**Wiley Finance Series** 

 $\mathbf{Z}^{\mathrm{rd}}$ 

Edition

# INVESTATENT. VALUATION

**UNIVERSITY EDITION** 

(O )(

Tools and Techniques for Determining the Value of Any Asset

ASWATH DAMODARAN

When return distributions are normal, the characteristics of any investment can be measured with two variables—the expected return, which represents the opportunity in the investment, and the standard deviation or variance, which represents the danger. In this scenario, a rational investor, faced with a choice between two investments with the same standard deviation but different expected returns, will always pick the one with the higher expected return.

In the more general case, where distributions are neither symmetric nor normal, it is still conceivable that investors will choose between investments on the basis of only the expected return and the variance, if they possess utility functions that allow them to do so. It is far more likely, however, that they prefer positive skewed distributions to negatively skewed ones, and distributions with a lower likelihood of jumps (lower kurtosis) over those with a higher likelihood of jumps (higher kurtosis). In this world, investors will trade off the good (higher expected returns and more positive skewness) against the bad (higher variance and kurtosis) in making investments.

In closing, it should be noted that the expected returns and variances that we run into in practice are almost always estimated using past returns rather than future returns. The assumption made when using historical variances is that past return distributions are good indicators of future return distributions. When this assumption is violated, as is the case when the asset's characteristics have changed significantly over time, the historical estimates may not be good measures of risk.



optvar.xis: This is a dataset on the Web that summarizes standard deviations and variances of stocks in various sectors in the United States.

#### Diversifiable and Nondiversifiable Risk

Although there are many reasons why actual returns may differ from expected returns, we can group the reasons into two categories: firm-specific and marketwide. The risks that arise from firm-specific actions affect one or a few investments, while the risks arising from marketwide reasons affect many or all investments. This distinction is critical to the way we assess risk in finance.

**Components of Risk** When an investor buys stock or takes an equity position in a firm, he or she is exposed to many risks. Some risk may affect only one or a few firms, and this risk is categorized as firm-specific risk. Within this category, we would consider a wide range of risks, starting with the risk that a firm may have misjudged the demand for a product from its customers; we call this project risk. For instance, consider

<sup>&</sup>lt;sup>1</sup>A utility function is a way of summarizing investor preferences into a generic term called "utility" on the basis of some choice variables. In this case, for instance, the investors' utility or satisfaction is stated as a function of wealth. By doing so, we effectively can answer questions such as, Will investors be twice as happy if they have twice as much wealth? Does each marginal increase in wealth lead to less additional utility than the prior marginal increase? In one specific form of this function, the quadratic utility function, the entire utility of an investor can be compressed into the expected wealth measure and the standard deviation in that wealth.

Boeing's investment in a Super Jumbo jet. This investment is based on the assumption that airlines want a larger airplane and are willing to pay a high price for it. If Boeing has misjudged this demand, it will clearly have an impact on Boeing's earnings and value, but it should not have a significant effect on other firms in the market. The risk could also arise from competitors proving to be stronger or weaker than anticipated, called competitive risk. For instance, assume that Boeing and Airbus are competing for an order from Qantas, the Australian airline. The possibility that Airbus may win the bid is a potential source of risk to Boeing and perhaps some of its suppliers, but again, few other firms will be affected by it. Similarly, Disney recently launched magazines aimed at teenage girls, hoping to capitalize on the success of its TV shows. Whether it succeeds is clearly important to Disney and its competitors, but it is unlikely to have an impact on the rest of the market. In fact, risk measures can be extended to include risks that may affect an entire sector but are restricted to that sector; we call this sector risk. For instance, a cut in the defense budget in the United States will adversely affect all firms in the defense business, including Boeing, but there should be no significant impact on other sectors. What is common across the three risks described—project, competitive, and sector risk—is that they affect only a small subset of firms.

There is another group of risks that is much more pervasive and affects many if not all investments. For instance, when interest rates increase, all investments are negatively affected, albeit to different degrees. Similarly, when the economy weakens, all firms feel the effects, though cyclical firms (such as automobiles, steel, and housing) may feel it more. We term this risk market risk.

Finally, there are risks that fall in a gray area, depending on how many assets they affect. For instance, when the dollar strengthens against other currencies, it has a significant impact on the earnings and values of firms with international operations. If most firms in the market have significant international operations, it could well be categorized as market risk. If only a few do, it would be closer to firm-specific risk. Figure 4.4 summarizes the spectrum of firm-specific and market risks.

