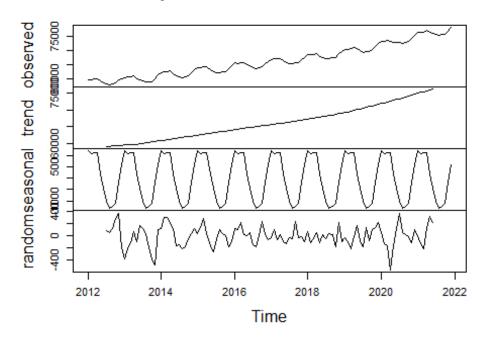
Residential Customer Count Forecast

Overall Residential Customers Forecast Analysis


In this section we will forecast the total monthly Residential Customers. Residential customers are filtered by Rate Class: 10,22,I0, and RS. We also include only customers that have greater than 0 reported volume usage for the month.

Customer Time-Series Decomposition

In this section we decompose the Residential Customer time-series using an Additive Decomposition Model. This model evaluates time-series' by extracting the Seasonal, Trending, and Random components.

Here we can clearly see a linear trend and seasonal component within the Residential customers.

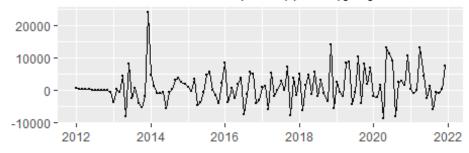
Decomposition of additive time series

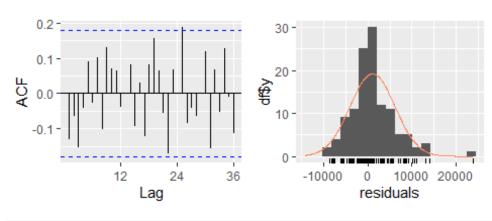
ARIMA Model: Expected Accuracy

In this section we evaluate the expected accuracy of a Seasonal ARIMA Model using cross-validation. ARIMA is an acronym for 'Autoregressive Integrated Moving Average' which is a widely used Time-Series forecasting model that utilizes the recent values to predict outward.

Here we evaluate model accuracy by using cross-validation and rolling forecasts throughout the timeseries to determine our expected accuracy over a 24 Month period. Below we see that the ARIMA model is extremely accurate with a 1-Month Forecast Mean Absolute Error (MAE) of 162 clients, and a 24 MAE of 1,560 clients.

			ME	RMSE	MAE
Forecast Hor	izon	1	104	221	162
Forecast Hor	izon	2	147	259	199


```
Forecast Horizon 3
                     190
                         298
                              243
Forecast Horizon 4
                     222
                         360
                              286
Forecast Horizon 5
                     252 375
                              313
Forecast Horizon 6
                     297 415 333
Forecast Horizon 7
                     351 484 403
                              457
Forecast Horizon 8
                     392 550
Forecast Horizon 9
                     431 580
                              480
Forecast Horizon 10 463 622
                              518
Forecast Horizon 11 519 688 573
Forecast Horizon 12 574
                         728
                              609
Forecast Horizon 13 680 851
                             738
Forecast Horizon 14 759 949
                              812
Forecast Horizon 15 843 1029
                              893
Forecast Horizon 16 932 1108 968
Forecast Horizon 17 1006 1182 1039
Forecast Horizon 18 1082 1251 1116
Forecast Horizon 19 1160 1317 1189
Forecast Horizon 20 1224 1416 1284
Forecast Horizon 21 1282 1487 1346
Forecast Horizon 22 1341 1556 1417
Forecast Horizon 23 1413 1645 1503
Forecast Horizon 24 1478 1703 1560
```


ARIMA Model: Diagnostics

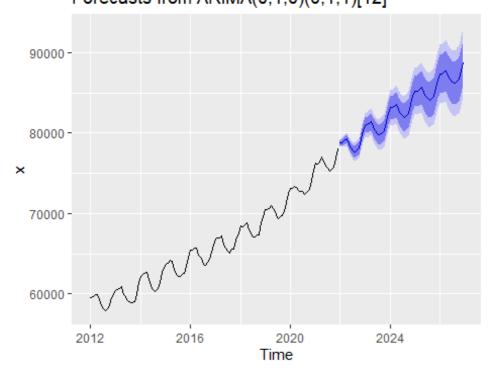
In this section we evaluate the diagnostics of the ARIMA Model. Below we see that the model fails the Ljung-Box Test and therefore we can determine the data is independently distributed. In addition, we see from the graphs that the lagged values are not auto-correlated with one another, and the residuals are normally distributed.

```
Series: x
ARIMA(0,1,0)(0,1,1)[12]
Box Cox transformation: lambda= 1.293615
Coefficients:
         sma1
      -0.7888
       0.1152
s.e.
sigma<sup>2</sup> estimated as 30268293:
                                 log likelihood=-1078.4
AIC=2160.81
              AICc=2160.92
                              BIC=2166.15
Training set error measures:
                    ME
                           RMSE
                                      MAE
                                                 MPE
                                                           MAPE
                                                                       MASE
Training set 38.45578 197.6952 137.8342 0.05474795 0.2054131 0.07213338
Training set -0.1321209
```

Residuals from ARIMA(0,1,0)(0,1,1)[12]

Ljung-Box test

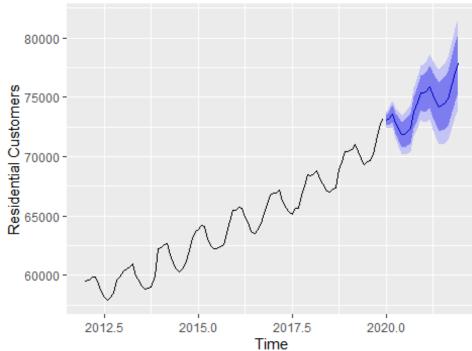
data: Residuals from ARIMA(0,1,0)(0,1,1)[12]


 $Q^* = 28.351$, df = 23, p-value = 0.2028

Model df: 1. Total lags used: 24

ARIMA Model: 5 Year Forecast

Below we fit & forecast 60 months into the future using an ARIMA (0,1,0)(0,1,1) model. This model only uses 1 difference, 1 Seasonal Moving Average, 1 Seasonal Difference, and is expected to be extremely accurate as previously shown. In the graph below we see the 80% and 95% Prediction Intervals bounding our forecast.


FPUC-Rate 0625577
Forecasts from ARIMA(0,1,0)(0,1,1)[12]

2020-2021 Forecast Comparison

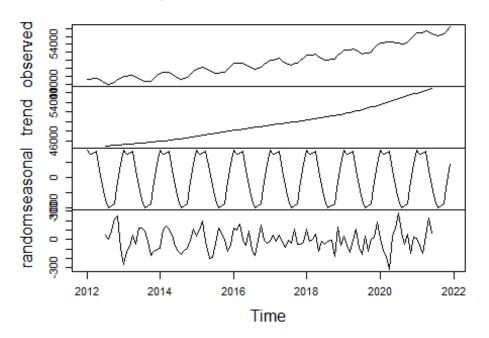
In this section we will evaluate the accuracy of our ARIMA(0,1,0)(2,1,0) model on data from January, 2020 through December 2021 by training on the previous data and forecasting the next 24 months. In particular we are interested on how close the forecasted accuracy follows our cross-validated results shown previously. Also, an area of interest is how well the model performs during the 2020 pandemic.

Test Results

Below we see that the model performs roughly as expected for a "normal" year of 2019, and continues to have a high degree of accuracy in 2020 and 2021.

[1]	"Meai	n Absol	ute Error:	: 649.37"	
[1]	"Meai	n Accura	acy: 99.13	3"	
		Actual	Forecast	Absolute_Error	Accuracy
Jan	2020	73165	73107	58.23296	99.9
Feb	2020	73112	73280	168.14732	99.8
Mar	2020	73344	73608	264.32012	99.6
Apr	2020	73209	72823	386.32510	99.5
May	2020	72899	72350	549.09457	99.2
Jun	2020	72794	71875	918.97981	98.7
Jul	2020	72695	71912	783.25405	98.9
Aug	2020	72316	72132	184.29423	99.7
Sep	2020	72637	72385	251.57844	99.7
0ct	2020	73012	73727	714.68991	99.0
Nov	2020	74155	74569	414.27708	99.4
Dec	2020	75425	75384	41.28152	99.9
Jan	2021	76201	75354	846.63259	98.9
Feb	2021	76179	75507	671.84671	99.1
Mar	2021	76369	75890	478.68527	99.4
Apr	2021	76975	75217	1757.53291	97.7
May	2021	76456	74662	1794.27204	97.7
Jun	2021	75940	74188	1751.68828	97.7
Jul	2021	75624	74318	1305.59829	98.3
Aug	2021	75267	74485	782.35634	99.0
Sep	2021	75495	74863	632.39268	99.2
0ct	2021	75748	76126	377.65818	99.5
Nov	2021	76845	77079	233.75445	99.7
Dec	2021	78065	77847	217.93362	99.7

FPUC Residential Service (FPU-RS)


In this section we will forecast monthly client counts for FPU-RS. From the data given, these numbers are calculated by filtering for Tariff Schedule 'RS' and excluding Rate Class 22 which appears to be the Fort Meade residential clients.

