

FILED 5/24/2024 DOCUMENT NO. 04171-2024 FPSC - COMMISSION CLERK

Dianne M. Triplett DEPUTY GENERAL COUNSEL

May 24, 2024

VIA OVERNIGHT MAIL

Mr. Adam J. Teitzman, Commission Clerk Office of Commission Clerk Florida Public Service Commission 2540 Shumard Oak Boulevard Tallahassee, Florida 32399-0850

Re: Docket 20240025-EI, Petition for Rate Increase by Duke Energy Florida, LLC

Dear Mr. Teitzman,

Please find enclosed for electronic filing on behalf of Duke Energy Florida, LLC ("DEF'), DEF's Request for Confidential Classification for certain information provided in its Responses to OPC's Third Set of Interrogatories (Nos. 63-70) and Third Request for Production of Documents (Nos. 29-32). The filing includes the following:

- DEF's Request for Confidential Classification
- Slip-sheet for confidential Exhibit A
- Redacted Exhibit B (two copies)
- Exhibit C (justification matrix), and
- Exhibit D (affidavits of Brian Lloyd, Reginald Anderson, Hans Jacob, Vanessa Goff & Ed Scott)

DEF's confidential Exhibit A that accompanies the above-referenced was submitted with DEF's Notice of Intent to Request Confidential Classification on May 3, 2024, under separate cover.

Thank you for your assistance in this matter. Please feel free to call me at (727) 820-4692 should you have any questions concerning this filing.

Respectfully,

/s/ Dianne M. Triplett

Dianne M. Triplett

DMT/mw Attachments

CERTIFICATE OF SERVICE Docket No. 20240025-EI

I HEREBY CERTIFY that a true and correct copy of the foregoing has been furnished by electronic mail this 24th day of May, 2024, to the following:

<u>/s/ Dianne M. Triplett</u> Dianne M. Triplett

Jennifer Crawford / Major Thompson /	Walt Trierweiler / Charles J. Rehwinkel /
Shaw Stiller	Mary Wessling / Austin Watrous
Office of General Counsel	Office of Public Counsel
Florida Public Service Commission	111 W. Madison St., Rm 812
2540 Shumard Oak Blvd.	Tallahassee, FL 32399
Tallahassee, FL 32399-0850	rehwinkel.charles@leg.state.fl.us
JCrawfor@psc.state.fl.us	trierweiler.walt@leg.state.fl.us
MThompso@psc.state.fl.us	watrous.austin@leg.state.fl.us
SStiller@psc.state.fl.us	wessling.mary@leg.state.fl.us
discovery-gcl@psc.state.fl.us	
Jon C. Moyle, Jr. / Karen A. Putnal	Bradley Marshall / Jordan Luebkemann
Moyle Law Firm, P.A.	Earthjustice
FIPUG	LULAC & FL Rising
118 North Gadsden Street	111 S. Martin Luther King Jr. Blvd.
Tallahassee, Florida 32301	Tallahassee, Florida 32301
jmoyle@moylelaw.com	bmarshall@earthjustice.org
kputnal@moylelaw.com	jluebkemann@earthjustice.org
<u>kputhal@moyletaw.com</u>	<u>Jucokemann(a)cartujustice.org</u>
Tony Mendoza / Patrick Woolsey	Robert Scheffel Wright / John T. LaVia, III
Sierra Club	Gardner, Bist, Bowden, Dee, LaVia, Wright, Perry &
2101 Webster Street Suite 1300	Harper, P.A.
Oakland, CA 94612	Florida Retail Federation
tony.mendoza@sierraclub.org	1300 Thomaswood Drive
patrick.woolsey@sierraclub.org	Tallahassee, Florida 32308
patrick.woorsey(@sterractub.org	schef@gbwlegal.com
	jlavia@gbwlegal.com
	<u>Jiavia(0)gowiegai.com</u>
Sari Amiel	Peter J. Mattheis / Michael K. Lavanga /
Sierra Club	Joseph R. Briscar
50 F St. NW, Eighth Floor	Stone Mattheis Xenopoulos & Brew, PC
Washington, DC 20001	NUCOR
sari.amiel@sierraclub.org	1025 Thomas Jefferson Street, NW
<u>san.amen@sierraetub.org</u>	Suite 800 West
	Washington, DC 20007-5201
James W. Braw / Laura Wymn Dalear /	pjm@smxblaw.com
James W. Brew / Laura Wynn Baker /	pjm@smxblaw.com mkl@smxblaw.com
Sarah B. Newman	
Stone Mattheis Xenopoulos & Brew, PC	jrb@smxblaw.com
PCS Phosphate-White Springs	
1025 Thomas Jefferson Street, NW	William C. Garner
Suite 800 West	Law Office of William C. Garner, PLLC
Washington, DC 20007-5201	SACE
jbrew@smxblaw.com	3425 Bannerman Road
lwb@smxblaw.com	Unit 105, No. 414
sbn@smxblaw.com	Tallahassee, FL 32312
	bgarner@wcglawoffice.com

BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION

In re: Petition by Duke Energy Florida, LLC for rate increase

DOCKET NO. 20240025-EI

Dated: May 24, 2024

DUKE ENERGY FLORIDA, LLC'S REQUEST FOR CONFIDENTIAL CLASSIFICATION

Duke Energy Florida, LLC ("DEF" or "Company"), pursuant to Section 366.093, Florida Statutes (F.S.), and Rule 25-22.006, Florida Administrative Code (F.A.C.), submits this Request for Confidential Classification ("Request") for certain information contained in its Response to OPC's Third Request for Production of Documents (Nos. 29-32) and Third Set of Interrogatories (Nos. 63-70). DEF's Notice of Intent to Request Confidential Classification was filed May 3, 2024. This Request is timely. *See* Rule 25-22.006(3)(a)1, E.A.C. In support of this Request, DEF states:

1. Documents responsive to OPC's Third Request for Production of Documents, specifically, Questions 29 and 31, and OPC's Third Set of Interrogatories, specifically, Questions 65 and 68, contain "confidential proprietary business information" under Section 366.093(3), F.S.

2. The following exhibits are included with this request:

(a) Sealed Composite Exhibit A is a package containing unredacted copies of all documents for which DEF seeks confidential treatment. Composite Exhibit A was submitted separately in a sealed envelope labeled "CONFIDENTIAL" on May 3, 2024. In the unredacted versions, the information asserted to be confidential is highlighted in yellow.

(b) Composite Exhibit B is a package containing two copies of redacted versions of the documents for which DEF requests confidential classification. The specific information for

which confidential treatment is requested has been blocked out by opaque marker or other means.

(c) Exhibit C is a table which identifies by page and line the information for which DEF seeks confidential classification and the specific statutory bases for seeking confidential treatment.

(d) Exhibit D includes affidavits of Edward L. Scott, Brian M. Lloyd, Hans Jacob,
 Reginald D. Anderson, and Vanessa Goff, attesting to the confidential nature of the information
 identified in Exhibit C.

3. As indicated in Exhibits C and D, the information for which DEF requires confidential classification is "proprietary confidential business information" within the meaning of § 366.093(3), F.S. Specifically:

(a) The information at issue in DEF's responses to OPC's Third Request for Production of Documents, Questions 29 and 31, and OPC's Third Set of Interrogatories, Questions 65 and 68, include pricing information relating to contracts for goods and services. Disclosure of this non-public information could alter contractors' behavior to the detriment of DEF, its customers, and its affiliates. Thus, absent confidential classification, DEF and its affiliates' efforts to contract for goods and services on favorable terms may be impaired.

(b) The information at issue in DEF's responses to OPC's Third Request for Production of Documents, Question 29, and OPC's Third Set of Interrogatories, Question 65, includes internal sensitive business information regarding future projects and capital investments. That information relates to DEF's competitive business interests, and, absent confidential classification, disclosure of that information would impair DEF's ability to compete in the marketplace.

(c) The information at issue in DEF's response to OPC's Third Set of

Interrogatories, Question 68, includes details about the location and nature of future transmission planning projects. Disclosure of that information could pose significant security risks to DEF, its customers, and the transmission grid.

4. The information identified in Exhibits A and C is intended to be and is treated as confidential by DEF. *See* Exhibit D. Further, that information has not been disclosed to the public. *See* Exhibit D.

5. It follows that the information identified in Exhibit A and C is proprietary confidential information, which would cause harm to DEF and ratepayers if disclosed and which is exempt from disclosure under the Public Records Act pursuant to § 366.093(3), F.S.

6. Accordingly, DEF requests that the information identified in Exhibit A be classified as "proprietary confidential business information" within the meaning of section 366.093(3), F.S., that the information remain confidential for a period of at least 18 months as provided in section 366.093(4) F.S., and that the information be returned as soon as it is no longer necessary for the Commission to conduct its business.

WHEREFORE, for the foregoing reasons, DEF respectfully requests that this Request be granted.

RESPECTFULLY SUBMITTED this 24th day of May, 2024.

<u>/s/Dianne M. Triplett</u>

DIANNE TRIPLETT Deputy General Counsel 299 1st Avenue North St. Petersburg, Florida 33701 T: (727) 820-4692 E: dianne.triplett@duke-energy.com

MATTHEW R. BERNIER

Associate General Counsel 106 East College Avenue, Suite 800 Tallahassee, Florida 32301

T: (850) 521-1428 E: <u>matt.bernier@duke-energy.com</u>

STEPHANIE A. CUELLO

Senior Counsel 106 East College Avenue, Suite 800 Tallahassee, Florida 32301 T: (850) 521-1425 E: <u>stephanie.cuello@duke-energy.com</u> FLRegulatoryLegal@duke-energy.com

Attorneys for Duke Energy Florida, LLC

CERTIFICATE OF SERVICE Docket No. 20240025-EI

I HEREBY CERTIFY that a true and correct copy of the foregoing has been furnished via electronic mail to the following this 24th day of May, 2024.

Jennifer Crawford / Major Thompson /	Walt Trierweiler / Charles J. Rehwinkel /
Shaw Stiller	Mary Wessling / Austin Watrous
Office of General Counsel	Office of Public Counsel
Florida Public Service Commission	111 W. Madison St., Rm 812
2540 Shumard Oak Blvd.	Tallahassee, FL 32399
Tallahassee, FL 32399-0850	<u>rehwinkel.charles@leg.state.fl.us</u>
JCrawfor@psc.state.fl.us	trierweiler.walt@leg.state.fl.us
MThompso@psc.state.fl.us	watrous.austin@leg.state.fl.us
SStiller@psc.state.fl.us	wessling.mary@leg.state.fl.us
Jon C. Moyle, Jr. / Karen A. Putnal	Bradley Marshall / Jordan Luebkemann
Moyle Law Firm, P.A.	Earthjustice
FIPUG	LULAC & FL Rising
118 North Gadsden Street	111 S. Martin Luther King Jr. Blvd.
Tallahassee, Florida 32301	Tallahassee, Florida 32301
jmoyle@moylelaw.com	<u>bmarshall@earthjustice.org</u>
kputnal@moylelaw.com	<u>jluebkemann@earthjustice.org</u>
Tony Mendoza / Patrick Woolsey Sierra Club 2101 Webster Street Suite 1300 Oakland, CA 94612 tony.mendoza@sierraclub.org patrick.woolsey@sierraclub.org	Robert Scheffel Wright / John T. LaVia, III Gardner, Bist, Bowden, Dee, LaVia, Wright, Perry & Harper, P.A. Florida Retail Federation 1300 Thomaswood Drive Tallahassee, Florida 32308 <u>schef@gbwlegal.com</u> jlavia@gbwlegal.com
Sari Amiel Sierra Club 50 F St. NW, Eighth Floor Washington, DC 20001 sari.amiel@sierraclub.org James W. Brew / Laura Wynn Baker /	Peter J. Mattheis / Michael K. Lavanga / Joseph R. Briscar Stone Mattheis Xenopoulos & Brew, PC NUCOR 1025 Thomas Jefferson Street, NW Suite 800 West Washington, DC 20007-5201 pjm@smxblaw.com
Sarah B. Newman	mkl@smxblaw.com
Stone Mattheis Xenopoulos & Brew, PC	jrb@smxblaw.com
PCS Phosphate-White Springs	William C. Garner
1025 Thomas Jefferson Street, NW	Law Office of William C. Garner, PLLC
Suite 800 West	SACE
Washington, DC 20007-5201	3425 Bannerman Road
jbrew@smxblaw.com	Unit 105, No. 414
lwb@smxblaw.com	Tallahassee, FL 32312
sbn@smxblaw.com	bgarner@wcglawoffice.com

/s/ Dianne M. Triplett Attorney

Exhibit A

"CONFIDENTIAL" (filed under separate cover on May 3, 2024)

Exhibit B

REDACTED (copy-one)

Q65

REDACTED

DOCUMENTS BEARING BATES NUMBERS 20240025-OPCROG3-00016599 THROUGH 20240025-OPCROG3-00016607 ARE REDACTED IN THEIR ENTIRETY

Q65

REDACTED DOCUMENTS BEARING BATES NUMBERS 20240025-OPCROG3-00016684 THROUGH 20240025-OPCROG3-00016695 ARE REDACTED IN THEIR ENTIRETY

Q65

REDACTED DOCUMENTS BEARING BATES NUMBERS 20240025-OPCROG3-00016741 THROUGH 20240025-OPCROG3-00016752 ARE REDACTED IN THEIR ENTIRETY

Q65

REDACTED DOCUMENTS BEARING BATES NUMBERS 20240025-OPCROG3-00016757 through 20240025-OPCROG3-00016789 ARE REDACTED IN THEIR ENTIRETY

Q65

REDACTED

DOCUMENTS BEARING BATES NUMBERS 20240025-OPCROG3-00016852 through 20240025-OPCROG3-00017030 ARE REDACTED IN THEIR ENTIRETY

Q65

REDACTED DOCUMENTS BEARING BATES NUMBERS 20240025-OPCROG3-00017033 and 20240025-OPCROG3-00017034 ARE REDACTED IN THEIR ENTIRETY

Q65

REDACTED DOCUMENTS BEARING BATES NUMBERS 20240025-OPCROG3-00017112 through 00020240025-OPCROG3-00017122 ARE REDACTED IN THEIR ENTIRETY

REDACTED DOCUMENTS BEARING BATES NUMBER 20240025-OPCROG3-00017791 IS REDACTED IN ITS ENTIRETY

Estimate Review Summary	/ Form
-------------------------	--------

Project Name:	
Stategic Category:	
Project Zone:	

CLEARWATER Substation Optimization FL S Coastal Zone

Effort Description:

Effort Description: Clearwater Class 3 Estimate Additional Notes:

• (Cost Estimate is based on Actuals to Date (Sept 2022 thru March 2023) + ETC which ties to the April Forecast submission.
• (Contingency is based on ETC data only.

