

1		BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION
2		FLORIDA POWER & LIGHT COMPANY
3		DIRECT TESTIMONY OF JUAN E. ENJAMIO
4		DOCKET NO. 11EI
5		NOVEMBER 21, 2011
6		
7	Q.	Please state your name and business address.
8	A.	My name is Juan Enjamio. My business address is Florida Power & Light
9		Company, 9250 West Flagler Street, Miami, Florida 33174.
10	Q.	By whom are you employed and what position do you hold?
11	A.	I am employed by Florida Power & Light Company (FPL) as Supervisor of
12		Integrated Analysis in the Resource Assessment & Planning group.
13	Q.	Please describe your duties and responsibilities in that position.
14	A.	In my current position as Supervisor of Integrated Analysis, I am responsible for
15		supervision and coordination of analyses involving FPL's resource needs.
16	Q.	Please describe your educational background and professional experience.
17	A.	I graduated from the University of Florida in 1979 with a Bachelor of Science
18		degree in Electrical Engineering. I joined FPL in 1980 as a Distribution Engineer.
19		Since my initial assignment in FPL I have held positions as a Transmission
20		System Planner, Power System Control Center Engineer, Bulk Power Markets
21		Engineer, Supervisor of Transmission Planning, and Supervisor of Supply and
22		Demand Analysis. In 2004, I became Supervisor of Integrated Analysis -
23		Resource Planning.

1	Q.	Are you sponsoring any Exhibits in this case?
2	A.	Yes. I am sponsoring the following Exhibits:
3	•	JEE-1, Projection of FPL's Resource Needs through 2021;
4	•	JEE-2, Resource Plans Utilized in the Analyses;
5	•	JEE-3, Results of the Economic Analysis Relative to PEEC;
6	•	JEE-4, Projection of Approximate Bill Impacts;
7	٠	JEE-5, Non-Economic Analysis Results: Emission Reductions Compared to
8		PEEC Resource Plan;
9	•	JEE-6, Non-Economic Analysis Results: Reduction in Fuel Use Compared to
10		PEEC Resource Plan; and
11	٠	JEE-7, Forecasted Costs of Air Emissions.
12	Q.	What is the purpose and scope of your testimony?
13	A.	My testimony addresses eight major areas. First, I discuss FPL's integrated
14		resource planning process. Second, I describe the major assumptions used in the
15		analyses described in my testimony. Third, I identify FPL's projected resource
16		needs beginning in the year 2016 and explain how this need was determined.
17		Fourth, I discuss the evaluation of various potential options to meet the 2016
18		need. Fifth, I discuss the economic analysis used to reach the conclusion that the
19		modernization of the Port Everglades Plant is the most cost-effective option for
20		FPL's customers with which to meet the 2016 need. Sixth, I present the results of
21		the economic analysis performed. Seventh, I present the results of the non-
22		economic analyses performed. Finally, I present my conclusion from these
23		analyses.

1 Q. Please summarize your testimony.

FPL's most recent resource planning work determined that FPL has future 2 A. resource needs starting at about 284 megawatts (MW) in 2016 and growing to a 3 total of 1,468 MW of incremental generation capacity through 2021. Demand 4 Side Management (DSM) programs that are known to be cost-effective and which 5 have been approved by the Florida Public Service Commission (Commission) 6 through 2014, plus an assumption that currently projected annual implementation 7 levels of DSM will continue for 2015-2025, has already been reflected in FPL's 8 most recent resource planning work. In order to meet FPL's summer reserve 9 margin criterion of 20% in 2016, FPL needs to add new generation capacity. 10

11

To meet its 2016 resource need, FPL developed and analyzed four resource plans. 12 The first resource plan assumes returning to service the four existing steam units 13 14 at Port Everglades which have been placed in inactive reserve; this plan is 15 referred to as the "Return to Service Resource Plan." The second resource plan adds a new combined cycle (CC) unit at a greenfield site in 2016; this plan is 16 17 referred to as the "GFCC Resource Plan." The third resource plan adds two 18 combustion turbines (CT) in simple cycle mode at a greenfield site in 2016, and thus defers the Port Everglades modernization (Port Everglades Next Generation 19 20 Clean Energy Center, or "PEEC") to 2019; this plan is referred to as the "GFCT 21 Resource Plan." The fourth plan, which is the most cost-effective, adds PEEC in 22 2016; this plan is referred to as the "PEEC Resource Plan." These four plans 23 were compared using economic and non-economic criteria to determine the most

cost-effective and desirable option for FPL's customers to meet the 2016 resource need.

2

1

The economic analysis results show that the PEEC Resource Plan will provide 4 savings to FPL's customers of about \$469 million in cumulative present value of 5 revenue requirements in 2011 dollars (CPVRR) when compared to the Return to 6 Service Resource Plan, about \$838 million in CPVRR when compared to the 7 GFCC Resource Plan, and about \$425 million in CPVRR when compared to the 8 Projected approximate bill impacts also show that 9 GFCT Resource Plan. customers will save on average the following: \$0.38 per 1000 kWh when 10 compared to the Return to Service Resource Plan, \$0.64 per 1000 kWh when 11 compared to GFCC Resource Plan, and \$0.42 per 1000 kWh when compared to 12 the GFCT Resource Plan (based on the average approximate bill impact from 13 14 2016 to 2047).

15

16 The non-economic analysis results show significantly lower overall system air 17 emissions for the PEEC Resource Plan when compared to those plans that do not 18 include a new 3x1 combined cycle unit starting in 2016 (Return to Service and 19 GFCT Resource Plans). The results also show significant reductions in fuel use 20 for the PEEC Resource Plan when compared to the Return to Service and the 21 GFCT Resource Plans.