Customer Time-Series Decomposition

In this section we decompose the Residential Customer time-series using an Additive Decomposition Model. This model evaluates time-series' by extracting the Seasonal, Trending, and Random components.

Here we can clearly see a linear trend and seasonal component within the Residential customers.

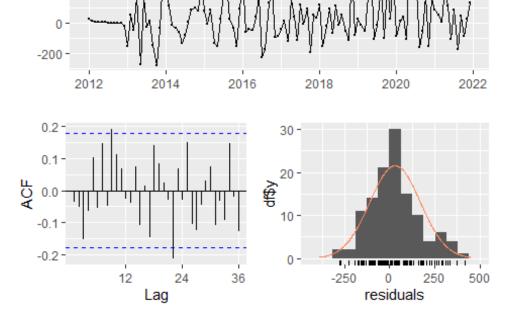
Decomposition of additive time series

ARIMA Model: Expected Accuracy

Here we evaluate model accuracy by using cross-validation and rolling forecasts throughout the timeseries to determine our expected accuracy over a 24 Month period. Below we see that the ARIMA model is extremely accurate with a 1-Month Forecast Mean Absolute Error (MAE) of 124clients, and a 24-Month Forecast MAE of 1,362 clients.

		ME	RMSE	MAE
Forecast Horizon	1	58	162	124
Forecast Horizon	2	97	195	150
Forecast Horizon	3	134	239	182
Forecast Horizon	4	164	274	207
Forecast Horizon	5	191	309	223
Forecast Horizon	6	230	350	263
Forecast Horizon	7	288	401	293
Forecast Horizon	8	328	460	345
Forecast Horizon	9	366	508	389
Forecast Horizon	10	408	560	422
Forecast Horizon	11	449	620	477
Forecast Horizon	12	495	673	514
Forecast Horizon	13	570	767	607
Forecast Horizon	14	632	835	653
Forecast Horizon	15	695	908	716
Forecast Horizon	16	767	972	786
Forecast Horizon	17	830	1039	847
Forecast Horizon	18	906	1114	924
Forecast Horizon	19	987	1197	998
Forecast Horizon	20	1042	1265	1090
Forecast Horizon	21	1108	1329	1151
Forecast Horizon	22	1181	1406	1224
Forecast Horizon	23	1252	1474	1304
Forecast Horizon	24	1314	1537	1362

ARIMA Model: Diagnostics

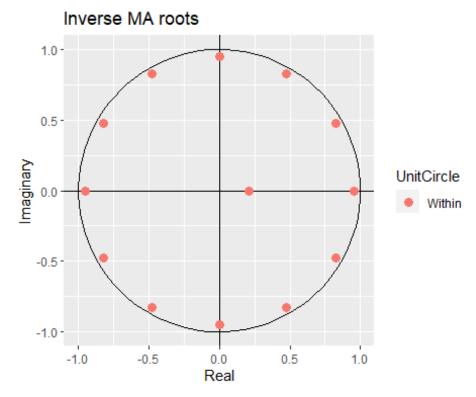

400

200

Below we see that the model fails the Ljung-Box Test and therefore we can determine the data is independently distributed. In addition, we see from the graphs that the lagged values are not autocorrelated with one another, and the residuals are normally distributed. The unit circle below also showcases that we have a stationary model.

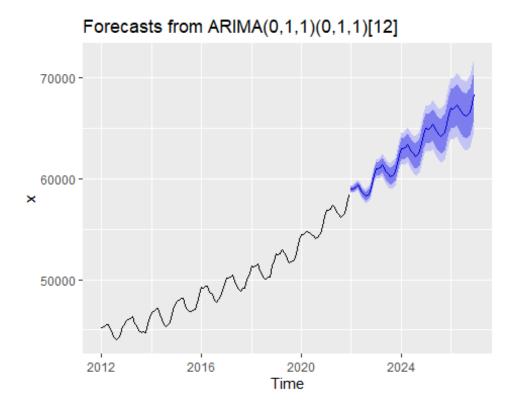
```
Series: x
ARIMA(0,1,1)(0,1,1)[12]
Coefficients:
          ma1
                  sma1
      -0.2087
               -0.5582
       0.1053
                0.1070
s.e.
sigma^2 estimated as 23342:
                              log likelihood=-690.62
              AICc=1387.48
AIC=1387.25
                              BIC=1395.27
Training set error measures:
                                                MPE
                                                         MAPE
                                                                    MASE
                   ME
                           RMSE
                                     MAE
Training set 29.30466 142.9139 107.2376 0.0556097 0.2137368 0.08030996
                     ACF1
Training set -0.03563074
```

Residuals from ARIMA(0,1,1)(0,1,1)[12]




```
Ljung-Box test

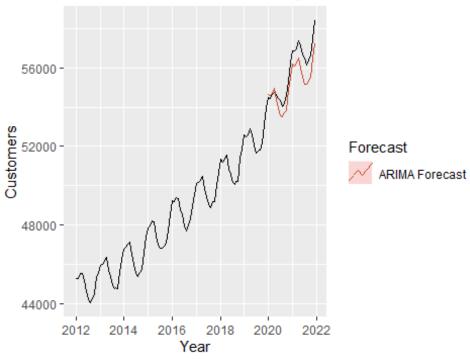
data: Residuals from ARIMA(0,1,1)(0,1,1)[12]
Q* = 32.824, df = 22, p-value = 0.06439


Model df: 2. Total lags used: 24
```

FPUC-Rate 0625581

ARIMA Model: 5 Year Forecast

Below we fit & forecast 60 months into the future using an ARIMA (2,1,2)(1,1,1) model.



2020-2021 Back-Testing Evaluation

In this section we will evaluate the accuracy of our ARIMA(0,1,1)(0,1,1) model on data from January, 2020 through December 2021 by training on the previous data and forecasting the next 24 months. In

particular we are interested on how close the forecasted accuracy follows our cross-validated results shown previously. Also, an area of interest is how well the model performs during the 2020 pandemic.

Residential Client Backtesting: 2020-2021

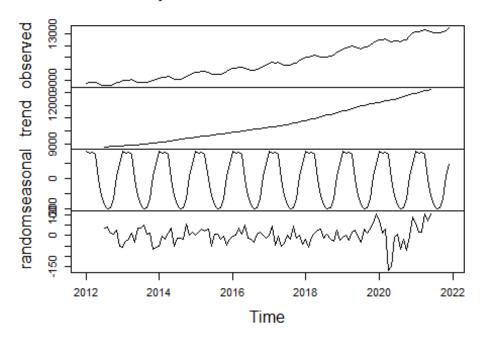
Test Results

Below we see that the model performs roughly as expected for a "normal" year of 2019, and continues to have a high degree of accuracy in 2020 and 2021.

[1]	"Mear	Absolu	ute Error	: 704.83"	
[1]	"Mear	Accura	acy: 98.74	1"	
		Actual	Forecast	Absolute_Error	Accuracy
Jan	2020	54497	54661	164	99.7
Feb	2020	54470	54579	109	99.8
Mar	2020	54638	54699	61	99.9
Apr	2020	54741	54938	197	99.6
May	2020	54661	54382	279	99.5
Jun	2020	54452	53989	463	99.1
Jul	2020	54319	53591	728	98.7
Aug	2020	54049	53538	511	99.1
Sep	2020	54191	53709	482	99.1
0ct	2020	54579	53841	738	98.6
Nov	2020	55308	54839	469	99.2
Dec	2020	56226	55519	707	98.7
Jan	2021	56867	56195	672	98.8
Feb	2021	56857	56106	751	98.7
Mar	2021	56997	56224	773	98.6
Apr	2021	57398	56490	908	98.4
May	2021	57140	55998	1142	98.0
Jun	2021	56682	55575	1107	98.0
Jul	2021	56504	55170	1334	97.6
Aug	2021	56171	55172	999	98.2

FPUC-Rate 0625583 Sep 2021 56407 55305 1102 98.0 98.1 Oct 2021 56591 55513 1078 Nov 2021 57472 56498 974 98.3 Dec 2021 58412 57244 1168 98.0

CFG Firm Transportation Service (FTS-1)


In this section we will forecast monthly client counts for FTS-1 & FTS-2. From the data given, these numbers are calculated by filtering for Tariff Schedule 'FTS-1'.

Customer Time-Series Decomposition

In this section we decompose the Residential Customer time-series using an Additive Decomposition Model. This model evaluates time-series' by extracting the Seasonal, Trending, and Random components.

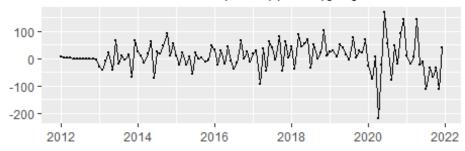
Here we can clearly see a linear trend and seasonal component within the Residential customers.

