FILED 2/18/2020 DOCUMENT NO. 00968-2020 FPSC - COMMISSION CLERK

FLORIDA PUBLIC SERVICE COMMISSION OFFICE OF COMMISSION CLERK

DOCUMENT NUMBER ASSIGNMENT*

FILED DATE: 2/18/2020

DOCKET NO.: 20200001-EI

DOCUMENT NO.: 00968-2020

CONFIDENTIAL

DOCUMENT DESCRIPTION:

(CONFIDENTIAL) Hearing Exhibit No. 102 from 2/5/20 DOAH Hearing. [CLK Note: See DN 10935-2019 for Exh Nos. 1, 68-75, 80, 82, 100]

*This document number has been assigned to a confidential document. For further information, contact the Office of Commission Clerk.

E-MAIL: CLERK@PSC.STATE.FL.US PHONE NO. (850) 413-6770 FAX NO. (850) 717-0114

EXHIBIT NO. <u>102</u>

CONFIDENTIAL

DOCKET NO:

20190001-EI

WITNESS:

Jeffrey Swartz

PARTY:

Duke

DESCRIPTION:

Late filed deposition Exhibit No. 4

DOCUMENTS:

Panel deposition of Jeffrey Swartz, Anthony Salvarezza and C. Wayne Toms, August 30, 2019.

PROFFERED BY:

Office of Public Counsel

BRR 4S L-O Background

rev 10-15-16hmc

The Bartow Combined Cycle Steam Turbine 4s (COE <u>mid-</u>2009) last stage blade (L-O) issues started with <u>a</u>routine visual inspection that lead to a forced outage in 2012 after just 3 years of in service time. Several cracks and chips were found on the blade <u>mid-span snubbers and tip z-notches of the turbine end row</u>. The <u>generator end was undamaged and</u> turbine end L-O's were replaced. The OEM concluded in a root cause investigation the cause of the issue was last stage steam flow rates beyond their design limits forcing non synchronous blade vibrations and subsequent wear and fatigue of the mating blade contact surfaces. At that time, the OEM required a limit to the IP exhaust pressure to limit steam flow into the LP section to the original design limit thus restricting output. The unit continued to run at the original design conditions until a more rugged design upgrade was developed and <u>made</u> available.

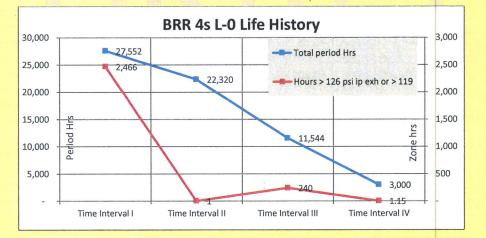
It is important to note that this turbine was originally designed for another project and built by the OEM, but not shipped. It was subsequently reapplied to the Bartow project with the limitations in turbine output shown on the heat balances and other documentation provided. However, it was much less clear about the exhaust flow limit the output limit implied since this pressure and flow limit is not clearly stated on the documentation given.

In <u>spring 2015 a</u> planned outage replaced the original design blades with <u>blades having</u> several improvements , that included hard facing <u>of</u> the <u>mid-span snubber</u> wear surfaces. <u>It should be noted that the original</u> generator end blades, and the 2nd set of turbine end blades, looked to be in good condition and suitable for <u>continued operation</u>.

Information, presented by the OEM showed test data indicating an improvement of wear rate and fatigue life by a factor of x10 with the addition of a hard face coating, as well as a significant reduction in contact stresses the revised design promised. Previous to the application of the revised blades, the OEM root cause was questioned and challenged. Two Japanese executives that made a presentation at site and their openness for questions and data presented allowed the Legacy Progress team to conclude that if we had a three year life blade and improvements could give more that x10, the goal a reasonable life (> 15 yrs) was very likely. A contract for procuring and testing this revised upgraded blade also added protection and reduced risk with a 6 yr warranty 3 yr full remainder prorated, a significate upgrade from 1 or 2 yr full warranty. This seemed an adequate choice to justify the decision to plan and schedule this 2015 outage with the upgraded blade.

The test plan for the new blades included strain gage testing in the OEM facility, which we witnessed, and insitu strain gage testing at site with full load steam. All steps reasonable and practical were taken to assure the design was going to be successful, and the team performed due diligence with the choice to select the redesigned blade and validate it without waiting <u>3 vears</u> for run experience. The testing did reveal an "avoidance zone" or combination of steam flow and condenser backpressures that was a driver for blade stresses above desirable levels. When the unit was returned to service and released for operation with this "avoidance zone", jt was intended that the unit not be run with these combinations of flow and backpressures,

In early <u>spring</u> 2016, an inspection that was expected to be routine and have no findings revealed damage at a blade tip <u>z-notch</u> that rendered the unit at a high risk to return to service by the OEM. The blades were


Formatted: Justified
Deleted: the
Deleted: T
Deleted: also imposed severe restrictions on the p
Deleted: ressures
Deleted: and unit output and t
Deleted: design
Deleted: ¶
Deleted: 2014/15
Deleted: an end of year
Deleted: , all still with serviceable life left,
Deleted:
Formatted: Superscript
Deleted: Earlier d
Deleted: ata
Deleted: had been
Deleted: ing
Deleted: that experiments showed
Deleted: added
Deleted: ⊤
Deleted: again
Deleted: The material presented and the t
Deleted: the
Deleted: ,
Deleted: The
Deleted: 14-
Deleted: planned outage also
Deleted: that
Deleted:
Deleted: at site
Deleted:
Deleted: y
Deleted:
Deleted:
Deleted: and
Deleted: to be avoided by operations

replaced in May 2016 with a second OEM design modification that included adding more hard facing to the tip z-notch contact surfaces.

The unit restarted in June 2016 and ran until July 2016 when a step change in vibration of approximately 0.5 mils at the LP bearings occurred. The unit continued to run and an additional small step change occurred in Aug 2016. The <u>OEM was consulted and they felt the vibration changes were due to changes in bearing stiffness. The Duke team was not completely comfortable with the OEM's explanation and while we felt that rotor mass loss may not <u>be likely</u>, it was possible, and therefore the unit needed to be shut down for a visual inspection. Commercial load demands, two hurricanes and other unit outages postponed this inspection until mid_Oct 2016.</u>

This recent inspection revealed the cause of the vibration changes to be significant mass loss of three separate L-0 blade tip z-notches,— one on the turbine end row, and two on the generator end row, In addition, at least one mid-span snubber has failed. The data indicate one of the blades only ran 30 days prior to failing.

The expected blade life predictions of the latest blade configuration compared to the actual field experience is the driver for the study in attachment A of <u>steam turbine output and operating pressures versus time</u>. There is <u>one particular</u> fact and clear apparent path forward that can bee seen in this data. The Table below from the <u>attachment</u> presents the fact that the more we modified the blades, the short<u>er the time before contact</u> surface failure despite the fact we <u>have continued operate the unit with lower</u> steam flows that fall mostly within the OEM limits for the original design.

Inspection of the data reveal that the original design in time intervals 1 and 2 only had the mid-span snubber failure of the original turbine end (TE) blades – and the 1st time interval nearly 2500 hours of operation was above the OEM limit. In time interval 2, no failures occurred and there was only 1 hours of operation slightly above the limit. This means that the generator end (GE) blades ran nearly 50,000 hours with no failures.

Deleted: additional

-						
Deleted: is						
Deleted: ran form	ו					
Deleted: to						
Deleted: happene	ed					
Deleted: A						
Deleted: happene	ed					
Deleted: felt						
Deleted: while						
Deleted: was						
Deleted: s						
Deleted:						
Deleted:						
Deleted: that we 2016	re newly installed in the outage earlier in					
Deleted: and timi	ing					
Deleted: d						
Deleted: data wa						
Deleted: Mw's,						
Deleted: , T						
Deleted: etc. in c	letail					
Deleted: are man	y obvious					
Deleted: s						
Deleted: one						
Deleted: life we g	ot					
Deleted: were reducing the						
Deleted: excitation	on					

Formatted: Superscript

This is in contrast to time interval 3 where failures occurred after only 11.5 khrs of operation with only 240 hours above the original limit – and interval 4 with only 3 khrs of operation and just over only 1 hour above the original flow limit. The data clearly suggest that returning to the original design, and limiting the IP exhaust pressure to 123 psig (not sure I'm reading that right off the graph), which will give approximately 400 to 405 MW with 4x1 operation, will give much more acceptable life than the modified design.

Summary of Data

While there are many significant points and facts to be concluded from the data being presented, a glaring fact that surfaces is the more we improved the blade design (two modifications, three versions tested) and simultaneously reduce the time at excessive flows, the shorter the blade service interval has become, It was never obvious earlier in the spring 2016 failure because the time operations exceeded the pressure was the focus of the second yet incomplete RCA. No one knew the first service run had so many hours above the later imposed pressure limit.

While in the period I there were 33K hrs available and 2600 hrs with high pressure operation. There were no blades found with complete <u>z-notch</u> lug loss and no step changes in vibration were encountered.

Compare this to period III with 11k hrs and 240 hrs with high pressure. This is the first design modification compared to the original design we were trying to improve. The life decreased by x 1/3 rather than increase by x10. The high pressure hours did decrease from 9% of the time period to 2%, but the blade service life still decreased. This is counter to the expected result.

In period IV the unit ran 3k hrs with 1.15 hrs at high pressure. This is the second design modification. The life decreased to $\sim x 1/10$ not x10 as advertised. If you consider the unit actually failed a blade 30 days after restart when the vibration changed \sim 700 hours the decrease in life is even less x 1/10 to approx. x 0.2. Or effectively the second design modification, with pressure restrictions, gave 2% of the life of the original design with no pressure restriction.

For these reasons the recommended direction on the current repair (fall 2016) is to return to the original blade design (no hard facing) with reasonable operational restrictions on steam flows and pressure limits. These restrictions need to be part of the control logic and not an operator or supervision option to interpret.

If this style blade is not quickly available the option of inspecting and installing the blades removed in 2012 should be evaluated against an extended outage waiting for blades. This is not the first recommendation.

Formatted: Font: 12 pt, Bold

Deleted: Deleted: s

Deleted:

Opinion

These facts supported by actual experienced field data suggest the proposed OEM root cause may not be inclusive of all interactions possible. It also suggests the following points need to be investigated for a better RCA

- Quality of coating (workmanship) .
 - o Is coating not adhering. Some evidence in visuals to date
 - o Is process changing fatigue strength of base material
 - o Is coating non uniform allowing higher partial face contact stresses
 - o other
- Quality of blade assembly (workmanship) .
 - o Are the high vibrations we experience on return to service causing additional blade stresses. MHI has low speed field balanced twice now with both attempts resulting in more Low pressure turbine vibration post outage than pre outage.
 - o Are the hardened faces being damaged as blades are being hammered in the fan sequence.
 - o Other
- Design
 - o Did blade tuning change design modifications and a higher frequency mode get introduced.
 - o_____Is there some yet to be found driver for the fatigue the design changes are not considering and life is becoming shorter.
 - o Has there been changes to other manufacturing processes, such as areas of the blade surface that are shot peened? (There appears to be an unpeened area in the fillet of the lug which is not apparent on the original blades - this is near where the cracking occurs).
 - o Does the blade material meet spec? Hardness, tensile/ultimate, etc.
 - o' Other

Deleted: ¶

1

¶

1

1 1

Formatted: Font: 12 pt, Bold

BRR 4S L-O Background

rev 10-15-16hmc

The Bartow Combined Cycle Steam Turbine 4s (COE <u>mid-</u>2009) last stage blade (L-0) issues started with <u>a</u>routine visual inspection that lead to a forced outage in 2012 after just 3 years of in service time. Several cracks and chips were found on the blade <u>mid-span snubbers and tip z-notches of the turbine end row</u>. The <u>generator end was undamaged and</u> turbine end L-0's were replaced. The OEM concluded in a root cause investigation the cause of the issue was last stage steam flow rates beyond their design limits forcing non synchronous blade vibrations and subsequent wear and fatigue of the mating blade contact surfaces. At that time, the OEM required a limit to the IP exhaust pressure to limit steam flow into the LP section to the original design limit thus restricting output. The unit continued to run at the original design conditions until a more rugged design upgrade was developed and <u>made</u> available.

It is important to note that this turbine was originally designed for another project and built by the OEM, but not shipped. It was subsequently reapplied to the Bartow project with the limitations in turbine output shown on the heat balances and other documentation provided. However, it was much less clear about the exhaust flow limit the output limit implied since this pressure and flow limit is not clearly stated on the documentation given.

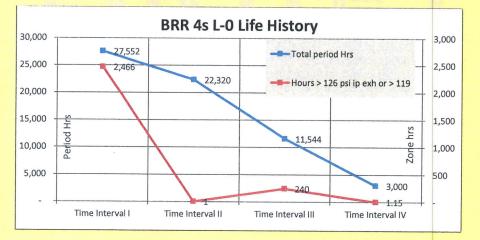
In <u>spring 2015 a</u> planned outage replaced the original design blades with <u>blades having</u> several improvements , that included hard facing <u>of</u> the <u>mid-span snubber</u> wear surfaces. <u>It should be noted that the original</u> <u>generator end blades</u>, and the 2nd set of turbine end blades, looked to be in good condition and suitable for continued operation.

Information, presented by the OEM showed test data indicating an improvement of wear rate and fatigue life by a factor of x10 with the addition of a hard face coating, as well as a significant reduction in contact stresses the revised design promised. Previous to the application of the revised blades, the OEM root cause was questioned and challenged. Two Japanese executives that made a presentation at site and their openness for questions and data presented allowed the Legacy Progress team to conclude that if we had a three year life blade and improvements could give more that x10, the goal a reasonable life (> 15 yrs) was very likely. A contract for procuring and testing this revised upgraded blade also added protection and reduced risk with a 6 yr warranty 3 yr full remainder prorated, a significate upgrade from 1 or 2 yr full warranty. This seemed an adequate choice to justify the decision to plan and schedule this 2015 outage with the upgraded blade.

The <u>test plan for the new blades</u> included strain gage testing in the OEM facility, <u>which</u> we witnessed, and insitu strain gage testing <u>at site</u> with full load steam. All steps reasonable and practical were taken to assure the design was going to be successful, and the team performed due diligence with the choice to select the redesigned blade and validate it without waiting <u>3 years</u> for run experience. The testing did reveal an "avoidance zone" or combination of steam flow and condenser backpressures that was <u>a</u> driver for blade stresses above desirable levels. When the unit was returned to service and released for operation with this "avoidance zone", jt was intended <u>that the unit not be run with these combinations of flow and backpressures</u>.

In early <u>spring 2016</u>, an inspection that was expected to be routine and have no findings revealed damage at a blade tip <u>z-notch</u> that rendered the unit at a high risk to return to service by the OEM. The blades were

Formatted: Justified				
Deleted: the				


1	Deleted: T
1	Deleted: also imposed severe restrictions on the p
1	Deleted: ressures
1	Deleted: and unit output and t
1	Deleted: design
1	Deleted: ¶
1	Deleted: 2014/15
1	Deleted: an end of year
1)	Deleted: , all still with serviceable life left,
1	Deleted:
1	Formatted: Superscript
1	Deleted: Earlier d
1	Deleted: ata
1	Deleted: had been
1	Deleted: ing
	Deleted: that experiments showed
	Deleted: added
/	Deleted: ⊤
	Deleted: again
-	Deleted: The material presented and the t
	Deleted: the
	Deleted: ,
	Deleted: The
	Deleted: 14-
	Deleted: planned outage also
-	Deleted: that
	Deleted:
	Deleted: at site
	Deleted:
	Deleted: y
	Deleted:
-	Deleted:
	Deleted: and
1	Deleted: to be avoided by operations
	Deleted: .

replaced in May 2016 with a second OEM design modification that included adding more hard facing to the tip z-notch contact surfaces.

The unit restarted in June 2016 and ran until July 2016 when a step change in vibration of approximately 0.5 mils at the LP bearings occurred. The unit continued to run and an additional small step change occurred in Aug 2016. The OEM was consulted and they felt the vibration changes were due to changes in bearing stiffness. The Duke team was not completely comfortable with the OEM's explanation and while we felt that rotor mass loss may not be likely, it was possible, and therefore the unit needed to be shut down for a visual inspection. Commercial load demands, two hurricanes and other unit outages postponed this inspection until mid-Oct 2016.

This recent inspection revealed the cause of the vibration changes to be significant mass loss of three separate L-0 blade <u>tip z-notches</u> — one on the turbine end row, and two on the generator end row. In addition, at least one mid-span snubber has failed. The data indicate one of the blades only ran 30 days prior to failing.

The expected blade life predictions of the latest blade configuration compared to the actual field experience is the driver for the study in attachment A of <u>steam turbine output and operating pressures versus time</u>. There is one particular fact and clear apparent path forward that can be seen in this data. The Table below from the <u>attachment</u> presents the fact that the more we modified the blades, the short<u>er the time before contact</u> surface failure despite the fact we <u>have continued operate the unit with lower</u> steam flows that fall mostly within the OEM limits for the original design.

Inspection of the data reveal that the original design in time intervals 1 and 2 only had the mid-span snubber failure of the original turbine end (TE) blades – and the 1st time interval nearly 2500 hours of operation was above the OEM limit. In time interval 2, no failures occurred and there was only 1 hours of operation slightly above the limit. This means that the generator end (GE) blades ran nearly 50,000 hours with no failures. Deleted: additional

Deleted: is Deleted: ran form Deleted: to Deleted: happened Deleted: happened Deleted: happened Deleted: happened Deleted: happened Deleted: was Deleted: was Deleted: was Deleted: s Deleted: not ming Deleted: and timing Deleted: d Deleted: data wa Deleted: not many obvious Deleted: s Deleted: s Deleted: s Deleted: dit was Deleted: dit was Deleted: and timing Deleted: and timing Deleted: and timing Deleted: dit awa Deleted: are many obvious Deleted: s Deleted: are many obvious Deleted: s Deleted: s Deleted: infe we got Deleted: was the suspected cause for the failures		
Deleted: to Deleted: happened Deleted: happened Deleted: happened Deleted: felt Deleted: was Deleted: was Deleted: was Deleted: s Deleted: Deleted: <tr< td=""><td>Deleted: is</td><td></td></tr<>	Deleted: is	
Deleted: happened Deleted: A Deleted: happened Deleted: happened Deleted: felt Deleted: was Deleted: was Deleted: s Deleted: s Deleted: 0 Deleted: hat were newly installed in the outage earlier in 2016 Deleted: and timing Deleted: and timing Deleted: and timing Deleted: data wa Deleted: data wa Deleted: data wa Deleted: Aws's, Deleted: Aws's, Deleted: are many obvious Deleted: s Deleted: s Deleted: one Deleted: life we got Deleted: were reducing the Deleted: excitation	Deleted: ran for	m
Deleted: A Deleted: happened Deleted: felt Deleted: was Deleted: was Deleted: s Deleted: c Deleted: no Deleted: no Deleted: s Deleted: data wa Deleted: nd timing Deleted: data wa Deleted: no Deleted: s Deleted: s Deleted: s Deleted: se were reducing the	Deleted: to	
Deleted: happened Deleted: happened Deleted: was Deleted: was Deleted: s Deleted: s Deleted: Deleted: Deleted: that were newly installed in the outage earlier in 2016 Deleted: and timing Deleted: and timing Deleted: ad and timing Deleted: d Deleted: d Deleted: d Deleted: d Deleted: d Deleted: data wa Deleted: dta wa Deleted: data wa Deleted: ne Deleted: s Deleted: s Deleted: s Deleted: were reducing the Deleted: excitation	Deleted: happen	ned
Deleted: felt Deleted: while Deleted: was Deleted: s Deleted: S Deleted: Deleted: S	Deleted: A	
Deleted: while Deleted: was Deleted: s Deleted: S De	Deleted: happen	ned
Deleted: was Deleted: s Deleted: Deleted: Deleted: Deleted: and timing Deleted: and timing Deleted: and timing Deleted: data wa Deleted: Mw's, Deleted: etc. in detail Deleted: are many obvious Deleted: s Deleted: life we got Deleted: were reducing the Deleted: excitation	Deleted: felt	
Deleted: s Deleted: Deleted: Deleted: Deleted: that were newly installed in the outage earlier in 2016 Deleted: and timing Deleted: and timing Deleted: data wa Deleted: Mw's, Deleted: etc. in detail Deleted: s Deleted: s Deleted: life we got Deleted: were reducing the Deleted: excitation	Deleted: while	
Deleted: Deleted: Deleted: that were newly installed in the outage earlier in 2016 Deleted: Deleted: and timing Deleted: Deleted: d Deleted: Mw's, Deleted: Deleted: that were newly installed in the outage earlier in 2016 Deleted: Mw's, Deleted: Mw's, Deleted: that were newly obvious Deleted: s Deleted: peleted: sone Deleted: Deleted: were reducing the Deleted: Deleted: were reducing the	Deleted: was	
Deleted: Deleted: that were newly installed in the outage earlier in 2016 Deleted: Deleted: and timing Deleted: d Deleted: d Deleted: Mw's, Deleted: Deleted: the detail Deleted: peleted: s Deleted: peleted: inference Deleted: inference Deleted: were reducing the Deleted: Deleted: excitation	Deleted: s	
Deleted: that were newly installed in the outage earlier in 2016 Deleted: and timing Deleted: and timing Deleted: data wa Deleted: data wa Deleted: Mw's, Deleted: Mw's, Deleted: etc. in detail Deleted: etc. in detail Deleted: are many obvious Deleted: are many obvious Deleted: s Deleted: one Deleted: life we got Deleted: were reducing the Deleted: were reducing the	Deleted:	
2016 Deleted: and timing Deleted: d Deleted: d Deleted: data wa Deleted: Mw's, Deleted: Mw's, Deleted: r Deleted: are many obvious Deleted: are many obvious Deleted: s Deleted: one Deleted: life we got Deleted: were reducing the Deleted: excitation	Deleted:	
Deleted: d Deleted: data wa Deleted: data wa Deleted: data wa Deleted: Mw's, Deleted: , T Deleted: etc. in detail Deleted: are many obvious Deleted: are many obvious Deleted: s Deleted: one Deleted: life we got Deleted: were reducing the Deleted: excitation		ere newly installed in the outage earlier in
Deleted: data wa Deleted: Mw's, Deleted: , T Deleted: etc. in detail Deleted: are many obvious Deleted: are many obvious Deleted: s Deleted: one Deleted: life we got Deleted: were reducing the Deleted: excitation	Deleted: and tim	ning
Deleted: Mw's, Deleted: , T Deleted: , T Deleted: are many obvious Deleted: are many obvious Deleted: s Deleted: one Deleted: life we got Deleted: were reducing the Deleted: excitation	Deleted: d	
Deleted: , T Deleted: etc. in detail Deleted: are many obvious Deleted: s Deleted: one Deleted: life we got Deleted: were reducing the Deleted: excitation	Deleted: data wa	a
Deleted: etc. in detail Deleted: are many obvious Deleted: s Deleted: one Deleted: life we got Deleted: were reducing the Deleted: excitation	Deleted: Mw's,	
Deleted: are many obvious Deleted: s Deleted: one Deleted: life we got Deleted: were reducing the Deleted: excitation	Deleted: , T	
Deleted: s Deleted: one Deleted: life we got Deleted: were reducing the Deleted: excitation	Deleted: etc. in	detail
Deleted: one Deleted: life we got Deleted: were reducing the Deleted: excitation	Deleted: are mai	ny obvious
Deleted: life we got Deleted: were reducing the Deleted: excitation	Deleted: s	
Deleted: were reducing the Deleted: excitation	Deleted: one	
Deleted: excitation	Deleted: life we	got
	Deleted: were re	ducing the
Deleted: was the suspected cause for the failures	Deleted: excitation	on
	Deleted: was the	suspected cause for the failures

Formatted: Superscript

This is in contrast to time interval 3 where failures occurred after only 11.5 khrs of operation with only 240 hours above the original limit – and interval 4 with only 3 khrs of operation and just over only 1 hour above the original flow limit. The data clearly suggest that returning to the original design, and limiting the IP exhaust pressure to 123 psig (not sure I'm reading that right off the graph), which will give approximately 400 to 405 MW with 4x1 operation, will give much more acceptable life than the modified design.

Summary of Data

While there are many significant points and facts to be concluded from the data being presented, a glaring fact that surfaces is the more we improved the blade design (two modifications, three versions tested) and simultaneously reduce the time at excessive flows, the shorter the blade service interval has become, it was never obvious earlier in the spring 2016 failure because the time operations exceeded the pressure was the focus of the second yet incomplete RCA. No one knew the first service run had so many hours above the later imposed pressure limit.

While in the period I there were 33K hrs available and 2600 hrs with high pressure operation. There were no blades found with complete <u>z-notch</u> lug loss and no step changes in vibration were encountered.

Compare this to period III with 11k hrs and 240 hrs with high pressure. This is the first design modification compared to the original design we were trying to improve. The life decreased by x 1/3 rather than increase by x10. The high pressure hours did decrease from 9% of the time period to 2%, but the blade service life still decreased. This is counter to the expected result.

In period IV the unit ran 3k hrs with 1.15 hrs at high pressure. This is the second design modification. The life decreased to $\sim x 1/10$ not x10 as advertised. If you consider the unit actually failed a blade 30 days after restart when the vibration changed \sim 700 hours the decrease in life is even less x 1/10 to approx. x 0.2. Or effectively the second design modification, with pressure restrictions, gave 2% of the life of the original design with no pressure restriction.

For these reasons the recommended direction on the current repair (fall 2016) is to return to the original blade design (no hard facing) with reasonable operational restrictions on steam flows and pressure limits. These restrictions need to be part of the control logic and not an operator or supervision option to interpret.

If this style blade is not quickly available the option of inspecting and installing the blades removed in 2012 should be evaluated against an extended outage waiting for blades. This is not the first recommendation.

Formatted: Font: 12 pt, Bold

Deleted: Deleted: s

Deleted:

Opinion

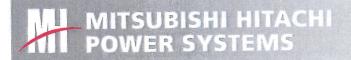
These facts supported by actual experienced field data suggest the proposed OEM root cause may not be inclusive of all interactions possible. It also suggests the following points need to be investigated for a better RCA

- Quality of coating (workmanship) .
 - o Is coating not adhering. Some evidence in visuals to date
 - o Is process changing fatigue strength of base material
 - o Is coating non uniform allowing higher partial face contact stresses
 - o other
- Quality of blade assembly (workmanship)
 - Are the high vibrations we experience on return to service causing additional blade stresses. MHI has low speed field balanced twice now with both attempts resulting in more Low pressure turbine vibration post outage than pre outage.
 - o Are the hardened faces being damaged as blades are being hammered in the fan sequence. o Other
- Design
 - o Did blade tuning change design modifications and a higher frequency mode get introduced.
 - o____ls there some yet to be found driver for the fatigue the design changes are not considering and life is becoming shorter.
 - o Has there been changes to other manufacturing processes, such as areas of the blade surface that are shot peened? (There appears to be an unpeened area in the fillet of the lug which is not apparent on the original blades - this is near where the cracking occurs).
 - o Does the blade material meet spec? Hardness, tensile/ultimate, etc.
 - o Other

Deleted: ¶

¶

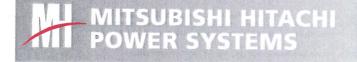
1 1


1

1 1

Formatted: Font: 12 pt, Bold

Bartow Steam Turbine RCA Review Nov 9th 2016


This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA.

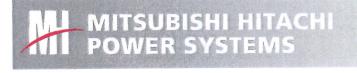
© 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

SL3

Agenda

- Goal of the Meeting
- RCA
 - RCA Action Items
 - Fleet History
 - Blade Metallurgical Evaluation
 - Manufacturing and Assembly Data
 - Telemetry Test Data Review
 - Operation Data Analysis
 - RCA Conclusion

This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA.

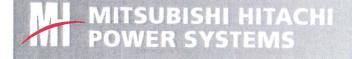

© 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

SL3

Goal of the Meeting

 Review RCA evaluation of blade damage found in April 2016 and provide root cause of shroud chipping

Note : Blades were Type 3 Blades with mid-span snubber HVOF used in the telemetry test to understand the blade response and operating capability.

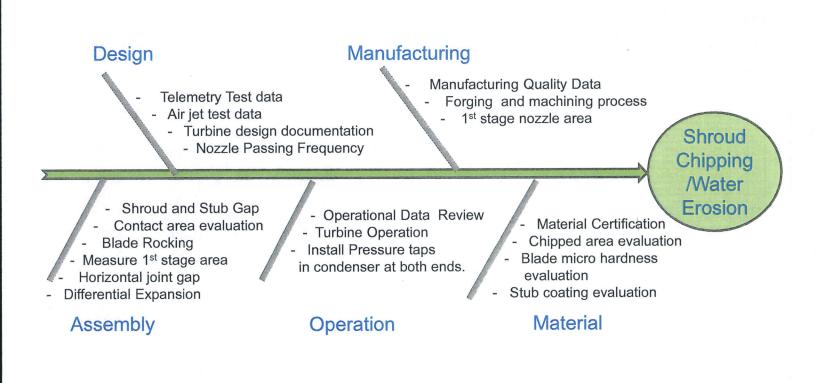

This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA. © 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved. SL3

RCA Team

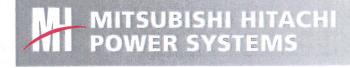
DEF20190001BARTOW LFE4-000012

Muhammad Riaz	RCA Lead	MHPSA
Nick Porteous	MHPSA RCA Sponsor + Technical Contribut	or MHPSA
Ikushima-san	MHPSA Communications Lead	MHPSA
Ryan Paulson	Inspection	MHPSA
Ruban Amirtharajah	Operating Data Review	MHPSA
Balaji Jayaraj	Metallurgist	MHPSA
Miyajima-san	Lead Analyst	MHPS
Enomoto-san	MHPS RCA Sponsor	MHPS
Osaki-san	MHPS RCA Lead	MHPS
Jon Hopkins	Blades Scan	MHPSA
Jake English	Duke RCA Lead	Duke
David Brown	Operations specialist	Duke
Chris Holland	Engineering	Duke
John Burney	Engineering	Duke
Additional Resources		
Harry Carbone	Duke Technical Consutant	Duke
John Huls	Duke ST SME	Duke

RCA Team members from Duke Energy, MHPSA USA and MHPS Japan Multiple working meetings were held to work on the RCA Actions



This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA. © 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.


SL3

Blade Shroud Chipping RCA – Fish Bone

DEF20190001BARTOW LFE4-000013

Key Areas of Investigation

This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA.

© 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

SL3

Blade Shroud Chipping RCA

Detailed Actions Tracked (1 of 2) Reviews conducted with RCA Team

DEF20190001BARTOW LFE4-000014

Influence Low Medium High

	-	Actions	Conclusions		
	1	Independent Review of Bartow 2015 Telemetry Test Stress Analysis and Operating Limits Provided	Telemetry Test Data review completed by team in MHPS in Japan.		
	2	Confirmation of frequency margins identified in Air Test Data, comparing with original design / other air jet tests	All synchronous vibration frequencies are within design range.		
	3	Re-evaluation of the Telemetry Test Data in the light of Bartow Tip Damage	Completed by team in MHPS in Japan.		
5	4	FEA Review of shroud face movement at high load compared to observed damage	FEA Analysis performed by MHPS in Japan.		
Design	5	Confirm MHPS Mass Flow Calculation Method used in evaluating Telemetry Test Data	Mass flow measurements are no more used as evaluation parameter		
	6	Telemetry Test Data Shroud Fretting Calculation sim too Snubber Calculations	Fretting evaluation completed by MHPS in Japan.		
	7	Revisit Bartow / Tenaska design torsional margins	Torsional design calculations show acceptable design margins		
	8	Research overall exhaust pressure limits for 40" L-0 compared to this unit	Bartow Exhaust pressures limits are standard limits		
	9	Review Axial Rotor Position relative to asymmetry from Gen/Gov end	Rotor axial position reviewed and recommended to use as is original design.		
	and and				
	1	Request Forging Material Test Certs for existing installed blades	Material Certs show correct material used and meet design material properties and chemistry		
	2	Request Forging Material Test Certs for replacement blades	Material Certs show correct material used and meet design material properties and chemistry		
ring	3	Moment Weights for existing installed blades	Row of blades is balanced with acceptable unbalance residual		
Manufacturing	4	Request Moment Weights Test Certs for replacement blades	Row of blades is balanced with acceptable unbalance residual		
	5	Request Machining Manufacturing Quality Records (Including Box Gap Data + Single Blade Freq Data) New Blades	Data reviewed and blades are with in acceptable criteria		
Σ [6	Request Machining Manufacturing Quality Records (Including Box Gap Data + Single Blade Freq Data) Existing Blades	Data reviewed and blades are with in acceptable criteria		
	7	Request Record of as Built Area Nozzle Check	Data not located by Japan.		
0.00	8	Field Measurements of LP 1st Stage Nozzle Area (Throat / Base Dia / Nozzle Height @ both ends)	1st stage nozzle area is within less than 0.5% on both ends.		
	1	On site review of fracture surfaces and wear	Review of rotor, blades and casing on site.		
Γ	2	Characterize Cracking / Chipping on Tip - Fretting Fatigue?			
_ [3	Characterize Cracking / Chipping on Tip Wear Surface - Fretting Fatigue?	Metallurigical Evalaution of blades performed in US and Japan included - Visual Inspection		
irtia	4	Characterize Hardness throughout tip and wear surface	- Material Composition		
Matertial	5	Characterize microstructure throughout tip and wear surface	-Microscopic evaluation		
-	6	Evaluate Wear on Mid Span Snubber	- Hardness evaluation		
	7	MHPS TGO Lab Review - Establish blades to be sent	- SEM evaluation		
Γ	8	TGO Evaluation	- EPMA evaluation		

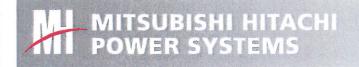
MITSUBISHI HITACHI POWER SYSTEMS

This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA.

