\$5,768	\$118,600	\$124,368	\$1,347	

Docket No. 13_____EI Economic Results Exhibit JEE-4, Page 2 of 2

Results of the Economic Analysis Base Resource Plan CPVRR thru 2057 (2013\$)

Combined Project	Northern Pipeline Proposal	Southern Pipeline Proposal	Fixed Transportation Costs \$ Million	Variable System Costs (fuel and other) \$ Million	Total \$ Million	Difference from Least Cost Combined Project 1 \$ Million
1	1	Aii	\$3,788	\$117,336	\$121,123	-
4	4	Aii	\$4,838	\$116,866	\$121,703	\$580
3	3	Aii	\$4,809	\$117,252	\$122,061	\$937
2	2	Aii	\$5,667	\$116,813	\$122,480	\$1,356

Results of the Economic Analysis Four Year Nuclear Delay Resource Plan CPVRR thru 2057 (2013\$)

Combined Project	Northern Pipeline Proposal	Southern Pipeline Proposal	Fixed Transportation Costs \$ Million	Variable System Costs (fuel and other) \$ Million	Total \$ Million	Difference from Least Cost Combined Project 1 \$ Million
1	1	Aii	\$3,922	\$119,099	\$123,021	-
4	4	Aii	\$4,919	\$118,615	\$123,534	\$513
3	3	Aii	\$4,934	\$119,005	\$123,940	\$919
2	2	Aii	\$5,737	\$118,573	\$124,310	\$1,289

Results of the Economic Analysis Base Resource Plan Gas Sensitivity- Low Commodity Price CPVRR thru 2057 (2013\$)

Combined Project	Northern Pipeline Proposal	Southern Pipeline Proposal	Fixed Transportation Costs \$ Million	sportation ts lion Xariable System Costs (fuel and other) \$ Million		Difference from Least Cost Combined Project 1 \$ Million
1	1	Aii	\$3,788	\$99,024	\$102,811	-
4	4	Aii	\$4,838	\$98,649	\$103,487	\$676
3	3	Aii	\$4,809	\$98,956	\$103,765	\$954
2	2	Aii	\$5,648	\$98,679	\$104,327	\$1,516

Results of the Economic Analysis Base Resource Plan Gas Sensitivity- High Commodity Price CPVRR thru 2057 (2013\$)

Combined Project	Northern Pipeline Proposal	Southern Pip∋line Proposal	Fixed Transportation Costs \$ Million	tation Variable System Costs Total (fuel and other) \$ Million \$ Million		Difference from Least Cost Combined Project 1 \$ Million
1	1	Aii	\$3,788	\$135,306	\$139,093	-
4	4 Aii \$4,838		\$4,838	\$134,735	\$139,573	\$479
3	3	Aii	\$4,809	\$135,204	\$140,013	\$919
2	2	Aii	\$5,648	\$134,790	\$140,437	 \$1,344

Results of the Economic Analysis Non-Compliant Bid CPVRR thru 2057 (2013\$)

Base Resource Plan

Combined Project	Northern Pipeline Proposal	Southern Pipeline Proposal	F ⁻ ixed Transportation Costs \$ Million	Variable System Costs (fuel and other) \$ Million	Total \$ Million	Difference from Least Cost Combined Project 1 \$ Million
1	1	Aii	\$3,788	\$117,336	\$121,123	-
13	1	В	\$3,839	\$117,354	\$121,193	\$69

Four Year Nuclear Delay Resource Plan

Combined Project	Northern Pipeline Proposal	Southern Pipeline Proposal	Fixed Transportation Costs \$ Million	Variable System Costs (fuel and other) \$ Million	Total \$ Million	Difference from Least Cost Combined Project 1 \$ Million	
1	1	Aii	\$3,922	\$119,099	\$123,021	-	
13	1	В	\$4,008	\$119,118	\$123,126	\$105	

Projection of Approximate Bill Impacts: Differential between Combined Project 1 and Combined Project 2 **Base Resource Plan**

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	Combined	Project 1	Combined	Project 2	=(3+4)-(1-2)		=((5)(100)/(6)	=(7)x10	=(7)x12
	Fixed	Variable	Fixed	Variable					
	Transportation	System	Transportation	System	Differential in				
	Costs	Costs	Costs	Costs	total				
	Annual	Annual	Annual	Annual	Annual	Projected		Differential in	Differential in
	Revenue	Revenue	Revenue	Revenue	Revenue	Total Sales	Differential in	Customer	Customer
	Requirements	Requirements	Requirements	Requirements	Requirements	After DSM	System Average	Bill of	Bill of
	(Smillions,	(\$millions.	(Smillions.	(\$millions,	(\$millions,	(GWh at	Electric Rates	1,000 kwh	1,200 kwh
Year	Nominal \$)	Nominal S)	Nominal \$)	Nominal \$)	Nominal \$)	the meter)	(cents/kwh)	(\$)	(\$)