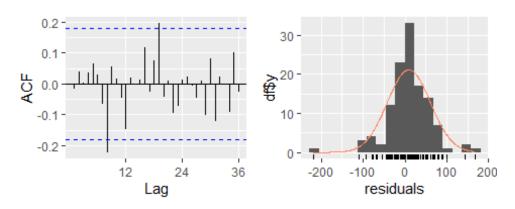
Decomposition of additive time series

ARIMA Model: Expected Accuracy

Here we evaluate model accuracy by using cross-validation and rolling forecasts throughout the time-series to determine our expected accuracy over a 24 Month period. Below we see that the ARIMA model is extremely accurate with a 1-Month Forecast Mean Absolute Error (MAE) of 37 clients, and a 24-Month Forecast MAE of 418 clients.

		ME	RMSE	MAE
Forecast Horizon	1	22	46	37
Forecast Horizon	2	29	57	48
Forecast Horizon	3	45	78	64
Forecast Horizon	4	53	107	86
Forecast Horizon	5	59	132	108
Forecast Horizon	6	75	149	128

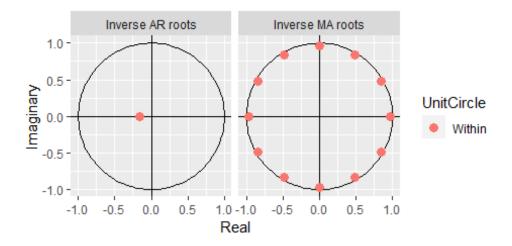

```
163 145
Forecast Horizon 7
                     86
Forecast Horizon 8
                     97
                         187 165
Forecast Horizon 9
                         203 187
                    108
Forecast Horizon 10 116
                         220 203
Forecast Horizon 11 127
                         241 223
Forecast Horizon 12 139
                         258 239
Forecast Horizon 13 160
                         277 255
Forecast Horizon 14 175
                         301 272
Forecast Horizon 15 193
                         322 286
                         336 296
Forecast Horizon 16 210
Forecast Horizon 17 224
                        355 310
Forecast Horizon 18 240
                         374 318
Forecast Horizon 19 252
                         391 321
Forecast Horizon 20 261
                        414 339
Forecast Horizon 21 268
                        434 358
Forecast Horizon 22 273
                         448 369
Forecast Horizon 23 276
                         470 396
Forecast Horizon 24 278
                         484 418
```


ARIMA Model: Diagnostics

Below we see that the model fails the Ljung-Box Test and therefore we can determine the data is independently distributed. In addition, we see from the graphs that the lagged values are not auto-correlated with one another, and the residuals are normally distributed. The unit circle below also showcases that we have a stationary model.

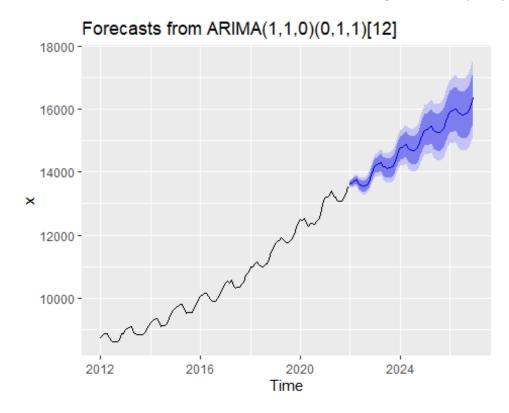
```
Series: x
ARIMA(1,1,0)(0,1,1)[12]
Coefficients:
          ar1
                   sma1
      -0.1614
               -0.6902
       0.0966
                 0.0900
s.e.
sigma<sup>2</sup> estimated as 3085:
                              log likelihood=-584.39
AIC=1174.77
                               BIC=1182.79
              AICc=1175.01
Training set error measures:
                                                  MPE
                                                           MAPE
                                                                       MASE
                    ME
                            RMSE
                                      MAE
Training set 9.149053 51.95495 36.56615 0.08530551 0.3326049 0.07359568
Training set -0.01699744
```

Residuals from ARIMA(1,1,0)(0,1,1)[12]



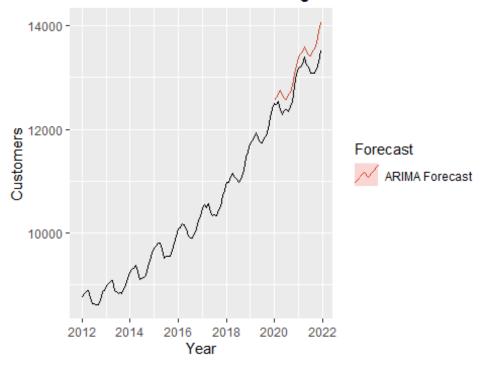
Ljung-Box test

data: Residuals from ARIMA(1,1,0)(0,1,1)[12]


 $Q^* = 22.615$, df = 22, p-value = 0.4237

Model df: 2. Total lags used: 24

ARIMA Model: 5 Year Forecast


Below we fit & forecast 60 months into the future using an ARIMA(1,1,0)(0,1,1) model.

2020-2021 Back-Testing Evaluation

In this section we will evaluate the accuracy of our ARIMA(1,1,0)(0,1,1) model on data from January, 2020 through December 2021 by training on the previous data and forecasting the next 24months. In particular we are interested on how close the forecasted accuracy follows our cross-validated results shown previously. Also, an area of interest is how well the model performs during the 2020 pandemic.

Residential Client Backtesting: 2020-2021

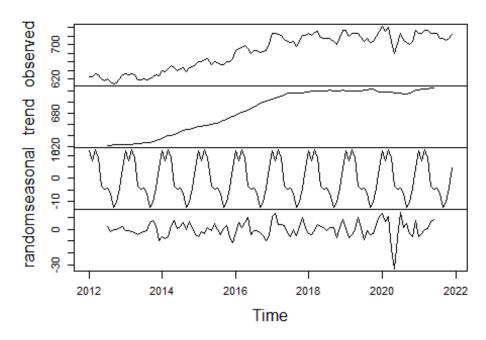
Back-Test Results

Below we see that the model performs roughly as expected for a "normal" year of 2019, and continues to have a high degree of accuracy in 2020 and 2021.

[1]	"0ve	rall Mea	an Absolut	te Error: 296.8	3"
[1]	"0ve	rall Mea	an Accurac	y: 97.71"	
		Actual	Forecast	Absolute_Error	Accuracy
Jan	2020		12557	55	99.6
Feb	2020	12477	12620	143	98.9
Mar	2020	12543	12671	128	99.0
Apr	2020	12380	12764	384	96.9
May	2020	12279	12672	393	96.8
Jun	2020	12365	12598	233	98.1
Jul	2020	12378	12581	203	98.4
Aug	2020	12336	12675	339	97.3
Sep	2020	12449	12719	270	97.8
0ct	2020	12527	12848	321	97.4
Nov	2020	12824	13062	238	98.1
Dec	2020	13072	13228	156	98.8
	2021		13390	197	
	2021		13453	255	
	2021		13504	243	
-	2021		13597	206	
-	2021		13505	269	
	2021		13431	226	98.3
	2021		13414	324	97.5
_	2021		13508	421	96.8
-	2021		13552	459	
0ct	2021	13170	13681	511	96.1

Nov 2021	13294	13895	601	95.5
Dec 2021	13512	14061	549	95.9

CFG Firm Transportation Service (FTS-2)


In this section we will forecast monthly client counts for FTS-2. From the data given, these numbers are calculated by filtering for Tariff Schedule 'FTS-2'.

Customer Time-Series Decomposition

In this section we decompose the Residential Customer time-series using an Additive Decomposition Model. This model evaluates time-series' by extracting the Seasonal, Trending, and Random components.

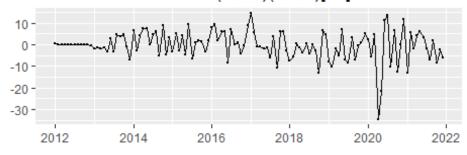
Here we can clearly see a linear trend and seasonal component within the Residential customers.

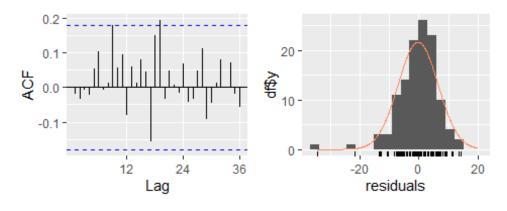
Decomposition of additive time series

ARIMA Model: Expected Accuracy

Here we evaluate model accuracy by using cross-validation and rolling forecasts throughout the time-series to determine our expected accuracy over a 24 Month period. Below we see that the ARIMA model is extremely accurate with a 1-Month Forecast Mean Absolute Error (MAE) of 137 clients, and a 24-Month Forecast MAE of 1,383 clients.