1		Based on these results, FPL is seeking an affirmative determination of need for
2		the modernization of the Port Everglades Plant with a proposed commercial
3		operation date in June 2016.
4		
5		I. FPL's INTEGRATED RESOURCE PLANNING PROCESS
6		
7	Q.	Can you briefly describe FPL's existing generation supply system?
8	A.	FPL has one of the cleanest generating fleets in the country, and is an industry
9		leader in energy efficiency, conservation, and load management through its DSM
10		program. FPL meets its customers' needs through a mix of fossil and nuclear
11		generating units, renewable generation, purchased power, which also includes
12		renewable generation, and DSM. The existing FPL generation resources are
13		located at sixteen sites distributed geographically throughout its service territory,
14		and also include partial ownership of one unit in Georgia and two units in
15		Jacksonville, Florida. At the time of filing this testimony, FPL's active generation
16		fleet totaled approximately 22,474 MW (summer) of capacity, and its generating
17		units consist of four nuclear units, three coal steam units in which FPL holds
18		partial ownership interests, fifteen combined cycle units, five oil/gas steam units,
19		fifty combustion turbine units, two solar photovoltaic units, and one solar-thermal
20		facility. This fleet total does not include 1,922 MW of FPL's generation in
21		Inactive Reserve status.

1	FPL presently has a long-term Unit Power Sales (UPS) contract to purchase up to
2	931 MW of coal-fired generation from Southern Company. FPL also has
3	contracts with Jacksonville Electric Authority for the purchase of 375 MW
4	(summer) and 383 MW (winter) of coal-fired generation from St. John's River
5	Power Park (SJRPP) Units One and Two. However, the UPS contract expires at
6	the end of 2015, and due to Internal Revenue Service regulations, the total amount
7	of energy that FPL may receive from the SJRPP purchase is limited. FPL
8	currently assumes that this limit will be reached prior to the summer of 2016.
9	
10	FPL also has contracts to purchase firm capacity and energy from cogeneration
11	and small power production facilities (qualifying facilities or "QFs") totaling 595
12	MW. FPL currently projects that a total of about 740 MW of firm generation
13	capacity will be available to FPL in 2016 from a combination of renewable
14	resources and QFs.
15	
16	FPL has fostered the expansion of renewable energy sources through development
17	of its own renewable generation projects. As stated previously, FPL operates
18	three commercial-scale solar generation facilities in Florida. FPL has two solar
19	photovoltaic facilities that generate a combined 35 MW of capacity. The third
20	solar facility, located at the Martin site, is a hybrid solar plant that provides 75
21	MW of solar thermal capacity in an innovative way that directly displaces fossil
22	fuel usage on the FPL system.

Since the inception of its DSM programs through 2010, FPL has achieved 5,245 1 MW (at the generator) of summer peak demand reduction and an estimated 2 cumulative energy savings of approximately 55,462 GWh (at the generator). It is 3 estimated that FPL will avoid an additional 109 MW of capacity as a result of 4 DSM additions in January through July of 2011. Another 817 MW of capacity 5 will be avoided by DSM additions from August 2011 to August 2016. This 6 results in a total of 6,171 MW of capacity avoided by DSM programs by August 7 of 2016. This amount of peak demand reduction (at the generator, after taking 8 9 into account the 20% reserve margin requirements) has eliminated the need for 10 the equivalent of 15 new 400 MW generating units. FPL has achieved this level 11 of demand reduction through DSM programs designed to reduce electric rates for 12 all customers, DSM participants and non-participants alike.

13 Q. What are the objectives of FPL's integrated resource planning process?

14 A. The fundamental approach used in FPL's integrated resource planning (IRP) 15 process was developed in the early 1990s and has been used and refined since that 16 time to accomplish three primary objectives: 1) determine the timing of when new 17 resources are needed to maintain the reliability of the FPL generation system, 2) 18 determine the magnitude (MW) of the needed resources, and 3) determine the 19 type of resources that should be added. The analyses required to accomplish the 20 first two objectives - determining the timing and magnitude of the needed 21 resources – are often referred to as the reliability assessment portion of FPL's IRP 22 process.

23

1 The analyses required to accomplish the third objective – determining the type of 2 resources that should be added – are more complex and involve the consideration of both economic and non-economic perspectives. 3 From an economic perspective, the type of resources that should be added is primarily based on a 4 5 determination of the resources that result in the lowest system average electric 6 rates for FPL customers. When only power plants or power purchases are the resources in question, the determination can be made on the basis of the lowest 7 total cost (CPVRR). The lowest total cost (CPVRR) in these cases is the same as 8 9 the lowest average electric rate perspective because the number of kilowatt-hours 10 over which the costs are distributed does not change, as would be the case when 11 DSM resources are being examined.

12

However, the decision of what type of resources to add is also influenced by considerations such as whether a resource can be brought into service on FPL's system in time to meet a projected capacity need and whether a given resource or resource plan is best suited to address system considerations that may have been identified in the planning process. While these system considerations usually have an economic component or impact, they are often discussed in quantitative, non- economic terms, such as percentages rather than actual dollar amounts.

20 Q. What are some other system considerations and how are they addressed in 21 FPL's IRP Process?

A. One system consideration is maintaining a regional balance between load and
 generating capacity, particularly in Southeast Florida. As discussed in witness

1		Modia's direct testimony, FPL would have to make significant investments in the
2		transmission infrastructure before the year 2020 if the existing Port Everglades
3		units are not returned to service or no new generation is added in Southeast
4		Florida before the year 2020. The PEEC Project addresses this system concern
5		better than returning the existing units to service because PEEC will operate as
6		base-load capacity while the existing Port Everglades units would operate at low
7		capacity factors if returned to service.
8		
9		Another important consideration is lowering utility system carbon dioxide (CO ₂)
10		emissions over the long term to reduce greenhouse gas emissions as well as
11		reducing other utility system air emissions, specifically sulfur dioxide (SO ₂) and
12		nitrogen oxides (NO_x). FPL witness Kosky addresses the environmental benefits
13		of PEEC in his direct testimony.
14		
15		II. ASSUMPTIONS USED IN THE VARIOUS ANALYSES
16		
17	Q.	What are the major assumptions used by FPL in the analyses described in
18		this testimony?
19	A.	The following are the major assumptions used by FPL in the analyses described in
20		this testimony:
21		Load Forecast:
22		The load forecast used was updated in September 2011 and is therefore different
23		than the load forecast used in FPL's "Ten Year Power Plant Site Plan 2011-2020"

