ORIGINAL

1701 Pennsylvania Avenue, NW Suite 300 Washington, D.C. 20006 202.662.2700 Phone 202.662.2739 Fax andrewskurth.com

Gloria J. Halstead (202) 662.3034 Direct (202) 662.2739 Fax gloriahalstead@andrewskurth.com

June 24, 2005

VIA FEDEX

ANDREWS ATTORNEYS KURTHLLP

4

Blanca Bayo, Director Division of the Commission Clerk and Administrative Services Florida Public Service Commission 2540 Shumard Oak Boulevard Tallahassee, Florida 32399-0850

Re: *Petition for Rate Increase by Florida Power & Light Company in Docket No.* 050045-EI

Dear Madame:

Please find enclosed an original plus twenty-five (25) copies of the Direct Testimony and Exhibits for each of the following witnesses on behalf of South Florida Hospital and Healthcare Association in Docket No. 050045-EI: Stephen J. Baron, Richard A. Baudino, and Lane Kollen. Also enclosed are a cd rom of the three sets of testimony and exhibits as well as a Certificate of Service.

In the event that you have any questions, please do not hesitate to call me.

Sincerely yours,

Alaria J. Halstead

Gloria J. Halstead

CMP COM	5
CTR	Org
ECR	Enclosures
GCL	
OPC	
MMS	- Marine - All and and a
RCA	and the second
SCR	Versil No. 2. A. T. Proc. Appendix solution
SEC	
OTH	

WAS:113499.1

Usuaton

DOCUMENT NUMPER D/TT

06055 JUN 27 8

CERTIFICATE OF SERVICE

I, Gloria J. Halstead, an attorney for South Florida Hospital and Healthcare Association ("SFHHA"), hereby certify that a true and correct copy of The Direct Testimony and Exhibits of each of the following SFHHA witnesses: Stephen J. Baron, Richard A. Baudino and Lane Kollen, was served on all parties of record in this proceeding on this 27th day of June, 2005 by Federal Express.

Florida Industrial Power Users Group John W. McWhirter, Jr. c/o McWhirter Reeves 400 North Tampa Street, Suite 2450 Tampa, FL 33601-3350

AARP c/o Mike B. Twomey 8903 Crawfordville Road Tallahassee, FL 32305

Florida Power & Light Company R. Wade Litchfield/Natalie F. Smith 700 Universe Blvd. Juno Beach, FL 33408-0420

McWhirter Law Firm Timothy J. Perry 117 South Gadsden Street Tallahassee, FL 32301 Florida Power & Light Company Mr. Bill Walker 215 South Monroe Street, Suite 810 Tallahassee, FL 32301-1859

Commercial Group David Brown c/o McKenna Law Firm One Peachtree Center 303 Peachtree Street, N.E., Suite 5300 Atlanta, GA 30308

Federal Executive Agencies Major Craig Paulson c/o AFCESA/ULT 139 Barnes Drive Tyndall Air Force Base, FL 32403

Bruce May Holland & Knight Law Firm 315 South Calhourn Street, Suite 600 Tallahassee, FL 32302-0810 Office of Public Counsel H.McLean/C.Beck/J.McGlothlin c/o The Florida Legislature 111 W. Madison Street, Room 812 Tallahassee, FL 32399-1400

.

.

Miami-Dade County Public Schools c/o Jaime Torrens 1450 N.E. 2nd Avenue Miami, FL 33132

Thomas P. & Genevieve E. Twomey 3984 Grand Meadows Blvd. Melbourne, FL 32934

Lane Lollen Steve Baron J. Kennedy Associates 570 Colonial Park Drive Suite 305 Roswell, GA 30075 Landers Law Firm Scheffel Wright/John LaVia 310 West College Avenue Tallahassee, FL 32302

Florida Retail Federation 100 E. Jefferson Street Tallahassee, FL 32301

Wm Cochran Keating, IV Esquire Katherine E. Flemming, Esquire Jeremy Susac, Esquire Florida Public Service Commission Division of Legal Services Gerald L. Gunter Building 2540 Shumard Oak Blvd. Tallahasee, FL 32399-0850

George E. Humphrey Andrews & Kurth, LLP 600 Travis, Suite 4200 Houston, Texas 77002-3092

Heira Halster

Gloria J. Halstead

BEFORE THE

FLORIDA PUBLIC SERVICE COMMISSION

IN RE: PETITION FOR RATE INCREASE BY) DOCKET NO. 050045-EI FLORIDA POWER & LIGHT COMPANY)

DIRECT TESTIMONY

AND EXHIBITS

OF

STEPHEN J. BARON

ON BEHALF OF THE

SOUTH FLORIDA HOSPITAL AND HEALTHCARE ASSOCIATION

J. KENNEDY AND ASSOCIATES, INC. ROSWELL, GEORGIA

June 2005

06055 JUN 21 8

FPSC-COMMISSION CLERN

BEFORE THE

FLORIDA PUBLIC SERVICE COMMISSION

IN RE: PETITION FOR RATE INRCEASE BY) DOCKET NO. 050045-EI FLORIDA POWER & LIGHT COMPANY)

TABLE OF CONTENTS

I.	QUALIFICATIONS AND SUMMARY 1
II.	ALLOCATION OF THE AUTHORIZED REVENUE INCREASE 11
III.	COST ALLOCATION ISSUES

BEFORE THE

FLORIDA PUBLIC SERVICE COMMISSION

IN RE: PETITION FOR RATE INCREASE BY) DOCKET NO. 050045-EI FLORIDA POWER & LIGHT COMPANY)

DIRECT TESTIMONY OF STEPHEN J. BARON

1 I. QUALIFICATIONS AND SUMMARY

2	Q.	Please state your name and business address.
3		
4	A.	My name is Stephen J. Baron. My business address is J. Kennedy and
5		Associates, Inc. ("Kennedy and Associates"), 570 Colonial Park Drive, Suite
6		305, Roswell, Georgia 30075.
7		
8	Q.	What is your occupation and by whom are you employed?
9		
10	А.	I am the President and a Principal of Kennedy and Associates, a firm of utility
11		rate, planning, and economic consultants in Atlanta, Georgia.
12		
13	Q.	Please describe briefly the nature of the consulting services provided by
14		Kennedy and Associates.

1	А.	Kennedy and Associates provides consulting services in the electric and gas
2		utility industries. Our clients include state agencies and industrial electricity
3		consumers. The firm provides expertise in system planning, load forecasting,
4		financial analysis, cost-of-service, and rate design. Current clients include the
5		Georgia and Louisiana Public Service Commissions, and industrial consumer
6		groups throughout the United States.
7		
8	Q.	Please state your educational background.
9		
10	A.	I graduated from the University of Florida in 1972 with a B.A. degree with
11		high honors in Political Science and significant coursework in Mathematics
12		and Computer Science. In 1974, I received a Master of Arts Degree in
13		Economics, also from the University of Florida. My areas of specialization
14		were econometrics, statistics, and public utility economics. My thesis
15		concerned the development of an econometric model to forecast electricity
16		sales in the State of Florida, for which I received a grant from the Public
17		Utility Research Center of the University of Florida. In addition, I have
18		advanced study and coursework in time series analysis and dynamic model

19

building.

1 Q. Please describe your professional experience.

2

A. I have more than thirty years of experience in the electric utility industry in the
areas of cost and rate analysis, forecasting, planning, and economic analysis.

5

Following the completion of my graduate work in economics, I joined the
staff of the Florida Public Service Commission in August of 1974 as a Rate
Economist. My responsibilities included the analysis of rate cases for electric,
telephone, and gas utilities, as well as the preparation of cross-examination
material and the preparation of staff recommendations.

11

In December 1975, I joined the Utility Rate Consulting Division of Ebasco 12 Services, Inc. as an Associate Consultant. In the seven years I worked for 13 Ebasco, I received successive promotions, ultimately to the position of Vice 14 15 President of Energy Management Services of Ebasco Business Consulting My responsibilities included the management of a staff of 16 Company. consultants engaged in providing services in the areas of econometric 17 modeling, load and energy forecasting, production cost modeling, planning, 18 cost-of-service analysis, cogeneration, and load management. 19

20

1	I joined the public accounting firm of Coopers & Lybrand in 1982 as a
2	Manager of the Atlanta Office of the Utility Regulatory and Advisory Services
3	Group. In this capacity I was responsible for the operation and management
4	of the Atlanta office. My duties included the technical and administrative
5	supervision of the staff, budgeting, recruiting, and marketing as well as project
6	management on client engagements. At Coopers & Lybrand, I specialized in
7	utility cost analysis, forecasting, load analysis, economic analysis, and
8	planning.
9	
10	In January 1984, I joined the consulting firm of Kennedy and Associates as a
11	Vice President and Principal. I became President of the firm in January 1991.
12	
13	During the course of my career, I have provided consulting services to more
14	than thirty utility, industrial, and Public Service Commission clients,
15	including three international utility clients.
16	
17	I have presented numerous papers and published an article entitled "How to
18	Rate Load Management Programs" in the March 1979 edition of "Electrical
19	World." My article on "Standby Electric Rates" was published in the
20	November 8, 1984 issue of "Public Utilities Fortnightly." In February of

1		1984, I completed a detailed analysis entitled "Load Data Transfer
2		Techniques" on behalf of the Electric Power Research Institute, which
3		published the study.
4		
5		I have presented testimony as an expert witness in Arizona, Arkansas,
6		Colorado, Connecticut, Florida, Georgia, Indiana, Kentucky, Louisiana,
7		Maine, Michigan, Minnesota, Maryland, Missouri, New Jersey, New Mexico,
8		New York, North Carolina, Ohio, Pennsylvania, Texas, West Virginia, the
9		Federal Energy Regulatory Commission and in United States Bankruptcy
10		Court. A list of my specific regulatory appearances can be found in Baron
11		Exhibit (SJB-1)
12		
13	Q.	Do you have previous experience in FPL regulatory proceedings?
14		
15	A.	Yes. I have been involved in a number of FPL rate proceedings during my
16		career. This includes participation as a Florida Public Service Commission
17		Staff member in a 1975 FPL rate case, a generic DSM proceeding in 1993 and
18		an FPL rate case in 2002.
19		

A. I am testifying on behalf of the South Florida Hospital and Healthcare
Association, Inc. ("SFHHA" or the "hospitals"). SFHHA members take
service on FPL general service and CILC rate schedules throughout the
Company's service area.

6

1

7 Q. What is the purpose of your testimony?

8

I will address issues associated with FPL's proposed allocation of its 9 A. requested base rate revenue increase of \$385 million to rate schedules. FPL 10 11 witness Rosemary Morley provides testimony on these issues, including the Company's proposed methodology to utilize the results of its class cost of 12 service study ("parity study") to assign increases to each rate schedule. I will 13 14 discuss the Company's approach and recommend an improved allocation 15 based on alternative cost of service analyses, as well as the application of a 16 "1.5 times average increase cap" approach.

17

With regard to the class cost of service study, I will address the Company's filed 12 CP and 1/13th average demand methodology and offer an alternative approach that focuses on the key summer and winter peaks that drive the

J. Kennedy and Associates, Inc.

1	Company's generation resource decisions. As I will discuss, it is growth in
2	the summer and winter peak demands that will require the Company to obtain
3	almost 6000 mW of additional generating capacity over the next ten years.
4	Customers should, through the cost of service and rate design process, be
5	provided price signals reflecting the "cost" of their decisions to use and cause
6	the construction of additional scarce generation resources during the summer
7	and winter peak periods. The Company's use of a 12 CP cost allocation
8	methodology does not adequately reflect the Company's planning decisions.
9	As a result, FPL will overbuild capacity, customers will receive the wrong
10	message about the actual cost of their consumption patterns, resources will be
11	misallocated, and pollution may be increased by virtue of running additional
12	generation.

13

Finally, I will address the proposal by the Company to recover the fixed costs associated with Turkey Point 5 on a kWh basis, within rate schedules. Since these costs are demand related, they should be recovered by increasing the kW billing demand charge (or charges) of rate schedules that include a demand charge as part of the rate.

19

20 Q. Would you summarize your conclusions and recommendations?

J. Kennedy and Associates, Inc.

2 A. Yes. 3 4 FPL has proposed increases to some rate schedules that 5 are substantially in excess of 1.5 times the average retail base rate increase requested by the Company. Some rate 6 7 schedules will receive increases of as much as 21% under the Company's proposals in this case. In consideration of 8 9 the impact and the potential for "rate shock" with such 10 large increases, no rate schedule should receive an increase 11 greater than the "1.5 times" cap applied to the average 12 base rate increase, excluding adjustment clauses. 13 14 FPL has based its proposed rate schedule increases on the results of its 12 CP and 1/13th average demand cost of 15 service study and an objective to bring each rate schedule 16 17 to within +/-10% of the system average rate of return. A 18 more efficient cost of service study for FPL is a method 19 based on a summer/winter average CP methodology, 20 coupled with consideration of a "minimum distribution system" approach to the classification of secondary 21 distribution facilities. 22 The parity results using this corrected cost of service study supports an equal 23 percentage increase to rate schedules in this case, which 24 25 should be adopted by the Commission. 26 27 The Company's proposal to offer a high load factor time of 28 use rate (HLFT) should be adopted by the Commission. 29 The methodology used by the Company to develop this rate, which is directly tied to the underlying costs for 30 31 serving general service customers, is reasonable. In the event that the Commission adjusts the revenue increases 32 33 proposed by FPL for general service rates, either because 34 of a reduction in the overall FPL revenue requirement 35 increase or an alternative allocation of the approved 36 increase, the proposed HLFT rate should be adjusted 37 accordingly (as described subsequently in this testimony). 38

1

1	
2	 If the Commission approves the Company's proposed 2007
3	Turkey Point Unit 5 recovery in this case, the allocated
4	revenue to demand metered rate schedules should be
5	recovered on a kW demand basis, rather than on a kWh
6	basis as proposed by FPL. These are demand related costs
7	and, to the extent that a rate schedule incorporates a
8	demand charge in the rate, the Turkey Point Unit 5
9	charges should be recovered from the kW demand charge.
10	

J. Kennedy and Associates, Inc.

1 II. ALLOCATION OF THE AUTHORIZED REVENUE INCREASE

3 Q. Would you please briefly describe the methodology that FPL is 4 proposing to use to allocate its requested \$385 million increase to rate 5 schedules?

6

7 A. FPL has used the results of its cost of service "parity" study to assign the increase to rate schedules such that each rate schedule produces a rate of 8 return on rate base (premised upon the Company's recommended cost 9 allocation study) within a "+/- 10%" band. Essentially, FPL claims it is 10 adjusting its rates in this case to bring each of its rates schedules to within 11 10% of the system rate of return. The Company is not proposing to limit the 12 13 increases to any specific rate schedule to "1.5 times" the average increase. In 14 fact, FPL is proposing increases to some rate schedules at a much higher percentage than the level that would be produced had the Company adhered to 15 a "1.5 times" constraint. 16

17

18 Q. What are the specific increases recommended by FPL, assuming that it is
19 authorized its full \$385 million rate increase in this case?

