FPUC-Rate 0625433

Commercial Customer Count Forecast

Overall Commercial Customers Forecast Analysis

Customer Time-Series Decomposition

ARIMA Model: Expected Accuracy

			ME	RMSE	MAE
Forecast	Horizon	1	-2	26	20
Forecast	Horizon	2	0	28	22
Forecast	Horizon	3	-1	28	23
Forecast	Horizon	4	-7	44	30
Forecast	Horizon	5	-17	76	41
Forecast	Horizon	6	-24	87	48
Forecast	Horizon	7	-27	89	51
Forecast	Horizon	8	-31	94	56
Forecast	Horizon	9	-37	100	60
Forecast	Horizon	10	-43	103	66
Forecast	Horizon	11	-45	106	69
Forecast	Horizon	12	-48	110	73
Forecast	Horizon	13	-52	114	79
Forecast	Horizon	14	-54	115	80
Forecast	Horizon	15	-58	119	84
Forecast	Horizon	16	-59	121	89
Forecast	Horizon	17	-62	121	91
Forecast	Horizon	18	-66	119	91
Forecast	Horizon	19	-67	115	89
Forecast	Horizon	20	-68	115	89
Forecast	Horizon	21	-73	120	95
Forecast	Horizon	22	-77	122	99
Forecast	Horizon	23	-79	122	99
Forecast	Horizon	24	-84	124	101

ARIMA Model: Diagnostics

Series: x
ARIMA(0,1,3)(1,1,1)[12]

Coefficients: ma1 ma2 ma3 sar1 sma1 0.0742 -0.3654 -0.1624 -0.1281 -0.8283 s.e. 0.1053 0.0841 0.1085 0.1572 0.2179

sigma^2 estimated as 1500: log likelihood=-548.66
AIC=1109.33 AICc=1110.17 BIC=1125.36

Training set error measures: ME RMSE MAE MPE MAPE MASE Training set -6.049582 35.70541 23.40443 -0.08616574 0.336943 0.1517032 ACF1 Training set -0.04888767

Ljung-Box test

data: Residuals from ARIMA(0,1,3)(1,1,1)[12]
Q* = 18.359, df = 19, p-value = 0.4986

Model df: 5. Total lags used: 24

Back-Testing

Test Results

Below we see that the model performs roughly as expected for a "normal" year of 2019, and continues to have a high degree of accuracy in 2020 and 2021.

[1] "Overall MAE: 131.69"

[1] "Overall Accuracy: 98.19"

		Actual	Forecast	Absolute_Error	Accuracy
Jan	2020	7478	7455	23.39	99.7
Feb	2020	7482	7462	19.91	99.7
Mar	2020	7505	7485	19.65	99.7
Apr	2020	7293	7482	189.10	97.4
May	2020	7061	7436	375.23	94.7
Jun	2020	7092	7358	265.68	96.3
Jul	2020	7112	7234	121.93	98.3
Aug	2020	7108	7255	147.46	97.9
Sep	2020	7130	7319	188.97	97.3
0ct	2020	7225	7349	123.76	98.3
Nov	2020	7332	7484	152.40	97.9
Dec	2020	7444	7571	127.13	98.3
Jan	2021	7492	7589	97.01	98.7
Feb	2021	7492	7597	105.06	98.6
Mar	2021	7466	7620	154.26	97.9
Apr	2021	7508	7615	107.31	98.6
May	2021	7456	7574	117.64	98.4
Jun	2021	7392	7495	102.65	98.6
Jul	2021	7332	7358	26.22	99.6
Aug	2021	7298	7386	87.55	98.8
Sep	2021	7287	7449	161.79	97.8
0ct	2021	7336	7484	148.01	98.0
Nov	2021	7478	7615	137.16	98.2
Dec	2021	7544	7705	161.32	97.9

FPUC-Rate 0625438 FPUC General Service 2 (FPU-GS2 & FPU-GST2)

Customer Time-Series Decomposition

Decomposition of additive time series

ARIMA Model: Expected Accuracy

		ME	RMSE	MAE
Forecast Horizor	1 1	1	15	13
Forecast Horizor	า 2	2	16	12
Forecast Horizor	1 3	1	17	14

Forecast	Horizon	4	0	20	16
Forecast	Horizon	5	-5	35	21
Forecast	Horizon	6	-8	41	26
Forecast	Horizon	7	-10	42	28
Forecast	Horizon	8	-11	43	27
Forecast	Horizon	9	-13	44	31
Forecast	Horizon	10	-14	47	33
Forecast	Horizon	11	-15	49	34
Forecast	Horizon	12	-16	51	35
Forecast	Horizon	13	-17	53	39
Forecast	Horizon	14	-17	56	41
Forecast	Horizon	15	-18	60	42
Forecast	Horizon	16	-19	62	44
Forecast	Horizon	17	-20	63	48
Forecast	Horizon	18	-20	63	48
Forecast	Horizon	19	-20	64	49
Forecast	Horizon	20	-21	65	51
Forecast	Horizon	21	-23	65	52
Forecast	Horizon	22	-25	66	55
Forecast	Horizon	23	-25	69	56
Forecast	Horizon	24	-27	68	56

ARIMA Model: Diagnostics

Series: x
ARIMA(0,1,2)(0,1,1)[12]

Coeff	icients:		
	ma1	ma2	sma1
	0.0754	-0.3622	-0.8704
s.e.	0.0969	0.1025	0.1547

sigma^2 estimated as 354.3: log likelihood=-472.54
AIC=953.08 AICc=953.48 BIC=963.78

Training set error measures: ME RMSE MAE MPE MAPE MASE Training set -2.472999 17.524 11.89993 -0.08808673 0.4423596 0.1253357 ACF1 Training set -0.01260262

Ljung-Box test

data: Residuals from ARIMA(0,1,2)(0,1,1)[12]
Q* = 21.503, df = 21, p-value = 0.4286

Model df: 3. Total lags used: 24

Below we fit & forecast 60 months into the future using an ARIMA (0,1,2)(0,1,1) model. This model only uses 1 difference,1 Seasonal Moving Average, 1 Seasonal Difference, and is expected to be extremely accurate as previously shown. In the graph below we see the 80% and 95% Prediction Intervals bounding our forecast.

Back-Testing

Forecasts from ARIMA(0,1,2)(0,1,1)[12]

Test Results

Below we see that the model performs roughly as expected for a "normal" year of 2019, and continues to have a high degree of accuracy in 2020 and 2021.