2013	0	0	0	0	0	106,262	0.00	\$0.00	\$0.00
2014	0	0	3	-4	- I	111,474	0.00	-\$0.01	-\$0.01
2015	0	0	9	-18	-10	113,995	-0.01	-\$0.08	-\$0.10
2016	0	0	11	-92	-81	115,835	-0.07	-\$0.70	-\$0.84
2017	199	2,697	290	2,688	83	116.734	0.07	\$0.71	\$0.85
2018	294	4,572	431	4,557	122	117,850	0.10	\$1.03	\$1.24
2019	292	5,010	428	4,994	121	118,850	0.10	\$1.02	\$1.22
2020	359	5.533	542	5,508	158	120,208	0.13	\$1.31	\$1.58
2021	390	5,904	595	5,875	176	120,725	0.15	\$1.46	\$1.75
2022	388	5,980	593	5,951	176	121.846	0.14	\$1.45	\$1.73
2023	386	6,443	591	6,413	175	123,795	0.14	\$1.41	\$1.70
2024	384	6,785	590	6,753	173	126.196	0.14	\$1.37	\$1.65
2025	381	7,191	586	7,158	172	127,977	0.13	\$1.34	\$1.61
2026	379	7,672	584	7,637	170	130.049	0.13	\$1.31	\$1.57
2027	377	8,170	582	8,133	168	131,983	0.13	\$1.27	\$1.53
2028	435	8,589	611	8,551	138	134,261	0.10	\$1.03	\$1.24
2029	460	9,119	622	9,082	124	135,816	0.09	\$0.92	\$1.10
2030	458	9,693	620	9,654	122	137,560	0.09	\$0.89	\$1.07
2031	455	10,290	616	10,250	121	139.242	0.09	\$0.87	\$1.05
2032	454	11.215	616	11,172	119	141.370	0.08	\$0.84	\$1.01
2033	451	12,606	613	12,557	112	142,957	0.08	\$0.79	\$0.94
2034	450	13,463	612	13,410	108	144,556	0.07	\$0.75	\$0.90
2035	450	14,331	611	14,276	106	146,178	0.07	\$0.73	\$0,87
2036	450	15,917	612	15,856	101	147,821	0.07	\$0.68	\$0.82
2037	448	16.946	609	16,881	96	149,492	0.06	\$0.64	\$0.77
2038	447	18,084	609	18,016	93	151.186	0.06	\$0.62	\$0.74
2039	447	19.275	608	19,204	90	152,906	0,06	\$0.59	\$0.71
2040	447	20,346	609	20.272	88	154,650	0,06	\$0.57	\$0.68
2041	445	21,741	606	21.664	84	156,423	0.05	\$0.54	\$0.65
2042	368	23,241	606	23,160	157	158,224	0.10	\$0.99	\$1.19
2043	330	25,401	606	25,317	192	160,054	0.12	\$1.20	\$1.44
2044	330	27,344	607	27.253	185	161,913	0.11	\$1.15	\$1.37
2045	328	29,253	604	29.166	189	163,802	0.12	\$1.15	\$1.38
2046	328	30,745	603	30,648	179	165,722	0.11	\$1.08	\$1.29
2047	327	32,703	603	32,602	175	167,674	0 1 0	\$1.04	\$1,25
2048	327	34,868	603	34.763	171	169.658	0.10	\$1.01	\$1.21
2049	325	37,005	601	36,896	167	171,676	0.10	\$0.97	\$1.16
2050	325	39,697	600	39,583	162	173.729	0.09	\$0.93	\$1.12
2051	324	42,344	599	42,226	1.58	175.818	0.09	\$0.90	\$1.08
2052	324	44,920	600	44.798	154	177,943	0.09	\$0.87	\$1.04
2053	308	47.797	598	47.671	164	180,105	0.09	\$0.91	\$1.09
2054	300	50,836	597	50,705	167	182,294	0.09	\$0.91	\$1.10
2055	299	53,774	596	53,638	162	184,510	0.09	\$0.88	\$1.05
2056	299	57,011	597	56,870	157	186,752	0.08	\$0.84	\$1.01
2057	98	17,954	196	17,904	48	189,022	0.03	\$0.25	\$0.30
							Levelized Bill Impact	\$0.74	\$0.88

Levelized Bill Impact \$0.74

Notes: (1) This projection assumes instantaneous adjustment to electric rates and is for illustrative purposes only.