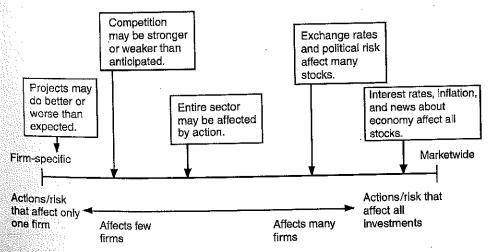



FIGURE 4.4 Breakdown of Risk

Why Diversification Reduces or Eliminates Firm-Specific Risk: An Intuitive Explanation As an investor, you could invest all your portfolio in one asset. If you do so, you are exposed to both firm-specific and market risk. If, however, you expand your portfolio to include other assets or stocks, you are diversifying, and by doing so you can reduce your exposure to firm-specific risk. There are two reasons why diversification reduces or, at the limit, eliminates firm-specific risk. The first is that each investment in a diversified portfolio is a much smaller percentage of that portfolio than would be the case if you were not diversified. Any action that increases or decreases the value of only that investment or a small group of investments will have only a small impact on your overall portfolio, whereas undiversified investors are much more exposed to changes

in the values of the investments in their portfolios. The second reason is that the effects of firm-specific actions on the prices of individual assets in a portfolio can be either positive or negative for each asset for any period. Thus, in very large portfolios this

risk will average out to zero and will not affect the overall value of the portfolio.

In contrast, the effects of marketwide movements are likely to be in the same direction for most or all investments in a portfolio, though some assets may be affected more than others. For instance, other things being equal, an increase in interest rates will lower the values of most assets in a portfolio. Being more diversified does not eliminate this risk.

A Statistical Analysis of Diversification-Reducing Risk The effects of diversification on risk can be illustrated fairly dramatically by examining the effects of increasing the number of assets in a portfolio on portfolio variance. The variance in a portfolio is partially determined by the variances of the individual assets in the portfolio and partially by how they move together; the latter is measured statistically with a correlation coefficient or the covariance across investments in the portfolio. It is the covariance term that provides an insight into why diversification will reduce risk and by how much.

Consider a portfolio of two assets. Asset A has an expected return of  $\mu_A$  and a variance in returns of  $\sigma^2_A$ , while asset B has an expected return of  $\mu_B$  and a variance in returns of  $\sigma^2_B$ . The correlation in returns between the two assets, which measures how the assets move together, is  $\rho_{AB}$ . The expected returns and variances of a two-asset portfolio can be written as a function of these inputs and the proportion of the portfolio going to each asset.

$$\begin{split} &\mu_{portfolio} = w_A \mu_A + (1-w_A) \mu_B \\ &\sigma_{portfolio}^2 = w_A^2 \sigma_A^2 + (1-w_A)^2 \sigma_B^2 + 2 w_A (1-w_A) \rho_{AB} \sigma_A \sigma_B \end{split}$$

where  $w_A$  = Proportion of the portfolio in asset A

The last term in the variance formulation is sometimes written in terms of the covariance in returns between the two assets, which is:

$$\sigma_{AB} = \rho_{AB}\sigma_A\sigma_B$$

The savings that accrue from diversification are a function of the correlation coefficient. Other things remaining equal, the higher the correlation in returns between the two assets, the smaller are the potential benefits from diversification. It is

rationale presented by those who use shorter periods is that the risk aversion of the average investor is likely to change over time, and that using a shorter time period provides a more updated estimate. This has to be offset against a cost associated with using shorter time periods, which is the greater noise in the risk premium estimate. In fact, given the annual standard deviation in stock prices between 1926 and 2010 of 20 percent, the standard error associated with the risk premium estimate can be estimated for different estimation periods in Table 7.2.

Note that to get reasonable standard errors, we need very long time periods of historical returns. Conversely, the standard errors from 10-year and 20-year estimates are likely to be almost as large as or larger than the actual risk premium estimated. This cost of using shorter time periods seems, in our view, to overwhelm any advantages associated with getting a more updated premium.