[1] "24Month Mean Absolute Error (MAE): 65.17"

[1] "24Month Mean Accuracy: 97.77"

		Actual	Forecast	Absolute_Error	Accuracy
Jan	2020	3002	2991	11.04	99.6
Feb	2020	2997	2992	4.79	99.8
Mar	2020	3004	3007	2.82	99.9
Apr	2020	2937	3009	71.79	97.6
May	2020	2815	2993	178.46	93.7
Jun	2020	2820	2948	128.31	95.4
Jul	2020	2825	2889	63.66	97.7
Aug	2020	2813	2883	70.14	97.5
Sep	2020	2834	2913	79.30	97.2
0ct	2020	2880	2943	62.77	97.8
Nov	2020	2945	3019	73.88	97.5
Dec	2020	2992	3063	71.20	97.6
Jan	2021	3033	3079	46.16	98.5
Feb	2021	3021	3080	59.41	98.0
Mar	2021	3016	3095	79.02	97.4
Apr	2021	3036	3097	60.99	98.0
Мау	2021	3024	3082	57.67	98.1
Jun	2021	2986	3037	50.51	98.3
Jul	2021	2965	2977	11.86	99.6
Aug	2021	2925	2971	46.34	98.4
Sep	2021	2919	3002	82.51	97.2
0ct	2021	2947	3031	83.98	97.2
Nov	2021	3035	3107	72.08	97.6
Dec	2021	3056	3151	95.41	96.9

FPUC-Rate 0625443 FPUC Large Volume Services (LVS, LVTS,LVTS2)

Customer Time-Series Decomposition

Decomposition of additive time series

ARIMA Model: Expected Accuracy

		ME	RMSE	MAE
Forecast Horizon	1	-1	6	4
Forecast Horizon	2	-1	6	5
Forecast Horizon	3	-1	7	5

Forecast	Horizon	4	-2	7	6
Forecast	Horizon	5	-4	14	8
Forecast	Horizon	6	-6	16	10
Forecast	Horizon	7	-6	16	10
Forecast	Horizon	8	-7	15	10
Forecast	Horizon	9	-8	16	10
Forecast	Horizon	10	-10	17	12
Forecast	Horizon	11	-10	18	12
Forecast	Horizon	12	-11	18	12
Forecast	Horizon	13	-12	17	13
Forecast	Horizon	14	-13	18	13
Forecast	Horizon	15	-13	20	15
Forecast	Horizon	16	-14	20	15
Forecast	Horizon	17	-15	20	16
Forecast	Horizon	18	-16	21	17
Forecast	Horizon	19	-16	21	17
Forecast	Horizon	20	-16	22	18
Forecast	Horizon	21	-17	22	17
Forecast	Horizon	22	-18	22	18
Forecast	Horizon	23	-18	23	18
Forecast	Horizon	24	-19	24	19

ARIMA Model: Diagnostics

sigma^2 estimated as 74.61: log likelihood=-387.25
AIC=784.49 AICc=785.08 BIC=797.9

Training set error measures: ME RMSE MAE MPE MAPE MASE Training set 0.1976991 8.041368 5.113355 0.01287257 0.2889195 0.2148803 ACF1 Training set 0.07471428

Ljung-Box test

data: Residuals from ARIMA(1,0,0)(2,1,0)[12] with drift
Q* = 25.879, df = 20, p-value = 0.1699

Model df: 4. Total lags used: 24

Inverse AR roots

Back-Testing

Test Results

Below we see that the model performs roughly as expected for a "normal" year of 2019, and continues to have a high degree of accuracy in 2020 and 2021.

FPUC-Rate 0625447

[1] "24Month Mean Absolute Error (MAE): 22.88"

[1] "24Month Mean Accuracy: 98.75"

		Actual	Forecast	Absolute_Error	Accuracy
Jan	2020	1843	1840	2.77	99.8
Feb	2020	1853	1845	7.87	99.6
Mar	2020	1856	1846	9.98	99.5
Apr	2020	1823	1851	28.29	98.4
May	2020	1776	1850	74.14	95.8
Jun	2020	1791	1836	45.33	97.5
Jul	2020	1798	1819	21.33	98.8
Aug	2020	1796	1820	24.15	98.7
Sep	2020	1793	1826	33.13	98.2
0ct	2020	1818	1837	19.02	99.0
Nov	2020	1832	1853	20.72	98.9
Dec	2020	1846	1863	17.20	99.1
Jan	2021	1847	1867	19.79	98.9
Feb	2021	1845	1871	26.40	98.6
Mar	2021	1851	1872	21.42	98.8
Apr	2021	1852	1877	24.56	98.7
May	2021	1850	1875	24.95	98.7
Jun	2021	1841	1862	20.53	98.9
Jul	2021	1841	1843	1.99	99.9
Aug	2021	1827	1845	17.79	99.0
Sep	2021	1827	1849	21.93	98.8
0ct	2021	1841	1860	19.35	98.9
Nov	2021	1858	1876	18.38	99.0
Dec	2021	1859	1887	28.05	98.5

FPUC-Rate 0625448

FPUC General Services1 (GS-1 & GSTS1)

Fort Meade customers excluded.

Customer Time-Series Decomposition

Decomposition of additive time series

ARIMA Model: Expected Accuracy

			ME	RMSE	MAE
Forecast	Horizon	1	-2	10	8
Forecast	Horizon	2	-3	11	9
Forecast	Horizon	3	-4	12	10
Forecast	Horizon	4	-5	13	11
Forecast	Horizon	5	-8	18	14
Forecast	Horizon	6	-10	22	17
Forecast	Horizon	7	-11	23	17
Forecast	Horizon	8	-11	23	18
Forecast	Horizon	9	-12	24	19
Forecast	Horizon	10	-14	25	20
Forecast	Horizon	11	-15	26	21
Forecast	Horizon	12	-16	26	22
Forecast	Horizon	13	-17	27	23
Forecast	Horizon	14	-18	27	23
Forecast	Horizon	15	-19	28	24
Forecast	Horizon	16	-19	28	24
Forecast	Horizon	17	-20	28	24
Forecast	Horizon	18	-20	27	24
Forecast	Horizon	19	-20	26	23
Forecast	Horizon	20	-20	25	22
Forecast	Horizon	21	-20	25	21
Forecast	Horizon	22	-21	25	22
Forecast	Horizon	23	-22	26	22
Forecast	Horizon	24	-22	26	23

ARIMA Model: Diagnostics

In this section we evaluate the diagnostics of the ARIMA Model. Below we see that the model fails the Ljung-Box Test and therefore we can determine the data is independently distributed. In addition, we see from the graphs that the lagged values are not auto-correlated with one another, and the residuals are normally distributed.

```
Series: x
ARIMA(0,1,2)(1,1,1)[12]
Coefficients:
          ma1
                    ma2
                            sar1
                                     sma1
      -0.3040 -0.1908 -0.2488 -0.7001
       0.0939
                0.0871
                          0.1580
                                   0.1755
s.e.
sigma<sup>2</sup> estimated as 113.5: log likelihood=-409.33
                            BIC=842.02
AIC=828.65
             AICc=829.25
Training set error measures:
                     ME
                            RMSE
                                      MAE
                                                   MPE
                                                            MAPE
                                                                       MASE
Training set -0.5066976 9.86858 7.364808 -0.06322886 0.8106228 0.3883785
                    ACF1
Training set 0.008085022
```


Ljung-Box test

data: Residuals from ARIMA(0,1,2)(1,1,1)[12]
Q* = 13.029, df = 20, p-value = 0.8761

Model df: 4. Total lags used: 24

Inverse AR roots Inverse MA roots Imaginary Imaginary 0 0 Ξ Τ 0 -1 1 -1 0 1 Real Real

Below we fit & forecast 60 months into the future using an ARIMA (0,1,2)(1,1,1) model.

