

TEI Contract Summary Contents:

- Scope of Work
- Bid Price Comparison
- Negotiated Savings/Discount
- Payment Milestones
- Performance Guarantees
- Performance Guarantees Based on MWe
- Warranty

2

- Delivery Liquidated Damages
- Limits of Liability
- Project Review Team

TEI Contract Summary Scope of Work:

Contractor shall provide the necessary management, personnel, material and facilities (except as specified to be furnished by Owner) and do all things necessary or incidental to the design, engineering, fabrication, testing, furnishing, delivery to Owner, of four Moisture Separator Reheaters (MSRs) with two stages of reheat.

	New	Current
No. of Tubes	8,144 (1018x8)	4,368 (546x8)
Heat Transfer Surface	315,496	144,032
	(39,437x8)	(18,004x8)
Chevron	Stainless Steel*	Carbon Steel

Comparison of New & Current MSRs

* Improved moisture removal

ŝ,

TEI Contract Summary Bid Price Comparison (000s):

	Alstom	Siemens
Equipment		
Insulation		
Install		REDACTED
Shipping		
Total		

[] CONFIDENTIAL

TEI Contract Summary Negotiated Savings/Price (000s):

CONFIDENTIAL

	Bid	Negotiated Price
Equipment		
Warranty		REDACTED
Shipping		
Total:		

TEI Contract Summary Payment Milestones:

[] CONFIDENTIAL

Milestone Date	Payment Milestone	% of Total Selling Price	Payment Amount (000's)
Sep 2007	Net 60 after order of MSR		
	Verification Tube Strip material has been ordered for Owner		
Dec 2007	Engineering Design Package- Complete		
Mar 2008	Material Receipt provided showing Tube Strip inventoried at Valtimet		
	Tube production: September – October 2008		
	True Finning: December 2008 – February 2009		
Oct 2008	Forgings arrive TEI	REDA	CTED
Dec 2008	Major materials arrive and TEI begins fabrication		
Jan 2009	TEI receives tubes		
Jun 2009	MSR Vessels are readied for shipping		
Jul 9, 2009	MSR Vessels arrive at Crystal River site, offloaded by TEI and are received without damage		
Dec 2009	 Provisional Acceptance – or – 120 days after installation completion, whichever is shorter 		

6

Note 1: Tolerances for measurement of performance parameters will be as follows.

Overall TTD: There will be a 1°F tolerance, so that the penalty starts at 11 F° and the penalty is to be calculated on "whole" degrees, as measurements will be rounded down to a whole integer.

ΔP:There will be a quarter pound tolerance, so that the penalty starts at 6.25 PSI

M.S.E.:Tolerance for M.S.E. will be reviewed and mutually approved at a later date.Instruments readings will be rounded to the nearest integer.

<u>Note 2:</u> Performance will be measured after the 2009 outage and the 2011 outage. Performance Guarantees will be paid as applicable after each outage but not twice for the same issue.

Note 3: Expect at least 8.0 MWe improvement due to new MSRs. Performance Guarantees penalize up to 2.7 MWe loss and provide no incentive for MWe above the expected 8.0.

TEI Contract Summary	CONFIDENTIAL
Periormance Guarantees	REDACTED
REDACTED	
8.	Progress Energy PEF-NCR-02249

TEI Contract Summary Delivery Liquidated Damages:

No. of Days Beyond September 1, 2009	Liquidated Damages per Day
1-5	
6-11	REDACTED
12-21	

Note: Delivery is scheduled for July 30, 2009 Outage start date is September 26, 2009

TEI Contract Summary Warranty:

[] CONFIDENTIAL

Warranty Period:

REDACTED

Corrective Measures:

REDACTED

Recurring Corrective Measure*:

		TTED		
	F	EDACILD		
 	 		· · · · · · · · · · · · · · · · · · ·	

* Corrective Measure taken to correct the same warranty problem for three (3) times during the Warranty Period (or any extension thereof under the preceding paragraph) hereinafter "Recurring Corrective Measures."

TEI Contract Summary Limits of Liability:

The liability of Contractor (excluding indemnity obligation of Contractor)

TEI Contract Summary: Project Review Team

Project Manager Project Technical Lead Legal Tax Audit Contracts Executive Sponsor Ted Williams Scott Deahna Dave Conley Betsy Dorset Loyd Graves Tony Owen Danny Roderick

₽.

THERMAL ENGINEERING INTERNATIONAL MSR TECHNOLOGY AND ADVANCED PROGRAMS DIVISION
 10375 Slusher Drive

 Santa Fe Springs, CA. 90670

 Phone:
 323-838-1150

 Fax:
 323-838-6454

 msr@thermalengint.com

September 14, 2007

Progress Energy Florida, Inc Raleigh, NC

Attention: Tony Owen

Subject: CRYSTAL RIVER MSRs CONTRACT – VARIOUS ITEMS

Reference: TEI Proposal 07-M062

Dear Mr. Owen:

This letter confirms the various items discussed on the telephone earlier this afternoon:

GC-31 - Page 26 of 44

- Change Engineering Design Package Complete To December 2007
- Change TEI receives tubes To January 2009

GC-32 - Page 28 of 44 Subcontracting And Assignment

 Contractor shall have the right to subcontract Fabrication Workscope with prior notice to Owner. Any such subcontracted work will meet all related and applicable specification requirements and would only be subcontracted to TEI's approve suppliers with previous MSR experience. Subcontracting any work will not relieve Contractor of responsibility for the performance of work in accordance with the Terms and Conditions of this Contract and any amendments executed by both parties.

GC-36 - page 33 of 44

Note: Tolerance for the measurement of performance parameters will be as follows:

- Overall TTD: There will be a 1°F tolerance, so that the penalty starts at 11 F° and the penalty is to be calculated on "whole" degrees, as measurements will be rounded down to a whole integer.
- ΔP : There will be a quarter pound tolerance, so that the penalty starts at 6.25 PSI.
- M.S.: Tolerance to be determined.

₽...

GC-36 - Page 34 of 44

B. Delivery Liquidated Damages

Insert – "at discretion of Owner" for Owner.

Tony, these are all the items we discussed and TEI is ready to execute this contract next week

Sincerely,

THERMAL ENGINEERING INTERNATIONAL MSR Technology & Advanced Programs Division

farme

Laurence Harma Senior Contracts Manager

LH:no/07-745

.

MSE = 1% = 0.25 MWE or 2.7/0.25 = 11% MSE in cap or \$125,000/%<u>MSE</u>

Performance Guarantee disposition:

2

The performance parameters will be measured during the 2009 outage. If the MSR's meet the Performance Guarantee values for TTD, Delta P and MSE then no payment will be with held. A parent Company Guarantee will be provided by Contractor to cover potential Performance Guarantee payments following the 2011 refueling outage,

If the Performance Guarantees are not met as a result of testing following the 2009 refucting outage, the appropriate L.D.s will be paid. In 2011, the final Performance Guarantee testing will be completed and if warranted L.D.s will be paid or remedied as noted above.

B. Delivery Liquidated Damages

For each day of unexcused delay in the delivery of the Work past the Equipment Delivery Date, Contractor will pay Owner as liquidated damages and not as a penalty, in accordance with the table below not to exceed one million three hundred and fifty thousand dollars (\$1,350,000).

No. of Days beyond September 1, 2009	Liquidated Damages per Day
1-5	\$10,000
6-11	\$50,000
12-21	\$100,000

It is understood and agreed that Owner's damage for late delivery would be difficult to determine and that these amounts are a reasonable estimate of Owner's expected damages for late delivery. Any amounts not promptly paid by Contractor may be set off against any aunount owed by Owner to Contractor, WARNING REGARDING SITE WORK

GC - 37

The Contractor is hereby advised that the generation, transmission and/or distribution of electrical energy involve the handling of a natural force which, when uncontrolled, is inherently hazardous to life and property. The Contractor is further hereby advised that, due to the nature of the Work to be performed hereunder, other hazardous or dangerous conditions (not necessarily related to the inherent danger of electricity) may also be involved in the Work. Accordingly, prior to the commencement of any Work at the Site, the Contractor shall inspect the Site specifically to ascertain the actual and potential existence and extent of any hazardous or dangerous conditions, and instruct the Contractor's employees, agents, and Subcontractors with respect to said conditions and the safety measures to be taken in connection therewith. During the course of the Work, the Contractor shall take all such measures as may be deemed necessary or advisable to protect and safeguard the person and property of the Contractor's and of the general public against all hazardous conditions as the same arise.

GC - 38 NOT USED

Contract No Page 34 of 44 #260741

Deleted: Performance Testing

MSR performance data will be collected and evaluated in conjunction with ASME PTC 6 turbine performance test to be conducted within right (8) weeks of reaching full power. [

•*111S*ER]

Deleted: at the discretion of Owner

MSR performance data will be collected and evaluated in conjunction with ASME PTC 6 turbine performance test to be conducted within eight (8) weeks of reaching full power following the 2009 and 2011 refueling outages.

.

F .

.

i

262 Max Expected 12 6.5 4.7 99 s - None a very s for e liquidated 2011 outages hages will be ormance Guarante a very s for e liquidated 2011 outages hages will be ormance Guarante i do MSR ves of M.S. effici	5 MWe Guaranteed 13 8 5 98 PDO e Parameters used r the four (4) MSI damages, if appl 5. The final pos determined by p rantee liquidated or rs above 10 F* (ov isel above 6 PSI (divided of the final ised above 6 PSI (divided of the final post)	3030 Nax Expected 12 9 5.3 99 for the calcula R vessels. licable, will be bittion on Performance med damages are cal verall TTD) ΔP) 6 (MS%)	MWe Guaranteed 13 10 6 98 tion of the LDs at mance Guarante asured during th culated as follow \$ 25,000 \$ 375,000 \$ 125,000	applied xes and e 2011 s:		Deleted: Inspuments readings will be rounded to the nearest integer
Max Expected 12 6.5 4.7 99 s - Norte a second second second second contractions for the liquidated 2011 outages ages will be ormance Guarante th.P. reheater Si of MSR vest of M.S. effici	Guaranteed 13 8 5 98 PDO e Parameters used r the four (4) MSI damages, if apples The final pos- determined by p rantee liquidated or rs above 10 F° (or sel above 6 PSI (apple)	Max Expected 12 9 5.3 99 for the calcula R vessels. licable, will be sition on Performance me damages are cal verall TTD) ΔP) 6 (MS%)	Guaranteed 13 10 6 98 tion of the LDs and mance Guarante assured and mance Guarante sasured during th culated as follow \$ 25,000 \$ 375,000 \$ 125,000	re the applied e 2011 s:		bipping damage § Deleted: The Contactor cuntanters i following Deleted: g Deleted: 1 5 Deleted: Instruments readings will b rounded to the nearest integer Deleted: 50 Deleted: 100
Cxpected 12 6.5 4.7 99 s 7 Vorte averages for the liquidated 2011 outages ages will be formance Guar H.P. reheater SI of MSR vest of M.S. effici	13 8 5 98 PDO e Parameters used r the four (4) MSI damages, if apples the final post determined by p rantee liquidated rs above 10 F° (or sel above 6 PSI (determined) include the post include the post determined by p	Expected 12 9 5.3 99 for the calcula R vessels. licable, will be hition on Perfor- merformance inco damages are cal- verall TTD) ΔP) 6 (MS%)	13 10 6 98 tion of the LDs and muance Guarante assured during the culated as follow \$ 25,000 \$ 375,000 \$ 125,000	re the applied e 2011 s:	\\! 	Deleted: Instruments readings will b rounded to the nearest integer
12 6.5 4.7 99 s 7 Norre ance Guarante al averages for e liquidated 2011 outages ages will be ormance Guar H.P. reheater SI of MSR ves of M.S. effici	13 8 5 98 PDO e Parameters usex r the four (4) MSI damages, if apples The final pos determined by p rantee liquidated rs above 10 F* (or sel above 6 PSI (determined by 98 %	12 9 5.3 99 I for the calcula R vessels licable, will be bittion on Performance inc damages are cal verall TTD) ΔP) 6 (MS%)	13 10 6 98 tion of the LDs and mance Guarante asured during the culated as follow \$ 25,000 \$ 375,000 \$ 125,000	<u>e the</u> applied <u>e 2011</u> s:	() (. (Deleted: p Deleted: j 1 Daleted: Instruments readings will b rounded to the nearest integer Deleted: 50 Deleted: 100
6.5 4.7 99 ss 7507 e liquidated 2011 outages nages will be comance Guar H.P. reheater Si of MSR ves of M.S. effici	8 5 98 ADD e Parameters used r the four (4) MSI damages, if apple the final pos determined by p rantee liquidated rs above 10 F° (our sel above 6 PSI (iency below 98 %	9 5.3 99 I for the calcula R vessels. licable, will be hition on Perfor performance mo damages are cal verall TTD) ΔP) 6 (MS%)	10 6 98 tion of the LDs at measured and muance Guarante asured during th culated as follow \$ 25,000 \$ 375,000 \$ 125,000	e the applied ces and e 2011 s:) (. (Deleted: 1 Deleted: Instruments readings will b nounded to the nearest integer Deleted: 50 Deleted: 100
4.7 99 es Thore and averages for e liquidated 2011 outages hages will be ormance Guar H.P. reheater Si of MSR ves of M.S. effici	5 98 PDO e Parameters used t the four (4) MSI damages, if appl s. The final pos determined by p rantee liquidated to rs above 10 F [*] (ov isel above 6 PSI (iency below 98 %	5.3 99 I for the calcula R vessels. licable, will be sition on Performance mo damages are cal verall TTD) ΔP) 6 (MS%)	6 98 measured and muance Guarante asured during th culated as follow \$ 25,000 \$ 375,000 \$ 125,000	applied <u>e 2011</u> s:	((. (Deleted: Instruments readings will b rounded to the nearest integer Deleted: 50 Deleted: 100
99 s - Norre ance Guarante al averages for e liquidated 2011 outages ages will be ormance Guar H.P. reheater SI of MSR ves of M.S. effici	98 PDO e Parameters used r the four (4) MSI damages, if apple b. The final pos- determined by p rantee liquidated of rs above 10 F° (ov sel above 6 PSI (iency below 98 %	99 f for the calcula R vessels. licable, will be sition on Perfor performance inc damages are cal verall TTD) ΔP) 6 (MS%)	98 tion of the LDs and muance Guarante casured during th culated as follow \$ 25,000 \$ 375,000 \$ 125,000	applied applied e 2011 s:	(Deleted: Instruments readings will b rounded to the nearest integer Deleted: 50 Deleted: 100
es averages for al averages for e liquidated 2011 outages mages will be commance Guan H.P. reheater Si of MSR ves of M.S. effici	PDO e Parameters used r the four (4) MSI damages, if appled the final post determined by p rantee liquidated in rs above 10 F* (our isel above 6 PSI (iency below 98 %	<u>I for the calcula</u> <u>R vessels</u> licable, will be <u>ittion on Perfor</u> refformance inc damages are cal verall TTD) ΔP) 6 (MS%)	tion of the LDs and rmance Guarante asured during the culated as follow \$ 25,000 \$ 375,000 \$ 125,000	<u>e the</u> applied <u>xs and</u> <u>e 2011</u> s:	(Deleted: Instruments readings will b rounded to the nearest integer Deleted: 50 Deleted: 100
e liquidated 2011 outages ages will be ormance Guar H.P. reheater SI of MSR ves of M.S. effici	damages, if appl <u> The final pos</u> <u>determined by p</u> <u>rantee liquidated</u> rs above 10 F [*] (ov isel above 6 PSI (iency below 98 %	licable, will be <u>sition on Perfor</u> erformance inc <u>damages are</u> cal verall TTD) ΔP) 6 (MS%)	measured and mance Guarante asured during th culated as follow \$ 75,000 \$ 375,000 \$ 125,000	applied <u>ves</u> and <u>e</u> 2011 s:	. (Deletod: 50 Deletod: 100
of M.S. effici	iency below 98 %	6 (MS%)	\$ <u>125</u> ,000		• • •	Perereo: 100
of M.S. effici	iency below 98 %	6 (MS%)	\$ 125,000			
					(Deletad: 75
ee calculatio legawatt Ele erformance g larged to con ty thousand c ach performa lee Guaranter megawatt e the "Megaw	etrical, or portion uarantee L.D. of fractor, up to a r dollars (\$1,350,0 unce parameter v e L.D. Cap of \$ lectrical is worth att Cap" is 2.7 r	on there of, tha f five hundred naximum amo 100). The deriv would be as for 1,350,000 h \$500,000 negawatts elec	the MSR syste thousand dollar ount of one milli ration of the dol llows:	m <u>s</u> on, lar		-
$\frac{P}{F} = 0.15$ $\frac{F}{TTD}$	MWE or 2.7/0	. <u>15 = 17,55°</u>	F of TTD in	ap or		
	Acgawatt Electromance g enged to compare to compare the compare to compare the end of t	Megawatt Electrical, or portic enformance guarantee L.D. of larged to contractor, up to a r ty thousand dollars (\$1.350.0 ach performance parameter v ince Guarantee L.D. Cap of \$ megawatt electrical is word the "Megawatt Cap" is 2.7 r F = 0.15 MWE or 2.7/0 F TTD 1 = 0.75 MWE or 2.7/0.75 =	Accause the end of th	Accessed to the the the the term of term of the term of t	Megawatt Electrical, or portion there of, that the MSR system argonization of the hundred thousand dollars harged to contractor, up to a maximum amount of one million, ty thousand dollars (\$1,350,000). The derivation of the dollar ach performance parameter would be as follows: here Guarantee L.D. Cap of \$1,350,000 megawatt electrical is worth \$500,000 the "Megawatt Cap" is 2.7 megawatts electrical $^{\circ}$ E = 0.15 MWE or 2.7/0.15 = 17.55° F of TTD in cap or F TTD 1 = 0.75 MWE or 2.7/0.75 = 3.6 \triangle PSI in cap or \$375,000/PSI	Accessed to contractor, up to a maximum amount of one million, arged to contractor, up to a maximum amount of one million, ty thousand dollars (\$1,350,000). The derivation of the dollar ach performance parameter would be as follows: the Guarantee L.D. Cap of \$1,350,000 megawatt electrical is worth \$500,000 the "Megawatt Cap" is 2.7 megawatts electrical $^{\circ}$ E = 0.15 MWE or 2.7/0.15 = 17,55° F of TTD in cap of F TTD 1 = 0.75 MWE or 2.7/0.75 = 3.6 Δ PSI in cap or \$375,000/PSI

Contract No. Page 33 of 44 #260741

TABLE 1: Payment Milestones

21.

Milestone Date	Payment Milestones	% of Total Selling Price	Payment Amount	
2007]
September	- Net 60 after order of MSR	10%	\$1,350	
	 Verification Tube Strip material has bee ordered for Owner 	n		
November	- Engineering Design Package - Complete	: 10%	\$1.350	CHANGE to Deserviser
2008				1
March	 Material receipt provided showing Tube Strip inventoried at Valtimet 	10%	<u>\$1,350</u>	
	- Tube production September - Oct. 2008			
	- True Finning Dec. 2008 - Feb. 2009			
October	- Forgings arrive TEI	10%	<u>\$1,350</u>	
December	 Major materials arrive and TEI begins fabrication 	10%	<u>\$1,350</u>	
2009				
February	- TEI receives tubes	5%	<u>\$675</u>	CHAMEE To TANARY
June	- MSR Vessels are readied for shipping	10%	\$1,350	1
July 9th	- MSR Vessels arrive at Crystal River site	15%	\$2,025	Deleted: ,
	and Owner Takes Receipt.	••••		Deleted: offloaded by TEI and are received without damage
December	 Provisional Acceptance – or – 120 days after installation completion without attempting ascension to 100% power, 	20%	\$2,700	
	whichever is occuts first.		L	Deleted: shorter
The above ra	tes include all navroll taxes, fringe henefits.	overhead, and	profit to the	•
Contractor fo	providing any personnel.			Deletedi these
llant Assault	Turining and Patieties Washing Turining as	a included in	the Contra	
ump sum pri equired as a	cover will pay for initial training but will result of Contractor employee's failure to	not pay for an satisfactorily of	y re-training	Defeted: or will be paid in accordance with this Section of the Contract.
nitial training				Delebed: under the Compensation Section,

B. Sales and Use Taxes

Contractor assumes exclusive liability for all sales or use taxes applicable to any materials, supplies, equipment or tools purchased, rented, leased, used or otherwise consumed by Contractor in conjunction with the performance of the Work.

Owner holds a "Florida Steam Tax Exemption Affidavit." This certificate exempts Owner from Florida sales or use tax on purchases of all qualified property and/or labor.

> Contract No. Page 26 of 44 #260741

direct overhead on employees. Each time sheet must be signed by Owner's Designated Representative. If any special equipment has been used, the invoice must also specify the equipment used, hours of usage, and rate of reimbursement for use. On-site labor, off-site labor, material, and equipment costs must appear separately on the invoice.

Subject to the above conditions, payments will be made not later than thirty (30) days after receipt of Contractor's invoice. The final payment shall be invoiced by the Contractor and payment shall be made not later than thirty (30) days after receipt of the invoice and all of the following have been completed:

- All Work has been completed and accepted, including outstanding punch list items, final cleanup, testing, demobilization, and receipt of all required documentation by Owner.
- 2. A correct invoice covering the Work has been presented to Owner.
- Any Quality Assurance documentation required by the Contract has been submitted and approved by Owner.
- D. Overbillings/Offsets/Credits/Refunds

Owner may charge and collect interest from the Contractor on any overbillings, offsets, credits or refunds that may become due to Owner under this Contract. Interest shall be paid at the rate of the average prime rate of interest as listed in the Wall Street Journal Money Rates Section. Interest shall cover the period of time from the date the overpayment, error or basis for refund or offset occurred to the date the amount is paid. The Contractor may be notified of the overbilling by credit memorandum or by invoice. Payment of the total overbilling, offset, credit or refund plus interest shall become due to Owner immediately upon Contractor's receipt.

GC - 32 SUBCONTRACTING AND ASSIGNMENT

Contractor shall not sublet any portion of the Work or assign the Contract without first submitting the proposed subcontract or assignment to Owner's Designated Representative and receiving written consent from Owner's Designated Representative to subconfact or assign, which consent shall not be unreasonably withheld. Any assignment without the consent of Owner shall be void. A request to sublet or assign must contain the name and location of individuals or firms to whom Work will be sublet or to whom the Contract is to be assigned, information on the qualifications and experiment of those individuals or firms to perform the Work, and an estimate of the cost of the Work to be performed by the Subcontract or assignee. The general terms and conditions of this Contract and any Contract amendment regarding the Work to be performed must be incorporated into and attached to any subcontract or assignment. Consent to subletting or assignment will not relieve Contractor of responsibility for the performance of Work in accordance with the terms and conditions of this Contract and any amendments executed by both parties.

GC-33 INDEMNIFICATION

l

To the maximum extent permitted by applicable law, Contractor shall indemnify and defend Owner (including its parent, subsidiary and affiliate companies), its officers, employees, agents, and any other party with an ownership interest in the premises, from and against all liability, loss, costs, claims, damages, expenses, judgments, and awards, whether or not covered by insurance, arising or claimed to have arisen:

> Contract No. Page 28 of 44 #260741

Deleted: A deduction of no more than ten percent (10%) shall be retained from the amount invoiced, except the invoice for retention.

Deleted: as part of the final payment

Deleted: Retention

Deletted: 3. A property executed Release from Contractor, included as an attachmenu, together with any other requested affiliativits or receipts, have been provided to Owner. 9

Di white

Hay Veccele

THERMAL ENGINEERING INTERNATIONAL MSR TECHNOLOGY AND ADVANCED PROGRAMS DIVISION 10375 Slusher Drive Santa Fe Springs, CA. 90670 Phone: 323-838-1150 Fax: 323-838-6454 msr@thermalengipt.com

10%

September 5, 2007

Progress Energy Florida, Inc Raleigh, NC Cap = 2.76 megant

Attention: Tony Owen

Subject: CRYSTAL RIVER MSRs EQUIPMENT GUARANTEE PARAMETERS

Reference: TEl Proposal 07-M062

Dear Mr. Owen:

To answer your questions from last week on the relationship between TEI equipment guarantee parameters and the generation of MWe, we offer the following three relationships:

The overall Terminal Temperature Difference (TTD) TTD: $1^{\circ}F = .15 \text{ MWe}$ $6^{\circ} = 1 \text{ mu}$ $6^{\circ}Sx23 = 17.55$ The Pressure Drop across the MSR Vessel $1 \text{ PSI} = .75 \text{ MWe} \qquad 56 \text{ PS1D} \stackrel{2.7}{\rightarrow} .3.6$ ΔP : The Moisture Separation Efficiency 350 - 21% = .25 MWe $\frac{2.7}{.25} = 11$ MSE: 1221

At this time, Progress Energy should review the three relationships of TEI's guarantee to MWe production so that we can finalize Paragraph GC-36 in the next few days.

Best regards,

THERMAL ENGINEERING INTERNATIONAL MSR Technology & Advanced Programs Division

Laurence Harma Senior Contracts Manager

LH:no/07-722

Cc: Scott Deahna

some monie.

Owen, Tony

From:	Deahna, Scott T.
Sent:	Wednesday, September 05, 2007 10:33 AM
To:	Owen, Tony; Williams, Ted E.
Subject	: Crystal River MSRs / Equipment Guarantee Parameters Comments

Tony,

The MSR performance sensitivity to megawatts is identified. Ted's previous thought was a loss of 2 megawatts attributable to MSR performance should "trigger" a hardware remedy. I spoke to Larry Harma last Thursday and Clem Tam yesterday. TEI agrees in principle with the concept of equipment inspection and remedy if a performance deficiency is identified. You or Larry can draft the appropriate language.

The contract performance guarantee section should identify the tested parameters are an "average of the four MSR vessel performance". However, if any one vessel performance is an out liar, then the performance deficiency of that MSR shall be evaluated by the contractor even if the 2 MW trigger is not met.

I understand the only additional open item is a preliminary list of engineering deliverables by TEI.

Scott.

-----Original Message-----From: Owen, Tony Sent: Wednesday, September 05, 2007 9:44 AM To: Deahna, Scott T.; Williams, Ted E. Subject: FW: Crystal River MSRs / Equipment Guarantee Parameters

Info requested. The next step is deciding what a Megawatt is worth.

Tony

-----Original Message-----From: NOkamoto@thermalengint.com {mailto:NOkamoto@thermalengint.com] Sent: Wednesday, September 05, 2007 9:44 AM To: Owen, Tony Cc: Deahna, Scott T.; CTam@thermalengint.com; LHarma@thermalengint.com Subject: Crystal River MSRs / Equipment Guarantee Parameters

Mr. Owen:

Please see attached letter from Larry Harma (Equipment Guarantee Parameters). Thank you,

Nicki Executive Assistant Communications Center Thermal Engineering International MSR Technology & Advanced Programs Division 10375 Slusher Drive Santa Fe Springs, CA 90670-3748 P: 323.838.1150 F: 323.838.6454 Email: msr@thermalengint.com

THERMAL ENGINEERING INTERNATIONAL

MSR TECHNOLOGY AND ADVANCED PROGRAMS DIVISION

 10375 Slusher Drive

 Santa Fe Springs, CA. 90670

 Phone:
 323-838-1150

 Fax:
 323-838-6454

 msr@thermalengint.com

November 29 2007

Progress Energy Service Co. LLC 100 E. Davie Street (TPP-08) Raleight, NC 27601

Attention: Mr. Adrien Surin

Subject:RFP NO. AS-12007For Supplying Two (2) Secondary Plant Component Cooling Water HeatExchanger (Nos. SCHE-1A/1B) And Two (2) Condensate Feedwater Heaters(LP-3A/B) For Crystal River Nuclear Power Station

Reference: TEI Proposal 06-M088

Dear Mr. Surin:

TEI is pleased to submit its proposal, in response to your RFP No. AS-12007. We trust that we have adequately covered all aspects of your request.

Should you require additional information, please contact us. We look forward to continuing to be of service to Progress Energy on this very important betterment project.

Very truly yours,

THERMAL ENGINEERING INTERNATIONAL MSR Technology & Advanced Programs Division

A.L. Yarden President

ALY:no/07-923

• 7

Document Number: 07-924 Proposal Number: 07-M088

 \sim

A PROPOSAL TO FURNISH

SECONDARY SERVICES CLOSED CYCLE COOLING (SC) HEAT EXCHANGERS

For

CRYSTAL RIVER NUCLEAR POWER STATION UNIT #3

Submitted

То

PROGRESS ENERGY SERVICE COMPANY, LLC 100 E. DAVIE STREET (TPP-08) RALEIGH, NC 27601

By

THERMAL ENGINEERING INTERNATIONAL (USA), Inc. (TEI) 10375 SLUSHER DRIVE SANTA FE SPRINGS, CA 90670-3748

A.L. Yarden President, MSR Technology & Advanced Programs Division

DULTER A PERSENT C3239 APR228

FISSION OLERY

FPSC.

November 28, 2007

• •

TABLE OF CONTENTS

				rage
1.0	INTI	RODUCTION		1
2.0	SPEC	CIAL FEATURES		2
	2.1	Fouling Factors on Tubeside		2
	2.2	Explosive Cladding		2
	2.3	Tube Diameter		2
	2.4	Mechanical Design of the New HXGs		2
3.0	THE	RMAL AND MECHANICAL DESIGN		3
4.0	MAN	UFACTURING		3
5.0	PRO	POSED OFFER		4
6.0	СОМ	IMERCIAL INFORMATION	••••	5
	6.1	Selling Prices		5
	6.2	Taxes		6
	6.3	Delivery		6
	6.4	Validity	••••	6
	6.5	Terms and Conditions		6
	6.6	Terms of Payment		6
	6.7	Special Condition of Sale – Delays and Damages		6
	6.8	Adjustment to Selling Prices		7
	6.9	Warranty	••••	7
	6.10	Force Majeure		8
	6.11	Limitation of Liability		8

-

5.2

<u>к</u>.

				Page
7.0	ATTACHMENTS		••••	9
	7.1	Outline Drawing	• • • •	10
	7.2	Specification Sheet		11
	7.3	MSR Installation List		12

Progress Energy Service Company (PESC) is planning to replace a total of two (2) Secondary Plant Component Closed Cycle Cooling (SC) Heat Exchangers (HXGs) for the Crystal River Nuclear Power Station (CR) Unit #3. The original SC HXGs were provided by Struthers Industries, Inc. (now owned by TEI). Due to the power uprate, new HEXs are needed to replace the existing HXGs, in order to withstand the increased heat duty.

Recently, TEI successfully replaced four (4) CCW HXGs for Kori Nuclear Power Plant, Units #3 and #4 with Titanium tubes. The turnkey job included design, fabrication of the HXGs per ASME Section III requirements, field installation of the apparatus and the performance test. All the above operations were done in time and with one hundred percent customer satisfaction. In addition, TEI has received a contract to provide four (4) TPCW HXGs to San Onofre Nuclear Generation Station (SONGS) by mid-2009.

Since TEI's experience is still fresh (2004), in conjunction with our partner shop SeDae Kisan (SDK) in Korea, it is obvious we can do it again to PESC'S expectation.

Following are few special features to highlight TEI's special design.

2.0 SPECIAL FEATURES

2.1 Fouling Factors on Tubeside

Fouling is time-related, especially in heat transfer equipment. Although the fouling factor listed in TEMA or other HXG design books is based on years of experience and data from operation equipment, we find based on our experience that for a new material – for example titanium – the fouling factor should be reduced. In SONGS' specification, a fairly conservative cleanliness factor of 0.9 is applied. Our experience shows that the corrosion and erosion resistant properties of Titanium are primarily due to the formation of a hard, tenacious surface oxide film, mainly Titanium dioxide. The film reforms in oxidizing condition when mechanically damaged. It protects the surface from impingement, erosion and physical damage. It also resists chloride pitting and crevice corrosion by marine microbes. Since Titanium tubes resist corrosion, erosion, fouling and scaling, they can virtually eliminate tubeside fouling. However, in offered design, a cleanliness factor of 0.9

is still used. This implies that the new HXGs will have much better thermal performance than expected.

2.2 Explosive Cladding

 \sim

Titanium can only be welded to titanium; this is a well known characteristics. When specifying the Titanium tube material in the HXG and with the welded tube joint to the tubesheet, there is only one option – welded to a Titanium layer which is metallurgically bound to the carbon steel tubesheet.

Then the tubesheet is machined and drilled to the tolerance. After completely tubing the HXG, the tube-to-tubesheet joints then are welded by TEI-developed welding procedures. TEI has utilized this design and manufacture for many non-safety and safety related HXGs and surface condensers, and has proven the reliability of this technology.

2.3 Tube Diameter

TEI proposes that the new SC HXGs have the same tube diameter of 1" O.D. with 22 BWG With the same tube diameter as the original HXG, CR can still utilize the existing tube cleaning system.

2.4 Mechanical Design of the New HXGs

The new SC HXGs are utilizing the same "no tube in window" design. With this design, TEI is able to fit the tube into the new shell which is only 1" larger in outside diameter and has the same length as the existing HXGs. Additionally, since TEI is the OEM and owns all the drawings, it is easy for us to fabricate the HXGs to meet the existing connections without any trouble or concern. In doing so, PESC can rest assured that the new HXGs will fit the existing envelop without any interference concerns.

3.0 THERMAL AND MECHANICAL DESIGN

TEI utilizes the latest version of HTRI program to design the thermohydraulics of the SC HXGs. HTRI is well known for its conservative and precise thermal correlations especially in the area of single-phase heat transfer processes. TEI has been a member of HTRI for many years. Our engineering knowledge is original and fundamental and as such cannot be copied by others.

In HXG design, thermohydraulic and mechanical designs are typically in one which cannot be separated. The mechanical design is to convert the thermal correlation into a workable equipment which will perform under different operating condition to meet the requirement of the system. A good mechanical design will not only prevent any potential hazard but also take into account the possible difficult situation such as installation. TEI has performed similar type of work in other products and gained wide experience. If PESC selects TEI as a Supplier, PESC could be assured of the high quality and the prompt work schedule.

4.0 MANUFACTURING

TEI is proposing to utilize three options of manufacturing sites. The first one is TEI's own shop at Joplin, Missouri. The advantage of Joplin is that the site is located in the USA which allows PESC's inspectors relatively easy travel. The second one is our partner-shop (SeDae) in Korea. The advantage is they have fabricated four (4) Section III CCW HXGs two years ago for Kori 3&4. The third one is our affiliated shop (ARSOPI) located in Portugal, who is fabricating 8 MSR vessels for Almaraz NPS and 4 LP Feedwater Heaters for KRSKO NPS. All three shops are fully qualified with good workmanship and with ASME Section VIII Code Stamp and ISO 9000 Certificates.

However, SeDae is a qualified pressure vessel manufacturer who owns additional Section III, Class 1, 2 and 3 Certificates of N, NA, NPT. Over time, SDK has developed and qualified its welding procedures, NDE procedures and manufacturing procedures and has incorporated them into the Q.A. manual. In the proposed work, SeDae will utilize its capabilities of N-Stamp qualification to its full extent in performing the shop work.

TEI MSR Division is a world class heat exchanger manufacturer specialized in the nuclear power plant and has years of experience in designing, manufacturing, installing and operating a variety of HXGs. One of TEI's prominent specialties is to deal with the complicated installation work where a limited maneuvering space is available. Therefore, special developed design and fabrication procedures are needed to surmount the difficulties of the installation. However, these procedures shall not degrade the integrity of the provided equipment as well as the required outage schedule.

5.0 PROPOSED OFFER

In this offer, TEI will provide a complete unit of SC HXG. The new HXG has similar shell diameter to the existing one and meets all the requirements of PESC, such as seismic, tube vibration, thermohydraulic, latest ASME Code and TEMA, etc. All the large bore connecting nozzles are matching the existing connections. Internals of the channel will have coating on the surface of carbon steel. Please refer to the attached data sheet and outline drawings for the offer of total replacement.

In responding to PESC's RFP, TEI has basically followed the outline drawing shown in the specification to generate the new design which is single pass on both shellside and tubeside. Also, the configuration of the front and rear channel attachment to the tubesheet is similar to the existing SC HXGs. However, the channel flange attachment to the tubesheet can be eliminated due to the Titanium cladding on the tubesheet face.

TEI has attached this optional design of a similar job without the attachment flange to the tubesheet flange. This approach could totally eliminate the spare channel assembly. If PESC is interested to do so, TEI will definitely provide an alternative later.

۰.

6. COMMERCIAL INFORMATION

The following Sections 6.1 through 6.11 constitute a valid TEI commercial proposal to furnish PESC with all required hardware, Q.A. documents, engineering analysis and reports in full compliance with your specifications, industry standards, and other governing documents. The scope and features of the design are described in more detail within the technical portion of this proposal and in the attached mechanical outline drawings.

- 6.1 Selling Prices
 - 6.1.1 Proposal

5

6.2 Taxes

The above quoted prices do not include any applicable local sales or use taxes.

6.3 Delivery

Delivery is FOB Crystal River NPS. However, PESC is responsible to unload the SC HXGs.

6.4 Validity

This proposal is valid for 90 days from its issue date. This date will specifically protect the quoted prices and the scheduled delivery as shown.

6.5 Terms and Conditions

TEI and PESC will mutually agree on terms and conditions and all other provisions.

6.6 Terms of Payment

6.7 Special Condition of Sale - Delays and Damages

	TE 6.8	Adjustment To Selling	Prices	[] CONFIDENTIAL	
		REI	DACTED		
1	6.9	Warranty			
			REDACTED		
		ستيا			

ŧ

10 Force Majeure

The Company shall not be in breach of the Contract as a result of any delay in performing its obligations if such delay is due to strikes or other labor troubles, inability to obtain raw materials, components, supplies, or fuel, for any reason, including default of suppliers or subcontractor, or any other cause which is beyond the reasonable control of the Company, whether of a similar or dissimilar nature and whether or not existing or foreseeable on the date of the Contract or on the scheduled date of commencement of the work. Should any such delay occur, the time for the performance of the Company's obligations shall be extended by a period of time equal to the length of the delay plus such additional time as is reasonably necessary to enable the Company to resume performance of its obligations.

Within a reasonable time after the Company becomes aware of a cause entitling it to an extension of time in accordance with the foregoing paragraph, the Company shall give notice thereof to the Purchaser. The Company shall use reasonable efforts to minimize the delay but shall not be required to subcontract work or to work additional hours for which premium time is payable or to schedule additional work shifts if such subcontracting, additional hours or shifts would not have been required to meet the schedule except for such delay, unless the Purchaser directs that it be done and agrees to pay all additional charges with respect thereto and provided that the work directed to be performed is not prohibited by any applicable labor contract or law.

8

7.0 ATTACHMENTS

-. .

7.1 Outline Drawing

REDACTED

.

REDACTED

INITAL ISSUE E 11/29/02 -----DESCRIPTION APTO BY ------10375 Studen Den Serte 7 Strang, CA. 60878 Entyrener, (323) Ale-1116 Terrener, (323) Ale-1116 Terrener, (323) Ale-4154 OUTLINE DRAWING 40.H BO. 07-M088-SC-010B

PEF-NCR-02277

Â

[] CONFIDENTIAL

- ;

7.2 Specification Sheet

HEAT EXCHANGER SPECIFICATION SHEET

19. 19.

> Page 1 US Units

•				Job No.							
istomer	PROGRESS ENERC	3Y	1	Reference No. CR3-M-###							
ddress				Proposal No.	07-M088						
Plant Location	CRYSTAL RIVER #3	}		Date	11/20/2007	Rev A					
Service of Unit	SECONDARY SERV	ICE HEAT EXCHANGE	R	Item No.	SCHE-1A & -1B						
Size	57 x 498 inch	Type AEL	Horz.	Connected In	1 Parallel	1 Series					
Surf/Unit (Gross/E	ff) 15645.1 / 15503.8 1	ft2 Shell/Unit	1	Surf/Shell (Gro	ss/Eff) 15645 1 / 15503 8	3 #2					
		PERFORMAN	E OF ONE								
Fluid Allocation	······································	She	Side		Tub	a Sida					
Fluid Name											
Eluid Quantity Tot	al Ib/hr	59	47600			78000					
Vanor (In/Qut)		0.0	1000	0.0	00	0000					
Liquid	***************************************	5947600		947600	8178000	9179000					
Steam		0011000		00	01/0000	8178000					
Water		5947600		0.0	0.0	0.0					
Noncondensables	2	0.0	- 	0.0	0.0	0.0					
Temporature /lp/O		115.00		0.0	0.0	0.0					
Specific Crevity		0.0005		00.00	30.00	101.75					
Viscosity		0.9085		.9918	1.0212	1.0212					
Melecularit		0.5938	0	.6916	0.7300	0.7300					
Molecular vveight,	vapor										
Diviolecular vveight,	NORCORDERS	0.0070		0007							
Specific Heat	Btu/iD-F	0.9978	0	.9987	0.9270	0.9270					
Thermal Conductiv	ity Btu/hr-ft-F	0.3685	0	.3660	0.3592	0.3592					
Latent Heat	Btu/lb	0.0000	0	.0000	0.0000	0.0000					
Inlet Pressure	psia	0.	000		0.	000					
Velocity	ft/sec	3	.13		5	.09					
Pressure Drop, Allo	w/Calc psi	18.000	1	3.706	3.300	3.181					
"-ouling Resistance	(min) ft2-hr-F/Btu	90%	CLEAN		90%	CLEAN					
et Exchanged E	Stu/hr 89053665		MTD (Cor	rected)	<u> 11.5 F </u>						
, ransfer Rate, Serv	/ice 500.63	Btu/ft2-hr-F Clean	56	1.92 Btu/ft2-h	-F Actual	505.73 Btu/ft2-hr-F					
	CONSTRUC	TION OF ONE SHELL			Sketch (Bundle/N	Nozzle Orientation)					
	CONSTRUC	TION OF ONE SHELL Shell Side	Tu	be Side	Sketch (Bundle/N	Nozzle Orientation)					
Design/Test Pressu	CONSTRUC ire psig	TION OF ONE SHELL Shell Side 125 /	Tu 15 /	be Side	Sketch (Bundle/N	Nozzle Orientation)					
Design/Test Pressu Design Temperatur	CONSTRUC ure psig e F	TION OF ONE SHELL Shell Side 125 / 130	Tu 15 /	be Side 120	Sketch (Bundle/h	Nozzle Orientation)					
Design/Test Pressu Design Temperatur No Passes per She	CONSTRUC ure psig e F II	TION OF ONE SHELL Shell Side 125 / 130 1	Tu 15 /	be Side 120 1	Sketch (Bundle/N	Nozzle Orientation) M088-SC-010B)					
Design/Test Pressu Design Temperatur No Passes per She Corrosion Allowanc	CONSTRUC ure psig e F II il ie inch	TION OF ONE SHELL Shell Side 125 / 130 1	Тu 157	be Side 120 1	Sketch (Bundle/N	Nozzle Orientation) M088-SC-010B)					
Design/Test Pressu Design Temperatur No Passes per She Corrosion Allowanc Connections	CONSTRUC ure psig e F III e inch In inch	TION OF ONE SHELL Shell Side 125 / 130 1 1 24"	Ти 15/ 11 (be Side 120 1 @ 30"	Sketch (Bundle/N	Nozzle Orientation) M088-SC-010B)					
Design/Test Pressu Design Temperatur No Passes per She Corrosion Allowanc Connections Size &	CONSTRUC ure psig e F II e inch In inch Out inch	TION OF ONE SHELL Shell Side 125 / 130 1 1 1 @ 24" 1 @ 24"	Tu 15 / 15 (1 (1 (be Side 120 1 @ 30" @ 30"	Sketch (Bundle/N	Nozzle Orientation) M088-SC-010B)					
Design/Test Pressu Design Temperatur No Passes per She Corrosion Allowanc Connections Size & Rating	CONSTRUC Ire psig e F II e inch In inch Out inch Intermediate	TION OF ONE SHELL Shell Side 125 / 130 1 1 1 @ 24" 1 @ 24"	Tu 15 / 1 (1 (be Side 120 1 @ 30" @ 30"	Sketch (Bundle/N	Nozzle Orientation) M088-SC-010B) -					
Design/Test Pressu Design Temperatur No Passes per She Corrosion Allowanc Connections Size & Rating Tube No. 1440	CONSTRUC Ire psig e F II re inch In inch Out inch Intermediate OD 1 inch	TION OF ONE SHELL Shell Side 125 / 130 1 1 24" 1 @ 24" 1 @ 24" Thk(Avg) 0.028 inch	Tu 15 / 15 / 1 (1 (be Side 120 1 @ 30" @ 30" ength 41.5 ft	Sketch (Bundle/N (SEE DWG 07-N Pitch 1.25 inch	Nozzle Orientation) M088-SC-010B) - Layout 30					
Design/Test Pressu Design Temperatur No Passes per She Corrosion Allowanc Connections Size & Rating Tube No. 1440 Tube Type	CONSTRUC Ire psig e F II re inch In inch Out inch Intermediate OD 1 inch Plain	TION OF ONE SHELL Shell Side 125 / 130 1 1 24" 1 @ 24" 1 @ 24" Thk(Avg) 0.028 inch	Tu 15 / 1 (1 (1 (L N	be Side 120 1 @ 30" @ 30" ength 41.5 ft faterial TITAN	Sketch (Bundle/) (SEE DWG 07-N Pitch 1.25 inch	Nozzle Orientation) M088-SC-010B) - Layout 30					
Design/Test Pressu Design Temperatur No Passes per She Corrosion Allowanc Connections Size & Rating Tube No. 1440 Tube Type Shell SA-516-70	CONSTRUC Ire psig e F II re inch In inch Out inch Intermediate OD 1 inch Plain ID 57 inch	TION OF ONE SHELL Shell Side 125 / 130 1 1 24" 1 @ 24" 1 @ 24" Thk(Avg) 0.028 inch OD	Tu 15 / 15 / 1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (be Side 120 1 @ 30" @ 30" ength 41.5 ft Material TITAN ihell Cover	Sketch (Bundle/N (SEE DWG 07-N Pitch 1.25 inch IUM-GRADE 2 N/A	Nozzle Orientation) M088-SC-010B) - Layout 30					
Design/Test Pressu Design Temperatur No Passes per She Corrosion Allowanc Connections Size & Rating Tube No. 1440 Tube Type Shell SA-516-70 Channel or Bonnet	CONSTRUC ire psig e F il re inch in inch Out inch Intermediate OD 1 inch Plain ID 57 inch	TION OF ONE SHELL Shell Side 125 / 130 1 1 24" 1 @ 24" 1 @ 24" Thk(Avg) 0.028 inch OD	Tu 15 / 15 / 1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (be Side 120 1 @ 30" @ 30" ength 41.5 ft Material TITAN shell Cover Channel Cover	Sketch (Bundle/N (SEE DWG 07-N Pitch 1.25 inch IUM-GRADE 2 N/A SA-516-70	Nozzle Orientation) M088-SC-010B) - Layout 30					
Design/Test Pressu Design Temperatur No Passes per She Corrosion Allowanc Connections Size & Rating Tube No. 1440 Tube Type Shell SA-516-70 Channel or Bonnet Tubesheet-Stationa	CONSTRUC ire psig e F il ie inch in inch Out inch Intermediate OD 1 inch Plain ID 57 inch ry SA-516-70 M	TION OF ONE SHELL Shell Side 125 / 130 1 1 24" 1 @ 24" 1 @ 24" Thk(Avg) 0.028 inch OD	Tu 15 / 15 / 1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (be Side 120 1 @ 30" @ 30" ength 41.5 ft Aaterial TITAN shell Cover Channel Cover ubesheet-Fioa	Sketch (Bundle/N (SEE DWG 07-N IUM-GRADE 2 N/A SA-516-70 ting N/A	Nozzle Orientation) M088-SC-010B) - h Layout 30					
Design/Test Pressu Design Temperatur No Passes per She Corrosion Allowanc Connections Size & Rating Tube No. 1440 Tube Type Shell SA-516-70 Channel or Bonnet Tubesheet-Stationa Floating Head Cove	CONSTRUC ire psig e F il ie inch in inch Out inch Intermediate OD 1 inch Plain ID 57 inch ry SA-516-70 M er	TION OF ONE SHELL Shell Side 125 / 130 1 1 24" 1 @ 24" 1 @ 24" Thk(Avg) 0.028 inch OD	Tu 15 / 15 / 1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (be Side 120 1 @ 30" @ 30" ength 41.5 ft Aaterial TITAN shell Cover channel Cover ubesheet-Floa npingement Pla	Sketch (Bundle/N (SEE DWG 07-N IUM-GRADE 2 N/A SA-516-70 ting N/A ate YES	Nozzle Orientation) M088-SC-010B) - h Layout 30					
Design/Test Pressu Design Temperatur No Passes per She Corrosion Allowanc Connections Size & Rating Tube No. 1440 Tube Type Shell SA-516-70 Channel or Bonnet Tubesheet-Stationa Floating Head Cove Baffles-Cross	CONSTRUC ire psig e F il ie inch In inch Out inch Intermediate OD 1 inch Plain ID 57 inch inch ry SA-516-70 V er Type NTIW-5	TION OF ONE SHELL Shell Side 125 / 130 1 1@24" 1@24" Thk(Avg) 0.028 inch OD // TITANIUM CLAD SEG. %Cut (D	Tu 15 / 16 / 16 / 17 / 17 / 17 / 17 / 17 / 17 / 17 / 17	be Side 120 1 @ 30" @ 30" ength 41.5 ft Aterial TITAN shell Cover channel Cover ubesheet-Floa npingement Pla Spacing(o	Sketch (Bundle/N (SEE DWG 07-N IUM-GRADE 2 N/A SA-516-70 ting N/A ate YES J(c) 82.25 1	Nozzle Orientation) M088-SC-010B) n Layout 30					
Design/Test Pressu Design Temperatur No Passes per She Corrosion Allowanc Connections Size & Rating Tube No. 1440 Tube Type Shell SA-516-70 Channel or Bonnet Tubesheet-Stationa Floating Head Cove Baffles-Cross Baffles-Long	CONSTRUC re psig e F II re inch In inch Out inch Intermediate OD 1 inch Plain ID 57 inch ry SA-516-70 V or Type NTIW-3	TION OF ONE SHELL Shell Side 125 / 130 1 1 @ 24" 1 @ 24" Thk(Avg) 0.028 inch OD // TITANIUM CLAD SEG. %Cut (D Seal Typ	Tu 15 / 16 / 16 / 17 / 17 / 17 / 17 / 17 / 17 / 17 / 17	be Side 120 1 @ 30" @ 30" ength 41.5 ft Material TITAN shell Cover channel Cover ubesheet-Floa npingement Pla Spacing(o	Sketch (Bundle/N (SEE DWG 07-N IUM-GRADE 2 N/A SA-516-70 ting N/A ate YES I/C) 82.25 1	Nozzle Orientation) M088-SC-010B) - n Layout 30 nlet 82.25 inch					
Design/Test Pressu Design Temperatur No Passes per She Corrosion Allowanc Connections Size & Rating Tube No. 1440 Tube Type Shell SA-516-70 Channel or Bonnet Tubesheet-Stationa Floating Head Cove Baffles-Cross Baffles-Long Supports-Tube	CONSTRUC Ire psig e F II re inch In inch Out inch Intermediate OD 1 inch Plain ID 57 inch ID 57 inch ID 57 inch IType NTIW-S N/A 2 PER SPAN	TION OF ONE SHELL Shell Side 125 / 130 1 1@24" 1@24" Thk(Avg) 0.028 inch OD // TITANIUM CLAD SEG. %Cut (D Seal Typ U-Bend	Tu 15 / 15 / 1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (be Side 120 1 @ 30" @ 30" ength 41.5 ft Aaterial TITAN shell Cover channel Cover ubesheet-Floa npingement Pla Spacing(o	Sketch (Bundle/N (SEE DWG 07-N IUM-GRADE 2 N/A SA-516-70 ting N/A ate YES /c) 82.25 I	Nozzle Orientation) M088-SC-010B) - h Layout 30 nlet 82.25 inch					
Design/Test Pressu Design Temperatur No Passes per She Corrosion Allowanc Connections Size & Rating Tube No. 1440 Tube Type Shell SA-516-70 Channel or Bonnet Tubesheet-Stationa Floating Head Cove Baffles-Cross Baffles-Long Supports-Tube Bypass Seal Arrang	CONSTRUC Ire psig e F II re inch In inch Out inch Out inch Intermediate OD 1 inch Plain ID 57 inch ry SA-516-70 V or Type NTIW-S N/A 2 PER SPAN ement N/A	TION OF ONE SHELL Shell Side 125 / 130 1 1 24" 1 @ 24" Thk(Avg) 0.028 inch OD W/ TITANIUM CLAD SEG. %Cut (D Seal Typ U-Bend Tube-Tu	Tu 15 / 15 / 1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (be Side 120 1 @ 30" @ 30" @ 30" ength 41.5 ft Material TITAN shell Cover channel Cover ubesheet-Floa npingement Pla Spacing(off //A nt	Sketch (Bundle/N (SEE DWG 07-N IUM-GRADE 2 N/A SA-516-70 ting N/A ate YES /c) 82.25 I Type N/A	Nozzle Orientation) M088-SC-010B) - h Layout 30					
Design/Test Pressu Design Temperatur No Passes per She Corrosion Allowanc Connections Size & Rating Tube No. 1440 Tube Type Shell SA-516-70 Channel or Bonnet Tubesheet-Stationa Floating Head Cove Baffles-Cross Baffles-Long Supports-Tube Bypass Seal Arrang Expansion Joint	CONSTRUC Ire psig e F II re inch In inch Out inch Out inch Intermediate OD 1 inch Plain ID 57 inch ry SA-516-70 V or Type NTIW-S N/A 2 PER SPAN ement N/A	TION OF ONE SHELL Shell Side 125 / 130 1 1 24" Thk(Avg) 0.028 inch OD W/ TITANIUM CLAD SEG. %Cut (D Seal Typ U-Bend Tube-Tu Type	Tu 15 / 1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (be Side 120 1 @ 30" @ 30" @ 30" ength 41.5 ft Material TITAN shell Cover whenel Cover wheeheet-Floa npingement Pla Spacing(off //A nt	Sketch (Bundle/N (SEE DWG 07-N IIUM-GRADE 2 N/A SA-516-70 ting N/A ate YES :/c) 82.25 I	M088-SC-010B)					
Design/Test Pressu Design Temperatur No Passes per She Corrosion Allowanc Connections Size & Rating Tube No. 1440 Tube Type Shell SA-516-70 Channel or Bonnet Tubesheet-Stationa Floating Head Cove Baffles-Cross Baffles-Long Supports-Tube Bypass Seal Arrang Expansion Joint Rho-V2-Inlet Nozzle	CONSTRUC Ire psig e F II re inch In inch Out inch Out inch Intermediate OD 1 inch Plain ID 57 inch ry SA-516-70 V or Type NTIW-S N/A 2 PER SPAN ement N/A	TION OF ONE SHELL Shell Side 125 / 130 1 1 @ 24" 1 @ 24" Thk(Avg) 0.028 inch OD // TITANIUM CLAD SEG. %Cut (D Seal Typ U-Bend Tube-Tu Type sec2 Bundle E	Tu 15 / 16 / 17 / 17 / 17 / 17 / 17 / 17 / 17 / 17	be Side 120 1 @ 30" @ 30" @ 30" ength 41.5 ft Material TITAN shell Cover whesheet-Floa npingement Pla Spacing(off //A nt 392.80	Sketch (Bundle/N (SEE DWG 07-N IUM-GRADE 2 N/A SA-516-70 ting N/A ate YES :/c) 82.25 I Type N/A Bundle Exit 1707.50	M088-SC-010B) - - - - - - - - - - - - - - - - - - -					
Design/Test Pressu Design Temperatur No Passes per She Corrosion Allowanc Connections Size & Rating Tube No. 1440 Tube Type Shell SA-516-70 Channel or Bonnet Tubesheet-Stationa Floating Head Cove Baffles-Cross Baffles-Long Supports-Tube Bypass Seal Arrang Expansion Joint Rho-V2-Inlet Nozzle Gaskets-Shell Side	CONSTRUC Ire psig e F II re inch In inch Out inch Out inch Intermediate OD 1 inch Plain ID 57 inch ry SA-516-70 V or Type NTIW-S N/A 2 PER SPAN ement N/A	TION OF ONE SHELL Shell Side 125 / 130 1 1 24" Thk(Avg) 0.028 inch OD N/ TITANIUM CLAD SEG. %Cut (D Seal Typ U-Bend Tube-Tu Type sec2 Bundle E Tube Sic	Tu 15 / 1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (be Side 120 1 @ 30" @ 30" ength 41.5 ft Material TITAN shell Cover channel Cover ubesheet-Floa npingement Pla Spacing(c I/A nt 392.80	Sketch (Bundle/N (SEE DWG 07-N IIUM-GRADE 2 N/A SA-516-70 ting N/A ate YES VC) 82.25 I Type N/A Bundle Exit 1707.50	M088-SC-010B) - Layout 30 nlet 82.25 inch lb/ft-sec2					
Design/Test Pressu Design Temperatur No Passes per She Corrosion Allowanc Connections Size & Rating Tube No. 1440 Tube Type Shell SA-516-70 Channel or Bonnet Tubesheet-Stationa Floating Head Cove Baffles-Cross Baffles-Long Supports-Tube Bypass Seal Arrang Expansion Joint Rho-V2-Inlet Nozzle Gaskets-Shell Side -Floating Head	CONSTRUC Ire psig e F II re inch In inch Out inch Intermediate OD 1 inch Plain ID 57 inch ry SA-516-70 V or Type NTIW-3 N/A 2 PER SPAN ement N/A	TION OF ONE SHELL Shell Side 125 / 130 1 1 24" Thk(Avg) 0.028 inch OD N/ TITANIUM CLAD SEG. %Cut (D Seal Typ U-Bend Tube-Tu Type sec2 Bundle E Tube Sic	Tu 15 / 1 15 / 1 10 1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (be Side 120 1 @ 30" @ 30" @ 30" ength 41.5 ft Aaterial TITAN shell Cover channel Cover ubesheet-Floa npingement Pla Spacing(c I/A nt 392.80	Sketch (Bundle/N (SEE DWG 07-N Pitch 1.25 inch IIUM-GRADE 2 N/A SA-516-70 ting N/A ate YES VC) 82.25 1 Type N/A Bundle Exit 1707.50	M088-SC-010B) - Layout 30 nlet 82.25 inch lb/ft-sec2					
Design/Test Pressu Design Temperatur No Passes per She Corrosion Allowanc Connections Size & Rating Tube No. 1440 Tube Type Shell SA-516-70 Channel or Bonnet Tubesheet-Stationa Floating Head Cove Baffles-Cross Baffles-Long Supports-Tube Bypass Seal Arrang Expansion Joint Rho-V2-Inlet Nozzle Gaskets-Shell Side -Floating Head Code Requirements	CONSTRUC Ire psig e F II re inch In inch Out inch Intermediate OD 1 inch Plain ID 57 inch ry SA-516-70 V or Type NTIW-3 N/A 2 PER SPAN ement N/A	TION OF ONE SHELL Shell Side 125 / 130 1 1 24" Thk(Avg) 0.028 inch OD A// TITANIUM CLAD SEG. %Cut (D Seal Typ U-Bend Tube-Tu Type sec2 Bundle E Tube Sic	Tu 15 / 1 15 / 1 10 1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (be Side 120 1 (a) 30" (a) 30" (a) 30" (a) 30" (c) 30" (c) 30" (c) 30" (c) 30" (c) 30" (c) 30" (c) 41.5 ft (c) 41.5 ft (c	Sketch (Bundle/N (SEE DWG 07-N Pitch 1.25 inch IIUM-GRADE 2 N/A SA-516-70 ting N/A ate YES VC) 82.25 1 Type N/A Bundle Exit 1707.50 TEMA Class	Nozzle Orientation) M088-SC-010B) - h Layout 30 nlet 82.25 inch					
Design/Test Pressu Design Temperatur No Passes per She Corrosion Allowanc Connections Size & Rating Tube No. 1440 Tube Type Shell SA-516-70 Channel or Bonnet Tubesheet-Stationa Floating Head Cove Baffles-Cross Baffles-Long Supports-Tube Bypass Seal Arrang Expansion Joint Rho-V2-Inlet Nozzle Gaskets-Shell Side -Floating Head Code Requirements Weight/Shell 4418	CONSTRUC Ire psig e F II re inch In inch Out inch Intermediate OD 1 inch Plain ID 57 inch ry SA-516-70 V or Type NTIW-3 N/A 2 PER SPAN ement N/A 5315.57 lb/ft- 1.6	TION OF ONE SHELL Shell Side 125 / 130 1 1 24" Thk(Avg) 0.028 inch OD A// TITANIUM CLAD SEG. %Cut (D Seal Typ U-Bend Tube-Tu Type sec2 Bundle E Tube Sic	Tu 15 / 1 15 / 1 10 1 (1 10 1	be Side 120 1 @ 30" @ 30" ength 41.5 ft Material TITAN Shell Cover Channel Cover Ubesheet-Floa npingement Pla Spacing(cl //A nt 392.80	Sketch (Bundle/N (SEE DWG 07-N Pitch 1.25 inch IIUM-GRADE 2 N/A SA-516-70 ting N/A ate YES VC) 82.25 1 Type N/A Bundle Exit 1707.50 TEMA Class Bundle 11374.8	Nozzle Orientation) M088-SC-010B) - h Layout 30 nlet 82.25 inch lb/ft-sec2					
Design/Test Pressu Design Temperatur No Passes per She Corrosion Allowanc Connections Size & Rating Tube No. 1440 Tube Type Shell SA-516-70 Channel or Bonnet Tubesheet-Stationa Floating Head Cove Baffles-Cross Baffles-Long Supports-Tube Bypass Seal Arrang Expansion Joint Rho-V2-Inlet Nozzle Gaskets-Shell Side -Floating Head Code Requirements Weight/Shell 4418 <u>3</u> marks: 1" TUBES	CONSTRUC Ire psig e F II re inch In inch Out inch Intermediate OD 1 inch Plain ID 57 inch ry SA-516-70 V or Type NTIW-3 N/A 2 PER SPAN ement N/A 5315.57 lb/ft- 1.6 5	TION OF ONE SHELL Shell Side 125 / 130 1 1 24" Thk(Avg) 0.028 inch OD A// TITANIUM CLAD SEG. %Cut (D Seal Typ U-Bend Tube-Tu Type sec2 Bundle E Tube Sic	Tu 15 / 1 15 / 1 10 1 10 1 10 1 10 1 10 1 10 1 10 1	be Side 120 1 @ 30" @ 30" ength 41.5 ft Material TITAN shell Cover channel Cover ubesheet-Floa npingement Pla Spacing(c I/A nt 392.80	Sketch (Bundle/N (SEE DWG 07-N Pitch 1.25 inch IIUM-GRADE 2 N/A SA-516-70 ting N/A ate YES VC) 82.25 1 Type N/A Bundle Exit 1707.50 TEMA Class Bundle 11374.8	Nozzle Orientation) M088-SC-010B) - h Layout 30 nlet 82.25 inch lb/ft-sec2					
Design/Test Pressu Design Temperatur No Passes per She Corrosion Allowanc Connections Size & Rating Tube No. 1440 Tube Type Shell SA-516-70 Channel or Bonnet Tubesheet-Stationa Floating Head Cove Baffles-Long Supports-Tube Bypass Seal Arrang Expansion Joint Rho-V2-Inlet Nozzle Gaskets-Shell Side -Floating Head Code Requirements Weight/Shell 4418 <u>3marks: 1" TUBES</u> (1) SPAR	CONSTRUC Ire psig e F II re inch In inch Out inch Intermediate OD 1 inch Plain ID 57 inch ry SA-516-70 V or Type NTIW-3 N/A 2 PER SPAN ement N/A = 5315.57 lb/ft- 1.6 S E CHANNEL	TION OF ONE SHELL Shell Side 125 / 130 1 1 24" Thk(Avg) 0.028 inch OD A// TITANIUM CLAD SEG. %Cut (D Seal Typ U-Bend Tube-Tu Type sec2 Bundle E Tube Sic	Tu 15 / 1 15 / 1 10 1 10 1 10 1 10 1 10 1 10 1 10 1	be Side 120 1 2 30" 2 30" 2 30" ength 41.5 ft Material TITAN shell Cover channel Cover channel Cover ball Cover channel Cover ball Cover channel Cover ball Cover channel Cover ball Cover ball Cover ball Cover channel Cover ball Cover ball Cover ball Cover channel Cover ball Cover cover ball Cover cover ball Cover cover	Sketch (Bundle/N (SEE DWG 07-N Pitch 1.25 inch IIUM-GRADE 2 N/A SA-516-70 ting N/A ate YES VC) 82.25 1 Type N/A Bundle Exit 1707.50 TEMA Class Bundle 11374.8	Nozzle Orientation) M088-SC-010B) - - Net 82.25 inch lb/ft-sec2					
Design/Test Pressu Design Temperatur No Passes per She Corrosion Allowanc Connections Size & Rating Tube No. 1440 Tube Type Shell SA-516-70 Channel or Bonnet Tubesheet-Stationa Floating Head Cove Baffles-Long Supports-Tube Bypass Seal Arrang Expansion Joint Rho-V2-Inlet Nozzle Gaskets-Shell Side -Floating Head Code Requirements Weight/Shell 4418 3marks: 1" TUBES (1) SPAR	CONSTRUC Ire psig e F II re inch In inch Out inch Intermediate OD 1 inch Plain ID 57 inch ry SA-516-70 V or Type NTIW-3 N/A 2 PER SPAN ement N/A = 5315.57 lb/ft- 1.6 S E CHANNEL	TION OF ONE SHELL Shell Side 125 / 130 1 1 24" Thk(Avg) 0.028 inch OD W/ TITANIUM CLAD SEG. %Cut (D Seal Typ U-Bend Tube-Tu Type sec2 Bundle E Tube Sic	Tu 15 / 1 15 / 1 10 1 10 1 10 1 10 1 10 1 10 1 10 1	be Side 120 1 2 30" 2 30" 2 30" ength 41.5 ft Material TITAN ihell Cover channel Cover channel Cover ubesheet-Floa npingement Pla Spacing(c I/A nt 392.80	Sketch (Bundle/N (SEE DWG 07-N Pitch 1.25 inch IIUM-GRADE 2 N/A SA-516-70 ting N/A ate YES VC) 82.25 1 Type N/A Bundle Exit 1707.50 TEMA Class Bundle 11374.8	Nozzle Orientation) M088-SC-010B) n Layout 30 nlet 82.25 inch lb/ft-sec2					

PEF-NCR-02278

5.5

7.3 MSR Installation List

Please refer to LP-3 Feedwater heater attachment.

 ${\bf x}_{1} = e^{i \omega t}$

•

		HEAT EXCHANG	ER SPECIFICATIO	N SHEET	Page
		YUBA HÉAT	TRANSFER		US Units
		· •	Job No.		
Customer	PROGRESS ENE	RGY	Referenc	e No. AS-12007	by AD
Address			Proposal	No. QH-6026-07	
Plant Location	CRYSTAL RIVER	STATION, UNIT 3	Date	11/21/2007	Rev
Service of Unit	Secondary Closed	Cooling Water Heat Excha	angers Item No.	E-1AB (tag no.	SCHE-1A/1B)
Size	64 x 528	Type AEL	Horz. Connecte	ed in 1 Parallel	1 Serie: *
Surf/Unit (Gross/E	ff) 33176 / 32756 ft2	Shell/Unit	2* Surf/Shel	ll (Gross/Eff) 16588 / 16378 ft2)
		PERFORMANCI	E OF ONE SHELL		
Fluid Allocation		She	ell Side	Tut	oe Side
Fluid Name		CLOSED CO	OLING WATER	SEA	WATER
Fluid Quantity, Tot	al lb/hr	6000000 (12,000 GPM)	8000000 ((16,000 GPM)
Vapor (In/Out)					
Liquid		600000	6000000	8000000	8000000
Steam					
Water		600000	6000000	8000000	8000000
Noncondensable	s				
Femperature (In/O	ut) F	115.00	100.00	90.00	101.24
Specific Gravity		0.9906	0.9939	0.9955	0.9933
√iscosity	cP	0.5845	0.6811	0.7609	0.6721
Molecular Weight,	Vapor				
Molecular Weight,	Noncondensables		<u> </u>		1
Specific Heat	Btu/lb-F	0.9983	0.9982	0.9989	0.9987
l'hermal Conductiv	ity Btu/hr-ft-F	0.3680	0.3621	0.3575	0.3624
atent Heat	Btu/lb				
nlet Pressure	psia				
Velocity	ft/sec		3.5		5.1
Pressure Drop, Allo	ow/Calc psi	18	15	3.30	3.10
ouling Resistance	(min) ft2-hr-F/Bt	u i	90% clean		90% clean
leat Exchanged E	8984111 8984111	8	MTD (Corrected)	11.7 F	
Fransfer Rate, Sen	vice 469.	00 Btu/ft2-hr-F Clean	511.37 Btt	u/ft2-hr-F Actual	511.37 Btu/ft2-hr-F
	CONSTRU	ICTION OF ONE SHELL		Sketch (Bundle/	Nozzle Orientation)
		Shell Side	Tube Side	<u>1</u>	± ±
Design/Test Pressu	re psig	125 / code	15 & F.V. / code	╺╾┛╟╓╟┸┬┯┯┯╼	╷╴╴┸╖╏╴╻╴╴
Design Temperatur	e F	130 / 40	120 / 40	╺──┛╠┯╢──└─┴─└─└	
to Passes per She		1	1	4.000 A	
Corrosion Allowand	e inch				
Connections	In inch	30" BW	30" 125# R.F.		
Size &	Out inch	30" BW	30" 125# R.F.		
Rating	Intermediate		I		·····
ube No. 1440	OD 1.0 inch	Thk(Avg) 0.0280 inch	Length 44	4.000 ft Pitch 1.2500 i	nch Layout 30
ube Type	Plain		Material	TITANIUM-GRADE 2 (SB-338	GR 2)
hell	ID 64 inch	OD 65	inch Shell Cov	er N/A	· · · · · · · · · · · · · · · · · · ·
hannel or Bonnet	CS with e	poxy lining.	Channel C	Cover CS w/ epoxy co	pating; hinged
ubesheet-Stationa	ry CS with T	itanium Cladding.	Tubeshee	Rt-Floating N/A	
loating Head Cove	n N/A		Impingem	ent Plate STAINLESS S	IEEL.
attles-Cross	CS Type NTIV	V-SEG. %Cut (D	iam) 21.3 Spa	acing(c/c) 65"	
affles-Long	N/A	Seal Typ	e N/A	<u> </u>	
upports-Tube	CS	U-Bend	N/A	Type	
ypass Seal Arrang	ement N/A	Tube-Tul	pesheet Joint	Seal welded & roller exp	banded
xpansion Joint	N/A	Type			1.14 0
	5169.86 lb	/π-sec2 Bundle E	intrance 1122.11	Bundle Exit 885.58	ID/ft-sec2
ho-V2-Inlet Nozzle		Tube Sid	e Non-asbe	\$10\$	
ho-V2-Inlet Nozzle askets-Shell Side	N/A				
ho-V2-Inlet Nozzle askets-Shell Side -Floating Head	N/A N/A				
ho-V2-Inlet Nozzle askets-Shell Side -Floating Head ode Requirements	N/A N/A ASME SE	C VIII, DIV 1, TEMA & HEI		TEMA Class C	
ho-V2-Inlet Nozzle askets-Shell Side -Floating Head ode Requirements 'eight/Shell 57,00	N/A N/A ASME SE	C VIII, DIV 1, TEMA & HEI Filled with Water 118,20	00	TEMA Class C Bundle 44,200	lb
ho-V2-Inlet Nozzle askets-Shell Side -Floating Head ode Requirements reight/Shell 57,000 emarks: Two supp	N/A N/A ASME SE 0 ports per span.	C VIII, DIV 1, TEMA & HEI Filled with Water 118,20	00Shell relief	TEMA Class C Bundle 44,200 f valves.	Ib
ho-V2-Inlet Nozzle askets-Shell Side -Floating Head ode Requirements leight/Shell 57,00 emarks: Two supp here are 2 shells to	N/A N/A ASME SE D Dorts per span. total: 1 in service and	C VIII, DIV 1, TEMA & HEI Filled with Water 118,20	00Shell relie	TEMA Class C Bundle 44,200 f valves.	lb

PEF-NCR-02279

.

Quick opening manway in channel cover. Channel heads to be shipped separately.

Yuba Heat Transfer LLC 2121 N. 161× East Avenue Tulsa, OK 74116 918 234 -6000 Fax 918 234-3345 www.yuba.com A Connell Limited Partnership Company

Kanti Shah Manager of Estimating / Sr. Sales Engineer Phone: 918-234-5535 Fax: 918-234-3345 Email: Shahk@Yuba.com

Yuba

October 18, 2007

Progress Energy Service Company 100 E. Davie Street (TPP-08) Raleigh, NC 27601

Attention: Mr. Adrien Surin - Sourcing Specialist - NGG Major Projects

Reference: AS-12007 Feedwater Heater & Heat Exchanger Replacement Crystal River Nuclear plant Unit 3 Yuba Quote QH–6026-07

Gentlemen:

We are pleased to submit our proposal in response to your November 09, 2007 Inquiry. Thank you for selecting Yuba as one of your potential suppliers. Our response to your inquiry represents our best efforts in selecting the design that best suits your needs and using only those designs that have been proven in many applications.

DATA

Data describing the proposed equipment (Yuba Feedwater Heater Specification Sheets, dated 11/26/07 and HX dated 11/21/07) has been included for your evaluation and review. We have included technical data and recommended practices for the equipment we are quoting. The design information and recommended practices are the result of knowledge gained during the production of over 6000 feedwater heaters in an environment of continuous improvement and learning. Design and materials of construction shall comply with applicable code and specification requirements for the construction and manufacture of such equipment.

SCOPE OF WORK

Our scope of work includes design, fabrication, testing, preparation for shipment, and delivery of subject equipment. Our scope does not include any work for erection or commissioning at site. Assistance from a Yuba Field Service Engineer is available upon request at our published rates (Attached)

Yuba 2121 N. 161st East Avenue A Connel Kanti Shah Limited Partnership Heat Tulsa, OK 74116 Manager of Estimating / Transfer LLC 918 234 -6000 Company Sr. Sales Engineer Fax 918 234-3345 Phone: 918-234-5535 www.yuba.com Fax: 918-234-3345 [] CONFIDENTIAL Email: Shahk@Yuba.com Yuba REDACTED ACCESSORIES

Tube side and shell side relief valves are included in our offering.

VALIDITY

Our prices are firm and valid until December 14, 2007. Should your evaluation extend beyond this date, Yuba will verify material costs and provide updated pricing and delivery.

DELIVERY

We will deliver subject equipment FOB job site by 6/15/2009 as required.

TERMS AND CONITIONS

Sample contract and terms are for service contract, we are supplying complete equipment so we have not reviewed and not applicable to our equipment. We will be glad to provide our comments if you have different T & C for equipment.

We have attached our standard terms of sale for your consideration.

PAYMENT TERMS

EXCEPTIONS AND CLARIFICATIONS TO SPECIFICATIONS

Please refer our response on addendum No. 2 an updated table of conformance in accordance with final version of the specification "Specification for replacement of low pressure closed feedwater heaters and SC for extended power uprate" Our offer is based on this final specification because some requirement for HX has been deleted.

DRAWINGS

Setting plan drawings, which provide complete details on purchaser's connections and supports, will be scheduled for submittal within 60 days after notification of award. We are requesting Progress Energy to limit two (2) weeks turnaround on review of setting plan drawing. We will be more than happy to discuss this matter at your convenience.

Should any modifications be desired, drawing submittal will be based on receipt of complete engineering details at the factory.

Yuba Heat Transfer LLC 2121 N. 161× East Avenue Tulsa, OK 74116 918 234 -6000 Fax 918 234-3345 www.yuba.com A Connell Limited Partnership Company Kanti Shah Manager of Estimating / Sr. Sales Engineer Phone: 918-234-5535 Fax: 918-234-3345 Email: Shahk@Yuba.com

Yuba

Shop detail drawings are considered proprietary in nature and are not submitted. Only a certified setting plan will be transmitted for review. Detailed drawings are always available for review in our Tulsa office where they can be discussed at length with the product engineer assigned to the project.

We will provide the following drawings in the instruction manual for your plant personnel's use:

1. Gasket schedule.

2. Tube layout.

3. Sketch showing location of supports and baffles.

Yuba will submit drawings in electronic format where available. Documents not available in electronic format will be transmitted in paper form.

Yuba's drawings will be per our standard AutoCAD guidelines.

ISO 9001

We would like to highlight that Yuba is certified to ISO 9001. We feel that this is a significant step in the continuous improvement process of our Yuba organization and that this will certainly be a benefit to you in our working together to the successful completion of this project.

We appreciate this opportunity to be of service to you on this project. Should we be of additional assistance during your bid evaluation, please feel free to contact us

We look forward working with you on this project.

Very truly yours,

Kanti Shah

Kanti Shah

cc: Sam R. Naifeh – Vice President of Sales Direct Dial: 918-234-5503 From: Kanti Shah [ShahK@yuba.com]
Sent: Friday, December 07, 2007 3:26 PM
To: Deahna, Scott T.
Cc: Williams, Ted E.; Owen, Tony; Surin, Adrien; Sexton, Larry J.; Sam Naifeh
Subject: RE: Yuba Proposal # QH-6026-07 Review Questions and Clarifications Update Gentlemen:

Please find our response to your question in attached document.

For welded Titanium tubes, we will comply all requirements per SB-338-Gr2 only.

For seamless tube we are checking on Ultrasonic testing.(UT).

We do not have response from our supplier regarding price as "buy now".

Thank you for interest in Yuba products.

Best Regards

Kanti Shah Manager of Estimating / Sr. Sales Engineer

YUBA HEAT TRANSFER LLC 2121 N 161St E AVE Tulsa OK 74116 Phone: 918-234-5535 Fax: 918-234-3345 Email: shahk@yuba.com

The information transmitted in this facsimile message is intended for the personal and confidential use of only the individual or entity named above, and may contain privileged and confidential information. If the reader of this message is not the intended recipient, you are notified that any dissemination, distribution, copying, retention, or use of this facsimile is strictly prohibited. If you have received this facsimile in error, please notify us by telephone and return the original message to us at the address above via regular mail service (we will reimburse you for your costs). Thank you.

From: Deahna, Scott T. [mailto:Scott.Deahna@pgnmail.com]
Sent: Thursday, December 06, 2007 9:43 AM
To: Deahna, Scott T.; Bill Maniss; Kanti Shah
Cc: Williams, Ted E.; Owen, Tony; Surin, Adrien; Sexton, Larry J.
Subject: Yuba Proposal # QH-6026-07 Review Questions and Clarifications Update

Gentlemen,

The SC cooler tubes shall be in accordance with the attached ASME SB-338 specification for seamless and welded titanium tubes.

Progress Energy prefers seamless tubes as proposed by Yuba.

Section 11, Nondestructive Tests states seamless tubes require ultrasonic testing (UT) not electromagnetic (EC) testing.

The permissible variation in tube dimensions is provided in section 12 and table 5.

Yuba should agree to all requirements of ASME SB-338 for seamless tubes.

Thank You,

Scott.

-----Original Message-----From: Deahna, Scott T. Sent: Wednesday, December 05, 2007 7:17 PM To: 'Bill Maniss'; 'Shahk@yuba.com' Cc: Williams, Ted E.; Owen, Tony; Surin, Adrien; Sexton, Larry J. Subject: Yuba Proposal # QH-6026-07 Review Questions and Clarifications

Bill / Kanti,

Thank You for your timely proposal. I have reviewed your proposal and request your response to the attached technical questions and clarifications.

Thank You, Scott Deahna Lead Engineer, Major Projects Group Crystal River Unit 3 (SA2) Progress Energy 15760 W. Power Line Street Crystal River, FL 34428 (352) 563-2943, x4234 cell: (352) 464-7487 scott.deahna@pgnmail.com

Pg. 1 of 1

<u>Technical Review of Yuba Proposal QH-6026-07, dated 11/30/07, and Thermal Engineering</u> International Proposal 06-M088, dated 11/29/07.

Technical Review completed by: Scott T. Deahna on 12/07/07.

The proposals are for the replacement of two (2) feedwater heaters (CDHE-3A/B) and two (2) secondary plant component cooling heat exchangers (SCHE-1A/1B). The heat exchangers are being replaced to support the CR3 extended power uprate project. Progress Energy issued Request for Proposal # AS-12007 on 11/09/07. Draft equipment specifications for the replacement heat exchangers were included with the RFP. A table of conformance to the specification was included with the RFP. The vendor proposals were due on 11/30/07.

Summary of Proposals Submitted:

- The Yuba proposal QH-6026-07 provided the better overall technical design offering. The Yuba proposal includes seamless tubes. The TEI proposal includes seam welded tubes (per telecom w/ Jay Wu). Both types are acceptable per ASME SB-338. Seamless tubes are more expensive.
- Both vendor proposals were complete and were submitted on time.
- Both vendors submitted complete table of conformance to the equipment specifications.
- Both vendors met the technical requirements of the specification. Some exceptions were taken to the specification. None of the exceptions taken to the specification were of technical or commercial significance.
- The feedwater heater designs submitted by both vendors were essentially technically equivalent.
- The Yuba SC heat exchanger design provided more heat exchange surface area than the TEI design.
- The Yuba SC heat exchanger design meets the maximum dimensional requirements.
- The Yuba SC heat exchanger design provides additional cooling capacity compared to the TEI design.

Se coord Design characteristic of		
Characteristic:	Yuba Proposal:	TEI Proposal:
Tube Bundle Size	64" x 528"	57" x 498"
Eff. Surface	16,378 Sq. Ft.	15,503 Sq. Ft.
Heat Exchanged	89,842,118 Btu/Hr.	89, 053,665 Btu/Hr.
Heat Transfer Rate	511.37 Btu/Sq.FtHrF	505.73 Btu/Sq.FtHrF
Vessel Size	65" OD x ????	58" OD x 49'-11" L
Tubes (Titanium, SB-338 GR2)	1440, 1"OD, 0.028" wall, 44'long	1440, 1"OD, 0,028" wall, 41.5'long
Design Pressure / Temp Shell	125 psig / 130F	125 psig / 130F
Design Pressure / Temp Tubes	15 psig / 120F	15 psig / 120F
Vessel Weight	57,000 Lbs.	44,182 Lbs.

SC Cooler Design Characteristic Comparison:

Feedwater Heater Design Characteristic Comparison:

Characteristic:	Yuba Proposal:	TEI Proposal:
Tube Bundle Size	57" x 546"	58" x 539"
Eff. Surface	17,300 Sq. Ft.	17,088 Sq. Ft.
Heat Exchanged	295,281,000 Btu/Hr.	294,281,000 Btu/Hr.
Heat Transfer Rate	1139 Btu/Sq.FtHrF	1165 Btu/Sq.FtHrF
TTD / DCA	5F / 10F	5F / 10F
Vessel Size	58" OD x 52'-10" OAL	59" OD x 52'-3" OAL
Tubes (SA-668-TP304L)	1000, 0.75", 0.035", 45'-6"	997, 0.75", 0.035", 45'
Design Pressure / Temp Shell	75 psig / 280F	50 psig / 300F
Design Pressure / Temp Tubes	400 psig / 280F	400 psig / 300F
Vessel Weight	60,400 Lbs.	60,000 Lbs.

Yuba Heat Transler LLC	2121 N. 161¤ East Avenue Tulsa, OK 74116 918 234 -6000 Fax 918 234-3345 www.yuba.com	A Connell Limited Partnership Company	Kanti Shah Manager of Estimating / Sr. Sales Engineer Phone: 918-234-5535 Fax: 918-234-3345 Email: Shahk@Yuba.com
Yuba			A\$
December	06, 2007	seamless	-
Progress E 100 E. Dav Raleigh, N	nergy Service Company vie Street (TPP-08) C 27601	welded	REDACTED
Attention:	Mr. Adrien Surin - Sourd	cing Specialist – NGG Major	Projects
Reference:	AS-12007 Feedwater Heater & Hea Crystal River Nuclear pla	at Exchanger Replacement ant Unit 3	

Gentlemen:

-

Per our conversation we are pleased to provide our offering for welded seam Titanium tubes per SB-338-GR2 for SC. Welded tubes will meet all Code requirements regardless of specification requirement. LP heater tube requirement stays unchanged.

Following offered price is based on buying tubes now and paying for same to avoid escalation.

REDACTED

VALIDITY

Our prices are firm and valid until December 14, 2007. Should your evaluation extend beyond this date, Yuba will verify material costs and provide updated pricing and delivery.

1

PAYMENT TERMS

Yuba offers the following progress payments:

Yuba Quote QH-6026-07

Yuba Heat Transfer LLC 2121 N. 161st East Avenue Tulsa, OK 74116 918 234 -6000 Fax 918 234-3345 www.yuba.com

. .

 $\sim 10^{-10}$

A Connell Limited Partnership Company Kanti Shah Manager of Estimating / Sr. Sales Engineer Phone: 918-234-5535 Fax: 918-234-3345 Email: Shahk@Yuba.com

Yuba

Except as expressly modified herein, all other stated terms and conditions remain unchanged.

We appreciate this opportunity to be of service to you on this project. Should we be of additional assistance during your bid evaluation, please feel free to contact us

We look forward working with you on this project.

Very truly yours,

Kanti Shah

Kanti Shah

cc: Sam R. Naifeh – Vice President of Sales Direct Dial: 918-234-5503

Yuba Heat Transfer Proposal # QH-6026-07 Review Questions and Clarifications:

Yuba Heat Transfer Proposal # QH-6026-07, Feedwater Heater & SC Heat Exchanger Replacement for CR3, Dated October 17, 2007.

Please respond or acknowledge the following items pertaining to your proposal and the Progress Energy (PE) bid specification table of conformance exception items.

- 1) Is the manufacturing quality assurance record submitted to the purchaser?
- 2) The proposal states vessel outline drawings will be submitted within 60 days of award. Does Yuba agree the CDHE-3A / 3B nozzles should be able to remain in the existing location? Does Yuba agree the SCHE-1A / 1B nozzles should be able to remain in the existing location except for the tube side sea water connections due to the vessel length increase?
- 3) What is the SCHE-1A / 1B estimated total length? The SCHE-1A / 1B spec sheet indicates 30" BW connections on the shell side. Does Yuba agree these should be 24" BW?
- 4) Can Yuba install lifting trunions in the vertical orientation on SCHE-1A / 1B? There is a field interference with horizontal orientated trunions.

Table of Conformance Exception Items for SCHE-1A / 1B:

- 1) 1.1.2.4; Channel Head Epoxy Coating. PE does not accept the coal tar epoxy and will specify a Belzona epoxy product. Is this acceptable to Yuba?
- 2) 3.2.1; Cathodic Protection. Yuba is not providing. PE would like a zinc anode installed in the channel heads. Is this acceptable to Yuba?
- 3) 3.2.2; Tube Cleaning System Limits. Yuba will not provide this information. Accepted by PE.
- 4) 3.2.6; Yuba is providing a carbon steel tubesheet with titanium clad. Tube ends will be welded to the cladding. PE may require epoxy coating on the tube sheet. Is this acceptable to Yuba?
- 5) 3.2.7; SA-516-70 shell material is accepted by PE.
- 6) 3.2.8; Stainless Steel impingement plate at the shell inlet is accepted by PE.
- 7) 3.2.10; Dissimilar materials in the channel and channel cover (including bolting) shall be electrically isolated by gaskets or non- conducting washers to prevent galvanic erosion. Is this acceptable to Yuba?
- 8) 3.2.10; PE requests channel cover hinges rather than davits. Is this acceptable to Yuba?
- 9) 3.2.10; A 20" bolted opening on the channel cover is accepted by PE.
- 10) 3.6.2; Required Tube Tolerances. Yuba takes exception to the bid specification specific tube measurement tolerance criteria, stating the tube critical characteristics "will be per code". Provide specific code requirement that Yuba will use for the QC of the 1 inch titanium tubes.

- 11) 3.7.2-5; Seamless tubes will be provided. Accepted by PE.
- 12) 3.9.15-20; NDE of Tubes Dimensional Measurements. Describe Yuba's QC program for tube dimensional measurements verification (acceptance criteria per 3.6.2 above).
- 13) 3.9.22-46; NDE of Tubes ECT and UT. Yuba states the tubes will be eddy current tested per code. No UT is required for seamless tubes. Provide specific code requirement that Yuba will use for the ECT of the 1 inch titanium tubes. No UT is accepted by PE.
- 14) 3.9.47; Tube Chemical and Mechanical Testing. PE will accept submittal of the tube supplier material certification. Is this acceptable to Yuba?
- 15) 3.9.49; Tube Pressure Testing. What tube pressure testing procedure will Yuba use?
- 16) 4.9; Bill of Materials. Shop detailed part drawings are not required. PE requests a bill of materials indicating the material specification used for each major part. Is this acceptable to Yuba?
- 17) 6.3; Subcontractor Approval. Yuba shall be responsible for subcontractor quality control. PE requests Yuba provide a list of subcontractors and their responsibilities after placement of order. Subcontractor approval by PE is not required prior to placement of order. (PE contracts group to acknowledge this item).

Table of Conformance Exception Items for CDHE-3A / 3B:

- 1.3; Insulation is by PE. Insulation clips may need to be installed on the shell by Yuba as stated in 3.7.13.1. Will Yuba provide stainless steel vent orifice plates?
- 2) 3.2.13-16; Vessel Seismic Qualification is not required by PE.
- 3) 3.7.6.4; Tubes to be welded to tubesheet and hydraulically expanded is accepted by PE.
- 4) 3.7.9.1 and 3.7.9.2; Yuba has an "X" in the conform column. Does Yuba conform "C" to these items?
- 5) 3.9.2.4; Hydrostatic test exception note is accepted by PE.
- 6) 3.9.4.3; Finish machining exception note is accepted by PE. Spec states it is not required for LP heaters.

Yuba Heat Transfer Proposal # QH-6026-07 Review Questions and Clarifications:

Yuba Heat Transfer Proposal # QH-6026-07, Feedwater Heater & SC Heat Exchanger Replacement for CR3, Dated October 17, 2007.

Please respond or acknowledge the following items pertaining to your proposal and the Progress Energy (PE) bid specification table of conformance exception items.

- 1) Is the manufacturing quality assurance record submitted to the purchaser? Yuba response: Yes
- 2) The proposal states vessel outline drawings will be submitted within 60 days of award. Does Yuba agree the CDHE-3A / 3B nozzles should be able to remain in the existing location? Does Yuba agree the SCHE-1A / 1B nozzles should be able to remain in the existing location except for the tube side sea water connections due to the vessel length increase?

Yuba response: We are confident that we can keep same but due to increase in length we can not say 100% until we make layout and setting plan drawing.

3) What is the SCHE-1A / 1B estimated total length? The SCHE-1A / 1B spec sheet indicates 30" BW connections on the shell side. Does Yuba agree these should be 24" BW?

Yuba response: Yes typo error, we will correct datasheet.

Yuba response: We will comply per specification SB-338-G2.

4) Can Yuba install lifting trunions in the vertical orientation on SCHE-1A / 1B? There is a field interference with horizontal orientated trunions.

Yuba response: Yes we can install conventional vessel lift lugs.

Table of Conformance Exception Items for SCHE-1A / 1B:

- 1.1.2.4; Channel Head Epoxy Coating. PE does not accept the coal tar epoxy and will specify a Belzona epoxy product. Is this acceptable to Yuba? Yuba response: It is OK, there will be additional cost.
- 2) 3.2.1; Cathodic Protection. Yuba is not providing. PE would like a zinc anode installed in the channel heads. Is this acceptable to Yuba? Yuba response: Yes, there will be some additional cost.
- 3) 3.2.2; Tube Cleaning System Limits. Yuba will not provide this information. Accepted by PE.
- 4) 3.2.6; Yuba is providing a carbon steel tubesheet with titanium clad. Tube ends will be welded to the cladding. PE may require epoxy coating on the tube sheet. Is this acceptable to Yuba? Yuba response: TI clad on TS will cover wetted surface, with gasket surface on the clad. We do not recommend epoxy coating the TI clad.
- 5) 3.2.7; SA-516-70 shell material is accepted by PE.
- 6) 3.2.8; Stainless Steel impingement plate at the shell inlet is accepted by PE.
- 7) 3.2.10; Dissimilar materials in the channel and channel cover (including bolting) shall be electrically isolated by gaskets or non- conducting washers to prevent galvanic erosion. Is this acceptable to Yuba?

Yuba response: Yes, we need to do some research

and may be some added cost

8) 3.2.10; PE requests channel cover hinges rather than davits. Is this acceptable to Yuba?

Yuba response: Yes

- 9) 3.2.10; A 20" bolted opening on the channel cover is accepted by PE.
- 10) 3.6.2; Required Tube Tolerances. Yuba takes exception to the bid specification specific tube measurement tolerance criteria, stating the tube critical characteristics "will be per code". Provide specific code requirement that Yuba will use for the QC of the 1 inch titanium tubes. Yuba response: We will comply per specification

SB-338-G2. 11) 3.7.2-5; Seamless tubes will be provided. Accepted by PE.

12) 3.9.15-20; NDE of Tubes – Dimensional Measurements. Describe Yuba's QC program for tube dimensional measurements verification (acceptance criteria per 3.6.2 above).
 Yuba response: We will comply per

specification SB-338-G2.

- 13) 3.9.22-46; NDE of Tubes ECT and UT. Yuba states the tubes will be eddy current tested per code. No UT is required for seamless tubes. Provide specific code requirement that Yuba will use for the ECT of the 1 inch titanium tubes. No UT is accepted by PE.
- 14) 3.9.47; Tube Chemical and Mechanical Testing. PE will accept submittal of the tube supplier material certification. Is this acceptable to Yuba? Yuba response: Yes
- 15) 3.9.49; Tube Pressure Testing. What tube pressure testing procedure will Yuba use? Yuba response: Hydro test tube & shell side at DP x 1.3 per Code
- 16) 4.9; Bill of Materials. Shop detailed part drawings are not required. PE requests a bill of materials indicating the material specification used for each major part. Is this acceptable to Yuba? Yuba response: Yes
- 17) 6.3; Subcontractor Approval. Yuba shall be responsible for subcontractor quality control. PE requests Yuba provide a list of subcontractors and their responsibilities after placement of order. Subcontractor approval by PE is not required prior to placement of order. (PE contracts group to acknowledge this item). Yuba response: OK. Thank you

Table of Conformance Exception Items for CDHE-3A / 3B:

- 1.3; Insulation is by PE. Insulation clips may need to be installed on the shell by Yuba as stated in 3.7.13.1. Will Yuba provide stainless steel vent orifice plates? Yuba response: Yes, if required
- 2) 3.2.13-16; Vessel Seismic Qualification is not required by PE.
- 3) 3.7.6.4; Tubes to be welded to tubesheet and hydraulically expanded is accepted by PE.

- 4) 3.7.9.1 and 3.7.9.2; Yuba has an "X" in the conform column. Does Yuba conform "C" to these items? Yuba response: Yes
- 5) 3.9.2.4; Hydrostatic test exception note is accepted by PE.

ь

6) 3.9.4.3; Finish machining exception note is accepted by PE. Spec states it is not required for LP heaters.

ارد. محمد المصحيحة أحمد الح

(I)

CERTIFICATE OF AUTHORIZATION

This certificate accredits the named company as authorized to use the indicated symbol of the American Society of Mechanical Engineers (ASME) for the scope of activity shown below in accordance with the applicable rules of the ASME Boller and Pressure Vessel Code. The use of the Code symbol and the authority granted by this Certificate of Authorization are subject to the provisions of the agreement set forth in the application. Any construction stamped with this symbol shall have been built strictly in accordance with the provisions of the ASME Boller and Pressure Vessel with the provisions of the ASME Boller and Pressure Vessel with the provisions of the ASME Boller and Pressure Vessel Code.

COMPANY:

Yuba Heat Transfer 2121 N. 161st East Avenue Tulsa, Oklahoma 74116

SCOPE:

Manufacture of pressure vessels at the above location and field sites controlled by the above location

AUTHORIZED: May 2, 2007 • EXPIRES: June 4, 2010 CERTIFICATE NUMBER: 11,178

R.O. L. Youlan.

Chairman of The Boiler And Pressure Vessel Committee

Director, Accreditation and Certification

PEF-NCR-02293

The American Society of Mechanical Engineers

Certificate of Registration

QUALITY MANAGEMENT SYSTEM - ISO 9001:2000

This is to certify that:

Yuba Heat Transer L.L.C. 2121 NO. 161ST East Ave Tulsa Oklahoma 74116 USA

Holds Certificate No: FM 57812

and operates a Quality Management System which complies with the requirements of ISO 9001:2000 for the following scope:

The design, marketing and manufacture of heat transfer equipment.

For and on behalf of BSI:

Pearson

President, BSI Management Systems (Americas)

Originally registered: 02/16/2001

Latest Issue: 06/26/2006

Expiry Date: 06/25/2009

Page: 1 of 2

This certificate remains the property of BSI, Inc. and shall be returned immediately upon the request. An electronic certificate can be authenticated <u>priling</u>. Printed copies can be validated at www.bsi-global.com/ClientDirectory To be read in conjunction with the scope above or the attached appendix. Americas Headquarters: 12110 Sunset Hills Road, Suile 200, Reston, VA 20190, USA. Group Headquarters: 389 Chiswick High Road, London, W4 4AL, UK.

