EXHIBIT D

Testing for Parity in in the Quality of Services 

Provided by ILECs to CLECs: A Comparison of 

Large Sample Procedures

We wish to address the problem of determining whether the ILEC provides the same quality of service to a given CLEC that it provides to itself. On the surface, this appears to be a simple problem in means difference testing, a procedure which is well documented in elementary statistics texts. But on closer inspection, it is clear that testing for parity is an inherently different problem than the one addressed in these texts.  In the case of a particular service quality measure (SQM), the standard textbook treatment considers only a test of the null hypothesis that the SQM mean for the ILEC equals the SQM mean for the CLEC.  However, parity requires not only that the CLEC and ILEC means be equal but also that their variances be equal.  Intuitively, the CLEC would be put at a competitive disadvantage even with the same average level of service provision as the ILEC, if in addition, the CLEC’s service was more dispersed (more uneven) than the ILEC’s.  While the FCC recognizes these dual requirements ( see Dr. Colin Mallows affidavit before the FCC, p.9 and attachments), many analysts overlook the second null --  that the CLEC and ILEC variances also be equal. It is this omission that leads to controversy over which large sample means diffrernce testing procedure is appropriate. 

In the subsequent discussion, we make use of the following definitions.  The sample mean based on n ILEC  observations of the ILEC’s retail service is
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and ILEC sample variance 
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Similarly the sample mean, based on n CLEC observations of the ILEC’s resale (to the CLEC) service is 
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and sample variance is 
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In what follows, we will first consider the statistical foundations of means difference testing and then discuss the derivation the “parent statistic” on which the various alternative tests are based.  Next we will present each of the alternative approaches and discuss their idiosyncrasies. Finally, we will compare the pooled variance approach with the LCUG Z approach both analytically and via a numerical illustration using actual data on order receipt to completion in minutes.

Statistical Underpinnings of Means Difference Testing 


The Central Limit Theorem (CLT) presents what is perhaps the most powerful result of inferential statistics. Basically, it states that the distribution of sample means is approximately normal with mean equal to the population mean and variance equal to the population variance divided by the sample size. While these results hold for "large" sample sizes (and nobody knows how large is "large"), it also holds regardless of the distribution of the parent population from which the sample is drawn. For example, if we  are analyzing receipt to clear order times, this means that we do not need to know what the distribution of times required to execute an order looks like for the ILEC, nor do we need to know what the corresponding CLEC's distribution looks like. All we need to know is that we have computed means from random samples of each of these two distributions. The theorem guarantees us that each mean is drawn from an approximately normal distribution whose (true, but unknown) mean is the mean of the corresponding population (() and whose (true, but unknown) variance is the variance of the corresponding population divided by the relevant sample size ((2/
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), assuming that each of our samples is large enough.
 Put another way, the theorem tells us that 
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 follows an approximately normal distribution with mean ( ILEC and variance (2ILEC/nILEC , and similarly that 
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 follows an approximately normal distribution with mean (CLEC and variance (2CLEC/nCLEC – the approximations will be close assuming that nILEC and nCLEC , respectively, are sufficiently large.


A second step in understanding the basis of the LCUG-Z lies in a result from statistical distribution theory. Specifically, it can be shown that if we create a new random variable by taking the difference between two independent normally distributed random variables, that new random variable will also be normally distributed with mean equal to the difference between the means of the two normal random variables and variance equal to the sum of their variances. Thus, since 
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) follows a normal distribution with mean ((ILEC - (CLEC) and variance [((2ILEC/nILEC) + ((2CLEC/nCLEC)]. 


Finally, it is known that any normally distributed random variable can be converted into one following a standard normal (a normal distribution whose mean is zero and whose variance is one), by subtracting out its mean and dividing through by its standard deviation. Performing this standardization operation on the above means-differenced random variable leads to 
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which is the random variable upon which standard means difference testing is based.

A “Parent  Statistic” for Testing the Parity Hypotheses


Equation (1) can be used to construct a general statistic from which several specific statistics to test parity in service provision can be derived.  Recall that the parity question requires a test of the joint null hypothesis 

H0: (ILEC = (CLEC  and  (2ILEC = (2CLEC

Substituting these constraints into equation (1), we have
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where ( is the square root of the common variance (2 (=(2ILEC = (2CLEC).  Next we note that the random variable ((S2/(2) follows a (2 distribution with ( degrees of freedom.  Taking the square root of this expression divided by its degrees if freedom and dividing the result into (2), yields

[image: image17.wmf]Z

X

X

n

n

CLEC

ILEC

CLEC

ILEC

=

-

+

s

(

)

1

1





              (3)

the "parent statistic" we desire.  Technically, this statistic follows a Student's t distribution whose degrees of freedom (() are inherited from S.  However, since the statistic is valid only for large samples and since the distinction between the t distribution and the standard normal (Z) vanishes with increased sample size, equation (3) is sometimes termed a Z statistic.  We will follow this convention.