Back-Testing

Test Results

Below we see that the model performs roughly as expected for a "normal" year of 2019, and continues to have a high degree of accuracy in 2020 and 2021.

[1] "24Month Mean Absolute Error (MAE): 21.28"

[1] "24Month Mean Accuracy: 97.47"

		Actual	Forecast	Absolute_Error	Accuracy
Jan	2020	911	909	1.75	99.8
Feb	2020	910	903	7.12	99.2
Mar	2020	912	902	10.38	98.9
Apr	2020	876	897	20.78	97.6
May	2020	821	884	63.10	92.3
Jun	2020	824	885	61.33	92.6
Jul	2020	834	868	33.82	95.9
Aug	2020	843	864	21.24	97.5
Sep	2020	843	867	23.83	97.2
0ct	2020	843	874	30.67	96.4
Nov	2020	860	882	21.96	97.4
Dec	2020	883	889	6.27	99.3
Jan	2021	884	887	3.31	99.6
Feb	2021	887	885	1.98	99.8
Mar	2021	878	889	10.89	98.8
Apr	2021	881	881	0.26	100.0
May	2021	859	873	14.31	98.3
Jun	2021	859	878	18.92	97.8
Jul	2021	845	862	17.01	98.0
Aug	2021	837	868	30.73	96.3
Sep	2021	834	864	29.84	96.4
0ct	2021	828	869	40.68	95.1
Nov	2021	834	868	34.17	95.9
Dec	2021	871	865	6.34	99.3

FPUC-Rate 0625453 Fort Meade General Services1 (GS-1 & GSTS1)

Fort Meade customers only

Customer Time-Series Decomposition

Decomposition of additive time series

ARIMA Model: Expected Accuracy

			ME	RMSE	MAE
Forecast	Horizon	1	0	2	1
Forecast	Horizon	2	1	2	1
Forecast	Horizon	3	1	2	1
Forecast	Horizon	4	1	2	1
Forecast	Horizon	5	1	2	2
Forecast	Horizon	6	1	2	1
Forecast	Horizon	7	1	2	2
Forecast	Horizon	8	1	2	2
Forecast	Horizon	9	1	2	2
Forecast	Horizon	10	1	2	2
Forecast	Horizon	11	1	2	2
Forecast	Horizon	12	1	2	2
Forecast	Horizon	13	1	2	2
Forecast	Horizon	14	1	2	2
Forecast	Horizon	15	1	3	2
Forecast	Horizon	16	2	3	2
Forecast	Horizon	17	2	3	2
Forecast	Horizon	18	2	3	2
Forecast	Horizon	19	2	3	2
Forecast	Horizon	20	2	3	2
Forecast	Horizon	21	2	3	2
Forecast	Horizon	22	2	3	2
Forecast	Horizon	23	2	3	2
Forecast	Horizon	24	2	3	2

ARIMA Model: Diagnostics

In this section we evaluate the diagnostics of the ARIMA Model. Below we see that the model fails the Ljung-Box Test and therefore we can determine the data is independently distributed. In addition, we see from the graphs that the lagged values are not auto-correlated with one another, and the residuals are normally distributed.

```
Series: x
ARIMA(1,1,1)(1,0,0)[12]
Coefficients:
         ar1
                  ma1
                         sar1
      0.5450 -0.8785 0.1712
      0.1309 0.0738 0.1134
s.e.
sigma<sup>2</sup> estimated as 2.043: log likelihood=-169.4
            AICc=347.24 BIC=357.06
AIC=346.8
Training set error measures:
                    ME
                           RMSE
                                      MAE
                                                 MPE
                                                         MAPE
                                                                  MASE
Training set -0.053021 1.399699 1.095254 -0.5677927 5.052239 0.589219
                    ACF1
Training set -0.02706726
```


Ljung-Box test

data: Residuals from ARIMA(1,1,1)(1,0,0)[12]
Q* = 8.6502, df = 16, p-value = 0.9271

Model df: 3. Total lags used: 19

Inverse AR roots Inverse MA roots Imaginary Imaginary 0 0 Ξ Τ 0 -1 1 -1 0 1 Real Real

Below we fit & forecast 60 months into the future using an ARIMA (1,1,1)(1,0,0) model.

Forecasts from ARIMA(1,1,1)(1,0,0)[12]

Back-Testing

Commercial Client Backtesting: 2020-2021

Test Results

Below we see that the model performs roughly as expected for a "normal" year of 2019, and continues to have a high degree of accuracy in 2020 and 2021.

[1] "24Month Mean Absolute Error (MAE): 1.24"

[1] "24Month Mean Accuracy: 94.34"

		Actual	Forecast	Absolute_Error	Accuracy
Jan	2020	25	23	1.97	92.1
Feb	2020	23	23	0.13	99.4
Mar	2020	23	23	0.02	99.9
Apr	2020	23	23	0.02	99.9
May	2020	22	23	1.09	95.0
Jun	2020	21	23	1.88	91.0
Jul	2020	19	23	4.00	78.9
Aug	2020	19	23	4.22	77.8
Sep	2020	24	23	0.90	96.2
0ct	2020	25	23	2.00	92.0
Nov	2020	23	23	0.34	98.5
Dec	2020	24	23	0.79	96.7
Jan	2021	22	23	1.21	94.5
Feb	2021	23	23	0.21	99.1
Mar	2021	23	23	0.21	99.1
Apr	2021	24	23	0.79	96.7
May	2021	25	23	1.79	92.8
Jun	2021	25	23	1.79	92.8
Jul	2021	23	23	0.21	99.1
Aug	2021	22	23	1.21	94.5
Sep	2021	25	23	1.79	92.8
0ct	2021	24	23	0.79	96.7
Nov	2021	21	23	2.21	89.5
Dec	2021	23	23	0.21	99.1

FPUC-Rate 0625458

CFG Firm Transportation Services (FTS-1)

Customer Time-Series Decomposition

Decomposition of additive time series

ARIMA Model: Expected Accuracy

In this section we evaluate the expected accuracy of a Seasonal ARIMA Model using cross-validation. ARIMA is an acronym for 'Autoregressive Integrated Moving Average' which is a widely using Time-Series forecasting model that utilizes the recent values to predict outward.

Here we evaluate model accuracy by using cross-validation and rolling forecasts throughout the timeseries to determine our expected accuracy over a 24 Month period.