© 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

SL3

Blade Shroud Chipping RCA

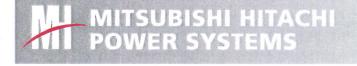

Detailed Actions Tracked (2 of 2) Reviews conducted with RCA Team

DEF20190001BARTOW LFE4-000015

Influence
Low
Medium
High

		Actions	Conclusions		
	1	On Site 4 Point Check of Snubber and Shroud (as found + as left)	Gap Data recorded and analyzed. Data within tolerance		
	2	Blue / White Light Scan for sample of replacement blades	3 blades (Light/Medium/heavy) were scanned and compared with nominal model after HVOF.		
	3	Geometry overlay and review	No differences identified.		
	4	Blue / White Light Scan for sample of existing installed blades	7 Blades were scanned and compared with nominal model.		
>	5	Geometry overlay and review	No differences identified.		
Assembly	6	Confirm amount of rocking on existing blades / and replacement installed blades	Small rocking was observed on few existing blades. No rocking observed on new blades.		
Isse	7	Measure HJ Gap at Diffuser	HJ gap measured at unit assembly and found to be within tolerance.		
٩	8	Review wear profile across single tip during early damage	Wear profile checked with replica and by sectioning and reviewed under microscope.		
	9	Measure shroud contact surface (L,W,Depth at 4 points)	Contact surface data collected		
	10	Wear and Chipping Documented with photos and scale	Pictures taken for all contact surfaces and documented.		
	11	Record water erosion at leading edge and under the shroud	Data recorded and minimum to no erosion observed.		
	12	Stationary blade surface finish review	LO Stationary blade surface finish was checked and no issue is observed.		
	tradit h				
	1	Map Operating Data to LP Loading and Summarize	Operation data reviewed		
	2	Install Pressure Taps / and re-evaluate exhaust flow on return to service	Additional pressure taps are installed.		
	3	Operational Data Review of exhaust pressure taps on return to service	Data received and reviewed.		
ion	4	Provide summary of LP Pressure Measurement Location and LP Admission Flow	Locations provided to Bartow		
Operation	5	Start-Up Review for Cold, Warm and Hot Starts.	Data not received from Bartow		
do	6	Characterization of operation from Log Book	Data not received from Bartow		
	7	Operation review to determine expected moisture and sensitivity to flow and exhaust pressure changes	Asymmetric condenser circulating water flow at both ends		
	8	Provide details or pictures of April 2015 Blade Inspection	Few pictures provided		
	9	Provide report of Dynamic Pressure Study from ~2012 for evaluation	Summary provided- No vibration response was observed.		

Team Meetings focused on methodical execution of actions and opportunity for questions / discuss of details



This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA.
 © 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

SL3

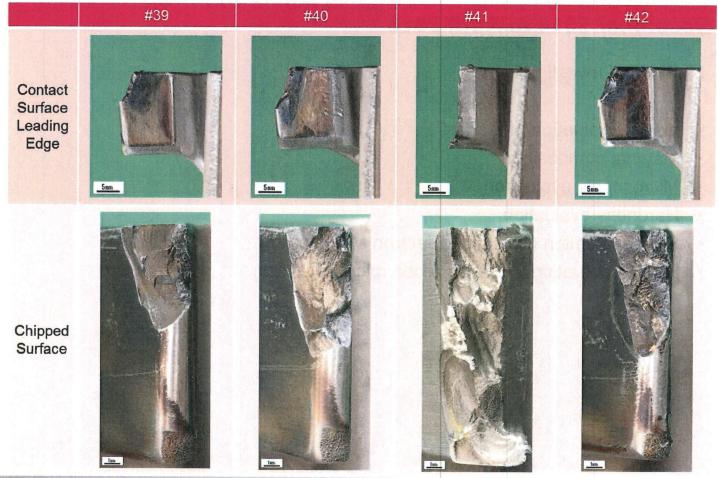
40" Fleet Operating Experience

- There are 57 rows of 40" L0 blades operating in the world. 9 Single flows, 22 double flow and 1 four flow LP sections.
- There are 31 rows of type 3 blades (same blades as Bartow except no HVOF coating/ chamfer on midspan snubber). 14 double flows and 3 single flow LP sections.
- Type 3 blades have Stellite material welded under the shroud for water erosion protection.
- Oldest Type 3 blade in operation since 2008.
- Bartow steam turbine have the highest L0 Blade loading amongst the fleet.

This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA. © 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved. SL3

Metallurgical Evaluation of Blades Operating from December 2014 to April 2016

Methods of Investigation :


- · Visual Evaluation of Blades
- Material composition
- Microscopic evaluation
- Hardness evaluation
- SEM evaluation (Scanning Electron Microscope)
- EPMA evaluation (Electron probe micro analyzer)

MITSUBISHI HITACHI POWER SYSTEMS

This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA. © 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved. SL3

Blade Inspection Results

DEF20190001BARTOW LFE4-000018

MITSUBISHI HITACHI POWER SYSTEMS

This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA.

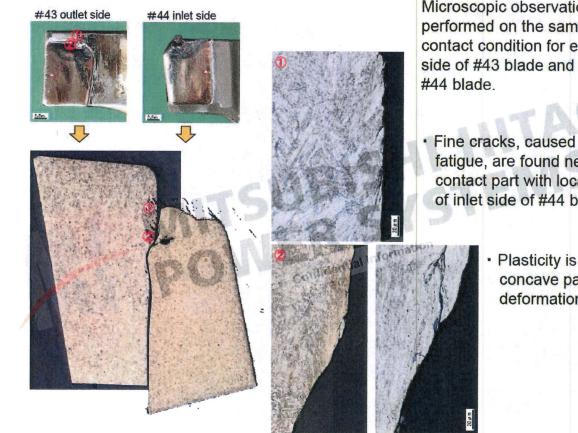
© 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

SL3

#43 outlet #44 outlet #45 outlet #42 outlet #43 inlet #44 inlet #45 inlet Outlet side contact surface 2.Ean .Em Confidential In Inlet side contact surface 2.5m 2.5m

Blade Inspection Results

Shroud Chipping is starting at same location for all blades


MITSUBISHI HITACHI POWER SYSTEMS

This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA.

DEF20190001BARTOW LFE4-000019

© 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

SL3

Metallurgical Evaluation of Blades

DEF20190001BARTOW LFE4-000020

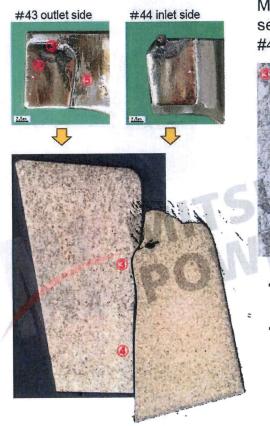
Microscopic observation was performed on the same sections in contact condition for each of outlet side of #43 blade and inlet side of

 Fine cracks, caused by fretting fatigue, are found near the end of contact part with local deformation of inlet side of #44 blade.

> Plasticity is found in concave part of local deformation.

Fretting fatigue identified as crack initiation source.

MITSUBISHI HITACHI POWER SYSTEMS


This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA.

© 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

SL3

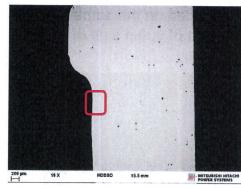
Metallurgical Evaluation of Blades

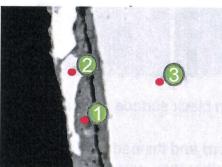
DEF20190001BARTOW LFE4-000021

Microscopic observation was performed on the same sections in contact condition for each of outlet side of #43 blade and inlet side of #44 blade.

- ③: Oxide scale was found on black surface of local deformation area.
- ④: Dark brown surface of worn and thinned part is free of oxide scale and smoother than non-contact surface of ⑤.

Oxide scale with local deformation observed on black surface

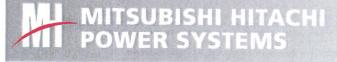

MITSUBISHI HITACHI POWER SYSTEMS This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA.


© 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

SL3

Metallurgical Evaluation of Blades

DEF20190001BARTOW LFE4-000022

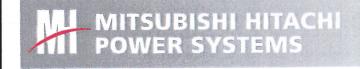


		-			
	B	,	:		1

Location	Semi-Qualitative EDS analysis of elements detected (wt%)								
Location	0	Si	Cr	Mn	Fe	Ni	Cu	Nb	
1	25.97	0.44	7.67	0.41	61.59	1.84	1.18	0.00	
2	0	0.35	18.15	0.95	70.12	9.35	0.08	1.00	
3	0	0.33	15.86	0.54	73.65	4.91	3.58	1.14	

- Oxidation/corrosion was observed on the trailing edge contact surface of the tip shroud.
- Material removal from wear is from abrasion.

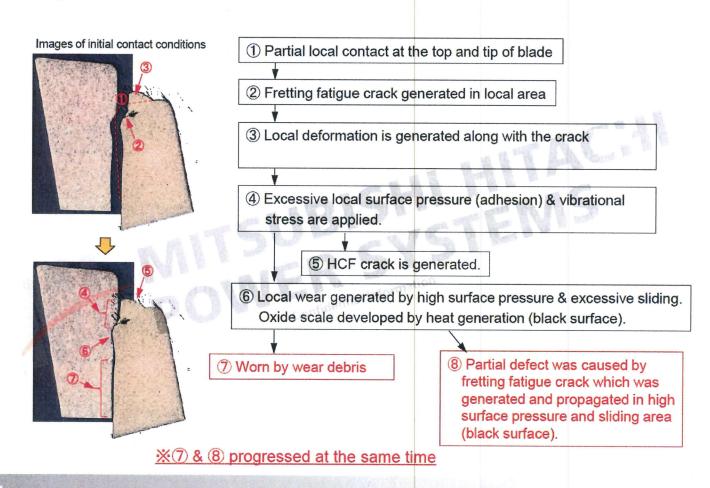
Material chemistry matched with blade original material


This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written © 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

SL3

DEF20190001BARTOW LFE4-000023 Metallurgical Evaluation of Blades - Hardness

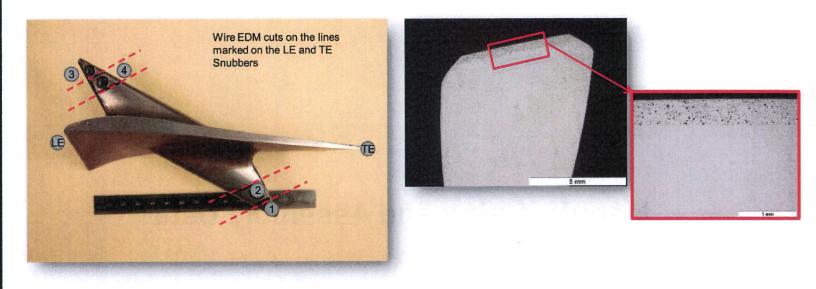
- Hardness measurements are taken at the shroud contact surface, fracture surface, base material and below the shroud on 8 blades.
 - The results show hardness close to original materials (Base Material and . Stellite welding).
- Hardness measurements also taken at stub contact area and away from • contact surface on base material.
 - The results also show Hardness within criteria at the contact surface and away from contact surface.


No hardening is transferred to base material due to HVOF, contact surface rubbing or welding Stellite material.

SL3 This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA. © 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

Damage Mechanism

DEF20190001BARTOW LFE4-000024


MITSUBISHI HITACHI POWER SYSTEMS

SL3 This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA. © 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved. 16

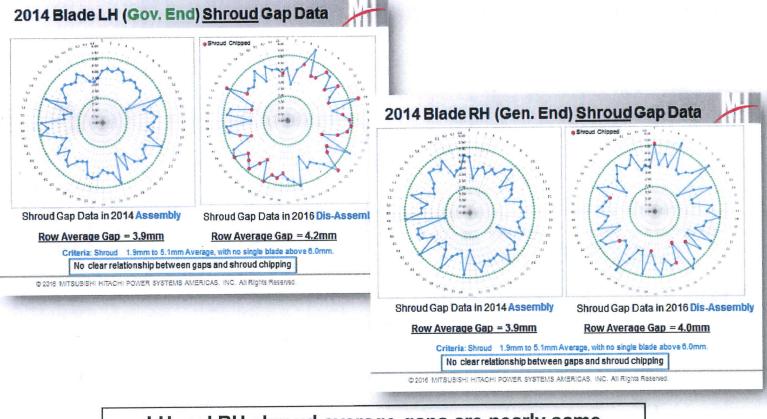
Stub Evaluation

MITSUBISHI HITACHI POWER SYSTEMS

DEF20190001BARTOW LFE4-000025

- > The contact surface coating did not show any cracks, deformation or wear.
- > Uniform thickness was measured on the areas of contact between the LE and TE snubbers.

HVOF coating on the stub prevented fretting or any other surface damage

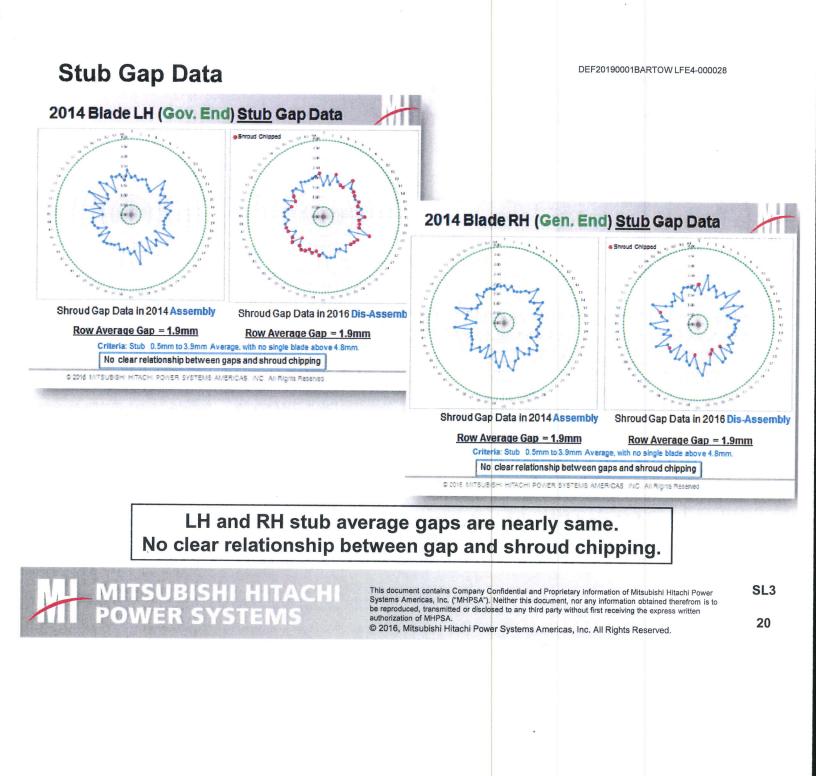

This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA.

© 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

Manufacturing and Assembly Data

MITSUBISHI HITACHI POWER SYSTEMS

This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"), Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA. © 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

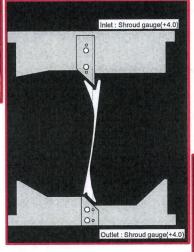

LH and RH shroud average gaps are nearly same No clear relationship between gap and shroud chipping

MITSUBISHI HITACHI POWER SYSTEMS

Shroud Gap Data

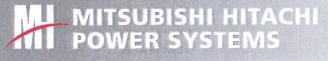
This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA. 19

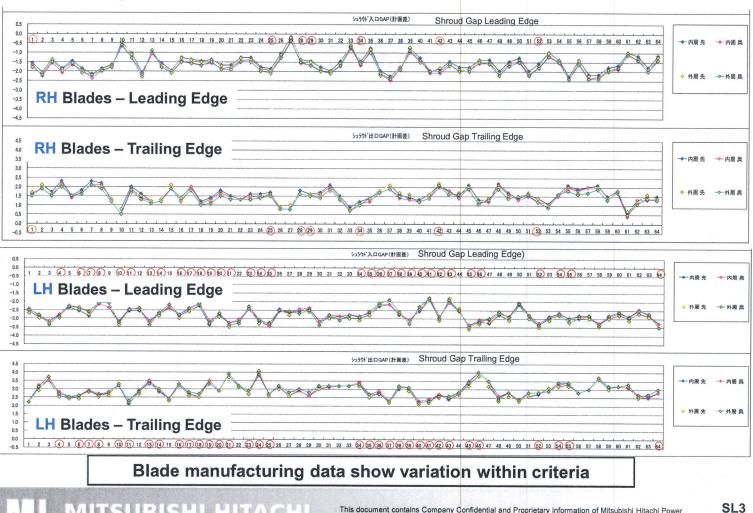
© 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.


Manufacturing Quality Data - Box Gauge

DEF20190001BARTOW LFE4-000029

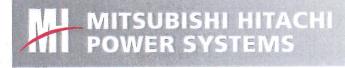
7





This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA. © 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

SL3

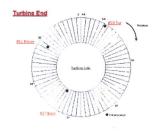


Box Gauge Measurement Results - 2014 blades EF20190001BARTOW LFE4-000030

MITSUBISHI HITACHI POWER SYSTEMS

This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA. © 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved. 22

Telemetry Test Data Analysis



This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA. © 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

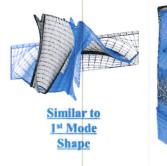
Telemetry Test Results

Strain Gage Locations

- Six strain gage were installed on LH . and RH blades.
- Strain gage locations were selected . High Response sensitivity for vibration modes.
 - MHPS Experience

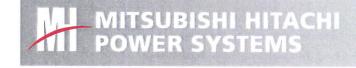
-

c strain naune/Tin


namic strain gauge(Mea

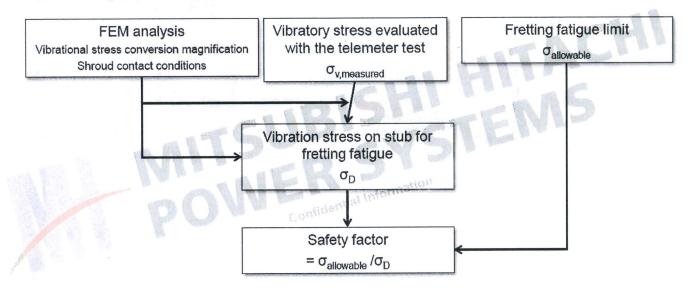
Test Results

Analysis of Non-synchronous response show . frequencies close to 200Hz region and composed of axial mode shape with higher nodal diameter.


DEF20190001BARTOW LFE4-000032

Fretting at stubs was evaluated with the telemeter test results.

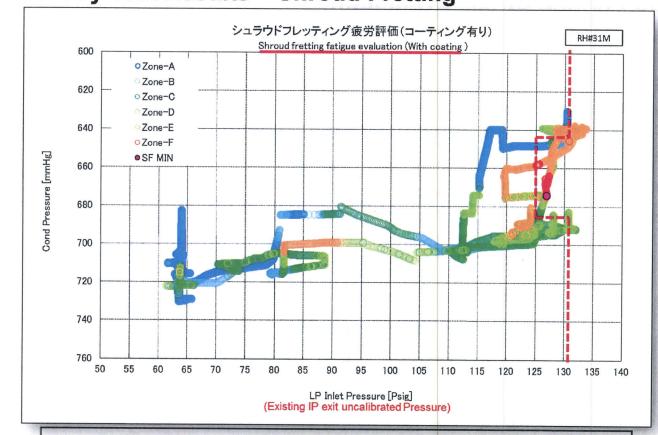
Telemetry Testing 2014 -To understand dynamic blade response during operation



This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA. © 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

SL3

Shroud Fretting Stress Evaluation


- Evaluation method is the same as stub fretting evaluation.
- · Vibrational stress is evaluated, with FEM analysis, primarily for effect of shroud contact condition (partial contact) based on actual telemeter measurement result of 2014.

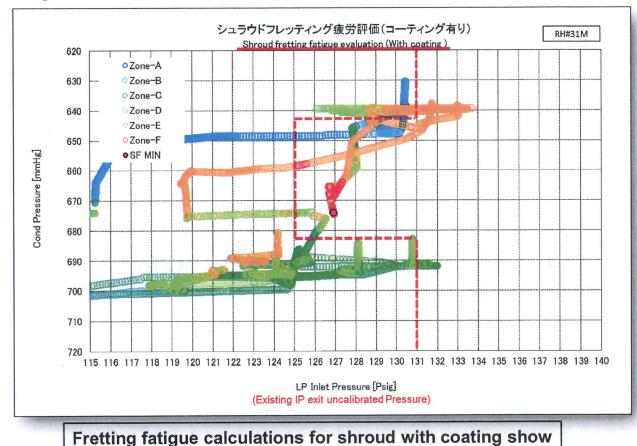
MITSUBISHI HITACHI POWER SYSTEMS

This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA.

© 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

Telemetry Test Results – Shroud Fretting

DEF20190001BARTOW LFE4-000034


Fretting fatigue calculations for shroud with coating show acceptable margins outside avoidance zone

MITSUBISHI HITACHI POWER SYSTEMS

This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA.

© 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

SL3

acceptable margins outside avoidance zone

Telemetry Test Data – Shroud Fretting

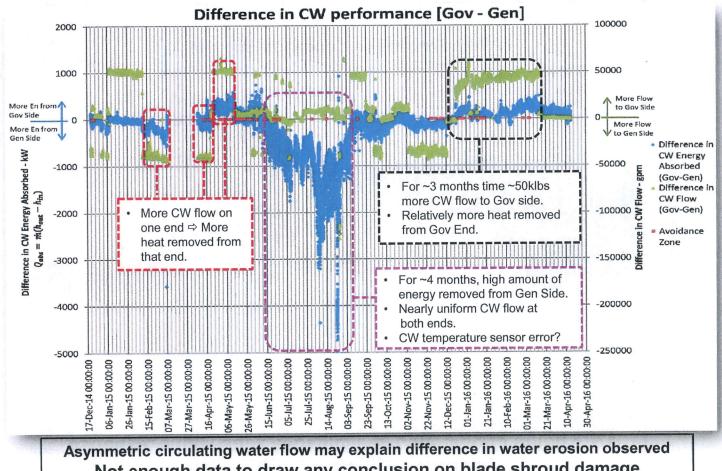
This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Pow

MITSUBISHI HITACHI POWER SYSTEMS

This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA. © 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

DEF20190001BARTOW LFE4-000035

SL3


DEF20190001BARTOW LFE4-000036

Operation Data Analysis

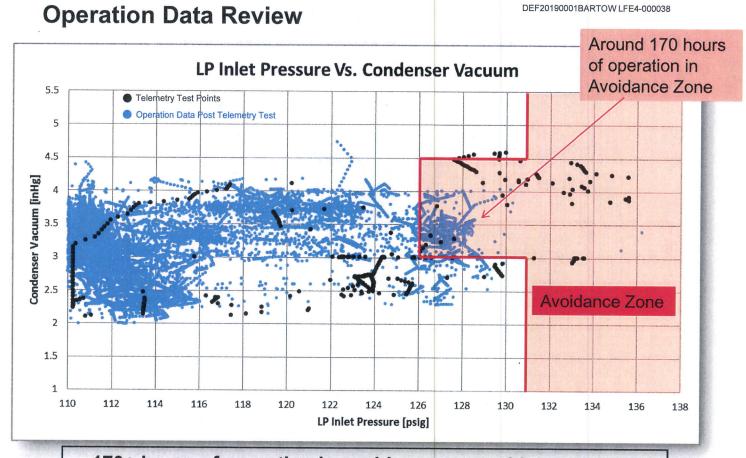
MITSUBISHI HITACHI POWER SYSTEMS

This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA. © 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

SL3

Condenser Circulating Water (CW) flow analysis 90001BARTOW LFE4-000037

Not enough data to draw any conclusion on blade shroud damage This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to UBISH HITACH


SVSTEVIS

0

SL3

be reproduced, transmitted or disclosed to any third party without first receiving the express written

authorization of MHPSA. © 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

170+ hours of operation in avoidance zone with a response frequency ~200Hz = 1.2E8 Cycles

MITSUBISHI HITACHI POWER SYSTEMS

This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA.

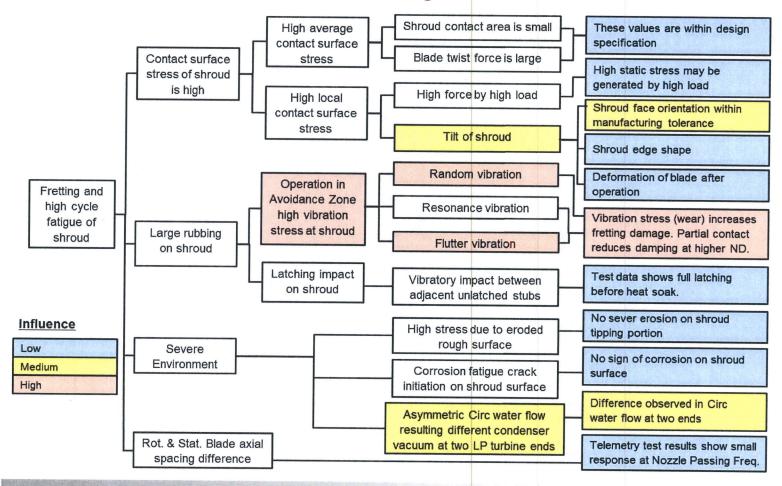
DEF20190001BARTOW LFE4-000038

© 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

SL3

DEF20190001BARTOW LFE4-000039

RCA Conclusions

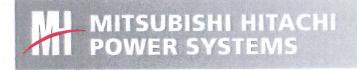

MITSUBISHI HITACHI POWER SYSTEMS

This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA. © 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

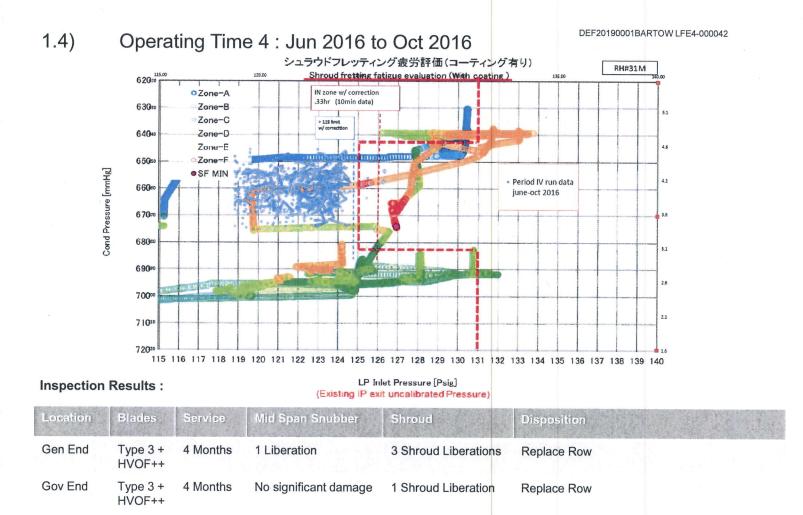
SL3

Blade Shroud Cause and Effect Diagram

DEF20190001BARTOW LFE4-000040


MITSUBISHI HITACHI POWER SYSTEMS

This document contains Company Confidential and Proprietary Information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written SL3 authorization of MHPSA. © 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.


DEF20190001BARTOW LFE4-000041

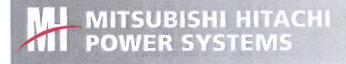
RCA Conclusion

- The root cause for start of shroud chipping has been identified as operation in the avoidance zone.
- Within the avoidance zone, high local contact pressure is developed due to partial contact.
- After initial chipping, nearly uniform wear of contact surface indicate progression of chipping due to operation at resonance (avoidance zone).
- Stellite coating on stub has proven its effective at protecting surfaces from fretting damage.

This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA. © 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved. SL3 33

MITSUBISHI HITACHI POWER SYSTEMS

 This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power
 SL3


 Systems Americas, Inc. ("MHPSA"), Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA.
 SL3

 © 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.
 6 Rev1

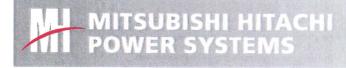
DEF20190001BARTOW LFE4-000043

Bartow Steam Turbine RCA Review Addendum Presentation Nov 17th 2016

This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA.

© 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

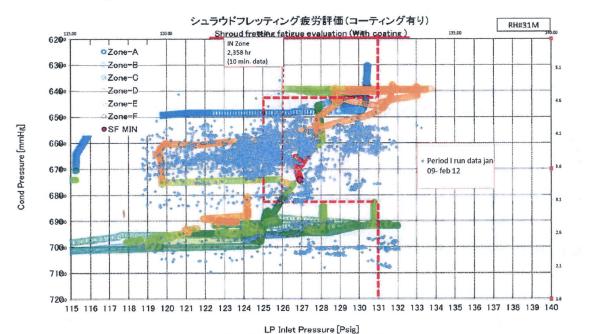
SL3


DEF20190001BARTOW LFE4-000044

Purpose of Presentation

Provide responses to open items / questions during the Nov 9th RCA Report Out Meeting

Subjects :


- 1) Demonstrate that operating data from 2009 to 2014 is consistent with the RCA conclusions.
- 2) Provide hardness results not presented in Nov 9th .
- 3) Provide parallelism data not presented in Nov 9th.
- 4) Provide responses to prior questions from Harry Carbone.

This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA.

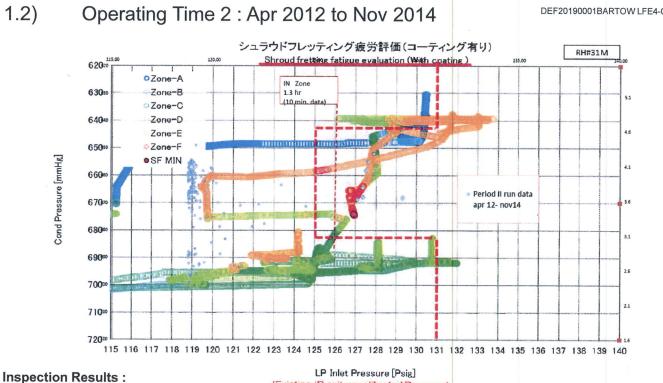
© 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

SL3

1.1) Operating Time 1 : Jan 2009 to Feb 2012

DEF20190001BARTOW LFE4-000045

Inspection Results :


Location	Blades	Service	Mid Span Snubber	Shroud	Disposition
Gen End	Type 1	3 yrs	No significant damage	No significant damage	Continue operation until 2014 planned replacement
Gov End	Type 1	3 yrs	5 Major Chip	3 minor chips	Replace blades as continues midspan chipping could results in a free standing blade

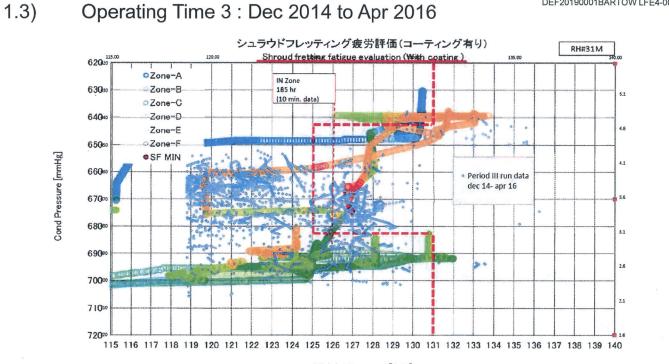
(Existing IP exit uncalibrated Pressure)

MITSUBISHI HITACHI POWER SYSTEMS

SL3 This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA. 3

© 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

	LP	inne	it Fressure [Fsig]
(Existing	P	exit	uncalibrated Pressure)


Location	Blades	Service	Mid Span Snubber	Shroud	Disposition
Gen End	Type 1	5 yrs	No significant damage	12 minor chips	Scheduled change out to blades with midspan HVOF
Gov End	Type 1	2 yrs	No significant damage	3 minor chips	Scheduled change out to blades with midspan HVOF

MITSUBISHI HITACHI POWER SYSTEMS

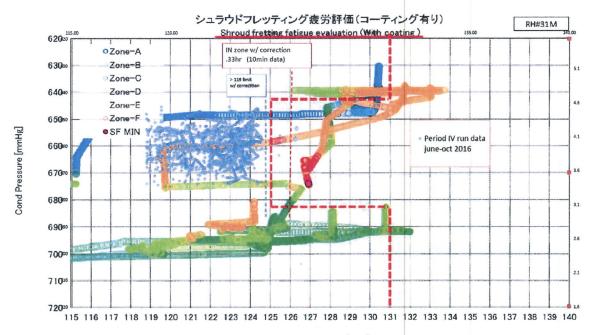
This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA. SL3 4

DEF20190001BARTOW LFE4-000046

© 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

Inspection Results :

LP Inlet Pressure [Psig] (Existing IP exit uncalibrated Pressure)

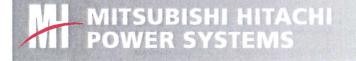

Location	Blades	Service	Mid Span Snubber	Shroud	Disposition
Gen End	Type 3 + HVOF	15 Months	No significant damage	7 minor chips	Fit for continued operation. Shroud contact on all blades.
Gov End	Type 3 + HVOF	15 Months	No significant damage	33 chips including significant damage	Replace row as free shroud contact has bee lost on 1 blade.

MITSUBISHI HITACHI POWER SYSTEMS

This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA. © 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

DEF20190001BARTOW LFE4-000047

SL3 5


Operating Time 4 : Jun 2016 to Oct 2016

Inspection Results :

1.4)

LP Inlet Pressure [Psig] (Existing IP exit uncalibrated Pressure)

Location	Blades	Service	Mid Span Snubber	Shroud	Disposition
Gen End	Type 3 + HVOF++	4 Months	No significant damage	7 minor chips	Fit for continued operation. Shroud contact on all blades.
Gov End	Type 3 + HVOF++	4 Months	No significant damage	33 significant damage	Replace row as free shroud contact has bee lost on 1 blade.

This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA.

© 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

DEF20190001BARTOW LFE4-000048

Conclusions of LP Blade Loading Review

DEF20190001BARTOW LFE4-000049

- Telemetry test results show that once in the avoidance zone, small changes in operating conditions can produce a large change blade response magnitude.
- Damage accumulates at 200Hz (720,000 cycles every hour)

1.1) Operating Time 1 : Jan 2009 to Feb 2012 Significant operation in the avoidance zone. Significant damage observed on the blades.

1.2) Operating Time 2 : Apr 2012 to Nov 2014 Minimal operation in the avoidance zone. Minor chipping observed.

1.3) Operating Time 3 : Dec 2014 to Apr 2016 Significant operation in the avoidance zone. Significant damage observed on the blades.