20

J. Kennedy and Associates, Inc.

- A. Table 1 below summarizes the increases recommended by the Company for
 most of the general service and CILC rate schedules. These rate schedules, as
 can be
- 4

			able 1		
		FPL Proposed	Revenue Increas	ses	
Base Rev Base Rev Excess Over					
Rate		(Present)	(Proposed)	Percent	<u>"1.5 x Avg."</u>
CILC-1D		45,594,194	54,970,753	20.6%	6.09%
CILC-1T		13,609,695	16,140,110	18.6%	4.11%
CS1		3,479,708	4,272,915	22.8%	8.32%
CST1		1,758,579	2,136,289	21.5%	7.00%
CS2		1,273,351	1,542,219	21.1%	6.64%
CST2		1,279,726	1,550,869	21.2%	6.71%
GSD1	Non-Migrate	554,457,645	637,058,916	14.9%	0.42%
GSLD1	Non-Migrate	120,481,295	144,231,946	19.7%	5.23%
GSLDT1	Non-Migrate	17,325,850	20,308,479	17.2%	2.74%
GSLDT1	Migr-HLFT	65,347,245	76,061,539	16.4%	1.92%
GSLD2	Non-Migrate	10,152,158	12,120,591	19.4%	4.91%
GSLDT2	Non-Migrate	6,617,515	7,780,602	17.6%	3.10%
GSLDT2	Migr-HLFT	14,052,762	16,250,410	15.6%	1.16%
GSLD3		450,776	523,553	16.1%	1.67%
GSLDT3		2,561,176	2,857,992	1 1.6%	
Total Reta	ail			9.7%	
"1.5 Time	s Cap"			14.5%	

5

6

7

8

9

seen in the table, reflect general service classes (on which the hospitals are served) that will receive substantially greater increases than "1.5 times the average 9.7% retail increase" in base rates being proposed by FPL. In particular, customers taking service on rate schedule CILC-1D, and the non-

1		migrating customers on schedules GSLD-1 and GSLDT-1 will receive base
2		rate increases of 20.6%, 19.7% and 17.2% respectively. CILC-1D customers
3		will receive an increase of 212% of the system average (2.12 times the
4		average increase of 9.7%).
5		
6	Q.	Has FPL provided sufficient support to justify an increase to these (and
7		other) rate schedules of such magnitude?
8		
9	А.	No. Even if one were to agree with the Company's cost of service results
10		without exception, which I do not, it is unreasonable to increase some
11		customer rates by more than a "1.5 times" system average base rate cap.
12		Given the magnitude of the increase requested by the Company in this case
13		and its impact on ratepayers, including general service customers, such a
14		limitation by rate schedule is appropriate. This is further warranted by the
15		additional proposed increases requested by FPL in 2007. The Commission
16		should limit the increase in base rates to 1.5 times the system average for each
17		rate schedule.
18		

Q. Why do you believe that the "1.5 times" cap should apply to the system average base rate increase?

3

4 Α. This proceeding involves a substantial increase to base rates. The appropriate 5 metric to measure the impact and assess "rate shock" is the impact on the base rates at issue. Because the base rate represents less than half the overall bill 6 7 for most, if not all of FPL's customers, the reasonableness of a proposed base 8 rate increase should not be obscured and clouded by including fuel costs and 9 other adjustment clause revenues in the evaluation of rate shock. The 10 component of the rate here at issue and which can be adjusted is the base rate.

11

12 This is particularly problematic for higher load factor general service rate schedule customers who have a relatively greater proportion of fuel revenues 13 included in their total costs. If the rate shock "test" is applied to the impact of 14 15 a proposed base rate increase on total revenues, including fuel, higher load 16 factor rate schedules are penalized, all else being equal. If all rate schedules 17 had the same proportion of adjustment clause revenues, then it would not matter whether the "1.5 times" cap was applied to assess the impact of an 18 19 increase in base rates or whether it is applied to as a cap on the percentage increase in total revenues, including adjustment clauses. However, this is not 20

J. Kennedy and Associates, Inc.

the case and it is more reasonable and fair to cap the increases using a "1.5
times" cap applied to base rates.

3

4 Q. You indicated in a previous answer that you did not agree with FPL's
5 cost of service results. Would you please address your concerns with the
6 Company's study?

7

Yes. As I will discuss in more detail later in my testimony, the Company's 8 Α. 9 cost of service study and the related "parity" results on which FPL has relied to establish its proposed increases to each rate schedule are not reasonable and 10 11 should not be used to set rates in this case. The cost of service methodology is of particular significance in this case because of the extent of the reliance 12 being placed on the results to establish rate schedule revenue targets. Though 13 14 I support the use of a cost of service study to set rates (subject to some type of 15 limitation to address potential rate shock concerns, such as the "cap" 16 limitation that I discussed above to limit the increase to any rate schedule to 17 1.5 times the system average increase), the necessary pre-condition to such an 18 analysis is to utilize a reasonable cost of service study that allocates costs in a manner that reflects cost causation. Though the Company has used a 19 methodology that has been previously found by the Commission to be 20

J. Kennedy and Associates, Inc.

1	appropriate for FPL and other Florida electric utilities, I am recommending
2	that the Commission consider an alternative approach in this case to assign
3	cost responsibility. Specifically, as I will discuss, I am recommending that the
4	Commission adopt a summer/winter average production demand
5	methodology. I will discuss the support for such a study in the next section of
6	my testimony. I am also recommending that the Commission consider an
7	alternative approach to the classification of distribution plant. I present the
8	basis for such an approach and the cost of service and parity implications of
9	classifying a portion of the Company's secondary distribution facilities using
10	a customer component, in addition to a demand component. As I will discuss,
11	FPL has classified 100% of secondary lines (underground and overhead),
12	secondary poles and secondary line transformers as demand related. I believe
13	that there is strong support to classify a portion of these costs as both
14	customer and demand related. I will present an alternative cost of service
15	study that illustrates the potential impact on class parity results from such a
16	change in the Company's study.

18

Q. What are the parity results using your alternative cost of service studies?

19

J. Kennedy and Associates, Inc.

1	A.	Table 2 below presents the results of the parity analyses using the two
2		alternative cost of service studies that I discuss later in my testimony. These
3		studies show that general service and CILC-1D customers should receive
4		revenue increases much closer to the system average increase than
5		recommended by FPL. The rate schedule increases approved by the
6		Commission may be in place for many years, if history is a guide. Given the
7		large disparity between the parity results presented by FPL in this case (see
8		Table 3) and the parity results shown in Table 2, using what I believe are more
9		reasonable assumptions, I recommend that the Commission apply an equal
10		percentage increase to all rate schedules in this case. For general service rate
11		schedules, GSD, GSDT, GSLD-1, GSLD-2, GSLDT-1 and GSLDT-2 that
12		include both non-migrating and migrating (to HLF and SDTR) customers, the
13		equal percentage increase should be applied to all of the customers on the rate
14		(e.g., GSLDT-1) in a first step. As I discuss subsequently, the second step
15		would then develop the individual increases to the non-migrating and
16		migrating customers within the rate schedule such that the same relative
17		relationships among the general service rates and the HLF and SDTR rates are
18		preserved.

19

J. Kennedy and Associates, Inc.

Compari	Table 2 son of Parity Index	Results
Rate Class	Sum/Win <u>CP</u>	S/W CP <u>w/Min Dist</u>
CILC-1D	108%	114%
CILC-1G	175%	187%
CILC-1T	108%	108%
CS1	89%	96%
CS2	84%	90% 91%
GS1	179%	171%
GSD1	115%	124%
GSLD1 GSLD2	81%	89%
GSLD2	86%	93%
GSLD3	127%	127%
MET	66%	66%
OL-1	-16%	-15%
OS-2	68%	77%
RS1	93%	90%
SL-1	33%	35%
SL-2	290%	305%
SST-TST	618%	618%
SST1-DST	-54%	-54%
SST2-DST	86%	98%
SST3-DST	143%	143%

Q.	Does your recommendation for the Commission to adopt an alternative
	cost of service study and use these results to allocate the revenue
	increases in this case result in "cost shifting"?

1	A.	No. As I will more fully discuss subsequently in my testimony, the
2		Company's 12 CP & 1/13 th average demand cost of service methodology does
3		not adequately reflect cost responsibility. FPL is proposing substantial
4		increases in this proceeding based on the assumption that certain rate classes
5		have under-contributed to their share of the system's costs (e.g., rate schedule
6		CILC-1D). However, using a more reasonable measure of cost responsibility,
7		these same classes are actually over-contributing to their share of costs.
8		Likewise, some rate schedules (RS-1, for example) are shown to be over-
9		contributing to their share of costs under FPL's cost study, while under a more
10		reasonable measure, these same classes are under-contributing to their share
11		of costs (i.e., producing a parity less than 100%). As a result, when the
12		contribution to costs by the various rate classes is analyzed in a more
13		appropriate and logical basis than is reflected in the Company's cost of service
14		study, it is apparent that an equal percentage increase is reasonable and would
15		not unduly burden the residential class or general service schedules.
16		

Q. The Company is proposing to a new tariff, HLF (high load factor), for
some general service customers who are able to migrate to the new rate.
How should the proposed target revenue level for rate HLF be adjusted,

J. Kennedy and Associates, Inc.

if the Commission adopts your recommendations to change the allocation of the increase to general service rates?

3

First, as I will discuss later in my testimony, the Hospitals support the 4 A. Company's proposal to introduce rate schedule HLF. If the Commission 5 adjusts the allocation of the increase to general service schedules, as I am 6 7 recommending, there should be a corresponding decrease to proposed rate schedule HLF so that the relationships established among the general service 8 9 feeder rates to HLF and HLF remain essentially the same. I recognize that because customers from a number of general service rate schedules will 10 migrate to rate HLF, the process of adjusting rate HLF, following a change in 11 one or more general service schedules, will require an iterative approach in 12 13 compliance filings with the Commission. The objective, however, should be that the relative relationship between the various general service rates and rate 14 HLF should remain the same (within a reasonable bound) as exists under the 15 Company's proposed tariffs. 16

17

Q. Are there any additional issues that you would like to address regarding
the allocation of any authorized revenue increase to rate schedules?

J. Kennedy and Associates, Inc.

1	A.	Yes. In presenting summary proposed increases by rate schedule in
2		Schedule E-8 of the MFR, the Company included "other operating revenue",
3		which includes not only connection and reconnection fees and other retail
4		customer miscellaneous revenues, but also the allocated share of other
5		revenue credits (for example, transmission) that are not even at issue in this
6		case. These other revenues should be excluded from the presentation of the
7		proposed increases at issue in this case since they are not tied to the sale of
8		electricity governed by the tariffs being adjusted in this case. Though it is
9		reasonable to consider the proposed changes, if any, in connection fees (for
10		example), it is not appropriate to include any such amounts in the calculation
11		of the proposed increases to rate schedule. In sum, this presentation obscures
12		and conceals the full effects of FPL's proposals.

More significantly, FPL has included "imputed" CILC incentives in the computation of the rate increase proposed for the three CILC rate schedules. It is appropriate to include these incentives in the cost of service study, as FPL has done. However, it is completely inappropriate to include the imputed incentives in the "presentation" of FPL's proposed increase to these rates. The CILC rates do not include these incentive revenues in customer charges

J. Kennedy and Associates, Inc.

- and it is thus incorrect to calculate a rate impact using an "imputed" amount
 of additional revenues that are not actually part of a customer's bill.
- 3

.

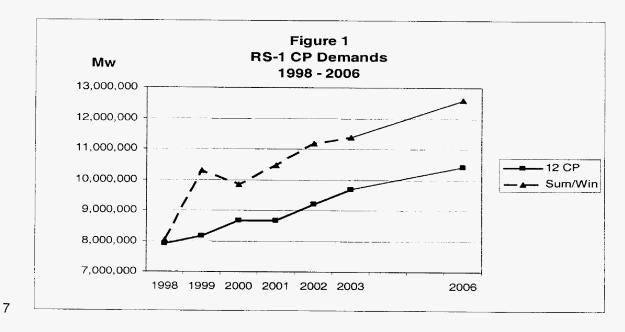
1		III. COST ALLOCATION ISSUES
2		
3	Q.	Would you please discuss the issue of the allocation of demand related
4		production costs?
5		
6	A.	Yes. As required by the MFR, FPL has filed a 12 CP and 1/13 th average
7		demand based cost of service study in this case. The Company has not filed
8		any alternative studies and supports the 12 CP and 1/13 th method in this case.
9		
10		In the past, based upon circumstances then in effect, FPL used and the
11		Commission accepted this methodology. However, circumstances now in
12		effect and compelling public policy reasons suggest alternative methodologies
13		for FPL cost allocation. This issue is not an academic exercise in this case,
14		since FPL is proposing to assign its requested \$385 million base rate increase
15		to rate schedules on the basis of the class cost of service study ("parity"
16		results).
17		
18	Q.	What is your understanding of the underpinning for the use of the 12 CP
19		and 1/13 th average demand method?
20		

1	A.	This methodology, which is primarily a 12 CP method, allocates production
2		demand costs under the assumption that customer (and ultimately rate
3		schedule) kW demand contributions to each of the 12 monthly coincident
4		peaks have equal "cost responsibility" for the Company's generating units
5		and power purchases (the capacity portion thereof). Thus, for example, the
6		12 CP method presumes that a residential or general service customer's
7		incremental demand at the time of the August or January system coincident
8		peak is no more "costly" to the system than the same amount of incremental
9		demand at the time of the October or April FPL peak. This method sends
10		price signals to customers that adding demand during any of the monthly
11		peaks throughout the year costs the same to the Company. Correspondingly,
12		if residential loads are being added more rapidly in the summer and winter
13		peak months than in the off-peak months, the impact on class revenue
14		requirements is much less (under FPL's cost methodology) than if a group of
15		general service customers added the identical load during the summer and
16		winter peaks, but also added a like amount of load in the off-peak months. In
17		that case, general service class cost responsibility would increase much more
18		under the Company's cost of service study allocation approach, even though
19		such responsibility was spread throughout the year and not concentrated
20		during the summer and winter peak months.

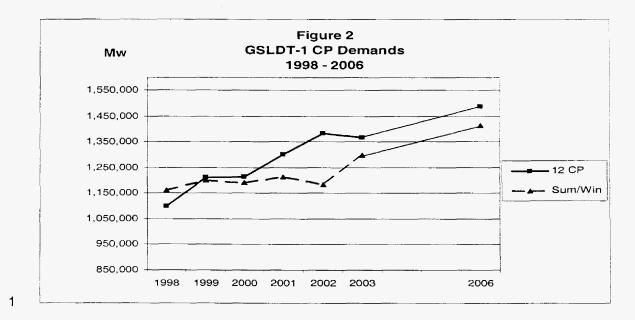
2 A numerical example will help illustrate this point. Assume that both the residential and general service class peak demands increased by 1000 mW 3 4 during July, August, January and February. Further assume that during the 5 other eight months of the year, the residential class coincident peak demand increased by only 500 mW, while the general service peaks increased by 800 6 7 mW, reflecting the higher load factor for this class. The 12 CP demands for 8 each of the two classes would increase by 8000 mW and 10,400 mW 9 respectively for the residential and general service classes. Despite the fact 10 that both rate classes contributed identical amounts to the summer and winter peaks that drive the capacity needs of the FPL system, the general service 11 12 class would be assigned 30% more cost responsibility for this incremental demand than the residential class. Since rates ultimately will be impacted 13 from the results of the cost of service study, residential customers will receive 14 a "discounted" price signal on the cost associated with its behavior. The 15 opposite will occur for general service customers. 16

17

1


Q. Have you prepared any analyses that show the changes in residential and
general service customer coincident peak demands during the past six
years, compared to the expectations of FPL for the test year?

J. Kennedy and Associates, Inc.


A. Yes. Figures 1 and 2 that follow contain charts for the RS-1 and GSLDT-1
rate schedules comparing each the 12 CP demands and the average of the
summer and winter CP demands for the period 1998 through 2003, together
with the Company's test year 2006 estimate.

1

8

2 The charts show that the growth in the residential contribution to the summer/winter average has been growing much faster than its 12 CP 3 4 contribution. For the GSLDT-1 rate, the two measures of coincident peak 5 have been growing at a much closer rate. More significantly, for the RS class, 6 the summer/winter average CP demand is substantially above the 12 CP level, 7 while for the GSLDT-1 class, the two measure of CP are similar, with the 12 CP level being the higher value. Because the FPL cost allocation study is 8 9 driven in large part by a rate schedule's contribution to 12 CP demand, rather 10 than the important summer and winter peak contributions that are driving 11 capacity additions on the FPL system, GSLDT-1 customers are being assigned a relatively larger share of the system's fixed production costs. All 12

J. Kennedy and Associates, Inc.

- else being equal, this results in higher rates to these customers simply because 1 2 they have relatively higher demands in the off-peak months. 3 This is also problematic because these higher load factor general service 4 5 customers contribute a relatively greater amount of revenues during the offpeak (non-summer and winter peak periods), which helps defray the capital 6 costs of capacity additions, while classes that have more concentrated 7 demands during the summer and winter peak periods provide proportionately 8 less contribution to these capacity costs because of their lower non-9 10 summer/winter consumption. 11 **Q**. Does FPL's current 10 year site plan support the general assumptions in 12
- your illustration that the growth in summer and winter peak demands is
 driving the need for capacity additions on the system?
- 15

A. Yes, I believe that it does. Baron Exhibit_(SJB-2), schedules 1 and 2
contain copies of FPL's projected summer and winter peak capacity, load and
reserves. These schedules are copies of Schedules 7.1 and 7.2 from FPL's
2004 Ten Year Power Plant Site Plan. As can be seen, the Company is
projecting substantial capacity additions over the next ten years to meet

J. Kennedy and Associates, Inc.

1 growing summer and winter peak demand and to maintain a 20% reserve 2 margin during the summer. It is clear that the requirement to meet the 3 summer and winter peak demand is driving the capacity resource addition on 4 the system.