			ME	RMSE	MAE
Forecast	Horizon	1	0	5	4
Forecast	Horizon	2	1	5	4
Forecast	Horizon	3	0	4	4
Forecast	Horizon	4	0	6	4
Forecast	Horizon	5	-1	7	5
Forecast	Horizon	6	-1	8	5
Forecast	Horizon	7	-2	8	5
Forecast	Horizon	8	-2	8	5
Forecast	Horizon	9	- 3	9	6
Forecast	Horizon	10	- 3	9	6
Forecast	Horizon	11	-4	9	7
Forecast	Horizon	12	-4	9	7
Forecast	Horizon	13	-4	10	7
Forecast	Horizon	14	- 5	10	7
Forecast	Horizon	15	- 5	10	8
Forecast	Horizon	16	- 5	10	8
Forecast	Horizon	17	-6	10	8
Forecast	Horizon	18	-6	10	8
Forecast	Horizon	19	-6	10	8
Forecast	Horizon	20	-7	10	8
Forecast	Horizon	21	-7	11	9
Forecast	Horizon	22	-7	11	9
Forecast	Horizon	23	-8	12	9
Forecast	Horizon	24	-8	12	9

ARIMA Model: Diagnostics

In this section we evaluate the diagnostics of the ARIMA Model. Below we see that the model fails the Ljung-Box Test and therefore we can determine the data is independently distributed. In addition, we see from the graphs that the lagged values are not auto-correlated with one another, and the residuals are normally distributed.

```
Series: x
ARIMA(0,1,2)(2,1,0)[12]
Coefficients:
          ma1
                    ma2
                            sar1
                                      sar2
      -0.5312 -0.1461 -0.7304 -0.2622
                          0.0976
       0.0941
                0.0932
                                   0.1097
s.e.
sigma<sup>2</sup> estimated as 35.66: log likelihood=-344.57
AIC=699.15
             AICc=699.74
                            BIC=712.51
Training set error measures:
                      ME
                             RMSE
                                        MAE
                                                   MPE
                                                            MAPE
                                                                      MASE
```

FPUC-Rate 0625460 Training set -0.5663027 5.532242 3.975449 -0.3420511 2.082338 0.5561509 ACF1 Training set -0.01412129

Ljung-Box test

data: Residuals from ARIMA(0,1,2)(2,1,0)[12]
Q* = 22.143, df = 20, p-value = 0.3328

Model df: 4. Total lags used: 24

Below we fit & forecast 60 months into the future using an ARIMA (0,1,2)(2,1,0) model. In the graph below we see the 80% and 95% Prediction Intervals bounding our forecast.

Forecasts from ARIMA(0,1,2)(2,1,0)[12]

Back-Testing

Test Results

Below we see that the model performs roughly as expected for a "normal" year of 2019, and continues to have a high degree of accuracy in 2020 and 2021.

[1] "24Month Mean Absolute Error (MAE): 16.84"

[1] "24Month Mean Accuracy: 90.99"

		Actual	Forecast	Absolute_Error	Accuracy
Jan	2020	210	212	2.13	99.0
Feb	2020	213	213	0.32	99.8
Mar	2020	207	210	3.39	98.4
Apr	2020	181	208	27.36	84.9
May	2020	181	204	23.16	87.2
Jun	2020	178	201	23.10	87.0
Jul	2020	189	197	7.96	95.8
Aug	2020	181	197	15.75	91.3
Sep	2020	182	204	21.71	88.1
0ct	2020	186	204	17.61	90.5
Nov	2020	184	209	24.95	86.4
Dec	2020	203	213	10.01	95.1
Jan	2021	199	216	16.62	91.6
Feb	2021	197	216	19.26	90.2
Mar	2021	191	214	22.53	88.2
Apr	2021	197	211	14.42	92.7
May	2021	189	207	18.25	90.3
Jun	2021	186	204	18.18	90.2
Jul	2021	185	200	15.05	91.9
Aug	2021	187	200	12.83	93.1
Sep	2021	179	207	27.80	84.5

			FPUC-Ra	ate 0625463	
Oct 2021	185	207	21.69	88.3	
Nov 2021	189	212	23.03	87.8	
Dec 2021	199	216	17.10	91.4	

CFG Firm Transportation Services (FTS-2)

Customer Time-Series Decomposition

Decomposition of additive time series

ARIMA Model: Expected Accuracy

In this section we evaluate the expected accuracy of a Seasonal ARIMA Model using cross-validation. ARIMA is an acronym for 'Autoregressive Integrated Moving Average' which is a widely using Time-Series forecasting model that utilizes the recent values to predict outward.

Here we evaluate model accuracy by using cross-validation and rolling forecasts throughout the timeseries to determine our expected accuracy over a 24 Month period.

			ME	RMSE	MAE
Forecast	Horizon	1	0	2	2
Forecast	Horizon	2	0	3	2
Forecast	Horizon	3	0	3	3
Forecast	Horizon	4	0	4	3
Forecast	Horizon	5	0	4	3
Forecast	Horizon	6	0	4	3
Forecast	Horizon	7	-1	4	3
Forecast	Horizon	8	-1	4	3
Forecast	Horizon	9	-1	4	3
Forecast	Horizon	10	-1	4	3
Forecast	Horizon	11	-1	4	3
Forecast	Horizon	12	-1	4	3
Forecast	Horizon	13	-1	4	3
Forecast	Horizon	14	-1	3	3
Forecast	Horizon	15	-1	3	3
Forecast	Horizon	16	-1	3	3
Forecast	Horizon	17	-1	3	3
Forecast	Horizon	18	-1	3	3
Forecast	Horizon	19	-1	3	3
Forecast	Horizon	20	-1	4	3
Forecast	Horizon	21	-2	4	3
Forecast	Horizon	22	-2	3	3
Forecast	Horizon	23	-2	4	3
Forecast	Horizon	24	-2	4	3

ARIMA Model: Diagnostics

In this section we evaluate the diagnostics of the ARIMA Model. Below we see that the model fails the Ljung-Box Test and therefore we can determine the data is independently distributed. In addition, we see from the graphs that the lagged values are not auto-correlated with one another, and the residuals are normally distributed.

```
Series: x
ARIMA(1,1,1)(2,0,0)[12]
Coefficients:
         ar1
                  ma1
                         sar1
                                  sar2
      0.5954 -0.8705 0.2882 0.3367
      0.1236
               0.0741 0.0912 0.0980
s.e.
sigma<sup>2</sup> estimated as 5.481: log likelihood=-270.87
AIC=551.74
             AICc=552.27
                           BIC=565.63
Training set error measures:
                           RMSE
                                      MAE
                                                MPE
                                                        MAPE
                                                                   MASE
                    ME
```

FPUC-Rate 0625465 Training set 0.1866313 2.291785 1.736264 0.1824327 2.041302 0.4845389 ACF1 Training set -0.04640503

Ljung-Box test

data: Residuals from ARIMA(1,1,1)(2,0,0)[12] Q* = 17.899, df = 20, p-value = 0.594

Model df: 4. Total lags used: 24

Lag

Below we fit & forecast 60 months into the future using an ARIMA (1,1,1)(2,0,0) model. In the graph below we see the 80% and 95% Prediction Intervals bounding our forecast.

Forecasts from ARIMA(1,1,1)(2,0,0)[12]

Back-Testing

Test Results

Below we see that the model performs roughly as expected for a "normal" year of 2019, and continues to have a high degree of accuracy in 2020 and 2021.