1.4) Operating Time 4 : Jun 2016 to Oct 2016RCA evaluation has not been completed.Operating data has not bee provided beyond, only summaries of MW and LP Pressure vs Time.

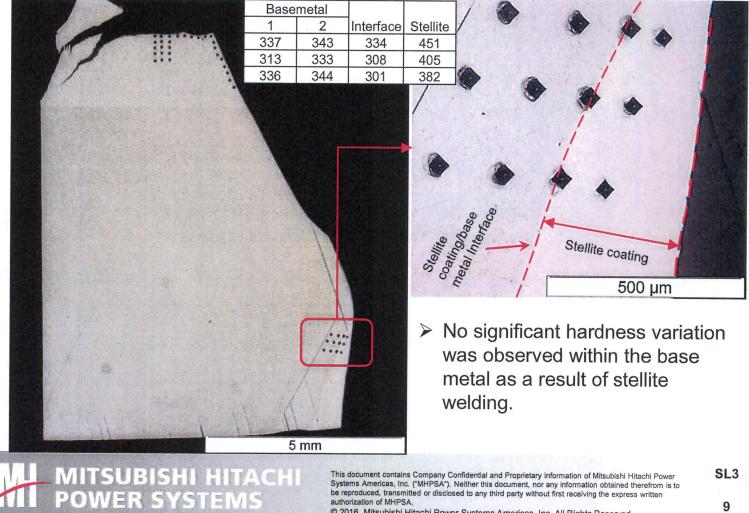
MITSUBISHI HITACHI POWER SYSTEMS

This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA. © 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved. SL3

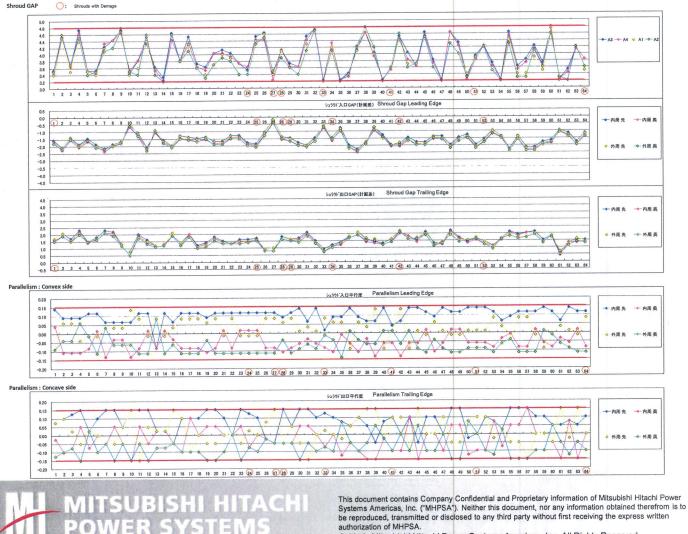
316 315 315 313 319 325 From hardness Measurement plane > A decrease in hardness 281 304 contact surface. 1.000 Avg Average Average 5 mm

2 - Hardness Variation – Presented

DEF20190001BARTOW LFE4-000050


- observation no significant decrease was observed where the crack initiated.
- was observed on the

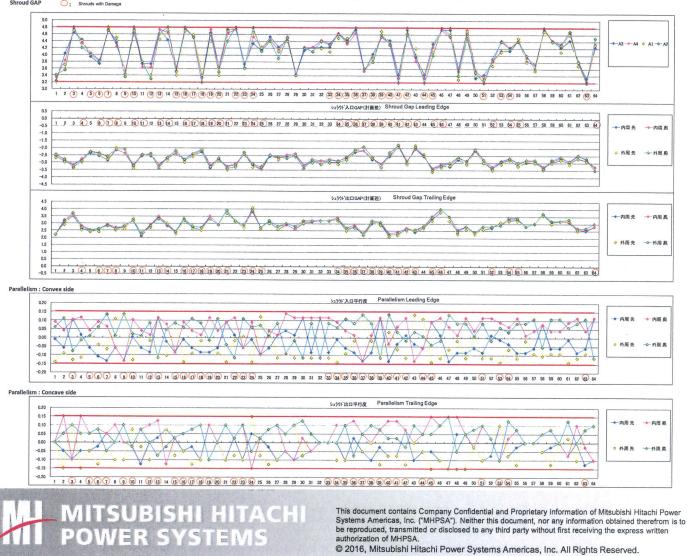
MITSUBISHI HITACHI POWER SYSTEMS


This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA. © 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

SL3

2- Hardness Variation basemetal, Interface and Stellite Coating

© 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.


© 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

SYSTEMS

0

3.1) Measurement Results RH (Gen End) 2014 blades

SL3

3.2) Measurement Results LH (Gov End) 2014 blades ARTOW LFE4-000053

SL3

Duke Questions (From 10/26/16 Meeting):

Current draft of time line of blade outages 1.

Updated Vibration change dates To understand the 2.

Operating data from the operating from June 2016 to October 2016 has been requested on multiple occasions since the change in vibration was brought to the attention of MHPSA in August 2016.

To understand the operation of the unit, this information is required to provide an objective data driven assessment of the operation.

3. The mw correction factors issue

Conflicting information is being given. It is no longer clear whether during the telemetry test there was an offset MW. The operating data requested is required to understand the relationship between steam conditions and load.

4. New LP inlet pressure gage 3.7 psi zero offset error

Following the finding that the IP Exhaust Pressure Tap had not been calibrated with its water leg, the same issue has now occurred on the new LP Admission. There is currently a lack of clarity on the calibration of the pressure taps which is critical to understanding the steam loading seen by the blades which can hopefully be addressed by review of the latest operating data.

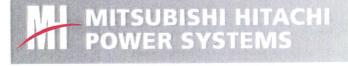
Chart of blade options 5.

An updated chart is attached.

6. Duke requested strain gage data

Results of the telemetry test have been shared during the RCA meetings. Face to face meetings were held in May 2016 specifically for the purpose of being able to openly share information which would normally not be available to share due to being business confidential information. During these reviews the nature of the none synchronous response was described identifying that the blade response is not being excited by single modes. A single stresses cannot be evaluated against a single allowable in a Goodman diagram, but a range of modes is being excited within a frequency range. The magnitude of blade response is integrated over a frequency range to determine an overall response level compared to successfully validated response levels. This is not data which can be sent directly as a file to Duke Bartow.

7 Confirm material is 17-4


Similar too material designations are provided for reference only and do not support reverse engineering of the blade design which is subject to multi-year development programs and continuous improvement by the MHPS-Japan development team.

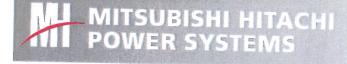
Hardness was reviewed in detail during the face to face RCA meetings.

The RCA reports are intended to be presented in person to ensure that they are correctly interpreted due to the complex nature of the RCA investigation.

8. Supply Goodman Diagram

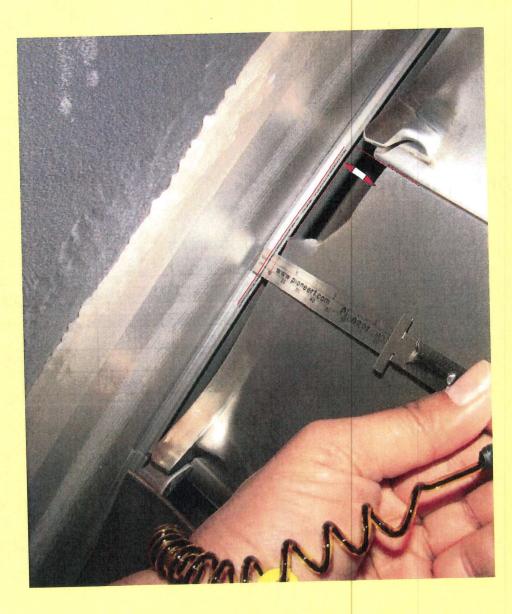
OEM Last Stage Blade materials are not per industry standards, with the material development being clitical to achieving competitive designs. The Goodman Diagrams for MHPS developed materials is proprietary.

SL3 This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA. 12


DEF20190001BARTOW LFE4-000054

© 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

Summary of Blade Types


DEF20190001BARTOW LFE4-000055

	Base material		Spray Stellite under Z notch Leading edge	Welded Stellite Under Z notch Leading edge	Polish off shot peening after welding	Spray Stellite .3 mm on snubber contact	on Z notch contact		Corner cut on Z not ~ 3mm x 3mm
Type 1	4	Yes	Not Applicable	No	n/a	faces	faces	snubber	3mm x 3mm
Type 2	1 7	Note : Typ	e 2 is a welded field mo			No	No	No	No
Туре 3	1 2	Yes	Not Applicable	incation provided as a	temporary measure	while awaiting replacem	netn blades. No Type 2	Blades are operating ir	the fleet.
Newer Type 3	1 9	163	Not Applicable	Yes	No	No	No	No	
	Proprietary Sim to 17-4 PH			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Note : No blade ty	pe - "Newer Type 3"	No. of Contractory	- NG	Yes
(Typ3 + HVOF)) talled 2016 spring	Proprietary HT	Yes	Not Applicable	Yes	No	Yes	Yes	Yes	Yes
(Typ3 + HVOF) Proposed now		Yes	Not Applicable	Yes	No	Yes	Yes	Yes	
		Yes				++	and the second	Tes	Yes



This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA.

SL3

Oct 2016 photo of gen end #22. Three blades failed similar this GE # 13 and TE #2. Adequate mass loss to drive recorded Vibration step changes below.

From Harris Lab work Gen End blade #22 crack initiation sites(in zone 1) ~ 13 mm in from te and 23 mm in from tip. Cracks started on pressure side. Opposite side from what is visible in blade #22 in situ photo below Oct 2016

blade #22 in situ photo below Oct 2016 - Sted Journol 2 ant wone GE #22 and porcericon Trailing edge GE #22 Leading edge

Harris lab work identifies crack as three zones. Initial zone 1 (sem photo above) was high cycle fatigue that started at possibly more that one site ~ 13 mm from trailing edge and joined to grow to zone 2. It was suspected crack started at trailing edge and grew. NOT true started at 13 mm from edge, on the pressure side (opposite side that's shown in photo) and trailing edge failed by ductile overload. Dental molds taken from other two failed blades TE #2, GE #13 show consistent failure mechanisms.

The blades at Bartow were standard MHI type 3(welded), but had design modifications of that included chamfers, radius, and HVOF hard face on mating surfaces. MHI tested an earlier version in the field (dec 2014) with strain gages at three locations each end. They were at the base, the middle near the snubber, and at the tip shown above near the z lock latch or lock up tip shroud. MHI knew this was a high stress area. They approved limited operation in an identified " zone" from this testing. In fact the testing included > ~ 10 hours in the zone to properly map it with steam flows and condenser back pressures. The original supplied blades, post run, were analyzed for amount of time in the zone. Period I 2009-2012 ran 2,466 hrs in the "zone" and had blade tip damage but never a material loss as large as Period IV Jun-Oct 2016 shown above.

HMC 1-20-17

Period IV cracks initiated.

From Accttech report 2012 peak static stress ~ 160ksi trailing edge pressure side ~ 6 to 15mm from te and ~ 23 mm in from tip. This view is backwards from actual photo of blade #22 **Concave Side**

From MHI 2012 Period I RCA presentation. Confirming high static stress area where


Finite element analysis performed after 2012 failure showed the crack starting point area had stresses above yield and the design would need to be "yielded down". This is possible because full section of blades was not above yield. This was not a concern with earlier failures, because the air foil was not liberating just contact face wear on mid span snubber and z lock tip. Partial tip and snubber loss was possible. The 2016 work re confirmed the high stress area and an earlier presentation 2012 by MHI supports the pressure side of the blade tip below the latch has high stress. The crack started at nearly the same spot as the predicted high stress area.

Shroud

CONFIDENTIAL

High

Low

Photo montage of period IV trailing edge complete lug loss failure confirm hi stress area as crack initiation point(s)

- Oct 2016 Generator end Blade slot # 22 Serial 4697Y
- Linear calculated stress was locally most likely above yield, and part yielded back with compressive surface stress at no speed. .
- Part saw 2 start cycles to 3600 rpm before first vibration change. Overspeed was on new org bladed and shop test of period III blds. .
- Part never saw overspeed as may have been incorrectly stared earlier. Overspeed may allow more yield down and more alt margin .
- Part ran between 700 to 1400 hours prior to vibration changes .
- Full run cycle on part was ~ 3000 hrs •
- MHI 2012 RCA FEA confirms high stress area, but they stated stress below yield in orange color. It may be with full heat treat, but its . doubt the min yield for heat affected zones can be significantly above 160ksi. Est yield 110k to 140ksi

Duke Energy - Confidential

October 11, 2017

Formatted: Font: 8 pt

Executive Summary

Duke Energy (Duke) and Mitsubishi Hitachi Power Systems (MHPS) have worked both independently and together over the past 18 months to determine what has caused the Bartow Unit 4S L-O blades to crack and break during operation.

Duke's position is as follows: The Bartow steam turbine (ST) 40" L-0 blade failures are being driven by a nonsynchronous self-excited vibration (flutter) of the L-0 blades during operation. In our and MHPS's evaluation of the root cause neither party has been successful in conclusively identifying the factor(s) that are causing the failures. There are a series of contributing factors that have been identified but the correlation and predictability of these contributing factors and the magnitude of their interactions has been difficult if not impossible to predict without having conducted further instrumented testing of the L-0 blades in operation. Any conclusions derived from our efforts and discussed in this document are based on our best ability to correlate data with events in operation and findings with L-0 blade inspections/failures. that the OEM designed last stage blades had little or no design margins for the actual operating conditions that exist for the overall Bartow Combine Cycle Unit.

Duke Engineering believes the root cause for Periods 1-5 involves more than one driving mechanism. During a presentation given at the Duke FRHQ on 22 September 2017, MHPS also indicated that there may have been more contributing factors for various Periods of failure rather than just excessive steam flow through the LP section above the MHPS design limit of 15,000 lb./hr./ft.². Excessive steam flow, or "operation in the avoidance zone", had been previously communicated by MHPS as the sole root cause back during a presentation made at Bartow Station on 15 March 2017. MPHS has since changed its position and today there is agreement between both parties that there is not just one simple root cause.

After months of study (and with input from MHPS) Duke Engineering believes the following to be the most significant contributing factors toward root cause of the history of Bartow Unit 4S L-0 events:

- Low Pressure (LP) Turbine Excessive Steam Flow
- Blending Operations Thermal Distress (dT_{sH}/dt) at LP Turbine Exhaust
- Pressure Pulses During Hood/Curtain Spray Operation(s)
- Zone Analysis Shroud Fretting Fatigue
- Loss of Dampening Hard-Facing on Mid-Span Snubbers and Shroud Z-Lock Contact Surfaces
- Blade Fitment Gap Measurements for Mid-Span Snubbers and Shroud Z-Lock Contact Surfaces

Duke believes that the contributing factors presented in this paper – or during MHPS presentations – are postulations and may possibly be correct. Most of the MHPS postulations are derived from strain gauge data taken during the telemetry test conducted during December 2014 – blade response data that is then extrapolated to develop potential root cause for blade failures at the mid-span snubber, shroud Z-Lock contact surface and/or the blade airfoil itself that were seen during Periods 1-5.

The long-term solution for the Bartow LP section is to replace the L-0 blades or retrofit of the LP steam path with a more capable/reliable design. With either scenario, blade telemetry instrumentation and blade vibration

Page 1 of 13

Commented [MB1]: This is important to be stated but needs to find a different place in the document. It should also be stated that there is no industry experience with a 4x1 configuration like Bartow...which leads to MHPS not fully

understanding the operating conditions, thus having a L-0 blade that we are now determining un-fit for operation with not enough design margin for this station configuration.

DEF20190001BARTOW LFE4-000062

Duke Energy - Confidential

monitoring will be necessary to conclusively determine and eliminate the magnitude and impact of the identified contributing factors.

This technical paper will speak briefly of the history of L-O blade events for Bartow Unit 4S and then discuss in detail how each event was (or was not) affected by the contributing factors listed above.

Historical Perspective

Bartow is a 4x1 Combined Cycle (CC) Station with a Steam Turbine (ST) manufactured by MHPS. The ST was purchased on the "grey market" from Tenaska Power Equipment, LLC (Tenaska). Tenaska originally purchased the ST to operate in a 3x1 CC with a gross output of 420MW. The ST was never delivered and was stored in a MHPS warehouse in Japan until Duke purchased the unit.

Prior to the Bartow commissioning, MHPS was contracted by Duke to evaluate the ST design conditions and update heat balances to represent a 4x1 CC configuration.

Since commissioning there have been five (5) events triggered by L-0 blade failures (see Appendix A for event details). The types of failures include mid-span snubber failures, shroud Z-Lock failures, and airfoil tip failures. Over the course of these events, MHPS has performed several design enhancements to the 40" ST L-0 blade in efforts to address the failures (see Appendix B for L-0 modifications). To date, the modifications have not resulted in improved reliability or performance of the L-0 blades in service at Bartow. The number of blade failures and problems with ST L-0 blade performance is not typical – i.e. these issues are outliers among the Duke CC fleet, as well as in the MHPS 40" L-0 fleet. The most common reported issue from the MHPS 40" L-0 blade design is water erosion, which both Duke and MHPS agree is not a contributing factor for the Bartow failures. Presently, the ST is operating without L-0 rotating/stationary hardware and with an MHPS designed and fabricated pressure plate.

Root Cause Contributing Factors Low Pressure (LP) Turbine Excessive Steam Flow

Over the course of Periods 1, 2 and leading into Period 3, MHPS Engineering – through data analysis – learned (and made it known to Duke) that a significant contributing factor toward root cause of the L-0 blade failures was extremely high back-end loading on the LP turbine last stage blades. Back-end loading is a function affected by steam flow and operating pressure through a turbine section. MHPS Engineering indicated that Bartow Unit 4S was an outlier relative to the MHPS 40" L-0 fleet with several operating hours above the design limit of 15,000 lb./hr./ft.² (the MHPS 40" L-0 fleet average was closer to 12,000 lb./hr./ft.²). Duke was issued an "avoidance zone" chart with instructions from MHPS not to run to the right side of the curve – the lone exception being "brief" operation during transient conditions.

While Duke Engineering agrees that back-end loading should be considered a significant contributing factor toward root cause, one cannot definitively conclude that it has been the root cause of all five (5) of the documented L-O events. As Appendix A illustrates, Periods 2, 4 and 5 saw operating hours in the "avoidance zone" of 1 hour, 1.15 hours and 0 hours, respectively. This indicates that back-end loading was not the cause of any of the reported blade indications/failures during those periods of operation.

Page 2 of 13

Formatted: Font: 8 pt

October 11, 2017,

Deleted: and subsequent field measurements taken following various operating configurations/scenarios that are integral to unrestricted 4 x1 combined cycle operation will be necessary to confirm the contributing factor postulations. In other words, the correctness of the Duke and/or MHPS root cause position(s) can only be confirmed with the successful field operation of the unit.

DEF20190001BARTOW LFE4-000063

Duke Energy - Confidential


October 11, 2017

Formatted: Font: 8 pt

By a considerable margin, Period 1 had the greatest amount of run hours in exceedance of the "avoidance zone" relative to total operating hours – 2,466 out of 21,734 total hours. However, blade damage was relegated to five (5) broken mid-span snubbers on the turbine end of the machine and a minimal degree of fretting on the shroud Z-Lock contact surfaces for both turbine and generator ends of the machine.

Conversely, during Period 3, there were only 240 hours (out of 10,286 total hours) of operation in the "avoidance zone", approx. 11 hours of which occurred during the instrumented blade telemetry test performed by MHPS in December 2014. Even with a significantly fewer number of "avoidance zone" hours for Period 3 relative to Period 1 – a factor of 10 fewer hours for Period 3 – there was significantly greater amounts of blade damage and fretting on both ends of the machine. While the amount of Z-Lock wear is not quantified for Periods 1 and 3, photographic evidence suggests that the amount of wear is much greater for Period 3, as shown below in Figure 1. It is therefore difficult to conclude that damage to the L-0 blades in Period 3 is solely due to unit operation above the exhaust flow limit.

Figure 1 -- Comparative Photos of Shroud Contact Surface Wear for Periods 1 and 3

With the L-Os currently removed from the machine and with the pressure plate installed, MHPS Engineering has indicated that back-end loading is not currently an issue of concern at the current LP inlet operating limits. MHPS Engineering does not have enough technical data to support releasing Duke to operate the machine

Page 3 of 13

DEF20190001BARTOW LFE4-000064

Duke Energy - Confidential

October 11, 2017

Formatted: Font: 8 pt

beyond the current LP inlet operating limits due to concerns for impacts to upstream blading – i.e. the L-1 blade sets.

Blending Operations – Thermal Distress (dT_{SH}/dt) at LP Turbine Exhaust

During the most recent root cause analysis (RCA), the team expanded its view of turbine operations to include all aspects that might impact the L-0 blades. Since the design of the condenser includes spargers, or "dump tubes", for the hot reheat (HRH) and LP bypass steam flows from each of the four combustion turbines (CT), and since it has been observed that thermocouples positioned at the exhaust of the LP turbine just downstream of the L-0 blades (hood spray thermocouples) can experience a significant change in temperature during a blend operation, it was decided by the Duke team to review this operational aspect.

A set of criteria and an automated process using Excel and PI Datalink were developed that allow large amounts of data (stored in the PI historian) to be quickly reviewed for each Period 1-5. Blends that met the criteria were further analyzed to see how blend operations met or exceeded design criteria set by the condenser OEM. This process involved extracting PI data, calculating a value of superheat at the hood spray thermocouples, calculating a rate of change of that value, and flagging those values, or "counts". "Counts" are defined as the number of measureable blends where there was a slope change (+/-) in greater than (20 degrees superheat / min) at the hood spray thermocouples. The data was flagged only when a CT was being blended into (or out of) the steam cycle AND the ST output was greater than 50 MW. The limits of 20 degrees F (superheat) and 50 MW were selected as these are good indications that the blend steam had either higher, or lower, enthalpy than intended for the design of the sparging system. While this measure does not necessarily indicate the overall severity of any loadings that might be imposed upon the L-0 blades, it does allow for a comparison of the number of higher energy blends that occurred in each Period, and it allows the team to quickly identify specific points/periods in time to look at additional blend parameters.

	Number of Operating Hours in Each Period	Number of Blends (or "Counts") Meeting Criteria
Period 1	21,734	13
Period 2	21,284	7
Period 3	10,286	37*
Period 4	2,942	3
Period 5	1,561	5

Table 1 -- Quick Comparison of the Number of "Counts" that Meet the Criteria for Periods 1-5.

*Includes 6 blends that meet the criteria during strain gauge testing in December 2014

Pressure Pulses During Hood/Curtain Spray Operation(s)

The Duke RCA team also reviewed hood spray operations because of the very close proximity of the sprays to the L-O blades and the function they provide to protect against overpressure. Hood spray operation is

Page 4 of 13

DEF20190001BARTOW LFE4-000065

Duke Energy - Confidential

1

October 11, 2017

Formatted: Font: 8 pt

programmed into the Ovation DCS control system and is basically automated with no operator interaction required. The water source is the output from the condensate pumps. A control valve reduces the roughly 500 psig condensate pressure to the design pressure for the sprays of 50 psig.

Page 5 of 13

DEF20190001BARTOW LFE4-000066

Duke Energy - Confidential

October 11, 2017

Formatted: Font: 8 pt

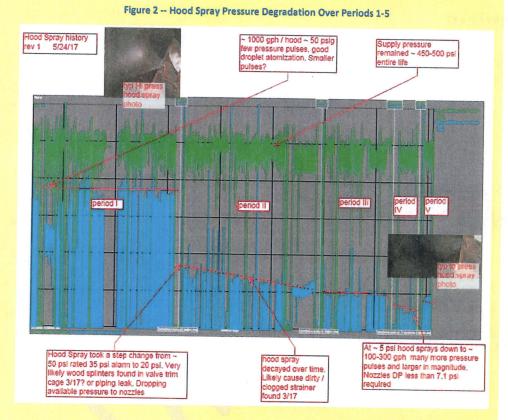
A review of the OEM-provided instructions requires use of hood sprays during the following conditions:

- Rotor speed greater than 600 rpm and steam turbine generator load less than 10 MW
- Hood spray thermocouple reading greater than 160 degrees F

During a review of the hood spray data, it became clear that additional operation besides that which is outlined above had been programmed into the DCS since unit commissioning. In addition to the above hood spray operating parameters, hood sprays were programmed to turn on anytime blending took place – similar to the way the curtain sprays are programmed. No explanation for why this was done has been found to date. Based on this finding, hood spray operation time is far greater than had it just been used as originally intended per the OEM-provided instructions. A review of hood spray thermocouple data shows they rarely reach 160 degrees F during normal operation and never reach over 165 degrees F. Higher temperatures are sometimes seen after a shutdown or unit trip event when the temperature in the exhaust increases, most likely due to the hot LP casings and some windage. No temperatures over 201 degrees F were found (one very brief reading of 1040 degrees F was determined to be an instrumentation issue).

Careful attention was also paid to the hood spray pressure over time. This was found to steadily decrease over successive Periods. Maintenance of the hood sprays control valve in Spring 2017 revealed debris in the valve passageways. Review of historical records also indicate the strainer ahead of the same control valve had filled with debris in prior years' operating.

Figure 2, below, demonstrates what happened to hood spray pressure over time. The decay in water pressure at the hood spray nozzles will yield reduced atomization as these style of nozzle rely on pressure drop to create a vortex inside the nozzle that causes atomization thru centripetal force. The effect of reduced atomization was verified during a test just prior to unit restart in April 2017. A key concern of poor atomization is the effect it might have on generating dynamic pressures which the L-0 blades might see as large water droplets evaporate in the exhaust stream.


Page 6 of 13

Duke Energy - Confidential

1

October 11, 2017

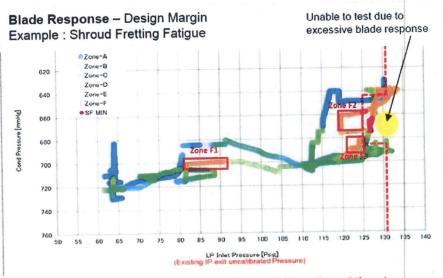
Formatted: Font: 8 pt

Zone Analysis – Shroud Fretting Fatigue

Based on data from the Period 3 blade strain gauge test in December 2014, MHPS identified areas (referred to as "Zones") where blade response was high, but still below the OEM design limit in the normal operation range of the LP turbine. The Duke RCA team defined these zones as Zone F1 through Zone F3 (shown by the red rectangles in Figure 3, below) and based on the PI historical data, calculated the amount of time the turbine spent in each zone for each period.

DEF20190001BARTOW LFE4-000068

Duke Energy - Confidential


1

October 11, 2017

Formatted: Font: 8 pt

Figure 3 -- Data Presented by MHPS During a Presentation Dated 15 March 2017

Damage Mechanism

 Blade response is evaluated through the integration of the stress response all the modes between 180Hz to 120Hz

Table 2 shows the breakdown of time in hours in each of the three (3) defined Zone-F areas for each period. The total time in the three (3) Zone-F areas is compared with the total operating time as a percentage. Note that the Period 5 blades spent a high percent of time in the operating area defined as Zone F1.

Table 2 -- Time (in Hours) Spent in Each Zone and the Total Compared with Operating Time

		Time in	Total Turbine	% Time		
F1 F2 F3 Tota				Total	Operating Hours	in Zone F
Period 1	901.2	257.5	23.9	1182.6	21734	5.4%
Period 2	1521.9	10.0	0.2	1532.1	21284	7.2%
Period 3	513.8	257.5	23.9	795.2	10286	7.7%
Period 4	1.3	407.8	0.0	409.1	2942	13.9%
Period 5	419.0	0.0	0.0	419.0	1561	26.8%

Page 8 of 13

Duke Energy - Confidential

October 11, 2017

Formatted: Font: 8 pt

The main reason for conducting this analysis stems from the observed amount of wear seen on the contact surfaces for Period 5. Period 5 did not have any operation time in the exclusion zone and the amount of wear for the amount of operation time seems excessive. A photo showing the amount of wear seen is shown in Figure 4. There was a varying degree of wear seen on the Period 5 Z-notches, however, the wear is higher than what one would expect given the relatively low operating hours.

Figure 4 -- Photo of an L-0 blade Z-Lock from Period 5 Showing Contact Surface Wear

Period 5 did have its share of higher energy blends as detected by the blend energy method. However, in terms of operating hours in blend mode, Period 5 is not excessive in terms of percentage time blending. The total of 20 hours of blend time does not appear to justify the wear seen.

Loss of Dampening – Hard-Facing on Mid-Span Snubbers and Shroud Z-Lock Contact Surfaces

The loss of dampening phenomena was a contributing factor during Periods 3 and 4.

For Period 3, there was hard-facing on the mid-span snubber ONLY. Additional damage seen on the shroud Z-Lock contact surfaces (relative to other Periods) was due to loss of dampening at the snubbers, which were HVOF-coated. The Z-Lock contact surfaces were forced to provide all of the dampening for the system via additional motion.

For Period 4, there was hard-facing on both the mid-span snubbers and the shroud Z-Lock contact surfaces. With both the mid-span and shroud contact surfaces being HVOF-coated, the limiting factor became the blade

Page 9 of 13

Duke Energy - Confidential

October 11, 2017

Formatted: Font: 8 pt

itself. In addition to mid-span snubber and shroud Z-Lock damage similar to what was encountered during previous Periods 1-3, one (1) of the TE L-0 blade also exhibited tip liberation at the airfoil trailing edge.

Further discussion of loss of dampening and its role as a contributing factor toward root cause will continue in the next section that speaks to blade fitment.

Blade Fitment – Gap Measurements for Mid-Span Snubbers and Shroud Z-Lock Contact Surfaces

During the course of the root cause investigation between Periods 3 and 4, technical questions arose relative to "as left" blade-to-blade gap measurements – both at the mid-span snubber interface and at the shroud Z-Lock contact surfaces. The basis for these questions was the potential concern that if the blade gaps at both the midspan snubber interface and the shroud Z-Lock weren't both taken into consideration together, then as the blades began to "untwist" as the machine came up in temperature and load, adjacent mid-span snubbers would achieve greater surface-to-surface contact (especially with the HVOF coating applied) before the shroud Z-Lock contact surfaces could do the same. Consequently, reduced contact surface at the shroud Z-Lock would yield reduced mechanical damping, which is a function of both contact surface area and vibratory stresses (e.g. flutter).

Per the OEM, the Type 3 L-0 blades were used to establish a baseline blade response from the telemetry and strain gauge testing that was conducted in December 2014 at the beginning of Period 3. The intent of the blade response analysis was to capture "worst case" geometry variations. The OEM concluded that the dimensional tolerance between the Type 3 blade and the Type 1 blade may have been as great as +/- 2 mm – i.e. the Type 3 (Periods 3 and 4) blade shows greater distortion than the Type 1 blade (Periods 1, 2 and 5). These findings by the OEM are consistent with independent analysis of the blades by Duke via 3rd party scanning. With a greater geometry variation, the Type 3 blade provided less mechanical damping (relative to the Type 1 blade) because of the smaller contact area – a result of greater contact misalignment.

While the OEM contends that geometry variation on the Type 3 blade are not significant enough to negatively impact blade stress/response, the OEM has acknowledged blade fitment/geometry is important enough to consider in their ongoing R&D relative to a Type 5 blade redesign. The planned design changes are intended to reduce blade response and dynamic stresses that in the past were negatively impacted by decreased contact surface area between the shroud Z-Locks.

Page 10 of 13

Duke Energy - Confidential

1

Г

October 11, 2017

Formatted: Font: 8 pt

Commented [MB2]: Is your excel summary of the better than this table or can it be in addition to this table?

Appendix A: Bartow L-0 Event Summary Period 1 Period 2

	Period 1	Period 2	Period 3	Period 4	Period 5
Date	2009-2012	2012-2014	2014-2016	May 2016 to Oct 2016	Dec 2016 - Feb 2017
Service Duration	~34 Months	~28 Months	~17 Months	~5 Months	~2 Months
L-0 Blade Configuration	Type 1	Type 1	Type 3 (v1)	Туре 3 (v2)	Type 1
ST Rating	420 MW (Nameplate)	420 MW	450 MW	450 MW	390 MW
Operating Restrictions	None – MHPS Intent Was to Follow Heat Balance Diagrams.	118 psig Limit on IP Exhaust	126 psig Limit on IP Exhaust	119 psig Limit on IP Exhaust	111 psig Limit on IP Exhaust
Blade Overspeed Condition	Overspeed Testing in MFG		Overspeed Tested in Japan	No Overspeed Testing	No Overspeed Testing
Avoidance Zone Exceedance	2,466 hrs. (of 21,734 hrs.)	1 hr. (of 21,284 hrs.)	240 hrs. (of 10,286 hrs.)	1.15 hrs. (of 2,942 hrs.)	0 hrs. (of 1,561 hrs.)
Broken Snubbers	5 TE / 0 GE	0 TE / 0 GE	OTE/OGE	0 TE / 1 GE	0 TE / 13 GE
Broken Z-Locks	0 TE / 0 GE	0 TE / 0 GE	34 TE / 5 GE	1 TE / 2 GE *Z-Lock and airfoils	0 TE / 8 GE
Worn Z-Locks	Moderate Amount of Surface Fretting and Galling Observed	Moderate Amount of Surface Fretting and Galling Observed	High Degree of Wear Observed	Evidence of Poor Contact Alignment Observed	High Degree of Wear (fc Hours Run) Observed
Key Notes from Period events	MHPSA was hired to evaluate ST design conditions (original design was for Tenaska, 3x1 heat balance) and to continue the warranty.	Not a forced outage. Outage planned to upgrade to "heavy duty" blades.	During blade telemetry testing, the unit was intentionally run in avoidance zone to set limits – unit ran in zone for <20 hrs.	Blade "loss of material" observed, as well as crack initiation in high stress area of airfoil.	Duke Discovery: Jan/Feb 2017, first time blending considered to be a contributing factor in L-D events.
Tenaska (purd market, stored ST drawing mo MHPSA and ap 4x1 operation output rating (MHPSA was storing for Tenaska (purchased grey market, stored by OEM).	Some blade damage (e.g. chipping at contact corners) was observed from removed service blades.	No blade cracking observed after testing (when the test instrumentation removed).	Stellite hard facing had been added to the blade Z-Lock, and is likely a contributing factor in the failure.	Jan 2017 "loss of mass" event – blade fragment projectile traveled through the LP turbine rupture disk diaphragm.
	ST drawing modified by MHPSA and approved for 4x1 operation at 420 MW output rating (2.38 mpph LP exhaust flow).	Blade telemetry instrumentation installed and testing conducted in Dec 2014 at the beginning of Period 3.		Two (2) separate step changes (decreases) in vibration led to the Duke Engineering recommendation to remove the ST from service for inspection.	Dental mold impression o failure surfaces indicate ~10^7 striations meaning high cycle fatigue (at 200 Hz giving over 2M cycles in 3+ hrs to fail snubber).
	MHPS provided all PI data they requested.	MHPS provided all PI data they requested.	MHPS provided all PI data they requested.	MHPS provided all PI data they requested.	MHPS provided all PI data they requested.