Management Systems

V N 1 B SURED C Y O B S IS TO CERTIFY 1 CATED, NO CO B S IS TO CERTIFY 1 CATED, NO CO B S IS TO CERTIFY 1 CATE, COMMANNE COMMANNE COMMANNE COMMANNE COMMANNE COMMANNE CALAR COMMANNE CALAR COMMANNE CALAR COMMANNE CALAR COMMANNE CALAR COMMANNE CALAR COMMANNE CALAR COMMANNE CALAR COMMANNE CALAR COMMANNE CALAR COMMANNE CALAR COMMANNE CALAR COMMANNE CALAR COMMANNE CALAR CALAR COMMANNE CALAR CA	elis Fargo Insurance ortheast, Inc. 25 Summer St-16th oston, MA-02110 onnell Limited Partne Uba Heat Transfer the International Place oston, MA 02110 EAT THE POLICIES OF IN STANDING ANY REQUE ISSUED OR MAY PERTA UDITION OF SUCH POLICE SURANCE	Services FL III Ship 8 SURANCE LISTED BELOW HAVE B EMENT, TERM OR CONDITION OF IN, THE INSURANCE AFTORDED BY THE INSURANCE AFTORDED BY	COMP COMP COMP COMP COMP	NOT AMEND, EXTEN DES BELOW. COI PANY A Co Ame ANY COI PANY A Co Ame ANY S ACC Ame ANY S St. Paul F VANY)	D OR ALTER THE CO MPANIES AFFOR rican Insurance rican Insurance	VERAGE AFFORDED BY THE	
ILIRED C SURED C C Y C C C C C C C C C C C C C C C C	Annual Contract of the second	FL I'ship 8 SURANCE LISTED BELOW HAVE B EMENT, TERM OR CONDITION OF IN THE INSURANCE AFFORDED BY THE INSURANCE AFFORDED BY		COP PANY A Ace Ame ANY COP PANY A Ace Ame ANY St. Paul F VANY	MPANIES AFFOR Irican Insurance Irican Insurance	DING COVERAGE	
IURED C SURED C C Y C C S S S S S S S S S S S S S S S	25 Summer St-16th baton, MA-02110 uba Heat Transfer he International Place iston, MA 02110 ELL THE FOLICIES OF IN ISTANDING ANY REQUIR I ISSUED OR MAY PERTA VIDITIONS OF SUCH FOLIC BURANCE	FL Irship 8 SURANCE LISTED BELOW HAVE B EMENT, TERM OR CONDITION OF IN, THE INSURANCE AFFORDED BY THE INSURANCE AFFORDED BY		Ace Ame A Ace Ame ANY Ace Ame ANY St. Paul F ANY	rican Insurance rican Insurance Fire & Marine		
B SURED C Y O B S IS TO CERTIFY 1 CATED, NOTWIT THEICATE MAY B LUSIONS AND CO TYPE OF B GENERAL LIABLI X COMM. CEN CLAIR OWNERS &	Daton, MA-02110 Donnell Limited Partne Uba Heat Transfer De International Place Diston, MA 02110 ELAT THE POLICIES OF IN ISTANDING ANY REQUIR ISSUED OR MAY PERTA UDITIONS OF SUCH POLICE BURANCE	SURANCE LISTED BELOW HAVE B EMENT, TERM OR CONDITION OF IN THE INSURANCE AFFORDED BY THE INSURANCE AFFORDED BY		A Ce Ame ARY ACE Ame ANY St. Paul F ANY ANY	rican Insurance rican Insurance fire & Marine		
COMM. CEN	onnell Limited Partne uba Heat Transfer le International Place sston, MA 02110 HAT THE POLICIES OF IN ISTANDING ANY REQUIR I ISSUED OR MAY PERTA INTERNE OF SUCH POLICE SURANCE	B SURANCE LISTED BELOW HAVE B EMENT, TERM OR CONDITION OF IN THE INSURANCE AFFORDED BY THES LIMITS SHOWN MAY HAVE B		ANY Ace Ame ANY St. Paul F ANY	rican Insurance Fire & Marine		
COMM. CEN	Connell Limited Partne uba Heat Transfer ne International Place oston, MA 02110 ELAT THE POLICIES OF IN ISTANDING ANY REQUIR I ISSUED OR MAY PERTAL VOITTIONS OF SUCH POLICE BURANCE	SURANCE LISTED BELOW HAVE B EMENT, TERM OR CONDITION OF IN THE INSURANCE AFFORDED BY THES LIMITS SHOWN MAY HAVE B		Ace Ame	Fire & Marine		
COMM. CEN	Annali Limited Partia uba Heat Transfer ne International Place oston, MA 02110 ELAT THE POLICIES OF IN ISTANDING ANY REQUIRE ISSUED OR MAY PERTA INITIONS OF SUCH POLICE SURANCE	9 SURANCE LISTED BELOW HAVE B EMENT, TERM OR CONDITION OF, IN, THE INSURANCE AFFORDED BY THES. LIMITS SHOWN MAY HAVE B	COMP COMP I BEEN ISS	ANY 3 St. Paul I ANY)	Fire & Marine		· · · · · · · · · · · · · · · · · · ·
Y O B S TO CERTIFY 1 ICATED, NOTWIT TUPICATE MAY B LUSTONS AND CO TYPE OF E GENERAL LIADEI X COMM. GEN CLAIR COMMERS &	Iba Heat Transfer ne International Place International Place Iston, MA 02110 International Place Istanding Any Require Istanding Any Require Istanding of Such Police SURANCE	8 SURANCE LISTED BELOW HAVE B EMENT, TERM OR CONDITION OF, IN, THE INSURANCE AFFORDED BY INS. LIMITS SHOWN MAY HAVE B		C St. Paul I PANY)	Fire & Marine		
COMMERS &	The International Place Iston, MA 02110 ELAT THE POLICIES OF IN ISTANDING ANY REQUIRE I ISSUED OR MAY PERTA VOITTONS OF SUCH POLICE SURANCE	9 SURANCE LISTED BELOW HAVE B EMENT, TERM OR CONDITION OF, IN, THE INSURANCE AFFORDED BY ITES. LIMITS SHOWN MAY HAVE B	COME I	жнү)		<u></u>	
B STOCEPTIEFY ICATED, NOTWIT TUPICATE MAY B LUSTONS AND CO TYPE OF B GENERAL LIADED X COMM. GEN CLAIR COMMERS &	HAT THE POLICIES OF IN ISTANDING ANY REQUIR ISSUED OR MAY PERTA VIDITIONS OF SUCH POLICIES BURANCE	SURANCE LISTED BELOW HAVE B EMENT, TERM OR CONDITION OF, IN, THE INSURANCE AFFORDED BY ITES. LIMITS SHOWN MAY HAVE B	I I)			<u>.</u>
STOCENTIEST ICATED, NOTWIT ICATED, NOTWIT ICHICATE MAY B LUSTONS AND CO TYPE OF B GENERAL LIADUI X COMM. GEN CLAIR COMMERS &	HAT THE POLICIES OF IN ISTANDING ANY REQUIR I ISSUED OR MAY PERTAI VIDITION OF SUCH POLICE SURANCE	SURANCE LISTED BELOW HAVE B EMENT, TERM OR CONDITION OF IN, THE INSURANCE AFFORDED BY NES. LIMITS SHOWN MAY HAVE B	EEN ISS		The second s		
S IS TO CERTIFY 1 ICATED, NOTWIT TIPICATE MAY B LUSIONS AND CO TYPE OF E GENERAL LIADED X COMM. GEN CLAIR COMMERS &	HAT THE POLICIES OF IN ISTANDING ANY REQUER I ISSUED OR MAY PERTA IDITIONS OF SUCH POLIC ISURANCE	SURANCE LISTED BELOW HAVE B EMENT, TERM OR CONDITION OF A IN, THE INSURANCE AFFORDED BY NES. LIMITS SHOWN MAY HAVE B	EEN DSS				
ICATED, NOTWIT ETIFICATE MAY B LUSTONS AND CO TYPE OF E GENERAL LIADU X COMM. CEN COMM. CEN	ISTANDING ANY REQUIR I ISSUED OR MAY PERTA IDITIONS OF SUCH POLIC ISURANCE	ement, term or condition of , in, the insurance afforded by Nes. Limits shown may have b		UED TO THE INSURE	D NAMED ABOVE FOR	THE POLICY PERIOD	
LUSTONS AND CO TYPE OF E GENERAL LIADU X COMM. GEN CLAR COMMERS &	DITIONS OF SUCH POLIC BURANCE	SES. LIMITS SHOWN MAY HAVE B	ANY COP	FTRACT OR OTHER D	OCUMENT WITH RES	PBCT TO WHICH THIS	
TYPE OF E	BURANCE	the second s	EEN REL	NICED BY PAID CLAI	MES.	V AG2. TIM TEAMS,	
CEMERAL LIABU		POLICY NUMBER		POLICY EFF. DATE (MM/DD/YY)	POLICY EXP. DATE (MM/DD/YY)	LIMI	rts
X COMM. GEN	ITY					GENERAL AGGREGATE	1750000
CLAIR OWNER'S A	ERAL LIABILITY	XSLG20559299		10/01/07	10/01/08	PROD-COMP/OP AGG.	1750000
OWNER'S A	IS MADE X OCCUR					PERS. & ADV. INJURY	750000
	CONTRACT'S PROT					EACH OCCURRENCE	750000
						FIRE DAMAGE (One First	250000
X Brd.Em V	ndra					MEO EXP(Any one person)	. 5000
AUTOMOBILE LI	BILITY					COMBINED SINGLE	
ANYAUIO	11000	ISAH07961364		10/01/07	10/01/08	LIMII	1000000
X SCREDULE	AUTOS					BODILY INJURY (Per persons)	
X HIRED AUT X NON-OWNE	S AUTOS			i		BODILY INJURY (Per socidest)	
X COMP. S	50						
X COLL. \$2	50				[PROPERTY DAMAGE	
GARAGE LIABILI	ry .	······				AUTO ONLY-BA ACCIDENT	
ANY AUTO					ĺ	OTHER THAN AUTO ONLY	
			·			EACR ACCIDENT	
						AGGREGATE	
EXCESS LIABILIT	¥					EACH OCCURRENCE	5000000
XUMBRELLA	ORM .	QK01201676		10/01/07	10/01/08	ACGREGATE	5000000
OTHER THA	UMBRELLA FORM						-
WORKERS COMP	NSATION AND					X STATUTORY LIMITS	
		WLRC44004264		10/01/07	10/01/08	EACH ACCIDENT	1000000
PARTNERS/EXECT	TIVE X INCL				l	DISEASE-POLICY LIMIT	1000000
OFFICERS ARE:	EXCL				L	DISEASE-EACH EMPL.	1000000
other							
RE: EVIDENCE	ATIONS/LOCATIONS/VES	IICLES/SPECIAL ITEMS		<u></u>			

Yuba Heat Transfer LLC 2121 N. 161st East Avenue Tulsa, OK 74116 918 234 -6000 Fax 918 234-3345 www.yuba.com

set i

A Connell Limited Partnership Company

Yuba

REFERENCES

NUCLEAR PLANT		
Russ Wenzel	NPPD - COOPER NUCLEAR	402-825-5747
Jeffrey Marion	EXELON-PEACH BOTTOM	717-456-4696
Peter Omaggioi	AMERGEN-TMI	717-948-8290
Charlie Zalewski	NMC-DUANE ARNOLD	319-851-7331
Gray Boughman	PPL-SUSQUEHANNA	610-774-7673
Bill Cote	EXELON-DRESDEN	815-416-2138
FOSSIL PLANT		、
Alan Tennant	Allegheny Energy	724-830-5460
Joe Shelton	Southern Company Service	205-992-7177
Doug Zahn	Keyspan	516-545-6281
Patrick Clarke	Tampa Electric Company	813-228-4656
Leon Gertsch	Mid American Energy	712-277-5245

	PARTIAL INSTALLATION LIST FOR																		
JUD#	CU3 IUMER	SIATION IU		13 E W	54 61	82		טנ	LENG	11		LYPE L	ESIGN		MATERIAL	SHIP	MW	INSTALLATION	FIELD SERVICE
04H203-14	EXELON NUCLEAR POWER		2	EH.1ARC	17001	74	1000		3/4 2010			CATLIFADAL	JODE	SHEL		UAIE	ea unit)		SUPERVISION
04H183-1A	AMERGEN	THREE MILE ISLAND	1	EH-5AB	24 413	75	1426		3/4 1350	1* 22			725	60	SA-000-1P304(.03ML)	01-00			
03H119-2A	ENTERGY NUCLEAR	VERMONT YANKEE	1	EH-2A&B	13976	69	1453		5/8:2711		L.	UHSMW	2000	180	SA-600-17 504(.05WIC)	02.04		••	
03H119-1A	ENTERGY NUCLEAR	VERMONT YANKEE	1	EH-1A&B	15047	56	1432		5/7 30'8"	1	н	UHSMW	2000	325	SA-688-TP315	01_04		a	· · · ·
03H110-1	OMAHA PUBLIC POWER DIST	FT CALHOUN	1	EH-5A/B	11.615	55	797	3/4	35'10)• 2	I.	UEMW	700	320	SA-688-TP304(05MC)	01-0-1		Y	v
02H965-1	CONSTELLATION NUCLEAR	NINE MILE POINT	1	EH-3	11529	52	958		5/8 35'8"	5	н	UHSMW	800	75	SA-688-3041	10-02		·. ^ .	
01H939-2	EXELON NUCLEAR	PEACH BOTTOM 2	2	EH-3	17.727	67	1340		3/4 32'2"	. 2	H	UEMW	700	75	SA-688-TP304 (05MC)	05.02		···· ¥	
01H939-1	EXELON NUCLEAR	PEACH BOTTOM	2	EH-2	19.326	71	1298		3/4 36'4"	. 5		NHUEMW	700	50	SA-688-TP304 (05MC)	05-02		Ŷ	Ŷ
00H862-1	ENTERGY SERVICES, INC	NINE MILE POINT	5	EH-6	22.105	64	1251	3/4	43'6"	. 12	2 H	UEMW	600	50	SA-688-304 (05MC)	01-01	ļ	^	i Ŷ
00H865-1	ENTERGY NUCLEAR GENERATIN	PILGRIM NUCLEAR	1	EH-3	17.375	61	1435	5/8	35'7"	2	Ын		600	75	SA-688-3041	03-01	i		
99H826-3	ENTERGY SERVICES, INC	NINE MILE POINT	4	EH-5	14,710	57	1087	3/4	33'1'	· 12	211	UEMW	600	50	SA-556-C2	04-00			1 7
99H826-2	ENTERGY SERVICES, INC	NINE MILE POINT	1	EH-2	1,802	34	274	3/4	16'0	• 4	t Ir	UB	400	150	SA-688-304 (.05MC)	04-00	1		
99H826-1	ENTERGY SERVICES, INC	NINE MILE POINT	2	EH-2	3,437	43	490	3/4	16'1	0" 4	4 ¦+	IUHLKB	2550	300	SA-688-304 (.05MC)	04-00	1		
99H817-1	ENTERGY SERVICES, INC	RIVER BEND	1	EH-1B	21,168	72	2199		5/8 27'7	• 2	: F	IUHSMW	2000	400	SA-688-304 (.05MC)	02-00	1		
98H764-1	NIAGARA MOHAWK POWER	NINE MILE POINT	1	EH-3AB	11,529	52	958	5/8	35'-8	8" 2	2	IUHSMW	600	75	SA-688-304L	02-99	641		•
98H748-1	BOSTON EDISON CO	PILGRIM		EH-1	18,817	65	1025		3/4 45'5	2	2 +	ICNUEMW	600	50	SA-688-304L	10-98			1
96H600-3	NEW YORK POWER AUTHORITY	JAMES A. FITZPATRICH	<	EH-5	22,189	68	1312	ļ	3/4 41'9	r iz	2 r	IUEMW	800	250	SA-688-304L	04-97			
96H600-2	NEW YORK POWER AUTHORITY	JAMES A. FITZPATRICH	ĸ	EH-5	22,189	68	1312		3/4 41'9	2	2 1	HUEMW	800	250	SA-688-304L	08-97			
96H600-1	NEW YORK POWER AUTHORITY	JAMES A. FITZPATRICH	ĸ	EH-1AB	20,775	66	1215		3/4 41'2	2 2	2 4	HUEMW	800	50	SA-688-304L	07-97	883		
94H389	ENTERGY SERVICES, INC	ARKANSAS	1	EH-1AB	29,530	78	2444	:	5/8 35'	1 2	2	HUHSMW	1350	600	SA-688-316 (.035MC)	01-95	-	-	
94H377	NORTHEAST UTILITIES	MILLSTONE	3	EH-5C	15,826	59	1143		5/8 41'	0" 2	2 1	HCNUB	700	50	SA-268-439	11-94			1
93H230	ENTERGY SERVICES, INC	NINEMILE	4	EH-2	13,95	31 59	1357	5/8	30	1"	2	HUHMW	4850	360	SA-688-304N (.05MC)	10-93	383.4		
91H934	VERMONT YANKEE NUCLEAR PO	VERNON	:	EH-3AB	15,13	2 58	1215	5/8	36'	10"	2	HUHSMW	600	100	SA-688-304L	12-91		-1	x
89H625	LOUISIANA POWER & LIGHT	NINEMILE	3	EH-2	4,40	0 39	453	3/4	28'	9"	2	HUMW	2500	250	SA-688-304	10-89	-		
89H625	LOUISIANA POWER & LIGHT	NINEMILE	3	EH-1	5 14	2 39	498	5/8	30'	7"	2	HUMW	2500	525	SA-688-304	10-89			
87H330	VIRGINIA ELECTRIC & POWER	SURRY	1&	2 EH-4ABC	0 15,291	57	1340	ł	5/8 33	6'	2	VCDUEM	750	5 50	SA-688-304 (.05MC)	07-87	•		x
87H330	VIRGINIA ELECTRIC & POWER	SURRY	18	2 EH-3ABC	D 15,648	57	1520		5/8 30'	0 2	2	VCDUEM	750	110	SA-688-304 (.05MC)	12-87	848		X
87H330	VIRGINIA ELECTRIC & POWER	SURRY	1&	2 EH-2ABC	D 16,820	60	1558	1.	5/8 31'	6"	2	VCDUEM	750	22	SA-688-304 (.05MC)	12-87	848		X
87H330	VIRGINIA ELECTRIC & POWER	SURRY	1&	2 EH-1ABC	D 30,215	71	2642	ł	5/8 33	1"	2	VCUDHM	2000	47	5 SA-688-304 (.05MC)	12-87	848		X .
85H182	VIRGINIA ELECTRIC & POWER	SURRY	N 1	EH-6AB	15,945	65	1520	ł	5/8 30'	8"	2	HCNUEHM	750	0 50	SA-688-304 (.05MC)	07-86			1
85H182	VIRGINIA ELECTRIC & POWER	SURRY	N 1	EH-5AB	12,645	55	1328	i	5/8 27'	9"	2	HCNUEHM	750	0 51	SA-688-304 (.05MC)	04-86		ĺ	
85H181	PACIFIC GAS & ELECTRIC	DIABLO CANYON	2	EH-3ABC	14,320	56	1538	1	5/8 27*	0"	2	HUEH	850	0 10	SA-268-439	04-86		1	'x
85H181	PACIFIC GAS & ELECTRIC	DIABLO CANYON	2	EH-4ABC	17.010	60	1709	ļ	5/8 28'	11.	2	HUEH	85	0 5	0 SA-268-439	05-86	1119		X
85H181	PACIFIC GAS & ELECTRIC	DIABLO CANYON	2	EH-2ABC	14,120	53	1035	l	5/8 33'	5"	2	HUEH	85	0 20	0 SA-268-439	05-86	1119	1	X
85H181	PACIFIC GAS & ELECTRIC	DIABLO CANYON	2	EH-1ABC	27,350	78	2996		3/4 25'	10"	2	нин	210	0 45	0 SA-268-439	05-86	1119		Х

venimen and a series

YUBA HEAT TRANSFER

PEF-NCR-02297

Т

YUBA HEAT TRANSFER PARTIAL INSTALLATION LIST FOR NUCLEAR POWER PLANTS

• :

JUD#	GUS I UMER	SIALION	UNI	IS EM	sq	10	₩U K)D	LENGT	ΗP	TYPE	DESIG	L.	MATERIAL	SHIP	MW	INSTALLATION	FIELD SERVICE
					FT	۱.	INBE					TUBE	SHEL	L	DATE	(ea unit)		SUPERVISION
85H180	PACIFIC GAS & ELECTRIC	DIABLO CANYON	1	EH-4ABC	17.010	60 1	1709	5/	8 28' 11"	2	HUEH	850	50	SA-268-439	06-86	1119		X
85H180	PACIFIC GAS & ELECTRIC	DIABLO CANYON	1	EH-3ABC	14,320	56 1	1538	5/	8 27' 0"	2	HUEH	850	100	SA-268-439	05-86	1084		x
85H180	PACIFIC GAS & ELECTRIC	DIABLO CANYON	[1]	EH-2ABC	14,120	53 ¹ 1	1035	5/	8 33 5	2	HUEH	850	200	SA-268-439	05-86	1084		X
85H180	PACIFIC GAS & ELECTRIC	DIABLO CANYON	1 i	EH-1ABC	27,350	78 2	2996 ¦	3/	'4 25' 10 '	2	нин	2100	450	SA-268-439	05-86	1084		Х
85H986	LOUISIANA POWER & LIGHT	NINEMILE	5	EH-3	. 19,575	72	1462	5/8	39' 4"	2	HUEH	600	180	SA-688-304 (.05MC)	09-85	1 .	· ·]	
83H815	ARKANSAS POWER & LIGHT	NUCLEAR ONE	2	EH-2AB	15,130	79	2268	3/4	18' 8"	2	нин	1300	400	SA-688-304L	09-83	942		1
83H815	ARKANSAS POWER & LIGHT	NUCLEAR ONE	2	EH-1AB	13,435	74	2224	5/8	16' 9"	2	нин	1300	600	SA-688-304L	09-83	942		r
83H815	ARKANSAS POWER & LIGHT	NUCLEAR ONE	2	EH-7A	23,600	67	1347	3/4	43' 1"	2	нон	800	50	SA-688-304 (.05MC)	11-83	942		
83H815	ARKANSAS POWER & LIGHT	NUCLEAR ONE	2	EH-6AB	16,195	60	1164	3/4	34' 0"	2	нин	800	50	SA-688-304 (.05MC)	11-83	942		1
83H815	ARKANSAS POWER & LIGHT	NUCLEAR ONE	່ 2	EH-5AB	19,145	63	1340	3/4	34' 10"	2	нин	800	100	SA-688-304 (.05MC)	11-83	942	1	
83H815	ARKANSAS POWER & LIGHT	NUCLEAR ONE	2	EH-4AB	13,010	55	1022	3/4	31' 1"	2	нин	800	150	SA-688-304 (.05MC)	11-83	942	+ 1	1 ··· ···
83H815	ARKANSAS POWER & LIGHT	NUCLEAR ONE	ຼີ 2	EH-3AB	14,025	57	1097	3/4	31' 2"	2	нин	800	300	SA-688-304 (.05MC)	11-83	942		
82H702	NIAGARA MOHAWK POWER	NINEMILE	. 1 N	EH-1	8,535	44	830	5/8	30' 4"	2	HUH	2000	200	SA-688-304L	12-82			
80H515	NIAGARA MOHAWK POWER	NINEMILE	1 N	EH-1	8,535	44	830	5/8	30' 4"	2	нин	2000	200	SA-688-316L	02-81	1	1	1
79H412	FLORIDA POWER & LIGHT	ST LUCIE	N	EH-4AB	20,067	75	1974	5	/8 29' 3*	2	HUB	750	300	SA-688-304	05-80			x
79H412	FLORIDA POWER & LIGHT	STLUCIE	N	EH-3AB	14,639	59	938	5	1/8 38' 3"	2	HUB	750	75	SA-688-304	01-80	850		x
79H412	FLORIDA POWER & LIGHT	ST LUCIE	!N	EH-2AB	15,103	63	1478	3	1/4 29 7"	2	нив	750	50	SA-688-304	01-80	850	1	x
79H412	FLORIDA POWER & LIGHT	STLUCIE	N	EH-1AB	20,739	67	1164	5	5/8 43 9"	2	нив	750	50	SA-688-304	01-80	850		x
79H412	FLORIDA POWER & LIGHT	ST LUCIE	N	EH-5AB	24,325	71	2193	5	5/8 32 2"	2	ним	1875	424	SA-688-304L	01-80	850	ţ	X
79H411	FLORIDA POWER & LIGHT	ST LUCIE	N	EH-4AB	20,067	75	1974	5	3/8 29 3"	2	HUB	750	300	SA-688-304	01-80	850		X
79H411	FLORIDA POWER & LIGHT	STLUCIE	N	EH-3AB	14,639	59	938	5	5/8 38 3"	2	нив	750	75	SA-688-304	11-79	890		x
79H411	FLORIDA POWER & LIGHT	STLUCIE	N	EH-2AB	15,103	63	1478	1 3	3/4 29' 7"	2	нив	750	50	1 SA-688-304	11-79	890		x
79H411	FLORIDA POWER & LIGHT	STLUCIE	N	EH-1AB	20,739	67	1164	1 5	5/8 43' 9"	2	нив	750	50) SA-688-304	11-79	890		X
79H411	FLORIDA POWER & LIGHT	ST LUCIE	N	EH-5AB	24,325	71	2193	1 3	3/4 32' 2"	2	ним	1875	424	1 SA-688-304L	11-79	890		, x
78H251	TENNESSEE VALLEY AUTHORIN	TY YELLOW CREEK	2 N	EH-4ABC	11,760	57	773	1	31' 9"	2	HUEH	660	115	5 SA-249-304	11-80	1375	1	
78H251	TENNESSEE VALLEY AUTHORIN	TY YELLOW CREEK	2 N	EH-3ABC	12,575	60	830		7/8 31' 7"	2	HUEH	660	1 27:	5 SA-249-304	03-80	1375	-	
78H251	TENNESSEE VALLEY AUTHORI	TY YELLOW CREEK	2 N	EH-2ABC	22,365	77	2294	1 ;	7/8 27' 11	• 2	нин	2200	355	5 SA-249-304	03-80	1375	ļ	· ·
78H251	TENNESSEE VALLEY AUTHORI	TY YELLOW CREEK	2 N	EH-1ABC	22,085	75	2308	1	5/8 27' 4"	2	нин	2200	1 54:	5 SA-249-304	03-80	1375		4
78H250	TENNESSEE VALLEY AUTHORI	TY YELLOW CREEK	(1 N	EH-8ABC	12,835	70	675		5/8 40 2"	2	HUEH	660	5	0 SA-249-304	03-80	1375		
78H250	TENNESSEE VALLEY AUTHORI	TY YELLOW CREEK	1 N	EH-7ABC	19,475	⁵ 70	1217		7/8 39' 3"	2	HUEH	660	1 50	0 SA-249-304	07-79	1375	1 5	
78H250	TENNESSEE VALLEY AUTHORI	TY YELLOW CREEK	¹ N	EH-6ABC	13,825	65	641		3/4 39 8*	2	HUEH	660	5	0 SA-249-304	06-79	1375		
78H250	TENNESSEE VALLEY AUTHORI	TY YELLOW CREEK	1 N	EH-5ABC	12,550	58	580	1	40' 0 "	2	? HUEH	660) 6	5 SA-249-304	07-79	1375		4
78H250	TENNESSEE VALLEY AUTHORI	TY YELLOW CREEK	1 N	EH-4ABC	11,760	57	773	, 1	31' 9"	• 2	? HUEH	66	0, 11	5 SA-249-304	07-79	1375		
78H250	TENNESSEE VALLEY AUTHORI	TY YELLOW CREEK	1 N	EH-3ABC	12,575	60	830	Ì	7/8 31'7'	٠ķ	? HUEH	66	3 27	5 SA-249-304	07-79	1375	5 <u>1</u>	
78H250	TENNESSEE VALLEY AUTHORI	TY YELLOW CREEK	1 N	EH-2ABC	21,760	75	2217]	7/8 28' 2'		5 HOH	200	0 35	5 SA-249-304	09-80	1375	š]	1

YUBA HEAT TRANSFER PARTIAL INSTALLATION LIST FOR NUCLEAR POWER PLANTS

JOB #	CUSTOMER	STATION	UNIT	ITEM	SQ.	Ð	#U-K	DD	LEN	STH	1	TYPE	DESIGN		MATERIAL	SHIP	MW	INSTALLATION	FIELD SERVICE
					ŦŤ		TUBE						TUBE	SHEE	L	DATE	(ea unit)		SUPERVISION
78H250	TENNESSEE VALLEY AUTHORITY	YELLOW CREEK	1 N	EH-1ABC	21,435	73	2237	:	5/8 27' 6	2	۱ŀ	IUH	2000	545	SA-249-304	09-80	1375		
76H108	BOSTON EDISON CO	PILGRAM NUCLEAR	S 2 N	EH-6AB	23,350	86	3191	5/B	20' 4	" 2	2 H	IUH	1600	600	SA-249-304	12-77			-
76H108	BOSTON EDISON CO	PILGRAM NUCLEAR	S` 2 N	EH-5AB	31,445	97	4279	5/8	20' 2	• :	2 H	NUH	1600	350	SA-249-304	12-77			
75H935	PUBLIC SERVICE CO OF INDIANA	MARBLE HILL	2 N	EH-1ABC	13,710	57	1201	:	5/8 33' 8	• 2	! ł	IUEH	850	50	SA-249-304	08-76			,
75H935	PUBLIC SERVICE CO OF INDIANA	MARBLE HILL	2 N	EH-2ABC	15,075	58	797		5/8 46' 1	1" 2	2 }	IUEH	850	50	SA-249-304	05-80	1100		
75H935	PUBLIC SERVICE CO OF INDIANA	MARBLE HILL	2 N	EH-3ABC	13,200	53	767		3/4 42' 7	- 2	2 1	IUEH	850	50	SA-249-304	04-80	1100		
75H935	PUBLIC SERVICE CO OF INDIANA	MARBLE HILL	2 N	EH-4ABC	12,615	55	673	•	3/4 39 7	• 2	2 1	iueh	850	125	SA-249-304	05-80	1100	:	
75H935	PUBLIC SERVICE CO OF INDIANA	MARBLE HILL	2 N	EH-5AB	22,290	78	1842		7/8 29' 3	r 2	2 1	HUEH	850	275	SA-249-304	05-80	1100		
75H935	PUBLIC SERVICE CO OF INDIANA	MARBLE HILL	2 N -	EH-6AB	28,110	82	2037		3/4 33' 3	r 2	2 1	IUEH	850	400	SA-249-304	07-80	1100		1
75H935	PUBLIC SERVICE CO OF INDIANA	MARBLE HILL	2 N	EH-7AB	30,830	87	3583 -		3/4 24' 2	- 14	2	HUH	2400	550	SA-249-304L	06-80	1100	- - -	
75H934	PUBLIC SERVICE CO OF INDIANA	MARBLE HILL	1 N	EH-6AB	28,110	82	2037		5/8 33' 3	3° 2	2	HUEH	850	400	SA-249-304	07-80	1100		į
75H934	PUBLIC SERVICE CO OF INDIANA	MARBLE HILL	1 N	EH-5AB	22,290	78	1842		3/4 29' 3	3" ;2	2	HUEH	850	275	SA-249-304	03-79	1100		1
75H934	PUBLIC SERVICE CO OF INDIANA	MARBLE HILL	1 N	EH-4ABC	12,615	55	673		3/4 39 7		2	HUEH	850	125	SA-249-304	04-79	1100		
75H934	PUBLIC SERVICE CO OF INDIANA	MARBLE HILL	<u>1</u> N	EH-3ABC	13,200	53	767		7/8 42 1	7•	2	HUEH	850	50	SA-249-304	03-79	1100		
75H934	PUBLIC SERVICE CO OF INDIANA	MARBLE HILL	1 N	EH-2ABC	15,075	58	797	:	3/4 46'	11"	2	HUEH	850	50	SA-249-304	03-79	1100		
75H934	PUBLIC SERVICE CO OF INDIANA		-1 N	EH-1ABC	13,710	57	1201		3/4 33'	B*	2	HUEH	850	50	SA-249-304	03-79	1100	Í.	
75H934	PUBLIC SERVICE CO OF INDIANA	MARBLE HILL	1 N	EH-7AB	30,830	87	3583	ļ	5/8 24'	2"	2	HUH	2400	500	SA-249-304L	01-79	1100		1
74H854	PUBLIC SERVICE E&G OF NJ	HOPE CREEK	2 N	LP-5ABC	18,740	68	1091		5/8 42	2"	2	HUHSMW	850	225	5 SA-249-304	03-76			1
74H854	PUBLIC SERVICE E&G OF NJ	HOPE CREEK	2 N	LP-4ABC	18,880	68	1091		3/4 42-	6*	2	HUHSMW	850	125	5 SA-249-304		1117		1
74H854	PUBLIC SERVICE E&G OF NJ	HOPE CREEK	2 N	LP-3ABC	25,575	77	1638	i	3/4 46'	1" _	2	HUHSMW	850	75	5 SA-249-304	07-78	1117		
74H854	PUBLIC SERVICE E&G OF NJ	HOPE CREEK	2 N	LP-2ABC	16,790	64	1091	:	5/8 37'	11"	2	HUHSMW	850	50	SA-249-304	06-78	1117	i	i i
74H854	PUBLIC SERVICE E&G OF NJ	HOPE CREEK	2 N	LP-1ABC	16,310	67	1091		3/4 36'	8"	2	HUHSMW	850	50	SA-249-304	10-77	1117		
74H854	PUBLIC SERVICE E&G OF NJ	HOPE CREEK	2 N	HP-6ABC	17,755	64	1816	1	3/4 28'	5"	2	HUHSMW	1800	42	5 SA-249-304	08-77	1117	1	
74H853	PUBLIC SERVICE E&G OF NJ	HOPE CREEK	1 N	LP-5ABC	18,740	68	1091	Ì	5/8 42	2"	2	HUHSMW	850	22!	5 SA-249-304	08-78	1117		
74H853	PUBLIC SERVICE E&G OF NJ	HOPE CREEK	1 N	LP-4ABC	18,880	68	1091	:	3/4 42'	6"	2	HUHSMW	850	12	5 SA-249-304	10-77	1117		1
74H853	PUBLIC SERVICE E&G OF NJ	HOPE CREEK	1 N	LP-3ABC	25,575	77	1638	1	3/4 46'	1"	2	HUHSMW	850) 7	5 SA-249-304	08-77	1117		
74H853	PUBLIC SERVICE E&G OF NJ	HOPE CREEK	1 N	LP-2ABC	16,790	64	1091	1	5/8 37'	11*	2	HUHSMW	850) 5	0 SA-249-304	08-77	1117		
74H853	PUBLIC SERVICE E&G OF NJ	HOPE CREEK	1 N	LP-1ABC	16,310	67	1091	1	3/4 36	8"	2	HUHSMW	850	5	0 SA-249-304	12-76	1117		
74H853	PUBLIC SERVICE E&G OF NJ	HOPE CREEK	1 N	HP-6ABC	17,755	64	1816	i	3/4 28'	5*	2	HUHSMW	1800	42	5 SA-249-304	10-76	1117		t
74H836	COMMONWEALTH EDISON CO	BRAIDWOOD	1 N	EH-6AB	28,110	82	2037		5/8 33	3"	2	HUEH	850	40	0 SA-249-304	11-78	1225		1
74H836	COMMONWEALTH EDISON CO	BRAIDWOOD	1 N	EH-5AB	22,270	78	1842	!	3/4 29	3"	2	ниен	850	27	5 SA-249-304	06-77	1225	i i	
74H836	COMMONWEALTH EDISON CO	BRAIDWOOD	1 N	EH-3ABC	13,200	53	767	ì	3/4 42	7*	2	HUEH	850	0 5	0 SA-249-304	11-77	1225		
74H836	COMMONWEALTH EDISON CO	BRAIDWOOD	1 N	EH-2ABC	15,075	58	3 797		3/4 46	11'	2	HUEH	850	0 5	0 SA-249-304	09-77	1225		
74H836	COMMONWEALTH EDISON CO	BRAIDWOOD	-1 N	EH-1ABC	13,710	¦57	1201		3/4 33	8*	2	HUEH	85	0 5	60 SA-249-304	11-77	1225	i i	
74H836	COMMONWEALTH EDISON CO	BRAIDWOOD	1 N	EH-4ABC	12,615	155	673		5/8 39	' 7°	2	HUEH	85	0 12	25 SA-249-304	05-77	1225	<u>.</u>	

PEF-NCR-02299

YUBA HEAT TRANSFER
PARTIAL INSTALLATION LIST FOR
NUCLEAR POWER PLANTS

. •

.*

.

l Line and the second second

JOB #	CUSTOMER	STATION	UNIT	ITEM	SQ	10 # U	OD LENGTH I	TYPE	DESIGN	MATERIAL	SHIP	MW	INSTALLATION	FIELD SERVICE
					FT	TUBE			TUBE	SHELL	DATE	ea uniti		SUPERVISION
74H836	COMMONWEALTH EDISON CO	BRAIDWOOD	[1 N	EH-7AB	30,830	87 3583	5/8 24 2 2	нин	2400	550 SA-249-304	07-77	1225		
74H835	COMMONWEALTH EDISON CO	BYRON	2 N	EH-6AB	28,110	82 2037	5/8 33' 3' 2	HUEH	850	400 SA-249-304	12-77	1225	1	x
74H835	COMMONWEALTH EDISON CO	BYRON	2 N	EH-5AB	22,290	78 1842	3/4 29' 3" 2	HUEH	850	275 SA-249-304	04-78	1225	l i	х
74H835	COMMONWEALTH EDISON CO	BYRON	2 N	EH-4ABC	12,615	55 673	3/4 38' 7"	HUEH	850	125 SA-249-304	06-78	1225		х
74H835	COMMONWEALTH EDISON CO	BYRON	2 N	EH-3ABC	13,200	53 767	7/8 42 7*	HUEH	850	50 SA-249-304	04-78	1225		x
74H835	COMMONWEALTH EDISON CO	BYRON	2 N	EH-2ABC	15,075	58 797	3/4 46' 11"	HUEH	850	50 SA-249-304	04-78	1225		x
74H835	COMMONWEALTH EDISON CO	BYRON	2 N	EH-1ABC	13,710	57 1201	3/4 33' 8"	HUEH	850	50 SA-249-304	04-78	1225		х [.]
74H835	COMMONWEALTH EDISON CO	BYRON	2 N	EH-7AB	30,830	87 3583	7/8 24 2	2 HUH	2400	550 SA-249-304	03-78	1225		Х
74H834	COMMONWEALTH EDISON CO	BYRON	1 N	EH-6AB	28,110	82 2037	5/8 33' 3"	2 HUEH	850	400 SA-249-304	07-78	1225		-
74H834	COMMONWEALTH EDISON CO	BYRON	1 N	EH-5AB	22,290	78 1842	3/4 29 3"	2 HUEH	850	275 SA-249-304	08-77	1225		1 1
74H834	COMMONWEALTH EDISON CO	BYRON	1 N	EH-4ABC	12,615	55 673	3/4 39' 7"	2 HUEH	850	125 SA-249-304	04-77	1225		1
74H834	COMMONWEALTH EDISON CO	BYRON	1 N	EH-3ABC	13,200	53 767	7/8 42 7	2 HUEH	850	50 SA-249-304	06-77	1225		
74H834	COMMONWEALTH EDISON CO	BYRON	1 N	EH-2ABC	15,075	58 797	3/4 46' 11"	2 HUEH	850	50 SA-249-304	09-77	1225		
74H834	COMMONWEALTH EDISON CO	BYRON	[1 N	EH-1ABC	13,710	57 1201	3/4 33' 8"	2 HUEH	850	50 SA-249-304	06-77	1225	1	
74H834	COMMONWEALTH EDISON CO	BYRON	;1 N	EH-7AB	30,830	87 3583	5/8 24' 2"	2 HUH	2400	550 SA-249-304	05-77	1225		1
74H831	MISSISSIPPI POWER & LIGHT	GRAND GULF	2 N	EH-4ABC	12,995	55 779	5/8 41' 0"	2 HUEH	800	50 SA-249-304	11-75	ì		1
74H831	MISSISSIPPI POWER & LIGHT	GRAND GULF	2 N	EH-3ABC	11,930	56 779	3/4 37' 6"	2 HUEH	800	50 SA-249-304	11-78	1250		
74H831	MISSISSIPPI POWER & LIGHT	GRAND GULF	2 N	EH-2ABC	13,245	56 821	3/4 39' 10"	2 HUEH	800	50 SA-249-304	12-78	1250		
74H831	MISSISSIPPI POWER & LIGHT	GRAND GULF	2 N	EH-1ABC	6,960	50 416	3/4 30' 9"	2 HUEH	800	50 SA-249-304	11-78	1250		:
74H831	MISSISSIPPI POWER & LIGHT	GRAND GULF	2 N	EH-6AB	40,560	98 405	9 3/4 28 3	2 HUH	2200	400 SA-249-304	12-78	1250		l
74H831	MISSISSIPPI POWER & LIGHT	GRAND GULF	2 N	EH-5AB	32,750	87 377	5/8 24 4	2 HUH	2200	150 SA-249-304	12-78	1250		1 1
74H830	MISSISSIPPI POWER & LIGHT	GRAND GULF	1 N	EH-4ABC	12,995	55 779	5/8 41' 0"	2 HUEH	800	50 SA-249-304	01-79	1250		
74H830	MISSISSIPPI POWER & LIGHT	GRAND GULF	1 N	EH-3ABC	11,930	56 779	3/4 37 6	2 HUEH	800	50 SA-249-304	02-76	1250		
74H830	MISSISSIPPI POWER & LIGHT	GRAND GULF	1 N	EH-2ABC	13,245	56 821	3/4 39' 10"	2 HUEH	800	50 SA-249-304	01-76	1250	1	
74H830	MISSISSIPPI POWER & LIGHT	GRAND GULF	1 N	EH-1ABC	6,960	50 416	3/4 30 9	2 HUEH	800	50 SA-249-304	12-75	1250		
74H830	MISSISSIPPI POWER & LIGHT	GRAND GULF	1 N	EH-6AB	40,560	98 405	9 1 28'3"	2 HUH	2200	400 SA-249-304	11-75	1250		
74H830	MISSISSIPPI POWER & LIGHT	GRAND GULF	1 N	EH-5AB	32,750	87 377	0 5/8 24' 4"	2 HUH	2200	150 SA-249-304	11-76	1250		
73H800	GULF STATES UTILITIES	RIVER BEND	1 N	EA-8AB	1,800	32 474	3/4 14' 6"	1 HUEHN	W 600	50 SA-249-304 (.05MC)	12-74	ί.	l	X
73H800	GULF STATES UTILITIES	RIVER BEND	1 N	EA-7AB	1,780	32 474	1 14 5	1 HUEHN	W 600	0 100 SA-249-304 (.05MC)	11-78	991		X
73H800	GULF STATES UTILITIES	RIVER BEND	1 N	EH-6AB	20,775	71 170	0 1 35'10"	2 HUEHN	IW 600	50 SA-249-304 (.05MC)	11-78	991	İ	X
73H800	GULF STATES UTILITIES	RIVER BEND	1 N	EH-5AB	22,310	65 167	1 5/8 39' 3"	2 HUEHN	IW 600	50 SA-249-304 (.05MC)	11-78	991	4	X
73H800	GULF STATES UTILITIES	RIVER BEND	1 N	EH-4AB	18,000	61 136	5/8 35 2	2 HUEHN	IW 600	0 100 SA-249-304 (.05MC)	11-78	991		'X
73H800	GULF STATES UTILITIES	RIVER BEND	1 N	EH-3AB	14,210	94 961	5/8 36' 1	12 HUEHN	1W 600	0 150 SA-249-304 (.05MC)	11-78	991		х
73H800	GULF STATES UTILITIES	RIVER BEND	1 N	EH-2AB	22,380	71 14	28 3/4 38' 3"	2 HUEHN	IW 600	0 275 SA-249-304 (.05MC)	10-78	991		X
73H800	GULF STATES UTILITIES	RIVER BEND	<u>1</u> N	EH-1AB	20,835	72 21	72 3/4 27' 7"	2 HUHS	1W 2000	0 400 SA-249-304 (.05MC)	10-78	991	_ <u></u>	XX

PEF-NCR-02300

					PAR	TIA	LIN	STAI	LLAT	ION	L	IST FOF	२						
100.47		DTANKA.	4 1001		<u></u>	NUC	CLEA	R P	OWE	R P	L/	NTS	<u> </u>		· · · · · · · · · · · · · · · · · · ·				
JOB #	CUSIOMER	STATION	UNIX	UFEM .	SQ	Ð	#4-1)D	LEN	GTH P		TYPE)E SIGN		MATERIAL	SHIP	MW	INSTALLATION	FIELD SERVICE
2011200					11		UBE				Ŀ	I	UBE	HEL		DATE	(es uni	\$	SUPERVISION
138/69	NORTHEASTUTILITIES M	ILESTONE	3 N	EH-6ABC	19,385	63 1	374	5/	18 41' 1	0" 2	H	IUEH	700	50	SA-249-304	12-73	317.25		
734769	NORTHEAST UTILITIES M	ILESTONE	3 N	EH-5ABC	16,500	59 1	163	5/	18 42' 1	• 2	H	IUEH	700	50	SA-249-304	04-76	1209		
1371709	NORTHEAST UTILITIES M	ILESTONE	3N .	EH-4ABC	11,240	61 (6	44	5/	18 43 4	2	H	UEH	700	75	SA-249-304	01-76	1209	1.	
7211709	NORTHEAST UTILITIES M	ILESTONE	13 N	EH-JABC	16,920	64	133	3/	/4 44' 1	11" 2	H	IUEH	700	125	SA-249-304	12-75	1209		
724700	NORTHEAST UTILITIES M	ILESTONE	-3 N	EH-2ABC	13,905	60 €	666	3,	/4 44 4	1 2	H	IUEH	700	200	SA-249-304	12-75	1209		
10109	NORTHEAST UTILITIES N	ILESIONE	3 N	EH-1ABC	25,380	70	838	7.	/8 40' 6	5 2	۱ŀ	IUH	1800	500	SA-249-304	12-75	1209		
730700			2 N	EH-4ABC	10,895	96	668	3/4	40' 5	5 2	2 }	IUB	800	125	SA-249-304 (.05MC)	03-78	1100		Х
730700	NIAGARA MOHAWK POWER	INEMILE	2 N	EH-5ABC	16,105	64	980	5/8	40' 5	5" ;2	2 1	iueh	800	270	SA-249-304 (.05MC)	03-78	1100		Х
738768	NIAGARA MOHAWK POWER	INEMILE	2 N	EH-3ABC	15,295	54	1013	3/4	45' (0" ;2	2 F	IUEH	800	75	SA-249-304 (.05MC)	03-78	1100		x
73H768	NIAGARA MUHAWK POWER	INEMILE	2 N	EH-2ABC	18,165	68	1125	5/8	48'	1" :	2 1	iven i	800	50	SA-249-304 (.05MC)	10-78	1100		X
73H768	NIAGARA MOHAWK POWER	VINEMILE	2 N	EH-1ABC	18,030	69	1114	5/8	48' :	2" ¦	2 +	HUEH	800	50	SA-249-304 (.05MC)	11-78	1100		X
731768	NIAGARA MOHAWK POWER	NINEMILE	2 N	EH-6ABC	21,395	66	1675	5/8	37'	6" :	2 1	нин	2200	400	SA-249-304 (.05MC)	03-78	1100		X
71H650	GEORGIA POWER CO	DWINT HATCH	N2	EH-5AB	15,870	69	966	5	5/8 _, 34'	4° 12	2 1	HUEHH	600	225	SA-249-304	04-73	85		
71H650	GEORGIA POWER CO	DWIN I HATCH	N2	EH-4AB	14,555	71	711	7	1/8137	8" [2	2 1	HUEHH	600	125	SA-249-304	12-72	850		1
/1H650	GEORGIA POWER CO	EDWIN I HATCH	:N2	EH-3AB	22,760	76	1930	1	'34'	6" 2	2	HUEHH	600	100	SA-249-304	10-72	850		
71H650	GEORGIA POWER CO	EDWIN I HATCH	ĮN2	EH-2AB	24,880	83	2244	5	5/8,32	2" 2	2 1	HUEHH	600	100	SA-249-304	10-72	¦ 850	1	
71H650	GEORGIA POWER CO	EDWIN I HATCH	N2	EH-1AB	12,235	75	879	. 5	5/8 28	11" 2	2	HUEHH	600	100	SA-249-304	12-72	850	1	:
71H650	GEORGIA POWER CO	EDWINIHATCH	N2	EH-6AB	24,560	76	2375		5/8 31'	0"	2	VCUUH	2000	400	SA-249-304	09-72	850		
71H649	JERSEY CENTRAL POWER & LIGH	FORKED RIVER	.N1	EH-5AB	19,565	72	925		5/8 44'	8"	2	Huehh	900	250	SA-249-304	11-72	850		
71H649	JERSEY CENTRAL POWER & LIGH	FORKED RIVER	N1	EH-4AB	24,885	73	1296		7/8 47'	5"	2	HUEHH	900	125	SA-249-304	10-76	38.4		
71H649	JERSEY CENTRAL POWER & LIGH	FORKED RIVER	N1	EH-3ABC	16,529	61	864		3/4 50	5*	2	HUEHH	900	50	SA-249-304	10-76	38.4		•
71H649	JERSEY CENTRAL POWER & LIGH	FORKED RIVER	N1	ÉH-2ABC	21,575	64	987		3/4 54'	4*	2	HUEHH	900	50	SA-249-304	07-76	38.4		
71H649	JERSEY CENTRAL POWER & LIGH	FORKED RIVER	N1	EH-1ABC	12,415	62	864	į	3/4 35'	4"	2	HUEHH	900	50	SA-249-304	09-76	38.4		1
71H649	JERSEY CENTRAL POWER & LIGH	FORKED RIVER	N1	EH-6ABC	24,770	68	1924		7/8 37'	10"	2	нин	2150	550	SA-249-304	05-77	38.4	L I	
71H615	PHILADELPHIA ELECTRIC	LIMERICK	2 N	EH-5ABC	18,730	68	1962	ļ .	5/8 27'	8	2	HUEHH	700	217	SA-249-304L	03-73	ł		
71H615	PHILADELPHIA ELECTRIC	LIMERICK	2 N	EH-4ABC	17,405	69	1795	1	5/8 28	2"	2	HUEHH	700	12	5 SA-249-304L	08-73	1161	.5	
71H615	PHILADELPHIA ELECTRIC	LIMERICK	2 N	EH-3ABC	22,495	74	1802		5/8 36	'7"	2	HUEHH	700	7	5 SA-249-304L	08-73	1161	.5	· · · · ·
71H615	PHILADELPHIA ELECTRIC	LIMERICK	2 N	EH-2ABC	20,220	71	1638		5/8 36	4	2	HUEHH	700	50	SA-249-304L	06-73	1161	.5	1
71H615	PHILADELPHIA ELECTRIC	LIMERICK	2 N	EH-1ABC	12,535	70	583		5/8 39	8	2	HUEHH	700	5	SA-249-304L	10-73	1161	.5	:
71H615	PHILADELPHIA ELECTRIC	LIMERICK	2 N	EH-6ABC	22,160	69	2341		5/8 27	'4"	2	нин	2100	42	5 SA-249-304L	06-73	1161	.5	· ·
71H614	PHILADELPHIA ELECTRIC	LIMERICK	1 N	EH-5ABC	18,730	68	1962		5/8 27	" 8"	2	HUEHH	700	20	0 SA-249-304L	01-74	1161	1.5	
71H614	PHILADELPHIA ELECTRIC	LIMERICK	¹ 1 N	EH-4ABC	17,405	69	1795	1	5/8 28	" 2 "	2	HUEHH	700	12	5 SA-249-304L	12-72	116	1.5	-1
71H614	PHILADELPHIA ELECTRIC	LIMERICK	1 N	EH-3ABC	22,495	74	1802	ļ	5/8 36	5 7 *	2	HUEHH	700	7	5 SA-249-304L	09-72	116	1.5	1
71H614	PHILADELPHIA ELECTRIC	LIMERICK	1 N	EH-2ABC	20,220	70	1638	1	5/8 36	5' 4 "	2	HUEHH	700	5 5	0 SA-249-304L	08-72	116	1.5	1
714614	PHILADEL PHIA ELECTRIC	LIMERICK	.1 N	EH-1ABC	12,535	70	583	⊧ 	5/8 39	9' 8"	2	HUEHH	700	5 1	0 SA-249-304L	08-72	116	1.5	1

_ *****------

YUBA HEAT TRANSFER

PEF-NCR-02301

	NUCLEAR POWER PLANTS																		
JOB	CUSTOMER	STATION	UNIT	ITEM	SQ	10	#U-C)D	LENGTH	Ρ	TYPE	DESIGN		MATERIAL	SHIP	MW	INSTALLATION	FIELD SE	RVICE
					FT		TUBE					TUBE	HEL		DATE	(ea unit)		SUPERV	ISION
71H614	PHILADELPHIA ELECTRIC	LIMERICK	1 N	EH-6ABC	22,160	69	2341	1	27' 4"	2	нин	2100	425	SA-249-304L	12-72	1161.5			and the second
70H553	MILLSTONE POIP CO	MILLSTONE	N 2	EH-6AB	15,835	69	1140 !		3/4 34' 0"	2	HUEHH	650	50	ADMIRALTY SB-395	07-71	565			
70H553	MILLSTONE POIP CO	MILLSTONE	N 2	EH-5AB	16,360	63	1140 ¦		3/4 35' 2"	2	HUEHH	650	50	ADMIRALTY SB-395	02-72	863			1
70H553	MILLSTONE POIP CO	MILLSTONE	N 2	EH-4AB	14,370	61	1140		3/4 30' 8"	2	ниенн	650	75	ADMIRALTY SB-395	07-71	863		•	1
70H553	MILLSTONE POIP CO	MILLSTONE	N 2	EH-3AB	9,990	58	1140 [3/4 21' 0"	2	HUEHH	650	150	ADMIRALTY SB-395	07-71	863			ľ
70H553	MILLSTONE POIP CO	MILLSTONE	N 2	EH-2AB	22,535	74	1620		3/4 33' 10"	2	ниенн	650	225	90-10 CuNi	07-71	863	•		
70H553	MILLSTONE POIP CO	MILLSTONE	N 2	EH-1AB	23,005	76	2658		3/4 24' 8'	2	нин	1700	450	80-20 CuNI	07-71	863			
69H535	FLORIDA POWER & LIGHT	HUTCHINSON	1	EH-3AB	12,620	60	1072		3/4 28' 8"	2	HUB	750	75	ADMIRALTY SB-395	03-71			Ì)'
69H535	FLORIDA POWER & LIGHT	HUTCHINSON	1	EH-2AB	12,925	63	1072		3/4 29' 5"	2	нив	750	50	ADMIRALTY SB-395	07-71	850			
69H535	FLORIDA POWER & LIGHT	HUTCHINSON	1	EH-1AB	18,965	67	1072		3/4 43' 8"	2	нив	750	50	ADMIRALTY SB-395	07-71	850			1
69H535	FLORIDA POWER & LIGHT	HUTCHINSON	1	EH-4AB	18,510	72	1532		3/4 29' 2"	2	нив	750	300	90-10 CuNi	07-71	850			
69H535	FLORIDA POWER & LIGHT	HUTCHINSON	1	EH-5AB	21,800	71	1531		5/8 34' 8"	2	HUMWTR	1875	425	90-10 CuNi	07-71	850		Į	
69H518	LOUISIANA POWER & LIGHT	NINEMILE	5	EH-6	19,53	5 62	1112	5/8	43' 5'	1	ниенн	600	500	SA-556-C2	05-71				
69H518	LOUISIANA POWER & LIGHT	NINEMILE	5	EH-5	14,790	55	1026	3/4	35' 5"	2	HUEHH	600	50	SA-556-C2	05-71				
69H51	LOUISIANA POWER & LIGHT	NINEMILE	5	EH-4	14,04); 55	1026	3/4	33' 7*	2	HUEHH	600	700	SA-556-C2	05-71	1		1	·
69H51	LOUISIANA POWER & LIGHT	NINEMILE	5	EH-3	21,80	0, 71	1680	3/4	38' 0"	12	HUEHH	600	180	SA-556-C2	05-71			i -	
69H51	LOUISIANA POWER & LIGHT	NINEMILE	¹ 5	EH-7	14,54	5 56	981	3/4	44' 0"	12	HUEHH	600	50	SA-249-304	05-71			1	
69H50	CONSUMERS POWER CO	MIDLAND	2	EH-2AB	15,205	1 154	1816		5/8 42 6	2	HSE	450	50	SA-249-304	02-72	550	1		
69H50	CONSUMERS POWER CO	MIDLAND	2	EH-1AB	14,235	57	1704		3/4 42' 5	2	HSE	450	50	SA-249-304	02-72	852		1	ł
69H50	CONSUMERS POWER CO	MIDLAND	2	EH-5AB	17.655	66	1716		5/8 30' 0"	12	нин	1300	450	SA-249-304	02-72	852		l.	
69H50	CONSUMERS POWER CO	MIDLAND	2	EH-4AB	21.750	75	1903		5/8 33' 5"	2	нин	1300	225	SA-249-304	02-72	852	l.	ļ	
69H49	6 CAROLINA POWER & LIGHT	BRUNSWICK	1	EH-3AB	13.030	52	1076	İ	5/8:35' 11"	12	HUEHH	500	100	SA-249-304L	10-70				
69H49	6 CAROLINA POWER & LIGHT	BRUNSWICK	1	EH-2AB	16.255	63	1522	}	5/8 31' 0"	2	HUEHH	500	50	SA-249-304L	01-72	815		l	
69H49	6 CAROLINA POWER & LIGHT	BRUNSWICK	- 1	: EH-1AB	17.380	1 :68	1627		5/8 31' 1"	2	HUEHH	500	50	SA-249-304L	01-72	815		1	
69H49	6 CAROLINA POWER & LIGHT	BRUNSWICK	1	EH-5AB	24.045	69	2006	1	5/8 35' 2"	2	ния	1700	550	SA-249-304L	01-72	815		1	
69449	6 CAROLINA POWER & LIGHT	BRUNSWICK	1	EH-4AB	32,580	:82	2332	1	5/8 41' 0"	2	нин	1700	400	SA-249-304L	05-72	815	1.		
69H40	5 CAROLINA POWER & LIGHT	BRUNSWICK	2	EH-3AB	13 030	152	1076	İ	5/8 35' 11"	2	HUFHH	500	100	SA-249-3041	05-72	815	-	÷	1
EQHAC	5 CAROLINA POWER & LIGHT	BRUNSWICK	2	EH-2AB	16 255	63	1522	1	5/8 31' 0"	5	HUEHH	500	50	SA-249-3041	01-71	815	ļ		÷.
601140	5 CAROLINA POWER & LIGHT	BRUNSWICK	2	EH-14B	17 380	88	1627	. 	5/8:31 1"	2	ниенн	500	50	ISA-249-3041	01-71	815	-	·	··· `?
60140		BRUNSWICK	2	EH-SAR	24 049	60	2006		5/8 35' 2"	2	нин	1 1700	550	SA-249-3041	01.71	815		l.	1
6044		BRUNSWICK	2	EH AAR	32 580	82	2222	1	5/8 41' 0*	5	нин	1700	1 400	SA-249-304L	05.71	815			1
60143		CRYSTAL RIVER	, ^	EH-1AR	21 680	70	1494		3/4 42' 5"	5	ниени	400	50	SA-249-3041	09.69	205	ļ	4	
601147		CRYSTAL RIVER	3	EH-2AB	13.86) :55	800	}	3/4 42' 11'		НИЕНН	400	50	SA-249-394 (.05Mc)	06-70	860		· .	
60HV.		CRYSTAL RIVER	3	EH-SAR	26 864	78	1580	1	5/8 41' 10'	5	HUEHH	400	290	SA-249-304 (.05MC)	06-70	860			
69HA	6 FLORIDA POWER CORP	CRYSTAL RIVER	3	EH-3AB	13.55	- (1) 1 153	773	!	3/4 43' 9"	12	НИЕНН	400	5	SA-249-304 (.05MC)	06-70	860		1	

DESIDMEDING CONTRACTOR MATTERNAL CONTRACTOR CO

YUBA HEAT TRANSFER PARTIAL INSTALLATION LIST FOR NUCLEAR POWER PLANTS

• .

PEF-NCR-02302

				PAR		NSTALLATION	LIST F	OR					-
JOB	CUSTOMER	STATION		1			LANIS	- DERIGANS					
				FT	TUBE			TUBEISH	ELL	DATE	ea uniti	INSTALLAIRUN	SUPERVISION
69H476	FLORIDA POWER CORP	CRYSTAL RIVER 3	EH-6AB	29,160	/9 2212	5/8 38' 1" 2	HUH	1600 60	0 SA-249-304 (.05MC)	06-70	860		
69H475	GEORGIA POWER CO	EDWIN I HATCH N	1 EH-4AB	14,220	1 1256	5/8 27 7 2	HUEHH	600 12	25 SA-249-304	06-70	860		
69H475	GEORGIA POWER CO	EDWIN I HATCH N	1 EH-3AB	21,870	76 1836	3/4 34 11 2	HUEHH	600 7	75 SA-249-304	11-70	850		•
69H475	GEORGIA POWER CO	EDWIN I HATCH	1 EH-2AB	24,180	83 2230	5/8 31 6 2	HUEHH	600 5	50 SA-249-304	11-70	850	-	
69H475	GEORGIA POWER CO	EDWIN I HATCH N	1 EH-1AB	12,130	74 1174	5/8 25' 2" 2	HUEHH	600 5	501SA-249-304	11-70	850		
69H475	GEORGIA POWER CO	EDWIN I HATCH N	1 EH-SAB	25,270	76 2400	5/8 30' 6" 2	vcuuн	2000 30	00 SA-249-304	11-70	850		
69H469	NEW YORK POWER AUTHORITY	JAMES A. FITZPATRIC N	EH-6AB	25,314	73 2260	5/8 32 7 2	HUEHH	2100 40	00 SA-249-304	08-69			x
69H469	NEW YORK POWER AUTHORITY	JAMES A. FITZPATRIC	EH-5AB	21,045	67 1240	5/8 41' 8" 2	HUEHH	800 2	50 SA-249-304	03-71	849	· · ·	x
69H469	NEW YORK POWER AUTHORITY	JAMES A. FITZPATRIC N	EH-2AB	34,610	90 2470	3/4 41' 3'	HUEHH	800	50 SA-249-304	03-71	849	-	x
69H469	NEW YORK POWER AUTHORITY	JAMES A. FITZPATRIC	EH-1AB	20,720	66 1236	5/8 41' 2"	HUEHH	800	50 SA-249-304	10-70	849		X
69H469	NEW YORK POWER AUTHORITY	JAMES A. FITZPATRIC	EH-4AB	20,554	81 1270	3/4 39' 10"	2 HUERH	800 1	50 SA-249-304	10-70	849		x
68H438	BALTIMORE GAS & ELECTRIC	CALVERT CLIFFS 2	EH-9AB	12,750	53 796	3/4 39' 7"	2 HUB	700	50 SA-249-304L	05-70	789		
68H438	BALTIMORE GAS & ELECTRIC	CALVERT CLIFFS 2	EH-8ABC	10,630	49 818	3/4 38 6	2 HUB	300	50 SA-249-304L	12-70	914.35	x	x
68H438	BALTIMORE GAS & ELECTRIC	CALVERT CLIFFS 2	EH-7ABC	11,430	54 880	5/8 38' 10"	2 HUB	300	50 SA-249-304L	09-70	914.35	x	x
68H438	BALTIMORE GAS & ELECTRIC	CALVERT CLIFFS	EH-11AB	21,430	70 1800	5/8 34' 10"	2 нив	700 1	150 SA-249-304L	09-70	914.35	x	x
68H438	BALTIMORE GAS & ELECTRIC	CALVERT CLIFFS	EH-10AB	11,460	51 796	5/8 35' 6*	2 HUB	700	75 SA-249-304L	12-70	914.35	X	X
68H438	BALTIMORE GAS & ELECTRIC	CALVERT CLIFFS	EH-12AB	30,115	71 2006	5/8 44' 1"	2 HUMW	1500 4	150 SA-249-304L	12-70	914.35	x	x
68H437	BALTIMORE GAS & ELECTRIC	CALVERT CLIFFS	EH-5AB	22,520	71 1804	5/8 36 8	2 HUB	700 2	225 SA-249-304L	12-70	914.35		
68H437	BALTIMORE GAS & ELECTRIC	CALVERT CLIFFS	EH-4AB	11,975	65 840	5/8 35 2	2 HUB	700 1	125 SA-249-304L	06-70	914.35		
68H437	BALTIMORE GAS & ELECTRIC	CALVERT CLIFFS	EH-3AB	17,095	57 1278	3/4 39' 6"	2 HUB	700	75 SA-249-304L	06-70	914.35		
68H437	BALTIMORE GAS & ELECTRIC	CALVERT CLIFFS	1 EH-2ABC	13,715	55 1010	5/8 40' 2"	2 HUB	300	50 SA-249-304L	06-70	914.35		1
68H437	BALTIMORE GAS & ELECTRIC	CALVERT CLIFFS	1 EH-1ABC	10,250	60 892	5/8 35' 7°	2 HUB	300	50 SA-249-304L	04-70	914.35	5	-
68H437	BALTIMORE GAS & ELECTRIC	CALVERT CLIFFS	1 EH-6AB	23,840	68 192	2 3/4 36' 2"	2 HUMW	1500 4	475 SA-249-304L	04-70	914.35	5	•
68H416	COMMONWEALTH EDISON CO	ZION	2 EH-5ABC	16,460	64 106	5/8 38' 4•	2 HUB	650	225 SA-249-304L	04-70	446	-	
68H416	COMMONWEALTH EDISON CO	ZION	2 EH-4ABC	9,965	50 717	3/4 34 3	2 HUB	650	100 SA-249-304L	02-71	1098		
68H416	COMMONWEALTH EDISON CO	ZION	2 EH-3ABC	14,185	55 832	3/4 42' 4"	2 HUB	650	50 SA-249-304L	02-71	1098		
68H416	COMMONWEALTH EDISON CO	ZION	2 EH-2ABC	14,230	57 796	3/4 44' 5"	2 HUB	650	50 SA-249-304L	02-71	1098	1	
68H416	COMMONWEALTH EDISON CO	ZION	2 EH-1ABC	17,535	64 153	5 3/4 33' 3"	2 HUB	650	50 SA-249-304L	02-71	1098		1
68H416	COMMONWEALTH EDISON CO	ZION	2 EH-6ABC	25,025	70 192	6 5/8 37 2"	2 HÙMW	2000	45 SA-249-304L	02-71	1098		
67H394	COMMONWEALTH EDISON CO	ZION	1 EH-5ABC	16,460	64 106	0 5/8 38' 4"	2 HUB	650	225 SA-249-304L	08-70	531		
67H394	COMMONWEALTH EDISON CO	ZION	1 EH-4ABC	10,095	51 759	3/4 32 8"	2 HUB	650	100 SA-249-304L	08-70	1098	-	1 1 1
67H394	COMMONWEALTH EDISON CO	ZION	1 EH-3ABC	14,185	55 832	3/4 42 2	2 HUB	650	50 SA-249-304L	08-70	1098		
67H394	COMMONWEALTH EDISON CO	ZION	1 EH-2ABC	14,230	57 796	3/4 44' 5"	2 HUB	650	50 SA-249-304L	03-70	1098		1
67H394	COMMONWEALTH EDISON CO	ZION	1 EH-1ABC	17,535	64 153	5 3/4 33 3	2 HUB	650	50 SA-249-304L	03-70	1098	5 <u> </u>	ļ
67H394	COMMONWEALTH EDISON CO	ZION	1 EH-6ABC	25,025	70 192	6 3/4 37' 2"	2 HUMW	2000	450 SA-249-304L	03-70	1098	3	:

YUBA HEAT TRANSFER

PEF-NCR-02303

÷.

_						10	CLEA	AR PO	DAAE	ER P	Ľ	ANTS	_							
JÓB #	CUSTOMER	STATION	UNI	ITEM	sq Ft	10	#U-C TUBE	DD	LEN	IGTH I		TYPE	DESIGN	SHE1	MATERIAL	SHIP Date	MW (ea unit)	INSTALLATION	FIELDS	SERVICE
67H391	LOUISIANA POWER & LIGHT	NINEMILE	4	EH-7	14,545	56	981	5/8	44'	0" 2	2 H	IUEHH	600	50	SA-249-304	04-69				14141-14141-1413
67H391	LOUISIANA POWER & LIGHT	NINEMILE	4	EH-6	19,535	62	1112	5/8	43'	5"	2	IUEHH	600	50	SA-210	04-69				
67H391	LOUISIANA POWER & LIGHT	NINEMILE	4	EH-5	14,790	55	1026	3/4	35	5"	2 F	IUEHH	600	50	SA-210	04-69				
67H391	LOUISIANA POWER & LIGHT	NINEMILE	4	EH-4	14,040	55	1026	3/4	33'	7"	2 }	IUEHH	600	70	SA-210	04-69				
67H391	LOUISIANA POWER & LIGHT	NINEMILE	4	EH-3	21,800	71	1680	3/4	38'	0"	2	IUEHH I	600	180	SA-210	04-69	- · ·	-	1	
66H318	COMMONWEALTH EDISON CO	QUAD CITIES	2	EH-3ABC	13,640	64	1250	5	8 26'	4 4	↓ ́ŀ	IUB	450	75	SA-249-304	05-67	93.86			x
66H318	COMMONWEALTH EDISON CO	QUAD CITIES	.2	EH-2ABC	16,480	78	1604	3/	4 24'	9" 4	۱ I	IUB	450	50	SA-249-304	11-68	828			x
66H318	COMMONWEALTH EDISON CO	QUAD CITIES	2	EH-1ABC	12,725	68	1250	3,	4,24	7 2	4 1	нив	450	50	SA-249-304	11-68	828			x
66H318	COMMONWEALTH EDISON CO	QUAD CITIES	2	EH-4ABC	11,550	47	910	5	18 37'	6"	2	VCDUMW	1800	150	SA-249-304	11-68	828		\$	x
66H298	COMMONWEALTH EDISON CO	QUAD CITIES	1	EH-1ABC	12,725	68	1250	3	14 24'	7	4 1	нив	450	50	SA-249-304	12-66			i	
66H298	COMMONWEALTH EDISON CO	QUAD CITIES	1	EH-3ABC	13,640	64	1250	5	18 26'	4	4	нив	450	75	SA-249-304	12-67	828		ļ	
66H298	COMMONWEALTH EDISON CO	QUAD CITIES	1	EH-2ABC	16,480	78	1604	3	14 24'	9"	4	нив	450	50	SA-249-304	12-67	828		1	
66H298	COMMONWEALTH EDISON CO	QUAD CITIES	1	EH-4ABC	11,550	47	910	5	18;37'	6"	2	VCDUMW	1900	150	SA-249-304	12-67	828		1	
66H277	COMMONWEALTH EDISON CO	ATOMIC DRESDEN	3	EH-2ABC	16,480	78	1604	3	4 24	'9" i	4	нив	450	50	SA-249-304L	12-66	1			X
66H277	COMMONWEALTH EDISON CO	ATOMIC DRESDEN	3	EH-3ABC	13,640	64	1250	5	/8 26	'4'	4	HUB	450	7	5 SA-249-304L	10-67	810	1		х
66H277	COMMONWEALTH EDISON CO	ATOMIC DRESDEN	3	EH-1ABC	12,725	68	1250	3	4 24	7"	4	HUB	450	50	SA-249-304L	10-67	810	1		х
66H277	COMMONWEALTH EDISON CO	ATOMIC DRESDEN	3	EH-4ABC	11,550	47	910		6/8 37	" 6"	2	VCDUMW	1900	15	0 SA-249-304L	10-67	810		1.	х
65H265	COMMONWEALTH EDISON CO	ATOMIC DRESDEN	2	EH-1ABC	12,725	68	1250	. 3	1/4 24	'7"	4	нив	450	5	0 SA-249-304	05-66	1		1	
65H265	COMMONWEALTH EDISON CO	ATOMIC DRESDEN	2	EH-3ABC	13,640	64	1250	5	5/8 26	5'4"	4	HUB	450	7	5 SA-249-304	10-66	810		1	
65H265	COMMONWEALTH EDISON CO	ATOMIC DRESDEN	.2	EH-2ABC	16,480	78	1604	. :	3/4 24	'9"	4	HUB	450	5	0 SA-249-304	10-66	810	1.	1	
65H265	COMMONWEALTH EDISON CO	ATOMIC DRESDEN	2	EH-4ABC	11,550	47	910		3/4 37	"6 "	2	VUMW	1900	15	0 SA-249-304	10-66	810		1	
64H191	FLORIDA POWER & LIGHT	TURKEY POINT	2	EH-5	6,447	45	677	:	3/4 23	3'2"	2	HUB	460	17	5 ADMIRALTY SB-395	08-66	402	i .		х
64H191	FLORIDA POWER & LIGHT	TURKEY POINT	,2	EH-4	6,102	[:] 41	536	•	3/4 27	7' 10'	2	нив	460	10	0 ADMIRALTY SB-395	05-66	759.9		•	X
64H191	FLORIDA POWER & LIGHT	TURKEY POINT	2	EH-3	4,696	40	536	;	3/4 21	1' 2"	2	нив	460	5	0 ADMIRALTY SB-395	05-66	759.9	7		х
64H191	FLORIDA POWER & LIGHT	TURKEY POINT	2	EH-2	5,477	40	536		3/4 25	5' 0"	2	нив	460	5	0 ADMIRALTY SB-395	05-66	759.9	7	!	X
64H191	FLORIDA POWER & LIGHT	TURKEY POINT	2	EH-1	8,995	45	845		3/4 31	1' 3"	2	нив	460	1 5	O ADMIRALTY SB-395	05-66	759.9	7	1	X
64H191	FLORIDA POWER & LIGHT	TURKEY POINT	2	EH-7	17,355	50	900	ì	5/8 47	7' 10"	2	HUMW	4200	70	0 SA-106-C	05-66	759.9	7	ł	Х
64H191	FLORIDA POWER & LIGHT	TURKEY POINT	2	EH-6	11,700	51	900		3/4 3 ⁻	1' 10"	2	HUMW	4200	35	0 SA-106-C	05-66	759.9	7	1	X
64H190	FLORIDA POWER & LIGHT	TURKEY POINT	1	EH-5	6,447	45	677	1	3/4 2	3'2"	2	HUB	460	17	5 ADMIRALTY SB-395	05-66	759.9	7	1	
64H190	FLORIDA POWER & LIGHT	TURKEY POINT	¹ 1	EH-4	6,102	41	536	:	3/4 2	7' 10 '	2	HUB	460	0 10	0 ADMIRALTY SB-395	05-65	759.9	7	l	-
64H190	FLORIDA POWER & LIGHT	TURKEY POINT	1	EH-3	4,696	40	536		3/4 2	1' 2"	2	HUB	460) {	50 ADMIRALTY SB-395	05-65	759.9	7		1 4.
64H190	FLORIDA POWER & LIGHT	TURKEY POINT	1	EH-2	i 5,477	49	536	1	3/4 2	5' 0"	2	HUB	460		50 ADMIRALTY SB-395	05-65	759.9	7		
64H190	FLORIDA POWER & LIGHT	TURKEY POINT	1	EH-1	8,995	45	845		3/4 3	1'3"	2	HUB	460		50 ADMIRALTY SB-395	05-65	759.9	17	1	
64H190	FLORIDA POWER & LIGHT	TURKEY POINT	,1	EH-7	17,355	50	900	1	5/8 4	7' 10"	2	HUMW	4200	0 70	00 SA-106-C	05-65	759.9	17	1	
64H190	FLORIDA POWER & LIGHT	TURKEY POINT	1	EH-6	11,700	51	900	ļ	3/4 3	1' 10"	2	HUMW	420	0 3	50 SA-106-C	05-65	759.9	7	Ì	

The second second state second with a state second second state of the second second second second second second

YUBA HEAT TRANSFER PARTIAL INSTALLATION LIST FOR NUCLEAR POWER PLANTS

PEF-NCR-02304

.

	PARTIAL INSTALLATION LIST FOR																	
	NUCLEAR POWER PLANTS																	
JOB#	CUSTOMER	STATION	UNI	T IJEM	SQ	۵	#U-	OD:	LENGT	P	TYPE	DESIG	N	MATERIAL	SHIP	MW.	INSTALLATION	FIELD SERVICE
					FT		TUBE					TUBE	SHE	1	DATE	ea unit		SUPERVISION
64H189	FLORIDA POWER CORP	CRYSTAL RIVER	1	EH-2	8,536	47	862	3/	4 29' 0'	2	нив	400	150	ADMIRALTY SB-395	05-65	759.97		
64H189	FLORIDA POWER CORP	CRYSTAL RIVER	1	EH-1	6,986	48	783	5/	8 26' 1"	2	HUB	400	150	ADMIRALTY SB-395	12-64	441	l	
64H189	FLORIDA POWER CORP	CRYSTAL RIVER	1	EH-4	6,924	41	562	5/	8 30' 5"	2	VCDUB	400	150	ADMIRALTY SB-395	12-64	441		
64H189	FLORIDA POWER CORP	CRYSTAL RIVER	1	EH-3	6,100	.44	: •646	3/	4 22' 11"	2	VCDUB	400	150	ADMIRALTY SB-395	12-64	441	i	
64H189	FLORIDA POWER CORP	CRYSTAL RIVER	1	EH-7	12,527	47	1105	5/	8 33' 5"	2	VCDUMW	3200	750	MONEL S8-163	12-64	441		
64H189	FLORIDA POWER CORP	CRYSTAL RIVER	1	EH-6	9,047	47	1105	5	8 23' 7"	12	VCDUMW	3200	300	MONEL SB-163	12-64	441		

YUBA HEAT TRANSFER

PEF-NCR-02305

. 4.

QUALITY ASSURANCE PROGRAM

The Quality Assurance Department of Yuba Heat Transfer Division is responsible for implementing and verifying the performance of the Company's quality program. The quality program is to ensure that the equipment produced meets the requirements of the applicable codes, standards and specifications.

The Q.C. Manager is responsible for the administration of the quality program and implementation of the provisions of the Company's Quality Assurance Manual. He reports directly to the President of the Company and is Chairman of the Material Review Board.

All phases of quality assurance planning, inspection, non-conformances, document control and instrument and gauge calibration are performed in accordance with formal instructions contained in the applicable Quality Assurance Manual.

A Shop-Traveler System is employed on each job to assure that inspections required by the fabrication drawings are made. Verification of each inspection point is made by signing the inspection point on the proper traveler by properly qualified personnel.

Personnel involved in inspection are trained, tested and certified to perform nondestructive testing. A program of continuous training, retesting and upgrading of inspection personnel is in effect.

A formal non-conformance system is in effect. Any non-conformities are recorded and dispositioned by the Material Review Board, or their delegates. The non-conformance report form will indicate the non-conformity, the cause, the disposition and the corrective action. In addition, it will indicate that the disposition has been executed by having a qualified inspector sign the form.

A file of quality assurance records is maintained for each item manufactured. This file contains mill test reports and material certifications, and any special metallurgical or other test results. Upon completion of the job, these files are properly packaged, labeled and retained until such time as the applicable specification, code or codes, require them to be submitted to the purchaser.

Yuba Heat Transfer LLC 2121 N. 161× East Avenue Tulsa, OK 74116 918 234 -6000 Fax 918 234-3345 www.yuba.com A Connell Limited Partnership Company

Yuba

¢

INTERNAL CLEANLINESS PRACTICES EMPLOYED

All internal parts, except for tubes and machined surfaces, are cleaned by blasting with steel grit down to clean metal.

Support plates, etc., are coated with a solution of SYN #1, or equal, to inhibit rust prior to assembly. If rust inhibitors are prohibited by customer's specification, the internal parts are cleaned with a solvent of Lift-Away, DR-60 or equal.

Parts made in advance of the time needed for final assembly are carefully placed on pallets and stored on wall shelves or wire baskets in a special area away from the production floor.

On final assembly, all components are inspected and cleaned as required. Particular attention is given to those areas of shells and channel assemblies where debris could be lodged. Hydrotest covers are on all openings at the time of final assembly. This prevents foreign materials entering the unit during final assembly and test.

When welding of tubes-to-tubesheet is required, special procedures as discussed in the resumes of tube-to-tubesheet attachment; welded tube-to-tubesheet joints are employed.

Hydrotests are conducted with clean water, which contains rust inhibitors when required. By special agreement, on stainless steel tube application we can perform hydrotests with demineralized water.

Test covers are designed to attach to the outside of nozzles and are removed with nozzles in the down position so that no spatter or other debris enters the heater during the test cover removal. All openings are immediately capped to assure internal cleanliness.

VIBRATION

Our desuperheaters are designed for resistance to vibration by controlling the unsupported tube spans and steam velocities in such a way as to limit the maximum tube deflection due to periodic forces transmitted from the flowing fluid. Our method of analysis was developed by Joseph Sebald and is employed in the design of various types of heat exchangers having steam on the shellside, as well as in surface condensers. Our criteria is somewhat more conservative than the widely used Connors Fluidelastic Whirling Analysis.

If analysis is required by customer specifications, for the most severe flow condition, such as that caused by the bypassing of an adjacent heater, the velocities within the bundle, as well as those in the inlet and outlet areas, are limited to values that would maintain vibration amplitudes within a fraction of the tube ligaments. Localized high velocity regions, caused by maldistribution of flow, are prevented by proper arrangement of the baffles.

Subcooler designs are such that there is a wide margin between the tube natural frequency and that of the fluctuating fluid forces at the most severe flow condition. The tube natural frequencies are calculated in accordance with the latest TEMA Edition, whereas the forcing frequencies are evaluated by the Chen Method. The central spans and the inlet and the exit areas are examined.

In the condensing zone, vibration potentials are avoided by limiting the velocity in the area between the bundle and the shell; as well as the escape velocities from the steam and drains nozzles. U-bend supports are employed in the tube rows with larger bend diameters. In any case, the unsupported spans are within the limits specified by HEI.

AIR VENTING

Most heaters presently installed were built with semi-support plate-type tube supports that permitted axial flow of steam through the bundle, causing non-condensable gases to accumulate at the ends of the steam travel where air vents were located. This type of venting system has not been as successful in recent years as it originally was. This is due to a number of factors, among them, the introduction of the short-type subcooling zone. This type of zone requires that drains flow toward the tubesheet, while most of the steam flow through the shell and bundle is away from the tubesheet.

As a result, steam and drains pressure losses are additive. To prevent a high water level at the end of the shell, steam pressure loss had to be limited to one or two inches of water, requiring low steam velocities around the bundle. The use of low steam velocities is inconsistent with venting systems that require reasonably high steam velocities for effectiveness. In addition, this type of venting system was subject to steam-by-passing of the vent connection, reducing vent flows from the bundle where the non-condensables tended to accumulate. Added to these problems, volatile feedwater treatment found widespread use, leading to concentration of ammonia, which dissolves the protective oxide coating on non-ferrous alloys, accelerating corrosion, causing copper deposition in other parts of the system and inducing stress-corrosion cracking at relatively low stress levels.

Modern designs require full-length, centrally located vent ducting, similar to that used in exhaust condensers. This design requires that the vent duct penetrate the tube field to prevent by-passing of steam through pass lanes. Special attention must be paid to the method of steam admission to the vent duct since the pressure gradient inside of the duct must be opposite to that outside of the bundle. Improper attention to the flow design problems can result in vent flows that are away from the off-take pipe. Normally, the gradient at the center of the bundle is opposite to that outside the bundle, resulting from differences in condensation rates between the two ends of a heater. There are many variables that influence these gradients. Good design requires that steam be metered into the vent ducting to assure positive control of the vent flows.

REV	DESCRIPTION	DATE	Yuba Heat Transfer	
			CLEANING PRIOR TO WELDILNG	-
			CLEANING MOR TO WELDIENG	
			Page 1 of 1	1

Prior to overlaying tubesheet, clean thoroughly with an acceptable cleaning solution and blow dry with clean shop air.

Before inserting tubes in tubesheet, the tubesheet, tube holes and the end of tubes shall be thoroughly cleaned with cleaning solution and blown dry with clean shop air.

Spray tube holes with an acceptable cleaning solution and blow dry with clean air. It may be necessary to some cases to brush the holes using a brush soaked in an acceptable cleaning solution.

Acceptable cleaning solutions are specified in E1562.1-55.

÷

;

PREPARED BY	DATE	APPROVED BY	RELEASE	
WBM	8/80	TRH	8/80	YUBA HEAT TRANSFER

5

÷

Yuba Heat Transfer LLC 2121 N. 161# East Avenue Tulsa, OK 74116 918 234 -6000 Fax 918 234-3345 www.yuba.com A Connell Limiled Partnership Company

Yuba

TUBE CLEANING WITH FELT PLUGS

- A. When specified on the detail drawings, felt plugs are to be blown through the tubing ID in accordance with this procedure. The operation is to take place prior to closing the channel for hydrostatic testing of the channel.
- B. The purpose for using felt plugs is to assure the interior of the tube is free of dirt and dust and is in a condition of cleanliness comparable to that received from the tubing supplier. The acceptance criteria for plugs blown at the completion of fabrication will be plugs that have been blown through the ID of 5 different tubes upon receipt from the tubing supplier.
- C. The procedure for blowing felt plugs is as follows:
 - 1. Purge tubing ID with clean, oil-free air.
 - 2. Obtain the number and size of white tube plugs specified on the Bill of Material.
 - 3. Obtain a tube layout of the unit.
 - 4. Immediately prior to inserting the plug into the tube, the plug shall be soaked in "Lift-Away", manufactured by DuBois Chemical Company.
 - a. An acceptable alternate to "Lift-Away" is Dubl-Chek DR-60 Remover, manufactured by Sherwin Corporation.
 - b. Because of it's flammable characteristics, acetone is <u>not</u> to be used as a solvent.
 - 5. Starting in the upper half of the tubesheet, place plugs in each of the tubes in the first row. Do only one row at a time. The tube layout will tell you how many tubes are in a row. Blow the plugs in the first row. Count the plugs blown from the first row. The count of plugs from the first row must equal the number of tubes shown on the tube layout. If you have lost a plug or portion of a plug, that loss is confined to that row. You must locate the lost plug(s) before proceeding to the next row.
 - 6. Proceed to the next row, repeating the above operation, until all rows are done.
 - 7. If the specification calls for a comparison with plugs from the as received tubes from the vendor, proceed as follows using one plug blown at a time.
 - 8. Insert plugs and blow through tubing using clean, dry, oil-free air.
 - 9. Immediately following, blow a clean, dry, felt plug through the tube using clean, dry, oil-free air.
 - 10. Compare plug to standard plugs obtained upon receipt of tubing.
2121 N. 161# East Avenue Tulsa, OK 74116 918 234 -6000 Fax 918 234-3345 www.yuba.com

A Connell Limited Partnership Company

Yuba

SUMMARY OF TUBE-TO-TUBESHEET ATTACHMENT

Rough machined forgings are ultrasonic tested at the mill or on receipt at our shop. When the tubesheet and channel barrel are integral, the tubesheet and corner radius are also color contrast liquid penetrant tested.

The face of the tubesheet is thoroughly cleaned. The forging is preheated.

The tubesheet is overlaid with carbon, stainless steel, Inconel, or Monel depending on the tube material to be applied. Overlay is applied by a submerged arc strip process with each layer being cleaned before starting the next layer.

Final overlay is machined, and the overlay is ultrasonic tested.

Tube holes are drilled, using one of four tape-controlled gun drills.

Two tube hole grooves are machined in the base metal, when required.

Tube holes are chamfered on the face. This chamfer is contained within the final pass of the overlay material and does not extend to underlying passes.

Tube holes are chamfered at the rear of the tubesheet and tie-rod holes are drilled and tapped.

Supports, nozzles, the skirt section and shrouds are welded in place.

Using a controlled atmosphere furnace, to prevent scale formation, the assembly is post weld heat treated.

The face of the tubesheet and tube holes are mechanically cleaned to be sure of basic cleanliness in these areas.

Final cleaning of tube holes with Dubl-Check is accomplished prior to insertion of tubes.

Note: The practice outlined above is based on metallurgical research and experience in attaching tubes-to-tubesheets. It is subject to modification should there be further improvements in the art.

Note: Carbon steel overlay is normally used on tubesheets when carbon steel tubes are to be welded.

2121 N. 161* East Avenue Tulsa, OK 74116 918 234 -6000 Fax 918 234-3345 www.yuba.com A Connell Limited Partnership Company

Yuba

WELDED TUBE-TO-TUBESHEET JOINTS

Tube-to-tubesheet attachments are made in an enclosure. Any air used for cleaning or blowdown is clean and dry.

The enclosed area in which the welding is done is cleaned each shift in which work has been done. All tools, hoses, etc., used in the tube-to-tubesheet weld area are cleaned.

Tube holes and tubes ends are thoroughly cleaned with a solvent. Any scale or adherent surface contamination on tubes is removed from the OD and ID in the weld affected zone prior to cleaning.

Tubes are inserted with ends extended beyond the face of the tubesheet. Tube ends are cleaned with a solvent and dried with clean air. Tubes are then positioned in the approximate final location and the entire face of the tubesheet again washed and dried with clean, dry air. Tubes are finally positioned in the tubesheet.

Filler rod used in the welding process is thoroughly cleaned. All argon used in the Heliarc welding process is passed through a dryer.

The weld affected zone is preheated in accordance with the tube-to-tubesheet welding procedure.

Tube ends are welded with manual or automatic GTAW process, with or without the addition of filler metal. Tube welds are air soap tested prior to rolling.

Tubes are rolled; starting back of the weld affected zone in the area of the tube hole grooves and extending to the required depth. Rolling is accomplished with an electronically controlled tube expanding machine. Tube welds are dye checked after rolling.

A full shellside hydrostatic test is performed. Test pressure is maintained for specified periods of time. These tests are recorded, if required, and the charts kept as a permanent part of the engineering file.

After the channel closure has been made up, a tubeside hydrostatic test is performed and recorded as outlined above.

The shell and tubeside hydrostatic tests are performed in accordance with the requirements of the ASME Code.

Note: The practice outlined above is based on metallurgical research and experience in the attachment of tube-to-tubesheets. It is subject to modification should there be further improvements in the arts.

2121 N, 161* East Avenue Tulsa, OK 74116 918 234 -6000 Fax 918 234-3345 www.yuba.com A Connell Limited Partnership Company

Yuba

HYDROSTATIC TESTS ON FEEDWATER HEATERS

CODE HYDRO TESTS

The purpose of a hydrostatic test is to insure that the design, materials and fabrication methods provide a safe structure. Despite the safeguards employed, deficiencies in any one of these areas can lead to catastrophic failure. Close visual inspection is not required during the time the heater is being pressurized to, or held at, hydrotest pressure and personnel should not be present in areas adjacent to the vessel until the vessel has been found structurally sound.

- A. Yuba Quality Assurance Department is to make arrangements for the Authorized Inspection to witness hydrostatic test, as required, based on testing sequence and holding times given below.
- B. Use clean clear city tap water on both shellside and tubeside of heater, unless demineralized water is specified on the "Preparation for Shipment" drawing.
- C. When specified on the "Preparation for Shipment" drawing, a pressure recording chart is to be used for information. Calibrated pressure gauges are to be used for all tests and are the basis for acceptance of the pressure test. Quality Assurance is responsible for checking the calibration of the pressure gauges.
- D. When specified on the "Preparation for Shipment" drawing, add rust inhibitor to the test water.
- E. Prepare the heater and test area for testing in accordance with the job prints and Q. A. procedures.
 - 1. Caution: The venting of air at ALL high points must be checked *immediately* prior to any hydrotest. As the vessel water temperature increases because of being in the plant, air may be released from the water. It must be vented.
- F. Apply shellside hydrotest, leaving access to tubeside for inspection of tube ends as follows:
 - 1. Fill the shellside with water. Care is to be exercised to assure that the exchanger has been properly vented to remove air from the system. Open vents must be located at the high point of the shellside during the filling operation.
 - 2. Bring the shellside test pressure up to the specified psig and hold for a minimum of 30 minutes. Yuba Quality Assurance department will witness the pressure gauge for any sign of decrease in pressure during the holding time.
 - 3. Reduce test pressure to .77 x test pressure and hold for four hours. (See Note 1).

2121 N, 161^a East Avenue Tulsa, OK 74116 918 234 -6000 Fax 918 234-3345 www.vuba.com A Conne**li** Limited Partnership Company

Yuba

page 2, Hydrostatic Tests on Feedwater Heaters

- 4. Yuba Quality Assurance department will inspect the face of the tubesheet and the shell exterior for leaks. Leakage of temporary gaskets installed for the purpose of conducting the hydrostatic test and which will be replaced later, may be permitted unless the leakage exceeds the capacity to maintain the system test pressure for the required amount of time.
- 5. Reduce test pressure to zero.
- G. Assembly partition cover plate and tubeside closure and apply tubeside hydrostatic test as follows:
 - 1. Fill the tubeside with water. Care is to be exercised to assure that the exchanger has been properly vented to remove air from the system. Open vents should be located at the high point of the tubeside during the filling operation.
 - 2. Bring the tubeside test pressure up to the specified psig and hold for a minimum of 30 minutes. Yuba Quality Assurance department will witness the pressure gauge for any sign of decrease in pressure during the holding time.
 - 3. Reduce the test pressure to zero.
 - 4. Bring tubeside pressure up to .77 x test pressure (2nd cycle).
 - 5. Reduce tubeside pressure to zero.
 - 6. Bring tubeside pressure up to .77 x test pressure (3rd cycle).
 - 7. Reduce tubeside pressure to zero.
- 8. Bring tubeside pressure up to .77 x test pressure and hold for four hours (4th cycle). (See Note 1).
- 9. Yuba Quality Assurance department will inspect the channel exterior for leaks. Leakage of temporary gaskets installed for the purpose of conducting the hydrostatic test and which will be replaced later, may be permitted unless the leakage exceeds the capacity to maintain the system test pressure for the required amount of time.
- 10. Reduce test pressure to zero.
- H. Remove test covers and proceed with fabrication.

Note I: If test pressure hold time exceeds 4 hours, reduction to design pressure is only required for a long enough period of time to permit inspection for leakage.

2121 N. 161# Easl Avenue Tulsa, OK 74116 918 234 -6000 Fax 918 234-3345 www.yuba.com A Connell Limited Partnership Company

Yuba

HOT AIR DRYING PROCEDURE Page 1 of 2

The feedwater heater, or heat exchanger, is to be dried using the procedure listed below and the hot air drying system. The hot air drying is comprised of an air heater, appropriate duct work and required flow directors.

The heating of internal parts occurs by refluxing water contained within the shell. The water, boiling under vacuum conditions, vaporizes and condenses on the cold tubing; gradually heating the internal parts. For low pressure boiling and condensation, it is important that practically all air be removed initially. Small amounts of air seriously interfere with low temperature condensing heat transfer. Because the shell side will be non-vented, the application of too much heat can generate excessive pressure. This is not likely to occur, as our major problem is to obtain enough heat to generate low pressure vapor. However, the internal supply of water is sufficient to over-pressure the shell if enough heat is available. For this reason, the pressure must be monitored and either the heat removed or the system vented if over-pressuring starts to occur.

Hydrostatic tests are conducted with water. Allowable water chemistry and inhibitors areas mutually agreed.

Units are drained shell side and tube side.

All connections are sealed. Weld-end nozzles have heads or plate covers adequately bolted, using studs tack welded to the nozzle barrels. Gaskets under covers are non-asbestos type material.

Vacuum-pressure gauges and valved vacuum-nitrogen filled connections are installed at suitable locations on both shell side and tube side.

The vacuum is pulled both shell side and tube side to an equivalent saturation temperature approximately 10° F. below the temperature of the vessel walls, as measured on external surfaces. This is done to flash test water in the units and effect as much moisture removal as possible.

Note: If temperature conditions in the shop require heating of units to obtain an approximately 10° F. differential temperature between vessel walls and the equivalent saturation temperature of the vacuum pulled, hot air not to exceed 250° F at connections is circulated through both the shell side and the tube side. Connections left open to accomplish this heating provide proper natural flow for the removal of moist air. A type of heater is employed to assure that no products of combustion enter the feedwater heater. The vacuum is pulled first on the shell side with heater air continuing to be circulated through the tube side.

2121 N. 161# East Avenue Tulsa, OK 74116 918 234 -6000 Fax 918 234-3345 www.yuba.com A Connell Limited Partnership Company

Ъ.,

Yuba

HOT AIR DRYING PROCEDURE Page 2 of 2

The vacuum pump will continue to run 15 minutes after the proper vacuum has been reached.

While under vacuum, nitrogen is applied to both the shell side and the tube side and the nitrogen atmosphere brought up to a pressure of approximately 14 pig. After the vessel has cooled to ambient temperature, the nitrogen pressure is checked several times to be sure seals at connections are tight.

Units are shipped under approximately 10 pig nitrogen pressure with the pressure gaugenitrogen fill tap assemblies in place. It is recommended that the nitrogen pressure be checked immediately on arrival and periodically during storage prior to erection at the jobsite, to assure nitrogen pressure in the units does not fall below 5 pig.

The practice outlined above is subject to modification should there be further improvements in the art.

Note: Recent experience on cycles which employ full flow condensate polishing indicates no rust preventative should be used unless special provision for cleaning the shell sides of closed feedwater heaters is applied. Rust preventatives in drains have coated the resins, necessitating costly replacement. All of the details stated above, except for the use of inhibitor in the hydrotest water, would still apply.

2121 N. 161# East Avenue Tulsa, OK 74116 918 234 -6000 Fax 918 234-3345 www.yuba.com A Connell Limited Partnership Company

Yuba

PRE-INSTALLATION STORAGE OF FEEDWATER HEATERS

CAUTION: A PRESSURE GAUGE ON A FEEDWATER HEATER INDICATES THE VESSEL IS FILLED WITH NITROGEN GAS FOR SHIPPING. ALL PERSONNEL MUST BE CAUTIONED NOT TO PUT THEIR HEAD INTO THE VESSEL OPENINGS TO INSPECT THE INTERIOR. NITROGEN IS COLORLESS AND ODORLESS AND SUFFOCATION COULD TAKE PLACE WITHOUT THE SENSES PROVIDING AN ALARM.

The feedwater heaters should be thoroughly inspected for shipping damage as soon as they arrive. Heaters with an internal nitrogen atmosphere have pressure gauges to show internal pressure on both shell (steam) and tube (water) side. Heaters are shipped under 10 psig nitrogen pressure. If the nitrogen pressure has fallen below 5 psig during shipment, it should be restored to 10 psig.

Heaters should be stored on cribbing and not in contact with the ground. Horizontal heaters should rest on their supports. Vertical heaters with no supports should be chocked to prevent turning. The end of the vessel with the feedwater nozzles should be at least one inch lower than the other end to prevent condensate from lying in the tubes.

Drainage points, such as plugs or nozzle covers, should be at the lowest point.

Heaters shipped without a nitrogen blanket should have the lowest nozzle cover, or plug, loosened to permit drainage. An unpressurized heater will breathe during daily temperature changes and moisture taken in will condense. This condensate must be given a way to drain.

Heaters with a nitrogen atmosphere, once positioned, should be "blown down" by loosening a plug or nozzle cover at the low point and allowing any condensate to escape from each side of the heater. Caution is to be exercised when loosening the plug, or cover, because the feedwater heater is pressurized. Personnel should not have any portion of their body in direct line with the plug or cover. The opening should be immediately resealed. The loss of nitrogen will be very slight.

Nitrogen blanketed heaters should be inspected on a regular basis. If the pressure falls below 3 psig, it should be restored to 10 psig. Minor leaks can be stopped by a slight uniform tightening of cover bolts or by tightening the threaded bar plugs in couplings. Note that the ends of nozzles prepared for welded connections have a gasket seating surface only 1/16" wide. This can cut through gaskets if the cover is over-tightened.

CONFIDENTIAL

[] CONFIDENTIAL

REDACTED QUANTITY SHOWN FOR DNE VESSEL, DNE VESSEL(S) REQ'D FEEDWATER -----HEATER CENTRAL CKD. Yuba VENTING SYSTEM A Connell Limited Partnership Company' APP DVG. _.... KI V TULSA, (TKI, AH(IMA 74101 () P.U. BOX 3458 PEF-NCR-02321

100000

DA10

[] CONFIDENTIAL

Vilha	A CONNELL LIMITE	ED PARTNERSHIP COMPANY	
Yuua	P.O. BOX 3158	TULSA, OKLAHOMA 74101	DVG

ľ

APP.

DATE

am>-nu-azn

- PEF-NCR-02324

REV.

θ

SCHEMATIC OUTLINE DWG. HEATER PEODET PROGRESS ENERCY PROGRESS ENERCY CH-6026-07 CONFIDENTIAL DIMENSIONS ARE APPROXIMATE NOT FOR CONSTRUCTION PEF-NCR-02326

0 Ϋ́Ε

FOR SCHEMATIC PURPOSES ONLY

REDACTED

AMD Checked By AMD

Yuba DATE 0415 .

FEEDWATER HEATER SPECIFICATION SHEET

	CUSTOMER: PRO	GRESS ENERGY				DATE:	11/26/20	007			
						CUST.	INQ.NO:				
	ADDRESS:					CUSTO	MER ORDER NO	:			
	PLANT LOCATION: CRYSTAL RIVER PROP. NO.: QH-6026-07										
	JOB NO:										
1	SERVICE OF UNIT: LOW PRESSURE HEATER ITEM: LP-3 A/B										
2	SIZE: 57-546	TYPE: U-1	UBE	2		ENGR:	AMD				
3	SURFACE PER SHEL	L (SQ. FT)	EI	FFECTIVE:	17,300	GROSS	: 18,367				
4	NO.OF SHELLS PER	UNIT: 2		NO. OF U	NITS: 1	POSITIC	DN: HORIZON	TAL			
		PERFORM	/NC	CE OF ON	E SHEL	L					
	···· · · · · · · · · · · · · · · · · ·	····			SHELL SI	DE	TUB	E SIDE			
5	FLUID CIRCULATED			STEAM		DRAINS	FEEI	OWATER			
6	TOTAL FLUID ENTE	RING LB,	/HR	302,170			4,31	81,791			
7	INLET ENTHALPY	BTU,	/LB	1161.2			1'	74.2			
8	OUTLET ENTHALPY	BTU,	/LB		184.0		24	41.6			
9	INLET TEMPERATUR	E	۰F	277.4	(277.4	SAT)	20	05.8			
.0	OUTLET TEMPERATU	RE	°F		215.8		2	72.4			
.1	OPERATING PRESSU	RE PS	SIA		47.2		12	23.3			
2											
. 3	NUMBER OF PASSES			CONDENS	SING & SU	BCOOLING		2			
.4	VELOCITY	FT/SE	C					8.1 @ SG =1			
.5	PRESSURE DROP]	PSI	DESUP	SU	BCL 2.6	1	5.0			
		HEAT				HT TRANS.RAT	E BAFFLE	REF			
		TRANSFERRED		SURFACE	LMTD	BTU/HR/	PITCH	TEMPERATURE			
6	DESUPERHEATING		+	50.11	F	52.11/		°F			
7	CONDENSING	276.388.000	+	15767	24.0	730		TTD 5.0			
à	DRAIN COOLING	18 893 000		1533	30 1	409		DCA 10.0			
Ĭ		10,000,000			N FAC	UCUEIT		. <u> </u>			
			ON	SIRUCIIO	NEAC						
				St	IELLSIDE	-		BESIDE			
2	DESIGN PRESSURE	PSIG		75 &	CODE VA			400 'ODF			
	DESIGN TEMPERATU	10161 170 77	SHE	ELT. 280		SKIRT 280		280			
5	MINIMUM DESIGN M	ETAL TEMP (0 F) SHELLS	TDE	60.	TUBESIDE	60			
3	TUBES SA-688-TP	304L	NO.	U's 1000	OD 3/	4" .035"	Avg LENGT	H 45'- 6" STR			
4	SHELL STEEL			ID: 57	TUBE PI	TCH: 15/1	6" TRIAN	IGULAR			
5	SHELL COVER	STEELWE	DE	D TO SHELL	SHELL S	KIRT	STEEL				
6	CHANNEL (SR)	STEEL			CHANNEL	COVER	STEEL				
7	TUBE SHEET	STEEL			IMPINGE	MENT PLATE	STAINLES	S STEEL			
8	SUPPORT PLATES	STEEL			ZONE BA	AFFLES	STEEL				
9	SHROUDS-DSH				SUBCOOL	JER	STEEL	אד			
2	TYPE JOINTS-SHEL	LSIDE WI	SLD.	- -	TUBE SI	DF					
1 2	CONNECTIONS. OFF	את זאז.דיד י		- 20" ₩ ₽	CRANNEL	ATNS INLET	w / 20"	WE			
4	CONNECTIONS: SIE	OUTLET	12	" WE	। । । म	MERGENCY DRN		W.E.			
4	FEEDWAT	ER INLET	18	W.E.	01	UTLET	18"	W.E.			
5	CODE REQUIREMENT	S ASME :	200	4 SECTION V	/III, DIV	VISION 1 W/ 2	2006 ADDENDA	,			
6	WEIGHTS (LB) SH	ELL AND BUND	LE	60,400	BUNDLE	44,500 F	ULL OF WATER	R 114,400			
7	SHELL SAFETY VAL	VE BY YUBA		T	UBE SIDE	RELIEF VALV	E BY YUB	A			
8	SHELL GAUGE GLAS	S BY PURC	HAS	SER			·····				
9	REMARKS: Tubes	Welded and h	ıyd	raulically	expanded	l into Tubesl	neet.				
0	Shell Roller Sup	ports Provid	ed			- 66					
1	50 Installed spa	re tubes inc	Iud	ed, not con	unted as	effective s	urtace				
2	·····										
3	······										
- 1											

Pg. 1 of 1

<u>Technical Review of Yuba Proposal QH-6026-07, dated 11/30/07, and Thermal Engineering</u> <u>International Proposal 06-M088, dated 11/29/07.</u>

Technical Review completed by: Scott T. Deahna on 12/07/07.

The proposals are for the replacement of two (2) feedwater heaters (CDHE-3A/B) and two (2) secondary plant component cooling heat exchangers (SCHE-1A/1B). The heat exchangers are being replaced to support the CR3 extended power uprate project. Progress Energy issued Request for Proposal # AS-12007 on 11/09/07. Draft equipment specifications for the replacement heat exchangers were included with the RFP. A table of conformance to the specification was included with the RFP. The vendor proposals were due on 11/30/07.

Summary of Proposals Submitted:

- The Yuba proposal QH-6026-07 provided the better overall technical design offering. The Yuba proposal includes seamless tubes. The TEI proposal includes seam welded tubes (per telecom w/ Jay Wu). Both types are acceptable per ASME SB-338. Seamless tubes are more expensive.
- Both vendor proposals were complete and were submitted on time.
- Both vendors submitted complete table of conformance to the equipment specifications.
- Both vendors met the technical requirements of the specification. Some exceptions were taken to the specification. None of the exceptions taken to the specification were of technical or commercial significance.
- The feedwater heater designs submitted by both vendors were essentially technically equivalent.
- The Yuba SC heat exchanger design provided more heat exchange surface area than the TEI design.
- The Yuba SC heat exchanger design meets the maximum dimensional requirements.
- The Yuba SC heat exchanger design provides additional cooling capacity compared to the TEI design.

Yuba Proposal:	TEI Proposal:
64" x 528"	57" x 498"
16,378 Sq. Ft.	15,503 Sq. Ft.
89,842,118 Btu/Hr.	89, 053,665 Btu/Hr.
511.37 Btu/Sq.FtHrF	505.73 Btu/Sq.FtHrF
65" OD x ????	58" OD x 49'-11" L
1440, 1"OD, 0.028" wall, 44'long	1440, 1"OD, 0,028" wall, 41.5'long
125 psig / 130F	125 psig / 130F
15 psig / 120F	15 psig / 120F
57,000 Lbs.	44,182 Lbs.
	Yuba Proposal: 64" x 528" 16,378 Sq. Ft. 89,842,118 Btu/Hr. 511.37 Btu/Sq.FtHrF 65" OD x ???? 1440, 1"OD, 0.028"wall, 44'long 125 psig / 130F 15 psig / 120F 57,000 Lbs.

SC Cooler Design Characteristic Comparison:

Feedwater Heater Design Characteristic Comparison:

Characteristic:	Yuba Proposal:	TEI Proposal:
Tube Bundle Size	57" x 546"	58" x 539"
Eff. Surface	17,300 Sq. Ft.	17,088 Sq. Ft.
Heat Exchanged	295,281,000 Btu/Hr.	294,281,000 Btu/Hr.
Heat Transfer Rate	1139 Btu/Sq.FtHrF	1165 Btu/Sq.FtHrF
TTD / DCA	5F / 10F	5F / 10F
Vessel Size	58" OD x 52'-10" OAL	59" OD x 52'-3" OAL
Tubes (SA-668-TP304L)	1000, 0.75", 0.035", 45'-6"	997, 0.75", 0.035", 45'
Design Pressure / Temp Shell	75 psig / 280F	50 psig / 300F
Design Pressure / Temp Tubes	400 psig / 280F	400 psig / 300F
Vessel Weight	60,400 Lbs.	60,000 Lbs.

Yuba Heat Transfer Division 2121 North 161st East Avenue Tulsa, Oklahoma 74116 Manufacturer's Record of Welder Qualification Test GTAW Process

 $\{i_{i}^{(1)}\}_{i \in I}$

Welder: David Logue Check Number: 3735	Stamp Number: ID Test Date: 3/15/04
Welding Process / Type:	GTAW - Manual
Welding Procedure Specification (WPS):	YA-4259
Joints/Backing QW-402:	GTAW with backing, welder qualified for GTAW with backing.
Base Metal QW-403:	P-51 plate (SB-265 Grade 2), 1/4" thick used for test. Welder is qualified for P-51 through P-53, and P-61 through P-462 base metals in production. Welder is qualified for joining plate, shapes, and pipe of 2-7/8" OD and larger diameter.
<u>Filler Metal OW-404:</u>	ERTi-2, F-51 bare solid wire used for test, with 5/32" GTAW deposited. (Weld made with and without the addition of weld filler metal). Welder is qualified for F-No. 51 thru F-54 wires. Welder is qualified for 5/16" max. deposit thickness with the GTAW process, and is qualified both with or without the addition of weld filler metal.
Position OW-405:	Tested in 3G position. Welder is qualified for 1G, 3G, 1F, 2F, and 3F positions with the GTAW process.
<u>Gas Type OW-408:</u>	For GTAW process, Argon, Welding Grade used for shielding gas, and for gas backing. Welder is qualified to weld groove welds with inert gas backing, and is qualified for all fillet welds.
Electrical Characteristics OW-409:	DCSP (GTAW)

Qualification Test Results:

Test coupon welded in the 3G position, visually inspected and submitted for radiography.

- 1. Visual Examination: Satisfactory per QW-302.4
- 2. Radiography:

Acceptable. M. Wright, LII Radiographer Test conducted by: <u>Yuba Heat Transfer</u>

We certify that the statements in this record are correct and that the test welds were prepared, welded, and tested in accordance in accordance with the requirements of ASME Section IX. Organization: <u>Yuba Heat Transfer Division</u>

narwood By:

-

Yuba Heat Transfer ASME IX Welding Procedure Specification (WPS)

Weldspec for Windows

						· · · · · · · · · · · · · · · · · · ·										
WPS record number	YA-37	YA-3773 Revision 10 Qualified to							ASME Section IX and Section VIII, Division 1 Yuba Heat Transfer							
Supporting PQR(s) Reference docs.	76255 ASME	: 150-82; 37-89; 04-01 Section VIII, Division	; 10-01; 14- 1; ASME Se	-04 ection	IX with I	Latest Manda	ory A	ddenda								
Scope	SMAW	/SAW of P-1 materials	, As-welde	d, and	l with PV											
	Groove	a, fullet, no PWHT (As-	welded), im	pacit	esting, w											
Joint	Joint d Produc	etails for this welding p tion drawings, Engine	procedure s ering specif	pecifi Icatio	cation in ns	:										
BASE METALS (QW-403)	!					• • • • • • • • • • • • • • • • • • • •				THICKNES	S RANGE	QUALIFIE	D (in.			
Туре	Carbor	steel (P1)	P-	no.	1	Grp-no. 2				As-w	elded	With I	PWHT			
Welded to	Carbon	steel (P1)	P-	no. '	1	Grp-no, 2				Min.	Max.	Min.	Max.			
Backing:	Base n	netal or weld metal	P-	no. '	ſ	Grp-no, 2		Complet	e pen.	3/16	1-1/2	3/16	8			
	Monma	tollio (Noutrol Elun) ma	who wood					Impact to	sted	5/8	1-1/2	5/8	8			
	See na	canc (Neural Flux) ma	iy be used					Partial p	en.	3/16	1-1/2	3/16	8			
NORES	Joee pa	905 Z, J, 200 4						Fillet we	ds	No Min.	1-1/2	No Min.	8			
		•••••					لسب	L		DIAMETER	RANGE	UALIFIED	(in.			
										As-w	elded	With I	WHT			
										Min.	Max.	Min,	Max.			
								Pipe/Noz	zie	10 NPS	No Max.	10 NPS	No Max.			
LLER METALS (QW-404	4)							L		THICKNES	S RANGE	QUALIFIEI) (in.			
		a i it								As-w	elded	With F	WHT			
	SFA	Classification	F	-no.	A-no.	Chemical a	inalys	sis or Trade	name	Min.	Max,	Min.	Max,			
MAW	5.1	See Page 3	4		1	Hobart McK	v.Ato	mArc.or ed	uai	No min.	1-1/2	No min.	8			
AW	5.17	F7A2-EM12K	6		1	Lincoln, ESA	8. or	egual		No min.	1-1/2	No min.	8			
	E 47	F740- F700			A 1/ A			400			Dam					
lux	5.17	F7A2; F7P0	6		N/A	Lincoln960, I	:SAB	1429, or equ	al		- Requ	ured -				
sup, filler	ļ	•			-	•					- NO	ne -				
lux type	Neutral	flux														
lux from recrush. slag	No								•							
ELDING PROCEDURE																
Velding process			:	SMAV	V					:	SAW .					
уре			1	Manua	al					Machine						
reheat temperature		(*F)	100F;	See	bage 2			100F; See page 2								
laximum interpass tempe	rature	(*ቦ)		500F				500F								
ller metal size		(in.)	1/8	3, or 5	/32			3/32, 1/8, 5/32, 3/16								
ayer number				1 or 2				1, 2, or balance of layers deposited								
osition of groove				All						Flat or Horizontal						
/eld progression			Ve	rtical	up			-								
urrent/polarity		1	DCEP (re	everse	e polarity	1}		DCEP (reverse polarity)								
mperes			1	10-19	0			See page 3					1			
Dis	"		1	/ 10 1	ਚ tostad -			See page 3								
aver speed	(ir	k Maa	01 HOTO (IN 	opact act to:	tested fi	1011) 1)				996 	hage 3 Int testad m	at")				
aximum near inpur	(54001. J	oriz (nnpa	-01 185	neu mat	v				ono (impa Co	ki lesteu mi Iri wire	acij				
no iseu type	/ie	.(min)							۵die	ist for amo	Jvolts/trave	Ispeed				
ire feed sneed			Stringer o	r Slini	ht Weav	e			, ioju	Si	rinaer					
ire feed speed	(4	Stringer or Slight Weave								,	N/A					
ire feed speed ring or weave T W D	(a	(in.)		(in.)												
ire feed speed ring or weave T.W.D Illi/Single pass per side	(4	(in.) R	Aultiple pas	- ises (1	or impar	ts)	Multiple passes (for impacts)						Multiple_passes			
ire feed speed ring or weave T.W.D Jili/Single pass per side illinde or single laver	(u	(in.)	Aultiple pas	- ises (1 -	for impac	zts)				Mulup Multi	e_passes ole laver					
ire feed speed ring or weave T.W.D ulti/Single pass per side ultiple or single layer scillation	ία.	(in.)	Aultiple pas	- - -	or impac	zts)				Mulup Multi N	le_passes ple layer lone					
fire feed speed tring or weave T.W.D ulti/Single pass per side ultiple or single layer scillation ult/single electrode	<i>[</i> 4	(in.)	Aultiple pas	- - -	or Impac	⊐ts)				Multip Multi N Single	e passes ple layer lone electrode					
fire feed speed tring or weave T.W.D ulti/Single pass per side ultiple or single layer scillation ulti/single electrode ectrode angle	ζ«	(in.) (cog.)	Aultiple pas	- - -	or Impac	≭s)			80	Multip Multi Single to 90 degre	e_passes ple layer lone electrode es from we	ld axis				
fire feed speed ring or weave T.W.D ulti/Single pass per side ultiple or single layer scillation ulti/single electrode schode angle aximum pass thickness	ζ«	(in.) (dog.) (m.)	Aultiple pas	ses (1	for Impac	≾s)			80	Multip Multi Single lo 90 degre	le passes ple layer lone electrode es from we 1/4	ld axis				
fire feed speed tring or weave .T.W.D ulti/Single pass per side ultiple or single layer scillation ulti/single electrode ectrode angle aximum pass thickness eld deposit chemistry	, "	(in.) (dog.) (in.)	Aultiple pas A-1 pe	- - - 3/16 er QW	for Impac	≾s)			80 1	Multip Multi Single lo 90 degre A-1 pe	le_passes ple layer lone electrode es from we 1/4 r QW-442	ld axis				

Weldspec 4.20.002 Catalog n* WPS00397 (c) Copyright 2004 C-spec/TWI Software. All rights reserved worldwide.

Yuba Heat Transfer ASME IX Welding Procedure Specification (WPS)

Weldspec for Windows

.

WPS record number	YA-3773		Revis	ion 10	Qualified to	ASME Secti	on IX and Section VIII, Division 1					
Date	10/27/04				Company name	Yuba Heat Transfer						
PREHEAT TABLE					-1							
Applicable standard												
ASME Section VIII Div	. 1 100F minmu	um preheat sha	all be established p	rior to we	Iding any thickness les	s than 1" (impact to	ested materials).					
	200F minimum preheat shall be established prior to welding thickness of 1" or more (all materials).											
70F preheat is permitted only for non-impact tested materials which are less than 1" thick.												
POST WELD HEAT TR	EATMENT (QW-	407)										
Temperature (*F)	1100 - 1200		Time (hrs)	Per UCS	6-56	Туре	Below lower transf. temp.					
Heating rate (*F/w)	Per UCS-56		Method	Furnace	or resistance							
Cooling rate ("F/hr)	Per UCS-56		Method	Slow co	ol							
Notes	Max, qualified tir	ne is 6 hrs & 1	5 min. (for impacts)	See de	sign drawings for PWH	T requirements.	<u> </u>					
ECHNIQUE (QW-410)												
Supplementary MF con	trol	None										
Peening		Not used	viot used									
Surface preparation		Grit blast, bru	sh, grind, or machi	ne								
nitial/interpass cleaning	1	Brushing, Chipping, and Grinding										
Back gouging method		Air carbon are	and grind to sour	d weld/ba	ase metal							
OTES							· · · · · · · · · · · · · · · · · · ·					
See pages 3 and 4 for r	otes.				·							

Name	Signature
Donald L. Underwood	1 nlill
Date	hand the destant
10/27/04	Sandid he days

Weldspec 4.20.002 Celalog n* WPS00397

(c) Copyright 2004 C-spec/TWI Software. All rights reserved workdwide.