[1] "24Month Mean Absolute Error (MAE): 5.96"

```
[1] "24Month Mean Accuracy: 93.74"
```

		Actual	Forecast	Absolute_Error	Accuracy
Jan	2020	102	100	2.03	98.0
Feb	2020	103	102	1.46	98.6
Mar	2020	102	101	0.64	99.4
Apr	2020	92	101	9.15	90.1
May	2020	94	101	6.81	92.8
Jun	2020	96	100	3.68	96.2
Jul	2020	93	97	4.01	95.7
Aug	2020	96	101	4.65	95.2
Sep	2020	94	99	5.11	94.6
0ct	2020	95	100	5.49	94.2
Nov	2020	96	103	6.52	93.2
Dec	2020	97	104	6.90	92.9
Jan	2021	98	103	5.40	94.5
Feb	2021	103	104	0.79	99.2
Mar	2021	101	105	3.96	96.1
Apr	2021	100	105	4.50	95.5
May	2021	98	103	5.20	94.7
Jun	2021	99	104	4.74	95.2
Jul	2021	90	101	10.66	88.2
Aug	2021	96	104	7.57	92.1
Sep	2021	94	102	7.98	91.5

			FPUC-Rate 0625468				
Oct 20	96 92	104	7.94	91.7			
Nov 20	94 94	106	12.46	86.7			
Dec 20	93 93	108	15.41	83.4			

CFG Firm Transportation Services 2.1 (FTS-2.1)

Customer Time-Series Decomposition

Decomposition of additive time series

ARIMA Model: Expected Accuracy

In this section we evaluate the expected accuracy of a Seasonal ARIMA Model using cross-validation. ARIMA is an acronym for 'Autoregressive Integrated Moving Average' which is a widely using Time-Series forecasting model that utilizes the recent values to predict outward.

Here we evaluate model accuracy by using cross-validation and rolling forecasts throughout the timeseries to determine our expected accuracy over a 24 Month period.

			ME	RMSE	MAE
Forecast	Horizon	1	1	3	2
Forecast	Horizon	2	1	4	3
Forecast	Horizon	3	2	5	4
Forecast	Horizon	4	2	5	4
Forecast	Horizon	5	1	6	5
Forecast	Horizon	6	1	6	5
Forecast	Horizon	7	1	6	5
Forecast	Horizon	8	1	6	6
Forecast	Horizon	9	1	7	6
Forecast	Horizon	10	1	7	6
Forecast	Horizon	11	1	7	6
Forecast	Horizon	12	0	6	5
Forecast	Horizon	13	1	6	5
Forecast	Horizon	14	1	7	6
Forecast	Horizon	15	1	7	6
Forecast	Horizon	16	1	8	5
Forecast	Horizon	17	1	8	6
Forecast	Horizon	18	1	8	6
Forecast	Horizon	19	1	8	6
Forecast	Horizon	20	1	8	6
Forecast	Horizon	21	1	8	6
Forecast	Horizon	22	1	8	6
Forecast	Horizon	23	1	8	7
Forecast	Horizon	24	1	8	6

ARIMA Model: Diagnostics

In this section we evaluate the diagnostics of the ARIMA Model. Below we see that the model fails the Ljung-Box Test and therefore we can determine the data is independently distributed. In addition, we see from the graphs that the lagged values are not auto-correlated with one another, and the residuals are normally distributed.

```
Series: x
ARIMA(1,0,0)(0,1,1)[12] with drift
Coefficients:
         ar1
                 sma1
                         drift
      0.7114 -0.6852 0.5050
s.e. 0.0671
               0.0977 0.0353
sigma<sup>2</sup> estimated as 9.806: log likelihood=-279.13
AIC=566.26
             AICc=566.65
                            BIC=576.99
Training set error measures:
                       ME
                              RMSE
                                        MAE
                                                     MPE
                                                             MAPE
                                                                        MASE
```

FPUC-Rate 0625470 Training set -0.02500651 2.929146 2.142987 -0.03690567 1.116374 0.3098294 ACF1 Training set 0.03029662

Ljung-Box test

data: Residuals from ARIMA(1,0,0)(0,1,1)[12] with drift
Q* = 10.142, df = 21, p-value = 0.977

Model df: 3. Total lags used: 24

Below we fit & forecast 60 months into the future using an ARIMA (1,0,0)(0,1,1) model. In the graph below we see the 80% and 95% Prediction Intervals bounding our forecast.

Forecasts from ARIMA(1,0,0)(0,1,1)[12] with drift

Back-Testing

Test Results

Below we see that the model performs roughly as expected for a "normal" year of 2019, and continues to have a high degree of accuracy in 2020 and 2021.

[1] "24Month Mean Absolute Error (MAE): 7.07"

```
[1] "24Month Mean Accuracy: 96.63"
```

		Actual	Forecast	Absolute_Error	Accuracy
Jan	2020	215	216	1.12	99.5
Feb	2020	217	215	1.64	99.2
Mar	2020	215	218	3.23	98.5
Apr	2020	202	215	13.05	93.5
May	2020	196	216	20.03	89.8
Jun	2020	202	215	12.73	93.7
Jul	2020	200	207	6.58	96.7
Aug	2020	206	219	12.81	93.8
Sep	2020	205	217	11.84	94.2
0ct	2020	207	217	9.93	95.2
Nov	2020	212	223	10.66	95.0
Dec	2020	219	227	7.64	96.5
Jan	2021	221	225	3.51	98.4
Feb	2021	219	223	3.52	98.4
Mar	2021	219	226	6.95	96.8
Apr	2021	218	223	4.77	97.8
May	2021	218	224	6.06	97.2
Jun	2021	219	223	4.02	98.2
Jul	2021	212	215	2.97	98.6
Aug	2021	220	227	7.04	96.8
Sep	2021	221	224	3.46	98.4

			FPUC-Rat	te 0625473	
Oct 202	1 223	225	1.90	99.1	
Nov 202	1 226	232	5.76	97.5	
Dec 202	1 227	235	8.34	96.3	

CFG Firm Transportation Services 3 (FTS-3)

Customer Time-Series Decomposition

Decomposition of additive time series

ARIMA Model: Expected Accuracy

In this section we evaluate the expected accuracy of a Seasonal ARIMA Model using cross-validation. ARIMA is an acronym for 'Autoregressive Integrated Moving Average' which is a widely using Time-Series forecasting model that utilizes the recent values to predict outward.

Here we evaluate model accuracy by using cross-validation and rolling forecasts throughout the timeseries to determine our expected accuracy over a 24 Month period.