- 2. Choice of risk-free security. The Ibbotson database reports returns on both Treasury bills (T-bills) and Treasury bonds (T-bonds), and the risk premium for stocks can be estimated relative to each. Given that the yield curve in the United States has been upward-sloping for most of the past seven decades, the risk premium is larger when estimated relative to shorter-term government securities (such as Treasury bills). The risk-free rate chosen in computing the premium has to be consistent with the risk-free rate used to compute expected returns. Thus, if the Treasury bill rate is used as the risk-free rate, the premium has to be the premium earned by stocks over that rate. If the Treasury bond rate is used as the risk-free rate, the premium has to be estimated relative to that rate. For the most part, in corporate finance and valuation, the risk-free rate will be a long-term default-free Treasury (government) bond rate and not a Treasury bill rate. Thus, the risk premium used should be the premium earned by stocks over Treasury bonds.
- 3. Arithmetic and geometric averages. The final sticking point when it comes to estimating historical premiums relates to how the average returns on stocks, Treasury bonds, and Treasury bills are computed. The arithmetic average return measures the simple mean of the series of annual returns, whereas the geometric

 TABLE 7.2
 Standard Errors in Risk Premium Estimates

|                                             | m rask richiam Estimates                                                                               |  |  |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------|--|--|
| Estimation Period                           | Standard Error of Risk Premium Estimate                                                                |  |  |
| 5 years<br>10 years<br>25 years<br>50 years | $20\%/\sqrt{5} = 8.94\%$ $20\%/\sqrt{10} = 6.32\%$ $20\%/\sqrt{25} = 4.00\%$ $20\%/\sqrt{50} = 2.83\%$ |  |  |
|                                             |                                                                                                        |  |  |

<sup>&</sup>lt;sup>7</sup>For the historical data on stock returns, bond returns, and bill returns, check under "Updated Data" in www.stern.nyu.edu/~adamodar.

<sup>&</sup>lt;sup>8</sup>These estimates of the standard error are probably understated, because they are based on the assumption that annual returns are uncorrelated over time. There is substantial empirical evidence that returns are correlated over time, which would make this standard error estimate much larger.

#### HISTORICAL BETA

Number of points may be insufficient for an accurate beta.

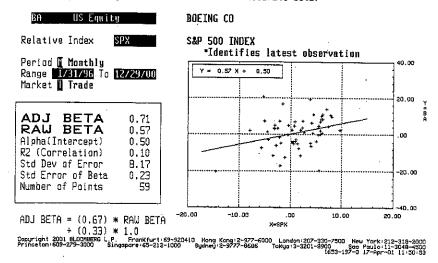



FIGURE 8.2 Beta Estimate for Boeing
Copyright 2001 Bloomberg LP. Reprinted with permission. All rights reserved.

from Bloomberg for Boeing, using the same period as our regression (January 1996 to December 2000).

While the time period used is identical to the one used in our earlier regression, there are subtle differences between this regression and the one in Figure 8.1. First, Bloomberg uses price appreciation in the stock and the market index in estimating betas and ignores dividends.<sup>4</sup> The fact that dividends are ignored does not make much difference for a company like Boeing, but it could make a difference for a company that either pays no dividends or pays significantly higher dividends than the market. This explains the mild differences in the intercept (0.50% versus 0.54%) and the beta (0.57 versus 0.56).

Second, Bloomberg also computes what it calls an adjusted beta, which is estimated as follows:

Adjusted beta = Raw beta
$$(0.67) + 1.00(0.33)$$

These weights (0.67 and 0.33) do not vary across stocks, and this process pushes all estimated betas toward 1. Most services employ similar procedures to adjust betas toward 1. In doing so, they are drawing on empirical evidence that suggests that the betas for most companies, over time, tend to move toward the average beta, which is 1. This may be explained by the fact that firms get more diversified in their product mix and client base as they get larger. While we agree with the notion that betas move toward 1 over time, the weighting process used by most services strikes us as arbitrary and not particularly useful.

This is done purely for computational convenience.

The unlevered beta of a firm is determined by the nature of its products and services (cyclicality, discretionary nature) and its operating leverage. It is often also referred to as the asset beta, since it is determined by the assets owned by the firm. Thus, the levered beta, which is also the beta for an equity investment in a firm, is determined both by the riskiness of the business it operates in and by the amount of financial leverage risk it has taken on.

Since financial leverage multiplies the underlying business risk, it stands to reason that firms that have high business risk should be reluctant to take on financial leverage. It also stands to reason that firms that operate in stable businesses should be much more willing to take on financial leverage. Utilities, for instance, have historically had high debt ratios but have not had high betas, mostly because their underlying businesses have been stable and fairly predictable.

#### ILLUSTRATION 8.3: Effects of Leverage on Betas: Boeing

From the regression for the period from 1996 to 2000, Boeing had a historical beta of 0.56. Since this regression uses stock prices of Boeing over this period, we began by estimating the average debt-to-equity ratio between 1996 and 2000, using market values for debt and equity.