Yuba Heat Transfer ASME IX Welding Procedure Specification (WPS)

Weldspec for Windows

WPS record number	YA-3773	Revision 10	Qualified to	ASME Section IX and Section VIII, Division 1
Date	10/27/04		Сотралу пате	Yuba Heat Transfer

This procedure is qualified for joining P-1 Group 2 materials with Impact testing either as-welded or with PWHT. This procedure can also be used for joining non-impact tested P-1 Gr 1 or 2 materials. This procedure is limited to use for vessels with an MDMT of -20F or higher.

SMAW- E7018 can be used if the parts being joined do not require Charpy testing, but <u>when welding impact tested materials only</u> <u>E7018-1 electrodes</u> shall be used.

SAW Flux/Wire combinations - Use an EM12K wire, such as Lincoln L-61, ESAB Spoolarc 81, or equal EM12K wire. Flux shall be an F7P0/F7A2 classification, such as Lincoln 960, ESAB 429, or equal neutral flux.

>>> WELDING NON-IMPACT TESTED MATERIALS --- AMP / VOLT / TRAVEL SPEED RANGES --- If the job bill of materials does not identify either item to be joined as regulring Charpy testing, the welder may use the following ranges:

 > SMAW may be used within the following limits-200 amps max.
 21 volts max.
 adjust travel speed for welding conditions

> SAW limits for amps/volts are the same as for impact tested materials (see below), but travel speeds can be adjusted for welding conditions.

>>> WELDING IMPACT TESTED MATERIALS --- AMP / VOLT / TRAVEL SPEED LIMITS --- When the job bill of materials indicates <u>either part being joined at the weld as requiring Charpy testing</u>, the following limits shall be followed for welding the impact tested parts.

> SMAW shall shall be used within the following limits-190 amps max.*
19 volts max.*
7 inches per minute minimum travel speed *

* Some adjustment in these values can be made by the welder provided the heat input limit for SMAW (31,200 Joules per Inch) is not exceeded by using the following formula:

<u>Amps X Volts X 60</u> = Heat Input in Joules/Inch (not to exceed 31,200 Joules per Inch) Travel Speed (in. per min.)

> SAW shall be used within the following limits-3/32 or 1/8 diameter wire

550 amps max.** 32 volts max.** 12 inches per minute minimum travel speed **

5/32 diameter wire 650 amps max.** 35 volts max.** 15 inches per minute minimum travel speed **

3/16 diameter wire 750 amps max.** 36 volts max.** 18 Inches per minute minimum travel speed **

or, 3/16 diameter wire 900 amps max.** 36 volts max.** 22 inches per minute minimum travel speed **

Weldspec 4.20.002

(c) Copyright 2004 C-spec/TWI Software. All rights reserved worldwide.

Yuba Heat Transfer

ASME IX Welding Procedure Specification (WPS)

Weldspec for Windows

WPS record number	YA-3773	Revision 10	Qualified to	ASME Section IX and Section VIII, Division 1
Date	10/27/04		Company name	Yuba Heat Transfer

** Adjustments can be made by the operator provided the heat input for SAW (91,000 Joules per Inch) is not exceeded by using the following formula:

<u>Amps X Volts X 60</u> = Heat Input in Joules/Inch (not to exceed 91,000 Joules per Inch) Travel Speed (in. per min.)

Other Notes:

All welding shall be protected from wind, rain, and other harmful weather conditions which may affect weld quality.

Nonmetallic retainers, such as SAW neutral flux backing, may be used when needed for backing the joint for SAW welding. Where joints are welded from both sides, the first pass shall be backgouged and ground to sound metal before welding the second side.

All surfaces to be welded shall be dry and substantially free of mill scale, oil, grease, dirt, paint, galvanizing, and other contaminants. Surfaces to be welded shall be cleaned of all oil, rust, scale, paint, grease, and other deleterious foreign material for at least 1^e from the weld joint preparation. An approved solvent can be used to remove oil or grease residues. Some approved solvents are DR-60, Acetone, and Isopropyl Alcohol-keep solvents away from sparks or flame, store only in approved cabinets. Machine, grind, or grit blast to remove rust or scale.

The preheat requirements shall apply to all welding, including tack welding, and the welding of any temporary attachments. Preheat shall also be established for thermal cutting and gouging operations. Maintain the preheat a minimum of 3 inches on either side of the weld joint. When a preheat of 200F or more is required, the weld joint shall be completed with no intermediate cooling, except that cooling under an insulating blanket is permitted. If Oxy-fuel torches are used for preheating, the torch tip shall be appropriate for the work \sim a "rosebud" is acceptable, but do not use a cutting or welding tip for preheating.

The weld shall be completed evenly, by depositing approximately equal layers around the weld joint - block welding is not permitted.

Peening shall not be used. The use of pneumatic tools (chipping or scaling gun) is not considered peening, and is permitted.

Cracks or other weld defects shall be completely removed by grinding to sound metal prior to depositing additional weld metal. Each layer of weld shall be visually checked by the welder, and shall be smooth and free of slag inclusions, porosity, excessive undercut, cracks, and lack of fusion prior to beginning the next weld layer. In addition, the final layer shall be sufficiently free of coarse ripples, nonuniform bead patterns, high crown and deep ridges to permit the performance of any required inspections or examinations. All arc strikes, starts, and stops shall be confined to the welding groove or shall be removed by grinding.

Tack welds shall either be completely removed, or the starting and stopping ends shall be prepared by grinding or filing for incorporation into the weld.

Temporary attachments shall be removed and the areas finished smooth and flush, inspected visually, and examined by Magnetic Particle or Liquid Penetrant method.

SMAW process can be used for tacking, sealing gaps, or placing reinforcement before welding with the SAW process. As an option, an SMAW root pass may be deposited prior to welding with SAW, then the root shall be backgouged and/or ground to sound metal prior to welding the backside with SAW.

Run on/off tabs shall be used wherever possible.

All weld joints shall have a minimum of two passes.

Each weld shall be stamped with the welder's unique identification stamp adjacent to the weld at intervals of 3 feet or less, when the material thickness is 1/4" or more.

Weldspec 4.20.002 Catalog n° WP\$0039 (c) Copyright 2004 C-spec/TWI Software. All rights reserved worldwide.

· ···· · · · · · · · · · · · · · · · ·	in.							A	1-9-80/XH
[•	P.O.	YUBA H	EAT TRAN	SFER- 4101 - (918) 234-5000 - TL	X 492464	A10	-26-77/24 641 SH No. 10F 2 23/77/Pal.
PROCEDU		LIFICATION F	RECORD	No 76	5255			DATE: 7-15	-76 25-24-77/RW
WEIDING	PROCE	DURE SPEC.	No.	VA-3035	(Rev. 1	4, 11/24/80)			/
WELDING	PROCES	SS(ES):	SMAW						
TYPES:		•	Manual						
BASE MET	ALS: M	aterial Spec.	SA	516			Type or G	irade <u>70</u>	
P No	_1	T	o P No	1	, TI	hk. <u>3''</u>	, Range	3/16"-6"	_, DiaNA
FILLER ME	TALS: V	Weld Metal A	Analysis /	A No1	·····			, Electrod	le Size
Filler Metal	F No	4			, s	FA Spec	<u>5,1 (2</u>	<u>(-70]8)</u>	· · · · · · · · · · · · · · · · · · ·
Others:			NA						
POSITION:		1G		, Weld	Progression	Flat	Other	NA	T 500°T
PREHEAT:	Preheat	Temp	20	0 F		~	, Interpas	s Temp200	<u>F - 500 F</u>
Others:	NA				1100%=	<u></u>			
POSTWELD	HEAT	TREATMENT	: Tempei	rature <u>SR.@</u>	1100 - 11				
Time	5 HO	urs			·····		Other	NA	
GAS: Type	<u>NA</u>				osition	<u> </u>	, Flow Rate	NA	Other <u>NA</u>
FLUX: Type	9	^'A						Other	NA DR
ELECTRICA	L CHAR	ACTERISTICS	S: Currer	ntDC	a)	1	Polarity	9 10 14	KH NTA
Amps	250)		, Volts	24-20	<u>/</u> , Τπ	avel Speed	0 I.C. MI,	, Other <u>NA</u>
TECHNIQU	E: String	j or Weave E	Bead	String		•	Oscillation	Single	
Multipass o	r Single	Pass	MULLIP	ASS		Single or Multiple	e Electrode	Stugre	
ADDITIONA	L INFO	RMATION:	(171) E1		1 T		CARTORACIN		
RADIOGR	APHIC	RESULTS:	(0#-51	OI Sect.	, s per 18	101e UW -12/-	DATISTAUT	UNI (2)	
		TEN	SILE TES	ST (QW-150)			IOINTS:	1/2. Mar	Boad Thk
				ULTIMATE	ULTIMATE	CHARACTER C	DF	1/2. Hux.	beau rak.
SPECIMEN		DIA, B	т Р	OTAL LOAD	UNIT STRES	S FAILURE &			
NO.	WIDTH	-	AREA	LB.	PSI	LOCATION	\	300	
1		.503	.1987	14,150	71,208	*1 WM	[
2		.503	1987	14,100	70,957	*1 WMD			<
		504	1995	14,475	71 176	*1 WMD		- F34	
5		503	1987	15,400	77.499	*1 WMD			Et amalil
6		505	0.07	15,400	76,886	*1 WMD	BACA		Similar
0 1			DED BEN	D TESTS			GOUG	ED Y	Ye 1
				1		SIAL DUCITLE			7.
TYPE AND	2			TYPE AI	D	DECISIT			4 3
I GideRo	D.	Figure		5 SideB	and No I	HESURAS		Ð	√ <i>7</i> ₃₂
2 SideB	end No	Fissures	2-1-1	6.SideB	end No I	Fissures		l'i	
3.SideBe	nd- No	Fissures	3	7.SideB	end No 1	rissures		Groove Des	ign Used
4.SideBe	nd- No	Fissures	5	8.SideB	end No H	Fissures			
	1M	PACT TEST	- CHAI	RPY (UG-84	I, SA-370)			HARDNESS	TEST
		Im	npact En-	Temperature	a lmi	pact Values	(EQUI	VALENT BHN 30	DOU KG LOAD)
Locati	00	i ype erg	y (ft. Ibs.) °F	Fo	ot Pounds		LOCATION	HARDNESS
Weld Top	A 800 - 0 - 1	· A · · · ·	120 .	0 & -2	<u>O(NB,NB,N</u>	B) (NB, NB, NB)	* Weld T	OP	162
Weld 3/4		A	120	$0^{\circ} \& -2$	O(NB, NB, N	<u>B) (NB, NB, NB)</u>	Weld B	ottom	157
HAZ Top	· .	A	120	$10^{-2} & -2$	0/(50,50,6)	<u>3) (50,44,40)</u>	HAZ	- Тор	162
<u>HAZ 3/4</u>			120	10×-2	0(56 51 5	<u>9)(37,43,52)</u>	HA7.	- Bottom	167
* NR - M	o Bres	<u> </u>	120	$ \alpha - \alpha$		<u>/////////////////////////////////////</u>	Сар		163
Noldor's No-	ne Rea	aver. R.	F.		Clock No	#1237	Sta	mp No GN	
ast conduct	ed by:	YHTC		l at	. Test No. 7	6255		per D. La	angford
14/~	cortifu el	hat the states	nents in	this record an	e correct and	that the test well	s were prepa	red, welded and	tested in accor-
976 	DOLLEY I	the requirement	nonico III ante of C	ACT Q ACM	E Code			-2, 100000 anu -	
Qano	S WILL				Signed	Yuba Heat T	ransfer C	orporation	
Date 7-	15-76		_		8v_	(Day	Wilso	PEL PEL	F-NCR-02334
			. .						

7

.

Yuba Heat Transfer ASME IX Procedure Qaalification Record (PQR)

Weldspec for Windows

POR record number	04-01		Revision 1	WPS record number	YA-3773	Revision 2
Date	3/15/06			Company name	Yuba Heat Transfer	
L	I	·····		Welding standard		
	•				J	
BASE METALS (QW-403)						
	Product form		Specification (type or grade)	P no.	Grp-no. Size	Sch. Thick. (#.) Dia, (m.)
	Plate		SA-516 (70)	1	2 -	• 1.5 ·
Welded to:	Plate		SA-516 (70)	1	2.	- 1.5 -
and loaded.	MATHER AND COMPLET IN	THE PLAT WAR	imanote With backage			
Alotes	Without PWHT, W	the PWHT with in	mpacts, with hardness testi			
INCLES	without Pavisi, w	utr writt, waars	mpact testing, with natoriess testi			
POST WELD HEAT TREAT	MENT (QW-407)					
Temperature (*F)	1175		Time (hrs) 5		Туре	Below lower transf. temp.
Heating rate ("Finr)	400		Method Furnace			
Cooling rate ("F/hr)	500		Method Insulating	t blankets		
Alaba			1			
noles	PWHT specimen t	est results on Sh	erry Leb Report 2001030363			
JOINTS (QW-402)	······································		·····			
Joint design	Double-	/-groove	JUINT BALK	COULEDINGLOR	0	
Backing:	Back-gouge	bebiew & b				
Retainers	Nonmetallic	(neutrai flux)	50.516		54-516	
Groove angle (deg.)	6	o		1/2 min		SH 12 DHKL
Root opening (in.)	())"R TO		[GRTO	AS 7
Root face (in.)	.0.	52	1 1 11 11 11	1		
			NEUTRAL	FLUX BACKING		COLA LIGALAIC
			LINCOL	N 960	4	TTER WELTING
WELDING PROCESSES				<u></u>		
Walding omcore		1		C A14/		
Turno				Machin	A	
rypa					•	
FILLER METALS (QW-404)		·				
SFA specification		1		5.17		
AWS classification				EM12	<	
Filler metal F-number		1		6		
Weld metal A-number				1		
Filler metal nominal compos	sition	1		Not Recor	rded	
Filler metal trade name				Lincoln L	-61	
Filler metal size	(in).	2		3/16		
Deposited thickness	(in) 		1.5		
Maximum pass thickness	(in.			.375		
Weld deposit chemistry		1		Not Recor	dea	
Flux AWS specification		1		0.17		
Flux AWS classification				F/AZ	dad	
Flux nominal composition					60	
Flux trade harite				Noutral f	luv	
Flux type				No		
Flux hum reclusing slag		-		Noneus	ed	
Supplemental litter metal vol	(113	ļ		None us	ed	
Supplemental littlet metal voi		J		110110-03		
PUSITION (QW-405)		1			······································	
Position of groove				1G		
Weld progression		I				
PREHEAT (QW-406)						
Preheat temperature	(°F)			150		
Maximum Interpass tempera	iture ("F)			500		
ELECTRICAL (OW-409)		L				
				7/42		
FILIER ITHELEI SIZE	(#1.)			0116	n	
Amperes .					ì	
vuits Travel enerd	fie hereit			16 - 25		
Maver spoor	jestenny Jestém k			121 5		
meaning near input	100/01.1			DCRP		
Wire feed type				Cold wir	e	
Wire feed speed	(in./m.n)			As Regul	red	
		L	an an an an an an an an an an an an an a			······
ECHNIQUE (QW-410)						
String or weave				Stringe	r dod	
C.T.W.D	(in)			NOL Kecon		
Uscillation				None Classe start	mde	
Multi/single electrode	64			Not Record	riert	
Electrode anglé	សេខភ្.1			NOL NOCOT		
Mulu/Sungle pass per side				Multinia la	ver	
Multiple of single layer				Multiple la	, d	
reening Isligitistomene dession				Reichlas and (- Brindina	
ITTUAN/ITTOATTACKS CIMPUTING				Linearing date t		

(c) Copyright 2006 C-spec/TWI Software. All rights reserved workdwide.

Yuba Heat Transfer ASME IX Procedure Qualification Record (PQR) - Test results (as welded)

•

Weldspec for Windows

PQR record number Date	04-01 3/15/06			Revision 1	WPS record Company nat Welding stan	number me dard	YA-3773 Yuba Heat Tra	nsfer		Revision 2
ENSILE TESTS (QU	V-150)						1			Reduced ee
Economo aumb	Wi	dith	Thickness	·····	Area	Ultimat	e total load	Ultimate	unit stress	Type of failure and
Specimen number	an (ir	1.)	(in.)		(in')		(in)	(psi)		location
A-Top	.7	70	.742	c	.5713	45000		78	800	Ductile-Weld
A-Bottom	.7	70	.680	0	.5236	4	1300	78	900	Ductile-Base Metal
B-≀op B-Boltom	./	772 703			5322	42000		/8 80	900	Ductile-Base Metal
D-CONOM			.105			•	3030		400	Ducine-Dase Metal
Comments	2 sets (to S (QW-150)	p/bottom) of re	duced section tensi	on tests per QW-1	51.1 and QW-46	2.1(a)	· · · ·			
	Type of to	est		Acceptanc	e criteria		Result		Corr	iments
4 transven	se side bends per Q	W-161.1 and Q	W-462.2	QW-	163	A	cceptable		see - ASME	IX - QW-451.1
comments	Tests cor	ducted on spe	cimens in the As-we	kled condition; Sh	eny Lab Report	2001030359		.		
DUGHNESS TESTS	(QW-170)									
Specimen number	Notch location	Notch typ	pe Specime (in.) x (n size Test te in.)	mperalure ('F)	(ft #o)	Impact (% Sh	values war)	(Mils)	Drop weight break
1	Base Metal	Charpy	V 0.394 x 0	0.394	-20	35	20		31	n/a
2 3	Base Metal	Chamy	v 0.394 x0 V 0.304 v0	394	-20	36	20	;]	33 14	n/a ola
4	HAZ	Charpy	V 0.394 x 0	.394	-20	56	30	5	43	n/a
5	HAZ	Charpy	V 0.394 x 0	.394	-20	69	35	5	57	n/a
6	HAZ	Charpy	V 0.394 x 0	.394	-20	80	45	5	60	n/a
7	Weld Metal	Charpy Charpy	V 0.394 x 0	.394	-20	34	20		34	n/a
9	Weld Metal	Charpy Charpy	V 0.394 X 0	394	-20	51 70	35		40 63	nva n/a
mments	Tests cond	lucted on spec	imens in the As-web	led condition; She	my Lab Report 2	001030359				
Tune (Scale)	Distance from	surface	SA 516 (70)		147	W	ald	84	7	SA-516 (70)
Type (Scale)	- Distance from	Tauriace	160, 160, 160	100.1	RE 190	105 1	66 1/7	14	<u> </u>	44-514 (10)
Вли			130, 130, 130	190, 1	00,100	100, 1	00, 147			
ments	Teste mad	ucted on energy	mens in the Asual	ed condition Cha	mylah Renord 9	001030350				
TIELCATION	1 10313 00110	- see on speci								
		0 Number	Stam	p number	Machanical t-	ting by		Share	i aboratoriae M	idelates
Welder's name		3830		ск	Laboratory test Test file number	inumber r ar		Sherry PQR 0	Lab Report 200 4-01; Lab Req. 200	01030359 22-2001
	Tests cond	ucted on speci D Number	mens in the As-weld	p number CK	Mechanical tes Laboratory test Test file numbe Tests conducte	001030359. ting by number er ed by		Sherry Sherry PQR 0 Larry F	Laboratories-M Lab Report 200 4-01; Lab Req. Pate	idsta 1103 22-2
Welder's name Jim Davis We	. certify that the statemen	its in this record a	re correct and that the te	st welds were prepar	d, weided and test	ed in accordan	ce with the requirem:	ents of Section	N IX OF THE ASME C	ode.
Welder's name Jim Davis		its in this record a	re correct and that the te	ist welds were prepar	Led, weided and lesic	od in accordan	ce with the requirem:	ents of Section	NIX OF THE ASME C	ode.
Welder's name Jim Davis We ding Engineer me	. Carlify that the statemen	signature	re correct and that the te	ist welds were prepar	Led, weided and tesk	ed in accordan	ce with the requirem	ents of Section	N IA OF THE ASME C	ode.
Welder's name Jim Davis We ding Engineer ne nald L. Underwood	. certify that the statemen	signature	re correct and that the te	ist wekts were propar	ad, weided and lesic	ed in accordan	ce with the requirem	ents of Section	n ix of the Asme C	ode.
Welder's name Jim Davis Jim Davis Um Davis We Jing Engineer ne Iald L. Underwood a JiOG	certify that the statemen	Signature	re correct and that the te		L, weided and lesic	ed in accordan	ce with the requirem	ents of Section	n ix of the Asme C	ode.
Welder's name Jim Davis We ding Engineer 19 ald L. Underwood 1 /06	. certify that the statemen	Signature		ist weeks were propar	ed, weided and tesk	n accordan	ce with the requirem	ents of Section		ođe.

Yuba Heat Transfer ASME IX Procedure Qualification Record (PQR) - Test results (PWHT)

Weldspec for Windows

•

ENSILE TESTS (OW-	3/15/06		ł	Revision 1	WPS record number Company name Welding standard	YA-3773 Yuba Heat 1	ransfer		Revision 2
	150)					1			Reduced s
Specimen number	Wi	Jth	Thickness	A	rea Ul	limate total load	Ultima	te unit stress	Type of failure an
	(in	.1	(in.)		n²)	(b)		(04:)	location
A-Top	.75	57	.727 0,5503 40300 73200		73200	Ductile-Weld			
B-Top	.75	6	.000	0.4	519	40300		73000	Ductile-Weld
B-Bottom	.75	7	.645	0.4	883	36400		74600	Ductile-Base Meta
Ammonie	2 sats //o	o/bottom) of reduce	d carling tagsing t	este par OW-15	1 and OW_462 1(a)		İ		
JIDED BEND TESTS	(QW-160)	p/000000/ 01/00000							<u></u>
	Type of te	est		Acceptance	criteria	Result		Сол	nments
4 transverse	side bends per Qi	W-161.1 and QW-4	62.2	QW-16	33	Acceptable		see - ASME	IX - QW-451.1
omments UGHNESS TESTS (C	Tests cor	ducted on PWHT s	pedmens; Sherry I	Lab Report 2001	030363.				
Specimen	Notch location	Notch hose	Specimen si	ze Test len	iperature	Ímpa	ct values		Drop weigh
number		Noich type	(in.) x (in.)	r	F) (4	u) (%	Shear)	(M¥5)	break
1	Base Metal	Charpy V	0.394 x 0.39	4	3	8	30	28	N/A
2	uase Metal Base Metal	Charpy V Charpy V	0.394 x 0.39	14 -		3 9	20 20	14	N/A
4	HAZ	Charpy V	0.394 x 0.39	4	10 13	6	85	77	N/A
5	HAZ	Charpy V	0.394 x 0.39	4 -1	14	2	85	83	N/A
6	HAZ	Charpy V	0.394 x 0.39	4 -2	10 12	2	80	82	N/A
7	Weld Metal	Charpy V Charpy V	0.394 x 0.39	4 -2	20 12	4	90	73	N/A N/A
8	Weld Metal	Charpy V Charpy V	0.394 x 0.39	4 -2	0 7	1	70	64	N/A
								1	
mments	Tests cond	lucted on PWHT sp	ecimens; Sherry L	ab Report 20010)30363.				
RDNESS TEST				······································					
Type (Scale)	Distance from	i surface	SA-516 (70)	HA	2	Weld		HAZ	SA-516 (70)
BHN			140, 146, 146	207, 17	9,167 1	49, 136, 149			
	Tests mod	ucled on PWHT or	ecimens: Sherry L	1 ab Report 2001/	30363.			l.	
TIFICATION	1 0010 0010								
Moldada	1) Number	Stamp n	umber	Mechanical testing by		She	rry Laboratories-M	lidstates
weiders name		3830	Ck	(Laboratory test number Test file number	ar	She PQF	rry Lab Report 200 R 04-01; Lab Req.	01030363 22-2001

Yuba Heat Transfer

ASME IX Procedure Qualification Record (PQR) - Additional information

Weldspec for Windows

PQR record number	04-01	Revision 1	WPS record number	YA-3773 Yuba Heat Transfer	Revision 2
			Welding standard		

Test conducted for additional Flux/Wire combination using Lincoln L-61 with Lincoln 960 Flux.

This revision:

- correlates test results for as-welded and PWHT specimens - corrects joint root opening (QW-402.10, nonessential variable)

corrects joint root opening (QW-402.10, nonessential variable)
adds that neutral flux was used as a non-metallic retainer (QW-402.11, nonessential variable)
adds that filler metal nominal composition is not recorded [wire is A-1 (QW-442) and wire classification is reported (QW-404.5)]
adds that actual weld deposit chemistry is not recorded [wire is A-1 (QW-442), and wire classification is reported (QW-404.5)]
adds that flux nominal composition was not recorded [an alloy flux is not used for this test (QW-404.10)].
corrects lowest amperage used during test welding (typographical error, should be 600 amps, not 400 amps)

(c) Copyright 2006 C-spec/TWI Software. All rights reserved workdwide.

Yuba Heat Transfer ASME IX Procedure Qualification Record (PQR)

Weldspec for Windows

PQR record number Date	14-04 5/20/04		Revision 0	WPS record number Company name Welding standard	YA-3740 Yuba Heat T ASME Section	ransfer on IX and Se	ction VIII, Divis	sion 1	Revision 8	
BASE METALS (QW-403)	Product form	······	Specification (type or grade)	Pao	Gm-00	Size	Sch.	Thick	(in.) Dia.	. (m.)
	Mate.		04 540 (05)							
Welded to:	Plate		SA-516 (70)	1	2			.750		
and tested: Notes	Without PWHT, With SMAW of P-1 Group	h impacts, With I 1 to P-1 Group	hardness 2. As-weided Condition							
10/NTS (QW-402)										
loint design	Sincle-V-C	YOOVO			150.5	-16-70-	,	-54	-516-6	5
Racidna:	None			\sim	1 3/7-3	10 10 7	600			_
Retainers	None			51-			\sim	、/		Γ,
Groove anote (dec.)	60	-		H			*	7		3/
Root opening (in.)	.125		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~ ~ ~/4			\sim	4		4
Root face (n.)	.125		Y	SMAW				<u> </u>		. •
			BAININGER					1/1		Z
WELDING PROCESSES		Į	AND WELDED		<u> </u>		>(←	- 18		
Welding process				SMAV	v					
Type				Manus	al					
TI I ER METALS (OW 404)	<u></u>		· · · · · · · · · · · · · · · · · · ·				·····			
LLCCK METALS (UNI-104)	····		·····		· · · · · · · · · · · · · · · · · · ·					·
SFA Specification				3.1						
AWS dassification				Erun	2					
Filmi metal Ferumbar Wald metal Assumbar	1			1						
Filler metal cominat compos	ilino			Fe Mo	\$J					
Filler metal trade name				ESAB Alo	n Anc					
Filler metal size	(in.)			5/32						
Deposited thickness	(in.)			.750						
Maximum pass thickness	(in.)			3/16						
Weld deposit chemistry	į	,		See Pag	e 3					
OSITION (QW-405)										
Position of groove				3G						
Weld progression				Vertical	Up					
REHEAT (QW-406)										
Preheat lemperature	("F)			70F						
Maximum interpass temperal	ure (F)			500F						
LECTRICAL (QW 409)	·····									
Filer metal size	lint		· · · · · · · · · · · · · · · · · · ·	5/32						-
Amperes				250						
/ofts	i			23						
ravel speed	(in./min)			7						
Aaximum heat input	(kJ/m.)			49.285	7					
Curren//polarity				DCEP (reverse	polarity)					
ECHNIQUE (QW-410)										
Sting or weave	1			Both(see pg3 for	width limit)					
Aulti/Sinole pass per side				Single and Multic	e passes					
eening				Not use	d					
nitial/interpass cleaning				Machine/Grind, C	hip, brush					
ack coursing method				Air carbon arc a	nd arind					

Weldspec 4.20.002 Catalog n* PQR00117

.

Yuba Heat Transfer

ASME IX Procedure Qualification Record (PQR) - Test results (as we	Ided)
--	-------

Weldspec for Windows

www.	14-04 5/20/04			Revision 0	WPS record Company na	number me	YA-3740 Yuba Heat Tran	sler X and Section	VIII. Division	Revision 8
					AA BIOILUB arsu		TYPE Section	A BIN JOUIN	VIII, DIVISIO	
ENSILE TESTS (OW	-150)							1 Hillion to comb		Reduced :
Specimen number	w	dth	Thickness		Area	Ultimate	total load	Unumate unit	suess	i ype of failure an
		n.)	(in.)		(0.)			60000		Ductile Rese Mai
A B	0.7	748 750	0.699 0.701	.0	.5258 .5258	43	100	82200		Ductile-Base Met
Comments	Sherry L	ab Report 2004	050250]	·····		•
UIDED BEND TESTS	(QW-160)			A second second	a selection of		Desult		Com	ments
	Type of t	85(Acceptanc	e craena		Result	~		
4 transverse	ı side bends per Q	W-161.1 and Q	₩-462.2	QW-	163	A4	ссертарю		88 - ASME I	x - Qw-451.1
Comments	Sherry La	ab Report 2004	050250	L				·····		
JUGHNESS TESTS	QW-170)	.	Canal	alas Tantia	marahya		Impact v	alues		Dron weigh
Specimen number	Notch location	Notch typ	e Specimer (in.) x (i	n.)	("F)	(ft tb)	(% She	ar)	(Mils)	break
1	Weld Metal	Charpy \	/ 10mm x 1	0mm -	32F	74	50		50	NA
2	Weld Metal	Charpy \	/ 10mm x 1	0mm -	32F	67	45		48	NA
3	Weld Metal	Charpy \	/ 10mm x 1	0mm -	32F	86	55		59	NA
4	P-1 Gr1 HAZ	Charpy	/ 10mm x 1	Omm -	32F	14	23		30	NA NA
5	P-1 Gr1 HAZ	Champy V	/ 10mm x 1	Omm -	32F	26	30		22	NA
7	P-1 Gr2 HAZ	Charpy \	/ 10mm x 1	0mm -	32F	41	35		30	NA
8	P-1 Gr2 HAZ	Charpy \	/ 10mm x 1	Omm -	32F	60	45		42	. NA
9	P-1 Gr2 HAZ	Charpy V	/ 10mm x 1	0mm -	32F	37	35		29	NA
	Shamita	h Record 20040	50250							
	Sherry Lai									
RDNESS TEST		n surface	SA-516 (65)	. н	AZ	We	10	HAZ		SA-516 (70)
RDNESS TEST Type (Scale)	Distance from							000 000 T	16 1	156, 153, 153
RDNESS TEST Typo (Scale) (Converted from Rock	Distance fro well) Surfa	ce	159, 153, 153	200, 2	00, 210	195, 20	0, 200	203, 203, 2		
mments RDNESS TEST Type (Scale) (Converted from Rock	Distance fror well) Surfa	2 Report 20040	159, 153, 153 50250	200, 2	00, 210	195, 20	0, 200			
Amments RDNESS TEST Type (Scale) (Converted from Rock (Converted from Rock Rock Rock Rock Rock Rock Rock Rock	Distance fror well) Surfa	Report 200405	159, 153, 153 50250	200, 2	00, 210	195, 20	0, 200			
RDNESS TEST Type (Scale) (Converted from Rock moments RTIFICATION Welder's name Brad Silkey	Distance fror swell) Surfa Sherry Lab	2 Report 200403 D Number 361	159, 153, 153 50250 Stam	200, 2 p number BS	00, 210 Mochanical ter Laboratory tes Test file numb	195, 20	0, 200	Sherry Lat 20040502: PQR 14-0-	poratorias-Mi 50 4: Yuba Lab	idstates Req. 53-2004
RDNESS TEST Type (Scale) (Converted from Rock mments TIFICATION Welder's name Brad Silkey We d	Distance from well) Surfa Sherry Lat	2 Report 200402 D Number 361	159, 153, 153 50250 Stam	p number BS	Mochanical test Laboratory tes Test file number d, welded and test	195, 20 sting by I number er ed by ed in accordance	a with the requireme	Sherry Lat 20040502: PQR 14-0 Carol Jude	poratories-Mi 50 4: Yuba Lab 1 and Jim Hi 1 and Jim Hi	kistales Req. 53-2004 I ode.
RDNESS TEST Type (Scale) (Converted from Rock mments RTIFICATION Welder's name Brad Silkey We d	Distance from well) Surfa Sherry Lat	2 Report 200405 D Number 361	159, 153, 153 50250 Stam	p number BS	Mochanical (es Laboratory tes Test file numb Testa conducto d, welded and test	195, 20 sting by I number ar ad by ad h accordanc	e with the requireme	Sherry Lat 20040502: PQR 14-0 Carol Judo	Doratories-M 50 4: Yuba Lab 3 and Jim Hill of the ASME C	kistates Req. 53-2004 I ode.
RDNESS TEST Typo (Scale) (Converted from Rock mments RTIFICATION Welder's name Brad Silkey We d	Distance from well) Surfa Sherry Lat	D Number 361 Signature	50250	p number BS	Mochanical test Laboratory tes Test file numb Tests conduct ed, weided and test	195, 20 sting by I number er ed by ed in accordanc	e with the requireme	Sherry Lat 20040502: PQR 14-0 Carol Judo Carol Judo	Doratories-M 50 4: Yuba Lab 4 and Jim Hil 0 the ASME C	kistales Req. 53-2004 I
Annents Typo (Scale) Converted from Rock mments TTFICATION Welder's name Brad Silkey We define the solution of the solu	Distance from Surfa	D Report 200405 D Number 361	159, 153, 153	p number BS	Mochanical test Laboratory tes Test file numb Tests conduct d, weided and test	195, 20 sting by I number er ed by ed in accordanc	e with the requireme	Sherry Lat 20040502 PQR 14-0 Carol Judo	Doratories-Mi 50 4: Yuba Lab 4 and Jim Hil of the ASME C	idstates Req. 53-2004 I ode.

Weldspec 4.20.002 Catalog n° PQR00117

Date 5/20/04

(c) Copyright 2004 C-spec/TWI Software. All rights reserved worldwide.

Yuba Heat Transfer

ASME IX Procedure Qualification Record (PQR) - Additional Information

Weldspec for Windows

PQR record number Date	14-04 5/20/04	Revision 0	WPS record number Company name	YA-3740 Yuba Hoal Transfer	Revision 8
			Welding standard	ASME Section IX and Section VIII, Division 1	

Sherry Lab Report 2004050250 Weld Deposit Chemistry Analysis (Weight %):

Carbon, 0.06 Manganese, 1.48 Phosphorus, 0.008 Sulfur, 0.008 Silicon, 0.46 Copper, 0.07 Nickel, 0.03 Chromlum, 0.03 Molybdenum, 0.01

Analysis conducted on weld surface by OE method.

Bead width when weaving was limited to a maximum of 3 X electrode diameter, both stringer beads and weave beads were used when welding the test plates.

Test plates welded on one side, joint was backgouged, and a single pass was placed on the backside.

Weldspec 4.20.002 Catalog n* POR00117 (c) Copyright 2004 C-spec/TWI Software. All rights reserved worldwide.

P.O. Box 3158 Tulsa, Oklahoma PROCEDURE QUALIFICATION RECORD NO. 150-82 DATE7-30-82 WELDING PROCESURE SPEC. NO. YA-3773 DATE7-30-82 WELDING PROCESS(ES) GTAW. FCAW. SAW TYPES: Semi-Automatic & Machine Welding BASE METALS: Material Spec. 516 Type or Grade70 P NO. J gr. 2 , Thk. 2" , Range 3/16 - 8" DiaNA Filler Metals: Weld Analysis A NO. Electrode Size: 3/32.045.1/8 Filler Metals: Weld Analysis A NO. Electrode Size: 3/32.045.1/8 Filler Metals: Weld Analysis A NO. Electrode Size: 3/32.045.1/8 Filler Metals: Ref05-2. E71T-1. EMI2K F70-EM12K P00-EM12K POSITION: GTAW3G. FCAW-3G , Weld Progression Uhtil:-36 Other Cothers: AMS ER 70S-2. E71T-1. EMI2K F70-EM12K P00-EM12K P00-EM12K POSTHON: GTAW3G. FCAW-3G , Weld Progression Uhtimate.None S00*F.Max. Octhers: '*1 FCAW transfer mode: Globular*ISupp.filler or or powdered filler: None P005TWLD HEAT TREATMENT: Temperature 1100°F. Other CMS: Time_1 hr per inch (2 hrs)
PROCEDURE QUALIFICATION RECORD No. 150-82 DATE
WELDING PROCEDURE SPEC. No. YA-3773 WELDING PROCESS(ES) GTAW, FCAW, SAW TYPES: Semi-Automatic & Machine Welding BASE METALS: Material Spec. Single Process(ES) GTAW, FCAW, SAW TYPES: Semi-Automatic & Machine Welding BASE METALS: Material Spec. Single Process(ES) GTAW, FCAW, SAW TYPES: Semi-Automatic & Machine Welding BASE METALS: Material Spec. Single Process(ES) GTAW, FCAW, SAW Filler Metal F No. Single Process(ES) GTAW, FCAW, SAW Filler Metal F No. Single Process(ES) GTAW, SAW Filler Metal F No. Single Process(ES) GTAW, SAW POSITION: GTAW-3G, FCAW-3G, Weld Progression Uphill-3G Others: '*1 FCAW transfer mode: Globular'ISupp.filler: or powdered filler: None POSTWELD HEAT TREATMENT: Temperature 1100°F, Time 1 hr per inch (2 hrs) Other: GAS: Type H-800 (Hobart) FELOX: Type H-800 (Hobart) Guess Multipass Multipass or Single Pass Multipass or Single Pass Multipass or Single Pass Multipass or Single Pass Multipass Type (QW and Beak GTAW & SAW - String<
WELDING PROCESS(ES)CTAW, FCAW, SAW TYPES:
TYPES: Semi-Automatic & Machine Welding BASE METALS: Material Spec
BASE METALS: Material Spec. 516 Type or Grade. 70 P No. 1 gr. 2 To P No. 1 gr. 2 The P No. 1 gr. 2 The P No. 1 gr. 2 The P No. 1 gr. 2 The P No. 1 gr. 2 The P No. 1 gr. 2 The P No. 1 gr. 2 The P No. 1 gr. 2 The P No. 1 gr. 2 The P No. 1 gr. 2 The P No. 1 gr. 2 The P No. 1 gr. 2 The P No. 1 gr. 2 The P No. 1 gr. 2 The P No. 1 gr. 2 The P No. 1 gr. 2 The P No. 1 gr. 2 The P No. 1 gr. 2 The P P No. 1 gr. 2 The P P No. 1 gr. 2 The P P No. 1 gr. 2 The P P No. 1 gr. 2 The P P D P No. 1 gr. 2 The P P D P No. 1 gr. 2 The P P D P P P P P P P P P P P P P P P P
P No. 1 gr. 2 . 1 kr. 2" . Range 3/16 - 8" Dia. NA Filler METALS: Weld Analysis A No. 1 Electrode Size: 3/32045. 1/8 Filler Metal F No. 6. 6. 6 SFA Spec. 5.18. 5.20. 5.17 Others: AWS_ER70S-2. F71T-1. EM12K F70-EM12K POSITION: GTAM-3G. FCAW-3G , Weld Progression Uphill-36 Other SAW-1C FREHEAT: Preheat Temp. 150 Min. , Interpass Temp. 350 F. Max. Others: '*1 FCAW transfer mode: Globular Supp.filler or powdered filler: None POSTWELD HEAT TREATMENT: Temperature 1100 F. Time 1 hr per inch (2 hrs) Other Other 35 CFH Other GAS: Type AR. CO2 , Composition 99.99% , Flow Rate 35 CFH Other FLUX: Type H-800 (Hobart) Other Other 0ther FELECTRICAL CHARACTERISTICS: Current DC , Polarity GTAW-SP. FCAW & SAW RP Amps. 100.170.500 Volts15. 24. 30 Travel Speed 2½ ipm. 7ipm. 16ipm Other TECHNIQUE: String or Weave Bead GTAW & SAW - String Oscillation NA Multipass or Single Pass Multipass Single or Multiple Electrode Si
Filler Metal F No. 6. 6. 6 SFA Spec. 5.18. 5.20. 5.17 Others: AWS_ER70S-2. F1T-1. EM12K F70-EM12K POSITION: GTAW-3G. FCAW-3G, Weld Progression Uphill-36 Other SAW-1G PREHEAT: Preheat Temp. 150 Min. , Interpass Temp 350 F. Max. Others: *1 FCAW transfer mode: Globular*ISupp.filler: or powdered filler: None POSTWELD HEAT TREATMENT: Temperature 1100 F. Time_1 hr per inch (2 hrs) Other GAS: Type AR. CO2 Composition 99,99% Flow Rate 35 CFH Other FLUX: Type H-800 (Hobart) Other Other 0ther GAS: Type AR. CO2 Nother Other Other FLUX: Type H-800 (Hobart) DC , Polarity_GTAW-SP, FCAW & SAW RP Amps. 100.170, 500 Volts15, 24, 30 Travel Speed 2½ ipm,7ipm, 16ipm Other TECHNIQUE: String or Weave Bead GTAW & SAW - String Oscillation NA Multipass or Single Pass Multipass Single or Multiple Electrode Single ADDITIONAL INFORMATION: Manual welding
Others: AWS_ER70S-2. E7IT-1. EM12K F70-EM12K F70-EM12K POSITION: GTAW-3G. FCAW-3G , Weld Progression Uphill-36 Other SAW-1G PREHEAT: Preheat Temp. 150 Min. , Interpass Temp 350 F. Max. Others: *1 FCAW transfer mode: Globular*ISupp.filler: Or powdered filler: None POSTWELD HEAT TREATMENT: Temperature 1100 F. Time 1 hr per inch (2 hrs) Other Other GAS: Type H-800 (Hobart) Other FLUX: Type H-800 (Hobart) Other ELECTRICAL CHARACTERISTICS: Current DC , Polarity GTAW-SP. FCAW & SAW RP Amps. 100.170.500 Volts15.24.30 Travel Speed 2½ ipm./ipm. l6ipm , Other TECHNIQUE: String or Weave Bead GTAW & SAW - String Oscillation NA Multipass or Single Pass Multipass , Single or Multiple Electrode Single ADDITIONAL INFORMATION: Manual welding done in the 3G position to satisfy 0W409.1 for CVN *1 Max.pass thk. 3/8". GTAW backing or trailing gas: None T E N S I L E T E S T (QW-150) *I Recervificed 12-7-9C Jum.Worwis
POSITION: GTAW-3G. FCAW-3G , Weld Progression Uphill-36 Other SAN-1G PREHEAT: Preheat Temp. 150 Min. , Interpass Temp 350 F. Max. Others: *1 FCAW transfer mode: Globular*ISupp.filler: or powdered filler: None POSTWELD HEAT TREATMENT: Temperature 1100 F. Time 1 hr per inch (2 hrs) GAS: Type_AR. CO2 , Composition 99,99%, Flow Rate 35 CFH Other FLUX: Type H-800 (Hobart) Other FLUX: Type H-800 (Hobart) Other PAmps. 100,170,500 Volts 15, 24, 30 Travel Speed 2½ ipm,7ipm, 16ipm , Other TECHNIQUE: String or Weave Bead GTAW & SAW - String Oscillation NA Multipass or Single Pass Multipass , Single or Multiple Electrode Single ADDITIONAL INFORMATION: Manual welding done in the 3G position to satisfy 0W409.1 for CVN *1 Max.pass thk. 3/8" GTAW backing or trailing gas: None T E N S I L E T E S T (QW-150) *1 Recervision 1/2-7-9-9(Time Morris) JOINTS: Globular transfer Difficute Non- No. Dia. Thick Area LB. No. Dia. Thick Area No. LB. No. Dia. Thick Area
PREHEAT: Preheat Temp. 150 Min. , Interpass Temp_350°F. Max. Others: '*1 FCAW transfer mode: Globular'ISupp.filler:or' powdered filler: None POSTWELD HEAT TREATMENT: Temperature 1100°F. Time_1 hr per inch (2 hrs) Other GAS: Type_AR. CO2 , Composition 99.99% , Flow Rate FLUX: Type H-800 (Hobart) Other FLUX: Type_H-800 (Hobart) Other ELECTRICAL CHARACTERISTICS: Current_DC , Polarity_GTAW-SP. FCAW & SAW RP Amps100.170.500 Volts15.24.30 Travel Speed_2½ ipm.7ipm.l6ipm_, Other TECHNIQUE: String or Weave Bead_GTAW & SAW - String Oscillation_NA Multipass or Single Pass_Multipass , Single or Multiple Electrode_Single ADDITIONAL INFORMATION: Manual welding done in the 3G position to satisfy 0W409.1 for CVN *1 Max.pass thk. 3/8". GTAW backing or trailing gas: None JOINTS: Globular transfer Voltimate Ultimate Character No. Dis. Thick Area LB. No. Dis. Thick Area LB. No. Dis. Thick Area B. No. Dis. Thick Area B. No. Dis.
Others: I FCAW transfer mode: Globular ISupp.filler: or powdered filler: None POSTWELD HEAT TREATMENT: Temperature 1100°F. Time 1 hr per inch (2 hrs) Other GAS: Type_AR. CO2, Composition 99.99% Flow Rate 35 CFH Other GAS: Type_AR. CO2, Composition 99.99% Flow Rate 35 CFH Other FLUX: Type_H=800 (Hobart) Other Other Other ELECTRICAL CHARACTERISTICS: Current_DC Polarity_GTAW-SP. FCAW & SAW RP Amps. 100.170.500 Volts 15, 24, 30 Travel Speed 2½ ipm.7ipm. l6ipm, Other TECHNIQUE: String or Weave Bead_GTAW & SAW - String Oscillation_NA NA Multipass or Single Pass_Multipass Single or Multiple Electrode_Single Single ADDITIONAL INFORMATION: Manual welding done in the 3G position to satisfy 0W409.1 for CVN *1 Max.pass thk. 3/8". GTAW backing or trailing gas: None T E N S I L E T E S T (QW-150) *1 Recervisies of Failure JOINTS: Globular transfer No. Dia. Thick Area LB. PSI & Location GTAW *.125" No. Sof7 202 15,700 77.723 * BM Duc. GTAW *.375"
Time 1 hr per inch (2 hrs) 0ther GAS: Type AR. CO2, Composition 99,99% , Flow Rate 35 CFH 0ther FLUX: Type H-800 (Hobart) 0ther ELECTRICAL CHARACTERISTICS: Current DC, Polarity GTAW-SP. FCAW & SAW RP Amps. 100,170,500 Volts 15, 24, 30 Travel Speed 2½ ipm. 7ipm. 16ipm , Other TECHNIQUE: String or Weave Bead GTAW & SAW - String Oscillation NA Multipass or Single Pass Multipass , Single or Multiple Electrode Single ADDITIONAL INFORMATION: Manual welding done in the 3G position to satisfy 0W409.1 for CVN *1 Max.pass thk. 3/8" GTAW backing or trailing gas: None T E N S I L E T E S T (QW-150) *1 Recervisied 12-7-99 Im Works Specimen No. Dia. Thick Area LB. PSI & Location No. Dia. Thick Area LB. PSI & Location No. Dia. Thick Area LB. PSI & Location No. Dia. Thick Area LB. PSI & Location No. Dia. Thick Area LB. PSI & Location No. Dia. Thick Area LB. PSI & Location No. Dia. Thick Area LB. PSI & Location No. Dia. Thick Area LB. PSI & Location
GAS: Type AR. CO2 , Composition 99,99% , Flow Rate 35 CFH Other FLUX: Type H-800 (Hobart) Other Other Other ELECTRICAL CHARACTERISTICS: Current DC , Polarity GTAW-SP, FCAW & SAW RP Amps. 100.170.500 Volts15, 24, 30 Travel Speed 2½ ipm.7ipm. l6ipm , Other TECHNIQUE: String or Weave Bead GTAW & SAW - String Oscillation NA Multipass or Single Pass Multipass , Single or Multiple Electrode Single ADDITIONAL INFORMATION: Manual welding done in the 3G position to satisfy 0W409.1 for CVN *1 Max.pass thk. 3/8" GTAW backing or trailing gas: None T E N S I L E T E S T (QW-150) *1 Recentified 12-7-9q June Worn's JOINTS: Globular transfer Ultimate Ultimate Character JOINTS: Globular transfer No. Dia. Thick Area LB. PSI & Location GTAW :.125" 1 Top .507 202 15,700 77,723 * BM Duc. GTAW :.375"
FLUX: Type H-800 (Hobart) Other ELECTRICAL CHARACTERISTICS: Current DC , Polarity GTAW-SP, FCAW & SAW RP Amps. 100,170,500 Volts 15, 24, 30 Travel Speed 2½ ipm.7ipm. 16ipm , Other TECHNIQUE: String or Weave Bead GTAW & SAW - String Oscillation NA Multipass or Single Pass Multipass , Single or Multiple Electrode Single ADDITIONAL INFORMATION: Manual welding done in the 3G position to satisfy 0W409.1 for CVN *1 Max.pass thk. 3/8" GTAW backing or trailing gas: None T E N S I L E T E S T (QW-150) *1 Recervisied 12-7-99 Specimen Ultimate Ultimate Character No. Dia. Thick Area LB. PSI & Location I Top .507 202 15,700 77,723 * BM Duc. JOINTS: Globular transfer
ELECTRICAL CHARACTERISTICS: Current
Amps. 100.1/0.500 Voits 15, 24, 30 Travel Speed 24 ipm, 7ipm, 16ipm, 0ther TECHNIQUE: String or Weave Bead GTAW & SAW - String Oscillation NA Multipass or Single Pass Multipass , Single or Multiple Electrode Single ADDITIONAL INFORMATION: Manual welding done in the 3G position to satisfy 0W409.1 for CVN *1 Max.pass thk. 3/8" GTAW backing or trailing gas: None *1 Max.pass thk. 3/8" GTAW backing or trailing gas: None Joints: Globular transfer T E N S I L E T E S T (QW-150) *1 Recervision JOINTS: Globular transfer Specimen Ultimate Ultimate Character JOINTS: Globular transfer No. Dia. Thick Area LB. PSI & Location GTAW *.125" 1 Top .507 202 15.700 77.723 * BM Duc. FCAW: .375"
Multipass or Single Pass Multipass Single or Multiple Electrode Single ADDITIONAL INFORMATION: Manual welding done in the 3G position to satisfy 0W409.1 for CVN *1 Max.pass thk. 3/8" GTAW backing or trailing gas: None *1 Max.pass thk. 3/8" GTAW backing or trailing gas: None T E N S I L E T E S T (QW-150) *1 Recervision JOINTS: Globular transfer Specimen Ultimate Ultimate Character JOINTS: Globular transfer No. Dia. Thick Area LB. PSI & Location GTAW *.125" 1 Top .507 202 15.700 77.723 * BM Duc. FCAW: .375"
Indicipass , Single or Multiple Electrode Single ADDITIONAL INFORMATION: Manual welding done in the 3G position to satisfy 0W409.1 for CVN. *1 Max.pass thk. 3/8" GTAW backing or trailing gas: None T E N S I L E T E S T (QW-150) *1 Recevtified 12-7-94 Two miss Specimen Ultimate Ultimate Character No. Dia. Thick Area LB. PSI & Location I Top .507 202 15.700 77.723 * BM Duc.
Abbillional Information: Manual weiding done in the 3G position to satisfy 0W409.1 for CVN. *1 Max.pass thk. 3/8" GTAW backing or trailing gas: None T E N S I L E T E S T (QW-150) *1 Recevision Joints: Globular transfer Specimen Ultimate Ultimate Character JOINTS: Globular transfer No. Dia. Thick Area LB. PSI & Location GTAW *.125" 1 Top .507 202 15.700 77.723 * BM Duc. FCAW: .375"
I Max. Dass Clik. 576 Graw backing or trailing gas: None T E N S I L E T E S T (QW-150) * Recevelified 12-7-99 Jun Momis JOINTS: Globular transfer JOINTS: Globular transfer Decome No. Dia. Thick Area LB. PSI & Location I Top .507 202 15,700 77,723 * BM Duc.
TENSILE TEST (QW-150) ** Kecevtitied (2-1)-GG (1 Works) Ultimate Ultimate Character Specimen Ultimate Ultimate No. Dia. Thick Area LB. PSI & Location JOINTS: Globular transfer GTAW *.125" GTAW *.125" 1 Top .507 202 15.700 77.723 * BM Duc. FCAW: .375"
SpecimenUltimateUltimateCharacterJUNIS: Globular transferNo.Dia.Thick AreaLB.PSIDepositedDeposited1Top.507.20215.70077.723 *.BMDuc.FCAW: .375"
SpecimenTotal Load Unit Stress Of FailureDEPOSITED WELD METALNo.Dia.Thick AreaLB.PSI& Location1Top.507.20215.70077.723 * .BM Duc.FCAW: .375"
$\frac{1}{1} \text{ Top } .507 \qquad 202 \qquad 15.700 \qquad 77.723 \ \text{* BM Duc.} \qquad \text{FCAW: } .375''$
2 Top .510 .204 15.975 78.309 * BM Duc. SAW = 1.5"
<u>3 Bot .506 201 16,100 80,100 * BM Duc.</u>
4 Bot .507 202 15,950 78,960 * WM Duc.
SAW J
Type And Typ
Figure No. Result Figure No. Result
1 Side Satisfactory
2 Side Satisfactory
4 Side Satisfactory Groove Design Used
IMPACT TEST - CHARPY (UC - 8/ SA - 370) Hardness Test
Impact En- Temp. Impact Values (EQUIVALENT BHN 3000 KG LOAD)
Location Type ergy ft/1b) °F Foot Pounds Location Hardness
Top Weld A 264 ft/1b 0 55 52 49
3/4T Weld A 264 ft/1b 0° 27 25 39 Base Metal 126,128,128,130
HAZ A 264 ft/lb 0 39 46 41 Weld Metal (148,145,145,15)
Helder's None V. 1
Test Conducted by: Yuba Heat Transfer Corn Lab Test No. 150-02 per Pal Wildelands
The complete that the state of the state of the rest no. 200 or per boo Hildebrandt
we certify that the statements in this record are correct and that the test welds were prepared welded and tested in cocordance with the new interaction of a state of the
proparou, werden and rested in accordance with the requirements of Sect. 9, ASME Code.
Signed Yuba Heat Transfer PEF-NCR-02342
Date 130/82 40 Morris
* (Report Nanola Consecred. Var (Indraward 3-30-01
LORRECIED WITIMATE UNIT STRESS FIGURES 10-21-98 Kacentified by Morris

÷.,

.

		Ϋ́υ	.B A P.O.	H E A Box 31	T T R 58 Ti	ANSF ulsa, Okl	E R .ahoma	(918)	234-6000)	
ROCEDUR	e quai	LIFICA	TION R	ECORD NO	o. 037-	-89			DAT	E 3-9	-89
ELDING 1	PROCE	DURE SI	PEC. N	0. <u>Y</u>	A-3740	·····					
TELDING 1	PROCES	SS(ES)		SHIELD	DED META	L ARC WE	LDING				
YPES:		Matan	ANUAL		F1 (PA					Creado	
ASE MEII	1.5: 1.0	materi	Lai Sp	ec. <u>SA</u> -	516-70	to SA-	<u>516-70</u>	Pop	ype or a	Grade No	ormalized Find
TTLER M	TALS:	Weld	Analv	sis A No	<u>GF.2</u>	1 F	lectrode	Size.	1/8"	d 01	a. <u>NA</u>
iller Me	tál F	No.		4	•••••	s	FA Spec.	5	.1	P	
thers:	AW	S_Class	sifica	tion E7	018-1						
OSITION:		<u>3</u> G		, ŀ	leld Pro	gression	_Vertica	1-up	0	ther	
REHEAT:	Prehe	at Tem	р		200°F		,]	nterpa	ss Temp	500)°F
OSTWELD	HFAT	TREATM	ICAL M	<u>aintena</u> Cemperat	nce atte	er comple	tion of y	weldmen	<u>ut</u>		
ime	5 hrs.	UP 2	266°F/	hr. DOW	V 334°F.	/br	<u> </u>	ther			
AS: Type	1	NA	, 0	Composit	ion	NA	_, Flow	Rate	NA	Oth	er
LUX: Typ	e			N/	4		· ···		01	her	
LECTRICA	L CHA	RACTER	ISTICS	: Curre	nt	DC		, Pola	rity	REVERS	E
ups.	12 • \$++	ing or	VOICS Weave	Read)	Travel {	speed	<u>6</u>]	.PM 11ation	, <u>`</u> 0	cner
ltipass	or S	ingle '	Pass	Multi	Dass					<u>NC</u>	ne
	U		 			, Sir	igle or M	ultipl	e Electr	ode 31	
DITIONA	L INF(UKMATI(JN:	lax. pas	s thk:	1/4"	Max. J/	in qua	<u>lified:</u>	31,200	
							· · · · · ·				
	T	ENS	ILE	TE	<u>ST ((</u>	QW-150)		T	OTNTS		
				Ultima	te Ul	timate	Characte	r ř			
No	D1 -	Thick	4700	TOPET F(Der	CI Fallu	re			
	Dig.	THICK	ALCA				G DOCALL	<u> </u>		4-60	s° ~~ γ
							. <u> </u>			-in	D
		NOT	REQUIR	ED PER	QW-401.	3 This PC	OR ran to			Æ	×
		sati	sfy Su	pplemen	tal Ess	ential V	riables	_	, y ^N	B	7 DHILGOUGE
		and	JG-84	IOT CVN	<u>'S. Ref</u>	<u>. PQR 76</u> 2	255	<u> </u>	1/2	<u>2</u>	CILI "Delcar
l	<u>ו</u> ד ד		 		EST 9	(OW-1	60)	I (ł	\Rightarrow	7 no raise
ype And		<u> </u>	ומנ	TVD	e And	, <u>(</u> <u></u>				A	F
gure No.		Resu	lt	Figu	re No.	Re	sult		¥	-21	
										/ - 6C	s-1
	<u> </u>		01122-	1				┛┠			
·		NOT RE	QUT REI	PER QU	-401.3			L	GTO	ove Desi	.gn used
	TMPAC	<u>ጉ</u> ጥድሮጥ	- CUA	PPV (IIC	Q/.	SA - 370	<u> </u>	-4 Г	н	ardness	Test
	INFAC	1 1631		ct En-1	<u> </u>	Tmpaci	/ t Values		EQUIVAL	ENT BHN	3000 KG LOAD)
<u>Loc</u> ati	on	Туре	ergy	ft/1b)	°F	Foot	Pounds	_] [Locat	ion	Hardness
WELD		A	2	64	- š0°	68,46.	45	コト		••	
HAZ]	A	20	54	- 50°	40,35,	40	_ ┣-	··	<u> </u>	
								_ -			<u> </u>
								 -			
	1		 ۲ ۳	<u>_</u>		h		 -		1/0 -	
laer's Na	une		J, be	nnett eh		Tob Toot	No 027		K NO. 1	142 St	amp No. <u>GP</u>
	rieu L	-y:	ABCI.	<u></u>		Pan Test		us per	Dati	LawsUll	
We certi	lfy th	at the	state	ements j	in this	record a	re corre	ct and	that th	ie test	welds were
prepared	ı, wel	lded ar	id tes	ced in a	accorda	nce with	rne requ	1 renen	ts of Se	ect. 9,	ASME Code.
							Signed	YUBA	HEAT T	RANSFER	DIV.
е	<u>3-9</u> .	98					By	JANA	Mor	in	
-							·		<u></u>		

¥

-

MANUFACTURER'S RECORD OF WELDING OPERATOR QUALIFICATION TESTS MACHINE WELDING (QW-361.2)

Welder Name Logue, David	#3735 Stamp No.	±0		
Using WPS No. <u>YA-3296</u>	Rev Da	ate		
VARIABLE	USED FOR QUALIFICATION	QUALIFICATION RANGE		
PROCESS	SAW	SAW		
PROCESS TYPE	MACHINE	MACHINE		
VISUAL CONTROL	DIRECT	DIRECT		
AUTO ARC VOLTAGE CONTROL	N/A	N/A		
JOINT TRACKING	MANUAL	MANUAL or AUTOMAT		
POSITION	1G	1G		
CONSUMABLE INSERT	NONE	WITH OR WITHOUT		
BACKING	WELD METAL OR FLUX	WITH BACKING ONLY		
GUIDED BEND TEST RESULTS QU TYPE AND FIG. NO.	N-462.2(a), QW-462.3(a) F	, QW-462.3(b) ESULT		
	:	:		
	·	:		

RADIOGRAPHIC TEST RESULTS (QW-305) (For alternative qualification of groove welds by radiography)

1

:

RADIOGRAPHIC RESULTS	SATISFACTORY PER ALLEN CASH / LEVEL 111

TEST CONDUCTED BY YUBA HEAT / Tim Morris LAB. TEST NO. _____N/A

We certify that the statements in this record are correct and that the test welds were prepared, welded and tested in accordance with the requirements of Section IX of the ASME Code.

Organization YUBA HEAT TRANSFER DIV.

Date	8-18-88	Ву	Tim Morris

...

PEF-NCR-02344

2

:

Yuba Heat Transfer ASME IX Welding Procedure Specification (WPS)

Weldspec for Windows

WPS record number Date	YA-33 3/16/0	87 5		Revisi	on 27	Qualified to ASME Se Company name Yuba Hea		ction IX and Section VIII, Division 1 1 Transfer				
Supporting PQR(s) Reference docs.	035-89 ASME	; 036-l Sectio	89; 24-92; 43-96; 65-9 n VIII, Division 1; ASM	96 ME Section	IX with I	Latest Mandatory A	ddenda					···· • • • • • • • •
Scope	FCAW Groove	P-1 M	aterials, As-Welded o no PWHT (As-welded	r with PWH d), with PW	іт 'НТ						N = 0,	
Jolnt	Joint d Produc	etails f	or this welding proced awings, Engineering s	lure specific specification	cation in	:						
BASE METALS (QW-403)				····-				· · · · · · · · · · · · · · · · · · ·	THICKNES	S RANGE	QUALIFIE	D (
Type	Cartor	steel	(P1)	P-00	 1	Gro-po 1 or 2			As-w	elded	With	PWHT
Welded to	Carbon	steel	(P1)	P-no.	1	Gm-no. 1 or 2			Min,	Max.	Min,	Max.
Backing:	Back-o	ouged	& welded	P-no.	, 1	Gro-no	Compl	ete pen.	0.188	1.5	0.188	8
							Impaci	tested	-		.	-
Retainers	None						Partial	pen.	0.188	1.5	0.188	8
Notes	1566 Pa	ges 2	and 3				Fillet w	velds	No min.	1.5	No min.	8
	I			••••			ـــــــ		DIAMETER	RANGE	UALIFIE) (
									As-w	elded	With	PWHT
									Min.	Max,	Min.	Max.
							Nomio	al nine size	No min	Nomax	No min	No max
									THICKNES	SPANCE		
ILLER METALS (UW-402	SFA		Classification F-no. A-no. Chemical analysis or Trade name						As-welded		With PWHT	
FCAW	5.20	E70T	-1 or E71T-1	6	1	Any E70T-1 or E7	'1T-1 wire		No min.	1.5	No min.	В
Sup. filler].	-		-	-	[-				- No	жле -	
ELDING PROCEDURE	da ·		- <u>-</u>	!	L	4						
Welding process	<u> </u>						CAW					
Type						Semi	-automati	c				
Preheat temperature		("F)				See page	2 for pre	heat				
Maximum interpass tempe	alure	('F)					500F					
Filler metal size		(m.)				.04	15, 1/16					
ayer number							All					
Position of groove							Ail					
Veld progression						Vertical up (when app	olicable)				
Current/polarity						DCEP (re	verse pol	arity)				
Amperes						See	Page 3					
olls						See	Page 3					
ravel speed	(i	n/mini				Adjust for am	ps/volts/c	onations				
laximum heat input		(k.)/in)				No						
vire teed speed	0	: (100				566	i raye J Iobular					
Inc transfer mode						G	CO2					
Flow rote		rend				24	5 to 50					
railing: Gas type						5.	None					
Flow rate		(c(n)										
acking: Gas type						1	None					
Flow rate		(cfhj			•							
tring or weave		1				Stringe	r or Wear	ve				
rifice/gas cup size						5/8 (.045); 9	5/8 or 3/4	(1/16)				
.T.W.D		(in.)				5/8-3/4 (.04	15); 3/4-1	(1/16)				
iulti/Single pass per side						Single or I	Aultiple pa	asses				
-		a. 1				less	than 1/2					
aximum pass thickness		40.4				6000						
aximum pass thickness eld deposit chemistry		(m.)				A-1 pi	er QW-44	2				

Weldspec 4.2.006 Catalog n° WESSION (c) Copyright 2005 C-spec/TWI Software. All rights reserved worldwide.

 $\langle \varphi \rangle$

.

Yuba Heat Transfer ASME IX Welding Procedure Specification (WPS)

Weldspec for Windows

WPS record number	VPS record number YA-3387		Revision 27		Qualified to	ASME Section IX and Section VIII, Division 1			
Date	3/10/00		* • *		Company name		lansier		
PREHEAT TABLE									
Applicable standard							· · · · · · · · · · · · · · · · · · ·		
ASME Section VIII Div.	1 70F minmum 200F minimu See Page 3	n preheat shall im preheat sha and WS 1.00-4	be established priv all be established p 4 for other preheat	or to weld rior to we	ding any thickness less alding thickness of 1" o on.	than 1". r more.			
POST WELD HEAT TRI	EATMENT (QW-4	107)							
Temperature ('F) Heating rate ('F/hr) Cooling rate ('F/hr)	emperature ('F) 1100F - 1250F leating rate ('Fhr) See Notes Below cooling rate ('Fhr) See Notes Below		Time (nrs) Method Method	See Not Furnace Still air	tes Below or resistance	Туре	Below lower transf. temp (P-1 mat'l)		
Notes	See job drawings	for PWHT rec	uirements						
TECHNIQUE (QW-410)									
Peening		Not used							
Surface preparation	reparation Grit blast, brush, grind, or machine								
Initial/interpass cleaning	Initial/interpass cleaning Brushing, Chipping, and Grinding								
Back gouging method	c and grind to sound weld/base metal								
NOTES									
PWHT of P-1 Materials	•								
For materials up to 2 inc	hes thick, hold al	PWHT tempe	rature for 1 hour p	er inch (1	15 minutes minimum).				
For materials over 2 incl	hes thick, hold at	PWHT temper	rature for 2 hours p	lus 15 m	inutes for each additio	nal inch over 2 inch	es.		
Above 800F the rate of t	heating shall not o	exceed 400F p	er hour divided by	the maxi	imum metal thickness,	but in no case mor	e than 400F per hour.		
Above 800F the rate of o	cooling shall not e	exceed 500F p	er hour divided by	the maxi	mum metal thickness,	but in no case more	e than 500F per hour.		
The rates of heating and	on been gnilooo I	t be less than	100F per hour, unl	ess direc	ted otherwise by the jo	b drawings.			
Below 800F the vessel n	nay be allowed to	cool in still air	r,						
See page 3.									

Name	Signature
Donald L. Underwood	1 Allia 4
Date	I mat 1. Maderwood
3/16/06	

Weldspec 4.2.006 Catalog n* WPS00500

PEF-NCR-02346

(c) Copyright 2006 C-spec/TWI Software. All rights reserved worldwide.

vuop.

Yuba Heat Transfer ASME (X Welding Procedure Specification (WPS)

Weldspec for Windows

WPS record number	YA-3387	Revision 27	Qualified to	ASME Section IX and Section VIII, Division 1
Date	3/16/06		Company name	Yuba Heat Transfer

See job drawings and Weld Joint Design Standards WS 1.00-10 or H2-9 for weld joint designs and root spacing (gap) requirements.

E70T-1 wires may be used for welding in flat or horizontal positions, but for other positions use E71T-1 wires.

Joints that will are to be welded from one side only shall have the root placed with GTAW process (YA-3030). Where joints are welded from both sides, the first pass shall be backgouged and ground to sound metal before welding the second side. As an option, the root pass may be placed with SMAW (YA-3035) or FCAW (YA-3387) provided the root is backgouged and ground to sound metal before welding the backside. FCAW may also be used for fillet welds, partial penetration goove welds, or groove welds which are welded from one side only when the joint is backed with A-1/P-1 weld metal or base metal.

All welding shall be protected from wind, rain, and other harmful weather conditions which may affect weld quality. All surfaces to be welded shall be dry and substantially free of mill scale, oil, grease, dirt, paint, galvanizing, and other contaminants. Surfaces to be welded shall be cleaned of all oil, rust, scale, paint, grease, and other deleterious foreign material for at least 1" from the weld joint preparation. An approved solvent can be used to remove oil or grease residues. Some approved solvents are Sherwin DR-60 liquid penetrant cleaner, acetone, and isopropyl alcohol. Keep solvents away from open sparks or flame and store only in approved cabinets. Machine, grind, or grit blast to remove rust or scale.

The preheat requirements shall apply to all welding, including tack welding, and the welding of any temporary attachments. Preheat shall also be established for thermal cutting and gouging operations. Maintain the preheat a minimum of 3 inches on either side of the weld joint (WS 1.00-4). When a preheat of 200F or more is required, the weld joint shall be completed with no intermediate cooling, except that cooling under an insulating blanket is permitted. When oxy-fuel torches are used only for preheating the tip should be appropriate for the work --- in other words, for the application of preheat prior to welding a "rosebud" or heating tip should be used. It is not recommended to use a cutting tip for general preheat application since the tip focuses heat in a small area and could damage material.

The weld shall be completed evenly, by depositing approximately equal layers around the weld joint - block welding is not permitted.

Peening shall not be used. The use of pneumatic tools (chipping or scaling gun) is not considered peening, and is permitted.

Cracks or other weld defects shall be completely removed by grinding to sound metal prior to depositing additional weld metal. Each layer of weld shall be visually checked by the welder, and shall be smooth and free of slag inclusions, porosity, excessive undercut, cracks, and lack of fusion prior to beginning the next weld layer. In addition, the final layer shall be sufficiently free of coarse ripples, nonuniform bead patterns, high crown and deep ridges to permit the performance of any required inspections or examinations. All arc strikes, starts, and stops shall be confined to the welding groove or shall be removed by grinding.

Tack welds shall either be completely removed, or the starting and stopping ends shall be prepared by grinding or filing for incorporation into the weld.

Temporary attachments shall be removed and the areas finished smooth and flush, inspected visually, and examined by Magnetic Particle or Liquid Penetrant method.

All weld joints shall have a minimum of two passes.

Each weld shall be stamped with the welder's unique identification stamp adjacent to the weld at intervals of 3 feet or less, whenever the material thickness is 1/4" or more.

FCAW Amp/Volt/Wire Feed Ranges:

For .045 dlameter wire -140 to 280 amps 24 to 31 volts 180 to 520 inches per minute wire feed speed

For 1/16 diameter wire -200 to 350 amps 25 to 33 volts 120 to 350 inches per minute wire feed speed

Weidspec 4.2.006

(c) Copyright 2006 C-spec/TWI Software. All rights reserved worldwide

 ~ 1

YUBA HEAT TRANSFER	
P.O. Box 3158 Tulsa, Oklahoma (918) 234-6000	
PROCEDURE QUALIFICATION RECORD No. 035-89 DATE 3-22-89	
WELDING PROCEDURE SPEC. No. YA-3779	
WELDING PROCESS(ES) FLUX CORED ARC WELDING (FCAW)	
TYPES: SEMIAUTOMATIC	1-13 51
BASE METALS: Material Spec. SA-510-70 to SA-510-70 type of Blade Normal	lzed-fine
$P No. 1 GR.2 TO P NO. 1 GR.2, IRK. 1/2^{n-1}, Range 3/8^{n-2} 3/4 Dia.$	NA
FILLER METALS: Weld Analysis A No. <u>E71T-1</u> Electrode Size: <u></u>	
Otheres AVS Classifications F71T-1 Kobo mine With Les Durations 711	
Others: Aws classification: E/11-1 Robe wire <u>Kobelco Frontlarc-/11</u>	
DEFILIENT Brokest Tomo 70°E Toterpass Temp 500°E	
Others, No probat maintenance after correlation of waldwart	
DOCTUFIN UPAT TERATIVENT, Temperature S. P. 6 1150°F	
Time 5 hrs 11 (00°E/hr Dave 500°E/hr Other	
CAS: Type CO Composition CO 005% Flow Rate 30 CVU Other	
GAS: Iype, Composition, Yith RateOther	
FLOX: Type NR CEPTCAL CHARACTERISTICS, Current DC Polarity DR	
Amps 140 Volts 21 Travel Speed 5 TPM Other	
TECHNIQUE: String or Manya Read 1/2" may wave Oscillation None	
Multinans on Single Pass Multinass	
Multipless of Single Fass, Single or Multiple Electrode	gle
ADDITIONAL INFORMATION: Max. bead thk: 1/4" Max. J/in qualified: 35,280 Supp	<u>lemental</u>
or supplementary powdered filler: None Globular transfer Trailing gas: None	•
Contact stickou	it: 3/4"
TENSILE TEST (QW-150) JOINTS:	
Ultimate Ultimate Character	
Specimen WIDTH . Total Load Unit Stress Of Failure	
No. Dia. Thick Area LB. PSI & Location	/
<u>1 .757 .485 3671 26,890 73,250 BM Ductile</u>	·
2 .753 .485 3652 26,920 73,713 BM Ductile	
	ξ
	ſ
	(.1)
	8
GUIDED BEND TESTS (QW-160) QW462.2 BACKGOUGED	4
Type And Type And *1 CVN qualificat:	ion was ran
Figure No. Result Figure No. Result on 3/8" thk. plate p	per parameters
1 Satisfactory used on 1/2" plate W	VPS qualificat
2 Satisfactory	
3 Satisfactory Groove Design L	Jsea
4 Satisfactory Hardness Test	-
IMPACT TEST - CHARPY (UG - 84 SA - 370) (FOULVALENT BHN 3000) KG LOAD)
Impact En- Temp. Impact Values	
Location Type ergy ft/1b) °F Foot Pounds Location Ha	ardness
*1 Weld A 264 -25° 58, 58, 77	
*1 HAZ A 264 -25° 104.101.113 Weld 20	07,187,187
HAZ 14	+3,149,163
Base 12	28,131,134
	No on
Welder's Name J. Bennett Clock No. 1142 Stamp	No
Test Conducted by: Metiab Lab Test No.035-89 per Dan Dawson	I.
We certify that the statements in this record are correct and that the test weld	is were
prepared, welded and tested in accordance with the requirements of Sect. 9, ASME	E Code.
יייי אפונע אפונעע איייער איייער איייער איייער אייייער אייייער אייייייער אייייייער איייייייער איייייייייי	l
Signed IUDA HEAT IKANSPER DIV.	
Date 3.22.89 By Jim Morris	
	1
PEF-NC	CR-02348

•
£	4.	YU	В А [·] Р.О.	HEA Box 31	т т 58	RANSF Tulsa, Ok	ER 1ahoma (S	918) 234-6000		
PROCEDUR	E QUAI	LIFICAT	TION R	ECORD N	0. _03	6-89		DATE	3-22	-89
WELDING I	PROCE	DURE SP	EC.N		- 3779	LIFT DINC	(ECALI)			·····
TYPES.	PROCES	SS (ES) MTAIM	MATTC	LUX UK	D ARC	WELDING				
BASE MET	ALS:	Materi	al Sp	ec. SA	-516-7	0 to SA-5	16-70	Type or G	rade N	ormalized-fine
P No.	1 GF	2.2 TO	P No	$\frac{0.0}{10}$	GR.2	Thk.	15"	Range 5/8"-8	ı Di	a. NA
FILLER MI	ETALS:	Weld	Analy	sis A No	»	E71T-1	Electrode Si	ize: .04	5" Ø	· · · · · · · · · · · · · · · · · · ·
Filler Me	etál F	No		6			SFA Spec	5.20		·····
Others: _		A	WS Cla	ssifica	tion	E7. T-1 Kol	be wire Ko	belco Frontia	rc -71	1
POSITION:		<u>3G</u>		, v	Veld P	rogressio	n <u>Vertica</u>	<u>il-up</u> Ot	her	
PREHEAT:	Prene	at lem	$\mathbf{p} \cdot \underline{}$	tonanoo	200°	r completi	, int	cerpass temp_		<u>500 F</u>
POSTWELD	HEAT	TREATM	ENT:	remperat	ure	<u>s</u>	R @ 1150°F	lent,		
Time	5 hrs	. Up i	LOO°F	hr D	own 1	00°F/hr.	Oth	ner		
GAS: Type	;	CO CO	, (Composit	ion	99.995%	, Flow Ra	ite 30 (FH Oth	er
FLUX: Typ	e	- 2 -		NA		•		Oti	ier	
ELECTRICA	L CHA	RACTER	ISTICS	S: Curre	nt	DC	y	Polarity	RP	
Amps	140		Volte	21		Travel	Speed	5 IPM	, 0	ther
TECHNIQUE	: Str	ing or	Weave	Bead	1/2	' <u>Max. wea</u>	ve .	Oscillation	No	ne
Multipass	or S	ingle 1	Pass_	Multi	pass	, Si	ingle or Mul	tiple Electro	de	Single
ADDITIONA	L INFO	ORMATIC	DN: <u>M</u>	ax, bea	d thk	1/4"	Max, J/in	qualified: 39	.280	
Sup	plemer	ntal or		lementa	ry pov	dered fil	ler: None	Globular tr	ansfer	· · · · · · · · · · · · · · · · · · ·
	- יד	FNC	тт Б	• • • •	с т	(OU-150)	Traí	ling gas: Nor	e Cor	tact stickout:
	·····			<u> </u>		$\frac{(QW-150)}{(1+imato)}$	Character	JOINTS:		3/4"
Specimen	ALDIH		1	Total L		it Stress	of Foflure			
No	44	Thick	ATER	T.B.		PST	& Location			
	758	1 501	1 1 38	91 9	300 8	0 668	BM Ductile			
2	760	1,485	1,129	92.9	8 000	2,285	BM Ductile	11	400	
· · · · · · · · · · · · · · · · · · ·		1.102							-A	₹ <u>,</u>
									H H	\$7
							<u> </u>		Ŕ	"
					l		L	15 12	R	- 18 roor gup
<u> </u>	UII) E D	BEI	ND T	ESI	<u>s (Qw-</u>	160)QW462.2		Æ	J sandander
Type And			1.6		pe And		<u></u>		-AX	
Figure No.		Kesu	10	Fig	ITE NO	<u> </u>	esuit		1-60	S-A
2		tisfac	tory							
	Sa Sa	tisfact	tory					Groo	ve Des	ign Used
4	Sa	tisfact	tory	1				<u>ן</u> <u>וויייי</u> ם	rdness	Test
	IMPAC	T TEST	- CH/	ARPY (UC	; - 84	SA - 37	0)	(FOUTVALE	NT BHN	3000 KG LOAD)
			Impa	act En-	Temp	. Impa	ct Values			
Locati	on	Туре	ergy	ft/lb)	°F	Foo	t Pounds	Locati	on	Hardness
Weld		A	2	64	-25°	20,59	9,66	J J J J J J		150 170 102
HAZ		A	2	64	<u>-25°</u>	68,82	2,84	HA7		174 156 192
								Base		146.149.140
								-	····	
Welder's N	ame	J.	Benne	tt				Clock No. 1	142 \$1	tamp No. <u>GP</u>
Test Condu	cted	by:	Metl	ab		Lab Tes	st No. 036-8	oper Dan L	awson	[
We cert	ify th	hat the	e stat	ements	in th	is record	are correct	and that th	e test	welds were
prepare	d, we	lded ar	nd tes	ted in	accor	lance with	the requir	rements of Se	ct. 9,	ASME Code.
-							Signed	YUBA HEAT T	RANSFER	DIV.
		~ ~						1 100		
Date 3	-22-	84		<u></u>			Ву	ITWY ANTO	mes _	
L									- PEF-	NCR-02349

 $\overline{\gamma}$

		ΥÜ	ВА Р.О.	HEA Box 31	Т ТВ .58 Т	ANS F ulsa, Ok	FER 1ahoma	(918)	234-6000	
PROCEDUR	E QUA	LIFICA	TION R	ECORD N	0. 24-	92			DATE1-	23-92
WELDING	PROCE	DURE SI	PEC. N	o. <u>38</u>	89					
TYPES	SEMU	55 (E5) 1 IITOMA '		LUX COR	ED ARC	WELDING				
BASE MET	ALS:	Materi	lal Sp	ec. SA	-516-70	to SA-5	16-70		Type or Grade	Normalized
P No.	1 Gr.:	2 To	P No	. 1	Gr.2	, Thk. 1	<u>10 /0</u> 1 ¹¹ - 3/8"	Ran	ge *1 I	Dia. N/A
FILLER M	ETALS	: Weld	Analy	sis A N	o	i	Electrode S	Size:	.045" Ø	
Filler M	etal 1	F No.		6			SFA Spec.	5	FA-5.20	
Others:	AWS	<u>Class</u>	ifica	tion: E	7 <u>1T-1 (</u> I	Cobe wire	e)		0.1	
POSITION	:	<u>1G</u>		,	Weld Pro	ogressio	nN	<u>/A</u>	Other	<u>^</u>
Others.	Frene		ъ• —	200	r min.		······, 10	icerpa	ass remp <u>50</u>	U'r max.
POSTWELD	HEAT	TREATM	ENT:	Tempera	ture	AS WEI	LDED CONDIT	ION		
Time		N	/A				Ot	her		· · · · · · · · · · · · · · · · · · ·
GAS: Type	2	CO,	, (Composit	tion	100%	, Flow R	ate	<u>35 CFH</u> Ot	her
FLUX: Typ)e			N	I/A				Other	
ELECTRICA	L CHA	RACTER	ISTICS	S: Curre	ent	DC	······································	Pola	rity <u>Reverse</u>	2 O h h a m
Amps.	190	ing or	_VOILS	s Z	.6		Speed	$\frac{10}{0.001}$	lotion,	Ucner
Multipass	ors	ing or	weave Pass	Maitei		SCLING		0501		Sámolo
1					pass	, Si	ingle or Mu	ltipl	e Electrode	Single
ADDITIONA	L INF	ORMATIC		1 Thick	member	range ·	<u>5/8" - unli</u>	imite	d thk. Thin me	ember: <u>3/8" - 3/</u> 4
per Qw-20	2.4(2) Depo	sited	weid m	etal ra	nge: 3/4	1000000000000000000000000000000000000	<u>1. qu</u>	uiro Clobula) Max. pass thk.
	Т	ENS	ILE	TE	ST (QW-150)	5/10 Iu	JULAI	wile, Giobulai	tal filler. None
	LITDOR	ļ —		Ultima	te Ul	timate	Character	Τř	OINTS: Ouppieme	.cer friter, none
Specimen	WIDI	1		Total L	oad Uni	t Stress	Of Failur	e	Trailing gas	: None
No.	Di≜.	Thick	Area	LB.		PSI	& Location			
1 1	.774	358	.266		$\frac{7}{2}$	9,000	3/8"base-d	lueti	Le	
	.750	. 3 3 3	.204	20,900		9,000	13/8"base-d	ueri.		
F				· · · · · · · · · · · · · · · · · · ·				- 1		5
							· · · · · · · · · ·		211/2 1-7	
G	UII	DED	BE	ND T	EST	<u>s (QW-</u>	160)			¥ }
Type And				Ту	pe_And_					11. 11
Figure No.	·	Resu	<u>lt</u>	<u> </u>	ure No.	R	esult	-		- 116 +
ļ1	Sa	<u>tisfac</u>	tory		NT / (0 0	1		-11		
2		tistaci	tory	- <u>-</u>	W-402.2			┥┢	Groove De	sign Used
4	58	<u>tisfac</u> i	Dry Bry			+		┥┟	TI - m d - e m	Teet
······································	IMPAC	T TEST	- CH/	ARPY (U	G - 8 4	SA - 37	0)		Hardnes: FOUTVALENT BH	J 3000 KC TOAD)
			Impa	act En-	Temp.	Impa	ct Values	╕┟		(SCOO KG LOKD)
Locati	on	Туре	ergy	ft/1b)	°F	Foo	t Pounds		Location	Hardness
Weld		A	24	0	-25°F	42,52	,48	_ ┣	Weld -	195-172 176
3/8" HAZ		A	24	0	-25°F	110,1	.07,102	- ┣	3/8" HAZ	172,165 195
15" HAZ		A	24	0	-25°F	76,54	.,44	┥┢	14" HAZ	167.205.222
						<u> </u>		- -	<u>~</u>	1
		L				I		~	.1	
Welder's N	ame	D.	<u>Schw</u>	<u>eitzer</u>		T-L Ma			k No. <u>3420</u> 8	stamp No. <u>BW</u>
Test Colldu	cieu	Dy:				Lab les	SL NO	12 per	DIII Vese.	L y
We cert	ify t	hat the	e stat	ements	in this	record	are correc	t and	that the test	welds were
prepare	d, we	ided ar	id tes	ted in	accorda	nce with	n the requi	remer	its of Sect. 9,	ASME Code.
							Signed	YUB	A HEAT TRANSFER	R DIV.
Date	1-2-	3-92					By	in. 1	1 Morri	0
- , , , ,	-						-,	1 7 7 1		. <u></u>
										CP-02350
									PEF-N	

1									
1									
1				Y	UBA HEA	T TRANSFER I	DIVISION		•
PROCEDUE	E OUL	1751041		18 01 0.9	3156-10154.0	2 OC		DATE	3-1 9-96
PROCEDUR	DDOCE	DIDE CI	TON RE		V. VALL	<u>1-70</u>			
WELDING	PROCE	DOVE DI	20, 80	-	18- 1	0/2			
WELDING	PROCE	SS(ES)		FLAW					
TYPES:		Sem	i-autor	natic					
BASE MET	ALS:	Materi	al Spe	c. <u>SA-</u>	<u>516-70 N</u>	<u>orm to SA-516</u>	<u>-70 QET</u>	Type or Grade	form, to QET
P No.	1 Gr.2	To	P No.	1	<u>Gr.2</u> ,	Thk. <u>3/8"</u>	, Ra	nge <u>3/8" min.</u>	Die. <u>N/A</u>
FILLER M	ETALS :	Weld	Analys	IS A N	o. E-	71T-1 Elects	rode Size	.045 ¹¹ .Ø	
Filler H	etal I	No.	É É	5		SFA ST	pec.	5.20	•
Others:	• A	WS Cla	ssifica	tion:	E71T-1	Kobelico Fro	ntiarc-7	11 only Flux-	cored wire
POSITION	:	36		. 1	Weld Pro	gression Ver	tical-up	Other	
PREHEAT:	Prehe	at Tem	Ð.		10 dea F	min	. Inter	pass Temp 500) deg.F max.
Others	Supp	lement	$\frac{1}{1}$ $\frac{1}{1}$	er or	nowde rev	i filler: Non		• • •	
POSTUR	<u> </u>	TREATM	5N7 · T		DUNUE E	As Weld	led Condi	tion	······································
Time	II LALI	N	<i>Π</i> Α΄	cupere:		<u></u>	Other	cross	
11me							- Other		that
GAS: Typ	۳ <u> </u>	02	, ce	mposit	100	<u>100%</u> , ł	TON RELE	<u>30 CFH</u>	
FLUX: TY	pe		N	1/A				Uther	
ELECTRIC	AL CHA	RACTER	ISTICS:	CUILE	nt	<u> </u>	, Po	larity RP	
Amps	<u> 140</u>		Volte	2	1	Travel Speed	15	IPM ,	Other
TECHNIQUI	E: Str	ing or	Weave	Bead	ł	leave	Os	cillation	
Multipass	OT S	ingle 1	Pass	Multi	pass	Cinal a		la Electrodo	
					•	, Single	OT MUICI	pie Liectrode	Single
ADDITION	U INF	ORMATI	DN: <u>Ma</u>	<u>x. J/i</u>	<u>n. quali</u>	fied: 35,280	Globula	<u>ir transfer, Ti</u>	alling gas: None
<u>Max.</u> pa	iss th	<u>k.: 1/4</u>	11						
	_								
	<u> </u>	ENS	ILE	<u> </u>	<u>ST ((</u>	26-150)		101875.	
				Ultima	ite Uli	timate Char	acter	Jernio.	
Specimen			T	otal L	oad Unit	t Stress Of F	ailure	1 2/ 11	31-" TChur
No.	Die	Thick	ATEA	1.B.		PST & LO	cation	r 18	VB FLAW
									incit
									DEPUSIT
		00/65 0	1 5-1-	A		handa Thia C	000		/
	see	UK 05-	<u>o ror</u>	tensi	res janu	Denus, Inis r	LING Was		1
	quai	Tied T	or supr	piemen	tary ess	ential Variat		CO FIL TO	× (50.516-70
	only	per QW	<u>-401.B.</u>	•				24.210.10	34310
								SNORMALIZED	Quencheci '
G	U I I	DED	BEN	DT	ESTS	(QW-160)		lí	1 Tempered
Type And				Ty	pe And	I			
Figure No		Resu	11	Fie	ure No.	Result		<u> </u>	
				1					
						1			
				<u> </u>				Groove D	esign Used
		······		 					
				l		L		Hardne	ss Test
	IMPAC	T TEST	- CHAI	RPY (U	G - 8 4	<u>SA - 370)</u>		(EQUIVALENT B	HN 3000 KG LOAD)
			Impac	ct En-	Temp.	Impact Val	lues		······································
Locat	ion	Type	ETEN	ft/161	•F	Foot Pour	nds	Location	Bardness
1/21-4		1 1	221		-25	77 66 72			
			204		-23	58 66 67			
516-70 Nor	maliz	eo A	204		-45	70 76 96			
516-10 081	<u> </u>	<u> </u>	264		-25	12.10.00		f	
		!			Į	<u> </u>			
		L	[<u> </u>	<u>L</u>			
		~ ~					C1	ock No. 3420	Stamp No. E0 .
HEINEI B P		hu.	ho			Tab Toet No.	- 43-0K .	PT Dan Laure	
Test Condi	10160		nerry	Ld0.		Ten Icar MO'	<u></u>	Usil Laws	
We cert	ifv t	hat the	e state	ments	in this	record are c	correct a	md that the te	st welds were
DIADET	d. un	Ided as	nd test	ed in	accorda	nce with the	requires	ents of Sect.	9, ASME Code.
Propert							· · · · · · ·		-
	.					Sign	ned YU	BA HEAT TRANSFE	R DIV.
Date.	Z-1	9-4	6			B	- 1	The INA mot	tin
DELE			<u> </u>			by -	دا		
									•
	<u></u>								

PROCEDU	RE OU	ALIFICA	TION F	ECORD No	. 6	5-96		DAT	E3-	-19-96
WELDING	PROC	EDURE SI	PEC. N	o. Y	A-4072					
WELDING	PROC	ESS(ES)	FC	AW				· · · · · · · · · · · · · · · · · · ·		
TYPES:		<u>Semi-au</u>	tomat	ic				Time	~~~	
BASE ME	TALS:	Materi	ial Sp	ec. <u>SA-</u>	16-70	to <u>SA-51</u>	6-70	Type 01 4		1
P NO.	I I	TC	PNO		F71	, <u>так. 3</u> т_1 л	<u>/4</u>		51 0	
Filler	Netel	T No	Anary	615 A NU	· <u> </u>	<u>,</u>	FA Spec.	5.2	0	
Others:		AWS	Class	ification	: E71T	-1 Kobel	ico Frontiar	·c 711		
POSITIO	₹:	1	G	, W	eld Pro	gression	N/A	0	ther	
PREHEAT	Preb	eat Tem			70 deg	F min.	, Int	erpass Temp	500	deg.F max.
Others:	No	prehea	t main	<u>tenance</u>	after	completi	on of weldme	nt		
POSTWEL	D HEAT	TREAT	ENI:	Temperatu	re	As	Welded Cond	ition		
Time		<u></u>	<u>N/A</u>			1000	Flow Rat		u ()t	her
57 11Y - 7	76 <u>()</u> 206	Ζ	'	N/A		100%			ther	• • • • • • • • • • • • • • • • • • •
FLECTRI	CAL CH	ARACTER	ISTIC	S: Currer	it	DC	. 1	Polarity	RP	
Amps.	1	40	Volt	<u> </u>		Travel	Speed	Manual	,	Other
TECHNIO	E: St	ring or	Weave	Bead	SI	tring	(Oscillation	No	ne
Multipa	s or	Single	Pass_	Multipa	ss	Si	ngle or Mult	tiple Electi	rođe	Single
ADDITIO	AT. TN	FORMATI	ON :	Max, bea	d thk.	• 1/4"	Sunnlementa	I filler or	powder	ed filler me
None	G10	obular	transf	er Trai		s. None	00000			
		<u>, , , , , , , , , , , , , , , , , , , </u>								
		TENS	ILI	E TES	T (4	QW-150)		JOINTS:		
• •	I via	F H	1	Ultimat	e UI	timate • Ctrocc	Character			
Specimer				TOTAL LO	aoluni	E SLEESS				
<u>NO.</u>		2 INICK	E78C	LD.	- 00	roi lion	Plaductile		۱	
	1 74	710	5260	40,000	8	5 063	Pl-ductile	$\frac{3}{3}$	· · / r	<u> </u>
<u> </u>	$+\cdot I^{+}$	<u></u>		47, 100		/. , 00 J		1 /4	4-61	
	1	1						¥		\sim
<u></u>									1	Σ
		1					l	IS H	ロ	$X P_1$
	<u><u><u>GUI</u></u></u>	DED	BE	<u>T G N</u>	ESTS	s (QW-	160)	{		
Type An		Paci	.1+		e And		t	<u> </u>	7	
Figure N	<u>•.</u>	Saticfa		- F1Kn	Le noe					- •
		Satisfa	ctory		le Bend	d per NW	-462 2	L . RA	<u>ckgo</u>	UGED
		Satisfa	ctory			J-peu un		Gro	ove Des	sign Used
4		Satisfa	ctorv	1		1			ardness	s Test
	IMPA	CT TEST	- CH	ARPY (UG	- 84	SA - 370)	(EQUIVAL	ENT BHI	8 3000 KG LO
		•	Imp	act En-	Temp.	Impac	t Values			
Loca	ion	Туре	ergy	ft/1b)	• F	Foot	Pounds	Locat	ion	Hardness
						 		{ 		
		+				1				
-			1			1				
			al-an-	ł		*		Clock No.	2120 0	Stamp No. CN
Welder's	Name			ighran		Teh Ter	t No. 65-04	DET Dan	1 awson	
TEST COU	UCLEQ	Uy:	sner	ry Labs.		- 100 1C3				
We cer	tify	that th	e sta	tements i	n this	record	are correct	and that t	ne test	ICHE Code
prepar	ed, w	elded a	nd te	sted in a	iccorda	nce with	the requir	ements of S	ect. 9,	, ASIA COUC,
							Signed Y	UBA HEAT TR	ANSFER	DIV.
Date	3-1	9-96)				By T	M min	in	
	لسيلا	<u> </u>	<u> </u>							

-

QW-484 SUGGESTED FORMAT FOR MANUFACTURER'S RECORD OF WELDER OR WELDING OPERATOR WLR603 QUALIFICATION TESTS STAMP CHANGED FROM Gato ID ON 4-6-00 (See QW-301, Section IX, ASME Boiler Pressure Vessel Code) Welder Name D LOGUE Check No. 3735 Stamp No. Using WPS No. YA-3387 the above welder is qualified for the following ranges Record Actual Values Variable Used in Qualification Qualification Range Process FCAW FCAW GMAW Process Type SEMI SEMI Backing(metal, weld metal, flux, etc.(QW-402)) WELD METAL BACKING ONLY Material Spec. (QW-403) <u>P1</u> to <u>P1</u> <u>P1-P11</u> to <u>P1-P11</u> Thickness Groove .864 MAX TO BE WELDED Fillet N/A MAX TO BE WELDED Diameter 6.000 Groove > or = 2.875 N/A Fillet ALL DIAMETERS Filler Metal (QW-404) Spec. No. SFA 5.20 SFA 5.9, 5.18, 5.20, 5.22, 5.28 Class E71T-1 Per SFA listed above F-No. 6 6 Position (QW-405) 6G ALL VERTICAL UP Weld Progression (QW-410) VERTICAL UP Gas Type (QW-408) CO2 ALL Electrical Characteristics (QW-409) Current DC DC Polarity RP RP SP Qualification Comments: Guided Bend Test Results QW-462.2(a), QW-462.3(a), QW-462.3(b) Type and Fig no. Result VISUAL EXAM PER QW-302,4 SATISFACTORY Radiographic Test Results (QW-304 & QW-305) For alternative qualification of groove welds by radiography Radiographic Results: SATISFACTORY PER ALLEN CASH LEVEL III Test Conducted by YHTD Laboratory - Test No. N/A We certify that the statements in this record are correct and that the test welds were prepared, welded and tested in accordance with the requirements of Sections IX of the ASME Code. Organization YUBA HEAT TRANSFER Date 03/01/95 (Detail of record of tests are illustrative only and may be modified to conform to the type and number of test required by the Code)

NOTE: Any essential variables in addition to those above shall be recorded.

and a second second second second second second second bits a second second second second second second second

PEF-NCR-02353

Yuba - Ecolaire 2121 North 161st East Avenue, Tulsa, Oklahoma 74116 ASME IX Welding Procedure Specification (WPS) Weldspec for Windows

Date	umber	YA-38 5/4/06	67		Kevis	юп С	Qualified to Company name	I	ASME Se Yuba - Ec	ction IX			
Supporting PQ Reference doc	QR(s) Ss.	12-04; ASME	108-6 Secti	36; 05-92 on IX with Latest Mandal	lory Add	enda							
Scope		GTAW Groove	of P-	51 materials t, no PWHT (As-welded)			•						
Joint		Joint d Produc	etails aion d	for this welding procedur frawings, Engineering sp	re specifi ecificatic	ication in	:		<u></u>				
BASE METALS	S (QW-403)	1			•		·			THICKNES	SS RANGE	QUALIFIE	5 6
Time		Titaciu	m (25	51)	P-00	51	Gra-no			As-w	elded	With F	WHT
Welded to		Titaniu	m (P5	51)	P-no.	51	Gro-no.			Mia.	Max.	Min.	Max.
Backing:		Base n	netal c	or weld metal	P-no.	51	Grp-no. ~	Cor	nolete pen.	0.063	2.75	-	-
								límp	act tested		-	-	-
Retainers	Parti					ial pen.	0.063	2.75	-	-			
Notes		See pa	ges 2	and 3; See 4 and 5 for	tube wel	ding		Fille	t weids	no min.	2.75	•	-
· · · · · · · · · · · · · · · · · · ·		J								DIAMETER	RANGE		Ļ,
										Asau	alded	With	WHT
										Min.	Max.	Min.	Max.
								Man		izene min			
											no max.		<u> </u>
ILLER METAL	ALS (QW-404) SFA Classification			Classification	F-no.	A-no.	Chemical ana	ysis or 1	rade name	As-w	elded	With F	PWHT
GTAW		5.16	see	page 3	51	NA	Unibraze or equ	al (see p	age 3)	no min.	Max. 1.390		Max.
Cone incent						1				1	- No	<u></u>	
Sons. Insen Flux			[- No	ne •	
			L		1	L	1			L			
VELOINGPRO	CEDURE					,		07.044				·····	
Neiding process	iS							GIAW					
iype Dbtomoor	-		05					manua:					
reneat tempera		aturo	(-)					2505					
viaximum interp	ass temper	aure	(in)				1/16	3/32 0	1/8				
fungsten size			1				SFA	12 FW	тр-2				
iller metal size			(in.)				1/	6 or 3/3	2				
aver number								All					
Position of aroov	ve							All					
Veld progressio	n		ļ				Vertical up	when a	pplicable				
urrent/polarity							DCEN (straight p	olarity)				
mperes							1	30 max.					
/olts								19 max.					
VOIS 18 max. Traval speed (or/mat) 4 minimum							4	minimur	n				
ravel speed	Maximum heat input (kJ/m.) 37.05							37.05					
ravel speed laximum heat in	nput			None									
ravel speed laximum heat in IC pulsing curre	nput ent					Argon, Welding Grade (SG-A)							
ravel speed faximum heat in C pulsing curre hielding: G	nput ent Gas type						Argon, Wel	ding Gra	de (SG-A)				
ravel speed laximum heat in IC pulsing curre hielding: G F	nput ent Gas type Flow rate		(cfh)				Argon, Wel	ding Gra 30 to 35	de (SG-A)				
ravel speed laximum heat ir C pulsing curre hielding: G F railing: G	nput ent Gas type Flow rate Gas type		(cfh)				Argon, Wel	ding Gra 30 to 35 red (Arg	de (SG-A) on if used)				
ravel speed laximum heat ir C pulsing curre hielding: G F railing: G	nput ent Gas type Flow rate Gas type Flow rate		(cfh) (cft))				Argon, Wel	ding Gra 30 to 35 red (Arg 30 (if us	de (SG-A) on if used) sed)				
ravel speed faximum heat in C pulsing curre hielding: G railing: G Fi acking: G	nput ent Gas type Flow rate Gas type Flow rate Gas type		(cfh) (cfh)				Argon, Wel None requi 20 to Argon, Wel	ding Gra 30 to 35 red (Arg 30 (if us ding Gra	de (SG-A) on if used) ied) de (SG-A)				
ravel speed laximum heat ir IC pulsing curre hielding: G Fi railing: G acking: G Fi	nput ent Gas type Flow rate Gas type Flow rate Gas type Flow rate		(cfh) (cfh) (cfh)				Argon, Wel None requi 20 to Argon, Wel 20, (ding Gra 30 to 35 red (Arge 30 (if us ding Gra see page	de (SG-A) on if used) de (SG-A) a 3)				
ravel speed laximum heat in C pulsing curre hielding: G Fr aaking: G acking: G Fi acking: G	nput ent Gas type Flow rate Gas type Flow rate Gas type Flow rate		(cfn) (cfn) (cfn)				Argon, Wel None requi 20 to Argon, Wel 20, (String	ding Gra 30 to 35 red (Arg 30 (if us ding Gra see page ser or We	de (SG-A) on if used) sed) de (SG-A) a 3) save				
ravel speed faximum heat in C pulsing curre hielding: G Fr ailing: G acking: G Fi acking: Fi iring or weave trifice/gas cup s	nput Sas type Flow rate Sas type Flow rate Sas type Flow rate Sas type Flow rate		(cfh) (cfh) (cfh)				Argon, Wel None requi 20 to Argon, Wel 20, (String 12	ding Gra 30 to 35 red (Argo 30 (if us ding Gra see page er or We or large	de (SG-A) on if used) ied) de (SG-A) a 3) pave r				
ravel speed laximum heat in C pulsing curre hielding: G Frailing: G acking: G Fri acking: G Fri tring or weave util/Single pass	nput ent Gas type Flow rate Gas type Flow rate Gas type Flow rate size size s per side		(cfh) (cfh) (cfh)				Argon, Wel None requi 20 to Argon, Wel 20, (String Single or Base	ding Gra 30 to 35 red (Arg 30 (if us ding Gra see pag er or We or large Multiple	de (SG-A) ed) ed) de (SG-A) e 3) eave r passes 16				

.

(c) Copyright 2008 C-spec/TWI Sollwere. All rights reserved worldwide.

.

Yuba - Ecolaire 2121 North 161st East Avenue, Tulsa, Oklahoma 74116 ASME IX Welding Procedure Specification (WPS) Weldspec for Windows

WPS record number	YA-3887	Revision	С	Qualified to	ASME Section IX						
Date	5/4/06			Company name	Yuba - Ecolaire						
PREHEAT TABLE											
Applicable standard											
ASME Section IX 50F preheat, do not preheat to over 100F prior to welding. Allow weld to cool to below 250F prior to placing next weld bead. The weld and base metal must be kept covered (blanketed) with Argon inert gas shielding at all times while above 800F to prevent contamination by the atmosphere.											
TECHNIQUE (QW-410)											
Closed or out-of-chamber		Out-of-chamber	ut-of-chamber								
Peening		Not used	Not used								
Surface preparation		Grind or machine, and clean with approved solvent prior to welding									
Initial/interpass cleaning		Brush and/or GrindUse only clean stainless steel wire brushes									
Back gouging method		None									
NOTES			_								
Weld and base metal mus	t be kept cove	red with Argon inert gas shielding unt	iil bei	ow 800F to prevent co	ntamination by the atmosphere.						
Use additional fixtures or t	railing shields	to establish and maintain Argon shiel	lding	on weld and base met	al to prevent contamination.						
Acceptable weld and base	metal colorati	ons are bright silver to light straw yell	ow.								
Weld or heat affected zone	e colors of dar	vellow, blue, grey, or white indicate	cont	amination and are not a	acceptable.						
See Page 3 for more notes	ee Page 3 for more notes. Also see pages 4 and 5 for tube-to-tubesheet welding.										

Name	Signature
Donald L. Underwood	
Date	1 Williams
5/4/06	what for the many

PEF-NCR-02355

Weldspec 4.2.006 Catalog n* WPS00611 (c) Copyright 2006 C-spec/TWI Software. All rights reserved workdwide.

Yuba - Ecolaire 2121 North 161st East Avenue, Tulsa, Oklahoma 74116 ASME IX Welding Procedure Specification (WPS) Weldspec for Windows

WPS record number	YA-3887	Revision C	Qualified to	ASME Section IX
Date	5/4/08		Company name	Yuba - Ecolaire

NOTE: When welding Grade 2 Titanium use ERTi-2 wire. When welding Grade 1 Titanium, either ERTi-1 or ERTi-2 can be used.

All grinding discs and stainless steel wire brushes shall be new, and shall not have been previously used on any metals other than titanium.

Cleaning rags shall be clean and lint free.

Clean white cotton gloves shall be worn while cleaning and handling titanium materials.

Prior to welding, all weld preparations shall be:

- machined or ground to remove any discoloration,

- cleaned with an approved solvent such as acetone, isopropyl alcohol, methanol, or DR-60 liquid penetrant solvent/cleaner,

- conduct final cleaning using demineralized water and a clean rag,

- allow surfaces to dry completely

Clean white cotton gloves shall be used/worn during welding - after weld consumables have been cleaned, DO NOT touch them with bare hands.

Clean all weld filler materials with an approved solvent (see above), and then wipe each piece of wire with a clean rag prior to use - keep material clean.

Filler metal must be added to the weld without dipping it in/out of the Argon shielding gas - KEEP THE END OF WELD WIRE IN THE SHIELDING GAS - every time the wire is removed from the puddle and shielding gas coverage the end of the wire shall be trimmed 1/2ⁿ to remove the contaminated portion before it can be used again.

All titanium base metal and weld metal must be kept in Argon inert gas shielding until it cools to less than 800F prior to contact with atmosphere to prevent contamination....if there is no discoloration then the gas shielding is adequate.

Adequate gas coverage will result in a bright silver weld deposit, with no discoloration of the adjacent base metal, the appearance of other colors in the weld or heat affected zone indicates contamination and welding shall be stopped until the problem can be corrected.

Any weld deposits or base metal exhibiting the following colors shall be completely removed by grinding -- dark straw yellow, blue, grey, or white.

Acceptable colors for weld deposit and heat-affected-zones are silver-to-light straw yellow.

Shielding gas, trailing shield gas, or gas backing shall be Argon, Welding Grade (99.995%, -40F max. dew point), classified in ASME Section II Part C as SG-A.

When gas backing is needed, purge for a minimum of 10 volume changes prior to welding. To close the root of open root welds the gas flow may be reduced to 4 - 7 cfh prior to closing, then increased to 20 cfh after the root is closed.

When making fillet or other attachment welds on titanium materials that are less than 1/4" thick, a gas purge on the backside is required.

For tube-to-tubesheet welding, see pages 4 and 5.

PEF-NCR-02356

(c) Copyright 2006 C-spec/TWI Software. All rights reserved worldwide.

