|  | "全部外的外部"的复数形式的复数形式的复数形式的复数形式的复数形式的一种。 化氯化化物 化乙酰基乙酰胺 化乙基乙酰乙酸 化乙基乙基乙酸 化乙基乙基乙酸 |
|--|-----------------------------------------------------------------------------|
|--|-----------------------------------------------------------------------------|

# Southlake Utilities, Inc.

Florida Public Service Commission Docket No. 080597-WS

Application to Increase Rates and Charges For a "Class B" Utility in Lake County, Florida

December 2008

Guastella Associates, Inc.

6 Beacon Street. Suite 410, Boston, MA 02108 www.guastella.com 610,423,3030

DOCUMENT NUMBER-DATE

11459 DEC 11 8

FPSC-COMMISSION CLERK

# Volume 3

ž

### Southlake Utilities, Inc.

Docket No. 080597-WS

Application to Increase Rates and Charges For a "Class B" Utility In Lake County Florida

### VOLUME III

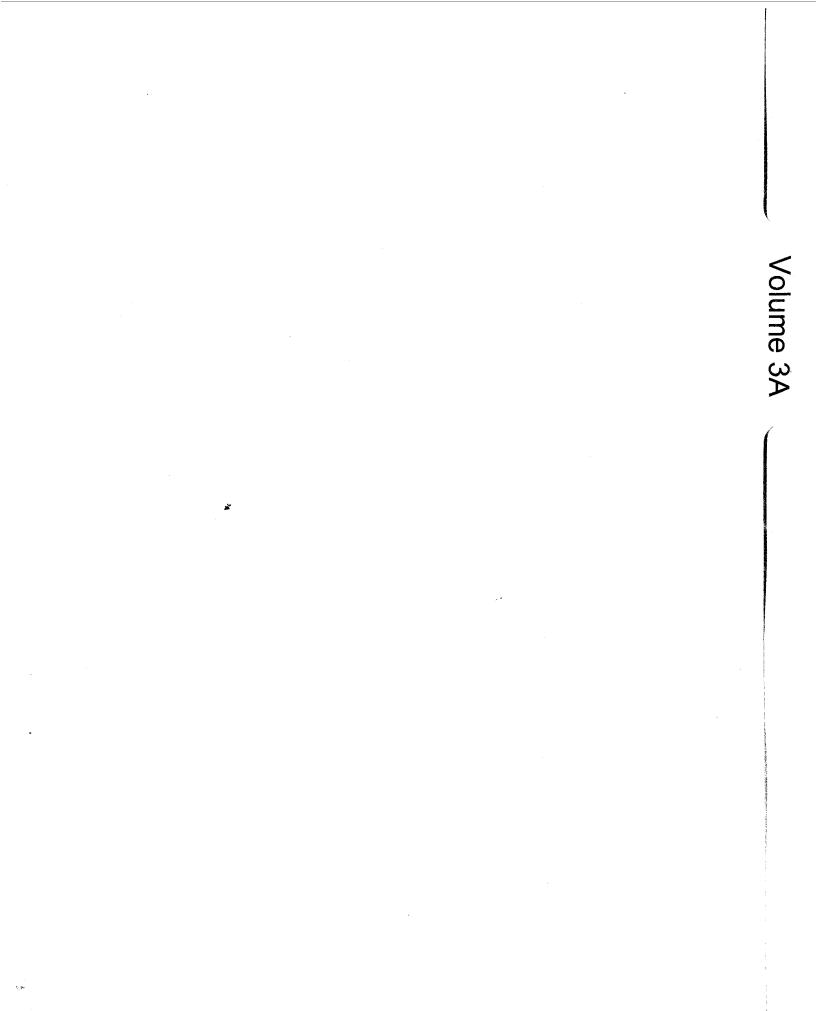
Containing

**Engineering Information** 

### **GUASTELLA ASSOCIATES, INC.**

DOCUMENT NUMBER-DATE 11459 DEC 11 8 FORG-COMMISSION CLERK

# Southlake Utilities, Inc.


Docket No. 080597-WS

**Engineering Information** 

### **Contents**

| Agreements between Affiliate and Utility                                                                     | Volume 3a              |
|--------------------------------------------------------------------------------------------------------------|------------------------|
| Utility Land Documents                                                                                       | Volume 3b              |
| Chemicals Used in Water Treatment<br>Chemicals Used in Sewer Treatment                                       | Volume 3c<br>Volume 3c |
| Chemical Analyses-Water<br>Chemical Analyses-Sewer                                                           | Volume 3d<br>Volume 3d |
| Monthly Operating Reports-WTP<br>Monthly Operating Reports-WWTP                                              | Volume 3e<br>Volume 3e |
| Sanitary Surveys, DEP and Health Dept. Notices-Water<br>Sanitary Surveys, DEP and Health Dept. Notices-Sewer | Volume 3f<br>Volume 3f |
| Permits                                                                                                      | Volume 3g              |
| List of Employees                                                                                            | Volume 3h              |
| List of Company Vehicles                                                                                     | Volume 3i              |
| Customer Complaint Logs                                                                                      | Volume 3j              |

DOCUMENT NUMBER - DATE



# LEASE (Commercial Space)

THIS LEASE, made this1st day of May, 2002, by and between CAGAN CROSSINGS, LTD., or its nominee, a Florida limited partnership with its principal office at 16554 Crossings Boulevard, Suite 4, Clermont, Florida 34711 or its affiliated designee (hereinafter referred to as "Lessor"), and Southlake Utilities, Inc., or its nominee with its principal office at 16554 Crossings Blvd Suite 2, Clermont, FL 34711, as "Lessee").

### WITNESSETH:

Lessor hereby leases to Lessee and Lessee hereby takes and leases from Lessor. the following described property, (hereinafter referred to as the "Premises"), to-wit:

That certain first floor commercial rental space designated as Southlake Utilities. Inc. comprising approximately 700 square feet, which is boldly outlined on Exhibit "A" attached hereto and made a part hereof, and being located at the following address: 16554 Crossings Blvd Suite 2, Clermont, FL 34711.

1. TERM: Lessee is to have and to hold the Premises for an initial term of 10 (ten) years, commencing on May 1, 2002 hereinafter sometimes referred to as the "commencement date", and terminating on April 30, 2012, (hereinafter, together with any extension thereof, sometimes referred to as the valid "lease term" or "term") on the terms and conditions as set forth herein.

USE AND POSSESSION: It is understood that the Premises are to be 2. used solely and exclusively for purposes and for no other purpose without the prior written consent of Lessor, which consent may be unreasonably withheld, delayed, or conditioned by Lessor. Lessee shall not use the Premises for any unlawful. disreputable, or hazardous purpose or so as to constitute a nuisance. No part of the Premises shall be occupied or used by any persons, for any purpose, except that permitted by the Lease, or in any manner which is reasonably objectionable to Lessor. or to a neighboring tenant; or which will render such uninsurable. Lessee will not use or permit the Premises to be used for any illegal, immoral or improper purpose. Lessee, at the expiration of the Term, shall deliver up the Premises in good repair and condition, damages beyond the control of Lessee, reasonable use, ordinary decay and wear and tear excepted. Lessee shall indemnify Lessor against any loss or liability resulting from any delay by Lessee in so surrendering the Premises. Upon the termination of this DOCUMENT NUMBER-DATE Lease, whether by cancellation or otherwise, unless Lessee is then in default, Lessee shall have the right to remove from the Premises all of its furniture, equipment and personal property; but Lessee shall not remove from the Premises any fixtures or leasehold improvements permanently affixed to, or a part of, the Premises, or which cannot be removed without damage to the walls, floor, or ceiling of the building within

which the Premises is located (herein sometimes referred to as the "Building"), which Building is located within the Town Center at Cagan Crossings (hereinafter referred to as "Property"). Any property of Lessee not so removed shall be deemed abandoned, and Lessor may dispose of it as it wishes.

3. <u>CONDITION OF PREMISES</u>: Lessee has examined the Premises, is satisfied with their physical condition and its taking possession thereof is conclusive evidence of receipt of them in good order and repair, except as otherwise specified. Lessee agrees that no representation as to condition or repair has been made, except as is contained in this Lease; and it further agrees that no promise to decorate, alter, repair or improve the Premises has been made, except such as is contained in this Lease.

4. <u>RENT</u>: Lessee hereby covenants and agrees to pay to Lessor, together with any and all sales and use taxes levied upon the use and occupancy of the Premises, as set forth in Paragraph 6, <u>infra</u>, during the Term, in advance and beginning on the Commencement Date, and on the first day of each and every month thereafter for the next One Hundred Twenty (120) month period, a base rent of \$600.00 (plus 7.0% tax in the amount of \$42.00), for a total initial monthly rent of \$642.00. Rent shall be paid in lawful money of the United States of America to Lessor at 16554 Crossings Boulevard, Suite 4, Clermont, Florida, 34711, together with the Common Area Charge as defined <u>infra</u>. Monthly base rent will be adjusted subsequently in the manner set forth in Paragraph 5, <u>infra</u>. If Lessee's possession commences on other than the first day of the month, Lessee shall occupy the Premises under the terms, conditions and provisions of this Lease, and the pro rata portion of the monthly rent for the balance of said month shall be paid and the term of this Lease shall commence on the first day of the month following that in which possession is given.

5. <u>RENT ADJUSTMENT</u>: The monthly base rent for the one hundred twenty (120) month period subsequent to the first complete one hundred twenty (120) month period during the Lease Term shall be \$600.00 (plus 7.0% tax in the amount of \$ (42.00), for a total monthly rent of \$642.00.

6. <u>SALES USE AND OTHER TAXES</u>: Lessee hereby covenants and agrees to pay monthly, to Lessor, as additional rent, any sales, use or other tax, excluding State and/or Federal Income Tax, now or hereafter imposed upon rents by the United States of America, the State of Florida, or any political subdivisions thereof, notwithstanding the fact that such statute, ordinance or enactment imposing the same may endeavor to impose the tax on Lessor. Lessee shall also be liable for all taxes levied or assessed against all of Lessee's property, which is located within the Premises.

7. <u>NOTICES</u>: For purpose of notice or demand hereunder, the respective parties shall be served by a nationally recognized overnight delivery service, by hand delivery, or by certified mail, return receipt requested, addressed or delivered to Lessee or to Lessor at

their respective principal office addresses as are set forth, <u>supra</u>, which addresses may be subsequently revised by proper notice hereunder to the other.

•

8. <u>ORDINANCES AND REGULATIONS</u>: Lessee hereby covenants and agrees to comply with all the rules and regulations of the Board of Fire Underwriters, Officers or Boards of the City, County or State having jurisdiction over the Premises and with all ordinances and regulations of governmental authorities wherein the Premises are located, at Lessee's sole cost and expense; but only insofar as any such rules, ordinances and regulations pertain to the manner in which Lessee shall use the Premises. The obligation to comply in every other case, and also all cases where such rules, regulations and ordinances require repair, alterations, changes or additions to the Building or the Building's equipment, or any part of either, are hereby expressly assumed by Lessor, and Lessor agrees promptly and duly to comply with all such rules, regulations and ordinances with which Lessee has not herein expressly agreed to comply.

Lessee specifically acknowledges that the Premises is located on the ground floor of a three-story mixed use Building, that the second and third floor units in the Building are presently contemplated to be used for residential use, and that Lessee is well aware of such facts.

Lessee further specifically acknowledges that the Premises is located within a Development of Regional Impact; and as such is subject to certain provisions of its Development Order, which provisions may have some impact on Lessee's use of the Premises.

9. <u>SIGNS</u>: Lessee will not place any signs or other advertising matter or material on the exterior or on the interior, where possible to be seen from the exterior of the Premises or of the Building, without the prior written consent of Lessor.

10. <u>PAYMENT AND USE OF UTILITIES AND SERVICES</u>: Lessee shall procure for its own account and shall pay the cost of all water, trash, garbage and sewage service, gas, electrical power, and other utilities consumed in or at the Premises. If Lessee does not make such payments in a prompt fashion, Lessor may, at its option, do so and such payment shall be deemed delinquent rent for purposes hereof. Lessor shall provide to Lessee, as a non-exclusive license, the right to use a reasonable amount of free parking for Lessee's employees and business invitees on Lessor's parking area adjacent to the Building. Lessor shall have the right to designate the location and number of such parking spaces from time to time; and Lessee specifically shall require all of its employees to park in the area or areas designated by Lessor for such employee parking. Lessee's use of such parking spaces shall be subject to any and all rules and regulations pertaining to such as may be adopted by Lessor from time to time in the future.

11. <u>REPAIRS</u>: Lessee shall maintain, at its cost, the interior of the Premises and every part thereof, specifically including all plumbing, electrical, heating and air conditioning fixtures, pipes, conduits, circuits, air handlers, the air conditioner compressor located at the

rear of the Building which supplies the Premises, other related equipment, all fixtures and equipment installed by Lessee, and any plate glass and special store fronts, in good repair and condition (including the prompt and regular performance of all reasonably necessary maintenance thereon), reasonable use, ordinary decay and wear and tear excepted.

Lessor, in turn, shall maintain, at its cost, all of the rest of the Building and every part thereof, in good repair and condition, reasonable use, ordinary decay and wear and tear excepted.

12. <u>ALTERATIONS</u>: Lessee shall not make or suffer to be made any alterations, additions or improvements to or of the Building, the Premises or any part thereof without the prior written consent of Lessor, which consent may be not unreasonably withheld, delayed, or conditioned by Lessor. In the event Lessor consents to the proposed alterations, additions or improvements, the same shall be at Lessee's sole cost and expense, and Lessee shall hold Lessor harmless on account of the cost thereof. Any such alterations shall be made at such times and in such manner as not to unreasonably interfere with the occupation, use and enjoyment of the remainder of the Building by the other tenants thereof; and shall be made in accordance with all applicable governmental requirements by properly licensed contractors, who must provide evidence of insurance coverage reasonably acceptable to Lessor. If required by Lessor such alterations shall be removed by Lessee upon the termination or sooner expiration of the term of this Lease and Lessee's cost and expense.

13. <u>QUIET ENJOYMENT</u>: Lessor covenants and agrees that Lessee, on paying said monthly rent and performing the covenants contained herein, shall and may peaceably and quietly hold and enjoy the Premises and common areas, including, but not limited to, parking areas and sidewalks for the Lease Term.

14. <u>LESSOR'S RIGHT TO INSPECT AND DISPLAY</u>: Lessor shall have the right, at all reasonable times during the Lease Term, to enter the Premises for the purpose of examining or inspecting same and of making such repairs or alterations therein as Lessor shall deem necessary. Lessor shall also have the right to enter the Premises at all reasonable hours for the purpose of displaying the Premises to prospective tenants within ninety (90) days prior to the termination of this Lease.

### 15. <u>DESTRUCTION OF PREMISES</u>:

(a) If the Premises are totally destroyed by fire or other casualty, both Lessor and Lessee shall have the option of terminating this Lease, upon giving written notice at any time within thirty (30) days from the date of such destruction; and, if the Lease be so terminated, all rent shall cease as of the date of such destruction and any prepaid rent shall be refunded.

If the Premises are partially damaged by fire or other casualty, or totally (b) destroyed thereby and neither party elects to terminate this Lease within the provisions of Paragraph 16(a) supra or Paragraph 16(b) infra, then Lessor agrees, at Lessor's sole cost and expense, to restore the Premises to a kind and quality substantially similar to that immediately prior to such destruction or damage. Said restoration shall be commenced within a reasonable time and completed without delay on the part of Lessor; and, in any event, shall be accomplished within one hundred eighty (180) days from the date of the fire or other casualty. In such case, all rents paid in advance shall be proportioned as of the date of damage or destruction and all rent thereafter accruing shall be equitably and proportionately suspended and adjusted according to the nature and extent of the destruction or damage, pending completion of rebuilding, restoration or repair, except that in the event the destruction or damage is so extensive as to make it unfeasible for Lessee to conduct Lessee's business within the Premises the rent shall be completely abated until the Premises are restored by Lessor or until Lessee resumes use and occupancy of the Premises, whichever event shall first occur. Lessor shall not be liable for any inconvenience or interruption of business of Lessee occasioned by fire or other casualty.

(c) If Lessor undertakes to restore, rebuild or repair the Premises, and such restoration, rebuilding or repair is not accomplished within one hundred eighty (180) days from the date of the fire or other casualty, and such failure does not result from causes beyond the control of Lessor, Lessee shall have the right to terminate this Lease by written notice to Lessor within thirty (30) days after expiration of said one hundred eighty (180) day period.

(d) Lessor shall not be liable to carry fire, casualty or extended damage insurance on the person or property of Lessee or any person or property, which may now or hereafter be placed in the Premises.

CONDEMNATION: If during the Lease Term, or any renewal thereof, the 16. whole of the Premises or such portion thereof as will make the Premises unusable from a practical standpoint for the purpose leased, be condemned by public authority for public use, then, in either event, the Lease Term shall cease and come to an end as of the date of the vesting of title in such public authority, or when possession is given to such public authority, whichever event last occurs. Upon such occurrence, the rent shall be proportioned as of such date and any prepaid rent shall be returned to Lessee. Lessor shall be entitled to the entire award for such taking, except for any statutory claim of Lessee, for injury, damage or destruction of Lessee's business accomplished by such taking. If a portion of the Premises is taken or condemned by public authority for public use so as not to make the remaining portion of the Premises unusable from a practical standpoint for the purpose leased, this Lease will not be terminated but shall continue. In such case, the rent shall be equitably and fairly reduced or abated for the remainder of the term in proportion to the amount of the Premises taken. In no event shall Lessor be liable to Lessee for any business interruption, diminution in use or for the value of any unexpired Lease Term.

17. <u>ASSIGNMENT AND SUBLEASE</u>: Lessee shall not assign this Lease, sublet all or any part of the Leased Premises or otherwise transfer its interest in the Lease without the prior written consent of Landlord, which consent shall not be unreasonably withheld.

. . . . .

If, at any time, during the term of this Lease, any part or all of its outstanding voting stock, if Lessee is a corporation, or any interest in the partnership, if Lessee is a partnership, shall be transferred by sale, assignment, bequest, inheritance, operation of law or other dispositions so as to result in a change in the present effective voting control of Lessee by the person or persons owning a majority of said outstanding voting stock or a majority interest in the partnership, as the case may be, on the date of this Lease, then such event shall constitute an assignment for the purposes of this Lease.

In the case of any permitted assignment or sublease, any proposed assignee or subtenant of Lessee shall assume Lessee's obligations hereunder and deliver to Landlord an assumption agreement in form satisfactory to Landlord at least ten (10) days prior to the effective date of the assignment. The consent by Landlord to an assignment or subletting and the assumption of Lessee's obligations by an approved assignee shall not in an way be construed to relieve Lessee or any other occupant of the Leased Premises from obtaining the express written consent of Landlord to any further assignment or subletting.

Lessee shall pay to Landlord, Landlord's administrative costs, overhead and attorneys' fees incurred, in connection with such assignment or subletting. The acceptance of rent from any other person shall not be deemed to be a waiver of any of the provisions of the Lease or to be a consent to the assignment of this Lease or the subletting of the Leased Premises.

18. <u>HOLDOVER</u>: It is further covenanted and agreed that if Lessee, or any assignee or sublessee of or from Lessee shall continue to occupy the Premises after the termination of this Lease without the prior written consent of Lessor, such tenancy shall be deemed to be a tenancy at sufferance. Acceptance by Lessor of rent after such termination shall not constitute a renewal of this Lease or a consent to such occupancy, nor shall it waive Lessor's right of reentry or any other right contained herein or provided by Florida law.

19. <u>SUBORDINATION</u>: This Lease shall be subject and subordinate at all times to the liens and security interests of any mortgages in any amount or amounts whatsoever now existing or hereafter encumbering the Premises, without the necessity of having further instruments executed by Lessee to effect such subordination. Notwithstanding the foregoing, Lessee agrees to execute and deliver upon demand such further instruments evidencing such subordination of this Lease to such liens and security interests of any such mortgages as may be requested by Lessor. So long as Lessee shall pay the rent reserved hereunder and comply with, abide by and discharge the terms, conditions, covenants and obligations on its part to be kept and performed herein, and shall attorn to any successor in title, notwithstanding the foregoing, the peaceable possession of Lessee in and to the Premises for the Lease Term shall not be disturbed, in the event of the foreclosure of any

such mortgage, by the purchaser at such foreclosure sale or such purchaser's successor in title.

20. <u>INDEMNIFICATION</u>: Lessor shall not be liable for any damage or injury to any person or property whether it be the person or property of Lessee, Lessee's employees, agents, guests, invitees or otherwise by reason of Lessee's occupancy of the Premises or because of fire, flood, windstorm, acts of God, or for any other reason. Lessee agrees to indemnify and hold harmless Lessor from and against any and all loss, damage, claim, demand, liability or expense by reason of damage to person or property which may arise or be claimed to have arisen as a result of the occupancy or use of the Premises by Lessee or by reason thereof or in connection therewith, or in any way arising on account of any injury or damage caused to any person or property on or in the Premises providing, however, that Lessee shall not so indemnify and hold harmless as to any loss or damage due to fault of Lessor.

CONSTRUCTION: The terms, Lease, Lease Agreement or Agreement shall 21. be inclusive of each other, and shall also include renewals, extensions or modifications of the Lease. The paragraph headings and titles hereof are not a part of this Lease, and shall have no effect upon the construction or interpretation of any part hereof. This Lease may be freely assigned by Lessor. This Lease shall be construed under the laws of the State of Florida, regardless of where it may have been executed or delivered. This Lease supersedes and replaces any and all previous written or oral agreements between Lessor and Lessee pertaining to the Premises, if any; and any and all such agreements, if any, are hereby declared to be null and void and of no further force and effect. All rights, powers and remedies provided herein may be exercised only to the extent that the exercise thereof does not violate any applicable law and are intended to be limited to the extent necessary so that they will not render this Lease invalid, illegal or unenforceable. If any term of this Lease shall be held to be invalid, illegal or unenforceable, the validity of the other terms of this Lease shall in no way be affected thereby. The parties hereto agree to execute any and all other and further documents as are reasonably necessary in order to ratify, confirm, and effectuate the intent and purposes of this Lease. This Lease shall not be amended or modified, except by an amendment in writing, executed by all parties hereto in the same form as this Lease. If is specifically understood and agreed that no person, firm, or other legal entity shall be a third party beneficiary hereunder, and that none of the provisions of this Lease shall be for the benefit of or be enforceable by any one other than the parties hereto, and that only the parties hereto and their permitted assignees shall have any rights hereunder. This Lease is intentionally prepared in an unrecordable form, shall not be recorded, and any attempt to do so by Lessee shall, at Lessor's option, constitute an event of default hereunder. This Lease may be executed in any number of counterparts, each of which, when executed and delivered, shall be deemed to be an original instrument, but such counterparts shall together constitute one and the same instrument. Time is of the essence of this Lease. Wherever used herein, the terms Lessor and Lessee shall include masculine, feminine, neuter, singular and/or plural, as the context admits or requires.

22. DEFAULT: In the event Lessee shall default in the payment of rent or any other sums payable by Lessee herein, and such default shall continue for period of five (5) days after written notice to Lessee, or if Lessee shall default in the performance of any other covenants or agreements of this Lease and such default shall continue for thirty (30) days after written notice thereof, or if Lessee should become bankrupt or insolvent or any bankruptcy or insolvency proceedings be taken by or against Lessee, then and in addition to any and all other legal remedies and rights. Lessor may declare the entire balance of the rent for the remainder of the Term to be due and payable and may collect the same by distress or otherwise and Lessor shall have a security interest in all personal property of Lessee which is located in the Premises; and, in order to protect its security interest in said property, Lessor may, without first obtaining a distress warrant, lock up the Premises in order to protect its interest in the secured property, or Lessor may terminate this Lease and retake possession of the Premises, or enter the Premises and re-let the same without termination, in which latter event Lessee covenants and agrees to pay any deficiency after Lessee is credited with the rent thereby obtained, less all repair and expenses (including the expenses of obtaining possession), or Lessor may resort to any two or more of such remedies or rights and adoption of one or more such remedies or rights shall not necessarily prevent the enforcement of others concurrently or thereafter.

The non-prevailing party in any dispute regarding this Lease covenants and agrees to pay reasonable attorney's fees, including appellate attorney's fees, paralegal fees, and costs and expenses of the prevailing party, including court costs, if the prevailing party employs an attorney to enforce any rights of the prevailing party herein in the event of any breach as aforesaid, including participation in any arbitration, mediation, bankruptcy or reorganizational proceedings. The same shall be payable regardless of whether such collection or enforcement is effected by suit, proceeding, or otherwise.

23. <u>SUCCESSORS AND ASSIGNS</u>: As applicable, this Lease shall be binding upon and inure to the benefit of the grantees, successors, permissible assigns, heirs, executors, administrators and legal representatives of the parties hereto. Upon assignment hereof, the assignor shall thereupon be released from any and all liability subsequently accruing hereunder, which liability shall be assumed by the assignee and grantee.

24. <u>NON-WAIVER</u>: No waiver of any covenant or condition of this Lease by Lessor shall be deemed to imply or constitute a further waiver of the same covenant or condition or any other covenant or condition of this Lease. Lessee may be released from its obligations and agreements hereunder only by a written instrument of Lessor specifically providing for such release.

25. <u>CONSTRUCTION LIENS</u>: Lessee will not permit any construction lien or liens to be placed upon the Premises, or any improvements thereon, during the Lease Term caused by or resulting from any work performed, materials furnished, or obligation incurred by or at the request of Lessee; and in the case of the filing of any such lien, Lessee will promptly either pay the same, or transfer such to a cash deposit or surety bond under the

applicable provisions of the Florida Construction Lien Act. If default in payment thereof shall continue for twenty (20) days after written notice thereof from Lessor to Lessee. Lessor shall have the right and privilege, at Lessor's option, of paying the same or any portion thereof without inquiry as to the validity thereof, and any amounts so paid, including expenses and interest, shall be additional rent hereunder due from Lessee to Lessor, and shall be repaid to Lessor immediately on demand. Nothing contained herein shall be deemed to imply any agreement of Lessor to subject Lessor's reversionary interest in the Premises to any construction lien or other lien for improvements done at the request or direction of Lessee. Notice is hereby given to all persons dealing with Lessee that Lessee has no power, right, or authority to contract for the account of Lessor or subject Lessor's reversionary interest in the Premises to any construction lien or other lien for improvements done at the request or direction of Lessee; that Lessor shall not be liable for any labor or materials furnished or to be furnished to Lessee on credit; and that no construction lien or other lien for labor or materials shall attach to or affect in any fashion the reversionary interest of Lessor in the Premises. Lessee shall be required to notify any contractor doing work at its request of the provisions of this paragraph.

26. <u>NO PERSONAL LIABILITY</u>: Anything in this Lease to the contrary not withstanding, Lessee agrees that it shall look solely and exclusively to the estate and property of Lessor in the Premises for the collection of any judgment (or other judicial process) requiring the payment of money by Lessor in the event of any default or breach by Lessor with respect to any of the terms, covenants and conditions of this Lease to be observed and/or performed by Lessor; and no other property or assets of Lessor shall be subject to levy, execution or other procedures for the satisfaction of Lessee's remedies. Nothing herein contained shall prohibit Lessee from seeking and securing injunctive relief.

27. <u>SECURITY DEPOSIT</u>: Lessee, concurrently with the execution of this Lease, has deposited with Lessor the sum of N/A dollars (\$0), the receipt thereof being hereby acknowledged, which sum shall be retained by Lessor as security for the payment by Lessee of the rent herein agreed to be paid and for the faithful performance by Lessee of the covenants of this Lease. If at any time Lessee shall be in default in any of the provisions of this Lease. Lessor shall have the right to use said deposit, or so much thereof as may be necessary, in payment of any rent in default as aforesaid and/or in payment of any expense incurred by Lessor in and about the curing of any default by Lessee, and/or payment of any damages incurred by Lessor; or, at Lessor's option, the same may be retained by Lessor by reason of such default of Lessee. In the event that said deposit shall not be utilized for any such purpose, then such deposit shall be applied to the rent last due for the Lease Term, or any renewal term thereof. Said deposit shall not be deemed to be a trust fund, and may be mingled with other funds of Lessor.

28. <u>WAIVER OF SUBROGATION</u>: Each party to this Lease hereby waives any cause of action it might have against the other party hereto on account of any loss or damage that is covered by any insurance policy that covers the Premises, Lessee's

fixtures, personal property, leasehold improvements, or business and which names Lessee as a party insured, it being understood and agreed that this provision is cumulative of Paragraph 21, <u>supra</u>. Lessee agrees that it will require its insurance carrier to endorse all applicable policies so as to waive the carrier's rights of recovery under subrogation or otherwise against Lessor.

29. <u>LIABILITY INSURANCE</u>: Lessee shall procure and maintain throughout the Lease Term, a policy or policies of insurance at its sole cost and expense and in the amounts of not less than a combined single limit of One Million DOLLARS (\$1,000,000.00) or such other amounts as Lessor may from time to time reasonably require, insuring Lessee and Lessor against any and all liability to the extent obtainable for injury to or death of a person or persons or damage to property occasioned by or arising out of or in connection with the use, operation, and occupancy of the Premises, and specifically providing coverage for Lessee's indemnification obligations imposed by Paragraph 21, supra. Lessee shall furnish a certificate of insurance and such other evidence satisfactory to Lessor of the maintenance of all insurance coverage's required hereunder, and Lessee shall obtain a written obligation on the part of each insurance company to notify Lessor at least thirty (30) days prior to cancellation or material change of any such insurance policy.

30. <u>BROKERAGE</u>: Lessee, by its execution hereof, hereby represents and warrants that it has had no dealing with any broker or agent in connection with the negotiation or execution of this Lease; and Lessee agrees to indemnify Lessor against all costs, expenses, reasonable attorneys' fees (including appellate attorneys' fees), or other liability for commissions or other compensation or charges claimed by any broker or agent claiming the same by, through, or under Lessee. Lessor acknowledges that it will be solely responsible for any liability for commissions or other compensation or charges for any broker or agent that it might have any liability to in connection with the negotiation and execution of this Lease.

31. <u>ESTOPPEL CERTIFICATES</u>: Lessee agrees to furnish from time to time when requested by Lessor or the holder of any mortgage encumbering all or any part of the Building or the improvements therein or the Premises or any interest of Lessor therein, a certificate signed by Lessee containing such factual certifications and representations as are deemed appropriate by Lessor or the holder of any mortgage encumbering all or any part of the Building or the improvements therein or the Premises or any interest of Lessor therein, and Lessee shall, within ten (10) days following receipt of said proposed certificate from Lessor, return a fully executed copy of said certificate to Lessor.

32. <u>NO COUNTERCLAIM</u>: If Lessor commences any proceedings for nonpayment of rent, Lessee will not interpose any counterclaim of any nature or description in such proceedings. This shall not, however, be construed as a waiver of Lessee's right to assert such claims in a separate action brought by Lessee. The covenants to pay rent and other amounts hereunder are separate and independent covenants, and Lessee shall have no right to hold back, offset, or fail to pay any such amounts for any default by Lessor hereunder or for any other reason whatsoever. 33. <u>LESSOR'S REMEDIES, ETC., CUMULATIVE</u>: Each right, power and remedy of Lessor provided for in this Lease, or now or hereafter existing at law or in equity or by statute or otherwise, shall be cumulative and concurrent and shall be in addition to every other right, power or remedy provided for in this Lease, or now or hereafter existing at law or in equity or by statute or otherwise, and the exercise or beginning of the exercise by Lessor of any one or more of the rights, powers or remedies provided for in this Lease or now or hereafter existing at law or in equity or by statute or otherwise shall not preclude the simultaneous or later exercise by Lessor of any or all such other rights, powers or remedies.

34. <u>JOINT AND SEVERAL LIABILITY</u>: If there be more than one Leassee, the obligations hereunder imposed upon Leasee shall be joint and several. If there be a guarantor of Leasee's obligations hereunder, the obligations hereunder imposed upon Leassee shall be the joint and several obligations of Leassee, and such guarantor; and Leassor shall not be required to proceed first against Leassee before proceeding against such guarantor, nor shall any such guarantor be released from its guaranty for any reason what so ever, including without limitation, in case of any amendments hereto, waivers here of, or failure to give such guarantor any notices hereunder.

35. <u>EVIDENCE OF AUTHORITY</u>: If Lessee is other than a natural person, Lessee shall deliver to Lessor such legal documentation as Lessor may reasonably request in order to evidence the authority of those executing this Lease to bind the Lessee.

36. <u>RELATIONSHIP OF PARTIES</u>: It is the intention of the parties hereto to create an estate for years in the Premises and to create the relationship of lessor and lessee as between the parties and no other relationship whatsoever. Nothing contained herein shall be construed to create between Lessor and Lessee a partnership or joint venture or the relationship of debtor and creditor or of principal and agent or any other type of legal relationship other than the lessor-lessee relationship established hereby.

37. <u>RADON NOTIFICATION</u>: The following notification is provided pursuant to the requirements of <u>FS 404.056</u>:

"RADON GAS: Radon is a naturally occurring radioactive gas that, when it has accumulated in a building in sufficient quantities, may present health risks to persons who are exposed to it over time. Levels of radon that exceed federal and state guidelines have been found in buildings in Florida. Additional information regarding radon and radon testing may be obtained from your county public health unit."

38. <u>WAIVER OF JURY TRIAL</u>: Lessor and Lessee hereby knowingly, voluntarily and intentionally waive any right which either may have to a trial by jury with respect to any litigation based hereon, or arising out, under, or in connection with this Lease or any document to be executed in conjunction herewith, or any course of conduct, course of dealing, statements (whether verbal or written) or actions of either Lessor or Lessee. This provision is a material inducement for Lessor to enter into this Lease.

· ·

39. <u>ENVIRONMENTAL</u>: Lessee shall neither suffer nor itself manufacture, store, handle, transport, dispose of, spill, leak or dump any toxic or hazardous wastes, waste products, or substances (as may be defined in any federal or state statute, rule, or regulation pertaining to or governing such waste, waste products, or substances) on the Premises at any time during the Lease term and shall indemnify and hold Lessor harmless from any and all liability (including reasonable attorney's fees and costs) incurred by Lessor as a result of Lessee's default under this provision.

40. <u>SPECIAL PROVISIONS</u>. The special provisions set forth in Exhibit "C" attached hereto, are hereby made a part of the Lease.

IN WITNESS WHEREOF, Lessee and Lessor have caused this Lease to be executed as of the date first above written, by their respective officers or parties thereunto duly authorized.

Signed, sealed, and delivered in the presence of:

Signature of Witness

CAGAN CROSSINGS, LTD., a Florida limited partnership

Typed or printed name of Witness

Signature of Witness

Typed or printed name of Witness

By: CAGAN CROSSINGS HOLDING, INC., a Florida corporation, as its sole General Partner

By: JEFFREY CAGAN, as its President

### NAME

By: \_\_\_\_\_ Name

Signature of Witness

Typed or printed name of Witness

Name

Signature of Witness

Typed or printed name of Witness

# Exhibit A Drawing of Rental Space

### Exhibit "B" "VANILLA BOX" SPECIFICATIONS LANDLORD'S WORK

Landlord/Lessor shall furnish at Lessor's sole cost, the following for Tenant/Lessee:

,

Building shell will be built to include electric, plumbing, air conditioning and wiring for lighting. Walls to be finished with drywall. Tenant will paint interior of space, install shelving, light fixtures, carpet, etc.

# EXHIBIT C

The special provisions set forth below are hereby made a part of this Lease:

### 42. Leasehold Improvements

• •

(a) Lessor shall cause to be performed the work described in Exhibit "B" attached to the Lease, at its own expense and in accordance with plans for such approved by Lessee. However, if Lessee desires materials or installation methods that are different from those described in Exhibit "B"; or if Lessee desires work in addition to that described in Exhibit "B" to be performed by Lessor, then Lessee shall pay to Lessor the additional actual cost of such work as billed by Lessor to Lessee. It shall be a condition to Lessee's right to occupy the Premises that Lessee shall have paid to Lessor all sums billed by Lessor for such actual additional costs. Lessee shall be entitled to hire its own contractors to construct work for the interior build-out of the Premises for work that is not listed on Exhibit B.

(b) All of the items and finishes listed in Exhibit "B" to be supplied by Lessor will substantially comply with the Building's standard specifications, color, quality, and quantity. The costs of modifications and changes from Building standards for any item shall include the cost of architectural and engineering design and the applicable increased costs of construction.

(c) Final working drawings of all improvements that Lessee desires to be installed in the Premises, whether or not all or any of the work is to be done by Lessor, must have been submitted to and approved by Lessor no later than ninety (90) days after execution of the Lease. The final working drawings shall evidence improvements that comply with the applicable law, shall be in a form commonly used in the Building for construction purposes, and shall be properly signed by Lesser and Lessor. If Lessor does not approve Lessee's drawings within 15 days of submittal to Lessor, Lessee may, upon written notice to Lessor, terminate the Lease Agreement without any penalty and Lessor shall return all deposits to Lessee within 3 days of such termination notice.

(d) If there are any changes by Lessee, or Lessee's contractors, subcontractors, or agents from the improvements set forth in the final working drawings approved by Lessor, each such change must receive the prior written approval of Lessor. In the event of any such approved change in the working drawings, Lessee shall, upon completion of the improvements, furnish Lessor with an accurate "as-built" plan of the improvements as constructed, which plans shall be incorporated into this Lease by this reference for all intents and purposes.

(e) Any contractors and subcontractors shall comply with all standards and regulations established by Lessor. Such contractors and subcontractors shall coordinate their efforts to insure timely completion of all work. Contractors or subcontractors engaged by Lessee shall employ labor, materials, and funds to insure the progress of the work without interruption on account of strikes, work stoppage, or similar causes for delay. During construction of any such improvements, the contractors and subcontractors shall coordinate with Lessor the movement of equipment and materials. Lessee's work shall be conducted in such manner so as to maintain harmonious labor relations and not to interfere with or delay Lessor's contractors or Lessor's operation of the Building or the use of the Building by other tenants.

(f) All design, construction and installation shall conform to the requirements of applicable building, plumbing, electrical and other codes, and the requirements of any authority having jurisdiction over or with respect to such work.

If Lessee requests materials or installations in addition to or other than (a) Lessor's Building standard materials or installations, or if Lessee employs its own contractors or decorators, or if Lessee or Lessee's agents make changes in the work after approval of the plans by Lessor, and if such non-standard materials or installations or contractor or decorator changes shall delay the work to be performed hereunder, or if Lessee shall otherwise delay the completion of said work, then, notwithstanding any provision to the contrary in this Lease, Lessee's obligation to pay rent under the Lease shall nevertheless commence on the Commencement Date. If the Premises are not ready for occupancy on the Commencement Date for any reason other than the reasons specified in the immediately preceding sentence, then the obligations of Lessor and Lessee under the Lease shall nevertheless continue in full force and effect; and, in such event, the rent shall abate and not commence, and the Commencement Date shall not occur until the date the leasehold improvements to the Premises are substantially complete (as determined by Lessor's architect), such abatement of rent to constitute a full settlement of all claims that Lessee might otherwise have against Lessor by reason of the Premises not being ready for occupancy by Lessee on the Commencement Date.

(h) Lessee shall bear the entire cost of any improvements to be installed by Lessor in the Premises in excess of the Building standard allowances, and shall pay for such excess improvements as provided for herein. Lessee shall pay to Lessor, upon Lessor's approval of the working drawings referred to herein, an advance payment equal to fifty percent (50%) of the cost (including labor, materials and overhead) of such excess improvements as estimated by Landlord. Notwithstanding any provision contained herein to the contrary, it is understood and agreed that Lessor shall have no obligation to commence installation of such excess improvements until: (a) Lessee shall have furnished to Lessor and Lessor shall have approved the final working drawings as required by the provisions hereof; and (b) Lessor shall have received Lessee's advance payment for the portion of the cost of the installation of the excess improvements as are required by the immediately preceding sentence. After the commencement of the installation of the leasehold improvements referred to herein, Lessee agrees to make progress payments in advance to

Lessor for the remainder of the cost (including labor, materials and overhead as aforesaid) of the excess improvements as estimated from time to time by Lessor and set forth in the interim invoices therefore submitted by Lessor to Lessee at such intervals as Lessor may determine. Lessee shall pay to Lessor the amount specified in each such invoice upon delivery of each such invoice to Lessee; and, upon substantial completion of the installation of such improvements, Lessee shall pay to Lessor the amount, if any, by which all prior progress payments by Lessee exceed the actual cost of the installation of such improvements, as the case may be. In no event shall credit be given to Lessee for any Building standard allowances not used.

### 43. LEFT BLANK.

. .

, .

44. <u>Removal Of Ceiling Fans, Etc</u>. Lessee shall have the right, at the end or other termination of this Lease, to remove any ceiling fans or similar fixtures which might have been paid for by Lessee and installed subsequent to the Commencement Date, provided that such removal is accomplished in accordance with all of the applicable requirements of this Lease.

45. <u>Water Damage</u>. Lessor shall not be liable for any damage done or occasioned by or from plumbing, gas, water, or other pipes, or sewage or the bursting, leaking or running of any tank, wash stand, water closet or waste pipe in, above, upon or about the Premises; nor for any damage occasioned by water being upon or coming through the floor, ceilings, roof, skylight, or otherwise; nor for any damage arising from acts of negligence of co-tenants or other occupants of the Building, or of any owners or occupants of adjoining or contiguous property, unless such damage is occasioned by the negligence of Lessor, or by the failure of Lessor to make any repairs required under the terms hereof.

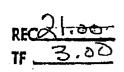
46. <u>Termites</u>. Lessor shall, at its own cost and expense, keep the Premises free of termites. Should any termites appear in the Premises, then Lessor shall cause the same to be exterminated within thirty (30) days after notice thereof in writing by Lessee to Lessor. Should Lessor fail, after such written notice, to cause such extermination to be made, then Lessee may proceed to do so and may deduct the cost thereof from any Rent due or to become due. However, Lessee shall be responsible for the eradication if the infestation of termites is attributable to Lessee's use or occupancy of the Premises.

47. <u>Exclusivity</u>. Lessor shall not lease or otherwise allow the use of any premises in or on the Property to be used for a \_\_\_\_\_\_.

### 48. LEFT BLANK.

49. Contingency. The Lease Agreement is contingent upon Lessee obtaining and securing all necessary building permits, proper zoning, and operational permits, including but not limited to a SRX and COP liquor license and any review board approvals. If the

aforesaid items are not secured before the Turnover Date, Lessee may cancel the Lease Agreement without penalty and receive the refund of any and all deposits. Written notice of such cancellation must be sent by Lessee to Lessor before the Turnover Date.


Volume 3B

Page 1 of 23

17. 11. 12. 71

### 94 52139

State of Florida County of Lake



# DOOK 1316 PAGE 0350

### LEASE FOR NINETY-NINE YEARS

This Lease. Made and executed in duplicate this the 17th day of August, 1993, by and between Robert L. Chapman Jr. (II) & wife Elisabeth T. Chapman of the County of Lake, State of Florida, hereinafter called the Lessor, which term shall include their heirs and assigns, of the one part, and Southlake Utilities Inc. of the County of Lake, State of Florida, hereinafter called the Lessee.

Witnesseth, That the said Lessor, in consideration of the rent hereinafter expressed to be paid, do lease unto the said Lessee Southlake Utilities Inc. all that ground and premises situate, lying and being in Lake County, State CLERE CISS of Florida, and described as follows:

### See Exhibit A attached hereto.

Together with the improvements thereon and all the rights, alleys, ways, the waters, easements, emoluments, privileges and advantages thereunto i belonging or in anywise appertaining. 5

To Have and to Hold the same unto the use of the said Lessee for the term of Ninety-nine (99) years, beginning on the seventeenth day of August, 1993, the said Lessee yielding and paying unto the said Lessor the rent at the rate of Forty Seven Thousand Four Hundred Dollars \$ 47,400.00 a year until the seventeenth day of August, 1995, and thereafter Forty Seven Thousand Four Hundred Dollars (\$47,400.00) a year during the term of this lease, plus an annual adjustment for inflation (if any) using The Gross domestic Product Deflator (or successor index thereof) plus payment of all assessments and real estate taxes, said rent or yearly sums to be paid in equal monthly installments in advance, on the seventeenth day of each month: said rents or yearly yields to be over and above all taxes and assessments of every kind legally levied or assessed against said demised premises, provided that if the said rent shall be in arrears in whole or in part, at any time, then it shall be lawful for the Lessor to make distress therefor, or to collect the same by other judicial process; provided further, that in the event it shall become necessary to collect said rent by suit or by

> Page 1 Prepared by Robert L. Chapman, The 800 US Huy. 27 Clermont, FL 34711

# BOOK 1316 FAGI 0351

an attorney after maturity, then in such event the Lessee obligates and binds its heirs and assigns to pay reasonable attorney's fees for the collection thereof; provided also, that if said rent shall be in arrears in whole or in part for 60 days, then it shall be lawful for the said Lessor at their option, to re-enter upon the hereby demised premises and hold the same until all the arrearages of rent thereon and all expenses incurred by reason of such nonpayment be paid; and provided further that if said rent shall be in arrears for 90 days then the said Lessor may at their option reenter upon the premises hereby demised, with or without judicial proceedings, and hold the same in the same manner as if this lease had never been made, and in the event of such default, the Lessee waive the giving of any notice of Lessor intention to cancel and annul this lease, and re-take possession of the above described premises.

And the said Lessee further covenant with the said Lessor to pay the aforesaid rent and all taxes and assessments of whatsoever character which may accrue or be assessed against the above described property, and which may constitute or create a lien or incumbrance upon the above described property subsequent to the year 1993, when legally demandable and before any penalty shall accrue by reason of non-payment, and before said property shall be advertised for sale or any proceedings instituted thereon to enforce collection.

The Lessee herein furthermore obligate and bind at its own expense to keep all improvements now or that may hereafter be placed upon the above described property in good and substantial repair, to make no unlawful or improper use of said premises; and to pay all bills for water, electricity, gas or telephone service used on or in connection with said property.

The Lessee shall have full power and right to remove, tear down, destroyor replace any of the buildings on the premises herein described, or to materially alter or change the same.

This lease shall not be assigned without the consent of the Lessor, but any portion of the above described property may be sublet, no assignment or subletting shall release the Lessee herein from the obligations herein and hereby assured, unless the Lessor consent to said assignment and agree in writing to said release. The Lessee shall protect the Lessor from any claims for damages which may arise by reason of any negligent act or deed of the Lessee or by any negligent act or deed of any agent, servant, or employee or subtenant of said Lessee.

:

Page 3 of 23

- j - e

# BOOK 1316 PAGE 0352

If the Lessee shall fail to comply with any of the terms and conditions of this lease (excepting those for which other default provisions are herein made), for a period of 90 days after the attention of the Lessee has been called in writing to such breach, then in such event, upon the expiration of said 90 days, the said Lessor, may at their option re-enter upon the premises hereby demised, with or without judicial proceedings and hold the same in the same manner as if this lease had never been made, and in the event of such default, the Lessee waive the giving of any notice of Lessor intention to cancel and annul this lease, and retake possession of the above described premises.

And the said Lessor covenant with the said Lessee that on the payment by the said Lessee of the said rent, and the performance of all covenants herein on its part to be performed, the said Lessor will warrant the property herein leased against all claims thereon superior to the lien of these presents (excepting those herein and hereby assumed), and will, during the life of this lease, protect and defend the possession of the Lessee against any and all persons whomsoever.

It is hereby agreed and understood that legal tender of any amount of payment of rent or other obligation at such time as is hereinbefore stipulated for payment, to the First Union National Bank of Clermont, Florida, its successors or assigns, for the account of the said Lessor, and without expense to Lessor or to such other bank in the said City of Clermont as the said Lessor shall designate by at least 30 days written notice to the said Lessee shall be deemed payment within the meaning of these presents.

Should the Lessor deem it necessary to serve any notice on the Lessee, such notice may be served personally upon the Lessee if Robert L. Chapman, III be found in the City of Clermont, Florida at the time service is required, but in the event Robert L. Chapman, III absent from the city or cannot be found, after a reasonable search or inquiry, the mailing of a notice by registered mail addressed to the Lessee at his last known address, and the leaving of a copy thereof at the office of Southlake Utilities, Inc. of Clermont, Florida, shall be sufficient service of said notice.

Upon the expiration of this lease all buildings, fixtures and permanent improvements placed upon the above described property shall become the

### BOOK 1316 PAGE 0353

property of the Lessor and thereupon the Lessor shall be entitled to the immediate possession of same.

In Testimony Whereof, the parities hereto have set their hands and seals the day and year first above written.

LESSOR

TT (Acci

Elisabeth T. Chapman (Seal)

LESSEE

Southlake Utilities, Inc. 1/11

Signed, sealed and delivered in the presence of:

State of Florida County of Lake

I hereby certify that on this day personally appeared before me, an officer duly authorized to administer oaths and take acknowledgments, Robert L. Chapman (II) Jr., Elisabeth T. Chapman and Robert L. Chapman, III to me well know and known to me to be the individual described in and who executed the foregoing lease and Robert L. Chapman (II) Jr., Elisabeth T. Chapman and Robert L. Chapman, III acknowledged before me that they executed the same freely and voluntarily for the purposes therein expressed.

Witness my hand and official seal at Clermont County of Lake and State of Florida, this 4th day of February, 1994. achi MARCH-JH NotAR y : Commission Expires. Jow. 10, 1988 This form submitted by the H. and W. B. Drew Company, Jacksonvill

Page 4



JACKIE 8 HAFT My Commission CC340848 Explose Jan. 10, 1998 Bonded by ANB 800-852-5878

# BOOK 1316 PAGE 1354

# EXHIBIT A

\* Z. \* 1944

### Waste Water Treatment Plant Parcel;

The Southeast 1/4 of the Northwest 1/4 of the Southeast 1/4 of Section 35. Township 24 South, Range 26 East, in Lake County, Florida, containing 10 acres more or less.

### Water Treatment Plant Parcel:

That part of the North 1/2 of the Northeast 1/4 of Section 35, Township 24 South, Range 25 East, in Lake County, Florida, bounded and described as follows: from the Northeast corner of said Section 35, continue along the northerly boundary of said Section 35, S.89°42'18"W., 1430.092 feet to the point of beginning; thence continue S.89°42'18"W., 191.307 feet; thence S.20°35'59"E., 165.00 feet; thence N89°48'01"E., 7.47 feet; thence S.20°35'59"E., 141.56 feet; thence S.89°48'01"W. 200.00 feet to the easterly right-of-way of U.S. Highway 27; thence continue along said easterly right-of-way of said highway, S.20°35'59"E., 55.84 feet; thence S.25°10'17"E., 75.00 feet; thence N.89°48'01"E., 91.433 feet; thence N.01°11'59"W., 120.301 feet; thence N.00°18'42"W., 287.110 feet, more or less, to the point of beginning. Containing 59,999 square feet, 1.38 acres more or less.

### Water Tank Parcel

Begin at the northwest corner of the Northeast 1/4 of Section 35, Township 24 South, Range 26 East, Lake County, Florida: Thence run S. 00°00'07"E., along the westerly boundary of said Northeast 1/4, a distance of 100.00 feet; thence departing said westerly boundary, run S.90°00'00"W., 506.87 feet; thence N.00°00'00"W., 97.04 feet to the northerly boundary of the aforesaid Section 35; thence N.89°39'53"E., along said northerly boundary, a distance of 506.88 feet to the point of beginning. Containing 49,936 square feet, 1.15 acres more or less.

RLC II

page 5 of 5

97 19048

(The above space reserved for recording information)

### FIRST AMENDMENT OF LEASE

THIS FIRST AMENDMENT OF LEASE is made and executed as of this 21st day of March, 1997, by and between ROBERT L. CHAPMAN, JR. (II) and ELISABETH T. CHAFMAN, his wife (collectively, the "Lessor"), and SOUTHLAKE UTILITIES, INC., a Florida corporation (the "Беззез").

WHEREAS, Lessor and Lessee have previously entered into that Lease For Ninety-Nine Years dated August 17, 1993, and recorded in O.R. Book 1316, page 0350, public records of Lake County, Florida (the "Lease"); and

WHEREAS, LOBBOT and LOESSE wish to amond the Lease for the sole purpose of confirming that construction liens pursuant to Chapter 713, Florida Statutes, or any similar lien shall not extend to the fee interest of the Lessor in the property which is the subject of the Lease, and shall not be subject to liens for improvements made by the Lessee related to said property.

NOW, THEREFORE, for valuable consideration, and the mutual covenants set forth below, the parties agree as follows:

The parties agree that the interest of the Lessor in the 1. premises and real property described in the Lease shall not be subject to liens for improvements made by the Lessee or its agents, and that the Lessee shall notify any contractor making any such improvements of the provision in this Lease, as amended. On any Notice of Commencement recorded in connection with the construction of any such improvements, Lessee shall note thereon that Lessee's interest in the property is a leasehold interest only, governed by the terms of this Lease, as amended.

All other terms and conditions of the Lease shall female proce and effect. the presence of: 2. in full force and effect.

1

Signed in the presence of:

Two Witnesses

HI TRINE PLO SOUTHERE AND

PLEASE RETURN TO KERRY M. WILSON OF PETERSON & MYERS, P.A. P.02 P. O. Drawer 7608 Winter Haven, Florida 33883-7608

ROBERT L. CHAFMAN.

ELISABETH T. CHAPMAN

HIE

. . .

JR.

03-21-1997 05:38PM

P. D. Drawer 7608 Winter Haven, Florida 33083-7368 THIS INSTRUMENT PREPARED BY KERRY M. WILSON OF PETERSON & MYERS, P.A.

Page 7 of 23

MAR 21 '97 03:57PM

P.2/5

# PAGE 2322

(The above space reserved for recording information)

### FIRST AMENDMENT OF LEASE

THIS FIRST AMENDMENT OF LEASE is made and executed as of this 21st day of March, 1997, by and between ROBERT L. CHAPMAN, JR. (II) and ELISABETH T. CHAPMAN, his wife (collectively, the "Lessor"), and SOUTHLAKE UTILITIES, INC., a Florida corporation (the "Lessee").

WHEREAS, Lessor and Lessee have previously entered into that Lease For Ninety-Nine Years dated August 17, 1993, and recorded in O.R. Book 1316, page 0350, public records of Lake County, Florida (the "Lease"); and

WHEREAS, Lessor and Lessee wish to amend the Lease for the sole purpose of confirming that construction liens pursuant to Chapter 713, Florida Statutes, or any similar lien shall not extend to the fee interest of the Lessor in the property which is the subject of the Lease, and shall not be subject to liens for improvements made by the Lessee related to said property.

NOW, THEREFORE, for valuable consideration, and the mutual covenants set forth below, the parties agree as follows:

1. The parties agree that the interest of the Lessor in the premises and real property described in the Lesse shall not be subject to liens for improvements made by the Lessee, and that the Lessee shall notify any contractor making any such improvements of the provision in this Lesse, as amended. On any Notice of Commencement recorded in connection with the construction of any such improvements, Lessee shall note thereon that Lessee's interest in the property is a lessehold interest only, governed by the terms of this Lease, as amended.

2. All other terms and conditions of the Lease shall remain in full force and effect.

Signed in the presence of:

mmunahn

Witnesses

Page 8 of 23

MAR 21 '97 03:57PM

P.3/5

Book 1504 PAGE 2323

SOUTHLAKE UTILITIES, INC.

By:\_\_

Robert L. Chapman, III, President

STATE OF FLORIDA COUNTY OF LAKE

The foregoing instrument was acknowledged before me this day of March, 1997, by ROBERT L. CHAPMAN, JR. (II), and ELISABETH T. CHAPMAN, his wife, who are personally (known) to me or produced as identification.

(SEAL)

Anoros Zammerniann 1.1.4 + Ny Commission CC614007 Expires January 15 2001

Two Witnesses

rea / Simmermana

NOTARY PUBLAC/STATE OF FLORIDA

STATE OF COUNTY OF

(SEAL)

NOTARY PUBLIC

Page 9 of 23

### BOBK 1504 PAGE 2324

*inesses* 

SOUTHLAKE UTILITIES, INC. By: / Chapman. Rober Ь. III.

President

STATE OF FLORIDA COUNTY OF LAKE

The foregoing instrument was acknowledged before me this day of March, 1997, by ROBERT L. CHAPMAN, JR. (II), and ELISABETH T. CHAPMAN, his wife, who are personally known to me or produced as identification.

(SEAL)

NOTARY PUBLIC/STATE OF FLORIDA

STATE OF South Carolina

The foregoing instrument was acknowledged before no this  $\frac{22}{3}$  day of March, 1997, by Robert L. Chapman, III, as President of SOUTHLAKE UTILITIES, INC., a Florida corporation, on behalf of said corporation. He is personally known to me or produced Florida.

NOTARY

. . . .

My commission Expiles

H:\HOMB\PLX\SCOTHLAE.MD

03-21-1997 05:38PM

C 7 8

(GEAI

P.03

# BOOK 1529 PAGE 1183

97 44700

# SECOND AMENDMENT TO LEASE

REC 2100

THIS Second Amendment To Lease (hereinafter sometimes referred to as the "Second Amendment"), made and entered into this <u>27</u> day of June, 1997, by and between SOUTHLAKE DEVELOPMENT, LTD., a Florida limited partnership (hereinafter sometimes referred to as "Lessor"); and SOUTHLAKE UTILITIES, INC., a Florida corporation (hereinafter sometimes referred to as "Lessee"),

### WITNESSETH:

WHEREAS, the parties hereto presently are also respectively the Lessor and Lessee under that certain Lease For Ninety-Nine Years as recorded among the current public records of Lake County, Florida in Official Records Book 1316, Page 350, as amended by that certain First Amendment Of Lease recorded in Official Records 1504, Page 2321, and as then assigned by that certain Assignment Of Lease as recorded in Official Records Book 1521, Page 1081 (herethafted sometimes collectively referred to in the singular as the "Lease") and

WHEREAS, the parties hereto wish to amend and modify the Lease so as to correct two errors in the attached leggl description by virtue of this Second Amendment; and

NOW, THEREFORE, in consideration of the premises and the mutual covenants, agreements, conditions, and warranties of the parties to the Lease and this Second Amendment, it is hereby covenanted and agreed by and between the parties as follows:

1. The Lease is hereby amended and modified as of the effective date hereof as follows:

(a) To correct the Legal Description for the Water Treatment Plant Parcel which is identified as such on Exhibit "A" attached thereto as follows:

Prepared by:

William J. Deas, Esquire William J. Deas, P.A. 2215 River Boulevard Jacksonville, Florida 32204 Return to:

William J. Deas, Esquire William J. Deas, P.A. 2215 River Boulevard Jacksonville, Florida 32204

LAW OFFICE LLIAM J. DEAS, P.A. IB HIVER BOULEVARD HSONVILL, FL 30204

### 200x 1529 PAGE 1184

- (i) To add in the ninth line of such Legal Description after the call which ends "...S.20°35'59"E. 55.84 feet..." the following new call "...thence N.89°49'01"E., 135 feet"
- (ii) To correct the bearing at the beginning of the eleventh line of such Legal Description from the incorrect bearing of "N.01°11'59"W." to the correct bearing of "N.00°11'59"W."

2. Except as are herein amended or modified, all of the terms, conditions, covenants, agreements, representations, and warranties of the Lease are and shall remain in full force and effect.

3. The parties hereto, by their respective executions hereof, hereby represent and warrant to the other party hereto, that, to the best of their respective information and belief, the Lease is not in default as of the date hereof.

4. It is specifically understood and agreed that no person, firm, or other legal entity shall be a third party beneficiary hereunder, and that none of the provisions of this Second Amendment shall be for the benefit of, or be enforceable by, anyone other than the parties hereto, and that only the parties hereto and their permitted assignees shall have any rights hereunder.

5. This Second Amendment shall not become effective or binding until it has been executed by all parties hereto, and shall be dated for purposes hereof as of the date of execution of Lessor.

6. This Second Amendment shall be construed under the laws of the State Of Florida, regardless of its place of execution or delivery.

7. This Second Amendment shall not be construed more strongly against either party hereto, regardless of who was more responsible for its preparation.

8. This Second Amendment shall not be amended or modified, except in the same fashion and with the same requirements as an amendment to the Lease.

LAW OFFICE FLUCAM J. DEAB, P.A. 215 RIVER BOULEVARD (CRSONVILLE, FL 32204

Page 12 of 23

## Bobk 1529 PAGE 1185

9. This Second Amendment shall be binding only upon and shall inure only to the benefit of the parties hereto and their legal representatives, successors, and assigns, as applicable. Any party hereto may be released from any obligation or agreement hereunder only by a written agreement of the other party specifically providing for such release.

10. This Second Amendment may be executed in any number of counterparts, each of which, when executed and delivered, shall be deemed to be an original instrument, but such counterparts shall together constitute one and the same instrument.

11. Whenever used herein, the terms "Lessor", and "Lessee" shall include masculine, feminine, neuter, singular and/or plural, as the context so admits or requires.

IN WITNESS WHEREOF, the parties hereto have executed this Second Amendment, the day and year first above written.

Signed and sealed in the presence of:

SOUTHLAKE DEVELOPMENT, LTD., a Florida limited partnership

By: SOUTHLAKE HOLDING, INC., a Florida corporation, as its sole General Partner

Signature of Witness

Typed or Printed Name of Witness Marla Ammimana Signature of Witness

Typed or Printed Name of Witness

drea Limmermann

y: Deffrey Cagan, as its President

(Corporate Seal)

LAW DEFICE ILLIAN J. DEAS. P.A. 213 RIVER BOULEVARD ICHSONVILLE, FL 32204

Page 13 of 23

### 868 1529 PAGE 1185

SOUTHLAKE UTILITIES, INC., a Florida corporation By: Signature of Witness rey Cagan, as its Vice President Printed Name of Witness (Corporate Seal) moremann Signature of Witness ANDREA ZIMMERMANN Typed or Printed Name of Witness STATE OF ILLINOTS FLORIDA COUNTY OF COOK LAKE The foregoing instrument was acknowledged before me this  $21^{+-}$ day of June, 1997, by Jeffrey Cagan, as President of SOUTHLAKE HOLDING, INC., a Florida corporation, as the sole General Partner of SOUTHLAKE DEVELOPMENT, LTD., a Florida limited partnership, on behalf of the Corporation and of the Partnership, who is personally known to me (or who has produced \_\_\_\_ as identification). Indread Marea grimmermann Signature of person taking acknowledgment Andrea Zimmermann Andrea Zammormani - CCELADO NY GUNAN Name typed, printed or stamped Expires January 15 2001 January 15, 2001 Commission expiration date NIA Title or rank NIA Serial number, if any -4-

LAW OFFICE LLIAN J. DEAN, P.A. 215 RIVER BOULEVARD CKSONVILLE, FL 32204

Page 14 of 23

| STATE OF HEINOTS FU<br>COUNTY OF COSK LAK   |                                                                             |                                                                                                                                   |
|---------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| day of June, 1997, by<br>UTILITIES, INC., a | y Jeffrey Cagan, as Vice<br>a Florida corporation<br>personally known to me | dged before me this <u>27</u> <sup>th</sup><br>President of SOUTHLAKE<br>, on behalf of the<br>(or who has produced<br>fication). |
| andre                                       | es Jemmumann                                                                |                                                                                                                                   |
| Signature                                   | of person taking ackno<br><i>Zimm5RmANN</i>                                 | wledgment                                                                                                                         |
| Name type                                   | d, printed or stamped                                                       | Andrea Zaumermann<br>A Andrea Zaumermann<br>A Andrea Zaumermann<br>A Contribution CC814007<br>Sector Expires January 15 2001      |
| Commission                                  | w expiration date                                                           | "" ty 15.5"                                                                                                                       |
| Title or                                    | rank                                                                        |                                                                                                                                   |
| <u>NA</u>                                   | mber, if any                                                                |                                                                                                                                   |
|                                             | inder, ir any                                                               |                                                                                                                                   |
|                                             |                                                                             |                                                                                                                                   |
|                                             |                                                                             |                                                                                                                                   |
|                                             |                                                                             | · · ·                                                                                                                             |
|                                             |                                                                             |                                                                                                                                   |
|                                             |                                                                             |                                                                                                                                   |
|                                             |                                                                             |                                                                                                                                   |
| S:\SOU\2000-154\AAG/dgf<br>6/9/97           |                                                                             |                                                                                                                                   |
|                                             |                                                                             |                                                                                                                                   |
|                                             |                                                                             |                                                                                                                                   |
|                                             |                                                                             |                                                                                                                                   |
|                                             |                                                                             |                                                                                                                                   |
|                                             |                                                                             |                                                                                                                                   |
|                                             | -5-                                                                         |                                                                                                                                   |
|                                             |                                                                             |                                                                                                                                   |

. .

LAW OFFICE ILLIAM J. DEAB, P.A. 215 RIVER BOULEVARD CERDAVICLE, FL 31204

Page 15 of 23

Doct 99004783 Might: 1587 - 375 Filed & Recorded 01/20/99 03:19:23 PM JAMES C. WATKINS CLERK DF CIRCUIT COURT LAKE CRUMTY RECORDING \$ 37.00 TRUST FUND \$ 5.00

### THIRD AMENDMENT TO LEASE

THIS THIRD AMENDMENT TO LEASE (hereinafter sometimes referred to as the "Third Amendment"), made and entered into this \_\_\_\_\_\_ day of December, 1998, by and between SOUTHLAKE DEVELOPMENT, LTD., a Florida limited partnership (hereinafter sometimes referred to as "Lessor"); and SOUTHLAKE UTILITIES, INC., a Florida corporation (hereinafter sometimes referred to as "Lessee"),

### WITNESSETH:

WHEREAS, the parties hereto presently arealso the Lessor and Lessee, respectively, under that certain Lease For Ninety-Nine Years as recorded in Official Records Book 1316, Page 350 [NOTE: All recording references herein are to the current public records of Lake County, Florida], as first amended by that certain First Amendment Of Lease recorded in Official Records 1504, Page 2321, as then assigned by that certain Assignment Of Lease as recorded in Official Records Book 1521, Page 1081, and as subsequently amended by that certain Second Amendment To Lease recorded in Official Records Book 1529, Page 1183 (hereinafter sometimes collectively referred to in the singular as the "Lease"); and

WHEREAS, the parties hereto wish to amend and modify the Lease in certain aspects; and

NOW, THEREFORE, in consideration of the premises and the mutual covenants, agreements, conditions, and warranties of the parties to the Lease and this Third Amendment, it is hereby covenanted and agreed by and between the parties as follows:

Prepared by:

William J. Deas, Esquire William J. Deas, P.A. 2215 River Boulevard Jacksonville, Florida 32204 Return to:

William J. Deas, Esquire William J. Deas, P.A. 2215 River Boulevard Jacksonville, Florida 32204

LLW DIFICE LLIAN J. DEAS. P.A. IS RIVER EQULEVARD INDOVILLE, FL 32204

1. The Lease is hereby amended and modified as of the effective date hereof as follows:

 (a) The following two new provisions are hereby added to the end of the Lease;

"Lessee shall have the right, at its sole option upon the expiration of the basic Ninety-Nine Year term hereof, to purchase the property herein leased from Lessor for the sum of \$1,000.00 cash. This purchase right option of Lessee must be exercised by written notice of such from Lessee to Lessor no sconer than ninety (90) days prior nor later than thirty (30) days prior to the expiration of the normal term of the Lease. Title to said leased property shall be conveyed by Lessor to Lessee by Special Warranty Deed subject to all covenants, restrictions, and easements of record, and all ad valorem taxes due thereon. Lessee shall bear any and all costs of such conveyance."

"Anything herein notwithstanding to the contrary, Lessee shall not have the right to utilize the leased premises for any sign purposes other than directional or identification signs reasonably requested for its own business purposes."

(b) The old Legal Description of the Water Tank Parcel as described in Exhibit "A" to the Lease is hereby deleted.

(c) The description of the property leased as described in Exhibit "A" to the Lease is expanded to include the new Well Head Lease Parcel as described in Exhibit "1" attached hereto, together with the new Water Treatment Plant Supplemental Parcel which is described in Exhibit "2" attached hereto.

2. Except as are herein amended or modified, all of the terms, conditions, covenants, agreements, representations, and warranties of the Lease are and shall remain in full force and effect, specifically including, but not limited to, the rent payments contemplated therein.

3. The parties hereto, by their respective executions hereof, hereby represent and warrant to the other party hereto, that, to the best of their respective information and belief, the Lease is not in default as of the date hereof.

4. It is specifically understood and agreed that no person, firm, or other legal entity shall be a third party beneficiary hereunder, and that none of the provisions of this Third Amendment shall be for the benefit of, or be enforceable by, anyone other than the parties hereto, and that only the parties hereto and their permitted assignces shall have any rights hereunder.

LAW OFFICE ILLIAM J. DEAS, P.A. 215 RIVER BOULEVARD CK504WILLE, FL 12204

5. This Third Amendment shall not become effective or binding until it has been executed by all parties hereto, and shall be dated for purposes hereof as of the date of execution of Lessor.

6. This Third Amendment shall be construed under the laws of the State Of Florida, regardless of its place of execution or delivery.

7. This Third Amendment shall not be construed more strongly against either party hereto, regardless of who was more responsible for its preparation.

8. This Third Amendment shall not be amended or modified, except in the same fashion and with the same requirements as an amendment to the Lease.

9. This Third Amendment shall be binding only upon and shall inure only to the benefit of the parties hereto and their legal representatives, successors, and assigns, as applicable. Any party hereto may be released from any obligation or agreement hereunder only by a written agreement of the other party specifically providing for such release.

10. This Third Amendment may be executed in any number of counterparts, each of which, when executed and delivered, shall be deemed to be an original instrument, but such counterparts shall together constitute one and the same instrument.

11. Whenever used herein, the terms "Lessor", and "Lessee" shall include masculine, feminine, neuter, singular and/cr plural, as the context so admits or requires.

IN WITNESS WHEREOF, the parties hereto have executed this Third Amendment, the day and year first above written.

LAW OFFICE LLIAN J. DUAR, P.A. 15 RIVER SCULEVARD 24504VILLE, FL 32203

|                                                                                |                                                                                                                      | rage to 0123                                                                                                                                            |
|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                | Book<br>Signed and sealed in the<br>presence of:                                                                     | <b>1680 Page 370</b><br>SOUTHLAKE DEVELOPMENT, LTD.,<br>a Florida limited partnership                                                                   |
| · · · ·                                                                        | Signature of Witness<br><u>MALENDE</u><br>Typed or Printed Name of Witness<br><u>MALENDE</u><br>Signature of Witness | By: SOUTHLAKE HOLDING, INC.,<br>a Florida corporation, as<br>its sole General Partner<br>By:<br>Juli rey Cagan, as its<br>President<br>(Corporate Seal) |
|                                                                                | <u>IVANLA VASILJ</u><br>Typed or Printed Name of Witness                                                             | SOUTHLAKE UTILITIES, INC., a<br>Florida corporation                                                                                                     |
|                                                                                | Signature of Witness<br>Lynne R. Fish<br>Typed or Printed Name of Witness<br>Walk-Do                                 | By: Robert L. Chapman, III, as<br>its President<br>(Corporate Seal)                                                                                     |
|                                                                                | Signature of Witness<br><u>Walks</u><br>Typed or Printed Name of Witness                                             |                                                                                                                                                         |
| LAW OFFICE<br>LLIAN J. DEAS, P.A.<br>15 River Bouldvard<br>LASONVILE, FL 32204 | -4-                                                                                                                  |                                                                                                                                                         |

ı.

| STATE OF<br>COUNTY C                      | Ellinais Book 1680 Page 371                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Day of<br>SOUTHLAK<br>Partner<br>partners | e foregoing instrument was acknowledged before me this TH<br>DremDer , 1998, by Jeffrey Cagan, as President of<br>E HOLDING, INC., a Florida corporation, as the sole General<br>of SOUTHLAKE DEVELOPMENT, LTD., a Florida limited<br>hip, on behalf of the Corporation and of the Partnership,<br>personally known to me (or who has produced<br>as identification).                          |
|                                           | Contra Pir P                                                                                                                                                                                                                                                                                                                                                                                   |
|                                           | Signature of person taking acknowledgment                                                                                                                                                                                                                                                                                                                                                      |
|                                           | Nation - Walling                                                                                                                                                                                                                                                                                                                                                                               |
|                                           | Name typed, printed or stamped                                                                                                                                                                                                                                                                                                                                                                 |
|                                           | Commission expiration date { OFFICIAL SEAL }                                                                                                                                                                                                                                                                                                                                                   |
|                                           | NUTTURE Projet                                                                                                                                                                                                                                                                                                                                                                                 |
|                                           | Title or rank                                                                                                                                                                                                                                                                                                                                                                                  |
|                                           | Serial number, if any                                                                                                                                                                                                                                                                                                                                                                          |
| COUNTY OF                                 | MEMO: Legibility of writing<br>worth chrolina in this document.<br>foregoing instrument was acknowledged before me this 25 day<br>foregoing instrument was acknowledged before me this 25 day<br>1998, by ROBERT L. CHAPMAN, III, as President of<br>UTILITIES, INC., a Florida corporation, on behalf of the<br>on, who is personally known to me (or who has produced<br>as identification). |
|                                           | $\int$                                                                                                                                                                                                                                                                                                                                                                                         |
|                                           | Signature of person taking acknowledgment                                                                                                                                                                                                                                                                                                                                                      |
|                                           | Name typed, printed of William J. Deas                                                                                                                                                                                                                                                                                                                                                         |
|                                           | Commission explanation Englisher 14, 2011                                                                                                                                                                                                                                                                                                                                                      |
|                                           | Title or rank                                                                                                                                                                                                                                                                                                                                                                                  |
|                                           | Serial number, if any                                                                                                                                                                                                                                                                                                                                                                          |
| F:\DOC\$\\$0V\20<br>10/26/98              | 00-154\AAG-4F.WPD/dg1                                                                                                                                                                                                                                                                                                                                                                          |
|                                           | -5-                                                                                                                                                                                                                                                                                                                                                                                            |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                |

•

LAW OFFICE LUIAH J. DEAR. P.A. DIS DIVER BOULEVARD INSERVILLE FL 32204

•

EXHIBIT "1"

THAT CERTAIN PIECE, PARCEL, OR TRACT OF LAND, LYING, BEING AND SITUATE IN LAKE COUNTY, FLORIDA; AND BEING MORE PARTICULARLY DESCRIBED AS FOLLOWS:

That part of Section 35, Township 24 South, Range 26 East, Lake County, Florida, described as follows:

Commence at the Northwest corner of the Northeast 1/4 of Section 35, Township 24 South, Range 26 East and run N 89°42'18" E along the North Line of said Northeast 1/4 for a distance of 355.86 feet; thence run S 00°17'42" E for a distance of 13.69 feet to the POINT OF BEGINNING; thence run N 89°42'18" E for a distance of 10.00 feet; thence run S 00°17'42" E for a distance of 10.00 feet; thence run S 89°42'18" W for a distance of 10.00 feet; thence run N 00°17'42" W for a distance of 10.00 feet to the POINT OF BEGINNING.

[WELL HEAD LEASE PARCEL - JOB #1]

F:\DOCS\SOU\2000-137\SKETCH.WPD/dgf 9/30/98

LAN GITICE LLIAH J. DBAR, P.A. 15 RIVER BOULEVARD INSONVILLE, FL 32204

. . .

### EXHIBIT "2"

THAT CERTAIN PIECE, PARCEL, OR TRACT OF LAND, LYING, BEING AND SITUATE IN LAKE COUNTY, FLORIDA; AND BEING MORE PARTICULARLY DESCRIBED AS FOLLOWS:

That part of Section 35, Township 24 South, Range 26 East, Lake County, Florida, described as follows:

Commence at the Northeast corner of Section 35, Township 24 South, Range 26 East and run S B9°42'18" W along the North line of the Northeast 1/4 of said Section 35 for a distance of 1308.05 feet to the POINT OF BEGINNING; thence continue S 89°42'18" W along said line for a distance of 122.03 feet; thence run S 00°18'42" E along the East line of lands described in Official Records Book 1316, Page 350, as amended in Official Records Book 1529, Page 1183, of the Public Records of Lake County, Florida, for a distance of 287.68 feet; thence run S 00°11'59" E along said line for a distance of 120.30 feet to the Southeast corner of said lands; thence run N 89°48'01" E for a distance of 122.26 feet; thence run N 00°18'42" W for a distance of 408.18 feet to the POINT OF BEGINNING.

[SECOND REVISED WATER TREATMENT PLANT SUPPLEMENTAL PARCEL - JOB #7]

LAW OFFICE LLIAM J, DEAR, P.A. 16 AIVER BOULEVAND ASONVILLE, FL 32204 F:\DOCS\SOU\2000-137\SKETCH.WPD/dgf 1:/18/98

### JOINDER AND CONSENT

Robert L. Chapman, Jr. and Elizabeth T. Chapman, his Wife ("Mortgagee"), being the present owner and holder of the Purchase Money Mortgage And Security Agreement recorded in Official Records Book 1521, Page 1054, and the companion Financing Statement recorded in Official Records Book 1521, Page 1106 (collectively the "Mortgage") [All recording references herein are to the current public records of Lake County, Florida], hereby join in and consent to the above and foregoing Third Amendment To Lease (the "Amendment") for purposes of ratifying and confirming such and agreeing that the lien, Security Agreement, force, effect and priority of the Mortgage shall be subject to the Amendment with the same force and effect as if the Amendment had been executed and recorded prior to the recordation of the Mortgage.

IN WITNESS WHEREOF, Robert L. Chapman, Jr. and Elizabeth T. Chapman, his Wife, has caused this Joinder And Consent to be executed this 12th day of December , 1998.

Signed and sealed in the presence of:

Ving 1 Kism

Signature of Witness

Man Vilson Printed Name of Witness

Signature of Witness

Elisabeth, A. Wilson Printed Name of

My 1 Sim

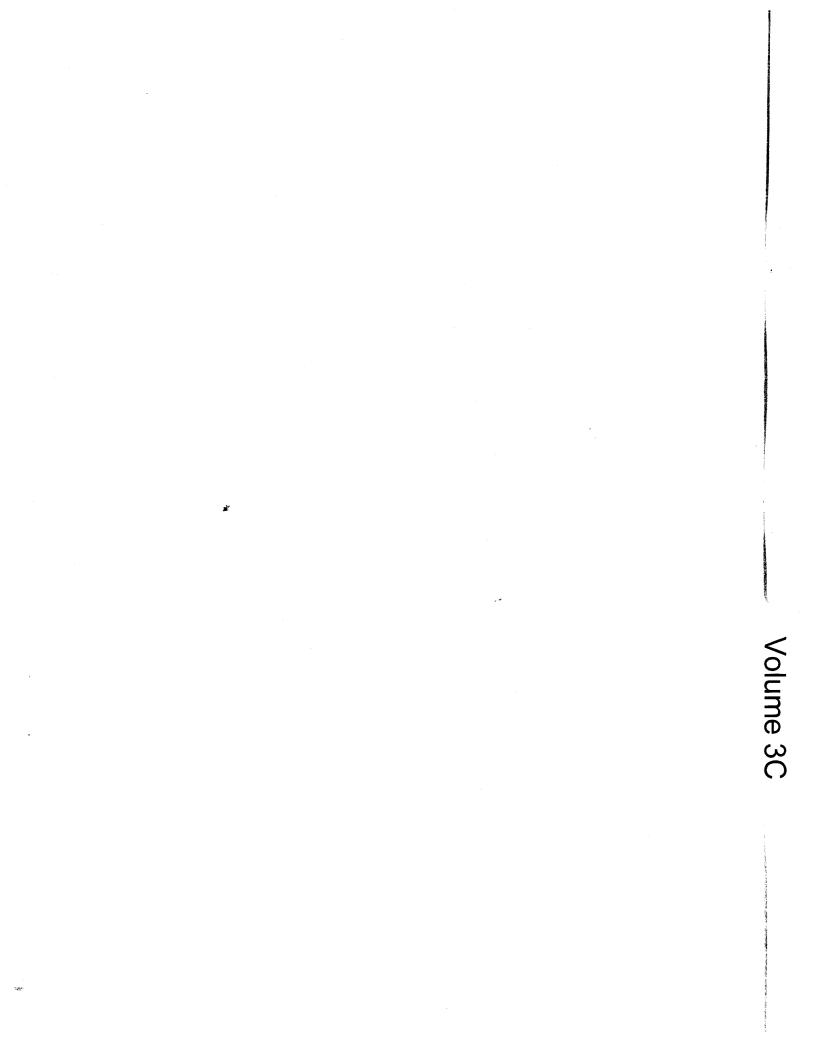
Signature of Witness

Max Wilson

Printed Name of Witness

gnature of Witness Elisabeth C. Wilson [Alas De Signature of

Printed Name of Witness


Elischoth ? Of Elisabeth T. Chapman

Robert L. Chapman, Jr.

LAW OFFICE WILLIAM J. DEAS. P.A. 225 RIVER BOULEVARD ASKSONWILLE, FL 38864

MEMO: Legibility of writing grang or printing unsatisfactory in this document. STATE OF GEORGIA Book 1680 Page 375 COUNTY OF DOVEHENAN The foregoing instrument was acknowledged before me this 12th day of December \_\_\_\_, 1998, by Robert L. Chapman, Jr. as one of the present owners and holders of the Purchase Money Mortgage And Security Agreement, who is personally known to me (or who has produced \_\_\_\_\_ T Sas CI identification). Signature of person taking acknowledgment CONLEY BRENDA C. Name typed, printed or stamped JANNIAN 5 2002 Commission expiration date RUBLIC DOUGHONTY Title or rank Serial number, if any STATE OF GEOLGIA COUNTY OF DOUGHOUSY The foregoing instrument was acknowledged before me this 12th day of December \_\_\_\_\_, 1998, by Elizabeth T. Chapman as one of the present owners and holders of the Purchase Money Mortgage And Security Agreement, who is personally known to me (or who has produced \_\_\_\_ as identification). Signature of person taking acknowledgment CONCEY BRENOA C. Name typed, printed or stamped JAnumy 5 2002 Commission expiration date PUBLIC DOUGHATTE, GERIZGIA NISTM Title or rank Serial number, if any F:\DOCS\SOU\2000-137\CONS.WPD/jma AW DECKE 11/30/98

AW OFFICE WILLIAM J. DEAS, PAA. 2205 RIVER SOULEVARE JACKGONVILLE, FL 32204



### Southlake Utilities, Inc. 2007 Water/Wastewater Chemical Usage

## 2007 Water Treatment Plant

| Month  | Chemical Used             | Qtv Purchased | Unit Price | Dollar Amount | Dosage Rate                    | Euel Surcharge |
|--------|---------------------------|---------------|------------|---------------|--------------------------------|----------------|
| Jan-07 |                           |               | \$1.09     | \$2,000.15    | Avg 1.0 mg/L Demand CL2 System | \$45.00        |
| Feb-07 | Sodium Hypochlorite 12.5% | 1610          | \$1.09     | \$1,754.90    |                                | \$36.00        |
| Mar-07 | Sodium Hypochlorite 12.5% | 1085          | \$1.09     | \$1,182.65    | Avg 1.0 mg/L Demand CL2 System | \$36.00        |
| Apr-07 | Sodium Hypochlorite 12.5% | 1725          | \$1.09     | \$1,880.25    | Avg 1.0 mg/L Demand CL2 System | \$36.00        |
| May-07 | Sodium Hypochlorite 12.5% | 2020          | \$1.09     | \$2,201.80    | Avg 1.0 mg/L Demand CL2 System | \$45.00        |
| Jun-07 | Sodium Hypochlorite 12.5% | 1910          | \$1.09     | \$2,081.90    | Avg 1.0 mg/L Demand CL2 System | \$36.00        |
| Jul-07 | Sodium Hypochlorite 12.5% | 1855          | \$1.09     | \$2,021.95    | Avg 1.0 mg/L Demand CL2 System | \$36.00        |
| Aug-07 | Sodium Hypochlorite 12.5% | 2690          | \$1.09     | \$2,932.10    | Avg 1.0 mg/L Demand CL2 System | \$45.00        |
| Sep-07 | Sodium Hypochlorite 12.5% | 1865          | \$1.09     | \$2,032.85    | Avg 1.0 mg/L Demand CL2 System | \$36.00        |
| Oct-07 | Sodium Hypochlorite 12.5% | 2420          | \$1.09     | \$2,637.80    | Avg 1.0 mg/L Demand CL2 System | \$45.00        |
| Nov-07 | Sodium Hypochlorite 12.5% | 1660          | \$1.09     | \$1,809.40    | Avg 1.0 mg/L Demand CL2 System | \$36.00        |
| Dec-07 | Sodium Hypochlorite 12.5% | 1920          | \$1.09     | \$2,092.80    | Avg 1.0 mg/L Demand CL2 System | \$36.00        |
|        | TOTAL                     | 22595         |            | \$24,628.55   |                                | \$468.00       |

## 2007 WasteWater Treatment Plant

| Month  | Chemical Used                 | Qty Purchased | Unit Price | Dollar Amount | Dosage Rate                    | Fuel Surcharge |
|--------|-------------------------------|---------------|------------|---------------|--------------------------------|----------------|
| Jan-07 | Sodium Hypochlorite 12.5%     | 1640          | \$1.09     | \$1,787.60    | Avg 1.0 mg/L Demand CL2 System | \$45.00        |
|        | Calcium Hypochlorite Granular | 2             | \$135.00   | \$270.00      |                                |                |
| Feb-07 | Sodium Hypochlorite 12.5%     | 855           | \$1.09     | \$931.95      | Avg 1.0 mg/L Demand CL2 System | \$36.00        |
| Mar-07 | Sodium Hypochlorite 12.5%     | 755           | \$1.09     | \$822.95      | Avg 1.0 mg/L Demand CL2 System | \$36.00        |
|        | Calcium Hypochlorite Granular | 2             | \$135.00   | \$270.00      |                                |                |
| Apr-07 | Sodium Hypochlorite 12.5%     | 1390          | \$1.09     | \$1,515.10    | Avg 1.0 mg/L Demand CL2 System | \$36.00        |
|        | Calcium Hypochlorite Granular | 2             | \$135.00   | \$270.00      |                                |                |
| May-07 | Sodium Hypochlorite 12.5%     | 1365          | \$1.09     | \$1,487.85    | Avg 1.0 mg/L Demand CL2 System | \$36.00        |
| Jun-07 | Sodium Hypochlorite 12.5%     | 1280          | \$1.09     | \$1,395.20    |                                | \$36.00        |
|        | Calcium Hypochlorite Granular | 2             | \$135.00   | \$270.00      |                                |                |
| Jul-07 | Sodium Hypochlorite 12.5%     | 1755          | \$1.09     | \$1,912.95    | Avg 1.0 mg/L Demand CL2 System | \$36.00        |
|        | Calcium Hypochlorite Granular | 4             | \$135.00   | \$540.00      |                                |                |
| Aug-07 | Sodium Hypochlorite 12.5%     | 1705          | \$1.09     | \$1,858.45    | Avg 1.0 mg/L Demand CL2 System | \$45.00        |
|        | Calcium Hypochlorite Granular | 3             | \$135.00   | \$405.00      |                                |                |
| Sep-07 | Sodium Hypochlorite 12.5%     | 1845          | \$1.09     | \$2,011.05    | Avg 1.0 mg/L Demand CL2 System | \$36.00        |
|        | Calcium Hypochlorite Granular | 1             | \$135.00   | \$135.00      |                                |                |
| Oct-07 | Sodium Hypochlorite 12.5%     | 2620          | \$1.09     | \$2,855.80    | Avg 1.0 mg/L Demand CL2 System | \$45.00        |
|        | Calcium Hypochlorite Granular |               | \$135.00   | \$135.00      |                                |                |
| Nov-07 | Sodium Hypochlorite 12.5%     |               | \$1.09     | \$2,136.40    | Avg 1.0 mg/L Demand CL2 System | \$36.00        |
| Dec-07 | Sodium Hypochlorite 12.5%     |               |            | \$1,422.45    |                                | \$36.00        |
|        | Calcium Hypochlorite Granular |               | \$135.00   | \$405.00      |                                |                |
|        | TOTAL                         |               |            | \$22,837.75   |                                | \$459.00       |

Volume 3D

# SouthLake WTP

Page 1 of 46

## Advanced Environmental Laboratories, Inc.

## Analytical Report

|                                                                            | Tri-Tech La               | boratorie                     | S                                   |                             |                    | Report No.: A051277               |                                                            |                                                           |                                |            |  |
|----------------------------------------------------------------------------|---------------------------|-------------------------------|-------------------------------------|-----------------------------|--------------------|-----------------------------------|------------------------------------------------------------|-----------------------------------------------------------|--------------------------------|------------|--|
| Project Name:                                                              | 05-04-13-1                |                               |                                     |                             |                    | Date/Time Received: 4/13/05 16:00 |                                                            |                                                           |                                |            |  |
| Lab Code:                                                                  | A051277-0                 | 2                             |                                     |                             |                    | D                                 | ate/Time Sam                                               | pled: 4/1                                                 | 3/2005 11                      | :15        |  |
| Client Sample ID:                                                          | 2                         |                               |                                     |                             |                    |                                   | Shipping M                                                 | ethod: Clie                                               | nt drop off                    |            |  |
| Site:                                                                      | 05-04-416-*               | 1                             |                                     |                             |                    |                                   | Sample                                                     | d By: Clie                                                | nt                             |            |  |
| Matrix:                                                                    | Water                     |                               |                                     |                             |                    |                                   | Sampling M                                                 | ethod: G                                                  |                                |            |  |
|                                                                            |                           |                               |                                     | Miscellaneou                | s Analytes         |                                   |                                                            |                                                           |                                |            |  |
| Analytes:                                                                  |                           | Dilution                      | Adjusted<br>MDL                     | Adjusted PQL                | Results            | Units                             | Qualifier(s)                                               | Method                                                    | Parameter<br>Comment           | Lab        |  |
| MBAS, as LAS, mol.                                                         | wt. 320g                  | 1                             | 0.065                               | 0.26                        | 0.065              | mg/L                              | U                                                          | E425.1                                                    |                                | J          |  |
| Total Dissolved Solid                                                      | s                         | 1                             | 10                                  | 10                          | 180                | mg/L                              |                                                            | E160.1                                                    |                                | J          |  |
|                                                                            |                           |                               |                                     |                             |                    |                                   |                                                            |                                                           |                                |            |  |
| Lab Code:                                                                  | A051277-03                |                               | artification)                       |                             |                    | Di                                | ate/Time Sam                                               | pled: 4/13                                                | 3/2005 11                      | :15        |  |
|                                                                            |                           |                               |                                     |                             |                    | Da                                | Shipping Me                                                | thod: Clie                                                | nt drop off                    | :15        |  |
| Client Sample ID:                                                          |                           |                               |                                     |                             |                    | Di                                | Shipping Me<br>Sampleo                                     | thod: Clier<br>By: Clier                                  | nt drop off                    | :15        |  |
| Client Sample ID:                                                          | 3<br>05-04-416-1          |                               |                                     |                             |                    | Da                                | Shipping Me                                                | thod: Clier<br>By: Clier                                  | nt drop off                    | :15        |  |
| Client Sample ID:<br>Site:                                                 | 3<br>05-04-416-1          |                               |                                     | Ethylene Di                 | bromide            | Di                                | Shipping Me<br>Sampleo                                     | thod: Clier<br>By: Clier                                  | nt drop off                    | :15        |  |
| Client Sample ID:<br>Site:<br>Matrix:                                      | 3<br>05-04-416-1<br>Water |                               | Adjusted<br>MDL                     | Ethylene Di<br>Adjusted PQL | bromide<br>Results | Di                                | Shipping Me<br>Sampleo                                     | thod: Clier<br>By: Clier                                  | nt drop off                    | :15<br>Lab |  |
| Client Sample ID:<br>Site:<br>Matrix:                                      | 3<br>05-04-416-1<br>Water | ,<br>;                        | Adjusted                            | •                           |                    |                                   | Shipping Me<br>Sampleo<br>Sampling Me                      | ithod: Clier<br>i By: Clier<br>ithod: G                   | nt drop off<br>nt<br>Parameter |            |  |
| Client Sample ID:<br>Site:<br>Matrix:<br>Analytes:                         | 3<br>05-04-416-1<br>Water | Dilution                      | Adjusted<br>MDL                     | Adjusted PQL                | Results            | Units                             | Shipping Me<br>Sampled<br>Sampling Me<br>Qualifier(s)      | thod: Clier<br>By: Clier<br>thod: G<br>Method             | nt drop off<br>nt<br>Parameter |            |  |
| Client Sample ID:<br>Site:<br>Matrix:<br>Analytes:<br>1,2-Dibromo-3-chloro | 3<br>05-04-416-1<br>Water | Dilution<br>1<br>1<br>Control | Adjusted<br>MDL<br>0.0034<br>0.0069 | Adjusted PQL                | Results<br>0.0034  | Units<br>ug/L<br>ug/L             | Shipping Me<br>Sampled<br>Sampling Me<br>Qualifier(s)<br>U | thod: Clien<br>i By: Clien<br>thod: G<br>Method<br>E504.1 | nt drop off<br>nt<br>Parameter |            |  |

U The compound was analyzed for but not detected. J DOH certification #E82574 (AEL-JAX) (FL NELAC certification)

# Advanced Environmental Laboratories, Inc.

Analytical Report

| Client: Tri-Teo<br>Project Name: 05-04-                                  | Report No.: A051277<br>Date/Time Received: 4/13/05 16:00 |                 |                |            |                                                                                                                   |              |        |                      |     |
|--------------------------------------------------------------------------|----------------------------------------------------------|-----------------|----------------|------------|-------------------------------------------------------------------------------------------------------------------|--------------|--------|----------------------|-----|
| Lab Code: A0512<br>Client Sample ID: 5<br>Site: 05-04-4<br>Matrix: Water |                                                          |                 |                |            | Date/Time Sampled: 4/13/2005 11:1<br>Shipping Method: Client drop off<br>Sampled By: Client<br>Sampling Method: G |              |        |                      |     |
|                                                                          |                                                          |                 | Disinfection E | Byproducts |                                                                                                                   |              |        |                      |     |
| Analytes:                                                                | Dilution                                                 | Adjusted<br>MDL | Adjusted PQL   | Results    | Units                                                                                                             | Qualifier(s) | Method | Parameter<br>Comment | Lab |
| Bromodichloromethane                                                     | 1                                                        | 0,38            | 1.5            | 3,4        | ug/L                                                                                                              |              | E502.2 |                      | J   |
| Bromoform                                                                | 1                                                        | 0.36            | 1.4            | D.36       | ug/L                                                                                                              | ប            | E502.2 |                      | J   |
| Chieroform                                                               | 1                                                        | 0.31            | 1.2            | 12         | ug/L                                                                                                              |              | E502.2 |                      | J   |
| Dibromochioromethane                                                     | 1                                                        | 0.28            | 1.1            | 1.6        | ug/L                                                                                                              |              | E502.2 |                      | J   |
|                                                                          |                                                          |                 | Volatile Ol    | rganics    | -                                                                                                                 |              |        |                      |     |
| Analytes:                                                                | Dilution                                                 | Adjusted<br>MDL | Adjusted PQL   | Results    | Units                                                                                                             | Qualifier(s) | Method | Parameter<br>Comment | Lab |
| 1,1,1-Trichloroethane                                                    | 1                                                        | 0.33            | 1.3            | 0.33       | ug/L                                                                                                              | U            | E502.2 |                      | J   |
| 1,1,2-Trichloroethane                                                    | 1                                                        | 0.32            | 1.3            | 0.32       | ug/L                                                                                                              | U            | E502.2 |                      |     |
| 1,1-Dichloroethene                                                       | 1                                                        | 0.21            | 0.84           | 0.21       | ug/L                                                                                                              | U            | E502.2 |                      | J   |
| 1,2,4-Trichlorobenzene                                                   | 1                                                        | 0.20            | 0.80           | 0.20       | ug/L                                                                                                              | U            | E502.2 |                      | J   |
| 1,2-Dichlorobenzene                                                      | 1                                                        | 0.26            | 1.0            | 0.26       | ug/L                                                                                                              | Ų            | E502.2 |                      | J   |
| 1,2-Dichloroethane                                                       | 1                                                        | 0.22            | 0.88           | 0.22       | ug/L                                                                                                              | u            | E502,2 |                      | J   |
| 1,2-Dichloropropane                                                      | 1                                                        | 0.22            | 0.88           | 0.22       | ug/L                                                                                                              | U            | E502.2 |                      | J   |
| 1,4-Dichlorobenzene                                                      | 1                                                        | 0.11            | 0.44           | 0.11       | ug/L                                                                                                              | U            | E502.2 |                      | J   |
| Benzene                                                                  | 1                                                        | 0.21            | 0.84           | 0.21       | ug/L                                                                                                              | U            | E502.2 |                      | J   |
| Carbon Tetrachloride                                                     | 1                                                        | 0.31            | 1.2            | 0.31       | ug/L                                                                                                              | U            | E502.2 |                      | J   |
| Chlorobenzene                                                            | 1                                                        | 0.18            | 0.72           | 0.18       | ug/L                                                                                                              | U            | E502.2 |                      | J   |
| Cis-1,2-dichloroethene                                                   | 1                                                        | 0.20            | 0.80           | 0.20       | ug/L                                                                                                              | U            | E502.2 |                      | J   |
| Ethylbenzene                                                             | 1                                                        | 0.15            | 0.60           | 0.15       | ug/L                                                                                                              | U            | E502.2 |                      | J   |
| Methylene Chloride                                                       | 1                                                        | 0.44            | 1.8            | 0.44       | ug/L                                                                                                              | . U          | E502.2 |                      | J   |
| Styrene                                                                  | 1                                                        | 0.14            | 0.56           | 0.14       | ug/L                                                                                                              | υ            | E502.2 |                      | J   |
| Tetrachloroethene                                                        | 1                                                        | 0.31            | 1.2            | 0.31       | ug/L                                                                                                              | U            | E502.2 |                      | J   |
| Toiuene                                                                  | 1                                                        | 0.10            | 0.40           | 0.10       | ug/L                                                                                                              | U            | E502.2 |                      | J   |
| Trans-1,2-dichloroethene                                                 | 1                                                        | 0.27            | 1.1            | 0.27       | ug/L                                                                                                              | U            | E502.2 |                      | J   |
| Trichloroethene                                                          | 1                                                        | 0.28            | 1.1            | 0.28       | ug/L                                                                                                              | U            | E502.2 |                      | J   |
| Vinyl Chloride                                                           | 1                                                        | 0.29            | 1.2            | 0.29       | ug/L                                                                                                              | U            | E502.2 |                      | J   |
| Xyienes (Total)                                                          | 1                                                        | 0.50            | 2.0            | 0.50       | ug/L                                                                                                              | U            | Ë502.2 |                      | J   |
| urrogales:                                                               | Control                                                  | Limits %        | Recovery Qual. | Method     | Prep                                                                                                              | Method       |        |                      |     |
| -Bromo-2-Chloroethane                                                    | 70 -                                                     | 136             | 98             | E602.2     | ME                                                                                                                | THOD         |        |                      |     |
| -Bromo-4-chlorobenzene                                                   | 70 -                                                     | 135             | 90             | E502.2     | ME                                                                                                                | THOD         |        |                      |     |
| -Bromo-1-chloropropane                                                   | ´ 70 -                                                   | 135             | 106            | E502.2     | ME                                                                                                                | тнор         |        |                      |     |

ū

The compound was analyzed for but not detected. DOH certification #E82574 (AEL-JAX) (FL NELAC certification) J

Page 3 of 46

## Advanced Environmental Laboratories, Inc.

### Analytical Report

Client: Tri-Tech Laboratories

Project Name: 05-04-13-1

Report No.: A051277

Date/Time Received: 4/13/05 16:00

Sampled By: Cilent

Sampling Method: G

Date/Time Sampled: 4/13/2005 11:15 Shipping Method: Client drop off

Lab Code: A051277-06

### Client Sample ID: 6

Site: 05-04-416-1

### Matrix: Water

### **Total Metals**

| Analytes: | Dilution | Adjusted<br>MDL | Adjusted PQL | Results  | Units | Qualifier(s) | Method | Parameter<br>Comment | Lab |
|-----------|----------|-----------------|--------------|----------|-------|--------------|--------|----------------------|-----|
| Arsenia   | 1        | 0.0070          | 0.028        | 0.0070   | mg/L  | U            | E200.7 |                      | J   |
| Barlum    | 1        | 0.0025          | 0.010        | 0.024    | mg/L  |              | E200.7 |                      | J   |
| Cadmium   | 1        | 0.00021         | 0.00084      | 0.00021  | mg/L  | U            | E200.7 |                      | J   |
| Chromlum  | 1        | 0.00016         | 0.00064      | 0.00067  | mg/L  |              | E200.7 |                      | J   |
| Copper    | 1        | 0.00096         | 0.0038       | 0.0072   | mg/L  |              | E200.7 |                      | J   |
| Iron      | 1        | 0.016           | 0.064        | 0.068    | mg/L  |              | E200.7 |                      | J   |
| Lead      | 1        | 0.00092         | 0.0037       | 0.00092  | mg/L  | U            | E200.7 |                      | J   |
| Manganese | 1        | 0.00022         | 0.00088      | 0.0071   | mg/L  |              | E200.7 |                      | J   |
| Selenium  | 1        | 0.0058          | 0.023        | 0.0058   | mg/L  | U            | E200.7 |                      | J   |
| Silver    | 1        | 0.0019          | 0.0076       | 0,0031   | mg/L  | ), V         | E200.7 |                      | J   |
| Sodium    | 1        | 0.0084          | 0.034        | 6.4      | mg/L  |              | E200.7 |                      | J   |
| Zinc      | 1        | 0.0072          | 0.029        | 0.0072   | mg/L  | U            | E200.7 |                      | J   |
|           |          |                 | Total Meta   | ıls (Hg) |       |              |        |                      |     |
| Analytes: | Dilution | Adjusted<br>MDL | Adjusted PQL | Results  | Units | Qualifier(s) | Method | Parameter<br>Comment | Lab |
| Mercury   | 1        | 0.000020        | 0.000080     | 0.000020 | mg/L  | U            | E245.1 |                      | J   |

The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

U The compound was analyzed for but not detected.

V Indicates that the analyte was detected in both the sample and the associated method blank.