1	document filed on April 1, 2011. The new load forecast is described in the direct
2	testimony of FPL witness Morley.
3	
4	Projected DSM:
5	Current projections consist of all the DSM programs currently approved for FPL.
6	Many of the approved DSM programs were based on projections through 2014
7	only. For purposes of these analyses, FPL has assumed that it will continue to
8	achieve its projected incremental level of DSM-based peak and energy savings for
9	the years 2015-2025. This assumes that through August of 2016, FPL and its
10	customers will have avoided a total of 6,171 MW of generating capacity by
11	August of 2016 as a result of DSM programs. Thereafter, FPL projects an
12	additional average annual summer peak reduction of approximately 130 MW.
13	
14	Upgrade of 7FA Combustion Turbine Fleet:
15	FPL is planning to upgrade most of its existing 7FA technology combustion
16	turbine fleet. This upgrade of 26 turbines at five plant sites will add
17	approximately 190 MW of summer capacity to FPL's existing units. These
18	upgrades will be completed before 2016, and that assumption is included in the
19	determination of the capacity need analysis.
20	
21	
22	
23	

1 <u>Nuclear Uprates</u>:

The uprate of FPL's four existing nuclear units is currently projected to add approximately 450 MW of additional capacity at time of summer peak. These uprates are projected to be completed by early 2013.

5

6

Units in Inactive Reserve:

7 The Port Everglades 1-4 and Turkey Point 2 steam units are in Inactive Reserve 8 status (except in the Return to Service Resource Plan where the four Port 9 Everglades units are brought back into service). Turkey Point 2 is currently 10 operating as a synchronous condenser, which provides transmission system 11 voltage support but does not generate additional MW to serve system load. All 12 the resource plans assume that the Turkey Point 1 steam unit will be removed 13 from active generation service and placed in Inactive Reserve in 2016 when it too 14 will start to operate as a synchronous condenser.

15

16 <u>Retired Units</u>:

17 The Cutler 5 and 6 and the Sanford 3 steam units will be retired by the end of2012.

19

20 <u>New generation capacity in-service prior to 2016</u>:

The Cape Canaveral and Riviera Next Generation Clean Energy Centers are
 assumed to be in-service by summer of 2013 and 2014 respectively.

1 <u>Fuel Forecast</u>:

The fuel forecast was developed in August 2011 using FPL's Long Term Fuel
Price Forecasting methodology. This methodology is described in the direct
testimony of FPL witness Stubblefield.

5

6

Emission Price Forecast:

FPL's Environmental II Emission Price Forecast was used in the analyses. This
forecast was updated in January 2011 based on price forecasts developed by ICF
Consulting in late 2010. This emission price forecast is addressed in the direct
testimony of FPL witness Kosky and is shown in Exhibit JEE-7 of my testimony.

Q. You previously stated that the resource plans studied assume that Turkey
 Point 1 will be placed in Inactive Reserve and converted to a synchronous
 condenser in 2016. Please discuss this assumption.

A. Starting in 2016, FPL plans to place the Turkey Point 1 steam unit in Inactive
Reserve Status. This unit will then start to serve in a transmission voltage support
role as a synchronous condenser. This is the current mode of operation of its
sister unit Turkey Point 2.

18

FPL's economic analysis demonstrates that it is cost effective to place the Turkey
Point 1 steam unit in Inactive Reserve in 2016. The economic analysis shows that
this will result in savings of approximately \$300 million CPVRR when compared
to a resource plan which keeps the unit in its traditional generation role. In the

1		development of its resource plans, FPL therefore assumed the Turkey Point 1
2		steam unit was placed in Inactive Reserve in 2016.
3		
4		III. FUTURE FPL RESOURCE NEEDS
5		
6	Q.	How did FPL decide it needed additional resources?
7	A.	FPL uses two analytical approaches in its reliability assessment to determine the
8		timing and magnitude of its future resource needs in order to continue to provide
9		reliable electric service to its customers. The first approach is to make a
10		projection of reserve margins for summer and winter peak hours for future years.
11		A minimum reserve margin criterion of 20% is used to judge the projected reserve
12		margins. The 20% minimum reserve margin criterion is based on the reliability
13		planning standard FPL currently believes is necessary to ensure reliable service,
14		which FPL committed to maintain and the Commission approved in Order No.
15		PSC-99-2507-S-EU.
16		
17		The second approach is a Loss-of-Load-Probability (LOLP) evaluation. Simply
18		stated, LOLP is an index of how well a generating system may be able to meet its
19		demand by measuring how often load may exceed available resources. In contrast
20		to the reserve margin approach, the LOLP approach looks at the daily peak
21		demands for each year, while taking into consideration the probability of
22		individual generators being out of service due to scheduled maintenance or forced
23		outages. LOLP is typically expressed in units of "number of times per year" that

the system demand could not be served. The FPL LOLP criterion is a maximum
 of 0.1 days per year. This LOLP criterion is generally accepted throughout the
 electric utility industry.

4

5 In evaluating the results of the reserve margin criterion analysis, FPL has become 6 concerned that its reserves over time will become increasingly dependent upon 7 DSM resources as opposed to generation resources. FPL is conducting reliability 8 studies to determine if the 20% reserve margin criterion should be supplemented 9 with a minimum reserve margin contribution from generation-only resources. 10 These studies are ongoing as of the date of this filing.

Q. Did FPL use the analytical approaches and assumptions just described to determine its need for additional generation capacity?

A. Yes. For a number of years, FPL's projected need for additional resources has
been driven by the 20% summer reserve margin criterion. The reserve margin
analysis calculates that FPL has a need of 284 MW by summer of 2016; this
grows to a need of 1,468 MW by summer of 2021. A projection of FPL's
Resource Need is presented in Exhibit JEE-1 of my testimony.

IV. **POTENTIAL OPTIONS TO MEET FPL'S 2016 NEED**

2

3

Q. Please describe the potential options, or resource plans, considered by FPL to 4 meet its 2016 resource need.

- 5 FPL considered four options or resource plans, described below, as candidates to A. 6 meet its 2016 resource need:
- 7 Return to Service Resource Plan: This plan consists of the return to service of the four existing Port Everglades steam units from Inactive Reserve status starting in 8 9 These units were placed into service in the 1960s. Their combined 2016. capacity is 1,187 MW. This plan also assumes the conversion of the Turkey Point 10 11 1 unit to synchronous condenser operation in 2016, a GFCC unit in 2021, and the commencement of operations of Turkey Point 6 and 7 nuclear units in 2022 and 12 2023, respectively. 13
- 14

15 GFCC Resource Plan: This plan assumes the construction of a new greenfield CC in 2016 as an alternative to PEEC, and using the same technology. That CC 16 would have a summer capacity of 1,262 MW. This plan assumes the conversion 17 of the Turkey Point 1 unit to synchronous condenser operation in 2016, an 18 additional greenfield CC unit in 2021, and the commencement of operations of 19 20 Turkey Point 6 and 7 nuclear units in 2022 and 2023, respectively.