Page 11 of 13

DEF20190001BARTOW LFE4-000072

Duke Energy - Confidential

1

October 11, 2017

Formatted: Font: 8 pt

Appendix B: MHPS L-0 Blade Type Matrix

	Bartow L-0 Configurations				
	Type 1	Type 3 (v1)	Туре 3 (v2)	Type 5	
Length	40"	40"	40"	40"	
Count	64	64	64	64	
Turb/Gen End	Yes	Yes	Yes	Yes	
Snubber	No HVOF	Chamfer Radius & HVOF	Chamfer Radius & HVOF	Different Radial Height Relative Bartow L-0 (About 1″)	
Z-Lock	No HVOF	No HVOF	45° Corner with HVOF Applied	No HVOF	
Blade design	Orig.	Orig.	Orig.	Attack Angle Change	
Experience	3 units (2003)	12 units (2001)	1 unit, ~5 months	In commissioning (~1yr)	
Material	17-4 ph	17-4 ph	17-4 ph	17-4 ph	

Page 12 of 13

DEF20190001BARTOW LFE4-000073

Duke Energy - Confidential

1

October 11, 2017

Formatted: Font: 8 pt

Appendix C: Reference Materials

Mitsubishi RCA report - 9/22/2017

MHPS's evaluation is based on the data captured between Period 3 and 4 during blade telemetry testing. MHPS's evaluation is extensive and has allowed us to determine contributing factors. MHPS's intent was to draw conclusions based on actual data collected. The telemetry testing window was short not all operating conditions were witnessed during the testing (steady state and transient events); because of this the conclusions from this report may not be all encompassing of the drivers and conditions that are causing the blade failures.

Page 13 of 13

Duke Energy - Confidential

11 October 2017

Executive Summary

Duke Energy (Duke) and Mitsubishi Hitachi Power Systems (MHPS) have worked both independently and together over the past 18 months to determine what has caused the Bartow Unit 4S L-0 blades to crack and break during operation.

Duke's position is as follows: The root cause of the Bartow steam turbine (ST) 40" L-0 blade failures during Period 1-5 is driven by evidence that the OEM designed last stage blades had little or no design margins for the actual operating conditions that exist for the overall Bartow 4 x 1 Combined Cycle Unit.

Duke Engineering believes the blade failures during Periods 1-5 involve more than one driving mechanism. During a presentation given at the Duke FRHQ on 22 September 2017, MHPS also indicated that there may have been more contributing factors for various Periods of failure rather than just excessive steam flow through the LP section above the MHPS design limit of 15,000 lb./hr./ft.². Excessive steam flow, or "operation in the avoidance zone", had been previously communicated by MHPS as the sole root cause back during a presentation made at Bartow Station on 15 March 2017. MPHS has since changed its position and today there is agreement between both parties that there is not just one failure mechanism.

After months of study (and with input from MHPS) Duke Engineering believes the following to be the most significant contributing factors toward blade failure over the history of Bartow Unit 4S L-0 events:

- Low Pressure (LP) Turbine Excessive Steam Flow
- Blending Operations Thermal Distress (dT_{sH}/dt) at LP Turbine Exhaust
- Pressure Pulses During Hood/Curtain Spray Operation(s)
- Zone Analysis Shroud Fretting Fatigue
- Loss of Dampening Hard-Facing on Mid-Span Snubbers and Shroud Z-Lock Contact Surfaces
- Blade Fitment Gap Measurements for Mid-Span Snubbers and Shroud Z-Lock Contact Surfaces

Duke believes that the contributing factors presented in this paper – or during MHPS presentations – are postulations and may possibly be correct. Most of the MHPS postulations are derived from strain gauge data taken during the brief period of time that the telemetry test conducted during December 2014. That blade response data was then extrapolated by MHPS Engineering to develop potential root cause for blade failures at the mid-span snubber, shroud Z-Lock contact surface and/or the blade airfoil itself that were seen during Periods 1-5.

The long-term solution for the Bartow LP section is to replace the L-0 blades or to retrofit the LP steam path with a more capable/reliable design. With either scenario, blade telemetry instrumentation and blade vibration monitoring will be necessary to conclusively determine and eliminate the magnitude and impact of the identified contributing factors during various operating configurations that are integral to unrestricted 4 x 1 combined cycle operation.

This technical paper will speak briefly of the history of L-0 blade events for Bartow Unit 4S and then discuss in detail how each event was (or was not) affected by the contributing factors listed above. Any conclusions derived from Duke's efforts that are discussed in this document are based on the team's best ability to correlate data with events in operation and findings with L-0 blade inspections/failures.

Page 1 of 12

Deleted: simple Deleted: driving

Duke Energy - Confidential

11 October 2017

Historical Perspective

Bartow is a 4x1 Combined Cycle (CC) Station with a Steam Turbine (ST) manufactured by MHPS. The ST was purchased on the "grey market" from Tenaska Power Equipment, LLC (Tenaska). Tenaska originally purchased the ST to operate in a 3x1 CC with a gross output of 420MW. The ST was never delivered and was stored in a MHPS warehouse in Japan until Duke purchased the unit.

Prior to the Bartow commissioning, MHPS was contracted by Duke to evaluate the ST design conditions and update heat balances to represent a 4x1 CC configuration.

Since commissioning there have been five (5) events triggered by L-0 blade failures (see Appendix A for event details). The types of failures include mid-span snubber failures, shroud Z-Lock failures, and airfoil tip failures. Over the course of these events, MHPS has performed several design enhancements to the 40" ST L-0 blade in efforts to address the failures (see Appendix B for L-0 modifications). To date, the modifications have not resulted in improved reliability or performance of the L-0 blades in service at Bartow. The number of blade failures and problems with ST L-0 blade performance is not typical – i.e. these issues are outliers among the Duke CC fleet, as well as in the MHPS 40" L-0 fleet. The most common reported issue from the MHPS 40" L-0 blade design is water erosion, which both Duke and MHPS agree is not a contributing factor for the Bartow failures. Presently, the ST is operating without L-0 rotating/stationary hardware and with an MHPS designed and fabricated pressure plate.

Root Cause Contributing Factors Low Pressure (LP) Turbine Excessive Steam Flow

Over the course of Periods 1, 2 and leading into Period 3, MHPS Engineering – through data evaluation – learned (and made it known to Duke) that a significant contributing factor toward the L-0 blade failures washigh backend loading on the LP turbine last stage blades. Back-end loading is a function affected by steam flow and operating pressure through a turbine section. MHPS Engineering indicated that Bartow Unit 4S was an outlier relative to the MHPS 40" L-0 fleet with several operating hours above the design limit of 15,000 lb./hr./ft.² (the MHPS 40" L-0 fleet average was closer to 12,000 lb./hr./ft.²). Duke was issued an "avoidance zone" chart with instructions from MHPS not to run to the right side of the curve – the lone exception being "brief" operation during transient conditions.

While Duke Engineering agreed that back-end loading should be considered a significant contributing factor, one cannot definitively conclude that it has been the failure driving mechanism of all five (5) of the documented L-O events. As Appendix A illustrates, Periods 2, 4 and 5 saw operating hours in the "avoidance zone" of 1 hour, 1.15 hours and 0 hours, respectively. This indicates that back-end loading was not the cause of any of the reported blade indications/failures during those periods of operation.

By a considerable margin, Period 1 had the greatest amount of run hours in exceedance of the "avoidance zone" relative to total operating hours – 2,466 out of 21,734 total hours. However, blade damage was relegated to five (5) broken mid-span snubbers on the turbine end of the machine and a minimal degree of fretting on the shroud Z-Lock contact surfaces for both turbine and generator ends of the machine.

Page 2 of 12

Deleted: extremely

Deleted: s

Deleted: toward the root cause

Duke Energy - Confidential

11 October 2017

Conversely, during Period 3, there were only 240 hours (out of 10,286 total hours) of operation in the "avoidance zone", approx. 11 hours of which occurred during the instrumented blade telemetry test performed by MHPS in December 2014. Even with a significantly fewer number of "avoidance zone" hours for Period 3 relative to Period 1 – a factor of 10 fewer hours for Period 3 – there was significantly greater amounts of blade damage and fretting on both ends of the machine. While the amount of Z-Lock wear is not quantified for Periods 1 and 3, photographic evidence suggests that the amount of wear is much greater for Period 3, as shown below in Figure 1. It is therefore difficult to conclude that damage to the L-0 blades in Period 3 is solely due to unit operation above the exhaust flow limit.

Figure 1 -- Comparative Photos of Shroud Contact Surface Wear for Periods 1 and 3

With the L-Os currently removed from the machine and with the pressure plate installed, MHPS Engineering has indicated that back-end loading is not currently an issue of concern at the current LP inlet operating limits. MHPS Engineering does not have enough technical data to support releasing Duke to operate the machine beyond the current LP inlet operating limits due to concerns for impacts to upstream blading – i.e. the L-1 blade sets.

Page 3 of 12

11 October 2017

Duke Energy - Confidential

Blending Operations - Thermal Distress (dT_{SH}/dt) at LP Turbine Exhaust

During the most recent root cause analysis (RCA), the team expanded its view of turbine operations to include all aspects that might impact <u>exhaust conditions of the LP</u>. Since the design of the condenser includes spargers, or "dump tubes", for the hot reheat (HRH) and LP bypass steam flows from each of the four combustion turbines (CT), and since it has been observed that thermocouples positioned at the exhaust of the LP turbine just downstream of the L-O blades (hood spray thermocouples) can experience a significant change in temperature during a blend operation, it was decided by the Duke team to review this operational aspect.

A set of criteria and an automated process using Excel and PI Datalink were developed that allow large amounts of data (stored in the PI historian) to be quickly reviewed for each Period 1-5. Blends that met the criteria were further analyzed to see how blend operations met or exceeded design criteria set by the condenser OEM. This process involved extracting PI data, calculating a value of superheat at the hood spray thermocouples, (calculating a rate of change of that value, and flagging those values, or "counts". "Counts" are defined as the number of measureable blends where there was a slope change (+/-) in greater than (20 degrees superheat / min) at the hood spray thermocouples. The data was flagged only when a CT was being blended into (or out of) the steam cycle AND the ST output was greater than 50 MW. The limits of 20 degrees F (superheat) and 50 MW were selected as these are good indications that the blend steam had either higher, or lower, enthalpy than intended for the design of the sparging system. While this measure does not necessarily indicate the overall severity of any loadings that might be imposed upon the L-0 blades, it does allow for a comparison of the number of higher energy blends that occurred in each Period, and it allows the team to quickly identify specific points/periods in time to look at additional blend parameters.

Table 1 -- Quick Comparison of the Number of "Counts" that Meet the Criteria for Periods 1-5.

	Number of Operating Hours in Each Period	Number of Blends (or "Counts") Meeting Criteria
Period 1	21,734	13
Period 2	21,284	7
Period 3	10,286	37*
Period 4	2,942	3
Period 5	1,561	5

*Includes 6 blends that meet the criteria during strain gauge testing in December 2014

Pressure Pulses During Hood/Curtain Spray Operation(s)

The Duke RCA team also reviewed hood spray operations because of the very close proximity of the sprays to the L-0 blades and the function they provide to protect against overpressure. Hood spray operation is programmed into the Ovation DCS control system and is basically automated with no operator interaction required. The water source is the output from the condensate pumps. A control valve reduces the roughly 500 psig condensate pressure to the design pressure for the sprays of 50 psig.

Page 4 of 12

Formatted: Keep with next

Commented [MB1]: With a robust blade the exhaust conditions shouldn't impact the part. The changing exhaust conditions is impacting the MHPS blades...leading to why we think that is the root cause.

If I am off base don't change it. Deleted: the L-0 blades

Commented [MB2]: We don't really conclude anything with this section. Do we need a to add that until we install blades with telemetry testing we will not understand the total impact of this thermal energy on the blades. This was reviewed by MHPS during the previous blade telemetry test and they were not able to conclude a result. To be noted: not all blend conditions and configurations were exercised during the telemetry testing so there is not enough evidence to prove or refute this contributing factor.

Duke Energy - Confidential

11 October 2017

A review of the OEM-provided instructions requires use of hood sprays during the following conditions:

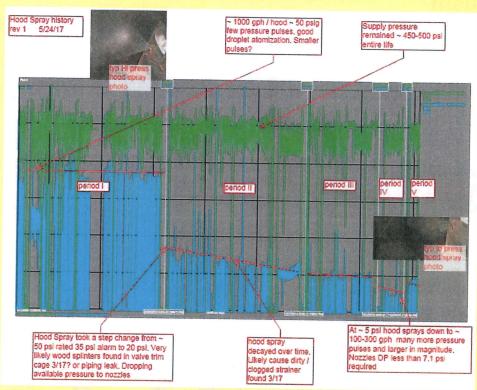
- Rotor speed greater than 600 rpm and steam turbine generator load less than 10 MW
- Hood spray thermocouple reading greater than 160 degrees F

During a review of the hood spray data, it became clear that additional operation besides that which is outlined above had been programmed into the DCS since unit commissioning. In addition to the above hood spray operating parameters, hood sprays were programmed to turn on anytime blending took place – similar to the way the curtain sprays are programmed. No explanation for why this was done has been found to date. Based on this finding, hood spray operation time is far greater than had it just been used as originally intended per the OEM-provided instructions. A review of hood spray thermocouple data shows they rarely reach 160 degrees F during normal operation and never reach over 165 degrees F. Higher temperatures are sometimes seen after a shutdown or unit trip event when the temperature in the exhaust increases, most likely due to the hot LP casings and some windage. No temperatures over 201 degrees F were found (one very brief reading of 1040 degrees F was determined to be an instrumentation issue).

Careful attention was also paid to the hood spray pressure over time. This was found to steadily decrease over successive Periods. Maintenance of the hood sprays control valve in Spring 2017 revealed debris in the valve passageways. Review of historical records also indicate the strainer ahead of the same control valve had filled with debris in prior years' operating.

Figure 2, below, demonstrates what happened to hood spray pressure over time. The decay in water pressure at the hood spray nozzles will yield reduced atomization as these style of nozzle rely on pressure drop to create a vortex inside the nozzle that causes atomization thru centripetal force. The effect of reduced atomization was verified during a test just prior to unit restart in April 2017. A key concern of poor atomization is the effect it might have on generating dynamic pressures which the L-0 blades might see as large water droplets evaporate in the exhaust stream.

Deleted: -----


Page Break

Page 5 of 12

Duke Energy - Confidential

11 October 2017

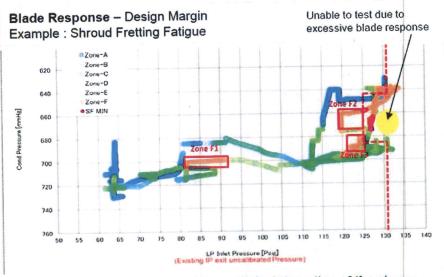
Figure 2 -- Hood Spray Pressure Degradation Over Periods 1-5

Zone Analysis – Shroud Fretting Fatigue

Based on data from the Period 3 blade strain gauge test in December 2014, MHPS identified areas (referred to as "Zones") where blade response was high, but still below the OEM design limit in the normal operation range of the LP turbine. The Duke RCA team defined these zones as Zone F1 through Zone F3 (shown by the red rectangles in Figure 3, below) and based on the PI historical data, calculated the amount of time the turbine spent in each zone for each period. <u>MHPS did not provide any restriction of operation in Zones F1 through F3, only the exclusion zone identified by the dotted red line in Figure 3.</u>

Commented [MB3]: Just want ot make sure it is clear to anyone reading this that we were not restricted, we just noted higher response. Also calling out the exclusion zone that MHPS created to make that clear (to people who wouldn't know what we are talkin gabout)

Page 6 of 12


DEF20190001BARTOW LFE4-000080

Duke Energy - Confidential

11 October 2017

Figure 3 -- Data Presented by MHPS During a Presentation Dated 15 March 2017

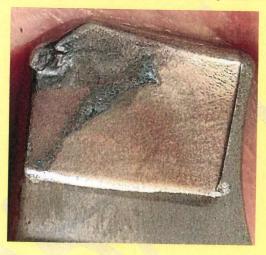
Damage Mechanism

Blade response is evaluated through the integration of the stress response all the modes between 180Hz to 120Hz

Table 2 shows the breakdown of time in hours in each of the three (3) defined Zone-F areas for each period. The total time in the three (3) Zone-F areas is compared with the total operating time as a percentage. Note that the Period 5 blades spent a high percent of time in the operating area defined as Zone F1.

Table 2 -- Time (in Hours) Spent in Each Zone and the Total Compared with Operating Time

[Time in Zone				Total Turbine	% Time
	F1	F2	F3	Total	Operating Hours	in Zone F
Period 1	901.2	257.5	23.9	1182.6	21734	5.4%
Period 2	1521.9	10.0	0.2	1532.1	21284	7.2%
Period 3	513.8	257.5	23.9	795.2	10286	7.7%
Period 4	1.3	407.8	0.0	409.1	2942	13.9%
Period 5	419.0	0.0	0.0	419.0	1561	26.8%


Page 7 of 12

Duke Energy - Confidential

11 October 2017

The main reason for conducting this analysis stems from the observed amount of wear seen on the contact surfaces for Period 5. Period 5 did not have any operation time in the exclusion zone and the amount of wear for the amount of operation time seems excessive. A photo showing the amount of wear seen is shown in Figure 4. There was a varying degree of wear seen on the Period 5 Z-notches, however, the wear is higher than what one would expect given the relatively low operating hours.

Figure 4 -- Photo of an L-0 blade Z-Lock from Period 5 Showing Contact Surface Wear

Period 5 did have high energy blends as detected by the blend energy method. However, in terms of operating hours in blend mode, Period 5 is not excessive in terms of percentage time blending as compare to time operated in Zone F1.

Loss of Dampening – Hard-Facing on Mid-Span Snubbers and Shroud Z-Lock Contact Surfaces

The loss of dampening phenomena was a contributing factor during Periods 3 and 4. HVOF hard-facing can reduce the amount of base material fretting during operation. The application of HVOF is used on many applications in the industry for blading contact surfaces. When applied the HVOF hard-facing changes the frictional forces of the contact surface reducing fretting and has an increased hardness to prevent material loss.

For Period 3, there was hard-facing on the mid-span snubber ONLY. Additional damage seen on the shroud Z-Lock contact surfaces (relative to other Periods) was due to loss of dampening at the snubbers, which were HVOF-coated. The Z-Lock contact surfaces were forced to provide all of the dampening for the system via additional motion.

Page 8 of 12

Deleted: its share of higher

Deleted: The total of 20 hours of blend Deleted: time does not appear to justify the wear seen.

Commented [MB5]: Do we need this? To help quantify why dampening is reduced with hard-facing? Might need to run the wording by Paul?Harry for accuracy.

Duke Energy - Confidential

11 October 2017

For Period 4, there was hard-facing on both the mid-span snubbers and the shroud Z-Lock contact surfaces. With both the mid-span and shroud contact surfaces being HVOF-coated, the limiting stress location became the blade itself. In addition to mid-span snubber and shroud Z-Lock damage similar to what was encountered during previous Periods 1-3, one (1) of the TE L-0 blade also exhibited tip liberation at the airfoil trailing edge.

Further discussion of loss of dampening and its role as a contributing factor toward potential blade failure will continue in the next section that speaks to blade fitment.

Blade Fitment – Gap Measurements for Mid-Span Snubbers and Shroud Z-Lock Contact Surfaces

During the course of the RCA investigation between Periods 3 and 4, technical questions arose relative to "as left" blade-to-blade gap measurements – both at the mid-span snubber interface and at the shroud Z-Lock contact surfaces. The basis for these questions was the potential concern that if the blade gaps at both the mid-span snubber interface and the shroud Z-Lock weren't both taken into consideration together, then as the blades began to "untwist" as the machine came up in temperature and load, adjacent mid-span snubbers would achieve greater surface-to-surface contact (especially with the HVOF coating applied) before the shroud Z-Lock contact surfaces could do the same. Consequently, reduced contact surface at the shroud Z-Lock would yield reduced mechanical damping, which is a function of both contact surface area and vibratory stresses (e.g. flutter).

Per the OEM, the Type 3 L-0 blades were used to establish a baseline blade response from the telemetry and strain gauge testing that was conducted in December 2014 at the beginning of Period 3. The intent of the blade response analysis was to capture "worst case" geometry variations. The OEM concluded that the dimensional tolerance between the Type 3 blade and the Type 1 blade may have been as great as +/- 2 mm – i.e. the Type 3 (Periods 3 and 4) blade shows greater distortion than the Type 1 blade (Periods 1, 2 and 5). These findings by the OEM are consistent with independent analysis of the blades by Duke via 3rd party scanning. With a greater geometry variation, the Type 3 blade provided less mechanical damping (relative to the Type 1 blade) because of the smaller contact area – a result of greater contact misalignment.

While the OEM contends that geometry variation on the Type 3 blade are not significant enough to negatively impact blade stress/response, the OEM has acknowledged blade fitment/geometry is important enough to consider in their ongoing R&D relative to a <u>new</u> Type 5 blade redesign. The planned design changes are intended to reduce blade response and dynamic stresses that in the past were negatively impacted by decreased contact surface area between the shroud Z-Locks.

Page 9 of 12

Duke Energy - Confidential

11 October 2017

Appendix A: Bartow L-0 Event Summary

	Period 1	Period 2	Period 3	Period 4	Period 5
Date	2009-2012	2012-2014	2014-2016	May 2016 to Oct 2016	Dec 2016 - Feb 2017
Service Duration	~34 Months	~28 Months	~17 Months	~5 Months	~2 Months
L-0 Blade Configuration	Type 1	Туре 1	Туре 3 (v1)	Туре 3 (v2)	Type 1
ST Rating	420 MW (Nameplate)	420 MW	450 MW	450 MW	390 MW
Operating Restrictions	None – MHPS Intent Was to Follow Heat Balance Diagrams.	118 psig Limit on IP Exhaust	126 psig Limit on IP Exhaust	119 psig Limit on IP Exhaust	111 psig Limit on IP Exhaust
Blade Overspeed Condition	Overspeed Testing in MFG		Overspeed Tested in Japan	No Overspeed Testing	No Overspeed Testing
Avoidance Zone Exceedance	2,466 hrs. (of 21,734 hrs.)	1 hr. (of 21,284 hrs.)	240 hrs. (of 10,286 hrs.)	1.15 hrs. (of 2,942 hrs.)	0 hrs. (of 1,561 hrs.)
Broken Snubbers	5 TE / 0 GE	0 TE / 0 GE	OTE/OGE	0 TE / 1 GE	0 TE / 13 GE
Broken Z-Locks	O TE / O GE	0 TE / 0 GE	34 TE / 5 GE	1 TE / 2 GE *Z-Lock and airfoils	O TE / 8 GE
Worn Z-Locks	Moderate Amount of Surface Fretting and Galling Observed	Moderate Amount of Surface Fretting and Galling Observed	High Degree of Wear Observed	Evidence of Poor Contact Alignment Observed	High Degree of Wear (for Hours Run) Observed
Key Notes from Period events	MHPSA was hired to evaluate ST design conditions (original design was for Tenaska, 3x1 heat balance) and to continue the warranty. MHPSA was storing for Tenaska (purchased grey market, stored by OEM).	Not a forced outage. Outage planned to upgrade to "heavy duty" blades. Some blade damage (e.g. chipping at contact corners) was observed from removed service blades.	During blade telemetry testing, the unit was intentionally run in avoidance zone to set limits – unit ran in zone for <20 hrs. No blade cracking observed after testing (when the test instrumentation removed).	Blade "loss of material" observed, as well as crack initiation in high stress area of airfoil. Stellite hard facing had been added to the blade Z-Lock, and is likely a contributing factor in the failure.	Duke Discovery: Jan/Feb 2017, first time blending considered to be a contributing factor in L-0 events. Jan 2017 "loss of mass" event – blade fragment projectile traveled through the LP turbine rupture disk diaphragm.
	ST drawing modified by MHPSA and approved for 4x1 operation at 420 MW output rating (2.38 mpph LP exhaust flow).	Blade telemetry instrumentation installed and testing conducted in Dec 2014 at the beginning of Period 3.		Two (2) separate step changes (decreases) in vibration led to the Duke Engineering recommendation to remove the ST from	Dental mold impression of failure surfaces indicate ~10^7 striations meaning high cycle fatigue (at 200 Hz giving over 2M cycles
				service for inspection.	in 3+ hrs to fail snubber).

Commented [MB6]: Is your excel summary of the better than this table or can it be in addition to this table? Key notes and other comments should be reviewed closely to make sure they don't contradict whats above. This was written before we knew a lot.

Page 10 of 12

11 October 2017

Duke Energy - Confidential

Appendix B: MHPS L-0 Blade Type Matrix

	and the state of the state	Bartow L-0 Configurations			
	Type 1	Type 3 (v1)	Type 3 (v2)	Type 5	
Length	40"	40"	40"	40"	
Count	64	64	64	64	
Turb/Gen End	Yes	Yes	Yes	Yes	
Snubber	No HVOF	Chamfer Radius & HVOF	Chamfer Radius & HVOF	Different Radial Height Relative Bartow L-0 (About 1")	
Z-Lock	No HVOF	No HVOF	45° Corner with HVOF Applied	No HVOF	
Blade design	Orig.	Orig.	Orig.	Attock Angle Change	
Experience	3 units (2003)	12 units (2001)	1 unit, ~5 months	In commissioning (~1yr)	
Material	17-4 ph	17-4 ph	17-4 ph	17-4 ph	

Commented [MB7]: You mentioned Type 5 above. Is the redesign blade for Bartow different than Citrus? Sounded like MHPS was "designing" something new for Bartow. If it's the citrus blade then there should have been no slide on the changes being made (in the mHPS root cause). Maybe this isn't a type 5, but the "latest Gen 40" blade??

Page 11 of 12

11 October 2017

DEF20190001BARTOW LFE4-000085

Duke Energy - Confidential

Appendix C: Reference Materials

Mitsubishi RCA report - 9/22/2017

MHPS's evaluation is based on the data captured between Period 3 and 4 during blade telemetry testing. MHPS's evaluation is extensive and has allowed us to <u>identify and evaluate</u> contributing factors. MHPS's intent was to draw conclusions based on actual data collected. The telemetry testing window was short not all operating conditions were witnessed during the testing (steady state and transient events); because of this the conclusions from this report may not be all encompassing of the drivers and conditions that are causing the blade failures.

Commented [MB8]: Is this right?

Deleted: determine

Page 12 of 12

Duke Energy - Confidential

11 October 2017

Executive Summary

Duke Energy (Duke) and Mitsubishi Hitachi Power Systems (MHPS) have worked both independently and together over the past 18 months to determine what has caused the Bartow Unit 4S L-O blades to crack and break during operation.

Duke's position is as follows: The root cause of the Bartow steam turbine (ST) 40" L-0 blade failures during Period 1-5 is driven by evidence that the OEM designed last stage blades had little or no design margins for the actual operating conditions that exist for the overall Bartow 4 x 1 Combined Cycle Unit.

Duke Engineering believes the blade failures during Periods 1-5 involve more than one driving mechanism. During a presentation given at the Duke FRHQ on 22 September 2017, MHPS also indicated that there may have been more contributing factors for various Periods of failure rather than just excessive steam flow through the LP section above the MHPS design limit of 15,000 lb./hr./ft.². Excessive steam flow, or "operation in the avoidance zone", had been previously communicated by MHPS as the sole root cause back during a presentation made at Bartow Station on 15 March 2017. MPHS has since changed its position and today there is agreement between both parties that there is not just one simple failure driving mechanism.

After months of study (and with input from MHPS) Duke Engineering believes the following to be the most significant contributing factors toward blade failure over the history of Bartow Unit 4S L-0 events:

- Low Pressure (LP) Turbine Excessive Steam Flow
- Blending Operations Thermal Distress (dT_{SH}/dt) at LP Turbine Exhaust
- Pressure Pulses During Hood/Curtain Spray Operation(s)
- Zone Analysis Shroud Fretting Fatigue
- Loss of Dampening Hard-Facing on Mid-Span Snubbers and Shroud Z-Lock Contact Surfaces
- Blade Fitment Gap Measurements for Mid-Span Snubbers and Shroud Z-Lock Contact Surfaces

Duke believes that the contributing factors presented in this paper – or during MHPS presentations – are postulations and may possibly be correct. Most of the MHPS postulations are derived from strain gauge data taken during the brief period of time that the telemetry test conducted during December 2014. That blade response data was then extrapolated by MHPS Engineering to develop potential root cause for blade failures at the mid-span snubber, shroud Z-Lock contact surface and/or the blade airfoil itself that were seen during Periods 1-5.

The long-term solution for the Bartow LP section is to replace the L-0 blades or to retrofit the LP steam path with a more capable/reliable design. With either scenario, blade telemetry instrumentation and blade vibration monitoring will be necessary to conclusively determine and eliminate the magnitude and impact of the identified contributing factors during various operating configurations that are integral to unrestricted 4 x 1 combined cycle operation.

This technical paper will speak briefly of the history of L-O blade events for Bartow Unit 4S and then discuss in detail how each event was (or was not) affected by the contributing factors listed above. Any conclusions derived from Duke's efforts that are discussed in this document are based on the team's best ability to correlate data with events in operation and findings with L-O blade inspections/failures.

Page 1 of 12

Duke Energy - Confidential

11 October 2017

Historical Perspective

Bartow is a 4x1 Combined Cycle (CC) Station with a Steam Turbine (ST) manufactured by MHPS. The ST was purchased on the "grey market" from Tenaska Power Equipment, LLC (Tenaska). Tenaska originally purchased the ST to operate in a 3x1 CC with a gross output of 420MW. The ST was never delivered and was stored in a MHPS warehouse in Japan until Duke purchased the unit.

Prior to the Bartow commissioning, MHPS was contracted by Duke to evaluate the ST design conditions and update heat balances to represent a 4x1 CC configuration.

Since commissioning there have been five (5) events triggered by L-0 blade failures (see Appendix A for event details). The types of failures include mid-span snubber failures, shroud Z-Lock failures, and airfoil tip failures. Over the course of these events, MHPS has performed several design enhancements to the 40" ST L-0 blade in efforts to address the failures (see Appendix B for L-0 modifications). To date, the modifications have not resulted in improved reliability or performance of the L-0 blades in service at Bartow. The number of blade failures and problems with ST L-0 blade performance is not typical – i.e. these issues are outliers among the Duke CC fleet, as well as in the MHPS 40" L-0 fleet. The most common reported issue from the MHPS 40" L-0 blade design is water erosion, which both Duke and MHPS agree is not a contributing factor for the Bartow failures. Presently, the ST is operating without L-0 rotating/stationary hardware and with an MHPS designed and fabricated pressure plate.

Root Cause Contributing Factors

Low Pressure (LP) Turbine Excessive Steam Flow

Over the course of Periods 1, 2 and leading into Period 3, MHPS Engineering – through data evaluation – learned (and made it known to Duke) that a significant contributing factor toward the L-O blade failures was extremely high back-end loading on the LP turbine last stage blades. Back-end loading is a function affected by steam flow and operating pressure through a turbine section. MHPS Engineering indicated that Bartow Unit 4S was an outlier relative to the MHPS 40" L-O fleet with several operating hours above the design limit of 15,000 lb./hr./ft.² (the MHPS 40" L-O fleet average was closer to 12,000 lb./hr./ft.²). Duke was issued an "avoidance zone" chart with instructions from MHPS not to run to the right side of the curve – the lone exception being "brief" operation during transient conditions.

While Duke Engineering agrees that back-end loading should be considered a significant contributing factor toward the root cause, one cannot definitively conclude that it has been the failure driving mechanism of all five (5) of the documented L-O events. As Appendix A illustrates, Periods 2, 4 and 5 saw operating hours in the "avoidance zone" of 1 hour, 1.15 hours and 0 hours, respectively. This indicates that back-end loading was not the cause of any of the reported blade indications/failures during those periods of operation.

By a considerable margin, Period 1 had the greatest amount of run hours in exceedance of the "avoidance zone" relative to total operating hours – 2,466 out of 21,734 total hours. However, blade damage was relegated to five (5) broken mid-span snubbers on the turbine end of the machine and a minimal degree of fretting on the shroud Z-Lock contact surfaces for both turbine and generator ends of the machine.

Page 2 of 12

Duke Energy - Confidential

11 October 2017

Conversely, during Period 3, there were only 240 hours (out of 10,286 total hours) of operation in the "avoidance zone", approx. 11 hours of which occurred during the instrumented blade telemetry test performed by MHPS in December 2014. Even with a significantly fewer number of "avoidance zone" hours for Period 3 relative to Period 1 – a factor of 10 fewer hours for Period 3 – there was significantly greater amounts of blade damage and fretting on both ends of the machine. While the amount of Z-Lock wear is not quantified for Periods 1 and 3, photographic evidence suggests that the amount of wear is much greater for Period 3, as shown below in Figure 1. It is therefore difficult to conclude that damage to the L-0 blades in Period 3 is solely due to unit operation above the exhaust flow limit.

With the L-Os currently removed from the machine and with the pressure plate installed, MHPS Engineering has indicated that back-end loading is not currently an issue of concern at the current LP inlet operating limits. MHPS Engineering does not have enough technical data to support releasing Duke to operate the machine beyond the current LP inlet operating limits due to concerns for impacts to upstream blading – i.e. the L-1 blade sets.