Estimate Requested by: Miriam Tucker Estimate Prepared by: Marcellus Goree J	Estimate #: Approving Org: Project Ranking:	2023-00001-DE Customer Deliv White	Estimate Prepara	ition Date:	23-Apr-23
Estimate Gate	Estimate Range	I	Estimate Uncertainty	Estimate Risk	Escalation & Contingency TOTAL
Build	Class 3 (-10% to 20	1%)	5%	5%	10%

REDACTED

Estimate Summary: CLEARWATER

Sum of Breakdown	Column Labels					Most Likely \$	Min \$'s	Max \$'s
						With	-10%	20%
Row Labels	CapEx	Removal	0&M	Grand Total	Units UOM	Contingency	-10%	20%
Feeder Hardening					ile	\$10,964,352	\$9,867,916	\$11,841,499
Lateral Hardening OH					ile	\$8,622,556	\$7,760,300	\$9,312,360
Lateral Hardening UG					HMR	\$443,606	\$399,245	\$479,094
SOG: C&C					econductor Miles	\$8,453,868	\$7,608,481	\$9,130,177
SOG: SEGA					OS, PAD, Reclosers	\$7,932,900	\$7,139,610	\$8,567,532
Planned Pole Replace					ole	\$1,887,549	\$1,698,794	\$2,038,553
Switchgear					ach	\$767,556	\$690,800	\$828,960
Underground Cable Replacement					eet	\$120,446	\$108,401	\$130,081
Transformer					ransformer	\$0	\$0	\$0
Fuse Replacement					ach	\$2,966,561	\$2,669,905	\$3,203,886
Riser/Term Pole Retrofit					ach	\$3,712,841	\$3,341,557	\$4,009,868
Maintain CAP					-	\$26,000	\$23,400	\$28,080
Proj OM Maintain					-	\$40,000	\$36,000	\$43,200
POWER UP O&M Alloc.					-	\$0	\$0	\$0
Estimate Contingency					-	\$4,316,057	\$3,884,451	\$4,661,341
Grand Total	\$43,485,373	\$5,785,539	\$983,378	\$50,254,290		\$50,254,290	\$45,228,860	\$54,274,631
Please refer to tab "EAC Cashflow D								
Substation	Approved		ariance to FA		Supplemental PFA amount:	\$	47,430,573	
		\$ 50,254,290 \$						

Droject #	0C-L-27				
Project #: Need Date:	12/31/24				
Distribution Multiplier:	1.194		1.0859		
stribution estimates	Units	Budget	1,0005		
new 795 feeder	-	\$ - \$ -			
stall new 336 feeder		\$ -			
uble circuit 795		\$ -			
Id second 795 circuit to existing feeder		s -			
nderbuild feeder on existing transmission		s -			
econductor 336 with 795 feeder		s -			
tall new 3 phase 1/0		\$ -			
ocate existing 795 feeder		s -			
ocate existing 336 feeder		s -			
elocate 3 phase 1/0		s -			
emove 3 phase line		s -			
stall Viper recloser		s -			
stall hydraulic recloser		s -			
stall set of regulators		s -			
stall 1200 kvar capacitor		\$ -			
stall 600 amp switch	-	\$ -			
stall 1000kcmil ug feeder - directional bore	2,000	\$ 203,063 \$ -			
istall 1000kcmil ug feeder - open trench		\$ -			
stall terminal pole with switches	-	s -			
stall 1/0 1PH ug directional bore		\$ - \$ - \$ 47,780 \$ -			
tall PME switchgear	2	\$ 47,780			
stall Trayer switchgear		s -			
stall Vista switchgear		s -			
stall Four Way Enclosure		s -			
baqueous 1000 kcmil cable		\$ -			
urveying (\$3,119/mile)		s -			
ree Trimming (\$9,154/mile)		s -			
DT (\$14,213/mile)		s - s - s -			
		\$ 250,843			
roject total (distribution)		+			
		•,			
	Units	Budget	Finance View CAPEX	Contingency Cap Pool,Indirects&Contingency	Direct Cost EAC without contingency
roject total (distribution) ubstation estimates w sub - 1-30 with 2 feeders	Units 1	Budget \$ 5,950,000	Finance View CAPEX Old New w/	Contingency Cap Pool,Indirects&Contingency	Direct Cost EAC without contingency
roject total (distribution) ubstation estimates w sub - 1-30 with 2 feeders d 1-20 mva (assumed redeployed unit)	Units	Budget \$ 5,950,000 \$		Contingency Cap Pool,Indirects&Contingency	Direct Cost EAC without contingency
oject total (distribution) Ibstation estimates w sub - 1-30 with 2 feeders d 1-30 mva (assumed redeployed unit) d 1-30 mva	Units 1	Budget \$ 5,950,000 \$ -		Contingency Cap Pool,Indirects&Contingency	Direct Cost EAC without contingency
oject total (distribution) bstation estimates w sub - 1-30 with 2 feeders 1 1-20 mva (assumed redeployed unit) 1 1-30 mva 1 5-50 mva	Units 1	Budget \$ 5,950,000 \$ - \$ - \$		Contingency Cap Pool,Indirects&Contingency	Direct Cost EAC without contingency
oject total (distribution) bstation estimates w sub - 1-30 with 2 feeders 1 + 20 mva 1 + 30 mva 1 + 50 mva 1 single breaker	Units 1 -	Budget \$ 5,950,000 \$ - \$ - \$ - \$ - \$ -		Contingency Cap Pool,Indirects&Contingency	Direct Cost EAC without contingency
ject total (distribution) ostation estimates rsub - 1-30 with 2 feeders 1-20 mva (assumed redeployed unit) 1-30 mva 1-50 mva single breaker feeder position to breaker and a half	Units 1 - -	Budget \$ 5,950,000 \$ - \$ - \$ - \$ - \$ - \$ -		Contingency Cap Pool,Indirects&Contingency	Direct Cost EAC without contingency
oject total (distribution) bstation estimates 1-20 mva (assumed redeployed unit) 1-20 mva 1-50 mva single breaker feeder position to breaker and a half metaldad breaker (3 breakers)	Units 1 - -	Budget \$ 5,950,000 \$ - \$ - \$ - \$ - \$ -		Contingency Cap Pool,Indirects&Contingency	Direct Cost EAC without contingency
ect total (distribution) station estimates sub - 1-30 with 2 feeders I-20 mva (assumed redeployed unit) I-30 mva I-50 mva ingle breaker single breaker seder position to breaker and a half metalclad breaker (3 breakers) mission costs (per mile, not including	- - -	Budget \$ 5,950,000 \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -		Contingency Cap Pool,Indirects&Contingency	Direct Cost EAC without contingency
ject total (distribution) postation estimates 1-20 mva (assumed redeployed unit) 1-30 mva 1-50 mva single breaker feeder position to breaker and a half metalolad breaker (3 breakers) ismission costs (per mile, not including rights)	Units 1 - 2.0	Budget \$ 5,950,000 \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -		Contingency Cap Pool,Indirects&Contingency	Direct Cost EAC without contingency
ject total (distribution) postation estimates //sub - 1-30 with 2 feeders 1-20 mva (assumed redeployed unit) 1-30 mva 1-50 mva single breaker feeder position to breaker and a half metalcal breaker (3 breakers) ismission costs (per mile, not including rights) neutral reactors	- - -	Budget \$ 5,950,000 \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -		Contingency Cap Pool,Indirects&Contingency	Direct Cost EAC without contingency
oject total (distribution) bstation estimates 1-20 mva (assumed redeployed unit) 1-30 mva 1-50 mva 1-50 prva 1-50 p	- - -	Budget \$ 5,950,000 \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -		Contingency Cap Pool,Indirects&Contingency	Direct Cost EAC without contingency
oject total (distribution) bstation estimates w sub - 1-30 with 2 feeders J 1-20 mva (assumed redeployed unit) 1 1-30 mva 3 1-50 mva 3 ingle breaker 1 feeder position to breaker and a half metalcal breaker (3 breakers) nsmission costs (per mile, not including d rights) 1 neutral reactors DL (per breaker) w RDDI Upgrade	 	Budget \$ 5.950,000 \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -		Contingency Cap Pool,Indirects&Contingency	Direct Cost EAC without contingency
oject total (distribution) ubstation estimates w sub - 1-30 with 2 feeders d 1-20 mva (assumed redeployed unit) d 1-30 mva d 1-50 mva d 1-50 mva d ingte breaker d feeder position to breaker and a half d metalcala breaker (3 breakers) ansmission costs (per mile, not including d rights) d neutral reactors DI- (per breaker) w RUDI Upgrade	 	Budget \$ 5,950,000 \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -		Contingency Cap Pool,Indirects&Contingency	Direct Cost EAC without contingency
oject total (distribution) Ibstation estimates w sub - 1-30 with 2 feeders d 1-20 mva (assumed redeployed unit)	 	Budget \$ 5.950,000 \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -		Contingency Cap Pool,Indirects&Contingency	Direct Cost EAC without contingency
Dipect total (distribution) bstation estimates v sub - 1-30 with 2 feeders 1 -20 mva (assumed redeployed unit) 1 -30 mva 1 -50 mva isinge breaker 1 feeder position to breaker and a half metalcal breaker (3 breakers) nsmission costs (per mile, not including trights) incutral reactors D- (per breaker) v RUDI Upgrade	 	Budget \$ 5,950,000 \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -		Contingency Cap Pool,Indirects&Contingency	Direct Cost EAC without contingency
ect total (distribution) station estimates sub - 1-30 with 2 feeders 1-20 mva 1-30 mva 1-50 mva ingle breaker feeder position to breaker and a half metalded breaker (3 breakers) smission costs (per mile, not including rights) teutral reactors I- (per breaker) RUDI Upgrade RUDI Upgrade tation property and trans R/W	 	Budget \$ 5.950,000 \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -		Contingency Cap Pool,Indirects&Contingency	Direct Cost EAC without contingency

Required activities associated with project.	Number of Locations	Cost Per Location	Cost	
Load balancing - # of taps to be moved			\$-	
Capacitors to be added (note if RUDI or Non-RUDI Fdr)			\$-	
Capacitors to be relocated (note if RUDI or Non-RUDI Fdr)			\$-	
Coordination (change in fuse size or added devices)			\$-	
Segementation (# of customers between switches) - # of new switches				
needed			\$-	
Mid Pt reclosers to be relocated			\$-	1
Protective Coordination Review-Relay			\$-	
Neutral Reactors required? (Max fault current >10kA, or 1 ph>7kA?) Convert Non-RUDI realys			\$	

Estimate Review Summary Form Project Name: Cross Bayou Stategic Category: Substation Optimization Project Zone: FL S Coastal Zone Effort Description: Effort Description: Cross Bayou Substation class 3 estimate. Additional Notes: Cost Estimate is based on actuals (June 2021 thru April 2023) · Contingency is based on ETC data only. Estimate Requested by: Melanie DaSilva Estimate #: 2023-00001-DEFSO-XBYU Estimate Preparation Date: 15-Jun-23 Estimate Prepared by: Jade Lao Approving Org: Customer Delivery Project Ranking: White Estimate Gate Estimate Range Estimate Uncertainty Estimate Risk Escalation & Contingency TOTAL Build Class 3 (-10% to 20%) 5% 5% 10%

REDACTED

Estimate Summary: Cross Bayou

Sum of Breakdown Colu	umn Labels					Most Likely \$	Min \$'s	Max \$'s
						With	-10%	20%
Row Labels	CapE	x Remo	oval O&M	Grand Total	Units UOM	Contingency		
Feeder Hardening					Viles			
Lateral Hardening OH					Viles			
Lateral Hardening UG					Viles (OHMR)			
SOG: C&C					econductor Feet			
SOG: SEGA					MOS, PAD, Reclosers			
LHO Fuse Replacement					ach			
Fuse Replacement					ach			
ATS Replace					ach			
Planned Pole Replace					oles			
Switchgear					witchgear			
Underground Cable Replacem					eet			
Transformer					ransformer			
Live Front Transfs Replace					ransformer			
End of Life Trans 3PH					ransformer			
Maintain CAP					/A			
Proj OM Maintain					/A			
Estimate Contingency					-			
Grand Total								
Funding Summa	ary							
		Current	Variance to					
	A Approved	Forecast	PFA					
Am	ount	EAC	\$					
XBYU								

Actual Dollars incurred are captured thru March 2023

Measure	Dollar																														
CapEx, O&M or Removal	(All)																														
	21	21		21		21		21		22	22		22		22		22		22		22		22		22		22		22	22	23
Process ID	Aug 21	Se	ep 21	Oct 21		Nov 21		Dec 2	21	Jan 22	Feb 2	22	Mar 22		Apr 22		May 22	2	Jun 22		Jul 22		Aug 22		Sep 22		Oct 22		Nov 22	Dec 22	Jan 23
SYEARE	\$	- \$	-	\$	-	\$	-	\$	-	\$-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$-		
PRJOMM	\$	- \$	-	\$	-	\$	-	\$	-	\$-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$-		
ENSWGR	\$	- \$	-	\$	-	\$	-	\$	-	\$-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$-		
OLRPL	\$	- \$	-	\$	-	\$	-	\$	-	\$-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$-		
UCSM	\$	- \$	-	\$	-	\$	-	\$	-	\$-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$-		
PPCRCN	\$	- \$	-	\$	-	\$	-	\$	-	\$-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$-		
PPFDHD	\$	- \$	-	\$	-	\$	-	\$	-	\$-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$-		
PPLTOH	\$	- \$	-	\$	-	\$	-	\$	-	\$-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$-		
PPLTUG	\$	- \$	-	\$	-	\$	-	\$	-	\$-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$-		
PPSGAU	\$	- \$	-	\$	-	\$	-	\$	-	\$-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$-		
RTXO	\$	- \$	-	\$	-	\$	-	\$	-	\$-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$-		
TXLF	\$	- \$	-	\$	-	\$	-	\$	-	\$-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$-		
PPLHFR	\$	- \$	-	\$	-	\$	-	\$	-	\$-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$-		
2RRPL	\$	- \$	-	\$	-	\$	-	\$	-	\$-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$-		
LT3PH	\$	- \$	-	\$	-	\$	-	\$	-	\$-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$-		
ГS	\$	- \$	-	\$	-	\$	-	\$	-	\$-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$-		
irand Total	\$	- \$	-	\$	-	\$	-	\$	-	\$-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$-		
leasure	Unit																														

Process ID	Aug 21	Sep 21	Oct 21	Nov 21	Dec 21	Jan 22	Feb 22	Mar 22	Apr 22	May 22	Jun 22	Jul 22	Aug 22	Sep 22	Oct 22	Nov 22	Dec 22	Jan 23	
GENSWGR	-			-	-	-	-		-	-	-	-	-	-		-	-	-	
POLRPL				-	-	-	-		-	-	-	-	-	-		-	-	-	
RUCSM	-			-	-	-	-		-	-	-	-	-	-		-	-	-	
SPPCRCN	-			-	-	-	-		-	-	-	-	-	-		-	-	-	
SPPFDHD	-			-	-	-	-		-	-	-	-	-	-		-	-	-	•
SPPLTOH	-			-	-	-	-		-	-	-	-	-	-		-	-	-	•
SPPSGAU	-			-	-	-	-		-	-	-	-	-	-		-	-	-	•
SPPLHFR	-			-	-	-	-		-	-	-	-	-	-		-	-	-	•
F2RRPL	· · ·			-	-	-	-		-	-	-		-	-		-	-	-	
Grand Total	-			-	-	-	-		-	-	-	-	-	-		-	-	-	

DEF's Response to OPC ROG 3 (63-70) Q65

23	23	23	23	23	23	23	23	23	23	23	24	24	24	24	24	24	24	
Feb 23	Mar 23	Apr 23	May 23	Jun 23	Jul 23	Aug 23	Sep 23	Oct 23	Nov 23	Dec 23	Jan 24	Feb 24	Mar 24	Apr 24	May 24	Jun 24	Jul 24	
																\$	- \$	-
																\$	- \$	-
																\$	- \$	-
																\$	- \$	-
																\$	- \$	-
																\$	- \$	-
																\$	- \$	-
																\$	- \$	-
																\$	- \$	-
																\$	- \$	-
																\$	- \$	-
																\$	- \$	-
																\$	- \$	-
																\$	- \$	-
																\$	- \$	-
																\$	- \$	-
																\$	- \$	-

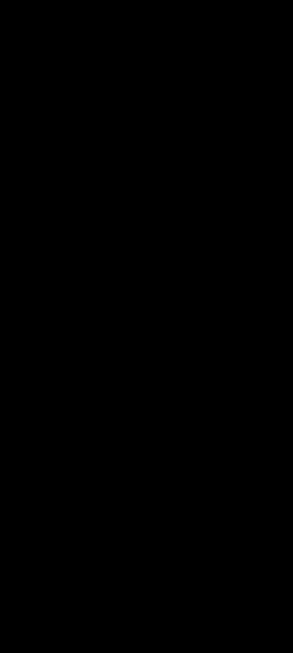
М	ir 23	Apr 24	May 24	Jun 24	Jul 24
-	-	-		-	-
-	-	-		-	-
	-	-		-	-
	-	-		-	-
	-	-		-	-
	-	-		-	-
	-	-		-	-
	-	-		-	-
	-			-	-
-	-	-		-	-