21

22 GFCT Resource Plan: This plan consists of the construction of two new combustion turbines at a greenfield site which defers the need for PEEC to 2019. 23

1 These turbines would operate in simple cycle mode, with a summer capacity of 2 162 MW each. This plan also assumes the conversion of the Turkey Point 1 unit 3 to synchronous condenser operation in 2016, the conversion of the Port 4 Everglades units into PEEC in 2019, and the commencement of operations of 5 Turkey Point 6 and 7 nuclear units in 2022 and 2023, respectively.

6

As discussed in the direct testimony of FPL witness Modia, operation of the FPL system without generation at Port Everglades (other than the existing gas turbines) in the 2016-2019 time frame would create serious transmission reliability concerns. Nevertheless, this case was included in the economic analysis to demonstrate that it would not be economic to defer PEEC even if there were no system reliability concern.

13

PEEC Resource Plan: This plan assumes the conversion by 2016 of the Port Everglades site by replacing the four existing steam units with a new combined cycle unit (the PEEC Project). The resulting new CC unit would have a summer capacity of 1,277 MW. This plan also assumes the conversion of the Turkey Point 1 unit to synchronous condenser operation in 2016, a greenfield CC in 2021, and the commencement of operations of Turkey Point 6 and 7 nuclear units in 2022 and 2023, respectively.

- 21
- 22 These resource plans are presented in Exhibit JEE-2 of my testimony.
- 23

Q. Please briefly describe the PEEC Project.

2	A.	The PEEC Project consists of the removal of the existing four steam units at Port
3		Everglades Plant (Units 1-4), which are currently in Inactive Reserve, and adding
4		a new advanced CC unit at the same site to be placed in service by summer of
5		2016. This new advanced CC unit will have a summer capacity of 1,277 MW and
6		a heat rate of 6,330 Btu/kWh. It will use natural gas as its primary fuel, and will
7		be able to use ultra-low sulfur distillate oil as backup fuel. These performance
8		characteristics are consistent with the advanced CT technology that FPL assumed
9		for the purposes of its analysis This Project is described in greater detail in the
10		direct testimony of FPL witness Gnecco.
11		
12		V. ANALYTICAL APPROACH USED TO ANALYZE THE FOUR
13		OPTIONS/RESOURCE PLANS
14		
15		
	Q.	Please provide an overview of the analytical approach FPL utilized to evaluate
16	Q.	Please provide an overview of the analytical approach FPL utilized to evaluate which option/resource plan would be the most cost-effective in meeting its
16 17	Q.	Please provide an overview of the analytical approach FPL utilized to evaluate which option/resource plan would be the most cost-effective in meeting its 2016 need.
16 17 18	Q. A.	Please provide an overview of the analytical approach FPL utilized to evaluate which option/resource plan would be the most cost-effective in meeting its 2016 need. The analytical approach FPL utilized can be summarized as follows. First, FPL
16 17 18 19	Q. A.	Please provide an overview of the analytical approach FPL utilized to evaluate which option/resource plan would be the most cost-effective in meeting its 2016 need. The analytical approach FPL utilized can be summarized as follows. First, FPL developed the four plans previously described. Second, after the resource plans
16 17 18 19 20	Q. A.	 Please provide an overview of the analytical approach FPL utilized to evaluate which option/resource plan would be the most cost-effective in meeting its 2016 need. The analytical approach FPL utilized can be summarized as follows. First, FPL developed the four plans previously described. Second, after the resource plans were identified, FPL conducted economic analyses to determine the CPVRR
16 17 18 19 20 21	Q. A.	 Please provide an overview of the analytical approach FPL utilized to evaluate which option/resource plan would be the most cost-effective in meeting its 2016 need. The analytical approach FPL utilized can be summarized as follows. First, FPL developed the four plans previously described. Second, after the resource plans were identified, FPL conducted economic analyses to determine the CPVRR amounts for each of the four resource plans. In addition, projections of
 16 17 18 19 20 21 22 	Q. A.	 Please provide an overview of the analytical approach FPL utilized to evaluate which option/resource plan would be the most cost-effective in meeting its 2016 need. The analytical approach FPL utilized can be summarized as follows. First, FPL developed the four plans previously described. Second, after the resource plans were identified, FPL conducted economic analyses to determine the CPVRR amounts for each of the four resource plans. In addition, projections of approximate customer bill impact were made for the four resource plans.

Q.

What is the appropriate period to be used to perform economic analyses?

A. The useful life of a new CC unit such as PEEC is assumed to be thirty years.
Therefore, the appropriate period to use for economic analyses is thirty years in
order to fully capture and fairly compare all the economic and non-economic
impacts of different capacity options that could be added to a utility system.

6 Q. How were the economic analyses performed?

7 A. The economic analyses were carried out in the following three steps:

8

9 Step 1 - FPL quantified fuel/efficiency and other variable costs savings. The PMAREA production costing model was used to determine the resulting 10 difference in FPL's system fuel costs between the four resource plans. This 11 model has been used by FPL in fuel cost recovery proceedings as well as in 12 13 numerous need proceedings brought before the Commission. The PMAREA 14 model simulates the operation of FPL's system on an hourly basis. The model 15 captures variable costs (such as fuel, variable O&M, and environmental 16 compliance costs) in its production costing calculations, projects the annual 17 emission levels associated with the resource plans, incorporates the effects of 18 major transmission transfer limits on the dispatch of the generating units, and 19 recognizes gas constraints in FPL's system.

20

<u>Step 2</u> - FPL used the Fixed Cost Spreadsheet Model to capture all of the fixed
 costs (such as capital, fixed O&M, capital replacement, capacity payments for
 purchases, and firm gas transportation) associated with the four resource plans.

- <u>Step 3</u> <u>All of the components of system costs identified in Steps 1 and 2 were</u>
 then aggregated to determine the CPVRR of each of the four resource plans.
- 4 Q. Did FPL quantify any differences in transmission losses among the four
 5 resource plans for use in the economic analysis?