Projection of Approximate Bill Impacts: Differential between Combined Project 1 and Combined Project 3 Base Resource Plan

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	Combined	Project I	Combined	l Project 3	=(3+4)-(1+2)		=((5)x100)/(6)	-(7)x10	=(7)x12
	Fixed	Variable	Fixed	Variable					
	Transportation	System	Transportation	System	Differential in				
	Costs	Costs	Costs	Costs	total				
	Annual	Annual	Annual	Annual	Annual	Projected		Differential in	Differential in
	Revenue	Revenue	Revenue	Revenue	Revenue	Total Sales	Differential in	Customer	Customer
	Requirements	Requirements	Requirements	Requirements	Requirements	After DSM	System Average	Bill of	Bill of
	(\$millions.	(Smillions,	(\$millions,	(\$millions,	(\$millions.	(GWh at	Electric Rates	1,000 kwh	1.200 kwh
Year	Nominal S)	Nominal \$)	Nominal \$)	Nominal \$)	Nominal \$)	the meter)	(cents/kwh)	(\$)	(\$)
						******	******		
2013	0	0	0	0	0	106.262	0.00	\$0.00	\$0.00
2014	0	0	0	0	0	111,474	0.00	\$0.00	\$0.00
2015	0	0	0	0	0	115,995	0,00	50.00	\$0.00
2010	100	2 697	212	2 601	0	112,822	0.00	\$0.00	\$0.00
2017	199	2.697	2+3	2,094	41	117,734	0.04	50.50	50.43
2018	294	+,372	361	4.367	61	117,850	0.05	50.52	50.62
2019	292	5.010	228	5,005	01	118.850	0.05	50.52	\$0.62
2020	339	2,233	++8	5,531	87	120.208	0.07	50.72	50.80
2021	.390	5,904	490	5,905	98	120,725	0.08	50.81	30.98
2022	388	5,980	+8 /	5,980	99	121.840	0.08	50.82	\$0.98
2023	380	0,4+5	+80	0,442	28	123,795	0.08	50 79	30.95
2024	284	0,785	484	0,/8+	99	126.196	0.08	50.78	\$0.94
2025	381	7,191	481	7.190	98	127,977	0.08	50.77	\$0,92
2026	379	7,672	478	7.671	98	130,049	0.08	50 76	\$0.91
2027	377	8,170	476	8,169	98	131,983	0.07	\$0.75	30,89
2028	435	8,589	528	8,283	87	134,201	0.07	\$0.65	50.78
2029	460	9,119	550	9,112	83	135,816	0.06	\$0.61	\$0,73
2030	408	9,693	548	9,686	83	137,560	0.06	50.60	50 72
2031	400	10,290	545	10,283	83	139,242	0.06	\$0.60	50.72
2032	424	11,215	544	11.207	82	141,370	0.06	\$0,58	50 /0
2033	421	12,606	541	12.595	79	142,957	0.06	80.55	30.66
2034	450	13,463	540	13,451	/8	144,556	0.05	\$0.54	\$0.65
2035	450	14.331	540	14,318	//	146,178	0.05	\$0.53	\$0.63
2036	450	15,917	240	15,902	75	147,821	0.05	\$0.51	\$0.61
2037	448	16,946	538	16,929	73	149,492	0.05	\$0.49	30.59
2038	447	18.084	537	18,067	73	151,180	0.05	50.48	30.28
2039	++/	19.275	537	19.256	71	152,900	0.05	50,46	30.50
2040	++/	20.346	537	20.327	71	154,650	0.05	50.46	30.55
2041	445	21,7+1	232	21,721	70	156,423	0.04	\$0.45	30.54
2042	368	23.241	535	23,219	145	158.224	0.09	\$0.92	51.10
2043	330	25,401	534	25,377	180	160,054	0.11	\$1.13	51.55
2044	330	27.344	535	27,319	180	161,913	0.11	\$1.11	\$1.33
2045	328	29,253	535	29,226	177	163,802	0.11	\$1.08	\$1,30
2046	328	30,745	552	30,717	176	165,722	0.11	\$1.06	\$1.28
2047	327	32,703	531	32,674	175	167,674	0.10	\$1.05	\$1.20
2048	327	34,808	532	34,837	175	169,658	0.10	\$1.03	\$1.24
2049	325	37,005	530	36,973	172	171,676	0.10	\$1.00	\$1,20
2050	325	39.697	529	39,664	1/1	173.729	0.10	\$0.99	\$1.18
2021	324	42,344	528	42,310	110	172,818	0.10	50.97	51.10
2022	324	44,920	529	44,884	109	177.943	0.09	\$U.95	31.14 61.01
2033	300	47.797	527	47,700	182	180,105	0.10	\$1.01 \$1.02	⊅1.∠1 €1.21
2024	200	50.850	520	50,798	188	182.294	0.10	\$1.03	3-1.24
2022	200	57.011	525	23./34 56.070	184	104.210	0.10	\$1,01 \$1,00	a1.21 \$1.10
20.00	2.79	37,011	520	30,970	140	180,722	0.10	31.00 \$0.75	01.19 60.38
2021	78	17,924	172	17,940	00	187,022	0.05	30.32	30.36
							Levelized Bill Impect	\$0.50	\$0.60
							services pur implici	WY IN W	w 0 , 0 0