Yuba Heat Transfer Division

Division of Connell Limited Partnership P.O. Box 3158, Tulsa, Oklahoma 74101

	Joints (QW-402):	
Manual	Groove Design QW-402.1	See page 5
	Backing	P-51 tubesheet
	Root Spacing	Roll to contact
	Retainers	None used
	Tube Diameter	1.04" to 0.85"
	Tube Wall Thickness	0.024" to 0.028"
	Filler Metals (OW-404):	
P-51 Clad tubesheet	SFA Number	SFA-5.16 when needed
P-51 Tube	Filler Size	1/16" when needed
Per Design drawing	F-Number	F-51
1-1/4" or greater	A-Number	None assigned
.024" to .028"	AWS Classification	ERTi-2 (see page 3)
	Addition or Deletion of Filler	Yes and no
	Preplaced Metal Insert	None used
	Filler Metal Product Form	Bare solid wire (when used)
	Max. Weld Metal Thickness	1.390" maximum
	Preheat (OW-406)	
Tube horizontal and	Preheat (min)	50 F minimum
Tubesheet vertical	Interpass (max)	200 F maximum
Vertical up or down	Preheat Maintenance	None required
	Gas (OW-408) Comp. & Flow	
None required: As-welded	Shielding, Backing, Trail Gas	Argon, welding grade
None required; As-welded		Flow rate: 25 to 35 CFH
	Technique (QW-410)	
	String or Weave Bead	String or slight weave
DC straight polarity	Cup or Nozzle Size	12 or larger
14-19 volts	Oscillation	None used
75-110 amps	Multiple or Single Pass per Side	Single pass
Not used	Single or Multiple Electrodes	Single
3/32" or 1/8" dia.	Closed to Out Chamber	Out of chamber
EwTh-2	Electrode Spacing	Not applicable
Manual	Manual of Automatic	Manual
Manual	Manual of Automatic Method of Cleaning	See Below
	Manual P-51 Clad tubesheet P-51 Tube Per Design drawing 1-1/4" or greater .024" to .028" Tube horizontal and Tubesheet vertical Vertical up or down None required; As-welded None required; As-welded DC straight polarity 14-19 volts 75-110 amps Not used 3/32" or 1/8" dia. FWTh-2	ManualJoints (QW-402): Groove Design QW-402.1 Backing Root Spacing

Notes:

Surfaces to be welded shall be steam and/or solvent cleaned and protected from contamination. Approved solvents are acetone or isopropyl alcohol. All tube holes and tube ends shall be solvent cleaned prior to pushing. Tubes may be expanded prior to welding. If tubes are expanded, the tubesheet face and all tube ends shall be thoroughly cleaned and protected from contamination prior to tube welding. The weld area shall be protected from contamination during the entire welding operation. Base metal to be welded shall not be touched with bare hands after final cleaning. If accidentally touched, clean the surface again as directed above. Clean white cotton gloves should be worn while welding. Clean, stainless steel wire brushes may be used for surface cleaning in addition to solvent cleaning. Do not touch filler metal with bare hands or fingers. Clean all filler metal prior to use with an approved solvent. If filler is used, clip the contaminated end from the wire each time it is withdrawn prior to depositing additional filler in weld. Maintain argon shielding gas flow on the weld until it has cooled sufficiently to prevent contamination in air (cooled well below 800F). Weld color shall be bright silver. Contact Welding Engineer or Weld Technician if weld is discolored.

See Page 5 for additional direction. 5-4-16 um 1./mm Welding Engineer, YHTD Date

Yuba Heat Transfer Division

Division of Connell Limited Partnership P.O. Box 3158, Tulsa, Oklahoma 74101

WPS Number <u>YA-3887</u> Rev. <u>C</u> Date: <u>5/4/06</u> PQR: <u>108-86</u>; <u>05-92</u>; <u>12-04</u> Page 5

Joint Detail:

High frequency arc initiation required. Use foot pedal with arc decay to terminate arc.

Terminate the arc on the weld and hold gas coverage (trailing shield) until the weld has cooled sufficiently below 800 degrees F to avoid discoloration (contamination).

Seal welds are to be made as single pass autogenous (no filler added) welds. However, filler may be used by the welder when needed to fix pinholes (or other defects) seen while welding, or as needed for repairs. When the weld requires the addition of filler metal, it should be added continuously without intermittent dipping wire in and out of the weld. Filler metal removed from the gas shielding will be contaminated, and shall be cut back at least 1/2" to remove and discard the contaminated wire end before the remainder of the wire can be used in the weld.

Finished weld color should be bright silver- Contact the Welding Engineer or Weld Technician if weld is discolored for directions concerning cleaning or repair.

5-1-06 un Date Welding Engineer, YHTD

PEF-NCR-02358

Yuba Heat Transfer P.O. Box 3158, Tulsa, Oklahoma 74101 ASME IX Procedure Qualification Record (PQR) Weldspec for Windows

······				WPS record number	YA-4259			Re	vision 1
PQR record number	4/27/04		Revision	Company name	Yuba Heat Tra	nsfer			
Date				Welding standard	ASME Section	IX and Sect	ion VIII, Divis	sion 1	
				L					
BASE METALS (QVV-403)	Product form		Specification (type or grade)	P no.	Grp-no.	Size	Sch.	Thick.	(in.) Dia. (m.)
ſ	Plate		SB-265 (2)	51		•	•	.250	•
Welded to:	Plate		SB-265 (2)	51		-	•	.250	
and tested:	Without PWHT								
Notes	GTAW of P-51 Ma	terials, As-welde	d condition						_
JOINTS (QW-402)	· · · · · · · · · · · · · · · · · · ·		1						
Joint design	Single-V	-groove	P-51	60° P-1	51		\sim		
Backing:	No	ne		~			\searrow		
Retainers	No	ne	58-265	16		P.5	$, \gamma$	P-51	1/1"
Groove angle (deg.)			LAADE 2	(, ,	́Д		GRAW
Root opening (m)	.06	52	/		00		$\prec \Sigma$		
	I		··· →	C GAP	GAC	IND AI	NO BACI	K WELDEL	<u>ا</u> ر
WELDING PROCESSES							·····		
Welding process		1		GTAW	(
Туре				Manua	al				
FILLER METALS (QW-404)				<u></u>				
SFA specification				- 5.16					
AWS classification				ERTI-2	2				
Filler metal F-number				51					
Weld metal A-number				NA Tilookutt (000 S	SEA-5 16)				
Filler metal nominal compo	sition			Pobinson Linihra	are FRTI-2				
Filler metal trade name		j		1/16					
Filler metal size	(in.			.250					
Deposited mickiess Maximum cass lhickness	(in.)			1/16					
Weld deposit chemistry				Per SFA-	5.16				
POSITION (QW-405)		······································							
Position of groove				3G					
Weld progression		<u> </u>							
PREHEAT (QW-406)		······							
Preheat temperature	(*F)			70F					
Maximum Interpass temper	ature (*F)			3007					
GAS (QW-408)							<u> </u>		
Shielding gas: Type				Argon, Weldin	g Grade				
Flow rate	(ch)			None	•				
traking gas: Type	(cfb)			-					
Backing gas: Type	(4)			Argon, Weldin	g Grade				
Flow rate	(ch)			30 to 3	5				
ELECTRICAL (QW-409)		·····							
Filler metal size	(in.)			1/16					
Amperes				130					
Volts				19					
Travel speed	(in,fmin)			37.05					
Maximum heat input	(KJ/in.) 	1		3/32					
Tungsten size	(90.)			SFA 5.12 E	WTh-2				
Current/oolarity				DCEN (straight	t polarity)				
DC pulsing current				None					
ECHNIQUE (QW-410)		L =							
Siring or weave				Stringer and	Weave				
Orifice/das cun size				12 and	14				
Multi/Single pass per side				Multiple pa	ISSES				
Closed or out-of-chamber				Out-of-cha	mber				
Peening				Not use	bed and a second second second second second second second second second second second second second second se		:		
Initial/interpass cleaning				Brushing and	Grinding				
Back gouging method				None					

Weldspec 4.20.002 Catalog n* PQR00115 (c) Copyright 2004 C-spec/TWI Software. All rights reserved worldwide.

-	
YUIDE	•
Yubp	
. L.	

Yuba Heat Transfer P.O. Box 3158, Tulsa, Oklahoma 74101 ASME IX Procedure Qualification Record (PQR) - Test results (as welded) Weldspec for Windows

PQR record number 12-04 Revision 0 WPS record number YA-4259 Revision 1 Yuba Heat Transfer 4/27/04 Company name Date Welding standard ASME Section IX and Section VIII, Division 1 Reduced section TENSILE TESTS (QW-150) Type of failure and Ultimate unit stress Width Thickness Area Ultimate total load Specimen number location (in/) (15) (psi) (m.) (41.) 0.767 0.264 0.2025 13740 67900 Ductile-Base Metal A Ductile-Base Metal 0.760 13480 68200 0.260 0.1976 8 Sherry Lab Report 2004040438 Comments GUIDED BEND TESTS (QW-160) Result Comments Type of test Acceptance criteria see - ASME IX - QW-451.1 2 transverse face bands per QW-161.2 and QW-462.3(a) QW-163 Acceptable 2 transverse root bends per QW-161.3 and QW-462.3(a) QW-163 Acceptable see - ASME IX + QW-451.1 Sherry Lab Report 2004040438 Comments CERTIFICATION Welder's name ID Number Stamp number Sherry Laboratories-Midstates Mechanical testing by 2004040438 361 BS Laboratory test number Brad Silkey Test file number PQR 12-04; Yuba Lab Req. 50-2004 Caroli Judd, Sherry Laboratories Tests conducted by ed, welded and tested in accordance with the requirements of Section IX of the ASME Code. We cartify that the statements in this record are correct and that the test welds were prep

Welding Engineer	
Name Signature	1
Donald L. Underwood	
Date In still Inverse	
4/25/04	
Vietland 4 20 002	(c) Copyright 2004 C-spec/TWI Software. All rights reserved worldvride.

Catalog nº PORISITIS

										
								.		
YUBA HEAT TRANSFER 1245000 TLX 482484										
PROCEDURE QUALIFICATION RECORD No. 108-86 DATE 9/12/86										
WELDING PROCEDURE SPEC. No. YA-3653										
WELDING PROCESS(ES) GAS TUNGSTEN ARC WELDING (GTAW)										
TYPES: Manual										
BASE METALS: Material Spec. SB-265 *2 Type or Grade 2										
P NO.	P No. 51 To P No. 51, Thk. BM-1 3/8" *1, Range 3/16"-2 3/4" *1									
FILLER METALS: Weld Analysis A NO. NA Electrode Size: <u>EWTh-2 1/8" Ø</u>										
Others: •AWS Classification ER Ti-1										
POSITION: 1G , Weld Progression NA Other										
PREHEAT: Preheat Temp70°F, Interpass Temp300°F max.										
Others:	Others: No preheat maintenance after welding									
POSTWELD HEAT TREATMENT: Temperature As welded										
Time			NA				Othe	rN	0.1	
GAS: Typ	Arg	<u>ion</u>	, (omposit.	$10n_9$	9.995%	, Flow Kat	e <u>30CFH</u>	Uth	er
FLECTRIC	Trailing gas: Argon @ 10CFH w/ 2" Ø circular nozzle extension									
Amps.	110 8	130	Volts	18	& 19	Travel	Speed Mar	ual	. 0	ther
TECHNIQUI	E: Str	ing or	Weave	Bead	Slig	ht weave	& string	scillation	5/16	" max wide
Multipass	or S	ingle	Pass	Multi	DASS	Si	ngle or Mult	inle Flects	ode Si	ngle
ADDITIONA	I. INF	ORMATI	∩N• *	1 Dence	ited wa	ld motal	m 60511 Bono		002	
Vacume	Vacume atmosphere- none Cleanliness per page 2 of WPS									
	_								•	
ļ	T	ENS	ILE	TES	5 T (((W-150)		IOINTS	Max. pas	s thk. 1/8"
				Ultimat	te Ult	imate	Character			
Specimen	Die	Thick		Total Lo	Dad Unit	Stress	Of Failure		•	
<u>NO.</u>	D18.	101CK	Area 710	<u>LD.</u> <u>PS</u>		500	Location	WM-ductile		
	1 00	695	698	49,000	49.500 71.00		WM-ductil			
<u>_</u>				42,500 /1,000			Mil duberry			
								Ι <u>.</u> ζ i	3/8 2	
									5/*	
	- This area removed prior to testing									
G	UII	DED	BEI	D T	ESTS	(QW-	160)			
Type And		Pacu	1+	Typ	TO NO	D				· · ·
1		indic	ations	1 IIgu	ite No.	K	esuit	.230" weld deposited by each		
2		indic	ations	Transverse side be		ends per welde				
3	no	indic	ations	QW 462.2				Groove Design Used		
4	no	indic	ations						ardness	Test
	IMPAC	T TEST	- CH/	RPY (UG	- 84	SA - 370)	(EQUIVAL	ENT BHN	3000 KG LOAD)
			Impa	ict En-	Temp.	Impac	ct Values			1
Locat	ion	Туре	ergy	ft/1b)	<u>°F</u>	Foot	Pounds	Locat	ion	Hardness
								Base met		165 172 162
								HAZ		180,200,185
								Weld met	:a1	135,132,141
			1							
Werder.2	eme	by	detet	Davis,	D. Dun	Jah Ter	t No 100 00	DET DIT	Vac - 1	
Lad lest No. 108-86 per Bill Vesely										
We certify that the statements in this record are correct and that the test welds were										
prepared, weided and tested in accordance with the requirements of Sect. 9, ASME Code.										
* Convected Type is the line Whenthe Signed Yuba Heat Transfer Div.										
Date 9/15/86 By Termethie Morris										
PFF-NCR-02361										

۲

.**.** .

WHRA HEAT TRANCEER	
Processor P.O. Box 3#58 Tulsa, Oklahoma	
Page 1 of 2 1.0, Sea Side Here, Callond	
POCEDURE QUALTETCATION RECORD No. 05-92	DATE 1 -6-92
T DING PROCEDURE SPEC. No. VA-3887	
FUDING PROCESS(ES) GAS TINGSTEN ARC WELDING	
YDES. MANHAL	
ASE NETAIS: Material Spec SB-265 to SB-338 TV	ne or Grade Cr 2 to Cr 2
No 51 To P No. 51 Thk. $*1$ R	ange *1 Dia *1
TITED METATC: Wald Analysis A No N/A	lectrode Size 3/32" Humb-2
(11 or Metal F No. N/A SFA Spec	N/A
there: AITOCENOUS WELD	
CITION: Tube-borz T/sheet-wert Weld Progression einerien	Other
STITUN: Inde-Noiz, 17 Sheet-Vert, Werd Progression <u>circular</u>	
there.	1 pass 1 emp 200 F max
OSTITIO HEAT TREATVENT, TETRATATUTE AS WELDED CONDITIO	N
USIWELD HEAT INCALMENT: TEMPETERUTE IND WALDED CONDITION	
ime Connection on course Flat Ret	Other
AS: Type Argon , composition 99.995% , Flow Rath	e <u>25 CFH</u> Other
LEUIKILAL UMARAULERIDITUS: UUFFERL DC , PC	and <u>Other</u>
mps. 100 voits 16, Travel S	cillation
ECHNIQUE: String of weave bead <u>String</u> 0	None
ultipass of Single Pass, Single or Mult;	iple Electrode Single
DDITIONAL INFORMATION: *1 TUBESHEET THK: 12" (13) tubes weld	ed for qualification: (32)
weld faces examined. Tube dia945" +0945" Tube wall: .026	" +0026" .30" ligament
	1
1. Liquid Penetrant tested per ARTICLE 9-2 SEC. V111, DIV 2	LOINTS .
No reportable indications - Satisfactory	JUINIS:
2. Visual examination at IUX magnification - No reportable	
indications - Satisfactory	
3. Minimum Tube to tubesheet Leak Path 96%	
Satisfactory	
	1 p-51 lube
Manager hand toot. Twenty to to be have to t	
longue bend test: Fracture in tube base metal	11 Y
vickers nardness test: See page 2 of Pok	
	P51
4. Minimum shear path: All greater than 100%.	
	Inbe projection - 0 - 132
	Groove Design Used
	1
	J
elder's Name Dan Duncan (lock No. 3486 Stamp No. no
est Conducted by: Metlah Lab Test No. 05-02	Der Dan Lauson
200 root (0)-94	
We certify that the statements in this record are correct	and that the test welds were
prepared, welded and tested in accordance with the require	ments of Sec. 8, Div. 2, Art. F3
· Simul Y	UBA HEAT TRANSFER DIV.
	- h.
ate <u>1-6-77</u> PEF-NCR-02362 By	in Morro

METLAB Testing Services, Inc.

Tulsa, Oklahoma 74145 6825 East 38th Street (918) 664-7767

> PQR: 05-92 Page 2of2

> > .

16

HLTS 92-017

1.5

..**...**

January 6, 1992

Yuba Heat Transfer Division P. O. Box 3158 Tulsa, OK 74101

Attention: Mr. Tim Horris

COUPON DESCRIPTION: YA3887, GTAW, Titanium Tube-to-Tubesheet Coupon, Lab Reg. 05-92

TONGUE BEND TEST - WELD NO. 14

Result: Satisfactory with fracture in tube base metal.

VICKERS MICROHARDNESS, 5 KG LOAD, ASTH-E92

Tube		<u>Vickers Hardness, Average Value for 3 Readings</u>					
	No.	Weld	<u>Clad</u>	Difference			
	11	150	124	26			
	11	148	124	24			
	12	163	124	39			
	12	167	124	43			
	13	167	124	43			
	13	173	125	48			

Specialists in chemical analysis, metallurgical and environmental control tasting

PEF-NCR-02363

:

Yuba Heat Transfer, LLC **Yuba**

STANDARD TERMS OF SALE

1.0 DELIVERY

Unless otherwise stated, all shipments are F.O.B. Yuba designated factory (Domestic) or Ex-Works per Incoterms 2000 (International). No export crating is included unless specifically stated.

2.0 WARRANTY

- (a) Yuba warrants that all goods of its manufacture contained in the equipment delivered to the original Buyer by Yuba shall conform to the written specifications of Buyer when Yuba has undertaken the responsibility for the design of the equipment and shall be free from defects in material or workmanship under normal use and service for a period of twelve (12) months following the initial operation of the equipment or eighteen (18) months following shipment, FOB Yuba's designated factory, whichever occurs first. Any warranty for material and equipment furnished under a stock or parts order is limited in duration to not later than three (3) months after shipment.
- (b) Yuba makes no warranty with respect to parts or materials of the equipment, which are manufactured by others. Yuba's warranty only covers the replacement or repair of the parts or materials and not the labor to remove and install the parts or materials. Yuba will not be responsible for any material selection. Any parts or materials not manufactured by Yuba are sold only under such warranty as the manufacturer gives to Yuba. Yuba makes no guaranty as to the enforceability of such warranty but shall use reasonable efforts to assist Buyer in asserting a claim under such warranty of the manufacturer. Yuba shall have no warranty liability when defects or non-performance are caused by abrasion, corrosion, stress corrosion, erosion or fouling, whether due to incorrect water chemistry, (including chlorides) or improper operation, installation or maintenance or otherwise
- (c) Buyer's exclusive remedy is to secure repair or replacement, at Yuba's option, of any portion of the equipment of its manufacture, which, upon prior inspection by Yuba, shall prove to have been defective. Upon notification by Buyer, Yuba will either request that the parts or materials be returned F.O.B. Yuba's designated plant or Yuba may elect to make inspection at Buyer's plant. Parts or materials found defective by Yuba during such warranty period will be replaced F.O.B. Yuba's designated factory.
- (d) The provisions of this warranty shall not apply to equipment which has been subject to accident, overloading, misuse or negligence by Buyer, its agent, employees, contractors or invitees, or which have been installed, maintained, repaired, or altered by other than Yuba in any way so as, in the reasonable judgment of Yuba, to affect adversely its performance and condition, nor to the replacement of parts required for normal maintenance services, nor to deterioration due to normal wear and tear. THIS WARRANTY IS EXPRESSLY IN LIEU OF ANY OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
- (e) This warranty is contingent upon the Buyer obtaining the services of Yuba's Service Representative/Consultant for inspection of the fully erected equipment, observation of hydro-test, and release for operation.

3.0 **LIMITATION OF LIABILITY**

5.0 FORCE MAJEURE

(a) Yuba shall not be liable for loss or damage for delays in delivery, or delays in failure to manufacture, erect or install, due to causes beyond its reasonable control, including but without limitation, acts, orders or requests of civil or military authority, acts of God (weather, etc.), acts or omissions of Buyer, strikes, labor difficulties, labor or material shortages, fire, flood, explosions or other casualties, wars or civil disturbances, insurrections or riots, breakage or accident to machinery or equipment and failure or delays of others or subcontractors in delivering materials. In the event of any such delay, all dates shall be extended by the amount thereof. Yuba will give notice to Buyer with an estimate of length of delay.

6.0 PAYMENTS AND PRICE

7.0 SUSPENSION, DELAY, OR TERMINATION FOR CONVENIENCE

(a) In the event Purchaser suspends, delays or terminates this contract for the convenience of the Purchaser, Yuba shall have the right to continue manufacturing all line items in flow in Yuba's Manufacturing Pull System at the time of receipt of written notification by Purchaser of the Suspension, Delay or Termination for Convenience. Purchaser further agrees to provide inspection as specified under the terms of the contract for completion of these items (includes providing Inspection for all Witness and/or Hold Points), and to pay

A Connell Limited Partnership Company

Yuba Heat Transfer, LLC **Yuba**

STANDARD TERMS OF SALE

Yuba in accordance with the contract terms when the items are completed. Yuba will provide Purchaser a list of those items to be completed at the time of notification by Purchaser of the Suspension, Delay or Termination for Convenience.

8.0 GENERAL

- (a) This contract is not assignable by Buyer in whole or in part without the prior written consent of Yuba.
- (b) All stenographic and clerical errors are subject to correction without liability. All claims for errors in shipment or invoice must be made within ten (10) days after receipt of material.
- (c) Material may not be returned by Buyer except with the written consent of Yuba first obtained. Returned material must be prepaid.
- (d) Title and risk of loss to all equipment sold shall pass to Buyer upon Yuba's delivery to carrier at point of shipment (whether or not Yuba pays any part of the freight) or if Yuba stores the equipment for the account of the Buyer at Yuba's designated facility, then title and risk of loss shall pass to Buyer at the time of storage.
- (e) All drawings and designs supplied by Yuba shall belong to Yuba, be maintained in confidence and be returned upon request. No drawings are submitted for Buyer's approval unless specifically stated in this Agreement.
- (f) Buyer shall procure at its expense all permits required to commence and complete work.
- (g) Yuba will not accept back charges for work performed by others upon, or in conjunction with, Yuba equipment unless Yuba gives prior written authorization.
- (h) Neither Buyer or any affiliated company, surety, or assignee shall have the right to set off against any amounts which may become payable to Yuba under this contract or otherwise, for amounts which the Yuba may allegedly or in fact owe Yuba or any affiliated company, surety or assignee whether arising under this contract or otherwise.

9.0 <u>CHANGES</u>

(a) Buyer agrees <u>not</u> to make changes to the equipment, specifications or to the delivery schedule as set forth in Yuba's proposal without the prior written consent of Yuba.

10.0 TAXES

(a) In the event that Yuba may be required to pay any excise, sales or use taxes, foreign income withholding taxes, duties or other charges or increases upon the manufacture, sale or transportation of the equipment sold not now specifically included in the price set forth in Yuba's proposal, Buyer shall reimburse Yuba for same.

11.0 ENTIRE AGREEMENT

(a) No statement of agreement, oral or written, made prior to or at the signing hereof, shall vary or modify the written terms hereof. Neither party shall claim any modification, waiver or release from any provision by mutual agreement unless such agreement is in writing signed by the other party. No modification or addition to this contract shall be affected by the acknowledgment or acceptance by Yuba of any purchase order or other documents submitted by Buyer containing additional or different terms or conditions.

12.0 APPLICABLE LAW

(a) This contract and the respective rights and obligations of the parties shall be governed by and construed according to the laws of the State of Oklahoma.

A Connell Limited Partnership Company

Yuba Heat Transfer, LLC **Yuba**

STANDARD TERMS OF SALE

(b) The application of the provisions of the United Nations Convention on Contracts for the International Sale of Goods are expressly excluded by the terms of this Agreement.

13.0 SERVICE CONNECTION INTERFACE INFORMATION

 ∂p

. •

Buyer and Yuba acknowledge that Yuba's schedules are contingent upon timely submittal of service connection interface information from Buyer. Buyer shall provide Yuba with finalized service connection information within eight (8) weeks of order award or sooner.

14.0 Engineering Service

(a) Upon request, Yuba may provide engineering and/or technical information about its products and their uses, and if feasible may provide personnel to assist Buyer in effecting field installation and/or field service. Such information, service, or assistance so provided, whether with or without charge, shall be advisory only and Buyer agrees to hold Yuba harmless from claims for loss from any cause resulting from such advisory or service activity.

Alstom Proposal #SD22007, CR3 Turbine Generator Retrofit 5/15/07 Review Meeting Open Items

Pg. 1 of 1

Alstom to provide proposal amendment letter by 06/01/07.

Generator field installation schedule is 75 days, including 45 days for generator rotor rewind in shop.

• Generator rotor replacement is required to improve the 75 day schedule and to increase MVA rating to 1200MVA. Generator rotor replacement will be 2011. Requested Alstom to price new rotor vs. rewind rotor.

Include in proposal at no additional cost:

- 2007 open and close of HP turbine and generator to be R&D by Alstom.
- 57"LSB LP turbine inner cylinder solution. Evaluate the effectiveness of the 57" blades versus the 47" blades including cost and output.
- Laser alignment of entire train, including generator alignment and generator frame foot loading.
- Stripping/replacement of all bearing pedestal oil seals.
- Rebabbitting HP and LP turbine bearings due to new rotor journals.
- Machining of all HP Turbine cylinder interface locations as needed to install new parts.

Additional Information Requested:

- Support system requirements for water cooled stator skid and static excitation system.
- Control Room impacts for water cooled stator skid and static excitation system (voltage regulator).
- Provide Installation "Division of Responsibilities".
- Provide "single point of contact" internal to Alstom that will be responsible for contract negotiation.
- Finalize review and approval of PE's latest language (understand that all have agreed to this language)

<u>Project Management:</u> PE desires "turn key" project management with minimal PE support responsibilities. Alstom stated "all support resources" were included in the cost estimate. Please provide summary of craft personnel number and skill sets that are to be provided based on our discussions. Please explain the basis for the personnel numbers identified on proposal pg. 546.

Alstom Proposal # SD22007, CR3 EPU Turbine Generator Retrofit Meeting Notes, 05/15/07:

Proposal Summary:

 <u>HP Turbine</u>: replace in 2009 with partial arc, full impulse turbine design with 3% flow margin.

 <u>LP Turbines</u>: replace in 2009 with 12.9M2 (47"LSB).

 <u>Generator Stator</u>: mid-section replacement in 2009 with H2O inner cooled winding. Stator rating is 1173 MVA.

 <u>Generator Rotor</u>: rewind rotor in 2009 at Richmond shop. Rotor winding is reused.

 <u>Exciter</u>: replace in 2009 with static excitation system.

 <u>Voltage Regulator</u>: included in static excitation system.

 Moisture Separator Reheaters: replace MSR vessels in 2009.

Cost: Total estimated cost for above scope is **<u>REDACTED</u>**. Installation cost is estimated for T&M billing.

Performance Guarantee: 1075.8 MW @ 2.7 In Hg (12.9M2 LP turbine). Does not include MSR drain reroute.

Outage Schedule: 2009 outage schedule is 75 days for HP and LP turbine replacement, generator mid-section replacement and MSR replacement. Schedule driver is shop rewind of generator rotor (60 days, 45 days in shop).

Optional Scope: Generator Stator field rewind with H2O cooled winding. Stator core iron is not replaced. Cost: total estimated cost reduced to <u>REDACTED</u> Generator Rating: stator rating reduced to 1162.5 MVA. Schedule: 2009 outage schedule will not decrease due to off site rotor rewind.

Meeting Summary Highlights:

- Alstom proposal amendment letter requested by June 1, 2007.
- Generator rotor replacement is required to improve the 75 day schedule and to increase MVA rating to 1200MVA. Generator rotor replacement will be 2011. Requested Alstom to price new rotor vs. rewind rotor.
- Requested Alstom to consider 2007 open and close of HP turbine and generator to be R&D cost by them.
- Requested Alstom to quote 57"LSB LP turbine option.
- Support systems for water cooled stator skid and static excitation system are additional cost. Alstom requested to provide support system requirements.
- Control Room impacts for water cooled stator skid and static excitation system (voltage regulator) are additional cost. Alstom requested to provide control room impact details.
- Include laser alignment of entire train, including generator alignment and generator frame foot loading (pg.110).
- Include Re-striping all bearing pedestal oil seals.
- Include HP and LP turbine bearing be rebabbitted in base scope due to new rotor journals.
- Include machining of all HP Turbine cylinder interface locations as needed to install new parts.
- Need to provide Installation "Division of Responsibilities".

PEF-NCR-02369

General Notes:

• HP Turbine and Generator must be opened in 2007 for field measurements. Is open and close cost included? <u>Re:</u> Requested Alstom to consider this R&D cost to them.

• Evaluate performance of larger 16.8M2 (57"LSB) LP Turbine.

<u>Re</u>: Alstom presented performance curve for 47" and 57" LSB. 57" performs better below 2.7 In. Hg. Both perform the same above 2.7 In. Hg. Average benefit of 57" LSB is approximately 3MW/year. Cost is approximately \$5,000,000 more. Note: the 57" LSB was installed at Diablo Canyon and performance was much better than expected.

• Heat balance indicates low feed water temperature between 2009 and 2011 (pg. 201, 207, 208). What is plant impact? <u>Re:</u> Ted say's reactor is not affected. Lower feedwater temperature is in Alstom heat balance and would not be corrected for in a plant performance test. Areva would have to evaluate / model the Alstom heat balance for EPU.

• PE must verify generator frame 75 psi H2 pressure rating for generator stator rewind.

<u>Re:</u> This is responsibility of PE. Will need Siemens support to document.

• Support systems for water cooled stator skid and static excitation system are additional cost. <u>Re:</u> Alstom requested to provide requirements. See engineering issues.

• Evaluate control room impact for new systems.

Re: Alstom requested to provide requirements. Pump controls and annunciator inputs.

Scope of Supply Comments:

<u>HP Turbine:</u> 7 stage, full impulse design

• New nozzle plates are fitted into existing nozzle box. Existing nozzle plates may need destructive removal. Is machining or repairs to the existing nozzle box included?

<u>Re:</u> Contingency repairs will be extra scope.

• New inner and outer glands are provided. New gland seals machined for rotor clearance. Are both inner and outer glands type 405 ss (pg. 19)?

Re: Alstom stated the HP turbine outer glands are not included. Proposal was in error. Inner glands are stainless steel.

Alstom Proposal # SD22007, CR3 EPU Turbine Generator Retrofit Meeting Notes, 05/15/07:

Pg. 3 of 7

Scope of Supply Comments:

• Governor pedestal stub shaft will be reused. Eccentricity run out will be corrected. Will a spacer be provided to correct axial position if needed?

<u>Re:</u> Yes, if needed based on field measurement.

LP Turbine: 10 stage, reaction design

• Inner cylinder is reused. Blade carriers are replaced. Discuss interface between new blade carriers and existing inner cylinder (pg. 37). <u>Re:</u> Spring back seals. Pg. 50

• Blade carriers are ductile cast iron with 12% CR ring inlays. How is the ring inlays installed in the blade carriers (pg. 51)? <u>Re:</u> keeper bolt at horizontal joint.

• L-0 blades have snubbers. Why not free standing?

<u>Re:</u> Improves vibration response characteristics.

Generator Mid-Section: 1173 MVA, Capability Curve pg. 77

• Verify main leads between stator and bushings are replaced. Not shown on pg. 75.

Re: Yes. Drawing in error.

• Discuss phase dropper and bushing connection installation (pg. 98 / 99).

<u>Re:</u> Interface between H2O cooled portion and H2 cooled portion of main lead.

Stator Water Skid:

• What are the plant requirements to support installation?

<u>Re:</u> Alstom to provide support system requirements. Cooling water 154 M3/hr (2500 KW), Demineralized water supply, Power supplies, Instrument and controls cabling, control room impacts include pump controls and annunciators. The support systems are not Alstom scope.

Generator Stator Rewind: 1162 MVA, Capability Curve pg. 121

• Scope includes core iron loop test (pg.117). What are the power supply requirements? Core loop test is not identified in testing section 2.4.3.29 (pg. 143).

Re: Core loop test is in scope. PE provides power 4160V, 1 phase, ???? Amps.

Alstom has core iron repair capability by insulation material injection up to 5 inches deep. Siemens el cid test data glitches are near surface issues.

Scope of Supply Comments:

Generator Rotor Rewind:

• Any repairs to rotor winding are included (pg. 156)

<u>Re:</u> Yes

• Siemens technical advisory TA 2005-001, Modification of rotor baffle assembly, must be included. May need to get parts from Siemens. <u>Re:</u> Included. Alstom has parts.

• A bearing charge will not apply for shop balancing (pg. 154)

Re: Agreed.

• Asbestos abatement in the shop will not be extra cost (pg. 156) <u>Re:</u> Agreed.

Static Excitation System:

• Generator bus supply through transformer rated at 7,500 amps @ 500volts.

<u>Re:</u> Yes

• Installation of new transformer (44,200 lbs), electrical cabinets and all electrical connections are included.

Re: Yes. Transformer foundation (if needed) is not included.

• What is the auxiliary power supply requirement for field flashing and is installation included?

Re: 480V, 3 phase, approx. amps (standard bus bkr) for field flashing. 2 x 480V, 3 phase for cabinet air conditioners, 2 x 125VDC control power.

• P400AVR digital voltage regulator. What is the control room impact of this system? Are control room modifications included?

<u>Re:</u> Control Room impact needs to be provided and is not included in scope.

• Pg. 171 states the collector is rated for 3,500 amps. Explain this rating compared to the generator excitation requirements. <u>Re:</u> Typo error. Should be 7,500 amps.

• Pg. 172 and 177 states new collector assembly housing or modification of existing exciter housing. Is either of these options included? <u>Re:</u> New housing is included in scope of supply.

• Pg. 178 and 179 indicate the collector assembly is cooled by ambient air and the ambient air limit is 45C (113F). Are air coolers an option? <u>Re:</u> Possibly. Recommendation not made.

• Can the existing exciter air coolers be reused with the new collector assembly fan? <u>Re:</u> Alstom can evaluate.

Include the following scope of supply at no additional cost:

• Include laser alignment of entire train, generator alignment and generator frame foot loading (pg.110).

• Include Re-striping all bearing pedestal oil seals.

Alstom Proposal # SD22007, CR3 EPU Turbine Generator Retrofit Meeting Notes, 05/15/07:

Engineering Comments:

• Provide estimated megawatt output vs. condenser pressure curve for the 57" LSB (16.8M2) LP turbine. Include on curve provided for the 47" LSB (12.9M2) LP turbine provided in proposal (pg. 209).

Re: See pg. 2. Paul will email curve.

• 47" LSB LP turbine appears to choke at 2.2 In Hg. 47" LSB appears marginal for 1100 MWe output with 4 exhaust flows. <u>Re:</u> Correct.

• Has a 57"LSB LP turbine been retrofitted into a Westinghouse turbine frame? References are on pg. 43.

<u>Re:</u> Diablo Canyon. Actual performance was much greater than predicted. Guaranteed 35 MW. Obtained 46 at unit 1 and 50 at unit 2.

- Why was a full impulse HP turbine design selected? Is design constrained due to reuse of existing inlet nozzle box? <u>Re:</u> Standard design in Europe.
- Should HP and LP turbine bearing be rebabbitted due to new rotor journals? <u>Re:</u> Request to include in proposal.
- Why is bearing 5 loaded greater than bearing 4 following retrofit (pg. 196)? Re: Unknown at meeting.
- Pg. 538 discusses bearing pedestal modification for reinforcing brackets. What is expected? Are modifications required?

<u>Re:</u> Bearing strongback to withstand L-0 blade failure by using stronger bolts and heavier strongback if needed.

• Generator rotor rewind will reuse the existing rotor copper winding with new insulation. What is the rewound rotor current capacity rating? <u>Re:</u> 7,720 Amps @ 75 psi H2 gas pressure.

• Generator mid-section replacement is rated at 1173 MVA. What is the rating limiting component? What is the excitation current required? <u>Re:</u> Rotor is limiting above 1173 MVA. Excitation requirement is 6,770 amps @ max PF.

• Generator stator rewind is rated at 1162.5 MVA. Excitation current required is 6,845A (pg. 120). What is the rating limiting component? Pg. 119 states field measurement confirmation is required. What is the risk? The capability curve is shown on pg. 121. Why isn't the maximum power output at unity power factor on the curve?

<u>Re:</u> Stator core is limiting for 1162.5 MVA stator rewind.

• The generator stator rewind reuses the existing core iron as is. What engineering evaluations were performed to qualify reuse of the existing core iron?

<u>Re:</u> Engineering models were evaluated.

- Is a generator startup ventilation test requires for either generator options?
- <u>Re:</u> A ventilation test is not required based on experience.
 - What are the customer installation requirements for the stator cooling water skid and the static excitation system? Pg. 73 states the water skid and water tank control system is not included? What does this mean?

Re: The proposal statement in not applicable.

• What load rating will the lifting beam have?

<u>Re:</u> Design rating should be for generator rotor 360,000 lbs. Lifting slings are included.

Installation Comments:

• Installation schedule is estimated at 75 days (pg. 548). Generator scope is for mid-section replacement. Schedule driver is rotor rewind in shop (60 days, 45 days in shop). Any potential schedule improvement for rotor rewind?

<u>Re:</u> 45 days in shop for generator rotor rewind is best effort. Schedule improvement can only be gained by procuring a new rotor. A new rotor can not be fabricated in time for the 2009 outage. Generator rotor replacement would be 2011. The stator field rewind schedule is 35-42 days.

• Is machining of all HP Turbine cylinder interface locations included (pg. 8)?

Re: Need to include in scope.

• HP turbine exhaust bowl erosion repair is contingency extra cost item.

<u>Re:</u> Contingency repair item.

• Complete rotor train laser alignment is included.

<u>Re:</u> Need to include.

• Destructive removal of bolts is extra work (pg. 544).

Re: Alstom agreed to eliminate this as extra work item.

• New MSR insulation is included (pg. 539).

<u>Re:</u> Yes.

• Generator manways and cleaning of stator winding oil will not be extra work (pg. 544). <u>Re:</u> Alstom agreed to eliminate this as extra work item.

• Heavy hauling is included (pg. 545).

<u>Re:</u> Yes.

• Pg. 545, discuss items relating to H2 coolers and turbine end bearing bracket.

Re: Alstom agreed to eliminate this as extra work item.

• Pg. 546, review personnel numbers identified on table.

<u>Re:</u> Asked Alstom to evaluate and explain the personnel numbers on the table.

• Discuss support resources required to be provided by PE.

Re: Alstom stated their installation cost estimate included all support resources. Need to provide "Division of Responsibilities".

Alstom Proposal # SD22007, CR3 EPU Turbine Generator Retrofit Meeting Notes, 05/15/07:

Commercial Comments:

• Master Service agreement # 139805 open issue discussion.

Re: Alstom needs to provide name of person in Alstom who is responsible to negotiate contract.

• MSR material cost is REDACTED. This appears excessive. Explain basis of cost.

Re: Alstom agrees it is high but can not cut the cost in half. Alstom can work with other MSR vendors.

• HP / LP Turbine material cost is REDACTED This appears high for LP turbine "blade carrier" solution and reuse of HP turbine nozzle box. Explain basis of cost.

<u>Re:</u> material cost / Euro / shop utilization. Larger LP turbine with inner cylinder was stated to be approximately REDACTED more.

• Would Alstom accept total project management responsibility if PE assigned required support labor to Alstom?

<u>Re:</u> alstom stated the estimated installation included all support resources.

• Proposal states installation is T&M billing. PE prefers fixed cost for total project scope.

<u>Re:</u> Can be fixed cost after a defined scope of work is established. PE can provide support resources.

Progress Energy Questions:

- EH tubing will be impacted by MSR replacement.
- Engineering Change and Work Order Package development.
- Radiological support and material decontamination contingency.
- O&M replacement of extraction pipe expansion joints?
- Any other turbine plant major equipment replacements must be integrated into turbine generator schedule for crane usage and logistics coordination.

CONFIDENTIAL

Technical Volume

Progress Energy

Crystal River Nuclear Plant, Unit 3 Turbine Generator Replacement and Retrofit Project Request No. SD22007 ALSTOM Power Ref: 844T0467

PROPRIETARY STATEMENT

This proposal and any drawings, data, photographic material or descriptive matter set out herein are the proprietary, confidential and copyright property of ALSTOM and must not be disclosed, loaned, copied or used for manufacturing, tendering or for any other purpose without their written permission. © 2007

ALSTOM

Technical Volume

•

•

-

•

•

-

REDACTED

PEF-NCR-02379

[] CONFIDENTIAL , REDACTED

•

¥

• **

PEF-NCR-02380

•

.

() CONFIDENTIAL REDACTED

٠

۰.

¥

PEF-NCR-02381

й.,				
*				
		TED		
		REDACTED		
				-
8 Installation			 536	
			 550	
	PEDACTED			
	REDACTED			
9 Through Life Service	Support		 	
	REDACTED)		

,

CONFIDENTIAL.

PEF-NCR-02383

OPC 1st POD

.

#1

080009

BATES NOS. PEF-NCR 02384 THROUGH PEF-NCR-02952

REDACTED
Technical Volume Addendum No. 1

Progress Energy

Crystal River Nuclear Plant, Unit 3 Turbine Generator Replacement and Retrofit Project Request No. SD22007 ALSTOM Power Ref: 844T0467

PROPRIETARY STATEMENT

This proposal and any drawings, data, photographic material or descriptive matter set out herein are the proprietary, confidential and copyright property of ALSTOM and must not be disclosed, loaned, copied or used for manufacturing, tendering or for any other purpose without their written permission. © 2007

Addendum No.1 - Technical Volume

-

•

•

. .

[CONFIDENTIAL

PEF-NCR-02955

	REDACTED	
4 Operation & Maintenance		54
5 Retrofit Experience		55
6 Responses and Deviations		56
7 Manufacture and Supply		57
8 Installation		58
	REDACTED	
9 Through Life Service Support		66

٠

. •

OPC 1st POD

•

٠

#1

080009

BATES NOS. PEF-NCR 02957 THROUGH PEF-NCR-03024

REDACTED

Proposal Summary:

4

HP Turbine: replace in 2009 with partial arc, full impulse turbine design with 3% flow margin. LP Turbines: replace in 2009 with 12.9M2 (47"LSB). Generator Stator: mid-section replacement in 2009 with H2O inner cooled winding. Stator rating is 1173 MVA. Generator Rotor: rewind rotor in 2009 at Richmond shop. Rotor winding is reused. Exciter: replace in 2009 with static excitation system. Voltage Regulator: included in static excitation system. Moisture Separator Reheaters: replace MSR vessels in 2009.

REDACTED Installation cost is estimated for T&M billing. Cost: Total estimated cost for above scope is

Performance Guarantee: 1075.8 MW @ 2.7 In Hg (12.9M2 LP turbine). Does not include MSR drain reroute.

Outage Schedule: 2009 outage schedule is 75 days for HP and LP turbine replacement, generator mid-section replacement and MSR replacement. Schedule driver is shop rewind of generator rotor (60 days, 45 days in shop).

٠,

Optional Scope: Generator Stator field rewind with H2O cooled winding. Stator core iron is not replaced. Cost: total estimated cost reduced to REDACTED Generator Rating: stator rating reduced to 1162.5 MVA. Schedule: 2009 outage schedule will not decrease due to off site rotor rewind.

Sec.

General Notes:

- HP Turbine and Generator must be opened in 2007 for field measurements. Is open and close cost included?
- Evaluate performance of larger 16.8M2 (57"LSB) LP Turbine.
- Heat balance indicates low feed water temperature between 2009 and 2011 (pg. 201, 207, 208). What is plant impact?
- PE must verify generator frame 75 psi H2 pressure rating for generator stator rewind.
- Support systems for water cooled stator skid and static excitation system are additional cost.
- Evaluate control room impact for new systems.

Scope of Supply Comments:

HP Turbine: 7 stage, full impulse design

- New nozzle plates are fitted into existing nozzle box. Existing nozzle plates may need destructive removal. Is machining or repairs to the existing nozzle box included?
- New inner and outer glands are provided. New gland seals machined for rotor clearance. Are both inner and outer glands type 405 ss (pg. 19)?
- Governor pedestal stub shaft will be reused. Eccentricity run out will be corrected. Will a spacer be provided to correct axial position if needed?

Scope of Supply Comments:

LP Turbine: 10 stage, reaction design

- Inner cylinder is reused. Blade carriers are replaced. Discuss interface between new blade carriers and existing inner cylinder (pg. 37).
- Blade carriers are ductile cast iron with 12% CR ring inlays. How are the ring inlays installed in the blade carriers (pg. 51)?
- L-0 blades have snubbers. Why not free standing?

Generator Mid-Section: 1173 MVA, Capability Curve pg. 77

- Verify main leads between stator and bushings are replaced. Not shown on pg. 75.
- Discuss phase dropper and bushing connection installation (pg. 98 / 99).

Stator Water Skid:

• What are the plant requirements to support installation?

Generator Stator Rewind: 1162 MVA, Capability Curve pg. 121

- Scope includes core iron loop test (pg.117). What are the power supply requirements?
- Core loop test is not identified in testing section 2.4.3.29 (pg. 143).

Installation Comments:

- Installation schedule is estimated at 75 days (pg. 548). Generator scope is for mid-section replacement. Schedule driver is rotor rewind in shop (60 days, 45 days in shop). Any potential schedule improvement for rotor rewind?
- Is machining of all HP Turbine cylinder interface locations included (pg. 8)?
- HP turbine exhaust bowl erosion repair is contingency extra cost item.
- Complete rotor train laser alignment is included.
- Destructive removal of bolts is extra work (pg. 544).
- New MSR insulation is included (pg. 539).
- Generator manways and cleaning of stator winding oil will not be extra work (pg. 544).
- Heavy hauling is included (pg. 545).
- Pg. 545, discuss items relating to H2 coolers and turbine end bearing bracket.
- Pg. 546, review personnel numbers identified on table.
- Discuss support resources required to be provided by PE.

Commercial Comments:

- Master Service agreement # 139805_open issue discussion.
- MSR material cost is <u>REDACTED</u>. This appears excessive. Explain basis of cost.
- HP / LP Turbine material cost is REDACTED This appears high for LP turbine "blade carrier" solution and reuse of HP turbine nozzle box. Explain basis of cost.
- Would Alstom accept total project management responsibility if PE assigned required support labor to Alstom?
- Proposal states installation is T&M billing. PE prefers fixed cost for total project scope.

Progress Energy Questions:

- EH tubing will be impacted by MSR replacement.
- Engineering Change and Work Order Package development.
- Radiological support and material decontamination contingency.
- O&M replacement of extraction pipe expansion joints?
- Any other turbine plant major equipment replacements must be integrated into turbine generator schedule for crane usage and logistics coordination.

Crystal River Unit 3 Extended Power Uprate Project, Turbine Generator Retrofit Proposal Evaluation

Progress Energy issued Crystal River Unit 3 (CR3) Turbine Generator Retrofit Request for Proposal # SD22007 on February 16, 2007. The request for proposal was issued to Siemens Power Generation, Alstom Power Systems, Mitsubishi Heavy Industries and Westinghouse Nuclear (Toshiba). The CR3 turbine generator was originally supplied by Westinghouse Power Generation (i.e. Siemens). The CR3 low pressure turbines were retrofit in 1996 with Brown Boveri (i.e. Alstom) turbines. CR3 Turbine Generator Retrofit Proposals were received from Siemens Power Generation (Siemens) and Alstom Power Systems (Alstom) on April 16, 2007.

The Siemens and Alstom proposals were very detailed. Proposal review meetings were held with both vendors to clarify scope details of each proposal. Both vendors amended their proposal based on the proposal review meeting clarifications. The Siemens proposal amendment letter was received on May 18, 2007. The Alstom proposal amendment letter was received on May 30, 2007.

The turbine generator retrofit bid specification (issued with RFP # SD22007) identified the expected main steam conditions and the expected turbine backpressure following the CR3 extended power uprate. The generator minimum operating capability was specified as 1080 MW concurrent with 430 MVAR lagging reactive power (i.e. 1162.5 MVA). The goal if the CR3 EPU is to produce 1080 MW at a turbine backpressure of 2.7 In. HGA. The CR3 turbine generator is to be retrofit during the 2009 plant steam generator replacement outage. The 2009 outage is expected to be approximately 72 days in duration.

The Siemens and Alstom proposals were evaluated based on the following criteria:

- HP and LP turbine material scope of supply and cost.
- Generator and Excitation System scope of supply and cost.
- Moisture Separator Reheater (MSR) scope of supply and cost.
- Electrical Output Guarantee.
- 2009 Outage Schedule Duration.
- Generator MVA rating.
- Total Project Cost.

Alstom Initial Proposal Summary:

- All hardware scope of supply requirements were met. The proposed LP turbines were small 13M2 exhaust annulus design with 47 inch last stage blades. The proposed small LP turbines negatively impact the performance guarantee by 4MW. The proposed generator stator rewind is a water cooled stator design. The proposed excitation system is a static exciter. The water cooled generator stator and static excitation system require new plant support systems to be installed at an estimated additional cost of REDACTED
- The 2009 turbine generator retrofit schedule proposed by Alstom is 75 days driven by offsite generator rotor rewind. The 72 day outage schedule is impacted by an estimated additional 10 days at an estimated cost of REDACTED based or REDACTED replacement power cost.
- The generator will be rated at 1162.5 MVA, limited by reuse of the stator core iron which meets the minimum requirements, but allows no margin.

• The total project cost was evaluated substituting a competitors lower hardware cost.

The initial Alstom proposal did not support the 2009 outage schedule of 72 days. The Alstom proposal does not meet the desired electrical output of 1080 MW. The Alstom proposal provides a marginal generator capability rating of 1162.5 MVA due to reuse of the stator core iron.

Alstom amended their proposal to include larger LP turbines and a new generator rotor to address the electrical output and outage schedule issues.

Alstom Amended Proposal Summary:

- Hardware scope of supply revised to include larger 16.8M2 exhaust annulus design LP turbines with 57 inch last stage blades and a new generator rotor.
- The guaranteed electrical output is 1080 MW.
- The 2009 turbine generator retrofit outage schedule is 58 days.
- The generator will be rated at 1162.5 MVA, limited by reuse of the stator core iron.
- The total project cost was evaluated substituting a competitors lower hardware cost.

The amended Alstom proposal provides a marginal generator capability rating of 1162.5 MVA due to reuse of the stator core iron. To improve the generator capability rating a generator mid-section replacement is required. The Alstom proposal identified an additional cost of (REDACTED) to replace the generator mid-section to enable a generator capability rating of 1250MVA. The proposed Alstom water cooled stator winding and static excitation systems require additional new plant support systems to be installed at an estimated additional cost of REDACTED. The amended Alstom proposal turbine generator retrofit schedule is 58 days. REDACTED

PEF-NCR-03033

PROGRESS ENERGY CRYSTAL RIVER UNIT 3 NUCLEAR POWER STATION REPLACEMENT TURBINE GENERATOR BID SPECIFICATION

and the second second second second second second second second second second second second second second second

DOULMENT ALMERANDATE

RECORD OF REVISION CHANGE SECT/PARA. REV. NO. 00 N/A

DESCRIPTION/CHANGE AUTHORIZATION

 $\sim 10^{-10}$

Initial Issuance

Date: 2/15/07

Date: 2-15-07

In accordance with established procedures, the quality of this specification has been assured. Signatures certify that this specification was originated, checked and approved as noted below:

Deahna

MIG

Mike Gunning

Kent Smith

um

Prepared By:

Prepared By:

Reviewed By:

Reviewed By:

trunt	Date:	2/15/07
1. Land	Date:	2/15/07

AREVA Approval:	BDeverden	Date:	2115/07
	Brad Devendorf		
Progress Energy Approval:	Ted Williams	Date:	2/15/07

TABLE OF CONTENTSSECTION

<u>TITLE</u>

<u>PAGE</u>

1.0	SCC	DPE	4
	1.1	General	4
	1.2	Objectives	5
	1.3	Proposal Pricing	5 5
	1.4	Existing Configuration	6
	1.6	Operating Conditions	8
	1.7	Scope of Supply	10
	1.8	Scope of Supply by Others	15
	1.9	Scope of Services	15 15
	1.10	Required Bid Documentation	16
	1.12	Required Documentation After Award	17
2.0	DEF	INITIONS	19
3.0	DEE	EPENCES	10
5.0			12
	3.1	Codes and Standards	19 23
	3.3	Documents	23
4.0	DES	IGN REQUIREMENTS	24
	41	Site Conditions	24
	4.2	Service Conditions	24
	4.3	Technical Requirements	24
5.0	MA	FERIAL REQUIREMENTS	31
	5.1	Materials	31
	5.2	Moisture Erosion Protection	31
	5.3	Piping	31
6.0	INSI	PECTION AND TESTING	33
	6.1	General	33
	6.2	Shop and Field Tests	34
7.0	FAB	RICATION REQUIREMENTS	35
8.0	INST	TALLATION REQUIREMENTS	35
9.0	SHI	PMENT	35
	9.1	Preparation and Packaging for Shipment	35
	9.2	Shipping Requirements	35
10.0) ATT	ACHMENTS	36
	10.1	CR3 Turbine Generator Operating Data from 01/31/2007	36
	10.2	CR3 MUR Power Uprate PEPSE Analysis	36
	10.3	CR3 P&ID's	36
	10.4	URD TUIDINE Generator Layout Drawings	30

1.0 <u>SCOPE</u>

1.1 General

The Crystal River Unit 3 Nuclear Power Station (CR3), located near Crystal River, FL presently generates 903 MWe at 100% reactor power (2568 MWt).

. .

CR3 is planning an "appendix K" feedwater flow measurement uncertainty recovery (MUR) uprate of 1.6% reactor power during the fall 2007 refueling outage. The CR3 steam generators will be replaced during the fall 2009 refueling outage. The fall 2009 refueling outage is expected to begin in September and will have a duration of approximately 80 days. CR3 is planning to implement an extended reactor power uprate of an additional 15.4% reactor power during the fall 2011 refueling outage. The total extended power uprate from present will be 17%.

The intent of the CR3 extended power uprate (EPU) project is to retrofit the low pressure turbines, moisture separator reheaters, generator and the exciter during the fall 2009 refueling outage. The high pressure turbine will be designed and retrofit during the fall 2011 refueling outage to support the reactor thermal uprated conditions. Based on current HP turbine governor valve positions, it is assumed that HP Turbine modifications are not necessary for the 1.6% MUR uprate.

Seller is requested to provide a proposal for replacement of the CR3 high pressure and low pressure turbines. The objective is to obtain a replacement steam path that produces the maximum power from the steam supplied by the steam generators after implementation of a 17 percent power uprate. A new steam path shall be defined as including both the fully assembled rotating parts as well as the adjacent stationary parts, as required. The replacement steam path should maintain or improve the existing unit's availability while addressing stress corrosion cracking in both the blade attachments and the disk and keyway areas, reducing erosion of turbine stationary parts and increasing the time between maintenance intervals. The replacement steam path shall consider the capability of the existing support systems and equipment to minimize the need to replace or modify the existing support systems, structures and components. The replacement high pressure turbine shall consider the capability to the plant integrated control system to control main steam header pressure based on the estimated governor control valve positions following retrofit.

Seller is requested to provide a proposal for replacement of the CR3 moisture separator reheaters (MSR's). The objective is to obtain replacement moisture separator reheaters that optimize the uprated turbine steam cycle conditions. The replacement MSR's shall consider maintaining the existing plant piping configuration including the turbine cross under and cross over piping.

Seller is requested to provide a proposal for generator / exciter capability uprate. The CR3 plant step up transformers will be rated at 1200 MVA. The uprated generator / exciter capability should closely match the step up transformer capability. Various generator stator uprate options should be submitted for consideration including rewinding with hydrogen inner cooled winding, rewinding with water cooled winding or a complete midsection replacement. The generator rotor forging is expected to be reused and rewound in the shop. An excited rotor spin balance is required. The exciter and voltage regulator shall be evaluated for modification or replacement to support the generator uprated capability.

Seller shall provide details of all field measurements required. Required field measurements should be identified as required to support final design or final machining. Required schedule for performing required field measurements shall be identified. Seller shall identify long lead time materials.

1.2 Objectives

The following objectives will apply to the design of the new turbine steam path and generator capability:

- 1.2.1 To provide a state-of-the-art turbine generator design that will maximize the electrical (MWe) output and reliability.
- 1.2.2 To contribute to a maximum overall availability and efficiency for the NSSS-turbine-generator combination.
- 1.2.3 To provide ease of maintenance and increase outage inspection intervals to a minimum of 10 years over a 40 year design life.
- 1.2.4 To provide minimum ISI intervals of 10 years.
- 1.2.5 To essentially eliminate Stress Corrosion Cracking (SCC) as a maintenance issue. This shall include all areas subject to SCC such as rotor bore, disk/wheel bore, blade root radii, blade attachment, etc.
- 1.2.6 To eliminate or severely reduce wear due to moisture erosion.
- 1.2.7 To provide a rated generator MVA capability that will have a minimum performance capability of 1080 MWe real power output while concurrently providing 430 MVAR overexcited reactive power.
- **1.2.8** To refurbish or replace the generator exciter and automatic voltage regulator to reliably support the uprated generator capability.
- **1.2.9** To provide moisture separator reheaters that maximize the performance of the uprated steam cycle.

1.3 Proposal Pricing

Purchaser has milestone to purchase rotor forgings and other long lead time materials during 2007 to support 2009 installation schedule.

Seller shall evaluate and present bid proposal pricing in the following formats:

- 1.3.1 Bid the following work scope separately:
 - a. High pressure turbine retrofit.
 - b. Low pressure turbine retrofit.
 - c. Generator stator and rotor rewind. Generator stator hydrogen (H2) inner cooled winding and water (H2O) cooled winding options should be provided.
 - d. Generator stator midsection replacement (optional scope).
 - e. Exciter / voltage regulator modification / replacement.
 - f. MSR vessel replacement
 - g. Turnkey Installation and commissioning service for proposed solution. Installation shall be performed in accordance with NRC 72 hour work week rule for nuclear power plant workers.
- 1.3.2 Combine the total work scope (proposed solution) in one bid.

1.4 <u>QA Condition</u>

The replacement turbine steam paths to be provided are classified as non nuclear safety related. Evaluation of any design basis requirements of rotating machinery will be required during the design phase.

1.5 Existing Configuration

1.5.1 Current Heat Balance Data:

The present CR3 plant heat balance (2584 MWt NSSS power) and future heat balance for the MUR uprate (2625 MWt NSSS power) is attached. The PEPSI heat balance model can be provided electronically to the seller upon request.

-94)-

1.5.2 Thermal Power:

The CR3 NSSS is a B&W pressurized water reactor design with two once through steam generators (OTSG's). The NSSS thermal power is 2584 MWt. CR3 intends to submit a license amendment to operate at 2625 MWt NSSS power following the fall 2007 refueling outage and to operate at 3030 NSSS power following the fall 2011 refueling outage.

1.5.3 <u>HP Turbine Model</u>:

The CR3 high pressure turbine is a Westinghouse designed building block 296 (BB296), Serial Number 13-A-3511.

Nameplate Data: Guaranteed KW: 860 MW; Steam Inlet Pressure: 885 Psig; Steam Inlet Temperature: 567F, Steam Reheat Temperature: 505F; Exhaust Pressure: 2 in hg abs. The high pressure turbine is a double flow element with one (impulse) control stage followed by eight stages of double reaction blading.

1.5.4 <u>HP Turbine Steam Chests:</u>

Four main steam headers carry main steam from the OTSG's to the two steam chests located on each side of the high pressure turbine. Each steam chest includes two throttle valves and two governor control valves. The four main steam headers enter the steam chests from below, on each end of the steam chest. The steam passes through the throttle valves, then the governor valves, before entering the high pressure turbine. The steam chest outlets are connected to the high pressure turbine casing through four inlet pipes. Two of the high pressure turbine steam inlet connections are in the base and two are in the cover of the outer cylinder. A steam header that runs under the HP turbine directly cross connects the two steam chests.

1.5.5 <u>LP Turbine Model</u>:

The CR3 low pressure turbines were originally Westinghouse designed building block 281 (BB281), Serial Number 13-A-3512 and 13-A-3513. The CR3 low pressure turbine steam paths were retrofit in 1996 with Asea Brown Boveri (ABB), model DS92, double flow, nine stage reaction turbines with 45 in LSB. A Reheat Stop Valve (RSV) and a Intercept Valve (IV) are located on each LP turbine steam lead. The RSV's and IV's are butterfly valves and function as open – close valves to isolate steam flow to the LP turbines.

1.5.6 Moisture Separator Reheater's (MSR's):

CR3 is equipped with four (4) MSR vessels. The CR3 moisture separator reheater were originally Westinghouse designed chevron type moisture separators with 2 stage reheat. Each reheat stage consisted of a 13, 650 Ft², two pass tube bundle. The MSR tube bundles were replaced in 1988 with Thermal Engineering International (formerly Southwestern Engineering Co.) designed 18,000 Ft², four pass tube bundles. The present MSR design conditions are: MSR Shell: 265 Psig, 515F HP Tube Bundle: 1050 Psig, 600F LP Tube Bundle: 625 Psig, 500F

1.5.7 Generator Model:

The CR3 generator was originally a Westinghouse designed, 4 pole, H2 inner cooled, frame 126 x 275, S.O. 75P665, rated at 984MVA, 0.9PF, 1800 RPM, 22,000 volts, 3 phase, 60 cycles. The generator midsection was replaced in 1990 with a Siemens designed type THDD 170/70-18. The present generator is rated at 989.4 MVA, 22 KV, 25.965 KA, 60 Hz, 0.9 PF at 60 Psig H2 pressure, 46 C H2 cold gas temperature. The field rating is 500 volts and 6340 amps. The generator reactive capability is 430 MVar overexcited (lagging) at 0.9 PF. The generator rotor winding has 3 known shorts.

1.5.8 Exciter Model:

The CR3 exciter is a Westinghouse designed air cooled, double wheel, Mark II brushless exciter, frame A161C, S.O. 75P667, rated at 3500 KW, 500 volts, 7000 amps. The brushless exciter permanent magnetic generator (PMG) is directly connected to the exciter and is rated at 36KW, 125 volts, 420 cycles.

1.5.9 Voltage Regulator Model:

The excitation switchgear and automatic voltage regulating equipment is Westinghouse designed excitation switchgear with type WTA solid state regulator brushless excitation system.

Ratings:			
Rated Generator MVA		989.40	MVA
Rated Generator Terminal Voltage		22.00	KV
Rated Generator Stator Amps		25.965	KA
PT Ratio		183	
CT Ratio		7000	
Generator Terminal Voltage at rated from PT		120.0	VAC
Generator Terminal Current at rated from CT		3.71	VAC
Shunt Ratio (Amps per 100mV) Rated Exciter Field Current from		200.00	Amps
Shunts		52.6	mV
Ceiling Current	129%	67.80	mV

11.1

1.6 **Operating Conditions**

The following table defines the present operational parameters and expected power uprate operational parameters for the extended power uprate project.

The 1.6 % Measurement Uncertainty Recovery Uprate (MUR) will be implemented in the R15 refueling outage scheduled to begin in November 2007. Installation of **Phase 1** is scheduled for the R16 refueling outage beginning in September 2009. Phase 1 will include installation of new LPT's, MSR's, Generator Rewind, and Feedwater Heaters. Installation of **Phase 2** is scheduled for the R17 refueling outage beginning in October 2011. Phase 2 will include installation of a new HPT and Remaining balance of plant modifications (main feedwater condensate and booster pumps, Turbine Bypass Valves, etc).

		Phase 1	Phase 2
Parameter	Present Value	MUR Uprate	Extended Power Uprate (EPU)
OTSG Thermal Power	2584 MW _{th}	2625 MW _{th}	3030 MW _{th}
OTSG Inlet Pressure	989.0 psia	1015.7 psia	1015 psia
OTSG Inlet Temperature	457.7 °F	458.4 °F	460 °F
OSTG Inlet Enthalpy	439.2 btu/lbm	440.0 btu/lbm	441.7 btu/lbm
OTSG Outlet Pressure	923.40 psia	923.4 psia	964 psia
OTSG Outlet Temperature	591.00 °F	594.5 °F	582 °F
OSTG Outlet Enthalpy	1250.4 btu/lbm	1250.0 btu/lbm	1237.4 btu/lbm
Main Feed Pump Discharge	1010 psia	1044.1 psia	1083 psia
Pressure			
Final Feedwater Flow	10.854 Mlb/hr	11.012 Mlb/hr	13.00 Mlb/hr
Turbine Throttle Pressure	902.72 psia	902.04 psia	930 psia
Turbine Throttle Flow	10.365 Mlb/hr	10.530 Mlb/hr	
Turbine Control Valve		TBD	TBD
Positions:			
GV-1	45% (6.5 inches)		
GV-2	100% (14 inches)		
GV-3	100% (14 inches)		
GV-4	15% (2.25 inches)		
Turbine Backpressure	Design Point –	Design Point -	Design Point –
	2.0 in hg abs.	2.7 in hg abs.	2.7 in hg abs.
(Ref. HES condenser analysis	(seasonal range	(seasonal range	(seasonal range 2.0 –
report)	1.5 – 3.5)	1.5 – 3.5)	4.0)

Refer to Attachment 10.1 for CR3 Turbine Generator Plant Operating Data from 01/31/2007.

Refer to Attachment 10.2 for CR-3 MUR Power Uprate PEPSE Analysis. The CR3 PEPSI model can be electronically transmitted upon request.

CR3 Condenser Performance Analysis:

The EPU turbine back pressure design point should correspond with 75F circulating water inlet temperature. 75F circulating water inlet temperature is the CR3 seasonal average temperature. A study was conducted by Heat Exchanger Systems Inc. to determine the condenser performance at the extended power uprate conditions. The objective of the study was to determine the condenser performance, specifically the condenser inlet pressure, for different operating conditions. The steam inlet flow was increased by 18% and the cooling water flow rate increased to give a tube velocity of 10ft/s, with equal flow in each water box. Cases were run for circulating water temperatures of 50°F, 70°F, 75°F, 88°F, and 95°F. A cleanliness factor of 0.9 was assumed.

	LP Exhaust Flow	LP Inlet Enthalpy	FWTB Flow	FWTB Inlet
	(lb/hr)	(BTU/lb)	(lb/hr)	Enthalpy (BTU/lb)
Original Case	5939619	1006	105870	1016
Present Study	7008750	1006	124926	1016

To obtain a circulating water flow rate in the tubes of 10 ft/sec, the inlet CW flow rate was initially set to 227,275 gpm per waterbox. The original study utilized CW flow rates of 160,000 gpm in waterboxes A and D, and 180,000 gpm in waterboxes B and C. A further series of runs were performed for a CW inlet flow of 207,400 gpm per waterbox.

Run	Inlet CW Temperature (F)	Offtake Pressure (inHg)	Condenser Back Pressure (inHg) (227,275 gpm)	Condenser Back Pressure (inHg) (207,400 gpm)
1	50	1.25	2.10	2.26
2	70	1.35	2.52	2.69
3	75	1.35	2.62	2.78
4	88	1.4	3.13	3.33
5	95	1.75	3.79	3.91

The results of the calculations performed are summarized in Table 2.

These results are presented graphically in Figure 1.

17

1.7 Scope of Supply

The scope of supply shall include, as determined by the seller, the following:

1.7.1 Turbine

The seller shall furnish the design, engineering, equipment, materials, fabrication and assembly, for the replacement of the high pressure and low pressure turbine steam path and associated equipment. Specify all necessary material and any other components requiring replacement for compatibility with the replacement steam path. The seller shall evaluate the feasibility of reusing existing equipment, controls, turbine supervisory instrumentation bearings and hood sprays. For the reused components, the Contractor shall provide written evaluations justifying the reuse of these components or provide new replacement components that are compatible with the new design.

a. <u>HP Turbine and Steam Chests:</u>

Assumptions:

i. Turbine valves, steam chests and HP turbine outer cylinder will be reused.

Scope:

- i. One double flow HP rotor and rotating blades. Seller may propose impulse or reaction type steam path with partial arc or full arc control mode with 3% flow margin. See evaluation requirements below.
- ii. Inner casings, blade rings and stationary blades.
- iii. Nozzles and flow guides.
- iv. Inner Gland seals with stainless steel housings.
- v. Outer Gland seals and housings.
- vi. Couplings and hydraulic coupling bolts.
- vii. The turbine rotor shall include a center bore if required by Seller's design. If a center bore is required, it shall be included in the base scope of supply
- viii. Any other components requiring replacement for compatibility with the replacement steam path.

Evaluations Required:

- i. Seller shall estimate final governor valve position and impact to steam flow control. The CR3 plant integrated control system (ICS) controls main steam header pressure constant setpoint at all loads by adjusting steam flow to HP turbine.
- ii. Bearing loading.
- iii. Governor pedestal HP turbine stub shaft and control components.
- iv. Outer cylinder bolting.

b. <u>LP Turbines:</u>

Assumptions:

i. Intercept valves, crossunder and crossover piping, outer cylinder and thrust bearing will be reused.

Scope:

- i. Two double flow LP rotors and rotating blades.
- ii. Inner casings, exhaust diffusers, blade rings and stationary blades.
- iii. Gland seals and housings.
- iv. Couplings and hydraulic coupling bolts.
- v. Bull Gear.

- vi. Makeup to extraction steam pipes.
- vii. Any other components requiring replacement for compatibility with the replacement steam path.

Evaluations Required:

- i. Bearing loading.
- ii. Extraction steam pipe nozzles.
- iii. Re-use of existing inner casing

1.7.2 Generator

Assumptions:

- i. The CR3 minimum generator capability shall be 1080 Mwe real power concurrent with 430 Mvar overexcited reactive power capability.
- ii. The stator core iron can be reused and rewound with either a hydrogen (H₂) inner cooled winding or a water (H₂O) cooled winding.
- iii. The generator rotor forging and the 18-18 retaining rings can be reused. The generator rotor winding has three known shorts and shall be replaced.

Scope:

- i. Stator rewind.
- ii. Rotor rewind.
- iii. Coupling and the hydraulic coupling bolts.
- iv. Lead bushings.
- v. Main lead current transformers.
- vi. Generator monitoring systems (TBD).

Evaluations Required:

- i. Evaluate an optional scope for generator mid-section replacement.
- ii. Capability curve.
- iii. Stator Core Iron.
- iv. Maintaining a hydrogen (H₂) inner cooled stator winding or upgrading to a water (H₂O) cooled stator winding
- v. Additional cooling requirements for uprated generator.
- vi. Rotor coupling.
- vii. H2 gland sealing design and upgrade.
- viii. Neutral ground transformer and support systems

1.7.3 Excitation

Assumptions:

- i. Exciter must be refurbished or replaced.
- ii. WTA automatic voltage regulator should be replaced with digital voltage regulator including a Delta-P Omega power system stabilizer.

Scope:

- i. Brushless or static exciter.
- ii. Digital automatic voltage regulator with a Delta-P Omega power system stabilizer.

Evaluations Required:

- i. Uprated generator excitation requirements.
- ii. Exciter shaft requirements.

1.7.4 Moisture Separator Reheaters:

Four complete replacement moisture separator reheater vessels with two stages of reheat and four pass tube bundles shall be included in the Seller's scope of supply. MSR moisture separation and tube bundles should be designed to optimize the turbine steam cycle to achieve the best performance within the existing shell envelope. Existing nozzle configuration and piping should be reused to the extent possible. The MSR shall be designed in accordance with Electric Power Research Institute (EPRI) NP-3692 "Procurement and Operation Considerations for Moisture Separator Reheaters". 439 SS tube material shall be specified. MSR instrumentation package shall be included.

1.7.5 Instrumentation and Controls

The turbine AEH control system is expected to be reused. The AEH controller receives turbine demand input from the plant integrated control system or the operator and positions the governor control valves based on input demand. The turbine throttle valves are maintained full open when the unit is on line.

The turbine supervisory instrument system is a Bently Nevada 3300 system and is expected to be reused. Pickup mounting details will be provided by the buyer to support retrofit design. Each turbine generator bearing is monitored by X-Y (2 plane) dual probe vibration pickups. HP and LP turbine differential expansion, rotor thrust position and HP turbine governor pedestal expansion is monitored.

The generator stator is equipped with two rotor flux probes. The probe wiring exits the generator frame for connection to portable rotor flux monitoring equipment. Generator rotor flux probes will be reused or replaced.

The seller shall recommend new generator monitoring systems (rotor flux monitor, stator end turn vibration monitor, stator partial discharge monitor, etc) as appropriate. New generator monitoring systems should be priced and evaluated separately. The CR3 generator mid-section replacement was equipped with a stator end turn vibration monitoring system and a radio frequency monitoring system. The existing systems are obsolete or abandoned. An old style generator core condition monitor (Environment One) is still functioning.

The seller shall furnish all electrical components and associated auxiliary equipment required to support the turbine replacement, MSR replacement and generator modifications.

The seller shall furnish a MSR instrumentation package and a generator instrumentation package.

The seller shall evaluate existing electrical and control systems and interfaces to verify existing capabilities and compatibility. This shall specifically address the turbine speed control system (AEH Electro-Hydraulic Control System), as well as, auxiliary instrumentation and controls. Seller shall design the equipment to ensure that all of the interfacing systems, structures, and components shall be reused, if possible, and shall operate with minimal modification of the systems.

If the existing electrical and instrumentation/control systems are not usable, then, seller shall furnish all electrical components and associated auxiliary equipment required to support the turbine replacement, MSR replacement and generator modifications. Generator / Rotor monitoring instruments may require replacement or rescaling. The seller shall provide evaluation for buyer approval.

The Seller shall furnish all instrumentation including instrument piping / tubing, root valves, thermowells, and accessories required for the turbine generator and MSR replacement and or modification. The seller shall recommend any instrumentation upgrades considered appropriate.

If the Seller chooses to supply alternate control systems, the alternate systems shall be modern digital systems that fully meet U.S. nuclear industry requirements for scope of supply, redundancy and EPRI recommendations. The Seller shall completely describe any such offering.

All instrumentation provided shall be wired to terminal blocks in dust-tight and drip-proof terminal boxes (NEMA 4) accessible from outside the turbine-generator housing. Seller shall provide all wiring, raceway, terminal blocks, and junction boxes for these items.

All electrical conduit furnished by the Seller shall be rigid galvanized steel conduit supplied in ANSI standard sizes in nominal English units (inch sizes) at all Buyer/Seller terminal points. Rigid galvanized steel conduit furnished in accordance with IEC standards is acceptable for conduit within Seller's terminal points.

Each instrument connection to the main process lines shall be provided with an isolation (root) valve. Similarly, instrument vent/drain connections shall be also provided with an isolation valve. A valve or drain plug is not acceptable.

All instrumentation tubing and accessories supplied shall be stainless steel.

All thermocouples furnished shall be iron-constantan. All RTD's furnished shall be 100 ohm platinum. Any transmitters to be provided shall use a 4-20 ma signal range.

Where termination of Buyer's wiring is required, the Seller's wiring shall be connected to 600 volt barrier type molded terminal blocks for extension during installation at the plant site. Seller-to-Seller terminations shall be Seller's standard. Buyer's connections made on terminal blocks and on internal devices shall be by means of flanged spade or ring type insulation-gripping insulated terminals. Dedicated termination points shall be provided for connection of all cable shield drain wires. All thermocouple wiring shall be terminated on appropriate thermocouple type terminal blocks. Internal wiring shall have no splices in any circumstance, nor shall more than two wires be terminated on one terminal point. All terminal blocks shall be properly marked and identified, for all internal and external wiring. All cables shall be fire retardant.

Contacts for switches to be connected to Buyer's equipment (e.g. plant annunciator, plant computer system, plant supplied control room indicators, etc.) shall be double pole-double throw or equal, and rated for 125 VDC, 0.3 amperes inductive load minimum.

1.7.6 Evaluation of Existing Components

The Seller shall evaluate existing mechanical and electrical systems and interfaces to verify existing capabilities and compatibility. Seller shall design the equipment to ensure that all of the interfacing systems, structures, and components shall be reused, if possible, and shall operate with minimal modification of the systems, structures, and components. The evaluation shall include, but not limited to, the following:

- a. Turbine Generator Foundation
- b. Physical interface with Steam Chest and Governor valves
- c. Steam Systems Location, Size, and Compatibility
 - i. HPT cross under piping to MSR

 \sim

- ii. MSR cross over piping to LPT
- iii. Extraction steam nozzle sizes and locations
- iv. Gland seal steam
- v. Gland steam exhaust
- d. Support Systems
 - i. Turbine lube oil system
 - ii. EHC- electro-hydraulic control system
 - iii. Hood sprays
 - iv. Generator seal oil system
- e. Main Shaft and Bearings
 - i. Couplings
 - ii. Spool pieces
 - iii. Bearing pedestals
 - iv. Bearings
 - v. Turning gear
 - vi. Thrust bearing
 - vii. HP turbine stub shaft and mechanical overspeed trip
- f. Turbine Supervisory Instrumentation
- g. Turbine Controller and Plant Integrated Control System Response
- h. Generator Capability
- i. Generator Cooling Requirements
- j. Excitation System Requirements
- k. MSR and Turbine Steam Cycle Performance

1.7.7 Engineering

The following Engineering and supporting calculations are expected after award of contract.

- a. Analysis supporting 40-year design life
- b. Design calculations
- c. Overspeed trip and other set point changes
- d. Design requirements for modifications to existing systems, structures, and components
- e. Torsional response analysis
- f. Critical speed calculations
- g. Calculations supporting recalibration of all instrumentation and controls
- h. Natural Frequency Calculations
- i. Rotor lateral and torsional frequency response and loading transients
- j. Missile probability analysis
- k. Turbine deck laydown plan and floor loading analysis

1.7.8 Miscellaneous

- a. The seller shall furnish all tools required for removal of existing equipment, installation of new and reused equipment and modification of retained systems, structures and components. This shall include, but not be limited to special customer tools as required for erection and maintenance of supplied equipment; lifting beams, hydraulic tools for assembly of inner casing flange bolts and couplings, tools for installation of balancing weights, tools required for maintenance (e.g. guiding elements, lifting slings, rigging equipment, etc.), and a set of power roller rotor stands for each rotor supplied.
- b. Seller shall furnish and deliver all spare parts required during construction.
- c. Shipment to the job site shall be the responsibility of the seller.

1.8 Scope of Supply by Others

- 1.8.1 Access to system design information. Identification of the required information is the seller's responsibility. The purchaser shall retrieve or duplicate necessary documents such as drawings, procedures, specifications, etc.
- **1.8.2** Modifications to existing mechanical systems, components including piping and hangers as required for the new installation.

- 1.8.3 Modifications to existing turbine control systems, instrumentation and electrical systems as required for compatibility with replacement equipment. Seller shall describe any such modifications as described in section 1.7.5
- 1.8.4 Modifications to existing generator interface systems and equipment such as generator cooling water supplies, generator busses, generator breakers, main transformers and protective relaying as required for compatibility with replacement equipment.
- **1.8.5** Any existing parts that require replacement as a result of disassembly of the existing components for final installation will be supplied by the owner.
- 1.8.6 Disposal of removed components that shall not be reused.
- **1.8.7** Operation personnel to perform shutdown, startup, draining, filling, isolation, and other normal. system operating functions.
- 1.8.8 Safety clearance and tagging of all equipment.
- 1.8.9 Removal, inspection, and installation of instrumentation.
- 1.8.10 Electric power, lighting, water, compressed air, and overhead crane facilities.
- 1.8.11 Removal and installation of insulation.
- 1.8.12 All electrical disconnects and terminations required to perform work.
- **1.8.13** Construction and removal of scaffolding.
- 1.8.14 Radiation protection technicians if required.
- 1.8.15 Unescorted access training for seller's personnel.
- 1.8.16 Preparation of post installation test procedures. Supply of test instrumentation. Performance of post installation tests and preparation of associated test reports.

1.9 <u>Scope of Services</u>

- 1.9.1 Design, fabrication, shipping, inspection and factory testing of equipment, including implementation of Quality Control procedures to ensure completed equipment satisfies the specification and design requirements.
- **1.9.2** Factory assembly of stationary components to validate dimensional and configuration interface with retained systems, structures and components.
- **1.9.3** Engineering and design for any required modification of interfacing or retained systems, structures and components.
- 1.9.4 Start-up testing and tuning of excitation system.
- 1.9.5 Drawings and manuals.
- 1.9.6 Calculation of heat balances and revision of the Thermal Kit.
- 1.9.7 Quality Assurance and Quality Control documentation.
- 1.9.8 Shipping and Handling
- 1.9.9 Review of post installation test procedures. Field support for post-installation tests and review of associated test reports.

1.10 Schedule

Seller shall provide expected equipment delivery schedules (lead times) and anticipated installation schedule durations.

1.11 Required Bid Documentation

Seller shall submit a complete proposal fully describing all of the proposed equipment and all services to be furnished. All documents shall be in English and in U.S. measurement units.

- 1.11.1 Technical product description including but not limited to rotor design, rotor design life, steam path design, susceptibility to stress corrosion cracking, erosion-corrosion resistance, materials of construction, inter-stage sealing, codes and standards.
- 1.11.2 Requirements for seller inspection of existing equipment including owner support required.
- 1.11.3 Provide separate Heat Balance Diagrams for the phase 1 installation and the phase 2 installation. Include a new guarantee diagram with the new MSR's, HP and LP turbine components.
- 1.11.4 Performance guarantee estimate.
- 1.11.5 Generator capability curve. Generator cooling requirements. Generator excitation requirements.
- 1.11.6 A list of all equipment and materials to be furnished including special tools and spare parts required for construction.
- 1.11.7 Outline drawings of the turbine-generator unit giving approximate weights, principal dimensions, and showing main piping connections.
- 1.11.8 Equipment warrantee information.
- 1.11.9 A project level milestone schedule including forging milestones and long lead time material requirements.
- 1.11.10 Proposed installation schedule that starts with the time when the turbine is taken off turning gear and ends with the time that it goes back on turning gear (i.e., days to install the equipment).
- 1.11.11 Additional optional scope of supply as defined by seller.
- 1.11.12 Identification and interfaces with remaining components.
- 1.11.13 The evaluation of retained interface components.
- 1.11.14 Specify any modifications required to existing equipment including but not limited to exhaust hoods/diffusers, packing casings, vacuum alarm, bearings, turbine lube oil system, and turbine supervisory instrumentation to allow installation of new equipment.
- 1.11.15 Recommended inspection interval for each major part (Rotor and Cylinder) including scope of inspection.
- 1.11.16 Provide details of the new component construction. The seller shall describe the materials proposed to be used for the major parts of the equipment, such as Rotors, Blades (all stationary and rotating rows), and Casings, to be supplied using either an ASTM designation or the closest ASTM designation. This shall include moisture erosion protection features for all new components.
- 1.11.17 Factory and field balancing of rotors and vibration standards used.
- 1.11.18 Steam chemistry/purity requirements.
- 1.11.19 Organizational structure of labor for turnkey installation including craft labor, supervision, technical direction and project management.
- 1.11.20 The seller shall provide recommended test methodologies including acceptance testing based on the alternative test as defined in the latest edition of ASME Performance Test Code PTC-6.
- 1.11.21 Absolute backpressure limitations including alarm values.
- 1.11.22 Performance effect of annual variation in condenser absolute backpressure. LSB exhaust loss curve and total exhaust loss curve.
- 1.11.23 Summary of retrofit experience with similar equipment and technology. Identify "first of a kind" scope.
- 1.11.24 Sellers service facilities that are applicable to the equipment covered in these specifications and their locations.
- 1.11.25 Recommended test procedure / tuning procedure for exciter and voltage regulator.

1.12 Required Documentation After Award

				SUBMITTAL
No.	DESCRIPTION	PRIORITY	TYPE & QUANTITY	DUE DATE (WEEKS REDE or PTS)
	Thermal Kit	1	5 Copies or 1E	8 weeks RFDE
2	General Arrangement Drawing	2	5 Copies or 1E	8 weeks RFDE
	for the Turbine-Generator/MSR		1	
4	Proposed turbine generator	2	5 Copies or 1E	8 weeks RFDE
	startup and operating procedures			
5	Engineering Schedule	2	5 Copies or 1E	4 weeks RFDE
6	Procurement/Production / Shipping Schedule	2	5 Copies or 1E	8 weeks RFDE
7	Recommended Detailed Erection Sequence	4	5 Copies or 1E	4 weeks RFDE
8	QA Inspection and Test Schedule	3	5 Copies or 1E	4 weeks RFDE
9	Final Quality Control Documentation including Shop Test and Inspection Reports	3	5 Copies or 1E	2 weeks PTS
10	Generator Performance Data	3	5 Copies or 1E	18 months RFDE
11	Shipping List	4	5 Copies or 1E	12 weeks PTS
12	Spare Parts List - Erection & Commissioning	4	5 Copies or 1E	12 weeks PTS
13	Spare Parts List - Operational Spares	4	5 Copies or 1E	6 months PTS
14	Special Tools List	4	5 Copies or 1E	12 weeks PTS
15	P&IDs	2	5 Copies or 1E	4 weeks RFDE
16	Lube Oil Equipment Outline	2	5 Copies or 1E	6 weeks RFDE
17	Generator Stator Cooling Water Skid Outline	2	5 Copies or 1E	8 weeks RFDE
18	MSR Foundation Requirements	2	5 Copies or 1E	6 weeks RFDE
19	Gen. Stator Cooling Water Skid Foundation Requirements	2	5 Copies or 1E	8 weeks RFDE
20	Excitation System - General Arrangement	2	5 Copies or 1E	8 weeks RFDE
21	Excitation System - Foundation Requirements	2	5 Copies or 1E	8 weeks RFDE
22	Excitation System - Elementary & Connection Diagrams	2	5 Copies or 1E	12 weeks RFDE
23	Terminal Point Locations - Mechanical	2	5 Copies or 1E	8 weeks RFDE
24	Terminal Point Locations - Electrical	2	5 Copies or 1E	12 weeks RFDE
25	ASME Pressure Vessel Certifications	2	5 Copies or 1E	At Shipment
26	Generator Electrical Connection Details	2	5 Copies or 1E	16 weeks RFDE
27	Generator Neutral Grounding Cubicle Drawings	2	5 Copies or 1E	24 weeks RFDE

. *

No.	DESCRIPTION	PRIORITY	TYPE & QUANTITY	SUBMITTAL DUE DATE (WEEKS RFDE or PTS)
28	Interconnecting Piping General Arrangement Drawings	2	5 Copies or 1E	12 weeks RFDE
29	Preliminary Instruction, Inspection and Maintenance Manuals	2	5 Copies	18 months RFDE
30	Final Instruction, Inspection and Maintenance Manuals including maintenance procedures.	3	10 Copies	6 months PTS
31	Erection Manuals	4	5 Copies	18 months RFDE
32	Max. Allowable Nozzle Loads	2	5 Copies or 1E	24 weeks RFDE
33	Weld End Details at Buyer/Supplier Terminal Points	2	5 Copies or 1E	16 weeks RFDE
34	Field Checkout Procedures	4	5 Copies or 1E	8 weeks PTS
35	Start-up Manual	4	5 Copies + 1E	12 months PTS
36	Supplier's standard reference material	2	5 Copies or 1E	4 weeks RFDE
37	Storage and Handling Procedures	4	5 Copies or 1E	12 months RFDE
38	Recommendations for Rigging and Handling Equipment	4	5 Copies or 1E	12 months RFDE
39	Generator Characteristic data and Phase Current Unbalance Calculation	2	5 Copies or 1E	18 months RFDE
40	Exciter model and tuning parameters for input to transmission PSS / E software	2	5 Copies or 1E	4 weeks RFDE
41	Foundation Drawings	2	5 Copies or 1E	4 weeks RFDE

1. RFDE - Release for detailed engineering PTS - Prior to shipment

2. Priority Code:

Priority 1 - Critical for Owner's licensing activities

Priority 2 - Critical for Buyer's plant

Priority 3 - Required to verify compliance with specifications

Priority 4 = Required for field installation

Priority 5 = Required for field installations, operation and maintenance manuals

3. Type & Quantity = Type and number of copies of drawings/data required.

R = Reproducible P = Print E = Electronic

2.0 DEFINITIONS

The following definitions shall apply to this specification:

Owner	-	Progress Energy
Purchaser	-	Owner Representative
Buyer	-	Owner Representative
Seller	-	Firm proposing to supply the subject equipment.
Supplier	-	Firm awarded the order for the subject equipment.
Contract	-	Equipment and Service Supply Contract
OSTG	-	Once Through Steam Generator
VWO	-	Valves Wide Open
STG	-	Steam Turbine Generator
TBD	-	To Be Determined
PWR	-	Pressurized Water Reactor

3.0 REFERENCES

3.1 Codes and Standards

Note that only recognized U.S. standards and equivalent International standards will be accepted. A list of applicable International codes and standards shall be submitted, in English, for Engineer's acceptance prior to use.

The design, fabrication, materials, workmanship, and testing of all equipment shall be in accordance with the buyer's standards and applicable codes. In the bid proposal, the Contractor shall identify all applicable codes and standards (with revision) to be utilized. In the event of an apparent conflict among standards, codes and this specification, the seller shall identify such conflict. The Seller shall obtain written resolution of such conflict from the purchaser prior to proceeding with work involving the conflict.

When standards are referenced in this specification without current or effective dates, the latest revision of the standard specification in effect as of the date of the Contract shall be considered applicable. Any modifications to the standard specifications included herein shall be with the express written approval of the purchaser.

- 3.1.1 Heat Exchange Institute (HEI)
 - a. Standards for Power Plant Heat Exchangers
 - b. Standards for Steam Surface Condensers
- 3.1.2 Standards of Tubular Exchanger Manufacturer's Association (TEMA)
- 3.1.3 Hydraulic Institute Standards
- 3.1.4 Electrical equipment shall be designed, constructed and tested in accordance with the following standards:
 - a. Institute of Electrical and Electronics Engineers (IEEE):
 - i. Standard General Principles for Temperature Limits in the Rating of Electrical Equipment and for Evaluation of Electrical Insulation, IEEE 1.

- ii. Neutral Grounding Devices, IEEE 32.
- iii. AC High Voltage Circuit Breakers, IEEE C37.013
- iv. Generator Ground Protection Guide, IEEE C37.101
- v. Recommended Practice for Testing Insulation Resistance of Rotating Machinery, IEEE 43
- vi. Operation and Maintenance of Turbine Generators, IEEE 67
- vii. Test Procedures for Polyphase Induction Motors and Generators, IEEE 112A.
- viii. Test Code for Direct Current Machines, IEEE 113.
- ix. Test Procedures for Single Phase Induction Motors, IEEE 114.
- x. Test Procedures for Synchronous Machines, IEEE 115.
- xi. Test Procedure for Carbon Brushes, IEEE 116.
- xii. Speed governing of Steam Turbine, IEEE 122.
- xiii. Standard Definitions for Excitation Systems for Synchronous Machine, IEEE 421.1
- xiv. Guide for Identification, Testing, and Evaluation of the Dynamic Performance of Excitation Control Systems, IEEE 421.2.
- xv. Guide for the Preparation of Excitation System Specifications, IEEE 421.4.
- xvi. Requirements for Cylindrical Rotor Synchronous Generators, IEEE C50.13.
- xvii. Standard for Flame Testing of Cables for Use in Cable Trays in Industrial and Commercial Occupancies, IEEE 1202.
- b. American National Standards Institute (ANSI):
 - i. National Electric Safety Code, ANSI C2.
 - ii. Switchgear, ANSI C37.
 - iii. Definition of Electrical Terms, ANSI C42.
 - iv. General Requirements for Synchronous Machines, ANSI C50.10.
 - v. Transformers, ANSI C57.
 - vi. Measurements of Voltage in Dielectric Tests, ANSI C68.1.
- c. National Electrical Manufacturers Association (NEMA):
 - i. Methods of Measurements of Radio Influence Voltage of High Voltage Apparatus, NEMA 107.
 - ii. Enclosures, NEMA 250.
 - iii. Industrial Control, NEMA 1CS1.
 - iv. Motors and Generators, NEMA MG1, MG2.
 - v. Electric Power Connectors, NEMA SG1.
 - vi. Power Circuit Breakers, NEMA SG4.
 - vii. Transformers, Regulators and Reactors, Section Entitled "Test Code for Measurement of Radio Influence Voltage Levels", NEMA TR1.
 - viii. General Purpose Wiring Devices, NEMA WD.
- d. National Fire Protection Association (NFPA) Standard 70 "National Electrical Code".
- e. National Electric Reliability Counsel (NERC) Standard PRC-024-1."Generator Performance During Frequency and Voltage Excursions" (currently draft for review).
- f. All electrical hardware shall be listed in the Factory Mutual Approval Guide or, if not listed in this guide, shall be Underwriters Laboratories listed.
- 3.1.5 Recommended Practices for the Prevention of Water Damage to Steam Turbines Used for Electric Power Generation, ANSI/ASME TDP-1.

 \sim

- 3.1.6 Instrumentation, Systems, and Automation Society (ISA), Standards and Practices for Instrumentation.
- 3.1.7 Scientific Apparatus Makers Association (SAMA), PMC 22.1, Functional Diagramming of Instrument and Control Systems.
- 3.1.8 All work performed and materials provided by the Supplier shall be in accordance with Federal, State, County, and Municipal codes, laws, and ordinances of the place of installation.
- 3.1.9 International Code Council, International Building Code (IBC).
- 3.1.10 American Society of Civil Engineers (ASCE) Standard 7, Minimum Design Loads for Buildings and Other Structures.
- 3.1.11 Equipment and systems shall be in accordance with the rules and regulations of the US Federal Occupational Safety and Health Administration (OSHA) including 29CFR1910, General Industry Regulations and 29CFR1926 Construction Industry Regulations.
- 3.1.12 National Fire Protection Association (NFPA):
 - a. Fire Protection for Light Water Nuclear Power Plants, NFPA-803
 - b. Standard for the Storage, Use, and Handling of Compressed Gases and Cryogenic Fluids in Portable and Stationary Containers, Cylinders and Tanks, NFPA-55
- 3.1.13 USNRC U.S. Nuclear Regulator Commission, Title 10 Code of Federal Regulations, Regulatory Guides and Standard Review Plan, Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants, NUREG-0800, Draft Revision – April 1996.
- 3.1.14 ISO 9001 or ANSI/ASQC Q91, Quality Systems-Model for Quality Assurance in Design/Development, Installation and Servicing
- 3.1.15 International Organization for Standards (ISO):
 - a. ISO 7919-2, Mechanical Vibration Evaluation of Machine Vibration by Measurements on Rotating Shafts - Part 2: Land Based Steam Turbine and Generators
 - b. ISO Standard 10816-2, Mechanical Vibration Evaluation of Machine Vibration by Measurements on Non-Rotating Parts - Part 2: Land Based Steam Turbine and Generators
 - c. ISO 3740, Acoustics Determination of Sound Power Levels of Noise Sources Guidelines for the Use of Basic Standards
 - d. ISO 3744, Acoustics Determination of Sound Power Levels of Noise Sources Engineering Method in an Essentially Free Field Over a Reflecting Plane
 - e. ISO 3746, Acoustics Determination of Sound Power Levels of Noise Sources Survey Method
- 3.1.16 American Concrete Institute (ACI):
 - a. Mass Concrete, ACI-207.1
 - b. Effects of Restraint, Volume Change and Reinforcement on Cracking of Mass Concrete, ACI-207.2
 - c. Cooling and Insulating Systems for Mass Concrete, ACI-207.4
 - d. Standard Specifications for Structural Concrete, ACI-301
 - e. Details and Detailing of Concrete Reinforcement, ACI-315
 - f. Building Code Requirements for Reinforced Concrete Structures, ACI-318
 - g. Recommendations for Design Beam-Column Joints in Monolithic Reinforced

PAGE 21 OF 36

Concrete Structures, ACI-352R

- h. Recommendations for Design Slab-Column Joints in Monolithic Reinforced Concrete Structures, ACI-352.1R
- i. Response of Concrete Buildings to Lateral Forces, ACI-442
- 3.1.17 American Society of Testing and Materials (ASTM):
 - a. Standard Methods and Definitions for Mechanical Testing of Steel Products, ASTM A-370.
 - b. Standard Test Method for Ultrasonic Examination of Turbine and Generator Steel Rotors, ASTM A-418
 - c. Standard Specification for Vacuum Treated Carbon and Alloy Steel Forgings for Turbine Rotors and Shafts, ASTM A-470
 - d. Standard Practice for the Design of Steam Turbine Generator Oil Systems, ASTM D-4248
 - e. Standard Guide for Radiographic Testing, ASTM E-94
 - f. Standard Reference for Radiographs for Heavy Wall Steel Castings, ASTM E-186
 - g. Standard Reference for Radiographs for Steel Castings up to Two Inches in Thickness, ASTM E-446
 - h. Standard Specification for Vacuum Treated Steel Forgings for Generator Rotors, Grade 6, 7 or 8, ASTM A-469
 - i. Standard Specification for Alloy Steel Forgings for Nonmagnetic Retaining Rings for Generators, ASTM A-289
- 3.1.18 American Society of Mechanical Engineers (ASME):
 - a. Boiler and Pressure Vessel Code, Section II, Materials
 - b. Boiler and Pressure Vessel Code, Section V, Nondestructive Examination
 - c. Boiler and Pressure Vessel Code, Section VIII, Division 1, Rules for Construction of Pressure Vessels
 - d. Boiler and Pressure Vessel Code, Section IX, Welding and Brazing Qualifications
 - e. Unified Inch Screw Threads, UN and UNR Form, ASME B1.1
 - f. Pipe Threads, General Purpose, ASME B1.20.1
 - g. Forged Steel Fittings, Socket-Welding and Threaded, ASME B16.11
 - h. Butt welding Ends, ASME B16.25
 - i. Pipe Flanges and Flanged Fittings, ASME B16.5
 - j. Valves Flanged, Threaded and Welding End, ASME B16.34
 - k. Orifice Flanges, ASME B16.36
 - 1. Power Piping, ASME B31.1
 - m. Performance Test Code, PTC-6, Steam Turbines
 - n. Performance Test Code, PTC 6.1, Interim Test Code for an Alternative Procedure for Testing Steam Turbines
 - o. Performance Test Code, PTC 6S, Procedures for Routine Performance Test of Steam Turbines
 - p. Performance Test Code, PTC 12.4, Moisture Separator Reheaters
 - q. Performance Test Code, PTC 20.1, Speed and Load Governing Systems for Steam Turbine Generator Units.
- 3.1.19 American Institute of Steel Construction (AISC), Manual of Steel Construction
- 3.1.20 American Welding Society (AWS), D1.1, Structural Welding Code Steel
- 3.1.21 United States Department of Commerce, National Institute of Standards and Technology (NIST), Special Publication 811, "Guide for the Use of the International System of Units (SI)".
- 3.1.22 HTRI, Heat Transfer Research Institute.

3.1.23 American Petroleum Institute (API):

- a. Standard 610, Centrifugal, Rotary and Reciprocating Pumps.
- b. Standard 674, Positive Displacement Pumps Reciprocating.
- c. Standard 675, Positive Displacement Pumps Controlled Volume.
- d. Standard 676, Positive Displacement Pumps Rotary.
- 3.1.24 USNRC U.S. Nuclear Regulator Commission, Draft Guide DG-1145, Combined License Applications for Nuclear Power Plants (LWR Edition) dated April 22, 2006.

.

3.2 <u>Regulatory Requirements</u>

3.2.1 Regulatory Guide 1.115, Protection against low-trajectory turbine missiles.

3.3 <u>Documents</u>

3.3.1 CR-3 MUR Power Uprate PEPSE Analysis attached.

4.0 DESIGN REQUIREMENTS

Note: See section 1.11 for bid-proposal documentation requirements.

4.1 <u>Site Conditions</u>

The CR3 turbine generator is enclosed in a turbine building. The turbine operating deck is at elevation 145 ft. The turbine building is not seismically qualified. The turbine building is equipped with a ventilation system. The turbine building ambient temperature does not exceed 120F.

The turbine building is equipped with one overhead crane rated at 185 ton.

4.2 Service Conditions

4.2.1 Normal Operations

The replacement turbines shall not impose any restrictions on the normal operation of the unit that are more restrictive than the standard operating recommendations when the unit is in good condition.

The LP turbine shall be designed with a normal operating backpressure of at least 5.5 inches of Hg (absolute).

4.2.2 Maintenance

The recommended intervals between turbine overhauls shall be at least 10 years. Specific operating surveillances are required to achieve this extended interval. The seller shall provide operating surveillance requirements and the scope of work typically required for inspections, minor overhauls, and major overhauls.

4.3 <u>Technical Requirements</u>

4.3.1 Turbine Performance Requirements

a. Phase 1 Installation: LPT, MSR, Generator Rewind Guarantee.

The Seller shall guarantee the turbine-generator gross electrical output (MW_e) uplift after installation of the turbine and MSR steam paths at 2625 MWt, backpressure, and makeup in accordance with the contract guarantee heat balance. This performance improvement results directly and exclusively from the scope of supply defined in this specification. The owner will be replacing feedwater heaters due to degradation and to support the extended power uprate during the same refueling outage. The new feedwater heaters will be sized for the maximum power uprate condition with the same design TTD and DCTD as indicated on the current CR3 heat balance.

Performance of remaining cycle components external to and not impacted by this scope of supply, such as stop valves, gland steam system, etc., shall remain materially unchanged from the pre- to the post- and as described in the guarantee heat balances is assumed.

The Seller shall provide a revised thermal kit for the revised turbine designs that includes the following but not limited to:

PAGE 24 OF 36

-042
- i. Heat Balance Diagrams with the new turbine and MSR components at VWO, 100% MWth (guarantee point), 75%, 50% and 25%. The baseline and guarantee HBD's will provide the basis for the thermal performance warranty.
- ii. Net Heat Rate
- iii. Turbine Expansion Line for each Heat Balance
- iv. LP Turbine Base Expansion Line End Points
- v. Extraction Stage Pressure vs. Flow
- vi. Gland Leakages and Mechanical Losses
- vii. Heat Rate and Load Correction Curves for: exhaust pressure, throttle pressure, throttle temperature, reheater TTD
- viii. Turbine Stage Moisture Removal Effectiveness
- ix. LP Turbine Exhaust Loss Curve
- x. Generator Loss
- b. Phase 2 Installation: HPT, Balance of Plant Modifications Guarantee

The Seller shall guarantee the turbine-generator gross electrical output (MW_e) uplift after installation of the HPT steam paths at 3030 MWt, backpressure, and makeup in accordance with the contract guarantee heat balance. This performance improvement results directly and exclusively from the scope of supply defined in this specification. The owner will be modifying the main feedwater pump, condensate and booster pumps, and other balance of plant systems and components as required to support the extended power uprate during the same refueling outage.

The Seller shall provide a revised thermal kit for the revised turbine designs that includes the following but not limited to:

- i. Heat Balance Diagrams with the new HPT and balance of plant components at VWO, 100% MWth (guarantee point), 75%, 50% and 25%. The baseline and guarantee HBD's will provide the basis for the thermal performance warranty.
- ii. Net Heat Rate
- iii. Turbine Expansion Line for each Heat Balance
- iv. HP Turbine expansion line end points
- v. First Stage Pressure vs. Flow
- vi. Extraction Stage Pressure vs. Flow
- vii. Gland Leakages and Mechanical Losses
- viii. Heat Rate and Load Correction Curves for: exhaust pressure, throttle pressure, throttle temperature, reheater TTD
- ix. Turbine Stage Moisture Removal Effectiveness
- c. Turbine Performance

The seller's heat balance shall be based on the operating parameters specified on the buyers heat balance for nominal full load conditions. Specific requirements for the design include HP turbine throttle pressure and temperature, HP turbine throttle enthalpy, HP turbine throttle flow, and final feedwater temperature. Values for feedwater heater performance at uprated conditions as well as extraction line pressure losses can also be obtained from the buyers heat balance. Values for MSR performance shall be provided by the seller based on the proposed new design.

The turbine shall be designed with a mass flow margin of 2% above the steam flow required to achieve the guaranteed output at the throttle pressure specified in the buyer's heat balance diagram for nominal 100% load to account for manufacturer's tolerances. In addition, the design shall allow for an additional 1% flow margin for the buyer for a **total of 3% flow margin**.

The turbine shall be capable of stable operation at 100% of rated steam flows and rated conditions with one or more low pressure turbine operating at choked flow conditions.

The turbine governor valves shall be capable of controlling stable main steam header pressure.

4.3.2 Generator Performance Requirements

The generator shall be designed to produce a minimum of 1080 MW real power concurrent with 430 MVAR overexcited reactive power at 100% reactor thermal output power. The ability to produce minimal power out put with 430 MVAR is required to ensure that the reactive power capability of the generator during the summer time operation is not limited.

The generator shall be suitable for operation at rated MVA, power factor, and frequency at $\pm 5\%$ of rated voltage in accordance with the standards of performance established for operation at normal rating. Permissible variation at the generator terminal voltage shall be in accordance with IEEE C50.13.

The maximum temperature rise for any generator component shall be in accordance with IEEE C50.13 for Class B. The total temperatures as determined by any of the methods given in ANSI/IEEE applicable Standards shall not exceed 110° C for the stator coils and for the field when operating at full loads, and over the full range of power factors.

The generator open circuit terminal voltage wave deviation factor shall not exceed 10% as defined by ANSI/IEEE standard.

Starting from stabilized temperature at rated conditions, the generator field windings shall be capable of operating at 130% of rated armature current for one minute in accordance with IEEE C50.13 standard requirements.

Starting from stabilized temperature and rated conditions, the generator field windings shall be capable of operating at 125% of rated load field voltage for one minute in accordance with IEEE C50.13 standard requirements.

The stator windings shall satisfactory withstand normal maintenance high potential tests without damage.

The generator shall be capable of continuous operation at any load up to its rated maximum out put and shall withstand all expected operating transients resulting from rapid load changes and transmission line fault conditions.

In accordance with IEEE C50.13, the generator shall be capable of withstanding without mechanical damage from any type of short circuit at its terminals for times not exceeding the short time thermal capabilities, when operating at rated voltage and power factor as well as 5% over voltage, provided the maximum phase current is limited by external means to a value which does not exceed the maximum phase current obtained from the three phase fault.

Generator Operating Frequency Requirements:

1) Must be able to withstand frequency excursions between 59.5 Hz and 60.5 Hz indefinitely

2) Must be able to withstand frequency excursions between 58.5 Hz and 59.5 Hz for 60 seconds

- 3) Must be able to withstand frequency excursion between 60.5 Hz and 61.8 Hz for 10 seconds
- 4) Must be able to withstand frequency excursions between 58.0 Hz and 58.5 Hz for 10 seconds

5) Must be able to withstand frequency excursions between 57.5 Hz and 58.0 Hz for 1 second

Generator Operating Voltage Requirements:

1) Must be able to withstand terminal voltages within +/-5% of rated nominal voltage indefinitely

2) Must be able to withstand terminal voltage deviations between 5% and 10% (+/-) for 10 seconds

Generator Operating Overexcitation Requirements:

1) Must be able to withstand Volts per hertz conditions less than 116% (of generator nominal voltage and frequency) for 1.5 seconds

2) Generator overexcited stator currents less than 150% of nameplate rating for at least 5 seconds.

4.3.3 MSR Performance Requirements

Four complete replacement moisture separator reheater vessels with two stages of reheat and four pass tube bundles. MSR moisture separation and tube bundles should be designed to optimize the turbine steam cycle to achieve the best performance within the existing envelope. Existing vessel supports, nozzle configuration and piping should be reused to the extent possible.

4.3.4 Turbine Design Requirements

The seller shall identify every interface between the new steam flow path and the existing equipment where mating to existing parts is a consideration. The seller shall also identify components that cannot be utilized with the replacement design and which therefore must be replaced. Options shall be considered and other components recommended for replacement based on optimization of performance, component life, reduced maintenance and other operational measures as defined elsewhere in this Specification, as well as cost considerations.

All Equipment shall be designed for a minimum of 40 years of service with a 10-year minimum inspection interval.

The seller should consider inspection ports for bore scope inspection technique.