			ME	RMSE	MAE
Forecast	Horizon	1	-2	8	7
Forecast	Horizon	2	-4	11	9
Forecast	Horizon	3	-6	12	9
Forecast	Horizon	4	-8	13	11
Forecast	Horizon	5	-11	16	13
Forecast	Horizon	6	-13	18	14
Forecast	Horizon	7	-14	19	15
Forecast	Horizon	8	-15	20	16
	===	•			

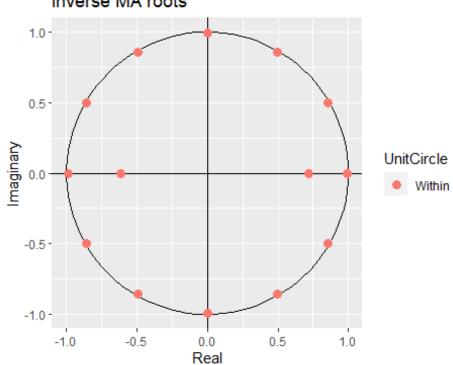

```
Forecast Horizon 9 -16
                          20
                              17
                10 -18
Forecast Horizon
                          21
                              19
Forecast Horizon 11 -19
                           24
                              21
Forecast Horizon 12 -20
                          25
                              22
Forecast Horizon 13 -23
                              23
                          26
Forecast Horizon 14 -25
                          28
                              25
Forecast Horizon 15 -26
                          30
                              27
Forecast Horizon 16 -28
                          32
                              28
Forecast Horizon 17 -29
                          34
                              30
Forecast Horizon 18 -30
                          34
                              30
Forecast Horizon 19 -31
                          34
                              31
Forecast Horizon 20 -32
                          37
                              32
Forecast Horizon 21 -33
                          38
                              33
Forecast Horizon 22 -34
                          40
                              35
Forecast Horizon 23 -35
                          41
                              36
Forecast Horizon 24 -37
                          42
                              37
```


ARIMA Model: Diagnostics

Below we see that the model fails the Ljung-Box Test and therefore we can determine the data is independently distributed. In addition, we see from the graphs that the lagged values are not autocorrelated with one another, and the residuals are normally distributed. The unit circle below also showcases that we have a stationary model.

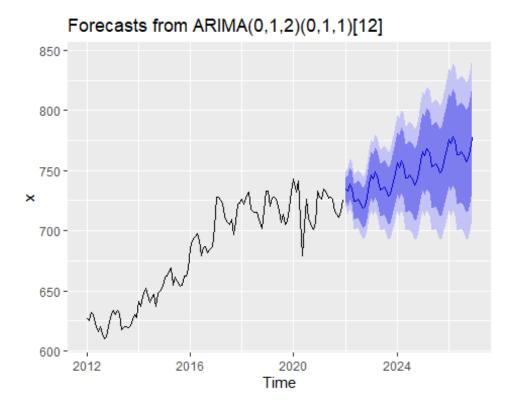
```
Series: x
ARIMA(0,1,2)(0,1,1)[12]
Coefficients:
          ma1
                   ma2
                            sma1
      -0.1005
               -0.4440
                       -0.8859
       0.0880
                0.0823
                         0.1913
s.e.
sigma^2 estimated as 52.4: log likelihood=-370.96
AIC=749.92
                           BIC=760.62
             AICc=750.32
Training set error measures:
                             RMSE
                                       MAE
                                                  MPE
                                                           MAPE
                                                                      MASE
                     ME
Training set -0.3033455 6.739131 4.817316 -0.0411651 0.6946601 0.3261882
                    ACF1
Training set -0.02026396
```

Residuals from ARIMA(0,1,2)(0,1,1)[12]


Ljung-Box test

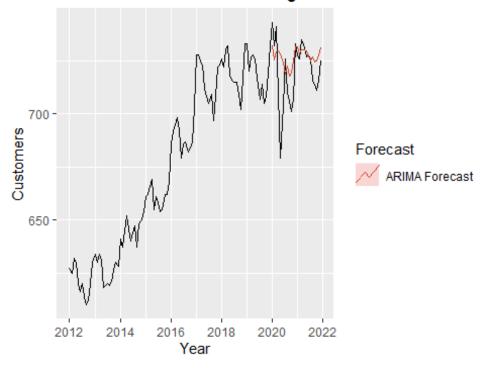
data: Residuals from ARIMA(0,1,2)(0,1,1)[12]

 $Q^* = 23.715$, df = 21, p-value = 0.3071


Model df: 3. Total lags used: 24

Inverse MA roots

ARIMA Model: 5 Year Forecast


Below we fit & forecast 60 months into the future using an ARIMA(0,1,2)(0,1,1) model.

2020-2021 Back-Testing Evaluation

In this section we will evaluate the accuracy of our ARIMA(0,1,2)(0,1,1) model on data from January, 2020 through December 2021 by training on the previous data and forecasting the next 24months. In particular we are interested on how close the forecasted accuracy follows our cross-validated results shown previously. Also, an area of interest is how well the model performs during the 2020 pandemic.

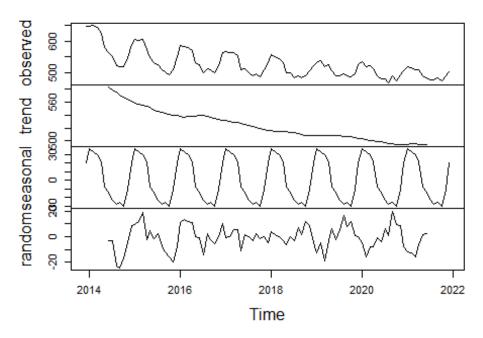
Residential Client Backtesting: 2020-2021

Back-Test Results

Below we see that the model performs roughly as expected for a "normal" year of 2019, and continues to have a high degree of accuracy in 2020 and 2021.

[1]	"0vei	rall Mean	Absolute E	rror: 10.79"	
[1]	"Ovei	rall Mean	Accuracy: 9	98.48"	
		Actual F	orecast Abso	olute_Error	Accuracy
Jan	2020	743	732	11	98.5
	2020	732	725	7	99.0
	2020	741	729	12	98.4
	2020	709	729	20	97.2
-	2020	679	728	49	92.8
-	2020	704	724	20	97.2
	2020	726	719	7	99.0
	2020	710	722	12	98.3
_	2020	706	718	12	98.3
•	2020	701	719	18	97.4
	2020	707	725	18	97.5
	2020	733	731	2	99.7
	2021	728	731	3	99.6
	2021	726	728	2	99.7
	2021	735	730	5	99.3
	2021	733	730	3	99.6
-	2021	727	730	3	99.6
-	2021	728	727	1	99.9
	2021	726	725	1	99.9
	2021	716	727	11	98.5
_	2021	714	724	10	98.6
-	2021	711	725	14	98.0

Nov 2021	716	728	12	98.3
Dec 2021	725	731	6	99.2


Ft. Meade Residential Service (FT-RS)

In this section we will forecast monthly client counts for FT-RS. From the data given, these numbers are calculated by filtering for Rate Class 22.

Customer Time-Series Decomposition

Here we see a downward sloping trend line for FT-RS. This tells us that this rate is gradually losing customers every month/year. This rate is also unique in that it begins in December 2013, whereas the previous rates have start dates in January 2012.

Decomposition of additive time series

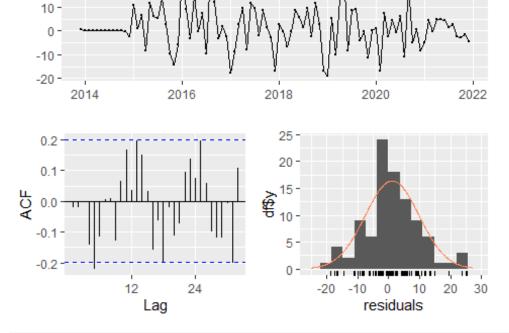
ARIMA Model: Expected Accuracy

Here we evaluate model accuracy by using cross-validation and rolling forecasts throughout the timeseries to determine our expected accuracy over a 12 Month period.

Below we see that the ARIMA model is consistently accurate with a 1-Month Forecast MAE of 10, and a 12-Month Forecast MAE of 8.

	ME	RMSE	MAE
1	2	11	10
2	4	12	9
3	5	12	10
4	5	14	10
5	6	12	10
6	7	12	9
7	7	12	9
8	8	12	10
	2 3 4 5 6 7	1 2 4 3 5 4 5 6 6 7 7 7	ME RMSE 1 2 11 2 4 12 3 5 12 4 5 14 5 6 12 6 7 12 7 7 12 8 8 12

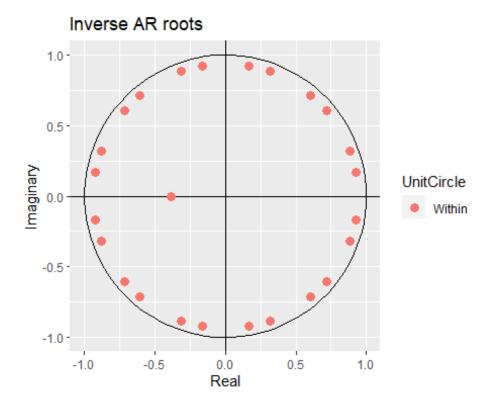
Forecast Hori	zon	9	7	11	9
Forecast Hori	zon	10	7	10	9
Forecast Hori	zon	11	7	9	8
Forecast Hori	zon	12	6	10	8


ARIMA Model: Diagnostics

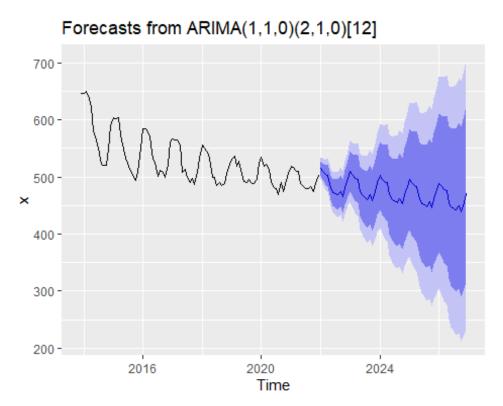
20

Below we see that the model fails the Ljung-Box Test and therefore we can determine the data is independently distributed. In addition, we see from the graphs that the lagged values are not auto-correlated with one another, and the residuals are normally distributed. The unit circle below also showcases that we have a stationary model.