- 5
- 6 Q. Don't the generation resources also meet the demands during the other
 7 months of the year?
- 8

9 Α. Yes. Clearly, all of FPL's generating resources (except seasonal purchases, if 10 any) are designed to meet the loads of the Company's customers, regardless of when they occur. However, these loads in other months do not drive the 11 12 incurrence of generation resource costs on the system. This is true, even if 13 planned maintenance is considered. Because, by its very nature, planned 14 maintenance is "planned", it is not the driver of the need to obtain additional generation resources. This need is driven by the summer and winter peaks 15 projected in the ten year site plan.¹ This is further confirmed in a December 16 17 2004 report by The Division of Economic Regulation of the Florida Public Service Commission at page 13, which states: 18

19

J. Kennedy and Associates, Inc.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15		FRCC studies currently show that a 15% reserve margin correlates to LOLP values that are well below 0.1 days per year. These low LOLP values are the result of two factors: high unit availabilities and low forced outage rates typical of new, efficient generating units; and, enhanced maintenance practices on older generating units. <u>As a</u> result, reserve margin continues to be the primary criterion driving a utility's capacity needs. In the late 1990's, the Commission was increasingly concerned with the declining reserve margins forecasted by Florida's utilities and the impact of such declines on reliability. In response to these concerns, PEF, FPL and TECO agreed to adopt a 20% reserve margin planning criterion starting in Summer 2004. (emphasis added).
16	Q.	How do the monthly peak loads compare to the summer and winter
17		peaks on the FPL system?
18		
18 19	А.	The following graph (figure 3) shows the actual 2003 and projected 2005
	A.	
19	A.	The following graph (figure 3) shows the actual 2003 and projected 2005
19 20	A.	The following graph (figure 3) shows the actual 2003 and projected 2005 monthly peak loads on the FPL system. As can be seen from the graph, there
19 20 21	A.	The following graph (figure 3) shows the actual 2003 and projected 2005 monthly peak loads on the FPL system. As can be seen from the graph, there is a significant system peak in the summer and the winter period. Since the
19 20 21 22	A.	The following graph (figure 3) shows the actual 2003 and projected 2005 monthly peak loads on the FPL system. As can be seen from the graph, there is a significant system peak in the summer and the winter period. Since the 2005 data is projected, it reflects a weather normalized result and it is clear

²⁶ ¹ FPL also employs a maximum loss-of-load probability ("LOLP") criterion of "0.1 day per year" in its planning. However, based on the Company's resource plan, FPL is generally adding capacity that maintains a 20% reserve margin in the summer.

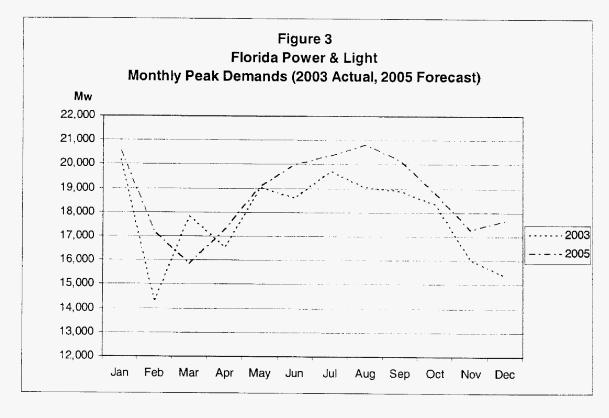
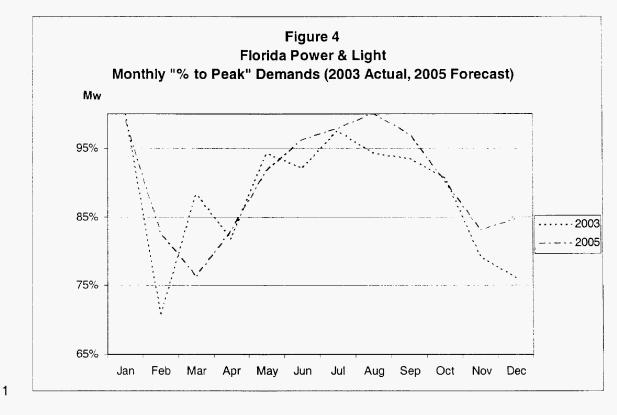



Figure 4, below, shows the same data in terms of the percentage of each month's peak to the annual peak. As can be seen, coincident peak demands in most months fall far short of the load during the key summer and winter peak months. In half the months, the peak demand falls below 90% of the annual system peak. This represents more than a 2000 mW difference from the peak month demand.

J. Kennedy and Associates, Inc.

5

Q. What are the implications of this for pricing using the Company's proposed 12 CP and 1/13th average demand methodology?

A. The main implication is that customers are being provided price signals
through rates that FPL is indifferent as to whether customers use demand in
say March or in August or January. According to FPL's 2004 Ten Year
Power Plant Site Plan, the Company will be acquiring almost 6000 mW of
new generating capacity over the next 10 years to meet additional summer

1		and winter customer peak loads on the system. Baron Exhibit_(SJB-3), page
2		1 of 2 presents a copy of "Schedule III.B.1" from the Site Plan. This capacity
3		is expected to cost the Company and its ratepayers in the range of \$500 to
4		\$600 per kW (see "Schedule 9, Page 5 of 7 of the Site Plan", a copy of which
5		is included on page 2 of 2 of Exhibit (SJB-3)). That amounts to additional
6		investment (or purchase equivalent) in new generation facilities in the range
7		of \$3 billion over the next ten years. Yet, despite this expectation, FPL
8		continues to argue in its rate filing that customer behavior during any of the
9		12 months during the year is equally responsible for the Company's need to
10		acquire new generating facilities to meet demand.
11		
11 12	Q.	What about the argument that the fuel savings associated with base load
	Q.	What about the argument that the fuel savings associated with base load generating units support an allocation method that recognizes customer
12	Q.	
12 13	Q.	generating units support an allocation method that recognizes customer
12 13 14	Q. A.	generating units support an allocation method that recognizes customer
12 13 14 15		generating units support an allocation method that recognizes customer usage in non-peak months or even in the off-peak period?
12 13 14 15 16		generating units support an allocation method that recognizes customer usage in non-peak months or even in the off-peak period? Though it is certainly true that a base load nuclear unit produces energy at a
12 13 14 15 16 17		generating units support an allocation method that recognizes customer usage in non-peak months or even in the off-peak period? Though it is certainly true that a base load nuclear unit produces energy at a lower fuel cost than a gas fired combined cycle unit, this does not change the

J. Kennedy and Associates, Inc.

"cost" of customer decisions associated with the next unit of consumption
during March or October is equally responsible for this new capacity cost as
the next unit of consumption during August or January at the time of the
system peak.

5

6 Q. What conclusions do you draw from this analysis?

7

A. I believe that it is now appropriate for the Commission to consider an
alternative cost allocation method in this case and I recommend a
summer/winter coincident peak method using class coincident demand
contributions to the August and January test year peaks to allocate production
demand costs. Baron Exhibit_(SJB-4) presents summary schedules of the
results of such a cost of service study.

14

Table 3 below shows a comparison of the parity results using the filed 12 CP and 1/13th average demand method and the summer/winter CP method. As can be seen, there are significant differences in the reported parity results using the two methodologies.

19

J. Kennedy and Associates, Inc.

Comp	Table 3parison of Parity Index Rest	ults
Rate Class	12 CP & 1/13th <u>As Filed</u>	Sum/Win <u>CP</u>
CILC-1D CILC-1G CILC-1T CS1 CS2 GS1 GSD1 GSLD1 GSLD2 GSLD3 MET	77% 141% 82% 72% 69% 151% 93% 60% 65% 85% 64%	108% 175% 108% 89% 84% 179% 115% 81% 86% 127% 66%
OL-1 OS-2 RS1 SL-1 SST-TST SST1-DST SST2-DST SST3-DST	-21% 42% 106% 25% 252% 279% -53% 91% 112%	-16% 68% 93% 33% 290% 618% -54% 86% 143%

2

1

3	Q.	Would you please discuss the methodology used by FPL to allocate
4		distribution plant investment and expenses to retail rate classes?

5

A. Yes. As discussed in Ms. Morley's testimony, the Company has classified all
distribution plant as demand related except account 369 Services and account
370 meters, which are classified as customer related. The Company's

J. Kennedy and Associates, Inc.

approach does not give any recognition to a customer component of any
primary or secondary line, pole or transformer. All of these costs are assigned
on the basis of relative class kW demand. FPL, in its response to Commercial
Group's interrogatory No. 3 cites a number of prior Commission orders as
precedent for its treatment of these costs.

- 6
- 7 Q. Do you agree with the Company's classification of these distribution
 8 costs?
- 9

10 A. No. Despite the Commission's prior decision's rejection of a customer 11 component for these distribution facilities, I believe that there is credible 12 evidence to support a classification of some portion of these facilities as customer related. Given the significant reliance that the Company has placed 13 14 on the results of its cost of service study in assigning its requested revenue 15 increase to rate schedules in this case, it is reasonable for the Commission to consider evidence on alternative methods of classifying distribution costs in 16 17 this case. FPL has, to a very significant degree, relied on the "parity" results 18 from its cost of service study to assign increases to rate schedules. In 19 particular, the proposed increases to general service (GSD, GSLD, GSLDT-1, GSLDT-2) and CILC rate schedules are substantially higher than the system 20

J. Kennedy and Associates, Inc.

Stephen J. Baron Page 37

1		average increase due to the parity results. These parity results are driven to a
2		large extent by the methodology used by FPL to classify and allocate costs to
3		rate schedules. This is not purely an argument of academic interest. The
4		impact of this issue for commercial and industrial rate schedules is \$30
5		million, based on a comparison of allocated distribution costs under the FPL
6		methodology and the cost of service results using the minimum secondary
7		distribution system analysis that I have developed and present subsequently.
8		
9	Q.	What is the central argument underlying a classification of some portion
10		of distribution costs (other than services, meters and "primary pull-
10 11		of distribution costs (other than services, meters and "primary pull- offs") as customer related?
11	А.	
11 12	А.	offs") as customer related?
11 12 13	А.	offs") as customer related? As described in the NARUC Electric Utility Cost Allocation Manual, the
11 12 13 14	А.	offs") as customer related? As described in the NARUC Electric Utility Cost Allocation Manual, the underlying argument in support of a customer component is that there is a
11 12 13 14 15	A.	offs") as customer related? As described in the NARUC Electric Utility Cost Allocation Manual, the underlying argument in support of a customer component is that there is a minimal level of distribution investment necessary to connect a customer to
11 12 13 14 15 16	A.	offs") as customer related? As described in the NARUC Electric Utility Cost Allocation Manual, the underlying argument in support of a customer component is that there is a minimal level of distribution investment necessary to connect a customer to the distribution system (lines, poles, transformers) that is independent of the

20 facilities to rate schedules on the basis of the number of customers, rather

J. Kennedy and Associates, Inc.

1		than on the kW demand of the class. As stated on page 90 of the NARUC
2		cost allocation manual:
3 4 5 6 7		When the utility installs distribution plant to provide service to a customer and to meet the individual customer's peak demand requirements, the utility must classify distribution plant data separately into demand- and customer-related costs.
8	Q.	In the recent Gulf Power rate case, the Commission considered and
9		rejected a customer component methodology to classify distribution
10		related costs. Have you reviewed the Commission's decision in that
11		case (Docket No. 010949-EI, Order No. PSC-02-0787-FOF-EI)?
12		
13	A.	Yes. I have reviewed the portion of the Order that addresses the allocation
14		and classification of distribution costs. Though the Order speaks for itself,
15		the Commission rejected the conceptual basis of a "zero load cost" that
16		underlies the two methodologies ("zero-intercept" and "minimum size")
17		that have been used to estimate the customer component of various
18		distribution plant accounts (e.g., poles, primary lines, secondary lines, line
19		transformers, etc.). Each of the two methods (the zero-intercept method, for
20		example) is designed to estimate the component of distribution plant cost
21		that is incurred by a utility to effectively interconnect a customer to the
22		system, as opposed to providing a specific level of power (kW demand) to

J. Kennedy and Associates, Inc.

Though arithmetically, the zero-intercept method does 1 the customer. 2 produce the cost of say "line transformers" associated with "0" kW demand, the more appropriate interpretation of the zero-intercept is that it represents 3 the portion of cost that does not vary with a change in size or kW demand 4 5 and thus should not be allocated on NCP demand (as FPL has done). Essentially, the "zero-intercept" represents the cost that would be incurred, 6 7 irrespective of differences in the kW demand of a distribution customer. It is this cost-invariant component that is used in the zero-intercept method to 8 identify the portion of distribution costs that should be allocated to rate 9 classes based on the number of primary and secondary distribution 10 customers taking service in the class. 11

12

Conceptually, this analysis is designed to estimate the behavior of costs statistically, as the Company meets growth in both the number of distribution customers and the loads of these customers. This is in contrast to FPL's analysis that is premised on an assumption that all distribution costs (except services and meters) vary directly with kW demand, without any fixed component that should be allocated on the basis of the number of customers in each class

20

J. Kennedy and Associates, Inc.

1 Q. Do you have any specific examples that could illustrate this point?

2

Α. Yes. In this rate case, FPL has classified all costs in account No. 368, line 3 transformers, as demand related and allocated these costs to rate schedules 4 5 on the basis of rate class NCP demand. This account would include equipment ranging from residential pole and pad mounted transformers 6 7 rated at say 20 kVa to 160 kVa that might serve one or two residential customers (in the case of the smaller size units, to a larger group of 8 residential customers (in the case of a larger pad mounted single phase 9 For commercial customers, both pole and pad mounted 10 transformer). transformers would also be used, including larger sizes rated at say 300 kVa 11 12 to 500 kVa or greater that might serve a food market, hospital facility or 13 retail store.

14

To explain why it is inappropriate to allocate the costs of all of these line transformers on the basis of relative class kW demand, it is necessary to examine the cost of this equipment. An analysis of FPL data indicates that the cost per kVa for line transformers decreases as the size of the transformer increases. Table 4 below summarizes some of the line transformer cost data in Account No. 368 on a per kVa basis.

21

J. Kennedy and Associates, Inc.

	Account	Table 4 t No. 368 Line T	•	Data	
kVa <u>Block</u>	<u>Units</u>	<u>Cost</u>	<u>Avg. Cost</u>		Jnit @ idpoint
< 37	405,131	284,704,516	\$ 702.75	\$	37.99
50 - 75	137,779	154,349,814	\$1,120.27	\$	17.92
100 - 167	19,153	35,914,215	\$1,875.12	\$	14.05
< 75	172,844	272,479,653	\$1,576.45	\$	42.04
100 - 300	43,463	168,710,966	\$3,881.71	\$	19.41

2

Based on my experience, this is consistent with industry data. It simply reflects the economies of scales of this type of equipment. Also, the labor associated with the installation of line transformers is a much larger percentage of the cost per kVa for smaller size units, than for larger size units. Again, this represents the economies of scales associated with this investment.