DEF's Response to OPC ROG 3 (63-70) Q65

Project: Sparr Sub Project #: OC-C-16 Need Date: 12/31/21

Distribution estimates

Install new 795 feeder Install new 336 feeder Double circuit 795 Add second 795 circuit to existing feeder Underbuild feeder on existing transmission Reconductor 336 with 795 feeder Install new 3 phase 1/0 Relocate existing 795 feeder Relocate existing 336 feeder Relocate 3 phase 1/0 Remove 3 phase line Install Viper recloser Install hydraulic recloser Install set of regulators Install 1200 kvar capacitor Install 600 amp switch Recoordination


Install 1000kcmil ug feeder - directional bore Install 1000kcmil ug feeder - open trench Install terminal pole with switches Install 1/0 1PH ug - directional bore Install PME switchgear Install Trayer switchgear Install Vista switchgear Install Four Way Enclosure Subaqueous 1000 kcmil cable

Surveying (\$3,119/mile) Tree Trimming (\$9,154/mile) MOT (\$14,213/mile)

Project total (distribution)

Substation estimates

New sub - 1-30 with 2 feeders Add 1-20 mva (assumed redeployed unit) Add 1-30 mva Add 1-50 mva Add single breaker Add feeder position to breaker and a half Add metalclad breaker (3 breakers) Transmission costs (per mile, not including land rights) Add neutral reactors RUDI- (per breaker) New RUDI Upgrade **Project total (substation)**

\$18,325,000

Project total

\$18,982,000

	# of	
Required activities associated with project.	locations	
Load balancing - # of taps to be moved		-
Capacitors to be added (note if RUDI or Non-RUDI Fdr)		-
Capacitors to be relocated (note if RUDI or Non-RUDI Fdr)		-
Coordination (change in fuse size or added devices)		-
Segementation (# of customers between switches) - # of new switches		-
needed		
Mid Pt reclosers to be relocated		-
Protective Coordination Review-Relay		-
Neutral Reactors required? (Max fault current >10kA, or 1 ph>7kA?)		
Convert Non-RUDI realys		

Exhibit B

REDACTED (copy-two)

Class V Estimating Tool

Main Components

OH Conductors - New Install NEW Single Circuit, 1PH 1/0 AAC PRI & NEU

NEW Single Circuit, 2PH 1/0 AAC PRI & NEU

NEW Single Circuit, 3PH 1/0 AAC PRI & NEU

NEW Single Circuit, 3PH 795 AAC PRI & 336 NEU

NEW Double Circuit, 3PH 795 AAC PRI & 336 NEU

OH Conductors - Reconduct ADD Single Circuit, 1PH 1/0 AAC PRI & NEU

ADD Single Circuit, 2PH 1/0 AAC PRI & NEU

ADD Single Circuit, 3PH 1/0 AAC PRI & NEU

ADD Single Circuit, 3PH 795 AAC PRI & 336 NEU

Underbuild, Single Circuit, 3PH 795 AAC PRI & 336 NEU

Funding Project Name:	Baldwin Comm Pk
Funding Project Number:	OC-L-22
Circuit ID(s):	
Detail Project:	
Detail Project In Service Date:	2027
Operating Unit:	
Process Level 5	
Process Level 6	

		Detail Dest		••••					
			ect Descrip						
Baldwin Comm Pk		Install new sub a	and feeders to fe	ed comm pk ex	pansion				
OC-L-22									
2027									
		Reset Qty. to I	Default						
·		0	+			Linit Costs	nor HoM		
		# of Units Installed	ty. # of Units Remove	Materials	Install Labor	Unit Costs Install Labor + 10% Supply Chain Escalation	Loaders	Engineering/D esign Project Pool	Removal
Sub Components	UoM	Instaneu	Remove	Waterials		Escalation	Loaders	POOI	Kellioval
		-							
(1) 1/0, Single Conductor, Primary	Circuit Feet								
(1) 1/0, Single Conductor, Neutral	Circuit Feet	-							
1PH In-Line 45' Wood Pole @every 200ft. CF	Pole	-							
(2) 1/0, Single Conductor, Primary	Circuit Feet			-					
(1) 1/0, Single Conductor, Neutral	Circuit Feet	-		-					
2PH In-Line 45' Wood Pole @every 200ft. CF	Pole	-							
(3) 1/0, Single Conductor, Primary	Circuit Feet			-					
(1) 1/0, Single Conductor, Neutral	Circuit Feet	-							
3PH In-Line 45' Wood Pole @every 200ft. CF	Pole	-							
(3) 795, Single Conductor, Primary	Circuit Feet								
(1) 336, Single Conductor, Neutral	Circuit Feet	-		-					
3PH In-Line 45' Wood Pole @every 200ft. CF	Pole	-							
(6) 795, Single Conductor, Primary	Circuit Feet			-					
(1) 336, Single Conductor, Neutral	Circuit Feet	-		-					
3PH In-Line 50' Wood Pole @every 175ft. CF	Pole	-		•					
795, Single Conductor, Primary	Circuit Feet			-					
336, Single Conductor, Neutral	Circuit Feet	-							
3PH In-Line 45' Wood Pole @every 400ft. CF	Pole	-		1					
(1) 1/0, Single Conductor, Primary	Circuit Feet			T					
(1) 1/0, Single Conductor, Neutral	Circuit Feet	-	-						
1PH In-Line 45' Wood Pole @every 200ft. CF	Pole	-	-						
(2) 1/0, Single Conductor, Primary	Circuit Feet			t in the second s					
(1) 1/0, Single Conductor, Neutral	Circuit Feet	-	-						
1PH In-Line 45' Wood Pole @every 200ft. CF	Pole	-	-						
(3) 1/0, Single Conductor, Primary	Circuit Feet								
(1) 1/0, Single Conductor, Neutral	Circuit Feet	-	-						
1PH In-Line 45' Wood Pole @every 200ft. CF	Pole	-	-						
(3) 795, Single Conductor, Primary	Circuit Feet								
(1) 336, Single Conductor, Neutral	Circuit Feet	-	-						
1PH In-Line 45' Wood Pole @every 200ft. CF	Pole	-	-						
70E Single Conductor Drimony	Circuit Foot	Ĩ							

1111 III Ellie 45 Wood Fole Gevely 2001. el	1010		
795, Single Conductor, Primary	Circuit Feet		
336, Single Conductor, Neutral	Circuit Feet	-	-
3PH In-Line 45' Wood Pole @every 400ft. CF	Pole	-	-
(3) 795, Single Conductor, Primary	Circuit Feet	20,000	
(1) 336, Single Conductor, Neutral	Circuit Feet	20,000	-
3PH In-Line 50' C2 Wood Pole @every 100ft. CF	Pole	200	-
(6) 795, Single Conductor, Primary	Circuit Feet		
(1) 336, Single Conductor, Neutral	Circuit Feet	-	-
3PH In-Line 50' C2 Wood Pole @every 87.5ft. CF	Pole	-	-
795, Single Conductor, Primary	Circuit Feet		
336, Single Conductor, Neutral	Circuit Feet	-	-
3PH In-Line 50' C2 Wood Pole @every 200ft. CF	Pole	-	-
Primary 1/0, 1PH	Circuit Feet		
Primary 1/0, 3PH	Circuit Feet		
Small Pull Box (w/cover) @every 1,000ft.	EA	-	-
	795, Single Conductor, Primary 336, Single Conductor, Neutral 3PH In-Line 45' Wood Pole @every 400ft. CF (3) 795, Single Conductor, Primary (1) 336, Single Conductor, Neutral 3PH In-Line 50' C2 Wood Pole @every 100ft. CF (6) 795, Single Conductor, Primary (1) 336, Single Conductor, Primary (1) 336, Single Conductor, Primary (1) 336, Single Conductor, Neutral 3PH In-Line 50' C2 Wood Pole @every 87.5ft. CF 795, Single Conductor, Primary 336, Single Conductor, Neutral 3PH In-Line 50' C2 Wood Pole @every 87.5ft. CF 795, Single Conductor, Neutral 3PH In-Line 50' C2 Wood Pole @every 200ft. CF Primary 1/0, 1PH Primary 1/0, 3PH	795, Single Conductor, PrimaryCircuit Feet336, Single Conductor, NeutralCircuit Feet3PH In-Line 45' Wood Pole @every 400ft. CFPoleCircuit Feet(3) 795, Single Conductor, PrimaryCircuit Feet(1) 336, Single Conductor, NeutralCircuit Feet3PH In-Line 50' C2 Wood Pole @every 100ft. CFPole(6) 795, Single Conductor, PrimaryCircuit Feet(1) 336, Single Conductor, PrimaryCircuit Feet(1) 336, Single Conductor, NeutralCircuit Feet3PH In-Line 50' C2 Wood Pole @every 87.5ft. CFPole795, Single Conductor, NeutralCircuit Feet3PH In-Line 50' C2 Wood Pole @every 87.5ft. CFPole795, Single Conductor, NeutralCircuit Feet336, Single Conductor, NeutralCircuit Feet336, Single Conductor, NeutralCircuit Feet39H In-Line 50' C2 Wood Pole @every 200ft. CFPolePrimary 1/0, 1PHPrimary 1/0, 1PHCircuit FeetPrimary 1/0, 3PHCircuit Feet	795, Single Conductor, PrimaryCircuit Feet336, Single Conductor, NeutralCircuit Feet3PH In-Line 45' Wood Pole @every 400ft. CFPole9-(3) 795, Single Conductor, PrimaryCircuit Feet20,000(1) 336, Single Conductor, Neutral(1) 336, Single Conductor, NeutralCircuit Feet200(6) 795, Single Conductor, Primary(1) 336, Single Conductor, PrimaryCircuit Feet(1) 336, Single Conductor, PrimaryCircuit Feet(1) 336, Single Conductor, NeutralCircuit Feet(1) 336, Single Conductor, NeutralCircuit Feet3PH In-Line 50' C2 Wood Pole @every 87.5ft. CFPole795, Single Conductor, PrimaryCircuit Feet336, Single Conductor, NeutralCircuit Feet336, Single Conductor, NeutralCircuit Feet336, Single Conductor, NeutralCircuit Feet9PH In-Line 50' C2 Wood Pole @every 200ft. CFPole9PH In-Line 50' C2 Wood Pole @ev

		-
		_

		Manhour	per UoM			
vals	Install per UoM	Remove per UoM	мот	Tree Trimming	Ma	iterials
					\$ 4	
					р Ś	-
					\$	-
					\$	-
					\$	-
					Ş	-
					ې د	-
					Р Ś	
					ŝ	-
					\$	-
					\$	-
					\$	-
					Ş	-
					2	
					р Ś	
					r	
					ŝ	-
					\$	-
					\$	-
					\$	-
					\$	-
					Ş	-
					P ¢	
					ŝ	-
					\$	-
					\$	-
					\$	-
					\$	-
					P K	
					,	-
					ŝ	136,576
					р \$	18,635
					\$	273,795
					\$	-
					\$	-
					Ş	-
					þ k	-
					P Ś	-
					ŝ	-
					р Ś	-
					\$	-

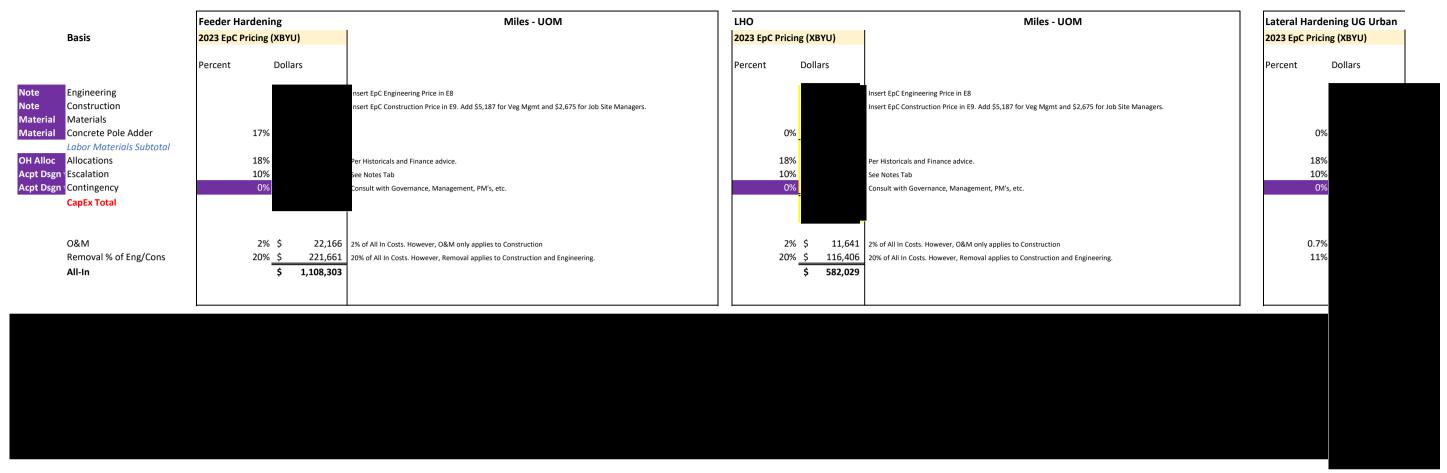
		-		
UG Small Cable & Conduit via Directional Bore	Primary 1/0, 1PH	Circuit Feet		
	Primary 1/0, 3PH	Circuit Feet		
	Small Pull Box (w/cover) @every 1,000ft.	EA	-	-
UG Large Cable & Conduit via Directional Bore	Primary 1000 AL in 6" PVC Stick Conduit, 1PH	Circuit Feet		
	Primary 1000 AL in 6" PVC Stick Conduit, 3PH	Circuit Feet	2,000	
	Large Pull Box (w/cover) @every 1,000ft.	EA	2	-
UG Large Cable ONLY via Directional Bore	Primary 1000, AL Conductor, 1PH	Circuit Feet		
	Primary 1000, AL Conductor, 3PH	Circuit Feet		
	Large Pull Box (w/cover) @every 1,000ft.	EA	-	-
	NEW 750, 3-2 Conductor, CU Flat Strap	Circuit Feet		
Equipment along the Circuit above (MOT a	and Tree Trimming are included in the Conductor se	ctions above)		
Pole for Equipment ONLY	1PH In-Line 45' Wood Pole 45' (w/Rods, Post/Pin Insulator, A	Arres Pole		
	2PH In-Line 45' Wood Pole 45' (w/Rods, Post/Pin Insulator, A	Arres Pole		
	3PH In-Line 45' Wood Pole 45' (w/Rods, Post/Pin Insulator, A	Arres Pole		
	Concrete Pole 45' Type 3 (w/Rods, Cross Arm, Post/Pin Insula	ator, Pole		
Switchgear (includes cord, ground rod)	PME-9/PME-10/PME-11 15KV	EA		
	PME-10 Solid Dielectric for Coastal/Submersible	EA		
Capacitor - Pole Mount	3PH Capacitor Bank, 1200KVAR, SWITCHED	EA	-	
	Capacitor Bank Control, CBC-8000	EA		
Capacitor - Pad Mount	3PH Pad Mount, 1200KVAR	EA		
Regulator	1PH 328A (w/1PH Bypass Switch)	EA		
	1PH 428A (w/1PH Bypass Switch)	EA	-	
	3PH 328A (Platform Bank w/3PH Bypass Switch)	EA		
	3PH 428A (Platform Bank w/3PH Bypass Switch)	EA	-	
	Regulator Controller Upgrade (3 units)	EA		
Cutout/Fuse	1PH Non-Loadbreak/Asymmetrical, 100A (auto-populate)	EA	-	-
	1PH Non-Loadbreak/Asymmetrical, 100A (adders)	EA		
	Tamer Cutout, 100A, 12KAIC, 25KV, 125KV BIL	EA		
Disconnect Switch	1PH 600A 15kVA Disconnect Switch (auto-populate)	EA	-	-
	1PH 600A 15kVA Disconnect Switch (adders)	EA		
	1PH 600A 15kVA Vertical Switch w/Triple-Blade Bypass	EA		
Recloser - Hydraulic	1PH Hydr Recloser, Oil Circuit, 34.5KV,100A	EA		
Recloser - Electronic	3PH GW Viper-ST 800A Electronic Controlled 15-27kV	EA	-	
	Recloser Control Change Outs	EA		
TripSaver		EA		
Transformer - Pole Mount	1PH Transformer, Pole Mount, 25-50kVA (auto-populate)	EA		-
	1PH Transformer, Pole Mount, 25-50kVA (adders)	EA		
	1PH Transformer, Pole Mount, 100kVA-167kVA	EA		
Transformer - Pad Mount	1PH Padmount Transformer (End of Life/AMB)	EA		
	3PH Padmount Transformer (End of Life/AMB)	EA		
Arrestors	Arrestors Retrofit	EA		
Equipment Installed/Removed Independe	ntly of Conductoing			
Pole for Equipment ONLY	1PH In-Line 45' Wood Pole 45' (w/Rods, Post/Pin Insulator, A	Arres Pole		
	2PH In-Line 45' Wood Pole 45' (w/Rods, Post/Pin Insulator, A			
	3PH In-Line 45' Wood Pole 45' (w/Rods, Post/Pin Insulator, A	rres Pole		
	Concrete Pole 45' Type 3 (w/Rods, Cross Arm, Post/Pin Insula	ator, Pole		
Switchgear (includes cord, ground rod)	PME-9/PME-10/PME-11 15KV	EA		
	PME-10 Solid Dielectric for Coastal/Submersible	EA		
Capacitor - Pole Mount	3PH Capacitor Bank, 1200KVAR, SWITCHED	EA	2	
	Capacitor Bank Control, CBC-8000	EA		
Capacitor - Pad Mount	3PH Pad Mount, 1200KVAR	EA		
Regulator	1PH 328A (w/1PH Bypass Switch)	EA		
	1PH 428A (w/1PH Bypass Switch)	EA		
	3PH 328A (Platform Bank w/3PH Bypass Switch)	EA		
	3PH 428A (Platform Bank w/3PH Bypass Switch)	EA	2	
	Regulator Controller Upgrade (3 units)	EA		
		EA		
Cutout/Fuse	1PH Non-Loadbreak/Asymmetrical, 100A			
Cutout/Fuse	Tamer Cutout, 100A, 12KAIC, 25KV, 125KV BIL	EA		
-		EA EA	21	
Cutout/Fuse Disconnect Switch	Tamer Cutout, 100A, 12KAIC, 25KV, 125KV BIL		21	
Disconnect Switch	Tamer Cutout, 100A, 12KAIC, 25KV, 125KV BIL 1PH 600A 15kVA Disconnect Switch	EA	21	
-	Tamer Cutout, 100A, 12KAIC, 25KV, 125KV BIL 1PH 600A 15kVA Disconnect Switch 1PH 600A 15kVA Vertical Switch w/Triple-Blade Bypass	EA EA	21	
Disconnect Switch Recloser - Hydraulic	Tamer Cutout, 100A, 12KAIC, 25KV, 125KV BIL1PH 600A 15kVA Disconnect Switch1PH 600A 15kVA Vertical Switch w/Triple-Blade Bypass1PH Hydr Recloser, Oil Circuit, 34.5KV,100A	EA EA EA		
Disconnect Switch Recloser - Hydraulic	Tamer Cutout, 100A, 12KAIC, 25KV, 125KV BIL1PH 600A 15kVA Disconnect Switch1PH 600A 15kVA Vertical Switch w/Triple-Blade Bypass1PH Hydr Recloser, Oil Circuit, 34.5KV,100A3PH GW Viper-ST 800A Electronic Controlled 15-27kV	EA EA EA EA		
Disconnect Switch Recloser - Hydraulic Recloser - Electronic	Tamer Cutout, 100A, 12KAIC, 25KV, 125KV BIL1PH 600A 15kVA Disconnect Switch1PH 600A 15kVA Vertical Switch w/Triple-Blade Bypass1PH Hydr Recloser, Oil Circuit, 34.5KV,100A3PH GW Viper-ST 800A Electronic Controlled 15-27kV	EA EA EA EA EA		