The seller shall cite experience and analytic bases that demonstrate satisfactory performance and long-term reliability for 40 plus years of trouble-free service. Any equipment that does not meet the 40-year design life shall be explicitly detailed in the Bid Proposal.

Erosion resistant materials shall be used in all areas susceptible to erosion, including turbine blading and nozzles. Moisture removal provisions and / or protective shields shall also be utilized where appropriate. Any blade coatings utilized in the wet steam of the LP turbine shall have demonstrated proven experience under conditions similar to those encountered in the CR3 turbine. Provisions shall be incorporated into the turbine design to minimize erosion of the HP turbine nozzle and the LP turbine inner casing. Specific features addressing this requirement shall be identified by seller.

To limit the overall probability that a turbine missile event will occur and cause unacceptable damage, turbine missiles shall be considered in the design of the turbine and turbine control system. seller shall provide a missile analysis report.

Lateral and torsional natural frequencies shall not coincide with harmonics of operating speeds, test speeds, and line frequency. Adequate damping shall be provided in the overall turbine

generator design to minimize peaking at critical speeds. The seller shall provide the following information to the Buyer to address site specific characteristics:

a. Minimum separation of the lateral natural frequencies (critical speeds) of the complete turbine-generator assembly from operating and test speeds (above and below).

20

b. Separation between torsional natural frequencies of the complete turbine-generator shaft and anticipated exciting line frequencies under normal operating conditions or under upsets (e.g., loss of load or loss of generation on the system).

The blade frequencies of tuned modes shall be verified by testing in accordance with seller's standard practice. The calculation of blade frequencies should include the effect of centrifugal forces, metal temperatures, root fixity factors, and blade grouping devices (i.e., covers, lashing lugs, etc.). The seller shall provide Campbell diagrams for each stage.

The rotor couplings shall be integral with the shaft and shall be compatible with existing components. The couplings shall withstand shocks during operation, including generator short circuit and synchronizing out of phase without exceeding the minimum yield stress of the coupling or bolting. The rotor design shall minimize stress concentrations.

The Seller shall describe the method of rotor fabrication including whether a center bore is included and the reasons for including or not including the center bore.

Turbine rotor and blade materials and fabrication techniques shall have proven high resistance to Stress Corrosion Cracking (SCC). Effects of material strength, heat treatment, temper embrittlement of low alloy steels, and sensitization of stainless steels shall be considered.

At the time of manufacture, rotors shall be dynamically balanced at rotational speeds from 0 to 120 percent of rated speed on the manufacturer's test stand. Shaft vibration during final field operational runs shall not exceed ISO Standard 7919 Part 2 limits and ISO Standard 10816 Part 2 for non-rotating parts.

The seller shall provide the owner with the total loading imposed on the foundations by the components supplied.

The replacement rotors shall be designed to maximize practical compatibility with existing journal and thrust bearings. New bearings, if required, should be designed with adequate lubrication from the existing turbine lubricating oil system. If the existing lubricating oil system is inadequate, the seller shall propose modifications to the existing system.

The design shall also maintain the current frequency of Overspeed Protection system testing, the quarterly Main Turbine Valve testing and the Main Turbine Valve disassembly / inspection frequency.

The seller shall provide all connections required to perform an ASME Performance Test Code PTC 6, alternative test, on all seller's furnished equipment and piping. Seller is not responsible for PTC 6 connections in the owner's supplied piping.

4.3.5 Generator Design Requirements

It is expected that the most cost affective options are provided with the bid proposal for buyer consideration.

Generator design is an alternate synchronous speed rated according with the requirements of this specification and driven by the turbine described herein. The upgraded generator shall be of non salient pole design, with the existing cylindrical rotor and revolving field.

The seller shall identify every interface between the new rewind generator and the existing system/equipment. Components that cannot be utilized with the new design and which therefore must be replaced are to be identified for buyer approval.

A design evaluation of the existing generator design is required to determine if the proposed generator uprate can be accomplished with the existing hydrogen inner cooled cooling system or optional stator water cooled system will be required. It is expected that since the recommended operational limits is exceeding those as defined by the present capability curve is likely to have an impact on generator active components and corresponding auxiliaries.

The contractor shall identify all interface between the new generator winding and rotor upgrade and the existing equipment such as hydrogen cooling system, exciter, voltage regulator where these subsystems can be utilized. Options shall consider components recommended for replacement based on optimization of performances, component life cycle status, reduced maintenance, as well as cost effectiveness.

The stator and rotor insulation shall be of Class F per IEEE C50.13 with Class B temperature rise in accordance with this specification.

Evaluation shall be required to determine if the following replacement or refurbishment are warranted,

Generator retaining ring, Generator main leads and High voltage bushings. Hydrogen coolers with its control and supply system (Required design pressure) Rotor collector rings, Rotor field windings, Current transformers, Rotating Exciter and exciter field control (including cooling system) Rotor coils end turns Rotor retaining leads. Generator surge protection and RF monitoring,

All temperature sensors shall be wired to the existing terminal blocks according to the existing layout, with similar number of sensors. Any recommendation for upgrading temperature sensors design/layout requires buyer approval.

Generator rewinding evaluation shall include an analysis of the existing grounding system. If the existing design and grounding condition can not be utilized a new grounding system shall be recommended for buyer approval.

If the seller recommends new generator retaining rings, the non magnetic material shall be 18Mn-18Cr type material.

An optional stator cooling system shall be considered if additional generator output power could be gained and analysis could show improvements in the generator performance.

In the bid proposal, the contractor shall cite experience and analytic bases that demonstrate satisfactory performance and long-term reliability for 40 plus years of trouble free services for the generator/subsystems. Any components that does not meet the 40 years expected design life shall be explicitly detailed in the bid proposal.

On site torsional vibration testing for the new upgraded turbine generator should be included if analysis deems necessary.

4.3.6 MSR Design Requirements

The MSRs shall be designed, fabricated, inspected and tested in accordance with HEI Standards for Power Plant Heat Exchangers and ASME Section VIII, Division 1. MSRs and drain tanks shall be certified to ASME Section VIII and shall be Code symbol stamped. The MSR shall be designed in accordance with Electric Power Research Institute (EPRI) NP-3692 "Procurement and Operation Considerations for Moisture Separator Reheaters".

Moisture separator reheater tube material shall be type 439 stainless steel. Tube-to-tubesheet joint shall be rolled and welded.

Seller shall specify MSR overpressure protection requirements in accordance with the requirements of ASME Section VIII. Relief valves shall be specified for overpressure protection on the Seller's piping or equipment in accordance with ASME Code requirements.

Minimum plate thickness for baffles and support plates shall be in accordance with HEI Standards for Power Plant Heat Exchangers. Bidder shall describe the minimum plate thickness for baffles and support plates in the proposal and provide evidence of acceptable experience thereof.

5.0 MATERIAL REQUIREMENTS

5.1 Materials

- 5.1.1 The seller shall specify materials selected for manufacture of the Equipment. The seller shall justify these materials for their respective applications as part of the Bid Proposal. The seller shall utilize materials that are resistant to stress corrosion cracking and erosion for use in the manufacture of the equipment.
- 5.1.2 The seller shall provide the proposed materials list, which shall designate the equipment material selection (i.e., ASTM designation, any supplements or equivalents), chemical composition and physical properties. Materials and equipment as determined by the seller and subject to the approval of buyer.
- 5.1.3 Materials used in the manufacture of the stationary parts, and the rotor and blades shall be consistent with current technology so as to provide the maximum amount of service under the specified service conditions.
- 5.1.4 The use of asbestos materials or materials containing asbestos shall not be permitted. The use of mercury or material containing mercury shall not be permitted. All nonmetallic materials in Supplier furnished piping systems shall be noted to the Engineer for review and comment.
- 5.1.5 Steam path components shall not be made of copper or copper based alloys such as bronze or brass. Steam path components shall not contain lead.
- 5.1.6 The seller shall identify, as a part of his bid, any parts with cobalt.
- 5.1.7 Turbine steam path structural materials shall have satisfactory proven experience with the main steam chemistry requirements specified herein.

5.2 Moisture Erosion Protection

- 5.2.1 Moisture erosion protection is required in all areas subject to erosion. The location and type of moisture erosion protection shall be identified and described. Where cladding is used, the type and extent of such cladding and its purpose shall be described. Where shot peening is used, the extent of such shot peening and its purpose shall be described. Where hard surfacing, such as flame hardening, induction hardening or material inserts is used, the extent of such hard surfacing and its purpose shall be described.
- 5.2.2 This moisture protection could include but not be limited to:
 - a. The leading edge of the high moisture stages free standing rotating blade rows.
 - b. The water removal provisions at every steam extraction location.
 - c. The horizontal and vertical joints and sealing surfaces of every stationary part where steam leakage can occur.
 - d. Other areas subject to moisture erosion such as casing surfaces, extraction nozzle connections and rotor sealing surfaces.

5.3 Piping

5.3.1 All piping furnished by the seller shall be provided in ASME standard sizes in nominal English units (inch sizes) at all buyer/seller terminal points. All weld end preparations, socket weld PAGE 31 OF 36

 \sim

couplings, threaded connections (mechanical and electrical), flange sizes and ratings, at Buyer/Supplier terminal points shall comply with ASME standards in English units.

5.3.2 Seller's field erected piping shall be designed, fabricated, tested and inspected to ASME B31.1. Materials shall resist erosion/corrosion. A minimum corrosion allowance of 1/16" shall be provided for all carbon steel piping. The routing of the piping shall minimize the effects of erosion/corrosion.

6.0 INSPECTION AND TESTING

6.1 General

- 6.1.1 All of the castings and forgings used in the construction of this unit shall be of high quality and have the necessary casting processing, radiographic testing, magnetic particle inspections, and sonic testing performed that are outlined in the currently applicable ASTM specifications, or their equivalent.
- 6.1.2 All piping furnished by the seller shall be tested in accordance with ASME B31.1.
- 6.1.3 Safety relief valves shall be tested in accordance with ASME Code Section VIII.
- 6.1.4 All heat exchangers, tanks and pressure vessels, except the turbine casings, main steam piping and valves, reheat piping and valves, and the generator coolers, shall be hydrostatically tested in accordance with ASME Section VIII, shall be Code stamped and registered with the National Board. ASME Code Data Forms shall be submitted.
- 6.1.5 Shaft vibration during final field operational runs shall not exceed ISO Standard 7919 Part 2 limits and ISO Standard 10816 Part 2 for non-rotating parts.
- 6.1.6 Certified material test reports (CMTR) shall be provided by seller in accordance with the referenced codes and standards; for large cast steel components; for shafts for equipment over 100 HP; for heat exchanger heads, shell, tubesheets and tubes; for tank shells; for steam piping, valves and piping components; and for stainless steel piping, valves and components.
- 6.1.7 As a minimum for hardware, all materials, components, and welds shall be 100% visually inspected. The inspections shall be documented, performed by qualified inspectors, and performed before painting of the item. Acceptance shall be based upon the workmanship and inspection requirements in the codes and standards, such as ASTM, to which the item is made.
- 6.1.8 The contract price shall include all tests and inspections normally conducted by manufacturers, subcontractors, and material suppliers and all other tests and inspections which may be so specified herein.
- 6.1.9 Seller's weld testing procedures shall be defined in the Quality Procedures and shall satisfy applicable codes and standards. The weld testing program shall be administered by a welding inspector certified in compliance with the American Welding Society (AWS) or Engineer approved equal.
- 6.1.10 Seller shall conduct shop tests of the work as required to comply with applicable codes, to determine acceptability of workmanship and as specified including, but not limited to, the following:
 - a. Pressure testing or NDE of piping systems, pressure vessels and related equipment.
 - b. Testing of welded joints in accordance with applicable requirements.

5.5

6.2 Shop and Field Tests

- 6.2.1 Major rotating parts shall have chemical and physical analysis. Charpy impact tests and fracture appearance transition temperature (FATT) tests are required for turbine wheels and rotor materials.
- 6.2.2 Mechanical inspection for rotor shaft and body including: material chemical and physical properties tests, UT tests, magnetic particle and UT of bore (if applicable), and surface finish tests of slots.
- 6.2.3 The rotor and buckets shall be magnafluxed in accordance with Supplier's inspection and test plan.
- 6.2.4 The high pressure turbine casing shall be either hydrostatically tested or equivalent nondestructive examination (NDE).
- 6.2.5 Turbine Performance Acceptance Test

Turbine acceptance tests will be performed in accordance with the requirements of the latest edition of ASME Performance Test Code PTC-6 alternative test to determine the performance of the replacement turbine generator. Tests will be performed for Phase 1 and Phase 2 of the extended power uprate project. The performance test will be prepared and conducted by the Buyer. The Seller shall provide technical direction, assistance and witnessing of the acceptance test.

The buyer and seller will jointly determine the technical aspects of the acceptance tests with mutually agreed test methodology, procedures, and plans. The seller shall provide technical direction, assistance and witnessing of the acceptance tests. The owner prefers acceptance testing based on the "alternative" test as defined in PTC-6. The seller shall submit with the bid documentation, acceptable test methodologies for owner review including a recommendation based on the alternative test.

Primary flow will be measured using the owners installed Caldon Check Plus LEFM installed in the final feedwater section.

The unit will be considered accepted when the unit meets the guaranteed heat rate and output in accordance with the Contract.

- 6.2.6 Turbine and Generator rotor bore shall have UT bore inspection if applicable.
- 6.2.7 Rotors shall balanced and overspeed tested at not less than 120 percent of rated speed. Generator rotor shall be excited at rated speed to verify no winding shorts.
- 6.2.8 Measurement of cold resistance of stator and rotor windings.
- 6.2.9 Insulation resistance measurements.
- 6.2.10 Stator and Rotor dielectric test.
- 6.2.11 Generator rotor leakage test.
- 6.2.12 Exciter measurement of output voltage and output voltage adjustable range.

7.0 FABRICATION REQUIREMENTS

- 7.1 The seller is required to provide for approval at the owners discretion procedures, plans, and sequences of operation that will be utilized in manufacturing the equipment. The areas of manufacturing and fabrication that may be reviewed and require the owner's approval are forging, casting, machining, mechanical assembly, welding, weld repair, heat treatment, induction hardening, cleaning, nondestructive examination, testing, preparation for shipping (packaging) and shipping. The owner shall retain the right to include additional manufacturing and fabrication operation procedural review and approval after the initial review has been completed.
- 7.2 The buyer shall review and approve subcontractors to be used by the seller.

8.0 INSTALLATION REQUIREMENTS

- **8.1** The seller shall provide support of plant modification and planning packages that shall include, but not be limited to, installation drawings, installation instructions, welding information, bill of materials, etc.
- 8.2 The Seller shall provide instructions for balancing the equipment following the installation.
- 8.3 The Seller shall identify all lubricants and chemicals required for installation.

9.0 SHIPMENT

9.1 Preparation and Packaging for Shipment

- 9.1.1 Preparation and packaging for shipment shall be the responsibility of the seller.
- 9.1.2 All equipment shall be prepared for shipment in such a manner that quality and cleanliness will be maintained during shipment and prolonged storage prior to erection. Equipment and all components shall be adequately protected against damage during shipment.
- 9.1.3 All items subject to corrosion shall be suitably protected.
- 9.1.4 The seller shall identify all desiccants and inhibitors used for preservation during shipment and storage and their required replacement frequency.
- 9.1.5 Shipping expendable materials in contact with austenitic stainless steel or nickel alloys shall not contribute to corrosion during packaging, shipping or storage. Objectionable chemicals within the expendable materials are lead, mercury, chloride, fluoride, sulfur, copper and zinc. The seller shall submit an MSDS for each preservative chemical or material used to the purchaser.
- 9.1.6 The center of gravity and/or lifting points for large and heavy equipment shall be identified.

9.2 Shipping Requirements

- 9.2.1 Shipping to the job site shall be the responsibility of the seller. Any special storage requirements shall be included with each shipment to which they are applicable.
- 9.2.2 Seller shall notify and/or indicate when component requires special considerations during shipment and shall take appropriate measures necessary during shipping and/or storage to prevent damage and/or deterioration of equipment and components.

- - - -

CR3 REPLACEMENT TURBINE GENERATOR BID SPECIFICATION Attachment 10.1

Pg. 2 of 5

CR3 REPLACEMENT TURBINE GENERATOR BID SPECIFICATION Attachment 10.1

CR3 Turbine Generator Operating Data from 01/31/2007

. ~

CR3 Turbine Ger	nerator Computer Point data 01/31/2007		
E101	EXCITER FIELD BREAKER	CLOS	
E102	VOLTAGE REG BASE ADJUST HIGH	NO	
E103	VOLTAGE REG BASE ADJUST LOW	NO	
E104	VOLTAGE REG VOLTAGE ADJUST HIGH	NO	
E105	VOLTAGE REG VOLTAGE ADJUST LOW	NO	
E106	VOLTAGE REG IN TEST	NO	
E107	VOLTAGE REG IN RUN	YES	
E108	VOLTAGE REG CONTROL SW ON COMP	NO	
E202	UNIT 3 GENERATION (MW)	867.19	MWe
E203	UNIT 3 STATOR VOLTAGE (KV)	20.8862	kV
E204	UNIT 3 STATOR CURRENT (KILOAMPS)	24.3586	kA
E210	GENERATED MW TO ICS (MWT-1)	890.38	Mw
E211	GENERATED MW TO ICS (MWT-2)	897.71	Mw
E212	VOLTAGE REGULATOR BALANCE (VOLT)	0.0292969	Volts
G001	GEN BRG OIL DRAIN TNK VAPOR PRES	OK	
G002	SEAL OIL DEFOAMING TANK LEVEL	OK	
G003	AIR SIDE SEAL OIL PUMP	RUN	
G004	AIR SIDE SEAL OIL PRESS	OK	
G005	HYDROGEN SIDE SEAL OIL LEVEL	OK	
G006	BACK UP SEAL OIL PUMP PRESS	OK	
G007	HYDROGEN SIDE SEAL OIL PUMP	RUN	
G008	AIR SIDE SEAL OIL BACK UP PUMP	OFF	
G009	GENERATOR HYDROGEN SUPPLY PRESS	OK	
G010	GEN CASING WATER DETECTOR	OK	
G200	GENERATOR HYDROGEN PRESS	59.595	psıg
G201	GENERATOR HYDROGEN PURITY (%)	98.047	5
G202	GENERATOR BEARING NO 7 MTL TEMP	165.768	Deg F
G203	GENERATOR BEARING NO 7 MTL TEMP	165.276	Deg F
G204	GENERATOR BEARING NO 8 MTL TEMP	152.631	Deg F
G205	GENERATOR BEARING NO 8 MIL TEMP	152.960	Deg F
G206	EXCITER BEARING NO 9 METAL TEMP	150.490	Deg F
G207	EXCITER BEARING NO 9 METAL TEMP	150.468	Deg F
G208	GEN BEARING NO / VIBR (MILS)	1.34/66	mils
G209	GEN BEARING NO 8 VIBR (MILS)	2.44629	mila
G210 C211	HO COOLED CAS INLET TEMP (C)	£1 724	
G211 C212	HZ COOLER GAS INLEI IEMP (C)	01./24	Deg C
G212 G212	HZ COOLER R GAS OUTLET TEMP (C)	11 106	Deg C
G215 G214	H2 COOLER C GAS OUTLET TEMP (C)	39 656	Deg C
G214 G215	H2 COOLER D GAS OUTLET TEMP (C)	37.030 XXXXXX	Deg C
G215	STATOR COLL DIS GAS TMP RTD 1A	72 048	Deg C
G210 G217	STATOR COLL DIS GAS TMP RTD 24	70 573	Deg C
G218	STATOR COIL DIS GAS TMP RTD 3A	69 644	Deg C
G219	AVERAGE COLD GAS TEMPERATURE	41 022	Deg C
G222	RECTIFIER WHEEL COLD AIR TEMP(C)	25 830	Deg C
G223	AC EXCITER COLD ATR TEMP(C)	25.586	Deg C
G224	RECTIFIER WHEEL WARM AIR TEMP(C)	37.109	Deg C
G225	AC EXCITER WARM AIR TEMP(C)	40.186	Dea C
G228	STA SER XFMR TOP OIL TEMP(DEG C)	65.36	Deg C
G229	SU TRANS 4160V WIND TEMP (DEG C)	40.86	Deg C
G230	SU TRANS 6900V WIND TEMP (DEG C)	42.80	Dea C
G231	STARTUP TRNS TOP OIL TEMP(DEG C)	41.21	Deg C
G250	GENERATOR CONDITION MONITOR HIGH	79.431	~_;; C

CR3 REPLACEMENT TURBINE GENERATOR BID SPECIFICATION <u>Attachment 10.1</u>

97 - 1

.

•

CR3 Turbine Generator Operating Data from 01/31/2007

CR3 Turbine Gene	erator Computer Point data 01/31/2007		
T200	NO.6 EXTR HP TURB PRESS	474.285	psig
T201	NO.5 EXTR HP TURB PRESS	183.826	psig
T202	NO.4B EXTR LP TURB PRESS (PSIA)	75.3330	psia
T203	NO.3B EXTR LP TURB PRESS (PSIA)	42.4754	psia
T204	NO.2B EXTR LP TURB PRESS (PSIA)	16.2701	psia
T205	NO.1B EXTR LP TURB PRESS (PSIA)	6.2611	psia
T206	REHEATER D TO LP TURB B PRESS	170.272	psig
T207	REHEATER B TO LP TURB B PRESS	168.929	psig
T208	REHEATER C TO LP TURB A PRESS	169.051	nsia
T210	NO.4A EXTR LP TURB PRESS (PSIA)	79.6801	psia
T211	NO 3A EXTR LP TURB PRESS (PSIA)	43.2386	psia
T212	NO 2A EXTR LP TURB PRESS (PSIA)	16.3312	psia
T212 T213	NO 1A EXTR LD TURB PRESS (PSIA)	6 7373	psia
T213	LD THERINE EXHAUST DRESS (IN-HGA)	2 04102	In Hal
T214 T215	CONDENSED DEESS	1 69484	In HgA
T210	EU FLUTD DECC	1920 53	ngia
1219	A FUCID FRESS	1 90901	parg To Wa
IZZV TT221	TO THE SEAL SUPPLI DP	1.90801	
1221	LP IURB B EXHAUSI NOOD TEMP	110 425	Deg F
T222	LP TURB B EXHAUST HOOD TEMP	110.435	Deg F
T223	LP TURB B EXHAUSI HOOD TEMP	108.259	Deg F Deg F
1224	LP TURB B EXHAUST HOOD TEMP	108.259	Deg F
1226	HP TURB FIRST STAGE PRESS	696.32	psig
T227	2A Main Steam to Turb Temp	585.547	Deg F
T228	2A MAIN STEAM TO TURB PRESS	896.19	psig
T229	1A Main Steam to Turb Temp	589.289	Deg F
T230	1A MAIN STEAM TO TURB PRESS	891.80	psig
T231	1B MAIN STEAM TO TURB TEMP	578.833	Deg F
T232	1B MAIN STEAM TO TURB PRESS	900.00	psig
T233	2B MAIN STEAM TO TURB TEMP	586.872	Deg F
T234	2B MAIN STEAM TO TURB PRESS	894.58	psig
T239	TURBINE CASING EXPANSION	0.49	Inches
T240	LUBE OIL COOLER OIL INLET TEMP	143.903	Deg F
T241	LUBE OIL COOLER OIL INLET TEMP	145.883	Deg F
T242	BEARING OIL PRESS	17.9274	psig
T243	ROTOR ECCENTRICITY (MILS)	XXXXXX	mils
T244	TURB DIFF EXPAN GEN END	0.15	Inches
T245	TURBINE VALVE POS (%)LOAD CTRL	176.613	010
T246	EH FLUID TEMP	118.855	Deg F
T249	TURBINE SPEED (RPM)	1799.56	RPM
T250	STEAM SEAL HEADER TEMP	257.790	Deg F
T251	STEAM SEAL HEADER PRESS	125.092	psig
T252	NORTH STEAM CHEST DEEP METL TEMP	576.758	Deg F
T253	NORTH STEAM CHEST DEEP METL TEMP	577.711	Deg F
T254	NORTH STEAM CHEST SHAL METL TEMP	508.849	Deg F
T255	NORTH STEAM CHEST SHAL METL TEMP	508.532	Deg F
T256	SOUTH STEAM CHEST DEEP METL TEMP	570.721	Deg F
T 257	SOUTH STEAM CHEST DEEP METL TEMP	572.309	Deg F
T258	SOUTH STEAM CHEST SHAL METL TEMP	539.925	Deq F
T259	SOUTH STEAM CHEST SHAL METL TEMP	541.195	Deg F
T260	HP TURB BASE GOV END EXTR TEMP	472.422	Deg F
T261	HP TURB BASE GOV END EXTR TEMP	473 578	Deg F
T264	HP TURB COVER GOV END EXTR TEMP	469 779	Deg F
1201	IL LOLD COVER COVERED ENTRY LEME		

CR3 REPLACEMENT TURBINE GENERATOR BID SPECIFICATION Attachment 10.1

CR3 Turbine Generator Operating Data from 01/31/2007

 	UD TUDD COVED COV END EXTD TEMD	160 770	
1265	HP TURB COVER GOV END EXTR TEMP	469.779	Deg F
1266	LP TURB A EXHAUST HOOD TEMP	109.221	Deg F
CR3 Turbine Ge	enerator Computer Point data 01/31/2007		
1267	LP TURB A EXHAUST HOOD TEMP	109.556	Deg F
T268	LP TURB A EXHAUST HOOD TEMP	109.054	Deg F
T269	LP TURB A EXHAUST HOOD TEMP	109.723	Deg F
T270	HP TURB FIRST STAGE STEAM TEMP	536.959	Deg F
T271	HP TURB FIRST STAGE STEAM TEMP	537.277	Deg F
T272	HP TURB FIRST STAGE METAL TEMP	535.373	Deg F
T273	HP TURB FIRST STAGE METAL TEMP	535.373	Deg F
T274	HP TURB BASE MID METAL TEMP	528.712	Deg F
T275	HP TURB BASE MID METAL TEMP	527.443	Deg F
T276	HP TURB COVER MID METAL TEMP	540.449	Deg F
T277	HP TURB COVER MID METAL TEMP	539.498	Deg F
T282	LP TURB A FROM REHEATER A TEMP	509.322	Deg F
T283	LP TURB A FROM REHEATER A TEMP	509.956	Deg F
T284	LP TURB A FROM REHEATER C TEMP	511.224	Deg F
T285	LP TURB A FROM REHEATER C TEMP	511.858	Deg F
T286	LP TURB B FROM REHEATER B TEMP	512.809	Deg F
T287	LP TURB B FROM REHEATER B TEMP	512.492	Deg F
T288	LP TURB B FROM REHEATER D TEMP	511.858	Deg F
T289	LP TURB B FROM REHEATER D TEMP	512 809	Deg F
T205	THOUST BOG FOONT FLANGE MTL TEMP	152 966	Deg I
T290	THRUST BRG FRONT FLANGE MTL TEMP	152.500 VVVVVV	Deg F
1291	TUDUET DEC FRONT FLANGE MIL TEMP	152 120	Deg F
1292 TT292	TUDUET DE FRONT FLANGE MIL TEMP	172.120	Deg F
1293	THRUSI BRG FRONT FLANGE MIL TEMP	~~~~~	Deg F
1294	THRUSI BRG REAR FLANGE MIL IEMP	140 005	Deg r
1295	THRUSI BRG REAR FLANGE MIL TEMP	146.025	Deg F
T296	THRUST BRG REAR FLANGE MTL TEMP	146.211	Deg F
T297	THRUST BRG REAR FLANGE MTL TEMP	148.519	Deg F
T298	HP TURB BEARING NO 1 METAL TEMP	158.720	Deg F
1299	HP TURB BEARING NO I METAL TEMP	158.391	Deg F
T300	HP TURB BEARING NO 2 METAL TEMP	161.182	Deg F
T301	HP TURB BEARING NO 2 METAL TEMP	162.450	Deg F
T302	LP TURB BEARING NO 3 METAL TEMP	173.421	Deg F
T303	LP TURB BEARING NO 3 METAL TEMP	173.585	Deg F
T304	LP TURB BEARING NO 4 METAL TEMP	173.911	Deg F
T305	LP TURB BEARING NO 4 METAL TEMP	173.094	Deg F
T306	LP TURB BEARING NO 5 METAL TEMP	186.961	Deg F
T307	LP TURB BEARING NO 5 METAL TEMP	186.636	Deg F
T 308	LP TURB BEARING NO 6 METAL TEMP	166.548	Deg F
T 309	LP TURB BEARING NO 6 METAL TEMP	166.712	Deg F
T310	LUBE OIL COOLER OIL OUTLET TEMP	118.241	Deg F
T311	LUBE OIL COOLER OIL OUTLET TEMP	118.908	Deg F
T312	HP TURB BEARING NO 1 VIBR (MILS)	0.712891	mils
T313	HP TURB BEARING NO 2 VIBR (MILS)	0.273438	mils
T 314	LP TURB BEARING NO 3 VIBR (MILS)	1.22559	mils
T315	LP TURB BEARING NO 4 VIBR (MILS)	1.49414	mils
T316	LP TURB BEARING NO 5 VIBR (MILS)	0.639648	mils
T317	LP TURB BEARING NO 6 VIBR (MILS)	1,59180	mils
T322	ROTOR POSITION (MILS)	-14.575	mils
 T323	TURB DIFF EXPAN GOV END	0 06	Inches

•

x .

TG Case 1 -	2609 MWt,	0% TP,	Tstm	= 59	95F
103.04	DEG F	TT	(·	-123)	Condenser 'B' Hotwell Temperature
75.00	DEG F	1.1 TT		307)	Condenser 'B' CW Temp C In Condenser 'B' CW Temp D In
75.00	DEG F		\sim	204)	Condenser IBL CW Temp Out
4033211 0	LBM/HR	ww	č	237)	Condensate Pmp 1A Suction Flow
1.05	PSIA	PP	ì	237)	Condensate Pmp 1A Suction Pressure
103.25	DEG F	TT	ì	237)	Condensate Pmp 1A Suction Temp
71.24	BTU/LBM	НН	Ċ	237)	Condensate Pmp 1A Suction Enthalpy
0.0000	NO-UNITS	XX	(237)	Condensate Pmp 1A Suction Quality
260.00	PSIA	PP	(72)	Condensate Pmp 1A Discharge Pressure
103.50	DEG F	TT	(72)	Condensate Pmp 1A Discharge Temp
72.15	BTU/LBM	нн	(72)	Condensate Pmp 1A Discharge Enthalpy
-0.3746	NO-UNITS	XX	(72)	Condensate Pmp 1A Discharge Quality
4025408.1	LBM/HR	WW DD		229)	Condensate Pmp IB Suction Flow
102 04	PSIA DEC E	PP TT		2291	Condensate Pmp 18 Suction Pressure
71 03	DEG F BTU/LBM	тт Н	ì	2291	Condensate Pmp 1B Suction Enthalpy
0 0000	NO-UNITS	XX	ì	229)	Condensate Pmp 1B Suction Quality
260.00	PSIA	PP	è	401)	Condensate Pmp 1B Discharge Pressure
103.29	DEG F	TT	ì	401)	Condensate Pmp 1B Discharge Temp
71.94	BTU/LBM	HH	(401)	Condensate Pmp 1B Discharge Enthalpy
-0.3748	NO-UNITS	XX	(401)	Condensate Pmp 1B Discharge Quality
260.00	PSIA	PP	(79)	Gland Steam Condenser Inlet Press
103.39	DEGF	TT	(79)	Gland Steam Condenser Inlet Temp
72.05	BTU/LBM	HH	(79)	Gland Steam Condenser Inlet Enth
260.00	PSIA	PP	(80)	Gland Steam Condenser Outlet Press
104.42	DEG F	$T^{*}T$	(80)	Gland Steam Condenser Outlet Temp
/3.0/	BIU/LBM	FIH WW	· ·	80) 70)	Gland Steam Condenser Flow
197 65	DDM/ AK		ì	9221	Gland Steam Condenser Stm Inlet Press
392 56	DEGF	ŤŤ	ì	922)	Gland Steam Condenser Stm Inlet Temp
1205.81	BTU/LBM	нн	ì	922)	Gland Steam Condenser Stm Inlet Enth
14.50	PSIA	PP	Ì	216)	Gland Steam Condenser Stm Outlet Press
211.32	DEG F	TT	(216)	Gland Steam Condenser Stm Outlet Temp
179.48	BTU/LBM	нн	(216)	Gland Steam Condenser Stm Outlet Enth
8000.0	LBM/HR	WW	(922)	Gland Steam Condenser Stm Flow
0.0	LBM/HR	WW	(741)	LP Heater (CDHE) Bypass Flow
4029309.5	LBM/HR	WW	(87)	CDHE 1A Flow
260.00	PSIA DTU/IDM	PP	ļ	87)	CDHE IA Pressure (In) CDHE 1A Enthalmu (In)
104 42	DEC E	nn TT		87) 97)	CDWE 1A Emchalpy (IN)
247 05	DEGI		ì	88)	CDHE 1A Pres to 2A
140.24	BTU/LBM	нн	ì	88)	CDHE 1A Enth to 2A
171.70	DEG F	тт	ì	88)	CDHE 1A Temp to 2A
280403.1	LBM/HR	WW	(840)	CDHE 1A Extr Flow (In)
7.12	PSIA	PP	(840)	CDHE 1A Extr Pres (In)
947.20	BTU/LBM	HH	(840)	CDHE 1A Extr Enth (In)
177.58	DEG F	\mathbf{TT}	(840)	CDHE 1A Extr Temp (In)
0.8084	NO-UNITS	XX	Ç	840)	CDHE 1A Extr Qual (In)
421940.5	LBM/HR	WW	(340)	CDHE IA Drain Flow (In)
16.25	PSIA pti/ipm	PP UU		340)	CDHE IA Drain Fres (III)
182 52	DEC E	ካከ ጥጥ	· ·	340)	CDHE 1A Drain Temp (In)
-0 0360	NO-UNITS	xx	ì	340)	CDHE IA Drain Qual (In)
702348.5	LBM/HR	WW	ì	129)	CDHE 1A Drain Flow (Out)
4.04	PSIA	PP	i	129)	CDHE 1A Drain Pres (Out)
83.22	BTU/LBM	нн	(129)	CDHE 1A Drain Enth (Out)
115.25	DEG F	TT	(129)	CDHE 1A Drain Temp (Out)
-0.0379	NO-UNITS	XX	(129)	CDHE 1A Drain Qual (Out)
230.72	PSIA	PP	(89)	CDHE 2A Pres to 3A
185.05	BTU/LBM	HH	(89)	CDHE 2A Enth to 3A
216.37	DEG F	'I'T	(89)	CDHE 2A TEMP TO 3A
170431.8 17 03	LBM/ RK	WW תת		o∠U) g2∩\	CDHE 2A EXLI FIOW (IN) CDHE 2A Extr Dreg (In)
1016 61	ESIA RTU/LRM	<i>гг</i> ии	(820)	CDHE 2A Extr Enth (In)
221 92	DEG F	тт ТТ	ì	820)	CDHE 2A Extr Temp (In)
0.8573	NO-UNITS	xx	ì	820)	CDHE 2A Extr Oual (In)
225507.9	LBM/HR	WW	ì	320)	CDHE 2A Drain Flow (In)
39.73	PSIA	PP	(320)	CDHE 2A Drain Pres (In)
					Page 1

(

.

				set16out.txt
196.63	BTU/LBM	нн	(320)	CDHE 2A Drain Enth (In)
228.28	DEG F	TT	(320)	CDHE 2A Drain Temp (In)
-0.0419	NO-UNITS	XX	(320)	CDHE 2A Drain Qual (In)
421940.5	LBM/HK DGTA	WW DD	(127)	CDHE 2A Drain Flow (Out)
150 55	BTU/LBM	FF HH	(127)	CDHE 2A Drain Fres (Out)
182.52	DEG F	тт ТТ	(127)	CDHE 2A Drain Temp (Out)
-0.0360	NO-UNITS	XX	(127)	CDHE 2A Drain Qual (Out)
213.61	PSIA	PP	(90)	CDHE 3A Flow (Out)
239.48	BTU/LBM	HH	(90)	CDHE 3A Enth (Out)
270.18	DEG F	\mathbf{TT}	(90)	CDHE 3A Temp (Out)
225495.6	LBM/HR	ŴŴ	(570)	CDHE 3A Extr Flow (In)
43.29	PSIA	PP	(570)	CDHE 3A Extr Pres (In)
1169.20	BTU/LBM	НН	(570)	CDHE 3A Extr Enth (In)
2/2.06	DEG F NO-INITE	11 vv	(570)	CDHE 3A Extr Temp (In)
225507 9	LBM/HR	AA WW	(370)	CDHE 3A Drain Flow (Out)
39.73	PSIA	PP	(120)	CDHE 3A Drain Pres (Out)
196.63	BTU/LBM	нн	(120)	CDHE 3A Drain Enth (Out)
228.28	DEG F	TT	(126)	CDHE 3A Drain Temp (Out)
-0.0419	NO-UNITS	XX	(126)	CDHE 3A Drain Qual (Out)
4029309.5	LBM/HR	WW	(83)	CDHE 1B Flow (In)
260.00	PSIA	PP	(83)	CDHE 1B Pressure (In)
73.07	BTU/LBM	HH	(83)	CDHE 1B Enthalpy (In)
104.42	DEG F	TT	(83)	CDHE 1B Temperature (In)
247.05	PSIA DTU/IDM	PP	(84)	CDHE 1B Pres to 2B
140.56	DEC E	HH TT	(84) (94)	CDHE IB ENTE to 2B
281905.8	LBM/HR	ww	(183)	CDHE IB Extr Flow (In)
7.14	PSIA	PP	(183)	CDHE 1B Extr Pres (In)
947.80	BTU/LBM	НН	(183)	CDHE 1B Extr Enth (In)
177.73	DEG F	TT	(183)	CDHE 1B Extr Temp (In)
0.8089	NO-UNITS	XX	(183)	CDHE 1B Extr Qual (In)
410565.4	LBM/HR	WW	(209)	CDHE 1B Drain Flow (In)
16.40	PSIA	PP	(209)	CDHE 1B Drain Pres (In)
149.55	BTU/LBM	НН	(209)	CDHE 1B Drain Enth (In)
181.53	DEG F NO-INITE		(209)	CDHE IB Drain Temp (In)
692476 6	LBM/HR		(209)	CDHE IB Drain Qual (III)
4.14	PSIA	PP	(122)	CDHE 1B Drain Pres (Out)
82.86	BTU/LBM	нн	(122)	CDHE 1B Drain Enth (Out)
114.89	DEG F	TT (122)	CDHE 1B Drain Temp (Out)
-0.0392	NO-UNITS	XX ((122)	CDHE 1B Drain Qual (Out)
230.72	PSIA	PP (85)	CDHE 2B Pres to 3B
183.88	BTU/LBM	HH (85)	CDHE 2B Enth to 3B
215.22	DEG F	TT (85)	CDHE 2B Temp to 3B
190550.2	LBM/HK	WW (182)	CDHE 2B Extr Flow (In)
1013 81	FSIA RTU/LBM	PP (111 (182)	CDHE 28 EXCI PIES (III) CDHE 28 Extr Enth (In)
222.11	DEG F	TTT (182)	CDHE 2B Extr Temp (In)
0.8543	NO-UNITS	xx (182)	CDHE 2B Extr Qual (In)
220014.2	LBM/HR	WW (208)	CDHE 2B Drain Flow (In)
39.97	PSIA	PP (208)	CDHE 2B Drain Pres (In)
197.74	BTU/LBM	нн (208)	CDHE 2B Drain Enth (In)
229.38	DEG F	TT (208)	CDHE 2B Drain Temp (In)
-0.0411	NO-UNITS	XX (208)	CDHE 2B Drain Qual (In)
410565.4	LBM/HR	WW (116)	CDHE 2B Drain Flow (Out)
149 55	PSIA BTU/LBM	РР (ЦЦ (116)	CDHE 28 Drain Pres (Out)
181 53	DEG E	ידידי (116)	CDHE 2B Drain Ench (Out)
-0.0375	NO-UNITS	XX (116)	CDHE 2B Drain Qual (Out)
213.60	PSIA	PP (86)	CDHE 3B Flow (Out)
236.93	BTU/LBM	нн (86)	CDHE 3B Enth (Out)
267.69	DEG F	TT (86)	CDHE 3B Temp (Out)
220002.8	LBM/HR	WW (181)	CDHE 3B Extr Flow (In)
43.36	PSIA	PP (181)	CDHE 3B Extr Pres (In)
1169.31	BTU/LBM	HH (181)	CDHE 3B Extr Enth (In)
2/2.16	DEG F NO-INTTE	TT (181)	CDHE 3B EXTY Temp (In)
220014 2	LBM/HP	MW (115)	CDHE 3B Drain Flow (Out)
220017.2		(1101	Page 2

-

				set16out.txt
39.97	PSIA	PP	(115)	CDHE 3B Drain Pres (Out)
197.74	BTU/LBM	HH	(115)	CDHE 3B Drain Enth (Out)
229.38	DEG F	\mathbf{TT}	(115)	CDHE 3B Drain Temp (Out)
-0.0411	NO-UNITS	XX	(115)	CDHE 3B Drain Qual (Out)
8058619.1	LBM/HR	WW	(107)	Cond Flow to DeAerator FWHE-1
213.61	PSIA DTII/I DM	PP	(107)	Cond Pres to DeAerator FWHE-1
250.21	DEG F		(107)	Cond Temp to Delerator FWHE-1
-0.1471	NO-UNITS	xx	(107)	Cond Qual to DeAerator FWHE-1
225141.9	LBM/HR	WW	(430)	Extr Flow to DeAerator FWHE-1
66.78	PSIA	PP	(430)	Extr Pres to DeAerator FWHE-1
1203.16	BTU/LBM	HH	(430)	Extr Enth to DeAerator FWHE-1
343.41	DEG F	TT	(430)	Extr Temp to DeAerator FWHE-1
1.0258	NO-UNITS	XX	(430)	Extr Qual to DeAerator FWHE-1
2/2//07.3	LBM/HR DGIA	WW DD	(114)	Drain Flow to DeAerator FWHE-1
284 80	RTU/LBM	<i>гг</i> нн	(114)	Drain Enth to DeAerator FWHE-1
314.43	DEG F	TT	(114)	Drain Temp to DeAerator FWHE-1
-0.0739	NO-UNITS	XX	(114)	Drain Qual to DeAerator FWHE-1
11011491.0	LBM/HR	WW	(113)	Drain Flow out DeAerator FWHE-1
66.78	PSIA	PP	(113)	Drain Pres out DeAerator FWHE-1
269.48	BTU/LBM	НН	(113)	Drain Enth out DeAerator FWHE-1
299.77	DEG F	'I''I'	(113)	Drain Temp out DeAerator FWHE-1
5505745 5	LBM/HR	AA WW	(113)	FW Booster Pump 1A Suct Flow
66 78	PSTA	PP	(411)	FW Booster Pump 1A Suct Pres
330.00	PSIA	PP	(404)	FW Booster Pump 1A Disch Pres
300.08	DEG F	\mathbf{TT}	(404)	FW Booster Pump 1A Disch Temp
270.28	BTU/LBM	HH	(404)	FW Booster Pump 1A Disch Enth
5505745.5	LBM/HR	WW	(412)	FW Booster Pump 1B Suct Flow
66.78	PSIA	PP ((412)	FW Booster Pump 1B Suct Pres
330.00	PSIA DEC E		(403)	FW Booster Pump 1B Disch Pres
300.08	DEG F BTII/LBM		(403)	FW Booster Pump 1B Disch Feth
270.20	LBM/HR	WW ((731)	FWHE-2A/2B Bypass Flow
5505745.5	LBM/HR	WW (771)	FWHE-2A Flow (In)
330.00	PSIA	PP (771)	FWHE-2A Pressure (In)
270.28	BTU/LBM	HH (771)	FWHE-2A Enthalpy (In)
300.08	DEG F	TT (771)	FWHE-2A Temperature (In)
322.03	PSIA DTU/IDM	PP (118)	FWHE-2A Pressure (Out)
348.50	DEC E		110)	FWHE-2A Enthalpy (Out)
400497 9	LBM/HR	ww (870)	FWHE-2A Extr Flow (In)
187.77	PSIA	PP (870)	FWHE-2A Extr Pres (In)
1145.05	BTU/LBM	нн (870)	FWHE-2A Extr Enth (In)
376.55	DEG F	TT (870)	FWHE-2A Extr Temp (In)
0.9382	NO-UNITS	XX (870)	FWHE-2A Extr Qual (In)
969522.2	LBM/HR	WW (110)	FWHE-2A Drain Flow (In)
481.48	PSIA DTII/LDM	PP (110)	FWHE-2A Drain Fres (IN)
400.60	DEG F	יייד (דיד (110)	FWHE-2A Drain Temp (In)
-0.0910	NO-UNITS	XX (110)	FWHE-2A Drain Qual (In)
1370048.7	LBM/HR	WW (236)	FWHE-2A Drain Flow (Out)
182.84	PSIA	PP (236)	FWHE-2A Drain Pres (Out)
286.52	BTU/LBM	НН (236)	FWHE-2A Drain Enth (Out)
316.09	DEG F	TT (236)	FWHE-2A Drain Temp (Out)
-0.0718	NU-UNIIS	XX (IMTM (236)	FWHE-2A Drain Qual (Out)
3303743.5	PSTA	- 99 90 (770)	FWHE-2B Pressure (In)
270.28	BTU/LBM	нн (770)	FWHE-2B Enthalpy (In)
300.08	DEG F	TT (770)	FWHE-2B Temperature (In)
187.77	PSIA	PP (165)	FWHE-2B Extr Pres (In)
1145.05	BTU/LBM	HH (165)	FWHE-2B Extr Enth (In)
376.55	DEG F	TT (165)	FWHE-2B Extr Temp (In)
0.9382	NO-UNITS	XX (165)	FWHE-2B Extr Qual (In)
7050UL.L	рату Гры/нк) אוא (370)	rwns-28 Drain FiOW (in) FWUF-28 Drain Brog (In)
±0⊥.54 374 01	RTU/LEM	гг (нн (370)	FWHE-28 Drain Enth (In)
398.94	DEG F	TT (370)	FWHE-2B Drain Temp (In)
-0.0933	NO-UNITS	XX (370)	FWHE-2B Drain Qual (In)
				Page 3

				set16out.txt
1357658.6	LBM/HR	WW	(108)) FWHE-2B Drain Flow (Out)
182.95	PSIA DTII/I DM	PP	(108)	FWHE-2B Drain Pres (Out)
312 76	DEG F	TT TT	(108)	FWHE-2B Drain Temp (Out)
-0.0760	NO-UNITS	xx	(108)	FWHE-2B Drain Oual (Out)
5505963.0	LBM/HR	WW	(790)	FWP 2A Suct Flow
330.00	PSIA	PP	(790)	FWP 2A Suct Pres
374.65	DEG F	TT	(790)	FWP 2A Suct Temp
348.06	BTU/LBM	HH	(790)	FWP 2A Suct Enth
~0.0696	NO-UNIIS PSTA	AA DD	(101)	FWP 2A SUCC QUAL FWP 2A Disch Pres
376.12	DEG F	TT	(101)	FWP 2A Disch Temp
350.56	BTU/LBM	нн	(101)	FWP 2A Disch Enth
-0.2997	NO-UNITS	XX	(101)	FWP 2A Disch Qual
52547.3	LBM/HR	WW	(402)	FWPT A Steam Flow
183.26	PSIA DEC E	PP TT	(402)	FWPT A Steam Pressure
1276 20	BTU/LBM	нн	(402)	FWPT A Steam Enthaloy
1.0931	NO-UNITS	XX	(402)	FWPT A Steam Quality
1.23	PSIA	PP	(198)	FWPT A Steam Exhaust Pres
108.70	DEGF	TT	(198)	FWPT A Steam Exhaust Temp
1014.24	BTU/LBM	HH	(198)	FWPT A Steam Exhaust Enth
0.9084	NO-UNITS	XX WW	(198) (791)	FWPT A Steam Exhaust Qual
330.00	PSIA	PP	(791)	FWP 2B Suct Pres
374.65	DEG F	TT	(791)	FWP 2B Suct Temp
348.06	BTU/LBM	HH	(791)	FWP 2B Suct Enth
-0.0696	NO-UNITS	XX	(791)	FWP 2B Suct Qual
1044.10	PSIA	PP	(405)	FWP 2B Disch Pres
376.08	DEG F	11 UU	(405) (405)	FWP 2B Disch Temp FWP 2B Disch Enth
-0.3095	NO-UNITS	XX	(405)	FWP 2B Disch Ench
52547.3	LBM/HR	WW	(180)	FWPT B Steam Flow
183.26	PSIA	PP ((180)	FWPT B Steam Pressure
509.86	DEG F	TT ((180)	FWPT B Steam Temperature
1276.20	BTU/LBM	HH ((180)	FWPT B Steam Enthalpy
1.0931	NU-UNITS		(180) (197)	FWPT B Steam Quality
108.70	DEG F	TT (197)	FWPT B Steam Exhaust Temp
1014.24	BTU/LBM	нн (197)	FWPT B Steam Exhaust Enth
0.9084	NO-UNITS	XX ((197)	FWPT B Steam Exhaust Qual
5505963.0	LBM/HR	WW (800)	FWHE-3A Flow (In)
	PSIA DTU/IDM	PP (800)	FWHE-3A Pressure (In)
350.56	DEC F	רא (דיד (800)	FWHE-3A Enthalpy (In) FWHE-3A Temperature (In)
1000.69	PSIA	PP (120)	FWHE-3A Pressure (Out)
440.10	BTU/LBM	нн (120)	FWHE-3A Enthalpy (Out)
458.54	DEGF	TT (120)	FWHE-3A Temperature (Out)
535250.8	LBM/HR	WW (860)	FWHE-3A Extr Flow (In)
484.57	PS1A PTII/LEM	9P (101 (860)	FWHE-3A Extr Pres (1n)
470.82	DEG F	TT (860)	FWHE-3A Extr Temp (In)
1.0077	NO-UNITS	XX (860)	FWHE-3A Extr Qual (In)
234005.1	LBM/HR	WW (109)	FWHE-3A Drain Flow (In)
862.61	PSIA	PP (109)	FWHE-3A Drain Pres (In)
520.52	BTU/LBM	HH (109)	FWHE-3A Drain Enth (In)
526.96	NO-UNITS	11 (YY (109)	FWHE-3A Drain Temp (In)
769287.7	LBM/HR	WW (235)	FWHE-3A Drain Flow (Out)
481.48	PSIA	PP (235)	FWHE-3A Drain Pres (Out)
359.81	BTU/LBM	нн (235)	FWHE-3A Drain Enth (Out)
385.51	DEG F	TT (235)	FWHE-3A Drain Temp (Out)
-0.1123	NO-UNITS	XX (235)	FWHE-3A Drain Qual (Out)
5505963.0	LBM/HR	אוא (י מס	92)	FWHE-3B FIOW (IN)
350 56	BTU/LRM) די ואר (92) 921	FWHE-3B Enthalpy (In)
376.08	DEG F	TT (92)	FWHE-3B Temperature (In)
1030.79	PSIA	PP (117)	FWHE-3B Pressure (Out)
439.85	BTU/LBM	НН (117)	FWHE-3B Enthalpy (Out)
458.30	DEG F	TT (117)	FWHE-3B Temperature (Out)
				Page 4

· -

.

.

				set16out.txt
531530.1	LBM/HR	WW	(159)	FWHE-3B Extr Flow (In)
484.57	PSIA	PP	(159)	FWHE-3B Extr Pres (In)
1210.58	BTU/LBM	HH	(159)	FWHE-3B Extr Enth (In)
4/0.82	NO-UNITS	XX	(159)	FWHE-3B Extr Oual (In)
234005.1	LBM/HR	WW	(104)	FWHE-3B Drain Flow (In)
862.61	PSIA	PP	(104)	FWHE-3B Drain Pres (In)
520.52	BTU/LBM	HH	(104)	FWHE-3B Drain Enth (In)
526.96	DEG F	TT	(104)	FWHE-3B Drain Temp (In)
0.0000	NO-UNITS	XX	(104)	FWHE-3B Drain Qual (In)
765566.6	LBM/HR	WW	(105)	FWHE-3B Drain Flow (Out)
481.52	PSIA BTU/LBM	PP HH	(105)	FWHE-3B Drain Fres (Out)
383.31	DEG F	TT	(105)	FWHE-3B Drain Temp (Out)
-0.1154	NO-UNITS	XX	(105)	FWHE-3B Drain Qual (Out)
915.26	MW	BKGRO	(1)	GROSS GENERATION, MWe
11011926.03	LBM/HR	WW	(103)	SG FEEDWATER FLOW, LBM/HR
10529959.76	LBM/HR	WW	(9)	TURBINE THROTTLE FLOW, LBM/HR
2624.97	OPVB	OPVB	(8) (9)	PRI SIDE HEAL INPUL TO T/G, MWC
1.02	OPVB	OPVB	(10)	FRACTION FULL POWER
9786.50	OPVB	OPVB	(12)	GROSS CYCLE HEAT RATE, BTU/KW-HR
9726.85	OPVB	OPVB	(15)	GROSS REAC HEAT RATE, BTU/KW-HR
875.22	OPVB	OPVB	(16)	NET GENERATOR POWER, MWE
2.13	OPVB	OPVB	(101)	CONDENSER A PRESSURE, IN-HG
2.12	OPVB	OPVB	(102)	CONDENSER B PRESSURE, IN-HG
0.82	NO-UNITS	EFFSEC	(15)	LP TURBINE & EFFICIENCI (10-15)
24.10	DEL DEG F	TTDURH	(203)	1ST STAGE REHEATER C TTD (203)
24.10	DEL DEG F	TTDURH	(205)	1ST STAGE REHEATER B TTD (205)
24.10	DEL DEG F	TTDURH	(207)	1ST STAGE REHEATER D TTD (207)
16.40	DEL DEG F	TTDURH	(202)	2ND STAGE REHEATER A TTD (202)
16.40	DEL DEG F	TTDURH	(204)	2ND STAGE REHEATER C TTD (204)
16.40	DEL DEG F	TTDURH	(206)	2ND STAGE REHEATER B TTD (206)
10.40	NO-UNITS	EFUMAC	(200)	BEPT A (405) EFFICIENCY
0.75	NO-UNITS	EFUMAC	(406)	BFPT B (406) EFFICIENCY
75.00	OPVB	OPVB ((33)	AVE CIRC WATER TEMP IN, F
493753.07	FLOW COEF	FCBOWL	(10)	LP A BOWL FLOW COEFFICIENT
493753.07	FLOW COEF	FCBOWL	(20)	LP B BOWL FLOW COEFFICIENT
0.00	OPVB	OPVB (STM VEL, X-OVER COND A TO B, FT/SEC
1439.24	OPVB	OPVB ((<u>1</u> 5) (<u>3</u> 2)	SUNIC VEL, X-OVER COND A TO B, FI/SEC
1439.00	FT	VECRTP	25)	SONIC VEL, X-OVER COND A TO B, FT/SEC
322.03	PSIA	PP (112)	FWHE-2B Pressure (Out)
347.62	BTU/LBM	нн (112)	FWHE-2B Enthalpy (Out)
374.25	DEG F	TT (112)	FWHE-2B Temperature (Out)
391830.7	LBM/HR	WW (165)	FWHE-2B Extr Flow (In)
1011926.0	LBM/HR DGTA	WWVSC (302)	Feed Flow (output component) Reed Brossure (output component)
458.42	DEG F	TTVSC (302)	Feed Temp (output component)
439.97	BTU/LBM	нн (103)	Feed Enthalpy (output stream)
-0.1622	NO-UNITS	XX (103)	Feed Quality (output stream)
0.9937	NO-UNITS	XX (23)	MSR 'A' Outlet Stm Quality
0.9937	NO-UNITS	XX (30)	MSR 'C' Outlet Stm Quality
0.9937	NO-UNITS	XX (37)	MSR 'B' Outlet Stm Quality
340428000 0	OPVB	OPVB (44)	Total CW Flow (klbm/br)
11011307.5	LBM/HR	WWVSC (301)	Steam Flow (input component)
923.40	PSIA	PPVSC (301)	Steam Pressure (input component)
594.50	DEG F	TTVSC (301)	Steam Temp (input component)
1253.40	BTU/LBM	нн (1)	Steam Enthalpy (input stream)
1.0853	NU-UNITS	XX (1)	Steam Quality (input stream)
116000 /	LBM/HR	WW (141147 /	146) 147)	Steam Flow to 2nd Stg (HP) Entr A Steam Flow to 2nd Stg (HP) Phtr C
116999.4	LBM/HR	WW (148)	Steam Flow to 2nd Stg (HP) Rhtr B
116999.4	LBM/HR	WW (149)	Steam Flow to 2nd Stg (HP) Rhtr D
10530509.8	LBM/HR	WW (6)	Steam Flow to throttle valves
902.04	PSIA	PP (6)	Steam Pressure to throttle valves
865.96	PSIA	PP (-8)	Steam Pressure after throttle valves
				Page 5

. *

				set16out.txt
586.67	DEG F	TT	(-8)	Steam Temperature after throttle valves
1253.40	BTU/LBM	нн	(-8)	Steam Enthalpy after throttle valves
1.0827	NO-UNITS	XX	(-8)	Steam Quality after throttle valves
701.70	PSIA	PP	(10)	HP Turbine Gov Stg Shell Pressure
540.86	DEG F	TT	(10)	HP Turbine Gov Stg Shell Temperature
1235.65	BTU/LBM	нн	(10)	HP Turbine Gov Stg Shell Enthalpy
1.0477	NO-UNITS	XX	(10)	HP Turbine Gov Stg Shell Ouality
10529959.8	LBM/HR	WW		HP Turbine 1st Stg Bowl Flow
510 08	PSTA	DD	$\begin{pmatrix} -2 \\ 11 \end{pmatrix}$	HP Turbine 1st Sta Shell Pressure
476 11	DEGE	ት ት ጥጥ	(11)	HP Turbine 1st Stg Shell Temperature
1210 59	DEG I	11 UU	(11)	WP Turbine 1st Stg Shell Fotbalov
1 0070	NOLINITS	NT VV	(<u>1</u> 1)	WP Turbine 1st Stg Shell Ouslity
521520 1	IDM/UD	AA MMI	(150)	HP Turbine 1st Stg Shell Quality
531550.1		99 PN	(100)	HP Turbine 1st Sty Extr Flow to FWHE 33
535250.8		W W 1471-7	(160)	HP INDINE ISU SUY EXUL FIOW TO FWHE-SA
100113.7	LBM/HR	WW	(161)	HPT 1st Stg Extr Flow to 1st Stg Rhtr A
100113.7	LBM/HR	WW	(162)	HPT ISE SEG EXELFIOW LO ISE SEG RHELLE
100113.7	LBM/HR	WW	(163)	HPT 1st Stg Extr Flow to 1st Stg Rhtr B
100113.7	LBM/HR	WW	(164)	HPT 1st Stg Extr Flow to 1st Stg Rhtr D
9062724.1	LBM/HR	WW	(16)	HP Turbine Last Stg Bowl Flow
197.65	PSIA	PP	(17)	HP Turbine Last Stg Shell Pressure
380.82	DEGF	TT	(17)	HP Turbine Last Stg Shell Temperature
1145.05	BTU/LBM	НН	(17)	HP Turbine Last Stg Shell Enthalpy
0,9370	NO-UNITS	XX	(17)	HP Turbine Last Stg Shell Quality
391830.7	LBM/HR	WW	(165)	HP Turbine 1st Stg Extr Flow to FWHE-2B
400497.9	LBM/HR	WW	(166)	HP Turbine 1st Stg Extr Flow to FWHE-2A
10454.0	LBM/HR	WW	(167)	HP Turbine Gland Steam Leakoff Flow
0.0	LBM/HR	WW	(213)	HPT Exhaust Flow (TDV,EXDT,RHDT) to Cond
2064985.4	LBM/HR	WW	(22)	MSR 'A' Inlet Flow
1948387.9	LBM/HR	WW	23)	MSR 'A' Outlet Flow
192.74	PSIA	PP (23)	MSR 'A' Outlet Pressure
1192.50	BTU/LBM	HH	23)	MSR 'A' Outlet Enthalpy
378.72	DEGF	TT (23)	MSR 'A' Outlet Temperature
116597.4	LBM/HR	WW (174)	MSR 'A' Drain Flow
192.74	PSTA	PP (174)	MSR 'A' Drain Pressure
352 21	RTU/LBM	ਸੰਸ	174)	MSR 'A' Drain Enthalpy
378 72	DEC E	TTT ((174)	MSR 'A' Drain Temperature
198 88	DECL	ם מ	24)	lst Sta Phtr 'A' Outlet Pressure
100.00			24/	let Sta Phtr 'A' Outlet Enthalow
1232.19		(24/	lst Stg Phtr IN! Outlet Temperature
432.37	NO INTTO		24)	let Ste Phtr 1A! Outlet Ouality
1.0409	NU-UNIIS		E 2 91 /	lat Sta Pher IN Uta Stm Plow
LUUI13.0000		איא (תת	520/	lat Cta Dhtr 121 Uta Ctm Droaduro
504.98	PSIA DUU/IDM		520)	ist Sty Rhui 'A' hty Stm Plessure
1210.58	BTU/LBM	нн (520)	ist Stg Rhtr 'A' Htg Stm Enthalpy
475.06	DEG F	TT (520)	ist Stg Rhtr 'A' Htg Stm Temperature
453.52	PSIA -	PP (230)	ist Stg Rhtr 'A' Htg Stm Drain Pressure
438.21	BTU/LBM	нн (230)	Ist Stg Rhtr 'A' Htg Stm Drain Enthalpy
457.07	DEG F	TT (230)	ist Stg Rhtr 'A' Htg Stm Drain Temp
0.0000	NO-UNITS	XX (230)	ist Stg Rhtr 'A' Htg Stm Drain Quality
187.00	PSIA	PP (25)	2nd Stg Rhtr 'A' Outlet Pressure
1276.20	BTU/LBM	НН (25)	2nd Stg Rhtr 'A' Outlet Enthalpy
510.56	DEG F	TT (25)	2nd Stg Rhtr 'A' Outlet Temperature
1.0929	NO-UNITS	XX (25)	2nd Stg Rhtr 'A' Outlet Quality
116999.4416	LBM/HR	WW (146)	2nd Stg Rhtr 'A' Htg Stm Flow
884.00	PSIA	PP (146)	2nd Stg Rhtr 'A' Htg Stm Pressure
1253.40	BTU/LBM	HH (146)	2nd Stg Rhtr 'A' Htg Stm Enthalpy
589.15	DEG F	TT (146)	2nd Stg Rhtr 'A' Htg Stm Temperature
862.61	PSIA	PP (231)	2nd Stg Rhtr 'A' Htg Stm Drain Pressure
520.52	BTU/LBM	нн (231)	2nd Stg Rhtr 'A' Htg Stm Drain Enthalpy
526.96	DEG F	TT (231)	2nd Stg Rhtr 'A' Htg Stm Drain Temp
0.0000	NO-UNITS	XX (231)	2nd Stg Rhtr 'A' Htg Stm Drain Quality
2064985.4	LBM/HR	WW (29)	MSR 'C' Inlet Flow
1948387.9	LBM/HR	WW (30)	MSR 'C' Outlet Flow
192.74	PSIA	PP (30)	MSR 'C' Outlet Pressure
1192.50	BTU/LBM	нн (30)	MSR 'C' Outlet Enthalpy
378 70	DEG F	ጥጥ (301	MSR 'C' Outlet Temperature
116597 /	L.BM/HP	WW (1771	MSR 'C' Drain Flow
100 74	DGTN	י ממ	1771	MSR /C! Drain Pressure
136.14	FOLA DTTI/TOM	гг (UU /	1771	MCR (C) Drain Freesure
304.4L	DEC E	nn (1771	MCR / C! Drain Temperature
3/8./2	DEG F	11 (1//)	mor C Diain iemperature lat Sta Pher ICL Outlot Programs
T88.88	PSIA	<i>PP</i> (115	Dage 6
				raye o
				·

				set16out.txt
1232.19	BTU/LBM	HH	(31)	1st Stg Rhtr 'C' Outlet Enthalpy
432.97	DEG F	TT	(31)	1st Stg Rhtr 'C' Outlet Temperature
1.0409	NO-UNITS	XX	(31)	1st Stg Rhtr 'C' Outlet Quality
100113.6880	LBM/HR	WW	(162)	lst Stg Rhtr 'C' Htg Stm Flow
504.98	PSIA	PP	(162)	1st Stg Rhtr 'C' Htg Stm Pressure
1210.58	BTU/LBM	HH	(162)	1st Stg Rhtr 'C' Htg Stm Enthalpy
475.06	DEG F	TT	(162)	lst Stg Rhtr 'C' Htg Stm Temperature
453.52	PSIA	PP	(220)	1st Stg Rhtr 'C' Htg Stm Drain Pressure
438.21	BTU/LBM	HH	(220)	1st Stg Rhtr 'C' Htg Stm Drain Enthalpy
457.07	DEG F	\mathbf{TT}	(220)	1st Stg Rhtr 'C' Htg Stm Drain Temp
0.0000	NO-UNITS	XX	(220)	1st Stg Rhtr 'C' Htg Stm Drain Quality
187.00	PSIA	PP	(32)	2nd Stg Rhtr 'C' Outlet Pressure
1276.20	BTU/LBM	HH	(32)	2nd Stg Rhtr 'C' Outlet Enthalpy
510.56	DEG F	TT	(32)	2nd Stg Rhtr 'C' Outlet Temperature
1.0929	NO-UNITS	XX	(32)	2nd Stg Rhtr 'C' Outlet Quality
116999.4416	LBM/HR	WW	(147)	2nd Stg Rhtr 'C' Htg Stm Flow
884.00	PSIA	PP	(147)	2nd Stg Rhtr 'C' Htg Stm Pressure
1253.40	BTU/LBM	НН	(147)	2nd Stg Rhtr 'C' Htg Stm Enthalpy
589.15	DEG F	TT	(147)	2nd Stg Rhtr 'C' Htg Stm Temperature
862.61	PSIA	PP	(219)	2nd Stg Rhtr 'C' Htg Stm Drain Pressure
520.52	BTU/LBM	HH	(219)	2nd Stg Rhtr 'C' Htg Stm Drain Enthalpy
526.96	DEG F	TT	(219)	2nd Stg Rhtr 'C' Htg Stm Drain Temp
0.0000	NO-UNITS	XX	(219)	2nd Stg Rhtr 'C' Htg Stm Drain Quality
2064985.4	LBM/HR	WW	(36)	MSR 'B' Inlet Flow
1948387.9	LBM/HR	WW	(37)	MSR 'B' Outlet Flow
192.74	PSIA	PP	(37)	MSR 'B' Outlet Pressure
1192.50	BTU/LBM	HH	(37)	MSR 'B' Outlet Enthalpy
378.72	DEG F	\mathbf{TT}	(37)	MSR 'B' Outlet Temperature
116597.4	LBM/HR	WW	(620)	MSR 'B' Drain Flow
192.74	PSIA	PP	(620)	MSR 'B' Drain Pressure
352.21	BTU/LBM	HH	(620)	MSR 'B' Drain Enthalpy
378.72	DEG F	TT	(620)	MSR 'B' Drain Temperature
188.88	PSIA	PP	(38)	1st Stg Rhtr 'B' Outlet Pressure
1232.19	BTU/LBM	HH	(38)	1st Stg Rhtr 'B' Outlet Enthalpy
432.97	DEG F	TT	(38)	1st Stg Rhtr 'B' Outlet Temperature
1.0409	NO-UNITS	XX	(38)	1st Stg Rhtr 'B' Outlet Quality
100113.6880	LBM/HR	WW	(163)	1st Stg Rhtr 'B' Htg Stm Flow
504.98	PSIA	PP	163)	1st Stg Rhtr 'B' Htg Stm Pressure
1210.58	BTU/LBM	НН	163)	1st Stg Rhtr 'B' Htg Stm Enthalpy
475.06	DEG F	TT	163)	1st Stg Rhtr 'B' Htg Stm Temperature
453.52	PSTA	PP	233)	1st Stg Rhtr 'B' Htg Stm Drain Pressure
438.21	BTU/LBM	нн	233)	1st Stg Rhtr 'B' Htg Stm Drain Enthalpy
457.07	DEG F	TT (233)	1st Stg Rhtr 'B' Htg Stm Drain Temp
0 0000	NO-UNITS	xx	233)	1st Stg Rhtr 'B' Htg Stm Drain Quality
187 00	PSTA	PP (39)	2nd Stg Rhtr 'B' Outlet Pressure
1276 20	BTU/LBM	нн (39)	2nd Stg Rhtr 'B' Outlet Enthalpy
510 56	DEG F	 ТТ (39)	2nd Stg Rhtr 'B' Outlet Temperature
1 0929	NO-UNITS	xx (39)	2nd Stg Rhtr 'B' Outlet Ouality
116999 4416	LBM/HR	WW (148)	2nd Sta Rhtr 'B' Hta Stm Flow
884 00	PSTA		148)	2nd Sta Rhtr 'B' Hta Stm Pressure
1253 40	BTU/LBM	нн (148)	2nd Stg Rhtr 'B' Htg Stm Enthalpy
589 15	DEG E	тт (148)	2nd Stg Rhtr 'B' Htg Stm Temperature
862 61	PSTA	PP (232)	2nd Stg Rhtr 'B' Htg Stm Drain Pressure
520 52	BTU/LBM	нн (232)	2nd Stg Rhtr 'B' Htg Stm Drain Enthalpy
526.96	DEG F	тт (232)	2nd Stg Rhtr 'B' Htg Stm Drain Temp
0 0000	NO-UNITS	xx (232	2nd Stg Rhtr 'B' Htg Stm Drain Quality
2064985 4	LBM/HR	WW (43)	MSR 'D' Inlet Flow
19/9397 9	LBM/HR	WW (44)	MSR D' Outlet Flow
192 74	DGTA	PP (44)	MSR 'D' Outlet Pressure
1102.50	RTIL/LBM	иц (44)	MSR 'D' Outlet Enthalmy
270 72	DEC E	TITI (44)	MSR D Outlet Inthalpy MSR 'D' Outlet Temperature
116E07 A		1 1 (147147 (199)	MSR D Outlet lemperature
100 74		, ממ	100)	MSR D Diain Flow
192.74	FOIR DTI/IDM		100/	MCD IDI Drain Enthalow
352.21	DEC E	пп (тт (100)	MCR IDI Drain Temperatura
J/8./2	DEG P	11 (DD (700) 700)	let Ste Diain Temperature
1000 10	rsta Dout / DM	27 (111 /	45/	ist Sty Rhui "D" Outlet Pressure
1232.19	PEC E		45)	ist sty kill 'D' Outlet Enthalpy
432.97	NO INTEC	11 (45/	ist sty Khui D' Outlet Temperature
1.0409	NU-UNITS		45)	ist sty KHLL 'D' OUTLET QUALITY
100113.7	LRW/HK	WW (164)	ISU SEG KHEF 'D' HEG SEM FLOW
				rage /