9

10 Q. Does FPL's cost allocation study give any recognition to this cost/size
11 relationship?

12

J. Kennedy and Associates, Inc.

1	А.	No. Baron Exhibit (SJB-5) shows the average cost per customer
2		maximum kW demand for line transformer plant in service (the line
3		transformer portion of FERC account No. 368) for both residential and
4		GSLDT-1 customers. This summary is based directly from the Company's
5		cost of service study, as filed in this case. As can be seen, thought the
6		average size of a residential (RS-1) customer is 9.5 kW compared to the
7		average size GSLDT-1 customer of 730 kW, the allocated cost of line
8		transformers to these two rate schedules, on a per kW basis, is identical
9		(\$28.90 per kW). The Company's cost allocation study, because it does not
10		recognize a customer component in the allocation of Account No. 368 costs,
11		over-assigns costs to the GSLDT-1 customers.

12

In FPL's cost of service study, which assigns line transformer costs to rate 13 schedules on the sole basis of kW demand, the underlying assumption is 14 that if a secondary customer on rate schedule GSLD has an average NCP 15 16 demand of 730 kW and a residential class customer has an average NCP demand of 10 kW, then the cost responsibility of the GSLD customer for 17 line transformer costs is 73 times greater than for an RS-1 customer. This is 18 contrary to the costs of line transformers serving these customers. If a 19 portion of the cost had been classified as customer related so that line 20

J. Kennedy and Associates, Inc.

1		transformer costs would be allocated on a demand and a customer basis, the
2		resulting allocation to rate schedules would more reasonably reflect that cost
3		to serve these classes. Again, because the Company is proposing to set
4		rates in this case on the basis of the cost of service study and the resulting
5		parities, it is critical to develop a cost study that accurately reflects the cost
6		to serve each rate schedule. The current method means that commercial
7		class customers pay a distinct subsidy through their rates.
8		
9	Q.	Can similar arguments be made for other distribution facilities?
10		
11	A.	Yes. As I noted previously, the Commission has previously rejected this
11 12	А.	Yes. As I noted previously, the Commission has previously rejected this "no-load" conceptual argument. However, as I discussed earlier, the
	А.	
12	Α.	"no-load" conceptual argument. However, as I discussed earlier, the
12 13	Α.	"no-load" conceptual argument. However, as I discussed earlier, the rationale for assigning some distribution facilities on the basis of both a
12 13 14	Α.	"no-load" conceptual argument. However, as I discussed earlier, the rationale for assigning some distribution facilities on the basis of both a customer and demand component can be supported by examining the nature
12 13 14 15	Α.	"no-load" conceptual argument. However, as I discussed earlier, the rationale for assigning some distribution facilities on the basis of both a customer and demand component can be supported by examining the nature of the cost for these facilities, rather than a strict reliance on a "no-load"
12 13 14 15 16	Α.	"no-load" conceptual argument. However, as I discussed earlier, the rationale for assigning some distribution facilities on the basis of both a customer and demand component can be supported by examining the nature of the cost for these facilities, rather than a strict reliance on a "no-load" hypothetical construct. I showed this to be the case for line transformers
12 13 14 15 16 17	Α.	"no-load" conceptual argument. However, as I discussed earlier, the rationale for assigning some distribution facilities on the basis of both a customer and demand component can be supported by examining the nature of the cost for these facilities, rather than a strict reliance on a "no-load" hypothetical construct. I showed this to be the case for line transformers and it can also be logically argued for distribution poles (Account 364). If,

J. Kennedy and Associates, Inc.

1		the system and is not influenced by the level of the customer's demand.
2		Essentially, there is a fixed component of the cost related to the requirement
3		to connect the customer to the system and a variable component related to
4		the size of the customer's load. Sending an FPL customer a "price signal"
5		that relates the incurrence of this cost by FPL to only the level of the
6		customer's kW demand is simply not realistic. Yet, that is the message
7		being sent by way of FPL's cost of service study.
8		
9	Q.	Can you illustrate why the Company's allocation of poles is
10		unreasonable?
10 11		unreasonable?
		unreasonable?
11	А.	unreasonable? Yes. FPL's cost of service study classifies all "25/30 foot" wooden poles
11 12	А.	
11 12 13	А.	Yes. FPL's cost of service study classifies all "25/30 foot" wooden poles
11 12 13 14	А.	Yes. FPL's cost of service study classifies all "25/30 foot" wooden poles and all "30 foot" concrete poles as secondary and allocates these facilities to
11 12 13 14 15	A.	Yes. FPL's cost of service study classifies all "25/30 foot" wooden poles and all "30 foot" concrete poles as secondary and allocates these facilities to rate schedules on the basis of "secondary group coincident peak demand"
11 12 13 14 15 16	A.	Yes. FPL's cost of service study classifies all "25/30 foot" wooden poles and all "30 foot" concrete poles as secondary and allocates these facilities to rate schedules on the basis of "secondary group coincident peak demand" (allocation factor FPL105). Based on the Company's workpapers that

J. Kennedy and Associates, Inc.

to rate schedules is shown in Table 5. Also shown, is the average number of

- secondary poles assigned per customer for each of these rate schedules.²
- 3

1

2

FPL	's Assignn	Table 5 nent of Seconda	ry Poles Per	Customer
Total Second	lary Poles:	175,122		
Rate Class	Allocation Factor*	Poles Allocated to Rate	Poles Per <u>Customer</u>	Poles Per Every 50 Customers
CILC-1D CILC-1G	1.302% 0.159%	2,281 278	7.84 2.28	391.9 113.8
GS1 GSD1 GSLD1 GSLD2	6.151% 19.215% 8.233% 0.920%	10,771 33,650 14,417 1,610	0.03 0.35 4.95 20.65	1.4 17.5 247.6 1,032.4
RS1	63.063%	110,436	0.03	1.4
* FPL105				

4

As can be seen from the analysis, the results show that the average number of secondary poles assigned by FPL to CILC-1D customers is 7.84, while for residential customers, it is 0.03. To help place this in perspective, the last column of the table shows the average number of poles for every 50 customers on the rate schedule. For the residential class, the Company's

J. Kennedy and Associates, Inc.

 $^{^2}$ To illustrate this point, only residential, general service and CILC rates have been included.

1		study assumes that there are 1.4 secondary poles for every 50 residential
2		customers. These results speak for themselves as regards the
3		reasonableness of the Company's distribution plant analysis. The
4		presumption that the average GSLD-2 customer relies on over 20
5		("secondary voltage") poles would appear to be unsupportable.
6		
7	Q.	What about other distribution plant accounts?
8		
9	A.	A traditional distribution plant classification analysis would normally
10		perform a classification analysis on most distribution plant accounts,
11		including Account 364 (poles, towers, fixtures), Account 365 (overhead
12		conductors), Account 366 (underground conduit), Account 367
13		(underground conductors) and Account 368 (line transformers). Accounts
14		369 and 370 (services and meters) are usually always classified as customer
15		related, as FPL has done in this case. The result of such a study would be a
16		classification of each of these accounts into both customer and demand
17		components, using either a minimum system or, more commonly, a "zero-
18		intercept" method.

19

J. Kennedy and Associates, Inc.

1 The conceptual basis for the zero-intercept method is that it reflects a classification of the distribution facilities that would be required to simply 2 interconnect a customer to the system, irrespective of the kW load of the 3 4 customer. From a cost causation standpoint, the argument supporting this approach is that all of these minimal facilities would be required simply due 5 to the requirement to interconnect the customer, including meeting 6 7 minimum safety standards set forth in the National Electric Safety Code 8 ("NESC"), which the FPSC requires be adhered to for all Florida electric 9 utilities.

10

11 Q. Are there other reasons why a customer classification of some portion 12 of distribution plant is appropriate for FPL's system?

13

A. Yes. There are a significant number of "second homes" or vacation homes
on the FPL system. Consider a residential single family home that is used
for say 50 days per year as a vacation home. FPL, in connecting this
dwelling to its system, does not know that this customer's contribution to
the residential class "secondary group coincident peak demand" is likely to
be very low, given the probability that the customer will not occupy the
dwelling on the day and hour of the group peak. Because the Company

J. Kennedy and Associates, Inc.

does not know this, and to meet standard reliability requirements for 1 2 distribution facilities, FPL will install secondary conductors to meet or 3 exceed the expected maximum load of this customer and the other customers than may be served from the secondary line segment. In its cost 4 5 of service study, FPL classifies secondary lines (the secondary component 6 of accounts 365 and 367) as demand related and allocates the cost to rate schedules on allocation factor "FPL105" (secondary group coincident peak 7 demand). The obvious problem with FPL's approach is that very little of 8 9 the cost of this distribution line will be assigned to the residential class, even though it is in place to serve the customer. Only in the low probability 10 event that the vacation home is being occupied on the day and hour of the 11 residential class peak would the cost of this secondary line be assigned to 12 13 the customer and the residential class. By failing to recognize that a fixed 14 "customer related" component of this cost exists, the Company's study is 15 understating the cost of service to residential customers and, by definition, 16 overstating the cost of service to general service customers.

17

18 Q. Have you develop any estimate of the potential impact of this
19 distribution classification issue on the rate schedule cost of service
20 parity results presented by FPL in this case?

J. Kennedy and Associates, Inc.

2	Α.	Yes. To illustrate the impact of this distribution plant classification issue in
3		this case, I have developed two alternative cost of service analyses using the
4		cost classification percentages presented by Gulf Power Company in its cost
5		study. I have only applied these customer/demand classification to the
6		secondary portion distribution accounts 364, 368 (poles and line
7		transformers) and the secondary portion of accounts 365, 366 and 367
8		(overhead and underground lines and underground conduit). Though I
8 9		(overhead and underground lines and underground conduit). Though I believe that the primary portion of all of these facilities should also reflect a
9		believe that the primary portion of all of these facilities should also reflect a
9 10		believe that the primary portion of all of these facilities should also reflect a "customer component", I have not reclassified FPL's costs for these primary

14

1

The first analysis, shown in Baron Exhibit_(SJB-6) is a modification of the FPL 12 CP and 1/13th average demand methodology cost study presented in the Company's filing. The modification made to this study is to classify the secondary portions of accounts 364, 365, 366, 367 and 368 using the customer/demand ratios for these accounts developed in the Gulf Power cost study. Though I acknowledge that an FPL specific analysis of these

J. Kennedy and Associates, Inc.

1		two plant accounts would likely produce different classification ratios, since
2		the equipment used by Gulf Power (for example, line transformers, poles)
3		would be similar in nature and cost, the use of the Gulf Power classification
4		data should provide indicative impacts to illustrate the significance of this
5		issue on parity results.
6		
7		The second analysis that I developed (Baron Exhibit_(SJB-7) uses the
8		summer/winter CP allocation methodology from production demand related
9		costs, together with the modified classification for the secondary portion of
10		accounts 364, 365, 366, 367 and 368.
11		
12	Q.	What are the results of the alternative analyses?
13		
14	A.	Table 6 below shows the rate schedule parity results of the two alternative
15		cost of service studies, compared to FPL's filed results.
16		

J. Kennedy and Associates, Inc.

Table 6 Comparison of Parity Index Results						
Rate Class	12 CP & 1/13th <u>w/Min Dist</u>	S/W CP <u>w/Min Dist</u>				
CILC-1D	82%	114%				
CILC-1G	152%	187%				
CILC-1T	82%	108%				
CS1	79%	96%				
CS2	74%	91%				
GS1	145%	171%				
GSD1	101%	124%				
GSLD1	67%	89%				
GSLD2	70%	93%				
GSLD3	85%	127%				
MET	64%	66%				
OL-1	-21%	-15%				
OS-2	48%	77%				
RS1	103%	90%				
SL-1	26%	35%				
SL-2	266%	305%				
SST-TST	281%	618%				
SST1-DST	-54%	-54%				
SST2-DST	104%	98%				
SST3-DST	112%	143%				

2

1

As can be seen, the parity results for the general service and CILC rate schedules based on my recommended study (summer/winter CP, minimum distribution system for secondary facilities) are significantly closer to 1.00 than under the Company's filed study for the major rate classes. These results support the allocation of approved revenue increases on an equal percentage increase for all rate schedules.

J. Kennedy and Associates, Inc.

2	Q.	Are there any additional issues that you would like to address?
3		
4	A.	Yes. The Company is proposing to recover the fixed costs associated with
5		Turkey Point Unit 5 on a kWh basis, within rate schedules. If the
6		Commission approves the Company's proposed 2007 Turkey Point Unit 5
7		recovery in this case, the allocated revenue to demand metered rate schedules
8		should be recovered on a kW demand basis, rather than on a kWh basis as
9		proposed by FPL. These are demand related costs and, to the extent that a rate
10		schedule incorporates a demand charge in the rate, the Turkey Point Unit 5
11		charges should be recovered from the kW demand charge.
12		
13	Q.	Does that complete your testimony at this time?
14		
15	A.	Yes.

1

BEFORE THE

FLORIDA PUBLIC SERVICE COMMISSION

IN RE: PETITION FOR RATE INCREASE BY) DOCKET NO. 050045-EI FLORIDA POWER & LIGHT COMPANY)

EXHIBITS

OF

STEPHEN J. BARON

ON BEHALF OF THE

SOUTH FLORIDA HOSPITAL AND HEALTHCARE ASSOCIATION

J. KENNEDY AND ASSOCIATES, INC. ROSWELL, GEORGIA

June 2005

Date	Case	Jurisdict.	Party	Utility	Subject
4/81	203(B)	KY	Louisville Gas & Electric Co.	Louisville Gas & Electric Co.	Cost-of-service.
4/81	ER-81-42	MO	Kansas City Power & Light Co.	Kansas City Power & Light Co.	Forecasting.
6/81	U-1933	AZ	Arizona Corporation Commission	Tucson Electric Co.	Forecasting planning.
2/84	8924	KY	Airco Carbide	Louisville Gas & Electric Co.	Revenue requirements, cost-of-service, forecasting, weather normalization.
3/84	84-038-U	AR	Arkansas Electric Energy Consumers	Arkansas Power & Light Co.	Excess capacity, cost-of- service, rate design.
5/84	830470-EI	FL	Florida Industrial Power Users' Group	Florida Power Corp.	Allocation of fixed costs, load and capacity balance, and reserve margin. Diversification of utility.
10/84	84-199-U	AR	Arkansas Electric Energy Consumers	Arkansas Power and Light Co.	Cost allocation and rate design.
11/84	R-842651	РА	Lehigh Valley Power Committee	Pennsylvania Power & Light Co.	interruptible rates, excess capacity, and phase-in.
1/85	85-65	ME	Airco Industrial Gases	Central Maine Power Co.	Interruptible rate design.
2/85	I-840381	PA	Philadelphia Area Industrial Energy Users' Group	Philadelphia Electric Co.	Load and energy forecast.
3/85	9243	KY	Alcan Aluminum Corp., et al.	Louisville Gas & Electric Co.	Economics of completing fossil generating unit.
3/85	3498-U	GA	Attomey General	Georgia Power Co.	Load and energy forecasting, generation planning economics.
3/85	R-842632	PA	West Penn Power Industrial Intervenors	West Penn Power Co.	Generation planning economics, prudence of a pumped storage hydro unit.
5/85	84-249	AR	Arkansas Electric Energy Consumers	Arkansas Power & Light Co.	Cost-of-service, rate design retum multipliers.
5/85		City of Santa	Chamber of Commerce	Santa Clara Municipal	Cost-of-service, rate design.