Average debt-to-equity ratio between 1996 and 2000 = 15.56%

The beta over the 1996–2000 period reflects this average leverage. To estimate the unlevered beta over the period, a marginal tax rate of 35% is used:

Unlevered beta = Current beta/
$$[1 + (1 - \text{Tax rate})(\text{Average debt/Equity})]$$
  
= 0.56/ $[1 + (1 - 0.35)(0.1556)] = 0.51$ 

The unlevered beta for Boeing over the 1996–2000 period is 0.51. The levered beta at different levels of debt can then be estimated:

Levered beta = Unlevered beta  $\times [1 + (1 - Tax \text{ rate})(Debt/Equity)]$ 

For instance, if Boeing were to increase its debt equity ratio to 10%, its equity beta will be:

Levered beta (@10% D/E) = 
$$0.51 \times [1 + (1 - 0.35)(0.10)] = 0.543$$

If the debt equity ratio were raised to 25%, the equity beta would be:

Levered beta (@25% D/E) = 
$$0.51 \times [1 + (1 - 0.35)(0.25)] = 0.59$$

The following table summarizes the beta estimates for different levels of financial leverage ranging from 0% to 90% debt.

| Debt to Capital | Debt to Capital Debt/Equity Ratio |       | Effect of Leverage |  |
|-----------------|-----------------------------------|-------|--------------------|--|
| 0%              | 0.00%                             | 0.51  | 0.00               |  |
| 10%             | 11.11%                            | 0.55  | 0.04               |  |
| 20%             | 25.00%                            | 0.59  | 0.08               |  |
| 30%             | 42.86%                            | 0.65  | 0.14               |  |
| 40%             | 66.67%                            | 0.73  | 0.22               |  |
| 50%             | 100.00%                           | 0.84  | 0.33               |  |
| 60%<br>70%      | 150.00%                           | 1.00  | 0.50               |  |
| 70%<br>80%      | 233.33%                           | 1.28  | 0.77               |  |
| 90%             | 400.00%                           | 1.83  | 1.32               |  |
| JU /U           | 900.00%                           | -3.48 | 2.98               |  |

As Boeing's financial leverage increases, the beta increases concurrently.



*levbeta.xis.* This spreadsheet allows you to estimate the unlevered beta for a firm and compute the betas as a function of the leverage of the firm.

Bottom-Up Betas Breaking down betas into their business risk and financial leverage components provides us with an alternative way of estimating betas, in which we do not need past prices on an individual firm or asset to estimate its beta.

To develop this alternative approach, we need to introduce an additional property of betas that proves invaluable. The beta of two assets put together is a weighted average of the individual asset betas, with the weights based on market value. Consequently, the beta for a firm is a weighted average of the betas of all the different businesses it is in. We can estimate the beta for a firm in five steps:

Step 1: Identify the business or businesses the firm operates in.

Step 2: Find other publicly traded firms in each business and obtain their regression betas, which we use to compute an average beta for the firms.

Step 3: Estimate the average unlevered beta for the business by unlevering the average (or median) beta for the firms by their average (or median) debt-to-equity ratio. Alternatively, we could estimate the unlevered beta for each firm and then compute the average of the unlevered betas. The first approach is preferable because unlevering an erroneous regression beta is likely to compound the error.

Unlevered beta<sub>business</sub> = Beta<sub>comparable firms</sub>/
$$[1 + (1 - t)(D/E \text{ ratio}_{comparable firms})]$$

Step 4: Estimate an unlevered beta for the firm being analyzed, taking a weighted average of the unlevered betas for the businesses it operates in, using the proportion of firm value derived from each business as the weights. If values are not available, use operating income or revenues as weights. This weighted average is called the bottom-up unlevered beta.

Unlevered beta<sub>firm</sub> = 
$$\sum_{j=1}^{j=k} (Unlevered beta_j \times Value weight_j)$$

where the firm is assumed to operating in k different businesses.

Step 5: Finally, estimate the current market values of debt and equity at the firm and use this debt-to-equity ratio to estimate a levered beta.

The betas estimated using this processs are called bottom-up betas.

The Case for Bottom-Up Betas At first sight, the use of bottom-up betas may seem to leave us exposed to all of the problems noted with regression betas. After

series of correlations between growth rates in consecutive periods of different length, he frequently found negative correlations between growth rates in the two periods, and the average correlation across the two periods was close to zero (0.02).