We refer to equation (3) as a "parent statistic" because it can give rise to many forms, depending on how one chooses to estimate S.  Two of these forms, one using a pooled variance estimator (Zpooled) and one using the ILEC variance estimator (ZLCUG), are particularly relevant to the problem of testing for parity. Before defining and comparing these two statistics, however, it is important to note that one commonly used form of  (3) is not suitable for parity testing.


Often, one sees a version of (3) which amounts to substituting the sample variances, S2LIEC and S2CLEC, for their corresponding parameters in (1).  This statistic is used to test means differences when the population variances are unequal.  It follows a t distribution and requires a degrees of freedom adjustment to be accurate.  Since parity requires the variances to be equal and since this statistic would be appropriate only when (2ILEC ( (2CLEC, it is particularly ill suited to testing for parity.  Alternatively, the two variants of (3) discussed below are both well suited to parity testing, however, one provides a more powerful test of the parity hypothesis than the other.

The Traditional Approach Using a Pooled Variance Estimator

Since our objective is to find an appropriate estimate S2 of the common variance (2 to be used in (3), an obvious procedure is to simply take a weighted average of the CLEC and ILEC variance estimates.  If we take the weights to be the percent of the total degrees of freedom attributable to each carrier, we obtain the traditional pooled variance estimator
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where the CLEC weight  is [(nCLEC-1)/(nCLEC+nILEC-2)], the ILEC weight is [(nILEC-1)/(nCLEC+nILEC-2)], and the total degrees of freedom is (nCLEC+nILEC-2).  It is worth noting that since the weights are normalized, i.e., they sum to one, the value of S2pooled will always lie between the values of S2CLEC and S2ILEC.  Substituting Sp (=
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which we shall refer to as the pooled Z.  It follows a standard normal distribution for large samples.  [Technically, it follows a t distribution with (nCLEC+nILEC-2) degrees of freedom, but for sample sizes in excess of thirty, it can be treated as standard normal for practical purposes.]  This statistic is the one typically used for testing null hypotheses of the form H0: (1 = (2.
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The Local Competition Users Group (LCUG) Approach Using the ILEC Variance
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An alternative to the traditional approach of using Zpooled was proposed by LCUG in February 1998; the LCUG document describing the test in detail is attached.  This approach amounts to substituting the estimated ILEC standard deviation SILEC (=
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) for S in (3).  At first glance this approach might seem overly simplistic, but it turns out to have substantial intuitive appeal, and it produces a statistically more powerful test of the parity hypothesis than the traditional approach -- as will be demonstrated below.  The test statistic, which we shall term the LCUG Z (or ZLCUG), can be seen to be

[image: image20.wmf]Z

X

X

S

n

n

pooled

CLEC

ILEC

p

CLEC

ILEC

=

-

+

(

)

1

1


                                (5)

Again, from a technical standpoint, this statistic follows a t distribution with (nILEC-1) degrees of freedom.  But since it is only asymptotically valid, we treat it as a standard normal and hence the term LCUG Z.  While this statistic is clearly useful for testing means difference hypotheses, it is also sensitive to departures from parity caused by the CLEC variance exceeding the ILEC variance.  

A Comparison of the Two Approaches as Tests for Parity in Service Provision 
Under the 1996 Telecommunication Act each CLEC is entitled to interconnection with each ILEC that is at least equal to that which the ILEC provides for itself.  As we have argued, this means that parity requires both equality of means and equality of variances for each SQM.  While both Zpooled and ZLCUG have power to detect violations in the form of means differences (since both statistics have the same numerator), the LCUG Z is a more powerful test of parity since it also incorporates an indirect test of equality of variances. 

To see this, first note that the traditional method requires two tests to establish parity or lack thereof. A test of H0:(CLEC = (ILEC using Zpooled must be coupled with a test of H0:(CLEC =(ILEC.  This second test typically employs an F statistic computed as the ratio of the CLEC and ILEC variance estimates.  Parity requires that neither null be rejected.  It is important to note that the necessity of using two tests to investigate parity reduces the power of each test.  Thus we would prefer a single test that can detect violations of parity due to both differences in means and differences in variances.  The LCUG Z provides such a test statistic.