Date	Case	Jurisdict.	Party	Utility	Subject
6/85	84-768- E-42T	Clara WV	West Virginia Industrial Intervenors	Monongahela Power Co.	Generation planning economics, prudence of a pumped storage hydro unit.
6/85	E-7 Sub 391	NC	Carolina Industrials (CIGFUR III)	Duke Power Co.	Cost-of-service, rate design, interruptible rate design.
7/85	29046	NY	Industrial Energy Users Association	Orange and Rockland Utilities	Cost-of-service, rate design.
10/85	85-043-U	AR	Arkansas Gas Consumers	Arkla, Inc.	Regulatory policy, gas cost-of- service, rate design.
10/85	85-63	MĖ	Airco Industrial Gases	Central Maine Power Co.	Feasibility of interruptible rates, avoided cost.
2/85	ER- 8507698	NJ	Air Products and Chemicals	Jersey Central Power & Light Co.	Rate design.
3/85	R-850220	PA	West Penn Power Industrial Intervenors	West Penn Power Co.	Optimal reserve, prudence, off-system sales guarantee plan.
2/86	R-850220	PA	West Penn Power Industrial Intervenors	West Penn Power Co.	Optimal reserve margins, prudence, off-system sales guarantee plan.
3/86	85-299U	AR	Arkansas Electric Energy Consumers	Arkansas Power & Light Co.	Cost-of-service, rate design, revenue distribution.
3/86	85-726- EL-AIR	ОН	Industrial Electric Consumers Group	Ohio Power Co.	Cost-of-service, rate design, interruptible rates.
5/86	86-081- E-Gl	WV	West Virginia Energy Users Group	Monongahela Power Co.	Generation planning economics, prudence of a pumped storage hydro unit.
8/86	E-7 Sub 408	NC	Carolina Industrial Energy Consumers	Duke Power Co.	Cost-of-service, rate design, interruptible rates.
10/86	U-17378	LA	Louisiana Public Service Commission Staff	Gulf States Utilities	Excess capacity, economic analysis of purchased power.
12/86	38063	IN	Industrial Energy Consumers	Indiana & Michigan Power Co.	Interruptible rates.

Date	Case	Jurisdict.	Party	Utility	Subject
3/87	EL-86- 53-001 EL-86- 57-001	Federal Energy Regulatory Commission (FERC)	Louisiana Public Service Commission Staff	Gulf States Utilities, Southem Co.	Cost/benefit analysis of unit power sales contract.
4/87	U-17282	LA	Louisiana Public Service Commission Staff	Gulf States Utilities	Load forecasting and imprudence damages, River Bend Nuclear unit.
5/87	87-023- E-C	WV	Airco Industrial Gases	Monongahela Power Co.	Interruptible rates.
5/87	87-072- E-G1	WV	West Virginia Energy Users' Group	Monongahela Power Co.	Analyze Mon Power's fuel filing and examine the reasonableness of MP's claims.
5/87	86-524- E-SC	WV	West Virginia Energy Users' Group	Monongahela Power Co.	Economic dispatching of pumped storage hydro unit.
5/87	9781	KY	Kentucky Industrial Energy Consumers	Louisville Gas & Electric Co.	Analysis of impact of 1986 Tax Reform Act.
6/87	3673-U	GA	Georgia Public Service Commission	Georgia Power Co.	Economic prudence, evaluation of Vogtle nuclear unit - load forecasting, planning.
6/87	U-17282	LA	Louisiana Public Service Commission Staff	Gulf States Utilities	Phase-in plan for River Bend Nuclear unit.
7/87	85-10-22	СТ	Connecticut Industrial Energy Consumers	Connecticut Light & Power Co.	Methodology for refunding rate moderation fund.
8/87	3673-U	GA	Georgia Public Service Commission	Georgia Power Co.	Test year sales and revenue forecast.
9/87	R-850220	PA	West Penn Power Industrial Intervenors	West Penn Power Co.	Excess capacity, reliability of generating system.
10/87	R-870651	PA	Duquesne Industrial Intervenors	Duquesne Light Co.	Interruptible rate, cost-of- service, revenue allocation, rate design.
10/87	I-860025	PA	Pennsylvania Industrial Intervenors		Proposed rules for cogeneration, avoided cost, rate recovery.

Date	Case	Jurisdict.	Party	Utility	Subject
10/87	E-015/ GR-87-223	MN	Taconite Intervenors	Minnesota Power & Light Co.	Excess capacity, power and cost-of-service, rate design.
10/87	8702-EI	FL	Occidental Chemical Corp.	Florida Power Corp.	Revenue forecasting, weather normalization.
12/87	87-07-01	СТ	Connecticut Industrial Energy Consumers	Connecticut Light Power Co.	Excess capacity, nuclear plant phase-in.
3/88	10064	KY	Kentucky Industrial Energy Consumers	Louisville Gas & Electric Co.	Revenue forecast, weather normalization rate treatment of cancelled plant.
3/88	87-183-TF	AR	Arkansas Electric Consumers	Arkansas Power & Light Co.	Standby/backup electric rates.
5/88	870171C001	1 PA	GPU Industrial Intervenors	Metropolitan Edison Co.	Cogeneration deferral mechanism, modification of energy cost recovery (ECR).
6/88	870172C005	5 PA	GPU Industrial Intervenors	Pennsylvania Electric Co.	Cogeneration deferral mechanism, modification of energy cost recovery (ECR).
7/88	88-171- EL-AIR 88-170- EL-AIR Interim Rate	OH Case	Industrial Energy Consumers	Cleveland Electric/ Toledo Edison	Financial analysis/need for interim rate relief.
7/88	Appeal of PSC	19th Judicial Docket U-17282	Louisiana Public Service Commission Circuit Court of Louisiana	Gulf States Utilities	Load forecasting, imprudence damages.
11/88	R-880989	PA	United States Steel	Carnegie Gas	Gas cost-of-service, rate design.
11/88	88-171- EL-AIR 88-170- EL-AIR	ОН	Industrial Energy Consumers	Cleveland Electric/ Toledo Edison. General Rate Case.	Weather normalization of peak loads, excess capacity, regulatory policy.
3/89	870216/283 284/286	PA	Armco Advanced Materials Corp., Ailegheny Ludlum Corp.	West Penn Power Co.	Calculated avoided capacity, recovery of capacity payments.

Date	Case	Jurisdict.	Party	Utility	Subject
8/89	8555	тх	Occidental Chemical Corp.	Houston Lighting & Power Co.	Cost-of-service, rate design.
8/89	3840-U	GA	Georgia Public Service Commission	Georgia Power Co.	Revenue forecasting, weather normalization.
9/89	2087	NM	Attorney General of New Mexico	Public Service Co. of New Mexico	Prudence - Palo Verde Nuclear Units 1, 2 and 3, load fore- casting.
10/89	2262	NM	New Mexico Industrial Energy Consumers	Public Service Co. of New Mexico	Fuel adjustment clause, off- system sales, cost-of-service, rate design, marginal cost.
11/89	38728	IN	Industrial Consumers for Fair Utility Rates	Indiana Michigan Power Co.	Excess capacity, capacity equalization, jurisdictional cost allocation, rate design, interruptible rates.
1/90	U-17282	LA	Louisiana Public Service Commission Staff	Gulf States Utilities	Jurisdictional cost allocation, O&M expense analysis.
5/90	890366	PA	GPU industrial Intervenors	Metropolitan Edison Co.	Non-utility generator cost recovery.
6/90	R-901609	PA	Armco Advanced Materials Corp., Allegheny Ludlum Corp.	West Penn Power Co.	Allocation of QF demand charges in the fuel cost, cost-of- service, rate design.
9/90	8278	MD	Maryland Industrial Group	Baltimore Gas & Electric Co.	Cost-of-service, rate design, revenue allocation.
12/90	U-9346 Rebuttal	М	Association of Businesses Advocating Tariff Equity	Consumers Power Co.	Demand-side management, environmental externalities.
12/90	U-17282 Phase IV	LA	Louisiana Public Service Commission Staff	Gulf States Utilities	Revenue requirements, jurisdictional allocation.
12/90	90-205	ME	Airco Industrial Gases	Central Maine Power Co.	Investigation into interruptible service and rates.
1/9 1	90-12-03 Interim	СТ	Connecticut Industrial Energy Consumers	Connecticut Light & Power Co.	Interim rate relief, financial analysis, class revenue allocation.

Date	Case	Jurisdict.	Party	Utility	Subject
5/91	90-12-03 Phase II	СТ	Connecticut Industrial Energy Consumers	Connecticut Light & Power Co.	Revenue requirements, cost-of- service, rate design, demand-side management.
8/91	E-7, SUB SUB 487	NC	North Carolina Industrial Energy Consumers	Duke Power Co.	Revenue requirements, cost allocation, rate design, demand- side management.
8/91	8341 Phase I	MD	Westvaco Corp.	Potomac Edison Co.	Cost allocation, rate design, 1990 Clean Air Act Amendments.
8/91	91-372	ОН	Armco Steel Co., L.P.	Cincinnati Gas &	Economic analysis of
	EL-UNC			Electric Co.	cogeneration, avoid cost rate.
9/91	P-910511 P-910512	PA	Allegheny Ludlum Corp., Armco Advanced Materials Co., The West Penn Power Industrial Users' Group	West Penn Power Co.	Economic analysis of proposed CWIP Rider for 1990 Clean Air Act Amendments expenditures.
9/91	91-231 -E-NC	WV	West Virginia Energy Users' Group	Monongahela Power Co.	Economic analysis of proposed CWIP Rider for 1990 Clean Air Act Amendments expenditures.
10/91	8341 - Phase II	MD	Westvaco Corp.	Potomac Edison Co.	Economic analysis of proposed CWIP Rider for 1990 Clean Air Act Amendments expenditures.
10/91	U-17282	LA	Louisiana Public Service Commission Staff	Gulf States Utilities	Results of comprehensive management audit.
	o testimony iled on this.				
11/91	U-17949 Subdocket A	LA	Louisiana Public Service Commission Staff	South Central Bell Telephone Co. and proposed merger with Southern Bell Telephone Co.	Analysis of South Central Beil's restructuring and
12/91	91-410- EL-AIR	ОН	Armco Steel Co., Air Products & Chemicals, Inc.	Cincinnati Gas & Electric Co.	Rate design, interruptible rates.
12/91	P-880286	PA	Armco Advanced Materials Corp., Allegheny Ludlum Corp.	West Penn Power Co.	Evaluation of appropriate avoided capacity costs - QF projects.

Date	Case	Jurisdict.	Party	Utility	Subject
1/92	C-913424	PA	Duquesne Interruptible Complainants	Duquesne Light Co.	Industrial interruptible rate.
6/92	92-02-19	СТ	Connecticut Industrial Energy Consumers	Yankee Gas Co.	Rate design.
8/92	2437	NM	New Mexico Industrial Intervenors	Public Service Co. of New Mexico	Cost-of-service.
8/92	R-00922314	PA	GPU Industrial Intervenors	Metropolitan Edison Co.	Cost-of-service, rate design, energy cost rate.
9/92	39314	ID	Industrial Consumers for Fair Utility Rates	Indiana Michigan Power Co.	Cost-of-service, rate design, energy cost rate, rate treatment.
10/92	M-00920312 C-007	PA	The GPU Industrial Intervenors	Pennsylvania Electric Co.	Cost-of-service, rate design, energy cost rate, rate treatment.
12/92	U-17949	LA	Louisiana Public Service Commission Staff	South Central Bell Co.	Management audit.
12/92	R-00922378	PA	Armco Advanced Materials Co. The WPP Industrial Intervenors	West Penn Power Co.	Cost-of-service, rate design, energy cost rate, SO ₂ allowance rate treatment.
1/93	8487	MD	The Maryland Industrial Group	Baltimore Gas & Electric Co.	Electric cost-of-service and rate design (flexible rates).
2/93	E002/GR- 92-1185	MN	North Star Steel Co. Praxair, Inc.	Northern States Power Co.	Interruptible rates.
4/93	EC92 21000 ER92-806- 000 (Rebuttal)	Federal Energy Regulatory Commission	Louisiana Public Service Commission Staff	Gulf States Utilities/Entergy agreement.	Merger of GSU into Entergy System; impact on system
7/93	93-0114- E-C	WV	Airco Gases	Monongahela Power Co.	Interruptible rates.
8/93	930759-EG	FL	Florida Industrial Power Users' Group	Generic - Electric Utilities	Cost recovery and allocation of DSM costs.
9/93	M-009 30406	PA	Lehigh Valley Power Committee	Pennsylvania Power & Light Co.	Ratemaking treatment of off-system sales revenues.

Date	Case	Jurisdict.	Party	Utility	Subject
11/93	346	KY	Kentucky Industrial Utility Customers	Generic - Gas Utilities	Aliocation of gas pipeline transition costs - FERC Order 636.
12/93	U-17735	LA	Louisiana Public Service Commission Staff	Cajun Electric Power Cooperative	Nuclear plant prudence, forecasting, excess capacity.
4/94	E-015/ GR-94-001	MN	Large Power Intervenors	Minnesota Power Co.	Cost allocation, rate design, rate phase-in plan.
5/94	U-20178	LA	Louisiana Public Service Commission	Louisiana Power & Light Co.	Analysis of least cost integrated resource plan and demand-side management program.
7/94	R-00942986	PA	Armco, Inc.; West Penn Power Industrial Intervenors	West Penn Power Co.	Cost-of-service, allocation of rate increase, rate design, emission allowance sales, and operations and maintenance expense.
7/94	94-0035- E-42T	WV	West Virginia Energy Users Group	Monongahela Power Co.	Cost-of-service, allocation of rate increase, and rate design.
8/94	EC94 13-000	Federal Energy Regulatory Commission	Louisiana Public Service Commission	Gulf States Utilities/Entergy	Analysis of extended reserve shutdown units and violation of system agreement by Entergy.
9/94	R-00943 081 R-00943 081C0001	PA	Lehigh Valley Power Committee	Pennsylvania Public Utility Commission	Analysis of interruptible rate terms and conditions, availability.
9/94	U-17735	LA	Louisiana Public Service Commission	Cajun Electric Power Cooperative	Evaluation of appropriate avoided cost rate.
9/94	U-19904	LA	Louisiana Public Service Commission	Gulf States Utilities	Revenue requirements.
10/94	5258-U	GA	Georgia Public Service Commission	Southern Bell Telephone & Telegraph Co.	Proposals to address competition in telecommunication markets.
11/94	EC94-7-000 ER94-898-00		Louisiana Public Service Commission	El Paso Electric and Central and Southwest	Merger economics, transmission equalization hold harmless proposals.
2/95	941-430EG	СО	CF&I Steel, L.P.	Public Service Company of Colorado	Interruptible rates, cost-of-service.

Date	Case	Jurisdict.	Party	Utility	Subject
4/95	R-00943271	I PA	PP&L Industrial Customer Alliance	Pennsylvania Power & Light Co.	Cost-of-service, allocation of rate increase, rate design, interruptible rates.
6/95	C-00913424 C-00946104		Duquesne Interruptible Complainants	Duquesne Light Co.	Interruptible rates.
8/95	ER95-112 -000	FERC	Louisiana Public Service Commission	Entergy Services, Inc.	Open Access Transmission Tariffs - Wholesale.
10/95	U-21485	LA	Louisiana Public Service Commission	Gulf States Utilities Company	Nuclear decommissioning, revenue requirements, capital structure.
10/95	ER95-1042 -000	FERC	Louisiana Public Service Commission	System Energy Resources, Inc.	Nuclear decommissioning, revenue requirements.
10/95	U-21485	LA	Louisiana Public Service Commission	Gulf States Utilities Co.	Nuclear decommissioning and cost of debt capital, capital structure.
11/95	1-940032	PA	Industrial Energy Consumers of Pennsylvania	State-wide - all utilities	Retail competition issues.
7/96	U-21496	LA	Louisiana Public Service Commission	Central Louisiana Electric Co.	Revenue requirement analysis.
7/96	8725	MD	Maryland Industrial Group	Baltimore Gas & Elec. Co., Potomac Elec. Power Co., Constellation Energy Co.	Ratemaking issues associated with a Merger.
8/96	U-17735	LA	Louisiana Public Service Commission	Cajun Electric Power Cooperative	Revenue requirements.
9/96	U-22092	LA	Louisiana Public Service Commission	Entergy Gulf States, Inc.	Decommissioning, weather normalization, capital structure.
2/97	R-973877	PA	Philadelphia Area Industrial Energy Users Group	PECO Energy Co.	Competitive restructuring policy issues, stranded cost, transition charges.
6/97	Civil Action No. 94-11474	US Bank- ruptcy Court Middle District of Louisiana	Louisiana Public Service Commission	Cajun Electric Power Cooperative	Confirmation of reorganization plan; analysis of rate paths produced by competing plans.