J DOH cartification #E82574 (AEL-JAX) (FL NELAC cartification)

### Lab Code: A051277-07

### Client Sample ID: 7

i

Site: 05-04-416-1

Matrix: Water

### Date/Time Sampled: 4/13/2005 11:15 Shipping Method: Client drop off Sampled By: Client

Sampling Method: G

### Miscellaneous Analytes

| Analytes:                 | Dilution | Adjusted<br>MDL | Adjusted PQL | Results | Units | Qualifier(s) | Method      | Parameter<br>Comment | Lab |
|---------------------------|----------|-----------------|--------------|---------|-------|--------------|-------------|----------------------|-----|
| Fluoride                  | 1        | 0.061           | 0.25         | 0,093   | mg/L  | 1 I          | SM4500F-C   |                      | Т   |
| Nitrate (as N)            | 1        | 0.027           | 0.11         | 0.082   | mg/L  | ł.           | SM4500NO3-F |                      | T   |
| Suifate (as SO4)          | 1        | 1.4             | 5.5          | 10      | mg/L  |              | E375.4      |                      | т   |
| Total Chlorides           | 1        | 1.3             | 5.2          | 13      | mg/L  |              | E325.1      |                      | Τ   |
| Total Hardness (as CaCO3) | 1        | 5.0             | 20           | 140     | mg/L  |              | SM2340C     |                      | т   |

The reported value is between the isboratory method detection limit and the laboratory practical quantitation limit.

7 DOH certification #E84589 (AEL-Tampa) (FL NELAC Certification)

# Advanced Environmental Laboratories, Inc.

Analytical Report

Client: Tri-Tech Laboratories

Project Name: 05-04-13-1

### Report No.: A051277

Date/Time Received: 4/13/05 16:00

|                                                                                                                                                                                                                                                                                                 |                 |                                                                                                                          |                                                                      |                                                                        | mation                                                                                    |                                                                                           |                                                                                                 | •                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------|
| Lab Code: A051277-01                                                                                                                                                                                                                                                                            |                 |                                                                                                                          |                                                                      |                                                                        |                                                                                           |                                                                                           | e: 05-04-416-                                                                                   | 1                                     |
| Client Sample Number:                                                                                                                                                                                                                                                                           | 1               |                                                                                                                          |                                                                      |                                                                        |                                                                                           | Matri                                                                                     | x: Water                                                                                        |                                       |
| Test Description                                                                                                                                                                                                                                                                                |                 | Analysis Method                                                                                                          | Prep Method                                                          | Analytical Batch (D                                                    | Analysis<br>Date/Time                                                                     | Analyst                                                                                   | Prep Baich ID                                                                                   | Prep<br>Date/Time                     |
| Synthetic Organics                                                                                                                                                                                                                                                                              |                 | E525.2                                                                                                                   | NONE                                                                 |                                                                        |                                                                                           |                                                                                           |                                                                                                 |                                       |
| Synthetic Organics                                                                                                                                                                                                                                                                              |                 | E515.1                                                                                                                   | NONE                                                                 |                                                                        |                                                                                           |                                                                                           |                                                                                                 |                                       |
| Synthetic Organics                                                                                                                                                                                                                                                                              |                 | E508.1                                                                                                                   | NONE                                                                 |                                                                        |                                                                                           |                                                                                           |                                                                                                 |                                       |
| If the Analytical Baich ID and<br>containing this information.                                                                                                                                                                                                                                  | i Prep Bati     | ch IDis null, the analysis                                                                                               | was not performed                                                    | i by AEL, and the origin                                               | al report from the                                                                        | e subcontracte                                                                            | d laboratory will b                                                                             | e provided                            |
| Lab Code: A051277-02                                                                                                                                                                                                                                                                            |                 |                                                                                                                          |                                                                      |                                                                        |                                                                                           | Sit                                                                                       | e: 05-04-416-                                                                                   | 1                                     |
| Client Sample Number:                                                                                                                                                                                                                                                                           | 2               |                                                                                                                          |                                                                      |                                                                        |                                                                                           | Matri                                                                                     | x: Water                                                                                        |                                       |
| •                                                                                                                                                                                                                                                                                               |                 |                                                                                                                          |                                                                      | •                                                                      | Analysis                                                                                  |                                                                                           |                                                                                                 | Prep                                  |
| est Description                                                                                                                                                                                                                                                                                 |                 | Analysis Method                                                                                                          | Prep Method                                                          | Analylical Batch ID                                                    | Date/Time                                                                                 | Analyst                                                                                   | Prep Batch ID                                                                                   | Date/Time                             |
| MBAS, as LAS, mol. wt. 320g                                                                                                                                                                                                                                                                     | 1               | E425.1                                                                                                                   | NONE                                                                 | WCJ-041505-MBAS                                                        |                                                                                           | :20 AA                                                                                    |                                                                                                 |                                       |
| otal Dissolved Solids                                                                                                                                                                                                                                                                           |                 | E160,1                                                                                                                   | NONE                                                                 | wcj-041805-lds                                                         | 4/18/2005 14                                                                              | :00 AK                                                                                    |                                                                                                 |                                       |
| f the Analytical Batch ID and<br>containing this information.                                                                                                                                                                                                                                   | i Prep Bato     | ch IDis null, the analysis                                                                                               | was not performed                                                    | by AEL, and the origin                                                 | al report from the                                                                        | subcontracter                                                                             | i laboratory wiil b                                                                             | e provided                            |
| ab Code: A051277-03.                                                                                                                                                                                                                                                                            |                 |                                                                                                                          |                                                                      |                                                                        |                                                                                           | Site                                                                                      | e: 05-04-416-'                                                                                  | 1                                     |
| lient Sample Number:                                                                                                                                                                                                                                                                            | 3               |                                                                                                                          |                                                                      |                                                                        |                                                                                           | Matrix                                                                                    | k: Water                                                                                        |                                       |
| est Description                                                                                                                                                                                                                                                                                 |                 | Analysis Method                                                                                                          | Prep Method                                                          | Analytical Batch ID                                                    | Analysis<br>Date/Time                                                                     | Analyst                                                                                   | Prep Batch ID                                                                                   | Prep<br>Date/Time                     |
| ihviene Dibromide                                                                                                                                                                                                                                                                               |                 | E504.1                                                                                                                   | NONE                                                                 | sv041805i-ecd                                                          | 4/18/2005 18:                                                                             | 17 KB                                                                                     | 09041505edb                                                                                     | 4/15/2005                             |
| ab Code: A051277-04<br>lient Sample Number:                                                                                                                                                                                                                                                     | 4               |                                                                                                                          |                                                                      |                                                                        |                                                                                           | Site<br>Matrix                                                                            | e: 05-04-416-1<br>k: Water                                                                      | l                                     |
| est Description                                                                                                                                                                                                                                                                                 |                 | Analysis Method                                                                                                          | Prep Method                                                          | Anatytical Batch ID                                                    | Analysis<br>Date/Time                                                                     | Analyst                                                                                   | Prep Batch (D                                                                                   | Prep<br>Date/Time                     |
|                                                                                                                                                                                                                                                                                                 |                 |                                                                                                                          |                                                                      |                                                                        |                                                                                           |                                                                                           |                                                                                                 |                                       |
| rosa Alpha                                                                                                                                                                                                                                                                                      |                 | E900                                                                                                                     | NONE                                                                 |                                                                        |                                                                                           |                                                                                           |                                                                                                 |                                       |
| adium 226                                                                                                                                                                                                                                                                                       |                 | E900<br>903.1                                                                                                            | NONE                                                                 |                                                                        |                                                                                           |                                                                                           |                                                                                                 |                                       |
| adium 226                                                                                                                                                                                                                                                                                       |                 |                                                                                                                          |                                                                      |                                                                        |                                                                                           |                                                                                           |                                                                                                 |                                       |
| adium 226<br>adium 228<br>the Analytical Batch ID and                                                                                                                                                                                                                                           | Prep Balc       | 903.1<br>EPA Ra-05                                                                                                       | NONE                                                                 | by AEL, and the origina                                                | al report from the                                                                        | subcontracted                                                                             | laboratory will be                                                                              | a provided                            |
| adium 226<br>adium 228<br>the Analytical Batch ID and<br>ontaining this information.                                                                                                                                                                                                            | Prep Balc       | 903.1<br>EPA Ra-05                                                                                                       | NONE                                                                 | by AEL, and the origina                                                | al report from the                                                                        | subcontracted                                                                             | ·                                                                                               |                                       |
| adium 226<br>adium 228<br>the Analytical Batch ID and<br>ontaining this information.<br>ab Code: A051277-05                                                                                                                                                                                     | Prep Balci      | 903.1<br>EPA Ra-05                                                                                                       | NONE                                                                 | by AEL, and the origina                                                | al report from the                                                                        | Site                                                                                      | ·                                                                                               |                                       |
| iross Alpha<br>adium 226<br>adium 228<br>the Analytical Batch ID and<br>ontaining this Information.<br>ab Code: A051277-05<br>lient Sample Number:<br>ast Description                                                                                                                           |                 | 903.1<br>EPA Ra-05                                                                                                       | NONE                                                                 | by AEL, and the origina<br>Analytical Batch ID                         | al report from the<br>Analysis<br>Date/Time                                               | Site                                                                                      | : 05-04-416-1                                                                                   |                                       |
| adium 226<br>adium 228<br>the Analytical Batch ID and i<br>ontaining this Information.<br>ab Code: A051277-05<br>lient Sample Number:<br>ast Description                                                                                                                                        |                 | 903.1<br>EPA Re-05<br>h IDIs null, the analysis v<br>Analysis Method                                                     | NONE<br>NONE<br>vas not performed<br>Prep Method                     | Analylical Batch ID                                                    | Analysis<br>Date/Time                                                                     | Site<br>Matrix<br>Analyst                                                                 | : 05-04-416-1<br>: Water                                                                        | Prep                                  |
| adium 226<br>adium 228<br>I the Analytical Batch ID and<br>ontaining this Information.<br>ab Code: A051277-05<br>Ilent Sample Number;                                                                                                                                                           |                 | 903.1<br>EPA Re-05<br>th IDIs null, the analysis v                                                                       | NONE<br>NONE                                                         |                                                                        | Analysis                                                                                  | Site<br>Matrix<br>Analyst<br>43 BB                                                        | : 05-04-416-1<br>: Water                                                                        | Prep                                  |
| adium 226<br>adium 228<br>the Analytical Batch ID and i<br>ontaining this Information.<br>ab Code: A051277-05<br>lient Sample Number:<br>ast Description<br>leinfection Byproducts<br>olatile Organics<br>the Analytical Batch ID and F<br>ontaining this Information.<br>ab Code: A051277-06   | 5<br>Prep Baich | 903.1<br>EPA Ra-05<br>h IDis null, the analysis v<br>Analysis Method<br>E502.2<br>E502.2                                 | NONE<br>NONE<br>was not performed<br>Prep Method<br>METHOD<br>METHOD | Analytical Batch ID<br>v042205c<br>v042005c                            | Analysis<br>Date/Time<br>4/22/2005 14:<br>4/20/2005 21:4                                  | Site<br>Matrix<br>Analyst<br>43 BB<br>44 BB<br>subcontracted<br>Site                      | : 05-04-416-1<br>: Water<br>Prep Balch ID<br>laboratory will be<br>: 05-04-416-1                | Prep<br>Date/Time<br>provided         |
| adium 226<br>adium 228<br>the Analytical Batch ID and I<br>ontaining this Information.<br>ab Code: A051277-05<br>lient Sample Number:<br>asl Description<br>sinfection Byproducts<br>olatile Organics<br>the Analytical Batch ID and F<br>ontaining this Information.                           | 5               | 903.1<br>EPA Ra-05<br>h IDis null, the analysis v<br>Analysis Method<br>E502.2<br>E502.2                                 | NONE<br>NONE<br>was not performed<br>Prep Method<br>METHOD<br>METHOD | Analytical Batch ID<br>v042205c<br>v042005c                            | Analysis<br>Date/Time<br>4/22/2005 14:<br>4/20/2005 21:4                                  | Site<br>Matrix<br>Analyst<br>43 BB<br>44 BB<br>subcontracted<br>Site                      | : 05-04-416-1<br>:: Water<br>Prep Balch ID<br>laboratory will be                                | Prep<br>Date/Time<br>provided         |
| adium 226<br>adium 228<br>the Analytical Batch ID and I<br>ontaining this Information.<br>ab Code: A051277-05<br>lient Sample Number:<br>hist Description<br>sinfection Byproducts<br>biatile Organics<br>the Analytical Batch ID and F<br>inteining this Information.<br>ab Code: A051277-06   | 5<br>Prep Baich | 903.1<br>EPA Ra-05<br>h IDis null, the analysis v<br>Analysis Method<br>E502.2<br>E502.2                                 | NONE<br>NONE<br>was not performed<br>Prep Method<br>METHOD<br>METHOD | Analytical Batch ID<br>v042205c<br>v042005c                            | Analysis<br>Date/Time<br>4/22/2005 14:<br>4/20/2005 21:4                                  | Site<br>Matrix<br>Analyst<br>43 BB<br>44 BB<br>subcontracted<br>Site                      | : 05-04-416-1<br>: Water<br>Prep Balch ID<br>laboratory will be<br>: 05-04-416-1                | Prep<br>Date/Time<br>provided         |
| adium 226<br>adium 228<br>the Analytical Batch ID and i<br>ontaining this Information.<br>ab Code: A051277-05<br>lient Sample Number:<br>sinfection Byproducts<br>latile Organics<br>the Analytical Batch ID and F<br>ntaining this Information.<br>ab Code: A051277-06<br>lient Sample Number: | 5<br>Prep Baich | 903.1<br>EPA Re-05<br>th IDIs null, the analysis w<br>Analysis Method<br>E502.2<br>E502.2<br>h IDIs null, the analysis w | NONE<br>NONE<br>was not performed<br>Prep Method<br>METHOD<br>METHOD | Analytical Batch ID<br>v042205c<br>v042005c<br>by AEL, and the origina | Analysis<br>Date/Time<br>4/22/2005 14:<br>4/20/2005 21:<br>al report from the<br>Analysis | Site<br>Matrix<br>Analyst<br>33 BB<br>44 BB<br>subcontracted<br>Site<br>Matrix<br>Analyst | 2: 05-04-416-1<br>2: Water<br>Prep Balch ID<br>laboratory will be<br>2: 05-04-416-1<br>2: Water | Prep<br>Date/Time<br>provided<br>Prep |

If the Analytical Batch ID and Prep Batch ID is null, the analysis was not performed by AEL, and the original report from the subcontracted laboratory will be provided containing this information.

# Advanced Environmental Laboratories, Inc.

Analytical Report

| Client: Tri-Tech          | Report No.: A051277         |                                   |                     |                      |       |         |               |                   |
|---------------------------|-----------------------------|-----------------------------------|---------------------|----------------------|-------|---------|---------------|-------------------|
| Project Name: 05-04-13    |                             | Date/Time Received: 4/13/05 16:00 |                     |                      |       |         |               |                   |
| Lab Code: A051277-07      |                             | Site: 05-04-416-1                 |                     |                      |       |         |               |                   |
| Client Sample Number: 7   | ple Number: 7 Matrix: Water |                                   |                     |                      |       |         |               |                   |
| Tesl Description          | Analysis Method             | Prep Method                       | Analytical Balch ID | Analysis<br>Date/Tim |       | Analyst | Prep Batch ID | Prep<br>Date/Time |
| Fluoride                  | SM4500F-C                   | NONE                              | wc10503059          | 5/3/2005             | 10:00 | JH      |               |                   |
| Nitrale (as N)            | SM4500NO3-F                 | NONE                              | wet041405no3-1      | 4/14/2005            | 13:51 | AJ      |               |                   |
| Sulfate (as SO4)          | E375.4                      | NONE                              | WCT042105SO4        | 4/21/2005            | 9:50  | CG      |               |                   |
| Total Chiorides           | E325.1                      | NONE                              | wct041805chl        | 4/18/2005            | 10:39 | ĊG      |               |                   |
| Total Hardness (as CaCO3) | SM2340C                     | NONE                              | wct042105hard       | 4/21/2005            | 10:55 | TMO     |               |                   |

If the Analytical Batch ID and Prep Batch IDIs null, the analysis was not performed by AEL, and the original report from the subcontracted laboratory will be provided containing this information.

# Florida Radiochemistry Services, Inc.

<u>Contact: Michael J. Naumann</u> 5456 Hoffner Ave., Suite 201 Orlando, FL 32812 Phone: (407) 382-7733 Fax: (407)382-7744 Certification I. D. # E83033

Work Order #: 0504217 Report Date: 04/26/05

Report to:

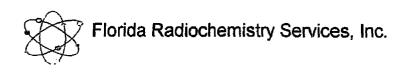
Advanced Environmental Laboratories, Inc. 528 South North Lake Blvd., S Altamonte Springs, FL 32701 Attention: Myrna Santiago

I do hereby affirm that this record contains no willful misrepresentations and that this information given by me is true to the best of my knowledge and bellef. I further certify that the methods and quality control measures used to produce these laboratory results were implemented in accordance with the requirements of this laboratory's certification and NELAC Standards.

Signed Michael J. Naumann - President

Date 4-26-0.5

Page 1 of 3




Florida Radiochemistry Services, Inc.

### Sample Login

| Client:         | Advanced Environmental<br>Laboratories, Inc. | Date / Time<br>Received | Work order #          |
|-----------------|----------------------------------------------|-------------------------|-----------------------|
| Client Contact: | Myrna Santiago                               | 04/15/05 10:38          | 0504217               |
| Client P.O.     |                                              |                         |                       |
| Project I.D.    | A051277                                      |                         |                       |
| Lab Sample I.D. | Client Sample I.D.                           | Sample<br>Date/Time     | Analysis<br>Requested |
| 0504217-01      | A051277-04                                   | 04/13/05 11:15          | Ga, Ra226, Ra228      |

|               | Analysis Results |               |          |
|---------------|------------------|---------------|----------|
| Gross Alpha   | 2.4              |               |          |
| Error +/-     | 1.6              |               |          |
| MDL           | 2.0              |               |          |
| EPA Method    | 900.0            |               |          |
| Prep Date     | 04/21/05         |               |          |
| Analysis Date | 04/22/05         |               |          |
| Analyst       | MJN              |               |          |
| Radium 226    | 0.6              | Radium 228    | <1.0     |
| Error +/-     | 0.2              | Error +/-     | 0.6      |
| MDL           | 0.2              | MDL           | 1.0      |
| EPA Method    | 903.1            | EPA Method    | Ra-05    |
| Prep Date     | 04/18/05         | Prep Date     | 04/18/05 |
| Analysis Date | 04/25/05         | Analysis Date | 04/22/05 |
| Analyst       | MJN              | Analyst       | PJ       |
| Units         | pCi/l            | Units         | pCi/l    |



### QA Page

| Analyte     | Sample #   | Date<br>Analyzed | Sample<br>Result | Amount<br>Spiked | Spike<br>Result | Spike /Dup<br>Result | Spike<br>% Rec. | Spike Dup<br>% Rpd |
|-------------|------------|------------------|------------------|------------------|-----------------|----------------------|-----------------|--------------------|
| Gross Alpha | 0504268-01 | 04/22/05         | <0.8             | 10.2             | 11.0            | 10.7                 | 108             | 2.8                |
| Radium 226  | 0504216-04 | 04/25/05         | 6.4              | 25.2             | 30.8            | 30.7                 | 97              | 0.3                |
| Radium 228  | 0504216-04 | 04/22/05         | <0.9             | 9.4              | 9.8             | 9.4                  | 104             | 4.2                |
|             |            | Quality          | Control          | Limits           | ·               |                      |                 |                    |
|             |            | % RPD            |                  | % Rec.           |                 |                      |                 |                    |
| Gross Alpha |            | 18.1             |                  | 68-116           |                 |                      |                 |                    |
| Radium 226  |            | 24,8             |                  | 67-125           |                 |                      |                 |                    |
| Radium 228  |            | 24.0             |                  | 70-125           |                 |                      |                 |                    |

# SOUTHERN ANALYTICAL LABORATORIES, INC.

110 EAVVEVUED JEVAPE, CLDEMAR, P. E4077 812 658 1844 Gveiters ere



April 26, 2005

PWS ID:

Sample No.: 50048.01

### Advanced Environmental Laboratories, Inc. A051277

### Sample ID: A051277-01

### Synthetic Organics 62-550.310(4)(b)

| Contaminant | Contaminant               |     |         | Analysis |            | Analytical |         | RDL  | Extraction |               | Analysis | DOH Lab        |
|-------------|---------------------------|-----|---------|----------|------------|------------|---------|------|------------|---------------|----------|----------------|
| ĺD          | Name                      | MCL | Units   |          | Qualifier* | Method     | Lab MDL | **   | Date       | Analysis Date | Time     | Certification# |
| 2005        | Endrin                    | 2   | hð\r    | 0.1      | <u>U</u>   | EPA 525.2  | 0.1     | 0.01 | 04/21/05   | 04/22/05      | 20:46    | E84129         |
| 2010        | Lindane                   | 0:2 | µg/L    | 0.06     | υ          | EPA 525.2  | 0.06    | 0.02 | 04/21/05   | 04/22/05      | 20:46    | E84129         |
| 2015        | Methoxychlor              | 40  | hð/r    | 0.05     | Ų          | EPA 525.2  | 0.05    | 0.1  | 04/21/05   | 04/22/05      | 20:46    | E84129         |
| 2020        | Toxaphene                 | 3   | μg/L    | 0.5      | U          | EPA 508.1  | 0.5     | 1    | 04/21/05   | 04/22/05      | 20:39    | E84129         |
| 2031        | Dalapon                   | 200 | µg∕L    | 1        | U          | EPA 515.3  | 1       | · 1  | 04/25/05   | 04/25/05      | 23:03    | E84129         |
| 2035        | Di(2-ethylhexyl)adipate   | 400 | µg/L    | 0.3      | U          | EPA 525.2  | 0.3     | 0.6  | 04/21/05   | 04/22/05      | 20:46    | E84129         |
| 2037        | Simazine                  | 4   | µg/L    | 0.07     | Ü          | EPA 525.2  | 0.07    | 0.07 | 04/21/05   | 04/22/05      | 20:46    | E84129         |
| 2039        | DI(2-ethylhexyl)phthalate | 6   | µg/L    | 1.0      | Ú          | EPA 525.2  | 1.0     |      | 04/21/05   | 04/22/05      | 20:46    | E84129         |
| 2040        | Picloram                  | 500 | µg/L    | 0.75     | Ú          | EPA 515.3  | 0,75    | 0.1  | 04/25/05   | 04/25/05      | 23:03    | E84129         |
| 2041        | Dinoseb                   | 7   | µg/L    | 0.5      | IJ         | EPA 515.3  | 0,5     | 0.2  |            | 04/25/05      | 23:03    | E84129         |
| 2042        | Hexachlorocyclopentadiene | 50  | µg/L    | 0.2      | U          | EPA 525.2  | 0.2     | 0.1  | 04/21/05   | 04/22/05      | 20:46    | E84129         |
| 2050        | Atrazine                  | 3   | µg/L    | 0.06     | U          | EPA 525.2  | 0.06    | 0.1  |            | 04/22/05      | 20:46    | E84129         |
| 2051        | Alachlor                  | 2   | µg/L    | 0.2      | U          | EPA 525.2  | 0.2     | 0.2  |            | 04/22/05      | 20:46    | E84129         |
| 2065        | Heptachlor                | 0.4 | µg/L    | 0.08     | U<br>U     | EPA 525.2  | 0.08    | 0,04 |            | 04/22/05      | 20:46    | E84129         |
| 2067        | Heptachlor Epoxide        | 0.2 | µg/L    | 0.1      | U          | EPA 525.2  | 0.1     | 0.02 |            | 04/22/05      | 20:46    | E84129         |
| 2105        | 2,4-D                     | 70  | µg/L    | 1        | U          | EPA 515,3  | 1       | 0.1  | 04/25/05   | 04/25/05      | 23:03    | E84129         |
| 2110        | 2,4,5-TP (Silvex)         | 50  | µg/L    | 0.25     | Ű          | EPA 515.3  | 0.25    |      |            | 04/25/05      | 23:03    | E84129         |
| 2274        | Hexachlorobenzene         | . 1 | µg/L    | 0.06     | U          | EPA 525.2  |         |      | 04/21/05   | 04/22/05      | 20:46    | E84129         |
| 2306        | Benzo(a)pyrene            | 0.2 | µg/L    | 0.1      | Ū.         | EPA 525.2  | 0.1     | 0.02 |            | 04/22/05      | 20:46    | E84129         |
| 2326        | Pentachlorophenol         | . 1 | μg/L    | 0.1      | ū          | EPA 515.3  | 0.1     | 0.04 | ••         | 04/25/05      | 23:03    | E84129         |
| 2383        | (PCBs)                    | 0.5 | µg/L    | 0.2      |            | EPA 508.1  | 0.2     |      |            | 04/22/05      | 20:39    | E84129         |
| 2959        | Chlordane                 | 2   |         | 0,05     |            | EPA 508.1  | 0.05    |      |            |               |          | E84129         |
|             | •                         | · - | Letter. | 4100     | ~          |            | 0,00    | V.2  | 04121100   | 04/22/05      | 20:39    | C04128         |

# \* Qualifiers:

\*\* Non-detects with a reported lab MDL <50% of the MCL are acceptable for compliance with 62-550.310(4)(h)

Analyte was undetected. Indicated concentration is method detection limit.

2 of 3

υ

-P. 1-3

| P.O. 1                               | <b>Tech Labora</b><br>Box P.O. Box 1-<br>Ido, Florida 328 | 40966                    | Inc.                          |               |                               | "HELI                      | P SAF   | EGUA     |          |     | R FUT            | URE A<br>ODAY | ND Y<br>! | 'OUR<br>Pag | HEALTH"<br>ge Of            |
|--------------------------------------|-----------------------------------------------------------|--------------------------|-------------------------------|---------------|-------------------------------|----------------------------|---------|----------|----------|-----|------------------|---------------|-----------|-------------|-----------------------------|
| g 🔨 (407)                            | 275-8463 Fax (4<br>275-8463                               |                          | 9187                          |               | CHAIN OF                      | CUST                       | ODY     | Y REO    | COF      | D   | W                | ork O         | rder      | #:          | 05-04.416                   |
| Client Name:<br>Southlake Utilities, | Mailing                                                   | Address: 1<br>C          | 6554<br>Clern                 | f Cro<br>nont | ossings Blvd Su<br>, FL 34711 |                            |         |          |          |     | icing Ad         | dress;        |           |             | Attention:                  |
| L<br>Contact Person:<br>Eddy Garcia  | WTP-9                                                     | roject or add $30$       | dress o                       | f samp        | Hwy 27                        | 7.00                       | eru     | NOI      | ð        |     | e Numi<br>-394-8 |               |           |             | Fax Number:<br>352-394-8894 |
| Sampler's Signatur                   | e: Gate                                                   | și.                      |                               |               |                               |                            |         |          | <u>r</u> | (RI | QUES             | T ANA         | LYS       | IS WR       | UTE DOWN BELOW)             |
| SAMPLE ID                            | DATE/TIME                                                 | C G<br>O R<br>M A<br>P B | W S<br>A O<br>T I<br>E L<br>R | H<br>E<br>R   |                               | B<br>O<br>T<br>T<br>L<br>E | Frent - | Amelys.5 | -nahess  |     |                  |               |           |             | REMARKS                     |
| 1. Plant Epiline                     | at 4/12-11:                                               | 65 X                     | X                             | +-+           | 1.0                           |                            |         |          | _        |     |                  |               |           |             |                             |
| 3.                                   |                                                           |                          |                               | ┼╼┼<br>┽╶┼    |                               |                            |         |          |          |     |                  |               |           | +           |                             |
| 5.                                   |                                                           |                          |                               |               |                               |                            |         |          |          |     |                  | _             |           | +           |                             |
| 6.<br>7.                             |                                                           |                          |                               |               |                               |                            |         |          |          |     | _                |               | 1-        |             |                             |
| 8                                    |                                                           |                          |                               |               |                               |                            |         |          |          |     |                  | _             |           |             |                             |
| 10.                                  |                                                           | ╺╁╂╂                     |                               | ┢┼            |                               |                            |         |          |          |     |                  |               |           |             |                             |
| 11.                                  |                                                           |                          |                               |               |                               | <u> </u>                   |         |          | -        | -+  | -+               |               | ╉──       | +           |                             |
| Prepared Sample Kit Date/Tin         | ne:                                                       |                          |                               | Reli          | nquished Sample Kit D         | )ate/Tim                   | e:      |          |          |     |                  |               | 1         | Accepte     | d Kit Date/Time:            |
| Relinquished Sample Kit Date         | /Time:                                                    |                          |                               | Dell          | vened Samaple Kit to Li       | h Date/                    | Fime:   | >        | 4        | -1. | 3-5              | 15.           | 31)       | Bottle #:   | 400                         |
|                                      |                                                           | Accepted                 | in lub:                       | (î            | $\tilde{\mathcal{N}} =$       |                            | Date/1  | l'ime;   |          |     | 3.5              |               | 53        | 5           |                             |



John O. Agwunobi, M.D., M.B.A., M.P.H. Secretary

Page 1 of 27

### THIS LISTING OF ACCREDITED ANALYTES SHOULD BE USED ONLY WHEN ASSOCIATED WITH A VALID CERTIFICATE

State Laboratory ID: E82574

EPA Lab Code: FL00949

Laboratory Scope of Accreditation

(904) 363-9350

E82574

Advanced Environmental Laboratories, Inc. 6601 Southpoint Parkway Jacksonville, FL 32216

Matrix: Drinking Water

| Analyte                                     | Method/Tech | Category                                                             | Certification<br>Type | Effective Dat |
|---------------------------------------------|-------------|----------------------------------------------------------------------|-----------------------|---------------|
| 1,1,1-Trichloroethane                       | EPA 502.2   | Other Regulated Contaminants                                         | NELAP                 | 4/4/2002      |
| 1,1,1-Trichioroethane                       | EPA 524.2   | Other Regulated Contaminants                                         | NELAP                 | 1/21/2005     |
| 1,1,2-Trichloroethane                       | EPA 502.2   | Other Regulated Contaminants                                         | NELAP                 | 4/4/2002      |
| 1,1,2-Trichloroethane                       | EPA 524.2   | Other Regulated Contaminants                                         | NELAP                 | 1/21/2005     |
| 1,1-Dichloroethylene                        | EPA 502.2   | Other Regulated Contaminants                                         | NELAP                 | 4/4/2002      |
| 1,1-Dichloroethylene                        | EPA 524.2   | Other Regulated Contaminants                                         | NELAP                 | 1/21/2005     |
| 1,2,4-Trichlorobenzene                      | EPA 502,2   | Other Regulated Contaminants                                         | NELAP                 | 4/4/2002      |
| 1,2,4-Trichlorobenzene                      | EPA 524.2   | Group II Unregulated Contaminants                                    | NELAP                 | 1/21/2005     |
| 1,2-Dibrome-3-chloropropane (DBCP)          | EPA 504.1   | Synthetic Organic Contaminants                                       | NELAP                 | 4/4/2002      |
| 1,2-Dibromoethane (EDB, Ethylene dibromide) | EPA 504.1   | Synthetic Organic Contaminants                                       | NELAP                 | 4/4/2002      |
| 1,2-Dichlorobenzene                         | EPA 502.2   | Other Regulated Contaminants                                         | NELAP                 | 4/4/2002      |
| 1,2-Dichlorobenzene                         | EPA 524.2   | Other Regulated Contaminants                                         | NELAP                 | 1/21/2005     |
| 1,2-Dichloroethane                          | EPA 502.2   | Other Regulated Contaminants                                         | NELAP                 | 4/4/2002      |
| 1,2-Dichloroethane                          | EPA 524.2   | Other Regulated Contaminants                                         | NELAP                 | 1/21/2005     |
| 1,2-Dichloropropane                         | EPA 502.2   | Other Regulated Contaminants                                         | NELAP                 | 4/4/2002      |
| 1,2-Dichloropropane                         | EPA 524.2   | Other Regulated Contaminants                                         | NELAP                 | 1/21/2005     |
| 1,4-Dichlorobenzene                         | EPA 502.2   | Other Regulated Contaminants                                         | NELAP                 | 4/4/2002      |
| 1,4-Dichlorobenzene                         | EPA 524.2   | Other Regulated Contaminants                                         | NELAP                 | 1/21/2005     |
| 2,4-D                                       | EPA 515,3   | Synthetic Organic Contaminants                                       | NELAP                 | 1/21/2005     |
| Alachlor                                    | EPA 525.2   | Synthetic Organic Contaminants                                       | NELAP                 | 3/24/2005     |
| Alkalinity as CaCO3                         | SM 2320 B   | Primary Inorganic Contaminants                                       | NELAP                 | 1/21/2005     |
| Aluminum                                    | EPA 200.7   | Secondary Inorganic Contaminants                                     | NELAP                 | 4/4/2002      |
| Antimony                                    | . EPA 200.9 | Primary Inorganic Contaminants                                       | NELAP                 | 4/4/2002      |
| Antimony                                    | SM3113 B    | Primary Inorganic Contaminants                                       | NELAP                 |               |
| Arsenic                                     | EPA 200.7   | Primary Inorganic Contaminants                                       | NELAP                 | 4/4/2002      |
| Atrazine                                    | EPA 525.2   | Synthetic Organic Contaminants                                       | NELAP                 | 3/24/2005     |
| Barium                                      | EPA 200,7   | Primary Inorganic Contaminants                                       | NELAP                 | 4/4/2002      |
| Benzene                                     | EPA 502,2   | Other Regulated Contaminants                                         | NELAP                 | 4/4/2002      |
| Benzene                                     | EPA 524,2   | Other Regulated Contaminants                                         | NELAP                 | 1/21/2005     |
| Benzo(a)pyrene                              | EPA 525.2   | Synthetic Organic Contaminants                                       | NELAP                 | 1/21/2005     |
| Beryllium                                   | EPA 200.7   | Primary Inorganic Contaminants                                       | NELAP                 | 4/4/2002      |
| ois(2-Ethylhexyl) phthalate (DEHP)          | EPA 525.2   | Synthetic Organic Contaminants                                       | NELAP                 | 1/21/2005     |
| Bromoacetic acid                            | EPA 552.2   | Group I Unregulated Contaminants                                     | NELAP                 | 1/21/2005     |
| Bromochloroacetic acid                      | EPA 552.2   | Group I Unregulated Contaminants                                     | NELAP                 | 1/21/2005     |
| Bromodichloromethane                        | EPA 502.2   | Other Regulated<br>Contaminants,Group II Unregulated<br>Contaminants | NELAP                 | 4/4/2002      |

"STATE" indicates certification for the analyte by the method specified. "NELAP" further indicates certification compliant with the NELAC Standards.

7.2



John O. Agwunobi, M.D., M.B.A., M.P.H. Secretary

Page 2 of 27

### THIS LISTING OF ACCREDITED ANALYTES SHOULD BE USED ONLY WHEN ASSOCIATED WITH A VALID CERTIFICATE

Laboratory Scope of Accreditation

State Laboratory ID: E82574

EPA Lab Code: FL00949

(904) 363-9350

E82574

Advanced Environmental Laboratories, Inc. 6601 Southpoint Parkway

Jacksonville, FL 32216

Matrix: Drinking Water

| Analyte                                      | Method/Tech   | Category                                                              | Certification<br>Type | Effective Date |
|----------------------------------------------|---------------|-----------------------------------------------------------------------|-----------------------|----------------|
| Bromodichloromethane                         | EPA 524.2     | Group II Unregulated Contaminants                                     | NELAP                 | 1/21/2005      |
| Bromoform                                    | EPA 502.2     | Other Regulated<br>Contaminants,Group II Unregulated<br>Contaminants  | NELAP                 | 4/4/2002       |
| Bromoform                                    | EPA 524.2     | Group II Unregulated Contaminants                                     | NELAP                 | 1/21/2005      |
| Cadmium                                      | EPA 200.7     | Primary Inorganic Contaminants                                        | NELAP                 | 4/4/2002       |
| Calcium                                      | EPA 200.7     | Primary Inorganic Contaminants                                        | NELAP                 | 4/4/2002       |
| Carbofuran (Furaden)                         | EPA 531.1     | Synthetic Organic Contaminants                                        | NELAP                 | 4/19/2005      |
| Carbon tetrachloride                         | EPA 502,2     | Other Regulated Contaminants                                          | NELAP                 | 4/4/2002       |
| Carbon tetrachloride                         | EPA 524.2     | Other Regulated Contaminants                                          | NELAP                 | 1/21/2005      |
| Chlordane (tech.)                            | EPA 508       | Synthetic Organic Contaminants                                        | NELAP                 | 3/24/2005      |
| Chloride                                     | EPA 325.3     | Secondary Inorganic Contaminants                                      | NELAP                 | 1/21/2005      |
| Chloride                                     | SM 4500 Cl- E | Secondary Inorganic Contaminants                                      | NELAP                 | 2/13/2003      |
| Chioroacetic acid                            | EPA 552.2     | Group I Unregulated Contaminants                                      | NELAP                 | 1/21/2005      |
| Chlorobenzene                                | EPA 502.2     | Other Regulated Contaminants                                          | NELAP                 | 4/4/2002       |
| Chlorobenzene                                | EPA 524.2     | Other Regulated Contaminants                                          | NELAP                 | 1/21/2005      |
| Chloroform                                   | EPA 502.2     | Other Regulated<br>Contaminants,Group II Unregulated<br>Contaminants  | NELAP                 | 4/4/2002       |
| Chloroform                                   | EPA 524.2     | Group II Unregulated Contaminants                                     | NELAP                 | 1/21/2005      |
| Thromium                                     | EPA 200.7     | Primary Inorganic Contaminants                                        | NELAP                 | 4/4/2002       |
| is-1,2-Dichloroethylene                      | EPA 502.2     | Other Regulated Contaminants                                          | NELAP                 | 4/4/2002       |
| is-1,2-Dichloroethylene                      | EPA 524.2     | Other Regulated Contaminants                                          | NELAP                 | 1/21/2005      |
| Coior                                        | EPA 110,2     | Secondary Inorganic Contaminants                                      | NELAP                 | 2/13/2003      |
| Copper                                       | EPA 200.7     | Primary Inorganic<br>Contaminants,Secondary Inorganic<br>Contaminants | NELAP                 | 4/4/2002       |
| Jalapon                                      | EPA 515.3     | Synthetic Organic Contaminants                                        | NELAP                 | 1/21/2005      |
| i(2-ethylhexyl)adipate                       | EPA 525.2     | Synthetic Organic Contaminants                                        | NELAP                 | 1/21/2005      |
| libromoscetic acid                           | EPA 552.2     | Group I Unregulated Contaminants                                      | NELAP                 | 1/21/2005      |
| )ibromachlorometh <del>ane</del>             | EPA 502.2     | Other Regulated<br>Contaminants, Group II Unregulated<br>Contaminants | NELAP                 | 4/4/2002       |
| ibromochloromethane                          | EPA 524.2     | Group II Unregulated Contaminants                                     | NELAP                 | 1/21/2005      |
| icamba                                       | EPA 515.3     | Group I Unregulated Contaminants                                      | NELAP                 | 1/21/2005      |
| ichloroacetic acid                           | EPA 552.2     | Group I Unregulated Contaminants                                      | NELAP                 | 3/24/2005      |
| ichloromethane (DCM, Methylene chloride)     | EPA 502.2     | Other Regulated Contaminants                                          | NELAP                 | 4/4/2002       |
| ichloromethane (DCM, Methylene chloride)     | EPA 524.2     | Other Regulated Contaminants                                          | NELAP                 | 1/21/2005      |
| inoseb (2-sec-butyl-4,6-dinitrophenol, DNBP) | EPA 515.3     | Synthetic Organic Contaminants                                        | NELAP                 | 1/21/2005      |
| iquat                                        | EPA 549.2     | Synthetic Organic Contaminants                                        | NELAP                 | 4/19/2005      |

"STATE" indicates certification for the analyte by the method specified. "NELAP" further indicates certification compliant with the NELAC Standards.

2.22



John O. Agwunobi, M.D., M.B.A., M.P.H. Secretary

Page 3 of 27

# THIS LISTING OF ACCREDITED ANALYTES SHOULD BE USED ONLY WHEN ASSOCIATED WITH A VALID CERTIFICATE

State Laboratory ID: E82574

EPA Lab Code: FL00949

Laboratory Scope of Accreditation

(904) 363-9350

E82574

Advanced Environmental Laboratories, Inc.

6601 Southpoint Parkway Jacksonville, FL 32216

| Matrix: Drinking Water<br>Analyte                   | Method/Tech   | Category                                                              | Certification<br>Type | Effective Date |
|-----------------------------------------------------|---------------|-----------------------------------------------------------------------|-----------------------|----------------|
| Endothall                                           | EPA 548.1     | Synthetic Organic Contaminants                                        | NELAP                 | 1/21/2005      |
| Endrin                                              | EPA 508       | Synthetic Organic Contaminants                                        | NELAP                 | 3/24/2005      |
| Ethylbenzene                                        | EPA 502.2     | Other Regulated Contaminants                                          | NELAP                 | 4/4/2002       |
| Ethylbenzene                                        | EPA 524.2     | Other Regulated Contaminants                                          | NELAP                 | 1/21/2005      |
| gamma-BHC (Lindane,<br>gamma-Hexachlorocyclohexane) | EPA 508       | Synthetic Organic Contaminants                                        | NELAP                 | 3/24/2005      |
| Heptachlor                                          | EPA 508       | Synthetic Organic Contaminants                                        | NELAP                 | 3/24/2005      |
| Heptschlor epoxide                                  | EPA 508       | Synthetic Organic Contaminants                                        | NELAP                 | 3/24/2005      |
| Heterotrophic plate count                           | SM 9215 B     | Microbiology                                                          | NELAP                 | 1/21/2005      |
| Hexachlorobenzene                                   | EPA 508       | Synthetic Organic Contaminants                                        | NELAP                 | 3/24/2005      |
| Hexachlorocyclopentadiene                           | EPA 508       | Synthetic Organic Contaminants                                        | NELAP                 | 3/24/2005      |
| iron                                                | EPA 200.7     | Secondary Inorganic Contaminants                                      | NELAP                 | 4/4/2002       |
| Lead                                                | EPA 200.9     | Primary Inorganic Contaminants                                        | NELAP                 | 4/4/2002       |
| Lead                                                | SM 3113 B     | Primary Inorganic Contaminants                                        | NELAP                 | 4/4/2002       |
| Magnesium                                           | EPA 200.7     | <b>Primary Inorganic Contaminants</b>                                 | NELAP                 | 4/4/2002       |
| Aanganese                                           | EPA 200.7     | Secondary Inorganic Contaminants                                      | NELAP                 | 4/4/2002       |
| Aercury                                             | EPA 245.1     | Primary Inorganic Contaminants                                        | NELAP                 | 4/4/2002       |
| Aercury                                             | SM 3112 B     | Primary Inorganic Contaminants                                        | NELAP                 | 4/4/2002       |
| Aethoxychlor                                        | EPA 508       | Synthetic Organic Contaminants                                        | NELAP                 | 3/24/2005      |
| lickel                                              | EPA 200.7     | Primary Inorganic Contaminants                                        | NELAP                 | 4/4/2002       |
| litrate                                             | SM 4500-NO3 F | Primary Inorganic Contaminants                                        | NELAP                 | 2/13/2003      |
| Vitrate-nitrite                                     | SM 4500-NO3 F | Primary Inorganic Contaminants                                        | NELAP                 | 2/13/2003      |
| litrite                                             | SM 4500-NO3 F | Primary Inorganic Contaminants                                        | NELAP                 | 2/13/2003      |
| litrite as N                                        | SM 4500-NO2 B | Primary Inorganic Contaminants                                        | NELAP                 | 1/21/2005      |
| )dor                                                | SM 2150 B     | Secondary Inorganic Contominants                                      | NELAP                 | 2/13/2003      |
| Orthophosphate as P                                 | EPA 365.1     | Primary Inorganic Contaminants                                        | NELAP                 | 2/13/2003      |
| rthophosphate as P                                  | SM 4500-P E   | Primary Inorganic Contaminants                                        | NELAP                 | 1/21/2005      |
| xamyl                                               | EPA 531.1     | Synthetic Organic Contaminants                                        | NELAP                 | 4/19/2005      |
| CBs                                                 | EPA 508       | Synthetic Organic Contaminants                                        | NELAP                 | 3/24/2005      |
| entachlorophenol                                    | EPA 515.3     | Synthetic Organic Contaminants                                        | NELAP                 | 1/21/2005.     |
| H                                                   | EPA 150.1     | Primary Inorganic<br>Contaminants,Secondary Inorganic<br>Contaminants | NELAP                 | 4/4/2002       |
| icloram                                             | EPA 515.3     | Synthetic Organic Contaminants                                        | NELAP                 | 1/21/2005      |
| កាយខែឧសន                                            | EPA 200.7     | Secondary Inorganic Contaminants                                      | NELAP                 | 1/21/2005      |
| esidue-filterable (IDS)                             | EPA 160.1     | Secondary Inorganic Contaminants                                      | NELAP                 | 4/4/2002       |
| elenium                                             | EPA 200.9     | Primary Inorganic Contaminants                                        | NELAP                 | 4/17/2002      |
| elenium                                             | SM 3113 B     | Primary Inorganic Contaminants                                        | NELAP                 | 4/4/2002       |

"STATE" indicates certification for the analyte by the method specified. "NELAP" further indicates certification compliant with the NELAC Standards.

7.23



John O. Agwunobi, M.D., M.B.A., M.P.H. Secretary

Page 4 of 27

### THIS LISTING OF ACCREDITED ANALYTES SHOULD BE USED ONLY WHEN ASSOCIATED WITH A VALID CERTIFICATE

Laboratory Scope of Accreditation

FL00949

State Laboratory ID: E82574

EPA Lab Code:

(904) 363-9350

### E82574

Advanced Environmental Laboratories, Inc. 6601 Southpoint Parkway

Jacksonville, FL 32216

Matrix: Drinking Water

| Matrix: Drinking Water<br>Analyte      | Method/Tech | Category                         | Certification<br>Type | Effective Date |
|----------------------------------------|-------------|----------------------------------|-----------------------|----------------|
| Silica as SiO2                         | EPA 200.7   | Primary Inorganic Contaminants   | NELAP                 | 1/21/2005      |
| Silver                                 | EPA 200.7   | Secondary Inorganic Contaminants | NELAP                 | 4/4/2002       |
| Silvex (2,4,5-TP)                      | EPA 515.3   | Synthetic Organic Contaminants   | NELAP                 | 1/21/2005      |
| Simazine                               | EPA 525.2   | Synthetic Organic Contaminants   | NELAP                 | 3/24/2005      |
| Sodium                                 | EPA 200.7   | Primary Inorganic Contaminants   | NELAP                 | 4/4/2002       |
| Styrene                                | EPA 502.2   | Other Regulated Contaminants     | NELAP                 | 4/4/2002       |
| Styrene                                | EPA 524.2   | Other Regulated Contaminants     | NELAP                 | 1/21/2005      |
| ulfate                                 | EPA 375.4   | Secondary Inorganic Contaminants | NELAP                 | 2/13/2003      |
| urfactants - MBAS                      | EPA 425.1   | Secondary Inorganic Contaminants | NELAP                 | 1/21/2005      |
| Ternchloroethylene (Perchloroethylene) | EPA 502.2   | Other Regulated Contaminants     | NELAP                 | 4/4/2002       |
| etrachloroethylene (Perchloroethylene) | EPA 524.2   | Other Regulated Contaminants     | NELAP                 | 1/21/2005      |
| The Diturn                             | EPA 200.9   | Primary Inorganic Contaminants   | NELAP                 | 4/4/2002       |
| oluene                                 | EPA 502.2   | Other Regulated Contaminants     | NELAP                 | 4/4/2002       |
| "aluene                                | EPA 524.2   | Other Regulated Contaminants     | NELAP                 | 1/21/2005      |
| otal coliforms                         | SM 9222 B   | Microbiology                     | NELAP                 | 4/4/2002       |
| otal coliforms & E. coli               | SM 9223 B   | Microbiology                     | NELAP                 | 9/5/2002       |
| otal haloacetic acids                  | EPA 552.2   | Synthetic Organic Contaminants   | NELAP                 | 1/21/2005      |
| otal trihalomethanes                   | EPA 502.2   | Other Regulated Contaminants     | NELAP                 | 4/4/2002       |
| otal trihalomethanes                   | EPA 524.2   | Other Regulated Contaminants     | NELAP                 | 1/21/2005      |
| oxaphene (Chlorinated camphene)        | EPA 508     | Synthetic Organic Contaminants   | NELAP                 | 3/24/2005      |
| ans-1,2-Dichloroethylene               | EPA 502.2   | Other Regulated Contaminants     | NELAP                 | 4/4/2002       |
| ans-1,2-Dichloroethylene               | EPA 524.2   | Other Regulated Contaminants     | NELAP                 | 1/21/2005      |
| richloroacetic acid                    | EPA 552.2   | Group I Unregulated Contaminants | NELAP                 | 1/21/2005      |
| richloroethene (Trichloroethylene)     | EPA 502.2   | Other Regulated Contaminants     | NELAP                 | 4/4/2002       |
| richloroethene (Trichloroethylene)     | EPA 524.2   | Other Regulated Contaminants     | NELAP                 | 1/21/2005      |
| urbidity                               | EPA 180.1   | Secondary Inorganic Contaminants | NELAP                 | 7/17/2002      |
| inyl chloride                          | EPA 502.2   | Other Regulated Contaminants     | NELAP                 | 4/4/2002       |
| inyl chloride                          | EPA 524.2   | Other Regulated Contaminants     | NELAP                 | 1/21/2005      |
| ylene (total)                          | EPA 502.2   | Other Regulated Contaminants     | NELAP                 | 4/4/2002       |
| ylene (total)                          | EPA 524.2   | Other Regulated Contaminants     | NELAP                 | 1/21/2005      |
| ine                                    | EPA 200.7   | Secondary Inorganic Contaminants | NELAP                 | 4/4/2002       |
|                                        |             |                                  |                       |                |

"STATE" indicates certification for the analyte by the method specified. "NELAP" further indicates certification compliant with the NELAC Standards.

p.24





Laboratory Scope of Accreditation

Page 15 of 46 John O. Agwunobi, M.D.,M.B.A. Secretary

Page 1 of 4

### THIS LISTING OF ACCREDITED ANALYTES SHOULD BE USED ONLY WHEN ASSOCIATED WITH A VALID CERTIFICATE

State Laboratory ID: E84589

EPA Lab Code: FL01092

(813) 630-9616

### E84589

Advanced Environmental Laboratories, Inc. - Tampa 9610 Princess Palm Avenue

### Tampa, FL 33619

Matrix: Drinking Water

| Analyte                   | Method/Tech      | Category                                                               | Certification<br>Type | Effective Date |
|---------------------------|------------------|------------------------------------------------------------------------|-----------------------|----------------|
| Alkalinity as CaCO3       | SM 2320 B        | Primary Inorganic Contaminants                                         | NELAP                 | 10/11/2002     |
| Amenable cyanide          | SM 4500-CN G     | Primary Inorganic Contaminants                                         | NELAP                 | 10/11/2002     |
| Bromide                   | <b>HPA 300.0</b> | Primary Inorganic Contaminants                                         | NELAP                 | 10/11/2002     |
| Chloride                  | EPA 300.0        | Secondary Inorganic Contaminants                                       | NELAP                 | 10/11/2002     |
| Chloride                  | SM 4500 CI- E    | Secondary Inorganic Contaminants                                       | NELAP                 | 10/11/2002     |
| Chlorit                   | EPA 300.0        | Primary Inorganic Contaminants                                         | NELAP                 | 8/20/2003      |
| Color                     | EPA 110.2        | Secondary Inorganic Contaminants                                       | NELAP                 | 10/11/2002     |
| Conductivity              | SM 2510 B        | Primary Inorganic Contaminants                                         | NELAP                 | 10/11/2002     |
| Cyanide                   | SM 4500-CN E     | Primary Inorganic Contaminants                                         | NELAP                 | 10/11/2002     |
| Fecal coliforns           | SM 9221 B        | Microbiology                                                           | NELAP                 | 2/14/2003      |
| Fluoride                  | EPA 300.0        | Primary Inorganic Contaminants                                         | NELAP                 | 10/11/2002     |
| Fluoride                  | SM 4500 F-C      | Primary Inorganic<br>Contaminants, Secondary Inorganic<br>Contaminants | NELAP                 | 10/11/2002     |
| Heterotrophic plate count | SM 9215 B        | Microbiology                                                           | NELAP                 | 10/11/2002     |
| Nitrate                   | EPA 300.0        | Primary Inorganic Contaminants                                         | NELAP                 | 10/11/2002     |
| Nitrate                   | SM 4500-NO3 F    | Primary Inorganic Contaminants                                         | NELAP                 | 10/11/2002     |
| Nitratz-nitrite           | - EPA 300.0      | Primary Inorganic Contaminants                                         | NELAP                 | 10/11/2002     |
| Nitrite                   | EPA 300.0        | Primary Inorganic Contaminants                                         | NELAP                 | 10/11/2002     |
| Nitrite                   | SM 4500-NO3 F    | Primery Inorganic Conteminants                                         | NELAP                 | 10/11/2002     |
| Odor                      | SM 2150 B        | Secondary Inorganic Contaminants                                       | NELAP                 | 10/11/2002     |
| Orthophosphite as P       | BPA 300.0        | Primary Inorganic Contaminants                                         | NELAP                 | 10/11/2002     |
| Orthophosphite as P       | EPA 365.1        | Primary Inorganic Contaminants                                         | NELAP                 | 10/11/2002     |
| рН                        | EPA 150.1        | Secondary Inorganic Contaminants                                       | NELAP                 | 10/11/2002     |
| Sulfate                   | EPA 300.0        | Primary Inorganic Contaminants                                         | NELAP                 | 10/11/2002     |
| Sulfate                   | EPA 375.4        | Secondary Inorganic Contaminants                                       | NELAP                 | 10/11/2002     |
| Surfactants - MBAS        | EPA 425.1        | Secondary Inorganic Contaminants                                       | NELAP                 | 10/11/2002     |
| Total coliforms           | SM 9222 B        | Microbiology                                                           | NELAP                 | 2/14/2003      |
| fotal coliforns & E. coli | SM 9223 B        | Microbiology                                                           | NELAP                 | 2/14/2003      |
| Fotal dissolved solids    | EPA 160.1        | Secondary Inorganic Contaminants                                       | NELAP                 | 10/11/2002     |
| Fotal nitrate-sitrite     | SM 4500-NO3 F    | Primary Inorganic Contaminants                                         | NELAP                 | 10/11/2002     |
| Total organic carbon      | 6M 5310B         | Primary Inorganic Contaminants                                         | NELAP                 | 10/11/2002     |
| Furbidity                 | EPA 180.1        | Secondary Inorganic Contaminants                                       | NELAP                 | 10/11/2002     |
|                           |                  | -                                                                      |                       |                |

"STATE" indicates certification for the analyte by the method specified. "NELAP" further indicates certification compliant with the NELAC Standards. NON-TRANSFERABLE 07/01/2004-E845E

P.25





Laboratory Scope of Accreditation

John O. Agwunobi, M.D.,M.B.A. Secretary

Page 1 of 2

# THIS LISTING OF ACCREDITED ANALYTES SHOULD BE USED ONLY WHEN ASSOCIATED WITH A VALID CERTIFICATE

State Laboratory ID: E83033

EPA Lab Code: FL00012

(407) 382-7733

E83033 Florida Radiochemistry Services, Inc.

5456 Hoffner Rd. Suite 201 Orlando, FL 32812

Matrix: Drinking Water

|             |                                                       | Certification                                                                                                                    |                                                                                                                                                             |
|-------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Method/Tech | Category                                              | Туре                                                                                                                             | Effective Date                                                                                                                                              |
| EPA 900     | Radiochemistry                                        | NELAP                                                                                                                            | 6/28/2001                                                                                                                                                   |
| EPA 900     | Radiochemistry                                        | NELAP                                                                                                                            | 6/28/2001                                                                                                                                                   |
| EPA 908     | Radiochemistry                                        | NELAP                                                                                                                            | 6/28/2001                                                                                                                                                   |
| EPA 903     | Radiochemistry                                        | NELAP                                                                                                                            | 12/15/2003                                                                                                                                                  |
| EPA 903.1   | Radiochemistry                                        | NELAP                                                                                                                            | 6/28/2001                                                                                                                                                   |
| EPA Ra-05   | Radiochemistry                                        | NELAP                                                                                                                            | 6/28/2001                                                                                                                                                   |
|             | EPA 900<br>EPA 900<br>EPA 908<br>EPA 903<br>EPA 903.1 | EPA 900 Radiochemistry<br>EPA 900 Radiochemistry<br>EPA 908 Radiochemistry<br>EPA 903 Radiochemistry<br>EPA 903.1 Radiochemistry | Method/TechCategoryTypeEPA 900RadiochemistryNELAPEPA 900RadiochemistryNELAPEPA 908RadiochemistryNELAPEPA 903RadiochemistryNELAPEPA 903.1RadiochemistryNELAP |

"STATE" indicates certification for the analyte by the method specified. "NELAP" further indicates certification compliant with the NELAC Standards.

NON-TRANSFERABLE 06/01/2004-E83033

p. 2.0



| John | Q, | Agwunabi, | M.D. | M.B.A.  |
|------|----|-----------|------|---------|
| ٠    |    |           | Se   | oretarv |

Laboratory Scope of Accreditation

#### Page 1 of 30

### THIS LISTING OF ACCREDITED ANALYTES SHOULD BE USED ONLY WHEN ASSOCIATED WITH A VALID CERTIFICATE

State Laboratory D: E84129

EPA Lab Code: FL00237 (813) 855-1844

E84129

# Southern Analytical Laboratories, Inc. 110 Bayview Blvd Oldsmar, FL 34677

| Matrix: Drinking Water<br>Analyte           | Method/Tech | Category                           | Certification<br>Type | Effective Date |
|---------------------------------------------|-------------|------------------------------------|-----------------------|----------------|
| 1,1,1,2-Tetrachloroothane                   | EPA 502.2 · | Group II Unregulated Contaminants  | NELAP                 | 3/22/2002      |
| 1,1,1-Trichlorethane                        | EPA 502.2   | Other Regulated Contaminants       | NELAP                 | 3/22/2002      |
| 1,1,2,2-Tetrachlorosthans                   | EPA 502.2   | Group II Unregulated Contaminants  | NELAP                 | 3/22/2002      |
| 1, 1, 2-Trichlorosthane                     | EPA 502.2   | Other Regulated Contaminants       | NELAP                 | 3/22/2002      |
| 1.1-Dichloroethane                          | EPA 502.2   | Group II Unregulated Contaminants  | NELAP                 | 3/22/2002      |
| 1,1-Dichlorosthylene                        | EPA 502.2   | Other Regulated Contaminants       | NELAP                 | 3/22/2002      |
| 1,1-Dichloropropene                         | EPA 502.2   | Group II Unregulated Contaminants  | NELAP                 | 3/22/2002      |
| 1,2,3-Trichlorobenzeno                      | EPA 502.2   | Group II Unregulated Contaminants  | NELAP                 | 3/6/2003       |
| 1,2,3-Trichloropropane                      | BPA 502.2   | Group II Unregulated Contaminants  | NELAP                 | 3/22/2002      |
| 1,2,4-Trichlorobenzene                      | EPA 502.2   | Other Regulated Contaminants       | NELAP                 | 3/22/2002      |
| 1,2,4-Trimsthyibeazens                      | EPA 502.2   | Group II Unregulated Contaminants  | NELAP                 | 3/6/2003       |
| 1,2-Dibrome-3-chloropropane (DBCP)          | EPA 504.1   | Synthetic Organic Contaminants     | NELAP                 | 3/22/2002      |
| 1,2-Dibromoethans (BDB, Ethylene dibromide) | EPA 504.1   | Synthetic Organic Contaminants     | NELAP                 | 3/22/2002      |
| 1,2-Dichlorobenzene                         | EPA 502.2   | Other Regulated Contaminants       | NELAP                 | 3/22/2002      |
| 1,2-Dichloroethane                          | EPA 502.2   | Other Regulated Comminants         | NBLAP                 | 3/22/2002      |
| .2-Dichlompropane                           | EPA 502.2   | Other Regulated Contuminants       | NELAP                 | 3/22/2002      |
| 1,3,5-Trimsthylbenzene .                    | EPA 502.2   | Group II Unregulated Contaminants  | NELAP                 | 3/6/2003       |
| ,3-Dichlorobenzene                          | EPA 502.2   | Group II Unregulated Contaminants  | NELAP                 | 3/22/2002      |
| ,3-Dichloropropane                          | EPA 502.2   | Group II Unregulated Contaminants  | NELAP                 | 3/22/2002      |
| 4-Dichlorobenzana                           | EPA 502.2   | Other Regulated Contaminants       | NELAP                 | 3/22/2002      |
| 2-Dichloropropana                           | BPA 502.2   | Group II Unregulated Contaminants  | NELAP                 | 3/22/2002      |
| 4,6-Trichlorophenol                         | BPA 604     | Group III Unregulated Contaminants | NELAP                 | 3/22/2002      |
| ,4,6-Trichkrophenol                         | EPA 625     | Group III Unregulated Contaminants | NELAP                 | 3/22/2002      |
| ,4-D                                        | EPA 515.1   | Synthetic Organic Contaminants     | NELAP                 | 3/22/2002      |
| ,4-D                                        | "EPA 515.3  | Synthetic Organic Contaminants     | NELAP                 | 3/22/2002      |
| ,4-Dinitrotoluens (2,4-DNT)                 | EPA 525.2   | Group III Unregulated Contaminants | NELAP                 | 3/6/2003       |
| ,4-Dinitrotoluene (2,4-DNT)                 | EPA 609     | Group III Unregulated Contaminants | NELAP                 | 3/22/2002      |
| ,4-Dinitrotoluene (2,4-DNT)                 | EPA 625     | Group III Unregulated Contaminants | NELAP                 | 3/22/2002      |
| 6-Dinitrotoluene (2,6-DNT)                  | EPA 525.2   | Group III Unregulated Contaminants | NELAP                 | 3/6/2003       |
| 6-Dinitrotoluene (2,6-DNT)                  | EPA 625     | Group III Unregulated Contaminants | NELAP                 | 3/22/2002      |
| -Chlorophenol                               | EPA 604     | Group III Unregulated Contaminants | NELAP                 | 3/22/2002      |
| -Chlorophenol                               | EPA 625     | Group III Unregulated Contaminants | NELAP                 | 3/22/2002      |
| Chlorotohene                                | EPA 502.2   | Group II Unregulated Contaminants  | NELAP                 | 3/22/2002      |
| Methyl-4,6-dinitrophenol                    | EPA 604     | Group III Unregulated Contaminants | NELAP                 | 3/22/2002      |
| Methyl-4,6-dinitrophenol                    | EPA 625     | Group III Unregulated Contaminants | NELAP                 | 3/22/2002      |
| Hydroxycarbofuran                           | EPA 531.1   | Group I Unregulated Contaminants   | NELAP                 | 3/22/2002      |

"STATE" indicates certification for the analyte by the method specified. "NELAP" further indicates certification compliant with the NELAC Standards.

NON-TRANSFERABLE 01/08/2004-E84129

R.27



John O. Agwunobi, M.D., M.S.A. Secretary

Laboratory Scope of Accreditation

Page 2 of 30

### THIS LISTING OF ACCREDITED ANALYTES SHOULD BE USED ONLY WHEN ASSOCIATED WITH A VALID CERTIFICATE

EPA Lab Code: State Laboratory ID: E84129 (813) 855-1844 FL00237 TR84129 Southern Analytical Laboratories, Inc. 110 Bayview Blvd Oldsmar, FL 34677 Drinking Water Matrix: Certification Method/Tech Category Analyte Effective Date Тура EPA 508.1 4.4'-DDD Group I Unregulated Contaminants NELAP 7/19/2002 EPA 525.2 4,4'-DDD Group I Unregulated Contaminants NELAP 3/22/2002 4,4'-DDB **EPA 508.1** Group I Unregulated Contaminanta NELAP 7/19/2002 4.4'-DDB EPA 525.2 Group I Unregulated Contaminants NELAP. 3/22/2002 4,4'-DDT NELAP. EPA 508.1 Group I Unregulated Contaminants 7/19/2002 4,4'-DDT EPA 525.2 Group I Unregulated Contaminants NELAP 3/22/2002 EPA 502.2 4-Chlorotolueu Group II Unregulated Contaminants NELAP 3/22/2002 EPA 502.2 4-Isopropylioluene NELAP Group II Unregulated Contaminants 3/6/2003 Acetochior EPA 525.2 Group I Unregulated Contaminants NELAP 3/6/2003 Acifluorfez EPA 515.3 NELAP Group I Unregulated Contaminants 3/22/2002 Alachlor EPA 507 Synthetic Organic Contaminants NELAP 3/22/2002 Alachlor EPA 508.1 Synthetic Organic Contaminanta NELAP 7/19/2002 Alachlor EPA 525.2 Synthetic Organic Contaminants NELAP 3/22/2002 Aldicarb (Temik) EPA 531.1 Group I Unregulated Contaminants NELAP 3/22/2002 Aldicarb sulfone EPA 531.1 Group I Unregulated Contaminants NELAP 3/22/2002 Aldicarb sulfoxide EPA 531.1 NELAP Group I Unregulated Contaminants 3/22/2002 EPA 508 NELAP Aldrin Group I Unregulated Contaminants 3/22/2002 EPA 508.1 Aldrin Group I Unregulated Contaminants NELAP. 7/19/2002 Aldrin EPA 525.2 Group I Unregulated Contaminants NELAP 3/22/2002 SM 2320 B Alkalinity as CaCO3 Primary Inorganic Contaminants · NELAP 3/22/2002 alphs-BHC (alpha-Hexachloropyclohexane) EPA 508.1 Group I Unregulated Contaminants NELAP 7/10/2002 Airminum EPA 200.7 Secondary Inorganic Contaminants NRLAP 3/22/2002 Ametryn EPA 525.2 Synthetic Organic Contaminants **NELAP** 3/6/2003 SM 3113 B Antimony NELAP Primary Inorganic Contaminants 3/22/2002 Arsenic SM 3113 B NELAP **Primary Inorganic Contaminants** 3/22/2002 Abrazine EPA 507 Synthetic Organic Contaminants NELAP 3/22/2002 Atrazine EPA 508.1 Synthetic Organic Contaminants NELAP 7/19/2002 EPA 525.2 Atrazine Synthetic Organic Contaminants NELAP 3/22/2002 EPA 200.7 NELAP Barium Primary Inorgania Contaminants 3/22/2002 EPA 502.2 Benzene Other Regulated Contaminants NELAP 3/22/2002 Benzo(a)pyrene EPA 525.2 Synthetic Organic Contaminants NELAP 3/22/2002 Benzo(a)pyrene EPA 550.1 NHLAP Synthetic Organic Contaminanta 3/22/2002 Berylinm HPA 200.7 Primary Inorganic Contaminants NELAP 3/22/2002 Beryllium SM 3113 B **Primary Inorganic Contuminanis** NELAP 3/22/2002 beta-BHC (beta-Hexachlorocyolohexane) EPA 508.1 Group I Unregulated Contaminants NELAP 7/19/2002 bis(2-Ethylhexyl) phthalate (DEHP) EPA 506 Synthetic Organic Contaminants NELAP 3/12/2002

"STATE" indicates certification for the analyte by the method specified. "NELAP" further indicates certification compliant with the NELAC Standards. NON-TRANSFERABLE 01/08/2004-E84129

v. 28

of 30



John O. Agwunobi, M.D., M.B.A. Secretary

Page 3

Laboratory Scope of Accreditation

### THIS LISTING OF ACCREDITED ANALYTES SHOULD BE USED ONLY WHEN ASSOCIATED WITH A VALID CERTIFICATE

State Laboratory ID: E84129 .

EPA Lab Code: FL00237

(813) 855-1844

E84129 Southern Analytical Laboratories, Inc. 110 Bayview Bivd

Oldsmar, FL 34677

Jeb Bush Governor

| Matrix: Drinking Water<br>Analyte  | Method/Tech  | Category                                                                            | Certification<br>Type | Effective Date |
|------------------------------------|--------------|-------------------------------------------------------------------------------------|-----------------------|----------------|
| bis(2-Ethylbexyl) phthalate (DHHP) | EPA 525.2    | Synthetic Organic Contaminants                                                      | NELAP                 | 3/22/2002      |
| Bromacil                           | BPA 525.2    | Synthetic Organic Contaminants                                                      | NELAP                 | 3/6/2003       |
| Bromate                            | EPA 300.0    | Primary Inorganic Contaminants                                                      | NELAP                 | 3/22/2002      |
| Bromide                            | EPA 300.0    | Primary Inorganic Contaminants                                                      | NELAP                 | 3/22/2002      |
| Bromoacebic scid                   | EPA 552.2    | Synthetic Organic Containments<br>Contaminants, Group I Unregulated<br>Contaminants | NELAP                 | 3/22/2002      |
| Bromobenzene                       | EPA 502.2    | Group II Unregulated Contaminants                                                   | NELAP                 | 3/22/2002      |
| Bromochloroacetic acid             | EPA 552.2    | Group I Unregulated Contaminants                                                    | NELAP                 | 7/2/2002       |
| Bromochloromethane                 | EPA 502.2    | Group II Unregulated Contaminants                                                   | NELAP                 | 3/6/2003       |
| Bromodichloromethane               | EPA 502.2    | Group II Unregulated<br>Contaminants, Other Regulated<br>Contaminants               | NELAP                 | 3/22/2002      |
| Bramoforzh                         | EPA 502.2    | Other Regulated<br>Contaminants,Group II Unregulated<br>Contaminants                | NELAP                 | 3/22/2002      |
| Butachlor                          | EPA 507      | Group I Unregulated Contaminants                                                    | NELAP                 | 3/22/2002      |
| Butachlor                          | EPA 525.2    | Group I Unregulated Contaminants                                                    | NELAP                 | 3/22/2002      |
| Butyl benzyl phibalate             | EPA 606      | Group III Unregulated Contaminants                                                  | NELAP                 | 3/22/2002      |
| Butyl benzyl phthalats             | EPA 625      | Group III Unregulated Contaminants                                                  | NELAP                 | 3/22/2002      |
| Cadmium                            | EPA 200.7    | Primary Inorganic Contaminants                                                      | NELAP                 | 3/22/2002      |
| Cadmium                            | SM 3113 B    | Primary Inorganic Contaminants                                                      | NELAP ·               | 3/22/2002      |
| Carbaryl (Sevin)                   | EPA 531.1    | Group I Unregulated Contaminants                                                    | NBLAP                 | 3/22/2002      |
| Carboñirza (Funden)                | · EPA 531.1  | Synthetic Organic Contaminants                                                      | NELAP                 | 3/22/2002      |
| Carbon tetrachloride               | EPA 502.2    | Other Regulated Contaminanta                                                        | NELAP                 | 3/22/2002      |
| Chlordane (tech.)                  | EPA SOS      | Synthetic Organic Contaminants                                                      | NELAP                 | 3/22/2002      |
| Chlordane (tech.)                  | EPA 508.1    | Synthetic Organic Contaminants                                                      | NELAP                 | 7/19/2002      |
| Chlorida                           | EPA 300.0    | Secondary Inorganic Contaminants                                                    | NELAP                 | 3/22/2002      |
| Chloride                           | EPA 325.2    | Secondary Inorganic Contaminants                                                    | NELAP                 | 3/22/2002      |
| Chlorine                           | SM 4500-Cl G | Primary Inorganic Contaminants                                                      | NELAP '               | 3/22/2002      |
| Chlorite                           | BPA 300.0    | Primary Inorganic Contaminants                                                      | NELAP                 | 3/22/2002      |
| Chloroaestic acid                  | EPA 552.2    | Synthetic Organic<br>Contaminants,Group I Unregulated<br>Contaminants               | NELAP                 | 3/22/2002      |
| Chlorobenzene                      | EPA 502.2    | Other Regulated Contaminants                                                        | NELAP                 | 3/22/2002      |
| Chloroethane                       | EPA 502.2    | Group II Unregulated Contaminants                                                   | NELAP                 | 3/22/2002      |
| Chloroform                         | EPA 502.2    | Group II Unregulated<br>Contaminants, Other Regulated<br>Contaminants               | NELAP                 | 3/22/2002      |
| Chromium                           | EPA 200.7    | Primary Inorganic Contaminants                                                      | NELAP                 | 3/22/2002      |
| cis-1,2-Dichlorosthylene           | EPA 502.2    | Other Regulated Contaminants                                                        | NELAP                 | 3/22/2002      |

"STATE" indicates certification for the analyte by the method specified. "NELAP" further " indicates certification compliant with the NELAC Standards.

NON-TRANSFERABLE 01/08/2004-E84129

R. 24



John O. Agwunobi, M.D., M.B.A. Secretary

Page 4 of 30

### THIS LISTING OF ACCREDITED ANALYTES SHOULD BE USED ONLY WHEN ASSOCIATED WITH A VALID CERTIFICATE

State Laboratory ID: E84129

Jeb Buch

Governor

EPA Lab Code: FL00237

(813) 855-1844

E84129 Southern Analytical Laboratories, Inc. 110 Bayview Blvd Oldsmar, FL 34677

Matrix: **Drinking** Water Certification Analyte Method/Tech Category Effective Date Турв cis-1,3-Dichloropropene EPA 502.2 Group II Unregulated Contaminants NELAP 3/22/2002 SM 2120 B Color Secondary Inorganic Contaminants NELAP 3/22/2002 Conductivity SM 2510 B Primary Inorganic Contaminants NEL:AP 3/22/2002 Copper EPA 200,7 Printary Inorganic NELAP 3/22/2002 Contaminants, Secondary Inorganic . Contaminants Cvanide SM 4500-CN B Primary Inorganic Contaminants NELAP 3/22/2002 Dacthal (DCPA) EPA 515,1 Group I Unregulated Contaminants NELAP 3/22/2002 Daothal (DCPA) EPA 515.3 Group I Unregulated Contaminants NELAP 3/22/2002 Daispon EPA 515.1 Synthetic Organic Conterninents NELAP 3/22/2002 Dalapon . EPA 515.3 Synthetic Organic Contaminants NELAP 3/22/2002 DCPA di acid degradate EPA 515.3 Group I Unregulated Contaminants NELAP 3/22/2002 DCPA mono-acid EPA 515.3 Group I Unregulated Contaminants NELAP 3/22/2002 delta-BHC EPA 508.1 Group I Unregulated Contaminants NELAP 7/19/2002 Di(2-sthylhexyl)adipate **EPA 506** Synthetic Organic Contaminants NRLAP 3/22/2002 Di(2-ethylhexyl)adipate EPA 525.2 Synthetic Organic Contaminants NELAP 3/22/2002 Dibromoscetic acid EPA 552,2 Group I Unregulated NELAP 3/22/2002 Contaminants, Synthetic Organic Contaminant Dibromochloromethane EPA 502.2 Other Regulated NELAP 3/22/2002 Contaminants, Group II Unregulated Contaminanta Dibromomethane EPA 502.2 Group II Unregulated Contaminants NELAP 3/22/2002 Dicamba EPA 515.1 Group I Unregulated Contaminants NELAP 3/22/2002 Dicamba EPA 515.3 Group I Unregulated Contaminants NELAP 3/22/2002 Dichlomacetic acid Group I Unregulated EPA 552.2 NELAP 3/22/2002 Contaminants, Synthetic Organic Contaminanta Dichlorodifluoromethane EPA 502.2 Group II Unregulated Contaminants NELAP 3/22/2002 Dichloromethane (DCM, Mathylene chloride) **EPA 502.2** Other Regulated Contaminants NELAP 3/22/2002 Dieldrin EPA 508 NELAP Group I Unregulated Contaminants 3/22/2002 Dieldrin EPA 508.1 Group I Unregulated Contaminants NELAP 7/19/2002 Dieldrin EPA 525.2 Group I Unregulated Contaminants NELAP 3/22/2002 Diethyl pathalate EPA 606 Group III Unregulated Contaminants NELAP 3/22/2002 Diethyl phthelate EPA 625 Group III Unregulated Contaminants NELAP 3/22/2002 Dimethyl phthalate EPA 606 Group III Unregulated Contaminants NELAP 3/22/2002 Dimethyl phthalate EPA 625 Group III Unregulated Contaminants NELAP 3/22/2002 Di-n-butyl phthalate EPA 606 Group III Unregulated Contaminants NELAP 3/22/2002 Di-u-butyi phthalate EPA 625 Group III Unregulated Contaminants NRLAP 3/22/2002 Di-n-octyl phthalate EPA 606 Group III Unregulated Contaminants NELAP 3/22/2002

"STATE" indicates certification for the analyts by the method specified. "NELAP" further indicates certification compliant with the NELAC Standards.

NON-TRANSFERABLE 01/08/2004-E84129

P: 30



John O. Agwunchi, M.D., M.B.A. Secretary

Page 5 of 30

### THIS LISTING OF ACCREDITED ANALYTES SHOULD BE USED ONLY WHEN ASSOCIATED WITH A VALID CERTIFICATE

EPA Lab Code: State Laboratory ID: E84129 FL00237 (813) 855-1844 E84129 Southern Analytical Laboratories, Inc. 110 Bayview Blvd Oldsmar, FL 34677 Matrix: **Drinking** Water Certification 'Method/Tech Analyte Category Туре Effective Date Di-n-octyl phthalate NELAP 3/22/2002 EPA 625 Group III Unregulated Contaminants

| TVI-D-DOLAT hurren gro                              | EFR 025       | Oroth III OtteAmerer contentitistica                                    | NUMBER OF STREET | 3/22/2002   |
|-----------------------------------------------------|---------------|-------------------------------------------------------------------------|------------------|-------------|
| Dinoseb (2-sec-butyl-4,6-dinitrophenol, DNBP)       | EPA 515.1     | Synthetic Organic Contaminants                                          | NELAP            | 3/22/2002   |
| Dinosch (2-zec-buryl-4,6-dinitrophenol, DNBP)       | EPA 515.3     | . Synthetic Organic Contaminants                                        | NELAP            | 3/22/2002   |
| Diquat                                              | EPA 549.2     | Synthetic Organic Contaminants                                          | NELAP            | 3/22/2002   |
| Endosulfan I                                        | EPA 508.1     | Group I Unregulated Contaminants                                        | NELAP            | 7/19/2002   |
| Endosulfan II                                       | EPA 508.1     | Group I Unregulated Contaminants                                        | NELAP            | 7/19/2002   |
| Endosulfan sulfate                                  | EPA 508.1     | Group I Unregulated Contaminants                                        | NELAP            | 7/19/2002   |
| Endothall                                           | EPA 548.1     | Synthetic Organic Contaminants                                          | NELAP            | . 3/22/2002 |
| Budrin                                              | EPA 508       | Synthetic Organic Contaminants                                          | NELAP            | 7/19/2002   |
| Endrin                                              | EPA 508.1     | Synthetic Organic Contaminanta                                          | NELAP            | 7/19/2002   |
| Badria                                              | EPA 525.2     | Synthetic Organic Contaminants                                          | . NELAP          | 7/19/2002   |
| Endrin aldehyde                                     | BPA 508.1     | Group I Unregulated Contaminants                                        | NELAP            | 7/19/2002   |
| EPTC (Bptam, s-ethyl-dipropyl thio carbamate)       | EPA 525.2     | Group I Unregulated Contaminants                                        | NHLAP            | 3/22/2002   |
| Bihylbenzone                                        | EPA 502.2     | Other Regulated Contaminants                                            | NELAP            | 3/22/2002   |
| Focal coliforms                                     | SM 9221 E     | Microbiology                                                            | NELAP            | 3/22/2002   |
| Fluoride                                            | . EPA 300.0   | Primary Inorganic Contaminants                                          | NELAP .          | 3/22/2002   |
| Fhuride                                             | . SM 4500 F-C | Secondary Inorganic -<br>Contaminants,Primary Inorganic<br>Contaminants | NELAP            | 3/22/2002   |
| gamma-BHC (Lindane,<br>gamma-Hazachiorocyclohexane) | EPA 508       | Synthetic Organic Contaminants                                          | NELAP            | 3/22/2002   |
| gamma-BHC (Lindane,<br>gamma-Hexachlorcoyclobexane) | EPA 508.1     | Synthetic Organic Contaminants                                          | NELAP            | 7/19/2002   |
| gamma-BHC (Lindane,<br>gamma-Hexachlorocyclohexane) | BPA 525.2     | Synthetic Organic Contaminants                                          | NELAP            | 3/22/2002   |
| Glyphosate                                          | EPA 547       | Synthetic Organic Contaminanta                                          | NELAP            | · 3/22/2002 |
| Heptachlor                                          | EPA 508       | Synthetic Organic Contuminanta                                          | NELAP            | 3/22/2002   |
| Haptachlor                                          | HPA 508.1     | Synthetic Organic Contaminants                                          | NELAP            | 7/19/2002   |
| Heptschlor                                          | EFA 525.2     | Synthetic Organic Contaminants                                          | NELAP            | 3/22/2002   |
| Heptachlor spaxide                                  | EPA 508       | Synthetic Organic Contaminanta                                          | NELAP            | 3/22/2002   |
| Heptachlor epoxide                                  | EPA 508.1     | Synthetic Organic Contaminants                                          | NELAP            | 7/19/2002   |
| Heptachlor opoxids                                  | EPA 525.2     | Synthetic Organic Conterninants                                         | NELAP            | 3/22/2002   |
| Hexachiorobenzene                                   | EPA 508       | Synthetic Organic Conterninants                                         | NELAP            | 3/22/2002   |
| Hexachiorobenzene                                   | EPA 508.1     | Synthetic Organic Contaminants                                          | NELAP            | 7/19/2002   |
| Hexachlorobenzene                                   | EPA 525.2     | Synthetic Organic Contaminants                                          | NELAP            | 3/22/2002   |
| Hexachlorobutadiene                                 | EPA 502.2     | Group II Unregulated Contaminants                                       | NELAP            | 3/6/2003    |
| Kexachlorocyclopeatadiene                           | EPA 508       | Synthetic Organic Contaminants                                          | NELAP            | 3/22/2002   |
| Hexachlorocyclopentaciene                           | EPA 508.1     | Synthetic Organic Contaminants                                          | NELAP            | 7/19/2002   |
| Hexachiorocyclopentaciene                           | EPA 525.2     | Synthetic Organic Contaminants                                          | NELAP            | 3/22/2002   |
|                                                     |               |                                                                         |                  |             |

"STATE" indicates certification for the analyte by the method specified. "NELAP" further indicates certification compliant with the NELAC Standards.

NON-TRANSFERABLE 01/08/2004-E84129

, njl



Jeb Bueh Governor

Secretary

John O. Agwunobi, M.D., M.B.A.

Page 6 of 30

#### THIS LISTING OF ACCREDITED ANALYTES SHOULD BE USED ONLY WHEN ASSOCIATED WITH A VALID CERTIFICATE

State Laboratory ED: E84129

EPA Lab Code: FL00237

(813) 855-1844

E84129

Southern Analytical Laboratories, Inc.

110 Bayview Blvd Oldsmar, FL 34677

| Matrix: Drinking Water          |               |                                    | Certification | ·              |
|---------------------------------|---------------|------------------------------------|---------------|----------------|
| Analyta                         | Mathod/Tech   | Category                           | Туре          | Effective Date |
| Hexazinone (Velpar)             | . BPA 525.2   | Synthetic Organic Contaminants     | NELAP         | 3/6/2003 -     |
| Iron                            | EPA 200.7     | Secondary Inorganic Contaminants   | NELAP         | 3/22/2002      |
| Isophorone                      | EPA 525.2     | Group III Unregulated Contaminants | NELAP         | 3/6/2003       |
| Isepherene                      | EPA 609       | Group III Unregulated Contaminants | NELAP         | 3/22/2002      |
| Isopharone                      | EPA 625       | Group III Unregulated Contaminants | NELAP         | 3/22/2002      |
| Isopropylbenzenc                | EPA 502.2     | Group II Unregulated Contaminants  | NELAP         | 3/6/2003       |
| Lead                            | SM 3113 B     | Primary Inorganic Contaminants     | NELAP         | 3/22/2002      |
| Manganese                       | EPA 200.7     | Secondary Inorganic Contaminanta   | NHLAP         | - 3/22/2002    |
| Mercury                         | EPA 245.1     | Primary Inorganic Contaminants     | NELAP         | 3/22/2002      |
| Methomyl (Lanuste)              | EPA 531.1     | Group I Unregulated Contaminants   | NELAP         | 3/22/2002      |
| Methaxychlar                    | EPA 508       | Synthetic Organic Contaminants     | NELAP         | 3/22/2002      |
| Asthoxychlor                    | EPA 508.1     | Synthetic Organic Contaminants     | NELAP         | 7/19/2002      |
| Actionychior                    | EPA 525.2     | Synthetic Organic Contaminants     | NELAP         | 3/22/2002      |
| fethyl bromide (Bromomethane)   | EPA 502.2     | Group II Unregulated Contaminants  | NELAP         | 3/22/2002      |
| fethyl chloride (Chloromethane) | . EPA 502.2   | Group II Unregulated Contaminants  | NELAP         | 3/22/2002      |
| (athy) tart-buly] ether (MTBE)  | EPA 502.2     | Group II Unregulated Contaminants  | NELAP         | 3/22/2002      |
| fetolachlor                     | EPA 507       | Group I Unregulated Contaminants   | NELAP         | 3/22/2002      |
| fetolachlor                     | EPA-525.2     | Group I Unregulated Contaminants   | NELAP         | 3/22/2002      |
| lettipritit                     | BPA 507       | Group I Unregulated Contaminants   | NELAP         | 3/22/2002      |
| letribuzin                      | BPA 525.2     | Group I Unregulated Contaminants   | NELAP'        | 3/22/2002      |
| folinate                        | EPA 525,2     | Group I Unregulated Contaminants   | NELAP         | 3/22/2002      |
| aphthalene                      | EPA 502.2     | Group II Unregulated Contaminants  | NELAP         | 3/6/2003       |
| Butylbenzene                    | EPA 502.2     | Group II Unregulated Contaminants  | NELAP         | 3/6/2003       |
| icko]                           | EPA 200.7     | Primary Inorganic Contaminants     | NHLAP         | 3/22/2002      |
| itrate                          | EPA 300.0     | Primary Inorganic Contaminants     | NELAP         | 3/22/2002      |
| itrate                          | EPA 353.2     | Primary Inorganic Contaminants     | NELAP         | 3/22/2002      |
| trite                           | EPA 300.0     | Primary Inorganic Contaminants     | NELAP         | 3/22/2002      |
| itrite .                        | · EPA 353.2   | Primary Inorganic Contaminants     | NELAP         | 3/22/2002      |
| itrita .                        | SM 4500-NO2 B | Primary Inorganic Contaminants     | ŃELAP         | 3/22/2002      |
| arfiurazon .                    | EPA 525.2     | Synthetic Organic Contaminants     | NBLAP .       | 3/6/2003       |
| Propylbanzene                   | BPA 502.2     | Group II Unregulated Contaminants  | NELAP         | 3/6/2003       |
| lor                             | SM 2150 B     | Secondary Inorganic Contaminants   | NELAP         | 3/22/2002      |
| thophosphate as P               | EPA 300.0     | Primary Inorganic Contaminants     | NELAP         | 3/22/2002      |
| carnyt                          | EPA 531.1     | Synthetic Organic Contaminants     | NELAP         | 3/22/2002      |
| 28:                             | EPA 508       | Synthetic Organic Contaminants     | NELAP         | 3/22/2002      |
| Br                              | EPA 508.1     | Synthetic Organic Conteminants     | NELAP         | 7/19/2002      |

"STATE" indicates certification for the analyte by the method specified. "NELAP" further indicates certification compliant with the NELAC Standards.

NON-TRANSFERABLE 01/08/2004-E84129

P. 32

jeb Bush Governor

Foul dissolved solids

fotal haloacetic acids

fotal nitrate-nitrite

fotal nitrate-nitrite



Page 23 of 46 John O. Agwunobi, M.D., M.B.A. Secretary

> Page 7 of 30

THIS LISTING OF ACCREDITED ANALYTES SHOULD BE USED ONLY WHEN

| State Laboratory ID: · E84129                                                          | EPA La      | b Code: FL00237                    | (813) 8               | 355-1844       |
|----------------------------------------------------------------------------------------|-------------|------------------------------------|-----------------------|----------------|
| E84129<br>Southern Analytical Laboratories, I<br>110 Bayvlew Blvd<br>Oldsmar, FL 34677 | nc, .       |                                    |                       |                |
| Matrix: Drinking Water                                                                 | Method/Tech | Category                           | Certification<br>Type | Effective Date |
| Pentachlorophenol                                                                      | EFA 515.1   | Synthetic Organic Contaminants     | NELAP                 | 3/22/2002      |
| Pentachlorophenol                                                                      | EPA 515.3   | Synthetic Organic Contaminants     | NELAP                 | 3/22/2002      |
| Pentachlorophenol                                                                      | EPA 525.2   | Synthetic Organic Contaminants     | NELAP                 | 3/22/2002      |
| pH                                                                                     | EPA 150.1   | Secondary Inorganic Conteminants   | NELAP                 | 3/22/2002      |
| Phenol                                                                                 | EPA 604     | Group III Unregulated Contaminants | NELAP                 | 3/22/2002      |
| Phenol                                                                                 | EPA 625     | Group III Unregulated Contaminants | NELAP                 | 3/22/2002      |
| Pictoram                                                                               | EPA: 515.1  | Synthetic Organic Contaminants     | NELAP                 | 3/22/2002      |
| icloram                                                                                | EPA 515.3   | Synthetic Organic Contaminants     | NELAP                 | 3/22/2002      |
| ropachlor (Ramrod)                                                                     | EPA 508     | Group I Unregulated Contaminanta   | NELAP                 | 3/22/2002      |
| ropachlor (Ramod)                                                                      | BPA 508.1   | Group I Unregulated Contaminanta   | NELAP                 | 7/19/2002      |
| ropachior (Ramrod)                                                                     | EPA 525.2   | Group I Unregulated Contaminants   | NELAP                 | 3/22/2002      |
| ec-Butylbenzene                                                                        | EPA 502.2   | Group II Unregulated Contaminants  | NELAP                 | 3/6/2003       |
| elenium                                                                                | EPA 200.7   | Primary Inorganic Contaminants     | NELAP                 | 3/22/2002      |
| elenium                                                                                | SM 3113 B   | Primary Inorganic Contaminants     | NELAP                 | 3/12/2002      |
| ilver                                                                                  | ÉPA 200.7   | Secondary Inorganic Contaminants   | NELAP                 | 3/22/2002      |
| ilver                                                                                  | SM 3113 B   | Secondary Inorgenic Contaminants   | NELAP                 | 3/22/2002      |
| ilvex (2,4,5-TP)                                                                       | EPA 515.1   | Synthetic Organic Contaminants     | NELAP                 | 3/22/2002      |
| ilvex (2,4,5-TP)                                                                       | EPA 515.3   | Synthetic Organic Contaminants     | NELAP                 | 3/22/2002      |
| mazine                                                                                 | EPA 507     | Synthetic Organic Contaminants     | NELAP                 | 3/22/2002      |
| imazine                                                                                | EPA 508.1   | Synthetic Organic Contaminants     | NELAP                 | 7/19/2002      |
| imazine                                                                                | EPA 525.2   | Synthetic Organic Contaminants     | NBLAP                 | 3/22/2002      |
| odium                                                                                  | EPA 200.7   | Primary Inorganic Contaminants     | NELAP                 | 3/22/2002      |
| yrene                                                                                  | EPA 502.2   | Other Regulated Contaminants       | NELAP                 | 3/22/2002      |
| lfare                                                                                  | ÉPA 300.0   | Secondary Inorganic Contaminants   | NELAP                 | 3/22/2002      |
| rfactaots - MBAS                                                                       | SM 5540 C   | Secondary Inorganic Contaminants   | NELAP                 | 3/22/2002      |
| rbacil                                                                                 | EPA 525.2   | Group I Unregulated Contaminants   | NELAP                 | 3/22/2002      |
| n-Butyibenzene                                                                         | EPA 502.2   | Group II Unregulated Contaminants  | NELAP                 | 3/6/2003       |
| rachloroethylene (Perchloroethylene)                                                   | EPA. 502.2  | Other Regulated Contaminants       | NELAP                 | 3/22/2002      |
| متنازاته                                                                               | EPA 200.9   | Primary Inorganic Contaminants     | NELAP                 | 3/22/2002      |
| huene                                                                                  | EPA 502.2   | Other Regulated Contaminants       | NELAP                 | 3/22/2002      |
| tel coliforms                                                                          | SM 9222 B   | Microbiology                       | NELAP                 | 3/22/2002      |
| tal coliforms & E. coli                                                                | SM 9223 B   | Microbiology                       | NBLAP                 | 3/22/2002 ·    |
|                                                                                        |             |                                    |                       |                |

Secondary Inorgenic Contaminants

Synthetic Organic Contaminants

Primary Inorganic Contaminants

**Primary Inorganic Contaminants** 

"STATE" indicates certification for the analyte by the method specified. "NELAP" further Indicates certification compliant with the NELAC Standards.

SM 2540 C

EPA 552.2

EPA 300.0

EFA 353.2

NON-TRANSFERABLE 01/08/2004-E84129

3/22/2002

3/22/2002

3/22/2002

3/22/2002

P. 33.2

NELAP

NELAP

NELAP

NELAP



John O. Agwunobi, M.D., M.B.A. Secretary

Page 8: of 30.

#### THIS LISTING OF ACCREDITED ANALYTES SHOULD BE USED ONLY WHEN ASSOCIATED WITH A VALID CERTIFICATE

State Laboratory ID: E84129

EPA Lab Code: FL00237

(813) 855-1844

E84129

Jeb Bush Governor

Southern Analytical Laboratories, Inc.

#### 110 Bayview Blvd Oldsmar, FL 34677

Matrix: Drinking Water

| Matrix: Drinking Water<br>Analyte   | Method/Tech | Category                                                               | Certification<br>Type | Effective Date |
|-------------------------------------|-------------|------------------------------------------------------------------------|-----------------------|----------------|
| Total tribalomethanes               | EPA 502.2   | Other Regulated Contaminants                                           | NELAP                 | 3/22/2002      |
| Toxaphene (Chlorinated camphene)    | BPA 508     | Synthetic Organic Contaminants                                         | NELAP                 | 3/22/2002      |
| Toxaphene (Chlorinated camphene)    | EPA 508.1   | Synthetic Organic Contaminants                                         | NELAP                 | 7/19/2002      |
| trans-1,2-Dichlorosthylene          | HPA 502.2   | Other Regulated Contaminants                                           | NELAP                 | 3/22/2002      |
| trans-1,3-Dichloropropylene         | EPA 502.2   | Group II Unregulated Contaminants                                      | NELAP                 | 3/22/2002      |
| Trichloroacetic acid                | EPA 552.2   | Synthetic Organic<br>Contaminants, Group I Unregulated<br>Contaminants | NELAP                 | 3/22/2002      |
| Trichloroethene (Trichloroethylene) | EPA 502.2   | Other Regulated Contaminants                                           | NELAP                 | 3/22/2002      |
| Trichlorofluoromethane              | EPA 502.2   | Group II Unregulated Contaminants                                      | NELAP                 | 3/22/2002      |
| Turbidity                           | EPA 180.1   | Secondary Inorganic Contaminants                                       | NELAP                 | 3/22/2002      |
| UV 254                              | SM 5910 B   | Primery Inorganic Contaminants                                         | NELAP                 | 3/6/2003       |
| Vinyi chloride                      | EPA 502.2   | Other Regulated Contaminants                                           | NELAP                 | 3/22/2002      |
| Xylene (total)                      | BPA 502.2   | Other Regulated Contaminants                                           | NELAP                 | 3/22/2002      |
| Zinc                                | BPA 200.7   | Secondary Inorganic Contaminants                                       | NELAP                 | 3/22/2002      |
|                                     | •           |                                                                        |                       |                |

"STATE" indicates certification for the analyte by the method specified. "NELAP" further indicates certification compliant with the NELAC Standards.

NON-TRANSFERABLE 01/08/2004-E84129

p. 34

|                                                                                                                                          |                            |                                      |                                                                           |                                                                    |                |           |            | _          |            |                          |         |             | P         | age                                | 25 of                                       | 46                                          |
|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------|----------------|-----------|------------|------------|------------|--------------------------|---------|-------------|-----------|------------------------------------|---------------------------------------------|---------------------------------------------|
| Раве 1 об <b>2</b><br>**: 0,6 ⊘ - 6 ??                                                                                                   | Aitention:<br>Satine       | Far Number:                          | (REQUEST ANALYSIS WRITE DOWN BELOW)<br>Ceclatimed WATER EFFLuent Analysis | 4                                                                  | Alaha DAN Zuba | HIBAS     |            |            |            |                          |         |             |           | Arcopted Kit Date/Time:            | Both k't 42                                 |                                             |
| UR FUTURE AND<br>TA TODAY !<br>Work Order                                                                                                | Invoicing Address:<br>Same | Phone Number:                        | (REQUEST ANALYSIS)<br>Reclatined WATER                                    |                                                                    |                |           |            |            |            |                          |         |             |           | <b></b>                            | -26-06                                      | 5-2-2<br>2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2- |
| "HELP BAFEGUARD YC<br>CALL T<br>CALL T<br>CHAIN OF CUSTODY RECORD                                                                        |                            | Hwy27 WWTP                           |                                                                           | States                                                             |                |           |            |            |            |                          |         |             |           | Retiministra Sample Kat Date/Ture: | Delivered Sample Kil to Laby Angeliant U.S. | W. V Date 7-2.4                             |
| <b>Tri-Fech Laboratories, Inc.</b><br>P.O. Box 140966<br>Orlando, Florida 32814-0966<br>(407)275-8463 Fax (407)281-9187<br>(877)275-8463 | WHIN'S TOC                 | Project or sulfress of sumple, site: | THI -                                                                     | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | X 25:11 90-    | -26       | -0¢   X    | -06 X X    | × 90-      | -06 X 30-                | 4 40-5  | 1 7 8.9     | 7-26-06 K |                                    | hei                                         | Accepted in late                            |
| Tri-Tech Labo<br>P.O. Bux 140966<br>Orlando, Florida 2<br>(407)275-8463 Fa                                                               | Clicet Realesson           | Contract Portion:<br>Angel De L      | Sampler's Signature:                                                      | CL ST-LINYS                                                        | 1. EFF 7-26-26 | 2 7-26-06 | 3. 7-26-06 | 4. 7-26-06 | 5. 7-26-06 | 7. 7-26-06<br>8. 7-26-06 | 40-92-2 | 18. 7-26-06 | H. 7·2    | Frepared Sauple Mt Date/Time:      | Relinquished Sample Kit Date/Time:          |                                             |

,

Reclained WATER EFFluent Analisis ন (REQUEST ANALYSIS WRITE DOWN BELOW) HERAAARKS Fax Number: Attentione Same "HELP SAFEGUARD YOUR FUTURE AND YOUR HEALTH" CALL TTA TODAY! Page Z OF Z Ascepted Kit Dahe/Time: Werk Order #: O.C. - 0.7~ х + Botte #: 002 5211 - 52- t. 0 Involcing Address: Phone Number: Bate/Time: 7.-2.7. / Same CHAIN OF CUSTODY RECORD CITWU Delivered Sample Kill to Lab Barle Time: Relinquished Sample Mit Date/Time: 80 H H J 14 333 HWN 27 쀮 SADITLE DESCRIPTION Project of midness of sumple sig 5 0 đ **OHR#** Accepted in lab: Southurks While I for S (407)275-8463 Fax (407)281-9187 Tri-Tech Laboratories, Inc. \* < - 14 4 7 Orlando, Florida 32814-0966 contact Permy: Angel De teon DATETTAIL P.O. Bux 140966 Can 7-26-06 90-92-2 7-26-06 ₩ (877)275-8463 Rehnquished Sample Kit Date/Fime: Sampler's Signature: Prepared Sample Kit Date/Fine: SAMPLE ED Citent Manc Ę Ξ. ֯ ÷ u ÷. ÷ vi Ч ŝ

Page 26 of 46

4310 East Anderson Road Orlando, FL 32812\* 800-851-2560 \* Fax 407-856-0886

Page 27 of 46

ANALYTICAL TESTING CORPORATION

August 29, 2006

06-07-692-1

TRIP BLANK

Client: TRI-TECH LABORATORIES, INC. Work Order: P.O. BOX 140966 Project Name: ORLANDO, FL 32814-0966 Project Number: Date Received:

Attn: LINDA TRYTEK

#### SAMPLE IDENTIFICATION

#### LAB NUMBER OPG0403-01

OPG0403-02

OPG0403 NEW PERMIT RECLAIM 0607-692-1 07/27/06

COLLECTION DATE AND TIME

07/26/06 11:55 07/26/06 00:00

EPA 1613 analysis performed at Lab ID: E87769 EPA 900.0, EPA 903.1, Ra-05 analysis performed at Lab ID: E83033

Samples were received into laboratory at a temperature of 2.00 °C.

An executed copy of the chain of custody, the project quality control data, and the sample receipt form are also included as an addendum to this report. If you have any questions relating to this analytical report, please contact your Laboratory Project Manager. Any opinions, if expressed, are outside the scope of the Laboratory's accreditation.

This material is intended only for the use of the individual(s) or entity to whom it is addressed, and may contain information that is privileged and confidential. If you are not the intended recipient, or the employee or agent responsible for delivering this material to the intended recipient, you are hereby notified that any dissemination, distribution, or copying of this material is strictly prohibited. If you have recieved this material in error, please notify us immediately.

Results are reported on a wet weight basis unless otherwise noted

The reported results were obtained in compliance with 2003 NELAC standards unless otherwise noted.

Florida Certification Number: E83012

Approved By:

nie Ont

TestAmerica - Orlando, FL Enid Ortiz For Judith A. Beato Project Manager



ANALYTICAL TESTING CORPORATION

Work Order: Project: Project Number:

OPG0403 NEW PERMIT RECLAIM 0607-692-1

4310 East Anderson Road Orlando, FL 32812 • 800-851-2560 • Fax 407-856-0886

Sampled: 07/26/06 Received: 07/27/06

P.O. BOX 140966 ORLANDO, FL 32814-0966 Attn: LINDA TRYTEK

Client: TRI-TECH LABORATORIES, INC.