Blending Operations - Thermal Distress (dT_{SH}/dt) at LP Turbine Exhaust

Page 3 of 12

Duke Energy - Confidential

11 October 2017

During the most recent root cause analysis (RCA), the team expanded its view of turbine operations to include all aspects that might impact the L-O blades. Since the design of the condenser includes spargers, or "dump tubes", for the hot reheat (HRH) and LP bypass steam flows from each of the four combustion turbines (CT), and since it has been observed that thermocouples positioned at the exhaust of the LP turbine just downstream of the L-O blades (hood spray thermocouples) can experience a significant change in temperature during a blend operation, it was decided by the Duke team to review this operational aspect.

A set of criteria and an automated process using Excel and PI Datalink were developed that allow large amounts of data (stored in the PI historian) to be quickly reviewed for each Period 1-5. Blends that met the criteria were further analyzed to see how blend operations met or exceeded design criteria set by the condenser OEM. This process involved extracting PI data, calculating a value of superheat at the hood spray thermocouples, calculating a rate of change of that value, and flagging those values, or "counts". "Counts" are defined as the number of measureable blends where there was a slope change (+/-) in greater than (20 degrees superheat / min) at the hood spray thermocouples. The data was flagged only when a CT was being blended into (or out of) the steam cycle AND the ST output was greater than 50 MW. The limits of 20 degrees F (superheat) and 50 MW were selected as these are good indications that the blend steam had either higher, or lower, enthalpy than intended for the design of the sparging system. While this measure does not necessarily indicate the overall severity of any loadings that might be imposed upon the L-0 blades, it does allow for a comparison of the number of higher energy blends that occurred in each Period, and it allows the team to quickly identify specific points/periods in time to look at additional blend parameters.

and the second	Number of Operating Hours in Each Period	Number of Blends (or "Counts") Meeting Criteria
Period 1	21,734	13
Period 2	21,284	7
Period 3	10,286	37*
Period 4	2,942	3
Period 5	1,561	5

Table 1 -- Quick Comparison of the Number of "Counts" that Meet the Criteria for Periods 1-5.

*Includes 6 blends that meet the criteria during strain gauge testing in December 2014

Pressure Pulses During Hood/Curtain Spray Operation(s)

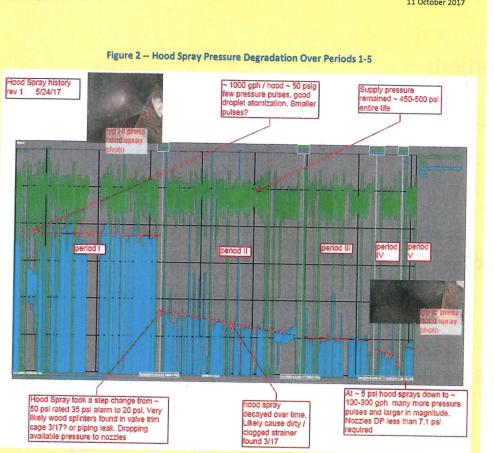
The Duke RCA team also reviewed hood spray operations because of the very close proximity of the sprays to the L-0 blades and the function they provide to protect against overpressure. Hood spray operation is programmed into the Ovation DCS control system and is basically automated with no operator interaction required. The water source is the output from the condensate pumps. A control valve reduces the roughly 500 psig condensate pressure to the design pressure for the sprays of 50 psig.

Page 4 of 12

Duke Energy - Confidential

11 October 2017

A review of the OEM-provided instructions requires use of hood sprays during the following conditions:


- Rotor speed greater than 600 rpm and steam turbine generator load less than 10 MW
- Hood spray thermocouple reading greater than 160 degrees F

During a review of the hood spray data, it became clear that additional operation besides that which is outlined above had been programmed into the DCS since unit commissioning. In addition to the above hood spray operating parameters, hood sprays were programmed to turn on anytime blending took place – similar to the way the curtain sprays are programmed. No explanation for why this was done has been found to date. Based on this finding, hood spray operation time is far greater than had it just been used as originally intended per the OEM-provided instructions. A review of hood spray thermocouple data shows they rarely reach 160 degrees F during normal operation and never reach over 165 degrees F. Higher temperatures are sometimes seen after a shutdown or unit trip event when the temperature in the exhaust increases, most likely due to the hot LP casings and some windage. No temperatures over 201 degrees F were found (one very brief reading of 1040 degrees F was determined to be an instrumentation issue).

Careful attention was also paid to the hood spray pressure over time. This was found to steadily decrease over successive Periods. Maintenance of the hood sprays control valve in Spring 2017 revealed debris in the valve passageways. Review of historical records also indicate the strainer ahead of the same control valve had filled with debris in prior years' operating.

Figure 2, below, demonstrates what happened to hood spray pressure over time. The decay in water pressure at the hood spray nozzles will yield reduced atomization as these style of nozzle rely on pressure drop to create a vortex inside the nozzle that causes atomization thru centripetal force. The effect of reduced atomization was verified during a test just prior to unit restart in April 2017. A key concern of poor atomization is the effect it might have on generating dynamic pressures which the L-0 blades might see as large water droplets evaporate in the exhaust stream.

Page 5 of 12

Duke Energy - Confidential

11 October 2017

Zone Analysis – Shroud Fretting Fatigue

Based on data from the Period 3 blade strain gauge test in December 2014, MHPS identified areas (referred to as "Zones") where blade response was high, but still below the OEM design limit in the normal operation range of the LP turbine. The Duke RCA team defined these zones as Zone F1 through Zone F3 (shown by the red rectangles in Figure 3, below) and based on the PI historical data, calculated the amount of time the turbine spent in each zone for each period.

Page 6 of 12

DEF20190001BARTOW LFE4-000092

CONFIDENTIAL

Duke Energy - Confidential

11 October 2017

Figure 3 -- Data Presented by MHPS During a Presentation Dated 15 March 2017

Damage Mechanism

Unable to test due to Blade Response – Design Margin excessive blade response Example : Shroud Fretting Fatigue DZone-A Zone-B 620 Zone-C Zorm-D Zone-E 640 Zone-F SF MIN Cond Pressure [mmHg] 660 680 e F1 700 720 740 760 50 135 140 100 105 110 115 120 125 130 95 90 55 60 65 70 75 80 85 LP Inter Pressure (Psix) (Exceloring IP exit uncalibrated Pressure)

Blade response is evaluated through the integration of the stress response all the modes between 180Hz to 120Hz

Table 2 shows the breakdown of time in hours in each of the three (3) defined Zone-F areas for each period. The total time in the three (3) Zone-F areas is compared with the total operating time as a percentage. Note that the Period 5 blades spent a high percent of time in the operating area defined as Zone F1.

Table 2 -- Time (in Hours) Spent in Each Zone and the Total Compared with Operating Time

1	Time in Zone				Total Turbine	% Time
	F1			Operating Hours	in Zone F	
Period 1	901.2	257.5	23.9	1182.6	21734	5.4%
Period 2	1521.9	10.0	0.2	1532.1	21284	7.2%
Period 3	513.8	257.5	23.9	795.2	10286	7.7%
Period 4	1.3	407.8	0.0	409.1	2942	13.9%
Period 5	419.0	0.0	0.0	419.0	1561	26.8%

Page 7 of 12

Duke Energy - Confidential

11 October 2017

The main reason for conducting this analysis stems from the observed amount of wear seen on the contact surfaces for Period 5. Period 5 did not have any operation time in the exclusion zone and the amount of wear for the amount of operation time seems excessive. A photo showing the amount of wear seen is shown in Figure 4. There was a varying degree of wear seen on the Period 5 Z-notches, however, the wear is higher than what one would expect given the relatively low operating hours.

Figure 4 -- Photo of an L-O blade Z-Lock from Period 5 Showing Contact Surface Wear

Period 5 did have its share of higher energy blends as detected by the blend energy method. However, in terms of operating hours in blend mode, Period 5 is not excessive in terms of percentage time blending. The total of 20 hours of blend time does not appear to justify the wear seen.

Loss of Dampening - Hard-Facing on Mid-Span Snubbers and Shroud Z-Lock Contact Surfaces

The loss of dampening phenomena was a contributing factor during Periods 3 and 4.

For Period 3, there was hard-facing on the mid-span snubber ONLY. Additional damage seen on the shroud Z-Lock contact surfaces (relative to other Periods) was due to loss of dampening at the snubbers, which were HVOF-coated. The Z-Lock contact surfaces were forced to provide all of the dampening for the system via additional motion.

For Period 4, there was hard-facing on both the mid-span snubbers and the shroud Z-Lock contact surfaces. With both the mid-span and shroud contact surfaces being HVOF-coated, the limiting stress location became the

Page 8 of 12

Duke Energy - Confidential

11 October 2017

blade itself. In addition to mid-span snubber and shroud Z-Lock damage similar to what was encountered during previous Periods 1-3, one (1) of the TE L-0 blade also exhibited tip liberation at the airfoil trailing edge.

Further discussion of loss of dampening and its role as a contributing factor toward potential blade failure will continue in the next section that speaks to blade fitment.

Blade Fitment – Gap Measurements for Mid-Span Snubbers and Shroud Z-Lock Contact Surfaces

During the course of the RCA investigation between Periods 3 and 4, technical questions arose relative to "as left" blade-to-blade gap measurements – both at the mid-span snubber interface and at the shroud Z-Lock contact surfaces. The basis for these questions was the potential concern that if the blade gaps at both the mid-span snubber interface and the shroud Z-Lock weren't both taken into consideration together, then as the blades began to "untwist" as the machine came up in temperature and load, adjacent mid-span snubbers would achieve greater surface-to-surface contact (especially with the HVOF coating applied) before the shroud Z-Lock contact surfaces could do the same. Consequently, reduced contact surface at the shroud Z-Lock would yield reduced mechanical damping, which is a function of both contact surface area and vibratory stresses (e.g. flutter).

Per the OEM, the Type 3 L-0 blades were used to establish a baseline blade response from the telemetry and strain gauge testing that was conducted in December 2014 at the beginning of Period 3. The intent of the blade response analysis was to capture "worst case" geometry variations. The OEM concluded that the dimensional tolerance between the Type 3 blade and the Type 1 blade may have been as great as +/- 2 mm – i.e. the Type 3 (Periods 3 and 4) blade shows greater distortion than the Type 1 blade (Periods 1, 2 and 5). These findings by the OEM are consistent with independent analysis of the blades by Duke via 3rd party scanning. With a greater geometry variation, the Type 3 blade provided less mechanical damping (relative to the Type 1 blade) because of the smaller contact area – a result of greater contact misalignment.

While the OEM contends that geometry variation on the Type 3 blade are not significant enough to negatively impact blade stress/response, the OEM has acknowledged blade fitment/geometry is important enough to consider in their ongoing R&D relative to a Type 5 blade redesign. The planned design changes are intended to reduce blade response and dynamic stresses that in the past were negatively impacted by decreased contact surface area between the shroud Z-Locks.

Page 9 of 12

Duke Energy - Confidential

11 October 2017

Appendix A: Bartow L-0 Event Summary

			and the second		
	Period 1	Period 2	Period 3	Period 4	Period 5
Date	2009-2012	2012-2014	2014-2016	May 2016 to Oct 2016	Dec 2016 - Feb 2017
Service Duration	~34 Months	~28 Months	~17 Months	~5 Months	~2 Months
L-0 Blade Configuration	Type 1	Type 1	Туре 3 (v1)	Туре 3 (v2)	Type 1
ST Rating	420 MW (Nameplate)	420 MW	450 MW	450 MW	390 MW
Operating Restrictions	None – MHPS Intent Was to Follow Heat Balance Diagrams,	118 psig Limit on IP Exhaust	126 psig Limit on IP Exhaust	119 psig Limit on IP Exhaust	111 psig Limit on IP Exhaust
Blade Overspeed Condition	Overspeed Testing in MFG	Streph 196	Overspeed Tested in Japan	No Overspeed Testing	No Overspeed Testing
Avoidance Zone Exceedance	2,466 hrs. (of 21,734 hrs.)	1 hr. (of 21,284 hrs.)	240 hrs. (of 10,286 hrs.)	1.15 hrs. (of 2,942 hrs.)	0 hrs. (of 1,561 hrs.)
Broken Snubbers	5 TE / 0 GE	O TE / O GE	0 TE / 0 GE	0 TE/1GE	0 TE / 13 GE
Broken Z-Locks	0 TE / 0 GE	0 TE / 0 GE	34 TE / 5 GE	1 TE / 2 GE *Z-Lock and airfoils	0 TE / B GE
Worn Z-Locks	Moderate Amount of Surface Fretting and Galling Observed	Moderate Amount of Surface Fretting and Galling Observed	High Degree of Wear Observed	Evidence of Poor Contact Alignment Observed	High Degree of Wear (for Hours Run) Observed
Key Notes from Period events	MHPSA was hired to evaluate ST design conditions (original design was for Tenaska, 3x1 heat balance) and to continue the warranty. MHPSA was storing for Tenaska (purchased grey market, stored by OEM).	Not a forced outage. Outage planned to upgrade to "heavy duty" blades. Some blade damage (e.g. chipping at contact corners) was observed from removed service blades.	During blade telemetry testing, the unit was intentionally run in avoidance zone to set limits – unit ran in zone for <20 hrs. No blade cracking observed after testing (when the test instrumentation removed).	Blade "loss of material" observed, as well as crack initiation in high stress area of airfoll. Stellite hard facing had been added to the blade Z-Lock, and is likely a contributing factor in the failure.	Duke Discovery: Jan/Feb 2017, first time blending considered to be a contributing factor in L-0 events. Jan 2017 "loss of mass" event – blade fragment projectile traveled through the LP turbine rupture disk diaphragm.
	ST drawing modified by MHPSA and approved for 4x1 operation at 420 MW output rating (2.38 mpph LP exhaust flow).	Blade telemetry instrumentation installed and testing conducted in Dec 2014 at the beginning of Period 3.		Two (2) separate step changes (decreases) in vibration led to the Duke Engineering recommendation to remove the ST from service for inspection.	Dental mold impression of failure surfaces indicate ~10^7 striations meaning high cycle fatigue (at 200 Hz giving over 2M cycles in 3+ hrs to fail snubber).
Provide a second se	MHPS provided all PI data they requested.	MHPS provided all PI data they requested.	MHPS provided all PI data they requested.	MHPS provided all PI data	MHPS provided all PI data

Commented [MB1]: Is your excel summary of the better than this table or can it be in addition to this table?

Page 10 of 12

11 October 2017

Duke Energy - Confidential

Appendix B: MHPS L-0 Blade Type Matrix

		Citrus L-O		
	Type 1	Type 3 (v1)	Туре З (v2)	Type 5
Length	40"	40 ^u	40"	40"
Count	64	64	64	64
Turb/Gen End	Yes	Yes	Yes	Yes
Snubber	No HVOF	Chamfer Radius & HVOF	Chamfer Radius & HVOF	Different Radial Height Rela Bartow L-0 (About 1",
Z-Lock	No HVOF	No HVOF	45° Corner with HVOF Applied	No HVOF
Blade design	Orig.	Orig.	Orig.	Attack Angle Change
Experience	3 units (2003)	12 units (2001)	1 unit, ~5 months	In commissioning (~1y
Material	17-4 ph	17-4 ph	17-4 ph	17-4 ph

Page 11 of 12

DEF20190001BARTOW LFE4-000097

CONFIDENTIAL

Duke Energy - Confidential

11 October 2017

Appendix C: Reference Materials

Mitsubishi RCA report - 9/22/2017

MHPS's evaluation is based on the data captured between Period 3 and 4 during blade telemetry testing. MHPS's evaluation is extensive and has allowed us to determine contributing factors. MHPS's intent was to draw conclusions based on actual data collected. The telemetry testing window was short not all operating conditions were witnessed during the testing (steady state and transient events); because of this the conclusions from this report may not be all encompassing of the drivers and conditions that are causing the blade failures.

Duke Energy - Confidential

11 October 2017

Executive Summary

Duke Energy (Duke) and Mitsubishi Hitachi Power Systems (MHPS) have worked both independently and together over the past 18 months to determine what has caused the Bartow Unit 4S L-O blades to crack and break during operation.

Duke's position is as follows: The root cause of the Bartow steam turbine (ST) 40" L-0 blade failures during Period 1-5 is driven by evidence that the OEM designed last stage blades had little or no design margins for the actual operating conditions that exist for the overall Bartow 4 x 1 Combined Cycle Unit.

Duke Engineering believes the blade failures during Periods 1-5 involve more than one driving mechanism. During a presentation given at the Duke FRHQ on 22 September 2017, MHPS also indicated that there may have been more contributing factors for various Periods of failure rather than just excessive steam flow through the LP section above the MHPS design limit of 15,000 lb./hr./ft.². Excessive steam flow, or "operation in the avoidance zone", had been previously communicated by MHPS as the sole root cause back during a presentation made at Bartow Station on 15 March 2017. MPHS has since changed its position and today there is agreement between both parties that there is not just one failure mechanism.

After months of study (and with input from MHPS) Duke Engineering believes the following to be the most significant contributing factors toward blade failure over the history of Bartow Unit 4S L-0 events:

- Low Pressure (LP) Turbine Excessive Steam Flow
- Blending Operations Thermal Distress (dT_{SH}/dt) at LP Turbine Exhaust
- Pressure Pulses During Hood/Curtain Spray Operation(s)
- Zone Analysis Shroud Fretting Fatigue
- Loss of Dampening Hard-Facing on Mid-Span Snubbers and Shroud Z-Lock Contact Surfaces
- Blade Fitment Gap Measurements for Mid-Span Snubbers and Shroud Z-Lock Contact Surfaces

Duke believes that the contributing factors presented in this paper – or during MHPS presentations – are postulations and may possibly be correct. Most of the MHPS postulations are derived from strain gauge data taken during the brief period of time that the telemetry test conducted during December 2014. That blade response data was then extrapolated by MHPS Engineering to develop potential root cause for blade failures at the mid-span snubber, shroud Z-Lock contact surface and/or the blade airfoil itself that were seen during Periods 1-5.

The long-term solution for the Bartow LP section is to replace the L-0 blades or to retrofit the LP steam path with a more capable/reliable design. With either scenario, blade telemetry instrumentation and blade vibration monitoring will be necessary to conclusively determine and eliminate the magnitude and impact of the identified contributing factors during various operating configurations that are integral to unrestricted 4 x 1 combined cycle operation.

This technical paper will speak briefly of the history of L-O blade events for Bartow Unit 4S and then discuss in detail how each event was (or was not) affected by the contributing factors listed above. Any conclusions derived from Duke's efforts that are discussed in this document are based on the team's best ability to correlate data with events in operation and findings with L-O blade inspections/failures.

Page 1 of 12

Duke Energy - Confidential

11 October 2017

Historical Perspective

Bartow is a 4x1 Combined Cycle (CC) Station with a Steam Turbine (ST) manufactured by MHPS. The ST was purchased on the "grey market" from Tenaska Power Equipment, LLC (Tenaska). Tenaska originally purchased the ST to operate in a 3x1 CC with a gross output of 420MW. The ST was never delivered and was stored in a MHPS warehouse in Japan until Duke purchased the unit.

Prior to the Bartow commissioning, MHPS was contracted by Duke to evaluate the ST design conditions and update heat balances to represent a 4x1 CC configuration.

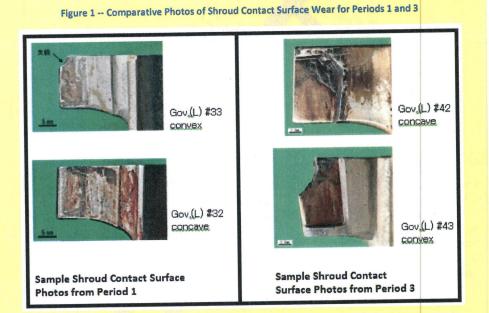
Since commissioning there have been five (5) events triggered by L-0 blade failures (see Appendix A for event details). The types of failures include mid-span snubber failures, shroud Z-Lock failures, and airfoil tip failures. Over the course of these events, MHPS has performed several design enhancements to the 40" ST L-0 blade in efforts to address the failures (see Appendix B for L-0 modifications). To date, the modifications have not resulted in improved reliability or performance of the L-0 blades in service at Bartow. The number of blade failures and problems with ST L-0 blade performance is not typical – i.e. these issues are outliers among the Duke CC fleet, as well as in the MHPS 40" L-0 fleet. The most common reported issue from the MHPS 40" L-0 blade design is water erosion, which both Duke and MHPS agree is not a contributing factor for the Bartow failures. Presently, the ST is operating without L-0 rotating/stationary hardware and with an MHPS designed and fabricated pressure plate.

Root Cause Contributing Factors

Low Pressure (LP) Turbine Excessive Steam Flow

Over the course of Periods 1, 2 and leading into Period 3, MHPS Engineering – through data evaluation – learned (and made it known to Duke) that a significant contributing factor toward the L-0 blade failures was high backend loading on the LP turbine last stage blades. Back-end loading is a function affected by steam flow and operating pressure through a turbine section. MHPS Engineering indicated that Bartow Unit 4S was an outlier relative to the MHPS 40" L-0 fleet with several operating hours above the design limit of 15,000 lb./hr./ft.² (the MHPS 40" L-0 fleet average was closer to 12,000 lb./hr./ft.²). Duke was issued an "avoidance zone" chart with instructions from MHPS not to run to the right side of the curve – the lone exception being "brief" operation during transient conditions.

While Duke Engineering agreed that back-end loading should be considered a significant contributing factor, one cannot definitively conclude that it has been the failure driving mechanism of all five (5) of the documented L-0 events. As Appendix A illustrates, Periods 2, 4 and 5 saw operating hours in the "avoidance zone" of 1 hour, 1.15 hours and 0 hours, respectively. This indicates that back-end loading was not the cause of any of the reported blade indications/failures during those periods of operation.


By a considerable margin, Period 1 had the greatest amount of run hours in exceedance of the "avoidance zone" relative to total operating hours – 2,466 out of 21,734 total hours. However, blade damage was relegated to five (5) broken mid-span snubbers on the turbine end of the machine and a minimal degree of fretting on the shroud Z-Lock contact surfaces for both turbine and generator ends of the machine.

Page 2 of 12

Duke Energy - Confidential

11 October 2017

Conversely, during Period 3, there were only 240 hours (out of 10,286 total hours) of operation in the "avoidance zone", approx. 11 hours of which occurred during the instrumented blade telemetry test performed by MHPS in December 2014. Even with a significantly fewer number of "avoidance zone" hours for Period 3 relative to Period 1 – a factor of 10 fewer hours for Period 3 – there was significantly greater amounts of blade damage and fretting on both ends of the machine. While the amount of Z-Lock wear is not quantified for Periods 1 and 3, photographic evidence suggests that the amount of wear is much greater for Period 3, as shown below in Figure 1. It is therefore difficult to conclude that damage to the L-0 blades in Period 3 is solely due to unit operation above the exhaust flow limit.

With the L-Os currently removed from the machine and with the pressure plate installed, MHPS Engineering has indicated that back-end loading is not currently an issue of concern at the current LP inlet operating limits. MHPS Engineering does not have enough technical data to support releasing Duke to operate the machine beyond the current LP inlet operating limits due to concerns for impacts to upstream blading – i.e. the L-1 blade sets.

Page 3 of 12

Duke Energy - Confidential

11 October 2017

Blending Operations - Thermal Distress (dT_{SH}/dt) at LP Turbine Exhaust

During the most recent root cause analysis (RCA), the team expanded its view of turbine operations to include all aspects that might impact exhaust conditions of the LP. Since the design of the condenser includes spargers, or "dump tubes", for the hot reheat (HRH) and LP bypass steam flows from each of the four combustion turbines (CT), and since it has been observed that thermocouples positioned at the exhaust of the LP turbine just downstream of the L-O blades (hood spray thermocouples) can experience a significant change in temperature during a blend operation, it was decided by the Duke team to review this operational aspect.

A set of criteria and an automated process using Excel and PI Datalink were developed that allow large amounts of data (stored in the PI historian) to be quickly reviewed for each Period 1-5. Blends that met the criteria were further analyzed to see how blend operations met or exceeded design criteria set by the condenser OEM. This process involved extracting PI data, calculating a value of superheat at the hood spray thermocouples, calculating a rate of change of that value, and flagging those values, or "counts". "Counts" are defined as the number of measureable blends where there was a slope change (+/-) in greater than (20 degrees superheat / min) at the hood spray thermocouples. The data was flagged only when a CT was being blended into (or out of) the steam cycle AND the ST output was greater than 50 MW. The limits of 20 degrees F (superheat) and 50 MW were selected as these are good indications that the blend steam had either higher, or lower, enthalpy than intended for the design of the sparging system. While this measure does not necessarily indicate the overall severity of any loadings that might be imposed upon the L-0 blades, it does allow for a comparison of the number of higher energy blends that occurred in each Period, and it allows the team to quickly identify specific points/periods in time to look at additional blend parameters.

	Number of Operating Hours in Each Period	Number of Blends (or "Counts") Meeting Criteria
Period 1	21,734	13
Period 2	21,284	7
Period 3	10,286	37*
Period 4	2,942	3
Period 5	1,561	5

Table 1 -- Quick Comparison of the Number of "Counts" that Meet the Criteria for Periods 1-5.

*Includes 6 blends that meet the criteria during strain gauge testing in December 2014

Pressure Pulses During Hood/Curtain Spray Operation(s)

The Duke RCA team also reviewed hood spray operations because of the very close proximity of the sprays to the L-0 blades and the function they provide to protect against overpressure. Hood spray operation is programmed into the Ovation DCS control system and is basically automated with no operator interaction required. The water source is the output from the condensate pumps. A control valve reduces the roughly 500 psig condensate pressure to the design pressure for the sprays of 50 psig.

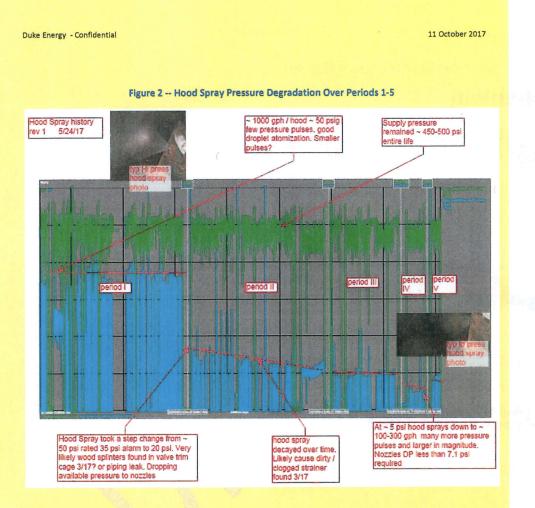
Page 4 of 12

Commented [MB1]: We don't really conclude anything with this section. Do we need a to add that until we install blades with telemetry testing we will not understand the total impact of this thermal energy on the blades. This was reviewed by MHPS during the previous blade telemetry test and they were not able to conclude a result. To be noted: not all blend conditions and configurations were exercised during the telemetry testing so there is not enough evidence to prove or refute this contributing factor.

Duke Energy - Confidential

11 October 2017

A review of the OEM-provided instructions requires use of hood sprays during the following conditions:


- Rotor speed greater than 600 rpm and steam turbine generator load less than 10 MW
- Hood spray thermocouple reading greater than 160 degrees F

During a review of the hood spray data, it became clear that additional operation besides that which is outlined above had been programmed into the DCS since unit commissioning. In addition to the above hood spray operating parameters, hood sprays were programmed to turn on anytime blending took place – similar to the way the curtain sprays are programmed. No explanation for why this was done has been found to date. Based on this finding, hood spray operation time is far greater than had it just been used as originally intended per the OEM-provided instructions. A review of hood spray thermocouple data shows they rarely reach 160 degrees F during normal operation and never reach over 165 degrees F. Higher temperatures are sometimes seen after a shutdown or unit trip event when the temperature in the exhaust increases, most likely due to the hot LP casings and some windage. No temperatures over 201 degrees F were found (one very brief reading of 1040 degrees F was determined to be an instrumentation issue).

Careful attention was also paid to the hood spray pressure over time. This was found to steadily decrease over successive Periods. Maintenance of the hood sprays control valve in Spring 2017 revealed debris in the valve passageways. Review of historical records also indicate the strainer ahead of the same control valve had filled with debris in prior years' operating.

Figure 2, below, demonstrates what happened to hood spray pressure over time. The decay in water pressure at the hood spray nozzles will yield reduced atomization as these style of nozzle rely on pressure drop to create a vortex inside the nozzle that causes atomization thru centripetal force. The effect of reduced atomization was verified during a test just prior to unit restart in April 2017. A key concern of poor atomization is the effect it might have on generating dynamic pressures which the L-0 blades might see as large water droplets evaporate in the exhaust stream.

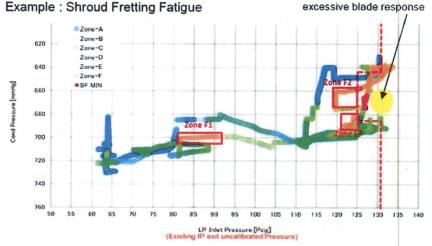
Page 5 of 12

Zone Analysis – Shroud Fretting Fatigue

Based on data from the Period 3 blade strain gauge test in December 2014, the OEM identified areas (referred to as "Zones") where blade response was high, but still below the OEM design limit in the normal operation range of the LP turbine. The Duke RCA team defined these zones as Zone F1, Zone F2, and Zone F3 (shown by the red rectangles in Figure 3, below) and based on the PI historical data, calculated the amount of time the turbine spent in each zone for each period. The OEM did not provide any restriction(s) to operation in Zone F1, Zone F2, and/or Zone F3 – only restrictions relative to "operation in the avoidance zone" identified by the area of the graph to the right of the dotted red line in Figure 3.

Page 6 of 12

Unable to test due to


Duke Energy - Confidential

11 October 2017

Figure 3 -- Data Presented by MHPS During a Presentation Dated 15 March 2017

Damage Mechanism

Blade Response – Design Margin Example : Shroud Fretting Fatigue

Blade response is evaluated through the integration of the stress response all the modes between 180Hz to 120Hz

Table 2 shows the breakdown of time in hours in each of the three (3) defined Zone-F areas for each period. The total time in the three (3) Zone-F areas is compared with the total operating time as a percentage. Note that the Period 5 blades spent a high percent of time in the operating area defined as Zone F1.

Table 2 -- Time (in Hours) Spent in Each Zone and the Total Compared with Operating Time

	Time in Zone				Total Turbine	% Time
	F1	F2	F3	Total	Operating Hours	in Zone F
Period 1	901.2	257.5	23.9	1182.6	21734	5.4%
Period 2	1521.9	10.0	0.2	1532.1	21284	7.2%
Period 3	513.8	257.5	23.9	795.2	10286	7.7%
Period 4	1.3	407.8	0.0	409.1	2942	13.9%
Period 5	419.0	0.0	0.0	419.0	1561	26.8%

Page 7 of 12

Duke Energy - Confidential

11 October 2017

The main reason for conducting this analysis stems from the observed amount of wear seen on the contact surfaces for Period 5. Period 5 did not have any operation time in the exclusion zone and the amount of wear for the amount of operation time seems excessive. A photo showing the amount of wear seen is shown in Figure 4. There was a varying degree of wear seen on the Period 5 Z-notches, however, the wear is higher than what one would expect given the relatively low operating hours.

Figure 4 -- Photo of an L-O blade Z-Lock from Period 5 Showing Contact Surface Wear

Period 5 did have high energy blends as detected by the blend energy method. However, in terms of operating hours in blend mode, Period 5 is not excessive in terms of percentage time blending as compared to operating hours in Zone F1.

Loss of Dampening – Hard-Facing on Mid-Span Snubbers and Shroud Z-Lock Contact Surfaces

HVOF hard-facing can reduce the amount of base material fretting during operation and is used on many applications across the industry for blading contact surfaces. When applied, the HVOF hard-facing changes the frictional forces of the contact surface reducing fretting and has an increased hardness to prevent material loss.

The loss of dampening phenomena was a contributing factor during Periods 3 and 4.

For Period 3, there was hard-facing on the mid-span snubber ONLY. Additional damage seen on the shroud Z-Lock contact surfaces (relative to other Periods) was due to loss of dampening at the snubbers, which were HVOF-coated. The Z-Lock contact surfaces were forced to provide all of the dampening for the system via additional motion.

Page 8 of 12

Duke Energy - Confidential

11 October 2017

For Period 4, there was hard-facing on both the mid-span snubbers and the shroud Z-Lock contact surfaces. With both the mid-span and shroud contact surfaces being HVOF-coated, the limiting stress location became the blade itself. In addition to mid-span snubber and shroud Z-Lock damage similar to what was encountered during previous Periods 1-3, one (1) of the TE L-0 blade also exhibited tip liberation at the airfoil trailing edge.

Further discussion of loss of dampening and its role as a contributing factor toward potential blade failure will continue in the next section that speaks to blade fitment.

Blade Fitment – Gap Measurements for Mid-Span Snubbers and Shroud Z-Lock Contact Surfaces

During the course of the RCA investigation between Periods 3 and 4, technical questions arose relative to "as left" blade-to-blade gap measurements – both at the mid-span snubber interface and at the shroud Z-Lock contact surfaces. The basis for these questions was the potential concern that if the blade gaps at both the mid-span snubber interface and the shroud Z-Lock weren't both taken into consideration together, then as the blades began to "untwist" as the machine came up in temperature and load, adjacent mid-span snubbers would achieve greater surface-to-surface contact (especially with the HVOF coating applied) before the shroud Z-Lock contact surfaces could do the same. Consequently, reduced contact surface at the shroud Z-Lock would yield reduced mechanical damping, which is a function of both contact surface area and vibratory stresses (e.g. flutter).

Per the OEM, the Type 3 L-0 blades were used to establish a baseline blade response from the telemetry and strain gauge testing that was conducted in December 2014 at the beginning of Period 3. The intent of the blade response analysis was to capture "worst case" geometry variations. The OEM concluded that the dimensional tolerance between the Type 3 blade and the Type 1 blade may have been as great as +/- 2 mm – i.e. the Type 3 (Periods 3 and 4) blade shows greater distortion than the Type 1 blade (Periods 1, 2 and 5). These findings by the OEM are consistent with independent analysis of the blades by Duke via 3rd party scanning. With a greater geometry variation, the Type 3 blade provided less mechanical damping (relative to the Type 1 blade) because of the smaller contact area – a result of greater contact misalignment.