504.96 PSIA PP (164) ist stg Rhtr 'D' Htg Stm Enthalpy 475.06 DEG F TT (164) ist stg Rhtr 'D' Htg Stm Temperatu 483.21 ETU/LEM HH (226) ist stg Rhtr 'D' Htg Stm Drain Enthalpy 483.21 ETU/LEM HH (226) ist stg Rhtr 'D' Htg Stm Drain Enthalpy 187.00 NOUNTS XX (226) ist stg Rhtr 'D' Htg Stm Drain Qu 187.00 NOUNTS XX (226) ist stg Rhtr 'D' Htg Stm Drain Qu 187.00 NOUNTS XX (226) ist stg Rhtr 'D' Htg Stm Drain Qu 1899.4 DEG PTU (46) 2nd Stg Rhtr 'D' Htg Stm Drain Qu 1899.4 DEG F TT (49) 2nd Stg Rhtr 'D' Htg Stm Drain PT 1823.40 BTU/LEM HH (427) 2nd Stg Rhtr 'D' Htg Stm Drain PT 520.52 BTU/LEM HK (227) 2nd Stg Rhtr 'D' Htg Stm Drain PT 520.56 DEG F TT (227) 2nd Stg Rhtr 'D' Htg Stm Drain PT 520.56 DEG F TT (227) 2nd Stg R					set16out.txt
1210.58 BTU/LEM HH (164) ist Stg Rhtr 'D' Htg Stm Temperature 433.52 PSIA PP (226) ist Stg Rhtr 'D' Htg Stm Drain Pr 438.21 BTU/LEM HH (226) ist Stg Rhtr 'D' Htg Stm Drain Pr 437.07 DEG F TT (226) ist Stg Rhtr 'D' Htg Stm Drain Pr 0.0000 NOLINITS XX (226) ist Stg Rhtr 'D' Outlet Pressure 1.0529 NO-UNITS XX (46) 2nd Stg Rhtr 'D' Outlet Cempalpy 1.0529 NO-UNITS XX (46) 2nd Stg Rhtr 'D' Htg Stm Enthalpy 1.6939.4 LBM/HR WW (149) 2nd Stg Rhtr 'D' Htg Stm Enthalpy 526.52 BTU/LBM HH (227) 2nd Stg Rhtr 'D' Htg Stm Drain Enthalpy 526.52 BTU/LBM HH (227) 2nd Stg Rhtr 'D' Htg Stm Drain Enthalpy 526.52 BTU/LBM HK (227) 2nd Stg Rhtr 'D' Htg Stm Drain Enthalpy 526.52 BTU/LBM HK (227) 2nd Stg Rhtr 'D' Htg Stm Drain Enthalpy 526.52 BTU/LBM HK (227) 2nd Stg Rhtr 'D' Htg Stm Drain Enthalpy 526.54 <td>504.98</td> <td>PSIA</td> <td>PP</td> <td>(164)</td> <td>1st Stg Rhtr 'D' Htg Stm Pressure</td>	504.98	PSIA	PP	(164)	1st Stg Rhtr 'D' Htg Stm Pressure
435.05 DEG F TT (164) 1st Stg Rhtr 'D' Htg Stm Drain Fri 435.21 ETU/LEM HH (226) 1st Stg Rhtr 'D' Htg Stm Drain Fri 435.21 ETU/LEM HH (226) 1st Stg Rhtr 'D' Htg Stm Drain Fri 1457.05 DEG F TT (226) 1st Stg Rhtr 'D' Htg Stm Drain Cu 137.06 PEIA PP (46) 2nd Stg Rhtr 'D' Uoulet Enthalpy 10.939 MO-UNITS XX (46) 2nd Stg Rhtr 'D' Htg Stm Drain Cu 10.939 MO-UNITS XX (149) 2nd Stg Rhtr 'D' Htg Stm Temperatu 10.959.40 HM/HR WK (149) 2nd Stg Rhtr 'D' Htg Stm Drain Pr 10.959.40 FIA PP (227) 2nd Stg Rhtr 'D' Htg Stm Drain Pr 520.52 BTU/LEM HH (149) 2nd Stg Rhtr 'D' Htg Stm Drain Pr 520.55 DEG F TT (227) 2nd Stg Rhtr 'D' Htg Stm Drain Pr 520.52 BTU/LEM HH (227) 2nd Stg Rhtr 'D' Htg Stm Drain Pr 520.56 DEG F TT (227) 2nd Stg Rhtr 'D' Htg Stm Drain Pr 520.52 BTU/LEM H	1210.58	BTU/LBM	нн	(164)	1st Stg Rhtr 'D' Htg Stm Enthalpy
438.152 PSIA PP (226) 1st Stg Rhtr 'D' Htg Stm Drain Pri 457.07 DEG F TT (226) 1st Stg Rhtr 'D' Htg Stm Drain Ten 0.0000 NO-UNITS XX (226) 1st Stg Rhtr 'D' Htg Stm Drain Ten 1276.20 BTU/LBM HH (46) 2and Stg Rhtr 'D' Outlet Pressure 1276.20 BTU/LBM HH (46) 2and Stg Rhtr 'D' Outlet Temperatu: 1.0329 NO-UNITS XX (46) 2and Stg Rhtr 'D' Htg Stm Pressure 1233.45 BTU/LBM HH (149) 2and Stg Rhtr 'D' Htg Stm Temperatu: 526.16 DEG F TT (227) 2and Stg Rhtr 'D' Htg Stm Drain Pressure 526.41 DEG F TT (227) 2and Stg Rhtr 'D' Htg Stm Drain Pressure 526.41 DEG F TT (227) 2and Stg Rhtr 'D' Htg Stm Drain Qu 526.47.3 LBM/HR WW (180) Extr Steam Flow to FSV 'A' 1276.20 DTU/LBM HH (26) Pressure in to RSV 'A' 1276.20 BTU/LBM HH (26) Pressure in to RSV 'A' 1276.20 BTU/LBM HH <td>475.06</td> <td>DEG F</td> <td>TT</td> <td>(164)</td> <td>1st Stg Rhtr 'D' Htg Stm Temperature</td>	475.06	DEG F	TT	(164)	1st Stg Rhtr 'D' Htg Stm Temperature
48.21 BIU/LEM HH (226) 1st Stg Rhtr 'D' Htg Stm Drain En 457.07 DEG F TT (226) 1st Stg Rhtr 'D' Htg Stm Drain Qu 187.00 PSIA PP (46) 2nd Stg Rhtr 'D' Outlet Enthalpy 510.56 DEG F TT (46) 2nd Stg Rhtr 'D' Outlet Enthalpy 16999.4 LBW/LM WW (49) 2nd Stg Rhtr 'D' Htg Stm Enthalpy 1699.4 LBW/LM WW (149) 2nd Stg Rhtr 'D' Htg Stm Enthalpy 539.15 DEG F TT (149) 2nd Stg Rhtr 'D' Htg Stm Enthalpy 520.52 BTU/LBM HH (227) 2nd Stg Rhtr 'D' Htg Stm Drain En 526.52 BTU/LBM HH (227) 2nd Stg Rhtr 'D' Htg Stm Drain En 526.52 BTU/LBM HH (227) 2nd Stg Rhtr 'D' Htg Stm Drain En 526.52 BTU/LBM WW (120) Stg Rhtr 'D' Htg Stm Drain En 526.52 BTU/LBM WW (120) Stg Rhtr 'D' Htg Stm Drain En 526.54 DEG F TT (247) Znd Stg Rhtr 'D' Htg Stm Drain En 526.52 BTU/LBM WW (2	453.52	PSIA	PP	(226)	1st Stg Rhtr 'D' Htg Stm Drain Pressure
49.107 DBG F 11 (226) 1st Stg Rhtr 'D' Htg Stm Drain Quiller Pressure 1276.20 BTU/LBM HH (46) 2nd Stg Rhtr 'D' Outlet Pressure 1276.20 BTU/LBM HH (46) 2nd Stg Rhtr 'D' Outlet Pressure 11.0929 No-UNITS XX (46) 2nd Stg Rhtr 'D' Outlet Temperatu: 11.0929 A LBM/HR WW (149) 2nd Stg Rhtr 'D' Htg Stm Pressure 233.40 BTU/LBM HH (149) 2nd Stg Rhtr 'D' Htg Stm Temperatu: 526.96 DEG F TT (247) 2nd Stg Rhtr 'D' Htg Stm Drain Pressure 526.96 DEG F TT (247) 2nd Stg Rhtr 'D' Htg Stm Drain Quiller 526.47.3 LBM/HR WW (160) Extr Steam flow to FWT 2A 52247.3 LBM/HR WW (26) Freesure in to RSV 'A' 1276.20 BTU/LBM HH (26) Freesure in to RSV 'A' 1276.20 BTU/LBM HH (26) Freesure in to RSV 'C' 1276.20 BTU/LBM HH (28) Frees	438.21	BTU/LBM	нн	(226)	1st Stg Rhtr 'D' Htg Stm Drain Enthalpy
0.0000 NO-ONITS XX (226) Ist Stg NRT 'D' Htg Stm Prain Qui 187.00 FSIA PP (46) 2nd Stg NRT 'D' Outlet Pressure 1.022 NO-ONITS XX (46) 2nd Stg NRT 'D' Outlet Temperatu 1.022 NO-ONITS XX (46) 2nd Stg NRT 'D' Htg Stm Frasure 1.023 NO-ONITS XX (46) 2nd Stg NRT 'D' Htg Stm Frasure 1.023 NO-ONITS XX (46) 2nd Stg NRT 'D' Htg Stm Frasure 1.032 NO-ONITS XX (46) 2nd Stg NRT 'D' Htg Stm Frasure 1.032 NO-ONITS XX (46) 2nd Stg NRT 'D' Htg Stm Frasure 1.032 NO-ONITS XX (27) 2nd Stg NRT 'D' Htg Stm Frasure 1.030 NO-ONITS XX (27) 2nd Stg NRT 'D' Htg Stm Frain Ent 526.56 DEG F TT (27) 2nd Stg NRT 'D' Htg Stm Drain Pri 526.56 DEG F TT (27) 2nd Stg NRT 'D' Htg Stm Drain Qui 22547.3 LEM/HR WW (140) Extr Steam flow to FWT 28 1222114.1 LEM/HR WW (160) Extr Steam flow to FWT 28 122214.1 LEM/HR WW (160) Extr Steam flow to FWT 28 122214.1 LEM/HR WW (160) Extr Steam flow to FWT 28 1232.0 SULDM HR (26) Fressure in to RSV 'A' 137.00 PSIA PP (26) Pressure in to RSV 'A' 137.00 PSIA PP (26) Pressure in to RSV 'A' 137.00 PSIA PT (26) Temperature in to RSV 'A' 137.00 PSIA PP (26) Pressure in to RSV 'C' 137.00 PSIA PP (26) Pressure in to RSV 'C' 137.00 PSIA PP (26) Pressure in to RSV 'C' 137.00 PSIA PP (26) Pressure in to RSV 'C' 137.62 BTU/LEM HT (-80 Enthalpy in to RSV 'C' 1276.20 BTU/LEM HT (-80 Enthalpy in to RSV 'C' 1276.20 BTU/LEM HH (33) Etemperature in to RSV 'C' 1276.20 BTU/LEM HH (33) Etemperature in to RSV 'C' 1276.20 BTU/LEM HH (33) Etemperature in to RSV 'C' 1276.20 BTU/LEM HH (33) Etemperature out of IV 'C' 1276.20 BTU/LEM HH (33) Etemperature out of IV 'C' 1276.20 BTU/LEM HH (34) LP Turb A ist Stg Extract Pressure 30.44.76 DEG F TT (35) Rememperature out of IV 'C' 1276.20 BTU/LEM HH (144) LP Turb A ist Stg Extract Pressure 30.023.16 BTU/LEM HH (144) LP Turb A ist Stg Extract Pressure 30.023.16 BTU/LEM HH (144) LP Turb A ist Stg Extract Pressure 30.023.16 BTU/LEM HH (144) LP Turb A ist Stg Extract Pressure 30.04.67 PF FIA PP (144) LP Turb A ist Stg Extract	457.07	DEG F	TT	(226)	Ist Stg Rhtr 'D' Htg Stm Drain Temp
1276.20 BTU/LEM HH (46) ZhG Sig KhIr 'D' Outlet Pressure 1276.20 BTU/LEM HH (46) ZhG Sig KhIr 'D' Outlet Temperatu 10.929 NO-UNITS XX (46) ZhG Sig KhIr 'D' Hig Sim Pressure 1253.40 BTU/LEM HH (149) ZhG Sig KhIr 'D' Hig Sim Pressure 1253.40 BTU/LEM HH (149) ZhG Sig KhIr 'D' Hig Sim Tremperatu 862.61 PSIA PP (149) ZhG Sig KhIr 'D' Hig Sim Tremperatu 862.61 PSIA PP (227) ZhG Sig KhIr 'D' Hig Sim Drain Pri 520.52 BTU/LEM HH (227) ZhG Sig KhIr 'D' Hig Sim Drain Pri 520.52 BTU/LEM HH (227) ZhG Sig KhIr 'D' Hig Sim Drain Pri 520.53 ETU/LEM HH (227) ZhG Sig KhIr 'D' Hig Sim Drain Tei 0.0000 NO-UNITS XX (227) ZhG Sig KhIr 'D' Hig Sim Drain Tei 524.7.3 LEM/HR WW (402) Extr Steam flow to FWT 2A 52547.3 LEM/HR WW (20) Extr Steam flow to FWT 2A 52547.3 LEM/HR WW (20) Extr Steam flow to FWT 2A 52547.3 LEM/HR WW (20) Extr Steam flow to FWT 2A 52547.3 LEM/HR WW (20) Extr Steam flow to FWT 2A 52547.3 LEM/HR WW (20) Extr Steam flow to FWT 2A 52547.3 LEM/HR WW (20) Extr Steam flow to FWT 2A 52547.3 LEM/HR WW (20) Extr Steam flow to FWT 2A 52547.3 LEM/HR WW (20) Extr Steam flow to FWT 2A 52547.3 LEM/HR WW (20) Extr Steam flow to FWT 2A 52547.3 LEM/HR WW (20) Extr Steam flow to FWT 2A 52547.3 LEM/HR WW (20) Extr Steam flow to FWT 2A 52547.3 LEM/HR WW (20) Extr Steam flow to FWT 2A 52547.3 LEM/HR WW (20) Extr Steam flow to FWT 2A 52547.3 LEM/HR WW (20) Extr Steam flow to FWT 2A 509.86 DEG F TT (20) Temperature in to RSV 'A' 1276.20 BTU/LEM HH (22) Enthalpy out of IV 'A' 1276.20 BTU/LEM HH (23) Enthalpy out of IV 'C' 1276.20 BTU/LEM HH (23) 509.86 DEG F TT (23) Temperature out of IV 'C' 1276.20 BTU/LEM HH (23) 509.86 DEG F TT (23) Temperature out of IV 'C' 1276.20 BTU/LEM HH (24) LP Turb A 1st Stg Extract Pressure 30.44.76 DEG F TT (14) LP Turb A 1st Stg Extract Pressure 30.44.76 DEG F TT (14) LP Turb A 2nd Stg Extract Pressure 30.44.76 DEG F TT (14) LP Turb A 2nd Stg Extract Pressure 30.02.86 BM/HR WW (180) LP Turb A 3nd Stg Extract Pressure 30.02.81 BM/LEM HH (141) LP Turb A 3nd Stg Extract Pressure 30.84.76 DO-UNITS XX (14) LP Tur	0.0000	NO-UNITS	XX	(226)	1st Stg Rhtr 'D' Htg Stm Drain Quality
1276.20 BIOLEM HH (46) Zhd Sig Khir 'D' Outlet Dichlet Dichardyy 1.0929 NO-UNITS XX (46) Zhd Sig Khir 'D' Outlet Quality 1.0929 NO-UNITS XX (46) Zhd Sig Khir 'D' Hig Stm Flow 844.00 FSIA PP (149) Zhd Sig Khir 'D' Hig Stm Frhalpy 583.15 DEG F TT (149) Zhd Sig Khir 'D' Hig Stm Frhalpy 583.15 DEG F TT (149) Zhd Sig Khir 'D' Hig Stm Train Ent 526.96 DEG F TT (227) Zhd Sig Khir 'D' Hig Stm Drain Pri 526.96 DEG F TT (227) Zhd Sig Khir 'D' Hig Stm Drain Pri 526.96 DEG F TT (227) Zhd Sig Khir 'D' Hig Stm Drain Pri 526.96 DEG F TT (227) Zhd Sig Khir 'D' Hig Stm Drain Pri 526.97 JEM/HR WW (402) Extr Steam flow to FWF 28 1922114.3 LEM/HR WW (126) Steam Flow to RSV 'A' 187.00 PSIA PP (26) Pressure in to RSV 'A' 187.00 PSIA PP (26) Pressure out of IV 'A' 187.00 PSIA PP (28) Tremperature in to RSV 'A' 187.00 PSIA PP (28) Tremperature out of IV 'A' 187.00 PSIA PP (28) Pressure out of IV 'A' 183.26 PSIA PP (28) Tremperature in to RSV 'C' 183.26 PSIA PP (28) Pressure out of IV 'A' 1922114.3 LEM/HR WW (33) Steam Flow to RSV 'C' 183.26 PSIA PP (33) Pressure in to RSV 'C' 183.26 PSIA PP (33) Pressure in to RSV 'C' 183.26 PSIA PP (33) Entmalpy in to RSV 'C' 183.26 PSIA PP (33) Entmalpy out of IV 'C' 1276.20 BTU/LEM HH (33) Enthalpy out of IV 'C' 1276.20 BTU/LEM HH (33) Enthalpy out of IV 'C' 1276.20 BTU/LEM HH (34) LP Turb A 1st Stg Extract Drehalpy 120.024 DFU/LEM HH (144) LP Turb A 1st Stg Extract Drehalpy 120.31 6 BTU/LEM HH (144) LP Turb A 1st Stg Extract Drehalpy 120.29 PSIA PP (144) LP Turb A 1st Stg Extract Dremsurd 14.024 NO-UNITS XX (144) LP Turb A 1st Stg Extract Dremsurd 14.024 NO-UNITS XX (144) LP Turb A 2nd Stg Extract Dremsurd 14.024 NO-UNITS XX (144) LP Turb A 2nd Stg Extract Quality 220002 ELEM/HR WW (148) LP Turb A 2nd Stg Extract Dremsurd 0.397 RO-UNITS XX (141) LP Turb A 2nd Stg Extract Dremsurd 0.43.6 PSIA PP (142) LP Turb A 2nd Stg Extract Dremsurd 0.43.6 PSIA PP (144) LP Turb A 2nd Stg Extract Dremsurd 0.43.6 PSIA PP (143) LP Turb A 2nd	187.00	PSIA DØW (V DM	PP	(46)	2nd Stg Rhtr 'D' Outlet Pressure
 b1.35 b1.55 b2.56 b2.57 b1.6929 b2.51 /ul>	1276.20	BTU/LBM	нн	(46)	2nd Stg Rhtr 'D' Outlet Enthalpy
1.0929 NO-ONIES XX (149) Znd Stg Nhr 'D' Htg Stm Flow 844.00 FSIA PP (149) Znd Stg Nhr 'D' Htg Stm Frhalpy 539.15 DEG F TT (149) Znd Stg Nhr 'D' Htg Stm Frhalpy 539.15 DEG F TT (149) Znd Stg Nhr 'D' Htg Stm Frhalpy 549.06 DEG F TT (227) Znd Stg Nhr 'D' Htg Stm Drain Ent 526.96 DEG F TT (227) Znd Stg Nhr 'D' Htg Stm Drain Ent 526.96 DEG F TT (227) Znd Stg Nhr 'D' Htg Stm Drain Qu 52547.3 LEM/HR WW (140) Extr Steam flow to FWF 22 52547.3 LEM/HR WW (120) Extr Steam flow to FWF 22 1276.20 BTU/LEM HH (22 1276.20 BTU/LEM HH (22 1276.20 BTU/LEM HH (22 1276.20 BTU/LEM HH (22 1276.20 BTU/LEM HH (26 1276.20 BTU/LEM HH (26 1276.20 BTU/LEM HH (28 1276.20 BTU/LEM HH (29 1276.20 BTU/LEM HH (29 1270.29 PSIA PP (144) LP Turb A 1st Stg Extract Dreasurg 14.0248 NO-UNITS XX (144) LP Turb A 1st Stg Extract Dreasurg 14.0248 NO-UNITS XX (144) LP Turb A 1st Stg Extract Dreasurg 14.0248 NO-UNITS XX (144) LP Turb A 27 14.0259 NO-UNITS XX (144) LP Turb A 27 15.056 DEG F TT (144) LP Turb A 27 15.056 DEG F TT (144) LP Turb A 27 15.056 DEG F TT (144) LP Turb A 27 15.056 DEG F TT (144) LP Turb A 27 15.056 DEG F TT (144) LP Turb A 27 15.056 DEG F TT (144) LP Turb A 27 15.056 DEG F TT (144) LP Turb A 27 15.056 DEG F TT (144	510.56	DEG F	11	(46)	2nd Stg Rhtr 'D' Outlet Temperature
11999-4LBOYDARNM(149)And Sty ARLT 'D' Hty Stm Fressure123.40FTU/LEMHH(149)2nd Sty Rhtr 'D' Hty Stm Fressure123.40FTU/LEMHH(149)2nd Sty Rhtr 'D' Hty Stm Trainalpy589.15DEG FTT(149)2nd Sty Rhtr 'D' Hty Stm Train Pri520.52STU/LEMHH(227)2nd Sty Rhtr 'D' Hty Stm Train Pri520.52STU/LEMHH(227)2nd Sty Rhtr 'D' Hty Stm Train Tei0.0000NO-UNITSXX(227)2nd Sty Rhtr 'D' Hty Stm Train Tei0.0000NO-UNITSXX(227)2nd Sty Rhtr 'D' Hty Stm Train Tei10.0000NO-UNITSXX(227)2nd Sty Rhtr 'D' Hty Stm Train Tei1252547.3LEM/HRWW(402)Extr Steam flow to FWT 2A1252141.3LEM/HRWW(26)Steam Flow to RSV 'A'137.00PSIAPP(26)Fressure in to RSV 'A'1276.20BTU/LEMHH(28)Steam Flow to RSV 'C'183.26PSIAPP(28)Fressure out of IV 'A'1276.20BTU/LEMHH(33)Steam Flow to RSV 'C'183.26DEG FTT(33)Temperature in to RSV 'C'183.26DEG FTT(33)Temperature in to RSV 'C'184.26DEG FTT(33)Temperature in to RSV 'C'184.26DEG FTT(33)Temperature in to RSV 'C'184.26DEG FTT(33)Temperature in to RSV 'C'1276.2	116000 4	NU-UNIIS		46)	2nd Stg Rhtr 'D' Outlet Quality
BarbornFr(149)2nd Stg Rhtr 'D' Htg Stm Enthalpy583.15DEG FTT(149)2nd Stg Rhtr 'D' Htg Stm Enthalpy583.15DEG FTT(127)2nd Stg Rhtr 'D' Htg Stm Drain Pr526.52BTU/LEMHH(227)2nd Stg Rhtr 'D' Htg Stm Drain Ten526.52BTU/LEMHH(227)2nd Stg Rhtr 'D' Htg Stm Drain Ten526.53BTU/LEMHH(227)2nd Stg Rhtr 'D' Htg Stm Drain Qu52547.3LEM/HRWW(180)Extr Steam flow to FWPT 281922114.3LEM/HRWW(180)Extr Steam flow to FWPT 281922114.3LEM/HRWW(26)Steam Flow to RSV 'A'187.00PSTAPF(26)Pressure out of IV 'A'187.62DETG/LEMHH(26)Pressure out of IV 'A'180.26PSTAPF(27)Temperature out of IV 'A'181.26DETG/LEMHH(28)Pressure out of IV 'A'182.64DETG/LEMHH(28)Steam Flow to RSV 'C'187.00PSTAPF(33)Steam Flow to RSV 'C'187.00PSTAPF(33)Steam Flow to RSV 'C'187.01PSTAPF(35)Fressure out of IV 'C'187.62DEG FTT(-35)Steham Flow to RSV 'C'187.64DEG FTT(-35)Fressure out of IV 'C'1276.20BTU/LEMHH(35)Steam Flow to RSV 'C'1276.20BTU/LEMHH(35)Steam Flow to RSV 'C	110999.4	DOM/ NK	מא א	(149)	2nd Stg Rhtr 'D' Htg Stm Flow
1233.40510/LBMFM(149)2nd Stg Rhtr D' Htg Stm Temperati862.61PSIAPP(227)2nd Stg Rhtr D' Htg Stm Drain Pri520.52BTU/LBMHH(227)2nd Stg Rhtr D' Htg Stm Drain Tem520.52BTU/LBMHH(227)2nd Stg Rhtr D' Htg Stm Drain Tem520.52BTU/LBMHH(227)2nd Stg Rhtr D' Htg Stm Drain Qu52547.3LBM/HRWW(402)Extr Steam flow to FWPT 2A52547.3LBM/HRWW(26)Steam Flow to RSV 'A'187.00PSIAPP(26)Pressure in to RSV 'A'183.26PSIAPP(26)Breasure in to RSV 'A'183.26PSIAPP(26)Pressure out of IV 'A'1276.20BTU/LBMHH(26)Enthalpy out of IV 'A'1276.20BTU/LBMHH(28)Steam Flow to RSV 'C'183.26PSIAPP(33)Pressure out of IV 'A'1922114.3LBM/HRWW(33)Steam Flow to RSV 'C'187.00PSIAPP(-35)Enthalpy out of IV 'C'1276.20BTU/LBMHH(-35)Enthalpy out of IV 'C'1276.20BTU/LBMHH(-35)Enthalpy out of IV 'C'183.26PSIAPP(-35)Fressure out of IV 'C'1276.20BTU/LBMHH(-41)LP Turb A 1st Stg Extract Enthalpy70.29PSIAPF(-42)PTurb A 1st Stg Extract Temperature1274.20BTU/LBMHH(141) <t< td=""><td>1252 40</td><td>PSIA DTU/IDM</td><td></td><td>149)</td><td>2nd Stg Rhtr 'D' Htg Stm Pressure</td></t<>	1252 40	PSIA DTU/IDM		149)	2nd Stg Rhtr 'D' Htg Stm Pressure
 Bos.1.1 Dor. 11 Barton D. Hug Stern Drain Barton D. Hug Stern Drain Barton Barton D. Barto	599 15		лл тт	149/	2nd Stg Rher D. Htg Stm Encharpy
bitbitbitbitbitbitbitbitbit520.52BTO/LBMHH(227)2nd Stg Rhtr 'D' Htg Stm Drain Ten526.54DBG FTT(227)2nd Stg Rhtr 'D' Htg Stm Drain Qu52547.3LBM/HRWW(402)Extr Steam flow to FWPT 2A52547.3LBM/HRWW(26)Steam flow to RSV 'A'187.00PSIAPP(26)Pressure in to RSV 'A'1276.20BTU/LBMHH(28)Tremperature out of IV 'A'509.86DEG FTT(-28)Tremperature in to RSV 'C'187.00PSIAPP(33)Pressure in to RSV 'C'187.00PSIAPP(35)Pressure in to RSV 'C'187.00PSIAPP(-35)Pressure in to RSV 'C'187.00BSIAPP(-35)Pressure in to RSV 'C'1276.20BTU/LBMHH(-35)Tremperature out of IV 'C'1276.20BTU/LBMHH(-35)Pressure in to RSV 'C'1276.20BTU/LBMHH(-41)LP Turb A 1st Stg Extract Enthalp1203.16BTU/LBMWW(164)LP Turb A 1st	962 61	DEG P	ים הסס	(14 <i>9)</i> (227)	2nd Stg Phtr ID! Htg Stm Drain Program
526.36DEG FTT(227)2nd Stg RhtrDr Htg Stm Drain Ter526.73LEM/HRWW(402)Extr Steam flow to FWPT 2A52547.3LEM/HRWW(180)Extr Steam flow to FWPT 2A52547.3LEM/HRWW(180)Extr Steam flow to FWPT 2A52547.3LEM/HRWW(26)Steam Flow to RSV 'A'187.00PSIAPP(26)Pressure in to RSV 'A'1276.20BTU/LEMHH(26)Enthalpy out of IV 'A'1276.20BTU/LEMHH(26)Pressure out of IV 'A'192114.3LEM/HRWW(33)Steam Flow to RSV 'C'187.00PSIAPP(33)Enthalpy out of IV 'C'1276.20BTU/LEMHH(33)Enthalpy out of IV 'C'1276.20BTU/LEMHH(-35)Enthalpy out of IV 'C'1276.20BTU/LEMHH(-35)Enthalpy out of IV 'C'1276.20BTU/LEMHH(-35)Enthalpy out of IV 'C'1276.20BTU/LEMHH(-35)Enthalpy out of IV 'C'1276.20BTU/LEMHH(-41)LP Turb A lat Stg Extract Enthalpy70.29PSIAPP(-35)Temperature out of IV 'C'1244228.6LEM/HRWW(164)LP Turb A lat Stg Extract Pressure717.10LEM/HRWW(164)LP Turb A lat Stg Extract Temperat70.29PSIAPF(144)LP Turb A lat Stg Extract Temperat71.29PSIAPF(144)<	520 52		rr (UU	2211	2nd Sty Rhtr D Aty Stm Drain Pressure
0.0000 NO-UNITS XX (227) 2nd Stg Rhtr 'D' Htg Stm Drain Qu 25247.3 LBM/HR WW (402) Extr Steam flow to FWFT 2A 52547.3 LBM/HR WW (106) Extr Steam flow to FWFT 2A 1922114.3 LBM/HR WW (126) Extr Steam flow to FSV 'A' 187.00 PSIA PP (26) Pressure in to RSV 'A' 1276.20 BTU/LBM HH (26) Enthalpy oit of IV 'A' 1276.20 BTU/LBM HH (26) Enthalpy out of IV 'A' 1276.20 BTU/LBM HH (28) Enthalpy out of IV 'A' 1276.20 BTU/LBM HH (28) Enthalpy out of IV 'A' 1922114.3 LBM/HR WW (33) Steam Flow to RSV 'C' 187.00 PSIA PP (33) Pressure out of IV 'A' 1922114.3 LBM/HR WW (33) Steam Flow to RSV 'C' 187.00 PSIA PP (33) Pressure out of IV 'C' 187.00 PSIA PP (33) Pressure out of IV 'C' 187.00 BSIA PP (33) Renthalpy out of IV 'C' 187.00 BSIA PP (33) Renthalpy out of IV 'C' 187.00 BSIA PP (33) Renthalpy out of IV 'C' 187.00 BSIA PP (33) Renthalpy out of IV 'C' 187.00 BSIA PP (35) Enthalpy out of IV 'C' 187.00 BSIA PP (35) Steam Flow in to LP Turbine 'A' 112571.0 LBM/HR WW (50) Steam Flow in to LP Turbine 'A' 112571.0 LBM/HR WW (144) LP Turb A 1st Stg Extract Enthalpy 70.29 PSIA PP (144) LP Turb A 1st Stg Extract Pressure 344.76 DEG F TT (144) LP Turb A 1st Stg Extract Pressure 344.76 DEG F TT (144) LP Turb A 1st Stg Extract Pressure 343.36 PSIA PP (144) LP Turb A 1st Stg Extract Temperat 1.0248 NO-UNITS XX (144) LP Turb A 2nd Stg Extract Temperat 3.36 PSIA PP (181) LP Turb A 2nd Stg Extract Temperat 3.36 PSIA PP (181) LP Turb A 2nd Stg Extract Temperat 3.36 PSIA PP (182) LP Turb A 3rd Stg Extract Temperat 3.36 PSIA PP (183) LP Turb A 3rd Stg Extract Temperat 3.36 PSIA PP (183) LP Turb A 3rd Stg Extract Temperat 3.36 PSIA PP (183) LP Turb A 3rd Stg Extract Temperat 3.36 PSIA PP (183) LP Turb A 3rd Stg Extract Quality 32505.8 LBM/HR WW (183) LP Turb A 3rd Stg Extract Callely 32514.3 NO-UNITS XX (181) LP Turb A 3rd Stg Extract Callely 3.45 PSIA PP (183) LP Turb A 3rd Stg Extract Callely 3.45 PSIA PP (183) LP Turb A 3rd Stg Extract Callely 3.45 PSIA PP (183) LP Turb A 3rd Stg Extract Callely 3.45 BTU/LBM	520.52	DEG E	пл (тт ((<u>22</u> /)	2nd Stg Rhtr D. Htg Stm Drain Enchalpy
52547.3LBM/HRWW(422)Extr Steam flow to FWET 2B52547.3LBM/HRWW(180)Extr Steam flow to FWET 2B1922114.3LBM/HRWW(180)Extr Steam flow to FWET 2B1276.20BTU/LBMHH(26)Ertenperature in to RSV 'A'187.00PSIAPP(26)Enthalpy int to RSV 'A'183.26PSIAPP(-28)Enthalpy out of IV 'A'509.86DEG FTT(-28)Enthalpy out of IV 'A'1922114.3LBM/HRWW(33)Steam Flow to RSV 'C'187.00PSIAPP(-32)Temperature in to RSV 'C'1276.20BTU/LBMHH(-33)Enthalpy out of IV 'C'1276.20BTU/LBMHH(-35)Enthalpy out of IV 'C'1276.20BTU/LBMHH(-35)Enthalpy out of IV 'C'1276.20BTU/LBMHH(-35)Enthalpy out of IV 'C'1276.20BTU/LBMHH(-41)LP Turb A 1st Stg Extract Pressure1223.16BTU/LBMHH(144)LP Turb A 1st Stg Extract Enthalpy70.29PSIAPP(144)LP Turb A 1st Stg Extract Chemperat10.248NO-UNITSXX(144)LP Turb A 2nd Stg Extract Chemperat2002.2LBM/HRWW(181)LP Turb A 2nd Stg Extract Chemperat2123.16BTU/LBMHH(144)LP Turb A 2nd Stg Extract Chemperat223.16BEG FTT(144)LP Turb A 2nd Stg Extract Chemperat24.76 <td>0 0000</td> <td>NO-UNITS</td> <td>XX (</td> <td>227)</td> <td>2nd Stg Rhti D Htg Stm Drain Temp</td>	0 0000	NO-UNITS	XX (227)	2nd Stg Rhti D Htg Stm Drain Temp
252547.3LEM/ARWW(142)Extr Steam flow to FWFT 2B1922114.3LEM/ARWW(26)Extract Steam flow to FWFT 2B1922114.3LEM/ARWW(26)Steam flow to RSV 'A'1276.20BTU/LEMHH(26)Enthalpy in to RSV 'A'187.00FSIAPP(-28)Fressure out of IV 'A'1276.20BTU/LEMHH(-28)Enthalpy out of IV 'A'1276.20BTU/LEMHH(-28)Enthalpy out of IV 'A'1922114.3LBM/ARWW(33)Steam Flow to RSV 'C'187.00PSIAPP(33)Temperature in to RSV 'C'187.00PSIAPP(33)Temperature out of IV 'C'1276.20BTU/LEMHH(-35)Enthalpy out of IV 'C'1276.20BTU/LEMHH(-35)Enthalpy out of IV 'C'1276.20BTU/LEMHH(-35)Enthalpy out of IV 'C'1284228.6LEM/HRWW(144)LP Turb A last Stg Extract Enthalpy70.29PSIAPP(144)LP Turb A last Stg Extract Enthalpy70.29PSIAPP(144)LP Turb A last Stg Extract Callely20002.8LBM/HRWW(141)LP Turb A last Stg Extract Enthalpy43.36PSIAPP(181)LP Turb A 2nd Stg Extract Enthalpy43.36PSIAPP(181)LP Turb A 2nd Stg Extract Enthalpy103.81BTU/LEMHH(181)LP Turb A 2nd Stg Extract Temperat0.9978NO-UNITS<	52547 3	I.BM/HD		4021	Extr Steam flow to EWDT 20
1922114.3LBM/HRWW(126)Steam Flow to RSV 'A'187.00PSIAPP(26)Pressure in to RSV 'A'1276.20BTU/LBMHH(26)Enthalpy in to RSV 'A'183.26PSIAPP(-28)Pressure out of IV 'A'1276.20BTU/LBMHH(-28)Enthalpy out of IV 'A'509.86DEG FTT(-28)Temperature out of IV 'A'1922114.3LBM/HRWW(33)Steam Flow to RSV 'C'187.00PSIAPP(-33)Pressure out of IV 'C'1276.20BTU/LBMHH(33)Enthalpy in to RSV 'C'187.00PSIAPP(-35)Enthalpy out of IV 'C'509.86DEG FTT(-35)Enthalpy out of IV 'C'183.26PSIAPP(-35)Enthalpy out of IV 'C'1264.28.6LBM/HRWW(144)LP Turb A 1st Stg Extract Pressure1203.16BTU/LBMHH(144)LP Turb A 1st Stg Extract Pressure1203.16BTU/LBMHH(144)LP Turb A 1st Stg Extract Temperat1.0248NO-UNITSXX(144)LP Turb A 1st Stg Extract Pressure22002.28LBM/HRWW(181)LP Turb A 2nd Stg Extract Temperat1.0248NO-UNITSXX(181)LP Turb A 3rd Stg Extract Temperat2.035.6EGF TT(181)LP Turb A 3rd Stg Extract Temperat1.0248NO-UNITSXX(181)LP Turb A 3rd Stg Extract Temperat1.0248NO-UNITS	52547 3	LBM/HR	WW (180)	Extr Steam flow to FWPT 2R
187.100PSIAPP(26)Pressure in to RSV 'A'1276.20BTU/LBMHH(26)Pressure in to RSV 'A'183.26PSIAPP(28)Pressure out of IV 'A'183.26PSIAPP(-28)Pretsure out of IV 'A'192214.3LBM/HRWW(33)Steam Flow to RSV 'C'192214.3LBM/HRWW(33)Breasure in to RSV 'C'187.00PSIAPP(33)Pressure in to RSV 'C'187.00PSIAPP(33)Pressure out of IV 'C'1276.20DTU/LBMHH(33)Enthalpy out of X'C'1276.20BTU/LBMHH(33)Enthalpy out of IV 'C'509.86DEG FTT(-35)Temperature in to RSV 'C'1276.20BTU/LBMHH(144)LP Turb A 1st Stg Extract Pressure3644228.6LBM/HRWW(144)LP Turb A 1st Stg Extract Pressure364228.6LBM/HRWW(144)LP Turb A 1st Stg Extract Pressure364228.8NO-UNITSX(144)LP Turb A 1st Stg Extract Pressure364228.8CUM/HRWW(144)LP Turb A 2nd Stg Extract Pressure370.29PSIAPP(144)LP Turb A 1st Stg Extract Pressure344.76DEG FTT(144)LP Turb A 2nd Stg Extract Pressure344.76DEG FTT(144)LP Turb A 2	1922114 3	LBM/HR	พพ (26)	Steam Flow to RSV 'A'
1276.20 BTU/LBM HH (26) Enthalpy in to RSV 'A' 510.56 DEG F TT (26) Enthalpy out of IV 'A' 1276.20 BTU/LBM HH (-28) Pressure out of IV 'A' 509.86 DEG F TT (-28) Temperature out of IV 'A' 1922114.3 LBM/HR WW (33) Steam Flow to RSV 'C' 187.00 PSIA PP (33) Pressure in to RSV 'C' 1276.20 BTU/LBM HH (33) Enthalpy in to RSV 'C' 1276.20 BTU/LBM HH (33) Temperature out of IV 'C' 1276.20 BTU/LBM HH (-35) Temperature out of IV 'C' 183.26 DEG F TT (-35) Temperature out of IV 'C' 244228.6 LBM/HR WW (50) Steam Flow in to LP Turbine 'A' 1203.16 BTU/LBM HH (144) LP Turb A 1st Stg Extract Temperature 1203.16 BTU/LBM HH (144) LP Turb A 1st Stg Extract Temperature 1203.16 BTU/LBM HH (144) LP Turb A 1st Stg Extract Temperature </td <td>187 00</td> <td>PSTA</td> <td>PP (</td> <td>26)</td> <td>Pressure in to RSV 'A'</td>	187 00	PSTA	PP (26)	Pressure in to RSV 'A'
S10.56DEG FTT(26)Temperature in to RSV 'A'183.26PSIAPP(-28)Pressure out of IV 'A'1276.20BTU/LEMHH(-28)Enthalpy out of IV 'A'192114.3LEM/HRWW(33)Steam Flow to RSV 'C'187.00PSIAPP(33)Pressure in to RSV 'C'187.00PSIAPP(33)Temperature in to RSV 'C'187.00PSIAPP(33)Pressure out of IV 'C'183.26PSIAPP(-35)Pressure out of IV 'C'276.20BTU/LEMHH(-35)Enthalpy out of IV 'C'384428.6LEM/HRWW(50)Steam Flow in to LP Turbine 'A'112571.0LEM/HRWW(144)LP Turb A 1st Stg Extract Enthalpy70.29PSIAPP(144)LP Turb A 1st Stg Extract Pressure344.76DEG FTT(144)LP Turb A 1st Stg Extract Pressure344.76DEG FTT(144)LP Turb A 2nd Stg Extract Pressure20002.8LEM/HRWW(141)LP Turb A 2nd Stg Extract Pressure272.16DEG FTT(181)LP Turb A 3rd Stg Extract Pressure272.16DEG FTT(181)LP Turb A 3rd Stg Extract Pressure <tr< td=""><td>1276.20</td><td>BTU/LBM</td><td>нн (</td><td>26)</td><td>Enthalpy in to RSV 'A'</td></tr<>	1276.20	BTU/LBM	нн (26)	Enthalpy in to RSV 'A'
183.26PSTAPP(-28)Pressure out of IV 'A'1276.20BTU/LBMHH(-28)Enthalpy out of IV 'A'1922114.3LBM/HRWW(33)Steam Flow to RSV 'C'187.00PSTAPP(33)Pressure in to RSV 'C'187.00PSTAPP(-35)Pressure in to RSV 'C'187.00PSTAPP(-35)Pressure out of IV 'C'183.26PSTAPP(-35)Pressure out of IV 'C'183.26PSTAPP(-35)Temperature out of IV 'C'183.26PSTAPP(-35)Temperature out of IV 'C'1257.00LBM/HRWW(50)Steam Flow in to LP Turbine 'A'112571.00LBM/HRWW(144)LP Turb A 1st Stg Extract Pressure70.29PSTAPP(144)LP Turb A 1st Stg Extract Temperat20002.8LBM/HRWW(181)LP Turb A 1st Stg Extract Quality22002.8LBM/HRWW(181)LP Turb A 2nd Stg Extract Temperat0.9978NO-UNITSXX(181)LP Turb A 2nd Stg Extract Temperat0.9978NO-UNITSXX(182)LP Turb A 3rd Stg Extract Temperat0.9978NO-UNITSXX(182)LP Turb A 3rd Stg Extract Temperat0.843NO-UNITSXX(182)LP Turb A 3rd Stg Extract Temperat0.843NO-UNITSXX(183)LP Turb A 3rd Stg Extract Temperat0.8648NO-UNITSXX(183)LP Turb A 4th Stg Extract Temperat <tr< td=""><td>510.56</td><td>DEG F</td><td>тт (</td><td>26)</td><td>Temperature in to RSV 'A'</td></tr<>	510.56	DEG F	тт (26)	Temperature in to RSV 'A'
1276.20BTU/LEMHH(-28)Enthalpy out of IV 'A'509.86DEG FTT(-28)Temperature out of IV 'A'1921114.3LEM/HRWW(33)Steam Flow to RSV 'C'187.00PSIAPP(33)Pressure in to RSV 'C'1276.20BTU/LBMHH(33)Enthalpy in to RSV 'C'183.26PSIAPP(-35)Pressure out of IV 'C'183.26BSIAPP(-35)Pressure out of IV 'C'509.86DEG FTT(-35)Temperature out of IV 'C'509.86DEG FTT(-35)Temperature out of IV 'C'3844228.6LEM/HRWW(144)LP Turb A 1st Stg Extract Enthalpy70.29PSIAPP(144)LP Turb A 1st Stg Extract Temperat344.76DEG FTT(144)LP Turb A 1st Stg Extract remperat1.0248NO-UNITSXX(144)LP Turb A 2nd Stg Extract Temperat22002.8LEM/HRWW(181)LP Turb A 2nd Stg Extract Pressure272.16DEG FTT(181)LP Turb A 2nd Stg Extract Pressure273.8NO-UNITSXX(181)LP Turb A 3rd Stg Extract Pressure274.16DEG FTT(181)LP Turb A 3rd Stg Extract Pressure275.17DEG FTT(181)LP Turb A 3rd Stg Extract Pressure272.16DEG FTT(182)LP Turb A 3rd Stg Extract Pressure273.17DEG FTT(182)LP Turb A 3rd Stg Extract Pressure<	183.26	PSIA	PP (-28)	Pressure out of TV 'A'
509.86DEG FTT(-28)Temperature out of IV 'A'1922114.3LBM/HRWW(33)Steam Flow to RSV 'C'1276.20BTU/LBMHH(33)Enthalpy in to RSV 'C'1276.20BTU/LBMHH(33)Temperature in to RSV 'C'183.26PSIAPP(-35)Pressure out of IV 'C'1276.20BTU/LBMHH(-35)Enthalpy out of IV 'C'1287.00DETU/LBMHH(-35)Enthalpy out of IV 'C'384228.6LBM/HRWW(50)Steam Flow in to LP Turbine 'A'112571.0LBM/HRWW(144)LP Turb A 1st Stg Extract Pressure'70.29PSIAPP(144)LP Turb A 1st Stg Extract Temperat344.76DEG FTT(144)LP Turb A 1st Stg Extract Quality20002.8LBM/HRWW(181)LP Turb A 2nd Stg Extract Pressure'71.029PSIAPP(181)LP Turb A 2nd Stg Extract Pressure'21.002.8LBM/HRWW(181)LP Turb A 2nd Stg Extract Pressure'22.16DEG FTT(181)LP Turb A 2nd Stg Extract Quality'20550.2LBM/HRWW(182)LP Turb A 3rd Stg Extract Pressure'22.11DEG FTT(182)LP Turb A 3rd Stg Extract Pressure'17.73DEG FTT(182)LP Turb A 3rd Stg Extract Pressure'22.11DEG FTT(182)LP Turb A 3rd Stg Extract Pressure'17.73DEG FTT(182)	1276.20	BTU/LBM	нн (~28)	Enthalpy out of IV 'A'
1922114.3LBM/HRWW(33)Steam Flow to RSV 'C'187.00PSIAPP(33)Pressure in to RSV 'C'1276.20BTU/LBMHH(33)Temperature in to RSV 'C'183.26PSIAPP(-35)Pressure out of IV 'C'384228.6LBM/HRHH(-35)Enthalpy int on LP Turbine 'A'112571.0LBM/HRWW(144)LP Turb A 1st Stg Extract Pressure3844228.6LBM/HRWW(144)LP Turb A 1st Stg Extract Temperature1203.16BTU/LBMHH(144)LP Turb A 1st Stg Extract Temperature344.76DEG FTT(144)LP Turb A 1st Stg Extract Pressure344.76DEG FTT(144)LP Turb A 1st Stg Extract Quality70.29PSIAPP(144)LP Turb A 2nd Stg Extract Temperat1.0248NO-UNITSXX(144)LP Turb A 2nd Stg Extract Temperat20002.6LBM/HRWW(181)LP Turb A 2nd Stg Extract Temperat2105.8DEG FTT(181)LP Turb A 2nd Stg Extract Pressure272.16DEG FTT(181)LP Turb A 3rd Stg Extract Pressure190550.2LBM/HRWW(182)LP Turb A 3rd Stg Extract Pressure17.90PSIAPP(182)LP Turb A 3rd Stg Extract Pressure17.90PSIAPP(182)LP Turb A 3rd Stg Extract Remerat222.11DEG FTT(183)LP Turb A 4th Stg Extract Remerat281905.8LBM/HRWW(18	509.86	DEG F	TT (-28)	Temperature out of IV 'A'
187.00PSIAPP(33)Pressure in to RSV 'C'1276.20BTU/LBMHH(33)Enthalpy in to RSV 'C'183.26PSIAPP(-35)Pressure out of IV 'C'1276.20BTU/LBMHH(-35)Enthalpy out of IV 'C'1276.20BTU/LBMHH(-35)Temperature out of IV 'C'1276.20BTU/LBMHH(-35)Temperature out of IV 'C'1284228.6LBM/HRWW(50)Steam Flow in to LP Turbine 'A'112571.0LBM/HRWW(144)LP Turb A 1st Stg Extract Enthalpy70.29PSIAPP(144)LP Turb A 1st Stg Extract Pressure344.76DEG FTT(144)LP Turb A 1st Stg Extract Quality220002.8LBM/HRHH(181)LP Turb A 2nd Stg Extract Pressure220102.8LBM/HRHW(181)LP Turb A 2nd Stg Extract Pressure3.3GF FTT(181)LP Turb A 2nd Stg Extract Quality20002.8LBM/HRWW(182)LP Turb A 3rd Stg Extract Quality190550.2LBM/HRWW(182)LP Turb A 3rd Stg Extract Pressure0.9978NO-UNITSXX(182)LP Turb A 3rd Stg Extract Pressure17.90FSIAPP(182)LP Turb A 3rd Stg Extract Pressure190550.2LBM/HRWW(183)LP Turb A 4th Stg Extract Coulity190550.2LBM/HRWW(183)LP Turb A 3rd Stg Extract Pressure17.90FSIAPP(183)LP Turb A 3	1922114.3	LBM/HR	WW	33)	Steam Flow to RSV 'C'
1276.20BTU/LBMHH(33)Enthalpy in to RSV 'C'510.56DEG FTT(33)Temperature in to RSV 'C'183.26PSIAPP(-35)Pressure out of IV 'C'1276.20BTU/LBMHH(-35)Enthalpy out of IV 'C'3844228.6LBM/HRHW(50)Steam Flow in to LP Turbine 'A'112571.0LBM/HRWW(144)LP Turb A 1st Stg Extract Pressure344.76DEG FTT(144)LP Turb A 1st Stg Extract Pressure344.76DEG FTT(144)LP Turb A 1st Stg Extract Quality20002.8LBM/HRWW(181)LP Turb A 2nd Stg Extract Pressure344.76DEG FTT(181)LP Turb A 2nd Stg Extract Pressure2002.8LBM/HRWW(181)LP Turb A 2nd Stg Extract Pressure210.16DEG FTT(181)LP Turb A 2nd Stg Extract remerat0.978NO-UNITSXX(181)LP Turb A 2nd Stg Extract Temperat0.9978NO-UNITSXX(181)LP Turb A 3rd Stg Extract ressure222.11DEG FTT(182)LP Turb A 3rd Stg Extract temberat0.8543NO-UNITSXX(182)LP Turb A 3rd Stg Extract Quality2013.8ETU/LBMHH(183)LP Turb A 4th Stg Extract Pressure222.11DEG FTT(183)LP Turb A 3rd Stg Extract temperat0.8543NO-UNITSXX(183)LP Turb A 4th Stg Extract Cuality203.16BTU/LBMHH(1	187.00	PSIA	PP (33)	Pressure in to RSV 'C'
S10.56DEG FTT(33)Temperature in to RSV 'C'183.26PSIAPP(-35)Pressure out of IV 'C'1276.20BTU/LBMHH(-35)Enthalpy out of IV 'C'509.86DEG FTT(-35)Temperature out of IV 'C'384428.6LBM/HRWW(50)Steam Flow in to LP Turbine 'A'112571.0LBM/HRWW(144)LP Turb A 1st Stg Extract Pressure344.76DEG FTT(144)LP Turb A 1st Stg Extract Temperat344.76DEG FTT(144)LP Turb A 1st Stg Extract Oulity220002.6LBM/HRWW(181)LP Turb A 1st Stg Extract Temperat1.0248NO-UNITSXX(144)LP Turb A 2nd Stg Extract C quality220002.6LBM/HRHW(181)LP Turb A 2nd Stg Extract Temperat0.9978NO-UNITSXX(181)LP Turb A 2nd Stg Extract C quality190550.2LBM/HRHW(182)LP Turb A 3rd Stg Extract Pressure222.11DEG FTT(182)LP Turb A 3rd Stg Extract C temperat0.8543NO-UNITSXX(182)LP Turb A 3rd Stg Extract Pressure281905.8LBM/HRHH(183)LP Turb A 4th Stg Extract Pressure17.90PSIAPP(183)LP Turb A 4th Stg Extract Pressure0.8543NO-UNITSXX(183)LP Turb A 4th Stg Extract Pressure0.8643NO-UNITSXX(183)LP Turb A 4th Stg Extract Pressure17.90 <td>1276.20</td> <td>BTU/LBM</td> <td>нн (</td> <td>33)</td> <td>Enthalpy in to RSV 'C'</td>	1276.20	BTU/LBM	нн (33)	Enthalpy in to RSV 'C'
183.26PSIAPF(-35)Pressure out of IV 'C'1276.20BTU/LBMHH(-35)Enthalpy out of IV 'C'509.86DEG FTT(-35)Temperature out of IV 'C'1844228.6LBM/HRWW(144)LP Turb A 1st Stg Extr Flow to DeA112571.0LBM/HRWW(144)LP Turb A 1st Stg Extract Pressure1203.16BTU/LBMHH(144)LP Turb A 1st Stg Extract Temperat344.76DEG FTT(144)LP Turb A 1st Stg Extract Calleiy20002.8LBM/HRWW(181)LP Turb A 2nd Stg Extract Temperat1.0248NO-UNITSXX(144)LP Turb A 2nd Stg Extract Pressure272.16DEG FTT(181)LP Turb A 2nd Stg Extract Pressure277.16DEG FTT(181)LP Turb A 2nd Stg Extract Quality190550.2LBM/HRWW(182)LP Turb A 3rd Stg Extract Cuality190550.2LBM/HRWW(182)LP Turb A 3rd Stg Extract Pressure272.11DEG FTT(182)LP Turb A 3rd Stg Extract Pressure222.11DEG FTT(182)LP Turb A 3rd Stg Extract Cuality281905.8LBM/HRWW(183)LP Turb A 4th Stg Extract Pressure177.73DEG FTT(183)LP Turb A 4th Stg Extract Pressure177.73DEG FTT(183)LP Turb A 3td Stg Extract Cuality2010.8LBM/HRHH(183)LP Turb A 4th Stg Extract Pressure177.73DEG F <t< td=""><td>510.56</td><td>DEGF</td><td>TT (</td><td>33)</td><td>Temperature in to RSV 'C'</td></t<>	510.56	DEGF	TT (33)	Temperature in to RSV 'C'
1276.20BTU/LEMHH(-35)Enthalpy out of IV 'C'509.86DEG FTT(-35)Temperature out of IV 'C'3844228.6LEM/HRWW(50)Steam Flow in to LP Turbine 'A'112571.0LEM/HRWW(144)LP Turb A 1st Stg Extract Enthalpy70.29PSIAPP(144)LP Turb A 1st Stg Extract Pressure344.76DEG FTT(144)LP Turb A 1st Stg Extract Quality22002.8LEM/HRWW(181)LP Turb A 2nd Stg Extract Temperat1.0248NO-UNITSXX(144)LP Turb A 2nd Stg Extract Enthalpy43.36PSIAPP(181)LP Turb A 2nd Stg Extract Temperat72.16DEG FTT(181)LP Turb A 2nd Stg Extract Cuality190550.2LEM/HRWW(182)LP Turb A 3rd Stg Extract Temperat0.9978NO-UNITSXX(182)LP Turb A 3rd Stg Extract Pressure222.11DEG FTT(182)LP Turb A 3rd Stg Extract Quality190550.2LEM/HRWW(182)LP Turb A 3rd Stg Extract Quality190551.4DEG FTT(182)LP Turb A 3rd Stg Extract Quality281905.8LEM/HRWW(183)LP Turb A 3rd Stg Extract Quality21905.8LEM/HRWW(183)LP Turb A 4th Stg Extract Quality21013.81BTU/LEMHH(183)LP Turb A 4th Stg Extract Quality2103.16BTU/LEMHH(183)LP Turb A 4th Stg Extract Quality2103.16	183.26	PSIA	PP (-35)	Pressure out of IV 'C'
509.86DEG FTT(-35)Temperature out of IV 'C'3844228.6LBM/HRWW(50)Steam Flow in to LP Turbine 'A'112571.0LBM/HRWW(144)LP Turb A 1st Stg Extract Enthalpy70.29PSIAPP(144)LP Turb A 1st Stg Extract Temperat344.76DEG FTT(144)LP Turb A 1st Stg Extract Temperat1.0248NO-UNITSXX(144)LP Turb A 2nd Stg Extract Quality220002.8LBM/HRWW(181)LP Turb A 2nd Stg Extract Temperat1.0248NO-UNITSXX(144)LP Turb A 2nd Stg Extract Temperat2.0002.8LBM/HRWW(181)LP Turb A 2nd Stg Extract Temperat2.0002.8LBM/HRWW(181)LP Turb A 2nd Stg Extract Cuality2.0002.8LBM/HRWW(181)LP Turb A 2nd Stg Extract Temperat0.9978NO-UNITSXX(181)LP Turb A 2nd Stg Extract Quality100550.2LBM/HRWW(182)LP Turb A 3rd Stg Extract Cuality190550.2LBM/HRWW(182)LP Turb A 3rd Stg Extract Pressure222.11DEG FTT(182)LP Turb A 3rd Stg Extract Cuality281905.8LBM/HRWW(183)LP Turb A 4th Stg Extract Cuality281905.8LBM/HRWW(183)LP Turb A 4th Stg Extract Temperat0.8689NO-UNITSXX(183)LP Turb A 4th Stg Extract Quality1203.16ETU/LEMHH(183)LP Turb A 4th Stg Bowl Qualit	1276.20	BTU/LBM	HH (-35)	Enthalpy out of IV 'C'
3844228.6LBM/HRWW(50)Steam Flow in to LP Turbine 'A'112571.0LBM/HRWW(144)LP Turb A 1st Stg Extract Enthalp70.29PSIAPP(144)LP Turb A 1st Stg Extract Pressure344.76DEG FTT(144)LP Turb A 1st Stg Extract Temperat1.0248NO-UNITSXX(144)LP Turb A 1st Stg Extract Quality220002.8LBM/HRWW(181)LP Turb A 2nd Stg Extract Temperat36PSIAPP(181)LP Turb A 2nd Stg Extract Temperat0.978NO-UNITSXX(181)LP Turb A 2nd Stg Extract Temperat0.9978NO-UNITSXX(181)LP Turb A 2nd Stg Extract Quality190550.2LBM/HRWW(182)LP Turb A 3rd Stg Extract Cuality190550.2LBM/HRWW(182)LP Turb A 3rd Stg Extract Temperat0.8543NO-UNITSXX(182)LP Turb A 3rd Stg Extract Cuality17.90PSIAPP(182)LP Turb A 3rd Stg Extract Temperat0.8543NO-UNITSXX(182)LP Turb A 3rd Stg Extract Quality281905.8LBM/HRWW(183)LP Turb A 4th Stg Extract Temperat0.8643NO-UNITSXX(183)LP Turb A 4th Stg Extract Quality20105.8LBM/HRWW(183)LP Turb A 4th Stg Extract Pressure17.73DEG FTT(183)LP Turb A 4th Stg Extract Pressure17.73DEG FTT(183)LP Turb A 4th Stg Extract Quality	509.86	DEG F	TT (-35)	Temperature out of IV 'C'
112571.0LBM/HRWW(144)LP Turb A 1st Stg Extr Flow to Def1203.16BTU/LBMHH(144)LP Turb A 1st Stg Extract Pressure344.76DEG FTT(144)LP Turb A 1st Stg Extract Pressure344.76DEG FTT(144)LP Turb A 1st Stg Extract Quality220002.8LBM/HRWW(181)LP Turb A 2nd Stg Extr Flow to CD1169.31BTU/LBMHH(181)LP Turb A 2nd Stg Extract Pressure43.36PSIAPP(181)LP Turb A 2nd Stg Extract Temperat0.9978NO-UNITSXX(181)LP Turb A 2nd Stg Extract Quality190550.2LBM/HRWW(182)LP Turb A 3rd Stg Extract Quality190550.2LBM/HRWW(182)LP Turb A 3rd Stg Extract Pressure222.11DEG FTT(182)LP Turb A 3rd Stg Extract Pressure0.8543NO-UNITSXX(182)LP Turb A 3rd Stg Extract Quality281905.8LBM/HRWW(183)LP Turb A 4th Stg Extract Cuality2117DEG FTT(183)LP Turb A 4th Stg Extract Cuality213105.8LBM/HRWW(183)LP Turb A 4th Stg Extract Quality214105.8LBM/HRHH(183)LP Turb A 4th Stg Extract Temperat0.8649NO-UNITSXX(183)LP Turb A 4th Stg Extract Cuality1203.16BTU/LBMHH(51)LP Turbine 'A' 3rd Stg Bowl Enthal0.9968NO-UNITSXX(52)LP Turbine 'A' 4th Stg Bowl Qualit </td <td>3844228.6</td> <td>LBM/HR</td> <td>WW (</td> <td>50)</td> <td>Steam Flow in to LP Turbine 'A'</td>	3844228.6	LBM/HR	WW (50)	Steam Flow in to LP Turbine 'A'
1203.16BTU/LEMHH(144)LP Turb A lst Stg Extract Enthalpy70.29PSIAPP(144)LP Turb A lst Stg Extract Pressure344.76DEG FTT(144)LP Turb A lst Stg Extract Temperat1.0248NO-UNITSXX(144)LP Turb A lst Stg Extract Quality220002.8LBM/HRWW(181)LP Turb A 2nd Stg Extract Cuality1169.31BTU/LBMHH(181)LP Turb A 2nd Stg Extract Pressure272.16DEG FTT(181)LP Turb A 2nd Stg Extract Quality190550.2LBM/HRWW(182)LP Turb A 3rd Stg Extract Quality190550.2LBM/HRWW(182)LP Turb A 3rd Stg Extract Pressure222.11DEG FTT(182)LP Turb A 3rd Stg Extract Pressure222.11DEG FTT(182)LP Turb A 3rd Stg Extract Pressure222.11DEG FTT(182)LP Turb A 3rd Stg Extract Pressure222.11DEG FTT(183)LP Turb A 4th Stg Extract Pressure217.70PSIAPP(183)LP Turb A 4th Stg Extract Quality281905.8LBM/HRWW(183)LP Turb A 4th Stg Extract Quality203.16BTU/LBMHH(183)LP Turb A 4th Stg Extract Quality103.16BTU/LBMHH(183)LP Turb A 4th Stg Extract Quality1203.16BTU/LBMHH(51)LP Turbine 'A' 3rd Stg Bowl Qualit119.63NO-UNITSXX(183)LP Turbine 'A' 3tg Stg Bowl Qualit<	112571.0	LBM/HR	WW (144)	LP Turb A 1st Stg Extr Flow to DeAerator
70.29PSIAPP(144)LP Turb A lst Stg Extract Pressure344.76DEG FTT(144)LP Turb A lst Stg Extract Quality220002.8LBM/HRWW(181)LP Turb A lst Stg Extract Quality220002.8LBM/HRWW(181)LP Turb A 2nd Stg Extract Dressure11.0248NO-UNITSXX(144)LP Turb A 2nd Stg Extract Order145.31BTU/LBMHH(181)LP Turb A 2nd Stg Extract Pressure272.16DEG FTT(181)LP Turb A 2nd Stg Extract Temperat0.9978NO-UNITSXX(181)LP Turb A 2nd Stg Extract Quality190550.2LBM/HRWW(182)LP Turb A 3rd Stg Extract Greener17.90PSIAPP(182)LP Turb A 3rd Stg Extract Temperat0.8543NO-UNITSXX(182)LP Turb A 3rd Stg Extract Temperat0.8543NO-UNITSXX(183)LP Turb A 4th Stg Extract Cuality281905.8LBM/HRWW(183)LP Turb A 4th Stg Extract Pressure177.73DEG FTT(183)LP Turb A 4th Stg Extract Pressure177.73DEG FTT(183)LP Turb A 4th Stg Extract Quality1203.16BTU/LBMHH(51)LP Turbine 'A' 2nd Stg Bowl enthal1.0238NO-UNITSXX(52)LP Turbine 'A' 3rd Stg Bowl enthal0.8089NO-UNITSXX(51)LP Turbine 'A' 4th Stg Bowl enthal0.9968NO-UNITSXX(52)LP Turbine 'A' 3rd Stg Bowl enthal <t< td=""><td>1203.16</td><td>BTU/LBM</td><td>HH (</td><td>144)</td><td>LP Turb A 1st Stg Extract Enthalpy</td></t<>	1203.16	BTU/LBM	HH (144)	LP Turb A 1st Stg Extract Enthalpy
344.76DEG FTT(144)LP Turb A lst Stg Extract Temperat1.0248NO-UNITSXX(144)LP Turb A lst Stg Extract Quality220002.8LBM/HRWW(181)LP Turb A 2nd Stg Extract Quality43.36PSIAPP(181)LP Turb A 2nd Stg Extract Enthalpy43.36PSIAPP(181)LP Turb A 2nd Stg Extract Temperat0.978NO-UNITSXX(181)LP Turb A 2nd Stg Extract Quality190550.2LBM/HRWW(182)LP Turb A 3rd Stg Extract Enthalpy17.90PSIAPP(182)LP Turb A 3rd Stg Extract Temperat0.8543NO-UNITSXX(182)LP Turb A 3rd Stg Extract Temperat0.8543NO-UNITSXX(183)LP Turb A 4th Stg Extract Cuality281905.8LBM/HRWW(183)LP Turb A 4th Stg Extract Temperat0.8649NO-UNITSXX(183)LP Turb A 4th Stg Extract Cuality201.16BTU/LBMHH(183)LP Turb A 4th Stg Extract Cuality1203.16BTU/LBMHH(51)LP Turbine 'A' 2nd Stg Bowl Qualit1.023.8NO-UNITSXX(51)LP Turbine 'A' 3rd Stg Bowl Qualit1.023.16BTU/LBMHH(52)LP Turbine 'A' 3tg Bowl Qualit1.023.16BTU/LBMHH(51)LP Turbine 'A' 3tg Bowl Qualit1.033.18BTU/LBMHH(52)LP Turbine 'A' 3tg Bowl Qualit1.033.19BTU/LBMHH(52)LP Turbine 'A' 4th Stg Bowl Qualit <t< td=""><td>70.29</td><td>PSIA</td><td>PP (</td><td>144)</td><td>LP Turb A 1st Stg Extract Pressure</td></t<>	70.29	PSIA	PP (144)	LP Turb A 1st Stg Extract Pressure
1.0248NO-UNITSXX(144)LP Turb A lst Stg Extract Quality220002.8LBM/HRWW(181)LP Turb A 2nd Stg Extract CD1169.31BTU/LBMHH(181)LP Turb A 2nd Stg Extract Enthalpy43.36PSIAPP(181)LP Turb A 2nd Stg Extract Temperat272.16DEG FTT(181)LP Turb A 2nd Stg Extract Quality190550.2LBM/HRWW(182)LP Turb A 2nd Stg Extract Quality190550.2LBM/HRWW(182)LP Turb A 3rd Stg Extract Coulity190550.2LBM/HRWW(182)LP Turb A 3rd Stg Extract Tressure222.11DEG FTT(182)LP Turb A 3rd Stg Extract Pressure222.11DEG FTT(182)LP Turb A 3rd Stg Extract Quality281905.8LBM/HRWW(183)LP Turb A 4th Stg Extract Quality281905.8LBM/HRWW(183)LP Turb A 4th Stg Extract Temperat0.8543NO-UNITSXX(183)LP Turb A 4th Stg Extract Temperat0.8649NO-UNITSXX(183)LP Turb A 4th Stg Extract Pressure177.73DEG FTT(183)LP Turb A 4th Stg Extract Quality1203.16BTU/LBMHH(51)LP Turbine 'A' 2nd Stg Bowl Qualit1.0238NO-UNITSXX(51)LP Turbine 'A' 3td Stg Bowl Qualit1169.31BTU/LBMHH(52)LP Turbine 'A' 4th Stg Bowl Qualit119.69BTU/LBMHH(53)LP Turbine 'A' 4th Stg Bowl Qualit <t< td=""><td>344.76</td><td>DEG F</td><td>TT (</td><td>144)</td><td>LP Turb A 1st Stg Extract Temperature</td></t<>	344.76	DEG F	TT (144)	LP Turb A 1st Stg Extract Temperature
220002.8LBM/HRWW(181)LP Turb A 2nd Stg Extract Flow to CDP1169.31BTU/LEMHH(181)LP Turb A 2nd Stg Extract Pressure272.16DEG FTT(181)LP Turb A 2nd Stg Extract Pressure272.16DEG FTT(181)LP Turb A 2nd Stg Extract Cquality19050.2LBM/HRWW(182)LP Turb A 3rd Stg Extract Cquality190550.2LBM/HRWW(182)LP Turb A 3rd Stg Extract Cquality190550.2LBM/HRWW(182)LP Turb A 3rd Stg Extract Pressure222.11DEG FTT(182)LP Turb A 3rd Stg Extract Pressure222.11DEG FTT(183)LP Turb A 3rd Stg Extract Quality281905.8LBM/HRWW(183)LP Turb A 4th Stg Extract Pressure0.8543NO-UNITSXX(183)LP Turb A 4th Stg Extract Pressure177.73DEG FTT(183)LP Turb A 4th Stg Extract Pressure177.73DEG FTT(183)LP Turb A 4th Stg Extract Quality1203.16BTU/LBMHH(51)LP Turbine 'A' 2nd Stg Bowl Enthal1.0238NO-UNITSXX(52)LP Turbine 'A' 3rd Stg Bowl Qualit119.69BTU/LBMHH(53)LP Turbine 'A' 4th Stg Bowl Qualit119.69BTU/LBMHH(53)LP Turbine 'A' 4th Stg Bowl Qualit119.69BTU/LBMHH(53)LP Turbine 'A' 4th Stg Bowl Qualit119.69BTU/LBMHH(53)LP Turbine 'A' 4th Stg Bowl Qualit	1.0248	NO-UNITS	XX (144)	LP Turb A 1st Stg Extract Quality
1169.31BTU/LBMHH(181)LP Turb A 2nd Stg Extract Enthalpy 43.3643.36PSIAPP(181)LP Turb A 2nd Stg Extract Pressure 272.16272.16DEG FTT(181)LP Turb A 2nd Stg Extract Temperat 0.99780.9978NO-UNITSXX(181)LP Turb A 2nd Stg Extract Quality190550.2LBM/HRWW(182)LP Turb A 3rd Stg Extract Cuality190550.2LBM/HRHH(182)LP Turb A 3rd Stg Extract Temperat0.13.81BTU/LBMHH(182)LP Turb A 3rd Stg Extract Temperat0.8543NO-UNITSXX(182)LP Turb A 3rd Stg Extract Quality281905.8LBM/HRWW(183)LP Turb A 4th Stg Extract Pressure177.73DEG FTT(183)LP Turb A 4th Stg Extract Pressure177.73DEG FTT(183)LP Turb A 4th Stg Extract Quality1203.16BTU/LBMHH(51)LP Turbine 'A' 2nd Stg Bowl Enthal0.9688NO-UNITSXX(52)LP Turbine 'A' 3rd Stg Bowl Qualit1169.31BTU/LBMHH(53)LP Turbine 'A' 3rd Stg Bowl Qualit119.69BTU/LBMHH(53)LP Turbine 'A' 4th Stg Bowl Qualit119.69BTU/LBMHH(53)LP Turbine 'A' Last Stg Bowl Qualit119.69BTU/LBMHH(54)LP Turbine 'A' Last Stg Exhaust Te0.9631NO-UNITSXX(54)LP Turbine 'A' Last Stg Exhaust Te0.9648NO-UNITSXX(54)LP Turb	220002.8	LBM/HR	WW (181)	LP Turb A 2nd Stg Extr Flow to CDHE 3B
43.36PSIAPP(181)LP Turb A 2nd Stg Extract Pressure272.16DEG FTT(181)LP Turb A 2nd Stg Extract Temperat0.9978NO-UNITSXX(181)LP Turb A 2nd Stg Extract Quality190550.2LBM/HRWW(182)LP Turb A 3rd Stg Extract Enthalpy17.90PSIAPP(182)LP Turb A 3rd Stg Extract Pressure22.11DEG FTT(182)LP Turb A 3rd Stg Extract Pressure0.8543NO-UNITSXX(182)LP Turb A 3rd Stg Extract Quality281905.8LBM/HRWW(183)LP Turb A 4th Stg Extract Cuplity281905.8LBM/HRWW(183)LP Turb A 4th Stg Extract Pressure17.73DEG FTT(183)LP Turb A 4th Stg Extract Pressure177.73DEG FTT(183)LP Turb A 4th Stg Extract Quality1203.16BTU/LBMHH(51)LP Turbine 'A' 2nd Stg Bowl enthal1.0238NO-UNITSXX(51)LP Turbine 'A' 3rd Stg Bowl Qualit1169.31BTU/LBMHH(52)LP Turbine 'A' 4th Stg Bowl Qualit119.69BTU/LBMHH(53)LP Turbine 'A' 4th Stg Bowl Qualit119.69BTU/LBMHH(54)LP Turbine 'A' 4th Stg Bowl Qualit	1169.31	BTU/LBM	НН (181)	LP Turb A 2nd Stg Extract Enthalpy
272.16DEG FTT(181)LP Turb A 2nd Stg Extract Temperat0.9978NO-UNITSXX(181)LP Turb A 2nd Stg Extract Quality190550.2LBM/HRWW(182)LP Turb A 3rd Stg Extract Pressure1013.81BTU/LBMHH(182)LP Turb A 3rd Stg Extract Pressure222.11DEG FTT(182)LP Turb A 3rd Stg Extract Pressure222.11DEG FTT(182)LP Turb A 3rd Stg Extract Temperat0.8543NO-UNITSXX(182)LP Turb A 3rd Stg Extract Quality281905.8LBM/HRWW(183)LP Turb A 4th Stg Extract Pressure177.73DEG FTT(183)LP Turb A 4th Stg Extract Temperat177.73DEG FTT(183)LP Turb A 4th Stg Extract Temperat1.0238NO-UNITSXX(183)LP Turb A 4th Stg Extract Quality1203.16BTU/LBMHH(51)LP Turbine 'A' 2nd Stg Bowl Enthal1.0238NO-UNITSXX(51)LP Turbine 'A' 3rd Stg Bowl Qualit1119.69BTU/LBMHH(52)LP Turbine 'A' 3rd Stg Bowl Qualit1119.69BTU/LBMHH(53)LP Turbine 'A' that Stg Bowl Qualit1.033.59BTU/LBMHH(54)LP Turbine 'A' Last Stg Bowl Qualit1.05PSIAPP(56)LP Turbine 'A' Last Stg Exhaust Te0.9631NO-UNITSXX(54)LP Turbine 'A' Last Stg Exhaust Te0.325DEG FTT(56)LP Turbine 'A' Last Stg Exhaust Te	43.36	PSIA	PP (181)	LP Turb A 2nd Stg Extract Pressure
0.9978 NO-UNITS XX (181) LP Turb A 2nd Stg Extract Quality 190550.2 LBM/HR WW (182) LP Turb A 3rd Stg Extract Enthalpy 17.90 PSIA PP (182) LP Turb A 3rd Stg Extract Pressure 222.11 DEG F TT (182) LP Turb A 3rd Stg Extract Temperat 0.8543 NO-UNITS XX (182) LP Turb A 3rd Stg Extract Quality 281905.8 LBM/HR WW (183) LP Turb A 4th Stg Extract Enthalpy 7.14 PSIA PP (183) LP Turb A 4th Stg Extract Enthalpy 7.14 PSIA PP (183) LP Turb A 4th Stg Extract Temperat 0.8089 NO-UNITS XX (183) LP Turb A 4th Stg Extract Temperat 0.8089 NO-UNITS XX (183) LP Turb A 4th Stg Extract Temperat 0.8089 NO-UNITS XX (183) LP Turb A 4th Stg Extract Temperat 0.8089 NO-UNITS XX (183) LP Turb A 4th Stg Extract Quality 1203.16 BTU/LBM HH (51) LP Turbine 'A' 2nd Stg Bowl Enthal 1.0238 NO-UNITS XX (51) LP Turbine 'A' 2nd Stg Bowl Enthal 0.9688 NO-UNITS XX (52) LP Turbine 'A' 3rd Stg Bowl Qualit 1169.31 BTU/LBM HH (52) LP Turbine 'A' 3rd Stg Bowl Qualit 1119.69 BTU/LBM HH (53) LP Turbine 'A' 4th Stg Bowl Qualit 103.59 BTU/LBM HH (54) LP Turbine 'A' 4th Stg Bowl Qualit 103.59 BTU/LBM HH (54) LP Turbine 'A' 4th Stg Bowl Qualit 103.25 DEG F TT (56) LP Turbine 'A' Last Stg Exhaust Pr 0.3248 NO-UNITS XX (56) LP Turbine 'A' Last Stg Exhaust Fr 0.8810 NO-UNITS XX (56) LP Turbine 'A' Last Stg Exhaust Fr 0.8810 NO-UNITS XX (56) LP Turbine 'A' Last Stg Exhaust Fr 0.8810 NO-UNITS XX (56) LP Turbine 'A' Last Stg Exhaust Fr 0.8810 NO-UNITS XX (56) LP Turbine 'A' Last Stg Exhaust Fr 0.8810 NO-UNITS XX (56) LP Turbine 'A' Last Stg Exhaust Fr 0.8810 NO-UNITS XX (56) LP Turbine 'A' Last Stg Exhaust Fr 0.8810 NO-UNITS XX (56) LP Turbine 'A' Last Stg Exhaust Fr 0.8810 NO-UNITS XX (56) LP Turbine 'A' Last Stg Exhaust Fr 0.8810 NO-UNITS XX (56) LP Turbine 'A' Last Stg Exhaust Fr 0.8810 NO-UNITS XX (56) LP Turbine 'A' Last Stg Exhaust Fr 0.8810 NO-UNITS XX (56) LP Turbine 'A' Last Stg Exhaust Fr 0.8810 NO-UNITS XX (56) LP Turbine 'A' Last Stg Exhaust Fr 0.8810 NO-UNITS XX (56) LP Turbine 'A' Last Stg Exhaust Fr 0.8810 NO-UNITS XX (56	272.16	DEG F	T"T (181)	LP Turb A 2nd Stg Extract Temperature
190550.2LBM/HRWW(182)LP Turb A 3rd Stg Extr Flow to CDP1013.81BTU/LEMHH(182)LP Turb A 3rd Stg Extract Enthalpy17.90PSIAPP(182)LP Turb A 3rd Stg Extract Pressure222.11DEG FTT(182)LP Turb A 3rd Stg Extract Pressure0.8543NO-UNITSXX(182)LP Turb A 3rd Stg Extract Quality281905.8LBM/HRWW(183)LP Turb A 4th Stg Extract Quality281905.8LBM/HRWW(183)LP Turb A 4th Stg Extract Pressure7.14PSIAPP(183)LP Turb A 4th Stg Extract Temperat0.8089NO-UNITSXX(183)LP Turb A 4th Stg Extract Cuality1203.16BTU/LBMHH(51)LP Turbine 'A' 2nd Stg Bowl Enthal1.0238NO-UNITSXX(51)LP Turbine 'A' 2nd Stg Bowl Qualit1169.31BTU/LBMHH(52)LP Turbine 'A' 3rd Stg Bowl Qualit119.69BTU/LBMHH(53)LP Turbine 'A' 4th Stg Bowl Qualit1083.59BTU/LBMHH(53)LP Turbine 'A' Last Stg Bowl Qualit1083.59BTU/LBMHH(54)LP Turbine 'A' Last Stg Exhaust Pr103.25DEG FTT(56)LP Turbine 'A' Last Stg Exhaust Pr103.25DEG FTT(56)LP Turbine 'A' Last Stg Exhaust Pr0.8810NO-UNITSXX(56)LP Turbine 'A' Last Stg Exhaust Pr0.8810NO-UNITSXX(56)LP Turbine 'A' Last Stg Exhaust Pr	0.9978	NO-UNITS	XX (181)	LP Turb A 2nd Stg Extract Quality
1013.81BIU/LEMHH(182)LP TURD A 3rd Stg Extract Enthalpy17.90PSIAPP(182)LP Turb A 3rd Stg Extract Pressure222.11DEG FTT(182)LP Turb A 3rd Stg Extract Temperat0.8543NO-UNITSXX(182)LP Turb A 3rd Stg Extract Quality281905.8LBM/HRWW(183)LP Turb A 4th Stg Extract Enthalpy7.14PSIAPP(183)LP Turb A 4th Stg Extract Enthalpy7.14PSIAPP(183)LP Turb A 4th Stg Extract Temperat0.8089NO-UNITSXX(183)LP Turb A 4th Stg Extract Quality1203.16BTU/LBMHH(51)LP Turbine 'A' 2nd Stg Bowl Enthal1.0238NO-UNITSXX(51)LP Turbine 'A' 2nd Stg Bowl Qualit119.69BTU/LBMHH(52)LP Turbine 'A' 3rd Stg Bowl Qualit119.69BTU/LBMHH(53)LP Turbine 'A' 4th Stg Bowl Enthal0.9631NO-UNITSXX(53)LP Turbine 'A' 4th Stg Bowl Qualit103.25DEG FTT(56)LP Turbine 'A' Last Stg Exhaust Pr103.25DEG FTT(56)LP Turbine 'A' Last Stg Exhaust Pr0.325DEG FTT(56)LP Turbine 'A' Last Stg Exhaust Pr0.325DEG FTT(56)LP Turbine 'A' Last Stg Exhaust Pr0.325DEG FTT(56)LP Turbine 'A' Last Stg Exhaust Pr0.326BTU/LBMHH(56)LP Turbine 'A' Last Stg Exhaust Pr0.8810 <td< td=""><td>190550.2</td><td>LBM/HR</td><td>WW (</td><td>182)</td><td>LP Turb A 3rd Stg Extr Flow to CDHE 2B</td></td<>	190550.2	LBM/HR	WW (182)	LP Turb A 3rd Stg Extr Flow to CDHE 2B
17.90PSIAPF(182)LP Turb A 3rd Stg Extract Pressure222.11DEG FTT(182)LP Turb A 3rd Stg Extract Temperat0.8543NO-UNITSXX(182)LP Turb A 3rd Stg Extract Quality281905.8LBM/HRWW(183)LP Turb A 4th Stg Extract Quality947.80BTU/LEMHH(183)LP Turb A 4th Stg Extract Pressure177.73DEG FTT(183)LP Turb A 4th Stg Extract Pressure177.73DEG FTT(183)LP Turb A 4th Stg Extract Quality1203.16BTU/LEMHH(51)LP Turbine 'A' 2nd Stg Bowl Enthal1.0238NO-UNITSXX(51)LP Turbine 'A' 2nd Stg Bowl Qualit1169.31BTU/LEMHH(52)LP Turbine 'A' 3rd Stg Bowl Qualit119.69BTU/LEMHH(53)LP Turbine 'A' 3rd Stg Bowl Qualit0.9631NO-UNITSXX(52)LP Turbine 'A' 4th Stg Bowl Qualit103.25DEG FTT(56)LP Turbine 'A' Last Stg Exhaust Pr103.25DEG FTT(56)LP Turbine 'A' Last Stg Exhaust Pr0.8810NO-UNITSXX(56)LP Turbine 'A' Last Stg Exhaust Pr0.8810NO-UNITSXX(56)LP Turbine 'A' Last Stg Exhaust Pr103.25DEG FTT(56)LP Turbine 'A' Last Stg Exhaust Pr0.8810NO-UNITSXX(56)LP Turbine 'A' Last Stg Exhaust Pr0.8810NO-UNITSXX(56)LP Turbine 'A' Last Stg Exhaust Pr <td< td=""><td>1013.81</td><td>BTU/LBM</td><td>HH (</td><td>182)</td><td>LP TURD A 3rd Stg Extract Enthalpy</td></td<>	1013.81	BTU/LBM	HH (182)	LP TURD A 3rd Stg Extract Enthalpy
222.11DEG F11(182)LP Turb A 3rd Stg Extract lemperat0.8543NO-UNITSXX(182)LP Turb A 3rd Stg Extract Quality281905.8LBM/HRWW(183)LP Turb A 4th Stg Extract OCDF947.80BTU/LBMHH(183)LP Turb A 4th Stg Extract Pressure7.14PSIAPP(183)LP Turb A 4th Stg Extract Pressure177.73DEG FTT(183)LP Turb A 4th Stg Extract Cuality1203.16BTU/LBMHH(51)LP Turb A 4th Stg Extract Quality1203.16BTU/LBMHH(51)LP Turbine 'A' 2nd Stg Bowl Enthal1.0238NO-UNITSXX(51)LP Turbine 'A' 3rd Stg Bowl Qualit1169.31BTU/LBMHH(52)LP Turbine 'A' 3rd Stg Bowl Enthal0.9968NO-UNITSXX(53)LP Turbine 'A' 4th Stg Bowl Qualit119.69BTU/LBMHH(53)LP Turbine 'A' 4th Stg Bowl Qualit1083.59BTU/LBMHH(54)LP Turbine 'A' 4th Stg Bowl Qualit1.05PSIAPP(56)LP Turbine 'A' Last Stg Bowl Qualit1.05PSIAPP(56)LP Turbine 'A' Last Stg Exhaust Pr103.25DEG FTT(56)LP Turbine 'A' Last Stg Exhaust Pr0.8810NO-UNITSXX(56)LP Turbine 'A' Last Stg Exhaust Pr0.8810NO-UNITSXX(56)LP Turbine 'A' Last Stg Exhaust Qu1922114.3LBM/HRWW(40)Steam Flow to RSV 'B'187.00PSIA	17.90	PSIA DEC P		182)	LP Turb A 3rd Stg Extract Pressure
281905.8LBM/HRWW(182)LP Turb A 4th Stg Extract Quality947.80BTU/LBMHH(183)LP Turb A 4th Stg Extract Enthalpy7.14PSIAPP(183)LP Turb A 4th Stg Extract Pressure177.73DEG FTT(183)LP Turb A 4th Stg Extract Cuality1203.16BTU/LBMHH(51)LP Turb A 4th Stg Extract Quality1203.16BTU/LBMHH(51)LP Turbine 'A' 2nd Stg Bowl Enthal1.0238NO-UNITSXX(51)LP Turbine 'A' 3rd Stg Bowl Qualit169.31BTU/LBMHH(52)LP Turbine 'A' 3rd Stg Bowl Qualit119.69BTU/LBMHH(52)LP Turbine 'A' 3rd Stg Bowl Qualit0.9631NO-UNITSXX(53)LP Turbine 'A' 4th Stg Bowl Qualit103.59BTU/LBMHH(53)LP Turbine 'A' 4th Stg Bowl Qualit1.05PSIAPP(56)LP Turbine 'A' Last Stg Bowl Qualit1.05PSIAPP(56)LP Turbine 'A' Last Stg Exhaust Pr103.25DEG FTT(56)LP Turbine 'A' Last Stg Exhaust Pr0.8810NO-UNITSXX(56)LP Turbine 'A' Last Stg Exhaust Pr0.8810NO-UNITSYX(56)LP Turbine 'A' Last Stg Exhaust Qu1922114.3LBM/HRWW(40)Steam Flow to RSV 'B'187.00PSIAPP(40)Pressure in to RSV 'B'Page 8PAGE 8PAGE 8	0 9543	NO_UNITS	vv (102)	IP Turb A Sid Sig Extract lemperature
947.80BTU/LBMHH(183)LP Turb A 4th Stg Extract Enthalpy 7.147.14PSIAPP(183)LP Turb A 4th Stg Extract Pressure 177.73177.73DEG FTT(183)LP Turb A 4th Stg Extract Pressure 183)177.73DEG FTT(183)LP Turb A 4th Stg Extract Quality 1203.161203.16BTU/LBMHH(51)LP Turbine 'A' 2nd Stg Bowl Enthal 1.02381.0238NO-UNITSXX(51)LP Turbine 'A' 2nd Stg Bowl Qualit 1169.311.0238NO-UNITSXX(52)LP Turbine 'A' 3rd Stg Bowl Qualit 1119.690.9968NO-UNITSXX(52)LP Turbine 'A' 3rd Stg Bowl Qualit 1119.690.9631NO-UNITSXX(53)LP Turbine 'A' 4th Stg Bowl Qualit 1083.590.9631NO-UNITSXX(53)LP Turbine 'A' 4th Stg Bowl Qualit 1083.590.9448NO-UNITSXX(54)LP Turbine 'A' Last Stg Bowl Qualit 1.051.05PSIAPP(56)LP Turbine 'A' Last Stg Exhaust Pr103.25DEG FTT(56)LP Turbine 'A' Last Stg Exhaust Te 983.260.8810NO-UNITSXX(56)LP Turbine 'A' Last Stg Exhaust Pr0.8810NO-UNITSXX(56)LP Turbine 'A' Last Stg Exhaust Qu1922114.3LBM/HRWW(40)Steam Flow to RSV 'B' Page 8	281905 8	LBM/HD	INTRI (102/	IP Turb A Ath Sta Extra Flow to CDUE 1P
7.14PSIAPP(183)LP Turb A 4th Stg Extract Pressure177.73DEG FTT(183)LP Turb A 4th Stg Extract Pressure177.73DEG FTT(183)LP Turb A 4th Stg Extract Pressure0.8089NO-UNITSXX(183)LP Turb A 4th Stg Extract Quality1203.16BTU/LBMHH(51)LP Turbine 'A' 2nd Stg Bowl Enthal1.0238NO-UNITSXX(51)LP Turbine 'A' 2nd Stg Bowl Qualit1169.31BTU/LBMHH(52)LP Turbine 'A' 3rd Stg Bowl Qualit0.968NO-UNITSXX(52)LP Turbine 'A' 4th Stg Bowl Qualit119.69BTU/LBMHH(53)LP Turbine 'A' 4th Stg Bowl Qualit0.9631NO-UNITSXX(53)LP Turbine 'A' 4th Stg Bowl Qualit1083.59BTU/LBMHH(54)LP Turbine 'A' Last Stg Bowl Qualit1083.59BTU/LBMHH(54)LP Turbine 'A' Last Stg Bowl Qualit103.25DEG FTT(56)LP Turbine 'A' Last Stg Exhaust Te0.8810NO-UNITSXX(56)LP Turbine 'A' Last Stg Exhaust Te0.8810NO-UNITSXX(56)LP Turbine 'A' Last Stg Exhaust Qu1922114.3LBM/HRWW(40)Steam Flow to RSV 'B'187.00PSIAPP(40)Pressure in to RSV 'B'Page 8Page 8Page 8	947 80	BTII/LBM	ин (193)	LP Turb A 4th Stg Extract Enthalpy
17.73DEG FTT(183)LPTurb AAthStgExtractTemperat0.8089NO-UNITSXX(183)LPTurb AAthStgExtractQuality1203.16BTU/LBMHH(51)LPTurbine 'A'2ndStgBowlEnthal1.0238NO-UNITSXX(51)LPTurbine 'A'2ndStgBowlQualit119.69BTU/LBMHH(52)LPTurbine 'A'3rdStgBowlQualit0.9968NO-UNITSXX(52)LPTurbine 'A'3rdStgBowlQualit119.69BTU/LBMHH(53)LPTurbine 'A'4thStgBowlQualit0.9631NO-UNITSXX(53)LPTurbine 'A'4thStgBowlQualit1083.59BTU/LBMHH(54)LPTurbine 'A'LastStgBowlQualit1.05PSIAPP(56)LPTurbine 'A'LastStgExhaustPr103.25DEG FTT(56)LPTurbine 'A'LastStgExhaustPr0.8810NO-UNITSXX(56)LPTurbine 'A'LastStgExhaustQualit0.8810NO-UNITSXX(56)LPTurbine 'A'LastStgExhaustQualit0.8810NO-UNITSXX(56)LPTurbine 'A'LastStg <td< td=""><td>7 14</td><td>PGTA</td><td></td><td>183)</td><td>LP Turb A 4th Stg Extract Bressure</td></td<>	7 14	PGTA		183)	LP Turb A 4th Stg Extract Bressure
1/1/101/1 <th< td=""><td>177 73</td><td>DEG F</td><td>TT (</td><td>183)</td><td>LP Turb A 4th Stg Extract Temperature</td></th<>	177 73	DEG F	TT (183)	LP Turb A 4th Stg Extract Temperature
1203.16BTU/LEMHH(153)LHTurbine 'A' 2nd Stg Bowl Enthal1.0238NO-UNITSXX(51)LPTurbine 'A' 2nd Stg Bowl Qualit1169.31BTU/LBMHH(52)LPTurbine 'A' 3rd Stg Bowl Enthal0.9968NO-UNITSXX(52)LPTurbine 'A' 3rd Stg Bowl Qualit1119.69BTU/LBMHH(53)LPTurbine 'A' 4th Stg Bowl Qualit1119.69BTU/LBMHH(53)LPTurbine 'A' 4th Stg Bowl Qualit0.9631NO-UNITSXX(53)LPTurbine 'A' 4th Stg Bowl Qualit1083.59BTU/LBMHH(54)LPTurbine 'A' Last Stg Bowl Enthal0.9448NO-UNITSXX(54)LPTurbine 'A' Last Stg Bowl Qualit1.05PSIAPP(56)LPTurbine 'A' Last Stg Exhaust Pr103.25DEG FTT(56)LPTurbine 'A' Last Stg Exhaust Te0.8810NO-UNITSXX(56)LPTurbine 'A' Last Stg Exhaust Qu1922114.3LBM/HRWW(40)Steam Flow to RSV 'B'187.00PSIAPP(40)Pressure in to RSV 'B'Page 8	0 8089	NO-UNITS	XX (183)	LP Turb A 4th Stg Extract Quality
1.0238NO-UNITSXX(51)LP Turbine 'A' 2nd Stg Bowl Qualit1169.31BTU/LBMHH(52)LP Turbine 'A' 3rd Stg Bowl Qualit0.9968NO-UNITSXX(52)LP Turbine 'A' 3rd Stg Bowl Qualit1119.69BTU/LBMHH(53)LP Turbine 'A' 4th Stg Bowl Qualit0.9631NO-UNITSXX(53)LP Turbine 'A' 4th Stg Bowl Qualit1083.59BTU/LBMHH(53)LP Turbine 'A' 4th Stg Bowl Qualit1083.59BTU/LBMHH(54)LP Turbine 'A' Last Stg Bowl Enthal0.9448NO-UNITSXX(54)LP Turbine 'A' Last Stg Bowl Qualit1.05PSIAPP(56)LP Turbine 'A' Last Stg Exhaust Pr103.25DEG FTT(56)LP Turbine 'A' Last Stg Exhaust Te983.26BTU/LBMHH(56)LP Turbine 'A' Last Stg Exhaust En0.8810NO-UNITSXX(56)LP Turbine 'A' Last Stg Exhaust Qu1922114.3LBM/HRWW(40)Steam Flow to RSV 'B'187.00PSIAPP(40)Pressure in to RSV 'B'Page 8Page 8Page 8	1203.16	BTU/LBM	нн (51)	LP Turbine 'A' 2nd Stg Bowl Enthalow
1169.31BTU/LEMHH(52)LP Turbine 'A' 3rd Stg Bowl Enthal0.9968NO-UNITSXX(52)LP Turbine 'A' 3rd Stg Bowl Qualit1119.69BTU/LEMHH(53)LP Turbine 'A' 4th Stg Bowl Qualit0.9631NO-UNITSXX(53)LP Turbine 'A' 4th Stg Bowl Qualit1083.59BTU/LBMHH(54)LP Turbine 'A' 4th Stg Bowl Qualit1083.59BTU/LBMHH(54)LP Turbine 'A' Last Stg Bowl Qualit1.05PSIAPP(56)LP Turbine 'A' Last Stg Exhaust Pr103.25DEG FTT(56)LP Turbine 'A' Last Stg Exhaust Te0.8810NO-UNITSXX(56)LP Turbine 'A' Last Stg Exhaust Er0.8810NO-UNITSXX(56)LP Turbine 'A' Last Stg Exhaust Qu1922114.3LBM/HRWW(40)Steam Flow to RSV 'B'187.00PSIAPP(40)Pressure in to RSV 'B'Page 8	1.0238	NO-UNITS	XX (51)	LP Turbine 'A' 2nd Stg Bowl Quality
0.9968NO-UNITSXX(52)LP Turbine 'A' 3rd Stg Bowl Qualit1119.69BTU/LBMHH(53)LP Turbine 'A' 4th Stg Bowl Qualit0.9631NO-UNITSXX(53)LP Turbine 'A' 4th Stg Bowl Qualit1083.59BTU/LBMHH(54)LP Turbine 'A' Last Stg Bowl Qualit1083.59BTU/LBMHH(54)LP Turbine 'A' Last Stg Bowl Qualit1.05PSIAPP(56)LP Turbine 'A' Last Stg Exhaust Pr103.25DEG FTT(56)LP Turbine 'A' Last Stg Exhaust Te983.26BTU/LBMHH(56)LP Turbine 'A' Last Stg Exhaust Er0.8810NO-UNITSXX(56)LP Turbine 'A' Last Stg Exhaust Qu1922114.3LBM/HRWW(40)Steam Flow to RSV 'B'187.00PSIAPP(40)Pressure in to RSV 'B'Page 8Page 8Page 8	1169.31	BTU/LBM	нн (52)	LP Turbine 'A' 3rd Stg Bowl Enthalpy
1119.69BTU/LBMHH(53)LP Turbine 'A' 4th Stg Bowl Enthal0.9631NO-UNITSXX(53)LP Turbine 'A' 4th Stg Bowl Qualit1083.59BTU/LBMHH(54)LP Turbine 'A' Last Stg Bowl Qualit1083.59BTU/LBMHH(54)LP Turbine 'A' Last Stg Bowl Qualit1.05PSIAPP(56)LP Turbine 'A' Last Stg Exhaust Pr103.25DEG FTT(56)LP Turbine 'A' Last Stg Exhaust Te983.26BTU/LBMHH(56)LP Turbine 'A' Last Stg Exhaust En0.8810NO-UNITSXX(56)LP Turbine 'A' Last Stg Exhaust En0.8810NO-UNITSXX(56)LP Turbine 'A' Last Stg Exhaust Qualit1922114.3LBM/HRWW(40)Steam Flow to RSV 'B'187.00PSIAPP(40)Pressure in to RSV 'B'Page 8	0.9968	NO-UNITS	XX (52)	LP Turbine 'A' 3rd Stg Bowl Quality
0.9631 NO-UNITS XX (53) LP Turbine 'A' 4th Stg Bowl Qualit 1083.59 BTU/LBM HH (54) LP Turbine 'A' Last Stg Bowl Qualit 1.05 PSIA PP (56) LP Turbine 'A' Last Stg Exhaust Pr 103.25 DEG F TT (56) LP Turbine 'A' Last Stg Exhaust Te 983.26 BTU/LBM HH (56) LP Turbine 'A' Last Stg Exhaust Te 0.8810 NO-UNITS XX (56) LP Turbine 'A' Last Stg Exhaust Er 0.8810 NO-UNITS XX (56) LP Turbine 'A' Last Stg Exhaust Er 103.25 DEG F PP (40) Steam Flow to RSV 'B' 187.00 PSIA PP (40) Pressure in to RSV 'B' Page 8	1119.69	BTU/LBM	нн (53)	LP Turbine 'A' 4th Stg Bowl Enthalpy
1083.59BTU/LBMHH(54)LP Turbine 'A' Last Stg Bowl Entha0.9448NO-UNITSXX(54)LP Turbine 'A' Last Stg Bowl Quali1.05PSIAPP(56)LP Turbine 'A' Last Stg Exhaust Pr103.25DEG FTT(56)LP Turbine 'A' Last Stg Exhaust Te983.26BTU/LBMHH(56)LP Turbine 'A' Last Stg Exhaust Te0.8810NO-UNITSXX(56)LP Turbine 'A' Last Stg Exhaust Er0.8810NO-UNITSXX(56)LP Turbine 'A' Last Stg Exhaust Qu1922114.3LBM/HRWW(40)Steam Flow to RSV 'B'187.00PSIAPP(40)Pressure in to RSV 'B'Page 8	0.9631	NO-UNITS	XX (53)	LP Turbine 'A' 4th Stg Bowl Quality
0.9448 NO-UNITS XX (54) LP Turbine 'A' Last Stg Bowl Quali 1.05 PSIA PP (56) LP Turbine 'A' Last Stg Exhaust Pr 103.25 DEG F TT (56) LP Turbine 'A' Last Stg Exhaust Te 983.26 BTU/LBM HH (56) LP Turbine 'A' Last Stg Exhaust Er 0.8810 NO-UNITS XX (56) LP Turbine 'A' Last Stg Exhaust QU 1922114.3 LBM/HR WW (40) Steam Flow to RSV 'B' 187.00 PSIA PP (40) Pressure in to RSV 'B' Page 8	1083.59	BTU/LBM	нн (54)	LP Turbine 'A' Last Stg Bowl Enthalpy
1.05PSIAPP(56)LP Turbine 'A' Last Stg Exhaust Pr103.25DEG FTT(56)LP Turbine 'A' Last Stg Exhaust Te983.26BTU/LBMHH(56)LP Turbine 'A' Last Stg Exhaust Er0.8810NO-UNITSXX(56)LP Turbine 'A' Last Stg Exhaust Qu1922114.3LBM/HRWW(40)Steam Flow to RSV 'B'187.00PSIAPP(40)Pressure in to RSV 'B'Page 8	0.9448	NO-UNITS	XX (54)	LP Turbine 'A' Last Stg Bowl Quality
103.25DEG FTT(56)LP Turbine 'A' Last Stg Exhaust Te983.26BTU/LBMHH(56)LP Turbine 'A' Last Stg Exhaust En0.8810NO-UNITSXX(56)LP Turbine 'A' Last Stg Exhaust Qu1922114.3LBM/HRWW(40)Steam Flow to RSV 'B'187.00PSIAPP(40)Pressure in to RSV 'B'Page 8	1.05	PSIA	PP (56)	LP Turbine 'A' Last Stg Exhaust Pressure
983.26 BTU/LBM HH (56) LP Turbine 'A' Last Stg Exhaust Er 0.8810 NO-UNITS XX (56) LP Turbine 'A' Last Stg Exhaust Qu 1922114.3 LBM/HR WW (40) Steam Flow to RSV 'B' 187.00 PSIA PP (40) Pressure in to RSV 'B' Page 8	103.25	DEG F	TT (56)	LP Turbine 'A' Last Stg Exhaust Temp
0.8810 NO-UNITS XX (56) LP Turbine 'A' Last Stg Exhaust Qu 1922114.3 LBM/HR WW (40) Steam Flow to RSV 'B' 187.00 PSIA PP (40) Pressure in to RSV 'B' Page 8	983.26	BTU/LBM	нн	56)	LP Turbine 'A' Last Stg Exhaust Enthalpy
1922114.3 LBM/HR WW (40) Steam Flow to RSV 'B' 187.00 PSIA PP (40) Pressure in to RSV 'B' Page 8	0.8810	NO-UNITS	XX (56)	LP Turbine 'A' Last Stg Exhaust Quality
187.00 PSIA PP (40) Pressure in to RSV 'B' Page 8	1922114.3	LBM/HR	WW (40)	Steam Flow to RSV 'B'
Page 8	187.00	PSIA	PP (40)	Pressure in to RSV 'B'
					Page 8

•

-

				set16out.txt
1276.20	BTU/LBM	нн	(40)	Enthalpy in to RSV 'B'
510.56	DEG F	TT	(40)	Temperature in to RSV 'B'
183.26	PSIA	PP	(-42)	Pressure out of IV 'B'
1276.20	BTU/LBM	нн	(-42)	Enthalpy out of IV 'B'
509.86	DEG F	TT	(-42)	Temperature out of IV 'B'
1922114.3	LBM/HR	WW	(47)	Steam Flow to RSV 'D'
187.00	PS1A DTU/IDM	PP	(47)	Pressure in to RSV 'D'
1276.20	BTU/LBM	HH TT	(47)	Enthalpy in to RSV 'D'
310.30	DEG F	11	(_ 4 0)	Pressure out of IV ID!
1276 20	RTU/LEM	гг	(-49)	Enthalpy out of IV 'D'
509.86	DEG F	TT	(-49)	Temperature out of IV 'D'
3844228.6	LBM/HR	ŴŴ	(60)	Steam Flow in to LP Turbine 'B'
112571.0	LBM/HR	WW	(145)	LP Turb B 1st Stg Extr Flow to DeAerator
1203.16	BTU/LBM	НН	(145)	LP Turb B 1st Stg Extract Enthalpy
70.29	PSIA	PP	(145)	LP Turb B 1st Stg Extract Pressure
344.76	DEG F	\mathbf{TT}	(145)	LP Turb B 1st Stg Extract Temperature
1.0248	NO-UNITS	XX	(145)	LP Turb B 1st Stg Extract Quality
225495.6	LBM/HR	WW	(192)	LP Turb B 2nd Stg Extr Flow to CDHE 3A
1169.20	BTU/LBM	нн	(192)	LP Turb B 2nd Stg Extract Enthalpy
43.29	PSIA DEC E	22 TT	(192)	LP Turb B 2nd Stg Extract Pressure
2/2.00	NO-INITS	YY YY	(192)	LP Turb B 2nd Stg Extract Quality
196431 8	LBM/HR	WW	(193)	LP Turb B 3rd Stg Extr Flow to CDHE 2A
1016.61	BTU/LBM	нн	(193)	LP Turb B 3rd Stg Extract Enthalpy
17.83	PSIA	PP	(193)	LP Turb B 3rd Stg Extract Pressure
221.92	DEG F	TT	(193)	LP Turb B 3rd Stg Extract Temperature
0.8573	NO-UNITS	XX	(193)	LP Turb B 3rd Stg Extract Quality
280403.1	LBM/HR	WW	(194)	LP Turb B 4th Stg Extr Flow to CDHE 1A
947.20	BTU/LBM	НН	(194)	LP Turb B 4th Stg Extract Enthalpy
7.12	PSIA	PP	(194)	LP Turb B 4th Stg Extract Pressure
177.58	DEG F	TT	(194)	LP Turb B 4th Stg Extract Temperature
0.8084	NO-UNITS		(194)	LP TURD B 4th Stg Extract Quality
1 0220		HH VV	(61)	LP Turbine 'B' 2nd Stg Bowl Enchalpy
1169 20	RTU/LBM	лл 111	(62)	LP Turbine 'B' 3rd Stg Bowl Quality
0.9967	NO-UNITS	xx	(62)	LP Turbine 'B' 3rd Stg Bowl Ducharpy
1119.49	BTU/LBM	нн	(63)	LP Turbine 'B' 4th Stg Bowl Enthalpy
0.9630	NO-UNITS	XX	(63)	LP Turbine 'B' 4th Stg Bowl Quality
1083.45	BTU/LBM	нн	(64)	LP Turbine 'B' Last Stg Bowl Enthalpy
0.9448	NO-UNITS	XX	(64)	LP Turbine 'B' Last Stg Bowl Quality
1.04	PSIA	PP	(66)	LP Turbine 'B' Last Stg Exhaust Pressure
103.04	DEG F	TT	(66)	LP Turbine 'B' Last Stg Exhaust Temp
983.15	BTU/LBM	НН	(66)	LP Turbine 'B' Last Stg Exhaust Enthalpy
0.8810	IDM/UD	AA MM	(00)	Condenger IN: Steam Flow
1 05		DD	(924)	Condenser 'A' Steam Pressure
103.25	DEG F	TT	(924)	Condenser 'A' Steam Temperature
984.91	BTU/LBM	НН	(924)	Condenser 'A' Steam Enthalpy
0.8826	NO-UNITS	XX	(924)	Condenser 'A' Steam Quality
925671.5	LBM/HR	WW	(631)	Condenser 'A' Inlet Drain Flow
4.14	PSIA	PP	(631)	Condenser 'A' Inlet Drain Pressure
154.38	DEG F	TT	(631)	Condenser 'A' Inlet Drain Temperature
150.72	BTU/LBM	нн	(631)	Condenser 'A' Inlet Drain Enthalpy
1.05	PSIA DEC E	22 77	(-111)	Condenser 'A' Hotwell Pressure
75 00	DEG F	11	(-111)	Condenser 'A' Hotweil lemperature
75.00	DEG F	11 TT	(303)	Condenser 'A' CW Temp B In
92.16	DEG F	TT	(200)	Condenser 'A' CW Temp Out
3081874.4	LBM/HR	ŴŴ	(926)	Condenser 'B' Steam Flow
1.04	PSIA	PP	(926)	Condenser 'B' Steam Pressure
103.04	DEG F	TT	(926)	Condenser 'B' Steam Temperature
983.68	BTU/LBM	нн	(926)	Condenser 'B' Steam Enthalpy
0.8815	NO-UNITS	XX	(926)	Condenser 'B' Steam Quality
943543.4	LBM/HR	WW	(640)	Condenser 'B' Inlet Drain Flow
4.04	PSIA	PP	(640)	Condenser 'B' Inlet Drain Pressure
153.36	DEG F	TT	(640)	Condenser 'B' Inlet Drain Temperature
150.52	BIU/LBM	HH	(640) (_100)	Condenser 'B' Inlet Drain Enthalpy
1.04	FSIA	PP	(-123)	Condenser B' notwell Pressure

Page 9

 $\cdot \beta$

G Case 1 - 2609 MWt, 0% TP, Tstm = 595F

Prepared by:

7

Date: 02/12/07

P - Pressure, psia F - Temperature, F H - Enthalpy, Btu/Ibm # - Flow rate, Ibm/hr

6

,

.

•

1

PEF-NCR-03085

915.3 MW

8

182.89 02/12/07

ş

bEF-NCR-03098

Dwg. 688J637-4 Brushless Exciter Assembly FIG. 1

Reactive Capability Curve

ć,

.

GENERATOR-TYPE: THDD 170/70-18

Siemens Power Corporation

2.1-0500-7459/1 0990

Job name	Crystal River 3	Job No.	12- 7459	
Generator type	THDD 170/70-18	Serial No.	12 7459	
Main exciter type	Existing	Serial No.	12 -	E5
Pilot exciter type	Existing	Serial No.	12 -	E7

Copying of this document and giving it to others and the use or communication of the contents thereof, are forbidden without express authority. Offenders are isable to the payment of damages. All rights are reserved in the event of the grant of a pailent or the regsistration of a utility model or design.

Apparent power	S _N	9	989,4						
Voltage	U _N		kV						
Current	I _N		25,965						
Field voltage	Uf	5	00		V				
Field current	۱ _f	63	40		A				
Power factor	P.F.		0,9						
Frequency	f _N		Hz						
Speed	n _N	18	rpm						
Hydrogen gauge pressure	Pg		60		psig				
Phase sequence		$T_1 T_2 T_3$	Connection	Y					
Direction of rotation		Clockwise/looking at drive en	d g	·····					
		Stator F	·····						
Class of insulation		Rotor -							
Excitation system									

Stator with two-layer lap winding							
Cooling gas	H ₂	Cold gas temperature 46 (115)	°C (F°)				
Cooling gas volumetric flow	V	≈ 61	m ³ /s				

Terminal arrangement (Top view)	(T ₃)	(T ₂)	(T_1)	
Evoltor and	(T ₆)	$\left(\begin{array}{c} T_{5} \end{array} \right)$	$\left(T_{4} \right)$	
Exciter end				

Siemens Power Corporation

REVISION "O"

2.7-1710-7459/1 0890

Generator Cross Section

Turbogenerators Description

-

Useying of this declament, and giving it to others and the use in communication of the contents thereof are forbidden vintout envirtes autority enders are le to the ayment of damages All rights are re served in the region of a patent of the rag station of a unity model in devian

PEF-NCR-03111

Class 1

Utility Power Corporation Ю

ŝ,

Bearing, Pedestal Assembly 725-J-333

bef-NCR-03114

.

SIZE	DESCRIPTION	REMARKS
41" LD.	CYCLE STEAM INLET (SHELL SIDE)	1.75 WALL
40 LD	CYCLE STEAM OUTLET (SHELL SIDE)	.15 WALL
6 01A	HEATING STEAM INLET (HIGH PRESS) GUE	SCH.40 WE.
6 DIA	HEATING STEAM OUTLET (HIGH PRESS)	SCH.40 WE
3" DIA	DRAIN TANK EQUALIZING VENTON PRES	SCH 45 WE.
1 S.W.	EICESS STEAN VENT (HIGH PRESS)	3000 - SW
AID B	HEATING STEAM INLET (LOW PRESS)	SCH. LO W.E.
S'S DIA	HEATING STEAM OUTLET (LOW PRESS)	SCI. 40 WE
3 DIA.	DRAIN TANK EQUALIZING VENT (LOW PRESS)	SCH 40 WE.
18 S.W.	EICESS STEAN VENT (LOW PRESS)	3000 + 6.W
10 BIA	SHELL DRAIN (WELL SIDE)	SCH 40 WE
4-155W	LEVEL CONTROL CONKS (SHELL SIDE)	3000 S.W.
2-16 DIA.	MARWAY (TUBE BIDE)	
8 30 - 5 K	SUPPORT PAD(SE OTIGATATION	
B SAPA	NITEOGEN INCETS	3000 50
104 0IA.	EXTR. CONN. TO BOILEN FEED PULLE TURGINES	SCH. TO W.E.
18 5Q12.75	CROSSOVER FIRE SUPPORT	
	5128 41° LD. 40° LD. 6° DIA. 6° DIA. 3° DIA. 1° & W. 6° DIA. 6° DIA. 1° & W. 6° DIA. 1° & W. 1° & DIA. 1° & W. 2° & DIA. 1° & DIA. 1	SIZE DESCRIPTION 41° LD. CITCLE STEAN INLET (ANEL SUE) 6° DLA. CITCLE STEAN INLET (ANEL SUE) 6° DLA. HEATING, STEAN OUTLET (NAMEN PRESS) 6° DLA. HEATING, STEAN OUTLET (NAME PRESS) 6° DLA. HEATING, STEAN OUTLET (NAME PRESS) 1° DA. DRAIM TANK EQUALIZING VENTONN PBESS) 1° DA. HEATING, STEAN OUTLET (LOW PRESS) 1° DA. HEATING STEAN UNLET (LOW PRESS) 1° DA. HEATING STEAN UNLET (LOW PRESS) 1° DA. HEATING STEAN OUTLET (LOW PRESS) 1° DAL HEATING STEAN OUTLET (LOW PRESS) 1° DAL HEATING STEAN OUTLET (LOW PRESS) 2° LOB DA MANNAN (TWEE SIDE) 2° LOB DA MANNAN (TWEE SIDE) 2° DAN SK SUMMONT PROGRAM STEATING) 2° DAL JITCOUEL JULET DESTINATED 2° DAL JITCOUEL JULET DESTINATED 2° DAL ZITR COMM. TO BUILTS FIELD PRIMATED 1° DAL ZITR COMM. TO BUILTS FIELD PRIMATED

w	E١	GH.	TS .
	_		

DESIGN CONDITIONS SHELL SIDE PRESS 245 PS14. TUBE SIDE (NP) PRESS 1050 PS14. TEMP GOO "F TUBE SIDE (LP) PRESS 425 P514.

TENP SOO "F

NOTES 1. TOTAL AREA TO BE INSULATED IS 1600 S0.PT IN SULATION CLIPS WILL "E SHC INSTALLED ON SHELL ENDS AND NOZZLE"P12 IN ONA AND LARCEN, INSL ATH MATERIALS TO BE IN ACCORDANCE WITH THE CRUSSONDES-CROSSOVEY OPE TOULATION BOOMST

COLLAND OF UNITS SERVICEATER FOUNDATION DETRILS, AND LADING ARE ON THE TOLONG GENERATOR OUTLINE DW4. 3-UNTS TO BE SHIPPED IN NORMEL NORIZONTAL POSITION

- 5 THE AUCHOR POILTS ARE LOCATED AT THE CYCLE STEAM INLET FIND OF THE UNIT AND ON THE SID ADJACENT TO THE TURBILIES. FOULDATION DETANS ARE ON THE TURBILIE SENSERTOR OJTING ONE.
- 6.5HELL ACCESS IS AFFORDED BY MEANS OF A-ADJACENT MANWAY IN THE CEOSS UNDER PIPING
- PIPING 7. UNITS ARE DESIGNED, MANUFACTURED AND TESTED TO THE REQUIREMENTS OF SECTION. VIII, DIV. I OF THE ASME CODE.

Figure I.L. 1370-106

gitudinal Section 483-1-324-1

.

A 1 Defined No. 1 Stopple of YE 8 works RFDE Stopple of YE A works RFDE A 2 Tubine-Generator Startup 2 Stopple of YE 8 works RFDE Stopple of YE 8 works RFDE A 4 Proposed Unbine generator Startup 2 Stopple of YE 8 works RFDE Stopple of YE 8 works RFDE C A 4 Stopple of YE 8 works RFDE 2 Stopple of YE 8 works RFDE C A 4 Stopple of YE 8 works RFDE 8 works RFDE 8 works RFDE 9 works RFDE C A 7 Stopple of YE 8 works RFDE 8 works RFDE 12 works RFDE C A 7 Stopple of YE 8 works RFDE 9 works RFDE 12 works RFDE C A 7 Stopple of YE 8 works RFDE 12 works RFDE 12 works RFDE C A 7 Stopple of YE 8 works RFDE 12 works RFDE 12 works RFDE C A 11 Stopple of YE 8 works RFDE 12 works RFDE 12 works RFDE C	Spec. Page #	Section F	Reference	·	C - Conform	X.Exception	A - Alternate	E - Enhance	No.	DESCRIPTION	PRIORITY	TYPE & QUANTITY	SUBMITTAL DUE DATE (WEEKS RFDE or PTS)	Comments
Image: Second		1.12					A				1 1	5 Copies or 1E	8 weeks RFDE	4 weeks PTS
A C 2 Furthing operator startup and operator program for startup C 2 5 Copies or 1E 8 weeks RFDE 3 weeks RFDE C A 4 and operator program for startup C 2 5 Copies or 1E 8 weeks RFDE 3 weeks RFDE C C 6 5 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>General Arrangement Drawing for the</td><td></td><td></td><td></td><td>This is not part of Siemens standard deliverables since the turbine generator configuration does not</td></td<>										General Arrangement Drawing for the				This is not part of Siemens standard deliverables since the turbine generator configuration does not
Image: Constraint of the second second program of the second second program of the second s						X			2	Turbine-Generator/MSR	2	5 Copies or 1E	8 weeks RFDE	change.
C S Engineering Schedule 2 5 Copies or TE 4 weeks RFDE C A C FrocurementProduction / Shipping 2 5 Copies or TE 4 weeks RFDE A A 7 Sequence 4 5 Copies or TE 4 weeks RFDE A A 7 Sequence 4 5 Copies or TE 4 weeks RFDE A A 7 Sequence 4 5 Copies or TE 4 weeks RFDE C A 6 Damagetion and Test Standard 3 5 Copies or TE 4 weeks RFDE C A 10 Generator Performance Data 3 5 Copies or TE 12 weeks RFDE C A 110 Spare Parts List - Copien and Test Standard 4 5 Copies or TE 12 weeks PTS C A 13 Spare Parts List - Operational Spares 4 5 Copies or TE 4 weeks RFDE C A 13 Spare Parts List - Operational Spares 4 5 Copies or TE 4 weeks RFDE C A 13 Spare Parts List - Operational Spares 4 5 Copies or TE 6 weeks RFDE C A 16 Ube Oil Equence 2 5 Copies or TE 6 weeks RFDE C A							A		4	and operating procedures	2	5 Copies or 1E	8 weeks RFDE	8 weeks PTS
C 6 Schedule 2 S Copies or IE 8 weeks RFDE A 7 Recommed Detailed Erection 4 S Copies or IE 4 weeks RFDE 12 weeks RFDE A 6 OA inspecton and Test Schedule 3 S Copies or IE 4 weeks RFDE 6 weeks RFDE C A 6 OA inspecton and Test Schedule 3 S Copies or IE 4 weeks RFDE 6 weeks RFDE C C 9 Reports 3 S Copies or IE 12 weeks PTS 6 weeks PTS C C 10 Generator Performance Data 3 S Copies or IE 12 weeks PTS 6 weeks PTS C A 11 Shipping List 4 S Copies or IE 12 weeks PTS 6 weeks PTS C A 13 Spare Parts List - Operational Spares 4 S Copies or IE 6 months PTS 3 months PTS C A 13 Spare Parts List - Operational Spares 4 S Copies or IE 6 weeks RFDE 18 weeks RFDE C A 16 PAID 5 Copies or IE 6 weeks RFDE 19 weeks RFDE 10 weeks RFDE <td></td> <td></td> <td></td> <td></td> <td><u> </u></td> <td></td> <td></td> <td></td> <td>5</td> <td>Engineering Schedule</td> <td>2</td> <td>5 Copies or 1E</td> <td>4 weeks RFDE</td> <td></td>					<u> </u>				5	Engineering Schedule	2	5 Copies or 1E	4 weeks RFDE	
A 7 Recommended Detailed Frection 4 5 Copies or 1E 4 4 Vereks RFDE 12 Vereks RFDE 6 Vereks RFDE 7 Vereks RFDE 7 7 Vereks RFDE 7 7 Vereks RFDE 7 7 Vereks RFDE 7 7 7 7 Vereks RFDE 7 <td></td> <td></td> <td></td> <td></td> <td>с</td> <td></td> <td></td> <td></td> <td>6</td> <td>Procurement/Production / Shipping Schedule</td> <td>2</td> <td>5 Copies or 1E</td> <td>8 weeks RFDE</td> <td></td>					с				6	Procurement/Production / Shipping Schedule	2	5 Copies or 1E	8 weeks RFDE	
A 7 Sequence 4 5 Copies or 1E 4 weeks RFDE 12 weeks RFDE A 6 Calinapecton and Test Schedule 3 5 Copies or 1E 4 weeks RFDE 6 weeks RFDE C C 9 Reports 3 5 Copies or 1E 4 weeks RFDE 6 weeks RFDE C C 10 Generator Performance Data 3 5 Copies or 1E 12 weeks PTS C C 10 Generator Performance Data 3 5 Copies or 1E 18 months RFDE C C 11 Shoping List 14 - Ercition & 5 Copies or 1E 12 weeks PTS C A 11 Spare Parts List - Derational Spares 4 5 Copies or 1E 12 weeks PTS C A 13 Spare Parts List - Operational Spares 4 5 Copies or 1E 17 weeks RFDE C A 15 Palue Di Equipment Outline 2 5 Copies or 1E 12 weeks RFDE 18 weeks RFDE C A 16 Rule Di Equipment Outline 2 5 Copies or 1E 8 weeks RFDE 18 weeks RFDE C A 16 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>'</td> <td></td> <td>Recommended Detailed Erection</td> <td></td> <td></td> <td></td> <td></td>								'		Recommended Detailed Erection				
A 6 UA 6 UA 3 5 Copies or 1E 4 weeks RFDE 6 weeks RFDE C C 9 Reports 3 5 Copies or 1E 2 weeks RFDE 6 weeks RFDE C C 9 Reports 3 5 Copies or 1E 18 monits RFDE 6 weeks PTS C A 11 Sinpprog Last 4 5 Copies or 1E 12 weeks PTS 6 weeks PTS C A 11 Sinpprog Last 4 5 Copies or 1E 12 weeks PTS 6 weeks PTS C A 11 Sinpprog Last 4 5 Copies or 1E 12 weeks PTS 6 weeks PTS C A 13 Spaceal Parts List Operational Spaces 4 5 Copies or 1E 12 weeks RFDE 15 weeks RFDE C A 15 Patio Parts List Operational Spaces 4 5 Copies or 1E 12 weeks RFDE 16 weeks RFDE C A 16 Gene Space Cooling Water Skid 2 5 Copies or 1E 6 weeks RFDE 16 weeks RFDE Max 19 Foundation Requirements 2 5 Copies							<u>A</u>		7	Sequence	4	5 Copies or 1E	4 weeks RFDE	12 weeks RFDE
C -							A		8	QA Inspection and Test Schedule	3	5 Copies or 1E	4 weeks RFDE	6 weeks RFDE
C 9 Reports 3 5 Copies or 1E 2 weeks PTS C A 10 Generator Performance Data 3 5 Copies or 1E 12 weeks PTS Spare Parts List - Erection & C 12 Commissioning 4 5 Copies or 1E 12 weeks PTS 6 weeks PTS C A 13 Spare Parts List - Erection & 5 Copies or 1E 12 weeks PTS 3 months PTS C A 13 Spare Parts List - Operational Spares 4 5 Copies or 1E 6 months PTS 3 months PTS C A 15 Spare Parts List - Operational Spares 4 5 Copies or 1E 6 months PTS 3 months PTS C A 15 Patos 2 5 Copies or 1E 6 weeks RFDE 8 weeks RFDE 8 weeks RFDE 8 weeks RFDE 16 weeks RFDE 16 weeks RFDE 10 Generator Stator Cooling Water Skid 5 Copies or 1E 8 weeks RFDE not applicable C X 17 Outline 2 5 Copies or 1E 8 weeks RFDE not applicable C X 19 Foundation Requirements 2 5 Copies or 1E <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>including Shop Test and Inspection</td> <td></td> <td></td> <td></td> <td></td>					_					including Shop Test and Inspection				
C 10 Centrator Vertormance Data 3 5 Copies or 1E 18 months RFDE A 11 Shrupping List 4 5 Copies or 1E 12 weeks PTS 6 weeks PTS C C 12 Commissioning 4 5 Copies or 1E 12 weeks PTS 6 weeks PTS C A 13 Spare Parts List - Operational Spares 4 5 Copies or 1E 12 weeks PTS 3 months PTS C A 15 Spcial Tools List 4 5 Copies or 1E 12 weeks PTS 3 months PTS C A 15 Pallos 2 5 Copies or 1E 12 weeks RFDE 16 weeks RFDE C A 16 Pallos 2 5 Copies or 1E 6 weeks RFDE 8 weeks RFDE C A 16 Ubbo Oli Equipment Outline 2 5 Copies or 1E 8 weeks RFDE not applicable C X 17 Outline 2 5 Copies or 1E 8 weeks RFDE not applicable C C 20 Arrangurements 2 5 Copies or 1E 8 weeks RFDE not applicable C </td <td></td> <td></td> <td></td> <td></td> <td>C</td> <td></td> <td>-</td> <td></td> <td>9</td> <td>Reports</td> <td>3</td> <td>5 Copies or 1E</td> <td>2 weeks PTS</td> <td></td>					C		-		9	Reports	3	5 Copies or 1E	2 weeks PTS	
A 11 Shipping List 4 5 Copies or 1E 12 weeks PTS 6 weeks PTS C 12 Commissioning 4 5 Copies or 1E 12 weeks PTS 3 months PTS A 13 Spare Parts List - Operational Spares 4 5 Copies or 1E 12 weeks PTS 3 months PTS A 13 Spare Parts List - Operational Spares 4 5 Copies or 1E 12 weeks RTDE 10 weeks RTDE A 13 Spare Parts List - Operational Spares 4 5 Copies or 1E 6 weeks RTDE 10 weeks RTDE A 15 PAIDS 2 5 Copies or 1E 6 weeks RTDE 10 weeks RTDE A 16 Lube OI Equipment Outline 2 5 Copies or 1E 6 weeks RTDE 10 weeks RTDE A 10 Outrine 2 5 Copies or 1E 8 weeks RTDE not applicable C X 17 Outrine 2 5 Copies or 1E 8 weeks RTDE not applicable C X 19 Foundation Requirements 2 5 Copies or 1E 8 weeks RTDE not applicable C 2 Con					<u> </u>				10	Generator Performance Data	3	5 Copies or 1E	18 months RFDE	
Spare Parts List - Credition 6 12 Spare Parts List - Credition 6 5 Copies or 1E 12 Veeks PTS Image: Commissioning of the state of the st							A		11	Shipping List	4	5 Copies or 1E	12 weeks PTS	6 weeks PTS
Image: Construction of the second					с				12	Commissioning	4	5 Copies or 1E	12 weeks PTS	
C 14 Special Tools List 4 5 Copies or 1E 12 weeks PTS A 15 P&IDs 2 5 Copies or 1E 4 weeks RFDE 16 weeks RFDE A 16 Lube Oil Equipment Outline 2 5 Copies or 1E 6 weeks RFDE 8 weeks RFDE A 16 Lube Oil Equipment Outline 2 5 Copies or 1E 8 weeks RFDE not applicable A 17 Outline Requirements 2 5 Copies or 1E 8 weeks RFDE not applicable C 18 MSR Foundation Requirements 2 5 Copies or 1E 8 weeks RFDE not applicable X 19 Foundation Requirements 2 5 Copies or 1E 8 weeks RFDE not applicable X 19 Foundation Requirements 2 5 Copies or 1E 8 weeks RFDE not applicable C 2 Arrangement - 5 Copies or 1E 8 weeks RFDE not applicable C 2 2 Connection Diagrams 2 5 Copies or 1E 8 weeks RFDE not applicable C 2 Connection Diagrams 2							A		13	Spare Parts List - Operational Spares	4	5 Copies or 1E	6 months PTS	3 months PTS
A 15 P&IDs 2 5 Copies or 1E 4 weeks RFDE 16 weeks RFDE A 16 Lube OI Equipment Outline 2 5 Copies or 1E 6 weeks RFDE 8 weeks RFDE A 17 Outline 2 5 Copies or 1E 6 weeks RFDE not applicable A 17 Outline 2 5 Copies or 1E 6 weeks RFDE not applicable A 18 MSR Foundation Requirements 2 5 Copies or 1E 6 weeks RFDE Please refer to TEI Prop. A 19 Foundation Requirements 2 5 Copies or 1E 8 weeks RFDE not applicable X 19 Foundation Requirements 2 5 Copies or 1E 8 weeks RFDE not applicable X 19 Foundation Requirements 2 5 Copies or 1E 8 weeks RFDE not applicable C 20 Arrangement 2 5 Copies or 1E 8 weeks RFDE Not applicable Excitation System - Foundation 2 5 Copies or 1E 8 weeks RFDE 8 Not applicable C 22 Connection System - Foundation 2					<u> </u>				14	Special Tools List	4	5 Copies or 1E	12 weeks PTS	
A 16 Lube OILEquipment Outline 2 5 Copies or 1E 6 weeks RFDE 8 weeks RFDE A 17 Outline 2 5 Copies or 1E 8 weeks RFDE not applicable A 17 Outline 2 5 Copies or 1E 8 weeks RFDE not applicable B MSR Foundation Requirements 2 5 Copies or 1E 6 weeks RFDE Please refer to TEI Propo Gene Tation System 19 Foundation Requirements 2 5 Copies or 1E 8 weeks RFDE not applicable C C 20 Arrangement 2 5 Copies or 1E 8 weeks RFDE not applicable Excitation System - General 2 5 Copies or 1E 8 weeks RFDE not applicable C C 20 Arrangement 2 5 Copies or 1E 8 weeks RFDE C C 21 Requirements 2 5 Copies or 1E 8 weeks RFDE C C 22 Connection Diagrams 2 5 Copies or 1E 8 weeks RFDE C C 23 Terminal Point Locations -Mechanical 2 5 Copies or 1E							<u>A</u>		15	P&IDs	2	5 Copies or 1E	4 weeks RFDE	16 weeks RFDE
And State Cooling Water Skid 2 5 Copies or 1E 8 weeks RFDE not applicable And Skid 18 MSR Foundation Requirements 2 5 Copies or 1E 8 weeks RFDE Please refer to TEI Propo And Skid Gen. Stator Cooling Water Skid 2 5 Copies or 1E 8 weeks RFDE Please refer to TEI Propo And Skid Gen. Stator Cooling Water Skid 2 5 Copies or 1E 8 weeks RFDE not applicable And Skid 19 Foundation Requirements 2 5 Copies or 1E 8 weeks RFDE not applicable Arrangement C 20 Arrangement 2 5 Copies or 1E 8 weeks RFDE 1 Arrangement C 21 Requirements 2 5 Copies or 1E 8 weeks RFDE 1 Arrangement C 22 Connection Diagrams 2 5 Copies or 1E 8 weeks RFDE 1 C C 23 Terminal Point Locations -Mechanical 2 5 Copies or 1E 8 weeks RFDE 1 C C 24 Terminal Point Locations -Electrical 2 5 Copies or 1E 8 weeks RFDE 1 Con							A		16	Lube Oil Equipment Outline	2	5 Copies or 1E	6 weeks RFDE	8 weeks RFDE
Image: Construction of the system is the						x			17	Outline	2	5 Copies or 1E	8 weeks RFDE	not applicable
Image: State Cooling Water Skid 19 Foundation Requirements 2 5 Copies or 1E 8 weeks RFDE not applicable Image: State Cooling Water Skid 19 Foundation Requirements 2 5 Copies or 1E 8 weeks RFDE not applicable Image: State Cooling Water Skid 19 Foundation Requirements 2 5 Copies or 1E 8 weeks RFDE 10 Image: State Cooling Water Skid 19 Foundation System - General 2 5 Copies or 1E 8 weeks RFDE 10 Image: State Cooling Water Skid 10 10 Requirements 2 5 Copies or 1E 8 weeks RFDE 10 Image: State Cooling Water Skid 10									18	MSR Foundation Requirements	2	5 Copies or 1E	6 weeks RFDE	Please refer to TEI Proposal
C C 20 Arrangement 2 5 Copies or 1E 8 weeks RFDE C C 21 Requirements 2 5 Copies or 1E 8 weeks RFDE C C 21 Requirements 2 5 Copies or 1E 8 weeks RFDE C C 22 Connection System - Foundation 2 5 Copies or 1E 8 weeks RFDE C C 22 Connection Diagrams 2 5 Copies or 1E 8 weeks RFDE C C 23 Terminal Point Locations -Mechanical 2 5 Copies or 1E 8 weeks RFDE C C 24 Terminal Point Locations -Electrical 2 5 Copies or 1E 8 weeks RFDE C C 24 Terminal Point Locations -Electrical 2 5 Copies or 1E 12 weeks RFDE C X 25 ASME Pressure Vessel Certifications 2 5 Copies or 1E 12 weeks RFDE X 25 ASME Pressure Vessel Certifications 2 5 Copies or 1E At Shipment certification is not applica Generator Electrical Connection C 26 Details						x			19	Gen. Stator Cooling Water Skid Foundation Requirements	2	5 Copies or 1E	8 weeks RFDE	not applicable
Image: Construction C 20 Arrangement 2 5 Copies or 1E 8 weeks RFDE Image: Construction C 21 Recutation System - Foundation 2 5 Copies or 1E 8 weeks RFDE Image: Construction C 21 Recutation System - Elementary & 2 5 Copies or 1E 8 weeks RFDE Image: Construction C 22 Connection Diagrams 2 5 Copies or 1E 8 weeks RFDE Image: Construction C 23 Terminal Point Locations -Mechanical 2 5 Copies or 1E 8 weeks RFDE Image: Construction C 23 Terminal Point Locations -Mechanical 2 5 Copies or 1E 8 weeks RFDE Image: Construction C 24 Terminal Point Locations -Electrical 2 5 Copies or 1E 12 weeks RFDE Image: Construction X 25 ASME Pressure Vessel Certifications 2 5 Copies or 1E At Shipment Certification is not applicated a pressure vessel Image: Construction X 25 ASME Pressure Vessel Certifications 2 5 Copies or 1E At Shipment Certification is not applicated a pressure vessel									-	Excitation System - General				
Image: Construction of the second			· · · · · · · · · · · · · · · · · · ·		<u> </u>				20	Arrangement Excitation System - Foundation	2	5 Copies or 1E	8 weeks RFDE	
C C 22 Excitation System - Elementary & Connection Diagrams 2 5 Copies or 1E 12 weeks RFDE C C 23 Terminal Point Locations -Mechanical 2 5 Copies or 1E 8 weeks RFDE C C 24 Terminal Point Locations -Electrical 2 5 Copies or 1E 12 weeks RFDE C C 24 Terminal Point Locations -Electrical 2 5 Copies or 1E 12 weeks RFDE C X 25 ASME Pressure Vessel Certifications 2 5 Copies or 1E At Shipment Certification is not applica C C 26 Details 2 5 Copies or 1E 16 weeks RFDE					с				21	Requirements	2	5 Copies or 1E	8 weeks RFDE	
Image: Construction Diagrams 2 5 Copies or 1E 12 weeks RFDE Image: Construction Diagrams 2 5 Copies or 1E 12 weeks RFDE Image: Construction Diagrams 2 5 Copies or 1E 8 weeks RFDE Image: Construction Diagrams 2 5 Copies or 1E 8 weeks RFDE Image: Construction Diagrams Constructions - Electrical 2 5 Copies or 1E 12 weeks RFDE Image: Construction Diagrams Constructions - Electrical 2 5 Copies or 1E 12 weeks RFDE Image: Construction Diagrams Constructions 24 Terminal Point Locations - Electrical 2 5 Copies or 1E 12 weeks RFDE Image: Construction Diagrams Construction Diagrams 2 5 Copies or 1E 12 weeks RFDE Image: Construction Diagrams X 25 ASME Pressure Vessel Certifications 2 5 Copies or 1E At Shipment certification is not application is not application Image: Construction Diagrams Construction Diagrams 2 5 Copies or 1E 16 weeks RFDE						-				Excitation System - Elementary &				
Image: Constraint of the constraint					С				22	Connection Diagrams	2	5 Copies or 1E	12 weeks RFDE	
C 24 Terminal Point Locations - Electrical 2 5 Copies or 1E 12 weeks RFDE Image: C					с				23	Terminal Point Locations -Mechanical	2	5 Copies or 1E	8 weeks RFDE	
X 25 ASME Pressure Vessel Certifications 2 5 Copies or 1E At Shipment The turbine generator is in considered a pressure vessel C 26 Details 2 5 Copies or 1E At Shipment certification is not application					с		:		24	Terminal Point Locations -Electrical	2	5 Copies or 1E	12 weeks RFDE	
X 25 ASME Pressure Vessel Certifications 2 5 Copies or 1E At Shipment certification is not applica Generator Electrical Connection Generator Electrical Connection 2 5 Copies or 1E At Shipment certification is not applica C 26 Details 2 5 Copies or 1E 16 weeks RFDE														The turbine generator is not considered a pressure vessel, ASME pressure vessel
C 26 Details 2 5 Copies or 1E 16 weeks RFDE						<u> </u>			25	ASME Pressure Vessel Certifications	2	5 Copies or 1E	At Shipment	certification is not applicable.
					с				26	Details	2	5 Copies or 1E	16 weeks RFDE	
C Generator Neutral Grounding Cubicle 27 Drawings 2 5 Copies or 1E 24 weeks RFDE					с				27	Generator Neutral Grounding Cubicle Drawings	2	5 Copies or 1E	24 weeks RFDE	

-

.

Spec. Page #	Section	Reference	C - Conform	X-Exception	A - Alternoo	E - Enhard	No.	DESCRIPTION	PRIORITY	TYPE & QUANTITY	SUBMITTAL DUE DATE (WEEKS RFDE or PTS)	Comments
								Interconnecting Piping General		F 0		Progress Energy to clarify which interconnecting piping drawings are required. Siemens will only supply hood spray piping arrangement
			 <u> </u>	<u> </u>			20	Preliminary Instruction Inspection		5 Copies of TE	12 WEEKS RFUE	drawing 6 months P13.
			С				29	and Maintenance Manuals	2	5 Copies	18 months RFDE	
[Final Instruction, Inspection and Maintenance Manuals including				
L			 	<u> </u>	A		30	maintenance procedures.	3	10 Copies	6 months PTS	3 months PTS
			 		<u> </u>		31	Erection Manuals	4	5 Copies	18 months RFDE	3 months PTS
L			 C	ļ			32	Max. Allowable Nozzle Loads	2	5 Copies or 1E	24 WEEKS RFUE	
			С				33	Terminal Points	2	5 Copies or 1E	16 weeks RFDE	
					A		34	Field Checkout Procedures	4	5 Copies or 1E	8 weeks PTS	During Pre-Outage Planning
					A		35	Start-up Manual	4	5 Copies + 1E	12 months PTS	PTS
				x			36	Supplier's standard reference material	2	5 Copies or 1E	4 weeks RFDE	Clarification is required from Progress Energy.
			С		1	1	37	Storage and Handling Procedures	4	5 Copies or 1E	12 months RFDE	
			с				38	Recommendations for Rigging and Handling Equipment	4	5 Copies or 1E	12 months RFDE	
				x			39	Generator Characteristic data and Phase Current Unbalance Calculation	2	5 Copies or 1E	18 months RFDE	This is proprietary information, however, Siemens is willing to review this calculation with Progress Energy.
				x			40	Exciter model and tuning parameters for input to transmission PSS / E software	2	5 Copies or 1E	4 weeks RFDE	Further clarification required.
			 	x			41	Foundation Drawings	2	5 Copies or 1E	4 weeks RFDE	Siemens does not intend to modify foundations.

•

_

OPC

#1

080009

BATES NOS. PEF-NCR-03123 THROUGH PEF-NCR-03124

NON-RESPONSIVE

CR3 EPU Turbine Generator Bid Proposal Review:

Description:	Siemens	Alstom:	Notes:
Cost:	ltr	ltr.	See Tony Owen Sheet
Performance Guarantee:	REDAC	TED	Siemens LP Turbine 56" LSB (46" LSB optional, larger exhaust annulus has better performance). Alstom LP Turbine 47" LSB (57" LSB not offered).
<u>Generator Rating:</u>	1165 MVA using H2 inner cooled stator winding. Rating up to 1200 MVA possible (additional cost).	1173 MVA with H2O cooled mid- section replacement. 1162.5 MVA with H2O cooled stator rewind.	Both solutions meet minimum performance requirement. Siemens will replace core iron. Alstom field rewind does not replace core iron. Siemens states core iron replacement is required. Why is core iron OK with alstom winding?
Outage Schedule:	69 days. Includes LP's and generator rewind. Does not include MSR's.	75 days. Includes HP, LP's, MSR's and Gen mid-section replacement.	Siemens schedule needs improvement. Need 2009 turbine building integrated schedule. Consider TG project T&M?
Proposed Hardware:	HP Turbine (full arc, full reaction, replace in 2011). LP Turbines (46" LSB or 56" LSB). Generator H2 inner cooled field rewind including core iron replacement. Generator rotor to be replaced. New brushless exciter. Replacement MSR vessels by TEI. Digital Voltage Regulator (TCSA).	HP Turbine (partial arc, full impulse, replace in 2009). LP Turbines (47" LSB). Generator H2O cooled mid- section replacement or field rewind (core iron not replaced). Generator rotor sent out during outage for refurbishment. New Static excitation system.	Alstom requires HP Turbine and Generator to be opened for measurement during 15R. Estimated additional cost Cylinder, stationary blade carriers are replaced. New stator cooling water skid and static excitation electrical cabinets must be installed. Siemens solution requires all generator heat load to be removed from H2 coolers. SC system impact is large.

Notes:

1) Generator H2 pressure must be increased from 60 psig to 75 psig. Seal Oil System is impacted. Recommend to evaluate Siemens Performance Plus H2 Seal Package.

2) Evaluate Siemens 56" LSB LP Turbine Rotor Weight to present.

3) Proposed post installation plant performance test must be negotiated. Recommend simplified plant performance test due to amount of plant changes.

4) Need a dead band for performance guarantee bonus / penalty.

- 5) Alstom water cooled stator does appear to provide generator rating improvement.
- 6) Need to review HP Turbine full arc control capability for ICS main steam pressure control. 3% flow margin if accurately designed should provide enough throttling.

7) Siemens proposal does not include generator bushing replacement (est

PPL Susquehanna, LLC Turbine Upgrade Project Moves Forward

February 2, 2001

On January 23, Frank Long, president, PPL Generation signed an agreement which keeps the turbine upgrade project moving forward. The agreement is for Siemens Westinghouse Power Corporation to design, manufacture, and install a turbine upgrade on Susquehanna Units 1 and 2. The turbine upgrades will improve service life, reduce maintenance, and increase each unit's efficiency by about 50 MWe. Craig Weeks, president, Siemens Westinghouse Global Service was the co-signer. Bob Byram, Bryce Shriver, and George Jones represented PPL Susquehanna at the signing.

After the signing, Bob Byram commented on the importance of this project for PPL and Susquehanna, "PPL is a growing company with generation being an important part of its growth strategy. This investment in Susquehanna reflects PPL's commitment to generation and its expectation of continually improving performance by SSES. These upgrades will add to our earnings contribution per share as soon as they go into service. However, only by us running safely and reliably will PPL derive the full benefit of this investment."

The plan is to install the first of the turbine upgrades during Unit 2's 11th RIO in the spring of 2003 and the second during Unit 1's 13th RIO in the spring of 2004. Detailed preplanning has already begun for the first installation. How PPL Susquehanna and Siemens Westinghouse are going to get from signed agreement to installation was the topic of a presentation at the signing.

As outlined in this presentation, the keys to the project's success include applying and improving on the lessons Siemens Westinghouse has learned from previous installations including their installations at Limerick 1 and 2. They will also apply lessons learned from our Unit 2 installation to Unit 1. It was further pointed out that the planning and scheduling necessary for the safe and timely installations of the upgrades will affect the whole plant. Integrating the necessary work will require teamwork extending across most work groups and upward to the executive level.

Siemens Westinghouse has committed several executives to the success of this project. The most visible will be Richard Green, the Siemens Westinghouse site project manager. Richard will be co-located with the integrated Susquehanna and Siemens Westinghouse team at Susquehanna. This transaction was conducted through Enporion, Inc. Enporion, Inc. is a new electronic procurement exchange serving the electric and gas industries. PPL Corp. is one of the founding members of Enporion.