LABORATORY REPORT

#### Sample ID: 06-07-692-1 - Lab Number: OPG0403-01 - Matrix: Water - NonPotable

| CAS #                       | Analyte                                                          | Result             | Q               | Units    | MDL                                   | PQL      | Dil<br>Factor | Analyzed<br>Date/Time | By  | Method    | Batch           |
|-----------------------------|------------------------------------------------------------------|--------------------|-----------------|----------|---------------------------------------|----------|---------------|-----------------------|-----|-----------|-----------------|
| General (                   | Chemistry Parameters                                             |                    |                 | ~        | · · · · · · · · · · · · · · · · · · · |          |               | *******               |     |           |                 |
| 57-12-5                     | Cyanide                                                          | 0.163              |                 | mg/L     | 0.00290                               | 0.0100   | 1             | 08/04/06 15:00        | BDG | EPA 335.3 | 6H04043         |
| 6984-48-8                   | Fluoride                                                         | 9.0820             | I               | mg/L     | 0.00870                               | 0.100    | 1             | 07/28/06 22:02        | BDG | EPA 300.0 | 6G27011         |
| 3755298                     | Methylene Blue Active Substances                                 | 0.0720             | 1               | mg/L     | 0.0530                                | 0.100    | 1             | 07/28/06 09:00        | JMG | SM 5540C  | 6G28007         |
| <b>JA</b>                   | Odor                                                             | 2.00               | Q               | T.O.N.   | 1.00                                  | 1.00     | 1             | 08/01/06 17:30        | JMG | SM 2150B  | 6H04010         |
| Ή                           | pH                                                               | 7.39               | Q               | pH Units | 0.100                                 | 0.100    | 1             | 07/28/06 08:12        | RAC | EPA 150.1 | 6G28004         |
| 2010                        | Total Dissolved Solids                                           | 308                |                 | mg/L     | 3.00                                  | 5.00     | ł             | 08/01/06 18:30        | АКА | EPA 160.1 | 6H01043         |
| 6887-00-6                   | Chloride                                                         | 51.3               |                 | mg/L     | 2.00                                  | 2.00     | 1             | 07/28/06 22:02        | BDG | EPA 300.0 | 6G27011         |
|                             | Nitrate-Nitrite as N                                             | 0.130              |                 | mg/L     | 0.00920                               | 0.0200   | 1             | 07/28/06 22:02        | BDG | EPA 300.0 | [CALC]          |
| 4797-55-8                   | Nitrate as N                                                     | 0.0230             | Q               | mg/L     | 0.00920                               | 0.0200   | I             | 07/28/06 22:02        | BDG | EPA 300.0 | 6G27011         |
| 4797-65-0                   | Nitrite as N                                                     | 0.107              | Q               | mg/L     | 0.00750                               | 0.0200   | 1             | 07/28/06 22:02        | BDG | EPA 300.0 | 6G27011         |
| 1808-79-8                   | Sulfate as SO4                                                   | 24.5               |                 | mg/L     | 2.00                                  | 2.00     | 1             | 07/28/06 22:02        | BDG | EPA 300.0 | 6G27011         |
| <b>letals</b> To            | otal Recoverable                                                 |                    |                 |          |                                       |          |               |                       |     |           |                 |
| 129-90-5                    | Aluminum                                                         | 0.0565             |                 | mg/L     | 0.0490                                | 0.0500   | l             | 08/02/06 17:11        | RH  | EPA 200.7 | 6H01005         |
| 140-36-0                    | Antimony                                                         | 0.00160            | ប               | mg/L     | 0.00160                               | 0.00200  | 1             | 08/18/06 14:06        | GCT | EPA 204.2 | 6H02044         |
| 140-38-2                    | Arsenic                                                          | 0.00240            | J4,I            | mg/L     | 0.00100                               | 0.00500  | 1             | 08/04/06 14:32        | GCT | EPA 206.2 | <b>6H020</b> 46 |
| 40-39-3                     | Barlum                                                           | 0.0142             |                 | mg/L     | 0.00200                               | 0.0100   | 1             | 08/02/06 17:10        | RH  | EPA 200.7 | 6H01005         |
| 40-41-7                     | Beryllium                                                        | 0.00200            | U               | mg/L     | 0.00200                               | 0.0100   | 1             | 08/02/06 17:12        | RH  | EPA 200.7 | 6H01005         |
| 40-43-9                     | Cadmium                                                          | 0.000280           | I               | mg/L     | 0.000100                              | 0.000500 | 1             | 08/17/06 16:03        | GCT | EPA 213.2 | 6H02047         |
| 40-47-3                     | Chromium                                                         | 0.00260            | 1               | mg/L     | 0.00150                               | 0.00500  | 1             | 08/15/06 12:01        | GCT | EPA 218.2 | 6H02048         |
| 40-50-8                     | Copper                                                           | 0.00540            | U               | mg/L     | 0.00540                               | 0.0100   | 1             | 08/02/06 17:11        | RH  | EPA 200.7 | 6H01005         |
| 39-89-6                     | Iron                                                             | 0.0629             |                 | mg/L     | 0.0390                                | 0.0500   | 1             | 08/02/06 17:11        | RH  | EPA 200.7 | 6H01005         |
| 39-92-1                     | Lead                                                             | 0.00310            | J4              | mg/L     | 0.000800                              | 0.00300  | 1             | 08/04/06 14:59        | GCT | EPA 239.2 | 6H02050         |
| 3 <b>9-96-5</b>             | Manganese                                                        | 0.0126             |                 | mg/L     | 0.00230                               | 0.0100   | 1             | 08/02/06 17:12        | RH  | EPA 200.7 | 6H01005         |
| 39-97-6                     | Mercury                                                          | 0.0000600          | U               | mg/L     | 0.0000600                             | 0.000200 | 1             | 08/01/06 14:00        | GCT | EPA 245.1 | 6H01004         |
| 40-02-0                     | Nickel                                                           | 0.00600            | U               | mg/L     | 0.00600                               | 0.0100   | 1             | 08/02/06 17:12        | RH  | EPA 200.7 | 6H01005         |
| 82-49-2                     | Selenium                                                         | 0.00200            | υ               | mg/L     | 0.00200                               | 0.00500  | 1             | 08/09/06 17:35        | GCT | EPA 270.2 | 6H02052         |
| 40-22-4                     | Silver                                                           | 0.00532            | U               | mg/L     | 0.00532                               | 0.0100   | 1             | 08/02/06 17:12        | RH  | EPA 200.7 | 6H01005         |
| 40-23-5                     | Sodium                                                           | 46.1               |                 | mg/L     | 0.110                                 | 0.500    | 1             | 08/02/06 17:10        | RH  | EPA 200.7 | 6H01005         |
| 10-28-0                     | Thallium                                                         | 0.00290            |                 | mg/L     | 0.000800                              | 0.00200  | 1             | 08/03/06 13:24        | GCT | EPA 279.2 | 6H02051         |
| 10-66-6                     | Zinc                                                             | 0.0465             | 1               | mg/L     | 0.0235                                | 0.0500   | 1             | 08/02/06 17:12        | RH  | EPA 200.7 | 6H01005         |
| )B and I                    | DBCP by EPA Method 504.1                                         |                    |                 |          |                                       |          |               |                       |     |           |                 |
| 5-93-4                      | 1,2-Dibromoethane (EDB)                                          | 0.00360            | U               | ug/L     | 0.00360                               | 0.0200   | I             | 08/09/06 21:27        | LCS | EPA 504.1 | 6H08021         |
| 12-8                        | 1,2-Dibromo-3-chloropropane                                      | 0.00240            | U               | ug/L     | 0.00240                               | 0.0200   | 1             | 08/09/06 21:27        | LCS | EPA 504.1 | 6H08021         |
|                             | hosphorus Pesticides by EPA                                      |                    | 7               |          |                                       |          |               |                       |     |           |                 |
| 2-24-9                      | Atrazine                                                         | 0.440              | I               | ug/L     | 0.0564                                | 0.500    |               | 08/04/06 12:19        |     | EPA 507   | 6H01014         |
| :-34-9                      | Simazine                                                         | 1,33               |                 | ug/L     | 0.0587                                | 0.500    | 1             | 08/04/06 12:19        | LCS | EPA 507   | 6H01014         |
| 72-60-8                     | Alachlor                                                         | 0.0663             | ប               | ug/L     | 0.0663                                | 0.250    | 1             | 08/04/06 12:19        | LCS | EPA 507   | 6H01014         |
|                             | Bromo-2-Nitrobenzene (70-130%)                                   | 115 %              |                 |          |                                       |          |               |                       |     |           |                 |
| i <b>lorinate</b><br>6-36-3 | d Pesticides and PCBs by EPA<br>PCBs                             | Method 5(<br>0,100 | <b>8</b> ט<br>ט | ug/L     | 0.100                                 | 0.250    | 1             | 08/04/06 12:19        | SXP | EPA 508   | 6H01014         |
| rogate: De                  | cachlorobiphenyl (70-130%)                                       | 98 %               |                 |          |                                       |          |               |                       |     |           |                 |
|                             | d Herbicides by EPA Method :                                     | 515.1              |                 |          |                                       |          |               |                       |     |           |                 |
| 75-7                        | 2,4-D                                                            | 0.0495             | U               | ug/L     | 0.0495                                | 0.250    | I             | 08/03/06 17:00        | LCS | EPA 515.1 | 6H01019         |
| Enid                        | America - Orlando, FL<br>Ortiz For Judith A. Beato<br>St Manager |                    |                 |          |                                       |          |               |                       |     | Page 2    | of 20           |

### l'est.

ANALYTICAL TESTING CORPORATION

Work Order: Project:

OPG0403

4310 East Anderson Road Orlando, FL 32812 \* 800-851-2560 \* Fax 407-856-0886

Sampled: 07/26/06 Received: 07/27/06

P.O. BOX 140966 ORLANDO, FL 32814-0966 Attn: LINDA TRYTEK

Client: TRI-TECH LABORATORIES, INC.

Project Number:

NEW PERMIT RECLAIM 0607-692-1

LABORATORY REPORT

| Sample ID: 06-07-692-1 - Lab Number: OPG0403-01 - Matrix: | Water - NonPotable                                                                                               |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
|                                                           | and the second |

| <br>C <b>hlorinat</b><br>I-72-1<br>5-99-0<br>I-85-7 | ed Herbicides by EPA Meth<br>2,4,5-TP (Silvex) | od 515.1 - C   |       |                |                |                |   | Date/Time                        |     |                        |                    |
|-----------------------------------------------------|------------------------------------------------|----------------|-------|----------------|----------------|----------------|---|----------------------------------|-----|------------------------|--------------------|
| 1-72-1<br>5-99-0                                    | 2,4,5-TP (Silvex)                              |                | ont.  | *              |                |                |   |                                  |     |                        |                    |
|                                                     |                                                | 0.0118         | υ     | ug/L           | 0.0118         | 0.250          | 1 | 08/03/06 17:00                   | LCS | EPA 515.1              | 6H01019            |
| 85.7                                                | Dalapon                                        | 0.353          | U     | ug/L           | 0.353          | 2.50           | 1 | 08/03/06 17:00                   | LCS | EPA 515.1              | 6H0101             |
| -07-1                                               | Dinoseb                                        | 0.0846         | ប     | ug/L           | 0.0846         | 0.250          | I | 08/03/06 17:00                   | LCS | EPA 515.1              | 6H0101             |
| -86-5                                               | Pentachlorophenoi                              | 0.0109         | U     | ug/L           | 0.0109         | 0.250          | 1 | 08/03/06 17:00                   | LCS | EPA 515,1              | 6H0101             |
| 18-02-1                                             | Picloram                                       | 0.0342         | U     | ug/L           | 0.0342         | 0.250          | 1 | 08/03/06 17:00                   | LCS | EPA 515.1              | 6H0101             |
| rogate: D                                           | CAA (70-130%)                                  | 88 %           |       |                |                |                |   |                                  |     |                        |                    |
| irgeable                                            | Organic Compounds by EF                        |                | 24.2  |                |                |                |   |                                  |     |                        |                    |
| )-20-6                                              | 1,1,1,2-Tetrachloroethane                      | 0.170          | U     | ug/L           | 0.170          | 0.500          | 1 | 07/28/06 13:49                   | ЛS  | EPA 524.2              | 6G31034            |
| 55-6                                                | 1,1,1-Trichloroethane                          | 0.400          | U     | ug/L           | 0.400          | 0.500          | 1 | 07/28/06 13:49                   | JLS | EPA 524.2              | 6G3103-            |
| 34-5                                                | 1,1,2,2-Tetrachloroethane                      | 0.120          | U     | ug/L           | 0.120          | 0.500          | 1 | 07/28/06 13:49                   | ЛS  | EPA 524.2              | 6G31034            |
| 00-5                                                | 1,1,2-Trichloroethane                          | 0.210          | υ     | ug/L           | 0.210          | 0.500          | 1 | 07/28/06 13:49                   | ЛS  | EPA 524.2              | 6G31034            |
| 34-3                                                | 1,1-Dichloroethane                             | 0.130          | U     | ug/L           | 0,130          | 0.500          | 1 | 07/28/06 13:49                   | ns  | EPA 524.2              | 6G31034            |
| 35-4                                                | 1,1-Dichloroethene                             | 0.160          | U     | ug/L           | 0.160          | 0.500          | 1 | 07/28/06 13:49                   | JLS | EPA 524.2              | 6G31034            |
| -58-6                                               | 1,1-Dichloropropene                            | 0.160          | U     | ug/L           | 0.160          | 0.500          | 1 | 07/28/06 13:49                   | ЛLS | EPA 524.2              | 6G3103-            |
| 51-6                                                | 1,2,3-Trichlorobenzene                         | 0.370          | U     | ug/L           | 0.370          | 0.500          | 1 | 07/28/06 13:49                   | ЛLS | EPA 524.2              | 6G31034            |
| 18-4                                                | I,2,3-Trichloropropane                         | 0.380          | ប     | ug/L           | 0,380          | 0.500          | 1 | 07/28/06 13:49                   | ЛS  | EPA 524.2              | 6G31034            |
| -82-1                                               | 1,2,4-Trichlorobenzene                         | 0.470          | ט     | ug/L           | 0.470          | 0.500          | 1 | 07/28/06 13:49                   | JLS | EPA 524.2              | 6G31034            |
| 63-6                                                | 1,2,4-Trimethylbenzene                         | 0.140          | U     | ug/L           | 0.140          | 0.500          | 1 | 07/28/06 13:49                   | ЛS  | EPA 524.2              | 6G31034            |
| 12-8                                                | 1,2-Dibromo-3-chloropropane                    | 0.490          | U     | ug/L           | 0,490          | 0.500          | 1 | 07/28/06 13:49                   | ЛS  | EPA 524.2              | 6G31034            |
| -93-4                                               | 1,2-Dibromoethane (EDB)                        | 0.270          | U     | ug/L           | 0.270          | 0.500          | 1 | 07/28/06 13:49                   | ЛS  | EPA 524.2              | 6G31034            |
| 50-1                                                | 1,2-Dichlorobenzene                            | 0.170          | U     | ug/L           | 0.170          | 0.500          | 1 | 07/28/06 13:49                   |     | EPA 524.2              | 6G31034            |
| -06-2                                               | 1,2-Dichloroethane                             | 0.110          | U     | ug/L           | 0.110          | 0.500          | 1 | 07/28/06 13:49                   | JLS | EPA 524.2              | 6G31034            |
| 87-5                                                | 1,2-Dichloropropane                            | 0.110          | U     | ug/L           | 0.110          | 0.500          | 1 |                                  | JLS | EPA 524.2              | 6G31034            |
| -67-8                                               | 1,3,5-Trimethylbenzene                         | 0.0700         | U     | ug/L           | 0.0700         | 0.500          | 1 | 07/28/06 13:49                   | ЛS  | EPA 524.2              | 6G31034            |
| -73-1                                               | 1,3-Dichlorobenzene                            | 0.160          | U     | ug/L           | 0.160          | 0.500          | I |                                  | ЛS  | EPA 524.2              | 6G31034            |
| -28-9                                               | 1,3-Dichloropropane                            | 0.200          | U     | ug/L           | 0.200          | 0.500          | 1 | 07/28/06 13:49                   | ЛS  | EPA 524.2              | 6G31034            |
| -46-7                                               | 1,4-Dichlorobenzene                            | 0.670          |       | ug/L           | 0.150          | 0.500          | 1 | 07/28/06 13:49                   | ЛS  | EPA 524.2              | 6G31034            |
| -20-7                                               | 2,2-Dichloropropane                            | 0.330          | U     | ug/L           | 0.330          | 0.500          | 1 |                                  | ЛS  | EPA 524.2              | 6G31034            |
| 93-3                                                | 2-Butanone                                     | 0.470          | ប     | ug/L           | 0.470          | 0.500          | 1 | 07/28/06 13:49                   | JLS | EPA 524,2              | 6G31034            |
| 9-8                                                 | 2-Chlorotoluene                                | 0.450          | Ŭ     | ug/L           | 0.450          | 0.500          | 1 |                                  | JLS | EPA 524.2              | 6G31034            |
| -43-4                                               | 4-Chlorotoluene                                | 0.110          | U     | ug/L           | 0.110          | 0.500          |   |                                  | ЛS  | EPA 524.2              | 6G31034            |
| 54-1                                                | Acetone                                        | 0.320          | υ     | ug/L           | 0.320          | 0.500          |   |                                  | JLS | EPA 524.2              | 6G31034            |
| 3-2                                                 | Benzene                                        | 0.130          | U     | ug/L           | 0.130          | 0.500          |   |                                  | JLS | EPA 524.2              | 6G31034            |
|                                                     | Bromobenzene                                   | 0.120          | U     | ug/L           | 0.120          | 0.500          |   |                                  | JLS | EPA 524.2              | 6G31034            |
|                                                     | Bromochloromethane                             | 0.350          | U     | ug/L           | 0.350          | 0.500          |   |                                  | ЛS  | EPA 524,2              | 6G31034            |
| 7-4                                                 | Bromodichloromethane                           | 0.260          | U     | ug/L           | 0.260          | 0.500          |   | 07/28/06 13:49                   |     | EPA 524.2              | 6G31034            |
|                                                     | Bromoform                                      | 0.230          | U<br> | ug/L           | 0.230          | 0.500          |   | 07/28/06 13:49                   |     | EPA 524.2              | 6G31034            |
|                                                     | Bromomethane                                   | 0.270          | ប<br> | ug/L           | 0.270          | 0.500          |   | 07/28/06 13:49                   |     | EPA 524.2              | 6G31034            |
|                                                     | Carbon Tetrachloride                           | 0.420          | U<br> | ug/L           | 0.420          | 0.500          |   | 07/28/06 13:49                   |     | EPA 524.2              | 6G31034            |
|                                                     | Chlorobenzene                                  | 0.0700         | U<br> | ug/L           | 0.0700         | 0.500          |   | 07/28/06 13:49                   |     | EPA 524.2              | 6G31034            |
|                                                     | Chlorodibromomethane                           | 0.180          | U     | ug/L           | 0.180          | 0.500          |   | 07/28/06 13:49                   |     | EPA 524,2              | 6G31034            |
|                                                     | Chloroethane<br>Chloroform                     | 0.450<br>0.980 | U     | ug/L.<br>ug/L, | 0.450<br>0.130 | 0.500<br>0.500 |   | 07/28/06 13:49<br>07/28/06 13:49 |     | EPA 524.2<br>EPA 524.2 | 6G31034<br>6G31034 |

ANALYTICAL TESTING CORPORATION

Client: TRI-TECH LABORATORIES, INC.

P.O. BOX 140966

ORLANDO, FL 32814-0966

Attn: LINDA TRYTEK

Work Order: Project: Project Number:

OPG0403 NEW PERMIT RECLAIM 0607-692-1

4310 East Anderson Road Orlando, FL 32612 \* 800-851-2560 \* Fax 407-856-0886

Sampled: 07/26/06 Received: 07/27/06

#### LABORATORY REPORT

Sample ID: 06-07-692-1 - Lab Number: OPG0403-01 - Matrix: Water - NonPotable

|                       |                                           | -01-052-1     |          |              | 01 00 00 01 |              |               |                       |     |                 |                  |
|-----------------------|-------------------------------------------|---------------|----------|--------------|-------------|--------------|---------------|-----------------------|-----|-----------------|------------------|
| CAS #                 | Analyte                                   | Result        | Q        | Units        | MDL         | PQL          | Dil<br>Factor | Analyzed<br>Date/Time | By  | Method          | Batch            |
| Purgeable             | Organic Compounds by EPA                  | Method 5      | 24.2 - ( | Cont.        |             |              |               | <b></b>               |     |                 |                  |
| '4-87-3               | Chloromethane                             | 0.150         | U        | ug/L         | 0.150       | 0.500        | 1             | 07/28/06 13:49        | ЛS  | EPA 524.2       | 6G31034          |
| 56-59-2               | cis-1,2-Dichloroethene                    | 0.320         | U        | ug/L         | 0.320       | 0.500        | 1             | 07/28/06 13:49        | JLS | EPA 524.2       | 6G31034          |
| 0061-01-5             | cis-1,3-Dichloropropene                   | 0.170         | U        | ug/L         | 0.170       | 0.500        | 1             | 07/28/06 13:49        | ЛS  | EPA 524.2       | 6G31034          |
| 4-95-3                | Dibromomethane                            | 0.230         | U        | ug/L         | 0.230       | 0.500        | 1             | 07/28/06 13:49        | ЛLS | EPA 524.2       | 6G31034          |
| 5-71-8                | Dichlorodifluoromethane                   | 0.190         | U        | ug/L         | 0.190       | 0.500        | 1             | 07/28/06 13:49        | ЛS  | EPA 524.2       | 6G31034          |
| 00-41-4               | Ethylbenzene                              | 0.0900        | U        | ug/L         | 0.0900      | 0.500        | 1             | 07/28/06 13:49        | JLS | EPA 524.2       | 6 <b>G</b> 31034 |
| 7-68-3                | Hexachlorobutadiene                       | 0.470         | U        | ug/L         | 0.470       | 0.500        | 1             | 07/28/06 13:49        | ЛS  | EPA 524.2       | 6G31034          |
| 7-72-1                | Hexachloroethane                          | 0.420         | U        | ug/L         | 0.420       | 0,500        | I             | 07/28/06 13:49        | ЛS  | EPA 524.2       | 6G31034          |
| 8-82-8                | Isopropylbenzene                          | 0.110         | ប        | ug/L         | 0.110       | 0.500        | 1             | 07/28/06 13:49        | ЛS  | EPA 524.2       | 6G31034          |
| 534-04-4              | Methyl tert-Butyl Ether                   | 0.390         | υ        | ug/L         | 0.390       | 0.500        | 1             | 07/28/06 13:49        | JLS | EPA 524.2       | 6G31034          |
| 5-09-2                | Methylene Chloride                        | 0.340         | U        | ug/L         | 0.340       | 0.500        | 1             | 07/28/06 13:49        | ЛS  | EPA 524.2       | 6G31034          |
| 1-20-3                | Naphthalene                               | 0.250         | U        | ug/L         | 0.250       | 0.500        | 1             | 07/28/06 13:49        | JLS | EPA 524.2       | 6G31034          |
| )4-51-8               | n-Butylbenzene                            | 0.280         | U        | ug/L         | 0.280       | 0.500        | 1             | 07/28/06 13:49        | JLS | EPA 524.2       | 6G31034          |
| )3-65-1               | n-Propylbenzene                           | 0.200         | υ        | ug/L         | 0.200       | 0.500        | 1             | 07/28/06 13:49        | ЛS  | EPA 524.2       | 6G31034          |
| 1-87-6                | p-lsopropyltoluene                        | 0.190         | υ        | ug/L         | 0.190       | 0.500        | 1             | 07/28/06 13:49        | ЛS  | EPA 524.2       | 6G31034          |
| 5-98-8                | sec-Butylbenzene                          | 0.190         | ប        | ug/L         | 0.190       | 0.500        | 1             | 07/28/06 13:49        | ЛLS | EPA 524.2       | 6G31034          |
| 0-42-5                | Styrene                                   | 0.110         | υ        | ug/L         | 0.110       | 0.500        | 1             | 07/28/06 13:49        | ЛLS | EPA 524.2       | 6G31034          |
| -06-6                 | tert-Butylbenzene                         | 0,240         | U        | ug/L         | 0,240       | 0.500        | 1             | 07/28/06 13:49        | ЛS  | EPA 524.2       | 6031034          |
| 7-18-4                | Tetrachloroethene                         | 0,120         | ប        | ug/L         | 0.120       | 0.500        | 1             | 07/28/06 13:49        | JLS | EPA 524.2       | 6G31034          |
| 8-88-3                | Toluene                                   | 3.37          |          | ug/L         | 0.160       | 0.500        | 1             | 07/28/06 13:49        | JLS | EPA 524.2       | 6G31034          |
| 4                     | Total THM's                               | 0.260         | U        | ug/L         | 0.260       | 0.500        | 1             | 07/28/06 13:49        | JLS | EPA 524.2       | 6G31034          |
| 6-60-5                | trans-1,2-Dichloroethene                  | 0.300         | U        | ug/L         | 0.300       | 0.500        | 1             | 07/28/06 13:49        | ЛS  | EPA 524.2       | 6G31034          |
| 061-02-6              | trans-1,3-Dichloropropene                 | 0.150         | ប        | ug/L         | 0.150       | 0.500        | 1             | 07/28/06 13:49        | JLS | EPA 524.2       | 6G31034          |
| -01-6                 | Trichloroethene                           | 0.280         | U        | ug/L         | 0.280       | 0.500        | 1             | 07/28/06 13:49        | ЛS  | EPA 524.2       | 6G31034          |
| -69-4                 | Trichlorofluoromethane                    | 0.390         | U        | ug/L         | 0.390       | 0.500        | I             | 07/28/06 13:49        | ЛS  | EPA 524.2       | 6G31034          |
| -01-4                 | Vinyl chloride                            | 0.230         | υ        | ug/L         | 0.230       | 0.500        | 1             | 07/28/06 13:49        | ЛS  | EPA 524,2       | 6G31034          |
| 30-20-7               | Xylenes, total                            | 0.250         | ប        | ug/L         | 0.250       | 0.500        | 1             | 07/28/06 13:49        | JLS | EPA 524,2       | 6G31034          |
| rrogate: 1,2          | -Dichlorobenzene-d4 (70-130%)             | 85 %          |          |              |             |              |               |                       |     |                 |                  |
| rrogate: 4-1          | Bromofluorobenzene (70-130%)              | 96 %          |          |              |             |              |               |                       | `   |                 |                  |
|                       | ompounds by EPA Method 52                 |               |          |              |             |              |               |                       |     |                 |                  |
| -32-8                 | Benzo (a) pyrene                          | 0.123         | U        | ug/L         | 0.123       | 0.500        | 1             | 08/03/06 19:46        | LCS | EPA 525.2       | 6H02027          |
|                       | Bis-(2-Ethylhexyl) Adipate                | 0.120         | U        | ug/L         | 0.120       | 0.500        | 1             | 08/03/06 19:46        | LCS | EPA 525,2       | 6H02027          |
| 7-81-7                | Bis(2-ethylhexyl)phthalate                | 0.500         | U        | ug/L         | 0.500       | 00.1         | 1             | 08/03/06 19:46        | LCS | EPA 525.2       | 6H02027          |
| 3-74-1                | Hexachlorobenzene                         | 0.0923        | U        | ug/L         | 0.0923      | 0.500        | 1             | 08/03/06 19:46        |     | EPA 525.2       | 6H02027          |
| 47-4                  | Hexachlorocyclopentadiene                 | 0.0940        | U        | ug/L         | 0.0940      | 0.500        | 1             | 08/03/06 19:46        | LCS | EPA 525.2       | 6H02027          |
| -                     | -Dimethyl-2-nitrobenzene (70-130%)        | 94 %          |          |              |             |              |               |                       |     |                 |                  |
| ÷ .                   | ylene-d12 (70-130%)                       | 69 %          |          |              |             |              |               |                       |     |                 |                  |
|                       | phenyl phosphate (70-130%)                | 124 %         |          |              |             |              |               |                       |     |                 |                  |
|                       | s in Water by EPA Method 5.<br>Carbofuran | 31.1<br>0.547 | TI       | <u>и</u> я/1 | 0.547       | 2.00         | 1             | 08/08/06 16:06        | 6.0 | CDA 531 3       | <1107010         |
|                       | Oxamyi                                    | 0.547         | บ<br>บ   | ug/L<br>ug/i | 0.547       | 2.00         |               | 08/08/06 16:06        | SP  | EPA 531.1       | 6H07010          |
|                       | •                                         | J.JJU         | U        | ug/L         | 0.000       | <b>∠.</b> 00 | 4             | 00/00/00 10:00        | 35  | EPA 531.1       | 6H07010          |
| -ganie C.C<br>'1-83-6 | mpounds by EPA 547<br>Glyphosate          | 4.44          | U        | ug/L         | 4.44        | 50.0         | 1             | 07/31/06 20:29        | SP  | EPA <b>5</b> 47 | 6G31013          |

## l'est

ANALYTICAL TESTING CORPORATION

Client: TRI-TECH LABORATORIES, INC. P.O. BOX 140966

Work Order: Project:

OPG0403

Sampled: 07/26/06

ORLANDO, FL 32814-0966 Atta: LINDA TRYTEK

Project Number:

NEW PERMIT RECLAIM 0607-692-1

4310 East Anderson Road Orlando, FL 32812 \* 800-851-2560 \* Fax 407-856-0886

Received: 07/27/06

LABORATORY REPORT

Sample ID: 06-07-692-1 - Lab Number: OPG0403-01 - Matrix: Water - NonPotable

| CAS#           | Analyte                           | Result    | Q      | Units | MDL     | PQL    | Dil<br>Factor | Analyzed<br>Date/Time | Ву    | Method    | Batch   |
|----------------|-----------------------------------|-----------|--------|-------|---------|--------|---------------|-----------------------|-------|-----------|---------|
| Organic        | Compounds by EPA 548              |           |        |       |         |        |               |                       |       |           |         |
| 45-73-3        | Endothall                         | 2.31      | U      | ug/L  | 2.31    | 12.5   | 1             | 08/04/06 13:41        | LCS/S | EPA 548.1 | 6G31026 |
| Organic        | Compounds by EPA Method 5         | 549.2     |        |       |         |        |               |                       |       |           |         |
| 5-00-7         | Diquat                            | 0.250     | υ      | ug/L  | 0.250   | 2.00   | 1             | 08/01/06 12:00        | SP    | EPA 549.2 | 6G31039 |
| Organoc        | hlorine Pesticides and PCBs by    |           | od 608 | 1     |         |        |               |                       |       |           |         |
| 7-74-9         | Chlordane                         | 0.0120    | ប      | ug/L  | 0.0120  | 0.0500 | 1             | 08/04/06 20:06        | LCS   | EPA 608   | 6H02038 |
| 2-20 <b>-8</b> | Endrin                            | 0.0190    | ប      | ug/L  | 0.0190  | 0.100  | 1             | 08/04/06 20:06        | LCS   | EPA 608   | 6H02038 |
| 8-89-9         | gamma-BHC (Lindane)               | 0.00900   | U      | ug/L  | 0.00900 | 0.0500 | 1             | 08/04/06 20:06        | LCS   | EPA 608   | 6H02038 |
| 5-44-8         | Heptachlor                        | 0.0110    | ប      | ug/L  | 0.0110  | 0.0500 | 1             | 08/04/06 20:06        | LCS   | EPA 608   | 6H02038 |
| )24-57-3       | Heptachlor epoxide                | 0.0110    | U      | ug/L  | 0.0110  | 0.0500 | 1             | 08/04/06 20:06        | LCS   | EPA 608   | 6H02038 |
| 2-43-5         | Methoxychlor                      | 0.0230    | U      | ug/L  | 0.0230  | 0.500  | 1             | 08/04/06 20:06        | LCS   | EPA 608   | 6H02038 |
| )01-35-2       | Toxaphene                         | 0.242     | υ·υ    | ug/L  | 0.242   | 0.500  | 1             | 08/04/06 20:06        | LCS   | EPA 608   | 6H02038 |
| irrogate: L    | Decachlorobiphenyl (32-125%)      | 62 %      |        |       |         |        |               |                       |       |           |         |
| ırrogate: I    | Fetrachloro-meta-xylene (36-123%) | 69 %      |        |       |         |        |               |                       |       |           |         |
| ubcontr        | acted Analyses                    |           |        |       |         |        |               |                       |       |           |         |
| 4              | Gross Alpha                       | 3.2+/-1.9 |        | pCi/L | 2.0     | 2.0    | 1             | 08/09/06 00:00        | MJN   | EPA 900.0 | NONE    |
| 982-63-3       | Radium-226                        | 0.3+/-0.1 |        | pCi/L | 0.2     | 0.2    | I             | 08/14/06 00:00        | МЛN   | EPA 903.1 | NONE    |
| 262-20-1       | Radium-228                        | 0.8+/-0.5 | U      | pCi/L | 0.8     | 0.8    | 1             | 08/14/06 00:00        | PJ    | Ra-05     | NONE    |
| ubcontra       | acted Analyses - Cont.            |           |        |       |         |        |               |                       |       |           |         |
| 46-01-6        | 2,3,7,8-TCDD                      | 10.0      | U      | pg/L  | NA      | NA     | 1             | 08/14/06 00:00        |       | EPA 1613  | NONE    |
|                |                                   |           | ~      |       |         |        |               |                       |       |           |         |

LABORATORY REPORT

Sample ID: TRIP BLANK - Lab Number: OPG0403-02 - Matrix: Water - NonPotable

| AS #    | Analyte                     | Result      | Q    | Units | MDL    | PQL   | Dil<br>Factor | Analyzed<br>Date/Time | By  | Method    | Batch   |
|---------|-----------------------------|-------------|------|-------|--------|-------|---------------|-----------------------|-----|-----------|---------|
| ırgeabl | e Organic Compounds by EP.  | A Method 52 | 24.2 |       |        |       |               |                       | *   |           |         |
| )-20-6  | 1,1,1,2-Tetrachloroethane   | 0.170       | U    | ug/L  | 0.170  | 0.500 | 1             | 07/28/06 14:11        | JLS | EPA 524.2 | 6G31034 |
| ·55-6   | 1,1,1-Trichloroethane       | 0.400       | ប    | ug/L  | 0.400  | 0.500 | 1             | 07/28/06 14:11        | JLS | EPA 524.2 | 6G31034 |
| -34-5   | 1,1,2,2-Tetrachloroethane   | 0.120       | U    | ug/L  | 0.120  | 0.500 | 1             | 07/28/06 14:11        | ЛS  | EPA 524.2 | 6G31034 |
| -00-5   | 1,1,2-Trichloroethane       | 0.210       | U    | ug/L  | 0.210  | 0.500 | 3             | 07/28/06 14:11        | ЛS  | EPA 524.2 | 6G31034 |
| -34-3   | 1,1-Dichloroethane          | 0.130       | υ    | ug/L  | 0.130  | 0.500 | 1             | 07/28/06 14:11        | ЛS  | EPA 524.2 | 6G31034 |
| 35-4    | 1,1-Dichloroethene          | 0.160       | U    | ug/L  | 0.160  | 0.500 | 1             | 07/28/06 14:11        | JLS | EPA 524.2 | 6G31034 |
| 1-58-6  | 1,1-Dichloropropene         | 0.160       | U    | ug/L  | 0.160  | 0.500 | 1             | 07/28/06 14:11        | ЛS  | EPA 524.2 | 6G31034 |
| 61-6    | 1,2,3-Trichlorobenzene      | 0.370       | U    | ug/L  | 0.370  | 0.500 | I             | 07/28/06 14:11        | JLS | EPA 524.2 | 6G31034 |
| 18-4    | 1,2,3-Trichloropropane      | 0.380       | U    | ug/L  | 0.380  | 0.500 | 1             | 07/28/06 14:11        | JLS | EPA 524.2 | 6G31034 |
| )-82-1  | 1,2,4-Trichlorobenzene      | 0.470       | U    | ug/L  | 0.470  | 0.500 | 1             | 07/28/06 14:11        | JLS | EPA 524.2 | 6G31034 |
| 63-6    | 1,2,4-Trimethylbenzene      | 0.140       | U    | ug/L  | 0.140  | 0.500 | 1             | 07/28/06 14:11        | JLS | EPA 524.2 | 6G31034 |
| 12-8    | 1,2-Dibromo-3-chloropropane | 0.490       | υ    | ug/L  | 0.490  | 0.500 | 1             | 07/28/06 14:11        | JLS | EPA 524.2 | 6G31034 |
| -93-4   | 1,2-Dibromoethane (EDB)     | 0.270       | U    | ug/L  | 0.270  | 0.500 | l             | 07/28/06 14:11        | ЛLS | EPA 524.2 | 6G31034 |
| 50-1    | 1,2-Dichlorobenzene         | 0.170       | υ    | ug/L  | 0.170  | 0.500 | 1             | 07/28/06 14:11        | JLS | EPA 524.2 | 6G31034 |
| -06-2   | 1,2-Dichloroethane          | 0.110       | U    | ug/L  | 0.110  | 0.500 | 1             | 07/28/06 14:11        | JLS | EPA 524.2 | 6G31034 |
| 87-5    | 1,2-Dichloropropane         | 0.110       | U    | ug/L  | 0.110  | 0.500 | 1             | 07/28/06 14:11        | JLS | EPA 524.2 | 6G31034 |
| -67-8   | 1,3,5-Trimethylbenzene      | 0.0700      | υ    | ug/L  | 0.0700 | 0.500 | 1             | 07/28/06 14:11        | JLS | EPA 524.2 | 6G31034 |
| -73-1   | 1,3-Dichlorobenzene         | 0.160       | U    | ug/L  | 0.160  | 0.500 | 1             | 07/28/06 14:11        | ЛS  | EPA 524.2 | 6G31034 |



ANALYTICAL TESTING CORPORATION

Client: TRI-TECH LABORATORIES, INC. P.O. BOX 140966 ORLANDO, FL 32814-0966 Attn: LINDA TRYTEK Work Order: Project: Project Number: OPG0403 NEW PERMIT RECLAIM 0607-692-1

4310 East Anderson Road Orlando, FL 32812 \* 800-851-2560 \* Fax 407-856-0886

Sampled: 07/26/06 Received: 07/27/06

#### LABORATORY REPORT

Sample ID: TRIP BLANK - Lab Number: OPG0403-02 - Matrix: Water - NonPotable

| CAS #    | Analyte                   | Result       | Q        | Units | MDL.   | PQL   | Dil<br>Factor | Analyzed<br>Date/Time | By    | Method    | Batch   |
|----------|---------------------------|--------------|----------|-------|--------|-------|---------------|-----------------------|-------|-----------|---------|
| urgeab   | le Organic Compounds by   | EPA Method 5 | 24.2 - ( | Cont. |        |       |               |                       |       |           |         |
| 42-28-9  | 1,3-Dichloropropane       | 0.200        | U        | ug/L  | 0.200  | 0.500 | 1             | 07/28/06 14:11        | JLS   | EPA 524.2 | 6G31034 |
| 06-46-7  | 1,4-Dichlorobenzene       | 0.150        | U        | ug/L  | 0.150  | 0.500 | L             | 07/28/06 14:11        | ЛS    | EPA 524.2 | 6G31034 |
| 94-20-7  | 2,2-Dichloropropane       | 0.330        | υ        | ug/L  | 0.330  | 0.500 | 1             | 07/28/06 14:11        | ЛLS   | EPA 524.2 | 6G31034 |
| 8-93-3   | 2-Butanone                | 0.470        | ប        | ug/L  | 0.470  | 0.500 | 1             | 07/28/06 14:11        | ЛS    | EPA 524.2 | 6G31034 |
| 5-49-8   | 2-Chlorotoluene           | 0.450        | U        | ug/L  | 0.450  | 0.500 | 1             | 07/28/06 14:11        | ЛLS   | EPA 524.2 | 6G31034 |
| )6-43-4  | 4-Chlorotoluene           | 0.110        | U        | ug/L  | 0.110  | 0.500 | 1             | 07/28/06 14:11        | JLS   | EPA 524.2 | 6G31034 |
| 7-64-1   | Acetone                   | 505          | L        | ug/L  | 0.320  | 0,500 | 1             | 07/28/06 14:11        | JLS   | EPA 524.2 | 6G31034 |
| l-43-2   | Benzene                   | 0.130        | ប        | ug/L  | 0.130  | 0.500 | 1             | 07/28/06 14:11        | ЛS    | EPA 524.2 | 6G31034 |
| 08-86-1  | Bromobenzene              | 0.120        | ט        | ug/L  | 0.120  | 0.500 | I             | 07/28/06 14:11        | JLS   | EPA 524.2 | 6G31034 |
| 1-97-5   | Bromochloromethane        | 0.350        | U        | ug/L  | 0.350  | 0.500 | 1             | 07/28/06 14:11        | лs    | EPA 524.2 | 6G31034 |
| 5-27-4   | Bromodichloromethane      | 0.260        | U        | ug/L  | 0.260  | 0.500 | 1             | 07/28/06 14:11        | лs    | EPA 524.2 | 6G31034 |
| 5-25-2   | Bromoform                 | 0.230        | υ        | ug/L  | 0.230  | 0,500 | 1             | 07/28/06 14:11        | ЛS    | EPA 524.2 | 6G31034 |
| -83-9    | Bromomethane              | 0.270        | U        | ug/L  | 0.270  | 0.500 | 1             | 07/28/06 14:11        | JLS   | EPA 524.2 | 6G31034 |
| -23-5    | Carbon Tetrachloride      | 0.420        | U        | ug/L  | 0.420  | 0,500 | 1             | 07/28/06 14:11        | ЛS    | EPA 524.2 | 6G31034 |
| 8-90-7   | Chlorobenzene             | 0.0700       | U        | ug/L  | 0.0700 | 0.500 | 1             | 07/28/06 14:11        | ЛS    | EPA 524.2 | 6G31034 |
| 4-48-1   | Chlorodibromomethane      | 0.180        | U        | ug/L  | 0.180  | 0,500 | 1             | 07/28/06 14:11        | ЛS    | EPA 524.2 | 6G31034 |
| -00-3    | Chloroethane              | 0.450        | ប        | ug/L  | 0.450  | 0.500 | 1             | 07/28/06 14:11        | JLS   | EPA 524.2 | 6G31034 |
| -66-3    | Chloroform                | 0.130        | υ        | ug/L  | 0.130  | 0.500 | 1             | 07/28/06 14:11        | ЛS    | EPA 524.2 | 6G31034 |
| -87-3    | Chloromethane             | 0,150        | U        | ug/L  | 0.150  | 0.500 | 1             | 07/28/06 14:11        | ЛS    | EPA 524.2 | 6G31034 |
| 6-59-2   | cis-1,2-Dichloroethene    | 0.320        | U        | ug/L  | 0.320  | 0.500 | 1             | 07/28/06 14:11        | -     | EPA 524.2 | 6G31034 |
| 061-01-5 | cis-1,3-Dichloropropene   | 0.170        | U        | ug/L  | 0.170  | 0.500 | 1             | 07/28/06 14:11        | JLS   | EPA 524.2 | 6G31034 |
| -95-3    | Dibromomethane            | 0.230        | U        | ug/L  | 0.230  | 0.500 | 1             | 07/28/06 14:11        | JLS   | EPA 524.2 | 6G31034 |
| -71-8    | Dichlorodifluoromethane   | 0.190        | U        | ug/L  | 0.190  | 0.500 | 1             |                       | ЛS    | EPA 524.2 | 6G31034 |
| 0-41-4   | Ethylbenzene              | 0.0900       | ប        | ug/L  | 0.0900 | 0.500 | I             | 07/28/06 14:11        | JLS   | EPA 524.2 | 6G31034 |
| -68-3    | Hexachlorobutadiene       | 0.470        | U        | ug/L  | 0.470  | 0.500 | 1             | 07/28/06 14:11        | JLS . | EPA 524.2 | 6031034 |
| -72-1    | Hexachloroethane          | 0.420        | υ        | ug/L  | 0.420  | 0.500 | ŀ             |                       | JLS   | EPA 524.2 | 6G31034 |
| -82-8    | Isopropylbenzene          | 0.110        | υ        | ug/L  | 0.110  | 0.500 | 1             |                       | ЛS    | EPA 524.2 | 6G31034 |
| 34-04-4  | Methyl tert-Butyl Ether   | 0.390        | U        | ug/L  | 0.390  | 0.500 | 1             |                       | JLS   | EPA 524.2 | 6G31034 |
| -09-2    | Methylene Chloride        | 0.340        | U        | ug/L  | 0.340  | 0.500 | I             |                       | ЛS    | EPA 524.2 | 6G31034 |
| 20-3     | Naphthalene               | 0.250        | U        | ug/L  | 0.250  | 0.500 | 1             |                       | ЛS    | EPA 524.2 | 6G31034 |
| 4-51-8   | n-Butylbenzene            | 0.280        | U        | ug/L  | 0.280  | 0.500 | 1             |                       | ЛS    | EPA 524.2 | 6G31034 |
| 8-65-1   | n-Propylbenzene           | 0.200        | U        | ug/L  | 0.200  | 0.500 | 1             | 07/28/06 14:11        | ЛS    | EPA 524.2 | 6G31034 |
| 87-6     | p-Isopropyltoluene        | 0.190        | ប        | ug/L  | 0.190  | 0.500 | 1             |                       | JLS   | EPA 524.2 | 6G31034 |
| 5-98-8   | sec-Butylbenzene          | 0.190        | U        | ug/L  | 0.190  | 0.500 |               |                       | ЛS    | EPA 524.2 | 6G31034 |
| )-42-5   | Styrene                   | 0.110        | ប        | ug/L  | 0.110  | 0.500 |               |                       | ЛS    | EPA 524,2 | 6G31034 |
| 06-6     | tert-Butylbenzene         | 0.240        | υ        | ug/L  | 0.240  | 0.500 |               | 07/28/06 14:11        |       | EPA 524.2 | 6G31034 |
| -18-4    | Tetrachloroethene         | 0.120        | υ        | ug/L  | 0.120  | 0.500 |               | 07/28/06 14:11        |       | EPA 524.2 | 6G31034 |
| 8-88-3   | Toluene                   | 0.160        | U        | ug/L  | 0.160  | 0.500 |               | 07/28/06 14:11        |       | EPA 524.2 | 6G31034 |
|          | Total THM's               | 0.260        | U        | ug/L  | 0.260  | 0.500 |               | 07/28/06 14:11        |       | EPA 524.2 | 6G31034 |
| 5-60-5   | trans-1,2-Dichloroethene  | 0.300        | ប        | ug/L  | 0.300  | 0.500 |               |                       | ЛS    | EPA 524.2 | 6G31034 |
| 61-02-6  | trans-1,3-Dichloropropene | 0.150        | บ        | ug/L  | 0.150  | 0.500 |               |                       | ЛS    | EPA 524.2 | 6G31034 |
| 01-6     | Trichloroethene           | 0.280        | U        | ug/L  | 0.280  | 0.500 |               |                       | ЛS    | EPA 524,2 | 6G31034 |
| 69-4     | Trichlorofluoromethane    | 0.390        | ບ        | ug/ĭ_ | 0.390  | 0.500 | 1             | 07/28/06 14:11        | ЛS    | EPA 524.2 | 6G31034 |



ANALYTICAL TESTING CORPORATION

Client: TRI-TECH LABORATORIES, INC. P.O. BOX 140966 ORLANDO, FL 32814-0966 Attn: LINDA TRYTEK Work Order: Project: Project Number: OPG0403 NEW PERMIT RECLAIM 0607-692-1

4310 East Anderson Road Orlando, FL 32812 \* 800-851-2560 \* Fax 407-856-0886

Sampled: 07/26/06 Received: 07/27/06

#### LABORATORY REPORT

#### Sample ID: TRIP BLANK - Lab Number: OPG0403-02 - Matrix: Water - NonPotable

| CAS #       | Analyte                          | Result     | Q        | Units | MDL   | PQL   | Dil<br>Factor | Analyzed<br>Date/Time | Ву  | Method    | Batch   |
|-------------|----------------------------------|------------|----------|-------|-------|-------|---------------|-----------------------|-----|-----------|---------|
| Purgeabl    | e Organic Compounds by EP.       | A Method 5 | 24.2 - C | Cont. |       |       |               |                       |     |           |         |
| 5-01-4      | Vinyl chloride                   | 0.230      | U        | ug/L  | 0.230 | 0.500 | 1             | 07/28/06 14;11        | JLS | EPA 524.2 | 6G31034 |
| 330-20-7    | Xylenes, total                   | 0,250      | ប        | ug/L  | 0.250 | 0.500 | 1             | 07/28/06 14:11        | JLS | EPA 524.2 | 6G31034 |
| urrogate; i | 1,2-Dichlorobenzene-d4 (70-130%) | 90 %       |          |       |       |       |               |                       |     |           |         |
| urrogate: 4 | i-Bramafluarobenzene (70-130%)   | 92 %       |          |       |       |       |               |                       |     |           |         |

ANALYTICAL TESTING CORPORATION

Client: TRI-TECH LABORATORIES, INC. P.O. BOX 140966 ORLANDO, FL 32814-0966 Attn: LINDA TRYTEK Work Order: Project: Project Number: OPG0403 NEW PERMIT RECLAIM 0607-692-1

4310 East Anderson Road Orlando, FL 32812 \* 800-851-2560 \* Fax 407-856-0888

Sampled: 07/26/06 Received: 07/27/06

#### SAMPLE EXTRACTION DATA

| 'arameter                                           | Lab Number | Wt/Vol<br>Extracted | Extracted Vol | Date       | Analyst | Method            |
|-----------------------------------------------------|------------|---------------------|---------------|------------|---------|-------------------|
| DB and DBCP by EPA Method 504.1                     | OPG0403-01 | 35.0 g              | 2.0 mL        | 08/08/2006 | PXN     | Default Prep GC-S |
| rganochlorine Pesticides and PCBs by EPA Method 608 | OPG0403-01 | 1,000.0 mL          | 10.0 mL       | 08/02/2006 | YGM     | EPA 3510C         |
| hlorinated Herbicides by EPA Method 515.1           | OPG0403-01 | 1,000.0 mL          | 5.0 mL        | 08/01/2006 | YGM     | EPA 3510C         |
| blorinated Pesticides and PCBs by EPA Method 508    | OPG0403-01 | 1,000.0 ml.         | 5.0 mL        | 08/01/2006 | SXP     | EPA 3510C         |
| itrogen/Phosphorus Pesticides by EPA Method 507     | OPG0403-01 | 1,000.0 mL          | 5.0 mL        | 08/01/2006 | CBS     | EPA 3510C         |
| rganic Compounds by EPA 548                         | OPG0403-01 | 100.0 mL            | 1.0 mL        | 07/31/2006 | VXK     | SPE Disk MS       |
| rganic Compounds by EPA Method 525.2                | OPG0403-01 | 1,000.0 mL          | 1.0 mL        | 08/02/2006 | LCS     | SPE Disk MS       |
| rganic Compounds by EPA Method 549.2                | OPG0403-01 | 250.0 mL            | 10.0 mL       | 07/31/2006 | PXN     | SPE HPLC          |
| rganic Compounds by EPA 547                         | OPG0403-01 | 1.0 mL              | 1.0 mL        | 07/31/2006 | SXP     | SPE HPLC          |
| arbamates in Water by EPA Method 531.1              | OPG0403-01 | 1.0 mL              | 1.0 mL        | 08/07/2006 | SXP     | SPE HPLC          |

#### Page 35 of 46

ANALYTICAL TESTING CORPORATION

4310 East Anderson Road Orlando, FL 32812 \* 800-851-2560 \* Fax 407-856-0886

Client: TRI-TECH LABORATORIES, INC. P.O. BOX 140966 ORLANDO, FL 32814-0966

Work Order: Project: Project Number:

OPG0403 NEW PERMIT RECLAIM 0607-692-1

Sampled: 07/26/06 Received: 07/27/06

Attn: LINDA TRYTEK

#### PROJECT QUALITY CONTROL DATA Blank

| nalyte                           | Blank Value      | Q     | Units                                 | Q.C. Batch | Lab Number   |  |
|----------------------------------|------------------|-------|---------------------------------------|------------|--------------|--|
| leneral Chemistry Paramete       | ers              |       | · · · · · · · · · · · · · · · · · · · |            |              |  |
| yanide                           | 0.00290          | U     | mg/L                                  | 6H04043    | 6H04043-BLK1 |  |
| luoride                          | 0.00870          | U     | mg/L                                  | 6G27011    | 6G27011-BLK1 |  |
| lethylene Blue Active Substances | 0.0530           | U     | mg/L                                  | 6G28007    | 6G28007-BLK1 |  |
| dor                              | 1.00             | υ     | T.O.N.                                | 6H04010    | 6H04010-BLK1 |  |
| Э                                | 5.02             |       | pH Units                              | 6G28004    | 6G28004-BLK1 |  |
| otal Dissolved Solids            | 3.00             | U     | mg/L                                  | 6H01043    | 6H01043-BLK1 |  |
| hloride                          | 2.00             | ប     | mg/L                                  | 6G27011    | 6G27011-BLK1 |  |
| itrate as N                      | 0.00920          | ប     | mg/1_                                 | 6G27011    | 6G27011-BLK1 |  |
| itrite as N                      | 0.00750          | U     | mg/L                                  | 6G27011    | 6G27011-BLK1 |  |
| ilfate as SO4                    | 2.00             | υ     | mg/L                                  | 6G27011    | 6G27011-BLK1 |  |
| etals Total Recoverable          |                  |       | -                                     |            |              |  |
| eminum                           | 0.0490           | U     | mg/L                                  | 6H01005    | 6H01005-BLK1 |  |
| ıtimony                          | 0.00160          | U     | mg/L                                  | 6H02044    | 6H02044-BLK1 |  |
| senic                            | 0.00100          |       | mg/L                                  | 61102046   | 6H02046-BLK1 |  |
| rium                             | 0.00200          |       | mg/L                                  | 6H01005    | 6H01005-BLK1 |  |
| ryllium                          | 0.00200          | U     | mg/L                                  | 6H01005    | 6H01005-BLK1 |  |
| dmium                            | 0.000100         | υ     | mg/L                                  | 6H02047    | 6H02047-BLK1 |  |
| romium                           | 0.00150          | U     | mg/L                                  | 6H02048    | 6H02048-BLK1 |  |
| pper                             | 0.00540          | U     | mg/L                                  | 6H01005    | 6H01005-BLK1 |  |
| n                                | 0.0390           |       | mg/L                                  | 6H01005    | 6H01005-BLK1 |  |
| ad                               | 0.000800         | U     | mg/L                                  | 6H02050    | 6H02050-BLK1 |  |
| inganese                         | 0.00230          | U     | mg/L                                  | 6H01005    | 6H01005-BLK1 |  |
| reary                            | 0.0000600        | U     | mg/L                                  | 6H01004    | 6H01004-BLK1 |  |
| skel                             | 0.00600          | υ     | mg/L                                  | 6H01005    | 6H01005-BLK1 |  |
| enium                            | 0.00200          | U     | mg/L                                  | 6H02052    | 6H02052-BLK1 |  |
| ver                              | 0.00532          |       | mg/L                                  | 6H01005    | 6H01005-BLK1 |  |
| lium                             | 0.110            | U     | mg/L                                  | 6H01005    | 6H01005-BLKI |  |
| ıllium                           | 0.000800         | υ     | mg/L                                  | 6H02051    | 6H02051-BLK1 |  |
| c                                | 0.0235           | υ     | mg/L                                  | 6H01005    | 6H01005-BLK1 |  |
| )B and DBCP by EPA Meth          | nod 504.1        |       |                                       |            |              |  |
| -Dibromoethane (EDB)             | 0.00360          | U     | ug/L                                  | 6H08021    | 6H08021-BLK1 |  |
| -Dibromo-3-chloropropane         | 0.00240          | U     | ug/L                                  | 6H08021    | 6H08021-BLK1 |  |
| trogen/Phosphorus Pesticide      | es by EPA Method | 507   |                                       |            |              |  |
| azine                            | 0.0564           | U     | ug/L                                  | 6H01014    | 6H01014-BLK1 |  |
| lazine                           | 0.0587           | U     | ug/L                                  | 6H01014    | 6H01014-BLK1 |  |
| chlor                            | 0.0663           | ប     | ug/L                                  | 6H01014    | 6H01014-BLK1 |  |
| rogate: 1-Bromo-2-Nitrobenzene   | 0.554            |       | ug/L                                  | 6H01014    | 6H01014-BLK1 |  |
| lorinated Pesticides and PC      |                  | d 508 |                                       |            |              |  |
| Зs                               | 0.100            | U     | ug/L                                  | 6H01014    | 6H01014-BLK1 |  |
| lorinated Herbicides by EP       |                  |       | ~                                     | ~          |              |  |
| D (all )                         | 0.0495           | U     | ug/L                                  | 6H01019    | 6H01019-BLK1 |  |
| 5-TP (Silvex)                    | 0.0118           | U     | ug/L                                  | 6H01019    | 6H01019-BLK1 |  |

#### Page 36 of 46

ANALYTICAL TESTING CORPORATION

Client: TRI-TECH LABORATORIES, INC. P.O. BOX 140966 ORLANDO, FL 32814-0966 Attn: LINDA TRYTEK Work Order: Project: Project Number: OPG0403 NEW PERMIT RECLAIM 0607-692-1

4310 East Anderson Road Orlando, FL 32812 \* 800-851-2560 \* Fax 407-856-0886

Sampled: 07/26/06 Received: 07/27/06

#### PROJECT QUALITY CONTROL DATA Blank - Cont.

| \nalyte                                              | Blank Value                | Q          | Units | Q.C. Batch | Lab Number   |  |
|------------------------------------------------------|----------------------------|------------|-------|------------|--------------|--|
| Chlorinated Herbicides by E                          | PA Method 515.1            |            |       |            |              |  |
| Dalapon                                              | 0.353                      | ប          | ug/L  | 6H01019    | 6H01019-BLK1 |  |
| Dinoseb                                              | 0.0846                     | U          | ug/L  | 6H01019    | 6H01019-BLK1 |  |
| 'entachlorophenol                                    | 0.0109                     | U          | ug/L  | 6H01019    | 6H01019-BLK1 |  |
| icloram                                              | 0.0342                     | U          | ug/L  | 6H01019    | 6H01019-BLK1 |  |
| urrogate: DCAA                                       | 3.95                       |            | ug/L  | 6H01019    | 6H01019-BLK1 |  |
| urgeable Organic Compound<br>1,1,2-Tetrachloroethane | nds by EPA Method<br>0.170 | 524.2<br>U | ug/L  | 6G31034    | 6G31034-BLK1 |  |
| 1,1-Trichloroethane                                  | 0.400                      | U          | ug/L  | 6G31034    | 6G31034-BLK1 |  |
| 1,2,2-Tetrachloroethanc                              | 0.120                      | ប          | ug/L  | 6G31034    | 6G31034-BLK1 |  |
| 1,2-Trichloroethane                                  | 0.210                      | υ          | ug/L  | 6G31034    | 6031034-BLK1 |  |
| 1-Dichloroethane                                     | 0.130                      | U          | ug/L  | 6G31034    | 6G31034-BLK1 |  |
| 1-Dichloroethene                                     | 0.160                      | U          | ug/L  | 6G31034    | 6G31034-BLK1 |  |
| I-Dichloropropene                                    | 0.160                      | U          | ug/L  | 6G31034    | 6G31034-BLK1 |  |
| 2,3-Trichlorobenzene                                 | 0.370                      | Ū          | ug/t. | 6G31034    | 6G31034-BLK1 |  |
| 2,3-Trichloropropane                                 | 0.380                      | U          | ug/L  | 6G31034    | 6G31034-BLK1 |  |
| 2,4-Trichlorobenzene                                 | 0.470                      | Ŭ          | ug/L  | 6G31034    | 6G31034-BLK1 |  |
| 2,4-Trimethylbenzene                                 | 0.140                      | U          | ug/L  | 6G31034    | 6G31034-BLK1 |  |
| 2-Dibromo-3-chloropropane                            | 0.490                      | U          | ug/L  | 6G31034    | 6G31034-BLK1 |  |
| 2-Dibromoethane (EDB)                                | 0,270                      | U          | ug/L  | 6G31034    | 6G31034-BLK1 |  |
| !-Dichlorobenzene                                    | 0,170                      | U          | ug/L  | 6G31034    | 6G31034-BLK1 |  |
| 2-Dichloroethane                                     | 0.110                      | U          | ug/L  | 6G31034    | 6G31034-BLK1 |  |
| !-Dichloropropane                                    | 0.110                      | Ŭ          | ug/L  | 6G31034    | 6G31034-BLK1 |  |
| 5-Trimethylbenzene                                   | 0.0700                     | υ.         | ug/L  | 6G31034    | 6G31034-BLK1 |  |
| Dichlorobenzene                                      | 0.160                      | บ          | ug/L  | 6G31034    | 6G31034-BLK1 |  |
| -Dichloropropane                                     | 0.200                      | บ          | ug/L  | 6G31034    | 6G31034-BLK1 |  |
| -Dichlorobenzene                                     | 0.150                      | U          | ug/L  | 6G31034    | 6G31034-BLK1 |  |
| -Dichloropropane                                     | 0.330                      | บ          | ug/L  | 6G31034    | 6G31034-BLK1 |  |
| Jutanone                                             | 0.470                      | υ          | ug/L  | 6031034    | 6G31034-BLK1 |  |
| Chlorotoluene                                        | 0.450                      | U          | ug/L  | 6G31034    | 6G31034-BLK1 |  |
| lulorotoluene                                        | 0.110                      | ບ          | ug/L  | 6G31034    | 6G31034-BLK1 |  |
| etone                                                | 0.320                      | υ          | ug/L  | 6G31034    | 6G31034-BLK1 |  |
| nzene                                                | 0.130                      | U          | ug/L  | 6G31034    | 6G31034-BLK1 |  |
| mobenzene                                            | 0.120                      | U          | ug/L  | 6G31034    | 6G31034-BLK1 |  |
| mochloromethane                                      | 0.350                      | ប          | ug/L  | 6G31034    | 6G31034-BLK1 |  |
| modichloromethane                                    | 0.260                      | υ          | ug/L  | 6G31034    | 6G31034-BLK1 |  |
| moform                                               | 0.230                      | U          | ug/L  | 6G31034    | 6G31034-BLK1 |  |
| momethane                                            | 0.270                      | U          | ug/L  | 6G31034    | 6G31034-BLK1 |  |
| bon Tetrachloride                                    | 0.420                      | U          | ug/L  | 6G31034    | 6G31034-BLK1 |  |
| orobenzene                                           | 0.0700                     | U          | ug/L  | 6G31034    | 6G31034-BLK1 |  |
| orodibromomethane                                    | 0.180                      | Ū          | ug/L  | 6G31034    | 6G31034-BLK1 |  |
| oroethane                                            | 0.450                      | ບ          | ug/L  | 6G31034    | 6G31034-BLK1 |  |
|                                                      |                            | -          | -     |            |              |  |

ANALYTICAL TESTING CORPORATION

Client: TRI-TECH LABORATORIES, INC. P.O. BOX 140966 ORLANDO, FL 32814-0966 Attn: LINDA TRYTEK Work Order: Project: Project Number: OPG0403 NEW PERMIT RECLAIM 0607-692-1

4310 East Anderson Road Orlando, FL 32812 \* 800-851-2560 \* Fax 407-856-0886

Sampled: 07/26/06 Received: 07/27/06

PROJECT QUALITY CONTROL DATA Blank - Cont.

|                                        | D1 1 17 1            | •     | ** *. |                  |               |  |
|----------------------------------------|----------------------|-------|-------|------------------|---------------|--|
| \nalyte                                | Blank Value          | Q     | Units | Q.C. Batch       | Lab Number    |  |
| <sup>y</sup> urgeable Organic Compound |                      | 524.2 |       |                  |               |  |
| Chloroform                             | 0.130                | U     | ug/L  | 6031034          | 6G31034-BLK1  |  |
| Chloromethane                          | 0.150                | U     | ug/L  | 6G31034          | 6G31034-BLK1  |  |
| is-1,2-Dichloroethene                  | 0.320                | υ     | ug/L  | 6G31034          | 6G31034-BLK1  |  |
| is-1,3-Dichloropropene                 | 0.170                | ប     | ug/L  | 6G31034          | 6G31034-BLK1  |  |
| >ibromomethane                         | 0.230                | U     | ug/L  | 6G31034          | 6G31034-BLK1  |  |
| vichlorodifluoromethane                | 0.190                | U     | սք/Լ  | 6G31034          | 6G31034-BLK1  |  |
| thylbenzene                            | 0.0900               | U     | ug/L  | 6G31034          | 6G31034-BLKI  |  |
| exachlorobutadiene                     | 0.470                | U     | ug/L  | 6G31034          | 6G31034-BLK1  |  |
| exachloroethane                        | 0.420                | U     | ug/L  | 6G31034          | 6G31034-BLK1  |  |
| opropylbenzene                         | 0.110                | U     | ug/L  | 6G31034          | 6G31034-BLK1  |  |
| lethyl tert-Butyl Ether                | 0.390                | U     | ug/L  | 6G31034          | 6G31034-BLK1  |  |
| lethylene Chloride                     | 0.340                | υ     | ug/L  | 6G31034          | 6G31034-BLK1  |  |
| aphthalene                             | 0.250                | U     | ug/L  | 6G31034          | 6G31034-BLK1  |  |
| Butylbenzene                           | 0.280                | υ     | ug/L  | 6G31034          | 6G31034-BLK1  |  |
| Propylbenzene                          | 0.200                | U     | ug/L  | 6G31034          | 6G31034-BLK1  |  |
| Isopropyltoluene                       | 0.190                | U     | ug/L  | 6G31034          | 6G31034-BLK1  |  |
| c-Butylbenzene                         | 0.190                | U     | ug/L  | 6G31034          | 6G31034-BLK1  |  |
| утепе                                  | 0.110                | U     | ug/L  | 6G31034          | 6G31034-BLK1  |  |
| t-Butylbenzene                         | 0.240                | U     | ug/L  | 6G31034          | 6G31034-BLK1  |  |
| trachloroethene                        | 0.120                | ប     | ug/L  | 6G31034          | 6G31034-BLK1  |  |
| luene                                  | 0.160                | U     | ug/L  | 6031034          | 6G31034-BLK1  |  |
| tal THM's                              | 0.260                | U     | ug/L  | 6G31034          | 6G31034-BLK1  |  |
| ns-1,2-Dichloroethene                  | 0.300                | U     | ug/L  | 6G31034          | 6G31034-BLK1  |  |
| ns-1,3-Dichloropropene                 | 0.150                | U     | ug/L  | 6G31034          | 6G31034-BLK1  |  |
| ichloroethene                          | 0.280                | U     | ug/L  | 6G31034          | 6G31034-BLK1  |  |
| ichlorofluoromethane                   | 0.390                | Ū     | ug/L  | 6G31034          | 6G31034-BLK1  |  |
| nyl chloride                           | 0.230                | Ū     | ug/L. | 6G31034          | 6G31034-BLK1  |  |
| lenes, total                           | 0.250                | บ     | ug/L  | 6G31034          | 6G31034-BLK1  |  |
| rogate: 1,2-Dichlorober:ene-d4         | 9.04                 | 0     | ug/L  | 6G31034          | 6G31034-BLK1  |  |
| rogate: 4-Bromo/luorobenzene           | 9.86                 |       | ug/L  | 6G31034          | 6G31034-BLK1  |  |
| irbamates in Water by EPA N            |                      |       | -9    |                  |               |  |
| rbofuran                               | 0.547                | υ     | ug/L  | 6H07010          | 6H07010-BLK1  |  |
| amyl                                   | 0.530                | บ     | ug/L  | 6H07010          | 6H07010-BLK1  |  |
| ganic Compounds by EPA 54              | <b>17</b><br>4.44    |       | ug/L  | 6 <b>G3</b> 1013 | 6031013-BLK1  |  |
| •                                      |                      | U     | uB.r. | 0031013          | 0051013-BLRI  |  |
| ganic Compounds by EPA 54              | 2.31                 | ប     | ug/L  | 6G31026          | 6G31026-BLK1  |  |
| ganic Compounds by EPA M               | ethod 549.2<br>0.250 | U     | ug/L  | 6G31039          | 6G31039-BLK1  |  |
| ganochlorine Pesticides and I          | CBs by EPA Met       |       | ug/L  | 6H02038          | 6H02038-BLK1  |  |
| Irin                                   | 0.0190               | U     | ug/L  | 6H02038          | 6H02038-BLK1  |  |
|                                        |                      | U     | *8*   | 0 - 10 - 10      | V102030-20201 |  |
| TestAmerica - Orlando, Fl              | ե                    |       |       |                  |               |  |

ANALYTICAL TESTING CORPORATION

Client: TRI-TECH LABORATORIES, INC. P.O. BOX 140966 ORLANDO, FL 32814-0966 Attn: LINDA TRYTEK

| Work Order:     |  |
|-----------------|--|
| Project:        |  |
| Project Number: |  |

OPG0403 NEW PERMIT RECLAIM 0607-692-1

4310 East Anderson Road Orlando, FL 32812 \* 800-851-2560 \* Fax 407-856-0886

Sampled: 07/26/06 Received: 07/27/06

#### PROJECT QUALITY CONTROL DATA Blank - Cont.

| \nalyte                           | Blank Value   | Q          | Units   | Q.C. Batch | Lab          | Number    |            |            |
|-----------------------------------|---------------|------------|---------|------------|--------------|-----------|------------|------------|
| Organochlorine Pesticides and     | PCBs by EPA N | Method 608 |         |            |              |           |            | *********  |
| (amma-BHC (Lindane)               | 0.00900       | U          | ug/L    | 6H02038    | 6H020        | 38-BLKI   |            |            |
| leptachlor                        | 0.0110        | บ          | ug/L    | 6H02038    | 6H020        | 38-BLKI   |            |            |
| teptachlor epoxide                | 0.0110        | U          | ug/L    | 6H02038    | 6H020        | 38-BLKI   |            |            |
| (ethoxychlor                      | 0.0230        | U          | ug/L    | 6H02038    | 6H020        | 38-BLK1   |            |            |
| oxaphene                          | 0.242         | ប          | ug/L    | 61102038   | 6H02038-BLK1 |           |            |            |
| rrogate: Decachlorobiphenyl       | 0.990         |            | ug/L    | 6H02038    | 6H02038-BLK1 |           |            |            |
| urrogate: Tetrachloro-meta-xylene | 0.810         |            | ug/L    | 6H02038    | 6H020        | 38-BLK1   |            |            |
|                                   | P             | PROJECT QU | JALITY  | CONTROL DA | TA           |           |            |            |
|                                   |               | -          | Duplica | ate        |              |           |            |            |
| nalyte                            | Orig. Val.    | Duplicate  | Q       | Units      | RPD          | RPD Limit | Q.C. Batch | Sample     |
| eneral Chemistry Parameters       |               |            |         |            |              |           |            |            |
| 4                                 | 7.39          | 7.41       |         | pH Units   | 0.3          | 2.2       | 6G28004    | OPG0403-01 |
| stal Dissolved Solids             | 358           | 352        |         | mg/L       | 2            | 20        | 6H01043    | OPG0369-10 |

| stal Dissolved Solids            | 358             | 352        |   | mg/L | 2 | 20 | 6H01043 | OPG0369-10 |  |
|----------------------------------|-----------------|------------|---|------|---|----|---------|------------|--|
| rganochlorine Pesticides and     | d PCBs by EPA I | Method 608 |   |      |   |    |         |            |  |
| hlordane                         | <0.0120         | 0.0120     | U | ug/L |   | 50 | 6H02038 | OPG0403-01 |  |
| ıdrin                            | <0.0190         | 0.0190     | U | ug/L |   | 50 | 6H02038 | OPG0403-01 |  |
| .mma-BHC (Lindane)               | <0.00900        | 0.00900    | U | ug/L |   | 50 | 6H02038 | OPG0403-01 |  |
| sptachlor                        | <0.0110         | 0.0110     | U | ug/L |   | 50 | 6H02038 | OPG0403-01 |  |
| ptachlor epoxide                 | <0.0110         | 0.0110     | U | ug/L |   | 50 | 6H02038 | OPG0403-01 |  |
| cthoxychlor                      | <0.0230         | 0.0230     | U | ug/L |   | 50 | 6H02038 | OPG0403-01 |  |
| xaphene                          | <0.242          | 0.242      | ប | ug/L |   | 50 | 6H02038 | OPG0403-01 |  |
| rrogate: Decachlorobiphenyl      |                 | 0.591      |   | ug/L |   |    | 6H02038 | OPG0403-01 |  |
| rrogate: Tetrachloro-meta-xylene |                 | 0.672      |   | ug/L |   |    | 6H02038 | OPG0403-01 |  |
|                                  |                 |            |   |      |   |    |         |            |  |

#### Page 39 of 46

ANALYTICAL TESTING CORPORATION

Client: TRI-TECH LABORATORIES, INC. P.O. BOX 140966 ORLANDO, FL 32814-0966 Attn: LINDA TRYTEK

Work Order: Project: Project Number:

OPG0403 NEW PERMIT RECLAIM 0607-692-1

4310 East Anderson Road Orlando, FL 32812 \* 800-851-2560 \* Fax 407-856-0886

Sampled: 07/26/06 Received: 07/27/06

#### PROJECT QUALITY CONTROL DATA LCS

| Analyte                                             | Known Val.    | Analyzed Val | Q | Units    | % Rec. | Target Range         | Q.C. Batch |
|-----------------------------------------------------|---------------|--------------|---|----------|--------|----------------------|------------|
| General Chemistry Parameters                        |               |              |   |          |        |                      |            |
| Cyanide                                             | 0.200         | 0.201        |   | mg/L     | 100    | 80 - 120             | 6H04043    |
| luoride                                             | 1.00          | 1.02         |   | mg/L     | 102    | <del>9</del> 0 - 110 | 6G27011    |
| Aethylene Blue Active Substances                    | 1.00          | 1.02         |   | mg/L     | 102    | 90 - 110             | 6G28007    |
| ·H                                                  | 6.00          | 5.98         |   | pH Units | 100    | 95 - 105             | 6G28004    |
| 'otal Dissolved Solids                              | 300           | 296          |   | mg/L     | 99     | 90 - 110             | 6H01043    |
| hloride                                             | 50.0          | 47.9         |   | mg/L     | 96     | 90 - 110             | 6G27011    |
| itrate as N                                         | 1.00          | 0.976        |   | mg/L     | 98     | 90 - 110             | 6G27011    |
| itrite as N                                         | 1.00          | 0.971        |   | mg/L     | 97     | 90 - 110             | 6G27011    |
| ulfute as SO4                                       | 50.0          | 46.7         |   | mg/L     | 93     | 90 - 110             | 6G27011    |
| Ietals Total Recoverable                            |               |              |   |          |        |                      |            |
| luminum                                             | 0.396         | 0.418        |   | mg/L     | 106    | 85 - 115             | 6H01005    |
| ntimony                                             | 0.0400        | 0.0445       |   | mg/L     | 111    | 80 - 120             | 6H02044    |
| rsenic                                              | 0.0400        | 0.0409       |   | mg/L     | 102    | 80 - 120             | 6H02046    |
| ររាប់ព្រ                                            | 0.400         | 0.409        |   | mg/L     | 102    | 85 - 115             | 6H01005    |
| ryllium                                             | 0.400         | 0.420        |   | mg/L     | 105    | 85 - 115             | 6H01005    |
| ıdmium                                              | 0.00400       | 0.00459      | · | mg/L     | 115    | 80 - 120             | 6H02047    |
| າເວພາກ                                              | 0.0400        | 0.0429       |   | mg/L     | 107    | 80 - 120             | 6H02048    |
| pper                                                | 0.400         | 0.398        |   | mg/L     | 100    | 85 - 115             | 6H01005    |
| 'n                                                  | 0.400         | 0.399        |   | mg/L     | 100    | 85 - 115             | 6H01005    |
| ad                                                  | 0.0400        | 0.0433       |   | mg/L     | 108    | 80 - 120             | 6H02050    |
| inganes¢                                            | 0.400         | 0.401        |   | mg/L     | 100    | 85 - 115             | 6H01005    |
| reury                                               | 0.00200       | 0.00196      |   | mg/L     | 98     | 85 - 115             | 6H01004    |
| skel                                                | 0.400         | 0.402        |   | mg/L     | 100    | 85 - 115             | 6H01005    |
| enium                                               | 0.0400        | 0.0442       |   | mg/L     | 110    | 80 - 120             | 6H02052    |
| ver                                                 | 0.400         | 0.422        |   | mg/L     | 106    | 85 - 115             | 6H01005    |
| lium                                                | 40.0          | 39.5         |   | mg/L     | 99     | 85 - 115             | 6H01005    |
| allium                                              | 0.0400        | 0.0452       |   | mg/L     | 113    | 80 - 120             | 6H02051    |
| ιc                                                  | 0.400         | 0.422        |   | mg/L     | 106    | 85 - 115             | 6H01005    |
| B and DBCP by EPA Method 50<br>-Dibromoethane (EDB) | 0.250         | 0.250        |   | ug/L     | 100    | 70 - 130             | 6H08021    |
| -Dibromo-3-chloropropane                            | 0.250         | 0.249        |   | ug/L     | 100    | 70 - 130             | 6H08021    |
| trogen/Phosphorus Pesticides by 1                   |               |              |   | 422      | 100    | 10 - 120             | 01100021   |
| azine                                               | 2.50          | 2.69         |   | ug/L     | 108    | 70 - 130             | 6H01014    |
| lazine                                              | 2.50          | 3.14         |   | ug/L     | 126    | 70 - 130             | 6H01014    |
| chior                                               | 1.25          | 1.41         |   | ug/L     | 113    | 70 - 130             | 6H01014    |
| rogate: 1-Broino-2-Nitrobenzene                     | 0.500         | 0.508        |   | ug/L     | 102    | 70 - 130             | 6H01014    |
| lorinated Pesticides and PCBs by                    | EPA Method 50 | 8            |   |          |        |                      |            |
| ∃s                                                  |               | 0.100        |   | ug/L     |        | 70 - 130             | 6H01014    |
| lorinated Herbicides by EPA Me                      |               |              |   |          |        |                      |            |
| Ð                                                   | 1.00          | 0.906        |   | ug/L     | 91     | 48 - 214             | 6H01019    |
|                                                     |               |              |   |          |        |                      |            |

#### Page 40 of 46

ANALYTICAL TESTING CORPORATION

Client: TRI-TECH LABORATORIES, INC. P.O. BOX 140966 ORLANDO, FL 32814-0966 Attn: LINDA TRYTEK Work Order: Project: Project Number:

OPG0403 NEW PERMIT RECLAIM 0607-692-1

4310 East Anderson Road Orlando, FL 32812 \* 800-851-2560 \* Fax 407-856-0886

Sampled: 07/26/06 Received: 07/27/06

#### PROJECT QUALITY CONTROL DATA

LCS - Cont.

| nalyte                                            | Known Val.                  | Analyzed Val       | Q | Units | % Rec.         | Target Range     | Q.C. Batch       |
|---------------------------------------------------|-----------------------------|--------------------|---|-------|----------------|------------------|------------------|
| blorinated Herbicides by EP                       |                             |                    |   | _     |                |                  |                  |
| 4,5-TP (Silvex)                                   | 1.00                        | 0.906              |   | ug/L  | 91             | 42 - 226         | 6H01019          |
| alapon                                            | 5.00                        | 5.16               |   | ug/L  | 103            | 40 - 160         | 6H01019          |
| noseb                                             | 1.00                        | 0.458              |   | ug/L  | 46             | 27 - 138         | 6H01019          |
| ntachlorophenol                                   | 00.1                        | 0.914              |   | ug/L  | 91             | 36 - 224         | 61101019         |
| zioram                                            | 1.00                        | 0.874              |   | ug/L  | 87             | 44 - 138         | 6H01019          |
| rrogale: DCAA                                     | 5.00                        | 5.30               |   | ug/L  | 106            | 70 - 1 <b>30</b> | 6H01019          |
| rgeable Organic Compound<br>1,2-Tetrachloroethane | is by EPA Method 52<br>10.0 | <b>4.2</b><br>10.2 |   | ug/L  | 102            | 70 - 130         | 6G31034          |
| 1-Trichloroethane                                 | 10.0                        | 9.72               |   | ug/L  | 97             | 70 - 130         | 6G31034          |
| 2,2-Tetrachloroethane                             | 10.0                        | 10.5               |   | ug/L  | 105            | 70 - 130         | 6G31034          |
| 2-Trichloroethane                                 | 10.0                        | 10.1               |   | ug/L  | 101            | 70 - 130         | 6G31034          |
| Dichloroethane                                    | 10.0                        | 9.72               |   | ug/L  | <del>9</del> 7 | 70 - 130         | 6G31034          |
| Dichloroethene                                    | 10.0                        | 9.53               |   | ug/L  | 95             | 70 - 130         | 6G31034          |
| Dichloropropene                                   | 10.0                        | 9.80               |   | ug/L  | 98             | 70 - 130         | 6G31034          |
| 3-Trichlorobenzene                                | 10.0                        | 10.8               |   | ug/L  | 108            | 70 - 130         | 6G31034          |
| 3-Trichloropropane                                | 10.0                        | 10.5               |   | ug/L  | 105            | 70 - 130         | 6G31034          |
| 4-Trichlorobenzene                                | 10.0                        | 8.94               |   | ug/L  | 89             | 70 - 130         | 6G31034          |
| 4-Trimethylbenzene                                | 10.0                        | 10.1               |   | ug/1, | 101            | 70 - 130         | 6G31034          |
| Dibromo-3-chloropropane                           | 10.0                        | 11.7               |   | ug/L  | 117            | 70 - 130         | 6G31034          |
| Dibromoethane (EDB)                               | 10.0                        | 10.1               |   | ug/L  | 101            | 70 - 130         | 6G31034          |
| Dichlorobenzene                                   | 10.0                        | 9.98               |   | ug/L  | 100            | 70 - 130         | 6G31034          |
| Dichloroethane                                    | 10.0                        | 9.47               |   | ug/L  | 95             | 70 - 130         | 6G31034          |
| Dichloropropane                                   | 10.0                        | 9.97               |   | ug/L  | 100            | 70 - 130         | 6G31034          |
| -Trimethylbenzene                                 | 10.0                        | 10.1               |   | ug/L  | 101            | 70 - 130         | 6G31034          |
| Dichlorobenzene                                   | 10.0                        | 10.7               |   | ug/L  | 107            | 70 - 130         | 6G31034          |
| Dichloropropane                                   | 10.0                        | 9.91               |   | ug/L  | 9 <b>9</b>     | 70 - 130         | 6G31034          |
| Dichlorobenzene                                   | 10.0                        | 10.3               |   | ug/L. | 103            | 70 - 130         | 6G31034          |
| Dichloropropane                                   | 10.0                        | 9.37               |   | ug/L  | 94             | 70 - 130         | 6G31034          |
| itanone                                           | 10.0                        | 11.6               |   | ug/L  | 116            | 70 - 130         | 6G31034          |
| lorotoluene                                       | 10.0                        | 10.1               |   | ug/L  | 101            | 70 - 130         | 6G31034          |
| lorotoluene                                       | 10.0                        | 10.8               |   | ug/L  | 108            | 70 - 130         | 6 <b>G</b> 31034 |
| one                                               | 10.0                        | 11.6               |   | ug/L  | 116            | 70 - 130         | 6G31034          |
| ene                                               | 10.0                        | 9.80               |   | ug/L  | 98             | 70 - 130         | 6G31034          |
| lobenzene                                         | 10.0                        | 9.89               |   | ug/L  | 99             | 70 - 130         | 6G31034          |
| nochloromethane                                   | 10.0                        | 9.93               |   | ug/L  | 99             | 70 - 130         | 6G31034          |
| rodichloromethane                                 | 10.0                        | 9.95               |   | ug/L  | 100            | 70 - 130         | 6G31034          |
| noform                                            | 10.0                        | 8.49               |   | ug/L  | 85             | 70 - 130         | 6G31034          |
| nomethane                                         | 10.0                        | 9.09               |   | ug/L  | 91             | 70 - 130         | 6G31034          |
| on Tetrachloride                                  | 10.0                        | 9.09               |   | ug/L  | 91             | 70 - 130         | 6G31034          |

# Test/Merica

#### Page 41 of 46

ANALYTICAL TESTING CORPORATION

.

Client: TRI-TECH LABORATORIES, INC. P.O. BOX 140966 ORLANDO, FL 32814-0966 Attn: LINDA TRYTEK Work Order: Project: Project Number:

OPG0403 NEW PERMIT RECLAIM 0607-692-1

4310 East Anderson Road Orlando, FL 32812 \* 800-851-2560 \* Fax 407-856-0886

Sampled: 07/26/06 Received: 07/27/06

#### PROJECT QUALITY CONTROL DATA

LCS - Cont.

| Analyte                        | Known Val.  | Analyzed Val | Q | Units | % Rec.        | Target Range     | Q.C. Batch |
|--------------------------------|-------------|--------------|---|-------|---------------|------------------|------------|
| 'urgeable Organic Compounds by |             |              |   | _     |               |                  |            |
| Thiorobenzene                  | 10.0        | 10.4         |   | ug/L  | 104           | 70 - 130         | 6G31034    |
| Chlorodibromomethane           | 10.0        | 10.4         |   | ug/L  | 104           | 70 - 130         | 6G31034    |
| hloroethane                    | 10.0        | 10.6         |   | ug/L  | 106           | 70 - 130         | 6G31034    |
| hloroform                      | 10.0        | 9.14         |   | ug/L  | <b>9</b> 1    | 70 - 130         | 6031034    |
| hloromethane                   | 10.0        | 10.5         |   | ug/L  | 105           | 70 - 130         | 6G31034    |
| is-1,2-Dichloroethene          | 10.0        | 9.89         |   | ug/L  | 99            | 70 - 130         | 6G31034    |
| s-1,3-Dichloropropene          | 10.0        | 10.6         |   | ug/L  | 106           | 70 - 130         | 6G31034    |
| ibromomethane                  | 10.0        | 10,2         |   | ug/L  | 102           | 70 - 130         | 6G31034    |
| ichlorodifluoromethane         | 10.0        | 9.80         |   | ug/L  | 98            | 70 - 130         | 6G31034    |
| thylbenzene                    | 10.0        | 10.2         |   | ug/L  | 102           | 70 - 130         | 6G31034    |
| exachlorobutadiene             | 10.0        | 9.21         |   | ug/L  | 92            | 70 - 130         | 6G31034    |
| exachloroethane                | 10.0        | 11.0         |   | ug/L  | 110           | 70 - 130         | 6G31034    |
| opropylbenzene                 | 10.0        | 9.87         |   | ug/L  | <del>99</del> | 70 - 130         | 6G31034    |
| ethyl tert-Butyl Ether         | 10.0        | 9.13         |   | ug/L  | 91            | 70 - 130         | 6G31034    |
| ethylene Chloride              | 10.0        | 10.7         |   | ug/L  | 107           | 70 - 130         | 6G31034    |
| iphthalene                     | 10.0        | 10.8         |   | ug/L  | 108           | 70 - 130         | 6G31034    |
| Butylbenzene                   | 10.0        | 9.90         |   | ug/L  | 99            | 70 - 130         | 6G31034    |
| Propylbenzene                  | 10.0        | 10.2         |   | ug/L  | 102           | 70 - 130         | 6G31034    |
| Isopropylioluene               | 10.0        | 9.65         |   | ug/L  | 96            | 70 - 130         | 6G31034    |
| :-Butylbenzene                 | 10.0        | 9.64         |   | ug/L  | 96            | 70 - 130         | 6G31034    |
| /rene                          | 10.0        | 11.0         |   | ug/L  | 110           | 70 - 130         | 6G31034    |
| t-Butylbenzene                 | 10.0        | 10.1         |   | ug/L  | 101           | 70 - 1 <b>30</b> | 6G31034    |
| trachloroethene                | 10.0        | 9.72         |   | ug/L  | 97            | 70 - 130         | 6G31034    |
| luene                          | 10.0        | 10.1         |   | ug/L  | 101           | 70 - 130         | 6G31034    |
| tal THM's                      |             | 0.260        |   | ug/L  |               | 70 - 130         | 6G31034    |
| ns-1,2-Dichloroethene          | 10.0        | 10.0         |   | ug/L  | 100           | 70 - 130         | 6G31034    |
| ns-1,3-Dichloropropene         | 10.0        | 10.8         |   | ug/L  | 108           | 70 - 130         | 6G31034    |
| chloroethene                   | 10.0        | 9.72         |   | ug/L  | 97            | 70 - 130         | 6G31034    |
| chlorofluoromethane            | 10.0        | 9.60         |   | ug/L  | 96            | 70 - 130         | 6G31034    |
| ıyl chloride                   | 10.0        | 10.8         |   | ug/L  | 108           | 70 - 130         | 6G31034    |
| lenes, total                   | 30.0        | 30.5         |   | ug/L  | 102           | 70 - 130         | 6G31034    |
| rogaie: 1,2-Dichlorobenzene-d4 | 10.0        | 10.0         |   | ug/L  | 100           | 70 - 130         | 6G31034    |
| rogale: 4-Bromofluorobenzene   | 10.0        | 9.89         |   | ug/L  | 99            | 70 - 130         | 6G31034    |
| rbamates in Water by EPA Metho | od 531.1    |              |   |       |               |                  |            |
| bofuran                        | 25.0        | 24.3         |   | ug/L  | 97            | 80 - 120         | 6H07010    |
| <b>1</b>                       |             | 21.0         |   | ug/L  | 87            | 80 - 120         | 6H07010    |
| ımyl                           | 25.0        | 21.8         |   | -8-   |               | 00 110           | 01107711   |
| anic Compounds by EPA 547      | 25.0<br>500 | 590          |   | ug/L  | 118           | 70 - 130         | 6G31013    |

ANALYTICAL TESTING CORPORATION

Client: TRI-TECH LABORATORIES, INC. P.O. BOX 140966 ORLANDO, FL 32814-0966 Attn: LINDA TRYTEK Work Order: Project: Project Number:

OPG0403 NEW PERMIT RECLAIM 0607-692-1

4310 East Anderson Road Orlando, FL 32812 \* 800-851-2560 \* Fax 407-858-0886

Sampled: 07/26/06 Received: 07/27/06

#### PROJECT QUALITY CONTROL DATA

LCS - Cont.

| Analyte                           | Known Val.       | Analyzed Val | Q | Units        | % Rec. | Target Range | Q.C. Batch |
|-----------------------------------|------------------|--------------|---|--------------|--------|--------------|------------|
| Organic Compounds by EPA 54       | 48               |              |   |              |        |              |            |
| Endothall                         | 50.0             | 64.3         |   | ug/L         | 129    | 70 - 130     | 6G31026    |
| Organic Compounds by EPA M        | lethod 549.2     |              |   |              |        |              |            |
| Diquat                            | 20.0             | 19.0         |   | ug/L         | 95     | 70 - 130     | 6G31039    |
| Organochlorine Pesticides and I   | PCBs by EPA Meth | od 608       |   |              |        |              |            |
| ndrin                             | 1.00             | 0.909        |   | ug/L         | 91     | 30 - 147     | 6H02038    |
| amma-BHC (Lindane)                | 1.00             | 0.927        |   | u <b>g/L</b> | 93     | 32 - 127     | 6H02038    |
| eptachlor                         | 1.00             | 0.756        |   | ug/L         | 76     | 34 - 111     | 6H02038    |
| eptachlor epoxide                 | 1.00             | 0.875        |   | ug/L         | 88     | 37 - 142     | 6H02038    |
| lethoxychlor                      | 1.00             | 0.981        |   | սք/Լ         | 98     | 71 - 146     | 6H02038    |
| oxaphene                          |                  | 0,242        |   | ug/L         |        | 41 - 126     | 6H02038    |
| rrogate: Decachlorobiphenyl       | 1.00             | 0.972        |   | ug/L         | 97     | 32 - 125     | 6H02038    |
| urrogate: Tetrachloro-meta-xylene | 1.00             | 0.837        |   | ug/L         | 84     | 36 - 123     | 6H02038    |

### Test e

ANALYTICAL TESTING CORPORATION

Work Order: Project:

OPG0403 NEW PERMIT RECLAIM

Sampled: 07/26/06 Received: 07/27/06

P.O. BOX 140966 ORLANDO, FL 32814-0966 Attn: LINDA TRYTEK

Client: TRI-TECH LABORATORIES, INC.

| Project Number: | 06 |
|-----------------|----|
|                 |    |

607-692-1

4310 East Anderson Road Orlando, FL 32812 \* 800-851-2560 \* Fax 407-858-0886

#### PROJECT QUALITY CONTROL DATA Matrix Spike

| Analyte                           | Orig. Val.   | MS Val  | Q   | Units | Spike Conc | % Rec.         | Target Range | Batch    | Sample<br>Spiked |
|-----------------------------------|--------------|---------|-----|-------|------------|----------------|--------------|----------|------------------|
| <b>General Chemistry Paramete</b> | ers          |         |     |       |            |                |              |          |                  |
| Jyanide                           | 0.0322       | 0.205   |     | mg/L  | 0.204      | 85             | 42.5 - 132   | 61104043 | OPG0342-01       |
| luoride                           | 0.508        | 2.02    |     | mg/L  | 1.15       | 131            | 22 - 167     | 6G27011  | OPG0407-01       |
| Athylene Blue Active Substances   | 0.0720       | 1.11    |     | mg/L  | 1.00       | 104            | 0 - 155      | 6G28007  | OPG0403-01       |
| Chloride                          | 17.1         | 73.2    |     | mg/L  | 57.5       | 98             | 61 - 131     | 6G27011  | OPG0407-01       |
| litrate as N                      | <0.0106      | 1,09    |     | mg/L  | 1.15       | 95             | 66 - 155     | 6G27011  | OPG0407-01       |
| itrite as N                       | <0.00862     | 1.05    |     | mg/L  | 1.15       | 91             | 84 - 144     | 6G27011  | OPG0407-01       |
| ulfate as SO4                     | 40.9         | 100     |     | mg/L  | 57.5       | 103            | 80 - 120     | 6G27011  | OPG0407-01       |
| letals Total Recoverable          |              |         |     |       |            |                |              |          |                  |
| luminum                           | 0.0565       | 0.434   |     | mg/L  | 0.396      | 95             | 70 - 130     | 6H01005  | OPG0403-01       |
| ntimony                           | <0.00160     | 0.0438  |     | mg/L  | 0.0400     | 110            | 85 - 115     | 6H02044  | OPG0403-01       |
| rsenic                            | 0.00240      | 0.0388  |     | mg/L  | 0.0400     | 91             | 85 - 115     | 6H02046  | OPG0403-01       |
| arium                             | 0.0142       | 0.390   |     | mg/L  | 0.400      | 94             | 70 - 130     | 6H01005  | OPG0403-01       |
| zryllium                          | <0.00200     | 0.387   |     | mg/L  | 0.400      | <del>9</del> 7 | 70 - 130     | 6H01005  | OPG0403-01       |
| ıdmium                            | 0.000280     | 0.00391 |     | mg/L  | 0.00400    | 91             | 85 - 115     | 6H02047  | OPG0403-01       |
| romium                            | 0.00260      | 0.0439  |     | mg/L  | 0.0400     | 103            | 85 - 115     | 6H02048  | OFG0403-01       |
| opper                             | <0.00540     | 0.376   |     | mg/L  | 0.400      | 94             | 70 - 130     | 6H01005  | OPG0403-01       |
| n.                                | 0.0629       | 0.423   |     | mg/L  | 0.400      | 90             | 70 - 130     | 6H01005  | OPG0403-01       |
| að                                | 0.00310      | 0.0419  |     | mg/L  | 0.0400     | 97             | 85 - 115     | 6H02050  | OPG0403-01       |
| anganese                          | 0.0126       | 0,384   |     | mg/L  | 0.400      | 93             | 70 - 130     | 6H01005  | OPG0403-01       |
| зтонгу                            | <0.0000600   | 0.00181 |     | mg/L  | 0.00200    | <del>9</del> 0 | 70 - 130     | 6H01004  | OPG0403-01       |
| ckel                              | <0.00600     | 0.362   |     | mg/L  | 0.400      | 90             | 70 - 130     | 6H01005  | OFG0403-01       |
| lenium                            | <0.00200     | 0.0374  |     | mg/L  | 0.0400     | 94             | 85 - 115     | 6H02052  | OPG0403-01       |
| VCL                               | <0.00532     | 0.385   |     | mg/L  | 0.400      | 96             | 70 - 130     | 6H01005  | OPG0403-01       |
| dium                              | 46.I         | 82.3    |     | mg/L  | 40.0       | 91             | 70 - 130     | 6H01005  | OPG0403-01       |
| allium                            | 0.00290      | 0.0460  |     | mg/L  | 0.0400     | 108            | 60.5 - 133   | 61102051 | OPG0403-01       |
| 10                                | 0.0465       | 0.429   |     | mg/L  | 0.400      | 96             | 70 - 130     | 6H01005  | OPG0403-01       |
| )B and DBCP by EPA Meth           | od 504.1     |         |     | -     |            |                |              |          |                  |
| -Dibromoethane (EDB)              | <0.00360     | 0.254   |     | ug/L  | 0.250      | 102            | 70 - 130     | 6H08021  | OPG0403-01       |
| -Dibromoethane (EDB)              | <0.00360     | 0.270   |     | ug/L  | 0.250      | 108            | 70 - 130     | 6H08021  | OPH0030-01       |
| -Dibromo-3-chloropropane          | <0.00240     | 0.269   |     | ug/L  | 0.250      | 108            | 70 - 130     | 61408021 | OPG0403-01       |
| -Dibromo-3-chloropropane          | <0.00240     | 0.255   |     | ug/L  | 0.250      | 102            | 70 - 130     | 6H08021  | OPH0030-01       |
| rbamates in Water by EPA          | Method 531.1 |         |     |       |            |                |              |          |                  |
| bofuran                           | <0.547       | 28.8    |     | ug/L  | 25.0       | 115            | 65 - 135     | 6H07010  | OPG0403-01       |
| anyl                              | <0,530       | 22.9    |     | ug/L  | 25.0       | 92             | 65 - 135     | 6H07010  | OPG0403-01       |
| ganic Compounds by EPA 5          |              |         |     |       |            |                |              |          |                  |
| phosaic                           | <4.44        | 574     |     | ug/L  | 500        | 115            | 70 - 130     | 6G31013  | OPG0444-01       |
| phosate                           | <4.44        | 530     |     | ug/L  | 500        | 106            | 70 - 130     | 6G31013  | OPG0403-01       |
| ganic Compounds by EPA 5          |              |         |     | _     |            |                |              |          |                  |
| lothall                           | <2.31        | 28.9    | J4  | ug/L  | 50.0       | 58             | 70 - 130     | 6G31026  | OPG0444-39       |
| lothall                           | <2.31        | 4.90    | J4, | ug/L  | 50.0       | 10             | 70 - 130     | 6G31026  | OPG0444-01       |

ANALYTICAL TESTING CORPORATION

4310 East Anderson Road Orlando, FL 32812 \* 800-851-2560 \* Fax 407-856-0886

| Client: TRI-TECH LABORATO<br>P.O. BOX 140966<br>ORLANDO, FL 32814-0<br>Attn: LINDA TRYTEK | -           |                | P    | Vork Order:<br>'roject:<br>'roject Numb |                        | ERMIT RE       | CLAIM    |             | Sampled:<br>Received; |                          |
|-------------------------------------------------------------------------------------------|-------------|----------------|------|-----------------------------------------|------------------------|----------------|----------|-------------|-----------------------|--------------------------|
|                                                                                           |             | PRO            | JECI | Г QUALIT<br>Matrix Sp                   | Y CONTRO<br>ike - Cont | L DATA         |          |             |                       |                          |
| Analyte                                                                                   | Orig. Ve    | <u>и.</u> МЗ \ | /al  | Q                                       | Units Spi              | ke Conc        | % Rec.   | Target Ran  | ge Batch              | Sample<br>Spiked         |
| Organic Compounds by EPA                                                                  | Method 549  | 0.2            |      |                                         |                        |                |          |             |                       |                          |
| Diquat                                                                                    | <0.250      |                |      | ]4                                      | ug/L                   | 20.0           | 44       | 70 - 130    | 6G31039               | OPG0444-01               |
| Diquat                                                                                    | <0.250      | 6.80           | )    | J4                                      | ug/L                   | 20.0           | 34       | 70 - 130    | 6G31039               | OPG0444-15               |
|                                                                                           |             | PRO.           | JECT | QUALITY                                 | CONTRO                 | L DATA         |          |             |                       |                          |
|                                                                                           |             |                |      | Matrix S                                | pike Dup               |                |          |             |                       |                          |
| nalyte                                                                                    | Orig. Val.  | Duplicate      | Q    | Units                                   | Spike Conc             | % Rec.         | RPD      | RPD         | Q.C. Batch            | Sample<br>Duplicated     |
| eneral Chemistry Parameter                                                                | s<br>0.0322 | 0.206          |      |                                         | 0.004                  | 0.6            |          | 17.5        | (TT) + 0 + 7          |                          |
| vanide<br>uoride                                                                          | 0.508       | 2.03           |      | mg/L                                    | 0.204<br>1.15          | 85<br>132      | 0.5      | 42.5        | 6H04043               | OPG0342-01               |
| ethylene Blue Active Substances                                                           | 0.0720      | 1.11           |      | mg/L<br>mg/L                            | 1.13                   | 132            | 0.5<br>0 | 18          | 6G27011               | OPG0407-01               |
| loride                                                                                    | 17.1        | 73.1           |      | mg/L                                    | 57.5                   | 97             | 0.1      | 25<br>8     | 6G28007               | OPG0403-01               |
| trate as N                                                                                | <0.0106     | 1.09           |      | mg/L                                    | 1,15                   | 95             | 0.1      | o<br>8.4    | 6G27011<br>6G27011    | OPG0407-01<br>OPG0407-01 |
| trite as N                                                                                | <0.00862    | 1.05           |      | mg/L                                    | 1.15                   | 91             | 0        | 8.4<br>19.4 | 6G27011               | OPG0407-01               |
| lfate as SO4                                                                              | 40.9        | 100            |      | mg/L                                    | 57.5                   | 103            | 0        | 12.4        | 6G27011               | OPG0407-01               |
| etals Total Recoverable                                                                   |             |                |      |                                         |                        |                | •        |             | 0027011               | 01000000                 |
| uminum                                                                                    | 0.0565      | 0.448          |      | mg/L                                    | 0.396                  | <del>9</del> 9 | 3        | 20          | 6H01005               | OPG0403-01               |
| timony                                                                                    | <0.00160    | 0.0432         |      | mg/L                                    | 0.0400                 | 108            | 1        | 20          | 6H02044               | OPG0403-01               |
| senic                                                                                     | 0.00240     | 0.0352         | J4   | mg/L                                    | 0,0400                 | 82             | 10       | 20          | 6H02046               | OPG0403-01               |
| rium                                                                                      | 0,0142      | 0.408          |      | mg/L                                    | 0.400                  | 98             | 5        | 20          | 6H01005               | OPG0403-01               |
| ryllium                                                                                   | <0.00200    | 0.403          |      | mg/L                                    | 0.400                  | 101            | 4        | 20          | 6H01005               | OPG0403-01               |
| dmium                                                                                     | 0.000280    | 0.00372        |      | mg/L                                    | 0.00400                | 86             | 5        | 20          | 6H02047               | OPG0403-01               |
| romium                                                                                    | 0.00260     | 0.0451         | •    | mg/L                                    | 0.0400                 | 106            | 3        | 20          | 6H02048               | OPG0403-01               |
| pper                                                                                      | <0,00540    | 0.390          |      | mg/L                                    | 0.400                  | 97             | 4        | 20          | 6H01005               | OPG0403-01               |
| 1                                                                                         | 0.0629      | 0.438          |      | mg/L                                    | 0.400                  | 94             | 3        | 20          | 6H01005               | OPG0403-01               |
| ıð                                                                                        | 0.00310     | 0.0353         | J4   | mg/L                                    | 0.0400                 | 81             | 17       | 20          | 6H02050               | OPG0403-01               |
| nganese                                                                                   | 0.0126      | 0.407          |      | mg/L                                    | 0.400                  | 99             | 6        | 20          | 6H01005               | OPG0403-01               |
| гсшту                                                                                     | <0.0000600  | 0.00179        |      | mg/L                                    | 0.00200                | <del>9</del> 0 | 1        | 20          | 6H01004               | OPG0403-01               |
| kei                                                                                       | <0.00600    | 0.376          |      | mg/L                                    | 0.400                  | 94             | 4        | 20          | 6H01005               | OPG0403-01               |
| mium                                                                                      | <0.00200    | 0.0397         |      | mg/L                                    | 0.0400                 | <del>99</del>  | 6        | 20          | 6H02052               | OPG0403-01               |
| er                                                                                        | <0.00532    | 0.401          |      | mg/L                                    | 0.400                  | 100            | 4        | 20          | 6H01005               | OPG0403-01               |
| ium                                                                                       | 46.1        | 86.1           |      | mg/L                                    | 40.0                   | 100            | 5        | 20          | 6H01005               | OPG0403-01               |
| llium                                                                                     | 0.00290     | 0.0415         |      | mg/L                                    | 0.0400                 | 96             | 10       | 17.4        | 6H02051               | OPG0403-01               |
| 3                                                                                         | 0.0465      | 0.438          |      | mg/L                                    | 0.400                  | 98             | 2        | 20          | 6H01005               | OPG0403-01               |

#### **lest** e

ANALYTICAL TESTING CORPORATION

Work Order: Project: Project Number:

OPG0403 NEW PERMIT RECLAIM 0607-692-1

4310 East Anderson Road Orlando, FL 32812 \* 800-851-2560 \* Fax 407-866-0886

Sampled: 07/26/06 Received: 07/27/06

**CERTIFICATION SUMMARY** 

#### TestAmerica - Orlando, FL

Attn: LINDA TRYTEK

Client: TRI-TECH LABORATORIES, INC.