¢	-
ļ	-
Ś	-
, \$	-
\$ 48	3,831
; ie \$ f	3,831 5,014
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	-
\$	-
\$	-
\$	-
ć	
ې د	-
ې د	-
ې د	-
ç ç	-
\$ *	-
ې د	-
> ~	-
ې د	-
>	-
> ^	-
> ^	-
\$ \$	-
> •	-
> -	-
Ş	-
> •	-
5	-
Ş	-
\$	-
\$	-
\$	-
\$	-
\$	-
\$	-
\$	-
\$	-
\$	-
\$	-
ć	
Ş	-
\$	
\$ \$	-
	-
\$	-
\$	-
\$	-
\$	- - - - -
\$	- - - - -
\$	- - - - - - - -
\$	- - - - - - - - - - - - - - - - - - -
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	- - - - - - - - - - - - - - - - - - -

Transformer - Pad Mount	1PH Padmount Transformer (End of Life/AMB)	EA		
	3PH Padmount Transformer (End of Life/AMB)	EA		
Arrestors	Arrestors Retrofit	EA		
Distribution Substation New/Upgrades	<u>s</u>			
	NEW Sub - 1-30 MVA with 2 Feeders	Bank	1	
	ADD 1-20 MVA (assumed redeployed unit)	Bank		
	ADD 1-30 MVA	Bank	1	
	ADD 1-50 MVA	Bank		
	ADD Single Breaker	Breaker	1	
	ADD Feeder Position to Breaker and A Half	Feeder Position	1	
	ADD Metal clad Breaker (3 breakers)	3 Breakers		
	ADD Neutral Reactors	Reactor	2	
	RUDI- (per breaker)	RUDI		
	NEW RUDI Upgrade	RUDI		
Transmission Line Constructions			-	
	Transmission costs (per mile, not including land rights)	Miles	-	
	69kV & 115kV - REBUILD Single Circuit	Miles		
	69kV & 115kV - REBUILD Double Circuit	Miles		
	69kV & 115kV - NEW	Miles	1	
Real Estate and Permits				
	Surveying/ Staking (Eng Contract in design phase; auto-pop	ulate Circuit Feet	22,000	
	Tree Trimming (Auto-populated)	HR	Auto-populated	in columnAD
	MOT/Flagging (2 flaggers + 1 vehicle; auto-populated)	HR	Auto-populated	in columnAC
	Site Restoration	Site		
	Matting	LF		
	Speciality Permits (RR, River, Airport, Storm water)	Each		
	Speciality Fermits (KK, Kiver, Aliport, Storm water)	Eddii		

Class V Estimate Summary - CAPEX						
-30%	Expected	+50%				
\$ 12,005,875		\$ 25,726,876				

Class V Estimate Summary - Fully Burdened					
-30%	Expected	+50%			
\$ 12,358,306		\$ 26,482,085			


			\$	770,	541
			Ŷ		-
			\$ \$ \$		-
			Ŷ		

<u>Substatio</u>	n <u>PID</u>	Unit Type 2	<u>Labor</u>	<u>Material</u>	<u>OH Alloc</u>	Acpt Dsgn vs As- Blt+Eng & Anscillary TOT
XBYU	F2RRPL					
XBYU	GENSWGR					
XBYU	GNSWLF					
XBYU	RUCSM					
XBYU	POLRPL					
XBYU	RPR					
XBYU	ARRETRO					
XBYU	SPPFDHD					
XBYU	SPPLHFR					
XBYU	SPPLTOH	LHO				
XBYU	SPPLTUG					
XBYU	SPPCRCN	6 - Reconductor				
XBYU	SPPSGAU	ASD, MOS				

0% contingency baked into rate for Tap change, Cap Bank, Switching, Regulator.

DEF's Response to OPC ROG 3 (63-70) Q65

SPP Unit Cost By Program (Guide)

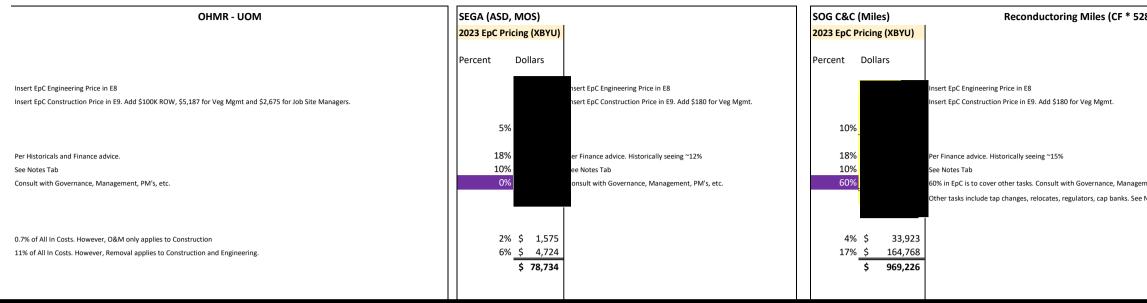
Non-EpC Updates: Update internal rates assumptions for Non-EPC (ST51 & OAKH)

For SEGA, I updated all except Padmount

SEGA Padmount only change alloc for Rem/OM; Padmount escalate unit rate 32%

C&C change all for only Reconductor

C&C non-reconductor only change Rem/OM alloc.; Non-reconductor work I escalated unit cost by 32%


Non-EpC Updates: Update internal rates assumptions for EPC (XBYU)

Change EpC rate calc to reflect the 2nd yellow section of this file Assump Tab: update Unit rate column formula to pick up total only from the EpC Table Update the Rem/OM Alloc.

Non-EpC Updates: Update internal rates assumptions for EPC (PASA)

Update the Rem/OM Alloc Only Update SPP material to match this file

DEF's Response to OPC ROG 3 (63-70) Q65

DEF's Response to OPC ROG 3 (63-70) Q65

280) - UOM	
ement, PM's, etc. e Notes tab.	
notes tab.	

1.1

1.0859

Project: Project #: Need Date: Distribution Multiplier:	DEF - 111		
Distribution estimates	Units		Budget
	-	¢	
Install new 795 feeder Install new 336 feeder Double circuit 795 Add second 795 circuit to existing feeder Underbuild feeder on existing transmission Reconductor 336 with 795 feeder Install new 3 phase 1/0 Relocate existing 795 feeder Relocate existing 336 feeder Relocate 3 phase 1/0 Remove 3 phase line Install Viper recloser Install hydraulic recloser Install set of regulators Install 1200 kvar capacitor		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	
Install 1200 kvar capacitor Install 600 amp switch		\$	-
Install 1000kcmil ug feeder - directional bore Install 1000kcmil ug feeder - open trench Install terminal pole with switches Install 1/0 1PH ug - directional bore Install PME switchgear Install Trayer switchgear Install Vista switchgear Install Four Way Enclosure Subaqueous 1000 kcmil cable		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	
Surveying (\$3,119/mile) Tree Trimming (\$9,154/mile) MOT (\$14,213/mile)		\$ \$ \$	-
Project total (distribution)		\$	-
Substation estimates	Units		Budget
New sub - 1-30 with 2 feeders Add 1-20 mva (assumed redeployed unit) Add 1-30 mva Add 1-50 mva Add single breaker Add feeder position to breaker and a half Add metalclad breaker (3 breakers) Transmission costs (per mile, not including land rights) Add neutral reactors RUDI- (per breaker) New RUDI Upgrade Project total (substation)	1	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	5,950,000 - - - - - - - 98,208 - 6,048,208

Project total

\$ 6,048,208

Finance View Old	CAPEX New w/ Burdens	Captial Pool	Indirects	Contingency Cap Pool,Indirects&Conting

DEF's Response to OPC ROG 3 (63-70_ Q65

ngency Direct Cost

EAC without contingency

REDACTED

Required activities associated with project.	Number of Locations	Cost Per Location	Cost	
Load balancing - # of taps to be moved		-	\$ -	
Capacitors to be added (note if RUDI or Non-RUDI Fdr)			\$ -	
Capacitors to be relocated (note if RUDI or Non-RUDI Fdr)			\$ -	
Coordination (change in fuse size or added devices)		-	\$ -	
Segementation (# of customers between switches) - # of new switches		-		
needed			\$-	
Mid Pt reclosers to be relocated		-	\$ -	
Protective Coordination Review-Relay		-	\$ -	
Neutral Reactors required? (Max fault current >10kA, or 1 ph>7kA?) Convert Non-RUDI realys		-	;; -	


Class 3-5 Estimating Tool

Funding Project Name:	Zephyrhills East Substation
Funding Project Number:	
Circuit ID(s):	
Detail Project:	
Detail Project In Service Date:	
Operating Unit:	
Process Level 5	
Process Level 6	

CLASS 3						
	Estim	ate Summary - C	APEX			
	-10%	Expected	20%			
\$	32,358,619	\$ 35,954,021	\$ 43,144,825			
	Estimate	Summary - Fully-	burdened			
	-10%	Expected	20%			
Ś	32,994,358	\$ 36,660,398	\$ 43,992,477			

				Qty.			
			# of Units	# of Units	# of Units		Material +
Main Components	Sub Components	UoM	Install	Remove	Transfer	Materials	Escalation %
SPP SOG - OH Conductors/Equipment - N	Iew Install (CNC-REC)						
Single Circuit, 3PH 795 AAC PRI & 336 NEU	(3) 795, Single Conductor, Primary	Linear Feet					
	(1) 336, Single Conductor, Neutral	Linear Feet	-			_	
	3PH In-Line 50' C2 Wood Pole @every 100ft. CF	Pole				_	
	3PH In-Line 50' H1 Concrete Pole @every 100ft. CF (DEFAULT)	Pole	-			_	
Recloser - Electronic	3PH GW Viper-ST 800A Electronic Controlled 15-27kV	EA				_	
Switchgear (includes cord, ground rod)	PME-9/PME-10/PME-11 15KV	EA				_	
	PME-10 Solid Dielectric for Coastal/Submersible	EA					
Motor Operated Switch	(1) MOS with Comms Cabinet	EA					
	(2) MOS with Comms Cabinet	EA					
	(3) MOS with Comms Cabinet	EA					
SPP SOG - OH Conductors - Reconductor	ing (CNC-REC)						
Single Circuit, 1PH 1/0 AAC PRI & NEU	(1) 1/0, Single Conductor, Primary	Linear Feet					
	(1) 1/0, Single Conductor, Neutral	Linear Feet	-	-			
	1PH In-Line 40' C5 Wood Pole @every 100ft. CF	Pole					
	1PH In-Line 40' H1 Concrete Pole @every 100ft. CF (DEFAULT)	Pole	-	-			
Single Circuit, 2PH 1/0 AAC PRI & NEU	(2) 1/0, Single Conductor, Primary	Linear Feet					
	(1) 1/0, Single Conductor, Neutral	Linear Feet	-	-		-	
	2PH In-Line 50' C2-3 Wood Pole @every 100ft. CF	Pole				-	
	2PH In-Line 50' H2 Concrete Pole @every 100ft. CF (DEFAULT)	Pole	-	-		-	
Single Circuit, 3PH 1/0 AAC PRI & NEU	(3) 1/0, Single Conductor, Primary	Linear Feet					
	(1) 1/0, Single Conductor, Neutral	Linear Feet	-	-		-	
	3PH In-Line 50' C2-3 Wood Pole @every 100ft. CF	Pole					
	3PH In-Line 50' H2 Concrete Pole @every 100ft. CF (DEFAULT)	Pole	-	-			
Single Circuit, 3PH 795 AAC PRI & 336 NEU	(3) 795, Single Conductor, Primary	Linear Feet					
	(1) 336, Single Conductor, Neutral	Linear Feet	-	-			
	3PH In-Line 50' C2 Wood Pole @every 100ft. CF	Pole					
	3PH In-Line 50' H1 Concrete Pole @every 100ft. CF (DEFAULT)	Pole	-	-		-	
SPP Lateral Hardening - OH Conductors				·	·		
Single Circuit, 1PH 1/0 AAC PRI & NEU	(1) 1/0, Single Conductor, Primary	Linear Feet				7	
	(1) 1/0, Single Conductor, Neutral	Linear Feet	-	-	-	-	
	1PH In-Line 40' C5 Wood Pole @every 100ft. CF (DEFAULT)	Pole	-	-		-	
	1PH In-Line 40' H1 Concrete Pole @every 100ft. CF	Pole				-	
Single Circuit, 2PH 1/0 AAC PRI & NEU	(2) 1/0, Single Conductor, Primary	Linear Feet				-	
	(1) 1/0, Single Conductor, Neutral	Linear Feet	-	-	-	-	
	2PH In-Line 50' C2-3 Wood Pole @every 100ft. CF (DEFAULT)	Pole	-	-		-	
	2PH In-Line 50' H2 Concrete Pole @every 100ft. CF	Pole					
Single Circuit, 3PH 1/0 AAC PRI & NEU	(3) 1/0, Single Conductor, Primary	Linear Feet	l				
	(1) 1/0, Single Conductor, Neutral	Linear Feet	-	-	-		
	3PH In-Line 50' C2-3 Wood Pole @every 100ft. CF (DEFAULT)	Pole	-	-			
	3PH In-Line 50' H2 Concrete Pole @every 100ft. CF	Pole					
			3	ļ			