Headquartered in Orlando, Florida, Siemens Westinghouse Power Corporation was created in 1998 when Siemens acquired Westinghouse Power Generation. Siemens Westinghouse specializes in power plant systems, turnkey solutions, and services that include the manufacture, repair, replacement, and upgrade of steam-, gas- and hydroelectric generators. Siemens Westinghouse also manufactures power-plant control systems, emissions monitoring and control equipment, and fuel cells.

Press Release given to PPL Susquehanna, LLC Employees on February 2, 2001

SIEMENS

Quality Assurance Program

•

Use this document solely For the purpose given. Return upon request.

SIEMENS

Page 2 Siemens Confidential Quality -2007-2 Progress Energy Service Company, LLC-Crystal River Unit #3 equest No. SD22007

MODERNIZATION PROJECT April 16, 2007

.

Use this document solely For the purpose given. Return upon request. Do not disclose reproduce or use otherwise without the written consent of Siemens Power Generation Inc.

[] CONFIDENTIAL

SIEMENS

Quality -2007-2 Progress Energy Service Company, LLC-Crystal River Unit #3 EQUEST No. SD22007 Page 3 Siemens Confidential

Use this document solely For the purpose given. Return upon request. Do not disclose reproduce or use otherwise without the written consent of Siemens Power Generation Inc.

Quality -2007-2 N Progress Energy Service Company, LLC-Crystal River Unit #3 Equest No. SD22007

Page 4 Siemens Confidential

MODERNIZATION PROJECT April 16, 2007

.

٠

Quality -2007-2 Progress Energy Service Company, LLC-Crystal River Unit #3 Equest No. SD22007 Page 5 Siemens Confidential

MODERNIZATION PROJECT April 16, 2007

SIEMENS

CONFIDENTIAL

.

.

Modernization Project April 16, 2007

Page 7 Siemens Confidential

REDACTED

Quality -2007-2 PROGRESS ENERGY SERVICE COMPANY, LLC-CRYSTAL RIVER UNIT #3 EQUEST NO. SD22007

Use this document solely For the purpose given. Return upon request. Do not disclose reproduce or use otherwise without the written consent of Siemens Power Generation Inc.

•

[] CONFIDENTIAL

٢

.

MODERNIZATION PROJECT April 16, 2007

SIEMENS

Page 8 Quality -2007-2 Siemens Confidential Progress Energy Service Company, LLC-Crystal River Unit #3 EQUEST No. SD22007

Quality -2007-2 ial Progress Energy Service Company, LLC-Crystal River Unit #3 Equest No. SD22007

Page 9 Siemens Confidential

Modernization Project April 16, 2007

(] CONFIDENTIAL

SIEMENS

MODERNIZATION PROJECT April 16, 2007

1

Page 10 Siemens Confidential Quality -2007-2 Progress Energy Service Company, LLC-Crystal River Unit #3 Equest No. SD22007

<image><image><section-header><image><section-header><section-header><section-header><section-header><section-header><text><text><text><text><text><text><text><text><text><text><text><text>

NANAKAN MANUSUKAN MUNUSUKAN MUNUSUKAN MUNUSUKAN MUNUSUKAN MUNUSUKAN MUNUSUKAN MUNUSUKAN MUNUSUKAN MUNUSUKAN MU

CERTIFICATE SCHEDULE

Siemens Power Generation

Stationary Fuel Cells

Pittsburgh - PA, USA

Industrial Applications

Duisburg - NRW, Germany

Erlangen - Bayern, Germany

Görlitz - Sachsen, Germany

Approval Certificate No: UQA 0100412

Research & Development, Design, Prototype Manufacture, Installation and Service of Stationary Fuel Cell Power Generation Systems.

Marketing & Sales, Research and Development, Design, Supply Management, Manufacture, Installation & Commissioning of Turbo-compressors. Project Management and Supply of Equipment for Power Generation and Compressor Solutions. Field Service, Maintenance, Repair & Inspection of Turbo-compressors. Manufacture, Assembly& Repair of Components and Auxiliary Equipment for Turbo-compressors. Modernization & Upgrades, Long Term Service Agreements, Asset Management and Training Service.

Business Development, Product Development, Sales & Proposal, Design, Planning, Supply Management, Project Management, Shipment, Installation & Commissioning and Service for Power Plants for Industrial Applications.

Sales and Proposal, Research and Development, Design, Project Management, Supply Management, Manufacture of Steam Turbines packages and Condensers, including Auxiliary Equipment. Project Management and Supply of Equipment for Power Generation and Compressor Solutions. Supply Management, Manufacture, Assembly of Components and Auxiliary Equipment for Steam Turbines, Steam Turbine Packages and Condensers.

Original Approval: Current Certificate: Certificate Expiry: November 20, 1992 January 26, 2005 August 31, 2007

Page 4 of 5

PEF-NCR-03145

This document is subject to the provision on the reverse. This pyproval is correction in econdence with the LRQA assessment and cartification procedures and monitored by LRQA. Further Antifications regarding the core of the certificate and the applicability of ISO 9001:2000 requirements may be obtained by consulting the veg

82363678V

Limerick LP Turbine Replacement Rotors Proposed by Siemens Power Corporation Evaluation of Margin With Respect to Disk SCC

, r

December 1995

Principal Contributors

L. E. Demick J. Nichols

.

 This enclosure includes confidential information which is proprietary to Siemens Power Corporation and should be handled accordingly.

Prepared for

PECO Energy Company 965 Chesterbrook Blvd., 63B-3 Wayne, PA 19087

ALEXANDRIA, VA 22314-3238

703-519-0200

FAX: 703-519-0224

1

:

This enclosure includes confidential information which is proprietary to Siemens Power Corporation and should be handled accordingly.

REDACTED

OPC 1st POD

#1

080009

BATES NOS. PEF-NCR 03149 THROUGH PEF-NCR-03163

REDACTED

SIEMENS

PECo Energy Nuclear Steam Turbine Upgrade Limerick Generating Station—Units 1 and 2

Siemens Retrofit Increases Efficiency and Reduces Maintenance Costs

In January 1996, Siemens Power Corporation won the bid to replace six low-pressure (LP) turbines, and two highpressure (HP) turbines on Units 1 and 2 at PECo Energy's Limerick Generating Station. When the retrofitting work is completed in 1999, Limerick Generating Station, currently rated at 2,100 MW, will have an extra 80 MW of capacity from the two GE boiling water nuclear reactors. To date, this is the largest turbine retrofit project in Siemens Power Corporation's history.

The project will, according to PECo, provide the utility with a quality, longterm solution to stress corrosion problems which have plagued similar original equipment LP rotor units. The HP turbine replacement is being performed for the efficiency improvement. In addition, the retrofit will increase the plant's overall efficiency while reducing both short and long-term maintenance costs. Also, PECo has contracted with SPC to perform maintenance work on the Unit #1 generator, that will be performed at the retrofit installation.

Currently, Siemens is conducting a series of extensive project planning surveys and site inspections to prepare for the project and to ensure that the job can be completed in the 42-day breaker to breaker outage planned for Unit 1, April 1998 and another outage planned for Unit 2 a year later.

SIEMENS

PECO Energy and Siemens Finish Major Steam Path Retrofit in Record Time

Outage Duration and Scope Sets New Nuclear Industry Standard

Installation of Siemens replacement HP turbine.

At 11:33 PM on May 21, Siemens Power Corporation's Fossil Division completed a record-setting outage with the replacement of the steam path for Limerick Generating Station's Unit 1. The turbine retrofit workscope, which began April 3rd and was completed 15 hours ahead of schedule, wraps up the first phase of a project that will ultimately help to ensure that PECO Energy Co. will maintain its competitive edge in the newly deregulated energy market.

"PECO Energy Co., Siemens, and a large group of outside contractors

Photo courtesy of Charles Peatross

have set a new standard of excellence in the nuclear industry by replacing Unit One's four enormous turbines while refueling the reactor and doing maintenance on thousands of plant components and other systems," said PECO Vice President Jim von Suskil.

PEF-NCR-03166

Siemens provided its state of the art turbine technology to replace the entire steam path of the existing 1168-MW General Electric unit. The project scope included the replacement of the single highpressure and three low-pressure turbines, as well as performance of a generator stator rewedge and other repairs.

Robert Atkinson, PECO project manager added, "This was an outstanding accomplishment and a real tribute to Siemens and the quality effort performed by all of the personnel involved in the planning, design, component manufacturing and fabrication, installation and start-up activities associated with this project."

Atkinson also offered these interesting statistics associated with the turbine retrofit project:

- The size of this work scope (three LP Turbines, one HP Turbine, plus Generator rewedge/maintenance, all within an approximate 41 day work window) has established an industry record.
- This was the largest modification performed at Limerick Generating Station since the original plant construction.

- The actual duration, from 'reactor scram' until 'unit on turning gear,' was approximately one hour shorter than the originally projected schedule of 41 days, 7 hours. This is despite an approximate 14-hour work delay due to ALERT issues.
- More than 500 people were involved with outage execution of the Turbine Retrofit work scope (not including the miscellaneous performance testing modifications) expending over 200,000 manhours.
- Approximately 1-1/2 miles of 1/4 inch stainless steel tracer test tubing were installed, along with 61 connections made to plant piping systems, in order to support the tracer testing which will be performed in late fall as part of the ASME Performance test of the turbines.
- Approximately 114 welds were made on steam inlet lines, extraction lines, and casing nozzles (sizes ranging from 10 inch through 42 inch diameter) with only 2 minor reworks required.

"Planning for this endeavor began shortly after the contract was signed in January 1996," stated Peter Hosbein, manager of stearn turbine projects for Siemens Power Corporation. "We've had a group of engineers on site for the last eight months developing a detailed schedule with PECO. The Siemens schedule for the turbine replacements had over 1,450 activities. Through our world wide manufacturing organization, components were made in Germany and the US."

Thanks to the unique Siemens design and to achievement of extremely close tolerances on rotor alignment, the start up went very smoothly. With no balancing needed, the turbine went directly from turning gear to synchronization without a hitch. For some manufacturers this would be a notable achievement, but for a Siemens unit it is not at all out of the ordinary.

Siemens continues the manufacture of components for the Unit 2, which is scheduled for completion in May of 1999. The entire contract, which represents Siemens largest retrofit turbine order to date, will boost the capacity of this two-unit plant by more than 80 MW, and will extend Nuclear Regulatory Commission regulated turbine inspection intervals from six to ten years.

Siemens Power Corporation Fossil Division Headquarters 1040 South 70th Street Milwaukee, WI 53214 Tel: 414/475-3600

Fax: 414/475-3000 Fax: 414/475-4040 http://www.spcf.siemens.com

Printed in U.S.A.

Solutions

Scope of supply

Service

You have made the decision to extend the operating license of your nuclear power plant for another 20 to 30 years. To help you maximize the life extension, including the financial return on your investment, Siemens Power Generation offers comprehensive solutions for your longterm operating goals. One solution, the Siemens Nuclear High Pressure Full Arc modernization for BB96/296, is designed to increase operating plant generation through improved unit effectiveness.

The scope of this modernization includes:

- Monoblock HP rotor without thru-bore
- Latest technology double-flow optimized full reaction bladepath design
- Inlet admission ring
- New chrome steel inner cylinder
- Chrome steel blade rings
- L-Seal connection between inner and outer casings
- Multi-strip inter-stage seals over rotating and stationary blading.

A typical Siemens HP modernization encompasses design, manufacture and installation of the new bladepath. By eliminating the need for piping modifications and minimizing the modifications to the outer cylinder inlets, your new HP turbine bladepath can be installed during most standard reactor upgrades or refueling outages.

Siemens' track record in replacing this nuclear HP turbine is outstanding in the industry, with over 15 turbine elements of this design replaced to date.

No thru-bore HP rotor eliminates need for rotor bore examinations.

Customer benefits

The modernization of your HP bladepath can significantly improve the effectiveness of your nuclear power plant by increasing megawatt output and lengthening inspection intervals. When combined with primary-side modernizations, the Siemens HP upgrade can help extend plant operating life by as much as 30 years or more.

- Custom designed and engineered to your plant steam conditions
- Increased output includes minimizing flow margins
- Longer inspection intervals allow reduced maintenance costs (Siemens recommended inspection interval is 100,000 operating hours)
- Increased resistance to erosion
- Enables additional modifications to match many future primary side enhancements
- Ease of installation.

PEF-NCR-03168

SIEMENS

Power Generation

Features

Our engineers custom-design your HP bladepath based on the exact steam conditions at your site and your engineering requirements. They work closely with you and the primary side reactor supplier to collect engineering requirements at the appropriate level of detail, and prepare the engineering packages for your design change documentation and safety requirements.

Our thorough engineering evaluation process can deliver the information you need along with the necessary drawings to support your required design change documentation.

A key feature of this product offering is the detailed information provided to support the operation and maintenance of your plant for the extended operating life.

Optional features:

- Radial-fit hydraulic coupling bolts eliminate "galling" in the existing body-fit coupling holes that can occur by utilizing hydraulically unloaded sleeves between the coupling and bolt. Quick bolt installation and removal is an added plus, helping to reduce outage duration.
- Flow guide can be supplied in lieu of inlet admission ring for certain applications.

Optimized full reaction bladepath design improves effectiveness of HP turbine element.

Published by and copyright © 2006: Siemens Power Generation, Inc. 4400 Alafaya Trail Orlando, FL 32826-2399, USA

Siemens AG Power Generation Freyeslebenstrasse 1 91058 Erlangen, Germany

www.siemens.com/powergeneration

Order No. A96001-W90-A452-X-4A00 Printed in USA

1368 COLMO2C DA 01061.5

All rights reserved. Subject to change without prior notice.

Trademarks mentioned in this document are the property of Siemens AG, its affiliates, or their respective owners.

 The information in this document contains general descriptions of the technical options savafiable, which may not apply in all cases.
 The require bechnical options should therefore be specified in the contract.

PEF-NCR-03169

Magazine of the Siemens Power Generation Group

Turboservice

Fewer Inspections and More Megawatts through Turbine Retrofits at Nuclear Power Plant

Reprint from Power Journal Issue 4/99

Power for Generations Siemens Power Generation

NUCLEAR ENERGY

Turboservice

Fewer inspections and more megawatts through turbine retrofits at nuclear power plant

Disc cracking has been a problem in many large lowpressure disc-type turbine rotor designs. Instead of frequent and costly inspections, a retrofit rotor with a more robust design provides the safer and more costeffective solution over the long term.

ow-pressure (LP) turbines for nuclear power plants often feature large rotors with shrink-fit discs. These shrinks yield high tensile stresses, and stress corrosion cracking of the disc has thus been a problem in many of such turbine rotor designs.

MICHAEL SMIAROWSKI

Once cracking is initiated, frequent and costly inspections or even repairs are required to prevent the cracking from progressing to the chance of a sudden disc burst and missile generation. This in turn could darnage plant-safety-related equipment.

Turbine Retrofit is the Long-Term Solution

At Pottstown, Pennsylvania, PECO Energy (PECO) operates the Limerick Generating Station, a boiling water reactor plant with two units that went into commercial operation in 1986 and 1989, respectively. During routine maintenance inspections at Limerick, indications of stress corrosion cracking at the disc keyways and blade attachment dovetails were detected on the original LP turbine rotors. Long-term reliability and economical operation of the plant were thus put at serious risk. Additional longterm operational concerns included possible inner casing erosion and interstage diaphragm erosion.

PECO evaluated the alternatives for handling the problem: rotor repair as required, inkind replacement, or upgraded replacement of rotors. It was concluded that an upgrade is the best solution to resolve the rotor stress corrosion cracking concerns over the long term. Additionally, the new casings required for the upgrade would be more erosion resistant and the station would achieve additional electrical output. To further increase unit efficiency and thus power output, PECO decided to replace the high-pressure (HP) steam paths, too.

In 1996, PECO awarded the Fossil Division of Siemens Power Corporation (now Siemens Westinghouse) a contract to retrofit the steam turbines at Limerick Generating Station. The contract called for turnkey replacement of the HP and three LP turbine rotors, and all stationary blading and inner casings of each unit.

In each of the two 1160-MW units at Limerick Nuclear Generating Station in the U.S., Siemens retrofitted the three lowpressure turbines, the high-pressure turbine and all stationary blading and inner casings. From top to bottom: new LP rotor, part of new LP stationary blading, new HP rotor.

Siemens Power Journal 4/99 43

NUCLEAR ENERGY

New LP Rotors with Longer Inspection Cycles

Steinens provided its 13017 turbine design, this figure referring to the approximate exhaust area of each LP flow. The retrofit turbines were designed to fit into the existing turbine bearings and operate with all the existing auxiliary systems.

Low-pressure turbine cross section

The new LP rotors feature the Siemens advanced disc design and were the first application in the U.S. of the threediscs-per-flow design. Both the rotor design and the manufacturing process reduce the probability of disc burst due to stress corrosion cracking in the following ways:

· Each rotor utilizes only three

large dists per flow (Bather de signs used four or more discs per flow.)

• Only the first disc is keyed to the rotor shaft.

 The keys are located on the downstream side of the disc. Here, the disc is hotter than the steam, reducing condensation and therefore contamination in the keyway area.

Rotating brades tapered twister, integrally snrouded uner casing weld we tay weld we tay weld we tay hat easing • There is no shrink in the area of the keyway, which reduces the overall stress levels. Instead there is a clearance of 1 mm which allows any moisture to quickly drain from the areas around the keys. The disc manufacturing processes are controlled to induce large residual compressive stress that counteracts the tensile stresses of the strink fits.

 Rolling and shot peening of the keyways as well as of the blade attachment areas on both the disc and the individual blades further induce large residual compressive stresses.

Before awarding the contract, PECO commissioned a third party to review the Siemens design. Its analysis agreed that the Siemens disc design is less susceptible to stress corrosion cracking than other disc designs and that the forgings for the discs may also provide more thorough consistency in material properties than would be obtained in larger monobloc rotor forgings.

Siemens quantified new turbine inspection intervals for the new rotor design, which ensure compliance with the limit given by the Nuclear Regulatory Commission (NRC) for turbine missile generation. The NRC then approved extension of the turbine inspection and maintenance intervals from six to ten years (see box).

HP Turbines Further Increase Output

The original HP turbine was designed for partial-arc admission operation. A welded inlet

The new low-pressure turbine rotors are more resistant to stress corrosion cracking and require fewer inspections. Together with the new inner casings they were also a major contribution to the 80-MW total power output increase.

44 Salmens Power Journal (199

Siemens Turbine Design Saves a Good Amount in Inspection Costs

Coording to the Nuclear Regulatory Commission (NRC) guidelines, turbine systems in U. S. nuclear power plants must be designed and maintained to ensure that the probability of generating a turbine missile is less that to 5 per year. The NRC thus requires maintaining a Turbine System Maintenance (TSM) program, based on the manufacturer's calculation of missile generation probabilities.

The original missile generation analysis for the Limerick Nuclear Generation Station limited turbine inspection intervals to six years. The TSM program also included required intervals for performing in-service testing of valves: The main turbine stop and combined intermediate valves were tested once per week. The main turbine control valves were tested once per month.

Siemens provided an updated missile probability analysis to account for the new turbine design, which supported an ini-

nozzle block ring weighing about 18 metric tons was integral to the existing HP outer casing. The new Stemens HP turbine utilizes a full-arc ad mission ring and required removal of this nozzle block The steam admission ring consists of a ring forging that has blade profiles machined into it by electro discharge machining (EDM) to achieve close toler ances

With the exception of the inlet stage, the HP turbine utilizes all reaction blading. All blading of the monobloc rotor features the high-efficiency, advanced tial rotor inspection interval of up to 100,000 hours. These results allowed PECO to increase their inspection intervals and valve testing frequency from six years and weekly valve testing to

a ten-year inspection interval (87,600 operating hours) and
a quarterly valve testing frequency.

The analysis methodology and the changes to the present TSM program were forwarded to the NRC. The revised TSM

> program was approved. No operating license change was required.

The NRC also noted "Siemens has used the

same general blade root attachment for more than thirty years for both nuclear and fossil units. Some nuclear units are approaching 200,000 operating hours without blade attachment failures. This provides additional assurances that the modified Limerick Generation Station turbine rotors will perform in service as designed."

tapered and twisted design with integrally shrouded blades. A corrosion-resistant weld overlay on the shaft seal area on each end of the rotor improves the resistance to the erosion and corrosion effects of saturated steam.

The inner casing holds the first seven stationary blade stages per flow, and two blade carriers contain the remaining five stationary blade stages. The blade carriers replace the former interstage diaphragms and feature a design that minimizes interstage and tip leakage losses. Sealing from the outer to inner casing is accomplished with an L-seal arrangement. This consists of an L-seal that is held in place with a 600-mm-diameter threaded ring on the inlet nozzles. In addition, the original HP outer casing required inplace modifications to accommodate the new components.

The main reason the HP steam path was replaced was due to the increased output (15 MW) gained from using advanced. Siemens technology. Additional factors included increased rehability from new HP components, and having all steam path components matched and optimized to the overall steam conditions.

Keys to Success

To meet an aggressive installation schedule, an extension was added to the turbine building, which was used for handiing the old and new turbine. components and turbine tooling. Also, an additional turbine deck overhead crane and turbine building elevator were installed. A manufacturing facility located in Pottstown, approximately five miles from the site, was leased by Siemens for use as a component staging and pre-assembly facility and for some final manufacturing operations. For Unit #1 all LP casings, internals, and one of the rotors were shipped to this off-site facility. One LP rotor was used for fit-up on Unit #1 only, due to PECO's desire to ensure proper fit up. For Unit 2, this procedure was omitted and most pre-assembly work was performed at Siemens manufacturing facilities.

"It was recognized early on in the project that teamwork and communications were decisive," said Joe Smugeresky, PECO's Work Management Director for Limerick. "A solid team effort involving contingency planning is one of the reasons for the success of both of these projects."

PECO Benefits from Retrofit and Short Installation Time

The Unit #1 retrofit outage was completed in the spring of 1998 and the plant returned. to service after a 22-day installation outage Said PECO Vice President Jim von Suskil. "PECO Energy Co., Siemens, and a large group of outside contractors have set a new standard of excellence in the nuclear industry by replacing Unit One's four enormous turbines while refueling the reactor and doing maintenance on thousands of plant components and other systems."

Unit #2 was retrofitted in the spring of 1999 after a 35 Sday outage. The retrofit turbines provided PECO with reli able machines with longer inspection cycles and with additional megawatt output.

Retrofit projects, such as the Limerick project, are viable options for nuclear power producers to consider when evaluating repair or replacement of turbine equipment. Often the increased electrical output achieved by the new technology provides the financial payback needed to justify the cost. Siemens having successfully retrofitted a non-OEM turbine at a BWR nuclear plant demonstrates that such options are possible and beneficial to plant owneis.

Michael Smiarowski

was project manager for the Limerick turbine upgrade project. He recently became Marketing Team Leader for turbine upgrade projects in nuclear plants.

This article appeared in: Power Journal 4/99 December 1999, pages 43, 44, 45

Published by and copyright 2000: Siemens AG Power Generation Group (KWU) Freveslebenstraße 1 91058 Erlangen, Germany http://www.siemons.do/kwu

For further Information: Siemons AG – Info-Service KWU Ref KM1 PO, Box 32:20 91050 Erlangen, Germany Phone +49:9131 18-37.87 Fax: +49:9131 18-25:22 Siemens Wastinghouse Power Corporation The Quadrangle 4400 Alafaya Trail Orlando, FL 32826-2393 IUSA) Phone: +001 4 07 2 81-20 00

Two names one global company

Siemens Aktiengesellschaft

Subject to change without prior notice. Printed on paper treated with chloring free bleach.

Order No 1 495001-W80-A651-X-7600 Printed in Germany 81 D6063 001294 SD 0120002 SEK 22215

SIEMENS

Eight-Disk Rotor - Since 1987

Replacement of Nuclear LP Turbine Rotors and Inner Casings

Six-Disk Rotor - Since 1995

for presentation at the

AMERICAN POWER CONFERENCE

CHICAGO, ILLINOIS, APRIL 1-3, 1997

Authors

Mr. Heinrich Oeynhausen studied mechanical engineering at the State Engineering Academy in Essen. After graduating in 1971 he joined Kraftwerk Union where he worked as an engineer for applied mechanics for two years. After that, he continued his engineering studies at the Ruhr University, Bochum, and in 1977 became Scientific Assistant at the Institute for Mechanics. In 1981 he received his doctorate degree with a thesis on the stability of large clastoplastic deformations of thickwalled tubes under internal pressure and axial load. In 1984 he returned to Siemens/KWU and began working in the Steam Turbine Design Department, where he became manager in 1987. Mr. Oeynhausen was promoted in 1989 to head the subdivision of Steam Turbine Design. Since 1992 he has been Senior Director of the Siemens/KWU Steam Turbine Division with responsibility of all aspects of development, design, production and quality assurance.

Mr. Gerhard Roettger studied Mechanical Engineering at the Beuth Engineering Academy in Berlin. After graduation in 1957, he began employment with AEG in the Turbine Mechanical Engineering Department. In 1964 he was appointed Manager of the Turbine Calculation Section of the same Department. After Kraftwerk Union was founded, Mr. Roettger became Advisor for Development and Special Tasks in the Mechanical Engineering Department in 1974. He is engaged in Fracture Mechanica Computation and Probabilistic studies. Recently, Mr. Roettger was involved in developing design, forging and manufacturing methods to further improve the reliability of disk-type rotors leading to the introduction of the six-disk rotor design.

Mr. William E. Meade studied mechanical engineering at Oregon State University. After graduating in 1969 and a brief time working for the General Electric Company, he joined Allis Chalmers Power Systems in 1972 in the turbine-generator Product Service Division. Assigned as site manager for the installation of three prototype turbine-generator units for 400 MW, 650 MW fossil units and a 1305 MW nuclear unit, he was the lead turbine-generator start-up engineer on two new installations including a 650 MW fossil unit and a 1305 MW nuclear unit. He has been the site technical manager for 34 turbine-generator maintenance outages some with and some without labor contracts. He transferred to the failure analysis group in 1987 and evaluated turbine problems leading to predictive maintenance. In 1992 he transferred to his present position in service engineering and has been responsible for design control and manufacture of three large turbine upgrades including the six-disk LP rotor design.

Mr. Heinz Termuehlen studied mechanical engineering in Berlin. After graduating in 1958, he began employment with AEG, later Kraftwerk Union (KWU), in the Turbine Proposal and Project Department. In 1970 joined Allis-Chalmers Power Systems. In 1979 Mr. Termuehlen became Manager of Application Engineering with Utility Power Corporation in Bradenton, Florida. Presently he is Chief Engineer and Director of Product Planning for Siemens Power Corporation in Milwaukee, Wisconsin. Mr. Termuehlen is a member of ASME, IEEE, and ANS. In 1988, he was honored by being awarded the ASME Life Fellowship. He has presented several ASME, APC and IEEE papers, two of which were honored with the 1980 and 1988 Prime Movers Award. Mr. Termuehlen is a member of the ASME Power Division's Committee on Steam Turbines, and the International Representatives Committee, as well as the Industrial Committee of the American Power Conference.

Replacement of Nuclear LP Turbine Rotors and Inner Casings

Introduction

At the American Power Conference in 1994, we presented a paper about the success of the replacement project at the Grafenrheinfeld Nuclear Power Station. The replacement of turbine rotors and inner casings with the latest development in steam flow paths design increased the output of this 1300 MW unit by 45.3 MW.⁽¹⁾

In the meantime, improved flow path designs have been utilized in nuclear LP turbines worldwide, including the Grand Gulf Power Plant in Mississippi. The success has not just been related to the thermodynamic performance improvement but also design improvements for most reliable operation, and the mitigation of stress corrosion cracking have been introduced.^[243]

Since the first LP rotor and inner casing replacement at the Connecticut Yankee Power Station in 1987^[4], further steps were taken to build the most harmonized LP turbine rotor and inner casing combination for nuclear power plants.

Disk-Type LP Turbine Rotor Design

Siemens has not experienced the extensive stress corrosion cracking of disk-type rotors, as it was reported by EPRI in 1982 for other suppliers of nuclear LP turbines. Because of the excellent nuclear power plant experience with disk-type rotors since 1972, there was never the need to introduce another unproven rotor design.⁽⁵⁾ However, over the last 25 years, an evolutional process was applied leading from a ten (10)-disk over an eight (8)-disk to a six (6)-disk rotor design, as illustrated in **Figure 1**.

When, in the late 1960's, the first Siemens disk-type rotors for half-speed nuclear LP turbines were designed, operating experience from fossil units already existed, indicating that the proper shrink-fit design is critical for the successful long-term operation of such rotors.^[6] At that time the ten-disk rotor was developed as a standard

PEF-NCR-03178

rotor for nuclear half-speed turbines. A total of 57 rotors of this design were built with features making them highly resistent against stress corrosion cracking.^[7] These features are illustrated in **Figure 2** and listed as follows:

- A larger than 1 mm (40 mils) gap between shaft and disks opens up the keyways and the circumferential stress relief groove to avoid crevice conditions.
- Large radius of the stress relief grooves at the shaft and the disks are designed to minimize stress concentrations.
- The shaft contour is specifically designed for the lowest high-cycle fatigue stressing caused by shaft bending.

After EPRI reported about other original equipment manufacturer's (OEM's) stress corrosion cracking problems, Siemens introduced eight-disk rotors with further improvements as shown in **Figure 3**, with their design, forging and manufacturing modifications being summarized as follows:

- compressive stresses in keyways
- compressive or low tensile surface stresses at the disk surface
- high fracture toughness within the disks low "Deep Seated" FATT)
- lower temperatures at all keyway locations

Figure 3. Improvements of LP Turbine Rotor with Introduction of Eight-Disk Rotor Design

As of today, 29 rotors of this design have been supplied ${}^{\scriptscriptstyle [B]}$

To further harmonize the nuclear disk-type rotor design, the six-disk rotor was introduced in 1995. This latest development was evolved from the previous ten-and eight-disk rotors to be used for all future new turbines and LP rotor replacement applications. Ten of the six-disk rotors have already been ordered to replace other OEM's LP turbine rotors.

Six-Disk Rotor Design

The evolutional development of the six-disk rotor from the eight-disk rotor is a logical step when comparing the two designs in **Figure 4**. The finite element grid shows that both rotors feature the same kind of blade attachments but different disk designs: The eight-disk rotor features

Figure 4. Finite Element Grids of Eight-Disk and Six-Disk Nuclear LP Turbine Rotors

two heavy (thick) and two slender (thin) disks per flow, whereas the six-disk rotor features three thick disks per flow. The similarity of the disk's operating conditions can best be seen in **Figure 5** in which the operating stresses of the six-disk rotor are plotted. The maximum tensile stressing by centrifugal and shrink fit forces in the shrink fit zones of all disks is with about 525 Mpa (76 Ksi) the same. These stresses are the finite element calculation results which do not include the residual compressive stress which are built into all three disks per flow.

A major feature in mitigating potential stress corrosion cracking has been to build compressive stresses into the disks during the disk heat treatment process. This technique has proven to be extremely successful with heavy or thick disks. With thick disks, compressive stresses can be built deep into the disk from the surface and have been measured at a depth of 30mm (1.2 inches). The finite element calculation results of local tangential stress levels are plotted for disks #1 in Figure 6. The first plot shows the stresses caused by the shrink fit and centrifugal forces at rated speed. The second plot reveals the build-in residual stress levels. Adding these two stress levels results in the third plot illustrating the actual operating stresses. Important is to note the low stress levels at the disk's surface to prevent potential stress corrosion cracking. Additional methods have also been developed and are applied to build compressive stresses into the blade attachment zones. The result reveals that high tensile stressing only occurs at the forging center which is not exposed to stress corrosion conditions. Since all disks of the six-disk rotor are thick disks, the example of the disk #1 is representative for the remaining disks.

Based on 25 years of experience and finite element evaluation of temperature and stress distribution, it was concluded that keying the last two disks per flow is not needed. The shrink-fit under steady-state temperature conditions is strong enough to keep the disks in place, even if they are exposed to about 10 times the rated operating moment or an overspeed in excess of 133%. Transient temperature conditions have only a minor effect on those last two disks per flow, since they are only exposed

Figure 5. Tangential Stresses at Rated Speed Caused by Centrifugal Forces and Shrink-Fit of Six-Disk Rotor Design

Figure 6. Tangential Stresses in Disks #1 of Six-Disk Rotors at Rated Speed

to low absolute temperatures (< 100°C or < 218°F), as

shown in Figure 7. Transients can only occur in a small

temperature range between these and the ambient tem-

perature. However, the first disks per flow are exposed to

higher operating temperatures and could possibly be exposed to larger temperature excursions especially at

the upstream side. For this reason, it was decided not to eliminate the five keyways with keying pins of disks #1.

The keyways of these disks feature the well-proven de-

sign which is not exposed to any tensile operating stresses

because of the applied rolling and honing process. It is also an open design without crevice formation. The

upstream side of the disk fit has been modified by the

introduction of an angled inner diameter. This design will

move any potential moisture or impurities out of the shrink-

fit region. In addition, it provides a smaller transition to

Eliminating the keyways on disks #2 and #3 also

the shrink-fit in the disk center.

Figure 7. Isothermal Lines of Six-Disk LP Turbine Rotor

permits the designer to build the rotor shaft with smaller diameter steps between disks, resulting in a smaller inner diameter of disks #1 and #2, providing for a lower stressed shrink fit.

Introducing compressive stresses and reducing the effect of local stress risers has also been applied to the blade attachment and shaft of nuclear LP turbine rotors. Measures are applied to control any type of cracking, not only stress corrosion, but also high and low-cycle fatigue cracking.

Inner Casing Design

For building a LP turbine casing matching the rotor, the inner casing for the six-disk rotor features heavy casted inner casing sections as illustrated in **Figure 8**. The heavy disk #2 design could lead to heavier potential disk missiles penetrating the turbine casing. To mitigate this potential, the inner casing is built as a heavy barrier for preventing potential disk missile penetration.

Figure 8. Six-Disk Nuclear LP Turbine Design

PEF-NCR-03181

Erosion-Corrosion and low-cycle fatigue could be a potential problem after long-term operation of inner casings. Based on experience the selection of proper materials such as high chromium steel for LP turbine inner casing materials has eliminated erosion-corrosion problems. The single shell inner casing with blade carriers and diaphragms is exposed to low-cycle fatigue cracking if not properly designed and manufactured. The example in **Figure 9** shows how low-cycle fatigue strength has been built into the inner casing. Evaluation of acceptable stress levels in its critical section such as the weld connections exposed to transient temperature conditions during unit start-ups was performed based on test results.

Operation and Maintenance

The six-disk rotor features a blade path design with the best possible thermodynamic performance. Typically, six

Figure 9. Low-Cycle Fatigue Test and Evaluation

to eight stages of integrally shrouded^[9] and three stages of free-standing^[10 & 11] blades are provided as depicted in **Figure 10**. The three-dimensional flow path design and the more effective interstage and shaft sealing systems have improved the performance of nuclear LP turbines by 4% in overall unit heat rate, which accounts for about 50 MW increase in output for a 1200 MW nuclear power plant.

Stress corrosion cracking has, for all practical purposes, been eliminated and the mean time between LP turbine inspections can be extended beyond the 100,000 operating hour threshold. As illustrated in **Figure 11**, the six-disk rotor provides sufficient space between the disks for good accessibility when performing a UT inspection. Having only six disks per rotor to inspect also reduces the inspection effort and time.

Conclusion

Presently, two of the ten ordered rotors have been in operation for 4,000 hours. Another two of those rotors are already shipped to a nuclear power plant in Spain.

Figure 10. Six-Disk Nuclear LP Turbine Rotor with Integrally-Shrouded and Free-Standing Blades

Figure 11. Bladed Six-Disk Nuclear LP Turbine Rotor with Access between Disks

The latest evolutional step in designing the most reliable rotor and inner casing combination for nuclear LP turbines provides highest resistance against stress corrosion cracking. Together with the latest three dimensional flow path design features for stationary and rotating blading, an additional highest thermodynamic performance can be provided. For future new turbines and replacement applications, the six-disk rotor provides not only reliable long-term operation, but also requires a minimum of inspection and maintenance effort. Mean times between LP turbine inspections can be extended in excess of 100,000 operating hours.

The improved performance in regard to heat rate reduction and output increase by 4% over 1970 vintage nuclear LP turbine designs justifies a replacement of rotors in nuclear power plants based on the performance improvement alone, not even considering the large savings in O&M costs.

References

⁽¹⁾ Weschenfelder, K.-D., Oeynhausen, H., Bergmann, D., Hosbein, P. and Termuehlen, H., "Turbine Steam Path Replacement at the Grafenrheinfeld Nuclear Power Station", Presented at the American Power Conference, Chicago, IL, April 25-27, 1994.

¹² Röttger, G., David, W., Schleithoff, K., Hamel, H., and Termuehlen, H., "Disk-Type LP Turbine Rotor Experience", Presented at the 1993 International Joint Power Generation Conference, Kansas City, MO.

⁽³⁾ Termuehlen, H., and Schleithoff, K., "Advancements in Nuclear Steam Turbine Design to Prevent Corrosion", Presented at the 1988 American Nuclear Society in San Diego, CA.

⁴¹ Alkire, G., Galland, H., and Termuehlen, H., "LP Turbine Rotor and Inner Casing Replacement", Presented at the 1988 Joint Power Generation Conference, Philadelphia, PA.

¹⁵¹ Oeynhausen, H., Röttger, G., Ewald, U., Schleithoff, K., and Termuehlen, H., "Reliable Disk-Type Rotors for Nuclear Power Plants", Presented at the American Power Conference, Chicago, IL, April 27 - 29, 1987.

^[6] Engelke, W., Jestrich, H., Schleithoff, K., and Termuehlen, H., "Design, Operating and Inspection Considerations to Control Stress Corrosion of LP Turbine Disks", Proceedings of the American Power Conference, 1983, Vol. 45, pages 196-206.

¹⁷ Jacobsen, G., Oeynhausen, H., and Termuehlen, H., "Advanced LP Turbine Installation at 1300 MW Power Station Unterweser", Presented at the American Power Conference, Chicago, IL, April 29 - May 1, 1991.

^{IB} Termuehlen, H., Schleithoff, K., and Neumann, K., "Advanced Disk-Type LP Turbine Rotors", Presented at the 1990 EPRI Workshop, Charlotte, NC.

¹⁹ Termuehlen, H., "Thirty Years Experience with Integrally Shrouded Blades', Presented at the 1989 Joint Power Generation Conference, Dallas, TX.

¹⁰ Jansen, M., Pfeiffer, R., and Termuehlen, H., "Advanced LP Turbine Blade Design", Presented at the 1990 Joint Power Generation Conference, Boston, MA.

⁽¹¹⁾ Gloger, M., Neumann, K., Bergmann, D., and Termuehlen, H., "Advanced LP Turbine Blading — A Reliable and Highly Efficient Design", Presented at the 1992 International Joint Power Generation Conference, Atlanta, GA.
Solutions

Scope of supply

You have made the decision to extend the operating license of your nuclear power plant another 30 years or more. Your next decision is to determine what investments in plant equipment provide you with the safest and most reliable improvement throughout the extended operating period.

Service

Siemens Power Generation offers the most comprehensive solutions to maximize your assets. We can, with your selected primary side supplier, optimize the cycle improvements in accordance with all engineering requirements. We can coordinate, or lead, the BOP condition analysis and integration effort. We also can support the modification of your technical documentation to incorporate design modifications per your plant format. Finally, our proven high efficiency bladepaths will help you reduce maintenance costs and increase electrical output for the life of the plant.

Our 13.9m² Siemens LP turbine features state-ofthe-art design, technology and materials, with a 2.7 million-operating-hour track record of no disc stress corrosion cracking. This advanced disc LP design has been approved by the US Nuclear Regulatory Commission (NRC) for 10-year inspection intervals.

The typical 13.9m² scope includes:

- Fully bladed LP rotor with nominal 46-inch last row free-standing blades
- New one-piece inner cylinder fabrication with advanced design stationary blading
- Chrome steel materials in typical erosion areas
- Carbon steel and coated carbon steel in lower velocity areas.

Customer benefits

Our 13.9m² LP turbine can maximize your life extension through:

- Performance improvements ranging from
 2% to 4% depending on cycle conditions
- Improved reliability US Nuclear Regulatory Commission approved for 10-year inspection intervals
- Greater erosion/corrosion protection advanced technology coupled with proper material selection for your specific operating conditions
- Reduced maintenance costs 13.9m² LP meets NRC missile probability requirements, reducing future maintenance inspections
- Minimized installation and inspection time – one-piece inner cylinder enables faster and easier disassembly/reassembly for inspection
- Application for select non-OEM units this proven design is the standard replacement for the BB81/BB281/BB381 LP family and has been installed on a number of General Electric nuclear LP turbines.

The 13.9^{m²} advanced design, for Siemens and select non-OEM units, features a 2.7 million-operating hour track record of no disc stress corrosion cracking.

PEF-NCR-03184

SIEMENS

Power Generation

Features

Bladed LP rotor

Siemens' advanced disc design rotor incorporates a boreless shaft and three shrunk-on discs per end. Material selection, forging heat treatment and detailed design features are used to avoid stress corrosion/cracking found on other disc design rotors.

New, one-piece inner cylinder fabrication The LP inner cylinder fabrication is constructed of the appropriate grades of steel as needed for a target 40-year design life. Upgraded materials are available for high erosion environments, such as non-reheat BWR applications, in which more chrome steel content may be applied.

Advanced technology blading

- Integrally shrouded high efficiency blading in the early rotating and stationary stages
- Latest integral shrouded taper and twisted design high efficiency blading used in longer blades
- Low pressure section blading matched and tuned featuring the freestanding 46-inch last stage blades, giving an exhaust area of approximately 13.9m²

- Moisture removal features in the forwardleaning last-stage stationary bowed blades, which facilitates even loading and flow distribution and helps reduce erosion on the L-0 rotating blades
- Leading edges of the LP freestanding rotating blades are flame hardened to further reduce moisture erosion.

References

This improved LP design is engineered for the Westinghouse BB81, BB280, BB281, BB381 and certain General Electric nuclear LP turbine designs.

Longitudinal section of modified LP with new internals.

Published by and copyright © 2006 Siemens Power Generation. Inc. 4400 Alafaya Trail Orlando, FL 32826 2399. USA Siemens AG Power Generation Freyeslebenstrasse 1 91058 Erlangen, Germany

2.1 9 10

www.siemens.com/powergeneration Order No/ A96001 W90/A451X 4A00 Printed in USA

Printed in USA 1368 COLMO2C.DA 02061 All rights reserved Subject to change vilhout angl holice

Trademarks mentioned in this tockness are the property of Sements Collision and the property of Sements Collision and the collision of the col

PEF-NCR-03185

Siemens Scope for CR3 Turbine Generator Retrofit:

Description:

The Crystal River Unit 3 Nuclear Power Station (CR3) presently generates 903 MWe at 100% reactor power (2568 MWt). CR3 is planning to implement an extended reactor power uprate of 17% during the fall 2011 refueling outage. The CR3 steam generators will be replaced during the fall 2009 refueling outage. CR3 is also planning an "appendix K" feedwater flow measurement uncertainty recovery (MUR) uprate of approximately 1.6% reactor power during the fall 2007 refueling outage.

The scope of the CR3 extended power uprate (EPU) project is to retrofit the low pressure turbines, moisture separator reheaters, generator and the exciter during the fall 2009 refueling outage. The high pressure turbine will be designed and retrofit during the fall 2011 refueling outage to support the reactor thermal uprated conditions.

The detailed scope of work is based on the description of the Work as set forth in: i) the Siemens offer (Proposal Number TA02-280) dated April 13, 2007; ii) the Proposal Revision e-mail TA02-280-1 dated May 18, 2007; iii) Puneet Bahl's Installation Clarification e-mail and attachment dated June 4, 2007; iv) the requirements of this work authorization.

Schedule:

Siemens has proposed a 63 day clearance window for the 2009 refueling outage scope of work and a 25 day clearance window for the 2011 refueling outage scope of work.

The engineering document deliverable schedule shall be submitted for owner acceptance within 30 days of contract award.

The manufacturing schedule shall be submitted for owner acceptance within 60 days of contract award. Owner shall review detailed manufacturing schedule and identify Owner required witness points.

Siemens shall support Owners "engineering change process" and "work management process" as required, including attending engineering change design review meetings and work planning meetings.

Engineering:

Siemens shall perform and submit to Owner, a detailed retained component study which shall include all turbine generator support systems and a bearing loading evaluation.

Siemens shall perform and submit to Owner, a torsional vibration analysis model of the turbine generator rotor train for the 2009 configuration and the 2011 configuration. The torsional vibration analysis model report shall be submitted to the Nuclear Insurer (NEIL) by the Owner. Siemens shall resolve any NEIL requirements to support NEIL acceptance of the turbine generator torsional vibration analysis model.

Governor Valve Control Program Curves shall be provided to support the operation of the HP Turbine.

Siemens shall provide a lifting beam and slings designed to be capable of lifting all new turbine components supplied. The lifting beam shall be load tested and stamped with design load capability.

Complete new Turbine Generator Instruction Manuals (3 hard copies and 1 electronic copy), excluding AEH controller, shall be provided.

Performance Guarantee and Testing:

The 2009 performance guarantee (at 2.0 In. Hg. backpressure) and 2011 performance guarantee (at 2.7 In. Hg. backpressure) shall be determined based on updated CR3 plant heat balance calculation. The CR3 plant heat balance calculation shall be updated for final secondary plant design configuration and verified against actual plant performance following the 2007 measurement uncertainty recovery outage (i.e. at 2609 MWth.).

Plant performance testing shall be based on simplified ASME 6 procedure using test quality high accuracy instrumentation. Instrumentation Division of Responsibility (DOR) and Critical Test Corrections will be as mutually agreed on and as described in Siemens Amendment Offer dated May 18th, 2007.

Cycle isolation valve testing will be performed using the CR3 plant procedures and techniques (temperature differential and ultrasonic leak detection). Cycle isolation valve maintenance by PE will be by mutual agreement. Identified cycle isolation valve maintenance performed during the 2011 outage may result in a small recoverable loss that should be accounted for (if greater than 0.5 Mwe, but no greater than 1 MWe) by mutual agreement based on Plant Thermal Performance Report.

Installation Services:

Total Project Management: Siemens shall logistically manage all turbine deck work, crane usage and labor provided by PE to support turbine generator and MSR replacement project. PE to provide scaffolders, scaffolding materials, insulators, insulating materials, electricians, I&C, health physics. All other resources provided by Siemens.

Minor repairs that do not impact resources or resource loaded schedule shall be included.

LP Turbine laser alignment shall be performed during 2009 outage. The HP Turbine will not be opened in 2009 unless required to support alignment, at Siemens discretion. The HP turbine outer glands shall be removed to enable gland bore readings to support HP turbine alignment during the 2009 outage. The main oil pump shall be aligned during the 2009 outage. HP Turbine laser alignment shall be performed during 2011 outage. Generator Alignment and Frame Foot Loading shall be performed during 2009 outage. New Generator alignment shims shall be provided or fabricated as required. Existing generator shims shall be consolidated and replaced with new shims.

Generator service shall include lowering the main leads box 6 inches to clean the flange and to pump the pumping groove. A generator ventilation test shall be performed and adjustments made to ensure generator ventilation meet design requirements.

Turbine service shall include replacement of turbine valves during the 2009 and 2011 outage. 2TV's, 2GV's and 4 RSV's are scheduled to be replaced during the 2009 outage. 2TV's, 2GV's and 2IV's are scheduled to be replaced during the 2011 outage.

All material and equipment required to support performance of turbine lube oil flush shall be provided.

All rental equipment (trailers, portable crane, forklift, etc) required to support project shall be provided.

All consumables including craft labor PPE, per Division of Responsibilities, shall be supplied.

Chemical control shall be in accordance with CR3 plant procedures.

Siemens Scope of Material Supply:

High Pressure Turbine:

- Retrofit high pressure turbine shall be full reaction blading design with full arc steam admission.
- The steam path shall be designed with a 3% flow margin.
- Monoblock Rotor and Inner Cylinder with stainless steel Blade Carriers shall be supplied.
- Hydraulic Coupling Bolts shall be supplied and installed in the HP to LP turbine coupling with a new coupling spacer sized to axially position the HP rotor.
- The HP outer cylinder shall be reused and re-aligned as required.
- The Steam Lead Inlet Pipe Flanges shall be modified and new flexitalic gaskets installed.
- Stainless Steel Inner Glands Cases & Inner Gland Seal Rings sized for new rotor design clearance shall be supplied and installed.
- Outer Gland Seal Segments and bearing pedestal Oil Seal Strips shall be supplied, installed and final machined for the new rotor design clearances.
- The HP Turbine Bearings shall be rebabbitted.
- The existing extension shaft shall be refurbished at the Siemens Charlotte facility.

Low Pressure Turbines (Qty. 2):

- Retrofit low pressure turbines shall be advanced disc rotor design with 56 inch last stage blades and 18 square meter exhaust annulus.
- Fully Bladed Rotor and single piece Inner Cylinder with stainless steel Blade Carriers shall be supplied and installed with standard inner cylinder bolting.
- Outer Gland Housings and Bearing Pedestal Oil Seals shall be supplied and installed. Outer Gland Seal Segments and the bearing pedestal Oil Seal Strips shall be final machined for the new rotor design clearances.
- Exhaust Flow Guides and exhaust hood spray nozzles and piping shall be supplied and installed.
- The LP Turbine Bearings shall be rebabbitted with TEGO babbit.
- LP1 to LP2 Jackshaft shall be supplied and installed with new standard coupling bolts and new coupling covers. New coupling spacers, including bull gear, to be supplied and sized to axially position rotors to design requirements.
- LP Turbine SS Rupture Discs (lead free) shall be supplied and installed.

Generator (1200 MVA):

- The generator shall be rated at 1200 MVA. All replacement components shall be capable of supporting 1200 MVA capability.
- The generator H2 gas pressure shall be increased from 60 psig to 75 psig. A generator ventilation test shall be performed and adjustments made to ensure the generator H2 gas cooling capabilities meet design requirements.
- Supply and install all generator seal oil components required to support 75 psig H2 gas pressure. Seal oil system startup operation shall be documented to be in accordance with design requirements for 75 psig H2 gas pressure.
- Supply and install Hydrogen Inner Cooled RIGI-FLEX Winding. The stator winding shall include new Main Leads. Siemens shall be responsible for maintaining winding dryness. Winding shall be qualified by DC HI POT test.
- Supply and install Donut designed Stator Core. Core Iron Nitronic Through Bolts shall be supplied and installed. The new stator core shall be qualified by EL CID test and LOOP test.
- Supply and install Rewound Generator Rotor.

- Supply and install generator Blower Assembly.
- Supply and Install four (4) H2 Coolers.
- Supply and Install Main Lead Bushings and Current Transformers.
- Supply and install H2 Gland Seal Rings and H2 Gland Housing Seal Strips.
- Supply and install Bearing Oil Catcher and Outer Oil Seal Strips.
- All generator rotor seals shall be final machined for new rotor design clearance.
- Generator Bearings shall be rebabbitted.
- 24 hot gas RTD's, 4 cold gas RTD's, 2 warm gas RTD's, 2 rotor flux probes and 12 stator winding vibration probes shall be supplied and installed. All RTD's shall be duplex, 100 Ohm Platinum. New generator instrument terminal boards shall be supplied and installed. All new generator instrumentation shall be wired to the new terminal boards.

Exciter:

- Supply and install new Frame 12N Exciter assembly. New Exciter alignment shims shall be provided or fabricated as required.
- Exciter base electrical connections shall be compatible with existing field wiring and existing WTA voltage regulator.
- Supply and install new Exciter Housing including new Exciter Air Coolers. All cooler vent and drain tubing shall be stainless steel.

CORRECTIVE ACTION PROGRAM

PEF-NCR-03190

•

[] CONFIDENTIAL

Modernization Project APRIL 16, 2007

,

Page 2 Siemens Confidential

Corrective Action -2007-2 Progress Energy Service Company, LLC-Crystal River Unit #3 Request No. SD22007

Use this document solely For the purpose given. Return upon request. Do not disclose reproduce or use otherwise without the written consent of Siemens Power Generation Inc.

CONFIDENTIAL

Modernization Project APRIL 16, 2007

.

PAGE 3 SIEMENS CONFIDENTIAL Corrective Action -2007-2 Progress Energy Service Company, LLC-Crystal River Unit #3 Request No. SD22007

Use this document solely For the purpose given. Return upon request. Do not disclose reproduce or use otherwise without the written consent of Siemens Power Generation has

[] CONFIDENTIAL

Modernization Project APRIL 16, 2007

.

Page 4 Siemens Confidential Corrective Action -2007-2 Progress Energy Service Company, LLC-Crystal River Unit #3 Request No. SD22007

Use this document solely For the purpose given. Return upon request. Do not disclose reproduce or use otherwise without the written consent of Siemens Power Generation Inc.

June 26, 2007

•

John L. Gibson Region Executive and Vice President Eastern US Siemens Power Generation, Inc. 4400 Alafaya Trail, MC Q-1 302 Orlando, FL 32826

Dear John,

.

4

Progress Energy Service Company, LLC P.O. Box 1551 Harogh, NC 27602

[] CONFIDENTIAL

PEF-NCR-03194

REDACTED

CONFIDENTIAL

PEF-NCR-03195

Ĩ

-

Sincerely,

Danny Roderick, Vice President Nuclear Construction Progress Energy Florida, Inc.

Accepted and agreed to without condition: Siemens Power Generation, Inc

By: ____ and lee Title: Mar Canturde 27 Date: _

CONFIDENTIAL

CONFIDENTIAL

[] CONFIDENTIAL

PEF-NCR-03197

•

REDACTED

PEF-NCR-03198

[] CONFIDENTIAL

PEF-NCR-03199

CONFIDENTIAL

REDACTED

DESIGN TECHNOLOGY

INTRODUCTION

.

Use this document solely for the purpose given. Return upon request. Do not disclose reproduce or use otherwise without the written consent of Siemens Power Generation Inc.

OPC 1st POD

#1

080009

BATES NOS. PEF-NCR 03201 THROUGH PEF-NCR-03294

REDACTED

Siemens Power Generation Group

Siemens Power Generation Group

•

Siemens Power Generation Group

UNFIDENTIC

confidence and is to be used solely for the purpose for which it is furnished and returned upon request. This document and such information is not to be reproduced, transmitted, disclosed, or used otherwise in whole or in part without written authorization."

Siemens Power Generation Group

PROPRIETARY INFORMATION STATEMENT: This document contains information that is proprietary to Siemens Westinghouse Power Corporation and may not be reproduced or disclosed to any third party or other entity. in whole or in part, without the express prior written permission of Siemens Westinghouse Power Corporation.

[] CONFIDENTIAL

.

.

•••

D-958 FILENAME

PEF-NCR-03302

[] CONFIDENTIAL

PROPRIETARY INFORMATION STATEMENT: This document contains information that is proprietary to Siemens Westinghouse Power Corporation and may not be reproduced or disclosed to any third party or other entity, in whole or in part, without the express prior written permission of Siemens Westinghouse Power Corporation.

C: \De te\qiu

958

() CONFIDENTIAL

.

PROPRIETARY INFORMATION STATEMENT: This document contains information that is proprietary to Siemens Westinghouse Power Corporation and may not be reproduced or disclosed to any third party or other entity. in whole or in part, without the express prior written permission of Siemens Westinghouse Power Corporation.

39\070329

CR3 Turbine Generator Retrofit Plant Performance Testing, Conference Call Notes, 05/16/07

Attendees:

PE: Ted Williams, Scott Deahna, Dario Zuloaga Siemens: Dan Smith, Puneet Bahl, Al Battista, Jay Meyer, Dave Cavanaugh

Follow-up Items:

• The Siemens proposal "Electrical Output Guarantee" is based on the post 2011 electrical output only. A post 2009 performance test will be performed to document plant performance and to compare to the heat balance estimated electrical output. A test measurement uncertainty will not be applied to the 2009 measured and corrected megawatt output. The "electrical output guarantee" will be calculated as follows with provisions made to correct for 2011 maintenance recoverable cycle isolation losses as mutually agreed.

(Post 2009 MW corrected + (post 2011 MW corrected - pre 2011 MW corrected)) +/- (agreed uncertainty).

- Jay Meyer to provide Dario Zuloaga basis for 0.6% test uncertainty and to review test uncertainty for 2011 test.
- PE will test cycle isolation valves as described below. Cycle isolation valve maintenance by PE will be by mutual agreement not as required by Siemens.
- Siemens to reduce proposal cost for plant performance testing.

Summary:

General agreement was reached to perform a simplified ASME type plant performance test to assess the estimated turbine retrofit performance following the 2009 LP turbine / MSR / Steam Generator replacement and to assess the guaranteed performance following the 2011 HP turbine / reactor thermal uprate. PE and Siemens will work to obtain accurate plant heat balance model for EPU. Siemens can estimate the 2009 electrical output at 2.0 In. Hg. condenser pressure and the guaranteed 2011 electrical output at 2.7 In Hg condenser pressure. The bonus / penalty can be reduced from $re_{D_4CT_{ED}}$ (CONFIDENTIAL)

Primary test measurements to include: reactor thermal, feedwater flow (Caidon LEFM), electrical power, turbine backpressure (basket tips), turbine throttle pressure (at throttle valves), feedwater temperature, MSR TTD, MSR pressure drop, feed pump turbine steam flow (?).

Siemens proposes a 0.6% test uncertainty. Jay agreed to provide Dario the basis for this test uncertainty. PE would like a +/- approximately 5MW output band due to extensive plant modifications.

Discussion item: How to address 2 year cycle between 2009 LP retrofit and 2011 HP retrofit / EPU.

Post 2009 MW corrected test data will be compared to heat balance MW estimate for phase 1. Siemens proposes to perform a pre 2011 test to determine the plant output change during the cycle. Although this change is expected to be small, the source of the change (i.e. LP turbine, cycle isolation, etc.) may not be known and may be outage recoverable (cycle isolation maintenance) during 2011. Identified cycle isolation maintenance recoverable losses are expected to be small, but should be accounted for based on mutual agreement.

<u>Cycle Isolation</u>: CR3 utilizes a plant procedure that measures temperature difference across cycle isolation valves. Ultrasonic leak detection is also utilized. The procedure is performed quarterly by the plant engineers. PE proposes to use these techniques to determine potential cycle isolation valve leakage. PE and Siemens will "mutually agree" to any cycle isolation valve maintenance to be performed by PE.

ç.

POTENTIAL SUB-SUPPLIER LIST

[] CONFIDENTIAL

Use this document solely For the purpose given. Return upon request. Do not disclose reproduce or use otherwise without the written consent of Siemens Power Generation Inc

SIEMENS

UNFIDENTI

Modernization Project APRIL 16, 2007

.

.

Page 2 Siemens Confidential Main Supplier List -2007-2 Progress Energy Service Company, LLC-Crystal River Unit #3 Request No. SD22007

Use this document solely For the purpose given. Return upon request. Do not disclose reproduce or use otherwise without the written consent of Sigmens Power Generation Inc.

Modernization Project APRIL 16, 2007

SIEMENS CONFIDENTIAL

Main Supplier List-2007-2 PROGRESS ENERGY SERVICE COMPANY, LLC-CRYSTAL RIVER UNIT #3 REQUEST NO. SD22007

Use this document solely For the purpose given. Return upon request.

Siemens Turbine Generator Power Uprate Retrofit Meeting

The Crystal River 3 Nuclear Power Station is considering a 17% reactor thermal (20% electrical) power uprate in 2011.

The unit steam generators will be replaced during an 85 day outage in 2009.

The present reactor thermal power is 2568MWt.

The present turbine throttle steam conditions are 10.5MPPH, 900 psig, 585F.

Turbine first stage pressure is approximately 700 psig.

The seasonal turbine backpressure ranges 1.5 - 3.2 IN HGA. The present backpressure design point is 2 IN HGA. I believe a new backpressure design point of 2.2 - 2.3 IN HGA will be recommended following analysis of the average operating backpressure and the cost of power. The electric generator is H2 inner cooled (60 psig), 989 MVA, 0.9 PF. Frame 126 x 275. CR3 presently generates 900 MW at 100% reactor power.

Recommended agenda:

- Review lead time requirements, budget estimates and estimated efficiency gains from new technology.
- Discuss Siemens HP Turbine retrofit technology. If HP turbine is retrofit during 2009, would increased throttling losses be expected to be greater than the technology efficiency gains for the one cycle of operation prior to the reactor thermal uprate?
- Discuss Siemens LP Turbine retrofit technology.
- Discuss Siemens Water Cooled Generator Stator retrofit technology. Is it possible to uprate a 989 MVA H2 inner cooled generator to >1100 MVA by increasing the H2 pressure, etc? What are the uprate limitations for H2 inner cooled machines?
- Discuss Siemens Exciter and Voltage Regulator retrofit technology.

Siemens Proposal #SD22007, CR3 Turbine Generator Retrofit 5/3/07 Review Meeting Open Items

Pg. 1 of 2

Siemens to provide proposal amendment letter by 05/18/07. Siemens to provide 1200 MVA generator component evaluation by 06/08/07.

Generator field <u>installation schedule</u> is 69 days, including 48 days for generator stator winding and core iron replacement working 24 x 7. Siemens to review generator schedule for potential improvement. If generator outage schedule does not fit inside revised plant steam generator replacement schedule, then evaluate stator midsection replacement. Siemens mentioned the possibility of a seed stator frame becoming available.

Include generator main lead bushing replacement in proposal.

Include in proposal at no additional cost:

- Replace generator H2 seal rings and seal strips on H2 gland, bearing oil catcher and outer oil seal.
- Generator Ventilation Testing. Add description of requirements.
- Complete rotor train center line laser alignment and generator frame foot loading alignment.
- Replacement of the HP turbine gland steam spillover control valve with larger capacity valve.
- Machining of the HP turbine steam lead inlet flanges for flexitalic gasket modification.
- Rebabbit HP turbine and generator bearings due to new rotor journals.
- New style LP turbine lead free rupture discs.
- Lowering of the generator leads box to clean and pump sealing groove.
- A complete new technical manual for the turbine generator (excluding the AEH controller volumes) and electronic spare parts catalog.
- Material to support lube oil flush.

<u>Project Management:</u> PE desires "turn key" project management with minimal PE support responsibilities. Siemens to provide millwrights, riggers, welders, pipe fitters, crane operators and winders. TEI may provide the craft to install the MSRs. Siemens overall project management to include control of additional support craft provided by PE (mechanics, electricians, I&C, scaffold, insulators, pipe fitters, health physics, laborers, confined space attendants, fire watch, etc.). This will eliminate any delays due to "support requirements by others". Siemens to discuss this concept with their contracts personnel and provide their position.

Proposal pricing includes for <u>ASME PTC 6 turbine performance testing</u>. Following discussion the prevailing approach is not to perform a full ASME PTC 6 performance test. Consideration is to use the PTC 6 - 2004 Alternate Test. Key parameters will be megawatt output and reactor thermal. PE will have high accuracy instruments for feedwater flow, main steam pressure, main steam RTD's, condenser back pressure and high accuracy megawatt meters. This approach will reduce the price included to perform the full PTC 6.

<u>Performance bonus / penalty clause</u> should have a performance dead band. Review dollars tied to performance testing result. The fact that the multiple changes to the plant will make exact megawatt contribution from a single source difficult to evaluate. A deadband of +/-0.7% (test accuracy) could be set to account for these uncertainties and then a bonus could be considered for megawatts achieved above that value.

Is replacement of the generator <u>WTA voltage regulator</u> required to support the 1200MVA generator rating excitation requirements? WTA power amp drawers are uprated from 200 amps to 300 amps. Are the power amp drawers fully redundant at 300 amps? Siemens to unbundle the Digital Voltage Regulator and price it separately. Provide basis for recommending the EMI / RFI hardened cabinets. Estimated cost for AVR replacement is **REDACTED**

Existing generator rotor must be returned to Siemens. Transportation costs are included in the current price to return the existing CR3 generator rotor back to Charlotte.

Siemens Proposal #SD22007, CR3 Turbine Generator Retrofit 5/3/07 Review Meeting Open Items

Pg. 2 of 2

Shipping and Handling estimated costs are high. Heavy hauling on site is largest cost portion. Agree to review transportation and handling plan. Evaluate Mammoat (bundled contract) for on site heavy hauling.

The final Secondary Plant design configuration must be provided to Siemens to support turbine blade path design. This includes the MSR drains re-route and feed water heater specifications. Siemens to provide a date when the information is needed for the final turbine steam path design.

Siemens to evaluate the remaining turbine generator equipment and support systems for EPU impact. The basis for this cost Reparent is the number of hours projected to perform the study. PE asked to re-consider the magnitude of this expense in light of all the other work required to define the turbine peripherals as baseline to the overall project.

Add generator "Performance Plus H2 Seal Package" to proposal. Document added advantage / benefit from purchasing this seal package. Identify large generators with performance plus seal installed.

Siemens will provide dehumidification for the generator and no delays of high pot testing due to winding moisture. Electrical Power required for generator core iron loop test will be by PE.

Generator instrumentation will include installation of two flux probes, fiber optic vibration probes and 24 Gas Discharge RTD's with new terminal boards. Flux probes and fiber optic vibration pickups will be monitored using portable test equipment. Include providing the required portable test equipment for monitoring. Partial discharge slot coupler pickups are not required.

The seal oil skid will be modified to support 75psi generator H2 pressure. Any modifications required to enable the seal oil skid to operate at this pressure is included in current price.

The Generator Neutral Transformer will be included in the Siemens electrical evaluation for 1200MVA generator short circuit conditions. Generator protective relay set points will be provided.

All LP cylinder alignment and installation features (material and modifications) to install new turbines are included in proposal.

All HP turbine cylinder steam seal surfaces will be checked and machined as necessary. This work is included in the current price.

The extra charge for traveling personnel was defined as the per diem and mobilization costs that could occur to bring in some of the Siemens "regular" craftsman similar to AREVA specialty welders. This will be further defined by Siemens.

Progress Energy access to the manufacturing facilities cannot be limited to just five visits for HP and LP turbines.

LP turbine construction "is final design dependent and Siemens reserves the right to make changes to the number and style of components noted above without impact to performance guarantee values." "Price" to be added to the statement.

Purpose of the Meeting is to better understand the Technical and Commercial Provisions of the contract proposal, ensure that various studies and analysis remaining do not alter the cost of the proposal and convey the understanding that the schedule must be improved to perform EPUR within the SGR schedule.

Siemens Proposal Summary:

HP Turbine: replace in 2011 with full arc, full reaction turbine design with 3% flow margin.

LP Turbines: replace in 2009 with 13.9M2 (46"LSB) or 18M2 (56"LSB) turbines.

<u>Generator Stator</u>: field rewind stator in 2009 with H2 inner cooled winding, core iron is replaced. Stator rating is 1165MVA to be further evaluated to obtain 1200 MVA.

Generator Rotor: replace rotor in 2009 with new or rewound seed rotor. Rotor winding is re-designed for 1200 MVA.

Exciter: replace in 2009 with larger frame 12N exciter designed to support 1200 MVA generator rating.

Voltage Regulator: replace in 2009 with TCSA digital voltage regulator designed to support 1200 MVA generator rating.

Moisture Separator Reheaters: replace MSR vessels in 2009 with TEI supplied MSR's.

Performance Guarantee: 1082.9 MW @ 2.7 In Hg (18M2 LP turbine). Does not include MSR drain reroute.

Outage Schedule: 2009 schedule indicated 69 days for LP turbine replacement and generator stator rewind. MSR replacement is not included.

Meeting Summary Highlights:

- Siemens to provide proposal amendment letter by 05/18/07.
- Siemens to provide 1200 MVA generator component evaluation by 06/08/07.
- Field installation schedule is 69 days, including 48 days for generator stator winding and core iron replacement working 24 x 7. Ted asked for review to shorten schedule. Mike O'Leary feels much generator schedule improvement is probably not achievable. May need to evaluate cost of stator midsection replacement if outage schedule is not acceptable. Siemens mentioned the possibility of a seed stator frame becoming available.
- Generator core iron field replacement loop test requires 4160V, 850A, Single Phase power supply. The plant must provide this power supply.
- Generator Ventilation Testing is required. Must roll unit to ¼ and 1/3 speed with air in the generator. 8 pressure taps installed throughout generator. Must restore generator following test. This must be included in plant startup schedule. Can auxiliary steam supply main steam to roll turbine early?
- The High Pressure Turbine should be acceptable for operation during the 2009 to 2011 non-outage period.
Siemens Proposal # SD22007, CR3 EPU Turbine Generator Retrofit Meeting Notes from 05/03/07:

Scope of Supply Comments:

[] CONFIDENTIAL

1. 1. N. N.

• Verify the Generator Main Lead Bushings are the only material not included in proposal required to support generator 1165MVA rating. <u>Re:</u> Shay Foley indicated that offer was based on all major equipment sized to perform at 1200MVA. This included the core iron, stator, exciter and rotor. The blower should capable of meeting the 1200mva rating with modification/adjustment. The engineering study to be completed by June 8th will verify the correct bushing sizing and cost. Cost estimate for the bushings is **REDACTED**. Commitment was not clearly made to include this cost in the current price.

• Proposal states generator rotor seal sizes may be impacted by new rotor. Include re-stripping the hydrogen gland bracket, bearing oil catcher and outer oil seals. Include replacing H2 seal rings or installing new performance plus H2 gland seals.

<u>Re</u>: Siemens agreed that the hydrogen seal rings and all seal strips should be replaced because the rotor was being replaced. Need to include replacing all generator rotor seals in the proposal. Inclusion of the new performance package was not affirmed. Siemens wants to sell this package but could not provide sufficient basis to move it from nice to have to required status. The conventional seal package will function at the higher 75 psi hydrogen pressure. The SC Cooling System should be based on ambient temperatures at 95 degrees Fahrenheit.

• All LP cylinder alignment and installation features (material and modifications) to install new turbines must be included. ABB LP turbine retrofit removed the lower diaphragm ring, adaptor pipe and modified the top adaptor ring. All material to connect the inner cylinder to the cross over tee piece must be included.

Re: Siemens agreed with this statement. A new top diaphragm ring is included in scope.

- The retrofit is considered a major project with enormous cost. As stated in your proposal the project will be well engineered and will address issues to assure long life and reliable operation. Therefore we expect the following to be included in the retrofit project:
- Replacement of the HP turbine gland steam spillover control valve with larger capacity valve.

Re: Initially Siemens rejected inclusion of this valve, but later Siemens agreed to include this valve in their proposal (and price).

• Machining of the HP turbine steam lead inlet flanges for flexitalic gasket modification.

Re: Machining of the steam lead inlet flanges for fitment of flexitalic gaskets (phonographic surface) will be included at current price.

• HP turbine exhaust bowl erosion protection (spray pro?).

<u>Re:</u> It has not been determined that erosion has occurred but the long maintenance intervals currently scheduled do not allow for degradation to be caught if it were initiated. Siemens reiterated that the superheated steam is much less erosion than wetter steam. The erosion protection remains a consideration for as a "contingency" but it will not be included in the current contract price.

• Rebabbit the HP turbine and generator bearings due to new rotor journals.

Re: Bearing babbit condition will be evaluated and rebabbiting will be performed as necessary. Request HP and Gen bearing rebabbit as base scope.

• New style LP turbine lead free rupture discs.

Re: Siemens has the new lead free, stainless steel rupture disc and will include in the proposal at current price.

• Lowering of the generator leads box to clean and pump sealing groove. (Seal Tite contains asbestos).

Re: Siemens will perform this work as part of the proposal. Current Transformers are lower mass and will lessen vibration.

Siemens Proposal # SD22007, CR3 EPU Turbine Generator Retrofit Meeting Notes from 05/03/07:

Scope of Supply Comments Cont:

• New Rotor Lifting Beam. Certified for load rating? Include new lifting slings for rotors. Re: Slings are included.

• Include a complete new technical manual for the turbine generator (excluding the AEH controller volumes) that includes residual equipment left installed after retrofit. Include electronic parts catalog. Proposal includes new technical manual leaflets only.

<u>Re:</u> Siemens complained about the amount of work and presented several issues with providing this. In the end they will provide a new manual.

• Review new generator instrumentation and monitoring systems. Include 2 flux probes and 2 PD slot couplers to be installed. These probes will most likely be monitored using hand held instruments. Is a new Environment One generator condition monitor (GCM) provided? How many stator hot gas RTD's are provided?

<u>Re</u>: Siemens will provide the two flux probes, fiber optic vibration probes and 24 Gas Discharge RTD's (12 coils with 2 monitoring points per coil). New terminal boards for instrumentation are included. Siemens recommends partial discharge bus couplers (IRUS) rather than slot couplers. A GCM is not included.

• Is stator end winding vibration monitoring recommended for a rigi-flex winding? Can FOVM probes be monitored using portable monitor? FOVM is optional scope in proposal.

<u>Re:</u> Rotor flux probes and FO vibration probes can be monitored using portable test equipment. These probes are recommended by Siemens. Siemens does not recommend partial discharge monitoring.

PEF-NCR-03314

. . . t. .

Engineering Comments:

• LP Turbine Rotor Weight for 18M2 Rotor is 350,000 lbs. LP rotor plus jackshaft weight loads bearing #4 and #5 over 300 psi. A bearing loading evaluation must be completed prior to award. Original BB281 LP rotors weight was 195,500 lbs.

<u>Re:</u> This is not considered to be an issue. Evaluation will not be completed prior to contract award. Siemens is confident bearing loading is acceptable.

• What is "TEGO" babbit for LP turbine bearing? Does it support higher loads or higher temperatures?

<u>Re:</u> This material will support higher loads and temperature. TEGO babbit is higher strength and is lead free. This material has been used on similar type frame supports.

• Complete Generator 1200 MVA rating evaluation and identify impact <u>prior to award</u>. <u>Re:</u> This will be done by June 8th.

• Generator H2 Pressure increases to 75 psig. Qualifying the generator frame to 75 psig shall be performed prior to award.

<u>Re:</u> This will not be done prior to award. This was looked at initially and should be acceptable.

• Rotor train alignment is critical to reduce bearing stress and vibration. Proposal states alignment calculation is affected by rotor stiffness, bearing support structure movement and cylinder cover installation. Should a cylinder tops on / tops off alignment check be recommended since this will be the first BB281 frame the 18M2 LP turbines may be installed in?

<u>Re:</u> Complete center line, laser alignment will be done and included in the current price. The new Cantenary Curves will also require the alignment. Need to include generator frame foot loading in base scope to support generator realignment.

• Generator H2 pressure increase to 75 psig. Recommend implementing performance plus H2 seal package. Proposal should discuss benefit to seal oil system performance and H2 purity. Are modifications to existing seal oil system and system performance at higher pressure fully understood? Is seal oil backup system and existing pumps qualified for higher pressure?

<u>Re:</u> The seal oil skid is to be operated at 75psi generator H2 pressure. Any modifications required to allow the seal oil skid to operate at this pressure is included in current price.

• Is replacement of the WTA generator voltage regulator required to support the 1200MVA generator rating excitation requirements? WTA power amp drawers are uprated from 200 amps to 300 amps. Are the power amp drawers fully redundant at 300 amps?

<u>Re:</u> Siemens personnel in the meeting could not provide a definitive answer to this. Requires consultation with engineering Staff. The 300 amp drawers need to be verified @1200 MVA and single failure capability to ensure they will carry full excitation.

Engineering Comments Cont:

• Any plant control system main steam pressure control concerns with full arc HP turbine. Expect 3% flow margin to provide GV throttling to maintain steam flow control. Contingency for 4th governor valve lagging control acceptable?

<u>Re:</u> Siemens indicated that this should not matter and they do not anticipate TGV control problems with full arc control.

• Generator Neutral Transformer. Was it evaluated? Does it need replaced? Is it adequate for 1200MVA short circuit current ratings? <u>Re:</u> It does not need to be replaced. The neutral transformer sees only five amps and only functions when there is a short circuit or fault condition. The neutral transformer does need to be analyzed for shorts and transients. This will be included in the Siemens electrical evaluation. Protective relay set points will also be provided.

• Are any generator main leads box structural enhancements recommended?

<u>Re:</u> No, the leads box will be lowered and the surfaces cleaned and inspected. The new CT's are lighter weight. Demounting the CT's is not recommended due to work scope and schedule impact.

• Instrument tubing / piping under generator needs evaluated. Some needs to be replaced. The H2 dryer (BAC50) piping should be enlarged? <u>Re:</u> The tubing under the generator is not impacted by Siemens work scope. This will be PE responsibility.

• Provide H2 cooler configuration information.

<u>Re:</u> This is a "drop-in" vertical cooler that is included in the current price. Information on the new coolers will be provided. New coolers are lead free and incorporate all upgrades.

18

• CR3 turbine AEH control system still uses secondary power supply from exciter PMG. Is this acceptable for frame 12N exciter? <u>Re:</u> This is acceptable and does not present a problem.

Pg. 6 of 10

Installation Comments:

• Revise 2009 installation schedule to include MSR installation. Review schedule for installation options and cost impact to shorten schedule to approximately 60 days. Generator stator winding and core replacement schedule (48 days) does not agree with best performance (38 days) presented at the 2007 Siemens generator workshop.

<u>Re:</u> The MSR's can be included in the schedule without impact. They will require 21 days of parallel critical path. Problem is getting the overall schedule to fit into our outage schedule for SGR as noted above. Note: MSR insulation is not included. TEI can provide insulation and can install a lot of the new vessel insulation pre outage.

• Include a laser alignment of the entire train and plan on a generator alignment change. Turbine Generator Train Alignment does not appear to be included. Entire train realignment should be anticipated based on new rotor catenary curve. Entire rotor train alignment was changed during LP turbine retrofit (welded rotor design) in 1996. Proposal states generator re-alignment is not anticipated. HP turbine rotor to cylinder alignment needs to be addressed if HP cylinder move is needed. Alignment of HP turbine in 2009 vs. 2011?

Re: This was addressed above under the Engineering Comments Section. Siemens agreed to include.

• Installation support requirements and responsibilities by PE are extensive. Discuss capability of Siemens to provide additional labor jurisdictions or be assigned other craft labor through PE. PE desires to have Contractor project management responsible for directing all turbine deck operations.

<u>Re:</u> Siemens to provide millwrights, riggers, welders, pipe fitters and crane operators. TEI will provide the craft to install the MSRs. They were hesitant to accept responsibility for craft provided by PE (scaffolders, laborers, I&C, etc.). Siemens to discuss this concept with their contracts personnel and provide their position.

• Shipping and Handling estimated costs are high. Agree to review transportation and handling plan. Review rail delivery of Charlotte, NC shipments. Review overseas shipments to port of Tampa and rail or barge options to CR3. Evaluate Mammoat (bundled contract) for on site heavy hauling.

<u>Re:</u> Siemens to re-consider their shipping charges, especially re-think the use of the barge landing to avoid rail transportation. However, barge costs are greater than rail. They did state that blade removal and re-positioning after transportation (rail) would not be an issue. Heavy hauling on site is largest cost portion. Need to work with Mammoat.

• Siemens shall provide dehumidifier for generator and diesel generator for generator core iron loop test power requirements. No delay charges will apply to high pot test due to winding moisture issue.

<u>Re:</u> Siemens will provide dehumidification for the generator and no delays anticipated. Electrical Power for this work will be provided by the plant. Generator Core Iron Loop Test requires 4160V, ~3 MW at 850 amps (single phase).

• Are all HP turbine cylinder steam seal surfaces machined in the proposed field work scope of work?

<u>Re:</u> The seal surfaces will be checked and machined as necessary. This work is included in the current price.

Installation Comments Cont:

• Need to discuss lube oil flush setup and performance including material.

<u>Re:</u> This question led to discussion of the whereabouts of the jumpers required to bypass bearings on the lube oil flush. Siemens has responsibility for the flush and will bring in a skid if needed. Note: do not have notes on whether this is covered in the current price.

• Generator Ventilation Testing:

<u>Re:</u> Siemens added that they recommend a Generator Ventilation Testing. The generator would be turned at ¼ and 1/3 speed in air. The question of source/availability of the auxiliary steam from CR Units One and Two. Operational experience is needed to justify the test and the test will need to be included in the outage schedule and addressed relative to critical path. The test was performed as part of the 1990 mid-section replacement and orifices needed adjustment. Requirements include pressure taps in 8 areas back to a manifold. Questions arose regarding the availability of taps to be used and a manometer. We did not determine if this testing would be included in the current price.

Siemens Proposal # SD22007, CR3 EPU Turbine Generator Retrofit Meeting Notes from 05/03/07:

Commercial Comments:

~ ~

• Is the cost for a new rotor forging or a re-qualified rotor forging the same? The proposal does not include return of the existing generator rotor. What cost reduction would apply to return the existing generator rotor to Siemens?

<u>Re</u>: Siemens determined that the use of a seed rotor is more economical and the risk of this approach is low. A seed rotor has not been pre qualified. A new winding will be installed on the seed rotor. Transportation costs are included in the current price to return the existing CR3 generator rotor back to Charlotte. Warranty inclusions will be evaluated. Rotor rewind during the outage is not an option due to schedule.

• Overall project management to include control of additional craft (mechanics, crane operators, electricians, I&C, scaffold, insulators, pipe fitters, health physics, laborers, confined space attendants, fire watch, etc.). This will eliminate any delays due to "support requirements by others". PE desires "turn key" project management with minimal PE support responsibilities.

<u>Re:</u> Discussed above, Siemens to review this and provide feedback.

[] CONFIDENTIAL

Proposal pricing includes for ASME PTC 6 turbine performance testing. Siemens recommends a detailed PTC6 performance test based on PTC 6 - 1996 using group 1 and group 2 corrections. PE believes this will be extremely difficult to implement. Due to the extensive plant major component replacements over two refueling outages and the significant change in reactor power, it can be anticipated that a significant number of plant test data corrections would be required to correct performance to the calculated heat balance. Recommend reducing cost and scope of plant performance testing (review PTC6 – 2004 alternate test). Consider simple plant heat rate / output measurement test with minimal corrections (condenser pressure, etc.).

<u>Re</u>: Following discussion the prevailing approach is not to perform a full ASME PTC 6 performance test. Consideration is to use the 2004 Alternate Test. Key parameters will be megawatt output and heat rate. PE will have high accuracy instruments for feedwater flow, main steam pressure, main steam RTD's, condenser back pressure and the new high accuracy megawatt meters. This approach could save the **(REDACTED** included in the price to perform the full PTC 6.

• Performance bonus / penalty clause should have a performance dead band. Review dollars tied to performance testing result. <u>Re</u>: The fact that the multiple changes to the plant will make exact megawatt contribution from a single source difficult to evaluate, lends to the validity of considering a "deadband" between the performance guarantee and additional megawatts attributed to Siemens. This deadband of approximately +/- 0.7% (test accuracy) could be set to account for these uncertainties and then a bonus could be considered for megawatts achieved above that value. Siemens and PE to consider. Conference call needed to discuss this issue. 1080 MW x 0.007 = 7.56 MW.

• PE plans MSR drain reroute and other potential plant equipment changes that will affect the final plant heat balance calculation and electrical power output.

<u>Re:</u> The final Secondary Plant design configuration must be provided to Siemens to support turbine blade path design. This includes the MSR drain re-route and feed water heater specifications. Siemens to provide a date when the information is needed for the final turbine steam path design.

Commercial Comments Cont:

• Retained component engineering evaluations should be included. Pricing includes added REDACTED

<u>Re</u>: Siemens to evaluate the remaining turbine generator equipment and support systems for EPU impact. The basis for this cost is the number of hours projected to perform the study. PE asked to re-consider the magnitude of this expense in light of all the other work required to define the turbine peripherals as baseline to the overall project.

• Need to include generator main lead bushing replacement in proposal.

<u>Re:</u> Discussed above.

[] CONFIDENTIAL

• Add "Performance Plus H2 Seal Package" to proposal.

<u>Re:</u> Discussed above, Siemens is to determine what added advantage we would receive from purchasing this seal package.

• Exciter replacement cost includes replacement of the automatic voltage regulator. Request to price replacement of the generator voltage regulator separately. Is replacement of the WTA cabinets with EMI / RFI hardened cabinets typical for the digital voltage regulator? <u>Re:</u> Siemens will unbundle the Digital Voltage Regulator and price it separately. Also, provide basis for requesting the hardened cabinets.

Estimated cost for AVR replacement is **REDACTED** including installation and startup support.

• Proposal states extra charge for "traveling craft labor" personnel.

<u>Re:</u> The extra charge for traveling personnel was defined as the per diem and mobilization costs that could occur to bring in some of the Siemens "regular" craftsman similar to AREVA specialty welders. This will be further defined by Siemens.

• Badge training is T&M but should not exceed 3 days and should be completed in one trip. Personnel who do not qualify to obtain badge (unescorted access) will not be billed to PE.

<u>Re</u>: This was broken down into two categories: badging for Siemens full time employees and badging for personnel to be added form the Locals in Florida. It was suggested that PE send inprocessing personnel to Siemens to complete as much preliminary "Access" work as possible before they come on-site. Regarding the locals we will have to set some agreements in contract that reflect our expectations relative to badging including non-payment for failures.

• Progress Energy access to the manufacturing facilities cannot be limited to just five visits for HP and LP turbines. If we have issues or change in code requirements, we may require numerous visits.

<u>Re:</u> PE made it clear that access could not be limited.

Siemens Proposal # SD22007, CR3 EPU Turbine Generator Retrofit Meeting Notes from 05/03/07:

Commercial Comments Cont:

• The engineering study to verify retained component compatibility with the replacement components is *currently* scheduled to be performed after the contract is let. This is unacceptable - the replacement components are being contracted to be compatible with the remaining equipment.

Re: Discussed above. Engineering studies will be after award.

• LP turbine construction "is final design dependent and Siemens reserves the right to make changes to the number and style of components noted above without impact to performance guarantee values." Price should be added to the statement.

<u>Re:</u> Siemens agree that it would be appropriate to add "price" to their statement.

• Under Scope of supply "Re-useable components and interfaces at site", the last statement states, any condition found to be in conflict of the expected condition would be addressed outside of this Scope of Supply. Examples of these conflicts should be provided and methods of resolution should be determined.

<u>Re:</u> Two examples noted in the discussion were the LP and HP cylinders. Siemens agreed to extend the list in order for PE to understand their concerns.

Progress Energy Items:

- MSR insulation is not included in MSR proposal. TEI discussion
- EH tubing will be impacted by MSR replacement. TEI discussion
- Engineering Change and Work Order Package development.

<u>Re:</u> Siemens will provide needed info and participate in design review meetings.

- Radiological support and material decontamination contingency. PE responsibility
- O&M replacement of extraction pipe expansion joints? The expansion joints should be inspected ands replaced only if needed.
- Any other turbine plant major equipment replacements must be integrated into turbine generator schedule for crane usage and logistics coordination. Agreed!
- PE to evaluate instrument tubing and small bore pipe under generator.
- Turbine foundation loading analysis update by PE.

Proposal Summary:

<u>HP Turbine</u>: replace in 2011 with full arc, full reaction turbine design with 3% flow margin. <u>LP Turbines</u>: replace in 2009 with 13.9M2 (46"LSB) or 18M2 (56"LSB) turbines. <u>Generator Stator</u>: field rewind stator in 2009 with H2 inner cooled winding, core iron is replaced. Stator rating is 1165MVA to be further evaluated to obtain 1200 MVA. <u>Generator Rotor</u>: replace rotor in 2009 with new or rewound seed rotor. Rotor winding is re-designed for 1200 MVA. <u>Exciter</u>: replace in 2009 with larger frame 12N exciter designed to support 1200 MVA generator rating. <u>Voltage Regulator</u>: replace in 2009 with TCSA digital voltage regulator designed to support 1200 MVA generator rating. <u>Moisture Separator Reheaters</u>: replace MSR vessels in 2009 with TEI supplied MSR's.

Performance Guarantee: 1082.9 MW @ 2.7 In Hg (18M2 LP turbine). Does not include MSR drain reroute.

Outage Schedule: 2009 schedule indicated 69 days for LP turbine replacement and generator stator rewind. MSR replacement is not included.

Siemens Proposal # SD22007, CR3 EPU Turbine Generator Retrofit, Review Notes:

Scope of Supply Comments:

- Verify the Generator Main Lead Bushings are the only material not included in proposal required to support generator 1165MVA rating.
- Proposal states generator rotor seal sizes may be impacted by new rotor. Include re-stripping the hydrogen gland bracket, bearing oil catcher and outer oil seals. Include replacing H2 seal rings or installing new performance plus H2 gland seals.
- All LP cylinder alignment and installation features (material and modifications) to install new turbines must be included. ABB LP turbine retrofit removed the lower diaphragm ring, adaptor pipe and modified the top adaptor ring. All material to connect the inner cylinder to the cross over tee piece must be included.
- The retrofit is considered a major project with enormous cost. As stated in your proposal the project will be well engineered and will address issues to assure long life and reliable operation. Therefore we expect the following to be included in the retrofit project:
 - Replacement of the HP turbine gland steam spillover control valve with larger capacity valve.
 - Machining of the HP turbine steam lead inlet flanges for flexitalic gasket modification.
 - HP turbine exhaust bowl erosion protection (spray pro?).
 - Rebabbit the HP turbine and generator bearings due to new rotor journals.
 - New style LP turbine lead free rupture discs.
 - Lowering of the generator leads box to clean and pump sealing groove.
- New Rotor Lifting Beam. Certified for load rating? Include new lifting slings for rotors.
- Include a complete new technical manual for the turbine generator (excluding the AEH controller volumes) that includes residual equipment left installed after retrofit. Include electronic parts catalog. Proposal includes new technical manual leaflets only.
- Review new generator instrumentation and monitoring systems. Include 2 flux probes and 2 PD slot couplers to be installed. These probes will most likely be monitored using hand held instruments. Is a new Environment One generator condition monitor (GCM) provided? How many stator hot gas RTD's are provided?
- Is stator end winding vibration monitoring recommended for a rigi-flex winding? Can FOVM probes be monitored using portable monitor? FOVM is optional scope in proposal.

Engineering Comments:

- LP Turbine Rotor Weight for 18M2 Rotor is 350,000 lbs. LP rotor plus jackshaft weight loads bearing #4 and #5 over 300 psi. A bearing loading evaluation must be completed prior to award. Original BB281 LP rotors weight was 195,500 lbs.
- What is "TEGO" babbit for LP turbine bearing? Does it support higher loads or higher temperatures?
- Complete Generator 1200 MVA rating evaluation and identify impact prior to award.
- Generator H2 Pressure increases to 75 psig. Qualifying the generator frame to 75 psig shall be performed prior to award.
- Rotor train alignment is critical to reduce bearing stress and vibration. Proposal states alignment calculation is affected by rotor stiffness, bearing support structure movement and cylinder cover installation. Should a cylinder tops on / tops off alignment check be recommended since this will be the first BB281 frame the 18M2 LP turbines may be installed in?
- Generator H2 pressure increase to 75 psig. Recommend implementing performance plus H2 seal package. Proposal should discuss benefit to seal oil system performance and H2 purity. Are modifications to existing seal oil system and system performance at higher pressure fully understood? Is seal oil backup system and existing pumps qualified for higher pressure?
- Is replacement of the WTA generator voltage regulator required to support the 1200MVA generator rating excitation requirements? WTA power amp drawers are uprated from 200 amps to 300 amps. Are the power amp drawers fully redundant at 300 amps?
- Any plant control system main steam pressure control concerns with full arc HP turbine. Expect 3% flow margin to provide GV throttling to maintain steam flow control. Contingency for 4th governor valve lagging control acceptable?
- Generator Neutral Transformer. Was it evaluated? Does it need replaced? Is it adequate for 1200MVA short circuit current ratings?
- Are any generator main leads box structural enhancements recommended?
- Instrument tubing / piping under generator needs evaluated. Some needs to be replaced. The H2 dryer (BAC50) piping should be enlarged?
- Provide H2 cooler configuration information.
- CR3 turbine AEH control system still uses secondary power supply from exciter PMG. Is this acceptable for frame 12N exciter?

Installation Comments:

- Revise 2009 installation schedule to include MSR installation. Review schedule for installation options and cost impact to shorten schedule to approximately 60 days. Generator stator winding and core replacement schedule (48 days) does not agree with best performance (38 days) presented at the 2007 Siemens generator workshop.
- Include a laser alignment of the entire train and plan on a generator alignment change. Turbine Generator Train Alignment does not appear to be included. Entire train realignment should be anticipated based on new rotor catenary curve. Entire rotor train alignment was changed during LP turbine retrofit (welded rotor design) in 1996. Proposal states generator re-alignment is not anticipated. HP turbine rotor to cylinder alignment needs to be addressed if HP cylinder move is needed. Alignment of HP turbine in 2009 vs. 2011?
- Installation support requirements and responsibilities by PE are extensive. Discuss capability of Siemens to provide additional labor jurisdictions or be assigned other craft labor through PE. PE desires to have Contractor project management responsible for directing all turbine deck operations.
- Shipping and Handling estimated costs are high. Agree to review transportation and handling plan. Review rail delivery of Charlotte, NC shipments. Review overseas shipments to port of Tampa and rail or barge options to CR3. Evaluate Mammoat (bundled contract) for on site heavy hauling.
- Siemens shall provide dehumidifier for generator and diesel generator for generator core iron loop test power requirements. No delay charges will apply to high pot test due to winding moisture issue.
- Are all HP turbine cylinder steam seal surfaces machined in the proposed field work scope of work?
- Need to discuss lube oil flush setup and performance including material.

Commercial Comments:

- Is the cost for a new rotor forging or a re-qualified rotor forging the same? The proposal does not include return of the existing generator rotor. What cost reduction would apply to return the existing generator rotor to Siemens?
- Overall project management to include control of additional craft (mechanics, crane operators, electricians, I&C, scaffold, insulators, pipe fitters, health physics, laborers, confined space attendants, fire watch, etc.). This will eliminate any delays due to "support requirements by others". PE desires "turn key" project management with minimal PE support responsibilities.
- Proposal pricing includes for ASME PTC 6 turbine performance testing. Siemens recommends a detailed PTC6 performance test based on PTC 6 1996 using group 1 and group 2 corrections. PE believes this will be extremely difficult to implement. Due to the extensive plant major component replacements over two refueling outages and the significant change in reactor power, it can be anticipated that a significant number of plant test data corrections would be required to correct performance to the calculated heat balance. Recommend reducing cost and scope of plant performance testing (review PTC6 2004 alternate test). Consider simple plant heat rate / output measurement test with minimal corrections (condenser pressure, etc.).
- Performance bonus / penalty clause should have a performance dead band. Review dollars tied to performance testing result.
- PE plans MSR drain reroute and other potential plant equipment changes that will affect the final plant heat balance calculation and electrical power output.
- Retained component engineering evaluations should be included. Pricing includes added \$100,000.
- Need to include generator main lead bushing replacement in proposal.
- Add "Performance Plus H2 Seal Package" to proposal.
- Exciter replacement cost includes replacement of the automatic voltage regulator. Request to price replacement of the generator voltage regulator separately. Is replacement of the WTA cabinets with EMI / RFI hardened cabinets typical for the digital voltage regulator?
- Proposal states extra charge for "traveling craft labor" personnel.
- Badge training is T&M but should not exceed 3 days and should be completed in one trip. Personnel who do not qualify to obtain badge (unescorted access) will not be billed to PE.

Siemens Proposal # SD22007, CR3 EPU Turbine Generator Retrofit, Review Notes:

- Progress Energy access to the manufacturing facilities cannot be limited to just five visits for HP and LP turbines. If we have issues or change in code requirements, we may require numerous visits.
- The engineering study to verify retained component compatibility with the replacement components is *currently* scheduled to be performed after the contract is let. This is unacceptable the replacement components are being contracted to be compatible with the remaining equipment.
- LP turbine construction "is final design dependent and Siemens reserves the right to make changes to the number and style of components noted above without impact to performance guarantee values." Price should be added to the statement.
- Under Scope of supply "Re-useable components and interfaces at site", the last statement states, any condition found to be in conflict of the expected condition would be addressed outside of this Scope of Supply. Examples of these conflicts should be provided and methods of resolution should be determined.

Progress Energy Questions:

- MSR insulation is not included in MSR proposal.
- EH tubing will be impacted by MSR replacement.
- Engineering Change and Work Order Package development.
- Radiological support and material decontamination contingency.
- O&M replacement of extraction pipe expansion joints?
- Any other turbine plant major equipment replacements must be integrated into turbine generator schedule for crane usage and logistics coordination.

Quality Assurance Program

REDACTED

CONFIDENTIAL

MODERNIZATION PROJECT April 16, 2007

×

Page 1 Siemens Confidential Quality -2007-2 Progress Energy Service Company, LLC-Crystal River Unit#3 equest No. SD22007

Modernization Project April 16, 2007

Page 2 Siemens Confidential

REDACTED

Quality -2007-2 Progress Energy Service Company, LLC-Crystal River Unit#3 equest No. SD22007

CONFIDENTIAL

Use this document solely For the purpose given. Return upon request. Do not disclose reproduce or use otherwise without the written consent of Siemens Power Generation Inc.

REDACTED

CONFIDENTIAL

Modernization Project April 16, 2007 Page 3 Siemens Confidential Quality-2007-2 Progress Energy Service Company, LLC-Crystal River Unit#3 Equest No. SD22007

REDACTED

ì

CONFIDENTIAL

Modernization Project April 16, 2007

Page 4 Siemens Confidential

Quality -2007-2 Progress Energy Service Company, LLC-Crystal River Unit #3 Equest No. SD22007

. .

REDACTED

CONFIDENTIAL

MODERNIZATION PROJECT April 16, 2007

Page 5 Siemens Confidential Quality -2007-2 Progress Energy Service Company, LLC-Crystal River Unit #3 equest No. SD22007

REDACTED

CONFIDENTIAL

MODERNIZATION PROJECT April 16, 2007 Page 6 Siemens Confidential Quality -2007-2 Progress Energy Service Company, LLC-Crystal River Unit #3 Equest No. SD22007

REDACTED

CONFIDENTIAL

Modernization Project April 16, 2007

Page 7 Siemens Confidential Quality -2007-2 Progress Energy Service Company, LLC-Crystal River Unit #3 Equest No. SD22007

Use this document solely For the purpose given. Return upon request. Do not disclose reproduce or use otherwise without the written consent of Siemens Power Generation Inc.

REDACTED

CONFIDENTIAL

MODERNIZATION PROJECT April 16, 2007

Page 8 Siemens Confidential Quality -2007-2 Progress Energy Service Company, LLC-Crystal River Unit #3 equest No. SD22007

REDACTED

CONFIDENTIAL

MODERNIZATION PROJECT April 16, 2007

.

. . I

Page 9 Siemens Confidential Quality -2007-2 Progress Energy Service Company, LLC-Crystal River Unit#3 Equest No. SD22007

Use this document solely For the purpose given. Return upon request. Do not disclose reproduce or use otherwise without the written consent of Siemens Power Generation Inc.

. .

. .

REDACTED

CONFIDENTIAL

MODERNIZATION PROJECT April 16, 2007

Page 10 Siemens Confidential Quality -2007-2 Progress Energy Service Company, LLC-Crystal River Unit #3 Equest No. SD22007

Use this document solely For the purpose given. Return upon request. Do not disclose reproduce or use otherwise without the written consent of Siemens Power Generation Inc.

PEF-NCR-03337

_ ...

TERMS & CONDITIONS

REDACTED

Modernization Project April 16, 2007 PAGE 1 Siemens Confidential Terms & Conditions – 2007-2 Progress Energy Service Company, LLC-Crystal River Unit #3 REQUEST No. SD22007

OPC 1ST POD

#1

080009

BATES NOS. PEF-NCR-03339 THROUGH PEF-NCR-03382

REDACTED

OPC 1st POD

080009

OPC 1st POD

080009

OPC 1ST POD

#3

080009

BATES NOS. PEF-NCR-03383 THROUGH PEF-NCR-03391

NON-RESPONSIVE

NON-RESPONSIVE

BATES NOS. PEF-NCR-03413 THROUGH PEF-NCR-03416

080009

#3

OPC 1ST POD

OPC 1ST POD

#3

080009

BATES NOS. PEF-NCR-03417 THROUGH PEF-NCR-03446

NON-RESPONSIVE

Recid by SAL - 11/14/07

Sargent & Lundy, LLC Attention: Mr. John Regan 55 E. Monroe Street Chicago, IL 60603 CONFIDENTIAL

CONTRACT NO. 257117 WORK AUTHORIZATION NO. 26 EFFECTIVE NOVEMBER 12, 2007

Progress Energy Service Company, LLC P.O. Box 1551 Raleigh, NC 27602

[] CONFIDENTIAL

Work Authorization Nuclear Revision 12/01/06 #228449

.

PEF-NCR-03446

Page 2, Contract WA No. 257117-26

REDACTED

CONFIDENCAL

Revision 12/01/06 #228449

Page 3, Contract WA No. 257117-26

- 70

T CONFIDENTIAL

Page 4, Contract WA No. 257117-26

REDACTED

#228449

PEF-NCR-03450

.
Page 5, Contract WA No. 257117-26

٠

(CONFIDENT'AL

REDACTED

Revision 12/01/06 #228449

.

REDACTED

.

.

CONFIDENTIAL

#228449

Page 7, Contract WA No. 257117-26

\$

á

.

REDACTED Revision 12/01/06 #228449

(] CONFIDENTIAL

.

#228449

[] CONFIDENTIAL

CANEDRE DELITION

PEF-NCR-03455

.

.

Sargent & Lundy, LLC Attention: Mr. John Regan 55 E. Monroe Street Chicago, IL 60603

> CONTRACT NO. 257117, WORK AUTHORIZATION 26 AMENDMENT NO. 1 EFFECTIVE November 12, 2007

Page 2, Contract No. 3707, Amendment No. 32

(E CONFIDENTIAL

Revision 06/27/05 #131678

Page 3, Contract No. 3707, Amendment No. 32

•

CONFIDENTIAL

k.

CONFIDENTIAL

PEF-NCR-03459

Amendment Revision 06/27/05 #131678

Page 4 Contract No. 3707, Amendment No. 32 REDACTED

Page 5, Contract No. 3707, Amendment No. 32

ONFIDENT

Revelop 6677305 #131678

CONFIDENTIAL

PEF-NCR-03461

Amendment Revision 06/27/05 #131678

REDACTED

Page 6, Contract No. 3707, Amendment No. 32

•

Page 7, Contract No. 3707, Amendment No. 32

[] CONFIDENTIAL

MASTER CONTRACT

No. 257117

FOR

ENGINEERING SERVICES

BETWEEN

PROGRESS ENERGY SERVICE COMPANY, LLC not in its individual capacity, but solely as agent for PROGRESS ENERGY CAROLINAS, INC. PROGRESS ENERGY FLORIDA, INC.

AND

SARGENT & LUNDY, L.L.C.

CONTRACT

FEB 0 1 2006

ACCEPTANCE

<u>SECTION</u>	TITLE
25	Laws and Project Rules REDACTED
26	Work at or Associated With Nuclear Facilities OFFILD WEATHAL TO CONFIDENTIAL REDACTED
27	Severability
28	Amendment of Contract
29	Governing Law
30	Confidentiality; Use of Information
31	Public Communication
32	Nonwaiver
33	Merger
34	Background Investigation and Drug Screen
35	Workplace Violence Prevention
⁻ Attachment A Attachment B Attachment C Attachment D Attachment E	Rate Schedule Code of Ethics Acknowledgment Form State of South Carolina, Department of Revenue, Nonresident Taxpayer Registration Affidavit Income Tax Withholding, Form I-312 Supplier Diversity & Business Development Subcontracting Report Nuclear Worker Screening Requirements for Unescorted Access

Attachment F Release from Contractor

.

.

4

,

Contract No. 257117 Page iii

۰.

-

OPC 1ST POD

#3

080009

BATES NOS. PEF-NCR-03465 THROUGH PEF-NCR-03511

REDACTED

OPC 1ST POD

#3

080009

BATES NOS. PEF-NCR-03512 THROUGH PEF-NCR-03568

NON-RESPONSIVE

Sargent & Lundy

H. Stephen Taylor Project Manager Phone: (312) 269-6371 FAX: (312) 269-2208 Email homer.s.taylor@sargentlundy.com

> January 31, 2006 Letter No. SLCPL-2006-001

Progress Energy All Stations

Master Contract No. 257117 for Engineering Services

Mr. Tony Owen Supply Chain Management Progress Energy, PEB6 410 S. Wilmington Street Raleigh, North Carolina 27601

Dear Mr. Owen:

Enclosed please find the signed original subject contract for your files. If you have any questions, please call me.

Yours very truly,

H. Stephen Taylor Project Manager

HST:clm Enclosure – Addressee Only Copy: File: DMS

GENERATION EQUIPMENT SUPPLY CONTRACT

CONFIDENTIAL

BETWEEN

PROGRESS ENERGY FLORIDA, INC. (OWNER)

AND

YUBA HEAT TRANSFER, LLC (CONTRACTOR)

FOR

TWO (2) LOW PRESSURE CLOSED FEEDWATER HEATERS (NOS. CDHE-3A/3B),

AND

TWO (2) SECONDARY SERVICES CLOSED CYCLE COOLING (SC) HEAT EXCHANGERS (SCHE-1A/B)

FOR

CRYSTAL RIVER UNIT 3 NUCLEAR PLANT,

FEEDWATER HEAT EXCHANGER REPLACEMENT PROJECT

CRYSTAL RIVER, FLORIDA

CONFIDENTIAL

Contract No. 355217

Contract Requisition No. 734756

TABLE OF CONTENTS

.

CONFIDENTIAL

Section/Exhibit

-

•

۰.

.

I REDACTED

Contract No. 355217 Doc No. 268233

CONFIDENTIAL

REDACTED

 II
 EXHIBITS
 II-1

 Exhibit A
 Technical Specification – Low Pressure Closed Feedwater Heaters
 A-1

 Exhibit B
 Technical Specification – Secondary Cooling Heat Exchangers
 B-1

 Exhibit C
 Engineering Deliverables
 C-1

 Exhibit D
 Code of Ethics
 D-1

 Exhibit E
 Tax Affidavit
 E-1

Contract No. 355217 Doc No. 268233

CONFIDENTIAL

OPC

1ST POD

#3

080009

BATES NOS. PEF-NCR-03572 THROUGH PEF-NCR-03695

REDACTED

CR No. 58857

CONTRACT

PASSPORT NO. 44867

.

BETWEEN

CAROLINA POWER AND LIGHT

FLORIDA POWER CORP.

AND

CALDON, INC.

AND

TABLE OF CONTENTS SECTION TITLE CONFIDENTIAL Scope of Work 1 2 Schedule of Work 3 **Commencement of Work OWNER's Designated Representative** 4 5 monsetion C REDACTED 6 **Fixed Price Work Financial Audits** 7 8 Warranty and Inspection of Materials 9 **Responsibility for Work** 10 Cleanup 11 Termination and Suspension REDACTED Patents and Copyrights 12 **Status of Contractor** 13 14 Subletting or Assigning Contract 15 Reports 16 Tools, Materials, and Equipment 17 Furnished by OWNER 18 Plans, Drawings, Specifications, and Documentation 19 **Contractor Personnel Matters** 20 Insurance 21 Indemnity

22 Security

23 Fitness-for-Duty Policy

SECTIO	<u>n Title</u>		CONFINENTIA	
24	Laws and Proje	ect Rules		
			EDACTED	
25	Work at or Ass	sociated With Nuclear Facilities		
) /2 (1) (2)	
			-	
26	Quality Assura	ance Requirements		
27	Severability	Severability		
28	Governing Lav	w	-	
29	Confidentiality	y; Use of Information		
30	Public Commu	inication		
31	Nonwaiver			
32	Merger			
Attachme	ent A Pricing			
Attachme	ent B Performance I	ncentives		
Attachm	ent D Acknowledgmi	ent of OWNER Policies and Proctices	-	
Attachm	ent E Release From (Contractor, Form No. 119-A		
Attachment F State of South Carolina. Department of Revenue. Nonresident Taxnave		onresident Taxpayer Registration		
	Affidavit Incor	me Tax Withholding, Form I-312		
Attachm	ent G Nuclear Work	Nuclear Worker Screening Requirements for Unescorted Access		
Attachm	ent H Code of Ethics	s Acknowledgment Form		

OPC

1ST POD

#3

080009

BATES NOS. PEF-NCR-03699 THROUGH PEF-NCR-03804

REDACTED

GENERATION EQUIPMENT SUPPLY CONTRACT

4

BETWEEN

PROGRESS ENERGY FLORIDA, INC. (OWNER)

AND

THERMAL ENGINEERING INTERNATIONAL (CONTRACTOR)

FOR

~

TT INT

1

MOISTURE SEPARATOR REHEATERS,

FOR

CRYSTAL RIVER UNIT No. 3, ELECTRIC POWER UPRATE

CRYSTAL RIVER, FLORIDA

CONFIDENTIAL

Contract No. 342253

Contract Requisition No. 688663

CONFIDENTIAL

TABLE OF CONTENTS

¢.