ORLANDO, FL 32814-0966

P.O. BOX 140966

| Method            | Matrix                        | Nelac         | Florida             |                                                          |
|-------------------|-------------------------------|---------------|---------------------|----------------------------------------------------------|
| EPA 150.1         | Water - NonPotable            | X             | X                   |                                                          |
| EPA 160.1         | Water - NonPotable            | x             | x                   |                                                          |
| EPA 1613          | Water - NonPotable            | ~             | <b>*</b>            |                                                          |
| EPA 200.7         | Water - NonPotable            | х             | x                   |                                                          |
| EPA 204.2         | Water - NonPotable            | x             | x                   |                                                          |
| EPA 206.2         | Water - NonPotable            | x             | x                   |                                                          |
| EPA 213.2         | Water - NonPotable            | x             | x                   |                                                          |
| EPA 218.2         | Water - NonPotable            | x             | x                   |                                                          |
| EPA 239.2         | Water - NonPotable            | x             | X                   |                                                          |
| EPA 245.1         | Water - NonPotable            | x             | x                   |                                                          |
| EPA 270.2         | Water - NonPotable            | x             | x                   |                                                          |
| EPA 279.2         | Water - NonPotable            | x             | x                   |                                                          |
| EPA 300.0         | Water - NonPotable            | x             | x                   |                                                          |
| EPA 335.3         | Water - NonPotable            | x             | x                   |                                                          |
| EPA 504,1         | Water - NonPotable            | х             | x                   |                                                          |
| EPA 507           | Water - NonPotable            |               |                     |                                                          |
| EPA 508           | Water - NonPotable            |               |                     |                                                          |
| EPA 515.1         | Water - NonPotable            |               |                     |                                                          |
| EPA 524,2         | Water - NonPotable            |               |                     |                                                          |
| EPA 525.2         | Water - NonPotable            |               |                     |                                                          |
| EPA 531.1         | Water - NonPotable            |               |                     |                                                          |
| EPA 547           | Water - NonPotable            |               |                     |                                                          |
| EPA 548.1         | Water - NonPotable            |               |                     |                                                          |
| EPA 549.2         | Water - NonPotable            |               |                     |                                                          |
| EPA 608           | Water - NonPotable            | X ·           | x                   |                                                          |
| EPA 900.0         | Water - NonPotable            |               |                     |                                                          |
| EPA 903.1         | Water - NonPotable            |               |                     |                                                          |
| Ra-05             | Water - NonPotable            |               |                     |                                                          |
| SM 2150B          | Water - NonPotable            |               |                     |                                                          |
| SM 5540C          | Water - NonPotable            | х             | х                   |                                                          |
| bcontracted Lab   | oratories                     |               |                     |                                                          |
| no River Labs LLC | Florida Cert #E87769          |               |                     |                                                          |
| 2445 South Alston | Avenue - Durham, NORTH CA     | ROLINA 2771   | 3                   |                                                          |
| Method Performe   | d:EPA 1613                    |               |                     |                                                          |
|                   | : OPG0403-01                  |               |                     |                                                          |
| •                 |                               | E83033, North | Carolina Cert #1270 | 9, South Carolina Cert #96037001, Tennessee Cert ##02928 |
| 3456 Hoffner Road | Suite 201 - Orlando, FL 32812 | !             |                     |                                                          |
| Method Performe   |                               |               |                     |                                                          |
|                   | : OPG0403-01                  |               |                     |                                                          |
| Method Performe   |                               |               |                     |                                                          |
|                   | : OPG0403-01                  |               |                     |                                                          |

Samples: OPG0403-01 Method Performed: Ra-05 Samples: OPG0403-01

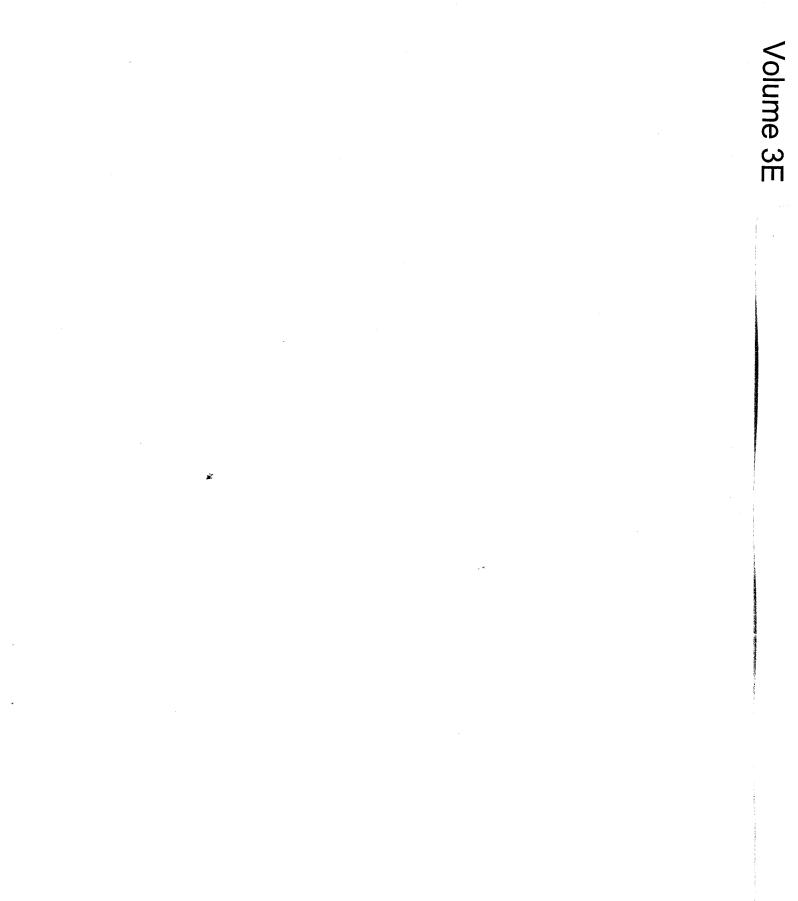
Page 46 of 46

ANALYTICAL TESTING CORPORATION

Client: TRI-TECH LABORATORIES, INC. P.O. BOX 140966 ORLANDO, FL 32814-0966 Atm: LINDA TRYTEK

Work Order: Project: Project Number: OPG0403 NEW PERMIT RECLAIM 0607-692-I

4310 East Anderson Road Orlando, FL 32812 \* 800-851-2560 \* Fax 407-856-0886


Sampled: 07/26/06 Received: 07/27/06

#### **DATA QUALIFIERS AND DEFINITIONS**

- I Analyte detected at a level less than the reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). Concentrations in this range are estimated.
- J4 The sample matrix interfered with the ability to make an accurate determination.
- L Off-scale high, actual value is known to be greater than the value given.
- Q Sample analyzed beyond acceptable holding time.
- U The compound was analyzed for but not detected

#### **ADDITIONAL COMMENTS**

When insufficient sample volume is received for Matrix Spike and Matrix Spike Duplicate, Laboratory Control Spike and Laboratory Control Spike Duplicate data is used for batch QC.



. .

| PWS             | Identific          | cation Nu         | <u>umber: 33549</u>  | 916           |                           | Plant Na              | me: South  | lake                                         |               |              |                     |                     |                      |                                             |
|-----------------|--------------------|-------------------|----------------------|---------------|---------------------------|-----------------------|------------|----------------------------------------------|---------------|--------------|---------------------|---------------------|----------------------|---------------------------------------------|
| III. I          | Daily Da           | ta for ff         | ne Month/Yo          | ar of Jan     | nary, 2006                |                       |            |                                              |               |              |                     |                     | ·                    |                                             |
|                 |                    |                   |                      |               | on/Removal: *             | X Free                | Chlorine   |                                              | Chlorine      | Dioxide      |                     | Dzone               | Combin               | ed Chlorine (Chloramines)                   |
|                 |                    | t Radiati         |                      | ther (Describ | be):                      |                       |            |                                              |               |              |                     |                     |                      |                                             |
|                 |                    |                   |                      |               | stribution Syst           | em X                  | Free Chl   | orine                                        |               | nhined (     | hlorine (           | Chlorami            | inec)                | Chlorine Dioxide                            |
| 1-760           | T Dista            |                   | I                    |               | T Calculations, or        |                       |            |                                              | Virus Inactio | ation if A   | nulicable*          | CIIIOIAIII          |                      |                                             |
|                 | Days               | 1                 |                      |               |                           | CT Calcul             |            | 200                                          | THUS MINUT    | 11001, 11 11 |                     | Dose                | 1                    | · · · · ·                                   |
|                 | Plant              |                   | · ·                  |               | 1                         |                       | Lowest CT  |                                              | T             |              |                     | <u> </u>            | Lowest               |                                             |
|                 | Staffed            |                   |                      |               | Lowest Residual           | Disinfectant          | Provided   |                                              | [ .´          |              | 1 di                | 1                   | Residual .           |                                             |
|                 | 70                 |                   |                      |               | Disinfectant              | Contact Time          | Before or  |                                              |               | •••          |                     |                     | Disinfectant         |                                             |
| [               | Visited            |                   |                      | [             | Concentration             | (T) at C              | at First   | 1                                            | · ·           |              |                     |                     | Concentration        |                                             |
| D               | by                 | TT                | Net Quantity         |               | (C) Before or at          |                       | Customer   | Temp.                                        |               |              | Operating           | UV Dose             | at Remote            | Emergency or Abnormal Operating             |
| the             | Operator<br>(Place | Hours<br>Plant in | of Finished<br>Water | Peak Flow     | First Customer            | Point During          | During     | of                                           | pHof          | CT           | UV Dose,            | Required,           | Point in             | Conditions; Repair or Maintenance Work that |
| Month           | (Thate<br>"X")     |                   | Produced, gal        | Rate, gpd     | During Peak<br>Flow, mg/L | Peak Flow,<br>minutes | Peak Flow, | Water,<br>℃                                  | Water, if     | Required;    | mW-                 | mW-                 | Distribution         | Involves Taking Water System Components     |
| 1               | X                  | 24                | 2,195,000            | Trait, Bbu    | 3.60                      | munuus                | mg-min/L   | <u>–                                    </u> | Applicable    | Ing-muv      | sec/cm <sup>2</sup> | scc/cm <sup>2</sup> | System, mg/L<br>1.50 | Out of Operation                            |
| 2               | x                  | 24                | 1,596,000            |               | 1.80                      |                       |            |                                              |               | <u>├</u>     | <u> </u>            | <u> </u>            | 1.30                 |                                             |
| 3               | x                  | 24                | 1,733,000            |               | 2.00                      | <u> </u>              |            |                                              |               |              | t                   |                     | 1.20                 |                                             |
| 4               | x                  | 24                | 1,674,000            |               | 3.20                      |                       | <u> </u>   |                                              |               |              | ┢━━━━               | <u> </u>            | 1,50                 |                                             |
| 5               | X                  | 24                | 2,201,000            |               | 3.00                      |                       |            |                                              |               |              |                     |                     | 1.20                 |                                             |
| 6               | X                  | 24                | 1,772,000            |               | 2.80                      |                       |            |                                              |               |              |                     |                     | 1.20                 |                                             |
| 7               | X                  | 24                | 1,794,000            |               | 2.70                      |                       |            | <u> </u>                                     |               | <b>}</b>     |                     |                     | 1.40                 |                                             |
| 8               | x                  | 24                | 1,882,000            |               | 2.40                      |                       |            |                                              |               |              |                     | 1                   | 1.10                 |                                             |
| 9               | X                  | 24                | 1,986,000            |               | 2.00                      |                       |            |                                              |               |              |                     |                     | 0.70                 |                                             |
| 10              | x                  | 24                | 1,403,000            |               | 2.50                      |                       |            |                                              |               |              |                     |                     | 1.20                 |                                             |
| 11              | X                  | 24                | 1,618,000            |               | 3.00                      |                       | L          |                                              |               |              |                     |                     | 1.50                 |                                             |
| 12              | X                  | 24                | 2,155,000            | <u> </u>      | 2.90                      | <u> </u>              |            | <u> </u>                                     |               |              |                     |                     | 1.30                 |                                             |
| 13              | X                  | 24                | 1,698,000            |               | 2.50                      |                       |            | ļ                                            | ļ             |              |                     |                     | 1.30                 |                                             |
| 14              | X                  | 24                | 1,591,000            |               | 2.20                      |                       |            | ļ                                            |               |              | [                   |                     | 1.10                 |                                             |
| 15              | X                  | 24                | 2,225,000            |               | 2.00                      |                       |            | <b></b>                                      |               | <u> </u>     | ļ                   | <u> </u>            | 1.20                 |                                             |
| 16              | X                  | 24                | 1,455,000            |               | 3.50                      |                       |            | <b> </b>                                     |               |              | <u> </u>            |                     | 2.00                 |                                             |
| 17              | <u>x</u>           | 24                | 1,651,000            | <u>}</u>      | 2.00                      |                       | <u> </u>   | <b> </b>                                     |               | <u> </u>     |                     |                     | 1.30                 |                                             |
| <u>18</u><br>19 | X<br>X             | 24                | 1,689,000            |               | 2.00                      |                       |            |                                              |               |              |                     |                     | 1.00                 |                                             |
| 20              | x                  | 24                | 1,756,000            | <b> </b>      | 2.30                      |                       |            | <u> </u>                                     |               |              | <u>↓</u>            |                     | 1.30                 |                                             |
| 21              | x                  | 24                | 1,680,000            |               | 2.00                      |                       |            |                                              | <u> </u>      |              | <u> </u>            | ļ .                 | 1.20                 |                                             |
| 22              | x                  | 24                | 1,767,000            |               | 2.20                      |                       |            |                                              |               |              | +                   | <u> </u>            | 1.10                 |                                             |
| 23              | x                  | 24                | 1,837,000            | <u> </u>      | 2.70                      | +                     |            |                                              |               |              |                     |                     | 1.10                 |                                             |
| 24              | X                  | 24                | 1,622,000            | f             | 2.80                      |                       |            |                                              |               |              | <u> </u>            | 1                   | 1.50                 |                                             |
| 25              | X                  | 24                | 1,650,000            |               | 2.00                      |                       |            |                                              | 1             |              |                     |                     | 1.00                 |                                             |
| 26              | X                  | 24                | 2,034,000            |               | 1.50                      |                       |            |                                              |               |              |                     |                     | 0.70                 |                                             |
| 27              | X                  | 24                | 1,651,000            |               | 1.80                      |                       |            | 1                                            |               |              | 1                   |                     | 0.90                 |                                             |
| 28              | X                  | 24                | 1,734,000            |               | 2.40                      |                       |            |                                              |               |              |                     |                     | 1.30                 |                                             |
| 29              | X                  | 24                | 2,271,000            |               | 2.00                      |                       |            |                                              |               |              |                     |                     | 1.10                 |                                             |
| 30              | X                  | 24                | 1,502,000            |               | 1.70                      |                       |            |                                              |               |              |                     |                     | 0.80                 |                                             |
| 31              | X                  | 24                | 1,583,000            |               | 2.00                      |                       |            |                                              |               |              |                     |                     | 1.10                 |                                             |
| Total           |                    |                   | 55,305,000           | 1             |                           |                       |            |                                              |               |              |                     |                     |                      |                                             |
| Averag          |                    | <u></u>           | 1,784,032            | 4             |                           |                       |            |                                              |               |              |                     |                     |                      |                                             |
| Maxim           | um                 |                   | 2,271,000            | 1             |                           |                       |            |                                              |               |              |                     |                     |                      |                                             |

\* Refer to the instructions for this report to determine which plants must provide this information.

**F** 

Page 1 of 48

| 1 40     | Identiti            | anon nu         | muder, 55545 | 10           |                  | Fiant Iva      | ne: Soum                          | ake      |               |             |                     |                     |           |       |                                             |
|----------|---------------------|-----------------|--------------|--------------|------------------|----------------|-----------------------------------|----------|---------------|-------------|---------------------|---------------------|-----------|-------|---------------------------------------------|
| 111. 1   | Daily Da            | ta for th       | e Month/Ye   | ar of: Feb   | uary, 2006.      |                |                                   | <u> </u> |               | <del></del> |                     |                     |           |       |                                             |
|          |                     |                 |              |              | n/Removal: *     | X Free         | Chlorine                          |          | Chlorine      | Diovide     |                     | )zone               |           | nhin  | ed Chlorine (Chloramines)                   |
|          |                     | t Radiatio      |              | her (Describ |                  |                | OHIO HO                           |          | I CHIOLING    | PINYIGO     |                     | 12016               |           | иощ   | ed Chior hie (Chiorannines)                 |
| Туре     | of Disin            | fectant R       | esidual Mair |              | stribution Syst  |                | Free Chle                         | orine    | Co            | nbined C    | hlorine (           | Chlorami            | nes)      | П     | Chlorine Dioxide                            |
|          | · .                 |                 |              | C            | Calculations, or | UV Dose, to De | monstrate Fe                      | xur-Log  | Virus Inactiv | ation, if A | policable*          |                     | 1         |       |                                             |
| · ·      | Days                |                 |              |              |                  | CT Calcul      |                                   |          |               |             |                     | Dose                | 1         |       |                                             |
|          | Plant               |                 |              |              |                  |                | Lowest CT                         | 1        |               |             |                     |                     | Lowe      | st    |                                             |
|          | Staffed             |                 |              |              | Lowest Residual  | Disinfectant   | Provided                          |          |               |             |                     |                     | Residu    |       |                                             |
| <u>.</u> | or                  |                 |              |              | Disinfectant     | Contact Time   | Before or                         |          |               |             |                     |                     | Disinfec  | tant  |                                             |
| ۱. · ·   | Visited             | · · · ·         |              |              | Concentration    | (T) at C       | at First                          |          |               |             | Lowest              | Minimum             | Concentra | ation |                                             |
|          | by                  |                 | Net Quantity | :            | (C) Before or at | Measurement    | Customer                          | Temp.    |               | Minimum     |                     |                     | at Rem    |       | Emergency or Abnormal Operating             |
|          | Operator            | Hours           | of Finished  |              | First Customer   | Point During   | During                            | of       | pHof          | CT ·        | UV Dose,            |                     | Point     | in 🛛  | Conditions; Repair or Maintenance Work that |
| the      | (Place<br>"X")      | Plant in        | Water        | Peak Flow    | During Peak      | Peak Flow,     | Peak Flow,                        | Water,   | Water, if     | Required,   | mW-                 | mW-                 | Distribu  | tion  | Involves Taking Water System Components     |
| Month    | $\frac{\lambda}{X}$ | Operation<br>24 |              | Rate, gpd    | Flow, mg/L       | minutes .      | mg-min/L                          | °C       | Applicable    | mg-min/L    | sec/cm <sup>2</sup> | sec/cm <sup>2</sup> | System, 1 |       | Out of Operation                            |
| 2        | X                   | 24              | 1,696,000    |              | 1.50             |                | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |          | {             | <u>}</u>    | <u> </u>            |                     | 0.70      |       |                                             |
| 3        | <del>x</del>        | 24              | 1,608,000    |              | 2.00             | <u> </u>       |                                   |          |               | <u> </u>    | <b> </b> _          |                     | 1.20      |       |                                             |
| 4        | x                   | 24              | 1,546,000    |              | 2,10             |                |                                   |          |               | <u> </u>    | <u> </u>            | <u> </u>            | 1.20      |       |                                             |
| 5        | X                   | 24              | 1,669,000    |              | 2.10             |                | <u> </u>                          |          | <u> </u>      | }           | ┠────               | ļ                   | 1.10      |       |                                             |
| 6        | X                   | 24              | 1,617,000    |              | 1.70             |                | <u> </u>                          |          |               |             |                     | <b>├</b> ───        | 1.30      | -     | ······································      |
| 7        | X                   | 24              | 1,605,000    |              | 1.50             |                |                                   |          | [             | <u> </u>    |                     |                     | 0.60      |       |                                             |
| 8        | x                   | 24              | 1,671,000    |              | 1.50             | <u> </u>       | <u> </u>                          |          | <u> </u>      |             |                     |                     | 0.60      |       |                                             |
| 9        | x                   | 24              | 2,101,000    | ·            | 1.70             |                | ┝                                 |          | <u> </u>      |             |                     |                     | 0.60      |       |                                             |
| 10       | x                   | 24              | 1,690,000    |              | 1.50             |                |                                   |          |               |             | <u> </u>            |                     | 1.00      |       |                                             |
| 11       | x                   | 24              | 1,635,000    |              | 1.80             |                |                                   |          |               | ├           | <u>├</u>            |                     | 0.70      |       |                                             |
| 12       | X                   | 24              | 1,884,000    |              | 1.60             |                |                                   | <u> </u> | <u> </u>      |             |                     |                     | 1.00      |       |                                             |
| 13       | x                   | 24              | 1,821,000    |              | 1,20             | <u> </u>       |                                   |          |               |             |                     |                     | 0.70      |       |                                             |
| 14       | X                   | 24              | 1,697,000    |              | 1.10             |                | ·                                 |          |               |             |                     |                     | 0.60      |       |                                             |
| 15       | X                   | 24              | 1,684,000    |              | 1.30             |                |                                   |          |               |             |                     | ¦                   | 0.80      |       |                                             |
| 16       | X                   | 24              | 2,067,000    |              | 1.20             |                |                                   |          |               |             |                     |                     | 0.60      |       |                                             |
| 17       | X                   | 24              | 1,821,000    |              | 1.20             |                |                                   |          |               |             |                     |                     | 0.90      |       |                                             |
| 18       | X                   | 24              | 1,862,000    |              | 1.40             |                |                                   |          | t             |             |                     |                     | 1.10      |       |                                             |
| 19       | X                   | 24              | 1,909,000    |              | 1.10             |                |                                   |          |               |             |                     | [                   | 0.80      |       |                                             |
| 20       | <u> </u>            | 24              | 1,979,000    |              | 1.00             |                |                                   |          |               |             | h                   |                     | 0.70      |       |                                             |
| 21       | X                   | 24              | 1,765,000    |              | 1.20             |                |                                   |          |               |             |                     |                     | 0.60      |       |                                             |
| 22       | X                   | 24              | 1,809,000    |              | 1.20             |                |                                   |          |               |             |                     |                     | 0.60      |       |                                             |
| 23       | X                   | 24              | 2,256,000    |              | 1.20             |                |                                   |          |               |             |                     |                     | 0.70      |       |                                             |
| 24       | X                   | 24              | 1,961,000    |              | 1.20             |                |                                   |          |               |             |                     |                     | 0,80      |       |                                             |
| 25       | X                   | 24              | 1,767,000    |              | 1.30             |                |                                   |          |               |             |                     |                     | 0.80      |       |                                             |
| 26       | X                   | 24              | 1,918,000    |              | 1.20             |                |                                   |          |               |             |                     |                     | 0.60      |       |                                             |
| 27       | X                   | 24              | 1,837,000    | ······       | 1.10             |                |                                   |          |               |             |                     |                     | 0.70      |       |                                             |
| 28       | X                   | 24              | 1,674,000    |              | 1.00             |                |                                   |          |               |             |                     |                     | 0.60      |       |                                             |
| 29       |                     | 24              |              |              | <u> </u>         | <u> </u>       |                                   |          |               |             |                     |                     |           |       |                                             |
| 30       |                     | 24              |              | ┝────        |                  |                |                                   |          | L             |             |                     |                     |           |       |                                             |
| 31       |                     | 24              | 60 51 4 055  | L            | L                | L              | L                                 | L        | L             | L           |                     |                     | L         |       |                                             |
| Total    |                     |                 | 50,714,000   |              |                  |                |                                   |          |               |             |                     |                     |           |       |                                             |
| Averag   |                     | <u> </u>        | 1,811,214    | {            |                  |                |                                   |          |               |             |                     |                     | •         |       |                                             |
| Maxim    | m                   |                 | 2,256,000    | 1            |                  |                |                                   |          |               |             |                     |                     |           |       |                                             |

\* Refer to the instructions for this report to determine which plants must provide this information.

.

÷.,

PWS Identification Number: 3354916

Plant Name: Southlake

|                 | ans of Achieving Four-Log Virus Inactivation/Removal: * X Free Chlorine Chlorine Dioxide Ozone Combined Chlorine (Chloramines) |                 |                        |               |                    |               |           |          |            |            |          |                     |               |                                             |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------|---------------|--------------------|---------------|-----------|----------|------------|------------|----------|---------------------|---------------|---------------------------------------------|
| Mean            | s of Ach                                                                                                                       | ieving Fo       | our-Log Viru           | s Inactivatio | on/Removal: *      | <b>Free</b>   | Chlorine  |          | Chlorine   | Dioxide    |          | Dzone               | Combin        | ed Chlorine (Chloramines)                   |
|                 |                                                                                                                                | t Radiatio      |                        | her (Describ  |                    |               |           |          | 1          | DIGAIGO    |          |                     |               |                                             |
| Type            | of Disin                                                                                                                       | fectant R       |                        |               | istribution Syst   | em: 🕅         | Free Chl  | orina    |            | -1:        | u-1 ()   | Chlorami            |               | Chlorine Dioxide                            |
| 1300            |                                                                                                                                | Loorunte 14     | Column Ivini           | C             | r Calculations, or | UV Dose to De |           |          |            | moinea C   |          | Chiorami            | ncs)          |                                             |
|                 | Days                                                                                                                           |                 |                        |               |                    | CT Calcul     | ations    | UIL-LOB  |            | RUOD, U AI | UV       | Deer                | 1             |                                             |
|                 | Plant                                                                                                                          |                 |                        |               |                    |               | Lowest CT | <u>.</u> |            | 1          | UV       | Dosc                | Lowest        |                                             |
|                 | Staffed                                                                                                                        |                 |                        |               | Lowest Residual    | Disinfectant  | Provided  |          |            |            |          |                     | Residual      |                                             |
|                 | ar                                                                                                                             |                 |                        |               | Disinfectant       | Contact Time  | Before or |          |            |            |          |                     | Disinfectant  |                                             |
|                 | Visited                                                                                                                        |                 |                        |               | Concentration      | (T) at C      | at First  |          |            |            | Lowest   | Minimum             | Concentration |                                             |
|                 | by                                                                                                                             |                 | Net Quantity           |               | (C) Before or at   | Measurement   | Customer  | Temp.    |            | Minimum    |          | UV Dose             | at Remote     | Emergency or Abnormal Operating             |
|                 | Operator                                                                                                                       | Hours           | of Finished            |               | First Customer     | Point During  | During    | of       | pH of      | ंटा        |          | Required,           | Point in      | Conditions; Repair or Maintenance Work that |
| the<br>Month    | (Place<br>"X")                                                                                                                 | Plant in        | Water<br>Produced, gal | Peak Flow     | During Peak        | Peak Flow,    | Peak Flow | Water,   | Water, if  | Required,  | mW-      | mW-                 | Distribution  | Involves Taking Water System Components     |
| 1               | x                                                                                                                              | 24              | 1,706,000              | Rate, gpd     | Flow,:mg/L<br>1.20 | minutes       | mg-min/L  | ଂ୯       | Applicable | mg-min/L   | sec/cm2  | sec/cm <sup>2</sup> | System, mg/L  | Out of Operation                            |
| 2               | X                                                                                                                              | 24              | 2,184,000              |               | 1.30               |               |           |          |            |            |          |                     | 0.70          |                                             |
| 3               | x                                                                                                                              | 24              | 1,876,000              |               | 1.00               |               |           | [        |            |            | ļ        | <u> </u>            | 0.90          | Replaced impeller on HSP # 3.               |
| 4               | X                                                                                                                              | 24              | 1,751,000              |               | 1.10               |               |           |          |            | <u> </u>   |          |                     | 0.70          | Replaced impeace on risr # 5.               |
| 5               | X                                                                                                                              | 24              | 2,387,000              |               | 1.00               |               |           |          | <u> </u>   | <u> </u>   |          |                     | 0.70          |                                             |
| 6               | X                                                                                                                              | 24              | 1,634,000              |               | 1.10               |               |           |          |            |            |          |                     | 0.80          | Replaced impeller on HSP # 2.               |
| 7               | X                                                                                                                              | 24              | 1,753,000              |               | 1.10               |               |           |          |            | <u> </u>   |          |                     | 0.50          |                                             |
| 8               | X                                                                                                                              | 24              | 1,827,000              |               | 1.10               | -             |           |          |            | <u> </u>   |          | <u> </u>            | 0.80          |                                             |
| 9               | X                                                                                                                              | 24              | 2,314,000              |               | 1.10               |               |           |          |            |            |          |                     | 0.80          |                                             |
| 10              | X                                                                                                                              | 24              | 1,837,000              |               | 1.00               |               |           |          |            | 1          |          |                     | 0.80          |                                             |
|                 | <u> </u>                                                                                                                       | 24              | 2,003,000              |               | 1.10               |               |           |          |            |            | 1        |                     | 0.80          |                                             |
| 12              | x                                                                                                                              | 24              | 2,881,000              |               | 1.30               |               |           |          |            |            |          |                     | 0,70          |                                             |
| 13              | X                                                                                                                              | 24              | 1,221,000              |               | 1.10               |               |           | L        |            |            |          |                     | 0.80          |                                             |
| <u>14</u><br>15 | <u>x</u><br>x                                                                                                                  | 24              | 1,628,000              |               | 1.00               |               |           | L        |            |            |          |                     | 0.70          |                                             |
| 15              | <u> </u>                                                                                                                       | <u>24</u><br>24 | 1,855,000 2,289,000    |               | 1.10               |               |           |          |            | <u> </u>   | ļ        |                     | 0.80          |                                             |
| 17              | x                                                                                                                              | 24              | 2,137,000              |               | 1.00               |               |           | Ļ        |            |            |          | <u> </u>            | 0.80          |                                             |
| 18              | X                                                                                                                              | 24              | 1,650,000              |               | 1.00               |               |           |          |            | ļ          | <u> </u> | <u></u>             | 0.80          |                                             |
| 19              | X                                                                                                                              | 24              | 2,336,000              |               | I.10               |               |           | <u> </u> | <u> </u>   | <u> </u>   | <u> </u> | <u> </u>            | 0.80          |                                             |
| 20              | X                                                                                                                              | 24              | 2,069,000              |               | 1.10               |               |           | <u></u>  | <u> </u>   | <u> </u>   | +        |                     | 0.80          |                                             |
| 21              | x                                                                                                                              | 24              | 1,683,000              |               | 1.00               |               |           |          |            | <u> </u>   | <u> </u> |                     | 0.80          |                                             |
| 22              | <u>x</u>                                                                                                                       | 24              | 1.889.000              |               | 1.10               |               |           | <u> </u> |            | +          |          |                     | 0.80          |                                             |
| 23              | x                                                                                                                              | 24              | 2,448,000              |               | 1.00               |               |           |          |            | <u> </u>   | +        |                     | 0.70          |                                             |
| 24              | X                                                                                                                              | 24              | 2,032,000              |               | 1.00               |               |           |          | <u> </u>   |            |          |                     | 0.70          |                                             |
| 25              | X                                                                                                                              | 24              | 1,686,000              |               | 1.00               |               |           |          |            | <u> </u>   | <u> </u> |                     | 0.50          |                                             |
| 26              | X                                                                                                                              | 24              | 2,806,000              |               | 1.10               |               |           |          |            |            | t —      | 1                   | 0.70          |                                             |
| 27              | X                                                                                                                              | 24              | 1,655,000              |               | 1.00               |               |           |          |            |            | +        |                     | 0.60          |                                             |
| 28              | X                                                                                                                              | 24              | 1,974,000              |               | 1.10               |               |           |          |            | 1          | ·/       | *                   | 0.80          |                                             |
| 29              | X                                                                                                                              | 24              | 2,027,000              |               | 1.20               |               |           |          |            | 1          |          | 1                   | 0.80          |                                             |
| 30              | X                                                                                                                              | 24              | 2,375,000              |               | 1.20               |               |           |          |            |            |          |                     | 0.80          |                                             |
| 31              | X                                                                                                                              | 24              | 2,515,000              |               | 1.20               | L             |           |          |            |            |          |                     | 0.80          |                                             |
| Total           |                                                                                                                                | •               | 62,428,000             |               |                    |               |           |          |            |            |          |                     |               |                                             |
| Average         |                                                                                                                                |                 | 2,013,806              |               |                    |               |           |          |            |            |          |                     |               |                                             |
| Maxim           | 1000                                                                                                                           |                 | 2.881.000              |               |                    |               |           |          |            |            |          |                     |               |                                             |

\* Refer to the instructions for this report to determine which plants must provide this information.

PWS Identification Number: 3354916

Plant Name: Southlake

|         | Daily Data for the Month/Year of: April, 2006. |            |               |              |                                    |                             |                        |              |                 |              |                                       |                            |               |                                             |
|---------|------------------------------------------------|------------|---------------|--------------|------------------------------------|-----------------------------|------------------------|--------------|-----------------|--------------|---------------------------------------|----------------------------|---------------|---------------------------------------------|
|         |                                                |            |               |              |                                    |                             |                        |              |                 |              |                                       |                            |               |                                             |
|         |                                                |            |               |              | n/Removal: *                       | 🔀 Free                      | Chlorine               |              | <b>Chlorine</b> | Dioxide      |                                       | )zone                      | Combin        | ed Chlorine (Chloramines)                   |
|         |                                                | t Radiatio |               | her (Describ |                                    |                             |                        |              |                 |              |                                       |                            |               |                                             |
| Туре    | of Disin                                       | fectant R  | esidual Main  |              | stribution System                  |                             | Free Chl               |              |                 | mbined C     | hlorine (                             | Chlorami                   | nes)          | Chlorine Dioxide                            |
|         |                                                |            |               | Ċ            | <b>Calculations</b> , or 1         | UV Dose, to De              | monstrate F            | our-Log      | Virus Inactiv   | vation, if A | pplicable*                            |                            |               |                                             |
|         | Days                                           |            |               |              |                                    | CT Calcu                    | ations                 |              |                 |              |                                       | Dose                       |               |                                             |
| 1 · · · | Plant                                          |            |               |              |                                    |                             | Lowest CT              |              |                 |              |                                       |                            | Lowest        |                                             |
|         | Staffed                                        |            |               |              | Lowest Residual                    | Disinfectant                | Provided               |              |                 |              |                                       |                            | Residual      |                                             |
|         | Or<br>Visited                                  |            |               |              | Disinfectant                       | Contact Time                | Before or              |              |                 |              |                                       |                            | Disinfectant  |                                             |
|         | by                                             |            | Net Quantity  |              | Concentration                      | CT) at C                    | at First               |              |                 |              |                                       | Minimum                    | Concentration |                                             |
| Day of  | Operator                                       | Hours      | of Finished   |              | (C) Before or at<br>First Customer | Measurement<br>Point During | Customer               | Temp.        |                 | Minimum      | Operating                             | UV Dose                    | at Remote     | Emergency or Abnormal Operating             |
| the     | (Place                                         | Plant in   | Water         | Peak Flow    | During Peak                        | Point During<br>Peak Flow,  | During Deals Floor     | of           | pH of           | СТ           | UV Dose,                              |                            | Point in      | Conditions; Repair or Maintenance Work that |
| Month   |                                                |            | Produced, gal | Rate, gpd    | Flow, mg/L                         | minutes                     | Peak Flow,<br>mg-min/L | Water,<br>°C | Applicable      | Required,    | mW-                                   | mW-<br>sec/cm <sup>2</sup> | Distribution  | Involves Taking Water System Components     |
| 1       | X X                                            | 24         | 2,128,000     | Epu          | 1.10                               | <u> </u>                    | mg-marr                | [·           | Applicable      | mg-muvr      | sec/cm                                | SCC/CIT                    | System, mg/L  | Out of Operation                            |
| 2       | x                                              | 24         | 1,630,000     |              | 1.10                               |                             |                        | <u> </u>     | <u> </u>        |              |                                       |                            | 0.60          |                                             |
| 3       | X                                              | 24         | 2,819,000     |              | 1.10                               |                             |                        |              |                 |              |                                       |                            | 0.80          |                                             |
| 4       | x                                              | 24         | 1,956,000     |              | 1.00                               |                             |                        | <u> </u>     |                 |              | ┝────                                 |                            | 0.60          |                                             |
| 5       | X                                              | 24         | 1,929,000     |              | 1,20                               |                             |                        | <u> </u>     | }               | <u>}</u>     | <u> </u>                              |                            | 0.80          |                                             |
| 6       | X                                              | 24         | 2,579,000     |              | 1.20                               |                             |                        |              | l               |              |                                       |                            | 0.80          |                                             |
| 7       | X                                              | 24         | 2,302,000     |              | 1,20                               |                             |                        |              |                 | <u> </u>     | <u> </u>                              |                            | 0.80          |                                             |
| 8       | X                                              | 24         | 2,025,000     |              | 1.10                               |                             |                        |              |                 |              |                                       | ···                        | 0.60          |                                             |
| 9       | X                                              | 24         | 2,242,000     |              | 1.00                               |                             |                        |              |                 |              | · · · · · · · · · · · · · · · · · · · |                            | 0.60          |                                             |
| 10      | X                                              | 24         | 2,116,000     |              | 1.10                               |                             | 1                      |              | <u> </u>        | <u> </u>     |                                       |                            | 0.70          |                                             |
| 11      | X                                              | 24         | 1,920,000     |              | 1.00                               |                             |                        |              | <u> </u>        | <u> </u>     |                                       |                            | 0.50          |                                             |
| 12      | X                                              | 24         | 1,999,000     |              | 1.10                               |                             |                        | 1            |                 |              |                                       |                            | 0.60          |                                             |
| 13      | X                                              | 24         | 2,439,000     |              | 1,20                               |                             |                        |              |                 |              |                                       |                            | 0.80          |                                             |
| 14      | X                                              | 24         | 2,181,000     |              | 1.00                               |                             |                        |              |                 |              |                                       |                            | 0.50          |                                             |
| 15      | X                                              | 24         | 2,109,000     |              | 1.10                               |                             |                        |              |                 |              | [                                     |                            | 0,70          |                                             |
| _16     | X                                              | 24         | 2,340,000     |              | 1,20                               |                             |                        |              |                 |              |                                       |                            | 0.60          |                                             |
| 17      | X                                              | 24         | 2,257,000     |              | 1.00                               |                             |                        |              |                 |              |                                       |                            | 0.70          |                                             |
| 18      | X                                              | 24         | 2,001,000     |              | 1.20                               |                             |                        |              |                 |              |                                       |                            | 0.80          |                                             |
| 19      | X                                              | 24         | 1,996,000     |              | 1.10                               |                             |                        |              |                 |              | 1                                     |                            | 0.70          |                                             |
| 20      | X                                              | 24         | 2,553,000     |              | 1.30                               |                             |                        | 1            |                 |              |                                       |                            | 0.80          |                                             |
| 21      | X                                              | 24         | 2,298,000     |              | 1.00                               |                             |                        |              |                 |              |                                       |                            | 0.80          |                                             |
| 22      | X                                              | 24         | 1,849,000     |              | 1.10                               |                             |                        |              |                 |              |                                       |                            | 0.80          |                                             |
| 23      | X                                              | 24         | 1,942,000     |              | 1.00                               |                             |                        |              |                 |              |                                       |                            | 0.60          |                                             |
| 24      | x                                              | 24         | 2,289,000     | ······       | 1.20                               |                             |                        |              |                 |              |                                       |                            | 0.80          |                                             |
| 25      | X                                              | 24         | 1,832,000     | ļ            | 1.10                               |                             |                        |              | L               |              |                                       |                            | 0.70          |                                             |
| 26      | X                                              | 24         | 2,009,000     | L            | 1.00                               |                             | L                      |              |                 |              |                                       |                            | 0.70          |                                             |
| 27      | X                                              | 24         | 2,339,000     |              | 1.10                               |                             |                        |              |                 |              |                                       |                            | 0.80          |                                             |
| 28      | X                                              | 24         | 1,979,000     |              | 1.00                               | ļ                           | h                      | [            |                 |              |                                       |                            | 0.70          |                                             |
| 29      |                                                | 24         | 1,929,000     | ļ            | 1.00                               | I                           |                        |              |                 | L            |                                       |                            | 0.60          |                                             |
| 30      | x                                              | 24         | 2,398,000     |              | 1.00                               |                             |                        | 1            |                 |              |                                       |                            | 0.60          |                                             |
| 31      | L                                              | 24         |               |              | I                                  |                             | L                      | L            | L               | E            |                                       |                            |               |                                             |
| Total   |                                                |            | 64,385,000    | ł            |                                    |                             |                        |              |                 |              |                                       |                            |               |                                             |
| Avera   |                                                |            | 2,146,166     | l            |                                    |                             |                        |              |                 |              |                                       |                            |               |                                             |
| Maxin   | ana                                            |            | 2.819.000     | 1            |                                    |                             |                        |              |                 |              |                                       |                            |               |                                             |

\* Refer to the instructions for this report to determine which plants must provide this information.

٦

### MONTHLY OPERATION REPORT FOR PWSs TREATING RAW GROUND WATER OR PURCHASED FINISHED WATER PWS Identification Number: 3354916 Plant Name: Southlake

|                 |                    |                   | e Month/Ye             |                                        |                     |              |             |          |                |             |                     |                     | •             |                                             |
|-----------------|--------------------|-------------------|------------------------|----------------------------------------|---------------------|--------------|-------------|----------|----------------|-------------|---------------------|---------------------|---------------|---------------------------------------------|
| Mean            | s of Ach           | ieving Fo         |                        |                                        | n/Removal: *        | Free K       | Chlorine    |          | Chlorine       | Dioxide     |                     | Dzone               | Comhin        | ed Chlorine (Chloramines)                   |
| ] 🗌 ບ           | ltraviole          | t Radiatio        | on ∏Ot                 | her (Describ                           | be):                |              |             |          |                |             |                     |                     |               |                                             |
| Type            | of Disin           | fectant R         | esidual Main           | tained in Di                           | istribution Syst    | em X         | Free Chle   | orine    |                | nhined (    | hlorine (           | Chlommi             |               | Chlorine Dioxide                            |
| -25-            |                    |                   |                        |                                        | r Calculations, or  |              | monstrate F | DIT J OF | Viris Inactin  | ation if A  | mionhie*            | CILIOLAII           |               |                                             |
|                 | Days               |                   |                        | <u> </u>                               |                     | CT Calcul    | ations      | 041-2005 | 1 1103 1100011 | autua, II A |                     | Dose                |               |                                             |
|                 | Plant              |                   |                        |                                        |                     |              | Lowest CT   |          |                | γ <u>`</u>  |                     | 1030                | Lowest        |                                             |
|                 | Staffed            |                   |                        |                                        | Lowest Residual     | Disinfectant | Provided    |          |                |             |                     | <b>I</b> .          | Residual      |                                             |
| {               | or                 |                   | 1                      |                                        | Disinfectant        | Contact Time | Before or   | ł        |                |             |                     |                     | Disinfectant  |                                             |
|                 | Visited            |                   |                        | 1                                      | Concentration       | (T) at C     | at First    |          |                |             | Lowest              | Minimum             | Concentration |                                             |
| Deriof          | by                 | f Taura           | Net Quantity           | ,                                      | (C) Before or at    | Measurement  | Customer    | Temp.    |                | Minimum     |                     | UV Dose             | at Remote     | Emergency or Abnormal Operating             |
| the             | Operator<br>(Place | Hours<br>Plant in | of Finished<br>Water   | Dette Diese                            | First Customer      | Point During | During      | of       | pH of          | СТ          | UV Dose,            | Required,           | Point in      | Conditions; Repair or Maintenance Work that |
| Month           | "X")               |                   | Produced, gal          | Peak Flow                              | During Peak         | Peak Flow,   |             |          | Water, if      | Required,   | ∵mW-                | mW-                 | Distribution  | Involves Taking Water System Components     |
| 1               | X                  | 24                | 2,019,000              | Rate, gpd                              | Flow, mg/L          | minutes      | mg-min/L    | •°C      | Applicable     | mg-min/L    | sec/cm <sup>2</sup> | sec/cm <sup>2</sup> | System, mg/L  | Out of Operation                            |
| 2               | X                  | 24                | 1,945,000              |                                        | 1.00                |              |             |          |                |             |                     | ļ                   | 0.70          |                                             |
| 3               | x                  | 24                | 1,899,000              | <u></u>                                | 1.00                |              |             |          | ····           |             |                     | ļ                   | 0.60          |                                             |
| 4               | x                  | 24                | 2,510,000              |                                        | 1.00                |              |             |          |                |             |                     |                     | 0.70          |                                             |
| 5               | X                  | 24                | 2,165,000              | ····                                   | 1.00                |              |             |          |                |             |                     |                     | 0.80          |                                             |
| 6               | X                  | 24                | 1,963,000              | ·                                      | 1.00                |              |             |          |                | <u>├</u>    |                     |                     | 0.60          |                                             |
| 7               | X                  | 24                | 2,584,000              | ······································ | 1.00                |              |             |          |                |             |                     |                     | 0.80          |                                             |
| 8               | X                  | 24                | 2,168,000              |                                        | 1.00                |              |             |          |                |             |                     |                     | 0.50          |                                             |
| 9               | X                  | 24                | 1,979,000              |                                        | 1.00                |              |             |          |                |             |                     |                     | 0.70          |                                             |
| 10              | X                  | 24                | 1,980,000              |                                        | 1.00                |              |             |          |                |             |                     |                     | 0.70          |                                             |
| 11              | X                  | 24                | 2,410,000              |                                        | 1.00                |              |             |          |                |             |                     |                     | 0.70          |                                             |
| 12              | X                  | 24                | 1,870,000              |                                        | 1.00                |              |             |          |                |             |                     |                     | 0.70          |                                             |
| 13              | X                  | 24                | 1,683,000              |                                        | 1.00                |              |             |          |                |             |                     | [                   | 0.60          |                                             |
| 14              | <u>x</u>           | 24                | 2,482,000              |                                        | 1.10                |              |             |          |                |             |                     |                     | 0.80          |                                             |
| 15              | <u>x</u>           | 24                | 2,191,000              |                                        | 1.00                |              |             |          |                |             |                     |                     | 0.60          |                                             |
| 16              | X                  | 24                | 1,820,000              | ·····                                  | 1.20                |              |             |          |                |             |                     |                     | 0.70          |                                             |
| <u>17</u><br>18 | X                  | 24                | 1,704,000              |                                        | 1.00                |              |             |          |                |             |                     |                     | 0.70          |                                             |
| 18              | X<br>X             | 24<br>24          | 2,146,000              |                                        | 1.30                |              |             |          |                |             |                     |                     | 0.90          |                                             |
| 20              | X                  | 24                | 2,191,000<br>1,891,000 |                                        | 1.00                |              |             |          |                |             |                     |                     | 0.70          |                                             |
| 21              | <del>x</del>       | 24                | 3,104,000              | ······································ | 1.30                |              |             |          |                |             |                     |                     | 0.80          |                                             |
| 22              | $\hat{\mathbf{x}}$ | 24                | 1,572,000              |                                        | <u>1.10</u><br>1.20 |              |             |          |                |             |                     |                     | 0.60          |                                             |
| 23              | X                  | 24                | 2,048,000              |                                        | 1.10                |              |             |          |                | <u> </u>    | ļ                   |                     | 0.90          |                                             |
| 24              | $-\frac{\pi}{x}$   | 24                | 1,865,000              |                                        | 1.10                |              |             |          |                |             |                     |                     | 0.80          |                                             |
| 25              | $\frac{x}{x}$      | 24                | 2,400,000              |                                        | 1.00                |              |             |          |                |             |                     |                     | 0.70          |                                             |
| 26              | X                  | 24                | 2,181,000              |                                        | 1.10                |              |             |          |                |             |                     |                     | 0.80          |                                             |
| 27              | X                  | 24                | 1,782,000              |                                        | 1.00                |              |             |          |                |             |                     |                     | 0.70          |                                             |
| 28              | X                  | 24                | 2,498,000              |                                        | 1.00                |              |             |          |                |             |                     |                     | 0.60          |                                             |
| 29              | x                  | 24                | 1,796,000              |                                        | 1.10                |              |             |          |                |             |                     |                     | 0.80          |                                             |
| 30              | X                  | 24                | 1,980,000              |                                        | 1.00                |              |             |          |                |             |                     |                     | 0.60          | ·                                           |
| 31              | x                  | 24                | 1,942,000              |                                        | 1.10                |              |             | ·····    |                |             |                     |                     | 0.60          |                                             |
| Total           |                    |                   | 64,768,000             |                                        |                     |              |             |          |                |             | h                   |                     |               |                                             |
| Averag          |                    |                   | 2,089,290              |                                        |                     |              |             |          |                |             |                     |                     |               |                                             |
| Maxim           | វោ                 |                   | 3,104,000              |                                        |                     |              |             |          |                |             |                     |                     |               |                                             |

\* Refer to the instructions for this report to determine which plants must provide this information.

PWS Identification Number: 3354916

Plant Name: Southlake

| 111.        | Daily Da                        | ta for th  | e Month/Ye                  | ar of: June   | . 2006                        |                |             |           |               |             |                     |                     |               |                                             |
|-------------|---------------------------------|------------|-----------------------------|---------------|-------------------------------|----------------|-------------|-----------|---------------|-------------|---------------------|---------------------|---------------|---------------------------------------------|
| Mean        | s of Ach                        | ieving Fo  | pur-Log Vin                 | s Inactivatio | n/Removal: *                  | K Free         | Chlorine    | <b>F</b>  | Chlorine      | Diovida     |                     | Dzone               |               |                                             |
| <u> </u> ]υ | ltraviole                       | t Radiatio | on 🗌 Ot                     | ther (Describ | e):                           |                | CHIOTHE     | Ľ.,       |               | DIOXIQE     |                     | Zone                |               | ed Chlorine (Chloramines)                   |
| Туре        | of Disin                        | fectant R  | esidual Mair                | stained in Di | stribution Syst               | em: 🛛          | Free Chie   | orine     | Cor           | nbined C    | blorine (           | Chlorami            | nes)          | Chlorine Dioxide                            |
|             |                                 |            |                             | C             | Calculations, or              | UV Dose, to De | monstrate F | our-Log   | Virus Inactiv | ation. if A | nlicable*           |                     |               |                                             |
|             | Days                            |            |                             |               |                               | CT Calcul      |             |           |               |             |                     | Dose                |               |                                             |
| · ·         | Plant                           |            |                             |               |                               |                | Lowest CT   |           |               |             |                     |                     | Lowest        | · ·                                         |
| 1           | Staffed                         | . · · · ·  |                             |               | Lowest Residual               | Disinfectant   | Provided    |           |               |             |                     |                     | Residual      | · · ·                                       |
| 1           | OF                              | ÷. •       |                             |               | Disinfectant                  | Contact Time   | Before or   |           |               |             |                     |                     | Disinfectant  |                                             |
| l ·         | Visited                         | • •        | N-i Current                 |               | Concentration                 | (T) at C       | at First    |           |               |             |                     | Minimum             | Concentration |                                             |
| Devot       | by<br>Operator                  | Hours      | Net Quantity<br>of Finished |               | (C) Before or at              | Measurement    | Customer    | Temp.     |               | Minimum     | Operating           | UV Dose             | at Remote     | Emergency or Abnormal Operating             |
| the         | (Place                          | Plant in   | Water                       | Peak Flow     | First Customer<br>During Peak | Point During   | During      | of        | pH of         | СТ          | UV Dose,            |                     | Point in      | Conditions; Repair or Maintenance Work that |
| Month       |                                 |            | Produced, gal               | Rate, gpd     |                               | Peak Flow,     | Peak Flow,  | Water,    | Water, if     | Required,   | m₩-                 | mW-                 | Distribution  | Involves Taking Water System Components     |
| 1           | $\frac{\mathbf{x}}{\mathbf{x}}$ | 24         | 2,402,000                   | Kale, gpu     | Flow, mg/L,<br>1.10           | minutes        | mg-min/L    | <u>°C</u> | Applicable    | mg-min/L    | sec/cm <sup>2</sup> | sec/cm <sup>2</sup> | System, mg/L  | Out of Operation                            |
| 2           | x x                             | 24         | 2,232,000                   |               | 1.00                          |                |             |           | [             | [           | Ļ                   | L                   | 0.70          |                                             |
| 3           | X                               | 24         | 2,042,000                   | }             | 1.00                          |                |             | <u> </u>  |               |             | <u> </u>            |                     | 0.60          |                                             |
| 4           | X                               | 24         | 2,646,000                   |               | 1.00                          | <u> </u>       | ·           |           |               |             | ļ                   |                     | 0.50          |                                             |
| 5           | x                               | 24         | 2,109,000                   |               | 1.10                          |                |             |           |               |             |                     | L                   | 0.60          |                                             |
| 6           | x                               | 24         | 2,054,000                   |               | 1.00                          | <u> </u>       |             |           |               | ļ           |                     | Ļ                   | 0.70          |                                             |
| 7           | x                               | 24         | 1,983,000                   |               | 1.00                          |                |             | <u> </u>  |               |             | <u> </u>            |                     | 0.70          |                                             |
| 8           | x                               | 24         | 2,551,000                   |               | 1.10                          |                |             |           |               |             |                     |                     | 0.60          |                                             |
| 9           | x                               | 24         | 2,333,000                   |               | 1.10                          | <u> </u>       |             |           |               |             |                     |                     | 0,60          |                                             |
| 10          | x                               | 24         | 2,015,000                   |               | 1.00                          |                |             |           |               |             |                     |                     | 0,80          |                                             |
| 11          | X                               | 24         | 2,731,000                   |               | 1.00                          |                |             |           |               |             |                     |                     | 0.60          |                                             |
| 12          | X                               | 24         | 1,970,000                   |               | 1.10                          |                |             |           | <u> </u>      |             |                     |                     | 0.70          |                                             |
| 13          | X                               | 24         | 1,616,000                   |               | 1.10                          |                |             |           |               |             |                     |                     | 0.50          |                                             |
| 14          | X                               | 24         | 1,614,000                   |               | 1.00                          |                |             |           | ·             |             |                     |                     |               |                                             |
| 15          | X                               | 24         | 2,095,000                   |               | 1.20                          |                |             |           |               |             |                     |                     | 0.60          |                                             |
| 16          | X                               | 24         | 2,023,000                   |               | 1.00                          |                |             |           |               |             |                     |                     | 0.50          |                                             |
| 17          | X                               | 24         | 1,650,000                   |               | 1.00                          |                |             |           |               |             |                     |                     | 0.60          |                                             |
| 18          | X                               | 24         | 2,306,000                   |               | 1.10                          |                |             |           |               |             |                     |                     | 0.80          |                                             |
| 19          | X                               | 24         | 2,093,000                   |               | 1.10                          |                |             | <u> </u>  |               |             |                     |                     | 0.60          |                                             |
| 20          | X                               | 24         | 1,739,000                   |               | 1.00                          |                |             |           |               | <u> </u>    |                     |                     | 0.50          | ·                                           |
| 21          | X                               | 24         | 1,819,000                   |               | 1.20                          |                | ·           |           |               |             | ·                   | -•                  | 0.50          |                                             |
| 22          | X                               | 24         | 2,389,000                   |               | 1.20                          |                |             |           |               |             |                     |                     | 0.80          |                                             |
| 23          | X                               | 24         | 2,169,000                   |               | 1.10                          |                |             |           |               |             |                     |                     | 0.60          |                                             |
| 24          | X                               | 24         | 1,750,000                   |               | 1.10                          |                |             |           |               |             |                     |                     | 0.60          |                                             |
| 25          | X                               | 24         | 3,415,000                   |               | 1.10                          |                |             |           |               |             |                     |                     | 0.80          |                                             |
| 26          | X                               | 24         | 580,000                     |               | 1.00                          |                |             |           |               |             |                     |                     | 0.50          | Operator came late at night to check plant. |
| 27          | X                               | 24         | 1,612,000                   |               | 0.80                          |                |             |           | ·······       |             |                     |                     | 0.30          |                                             |
| 28          | X                               | 24         | 1,663,000                   |               | 1.00                          |                |             |           |               |             | _                   |                     | 0.40          |                                             |
| 29          | X                               | 24         | 2,010,000                   |               | 1.20                          |                |             |           |               |             |                     |                     | 0.70          |                                             |
| 30          | X                               | 24         | 1,856,000                   |               | 1.10                          |                |             |           |               | ··· ,, _·   |                     |                     | 0.70          |                                             |
| 31          |                                 | 24         |                             |               |                               |                |             |           |               |             |                     |                     |               |                                             |
| Total       |                                 |            | 61,467,000                  |               |                               |                |             |           |               |             | L                   |                     |               |                                             |
| Averag      |                                 |            | 2,048,900                   |               |                               |                |             |           |               |             |                     |                     |               |                                             |
| Maxim       | um                              |            | 3,415,000                   |               |                               |                |             |           |               |             |                     |                     |               |                                             |

\* Refer to the instructions for this report to determine which plants must provide this information.

٠.

### MONTHLY OPERATION REPORT FOR PWSs TREATING RAW GROUND WATER OR PURCHASED FINISHED WATER PWS Identification Number: 3354916 Plant Name: Southlake

| Ute         Dirik Dark for the Shift Num Dark verse fill 3 July 2006. <ul></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | 0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                        |            |             |                                                                                                                 |                                       | me. South   | lane    | <u> </u>      |               | ·····               |                     |           |      |                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------------------|------------|-------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------|---------|---------------|---------------|---------------------|---------------------|-----------|------|---------------------------------|
| Means of Achieving Four-Log Vins Inactivation/Removal:*         Prec Chlorine         Chlorine Diaxide         Clorine Chlorine (Chloramines)         Chlorine Diaxide           Type of Distingtator         Dore         Combined Chlorine (Chloramines)         Chlorine Diaxide         Chlorine Diaxide         Chlorine Chlorine (Chloramines)         Chlorine Diaxide           Deys         Fies         CT Calculations         CT Calculations         Combined Chlorine (Chloramines)         Chlorine Diaxide           Visited         CT Calculations         CT Calculations         Combined Chlorine Diaxide         Chlorine Diaxide           Or         Calculations         CT Calculations         Presc Chlorine         Coverts         Calculations           Or         Calculations         CT Calculations         Coverts         Coverts         Coverts           Or         Calculations         Coverts         Calculations         Points of Calculations         Coverts         Coverts         Coverts         Coverts         Points of Calculations         Coverts         Points of Calculations         Coverts         Coverts         Points of Calculations         Coverts         Points         Coverts         Points         Coverts         Points         Coverts         Points         Coverts         Points         Coverts         Points         Covert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HI.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Daily D: | ita for th                                                                                                     | e Month/Ye | ar of: July | .2006.                                                                                                          |                                       |             |         | <u></u>       |               |                     |                     |           |      |                                 |
| □ Unavolet Radiation         □ Other (Describe):         □ Interview         □ Interview         □ Other (Describe):           Type of Disinfectant Residual Maintined in Distribution System:         ○ Free Chlorine         □ Combined Chlorine (Chloramines)         □ Other (Describe):           Plat         □ Other (Describe):         ○ Clorabined Chlorine (Chloramines)         □ Other (Describe):         □ Other (Describe):         □ Other (Describe):           Plat         Statisfied         □ Other (Describe):         □ Other (Describe):         □ Other (Describe):         □ Other (Describe):           Visited         □ Other (Describe):           Visited         □ Other (Describe):           Visited         □ Other (Describe):         □ Other (Describ):         □ Other (Describe):         □ Oth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                |            |             |                                                                                                                 | X Free                                | Chlorine    |         | Chlorine      | Dioxide       |                     | 7009                |           |      | ad Chloring (Ohlorenia)         |
| Doys<br>Plant<br>Statistics         CT Calculations, ctr V Does, to Descoverture Four Log Virus Institution, if Applicable*         Distribution         Distribution         Distribution           0°<br>Virus         0°<br>Virus         Net Quantity         Net Quantity         Distribution, ctr V Does, to Descoverture Four Log Virus         Distribution, ctr V Does, to Descoverture Four Log Virus         Lowest         Lowest           0°<br>Virus         Net Quantity         Net Quantity         Distribution, ctr V Does, to Descoverture Four Lowest         Lowest         Lowest         Lowest         Distribution, ctr V Does, to Descoverture Four Lowest         Distribution, ctr V Does, to Descoverture Four Lowest         Lowest         Lowest         Distribution, ctr V Does, to Descoverture Four Lowest         Distribution, ctr V Does, to Descoverture Four Lowest         Lowest         Distribution, ctr V Does, to Descoverture Four Lowest         Distribution, ctr V Does, to Descoverture Doescoverture Doescover                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                |            |             |                                                                                                                 | <b>1</b>                              |             |         |               | DIONICO       |                     |                     |           | пош  | ed Chlorine (Chloramines)       |
| Doys<br>Plant<br>Statistics         CT Calculations, ctr V Does, to Descoverture Four Log Virus Institution, if Applicable*         Distribution         Distribution         Distribution           0°<br>Virus         0°<br>Virus         Net Quantity         Net Quantity         Distribution, ctr V Does, to Descoverture Four Log Virus         Distribution, ctr V Does, to Descoverture Four Log Virus         Lowest         Lowest           0°<br>Virus         Net Quantity         Net Quantity         Distribution, ctr V Does, to Descoverture Four Lowest         Lowest         Lowest         Lowest         Distribution, ctr V Does, to Descoverture Four Lowest         Distribution, ctr V Does, to Descoverture Four Lowest         Lowest         Lowest         Distribution, ctr V Does, to Descoverture Four Lowest         Distribution, ctr V Does, to Descoverture Four Lowest         Lowest         Distribution, ctr V Does, to Descoverture Four Lowest         Distribution, ctr V Does, to Descoverture Doescoverture Doescover                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | of Disin | fectant R                                                                                                      |            |             |                                                                                                                 | em: 🛛                                 | Free Chl    | nrine   |               | nhined (      | 'hlorine (          | Chiomani            |           | -1   |                                 |
| Drys         Drys         UV Des         Lowest           Stattlet         Lowest CT         Lowest CT         Lowest CT         Residual           Virgit         Net Ouestly         Obisindentini         Provided         Bindrestini         Concentration           Vorgit         Net Ouestly         Operation         Concentration         (T) all Concentration         Bindrestini         Concentration         Bindrestini         Concentration         Bindrestini         Concentration         Bindrestini         Concentration         Bindrestini         Concentration         Bindrestini         Bindrestini         Bindrestini         Bindrestini         Concentration         Bindrestini                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | [                                                                                                              |            | C           | Calculations, or                                                                                                | UV Dose, to De                        | monstrate F | in-Log  | Virus Inactis | nation if A   | nnlicable*          | Cinorain            |           |      |                                 |
| Plant<br>or<br>Viliad<br>or<br>Viliad<br>bis         Lowest<br>Met Quantity<br>by         Lowest Residual<br>Disinfactant<br>Concentration<br>(C) Before or<br>Plant Bis<br>(C) Before or<br>(C) Bef |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Days     | [                                                                                                              |            |             |                                                                                                                 | CT Calcul                             | ations      | Jan Log | V H WS ILLICH | acivity 11 73 |                     | Doce                | 1         |      |                                 |
| Suffed<br>or<br>visited<br>by<br>by<br>by<br>mode         Intermet<br>(T)         Lowest Residual<br>Disinformation<br>(T)         Residual<br>at First<br>Concentration<br>(T)         Residual<br>Contration<br>(T)         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Plant    |                                                                                                                |            |             |                                                                                                                 | 1                                     |             | F       |               | r             |                     |                     | Lowe      |      |                                 |
| Of<br>Visited<br>by<br>by<br>translat         Net Quantity<br>(T) at Concentration<br>(T) at Concent                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Staffed  |                                                                                                                | { }        |             | Lowest Residual                                                                                                 | Disinfectant                          |             |         |               |               | ŀ                   | · .                 |           |      |                                 |
| Visited<br>Day of Dy-<br>Portator         Net Quantity<br>(T) SeC or Mexamoustication<br>(T) S                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                |            |             | Disinfectant                                                                                                    | Contact Time                          | Before or   | · :     |               |               | · · ·               | ]                   |           |      |                                 |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                                                                                                                |            |             | Concentration                                                                                                   | (T) at C                              | at First    |         | {· · ·        |               | Lowest              | Minimum             |           |      |                                 |
| Derive and Publics         Operation         Problem         Phair Lister         Proof Lister         Point During Park Lister         Point Lister                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                |            |             |                                                                                                                 | Measurement                           |             | Temp.   |               | Minimum       |                     |                     |           |      | Emergency or Abnormal Operating |
| Description         Data of the second         Peak Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                |            |             |                                                                                                                 |                                       |             |         |               | СТ            | UV Dose,            | Required,           | Point     | տ    |                                 |
| Normal         X         Optimization         Prov. mg/L         minutes         memin/L         °C         Applicable         me.min/L         sec/cm <sup>2</sup> System, mg/L         Out of Operation           1         X         24         1,73,000         1.10           0.60          0.60           2         X         24         1,73,000         1.10           0.60          0.60           4         X         24         1,746,000         1.10           0.701           0.60           5         X         24         1,650,000         1.10           0.701           0.701           6         X         24         1,573,000         1.00           0.660           0.701           8         X         24         1,973,000         1.00           0.660           0.660           10         X         24         1,973,000         1.00           0.660           0.660           0.660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ſ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                                                                                                                |            |             | During Peak                                                                                                     |                                       |             |         | Water, if     | Required,     | mW-                 |                     | Distribu  | tion |                                 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                                                                                                                |            | Rate, gpd   |                                                                                                                 | minutes                               | ng-min/L    | •°C     | Applicable    | mg-min/L      | sec/cm <sup>2</sup> | sec/cm <sup>2</sup> | System, n | ng/L |                                 |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                |            |             |                                                                                                                 |                                       |             |         |               |               |                     |                     | 0.60      |      |                                 |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                |            |             |                                                                                                                 |                                       |             |         |               |               | L                   |                     | 0.80      |      |                                 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                |            |             |                                                                                                                 |                                       | L           |         | L             |               | L                   |                     | 0.70      |      |                                 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | the second day of the second d |          |                                                                                                                |            |             |                                                                                                                 |                                       |             |         |               |               |                     |                     | 0.70      |      |                                 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                |            |             |                                                                                                                 |                                       |             |         |               | L             | L                   | l                   | 0,60      |      |                                 |
| 8         X         24 $1573,000$ $1.00$ $0.70$ 9         X         24 $2212,000$ $1.00$ $0.60$ 10         X         24 $1259,000$ $1.00$ $0.60$ 11         X         24 $1359,000$ $1.00$ $0.60$ 11         X         24 $1439,000$ $1.00$ $0.60$ 13         X         24 $2047,000$ $1.00$ $0.60$ 13         X         24 $2047,000$ $1.00$ $0.60$ 14         X         24 $1938,000$ $1.00$ $0.60$ 15         X         24 $1938,000$ $1.00$ $0.60$ 16         X         24 $1438,000$ $1.00$ $0.50$ 18         X         24 $148,000$ $1.00$ $0.50$ 18         X         24 $148,000$ $1.00$ $0.90$ 20         X         24 $128,000$ $1.00$ $0.90$ 21         X <td></td> <td> </td> <td></td> <td></td> <td>0,70</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                |            |             |                                                                                                                 |                                       |             |         |               |               |                     |                     | 0,70      |      |                                 |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                                                                                                                |            | <u> </u>    |                                                                                                                 |                                       |             |         | l             | <br>          | ļ                   |                     | 0.70      |      |                                 |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                |            |             |                                                                                                                 |                                       |             |         |               | Ļ             | ļ                   |                     | 0.60      |      |                                 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                |            |             | The second s  | ļ                                     |             |         |               | [             |                     |                     | 0.60      |      |                                 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                                                                                                                |            |             |                                                                                                                 |                                       |             |         |               |               | {                   |                     |           |      |                                 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                |            |             |                                                                                                                 |                                       |             |         |               | L             |                     |                     |           |      |                                 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                                                                                                |            |             |                                                                                                                 |                                       |             |         |               | L             |                     |                     |           | _    |                                 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                |            |             |                                                                                                                 |                                       |             |         |               | <u> </u>      |                     |                     |           |      |                                 |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                                                                                                                |            |             | the second se |                                       |             |         |               | ļ             |                     |                     |           |      |                                 |
| 17       X       24       1,938,000       1.00       0.50         18       X       24       1,488,000       1.00       0.50         19       X       24       1,743,000       1.10       0.40         20       X       24       256,000       1.10       0.90         21       X       24       2,000       1.10       0.90         21       X       24       2,000       1.10       0.90         22       X       24       1,826,000       1.10       0.80         23       X       24       2,000       1.10       0.80         24       X       24       1,71,000       1.10       0.80         25       X       24       1,71,000       1.00       0.80         25       X       24       1,71,000       1.00       0.60         26       X       24       1,950,000       1.00       0.60         27       X       24       1,949,000       1.00       0.60         29       X       24       1,949,000       1.00       0.60         30       X       24       1,767,000       1.00       0.60 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>·····</td> <td></td> <td></td> <td></td> <td> </td> <td><u> </u></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                |            |             |                                                                                                                 | ·····                                 |             |         |               |               | <u> </u>            |                     |           |      |                                 |
| 18       X       24       1,488,000       1.00       0.40         19       X       24       1,743,000       1.10       0.90         20       X       24       2,256,000       1.10       0.90         21       X       24       2,256,000       1.10       0.90         21       X       24       2,256,000       1.10       0.90         22       X       24       1,862,000       1.10       0.80         23       X       24       2,408,000       1.10       0.80         24       X       24       1,751,000       1.10       0.80         24       X       24       1,751,000       1.10       0.80         25       X       24       1,710,000       1.00       0.80         26       X       24       1,950,000       1.00       0.60         27       X       24       1,949,000       1.10       0.80         28       X       24       1,940,000       1.00       0.60         29       X       24       1,940,000       1.00       0.70         30       X       24       2,470,000       1.30 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> </td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                |            |             |                                                                                                                 |                                       |             |         |               |               |                     |                     |           |      |                                 |
| 19       X       24       1,743,000       1.10       0.90         20       X       24       2,256,000       1.10       0.90         21       X       24       2,256,000       1.10       0.90         21       X       24       2,256,000       1.10       0.90         22       X       24       1,826,000       1.10       0.80         23       X       24       1,826,000       1.10       0.80         24       X       24       1,751,000       1.10       0.80         25       X       24       1,751,000       1.00       0.80         26       X       24       1,950,000       1.00       0.60         26       X       24       1,950,000       1.00       0.60         27       X       24       1,949,000       1.10       0.60         28       X       24       1,840,000       1.00       0.60         29       X       24       1,740,000       1.00       0.70         30       X       24       2,470,000       1.30       0.60         31       X       24       1,767,000       1.00 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> </td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                |            |             |                                                                                                                 |                                       |             |         |               |               |                     |                     |           |      |                                 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                |            |             |                                                                                                                 | <u> </u>                              | <u> </u>    |         |               |               |                     |                     |           |      |                                 |
| 21       X       24       2,010,000       1.20       1.00         22       X       24       1,826,000       1.10       0.80         23       X       24       2,408,000       1.10       0.80         24       X       24       1,751,000       1.10       0.80         25       X       24       1,710,000       1.00       0.80         25       X       24       1,950,000       1.00       0.70         26       X       24       1,950,000       1.00       0.60         27       X       24       2,997,000       1.00       0.60         28       X       24       1,949,000       1.10       0.60         29       X       24       1,767,000       1.00       0.70         30       X       24       2,470,000       1.30       0.70         31       X       24       1,767,000       1.00       0.60         31       X       24       1,767,000       1.00       0.60         Average       1,919,709       1.00       0.60       0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                |            |             |                                                                                                                 |                                       |             |         |               | <br>          | · .                 | L                   |           |      |                                 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                |            |             |                                                                                                                 |                                       |             |         |               |               |                     |                     |           |      |                                 |
| 23       X       24       2,408,000       1.10       0.80         24       X       24       1,751,000       1.10       0.80         25       X       24       1,710,000       1.00       0.80         26       X       24       1,950,000       1.00       0.70         27       X       24       1,950,000       1.00       0.60         28       X       24       1,949,000       1.10       0.60         29       X       24       1,864,000       1.00       0.80         30       X       24       2,470,000       1.30       0.70         31       X       24       1,767,000       1.00       0.60         Total       59,511,000         Average       1,919,709       1.00       0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | And and a second se |            |             |                                                                                                                 |                                       |             |         |               |               |                     |                     |           |      |                                 |
| 24       X       24       1,751,000       1.10       0.80         25       X       24       1,710,000       1.00       0.80         26       X       24       1,950,000       1.00       0.70         27       X       24       2,097,000       1.00       0.60         28       X       24       1,949,000       1.10       0.60         29       X       24       1,864,000       1.00       0.80         30       X       24       2,470,000       1.30       0.70         31       X       24       1,767,000       1.00       0.60         Total       59,511,000         Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                |            |             |                                                                                                                 |                                       |             |         |               |               |                     | <u> </u>            |           |      |                                 |
| 25       X       24       1,710,000       1.00       0.70         26       X       24       1,950,000       1.00       0.70         27       X       24       2,097,000       1.00       0.60         28       X       24       1,949,000       1.10       0.60         29       X       24       1,864,000       1.00       0.80         30       X       24       2,470,000       1.30       1.00         31       X       24       1,767,000       1.00       0.60         Average       1,919,709       1.00       0.60       1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                |            |             |                                                                                                                 |                                       |             |         |               |               |                     |                     |           |      |                                 |
| 26       X       24       1,950,000       1.00       0.60         27       X       24       2,097,000       1.00       0.60         28       X       24       1,949,000       1.10       0.60         29       X       24       1,864,000       1.00       0.80         30       X       24       2,470,000       1.30       0.70         31       X       24       1,767,000       1.00       0.60         Y       Y       1,00       0.60       0.70         30       X       24       2,470,000       1.30       0.70         31       X       24       1,767,000       1.00       0.60         Average       1,919,709       1.00       0.60       0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                |            |             |                                                                                                                 |                                       |             |         |               |               |                     |                     |           |      |                                 |
| 27       X       24       2,097,000       1.00       0.60         28       X       24       1,949,000       1.10       0.60         29       X       24       1,864,000       1.00       0.80         30       X       24       2,470,000       1.30       0.70         31       X       24       1,767,000       1.00       0.60         7 total       59,511,000       0.60       0.60       0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                |            |             |                                                                                                                 |                                       |             |         |               |               |                     |                     |           |      |                                 |
| 28       X       24       1,949,000       1.10       0.60         29       X       24       1,864,000       1.00       0.80         30       X       24       2,470,000       1.30       0.70         31       X       24       1,767,000       1.00       0.60         Total       59,511,000       0.60       0.60       0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                |            |             |                                                                                                                 |                                       |             |         |               |               |                     |                     |           | _    |                                 |
| 29       X       24       1,864,000       1.00       0.70         30       X       24       2,470,000       1.30       1.00         31       X       24       1,767,000       1.00       0.60         Total       59,511,000       0.60       0.60       0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                |            | <u></u>     |                                                                                                                 |                                       |             | ·       |               |               | l                   |                     |           |      |                                 |
| 30         X         24         2,470,000         1.30         0.70           31         X         24         1,767,000         1.00         1.00           Total         59,511,000         0.60         0.60         0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                |            |             |                                                                                                                 | · · · · · · · · · · · · · · · · · · · |             |         |               |               |                     |                     |           |      |                                 |
| 31         X         24         1,767,000         1.00           Total         59,511,000         0.60         0.60           Average         1,919,709         0.60         0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                |            |             |                                                                                                                 |                                       |             |         |               |               |                     |                     |           |      |                                 |
| Total 59,511,000<br>Average 1,919,709                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                |            | ······      |                                                                                                                 |                                       |             |         |               |               | ·                   |                     |           |      |                                 |
| Average 1,919,709                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                |            |             | 1.00                                                                                                            | L                                     |             |         |               |               |                     |                     | 0.60      |      |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e        |                                                                                                                |            |             |                                                                                                                 |                                       |             |         |               |               |                     |                     |           |      |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                |            |             |                                                                                                                 |                                       |             |         |               |               |                     |                     |           |      |                                 |

\* Refer to the instructions for this report to determine which plants must provide this information.

PWS Identification Number: 3354916

Plant Name: Southlake

| 111. 1   | Daily Da      | ta for th       | e Month/Ye             | ar of: Aug    | ust, 2006.                    |                          |                       |                                              |               |             | <u> </u>            |                     |                            | ······································                                                                           |
|----------|---------------|-----------------|------------------------|---------------|-------------------------------|--------------------------|-----------------------|----------------------------------------------|---------------|-------------|---------------------|---------------------|----------------------------|------------------------------------------------------------------------------------------------------------------|
|          |               |                 | our-Log Viru           | s Inactivatio | on/Removal: *                 | X Free                   | Chlorine              |                                              | Chlorine      | Dioxide     |                     | )zone               | Combin                     | ed Chlorine (Chloramines)                                                                                        |
|          |               | Radiatio        | on 🗌 Ot                | her (Describ  | e):                           |                          |                       |                                              |               |             |                     |                     |                            |                                                                                                                  |
| Туре     | of Disin      | fectant R       | esidual Main           | ntained in Di | stribution Syst               | em: 🕅                    | Free Chl              | orine                                        |               | nbined C    | hlorine (           | Chlorami            | nes)                       | Chlorine Dioxide                                                                                                 |
|          |               |                 |                        | C             | T Calculations, or            | UV Dose, to De           | monstrate F           | our-Log                                      | Virus Inactiv | ation, if A | oplicable*          |                     |                            |                                                                                                                  |
| 1        | Days          |                 |                        |               |                               | CT Calcul                | ations                |                                              |               | ······      |                     | Dose                |                            |                                                                                                                  |
|          | Plant.        |                 |                        |               |                               |                          | Lowest CT             |                                              |               | × 34        |                     | [                   | Lowest                     | and the second |
| 1        | Staffed<br>or |                 |                        | · · ·         | Lowest Residual               | Disinfectant             | Provided              |                                              |               |             | ŧ.                  |                     | Residual                   |                                                                                                                  |
|          | Visited       |                 |                        |               | Disinfectant<br>Concentration | Contact Time<br>(I) at C | Before or<br>at First |                                              |               |             |                     |                     | Disinfectant               |                                                                                                                  |
|          | by            |                 | Net Quantity           |               | (C) Before or at              |                          | Customer              | Temp.                                        |               | Minimum     |                     | Minimum             | Concentration<br>at Remote |                                                                                                                  |
| Day of   | Operator      | Hours           | of Finished            |               | First Customer                | Point During             | During                | of.                                          | pH of         | CT          |                     | Required,           | Point in                   | Emergency or Abnormal Operating<br>Conditions; Repair or Maintenance Work that                                   |
| the      | (Place        | Plant in        | Water                  | Peak Flow     | During Peak                   | Peak Flow,               | Peak Flow,            |                                              | Water, if     | Required.   | mW-                 | mW-                 | Distribution               | Involves Taking Water System Components                                                                          |
| Month    |               |                 | Produced, gal          | Rate, gpd     | Flow, mg/L                    | minutes                  | mg-min/L              | °C                                           | Applicable    | mg-min/L    | sec/cm <sup>2</sup> | sec/cm <sup>2</sup> | System, mg/L               | Out of Operation                                                                                                 |
| 1        | X<br>X        | 24              | 1,564,000              |               | 1.10                          |                          |                       |                                              |               |             |                     |                     | 0.90                       | Finished water total based on efflt flow meter.                                                                  |
| 2        | $\frac{x}{x}$ | <u>24</u><br>24 | 2,032,000 2,125,000    |               | 1.10                          |                          |                       | <u> </u>                                     |               | <u> </u>    |                     |                     | 0.70                       |                                                                                                                  |
| 4        | <del>x</del>  | 24              | 1,562,000              |               | 1.10                          |                          |                       |                                              |               |             |                     | <u> </u>            | 0.80                       |                                                                                                                  |
| 5        | x             | 24              | 1,959,000              |               | 1.20                          |                          |                       |                                              |               |             | Į                   |                     | 0.80                       |                                                                                                                  |
| 6        | x             | 24              | 1,689,000              | <u> </u>      | 1.20                          | ·                        |                       |                                              |               |             |                     | <u> </u>            | 0.80                       |                                                                                                                  |
| 7        | X             | 24              | 2,301,000              |               | 1.20                          |                          |                       |                                              |               |             | <u> </u>            |                     | 0.80                       |                                                                                                                  |
| 8        | X             | 24              | 1,743,000              |               | 1.00                          |                          |                       |                                              |               |             |                     | <u> </u>            | 0.60                       |                                                                                                                  |
| 9        | X             | 24              | 2,064,000              |               | 1.20                          |                          |                       |                                              |               |             |                     |                     | 0.50                       |                                                                                                                  |
| 10       | X             | 24              | 2,171,000              |               | 1.00                          |                          |                       |                                              |               |             |                     |                     | 0.80                       |                                                                                                                  |
| 11       | X             | 24              | 2,021,000              |               | 1.20                          |                          |                       |                                              |               |             |                     |                     | 0.90                       |                                                                                                                  |
| 12       | <u>X</u>      | 24              | 2,185,000              |               | 1.10                          | L                        |                       |                                              |               |             |                     |                     | 0.70                       |                                                                                                                  |
| 13       | X<br>X        | 24<br>24        | 2,387,000              |               | 1.10                          |                          |                       | ļ                                            |               |             | <u> </u>            |                     | 0.80                       |                                                                                                                  |
| 15       | - Â           | 24              | 1,524,000              |               | 1.10                          |                          |                       | <u> </u>                                     |               | <u> </u>    |                     | <b>!</b>            | 0.70                       |                                                                                                                  |
| 16       | X             | 24              | 2,034,000              |               | 1.00                          |                          |                       | ļ                                            |               |             |                     |                     | 0.60                       |                                                                                                                  |
| 17       | X             | 24              | 2,191,000              | <u> </u>      | 1.10                          |                          |                       |                                              |               |             |                     |                     | 0.40                       |                                                                                                                  |
| 18       | X             | 24              | 1,843,000              |               | 1.10                          |                          | <u> </u>              |                                              |               | ├           |                     | <u> </u>            | 0.70                       |                                                                                                                  |
| 19       | x             | 24              | 2,054,000              |               | 1.10                          |                          |                       | <u>}</u>                                     |               |             | <u> </u>            | <u> </u>            | 0.80                       |                                                                                                                  |
| 20       | X             | 24              | 1,909,000              |               | 1.20                          |                          | ·                     |                                              | · ·           |             |                     |                     | 1.00                       |                                                                                                                  |
| 21       | X             | 24              | 1,827,000              |               | 1.10                          | ·                        |                       |                                              |               |             |                     |                     | 0.50                       |                                                                                                                  |
| 22       | X             | 24              | 1,760,000              |               | 1.10                          |                          |                       |                                              |               |             |                     | <u> </u>            | 0.70                       |                                                                                                                  |
| 23       | X             | 24              | 1,944,000              |               | 1.10                          |                          |                       |                                              |               |             | 1                   |                     | 0.80                       | · · · · · · · · · · · · · · · · · · ·                                                                            |
| 24       | X             | 24              | 1,888,000              |               | 1.10                          |                          |                       |                                              |               |             |                     |                     | 0.70                       |                                                                                                                  |
| 25<br>26 | X<br>X        | 24<br>24        | 1,705,000              |               | 1.20                          |                          |                       | <u> </u>                                     |               |             |                     |                     | 0.80                       |                                                                                                                  |
| 20       | x             | 24              | 1,902,000<br>1,970,000 |               | 1.30                          | <u> </u>                 |                       |                                              |               |             |                     | <u> </u>            | 0.80                       |                                                                                                                  |
| 28       | <del>x</del>  | 24              | 1,494,000              |               | 1.60                          |                          |                       | <u>                                     </u> |               |             |                     |                     | 1.10                       |                                                                                                                  |
| 29       | x             | 24              | 1,666,000              |               | 1.10                          |                          |                       |                                              |               |             | ļ                   |                     | 0.80                       |                                                                                                                  |
| 30       | x             | 24              | 1,778,000              |               | 1.10                          |                          |                       | <u>├</u>                                     |               |             |                     | <u> </u>            | 0,90<br>0.90               |                                                                                                                  |
| 31       | x             | 24              | 1,634,000              |               | 1.20                          |                          |                       |                                              |               |             | ├                   | ┝╍───               | L.00                       |                                                                                                                  |
| Total    |               | ·               | 58,664,000             |               | ·                             | <u>د</u>                 | ·                     | 1                                            |               | L           | L                   | L,                  | 1.00                       |                                                                                                                  |
| Averag   |               |                 | 1,892,387              |               |                               |                          |                       |                                              |               |             |                     |                     |                            |                                                                                                                  |
| Maxim    | 11111         |                 | 2 387 000              |               |                               |                          |                       |                                              |               |             |                     |                     |                            |                                                                                                                  |

Page 8 of 48

\* Refer to the instructions for this report to determine which plants must provide this information.

### MONTHLY OPERATION REPORT FOR PWSs TREATING RAW GROUND WATER OR PURCHASED FINISHED WATER PWS Identification Number: 3354916 Plant Name: Southlake

|                 |               |            |               |               |                                                                                                                 | 1110001110     | ne. ovum           | anc        |              |                 |                  |                            |               |                                             |
|-----------------|---------------|------------|---------------|---------------|-----------------------------------------------------------------------------------------------------------------|----------------|--------------------|------------|--------------|-----------------|------------------|----------------------------|---------------|---------------------------------------------|
| 111. 1          | Daily Da      | ata for tl | ie Month/Y    | car of: Sept  | t. 2006.                                                                                                        |                |                    |            |              |                 |                  |                            |               |                                             |
|                 |               |            |               |               | on/Removal: *                                                                                                   | X Free         | Chlorine           |            | Chlorine     | Diovida         | 17               | Ozone                      |               |                                             |
|                 | traviole      | et Radiati |               | ther (Descrit |                                                                                                                 | K.N 1100       | Спонто             | <u>ا</u> ل |              | DIOXIGE         |                  | Jzone                      |               | ned Chlorine (Chloramines)                  |
|                 |               |            |               | mer (Deserie  | istribution Syst                                                                                                |                |                    |            |              |                 |                  |                            |               |                                             |
| Type            |               | mectant r  | cesiqual Mai  | ntaineo in Di | istribution Syst                                                                                                | em: 🛛 🖾        | Free Chlo          | orine      |              | mbined C        | <u>hlorine</u> ( | Chloram                    | ines)         | Chlorine Dioxide                            |
|                 | <b>N</b>      |            |               | C             | T Calculations, or                                                                                              | UV Dose, to De | monstrate Fo       | our-Log    | Virus Inacti | vation, if A    |                  |                            |               |                                             |
|                 | Days<br>Plant |            |               | 1             |                                                                                                                 | CT Calcul      |                    |            |              |                 | UV               | Dose                       |               |                                             |
|                 | Staffed       |            |               |               |                                                                                                                 |                | Lowest-CT          |            |              |                 |                  |                            | Lowest        |                                             |
|                 | Or            |            |               |               | Lowest Residual                                                                                                 | Disinfectant   | Provided           |            |              |                 |                  |                            | Residual      |                                             |
|                 | Visited       |            |               |               | Disinfectant<br>Concentration                                                                                   | Contact Time   | Before or          |            |              |                 |                  |                            | Disinfectant. |                                             |
|                 | by            |            | Net Quantity  |               | (C) Before or at                                                                                                | (T) at C       | at First           |            |              |                 | Lowest           | Minimum                    |               |                                             |
| Day of          | Operator      | Hours      | of Finished   |               | First Customer                                                                                                  | Point During   | Customer<br>During | Temp.      |              | Minimum         | Operating        | UV Dose                    | at Remote     | Emergency or Abnormal Operating             |
| the             | (Place        | Plant in   | Water         | Peak Flow     | During Peak                                                                                                     | Peak Flow,     | Pcak Flow,         | of         | pH of        | CT<br>Required, | mW-              | Required,                  | Point in      | Conditions; Repair or Maintenance Work that |
| Month           | "X")_         | Operation  | Produced, gal | Rate, and     | Flow, mg/L                                                                                                      | minutes        | mg-min/L           | °C         | Applicable   | required,       |                  | mW-<br>sec/cm <sup>2</sup> | Distribution  | Involves Taking Water System Components     |
| 1               | X             | 24         | 1,462,000     |               | 1.10                                                                                                            |                | AND HEAD TO        |            | hippinging   | THE AUTONIA     | acercin          | Sec/can                    | System, mg/L  | Out of Operation                            |
| 2               | X             | 24         | 1,569,000     | 1             | 1.10                                                                                                            |                |                    |            | t            |                 |                  |                            | 0.80          |                                             |
| 3               | X             | 24         | 2,113,000     | 1             | 1.50                                                                                                            |                |                    | ·          | f            | ┼────           |                  | <u> </u>                   | 1.00          |                                             |
| 4               | X             | 24         | 1,534,000     |               | 1.00                                                                                                            |                |                    |            |              |                 | <u></u>          |                            | 0.80          |                                             |
| 5               | X             | 24         | 1,399,000     |               | 1.00                                                                                                            |                |                    |            | <u> </u>     | f               |                  |                            | 0.70          |                                             |
| 6               | X             | 24         | 1,725,000     |               | 1.10                                                                                                            |                |                    |            |              | ·               |                  |                            | 0.90          |                                             |
| 7               | <u>x</u>      | 24         | 1,856,000     |               | 1.10                                                                                                            |                |                    |            |              | 1               |                  |                            | 0.70          |                                             |
| 8               | X             | 24         | 1,604,000     |               | 1.10                                                                                                            |                |                    |            |              |                 |                  |                            | 0.90          |                                             |
| <u> </u>        | X             | 24         | 1,788,000     |               | 1,20                                                                                                            |                |                    |            |              | <b> </b>        |                  |                            | 1.00          |                                             |
| 10              | X             | 24         | 2,032,000     |               | 1.10                                                                                                            |                |                    |            |              |                 |                  |                            | 0.80          |                                             |
| 11              | <u>x</u>      | 24         | 1,487,000     |               | 1.00                                                                                                            |                |                    |            |              |                 |                  |                            | 0.50          |                                             |
| 12              | <u>x</u>      | 24         | 1,565,000     | L             | 1.10                                                                                                            |                |                    |            |              | <u> </u>        |                  |                            | 0.50          |                                             |
| 13              | <u>x</u>      | 24         | 1,724,000     | L             | 1.00                                                                                                            |                |                    |            |              |                 |                  |                            | 0.40          |                                             |
| 14              | <u>X</u>      | 24         | 1,892,000     |               | 1.10                                                                                                            |                |                    |            |              |                 |                  |                            | 0.80          |                                             |
| 15              | X             | 24         | 1,463,000     |               | 1.00                                                                                                            |                |                    |            |              |                 |                  |                            | 0.50          |                                             |
| <u>16</u><br>17 | <u>X</u>      | 24         | 1,481,000     | ·             | 1.00                                                                                                            |                |                    |            |              |                 |                  |                            | 0.60          |                                             |
| 18              | X             | 24<br>24   | 1,920,000     |               | 1.00                                                                                                            |                |                    |            |              |                 |                  |                            | 0.60          |                                             |
| 10<br>19        | x             | 24         | 1,673,000     | ļ             | 1.00                                                                                                            |                |                    |            |              |                 |                  |                            | 0.50          |                                             |
| 20              | - <u>x</u>    | 24         | 1,408,000     | ļ             | 1.00                                                                                                            |                |                    |            |              |                 |                  |                            | 0.50          |                                             |
| 20              | <u> </u>      | 24         |               |               | 1.00                                                                                                            |                |                    |            |              |                 |                  |                            | 0.50          |                                             |
| 22              | <u> </u>      | 24         | 1,848,000     |               | 1.00                                                                                                            |                |                    |            |              |                 |                  |                            | 0.70          |                                             |
| 23              | - <u>^</u>    | 24         | 2,083,000     | <u>├</u>      | 1.00                                                                                                            |                |                    |            |              |                 |                  |                            | 0.50          |                                             |
| 24              | x             | 24         | 1,930,000     |               | 1,00                                                                                                            |                |                    |            |              |                 |                  |                            | 0.50          |                                             |
| 25              | X             | 24         | 1,530,000     |               | the second data was a |                |                    |            |              |                 |                  |                            | 0.60          |                                             |
| 26              | x             | 24         | 1,368,000     |               | 1.00                                                                                                            |                |                    |            |              |                 |                  |                            | 0.40          |                                             |
| 27              | x             | 24         | 1,552,000     |               | 1.00                                                                                                            |                |                    |            |              |                 |                  |                            | 0.40          |                                             |
| 28              | - <u>x</u> -  | 24         | 1,779,000     |               | the second se |                |                    |            |              |                 |                  |                            | 0.40          |                                             |
| 29              | x             | 24         | 1,483,000     |               | 1.00                                                                                                            |                |                    |            |              |                 |                  |                            | 0.70          |                                             |
| 30              | X             | 24         | 1,485,000     |               | 1.00                                                                                                            |                |                    |            |              |                 |                  |                            | 0.50          |                                             |
| 31              |               | 24         | 1,010,000     |               | 1.00                                                                                                            |                |                    |            |              |                 |                  |                            | 0.60          |                                             |
| Total           |               |            | 49,834,000    | /             | h                                                                                                               |                |                    |            |              |                 |                  |                            |               |                                             |
| Average         |               |            | 1,661,133     | r             |                                                                                                                 |                |                    |            |              |                 |                  |                            |               |                                             |
|                 |               |            |               | 1             |                                                                                                                 |                |                    |            |              |                 |                  |                            |               |                                             |

Maximum 2,113,000

\* Refer to the instructions for this report to determine which plants must provide this information.

DEP Form 62-555.900(3)Alternate

#### MONTHLY OPERATION REPORT FOR PWSs TREATING RAW GROUND WATER OR PURCHASED FINISHED WATER Plant Name: Southlake

PWS Identification Number: 3354916

|                                                                                                                                        | Trait Nalle. Solujiake |           |                     |                                        |                                                                                         |                         |                    |              |                    |           |                            |                     |               |                                              |
|----------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------|---------------------|----------------------------------------|-----------------------------------------------------------------------------------------|-------------------------|--------------------|--------------|--------------------|-----------|----------------------------|---------------------|---------------|----------------------------------------------|
| III. Daily Data for the Month/Year of: October, 2006.                                                                                  |                        |           |                     |                                        |                                                                                         |                         |                    |              |                    |           |                            |                     |               |                                              |
| Means of Achieving Four-Log Virus Inactivation/Removal: * 🛛 Free Chlorine 🗌 Chlorine Dioxide 🗌 Ozone 🗌 Combined Chlorine (Chloramines) |                        |           |                     |                                        |                                                                                         |                         |                    |              |                    |           |                            |                     |               |                                              |
| Πu                                                                                                                                     | Itraviole              | t Radiati |                     | her (Describ                           |                                                                                         | 231100                  | CHIOI HIC          |              | Cinorme            | DIOXIGE   |                            | Zone                |               | ied Chlorine (Chloramines)                   |
| Time of Disinfactant Decide 1 Maintain die Die 11 die O                                                                                |                        |           |                     |                                        |                                                                                         |                         |                    |              |                    |           |                            |                     |               |                                              |
| - The                                                                                                                                  |                        | Tectant N |                     |                                        | Surbuilon Syst                                                                          | em: X                   | Free Chic          | rine         |                    | nbined C  | hlorine (                  | Chlorami            | nes)          | Chlorine Dioxide                             |
| )                                                                                                                                      | Days                   | ]         |                     | C                                      | CT Calculations, or UV Dose, to Demonstrate Four-Log Virus Inactivation, if Applicable* |                         |                    |              |                    |           |                            |                     |               |                                              |
|                                                                                                                                        | Plant                  | {         | 1                   |                                        | CT Calculations UV Dose                                                                 |                         |                    |              |                    |           |                            | Dose                |               |                                              |
| 1                                                                                                                                      | Staffed                |           | ]                   |                                        | Laura Desident                                                                          |                         | Lowest CT          |              |                    |           |                            |                     | Lowest        |                                              |
|                                                                                                                                        | or                     |           |                     |                                        | Lowest Residual<br>Disinfectant                                                         | Disinfectant            | Provided           |              |                    |           | 1                          |                     | Residual      |                                              |
|                                                                                                                                        | Visited                |           |                     |                                        | Concentration                                                                           | Contact Time            | Before or          |              |                    |           |                            |                     | Disinfectant  |                                              |
| ·                                                                                                                                      | by                     |           | Net Quantity        |                                        | (C) Before or at                                                                        | (T) at C<br>Measurement | at First           | Tama         |                    | 10.1      | Lowest                     | Minimum             | Concentration |                                              |
| Day of                                                                                                                                 | Operator               | Hours     | of Finished         |                                        | First Customer                                                                          | Point During            | Customer<br>During | Temp.        |                    |           | Operating                  | UV Dose             | at Remote     | Emergency or Abnormal Operating              |
| the                                                                                                                                    | (Place                 | Plant in  | Water               | Peak Flow                              | During Peak                                                                             | Peak Flow,              | Peak Flow,         | of<br>Water, | pH of<br>Water, if | CT        | UV Dose,                   |                     | Point in      | Conditions; Repair or Maintenance Work that  |
| Month                                                                                                                                  | "א")                   | Operation | Produced, gal       | Rate, gpd                              | Flow, mg/L                                                                              | minutes                 | mg-min/L           | Ψaici,<br>℃  | Applicable         | Required, | mW-<br>sec/cm <sup>2</sup> | mW-                 | Distribution  | Involves Taking Water System Components      |
| 1                                                                                                                                      | Х                      | 24        | 1,952,000           |                                        | 1.00                                                                                    |                         | ING INUVE          | ~~           | Африсаюнс          | mg-must,  | secrem                     | sec/cm <sup>2</sup> | System, mg/L  | Out of Operation                             |
| 2                                                                                                                                      | X                      | 24        | 1.511.000           | <u> </u>                               | 1.00                                                                                    |                         |                    |              |                    | i         |                            |                     | 0.60          |                                              |
| 3                                                                                                                                      | X                      | 24        | 1,417,000           | ······                                 | 1.00                                                                                    |                         |                    |              |                    | <u> </u>  |                            |                     | 0.50          |                                              |
| 4                                                                                                                                      | Х                      | 24        | 1,739,000           |                                        | 1.00                                                                                    |                         |                    |              |                    |           | <u> </u>                   |                     | 0.40          |                                              |
| 5                                                                                                                                      | X                      | 24        | 1,923,000           | ······································ | 1.00                                                                                    |                         |                    |              |                    |           |                            |                     | 0.40          |                                              |
| 6                                                                                                                                      | X                      | 24        | 1,721,000           |                                        | 1.00                                                                                    |                         |                    |              |                    |           |                            |                     | 0.70          |                                              |
| 7                                                                                                                                      | X                      | 24        | 1,896,000           |                                        | 1.00                                                                                    |                         |                    |              |                    |           |                            |                     | 0.60          |                                              |
| 8                                                                                                                                      | X                      | 24        | 2,195,000           |                                        | 1,10                                                                                    |                         |                    |              |                    |           |                            |                     | 0.60          |                                              |
| 9                                                                                                                                      | х                      | 24        | 1,593,000           |                                        | 1.00                                                                                    |                         |                    |              |                    |           |                            |                     | 0.80          |                                              |
| 10                                                                                                                                     | X                      | 24        | 1,576,000           |                                        | 1.00                                                                                    |                         |                    |              |                    |           |                            |                     | 0.50          |                                              |
| 11                                                                                                                                     | X                      | 24        | 1,995,000           |                                        | 1.00                                                                                    |                         |                    |              |                    |           |                            |                     | 0.50          |                                              |
| 12                                                                                                                                     | X                      | 24        | 2,041,000           |                                        | 1.00                                                                                    |                         |                    |              |                    |           |                            |                     | 0.30          |                                              |
| 13                                                                                                                                     | X                      | 24        | 1.767.000           |                                        | 1.00                                                                                    |                         |                    |              |                    |           |                            |                     | 0.70          |                                              |
| 14                                                                                                                                     | X                      | 24        | 2.017.000           |                                        | 1.10                                                                                    |                         |                    | ~            |                    |           |                            |                     | 0.60          |                                              |
| 15                                                                                                                                     | X                      | 24        | 1,982,000           |                                        | 1.20                                                                                    |                         |                    |              |                    |           |                            |                     | 0.80          |                                              |
| 16                                                                                                                                     | x                      | 24        | 1,804,000           |                                        | 1.00                                                                                    |                         |                    |              |                    |           |                            |                     | 1.00          |                                              |
| 17                                                                                                                                     | x                      | 24        | 1,754,000           |                                        | 1.00                                                                                    |                         |                    |              |                    |           |                            |                     | 0.70          |                                              |
| 18                                                                                                                                     | X                      | 24        | 2,001,000           |                                        | 1.20                                                                                    |                         |                    |              |                    | <u> </u>  | <u> </u>                   |                     | 0.70          |                                              |
| 19                                                                                                                                     | x                      | 24        | 1,952,000           |                                        | 1.00                                                                                    |                         | ··                 |              |                    |           |                            |                     | 0.70          |                                              |
| 20                                                                                                                                     | X                      | 24        | 1,476,000           |                                        | 1.00                                                                                    |                         |                    |              |                    |           |                            |                     | 0.70          |                                              |
| 21                                                                                                                                     | x                      | 24        | 1,846,000           |                                        | 1.00                                                                                    |                         |                    |              |                    |           |                            |                     |               | Replaced well pump on well "D" today.        |
| 22                                                                                                                                     | x                      | 24        | 2,500,000           | ·                                      |                                                                                         |                         |                    |              |                    |           |                            |                     | 0.60          | Sent day 182 well BT's to the lab today.     |
| 23                                                                                                                                     | x                      | 24        | 1,641,000           |                                        | 1.00                                                                                    |                         |                    |              |                    |           |                            |                     |               | Received the OK from the lab regard well "D' |
| 24                                                                                                                                     | - <u>^</u>             | 24        |                     |                                        | 1.00                                                                                    |                         |                    |              |                    |           |                            |                     | 0.70          |                                              |
| 25                                                                                                                                     | - Â                    | 24        | 1,572,000 2,019,000 |                                        | 1.00                                                                                    |                         |                    |              |                    |           |                            |                     | 0.70          |                                              |
| 26                                                                                                                                     | x                      |           |                     |                                        | 1.00                                                                                    |                         |                    |              |                    |           |                            | ··                  | 0.60          |                                              |
| 20                                                                                                                                     | <u>х</u>               | 24        | 2,093,000           |                                        | 1.10                                                                                    |                         |                    |              |                    |           |                            |                     | 0.80          |                                              |
| 27                                                                                                                                     |                        | 24        | 1,738,000           | ·                                      | 1.10                                                                                    |                         |                    |              |                    |           |                            |                     | 0.80          |                                              |
| 28                                                                                                                                     | x<br>x                 | 24        | 1,763,000           |                                        | 1.10                                                                                    |                         |                    |              |                    |           |                            |                     | 0.80          |                                              |
|                                                                                                                                        |                        | 24        | 2,214,000           |                                        | 1.00                                                                                    |                         |                    |              |                    |           |                            |                     | 0.70          |                                              |
| 30                                                                                                                                     | <u>x</u>               | 24        | 1,434,000           |                                        | 1.10                                                                                    |                         |                    |              |                    |           |                            |                     | 0.80          |                                              |
| 31                                                                                                                                     | X                      | 24        | 1,605,000           |                                        | 1.10                                                                                    |                         |                    |              |                    |           |                            |                     | 0.80          |                                              |
| Total                                                                                                                                  |                        |           | 56,737,000          |                                        |                                                                                         |                         |                    |              |                    |           |                            |                     |               |                                              |
| Averag                                                                                                                                 |                        |           | 1,830,225           |                                        |                                                                                         |                         |                    |              |                    |           |                            |                     |               |                                              |
| Maximum                                                                                                                                |                        |           | 2 500 000           |                                        |                                                                                         |                         |                    |              |                    |           |                            |                     |               |                                              |

\* Refer to the instructions for this report to determine which plants must provide this information.