DEF's Response to OPC ROG 3 (63-70) Q65

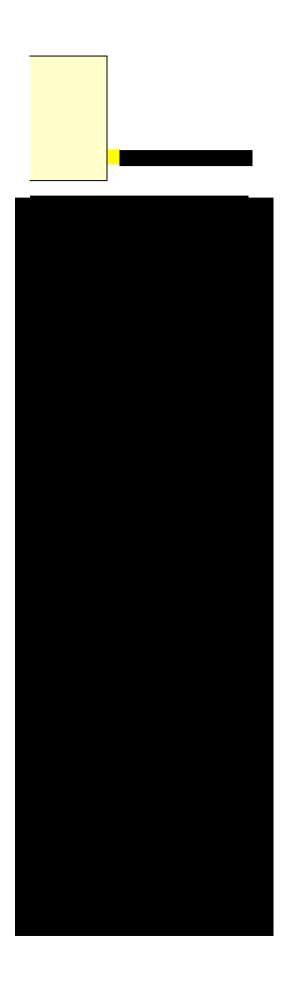
SPP Lateral Hardening - UG Conductors					
UG Small Cable & Conduit in Trench	Primary 1/0, 1PH	Linear Feet			
	Primary 1/0, 3PH	Linear Feet			
	Small Pull Box (w/cover) @every 1,000ft.	EA	_	_	
UG Small Cable & Conduit via Directional Bore	Primary 1/0, 1PH	Linear Feet			
	Primary 1/0, 3PH	Linear Feet			
		EA	-	-	
		Circuit Feet			
		EA			
		Ā			
SPP Feeder Hardening - OH Conductors					
Single Circuit, 3PH 1/0 AAC PRI & NEU	(3) 1/0, Single Conductor, Primary	Linear Feet			
Single Circuit, SFIT 1/0 AAC FIT & NEO	(1) 1/0, Single Conductor, Neutral	Linear Feet			
	3PH In-Line 50' C2-3 Wood Pole @every 100ft. CF	Pole			
	3PH In-Line 50' H2 Concrete Pole @every 100ft. CF (DEFAULT)	Pole			
Single Circuit, 3PH 336 AAC PRI & 1/0 NEU	(3) 336, Single Conductor, Primary	Linear Feet			
	(1) 1/0, Single Conductor, Neutral	Linear Feet			_
	3PH In-Line 50' C2 Wood Pole @every 100ft. CF	Pole		-	
	3PH In-Line 50 C2 wood Pole @every 100ft. CF 3PH In-Line 50' H1 Concrete Pole @every 100ft. CF (DEFAULT)	Pole			
Single Circuit, 3PH 795 AAC PRI & 336 NEU	(3) 795, Single Conductor, Primary	Linear Feet	-	-	
Single Circuit, SFIT 755 AAC FILL & 550 NEO	(1) 336, Single Conductor, Neutral	Linear Feet			-
	3PH In-Line 50' C2 Wood Pole @every 100ft. CF	Pole	-	-	-
	3PH In-Line 50 C2 wood Pole @every 100ft. CF 3PH In-Line 50' H1 Concrete Pole @every 100ft. CF (DEFAULT)	Pole			
Double Circuit, 3PH 795 AAC PRI & 336 NEU	(6) 795, Single Conductor, Primary	Linear Feet			
Double circuit, SFIT 755 AAC FRI & 550 NEO	(1) 336, Single Conductor, Neutral	Linear Feet			
	3PH In-Line 50' C2 Wood Pole @every 87.5ft. CF	Pole	-	-	
	3PH In-Line 50 C2 wood Pole @every 87.51. CF 3PH In-Line 50' H1 Concrete Pole @every 87.5ft. CF (DEFAULT)	Pole	_		
Underbuild, Single Circuit, 3PH 795 AAC PRI & 336 NEU	795, Single Conductor, Primary	Linear Feet	-	-	
	336, Single Conductor, Neutral	Linear Feet			
	396, Single Conductor, Neutral 3PH In-Line 50' C2 Wood Pole @every 200ft. CF	Pole	-	-	-
	3PH In-Line 50 C2 wood Pole @every 2001. CF 3PH In-Line 50' H1 Concrete Pole @every 200ft. CF (DEFAULT)	Pole			
SPP Feeder Hardening - UG Conductors					
	Drimony 1000 AL in 6" DVC Stick Conduit 104	Lincor East		1	
UG Large Cable & Conduit via Directional Bore	Primary 1000 AL in 6" PVC Stick Conduit, 1PH	Linear Feet			
	Primary 1000 AL in 6" PVC Stick Conduit, 3PH Large Pull Box (w/cover) @every 1,000ft.	Linear Feet EA			
IG Large Cable ONLY via Directional Bore	Primary 1000, AL Conductor, 1PH	Linear Feet	-	-	
UG Large Cable ONLY via Directional Bore	• • • •				
	Primary 1000, AL Conductor, 3PH	Linear Feet EA			
	Large Pull Box (w/cover) @every 1,000ft. NEW 750, 3-2 Conductor, CU Flat Strap	EA Linear Feet	-	-	
	INE VV 750, 5-2 COMUNCEOF, CO FINE SERAP				
		Circuit Feet			
		EA EA			
Non CDD. Old Conductors. New Install		EA			
Non-SPP - OH Conductors - New Install					
Single Circuit, 1PH 1/0 AAC PRI & NEU	(1) 1/0, Single Conductor, Primary	Linear Feet			
	(1) 1/0, Single Conductor, Neutral	Linear Feet	-		
	1PH In-Line 40' C5 Wood Pole @every 200ft. CF	Pole			
	1PH In-Line 40' H1 Concrete Pole @every 200ft. CF (DEFAULT)	Pole	-		
Single Circuit, 2PH 1/0 AAC PRI & NEU	(2) 1/0, Single Conductor, Primary	Linear Feet			
	(1) 1/0, Single Conductor, Neutral	Linear Feet	-		
	2PH In-Line 50' C2-3 Wood Pole @every 200ft. CF	Pole			
	2PH In-Line 50' H2 Concrete Pole @every 200ft. CF (DEFAULT)	Pole	-		
Single Circuit, 3PH 1/0 AAC PRI & NEU	(3) 1/0, Single Conductor, Primary	Linear Feet			
	(1) 1/0, Single Conductor, Neutral	Linear Feet	-		
	3PH In-Line 50' C2-3 Wood Pole @every 200ft. CF	Pole			
	3PH In-Line 50' H2 Concrete Pole @every 200ft. CF (DEFAULT)	Pole	-		
Single Circuit, 3PH 795 AAC PRI & 336 NEU	(3) 795, Single Conductor, Primary	Linear Feet	25,000		

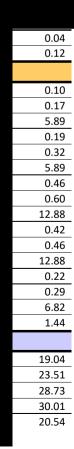
DEF's Response to OPC ROG 3 (63-70) Q65

	2011 In Line FO' C2 Wood Dale Revenue 200th CF	Dele			
	3PH In-Line 50' C2 Wood Pole @every 200ft. CF 3PH In-Line 50' H1 Concrete Pole @every 200ft. CF (DEFAULT)	Pole Pole	125		
Double Circuit, 3PH 795 AAC PRI & 336 NEU	(6) 795, Single Conductor, Primary	Linear Feet	125		
Double Circuit, 3PH 795 AAC PRI & 336 NEU		Linear Feet			
	(1) 336, Single Conductor, Neutral		-		
	3PH In-Line 50' C2 Wood Pole @every 175ft. CF	Pole			
Underhuild Cinele Circuit 2011 705 AAC DDI 9 22C NEU	3PH In-Line 50' H1 Concrete Pole @every 175ft. CF (DEFAULT)	Pole	-		
Underbuild, Single Circuit, 3PH 795 AAC PRI & 336 NEU	795, Single Conductor, Primary	Linear Feet			
	336, Single Conductor, Neutral	Linear Feet	-		
	3PH In-Line 50' C2 Wood Pole @every 400ft. CF	Pole			
	3PH In-Line 50' H1 Concrete Pole @every 400ft. CF (DEFAULT)	Pole	-		
Non-SPP - OH Conductors - Primary and Neut					
Single Circuit, 1PH 1/0 AAC PRI & NEU	(1) 1/0, Single Conductor, Primary	Linear Feet			
	(1) 1/0, Single Conductor, Neutral	Linear Feet	-	-	
	1PH In-Line 40' C5 Wood Pole @every200ft. CF	Pole			
	1PH In-Line 40' H1 Concrete Pole @every 200ft. CF (DEFAULT)	Pole	-	-	
Single Circuit, 2PH 1/0 AAC PRI & NEU	(2) 1/0, Single Conductor, Primary	Linear Feet			
	(1) 1/0, Single Conductor, Neutral	Linear Feet	-	-	
	2PH In-Line 50' C2-3 Wood Pole @every 200ft. CF	Pole			
	2PH In-Line 50' H2 Concrete Pole @every 200ft. CF (DEFAULT)	Pole	-	-	
Single Circuit, 3PH 1/0 AAC PRI & NEU	(3) 1/0, Single Conductor, Primary	Linear Feet			
	(1) 1/0, Single Conductor, Neutral	Linear Feet	-	-	
	3PH In-Line 50' C2-3 Wood Pole @every 200ft. CF	Pole			
	3PH In-Line 50' H2 Concrete Pole @every 200ft. CF (DEFAULT)	Pole	-	-	
Single Circuit, 3PH 795 AAC PRI & 336 NEU	(3) 795, Single Conductor, Primary	Linear Feet			
	(1) 336, Single Conductor, Neutral	Linear Feet	-	-	
	3PH In-Line 50' C2 Wood Pole @every 200ft. CF	Pole			
	3PH In-Line 50' H1 Concrete Pole @every 200ft. CF (DEFAULT)	Pole	-	-	
Underbuild, Single Circuit, 3PH 795 AAC PRI & 336 NEU	795, Single Conductor, Primary	Linear Feet			
	336, Single Conductor, Neutral	Linear Feet	-	-	-
	3PH In-Line 50' C2 Wood Pole @every 400ft. CF	Pole			
	3PH In-Line 50' H1 Concrete Pole @every 400ft. CF (DEFAULT)	Pole	-	-	
Non-SPP - OH Conductors - Neutral Wire Reco	onduct				
Single Circuit, 1/0 NEU ONLY	(1) 1/0, Single Conductor, Neutral	Linear Feet			
Single Circuit, 336 NEU ONLY	(1) 336, Single Conductor, Neutral	Linear Feet			
Non-SPP - UG Conductors					
UG Small Cable & Conduit in Trench	Primary 1/0, 1PH	Linear Feet			
	Primary 1/0, 3PH	Linear Feet			
	Small Pull Box (w/cover) @every 1,000ft.	EA	-	-	
UG Small Cable & Conduit via Directional Bore	Primary 1/0, 1PH	Linear Feet			
	Primary 1/0, 3PH	Linear Feet			
	Small Pull Box (w/cover) @every 1,000ft.	EA	-	-	
UG Large Cable & Conduit via Directional Bore	Primary 1000 AL in 6" PVC Stick Conduit, 1PH	Linear Feet			
	Primary 1000 AL in 6" PVC Stick Conduit, 3PH	Linear Feet	10,000		
	Large Pull Box (w/cover) @every 1,000ft.	EA	10	-	
UG Large Cable ONLY via Directional Bore	Primary 1000, AL Conductor, 1PH	Linear Feet			
	Primary 1000, AL Conductor, 3PH	Linear Feet			
	Large Pull Box (w/cover) @every 1,000ft.	EA	-	-	
	NEW 750, 3-2 Conductor, CU Flat Strap	Linear Feet			
		Circuit Feet			
		A			
		EA			
	Tree Trimming are included in the Conductor sections a	bove)			
Pole for Equipment ONLY	1PH In-Line 40' C5 Wood Pole (w/Rods, Post/Pin Insulator, Arrester, 6				
	2PH In-Line 50' C2-3 Wood Pole (w/Rods, Post/Pin Insulator, Arrester				
	3PH In-Line 50' C2-3 Wood Pole (w/Rods, Post/Pin Insulator, Arrester				
	3PH In-Line 50' C2 Wood Pole (w/Rods, Post/Pin Insulator, Arrester, G 1PH In-line 40' H1 Concrete Pole (w/Rods, Post/Pin Insulator, Arrester				