			ME	RMSE	MAE
Forecast	Horizon	1	1	3	3
Forecast	Horizon	2	2	4	2
Forecast	Horizon	3	2	4	3
Forecast	Horizon	4	2	4	3
Forecast	Horizon	5	2	4	3
Forecast	Horizon	6	2	5	4
Forecast	Horizon	7	2	5	4
Forecast	Horizon	8	2	6	5
Forecast	Horizon	9	2	6	5
Forecast	Horizon	10	2	7	6
Forecast	Horizon	11	1	8	6
Forecast	Horizon	12	1	8	7
Forecast	Horizon	13	2	9	8
Forecast	Horizon	14	2	9	8
Forecast	Horizon	15	2	9	9
Forecast	Horizon	16	2	10	9
Forecast	Horizon	17	2	10	9
Forecast	Horizon	18	2	10	9
Forecast	Horizon	19	2	10	9
Forecast	Horizon	20	1	10	9
Forecast	Horizon	21	1	10	9
Forecast	Horizon	22	1	10	9
Forecast	Horizon	23	1	10	9
Forecast	Horizon	24	1	10	9

ARIMA Model: Diagnostics

In this section we evaluate the diagnostics of the ARIMA Model. Below we see that the model fails the Ljung-Box Test and therefore we can determine the data is independently distributed. In addition, we see from the graphs that the lagged values are not auto-correlated with one another, and the residuals are normally distributed.

```
Series: x
ARIMA(1,0,1)(2,1,0)[12] with drift
Coefficients:
         ar1
                  ma1
                           sar1
                                    sar2
                                           drift
      0.9156 -0.3765 -0.5894 -0.2462 0.8140
      0.0534
               0.1190
                        0.0944
                                  0.1056 0.0951
s.e.
sigma<sup>2</sup> estimated as 9.539: log likelihood=-275.07
AIC=562.15
             AICc=562.98
                           BIC=578.24
Training set error measures:
                      ME
                              RMSE
                                        MAE
                                                      MPE
                                                                MAPE
                                                                          MASE
```

FPUC-Rate 0625475

Training set -0.01527597 2.861378 2.119481 -3.072475e-05 0.8255929 0.2119481 ACF1 Training set 0.02237732

Ljung-Box test

data: Residuals from ARIMA(1,0,1)(2,1,0)[12] with drift
Q* = 17.588, df = 19, p-value = 0.5501

Model df: 5. Total lags used: 24

Below we fit & forecast 60 months into the future using an ARIMA (1,0,1)(2,1,0) model. In the graph below we see the 80% and 95% Prediction Intervals bounding our forecast.

Forecasts from ARIMA(1,0,1)(2,1,0)[12] with drift

Back-Testing

Test Results

Below we see that the model performs roughly as expected for a "normal" year of 2019, and continues to have a high degree of accuracy in 2020 and 2021.

[1] "24Month Mean Absolute Error (MAE): 5.76"

[1] "24Month Mean Accuracy: 98.01"

		Actual	Forecast	Absolute_Error	Accuracy
Jan	2020	290	286	4.17	98.6
Feb	2020	290	287	2.80	99.0
Mar	2020	291	289	1.63	99.4
Apr	2020	288	291	3.26	98.9
Мау	2020	290	289	0.68	99.8
Jun	2020	285	289	3.83	98.7
Jul	2020	276	285	8.98	96.7
Aug	2020	278	289	10.83	96.1
Sep	2020	283	291	7.69	97.3
0ct	2020	285	294	8.99	96.8
Nov	2020	286	299	12.51	95.6
Dec	2020	292	297	4.73	98.4
Jan	2021	290	295	5.21	98.2
Feb	2021	295	296	1.24	99.6
Mar	2021	293	299	6.32	97.8
Apr	2021	295	301	5.96	98.0
Мау	2021	295	299	4.33	98.5
Jun	2021	293	299	5.58	98.1
Jul	2021	286	295	8.64	97.0
Aug	2021	293	298	5.37	98.2
Sep	2021	293	300	7.10	97.6

				FPUC-Rat	e 0625478
0ct	2021	300	304	3.70	98.8
Nov	2021	300	308	8.01	97.3
Dec	2021	300	307	6.68	97.8

CFG Firm Transportation Services 3.1 (FTS-3.1)

Customer Time-Series Decomposition

Decomposition of additive time series

ARIMA Model: Expected Accuracy

In this section we evaluate the expected accuracy of a Seasonal ARIMA Model using cross-validation. ARIMA is an acronym for 'Autoregressive Integrated Moving Average' which is a widely using Time-Series forecasting model that utilizes the recent values to predict outward.

Here we evaluate model accuracy by using cross-validation and rolling forecasts throughout the timeseries to determine our expected accuracy over a 24 Month period.

			ME	RMSE	MAE
Forecast	Horizon	1	0	3	2
Forecast	Horizon	2	0	4	3
Forecast	Horizon	3	0	4	4
Forecast	Horizon	4	-1	5	4
Forecast	Horizon	5	-1	6	5
Forecast	Horizon	6	-2	6	5
Forecast	Horizon	7	-2	6	5
Forecast	Horizon	8	-3	5	4
Forecast	Horizon	9	-3	5	4
Forecast	Horizon	10	-4	6	5
Forecast	Horizon	11	-4	6	5
Forecast	Horizon	12	-5	6	5
Forecast	Horizon	13	-5	7	6
Forecast	Horizon	14	-5	8	7
Forecast	Horizon	15	-6	9	8
Forecast	Horizon	16	-6	10	9
Forecast	Horizon	17	-6	11	10
Forecast	Horizon	18	-7	11	10
Forecast	Horizon	19	-8	11	10
Forecast	Horizon	20	-9	11	9
Forecast	Horizon	21	-9	11	9
Forecast	Horizon	22	-10	11	10
Forecast	Horizon	23	-10	12	10
Forecast	Horizon	24	-11	13	11

ARIMA Model: Diagnostics

In this section we evaluate the diagnostics of the ARIMA Model. Below we see that the model fails the Ljung-Box Test and therefore we can determine the data is independently distributed. In addition, we see from the graphs that the lagged values are not auto-correlated with one another, and the residuals are normally distributed.

Ljung-Box test

data: Residuals from ARIMA(0,1,0)
Q* = 33.497, df = 24, p-value = 0.09401

Model df: 0. Total lags used: 24

Warning in plot.Arima(arima_fit): No roots to plot

No AR or MA roots

Below we fit & forecast 60 months into the future using an ARIMA (0,1,0) model. In the graph below we see the 80% and 95% Prediction Intervals bounding our forecast.

Back-Testing

Test Results

Below we see that the model performs roughly as expected for a "normal" year of 2019, and continues to have a high degree of accuracy in 2020 and 2021.

[1] "24Month Mean Absolute Error (MAE): 5.86"

[1] "24Month Mean Accuracy: 98.22"

		Actual	Forecast	Absolute_Error	Accuracy
Jan	2020	337	336	1.03	99.7
Feb	2020	338	336	1.84	99.5
Mar	2020	341	337	4.00	98.8
Apr	2020	329	337	7.62	97.7
May	2020	326	336	10.42	96.8
Jun	2020	329	335	6.31	98.1
Jul	2020	331	335	3.65	98.9
Aug	2020	329	332	3.18	99.0
Sep	2020	325	332	6.94	97.9
0ct	2020	328	335	7.18	97.8
Nov	2020	332	336	3.58	98.9
Dec	2020	334	336	2.27	99.3
Jan	2021	338	338	0.28	99.9
Feb	2021	336	337	0.77	99.8
Mar	2021	335	338	3.05	99.1
Apr	2021	333	338	4.81	98.6
Мау	2021	333	337	3.68	98.9
Jun	2021	325	336	11.12	96.6
Jul	2021	322	335	12.57	96.1
Aug	2021	324	332	8.16	97.5
Sep	2021	324	332	8.25	97.5
0ct	2021	321	335	14.16	95.6
Nov	2021	326	335	9.40	97.1
Dec	2021	332	338	6.34	98.1

CFG Firm Transportation Services 4 (FTS-4)

Customer Time-Series Decomposition

Decomposition of additive time series

ARIMA Model: Expected Accuracy

In this section we evaluate the expected accuracy of a Seasonal ARIMA Model using cross-validation. ARIMA is an acronym for 'Autoregressive Integrated Moving Average' which is a widely using Time-Series forecasting model that utilizes the recent values to predict outward.