If past growth is not a reliable indicator of future growth at many firms, it becomes even less so at smaller firms. The growth rates at smaller firms tend to be more volatile than growth rates at other firms in the market. The correlation between growth rates in earnings in consecutive time periods (five-year, three-year, and one-year) for firms in the Inited States, categorized by market value, is reported in Figure 11.2.

While the correlations tend to be higher across the board for one-year growth rates than for three-year or five-year growth rates in earnings, they are also consistently lower for smaller firms than they are for the rest of the market. This would suggest that you should be more cautious about using past growth, especially in earnings, for forecasting future growth at these firms.

Revenue Growth versus Earnings Growth In general, revenue growth tends to be more persistent and predictable than earnings growth. This is because accounting choices have a far smaller effect on revenues than they do on earnings. Figure 11.3 compares the correlations in revenue and earnings growth over five-year periods at U.S. firms. Revenue growth is consistently more correlated over time than earnings growth. The implication is that historical growth in revenues is a far more useful number when it comes to forecasting than historical growth in earnings.

Effects of Firm Size Since the growth rate is stated in percentage terms, the role of the size of the firm has to be weighed in the analysis. It is easier for a firm with \$10 million in earnings to generate a 50 percent growth rate than it is for a firm with \$500 million in earnings. Since it becomes harder for firms to sustain high growth rates as they become larger, past growth rates for firms that have grown dramatically in size may be difficult to sustain in the future. While this is a problem for all firms, it is a particular problem when analyzing small and growing firms.

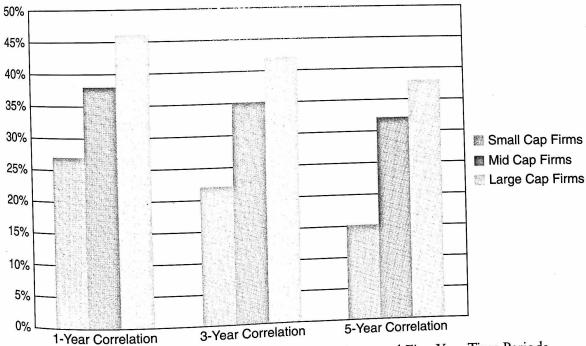



FIGURE 11.2 Correlation in Earnings: One-, Three-, and Five-Year Time Periods

- 3. Extent of disagreement between analysts. While consensus earnings growth rates are useful in valuation, the extent of disagreement between analysts measured by the standard deviation in growth predictions is also a useful measure of the reliability of the consensus forecasts. Givoly and Lakonsihok (1984) found that the dispersion of earnings is correlated with other measures of risk such as beta and is a good predictor of expected returns.
- 4. Quality of analysts following the stock. This is the hardest of the variables to quantify. One measure of quality is the size of the forecast error made by analysts following a stock, relative to models that use only historical data—the smaller this relative error, the larger the weight that should be attached to analyst forecasts. Another measure is the effect on stock prices of analyst revisions—the more informative the forecasts, the greater the effect on stock prices. There are some who argue that the focus on consensus forecasts misses the point that some analysts are better than others in predicting earnings, and that their forecasts should be isolated from the rest and weighted more.

Analyst forecasts may be useful in coming up with a predicted growth rate for a firm, but there is a danger to blindly following consensus forecasts. Analysts often make significant errors in forecasting earnings, partly because they depend on the same data sources (which might have been erroneous or misleading) and partly because they sometimes overlook significant shifts in the fundamental characteristics of the firm. The secret to successful valuation often lies in discovering inconsistencies between analysts' forecasts of growth and a firm's fundamentals. The next section examines this relationship in more detail.

#### **FUNDAMENTAL DETERMINANTS OF GROWTH**

With both historical and analyst estimates, growth is an exogenous variable that affects value but is divorced from the operating details of the firm. The soundest way of incorporating growth into value is to make it endogenous i.e., tie in more closely to the actions that a business takes to create and sustain that growth. This section begins by considering the relationship between fundamentals and growth in equity income, and then moves on to look at the determinants of growth in operating income.

#### Growth in Equity Earnings

When estimating cash flows to equity, we usually begin with estimates of net income, if we are valuing equity in the aggregate, or earnings per share, if we are valuing equity per share. This section begins by presenting the fundamentals that determine expected growth in earnings per share and then move on to consider a more expanded version of the model that looks at growth in net income.