DEF's Response to OPC ROG 3 (63-70) Q65

	2PH In-line 50' H2 Concrete Pole (w/Rods, Post/Pin Insulator, Arrester	, Guy & Pole				
	3PH In-line 50' H2 Concrete Pole (w/Rods, Post/Pin Insulator, Arrester,					
	3PH In-line 50' H1 Concrete Pole (w/Rods, Post/Pin Insulator, Arrester,					
Switchgear (includes cord, ground rod)	PME-9/PME-10/PME-11 15KV	EA				
	PME-10 Solid Dielectric for Coastal/Submersible	EA				
Capacitor - Pole Mount	3PH Capacitor Bank, 600/1200KVAR, SWITCHED	EA	4			
	Capacitor Bank Control, CBC-8000	EA				
Capacitor - Pad Mount	3PH Pad Mount, 1200KVAR	EA				
Regulator	1PH 328A (w/1PH Bypass Switch)	EA				
•	1PH 428A (w/1PH Bypass Switch)	EA				
	3PH 328A (Platform Bank w/3PH Bypass Switch)	EA				
	3PH 428A (Platform Bank w/3PH Bypass Switch)	EA				
	Regulator Controller Upgrade (3 units)	EA				
Cutout/Fuse	1PH Non-Loadbreak/Asymmetrical, 100A (auto-populate)	EA	125	-		
······································	1PH Non-Loadbreak/Asymmetrical, 100A (adders)	EA				
	Tamer Cutout, 100A, 12KAIC, 25KV, 125KV BIL	EA				
Disconnect Switch	1PH 600A 15kVA Disconnect Switch (auto-populate)	EA	25	-		
	1PH 600A 15kVA Disconnect Switch (adders)	EA				
	1PH 600A 15kVA Vertical Switch w/Triple-Blade Bypass	EA				
Recloser - Pole Mount Hydraulic	1PH Hydr Recloser, Oil Circuit, 34.5KV,100A	EA				
Recloser - Pole Mount Electronic	3PH GW Viper-ST 800A Electronic Controlled 15-27kV	EA	4			
	Recloser Control Change Outs	EA				
Recloser - Pad Mount Electronic	3PH GW Viper-ST 800A Electronic Controlled 15-27kV	EA				
TripSaver		EA				
Transformer - Pole Mount	1PH Pole Mount Transformer, 25-50kVA (auto-populate)	EA	33	-	-	
	1PH Pole Mount Transformer, 25-50kVA (adders)	EA				
	1PH Pole Mount Transformer, 100kVA-167kVA	EA				
Transformer - Pad Mount	1PH Padmount Transformer (auto-populate)	EA	-			
	1PH Padmount Transformer (adders)	EA				
	3PH Padmount Transformer	EA				
Transformer - Pad Mount for Flood Mitigation	1PH Padmount, 25-50kVA	EA				
	1PH Padmount, 100-167kVA	EA				
	3PH Padmount, 300-750kVA	EA				
Riser	1PH (3) 10' LG 3' WD Riser on Wood/Steel/Concrete Pole	EA				
	3PH (3) 10 [°] LG 5 [°] WD Riser on Wood/Steel/Concrete Pole	EA				
Riser Pole Retrofit	1PH (3) 10 [°] LG 3 [°] WD Riser on Wood Pole (w/Cutout, Arrester)	EA				
	3PH (3) 10 [°] LG 5 [°] WD Riser on Wood Pole (w/Cutouts, Arresters)	EA				
Arrestors	Arrestors Retrofit	EA				
Equipment Installed/Removed Independe						
		Surve (Dala				
Pole for Equipment ONLY	1PH In-Line 40' C5 Wood Pole (w/Rods, Post/Pin Insulator, Arrester, G	•				
	2PH In-Line 50' C2-3 Wood Pole (w/Rods, Post/Pin Insulator, Arrester,	•				
	3PH In-Line 50' C2-3 Wood Pole (w/Rods, Post/Pin Insulator, Arrester, Guy & Pole					
	3PH In-Line 50' C2 Wood Pole (w/Rods, Post/Pin Insulator, Arrester, G	-				
	1PH In-line 40' H1 Concrete Pole (w/Rods, Post/Pin Insulator, Arrester, Guy & Pole					
	2PH In-line 50' H2 Concrete Pole (w/Rods, Post/Pin Insulator, Arrester,					
	3PH In-line 50' H2 Concrete Pole (w/Rods, Post/Pin Insulator, Arrester,					
	3PH In-line 50' H1 Concrete Pole (w/Rods, Post/Pin Insulator, Arrester,					
Switchgear (includes cord, ground rod)	PME-9/PME-10/PME-11 15KV	EA				
	PME-10 Solid Dielectric for Coastal/Submersible	EA				
Capacitor - Pole Mount	3PH Capacitor Bank, 600/1200KVAR, SWITCHED	EA				
	Capacitor Bank Control, CBC-8000	EA				
Capacitor - Pad Mount	3PH Pad Mount, 1200KVAR	EA				
Regulator	1PH 328A (w/1PH Bypass Switch)	EA				
	1PH 428A (w/1PH Bypass Switch)	EA				
	3PH 328A (Platform Bank w/3PH Bypass Switch)	EA				
	3PH 428A (Platform Bank w/3PH Bypass Switch)	EA				
Cutout/Fuse	Regulator Controller Upgrade (3 units) 1PH Non-Loadbreak/Asymmetrical, 100A	EA				


DEF's Response to OPC ROG 3 (63-70) Q65


		E۸		
Disconnect Switch	Tamer Cutout, 100A, 12KAIC, 25KV, 125KV BIL 1PH 600A 15kVA Disconnect Switch	EA EA		
Disconnect Switch	1PH 600A 15kVA Disconnect Switch 1PH 600A 15kVA Vertical Switch w/Triple-Blade Bypass	EA		
Recloser - Pole Mount Hydraulic	1PH Hydr Recloser, Oil Circuit, 34.5KV,100A	EA		
Recloser - Pole Mount Electronic	3PH GW Viper-ST 800A Electronic Controlled 15-27kV	EA		
	Recloser Control Change Outs	EA		
Recloser - Pad Mount Electronic	3PH GW Viper-ST 800A Electronic Controlled 15-27kV	EA		
	3PH GW VIPET-ST 800A Electronic Controlled 15-27kV	EA		
TripSaver Transformer - Pole Mount	1PH Pole Mount Transformer, 25-50kVA	EA		
		EA		
Transformer - Pad Mount	1PH Pole Mount Transformer, 100kVA-167kVA 1PH Padmount Transformer	EA		
i ransformer - Pad Mount				
na sife and a made and for the disatility of a	3PH Padmount Transformer	EA		
Transformer - Pad Mount for Flood Mitigation	1PH Padmount, 25-50kVA	EA		
	1PH Padmount, 100-167kVA	EA		
	3PH Padmount, 300-750kVA	EA		
Riser	1PH (3) 10' LG 3' WD Cable Guard on Wood/Steel/Concrete Pole	EA		
	3PH (3) 10' LG 5' WD Cable Guard on Wood/Steel/Concrete Pole	EA		
Riser Pole Retrofit	1PH (3) 10' LG 3' WD Riser on Wood Pole (w/Cutout, Arrester)	EA		
	3PH (3) 10' LG 5' WD Riser on Wood Pole (w/Cutouts, Arresters)	EA		
Arrestors	Arrestors Retrofit	EA		
Distribution Substation New/Upgrades				
	Greenfield Ring Bus Two Bank 230kV / 12kV Class 5 Estimate	11 acre, ring bus	1	
	ADD 1-20 MVA (assumed redeployed unit)	Bank		
	ADD 1-30 MVA	Bank		
	ADD 1-50 MVA	Bank		
	ADD Single Breaker	Breaker	8	
	ADD Feeder Position to Breaker and A Half	Feeder Position		
	ADD Metal clad Breaker (3 breakers)	3 Breakers		
	ADD Neutral Reactors	Reactor	2	
	RUDI- (per breaker)	RUDI	8	
	NEW RUDI Upgrade	RUDI		
Transmission Line Constructions				
	Transmission costs (per mile, not including land rights)	Miles		
	69kV & 115kV - REBUILD Single Circuit	Miles		
	69kV & 115kV - REBUILD Double Circuit	Miles		
	230 KV- NEW	Miles	1	
Miscellaneous				
	Surveying/ Staking (Eng Contract in design phase; auto-populated)	Circuit Feet	35,000	
	Tree Trimming (Auto-populated)	HR	Auto-populated in columnAD)
	MOT/Flagging (2 flaggers + 1 vehicle; auto-populated)	HR	Auto-populated in columnAC	
	Site Restoration	Site		
	Matting	LF		
	Hydrovac Excavation	Pole		
	Speciality Permits (RR, River, Airport, Storm water)	Each	-	
	Speciality Fermits (M, MVer, Anport, Storm water)	Lacii		
		Fach		
τοταις	Easements	Each		
TOTALS		Each		
TOTALS T&E ASSUMPTIONS T&E RESOURCE FACTOR		Each %	0%	

DEF's Response to OPC ROG 3 (63-70) Q65

25.01
30.23
31.51
81.24
91.06
43.29
6.97
43.29
19.62
19.62
42.85
42.85
11.60
2.33
2.33
3.01
3.01
3.36
3.93
31.49
4.00
44.93
5.82
6.57
6.57
13.80
12.50
12.50
24.20
16.16
16.16
23.47
3.03
3.54
13.18
26.20
2.60
19.04
23.51
28.73
30.01
20.54
25.01 30.23
31.51
81.24
91.06
43.29
6.97
43.29
19.62
19.62
42.85
42.85
11.60
11.60 2.33

2.33
3.82
3.82
3.93
31.49
4.00
44.93
5.82
6.57
13.80
16.16
23.47
16.16
16.16
23.47
3.03
3.54
13.18
26.20
2.60
150.00
0.08
0.08

Trasnfer Ier UoM M	Tree MOT Trimming	Materials	\$ \$ \$ \$ \$ \$ \$ \$			esig - \$ - \$ - \$ - \$ - \$ - \$	neering/D gn Project Pool - - - - - - -	Transfer (Capital)	S - \$ - \$ - \$ - \$ -	Contingency \$ - \$ - \$ -	Removal Labor (R) \$	-	Transfer (O&M)	TOTAL PROJECT COSTS	Total Cost Per LF	Install per UoM -	Remove per UoM
			\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	- ¢		- \$ - \$ - \$ - \$	-		\$ -	\$-	\$	-		Ψ 	-		
			\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	- ¢		- \$ - \$ - \$ - \$	-		\$ -	- -	\$	-		\$ -	-	-	
			\$ \$ \$ \$ \$ \$ \$ \$	- ¢ - ¢ - ¢ - ¢ - ¢		- \$ - \$ - \$			\$ -	\$ -							
			\$ \$ \$ \$ \$	- ¢		- \$ - \$					\$	-		\$-		-	
			\$ \$ \$ \$	- ¢		- \$	-		Ş -	\$-	\$	-		\$-		-	
			\$ \$ \$	- ç - ç	; ;				\$-	\$-	\$			\$-		-	
		- - -	\$ \$	- ¢			-		\$ -	\$ -	\$			\$ -	_	-	
		\$ -	\$			- \$	-		\$ -	Ş -	\$			\$ -		-	
				- 3		- \$ - \$	-		\$ - \$ -	\$ - ¢	\$			\$ - c	-	-	
		, ,	ې	- 5		- Ş - Ş	-		\$ - \$ -	ş - \$ -	ې \$			\$ - \$ -	_	-	
				T	,	Ŷ			7	Ŷ	Ŷ			Ŷ			
		*	ć	- \$		ć			ć	ć	\$-\$			ć	1		
		<u> </u>		- ;		- \$ - \$	-		\$ - \$ -	ş - \$ -	<u>\$</u> -\$ \$-\$			\$ - \$ -	_	-	-
		s -		- \$		- <u>ş</u> - \$	-		<u>,</u> , ,	\$ -	<u> </u>			\$ -	-	_	
		р б -		- \$		- \$	-		\$ -	\$ -	\$ - \$			\$ -	-	-	-
		\$ -		- \$		- \$	-		\$ -	\$ -	\$ - \$	-		\$ -	-	-	-
		\$ -	\$	- \$; .	- \$	-		\$-	\$-	\$ - \$	-		\$-		-	-
		\$ -	\$	- \$; .	- \$	-		\$ -	\$-	\$-\$	-		\$-		-	-
		\$-		- \$		- \$	-		\$ -	\$-	\$-\$			\$-		-	-
		\$ -	•	- \$		- \$	-		\$ -	\$ -	\$ - \$			\$ -	_	-	-
		β -		- \$		- \$	-		Ş -	Ş -	\$ - \$			\$ -	_	-	-
		<u>-</u>		- \$		- \$	-		Ş -	Ş -	<u>\$</u> -\$ \$-\$			\$ -	_	-	-
		<u>, -</u>		-		- \$ - \$	-		\$- \$-	ş - \$ -	<u> </u>			\$ - \$ -		-	-
						- <u></u> ,	-			ş - \$ -	<u> </u>			\$ -	-	-	-
		s -	\$	- \$		- \$	-		\$ -	\$ -	<u> </u>			\$ -	-	-	_
		\$ -	\$	- \$		- \$	-		\$ -	÷ \$ -	\$ - \$			\$ -	-	-	-
															•		
		ś -	\$	- 5		- \$	-	\$ -	\$ -	\$ -	\$ - \$	-		\$ -		-	-
		\$ -	\$	- \$		- \$		\$ -	\$ -	\$ -	\$ - \$	-		\$ -	-	-	-
		ş -	\$	- \$;	- \$	-		\$ -	\$ -	\$ - \$	-		\$ -		-	-
		\$-	\$	- \$		- \$	-		\$ -					\$-		-	-
		\$ -	\$	- \$; .	- \$	-	\$ -						\$-		-	-
		\$ -	\$	- \$; ·	- \$	-	\$ -				-		\$-	_	-	-
		\$ -		- \$		- \$	-		\$ -					\$ -	_	-	-
		\$ -		- ;		- \$	-		\$	\$-				\$ -		-	- - - - -
		\$ - •		- \$		- \$	-			\$-				\$ -		-	
		\$- \$-		- ç		- \$ - \$	-		\$	\$- \$-				\$ - \$ -	-	-	-
		> - \$ -				- <u>\$</u> - \$	-		- ·	- J				\$ -		-	-