Date	Case	Jurisdict.	Party	Utility	Subject
6/97	R-973953	ΡΑ	Philadelphia Area Industrial Energy Users Group	PECO Energy Co.	Retail competition issues, rate unbundling, stranded cost analysis.
6/97	8738	MD	Maryland Industrial Group	Generic	Retail competition issues
7/97	R-973954	PA	PP&L Industrial Customer Aliance	Pennsylvania Power & Light Co.	Retail competition issues, rate unbundling, stranded cost analysis.
10/97	97-204	KY	Alcan Aluminum Corp. Southwire Co.	Big River Electric Corp.	Analysis of cost of service issues - Big Rivers Restructuring Plan
10/97	R-974008	PA	Metropolitan Edison Industrial Users	Metropolitan Edison Co.	Retail competition issues, rate unbundling, stranded cost analysis.
10/97	R-974009	PA	Pennsylvania Electric Industrial Customer	Pennsylvania Electric Co.	Retail competition issues, rate unbundling, stranded cost analysis.
11/97	U-22491	LA	Louisiana Public Service Commission	Entergy Gulf States, Inc.	Decommissioning, weather normalization, capital structure.
11/97	P-971265	PA	Philadelphia Area Industrial Energy Users Group	Enron Energy Services Power, Inc./ PECO Energy	Analysis of Retail Restructuring Proposal.
12/97	R-973981	PA	West Penn Power Industrial Intervenors	West Penn Power Co.	Retail competition issues, rate unbundling, stranded cost analysis.
12/97	R-974104	PA	Duquesne Industrial Intervenors	Duquesne Light Co.	analysis. Retail competition issues, rate unbundling, stranded cost analysis.
3/98 (Allocate Cost Issu	U-22092 d Stranded ues)	LA	Louisiana Public Service Comission	Gulf States Utilities Co.	Retail competition, stranded cost quantification.
3/98	U-22092		Louisiana Public Service Commission	Gulf States Utilities, Inc.	Stranded cost quantification, restructuring issues.
9/98	U-17735		Louisiana Public Service Commission	Cajun Electric Power Cooperative, Inc.	Revenue requirements analysis, weather normalization.
12/98	8794	MD	Maryland Industrial Group and	Baltimore Gas and Electric Co.	Electric utility restructuring, stranded cost recovery, rate

Date	Case	Jurisdict.	Party	Utility	Subject
			Millennium Inorganic Chemicals Inc.		unbundling.
12/98	U-23358	LA	Louisiana Public Service Commission	Entergy Gulf States, Inc.	Nuclear decommissioning, weather normalization, Entergy System Agreement.
5/99 (Cross- Answer	EC-98- 40-000 ing Testimony)	FERC	Louisiana Public Service Commission	American Electric Power Co. & Central South West Corp.	Merger issues related to market power mitigation proposals.
5/99 (Respor Testimo		KY	Kentucky Industrial Utility Customers, Inc.	Louisville Gas & Electric Co.	Performance based regulation, settlement proposal issues, cross-subsidies between electric. gas services.
6/99	98-0452	WV	West Virginia Energy Users Group	Appalachian Power, Monongahela Power, & Potomac Edison Companies	Electric utility restructuring, stranded cost recovery, rate unbundling.
7/99	99-03-35	CT	Connecticut Industrial \Energy Consumers	United Illuminating Company	Electric utility restructuring, stranded cost recovery, rate unbundling.
7/99	Adversary Proceeding No. 98-1065	U.S. Bankruptcy Court	Louisiana Public Service Commission	Cajun Electric Power Cooperative	Motion to dissolve preliminary injunction.
7/99	99-03-06	СТ	Connecticut Industrial Energy Consumers	Connecticut Light & Power Co.	Electric utility restructuring, stranded cost recovery, rate unbundling.
10/99	U-24182	LA	Louisiana Public Service Commission	Entergy Gulf States, Inc.	Nuclear decommissioning, weather normalization, Entergy System Agreement.
12/99	U-17735	LA	Louisiana Public Service Commission	Cajun Electric Power Cooperative, Inc.	Ananlysi of Proposed Contract Rates, Market Rates.
03/00	U-17735	LA	Louisiana Public Service Commission	Cajun Electric Power Cooperative, Inc.	Evaluation of Cooperative Power Contract Elections
03/00	99-1658- EL-ETP	ОН	AK Steel Corporation	Cincinnati Gas & Electric Co.	Electric utility restructuring, stranded cost recovery, rate Unbundling.

Date	Case	Jurisdict.	Party	Utility	Subject
08/00	98-0452 E-GI 98-0452 E-GI	WVA	West Virginia Energy Users Group	Appalachian Power Co. American Electric Co.	Electric utility restructuring rate unbundling.
08/00	00-1050 E-T 00-1051-E-T	WVA -	West Virginia Energy Users Group	Mon Power Co. Potomac Edison Co.	Electric utility restructuring rate unbundling.
10/00	SOAH 473- 00-1020 PUC 2234	тх	The Dallas-Fort Worth Hospital Council and The Coalition of Independent Colleges And Universities	TXU, Inc.	Electric utility restructuring rate unbundling.
12/00	U-24993	LA	Louisiana Public Service Commission	Entergy Gulf States, inc.	Nuclear decommissioning, revenue requirements.
12/00	EL00-66- 000 & ER-28 EL95-33-002		Louisiana Public Service Commission	Entergy Services Inc.	Inter-Company System Agreement: Modifications for retail competition, interruptible load.
04/01	U-21453, U-20925, U-22092 (Subdocket f Addressing (LA 3) Contested Issue	Louisiana Public Service Commission es	Entergy Gulf States, Inc.	Jurisdictional Business Separation - Texas Restructuring Plan
10/01	14000-U	GA	Georgia Public Service Commission Adversary Staff	Georgia Power Co.	Test year revenue forecast.
11/01	U-25687	LA	Louisiana Public Service Commission	Entergy Gulf States, Inc.	Nuclear decommissioning requirements transmission revenues.
11/01	U-25965	LA	Louisiana Public Service Commission	Generic	Independent Transmission Company ("Transco"). RTO rate design.
03/02	001148-EI	FL	South Florida Hospital and Healthcare Assoc.	Florida Power & Light Company	Retail cost of service, rate design, resource planning and demand side management.
06/02	U-25965	LA	Louisiana Public Service Commission	Entergy Gulf States Entergy Louisiana	RTO issues
07/02	U-21453	LA	Louisiana Public Service Commission	SWEPCO, AEP	Jurisdictional Business Sep Texas Restructuring Plan.

Date	Case	Jurisdict.	Party	Utility	Subject
08/02	U-25888	LA	Louisiana Public Service Commission	Entergy Louisiana, Inc. Entergy Gulf States, Inc.	Modifications to the Inter- Company System Agreement, Production Cost Equalization.
08/02	EL01- 88-000	FERC	Louisiana Public Service Commission	Entergy Services Inc. and The Entergy Operating Companies	Modifications to the Inter- Company System Agreement, Production Cost Equalization.
11/02	02S-315EG	CO	CF&I Steel & Climax Molybdenum Co.	Public Service Co. of Colorado	Fuel Adjustment Clause
01/03	U-17735	LA	Louisiana Public Service Commission	Louisiana Coops	Contract Issues
02/03	02S-594E	CO	Cripple Creek and Victor Gold Mining Co.	Aquila, Inc.	Revenue requirements, purchased power.
04/03	U-26527	LA	Louisiana Public Service Commission	Entergy Gulf States, Inc.	Weather normalization, power purchase expenses, System Agreement expenses.
11/03	ER03-753-0	00 FERC	Louisiana Public Service Commission Staff	Entergy Services, Inc. and the Entergy Operating Companies	Proposed modifications to System Agreement Tariff MSS-4.
11/03	 ER03-583-000, FERC ER03-583-001, and ER03-583-002 ER03-681-000, ER03-681-001 ER03-682-000, ER03-682-001, and ER03-682-002 		Louisiana Public Service Commission	Entergy Services, Inc., the Entergy Operating Companies, EWO Market-	Evaluation of Wholesale Purchased Power Contracts.
				Ing, L.P, and Entergy Power, Inc.	
12/03	U-27136	LA	Louisiana Public Service Commission	Entergy Louisiana, Inc.	Evaluation of Wholesale Purchased Power Contracts.
01/04	E-01345- 03-0437	AZ	Kroger Company	Arizona Public Service Co.	Revenue allocation rate design.
02/04	00032071	ΡΑ	Duquesne Industrial Intervenors	Duquesne Light Company	Provider of last resort issues.
03/04	03A-436E	CO	CF&I Steel, LP and Climax Molybedenum	Public Service Company of Colorado	Purchased Power Adjustment Clause.

Date	Case	Jurisdict.	Party	Utility	Subject
04/04	2003-00433 2003-00434	PA	Kentucky Industrial Utility Customers, Inc.	Louisville Gas & Electric Co. Kentucky Utilities Co.	Cost of Service Rate Design
0-6/04	03S-539E	со	Cripple Creek, Victor Gold Mining Co., Goodrich Corp., Holcim (U.S.,), Inc., and The Trane Co.	Aquila, Inc.	Cost of Service, Rate Design Interruptible Rates
06/04	R-00049255	PA	PP&L Industrial Customer Alliance PPLICA	PPL Electric Utilities Corp.	Cost of service, rate design, tariff issues and transmission service charge.
10/04	04S-164E	со	CF&I Steel Company, Climax Mines	Public Service Company of Colorado	Cost of service, rate design, Interruptible Rates.
03/05	Case No. 2004-00426 Case No. 2004-00421	KY	Kentucky Utilities Co. Louisville Gas & Electric Co.	Kentucky Industrial Utility Customers, Inc.	Environmental cost recovery.

BEFORE THE

FLORIDA PUBLIC SERVICE COMMISSION

IN RE: PETITION FOR RATE INCREASE BY) DOCKET NO. 050045-EI FLORIDA POWER & LIGHT COMPANY)

EXHIBIT_(SJB-2)

Exhibit___(SJB-2)

Page 1 of 2

Schedule 1

Schedule 7.1 Forecast of Capacity, Demand, and Scheduled Maintenance At Time Of Summer Peak

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)
								Firm					
	Total	Firm	Farm		Total	Totai		Summer	R	eserve		R	eserve
	Installed 1/	Capacity	Capacity	Firm	Capacity	Peak 3/		Peak	Marg	in Before	Scheduled	Mar	gin After
	Capacity	import	Export	QF	Available 2/	Demand	DSM 4/	Demand	Mainte	enance 5/	Maintenance	Maint	enance 6/
Year	<u>MW</u>	MW	MW	<u>мw</u>	<u>MW</u>	MW	<u>.MW</u>	MW	MW	% of Peak	MW	MW	% of Peak
2004	19 130	2.667	0	880	22,677	20,297	1.510	18 787	3 890	20.7	0	3.890	20.7
2005	21 021	2,257	0	870	24,148	20,799	1.589	19 2:0	4 938	257	0	4.938	25.7
2006	21.020	2.257	0	734	24,011	21.331	1.667	19 664	4 347	221	D	4 347	22.1
2007	22.162	1,312	0	734	24,208	21.851	1 744	20 107	4,101	204	0	4,101	20.4
2008	22.486	1.312	0	734	24.532	22.289	1 822	20 457	4.065	199	0	4.065	19 9
2009	23 630	1.312	0	683	25.625	22.784	1.897	20.887	4,738	22.7	0	4.738	22.7
2010	23 630	1 312	0	640	25.582	23.294	1 922	21.372	4.210	19.7	0	4.210	19.7
2011	24 774	1.312	0	595	26,681	23.783	1.922	21,861	4.820	22.0	D	4.820	22.0
2012	25 918	1.312	0	595	27,825	24.279	1.922	22.357	5.468	24,5	0	5,468	24.5
2013	25 918	1.312	0	595	27.825	24.784	1.922	22.862	4.963	21.7	0	4,963	21.7

1: Capacity additions and changes, projected to be in-service by June 1st are considered to be available to meet Summer peak loads which are forecasted to occur during August of the year indicated. All values are Summer net MW.

2' Total Capacity Available = Col (2) + Col (3) - Col (4) + Col (5)

3/ These forecasted values reflect the Most Likely forecast without DSM

4. The MW shown represent cumulative load management, capability plus incremental conservation. They are not included in total additional resources bid reduce the peak load upon which Reserve Margin calculations are based.

5: Margin (fm) Before Maintenance = Col (10) / Col (9)

6: Margin (*) After Maintenance = Cot (13) / Cot (9)

Exhibit (SJB-2)

Page 2 of 2

Schedule 2

Schedule 7.2 Forecast of Capacity , Demand, and Scheduled Maintenance At Time of Winter Peak

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)
								Firm					
	-	-	F		T	-			~			~	
	Total	Firm	Firm		Total	Total		Winter		eserve			eserve
	Installed 1/	Capacity	Capacity	Firm	Capacity	Peak 3/		Peak	Marg	in Before	Scheduled	Mar	gin After
	Capability	Import	Export	QF	Available 2/	Demand	DSM 4/	Demand	Maint	enance 5/	Maintenance	Maint	enance 6/
Year	MW	MW	MW	MW	MW	MW	MW	MW	MW	% of Peak	MW	_MW	% of Peak
2003/04	20.356	2.345	0	880	23,581	20,081	1,561	18.520	5.061	27.3	C	5.061	27.3
2004/05	19 993	2.339	Ċ	870	23,202	20.583	1615	18 968	4.234	22.3	0	4.234	22.3
2005/06	22.390	2,339	0	734	25,463	21.100	1.670	19 430	6 033	31.0	0	6.033	31.0
2006/07	22,389	2.339	C	734	25.462	21,605	1.723	19 882	5 580	28 1	0	5.580	28.1
2007/08	23,569	1,321	0	734	25.624	22.046	1776	20.270	5 354	26.4	O	5.354	26 4
2008/09	23,931	1,321	O	734	25.986	22.539	1.828	20 711	5 275	25.5	0	5.275	25 5
2009/10	25 112	1.321	С	683	27.116	23 026	1.873	21,153	5.963	28.2	0	5.963	28.2
2010/11	25 112	1,321	0	595	27.028	23.522	1.873	21,649	5,379	24 8	0	5.379	24.B
2011/12	26.293	1,321	0	595	28.209	24.024	1.873	22,151	6,058	27 3	0	6.058	27.3
2012/13	27,474	1,321	0	595	29,390	24.535	1,873	22,662	6,728	29.7	0	6,728	29.7

1/ Capacity additions and changes projected to be in-service by January 1st are considered to be available to meet Winter peak loads which are forecast to occur during January of the "second" year indicated. All values are Winter net MW

2/ Total Capacity Available = Col (2) + Col (3) - Col (4) + Col (5)

3/ These forecasted values reflect the Most Likely forecast without DSM

4/ The MW shown retriesent cumulative load management, capability plus incremental conservation. They are not included in total additional resources but reduce the beak load upon which Reserve Margin calculations are based.