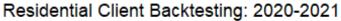
```
Series: x
ARIMA(1,1,0)(2,1,0)[12]
Coefficients:
                  sar1
                            sar2
          ar1
      -0.3859
               -0.4995
                         -0.2140
       0.1076
                0.1161
                          0.1327
s.e.
sigma^2 estimated as 91.68: log likelihood=-309.16
AIC=626.32
             AICc=626.83
                            BIC=636.04
Training set error measures:
                                                MPE
                                                        MAPE
                                                                 MASE
                                                                              ACF1
                           RMSE
                                     MAE
Training set 1.075394 8.749893 6.358353 0.2036659 1.222169 0.433756 -0.01967509
```

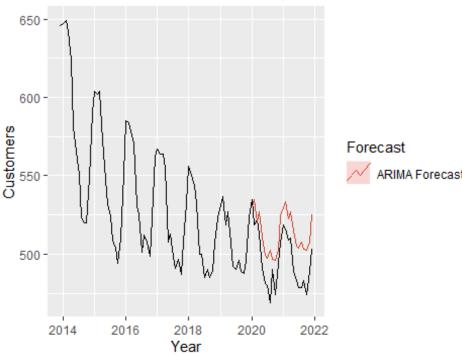

Residuals from ARIMA(1,1,0)(2,1,0)[12]


```
Ljung-Box test


data: Residuals from ARIMA(1,1,0)(2,1,0)[12]
Q* = 29.8, df = 16, p-value = 0.01907
```

Model df: 3. Total lags used: 19


ARIMA Model: 5 Year Forecast


Below we fit & forecast 60 months into the future using an ARIMA(1,1,0)(2,1,0)model.

2020-2021 Back-Testing Evaluation

In this section we will evaluate the accuracy of our ARIMA(1,1,0)(2,1,0)model on data from January, 2020 through December 2021 by training on the previous data and forecasting the next 24months. In particular we are interested on how close the forecasted accuracy follows our cross-validated results shown previously. Also, an area of interest is how well the model performs during the 2020 pandemic.

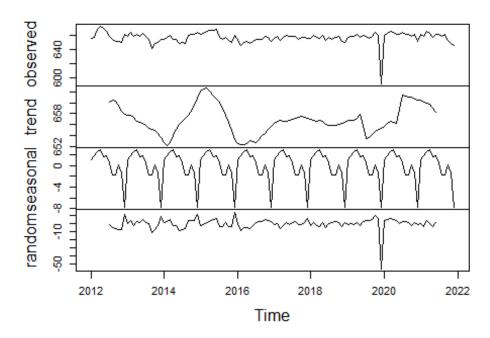
Back-Test Results

Below we see that the model performs roughly as expected for a "normal" year of 2019, and continues to have a high degree of accuracy in 2020 and 2021.

[1]	"0ve	rall Mean	Absolute Er	ror: 17.96"	
[1]	"0ve	rall Mean	Accuracy: 9	6.34"	
			•		
		Actual F	orecast Abso	lute_Error A	Accuracy
Jan	2020	535	530	5	99.1
Feb	2020	519	535	16	96.9
Mar	2020	522	521	1	99.8
Apr	2020	513	527	14	97.3
-	2020		511	20	95.9
-	2020		499	18	96.3
	2020		498	18	96.2
	2020		502	33	93.0
_	2020		497	7	98.6
•	2020		496	22	95.4
	2020		502	8	98.4
	2020		525	18	96.4
	2021		530	11	97.9
Feb	2021		534	18	96.5
Mar	2021		522	13	97.4
	2021	510	527	17	96.7

			FPUC-Ra	te 0625597		
May 2021	489	515	26	94.7		
Jun 2021	483	505	22	95.4		
Jul 2021	479	504	25	94.8		
Aug 2021	479	508	29	93.9		
Sep 2021	483	503	20	95.9		
Oct 2021	474	503	29	93.9		
Nov 2021	489	508	19	96.1		
Dec 2021	503	525	22	95.6		

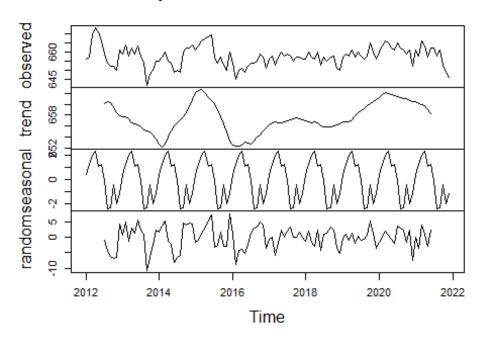
Indiantown Transportation Service 1 (IGC-TS1)


In this section we will forecast monthly client counts for IGC-TS1. From the data given, these numbers are calculated by filtering for Tariff Schedule 'TS-1' or Rate Class IO.

Customer Time-Series Decomposition

In the time-series decomposition below we see that there is a large drop off in customers for December 2019. This is likely due to an error when inputting the data. Therefore, we will calculate the average customers from the previous years in December and input this new value for December 2019. Another explanation may be due to the Covid-19 pandemic. However, this was ruled out since there was no significant drop in volume usage during this time.

Considering there is not much a trend this process is perfectly reasonable in order to generate a proper forecasting model.


Decomposition of additive time series

New Time Series Decomposition

See below the updated time series decomposition by inputting 656 as the new value for December 2019.

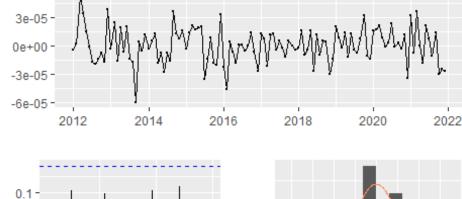
Decomposition of additive time series

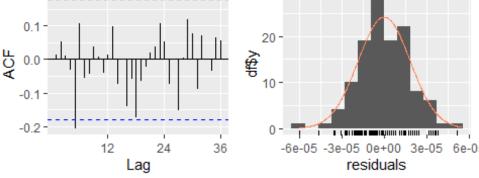
ARIMA Model: Expected Accuracy

Here we evaluate model accuracy by using cross-validation and rolling forecasts throughout the timeseries to determine our expected accuracy over a 12 Month period.

Below we see that the ARIMA model is consistently accurate with a 1-Month Forecast MAE of 2, and a 12-Month Forecast MAE of 4.

		ME	RMSE	MAE
Forecast Horizon	1	0	3	2
Forecast Horizon	2	1	3	2
Forecast Horizon	3	1	3	2
Forecast Horizon	4	1	4	3
Forecast Horizon	5	2	4	3
Forecast Horizon	6	2	4	3
Forecast Horizon	7	2	4	3
Forecast Horizon	8	2	4	3
Forecast Horizon	9	2	4	3
Forecast Horizon	10	2	4	3
Forecast Horizon	11	2	4	3
Forecast Horizon	12	2	4	3
Forecast Horizon	13	2	4	3
Forecast Horizon	14	2	4	4
Forecast Horizon	15	2	5	4
Forecast Horizon	16	3	5	4
Forecast Horizon	17	3	5	4
Forecast Horizon	18	3	5	4
Forecast Horizon	19	3	5	4
Forecast Horizon	20	3	5	4
Forecast Horizon	21	3	5	4
Forecast Horizon	22	3	5	4

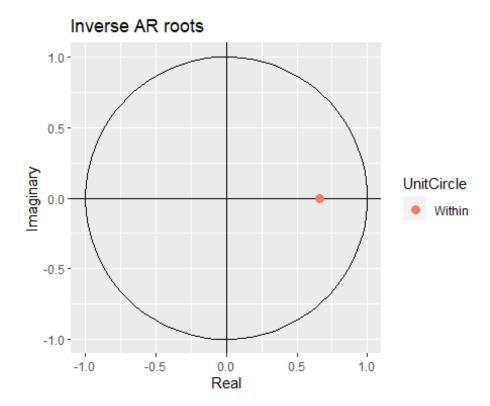

Forecast	Horizon	23	3	5	4
Forecast	Horizon	24	3	5	4


ARIMA Model: Diagnostics

Below we see that the model fails the Ljung-Box Test and therefore we can determine the data is independently distributed. In addition, we see from the graphs that the lagged values are not autocorrelated with one another, and the residuals are normally distributed. The unit circle below also showcases that we have a stationary model.