While the OEM contends that geometry variation on the Type 3 blade are not significant enough to negatively impact blade stress/response, the OEM has acknowledged blade fitment/geometry is important enough to consider in their ongoing R&D relative to a <u>new</u> Type 5 blade redesign. The planned design changes are intended to reduce blade response and dynamic stresses that in the past were negatively impacted by decreased contact surface area between the shroud Z-Locks.

Page 9 of 12

11 October 2017

Duke Energy - Confidential

Appendix A: Bartow L-0 Event Summary

The Second	Period 1	Period 2	Period 3	Period 4	Period 5
Date	2009-2012	2012-2014	2014-2016	May 2016 to Oct 2016	Dec 2016 - Feb 2017
Service Duration	~34 Months	~28 Months	~17 Months	~5 Months	~2 Months
L-0 Blade Configuration	Type 1	Type 1	Type 3 (v1)	Туре 3 (v2)	Type 1
ST Rating	420 MW (Nameplate)	420 MW	450 MW	450 MW	390 MW
Operating Restrictions	None – MHPS Intent Was to Follow Heat Balance Diagrams.	118 psig Limit on IP Exhaust	126 psig Limit on IP Exhaust	119 psig Limit on IP Exhaust	111 psig Limit on IP Exhaust
Blade Overspeed Condition	Overspeed Testing in MFG		Overspeed Tested in Japan	No Overspeed Testing	No Overspeed Testing
Avoidance Zone Exceedance	2,466 hrs. (of 21,734 hrs.)	1 hr. (of 21,284 hrs.)	240 hrs. (of 10,286 hrs.)	1.15 hrs. (of 2,942 hrs.)	0 hrs. (of 1,561 hrs.)
Broken Snubbers	5 TE / 0 GE	O TE / O GE	O TE / O GE	OTE/1GE	0 TE / 13 GE
Broken Z-Locks	0 TE / 0 GE	O TE / O GE	34 TE / 5 GE	1 TE / 2 GE *Z-Lock and airfoils	0 TE / 8 GE
Worn Z-Locks	Moderate Amount of Surface Fretting and Galling Observed	Moderate Amount of Surface Fretting and Galling Observed	High Degree of Wear Observed	Evidence of Poor Contact Alignment Observed	High Degree of Wear (fo Hours Run) Observed
Key Notes from Period events	MHPSA was hired to evaluate ST design conditions (original design was for Tenaska, 3x1 heat balance) and to continue the warranty. MHPSA was storing for Tenaska (purchased grey market, stored by OEM). ST drawing modified by MHPSA and approved for 4x1 operation at 420 MW output rating (2.38 mph LP exhaust flow).	Not a forced outage. Outage planned to upgrade to "heavy duty" blades. Some blade damage (e.g. chipping at contact corners) was observed from removed service blades. Blade telemetry instrumentation installed and testing conducted in Dec 2014 at the beginning of Period 3.	During blade telemetry testing, the unit was intentionally run in avoidance zone to set limits – unit ran in zone for <20 hrs. No blade cracking observed after testing (when the test instrumentation removed).	Blade "loss of material" observed, as well as crack initiation in high stress area of airfoil. Stellite hard facing had been added to the blade Z-Lock, and is likely a contributing factor in the failure. Two (2) separate step changes (decreases) in vibration led to the Duke Engineering recommendation to remove the ST from service for inspection.	Duke Discovery: Jan/Fei 2017, first time blendin considered to be a contributing factor in L- events. Jan 2017 "loss of mass" event – blade fragmen projectile traveled through the LP turbine rupture disk diaphragm Dental mold impression failure surfaces indicat ~10^7 striations meanin high cycle fatigue (at 22 Hz giving over 2M cycle in 3+ hrs to fail snubbe
formation Shared with MHPS	MHPS provided all PI data they requested.	MHPS provided all PI data they requested.	MHPS provided all PI data they requested.	MHPS provided all PI data they requested.	MHPS provided all PI d they requested.

Commented [MB2]: Is your excel summary of the better than this table or can it be in addition to this table? Key notes and other comments should be reviewed closely to make sure they don't contradict whats above. This was written before we knew a lot.

Page 10 of 12

Duke Energy - Confidential

11 October 2017

Appendix B: MHPS L-0 Blade Type Matrix

	ter Alexandre States	Bartow L-0 Configurations		Citrus L-0
	Type 1	Type 3 (v1)	Type 3 (v2)	Type 5
Length	40"	40"	40"	40"
Count	64	64	64	64
Turb/Gen End	Yes	Yes	Yes	Yes
Snubber	No HVOF	Chamfer Radius & HVOF	Chamfer Radius & HVOF	Different Radial Height Relative Bartow L-0 (About 1")
Z-Lock	No HVOF	No HVOF	45° Corner with HVOF Applied	No HVOF
Blade design	Orig.	Orig.	Orig.	Attack Angle Change
Experience	3 units (2003)	12 units (2001)	1 unit, ~5 months	In commissioning (~1yr)
Material	17-4 ph	17-4 ph	17-4 ph	17-4 ph

Commented [MB3]: You mentioned Type 5 above. Is the redesign blade for Bartow different than Citrus? Sounded like MHPS was "designing" something new for Bartow. If it's the citrus blade then there should have been no slide on the changes being made (in the mHPS root cause). Maybe this isn't a type 5, but the "latest Gen 40" blade??

Page 11 of 12

Duke Energy - Confidential

11 October 2017

Appendix C: Reference Materials

Mitsubishi RCA report - 9/22/2017

MHPS's evaluation is based on the data captured between Period 2 and 3 during blade telemetry testing. MHPS's evaluation is extensive and has allowed us to identify and evaluate contributing factors. MHPS's intent was to draw conclusions based on actual data collected. The telemetry testing window was short not all operating conditions were witnessed during the testing (steady state and transient events); because of this the conclusions from this report may not be all encompassing of the drivers and conditions that are causing the blade failures.

Page 12 of 12

11 October 2017

Executive Summary

Duke Energy (Duke) and Mitsubishi Hitachi Power Systems (MHPS) have worked both independently and together over the past 18 months to determine what has caused the Bartow Unit 4S L-0 blades to crack and break during operation.

Duke's position is as follows: The root cause of the Bartow steam turbine (ST) 40" L-0 blade failures during Period 1-5 is driven by evidence that the OEM designed last stage blades had little or no design margins for the actual operating conditions that exist for the overall Bartow 4 x 1 Combined Cycle Unit.

Duke Engineering believes the blade failures during Periods 1-5 involve more than one driving mechanism. During a presentation given at the Duke FRHQ on 22 September 2017, MHPS also indicated that there may have been more contributing factors for various Periods of failure rather than just excessive steam flow through the LP section above the MHPS design limit of 15,000 lb./hr./ft.². Excessive steam flow, or "operation in the avoidance zone", had been previously communicated by MHPS as the sole root cause back during a presentation made at Bartow Station on 15 March 2017. MPHS has since changed its position and today there is agreement between both parties that there is not just one failure mechanism.

After months of study (and with input from MHPS) Duke Engineering believes the following to be the most significant contributing factors toward blade failure over the history of Bartow Unit 4S L-0 events:

- Low Pressure (LP) Turbine Excessive Steam Flow
- Blending Operations Thermal Distress (dT_{SH}/dt) at LP Turbine Exhaust
- Pressure Pulses During Hood/Curtain Spray Operation(s)
- Zone Analysis Shroud Fretting Fatigue
- Loss of Dampening Hard-Facing on Mid-Span Snubbers and Shroud Z-Lock Contact Surfaces
- Blade Fitment Gap Measurements for Mid-Span Snubbers and Shroud Z-Lock Contact Surfaces

Duke believes that the contributing factors presented in this paper – or during MHPS presentations – are postulations and may possibly be correct. Most of the MHPS postulations are derived from strain gauge data taken during the brief period of time that the telemetry test conducted during December 2014. That blade response data was then extrapolated by MHPS Engineering to develop potential root cause for blade failures at the mid-span snubber, shroud Z-Lock contact surface and/or the blade airfoil itself that were seen during Periods 1-5.

The long-term solution for the Bartow LP section is to replace the L-O blades or to retrofit the LP steam path with a more capable/reliable design. With either scenario, blade telemetry instrumentation and blade vibration monitoring will be necessary to conclusively determine and eliminate the magnitude and impact of the identified contributing factors during various operating configurations that are integral to unrestricted 4 x 1 combined cycle operation.

This technical paper will speak briefly of the history of L-O blade events for Bartow Unit 4S and then discuss in detail how each event was (or was not) affected by the contributing factors listed above. Any

CONFIDENTIAL

conclusions derived from Duke's efforts that are discussed in this document are based on the team's best ability to correlate data with events in operation and findings with L-O blade inspections/failures.

Historical Perspective

Bartow is a 4x1 Combined Cycle (CC) Station with a Steam Turbine (ST) manufactured by MHPS. The ST was purchased on the "grey market" from Tenaska Power Equipment, LLC (Tenaska). Tenaska originally purchased the ST to operate in a 3x1 CC with a gross output of 420MW. The ST was never delivered and was stored in a MHPS warehouse in Japan until Duke purchased the unit.

Prior to the Bartow commissioning, MHPS was contracted by Duke to evaluate the ST design conditions and update heat balances to represent a 4x1 CC configuration.

Since commissioning there have been five (5) events triggered by L-O blade failures (see Appendix A for event details). The types of failures include mid-span snubber failures, shroud Z-Lock failures, and airfoil tip failures. Over the course of these events, MHPS has performed several design enhancements to the 40" ST L-O blade in efforts to address the failures (see Appendix B for L-O modifications). To date, the modifications have not resulted in improved reliability or performance of the L-O blades in service at Bartow. The number of blade failures and problems with ST L-O blade performance is not typical – i.e. these issues are outliers among the Duke CC fleet, as well as in the MHPS 40" L-O fleet. The most common reported issue from the MHPS 40" L-O blade design is water erosion, which both Duke and MHPS agree is not a contributing factor for the Bartow failures. Presently, the ST is operating without L-O rotating/stationary hardware and with an MHPS designed and fabricated pressure plate.

Root Cause Contributing Factors

Low Pressure (LP) Turbine Excessive Steam Flow

Over the course of Periods 1, 2 and leading into Period 3, MHPS Engineering – through data evaluation – learned (and made it known to Duke) that a significant contributing factor toward the L-0 blade failures was high back-end loading on the LP turbine last stage blades. Back-end loading is a function affected by steam flow and operating pressure through a turbine section. MHPS Engineering indicated that Bartow Unit 4S was an outlier relative to the MHPS 40" L-0 fleet with several operating hours above the design limit of 15,000 lb./hr./ft.² (the MHPS 40" L-0 fleet average was closer to 12,000 lb./hr./ft.²). Duke was issued an "avoidance zone" chart with instructions from MHPS not to run to the right side of the curve – the lone exception being "brief" operation during transient conditions.

While Duke Engineering agreed that back-end loading should be considered a significant contributing factor, one cannot definitively conclude that it has been the failure driving mechanism of all five (5) of the documented L-0 events. As Appendix A illustrates, Periods 2, 4 and 5 saw operating hours in the "avoidance zone" of 1 hour, 1.15 hours and 0 hours, respectively. This indicates that back-end loading was not the cause of any of the reported blade indications/failures during those periods of operation.

By a considerable margin, Period 1 had the greatest amount of run hours in exceedance of the "avoidance zone" relative to total operating hours – 2,466 out of 21,734 total hours. However, blade damage was relegated to five (5) broken mid-span snubbers on the turbine end of the machine and a

CONFIDENTIAL

minimal degree of fretting on the shroud Z-Lock contact surfaces for both turbine and generator ends of the machine.

Conversely, during Period 3, there were only 240 hours (out of 10,286 total hours) of operation in the "avoidance zone", approx. 11 hours of which occurred during the instrumented blade telemetry test performed by MHPS in December 2014. Even with a significantly fewer number of "avoidance zone" hours for Period 3 relative to Period 1 – a factor of 10 fewer hours for Period 3 – there was significantly greater amounts of blade damage and fretting on both ends of the machine. While the amount of Z-Lock wear is not quantified for Periods 1 and 3, photographic evidence suggests that the amount of wear is much greater for Period 3, as shown below in Figure 1. It is therefore difficult to conclude that damage to the L-0 blades in Period 3 is solely due to unit operation above the exhaust flow limit.

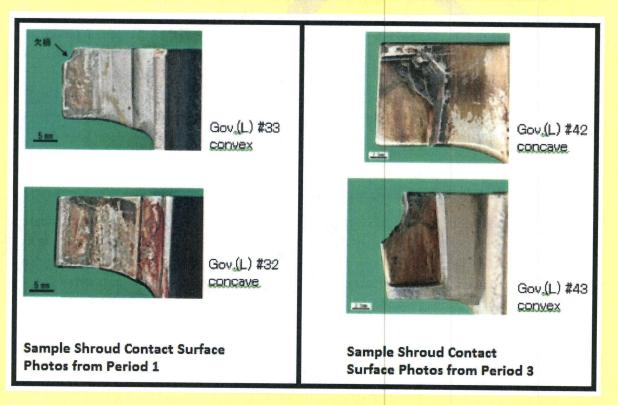


Figure 1 -- Comparative Photos of Shroud Contact Surface Wear for Periods 1 and 3

With the L-Os currently removed from the machine and with the pressure plate installed, MHPS Engineering has indicated that back-end loading is not currently an issue of concern at the current LP inlet operating limits. MHPS Engineering does not have enough technical data to support releasing Duke to operate the machine beyond the current LP inlet operating limits due to concerns for impacts to upstream blading – i.e. the L-1 blade sets.

Blending Operations – Thermal Distress (dT_{SH}/dt) at LP Turbine Exhaust

During the most recent root cause analysis (RCA), the team expanded its view of turbine operations to include all aspects that might impact exhaust conditions of the LP. Since the design of the condenser includes spargers, or "dump tubes", for the hot reheat (HRH) and LP bypass steam flows from each of the four (4) combustion turbines (CT), and since it has been observed that thermocouples positioned at the exhaust of the LP turbine just downstream of the L-0 blades (hood spray thermocouples) can experience a significant change in temperature during a blend operation, it was decided by the Duke team to review this operational aspect.

A set of criteria and an automated process using Excel and PI Datalink were developed that allow large amounts of data (stored in the PI historian) to be quickly reviewed for each Period 1-5. Blends that met the criteria were further analyzed to see how blend operations met or exceeded design criteria set by the condenser OEM. This process involved extracting PI data, calculating a value of superheat at the hood spray thermocouples, calculating a rate of change of that value, and flagging those values, or "counts". "Counts" are defined as the number of measureable blends where there was a slope change (+/-) in greater than (20 degrees superheat / min) at the hood spray thermocouples. The data was flagged only when a CT was being blended into (or out of) the steam cycle AND the ST output was greater than 50 MW. The limits of 20 degrees F (superheat) and 50 MW were selected as these are good indications that the blend steam had either higher, or lower, enthalpy than intended for the design of the sparging system. While this measure does not necessarily indicate the overall severity of any loadings that might be imposed upon the L-0 blades, it does allow for a comparison of the number of higher energy blends that occurred in each Period, and it allows the team to quickly identify specific points/periods in time to look at additional blend parameters.

	Number of Operating Hours in Each Period	Number of Blends (or "Counts") Meeting Criteria
Period 1	21,734	13
Period 2	21,284	7
Period 3	10,286	37*
Period 4	2,942	3
Period 5	1,561	5

Table 1 -- Quick Comparison of the Number of "Counts" that Meet the Criteria for Periods 1-5.

*Includes 6 blends that meet the criteria during strain gauge testing in December 2014

Until a long term solution other than the pressure plate is installed into the machine and the turbine is appropriately equipped with strain gauge and blade vibration monitoring hardware, Duke will not fully understand the total impact of this thermal energy on the blades. Duke Engineering believes that the brief telemetry testing period conducted in December 2014 does not – by itself – provide conclusive enough evidence to support (or refute) this contributing factor of thermal distress, as not all blend conditions and configurations were exercised during the testing period

Pressure Pulses During Hood/Curtain Spray Operation(s)

The Duke RCA team also reviewed hood spray operations because of the very close proximity of the sprays to the L-O blades and the function they provide to protect against overpressure. Hood spray operation is programmed into the Ovation DCS control system and is basically automated with no operator interaction required. The water source is the output from the condensate pumps. A control valve reduces the roughly 500 psig condensate pressure to the design pressure for the sprays of 50 psig.

A review of the OEM-provided instructions requires use of hood sprays during the following conditions:

- Rotor speed greater than 600 rpm and steam turbine generator load less than 10 MW
- Hood spray thermocouple reading greater than 160 degrees F

During a review of the hood spray data, it became clear that additional operation besides that which is outlined above had been programmed into the DCS since unit commissioning. In addition to the above hood spray operating parameters, hood sprays were programmed to turn on anytime blending took place – similar to the way the curtain sprays are programmed. No explanation for why this was done has been found to date. Based on this finding, hood spray operation time is far greater than had it just been used as originally intended per the OEM-provided instructions. A review of hood spray thermocouple data shows they rarely reach 160 degrees F during normal operation and never reach over 165 degrees F. Higher temperatures are sometimes seen after a shutdown or unit trip event when the temperature in the exhaust increases, most likely due to the hot LP casings and some windage. No temperatures over 201 degrees F were found (one very brief reading of 1040 degrees F was determined to be an instrumentation issue).

Careful attention was also paid to the hood spray pressure over time. This was found to steadily decrease over successive Periods. Maintenance of the hood sprays control valve in Spring 2017 revealed debris in the valve passageways. Review of historical records also indicate the strainer ahead of the same control valve had filled with debris in prior years' operating.

Figure 2, below, demonstrates what happened to hood spray pressure over time. The decay in water pressure at the hood spray nozzles will yield reduced atomization as these style of nozzle rely on pressure drop to create a vortex inside the nozzle that causes atomization through centripetal force. The effect of reduced atomization was verified during a test just prior to unit restart in April 2017. A key concern of poor atomization is the effect it might have on generating dynamic pressures which the L-0 blades might see as large water droplets evaporate in the exhaust stream.

11 October 2017


Figure 2 -- Hood Spray Pressure Degradation Over Periods 1-5

Zone Analysis – Shroud Fretting Fatigue

Based on data from the Period 3 blade strain gauge test in December 2014, the OEM identified areas (referred to as "Zones") where blade response was high, but still below the OEM design limit in the normal operation range of the LP turbine. The Duke RCA team defined these zones as Zone F1, Zone F2, and Zone F3 (shown by the red rectangles in Figure 3, below) and based on the PI historical data, calculated the amount of time the turbine spent in each zone for each period. The OEM did not provide any restriction(s) to operation in Zone F1, Zone F2, and/or Zone F3 – only restrictions relative to "operation in the avoidance zone" identified by the area of the graph to the right of the dotted red line in Figure 3.

Figure 3 -- Data Presented by MHPS During a Presentation Dated 15 March 2017

Damage Mechanism

Blade response is evaluated through the integration of the stress response all the modes between 180Hz to 120Hz

Table 2 shows the breakdown of time in hours in each of the three (3) defined Zone-F areas for each period. The total time in the three (3) Zone-F areas is compared with the total operating time as a percentage. Note that the Period 5 blades spent a high percent of time in the operating area defined as Zone F1.

		Time i	n Zone	Total Turbine	% Time	
	F1	FŻ	F3	Total	Operating Hours	in Zone F
Period 1	901.2	257.5	23.9	1182.6	21734	5.4%
Period 2	1521.9	10.0	0.2	1532.1	21284	7.2%
Period 3	513.8	257.5	23.9	795.2	10286	7.7%
Period 4	1.3	407.8	0.0	409.1	2942	13.9%
Period 5	419.0	0.0	0.0	419.0	1561	26.8%

Table 2 Time (in Hou	s) Spent in Each Zone and the	Total Compared with Operating Time
----------------------	-------------------------------	------------------------------------

Duke Energy - Confidential

11 October 2017

The main reason for conducting this analysis stems from the observed amount of wear seen on the contact surfaces for Period 5. Period 5 did not have any operation time in the exclusion zone and the amount of wear for the amount of operation time seems excessive. A photo showing the amount of wear seen is shown in Figure 4. There was a varying degree of wear seen on the Period 5 Z-notches, however, the wear is higher than what one would expect given the relatively low operating hours.



Figure 4 -- Photo of an L-O blade Z-Lock from Period 5 Showing Contact Surface Wear

Period 5 did have high energy blends as detected by the blend energy method. However, in terms of operating hours in blend mode, Period 5 is not excessive in terms of percentage time blending as compared to operating hours in Zone F1.

Loss of Dampening – Hard-Facing on Mid-Span Snubbers and Shroud Z-Lock Contact Surfaces

HVOF hard-facing can reduce the amount of base material fretting during operation and is used on many applications across the industry for blading contact surfaces. When applied, the HVOF hard-facing changes the frictional forces of the contact surface reducing fretting and has an increased hardness to prevent material loss.

The loss of dampening phenomena was a contributing factor during Periods 3 and 4.

For Period 3, there was hard-facing on the mid-span snubber ONLY. Additional damage seen on the shroud Z-Lock contact surfaces (relative to other Periods) was due to loss of dampening at the snubbers,

which were HVOF-coated. The Z-Lock contact surfaces were forced to provide all of the dampening for the system via additional motion.

For Period 4, there was hard-facing on both the mid-span snubbers and the shroud Z-Lock contact surfaces. With both the mid-span and shroud contact surfaces being HVOF-coated, the limiting stress location became the blade itself. In addition to mid-span snubber and shroud Z-Lock damage similar to what was encountered during previous Periods 1-3, one (1) of the TE L-0 blade also exhibited tip liberation at the airfoil trailing edge.

Further discussion of loss of dampening and its role as a contributing factor toward potential blade failure will continue in the next section that speaks to blade fitment.

Blade Fitment – Gap Measurements for Mid-Span Snubbers and Shroud Z-Lock Contact Surfaces

During the course of the RCA investigation between Periods 3 and 4, technical questions arose relative to "as left" blade-to-blade gap measurements – both at the mid-span snubber interface and at the shroud Z-Lock contact surfaces. The basis for these questions was the potential concern that if the blade gaps at both the mid-span snubber interface and the shroud Z-Lock weren't both taken into consideration together, then as the blades began to "untwist" as the machine came up in temperature and load, adjacent mid-span snubbers would achieve greater surface-to-surface contact (especially with the HVOF coating applied) before the shroud Z-Lock contact surfaces could do the same. Consequently, reduced contact surface at the shroud Z-Lock would yield reduced mechanical damping, which is a function of both contact surface area and vibratory stresses (e.g. flutter).

Per the OEM, the Type 3 L-0 blades were used to establish a baseline blade response from the telemetry and strain gauge testing that was conducted in December 2014 at the beginning of Period 3. The intent of the blade response analysis was to capture "worst case" geometry variations. The OEM concluded that the dimensional tolerance between the Type 3 blade and the Type 1 blade may have been as great as +/- 2 mm – i.e. the Type 3 (Periods 3 and 4) blade shows greater distortion than the Type 1 blade (Periods 1, 2 and 5). These findings by the OEM are consistent with independent analysis of the blades by Duke via 3rd party scanning. With a greater geometry variation, the Type 3 blade provided less mechanical damping (relative to the Type 1 blade) because of the smaller contact area – a result of greater contact misalignment.

While the OEM contends that geometry variation on the Type 3 blade are not significant enough to negatively impact blade stress/response, the OEM has acknowledged blade fitment/geometry is important enough to consider in their ongoing R&D relative to a Type 5 blade redesign. The planned design changes are intended to reduce blade response and dynamic stresses that in the past were negatively impacted by decreased contact surface area between the shroud Z-Locks.

11 October 2017

Appendix A: Bartow L-0 Event Summary

	Period 1	Period 2	Period 3	Period 4	Period 5
Date	2009-2012	2012-2014	2014-2016	May 2016 to Oct 2016	Dec 2016 - Feb 2017
Service Duration	~34 Months	~28 Months	~17 Months	~5 Months	~2 Months
L-0 Blade Configuration	Type 1	Type 1	Type 3 (v1)	Туре 3 (v2)	Type 1
ST Rating	420 MW (Nameplate)	420 MW	450 MW	450 MW	390 MW
Restrictions To Follow Heat Balance Exhaust		118 psig Limit on IP Exhaust	126 psig Limit on IP Exhaust	119 psig Limit on IP Exhaust	111 psig Limit on IP Exhaust
Blade Overspeed Condition	Overspeed Testing in MFG		Overspeed Tested in Japan	No Overspeed Testing	No Overspeed Testing
Avoidance Zone Exceedance	2,466 hrs. (of 21,734 hrs.)	1 hr. (of 21,284 hrs.)	240 hrs. (of 10,286 hrs.)	1.15 hrs. (of 2,942 hrs.)	0 hrs. (of 1,561 hrs.)
Broken Snubbers	5 TE / 0 GE	0 TE / 0 GE	0 TE / 0 GE	0 TE / 1 GE	0 TE / 13 GE
Broken Z-Locks 0TE/0GE 0TE/0GE		0 TE / 0 GE	34 TE / 5 GE	1 TE / 2 GE *Z-Lock and airfoils	0 TE / 8 GE
Worn Z-Locks	Moderate Amount of Surface Fretting and Galling Observed	Moderate Amount of Surface Fretting and Galling Observed	High Degree of Wear Observed	Evidence of Poor Contact Alignment Observed	High Degree of Wear (fo Hours Run) Observed
Key Notes from Period events	MHPSA was hired to evaluate ST design conditions (original design was for Tenaska, 3x1 heat balance) and to continue the warranty. MHPSA was storing for Tenaska (purchased grey market, stored by OEM). ST drawing modified by MHPSA and approved for 4x1 operation at 420 MW output rating (2.38 mph LP exhaust flow).	Not a forced outage – Outage planned to upgrade to "heavy duty" blades. Some blade damage (e.g. chipping at contact corners) was observed from removed service blades. Blade telemetry instrumentation installed and testing conducted in Dec 2014 at the beginning of Period 3.	During blade telemetry testing, the unit was intentionally run in avoidance zone to set limits – unit ran in zone for <20 hrs. No blade cracking observed after testing (when the test instrumentation removed).	Blade "loss of material" observed, as well as crack initiation in high stress area of airfoil. Stellite hard facing had been added to the blade Z-Lock, and is likely a contributing factor in the failure. Two (2) separate step changes (decreases) in vibration led to the Duke Engineering recommendation to remove the ST from service for inspection.	Duke Discovery: Jan/Feb 2017, first time blending considered to be a contributing factor in L-C events. Jan 2017 "loss of mass" event – blade fragment projectile traveled through the LP turbine rupture disk diaphragm. Dental mold impression failure surfaces indicate ~10^7 striations meaning high cycle fatigue (at 200 Hz giving over 2M cycles in 3+ hrs to fail snubber)
nformation Shared with MHPS	MHPS provided all PI data they requested.	MHPS provided all PI data they requested.	MHPS provided all PI data they requested.	MHPS provided all PI data they requested.	MHPS provided all PI dat they requested.

Appendix B: MHPS L-0 Blade Type Matrix

	Bartow L-0 Configurations			Citrus L-0
	Type 1	Type 3 (v1)	Type 3 (v2)	Type 5
Length	40"	40"	40"	40"
Count	64	64	64	64
Turb/Gen End	Yes	Yes	Yes	Yes
Snubber	No HVOF	Chamfer Radius & HVOF	Chamfer Radius & HVOF	Different Radial Height Relative to Bartow L-0 (About 1")
Z-Lock	No HVOF	No HVOF	45° Corner with HVOF Applied	No HVOF
Blade design	Original	Original	Original	Attack Angle Change
Material	17-4 ph	17-4 ph	17-4 ph	17-4 ph

11 October 2017

Appendix C: Empirical Data Supporting Root Cause

Empirical Support for Root Cause

		Street, Mar	Excessive S	team Flow	a the second
Period	Operating Hours	Driving Mechanism Present	Avoidance Zone Exceedance Hours	Exceedance Hours / (1k Operating Hours)	Normalized Ranking
1	21,734	X	2,465	0.11	1.00
2	21,284		1	0.00	0.00
3	10,286	х	240	0.02	0.21
4*	2,942		1	0.00	0.00
5	1,561		0	0.00	0.00

		Thermal Distress (dT _{SH} /dt)				
Period	Operating Hours	Driving Mechanism Present	Counts (AT > 20 deg_ F _{SK} / Minute)	Counts / (1k Operating Hours)	Normalized Ranking	
1	21,734	X	13	0.60	0.17	
2	21,284	x	7	0.33	0.09	
3	10,286	Х	37	3.60	1.00	
4.4	2,942	х	3	1.02	0.28	
5	1,561	x	5	3.20	0.89	

			Pressure Pulses				
	Operating Hours	Driving Mechanism Present	Avg. Hood Spray Pressure (psig)	Hours of Hood Spray Operation	% of Total Operating Hours	Normalized Ranking	
1	21,734	х	35.2	5,098	23	0.68	
2	21,284	х	13.2	7,343	34	1.00	
3	10,286	х	10.4	440	4	0.12	
4*	2,942	x	5.5	174	6	0.17	
5	1,561	x	8.7	93	6	0.17	

	Operating	Loss of Dampening
Period	Hours	Driving Mechanism Present
1	21,734	N/A
2	21,284	N/A
3	10,286	N/A**
4*	2,942	X
5	1,561	N/A

Period 1	Jun 2009 to Mar 2012
Period 2	Apr 2012 to Aug 2014
Period 3	Dec 2014 to Apr 2016
Period 4	Jun 2016 to Oct 2016
Period 5	Dec 2016 to Feb 2017

"Excessive Steam Flow" Notes

General Notes

* For Period 4, the first L-O blade tip was lost on 7/6/16 at about 10:50AM -- BEFORE 1st thermal event on 7/16/16 and BEFORE operation above "avoidance zone" limit on 08/01 - 9/25/16 (55 min total).

"Avoidance Zone Exceedance Hours" - Measured number of operating hours in exceedance of 15,000 lb/hr-ft² limit as indicated by the IP exhaust pressure

"Exceedance Hours / (1k Operating Hours)" - Number of exceedance hours per 1000 hours of operation in a given period "Normalized Ranking" - Data normalized against the highest value in Column F

"Thermal Distress (dTou/dt)" Notes

"Counts (DT > 20 deg_F5H / Minute)" - "Counts" are defined as the number of measurable blends where there was a slope change (+/-] greater than (20 degrees superheat / min) at the hood spray thermocouples - Data was flagged only when a CT was being blended into (or out of) the steam cycle AND the ST output was greater than 50 MW

"Counts / (1k Operating Hours)" - Number of "counts" per 1000 hours of operation in a given period "Normalized Ranking" - Data normalized against the highest value in Column F

"Pressure Pulses" Notes

"Avg. Hood Spray Pressure (psig)" - Calculated from PI Historian data (??? -- Verify)

"Hours of Hood Spray Operation" -- "Hours of Hood Spray Operation" is a weighted value -- There is a 1.00 multiplier at 50 psig varying linearly to a 1.75 multiplier at 5 psig

"% of Total Operating Hours" – The "weighted" hours of hood spray operation divided by the total number of operating hours --

converted to a percentage value "Normalized Ranking" – Data normalized against the highest percentage value in Column G

"Loss of Dampening" Notes

🤲 For Period 3, there was hard-facing on the Mid-span Snubber ONLY — Additional damage seen on the shroud Z-Lock contact surfaces (relative to other Periods) was likely due to loss of dampening at the snubbers, which were HVOF-costed -- The Z-Lock contact surfaces were forced to provide all of the dampening for the system via additional motion

Duke Energy - Confidential

11 October 2017

Appendix D: Reference Materials

Mitsubishi RCA Presentation(s) – 22 September 2017 and 02 October 2017

MHPS's evaluation is based on the data captured between Period 2 and 3 during blade telemetry testing. MHPS's evaluation is extensive and has allowed us to identify and evaluate contributing factors. MHPS's intent was to draw conclusions based on actual data collected. The telemetry testing window was short, and not all operating conditions were witnessed during the testing (steady state and transient events). Because of this the conclusions from this report may not be all encompassing of the drivers and conditions that are causing the blade failures.

Bartow RCA Customer 10-2-17.pd

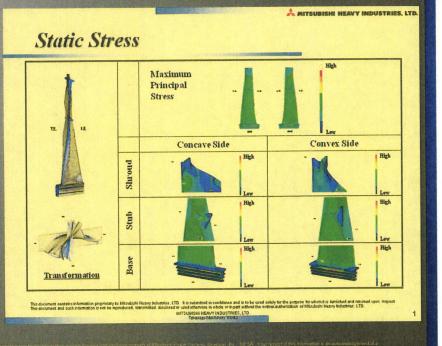
Page 12 of 12

MITSUBISHI POWER SYSTEMS AMERICAS Bartow Discussion

August 21st 2012

DEF20190001BARTOW LFE4-000122

MITSUBISHI POWER SYSTEMS



ONFIDENTIAL

PROGRESS ENERGY QUESTIONS

What color is yield strength of the static plot of blade stress contours red or yellow?

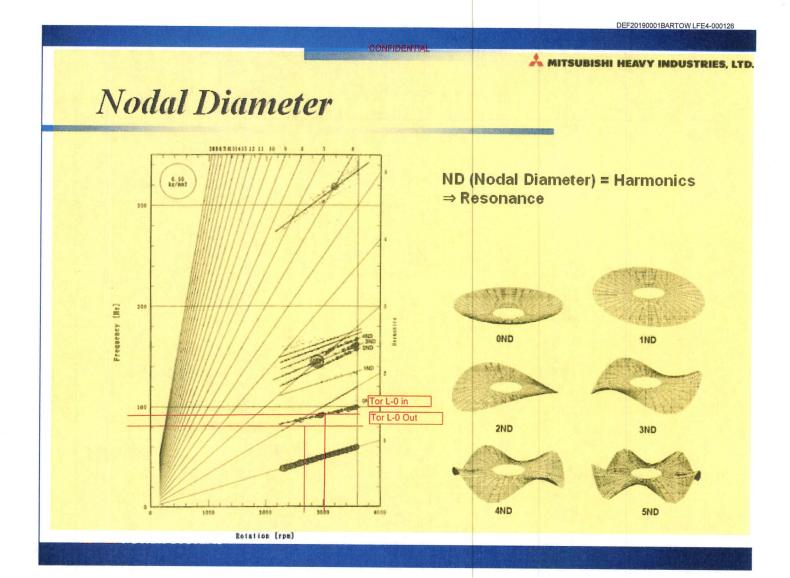
The yield stress was shown in orange. Although the local stress on the blade root exceeds the yield stress this is not problem because it is 80% of the allowable stress (as discussed with Harry Carbone in the meeting). Note that the stub does not exceed the yield stress.