\$	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	5 -	\$	- \$	-		\$ -	\$ -	\$ -	\$	-	\$-	-	-
\$	- \$	\$-	\$ \$ \$	- \$			\$ -	\$ -	\$ - \$ -	\$	-	\$ -	-	-
\$	- \$, -	\$	- \$ - \$	-		\$-	\$ - \$ -	\$ - \$ -	\$	-	\$-	-	-
\$	- \$	\$ -	\$	- \$	-		\$-	\$-	\$-	\$	-	\$-	-	-
\$	- \$	- - - -	\$	- \$ - \$ - \$ - \$ - \$	- - - - -		\$ - \$ - \$ - \$ - \$ - \$ -	\$ - \$ - \$ -	\$ - \$ - \$ -	\$	- - - - -	\$-	-	-
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	- \$	÷ -	\$	- \$ - \$ - \$ - \$	-		\$-	\$-	\$ -	\$	-	\$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	- - - - - - - - - - -	- - - - - - - - - -
\$	- \$	\$ -	\$	- \$	-		\$ - \$ - \$ -		\$ -		-	\$ -	-	-
\$	- \$	\$ -	\$	- \$ - \$	-		\$-	\$ -	\$-	\$	-	\$-	-	-
Ş	- Ş	\$ -	\$	- Ş	-		\$-	\$-	\$-	\$	-	Ş -	-	-
\$	- \$	\$ -	\$	- \$	-	\$ -	\$ -	\$ -	\$ -	\$	-	\$ -	-	-
\$	- \$	\$ -	\$ \$ \$	- \$	-	\$-	\$ - \$ - \$ - \$ -	\$ -	\$ - \$ - \$ -	\$	-	\$-	-	-
Ş	- \$	\$-	\$	- \$ - \$	-		\$ -	\$ - \$ -	<u>\$</u> -	\$ \$	-	Ş -	-	
Ş	- Ş	> -	<u>ې</u>	- Ş	-	~		\$ -	<u> </u>	<u>ې</u>		\$ -	-	-
ې د	- Ş		<u>ې</u>	- Ş	-	\$ - \$ -	\$ - \$ -	۶ - د	<u>></u> -	\$ ¢	-	ې - د	-	
ې د	- >		ڊ د	- \$	-	\$ - \$ -	\$ - \$ -	ې - خ -		\$ \$	-	- -	-	
ې د	- > - ¢	<u>-</u> 5 -	\$ \$ \$ \$ \$	- \$ - \$ - \$ - \$ - \$ - \$	-		\$ - \$ - \$ - \$ -	\$ - \$ - \$ - \$ -	\$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	\$	-	\$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ -	-	-
Ś	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	\$	\$	- \$ - \$ - \$ - \$ - \$	- - - - - - - - - - - -	\$ -		\$ - \$ - \$ - \$ - \$ -	\$ - \$ - \$ - \$ - \$ -		- - - - - - - - - - -		-	-
\$	- \$	- -	\$	- \$	-	\$ -	\$ - \$ - \$ - \$ -		\$ -	\$	-	\$ - \$ - \$ - \$ -	-	-
\$	- \$	- -	\$	- \$	-		\$ -	\$ -	\$ -		-	\$ -	-	-
\$	- \$	\$-	\$	- \$ - \$	-			\$ -	\$-	\$	-	\$ -	-	-
\$	- \$	\$ -	\$	- \$ - \$ - \$ - \$ - \$ - \$ - \$	-	\$ - \$ -	\$ -	\$-	\$-	\$	-	\$ -	-	-
\$	- \$	\$	\$	- \$	-	\$-	\$ -	\$ - \$ - \$ - \$ -	\$-	\$	- - - - - -	\$ - \$ - \$ - \$ -	-	-
\$	- \$	\$ -	\$ \$	- \$	-		\$-	\$-	\$-	\$		\$ -	-	
\$	- \$	\$ -	\$	- \$	-		\$ -	\$ -	\$ -	\$	-	\$ -	-	-
\$	- \$; -	\$ \$	- \$	-	\$ - \$ -	\$ -	\$ -	\$ - \$ -	\$	-	\$ -	-	
\$	- \$	<u>-</u>	\$	- \$		\$ -	\$ -	\$-	\$ -	\$	-	\$ -	-	
\$ \$ <t< th=""><td>- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$</td><td>-</td><td>\$ \$</td><td>- \$ - \$</td><td>-</td><td></td><td>\$ - \$ - \$ -</td><td>\$ - \$ -</td><td>\$ - \$ -</td><td>\$ \$</td><td>-</td><td>\$ - \$ - \$ -</td><td></td><td></td></t<>	- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$	-	\$ \$	- \$ - \$	-		\$ - \$ - \$ -	\$ - \$ -	\$ - \$ -	\$ \$	-	\$ - \$ - \$ -		
Ş	- >		Ş	- >	-		Ş -	\$ -	Ş -	Ş	-	Ş -	-	_
							· ·		·					
Ş.	- \$ - \$	<u>-</u>	\$ \$	- \$	-		\$ - \$ - \$ -	\$ - \$ - \$ -	\$ - \$ - \$ -		-	\$ - \$ - \$ -	-	
Ş	- \$ - \$	- <u>-</u>	Ş	- \$	-		Ş -	\$ -	\$-	Ş	-	\$ - \$ -	-	
ې د		\$ - •	\$ \$	- Ş	-		\$ - ¢	\$ -	\$ - \$ -		-	ې - د	-	
\$ \$ \$ \$ \$	- \$ - \$		<u>ې</u> \$	- \$ - \$ - \$ - \$ - \$	-		\$ - \$ -	\$ - \$ -	\$ - \$	\$ \$		\$ - \$ -	- - - - -	- - - -
\$ \$	- \$			- \$			s -	\$ -	<u> </u>		_			-
\$	- \$			- \$			\$ -	\$ -	<u> </u>			\$ -		-
\$	- \$		\$	- \$			÷ \$-	1	\$ -		-	÷ \$ -		-
\$	- \$			- \$			\$ -	\$ -	\$ -		-	÷ \$ -	-	-
\$	- \$		\$	- \$			\$ -	•	\$ -		-	\$ -	-	-
\$	- \$	\$ -	\$	- \$	-		\$-	\$-	\$ -	\$	-	\$-	-	-
\$ \$	- \$			- \$			\$ -			\$	-	\$ -		-
\$	- \$			- \$			\$ -			\$	-	÷ -	-	-
\$	- \$		\$	- \$			\$ -	\$ -		\$	-	\$ -	-	-
\$	- \$	\$	\$	- \$	-		\$-	\$-		\$	-	\$ -	-	-
\$	- \$	\$ -	\$	- \$	-		\$-	\$ -		\$	-	\$-	-	-
\$	- \$		\$	- \$			\$ -	\$-		\$	-	\$-	-	-
\$	- \$		\$	- \$			\$ -			\$	-	\$ -		-
\$	- \$		\$	- \$			\$ -			\$	-	\$ -		-
\$	- \$			- \$			\$-			\$	-	\$-		-
\$	- \$		\$	- \$			\$-	\$ -	*********************************	\$	-	\$ -		-
\$	- \$		\$	- \$			\$ -	\$ -		\$	-	\$ -	-	-
\$ \$	163,992 \$			217,608 \$			\$ 728,764	\$ 80,164		\$	24,268	\$ 833,196	-, -	-
Ş	22,903 \$	\$ 81,74	14 Ş	48,038 \$	13,604		\$ 166,290	\$ 18,292	ې -	\$	5,537	\$ 190,119	-	-

DEF's Response to OPC ROG 3 (63-70) Q65

			<u> </u>					A	<i>~</i>	<u>^</u>	4			
			\$ - \$ \$ 501,645 \$	- \$ 386,940 \$	- \$ 454,966 \$	- 115,516		\$- \$1,459,066	\$ - \$ 160,497			\$- \$1,668,151	- 2,907	- 7 -
		_	<u>\$ - \$</u>	- \$		-		\$ -	\$ -			\$ -	-	-
			\$-\$	- \$	- \$	-		\$-	\$-		ò -	\$ -	-	-
			\$ - \$	- \$	- \$	-		\$ -	\$ -			\$ -	-	-
		-	<u>\$</u> -\$	- \$	- \$	-		\$ -	\$ - \$ -			\$ -	-	-
			\$ - \$ \$ - \$	- \$ - \$	- \$ - \$	-		\$ - \$ -	\$ - \$ -			\$- \$-	-	
			<u>\$</u> \$	- \$	- \$	-		\$ -	\$ -			\$ \$	-	-
			\$ - \$	- \$	- \$	-		\$ -	\$ -			\$ -	-	
			\$-\$	- \$	- \$	-		\$-	\$ -	\$ - \$	ŝ -	\$-	-	-
			\$ - \$	- \$	- \$	-		\$ -		\$ - \$		\$ -	-	-
			\$-\$	- \$	- \$	-		\$-	\$-	\$-\$		\$ -	-	-
		_	\$ - \$	- \$	- \$	-		\$ -		\$ - \$		\$ -	-	-
			\$ - \$	- \$		-		\$ -		\$ - \$		\$ -	-	-
			\$ - \$ \$ - \$	- \$ - \$		-		\$ - \$ -		\$ - \$ \$ - \$		\$ -		
			<u>\$ - \$</u> \$ - \$	- \$	- \$	-		\$ - \$ -		<u> </u>		 \$ - \$ -	-	
			<u>\$ - \$</u> \$ - \$	- \$		-		\$ -		\$ - \$		\$ -	-	-
			\$ - \$	- \$	- \$	-		\$ -		\$ - \$		\$ -	-	-
			\$-\$	- \$		-		\$ -	\$-	\$-\$	> -	\$ -	-	-
			\$ - \$	- \$		-		\$ -	\$ -			\$ -	-	
			\$ - \$	- \$		-		\$ -	\$ -			\$ -		
			\$ - \$ \$ - \$	- \$ - \$	- \$ - \$	-		\$ - \$ -	\$ -	\$ - \$ \$ - \$		<u>ې -</u>		
			<u>\$ - \$</u> \$ - \$	- \$	- \$	-		\$ - \$ -		<u> </u>		\$ - \$ -	-	
			<u>\$</u> \$	- \$	- \$	-		\$ -		\$ - \$		\$ \$	-	
			\$ - \$	- \$	- \$	-	•	\$ -	•	\$ - \$		\$ -	-	
			\$-\$	- \$	- \$	-		\$-	\$-	\$-\$		\$ -	-	-
			\$-\$	- \$	- \$	-		\$ -	\$ -	\$ - \$	÷ -	\$ -	-	-
0.03	0.08	0.07		- \$		-			\$ -			\$ -	-	-
0.07	0.08	0.07	\$-\$	- \$	- \$	-		\$ -	\$ -	\$-\$	\$-	\$-	-	
0.02	0.08	0.07		- \$	- \$	-		\$ -		\$ - \$		\$ -	-	-
0.04	0.08	0.07		- \$	- \$	-		\$ -	\$ -			\$ -	-	-
3.68 0.02	0.08	0.07	\$ - \$ \$ - \$	<u>- \$</u> - \$	- \$ - \$	-		\$ - \$ -	\$ - \$ -			\$ - \$ -	-	
0.02	0.08	0.07	<u>\$ - \$</u> \$ - \$	- \$		-		\$ - \$ -	\$ -			 \$ - \$ -		
3.68	0.00	0107	<u>+</u> \$-\$	- \$	- \$	-		\$ -	\$ -			\$ -	-	
0.02	0.08	0.07	\$-\$	- \$	- \$	-		\$ -	\$-	\$ - \$	÷ -	\$ -	-	-
0.06	0.08	0.07	\$ 252,411 \$	581,248 \$	393,409 \$	108,376		\$ 1,335,442				\$ 1,526,811	5,989	
5.35		o	\$ 33,304 \$	7,245 \$	22,357 \$	5,271		\$ 68,177	\$ 7,499			\$ 77,947	129	
0.02	0.08	0.07	\$ - \$	- \$	- \$	-		\$ - \$ -	\$ -			\$ - ¢		
0.06	0.08	0.07	\$ - \$ \$ - \$	- \$ - \$	- \$ - \$	-		ş - \$ -	\$ - \$ -			\$ - \$ -	-	
0.01	0.08	0.07	<u>\$</u> -\$	- \$		-		\$ -	\$ -			\$ -		
0.04	0.08	0.07	\$ - \$	- \$		-		\$ -	\$ -			\$ -	-	
4.81	0.08	0.07	\$ - \$	- \$	- \$	-		\$ -	\$-	\$ - \$		\$ -	-	-
1.19	0.08	0.07	\$-\$	- \$	- \$	-		\$ -	\$ -	\$-\$	÷ -	\$ -	-	-
10.44			\$ - \$	- \$		-		т	\$ -			\$ -	-	-
12.31			\$ - \$	- \$	- \$	-		\$ -	\$ -			 \$ -		-
14.55			\$ - \$	- \$	- \$	-		\$ -	\$ -			 \$ - ¢		-
14.55 11.64			\$ - \$ \$ - \$	- \$ - \$	- \$	-		\$ - \$ -	\$ - \$ -			\$ - \$ -	-	
·• · ·	. I		, <i>Y</i>	Ŷ	Ŷ			· ·		· 7				

DEF's Response to OPC ROG 3 (63-70) Q65

Q29

REDACTED DOCUMENTS BEARING BATES NUMBERS 20240025-OPCPOD3-00015895 through 20240025-OPCPOD3-00015914 and 20240025-OPCPOD3-00015918 through 20240025-OPCPOD3-00015920 ARE REDACTED IN THEIR ENTIRETY

Q31

REDACTED DOCUMENTS BEARING BATES NUMBERS 20240025-OPCPOD3-00013555 through 20240025-OPCPOD3-00015914 and 20240025-OPCPOD3-00015918 through 20240025-OPCPOD3-00015920 and 20240025-OPCPOD3-00015920 16714 through 20240025-OPCPOD3-00017299 ARE REDACTED IN THEIR ENTIRETY

Q65

REDACTED DOCUMENTS BEARING BATES NUMBERS 20240025-OPCROG3-00016684 THROUGH 20240025-OPCROG3-00016695 ARE REDACTED IN THEIR ENTIRETY

Q65

REDACTED DOCUMENTS BEARING BATES NUMBERS 20240025-OPCROG3-00016741 THROUGH 20240025-OPCROG3-00016752 ARE REDACTED IN THEIR ENTIRETY

Q65

REDACTED DOCUMENTS BEARING BATES NUMBERS 20240025-OPCROG3-00016757 through 20240025-OPCROG3-00016789 ARE REDACTED IN THEIR ENTIRETY

Q65

REDACTED

DOCUMENTS BEARING BATES NUMBERS 20240025-OPCROG3-00016852 through 20240025-OPCROG3-00017030 ARE REDACTED IN THEIR ENTIRETY

Q65

REDACTED DOCUMENTS BEARING BATES NUMBERS 20240025-OPCROG3-00017033 and 20240025-OPCROG3-00017034 ARE REDACTED IN THEIR ENTIRETY

Q65

REDACTED DOCUMENTS BEARING BATES NUMBERS 20240025-OPCROG3-00017112 through 00020240025-OPCROG3-00017122 ARE REDACTED IN THEIR ENTIRETY

Exhibit C

DUKE ENERGY FLORIDA Confidentiality Justification Matrix

RESPONSE/DOCUMENT	PAGE/LINE	JUSTIFICATION
DEF's Response to OPC's Third	Question 29:	§366.093(3)(e), F.S.
Request for Production of	Documents bearing bates	The documents in
Documents (Nos. 29-32),	numbers 20240025-	question contain
specifically, Question 29.	OPCPOD3-00015895	confidential information
	through 20240025-	relating to competitive
	OPCPOD3-00015914 and	business interests, the
	20240025-OPCPOD3-	disclosure of which
	00015918 through	would impair the
	20240025-OPCPOD3-	competitive business of
	00015920 are confidential in	the provider/owner of the
	their entirety.	information.
		§366.093(3)(d), F.S.
		The documents in
		question contain
		confidential information,
		the disclosure of which
		would impair DEF's
		efforts to contract for
		goods or services on
		favorable terms.
DEF's Response to OPC's Third	Question 31:	§366.093(3)(d), F.S.
Request for Production of	Documents bearing bates	The documents in
Documents (Nos. 29-32),	numbers 20240025-	question contain
specifically, Question 31.	OPCPOD3-00013555	confidential information,
	through 20240025-	the disclosure of which
	OPCPOD3-00015894,	would impair DEF's
	20240025-OPCPOD3-	efforts to contract for
	00016714 through	goods or services on
	20240025-OPCPOD3-	favorable terms.
	00017299, 20240025- OPCPOD3-00013383	
	through 20240025-	
	OPCPOD3-00013399, and	
	20240025-OPCPOD3-	
	00015921 through	
	20240025-OPCPOD3-	

	00016713 are confidential in their entirety.	
DEF's Response to OPC's Third Set	Question 65:	8366 093(3)(e) F S
DEF's Response to OPC's Third Set of Interrogatories (Nos. 63-70), specifically, Question 65.	Question 65: Documents bearing bates numbers 20240025- OPCROG3-00016599 through 20240025- OPCROG3-00016607, 20240025-OPCROG3- 00016679 through 20240025-OPCROG3- 00016695, 20240025- OPCROG3-00016741 through 20240025- OPCROG3-00016755, 20240025-OPCROG3- 00016757 through 20240025-OPCROG3- 00016792, 20240025- OPCROG3-00016852 through 20240025- OPCROG3-00017032, 20240025-OPCROG3- 0001712 through 20240025- OPCROG3-00017132, 20240025-OPCROG3- 00017647 through 20240025-OPCROG3- 00017647 through 20240025-OPCROG3- 00017649, 20240025- OPCROG3-00017651 through 20240025- OPCROG3-00017654, 20240025-OPCROG3- 00017710 through 20240025-OPCROG3- 00017710 through 20240025-OPCROG3- 0017710 through 20240025-OPCROG3- 001772, 20240025- OPCROG3-00017783 through 20240025- OPCROG3-00017783 through 20240025- OPCROG3-00017785, 20240025-OPCROG3- 00016600 through 20240025-OPCROG3- 00016600 through 20240025-OPCROG3- 00016600 through 20240025-OPCROG3- 00016600 through 20240025-OPCROG3- 00016600 through 20240025-OPCROG3- 00016600 through	§366.093(3)(e), F.S. The documents in question contain confidential information relating to competitive business interests, the disclosure of which would impair the competitive business of the provider/owner of the information. §366.093(3)(d), F.S. The documents in question contain confidential information, the disclosure of which would impair DEF's efforts to contract for goods or services on favorable terms.

DEF's Response to OPC's Third Set of Interrogatories (Nos. 63-70), specifically, Question 68.	through 20240025- OPCROG3-00016607, and 20240025-OPCROG3- 00016599 are confidential in their entirety. Question 68: The document bearing bates number 20240025- OPCROG3-00017791 is confidential in its entirety.	§366.093(3)(d), F.S. The document in question contains confidential information, the disclosure of which would impair DEF's efforts to contract for goods or services on favorable terms.
		§366.093(3)(c), F.S. The document in question contains confidential security measures, systems, or procedures.