**Growth in Earnings per Share** The simplest relationship determining growth is one based on the retention ratio (percentage of earnings retained in the firm) and the return on equity on its projects. Firms that have higher retention ratios and

earn higher returns on equity should have much higher growth rates in earnings per share than firms that do not share these characteristics. To establish this, note that:

$$g_t = (NI_t - NI_{t-1})/NI_{t-1}$$

where  $g_t = Growth$  rate in net income  $NI_t = Net$  income in year t

Also note that the ROE in period t can be written as NI in period t divided by the Book value of equity in period t-1. Given the definition of return on equity, the net income in year t-1 can be written as:

$$NI_{t-1} = Book value of equity_{t-2} \times ROE_{t-1}$$

where  $ROE_{t-1} = Return on equity in year t - 1$ 

The net income in year t can be written as:

$$NI_{t} = (Book value of equity_{t-2} + Retained earnings_{t-1}) \times ROE_{t}$$

Assuming that the return on equity is unchanged (i.e.,  $ROE_t = ROE_{t-1} = ROE$ ):

$$g_t = Retained earnings_{t-1}/NI_{t-1} \times ROE$$
  
= Retention ratio × ROE  
= b × ROE

where b is the retention ratio. Note that the firm is not being allowed to raise equity by issuing new shares. Consequently, the growth rate in net income and the growth rate in earnings per share are the same in this formulation.

#### ILLUSTRATION 11.5: Growth in Earnings per Share

This illustration considers the expected growth rate in earnings based on the retention ratio and return on equity for three firms—Consolidated Edison, a regulated utility that provides power to New York City and its environs; Procter & Gamble, a leading brand-name consumer product firm; and Intel, the technology giant—in 2010. The following table summarizes the returns on equity, retention ratios, and expected growth rates in earnings for the three firms in 2010:

|                     | Return on Equity | Retention Ratio | Expected Growth Rate |
|---------------------|------------------|-----------------|----------------------|
| Consolidated Edison | 9.79%            | 36.00%          | 3.52%                |
| Procter & Gamble    | 20.09%           | 50.26%          | 10.10%               |
| Intel               | 32.00%           | 70.00%          | 22.40%               |

Intel has the highest expected growth rate in earnings per share, assuming that it can maintain its current return on equity and retention ratio. Procter & Gamble also can be expected to post a healthy growth rate, notwithstanding the fact that it pays out more than 50% of its earnings as dividends because of its high return on equity. Con Ed, on the other hand, has a very low expected growth rate because its return on equity and retention ratio are anemic.

Both measures—the reinvestment rate and return on capital—should be forward looking, and the return on capital should represent the expected return on capital on future investments. In the rest of this section, we consider how best to estimate the reinvestment rate and the return on capital.

Reinvestment Rate The reinvestment rate measures how much a firm is plowing back to generate future growth. The reinvestment rate is often measured using the most recent financial statements for the firm. Although this is a good place to start, it is not necessarily the best estimate of the future reinvestment rate. A firm's reinvestment rate can ebb and flow, especially in firms that invest in relatively few large projects or acquisitions. For these firms, looking at an average reinvestment rate over time may be a better measure of the future. In addition, as firms grow and mature, their reinvestment needs (and rates) tend to decrease. For firms that have expanded significantly over the last few years, the historical reinvestment rate is likely to be higher than the expected future reinvestment rate. For these firms, industry averages for reinvestment rates may provide a better indication of the future than using numbers from the past. Finally, it is important that we continue treating R&D expenses and operating lease expenses consistently. The R&D expenses, in particular, need to be categorized as part of capital expenditures for purposes of measuring the reinvestment rate.

Return on Capital The return on capital is often based on the firm's return on capital on existing investments, where the book value of capital is assumed to measure the capital invested in these investments. Implicitly, we assume that the current accounting return on capital is a good measure of the true returns earned on existing investments, and that this return is a good proxy for returns that will be made on future investments. This assumption, of course, is open to question for the following reasons:

- The book value of capital might not be a good measure of the capital invested in existing investments, since it reflects the historical cost of these assets and accounting decisions on depreciation. When the book value understates the capital invested, the return on capital will be overstated; when book value overstates the capital invested, the return on capital will be understated. This problem is exacerbated if the book value of capital is not adjusted to reflect the value of the research asset or the capital value of operating leases.
- The operating income, like the book value of capital, is an accounting measure of the earnings made by a firm during a period. All the problems in using unadjusted operating income described in Chapter 9 continue to apply.
- Even if the operating income and book value of capital are measured correctly, the return on capital on existing investments may not be equal to the marginal return on capital that the firm expects to make on new investments, especially as you go further into the future.