Levelized Bill Impact \$0.50

Notes. (1) This projection assumes instantaneous adjustment to electric rates and is for illustrative purposes only. (2) The values presented in Columns (1) and (3), are total fixed transportation costs for the combined project.

Projection of Approximate Bill Impacts: Differential between Combined Project 1 and Combined Project 4 Base Resource Plan

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	Combined	Project 1	Combined	Project 4	=(3+4)-(1+2)		=((5)x100)/(6) =(7)x10	=(7)x]0	=(7)x12
	Fixed	Variable	Fixed	Variable					
	Transportation	System	Transportation	System	Differential in				
	Costs	Costs	Costs	Costs	total				
	Annual	Annual	Annual	Annual	Annual	Projected		Differential in	Differential in
	Revenue	Revenue	Revenue	Revenue	Revenue	Total Sales	Differential in	Customer	Customer
	Requirements	Requirements	Requirements	Requirements	Requirements	After DSM	System Average	Bill of	Bill of
	(Smillions.	(Smillions,	(\$millions,	(Smillions,	(\$millions,	(GWh at	Electric Rates	1,000 kwh	1,200 kwh
Year	Nominal \$)	Nominal \$)	Nominal \$)	Nominal \$)	Nominal \$)	the meter)	(cents/kwh)	(\$)	(\$)

2013	0	0	0	0	0	106.262	0.00	\$0.00	\$0.00
2014	0	0	0	0	0	111.474	0,00	\$0,00	\$0.00
2015	0	0	0	0	0	113,995	0.00	\$0.00	\$0.00
2016	0	0	0	0	0	115,835	0,00	\$0.00	\$0.00
2017	199	2,697	301	2,688	94	116,734	0,08	\$0.80	\$0.96
2018	294	4,572	-1-17	4,556	137	117,850	0.12	\$1,16	\$1.39
2019	292	5,010	445	4,993	136	118,850	0.11	\$1.14	\$1.37
2020	359	5,533	453	5,509	70	120,208	0.06	\$0.58	\$0,70
2021	390	5,904	454	5.877	37	120.725	0.03	\$0.31	\$0.37
2022	388	5,980	453	5,952	38	121,846	0.03	\$0.31	\$0.37
2023	386	6,443	453	6,414	38	123,795	0.03	\$0.31	\$0.37
2024	384	6,785	453	6,755	38	126,196	0.03	\$0.30	\$0.36
2025	381	7,191	450	7,159	37	127,977	0.03	\$0,29	\$0.34
2026	379	7,672	449	7,639	37	130,049	0.03	\$0.28	\$0.34
2027	377	8,170	451	8,135	39	131,983	0.03	\$0,30	\$0,36
2028	435	8,589	497	8,548	21	134.261	0.02	\$0.16	\$0.19
2029	460	9,119	516	9,076	12	135,816	0.01	\$0.09	\$0.11
2030	458	9,693	515	9,648	11	137,560	0.01	\$0.08	\$0.10
2031	455	10.290	513	10,243	11	139,242	0.01	\$0.08	\$0.09
2032	+54	11.215	517	11,165	13	141,370	0.01	\$0,10	\$0,11
2033	451	12.606	518	12,549	10	142,957	0.01	\$0.07	\$0.08
2034	450	13,463	518	13,402	7	144,556	0.00	\$0.05	\$0.06
2035	450	14.331	519	14,267	5	146,178	0.00	\$0.04	\$0.04
2036	450	15,917	521	15,848	2	147.821	0,00	\$0.01	\$0.01
2037	448	16,946	526	16,872	4	149,492	0.00	\$0.02	\$0.03
2038	++7	18,084	529	18,007	5	151,186	0.00	\$0.03	\$0.04
2039	447	19,275	530	19,194	2	152.906	0.00	\$0.01	\$0.02
2040	447	20.346	532	20,262	1	154,650	0,00	\$0.01	\$0.01
2041	445	21.741	531	21,653	-2	156,423	0.00	-\$0.02	-\$0.02
2042	368	23.241	540	23,148	79	158,224	0.05	\$0.50	\$0,60
2043	330	25,401	545	25,300	114	160,054	0.07	\$0.71	\$0.85
2044	330	27.344	547	27,237	111	161,913	0.07	\$0.68	\$0.82
2045	328	29,253	547	29,132	98	163,802	0.06	\$0.60	\$0.71
2046	328	30,745	548	30,634	109	165,722	0.07	\$0,66	\$0.79
2047	327	32,703	559	32,587	116	167,674	0.07	\$0.69	\$0.83
2048	327	34,868	567	34,746	118	169,658	0.07	\$0.70	\$0.84
2049	325	37,005	566	36,879	116	171,676	0.07	\$0.67	\$0.81
2050	325	39,697	567	39,566	112	173,729	0.06	\$0.65	\$0.77
2051	324	42,344	568	42,209	109	175,818	0.06	\$0.62	\$0.75
2052	324	44.920	585	44,780	121	177.943	0.07	\$0.68	\$0.82
2053	308	47,797	592	47,652	139	180,105	0.08	\$0.77	\$0,93
2054	300	50,836	593	50,685	142	182,294	0.08	\$0.78	\$0.94
2055	299	53,774	594	53,616	138	184,510	0.07	\$0.75	\$0.90
	200	57 011	507	56 9.19	125	194 753	0.07	SO 73	00.07
2056	299	27,011		20.040	155	160,7.52	0.07	30.73	\$0,87