PROGRESS ENERGY QUESTIONS

DEF20190001BARTOW LFE4-00012

2. Do you have the normalized stresses for dynamic nominal motion of the blade for mode 1, mode 2, and mode 3?

Request made to MHI. Expect to have by mid September.


ONFIDENTIAL

PROGRESS ENERGY QUESTIONS

3. Do you have the nodal diameter tuning IE some refer to it as interference diagram?

See next page.

PROGRESS ENERGY QUESTIONS

DEE20190001BARTOW | FE4-000127

4. What f1, f2, f3 stresses or motion did you get from test data in test unit or 1 instrumented unit at 15,000 lbs/hr/ft2 rating?

Request made to MHI. Expect to have by mid September.

PROGRESS ENERGY QUESTIONS

DEF20190001BARTOW LFE4-00012

5. Did you do a cfd/fea interactive model at 15,000 lbs/hr/ft2 rating? Did the motions compare to measured in 4.?

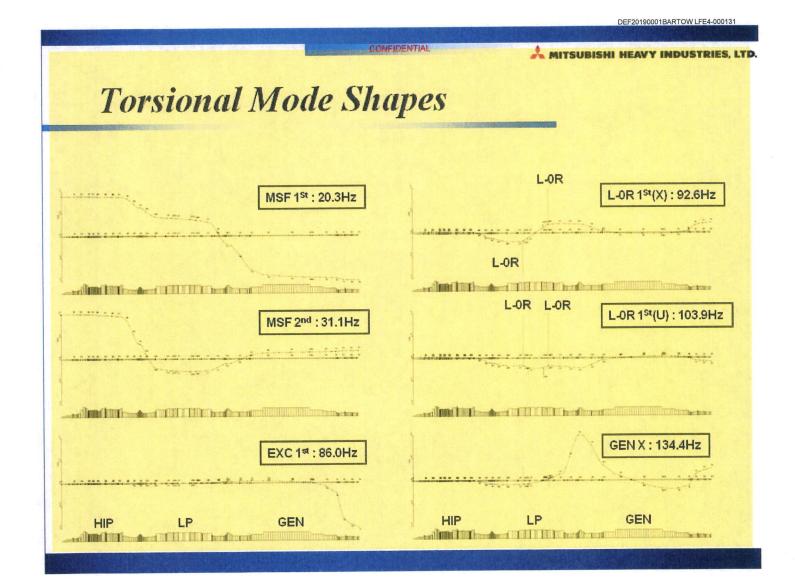
Request made to MHI. Expect to have by mid September.

CONFIDENTIAL

PROGRESS ENERGY QUESTIONS

6. If you did this type model again at a run with 15,000/2.5*2.7= 16,200 lbs/hr/ft2 what is the predicted motion and stresses? In particular what is compressive and shear stress at damper?

Comparison by FEM has not been done. In general, the following will be affected by loading increase: If the flow is stable, the vibration stress increases linearly with loading. Based on the operational data we have it is assumed that the flow is stable.


PROGRESS ENERGY QUESTIONS

DEF20190001BARTOW LFE4-000130

What are the torsional mode shapes and tuning especially those that show large energy on the I-0 blading? Is there a mode shape that shows more energy at TE vs. GE on a torsional with the L-0 participation?

See next page.

PROGRESS ENERGY QUESTIONS

DEF20190001BARTOW LFE4-000132

3. Could MHI model the blade stresses with mid span snubbers fractured short term operations?

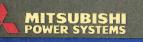
We cannot explain this occurrence with the analyses done so far. If several issues occur at the same time, such as mis-operation (low vacuum operation, short circuit, etc.), partial contact of stub, there could be a possible fracture.

ONFIDENTIAL

PROGRESS ENERGY QUESTIONS

9. Has MHI considered any surface treatment such as shot peening or surface hardening to minimizing fretting fatigue?

No surface treatment is applied to the L-OR stub because it is designed to have low contact stress and prevent fretting fatigue.



PROGRESS ENERGY QUESTIONS

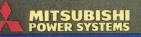
DEF20190001BARTOW LFE4-000134

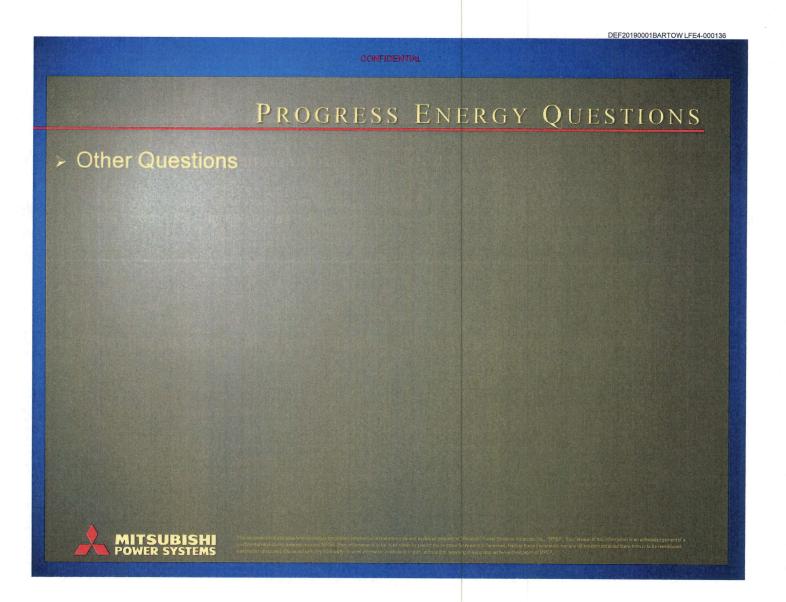
10. MHI provide a Pressure vs. Temperature rating for the STG. Without a document that provides information on what they intend on the operating limits of the STG we will never know exactly how to operate the machine. Seems like it should be an X-Y plot or some other graph that would allow us to program the DCS to protect the machine.

Please refer to Heat Balance for pressure vs temperature rating. For the operation limitation, please control the GT output as necessary so that LP inlet pressure (4S-PT-44304) will become less than 136 psig (Heat Balance Case 150). We cannot share the detailed setting points (X-Y plots) because we don't have the GT control logic.

CONFIDENTIAL

PROGRESS ENERGY QUESTIONS

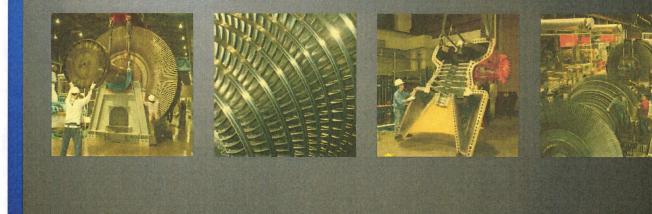

11. At what RPM do midspan snubber and shroud come into contact.


Shroud comes into contact at 1200-1500 rpm and the stub comes into contact 1200-2000rpm. We are also certain based on Rotating Vibration Test that shroud and stub come into contact by 1700 rpm.

12. Further discussions to support their own investigation and possible means of increasing unit output.

1

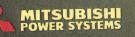
We will continue technical support for you. As of now it is difficult for us to propose a concrete method to increase the unit output. An engineering study is suggested.



MITSUBISHI POWER SYSTEMS A MERICAS Part 2 Bartow Discussion

August 21st 2012

DEF20190001BARTOW LFE4-000137


					DEI	F20190001BARTOW	/ LFE4-000138
	CONFIDENTIAL						
	L-0	B	LA	de P	ROP	OSA	L_
Line	Item Rev TQ-B1843-01 Description BLADE TS-4381E2FM L-0R 40.0IN ISB RH Customer Item:	Qty 64	Price/e \$23,515.63		and the second	eks UM EA	
0002 Item C	TO-B1843-05 Description BLADE TS-4382E2FM L-0R 40.0IN ISB LH Customer Item:	64	\$23,515.63 item Total	\$1,505,000 \$3,010,000		EA	
PO	ITSUBISHI WER SYSTEMS	e the sole and ke werd water 5, 10 yellogist is piet	Level primery of Mau to for the paperse for ed of advant feat receiving the	stal Pipter Bectaris Antericas (no. 1939: Darrechal) Ne Ther Piece Bact express vertices authorization of Mi	MPS4, Yow recept of the infor energies, any information obtained 956	nelzen is an ecknowledgement dithere from is to be reproduce	of a sd

DEF20190001BARTOW LFE4-000139

PREVIOUS L-O PROPOSAL WITH INSTALL

Hardware and Service Pricing

ST Unit	Workscope/Description	Duration	Shift	Price
Bartow ST	(1) Row LH L-0 Blades with locking hardware *	-		\$1,530,000
Bartow ST	Field Service ST Open/Close	13 Days	2-12-7	\$916,662
Bartow ST	Re-blading of Steam Turbine	5 Days	2-12-7	\$237,089
	Subassembly work (2MSV, 2 CV, 2 ICV in shop)	16 Days	1-8-5	\$88,364
Bartow ST	Standby time	2 Days / 4 Shifts		\$21,007
Bartow ST Standby time Total Price:				
Total Price With Discount ** (\$165,000):				

NOTES AND ASSUMPTIONS

Additional Notes & Assumptions:

- *Includes transportation to customer site, does not include consumables for open/close
- ** A \$165,000 discount will apply if all if all the services are performed by MSPSA
- Excluding taxes, additional fees, or country withholdings
- MPSA to provide power rollers
- Subassembly price is not standalone and must be purchased with other services. Transportation is not included.

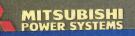
ENGINEERING STUDY PROPOSAL

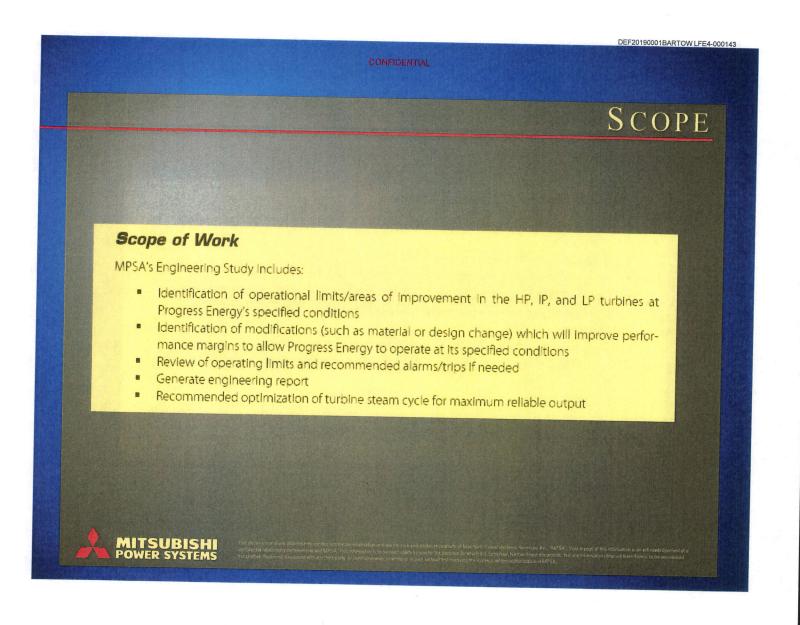
DEF20190001BARTOW LFE4-000141

Customer Proposal July 26, 2012

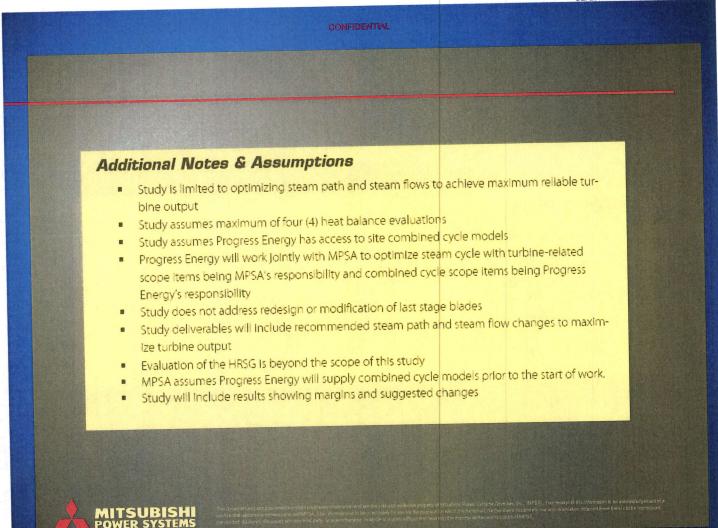
Progress Energy Bartow Steam Turbine Engineering Study

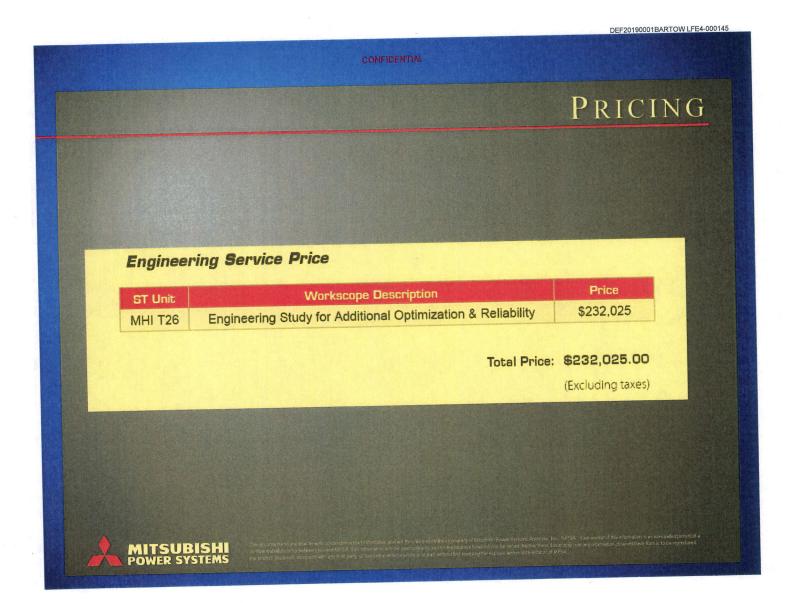
MPSA-GTO-12557

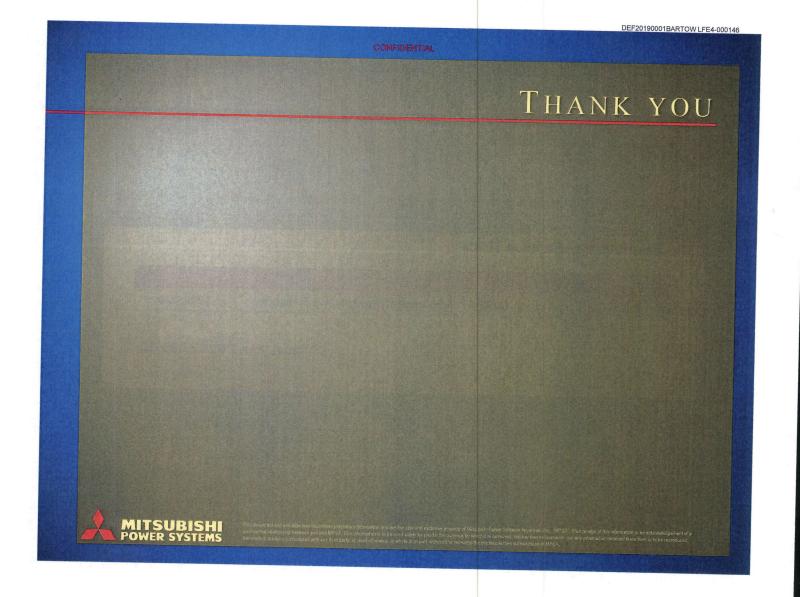

CONFIDENTIAL


ENGINEERNIG STUDY PROPOSAL

Subject: Proposal for ST Engineering Study for the Progress Energy Bartow Unit (MPSA-QTO-12557)


Dear Mr. Mattina,


Mitsubishi Power Systems Americas (MPSA) is pleased to provide the above reference quotation to support a 2012 engineering evaluation on your Bartow unit for identification of limitations, possible upgrades, or enhancements. As the OEM, Mitsubishi Power System's steam turbine experience includes all of the expertise and technologies needed to provide optimized solutions for your unit. Costs incurred from this engineering study can be applied towards a future MPSA rotor upgrade at Bartow.




```
DEF20190001BARTOW LFE4-000144
```


CONFIDENTIAL

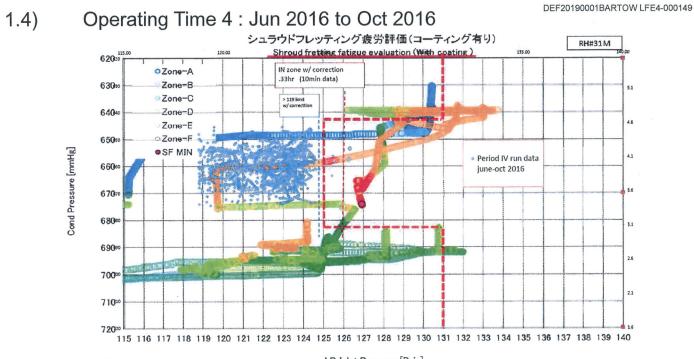
From: To: Cc: Subject: Date: Attachments:	Hazerski Jimes Carlone, Jimra Ji Exclose, Birna Ji Ref: Request Media Documents Teaday, Deember 6, 2015 (J. 15:0 AH ImmedDOL and Bartlow RCA Report Dat Questions 11-18-16 Side 6 Rev1 and Bartow RCA Report Dat Questions 11-18-16 Side 6 Rev1 and
Harry,	
My apologies.	lere is the correct slide.
Regards,	
Jim	
Sent: Monday, D To: Mazurek, Jar Cc: Porteous, Nie	Harry M. [mallio:HaryCarbone@duke-energy.com] ecember 05, 2016 3:34 PM holas: Toms, C Wayne; English, Jacob; Huls, John N; Warren, David E; Holland, Christopher S quested Meeting Documents
Jim the slide bel caused both row	ow you just sent must be in error. The period 4 or IV blades had 3 complete loss of trailing edge z lock lugs. 1 on turbine end and 2 on Gen end. This condition drove replacement of both rows as existed damage is to be unsultable for continued service. Total run time on blades was about 2,958 hrs - harry

From: Mazurek, James [mailto:lames.Mazurek@mpshq.com] Sent: Monday, December 05, 2016 11:19 AM To: Carbone, Harry M.; Torns, C Wayne; English, Jacob Cc: Porteous, Nicholas Subject: Requested Meeting Documents

*** Exercise caution. This is an EXTERNAL email. DO NOT open attachments or click links from unknown senders or unexpected email. *** email. *** Gentemen,

Please find attached the PDFs that are 1) the MHPSA presentation from our 11/9 RCA report out meeting and 2) MHPSA's answers to specific questions that Duke requested answers to in that meeting.

Regards,


Jim Mazurek

CONFIDENTIAL

Mitsubishi Hitachi Power Systems Americas, Inc. www.MHPowerSystems.com

.

This message from Mitsubishi Hitachi Power Systems Americas, Inc. contains confidential or proprietary information. The information contained in this e-mail message is intended for the use of the individual(s) or entity to which it is addressed. If you received this transmission in error, please notify the e-mail sender. Thank you.

Inspection Results :

LP Inlet Pressure [Psig] (Existing IP exit uncalibrated Pressure)

Location	Blades	Service	Mid Span Snubber	Shroud	Disposition
Gen End	Type 3 + HVOF++	4 Months	1 Liberation	3 Shroud Liberations	Replace Row
Gov End	Type 3 + HVOF++	4 Months	No significant damage	1 Shroud Liberation	Replace Row

MITSUBISHI HITACHI POWER SYSTEMS

SL3 This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA.
 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved. 6 Rev1

CONFIDENTIAL

From:
To:
Cc:
Subject:
Date:
Attachments

Mazurek, James Carbone, Harry M.; Toms, C Wayne; English, Jacob Porteous, Nicholas Requested Meeting Documents Monday, December 5, 2016 11:32:02 AM image001.gif image002.gif Bartow RCA Final Review 11-9-16 Final R2.pdf Bartow RCA Report Out Ouestions 11-18-16.pdf

*** Exercise caution. This is an EXTERNAL email. DO NOT open attachments or click links from unknown senders or unexpected email. ***

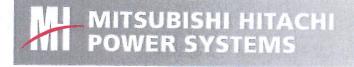
Gentlemen,

Please find attached the PDFs that are 1) the MHPSA presentation from our 11/9 RCA report out meeting and 2) MHPSA's answers to specific questions that Duke requested answers to in that meeting.

Regards,

Jim Mazurek

SERVICE SALES MANAGER Mitsubishi Hitachi Power Systems Americas, Inc.


(407) 562-0729 (Office) (407) 622-9053 (Cell)

Mitsubishi Hitachi Power Systems Americas, Inc. www.MHPowerSystems.com

This message from Mitsubishi Hitachi Power Systems Americas, Inc. contains confidential or proprietary information. The information contained in this e-mail message is intended for the use of the individual(s) or entity to which it is addressed. If you received this transmission in error, please notify the e-mail sender. Thank you.

Bartow Steam Turbine RCA Review Nov 9th 2016

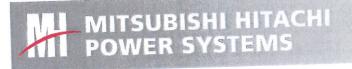
This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written © 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

SL3 1

Agenda

- Goal of the Meeting
- **RCA**
 - **RCA** Action Items
 - **Fleet History**
 - **Blade Metallurgical Evaluation**
 - Manufacturing and Assembly Data
 - **Telemetry Test Data Review**
 - **Operation Data Analysis**
 - **RCA** Conclusion

MITSUBISHI HITACHI POWER SYSTEMS


This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA. © 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

SL3

Goal of the Meeting

Review RCA evaluation of blade damage found in April 2016 and provide root cause of shroud chipping

Note : Blades were Type 3 Blades with mid-span snubber HVOF used in the telemetry test to understand the blade response and operating capability.

This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA.

© 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

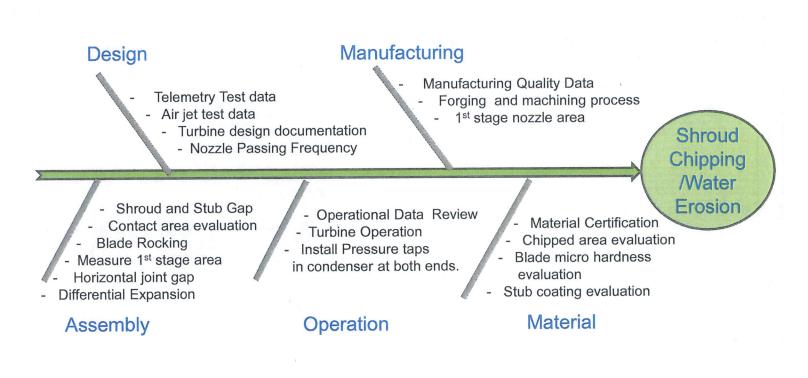
SL3

RCA Team

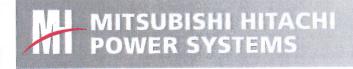
 DEF20190001BARTOW LFE4-000154

Muhammad Riaz	RCA Lead	
Nick Porteous	MHPSA RCA Sponsor + Technical Cor	MHPSA
Ikushima-san	MHPSA Communications Lead	
Ryan Paulson	Inspection	MHPSA
Ruban Amirtharajah	Operating Data Review	MHPSA
Balaji Jayaraj	Metallurgist	MHPSA
Miyajima-san	Lead Analyst	MHPSA
Enomoto-san	MHPS RCA Sponsor	MHPS
Osaki-san	MHPS RCA Lead	MHPS
Jon Hopkins	Blades Scan	MHPS
Jake English	Duke RCA Lead	MHPSA
David Brown	Operations specialist	Duke
Chris Holland	Engineering	Duke
John Burney	Engineering	Duke
Additional Resources		Duke
Harry Carbone	Duke Technical Consutant	
John Huls	Duke ST SME	Duke
		Duke

RCA Team members from Duke Energy, MHPSA USA and MHPS Japan Multiple working meetings were held to work on the RCA Actions


MITSUBISHI HITACHI POWER SYSTEMS

This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written © 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.


SL3

Blade Shroud Chipping RCA – Fish Bone

DEF20190001BARTOW LFE4-000155

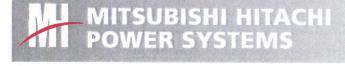
Key Areas of Investigation

This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA.

© 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

SL3

Blade Shroud Chipping RCA


Detailed Actions Tracked (1 of 2) Reviews conducted with RCA Team

DEF20190001BARTOW LFE4-000156

Influence

Low
Medium
High

		Actions	Conclusions		
	1	Independent Review of Bartow 2015 Telemetry Test Stress Analysis and Operating Limits Provided	Telemetry Test Data review completed by team in MHPS in Japan.		
	2	Confirmation of frequency margins identified in Air Test Data, comparing with original design / other air jet tests	All synchronous vibration frequencies are within design range.		
	3	Re-evaluation of the Telemetry Test Data in the light of Bartow Tip Damage	Completed by team in MHPS in Japan.		
5	4	FEA Review of shroud face movement at high load compared to observed damage	FEA Analysis performed by MHPS in Japan.		
Design	5	Confirm MHPS Mass Flow Calculation Method used in evaluating Telemetry Test Data	Mass flow measurements are no more used as evaluation parameter		
- [6	Telemetry Test Data Shroud Fretting Calculation sim too Snubber Calculations	Fretting evaluation completed by MHPS in Japan.		
	7	Revisit Bartow / Tenaska design torsional margins	Torsional design calculations show acceptable design margins		
1	8	Research overall exhaust pressure limits for 40" L-0 compared to this unit	Bartow Exhaust pressures limits are standard limits		
	9	Review Axial Rotor Position relative to asymmetry from Gen/Gov end	Rotor axial position reviewed and recommended to use as is original design.		
	1	Request Forging Material Test Certs for existing installed blades	Material Certs show correct material used and meet design material properties and chemistn		
	2	Request Forging Material Test Certs for replacement blades	Material Certs show correct material used and meet design material properties and chemist		
ling	3	Moment Weights for existing installed blades	Row of blades is balanced with acceptable unbalance residual		
Manufacturing	4	Request Moment Weights Test Certs for replacement blades	Row of blades is balanced with acceptable unbalance residual		
l ut	5	Request Machining Manufacturing Quality Records (Including Box Gap Data + Single Blade Freq Data) New Blades	Data reviewed and blades are with in acceptable criteria		
ĭ ĭ	6	Request Machining Manufacturing Quality Records (Including Box Gap Data + Single Blade Freq Data) Existing Blades	Data reviewed and blades are with in acceptable criteria		
	7	Request Record of as Built Area Nozzle Check	Data not located by Japan.		
	8	Field Measurements of LP 1st Stage Nozzle Area (Throat / Base Dia / Nozzle Height @ both ends)	1st stage nozzle area is within less than 0.5% on both ends.		
	1	On site review of fracture surfaces and wear	Review of rotor, blades and casing on site.		
	2	Characterize Cracking / Chipping on Tip - Fretting Fatigue?			
_ [3	Characterize Cracking / Chipping on Tip Wear Surface - Fretting Fatigue?	Metallurigical Evalaution of blades performed in US and Japan included - Visual Inspection		
	4	Characterize Hardness throughout tip and wear surface	- Material Composition		
viaterual	5	Characterize microstructure throughout tip and wear surface	-Microscopic evaluation		
- [6	Evaluate Wear on Mid Span Snubber	- Hardness evaluation		
	7	MHPS TGO Lab Review - Establish blades to be sent	- SEM evaluation		
	8	TGO Evaluation	- EPMA evaluation		

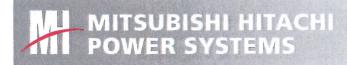
This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA.

© 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

SL3

Blade Shroud Chipping RCA

Detailed Actions Tracked (2 of 2) Reviews conducted with RCA Team

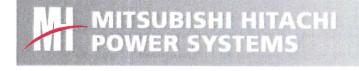

DEF20190001BARTOW LFE4-000157

. .

Influence
Low
Medium
High

		Actions	Conclusions		
	1	On Site 4 Point Check of Snubber and Shroud (as found + as left)	Gap Data recorded and analyzed. Data within tolerance		
	2	Blue / White Light Scan for sample of replacement blades	3 blades (Light/Medium/heavy) were scanned and compared with nominal model after HVOF.		
	3	Geometry overlay and review	No differences identified.		
	4	Blue / White Light Scan for sample of existing installed blades	7 Blades were scanned and compared with nominal model.		
~	5	Geometry overlay and review	No differences identified.		
Assembly	6	Confirm amount of rocking on existing blades / and replacement installed blades	Small rocking was observed on few existing blades. No rocking observed on new blades.		
ssel	7	Measure HJ Gap at Diffuser	HJ gap measured at unit assembly and found to be within tolerance.		
A	8	Review wear profile across single tip during early damage	Wear profile checked with replica and by sectioning and reviewed under microscope.		
	9	Measure shroud contact surface (L,W,Depth at 4 points)	Contact surface data collected		
	10	Wear and Chipping Documented with photos and scale	Pictures taken for all contact surfaces and documented.		
	11	Record water erosion at leading edge and under the shroud	Data recorded and minimum to no erosion observed.		
	12	Stationary blade surface finish review	LO Stationary blade surface finish was checked and no issue is observed.		
	Sec. 1				
	1	Map Operating Data to LP Loading and Summarize	Operation data reviewed		
	2	Install Pressure Taps / and re-evaluate exhaust flow on return to service	Additional pressure taps are installed.		
	3	Operational Data Review of exhaust pressure taps on return to service	Data received and reviewed.		
uo	4	Provide summary of LP Pressure Measurement Location and LP Admission Flow	Locations provided to Bartow		
Operation	5	Start-Up Review for Cold, Warm and Hot Starts.	Data not received from Bartow		
Op	6	Characterization of operation from Log Book	Data not received from Bartow		
	7	Operation review to determine expected moisture and sensitivity to flow and exhaust pressure changes	Asymmetric condenser circulating water flow at both ends		
	8	Provide details or pictures of April 2015 Blade Inspection	Few pictures provided		
	9	Provide report of Dynamic Pressure Study from ~2012 for evaluation	Summary provided- No vibration response was observed.		

Team Meetings focused on methodical execution of actions and opportunity for questions / discuss of details

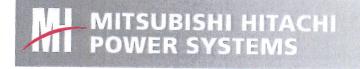

This document contains Company Confidential and Proprietary Information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA.

© 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

SL3

40" Fleet Operating Experience

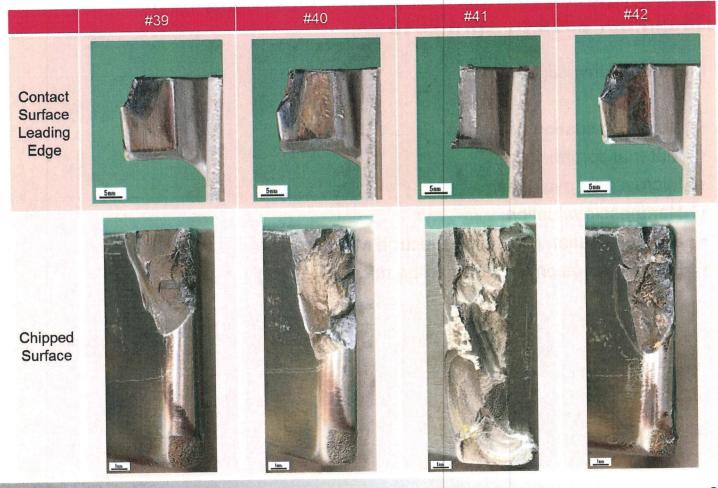
- There are 57 rows of 40" L0 blades operating in the world. 9 Single flows, 22 double flow and 1 four flow LP sections.
- There are 31 rows of type 3 blades (same blades as Bartow except no HVOF coating/ chamfer on midspan snubber). 14 double flows and 3 single flow LP sections.
- Type 3 blades have Stellite material welded under the shroud for water erosion protection.
- Oldest Type 3 blade in operation since 2008.
- Bartow steam turbine have the highest L0 Blade loading amongst the fleet.



This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA. © 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved. SL3

Metallurgical Evaluation of Blades Operating from December 2014 to April 2016

Methods of Investigation :


- Visual Evaluation of Blades
- Material composition
- Microscopic evaluation
- Hardness evaluation
- SEM evaluation (Scanning Electron Microscope)
- EPMA evaluation (Electron probe micro analyzer)

This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA. SL3

Blade Inspection Results

DEF20190001BARTOW LFE4-000160

MITSUBISHI HITACHI POWER SYSTEMS

This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA. © 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

SL3 10

Blade Inspection Results

DEF20190001BARTOW LFE4-000161

Shroud Chipping is starting at same location for all blades

MITSUBISHI HITACHI POWER SYSTEMS

This document contains Company Confidential and Proprietary Information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written subscription of MINDSA. authorization of MHPSA. © 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

SL3

#43 outlet side #44 inlet sinlet sinlet side #44 inlet side #44 in

Fretting fatigue identified as crack initiation source.

MITSUBISHI HITACHI POWER SYSTEMS

Metallurgical Evaluation of Blades

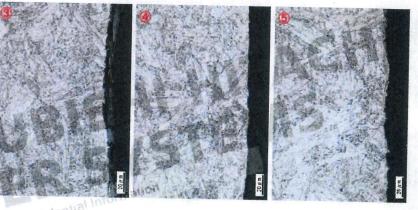
This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written

© 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

SL3

DEF20190001BARTOW LFE4-000162

Metallurgical Evaluation of Blades


DEF20190001BARTOW LFE4-000163

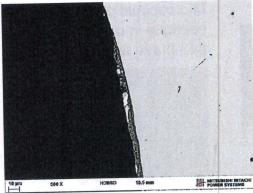
SL3

13

Microscopic observation was performed on the same sections in contact condition for each of outlet side of #43 blade and inlet side of #44 blade.