Given these concerns, we should consider not only a firm's current return on capital, but any trends in this return as well as the industry average return on capital. If the current return on capital for a firm is significantly higher than the industry average, the forecasted return on capital should be set lower than the current try average, the erosion that is likely to occur as competition responds.

Finally, any firm that earns a return on capital greater than its cost of capital is earning an excess return. The excess returns are the result of a firm's competitive advantages or barriers to entry into the industry. High excess returns locked in for advantages or barriers to entry into the industry. excess returns locked in for very long periods imply that this firm has a permanent competitive advantage.

## ILLUSTRATION 11.9: Measuring the Reinvestment Rate, Return on Capital, and Expected Growth Rate: Tata Motors in 2010

In May 2010, we looked at Tata Motors, an Indian automobile company, which has been aggressive in its pursuit of growth through both internal investments and acquisitions over much of the past decade. Based upon its financial statements of 2009, we estimated a reinvestment rate of 116.83% and a return on capital of 11.81%:

Reinvestment rate 
$$_{\text{Tata Motors}} = \frac{\text{Net capital expendutures} + \text{Change in noncash WC}}{\text{EBIT } (1-t)}$$

$$= \frac{(\text{Rs } 40,291 - \text{Rs } 25,072) + \text{Rs } 957}{\text{Rs } 17,527(1-21)} = 116.83\%$$
Return on capital = 
$$\frac{\text{EBIT } (1-t) \text{ in } 2009}{(\text{BV of Equity} + \text{BV of Debt} - \text{cash})_{\text{End of } 2008}}$$

$$= \frac{\text{Rs } 17,527(1-.21)}{\text{Rs } 78.395 + \text{Rs } 62,805 - \text{Rs } 23,973} = 11.81\%$$

Note that the effective tax rate (21%) was used to compute the after-tax operating income for both the reinvestment rate and the return on capital. The capital invested was obtained by summing up the book value of debt and equity at the end of the 2008 fiscal year (the beginning of the 2009 fiscal year) and netting out the cash and marketable securities at that point in time.

If Tata Motors can maintain this return on capital and reinvestment rate going forward, its expected growth rate would be:

Expected growth rate = Reinvestment rate 
$$\times$$
 Return on capital =  $116.83\% \times 11.81\% = 13.80\%$ 

As we will see in the next illustration, maintaining this reinvestment going forward may be very difficult to do.

### ILLUSTRATION 11.10: Current and Historical Averages: Reinvestment Rate and Return on Capital for Tata Motors

Tata Motors has had a volatile history in terms of both reinvestment and returns on capital. Although the 2009 numbers were computed in the preceding illustration, those values have been in flux over the past five years. We summarize the numbers (in millions of rupees) for 2005 to 2009, with the aggregate in the last column:

| EBIT(1 – t) Capital Expenditures Depreciation Change in WC Reinvestment Reinvestment Rate | 2005     | 2006     | 2007     | 2008      | 2009     | Aggregate |
|-------------------------------------------------------------------------------------------|----------|----------|----------|-----------|----------|-----------|
|                                                                                           | \$12,197 | \$12,322 | \$25,203 | \$15,160  | \$13,846 | \$ 78,728 |
|                                                                                           | \$ 8,175 | \$11,235 | \$24,612 | \$44,113  | \$40,291 | \$120,251 |
|                                                                                           | \$ 5,377 | \$ 6,274 | \$ 6,850 | \$ 7,826  | \$25,072 | \$ 46,022 |
|                                                                                           | \$ 4,410 | \$23,191 | \$ 4,520 | -\$37,137 | \$ 957   | -\$ 8,469 |
|                                                                                           | \$ 7,208 | \$28,152 | \$22,282 | -\$ 850   | \$16,176 | \$ 65,760 |
|                                                                                           | 59.10%   | 228.46%  | 88.41%   | -5.61%    | 116,83%  | 83.53%    |

The reinvestment rate has swung between -5.61% and 228.46% over the period, but the aggregate reinvestment rate over the period was 83.53%.

the market, the valuation becomes a relative valuation, rather than a discounted cash flow valuation. If the multiple is estimated using fundamentals, it converges on the stable growth model that is described in the next section.