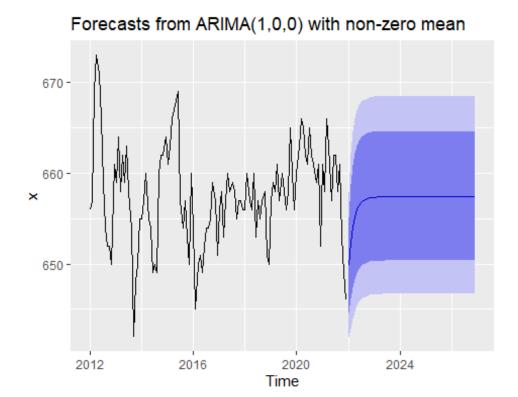
```
Series: x
ARIMA(1,0,0) with non-zero mean
Box Cox transformation: lambda= -0.8999268
Coefficients:
         ar1
                mean
      0.6608
              1.1080
s.e.
      0.0832 0.0001
sigma^2 estimated as 3.408e-10: log likelihood=1138.43
AIC=-2270.87
                                BIC=-2262.51
               AICc=-2270.66
Training set error measures:
                     ME
                            RMSE
                                       MAE
                                                   MPE
                                                            MAPE
                                                                       MASE
Training set 0.03556933 4.129816 3.268033 0.001432838 0.4970279 0.5638139
Training set 0.01538297
```

Residuals from ARIMA(1,0,0) with non-zero mean

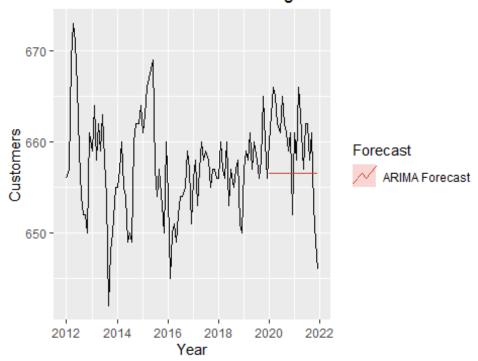



```
Ljung-Box test
```

data: Residuals from ARIMA(1,0,0) with non-zero mean


 $Q^* = 21.135$, df = 22, p-value = 0.5124

Model df: 2. Total lags used: 24


ARIMA Model: 5 Year Forecast

Below we fit & forecast 60 months into the future using an ARIMA(1,0,0) model.

2020-2021 Back-Testing Evaluation

Residential Client Backtesting: 2020-2021

Backtest Results

Sep 2021

661

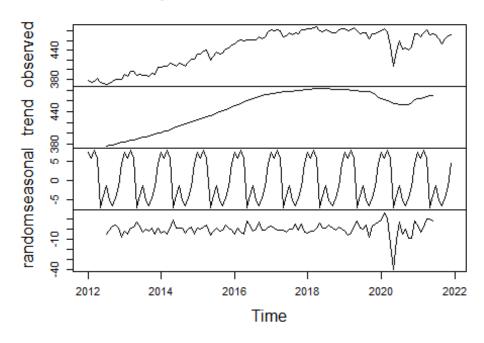
657

Below we see that the model performs roughly as expected for a "normal" year of 2019, and continues to have a high degree of accuracy in 2020 and 2021 that never dips below 98%.

[1]	"Over	rall Mea	an Absolut	e Error: 5.04"	
[1]	"Over	rall Mea	an Accurac	y: 99.22"	
		Actual	Forecast	Absolute_Error	Accuracy
Jan	2020	660	657	3	99.5
Feb	2020	663	657	6	99.1
Mar	2020	666	657	9	98.6
Apr	2020	665	657	8	98.8
May	2020	662	657	5	99.2
Jun	2020	661	657	4	99.4
Jul	2020	665	657	8	98.8
Aug	2020	662	657	5	99.2
Sep	2020	661	657	4	99.4
Oct	2020	659	657	2	99.7
Nov	2020	661	657	4	99.4
Dec	2020	652	657	5	99.2
Jan	2021	661	657	4	99.4
Feb	2021	658	657	1	99.8
Mar	2021	666	657	9	98.6
Apr	2021	663	657	6	99.1
May	2021	657	657	0	100.0
Jun	2021	662	657	5	99.2
Jul	2021	662	657	5	99.2
Aug	2021	658	657	1	99.8

99.4

Oct 2021	653	657	4	99.4	
Nov 2021	649	657	8	98.8	
Dec 2021	646	657	11	98.3	


CFG Firm Transportation Service 2.1 (FTS-2.1)

In this section we will forecast monthly client counts for FTS-2.1. From the data given, these numbers are calculated by filtering for Tariff Schedule 'FTS21'.

Customer Time-Series Decomposition

Below we have the time-series decomposition where we can see a linear upward trend with a large decrease at the start of 2020. Likely due to COVID-19.

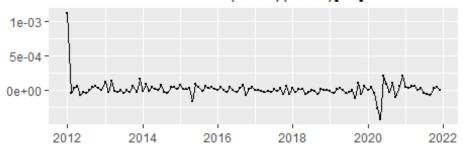
Decomposition of additive time series

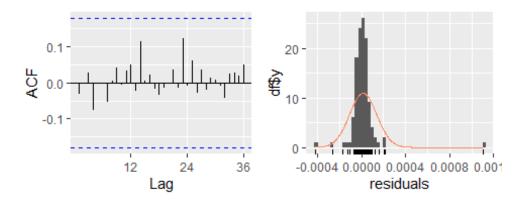
ARIMA Model: Expected Accuracy

Here we evaluate model accuracy by using cross-validation and rolling forecasts throughout the timeseries to determine our expected accuracy over a 24 Month period.

Below we see that the ARIMA model is consistently accurate with a 1-Month Forecast MAE of 4, and a 24-Month Forecast MAE of 38. It's worth noting that the Mean Error (ME) is also consistently negative, meaning the models over-predict the actual values.

		ME	RMSE	MAE
	_			
Forecast Horizon	1	-3	6	4
Forecast Horizon	2	-4	7	5
Forecast Horizon	3	-5	8	7
Forecast Horizon	4	-7	11	9
Forecast Horizon	5	-11	16	11
Forecast Horizon	6	-13	17	13
Forecast Horizon	7	-14	18	14

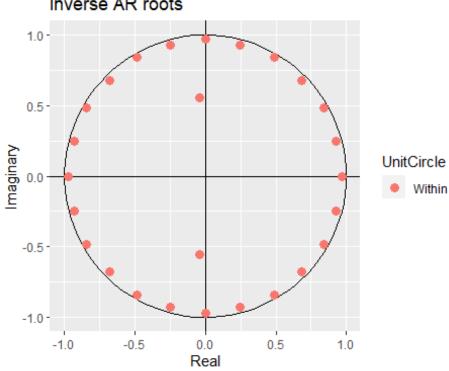

```
Forecast Horizon 8
                    -16
                          19
                              16
Forecast Horizon 9
                    -17
                          21
                              18
Forecast Horizon 10 -20
                          24
                              20
Forecast Horizon 11 -21
                          26
                              22
Forecast Horizon 12 -22
                          27
                              23
Forecast Horizon 13 -25
                          29
                              25
Forecast Horizon 14 -26
                          30
                              26
Forecast Horizon 15 -27
                              28
                          31
Forecast Horizon 16 -28
                          32
                              29
Forecast Horizon 17 -30
                              30
Forecast Horizon 18 -30
                              32
                          36
Forecast Horizon 19 -32
                          37
                              33
Forecast Horizon 20 -33
                              34
                          39
Forecast Horizon 21 -34
                          40
                              35
Forecast Horizon 22 -35
                          41
                              36
Forecast Horizon 23 -36
                          43
                              37
Forecast Horizon 24 -37
                          45
                              38
```


ARIMA Model: Diagnostics

Below we see that the model fails the Ljung-Box Test and therefore we can determine the data is independently distributed. In addition, we see from the graphs that the lagged values are not autocorrelated with one another, and the residuals are normally distributed. The unit circle below also showcases that we have a stationary model.

```
Series: x
ARIMA(2,1,0)(2,0,0)[12]
Box Cox transformation: lambda= -0.8999268
Coefficients:
                          sar1
                   ar2
          ar1
                                  sar2
      -0.0892 -0.3118 0.0861
                                0.4350
       0.0884
                0.0866 0.0807
                                0.1161
s.e.
                                 log likelihood=962.66
sigma^2 estimated as 1.608e-08:
AIC=-1915.32
              AICc=-1914.79
                               BIC=-1901.43
Training set error measures:
                                     MAE
                                               MPE
                                                       MAPE
                    ME
                           RMSE
                                                                 MASE
Training set 0.9673298 9.977111 5.503513 0.2398763 1.270684 0.3151535
Training set -0.008770986
```

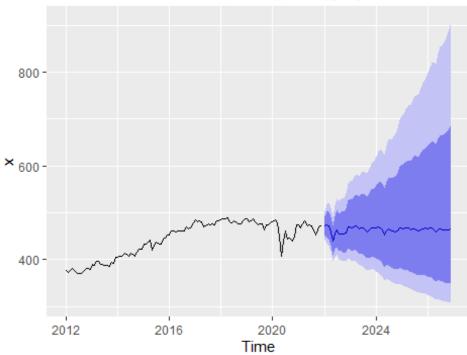
Residuals from ARIMA(2,1,0)(2,0,0)[12]


Ljung-Box test

data: Residuals from ARIMA(2,1,0)(2,0,0)[12]

 $Q^* = 6.8096$, df = 20, p-value = 0.9973


Model df: 4. Total lags used: 24


Inverse AR roots

ARIMA Model: 5 Year Forecast

Below we fit & forecast 60 months into the future using an ARIMA(2,1,0)(2,0,0) model.