Exhibit D

AFFIDAVITS OF EDWARD L. SCOTT, BRIAN M. LLOYD, HANS JACOB, REGINALD D. ANDERSON, AND VANESSA GOFF

REDACTED DOCUMENTS BEARING BATES NUMBER 20240025-OPCROG3-00017791 IS REDACTED IN ITS ENTIRETY

BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION

In re: Petition by Duke Energy Florida, LLC for rate increase

DOCKET NO. 20240025-EI

Dated: May 24, 2024

AFFIDAVIT OF EDWARD L. SCOTT IN SUPPORT OF DUKE ENERGY FLORIDA, LLC'S REQUEST FOR CONFIDENTIAL CLASSIFICATION

STATE OF FLORIDA

COUNTY OF PINELLAS

BEFORE ME, the undersigned authority duly authorized to administer oaths, personally appeared Edward L. Scott, who being first duly sworn, on oath deposes and says that:

1. My name is Edward L. Scott. I am over the age of 18 years old, and I have been authorized by Duke Energy Florida (hereinafter "DEF" or the "Company") to give this affidavit in the above-styled proceeding on DEF's behalf and in support of DEF's Request for Confidential Classification (the "Request"). The facts attested to in my affidavit are based upon my personal knowledge.

2. I am employed by DEF as General Manager of System Operations, Florida.

3. As General Manager of System Operations, I am responsible for the safe, reliable, economic, and regulatory compliant operation of the DEF power system. This is done by overseeing the real time electric system operations of DEF, including generation dispatch,

transmission reliability, and transmission service transactions. I also serve as Vice Chair on the Florida Reliability Coordinating Council's ("FRCC") Operating Committee.

4. DEF is seeking confidential classification for information contained in response to the Office of the Public Counsel's ("OPC") Third Request for Production of Documents, Question 31 (Transmission), and Third Set of Interrogatories, Question 68. A detailed description of the confidential information at issue is contained in confidential Exhibit A to DEF's Request and is outlined in DEF's Justification Matrix that is attached to DEF's Request as Exhibit C. DEF is requesting confidential classification of this confidential information for the reasons set forth below.

5. Documents produced in response to OPC's Third Request for Production of Documents, Question 31 (Transmission), and Third Set of Interrogatories, Question 68, contain confidential information. Specifically, these documents contain pricing information relating to contracts for goods and services (along with other terms of such contracts). Disclosure of this nonpublic information could alter contractors' behavior to the detriment of DEF, its customers, and its affiliates. Thus, absent confidential classification, DEF's efforts to contract for goods and services on favorable terms may be impaired. In addition, the documents in question contain details about the location and nature of future transmission planning projects. Disclosure of that information could pose significant security risks to DEF, its customers, and the transmission grid.

6. Upon receipt of confidential information, strict procedures are established and followed to maintain the confidentiality of the terms of the documents and information provided, including restricting access to those persons who need the information to assist DEF. At no time since receiving the information in question has DEF publicly disclosed that information. DEF has treated and continues to treat the information at issue as confidential.

2

7. This concludes my affidavit.

Further affiant sayeth not.

Dated the _____ day of _____, 2024.

(Signature) Edward L. Scott General Manager, System Operations Duke Energy Florida, LLC

THE FOREGOING INSTRUMENT was sworn to and subscribed before me this ____ day of _____, 2024 by Edward L. Scott. He is personally known to me or has produced his ______ driver's license, or his ______ as identification.

(Signature)

(AFFIX NOTARIAL SEAL)

(Printed Name) NOTARY PUBLIC, STATE OF _____

(Commission Expiration Date)

(Serial Number, If Any)

BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION

In re: Petition by Duke Energy Florida, LLC for rate increase

DOCKET NO. 20240025-EI

Dated: May 24, 2024

AFFIDAVIT OF VANESSA GOFF IN SUPPORT OF DUKE ENERGY FLORIDA, LLC'S REQUEST FOR CONFIDENTIAL CLASSIFICATION

STATE OF NORTH CAROLINA

COUNTY OF MECKLENBURG

BEFORE ME, the undersigned authority duly authorized to administer oaths, personally appeared Vanessa Goff, who being first duly sworn, on oath deposes and says that:

1. My name is Vanessa Goff. I am over the age of 18 years old, and I have been authorized by Duke Energy Florida (hereinafter "DEF" or the "Company") to give this affidavit in the above-styled proceeding on DEF's behalf and in support of DEF's Request for Confidential Classification (the "Request"). The facts attested to in my affidavit are based upon my personal knowledge.

 I am employed by Duke Energy Corporation as Director of Renewables Business Development.

3. As Director of Renewables Development, I am responsible for the development of new solar facilities in Florida on behalf of DEF. I lead a team that conducts solar development

activities, including project siting, land acquisition, resource assessment, permitting, obtaining interconnection rights, project layout and design, arranging contracts for engineering, procurement, and construction ("EPC") services, as well as originating, structuring, and executing transactions to acquire rights to existing solar development projects.

4. DEF is seeking confidential classification for information contained in response to the Office of the Public Counsel's ("OPC") Third Request for Production of Documents, Question 29 (Solar), and Third Set of Interrogatories, Question 65 (Solar). A detailed description of the confidential information at issue is contained in confidential Exhibit A to DEF's Request and is outlined in DEF's Justification Matrix that is attached to DEF's Request as Exhibit C. DEF is requesting confidential classification of this confidential information for the reasons set forth below.

5. Documents produced in response to OPC's Third Request for Production of Documents, Question 29 (Solar), and Third Set of Interrogatories, Question 65 (Solar), contain confidential information. Specifically, those documents contain the terms of contracts for goods and services. Disclosure of this non-public information could alter contractors' behavior to the detriment of DEF and its customers. Thus, absent confidential classification, DEF's efforts to contract for goods and services on favorable terms may be impaired.

6. Upon receipt of confidential information, strict procedures are established and followed to maintain the confidentiality of the terms of the documents and information provided, including restricting access to those persons who need the information to assist DEF. At no time since receiving the information in question has DEF publicly disclosed that information. DEF has treated and continues to treat the information at issue as confidential.

7. This concludes my affidavit.

2

Further affiant sayeth not.

Dated the _____ day of _____, 2024.

(Signature) Vanessa Goff Director, Renewables Business Development Duke Energy Corporation

THE FOREGOING INSTRUMENT was sworn to and subscribed before me this ____ day of _____, 2024 by Vanessa Goff. She is personally known to me or has produced her ______ driver's license, or her ______ as identification.

(Signature)

(AFFIX NOTARIAL SEAL)

(Printed Name) NOTARY PUBLIC, STATE OF _____

(Commission Expiration Date)

(Serial Number, If Any)

BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION

In re: Petition by Duke Energy Florida, LLC for rate increase

DOCKET NO. 20240025-EI

Dated: May 24, 2024

AFFIDAVIT OF BRIAN M. LLOYD IN SUPPORT OF DUKE ENERGY FLORIDA, LLC'S REQUEST FOR CONFIDENTIAL CLASSIFICATION

STATE OF FLORIDA

COUNTY OF PINELLAS

BEFORE ME, the undersigned authority duly authorized to administer oaths, personally appeared Brian M. Lloyd, who being first duly sworn, on oath deposes and says that:

1. My name is Brian M. Lloyd. I am over the age of 18 years old, and I have been authorized by Duke Energy Florida (hereinafter "DEF" or the "Company") to give this affidavit in the above-styled proceeding on DEF's behalf and in support of DEF's Request for Confidential Classification (the "Request"). The facts attested to in my affidavit are based upon my personal knowledge.

2. I am employed by DEF as General Manager, Florida Major Projects.

3. As General Manager, my duties and responsibilities include planning for grid upgrades, system planning, and overall Distribution asset management strategy across DEF, as well as the Project Management for executing the work identified. Additionally, I manage organizations that execute the developer interactions and engineer large residential developments across the DEF territory.

4. DEF is seeking confidential classification for information contained in response to the Office of the Public Counsel's ("OPC") Third Set of Interrogatories, Question 65 (Distribution). A detailed description of the confidential information at issue is contained in Exhibit A to DEF's Request and is outlined in DEF's Justification Matrix that is attached to DEF's Request as Exhibit C. DEF is requesting confidential classification of this confidential information for the reasons set forth below.

5. Documents produced in response to OPC's Third Set of Interrogatories, Question 65 (Distribution), contain confidential information. Specifically, those documents contain pricing information relating to contracts for goods and services. Disclosure of this non-public information could alter contractors' behavior to the detriment of DEF, its customers, and its affiliates. Thus, absent confidential classification, DEF and its affiliates' efforts to contract for goods and services on favorable terms may be impaired. In addition, the documents in question contain internal sensitive business information regarding future projects and capital investments. That information relates to DEF's competitive business interests, and, absent confidential classification, disclosure of that information would impair DEF's ability to compete in the marketplace.

7. Upon receipt of confidential information, strict procedures are established and followed to maintain the confidentiality of the terms of the documents and information provided, including restricting access to those persons who need the information to assist the Company. At no time since receiving the information in question has the Company publicly disclosed that information. The Company has treated and continues to treat the information at issue as confidential.

2

8. This concludes my affidavit.

Further affiant sayeth not.

Dated the <u>24</u> day of <u>MAY</u> , 2024.

(Signature) Brian M. Lloyd General Manager, Florida Major Projects Duke Energy Florida, LLC

THE FOREGOING INSTRUMENT was sworn to and subscribed before me this $\underline{34}$ day , 2024 by Brian M. Lloyd. He is personally known to me or has produced her of driver's license, or his as identification.

(AFFIX NOTARIAL SEAL)

OMOO (Signature) NO (Printed Name) 70 NOTARY, PUBLIC, STATE OF 2 C (Commission Expiration Date) 259910 (Serial Number, If Any) SHEMONE WATTS Notary Public - State of F or ca Commission # HH 25995 Comm. Expires .ur SHEMONE WATTS lotary Public - State of Florida Commission # HH 259961 My Comm. Expires Jun 17, 202

BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION

In re: Petition by Duke Energy Florida, LLC for rate increase

DOCKET NO. 20240025-EI

Dated: May 24, 2024

AFFIDAVIT OF HANS JACOB IN SUPPORT OF DUKE ENERGY FLORIDA, LLC'S REQUEST FOR CONFIDENTIAL CLASSIFICATION

STATE OF FLORIDA

COUNTY OF PINELLAS

BEFORE ME, the undersigned authority duly authorized to administer oaths, personally appeared Hans Jacob, who being first duly sworn, on oath deposes and says that:

1. My name is Hans Jacob. I am over the age of 18 years old, and I have been authorized by Duke Energy Florida (hereinafter "DEF" or the "Company") to give this affidavit in the above-styled proceeding on DEF's behalf and in support of DEF's Request for Confidential Classification (the "Request"). The facts attested to in my affidavit are based upon my personal knowledge.

 I am employed by Duke Energy Corporation as Director of Renewable Business Development.

3. As a Director of Renewable Business Development, I am responsible for the development of battery energy storage systems ("BESS") projects in Florida on behalf of Duke

Energy Florida, LLC ("DEF" or the "Company"). I lead a team of project developers responsible for the initiation and deployment of regulated battery energy storage and microgrid systems.

4. DEF is seeking confidential classification for information contained in response to the Office of the Public Counsel's ("OPC") Third Request for Production of Documents, Question 31 (Energy Storage), and Third Set of Interrogatories, Question 65 (Energy Storage). A detailed description of the confidential information at issue is contained in Exhibit A to DEF's Request and is outlined in DEF's Justification Matrix that is attached to DEF's Request as Exhibit C. DEF is requesting confidential classification of this confidential information for the reasons set forth below.

5. Documents produced in response to OPC's Third Request for Production of Documents, Question 31 (Energy Storage), and Third Set of Interrogatories, Question 65 (Energy Storage), contain confidential information. Specifically, these documents contain pricing information relating to contracts for goods and services (along with other terms of such contracts). Disclosure of this non-public information could alter contractors' behavior to the detriment of DEF, its customers, and its affiliates. Thus, absent confidential classification, DEF's efforts to contract for goods and services on favorable terms may be impaired.

6. Upon receipt of confidential information, strict procedures are established and followed to maintain the confidentiality of the terms of the documents and information provided, including restricting access to those persons who need the information to assist DEF. At no time since receiving the information in question has DEF publicly disclosed that information. DEF has treated and continues to treat the information at issue as confidential.

7. This concludes my affidavit.

Further affiant sayeth not.

2

Dated the _____ day of _____, 2024.

(Signature) Hans Jacob Director, Renewable Business Development Duke Energy Corporation

THE FOREGOING INSTRUMENT was sworn to and subscribed before me this ____ day of _____, 2024 by Hans Jacob. He is personally known to me or has produced his ______ driver's license, or his ______ as identification.

(Signature)

(AFFIX NOTARIAL SEAL)

(Printed Name) NOTARY PUBLIC, STATE OF

(Commission Expiration Date)

(Serial Number, If Any)

BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION

In re: Petition by Duke Energy Florida, LLC for rate increase

DOCKET NO. 20240025-EI

Dated: May 24, 2024

AFFIDAVIT OF REGINALD D. ANDERSON IN SUPPORT OF DUKE ENERGY FLORIDA, LLC'S <u>REQUEST FOR CONFIDENTIAL CLASSIFICATION</u>

STATE OF FLORIDA

COUNTY OF PINELLAS

BEFORE ME, the undersigned authority duly authorized to administer oaths, personally appeared Reginald D. Anderson, who being first duly sworn, on oath deposes and says that:

1. My name is Reginald D. Anderson. I am over the age of 18 years old, and I have been authorized by Duke Energy Florida (hereinafter "DEF" or the "Company") to give this affidavit in the above-styled proceeding on DEF's behalf and in support of DEF's Request for Confidential Classification (the "Request"). The facts attested to in my affidavit are based upon my personal knowledge.

2. I am employed by DEF as Vice President, Power Generation.

3. As Vice President of DEF's Power Generation organization, I am responsible for providing overall leadership and strategic and tactical planning over employees in DEF's Power Generation organization. In this role, I oversee generation projects, major maintenance programs,

outage and project management, fleet retirement strategy, and workforce planning (including departmental staffing and long-term strategies such as organizational alignment, design, retention, and inclusion). I am responsible for billions of dollars in assets including capital and operating and maintenance ("O&M") budgets, and I lead the development of regional succession planning.

4. DEF is seeking confidential classification for information contained in response to the Office of the Public Counsel's ("OPC") Third Request for Production of Documents, Question 29 (Generation). A detailed description of the confidential information at issue is contained in Exhibit A to DEF's Request and is outlined in DEF's Justification Matrix that is attached to DEF's Request as Exhibit C. DEF is requesting confidential classification of this confidential information for the reasons set forth below.

5. Documents produced in response to OPC's Third Request for Production of Documents, Question 29 (Generation), contain confidential information. Specifically, those documents contain pricing information relating to contracts for goods and services. Disclosure of this non-public information could alter contractors' behavior to the detriment of DEF, its customers, and its affiliates. Thus, absent confidential classification, DEF and its affiliates' efforts to contract for goods and services on favorable terms may be impaired. In addition, the documents in question contain internal sensitive business information regarding future projects and capital investments. That information relates to DEF's competitive business interests, and, absent confidential classification, disclosure of that information would impair DEF's ability to compete in the marketplace.

6. Upon receipt of confidential information, strict procedures are established and followed to maintain the confidentiality of the terms of the documents and information provided, including restricting access to those persons who need the information to assist DEF. At no time

since receiving the information in question has DEF publicly disclosed that information. DEF has treated and continues to treat the information at issue as confidential.

7. This concludes my affidavit.

Further affiant sayeth not.

Dated the _____ day of _____, 2024.

(Signature) Reginald D. Anderson Vice President, Power Generation Duke Energy Florida, LLC

THE FOREGOING INSTRUMENT was sworn to and subscribed before me this ____ day of _____, 2024 by Reginald D. Anderson. He is personally known to me or has produced his _____ driver's license, or his ______ as identification.

(Signature)

(AFFIX NOTARIAL SEAL)

(Printed Name) NOTARY PUBLIC, STATE OF _____

(Commission Expiration Date)

(Serial Number, If Any)