Levelized Bill Impact \$0.32

\$0.39

Notes: (1) This projection assumes instantaneous adjustment to electric rates and is for illustrative purposes only. (2) The values presented in Columns (1) and (3), are total fixed transportation costs for the combined project.

Projection of Approximate Bill Impacts: Differential between Combined Project 1 and Combined Project 2 Four Year Nuclear Delay Resource Plan

	(1)	(2)	(3)	(4)	(5) =(3+1) (1+3)	(6)	(7)	(8) =(7)x10	(9) =(7)x12
	Combined	Venintle	Combined	Variable	-(3+4)-(1+2)		-((3)x1007(0)	-(7)X10	~(7)X12
	Fixed	Variable	Fixed	variable Sector	Differential in				
	Transportation	System	Transportation	System	Differentiat in				
	Costs	Costs	Costs	Costs	total	Desired a		D:@ti-Lin	Differential in
	Revenue	Annual	Annual	Annual	Annual	Projected	Diff. of L	Differential in	Differential in
		Revenue	Revenue	Revenue	Revenue	Total Sales	Differential in	Customer	Customer
	Requirements	Requirements	Requirements	Requirements	Requirements	After DSM	System Average	Bill of	Bill of
	(Smillions.	(Smillions,	(\$millions,	(\$millions,	(\$millions.	(GWh at	Electric Kates	1,000 kwh	1,200 KWh
Year	Nominal \$)	Nominal \$)	Nominal \$)	Nominal \$)	Nominal 5)	the motor)	(cents/kwh)	(2)	(5)
								20.00	
2013	0	0	0	0	0	106,262	0,00	\$0.00	\$0.00
2014	0	0	3	-4	-1	111.4/4	0.00	-50.01	-50.01
2015	0	0	9	-18	-10	113.995	-0.01	-\$0.08	-50,10
2016	0	0	11	-92	-81	115,835	-0.07	-50.70	-50.84
2017	199	2,697	290	2,688	83	116,734	0.07	\$0.71	\$0.85
2018	294	4,572	431	4.557	122	117,850	0.10	\$1.03	\$1.24
2019	292	5,010	428	4,994	121	118,850	0.10	\$1.02	\$1.22
2020	359	5,533	542	5,508	158	120.208	0.13	\$1.31	\$1.58
2021	390	5,904	595	5,875	176	120,725	0.15	\$1.46	\$1.75
2022	388	6,185	593	6.154	174	121.846	0.14	\$1.43	\$1.71
2023	386	7,261	591	7,228	172	123,795	0.14	\$1.39	\$1.67
2024	-143	7,812	620	7.777	1+1	126,196	0.11	\$1.12	\$1.34
2025	469	8,210	630	8,175	126	127,977	0,10	\$0.99	\$1.18
2026	467	8,402	628	8,366	125	130,049	0.10	\$0.96	\$1.16
2027	465	8,365	626	8.329	125	131,983	0.09	\$0,95	\$1.14
2028	464	8,587	626	8,553	128	134,261	0.10	\$0.95	\$1.14
2029	460	9,122	622	9,085	124	135,816	0.09	\$0.92	\$1.10
2030	458	9,693	619	9,654	122	137,560	0.09	\$0.89	\$1.07
2031	455	10.290	616	10,250	121	139.242	0.09	\$0,87	\$1.05
2032	454	11.217	616	11,173	118	141,370	0.08	\$0.83	\$1.00
2033	451	12,607	613	12,558	112	142,957	0.08	\$0.79	\$0,94
2034	450	13,466	612	13.413	108	144,556	0.07	\$0.75	\$0.90
2035	450	14.331	611	14,275	105	146,178	0.07	\$0.72	\$0.86
2036	450	15,917	612	15,857	102	147,821	0.07	\$0.69	\$0.83
2037	448	16,946	609	16,881	96	149.492	0.06	\$0,64	\$0.77
2038	447	18,084	609	18,016	93	151.186	0.06	\$0.62	\$0.74
2039	446	19,276	608	19.205	90	152,906	0.06	\$0.59	\$0.71
2040	447	20,345	609	20,272	89	154,650	0,06	\$0.57	\$0.69
2041	445	21,741	606	21,664	84	156,423	0.05	\$0.54	\$0.65
2042	368	23.241	606	23,160	157	158,224	0.10	\$0.99	\$1.19
2043	330	25,402	606	25,319	192	160.054	0.12	\$1.20	\$1.44
2044	330	27,344	606	27,254	186	161,913	0.12	\$1,15	\$1,38
2045	328	29,253	604	29,166	189	163,802	0.12	\$1.15	\$1,38
2046	328	30,745	603	30.648	179	165,722	0.11	\$1.08	\$1.29
2047	327	32,704	602	32,603	175	167,674	0.10	\$1.04	\$1.25
2048	327	34,868	603	34,764	172	169,658	0.10	\$1.02	\$1.22
2049	311	37,007	601	36,898	181	171,676	0.11	\$1.06	\$1.27
2050	303	39.697	600	39,583	184	173,729	0.11	\$1.06	\$1.27
2051	302	42,344	599	42.227	181	175,818	0.10	\$1.03	\$1.23
2052	302	44,920	600	44,798	176	177,943	0.10	\$0.99	\$1.19
2053	300	47,798	598	47,672	172	180,105	0.10	\$0,95	\$1.14
2054	300	50,836	597	50,704	166	182.294	0.09	\$0.91	\$1.09
2055	299	53,775	596	53,638	161	184,510	0.09	\$0.87	\$1.04
2056	299	57,014	597	56,873	157	186,752	0.08	\$0.84	\$1.01
2057	98	17,954	196	17,904	48	189,022	0.03	\$0.25	\$0.30
							Levelized Bill Impact	\$0.70	\$0.84