Page 10 of 48

| PWS    | Identific                                                                                                                                                                                     | ation Nu   | mber: 33549                 | 016          |                                    | Plant Nar                  | ne: South          | ake          |                    |             |           |                     |                       |                                                                                |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------|--------------|------------------------------------|----------------------------|--------------------|--------------|--------------------|-------------|-----------|---------------------|-----------------------|--------------------------------------------------------------------------------|
|        | IL Daily Data for the Month/Year of: November 2006.<br>Means of Achieving Four-Log Virus Inactivation/Removal: * 🛛 Free Chlorine 🗌 Chlorine Dioxide 🔲 Ozone 🔲 Combined Chlorine (Chloramines) |            |                             |              |                                    |                            |                    |              |                    |             |           |                     |                       |                                                                                |
|        | Danty Da                                                                                                                                                                                      | uanor in   | e wionta/ye                 | AD OL NOV    | ember 2006.                        |                            |                    |              | 1 -1 1 -           | <u></u>     |           |                     |                       |                                                                                |
|        |                                                                                                                                                                                               |            |                             |              |                                    | X Free                     | Chlorine           | L_           | Chlorine           | Dioxide     |           | zone                | Combin                | ed Chlorine (Chloramines)                                                      |
|        |                                                                                                                                                                                               | t Radiatio |                             | her (Describ |                                    |                            |                    |              |                    |             |           |                     |                       |                                                                                |
| Туре   | of Disin                                                                                                                                                                                      | fectant R  | esidual Main                |              | stribution System                  |                            | Free Chlo          |              |                    |             | hlorine ( | Chlorami            | nes)                  | Chlorine Dioxide                                                               |
|        |                                                                                                                                                                                               |            |                             | C            | Calculations, or                   |                            |                    | our-Log      | Virus Inactiv      | ation, if A |           |                     |                       |                                                                                |
|        | Days                                                                                                                                                                                          |            |                             |              |                                    | CT Calcul                  |                    |              |                    |             | UV        | Dose                | ]                     |                                                                                |
| [ .    | Plant                                                                                                                                                                                         |            | ļ ļ                         |              |                                    |                            | Lowest CT          | ]            |                    |             |           |                     | Lowest                |                                                                                |
|        | Staffed                                                                                                                                                                                       |            |                             |              | Lowest Residual                    | Disinfectant               | Provided           |              |                    |             |           |                     | Residual              |                                                                                |
| •      | ΩT                                                                                                                                                                                            |            |                             |              | Disinfectant                       | Contact Time               | Before or          |              | ļ                  |             |           |                     | Disinfectant          |                                                                                |
|        | Visited                                                                                                                                                                                       |            | Net Ourseting               |              | Concentration                      | (T) at C                   | at First           | T            |                    |             |           | Minimum             | Concentration         | E-marker of the second Operation                                               |
| Day of | by<br>Operator                                                                                                                                                                                | Hours      | Net Quantity<br>of Finished |              | (C) Before or at<br>First Customer | Measurement                | Customer<br>During | Temp.        | -H of              | CT          | Operating | Required,           | at Remote<br>Point in | Emergency or Abnormal Operating<br>Conditions; Repair or Maintenance Work that |
| the    | (Place                                                                                                                                                                                        | Plant in   | Water                       | Peak Flow    | During Peak                        | Point During<br>Peak Flow. | Peak Flow,         | of<br>Water, | pH of<br>Water, if | Required,   | mW-       | mW-                 | Distribution          | Involves Taking Water System Components                                        |
| Month  | "X")                                                                                                                                                                                          |            | Produced, gal               | Rate, gpd    | Flow, mg/L                         | minutes                    | mg-min/L           | °C           | Applicable         | ma-min/     |           | sec/cm <sup>2</sup> | System, mg/L          |                                                                                |
| 1      | X                                                                                                                                                                                             | 24         | 1,939,000                   | Juno, Bha    | 1.10                               |                            | Ing man 12         |              | 1 Application      | ing-titur D | Joordan   | activent            | 0.60                  |                                                                                |
| 2      | x                                                                                                                                                                                             | 24         | 1,977,000                   |              | 1.10                               |                            |                    | <u> </u>     |                    |             |           |                     | 0.80                  | · · · · · · · · · · · · · · · · · · ·                                          |
| 3      | X                                                                                                                                                                                             | 24         | 1,679,000                   |              | 1.10                               |                            |                    |              |                    |             |           |                     | 0.80                  |                                                                                |
| 4      | X                                                                                                                                                                                             | 24         | 1,902,000                   |              | 1.10                               |                            |                    |              |                    |             |           | 1                   | 0.80                  |                                                                                |
| 5      | x                                                                                                                                                                                             | 24         | 2,137,000                   |              | 1.20                               |                            |                    |              |                    |             |           |                     | 0.80                  |                                                                                |
| 6      | X                                                                                                                                                                                             | 24         | 1,594,000                   |              | 1.00                               |                            |                    |              |                    |             |           |                     | 0.70                  |                                                                                |
| 7      | X                                                                                                                                                                                             | 24         | 1,550,000                   |              | 1.00                               |                            |                    |              |                    |             |           |                     | 0.70                  |                                                                                |
| 8      | <u>x</u>                                                                                                                                                                                      | 24         | 1,551,000                   |              | 1.10                               |                            |                    |              |                    |             |           |                     | 0.80                  |                                                                                |
| 9      | X                                                                                                                                                                                             | 24         | 1,856,000                   |              | 1.10                               | L                          |                    |              |                    |             |           |                     | 0.80                  |                                                                                |
| 10     | X                                                                                                                                                                                             | 24         | 1,539,000                   |              | 1.10                               |                            |                    | ļ            |                    |             | <u> </u>  | L                   | 0.80                  |                                                                                |
| 11     | X                                                                                                                                                                                             | 24         | 1,752,000                   |              | 1.20                               |                            | Ļ                  | <u> </u>     | <u> </u>           |             | <u> </u>  |                     | 0.80                  |                                                                                |
| 12     | X                                                                                                                                                                                             | 24         | 2,031,000                   |              | 1.40                               |                            | ļ                  | ·            |                    | ļ           | <u> </u>  |                     | 1.00                  |                                                                                |
| 13     | X                                                                                                                                                                                             | 24         | 1,453,000                   |              | 1.00                               |                            | <u> </u>           | <u> </u>     |                    |             | <u> </u>  |                     | 0.60                  |                                                                                |
| 14     | X<br>X                                                                                                                                                                                        | 24         | 1,332,000                   |              | 1.00                               |                            | <u> </u>           | +            |                    | ┼────       |           |                     | 0.70                  |                                                                                |
| 16     | $\frac{1}{x}$                                                                                                                                                                                 | 24         | 1,830,000                   | <u> </u>     | 1.10                               |                            | <u> </u>           | <u> </u>     | ╆────              | <u> </u>    |           |                     | 0.80                  |                                                                                |
| 17     | x                                                                                                                                                                                             | 24         | 1,277,000                   | <u> </u>     | 1.10                               | <u> </u>                   |                    |              |                    |             | +         |                     | 0.80                  |                                                                                |
| 18     | X                                                                                                                                                                                             | 24         | 1,671,000                   | <u> </u>     | 1.10                               |                            |                    |              |                    | ┼           |           |                     | 0.70                  | ······································                                         |
| 19     | 1 x                                                                                                                                                                                           | 24         | 2,082,000                   | <u> </u>     | 1.10                               |                            |                    |              |                    | +           | <u> </u>  |                     | 0.80                  |                                                                                |
| 20     | 1 x                                                                                                                                                                                           | 24         | 1,436,000                   | <u> </u>     | 1.10                               |                            |                    |              | 1                  |             |           |                     | 0.80                  |                                                                                |
| 21     | 1 x                                                                                                                                                                                           | 24         | 1,391,000                   | 1            | 1.00                               | 1                          | <u> </u>           | 1            |                    | <u> </u>    | <u> </u>  | t                   | 0.80                  |                                                                                |
| 22     | X                                                                                                                                                                                             | 24         | 1,833,000                   |              | 1.00                               |                            |                    | +            |                    |             | <u> </u>  |                     | 0.80                  |                                                                                |
| 23     | X                                                                                                                                                                                             | 24         | 2,027,000                   | 1            | 1.30                               | 1                          |                    | 1            |                    |             |           | 1                   | 0.90                  |                                                                                |
| 24     | X                                                                                                                                                                                             | 24         | 1,705,000                   |              | 1.00                               |                            | <u> </u>           | 1            |                    | 1           |           |                     | 0.70                  |                                                                                |
| 25     | X                                                                                                                                                                                             | 24         | 1,749,000                   |              | 1.30                               |                            |                    |              |                    | 1           |           | 1                   | 1.00                  |                                                                                |
| 26     | X                                                                                                                                                                                             | 24         | 2,177,000                   | 1            | 1.30                               |                            | 1                  |              |                    | 1           |           |                     | 0.90                  |                                                                                |
| 27     | X                                                                                                                                                                                             | 24         | 1,349,000                   |              | 1.10                               |                            |                    |              |                    |             |           |                     | 0.80                  |                                                                                |
| 28     | X                                                                                                                                                                                             | 24         | 1,451,000                   |              | 1.00                               |                            |                    |              |                    |             |           |                     | 0.70                  |                                                                                |
| 29     | x                                                                                                                                                                                             | 24         | 1,597,000                   |              | 1.10                               |                            |                    |              |                    |             |           |                     | 0.80                  |                                                                                |
| 30     | X                                                                                                                                                                                             | 24         | 1,586,000                   |              | 1.20                               |                            |                    |              |                    | 1           |           | · .                 | 0.90                  |                                                                                |
| 31     |                                                                                                                                                                                               | 24         |                             |              |                                    |                            |                    |              |                    |             | 1         | 1                   | 1                     |                                                                                |
| Total  |                                                                                                                                                                                               |            | 51,200,000                  | 1            |                                    |                            |                    |              |                    |             |           |                     |                       |                                                                                |
| Avera  | ge                                                                                                                                                                                            |            | 1,706,666                   | 4            |                                    |                            |                    |              |                    |             |           |                     |                       |                                                                                |
| Maxi   | num                                                                                                                                                                                           |            | 2,177,000                   | _            |                                    |                            |                    |              |                    |             |           |                     |                       |                                                                                |

\* Refer to the instructions for this report to determine which plants must provide this information.

Page 11 of 48

PWS Identification Number: 3354916

Plant Name: Southlake

|       | haile Da     | ta for th       | e Month/Ve          | ar of Dece    | mber 06                     | <u></u>      |            |            |            |           |                     | ·····               | ·····         |                                              |
|-------|--------------|-----------------|---------------------|---------------|-----------------------------|--------------|------------|------------|------------|-----------|---------------------|---------------------|---------------|----------------------------------------------|
| Mean  | s of A ch    | ieving Fr       | our-Log Viru        | s Inactivatio | ember, 06.<br>on/Removal: * | X Free       | Chlorine   |            | Chlorine   | Dioxide   |                     | zone                | Combin        | ed Chlorine (Chloramines)                    |
|       | trovialet    | Radiatio        |                     | her (Describ  | а).<br>Литониотии.          | 23 1100      |            |            | CHIOLING   | DIOXIGO   |                     | 2010                |               | ica chiorine (chiorannies)                   |
|       |              |                 |                     |               | stribution Syst             |              | Free Chl   |            |            | nbined C  | hloning (           | Chloren             |               | Chlorine Dioxide                             |
| Type  | or Disin     | lectant R       |                     |               | Calculations, or            |              |            |            |            |           |                     |                     | nes)          |                                              |
| 1     | Days         |                 |                     |               | Calculations, or            | CT Calcul    |            | our-cog    |            | auou, u A |                     | Dose                | -             |                                              |
| 1     | Plant        |                 |                     |               | <b> </b>                    |              | Lowest CT  | Г <u> </u> |            | <b></b>   |                     |                     | Lowest        |                                              |
| 1     | Staffed      |                 |                     |               | Lowest Residual             | Disinfectant | Provided   |            |            |           |                     |                     | Residual      |                                              |
| ļ     | or           |                 |                     | •             | Disinfectant                | Contact Time | Before or  |            |            | l         | ļ                   |                     | Disinfectant  |                                              |
| 1     | Visited      |                 |                     |               | Concentration               | (T) at C     | at First   |            | ·.         |           |                     | Minimum             | Concentration |                                              |
|       | by           |                 | Net Quantity        |               | (C) Before or at            | Measurement  | Customer   | Temp.      |            |           | Operating           |                     | at Remote     | Emergency or Abnormal Operating              |
|       | Operator     | Hours           | of Finished         |               | First Customer              | Point During | During     | of         | pH of      | CT        | UV Dose,            |                     | Point in      | Conditions; Repair or Maintenance Work that  |
| the   | (Place       | Plant in        | Water               | Peak Flow     | During Peak                 | Peak Flow,   | Peak Flow, | Water,     |            | Required, |                     | mW-                 | Distribution  | Involves Taking Water System Components      |
| Month | "X")         |                 | Produced, gal       | Rate, gpd     | Flow, mg/L                  | minutes      | ng-min/L   | <u>°C</u>  | Applicable | mg-min/L  | sec/cm <sup>2</sup> | sec/cm <sup>2</sup> | System, mg/L  | Out of Operation                             |
| 1     | <u>x</u>     | <u>24</u><br>24 | 1,572,000           |               | 1.10                        |              |            |            |            |           | <u> </u>            |                     | 0.80          |                                              |
| 2     | x            | 24              | 1,672,000 2,030,000 |               | 1.50                        |              |            |            |            | <u> </u>  |                     |                     | 0.80          |                                              |
| 4     | x            | 24              | 1,420,000           |               | 1.10                        |              | . <u> </u> | <u> </u>   |            |           |                     |                     | 0.90          |                                              |
| 5     | <del>x</del> | 24              | 1,391,000           |               | 1.10                        |              | <u> </u>   |            | ·          |           |                     |                     | 0.80          | · · · · · · · · · · · · · · · · · · ·        |
| 6     | X            | 24              | 1,764,000           |               | 1.10                        |              |            | ┢────      |            |           | +                   |                     | 0.60          |                                              |
| 7     | X            | 24              | 1,791,000           |               | 1.30                        |              | <u> </u>   | <u> </u>   |            |           | ┨┅─────             |                     | 0.90          |                                              |
| 8     | X            | 24              | 1,444,000           |               | 1.10                        |              |            |            |            |           | <u> </u>            |                     | 0.80          |                                              |
| 9     | x            | 24              | 1,712,000           |               | 1.20                        |              |            |            | <u> </u>   |           | <u> </u>            | · · · ·             | 0.90          |                                              |
| 10    | x            | 24              | 2,035,000           |               | 1.40                        |              |            |            |            | 1         |                     |                     | 1.00          |                                              |
| 11    | X            | 24              | 1,460,000           |               | 1.10                        |              |            | 1          |            |           | +                   |                     | 0.90          | *****                                        |
| 12    | X            | 24              | 1,431,000           |               | 1.10                        | h            |            |            |            |           |                     |                     | 0.50          | HSP # 3 out of service (motor burned.)       |
| 13    | X            | 24              | 1,727,000           |               | 1.20                        |              |            | 1          |            |           |                     |                     | 0.90          |                                              |
| 14    | X            | 24              | 1,753,000           |               | 1.20                        |              |            |            |            |           |                     |                     | 0.90          |                                              |
| 15    | X            | 24              | 1,259,000           |               | 1.00                        |              |            | 1          |            | 1         |                     |                     | 0.80          |                                              |
| 16    | X            | 24              | 1,408,000           |               | 1.20                        |              |            |            |            |           |                     |                     | 0.90          | HSP # 1 out of service (motor burned.)       |
| 17    | <u> </u>     | 24              | 1,599,000           |               | 1.30                        |              |            |            |            |           |                     |                     | 0.90          |                                              |
| 18    | X            | 24              | 1,741,000           |               | 1,10                        |              |            |            |            |           |                     |                     | 0.90          |                                              |
| 19    | X            | 24              | 1,331,000           |               | 1.00                        |              |            |            | 1          |           |                     |                     | 0.70          |                                              |
| 20    | <u> </u>     | 24              | 1,460,000           |               | 1,10                        |              |            |            |            | -         |                     |                     | 0.80          | Revision to previous MOR - clerical error.   |
| 21    | X            | 24              | 1,857,000           |               | 1.30                        | <u> </u>     | ļ          |            |            | <u> </u>  |                     |                     | 0.90          | HSP # 1 back in service with repaired motor. |
| 22    | X            | 24              | 1,482,000           |               | 1.10                        |              |            |            |            |           | <u> </u>            |                     | 0.90          |                                              |
| 23    | X            | 24              | 1,510,000           |               | 1,20                        | ļ            | <u> </u>   |            | <u> </u>   |           |                     |                     | 0.70          |                                              |
| 24    | <u>x</u>     | 24              | 1,735,000           |               | 1.30                        | ļ            |            | L          |            |           |                     |                     | 0.90          |                                              |
| 25    | <u>X</u>     | 24              | 1,460,000           |               | 1.20                        |              | ļ          |            | ļ          |           | <u> </u>            |                     | 0.80          |                                              |
| 26    | X            | 24              | 1,259,000           |               | 1.00                        |              |            |            |            | ļ         | <u> </u>            | <u> </u>            | 0.80          |                                              |
| 27    | X            | 24              | 1,679,000           | <u> </u>      | 1.10                        |              |            | ļ          |            | ·         |                     | ļ                   | 0.80          | HSP # 3 back in service with a new motor.    |
| 28    | X            | 24              | 1,835,000           |               | 1.10                        | <b> </b>     | <u> </u>   | ļ          |            | <u> </u>  | <b></b>             |                     | 0.70          |                                              |
| 29    | <u>X</u>     | 24              | 1,636,000           |               | 1.10                        | <b> </b>     | <u> </u>   | <u> </u>   |            | <u> </u>  | <u> </u>            | ļ                   | 0.80          |                                              |
| 30    | X            | 24              | 1,794,000           | <u> </u>      | 1.20                        | ·            |            |            | <u> </u>   | ·         | <u> </u>            | <b> </b>            | 0.90          |                                              |
| 31    | x            | 24              | 2,024,000           | <u> </u>      | 1,30                        | I            | 1          | L          | <u> </u>   | I         | L                   | <u> </u>            | 0.90          | L                                            |
| Total |              |                 | 50,271,000          | 4             |                             |              |            |            |            |           |                     |                     |               |                                              |
| Avera |              |                 | 1,621,645           | 4             |                             |              |            |            |            |           |                     |                     |               |                                              |
| Maxi  | กเมก         |                 | 2,035,000           | 1             |                             |              |            |            |            |           |                     |                     |               |                                              |

\* Refer to the instructions for this report to determine which plants must provide this information.

Page 12 of 48

# MONTHLY OPERATION REPORT FOR PWSs TREATING RAW GROUND WATER OR PURCHASED FINISHED WATER Identification Number: 3354916 Plant Name: Southlake

PWS Identification Number: 3354916

|       | N. 11. 1N.         | r                 |                             |              |                    |                |             |           |                 |              |                     |                     |              |                                             |
|-------|--------------------|-------------------|-----------------------------|--------------|--------------------|----------------|-------------|-----------|-----------------|--------------|---------------------|---------------------|--------------|---------------------------------------------|
|       | vaniv ua           | ua ior u          | ie Month/Ye                 | ar of Jan    | 1 <b>ry,0</b> 7    |                |             |           |                 |              |                     |                     |              |                                             |
|       |                    |                   |                             |              | n/Removal: *       | 🔀 Free         | Chlorine    |           | Chlorine        | Dioxide      |                     | zone                | Combin       | ed Chlorine (Chloramines)                   |
|       |                    | t Radiati         |                             | her (Describ |                    | •              |             |           |                 |              |                     |                     |              |                                             |
| Type  | of Disin           | fectant R         | esidual Main                | tained in Di | stribution Syst    | em: 🛛          | Free Chl    | orine     |                 | mbined C     | hlorine (           | Chlorami            | nes)         | Chlorine Dioxide                            |
|       |                    |                   |                             | C            | Calculations, or   | UV Dose, to De | monstrate F | our-Log   | Virus Inactiv   | vation if A  | noliceble*          | CILIOIALIII         |              |                                             |
| ł     | Days               |                   |                             |              |                    | CT Calcul      | ations      |           | The do Antereta | 41101, 11 14 |                     | Dose                |              |                                             |
| 1     | Plant              | }                 | } 1                         |              | 1                  |                | Lowest CT   |           | T               | T            |                     |                     | Lowest       |                                             |
| ł     | Staffed            |                   |                             |              | Lowest Residual    | Disinfectant   | Provided    | {         | 1               |              | 1                   |                     | Residual     |                                             |
| }     | or                 |                   |                             |              | Disinfectant       | Contact Time   | Before or   |           | 1               | l l          |                     |                     | Disinfectant |                                             |
|       | Visited            |                   |                             |              | Concentration      | (T) at C       | at First    | 1         |                 |              | Lowest              | Minimum             |              |                                             |
| David | by                 | 17                | Net Quantity<br>of Finished |              | (C) Before or at   | Measurement    | Customer    | Temp.     | 1               | Minimum      | Operating           | UV Dose             | at Remote    | Emergency or Abnormal Operating             |
| the   | Operator<br>(Place | Hours<br>Plant in | Of Finished<br>Water        |              | First Customer     | Point During   | During      | of        | pH of           | CT           | UV Dose,            | Required,           | Point in     | Conditions; Repair or Maintenance Work that |
| Month |                    | Operation         |                             | Peak Flow    | During Peak        | Peak Flow,     | Peak Flow,  | Water,    | Water, if       | Required,    | mW-                 | mW-                 | Distribution | Involves Taking Water System Components     |
| 1     | X                  | 24                | 1,758,000                   | Rate, gpd    | Flow, mg/L<br>1.00 | minutes        | mg-min/L,   | <u>°C</u> | Applicable      | mg-min/L     | sec/cm <sup>2</sup> | sec/cm <sup>2</sup> | System, mg/L | Out of Operation                            |
| 2     | x                  | 24                | 1,197,000                   |              | 1.00               |                |             | <b> </b>  | <u> </u>        | <u> </u>     |                     |                     | 0.80         |                                             |
| 3     | X                  | 24                | 1,820,000                   |              | 1.00               |                |             | ·         |                 |              |                     |                     | 0.80         |                                             |
| 4     | X                  | 24                | 1,357,000                   |              | 1.10               | <u>}</u>       |             |           |                 |              |                     |                     | 0.80         |                                             |
| 5     | X                  | 24                | 1,580,000                   |              | 1.10               |                |             |           |                 |              | <u> </u>            |                     | 0.90         |                                             |
| 6     | X                  | 24                | 1,722,000                   |              | 1.00               | <u> </u>       |             |           |                 | <u> </u>     |                     |                     | 0.90         |                                             |
| 7     | x                  | 24                | 2,000,000                   |              | 1.00               | <u> </u>       |             |           |                 | ┠            | <u> </u>            |                     | 0.80         |                                             |
| 8     | x                  | 24                | 1,381,000                   |              | 1.00               |                |             |           |                 |              | <u> </u>            |                     | 0.90         |                                             |
| 9     | x                  | 24                | 1,367,000                   |              | 1.00               |                |             | <u> </u>  |                 |              |                     |                     | 0.90         |                                             |
| 10    | X                  | 24                | 1,512,000                   |              | 1.00               |                |             |           |                 |              |                     |                     | 0.80         |                                             |
| 11    | X                  | 24                | 1,945,000                   |              | 1.00               | <u> </u>       |             | <u> </u>  |                 |              |                     |                     | 0.70         |                                             |
| 12    | x                  | 24                | 1,338,000                   |              | 1.00               |                | <u> </u>    |           |                 | 1            | <u> </u>            |                     | 0.80         |                                             |
| 13    | X                  | 24                | 1,689,000                   |              | 1.00               |                |             | [         |                 |              |                     |                     | 0.80         |                                             |
| 14    | X                  | 24                | 2,082,000                   |              | 1.00               |                |             |           |                 | ·            |                     |                     | 0.70         |                                             |
| 15    | X                  | 24                | 1,336,000                   |              | 1.00               |                |             |           |                 |              |                     |                     | 0.80         |                                             |
| 16    | X                  | 24                | 1,383,000                   |              | 1.00               |                |             |           |                 | · · · · ·    |                     |                     | 0.70         |                                             |
| 17    | X                  | 24                | 1,501,000                   |              | 1.00               |                |             | <u> </u>  | 1               |              |                     |                     | 0.40         |                                             |
| 18    | X                  | 24                | 1,749,000                   |              | 1.10               |                |             |           |                 |              | †                   |                     | 0.80         |                                             |
| 19    | X                  | 24                | 1,348,000                   |              | 1.00               |                |             |           |                 |              | †                   |                     | 0.80         |                                             |
| 20    | X                  | 24                | 1,576,000                   |              | 1.00               |                |             |           |                 |              |                     |                     | 0.80         |                                             |
| 21    | X                  | 24                | 1,878,000                   |              | 1.00               |                |             |           |                 | 1            | 1                   |                     | 0.80         |                                             |
| 22    | X                  | 24                | 1,348,000                   |              | 1.00               |                |             |           |                 |              |                     |                     | 0.80         |                                             |
| 23    | X                  | 24                | 1,170,000                   |              | 1.00               |                |             |           |                 |              |                     |                     | 0.80         |                                             |
| 24    | X                  | 24                | 1,443,000                   |              | 1.00               |                |             |           |                 |              |                     |                     | 0.70         |                                             |
| 25    | X                  | 24                | 1,589,000                   |              | 1.00               |                |             |           |                 |              |                     |                     | 0.80         |                                             |
| 26    | x                  | 24                | 1,057,000                   |              | 1.00               |                |             |           |                 |              |                     |                     | 0.80         |                                             |
| 27    | X                  | 24                | 1,530,000                   |              | 1.20               |                |             |           |                 |              |                     |                     | 0.90         |                                             |
| 28    | X                  | 24                | 1,729,000                   |              | 1.00               |                |             |           |                 |              |                     |                     | 0.70         |                                             |
| 29    | X                  | 24                | 1,190,000                   |              | 1.00               |                |             |           |                 |              |                     |                     | 0.80         |                                             |
| 30    | X                  | 24                | 1,280,000                   | L            | 1.00               |                |             |           |                 |              |                     |                     | 0.80         |                                             |
| 31    | X                  | 24                | 1,469,000                   | L            | 1.00               | L              |             |           |                 |              |                     |                     | 0.80         |                                             |
| Total |                    |                   | 47,324,000                  |              |                    |                |             |           |                 |              |                     |                     |              |                                             |
| Avera |                    |                   | 1,526,580                   |              |                    |                |             |           |                 |              |                     |                     |              |                                             |
| Maxin | um                 |                   | 2,082,000                   | 1            |                    |                |             |           |                 |              |                     |                     |              |                                             |

\* Refer to the instructions for this report to determine which plants must provide this information.

| PWS              | dentific           | ation Nu  | mber: 33549                 | 16            |                                    | Plant Nan                   | ne: Southl         | ake         |            |               |                     |                     |                            |                                             |
|------------------|--------------------|-----------|-----------------------------|---------------|------------------------------------|-----------------------------|--------------------|-------------|------------|---------------|---------------------|---------------------|----------------------------|---------------------------------------------|
| 111. D           | aily Da            | ta for th | e Month/Ye                  | ar of: Feb.   | 2007.                              |                             |                    |             |            |               |                     |                     |                            |                                             |
| Means            | of Ach             | ieving Fo | our-Log Viru                | s Inactivatio | n/Removal: *                       | X Free                      | Chlorine           |             | Chlorine   | Dioxide       |                     | zone                | Combin                     | ed Chlorine (Chloramines)                   |
|                  |                    | Radiatio  |                             | her (Describ  |                                    |                             |                    |             |            |               |                     |                     |                            | •                                           |
|                  |                    |           |                             | tained in Dis | stribution Syste                   | em: 🛛                       | Free Chlo          | orine       | Cor        | nbined C      | hlorine (           | Chlorami            | nes)                       | Chlorine Dioxide                            |
| 1                |                    |           |                             | CT            | Calculations, or l                 |                             |                    |             |            |               |                     |                     |                            |                                             |
|                  | Days               |           |                             |               |                                    | CT Calcul                   |                    |             |            |               | UV                  | Dose                |                            |                                             |
|                  | Plant              |           |                             |               |                                    |                             | Lowest CT          |             |            |               |                     |                     | Lowest                     |                                             |
|                  | Staffed            |           |                             |               | Lowest Residual                    | Disinfectant                | Provided           |             |            |               |                     |                     | Residual                   |                                             |
|                  | or                 |           |                             |               | Disinfectant                       | Contact Time                | Before or          |             |            |               |                     |                     | Disinfectant               |                                             |
|                  | Visited            |           |                             |               | Concentration                      | (I) at C                    | at First           | _           |            |               |                     | Minimum             | Concentration<br>at Remote | Emergency or Abnormal Operating             |
| Daviat           | by                 | Hours     | Net Quantity<br>of Finished | [             | (C) Before or at<br>First Customer | Measurement<br>Point During | Customer<br>During | Temp.<br>of | pH of      | Minimum<br>CT | UV Dose,            | Dequired            | Point in                   | Conditions; Repair or Maintenance Work that |
| the              | Operator<br>(Place | Plant in  | Water                       | Peak Flow     | During Peak                        | Peak Flow,                  | Peak Flow.         | Water.      |            | Required,     |                     | mW-                 | Distribution               | Involves Taking Water System Components     |
| Month            | "X")               | Operation | Produced, gal               | Rate, gpd     | Flow, mg/L                         | minutes                     | mg-min/L           | °C          | Applicable | mg-min/L      | sec/cm <sup>2</sup> | sec/cm <sup>2</sup> | System, mg/L               |                                             |
| 1                | x                  | 24        | 1,618,000                   |               | 1.00                               |                             |                    |             |            |               |                     |                     | 0.70                       |                                             |
| 2                | X                  | 24        | 1,277,000                   |               | 1.00                               |                             |                    |             |            |               |                     |                     | 0.80                       |                                             |
| 3                | X                  | 24        | 1,058,000                   |               | 1.90                               |                             |                    |             |            |               |                     |                     | 1.20                       |                                             |
| 4                | X                  | 24        | 1,551,000                   |               | 0.90                               |                             |                    |             |            |               |                     |                     | 0.70                       |                                             |
| 5                | x                  | 24        | 1,358,000                   |               | 1.20                               |                             |                    | <u> </u>    |            |               | L                   | <u> </u>            | 0.80                       |                                             |
| 6                | X                  | 24        | 1,235,000                   |               | 1.00                               |                             |                    |             |            |               | <u> </u>            | L                   | 0.80                       |                                             |
| 7                | _X                 | 24        | 1,524,000                   |               | 1.00                               |                             |                    | L           |            | ļ             |                     | L                   | 0.70                       |                                             |
| 8                | X                  | 24        | 1,653,000                   |               | 1.00                               | 1                           |                    | <u> </u>    |            |               | L                   |                     | 0.80                       |                                             |
| 9                | X                  | 24        | 1,428,000                   | L             | 1.00                               |                             |                    | <b></b>     |            | L             | ┣━━━                |                     | 0.80                       |                                             |
| 10               | X                  | 24        | 1,508,000                   |               | 1.30                               | ļ                           |                    | l           |            |               |                     |                     | 0.60                       |                                             |
| 11               | <u>X</u>           | 24        | 1,840,000                   |               | 1.00                               | ·                           |                    |             |            |               | <u> </u>            |                     | 0.60                       |                                             |
| 12               | X                  | 24        | 1,353,000                   | ļ             | 1.00                               | 1                           |                    |             | <u> </u>   |               | ·                   | <u> </u>            | 0.80                       |                                             |
| 13               | <u>X</u>           | 24        | 1,209,000                   |               | 1.00                               |                             |                    |             |            |               | ╆                   | +                   | 0.50                       |                                             |
| 14               | X<br>X             | 24        | 1,718,000                   | <u> </u>      | 1.00                               | <del> </del>                | <u>├</u>           | <u> </u>    |            |               |                     |                     | 0.50                       |                                             |
| 15               | x                  | 24        | 1,269,000                   | +             | 1.10                               | +                           |                    |             | <u> </u>   |               | ┼───                |                     | 0.80                       | ······································      |
| 17               | x                  | 24        | 1,468,000                   | <u> </u>      | 1.00                               |                             | <u> </u>           | ┼───        | ┠─────     | +             | <u> </u>            |                     | 0.60                       |                                             |
| 18               | x                  | 24        | 1,798,000                   |               | 1.00                               |                             | <u> </u>           | <u> </u>    |            |               |                     | <u>├</u> ───        | 0.60                       |                                             |
| 19               | x                  | 24        | 1,236,000                   | +             | 1.00                               | 1                           |                    |             |            | 1             | 1                   | 1                   | 0.80                       |                                             |
| 20               | X                  | 24        | 1,430,000                   | 1             | 1.00                               | 1                           |                    | 1           | t          | <u> </u>      | +                   | <u> </u>            | 0.70                       | · · ·                                       |
| 21               | x                  | 24        | 1,715,000                   | 1             | 1,00                               |                             |                    | 1           | <u> </u>   | 1             | 1                   | 1                   | 0.80                       |                                             |
| 22               | X                  | 24        | 1,815,000                   | 1             | 1.00                               |                             |                    | 1           |            |               |                     |                     | 0.80                       |                                             |
| 23               | X                  | 24        | 1,537,000                   | 1             | 1.00                               |                             |                    |             |            |               |                     |                     | 0.80                       |                                             |
| 24               | X                  | 24        | 1,533,000                   |               | 1.00                               |                             |                    |             |            |               |                     |                     | 0.70                       |                                             |
| 25               | X                  | 24        | 2,016,000                   |               | 1.00                               |                             |                    |             |            |               |                     |                     | 0.70                       |                                             |
| 26               | X                  | 24        | 1,486,000                   |               | 1.00                               |                             |                    | -           |            |               |                     | ļ                   | 0.80                       |                                             |
| 27               | X                  | 24        | 1,480,000                   |               | 0.80                               |                             | ļ                  |             |            | ļ             | ·                   |                     | 0.60                       |                                             |
| 28               | X                  | 24        | 1,821,000                   |               | 1.00                               |                             | ļ                  | <b>_</b>    | <u> </u>   |               | ļ                   |                     | 0.80                       |                                             |
| 29               |                    | 24        |                             |               |                                    |                             | <b></b>            | <b>_</b>    | ļ          |               | <u> </u>            |                     | <u> </u>                   |                                             |
| 30               | ļ                  | 24        | <u></u>                     | <u> </u>      |                                    |                             | <b></b>            |             |            |               | +                   | +                   |                            |                                             |
| 31               | L                  | 24        |                             | +             | L                                  |                             | <u> </u>           |             |            | 1             | <u> </u>            |                     | L                          |                                             |
| Total<br>Average |                    |           | 42,378,000                  | _             |                                    |                             |                    |             |            |               |                     |                     |                            |                                             |
|                  |                    |           | 1,513,500                   |               |                                    |                             |                    |             |            |               |                     |                     |                            |                                             |

\* Refer to the instructions for this report to determine which plants must provide this information.

Page 14 of 48

# MONTHLY OPERATION REPORT FOR PWSs TREATING RAW GROUND WATER OR PURCHASED FINISHED WATER Identification Number: 3354916 Plant Name: Southlake

PWS Identification Number: 3354916

|        |                     |           | e Month/Ye             |                                        |                               |                          |                       |                                              |               |              |                     |                     |                            |                                                                                |
|--------|---------------------|-----------|------------------------|----------------------------------------|-------------------------------|--------------------------|-----------------------|----------------------------------------------|---------------|--------------|---------------------|---------------------|----------------------------|--------------------------------------------------------------------------------|
| Mean   | s of Ach            | ieving F  | our-Log Viru           | s Inactivatio                          | m/Removal; *                  | 🛛 Free                   | Chlorine              |                                              | Chlorine      | Dioxide      |                     | )zone               | Combin                     | ed Chlorine (Chloramines)                                                      |
|        |                     | t Radiati |                        | her (Describ                           |                               |                          |                       |                                              |               |              |                     |                     |                            |                                                                                |
| Type   | of Disin            | fectant R | esidual Mair           | tained in Di                           | stribution Syst               | em: 🛛 🛛                  | Free Chl              | orine                                        | Co            | mbined C     | Chlorine (          | Chlorami            | nes)                       | Chlorine Dioxide                                                               |
|        |                     |           |                        | C                                      | r Calculations, or            | UV Dose, to De           | monstrate F           | our-Log                                      | Virus Inactiv | vation, if A | pplicable*          |                     |                            |                                                                                |
| {      | Days                |           |                        |                                        |                               | CT Calcul                | ations                |                                              |               |              |                     | Dose                | 1                          |                                                                                |
|        | Plant<br>Staffed    |           |                        |                                        | l                             |                          | Lowest CT             |                                              |               |              |                     |                     | Lowest                     |                                                                                |
| 1      | of                  |           |                        |                                        | Lowest Residual               | Disinfectant             | Provided              | ł                                            |               |              |                     |                     | Residual                   |                                                                                |
|        | Visited             |           |                        |                                        | Disinfectant<br>Concentration | Contact Time<br>(T) at C | Before or<br>at First |                                              |               |              |                     |                     | Disinfectant               |                                                                                |
| 1      | by                  |           | Net Quantity           |                                        | (C) Before or at              | Measurement              | Customer              | Temp.                                        |               | Minimum      |                     | Minimum             | Concentration<br>at Remote |                                                                                |
| Day of | Operator            | Hours     | of Finished            |                                        | First Customer                | Point During             | During                | of                                           | pHof          | CT           | UV Dose,            |                     | Point in                   | Emergency or Abnormal Operating<br>Conditions; Repair or Maintenance Work that |
| the    | (Place              | Plant in  | Water                  | Peak Flow                              | During Peak                   | Peak Flow,               | Peak Flow,            |                                              |               | Required,    | mW-                 | mW-                 | Distribution               | Involves Taking Water System Components                                        |
| Month  | "X")                |           | Produced, gal          | Rate, gpd                              | Flow, mg/L                    | minutes                  | mg-min/L              | <u>°C</u>                                    | Applicable    | mg-min/L     | sec/cm <sup>2</sup> | sec/cm <sup>2</sup> | System, mg/L               | Out of Operation                                                               |
|        | X                   | 24        | 2,018,000              |                                        | 1.00                          |                          |                       |                                              |               |              |                     |                     | 0.80                       |                                                                                |
| 2      | X<br>X              | 24<br>24  | 1,679,000              |                                        | 1.00                          |                          |                       | <u> </u>                                     |               |              |                     |                     | 0.60                       |                                                                                |
| 4      | x                   | 24        | 1,736,000              |                                        | 1.80                          |                          | ļ                     | ļ                                            |               |              |                     |                     | 0.80                       |                                                                                |
| 5      | 1-â                 | 24        | 1,875,000<br>1,528,000 |                                        | 1.40                          |                          |                       | <u> </u>                                     |               |              | ļ                   |                     | 0.90                       |                                                                                |
| 6      | <del>x</del>        | 24        | 1,486,000              |                                        | 0.90                          |                          |                       |                                              |               |              |                     |                     | 0.50                       |                                                                                |
| 7      | $\frac{\hat{x}}{x}$ | 24        | 1,762,000              |                                        | 1.50                          |                          |                       | <u> </u>                                     |               | ┝            | <u> </u>            | <u> </u>            | 0.60                       |                                                                                |
| 8      | x                   | 24        | 1,961,000              | ······································ | 1.30                          |                          |                       |                                              |               | ┼───         |                     |                     | 1.00                       |                                                                                |
| 9      | X                   | 24        | 1,625,000              |                                        | 1.00                          |                          |                       |                                              |               |              |                     |                     | 1.00                       |                                                                                |
| 10     | x                   | 24        | 1,764,000              |                                        | 1.00                          |                          |                       |                                              |               | <u> </u>     | <u> </u>            |                     | 0.80                       |                                                                                |
| 11     | X                   | 24        | 2,153,000              |                                        | 1.20                          |                          |                       |                                              |               | <u> </u>     |                     |                     | 0.70                       |                                                                                |
| 12     | x                   | 24        | 1,556,000              |                                        | 1.00                          |                          |                       | 1                                            |               | F            | <u> </u>            |                     | 0.80                       |                                                                                |
| 13     | X                   | 24        | 1,695,000              |                                        | 1.00                          |                          | ·····                 | t                                            |               |              |                     |                     | 0.80                       |                                                                                |
| 14     | X                   | 24        | 1,819,000              |                                        | 1.00                          |                          |                       |                                              |               |              |                     |                     | 0.80                       |                                                                                |
| 15     | X                   | 24        | 2,030,000              |                                        | 1.20                          |                          |                       |                                              |               |              | 1                   |                     | 0.80                       |                                                                                |
| 16     | X                   | 24        | 1,567,000              |                                        | 1.00                          |                          |                       |                                              |               |              |                     |                     | 0.80                       |                                                                                |
| 17     | X                   | 24        | 1,757,000              |                                        | 0.90                          |                          |                       |                                              |               |              |                     |                     | 0.60                       |                                                                                |
| 18     | X                   | 24        | 2,085,000              |                                        | 1.00                          |                          |                       |                                              |               |              |                     |                     | 0.60                       |                                                                                |
| 19     | X                   | 24        | 1,497,000              | ļ                                      | 1.00                          |                          | L                     |                                              |               |              | 1                   |                     | 0.80                       |                                                                                |
| 20     | X<br>X              | 24        | 1,640,000              |                                        | 1.00                          |                          |                       | <b></b>                                      |               | ļ            |                     |                     | 0.80                       |                                                                                |
| 22     | <del>x</del>        | 24        | 1,719,000              |                                        | 1.00                          |                          |                       |                                              |               | <u> </u>     | <u> </u>            |                     | 0.60                       |                                                                                |
| 23     | x                   | 24        | 1,647,000              |                                        | 1.00                          |                          |                       |                                              |               | <u> </u>     |                     |                     | 0.80                       |                                                                                |
| 24     | x                   | 24        | 1,682,000              |                                        | 1.00                          |                          |                       |                                              |               |              |                     |                     | 0.80                       |                                                                                |
| 25     | x                   | 24        | 2,145,000              |                                        | 1.10                          |                          |                       |                                              |               |              | h                   |                     | 0.70                       |                                                                                |
| 26     | x                   | 24        | 1,568,000              |                                        | 1.00                          |                          |                       |                                              |               | [            |                     |                     | 0.70                       |                                                                                |
| 27     | X                   | 24        | 1,606,000              |                                        | 1.00                          |                          |                       | <u> </u>                                     |               | <u> </u>     |                     |                     | 0.80                       |                                                                                |
| 28     | x                   | 24        | 1,830,000              |                                        | 1,00                          |                          |                       | 1                                            |               |              | <u> </u>            |                     | 0.80                       |                                                                                |
| 29     | X                   | 24        | 1,928,000              |                                        | 1.00                          |                          |                       | <u>†                                    </u> |               |              |                     |                     | 0.80                       |                                                                                |
| 30     | X                   | 24        | 1,709,000              |                                        | 1.10                          |                          |                       |                                              |               |              |                     |                     | 0.80                       |                                                                                |
| 31     | X                   | 24        | 1,869,000              |                                        | 1.10                          |                          |                       |                                              |               | i            |                     |                     | 0.70                       |                                                                                |
| Total  |                     |           | 54,729,000             |                                        |                               |                          |                       |                                              |               |              | •                   |                     |                            | ـــــــــــــــــــــــــــــــــــــ                                          |
| Avera  |                     |           | 1,765,451              |                                        |                               |                          |                       |                                              |               |              |                     |                     |                            | ·                                                                              |
| Maxin  | 11111               |           | 2,153,000              |                                        |                               |                          |                       |                                              |               |              |                     |                     |                            |                                                                                |

\* Refer to the instructions for this report to determine which plants must provide this information.

| MONTHLY OPERATION REPORT | FOR PWSs TREATING RAW GRO | UND WATER OR PURCHASED FINISHED WATER |
|--------------------------|---------------------------|---------------------------------------|
| (                        | DI. ANT Couthing          |                                       |

| PWS   | Identific | ation Nu  | mber: 33549  | 16            |                  | Plant Nan     | ne: Southl   | ake         |             |              |                     |                     |                      |                                                             |
|-------|-----------|-----------|--------------|---------------|------------------|---------------|--------------|-------------|-------------|--------------|---------------------|---------------------|----------------------|-------------------------------------------------------------|
| 111 1 | haily Da  | to for th | e Month/Ye   | or of: Apri   | 1.2007.          |               |              |             |             |              |                     | ,                   |                      |                                                             |
| Mean  | s of Ach  | ieving Fo | ur-Log Viru  | s Inactivatio | n/Removal: *     | X Free        | Chlorine     |             | Chlorine    | Dioxide      |                     | zone                | Combin               | ed Chlorine (Chloramines)                                   |
|       | traviolat | Radiatio  |              | her (Describ  | e).              | 231100        | 00.01 0.00   | L           | 011101 1110 |              | <u> </u>            | 2044                |                      |                                                             |
|       |           |           |              |               | stribution Syst  |               | Free Chlo    | orine       |             | mbined C     | hlorine (           | Chlorami            | nec)                 | Chlorine Dioxide                                            |
| Type  |           | lectant K | csidual Main |               | Calculations, or | IV Dore to De | monstrate Fo |             |             |              |                     |                     |                      |                                                             |
|       | Days      |           |              |               | Calourations, or | CT Calcul     |              | JOI LOG     | Thus mouth  | 101100, 1133 | UV                  | Dose                |                      |                                                             |
|       | Plant     |           |              |               |                  |               | Lowest CT    |             |             |              |                     |                     | Lowest               |                                                             |
|       | Staffed   |           |              |               | Lowest Residual  | Disinfectant  | Provided     |             |             |              |                     |                     | Residual             |                                                             |
|       | or        |           |              |               | Disinfectant     | Contact Time  | Before or    |             |             |              |                     |                     | Disinfectant         |                                                             |
|       | Visited   |           |              |               | Concentration    | (T) at C      | at First     |             |             |              | Lowest              | Minimum             | Concentration        |                                                             |
|       | by        |           | Net Quantity |               | (C) Before or at | Measurement   | Customer     | Temp.       |             |              | Operating           | UV Dose             | at Remote            | Emergency or Abnormal Operating                             |
|       | Operator  | Hours     | of Finished  |               | First Customer   | Point During  | During       | of          | pH of       | CT           | UV Dose,            |                     | Point in             | Conditions; Repair or Maintenance Work that                 |
| the   | Ā100      | Plant in  | Water        | Peak Flow     | During Peak      | Peak Flow,    | Peak Flow,   | Water,      | Water, if   |              |                     | mW-                 | Distribution         | Involves Taking Water System Components<br>Out of Operation |
| Month |           |           |              | Rate, gpd     | Flow, mg/L       | minutes       | mg-min/L     | <u>°C</u>   | Applicable  | Ing-min/L    | sec/cm <sup>2</sup> | sec/cm <sup>2</sup> | System, mg/L<br>0.80 |                                                             |
|       | X         | 24        | 2,102,000    |               | 1.20             |               |              |             |             |              |                     |                     | 0.80                 |                                                             |
| 2     | X         | 24        | 1,591,000    | ·             | 1.20             |               |              |             |             |              |                     |                     | 1:00                 |                                                             |
| 3     | X         | 24        | 1,901,000    |               | 1.50             | <u>}</u>      | <u> </u>     | 1           |             |              | <u> </u>            | h                   | 0.60                 |                                                             |
| 4     | X<br>X    | 24        | 1,918,000    |               | 1.00             | <u> </u>      |              | <u> </u>    |             | <u> </u>     | <u>├</u> ───        |                     | 0.80                 |                                                             |
| 5     | X         | 24        | 1,680,000    |               | 1.00             |               |              |             |             |              | <u> </u>            |                     | 0.60                 |                                                             |
| 7     | X         | 24        | 1,875,000    | <u> </u>      | 0.90             |               |              |             | <u> </u>    | <u> </u>     | 1                   | <u> </u>            | 0.60                 |                                                             |
| 8     | X         | 24        | 2,002,000    |               | 1.00             |               |              | <u>├</u> ── |             | +            | +                   | 1                   | 0.70                 |                                                             |
| 9     | x         | 24        | 1,667,000    |               | 1.00             |               |              | +           |             |              |                     |                     | 0.80                 |                                                             |
| 10    | X         | 24        | 1,581,000    |               | 1.00             |               |              |             |             | 1            | 1                   |                     | 0.80                 |                                                             |
| 11    | x         | 24        | 1,723,000    |               | 1.20             | 1             |              |             |             |              | 1                   |                     | 0.80                 |                                                             |
| 12    | T X       | 24        | 1,800,000    |               | 1.00             |               |              | 1           |             |              | 1                   |                     | 0.80                 |                                                             |
| 13    | x         | 24        | 1,502,000    |               | 1.00             | 1             |              | 1           |             | 1            |                     |                     | 0.80                 |                                                             |
| 14    | x         | 24        | 1,764,000    |               | 1.00             |               |              |             |             |              |                     |                     | 0.50                 |                                                             |
| 15    | X         | 24        | 1,899,000    |               | 1,10             |               |              | 1           | 1           |              |                     |                     | 0.60                 |                                                             |
| 16    | X         | 24        | 1,524,000    |               | 1,00             |               |              |             |             |              |                     |                     | 0.80                 |                                                             |
| 17    | x         | 24        | 1,475,000    |               | 1.00             |               |              |             |             |              |                     |                     | 0.70                 |                                                             |
| 18    | X         | 24        | 1,647,000    |               | 1,20             |               |              |             |             |              |                     |                     | 0.90                 |                                                             |
| 19    | X         | 24        | 1,945,000    |               | 1.30             |               |              |             |             |              |                     |                     | 0.90                 |                                                             |
| 20    | X         | 24        | 1,649,000    |               | 1,20             |               |              |             |             |              |                     |                     | 1.00                 |                                                             |
| 21    | X         | 24        | 1,686,000    |               | 1.00             |               |              |             |             |              | 1                   |                     | 0.80                 |                                                             |
| 22    | X         | 24        | 1,947,000    |               | 1.10             |               |              |             |             |              |                     | -                   | 0.80                 |                                                             |
| 23    | X         | 24        | 1,525,000    |               | 1.00             |               |              |             |             |              | 1                   |                     | 0.90                 |                                                             |
| 24    | X         | 24        | 1,580,000    |               | 1.20             |               |              |             |             |              |                     |                     | 1.00                 |                                                             |
| 25    | X         | 24        | 1,811,000    |               | 1.00             |               |              |             |             |              | <u> </u>            | <u> </u>            | 0.90                 |                                                             |
| 26    | X         | 24        | 2,017,000    | <u> </u>      | 1.30             |               | ļ            | <b> </b>    | +           |              | +                   | <u> </u>            | 1.00                 |                                                             |
| 27    | X         | 24        | 1,672,000    |               | 1.30             |               |              | 1           | L           | <u> </u>     | <u> </u>            |                     | 1.00                 | <u></u>                                                     |
| 28    | X         | 24        | 1,863,000    |               | 1.30             |               |              |             |             |              |                     | <u> </u>            | 1.00                 |                                                             |
| 29    | x         | 24        | 2,131,000    |               | 1.30             |               | <u>↓</u>     | +           |             |              | +                   |                     | 1.00                 |                                                             |
| 30    | X         | 24        | 1,687,000    | <u> </u>      | 1.30             |               | Į            |             |             | <u> </u>     | +                   | ·{}                 | 0.90                 |                                                             |
| 31    | L         | 24        |              | <u> </u>      | 1                | 1             | <u> </u>     |             |             |              |                     |                     | <u> </u>             | <u> </u>                                                    |
| Total |           |           | 53,291,000   | 4             |                  |               |              |             |             |              |                     |                     |                      |                                                             |
| Avera |           |           | 1,776,366    | 4             |                  |               |              |             |             |              |                     |                     |                      |                                                             |

 Maximum
 2,131,000

 \* Refer to the instructions for this report to determine which plants must provide this information.

| PWS      | Identific                                                                                                                                                                                 | ation Nu        | unber: 33549                | 16           |                               | Plant Nar                             | ne: South              | lake         |               |              |                            |                            |                      |                                             |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------|--------------|-------------------------------|---------------------------------------|------------------------|--------------|---------------|--------------|----------------------------|----------------------------|----------------------|---------------------------------------------|
|          | H. Daily Data for the Month/Year of: May, 2007.<br>Means of Achieving Four-Log Virus Inactivation/Removal: * 🛛 Free Chlorine 🗌 Chlorine Dioxide 🗌 Ozone 🔲 Combined Chlorine (Chloramines) |                 |                             |              |                               |                                       |                        |              |               |              |                            |                            |                      |                                             |
|          |                                                                                                                                                                                           |                 |                             |              |                               | Mires                                 | Ch1                    |              | 011-1-1       |              |                            |                            | <b>1 1 1 1</b>       |                                             |
|          |                                                                                                                                                                                           |                 |                             |              |                               |                                       | Chiorine               | L            | Chiorine      | Dioxide      |                            | Jzone                      |                      | ed Chlorine (Chloramines)                   |
|          |                                                                                                                                                                                           | Radiatio        |                             | her (Describ |                               |                                       |                        |              |               |              |                            |                            |                      |                                             |
| Туре     | of Disin                                                                                                                                                                                  | fectant R       | esidual Main                | tained in Di | stribution Syst               | em: 🛛 🖂                               | Free Chi               |              |               | mbined C     | hlorine (                  | Chlorami                   | nes)                 | Chlorine Dioxide                            |
|          |                                                                                                                                                                                           |                 |                             | C            | T Calculations, or            | UV Dose, to De                        | monstrate F            | our-Log      | Virus Inactiv | ration, if A |                            |                            |                      |                                             |
|          | · Days                                                                                                                                                                                    |                 |                             |              |                               | CT Calcul                             |                        |              |               | -            | UV                         | Dose                       |                      |                                             |
|          | Plant                                                                                                                                                                                     |                 | ]                           |              | 1                             |                                       | Lowest CT              |              |               |              |                            |                            | Lowest               |                                             |
|          | Staffed                                                                                                                                                                                   |                 |                             |              | Lowest Residual               | Disinfectant                          | Provided               |              |               |              |                            |                            | Residual             |                                             |
|          | 10                                                                                                                                                                                        |                 |                             |              | Disinfectant                  | Contact Time                          | Before or              |              |               |              |                            |                            | Disinfectant         |                                             |
|          | Visited                                                                                                                                                                                   |                 | Nacourt                     |              | Concentration                 | (T) at C                              | at First               | _            |               |              |                            | Minimum                    | Concentration        |                                             |
| Day of   | by<br>Operator                                                                                                                                                                            | Hours           | Net Quantity<br>of Finished |              | (C) Before or at              | Measurement                           | Customer               | Temp.        |               |              | Operating                  | UV Dose                    | at Remote            | Emergency or Abnormal Operating             |
| the      | Place                                                                                                                                                                                     | Plant in        | Water                       | Peak Flow    | First Customer<br>During Peak | Point During                          | During                 | of           | pH of         | CT           | UV Dose,                   |                            | Point in             | Conditions; Repair or Maintenance Work that |
| Month    |                                                                                                                                                                                           |                 | Produced, gal               | Rate, gpd    | Flow, mg/L                    | Peak Flow,<br>minutes                 | Peak Flow,<br>mg-min/L | Water,<br>°C | Applicable    | Required,    | mW-<br>sec/cm <sup>2</sup> | mW-<br>sec/cm <sup>1</sup> | Distribution         | Involves Taking Water System Components     |
| 1        | X                                                                                                                                                                                         | 24              | 1,728,000                   | Kate, gpu    | 1.20                          | minuces                               | mg-mmr.                | <u></u>      | Applicable    | mg-minvi.    | sec/cm                     | sec/cm-                    | System, mg/L<br>0.90 | Out of Operation                            |
| 2        | x                                                                                                                                                                                         | 24              | 1,804,000                   |              | 1.30                          |                                       |                        | <u> </u>     |               | <u> </u>     |                            | <b>├──</b> -               | 0.90                 |                                             |
| 3        | x                                                                                                                                                                                         | 24              | 2,144,000                   |              | 1.30                          |                                       |                        |              |               | <u> </u>     |                            |                            | 1.00                 |                                             |
| 4        | X                                                                                                                                                                                         | 24              | 1,763,000                   |              | 1.30                          |                                       |                        |              |               | t            | 1                          | <u>├</u> ─────             | 1.00                 | · · · · · · · · · · · · · · · · · · ·       |
| 5        | X                                                                                                                                                                                         | 24              | 1,845,000                   |              | 1.80                          |                                       |                        | 1            |               | <u> </u>     | <u> </u>                   |                            | 1.30                 |                                             |
| 6        | X                                                                                                                                                                                         | 24              | 2,191,000                   |              | 1.10                          |                                       |                        |              | <u> </u>      | <u></u>      | <u> </u>                   |                            | • 0.90               |                                             |
| 7        | X                                                                                                                                                                                         | 24              | 1,475,000                   |              | 1.10                          |                                       |                        |              |               | 1            |                            |                            | 0.90                 |                                             |
| 8        | X                                                                                                                                                                                         | 24              | 1,679,000                   |              | 1.00                          |                                       |                        |              |               |              |                            |                            | 0.80                 |                                             |
| 9        | X                                                                                                                                                                                         | 24              | 1,773,000                   |              | 1.20                          |                                       |                        |              | 1             | 1            |                            |                            | 0.50                 |                                             |
| 10       | X                                                                                                                                                                                         | 24              | 2,077,000                   |              | 1.30                          |                                       |                        |              |               | [            | 1                          |                            | 1.00                 |                                             |
| 11       | X                                                                                                                                                                                         | 24              | 1,718,000                   |              | 1.00                          |                                       |                        |              |               |              |                            |                            | 0.90                 |                                             |
| 12       | X                                                                                                                                                                                         | 24              | 1,902,000                   |              | 1.00                          |                                       |                        |              |               |              |                            |                            | 0.80                 |                                             |
| 13       | X                                                                                                                                                                                         | 24              | 2,231,000                   |              | 1.00                          |                                       |                        |              |               |              |                            |                            | 0.80                 |                                             |
| 14       | X                                                                                                                                                                                         | 24              | 1,836,000                   |              | 0.70                          |                                       |                        | ļ            |               |              |                            |                            | 0.70                 |                                             |
| 15       | X                                                                                                                                                                                         | 24              | 1,172,000                   | <b></b>      | 1.00                          |                                       |                        | ļ            |               |              |                            |                            | 0.70                 |                                             |
| 16       | X                                                                                                                                                                                         | 24              | 1,926,000                   |              | 1.10                          |                                       | L                      | ļ            | L             | <u> </u>     | 1                          | L                          | 0.80                 |                                             |
| 17       | X                                                                                                                                                                                         | 24              | 2,170,000                   |              | 1.20                          |                                       | <u> </u>               | ļ            |               |              | <u> </u>                   |                            | 0.90                 |                                             |
| 18       | X                                                                                                                                                                                         | 24              | 1,611,000                   |              | 1.20                          |                                       |                        | <u> </u>     |               |              |                            |                            | 0.90                 |                                             |
| 19<br>20 | X                                                                                                                                                                                         | 24              | 1,748,000                   |              | 0.90                          | ·····                                 | ļ                      | <u> </u>     |               | L            |                            |                            | 0.60                 |                                             |
|          | X                                                                                                                                                                                         | 24<br>24        | 2,233,000                   |              | 1.00                          |                                       |                        | ļ            | ļ             |              |                            |                            | 0.70                 |                                             |
| 21       | X                                                                                                                                                                                         |                 | 1,646,000                   |              | 1.00                          | · · · · · · · · · · · · · · · · · · · |                        | ļ            |               |              | <u> </u>                   |                            | 0.70                 |                                             |
| 22<br>23 | X<br>X                                                                                                                                                                                    | <u>24</u><br>24 | 1,567,000 2,009,000         | <u> </u>     | 1.00                          |                                       |                        | <u> </u>     |               |              |                            | L                          | 0.80                 |                                             |
| 23       | $\frac{\hat{x}}{x}$                                                                                                                                                                       | 24              | 2,181,000                   |              | 1.00                          |                                       |                        | <u> </u>     | <u> </u>      | <u> </u>     | ļ                          |                            | 0.80                 |                                             |
| 25       | x x                                                                                                                                                                                       | 24              | 1,797,000                   |              | 1.20                          |                                       |                        | l            | <u> </u>      | <u> </u>     | ļ                          | <b> </b>                   | 0.90                 |                                             |
| 26       | X                                                                                                                                                                                         | 24              | 1,901,000                   |              | 1.00                          |                                       |                        |              |               |              |                            |                            | 0.80                 |                                             |
| 27       | X                                                                                                                                                                                         | 24              | 2,198,000                   |              | 1.00                          |                                       |                        |              |               |              |                            | <u> </u>                   | 0.80                 |                                             |
| 28       | X                                                                                                                                                                                         | 24              | 1,666,000                   |              | 1.00                          | }                                     | <u>├</u>               | <u> </u>     | }             | <u> </u>     | <u> </u>                   | ┠────                      | 0.80                 |                                             |
| 29       | x                                                                                                                                                                                         | 24              | 1,662,000                   |              | 1.30                          | <u> </u>                              |                        | <u> </u>     |               |              | <u> </u>                   | <u> </u>                   | 0.70                 |                                             |
| 30       | X                                                                                                                                                                                         | 24              | 2,086,000                   | <u> </u>     | 1.80                          | ł                                     |                        |              |               | <u> </u>     |                            | <u> </u>                   | 0.90                 |                                             |
| 31       | X                                                                                                                                                                                         | 24              | 2,149,000                   | h            | 1.20                          | <u> </u>                              | <u> </u>               |              | <u> </u>      | ┢───         |                            |                            | 1.00                 | · · · · · · · · · · · · · · · · · · ·       |
| Total    |                                                                                                                                                                                           |                 | 57,888,000                  |              | <u></u>                       | 1                                     | I                      | 1            | L             | ·!           | L                          | i,                         | 0.90                 | L                                           |
| Averag   | 10                                                                                                                                                                                        |                 | 1,867,354                   |              |                               |                                       |                        |              |               |              |                            |                            |                      |                                             |
| Maxin    |                                                                                                                                                                                           |                 | 2,233,000                   | 1            |                               |                                       |                        |              |               |              |                            |                            |                      |                                             |

\* Refer to the instructions for this report to determine which plants must provide this information.

Page 17 of 48

PWS Identification Number: 3354916

Plant Name: Southlake

|        |                    |            | e Month/Ye                  |               |                                              |                       |                        |             |                                       |              |                            |                            |                      |                                                                                                                         |
|--------|--------------------|------------|-----------------------------|---------------|----------------------------------------------|-----------------------|------------------------|-------------|---------------------------------------|--------------|----------------------------|----------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------|
| Mean   | s of Ach           | ieving Fo  | our-Log Viru                | s Inactivatio | n/Removal: *                                 | K Free                | Chlorine               |             | Chlorine                              | Dioxide      |                            | Dzone                      | Combin               | ed Chlorine (Chloramines)                                                                                               |
| 🔲 ហ    | traviole           | t Radiatio | n 🗍 Ot                      | her (Describ  | е):                                          |                       |                        |             |                                       |              |                            |                            |                      |                                                                                                                         |
| Type   | of Disin           | fectant R  | esidual Main                | tained in Di  | stribution Syst                              | em: 🛛                 | Free Chlo              | orine       |                                       | nbined C     | hlorine (                  | Chlorami                   | nes)                 | Chlorine Dioxide                                                                                                        |
|        |                    |            |                             |               | Calculations, or                             |                       |                        |             | Virus Inactiv                         | ation. if Ar | iplicable*                 |                            |                      |                                                                                                                         |
|        | Days.              |            |                             |               |                                              | CT Calcul             | ations                 |             |                                       |              |                            | Dose                       |                      |                                                                                                                         |
|        | Plant              |            |                             |               |                                              |                       | Lowest CT              |             |                                       |              |                            | 1                          | Lowest               |                                                                                                                         |
|        | Staffed            |            |                             |               | Lowest Residual                              | Disinfectant          | Provided               |             |                                       | · .          |                            |                            | Residual             |                                                                                                                         |
|        | 70                 |            |                             |               | Disinfectant                                 | Contact Time          | Before or              |             |                                       |              |                            |                            | Disinfectant         |                                                                                                                         |
| }      | Visited            | [          |                             |               | Concentration                                | (T) at C              | at First               | _           |                                       |              |                            |                            | Concentration        |                                                                                                                         |
| Daviof | by<br>Onemter      | Hours      | Net Quantity<br>of Finished |               | (C) Before or at                             | Measurement           | Customer               | Temp.       |                                       |              | Operating                  | UV Dose-                   | at Remote            | Emergency or Abnormal Operating                                                                                         |
| the    | Operator<br>(Place | Plant in   | Water                       | Peak Flow     | First Customer                               | Point During          | During                 | of          | pH of                                 | СТ           |                            | Required,                  | Point in             | Conditions; Repair or Maintenance Work that                                                                             |
| Month  | "X")               |            | Produced, gal               | Rate, gpd     | During Peak<br>Flow, mg/L                    | Peak Flow,<br>minutes | Peak Flow,<br>mg-min/L | Water,<br>℃ | Water, if<br>Applicable               | Required,    | mW-<br>sec/cm <sup>2</sup> | mW-<br>sec/cm <sup>2</sup> | Distribution         | Involves Taking Water System Components                                                                                 |
| 1      | <u>x</u>           | 24         | 1,734,000                   | Ivans, Sho    | 1,10                                         | minutes               | Ing-mutt.              |             | Applicable                            | mg-muvL      | sec/cm                     | sec/cm                     | System, mg/L<br>0.80 | Out of Operation                                                                                                        |
| 2      | X                  | 24         | 1,646,000                   |               | 0.90                                         |                       |                        |             |                                       |              |                            |                            | 0.80                 |                                                                                                                         |
| 3      | X                  | 24         | 1,974,000                   |               | 1.00                                         |                       |                        | <u> </u>    |                                       |              |                            |                            | 0.30                 |                                                                                                                         |
| 4      | X                  | 24         | 1.450.000                   |               | 1.00                                         | <u> </u>              | <u> </u>               |             |                                       | ·            |                            |                            | 0.90                 |                                                                                                                         |
| 5      | X                  | 24         | 1,614,000                   |               | 1.00                                         |                       |                        | <u> </u>    |                                       |              | ├                          | <u>├───</u>                | 0.80                 |                                                                                                                         |
| 6      | Х                  | 24         | 1,970,000                   |               | 1.00                                         |                       |                        |             |                                       |              |                            |                            | 0.80                 |                                                                                                                         |
| 7      | х                  | 24         | 1,830,000                   |               | 1.00                                         |                       |                        |             |                                       |              |                            | <u> </u>                   | 0.80                 |                                                                                                                         |
| 8      | X                  | 24         | 1,567,000                   |               | 1.00                                         |                       |                        |             | · · · · · · · · · · · · · · · · · · · |              |                            |                            | 0,90                 |                                                                                                                         |
| 9      | X                  | 24         | 1,891,000                   |               | 1.00                                         |                       |                        |             |                                       |              |                            |                            | 0.80                 |                                                                                                                         |
| 10     | X                  | 24         | 2,385,000                   |               | 1.20                                         |                       |                        |             |                                       |              |                            |                            | 0.80                 |                                                                                                                         |
| 11     | <u>x</u>           | 24         | 1,537,000                   |               | 1.00                                         |                       |                        |             |                                       |              | 1                          |                            | 0.80                 |                                                                                                                         |
| 12     | <u>x</u>           | 24         | 1,457,000                   |               | 1.00                                         |                       |                        |             |                                       |              |                            |                            | 0.60                 |                                                                                                                         |
| 13     | X                  | 24         | 1,852,000                   |               | 1,10                                         |                       |                        |             |                                       |              |                            |                            | 0.60                 |                                                                                                                         |
| 14     | X                  | 24         | 2,174,000                   |               | 1.20                                         |                       |                        |             |                                       |              |                            |                            | 0.80                 |                                                                                                                         |
| 15     | <u> </u>           | 24         | 1,636,000                   | ·             | 1.10                                         | ļ                     |                        | 1           |                                       |              |                            |                            | 0.80                 |                                                                                                                         |
| 16     | <u>X</u>           | 24         | 1,908,000                   |               | 1.40                                         |                       |                        | L           |                                       |              |                            |                            | 0.90                 |                                                                                                                         |
| 17     | X                  | 24         | 2,278,000                   |               | 1.20                                         |                       | <u> </u>               |             |                                       |              |                            |                            | 0.90                 |                                                                                                                         |
| 18     | X                  | 24         | 1,601,000                   |               | 1.10                                         |                       |                        | ļ           |                                       |              |                            | <u> </u>                   | 0.80                 |                                                                                                                         |
| 19     | <u>x</u>           | 24         | 1,628,000                   |               | 1.00                                         |                       |                        | ļ           |                                       |              |                            |                            | 0.80                 |                                                                                                                         |
| 20     | <u>x</u>           | 24         | 1,658,000                   |               | 1.10                                         |                       |                        |             |                                       |              |                            |                            | 0.80                 |                                                                                                                         |
| 21     | X                  | 24         | 2,097,000                   |               | 1.20                                         |                       | L                      |             |                                       |              |                            |                            | 0.90                 |                                                                                                                         |
| 22     | X<br>X             | 24<br>24   | 1,752,000                   |               | 1.20                                         |                       |                        | ļ           |                                       |              |                            |                            | 1.00                 |                                                                                                                         |
| 24     | <u>x</u>           | 24         | 2,003,000                   |               | 1.30                                         |                       |                        | <b> </b>    |                                       |              |                            |                            | 1.00                 |                                                                                                                         |
| 25     | - Â                | 24         | 1,863,000                   |               | 1.40                                         |                       | <u> </u>               | <u> </u>    |                                       |              |                            |                            | 1.00                 |                                                                                                                         |
| 26     | - Â                | 24         | 1,553,000                   |               | 1.00                                         |                       |                        | ┠────       |                                       |              |                            |                            | 1.00                 |                                                                                                                         |
| 27     | X                  | 24         | 2,010,000                   |               | 1.20                                         |                       |                        |             | <u>_</u>                              |              |                            |                            | 0.90                 |                                                                                                                         |
| 28     | - <u>x</u>         | 24         | 2,190,000                   |               | 1.20                                         |                       |                        |             |                                       |              |                            |                            | 0.90                 | a                                                                                                                       |
| 29     | X                  | 24         | 1,753,000                   |               | 1.20                                         |                       |                        | }           |                                       |              |                            |                            | 1.00                 | age                                                                                                                     |
| 30     | <u>x</u>           | 24         | 2,016,000                   |               | 1.20                                         | <u> </u>              |                        | <u>├</u> -  |                                       |              |                            |                            | 0.90                 |                                                                                                                         |
| 31     |                    | 24         |                             |               |                                              |                       |                        |             |                                       |              |                            |                            | 0.50                 | ۵۵ میلاد میلاد<br>مرابع |
| Total  | -                  | ·          | 54,939,000                  |               | <u>.                                    </u> | 4 <u>.</u>            | L                      | L           | L                                     |              | L                          | <u></u>                    |                      | q                                                                                                                       |
| Averag | c                  |            | 1,831,300                   |               |                                              |                       |                        |             |                                       |              |                            |                            |                      | 48                                                                                                                      |
| Maxim  |                    |            | 2,385,000                   |               |                                              |                       |                        |             |                                       |              |                            |                            |                      | -                                                                                                                       |
|        |                    |            |                             |               |                                              | _                     |                        | _           |                                       |              |                            |                            |                      |                                                                                                                         |

\* Refer to the instructions for this report to determine which plants must provide this information.

| PWS      | dentific                                                                                                                                                                         | ation Nu   | mber: 33549   | 16            |                           | Plant Nan                  | ne: Southli                                                                                                     | ake      |               |              |                     |                     |              |                                             |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|---------------|---------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------|----------|---------------|--------------|---------------------|---------------------|--------------|---------------------------------------------|
|          | E Daily Data for the Month/Year of: July, 2007.<br>It is a chieving Four-Log Virus Inactivation/Removal: * SFree Chlorine Chlorine Dioxide Ozone Combined Chlorine (Chloramines) |            |               |               |                           |                            |                                                                                                                 |          |               |              |                     |                     |              |                                             |
| HE D     | aily Dat                                                                                                                                                                         | a for th   | e Month/Ye    | ar of: July,  | 2007.                     | 51 2                       | Chine /                                                                                                         |          | Chloring      | Diswide      | 570                 | 7010                | Combin       | ed Chlorine (Chloramines)                   |
| Means    | ofAchi                                                                                                                                                                           | ieving Fo  | ur-Log Viru   | s Inactivatio | n/Removal: *              | X Free                     | Chiorine                                                                                                        |          | Calorine      | DIOXIOC      |                     | ZONG                |              |                                             |
| וט 🔲     | traviolet                                                                                                                                                                        | Radiatio   | n [] Ot       | her (Describ  | <u>e):</u>                |                            |                                                                                                                 |          |               |              |                     | 71 1                |              | Chlorine Dioxide                            |
| TYDE     | of Disint                                                                                                                                                                        | fectant R  | esidual Main  | tained in Di  | stribution Syste          | em: 🖂                      | Free Chlo                                                                                                       | orine    | Cor           | nbined C     | hlorine ((          | hiorami             | nes)         |                                             |
| Freed    | 1                                                                                                                                                                                |            |               | Ċ             | Calculations, or I        | JV Dose, to De             | monstrate Fo                                                                                                    | our-Log  | Virus Inactiv | ation, if Ap | plicable*           |                     |              |                                             |
|          | Days                                                                                                                                                                             |            |               |               |                           | CT Calcul                  | the second se |          |               |              | UVI                 | Jase                | Lowest       |                                             |
|          | Plant                                                                                                                                                                            | 1          |               |               |                           |                            | Lowest CT                                                                                                       |          |               |              |                     |                     | Residual     |                                             |
| } }      | Staffed                                                                                                                                                                          |            |               |               | Lowest Residual           | Disinfectant               | Provided                                                                                                        |          |               |              |                     |                     | Disinfectant |                                             |
|          | or                                                                                                                                                                               |            |               |               | Disinfectant              | Contact Time               | Before or                                                                                                       | [        |               | {            | Lowert              | Minimum             |              |                                             |
| 1 1      | Visited                                                                                                                                                                          |            |               |               | Concentration             | (T) at C                   | at First                                                                                                        | Temp.    |               | Minimum      | Operating           | ITV Dose            |              | Emergency or Abnormal Operating             |
| 1 1      | by                                                                                                                                                                               |            | Net Quantity  |               | (C) Before or at          | Measurement                | Customer<br>During                                                                                              | of       | pHof          | CT           | UV Dose,            | Required            | Point in     | Conditions; Repair or Maintenance Work that |
|          | Operator                                                                                                                                                                         | Hours      | of Finished   |               | First Customer            | Point During<br>Peak Flow, | Peak Flow,                                                                                                      | Water,   | Water if      | Required.    | mW-                 | mW-                 | Distribution | Involves Taking Water System Components     |
| the      | (Place                                                                                                                                                                           | Plant in   | Water         | Peak Flow     | During Peak<br>Flow, mg/L | minutes                    | mg-min/L                                                                                                        | °C.      | Annlicable    | mg-min/L     | sec/cm <sup>2</sup> | sec/cm <sup>2</sup> | System, mg/L | Out of Operation                            |
| Moath    | "X")                                                                                                                                                                             |            | Produced, gal | Rate, gpd     | 1.30                      | - Antious                  |                                                                                                                 |          |               |              |                     |                     | 1.00         |                                             |
|          | X                                                                                                                                                                                | 24<br>24   | 2,392,000     |               | 1.00                      | +                          |                                                                                                                 | 1        |               |              |                     |                     | 0.90         |                                             |
| 2        | X                                                                                                                                                                                | 24         | 1,486,000     |               | 1.00                      | +                          |                                                                                                                 |          |               |              |                     |                     | 0.70         |                                             |
| 3        | x                                                                                                                                                                                | 24         | 1,520,000     |               | 1.00                      |                            |                                                                                                                 |          |               |              |                     |                     | 0.70         |                                             |
| 5        | 1 â                                                                                                                                                                              | 24         | 1,937,000     |               | 1.30                      |                            |                                                                                                                 |          |               |              | L                   |                     | 0.90         |                                             |
| 6        | 1 x                                                                                                                                                                              | 24         | 1,513,000     |               | 1.10                      |                            | L                                                                                                               |          |               |              |                     |                     | 0.90         |                                             |
| 7        | + <del>x</del>                                                                                                                                                                   | 24         | 1,677,000     | 1             | 1.10                      |                            |                                                                                                                 | 1        | L             |              | f                   |                     | 0.90         |                                             |
| 8        | X                                                                                                                                                                                | 24         | 2,103,000     | 1             | 1.30                      |                            |                                                                                                                 | <u></u>  | ļ             | <u> </u>     | <u> </u>            | +                   | 1.00         |                                             |
| 9        | X                                                                                                                                                                                | 24         | 1,527,000     |               | 1.10                      |                            |                                                                                                                 |          | f             |              | +                   | f                   | 1.00         |                                             |
| 10       | x                                                                                                                                                                                | 24         | 1,555,000     |               | 1.10                      |                            | <u></u>                                                                                                         | <b>_</b> |               |              |                     |                     | 0.80         |                                             |
| 11       | X                                                                                                                                                                                | 24         | 1,896,000     |               | 1.10                      |                            |                                                                                                                 | +        |               |              |                     |                     | 0.80         |                                             |
| 12       | X                                                                                                                                                                                | 24         | 2,098,000     |               | 1.20                      |                            |                                                                                                                 | +        | +             | +            |                     |                     | 0.80         |                                             |
| 13       | X                                                                                                                                                                                | 24         | 1,676,000     |               | 1.00                      |                            | +                                                                                                               |          |               |              |                     | +                   | 0.70         |                                             |
| 14       | X                                                                                                                                                                                | 24         | 2,040,000     |               | 1.10                      |                            | +                                                                                                               | -f       |               | 1            |                     |                     | 0.80         |                                             |
| 15       | X                                                                                                                                                                                | 24         | 2,094,000     | +             | 1.10                      | +                          |                                                                                                                 |          | +             | +            |                     |                     | 0.80         |                                             |
| 16       | X                                                                                                                                                                                | 24         | 1,226,000     |               | 1.00                      |                            | +                                                                                                               | <u>+</u> |               | 1            | 1                   | 1                   | 0.80         |                                             |
| 17       | X                                                                                                                                                                                | 24         | 1,554,000     | +             | 1.00                      | +                          |                                                                                                                 | +        |               |              |                     |                     | 0.80         |                                             |
| 18       | X                                                                                                                                                                                | 24         | 1,722,000     |               | 1.00                      | +                          |                                                                                                                 |          |               | +            |                     |                     | 0.90         |                                             |
| 19       | X                                                                                                                                                                                | 24         | 2,244,000     |               | 1.00                      | +                          |                                                                                                                 | +        | +             |              |                     |                     | 0,90         |                                             |
| 20       | X                                                                                                                                                                                | 24         | 1,637,000     |               | 1.00                      |                            | +                                                                                                               | 1        |               | 1            |                     |                     | 0.80         |                                             |
| 21       | X                                                                                                                                                                                | 24         | 1,932,000     | +             | 0.90                      |                            | +                                                                                                               | 1        | 1             |              |                     |                     | 0.80         |                                             |
| 22       | X                                                                                                                                                                                | 24         | 1,928,000     |               | 1.00                      |                            | 1                                                                                                               | 1        |               |              |                     |                     | 0.60         |                                             |
| 23<br>24 | X                                                                                                                                                                                | 24         | 1,314,000     | +             | 1.00                      |                            |                                                                                                                 | -        |               |              |                     |                     | 0.80         |                                             |
| 24       | X                                                                                                                                                                                | 24         | 1,675,000     | +             | 1.00                      |                            | 1                                                                                                               |          |               |              |                     |                     | 0.80         |                                             |
| 25<br>26 | X                                                                                                                                                                                | 24         | 1,990,000     |               | 1.00                      | 1                          |                                                                                                                 |          |               |              |                     |                     | 0.90         |                                             |
| 26       | X                                                                                                                                                                                | 24         | 1,633,000     |               | 1.00                      | 1                          |                                                                                                                 | T        |               |              |                     |                     | 0.80         |                                             |
| 21       | $+\frac{x}{x}$                                                                                                                                                                   | 24         | 1,856,000     | +             | 1.20                      |                            |                                                                                                                 | _        |               |              |                     |                     | 0.90         |                                             |
| 28       | <del>f î</del>                                                                                                                                                                   | 24         | 1,718,000     |               | 1.00                      |                            |                                                                                                                 |          |               |              | _                   |                     | 0.80         |                                             |
| 30       | + <del>î</del>                                                                                                                                                                   | 24         | 1,362,000     |               | 1.00                      |                            |                                                                                                                 |          | _             |              |                     |                     | 0.80         |                                             |
| 31       | + <del>î</del>                                                                                                                                                                   | 24         | 1,465,000     | 1             | 1.00                      |                            |                                                                                                                 |          |               |              | -                   |                     | 0.80         |                                             |
| 21       |                                                                                                                                                                                  | - <u> </u> | 53,504,000    |               |                           |                            |                                                                                                                 |          |               |              |                     |                     |              |                                             |
|          |                                                                                                                                                                                  |            | 1,725,935     |               |                           |                            |                                                                                                                 |          |               |              |                     |                     |              |                                             |
|          | age                                                                                                                                                                              |            | 2 392 000     |               |                           |                            |                                                                                                                 |          |               |              |                     |                     |              |                                             |

Refer to the instructions for this report to determine which plants must provide this information.

## MONTHLY OPERATION REPORT FOR PWSs TREATING RAW GROUND WATER OR PURCHASED FINISHED WATER PWS Identification Number: 3354916 Plant Name: Southlake

| FWS    | пенни                                                                                                            | auon inu   | under: 33349                | 10            |                           | Plant Nat                  | ne: Soum               | ake          |               |              |                            |                            |                              |                                             |
|--------|------------------------------------------------------------------------------------------------------------------|------------|-----------------------------|---------------|---------------------------|----------------------------|------------------------|--------------|---------------|--------------|----------------------------|----------------------------|------------------------------|---------------------------------------------|
| 111. 1 | L. Daily Data for the Month/Year of: August, 2007.     Ceans of Achieving Four-Log Virus Inactivation/Removal: * |            |                             |               |                           |                            |                        |              |               |              |                            |                            |                              |                                             |
| Mean   | s of Ach                                                                                                         | ieving Fo  | our-Log Viru                | s Inactivatio | n/Removal: *              | X Free                     | Chlorine               |              | Chlorine      | Dioxide      |                            | 2008                       | Combin                       | ed Chlorine (Chloremines)                   |
| ט 🗌    | traviole                                                                                                         | t Radiatio |                             | her (Describ  |                           |                            | 01101410               | L            |               | Dioxide      |                            | 20110                      | C COMPIL                     | ed Chiorine (Chiorannies)                   |
| Туре   | of Disin                                                                                                         | fectant R  | esidual Main                |               | istribution Syst          |                            | Free Chl               |              | Con           | mbined C     | hlorine (                  | Chlorami                   | nes)                         | Chlorine Dioxide                            |
|        |                                                                                                                  |            | •                           | C             | T Calculations, or        |                            |                        | our-Log      | Virus Inactiv | ation, if Ap |                            |                            |                              |                                             |
|        | Days                                                                                                             |            |                             |               |                           | CT Calcul                  | ations                 |              |               |              | UV                         | Dose                       |                              |                                             |
|        | Plant                                                                                                            |            |                             |               |                           |                            | Lowest CT              |              |               |              |                            |                            | Lowest                       |                                             |
|        | Staffed                                                                                                          |            |                             |               | Lowest Residual           | Disinfectant               | Provided               |              |               |              |                            |                            | Residual                     |                                             |
| 1      | OF 10                                                                                                            |            | {                           |               | Disinfectant              | Contact Time               | Before or              |              |               |              | •                          |                            | Disinfectant                 |                                             |
|        | Visited                                                                                                          |            | Max Owner the               |               | Concentration             | (I) at C                   | at First               | _            |               |              |                            | Minimum                    | Concentration                |                                             |
| Day of | by<br>Operator                                                                                                   | Hours      | Net Quantity<br>of Finished |               | (C) Before or at          | Measurement                | Customer               | Temp.        |               |              | Operating                  |                            | at Remote                    | Emergency or Abnormal Operating             |
| the    | (Place                                                                                                           | Plant in   | Water                       | Peak Flow     | First Customer            | Point During<br>Peak Flow. | During                 | of           | pHof          | CT           |                            | Required,                  | Point in                     | Conditions; Repair or Maintenance Work that |
| Month  | "X")                                                                                                             | Operation  |                             | Rate, gpd     | During Peak<br>Flow, mg/L | minutes                    | Peak Flow,<br>mg-min/L | Water,<br>°C | Applicable    | Required,    | mW-<br>sec/cm <sup>2</sup> | mW-<br>scc/cm <sup>2</sup> | Distribution<br>System, mg/L | Involves Taking Water System Components     |
| 1      | X                                                                                                                | 24         | 1,728,000                   | Naic, gpu     | 1.00                      | minutes                    | tug-muv L              | <u> </u>     | Applicable    | mg-nuivL     | sec/cm                     | scc/cm-                    |                              | Out of Operation                            |
| 2      | x                                                                                                                | 24         | 1,723,000                   |               | 1.00                      |                            |                        |              |               |              |                            |                            | 0.70                         |                                             |
| 3      | X                                                                                                                | 24         | 1,432,000                   |               | 1.00                      |                            |                        |              |               |              |                            |                            | 0.80                         |                                             |
| 4      | X                                                                                                                | 24         | 1,913,000                   |               | 1.10                      |                            |                        |              |               |              |                            |                            | 0.80                         |                                             |
| 5      | X                                                                                                                | 24         | 2,550,000                   |               | 1.30                      |                            |                        |              |               |              |                            |                            | 0.90                         |                                             |
| 6      | x                                                                                                                | 24         | 1,772,000                   |               | 1.00                      |                            |                        |              |               |              |                            |                            | 0.80                         |                                             |
| 7      | X                                                                                                                | 24         | 2,025,000                   |               | 1.00                      |                            |                        |              |               |              |                            |                            | 0.80                         |                                             |
| 8      | X                                                                                                                | 24         | 2,393,000                   |               | 1.20                      |                            |                        |              |               |              |                            |                            | 0.90                         |                                             |
| 9      | x                                                                                                                | 24         | 2,632,000                   |               | 1,20                      | h                          |                        |              |               |              |                            |                            | 0.90                         |                                             |
| 10     | X                                                                                                                | 24         | 2,344,000                   |               | 1.30                      |                            |                        |              |               |              |                            |                            | 0.90                         |                                             |
| 11     | x                                                                                                                | 24         | 2,653,000                   |               | 1.40                      |                            |                        |              |               | 1            |                            |                            | 0.90                         |                                             |
| 12     | X                                                                                                                | 24         | 2,222,000                   |               | 1.10                      |                            |                        |              |               |              |                            |                            | 0.80                         |                                             |
| 13     | X                                                                                                                | 24         | 1,579,000                   |               | 1.00                      |                            |                        |              |               |              |                            |                            | 0.80                         |                                             |
| 14     | X                                                                                                                | 24         | 2,472,000                   |               | 1.20                      |                            |                        |              |               |              |                            |                            | 0.90                         |                                             |
| 15     | X                                                                                                                | 24         | 3,042,000                   |               | 1.20                      |                            |                        |              |               |              |                            |                            | 1.00                         |                                             |
| 16     | X                                                                                                                | 24         | 3,003,000                   |               | 1.20                      |                            |                        |              |               |              |                            |                            | 0.80                         |                                             |
| 17     | X                                                                                                                | 24         | 2,884,000                   |               | 1.20                      |                            |                        |              |               |              |                            |                            | 0.90                         |                                             |
| 18     | Х                                                                                                                | 24         | 2,339,000                   |               | 1.30                      |                            |                        |              |               |              |                            |                            | 0.90                         |                                             |
| 19     | X                                                                                                                | 24         | 2,305,000                   |               | 1.40                      | -                          |                        |              |               |              |                            |                            | 1.00                         |                                             |
| 20     | X                                                                                                                | 24         | 1,491,000                   |               | 1.00                      |                            |                        |              |               |              |                            |                            | 0.90                         |                                             |
| 21     | X                                                                                                                | 24         | 1,736,000                   |               | 1.00                      |                            |                        |              |               |              |                            |                            | 0.80                         |                                             |
| _ 22   | X                                                                                                                | 24         | 2,229,000                   |               | 1.10                      |                            |                        |              |               |              |                            |                            | 0.90                         |                                             |
| 23     | X                                                                                                                | 24         | 2,532,000                   |               | 1.30                      |                            |                        |              |               |              |                            |                            | 1.00                         |                                             |
| 24     | X                                                                                                                | 24         | 1,984,000                   |               | 1.20                      |                            |                        |              |               |              |                            |                            | 1.00                         |                                             |
| _25    | X                                                                                                                | 24         | 2,047,000                   |               | 1.20                      |                            |                        |              |               |              |                            |                            | 1.00                         | ······································      |
| 26     | X                                                                                                                | 24         | 1,911,000                   |               | 1.10                      |                            |                        |              |               |              | 1                          |                            | 0.90                         |                                             |
| 27     | X                                                                                                                | 24         | 1,414,000                   |               | 1.00                      |                            |                        |              |               |              |                            |                            | 0.80                         |                                             |
| 28     | X                                                                                                                | 24         | 1,454,000                   |               | 1.00                      |                            |                        |              |               |              |                            |                            | 0.60                         |                                             |
| 29     | X                                                                                                                | 24         | 2,104,000                   |               | 1.10                      |                            |                        |              |               |              |                            |                            | 0.90                         | · · · · · · · · · · · · · · · · · · ·       |
| 30     | X                                                                                                                | 24         | 2,267,000                   |               | 1.20                      |                            |                        |              |               |              |                            |                            | 1.00                         |                                             |
| 31     | X                                                                                                                | 24         | 1,712,000                   |               | 1,20                      |                            |                        |              |               |              |                            |                            | 0.90                         |                                             |
| Total  |                                                                                                                  |            | 65,892,000                  | 1             |                           |                            |                        |              |               |              |                            |                            |                              |                                             |
| Avera  |                                                                                                                  |            | 2,125,548                   | Į             |                           |                            |                        |              |               |              |                            |                            |                              |                                             |
| Maxin  | um                                                                                                               |            | 3,042,000                   | j             |                           |                            |                        |              |               |              |                            |                            |                              |                                             |

\* Refer to the instructions for this report to determine which plants must provide this information.

.

Page 20 of 48

| PWS         | Identific                                                                                                                                                                                  | cation Nu | mber: 33549                 | 916           |                               | Plant Na              | ne: South           | lake                                           |               |              |                            |                            |               |                                             |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------|---------------|-------------------------------|-----------------------|---------------------|------------------------------------------------|---------------|--------------|----------------------------|----------------------------|---------------|---------------------------------------------|
|             | 11. Daily Data for the Month/Year of: September ,2007.<br>Means of Achieving Four-Log Virus Inactivation/Removal: * X Free Chlorine Chlorine Dioxide Ozone Combined Chloring (Chloraminee) |           |                             |               |                               |                       |                     |                                                |               |              |                            |                            |               |                                             |
|             |                                                                                                                                                                                            |           |                             |               |                               |                       |                     |                                                |               | <u></u>      |                            |                            |               |                                             |
|             |                                                                                                                                                                                            |           |                             |               |                               | 🔀 Free                | Chlorine            | L                                              | Chlorine      | Dioxide      |                            | )zone                      | Combin        | ed Chlorine (Chloramines)                   |
|             |                                                                                                                                                                                            | t Radiati | on []Ot                     | her (Describ  | ie):                          |                       |                     |                                                |               |              |                            |                            |               | . ,                                         |
| Туре        | of Disin                                                                                                                                                                                   | fectant R | esidual Main                | ntained in Di | stribution Syst               | em: 🛛 🖂               | Free Chl            | orine                                          | Co            | mbined C     | hlorine (                  | Chlorami                   | nes)          | Chlorine Dioxide                            |
|             |                                                                                                                                                                                            |           |                             | C             | Calculations, or              | UV Dose, to De        | monstrate Fo        | our-Log                                        | Virus Inactiv | vation. if A | *sidaala                   |                            |               |                                             |
|             | Days                                                                                                                                                                                       |           | 1                           |               |                               | CT Calcul             | ations              |                                                |               |              |                            | Dose                       | 1 -           |                                             |
|             | Plant                                                                                                                                                                                      |           |                             |               |                               |                       | Lowest CT           | <u> </u>                                       |               | 1            |                            |                            | Lowest        |                                             |
|             | Staffed                                                                                                                                                                                    |           |                             | · ·           | Lowest Residual               | Disinfectant          | Provided            |                                                |               |              |                            |                            | Residual      |                                             |
|             | or                                                                                                                                                                                         |           |                             |               | Disinfectant                  | Contact Time          | Before or           |                                                |               | 1            | }                          | ł                          | Disinfectant  |                                             |
|             | Visited                                                                                                                                                                                    |           | North                       |               | Concentration                 | (T) at C              | at First            |                                                |               |              |                            | Minimum                    | Concentration |                                             |
| l<br>Dev of | by<br>Operator                                                                                                                                                                             | Hours     | Net Quantity<br>of Finished |               | (C) Before or at              | Measurement           | Customer            | Temp.                                          |               | Minimum      | Operating                  | UV Dose                    | at Remote     | Emergency or Abnormal Operating             |
| the         | (Place                                                                                                                                                                                     | Plant in  | Water                       | Peak Flow     | First Customer<br>During Peak | Point During          | During              | of                                             | pH of         | CT           | UV Dose,                   | Required,                  | Point in      | Conditions; Repair or Maintenance Work that |
| Month       | "X")                                                                                                                                                                                       | Operation |                             | Rate, gpd     | Flow, mg/L                    | Peak Flow,<br>minutes | Peak Flow, mg-min/L | Water,<br>°C                                   | Applicable    | Required,    | mW-<br>sec/cm <sup>2</sup> | mW-<br>sec/cm <sup>2</sup> | Distribution  | Involves Taking Water System Components     |
| 1           | x                                                                                                                                                                                          | 24        | 2,027,000                   | _ rune, Epu   | 1.10                          | minutes               | TIR-IUT C           |                                                | Аррисаоне     | mg-miwL      | sec/cm                     | sec/om-                    | System, mg/L  | Out of Operation                            |
| 2           | X                                                                                                                                                                                          | 24        | 2,439,000                   |               | 1.20                          |                       |                     |                                                | <u> </u>      | <u>├</u>     |                            |                            | 0.80          |                                             |
| 3           | Х                                                                                                                                                                                          | 24        | 1,470,000                   |               | 1.00                          |                       |                     | <b> </b>                                       |               |              | <u> </u>                   | <u> </u>                   | 0.80          | <u></u>                                     |
| 4           | X                                                                                                                                                                                          | 24        | 1,363,000                   |               | 1.10                          |                       |                     |                                                |               | <u> </u>     |                            |                            | 0.90          |                                             |
| _5          | X                                                                                                                                                                                          | 24        | 2,135,000                   |               | 1.00                          |                       |                     |                                                |               |              | †                          |                            | 0.90          | <u> </u>                                    |
| 6           | X                                                                                                                                                                                          | 24        | 2,284,000                   |               | 1.10                          | [                     |                     | <u> </u>                                       |               | <u> </u>     | <u>├</u>                   |                            | 0.90          |                                             |
| 7           | X                                                                                                                                                                                          | 24        | 1,799,000                   |               | 1.20                          |                       |                     |                                                | ·             | 1            |                            |                            | 1.00          |                                             |
| 8           | <u>X</u>                                                                                                                                                                                   | 24        | 2,011,000                   |               | 1.30                          |                       |                     |                                                |               |              |                            |                            | 1.00          |                                             |
| 9           | X                                                                                                                                                                                          | 24        | 2,200,000                   |               | 1.30                          |                       |                     |                                                |               |              |                            |                            | 1.00          | l                                           |
| 10          | X                                                                                                                                                                                          | 24        | 1,429,000                   |               | 1.10                          |                       |                     |                                                |               |              |                            |                            | 0.80          |                                             |
| 11          | X                                                                                                                                                                                          | 24        | 1,511,000                   |               | 1.20                          |                       |                     |                                                |               |              |                            |                            | 1.00          |                                             |
| 12          | <u>x</u>                                                                                                                                                                                   | 24        | 1,797,000                   | <u> </u>      | 1.10                          |                       |                     |                                                | L             | L            |                            |                            | 0.70          | · · · · · · · · · · · · · · · · · · ·       |
| 13          | <u>x</u>                                                                                                                                                                                   | 24        | 1,898,000                   |               | 1.40                          |                       |                     | <u> </u>                                       | L             |              |                            |                            | 1.00          |                                             |
|             | <u>X</u>                                                                                                                                                                                   | 24        | 1,507,000                   |               | 1.10                          | ·                     |                     | ļ                                              |               | <u> </u>     |                            |                            | 0.90          |                                             |
| 15          | X                                                                                                                                                                                          | 24        | 1,686,000                   |               | 1.20                          |                       |                     | <b></b>                                        |               | <u> </u>     | ļ                          | L                          | 0.90          |                                             |
| 16          | <u>x</u><br>x                                                                                                                                                                              | 24<br>24  | 1,816,000                   |               | 1.20                          | ļ                     |                     | L                                              |               | Ļ            | ļ                          |                            | 0.90          |                                             |
| 17          | <u>x</u>                                                                                                                                                                                   | 24        | 1,482,000                   |               | 0.90                          |                       |                     |                                                |               |              | ļ                          |                            | 0.70          |                                             |
| 10          | <u>x</u>                                                                                                                                                                                   | 24        | 1,732,000                   |               | 1.40                          | <u> </u>              | ┣───                | ļ                                              |               | <u> </u>     | <u> </u>                   |                            | 1.00          |                                             |
| 20          | X                                                                                                                                                                                          | 24        | 1,752,000                   | [             | 1.40                          |                       | ļ                   |                                                |               | <u> </u>     |                            |                            | 0.80          |                                             |
| 21          | X                                                                                                                                                                                          | 24        | 1,375,000                   |               | 1.10                          |                       |                     | <u> .                                    </u>  |               | <u>├</u>     |                            |                            | 0.90          |                                             |
| 22          | X                                                                                                                                                                                          | 24        | 1,696,000                   | ·             | 1.30                          | · [                   |                     |                                                |               | ·            |                            | <u> </u>                   | 0.80          |                                             |
| 23          | <u>x</u>                                                                                                                                                                                   | 24        | 2,262,000                   |               | 1.50                          | <u>}</u>              |                     | <u> </u>                                       | <u> </u>      |              | <u> </u>                   |                            | 0.90          |                                             |
| 24          | x                                                                                                                                                                                          | 24        | 1,216,000                   |               | 1.30                          | <u>}</u>              | <u> </u>            | ┼───                                           |               | <u> </u>     | <u> </u>                   |                            | 1.00          |                                             |
| 25          | X                                                                                                                                                                                          | 24        | 1,355,000                   |               | 1.00                          |                       | ·                   |                                                |               | <u>├</u>     | ┼                          | ┟                          | 1.00          |                                             |
| 26          | X                                                                                                                                                                                          | 24        | 1,753,000                   |               | 1.20                          |                       |                     |                                                |               |              | <u> </u>                   | <u> </u>                   | 0.90          |                                             |
| 27          | X                                                                                                                                                                                          | 24        | 1,947,000                   | <u> </u>      | 1.50                          |                       | ····                | <u> </u>                                       |               |              |                            |                            | 1.10          |                                             |
| 28          | X                                                                                                                                                                                          | 24        | 1,481,000                   |               | 1.10                          | <u> </u>              |                     | ┼───                                           |               | ┢────        |                            |                            | 1.00          |                                             |
| 29          | X                                                                                                                                                                                          | 24        | 1,851,000                   | 1             | 1.50                          |                       |                     | 1                                              |               | <u> </u>     | ┼────                      | <u>├</u>                   | 1.10          |                                             |
| 30          | X                                                                                                                                                                                          | 24        | 1,838,000                   | 1             | 1.50                          | t                     | <u> </u>            | <u>† – – – – – – – – – – – – – – – – – – –</u> |               | 1            | <u> </u>                   |                            | 1.20          | <u> </u>                                    |
| 31          |                                                                                                                                                                                            |           | 1                           |               | <u> </u>                      | 1                     |                     | t                                              |               | ·            | <u> </u>                   |                            | 1.20          | <u> </u>                                    |
| Total       |                                                                                                                                                                                            |           | 52,608,000                  |               | 1                             | L                     |                     | L                                              | L             |              | L                          | <u></u>                    | L             | <u>t</u>                                    |
| Averag      | e                                                                                                                                                                                          |           | 1,753,600                   | 1             |                               |                       |                     |                                                |               |              |                            |                            |               |                                             |
| Maxim       |                                                                                                                                                                                            |           | 2,439,000                   | 1             |                               |                       |                     |                                                |               |              |                            |                            |               |                                             |

\* Refer to the instructions for this report to determine which plants must provide this information.