No. As FPL witness Modia describes in his direct testimony, however, generation 6 A. resources added outside of the Southeast Florida area are located farther away 7 from FPL's load center and would likely have higher transmission losses when 8 compared to plans that add generation close to areas of concentrated load, and 9 more specifically at Port Everglades. Two of FPL's resource plans add units at 10 11 unspecified greenfield sites that are unlikely to be close to the areas of concentrated load, but quantifying losses for generation resources at unspecified 12 Therefore, the difference in the cost of 13 sites is somewhat speculative. 14 transmission losses has not been quantified.

15

1

While these differential losses have not been quantified, it is clear that the PEEC Resource Plan would have the lowest transmission system losses. Not quantifying the cost of losses in this instance benefits the relative economics of the GFCC, GFCT, and Return to Service Resource Plans when compared to PEEC. FPL believes that not including the cost of losses is a conservative assumption.

22

Q. Did FPL quantify any differences in major transmission system expenditures between the four resource plans?

As explained in the direct testimony of FPL witness Modia, FPL's 3 A. Yes. transmission planning process has identified that adding or returning generation at 4 the Port Everglades site has significant transmission system benefits. These 5 benefits translate into large transmission infrastructure cost savings for resource 6 plans which include significant generation at Port Everglades (the Return to 7 Service, GFCT, and PEEC Resource Plans), when compared to a resource plan 8 which provides little or no generation at this site (the GFCC Resource Plan). This 9 10 savings in transmission investment has been quantified to be approximately \$638 million in overnight capital costs (in 2016 dollars) and has been included in the 11 12 economic analysis for the GFCC resource plan.

- 13
- 14

VI. RESULTS OF ECONOMIC ANALYSIS

15

16 Q. What are the results of the economic analysis in CPVRR?

A. The economic analysis indicates that the PEEC Resource Plan provides the
greatest benefit to FPL customers resulting in about \$469 million lower CPVRR
than the Return to Service Resource Plan, about \$838 million lower CPVRR than
the GFCC Resource Plan, about \$425 million lower CPVRR than the GFCT
Resource Plan. The results of the economic analysis are shown in Exhibit JEE-3
of my testimony.

1	Q.	What are the results of the projection of approximate bill impacts for the
2		four resource plans?
3	A.	Projected approximate monthly bill impacts show that PEEC will result in lower
4		average bill impacts when compared to the other three resource plans: \$0.38
5		lower per 1000 kWh when compared to the Return to Service Resource Plan,
6		\$0.64 lower per 1000 kWh when compared to GFCC Resource Plan, and \$0.42
7		lower per 1000 kWh when compared to the GFCT Resource Plan (based on the
8		average approximate bill impact from 2016 to 2047).
9		
10		The projection of Approximate Bill Impacts can be seen in Exhibit JEE-4 of my
11		testimony.
12		
13		VII. RESULTS OF NON-ECONOMIC ANALYSIS
14		
15	Q.	Does the PEEC Resource Plan result in lower air emissions than the Return
16		to Service Resource Plan?
17	A.	Yes. The PEEC Resource Plan results in significantly lower system air emissions
18		and lower green house gases. Over a thirty-year life, when compared to the
19		Return to Service Plan, PEEC will reduce SO ₂ air emissions by approximately 41
20		thousand tons and NO_x emissions by approximately 33 thousand tons. The
21		Project will also result in the reduction of about 22 million tons of CO ₂ over the
22		thirty-year life. Reducing emissions is a very important benefit to FPL's
23		customers because of the risk that environmental costs in the future could be

higher than projected, thus resulting in CPVRR savings in excess of the projected \$469 million. 2

3

1

The reductions in emissions are detailed in Exhibit JEE-5 of my testimony. 4 Further description of PEEC's environmental benefits is provided in the direct 5 6 testimony of FPL witness Kosky.

Does the PEEC Resource Plan result in a lower FPL system heat rate? 7 0.

8 Yes. PEEC is projected to have a heat rate of 6,330 Btu/kWh, at full capacity, A. 9 which is significantly lower than the existing system average heat rate. A lower heat rate indicates higher efficiency in the conversion of fuel to electrical energy 10 and, therefore will result in less fuel being burned to produce a given amount of 11 electricity. The projected PEEC heat rate is also much lower than the heat rate of 12 13 the generating units in two of the other options under consideration: the GFCT 14 with a heat rate of 10,410 Btu/kWh, and the existing Port Everglades steam units, 15 with a projected average heat rate of approximately 9,800 Btu/kWh. Because of 16 this lower heat rate, the PEEC Resource Plan reduces FPL average system heat 17 rate to 8,042 Btu/kWh. This compares to an average system heat rate of 8,145 18 Btu/kWh for the Return to Service Resource plan, a reduction of 103 Btu/kWh.

19

20 Both the GFCC and the PEEC Resource Plans add CC units of the same 21 technology and efficiency, both in-service 2016. Therefore, the difference in 22 system heat rate under these two plans would be minimal.

23

Q.

Does the PEEC Resource Plan result in reduced fuel consumption?

Yes. The PEEC Resource Plan, by virtue of PEEC's very high efficiency, reduces 2 A. the use of both natural gas and oil when compared to the GFCT and the Return to 3 Service Resource Plans. For example, between 2017 and 2026, natural gas use is 4 reduced by approximately 48 million MMBtu, and oil use is reduced by 5 approximately 5.3 million barrels when compared to the Return to Service 6 Resource Plan. When the fuel reductions are quantified over the thirty-year life of 7 the Project, natural gas use is reduced by approximately 90 million MMBtu when 8 9 compared to the Return to Service Resource Plan, and 40 million MMBtu when 10 compared to the GFCT Resource Plan. Oil use is reduced by approximately 10.4 11 million barrels when compared to the Return to Service Resource Plan, and 5.0 12 million barrels when compared to the GFCT Resource Plan. Reductions in fuel 13 use are very important to FPL's customers because of the projected rising cost of 14 natural gas and oil in the future. Furthermore, there is a risk that actual fuel costs 15 in the future could be even higher than projected, thus resulting in CPVRR 16 savings beyond the projected \$469 million.