FPUC-Rate 0625484

Here we evaluate model accuracy by using cross-validation and rolling forecasts throughout the timeseries to determine our expected accuracy over a 24 Month period.

			ME	RMSE	MAE
Forecast	Horizon	1	0	3	2
Forecast	Horizon	2	-1	3	2
Forecast	Horizon	3	-1	3	3
Forecast	Horizon	4	-1	4	3
Forecast	Horizon	5	-2	5	4
Forecast	Horizon	6	-2	5	4
Forecast	Horizon	7	- 3	5	4
Forecast	Horizon	8	- 3	6	5
Forecast	Horizon	9	- 3	6	5
Forecast	Horizon	10	-4	7	5
Forecast	Horizon	11	-4	7	5
Forecast	Horizon	12	- 5	7	6
Forecast	Horizon	13	- 5	8	6
Forecast	Horizon	14	-6	8	6
Forecast	Horizon	15	-6	8	7
Forecast	Horizon	16	-6	9	7
Forecast	Horizon	17	-7	9	7
Forecast	Horizon	18	-7	9	7
Forecast	Horizon	19	-7	9	7
Forecast	Horizon	20	-8	9	8
Forecast	Horizon	21	-8	10	9
Forecast	Horizon	22	-8	10	9
Forecast	Horizon	23	-9	11	10
Forecast	Horizon	24	-9	11	10

ARIMA Model: Diagnostics

In this section we evaluate the diagnostics of the ARIMA Model. Below we see that the model fails the Ljung-Box Test and therefore we can determine the data is independently distributed. In addition, we see from the graphs that the lagged values are not auto-correlated with one another, and the residuals are normally distributed.

```
Series: x
ARIMA(1,0,1)(0,1,1)[12] with drift
Coefficients:
                                drift
         ar1
                 ma1
                         sma1
      0.9423 -0.3365 -0.7736 0.3495
     0.0388
              0.0996
                       0.1133 0.0650
s.e.
sigma^2 estimated as 5.605: log likelihood=-250
AIC=509.99
            AICc=510.58
                          BIC=523.4
Training set error measures:
                           RMSE
                                     MAE
                                                  MPE
                                                          MAPE
                                                                    MASE
                    ME
Training set 0.01367694 2.204091 1.668164 -0.003418302 0.898286 0.3205725
                    ACF1
Training set -0.008318769
```


Ljung-Box test

data: Residuals from ARIMA(1,0,1)(0,1,1)[12] with drift
Q* = 14.616, df = 20, p-value = 0.7979

Model df: 4. Total lags used: 24

Inverse AR roots Inverse MA roots Imaginary Imaginary 0 0 Ξ Τ 0 -1 1 -1 0 1 Real Real

Below we fit & forecast 60 months into the future using an ARIMA (1,0,1)(0,1,1) model. In the graph below we see the 80% and 95% Prediction Intervals bounding our forecast.

Forecasts from ARIMA(1,0,1)(0,1,1)[12] with drift

Back-Testing

Test Results

Below we see that the model performs roughly as expected for a "normal" year of 2019, and continues to have a high degree of accuracy in 2020 and 2021.

[1] "24Month Mean Absolute Error (MAE): 7.15"

[1] "24Month Mean Accuracy: 96.38"

		Actual	Forecast	Absolute_Error	Accuracy
Jan	2020	203	204	1.43	99.3
Feb	2020	204	206	1.74	99.1
Mar	2020	203	207	3.65	98.2
Apr	2020	195	206	10.72	94.5
Мау	2020	193	206	12.58	93.5
Jun	2020	191	201	9.65	94.9
Jul	2020	189	198	9.00	95.2
Aug	2020	189	199	10.17	94.6
Sep	2020	194	202	8.48	95.6
0ct	2020	200	206	6.01	97.0
Nov	2020	199	208	9.06	95.4
Dec	2020	202	209	6.59	96.7
Jan	2021	202	209	7.23	96.4
Feb	2021	203	210	7.40	96.4
Mar	2021	203	212	8.82	95.7
Apr	2021	205	211	5.86	97.1
May	2021	203	210	6.84	96.6
Jun	2021	199	205	6.35	96.8
Jul	2021	197	202	4.59	97.7
Aug	2021	195	204	9.10	95.3
Sep	2021	201	206	4.84	97.6
0ct	2021	205	210	4.59	97.8
Nov	2021	205	212	7.09	96.5
Dec	2021	203	213	9.84	95.2

FPUC-Rate 0625488 Commercial Standby Generator Service (CS-GS)

Customer Time-Series Decomposition

Decomposition of additive time series

ARIMA Model: Expected Accuracy

In this section we evaluate the expected accuracy of a Seasonal ARIMA Model using cross-validation. ARIMA is an acronym for 'Autoregressive Integrated Moving Average' which is a widely using Time-Series forecasting model that utilizes the recent values to predict outward.

Here we evaluate model accuracy by using cross-validation and rolling forecasts throughout the timeseries to determine our expected accuracy over a 24 Month period.

			ME	RMSE	MAE
Forecast	Horizon	1	1	8	5
Forecast	Horizon	2	0	9	7
Forecast	Horizon	3	1	9	7
Forecast	Horizon	4	2	10	8
Forecast	Horizon	5	2	11	8
Forecast	Horizon	6	3	11	8
Forecast	Horizon	7	4	11	9
Forecast	Horizon	8	5	11	9
Forecast	Horizon	9	5	11	8
Forecast	Horizon	10	5	10	8
Forecast	Horizon	11	5	11	9
Forecast	Horizon	12	6	12	9
Forecast	Horizon	13	6	12	9
Forecast	Horizon	14	6	13	11
Forecast	Horizon	15	6	14	11
Forecast	Horizon	16	7	14	11
Forecast	Horizon	17	7	14	11
Forecast	Horizon	18	7	14	12
Forecast	Horizon	19	8	14	12
Forecast	Horizon	20	8	14	12
Forecast	Horizon	21	8	14	12
Forecast	Horizon	22	8	14	12
Forecast	Horizon	23	8	15	13
Forecast	Horizon	24	9	16	14

ARIMA Model: Diagnostics

In this section we evaluate the diagnostics of the ARIMA Model. Below we see that the model fails the Ljung-Box Test and therefore we can determine the data is independently distributed. In addition, we see from the graphs that the lagged values are not auto-correlated with one another, and the residuals are normally distributed.

```
Series: x
ARIMA(0,1,1) with drift
Coefficients:
          ma1
                drift
      -0.4687 0.8146
       0.0859 0.2893
s.e.
sigma<sup>2</sup> estimated as 35.37: log likelihood=-380.14
AIC=766.27
             AICc=766.48
                            BIC=774.61
Training set error measures:
                      ME
                             RMSE
                                       MAE
                                                   MPE
                                                           MAPE
                                                                      MASE
```

FPUC-Rate 0625490 Training set -0.0239026 5.872354 4.328385 -0.1464874 3.084861 0.4512216 ACF1 Training set 0.006491761

Ljung-Box test

data: Residuals from ARIMA(0,1,1) with drift $Q^* = 41.998$, df = 22, p-value = 0.006254

Model df: 2. Total lags used: 24

Below we fit & forecast 60 months into the future using an ARIMA (0,1,1) model. In the graph below we see the 80% and 95% Prediction Intervals bounding our forecast.