Levelized Bill Impact \$0.70

Notes: (1) This projection assumes instantaneous adjustment to electric rates and is for illustrative purposes only.

Projection of Approximate Bill Impacts: Differential between Combined Project 1 and Combined Project 3 Four Year Nuclear Delay Resource Plan

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	Combined	Project I	Combined	Project 3	=(3+4)-(1+2)		=((5)x100)/(6)	$=(7)_{X}10$	=(7)x12
	Fixed	Variable	Fixed	Variable					
	Transportation	System	Transportation	System	Differential in				
	Costs	Cosis	Costs	Costs	total				
	Annual	Annual	Annual	Annual	Annual	Projected		Differential in	Differential in
	Revenue	Revenue	Revenue	Revenue	Revenue	Total Sales	Differential in	Customer	Customer
	Requirements	Requirements	Requirements	Requirements	Requirements	After DSM	System Average	Bill of	Bill of
	(\$millions,	(\$millions,	(Smillions,	(\$millions.	(\$millions,	(GWh at	Electric Rates	1,000 kwh	1,200 kwh
Ycar	Nominal \$)	Nominal \$)	Nominal \$)	Nominal \$)	Nominal \$)	the meter)	(cents/kwh)	(\$)	(\$)
2012						106.262	0.00		£0.00
2015	0	0	0	0	0	111.471	0.00	20.00	\$0,00
2014	0	0	0	0	0	112.005	0.00	\$0,00	\$0.00
2015	0	0	0	0	0	115,995	0,00	\$0.00	\$0,00
2010	199	2 607	212	2 601	0	116.721	0.00	\$0.00	\$0.43
2017	291	1.572	361	1 567	41	110,754	0.04	\$0.50	\$0.43
2010	202	5.010	358	5.005	61	118.850	0.05	\$0.57	\$0.62
2019	2.50	5.533	1.18	5 531	87	120,208	0.05	\$0.72	\$0.86
2020	3.59	5.001	100	5.007	67	120.208	0.07	\$0.72	50.80
2021	390	6 195	197	4 191	28	120,725	0.08	50.81	\$0.98
2022	286	7 261	+87	7.260	26	121.840	0.08	50.81	\$0.97
2025	580	7,201	527	7.200	20	125,795	0.08	50.79	\$0.93
2024	443	2,812	550	8 201	00	120,190	0.07	\$0,70	\$0.84
2025	167	8,102	557	8 305	83	130.049	0.06	\$0.61	\$0.77
2020	467	8 365	555	8.358	83	131.083	0.06	\$0.63	\$0.76
2027	16.1	8.202	554	8.591	84	124 261	0.06	\$0.63	\$0.75
2020	404	0,107	550	0.115	83	134.201	0.06	\$0.65	\$0.73
2029	400	0.603	5.18	0.686	83	127.560	0.06	\$0.61	\$0.75
2020	155	10,200	5.15	10.283	20	120 212	0.06	\$0.60	50.72