Page 21 of 48

## MONTHLY OPERATION REPORT FOR PWSs TREATING RAW GROUND WATER OR PURCHASED FINISHED WATER Identification Number: 3354916

PWS Identification Number: 3354916

| EAND   | neunne        |           | unou. 33343   | 10           |                                               | 11 10010 1 100               | nc. Doum              | anc      |               |                                               |                                              |                     |                          |                                             |
|--------|---------------|-----------|---------------|--------------|-----------------------------------------------|------------------------------|-----------------------|----------|---------------|-----------------------------------------------|----------------------------------------------|---------------------|--------------------------|---------------------------------------------|
| IH. T  | aily Ďa       | ta for th | e Month/Ye    | ar of: Octo  | ber , 2007.                                   |                              |                       |          | ······        |                                               |                                              |                     |                          |                                             |
|        |               |           |               |              | on/Removal: *                                 | X Free                       | Chlorine              |          | Chlorine      | Dioxide                                       |                                              | )zone               | Combin                   | ed Chlorine (Chloramines)                   |
|        |               | Radiatio  |               | her (Describ |                                               |                              | •                     | -        |               |                                               |                                              | 2020                |                          |                                             |
|        |               |           |               |              | istribution System                            |                              | Free Chlo             |          |               | while and O                                   | hlaning (                                    | ~~~                 |                          |                                             |
| Type   | DI DISIN      | rectant R | esiqual Main  |              | Stribution Syste                              |                              |                       |          |               | nbined C                                      |                                              | Chiorami            | nes)                     | Chlorine Dioxide                            |
|        | _             |           |               | <u> </u>     | T Calculations, or                            |                              |                       | our-Log  | Virus Inactiv | etion, if Ap                                  |                                              |                     |                          |                                             |
|        | Days          |           | 1             |              | <u>,                                     </u> | CT Calcul                    |                       |          |               |                                               |                                              | Dose                |                          |                                             |
|        | Plant         |           |               |              | 7                                             |                              | Lowest CT             | · ·      |               |                                               | l'                                           |                     | Lowest                   |                                             |
|        | Staffed       |           |               |              | Lowest Residual                               | Disinfectant<br>Contact Time | Provided              |          |               |                                               |                                              |                     | Residual<br>Disinfectant |                                             |
| 1      | or<br>Visited |           |               |              | Disinfectant<br>Concentration                 | (I) at C                     | Before or<br>at First | l .      |               |                                               | Townst                                       | Minimum             |                          |                                             |
|        | by            |           | Net Quantity  |              | (C) Before or at                              | Mensurement                  |                       | Temp.    |               | Minimum                                       | Lowest<br>Operating                          |                     | at Remote                | Emergency or Abnormal Operating             |
| Day of |               | Hours     | of Finished   |              | First Customer                                | Point During                 | During                | of       | pH of         | CT                                            | UV Dose,                                     |                     | Point in                 | Conditions; Repair or Maintenance Work that |
| the    | (Place        | Plant in  | Water         | Peak Flow    | During Peak                                   | Peak Flow                    | Peak Flow,            | Water,   |               | Required,                                     |                                              | mW-                 | Distribution             | Involves Taking Water System Components     |
| Moath  |               |           | Produced, gal | Rate, gpd    | Flow, mg/L                                    | minutes                      | mg-min/L              | °C       | Applicable    | meamin/I.                                     | sec/cm <sup>2</sup>                          | sec/cm <sup>2</sup> | System, mg/L             |                                             |
| 1      | X             | 24        | 1,404,000     | Land Bha     | 1,20                                          |                              | 1                     | <u> </u> | 1 reppinente  | 100 11002                                     |                                              |                     | 0.90                     |                                             |
| 2      | x             | 24        | 1,384,000     |              | 1.10                                          | <u> </u>                     |                       | 1        | 1             |                                               |                                              |                     | 0.80                     |                                             |
| 3      | X             | 24        | 1,581,000     | h            | 1.20                                          |                              | [                     | <u> </u> | <u> </u>      | <u> </u>                                      | <u>├</u> ────                                |                     | 0.90                     |                                             |
| 4      | X             | 24        | 1,970,000     |              | 1.40                                          |                              |                       |          | <u> </u>      |                                               |                                              |                     | 1.00                     |                                             |
| 5      | X             | 24        | 1,384,000     |              | 1.10                                          |                              |                       | -        |               |                                               | <u>                                     </u> |                     | 0.90                     |                                             |
| 6      | X             | 24        | 1,425,000     |              | 1.20                                          |                              |                       |          | <u> </u>      | <u> </u>                                      |                                              | <u> </u>            | 0.80                     |                                             |
| 7      | X             | 24        | 2,067,000     |              | 1.30                                          |                              | 1                     |          | <u> </u>      | <u>                                      </u> | <u> </u>                                     |                     | 0.90                     |                                             |
| 8      | X             | 24        | 1,387,000     |              | I.10                                          | 1                            | <u> </u>              | 1        | <u> </u>      | t                                             |                                              | 1                   | 0.90                     |                                             |
| 9      | X             | 24        | 1,335,000     |              | 1.00                                          |                              |                       | <u> </u> |               |                                               | <u> </u>                                     |                     | 0.60                     |                                             |
| EO     | · X           | 24        | 1,841,000     |              | 1,20                                          |                              |                       | 1        |               |                                               | 1                                            |                     | 0.80                     |                                             |
| 11     | X             | 24        | 2,033,000     |              | 1.40                                          |                              |                       |          |               | · · · ·                                       | 1                                            | 1                   | 1.00                     |                                             |
| 12     | X             | 24        | 1,460,000     |              | 1.00                                          | 1                            |                       |          |               |                                               |                                              | 1                   | 0.90                     |                                             |
| 13     | X             | 24        | 2,459,000     |              | 1.40                                          |                              |                       |          |               |                                               |                                              | 1                   | 1.00                     |                                             |
| 14     | X             | 24        | 2,759,000     |              | 1.40                                          |                              |                       |          |               |                                               |                                              |                     | 1.00                     |                                             |
| 15     | X             | 24        | 1,861,000     |              | 1.40                                          |                              |                       |          |               |                                               | [                                            | 1                   | 1.00                     |                                             |
| 16     | X             | 24        | 1,839,000     |              | 1.30                                          |                              |                       |          |               |                                               |                                              |                     | 1.00                     |                                             |
| 17     | X             | 24        | 2,021,000     |              | 1.30                                          |                              |                       |          |               |                                               |                                              |                     | 0.80                     |                                             |
| 18     | X             | 24        | 2,372,000     |              | 1.40                                          |                              |                       |          |               |                                               |                                              |                     | 1.00                     |                                             |
| 19     | X             | 24        | 1,671,000     |              | 1.30                                          |                              |                       |          |               |                                               |                                              |                     | 1.00                     |                                             |
| 20     | X             | 24        | 1,687,000     |              | 1.40                                          |                              |                       |          |               |                                               |                                              |                     | 1.00                     |                                             |
| 21     | X             | 24        | 2,000,000     |              | 1.40                                          |                              |                       |          |               |                                               |                                              |                     | 1.00                     |                                             |
| 22     | X             | 24        | 1,311,000     |              | 1.10                                          |                              |                       |          |               |                                               |                                              |                     | 1.00                     |                                             |
| 23     | X             | 24        | 1,698,000     |              | 1.10                                          |                              |                       |          |               |                                               |                                              |                     | 0.80                     |                                             |
| 24     | X             | 24        | 1,819,000     |              | 1.30                                          |                              |                       |          |               |                                               |                                              |                     | 1.00                     | · · ·                                       |
| 25     | X             | 24        | 2,424,000     |              | 1.70                                          |                              |                       |          |               |                                               |                                              |                     | 1.10                     |                                             |
| 26     | x             | 24        | 1,716,000     |              | 1.40                                          |                              |                       |          |               |                                               |                                              |                     | 1.10                     |                                             |
| 27     | X             | 24        | 1,999,000     |              | 1.40                                          |                              |                       |          |               |                                               |                                              |                     | 1.00                     |                                             |
| 28     | X             | 24        | 1,840,000     |              | 1.60                                          |                              |                       |          |               |                                               |                                              |                     | 1.10                     |                                             |
| 29_    | X             | 24        | 1,348,000     |              | 1,00                                          |                              |                       | 1        |               |                                               |                                              |                     | 0.80                     |                                             |
| 30     | X             | _24       | 1,190,000     |              | 1.40                                          |                              |                       |          |               |                                               |                                              |                     | 1.10                     |                                             |
| 31     | X             | 24        | 1,647,000     |              | 1.70                                          |                              |                       |          |               |                                               |                                              |                     | 1.10                     |                                             |
| Total  |               |           | 54,932,000    |              |                                               |                              |                       |          |               |                                               |                                              |                     |                          |                                             |
| Avera  | e             |           | 1,772,000     |              |                                               |                              |                       |          |               |                                               |                                              |                     |                          |                                             |

\* Refer to the instructions for this report to determine which plants must provide this information.

2,759,000

.

Maximum

# MONTHLY OPERATION REPORT FOR PWSs TREATING RAW GROUND WATER OR PURCHASED FINISHED WATER Identification Number: 3354916 Plant Name: Southlake

| D١ | I. | 21 | Identificatio | n Nh    | mhan   | 2. | 2540 | 16 |  |
|----|----|----|---------------|---------|--------|----|------|----|--|
| 1  | 77 | U  | Includent     | TT 1.41 | umoer: | э, | 2242 | 10 |  |

| 111.     | Daily Da           | ta for th         | e Month/Ye           | ar of: Nov             | ember,2007.               |              |             |           |               |           |                     |                     |               |                                             |
|----------|--------------------|-------------------|----------------------|------------------------|---------------------------|--------------|-------------|-----------|---------------|-----------|---------------------|---------------------|---------------|---------------------------------------------|
| Mean     | s of Ach           | ieving F          | our-Log Viru         | s Inactivatio          | on/Removal: *             | X Free       | Chlorine    |           | Chlorine      | Dioxide   |                     | Dzone               | Combin        | ed Chlorine (Chloramines)                   |
|          |                    | t Radiatio        | n ∏Ot                | her (Descrit           | ne):                      |              |             | -         | l ouroruite   | Dividuo   |                     |                     |               | ico catorine (Cinorainites)                 |
|          |                    |                   | esidual Main         | tained in D            | istribution Syst          | em X         | Free Chl    | orine     |               | mbined C  | hlanin (            | Chie                |               | Chine Direction                             |
|          |                    |                   |                      |                        | T Calculations, or        |              | monstrate F | our Lor   | Vinia Innotia | momen (   | anorme (            | Cillorati           | nes)          | Chlorine Dioxide                            |
| ł -      | Days               |                   |                      |                        | - convergences, cr.       | CT Calcul    | ations      | UUI-LOE   | VILLS INICLI  |           |                     | Dose                |               |                                             |
| · . ·    | Plant              |                   | · · ·                |                        |                           |              | Lowest CT   | <u> </u>  |               |           | <u> </u>            | 1                   | Lowest        |                                             |
|          | Staffed            | · · ·             | . :                  |                        | Lowest Residual           | Disinfectant | Provided    | 1 · ·     |               |           | 1                   |                     | Residual      |                                             |
| 1        | or                 |                   |                      |                        | Disinfectant              | Contact Time | Before or   | · ·       |               |           |                     |                     | Disinfectant  |                                             |
|          | Visited            |                   |                      |                        | Concentration             | (T) at C     | at First    |           | <b>i</b> .    |           | Lowest              | Minimum             | Concentration |                                             |
| Davis    | by                 | TTours            | Net Quantity         |                        | (C) Before or at          | Measurement  | Customer    | Temp.     | a te set      | Minimum   | Operating           | UV Dose             | at Remote     | Emergency or Abnormal Operating             |
| the      | Operator<br>(Place | Hours<br>Plant in | of Finished<br>Water | Desta Thema            | First Customer            | Point During | During      | of        | pH of         | СТ        | UV Dose,            | Required,           | Point in      | Conditions; Repair or Maintenance Work that |
| Month    |                    | Operation         |                      | Peak Flow<br>Rate, gpd | During Peak<br>Flow, mg/L | Peak Flow,   | Peak Flow,  | Water,    |               | Required, | mW-                 | mW-                 | Distribution  | Involves Taking Water System Components     |
| 1        | X                  | 24                | 1,801,000            | Kuic, gpa              | 2.00                      | minutes      | mg-min/L    | <u>°C</u> | Applicable    | mg-min/L  | sec/cm <sup>2</sup> | sec/cm <sup>2</sup> | System, mg/L  | Out of Operation                            |
| 2        | x                  | 24                | 1,325,000            |                        | 1.50                      |              |             | <b> </b>  |               | ļ         |                     |                     | 1.50          |                                             |
| 3        | X                  | 24                | 1,663,000            |                        | 1.60                      |              |             |           |               |           |                     | ļ                   | 1.20          |                                             |
| 4        | X                  | 24                | 1,847,000            |                        | 1.00                      |              |             |           |               | <u> </u>  |                     |                     | 1.20          |                                             |
| 5        | x                  | 24                | 1,386,000            |                        | 1.00                      |              |             | <u> </u>  |               |           |                     |                     | 0.90          |                                             |
| 6        | X                  | 24                | 1,261,000            |                        | 1.00                      |              |             | <u> </u>  |               | <u> </u>  |                     |                     | 0.80          |                                             |
| 7        | X                  | 24                | 1,703,000            |                        | 1.40                      |              |             |           |               | <u> </u>  | <u>↓</u>            |                     | 0.90          |                                             |
| 8        | X                  | 24                | 1,889,000            |                        | 1,20                      |              |             |           |               |           |                     |                     | 0.90          |                                             |
| 9        | X                  | 24                | 1,355,000            |                        | 1.00                      |              |             |           |               |           |                     |                     | 0.70          |                                             |
| 10       | X                  | 24                | 1,772,000            |                        | 1.10                      |              |             |           |               |           | r                   |                     | 0.80          |                                             |
| 11       | X                  | 24                | 1,844,000            |                        | 1.20                      |              |             |           |               |           | 1                   | 1                   | 0.80          |                                             |
| 12       | X                  | 24                | 1,264,000            |                        | 1.10                      |              |             |           |               |           |                     |                     | 0.70          |                                             |
| 13       | X                  | 24                | 1,364,000            |                        | 0.90                      |              |             |           |               |           |                     |                     | 0.60          |                                             |
| 14       | X                  | 24                | 1,856,000            |                        | 1.10                      |              |             |           |               |           |                     |                     | 0.60          |                                             |
| 15<br>16 | X                  | 24                | 2,032,000            |                        | 1.30                      |              | L           | ļ         |               |           |                     |                     | 0.80          |                                             |
| 10       | X                  | 24<br>24          | 1,359,000            |                        | 1.10                      |              |             | · · ·     |               | <u> </u>  | L                   |                     | 0.80          |                                             |
| 18       | - Â                | 24                | 1,627,000 2,013,000  | └ <u>──</u> ──         | 1.30                      |              | <u> </u>    |           |               |           | L                   |                     | 0.90          |                                             |
| 19       | X                  | 24                | 1,221,000            |                        | 1.30                      |              |             |           |               | <u> </u>  |                     |                     | 1.00          |                                             |
| 20       | X                  | 24                | 1,358,000            |                        | 1.00                      | ·            |             |           |               |           | ļ                   |                     | 1.00          |                                             |
| 21       | X                  | 24                | 1,780,000            |                        | 1.20                      |              |             |           |               |           | ļ                   |                     | 0.80          |                                             |
| 22       | X                  | 24                | 1,986,000            |                        | 1.40                      |              |             |           |               |           |                     |                     | 0.90          |                                             |
| 23       | x                  | 24                | 1,504,000            |                        | 1.20                      |              |             |           |               |           |                     |                     | 1.20          |                                             |
| 24       | x                  | 24                | 1,686,000            |                        | 1.30                      |              | <u> </u>    |           |               |           |                     |                     | 1.00          |                                             |
| 25       | X                  | 24                | 2,046,000            |                        | 1.40                      |              |             |           |               |           |                     |                     | 1.00<br>1.10  |                                             |
| 26       | X                  | 24                | 1,305,000            |                        | 1.20                      |              |             |           |               | <u> </u>  |                     |                     | 1.00          |                                             |
| 27       | X                  | 24                | 1,337,000            |                        | 1.00                      |              |             |           |               |           |                     | h                   | 0.80          |                                             |
| 28       | X                  | 24                | 1,877,000            |                        | 1.10                      |              |             |           |               |           |                     |                     | 1.00          |                                             |
| 29       | X                  | _24               | 1,834,000            |                        | 1.40                      |              |             |           |               | <u> </u>  |                     |                     | 1.20          |                                             |
| 30       | X                  | 24                | 1,483,000            |                        | 1.30                      |              |             |           |               |           |                     |                     | 1.00          |                                             |
| 31       |                    | 24                |                      |                        |                           |              |             |           |               |           |                     |                     |               |                                             |
| Total    |                    |                   | 48,778,000           |                        |                           |              |             |           |               |           |                     | ······              |               |                                             |
| Averag   | e                  |                   | 1,625,933            |                        |                           |              |             |           |               |           |                     |                     |               |                                             |
| Maxin    | um                 |                   | 2,046,000            |                        |                           |              |             |           |               |           |                     |                     |               |                                             |

\* Refer to the instructions for this report to determine which plants must provide this information.

•

| PWS    | Identific        | ation Nu        | mber: 33549            | 16            |                  | Plant Nar           | me: South  | lake      |             |              |                     |                     |               |                                             |
|--------|------------------|-----------------|------------------------|---------------|------------------|---------------------|------------|-----------|-------------|--------------|---------------------|---------------------|---------------|---------------------------------------------|
| 111. 1 | Daily Da         | ta for th       | e Month/Ye             | ar of Dece    | mber, 2007.      |                     |            |           |             |              |                     |                     |               |                                             |
| Mean   | s of Ach         | ieving F        | our-Log Viru           | s Inactivatio | n/Removal: *     | X Free              | Chlorine   |           | Chlorine    | Dioxide      |                     | )zone               | Combin        | ed Chlorine (Chloramines)                   |
|        |                  | t Radiatio      |                        | her (Describ  |                  |                     | OTHO! HIG  |           |             | DIGALGO      |                     | 20110               |               | ca chiorino (chiorannico)                   |
|        |                  |                 |                        |               | stribution Syst  |                     | Free Chl   | orino     |             | mbined C     | hloring (           | Chlomm              |               | Chlorine Dioxide                            |
| Type   |                  | Tectaint IV     |                        |               | Calculations, or |                     |            |           |             |              |                     | CHIOTAIII           |               |                                             |
|        | Days             |                 | 1                      |               | Caloulations, or | CT Calcul           |            | om-rog    | VILUS INACU |              |                     | Dose                |               |                                             |
|        | Plant            |                 | [                      |               | r                | CI CIICII           | Lowest CT  | T         |             | · · · ·      |                     | l                   | Lowest        |                                             |
|        | Staffed          |                 |                        |               | Lowest Residual  | Disinfectant        | Provided   |           | ×           |              | 1                   |                     | Residual      |                                             |
| 1      | or               |                 | }                      |               | Disinfectant     | Contact Time        | Before or  |           |             |              |                     |                     | Disinfectant  |                                             |
| 1      | Visited          |                 |                        |               | Concentration    | (T) at C            | at First   |           |             |              | Lowest              | Minimum             | Concentration |                                             |
|        | by               |                 | Net Quantity           |               | (C) Before or at | Measurement         | Customer   | Temp.     |             |              | Operating           | UV Dose             | ai Remote     | Emergency or Abnormal Operating             |
|        | Operator         | Hours           | of Finished            |               | First Customer   | <b>Point During</b> | During     | of        | pH of       | CT           |                     | Required,           | Point in      | Conditions; Repair or Maintenance Work that |
| the    | (Place           | Plant in        | Water                  | Peak Flow     | During Peak      | Peak Flow,          | Peak Flow, |           | Water, if   | Required,    | mW-                 | mW-                 | Distribution  | Involves Taking Water System Components     |
| Month  | <u>"א")</u><br>א | Operation<br>24 |                        | Rate, gpd     | Flow, mg/L       | minutes             | mg-min/L   | <u>°C</u> | Applicable  | mg-min/L     | sec/cm <sup>2</sup> | sec/cm <sup>2</sup> | System, mg/L  | Out of Operation                            |
| 2      | X                | 24              | 1,882,000<br>1,958,000 |               | 1.40             |                     | <u> </u>   | <u> </u>  |             | <u> </u>     |                     |                     | 1.10          |                                             |
|        | x                | 24              | 1,300,000              |               | 1.30             |                     | <u> </u>   |           | <u> </u>    |              | <u></u>             |                     | 1.10          |                                             |
| 4      | x                | 24              | 1,574,000              |               | 1.30             |                     |            |           |             |              | <u> </u>            |                     | 1.00          |                                             |
| 5      | X                | 24              | 1,716,000              |               | 1.40             |                     |            | <u> </u>  | <u> </u>    |              |                     |                     | 0.80          |                                             |
| 6      | X                | 24              | 1,850,000              |               | 1.50             |                     |            | $\vdash$  |             | <u>├─</u> ── | <u>├</u> ───        | <u> </u>            | 1.00          |                                             |
| 7      | x                | 24              | 1,420,000              |               | 1.40             | · · · · ·           |            | 1         |             | <u> </u>     | 1                   | t                   | 1.20          |                                             |
| 8      | X                | 24              | 1,757,000              |               | 1,60             |                     | 1          |           | <u> </u>    | 1            |                     |                     | 1.20          |                                             |
| 9      | X                | 24              | 2,066,000              |               | 1.70             | 1                   |            |           |             | 1            |                     | 1                   | 1.30          |                                             |
| 10     | X                | 24              | 1,277,000              |               | 1.50             | 1                   |            | 1         |             |              | 1                   |                     | 1.20          |                                             |
| 11     | X                | 24              | 1,584,000              |               | 1.50             |                     |            |           |             |              |                     |                     | 1.20          |                                             |
| 12     | X                | 24              | 1,767,000              |               | 1.50             |                     |            |           |             |              |                     |                     | 1.00          |                                             |
| 13     | X                | 24              | 1,942,000              |               | 1.50             |                     |            |           |             |              |                     |                     | 1.20          |                                             |
| 14     | X                | 24              | 1,487,000              | ļ             | 1.30             |                     | 1          |           |             |              |                     |                     | 1.00          |                                             |
| 15     | <u>x</u>         | 24              | 1,793,000              |               | 1.20             |                     | Ļ          |           |             | <u> </u>     |                     |                     | 1.00          |                                             |
| 16     | X                | 24              | 1,809,000              |               | 1.30             | <u> </u>            |            | <u> </u>  |             | ļ            | <u> </u>            |                     | 1.00          |                                             |
| 17     | <u>x</u>         | 24              | 1,319,000              | <u> </u>      | 1.30             |                     |            |           | ļ           |              |                     |                     | 1.10          |                                             |
| 18     | X                | 24              | 1,275,000              |               | 1.10             | <u> </u>            | <u> </u>   | <u> </u>  |             | <u> </u>     | <u> </u>            |                     | 1.00          |                                             |
| 19     | X                | 24              | 1,753,000              | <u></u>       | 1.30             |                     | <u> </u>   |           |             |              |                     |                     | 1.00          |                                             |
| 20     | X                | 24              | 1,835,000              | <u> </u>      | 1.40             | +                   | <u> </u>   | +         | <u>}</u>    | +            |                     | <u> </u>            | 1.10          |                                             |
| 21     | <del> </del>     | 24              | 1,729,000              |               | 1.50             | <u> </u>            |            | +         |             |              | +                   | +                   | 1.30          |                                             |
| 23     | x                | 24              | 2,023,000              | 1             | 1.70             |                     |            |           | +           |              | +                   |                     | 1.40          |                                             |
| 24     | X                | 24              | 1,344,000              | 1             | 1.60             |                     | t          | 1         |             | +            | 1                   | <u> </u>            | 1.40          |                                             |
| 25     | <del>x</del>     | 24              | 1,494,000              |               | 1.30             | 1                   |            |           | t           | 1            | <u> </u>            | 1                   | 1.00          |                                             |
| 26     | X                | 24              | 1,703,000              |               | 1.50             |                     | 1          |           | +           | 1            | 1                   | 1                   | 1.10          |                                             |
| 27     | x                | 24              | 1,944,000              |               | 1.70             |                     | 1          | 1         |             |              | 1                   | 1                   | 1.30          |                                             |
| 28     | x                | 24              | 1,603,000              |               | 1.50             |                     |            | T         |             |              |                     |                     | 1.30          |                                             |
| 29     | X                | 24              | 1,969,000              |               | 1.70             |                     |            |           |             |              |                     |                     | 1.40          |                                             |
| 30     | X                | 24              | 2,134,000              |               | 1.70             |                     |            |           |             |              |                     |                     | 1.50          |                                             |
| 31     | X                | 24              | 1,413,000              |               | 1.50             |                     |            |           |             |              |                     |                     | 1.30          |                                             |
| Total  |                  |                 | 52,185,000             |               |                  |                     |            |           |             |              |                     |                     |               |                                             |
| Avera  |                  |                 | 1,683,387              | 1             |                  |                     |            |           |             |              |                     |                     |               |                                             |
| Mavin  |                  |                 | 2 134 000              | 1             |                  |                     |            |           |             |              |                     |                     |               |                                             |

\* Refer to the instructions for this report to determine which plants must provide this information.

DEP Form 62-655.900(3)Alternate

•

. .

### DAILY SAMPLE RESULTS - PART B

Permit Number:

FLA010634

Facility: Southage 251864 Ww.

|           | Flow (mgd) | CBOD5<br>(mg/l) | CBOD5<br>(mg/l)                        | TSS <u>(</u> mg/l)                    | TSS (mg/l) | pH (s.u.) | Fecal<br>Coliform<br>Bacteria<br>(#/100ml) | TRC (For<br>Disinfect.)<br>(mg/l) | Nitrogen,<br>Nitrate,<br>Total (as N)<br>(mg/l) |       |                                       |
|-----------|------------|-----------------|----------------------------------------|---------------------------------------|------------|-----------|--------------------------------------------|-----------------------------------|-------------------------------------------------|-------|---------------------------------------|
| Code      | 50050      | 80082           | 80082                                  | 00530                                 | 00530      | 00400     | 74055                                      | 50060                             | 00620                                           |       |                                       |
| Mon. Site | EFF-1      | EFA-1           | INF-1                                  | EFA-1                                 | INF-1      | EFA-1     | EFA-1                                      | EFA-1                             | EFA-1                                           |       |                                       |
| 1         | .600       |                 | 1                                      | 1                                     |            | 7.3       |                                            | 1.7                               |                                                 |       |                                       |
| 2         | .600       |                 |                                        |                                       |            | 7.3       | 1                                          | 1.9                               |                                                 |       |                                       |
| 3         | .600       |                 |                                        |                                       |            | 7.3       |                                            | 1.6                               |                                                 |       |                                       |
| 4         | .600       | 13.1            | 171.7                                  | 7.0                                   | 96.0       | 7.4       | 19                                         | 2.6                               | .10                                             |       |                                       |
| 5         | .600       |                 | T                                      |                                       |            | 7.4       | 1                                          | 3.0                               |                                                 | ····· | <u> </u>                              |
| 6         | .555       |                 |                                        | 1                                     |            | 7.4       | 1                                          | 2.4                               |                                                 |       |                                       |
| 7         | .600       |                 |                                        | 1                                     |            | 7.5       | 1                                          | 2.8                               |                                                 |       |                                       |
| 8         | .600       |                 |                                        |                                       |            | 7.5       | †                                          | 3.1                               |                                                 |       |                                       |
| 9         | .852       |                 |                                        | +                                     |            | 7.5       | 1                                          | 2.5                               |                                                 |       | <u></u>                               |
| 10        | .576       |                 | ····                                   | <u> </u>                              |            | 7.4       | <u> </u>                                   | 2.2                               |                                                 |       |                                       |
| 11        | .600       | 13.4            | 251.1                                  | 5.0                                   | 58.0       | 7.3       | 4                                          | 1.9                               | .21                                             |       | · · · · · · · · · · · · · · · · · · · |
| 12        | .600       | · · · ·         |                                        |                                       |            | 7.3       | <u> </u>                                   | 2.0                               |                                                 |       |                                       |
| 13        | .668       |                 | [                                      |                                       | · · ·      | 7.4       |                                            | 2.6                               |                                                 |       |                                       |
| 14        | .600       |                 |                                        |                                       |            | 7.4       |                                            | 3.1                               |                                                 |       |                                       |
| 15        | .600       |                 |                                        |                                       |            | 7.5       |                                            | 2.4                               |                                                 |       |                                       |
| 16        | .600       |                 |                                        |                                       |            | 7.4       |                                            | 2.2                               |                                                 |       |                                       |
| 17        | .727       |                 |                                        |                                       |            | 7.3       |                                            | 3.0                               |                                                 |       |                                       |
| 18        | .516       | 9.1             | 182.2                                  | 10                                    | 146        | 7.3       | 3                                          | 3.0                               | .10                                             |       |                                       |
| 19        | .705       |                 |                                        |                                       |            | 7.3       |                                            | 2.9                               |                                                 |       |                                       |
| 20        | .694       |                 | ······································ |                                       |            | 7.3       |                                            | 3.2                               |                                                 |       |                                       |
| 21        | .701       |                 |                                        |                                       |            | 7.4       | ··                                         | 2.8                               |                                                 |       |                                       |
| 22        | .360       |                 |                                        | · · · · · · · · · · · · · · · · · · · |            | 7.5       |                                            | 3.4                               |                                                 |       |                                       |
| 23        | .755       |                 |                                        |                                       |            | 7.4       |                                            | 3.0                               |                                                 |       |                                       |
| 24        | .731       |                 |                                        |                                       |            | 7.4       |                                            | 2.8                               |                                                 |       |                                       |
| 25        | .600       | 7.1             | 241.1                                  | 11                                    | 104.0      | 7.3       |                                            |                                   | 10                                              |       |                                       |
| 26        | .600       |                 |                                        |                                       |            | 7.4       |                                            | 2.4                               |                                                 |       |                                       |
| 27        | .667       |                 |                                        |                                       |            | 7.4       |                                            | 2.9                               |                                                 |       |                                       |
| 28        | .610       |                 |                                        |                                       |            | 7.5       |                                            | 3.1                               |                                                 |       |                                       |
| 29        | .618       |                 |                                        |                                       | ·          | 7.5       |                                            | 3.4                               |                                                 |       |                                       |
| 30        | .645       |                 |                                        |                                       |            | 7.5       |                                            | 2.8                               |                                                 |       |                                       |
| 31        | .670       |                 |                                        |                                       |            | 7.4       |                                            | 3.1                               |                                                 |       |                                       |
| Total     | 19.45      |                 |                                        |                                       | <u>`</u>   | 229.2     | 1                                          | Ŗ1.5                              |                                                 |       |                                       |
| io. Avg.  | ł          |                 |                                        |                                       |            | 7.3       |                                            | 2.6                               |                                                 |       |                                       |
|           | .360       |                 |                                        |                                       |            | 7.3       | L                                          | 1.6                               | <u> </u>                                        |       |                                       |
|           | .755       |                 |                                        |                                       |            | 7.5       |                                            | 3,4                               |                                                 |       |                                       |

PLANT STAFFING: Day Shift Operator Certificate No: Class: В 7116 Narue; J.F Gratson Evening Shift Operator Class: Certificate No: Name: Night Shift Operator Class: Certificate No: Name: Lead Operator Class: C Certificate No: 13887 Name: Angel De Leon

### Page 26 of 48

Permit Number: Monitoring Period

FLA010634 From 02/01/06\_

To: 02/28/06

Facility: Southlake Utilities WWTF

|                 | Flow (mgd    | ) CBOD5<br>(mg/l) | CBOD5<br>(mg/l) | TSS (mg/l)     | ) TSS (mg/l | ) pH (s.u.) | Fecal<br>Coliform<br>Bacteria<br>(#/100ml) | TRC (For<br>Disinfect.)<br>(mg/l) | Nitrogen,<br>Nitrate,<br>Total (as N)<br>(mg/l) |              |
|-----------------|--------------|-------------------|-----------------|----------------|-------------|-------------|--------------------------------------------|-----------------------------------|-------------------------------------------------|--------------|
| Code<br>Mon. Si |              | 80082<br>EFA-1    | 80082<br>INF-1  | 00530<br>EFA-1 | 00530       | 00400       | 74055                                      | 50060                             | 00620                                           |              |
| 1               | .610         | 9.2               |                 |                | INF-1       | EFA-1       | EFA-1                                      | EFA-1                             | EFA-I                                           |              |
| 2               | .635         | 9.2               | 184.4           | 4.0            | 70.0        | 7.4         | 1                                          | 2.8                               | .16                                             |              |
|                 | .537         |                   | ·               | +              |             | 7.4         |                                            | 3.0                               |                                                 |              |
| 4               | .610         | <b> </b>          |                 |                |             | 7.5         |                                            | 3.2                               |                                                 |              |
| 5               | .617         |                   |                 | +              | <u> </u>    | 7.5         |                                            | 2.6                               |                                                 |              |
| 6               | .741         |                   |                 | L              |             | 7.4         | ļ                                          | 3.1                               |                                                 |              |
| 7               |              |                   | ļ               |                |             | 7.4         |                                            | 3.2                               |                                                 | T            |
|                 | .625<br>.613 | 11,3              | 1205.0          | 122.0          |             | 7.3         | <u> </u>                                   | 3.0                               |                                                 |              |
| <u> </u>        | .600         | 11,5              | 205.0           | 22.0           | 66.0        | 7.3         | 3                                          | 3.0                               | 2.94                                            |              |
|                 | .600         |                   | ·               |                | ļ           | 7.3         |                                            | 3.0                               |                                                 |              |
| 10              |              |                   |                 |                | L           | 7.4         |                                            | 1.9                               |                                                 | 1            |
| 11              | .714         |                   | ļ               |                |             | 7.4         |                                            | 2.3                               |                                                 |              |
|                 |              |                   |                 |                |             | 7.4         |                                            | 2.0                               |                                                 | 1            |
| 13              | .512         |                   |                 |                |             | 7.4         |                                            | 2.1                               |                                                 | 1            |
| 14              | .666         |                   |                 |                |             | 7.4         |                                            | 1.9                               |                                                 | 1            |
| 15              |              | 5.0               | 200.6           | 6.0            | 106.0       | 7.4         | 80                                         | 1.0                               | .10                                             | <br>1        |
| 16              | .689         |                   |                 |                |             | 7.4         |                                            | 1.4                               |                                                 | <br>+        |
| 17              | .726         |                   |                 |                |             | 7.3         |                                            | 1.9                               |                                                 | <br><u> </u> |
| 18              | 1.006        |                   |                 |                |             | 7.3         |                                            | 2.0                               |                                                 | <br>1        |
| 19              | .332         |                   |                 |                |             | 7.4         |                                            | 2.2                               |                                                 | <br>1        |
| 20              | .630         |                   |                 |                |             | 7.3         |                                            | 2.2                               |                                                 | <br>f        |
| 21              | .779         |                   |                 |                |             | 7.4         |                                            | 2.6                               |                                                 | <br>         |
| 22              | .600         | 10.8              | 241.1           | 15.0           | 106.0       | 7.3         | 56                                         | 2.8 .:                            | 22                                              | <br>         |
| 23              | .637         |                   |                 |                |             | 7.4         |                                            | 2.6                               |                                                 | <br>         |
| 24              | .600         |                   |                 |                | t           | 7.5         |                                            | 3.0                               |                                                 | <br>         |
| 25              | .600         |                   |                 |                |             | 7.4         |                                            | 2.4                               |                                                 | <br>         |
| 26              | .600         |                   |                 |                |             | 7.4         |                                            | 3.2                               |                                                 | <br>         |
|                 | .667         |                   |                 |                |             | .6          |                                            | 1.4                               |                                                 | <br>         |
| 28              | .618         |                   |                 |                |             | .4          | 3                                          | 1.0                               |                                                 | <br>         |
| 29              |              |                   |                 |                |             |             |                                            |                                   |                                                 | <br>         |
| 30              |              |                   |                 |                |             | ·····       |                                            |                                   |                                                 | <br>         |
| 31              |              |                   |                 |                |             |             |                                            |                                   | ━━━-                                            | <br>         |
| Total           | 18.174       |                   |                 |                | 2           | 07          |                                            | 0.8                               | <del></del>                                     | <br>         |
| ). Avg.         | .640         |                   |                 |                |             | .39         |                                            | .52                               |                                                 | <br>         |
|                 | 332          |                   |                 |                | 1           | .3          |                                            | .0                                |                                                 | <br>         |
|                 | 1.006        |                   |                 |                |             | .6          | I                                          | .4                                |                                                 | <br>         |

PLANT STAFFING: Day Shift Operator

| Day Shift Operator     | Class: | В        | Certificate No: | 7116  | Name: | J.F. Gratson  |
|------------------------|--------|----------|-----------------|-------|-------|---------------|
| Evening Shift Operator | Class: |          | Certificate No: |       | Name: |               |
| Night Shift Operator   | Class: |          | Certificate No: |       | Name: |               |
| Lead Operator          | Ciass: | <u> </u> | Certificate No: | 13887 | Name: | Angel De Leon |

#### **DAILY SAMPLE RESULTS - PART B**

| Permit Number:    |  |
|-------------------|--|
| Monitoring Period |  |

FLA010634 From 3/01/06\_

To: 3/31/06

Facility: Southlake Utilities WWTF

|           | Flow (mgd) | CBOD5<br>(mg/l) | CBODS<br>(mg/l) | TSS (mg/l) | TSS (mg/l)                                                                                                       | pH (s.u.) | Fecal<br>Coliform<br>Bacteria<br>(#/100ml) | TRC (For<br>Disinfect.)<br>(mg/l) | Nitrogen,<br>Nitrate,<br>Total (ns N)<br>(mg/l) |          |          |
|-----------|------------|-----------------|-----------------|------------|------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------------------|-----------------------------------|-------------------------------------------------|----------|----------|
| Code      | 50050      | 80082           | 80082           | 00530      | 00530                                                                                                            | 00400     | 74055                                      | 50060                             | 00620                                           |          |          |
| Mon. Site | EFF-1      | EFA-1           | INF-1           | EFA-1      | INF-1                                                                                                            | EFA-J     | EFA-I                                      | EFA-1                             | EFA-1                                           |          |          |
| 1         | .580       | 9.4             | 245.6           | 2.0        | 272.0                                                                                                            | 7.3       | 1                                          | 2.9                               | .10                                             |          |          |
| 2         | .525       |                 |                 |            |                                                                                                                  | 7.3       |                                            | 3.2                               |                                                 |          |          |
| 3         | .593       |                 |                 |            |                                                                                                                  | 7.4       |                                            | 3.0                               |                                                 |          |          |
| 4         | .700       |                 |                 |            |                                                                                                                  | 7,4       |                                            | 2.5                               |                                                 |          |          |
| 5         | .647       |                 |                 |            |                                                                                                                  | 7.3       |                                            | 3.1                               |                                                 |          |          |
| 6         | .701       |                 |                 |            |                                                                                                                  | 7.4       |                                            | 3.2                               |                                                 |          |          |
| 7         | .600       |                 |                 |            |                                                                                                                  | 7.4       |                                            | 1.9                               |                                                 |          |          |
| 8         | .600       | 7.9             | 199.4           | 4.0        | 118.0                                                                                                            | 7.4       | 1                                          | 3.0                               | .10                                             |          |          |
| 9         | .703       |                 |                 |            |                                                                                                                  | 7,4       |                                            | 2.1                               |                                                 |          |          |
| 10        | .562       |                 |                 |            |                                                                                                                  | 7.4       |                                            | 2.6                               |                                                 |          |          |
| 11        | .662       |                 |                 |            |                                                                                                                  | 7.4       |                                            | 2.8                               |                                                 |          |          |
| 12        | .670       |                 |                 |            |                                                                                                                  | 7.3       |                                            | 3.2                               |                                                 |          | [        |
| 13        | .715       |                 |                 | -          |                                                                                                                  | 7.4       |                                            | 3.6                               |                                                 |          |          |
| 14        | .698       |                 |                 |            |                                                                                                                  | 7.5       |                                            | 2.9                               |                                                 |          |          |
| 15        | .615       | 7.1             | 169.4           | 1.0        | 92.0                                                                                                             | 7.5       | 1                                          | 3.4                               | .08                                             |          |          |
| 16        | .633       |                 |                 |            |                                                                                                                  | 7.5       |                                            | 3.0                               |                                                 |          |          |
| 17        | .600       | <u> </u>        |                 |            |                                                                                                                  | 7.4       |                                            | 3.4                               |                                                 |          |          |
| 18        | .813       |                 |                 |            |                                                                                                                  | 7.4       |                                            | 3.2                               | {                                               |          |          |
| 19        | .731       |                 |                 |            |                                                                                                                  | 7.4       |                                            | 3.5                               |                                                 |          |          |
| 20        | .793       |                 |                 |            |                                                                                                                  | 7.4       |                                            | 3.3                               |                                                 |          |          |
| 21        | .627       |                 |                 |            |                                                                                                                  | 7.3       |                                            | 3.0                               |                                                 |          |          |
| 22        | .630       | 8.0             | 213.3           | 1.0        | 54.0                                                                                                             | 7.3       | 1                                          | 3.2                               | .10                                             |          |          |
| 23        | .680       | ·····           |                 |            |                                                                                                                  | 7.4       |                                            | 3.4                               |                                                 |          | {        |
| 24        | ,680       |                 |                 |            |                                                                                                                  | 7.4       |                                            | 1.9                               |                                                 |          |          |
| 25        | .967       | -               |                 |            |                                                                                                                  | 7.4       |                                            | 2.2                               | <u> </u>                                        |          |          |
|           | .744       |                 |                 |            |                                                                                                                  | 7.3       |                                            | 2.0                               |                                                 |          |          |
|           | .439       |                 |                 |            |                                                                                                                  | 7.3       |                                            | 2.4                               |                                                 |          |          |
|           | .686       |                 |                 |            |                                                                                                                  | 7.3       |                                            | 2.8                               |                                                 |          |          |
|           |            | 5.7             | 195.0           | 1.0        |                                                                                                                  |           |                                            |                                   | 7.0                                             |          |          |
|           | .740       |                 |                 |            |                                                                                                                  | 7.3       |                                            | 2.4                               |                                                 |          |          |
|           | .813       |                 |                 |            | 1                                                                                                                | 7.4       |                                            | 2.8                               |                                                 |          |          |
|           |            | 38.1            | 1022.7          | 9.0        |                                                                                                                  |           |                                            | 1                                 | 7.38                                            |          |          |
| Mo. Avg.  |            |                 |                 |            | and the second |           |                                            |                                   | <u> </u>                                        | <u> </u> |          |
| l         | .439       | .02             | 204.34          | 1.0        |                                                                                                                  | L         |                                            | L                                 | 1.48                                            | <u> </u> |          |
|           | .967       |                 |                 |            |                                                                                                                  | 7.3       |                                            | 1.8                               |                                                 |          | <u> </u> |
| Max       | .70/       |                 |                 |            |                                                                                                                  | 7.5       |                                            | 3.6                               |                                                 |          |          |

PLANT STAFFING: Day Shift Operator Certificate No: Class: В 7116 Name: J.F. Gratson **Evening Shift Operator** Certificate No: Class: Name: Night Shift Operator Lead Operator Class: Certificate No: Name: Class: C Certificate No: 13887 Name: Angel De Leon

| Permit Number:<br>Monitoring Period |            | FLAUIU<br>From 0 |                 |            |            |           |                                            |                                   |                                                 |                      |
|-------------------------------------|------------|------------------|-----------------|------------|------------|-----------|--------------------------------------------|-----------------------------------|-------------------------------------------------|----------------------|
|                                     | Flow (mgd) | CBOD5<br>(mg/l)  | CBOD5<br>(mg/l) | TSS (mg/i) | TSS (mg/l) | pH (s.u.) | Fecal<br>Coliform<br>Bacteria<br>(#/100ml) | TRC (For<br>Disinfect.)<br>(mg/l) | Nitrogen,<br>Nitrate,<br>Total (as N)<br>(mg/ł) | <u>Page 28 of 48</u> |
| Code                                | 50050      | 80082            | 80082           | 00530      | 00530      | 00400     | 74055                                      | 50060                             | 00620                                           |                      |
| Mon. Site                           | EFF-1      | EFA-1            | INF-1           | EFA-1      | INF-1      | EFA-1     | EFA-1                                      | EFA-1                             | EFA-1                                           |                      |
| 1                                   | .822       |                  |                 |            |            | 7.4       |                                            | 3.0                               |                                                 |                      |
| 2                                   | .578       |                  | 1               |            |            | 7.4       |                                            | 2.5                               |                                                 |                      |
| 3                                   | .810       |                  |                 |            |            | 7.3       |                                            | 3.0                               |                                                 |                      |
| 4                                   | .754       |                  |                 |            |            | 7.4       |                                            | 2.6                               |                                                 |                      |
| 5                                   | ,509       |                  |                 |            |            | 7.4       | 1                                          | 2.5                               |                                                 |                      |
| 6                                   | .865       |                  | 1               |            |            | 7.4       |                                            | 2.8                               |                                                 |                      |
| 7                                   | .712       | 8.2              | 166.7           | 2.0        | 396.0      | 7.5       |                                            | 2.0                               | 4.7                                             |                      |
| 8                                   | .826       |                  | 1               |            |            | 7.4       |                                            | 2.3                               |                                                 |                      |
| 9                                   | .678       |                  | 1               |            |            | 7.4       |                                            | 2.2                               |                                                 |                      |
| 10                                  | .783       |                  |                 |            |            | 7.4       |                                            | 2.4                               |                                                 |                      |
| 11                                  | .725       |                  | 1               |            |            | 7.4       |                                            | 2.1                               |                                                 |                      |
| 12                                  | .629       | 5.6              | 165.6           | 1.0        | 68         | 7.4       | 1                                          | 3.0                               | .27                                             |                      |
| 13                                  | .720       |                  |                 |            |            | 7.4       | [                                          | 2.8                               |                                                 |                      |
| 14                                  | ,804       |                  |                 | 1          |            | 7.4       |                                            | 2,2                               |                                                 |                      |
| 15                                  | .870       |                  | <u> </u>        |            |            | 7.3       | ·                                          | 2.5                               |                                                 |                      |
| 16                                  | .731       |                  |                 | 1          |            | 7.3       |                                            | 2.0                               |                                                 |                      |
| 17                                  | .769       |                  |                 | 1          |            | 7.3       |                                            | 2.0                               |                                                 |                      |
| 18                                  | .740       |                  | 1               | 1          |            | 7.3       |                                            | 2.2                               |                                                 |                      |
| 19                                  | .585       | 5.7              | 190.6           | 1.0        | 126.0      | 7.4       | 15                                         | 2.2                               | .44                                             |                      |
| 20                                  | .719       |                  | 1               |            |            | 7.4       |                                            | 2.4                               |                                                 |                      |
| 21                                  | .728       |                  |                 |            |            | 7.4       |                                            | 2,2                               |                                                 |                      |
| 22                                  | .726       |                  |                 | 1          |            | 7.3       |                                            | 2.2                               |                                                 |                      |
| 23                                  | .676       |                  |                 |            |            | 7.3       |                                            | 2.5                               |                                                 |                      |
| 24                                  | .743       |                  |                 | 1          |            | 7.4       | <b></b>                                    | 2.6                               |                                                 |                      |
| 25                                  | .632       |                  | 1               | 1          |            | 7.4       |                                            | 2,4                               |                                                 |                      |
| 26                                  | .532       | 6.2              | 163.9           | 4.0        | 52.0       | 7.4       | 1                                          | 2.8                               | .17                                             |                      |
| 27                                  | .612       |                  |                 |            |            | 7.4       |                                            | 3.0                               |                                                 |                      |
| 28                                  | .643       |                  | 1               |            |            | 7.4       | [                                          | 2.6                               |                                                 |                      |
| 29                                  | .781       | <u></u>          |                 |            |            | 7.3       |                                            | 3.2                               |                                                 |                      |
| 30                                  | .543       |                  |                 | 1          |            | 7.3       |                                            | 3.3                               |                                                 |                      |
| 31                                  |            |                  |                 | 1          |            |           |                                            |                                   |                                                 |                      |
| Total                               | 21.245     | 25.7             | 686.8           | 8          | 590.0      | 221.2     | 18                                         | 75.5                              |                                                 |                      |
| Mo. Avg.                            |            | 6.42             | 171.7           | 2          | 147.5      | 7.4       | 4.5                                        | 2.5                               |                                                 |                      |
| Min.                                | .543       |                  | 1               |            |            | 7.3       |                                            | 2.0                               |                                                 |                      |
| Max                                 | ,870       |                  |                 |            |            | 7.5       |                                            | 3.3                               |                                                 |                      |

PLANT STAFFING: Day Shift Operator Evening Shift Operator Night Shift Operator Lead Operator

B Certificate No: Certificate No: Certificate No: Certificate No: Certificate No:

Class:

Class:

Class:

Class:

7116 Name: Name: 13887 Name: J.F Gratson

Angel De Leon

|                                | CBODS<br>(MG/L) | Fecal<br>Coliforn<br>Bacteria<br>(#/100MI | (as N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | pH (SU)                        | TSS (MG/L | ) TRC (For<br>Disinfect<br>(MG/L) | Flow (MGD) | Capacity<br>(TMADF/Per<br>mitted<br>Capacity) x |       | TSS (MG/L | )        |
|--------------------------------|-----------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------|-----------------------------------|------------|-------------------------------------------------|-------|-----------|----------|
| Code                           | 80082           | 74055                                     | 00620                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00400                          | 00530     | \$0060                            | 50050      | 00180                                           | 80082 | 00530     |          |
| Mon. Site                      | EFA-1           | EFA-1                                     | EFA-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EFA-1                          | EFA-1     | EFA-1                             | FLW-1      | FLW-1                                           | INF-1 | INF-1     |          |
| 2                              | <u> </u>        |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.3                            |           | 2.8                               | .652       |                                                 |       |           | 1        |
|                                | 5.8             | 1.0                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.3                            |           | 2.0                               | .643       |                                                 |       |           |          |
| 4                              | J.8             |                                           | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.5                            | 7.0       | 3.0                               | .575       |                                                 | 157.8 | 98.0      | +        |
| 5                              | f               |                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.4                            |           | 2.8                               | .606       |                                                 |       | 1         |          |
| 6                              |                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.4                            | -         | 3.0                               | .679       |                                                 |       |           | 1        |
| 7                              |                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.4                            |           | 2.5                               | .800       |                                                 |       |           | -        |
|                                |                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.5                            |           | 3.2                               | .505       |                                                 |       |           | 1-       |
|                                |                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.4                            |           | 3.0                               | .655       |                                                 |       | 1         | 1        |
| 10                             | 16              | 1.0                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.4                            |           | 3.2                               | .637       |                                                 |       |           | 1        |
| 11                             | 4.6             | 1.0                                       | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.4                            | 28.0      | 1.8                               | .497       |                                                 | 156.1 | 102.0     | 1        |
| 12                             |                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.4                            |           | 1.6                               | .701       |                                                 |       | 1         | <u> </u> |
| 12                             |                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.4                            |           | 1.6                               | .559       |                                                 |       | 1         |          |
| 13                             |                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.5                            |           | 2.0                               | .686       |                                                 |       |           |          |
|                                |                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.3                            |           | 1.7                               | .686       |                                                 |       |           |          |
| 15                             |                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.4                            |           | 1.6                               | .648       |                                                 |       | 1         |          |
| 16                             | 60              |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.4                            |           | 1.8                               | .613       |                                                 |       |           |          |
|                                | 6.0             | 1.0                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.4                            | 4.0       | 3.0                               | .601       |                                                 | 73.3  | 60.0      |          |
| 18                             |                 | <u> </u>                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.4                            |           | 1.5                               | .648       |                                                 |       |           |          |
| 19                             |                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.4                            |           | 1.6                               | .680       |                                                 |       |           |          |
| 20                             |                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.3                            |           | 2.0                               | .700       |                                                 |       |           |          |
| 21                             |                 | ļ                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.3                            |           | 1.7                               | .760       |                                                 |       |           |          |
| 22                             |                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.3                            |           | 1.9                               | .533       |                                                 |       |           | _        |
| 23                             |                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.4                            |           | 1.6                               | .634       |                                                 |       |           |          |
|                                | 11.6            | 1.0                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |           | 2.4                               | .603       | 1                                               | 193.3 | 114.0     |          |
| 25                             |                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.4                            |           | 2.4                               | .598       |                                                 |       |           |          |
| 26                             |                 |                                           | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .4                             |           | 2.8                               | .640       |                                                 |       |           |          |
| 27                             |                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .4                             |           | 2.5                               | .745       |                                                 |       |           |          |
| 28                             | -               |                                           | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .3                             |           | 2.2                               | .794       |                                                 |       |           |          |
| 29                             |                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .4                             |           | 8                                 | .673       |                                                 |       |           |          |
| 30                             |                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .3                             |           | 2.2                               | .616       |                                                 |       |           |          |
|                                |                 | 1.0                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                              | 2.0 2     |                                   | .430       | 2                                               | 35.6  | 118.0     |          |
|                                |                 |                                           | I management of the second sec |                                | 47.0 7    | 0                                 | 19.797     | 8                                               | 16.1  | 192.0     |          |
| o. Avg. 7.                     | .90             | 1.0                                       | 0.11 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .4                             | 9.40 2    | .3                                | 630        | Ti-                                             | 63.22 | 98.40     |          |
| NT STAL<br>Shift Opening Shift |                 | Class:<br>Class:                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rtificate No:<br>rtificate No: | 7116      | Nam                               |            |                                                 |       |           |          |
|                                | -               |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |           |                                   |            | Gratson                                         |       |           |          |
| ht Shift Oj                    | perator         | Class:                                    | Ce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rtificate No:                  |           | Nam                               | e:         |                                                 |       | _         |          |
| d Operator                     |                 | Class:                                    | C Ce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |           |                                   |            |                                                 |       |           |          |

| Permit Nu  | nber:    |
|------------|----------|
| Monitoring | g Period |

FLA010634 From: 06/01/06 To: 06/30/06

### DAILY SAMPLE RESULTS - PART B

PART B Facility: Southlake Utilities WWTF Page 30 of 48

|                           | CBOD5<br>(MG/L)           | Fecal<br>Coliform<br>Bacteria<br>(#/100ML) | Nitrogen,<br>Nitrate, Total<br>(as N)<br>(MG/L) | pH (SU)                            | TSS (MG/L) | TRC (For<br>Disinfect.)<br>(MG/L) | Flow (MGD)     | Percent<br>Capacity<br>(TMADF/Per<br>mitted<br>Capacity) x<br>100 | CBOD5<br>(MG/L) | TSS (MG/L)  |          |
|---------------------------|---------------------------|--------------------------------------------|-------------------------------------------------|------------------------------------|------------|-----------------------------------|----------------|-------------------------------------------------------------------|-----------------|-------------|----------|
| Code                      | 80082                     | 74055                                      | 00620                                           | 00400                              | 00530      | 50060                             | 50050          | 00180                                                             | 80082           | 00530       |          |
| Mon. Site                 | EFA-1                     | EFA-1                                      | EFA-1                                           | EFA-1                              | EFA-I      | EFA-1                             | FLW-1          | FLW-1                                                             | INF-1           | INF-1       |          |
| 1                         | ļ                         |                                            |                                                 | 7.4<br>7.4                         |            | 2.8<br>2.0                        | .496           | · · · · · · · · · · · · · · · · · · ·                             | ļ               |             |          |
| 3                         |                           |                                            |                                                 | 7.4                                |            | 2.2                               | .531           | 1                                                                 |                 |             |          |
| 4                         | [                         |                                            |                                                 | 7.3                                |            | 3.0                               | .255           |                                                                   |                 |             |          |
| 5                         |                           |                                            |                                                 | 7.3                                |            | 3.2                               | .450           |                                                                   |                 |             |          |
| 6                         | [                         |                                            |                                                 | 7.4                                |            | 3.6                               | .629           |                                                                   |                 |             |          |
| 7                         | 17.5                      | 1                                          | .12                                             | 7.4                                | 3.0        | 3.6                               | .621           |                                                                   | 235.6           | 118.0       |          |
| 8                         |                           |                                            |                                                 | 7.4                                |            | 3.0                               | .658           |                                                                   |                 | 110.0       |          |
| 9                         | <b></b>                   |                                            |                                                 | 7.3                                |            | 3.0                               | .715           |                                                                   |                 |             |          |
| 10                        | <b></b>                   | <b>_</b>                                   |                                                 | 7.4                                |            | 2,5                               | .763           |                                                                   |                 |             |          |
| 11                        |                           |                                            |                                                 | 7.4                                |            | 3.2                               | .763           |                                                                   |                 |             |          |
| 12                        | <u> </u>                  |                                            |                                                 | 7.4                                | +          | 1.8                               | .763           |                                                                   |                 | · · · · · · |          |
| 13                        | ·                         |                                            |                                                 | 7.4                                |            | 2.2                               | .875           |                                                                   |                 |             |          |
| 14                        | 10.8                      | 11                                         | .23                                             | 7.4                                | 8.0        | 3.0                               | .724           |                                                                   | 234.4           | 116.0       | <u> </u> |
| 15                        |                           | 1                                          |                                                 | 7.4                                |            | 2.4                               | .736           |                                                                   |                 |             |          |
| 16                        |                           |                                            |                                                 | 7.5                                |            | 2.6                               | .942           |                                                                   |                 |             |          |
| 17                        |                           |                                            |                                                 | 7.5                                |            | 3.0                               | .880           |                                                                   |                 |             |          |
| 18                        |                           |                                            |                                                 | 7.5                                |            | 2.5                               | .709           |                                                                   |                 |             | <u> </u> |
| 19                        |                           |                                            |                                                 | 7.5                                |            | 2.6                               | .762           |                                                                   |                 |             |          |
| 20                        | [                         |                                            |                                                 | 7.4                                |            | 1.8                               | 783            |                                                                   |                 |             |          |
| 21                        | 8.6                       | 22                                         | .10                                             | 7.3                                | 11.0       | 2.8                               | .696           |                                                                   | 210.6           | 50.0        |          |
| 22                        |                           |                                            |                                                 | 7.4                                |            | 2.5                               | .835           |                                                                   |                 |             |          |
| 23                        |                           |                                            |                                                 | 7.4                                |            | 1.6                               | .709           |                                                                   |                 |             | <u> </u> |
| 24                        | <u></u>                   |                                            |                                                 | 7.3                                |            | 1,8                               | .995           |                                                                   |                 |             |          |
| 25                        |                           | 1                                          |                                                 | 7.2                                |            | 1.5                               | .767           |                                                                   |                 |             |          |
| 26                        |                           |                                            |                                                 | 7,4                                |            | 2.0                               | 1.2            |                                                                   |                 |             |          |
| 27                        |                           | 1                                          |                                                 | 7.4                                |            | 2.2                               | .660           |                                                                   |                 |             |          |
| 28                        | 7.3                       | 14                                         | .10                                             | 7.4                                | 12.0       | 2.0                               | .739           |                                                                   | 222,2           | 58.0        |          |
| 29                        |                           |                                            |                                                 | 7.5                                |            | 2.4                               | .713           |                                                                   |                 |             |          |
| 30                        |                           |                                            |                                                 | 7.5                                |            | 1.8                               | .724           |                                                                   |                 |             |          |
| 31                        |                           |                                            |                                                 |                                    |            |                                   |                |                                                                   |                 |             |          |
| Total                     | 44.20                     | 38                                         | .55                                             | 221.8                              | 34         | 74.6                              | 21.910         |                                                                   | 902.80          | 342.0       |          |
| Mo. Avg.                  | 11,05                     | 9.50                                       | .13                                             | 7.4                                | 8.50       | 2.48                              | .730           |                                                                   | 225.70          | 85.5        |          |
|                           | Operator<br>bift Operator | Class:<br>Class:                           | В                                               | Certificate No:<br>Certificate No: | 7116       | Nar                               | ne: <u>J.1</u> | do Garcia<br>7 Gratson                                            |                 |             |          |
| Night Shift<br>Lead Opera | -                         | Class:<br>Class:                           |                                                 | Certificate No:<br>Certificate No: |            | Nar<br>Nar                        |                | L. De Leon                                                        |                 |             |          |

## DAILY SAMPLE RESULTS - PART B Facility: Southlake Utilities WWTF

Page 31 of 48

.

| Permit Number:    |  |
|-------------------|--|
| Monitoring Period |  |

FLA010634 From: 07/01/06\_\_\_

\_To:07/31/06\_

|                          | CBOD5<br>(MG/L) | Fecal<br>Coliform<br>Bacteria<br>(#/100ML) | Nitrogen,<br>Nitrate, Total<br>(as N)<br>(MG/L) | pH (SU)                            | TSS (MG/L) | TRC (For<br>Disinfect.)<br>(MG/L) | Flow (MGD | ) Percent<br>Capacity<br>(TMADF/Per<br>mitted | CBOD5<br>(MG/L)   | TSS (MG/L)                                    |
|--------------------------|-----------------|--------------------------------------------|-------------------------------------------------|------------------------------------|------------|-----------------------------------|-----------|-----------------------------------------------|-------------------|-----------------------------------------------|
| Code                     | 80082           | 74055                                      | 00620                                           | 00400                              | 00530      | 50060                             | 50050     | 00180                                         | 80082             | 00530                                         |
| Mon. Site                | EFA-1           | EFA-1                                      | EFA-1                                           | EFA-1                              | EFA-1      | EFA-1                             | FLW-1     | FLW-1                                         | INF-1             | INF-1                                         |
| 1                        |                 |                                            |                                                 | 7.4                                | ļ          | 2.0                               | .788      |                                               |                   | ļ                                             |
| 2                        |                 |                                            |                                                 | 7.3                                |            | 2.5                               | .563      |                                               |                   |                                               |
| 3                        |                 |                                            |                                                 | 7.5                                |            | 1.5                               | .799      |                                               |                   | ļ                                             |
| 4                        |                 |                                            |                                                 | 7.5                                |            | 1.2                               | .650      |                                               |                   |                                               |
|                          | 9.2             | 1.0                                        | .10                                             | 7.4                                | 13.0       | 2.7                               | .649      |                                               | 204.4             | 56.0                                          |
| 6                        |                 |                                            | ļ                                               | 7.5                                |            | 2.4                               | .757      |                                               |                   | ļ                                             |
| 7                        |                 |                                            |                                                 | 7.4                                |            | 1.6                               | .768      |                                               |                   | <u></u>                                       |
| 8                        |                 |                                            |                                                 | 7.4                                |            | 1.8                               | .867      |                                               |                   |                                               |
| 9                        |                 | ļ                                          | <b> </b>                                        | 7.4                                |            | 2.0<br>2.6                        | .830      | ļ                                             | l                 | <u> </u>                                      |
| 10                       |                 | ļ                                          | <u> </u>                                        | 7.4                                |            |                                   | .994      |                                               |                   | <u> </u>                                      |
| 11                       | 10.0            | <u> </u>                                   |                                                 | 7.4                                | .10        | 2.8<br>3.0                        | .871      | ļ                                             | 205.6             | 86.0                                          |
|                          | 10.9 .          | 1.0                                        | .91                                             | 7.5<br>7.4                         |            | 3.0                               | .870      | <u> </u>                                      |                   | 00.0                                          |
| 13                       |                 | <u> </u>                                   | <u> </u>                                        | 7.4                                |            | 2.6                               | .816      |                                               |                   | +                                             |
| 14                       |                 | <u> </u>                                   |                                                 | 7.4                                |            | 2.5                               | .917      |                                               |                   | <u> </u>                                      |
| 15                       |                 |                                            | <u> </u>                                        | 7.3                                |            | 2.2                               | .779      |                                               |                   | <u> </u>                                      |
| 16                       |                 | <u> </u>                                   | <br>                                            | 7.3                                | <br>       | 2.0                               | .774      | <u> </u>                                      |                   | <u>                                      </u> |
|                          |                 |                                            |                                                 | 7.4                                |            | 2.4                               | .817      |                                               | · · · · · · · · · |                                               |
| 18<br>19                 | 8.7             | 1.0                                        | .10                                             | 7.5                                | 5.0        | 2.3                               | .818      | <u> </u>                                      | 180.6             | 186.0                                         |
| 20                       | 0.1             |                                            | .10                                             | 7.5                                | J.0        | 2.0                               | .804      |                                               |                   | 100.0                                         |
| 21                       |                 |                                            |                                                 | 7.5                                |            | 2,2                               | .739      |                                               |                   | <u>↓</u>                                      |
| 22                       |                 | <u> </u>                                   |                                                 | 7.4                                |            | 2.8                               | .810      | +                                             |                   |                                               |
| 23                       |                 |                                            |                                                 | 7.4                                |            | 3.1                               | .908      |                                               |                   |                                               |
| 25<br>24                 |                 | ļ                                          |                                                 | 7.5                                |            | 2.6                               | .916      |                                               |                   | +                                             |
| 25                       |                 |                                            |                                                 | 7.5                                |            | 3.4                               | .866      | 1                                             |                   |                                               |
|                          | 7.6             | 1.0                                        | .10                                             | 7.5                                | 3.0        | 3.0                               | .800      |                                               | 242.5             | 62.0                                          |
| 27                       |                 |                                            |                                                 | 7.4                                |            | 2.8                               | .837      |                                               |                   | <u> </u>                                      |
| 28                       |                 | <u> </u>                                   |                                                 | 7.4                                |            | 3.2                               | .815      |                                               |                   | <u>+</u>                                      |
| 29                       |                 |                                            |                                                 | 7.5                                |            | 3.0                               | .831      | +                                             |                   | <u> </u>                                      |
| 30                       |                 |                                            |                                                 | 7.5                                |            | 2,6                               | .920      | <u> </u>                                      |                   | <u>├</u>                                      |
| 30                       |                 | <u> </u>                                   |                                                 | 7.4                                |            | 2.8                               | .726      |                                               |                   | <u> </u>                                      |
|                          | 36.4            | 4.0                                        |                                                 | 230.3                              | 21.1       | 76.6                              | 25.144    | {                                             | 833.1             | 390.0                                         |
| Mo. Avg.                 | L               | 1.0                                        |                                                 | 7.4                                | 5.3        | 2.5                               | .811      | 1                                             | 208.3             | 97.5                                          |
| LANT ST<br>Day Shift C   | AFFING:         | Class:<br>Class:                           |                                                 | Certificate No:<br>Certificate No: | 14360      | Na                                |           |                                               | <u> </u>          | <u>I</u>                                      |
| vennig Sh<br>Vight Shift |                 | Class:                                     |                                                 | Certificate No:                    |            |                                   | me:       |                                               | ·····             | <u></u>                                       |
| ogni Shift               | Operator        | Class:                                     | С                                               |                                    | 13887      | 148                               |           | el L. De Leon                                 | ·                 | ······································        |

,

DAILY SAMPLE RESULTS - PART B

| Permit Number:    |  |
|-------------------|--|
| Monitoring Period |  |

FLA010634 From: 08/01/06\_\_\_\_\_

\_\_To:08/31/06\_

Facility: Southlake Utilities WWTF

|             | CBOD5<br>(MG/L) | Fecal<br>Coliform<br>Bacteria<br>(#/100ML) | Nitrogen,<br>Nitrate, Total<br>(as N)<br>(MG/L) |                 | TSS (MG/L) | TRC (For<br>Disinfect.)<br>(MG/L) | Flow (MGD)       | Capacity<br>(TMADF/Per<br>mitted      | CBOD5<br>(MG/L) | TSS (MG/L)                             |
|-------------|-----------------|--------------------------------------------|-------------------------------------------------|-----------------|------------|-----------------------------------|------------------|---------------------------------------|-----------------|----------------------------------------|
| Code        | 80082           | 74055                                      | 00620                                           | 00400           | 00530      | 50060                             | 50050            | 00180                                 | 80082           | 00530                                  |
| Ion, Site   | EFA-1           | EFA-1                                      | EFA-1                                           | EFA-1<br>7.4    | EFA-1      | EFA-1<br>2.4                      | FLW-1            | FLW-1                                 | INF-1           | INF-1                                  |
| 1           | 9.5             | 1                                          | .14                                             | 7.4             | 4.0        | 3.2                               | .798             |                                       | 178.4           | 38.0                                   |
| 2           | 9.5             | 1                                          | .14                                             | 7.4             |            | 2.8                               | .801             |                                       |                 |                                        |
| 4           |                 |                                            |                                                 | 7.4             |            | 3.0                               | .821             |                                       | <u> </u>        | +                                      |
| 5           |                 |                                            |                                                 | 7.3             |            | 1.7                               | .811             |                                       |                 |                                        |
| 6           |                 | <u> </u>                                   |                                                 | 7.3             |            | 2.5                               | .709             |                                       |                 |                                        |
| 7           |                 |                                            |                                                 | 7.3             |            | 2.6                               | .815             |                                       |                 |                                        |
| 8           |                 | <u> </u>                                   |                                                 | 7.3             |            | 2.2                               | .889             |                                       |                 |                                        |
| 9           | 6.0             | 1                                          | .28                                             | 7.5             | 5.0        | 1.5                               | .831             |                                       | 217.8           | 110.0                                  |
| 10          |                 |                                            |                                                 | 7.5             |            | 1.4                               | .797             |                                       |                 |                                        |
| 11          |                 | 1                                          |                                                 | 7.4             |            | 1.4                               | .836             |                                       |                 |                                        |
| 12          |                 | 1                                          |                                                 | 7.4             |            | 1.6                               | .853             |                                       |                 |                                        |
| 13          |                 |                                            |                                                 | 7.5             |            | 1.5                               | .600             |                                       |                 |                                        |
| 14          |                 |                                            |                                                 | 7.4             |            | 1.2                               | .810             |                                       |                 |                                        |
| 15          |                 |                                            |                                                 | 7.3             |            | 1.2                               | .799             |                                       |                 |                                        |
| 16          | 9.3             | 1                                          | .18                                             | 7.5             | 8.0        | 3.0                               | .885             |                                       | 197.0           | 42.0                                   |
| 17          |                 |                                            |                                                 | 7.5             |            | 3.0                               | .912             |                                       |                 |                                        |
| 18          |                 |                                            |                                                 | 7.5             |            | 3.0                               | .747             |                                       |                 |                                        |
| 19          |                 |                                            |                                                 | 7.4             |            | 2.7                               | .848             | · · · · · · · · · · · · · · · · · · · |                 |                                        |
| 20          |                 | ł                                          |                                                 | 7.4             |            | 3.0                               | .836             |                                       |                 |                                        |
| 21          |                 |                                            |                                                 | 7.6             |            | 3.0                               | .795             |                                       |                 |                                        |
| 22          |                 |                                            |                                                 | 7.6             |            | 3.2                               | .777             |                                       |                 |                                        |
| 23          | 10.3            | 1                                          | .13                                             | 7.4             | 4.0        | 3.0                               | .766             | <u> </u>                              | 182.2           | 54.0                                   |
| 24          |                 |                                            |                                                 | 7.4             |            | 2.9                               | .787             | <b></b>                               |                 | <u> </u>                               |
| 25          |                 |                                            |                                                 | 7.4             |            | 2.4                               | .809             | ļ                                     |                 |                                        |
| 26          |                 |                                            |                                                 | 7.4             |            | 3.2                               | .894             | <u> </u>                              |                 | <u> </u>                               |
| 27          |                 | <u> </u>                                   |                                                 | 7.3             |            | 2.6                               | .685             |                                       |                 | · · · · · · · · · · · · · · · · · · ·  |
| 28          |                 |                                            |                                                 | 7.3             |            | 2.4                               | .751             |                                       |                 | <u> </u>                               |
| 29          |                 |                                            |                                                 | 7.3             |            | 2.0                               | .691<br>.357     |                                       |                 | <u> </u>                               |
| 30          | 9.6             |                                            | 1.72                                            | 7.4<br>7.5      | 11.0       | 2.6<br>3.0                        | .400             |                                       | 209.4           | 78.0                                   |
| 31          | 8.6             | 2                                          | 1.22                                            |                 | L          |                                   | 23.91            |                                       | 984.8           | 322.0                                  |
|             | 43.7            | 6                                          | 1.95                                            | 229.7           | 32.0       | 75.2                              | 1                |                                       | 984.8<br>196.96 | 64.4                                   |
| Mo. Avg.    | 8,74            | 1.2                                        | .39                                             | 7.41            | 6.4        | 2.42                              | .771             |                                       | 190.90          | 04.4                                   |
| LANT ST     | AFFING:         |                                            |                                                 |                 |            |                                   |                  |                                       |                 |                                        |
| ay Shift (  |                 | Class:                                     | <u> </u>                                        | Certificate No: |            | Ni                                | une: <u>E. G</u> |                                       |                 | ······································ |
| vening Sl   | ift Operator    | Class:                                     | <u> </u>                                        | Certificate No: | 7116       | Na                                | une: <u>J.F.</u> | Gratson                               |                 |                                        |
| iight Shift | Operator        | Class:                                     |                                                 | Certificate No: |            | Na                                | arne:            |                                       |                 |                                        |
| ead Open    | ntor            | Class:                                     | С                                               | Certificate No: | 13887      | Na                                | une: Ang         | el L. De Leon                         |                 |                                        |

The days 30/31 was the start up to fill the truk #4

#### DAILY SAMPLE RESULTS - PART B

| Permit Number:    |
|-------------------|
| Monitoring Period |

FLA010634 From: 09/01/06\_\_\_\_\_To ; 09/30/06\_

Facility: Southlake Utilities WWTF

|                                         | CBOD5<br>(MG/L) | Fecal<br>Coliform<br>Bacteria<br>(#/100ML) | Nitrogen,<br>Nitrate, Total<br>(as N)<br>(MG/L) | pH (SU)                          | TSS (MG/L) | Disinfect.)<br>(MG/L) | Flow (MGD)     | Percent<br>Capacity<br>(TMADF/Per<br>mitted | CBOD5<br>(MG/L)                       | TSS (MG/L) |                                       |
|-----------------------------------------|-----------------|--------------------------------------------|-------------------------------------------------|----------------------------------|------------|-----------------------|----------------|---------------------------------------------|---------------------------------------|------------|---------------------------------------|
| Code                                    | 80082           | 74055                                      | 00620                                           | 00400                            | 00530      | 50060                 | 50050          | 00180                                       | 80082                                 | 00530      |                                       |
| Mon, Site                               | EFA-1           | EFA-1                                      | EFA-1                                           | EFA-1                            | EFA-1      | EFA-1                 | FLW-1          | FLW-1                                       | INF-I.                                | INF-1      |                                       |
| 2                                       |                 |                                            | <u> </u>                                        | 7.5<br>7.5                       | <u> </u>   | 2.6<br>2.4            | .537           |                                             | <u> </u>                              |            |                                       |
| 3                                       |                 |                                            |                                                 | 7.5                              | <u> </u>   | 2.4                   | .711           |                                             | ļ                                     |            |                                       |
| 4                                       |                 |                                            | ļ                                               | 7.4                              |            | 2.5                   | .972 .<br>.728 |                                             | <u></u>                               |            |                                       |
| -5                                      |                 |                                            | +                                               | 7.5                              | <u> </u>   | 2.8                   | .717           |                                             | <b> </b>                              |            |                                       |
|                                         | 10.9            | 1                                          | .62                                             | 7.4                              | 4.0        | 2.8                   | .665           |                                             | 165.0                                 | 76.0       |                                       |
| 7                                       |                 |                                            |                                                 | 7.4                              |            | 2.4                   | .653           | ,<br>                                       | 105.0                                 | 170.0      |                                       |
| 8                                       |                 |                                            |                                                 | 7.4                              |            | 2.0                   | .626           |                                             |                                       |            |                                       |
| -9                                      |                 | ·                                          |                                                 | 7.3                              |            | 2.5                   | .650           |                                             |                                       | <u> </u>   |                                       |
| 10                                      |                 |                                            |                                                 | 7.3                              |            | 2.3                   | .663           |                                             |                                       |            |                                       |
| 11                                      |                 |                                            |                                                 | 7.4                              |            | 2.0                   | .763           | ·····                                       |                                       | ┢────┤     |                                       |
| 12                                      |                 |                                            |                                                 | 7.4                              | <b></b>    | 2.6                   | .617           |                                             |                                       |            | · · · · · · · · · · · · · · · · · · · |
|                                         | 8.6             |                                            |                                                 | 7.5                              | 3.0        | 3.2                   | .577           |                                             | 164.0                                 | 238.0      |                                       |
| 14                                      |                 |                                            | 1                                               | 7.5                              |            | 3.0                   | .694           | ·····                                       |                                       |            |                                       |
| 15                                      |                 | 1                                          |                                                 | 7.6                              |            | 2.4                   | .690           |                                             |                                       |            |                                       |
| <b>16</b>                               |                 |                                            |                                                 | 7.5                              |            | 2.5                   | .725           |                                             |                                       | <u> </u>   |                                       |
| 17                                      |                 |                                            |                                                 | 7.5                              |            | 2.2                   | .768           |                                             |                                       |            |                                       |
| 18                                      |                 |                                            | i                                               | 7.5                              |            | 2.6                   | .490           |                                             | · · · · · · · · · · · · · · · · · · · |            | ··                                    |
| 19                                      |                 |                                            |                                                 | 7.5                              |            | 2.0                   | .616           |                                             |                                       | ┼───┤      |                                       |
| 20                                      | 10.4            | 1                                          | 6,55                                            | 7.5                              | 11         | 1.2                   | .693           |                                             | 144.1                                 | 48.0       |                                       |
| 21                                      |                 |                                            |                                                 | 7.5                              | ·          | 3.2                   | .689           |                                             |                                       |            | · · · · · · · · · · · · · · · · · · · |
| 22                                      |                 |                                            |                                                 | 7.6                              |            | 3.0                   | .691           |                                             |                                       |            |                                       |
| 23                                      |                 |                                            |                                                 | 7.6                              |            | 2.8                   | .702           |                                             |                                       |            |                                       |
| 24                                      |                 |                                            |                                                 | 7.6                              |            | 3.3                   | .672           |                                             | ······                                |            |                                       |
| 25                                      |                 |                                            |                                                 | 7.5                              |            | 3.0                   | .741           |                                             |                                       | ┝╼═┉╌══╂   |                                       |
| 26                                      |                 |                                            |                                                 | 7.6                              |            | 3.4                   | .660           |                                             |                                       |            |                                       |
| 27 8                                    | 3.9             | 1                                          | 6.29                                            | 7.5                              | 1.0        | 2.8                   | .706           |                                             | 177.2                                 | 60.0       |                                       |
| 28                                      |                 |                                            |                                                 | 7.5                              |            | 3.0                   | .650           |                                             |                                       |            |                                       |
| 29                                      |                 |                                            |                                                 | 1.5                              |            | 3.2                   | .630           |                                             |                                       |            |                                       |
| 30                                      |                 |                                            |                                                 | 7.5                              |            | 3.3                   | .715           |                                             |                                       |            |                                       |
| 31                                      |                 |                                            |                                                 |                                  | -          |                       |                |                                             | · · · · · · · · · · · · · · · · · · · |            |                                       |
| Total 3                                 | 8.8             | 4                                          | 17.37                                           | 224.5                            | 10.0       | 79                    | 20.411         | 1                                           | 550.3                                 | 422        |                                       |
| Ao, Avg. 9                              | 0.7             | 1                                          | 4.3                                             | 7.48                             | 2.5        | 2.63                  | .680           |                                             | 163.0                                 | 105.5      |                                       |
| .ANT STA<br>ay Shift Op<br>vening Shift | ocrator         | Class:<br>Class:                           |                                                 | ertificate No:<br>ertificate No: |            | Nao                   |                |                                             |                                       |            |                                       |
| ight Shift C                            | Operator        | Class:                                     | c                                               | ertificate No:                   |            | Nen                   |                |                                             |                                       |            |                                       |
|                                         |                 |                                            |                                                 |                                  |            |                       |                |                                             |                                       |            |                                       |

Page 34 of 48

| DAILY | ' SAMPL | E RESUI | LTS - | PART | В |
|-------|---------|---------|-------|------|---|
|-------|---------|---------|-------|------|---|

Permit Number: Monitoring Period

FLA010634 From: 10/01/06\_\_\_\_\_To : 10/31/06\_\_

Facility: Southlake Utilities WWTF

|            | CBODS<br>(MG/L) | Fecal<br>Coliform<br>Bacteria<br>(#/100ML) | Nitrogen,<br>Nitrate, Total<br>(as N)<br>(MG/L) | pH (SU)        | TSS (MG/L)                            | TRC (For<br>Disinfect.)<br>(MG/L) | Flow (MGD) | Percent<br>Capacity<br>(TMADF/Per<br>mitted | CBOD5<br>(MG/L) | TSS (MG/L)     |             |
|------------|-----------------|--------------------------------------------|-------------------------------------------------|----------------|---------------------------------------|-----------------------------------|------------|---------------------------------------------|-----------------|----------------|-------------|
| Code       | 80082           | 74055                                      | 00620                                           | 00400          | 00530                                 | 50060                             | 50050      | 00180                                       | 80082           | 00530          |             |
| Mon. Site  | EFA-1           | EFA-1                                      | EFA-1                                           | EFA-1          | EFA-1                                 | EFA-I                             | FLW-1      | FLW-I                                       | DNF-1           | INF-1          |             |
| 1          |                 | ļ                                          |                                                 | 7.5            |                                       | 3.0                               | .663       |                                             |                 |                |             |
| 2          |                 |                                            |                                                 | 7.5            |                                       | 2.8                               | .688       |                                             |                 |                |             |
| 3          |                 |                                            |                                                 | 7.5            |                                       | 2.6                               | .621       |                                             |                 | 1              |             |
|            | 7.9             | 1                                          | 8.64                                            | 7.5            | 1.0                                   | 2.0                               | .625       |                                             | 180.0           | 60.0           |             |
| 5          |                 |                                            |                                                 | 7.5            |                                       | 2.4                               | .594       |                                             |                 | 1              |             |
| 6          |                 |                                            |                                                 | 7.5            |                                       | 2.8                               | .687       |                                             |                 |                |             |
| 7          |                 |                                            |                                                 | 7.4            | 1                                     | 3.2                               | .680       |                                             |                 | †              |             |
| 8          |                 |                                            | 1                                               | 7.5            |                                       | 3.0                               | .696       |                                             |                 | +              | <del></del> |
| 9          |                 |                                            |                                                 | 7.5            |                                       | 2.6                               | .587       |                                             |                 | ╊╾╼╾╾┟╾        |             |
| 10         |                 |                                            |                                                 | 7.5            | 1                                     | 2.6                               | .603       |                                             |                 | <u> </u>       |             |
| 11         | 11.6            | 1                                          | 4.51                                            | 7.5            | 1.0                                   | 3.4                               | .739       |                                             | 213.9           | 164.0          |             |
| 12         |                 |                                            |                                                 | 7.5            |                                       | 3.0                               | .679       |                                             |                 | ┼╾╼╌╌┼╴        |             |
| 13         | ·····           |                                            |                                                 | 7.4            | 1                                     | 2.6                               | .740       |                                             |                 | ┼╾──┼─         |             |
| 14         |                 |                                            |                                                 | 7.3            | <u> </u>                              | 3.0                               | .621       |                                             |                 | ╂━━━━━┤━       |             |
| 15         |                 |                                            |                                                 | 7.4            | <u> </u>                              | 3.3                               | .623       |                                             |                 | <u> </u>       |             |
| 16         |                 |                                            |                                                 | 7.3            | +                                     | 3.6                               | .772       |                                             |                 | <u>├</u> ├     |             |
| 17         |                 |                                            |                                                 | 7.4            |                                       | 3.0                               | .683       | · · · · · · · · · · · · · · · · · · ·       |                 | ┨────┤──       | <u> </u>    |
| 18 9       | 9.6             | 1                                          | 4.61                                            | 7.4            |                                       | 1.0                               | .721       |                                             | 252.2           | 90.0           |             |
| 19         |                 |                                            |                                                 | 7.4            |                                       | 2.8                               | .742       |                                             |                 |                |             |
| 20         |                 |                                            |                                                 | 7.4            |                                       | 3.0                               | .663       |                                             |                 |                |             |
| 21         |                 |                                            |                                                 | 7.5            |                                       | 2.8                               | .897       |                                             |                 | <u> </u>       |             |
| 22         |                 |                                            |                                                 | 7.5            |                                       | 3.4                               | .690       |                                             |                 |                |             |
| 23         |                 |                                            |                                                 | 7.4            |                                       | 3.2                               | .812       |                                             | ·····           | h              | ·           |
| 24         |                 |                                            |                                                 | 7.5            |                                       | 1.9                               | .630       |                                             |                 |                |             |
| 25 1       | 1.3             | 1                                          |                                                 | 7.5            |                                       | 2.8                               | .680       |                                             | 185.5           | 90.0           |             |
| 26         |                 |                                            |                                                 | 7.5            |                                       | 3.0                               | .708       |                                             | 100.0           | 90.0           |             |
| 27         |                 |                                            |                                                 | 7.5            | · · · · · · · · · · · · · · · · · · · | 1.8                               | .654       |                                             |                 |                |             |
| 28         |                 |                                            |                                                 | 7.5            | L                                     | 2.6                               | .560       |                                             |                 | └ <u>──</u> ── |             |
| 29         |                 |                                            |                                                 | 7.4            | L                                     | 3.0                               | .360       |                                             |                 |                |             |
| 30         |                 |                                            |                                                 | 7.4            |                                       | 2.8                               | .768       |                                             |                 |                | <b></b>     |
| 31         |                 |                                            |                                                 | 7.4            |                                       | 4.8<br>1.0                        | .768       |                                             |                 |                |             |
|            | 0.4 4           |                                            |                                                 |                |                                       |                                   |            |                                             |                 |                |             |
| D. Avg. 10 |                 |                                            |                                                 |                |                                       |                                   | 21,237     | <u></u>                                     |                 | 404            |             |
| NT STAI    | FFING:          | Class;<br>Class;                           | c                                               | ertificate No: | يلي بي بي مواطنين ي                   | 2.71 Nan Nan Nan                  |            | cia                                         | 207.9           | 101            |             |
| ht Shift O |                 | Class:                                     |                                                 | crtificate No: |                                       |                                   |            | ais()]]                                     |                 |                |             |
| - out V    | Por anos        | C/853;                                     | C                                               | GUIICALE NO:   | <u> </u>                              | Nan                               | nc:        |                                             |                 |                |             |

FLA010634 Permit Number: Facility: Southlake Utilities WWTF Monitoring Period From: 11/01/06 To 11/30/06 CBODS Fecal Nitrogen, pH (SU) TSS (MG/L) TRC (For Flow (MGD) CBOD5 Percent TSS (MG/L) (MG/L) Coliform Nitrate, Total Capacity Disinfect.) (MG/L) Bacteria (as N) (TMADF/Per (MG/L) (#/100ML) (MG/L) mitted Code 80082 74055 50060 00620 00400 00530 50050 80082 00180 00530 Mon. Site EFA-1 EFA-1 EFA-1 EFA-1 EFA-1 EFA-I FLW-1 FLW-1 INF-1 INF-1 9.8 1.0 7.96 7.4 1,0 2.8 .588 1 197.8 50.0 2 7.4 2.6 .634 3 7.4 2.2 .640 4 2.5 7.4 .665 5 7.4 2.1 .666 6 7.3 2.8 760 7 7.4 2.8 .510 12.2 1.0 8 3.88 7.4 1.0 2.8 .690 202.8 206.0 9 7.4 2.6 .564 10 7.5 1.5 .627 11 7.5 2,0 .656 12 7.5 3.0 .616 13 7.5 2.8 .659 14 7.5 3.0 .553 6.4 .53 15 1.0 7.5 1.0 2.5 .671 162.2 76.0 16 7.5 2.4 .584 17 7.5 2.0 .662 7.4 18 2.2 .561 19 7.5 2.0 .714 20 7.5 3.0 .628 21 1.0 6.8 .24 7.5 1.0 3.0 .663 179.0 114.0 22 7.5 3.0 .660 23 7.5 2.5 .625 24 7.4 2.8 .743 25 7.5 1.6 .683 1.161 .269 5.720 26 7.5 3.2 27 7.5 3.4 28 7.5 3.0 .657 29 7.5 2,8 .623 7.4 2.8 30 1.0 3.27 7.5 1.0 .627 203.3 80.0 31 Total 42.6 5.0 15.88 223.8 5.0 19.359 77.7 945.1 526.0 VIo. Avg. 8.52 1.0 3.2 7.46 1.0 2.59 .645 189.0 105,2 LANT STAFFING: lay Shift Overstor Clacat C Certificate No: 14260 Mana E Corolo .v

| ay bitte operator     | C1853. |          | Certificate No. | 14300 | IAMIIC. | E. GRICH         |
|-----------------------|--------|----------|-----------------|-------|---------|------------------|
| vening Shift Operator | Class: | <u>A</u> | Certificate No: | 12234 | Name:   | Sieve Berry      |
| light Shift Operator  | Class: |          | Certificate No: | ····· | Name:   |                  |
| ead Operator          | Class: | <u>c</u> | Certificate No: | 13887 | Name:   | Angel L. De Leon |

#### DAILY SAMPLE RESULTS - PART B

|            | Number:<br>ring Period | FLA010634<br>From: 12/0                    | 1/06To                                          |                                           | SAMPLE     |                                   |                                               | outhlake Utilitie                           |                 | je 36 of 48  |
|------------|------------------------|--------------------------------------------|-------------------------------------------------|-------------------------------------------|------------|-----------------------------------|-----------------------------------------------|---------------------------------------------|-----------------|--------------|
|            | CBOD5<br>(MG/L)        | Fecal<br>Coliform<br>Bacteria<br>(#/100ML) | Nitrogen,<br>Nitrate, Total<br>(as N)<br>(MG/L) | pH (SU)                                   | TSS (MG/L) | TRC (For<br>Disinfect.)<br>(MG/L) |                                               | Percent<br>Capacity<br>(TMADF/Per<br>mitted | CBOD5<br>(MG/L) | TSS (MG/L)   |
| Code       | B0082                  | 74055                                      | 00620                                           | 00400                                     | 00530      | 50060                             | 50050                                         | 00180                                       | 80082           | 00530        |
| Ion. Site  | EFA-1                  | EFA-1                                      | EFA-1                                           | EFA-1                                     | EFA-1      | EFA-1                             | FLW-1                                         | FLW-1                                       | INF-1           | INF-1        |
| 1          | <br>                   |                                            |                                                 | 7.5                                       |            | 3.0                               | .639                                          |                                             |                 |              |
| 2          |                        |                                            | L                                               | 7.6                                       |            | 3.9                               | .540                                          |                                             |                 |              |
| 3          |                        |                                            |                                                 | 7.5                                       |            | 3.8                               | .708                                          |                                             |                 |              |
| 4          | [                      |                                            | <u></u>                                         | 7.5                                       |            | 3.0                               | .592                                          |                                             |                 |              |
| 5          | 9.8                    | 1                                          | 3.28                                            | 7.4                                       | 2.0        | 2.8                               | .617                                          |                                             | 219.4           | 206.0        |
| 6          |                        |                                            |                                                 | 7.4                                       |            | 2.6                               | ,558                                          |                                             |                 |              |
| 7          |                        |                                            |                                                 | 7.5                                       |            | 2.5                               | .557                                          |                                             | ·               |              |
| 8          |                        |                                            |                                                 | 7.5                                       |            | 2.5                               | .594                                          |                                             |                 |              |
| 9          |                        |                                            |                                                 | 7.5                                       |            | 2.8                               | .533                                          |                                             |                 |              |
| 10         |                        |                                            |                                                 | 7.5                                       |            | 1.7                               | .667                                          |                                             |                 |              |
| 11         |                        |                                            |                                                 | 7,5                                       |            | 2.0                               | .591                                          |                                             |                 |              |
| 12         | 9.4                    | 1                                          | 5.05                                            | 7.5                                       | 1.0        | 2.6                               | .567                                          |                                             | 221.7           | 54.0         |
| 13         |                        |                                            |                                                 | 7.5                                       |            | 2.6                               | .554                                          |                                             |                 |              |
| 14         |                        |                                            |                                                 | 7.5                                       | 1          | 3.0                               | .612                                          |                                             |                 |              |
| 15         |                        |                                            |                                                 | 7.5                                       | 1          | 2.4                               | .569                                          |                                             |                 |              |
| 16         |                        |                                            |                                                 | 7.5                                       | 1          | 3.5                               | .587                                          |                                             |                 |              |
| 17         |                        |                                            |                                                 | 7.5                                       |            | 2.3                               | .629                                          |                                             |                 |              |
| 18         |                        |                                            |                                                 | 7.5                                       |            | 2.4                               | .686                                          |                                             | ·····           | 1            |
| 19         |                        |                                            |                                                 | 7.5                                       | 1          | 2.4                               | .586                                          |                                             |                 |              |
| 20         | 10.3                   | 1                                          | 4.38                                            | 7.5                                       | 6.0        | 2.5                               | .659                                          |                                             | 218.3           | 56.0         |
| 21         |                        |                                            |                                                 | 7.5                                       |            | 2.5                               | .627                                          |                                             |                 |              |
| 22         |                        |                                            |                                                 | 7.5                                       | 1          | 2.2                               | .693                                          |                                             |                 | †            |
| 23         |                        |                                            |                                                 | 7.5                                       |            | 2.5                               | .726                                          |                                             |                 |              |
| 24         |                        |                                            |                                                 | 7.5                                       | <u> </u>   | 3.9                               | .716                                          |                                             |                 | <b> </b>     |
| 25         |                        | 4                                          |                                                 | 7.4                                       |            | 3.0                               | .912                                          |                                             |                 |              |
| 26         |                        | t                                          |                                                 | 7.4                                       |            | 2.0                               | .765                                          |                                             |                 |              |
| 27         | 9.9                    | 1                                          | .88                                             | 7.5                                       | 7.6        | 2.6                               | .756                                          |                                             | 211.1           | 76.0         |
| 28         |                        |                                            |                                                 | 7.5                                       |            | 2.6                               | .798                                          |                                             |                 |              |
| 29         |                        | +                                          |                                                 | 7.5                                       |            | 2.6                               | .860                                          |                                             |                 | <u>}</u>     |
| 30         |                        |                                            |                                                 | 7.5                                       |            | 3.0                               | .811                                          |                                             | ······          | <u>├</u>     |
| 31         | ·                      |                                            |                                                 | 7.5                                       |            | 3.5                               | .993                                          |                                             |                 | <b>├</b> ─── |
|            | 39.4                   | 4                                          |                                                 | 232.2                                     |            | 84.7                              | 20.702                                        |                                             | 870.5           | 392.0        |
|            |                        |                                            | 1                                               |                                           |            |                                   | <u>i.                                    </u> | <u>I</u>                                    |                 |              |
| ay Shift C | AFFING:                | 1<br>Class:<br>Class:                      | _ <u>C</u>                                      | 7.5<br>Certificate No:<br>Certificate No: |            | 2.73 Nar                          |                                               | cia                                         | 217.6           | 98           |
| ight Shift | -                      | Class:                                     | مناققية بالكاني ويلافان                         | Certificate No:                           |            | Nar                               |                                               |                                             |                 | ·            |

Lead Operator

UC, Class: <u>C</u> Certificate No;

13887

Name: Angel L. De Leon

|                          | Number:<br>bring Period | FLA010634<br>From: 1/01                    |                                                |                 | SAMPLE     |                                   | - PART B<br>Facility: S | outhlake Utiliti                              | es wwiftege     | e 37 of 48  |         |
|--------------------------|-------------------------|--------------------------------------------|------------------------------------------------|-----------------|------------|-----------------------------------|-------------------------|-----------------------------------------------|-----------------|-------------|---------|
|                          | CBOD5<br>(MG/L)         | Fecal<br>Coliform<br>Bacteria<br>(#/100ML) | Nitrogen,<br>Nitrate, Tota<br>(as N)<br>(MG/L) | pH (SU)         | TSS (MG/L) | TRC (For<br>Disinfect.)<br>(MG/L) |                         | ) Percent<br>Capacity<br>(TMADF/Per<br>mitted | CBOD5<br>(MG/L) | TSS (MG/L)  | _       |
| Code                     | 80082                   | 74055                                      | 00620                                          | 00400           | 00530      | 50060                             | 50050                   | 00180                                         | 80082           | 00530       |         |
| Mon. Site                | e EFA-1                 | EFA-1                                      | EFA-1                                          | EFA-1<br>7.5    | EFA-1      | EFA-1                             | FLW-1                   | FLW-1                                         | INF-1           | INF-1       |         |
| 2                        | ┨────                   |                                            |                                                | 7.5             |            | 3.5<br>3.0                        | .903<br>.738            |                                               | <u> </u>        |             |         |
| 3                        | 105                     | 30                                         | .11                                            | 7.5             | 4.0        | 3.0                               | .830                    |                                               | 196.7           | 54.0        |         |
| 4                        |                         |                                            |                                                | 7.4             |            | 2.4                               | .793                    |                                               | 130.7           | J           |         |
| 5                        | ┨────                   |                                            |                                                | 7.4             |            | 2.0                               | .730                    | <u> </u>                                      |                 |             |         |
| 6                        | ∦                       |                                            |                                                | 7.5             |            | 3.9                               | .519                    |                                               |                 | <u> </u>    |         |
| 7                        | ╏                       |                                            |                                                | 7.6             |            | 3.8                               | .694                    | <u> </u>                                      |                 |             |         |
| 8                        | ╏                       |                                            |                                                | 7.4             |            | 2.4                               | .692                    | <u> </u>                                      |                 |             |         |
| 9                        |                         |                                            |                                                | 7.6             | +          | 3.0                               | .643                    | <u> </u>                                      | <u> </u>        |             |         |
| 10                       | 7.6                     |                                            | 2.46                                           | 7.6             | 2.0        | 2.8                               | .590                    | <u> </u>                                      | 258.9           | 146.0       | _       |
| 10                       | / <i>.</i>              | · /                                        | 2.40                                           | 7.5             | 2.0        | 3.0                               | .707                    | <u> </u>                                      | 236.9           | 146.0       |         |
| 11                       |                         |                                            |                                                | 7.5             |            | 2.8                               |                         | <u> </u>                                      | <u> </u>        | <u> </u>    | +       |
| 12                       | J                       |                                            |                                                | 7.5             |            | 3.8                               |                         |                                               | ļ               |             |         |
| 14                       | ┨                       |                                            | <u> </u>                                       | 7.5             | <u> </u>   | 3.5                               | .543                    |                                               |                 |             |         |
| 14                       |                         |                                            |                                                | 7.5             |            | 3.5                               | .764                    |                                               |                 |             |         |
| 15                       | Į                       |                                            | <u> </u>                                       | 7.6             |            | 3.0                               | l                       |                                               |                 |             |         |
| 10                       | 13.6                    | <u> </u>                                   | 2.37                                           | 7.5             | 2.0        | 3.0                               | .590                    |                                               | 107.0           | 152.0       |         |
| 18                       | 15.0                    | <u> </u>                                   | 2.37                                           | 7.5             | 2.0        | 2.8                               | .603                    |                                               | 197.8           | 152.0       |         |
| 19                       |                         |                                            |                                                | 7.5             |            | 2.8                               | .620                    |                                               |                 |             |         |
| 20                       |                         |                                            |                                                | 7.6             | ļ          | 3.5                               | I                       |                                               |                 |             |         |
| 20                       |                         |                                            |                                                | 7.6             |            | 3.8                               | .500                    |                                               |                 | ļ           |         |
| 21                       |                         | <u> </u>                                   |                                                | 7.5             | <u> </u>   | 2,4                               |                         |                                               |                 |             |         |
| 23                       |                         | <u> </u>                                   |                                                | 7.5             |            | 2.3                               | .607<br>.566            |                                               |                 |             |         |
|                          | 9.6                     | 1                                          | 3.60                                           | 7.4             | 3.0        | 2.8                               | .593                    |                                               | 202.8           | 70.0        |         |
| 25                       |                         | <u> -</u>                                  | 5.00                                           | 7.4             | 5,0        | 3.2                               |                         |                                               | 202.0           | 70.0        |         |
| 26                       |                         | ļ                                          |                                                | 7.5             |            | 3.2                               | .561                    |                                               |                 | <b>↓</b>    | <u></u> |
| 20                       | ļ                       |                                            |                                                | 7.5<br>7.5      |            | 0.7                               | .690                    |                                               |                 |             |         |
| 28                       |                         |                                            |                                                | 7.5             |            | 3.9                               | .579                    |                                               |                 |             |         |
| 29                       |                         |                                            |                                                | 7.5             |            | 3.2                               | .705                    |                                               |                 |             |         |
| 30                       |                         |                                            |                                                | 7.5             |            | 2.4                               | .451                    |                                               |                 | <u> </u>    |         |
|                          | 8.3                     | 1                                          | 7.84                                           | 7.6             |            | 3.0                               | .640                    |                                               | 166.1           | 60.0        |         |
|                          | 49.6                    | 34                                         | 16.38                                          |                 |            |                                   | Ji                      |                                               |                 |             | فكردفا  |
| Mo. Avg.                 |                         | 1                                          |                                                | 232.7<br>7.5    |            | 92.1<br>2.9                       | 19.931<br>.642          |                                               | 1022.3<br>204.4 | 482<br>96.4 |         |
| PLANT ST.<br>Day Shift C | AFFING:                 | Class:                                     |                                                | Certificate No: |            |                                   | nue; <u>E. Ga</u>       |                                               | £U7.7           |             |         |
| Evening Sh               | ift Operator            | Class:                                     | <u>A</u>                                       | Certificate No: | 12234      | Na:                               | me: <u>Steve</u>        | Berry                                         |                 |             | -       |
| Night Shift              | Operator                | Class:                                     |                                                | Certificate No: |            | Na                                | ale:                    |                                               |                 |             |         |
| Lead Opera               | tor                     | Class:                                     | <u> </u>                                       | Certificate No: | 13887      | Na                                | me: Angel               | L. De Leon                                    |                 |             | _       |