2020-2021 Back-Testing Evaluation

In this section we will evaluate the accuracy of our ARIMA(2,1,0)(2,0,0) model on data from January, 2020 through December 2021 by training on the previous data and forecasting the next 24 months. In particular we are interested on how close the forecasted accuracy follows our cross-validated results shown previously. Also, an area of interest is how well the model performs during the 2020 pandemic.

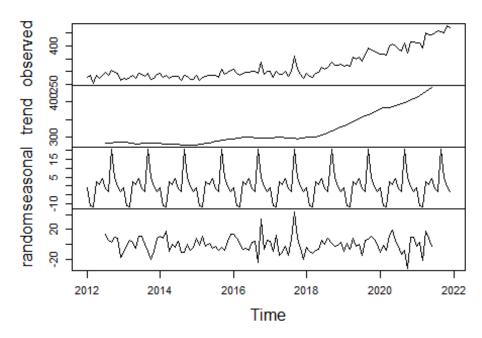
Residential Client Backtesting: 2020-2021

Back-Test Results

Below we see that the model performs roughly as expected for a "normal" year of 2019 with a high degree in accuracy. However, there is a large error in the beginning of 2020 likely due to the pandemic. Although, in the later months of 2020 customers started returning and we see the accuracy go back to expected levels.

[1] "	'0ver	rall Mea	an Absolut	te Error: 25.33	3"
[1] "	'0ver	rall Mea	an Accurac	cy: 94.38"	
		A a.t	F	Abaaluta Faaa	
				Absolute_Error	-
Jan 2		481	481	(
Feb 2		485	481	4	
Mar 2	2020	479	483	4	1 99.2
Apr 2	2020	449	485	36	92.0
May 2	2020	408	479	73	L 82.6
Jun 2		439	479	46	90.9
Jul 2		460	481	21	
Aug 2		443	480	37	
Sep 2		446	480	34	
Oct 2		440	483	43	
Nov 2	020	447	486	39	91.3
Dec 2	020	474	489	15	96.8
Jan 2	021	475	492	17	96.4
Feb 2	021	468	492	24	94.9
Mar 2		476	494	18	
Apr 2		483	495	12	
May 2		472	489	17	
Jun 2		474	489	15	
Jul 2		472	491	19	
Aug 2		464	490	26	
Sep 2		453	490	37	

Oct 2021	463	492	29	93.7
Nov 2021	471	495	24	94.9
Dec 2021	472	498	26	94.5


FPUC Residential Standby Generator Service (FPU-RSGS)

In this section we will forecast monthly client counts for FPU-RSGS. From the data given, these numbers are calculated by filtering for Tariff Schedule 'RS-GS'.

Customer Time-Series Decomposition

Below we have the time-series decomposition where we can see a linear upward trend at the start of 2018.

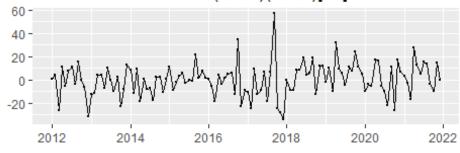
Decomposition of additive time series

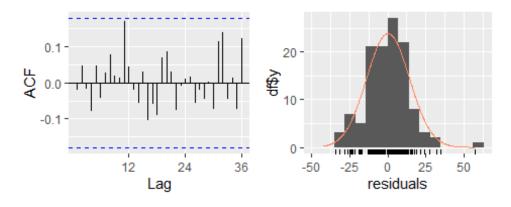
ARIMA Model: Expected Accuracy

Here we evaluate model accuracy by using cross-validation and rolling forecasts throughout the timeseries to determine our expected accuracy over a 24 Month period.

Below we see that the ARIMA model is consistently accurate with a 1-Month Forecast MAE of 15, and a 24-Month Forecast MAE of 68. It's worth noting that the Mean Error (ME) is also consistently positive, meaning the models under-predict the actual values.

		ME	RMSE	MAE
Composet Heni-on	1	4	21	1 -
Forecast Horizon	Т	4	21	12
Forecast Horizon	2	6	23	17
Forecast Horizon	2	۵	22	10
Forecast Horizon	4	10	26	21
Forecast Horizon	5	13	27	22
Forecast Horizon				
Forecast Horizon	О	10	20	23
Forecast Horizon	7	17	30	24

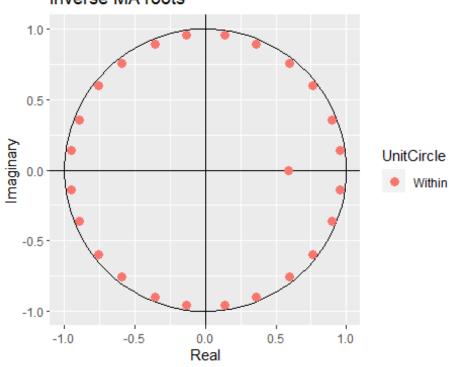

```
Forecast Horizon 8 19
                        31
                            25
                    22
Forecast Horizon 9
                        33
                            27
Forecast Horizon 10 21
                            28
                         33
Forecast Horizon 11 24
                         36 30
Forecast Horizon 12 27
                         39 32
Forecast Horizon 13 31
                        42 34
Forecast Horizon 14 34
                        45
                            36
                            39
Forecast Horizon 15 36
                        47
Forecast Horizon 16 41
                         51 43
Forecast Horizon 17 44
                         52 46
Forecast Horizon 18 48
                        55 49
Forecast Horizon 19 51
                         57
                            51
Forecast Horizon 20 55
                        61 55
Forecast Horizon 21 58
                        64 58
Forecast Horizon 22 61
                        66 61
Forecast Horizon 23 65
                        69 65
Forecast Horizon 24 68
                        73 68
```


ARIMA Model: Diagnostics

Below we see that the model fails the Ljung-Box Test and therefore we can determine the data is independently distributed. In addition, we see from the graphs that the lagged values are not autocorrelated with one another, and the residuals are normally distributed. The unit circle below also showcases that we have a stationary model.

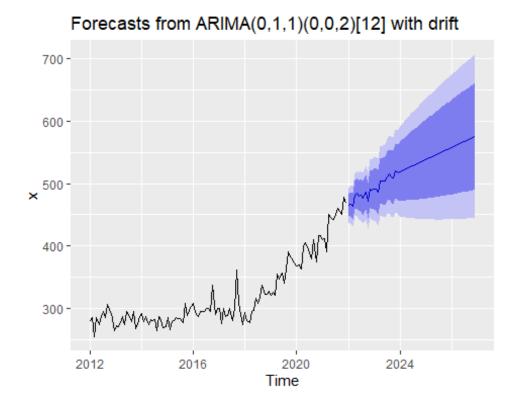
```
Series: x
ARIMA(0,1,1)(0,0,2)[12] with drift
Coefficients:
                         sma2
                                drift
          ma1
                 sma1
      -0.5923 0.1913 0.4248 1.5996
       0.0737 0.0865 0.1074 0.8087
s.e.
sigma^2 estimated as 204.3: log likelihood=-486.04
             AICc=982.61
AIC=982.08
                           BIC=995.98
Training set error measures:
                           RMSE
                                    MAE
                                               MPE
                                                       MAPE
                                                                 MASE
                    ME
Training set 0.1573346 13.99163 10.7337 -0.2049688 3.368332 0.4283961
                    ACF1
Training set -0.02021047
```

Residuals from ARIMA(0,1,1)(0,0,2)[12] with drift


Ljung-Box test

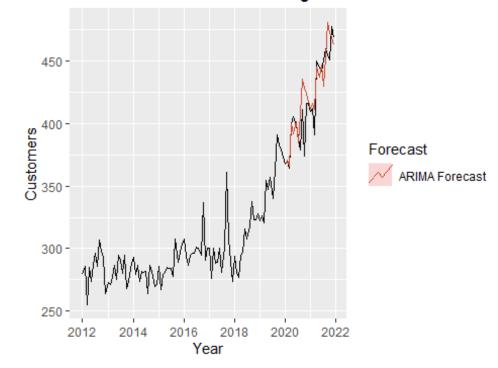
data: Residuals from ARIMA(0,1,1)(0,0,2)[12] with drift

 $Q^* = 13.527$, df = 20, p-value = 0.8536


Model df: 4. Total lags used: 24

Inverse MA roots

ARIMA Model: 5 Year Forecast


Below we fit & forecast 60 months into the future using an ARIMA(0,1,1)(2,0,0) model.