5/ Margin (3), Before Maintenance ≈ Col (10) / Col (9)

6/ Margin (**) After Maintenance = Col (13) / Col (9)

FLORIDA PUBLIC SERVICE COMMISSION

IN RE: PETITION FOR RATE INCREASE BY) DOCKET NO. 050045-EI FLORIDA POWER & LIGHT COMPANY)

EXHIBIT_(SJB-3)

2005	Purchases ⁽⁴⁾ New Short-Term Purchase ⁽⁵⁾ Changes to existing Units Purchases ⁽⁴⁾ Manatee Unit #3 Combined Cycle ⁽⁵⁾ New Short-Term Purchase ⁽⁵⁾ Conversion of MR #8 CT's to CC ⁽⁶⁾ Manatee Unit #3 Combined Cycle ⁽⁶⁾ Conversion of MR #8 CT's to CC ⁽⁶⁾	<u>Winter</u> ⁽²⁾ (127) 21 (16) (363) 1,201	<u>Summer ⁽²⁾</u> 44 360 74 (60) 1.107 (360) 785	<u>Winter</u> 27% 22%	<u>Summer</u> 21% 26%
2005	New Short-Term Purchase ⁽⁵⁾ Changes to existing Units Purchases ⁽⁴⁾ Manatee Unit #3 Combined Cycle ⁽⁶⁾ New Short-Term Purchase ⁽⁵⁾ Conversion of MR #8 CT's to CC ⁽⁵⁾ Manatee Unit #3 Combined Cycle ⁽⁶⁾ Conversion of MR #8 CT's to CC ⁽⁶⁾	21 (16) 	360 74 (60) 1.107 (360)		_
2005 2 0 06	Changes to existing Units Purchases ⁽⁴⁾ Manatee Unit #3 Combined Cycle ⁽⁵⁾ New Short-Term Purchase ⁽⁵⁾ Conversion of MR #8 CT's to CC ⁽⁶⁾ Manatee Unit #3 Combined Cycle ⁽⁶⁾ Conversion of MR #8 CT's to CC ⁽⁶⁾	21 (16) (363)	74 (60) 1.107 (360)	22%	26%
2005 2 0 06	Purchases ⁽⁴⁾ Manatee Unit #3 Combined Cycle ⁽⁵⁾ New Short-Term Purchase ⁽⁵⁾ Conversion of MR #8 CT's to CC ⁽⁶⁾ Manatee Unit #3 Combined Cycle ⁽⁶⁾ Conversion of MR #8 CT's to CC ⁽⁶⁾	(16) (363)	(60) 1,107 (360)	22%	26%
2006	Manatee Unit #3 Combined Cycle ⁽⁸⁾ New Short-Term Purchase ⁽⁵⁾ Conversion of MR #8 CT's to CC ⁽⁵⁾ Manatee Unit #3 Combined Cycle ⁽⁸⁾ Conversion of MR #8 CT's to CC ⁽⁶⁾	(363)	1,107 (360)	22%	26%
2006	New Short-Term Purchase ⁽⁵⁾ Conversion of MR #8 CT's to CC ⁽⁵⁾ Manatee Unit #3 Combined Cycle ⁽⁶⁾ Conversion of MR #8 CT's to CC ⁽⁶⁾	 (363)	(360)		
2006	Conversion of MR #8 CT's to CC ⁻¹⁵ Manatee Unit #3 Combined Cycle ⁻¹⁵ Conversion of MR #8 CT's to CC ⁻¹⁶¹	(363)			
2006	Manatee Unit #3 Combined Cycle ⁽⁶⁾ Conversion of MR #8 CT's to CC ⁽⁶⁾		785		
	Conversion of MR #8 CT's to CC	1.201			
				31%	22%
		1,198			
	Purchases (4)	(136)	(136)		
	Changes to existing Units	(2)	(1)		
2007	Purchases (4)		(945)	28%	20%
	Turkey Point Combined Cycle #5		1,144		
	Changes to existing Units	(1)	(2)		
2008	Purchases (4)	(1.018)		26%	20%
	Turkey Point Combined Cycle #5 ⁻¹⁶	1,181			
	Combustion Turbines at Midway		324		
	Changes to existing Units	(1)			
	Combustion Turbines at Midway	362		26%	23%
	Purchases 4		(51)		
4	Combined Cycle at Corbett 161		1,144		
	Combined Cycle al Corbett (6)	1,181		28%	20%
I	Purchases ⁴	(51)	(975)		
1	New Purchase(s)		931		
	Unsited Combined Cycle # 1 ⁻⁽⁶⁾		1.144	25%	22%
1	Purchases 141	(1,020)	(45)		
1	New Purchase(s)	931			
2012 0	Unsited Combined Cycle # 1	1 181			
l	Unsited Combined Cycle # 2 ⁻¹⁶¹		1.144	27%	25%
:013 L	Unsited Combined Cycle # 2 ⁽⁶⁾	1,181		30%	22%
	TOTALS =	5,702	5,627		
Addition	nat information about these resulting reserve			n Schedules 7 & 8 respe	ctively.
Winter	values are values for January of year shown				
Summe	er values are values for August of year show	n.			
These a	are firm capacity purchases. See Section I.D	and III.A. for more	details.		
Negotia	ations are currently underway between FPL a	and several parties t	o secure this short - tern	n capacity.	
All new	combined cycle units are scheduled to be in d in the Summer reserve margin calculation t	-service in June of t	he year shown. Conseq	uently, they are	

Table III.B.1

Exhibit_(SJB-3) Page 2 of 2

Page 5 of 7

	Status Report and Specif	Scheo ications	lule 9 of Proposed Generating Facilities
(1)	Plant Name and Unit Number: (Corbett Co	ombined Cycle No. 1
(2)	Capacitya. Summer1,144b. Winter1,181		
(3)	Technology Type: Combined C	ycie	
(4)	Anticipated Construction Timing a. Field construction start-date: b. Commercial In-service date:	2007 2009	
(5)	Fuel a. Primary Fuel b. Alternate Fuel		Natural Gas Distillate
(6)	Air Pollution and Control Strategy:		Natural Gas, Dry Low No, Combustors, SCR 0.0015% S. Distillate, & Water Injection on Distillate
(7)	Cooling Method:		Cooling Tower
(8)	Total Site Area:	220	Acres
(9)	Construction Status:	Ρ	(Planned)
(10)	Certification Status:	Ρ	(Planned)
(11)	Status with Federal Agencies:	Ρ	(Planned)
(12)	Projected Unit Performance Data: Planned Outage Factor (POF): Forced Outage Factor (FOF): Equivalent Availability Factor (EAF): Resulting Capacity Factor (%): Average Net Operating Heat Rate (ANG Base Operation 75F,100%	OHR):	2% 1% 97% (Base & Duct Firing Operation) Approx. 70% (First Year Base Operation) 6,835 Btu/kWh (Base Operation)
(13)	Projected Unit Financial Data *,** Book Life (Years): Total Installed Cost (In-Service Year \$/ Direct Construction Cost (\$/kW): AFUDC Amount (\$/kW): Escalation (\$/kW): Fixed O&M (\$/kW -Yr.): (2009 \$kW Variable O&M (\$/MWH): (2009 \$/MW K Factor:	Ýr)	25 years 538 13.44 0.20 Approx. 1.6
	* \$/kW values are based on Summer of	capacity.	

\$/kW values are based on Summer capacity.
 ** Fixed O&M cost includes capital replacement, but not firm gas transportation costs.

NOTE: Total installed cost includes escalation and AFUDC only. Transmission interconnection, transmission integration and gas expansion costs are not included.

FLORIDA PUBLIC SERVICE COMMISSION

IN RE: PETITION FOR RATE INCREASE BY) DOCKET NO. 050045-EI FLORIDA POWER & LIGHT COMPANY)

EXHIBIT_(SJB-4)

Exhibit (SJB-4)

Page 1 of 2

Description	Total	CILC-1D	CILC-1G	CILC-1T	CS1	CS2	GS1	GSD1	GSLD1	GSLD2	GSLD3	MET
RATE BASE												
Electric Plant in Service	23,394,793	386.161	32.025	126,774	38,016	18,848	1,288,974	3,987,772	1,625,686	236,458	17.086	19,825
Accumulated Depreciation and Amortization	(11,700,179)	(194,646)	(15,997)	(72,635)	(18,999)	(9,268)	(627,385)	(1,993,313)	(812,056)	(118,671)	(9,735)	(10,076)
Net Plant In Service	11,694,614	191,516	16,028	54,139	19.017	9,580	661 589	1,994,459	813.630	117,787	7,351	9,748
Plant Held for Future Use	135,593	2,527	201	702	248	128	7,409	24,711	10,570	1,558	97	134
Construction Work In Progress	522,642	9,061	728	3,478	877	430	28,124	89,978	37,440	5,512	472	470
Total Utility Plant	12,352,849	203,103	16,956	58,319	20,141	10,138	697,122	2,109,148	861,639	124,857	7,920	10.352
Working Capital - Assets	2,252,159	40,145	3.341	15,183	3,740	1,811	137,928	391.496	157.849	23,355	1,961	1,788
Working Capital - Liabilities	(2,194,486)	(38,015)	(3,158)	(14,308)	(3,565)	(1,730)	(133,499)	(375,612)	(151,001)	(22,289)	(1,855)	(1,734)
Working Capital - Net	57,673	2,130	183	875	174	81	4,429	15,885	6,848	1,066	105	54
Total Rate Base	12,410,522	205,233	17,140	59,194	20,316	10,219	701,551	2,125,033	868,488	125,923	8,025	10,406
REVENUES	0 757 005		0.500	04.004	5 0 10	0.555	074.450					
Sales of Electricity	3,757,025	64,883 1,497	6,582 122	21,631 468	5,243	2,555	274,458	676,024	243,325	36,217	3,014	2,686
Other Operating Revenues	131,208				146	73	8,912	15,855	6,201	906	62	77
Total Operating Revenues	3,888,233	66,380	6,704	22,099	5,389	2,628	283,370	691,879	249,526	37,123	3,076	2,763
EXPENSES												
Operating & Maintenance	(1,591,191)	(27,416)	(2,274)	(10,237)	(2,568)	(1,248)	(97,501)	(270,432)	(108,816)	(16,065)	(1,326)	(1,241)
Depreciation & Amortization	(861,940)	(13,728)	(1,155)	(4,476)	(1,352)	(667)	(47,689)	(143,666)	(57,783)	(8,374)	(598)	(692)
Taxes Other Than Income	(299,798)	(4,884)	(412)	(1,432)	(482)	(241)	(17,339)	(50,973)	(20,600)	(2,987)	(194)	(246)
Income Taxes	(291,326)	(5,431)	(891)	(1,577)	(151)	(67)	(37,647)	(62,274)	(14,094)	(2,291)	(272)	(109)
Amortization of Property Losses	(62,383)	(994)	(87)	(340)	(94)	(45)	(4,083)	(10,317)	(3,949)	(577)	(44)	(45)
Gain or Loss on Sale of Plant	967	19	2	0	2	1	59	183	81	12	0	1
Total Operating Expense	(3,105,671)	(52,434)	(4,817)	(18,063)	(4,645)	(2,268)	(204,201)	(537,479)	(205,161)	(30,282)	(2,433)	(2,331)
NOI Before Curtailment Adjustment	782,562	13,946	1,887	4,036	744	360	79,169	154,400	44,365	6,841	643	432
Curtailment Credit Revenue	932				638	294						
Reassign Curtailment Credit Revenue	(932)	(17)	(1)	(8)	(2)	(1)	(47)	(165)	(68)	(10)	(1)	(1)
Net Curtailment Credit Revenue	0	(17)	(1)	(8)	637	293	(47)	(165)	(68)	(10)	(1)	(1)
Net Curtailment NOI Adjustment	0	(10)	(1)	(5)	391	180	(29)	(101)	(42)	(6)	(1)	(1)
Net Operating Income	782,562	13,935	1,886	4,031	1,135	540	79,140	154,299	44,323	6,834	642	432
Rate of Return	6.31%	6.79%	11.00%	6.81%	5.59%	5.28%	11.28%	7.26%	5.10%	5.43%	8.00%	4.15%
				0.0178	0.0070	5.2076	11.2078	1.2076	5.10%	3.43 /6	0.00 %	4.13%
Parity	1.00	1.08	1.75	1.08	0.89	0.84	1.79	1.15	0.81	0.86	1.27	0.66

Cost of Service Summary: Summer/Winter CP

Page 2 of 2

Cost of Service Summary: Summer/Winter CP

Description	OL-1	OS-2	RS1	SL-1	SL-2	SST-TST	SST1-DST	SST2-DST	SST3-DST
RATE BASE									
Electric Plant in Service	95,570	7,661	15,112,556	384,289	8,497	6,554	151	646	1,243
Accumulated Depreciation and Amortization	(54,430)	(3,227)	(7,522,866)	(228,249)	(4,320)	(3,404)	(55)	(305)	(543)
Net Plant In Service	41,140	4,434	7,589,691	156,040	4,177	3,150	96	342	700
Plant Held for Future Use	76	45	86,772	299	54	46	1	4	10
Construction Work In Progress	1,758	126	336,610	7,139	201	196	3	14	26
Total Utility Plant	42,975	4,604	8,013,073	163,479	4,433	3,392	100	360	737
Working Capital - Assets	8,509	738	1,427,483	34,913	916	817	11	57	117
Working Capital - Liabilities	(7,843)	(680)	(1,407,215)	(30, 198)	(868)	(741)	(10)	(55)	(110)
Working Capital - Net	666	58	20,268	4,715	49	76	0	2	6
Total Rate Base	43,641	4,662	8,033,341	168,193	4,482	3,469	100	362	743
REVENUES									
Sales of Electricity	11,639	1,140	2,349,084	52,970	2,274	2,959	8	96	236
Other Operating Revenues	260	39	95,729	792	40	21	1	2	5
Total Operating Revenues	11,899	1,179	2,444,813	53,762	2,314	2,980	9	99	241
EXPENSES									
Operating & Maintenance	(5,869)	(489)	(1,022,912)	(21,506)	(628)	(534)	(8)	(40)	(81)
Depreciation & Amortization	(5,975)	(297)	(551,421)	(23,468)	(306)	(221)	(5)	(23)	(43)
Taxes Other Than Income	(1,104)	(114)	(194,253)	(4,318)	(108)	(84)	(2)	(9)	(17)
Income Taxes	917	(53)	(166,527)	376	(430)	(769)	4	(7)	(30)
Amortization of Property Losses	(319)	(26)	(40,031)	(1,386)	(23)	(19)	(0)	(1)	(3)
Gain or Loss on Sale of Plant	1	1	600	5	0	0	0	0	0
Total Operating Expense	(12,349)	(978)	(1,974,543)	(50,297)	(1,495)	(1,627)	(12)	(79)	(174)
NOI Before Curtailment Adjustment	(450)	201	470,270	3,464	819	1,352	(3)	20	67
Curtailment Credit Revenue									
Reassign Curtailment Credit Revenue	0	(0)	(611)	0	(0)	(0)	0	(0)	(0)
Net Curtailment Credit Revenue	0	(0)	(611)	0	(0)	(0)	0	(0)	(0)
Net Curtailment NOI Adjustment	0	(0)	(375)	0	(0)	(0)	0	(0)	(0)
Net Operating Income	(450)	201	469,895	3,464	818	1,352	(3)	20	67
Rate of Return	-1.03%	4.31%	5.85%	2.06%	18.26%	38.99%	-3.41%	5.43%	9.01%
Parity	(0.16)	0.68	0.93	0.33	2.90	6.18	(0.54)	0.86	1.43

FLORIDA PUBLIC SERVICE COMMISSION

IN RE: PETITION FOR RATE INCREASE BY) DOCKET NO. 050045-EI FLORIDA POWER & LIGHT COMPANY)

EXHIBIT_(SJB-5)

Total Acct 368 Line Transformers

	<u>Allocator</u>	<u>Total PIS (FPL)</u>	RS	GSLDT	<u>Total Retail</u>
Sec PRI Total Acco	FP109 FP104 ount 368	\$ 1,412,147,268 <u>\$ 172,131,054</u> \$ 1,584,278,322	36,936,568 14,938,106	75.601%2,125,86462.059%2,027,302	4.351% 48,857,060 8.422% 24,070,852
Line Transformers only Primary Total Allocated Acct. 368 No. Secondary Customers			\$ 1,067,601,562 <u>\$ 106,822,639</u> \$ 1,174,424,201 3,870,857	\$ 61,445,225 <u>\$ 14,497,270</u> \$ 75,942,494 2,911	
\$Cost/cus Avg kW M \$Cost/kVa	lax Demand	l (FP109)	\$ 275.80 9.5 \$ 28.90	\$ 21,107.94 730.3 \$ 28.90	i

.