17

Both the GFCC and the PEEC Resource Plans add CC units of the same
technology, both in-service 2016. The difference in fuel use between these two
plans is relatively small.

21

22

The reductions in fuel use are shown in Exhibit JEE-6 of my testimony.

1	Q.	Are there other non-economic benefits of the PEEC Resource Plan when								
2		compared to the Return to Service Resource Plan?								
3	A.	Yes. In addition to reducing costs to customers, fuel use, system heat rate, and								
4		FPL system-wide air emissions, PEEC will extensively utilize existing								
5		infrastructure with minimal new infrastructure needed for electrical transmission,								
6		gas transportation, and the provision of water. Also, by reducing the height of the								
7		smokestacks and building a lower profile than the existing units, the Project will								
8		significantly improve the aesthetics of the site. The direct testimony of FPL								
9		witness Gnecco provides a more detailed description of these benefits.								
10										
11		VIII. CONCLUSION								
12										
13	Q.	Is the PEEC Project the best option available to FPL to meet its 2016 need								
14		for generation?								
15	A.	Yes. The economic analysis shows that PEEC will result in lower costs to								
16		customers of at least \$469 million CPVRR over the life of the Project when								
17		compared to resource plans without PEEC, as well as providing significant non-								
18		economic benefits to our customers. I, therefore, conclude that PEEC is the best								
19		option available to meet FPL's resource needs beginning in 2016, which will								
20		serve FPL's customers in the most cost-effective manner.								
21	Q.	Does this conclude your direct testimony?								
22	A.	Yes.								

Docket No. 11___-EI Projection of FPL's Resource Needs through 2021 Exhibit JEE-1, Page 1 of 2

Projection of FPL's Resource Needs through 2021 (Assuming Unit Additions through 2015 Only)

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
			=	(1) + (2) - (3)	3)		=(5) - (6)	= (4) - (7)	= (8) / (7)	= ((7)*1.20)-(4)
August	Projected FPL Unit Summer Canability	Projected Firm Capacity Summer Purchases	Projected Scheduled Maintenance *	Projected Total Summer Capacity	Projected Summer Peak Load	Projected Summer DSM Canability	Projected Summer Firm Peak Load	Projected Summer Reserves	Projected Summer Reserve Margin w/o Additions	Projected MW Needed to Meet 20% Reserve Margin **
Year	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(%)	(MW)
2011	22,474	2,056	0	24,530	21,618	1,856	19,762	4,767	24.1%	(815)
2012	23,437	1,956	714	24,679	21,623	1,986	19,637	5,042	25.7%	(1,115)
2013	24,164	1,956	826	25,294	21,931	2,109	19,822	5,472	27.6%	(1,507)
2014	25,467	1,956	826	26,597	23,243	2,272	20,971	5,626	26.8%	(1,432)
2015	25,507	2,046	0	27,553	23,786	2,404	21,382	6,170	28.9%	(1,894)
2016	25,111	740	0	25,851	24,315	2,536	21,779	4,071	18.7%	284
2017	25,111	740	0	25,851	24,529	2,667	21,862	3,989	18.2%	384
2018	25,111	740	0	25,851	24,674	2,799	21,875	3,975	18.2%	400
2019	25,111	740	0	25,851	25,041	2,930	22,111	3,740	16.9%	683
2020	25,111	740	0	25,851	25,499	3,062	22,437	3,413	15.2%	1,074
2021	25,111	740	0	25,851	25,960	3,194	22,766	3,085	13.6%	1,468

* MW values shown in Column (3) represent 714 MW out-of-service during the Summer of 2012 (St. Lucie 2), and 826 MW out-of-service during the Summer of 2013 and 2014 due to the installation of electrostatic precipitators at FPL's 800 MW generating units.

** MW values shown in Column (10) represent new generating capacity needed to meet the 20% reserve margin criterion.

Docket No. 11___-EI Projection of FPL's Resource Needs through 2021 Exhibit JEE-1, Page 2 of 2

Projection of FPL's Resource Needs through 2021 (Assuming PEEC Addition in 2016)

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
			=	(1) + (2) - (3)	3)		= (5) - (6)	= (4) - (7)	=(8)/(7)	= ((7)*1.20)-(4)
August of the Year	Projected FPL Unit Summer Capability (MW)	Projected Firm Capacity Summer Purchases (MW)	Projected Scheduled Maintenance * (MW)	Projected Total Summer Capacity (MW)	Projected Summer Peak Load (MW)	Projected Summer DSM Capability (MW)	Projected Summer Firm Peak Load (MW)	Projected Summer Reserves (MW)	Projected Summer Reserve Margin w/o Additions (%)	Projected MW Needed to Meet 20% Reserve Margin ** (MW)
2011	22,474	2,056	0	24,530	21,618	1,856	19,762	4,767	24.1%	(815)
2012 2013	23,437 24,164	1,956 1,956	714 826	24,679 25,294	21,623	2,109	19,637 19,822 20,971	5,042 5,472 5,626	25.7% 27.6% 26.8%	(1,113) (1,507) (1,432)
2014 2015	25,467 25,507	2,046	0	20,397 27,553	23,245	2,272	21,382	6,170	28.9%	(1,894)
2016 2017	26,388 26,388	740 740	0 0	27,128 27,128	24,315 24,529	2,536 2,667	21,779 21,862	5,348 5,266	24.6% 24.1%	(993) (893)
2018 2019	26,388 26,388	740 740	0 0	27,128 27,128	24,674 25,041	2,799 2,930	21,875 22,111	5,252 5,017	24.0% 22.7%	(877) (594)
2020 2021	26,388 26,388	740 740	0 0	27,128 27,128	25,499 25,960	3,062 3,194	22,437 22,766	4,690 4,362	20.9% 19.2%	(203) 191

* MW values shown in Column (3) represent 714 MW out-of-service during the Summer of 2012 (St. Lucie 2), and 826 MW out-of-service during the Summer of 2013 and 2014 due to the installation of electrostatic precipitators at FPL's 800 MW generating units.