2020-2021 Back-Testing Evaluation

In this section we will evaluate the accuracy of our ARIMA(0,1,1)(0,0,2) model on data from January, 2020 through December 2021 by training on the previous data and forecasting the next 24months. In particular we are interested on how close the forecasted accuracy follows our cross-validated results shown previously. Also, an area of interest is how well the model performs during the 2020 pandemic.

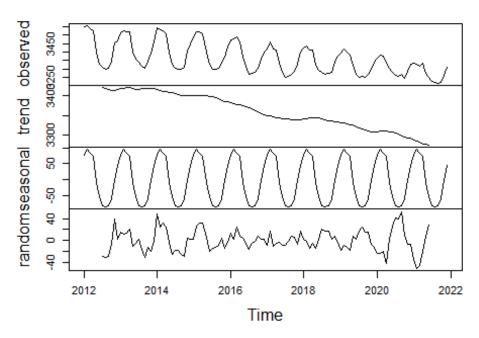
Residential Client Backtesting: 2020-2021

Backtest Results

Below we see that the model performs well at first but then the accuracy deteriorates due to the explosion of customers that begins roughly at the start of our forecast.

	[1] "0v	erall Me	an Absolu	te Error: 11.62	11
	1] "0v	erall Me	an Accura	cy: 97.17"	
		∆ctua1	Forecast	Absolute_Error	Accuracy
J	an 202			1	99.7
	eb 202			1	99.7
	lar 202			2	
	pr 202			1	99.7
	lay 202			14	96.6
	un 202			3	99.2
J	ul 202	389	385	4	99.0
Δ	ug 202	379	408	29	92.3
S	Sep 202	9 411	. 436	25	93.9
C	ct 202	ð 374	428	54	85.6
Ν	lov 202	ð 416	424	8	98.1
D	ec 202	ð 416	418	2	99.5
J	an 202	1 410	412	2	99.5
	eb 202			4	99.0
	lar 202			20	
	pr 202			5	98.9
	lay 202			8	98.2
	lun 202			5	98.9
	ul 202			21	
	ug 202			7	
	ep 202			26	
C	ct 202	1 451	. 473	22	95.1

Nov 2021	478	469	9	98.1		
Dec 2021	469	463	6	98.7		


CFG Firm Transportation Service A & B (FTS-A & FTS-B)

In this section we will forecast monthly client counts for FTS-A & FTS-B from the data given, these numbers are calculated by filtering for Tariff Schedule 'FTS-A & FTS-B'.

Customer Time-Series Decomposition

Below we have the time-series decomposition where we can see a linear upward trend at the start of 2018.

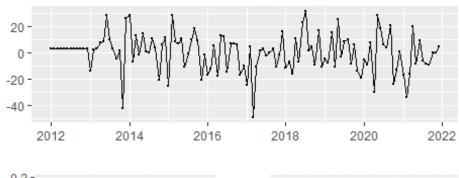
Decomposition of additive time series

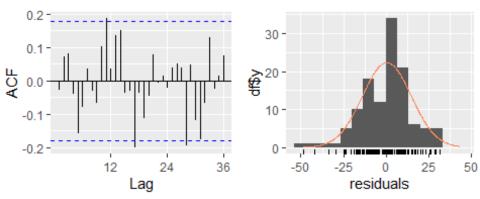
ARIMA Model: Expected Accuracy

Here we evaluate model accuracy by using cross-validation and rolling forecasts throughout the timeseries to determine our expected accuracy over a 24 Month period.

Below we see that the ARIMA model is consistently accurate with a 1-Month Forecast MAE of 13, and a 24-Month Forecast MAE of 27. It's worth noting that the Mean Error (ME) is also consistently positive, meaning the models under-predict the actual values.

		ME	RMSE	MAE
Forecast Horizon	1	1	16	13
Forecast Horizon	2	3	20	16
Forecast Horizon	3	4	24	19
Forecast Horizon	4	5	23	18
Forecast Horizon	5	7	23	19
Forecast Horizon	6	8	22	18
Forecast Horizon	7	9	22	18
Forecast Horizon	8	10	23	18

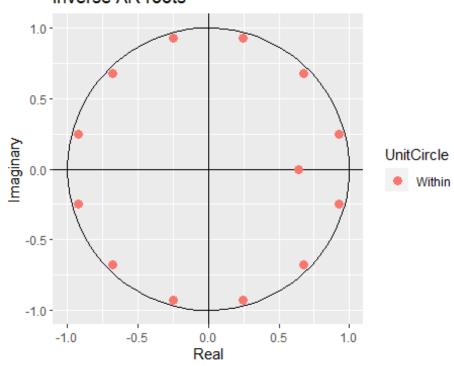

```
Forecast Horizon 9 11
                         24
                            19
Forecast Horizon 10 11
                         22
                            18
Forecast Horizon 11 11
                         22
                            18
Forecast Horizon 12 11
                         23
                            18
Forecast Horizon 13 12
                         29
                            24
Forecast Horizon 14 12
                         34
                            28
Forecast Horizon 15 11
                         38 31
                         38
                            31
Forecast Horizon 16 12
Forecast Horizon 17 12
                         37
                            31
Forecast Horizon 18 13
                         36
                            30
Forecast Horizon 19 12
                         34 29
                         33 27
Forecast Horizon 20 11
Forecast Horizon 21 10
                         31 26
Forecast Horizon 22 9
                         31 26
Forecast Horizon 23
                    9
                         31
                            26
Forecast Horizon 24 8
                         33 27
```


ARIMA Model: Diagnostics

Below we see that the model fails the Ljung-Box Test and therefore we can determine the data is independently distributed. In addition, we see from the graphs that the lagged values are not autocorrelated with one another, and the residuals are normally distributed. The unit circle below also showcases that we have a stationary model.

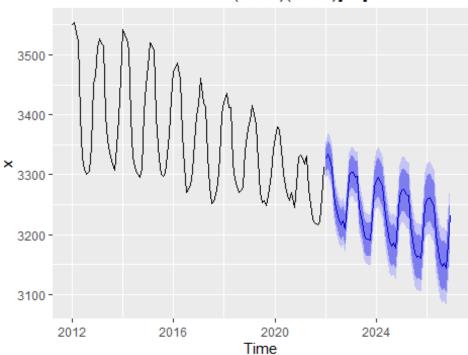
```
Series: x
ARIMA(1,0,0)(1,1,0)[12] with drift
Coefficients:
                         drift
         ar1
                 sar1
      0.6412 -0.6003
                      -1.3401
      0.0750
               0.0820
                        0.2152
s.e.
sigma^2 estimated as 233: log likelihood=-448.71
             AICc=905.82
                           BIC=916.16
AIC=905.43
Training set error measures:
                           RMSE
                                     MAE
                                                MPE
                                                         MAPE
                                                                   MASE
                    ME
Training set 0.4033994 14.27886 10.95525 0.01194571 0.325548 0.5026199
                    ACF1
Training set -0.02871998
```

FPUC-Rate 0625614 Residuals from ARIMA(1,0,0)(1,1,0)[12] with drift

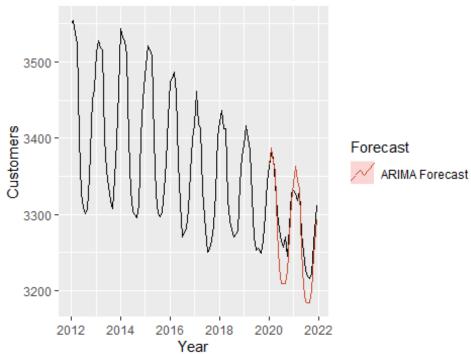

Ljung-Box test

data: Residuals from ARIMA(1,0,0)(1,1,0)[12] with drift

 $Q^* = 27.867$, df = 21, p-value = 0.144


Model df: 3. Total lags used: 24

Inverse AR roots


ARIMA Model: 5 Year Forecast

Forecasts from ARIMA(1,0,0)(1,1,0)[12] with drift

2020-2021 Back-Testing Evaluation

Residential Client Backtesting: 2020-2021

Backtest Results

Below we see that the model performs well at first but then the accuracy deteriorates due to the explosion of customers that begins roughly at the start of our forecast.

```
[1] "Overall Mean Absolute Error: 25.79"
```

[1] "Overall Mean Accuracy: 99.2"

	_			
	Actual	Forecast	Absolute_Error	-
1	3363	3365	2	99.9
2	3380	3387	7	99.8
3	3375	3369	6	99.8
4	3341	3358	17	99.5
5	3302	3278	24	99.3
6	3281	3230	51	98.4
7	3265	3210	55	98.3
8	3257	3209	48	98.5
9	3271	3209	62	98.1
10	3245	3225	20	99.4
11	3284	3271	13	99.6
12	3329	3317	12	99.6
13	3332	3340	8	99.8
14	3328	3363	35	98.9
15	3318	3344	26	99.2
16	3331	3333	2	99.9
17	3275	3253	22	99.3
18	3250	3206	44	98.6
19	3227	3185	42	98.7
20	3219	3184	35	98.9
21	3216	3184	32	99.0
22	3222	3200	22	99.3
23	3262	3247	15	99.5
24	3312	3293	19	99.4