2021	4,0,0	10,290	5.1.1	11,249	8.5	139,242	0.00	\$0.59	\$0.72
2032	4.04	12.607	5.11	12,208	70	141,370	0.06	\$0.55	\$0.69
2035	4.51	12,007	510	12.151	79	142,237	0.06	\$0.55	\$0.00
2024	450	11,400	540	12,424	70	144.530	0.05	\$0.57	\$0.63
2055	4.50	15,017	540	14.218	77	140,178	0.05	\$0.53	\$0.03
2037	4.10	16.946	538	16.970	73	149,1921	0.05	\$0.19	\$0.59
2037	++0	18.084	537	18,066	75	149,492	0.05	50.49	\$0.57
2028	447	10,004	537	10.000	72	152.006	0.05	50.48	\$0.57
2010	117	20.215	537	20.326	72	151,650	0.05	\$0.46	\$0.55
2040	115	20,040	535	21,520	70	156.423	0.03	\$0.15	\$0.54
2041	349	23.211	535	72 210	115	158 224	0.04	\$0.90	\$1.10
2042	330	25,241	534	25.219	14.7	160.054	0.05	\$1.13	\$1.10
2045	220	27,402	\$3.5	27.376	180	161.013	0.11	\$1.15	\$1.33
2044	200	20.252	\$33	20.326	177	167.903	0.11	\$1.11	\$1.30
2043	220	29,235	522	29.220	176	165,802	0.11	\$1.06	\$1.50
2040	220	22 704	531	32.674	170	167.671	0.10	\$1.00	\$1.20
2047	327	32,704	522	21.929	174	160.658	0.10	\$1.07	\$1.2.5
2040	327	27.007	530	26.075	17.5	109,028	0.10	\$1.00	\$1.24
2049	311	37,007	530	20,975	107	171,070	0.11	\$1.09	31.3J \$1.22
2050	303	39,097	529	12 210	195	175,729	0.11	\$1.11	\$1.55
2021	302	44.244	520	42,510	192	1/2.010	0.11	\$1.07	31.21
2052	302	17 708	527	17 741	160	177.242	0.11	31.07 \$1.05	\$1.27 \$1.27
2000	300	47,720	527	+7,701	197	187 201	0.11	\$1.02 \$1.02	\$1.20
2024	200	52 775	525	52 725	186	181.510	0.10	\$1.05	\$1.25
2056	279	57.014	526	56 072	184	186 753	0.10	\$1.01 \$1.01	لغ.ادی ۱۱۵ (12
2020	277 00	17051	172	17.940	60	180.7.72	0.10	\$0.20 \$0.20	\$0.38
40 (Ju ¹ /	20	17.204	172	17,940	00	107,044	0.05	90.3Z	a0.20
							Levelized Bill Impact	91 0 2	\$0.58
							· · · · · · · · · · · · · · · · · ·		

Notes: (1) This projection assumes instantaneous adjustment to electric rates and is for illustrative purposes only.

Docket No. 13____-El Projection of Approximate Bill Impacts Exhibit JEE-8, Page 6 of 6

Projection of Approximate Bill Impacts: Differential between Combined Project 1 and Combined Project 4 Four Year Nuclear Delay Resource Plan