** MW values shown in Column (10) represent new generating capacity needed to meet the 20% reserve margin criterion.

Docket No. 11____-EI Resource Plans Utilized in the Analyses Exhibit JEE-2, Page 1 of 1

Resource Plan	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
PEEC	PEEC					3X1 CC	TP6	TP7			
						PE2					
Return to Service	PE3			PE4	PE1	3X1 CC	TP6	TP7			
Greenfield											
Combined Cycle											
(GFCC)	3X1 CC					3X1 CC	TP6	TP7			
Greenfield											
Combustion											
Turbine (GFCT)	2 - SC CT			PEEC			TP6	TP7			3X1 CC

Resource Plans Utilized in the Analyses

Docket No. 11____-EI Results of the Economic Analysis Exhibit JEE-3, Page 1 of 1

Results of the Economic Analysis Relative to PEEC

(millions, CPVRR, 2011\$, 2011-2047)

ſ		System Costs		Difference
Resource Plan	Fixed Costs*	Variable Costs**	Total Costs	from Lowest Cost Plan
PEEC	14,578	128,333	142,911	
Return to Service	13,501	129,879	143,380	469
Greenfield Combined Cycle (GFCC)	15,270	128,479	143,749	838
Greenfield Combustion Turbine (GFCT)	14,199	129,137	143,336	425

* Generation system fixed costs include: capital, capacity payments, fixed O&M, capital replacement, and firm gas transportation. (Note that Turkey Point 6 & 7 generation and transmission capital costs are assumed to be zero in this analysis for all resource plans.)

****** Generation system variable costs include: variable O&M, plant fuel, FPL system fuel, and environmental compliance costs.

Docket No. 11___-EI Projection of Approximate Bill Impacts Exhibit JEE-4, Page 1 of 3

Projection of Approximate Bill Impacts: PEEC vs. Return To Service Resource Plans

	(1)	(2)	(3)	(4)	(5)	(6)
			=(1)-(2)		=((3)x100)/(4)	=(5)x10
	Plan with	Plan				
	Port Everglades	Returning Inactive Reserve				
	Modernization	Units PPE 1-4 to Service	Differential in			
	Annual Total	Annual Total	Annual Total	Projected		Differential in
	Revenue	Revenue	Revenue	Total Sales	Differential in	Customer
	Requirements	Requirements	Requirements	After DSM	System Average	Bill of
	(\$millions,	(\$millions,	(\$millions,	(GWh at	Electric Rates	1,000 kWh
Year	Nominal \$)	Nominal \$)	Nominal \$)	the meter)	(cents/kWh)	(\$)
2016	4,794	4,748		109.787	 \$0.04	\$0.42
2017	5,291	5,251	39	111.105	\$0.04	\$0.35
2018	6,927	6,941	-14	112,313	-\$0.01	-\$0.12
2019	7,470	7,522	-52	113,670	-\$0.05	-\$0.46
2020	8,240	8,294	-54	116,014	-\$0.05	-\$0.47
2021	9,111	9,197	-86	118,800	-\$0.07	-\$0.72
2022	9,561	9,552	9	121,725	\$0.01	\$0.07
2023	9,490	9,509	-20	124,286	-\$0.02	-\$0.16
2024	10,224	10,277	-53	126,776	-\$0.04	-\$0.42
2025	11,182	11,246	-63	129,260	-\$0.05	-\$0.49
2026	11,830	11,926	-96	131,782	-\$0.07	-\$0.73
2027	12,609	12,706	-97	134,088	-\$0.07	-\$0.72
2028	13,230	13,315	-85	136,356	-\$0.06	-\$0.62
2029	13,996	14,089	-93	138,542	-\$0.07	-\$0.67
2030	14,956	15,007	-51	140,654	-\$0.04	-\$0.36
2031	15,824	15,902	-78	143,001	-\$0.05	-\$0.55
2032	17,143	17,223	-80	145,378	-\$0.05	-\$0.55
2033	19,320	19,403	-82	147,808	-\$0.06	-\$0.56
2034	20,763	20,832	-69	150,273	-\$0.05	-\$0.46
2035	21,759	21,832	-74	152,778	-\$0.05	-\$0.48
2036	24,103	24,170	-66	155,325	-\$0.04	-\$0.43
2037	25,618	25,700	-83	157,912	-\$0.05	-\$0.52
2038	26,878	26,957	-79	160,542	-\$0.05	-\$0.49
2039	28,542	28,599	-56	163,216	-\$0.03	-\$0.35
2040	30,044	30,094	-50	165,929	-\$0.03	-\$0.30
2041	31,584	31,637	-53	168,692	-\$0.03	-\$0.31
2042	33,561	33,640	-79	171,497	-\$0.05	-\$0.46
2043	36,309	36,378	-69	174,349	-\$0.04	-\$0.39
2044	38,787	38,831	-44	177,247	-\$0.02	-\$0.25
2045	40,918	40,965	-46	180,192	-\$0.03	-\$0.26
2046	43,259	43,323	-64	183,186	-\$0.04	-\$0.35
2047	45,749	45.826	-77	186.229	-\$0.04	-\$0.41

Average 2016-2047 -\$0.38

Notes: (1) This projection assumes instantaneous adjustment to electric rates and is for illustrative purposes only.

(2) The values presented in Columns (1), (2), and (3) are total system revenue requirements and include all costs: capital, system fuel, etc.

Docket No. 11____-EI Projection of Approximate Bill Impacts Exhibit JEE-4, Page 2 of 3