From the standpoint of comparing variances, the fact that the ILEC is required to provide the CLEC with at least the same service level means that the ILEC variance is the relevant standard of comparison.  If the CLEC variance exceeds the ILEC variance, then parity in service provision cannot be accepted.  Moreover, since the ILEC samples are typically quite large (many times, in the hundreds of thousands), they may be expected to provide very accurate estimates of the variances in the relevant ILEC performance measures.

For a given means difference, a more powerful test of parity would be more likely to reject the null if (2CLEC > (2ILEC and less likely to reject if (2CLEC < (2ILEC.  For a given level of significance and critical value, say (=.05 for a one tailed test so that the critical value of Z is 1.645, Zpooled , in comparison with ZLCUG, does exactly the opposite.  If (2CLEC > (2ILEC we would expect S2CLEC > S2ILEC so that S2p>S2ILEC and hence(ZLCUG(>(Zpooled(.  Thus when parity is not present, ZLCUG would be more likely to reject the null than Zpooled.  On the other hand, if (2CLEC < (2ILEC we would expect S2CLEC < S2ILEC so that S2p<S2ILEC and hence(ZLCUG(<(Zpooled(.  Thus when parity is present, ZLCUG would be less likely to reject the null than Zpooled.  Of course, when equality holds the two approaches produce identical results.  It should now be clear why the LCUG Z provides a more powerful test of the parity hypothesis.

While the LCUG Z has a clear theoretical advantage over the traditional approach, the two approaches will typically provide very similar statistical results in practice.  This is because both procedures are only valid for large samples, and in practice, when CLEC samples are large, ILEC samples are very large.  For example, it is not uncommon for ILEC samples to be 1000 times as large as CLEC samples.  In this case the weight attached to S2CLEC in computing S2p is roughly (1/1000)th of that attached to S2ILEC.  Thus, for all practical purposes, S2p(S2ILEC so that Zpooled ( ZILEC.  But please be clear, ZLCUG is the statistic that should be used in such cases because of its theoretical superiority.  We illustrate these observations below using real world data. The illustration also points out a potential problem caused by outliers in the data that could turn out to be considerably more pernicious than the question of which Z statistic to use.

The following illustration compares the pooled variance Z and the LCUG Z using the Pacific data on receipt to clear in minutes.  The following are the results for one CLEC with 131 observations:

N CLEC = 131  Xbar CLEC = 1232.69
S.D. CLEC = 1571.34
  Zpooled =1.6200

N ILEC = 167533   Xbar ILEC = 1690.85
S.D. ILEC = 3236.67
 ZLCUG =1.6195

Interestingly,  there were several extreme observations in the ILEC data.  In fact, five observations exceeded 160000 minutes (about 3 mo.).  Eliminating these five observations yields markedly different results:

N CLEC = 131  Xbar CLEC = 1232.69
S.D. CLEC = 1571.34
  Zpooled =2.1594

N ILEC = 167528  Xbar ILEC = 1679.31
S.D. ILEC = 2366.79
  ZLCUG =2.15896

These results suggest that, as a practical matter, for ILEC/ CLEC samples of this relative magnitude, it does not make much difference whether the pooled or LCUG Z is used, as a practical matter.  Since the LCUG Z is theoretically superior for parity testing, it should be used.  

A second implication of these results is quite striking: by eliminating .003% of the ILEC sample (the 5 outliers), we convert an implication of parity (( = .05, one tailed test) to a clear indication of non-parity.  This result certainly highlights the need to cull the data for outliers.

What About Small Samples?


The testing procedures that we have discussed thus far are appropriate if only both CLEC and ILEC samples are "large".   What is to be done if the CLEC sample is less than, say thirty, as is commonly the case?  When this small sample problem arises, the Central Limit Theorem is not applicable so that we cannot be sure that either Zpooled or ZLCUG follow a standard normal distribution.  In this case, we recommend the use of permutation tests.  Precisely what permutation tests are, how they solve the small sample problem, and how they should be conducted (along with general computer programs designed to implement them in conducting parity tests) are questions that are answered (and information provided) in an attached document. 
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� Be clear. the distribution that the CLT refers to is the distribution of sample means -- not order times. That is, we could draw one sample of ILEC order times and compute its mean, we could draw another sample and compute its -- undoubtedly different-- mean, we could draw a third sample .... These means that we could compute follow a statistical distribution, and it is this distribution that the CLT shows to be asymptotically normal.
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