- ③: Oxide scale was found on black surface of local deformation area.
- ④: Dark brown surface of worn and thinned part is free of oxide scale and smoother than non-contact surface of ⑤.

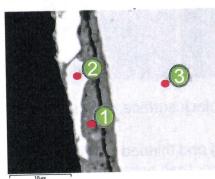

Oxide scale with local deformation observed on black surface


MITSUBISHI HITACHI POWER SYSTEMS

This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA.

© 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

Metallurgical Evaluation of Blades



DEF20190001BARTOW LFE4-000164

1.00 K X 10 pm

POWER SYSTE

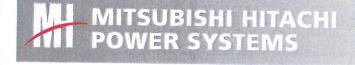
Semi-Qualitative EDS analysis of elements detected (wt%)							
0	Si	Cr	Mn	Fe	Ni	Cu	Nb
25.97	0.44	7.67	0.41	61.59	1.84	1.18	0.00
0	0.35	18.15	0.95	70.12	9.35	0.08	1.00
0		15.86	0.54	73.65	4.91	3.58	1.14
	0 25.97 0 0	O Si 25.97 0.44	O Si Cr 25.97 0.44 7.67 0 0.35 18.15	O Si Cr Mn 25.97 0.44 7.67 0.41 0 0.35 18.15 0.95	O Si Cr Mn Fe 25.97 0.44 7.67 0.41 61.59 0 0.35 18.15 0.95 70.12	O Si Cr Mn Fe Ni 25.97 0.44 7.67 0.41 61.59 1.84 0 0.35 18.15 0.95 70.12 9.35	O Si Cr Mn Fe Ni Cu 25.97 0.44 7.67 0.41 61.59 1.84 1.18 0 0.35 18.15 0.95 70.12 9.35 0.08

- Oxidation/corrosion was observed on the trailing edge contact surface of the tip shroud. \geq
- Material removal from wear is from abrasion.

Material chemistry matched with blade original material

MITSUBISHI HITACHI POWER SYSTEMS

This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA.

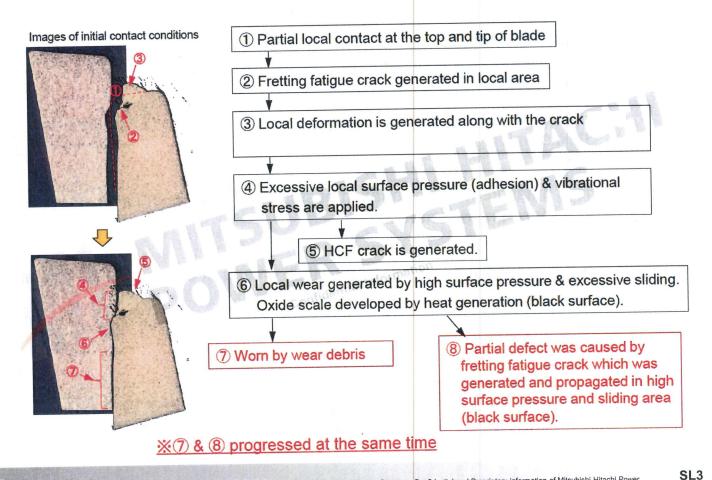

© 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

SL3

Metallurgical Evaluation of Blades - Hardness

- Hardness measurements are taken at the shroud contact surface, fracture surface, base material and below the shroud on 8 blades.
 - The results show hardness close to original materials (Base Material and Stellite welding).
- Hardness measurements also taken at stub contact area and away from contact surface on base material.
 - The results also show Hardness within criteria at the contact surface and away from contact surface.

No hardening is transferred to base material due to HVOF, contact surface rubbing or welding Stellite material.

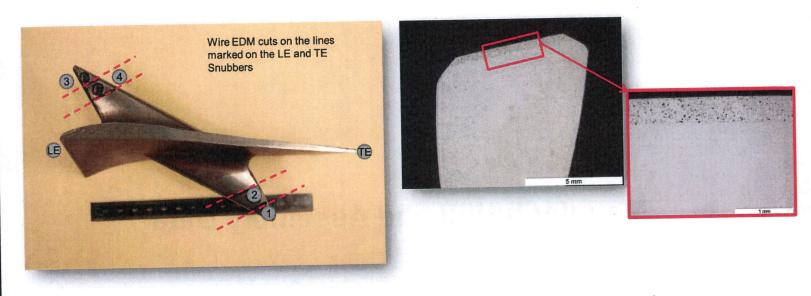


This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA.

© 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

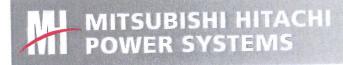
SL3

Damage Mechanism


MITSUBISHI HITACHI POWER SYSTEMS

 This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power
 SL3

 Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA.
 SL3


 © 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.
 16

Stub Evaluation

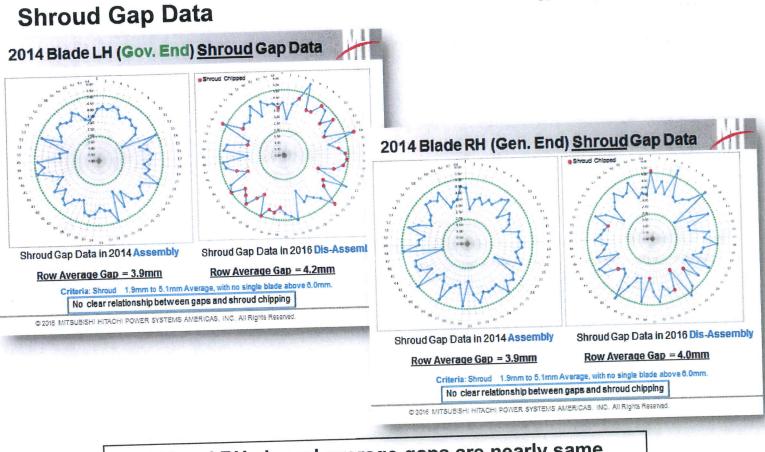
- The contact surface coating did not show any cracks, deformation or wear.
- Uniform thickness was measured on the areas of contact between the LE and TE snubbers.

HVOF coating on the stub prevented fretting or any other surface damage

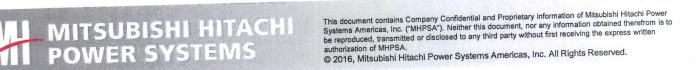
This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA. © 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

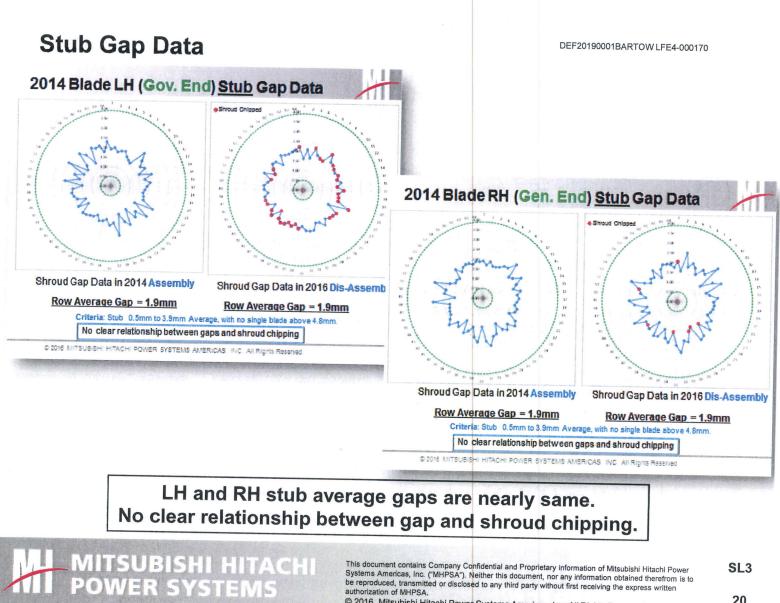
SL3

Manufacturing and Assembly Data


MITSUBISHI HITACHI POWER SYSTEMS

This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA. © 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

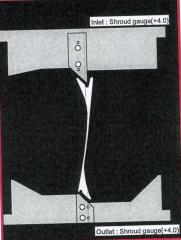

SL3


SL3

19

LH and RH shroud average gaps are nearly same No clear relationship between gap and shroud chipping

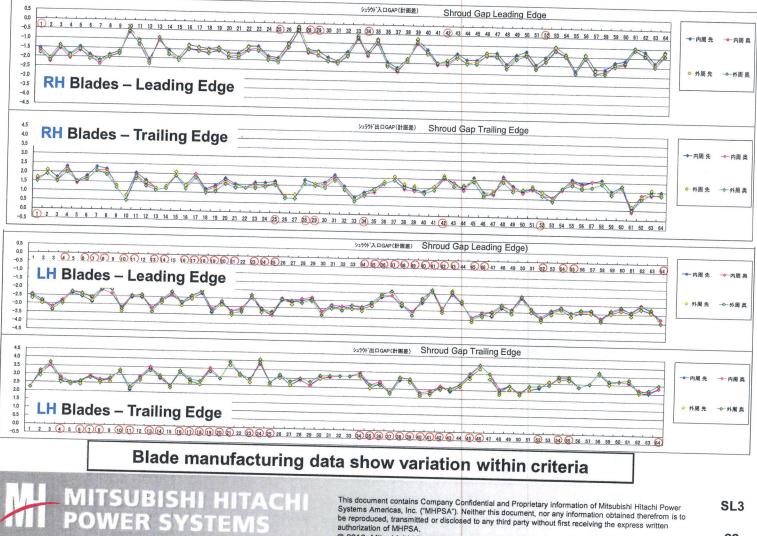
This document contains Company Confidential and Proprietary Information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA.


© 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

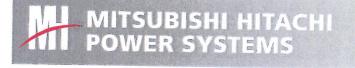
Manufacturing Quality Data - Box Gauge

DEF20190001BARTOW LFE4-000171

SL3


21

MITSUBISHI HITACHI POWER SYSTEMS


This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA. © 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA. © 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved. 22

Telemetry Test Data Analysis

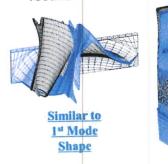
This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA. © 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

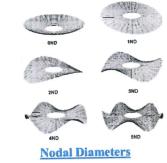

SL3

Telemetry Test Results

Strain Gage Locations

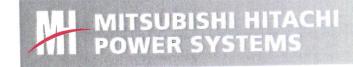
- Six strain gage were installed on LH and RH blades.
- Strain gage locations were selected
 - High Response sensitivity for vibration modes.
 - > MHPS Experience


電


nic strain gauge(Tip)

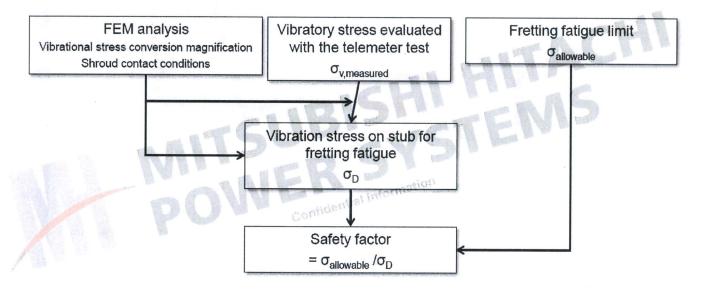
Dynamic strain gauge(Mean)

Test Results


- Analysis of Non-synchronous response show . frequencies close to 200Hz region and composed of axial mode shape with higher nodal diameter.
- Fretting at stubs was evaluated with the telemeter test . results.

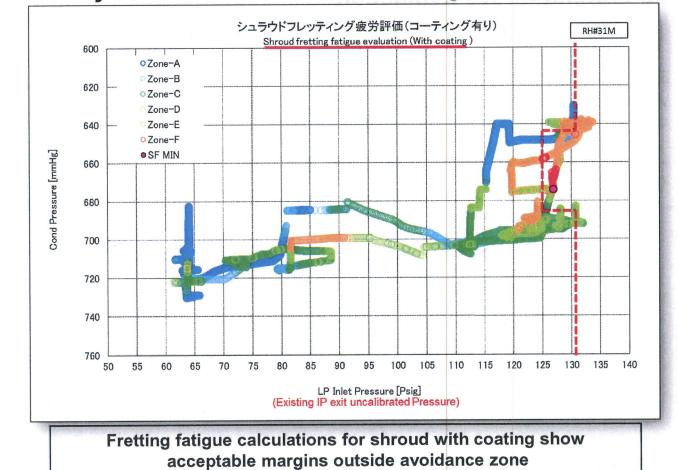
24

Telemetry Testing 2014 -To understand dynamic blade response during operation



This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA. SL3

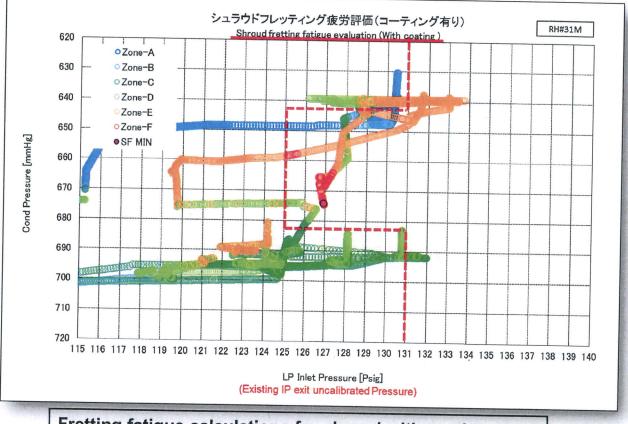
© 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.


Shroud Fretting Stress Evaluation

- · Evaluation method is the same as stub fretting evaluation.
- · Vibrational stress is evaluated, with FEM analysis, primarily for effect of shroud contact condition (partial contact) based on actual telemeter measurement result of 2014.

MITSUBISHI HITACHI POWER SYSTEMS

SL3 This document contains Company Confidential and Proprietary Information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written © 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved. 25


Telemetry Test Results – Shroud Fretting

SL3

MITSUBISHI HITACHI POWER SYSTEMS This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA.

DEF20190001BARTOW LFE4-000176

© 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

Telemetry Test Data – Shroud Fretting

Fretting fatigue calculations for shroud with coating show acceptable margins outside avoidance zone

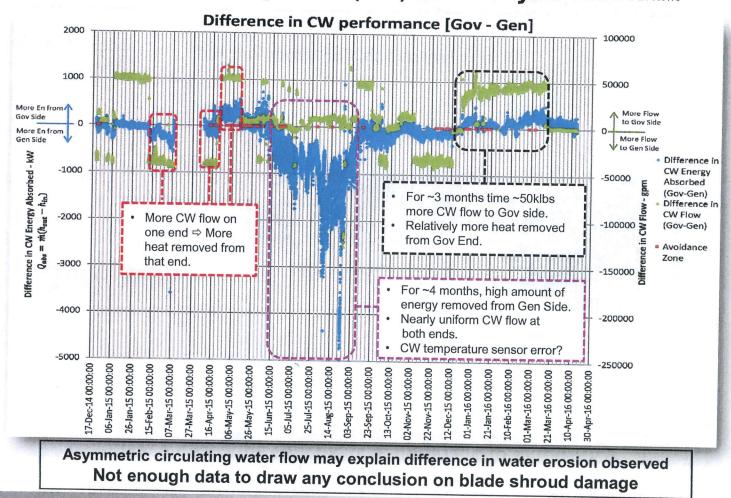
MITSUBISHI HITACHI POWER SYSTEMS

This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA.

© 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

SL3

27

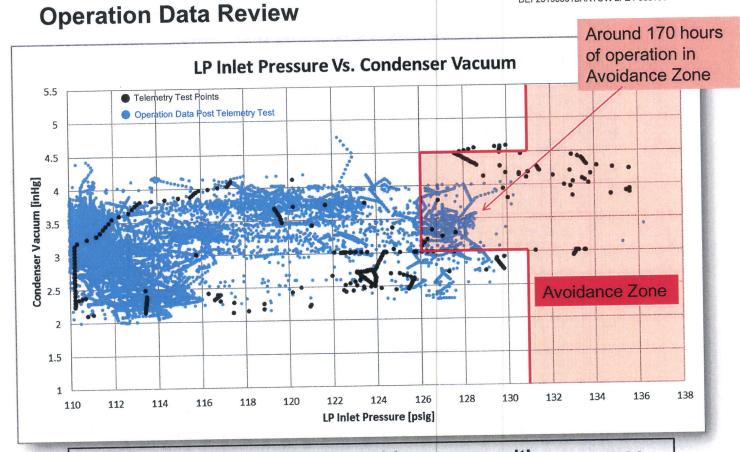

DEF20190001BARTOW LFE4-000177

Operation Data Analysis

MITSUBISHI HITACHI POWER SYSTEMS

This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA. © 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

SL3



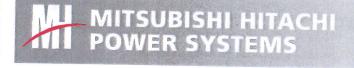
Condenser Circulating Water (CW) flow analysis 90001BARTOW LFE4-000179

MITSUBISHI HITACHI POWER SYSTEMS

This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to SL3 be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA.

© 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

170+ hours of operation in avoidance zone with a response frequency ~200Hz = 1.2E8 Cycles

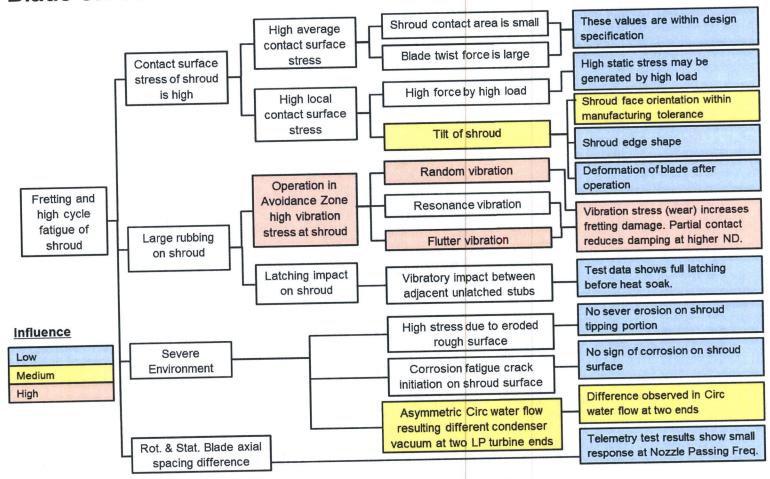

MITSUBISHI HITACHI POWER SYSTEMS

This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA. © 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

DEF20190001BARTOW LFE4-000180

SL3

RCA Conclusions

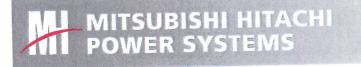


This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. (MHPSA*). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA.

SL3

Blade Shroud Cause and Effect Diagram

DEF20190001BARTOW LFE4-000182

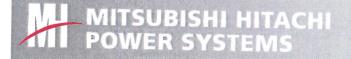

MITSUBISHI HITACHI POWER SYSTEMS

This document contains Company Confidential and Proprietary Information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written subscience of MLPSA. SL3 authorization of MHPSA.

© 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

RCA Conclusion

- The root cause for start of shroud chipping has been identified as operation in the avoidance zone.
- Within the avoidance zone, high local contact pressure is developed due to partial contact.
- After initial chipping, nearly uniform wear of contact surface indicate progression of chipping due to operation at resonance (avoidance zone).
- Stellite coating on stub has proven its effective at protecting surfaces from fretting damage.

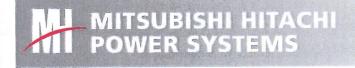


This document contains Company Confidential and Proprietary Information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA. © 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

SL3

Bartow Steam Turbine RCA Review Addendum Presentation Nov 17th 2016

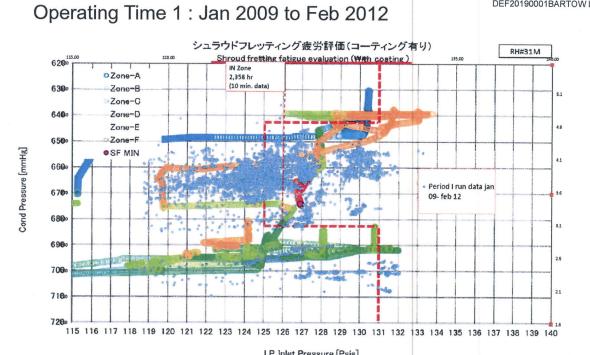
This document contains Company Confidential and Proprietary Information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written © 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.


SL3

Purpose of Presentation

Provide responses to open items / questions during the Nov 9th RCA Report Out Meeting

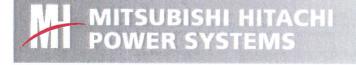
Subjects :


- 1) Demonstrate that operating data from 2009 to 2014 is consistent with the RCA conclusions.
- 2) Provide hardness results not presented in Nov 9th.
- 3) Provide parallelism data not presented in Nov 9th.
- 4) Provide responses to prior questions from Harry Carbone.

This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA.

© 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

SL3 2



Inspection Results :

1.1)

LP inlet Pressure [Psig]							
(Existing	P	exit	uncalibrated	Pressure)			

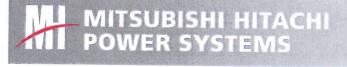
Location	Blades	Service	Mid Span Snubber	Shroud	Disposition
Gen End	Type 1	3 yrs	No significant damage	No significant damage	Continue operation until 2014 planned replacement
Gov End	Туре 1	3 yrs	5 Major Chip	3 minor chips	Replace blades as continues midspan chipping could results in a free standing blade

 This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power
 SL3

 Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA.
 SL3

 © 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.
 3

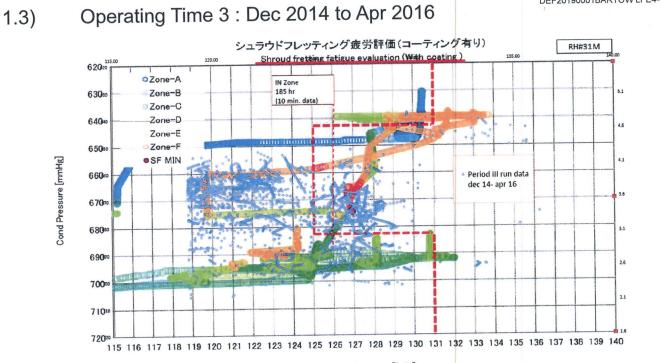
DEF20190001BARTOW LFE4-000186


Operating Time 2 : Apr 2012 to Nov 2014

Inspection Results :

1

LP Inlet Pressure [Psig] (Existing IP exit uncalibrated Pressure)


Location	Blades	Service	Mid Span Snubber	Shroud	Disposition
Gen End	Type 1	5 yrs	No significant damage	12 minor chips	Scheduled change out to blades with midspan HVOF
Gov End	Type 1	2 yrs	No significant damage	3 minor chips	Scheduled change out to blades with midspan HVOF

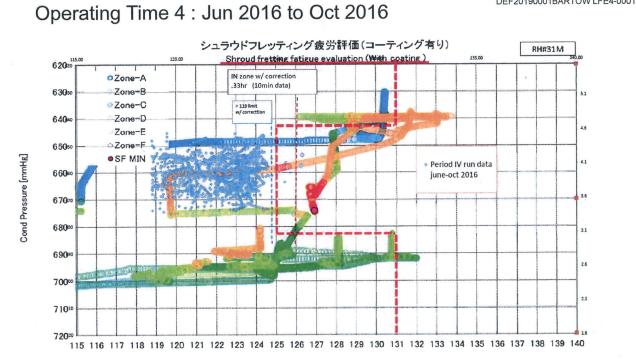
This document contains Company Confidential and Proprietary Information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA. © 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

.

DEF20190001BARTOW LFE4-000187

Inspection Results :

LP Inlet Pressure [Psig] (Existing IP exit uncalibrated Pressure)


Location	Blades	Service	Mid Span Snubber	Shroud	Disposition
Gen End	Type 3 + HVOF	15 Months	No significant damage	7 minor chips	Fit for continued operation. Shroud contact on all blades.
Gov End	Type 3 + HVOF	15 Months	No significant damage	33 chips including significant damage	Replace row as free shroud contact has bee lost on 1 blade.

MITSUBISHI HITACHI POWER SYSTEMS

This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA. SL3 5

DEF20190001BARTOW LFE4-000188

© 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

Inspection Results :

LP Inlet Pressure [Psig] (Existing iP exit uncalibrated Pressure)

Location	Blades	Service	Mid Span Snubber	Shroud	Disposition
Gen End	Type 3 + HVOF++	4 Months	No significant damage	7 minor chips	Fit for continued operation. Shroud contact on all blades.
Gov End	Type 3 + HVOF++	4 Months	No significant damage	33 significant damage	Replace row as free shroud contact has bee lost on 1 blade.

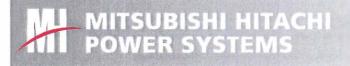
MITSUBISHI HITACHI POWER SYSTEMS

This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA. © 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved. SL3 6

DEF20190001BARTOW LFE4-000189

1.4)

Conclusions of LP Blade Loading Review


- Telemetry test results show that once in the avoidance zone, small changes in operating conditions can produce a large change blade response magnitude.
- Damage accumulates at 200Hz (720,000 cycles every hour)

1.1) Operating Time 1 : Jan 2009 to Feb 2012 Significant operation in the avoidance zone. Significant damage observed on the blades.

1.2) Operating Time 2 : Apr 2012 to Nov 2014 Minimal operation in the avoidance zone. Minor chipping observed.

1.3) Operating Time 3 : Dec 2014 to Apr 2016 Significant operation in the avoidance zone. Significant damage observed on the blades.

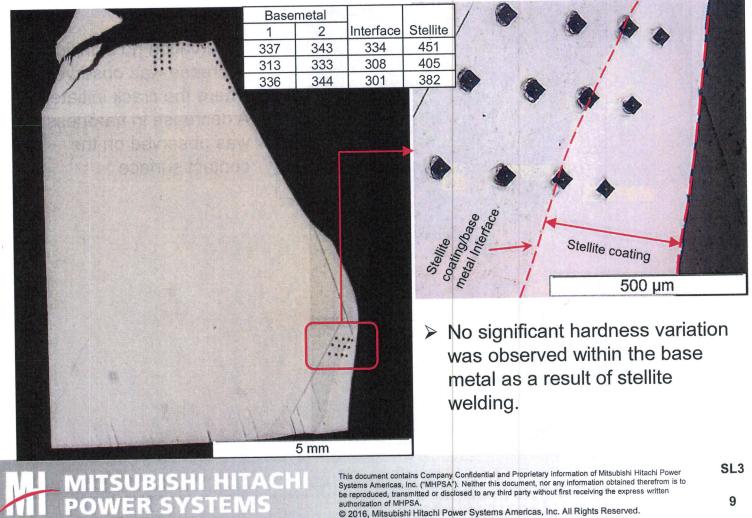
1.4) Operating Time 4 : Jun 2016 to Oct 2016
 RCA evaluation has not been completed.
 Operating data has not bee provided beyond, only summaries of MW and LP Pressure vs Time.

This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA. © 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved. SL3

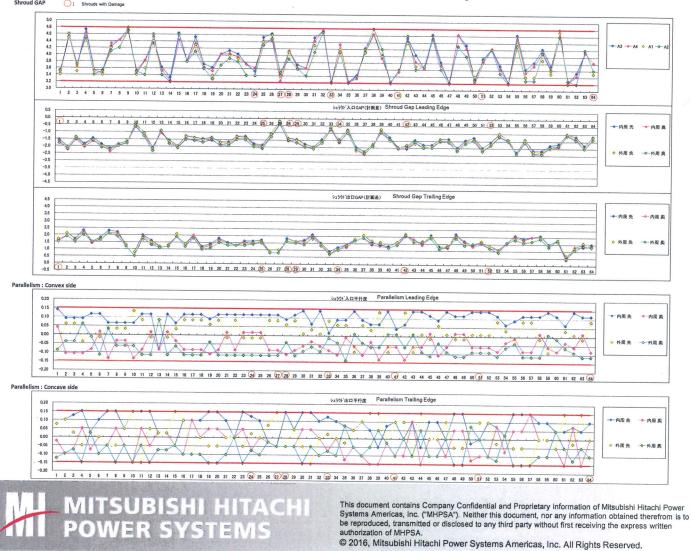
316 315 315 313 319 325 Measurement plane From hardness 302 319 311 321 contact surface. Avg Average 298 307 Average 5 mm

2 - Hardness Variation – Presented

DEF20190001BARTOW LFE4-000191

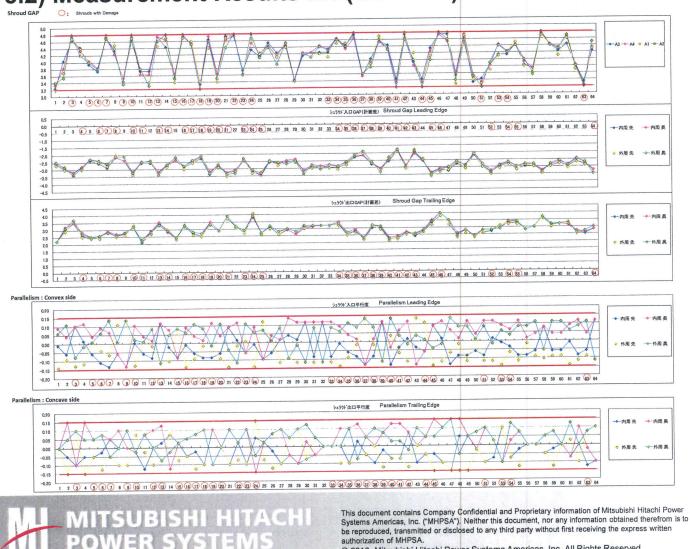

observation no significant decrease was observed where the crack initiated. A decrease in hardness was observed on the

MITSUBISHI HITACHI POWER SYSTEMS


This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written © 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

SL3

2- Hardness Variation basemetal, Interface and Stellite Coating



© 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

3.1) Measurement Results RH (Gen End) 2014 blades

SL3

© 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved.

3.2) Measurement Results LH (Gov End) 2014 blades ARTOW LFE4-000194

SL3

Duke Questions (From 10/26/16 Meeting):

DEF20190001BARTOW LFE4-000195

Current draft of time line of blade outages 1.

Updated Vibration change dates To understand the 2

Operating data from the operating from June 2016 to October 2016 has been requested on multiple occasions since the change in vibration was brought to the attention of

To understand the operation of the unit, this information is required to provide an objective data driven assessment of the operation.

3. The mw correction factors issue

Conflicting information is being given. It is no longer clear whether during the telemetry test there was an offset MW. The operating data requested is required to understand the relationship between steam conditions and load.

4 New LP inlet pressure gage 3.7 psi zero offset error

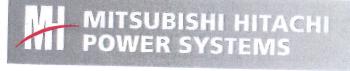
Following the finding that the IP Exhaust Pressure Tap had not been calibrated with its water leg, the same issue has now occurred on the new LP Admission. There is currently a lack of clarity on the calibration of the pressure taps which is critical to understanding the steam loading seen by the blades which can hopefully be

5. Chart of blade options

An updated chart is attached.

6 Duke requested strain gage data

Results of the telemetry test have been shared during the RCA meetings. Face to face meetings were held in May 2016 specifically for the purpose of being able to openly share information which would normally not be available to share due to being business confidential information. During these reviews the nature of the none synchronous response was described identifying that the blade response is not being excited by single modes. A single stresses cannot be evaluated against a single allowable in a Goodman diagram, but a range of modes is being excited within a frequency range. The magnitude of blade response is integrated over a frequency range to determine an overall response level compared to successfully validated response levels. This is not data which can be sent directly as a file to Duke Bartow.


7. Confirm material is 17-4

Similar too material designations are provided for reference only and do not support reverse engineering of the blade design which is subject to multi-year development programs and continuous improvement by the MHPS-Japan development team. Hardness was reviewed in detail during the face to face RCA meetings.

The RCA reports are intended to be presented in person to ensure that they are correctly interpreted due to the complex nature of the RCA investigation.

8 Supply Goodman Diagram

OEM Last Stage Blade materials are not per industry standards, with the material development being critical to achieving competitive designs. The Goodman Diagrams for

This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power SL3 Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written © 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved. 12

Summary of Blade Types

	Base material	Brazed in Stellite Leading edge erosion	Spray Stellite under Z notch Leading edge	Under 2 noten	Polish off shot peening after welding	Spray Stellite .3 mm on snubber contact faces	Spray Stellite .3mm on Z notch contact faces	Chamfer 1x 0.5 mm & 2 mm radius on snubber	Corner cut on Z notch ~ 3mm x 3mm	
		strip		Leading edge	n/a	No	No	No	No	
Type 1		Yes	Not Applicable e 2 is a welded field mo	No		while awaiting replacer	netn blades. No Type 2	Blades are operating i	n the fleet.	
Type 2		Note : Typ				No	No	No	Yes	
Type 3		Yes	Not Applicable	Yes	No Note : No blade tr	pe - "Newer Type 3"				
Nower Type 3				Carlos Galler Salter	Note : No blade ty			Yes	Yes	
Installed 2014	Proprietary Sim to 17-4 PH	Yes	Not Applicable	Yes	No	Yes	Yes	163		
(Typ3 + HVOF))	Proprietary HT		Yes Not Applicable			Yes	Yes	Yes	Yes	
Installed 2016 spring		Yes		Yes	No	Yes	163			
(Typ3 + HVOF)					- /-	No	No	Yes	Yes	
Proposed now		Yes Not Applicable	No	n/a	I III					
Fall '16(Typ1)										

MITSUBISHI HITACHI POWER SYSTEMS

This document contains Company Confidential and Proprietary information of Mitsubishi Hitachi Power Systems Americas, Inc. ("MHPSA"). Neither this document, nor any information obtained therefrom is to be reproduced, transmitted or disclosed to any third party without first receiving the express written authorization of MHPSA. © 2016, Mitsubishi Hitachi Power Systems Americas, Inc. All Rights Reserved. SL3