,

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u> <u> </u> <u></u></u> |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| fon Site         EFA-1         EFA-1         EFA-1         EFA-1         EFA-1         FLW-1         FLW-1         INF-1         INF-1           1 $1$ $1$ $7.4$ $2.2$ $591$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                  |
| 1       7.4       2.2       .591       1       1         2       7.5       2.6       .467       1       1         3       7.5       2.8       .612       1       1         4       7.5       3.3       .550       1       1         5       7.5       3.0       .684       1       1         6       7.5       3.2       .556       1       1         7       5.8       1       2.31       7.4       1       2.8       .593       218.3       80.0         8       7.5       2.6       .562       1       1       1.9       .608       1       1         9       7.5       2.8       .613       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <t< td=""><td></td></t<>                                                                                                    |                                                                                                  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                  |
| 3       7.5       2.8       .612       1       1         4       7.5       3.3       .550       1       1         5       7.5       3.0       .684       1       1         6       7.5       3.2       .556       1       1         7       5.8       1       2.31       7.4       1       2.8       .593       218.3       80.0         8       7.4       1       2.8       .593       218.3       80.0       1         9       7.5       2.6       .562       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       <                                                                                                             |                                                                                                  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                  |
| 5       7.5       3.0       .684                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                  |
| 6       7       5.8       1       2.31       7.4       1       2.8       593       218.3       80.0         7       5.8       1       2.31       7.4       1       2.8       593       218.3       80.0         8       7.4       1.9       .608       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                      |                                                                                                  |
| 7       5.8       1       2.31       7.4       1       2.8       .593       218.3       80.0         8       7.4       1.9       .608       7.5       7.6       5.62       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7.5       7. |                                                                                                  |
| 8         7.4         1.9         .608           9         7.5         2.6         .562           10         7.5         2.8         .613           11         7.6         1.8         .602           12         7.5         1.6         .633                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                  |
| 9       7.5       2.6       .562         10       7.5       2.8       .613         11       7.6       1.8       .602         12       7.5       1.6       .633                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                  |
| 10         7.5         2.8         .613           11         7.6         1.8         .602           12         7.5         1.6         .633                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                  |
| 11         7.6         1.8         .602           12         7.5         1.6         .633                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                  |
| 12 7.5 1.6 .633                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  |
| 12 7.5 1.6 .633                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  |
| 14 4.2 1 .10 7.5 2.0 2.6 .629 175.0 108.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                  |
| 15 7.5 2.4 .604                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  |
| 16 7.4 2.4 .644                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  |
| 17 7.6 1.5 .758                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  |
| 18 7.6 1.4 .782                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  |
| 19 7.5 1.2 .692                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  |
| 20 7.5 1.8 688                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                  |
| 21 12.5 1 .45 7.4 8.0 2.6 .736 241.1 70.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                  |
| 22 7.4 1.6 .796                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  |
| 23 7.5 1.0 • .878                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                  |
| 24 7.5 3.8 .532                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  |
| 25 7.6 3.5 .715                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  |
| 26 7.5 3.0 .732                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  |
| 27 7.5 3.0 .634                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  |
| 28         13.1         1         .38         7.5         1         3.0         .729         182.5         98.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  |
| 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                  |

PLANT STAFFING: Day Shift Operator **Evening Shift Operator** 

Night Shift Operator

Lead Operator

35.6

4

1

30 31

Total

Mo. Avg. 8.9

Class: C Class: A Class: Class: С

3.24

.81

209.8

Certificate No:

Certificate No:

Certificate No:

Certificate No;

7.5

12

3

14360

12234

13887

67.8

2.42

Name: Name:

E. Garcia

18,263

.652

Name:

Name:

Steve Berry Angel L. De Leon

816.9

204.2

286.7

71.6

# DAILY SAMPLE RESULTS - PART B Facility: Southlake Utilities WWTF

Permit Number: **Monitoring Period**  FLA010634 From: 03/01/07\_\_\_\_\_To 03/31/07\_\_

|                                        | CBOD5<br>(MG/L) | Fecal<br>Coliform<br>Bacteria<br>(#/100ML) | Nitrogen,<br>Nitrate, Total<br>(as N)<br>(MG/L) | pH (SU)                 | TSS (MG/L)   | TRC (For<br>Disinfect.)<br>(MG/L) | Flow (MGD) | Percent<br>Capacity<br>(TMADF/Per<br>mitted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CBOD5<br>(MG/L) | TSS (MG/L)       |                                       |
|----------------------------------------|-----------------|--------------------------------------------|-------------------------------------------------|-------------------------|--------------|-----------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------|---------------------------------------|
| Code                                   | 80082           | 74055                                      | 00620                                           | 00400                   | 00530        | 50060                             | 50050      | 00180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 80082           | 00530            |                                       |
| Vion, Site                             | EFA-1           | EFA-1                                      | EFA-1                                           | EFA-1<br>7.4            | EFA-1        | EFA-1<br>2,8                      | FLW-1      | FLW-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | INF-1           | INF-1            |                                       |
| 2                                      |                 |                                            |                                                 | 7.4                     |              | 2.5                               | .742       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                                       |
|                                        |                 |                                            |                                                 | 7.4                     |              | 3.0                               | .703       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                                       |
| 4                                      |                 |                                            | <b>_</b>                                        | 7.5                     |              | 1.9                               | .671       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | +                |                                       |
| 5                                      |                 |                                            |                                                 | 7.5                     | <del> </del> | 2.3                               | .697       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | · <del>   </del> |                                       |
| 6                                      |                 |                                            |                                                 | 7.5                     | <u> </u>     | 2.8                               | .634       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | +                |                                       |
| 7                                      | 9.9             | 1                                          | 3.49                                            | 7.4                     | 7.0          | 2.0                               | .683       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 158.4           | 86.0             | -                                     |
| 8                                      |                 |                                            |                                                 | 7.4                     | +            | 2.3                               | .745       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                                       |
| 9                                      |                 |                                            |                                                 | 7.5                     | <u> </u>     | 2.4                               | .676       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | ╋┉┅──┤           | • • • • • • • • • • • • • • • • • • • |
| 10                                     |                 |                                            |                                                 | 7.5                     | <u> </u>     | 2.6                               | .686       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | +                |                                       |
| 11                                     | ·····           | <del></del>                                |                                                 | 7,5                     | <u> </u>     | 1.6                               | .849       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | +                |                                       |
| 12                                     |                 |                                            | [                                               | 7.5                     | <b> </b>     | 1.8                               | .719       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                                       |
| 13                                     |                 |                                            |                                                 | 7.5                     |              | 1.8                               | .733       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                                       |
| 14 9                                   | 9.7             | 1                                          | .13                                             | 7.5                     | 2.0          | 1.4                               | .671       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 <b>96</b> .7  | 52.0             |                                       |
| 15                                     |                 |                                            |                                                 | 7.5                     |              | 1.8                               | .775       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                                       |
| 16                                     |                 |                                            |                                                 | 7.5                     |              | 2.8                               | .639       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 1                |                                       |
| 17                                     |                 |                                            |                                                 | 7.4                     |              | 1.8                               | .880       | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |                  |                                       |
| 18                                     |                 |                                            |                                                 | 7.4                     |              | 2.0                               | .659       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 1 1              |                                       |
| 19                                     |                 |                                            |                                                 | 7,4                     |              | 2.0                               | .647       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  | -                                     |
| 20                                     |                 |                                            |                                                 | 7.5                     |              | 2.4                               | .664       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                                       |
| 21 9                                   | 0.4             | 1                                          |                                                 | 7.5                     | l            | 2.8                               | .688       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 188.3           | 38.0             |                                       |
| 22                                     |                 |                                            |                                                 | 7.5                     |              | 2.8                               | .646       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                                       |
| 23                                     |                 |                                            |                                                 | 7.5                     |              | 2.6                               | .804       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                                       |
| 24                                     |                 |                                            |                                                 | 7.6                     |              | 1.9                               | .790       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                                       |
| 25                                     |                 |                                            |                                                 | 7.5                     |              | 1.5                               | .808       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                                       |
| 26                                     |                 |                                            |                                                 | 7.5                     |              | 1.6                               | .700       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                                       |
| 27                                     |                 |                                            |                                                 | 7.5                     |              | 2.2                               | .660       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                                       |
|                                        | 1.8             | 1                                          |                                                 | 7.5                     |              | 1.2                               | .733       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 133.4           | 54.0             |                                       |
| 29                                     |                 |                                            |                                                 | 7.4                     |              | 1.8                               | .689       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                                       |
| 30                                     |                 |                                            |                                                 | 7.4                     |              | 2.4                               | .760       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | -                | · · · ·                               |
| 31                                     |                 |                                            |                                                 | 7.5                     |              | 1.9                               | .827       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                                       |
|                                        |                 |                                            |                                                 | 231.6                   |              |                                   | 22.222     | and the second s | 676.8           | 230              | .,                                    |
| do. Avg. []<br>LANT STA<br>ay Shift Op | FFING:          | 1Class:                                    |                                                 | 7,47<br>Certificate No: |              | 2.15<br>Nar                       | .717       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 169.2           | 57.5             |                                       |
|                                        |                 |                                            |                                                 |                         |              |                                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  | <u> </u>                              |
| vening Shif                            |                 | Class:                                     |                                                 | Certificate No:         |              | Nar                               |            | вепу                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |                  |                                       |
| ight Shift C                           | operator        | Class:                                     | C                                               | ertificate No:          | ·····        | Nar                               | BC:        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                                       |

|          | CBOD5<br>(MG/L)     | Fecal<br>Coliform<br>Bacteria<br>(#/100ML) | Nitrogen,<br>Nitrate, Total<br>(as N)<br>(MC/L) | pH (SU)         | TSS (MG/L) | TRC (For<br>Disinfect.)<br>(MG/L) | Flow (MGD)     | Percent<br>Capacity<br>(TMADP/Per<br>mitted | CBOD5<br>(MG/L) | TSS (MG/L) |          |
|----------|---------------------|--------------------------------------------|-------------------------------------------------|-----------------|------------|-----------------------------------|----------------|---------------------------------------------|-----------------|------------|----------|
| Code     | 80082               | 74055                                      | 00620                                           | 00400           | 00530      | 50060                             | 50050          | 00180                                       | 80082           | 00530      |          |
| on. Sile | EFA-1               | EFA-1                                      | EFA-I                                           | EFA-1           | EFA-1      | EFA-1                             | FLW-1          | FLW-1                                       | INF-1           | INF-1      |          |
| 1        |                     |                                            |                                                 | 7.5             | <u> </u>   | 2.5                               | .728           | <u> </u>                                    | ļ               |            |          |
| 2        |                     | ļ                                          | <u> </u>                                        | 7.4             |            | 2.2                               | .818           | <u> </u>                                    |                 |            |          |
| 3        | 14.6                |                                            | .37                                             |                 | 2.0        | 2.1                               | .836           | <u> </u>                                    | 207.9           | 100.0      |          |
|          | 14.6                | 1                                          |                                                 | 7.5             | 2.0        | 2.5<br>2.4                        | .712<br>.747   |                                             | 207.8           | 100.0      |          |
| 5        |                     |                                            |                                                 |                 |            |                                   |                | <u> </u>                                    |                 |            |          |
| 6        |                     |                                            | <u> </u>                                        | 7.5             | ļ          | 1.8                               | .777           |                                             |                 |            |          |
| 7        |                     | ļ                                          | ļ                                               | 7.4             | <u> </u>   | 2.5                               | .837           | <u> </u>                                    |                 |            |          |
| 8        |                     |                                            |                                                 | 7.4             | <u> </u>   | 2.2                               | .629           |                                             |                 |            |          |
| 9        |                     | L                                          |                                                 | 7.4             | ļ          | 2.4                               | .758           |                                             |                 |            |          |
| 10       |                     | ļ                                          | 10                                              | 7.5             | 121.0      | 2.2                               | .749           |                                             |                 | 244.0      |          |
|          | 12.0                | 1                                          | .10                                             | 7.5             | 21.0       | 2.8                               | .718           |                                             | 233.9           | 344.0      |          |
| 12       |                     | Ļ                                          |                                                 | 7.5             |            | 3.3                               | .829           | <u></u>                                     |                 |            |          |
| 13       |                     | ļ                                          | ļ                                               | 7.5             |            | 3.0                               | .741           |                                             |                 |            |          |
| 14       |                     | Ļ                                          |                                                 | 7.4             |            | 3.2                               | .777           |                                             |                 |            |          |
| 15       |                     | L                                          |                                                 | 7.4             |            | 2.8                               | .680           |                                             |                 |            |          |
| 16       | l                   |                                            |                                                 | 7.4             |            | 2.8                               | .752           |                                             |                 |            |          |
| 17       |                     |                                            |                                                 | 7.5             |            | 3.0                               | .674           |                                             |                 |            |          |
|          | 8.2                 | 1                                          | .13                                             | 7.6             | 3.0        | 2.8                               | .649           | <br>                                        | 127.2           | 122.0      |          |
| 19       |                     |                                            |                                                 | 7.5             |            | 2.8                               | .669           | ļ                                           |                 |            |          |
| 20       |                     | L                                          |                                                 | 7.4             |            | 3.0                               | .761           |                                             |                 |            |          |
| 21       |                     | <u> </u>                                   |                                                 | 7.4             |            | 1.8                               | .647           |                                             |                 | <u></u>    |          |
| 22       |                     |                                            |                                                 | 7.5             |            | 2.3                               | .713           |                                             |                 |            |          |
| 23       |                     |                                            |                                                 | 7.5             |            | 2.6                               | .694           |                                             |                 |            |          |
| 24       |                     |                                            |                                                 | 7.5             | <br>       | 2.4                               | .622           |                                             |                 |            |          |
|          | 15.0                | 1                                          | .65                                             | 7.6             | 13.0       | 2.8                               | .726           |                                             | 206.1           | 62.0       |          |
| 26       |                     |                                            | L                                               | 7.5             | ļ          | 2,4                               | .682           | ļ                                           |                 |            |          |
| 27       |                     | ļ                                          |                                                 | 7.5             |            | 2.6                               | .539           | ļ                                           |                 | ļ          |          |
| 28       |                     | L                                          |                                                 | 7.5             |            | 3.4                               | .715           | L                                           |                 | ļ          |          |
| 29       |                     | ļ                                          |                                                 | 7.5             |            | 3.0                               | .661           |                                             |                 | <u> </u>   | <u> </u> |
| 30       |                     |                                            |                                                 | 7.5             |            | 2.8                               | ,729           |                                             |                 | <u> </u>   |          |
| 31 .     |                     |                                            |                                                 |                 |            |                                   |                |                                             |                 |            |          |
|          | 49.8                | 4                                          |                                                 | 224,2           | 39.0       | 78.4                              | 21.569         |                                             | 775.0           | 628.0      |          |
| o. Avg.  | 12.4                | 1                                          | .312                                            | 7.5             | 9.75       | 2.6                               | .718           |                                             | 193.75          | 157.0      |          |
|          | AFFING:<br>Dperator | Class:                                     | C                                               | Certificate No  | 14360      | Na                                | me: <u>E.G</u> | arcia                                       |                 |            |          |
|          | uift Operator       | Class;                                     |                                                 | Certificate No: |            |                                   |                | веггу                                       |                 |            |          |
|          | Operator            | Class:                                     |                                                 | Certificate No: |            | Na                                |                |                                             |                 |            |          |

#### Permit Number: Monitoring Period

FLA010634 From: \_\_\_\_5/01/07 DAILY SAMPLE RESULTS - PART B

Facility: Southlake Utilities WWTF

| Page 41 | of 48 |
|---------|-------|
|         |       |

,

|                       | CBOD5   | Fecal                             | Nitrogen,                          | pH,                              | pH,                   | TSS (MG/I | .) TRC (For           | Flow (MGD) | CBOD5  | TSS (MG/L         |
|-----------------------|---------|-----------------------------------|------------------------------------|----------------------------------|-----------------------|-----------|-----------------------|------------|--------|-------------------|
|                       | (MG/L)  | Coliform<br>Bacteria<br>(#/100ML) | Nitrate, Total<br>(as N)<br>(MG/L) | Min<br>(SU)                      | Max<br>(SU)           |           | Disinfect.)<br>(MG/L) |            | (MG/L) | 100 (MGA          |
| Code                  | 80082   | 74055                             | 00620                              | 00400                            | 00400                 | 00530     | 50060                 | 50050      | 80082  | 00530             |
| Mon. Site             | EFA-1   | EFA-1                             | EFA-1                              | EFA-1                            | EFA-I                 | EFA-1     | EFA-I                 | FLW-1      | INF-1  | INF-1             |
| 1                     | 1.6     | <u> </u>                          |                                    | 7.6                              | 7.6                   |           | 2.0                   | .600       |        |                   |
|                       | 4.6     | 1                                 | 2.36                               | 7.6                              | 7.6                   | 1.0       | 2.6                   | .655       | 201.7  | 6 <del>6</del> .D |
| 3                     |         |                                   |                                    | 7.5                              | 7.5                   |           | 2.4                   | .673       |        |                   |
| 4                     |         |                                   |                                    | 7.5                              | 7.5                   |           | 2.8                   | .715       |        |                   |
| 5                     |         |                                   |                                    | 7.5                              | 7.5                   |           | 2.6                   | .660       |        |                   |
| 6                     |         |                                   |                                    | 7.5                              | 7.5                   |           | 2.5                   | .738       |        | 1                 |
| 7                     |         |                                   |                                    | 7.5                              | 7.5                   |           | 2.5                   | .627       |        |                   |
| 8                     |         | Τ                                 |                                    | 7.6                              | 7.6                   | 1         | 2.5                   | .756       |        |                   |
| 9                     | 8.8     | 1                                 | 4.47                               | 7.6                              | 7.6                   | 1.0       | 2.0                   | .569       | 203.9  | 110.0             |
| 10                    |         |                                   |                                    | 7.5                              | 7.5                   |           | 1.0                   | .679       |        |                   |
| 11                    |         |                                   |                                    | 7.6                              | 7.6                   |           | 2.8                   | .631       |        |                   |
| 12                    |         |                                   |                                    | 7.6                              | 7.6                   |           | 3.1                   | .682       |        | <u> </u>          |
| 13                    |         |                                   |                                    | 7.5                              | 7.5                   | -         | 2,8                   | .672       |        |                   |
| 14                    |         |                                   |                                    | 7.5                              | 7.5                   |           | 2.8                   | .642       |        | 1                 |
| 15                    |         |                                   |                                    | 7.5                              | 7.5                   |           | 2.4                   | .618       |        |                   |
| 16                    | 13.0    | 1                                 | .39                                | 7.5                              | 7.5                   | 5.0       | 2.8                   | .657       | 210.6  | 76.0              |
| 17                    |         |                                   |                                    | 7.6                              | 7.6                   |           | 2.6                   | .671       |        |                   |
| 18                    |         | ·                                 |                                    | 7.6                              | 7.6                   | <u> </u>  | 2.9                   | .674       |        |                   |
| 19                    |         |                                   |                                    | 7.5                              | 7.5                   |           | 3.0                   | .536       |        |                   |
| 20                    |         | +                                 |                                    | 7.5                              | 7.5                   |           | 1.9                   | .779       |        |                   |
| 21                    |         |                                   |                                    | 7.3                              | 7.4                   |           | 2.5                   | .696       |        |                   |
| 22                    |         |                                   |                                    | 7.4                              | 7.5                   |           | 1.6                   | .649       | •••    |                   |
| 23 1                  | 11.2    | 1                                 | 0.10                               | 7.4                              | 7.5                   | 4.0       | 2.3                   |            | 122.5  | 68.0              |
| 24                    |         |                                   |                                    | 7.4                              | 7.5                   |           | 1.8                   | .699       |        |                   |
| 25                    |         |                                   |                                    | 7.5                              | 7.5                   |           | 2,5                   | .616       |        |                   |
| 26                    |         |                                   |                                    | 7.5                              | 7.5                   |           | 2.0                   | .749       |        |                   |
| 27                    |         |                                   |                                    | 7.5                              | 7.5                   |           | 1.5                   | .592       |        |                   |
| 28                    | ·····   |                                   |                                    |                                  | 7.5                   | ·         | 1.3                   | .786       |        |                   |
| 29                    |         |                                   |                                    |                                  | 7.5                   | <b>_</b>  |                       | .679       |        |                   |
|                       | 2.0     | 6                                 |                                    |                                  | 7.4                   | 6.0       | L                     |            | 97.8   | 56.0              |
| 31                    | -       | -                                 |                                    | 1                                | 7.5                   |           |                       | .641       |        | 10.0              |
| ال                    | 9.6     | 10.0                              |                                    |                                  |                       | 17.0      | LI                    |            | 76.5   | 2.7.6             |
| lo. Avg. 9            |         |                                   |                                    | I                                |                       | 3.4       |                       |            |        | 376               |
| ANT STA<br>y Shift Op | FFING:  | Class:<br>Class:                  | _ <u>c</u> c                       | ertificate No:<br>ertificate No: | <u>14360</u><br>12234 | Nar       | ne: <u>E.Gar</u> o    | sia        | 87.3   | 75.2'             |
| ght Shift O           | perator | Class:                            | c                                  | ertificate No:                   |                       | Nar       | ne:                   |            |        |                   |
| ud Operato            | r       | Class:                            | c c                                | ertificate No:                   | 13887                 | Nar       |                       | De Leon    |        |                   |

#### DAILY SAMPLE RESULTS - PART B

\_\_\_\_

\_\_\_\_\_

| Permit Number:    |  |
|-------------------|--|
| Monitoring Period |  |

FLA010634 From: \_\_\_\_\_6/01/07\_\_\_\_\_ To: \_\_\_\_6/30/07\_\_\_\_\_\_

Facility: Southlake Utilities WWTF

|                                                                 | CBOD5<br>(MG/L)                       | Fecal<br>Coliform<br>Bacteria<br>(#/100ML) | Nitrogen,<br>Nitrate, Total<br>(as N)<br>(MG/L) | pH,<br>Min<br>(SU) | pH,<br>Max<br>(SU) | TSS (MG/L) | TRC (For<br>Disinfect.)<br>(MG/L) | Flow (MGD)   | CBOD5<br>(MG/L)                       | TSS (MG/L) |
|-----------------------------------------------------------------|---------------------------------------|--------------------------------------------|-------------------------------------------------|--------------------|--------------------|------------|-----------------------------------|--------------|---------------------------------------|------------|
| Code                                                            | 80082                                 | 74055                                      | 00620                                           | 00400              | 00400              | 00530      | 50060                             | 50050        | 80082                                 | 00530      |
| Ion. Site                                                       | EFA-1                                 | EFA-1                                      | EFA-1                                           | EFA-1              | EFA-1              | EFA-1      | EFA-1                             | FLW-1        | INF-1                                 | INF-1      |
| 1                                                               |                                       |                                            | L                                               | 7.4                | 7.5                | ļ          | 2.6                               | .757         |                                       |            |
| 2                                                               |                                       |                                            |                                                 | 7.5                | 7.5                |            | 1.7                               | .767         |                                       |            |
| 3                                                               | · · · · · · · · · · · · · · · · · · · | <u> </u>                                   |                                                 | 7.5                | 7.5                |            | 1.3                               | .704         |                                       |            |
| 4                                                               |                                       |                                            |                                                 | 7.4                | 7.5                | ļ          | 2.6                               | .652         |                                       | -          |
| 5                                                               |                                       |                                            |                                                 | 7.4                | 7,5                |            | 2.2                               | .692         |                                       |            |
|                                                                 | 9.7                                   | 3                                          | .10                                             | 7.5                | 7.5                | 7.0        | 2.8                               | .662         | 240.2                                 | 68.0       |
| 7                                                               |                                       |                                            |                                                 | 7.4                | 7.5                |            | 2.2                               | .710         |                                       |            |
| 8                                                               |                                       |                                            |                                                 | 7.4                | 7.4                |            | 2.8                               | .695         |                                       |            |
| 9                                                               |                                       |                                            |                                                 | 7.4                | 7.4                |            | 2.5                               | .604         |                                       |            |
| 10                                                              |                                       |                                            |                                                 | 7.4                | 7.4                |            | 1.0                               | <b>.89</b> 1 |                                       |            |
| 11                                                              |                                       |                                            |                                                 | 7.4                | 7.4                |            | 1.6                               | .680         |                                       |            |
| 12                                                              |                                       |                                            |                                                 | 7.4                | 7.4                |            | 1.0                               | .647         |                                       |            |
| 13                                                              | 8.5                                   | 1                                          |                                                 | 7.4                | 7.5                | 7.0        | 2.8                               | .708         | 187.5                                 | 62.0       |
| 14                                                              |                                       |                                            |                                                 | 7.5                | 7.5                |            | 2.8                               | .634         |                                       |            |
| 15                                                              |                                       |                                            |                                                 | 7.4                | 7.4                |            | 2.4                               | .674         |                                       |            |
| 16                                                              |                                       |                                            |                                                 | 7.4                | 7.4                |            | 2.5                               | .707         |                                       |            |
| 17                                                              |                                       |                                            |                                                 | 7.4                | 7.4                |            | 3.0                               | .622         |                                       |            |
| 18                                                              |                                       |                                            |                                                 | 7.4                | 7.4                |            | 2.8                               | .633         |                                       |            |
| 19                                                              |                                       |                                            |                                                 | 7.4                | 7.5                | ]          | 2.3                               | .600         |                                       |            |
| 20                                                              | 12.6                                  | 1                                          | .13                                             | 7.5                | 7.5                | 16.0       | 2.5                               | .622         | 213.3                                 | 260.0      |
| 21                                                              |                                       |                                            |                                                 | 7.4                | 7.4                |            | 2.4                               | .657         |                                       |            |
| 22                                                              |                                       |                                            |                                                 | 7.4                | 7.5                |            | 2.0                               | .707         |                                       |            |
| 23                                                              |                                       |                                            |                                                 | 7.5                | 7.5                |            | 2.2                               | .623         | ······                                |            |
| 24                                                              |                                       |                                            |                                                 | 7.5                | 7.6                |            | 2.4                               | .670         |                                       |            |
| 25                                                              |                                       |                                            |                                                 | 7.5                | 7.5                |            | 2.0                               | .732         | · · · · · · · · · · · · · · · · · · · |            |
| 26                                                              |                                       |                                            |                                                 | 7.4                | 7.4                |            | 1.8                               | .619         |                                       |            |
| 27 1                                                            | 14.5                                  | 1                                          | .10                                             | 7.4                | 7.5                | 23.0       | 2.4                               | .690         | 217.8                                 | 48.0       |
| 28                                                              |                                       |                                            | ······                                          | 7.4                | 7.5                |            | 2.2                               | .760         |                                       |            |
| 29                                                              |                                       |                                            | 1                                               | 7.5                | 7.5                |            | 2.5                               | .694         |                                       |            |
| 30                                                              |                                       |                                            |                                                 | 7.5                | 7.5                | 1          | 2.0                               | .883         |                                       |            |
| 31                                                              |                                       |                                            |                                                 |                    |                    |            |                                   |              |                                       |            |
| Total 4                                                         | 5.3                                   | 6                                          | .43                                             | 223                | 224                | 53.0       | 67.3                              | 20.696       | 858.8                                 | 438.0      |
| o. Avg. 1                                                       | 1.33                                  | 1.5                                        | .11                                             | 7.43               | 7.47               | 13.2       | 2.24                              |              |                                       | 109.5      |
| Total 4<br>Mo. Avg. 1<br>LANT STA<br>ay Shift Op<br>vening Shif | FFING:                                |                                            | <u>.11</u>                                      |                    |                    |            | 2.24<br>ne: <u>E.Gar</u>          | .690         | 858.8<br>214.7                        | <u> </u>   |
| ight Shift O                                                    | -                                     |                                            |                                                 |                    |                    |            |                                   | 25611 9      |                                       |            |
| -                                                               | -                                     | Class:                                     |                                                 | Certificate No:    |                    | Na         |                                   |              |                                       |            |
| ad Operato                                                      | )C                                    | Class:                                     | _ <u> </u>                                      | Certificate No:    | 13887              | Nar        | ne: <u>Angel</u>                  | De Leon      |                                       |            |

|                         | Number:<br>pring Period | FLA010634<br>From:7/                       | 01/07                                           |                    | /07                |            | Facility:                      | Southlake Utiliti |                 | e 43 of 48 |
|-------------------------|-------------------------|--------------------------------------------|-------------------------------------------------|--------------------|--------------------|------------|--------------------------------|-------------------|-----------------|------------|
|                         | CBODS<br>(MG/L)         | Fecal<br>Coliform<br>Bacteria<br>(#/100ML) | Nitrogen,<br>Nitrate, Total<br>(as N)<br>(MG/L) | pH,<br>Min<br>(SU) | pH,<br>Max<br>(SU) | TSS (MG    | /L) TRC (F<br>Disinfe<br>(MG/I | ct.)              | CBOD5<br>(MG/L) | TSS (MG/L) |
| Code                    | 80082                   | 74055                                      | 00620                                           | 00400              | 00400              | 00530      | 50060                          | 50050             | 80082           | 00530      |
| Mon. Site               | EFA-1                   | EFA-1                                      | EFA-1                                           | EFA-1              | EFA-1              | EFA-I      | EFA-                           |                   | INF-1           | INF-1      |
| 1                       |                         |                                            | <br>                                            | 7.5                | 7,5                |            | 2.2                            | .796              |                 |            |
| 2                       |                         |                                            |                                                 | 7.4                | 7.5                |            | 2.4                            | .628              |                 |            |
| 3                       |                         |                                            |                                                 | 7.4                | 7.4                |            | 2.2                            | .700              |                 |            |
| 4                       | [                       |                                            |                                                 | 7.4                | 7.4                |            | 2.5                            | .625              |                 |            |
| 5                       | 11.4                    | 1                                          | .10                                             | 7.4                | 7.4                | 11.0       | 2.4                            | .795              | 185.9           | 254.0      |
| 6                       | <b></b>                 |                                            |                                                 | 7.4                | 7.4                |            | 2.9                            | .729              |                 |            |
| 7                       |                         |                                            |                                                 | 7.4                | 7.4                |            | 2.2                            | .837              |                 |            |
| 8                       |                         |                                            |                                                 | 7.4                | 7.4                |            | 2.0                            | .691              |                 |            |
| 9                       |                         |                                            | 1                                               | 7.4                | 7.4                |            | 2.2                            | .645              |                 |            |
| 10                      |                         |                                            | 1                                               | 7.4                | 7.5                |            | 2.6                            | .701              |                 |            |
| 11                      | 12.0                    | 1                                          | .26                                             | 7.3                | 7.4                | 15.0       | 2.6                            | .695              | 182.3           | 84.0       |
| 12                      |                         |                                            |                                                 | 7.4                | 7.4                |            | 2.8                            | .691              |                 |            |
| 13                      | l                       |                                            |                                                 | 7.3                | 7.4                | 1          | 2.6                            | .596              |                 | +          |
| 14                      | <br> -                  |                                            |                                                 | 7.3                | 7.3                |            | 1.0                            | .871              |                 |            |
| 15                      |                         |                                            |                                                 | 7.4                | 7.4                |            | 2.0                            | .875              |                 | +          |
| 16                      |                         |                                            |                                                 | 7.5                | 7.6                |            | 2.8                            | .559              |                 | <u> </u>   |
| 17                      |                         |                                            |                                                 | 7.5                | 7.6                |            | 2.6                            | .716              |                 |            |
| 18                      | 7.8                     | 11                                         | .38                                             | 7.5                | 7.6                | 5.0        | 2.0                            | .649              | 203.9           | 122.0      |
| 19                      | · · · · · · · · ·       | <u> </u>                                   |                                                 | 7.6                | 7.6                |            | 2.5                            | .811              |                 |            |
| 20                      |                         |                                            |                                                 | 7.5                | 7.6                | +          | 2.1                            | .749              |                 |            |
| 21                      |                         | <u> </u>                                   |                                                 | 7.5                | 7.5                |            | 2,2                            | .877              |                 |            |
| 22                      |                         |                                            |                                                 | 7.5                | 7.5                |            | 2.3                            | .844              |                 |            |
| 23                      |                         |                                            |                                                 | 7.5                | 7.6                |            | 2.1                            | .541              |                 |            |
| 24                      |                         |                                            |                                                 | 7.5                | 7.5                | +          | 2.1                            | .738              |                 |            |
|                         | 7.4                     | 2                                          | .32                                             | 7.5                | 7.5                | 3.0        | 2.8                            | .758              | 253,3           | 70.        |
| 26                      |                         |                                            |                                                 | 7.5                | 7.6                |            | 2.8                            | .757              |                 |            |
| 27                      |                         |                                            |                                                 | 7.4                | 7.5                |            | 2.6                            | .781              |                 | <u> </u>   |
| 28                      |                         |                                            |                                                 | 7.5                | 7.5                |            | 1.6                            | .847              |                 | ┼          |
| 29                      |                         |                                            |                                                 | 7.4                | 7.4                |            | 2.3                            | .628              |                 | <u> </u> ] |
| 30                      |                         | <b>1</b>                                   |                                                 | 7.5                | 7.5                |            | 1.4                            | .770              |                 |            |
| 31                      |                         |                                            |                                                 | 7.4                | 7.5                | . <u> </u> | 2.1                            | .759              |                 |            |
|                         | 38.60                   | 5                                          |                                                 | 230.6              | 231.8              | 34         | 70.9                           |                   | 825.40          | 530.0      |
| Mo, Avg.                | L                       | J<br>1.25                                  |                                                 | -                  | 7.48               |            | 2.29                           |                   |                 |            |
| MD, Avg.                | 2.03                    | 1.23                                       | · Å, 1                                          | 7.44               | 7.48               | 8.50       | 2.69                           | .731              | 206.35          | 132.50     |
| PLANT ST<br>Day Shift C |                         | Class:                                     | <u> </u>                                        | Certificate No.    | 14360              | ۲۲         | lame: <u>E</u>                 | Garcia            |                 |            |
| Evening Sh              | ift Operator            | Class:                                     | A (                                             | Certificate No:    | 12234              | 1          | lame: _S                       | leve Berry        |                 |            |
| Night Shift             | -                       | Class:                                     | ومشتخذ بالمتحدث فيسجده                          | Certificate No:    |                    |            | lame:                          |                   |                 |            |
| Lead Opera              |                         | Class:                                     |                                                 | Certificate No:    |                    |            |                                | ngel De Leon      |                 |            |

.

\_\_\_\_ \_\_\_\_\_

.

#### DAILY SAMPLE RESULTS - PART B

Permit Number. Monitoring Period FLA010634 From: \_8/01/07\_\_\_\_\_ To: \_\_8/31/07\_\_\_

Facility: Southlake Utilities WWTF

|                                        | CBOD5<br>(MG/L) | Fecal<br>Coliform<br>Bacteria<br>(#/100ML) | Nitrogen,<br>Nitrate, Total<br>(as N)<br>(MG/L) | pH,<br>Min<br>(SU) | pH,<br>Max<br>(SU) | TSS (MG/L | ) TRC (For<br>Disinfect.)<br>(MG/L) | Flow (MGD) | CBOD5<br>(MG/L) | TSS (MG/I |
|----------------------------------------|-----------------|--------------------------------------------|-------------------------------------------------|--------------------|--------------------|-----------|-------------------------------------|------------|-----------------|-----------|
| Code                                   | 80082           | 74055                                      | 00620                                           | 00400              | 00400              | 00530     | 50060                               | 50050      | 80082           | 00530     |
| Mon. Site                              | EFA-1           | EFA-1                                      | EFA-1                                           | EFA-1              | EFA-I              | EFA-I     | EFA-1                               | FLW-1      | INF-I           | INF-1     |
| 1                                      | 12.0            | 1                                          | .10                                             | 7.4                | 7.5                | 1.0       | 1.8                                 | .662       | 176.1           | 56,0      |
| 3                                      |                 | ļ                                          |                                                 | 7.5                | 7.5                |           | 2.8                                 | .698       |                 |           |
|                                        |                 |                                            |                                                 | 7.4                | 7.4                |           | 2.5                                 | .658       |                 |           |
| 4                                      |                 | ļ                                          |                                                 | 7,4                | 7.4                |           | 1.7                                 | .871       |                 |           |
|                                        |                 |                                            | ļ                                               | 7.4                | 7.4                |           | 2.5                                 | .735       |                 |           |
| 6                                      |                 | ļ                                          |                                                 | 7.4                | 7.4                |           | 2.5                                 | .803       |                 |           |
| 7                                      |                 |                                            |                                                 | 7.5                | 7.5                |           | 1.6                                 | .691       |                 |           |
|                                        | 11.3            | []<br>                                     | .28                                             | 7.5                | 7.5                | 7.0       | 2.3                                 | .702       | 231.7           | 64.0      |
| 9                                      | ·····           |                                            |                                                 | 7.4                | 7.5                |           | 1.6                                 | .709       |                 |           |
| 10                                     |                 |                                            |                                                 | 7.4                | 7.4                |           | 2.2                                 | .742       |                 |           |
| 11                                     | ··· · · · · ·   |                                            |                                                 | 7.4                | 7.4                |           | 2.4                                 | .690       |                 |           |
| 12                                     |                 |                                            |                                                 | 7.4                | 7.4                | <u> </u>  | 2.5                                 | .826       |                 |           |
| 13                                     |                 |                                            |                                                 | 7.4                | 7.4                |           | 1.7                                 | .760       |                 |           |
| 14                                     |                 |                                            |                                                 | 7.4                | 7.4                |           | 2.8                                 | .738       |                 |           |
|                                        | 12.7            | 1                                          |                                                 | 7.3                | 7.3                | 1.0       | 1.6                                 |            | 209.4           | 60.0      |
| 16                                     |                 |                                            |                                                 | 7.3                | 7.3                |           | 1.2                                 | .714       |                 |           |
| 17                                     |                 |                                            |                                                 | 7.3                | 7.4                |           | 2.8                                 | .701       |                 |           |
| 18                                     |                 |                                            |                                                 | 7.3                | 7.3                |           | 2.5                                 | .716       |                 |           |
| 19                                     |                 |                                            |                                                 | 7.4                | 7.4                |           | 1.2                                 | .726       |                 |           |
| 20                                     |                 |                                            |                                                 | 7.4                | 7.4                |           | 1.0                                 | .700       |                 |           |
| 21                                     |                 |                                            |                                                 | 7.3                | 7.3                |           | 1.0                                 | .639       |                 |           |
|                                        | 9.9             | 1                                          |                                                 | 7.3                | 7.3                | 1.0       | 1.6                                 | .697       | 192.5           | 68.0      |
| 23                                     |                 |                                            |                                                 | 7.4                | 7.4                |           | 1.0                                 | .699       |                 |           |
| 24                                     |                 |                                            |                                                 | 7.4                | 7.4                |           | 1.0                                 | .592       |                 |           |
| 25                                     |                 |                                            |                                                 | 7.4                | 7.4                |           | 1.3                                 | .789       |                 |           |
| 26                                     |                 |                                            |                                                 | 7.4                | 7.4                |           | 1.2                                 | .635       |                 |           |
| 27                                     |                 |                                            |                                                 | 7.4                | 7.4                |           | 2.0                                 | .657       |                 |           |
| 28                                     |                 |                                            |                                                 | 7.4                | 7.4                |           | 2.6                                 | .696       |                 |           |
| 29                                     |                 |                                            |                                                 | 7.5                | 7.5                |           | 2.6                                 | .607       |                 |           |
| 30                                     |                 |                                            |                                                 | 7.4                | 7.5                |           | 2.8                                 | .642       |                 |           |
| 31 1                                   | 1.5             | 5                                          | 2.27                                            | 7.4                | 7.4                | 2.0       | 2.5                                 | .652 1     | 92.8            | 48.0      |
| Total 5                                | 7.4             | 9                                          | B.03 2                                          | 229.2              | 229.6              | 11.0      | 60.8                                | 21.845 1   | 002.5           | 296.0     |
| 10. Avg. 1                             | 1.8             | 1.8                                        | 1.6                                             | 7.4                | 7.41               | 2.2       | 1,96                                | 705 2      | 00.5            | 59.2      |
| ANT STA<br>ay Shift Op<br>rening Shift | erator          | Class:<br>Class:                           |                                                 | ertificate No:     |                    | Nar       |                                     |            |                 |           |
| ght Shift O                            | perator         | Class:                                     | c                                               | ertificate No:     |                    | Nar       | ne:                                 |            |                 |           |

### DAILY SAMPLE RESULTS - PART B

Permit Number: Monitoring Period FLA010634 From: \_9/01/07\_\_\_\_ To: \_\_9/30/07\_\_

Facility: Southlake Utilities WWTF

|             | CBOD5<br>(MG/L)  | Fecal<br>Coliform<br>Bacteria<br>(#/100ML) | Nitrogen,<br>Nitrate, Total<br>(as N)<br>(MG/L) | pH,<br>Min<br>(SV) | pH,<br>Max<br>(SU) | TSS (MG/L) | TRC (For<br>Disinfect.)<br>(MG/L) | Flow (MGD) | CBOD5<br>(MG/L) | TSS (MG/L |
|-------------|------------------|--------------------------------------------|-------------------------------------------------|--------------------|--------------------|------------|-----------------------------------|------------|-----------------|-----------|
| Code        | 80082            | 74055                                      | 00620                                           | 00400              | 00400              | 00530      | 50060                             | 50050      | 80082           | 00530     |
| Mon. Site   | EFA-1            | EFA-1                                      | EFA-1                                           | EFA-1              | EFA-1              | EFA-1      | EFA-I                             | FLW-I      | INF-1           | INF-1     |
| 1           |                  |                                            |                                                 | 7.4                | 7.4                |            | 2.6                               | .651       |                 |           |
|             |                  |                                            |                                                 | 7.3                | 7.3                |            | 1.7                               | .843       |                 |           |
| 3           |                  |                                            |                                                 | 7.2                | 7.3                |            | 1.5                               | .710       |                 |           |
| 4           |                  |                                            |                                                 | 7.3                | 7.3                |            | 1.5                               | .699       |                 |           |
|             | 9.6              | 1                                          | 3.86                                            | 7.4                | 7.4                | 2.0        | 2.5                               | .559       | 204.2           | 98.0      |
| 6           |                  |                                            |                                                 | 7.4                | 7.5                |            | 1.6                               | .563       |                 |           |
| 7           |                  |                                            |                                                 | 7.4                | 7.4                |            | 1.6                               | .592       |                 |           |
| 8           |                  |                                            |                                                 | 7.5                | 7.5                |            | 0.9                               | .644       |                 |           |
| 9           |                  |                                            |                                                 | 7.4                | 7.4                |            | 0.6                               | .650       |                 |           |
| 10          |                  |                                            |                                                 | 7.4                | 7.4                |            | 1.0                               | .564       |                 |           |
| 11          |                  |                                            |                                                 | 7.4                | 7.5                |            | 2.3                               | .550       |                 |           |
|             | 8.2              | 1                                          | 4.39                                            | 7.5                | 7.5                | 1.0        | 2.7                               | .563       | 236.1           | 132.0     |
| 13          |                  |                                            |                                                 | 7.4                | 7.5                |            | 2.6                               | .599       |                 |           |
| 14          |                  |                                            |                                                 | 7.4                | 7.4                |            | 2.4                               | .618       |                 |           |
| 15          |                  |                                            |                                                 | 7.5                | 7.5                |            | 2.3                               | .700       |                 |           |
| 16          |                  |                                            | ,                                               | 7.5                | 7.5                |            | 2.4                               | .749       |                 |           |
| 17          |                  |                                            | 1                                               | 7.4                | 7.5                |            | 2.5                               | .728       |                 |           |
| 18          |                  |                                            | ľ                                               | 7.5                | 7.5                |            | 1.3                               | .678       |                 |           |
| 19          | 10.3             | l                                          | 6.37                                            | 7.3                | 7.4                | 1.0        | 1.8                               | .592       | 151.7           | 50.0      |
| 20          |                  |                                            |                                                 | 7.4                | 7.4                |            | 1.8                               | .689       |                 |           |
| 21          |                  |                                            | 1                                               | 7.3                | 7.3                |            | 1.0                               | .721       |                 |           |
| 22          |                  |                                            | 1                                               | 7.4                | 7.4                |            | 1.3                               | .594       |                 | 1         |
| 23          |                  |                                            | 7                                               | 7.4                | 7.4                |            | 1.1                               | .992       |                 |           |
| 24          |                  |                                            | 7                                               | 7.2                | 7.3                |            | 1.0                               | .580       |                 | <u> </u>  |
| 25          |                  |                                            | 7                                               | 7.3                | 7.3                |            | 1.2                               | .750       |                 |           |
| 26 1        | 2.3 1            |                                            | 7.28 7                                          | 7.3                | 7.3                | 1.0        | 2.4                               | .655       | 245.6           | 76.0      |
| 27          |                  |                                            | 7                                               | .4                 | 7.4                |            | 2.4                               | .702       |                 |           |
| 28          |                  |                                            | 7                                               | <sup>7</sup> .4    | 7.5                |            | 1.4                               | .671       |                 |           |
| 29          |                  |                                            | 7                                               | .4                 | 7.4                |            | 1.8                               | .710       |                 |           |
| 30          |                  |                                            | 7                                               | .5                 | 7.5                |            |                                   | .711       |                 | <u> </u>  |
| 31          |                  |                                            |                                                 |                    |                    |            |                                   |            |                 |           |
| Total 1     | 0.1 4            | 2                                          | 1.9 2                                           | 21.6               | 222.4              | 5.0        | 52                                | 20.027     | 837.6           | 356       |
| 10. Avg. 2  | .52 1            | l                                          |                                                 |                    | 7.41               |            |                                   |            | 209.4           | 89        |
| ANT STA     | FFING:<br>erator | Ciass:                                     |                                                 | ertificate No:     | 14360              | Nап        | ·····                             |            |                 | 09        |
| ening Shif  |                  | Class:                                     | <u>A</u> Co                                     | ertificate No:     | 12234              | Nan        | e: <u>Steve</u>                   | Велу       |                 |           |
| ght Shift O | perator          | Class:                                     | Ce                                              | ertificate No:     |                    | Narr       | le:                               |            |                 |           |
| ad Operato  | r                | Class:                                     | <u> </u>                                        | ertificate No:     | 13887              | Nam        | e: Angel                          | De Leon    |                 |           |

•

\_

# DAILY SAMPLE RESULTS - PART B Facility: Southlake Utilities WWTF

| Permit Number:    |
|-------------------|
| Monitoring Period |

FLA010634 From: \_10/01/07\_\_\_\_\_

To: \_\_10/31/07\_\_\_

|                                        | CBOD5<br>(MG/L) | Fecal<br>Coliform<br>Bacteria<br>(#/100ML) | Nitrogen,<br>Nitrate, Total<br>(as N)<br>(MG/L) | pH,<br>Min<br>(SU)                 | pH,<br>Max<br>(SU) | TSS (MG/L) | ) TRC (For<br>Disinfect.)<br>(MG/L) | Flow (MGD)      | CBOD5<br>(MG/L)                        | TSS (MG/L |
|----------------------------------------|-----------------|--------------------------------------------|-------------------------------------------------|------------------------------------|--------------------|------------|-------------------------------------|-----------------|----------------------------------------|-----------|
| Code                                   | 80082           | 74055                                      | 00620                                           | 00400                              | 00400              | 00530      | 50060                               | 50050           | 80082                                  | 00530     |
| Mon. Site                              | EFA-1           | EFA-1                                      | EFA-1                                           | EFA-1                              | EFA-1              | EFA-1      | EFA-1                               | FLW-1           | INF-1                                  | INF-1     |
| 1                                      |                 |                                            |                                                 | 7.5                                | 7.5                |            | 1.2                                 | .699            |                                        |           |
| 2                                      |                 |                                            |                                                 | 7.4                                | 7.5                |            | 2.0                                 | .661            |                                        |           |
| 3                                      | 9.9             | 1                                          | 3.32                                            | 7.4                                | 7.4                | 1          | 2.6                                 | .691            | 198.3                                  | 38.0      |
| 4                                      |                 |                                            |                                                 | 7.4                                | 7.4                |            | 2.6                                 | .739            |                                        |           |
| 5                                      |                 | 1                                          |                                                 | 7.4                                | 7.4                |            | 2.0                                 | .678            |                                        |           |
| 6                                      |                 |                                            |                                                 | 7.4                                | 7.4                |            | 2,2                                 | .790            |                                        | 1         |
| 7                                      |                 |                                            |                                                 | 7.4                                | 7.4                |            | 1.6                                 | .752            |                                        |           |
| 8                                      |                 |                                            |                                                 | 7.4                                | 7.4                |            | 1.2                                 | .705            | [                                      | -         |
| 9                                      |                 |                                            |                                                 | 7.3                                | 7.3                |            | 2.4                                 | .725            |                                        |           |
| 10 1                                   | 10.2            | 1                                          | 2.35                                            | 7.5                                | 7.5                | 1          | 2.4                                 | .748            | 180.8                                  | 44.0      |
| 11                                     |                 |                                            |                                                 | 7.5                                | 7.5                |            | 2.6                                 | .650            |                                        |           |
| 12                                     |                 |                                            |                                                 | 7.5                                | 7.5                | -          | 2.1                                 | .698            |                                        |           |
| 13                                     | ·····           |                                            |                                                 | 7.4                                | 7.4                |            | 2.0                                 | .785            | · · · · · · · · · · · · · · · · · · ·  |           |
| 14                                     |                 |                                            |                                                 | 7,5                                | 7.5                | +          | 1.8                                 | .763            |                                        |           |
| 15                                     |                 | <u> </u>                                   |                                                 | 7.5                                | 7.5                |            | 2.0                                 | .629            |                                        |           |
| 16                                     |                 |                                            |                                                 | 7.4                                | 7.5                |            | 2.6                                 | .731            |                                        |           |
|                                        | 3.1             | 1                                          |                                                 | 7.4                                | 7.4                | 1          | 2.5                                 | .699            | 233.3                                  | 60.0      |
| 18                                     |                 |                                            |                                                 | 7.4                                | 7.4                |            | 2.3                                 | .748            |                                        |           |
| 19                                     |                 |                                            |                                                 | 7.4                                | 7,4                | +          | 2.0                                 | .753            |                                        |           |
| 20                                     |                 |                                            |                                                 | 7.5                                | 7.5                |            | 2.0                                 | .806            |                                        |           |
| 21                                     | ****            |                                            |                                                 | 7.5                                | 7.5                | +          | 2.2                                 | .767            |                                        |           |
| 22                                     |                 |                                            |                                                 | 7.5                                | 7.5                |            | 2.1                                 | .748            |                                        |           |
| 23                                     |                 |                                            |                                                 | 7.5                                | 7.5                | +          | 1.7                                 | .742            |                                        |           |
|                                        | 1.7             | 1                                          |                                                 | 7.4                                | 7.4                | 1          | 2.6                                 |                 | 233.3                                  | 60.0      |
| 25                                     |                 | <u> </u>                                   |                                                 | 7.4                                | 7.4                |            | 2.4                                 | .716            |                                        | 00.0      |
| 25                                     |                 |                                            |                                                 | 7.4                                | 7.4                | -          | 2.3                                 | .727            | ······································ |           |
|                                        |                 |                                            |                                                 | 7.4                                |                    |            | 2.0                                 |                 |                                        | <u> </u>  |
| 27                                     |                 |                                            |                                                 |                                    | 7.4                |            |                                     | .670            |                                        |           |
| 28                                     |                 |                                            |                                                 | 7.4                                | 7.4                |            | 2.6                                 | .800            |                                        | ·         |
| 29                                     |                 |                                            |                                                 | 7.4                                | 7.4                |            | 1.5                                 | .794            |                                        | ļ         |
| 30                                     |                 |                                            |                                                 | 7.4                                | 7.4                |            | 2.3                                 | :726            |                                        |           |
|                                        | .2              | 1                                          |                                                 | 7.5                                | 7.5                | 1          | 2.6                                 | l I             | 225.0                                  | 56.0      |
|                                        | 9.1             | l                                          |                                                 | 230.4                              | 230.6              | 5          | 66.4                                | 1               | 1070.7                                 | 258.0     |
| Vio. Avg. 9                            | .82             | 1                                          | 2.36                                            | 7.4                                | 7.4                | 1          | 2.14                                | .729            | 214.1                                  | 516       |
| LANT STA<br>ay Shift Op<br>vening Sbif | erator          | Class:<br>Class:                           |                                                 | Certificate No:<br>Certificate No: |                    |            | me: <u>E.G</u> a<br>me: <u>Stev</u> | псів<br>: Всяту |                                        | ·····     |
| light Shift Operator Class;            |                 |                                            | (                                               | Certificate No:                    |                    | Na         |                                     |                 |                                        |           |
| end Operator                           |                 | Class:                                     | _c(                                             | Certificate No:                    | 13887              | bĭa        | me: Ang                             | el De Leon      |                                        |           |

#### DAILY SAMPLE RESULTS - PART B

 Permit Number:
 FLA010634

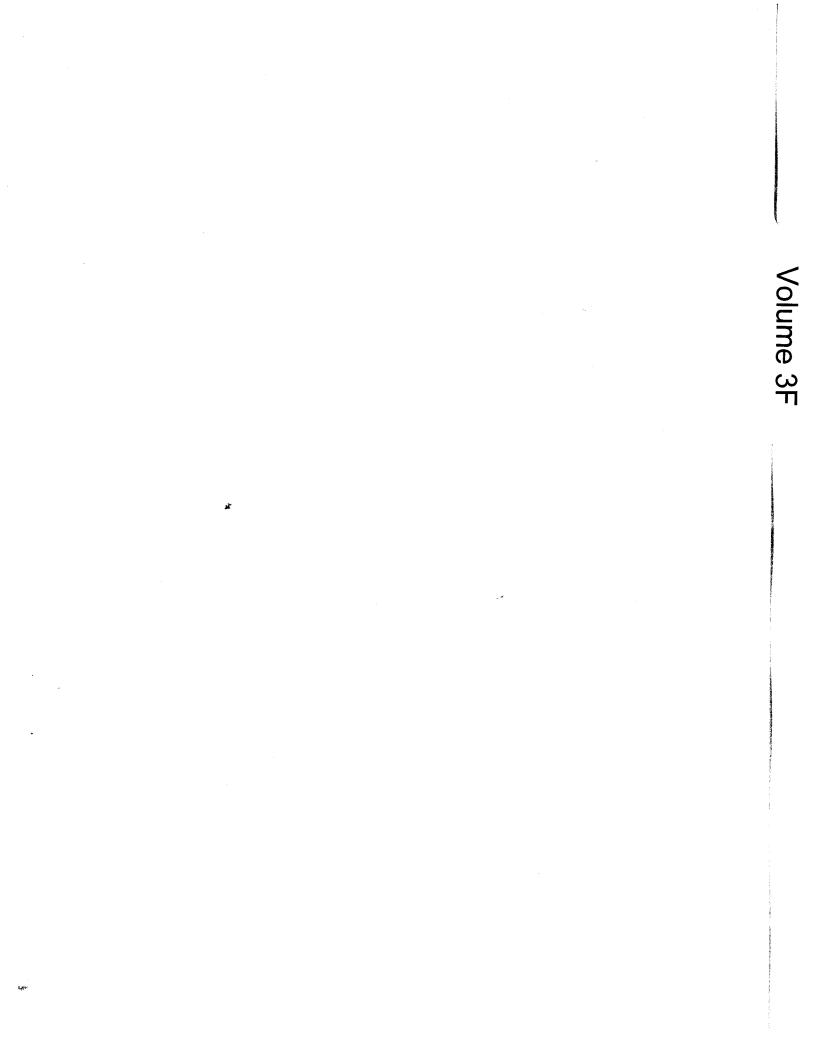
 Monitoring Period
 From: \_11/01/07 \_\_\_\_\_ To: \_\_11/30/07 \_\_\_\_\_

Facility: Southlake Utilities WWTF

|                       | CBOD5<br>(MG/L) | Fecal<br>Coliform<br>Bacteria<br>(#/100ML) | Nitrogen,<br>Nitrate, Total<br>(as N)<br>(MG/L) | pH,<br>Min<br>(SU) | pH,<br>Max<br>(SU) | TSS (MG/ | L) TRC (Fo<br>Disinfec<br>(MG/L) | L)          | CBOD5<br>(MG/L) | TSS (MG/I |
|-----------------------|-----------------|--------------------------------------------|-------------------------------------------------|--------------------|--------------------|----------|----------------------------------|-------------|-----------------|-----------|
| Code                  | 80082           | 74055                                      | 00620                                           | 00400              | 00400              | 00530    | 50060                            |             | 80082           | 00530     |
| Mon. Site             | EFA-1           | EFA-1                                      | EFA-I                                           | EFA-1              | EFA-1              | EFA-1    | EFA-1                            | FLW-I       | INF-1           | INF-1     |
| 1                     | <u> </u>        |                                            |                                                 | 7.5                | 7.5                |          | 2.4                              | .668        | ļ               | -         |
| 2                     | ļ               |                                            | <u></u>                                         | 7.5                | 7.5                |          | 2.5                              | .718        |                 |           |
| 3                     | <u>-</u>        | ļ                                          | <u> </u>                                        | 7.5                | 7.5                |          | 2.4                              | .739        |                 |           |
| 4                     |                 |                                            |                                                 | 7.5                | 7.5                |          | 2.6                              | .762        |                 |           |
| 5                     |                 |                                            | <u> </u>                                        | 7.2                | 7.2                |          | 1.2                              | .778        |                 |           |
| 6                     |                 |                                            |                                                 | 7.3                | 7.3                |          | 2.7                              | .640        |                 |           |
|                       | 9.8             | 1                                          | 2.87                                            | 7.4                | 7.4                | 2.0      | 2.6                              | .658        | 183.4           | 94.0      |
| 8                     |                 |                                            |                                                 | 7.4                | 7.4                |          | 2.1                              | .639        |                 |           |
| 9                     |                 |                                            |                                                 | 7.3                | 7.3                |          | 2.0                              | .678        | [               |           |
| 10                    |                 |                                            |                                                 | 7.4                | 7.4                | 1        | 2.3                              | .721        |                 |           |
| 11                    |                 |                                            |                                                 | 7.3                | 7.3                | 1        | 2.2                              | .735        |                 |           |
| 12                    |                 |                                            |                                                 | 7.3                | 7.3                | 1        | 2.0                              | .590        |                 |           |
| 13                    |                 |                                            |                                                 | 7.2                | 7.3                |          | 1.0                              | .642        |                 | +         |
| 14                    | 9.4             | 1                                          | 0.22                                            | 7.2                | 7.2                | 5.0      | 1.7                              | .657        | 150.0           | 88.0      |
| 15                    |                 |                                            |                                                 | 7.5                | 7.5                | <u> </u> | 2.6                              | .645        |                 | +         |
| 16                    |                 |                                            |                                                 | 7.5                | 7.5                | <u> </u> | 2.6                              | .577        |                 |           |
| 17                    |                 |                                            | ·                                               | 7.4                | 7.4                | 1        | 2.4                              | .726        |                 |           |
| 18                    |                 |                                            |                                                 | 7.5                | 7.5                | <u> </u> | 2.8                              | .674        |                 | +         |
| 19                    |                 |                                            |                                                 | 7.5                | 7.5                | <u>}</u> | 1.6                              | .582        |                 |           |
| 20                    | 11.0            | 1                                          | 0.67                                            | 7.4                | 7.4                | 1.0      | 2.3                              | .742        | 203.9           | 98.0      |
| 21                    |                 | ······································     |                                                 | 7.5                | 7.5                | <u>}</u> | 3.5                              | .726        |                 |           |
| 22                    |                 |                                            |                                                 | 7.4                | 7.4                | }        | 3.3                              | .656        |                 |           |
| 23                    |                 | ·····                                      | l                                               | 7.5                | 7.5                | <u> </u> | 3.2                              | .790        |                 |           |
| 24                    |                 |                                            |                                                 | 7.5                | 7.5                | }        | 3.0                              | .680        |                 | ┿────     |
| 25                    |                 | · · · · · · · · · · · · · · · · · · ·      |                                                 | 7.5                | 7.5                | <u> </u> | 3.5                              | .887        |                 |           |
| 26                    |                 |                                            |                                                 | 7.5                | 7.5                |          | 2.8                              | .602        |                 |           |
| 27                    |                 |                                            | L I                                             | 7.5                | 7.5                |          | 2.6                              | .612        |                 |           |
|                       | 10.0            | 1                                          |                                                 | 7.4 ;              | 7.4                | 1.0      | 2.6                              | .627        | 158.4           | 80.0      |
| 29                    |                 | -                                          |                                                 | 7.5                | 7.5                |          | 2.8                              | .639        |                 | 100.0     |
| 30                    |                 |                                            |                                                 | 7.4                | 7.4                | <u> </u> | 2.5                              | .610        |                 | <u> </u>  |
| 31                    |                 |                                            |                                                 |                    | ···T               | ļ        |                                  |             |                 |           |
|                       | 10.2            |                                            |                                                 |                    |                    |          |                                  |             |                 |           |
| جالي                  |                 |                                            |                                                 | 222.5              |                    | 9.0      | 73.8                             |             | 695.70          | 360.0     |
| o. Avg. 1             | U.I             |                                            | 1.1                                             | 7,42               | 7.42               | 2.25     | 2.46                             | .680        | 173.93          | 90.0      |
| ANT STA<br>y Shift Op |                 | Class;                                     | <u> </u>                                        | Certificate No:    | 14360              | N        | ame: <u>E.</u>                   | Farcia      |                 |           |
| ening Shif            | t Operator      | Class:                                     | <u> </u>                                        | ertificate No;     | 12234              | N        | ame: <u>Ste</u>                  | че Веггу    |                 |           |
| ght Shift C           | )perator        | Class:                                     | C                                               | ertificate No:     |                    | N        | ame:                             |             |                 |           |
| d Operato             | -               | Class:                                     |                                                 | ertificate No:     |                    |          |                                  | gel De Leon |                 |           |

. . . . . .

\_\_\_\_ \_\_\_\_\_


# DAILY SAMPLE RESULTS - PART B Facility: Southlake Utilities WWTF

Permit Number: Monitoring Period

FLA010634 From: \_12/01/07\_

To: \_\_12/31/07\_\_\_\_\_

|                         | CBOD5<br>(MG/L)                                                    | Fecal<br>Coliform<br>Bacteria<br>(#/100ML) | Nitrogen,<br>Nitrate, Total<br>(as N)<br>(MG/L) | pH,<br>Min<br>(SU)               | pH,<br>Max<br>(SU) | TSS (MG/L | ) TRC (For<br>Disinfect.)<br>(MG/L) | Flow (MGD)        | CBOD5<br>(MG/L) | TSS (MG/L |
|-------------------------|--------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------|----------------------------------|--------------------|-----------|-------------------------------------|-------------------|-----------------|-----------|
| Code                    | 80082                                                              | 74055                                      | 00620                                           | 00400                            | 00400              | 00530     | 50060                               | 50050             | 80082           | 00530     |
| Mon. Site               | EFA-1                                                              | EFA-1                                      | EFA-1                                           | EFA-1                            | EFA-1              | EFA-1     | EFA-1                               | FLW-1             | INF-1           | DNF-1     |
| 1                       |                                                                    | ļ                                          |                                                 | 7.5                              | 7.5                |           | 1.2                                 | .692              |                 |           |
| 2                       |                                                                    |                                            |                                                 | 7.5                              | 7.5                |           | 0.8                                 | .733              | ļ               |           |
| 3                       |                                                                    |                                            |                                                 | 7.5                              | 7.5                |           | 2.0                                 | .632              | ļ               |           |
| 4                       |                                                                    |                                            |                                                 | 7.5                              | 7.5                |           | 2.4                                 | .574              |                 |           |
|                         | 7.6                                                                | 1                                          | 3.79                                            | 7.4                              | 7.4                | 1.0       | 1.9                                 | .614              | 171.7           | 298.0     |
| 6                       |                                                                    |                                            |                                                 | 7.5                              | 7.3                |           | 2.8                                 | .620              | ļ               |           |
| 7                       |                                                                    |                                            |                                                 | 7.4                              | 7.4                |           | 1.7                                 | .628              |                 |           |
| 8                       |                                                                    |                                            |                                                 | 7.5                              | 7.5                |           | 2.0                                 | .648              |                 |           |
| 9                       |                                                                    |                                            |                                                 | 7.4                              | 7.4                |           | 1.6                                 | .763              | ļ               |           |
| 10                      |                                                                    |                                            |                                                 | 7.5                              | 7.4                |           | 2.8                                 | .565              |                 |           |
| 11                      |                                                                    |                                            |                                                 | 7.3                              | 7.3                |           | 2.8                                 | .631              | ļ               |           |
| 12                      | 11.2                                                               | 1                                          | .10                                             | 7.4                              | 7.4                | 15.0      | 2.8                                 | .651              | 245.6           | 82.0      |
| 13                      |                                                                    |                                            |                                                 | 7.4                              | 7.4                |           | 1.6                                 | .563              |                 |           |
| 14                      |                                                                    |                                            |                                                 | 7.2                              | 7.2                |           | 3.3                                 | .631              |                 |           |
| 15                      |                                                                    |                                            |                                                 | 7.3                              | 7.3                |           | 2.7                                 | .596              |                 |           |
| 16                      |                                                                    |                                            |                                                 | 7.5·                             | 7.5                |           | 2.0                                 | .727              |                 |           |
| 17                      |                                                                    |                                            |                                                 | 7.5                              | 7.5                |           | 2.1                                 | .594              |                 |           |
| 18                      |                                                                    |                                            |                                                 | 7.5                              | 7.5                |           | 2.0                                 | .638              |                 |           |
| 19                      | 6.1                                                                | 1                                          | 1.55                                            | 7.5                              | 7.5                | 1.0       | 2.9                                 | .673              | 92.0            | 64.0      |
| 20                      |                                                                    |                                            |                                                 | 7.4                              | 7.4                |           | 3.2                                 | .569              |                 |           |
| 21                      |                                                                    |                                            |                                                 | 7.4                              | 7.4                |           | 3.0                                 | .673              |                 |           |
| 22                      |                                                                    |                                            |                                                 | 7.4                              | 7,4                |           | 3.1                                 | .756              |                 |           |
| 23                      |                                                                    |                                            |                                                 | 7.4                              | 7.5                |           | 2.8                                 | .869              |                 |           |
| 24                      | <u>.</u>                                                           |                                            |                                                 | 7.4                              | 7.5                |           | 2.5                                 | .689              |                 |           |
| 25                      |                                                                    |                                            |                                                 | 7.3                              | 7.3                |           | 1.2                                 | .855              |                 |           |
| 26                      | 9.0                                                                | 1                                          | 0.10                                            | 7.5                              | 7.5                | 4.0       | 2.8                                 | .781              | 205.0           | 272.0     |
| 27                      |                                                                    |                                            |                                                 | 7.5                              | 7.5                |           | 2.0                                 | .736              |                 |           |
| 28                      |                                                                    |                                            |                                                 | 7.4                              | 7.4                |           | 1.8                                 | .857              |                 | 1         |
| 29                      |                                                                    |                                            |                                                 | 7.4                              | 7.4                |           | 2.0                                 | 1.022             |                 |           |
| 30                      | <u>, at a finite de une - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - </u> |                                            |                                                 | 7.5                              | 7.5                |           | 1.7                                 | .942              |                 |           |
| 31                      |                                                                    |                                            |                                                 | 7.4                              | 7.5                |           | 1.9                                 | .748              | 1               |           |
| Total                   | 33.90                                                              | 4                                          | 5,54                                            | 230.3                            | 230.2              | 21.0      | 57.2                                | 21.67             | 714.30          | 716.0     |
| Mo. Avg.                |                                                                    | 1                                          |                                                 | 7.43                             | 7.43               | 5.3       | 1,8                                 | .700              | 178.58          | 179.0     |
| LANT STA<br>Day Shift O | AFFING:                                                            | Class:<br>Class:                           | _ <u>C</u>                                      | Certificate No<br>Certificate No | n: <u>14360</u>    | N         | ame: _E.G                           | arcia<br>ve Berry |                 |           |
|                         | •                                                                  |                                            | C                                               | Certificate No                   |                    |           | ame:                                |                   |                 |           |
| light Shift             | Operator                                                           | Class:                                     |                                                 | Contraction INC                  |                    | N         | ame:                                |                   |                 |           |





# Department of Environmental Protection

Jeb Bush Governor Central District 3319 Maguire Boulevard, Suite 232 Orlando, Florida 32803-3767

Colleen M. Castille Secretary

CERTIFIED MAIL 7003 1680 0001 8879 7702

May 11, 2005

OCD-C-WW-05-0478

SOUTHLAKE UTILITIES INC 6554 CROSSING BOULEVARD CLERMONT FL 34711

ATTENTION JEFFREY CAGAN PRESIDENT

> Lake County - DW Southlake Utilities WWTF Wastewater Facility - Permit No. FLA010634 Noncompliance Letter

Dear Mr. Cagan:

On February 10, 2005, you were forwarded a noncompliance letter listing certain deficiencies that were found during a routine inspection on January 19, 2005. A copy of the noncompliance letter is enclosed.

You were requested to respond, in writing, within 14 days of the date of the letter with a schedule of action(s) to correct the deficiencies noted. As of this date, no reply has been received.

In order to avoid enforcement action, you are requested to respond within 7 days from receipt of this letter as to your intentions in correcting the deficiencies noted in the noncompliance letter.

Sincerely,

1 TAN

Gary P. Miller Program Manager Wastewater Compliance/Enforcement

GM/pf/ww

Enclosure: Noncompliance Letter No. OCD-C-WW-05-0137

cc: Lake County Water Resource Management , <u>scatasus@co.lake.fl.us</u> Anil Desai, Program Manager, Ground Water Section, <u>anil.desai@dep.state.fl.us</u>



# Department of Environmental Protection

Jeb Bush Governor Central District 3319 Maguire Boulevard, Suite 232 Orlando, Florida 32803-3767

Colleen M. Castille Secretary

SENT VIA E-MAIL TO: Jeff@cagan.com

February 10, 2005

SOUTHLAKE UTILITIES INC 6554 CROSSING BOULEVARD CLERMONT FL 34711 OCD-C-WW-05-0137

ATTENTION JEFFREY CAGAN PRESIDENT

> Lake County - DW Southlake Utilities WWTF Wastewater Facility - Permit No. FLA010634 Noncompliance Letter

Dear Mr. Cagan:

On January 19, 2005, Department personnel conducted a routine inspection of your wastewater facility. A copy of the inspection report is enclosed for your review. During the course of the inspection, and/or determined from records on file in this office, the following deficiencies were noted:

- 1. Samples in the influent flow proportioned composite sampler were not maintained at 4 degrees Celsius.
- 2. The effluent sample pickup tubing had a loops and coils, which may prevent a complete purge.
- 3. At the time of the inspection, the Total Residual Chlorine (TRC) was 0.22 milligrams per Liter (mg/L), which is less than the minimum of 0.5 mg/L as required.
- 4. The Total Suspended Solids (TSS) result reported on the DMR for March and April 2003 were 141 and 113 mg/L, which exceeded the maximum limit of 60 mg/L for any one sample.
- 5. A review of ground water files for this facility indicates the following deficiencies:
  - a. A current certification form containing the quality assurance section was not submitted with the ground water monitoring report for the first quarter of 2005. The correct form was submitted with previous reports. Please submit the correct form with the reports in the future.

Southlake Utilities WWTF OCD-C-WW-05-0137 Page 2

- b. No ground water monitoring report forms with elevation data were submitted for piezometers PZ-1 through PZ-4 for all quarters of data reviewed. Please submit the missing data and submit the reports for these locations with future submittals.
- c. Depth to water instead of ground water elevations were reported for all quarters of data reviewed. This has been a historical problem at this facility, discussed in several non-compliance letters. Please calculate and record the ground water elevations for all wells and submit revised reports to the Department. The Department will no longer accept reports with depth to water reported. The reports will be returned to the facility for correction.
- d. Nitrate concentrations were reported above the primary standard of 10 mg/L for ground water samples from compliance well MW-3 at 11.64 milligrams per Liter for the first quarter of 2005. Please investigate the cause of the elevated concentrations and report the results of the investigation to the Department.

Please respond to these items, in writing, with a schedule of corrective action. Pursuant to Rule 62-4.100(2), F.A.C., failure to comply with pollution control rules shall be grounds for permit suspension or revocation and initiation of formal enforcement action. Ground water questions should be directed to Marsha Johnson at (407) 893-3301. Your reply is requested within 14 days from the date of this letter. Your reply and any other questions should be addressed to Patrick Farris at (407) 893-3313.

Sincerely,

miller

Gary P. Miller Program Manager Wastewater Compliance/Enforcement

GM/pf/ww

Enclosures: Inspection Report

Wastewater Compliance Information Flyer

cc: Lake County Water Resource Management, <u>scatasus@co.lake.fl.us</u> Anil Desai, Program Manager, Ground Water Section, <u>anil.desai@dep.state.fl.us</u>

Page 4 of 36

COMET ENTRY DATE 02/07/05

er nau

#### FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION

## WASTEWATER COMPLIANCE INSPECTION REPORT

FACILITY AND INSPECTION INFORMATION

.

|                                                          | ILITY AND INSP                                                                          | ECTION IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | @                      | e = Optional                                                               |  |
|----------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------------------------------------------------|--|
| Name and Physical Location of Fucility                   | WAFR ID:                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | County                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ent                    | ry Date/Time                                                               |  |
| Southiake Utilities WWTF                                 | FLA010634                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1/19                   | 0/05                                                                       |  |
| South US Highway 27                                      |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Phone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | @ 1                    | Exit Date/Time                                                             |  |
| Ciermont FL                                              |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                            |  |
| Name(s) of Field Representatives(s)                      | Title                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Phe                    | ppe                                                                        |  |
| Angel Delcon                                             | Operator                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                            |  |
| Eddy Garcia                                              | Operations Ma                                                                           | nager                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                            |  |
|                                                          |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | ·····                                                                      |  |
| Name and Address of Permittee or Design                  | ated Representative                                                                     | Title                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Phone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ø                      | Operator Certification #                                                   |  |
| Jeffrey Cagan                                            |                                                                                         | President                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (352) 394-8898                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ang                    | el Deleon C-13887                                                          |  |
| Southlake Utilities, Inc.                                |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                            |  |
| 6554 Crossing Boulevard                                  |                                                                                         | E-mail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Fax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                                                                            |  |
| Clermont FL 3471 I                                       |                                                                                         | Jeff@cagan.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |                                                                            |  |
| Inspection Type C E I                                    | Samples Taken(Y/N): Yes                                                                 | @ Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ID#: TL1, TL2, TL3, TL4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Samp                   | les Split (Y/N): N                                                         |  |
| 🛛 Domestic 🔲 Indus                                       | strial Were Photos Tok                                                                  | en(Y/N): Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | @ Log book Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | : 3                    | @ Page 147                                                                 |  |
|                                                          |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                            |  |
|                                                          | CILITY COMPLE                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1715 P. 14 1 1 1 1 1 1 |                                                                            |  |
| IC = In Compliance; NC Out of Significant Non-Compliance |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                            |  |
| PERMITS/ORDERS                                           | SELEMONTORING                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ITA OPERATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        | FLUENDOISPOSAL                                                             |  |
| IC 1. + Permit                                           | NE 3. Laboratory                                                                        | IC 6. Fa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | cility Site Review                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NC 9.                  | ◆Effluent Quality                                                          |  |
| NA 2. +Compliance Schedules                              | NC 4. Sampling                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | w Measurement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        | Effluent Disposal                                                          |  |
| •••••••••••••••••••••••••••••••••••••••                  | NC 5. + Records & Reports                                                               | NC 8.+OI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | eration & Maintenance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        | Residuals/Sludge                                                           |  |
| 13. Other:                                               |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NC 12.                 | Groundwater                                                                |  |
|                                                          |                                                                                         | <br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                            |  |
| Focility and/or Order Compliance Status:                 | In-Compliance                                                                           | Out-Of-Compliance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Significant-O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ut-Of-Compi            | liance                                                                     |  |
| Recommended Actions: Noncompliance Le                    | tter                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                            |  |
| Name(5) and Signature(s) of Inspector(3)                 |                                                                                         | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | District Office/Phone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Number                 | Date                                                                       |  |
| Patrick Farris Tatrick Ja                                | 1 <sup>1</sup>                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Central District 407-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 893-3313               | 2/7/05                                                                     |  |
| Patrick Farris                                           |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                            |  |
|                                                          |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | District Office/Phone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        | Hand Hand Hand                                                             |  |
| Signature of Reviewer                                    |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Central District 407-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        | Date<br>02/08/05                                                           |  |
| Kalina Warren Central District 407-893-3313 02/08/05     |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                            |  |
| Full Out This Section F                                  | 1937-Marcello III († 1944) - Strie Datemarke, militari entre forske entre 1997 - Strike | Discharger Ins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | pections (CEI, CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I, CBI                 | PAL XSI. RD                                                                |  |
| Transaction Code                                         | NPDES Number                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | KO/DA Insp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        | Inspector Fac Type                                                         |  |
| N 5                                                      |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ï                      | 2 3                                                                        |  |
|                                                          |                                                                                         | L NPDES COMM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                            |  |
| Inspection Type (Field I) A=PALE                         | ⊫ebiro=eei⊧s≑osi-x=xs                                                                   | I R≡RI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                            |  |
| Inspection Code (Field 2): S=State.                      |                                                                                         | at a set the factor of the set of | -State-Lead, L=Local                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Program                |                                                                            |  |
| Facility Type (Field 3): J=Muhicipi                      |                                                                                         | affirf territer brid as at in ftert at brent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | and a property of the part of the part of the bar of th | ********************   | /4=Fcdaral                                                                 |  |
| Every other field is self explanatory                    |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | COMPANY AND AND AND AND AND A SAME AND |  |

## INSPECTION COMMENTS

An existing 0.300 mgd annual average daily flow (AADF) permitted capacity re-rated to 0.600 MGD AADF extended aeration activated sludge domestic wastewater treatment plant consisting of influent screening, aeration, secondary clarification, chlorination and aerobic digestion of residuals.

## 1. Permit: In Compliance

- Permit number FLA010634 will expire on November 1, 2006.
- A copy of the permit was available on-site.

## 2. Compliance Schedules: Not Applicable

• Not applicable.

## 3. Laboratory: Not Evaluated

The facility uses Tri Tech Laboratory. The lab was not evaluated.

## 4. Sampling: Out of Compliance

- Influent and effluent composite samplers.
- Sampling day of inspection, sampling event was done before inspection began.
  - Influent Sampler:
    - Thermometer read  $-1^{\circ}$  C, sample was not frozen. Sample temperature should be  $0-4^{\circ}$  C.
    - Tygon tubing, coiled by sampler.
  - Effluent Sampler:
    - Thermometer read 1° C,
    - Black tubing is used, placed in effluent outfall.
    - Black tubing had coils that would allow water to stand in tubing and prohibit complete purging.
- Notes in logbook state: sampler temperature had been turned down on 1/15/05 to get temp. in correct range. On 1/16/05 sampler was at 4° C and on 1/18/05 sampler was set up to collect samples.
- Tri Tech Laboratory picked up the samples and placed them in a cooler on ice.

## 5. Records And Reports: Out of Compliance

- Bound and numbered logbook was on site with notes on operation and maintenance performed on plant.
- A copy of the operation and maintenance manual was on-site.
- A copy of the license for each certified operator that services this facility was on-site.
- A copy of the laboratory certification was on-site.
- DMRs were reviewed from March 2003 to August 2004.
- Percent Capacity (TMADF) was exceeded on the DMRs for March 2003 reported at 148%, April 2003 reported at 151%, May 2004 reported at 155%, June 2003 reported at 156% and August 2004 reported at 106%. Plant is under expansion to correct for high flows.
- Nitrate, Influent CBOD<sub>5</sub>, Influent TSS were not reported on Part A of the DMR for August 2004.

## 6. Facility Site Review: In Compliance

- Access: Fenced and gated
- *Physical Plant:* The plant being used had tanks bulging. Mr. Garcia said that when the second plant was finished, the first plant was going to be rebuilt. Contractors were working on the second plant.
- *Headworks:* The surge tank was taken out of service to be used as a digester.
- Aeration: Good

- Mixed Liquor: Light brown, no odor, light foam
- Clarifier: Stilling well is ok, foam and ash on surface, skimmer is on, only one skimmer arm is connected, weir is clean, water over weir is clear
- Chlorine Contact Chamber: Could not evaluate, a 15,000 gallon drinking water tank is currently being used as the CCC while the new CCC is built. Due to the tank being a closed tank, it is impossible to inspect the inside. The tank most likely does not have baffles, which would allow for short-circuiting and therefore would lack the 15 minute contact time at peak flow.
- Chlorination Method: Gas Chlorine, gas cylinders were roped to a pine tree on-site. The chlorine shed was locked, but had the fan running.
- Digester: Storage available
- Backflow Prevention: Well water used.

## 7. Flow Measurement: In Compliance

• Flow meter was calibrated.

## 8. Operation And Maintenance: Out of Compliance

• A certified operator was on-site as required by the permit.

## 9. Effluent Quality: Out of Compliance

- DMRs were reviewed from March 2003 to August 2004.
- Grab samples were taken at the time of the inspection:
  - TRC was 0.22mg/L.
  - pH was7.5 SU.
  - TSS was 6.5.
  - CBOD<sub>5</sub> was 2.7.
  - Fecal coliform 420 fcc/100mL.
  - Nitrate was 1.3mg/L.
- The TSS result reported on the DMR for March 2003 was 141 mg/L which exceeded the maximum limit of 60 mg/L for any one sample.
- The TSS result reported on the DMR for April 2003 was 113 mg/L which exceeded the maximum limit of 60 mg/L for any one sample.

## 10. Effluent Disposal Method: In Compliance

- Method of effluent disposal is to two percolation ponds.
- The vegetation on the berms was well maintained and the bottom was scarified.
- One percolation pond berm has been broken, this is allowed in the permit to allot for expansion. A third pond will be constructed.

## 11. Residuals Management: In Compliance

- Agreement with Shelly's Septic Tanks RMF.
- Synagro thickens the sludge, then Shelly's hauls.

## 12. Ground Water: Out of Compliance

- A review of ground water files for this facility indicates the following deficiencies:
  - A current certification form containing the quality assurance section was not submitted with the ground water monitoring report for the first quarter of 2005. The correct form was submitted with previous reports. Please submit the correct form with the reports in the future.

#### Southlake Utilities WWTF

- No ground water monitoring report forms with elevation data were submitted for piezometers PZ-1 through PZ-4 for all quarters of data reviewed. Please submit the missing data and submit the reports for these locations with future submittals.
- Depth to water instead of ground water elevations were reported for all quarters of data reviewed. This has been a historical problem at this facility, discussed in several non-compliance letters. Please calculate and record the ground water elevations for all wells and submit revised reports to the Department. The Department will no longer accept reports with depth to water reported. The reports will be returned to the facility for correction immediately.
- Nitrate concentrations were reported above the primary standard of 10 mg/L for ground water samples from compliance well MW-3 at 11.64 milligrams per Liter for the first quarter of 2005. Please investigate the cause of the elevated concentrations and report the results of the investigation to the Department.



# Department of Environmental Protection

Colleen M. Castille Secretary

Jeb Bush Governor Central District 3319 Maguire Boulevard, Suite 232 Orlando, Florida 32803-3767

January 2, 2007

Southlake Utilities, Inc. 16554 Cagan Crossings Boulevard, Suite 2 Clermont, FL 34714 OCD-PW-SS-06-1284

Attention: Jeff Cagan, President

Lake County – PW South Lake Utilities PWS ID Number 3354916

Dear Mr. Cagan:

This confirms a visit to the subject community public water system on November 17, 2006, by Danielle Owens to conduct a sanitary survey inspection. A copy of the sanitary survey inspection report is enclosed for your reference and records.

Deficiencies found during the sanitary survey and in Department records are listed in the enclosed report. These deficiencies shall be corrected in order to return to compliance with *Florida Administrative Code* (*F.A.C.*) Rules 62-550, 62-555, 62-560 and 62-602.

Please correct the indicated deficiencies, and notify the Department in writing that the deficiencies have been corrected, **no later than <u>February 9, 2007</u>**. (You may use the attached response form to indicate the corrective actions taken.)

If you have any questions, please contact Danielle Owens by email at Danielle.D.Owens@dep.state.fl.us or by phone at (407) 894-7555, extension 2216.

Sincerely,

Kim Dodson, Environmental Manager Drinking Water Compliance and Enforcement

KMD/ddo Enclosures

cc: Eddy Garcia, Operations Manager Kyle Kubanek, DEP Drinking Water Permitting Danielle Owens, DEP Drinking Water Compliance

## State of Florida Department of Environmental Protection Central District SANITARY SURVEY REPORT

.

. •

,

| Plant Name                                                                            | Southlake Utilities<br>ighway 27, Clermont, FL 34711<br>ake Utilities, Inc., Attn: Jeff Car                     | County             | Lake_               | _ PWS ID #               | 3354916        |
|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------|---------------------|--------------------------|----------------|
| Plant Location 930 Hi                                                                 | ighway 27, Clermont, FL 34711                                                                                   |                    |                     | Phone                    | (352) 394-8898 |
| Owner Name South L                                                                    | ake Utilities, Inc., Attn: Jeff Car                                                                             | an, Prsident       |                     | Phone                    | (352) 394-8898 |
| Owner Address 16554                                                                   | 4 Cagan Crossings Boulevard,                                                                                    | Ste 2. Clermont    | . FL 34714          |                          |                |
| Contact Person Eddy                                                                   | Garcia                                                                                                          | Title Operati      | ons Manag           | er Phone                 | (352) 516-8832 |
| This Survey Date 1                                                                    | Garcia<br>1/17/06 Last Survey Date                                                                              | 11/04/03           | 3   as              | t C.I. Date              | 06/11/98       |
|                                                                                       |                                                                                                                 |                    | <u> </u>            |                          |                |
| PWS TYPE & CLASS                                                                      |                                                                                                                 | RAW WAT            | ER SOURC            | E                        |                |
| 🔀 Community (4C)                                                                      |                                                                                                                 | 🛛 GROUN            | ND; Number          | r of Wells               | 2              |
| Non-transient Non-c                                                                   | ommunity                                                                                                        |                    | CE/UDI: So          | ource                    |                |
| Non-Community                                                                         | •                                                                                                               |                    | ASED from           | PWSID#                   |                |
| _                                                                                     |                                                                                                                 | Ernerge            | ency Water          | Source                   |                |
| PWS STATUS                                                                            |                                                                                                                 | Ernerge            | ncy Water           | Capacity                 |                |
|                                                                                       | th approval number & date                                                                                       |                    |                     |                          |                |
| WC35-210970 - 09/2                                                                    |                                                                                                                 | AUXILIAR           |                     |                          |                |
|                                                                                       | 27/94                                                                                                           |                    |                     | Not Rec                  |                |
| Unapproved system                                                                     |                                                                                                                 | Source <u>C</u>    | ummins Di           | esel General             | or             |
|                                                                                       |                                                                                                                 | Capacity of        | Standby (k          |                          | 300kw          |
| SERVICE AREA CHAR                                                                     | ACTERISTICS                                                                                                     | Switchover:        | Autom               | at <u>ic</u> 🔲 Mar       | nual           |
| Subdivision                                                                           |                                                                                                                 | Standby Pla        | an: 🛛 Yes           | 🗌 No                     |                |
|                                                                                       |                                                                                                                 |                    |                     | oad                      | <u>1 hr/wk</u> |
| Food Service: 🔲 Yes                                                                   | LINo ⊠ N/A                                                                                                      | What equip         | ment does i         | t operate?               |                |
|                                                                                       |                                                                                                                 | 🖄 Well p           | oumps <u>1 v</u>    | vell<br>nps <u>2 HSP</u> |                |
| OPERATION & MAINTE                                                                    |                                                                                                                 | 🔀 High S           | Service Pun         | nps <u>2 HSP</u>         | <u>s</u>       |
| Certified Operator: XY                                                                |                                                                                                                 | 🔀 Treatr           | nent Equipr         | nent <u>All</u>          |                |
| Operator(s) & Certificatio                                                            |                                                                                                                 |                    |                     |                          | s 🗌 No 🗍 Unk   |
| Eddy Garcia C-13538                                                                   | <del>و الجارية الشكارية و المحاركة و المحاركة المكالي و المحاركة المكالي و المحاركة المحاركة و المحاركة و</del> |                    |                     |                          | vice without   |
|                                                                                       |                                                                                                                 | prior clearar      | nce from thi        | s Departmer              | nt             |
| O & M Log: ⊠ Yes □                                                                    | NO                                                                                                              | <u>Audio-visua</u> | <u>l alarm avai</u> | lable.                   |                |
| Operator Visitation Frequence<br>Hrs/day: <i>Required</i><br>Days/wk: <i>Required</i> | lency                                                                                                           |                    |                     |                          | _              |
| Hrs/day: Required                                                                     | 1Actual1                                                                                                        | TREATMEN           |                     | sses in US               | E              |
| Days/wk: Required5                                                                    | s+1Actual7                                                                                                      |                    | <u></u>             |                          |                |
| Non-consecutive Days                                                                  | ? 🗌 Yes 🛄 No 🖾 N/A                                                                                              | Aeration           |                     |                          |                |
| MORs submitted regular                                                                | ly? 🛛 Yes 🗋 No 🛄 N/A                                                                                            | What addition      |                     | ent is needed            | 1?             |
| Data missing from MORs                                                                | ? 🛛 No 🔲 Yes 🗍 N/A                                                                                              | None at th         |                     |                          |                |
|                                                                                       |                                                                                                                 | For control of     | of what defin       | ciencies? <u>N</u>       | <u>A</u>       |
| Number of Service Conne                                                               | ections 1,759                                                                                                   | DISTRIBUT          | ION SYSTE           | EM                       |                |
| Population Served 6,15                                                                |                                                                                                                 | Flow Measu         |                     |                          | Meter          |
| Average Day (from MOR:                                                                |                                                                                                                 |                    |                     |                          | 8" Neptune     |
| Max. Day (from MORs) 3                                                                |                                                                                                                 | Backflow Pre       |                     |                          |                |
| Max-day Design Capacity                                                               |                                                                                                                 | Cross-conne        |                     |                          |                |
|                                                                                       | nax-day design capacity.                                                                                        | Written Cros       |                     |                          |                |
| Commenta <u>Lixceeding n</u>                                                          | ian-uay design capacity.                                                                                        |                    |                     |                          | No N/A         |
|                                                                                       |                                                                                                                 |                    | • -                 |                          | on Byproduct   |
|                                                                                       |                                                                                                                 |                    |                     |                          | ampling Plan   |
|                                                                                       |                                                                                                                 |                    |                     |                          | I, Emergency   |
|                                                                                       |                                                                                                                 | Response Pl        |                     |                          |                |
|                                                                                       |                                                                                                                 | Program ava        |                     |                          |                |

exercising logged in log book, but there is no written preventive maintenance program.

Page 10 of 36

| PWS ID # | 3354916  |
|----------|----------|
| Date     | 11/17/06 |

### **GROUND WATER SOURCE**

. · ·

| Well Num<br>(FLUWID |                                      | 1-Well D<br>(AAF4460) | 2-Well B<br>Abandoned                              | 3-Well E         | 4-Well F<br>Not permitted             |
|---------------------|--------------------------------------|-----------------------|----------------------------------------------------|------------------|---------------------------------------|
| Year Drill          |                                      | 1994                  | Abandoned                                          | 2004             | Not permitted                         |
| Depth Dr            | illed                                | 448'                  | 4. 2. 4. 2. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. | 650'             |                                       |
| Drilling M          | ethod                                | Cable tool            | ······                                             | Combination      | · · · · · · · · · · · · · · · · · · · |
| Type of G           | Grout                                | Neat cement           |                                                    | Unknown          |                                       |
| Static Wa           | iter Level                           | 18.7'                 |                                                    | 21'              |                                       |
| Pumping             | Water Level                          | 37.9'                 |                                                    | Unknown          |                                       |
| Design W            | ell Yield                            | Unknown               |                                                    | Unknown          |                                       |
| Test Yield          | 1                                    | 1,000 gpm             |                                                    | Unknown          |                                       |
| Actual Yie          | d (if different than rated capacity) | Unknown               | ······································             | Unknown          |                                       |
| Strainer            |                                      | Unknown               |                                                    | Unknown          |                                       |
| Length (or          | utside casing)                       | 293'                  |                                                    | 185'             |                                       |
| Diameter            | (outside casing)                     | 12"                   |                                                    | 30"              |                                       |
| Material (d         | outside casing)                      | Black steel           |                                                    | Black steel      |                                       |
| Well Cont           | amination History                    | None                  |                                                    | None             |                                       |
| ls inundati         | ion of well possible?                | No                    |                                                    | No               |                                       |
| 6' X 6' X 4         | " Concrete Pad                       | Yes                   |                                                    | Yes              |                                       |
|                     | Septic Tank                          | N/A                   |                                                    | N/A              |                                       |
| SET                 | Reuse Water                          | N/A                   |                                                    | N/A              |                                       |
| BACKS               | WW Plumbing                          | > 100'                |                                                    | > 100'           |                                       |
|                     | Other Sanitary Hazard                | None observed         |                                                    | None observed    |                                       |
|                     | Туре                                 | Vertical turbine      |                                                    | Vertical turbine |                                       |
|                     | Manufacturer Name                    | Goulds                |                                                    | Goulds           |                                       |
| PUMP                | Model Number                         | 12RJNO-4              |                                                    | 12DHLC           |                                       |
|                     | Rated Capacity (gpm)                 | 1,000                 |                                                    | 1,200            |                                       |
|                     | Motor Horsepower                     | 75                    |                                                    | 50               |                                       |
| Well casing         | g 12" above grade?                   | Yes                   |                                                    | Yes              |                                       |
| Well Casin          | g Sanitary Seal                      | Ok                    |                                                    | Ok               |                                       |
| Raw Wate            | r Sampling Tap                       | Yes                   |                                                    | Yes              |                                       |
| Above Gro           | und Check Valve                      | Yes                   |                                                    | Yes              |                                       |
| Fence/Hou           | Ising                                | Fence                 |                                                    | Fence            |                                       |
| Well Vent I         | Protection                           | Yes                   |                                                    | Yes              |                                       |

**COMMENTS** <u>Well B was abandoned when well E was cleared for service 11/05/04</u>. There is a well F on the premises that is not on-line and has not been permitted by this Department.

Page 11 of 36

| PWS ID # | 3354916  |
|----------|----------|
| Date     | 11/17/06 |

| CHLORINATION (Disinfection)                          |
|------------------------------------------------------|
| Type: 🔲 Gas 🖾 Hypo                                   |
| Make Prominant X2 Capacity 2.77 gph                  |
| Chlorine Feed Rate                                   |
| Avg. Amount of Cl <sub>2</sub> gas used <u>N/A</u>   |
| Chlorine Residuals: Plant 1.30 Remote                |
| Remote tap location Nelson Park Apartments           |
| DPD Test Kit: 🔲 On-site 🛛 With operator              |
| 🗌 None 🛛 🗖 Not Used Daily                            |
| Injection Points: Pre & post chlorination            |
| Booster Pump Info <u>N/A</u>                         |
| Comments 2 Prominant hypochlorinator pumps           |
| each with a capacity of 2.77 gph. Conversion from    |
| gas to hypo put into service without prior clearance |
| from this Department.                                |

. .

.

| Chlorine Gas Use<br>Requirements                                                                                    | YES       | NO | Comments |
|---------------------------------------------------------------------------------------------------------------------|-----------|----|----------|
| Dual System                                                                                                         |           |    |          |
| Auto-switchover                                                                                                     |           |    |          |
| Alarms:<br>Loss of Cl <sub>2</sub> capability<br>Loss of Cl <sub>2</sub> residual<br>Cl <sub>2</sub> leak detection |           |    |          |
| Scale                                                                                                               |           |    |          |
| Chained Cylinders                                                                                                   |           |    |          |
| Reserve Supply                                                                                                      | $\square$ |    |          |
| Adequate Air-pak                                                                                                    | X         |    |          |
| Sign of Leaks                                                                                                       |           |    |          |
| Fresh Ammonia                                                                                                       |           | Þ  |          |
| Ventilation                                                                                                         |           | D. |          |
| Room Lighting                                                                                                       |           |    |          |
| Warning Signs                                                                                                       |           |    |          |
| Repair Kits                                                                                                         |           |    |          |
| Fitted Wrench                                                                                                       |           |    |          |
| Housing/Protection                                                                                                  |           |    |          |

AERATION (Gases, Fe, & Mn Removal)

| Type <u>Cascade</u> | Capacity <u>5.000 gpm</u> |
|---------------------|---------------------------|
| Aerator Condition   | Unknown                   |
| Bloodworm Presend   | ce Unknown                |
| Visible Algae Growt | h Unknown                 |
|                     | condition Unknown         |
| Comments            |                           |
|                     |                           |

## STORAGE FACILITIES

| (G) Ground  | (H) | Hydropneumatic | (E) Elevated |
|-------------|-----|----------------|--------------|
| (B) Bladder | (C) | Clearwell      |              |

| Tank Type/Number                     | G/1                                     | G/2     | G/3    |  |  |  |  |
|--------------------------------------|-----------------------------------------|---------|--------|--|--|--|--|
| Capacity (gal)                       | 108,000                                 | 1 MG    | 1.5 MG |  |  |  |  |
| Material                             | Concrete                                | Crom    | Crom   |  |  |  |  |
| Gravity Drain                        | Yes                                     | Yes     | Yes    |  |  |  |  |
| By-pass Piping                       | Yes                                     | Yes     | Yes    |  |  |  |  |
| Pressure Gauge                       | N/A                                     | N/A     | N/A    |  |  |  |  |
| Sight Glass or<br>Level Indicator    | Yes                                     | Yes     | Yes    |  |  |  |  |
| Fittings for<br>Sight Glass          | N/A                                     | N/A     | N/A    |  |  |  |  |
| Protected Openings                   | Yes                                     | Yes     | Yes    |  |  |  |  |
| PRV/ARV                              | N/A                                     | N/A     | N/A    |  |  |  |  |
| On/Off Pressure                      | N/A                                     | N/A     | N/A    |  |  |  |  |
| Access Padlocked                     | Yes                                     | Yes     | Yes    |  |  |  |  |
| Height to Bottom of<br>Elevated Tank | N/A                                     | N/A     | N/A    |  |  |  |  |
| Height to Max.<br>Water Level        | N/A                                     | N/A     | N/A    |  |  |  |  |
| Comments Access                      |                                         |         |        |  |  |  |  |
| cleared for service 04/              |                                         |         |        |  |  |  |  |
| has not been cleared                 |                                         |         | rently |  |  |  |  |
|                                      | offline. This system originally had two |         |        |  |  |  |  |
| hydropneumatic tanks                 |                                         |         | nce    |  |  |  |  |
| the ground storage tar               | nks were ins                            | talled. |        |  |  |  |  |
|                                      |                                         |         |        |  |  |  |  |

Page 12 of 36

| PWS ID # | 3354916  |
|----------|----------|
| Date     | 11/17/06 |

### HIGH SERVICE PUMPS

| Pump Number    | 1           | 2           | 3           | 4           |
|----------------|-------------|-------------|-------------|-------------|
| Туре           | Centrifugal | Centrifugal | Centrifugal | Centrifugal |
| Make           | Weinman     | Weinman     | Weinman     | Peerless    |
| Model          | 5L1-2       | 5L1-365T    | 5-112       | 6AF-16      |
| Capacity (gpm) | 1,350       | 1,350       | 1,350       | 1,500       |
| Motor HP       | 75          | 75          | 75          | 100         |
| Date Installed | 2002        | 2001        | 2002        | 2003        |
| Maintenance    | As needed   | As needed   | As needed   | As needed   |

Comments Right angle drive unit no longer connected to HSP #4.

## DEFICIENCIES:

1. Failure to obtain Department approval or clearance prior to placing constructed modifications into operation.

The following components were put into operation with out clearance from this Department.

- a. Disinfection processes were converted from gas chlorination to hypochlorination
- b. Cummins 2100 Series diesel generator

Except as allowed under subsection 62-555.340(5), F.A.C., or by special permit condition established in accordance with paragraph 62-555.533(2)(f), F.A.C., no public water system (PWS) components constructed or altered under a permit granted by the Department shall be placed into permanent operation without prior Department approval, or clearance, as described in Rule 62-555.345. [Rule 62-555.345, F.A.C.]

2. Failure to operate the water treatment plant within the designated maximum-day operating capacity. A review of records indicates flows exceeded the maximum-day design capacity during May and June 2006. Additionally, the maximum-day quantity of finished water produced exceeded 75 percent of the total permitted maximum-day operating capacity of the plant during May-December 2005, January-August 2006, and October 2006.

No supplier of water shall operate any drinking water treatment plant at a capacity greater than the plant's permitted operating capacity except with the Department's prior approval, which shall be given when such operation will not cause a violation of a maximum contaminant level, a treatment technique requirement, or other operating requirements and is for no more than three months, or under circumstances that the supplier of water documents as highly unusual and nonrecurring. [Rule 62-555.350(4), F.A.C.]

When the total maximum-day quantity of finished water produced by all treatment plants connected to a water system, including water produced to meet any fire-flow demand but excluding water produced to meet any demand that the supplier of water documents to be highly unusual and nonrecurring, exceeds 75 percent of the total permitted maximum-day operating capacity of the plants, the supplier of water shall submit source/treatment/storage capacity analysis reports to the Department according to the schedule described in paragraphs (a) and (b) below; however, in no case shall it be necessary to submit more than one report annually. The reports shall be submitted to the appropriate Department of Environmental Protection District Office.