Forecasts from ARIMA(0,1,1) with drift

Back-Testing

Test Results

Below we see that the model performs roughly as expected for a "normal" year of 2019, and continues to have a high degree of accuracy in 2020 and 2021.

- [1] "24Month Mean Absolute Error (MAE): 6.18"
- [1] "24Month Mean Accuracy: 96.6"

		Actual	Forecast	Absolute_Error	Accuracy
Jan	2020	161	162	0.65	99.6
Feb	2020	158	159	1.15	99.3
Mar	2020	172	163	9.23	94.6
Apr	2020	172	164	8.10	95.3
Мау	2020	173	164	8.85	94.9
Jun	2020	182	167	15.23	91.6
Jul	2020	186	169	17.23	90.7
Aug	2020	183	170	12.60	93.1
Sep	2020	174	174	0.40	99.8
0ct	2020	181	172	9.23	94.9
Nov	2020	183	169	14.23	92.2
Dec	2020	170	169	0.85	99.5
Jan	2021	169	170	1.07	99.4
Feb	2021	168	168	0.43	99.7
Mar	2021	168	171	3.19	98.1
Apr	2021	174	172	1.68	99.0
Мау	2021	174	173	1.43	99.2
Jun	2021	174	175	1.19	99.3
Jul	2021	179	177	1.81	99.0
Aug	2021	186	179	7.18	96.1
Sep	2021	183	183	0.18	99.9

			FPUC-Ra	ate 0625493	3
Oct 202	L 180	180	0.19	99.9	
Nov 202	L 197	177	19.81	89.9	
Dec 202	L 190	178	12.43	93.5	

Firm Transporation Service (FTS-A & FTS-B)

Customer Time-Series Decomposition

ARIMA Model: Expected Accuracy

In this section we evaluate the expected accuracy of a Seasonal ARIMA Model using cross-validation. ARIMA is an acronym for 'Autoregressive Integrated Moving Average' which is a widely using Time-Series forecasting model that utilizes the recent values to predict outward.

Here we evaluate model accuracy by using cross-validation and rolling forecasts throughout the timeseries to determine our expected accuracy over a 24 Month period.

			ME	RMSE	MAE
Forecast	Horizon	1	0	1	1
Forecast	Horizon	2	0	1	1
Forecast	Horizon	3	0	1	1
Forecast	Horizon	4	0	1	1
Forecast	Horizon	5	0	1	1
Forecast	Horizon	6	0	1	1
Forecast	Horizon	7	0	1	1
Forecast	Horizon	8	0	2	1
Forecast	Horizon	9	0	1	1
Forecast	Horizon	10	0	2	1
Forecast	Horizon	11	-1	2	1
Forecast	Horizon	12	0	2	1
Forecast	Horizon	13	0	2	1
Forecast	Horizon	14	0	2	2
Forecast	Horizon	15	-1	2	2
Forecast	Horizon	16	-1	2	2
Forecast	Horizon	17	-1	2	2
Forecast	Horizon	18	-1	2	2
Forecast	Horizon	19	-1	2	2
Forecast	Horizon	20	-1	2	2
Forecast	Horizon	21	-1	2	2
Forecast	Horizon	22	-1	2	2
Forecast	Horizon	23	-1	2	2
Forecast	Horizon	24	-1	2	2

ARIMA Model: Diagnostics

In this section we evaluate the diagnostics of the ARIMA Model. Below we see that the model fails the Ljung-Box Test and therefore we can determine the data is independently distributed. In addition, we see from the graphs that the lagged values are not auto-correlated with one another, and the residuals are normally distributed.

```
Series: x
ARIMA(0,1,1)(0,0,2)[12] with drift
Coefficients:
          ma1
                 sma1
                          sma2
                                  drift
                                -0.1511
      -0.8361 0.2333 0.2618
       0.0572 0.0956 0.0907
                                 0.0325
s.e.
sigma<sup>2</sup> estimated as 2.184: log likelihood=-214.92
AIC=439.83
             AICc=440.37
                            BIC=453.73
Training set error measures:
                              RMSE
                                        MAE
                                                    MPE
                                                            MAPE
                                                                       MASE
                       ME
```

FPUC-Rate 0625495 Training set -0.01183897 1.446572 1.176106 -0.3366003 6.840653 0.5405083 ACF1 Training set -0.01405601

Ljung-Box test

data: Residuals from ARIMA(0,1,1)(0,0,2)[12] with drift
Q* = 37.008, df = 20, p-value = 0.01168

Model df: 4. Total lags used: 24

Below we fit & forecast 60 months into the future using an ARIMA (0,1,1)(0,0,2) model. In the graph below we see the 80% and 95% Prediction Intervals bounding our forecast.

Forecasts from ARIMA(0,1,1)(0,0,2)[12] with drift

Back-Testing

Test Results

Below we see that the model performs roughly as expected for a "normal" year of 2019, and continues to have a high degree of accuracy in 2020 and 2021.

- [1] "24Month Mean Absolute Error (MAE): 1.26"
- [1] "24Month Mean Accuracy: 89.71"

		Actual	Forecast	Absolute_Error	Accuracy
Jan	2020	15	12	2.72	81.9
Feb	2020	13	12	0.72	94.5
Mar	2020	12	12	0.28	97.7
Apr	2020	11	13	1.53	86.1
Мау	2020	10	11	1.39	86.1
Jun	2020	11	11	0.39	96.5
Jul	2020	11	12	0.94	91.5
Aug	2020	11	12	0.64	94.2
Sep	2020	12	11	0.93	92.2
0ct	2020	12	11	0.63	94.8
Nov	2020	11	12	0.66	94.0
Dec	2020	15	12	3.07	79.5
Jan	2021	13	12	1.07	91.8
Feb	2021	16	12	4.07	74.6
Mar	2021	10	12	1.93	80.7
Apr	2021	13	11	1.63	87.5
Мау	2021	11	11	0.34	96.9
Jun	2021	12	11	0.66	94.5
Jul	2021	11	11	0.07	99.4
Aug	2021	12	11	1.22	89.8
Sep	2021	12	11	1.23	89.8

FPUC-Rate 0625498							
Oct 2	2021	9	11	2.06	77.1		
Nov 2	2021	12	11	0.94	92.2		
Dec 2	2021	12	11	1.22	89.8		