Section/Exhibit

I. GENERAL CONDITIONS

- GC 1 Contract Documents
- GC 2 Definitions
- GC 3 Work Description, QA Requirements and, Design Requirements
- GC 4 Legal Addresses
- GC 5 Scope and Intent of Contract Documents
- GC 6 Independent Contractor
- GC 7 Entire Agreement
- GC 8 Referenced Standards
- GC 9 No Waiver of Rights
- GC 10 Inspection
- GC 11 Termination and Suspension
- GC 12 Not Used
- GC 13 Not Used
- GC 14 Not Used
- GC 15 Schedule
- GC 16 Financial Audit
- GC 17 Force Majeure
- GC 18 Shipment and Handling
- GC 19 Modifications
- UC-19 Mountanois

REDACTED

- GC 20 Not-Used
- GC 21 Patents, Copyrights, and Trade Secrets
- GC 22 Materials and Equipment
- GC 23 Warranty of the Work
- GC 24 Release of Liability
- GC 25 Claims for Labor and Materials
- GC 26 Governing Law and Disclaimer of UN Convention on Contracts for the International Sale of Goods, Counterparts

CONFIDENTIAL

- GC 27 Title and Risk of Loss
- GC 28 Laws and Project Rules
- GC 29 Expediting
- GC 30 Publication and Photographs
- GC 31 Compensation and Payment
- GC 32 Subcontracting and Assignment
- GC 33 Indemnification

Contract No. 342253 ii

OPC

•

1ST POD

#3

080009

BATES NOS. PEF-NCR-03808 THROUGH PEF-NCR-03867

REDACTED

MASTER CONTRACT No. 101659

BETWEEN

PROGRESS ENERGY SERVICE COMPANY, LLC Not in its individual capacity but solely as agent for

Progress Energy, Carolinas, Inc., also known as Carolina Power & Light Company and Progress Energy, Florida, Inc., also known as Florida Power Corporation

AND

FRAMATOME ANP, INC.

GENERAL TERMS AND CONDITITONS FOR FURNISHING EQUIPMENT AND SERVICES

Progress Energy Services Company, LLC 411 Fayetteville Street Mall Raleigh, North Carolina 27602

TABLE OF CONTENTS

SECTION

SECTION 1. DEFINITIONS

SECTION 2. DESCRIPTION OF WORK

SECTION 3. SCHEDULE OF WORK

SECTION 4. WORK AUTHORIZATIONS AND PURCHASE ORDERS

SECTION 5. COMMENCEMENT OF WORK

SECTION 6. OWNER'S DESIGNATED REPRESENTATIVE

SECTION 7. COMPENSATION

SECTION 8. AUDITS

SECTION 9. WARRANTY

SECTION 10. INSPECTION OF WORK

SECTION 11. RESPONSIBILITY FOR WORK

CONFIDENTIAL

Jat De Corre

SECTION 12. CLEANUP

SECTION 13. TERMINATION

SECTION 14. PATENTS AND COPYRIGHTS

SECTION 15. STATUS OF FRAMATOME

C CONFIDENTIAL

CONFIDENTIAL

PEF-NCR-03869

C. PAYSONTE-

- iii -

SECTION 28. INFORMATION TRANSFER, CONFIDENTIALITY, AND PROPRIETARY INFORMATION

SECTION 29. PUBLIC COMUNICATION

SECTION 30. AMENDMENT OF CONTRACT

SECTION 31. QUALITY ASSURANCE REQUIREMENTS

SECTION 32. REQUIREMENTS FOR FRAMATOME FURNISHED EQUIPMENT

SECTION 33. APPLICABLE LAW AND DISPUTES

SECTION 34. ORDER OF PRECEDENCE OF DOCUMENTS

SECTION 35. NON WAIVER

SECTION 36. LIMITATION OF LIABILITY

SECTION 37. FORCE MAJEURE

SECTION 38. MERGER

ATTACHMENTS:

Attachment A	Rate Schedule (Later – NOT INCLUDED)
Attachment B	Requirements for Contractor Supplied Procedures and Other Submittals
Attachment C	State of North Carolina Purchaser's Certificate of Authority to Buy Tangible Personal Property Subject to Sales and Use Tax Without Payment of Tax to Vendor
Attachment D	State of South Carolina Direct Pay Certificate
Attachment E	Requirements Procedure for Contractor Technical Maintenance Personnel
Attachment F	State of North Carolina Sales/Use Tax Affidavit
Attachment G	Acknowledgment of OWNER Policies and Practices
Attachment H	Chemical and Consumable Policy for Contractors
Attachment I	Release From Contractor - Form No. 119-A
Attachment J	Code of Ethics Acknowledgment Form
Attachment K	State of South Carolina, Department of Revenue, Nonresident Taxpayer Registration Affidavit Income Tax Withholding, Form I-312
Attachment L	Nuclear Worker Screening Requirements for Unescorted Access
Attachment M	Proprietary Information Agreement (Exhibit A)
Attachment N	Requirements for Contractor Tools and Equipment on OWNER Property
Attachment O	Terms and Conditions Applicable to the Purchase and Licensing of Software (Later - NOT INCLUDED)

JUSTICENTIAL

OPC

ø

1ST POD

#3

080009

BATES NOS. PEF-NCR-03872 THROUGH PEF-NCR-03965

REDACTED

An AREVA and Siemens Company

FRAMATOME ANP, Inc.

September 2, 2003

Mr. Joseph J. Corey, Jr. Supply Chain Management Progress Energy Service Company, LLC P. O. Box 1551 (PEB 2C3) Raleigh, NC 27602

Re: Contract 101659 between Progress Energy and Framatome ANP, Inc.

Dear Mr. Corey:

Consistent with your letter of August 11, 2003, attached is one copy of Contract 101659 which has been signed on behalf of Framatome ANP, Inc. by Mr. Andrew Cook, Vice President of Sales and Marketing. We have retained the other fully-executed copy for our files.

Thank you for your personal efforts in finalizing this Contract. It was a pleasure working with you.

Very truly yours,

HC in lug

Thomas D. Corkran Senior Counsel

CONFIDENTIAL

FRAMATOME ANP, Inc. 3315 Old Forest Road, P.O. Box 10935 - Lynchburg, VA 24506-0935 Tel.: 434-832-3000 Fax: 434-832-0622 www.us.framatome-anp.com

· · · . .

CONTRACT

PASSPORT NO. 3714 Amendment Number 1

COMPLETELY AMENDED AND RESTATED PREVIOUS CONTRACT NO. XTA9000142 AND ITS AMENDMENTS 1 - 4

GENERAL SERVICES AGREEMENT

BETWEEN

٠.

CAROLINA POWER & LIGHT COMPANY

AND

THE ATLANTIC GROUP

CAROLINA POWER & LIGHT COMPANY 411 Fayetteville Street Raleigh, North Carolina 27602

PEF-NCR-03967
SECTION	. TITLE
1	Some of Work
1	Authorization of Work
2	
3	Contract Term
4	Commencement of veore
5	
6	REDACTED
7	Financial Audits
8	Quality of Personnel and Warranty
9	Responsibility for Work
10	Claims and Disputes
11	Termination and Suspension REDACTED
12	Patents and Copyrights
13	Status of Contractor
. 14	Subletting or Assigning Contract
15	REDACTED
16	Supply of Tools, Materials, Equipment and Services
17	Drawings, Specifications, and Documentation
18	Contractor Personnel Matters
19	Insurance
20	Indemnity
21	Security
	Ritman For Duty

CONFIDENTIAL CONFIDENTIAL

<u>SECTION</u>

23

<u>TITLE</u>

Laws, Regulations, and Public Ordinances

	REDACTED
24	Work at or Associated with Nuclear Facility
25	Quality Assurance
26	Severability
27	Governing Law
28	Confidentiality
29	Public Communication
30	Non Waiver
31	Merger
32	Language and Units of Measure
33	Interpretation and Remedies
ttachment A -	Rates
ttachment B -	Fee Determination and Incentive Program
ttachment C -	South Carolina Nonresident Taxpayer Registration Affic
ttachment D -	Position Descriptions

A Α davit A Α. Attachment E -**Contract Order Forms** Attachment F -**Code of Conduct Acknowledgment Form** Attachment G -Acknowledgment of CP&L Fitness-For-Duty Policies and Practices Attachment H-Schedule of Safety Supplies Nuclear Worker Screening Requirements for Unescorted Access Attachment I -QC and NDE Backup Services Attachment J -Valve and I&C Services Attachment K -Security Self Screening Service Attachment L -

CONFIDENTIAL

PEF-NCR-03969

PROJECT SPECIFICATIONS

SCOPE OF CONTRACTOR OBLIGATIONS SECTION 1

REDACTED

#75556

CONFIDENTIAL

PEF-NCR-03970

OPC

1ST POD

#3

080009

BATES NOS. PEF-NCR-03971 THROUGH PEF-NCR-04074

REDACTED

Mr. Keith Hollingsworth President The Atlantic Group 5500 Democracy Drive, Suite 140 Plano, TX 75024

> CONTRACT NO. 3714 AMENDMENT NO. 53 EFFECTIVE JULY 15, 2007

Progress Energy Service Company, LLC P.O. Box 1551 Raleigh, NC 27602

Contract #3714, Amendment 53 Page 1 of 11

Contract #3714, Amendment 53 Page 2 of 11

Contract #3714, Amendment 53 Page 3 of 11

Contract #3714, Amendment 53 Page 4 of 11

Contract #3714, Amendment 53 Page 6 of 11 Attachment 2

Contract #3714, Amendment 53 Page 8 of 11 Attachment 2

Page 9 of 11 Attachment 2

CONFIDENTIAL

Contract #3714, Amendment 53 Page 10 of 11 Attachment 2

CONFIDENTIAL

265061

Attachment E Contract No. 3714 Amendment No. 49 「「ない」である。

CRAFT WORK ORDER (CWO)

r

REDACTED

CONFIDENTIAL

Attachment E Contract No. 3714 Amendment No. 49

PEF-NCR-04088

. ·

CRAFT WORK ORDER (CWO)

REDACTED

CONFIDENTIAL

Attachment E Contract No. 3714 Amendment No. 49

CRAFT WORK ORDER (CWO)

REDACTED

CONFIDENTIAL

CONFIDENTIAL

THE ATLANTIC GROUP 5504 DEMOCRACY DRIVE SUITE 240 PLANO, TX 75024

Attention: Keith Hollingsworth

CONTRACT NO. 3714 AMENDMENTS NO. 58, 59, 60 & 61 EFFECTIVE JANUARY 25, 2008

Progress Energy Servi P.U. Bits 1953 Ceilegh, NC 27602

CONFIDENTIAL

#270362

CONFIDENTIAL

#270365

CONFIDENTIAL

OPC 1st POD

#4

080009

OPC 1ST POD

#3

080009

BATES NOS. PEF-NCR-04094 THROUGH PEF-NCR-04299

NON-RESPONSIVE

, siemens

MASTER CONTRACT No. 145569

BETWEEN

PROGRESS ENERGY SERVICE COMPANY, LLC Not in its individual capacity but solely as agent for

Progress Energy, Carolinas, Inc., also known as Carolina Power & Light Company and Progress Energy, Florida, Inc., also known as Florida Power Corporation and Progress Energy Ventures, Inc.

AND

SIEMENS POWER GENERATION, Inc.

GENERAL TERMS AND CONDITITONS FOR FURNISHING EQUIPMENT AND SERVICES

Progress Energy Services Company, LLC 411 Fayetteville Street Mall Raleigh, North Carolina 27602

TABLE OF CONTENTS

SECTION

SECTION 1. DEFINITIONS

SECTION 2. DESCRIPTION OF WORK

SECTION 3. SCHEDULE OF WORK

SECTION 4. WORK AUTHORIZATIONS AND PURCHASE ORDERS

SECTION 5. COMMENCEMENT OF WORK

SECTION 6. OWNER'S DESIGNATED REPRESENTATIVE

SECTION 7. COMPENSATION

SECTION 8. AUDITS

SECTION 9. WARRANTY

SECTION 10. INSPECTION OF WORK

SECTION 11 RESPONSIBILITY FOR WORK

SECTION 12. CLEANUP

SECTION 13. TERMINATION REDACTED

SECTION 14. PATENTS AND COPYRIGHTS

SECTION 15. STATUS OF SIEMENS POWER GENERATION, INC.

PEF-NCR-04301

CONFIDENTIAL

SECTION 16. SUBLETTING OR ASSIGNING CONTRACT

SECTION 17. REPORTS

SECTION 18. TOOLS, MATERIALS, AND EQUIPMENT

SECTION 19. PLANS, DRAWINGS, SPECIFICATIONS, AND DOCUMENTATION

SECTION 20. CONTRACTOR PERSONNEL MATTERS

SECTION 22. INDEMNITY

SECTION 23. SECURITY

SECTION 24. FITNESS FOR DUTY

SECTION 26. WORK AT NUCLEAR FACILITIES

CSN:MASTER - NUCLEAR-SIEMENS POWER GENERATION (Rev.15 April 06) 237434

CONFIDENTIAL PEF-NCR-04302

SECTION 27. SEVERABILITY

SECTION 28. INFORMATION TRANSFER, CONFIDENTIALITY, PROPRIETARY INFORMATION, AND INTELLECTUAL PROPERTY

SECTION 29. PUBLIC COMUNICATION

SECTION 30. FORCE MAJEURE

SECTION 31. REQUIREMENTS FOR CONTRACTOR FURNISHED EQUIPMENT

SECTION 32. QUALITY ASSURANCE REQUIREMENTS

SECTION 33. APPLICABLE LAW AND DISPUTES

SECTION 34. LIMITATION OF LIABILITY

SECTION 35. TRANSFER

ATTACHMENTS:

Attachment A	Rate Schedule
Attachment B	Non-Nuclear Facility Access Requirements
Attachment C	State of North Carolina Purchaser's Certificate of Authority to Buy
	Tangible Personal Property Subject to Sales and Use Tax Without
	Payment of Tax to Vendor
Attachment D	State of South Carolina Direct Pay Certificate
Attachment E	Requirements Procedure for Contractor Technical Maintenance
	Personnel
Attachment F	State of North Carolina Sales/Use Tax Affidavit
Attachment G	Siemens Power Generation Acknowledgment of OWNER Policies and Practices
Attachment H	Chemical and Consumable Policy for Contractors
Attachment I	Release From Contractor - Form No. 119-A
Attachment J	Code of Ethics
Attachment K	State of South Carolina, Department of Revenue, Nonresident
	Taxpayer Registration Affidavit Income Tax Withholding, Form I-312
Attachment L	Nuclear Worker Screening Requirements for Unescorted Access
Attachment M	Proprietary Information Agreement (Exhibit A)
Attachment N	Requirements for Contractor-Supplied Procedures and Other
	Submittals
Attachment O	Requirements for Contractor Supplied Tools and Equipment
Attachment P	Not Used
Attachment Q	State of Florida Affidavit of Exemption
Attachment R	Supplier Diversity & Business Development Subcontracting Report

CSN:MASTER - NUCLEAR-SIEMENS POWER GENERATION (Rev. 15 April 06) 237434 CONFIDENTIAL

OPC

1ST POD

#3

080009

BATES NOS. PEF-NCR-04304 THROUGH PEF-NCR-04406

REDACTED

Crystal River #3 Electric Power Uprate – BOP Engineering

Executive Summary AREVA Contract # 101659 - 093 October 18, 2007

BOP Contract Summary: Contents

- Scope
- Contract Bidders
- Technical Evaluation
- Bid Price Comparison
- AREVA Negotiations and Royalty Agreement
- Negotiated Price
- Bidder Selection Basis
- Payment Milestones
- Limits of Liability
- Project review Team

BOP Contract Summary: Scope (Slide a)

- Computer Model Updates (equipment sizing)
 - ◆ PEPSE- heat rate modeling
 - ♦ FATHOM- hydraulic modeling
 - ♦ CHECWORKS- FAC modeling
- MSR Replacement (require larger units)
 - ◆ Equipment CTED
 - Installation / Insulation

(] CONFIDENTIAL

- ◆ Expected MWe gain 8Mwe
- Cost benefit (M/yr, < 7 year payback)

BOP Contract Summary: Scope (Slide b)

- Belly Drain Heat Exchangers (recover heat) REDACTED
 - Estimated Cost
 - ♦ 34MWth gain, 4MWe Recovery
- Turbine Generator Upgrade (developing EC's)
 - Low Pressure Turbine (3% efficiency gain, 28MWe)
 - High Pressure Turbine (1% efficiency gain, 9Mwe)
 - Main Generator and Exciter (1200MVA, 430 MVAR, 0.93 pf)
 - Contract costs
 - Cost Benefit 2009 at 2609 MWth (Sector Byr < 8 yr payback)

REDACTED DONFIDENTIAL

BOP Contract Summary: Scope (Slide c)

- Deareator Bypass Line Addition (deaerator is too small for the increased flow)
 - Existing capability 11MPPH
 - ◆ EPU required capability 13MPPH
 - ♦ 19MWth loss to heating cycle
 - Chemistry acceptable maintained by Hydrazine
- Iso-phase Bus Duct Cooling System Upgrade
 - ◆ Existing capacity 308 KW
 - Existing heat load 250KW
 - ◆ 2009 at 940 MWe 305KW heat load (Marginal)
 - ◆ 2011 at1080 MWe 466 KW heat load (50% increase)
 - Provide redundant fan and cooler capability removes single point vulnerability of critical component

BOP Contract Summary: Scope (Slide d)

- Feedwater Heater and Drain Mods
 - ◆ Replace heaters CDHE3A and 3B
 - Existing FAC concerns, previous shell repairs and wall thinning, suspect tube leaks
 - Evaluate Existing balance of Heaters
 - ▼TTD increase from 4-6 F to 8 F
 - ▼ Velocities increase to 5ft/s above HEI standards of 4ft/s
 - Implement Heat Exchanger Monitoring Program (FAC UT Shell/Nozzles and Tube EC)
 - Choke flow (PEPSI) FAC (CHECKWORKS)
 - ▼ Replacement of Valves HDV 101, 102, 103, 104
 - ▼ Replace Piping upstream of HDV 247, 248, 249, and 250

BOP Contract Summary: Scope (Slide e)

- Secondary Closed Cycle Cooling (capacity is limiting)
 - Replacement of Heat Exchangers
 - ▼ Existing capability 54MBTU/hr
 - ▼ EPU uprate to 75-80MBTU/hr
 - ▼ Replacement Heat Exchanger capability 75MBTU/hr
 - Limited in size by existing foot print and interferences
 - Maximization of the system
 - ▼ Replacement of SC Pumps and Motors
 - ▼ Increase Impeller and Motor to provide additional (20%) flow margin
- Circulating Water Pumps and Motors
 - Retain existing casing and columns replace impeller and motor
 - 22% flow increase to maintain condenser back pressure less than 4"Hg.
 - Also provides additional cooling flow SC system

BOP Contract Summary: Scope (Slide f)

- Condensate Pumps and Motors
 - ◆ Existing flow Margin of 1.5%
 - ♦ EPU requirements increase of 17%
 - New pumps and motors will provide 4% margin above EPU requirements
 - Direct Drive Digital control Single Failure Proof Control System.
 - ▼ Removes inefficiency of mag coupling
 - ▼ Reduces environmental noise hazard
 - ▼ Removes single point vulnerability

BOP Contract Summary: Scope (Slide g)

- Feed Water Booster Pumps and Motors
 - Existing flow margin 9.4%, No margin for 17% EPU
 - Recommend maintain existing margin (10%) for feed water transients
 - Convert from 4160V to 6190V removes load from Aux XFMR low load tap (existing margin on low load tap < 15%, margin on high load tap > 35%)
- Condenser Performance and FIV calculations
 - Determination of Circ water flow rate and tube staking and baffle/impinge plate requirements
 - Condenser Baffle Plate Installation EC

BOP Contract Summary: Scope (Slide h)

- Electrical Distribution System calculations
 - Verify load center margin and protective relaying
- Mechanical Ultimate Heat Sink Calculations
 - Verify adequacy of ECCS heat exchangers and pumps (EDG margin impact)
- Turbine Building Structural Evaluation
 - Verify increased loading of LPT/HPT adequate for Turbine pedestal and floor loading evaluations for new MSRs and Heat Exchangers
- Turbine Building Internal Flooding
 - ♦ Increase Cir Water flow of 22%
- LAR Support

BOP Contract Summary: Contract Bidders

- AREVA
 - Completed CR3 MUR
 - Performing CR3 NSSS
 - Team very capable of completing BOP and integrating complete study
 - Areva partnered with Worley Parsons, the Original A/E for CR3 BOP

and the state of the state of the state of the state of the state of the state of the state of the state of the

- ENERCON
 - Conducted Waterford BOP
 - NSSS Set points only in conjunction with Westinghouse
- TCI
 - No real experience in the conduct of a similar study, helped to develop the Specification
 - Did not bid all Tasks

BOP Contract Summary: Technical Evaluation of Bid

Summary of Technical Evaluation

- Concern for Enercon not Understanding scope and increasing cost
 - Served as A/E for RNP's ISFI. Initial Bid million, final cost monillion
 - Waterford BOP Requested 20% increase in funding to handle overruns. Ultimately eaten by Westinghouse
 - Enercon's price for the lead COLA was 2x our JVT. On numerous occasions our JVT has bailed out Enercon even after Enercon receiving additional funding.
 - TCI did not have any bench depth, plans to sub contract engineering support.

PEF-NCR-04431

Progress Energy

CONFIDENTIAL

lechnicat evaluation of Bid

BOP Contract Summary: Bid Price Comparison (\$000's)

*Bidders were asked to review organization, set scope, convert T&M work to Fixed Price electrical calculations, Condensate Speed Control Drives equipment, etc.

**Bidders were asked to review hours for Tasks 3 (T/G Mods) and 9 (Condensate Speed Drives) to determine their alignment with the Toshiba design reviews for the equipment.

BOP Contract Summary: AREVA Negotiations

Price Reduction

PEF-NCR-04433

BOP Contract Summary: AREVA Negotiated Price (\$000's)

Final Fixed Price Potential Contingency (Max.) Maximum Royalty

[] CONFIDENTIAL

Evaluated Prices (full Royalty/no contingency) Evaluated Price (no Royalty/full contingency) Evaluated Price (1/2 Royalty/1/2contingency)

BOP Contract Summary: Bidder Selection Basis

Technical

AREVA has a proven track record with Progress for this work

Progress has ultimate control of Contingency Funding and should be able to control at the lower quartile.

Conclusion

```
REDACTED
```

AREVA is best from a Technical perspective and on average equal cost with opportunity

C CONFIDENTIAL

BOP Contract Summary: Payment Milestones/Dis-incentive

Payment Milestones are designed to provide an incentive to complete scheduled work on time and a dis-incentive for failure to meet schedule.

BOP Contract Summary: Limit of Liability

REDACTED

[] CONFIDENTIAL

BOP Contract Summary: Project Review Team

Project Manager Project Technical Lead Legal Audit Contracts Lead Executive Sponsor Ted Williams Scott Deahna Dave Conley Loyd Graves Tony Owen Danny Roderick

Siemens Contract #145569 Work Authorization #50 Executive Summary August 8, 2007

> Turbine Generator Retrofit Purchase & Installation

1

Siemens Contract Summary:

Contents:

- Scope
- Schedule
- Comparison of Bid Price
- Negotiated Savings
- Comparison of BNP Pricing
- System Bundling
- Performance Incentives
- Warranty
- Liquidated Damages/Dis-Incentive
- Limits of Liability/Extension of Insurance
- 2009 Performance Guarantee
- 2011 Performance Guarantee
- 100 Day Performance Guarantee
- Project Review Team

Siemens Contract Summary: Scope of Work

Contractor shall provide all labor, supervision, materials, equipment, and tools to supply, replace and install the High Pressure Turbine Rotors, Low Pressure Turbine Rotors, Generator, and Exciter at Crystal River Unit #3.

Siemens Contract Summary: Project Schedule

- Siemens has a 63 day clearance window for the 2009 refueling outage scope of work and a 24 day clearance window for the 2011 refueling outage scope of work.
- The Project Schedule consists of three distinct schedules:
 - Engineering Deliverable Schedule
 - Manufacturing Schedule
 - Installation Schedule
- All three shall be submitted for owner review and approval within 60 days of contract award.

Siemens Contract Summary:

Comparison of Pricing from Bid Submittals (\$000's)

() CONFIDENTIAL

Siemens Contract Summary: Negotiated Savings (\$000's)

Discounts

Price with Labor

Bundled Discount

Price after Discount

Evaluated Added Scope

- HP turbine gland steam spillover valve
- Machining steam lead inlet flanges
- Rotor lifting beam
- Extended warranty
- Extended property insurance

Total Evaluated Price

[] CONFIDENTIAL

Siemens Contract Summary: Corporate Bundling- 11 Rotors

-

		REDACTED		
ר יינוח		CONFIDENTIAL	Progr	ess Energy
	STATIK!			

Siemens Contract Summary: Performance Incentives (\$000's)

Safety and Human Performance

Industrial – OSHA

Lost Time Accidents

Human Performance Index

Siemens Contract Summary: Warranty

Siemens Contract Summary: Liquidated Damages

.

- 55 - 1

Siemens Contract Summary: Limits of Liability

.

Siemens Contract Summary:

2011 Delta Target Output – Performance Guarantee

Siemens Contract Summary: 100 Day Performance Guarantee

For 100 days of Continuous Operation Contractor places and at risk for each outage (2009, 2011)

- The 100 day period begins after completion of commissioning and Unit has reached 100% power
- The unit must be removed from services based on the Contractor's Instruction Manual

[] CONFIDENTIAL

REDACTED

Siemens Contract Summary: Project Review Team

Project Manager – Ted Williams Project Technical Lead – Scott Deahna Legal – Dave Conley Tax – Paul Matthews Financial – Gerry Dowd Audit – Elwyn Wood Contracts – Tony Owen Executive Sponsor – Danny Roderick

Siemens Contract Summary: Negotiated Savings (\$000's)

Discounts

Price with Labor

Bundled Discount

Price after Discount

Evaluated Added Scope

- HP turbine gland steam spillover valve
- Machining steam lead inlet flanges
- Rotor lifting beam
- Extended warranty
- Extended property insurance

Total Evaluated Price

OPC

1ST POD

#4

080009

04455 THROUGH **PEF-NCR-04470**

BATES NOS. PEF-NCR-

NON-RESPONSIVE

OPC 1st POD

#5

080009

CONFIDENTIAL

CR3 Up-rate Financial View

(in millions)	2006	2007	2008	2009	2010	2011	2012	Total	
Approved BAP* (Adjusted for Financial View)				the construction of the co					
Current Forecast (Revised IPP)			REDACTED		1.1. of 1		na popularia anti a applicationa anti anti anti anti applicationa anti anti anti anti anti anti anti anti		
Variance									
(in millions)	2006	2007	2008	2009	2010	2011	2012	Total	
Loaded Budget Plan*			n al da avan av anda 1				n <mark>egenerative and</mark> 	ne <mark>nsportantinenense</mark> A	

REDACTED

• 2008/2009 Projection

Current Forecast (Revised IPP)

- All major contracts now issued -- Reconciling milestone payments
- Increased material and labor costs
- Removed transmission costs
- Consolidated cooling tower costs with EPU

• Future Years

Variance

- Reflecting known milestones and increased labor costs
- · POD cost increases due to circulating water flow rates
- *Notes: Approved BAP (Adjusted) and the Current IPP Forecast is based on a financial view budgetary estimate of direct cost plus 15% loadings. Loaded Budget Plan only available through 2010

Confidential

KED ACTED

CONFIDENTIAL

					REDACT	ГЕD			
					and farmers phylogene all These Advances -				
EPU	2532.00		1 (1997) 1 (1) (1) (1) (1) (1) (1) (1) (1) (1)	CARACTERINA CONTRACTOR		CONTRACTOR STREET IN P		na ang ang ang ang ang ang ang ang ang a	AND DESCRIPTION OF
Approved PA	神影						1. A statute in the balance of the statute of th		
Current Forecast							and a state of the		
Variance									1.233
POG		an an an an an an an an an an an an an a		And a second second action to be only a second second second to be only a second second second second to be only a second second second second to be only a second second second second to be only a second second second second second to be only a second second second second second second to be only a second sec					
Approved PA									
Current Forecast									
Variance					PEDA	CTED			24355 243355
Transmission			Albertational Lands of Lands Approximation of Lands of Lands Approximation of Lands of Lands States and Lands States		KLE:				
Approved PA									
Current Forecast									
Variance								CARLEN CARLES	
Total Uprate Project									
Approved PA		Construction of the second sec		and the second s					
Current Forecast		(An one with a ground stand stand stand (An one with a stand stand stand stand stand (An one with a stand stand stand stand (An one with a stand stand stand stand (An one with a stand stand stand stand (An one with a stand stand stand stand (An one with a stand stand stand stand (An one with a stand stand stand stand (An one with a stand stand stand stand (An one with a stand stand stand stand (An one with a stand stand stand stand (An one with a stand stand stand stand (An one with a stand stand stand stand (An one with a stand stand stand stand stand (An one with a stand stand stand stand stand stand (An one with a stand st							
Variance	1								

POG activity forecasted to be managed by NGG/EPU

Confidential

Studies indicate Transmission work may not be required

CONFIDENTIAL

S Progress Energy

Crystal River Unit 3 Extended Power Uprate

Perform plant modifications that will provide Crystal River Unit 3 with the capability of producing an additional net 162 MW.

As of Oct '07

CONFIDENTIAL

Progress Energy

CONFIDENTIAL

As of Dec '07

Crystal River Unit 3 Extended Power Uprate

Perform plant modifications that will provide Crystal River Unit 3 with the capability of producing an additional net 162 MW.

OPC 1st POD

#6

080009

OPC 1st POD

#7

080009

Extended Power Uprate MASTER NUMBER: 20058849

Crystal River Unit 3

Extended Power Uprate

Integrated Project Plan

MASTER NUMBER: 20058849

Sponsoring Business	Nuclear Projects and Construction
Unit:	
Funding Legal Entity:	Progress Energy Florida
Date Prepared:	January 29, 2008

Treasury Control No. 20061181

Key Project Contacts:

Reft, Department/ (5 oup	Names	Phone No.
Sponsor, VP - NPC	Danny Roderick	240-4800
Major Projects Manager, EPU	Steve Huntington	240-4752
EPU Engineering Superintendant,	Ted Williams	240-4356
EPU Implementation	TBD	
Superintendant		
Regulatory	Dave Varner	240-4983
Project Financial Controls	Terry Hobbs	240-4746

Extended Power Uprate MASTER NUMBER: 20058849

Plan Revision Control

Rev No.	Finnes Automation	Refigione ampor	Rev Date
0	Ted Williams	Initial publication	3/18/2008
0	Mark Hickman	Initial Publication	3/18/2008

The following is required to be updated for significant revisions that impact any project cost +/-5% for:

Project cost Approved funding (to date) Annual budget

Or Schedule changes that impact the resource plan

Extended Power Uprate MASTER NUMBER: 20058849

Review & Approval

This section contains formal sign-offs for both review & approval of the IPP. "Reviewing" applies to any party reviewing the IPP for accuracy & clarity, while "Approving" applies to those parties responsible for approving project milestone progression & funding.

Reviewing Parie	Reviewing Polyting	Reviewed	Signifii) (
T. Williams	Engineering Superintendant, EPU			00/00/00
D. Varner	Manager, Major Projects Support			
T. Hobbs	Manager, Major Projects Project Controls			
J. Terry	SGR Project Manager			
S. Huntington	Manager, Major Projects - EPU			
J. Franke	Director Site Operations CR3			
B. Cumbie	Crystal River Plant Manager- Fossil			
D. Roderick	VP, Nuclear Projects & Construction			

y white here's	Apploying Postion	Ro. Apploted	Speciel 2	Date
Tom Sullivan	VP, Treasurer & CRO			00/00/00
Jeff Corbett	Sr. VP Energy Delivery Carolinas			
Michael Lewis	Sr. VP Energy Delivery Florida			
Jeff Lyash	President and CEO, PGN Florida			
Lloyd Yeats	President & CEO PGN Carolinas			
John McArthur	Sr. VP Corporate Relations &General Counsel			
Mark Mulhern	Sr. VP Finance			
Paula Sims	Sr. VP Power			

Page 3 of 27

X Progress Energy

.'

Extended Power Uprate MASTER NUMBER: 20058849

Jim Scarola	Sr. VP & CNO		
Peter Scott	President &CEO Service Co., CFO PGN		
William Johnson	Chairman, CEO, and President PGN		

<u>ر</u>

Extended Power Uprate MASTER NUMBER: 20058849

AGENDA

1.0 Project Overview / Recommendation

- 2.0 Scope Statement
- 3.0 Major Deliverables & Milestone Schedule
- 4.0 Funding Requirements & Update
- 5.0 Economic Evaluation

6.0 Assumptions & Constraints

- 6.1 Risk Strategy
- 6.2 Contracting & Procurement Strategy
- 6.3 Regulatory Strategy
- 6.4 Quality Plan
- 6.5 Safety Plan
- 6.6 Environmental Plan
- 7.0 External Stakeholders
- 8.0 Internal Stakeholders
- 9.0 Project Assurance Plan
- 10.0 Communication Plan / Next Steps

<u>APPENDIX</u>:

Definitions & Acronyms

OPC 1st POD

#7

080009

BATES NOS. PEF-NCR 04481 THROUGH PEF-NCR-04501

REDACTED

• ·

Crystal River Unit 3

Definitions & Acronyms:

AIMS: Action Item Management System – A database developed to track internal action items of SGR project team members,

CAF: Containment Access Facility – The structure or area specifically designed to regulate the ingress and egress of radiation workers required to enter the containment building (also known as the reactor building) to accomplish work.

DTP: Detailed Task Plans – Specific plans (modeled after project plans) taken to the task level to provide details on specific tasks required to support the overall project to replace the steam generators.

EC: Engineering Change – A formal document developed by design engineering personnel that provides the technical and administrative controls to ensure modifications made the nuclear facility are compliant with all applicable Progress Energy requirements and the Code of Federal Regulations for nuclear facilities.

EPU: Extended Power Uprate – An increase in developed reactor power and electrical output derived from a combination of steam efficiencies, margin harvest, and reactor power increase.

ERP: Environmental Resource Permit – A permitting process required by state regulations to ensure activities are controlled within environmental standards.

INPO: Institute of Nuclear Power Operations – The organization specifically formed to provide oversight and support to commercial nuclear power stations.

ITS: Improved Technical Specifications – The licensing document that outlines the equipment required to remain operable for operation of the reactor in all modes of operation.

KPI: Key Performance Indicators – visual indicators that are used to provide insights that specific parameters key to the project success are measured and used by management to take corrective actions when these parameters are not s expected.

NBC: Net Benefit to Cost Ratio

NRC: Nuclear Regulatory Commission – The regulatory body that oversees safe operation of commercial nuclear facilities.

NSOC: Nuclear Security Operations Center – The structure that serves as the entry point and exit point for entry into the CR3 protected area.

OTSG/OTSG's: once through steam generators- heat exchangers designed to transfer heat from the reactor coolant system into steam used to drive the steam turbine in the generation of electricity.

QA: Quality Assurance – A specific function internal to the project, designed to ensure activities performed on the nuclear facility or components fabricated in support of operation of the nuclear facility meet the established requirements for quality.

RB: reactor building – one of three designed fission product barriers designed to protect the health and safety of the public from the release of reactor coolant system inventory during a postulated emergency.

SGR: Steam Generator Replacement - The acronym used to describe the project.

WBS: Work Breakdown Structure – The fundamental building block that defines the scope of the steam generator replacement project

Phase Project Authorization Form

Initial	Revis	ion (If Checked, ent	er revision no):		Phase: X Study	Design	Implement
Project Title:	CR3 Power Uprat	e - NGG			Prioritization Category:	Initiative	
Department:	Nuclear Genera	ation Group		Location: Cry	rstal River (CR3)	Charg	ie To:
EESY~ Récord #: Cf	R3-06-92200	Initiation Date	2006	Acctng System Phase #:	Acctng Sy 20058901 Master Pro	stem ojec1 #: <u>2005884</u> 9	9
Account Class Project Manag	: O&M <u>0.0%</u> er: <u>Terry, James</u>	Capital <u>100.0%</u>	Fuel 0.0% Project Sponso	Emerger r: Roderick, Dan	icy If Emergency, Au iel Benefit Asses	horized By: sment Date:	June 1, 2010

	X Outage Required	Study	Design	Implementation	Source of Funds:
Schedule	Start Date	October 1, 2006	October 1, 2007	June 1, 2007	K Budget _ Other
	End Date	December 1, 2007	December 1 2010	December 1, 2011	Total Direct Cost
	2006				
Direct Cost	2007				
	2008				
	2009		naming English and the second s	· · · · · · · · · · · · · · · · · · ·	
	2010				
	2011				
	Project Total		Barling in Architectory		a 9 19 19 19 19 19 19 19 19 19 19 19 19 1
Will there be	obsolete inventory as a res	sult of the project that will re	quire the write-off of inventor	y" II Yes II No	Before-Tax \$
If yes, enter \$	value in the box				NAM.
Will new inv If yes enter th	entory be added as a resul e \$ value in the box.	it of the project *		🖾 Yes 🗋 No	A CTA
Notify Business	Unit Financial Services support, Mana	ager. Property Plant and Materials Acco	unting, Director-Supply chain and CSD S	alvage Group. Discuss in detail below.	30
Economi	c Analysis	B/C Ratio	NPY	Discoun	ted Breakeven Year
					tario 1943 1947 - Santa Maria (1947) Maria (1947) Maria (1947) Maria (1947) Maria (1947)
					ikain. Matematika

We, the Undersigned, agree that the project assumptions are reasonable and key risks have been identified and accurately considered. Approvals: Thresholds based on total project direct costs. All must sign in sequence.

Confidential

CONFIDENTIAL

Approval Levels	Approval Signatures	Date	Approval Levels	Approval Signatures	Date
	Project Manager:	11/10/06	Project	Senior Vice President Stumment	11/20/06
All 3 Phase Projects require these	I Project Spensor:	11/10/06	direct cosi > \$1M	PEC or PEF President & CEO Pres Progress Ventures Exec. VP Diversified Ops:	
approvals	PRG Charperson Alodel	11/10/06		IP. Subsidiery Director or Profress Energy Service Co. Press (CEO Subsidiery Director or Progress CEO Subsidiery Director or Progress CEO Subsidiery Director or Progress	8/00
	M Business Services May or Supervisor Finandal Services: June June June June June June June June	11-10-06	ſ	Subsidiare Treasure of gogress intergy, inc.	white
Project	Department gold pit of DE Youry	11/10/02	Project direct cost	Subsidiary Director or Progress Energy, Inc CFO: CFO: 12/	100
direct cost > \$250K	Department Head (b), Charge-By Org. (Required for facilities projects):		>\$5 M	Consisting Chairman or Progress Energy, Inc. Clair han & ED: B. M. Canas	10/11/06
L Return Orig Executed Le Signatures a Capital Pl	Inal to PRG Administrator, who must maintain a file of the sase Evaluation Form, FRM-SUBS-01110 must be attach as Subsidiary Directors or Officers based on legal entity s anning and Control Review (Initial and Date):	L signed origina ted to approval ponsoring proje	i if the recomme act.	ended project includes a lease. CUP 11/20/04	LJ

Capital Planning and Control Review (initial and Date):

CONFIDENTIAL

FRM-SUBS-00690 Rev. 9 10/05

Report Generated: 11/10/2006 10:27:47AM

PEF-NCR-04504

Executive Summary:

Project Basic Information:

This Power Uprate Project will add 180 MWe of net generation output to the Crystal River Nuclear Plant

Recommendation and High Level Discussion:

A two phase approach will be used for this project for steam efficiencies and reactor power uprate for a total net generation increase of 180 MWe. Phase I will consist of optimization of mechanical equipment efficiencies that will result in a net generation increase of 40 MWe without additional fuel cost in 2009. This phase will provide for heat balance efficiencies, high pressure turbine optimization, low pressure turbine replacement, main generator rewind, and main steam re-heater replacement. Phase II will be a reactor power uprate that will result in an additional net generation increase of 140 MWe with increased fuel cost in 2011. This phase will provide for a change in license reactor power from 2,568 MWt to 3,010 MWt. The total net generation increase of 180 MWe is conservative for planning purposes and could be higher.

The recommendation is to proceed with planning and implementation of Phase I and II for this project. This is based on the strategic fit for increased net generation in Florida and the steam efficiencies/nuclear fuel least cost alternative to provide 180 MWe of additional net generation with a favorable Benefit Cost Ratio.

Funding Requirements and Source:

This will be an NGG initiative capital project. POG and Transmission PPA's will be routed for approval separately. POG and Transmission costs are not included in this NGG PPA. The total project cost is addressed in the Business Analysis Package.

Project Capital Allocation Metric Summary Table:

Economic Analysis	 B/C Ratio	NPV	Discounted Break Even Year
Phylipse			
441793 700 - 1			· · · · · · · · · · · · · · · · · · ·
e de la composition de la composition de la composition de la composition de la composition de la composition de			the transformed and the second s
			and the second second second second second second second second second second second second second second secon
			and the second second second second second second second second second second second second second second second
		and a second second second second second second second second second second second second second second second	الایک از ایک ایر است کی باری در این این در این این در در در در در در در در در در ۲۵ کرد. در میه مدینا می در می در میه در می می در در این در در در در در در در در در در در در در

Confidential

Cash Flow Graph:

See attached Economic Analysis Report.

Strategic Fit (if applicable):

CR3 is a nuclear base load generation plant and a reactor power uprate will achieve increased net power production of 180. MWe realizing the economical benefits of nuclear fuel. This power uprate includes net generation increases of 40 MWe for steam efficiencies without fuel cost increases.

Key Risk Analysis:

A STATE OF STATE

Key Assumptions:

See Business Analysis Package

FRM-SUBS-00690 Rev. 9 10705

Project Alternatives Analysis:

Alternatives Considered and Basis of Selection: See Business Analysis Package

Consequences of Non-Authorization or Deferral:

Failure to realize the projected fuel savings and benefits associated with avoided capacity in part if deferred or entirely if not authorized.

Economic Analysis Detail:

Detailed Discussion of Results:

See Business Analysis Package

Scenario Analysis:

See Business Analysis Package

Summary of Financial Indicators:

See Business Analysis Package

Major NPV Components:

See Business Analysis Package

Modeling Tool Used / Description of Changes / Approval:

EESY+ Version 5.8.2

Sensitivity Analysis Detail:

See Business Analysis Package

Regulatory Impact Analysis:

Implementation of Phase I and II will require FSAR and Tech Spec changes to our existing license. The study will provide for developing a regulatory approval plan.

Contracting and Procurement Strategy:

Change in Inventory Detail (either increasing due to new inventory needs or decreasing due to obsolescence):

Market Analysis:

Customer Analysis:

N/A

Competitor Analysis:

N/A

FRM-SUBS-00690 Rev. 9 10/05

CONFIDENTIAL

Non-Financial Considerations / Intangibles / Unquantified Financial Considerations / Other:

Co-owner participation may be an option for this project. This option will be pursued independently of this PA.

Integration and Project Performance Assessment Planning:

Organizational Requirements / Integration Issues:

This project will require support from plant Engineering, Licensing, Maintenance, Operations, Chemistry, and plant management. Support from off-site organizations will include NGG Engineering, NGG Fuels, Transmission, Fossil Engineering, and Corp. Strategic Planning. A temporary project team is in place for this project pending apprpoval of the permenant organization and will include representation from each key organization.

Project Objectives / Goals / Expected Benefits:

The project objective and goals are to effectively implement a power uprate strategy to increase the net generation from the Crystal River Nuclear Plant by 180MWe. This strategy provides the least cost alternative for this added net generation in Florida within the strategic generation plan.

Benefit Assessment Methodology, Schedule and Responsibility for Assessment:

Procurement and installation for the power uprate project will provide for increased net generation of 180 MWe from the Crystal River Nuclear Plant. The project will be completed by December 2011. The project manager will be responsible for the benefits assessment upon completion of each phase.

Responsibility for Assessment: Williams, Ted E.

Wrap-Up Conclusions and Recommendations (Pros & Cons):

The recommendation is to proceed with planning and implementation of Phase I and II for this project. This is based on the strategic fit for increased net generation in Florida and the steam efficiencies/nuclear fuel least cost alternative to provide 180 MWe of additional net generation. A decision to not implement this project will result in a lost opportunity for increasing net generation of 180 MWe using the nuclear least cost alternative for steam efficiencies and nuclear fuel.

Appendix A: Pro Forma Economic Analysis:

Appendix B: Pro Forma Financial Statements:

Other Appendices:

CONFIDENTIAL

 $\{ i \in \cdot \}$

Previous Phase Schedule Status - Project View Costs

		a ta	(a) Solid Sol Solid Solid S		
patra metamore a series a consecutarion	The second states and the second second second second second second second second second second second second s		the second second second second second second second second second second second second second second second se	anna a shi na kanka na casa ka ƙwallon na ƙwallon ƙasar ƙwallon ƙ	
San Anton State					
A					· · · / 🦻
1					
and herein the					
2019-07					
2.1.					i
· · · ·					
2					
3					
	a a second second second second second second second second second second second second second second second s				
NE CONTRACTOR OF					
 International and the second se					
The second second second second second second second second second second second second second second second se					
10					

CONFIDENTIAL

Report Generated: 11/10/2006 10:27:47AM

FRM-SUBS-00690 Rev. 9 10/05

		CONFIDENTIAL
F	Progress Energy Flori	da
	CR3 Power Uprate	
Bu	siness Analysis Pack	age
Sponsoring Business Unit:	NGG – CR3	
Funding Legal Entity:	PEF	· · · · · · · · · · · · · · · · · · ·
Date Prepared:	11-10-06	
Key Project Contacts:	Name	Phone #
Sponsor - CR3 - NGG	Danny Roderick	240-3219
Financial – CR3 - NGG	Don Taylor 849 11-10-06	240-3165
Engineering - CR3 - NGG	Ted Williams	240-3886
Project Manager-CR3- NGG	Jim Terry	240-4321
		1

Table of Contents

Executive Summary
Strategic Fit
Key Risk Analysis
Key Assumptions4
Project Alternative Analysis5
Economic Analysis
Sensitivity Analysis Detail8
Operational Analysis Detail9
Regulatory Impact Analysis9
Contracting and Procurement Strategy9
Change in Inventory Detail9
Market Analysis
Non-Financial Considerations/ Intangibles/ Unquantified Financial Considerations / Other10
Integration and Project Performance Assessment10
Wrap-up, Conclusions and Recommendations10
Appendix A: Pro Forma Economic Analysis11
Other Appendices

Executive Summary

Project Basic Information

Description: This Power Uprate Project will add 180 MWe of net generation output to the Crystal River Nuclear Plant

Location: Crystal River Unit 3

EESY Plus Project#: Record # CR3-06-92200 - Master Project # 20058849

Schedule: October 2006 - December 2011

Recommendation and High Level Discussion

A two phase approach will be used for this project for steam efficiencies and reactor power uprate for a total net generation increase of 180 MWe. Phase I will consist of optimization of mechanical equipment efficiencies that will result in a net generation increase of 40 MWe This phase would provide for heat balance efficiencies, high pressure turbine optimization, low pressure turbine replacement, main generator rewind, and main steam re-heater replacement. Phase II will be a reactor power uprate that will result in an additional net generation increase of 140 MWe in 2011. This phase would provide for a change in license reactor power from 2,568 MWt to 3,010 MWt. The total net generation increase of 180 MWe is conservative for planning purposes and could be higher. Phase II will also include water cooling upgrades due to increased heat rejection to the discharge canal. In addition, this phase will also include transmission grid modifications to accommodate distribution of the added 180 MWe output and address Crystal River 3. being the largest generator in Florida.

The recommendation is to proceed with planning and implementation of Phase I and II for this project. This is based on the strategic fit for reduction in total fuel costs in Florida and the steam efficiencies/nuclear fuel least cost alternative to provide 180 MWe of additional net generation with a favorable Benefit Cost Ratio. this project also addresses the Point of Discharge temperature issues that may have some cost split between proposed fuel adjustment clause and the environmental recovery clause. Cost shown in this Economic Analysis are for the total project cost.

Confidential

Funding Requirements and Source

BEDAC Source: 2006 2007 5 0 2008 6 4 2009 2010 2010 2011 4 2010 2011 **Direct Costs** in \$000's

The project approval plan will consist of three separate Phased Project Authorizations (PPA). NGG-CR3 will do a PPA for the Phase I & II plant specific work scope with a total cost of \$250 million. POG will provide a PPA for the Phase II water cooling upgrade in the amount of \$88 million. Transmission will submit a PPA for the Phase II transmission grid upgrades in the amount of \$89 million. When the PPA's are routed for approval, they will include the BAP as the overall project reference document. This strategy will keep the PPA's aligned with the total capital project budget allocated to the three separate departments. The Progress Energy project management organization will have representation from POG and Transmission to coordinate and provide oversight to their work scope's.

THI

This is the 3-Phase cash flow by department:

The similar study phase will provide the plant specific project plan. Water cooling and transmission upgrades will be covered under those individual studies. This plan will include development of a detailed project schedule, task cost estimates, equipment specifications, license amendment plan, and permit review. The study will also provide the needed technical information for structuring a major component procurement strategy along with needed contracts for the implementation phase. In addition, the study will include a detailed review of "pinch points" to validate all the cost estimates.

Project Capital Allocation Metric Summary Table

Scenarios: Recommended Alternative

Metrics	Expected	Likely Best	LikelyWorst
Benefit Cost Ratio (BC)	1.66	2.91	0.93
Net Present Value (NPV)			
Discounted Breakeven Year (DBEY)	2022	2016	N/A
Operational / Other Metrics			

Confidential

Cashflow Graph

Strategic Fit

CR3 is a nuclear base load generation plant and a reactor power uprate would achieve increased net power production of 180 MWe realizing the economical benefits of nuclear fuel. This power uprate provides the most effective way to reduce fuel costs by increasing the fuel mix of nuclear energy.

Confidential

Page 3 of 16

Key Assumptions

Escalated costs of the uprate and the spending curve are as follows (in \$000's): 2006 2007 2008 2009 2010 2011 Total cost Phase I - Steam Efficiencies, \$ 000's REDACTED REDACTED REDACTED Phases I & II Phases I & II REDACTED REDACTED REDACTED

These numbers are the same for base and best case scenarios. For worst case scenario capital costs are increased by 10%.

Escalated Cooling and Transmission Upgrade costs are as follows for best case, base case and worst case scenarios:

Cooling, \$000's	2008	2009	2010	2011	Total
Base case					
Worst case +20%	ľ		REDACT	ED	
Best case -20%					

Transmission, \$000's	2007	2008	2009	2010	2011	Total
Base case			47% (C)			
Worst case +20%	l			σειλάτει		
Best case -20%				KEDACILI		

Confidential

Page 4 of 16

1 1

Consequences of Non-Authorization or Deferral

Confidential

Page 5 of 16

PEF-NCR-04515

 Scenario Analysis

 REDACTED

 Prosym July GFF, Two-Phase.

 BC Ratio
 NPV (\$000)

 DBEY

 Base case

 Worst case

 Best case

Summary of Financial Indicators

PEF-NCR-04516

Analysis based on E	ESY Plus coefficients, April GFF
Alternative	B/C NPV, \$000 DBEY: MW/gain Capital Cost Ratio
Phase 1, Steam Efficiencies Phases 1 and 2	REDACTED
Analysis based on P	Tosymamodelauniyasin
Alternative	B/C NPV, \$000 OBEY MW gain Capital Cost Ratio
Phase 1, Steam Efficiencies	REDACT
Phases 1 and 2	NEDACTED
Phase 1&2 without cooling towers	

Major NPV Components (based on July GFF)

p000 S)		leeted and the Like	Weestern Bullike	WWorston
Capital - Uprate	20, 24 20-10 av 2040.00 a	Capture of the Addition of the		
Capital - Transmission				
Capital - Cooling Towers				1.2
Aux Power, Cooling towers				
O&M, Cooling Towers			REDACTED	
Fuel Savings - Uprate			10.2 C	
Fuel Savings - Avoided Derates				19. 197 11
Total NPV	in the second second second second second second second second second second second second second second second	sa bio sina ang ang ang ang ang ang ang ang ang a		

Modeling Tool Used / Description of Changes/ Approval

EESY+ Version 5.8.2

Confidential

Sensitivity Analysis Detail

Confidential

Operational Analysis Detail

Regulatory Impact Analysis

On September 22, 2006, PEF submitted the Crystal River Unit 3 (CR3) Uprate project to the Florida Public Service Commission for consideration. Due to the fact that this is an expansion of capacity of more than 75MW, a Determination of Need is required. In the case of the Uprate, the "Need" is primarily an economic one based on the extensive fuel savings the project will generate. PEF also requested an exemption from the bid rule on the grounds that the project meets all three elements of the bid rule's exemption provision in that it "will likely result in a lower cost supply of electricity to the utility's general body of ratepayers, increase the reliable supply of electricity to the utility's will serve the public welfare".

PEF further requested recovery of the project through the fuel clause. Recovery through the fuel clause can be supported due to the fact that this project is not being driven by a capacity need, but rather by the extensive fuel savings it will generate for the customer and the fact that the costs were not recognized or anticipated in the Company's last base rate proceeding. A hearing will be held before the Florida Public Service Commission on January 18, 2007, and the Commission decision on this issue is due on April 2, 2007. If the Commission denies recovery through the fuel clause, the Company will include these costs in its next base rate proceeding.

PEF will also be required to submit an application to the Nuclear Regulatory Commission (NRC) to get approval of the CR3 Uprate. The process for amending commercial nuclear power plant licenses and technical specifications related to power uprates is the same as the process used for other amendments; therefore, power uprate requests are submitted to the NRC as license amendment requests. The NRC has approved many similar uprate requests and PEF expects approval of our application.

The study will provide for developing a regulatory approval plan.

Contracting and Procurement Strategy

Page 9 of 16

Market Analysis N/A

Non-Financial Considerations/ Intangibles/ Unquantified Financial Considerations / Other

		REDACTED	
Integration and Project Per	formance Assessmen	t	
	REDACTED		
Project Objectives/ Goals/ E	Expected Benefits		an an an an an an an an an an an an an a
		REDACTED	
Benefits Assessment Metho	odology, Schedule and Re	sponsibility for A	ssessment
	REDAC	TED	
	an an an an an an an an an an an an an a		
Wrap-up, Conclusions and	Recommendations		
	RJ	EDACTED	

Confidential

Appendix A: Pro Forma Economic Analysis

oject (D: 93580 temative (D: 27 Refreshed On: 10/18/2006 17:08 Last Printed On: 02/04/2004 21:13

Page 12 of 16

AUTHORIZED COPY

Document title

Major Capital Projects - Integrated Project Plan

Document number

ADM-SUBS-00080

Applies to: Progress Energy Carolinas, Inc.; Progress Energy Florida, Inc.; Progress Energy Service Company, LLC

Keywords: administration; major projects; capital budget

1.0 APPLICABILITY

This procedure applies to Progress Energy operating companies and business units conducting non-routine, capital projects **REDACTED** in total project costs, referred to as 'Major Capital Projects' or 'Major Projects'. These projects are typically large, infrastructure projects within the Company (e.g., new generation, environmental programs, associated transmission, etc.).

2.0 PURPOSE

The purpose of this procedure is to govern the overall process flow and expectations for managing Major Projects. Each impacted operating company / business unit is required to integrate their respective project plans and business case analyses for funding approval at each major milestone throughout the project lifecycle.

3.0 GENERAL INFORMATION

This procedure is the governing document for authorizing Major Projects and is referenced in procedures <u>ACT-SUBS-00335</u>, Progress Energy Project Governance Policy, and <u>ACT-SUBS-00261</u>, Project Evaluation and Authorization. Each organization managing Major Projects is required to develop and maintain procedures for implementing this procedure.

Initial funding approval is granted by presentation to the Senior Management Committee (SMC). Subsequent funding approval is granted at each major milestone throughout the project lifecycle by presentation to the appropriate member of senior management and other constituents. The communication tool used to request authorization and obtain approval signatures is the Integrated Project Plan (IPP).

4.0 INTEGRATED PROJECT PLAN (IPP)

Major Projects can involve multiple operating companies / business units, each developing their own specific project plan (<u>Appendix No. 1</u>). Major Projects require the integration of project plans and information to summarize key touch points (<u>Appendix No. 2</u>). The IPP takes the place of the Business Analysis Package (BAP), but contains similar BAP elements referenced in procedure, <u>ACT-SUBS-00271</u>, Progress Energy Business Analysis Package.

The IPP is used to:

- Guide the Project Execution for all impacted operating companies / business units
- Provide an executive summary of each business unit-specific project plan
- Document project assumptions, constraints, and decisions
- Facilitate communication among stakeholders
- Define review and funding approval milestones
- Provide a baseline for progress measurement and project control
- Integrate other sub-plans developed to manage and identify the following:
 - Project scope
 - Major deliverables & milestone schedule

- Funding requirements
- Economic evaluations
- o Assumptions and constraints
- Risk strategy
- o Contracting / procurement strategy & supplier diversity
- o Regulatory requirements
- o External stakeholders requirements
- o Internal stakeholders roles & responsibilities
- Resource allocation
- Project assurance
- o Startup and integration
- o Safety & environmental
- o Communication planning
- Others, as determined by the project

4.1 IPP Development

The IPP is summarized using a template available by contacting Capital Planning & Control.

The business unit selects a coordinator to be the point contact to develop the IPP. The IPP Development Coordinator's role is to ensure timely submission of each IPP section and collaborates with Capital Planning & Control to schedule the funding approval meetings. The Coordinator schedules an IPP kick-off meeting with the project team and assigns sections (Appendix No. 3).

Upon receipt of each written section, the Coordinator assembles the IPP and submits internally for review and comment. Internal review meetings help to collaborate and expedite the review process. The section writers are responsible to ensure the accuracy and completeness of each section.

NOTE: During Project Initiation, elements of the IPP may not be fully identified. The expectation is that all IPP elements are completely identified and updated throughout the project lifecycle. The initial IPP for the first milestone is to provide adequate information to justify the funding amount requested.

5.0 **PROJECT AUTHORIZATION**

Project Authorization is governed by the procedure, <u>ACT-SUBS-00261</u>, Project Evaluation and Authorization. Major Projects require funding approval obtained by presentation to the SMC prior to any spending. The IPP and high-level presentation are the tools used to communicate the milestone funding requests.

5.1 Project Review Group (PRG) Approval

The project manager presents the IPP to the corresponding Project Review Group (PRG) for project evaluation and authorization, as applicable. During this meeting, the PRG reviews the IPP information, obtains clarification, and approves the project to be submitted for funding approval.

5.2 Senior Management Committee (SMC) Approval

Once approved by the PRG, the project manager submits the IPP to Capital Planning & Control for review and submittal to the SMC. Capital Planning & Control will schedule the SMC presentation.

The project manager and/or sponsor formally present the initial IPP to the SMC. The objective of this presentation is to obtain project authorization and funding approval for the first major milestone in the project lifecycle.

ADM SUBS-00080	Rev 0 (01/08)	Page 2 of 9	
ADM-3003-00000		rayezulo j	

Prior to work beginning for the second and subsequent milestones, the IPP is updated and presented to appropriate members of senior management and other constituents for review and approval. This presentation outlines progress to-date and requests additional funding. This step is repeated throughout the project lifecycle for each major milestone.

5.3 Board of Directors Approval

Once approved by the SMC, Capital Planning & Control will coordinate a presentation for final approval to the Board of Directors. The presentation contents, timeframe, and presenters will be determined in coordination with Capital Planning & Control.

6.0 PROJECT MONITORING & CONTROL

The project manager and/or sponsor will present quarterly SMC updates reviewing status on all Major Projects. Capital Planning & Control will schedule and facilitate these review sessions.

Project Authorization Revision (PAR) requirements are detailed in Section 9 of procedure <u>ACT-SUBS-00261</u>, Project Evaluation and Authorization.

The expectation is each operating company / business unit involved with a Major Project develops appropriate monitoring systems ensuring identified project standards are being met, and appropriate corrective action is completed. Capital Planning & Control will facilitate communication between business units, operating company finance committees, the SMC, and Board of Directors, as needed.

7.0 PROJECT CLOSURE

Project Closure confirms acceptance of project deliverables by the Sponsor organization. For example, acceptance includes functional testing, punchlist item management, turnover, and financial closeout.

Major Projects require the completion of a Post Project Benefits Assessment (PPBA) as identified in Section 11 of procedure <u>ACT-SUBS-00261</u>, Project Evaluation and Authorization. The project manager and/or sponsor will present the PPBA to the SMC to determine whether the Company realized its intended benefits.

8.0 **REFERENCES**

ACT-SUBS-00335		Progress Energy Project Governance Policy
ACT-SUBS-00261	_	Project Evaluation and Authorization
ACT-SUBS-00271		Progress Energy Business Analysis Package
ADM-SUBS-00105	-	Project Assurance Program Policy
ADM-CAPX-00001	_	Project Assurance Program Manual
ADM-TRMX-00003	_	Transmission Department Project Management Procedure
CON-PPDX-00001	-	Execution of Large Construction Projects and Programs
<u>NGGM-PM-0018</u>	-	NGG Project Management Program Manual

ADM-SUBS-00080	Rev. 0 (01/08)	Page 3 of 8

APPENDIX No. 1 – Elements of a Project Plan

Business unit-specific project plans contain, but are not limited to, the following elements. At the beginning of the project, some elements are not clearly defined. The expectation is during Project Planning; these elements are completed and continually updated during the project lifecycle.

Objectives --

The goals of the project identified as realistic, specific, measurable, time driven, and cost driven. Objectives at a minimum address safety, cost, schedule, and performance; defining success for the project.

Scope -

Clear definition of the work required and documented boundaries of the project consistent with objectives, including applicable specifications and standards. It is important for the Project Team, Project Sponsor, and key Stakeholders to understand and agree on the scope to minimize future misunderstandings.

Deliverables -

Tangible and verifiable tasks, actions, or items required to prove progress towards the objectives. These are also high-level milestones and elements developed from the Work Breakdown Structure.

Work Breakdown Structure (WBS) -

A WBS is a deliverable of the project that organizes and defines project activities to complete the entire project scope. The breakdown of larger tasks into smaller ones.

Schedule -

The planned dates for performing activities and meeting milestones. Activity durations and predecessors assist in preparing.

Budget & Cash Flow-

The estimated costs for resources identified for the project with anticipated timeframe the costs will incur.

Assumptions and Constraints -

Known assumptions or constraints that may impact project success. Constraints may be controllable or uncontrollable factors, resources, and conditions which restrict the team's approach. An example is environmental compliance dates.

Stakeholders -

Any individual, group, organization, or agency that can affect, or be affected by, the project. Examples include members of management (plant, department), senior management, employees, vendors, government leaders, media, and general public.

Roles and Responsibilities -

Roles and responsibilities of individual Project Team members, identifying who does what, when, and why.

Regulatory Strategy -

Strategy, plan, and schedule for ensuring regulatory recovery of costs, obtaining required regulatory permits and meeting regulatory reporting requirements. Discuss regulatory implications and actions to mitigate.

Procurement Strategy --

Approach for obtaining major equipment / material for the project in collaboration with Supply Chain Management.

Contracting and Supplier Strategy -

Approach to segregate scope and secure resources internally or externally for engineering, procurement, construction, start-up and commissioning. The strategy must follow applicable contract management procedures in collaboration with Supply Chain Management. It is essential that payment be based on production performance.

Resource Plan -

Internal and external resources required to execute the WBS per the proposed schedule with the proposed contracting strategy.

Risk Plan -

The identification, documentation, and contingency/mitigation of risks associated with WBS activities and tasks, including a thorough review of lessons learned from prior projects.

ADM-SUBS-00080	Rev. 0 (01/08)	Page 4 of 8
	·····	

Lessons Learned --

The plan for how lessons learned from prior similar projects will be incorporated into this project and the mechanism for capturing lessons learned on the current project.

Quality Plan -

The identification of quality / technical standards and plan for how performance will be evaluated on a regular basis ensuring standards are followed. This includes identification of documents and analyses for review, hold/witness points for factory and field verification, and guidelines for quality assurance / control documentation.

Safety Plan -

Identification of responsibilities, contractor-specific safety requirements, medical treatment provisions, job safety analyses, inspections, training, reporting, and housekeeping.

Environmental Plan -

The permitting strategy and identification of site-specific responsibilities and contractor-specific requirements.

Security Plan -

Identification of security needs and how these needs and/or requirements will be met during the project.

Startup and Integration Plan -

Tasks, actions, responsibilities and documentation required to integrate the project into the operating organization. The integration plan addresses any interactions between projects and operating sites & the start-up and commissioning process.

Data Management Plan -

The process and infrastructure for electronic data management. This includes, but is not limited to, specification of data management tools, the document review process, records retention and management, and end deliverable transfer.

Communication and Reporting Plan -

How the project team will communicate, key meetings to be held (including critical project reviews and checkpoints), and definition of the specific performance indicators for the project. Indicators are of two types. (1) *Leading* Indicators are a project management tool for prediction and correction of issues before they impact overall project success. (2) *Scorecard* indicators are used to report project status to objectives to stakeholders.

Change Management -

The agreed to process for initiating, evaluating, and dispositioning significant changes to project scope, schedule, budget, or functionality. It is important to consider internal and external change management. Project Team members and Project Sponsor are required to read and understand the change management process for the project.

Close-out Criteria -

Tasks, actions, expectations, and deliverables to be satisfied to complete the project. Developing a checklist prior to close-out assists in successfully closing out the project.

Project Assurance Plan -

Establish the methods where key stakeholders will work together ensuring key decisions made are prudent, documented, retrievable, and support the regulatory process for cost recovery. The Project Assurance organization coordinates plan development in accordance with the Project Assurance Program Manual.

ADM-SUBS-00080	-	Rev. 0 (01/08)	Page 5 of 8	
		·····		

Figure 1: Example of Business Unit-Specific Project Plans

Projects can involve multiple business units. Typically, each business unit develops their own, unique project plan enabling it to execute its portion of the project. Generally, each plan identifies their project activities; however, the touch points between the other business units can sometimes be missed.

Major Projects, with their inherent risks, require the need to breakdown the walls between each business unit. Once each business unit develops its own project plan, the plans are summarized and integrated into an Integrated Project Plan (IPP). The template for the IPP is available from Capital Planning & Control.

The IPP is an executive summary document used to gain approval at each major milestone (i.e., critical decision point of the project). The project team updates the IPP during the project lifecycle and presents to the SMC for on-going funding approval at each milestone as defined in the IPP.

ADM-SUBS-00080	Rev. 0 (01/08)	Page 6 of 8
		CONCIDENTIA
	04530	UN ERUEN HAL

APPENDIX No. 3 – IPP Timeline & Roles/Responsibilities Contact Capital Planning & Control for copy of below

Integrated Project Plan (IPP) **Timeline & Roles/Responsibilities**

Timeline of Events	Due Date	Comments (expect 3-6 weeks to develop)	
Kick-off meeting		Assign roles. Schedule to allow sufficient time to prepare IPP before funding meeting	
Initial content due date		All sections due to IPP point contact (2-3 weeks after KO Meeting)	
1st draft review period		3-5 business days to review & respond to point contact	
Internal review meeting		Meeting with internal parties to discuss comments	
Internal review final changes due		3-5 business days to revise & return to point contact	
External review		3-5 business days to review & return to point contact	
Internal sign-off complete		After incorporating all changes	
External sign-off complete		This can be in the form of signature or email	
Final draft available		IPP is ready to submit to SMC by Capital Planning & Control 1wk prior to presentation	
Final Senior Management approval		Signatures obtained during SMC presentation meeting	

Roles & Responsibilities - Writing IPP	Individuals	Comments	
PP Development Coordinator		Responsible for coordinating IPP sections	
1.0 Project Overview / Recommendation			
2.0 Scope Statement			
3.0 Major Deliverable & Milestone Schedule			
4.0 Funding Requirements			
5.0 Economic Evaluation		See template for details of information needed for each section. Upon completion, submit to IPP	
6.0 Assumptions & Constraints		Development Coordinator, who assembles IPP into one document. The coordinator's main	
6.1 Risk Strategy		responsibility is to ensure the IPP is developed and submitted to Capital Planning & Control. The	
6.2 Contracting & Procurement Strategy		section writers are the experts and are responsible for ensuring accuracy and completeness of	
6.3 Regulatory Strategy		information.	
7.0 External Stakeholders			
8.0 Internal Stakeholders			
9.0 Project Assurance Plan			
-10.0 Communication Plan / Next Steps			
Others, as defined by project		As needed	
2			
ADM-SUBS-00080	Rev.	0 (01/08) Page 7 of	

 ADM-SUBS-00080	Rev. 0 (01/08)	Page 7 of 8

PEF-NCR-04531
APPENDIX No. 3 – IPP Timeline & Roles/Responsibilities

.

Integrated Project Plan (IPP) Timeline & Roles/Responsibilities

Roles & Responsibilities - Reviewers	Individuals		Title
InternaliReviewers (Project Team including Sponsor)	and the second second second second second second second second second second second second second second second	and the training of the	
		T	
		1	
			· · · · · · · · · · · · · · · · · · ·
]	
			· · · · · · · · · · · · · · · · · · ·
			<u> </u>
			· · · · · · · · · · · · · · · · · · ·
	<u></u>	· · · · · · · · · · · · · · · · · · ·	<u> </u>
External Day aware (stale abold are unternal to PCN abo	Marthenal to the Distinger Hait)		
Pater half to react a star cholder's inter har to rear to	it care and the pushess care	in the second second second second second second second second second second second second second second second	
	·····		
			<u></u>
	······		
		· · · · · · · · · · · · · · · · · · ·	
		+	
		+	
<u></u>		+	
		+	
		······································	
		<u> </u>	· · · · · · · · · · · · · · · · · · ·
			,
L		<u> </u>	

Page 8 of 8 ADM-SUBS-00080 Rev. 0 (01/08)

Crystal River Unit 3

Extended Power Uprate Project Additional Cooling Capacity for the Discharge Canal

Project Plan

MASTER PROJECT NUMBER: 20058849

Revision History				
Rev	Date	Signatures		
	11/51	Mart Ellichman-	fouldlife	
0	11001	Mark Hickman, NGG Project Manager	Danny Roderick, NGG Project Sponsor	
U	11-1-007	Someo M. Bulan	- Chief Selling in Brite	
	11/7/2001	James Burleson, POG Coordination Lead	Bernie Cumbie, POG Project Sponsor	

Additional Cooling Capacity for the Discharge Canal Project Plan

Change Basis for Revision

Original Issue

•

-

Rev 0

Page 2 of 76

.

Additional Cooling Capacity for the Discharge Canal Project Plan

Executive Summary

Progress Energy Florida (PEF) plans to increase the electrical power output of Crystal River 3 (CR3) in order to minimize customer cost and enhance shareholder value. Currently operating at a licensed core power level of 2568 MWt and 903 MWe, PEF intends to achieve a power uprate of approximately 17% at CR3 enabling the unit to safely operate at 3014 MWt and 1080 MWe. The CR 3 modifications to allow additional electrical power generation will be implemented in three stages over the course of three refueling outages. Each modification is described below.

• Measurement Uncertainty Recapture (MUR)

This project installs new more accurate and precise feedwater flow measurement equipment. The new instrumentation will enable a power increase of approximately 1.6% or 14 MWe. Existing plant safety analyses will remain unchanged as the analyzed core power will not change.

MUR implementation is scheduled for 2007, during Refueling Outage (RFO) 15.

• Balance of Plant (BOP) Efficiency

The low pressure steam turbine and other BOP equipment will be replaced with more efficient equipment. The new BOP equipment will increase the thermal efficiency of the secondary side of the plant and create a potential increase in electrical power of greater than 30 MWe, with no change in thermal power.

BOP equipment changeout is scheduled for 2009, during RFO 16.

• Extended Power Uprate (EPU)

Numerous plant modifications and a significant Licensing effort will enable reactor thermal output to increase by 17% to a total power of 3014 MWt. The corresponding electrical power increase is approximately 1080 MWe. With increased electrical output, both the heat rejected by the CR3's Circulating Water System to the discharge canal and the rate of heat carried into the discharge canal will increase. The increase in thermal energy transfer is due to the increased energy delivered to the turbines and the increased circulating water flow through the condensers to remove the additional latent heat of condensation. Without mitigation of this additional heat rejection the operation of CR 1 and CR2 may be adversely impacted or the temperature of the discharge canal may increase above permitted levels. Therefore, additional cooling capacity (e.g. cooling towers) will be required to remove the heat generated from the CR3 EPU.

The EPU modifications will be completed during RFO 17

• Modular and Helper Cooling Towers

In order to minimize the derates of CR Units 1 or 2, due to excessive Discharge Canal water temperature, a portion of the Discharge Canal water is cooled by directing its flow through either a Helper or Modular Cooling Tower. The cooled Discharge Canal water then returns to the Discharge Canal were it mixes with other water that is flowing to the Gulf of Mexico. The Helper Cooling Towers are permanent Crystal River PEF plant systems while the Modular Cooling Towers are leased. The Modular Cooling Tower lease expires at the end of 2010.

Page 3 of 44

Additional Cooling Capacity for the Discharge Canal Project Plan

Although the Modular Cooling Tower lease will expire, the need for the cooling performed by the Modular Cooling Towers remains. The logical approach to resolve the Discharge Canal cooling issue is to address both the need for additional cooling due the implementation of the Extended Power Uprate Project and the expiration of the Modular Cooling Tower lease at the same time. Therefore, this project includes the combined alternatives analysis of replacing the Modular Cooling Towers, the potential up grade of the Helper Cooling Towers to obtain maximum efficiency, and addition of cooling capability to support the EPU Project. The Study Phase of the Additional Cooling Capacity for the Discharge Canal Project will perform the Alternatives Analysis and develop a conceptual design of the recommended alternative. The Design Phase will convert the conceptual design into a final design. Then the Implementation Phase will construct the chosen alternative.

This document is the Project Plan for the Additional Cooling Capacity for the Discharge Canal Project, hereinafter called the Plan. The Plan focuses on the identification, selection, & installation of equipment to maintain the Discharge Canal's point of discharge (POD) water within acceptable parameters. The Plan identifies the project management strategies, tools, techniques and instructions necessary to safely achieve the additional cooling capacity goals and objectives while minimizing the Project's cost and risk. The project authorizations and management plans contained in this document include:

- A Project Mission Statement
- The Project Charter
- The Project's Scope, Schedule, Cost and Risk Management Plans
- The Project's Contract, Procurement and Quality Management Plans
- Human Resource and Communication Management Plans
- Safety, Human Performance and Environmental Management Plans

The Project will be monitored, controlled, and implemented using the existing Progress Energy Florida and Crystal River infrastructure of policies and procedures.

Page 4 of 44

CONFIDENTIAL

.

.

Acronyms

		1		
AIMS	Action Item Management System	NGG	Nuclear Generation Group	
ALARA	As Low As Reasonably Achievable		Nuclear Regulatory Commission	
ASME	E American Society of Mechanical Engineers		Nuclear Task Management	
BOP	Balance of Plant	NAS	Nuclear Application Software	
CR3	Crystal River 3	NSSS	Nuclear Steam Supply System	
CWP	Cooling Water Pump	OE	Operating Experience	
DRB	Design Review Board	OMT	Outage Management Team	
DTP	Detailed Task Plan	PEF	Progress Energy Florida	
EC	Engineering Change	PM	Project Manager	
EDBD	Engineering Design Bases Document	Ы	Performance Indicator	
EDG	Emergency Diesel Generator	PMT	Preventative Maintenance Test	
EPU	Extended Power Uprate	PPA	Phased Project Authorization	
HP	High Pressure	PRG	Project Review Group	
НРТ	High Pressure Turbine	QA	Quality Assurance	
ICS	Integrated Control System	RAI	Request for Additional Information	
KPI	Key Performance Indicator	RB	Reactor Building	
LAR	License Amendment Request	RCP	Reactor Coolant Pump	
LPT	Low Pressure Turbine	RPS	Reactor Protection System	
MFP	Main Feed Pump	SPI	Schedule Performance Index	
MSR	Moisture Separator Reheater	SSC	System, Structure or Component	
MUR	Measurement Uncertainty Recapture	TBV	Turbine Bypass Valve	
MUP	Make-up Pump	WBS	Work Breakdown Structure	
MWE	Megawatts Electric	XFMR	Transformer	
MWT	Megawatts Thermal	ZTEF	Zero Tolerance Equipment Failures	
NCR	Nonconformance Report			

•

Table of Contents

Exec	utive S	1mmary
Acro	nyms	5
1.0	Integ	ration Management8
	1.1	Introduction and Business Case
	1.2	Project Implementation Approach9
	1.3	Project Mission & Goals9
	1.4	Project Charter 10
	1.5	Scope
	1.6	Project Objectives
	1.7	Project Deliverables
2.0	Scop	e Management Plan25
	2.1	Scope Development
	2.2	Work Breakdown Structure (WBS)
	2.3	WBS Dictionary
	2.4	Scope Control Process
3.0	Sche	dule Development and Management Plan28
	3.1	Schedule Development Planning
	3.2	Schedule Management
4.0	Reso	urces Management / Staffing Plan30
	4.1	Organizational Structure
	4.2	Project Sponsor
	4.3	Project Manager
	4.4	Functional Organization - Roles and Responsibilities
	4.5	Staffing Plan
	4.6	Training Qualification
5.0	Cost	Management
	5.1	Financial Controls
	5.2	Project Cost Estimate

Page 6 of 44

PEF-NCR-04538

- -

.

Table of Contents, continued

6.0	Risk	Management
	6.1	Decision Analysis
	6.2	Known Issues and Risk
7.0	Procu	arement Management
	7.1	Time & Materials Contract
	7.2	Fixed Price Contract
8.0	Qual	ity Plan
	8.1	Quality Plan
	8.2	Benchmarking of Similar Projects
	8.3	Engineering Product Quality
9.0	Com	munication Management40
	9.1	Information Management
10.0	Safet	y Management43
11.0	Hum	an Performance Plan43
12.0	Envi	ronmental Management43
13.0	Financial Management43	
14.0	Cont	ract Management44
	14.1	Contract Development
	14.2	Incentive Basis
	14.3	Claim Management

Appendices

Appendix A	Project Charter A-1
Appendix B	Organization Structure
Appendix C	Work Breakdown Structure C-1
Appendix D	Schedule
Appendix E	Action Item Management System (AIMS) Guide for Discharge Canal Additional Cooling Capacity Project Personnel E-1

CONFIDENTIAL

OPC 1st POD

#7

080009

BATES NOS. PEF-NCR 04540 THROUGH PEF-NCR-04612

REDACTED

Crystal River Unit 3

Power Uprate Project

Phase I:

Measurement Uncertainty Recapture

Project Plan

MASTER PROJECT NUMBER: 20058849

Revision History

	Revision	Date
ł	0	4/27/07
i i i	, 1	10/03/07

Project Manager Ted Williams TDM Ted Williams

Project Sponsor

Danny Roderick

David Varner for Danny Roderick

Change Basis for Revision

Revision 1:

- 1. Pg. 3, Executive Summary, and throughout Project Plan: For consistency, changed 14 MWe to 12MWe per discussion with Ted Williams. This number ranged from 12 to 14 throughout the document. 12 MWe is the conservative value.
- 2. Pg. 4, Acronyms: Deleted "SCP Service Condensate Pump?" It was there with the question mark. Could find no basis to leave it there.
- 3. Pg. 5, 6, Table of Contents: Made changes so section/subsection names correspond with actual names in plan.
- 4. Pg. 7, 1.1, 2nd bullet: changed 26 MWe to 28 MWe per Ted Williams to be consistent and to ensure that the total increase is 40 MWe (12 + 28).
- 5. Pg. 8, 1.2, and throughout document: Where applicable, corrected procedure/manual names and numbers to actual names and numbers.
- 6. Pg. 8, 1.2, 3rd bullet at top of page: Per Ted Williams, changed classification of MUR project from "Medium for MURIREDACTED" to "Large for MURIREDACTED"
- 7. Throughout document: Where specific plans are named that will be addressed only by sections in this Project Plan, changed wording to reflect that.
- 8. Pg. 9, 1.4 Mission Statement: Per Ted Williams concurrence, to the pyramid of best practices, added "Regulatory Compliance."
- 9. Pg. 26, 4.4.3: Changed "See Section 9.0." to "See Section 7.0 Procurement Management" to reflect correct section.
- 10. Throughout: Made many editorial and punctuation changes and corrections. Made many minor editorial changes for consistency (same word/term/number used in all occurrences, etc.).
- 11. Added new Section 15.0, Project Closure.

Measurement Uncertainty Recapture Project Plan

CONFIDENTIAL

Executive Summary

Progress Energy plans to increase the electrical power output of Crystal River 3 in order to minimize cost to our customers and enhance shareholder value. Currently operating at a licensed core power level of 2568 MW_t and 903 MW_e, Crystal River 3 intends to achieve a power uprate of approximately 17%, enabling the plant to safely operate at 3014 MW_t and 1080 MW_e. The Crystal River 3 Power Uprate Project will be implemented in three phases over the course of three refueling outages. Each phase enumerated below contains definitive commercial and technical objectives:

• Phase I - Measurement Uncertainty Recapture

Improvements in process instrument accuracy enable a power increase of approximately 1.6% or 12 MW_e to be attained. Existing plant safety analyses remain in effect as analyzed core power does not change.

Phase I implementation is scheduled for 2007, during Refueling Outage (RFO) 15.

• Phase II - Balance of Plant Efficiency

. . . .

Replacement of low pressure turbines coincident with the planned steam generator replacement will increase the thermal efficiency of the secondary side of the plant to attain a 3% increase in electrical power or 28 MW_e, with no change in thermal power.

Phase II implementation is scheduled for 2009, during RFO 16.

• Phase III - Extended Power Uprate

Numerous plant modifications and a significant Licensing effort will enable reactor thermal output to increase by 17% to a total power of 3014 MW_1 with a corresponding electrical output of approximately 1080 MW_e .

Phase III Implementation is scheduled for 2011, following RFO 17.

This Project Plan focuses on Phase 1 – Measure Uncertainty Recapture. Identified herein are the project management tools, techniques and instructions necessary to achieve project goals and objectives while minimizing cost and risk. Management plans to implement work activities include:

- Project Vision, Mission Statement and Charter
- Scope, Schedule, Cost and Risk Management Plans (Addressed in sections in this Project Plan.)
- Contract, Procurement and Quality Management Plans (Addressed in sections in this Project Plan.)
- Resources and Communication Management Plans (Addressed in sections in this Project Plan.)
- Safety, Human Performance and Environmental Management Plans (Addressed in sections in this Project Plan.)

Based on Progress Energy Nuclear Generation Group procedures and management guidelines, this Project Plan incorporates operating experience and the best project management practices of the industry.

Measurement Uncertainty Recapture Project Plan

ACRONYMS

•

.

		,	
ADV	Atmospheric Dump Valves	MSR	Moisture Separator Reheater
AIMS	S Action Item Management System		Measurement Uncertainty Recapture
ALARA	As Low As Reasonably Achievable	MUP	Make-up Pump
AMSAC	ATWS Mitigation Safety Actuation Circuitry	MW.	Megawatts Electric
ASME	American Society of Mechanical Engineers	MWt	Megawatts Thermal
ATWS	Anticipated Transient Without Scram	NCR	Nonconformance Report
AULD ·	Automatic Unit Load Demand	NGG	Nuclear Generation Group
BFP	Boiler Feed Pump	NRC	Nuclear Regulatory Commission
BOP	Balance of Plant	NTM	Nuclear Task Management
CDP	Condensate Pump	NAS	Nuclear Application Software
CR3	Crystal River 3	NSSS	Nuclear Steam Supply System
CWP	Cooling Water Pump	OE	Operating Experience
DRB	Design Review Board	OMT	Outage Management Team
DTP	Detailed Task Plan	PEPM	Progress Energy Project Manager
EC	Engineering Change	Ы	Performance Indicator
EDBD	Engineering Design Bases Document	РМТ	Preventative Maintenance Test
EDG	Emergency Diesel Generator	РРА	Phased Project Authorization
EPU	Extended Power Uprate	PRG	Project Review Group
FIDMS	Fixed In-Core Detector Monitoring System	QA	Quality Assurance
FWHE	Feedwater Heater Exchanger	RAI	Request for Additional Information
НВ	Heat Balance	RB	Reactor Building
НР	High Pressure	RCP	Reactor Coolant Pump
НРТ	High Pressure Turbine	RPS	Reactor Protection System
ICS	Integrated Control System	SPI	Schedule Performance Index
КЫ	Key Performance Indicator	SSC	System, Structure or Component
LAR	License Amendment Request	TBV	Turbine Bypass Valve
LEFM	Leading Edge Flow Meter	WBS	Work Breakdown Structure
LOCA	Loss of Coolant Accident	XFMR	Transformer
LPT	Low Pressure Turbine	ZTEF	Zero Tolerance Equipment Failures
M&E	Mass & Energy		
MFP	Main Feed Pump		

Measurement Uncertainty Recapture Project Plan

Table of Contents

.

•

Execu	tive Summary	3
Acron	yms	4
1.0	Integration Management	7
1.1	Introduction and Business Case	7
1.2	Project Implementation Approach	7
1.3	Project Vision	9
1.4	Mission Statement	9
1.5	Charter	0
1.6	Scope Overview	1
2.0	Scope Management Plan	18
2.1	Scope Statement	8 ا
2.2	Work Breakdown Structure (WBS)	8
2.3	WBS Dictionary	19
2.4	Scope Control Process	19
3.0	Schedule Development and Management Plan	21
3.1	Schedule Development Planning	21
3.2	Schedule Management	22
4.0	Resources Management	23
4.1	Organizational Structure	23
4.2	Project Sponsor	23
4.3	Progress Energy Project Manager (PEPM)	23
4.4	Functional Organization – Roles and Responsibilities	24
4.5	Training Qualification	26
5.0	Cost Management	27
5.1	Financial Controls	27
5.2	Project Cost Estimate	27
6.0	Risk Management	28
6.1	Risk Management Process	28
6.2	Decision Analysis	29
6.3	Known Risks	29
7.0	Procurement Management	30
7.1	Fixed Price Contract	30
7.2	Fixed Price with Time and Materials Pricing to be Performed by AREVA	30
7.3	Incentive/Penalty Targets	31
7.4	Procurement of Materials and Services	31

Measurement Uncertainty Recapture Project Plan

PEF-NCR-04617

. .

Table of Contents, continued

.

8.0	Quality Plan	31
8.1	Quality Plan	31
8.2	Self-Evaluation Plan	32
8.3	Engineering Product Quality	32
9.0	Communication Management	33
9.1	Information Management	33
10.0	Safety Management	. 33
11.0	Human Performance Plan	. 34
12.0	Environmental Management	. 34
13.0	Financial Management	. 34
14.0	Contract Management	. 35
15.0	Project Closure	. 35

Appendices

Appendix A	Work Breakdown Structure (Draft) A-1
Appendix B	Organizational ChartB-1
Appendix C	Schedule (Draft) – Measurement Uncertainty Recapture C-1
Appendix D	Operating Experience D-1

Measurement Uncertainty Recapture Project Plan

•

OPC 1st POD

. . . .

#7

080009

BATES NOS. PEF-NCR 04619 THROUGH PEF-NCR-04758A

REDACTED

Crystal River Unit 3

Extended Power Uprate

Project Plan

MASTER PROJECT NUMBER 20058849

Revision History

Revision	Date	Project Manager	Project Sponsor
0	818107	Ted Williams	Danny Roderick
	8/17/07	Currentellion (inhaller

CONFIDENTIAL

Change Basis for Revision

Original Issue

.

ĩ

CONFIDENTIAL

Extended Power Uprate Project Plan

Page 2 of 52

Executive Summary

Crystal River Unit 3 (CR3) was initially licensed to operate at a maximum core thermal power level of 2452 MWt. In Technical Specification Amendment 41, dated July 21, 1981, the NRC approved operation of CR3 up to 2544MWt. Subsequently, Amendment 205 was issued by the NRC in 2002 approving a steady-state maximum core power level increase to 2568 MWt. CR3 is currently licensed to operate up to 2568 MWt.

A Measurement Uncertainty Recapture (MUR) power uprate has been initiated and is scheduled for implementation, pending NRC approval, in December 2007. The MUR modifications will allow CR3 to operate up to 2609 MWt. In addition to the 2609 MWt MUR power uprate, CR3 is pursuing thermal efficiency improvements scheduled for implementation in 2009, and an Extended Power Uprate (EPU), expected to be 3014 MWt, scheduled for implementation in 2011. The two phases of the Crystal River 3 Power Uprate Project will be implemented in the refueling outages of 2009 and 2011. Each phase enumerated below contains definitive commercial and technical objectives:

• Phase I - Balance of Plant Efficiency

Replacement of Low Pressure Turbines, Moisture Separator Reheaters (MSR), and Feedwater Heaters coincident with the planned steam generator replacement will increase the thermal efficiency of the secondary side of the plant to attain a 3% increase in electrical power or 28 MWe with no change in thermal power.

Phase 1 implementation is scheduled for 2009, during 16R.

• Phase II - Extended Power Uprate

Numerous plant modifications including new Condensate, Circulating Water and Feedwater Booster pumps/motors, along with and a significant Licensing effort, will enable reactor thermal output to increase by 17% to a total power of 3014 MWt with a corresponding electrical output of approximately 1080 MWe.

Phase II Implementation is scheduled for 2011, following 17R.

This is the Project Plan for the Extended Power Uprate Project and focuses on phases I and II activities as listed above. Identified herein are the project management tools, techniques and instructions necessary to achieve project goals and objectives while minimizing cost and risk. Management plans to implement work activities include:

- Project Vision, Mission Statement and Charter
- Scope, Schedule, Cost and Risk Management Plans
- Contract, Procurement and Quality Management Plans
- Human Resource and Communication Management Plans
- Safety, Human Performance and Environmental Management Plans

Based on Progress Energy Nuclear Generation Group procedures and management guidelines, this Project Plan incorporates operating experience and the best project management practices of the industry.

CONFIDENTIAL

Extended Power Uprate Project Plan

Page 3 of 52

ACRONYMS

ĉ

16P	Refuel Outage 16	NGG	Nuclear Generation Group
178	Refuel Outage 17	NRC	Nuclear Regulatory Commission
	Action Item Management System		Nuclear Steam Supply System
ALARA	As Low As Reasonably Acceptable	0&M	Operations & Maintenance
CR3	Crystal River Unit 3	OE	Operating Experience
DSO	Director of Site Operations	PA	Project Authorization
FC	Engineering Change	PE	Progress Energy
FPII	Extended Power Uprate	PEF	Progress Energy Florida
ERP	Environmental Resource Permit	PI	Performance Indicator
FME	Foreign Material Exclusion	PM	Project Manager
FDEP	EP Florida Department of Environmental		Project Management Team
	Protection		
HR	Human Resources	POD	Point of Discharge
I&C	Instrumentation & Controls	PPA	Phased Project Authorization
KPI	Key Performance Indicator	PPSA	Power Plant Siting Act
LAR	License Amendment Request	PRG	Project Review Group
MSR	Moisture Separator Reheaters	QA	Quality Assurance
MUR	Measurement Uncertainty Recapture	RFP	Request for Proposal
MWe	Megawatt Electrical	SCA	Site Certification Application
MWt	Megawatt Thermal	SPI	Schedule Performance Index
NAS	Nuclear Assessment Section	VP	Vice President
NCR	Nonconformance Report	WBS	Work Breakdown Structure

CONFIDENTIAL

Extended Power Uprate Project Plan

Page 4 of 52

PEF-NCR-04762

.

Table of Contents

.

ī

Execu	tive Summary	3
Acron	yms	4
Table	of Contents	5
1.0	Integration Management	7
1.1	Introduction and Business Case	7
1.2	Implementation Approach	9
1.3	Project Mission and Goal	9
1.4	Charter	10
1.5	Scope Overview	11
1.6	Scope Related Considerations & Assumptions	11
1.7	Critical Success Factors	13
1.8	Technical Objectives	14
1.9	Performance Objectives	16
1.10	Project Goals	18
1.11	Project Acceptance Criteria	18
2.0	Scope Management Plan	19
2.1	Scope Statement	19
2.2	Work Breakdown Structure (WBS)	19
2.3	WBS Dictionary	19
2.4	Scope Control Process	20
3.0	Schedule Development and Management Plan	22
3.1	Schedule Development Planning	22
3.2	Schedule Management	23
4.0	Resources Management	25
4.1	Organizational Structure	25
4.2	Project Sponsor Responsibilities	26
4.3	Project Manager (PM) Responsibilities	26
4.4	Superintendent Major Projects Nuelear - Responsibilities	28
4.5	Supervisor Engineering – Component Responsibilities	29
4.6	Supervisor Mechanical/Civil Design Responsibilities	29
4.7	Supervisor Design Engineering Electrical/I&C Responsibilities	30
4.8	Engineering Team Member Responsibilities	31
4.9	Superintendent Major Projects - Implementation Responsibilities	33
4.10	Nuclear Project Construction Support Organization Roles & Responsibilities	34
5.0	Cost Management	38
5.1	Financial Controls	38
5.2	Project Cost Estimate	38
6.0	Risk Management	39
7.0	Procurement Management	40

Extended Power Uprate Project Plan

OPC 1st POD

#8

080009

OPC 1st POD

#9

080009

PROGRESS ENERGY COMPANY CONFIDENTIAL EXTENDED POWER UPRATE (Including Point of Discharge) <u>Does Not Include AFUDC</u> 2008 Variance Report (Actuals Through March 2008)

٠

		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	March YTD		Annual
EMPLOYEE LABOR	Budget	-													Budget:	
	Projection:													-	Prolection:	
	Actual:	78,174	124,148	162,578	85,097	Q	0	0	0	<u>0</u>	õ	Q	Q	364,901		
}	Budget Vanance Fav/(Unfav)												1		Variance:	
	Projection Vanance Fav/(Unfav),															
PURCH MATL/FURN/EQUIP/SUPPLIES	Budget														Budget:	
	Projection:														Projection:	5. 1
	Actual:	1,367,468	1,291,012	149,409	<u>0</u>	0	Q	Q	<u>0</u>	0	Q	9	0	2,807,888		20
]	Budget Variance Fav/(Unfav)														Variance: Fav//iinfav/	
	Projection Variance Fav/(Unfav):															
OUTSIDE LABOR SVC EMPLOYED	Budget [.]														Budget:	
	Projection:														Projection:	
	Actual:	1,407,653	1,685,379	2,033,366	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>		0	<u>\$</u>	2	5,126,398		
	Budget Variance Fav/(Unfav):													·	Yariance: Fav/(Unfavi	
	Projection Vanance Fav/(Unfav):															
OTHER COSTS	Budget:														Budget:	
	Projection:														Projection:	-
	Actual:	242,468	241,986	198,568	29,446	õ	<u>0</u>	0	0	<u>o</u>	<u>0</u>	0	2	683,022		
	Budget Variance Fav/(Unfav)														Variance: Fav/(Unfav)	
	Projection Variance Fav/(Unfav):		_,													
		-						S20								
Total	Budget:														Sudget:	
	Devicestion				ويعرف ويعصرو											
	Actual	3 095 767	1 342 526	2 543 921	114 541	0	0								Projection:	-
1	Budget Variance Fav/(Unfav):	<u></u>	210221020	4,070,021	118/043			<u>v</u>		<u> </u>	<u> </u>	<u> </u>	_0	8,982,209	Variance	
	Projection Variance Fav/(Unfav):														Fav//Unfavi	
						-										

REDACTED

[] CONFIDENTIAL

[] CONFIDENTIAL

ð

PROGRESS ENERGY COMPANY CONFIDENTIAL EXTENDED POWER UPRATE (Including Point of Discharge) <u>Does Not Include AFUDC</u> 2006 Variance Report

					2006	variance F	cepon									
		Jan	Feb	Mar	Арг	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Dec YTD		Annual
EMPLOYEE LABOR	Budget	0	0	0	0	0	0	0	0	0	0	0	0	0	Budget:	0
	Projection:	0	0	0	0	0	o	0	o	0	0	0	0	0	Projection:	0
	Actual:	0	0	0	Ø	0	0	0	0	0	<u>o</u>	3,575	33,736	37,311		~
	Budget Variance Fav/(Unfav)	0	0	0	0	0	0	0	0	0	0	(3,575)	(33,736)	(37,311)	Variance:	0
	Projection Vanance Fav/(Unfav)	0	0	0	o	o	0	0	0	0	0	(3.575)	(33,736)	(37,311)	Fav/IUntav)	
PURCH MATLIFURN/EQUIP/SUPPLIES	Budget	0	0	0	0	0	0	0	0	0	0	0	0	0	Budget:	0
	Projection:	0	o	0	0	0	0	0	0	0	0	٥	0	0	Projection:	0
	Actual	0	0	0	0	0	0	0	0	0	0	0	28,148	28,148		-
	Budget Variance Fav/(Unfav)	0	0	0	0	0	0	0	0	0	0	0	(28,148)	(28,148)	Variance:	0
	Projection Variance Fav/(Unfav)	0	0	O	a	0	0	0	0	0	0	0	(28,148)	(28,148)	- avionavi	
OUTSIDE LABOR SVC EMPLOYED	Budget	0	0	0	0	0	0	0	0	0	0	0	0	0	Budget:	0
	Projection:	0	0	0	0	0	0	0	0	0	0	0	0	0	Projection:	g
	Actual:	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>o</u>	<u>o</u>	<u>o</u>	<u>0</u>	<u>0</u>	Q	638,351	1,500,517	2,138,868		-
	Budget Variance Fav/{Unfav}	0	0	0	0	0	0	0	0	0	0	(638,351)	(1,500,517)	(2,138,868)	Variance:	C
	Projection Variance Fav/(Unfav)	0	0	0	0	0	0	0	0	0	0	(638,351)	(1,500,517)	(2,138,868)		
OTHER COSTS	Budget	0	0	0	0	0	0	0	0	0	0	0	0	0	Budget:	0
	Projection:	0	0	0	0	0	O	0	0	0	0	0	0	0	Projection:	0
	Actual:	<u>0</u>	<u>o</u>	<u>o</u>	<u>0</u>	<u>0</u>	<u>o</u>	ō	<u>0</u>	<u>0</u>	<u>0</u>	32,077	63,269	95,347		-
	Budget Variance Fav/(Unfav)	0	0	0	0	0	0	0	0	0	0	(32,077)	(63,269)	(95,347)	Variance:	C
	Projection Variance Fav/(Unfav)	0	0	0	0	0	0	0	0	0	0	(32.077)	(63.269)	(95,347)	Fav//Unfav)	
															t	
Total	Budget:	D	0	0	0	0	0	0	0	0	0	0	0	0	Budget:	c
	Projection:	0	0	o	G	0	D	0	0	0	0	0	0	0	Projection;	c
	<u>Actual:</u>	_0	_0	<u>_0</u>	0	0	<u>0</u>	0	<u>0</u>	0	_0	674,003	1,625,670	2,299.673		-
	Budget Variance Fav/(Unfav);	0	0	0	0	0	0	0	0	0	0	(674,003)	(1,625,670)	(2,299,673)	Variance:	ť
	Projection Variance Fav/(Unfav):	0	0	0	0	0	0	o	0	0	0	(674,003)	(1,625,670)	(2,299,673)	Fav//Unfav)	•
															1	

OPC 1st POD

#10

080009

OPC 1st POD

#11

080009

Docket No. U8U119-E1 OPC's 1st Set for Production of Documents (Nos. 1-11) Witness: Garrett ATTACHMENT "A"

2006 CR3 Uprate Costs

1

.....

Project Level	Resource Type	Account	Month/Year	Corporate Work	Transaction Am
20058901	Labor	1071000	11/2006		34,839.95
20058901	Miscellaneous	1071000			812.39
20058901	Outside Services	1071000			638,350.60
1			11/1/2006	Sum:	674,002.94
Project Level	Resource Type	Account	Month/Year	Corporate Work	Transaction Am
20058901	Labor	1071000	12/2006		94,967.10
20058901	Materials	1071000	1		28,147.76
20058901	Miscellaneous	1071000			2,037.94
20058901	Outside Services	1071000]	1,500,517.32
			12/1/2006	Sum:	1,625,670.12
1				Sum:	2,299,673.06
	4 <u></u>				
1			1	Sum:	2,299,673.06
	Project Level 20058901 20058901 20058901 Project Level 20058901 20058901 20058901 20058901	Project Level Resource Type 20058901 Labor 20058901 Miscelianeous 20058901 Outside Services Project Level Resource Type 20058901 Labor 20058901 Labor 20058901 Materials 20058901 Miscellaneous 20058901 Outside Services	Project Level Resource Type Account 20058901 Labor 1071000 20058901 Miscellaneous 1071000 20058901 Outside Services 1071000 Project Level Resource Type Account 20058901 Labor 1071000 20058901 Labor 1071000 20058901 Labor 1071000 20058901 Materials 1071000 20058901 Miscellaneous 1071000 20058901 Outside Services 1071000 20058901 Outside Services 1071000	Project Level Resource Type Account Month/Year 20058901 Labor 1071000 11/2006 20058901 Miscellaneous 1071000 11/2006 20058901 Outside Services 1071000 11/1/2006 Project Level Resource Type Account Month/Year 11/1/2006 20058901 Labor 1071000 12/2006 20058901 Labor 1071000 12/2006 20058901 Materials 1071000 12/2006 20058901 Miscellaneous 1071000 12/2006 20058901 Outside Services 1071000 12/1/2006	Project Level Resource Type Account Month/Year Corporate Work 20058901 Labor 1071000 11/2006 20058901 Miscelianeous 1071000 1 20058901 Outside Services 1071000 1 Project Level Resource Type Account Month/Year Corporate Work 20058901 20058901 Labor 1071000 1 Project Level Resource Type Account Month/Year Corporate Work 20058901 20058901 Labor 1071000 12/2005 20058901 Materials 1071000 20058901 20058901 Miscelianeous 1071000 20058901 20058901 Outside Services 1071000 20058901 20058901 Outside Services 1071000 20058901 20058901 Outside Services 1071000 20058901

OPC's 1st Set for Production of Documents (Nos. 1-11) Witness: Garrett ATTACHMENT "B"

•

Joint Owner vs. Progress Energy Costs Summary of Power Uprate WO 20058849

	<u>2007</u>	<u>2006</u>	Total	
Gross Charges	39,075,373.31	2,299,673.06	41,375,046.37	
JO Exclusions (AFUDC and Other)	-951,630.44	0.00	-951,630.44	
JO gross charges	38,123,742.87	2,299,673.06	40,423,415.93	
	x 8.2194%	x 8.2194%	x 8.2194%	
JO paid	3,133,542.92	189,019.33	3,322,562.25	
Gross Charges	39.075.373.31	2 299 673 06	41.375.046.37	
JO paid	3.133.542.92	189.019.33	3.322.562.25	
Net Charges paid by PEF	35,941,830.39	2,110,653.73	38,052,484.12	In Power Plant as of Dec 31, 2007

R:\Nuclear Cost Recovery (NCR)\Dockets\Data Respository Docs\[JO power uprate project_recap_2.xls]Summary 03/31/08 Source: Emily Gibson, Accounting

PEF-NCR-05266

,

Sum of Amount	······	
Chame Mo Yr	Cost Category	Total
Nov406	Accruai	(639,129.99)
	Pa Credit	(55.399.00)
	Pow Block Eng	638,350.60
	Proj Mgmnt	35,652.34
Nov-J6 Total	·	(20,526.05)
- Dec-06	Accrual	(1 514,319.95)
1	Pa Credit	(133,620.33)
1	Pow Block Eng	1.528,665.08
Dec.06 Total	Profingnin	97,005.04
1290-00 10(4)	Accrual	1 390 796 57
J	AFUDC	5 132.13
	Pa Credit	(30 678.76)
	Pow Block Eng	306,062.92
	Proj Mgmnt	66,599.39
Jan-07 Total	**	1,737,912.20
Feb-07	Accrual	660,267.70
}	AFUDC	12,819.52
)	Pa Credit	20,704.74
	Pow Block Eng	(293,896.13)
	Proj Mgmnt	42,581.11
Feb-07 Iotal		442,476.94
Mar-07	ACCIUAL	(1.030,729.67)
1	Pa Credit	11,038.70
1	Pow Block For	1 153 048 37
ξ	Proi Marnnt	24 452 89
Mar 07 Total		61,852.75
Apr-07	Accrual	126,582.45
	AFUDC	9,748.14
-	Pa Credit	(46,874.75)
	Pow Block Eng	439,165.72
	Proj Mgmnt	131,128.31
Apr-07 Total		659,749,87
May-07	Accrual	218,968.23
	AFUDC	15,780.93
	Pa Credit	(57,256.74)
	Pow Block Eng	337 405 25
Man-07 Patal	Proj Wymni	874 097 33
lun-07	Accruai	576 831 28
Juneur	AFUDC	21,906.80
	Pa Credit	(14,716.30)
	Pow Block Eng	(49,579.18)
	Proj Mgmint	228,622.64
Jun-07 Total		763,065.24
Jul-07	Accrual	(3,674,475.53)
	AFUDC	24,941.02
	Pa Credit	(362,220.82)
	Pow Block Eng	4,145,037.76
	Proj Mgmnt	214,430.85
	Aassuol	1 913 126 67
And-01		26 787 61
	Pa Credit	108 442.06
	Pow Block Eng	(1.370.364.87)
	Proj Mgmnt	98,454 49
Aug-07 Total		776,445.96
Sep-07	Accrual	(1,940,582.20)
	AFUDC	41,869.84
	Pa Credit	(621,496.42)
	Pow Block Eng	7,274,007.94
0.017	Proj Mgmnt	287,327.72
Sep-07 Total	Accruat	(4 15) 023 42V
001-07	ACCEUDO	83.741.90
	Pa Credit	(826 599 22)
	Pow Block Fon	9,744,160.61
	Proi Mainnit	312,525.04
Ont-07 Total	101119	5,160,844.91
Nov-07	Accrual	(5,536,477.35)
	AFUDC	122,904.45
	Pa Credit	(750,014.48)
	Pow Block Eng	9,026,656.24
	Proj Mgmnt	98,273.56
Nov-07 Total		2,981,342.42
Dec-07	Accrual	10,339,484.98
	AFUDC	111,100.02
	Paul Block Eng	(400,9/4./2) 5 ARA 683 10
	Pow block Eng	460 032 21
	and the second s	10 000 010 00
Dec.07 Total	110) 119	10,006,012,28
Dec-07 Total	Accrual	1,726,953.51
Dec-07 Total Jan-08	Accrual AFUDC	1,726,953.51 238,074.00
Dec-07 Total Jan-08	Accrual AFUDC Pa Credit	1,726,953.51 238,074.00 (250,018.86)
Dec-07 Total Jan-08	Accrual AFUDC Pa Credit Pow Block Eng	18,006,012,28 1,726,953.51 238,074.00 (250,018.86) 2,775,120.16
Dec-07 Total Jan-08	Accrual AFUDC Pa Credit Pow Block Eng Proj Mgmnt	16,006,012,28 1,726,953,51 238,074,00 (250,018,86) 2,775,120,16 320,641,94
Dec-07 Total Jan-08 Jan-08 Total	Accrual AFUDC Pa Credit Pow Block Eng Proj Mgmnt	16,006,012,28 1,726,953,51 238,074,00 (250,018,86) 2,775,120,16 320,641,94 4,810,770,75

2006 (otal) \$ (42,796.21)

Docket No. 080119-El OPC's 1st Set for Production of Documents (Nos. 1-11) Witness: Garrett ATTACHMENT "C"