FLORIDA PUBLIC SERVICE COMMISSION

IN RE: PETITION FOR RATE INCREASE BY) DOCKET NO. 050045-EI FLORIDA POWER & LIGHT COMPANY)

EXHIBIT_(SJB-6)

Page 1 of 2

Cost of Service Summary: 12 CP & 1/13th Average Demand, Minimum Distribution System on Secondary Facilities

Description	Total	CILC-1D	CILC-1G	CILC-1T	CS1	CS2	GS1	GSD1	GSLD1	GSLD2	GSLD3	MET
RATE BASE												
Electric Plant in Service	23,394,793	434,919	35,016	141,202	40,097	19,874	1,448,304	4,262,389	1,753,710	256,244	20,038	20,013
Accumulated Depreciation and Amortization	(11,700,179)	(224,686)	(17,940)	(81,030)	(20,416)	(9,964)	(714,078)	(2,176,309)	(896,739)	(131,360)	(11,451)	(10,186)
Net Plant In Service	11,694,614	210,232	17,076	60,172	19,682	9,910	734,225	2,086,080	856,970	124,885	8,587	9,827
Plant Held for Future Use	135,593	2,848	223	783	266	136	8,128	26,912	11,577	1,703	113	135
Construction Work In Progress	522,642	10,510	825	3,862	950	466	31,764	99,427	41,733	6,142	551	475
Total Utility Plant	12,352,849	223,590	18,124	64,816	20,897	10,512	774,117	2,212,420	910,281	132,730	9,251	10,437
Working Capital - Assets	2,252,159	42,830	3,506	15,900	3,849	1,865	147,103	407,910	165,125	24,442	2,125	1,798
Working Capital - Liabilities	(2,194,486)	(41,030)	(3,347)	(15,107)	(3,694)	(1,793)	(143,285)	(394,374)	(159,349)	(23,528)	(2,036)	(1,745)
Working Capital - Net	57,673	1,800	159	793	155	72	3,818	13,535	5,776	914	89	53
Total Rate Base	12,410,522	225,391	18,284	65,609	21,052	10,584	777,935	2,225,955	916,057	133,644	9,341	10,490
REVENUES												
Sales of Electricity	3,757,025	64,883	6,582	21,631	5,243	2,555	274,458	676,024	243,325	36,217	3,014	2,686
Other Operating Revenues	131,208	1,656	132	513	153	76	9,393	16,808	6,633	972	71	77
Total Operating Revenues	3,888,233	66,540	6,714	22,144	5,396	2,631	283,852	692,832	249,957	37,189	3,086	2,764
EXPENSES												
Operating & Maintenance	(1,591,191)	(29,440)	(2,399)	(10,771)	(2,652)	(1,289)	(104,272)	(282,995)	(114,361)	(16,890)	(1,448)	(1,248)
Depreciation & Amortization	(861,940)	(15,294)	(1,247)	(4,957)	(1,413)	(697)	(53,414)	(151,903)	(61,677)	(8,989)	(698)	(699)
Taxes Other Than Income	(299,798)	(5,333)	(437)	(1,574)	(498)	(249)	(19,080)	(53,226)	(21,655)	(3,158)	(223)	(247)
Income Taxes	(291,326)	(3,766)	(792)	(1,095)	(86)	(35)	(31,675)	(52,921)	(9,824)	(1,632)	(167)	(102)
Amortization of Property Losses	(62,383)	(1,037)	(89)	(351)	(95)	(46)	(4,287)	(10,555)	(4,048)	(592)	(47)	(45)
Gain or Loss on Sale of Plant	967	19	2	0	2	1	59	183	81	12	0	1
Total Operating Expense	(3,105,671)	(54,851)	(4,963)	(18,749)	(4,742)	(2,316)	(212,670)	(551,417)	(211,484)	(31,248)	(2,583)	(2,340)
NOI Before Curtailment Adjustment	782,562	11,689	1,751	3,396	654	316	71,182	141,415	38,474	5,940	502	424
Curtailment Credit Revenue	932				638	294						
Reassign Curtailment Credit Revenue	(932)	(20)	(2)	(9)	(2)	(1)	(56)	(190)	(80)	(12)	(1)	(1)
Net Curtailment Credit Revenue	0	(20)	(2)	(9)	637	293	(56)	(190)	(80)	(12)	(1)	(1)
Net Curtailment NOI Adjustment	0	(12)	(1)	(5)	391	180	(34)	(117)	(49)	(7)	(1)	(1)
Net Operating Income	782,562	11,676	1,750	3,390	1,045	496	71,148	141,298	38,425	5,933	502	423
Rate of Return	6.31%	5.18%	9.57%	5.17%	4.96%	4.68%	9.15%	6.35%	4.19%	4.44%	5.37%	4.03%
Parity	1.00	0.82	1.52	0.82	0.79	0.74	1.45	1.01	0.67	0.70	0.85	0.64

Exhibit____ (SJB-6)

Page 2 of 2

Description	OL-1	OS-2	RS1	SL-1	SL-2	SST-TST	SST1-DST	SST2-DST	SST3-DST
RATE BASE									
Electric Plant in Service	98,983	8,630	14,433,735	398,026	9,127	12,303	151	603	1,429
Accumulated Depreciation and Amortization	(56,573)	(3,847)	(7,096,275)	(236,855)	(4,735)	(6,743)	(55)	(286)	(651)
. Net Plant In Service	42,411	4,783	7,337,460	161,171	4,392	5,560	96	318	778
Plant Held for Future Use	100	52	82,069	394	59	78	1	4	12
Construction Work In Progress	1,862	157	315,742	7,556	222	350	3	13	31
Total Utility Plant	44,373	4,991	7,735,271	169,121	4,673	5,988	100	335	821
Working Capital - Assets	8,685	797	1,388,302	35,627	947	1,157	11	54	127
Working Capital - Liabilities	(8,044)	(746)	(1,363,199)	(31,012)	(904)	(1,111)	(10)	(52)	(121)
Working Capital - Net	641	51	25,104	4,615	43	46	0	2	5
Total Rate Base	45,014	5,042	7,760,374	173,736	4,716	6,033	100	337	826
REVENUES									
Sales of Electricity	11,639	1,140	2,349,084	52,970	2,274	2,959	8	96	236
Other Operating Revenues	271	42	93,482	836	42	39	1	2	6
Total Operating Revenues	11,910	1,182	2,442,566	53,806	2,316	2,998	9	99	242
EXPENSES									
Operating & Maintenance	(6,003)	(534)	(993,271)	(22,044)	(652)	(789)	(8)	(38)	(88)
Depreciation & Amortization	(6,083)	(327)	(529,824)	(23,904)	(325)	(415)	(5)	(21)	(49)
Taxes Other Than Income	(1,134)	(122)	(188,134)	(4,440)	(113)	(142)	(2)	(8)	(19)
Income Taxes	1,028	(19)	(190,069)	827	(411)	(559)	4	(8)	(23)
Amortization of Property Losses	(321)	(27)	(39,394)	(1,396)	(23)	(26)	(0)	(1)	(3)
Gain or Loss on Sale of Plant	1	1	600	5	0	0	0	0	0
Total Operating Expense	(12,511)	(1.028)	(1,940,092)	(50,952)	(1,524)	(1,930)	(12)	(77)	(183)
NOI Before Curtailment Adjustment	(601)	154	502,474	2,854	792	1,068	(3)	22	58
Curtailment Credit Revenue									
Reassign Curtailment Credit Revenue	(0)	(0)	(558)	(1)	(0)	(1)	0	(0)	(0)
Net Curtailment Credit Revenue	(0)	(0)	(558)	(1)	(0)	(1)	0	(0)	(0)
Net Curtailment NOI Adjustment	(0)	(0)	(343)	(1)	(0)	(0)	0	(0)	(0)
Net Operating Income	(601)	154	502,131	2,854	792	1,067	(3)	22	58
Rate of Return	-1.33%	3.05%	6.47%	1.64%	16.79%	17.69%	-3.38%	6.54%	7.07%
Parity	(0.21)	0.48	1.03	0.26	2.66	2.81	(0.54)	1.04	1.12

Cost of Service Summary: 12 CP & 1/13th Average Demand, Minimum Distribution System on Secondary Facilities

FLORIDA PUBLIC SERVICE COMMISSION

IN RE: PETITION FOR RATE INCREASE BY) DOCKET NO. 050045-EI FLORIDA POWER & LIGHT COMPANY)

EXHIBIT_(SJB-7)

Exhibit (SJB-7)

Page l of 2

Cost of Service Summary: Summer/Winter CP, Minimum Distribution System on Secondary Facilities

Description	Total	CILC-1D	CILC-1G	CILC-1T	CS1	CS2	GS1	GSD1	GSLD1	GSLD2	GSLD3	МЕТ
RATE BASE												
Electric Plant in Service	23,394,793	377,502	30,985	126.774	36,965	18,341	1,319,467	3,867,802	1,573,360	230,411	17,086	19.823
Accumulated Depreciation and Amortization	(11,700,179)	(191,311)	(15,597)	(72,635)	(18,594)	(9,073)	(639,252)	(1,947,054)	(791,930)	(116,343)	(9,735)	(10,076)
Net Plant In Service	11,694,614	186,191	15,388	54,139	18,371	9,268	680,215	1,920,748	781,430	114,068	7,351	9,748
Plant Held for Future Use	135,593	2,527	201	702	248	128	7,410	24,709	10,569	1,558	97	134
Construction Work In Progress	522,642	8,976	717	3.478	866	425	28,312	88,868	36,911	5,452	472	470
Total Utility Plant	12,352,849	197,694	16,306	58,319	19,485	9,821	715,936	2,034,325	828,910	121,078	7,920	10,351
Working Capital - Assets	2,252,159	39,652	3,283	15,183	3,681	1,783	139,354	384,992	154,899	23,012	1,961	1,786
Working Capital - Liabilities	(2,194,486)	(37,537)	(3,102)	(14,308)	(3,509)	(1,702)	(134,855)	(369,338)	(148,145)	(21,957)	(1,855)	(1,732)
Working Capital - Net	57.673	2,115	182	875	172	80	4,500	15,655	6,754	1,055	105	54
Total Rate Base	12,410,522	199,809	16,488	59,194	19,657	9,902	720,436	2,049,980	835.664	122,134	8,025	
	12,410,522	155,005	10,400	55,154	15,057	9,902	120,430	2,049,960	635,664	122,134	8,025	10,405
REVENUES												
Sales of Electricity	3,757,025	64,883	6,582	21,631	5,243	2,555	274.458	676,024	243,325	36,217	3.014	2,686
Other Operating Revenues	131,208	1,473	120	468	143	2,000	8,975	15,535	6,054	889	62	2,000
Total Operating Revenues	3,888,233	66,356	6,701	22,099	5,386	2.627	283,434	691,559	249,378	37,106	3,076	2,763
······································	0,000,200	00,000	0,101	22,000	0,000	2,021	200,404	031,003	245,510	57,100	3,070	2,765
EXPENSES												
Operating & Maintenance	(1,591,191)	(27,064)	(2,233)	(10,237)	(2,526)	(1,228)	(98,467)	(265,840)	(106,712)	(15,820)	(1,326)	(1,239)
Depreciation & Amortization	(861,940)	(13,364)	(1,111)	(4,476)	(1,308)	(646)	(49,055)	(138,591)	(55,604)	(8,121)	(598)	(692)
Taxes Other Than Income	(299,798)	(4,758)	(396)	(1,432)	(467)	(234)	(17,772)	(49,242)	(19,842)	(2,899)	(194)	(245)
Income Taxes	(291,326)	(5,796)	(935)	(1,577)	(195)	(89)	(36,436)	(67,230)	(16,281)	(2,546)	(272)	(109)
Amortization of Property Losses	(62,383)	(978)	(85)	(340)	(92)	(44)	(4,128)	(10,105)	(3,853)	(565)	(44)	(45)
Gain or Loss on Sale of Plant	967	19	2	0	2	1	59	183	81	12	0	1
Total Operating Expense	(3,105,671)	(51,942)	(4,759)	(18,063)	(4,586)	(2,240)	(205,799)	(530,826)	(202,211)	(29,939)	(2,433)	(2,330)
NOI Before Curtailment Adjustment	782,562	14,414	1,942	4,036	800	387	77.635	160,734	47,168	7.167	643	434
											• • •	
Curtailment Credit Revenue	932				638	294						
Reassign Curtailment Credit Revenue	(932)	(17)	(1)	(8)	(2)	(1)	(47)	(165)	(68)	(10)	(1)	(1)
Net Curtailment Credit Revenue	0	(17)	(1)	(8)	637	293	(47)	(165)	(68)	(10)	(1)	(1)
Net Curtailment NOI Adjustment	0	(10)	(1)	(5)	391	180	(29)	(101)	(42)	(6)	(1)	(1)
Net Operating Income	782,562	14,404	1,942	4,031	1,191	567	77,606	160,632	47,125	7,161	642	433
Rate of Return	6.31%	7.21%	11.78%	6.81%	6.06%	5.73%	10.77%	7.84%	5.64%	5.86%	8.00%	4.16%
Parity	1.00	1.14	1.87	1.08	0.96	0.91	1.71	1.24	0.89	0.93	1.27	0.66

Exhibit____(SJB-7)

Page 2 of 2

Description	OL-1	OS-2	RS1	SL-1	SL-2	SST-TST	SST1-DST	SST2-DST	SST3-DST
RATE BASE									
Electric Plant in Service	94,771	7,368	15,276,164	381,160	8,248	6,554	151	617	1,243
Accumulated Depreciation and Amortization	(54,123)	(3,114)	(7,585,776)	(227,047)	(4,224)	(3,404)	(55)	(294)	(543)
Net Plant In Service	40,648	4,254	7,690,388	154,113	4,024	3,150	96	323	700
Plant Held for Future Use	76	45	86,775	299	54	46	1	4	10
Construction Work In Progress	1,750	123	338,277	7,107	199	196	3	14	26
Total Utility Plant	42,474	4,422	8,115,440	161,519	4,277	3,392	100	341	737
Working Capital - Assets	8,463	722	1,436,751	34,735	902	817	11	55	116
Working Capital - Liabilities	(7,798)	(664)	(1,416,190)	(30,025)	(854)	(741)	(10)	(53)	(110)
Working Capital - Net	665	58	20,561	4,709	48	76	0	2	6
Total Rate Base	43,139	4,479	8,136,001	166,228	4,325	3,469	100	344	743
REVENUES									
Sales of Electricity	11,639	1,140	2,349,084	52,970	2,274	2,959	8	96	236
Other Operating Revenues	258	38	96,194	783	39	21	1	2	5
Total Operating Revenues	11,897	1,178	2,445,278	53,753	2,313	2,980	9	99	241
EXPENSES									
Operating & Maintenance	(5,837)	(477)	(1,029,529)	(21,378)	(618)	(534)	(8)	(39)	(80)
Depreciation & Amortization	(5,941)	(284)	(558,221)	(23,339)	(296)	(221)	(5)	(22)	(43)
Taxes Other Than Income	(1,093)	(110)	(196,626)	(4,272)	(105)	(84)	(2)	(8)	(17)
Income Taxes	883	(65)	(159,679)	244	(441)	(769)	4	(8)	(30)
Amortization of Property Losses	(317)	(25)	(40,333)	(1,380)	(22)	(19)	(0)	(1)	(3)
Gain or Loss on Sale of Plant	1	1	600	5	0	0	0	0	0
Total Operating Expense	(12,304)	(961)	(1,983,788)	(50,120)	(1,481)	(1,627)	(12)	(78)	(174)
NOI Before Curtailment Adjustment	(407)	217	461,491	3,632	832	1,352	(3)	21	67
Curtailment Credit Revenue									
Reassign Curtailment Credit Revenue	0	(0)	(611)	0	(0)	(0)	0	(0)	(0)
Net Curtailment Credit Revenue	0	(0)	(611)	Ő	(0)	(0)	0	(0)	(0)
Net Curtailment NOI Adjustment	0	(0)	(375)	0	(0)	(0)	0	(0)	(0)
Net Operating Income	(407)	217	461,116	3,632	832	1,352	(3)	21	67
Rate of Return	-0.94%	4.84%	5.67%	2.19%	19.23%	38.99%	-3.38%	6.18%	9.04%
Parity	(0.15)	0.77	0.90	0.35	3.05	6.18	(0.54)	0.98	1.43

Cost of Service Summary: Summer/Winter CP, Minimum Distribution System on Secondary Facilities

_