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	Combined	Project 1	Combined	Project 4	=(3+4)-(1+2)		=((5)x100)/(6)	=(7)x10	=(7)x12
	Fixed	Variable	Fixed	Variable					
	Transportation	System	Transportation	System	Differential in				
	Costs	Costs	Costs	Costs	total				
	Annual	Annual	Annual	Annual	Annual	Projected		Differential in	Differential in
	Revenue	Revenue	Revenue	Revenue	Revenue	Total Sales	Differential in	Customer	Customer
	Requirements	Requirements	Requirements	Requirements	Requirements	After DSM	System Average	Bill of	Bill of
	(Smillions.	(Smillions,	(Smillions,	(Smillions,	(\$millions,	(GWh at	Electric Rates	1,000 kwh	1.200 kwh
Year	Nominal \$)	Nominal \$)	Nominal S)	Nominal \$)	Nominal \$)	the meter)	(cents/kwh)	(\$)	(\$)
	******	*******		******	**=====			******	*****
2013	0	0	0	0	0	106,262	0,00	\$0.00	\$0.00
2014	0	0	0	0	0	111,474	0.00	\$0,00	\$0.00
2015	0	0	0	0	0	113,995	0.00	\$0.00	\$0.00
2016	0	0	0	0	0	115,835	0,00	\$0.00	\$0.00
2017	199	2,697	301	2,688	94	116,734	0.08	\$0,80	\$0.96
2018	294	4.572	447	4,556	137	117,850	0.12	\$1.16	\$1.39
2019	292	5,010	445	4,993	136	118,850	0.11	\$1.14	\$1.37
2020	359	5,533	453	5,509	70	120,208	0.06	\$0.58	\$0.70
2021	390	5.904	454	5.877	37	120,725	0.03	\$0.31	\$0.37
2022	388	6.185	453	6.156	37	121,846	0.03	\$0.30	\$0.36
2023	386	7.261	453	7.230	36	123,795	0.03	\$0.29	\$0.35
2024	413	7.812	494	7.774	12	126,196	0.01	\$0.10	\$0.12
2025	169	8 210	511	8.170	2	127.977	0.00	\$0.02	\$0.02
2025	467	8 402	510	8 360	-	130.049	0.00	\$0.01	\$0.01
2027	465	8 365	\$12	8 324	7	131,983	0.01	\$0.05	\$0.06
2029	464	8 587	514	8 547	11	134,261	0.01	\$0.08	\$0.10
2028	460	9.122	512	9.079	9	135.816	0.01	\$0.06	\$0.08
2029	458	0.603	511	9.648	8	137 560	0.01	\$0.05	\$0.07
2030	455	10.290	509	10 243	7	139 242	0.00	\$0.05	\$0.06
2031	45.5	10.290	513	11,166	9	141 370	0.01	\$0.06	\$0.07
2032	451	12.607	514	12 550	6	142,957	0.00	\$0.04	\$0.05
2033	450	13.466	514	13 405	3	142.556	0.00	\$0.02	\$0.03
2034	450	1.1.331	515	14 267	1	146.178	0.00	\$0.01	\$0.01
2035	450	14,551	517	15 8 18	-2	147 821	0.00	-\$0.02	-\$0.02
2030	419	10.017	522	16.872	0	149,327	0.00	\$0.00	\$0.00
2037	117	18,094	525	18.007	1	151 186	0.00	\$0.01	\$0.01
2038	447	10,004	576	10,007	.2	152 906	0.00	-\$0.01	-\$0.01
2039	440	20.245	520	20.261	-2	151.650	0.00	-\$0.02	-\$0.02
2040	++ /	20,545	527	20,201	-5	156.123	0.00	-\$0.04	-\$0.05
2041	-14.2	21.741	526	21,055	-0	158 224	0.05	\$0.48	\$0.57
2042	308	25.241	530	25.148	100	160.054	0.07	\$0.48	50.82
2043	330	23,402	541	23,500	109	161 013	0.07	\$0.67	\$0.80
2044	330	27.3++	244	27,239	108	162,802	0.07	\$0.57	\$0.69
2045	328	29,253	543	29,132	24	165,802	0.06	\$0.67	\$0.76
2046	328	30,745	244	30,634	105	165,722	0.00	\$0.65	\$0.80
2047	327	32.704	222	32.387	111	107,074	0.07	\$0.00	50.80 60.90
2048	327	34.868	203	.14. / 48	110	109.0.18	0.07	50 09	50.82
2049	311	37,007	562	36,882	127	1/1,0/0	0.07	\$0.74	\$0.89
2050	303	.19.697	203	29,200	130	175 919	0.07	\$0.73	\$0.89
2051	.502	42.344	262	42,210	128	1/2,818	0.07	\$0.73 \$0.79	30,88 60.04
2052	302	44,920	281	44,780	139	177,943	0.08	30.70 \$0.70	30.74 \$0.04
2053	300	47,798	288	47,653	142	180,105	0.08	30.79 \$0.75	80.90 \$0.00
2054	.500	20,836	589	20,684	137	182.294	0.08	30.72	\$0.90
2055	299	53,775	291	23,618	1.54	184,510	0.07	30.73	50.87
2056	299	57,014	294	20,851	132	180,752	0.07	\$0.21	30,85 \$0,25
2057	98	17.954	195	17,896	39	189.022	0,02	30.21	\$0,2.7
							Loughi and Bill Imment	\$0.29	\$0.34
							revenived put impact	00.22	-p.c.,+

Levelized Bill Impact \$0.29

Notes: (1) This projection assumes instantaneous adjustment to electric rates and is for illustrative purposes only.