All in all, using multiples to estimate terminal value, when those multiples are estimated from comparable firms, results in a dangerous mix of relative and discounted cash flow valuation. While there are advantages to relative valuation, and we consider these in a later chapter, a discounted cash flow valuation should provide you with an estimate of intrinsic value, not relative value. Consequently, the only consistent way of estimating terminal value in a discounted cash flow model is to use either a liquidation value or a stable growth model.

#### Stable Growth Model

In the liquidation value approach, you are assuming that your firm has a finite life and that it will be liquidated at the end of that life. Firms, however, can reinvest some of their cash flows back into new assets and extend their lives. If you assume that cash flows, beyond the terminal year, will grow at a constant rate forever, the terminal value can be estimated as follows:

The cash flow and the discount rate used will depend on whether you are valuing the firm or valuing equity. If you are valuing equity, the terminal value of equity can be written as:

Terminal value of equity<sub>n</sub> = Cash flow to equity<sub>n+1</sub>/(Cost of equity<sub>n+1</sub> - 
$$g_n$$
)

The cash flow to equity can be defined strictly as dividends (in the dividend discount model) or as free cash flow to equity. If valuing a firm, the terminal value can be written as:

Terminal value<sub>n</sub> = Free cash flow to 
$$firm_{n+1}/(Cost of capital_{n+1} - g_n)$$

where the cost of capital and the growth rate in the model are sustainable

In this section, we will begin by considering how high a stable growth rate can be, how to best estimate when your firm will be a stable growth firm, and what inputs need to be adjusted as a firm approaches stable growth.

Constraints on Stable Growth Of all the inputs into a discounted cash flow valuation model, none creates as much angst as estimating the stable growth rate. Part of the reason for it is that small changes in the stable growth rate can change the terminal value significantly, and the effect gets larger as the growth rate approaches

The fact that a stable growth rate is constant forever, however, puts strong the discount rate used in the estimation. constraints on how high it can be. Since no firm can grow forever at a rate higher than the growth rate of the economy in which it operates, the constant growth rate cannot be greater than the overall growth rate of the economy. In making a judgment on what the limits on a stable growth rate are, we have to consider the following three questions:

1. Is the company constrained to operate as a domestic company, or does it operate (or have the capacity to operate) multinationally? If a firm is a purely domestic company, either because of internal constraints (such as those imposed by management) or external constraints (such as those imposed by a government), the growth rate in the domestic economy will be the limiting value. If the company is a multinational or has aspirations to be one, the growth rate in the global economy (or at least those parts of the globe that the firm operates in) will be the limiting value.

2. Is the valuation being done in nominal or real terms? If the valuation is a nominal valuation, the stable growth rate should also be a nominal growth rate (i.e., include an expected inflation component). If the valuation is a real valuation, the stable growth rate will be constrained to be lower. Using a U.S. company in 2011 as an example, the stable growth rate can be as high as 2.0 percent if the valuation is done in nominal U.S. dollars but only 1 percent if the valuation is done in real terms.

3. What currency is being used to estimate cash flows and discount rates in the valuation? The limits on stable growth will vary depending on what currency is used in the valuation. If a high-inflation currency is used to estimate cash flows and discount rates, the stable growth rate will be much higher, since the expected inflation rate is added on to real growth. If a low-inflation currency is used to estimate cash flows, the stable growth rate will be much lower. For instance, the stable growth rate that would be used to value Cemex, the Mexican cement company, will be much higher if the valuation is done in Mexican pesos than in U.S. dollars.

Although the stable growth rate cannot exceed the growth rate of the economy in which a firm operates, it can be lower. There is nothing that prevents us from assuming that mature firms will become a smaller part of the economy and it may, in fact, be the more reasonable assumption to make. Note that the growth rate of an economy reflects the contributions of both young, higher-growth firms and mature, stable-growth firms. If the former grow at a rate much higher than the growth rate of the economy, the latter have to grow at a rate that is lower.

Setting the stable growth rate to be less than or equal to the growth rate of the economy not only is the consistent thing to do but it also ensures that the growth rate will be less than the discount rate. This is because there is a link between the riskless rate that goes into the discount rate and the growth rate of the economy. Note that the riskless rate can be written as:

Nominal riskless rate = Real riskless rate + Expected inflation rate

In the long term, the real riskless rate will converge on the real growth rate of the economy, and the nominal riskless rate will approach the nominal growth rate of the economy. In fact, a simple rule of thumb on the stable growth rate is that it generally should not exceed the riskless rate used in the valuation.