Page 13 of 36 PWS ID # <u>3354916</u> Date <u>11/17/06</u>

## **DEFICIENCIES** (continued):

- (a) The initial report shall be submitted within six months after the month in which the total maximum-day quantity of finished water produced by the treatment plant(s) first exceeds 75 percent of the total permitted maximum-day operating capacity of the plant(s) or by August 28, 2004, whichever occurs later.
- (b) Updated reports shall be submitted as follows:
  - If the initial report or the latest updated report indicates that maximum-day water demand (including fire-flow demand if fire protection is being provided) at buildout will not exceed the total permitted maximum-day operating capacity of the treatment plant(s) and that finished-water storage need (including fire storage if fire protection is being provided) at build-out will not exceed the existing total useful finished-water storage capacity, no additional report is required.
  - 2. If the initial report or the latest updated report indicates that maximum-day water demand (including fire-flow demand if fire protection is being provided) will not exceed the total permitted maximum-day operating capacity of the treatment plant(s) for at least ten years and that finished-water storage need (including fire storage if fire protection is being provided) will not exceed the existing total useful finished-water storage capacity for at least ten years, the next updated report shall be submitted within five years after submittal of the previous report.
  - 3. If the initial report or the latest updated report indicates that maximum-day water demand (including fire-flow demand if fire protection is being provided) will exceed the total permitted maximum-day operating capacity of the treatment plant(s) in less than ten years but greater than or equal to five years or that finished-water storage need (including fire storage if fire protection is being provided) will exceed the existing total useful finished-water storage capacity in less than ten years but greater than or equal to five years, the next updated report shall be submitted within two years after submittal of the previous report.
  - 4. If the initial report or the latest updated report indicates that maximum-day water demand (including fire-flow demand if fire protection is being provided) will exceed the total permitted maximum-day operating capacity of the treatment plant(s) in less than five years or that finished-water storage need (including fire storage if fire protection is being provided) will exceed the existing total useful finished-water storage capacity in less than five years, the next updated report shall be submitted within one year after submittal of the previous report.

[Rule 62-555.348(3), F.A.C.]

Each initial or updated source/treatment/storage capacity analysis report shall evaluate the capacity of all source, treatment, or storage facilities connected to a water system and shall contain the following information:

- (a) The capacity of each water treatment plant's source water facilities and treatment facilities; the permitted maximum-day operating capacity and, if applicable, permitted peak operating capacity of each plant; and the useful capacity of each finished-water storage facility;
- (b) The maximum-day and annual average daily quantities of finished water produced by each plant during each of the past ten years or during each of the years the plant has been in operation, whichever is less;

| Page     | e 14 of 36 |
|----------|------------|
| PWS ID # | 3354916    |
| Date     | 11/17/06   |

## **DEFICIENCIES** (continued):

- (c) Projected total water demands--total annual average daily demand and total maximumday demand (including fire-flow demand if fire protection is being provided)--for at least the next ten years and projected total finished-water storage need (including fire storage if fire protection is being provided) for at least the next ten years;
- (d) An estimate of the time required for maximum-day water demand (including fire-flow demand If fire protection is being provided) to exceed the total permitted maximum-day operating capacity of the plant(s) and an estimate of the time required for finished-water storage need (including fire storage if fire protection is being provided) to exceed the existing total useful finished-water storage capacity;
- (e) Recommendations for new or expanded source, treatment, or storage facilities; and
- (f) A recommended schedule showing dates for design, permitting, and construction of recommended new or expanded source, treatment, or storage facilities.

### [Rule 62-555.348(4), F.A.C.]

Each initial or updated source/treatment/storage capacity analysis report shall be prepared under the responsible charge of one or more professional engineers licensed in Florida and shall be signed, sealed, and dated by the professional engineer(s) in responsible charge. [Rule 62-555.348(5), F.A.C.]

If an initial or updated source/treatment/storage capacity analysis report indicates that maximum-day water demand (including fire-flow demand if fire protection is being provided) will exceed the total permitted maximum-day operating capacity of the water treatment plant(s) in less than five years or that finished-water storage need (including fire storage if fire protection is being provided) will exceed the existing total useful finished-water storage capacity in less than five years, documentation of timely design, permitting, and construction of recommended new or expanded source, treatment, or storage facilities shall be submitted with the report. The documentation shall consist of a written statement that is signed by an authorized representative of the supplier of water and that certifies the supplier is meeting, and intends to meet, the report's recommended schedule for design, permitting, and construction of recommended source, treatment, or storage facilities. [Rule 62-555.348(6), F.A.C.]

Suppliers of water seeking to have the permitted operating capacity of a water treatment plant rerated shall submit to the appropriate Department of Environmental Protection District Office a construction permit application using Form 62-555.900(1), Application for a Specific Permit to Construct PWS Components, as incorporated into subsection 62-555.520(2), F.A.C. [Rule 62-555.528(2), F.A.C.]

## 3. Failure to provide a disinfectant/disinfection byproducts rule monitoring plan.

The monitoring plans required under 40 CFR 141.132(f) shall be prepared in a format containing all the information in 62-550.821(11), F.A.C. and shall be available for review during sanitary surveys conducted by the Department. [62-550.321(10) and (11), F.A.C.]

An example monitoring plan format can be downloaded from the following website: http://www.dep.state.fl.us/water/drinkingwater/forms.htm

Submit a copy of the monitoring plan to the Department for review.

#### 4. Failure to provide a written sampling plan for total coliform monitoring.

Public water systems shall collect total coliform samples at sites that are representative of water throughout the distribution system and in accordance with a written sampling plan that addresses location, timing, frequency, and rotation period. These plans shall be available for review and possible revision on the occasion of a sanitary survey conducted by the Department. Descriptions of sampling locations shall be specific, i.e., numbered street addresses or lot numbers. Pressure tank or plant tap samples are not acceptable for determining compliance. [Rule 62-550.518(1), F.A.C.]

Page 15 of 36 PWS ID # <u>3354916</u> Date <u>11/17/06</u>

## DEFICIENCIES (continued):

5. Failure to maintain an up-to-date map of the drinking water distribution system.

Suppliers of water who own or operate a community water system serving, or designed to serve, **350 or more persons or 150 or more service connections** shall have, and thereafter maintain, an up-to-date map of their drinking water distribution system. Such a map shall show the location and size of water mains if known; the location of valves and fire hydrants; and the location of any pressure zone boundaries, pumping facilities, storage tanks, and interconnections with other public water systems. [Rule 62-555.350(14), F.A.C.]

## 6. Failure to provide a written preventive maintenance program.

Suppliers of water shall keep all necessary public water system components in operation and shall maintain such components in good operating condition so the components function as intended. Preventive maintenance on electrical or mechanical equipment -- including exercising of auxiliary power sources, checking the calibration of finished-drinking-water meters at treatment plants, testing of air or pressure relief valves for hydropneumatic tanks, and exercising of isolation valves -- shall be performed in accordance with the equipment manufacturer's recommendations or in accordance with a written preventive maintenance program established by the supplier of water; however, in no case shall auxiliary power sources be run under load less frequently than monthly. [Rule 62-555.350(2), F.A.C.]

## **REMINDERS/COMMENTS:**

## • Obtain clearance of any permitted project before placing the project into service.

A Clearance Letter must be issued by the DEP Central District Potable Water program before placement of any permitted project into service.

To obtain a clearance letter, the engineer of record must submit the following:

- a. Completion of the "Request for letter of Release to Place Water Supply System into Service" [DEP Form 62.555.900(9), F.A.C.]
- b. A copy of the original permit
- c. A copy of satisfactory bacteriological sample results taken on two consecutive days from the locations specified in the permit.
- It was noted during the inspection that there is a well "F", which has not been permitted by this Department.

The following is a preliminary notice to advise you of this department's requirements that must be met after the St. Johns River Water Management District has issued the permit to construct your well.

In accordance with Chapter 62-555, Florida Administrative Code (F.A.C.), it shall be necessary to provide, and obtain approval for, those items below prior to constructing any of the potable water system (raw water piping, pumping, treatment, distribution piping, etc.) beyond the well head:

- a. A legible copy of the well contractor's well completion report following completion of the drilling operation.
- b. <u>THROUGH A FLORIDA-REGISTERED PROFESSIONAL ENGINEER</u>, a completed application [DEP Form 62-555.900(1), copy enclosed] with one copy of signed and sealed engineering plans, specifications, appropriate fee and related documents (including pump curve and well yield test results) covering this well, pump, piping, and any treatment and distribution facilities for review towards approval for equipping & connecting this well beyond the well head.

Page 16 of 36 PWS ID # <u>3354916</u> Date 11/17/06

## **REMINDERS/COMMENTS (continued):**

- c. Results of a chemical analysis of a sample of water from this well performed by a laboratory certified by the State of Florida, Department of Health for the following parameters:
  - o Nitrate
  - o Nitrite
  - Turbidity, NTU (Note: Well should be properly developed until a turbidity level of 1.0 NTU or less is demonstrated.)
  - o Hydrogen Sulfide
  - o Secondary Standards

Following disinfection of the well and installation of the permanent pump, results of a 20-sample bacteriological survey will be required. No more than two samples, at least six hours apart, shall be collected per day. The samples of raw water from the well shall be submitted to a laboratory certified by the Department of Health for bacteriological analysis.

Any questions or documents pertaining to this issue should be addressed to Richard Lott or Osama Mahmoud, DEP Drinking Water Permitting, at 3319 Maguire Boulevard, Orlando, FL 32803 or via telephone at (407) 894-7555. [Rule 62-555.520(1)(b), F.A.C.]

<u>Please be advised that failure to obtain written approval and/or a construction permit from the Department may result in enforcement action.</u>

• Provide dates of last cleaning and inspection for the finished-drinking-water storage tank.

Accumulated sludge and bio-growths shall be cleaned routinely (i.e., at least <u>annually</u>) from all treatment facilities that are in contact with raw, partially treated, or finished drinking water and that are not specifically designed to collect sludge or support a bio-growth; and blistering, chipped, or cracked coatings and linings on treatment or storage facilities in contact with raw, partially treated, or finished drinking water shall be rehabilitated or repaired. [Rule 62-555.350(2), F.A.C.]

Finished-drinking-water storage tanks shall be checked at least annually to ensure that hatches are closed and screens are in place; shall be cleaned at least once every five years to remove bio-growths, calcium or iron/manganese deposits, and sludge from inside the tanks; and shall be inspected for structural and coating integrity at least once every five years by personnel under the responsible charge of a professional engineer licensed in Florida. [Rule 62-555.350(2), F.A.C.]

 All suppliers of water shall keep records documenting that their finished-drinking-water storage tanks, including conventional hydropneumatic tanks with an access manhole but excluding bladder- or diaphragm-type hydropneumatic tanks without an access manhole, have been cleaned and inspected during the past five years in accordance with subsection 62-555.350(2), F.A.C. [Rule 62-555.350(12)(c), F.A.C.]

The enclosed document provides information about some of the requirements for storage tank cleaning and inspection.

- David Hanna of the Florida Rural Water Association performed a flow meter accuracy test on 11/28/06. The percent error between the meters and test equipment is a follows:
  - o 8" Neptune 1.5%
  - o 12" Sparling 1%

| Inspector Manuelle D. Quéra | Titie _ | Env. Specialist I     | Date | 12/27/06 |
|-----------------------------|---------|-----------------------|------|----------|
| Approved by                 | Title   | Environmental Manager | Date | 1/2/07   |

Page 17 of 36

## **RESPONSE FORM**

.

Please provide any changes to the following:

| PWS ID Number: <u>3354916</u>                                                                                                                                  | Business Name:                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
|                                                                                                                                                                | Owner(s) Name:                                                                       |
| Mailing Address:                                                                                                                                               |                                                                                      |
|                                                                                                                                                                | Mailing Address:                                                                     |
| Date:                                                                                                                                                          | Phone Number(s):                                                                     |
|                                                                                                                                                                | Fax #:                                                                               |
|                                                                                                                                                                | E-Mail Address:                                                                      |
| Florida Department of Environmental Protection<br>Drinking Water Compliance/Enforcement Program<br>3319 Maguire Boulevard, Suite 232<br>Orlando, Florida 32803 |                                                                                      |
| Attn: Danielle D. Owens, Environmental Specialist                                                                                                              |                                                                                      |
| In response to the Department's Compliance Inspection R 2006, the following actions were done to correct the listed                                            | eport for the subject public water system dated <u>November 17.</u><br>deficiencies: |
| Deficiency                                                                                                                                                     |                                                                                      |

| Item No.      | Corrective Action Dor                             | ne                     | Date Done |
|---------------|---------------------------------------------------|------------------------|-----------|
|               |                                                   |                        |           |
|               |                                                   |                        |           |
| •             |                                                   |                        |           |
|               |                                                   |                        |           |
|               |                                                   |                        |           |
|               |                                                   |                        |           |
|               |                                                   |                        |           |
|               |                                                   |                        |           |
| <u></u> ,     |                                                   |                        |           |
|               |                                                   |                        |           |
|               |                                                   |                        |           |
|               |                                                   |                        |           |
|               |                                                   |                        |           |
| (Attach addi  | tional sheet if necessary)                        |                        |           |
| I hereby cert | tify to the correctness of the above information: |                        |           |
| PWS Owner     | r/Representative Signature:                       |                        |           |
|               |                                                   |                        |           |
|               | /S Owner/Representative:                          | (Please Type or Print) |           |

Page 18 of 36



## Florida Department of Environmental Protection

Central District 3319 Maguire Boulevard, Suite 232 Orlando, Florida 32803-3767 Charlie Crist Governor

Jeff Kottkamp Lt. Governor

Michael W. Sole Secretary

SENT VIA E-MAIL TO: jeff@cagan.com

October 23, 2008

SOUTHLAKE UTILITIES INC 6554 CROSSING BOULEVARD CLERMONT FL 32711

ATTENTION JEFFREY CAGAN PRESIDENT

> Lake County - DW Southlake WWTF Wastewater Facility - Permit No. FLA010634 Noncompliance Letter

Dear Mr. Cagan:

On September 19, 2008, Department personnel conducted a routine inspection of your wastewater facility. A copy of the inspection report is enclosed for your review. During the course of the inspection, and/or determined from records on file in this office, the following deficiencies were noted:

- 1. A single grab pH sample was being collected and reported on the Discharge Monitoring Reports (DMRs) instead of the continuous monitored meter result. The permit states that the pH be continually monitored and the result reported based on the meter readings.
- A review of the DMRs from February 2007 to July 2008 indicates that fecal coliform 90% is not being reported.
- 3. There was a build-up of solids in the chlorine contact chambers.
- 4. The percent capacity was calculated and reported incorrectly on the DMRs for February 2007 to July 2008. For the percent capacity divide the three month average daily flow by the permitted flow capacity and multiply by 100.
- 5. The 3 Month Average Daily Flow was not calculated or reported correctly on Part A of the DMRs. The 3 Month Average Daily Flow should be calculated by adding the current monthly average daily flow to the last two (2) monthly average daily flows and dividing the sum by 3. The value is then entered in the column of the DMR.
- 6. On many occasions various values were reported incorrectly on Part A of the DMRs for February 2007 through July 2008. Please see the inspection report for details. It is important to report all data carefully and accurately as specified on the DMRs.
- 7. Part A of the Discharge Monitoring Reports (DMRs) is not being filled out completely. All of the blocks above the shaded areas containing monitoring instructions including sample measurements, units, frequency of analysis, sample type, number of exceedances (No. Ex.), average, maximum, and minimum must be completed.
- 8. The self-monitoring results are being submitted to the Department on a revised DMR form. Please see the inspection report for details.

"More Protection, Less Process" <u>www.dep.state.fl.us</u> OCD-C-WW-08-0853

Southlake Utilities, Inc. OCD-C-WW-08-0853 Page 2

- 9. A review of the ground water files for this facility indicates the following deficiencies:
  - a. The Department has not received the ground water monitoring reports for the first quarter of 2006 and second quarter of 2007. Submit these reports as soon as possible.
  - b. Depth to water measurements were reported instead of ground water elevations for all well locations for the second, third and fourth quarters of 2006, first, third and fourth quarters of 2007 and first and third quarters of 2008. This deficiency has been noted in two or more previous non-compliance letters. Submit a summary table containing the ground water elevations for all quarters of 2006, 2007 and 2008 as soon as possible.
  - c. Piezometer elevation data was not submitted on the forms for piezometers PZ-1, PZ-2, PZ-3 and PZ-4 for the first, second, third and fourth quarters of 2007 and first, second and third quarters of 2008. Complete the forms and submit this information as soon as possible.
  - d. Nitrate concentrations were reported above the primary standard of 10 milligrams per Liter (mg/L) in the ground water samples from compliance well MW-1 for the fourth quarter of 2006, first quarter of 2007 and first and third quarters of 2008. Determine the cause of these concentrations and provide the conclusion to the Department with a plan to reduce the concentrations to below the primary standard.
  - e. Nitrate concentrations were reported above the primary standard of 10 mg/L in the ground water samples from compliance well MW-3 for the first and third quarters of 2008. Determine the cause of these concentrations and provide the conclusion to the Department with a plan to reduce the concentrations to below the primary standard.

Please respond to these items, in writing, with a schedule of corrective action. Pursuant to Rule 62-4.100(2), F.A.C., failure to comply with pollution control rules shall be grounds for permit suspension or revocation and initiation of formal enforcement action. Your reply is requested within 14 days from the date of this letter. Your reply and any questions should be addressed to Daniel K. Hall at (407) 893-3313. Ground water questions should be directed to Marsha Johnson at (407) 893-3308, Ext. 2275.

Sincerely,

Gay P. Miller

Gary P. Miller Program Manager Wastewater Compliance/Enforcement

GM/dkh/ar

Enclosure: Inspection Report

cc: Lake County Water Resource Management, <u>scatasus@co.lake.fl.us</u> GW Section

Page 20 of 36

10/20/2008 9:15:00 AM

## FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION

## WASTEWATER COMPLIANCE INSPECTION REPORT

| FACILITY | AND | INSPECTION | INFORMATION |
|----------|-----|------------|-------------|

115 A.S.M. /

|            |                                                                           |                    |              |                 |                 |           |           |          |            |          |        |                       |                   |                   |                    |                                         |             | i) = (        | Option                          | เอโ      | ···    |
|------------|---------------------------------------------------------------------------|--------------------|--------------|-----------------|-----------------|-----------|-----------|----------|------------|----------|--------|-----------------------|-------------------|-------------------|--------------------|-----------------------------------------|-------------|---------------|---------------------------------|----------|--------|
|            | ame and Physic                                                            |                    |              | of Fa           | cility          |           |           | WAFR     |            |          |        |                       |                   | County            |                    |                                         | E           | atry Da       | ate/Tim                         | e        |        |
|            | outhlake Utilities                                                        |                    | ſ            |                 |                 |           | H         | FLA010   | 634        |          |        |                       |                   | Marion            |                    |                                         | 9/          | 19/20         | 01 80                           | :00 A    | м      |
|            | 3 US Highway2                                                             |                    |              |                 |                 |           |           |          |            |          |        |                       |                   | Phone             |                    |                                         | Ø           | Exit I        | Date/Ti                         | ne       |        |
|            | ermont, FL 347                                                            |                    |              |                 |                 |           |           |          |            |          |        |                       |                   |                   |                    |                                         | 9/          | 19/20         | 08 10                           | :41 A    | M      |
| N          | unc(s) of Field 1                                                         | Repre              | icutai       | tives(s         | )               |           | 1         | Fitle    |            |          |        |                       |                   |                   |                    |                                         | P           | 1006          |                                 |          |        |
| Na         | me and Addres                                                             | is of P            | ermit        | tee or          | Desig           | nated R   | cpresen   | tative   | <b></b>    | Title    |        |                       |                   | Pben              |                    |                                         | @           | Oper          | ator Ce                         | rtifica  | tion # |
| lei        | Trey Cagan                                                                |                    |              |                 |                 |           |           |          |            | Preside  | nţ     |                       |                   |                   |                    |                                         |             |               |                                 |          |        |
| (6;        | 554 Crossings B                                                           | lvd, St            | uite 2       |                 |                 |           |           |          |            |          |        |                       |                   |                   |                    |                                         |             |               |                                 |          |        |
| :le        | rmont, FL 3447                                                            | 71                 |              |                 |                 |           |           |          |            |          |        |                       |                   |                   |                    |                                         |             |               |                                 |          |        |
| RS.        | pertion Type                                                              | C                  | E            | 1               | Sam             | ples Take | n(Y/N):   | N        |            | (        | 2      | Sample ID             | )#;               |                   |                    |                                         | Sam         | ples Spl      | iii (Y/N)                       | :        |        |
| X          | Domestic                                                                  |                    |              | Indu            | Istri           | nI        | Weta      | e Photas | Taken(     | (Y/N): N | 1      |                       | @                 | Log be            | ok Volu            | me: Id                                  | kh          |               | @ Pug                           | e: 230   |        |
|            | 2. •Complianc<br>13. Other:                                               |                    |              |                 |                 |           | cords & . |          | <b>N</b> 7 | IC<br>IC | †<br>= | 7. Flow<br>B. + Opena |                   | z Mainte          | nunce              | IC<br>IC<br>NC                          | 11,<br>12,  | Resid<br>Grou | ent Disp<br>luals/Sh<br>ndwater | ıdge     |        |
| co         | mmended Action                                                            | 6:                 |              |                 |                 |           |           |          |            |          |        |                       |                   |                   |                    |                                         |             |               |                                 | <u> </u> |        |
| m          | e(s) and Signatur                                                         | t(s) of            | nspec        | tor(s)          |                 |           |           |          |            |          |        | ·····                 | Dis               | rict Offi         | e/Phone            | Numb                                    | 25          | Da            | ite                             |          |        |
| ar         | iel K. Hall                                                               | I                  | Ó            | - EA            | 7<br>           | 1 per     | ha        |          |            |          |        |                       | Ce                | ntral D<br>407-   | istrict<br>893-3   |                                         | e           | 0             | ctober                          | 17, 2    | 800    |
| S          | ignature of Revie                                                         | wer                |              |                 |                 |           |           |          |            |          |        |                       |                   | rict Offic        |                    | - T P P P P P P P P P P P P P P P P P P | r<br>r      | Da            | ie<br>Ie                        |          |        |
| a          | rence Anders                                                              | on                 |              | Ele             | hse             | ue (      | and       | lesso    | ~          |          |        |                       | Ce                | ntral D<br>407-   | istrict<br>893-7   |                                         | e           | 10            | )/21/(                          | )8       |        |
|            | Fill Out Th                                                               | is Se              | ctio         | n Fø7           | All             | Surfa     | e Wat     | er Di    | schar      | ger In   | sp     | ections               | (CI               | I, CS             | , CBI              | , PAI                                   | xs          | 1, RI         | ASI.                            | ANI      | ,      |
|            | nsaction Cod                                                              |                    |              |                 |                 | PDES !    |           |          |            |          |        | YR/M                  |                   |                   |                    | р Тур                                   |             |               | ector                           |          | ту     |
|            | N S                                                                       | ]                  |              |                 |                 |           |           | DITIO    |            | NPDES    |        | OMMEN                 | ITS               |                   | ין                 |                                         |             | 2             |                                 | 3        |        |
| spi<br>cil | ection Type (Fi<br>ection Code (Fi<br>ity Type (Field<br>y other field is | ield 2)<br>1 3): 1 | : S:<br>: Mu | State,<br>micip | J: Jo<br>el (Pu | int EPA   | /State-E  | EPA Le   | ad, T:     | Joint S  | tat    | e/EPA-S               | itate ]<br>ned [] | _ead, L<br>omesti | : Local<br>c, 3: A | Progr<br>gricult                        | am<br>ural, | 4: Fed        | leral                           |          |        |

Revised: August 11, 2006

#### **Inspection Findings**

Facility Name: Southlake Utilities WWTF Facility ID: FLA010634 Inspection Type: CEI Date: 9/19/08

#### Facility Background:

Address: 333 US Highway 27, Clermont, FL 34714-9658, Lake County Permit Information: Wastewater Permit Issued: April 19, 2007, and expires: April 15, 2012. Treatment Summary: Extended aeration sewage treatment plant with effluent to two percolation ponds Permitted Capacity: 1.15 MGD

- 1. Permit: IN COMPLIANCE
  - 1.1. Observation: A copy of the permit was onsite and available to plant personnel.
- 2. Compliance Schedules: NOT APPLICABLE
- 3. Laboratory: NOT EVALUATED
- 4. Sampling: OUT OF COMPLIANCE
  - 4.1. <u>Observation</u>: The composite sampler was being maintained below 6 degrees Celsius during sampling.

Additional Comments: The ISCO 3710 influent sampler was at 3°C.

The ISCO 3710 effluent sampler was maintained at 1.5°C.

4.2. Observation: Please see specific comment.

Additional Comments: Both the influent and the effluent sampling lines appeared to be in good condition and free of dips.

4.3. Observation: Please see specific comment.

Additional Comments: pH standards do not expire until November 2009.

The TRC meter and gels were last verified July 31, 2008.

4.4. <u>Observation</u>: Calibrations were performed correctly.

Additional Comments: pH and TRC calibrations were performed correctly and logged on daily sheets.

4.5. Observation: Samples were not being collected in accordance with the permit.

Additional Comments: The permit specifies that pH be continuously monitored and samples collected by meter. DMRs indicate that the samples are being collected by grab. Monitoring results reported on Part B confirm this as the daily minimum and maximum almost always match.

- 5. Records and Reports: OUT OF COMPLIANCE
  - 5.1. Observation: All required documents and reports were available at the plant.
  - 5.2. Observation: Operators' certification(s) were current and available on-site.
  - 5.3. Observation: Records were well organized.
  - 5.4. Observation: There were several transcription errors found in the Discharge Monitoring Reports.

<u>Additional Comments:</u> 2/07 (TRC: 1.2 A, 1.0 B), 8/07 (pH max: 7.6 A, 7.5 B), 10/07 (TRC: 4.57 A, 1.2 B), 11/07 (TSS Mo. Avg.: 1.0 A, 2.25 B), 12/07 (TSS Mo. Avg.: 1.0 A, 5.3 B), 1/08 (pH min.: 7.3 A, 7.2 B), 6/08 (CBOD Mo. Avg.: 9.1 A, 8.23 B), 7/08 (Nitrate: 1.93 A, 2.5 B)

#### 7. Flow Measurement: IN COMPLIANCE

7.1. Observation: The copy of the flow calibration report is current.

Additional Comments: Influent flow meter calibration: 11/5/07.

Effluent flow meter calibration: 8/29/08.

- 8. Operation and Maintenance: IN COMPLIANCE
  - 8.1. <u>Observation</u>: The operator is performing treatment plant operation and maintenance duties in a responsible and professional manner.
  - 8.2. Observation: The facility was operated and maintained in accordance with the description in the Permit.
- 9. Effluent Quality: IN COMPLIANCE
  - 9.1. Observation: Discharge monitoring reports reviewed during the inspection revealed no effluent violations deficiencies.

Additional Comments: DMR Review Period: February 2007 - July 2008.

- 10. Effluent Disposal: IN COMPLIANCE
  - 10.1. Observation: The percolation/evaporation ponds appeared to be well maintained.

Additional Comments: At inspection the western RIB was loading and the eastern resting.

- 11. Residuals/Sludge: IN COMPLIANCE
  - 11.1. Observation: No Problems or deficiencies were observed/identified.
- 12. Groundwater Quality: OUT OF COMPLIANCE

12.1. Observation: A review of ground water files for this facility indicates the following deficiencies:

Additional Comments: The Department has not received the ground water monitoring reports for the first quarter of 2006 and second quarter of 2007. Submit these reports as soon as possible.

Depth to water measurements were reported instead of ground water elevations for all well locations for the second, third and fourth quarters of 2006, first, third and fourth quarters of 2007 and first and third quarters of 2008. This deficiency has been noted in two or more previous non-compliance letters. Submit a summary table containing the ground water elevations for all quarters of 2006, 2007 and 2008 as soon as possible.

Piezometer elevation data was not submitted on the forms for piezometers PZ-1, PZ-2, PZ-3 and PZ-4 for the first, second, third and fourth quarters of 2007 and first, second and third quarters of 2008. Complete the forms and submit this information as soon as possible.

Nitrate concentrations were reported above the primary standard of 10 milligrams per Liter (mg/L) in the ground water samples from compliance well MW-1 for the fourth quarter of 2006, first quarter of 2007 and first and third quarters of 2008. Determine the cause of these concentrations and provide the conclusion to the Department with a plan to reduce the concentrations to below the primary standard.

Nitrate concentrations were reported above the primary standard of 10 mg/L in the ground water samples from compliance well MW-3 for the first and third quarters of 2008. Determine the cause of these concentrations and provide the conclusion to the Department with a plan to reduce the concentrations to below the primary standard. 5.5. Observation: A review of the Discharge Monitoring Reports revealed the following.

Additional Comments: Fecal Coliform 90% was not reported on DMRs for: May 2007 - July 2008.

% Capacity was calculated incorrectly on DMRs from February 2007 – July 2008. This was noted on the last inspection report.

3 month average daily flow calculation produced inconsistent results. Double checking calculations found the reported value was occasionally correct; however, most of the time the reported value could not be verified by calculations based on data submitted on previous DMRs. The reported value varied by as much as 33,000 gallons from the recalculated result.

Units, frequency of analysis, number of exceedances, and sample type were not reported on the DMRs for the entire review period.

5.6. Observation: Monitoring results were not submitted on the proper Discharge Monitoring Report form.

Additional Comments: pH sample type has been altered on the submitted DMRs from "meter" to "grab".

- 6. Facility Site Review: IN COMPLIANCE
  - 6.1. Observation: General The facility grounds were clean and well maintained.
  - 6.2. <u>Observation</u>: General The facility grounds were secured properly.
  - 6.3. Observation: Headworks Please see specific comment.

<u>Additional Comments:</u> The screenings dumpster is walled on three sides and bermed at the front. Water and flies were noted outside of the walled/bermed area during inspection, leachate may be seeping under the berm.

6.4. Observation: Alternate Power - The onsite generator is tested under load on a routine basis.

Additional Comments: Full load tests are conducted once a week for an hour.

6.5. Observation: Aeration - The contents in the aeration chambers appeared to be adequately mixed.

Additional Comments: Both plants had excellent air and very little foam.

6.6. <u>Observation</u>: Blowers/Motors - No Problems or deficiencies were observed/identified.

Additional Comments: Both sets of blowers/motors were fully operational at inspection. Blowers are manually rotated.

6.7. Observation: Clarifiers - The clarifier had good settling and clear effluent.

<u>Additional Comments:</u> The west clarifier had a few small pop-ups and some ashing but looked good overall. 6-9 feet of visibility below the surface.

The east clarifier had even fewer pop-ups and 4-6 feet of visibility.

6.8. Observation: Clarifiers - Please see specific comment.

Additional Comments: Weirs in both plants appeared to be level.

Both clarifier arms reached to the edge with no gapping during the sweep.

6.9. Observation: Digestors - No Problems or deficiencies were observed/identified.

Additional Comments: Both digestors were well aerated with good color and thick consistency.

6.10. Observation: Disinfection - There was an accumulation of solids in the chlorine contact chamber.

Additional Comments: Solids were visible on the bottom of all contact chambers. The operator stated it had been over a year since they were cleaned out.

6.11. Observation: Disinfection - Please see specific comment.

Additional Comments: A small pocket of pop-ups was noted in the south contact chamber.

- 6.12. Observation: Disinfection Please see specific comment.
- Additional Comments: The water in the contact chambers was clear to the bottom. No solids or floatables were noted leaving the plant.

Page 24 of 36



16554 Cagan Crossings Boulevard, Suite 2 Clermont, Florida 34714 Phone No. (352) 394-8898 Fax No. (352) 394-8894

November 4, 2008

Mr. Daniel K. Hall Department of Environmental Protection Wastewater Compliance/Enforcement 3319 Maguire Boulevard, Suite 232 Orlando, Florida 32803-3767

Re: Lake County - DW Southlake WWTF Wastewater Facility – Permit FLA010634 Noncompliance Letter

Dear Mr. Hall:

This letter is in response to your letter dated October 23, 2008 regarding the following deficiencies;

1. A single grab PH sample was being collected and reported on the Discharge Monitoring Reports (DMRs) instead of the continuous monitored meter result. The permit states that the PH be continually monitored and the result reported based on the meter readings.

(A) Attached is a copy of the approval by Denise Judy dated 6/27/07 for hourly monitoring. (Attachment No. 1)

2. A review of the DMRs from February 2007 to July 2008 indicates that fecal coliform 90% is not being reported.

(A) In conversation with Daniel Hall of FDEP, SLU is not required to report the  $9^{th}$  value, however it is required to report the following values; (4 x 0.9 = 3.6, rounded to 4 and report  $4^{th}$  result) or (5 x 0.9 = 5, rounded to 5 and report  $5^{th}$  result). This will be completed monthly.

3. There was a build-up of solids in the chlorine contact chambers.

(A) At the date of the inspection, SLU was seeking bids to have a contractor clean the chambers. The chambers were cleaned the week of September 9<sup>th</sup>.

4. The percent capacity was calculated and reported incorrectly on the DMRs for February 2007 to July 2008. For the percent capacity, divide the three month average daily flow by the permitted flow capacity and multiply by 100.

(A) An Excel spreadsheet has been set up for auto calculations based on entered data.

Mr. Daniel K. Hall November 4, 2008 Page 2

5. The 3 Month Average Daily Flow was not calculated or reported correctly on Part A of the DMRs. The 3 Month Average Daily Flow should be calculated by adding the current monthly average daily flow to the last two (2) monthly daily flows and dividing the sum by 3. The value is then entered in the column of the DMRs.

(A) An Excel spreadsheet has been set up for auto calculations based on entered data.

6. On many occasions, various values were reported incorrectly on Part A of the DMRs for February 2007 through July 2008. Please see the inspection report for details. It is important to report all data carefully and accurately as specified on the DMRs.

(A) This is noted and will be rectified.

7. Part A of the Discharge Monitoring Reports (DMRs) is not being filled out completely. All of the blocks above the shaded areas containing monitoring instructions including sample measurements, units, frequency of analysis, sample type, number of exceedances (No. Ex), average, maximum, and minimum must be completed.

(A) This is noted and will be rectified.

8. The self-monitoring results are being submitted to the Department on a revised DMR form. Please see the inspection report for details.

(A) See Attachment No. 1.

9. A review of the ground water files for the facility indicates the follows deficiencies;

(a). The Department has not received the ground water monitoring reports for the first quarter of 2006 and second quarter of 2007. Submit these results as soon as possible.

(A) Requested copies are enclosed.

- (b) Depth to water measurements;
- (c) Piezometer elevation data;
- (d) Nitrate concentrations;
- (e) Nitrate concentrations;
  - (A) Sub-paragraph items (b) through (e) are being reviewed and investigated by our consulting Geotechnical Engineer, Devo Seereeram, Ph.D., P.E. and these items will be responded to under separate cover when completed. (See attached copy of e-mail from Devo Seereeram)

If you need additional information, please call me at (352) 394-8898.

Sinceilelv

Kim Kitchen

Copy: Jeff Cagan Angel DeLeon File ru ump or unv restestion 4078872866

Page 26 of 36



File

16554 Crossings Boulevard, Suite 2 Clermont, Florida 34714 Phone No (352) 394-8898 Fax No. (352) 394-8894

. .

June 27, 2007

Dennise Judy, Program Manager Department of Environmental Protection Cantral District 3319 Maguire Boulevard, Suite 232 Orlando, Florida 32803-3767

RE: Southlake Utilities, Inc. WWTF

Permit Number: FLA010834

Attention: Ms. Dennise Judy

Dear Ms. Judy,

I am writing this letter in response to your email to Kiera on our request for waiver from continuous monitoring of pH and chlorine residuate at the wastewater treatment facility.

The operator attends the plant six hours per day five days a week and weekend visits as per permit. During the period of operation, we will collect and analyze hourly grab samples for both pH and Chlorine residuels. We will implement this new monitoring schedule effective July 1, 2007. A noting to this effect will be made in the monthly DMR for the month of July 2007. Continuous monitoring of pH and chlorine will be implemented when public access reuse is established at the facility.

Sincerely,

M.Sambamurihi, P.E.

Consulting Engineer Southlake Utilities, Inc.

| DEP WASTE SEC.              |   |
|-----------------------------|---|
| PROJECT SOUTHLING WHIT      |   |
| hourly montacing approval   |   |
| PERMIT ELADIO634            |   |
| or definition mars to /27/  | P |
| <b>RECEIPT ACKNOWLEDGED</b> |   |

CC: WW GE SEZTION



# Department of **Environmental Protection**

Jeb Bush Governor

**Central District** 3319 Maguire Boulevard, Suite 232 Orlando, Florida 32803-3767

Colleen M. Castille Secretary

**CERTIFIED MAIL** 7003 1680 0001 8879 7702

May 11, 2005

OCD-C-WW-05-0478

SOUTHLAKE UTILITIES INC 6554 CROSSING BOULEVARD CLERMONT FL 34711

ATTENTION JEFFREY CAGAN PRESIDENT

> Lake County - DW Southlake Utilities WWTF Wastewater Facility - Permit No. FLA010634 Noncompliance Letter

Dear Mr. Cagan:

On February 10, 2005, you were forwarded a noncompliance letter listing certain deficiencies that were found during a routine inspection on January 19, 2005. A copy of the noncompliance letter is enclosed.

You were requested to respond, in writing, within 14 days of the date of the letter with a schedule of action(s) to correct the deficiencies noted. As of this date, no reply has been received.

In order to avoid enforcement action, you are requested to respond within 7 days from receipt of this letter as to your intentions in correcting the deficiencies noted in the noncompliance letter.

Sincerely

170X Gary P. Miller

Program Manager Wastewater Compliance/Enforcement

GM/pf/ww

Enclosure: Noncompliance Letter No. OCD-C-WW-05-0137 cc: Lake County Water Resource Management, scatasus@co.lake.fl.us Anil Desai, Program Manager, Ground Water Section, anil.desai@dep.state.fl.us

Page 28 of 36



# Department of Environmental Protection

Jeb Bush Governor Central District 3319 Maguire Boulevard, Suite 232 Orlando, Florida 32803-3767

Colleen M. Castille Secretary

SENT VIA E-MAIL TO: Jeff@cagan.com

February 10, 2005

SOUTHLAKE UTILITIES INC 6554 CROSSING BOULEVARD CLERMONT FL 34711 OCD-C-WW-05-0137

ATTENTION JEFFREY CAGAN PRESIDENT

> Lake County - DW Southlake Utilities WWTF Wastewater Facility - Permit No. FLA010634 Noncompliance Letter

Dear Mr. Cagan:

On January 19, 2005, Department personnel conducted a routine inspection of your wastewater facility. A copy of the inspection report is enclosed for your review. During the course of the inspection, and/or determined from records on file in this office, the following deficiencies were noted:

- 1. Samples in the influent flow proportioned composite sampler were not maintained at 4 degrees Celsius.
- 2. The effluent sample pickup tubing had a loops and coils, which may prevent a complete purge.
- 3. At the time of the inspection, the Total Residual Chlorine (TRC) was 0.22 milligrams per Liter (mg/L), which is less than the minimum of 0.5 mg/L as required.
- 4. The Total Suspended Solids (TSS) result reported on the DMR for March and April 2003 were 141 and 113 mg/L, which exceeded the maximum limit of 60 mg/L for any one sample.
- 5. A review of ground water files for this facility indicates the following deficiencies:
  - a. A current certification form containing the quality assurance section was not submitted with the ground water monitoring report for the first quarter of 2005. The correct form was submitted with previous reports. Please submit the correct form with the reports in the future.

Southlake Utilities WWTF OCD-C-WW-05-0137 Page 2

- b. No ground water monitoring report forms with elevation data were submitted for piezometers PZ-1 through PZ-4 for all quarters of data reviewed. Please submit the missing data and submit the reports for these locations with future submittals.
- c. Depth to water instead of ground water elevations were reported for all quarters of data reviewed. This has been a historical problem at this facility, discussed in several non-compliance letters. Please calculate and record the ground water elevations for all wells and submit revised reports to the Department. The Department will no longer accept reports with depth to water reported. The reports will be returned to the facility for correction.
- d. Nitrate concentrations were reported above the primary standard of 10 mg/L for ground water samples from compliance well MW-3 at 11.64 milligrams per Liter for the first quarter of 2005. Please investigate the cause of the elevated concentrations and report the results of the investigation to the Department.

Please respond to these items, in writing, with a schedule of corrective action. Pursuant to Rule 62-4.100(2), F.A.C., failure to comply with pollution control rules shall be grounds for permit suspension or revocation and initiation of formal enforcement action. Ground water questions should be directed to Marsha Johnson at (407) 893-3301. Your reply is requested within 14 days from the date of this letter. Your reply and any other questions should be addressed to Patrick Farris at (407) 893-3313.

Sincerely,

Lay P. Miller

Gary P. Miller Program Manager Wastewater Compliance/Enforcement

GM/pf/ww

Enclosures: Inspection Report

Wastewater Compliance Information Flyer

cc: Lake County Water Resource Management, <u>scatasus@co.lake.fl.us</u> Anil Desai, Program Manager, Ground Water Section, <u>anil.desai@dep.state.fl.us</u>

Page 30 of 36

COMET ENTRY DATE 02/07/05

## FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION

## 

FACILITY AND INSPECTION INFORMATION

-

|               | I AC                                                    |                                              | II AND INSP                                                                                                      | <u> </u>    |              |                                 | ORMATION                                                                                                        |             | @                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>Optional</li> </ul>                                                                                   |                                        |  |
|---------------|---------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------|--------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------|--|
| Nu            | ne and Physical Location of Facility                    |                                              | WAFR ID:                                                                                                         |             |              |                                 | County                                                                                                          |             | Entry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dute/Time                                                                                                      |                                        |  |
| Sou           | thlake Utilities WWTF                                   |                                              | FLA010634                                                                                                        |             |              |                                 | Lake                                                                                                            |             | 1/19/05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                |                                        |  |
| Sou           | th US Highway 27                                        |                                              |                                                                                                                  |             |              |                                 |                                                                                                                 | @ Ex        | it Date/Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                |                                        |  |
| Cler          | mont FL                                                 |                                              |                                                                                                                  |             |              |                                 |                                                                                                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |                                        |  |
| Naz           | ne(s) of Field Representatives(s)                       |                                              | Title                                                                                                            |             |              |                                 |                                                                                                                 |             | Phon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e                                                                                                              |                                        |  |
| Ang           | el Delcon                                               |                                              | Operator                                                                                                         |             |              |                                 |                                                                                                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |                                        |  |
| Eckl          | y Garcia                                                |                                              | Operations M                                                                                                     | onager      |              |                                 |                                                                                                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |                                        |  |
|               |                                                         |                                              |                                                                                                                  |             |              |                                 | •                                                                                                               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |                                        |  |
| Nam           | e and Address of Permittee or Desig                     | nated R                                      | epresentative                                                                                                    | Title       |              |                                 | Phone                                                                                                           |             | @ O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | perator Certific                                                                                               | ation #                                |  |
| Jeffr         | ty Cagan                                                |                                              |                                                                                                                  | Presid      | cnt          |                                 | (352) 394-8898                                                                                                  |             | Angel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Deleon C-13887                                                                                                 | ,                                      |  |
| Sout          | hlake Utilities, Inc.                                   |                                              |                                                                                                                  |             |              |                                 |                                                                                                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |                                        |  |
| 6554          | Crossing Boulevard                                      |                                              |                                                                                                                  | E-mai       | r            |                                 | Fax                                                                                                             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |                                        |  |
| Clerr         | nont FL 34711                                           |                                              |                                                                                                                  | Jeff@d      | cagor        | LCOM                            |                                                                                                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |                                        |  |
| Inco          |                                                         | Samal                                        | s Takez(Y/N): Yes                                                                                                |             |              | Sample IDé                      | + TL1, TL2, TL3, TL4                                                                                            |             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S-IA (VIN), N                                                                                                  | ······································ |  |
|               |                                                         |                                              |                                                                                                                  |             | -            |                                 |                                                                                                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s Split (Y/N): N                                                                                               |                                        |  |
| $\square$     | Domestic 🔄 Indu                                         | strial                                       | Were Photos Tal                                                                                                  | ken(Y/N):   | Y            |                                 | @ Log book Volume                                                                                               | : 3         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | @ Page                                                                                                         | 147                                    |  |
|               |                                                         |                                              | ALTY COMPLI                                                                                                      |             |              |                                 |                                                                                                                 | a de la com | -<br>1975 - 1976<br>- 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 19766 - 19766 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 - 1976 | The second s |                                        |  |
| 10            |                                                         |                                              |                                                                                                                  | 1           |              |                                 |                                                                                                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |                                        |  |
|               | = In Compliance; NC = Out<br>Significant Non-Compliance | Criteri                                      | a Should be Reviewed                                                                                             | twhen Οι    | i ci<br>i of | Compliance                      | ; NA = Not Applicat                                                                                             | 18; N       | E OF L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Marked by a                                                                                                    | Evaluated                              |  |
|               | PURMUS ORDERS                                           |                                              | SELF MONITORING.                                                                                                 |             |              | FACILI                          | VOHERATIONS -                                                                                                   |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HELNIDIDISPO                                                                                                   | SAL SAL                                |  |
| IC            | 1. ♦ Permit                                             | NE                                           | 3. Laboratory                                                                                                    |             | IC           | 6. Facil                        | ity Site Review                                                                                                 | NC          | Q •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Effluent Quali                                                                                                 |                                        |  |
| NA            | 2. + Compliance Schedules                               | NC                                           | 4. Sampling                                                                                                      |             | IC           |                                 | Measurement                                                                                                     | IC          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |                                        |  |
|               | •                                                       | NC                                           | 5. • Records & Reports                                                                                           |             | NC           | 8. + Operation & Maintenance IC |                                                                                                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11. Residuals/Sludge                                                                                           |                                        |  |
|               | 13. Other:                                              | <u> </u>                                     |                                                                                                                  |             |              |                                 |                                                                                                                 | NC          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Groundwater                                                                                                    | <u> </u>                               |  |
|               |                                                         |                                              |                                                                                                                  | 7           |              |                                 |                                                                                                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ····                                                                                                           |                                        |  |
| Facili        | ty and/or Order Compliance Status:                      |                                              | n-Compliance                                                                                                     | Out-Of-     | Camj         | pliance                         | Significant-O                                                                                                   | ut-Of-C     | omplia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nce                                                                                                            |                                        |  |
| Recor         | nmended Actions: Noncompliance L                        | etter                                        |                                                                                                                  |             |              | ······                          |                                                                                                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |                                        |  |
| Name          | (s) and Signature(s) of Inspector(s)                    |                                              |                                                                                                                  |             |              |                                 | District Office/Phone                                                                                           | Numb        | er                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Date                                                                                                           | ······································ |  |
|               | Dur                                                     |                                              |                                                                                                                  |             |              |                                 | Central District 407-                                                                                           | 893-3       | 313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2/7                                                                                                            | /05                                    |  |
| Patri         | ck Farris Tatrick I                                     | ann                                          | 1                                                                                                                |             |              |                                 |                                                                                                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |                                        |  |
|               |                                                         |                                              |                                                                                                                  |             |              |                                 |                                                                                                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | hi na s                                                                                                        |                                        |  |
| @ SH          | gnature of Reviewer                                     |                                              |                                                                                                                  |             |              |                                 | District Office/Phone                                                                                           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Date                                                                                                           |                                        |  |
|               | 1 h Jan                                                 | en                                           |                                                                                                                  |             |              |                                 | Central District 407-                                                                                           | 893-33      | 313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 02/08/05                                                                                                       |                                        |  |
| Kaliı         | na Warren Khirana                                       |                                              |                                                                                                                  |             |              | [                               |                                                                                                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |                                        |  |
| ertet.        | and a street to a score function of a series            | ar ar an |                                                                                                                  |             | 1.121        | (1995)<br>Martin                |                                                                                                                 | 999.93<br>1 | 207a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                        |  |
|               | Fill Out This Section 1                                 |                                              | store receiver of the contract of a state state.                                                                 | Discua      | E B C        | 1111 - 10 a juin <u>1</u> 13    | e al capital de la compacta de la co |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ann a' airthairtean an sail an                                                                                 | кŊ                                     |  |
| Trat          | saction Code                                            | NŤ                                           | DES Number                                                                                                       | 1 1         | ,            | YR/MO                           | DA Insp.<br>IIIII                                                                                               | Гуре        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | aspector                                                                                                       | <b>Гос Туре</b>                        |  |
|               | N 5                                                     |                                              |                                                                                                                  |             |              |                                 | <u> </u>                                                                                                        |             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                | 3                                      |  |
| ry            |                                                         |                                              | ADDITION                                                                                                         | 19 CT COLON | 4            | UMMEN                           | 10                                                                                                              | Terrerad    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                | Harright & June 1                      |  |
|               | ction Type (Field 1) A=PAI,                             |                                              | the second s   |             |              |                                 |                                                                                                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |                                        |  |
| Art. 1 (1.11) | ction Code (Field 2). S=State                           |                                              | and the second |             |              |                                 |                                                                                                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |                                        |  |
|               | ty Type (Field 3): 1=Municip                            |                                              | ilicly Owned), 2=Indus                                                                                           | trial and   | Priv         | ately Ow                        | ried Domestic, 3- Ag                                                                                            | ;;;;cult    | ural, 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Federal                                                                                                        |                                        |  |
| Every         | other field is self explanatory                         |                                              |                                                                                                                  |             |              |                                 |                                                                                                                 | - 10        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |                                        |  |

Revised: May 26, 2004

## INSPECTION COMMENTS

An existing 0.300 mgd annual average daily flow (AADF) permitted capacity re-rated to 0.600 MGD AADF extended aeration activated sludge domestic wastewater treatment plant consisting of influent screening, aeration, secondary clarification, chlorination and aerobic digestion of residuals.

## 1. Permit: In Compliance

- Permit number FLA010634 will expire on November 1, 2006.
- A copy of the permit was available on-site.

## 2. Compliance Schedules: Not Applicable

• Not applicable.

## 3. Laboratory; Not Evaluated

The facility uses Tri Tech Laboratory. The lab was not evaluated.

## 4. Sampling: Out of Compliance

- Influent and effluent composite samplers.
- Sampling day of inspection, sampling event was done before inspection began.
  - Influent Sampler:
    - Thermometer read  $-1^{\circ}$  C, sample was not frozen. Sample temperature should be 0-4° C.
    - Tygon tubing, coiled by sampler.
  - Effluent Sampler:
    - Thermometer read 1° C,
    - Black tubing is used, placed in effluent outfall.
    - Black tubing had coils that would allow water to stand in tubing and prohibit complete purging.
- Notes in logbook state: sampler temperature had been turned down on 1/15/05 to get temp. in correct range. On 1/16/05 sampler was at 4° C and on 1/18/05 sampler was set up to collect samples.
- Tri Tech Laboratory picked up the samples and placed them in a cooler on ice.

## 5. Records And Reports: Out of Compliance

- Bound and numbered logbook was on site with notes on operation and maintenance performed on plant.
- A copy of the operation and maintenance manual was on-site.
- A copy of the license for each certified operator that services this facility was on-site.
- A copy of the laboratory certification was on-site.
- DMRs were reviewed from March 2003 to August 2004.
- Percent Capacity (TMADF) was exceeded on the DMRs for March 2003 reported at 148%, April 2003 reported at 151%, May 2004 reported at 155%, June 2003 reported at 156% and August 2004 reported at 106%. Plant is under expansion to correct for high flows.
- Nitrate, Influent CBOD<sub>5</sub>, Influent TSS were not reported on Part A of the DMR for August 2004.

## 6. Facility Site Review: In Compliance

- Access: Fenced and gated
- *Physical Plant:* The plant being used had tanks bulging. Mr. Garcia said that when the second plant was finished, the first plant was going to be rebuilt. Contractors were working on the second plant.
- Headworks: The surge tank was taken out of service to be used as a digester.
- Aeration: Good

- Mixed Liquor: Light brown, no odor, light foam
- *Clarifier:* Stilling well is ok, foam and ash on surface, skimmer is on, only one skimmer arm is connected, weir is clean, water over weir is clear
- Chlorine Contact Chamber: Could not evaluate, a 15,000 gallon drinking water tank is currently being used as the CCC while the new CCC is built. Due to the tank being a closed tank, it is impossible to inspect the inside. The tank most likely does not have baffles, which would allow for short-circuiting and therefore would lack the 15 minute contact time at peak flow.
- *Chlorination Method:* Gas Chlorine, gas cylinders were roped to a pine tree on-site. The chlorine shed was locked, but had the fan running.
- Digester: Storage available
- Backflow Prevention: Well water used.

## 7. Flow Measurement: In Compliance

• Flow meter was calibrated.

## 8. Operation And Maintenance: Out of Compliance

• A certified operator was on-site as required by the permit.

## 9. Effluent Quality: Out of Compliance

- DMRs were reviewed from March 2003 to August 2004.
- Grab samples were taken at the time of the inspection:
  - TRC was 0.22mg/L.
  - pH was7.5 SU.
  - TSS was 6.5.
  - CBOD<sub>5</sub> was 2.7.
  - Fecal coliform 420 fcc/100mL.
  - Nitrate was 1.3mg/L.
- The TSS result reported on the DMR for March 2003 was 141 mg/L which exceeded the maximum limit of 60 mg/L for any one sample.
- The TSS result reported on the DMR for April 2003 was 113 mg/L which exceeded the maximum limit of 60 mg/L for any one sample.

## 10. Effluent Disposal Method: In Compliance

- Method of effluent disposal is to two percolation ponds.
- The vegetation on the berms was well maintained and the bottom was scarified.
- One percolation pond berm has been broken, this is allowed in the permit to allot for expansion. A third pond will be constructed.

## 11. Residuals Management: In Compliance

- Agreement with Shelly's Septic Tanks RMF.
- Synagro thickens the sludge, then Shelly's hauls.

## 12. Ground Water: Out of Compliance

- A review of ground water files for this facility indicates the following deficiencies:
  - A current certification form containing the quality assurance section was not submitted with the ground water monitoring report for the first quarter of 2005. The correct form was submitted with previous reports. Please submit the correct form with the reports in the future.

#### Southlake Utilities WWTF

- No ground water monitoring report forms with elevation data were submitted for piezometers PZ-1 through PZ-4 for all quarters of data reviewed. Please submit the missing data and submit the reports for these locations with future submittals.
- Depth to water instead of ground water elevations were reported for all quarters of data reviewed. This has been a historical problem at this facility, discussed in several non-compliance letters. Please calculate and record the ground water elevations for all wells and submit revised reports to the Department. The Department will no longer accept reports with depth to water reported. The reports will be returned to the facility for correction immediately.
- Nitrate concentrations were reported above the primary standard of 10 mg/L for ground water samples from compliance well MW-3 at 11.64 milligrams per Liter for the first quarter of 2005. Please investigate the cause of the elevated concentrations and report the results of the investigation to the Department.



Page 3

16554 Crossings Boulevard, Suite 2 Clermont, Florida 34711 Phone No (352) 394-8898 Fax No. (352) 394-8894

May 27, 2005

Patrick Farris Wastewater Compliance/Enforcement Department of Environmental Protection Central District 3319 Maguire Boulevard, Suite 232 Orlando, Fl 32803-3767

Sub: Southlake Utilities WWTF Wastewater Facility – Permit No. FLA010634

Ref: Letter OCD - C - WW - 05 - 0137 dated February 10, 2005

Dear Mr. Farris:

This letter is in response to the above referenced letter from Mr. Gary P. Miller, Program Manager, and Wastewater Compliance/Enforcement following a facility inspection by you on January 19, 2005.

I am responding to the deficiencies in the order they were presented in the above referenced letter.

Deficiency # 1:

New thermometers were installed and the temperature settings were reset to 4 degrees Celsius.

Deficiency # 2:

This deficiency is corrected.

Deficiency # 3:

We had problems with the diaphragm pumps in the chlorination equipment, which has since been corrected.

Deficiency # 4:

The plant is undergoing a major expansion to accommodate increased flows at the plant. The excess solids could be the result of carryover of solids. However, we will investigate the problem and will respond to you after we have researched the plant operation during this period.

#### Deficiency # 5:

In order to better satisfy the departments requirements, we have retained Devo Engineering to develop and submit the information required by the department directly to them. I am sending a copy of the letter referenced above to Devo Engineering for compliance with FDEP requirements.

5 (d). We do not know the reasons for the elevation in nitrate concentration. Our guess at the present time is the plant functioning. We believe that this is an isolated instance and will resolve itself after the plant upgrade, expansion is completed, and the operation of the plant is stable.

Thank you.

Sincerely, £Л, ,∀СССКУ M. þambamurthi, P.E

CC. MARSHA JOHNSON

SOUTHLAKE UTILITIES

FROM : (0 000000003

### PHONE NO. : 4078892266

SE Southeast Utilities Inc. 174A Semoran Commerce Place, Suite 104, Apopka, FL 32703

407-889-9755 Fex: 407-889-0266

August 4, 2003

Attn: Sam Southlake Utilities Fax: 352-394-8894

Dear Sam,

The following are responses to deficiencies listed in FDEP's letter of 7/23/03:

- 1. New thermometers have been ordered. We expect delivery in 7-10 days.
- 2. We are no longer using Bottorf Laboratory. We are now using Tri-Tech Labs., Inc. and are receiving better results.
- 3. We will start using the correct form for the July 2003 DMR.
- 7. The chart recorder will be repaired the week of August 4, 2003.
- 9. b) Tri-Tech Labs, Inc. will respond to this item.

The items not listed will require your response.

Sincerely,

1. Mut

Sr. Vice President

RWP:mp

Volume 3G

50

Page 1 of 16



# Department of Environmental Protection

Jeb Bush Governor Central District 3319 Maguire Boulevard, Suite 232 Orlando, Florida 32803-3767

David B. Struhs Secretary

September 9, 2002

SENT BY E-MAIL jeff@cagan.com

Southlake Utilities, Inc. 16554 Crossings Boulevard, Suite 2 Clermont, FL 34711

Attention: Jeffrey Cagan, President

Lake County - PW Southlake Utilities <u>Water Treatment Plant Modifications</u>

Dear Mr. Cagan:

This acknowledges receipt of certification that the subject water treatment plant modifications has been completed in accordance with the plans and related materials permitted by this agency on Permit Number WC35-0080599-026 dated December 21, 2001 and that the system has passed the pressure and bacteriological tests that were conducted in accordance with the AWWA Standards.

Based on this certification and satisfactory bacteriological results, we are clearing the plant modifications for service.

The maximum day rating is now 2.916 MGD. <u>This will now require a minimum class C or higher</u> certified water plant operator on site for 5 visits per week and one visit each weekend.

The auxiliary generator with automatic startup was not installed as approved in the permit. In addition, the project engineer of record has indicated that the project is relying on electrical service from multiple sources (FPC, TECO, and FP&L). Therefore, it will be necessary to provide documentation from both the project engineer and the referenced power companies that both wells and high service pumps are connected to at least two independent power feeds from separate substations. This information is required within thirty 30 days.

The responsibility for the microbiological quality of the water at the time it ultimately reaches the consumer's meter remains entirely with the utility and/or the owner/operator of the system who should ensure that this quality remains as represented by the bacteriological test results presented. This letter of clearance does not preclude the need for obtaining acceptance by other entities as may be required.

Richard S. Lott, P.G., P.E. Manager, Drinking Water Program

RSL:kk:mn

cc: Ronald H. Wilson, P.E. [rhwengr@intellistar.net] Doug Conway, Lake County Capital Projects Manager [dconway@co.lake.fl.us] DEP Compliance/Enforcement



## Florida Department of Environmental Protection

Central District 3319 Maguire Boulevard, Suite 232 Orlando, Florida 32803-3767 Page 2 of 16 Charlie Crist Governor

> Jeff Kottkamp Lt. Governor

Michael W. Sole Secretary

## 

#### PERMITTEE:

Southlake Utilities, Inc.

**RESPONSIBLE AUTHORITY:** 

Mr. Jeffrey Cagan President 16554 Cagan Crossings Blvd Suite 2 Clermont, FL 34714

(352) 394-8898

#### FACILITY:

Southlake Utilities WWTF U.S. Highway 27 South Clermont, FL Lake County Latitude: 28° 21' 07" N Longitude: 81° 40' 42" W

This permit is issued under the provisions of Chapter 403, Florida Statutes (F.S.), and applicable rules of the Florida Administrative Code (F.A.C.). The above named permittee is hereby authorized to operate the facilities shown on the application and other documents attached hereto or on file with the Department and made a part hereof and specifically described as follows:

#### TREATMENT FACILITIES:

An existing 1.5 mgd annual average daily flow (AADF) design capacity extended aeration activated sludge domestic wastewater treatment plant consisting of flow equalization, influent screening, aeration, secondary clarification, chlorination and aerobic digestion of residuals. The permitted capacity is limited to 1.15 MGD AADF, the capacity of the RIBs.

#### REUSE

Land Application: An existing 1.15 MGD AADF permitted capacity rapid infiltration basin system (RIBs, R-001). R-001 consists of two RIBs with a total wetted area of 4.71 acres located approximately at latitude 28° 21' 07" N, longitude 81° 40' 42" W.

IN ACCORDANCE WITH: The limitations, monitoring requirements and other conditions set forth in Pages 1 through 15 of this permit.

PERMIT NUMBER: PA FILE NUMBER: ISSUANCE DATE: EXPIRATION DATE; FLA010634 FLA010634-006-DW1P April 19, 2007 April 15, 2012

| FACILITY:  | Southlake Utilities WWTF | PERMIT NUMBER:   | FLA010634      |
|------------|--------------------------|------------------|----------------|
| PERMITTEE: | Southlake Utilities, Inc | EXPIRATION DATE: | April 15, 2012 |

## I. RECLAIMED WATER AND EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

### A. Reuse and Land Application Systems

1. During the period beginning on the issuance date and lasting through the expiration date of this permit, the permittee is authorized to direct reclaimed water to Reuse System R-001. Such reclaimed water shall be limited and monitored by the permittee as specified below and reported in accordance with condition I.B.7:

|                                               |             |         | Reclaimed Water Linstations |                    |                   |                  | M                       | Monitoring Requirements                  |                                       |                     |  |
|-----------------------------------------------|-------------|---------|-----------------------------|--------------------|-------------------|------------------|-------------------------|------------------------------------------|---------------------------------------|---------------------|--|
| Parameter                                     | Units       | Max/Min | Annual<br>Average           | Monthly<br>Average | Weekly<br>Average | Single<br>Sample | Monitoring<br>Frequency | Sample Type                              | Monitoring<br>Location Site<br>Number | Notes               |  |
| Flow                                          | MGD         | Maximum | 1.15                        |                    | -                 | •                | Continuous              | Recording flow meters<br>and totalizers  | FLW-1                                 | See Cond,<br>I.A.3. |  |
| BOD, Carbonaceous 5 day, 20C                  | MG/L        | Maximum | 20.0                        | 30.0               | 45.0              | 60.0             | Weekly                  | 8-hour flow<br>proportioned<br>composite | EFA-1                                 |                     |  |
| Solids, Total Suspended                       | MG/L        | Maximum | 20.0                        | 30.0               | 45.0              | 60.0             | Wcekdy                  | 8-hour flow<br>proportioned<br>composite | EFA-1                                 |                     |  |
| pH                                            | SU          | Range   | -                           | -                  | •                 | 6.0 to<br>8.5    | Continuous              | meler                                    | EFA-1                                 |                     |  |
| Coliform, Fecul                               | #/100<br>ML | Maximum | See Permit Condition I.A.4. |                    |                   | Weekly           | Grab                    | EFA-1                                    |                                       |                     |  |
| Total Residual Chlorine (For<br>Disinfection) | MG/L        | Minimum | -                           | -                  |                   | 0.5              | Continuous              | meter                                    | EFA-1                                 | See Cond.<br>I.A.5. |  |
| Nitrogen, Nitrate, Total (as N)               | MG/L        | Maximum | -                           | -                  | -                 | 12.0             | Weekly                  | 8-hour flow<br>proportioned<br>composite | EFA-1                                 | See. Cond.<br>LA.6. |  |

2. Reclaimed water samples shall be taken at the monitoring site locations listed in Permit Condition I. A. 1. and as described below:

| Monitoring Location<br>Site Number | Description of Monitoring Location |
|------------------------------------|------------------------------------|
| EFA-I                              | Chlorine contact chamber effluent  |
| FLW-1                              | Effluent flow meter                |

- 3. Recording flow meters and totalizers shall be utilized to measure flow and calibrated at least annually. [62-601.200(17) and .500(6)]
- 4. The arithmetic mean of the monthly feeal coliform values collected during an annual period shall not exceed 200 per 100 mL of reclaimed water sample. The geometric mean of the feeal coliform values for a minimum of 10 samples of reclaimed water, each collected on a separate day during a period of 30 consecutive days (monthly), shall not exceed 200 per 100 mL of sample. No more than 10 percent of the samples collected (the 90th percentile value) during a period of 30 consecutive days shall exceed 400 fecal coliform values per 100 mL of sample. Any one sample shall not exceed 800 fecal coliform values per 100 mL of sample. Note: To report the 90th percentile value, list the fecal coliform values obtained during the month in ascending order. Report the value of the sample that corresponds to the 90th percentile (multiply the number of samples by 0.9). For example, for 30 samples, report the corresponding fecal coliform number for the 27th value of ascending order. [62-610.510 and 62-600.440(4)(c)]
- 5. A minimum of 0.5 mg/L total residual chlorine must be maintained for a minimum contact time of 15 minutes based on peak hourly flow. [62-610.510 and 62-600.440(4)(b)]
- 6. Nitrate nitrogen (NO<sub>3</sub>) concentration in the water discharged to the land application system shall not exceed 12.0 mg/L, or as required to comply with Rule 62-610.510, F.A.C. [62-610.510]

| Southlake Utilities WWTF | PERMIT NUMBER:   | FLA010634      |
|--------------------------|------------------|----------------|
| Southlake Utilities, Inc | EXPIRATION DATE: | April 15, 2012 |

## I. RECLAIMED WATER AND EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (cont.)

### B. Other Limitations and Monitoring and Reporting Requirements

FACILITY:

PERMITTEE:

1. During the period beginning on the issuance date and lasting through the expiration date of this permit, the treatment facility shall be limited and monitored by the permittee as specified below and reported in accordance with condition I.B.7:

|                                                          |             |         |                   | Limits             | tions             |                  | M                       | onitoring Requirements                   |                                       |                     |
|----------------------------------------------------------|-------------|---------|-------------------|--------------------|-------------------|------------------|-------------------------|------------------------------------------|---------------------------------------|---------------------|
| Parameter                                                | Units       | Max/Min | Annual<br>Average | Monthly<br>Average | Weekly<br>Average | Single<br>Sample | Monitoring<br>Frequency | Sample Type                              | Monitoring<br>Location Site<br>Number | Notes               |
| BOD, Carbonaceous 5 day, 20C                             | MG/L        | Maximum | -                 | Report             | -                 | -                | Weekly                  | 8-hour flow<br>proportioned<br>composite | INF-1                                 | See Cond,<br>1.B.3, |
| Solida, Total Suspended                                  | MG/L        | Maximum | -                 | Report             | -                 | -                | Weckly                  | 8-hour flow<br>proportioned<br>composite | INF-1                                 | See Cond.<br>LB.3,  |
| Percent Capacity,<br>(TMADF/Permitted Capacity) x<br>100 | PER<br>CENT | Maximum | -                 | Report             | -                 | •                | Monthly                 | Calculated                               | FLW-1                                 |                     |
| Flow                                                     | MOD         | Maximum | 1.15              | -                  | -                 | -                | Continuous              | Recording flow meters<br>and totalizers  | FLW-1                                 | See Cond.<br>I.B.4. |

2. Samples shall be taken at the monitoring site locations listed in Permit Condition I. B. 1 and as described below:

| Monitoring Location | Description of Monitoring Location |
|---------------------|------------------------------------|
| Site Number         |                                    |
| FLW-1               | Effluent flow meter                |
| INF-1               | Raw influent to surge tank         |

- 3. Influent samples shall be collected so that they do not contain digester supernatant or return activated sludge, or any other plant process recycled waters. [62-601.500(4)]
- 4. Recording flow meters and totalizers shall be utilized to measure flow and calibrated at least annually. [62-601.200(17) and .500(6)]
- 5. Parameters which must be monitored as a result of a surface water discharge shall be analyzed using a sufficiently sensitive method to assure compliance with applicable water quality standards and effluent limitations in accordance with 40 CFR (Code of Federal Regulations) Part 136. All monitoring shall be representative of the monitored activity. [62-620.320(6)]
- 6. The permittee shall provide safe access points for obtaining representative influent, reclaimed water, and effluent samples which are required by this permit. [62-601.500(5)]
- 7. Monitoring requirements under this permit are effective on the first day of the second month following permit issuance. Until such time, the permittee shall continue to monitor and report in accordance with previously effective permit requirements, if any. During the period of operation authorized by this permit, the permittee shall complete and submit to the Department's Central District Office Discharge Monitoring Reports (DMRs) in accordance with the frequencies specified by the REPORT type (i.e., monthly, toxicity, quarterly, semiannual, annual, etc.) indicated on the DMR forms attached to this permit. Monitoring results for each monitoring period shall be submitted in accordance with the associated DMR due dates below.

| REPORT Type            | Monitoring Period                                                                             | Due Date                                        |
|------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------|
| Monthly or<br>Toxicity | first day of month – last day of month                                                        | 28 <sup>th</sup> day of following month         |
| Quarterly              | January 1 - March 31<br>April 1 – June 30<br>July 1 – September 30<br>October 1 – December 31 | April 28<br>July 28<br>October 28<br>January 28 |
| Semiannual             | January 1 – June 30<br>July 1 – December 31                                                   | July 28<br>January 28                           |
| Annual                 | January 1 – December 31                                                                       | January 28                                      |

DMRs shall be submitted for each required monitoring period including months of no discharge. The permittee shall make copies of the attached DMR form(s) and shall submit the completed DMR form(s) to the Department's Central District Office at the address specified in Permit Condition I.B. 10 by the twenty-eighth (28th) of the month following the month of operation.

[62-620.610(18)][62-601.300(1), (2), and (3)]

8. During the period of operation authorized by this permit, reclaimed water or effluent shall be monitored annually for the primary and secondary drinking water standards contained in Chapter 62-550, F.A.C., (except for asbestos, color, and corrosivity). Twenty-four hour composite samples shall be used to analyze reclaimed water or effluent for the primary and secondary drinking water standards. These monitoring results shall be reported to the Department's Central District Office annually on the DMR. During years when a permit is not renewed, a certification stating that no new non-domestic wastewater dischargers have been added to the collection system since the last reclaimed water or effluent analysis was conducted may be submitted in lieu of the report. The annual reclaimed water or effluent analysis report or the certification shall be completed and submitted in a timely manner so as to be received by the Department's Central District Office by June 28 of each year. Approved analytical methods identified in Rule 62-620.100(3)(i), F.A.C., shall be used for

Page 7 of 16 FLA010534 April 15, 2012

the analysis. If no method is included for a parameter, methods specified in Chapter 62-550, F.A.C., shall be used. [62-601.300(4)][62-601.500(3)][62-610.300(4)]

- 9. The permittee shall submit an Annual Reuse Report using DEP Form 62-610.300(4)(a)2. on or before January 1 of each year. [62-610.870(3)]
- 10. Unless specified otherwise in this permit, all reports and other information required by this permit, including 24-hour notifications, shall be submitted to or reported to, as appropriate, Lake County Water Resource Management and the Department's Central District Office at the address specified below:

Central District Office 3319 Maguire Boulevard Suite 232 Orlando, Florida 32803-3767

Phone Number - (407) 894-7555 FAX Number - (407) 897-2966 All FAX copies shall be followed by original copies. All reports and other information shall be signed in accordance with the requirements of Rule 62-620.305, F.A.C. [62-620.305]

#### II. RESIDUALS MANAGEMENT REQUIREMENTS

- 1. The method of residuals use or disposal by this facility is transport to Shelley's Residual Management Facility or disposal in a Class I or II solid waste landfill.
- 2. The permittee shall be responsible for proper treatment, management, use, and land application or disposal of its residuals. [62-640.300(5)]
- 3. The permittee shall not be held responsible for treatment, management, use, or land application violations that occur after its residuals have been accepted by a permitted residuals management facility with which the source facility has an agreement in accordance with Rule 62-640.880(1)(c), F.A.C., for further treatment, management, use or land application. [62-640.300(5)]
- 4. Disposal of residuals, septage, and other solids in a solid waste landfill, or disposal by placement on land for purposes other than soil conditioning or fertilization, such as at a monofill, surface impoundment, waste pile, or dedicated site, shall be in accordance with Chapter 62-701, F.A.C. [62-640.100(6)(k)3 & 4]
- 5. If the permittee intends to accept residuals from other facilities, a permit revision is required pursuant to Rule 62-640.880(2)(d), F.A.C. [62-640.880(2)(d)]
- 6. The permittee shall keep hauling records to track the transport of residuals between facilities. The hauling records shall contain the following information:

#### Source Facility

1. Date and Time Shipped

Hauling Firm

- 2. Amount of Residuals Shipped
- 3. Degree of Treatment (if applicable)
- 4. Name and ID Number of Residuals Management Facility or Treatment Facility
- Signature of Responsible Party at Source Facility
   Signature of Hauler and Name of
- Residuals Management Facility or Treatment Facility
- 1. Date and Time Received
- 2. Amount of Residuals Received
- 3. Name and ID Number of Source Facility
- 4. Signature of Hauler
- 5. Signature of Responsible Party at Residuals Management Facility or Treatment Facility

These records shall be kept for five years and shall be made available for inspection upon request by the Department. A copy of the hauling records information maintained by the source facility shall be provided upon delivery of the residuals to the residuals management facility or treatment facility. The permittee shall report to the Department within 24 hours of

Page 8 of 16 FLA010634 April 15, 2012

discovery any discrepancy in the quantity of residuals leaving the source facility and arriving at the residuals management facility or treatment facility. [62-640.880(4)]

7. Storage of residuals or other solids at the permitted facility shall require prior written notification to the Department. [62-640.300(4)]

#### III. GROUND WATER REQUIREMENTS

#### **Construction Requirements**

Section Construction Requirements is not applicable to this facility.

#### **Operational Requirements**

- 1. For the Part IV land application system(s), all ground water quality criteria specified in Chapter 62-520, F.A.C., shall be met at the edge of the zone of discharge. The zone of discharge for this project shall extend horizontally 100 feet from the application site or to the facility's property line, whichever is less, and vertically to the base of the surficial aquifer. [62-520.200(23)][62-522.400 and 62-522.410]
- 2. The ground water minimum criteria specified in Rule 62-520.400 F.A.C., shall be met within the zone of discharge. [62-520.400 and 62-520.420(4)]
- 3. During the period of operation authorized by this permit, the permittee shall sample ground water in accordance with this permit and the approved ground water monitoring plan prepared in accordance with Rule 62-522.600, F.A.C. [62-522.600][62-610.510, ]
- 4. The following monitoring wells shall be sampled in accordance with the monitoring frequencies specified in Permit Condition III.5. for Reuse System R-001. Quarterly sampling must be reasonably spaced to be representative of potentially changing conditions.

| Facility<br>Well Name<br>Pond Site | Permit<br>Builder<br>Well ID | WAFR# | GMS#       | Depth<br>(Feet) | Aquifer<br>Monitored | New or<br>Existing |
|------------------------------------|------------------------------|-------|------------|-----------------|----------------------|--------------------|
| MW-1                               | MWC-1                        | 4213  | 3035A16750 | 23              | Surficial            | Existing           |
| MW-2                               | MWC-2                        | 4212  | 3035A16751 | 23              | Surficial            | Existing           |
| MW-3                               | MWC-3                        | 4211  | 3035A16752 | 23              | Surficial            | Existing           |
| MW-4                               | MWC-4                        | 4210  | 3035A17263 | 23              | Surficial            | Existing           |
| MW-5                               | MWB-5                        | 4209  | 3035A17264 | 13              | Surficial            | Existing           |
| PZ-1                               | MWP-1                        | 4208  | 3035A17265 | 18.9            | Surficial            | Existing           |
| PZ-2                               | MWP-2                        | 4207  | 3035A17266 | 18.9            | Surficial            | Existing           |
| PZ-3                               | MWP-3                        | 4206  | 3035A17267 | 18.9            | Surficial            | Existing           |
| PZ-4                               | MWP-4                        | 4205  | 3035A17268 | 18.9            | Surficial            | Existing           |

MWB = Background; MWC = Compliance; MWP = Piezometer

[62-522.600][62-610.510(3)]

5. The following parameters shall be analyzed for each of the monitoring well(s) identified in Permit Condition(s) III. 4:

| Parameter                       | Compliance<br>Well Limit | Units | Sample Type | Monitoring<br>Frequency |
|---------------------------------|--------------------------|-------|-------------|-------------------------|
| Water Level Relative to NGVD    | Report                   | Feet  | In-situ     | Quarterly               |
| Nitrogen, Nitrate, Total (as N) | 10                       | mg/L  | Grab        | Quarterly               |
| Solids, Total Dissolved (TDS)   | 500                      | mg/L  | Grab        | Quarterly               |

#### FACILITY: PERMITTEE:

Southlake Utilities WWTF Southlake Utilities, Inc Page 9 of 16 FLA010634 April 15, 2012

| Parameter        | Compliance<br>Well Limit | Units   | Sample Type | Monitoring<br>Frequency |
|------------------|--------------------------|---------|-------------|-------------------------|
| Chloride (as Cl) | 250                      | mg/L    | Grab        | Quarterly               |
| Coliform, Fecal  | 4                        | #/100ml | Grab        | Quarterly               |
| pH               | 6.0 to 8.5               | SU      | ln-situ     | Quarterly               |
| Turbidity        | Report                   | NTU     | Grab        | Quarterly               |

For piezometers, monitoring and reporting is required only for water level information.

[62-522.600(11)(b)] [62-601.300(3), 62-601.700, and Figure 3 of 62-601][62-601.300(6)] [62-520.300(9)]

- 6. If the concentration for any constituent listed in Permit Condition III. 5. in the natural background quality of the ground water is greater than the stated maximum, or in the case of pH is also less than the minimum, the representative natural background quality shall be the prevailing standard. [62-520.420(2)]
- In accordance with Part D of Form 62-620.910(10), water levels shall be recorded before evacuating wells for sample collection. Elevation references shall include the top of the well casing and land surface at each well site (NGVD allowable) at a precision of plus or minus 0.1 foot. [62-610.510(3)(b), ]
- 8. Ground water monitoring wells shall be purged prior to sampling to obtain representative samples. [62-601.700(5)]
- 9. Analyses shall be conducted on unfiltered samples, unless filtered samples have been approved by the Department's Central District Ground Water Section as being more representative of ground water conditions. [62-520.300(9)]
- 10. Ground water monitoring parameters shall be analyzed in accordance with Chapter 62-601, F.A.C. [62-620.610(18)]
- Ground water monitoring test results shall be submitted on Part D of Form 62-620.910(10). A completed Certification Page shall accompany each quarter of monitoring data. For reuse or land application projects, results shall be submitted with the DMR for each month listed in the following schedule. The submitted results shall be for each year during the period of operation allowed by this permit in accordance with Permit Condition I.B.7. [62-522.600(10) and (11)(b)] [62-601.300(3), 62.601.700, and Figure 3 of 62-601] [62-620.610(18)]

| SAMPLE PERIOD      | REPORT DUE DATE |
|--------------------|-----------------|
| January - March    | April 28        |
| April - June       | July 28         |
| July - September   | October 28      |
| October - December | January 28      |

12. If any monitoring well becomes damaged or cannot be sampled for some reason, the permittee shall notify the Department's Central District Ground Water Section immediately and a written report shall follow within seven days detailing the circumstances and remedial measures taken or proposed. Repair or replacement of monitoring wells shall be approved in advance by the Department's Central District Ground Water Section. [62-522.600][62-4.070(3)]

#### IV. ADDITIONAL REUSE AND LAND APPLICATION REQUIREMENTS

#### Part IV Rapid Infiltration Basins (R-001)

- 1. Advisory signs shall be posted around the site boundaries to designate the nature of the project area. [62-610.518]
- 2. The annual average hydraulic loading rate to the Two RIBs with a total wetted area of 4.71 acres shall be limited to a maximum of 9 inches per day (as applied to the entire bottom area). [62-610.523(3)]
- 3. The Two RIBs with a total wetted area of 4.71 acres normally shall be loaded for 7 days and shall be rested for 14 days. Infiltration ponds, basins, or trenches shall be allowed to dry during the resting portion of the cycle. *f62-610.523(4)*]
- 4. Rapid infiltration basins shall be routinely maintained to control vegetation growth and to maintain percolation capability by scarification or removal of deposited solids. Basin bottoms shall be maintained to be level. [62-610.523(6) and (7)]

FACILITY: Southlake Utilities WWTF PERMITTEE: Southlake Utilities, Inc PERMIT NUMBER: EXPIRATION DATE: Page 10 of 16 FLA010634 April 15, 2012

- 5. Routine aquatic weed control and regular maintenance of storage pond embankments and access areas are required. [62-610.514 and 62-610.414]
- 6. Overflows from emergency discharge facilities on storage ponds or on infiltration ponds, basins, or trenches shall be reported as an abnormal event to the Department's Central District Office within 24 hours of an occurrence. The provisions of Rule 62-610.800(9), F.A.C., shall be met. [62-610.800(9)]

#### V. OPERATION AND MAINTENANCE REQUIREMENTS

1. During the period of operation authorized by this permit, the wastewater facilities shall be operated under the supervision of a(n) operator(s) certified in accordance with Chapter 62-602, F.A.C. In accordance with Chapter 62-699, F.A.C., this facility is a Category III, Class C facility and, at a minimum, operators with appropriate certification must be on the site as follows:

A Class C or higher operator 6 hours/day for 5 days/week and one visit on each weekend day. The lead operator must be a Class C operator, or higher.

[62-620.630(3)] [62-699.310] [62-610.462]

- An operator meeting the lead operator classification level of the plant shall be available during all periods of plant operation. "Available" means able to be contacted as needed to initiate the appropriate action in a timely manner. [62-699.311(1)]
- 3. An updated capacity analysis report shall be submitted to the Department annually by November 1 of each year. The updated capacity analysis report shall be prepared in accordance with Rule 62-600.405, F.A.C. [62-600.405(5)]
- 4. The application to renew this permit shall include a detailed operation and maintenance performance report prepared in accordance with Rule 62-600.735, F.A.C. [62-600.735(1)]
- 5. The permittee shall maintain the following records and make them available for inspection on the site of the permitted facility:
  - a. Records of all compliance monitoring information, including all calibration and maintenance records and all original strip chart recordings for continuous monitoring instrumentation and a copy of the laboratory certification showing the certification number of the laboratory, for at least three years from the date the sample or measurement was taken;
  - b. Copies of all reports required by the pennit for at least three years from the date the report was prepared;
  - c. Records of all data, including reports and documents, used to complete the application for the permit for at least three years from the date the application was filed;
  - d. Monitoring information, including a copy of the laboratory certification showing the laboratory certification number, related to the residuals use and disposal activities for the time period set forth in Chapter 62-640, F.A.C., for at least three years from the date of sampling or measurement;
  - e. A copy of the current permit;
  - f. A copy of the current operation and maintenance manual as required by Chapter 62-600, F.A.C.;
  - g. A copy of the facility record drawings;
  - h. Copies of the licenses of the current certified operators; and
  - i. Copies of the logs and schedules showing plant operations and equipment maintenance for three years from the date of the logs or schedules. The logs shall, at a minimum, include identification of the plant; the signature and certification number of the operator(s) and the signature of the person(s) making any entries; date and time in and out; specific operation and maintenance activities; tests performed and samples taken; and major repairs made. The

FACILITY: PERMITTEE: Southlake Utilities WWTF Southlake Utilities, Inc PERMIT NUMBER: EXPIRATION DATE: Page 11 of 16 FLA010634 April 15, 2012

logs shall be maintained on-site in a location accessible to 24-hour inspection, protected from weather damage, and current to the last operation and maintenance performed.

[62-620.350]

#### VL SCHEDULES

Section VI is not applicable to this facility.

#### VIL INDUSTRIAL PRETREATMENT PROGRAM REQUIREMENTS

This facility is not required to have a pretreatment program at this time. [62-625.500]

#### VIII. OTHER SPECIFIC CONDITIONS

- 1. The permittee shall apply for renewal of this permit at least 180 days before the expiration date of the permit using the appropriate forms listed in Rule 62-620.910, F.A.C., including submittal of the appropriate processing fee set forth in Rule 62-4.050, F.A.C. The existing permit shall not expire until the Department has taken final action on the application renewal in accordance with the provisions of 62-620.335(3) and (4), F.A.C. [62-620.335(1)-(4)]
- 2. Florida water quality criteria and standards shall not be violated as a result of any discharge or land application of reclaimed water or residuals from this facility. [62-610.850(1)(a) and (2)(a)]
- 3. In the event that the treatment facilities or equipment no longer function as intended, are no longer safe in terms of public health and safety, or odor, noise, aerosol drift, or lighting adversely affects neighboring developed areas at the levels prohibited by Rule 62-600.400(2)(a), F.A.C., corrective action (which may include additional maintenance or modifications of the permitted facilities) shall be taken by the permittee. Other corrective action may be required to ensure compliance with rules of the Department. Additionally, the treatment, management, use or land application of residuals shall not cause a violation of the odor prohibition in Rule 62-296.320(2), F.A.C. [62-600.410(8) and 62-640.400(6)]
- 4. The deliberate introduction of stormwater in any amount into collection/transmission systems designed solely for the introduction (and conveyance) of domestic/industrial wastewater; or the deliberate introduction of stormwater into collection/transmission systems designed for the introduction or conveyance of combinations of storm and domestic/industrial wastewater in amounts which may reduce the efficiency of pollutant removal by the treatment plant is prohibited, except as provided by Rule 62-610.472, F.A.C. [62-604.130(3)]
- 5. Collection/transmission system overflows shall be reported to the Department in accordance with Permit Condition IX. 20. [62-604.550] [62-620.610(20)]
- 6. The operating authority of a collection/transmission system and the permittee of a treatment plant are prohibited from accepting connections of wastewater discharges which have not received necessary pretreatment or which contain materials or pollutants (other than normal domestic wastewater constituents):
  - a. Which may cause fire or explosion hazards; or
  - b. Which may cause excessive corrosion or other deterioration of wastewater facilities due to chemical action or pH levels; or
  - c. Which are solid or viscous and obstruct flow or otherwise interfere with wastewater facility operations or treatment; or
  - d. Which result in the wastewater temperature at the introduction of the treatment plant exceeding 40°C or otherwise inhibiting treatment; or
  - e. Which result in the presence of toxic gases, vapors, or fumes that may cause worker health or safety problems.

[62-604.130(5)]

Page 12 of 16 FLA010634 April 15, 2012

- The treatment facility, storage ponds, rapid infiltration basins, and/or infiltration trenches shall be enclosed with a fence or otherwise provided with features to discourage the entry of animals and unauthorized persons. [62-610.518(1)] [and 62-600.400(2)(b)]\_
- Screenings and grit removed from the wastewater facilities shall be collected in suitable containers and hauled to a Department approved Class I landfill or to a landfill approved by the Department for receipt/disposal of screenings and grit. [62-701.300(1)(a)]
- 9. The Permittee shall provide verbal notice to the Department as soon as practical after discovery of a sinkhole within an area for the management or application of wastewater, wastewater residuals (sludges), or reclaimed water. The Permittee shall immediately implement measures appropriate to control the entry of contaminants, and shall detail these measures to the Department in a written report within 7 days of the sinkhole discovery. [62-4.070(3)]
- 10. The permittee shall provide adequate notice to the Department of the following:
  - a. Any new introduction of pollutants into the facility from an industrial discharger which would be subject to Chapter 403, F.S., and the requirements of Chapter 62-620, F.A.C. if it were directly discharging those pollutants; and
  - b. Any substantial change in the volume or character of pollutants being introduced into that facility by a source which was identified in the permit application and known to be discharging at the time the permit was issued.

Adequate notice shall include information on the quality and quantity of effluent introduced into the facility and any anticipated impact of the change on the quantity or quality of effluent or reclaimed water to be discharged from the facility.

[62-620.625(2)]

#### **IX. GENERAL CONDITIONS**

- The terms, conditions, requirements, limitations and restrictions set forth in this permit are binding and enforceable pursuant to Chapter 403, Florida Statutes. Any permit noncompliance constitutes a violation of Chapter 403, Florida Statutes, and is grounds for enforcement action, permit termination, permit revocation and reissuance, or permit revision. [62-620.610(1)]
- 2. This permit is valid only for the specific processes and operations applied for and indicated in the approved drawings or exhibits. Any unauthorized deviations from the approved drawings, exhibits, specifications or conditions of this permit constitutes grounds for revocation and enforcement action by the Department. [62-620.610(2)]
- 3. As provided in subsection 403.087(7), F.S., the issuance of this permit does not convey any vested rights or any exclusive privileges. Neither does it authorize any injury to public or private property or any invasion of personal rights, nor authorize any infringement of federal, state, or local laws or regulations. This permit is not a waiver of or approval of any other Department permit or authorization that may be required for other aspects of the total project which are not addressed in this permit. [62-620.610(3)]
- 4. This permit conveys no title to land or water, does not constitute state recognition or acknowledgment of title, and does not constitute authority for the use of submerged lands unless herein provided and the necessary title or leasehold interests have been obtained from the State. Only the Trustees of the Internal Improvement Trust Fund may express State opinion as to title. [62-620.610(4)]
- 5. This permit does not relieve the permittee from liability and penalties for harm or injury to human health or welfare, animal or plant life, or property caused by the construction or operation of this permitted source; nor does it allow the permittee to cause pollution in contravention of Florida Statutes and Department rules, unless specifically authorized by an order from the Department. The permittee shall take all reasonable steps to minimize or prevent any discharge, reuse of reclaimed water, or residuals use or disposal in violation of this permit which has a reasonable likelihood of adversely affecting human health or the environment. It shall not be a defense for a permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this permit. [62-620.610(5)]

FACILITY: Southlake Utilities WWTF PERMITTEE: Southlake Utilities, Inc PERMIT NUMBER: EXPIRATION DATE: Page 13 of 16 FLA010634 April 15, 2012

- 15. The permittee shall give the Department written notice at least 60 days before inactivation or abandonment of a wastewater facility and shall specify what steps will be taken to safeguard public health and safety during and following inactivation or abandonment. [62-620.610(15)]
- 16. The permittee shall apply for a revision to the Department permit in accordance with Rules 62-620.300 and the Department of Environmental Protection Guide to Wastewater Permitting at least 90 days before construction of any planned substantial modifications to the permitted facility is to commence or with Rule 62-620.325(2) for minor modifications to the permitted facility. A revised permit shall be obtained before construction begins except as provided in Rule 62-620.300, F.A.C. [62-620.610(16)]
- 17. The permittee shall give advance notice to the Department of any planned changes in the permitted facility or activity which may result in noncompliance with permit requirements. The permittee shall be responsible for any and all damages which may result from the changes and may be subject to enforcement action by the Department for penalties or revocation of this permit. The notice shall include the following information:
  - a. A description of the anticipated noncompliance;
  - b. The period of the anticipated noncompliance, including dates and times; and
  - c. Steps being taken to prevent future occurrence of the noncompliance.

[62-620.610(17)]

- Sampling and monitoring data shall be collected and analyzed in accordance with Rule 62-4.246, Chapters 62-160 and 62-601, F.A.C., and 40 CFR 136, as appropriate.
  - a. Monitoring results shall be reported at the intervals specified elsewhere in this permit and shall be reported on a Discharge Monitoring Report (DMR), DEP Form 62-620.910(10), or as specified elsewhere in the permit.
  - b. If the permittee monitors any contaminant more frequently than required by the permit, using Department approved test procedures, the results of this monitoring shall be included in the calculation and reporting of the data submitted in the DMR.
  - c. Calculations for all limitations which require averaging of measurements shall use an arithmetic mean unless otherwise specified in this permit.
  - d. Except as specifically provided in Rule 62-160.300, F.A.C., any laboratory test required by this permit shall be performed by a laboratory that has been certified by the Department of Health Environmental Laboratory Certification Program (DOH ELCP). Such certification shall be for the matrix, test method and analyte(s) being measured to comply with this permit. For domestic wastewater facilities, testing for parameters listed in Rule 62-160.300(4), F.A.C., shall be conducted under the direction of a certified operator.
  - e. Field activities including on-site tests and sample collection shall follow the applicable standard operating procedures described in DEP-SOP-001/01 adopted by reference in Chapter 62-160, F.A.C.
  - f. Alternate field procedures and laboratory methods may be used where they have been approved in accordance with Rules 62-160.220 and 62-160.330, F.A.C.

#### [62-620.610(18)]

- 19. Reports of compliance or noncompliance with, or any progress reports on, interim and final requirements contained in any compliance schedule detailed elsewhere in this permit shall be submitted no later than 14 days following each schedule date. [62-620.610(19)]
- 20. The permittee shall report to the Department any noncompliance which may endanger health or the environment. Any information shall be provided orally within 24 hours from the time the permittee becomes aware of the circumstances. A written submission shall also be provided within five days of the time the permittee becomes aware of the circumstances. The written submission shall contain: a description of the noncompliance and its cause; the period of noncompliance

- 6. If the permittee wishes to continue an activity regulated by this permit after its expiration date, the permittee shall apply for and obtain a new permit. [62-620.610(6)]
- 7. The permittee shall at all times properly operate and maintain the facility and systems of treatment and control, and related appurtenances, that are installed and used by the permittee to achieve compliance with the conditions of this permit. This provision includes the operation of backup or auxiliary facilities or similar systems when necessary to maintain or achieve compliance with the conditions of the permit. [62-620.610(7)]
- 8. This permit may be modified, revoked and reissued, or terminated for cause. The filing of a request by the permittee for a permit revision, revocation and reissuance, or termination, or a notification of planned changes or anticipated noncompliance does not stay any permit condition. [62-620.610(8)]
- 9. The permittee, by accepting this permit, specifically agrees to allow authorized Department personnel, including an authorized representative of the Department and authorized EPA personnel, when applicable, upon presentation of credentials or other documents as may be required by law, and at reasonable times, depending upon the nature of the concern being investigated, to:
  - a. Enter upon the permittee's premises where a regulated facility, system, or activity is located or conducted, or where records shall be kept under the conditions of this permit;
  - b. Have access to and copy any records that shall be kept under the conditions of this permit;
  - c. Inspect the facilities, equipment, practices, or operations regulated or required under this permit; and
  - d. Sample or monitor any substances or parameters at any location necessary to assure compliance with this permit or Department rules.

#### [62-620.610(9)]

- 10. In accepting this permit, the permittee understands and agrees that all records, notes, monitoring data, and other information relating to the construction or operation of this permitted source which are submitted to the Department may be used by the Department as evidence in any enforcement case involving the permitted source arising under the Florida Statutes or Department rules, except as such use is proscribed by Section 403.111, Florida Statutes, or Rule 62-620.302, Florida Administrative Code. Such evidence shall only be used to the extent that it is consistent with the Florida Rules of Civil Procedure and applicable evidentiary rules. [62-620.610(10)]
- 11. When requested by the Department, the permittee shall within a reasonable time provide any information required by law which is needed to determine whether there is cause for revising, revoking and reissuing, or terminating this permit, or to determine compliance with the permit. The permittee shall also provide to the Department upon request copies of records required by this permit to be kept. If the permittee becomes aware of relevant facts that were not submitted or were incorrect in the permit application or in any report to the Department, such facts or information shall be promptly submitted or corrections promptly reported to the Department. [62-620.610(11)]
- 12. Unless specifically stated otherwise in Department rules, the permittee, in accepting this permit, agrees to comply with changes in Department rules and Florida Statutes after a reasonable time for compliance; provided, however, the permittee does not waive any other rights granted by Florida Statutes or Department rules. A reasonable time for compliance with a new or amended surface water quality standard, other than those standards addressed in Rule 62-302.500, F.A.C., shall include a reasonable time to obtain or be denied a mixing zone for the new or amended standard. [62-620.610(12)]
- 13. The permittee, in accepting this permit, agrees to pay the applicable regulatory program and surveillance fee in accordance with Rule 62-4.052, F.A.C. [62-620.610(13)]
- 14. This permit is transferable only upon Department approval in accordance with Rule 62-620.340, F.A.C. The permittee shall be liable for any noncompliance of the permitted activity until the transfer is approved by the Department. [62-620.610(14)]

including exact dates and time, and if the noncompliance has not been corrected, the anticipated time it is expected to continue; and steps taken or planned to reduce, eliminate, and prevent recurrence of the noncompliance.

- a. The following shall be included as information which must be reported within 24 hours under this condition:
  - 1. Any unanticipated bypass which causes any reclaimed water or effluent to exceed any permit limitation or results in an unpermitted discharge,
  - 2. Any upset which causes any reclaimed water or the effluent to exceed any limitation in the permit,
  - 3. Violation of a maximum daily discharge limitation for any of the pollutants specifically listed in the permit for such notice, and
  - 4. Any unauthorized discharge to surface or ground waters.
- b. Oral reports as required by this subsection shall be provided as follows:
  - 1. For unauthorized releases or spills of treated or untreated wastewater reported pursuant to subparagraph a.4 that are in excess of 1,000 gallons per incident, or where information indicates that public health or the environment will be endangered, oral reports shall be provided to the Department by calling the STATE WARNING POINT TOLL FREE NUMBER (800) 320-0519, as soon as practical, but no later than 24 hours from the time the permittee becomes aware of the discharge. The permittee, to the extent known, shall provide the following information to the State Warning Point:
    - a) Name, address, and telephone number of person reporting;
    - b) Name, address, and telephone number of permittee or responsible person for the discharge;
    - c) Date and time of the discharge and status of discharge (ongoing or ceased);
    - d) Characteristics of the wastewater spilled or released (untreated or treated, industrial or domestic wastewater);
    - e) Estimated amount of the discharge;
    - f) Location or address of the discharge;
    - g) Source and cause of the discharge;
    - h) Whether the discharge was contained on-site, and cleanup actions taken to date;
    - i) Description of area affected by the discharge, including name of water body affected, if any; and
    - j) Other persons or agencies contacted.
  - 2. Oral reports, not otherwise required to be provided pursuant to subparagraph b.1 above, shall be provided to the Department within 24 hours from the time the permittee becomes aware of the circumstances.
- c. If the oral report has been received within 24 hours, the noncompliance has been corrected, and the noncompliance did not endanger health or the environment, the Department shall waive the written report.

#### [62-620.610(20)]

- The permittee shall report all instances of noncompliance not reported under Permit Conditions IX. 17., 18. and 19. of this
  permit at the time monitoring reports are submitted. This report shall contain the same information required by Permit
  Condition IX. 20 of this permit. [62-620.610(21)]
- 22. Bypass Provisions.
  - a. Bypass is prohibited, and the Department may take enforcement action against a permittee for bypass, unless the permittee affirmatively demonstrates that:

Southlake Utilities WWTF Southlake Utilities, Inc Page 16 of 16 FLA010634 April 15, 2012

- 1. Bypass was unavoidable to prevent loss of life, personal injury, or severe property damage; and
- 2. There were no feasible alternatives to the bypass, such as the use of auxiliary treatment facilities, retention of untreated wastes, or maintenance during normal periods of equipment downtime. This condition is not satisfied if adequate back-up equipment should have been installed in the exercise of reasonable engineering judgment to prevent a bypass which occurred during normal periods of equipment downtime or preventive maintenance; and
- 3. The permittee submitted notices as required under Permit Condition IX. 22. b. of this permit.
- b. If the permittee knows in advance of the need for a bypass, it shall submit prior notice to the Department, if possible at least 10 days before the date of the bypass. The permittee shall submit notice of an unanticipated bypass within 24 hours of learning about the bypass as required in Permit Condition IX. 20. of this permit. A notice shall include a description of the bypass and its cause; the period of the bypass, including exact dates and times; if the bypass has not been corrected, the anticipated time it is expected to continue; and the steps taken or planned to reduce, eliminate, and prevent recurrence of the bypass.
- c. The Department shall approve an anticipated bypass, after considering its adverse effect, if the permittee demonstrates that it will meet the three conditions listed in Permit Condition IX. 22. a. 1. through 3. of this permit.
- d. A permittee may allow any bypass to occur which does not cause reclaimed water or effluent limitations to be exceeded if it is for essential maintenance to assure efficient operation. These bypasses are not subject to the provisions of Permit Condition IX. 22, a. through c. of this permit.

[62-620.610(22)]

- 23. Upset Provisions
  - a. A permittee who wishes to establish the affirmative defense of upset shall demonstrate, through properly signed contemporaneous operating logs, or other relevant evidence that:
    - 1. An upset occurred and that the permittee can identify the cause(s) of the upset;
    - 2. The permitted facility was at the time being properly operated;
    - 3. The permittee submitted notice of the upset as required in Permit Condition IX. 20. of this permit; and
    - 4. The permittee complied with any remedial measures required under Permit Condition IX. 5. of this permit.
  - b. In any enforcement proceeding, the burden of proof for establishing the occurrence of an upset rests with the permittee.
  - c. Before an enforcement proceeding is instituted, no representation made during the Department review of a claim that noncompliance was caused by an upset is final agency action subject to judicial review.

[62-620.610(23)]

Executed in Orlando, Florida.

STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION

michane C:

Christianne C. Ferraro, P.E. Program Administrator Water Facilities

Date: April 19, 2007



лž

## SOUTHLAKE UTILITIES, INC.

| Full Time<br>Employee | Duties / Responsibilities                                                                            |   | Certificates Held                                                                                                                                                                                                                                                   | Wage Allocation |
|-----------------------|------------------------------------------------------------------------------------------------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Kimberly Kitchen      | Water Conservation Compliance Coordinator<br>Accounts Payable and Receivable<br>Customer Service     |   | N/A                                                                                                                                                                                                                                                                 | Expense Only    |
| James McCloskey       | Water Conservation Field Representative<br>Backflow Prevention Coordinator<br>Customer Service       | 2 | Back Flow Tester Training Certification<br>Back Flow Assembly Repair & Maint. Technician<br>Water Treatment Plant Operator (i) CEU Program                                                                                                                          | Expense Only    |
| Eduardo Garcia        | Water Treatment Plant Operator<br>Wastewater Treatment Plant Operator<br>Field Operations Supervisor |   | Water Treatment Plant Operator - State of Florida<br>License No. 0013538, Class "C"<br>Wastewater Treatment Plant Operator - State of Florida<br>License No. 0014360, Class "C"                                                                                     | Expense Only    |
| Angel DeLeon          | Wastewater Treatment Plant Operator<br>Water Treatment Plant Operator                                | ł | Technological Institute Of Puerto Rico<br>Associate Degree, Chemistry Technology<br>Wastewater Treatment Plant Operator - State of Florida<br>License No. 0013887, Class "C"<br>Water Treatment Plant Operator - State of Florida<br>License No. 0015281, Class "C" | Expense Only    |
| Part Time<br>Employee |                                                                                                      |   |                                                                                                                                                                                                                                                                     |                 |
| Juan Jimenez          | Meter Reader<br>General Maintenance                                                                  |   | N/A                                                                                                                                                                                                                                                                 | Expense Only    |

Volume 3I

ai



There are no company vehicles.

Employees are reimbursed for mileage.

Volume 3J j) Martin



There is no formal complaint log kept.

There were no PSC complaints in the year 2007.