Projection of Approximate Bill Impacts: PEEC vs. GFCC Resource Plans

	(1)	(2)	(3)	(4)	(5)	(6)
			=(1)-(2)		=((3)x100)/(4)	=(5)x10
	Plan with	Plan				
	Port Everglades	with Greenfield Site				
	Modernization	Combined Cycle	Differential in			
	Annual Total	Annual Total	Annual Total	Projected		Differential in
	Revenue	Revenue	Revenue	Total Sales	Differential in	Customer
	Requirements	Requirements	Requirements	After DSM	System Average	Bill of
	(\$millions,	(\$millions,	(\$millions,	(GWh at	Electric Rates	1,000 kWh
Year	Nominal \$)	Nominal \$)	Nominal \$)	the meter)	(cents/kWh)	(\$)
2016	4,794	4,818	-24	109,787	-\$0.02	-\$0.22
2017	5,291	5,332	-42	111,105	-\$0.04	-\$0.37
2018	6,927	6,972	-44	112,313	-\$0.04	-\$0.39
2019	7,470	7,521	-51	113,670	-\$0.04	-\$0.45
2020	8,240	8,351	-111	116,014	-\$0.10	-\$0.96
2021	9,111	9,264	-153	118,800	-\$0.13	-\$1.29
2022	9,561	9,699	-138	121,725	-\$0.11	-\$1.13
2023	9,490	9,622	-132	124,286	-\$0.11	-\$1.06
2024	10,224	10,353	-129	126,776	-\$0.10	-\$1.02
2025	11,182	11,305	-123	129,260	-\$0.10	-\$0.95
2026	11,830	11,949	-120	131,782	-\$0.09	-\$0.91
2027	12,609	12,725	-116	134,088	-\$0.09	-\$0.86
2028	13,230	13,340	-110	136,356	-\$0.08	-\$0.80
2029	13,996	14,105	-109	138,542	-\$0.08	-\$0.78
2030	14,956	15,061	-105	140,654	-\$0.07	-\$0.75
2031	15,824	15,925	-101	143,001	-\$0.07	-\$0.70
2032	17,143	17,240	-97	145,378	-\$0.07	-\$0.67
2033	19,320	19,415	-94	147,808	-\$0.06	-\$0.64
2034	20,763	20,854	-92	150,273	-\$0.06	-\$0.61
2035	21,759	21,847	-88	152,778	-\$0.06	-\$0.58
2036	24,103	24,188	-85	155,325	-\$0.05	-\$0.55
2037	25,618	25,702	-84	157,912	-\$0.05	-\$0.53
2038	26,878	26,960	-82	160,542	-\$0.05	-\$0.51
2039	28,542	28,623	-81	163,216	-\$0.05	-\$0.50
2040	30,044	30,123	-79	165,929	-\$0.05	-\$0.48
2041	31,584	31,664	-79	168,692	-\$0.05	-\$0.47
2042	33,561	33,639	-78	171,497	-\$0.05	-\$0.45
2043	36,309	36,384	-75	174,349	-\$0.04	-\$0.43
2044	38,787	38,862	-75	177,247	-\$0.04	-\$0.42
2045	40,918	40,991	-73	180,192	-\$0.04	-\$0.41
2046	43,259	43,330	-71	183,186	-\$0.04	-\$0.39
2047	45,749	45,813	-64	186,229	-\$0.03	-\$0.34

Average 2016-2047 -\$0.64

Notes: (1) This projection assumes instantaneous adjustment to electric rates and is for illustrative purposes only.

(2) The values presented in Columns (1), (2), and (3) are total system revenue requirements and include all costs: capital, system fuel, etc.

Projection of Approximate Bill Impacts: PEEC vs. GFCT Resource Plans

	(1)	(2)	(3)	(4)	(5)	(6)
			=(1)-(2)		=((3)x100)/(4)	=(5)x10
	Plan with	Plan				
	Port Everglades	with Simple Cycle				
	Modernization	Combustion Turbine (CT)	Differential in			
	Annual Total	Annual Total	Annual Total	Projected		Differential in
	Revenue	Revenue	Revenue	Total Sales	Differential in	Customer
	Requirements	Requirements	Requirements	After DSM	System Average	Bill of
	(\$millions,	(\$millions,	(\$millions,	(GWh at	Electric Rates	1,000 kWh
Year	Nominal \$)	Nominal \$)	Nominal \$)	the meter)	(cents/kWh)	(\$)
2016	4,794	4,784	10	109,787	\$0.01	\$0.09
2017	5,291	5,273	18	111,105	\$0.02	\$0.16
2018	6,927	6,931	-3	112,313	\$0.00	-\$0.03
2019	7,470	7,519	-49	113,670	-\$0.04	-\$0.43
2020	8,240	8,338	-98	116,014	-\$0.08	-\$0.84
2021	9,111	9,155	-44	118,800	-\$0.04	-\$0.37
2022	9,561	9,533	27	121,725	\$0.02	\$0.23
2023	9,490	9,442	47	124,286	\$0.04	\$0.38
2024	10,224	10,195	29	126,776	\$0.02	\$0.23
2025	11,182	11,195	-12	129,260	-\$0.01	-\$0.10
2026	11,830	11,893	-64	131,782	-\$0.05	-\$0.48
2027	12,609	12,735	-126	134,088	-\$0.09	-\$0.94
2028	13,230	13,352	-121	136,356	-\$0.09	-\$0.89
2029	13,996	14,110	-114	138,542	-\$0.08	-\$0.82
2030	14,956	15,064	-108	140,654	-\$0.08	-\$0.76
2031	15,824	15,929	-105	143,001	-\$0.07	-\$0.73
2032	17,143	17,244	-101	145,378	-\$0.07	-\$0.69
2033	19,320	19,423	-103	147,808	-\$0.07	-\$0.70
2034	20,763	20,861	-99	150,273	-\$0.07	-\$0.66
2035	21,759	21,854	-95	152,778	-\$0.06	-\$0.62
2036	24,103	24,197	-93	155,325	-\$0.06	-\$0.60
2037	25,618	25,705	-87	157,912	-\$0.06	-\$0.55
2038	26,878	26,964	-86	160,542	-\$0.05	-\$0.54
2039	28,542	28,624	-81	163,216	-\$0.05	-\$0.50
2040	30,044	30,121	-77	165,929	-\$0.05	-\$0.46
2041	31,584	31,659	-75	168,692	-\$0.04	-\$0.44
2042	33,561	33,634	-73	171,497	-\$0.04	-\$0.43
2043	36,309	36,378	-68	174,349	-\$0.04	-\$0.39
2044	38,787	38,850	-63	177,247	-\$0.04	-\$0.36
2045	40,918	40,977	-59	180,192	-\$0.03	-\$0.33
2046	43,259	43,330	-70	183,186	-\$0.04	-\$0.38
2047	45,749	45.831	-82	186.229	-\$0.04	-\$0.44

Average 2016-2047 -\$0.42

Notes: (1) This projection assumes instantaneous adjustment to electric rates and is for illustrative purposes only.

(2) The values presented in Columns (1), (2), and (3) are total system revenue requirements and include all costs: capital, system fuel, etc.

Docket No. 11____-EI Non-Economic Analysis Results Emission Reductions Exhibit JEE-5, Page 1 of 1

	Return to Service			GFCC			GFCT		
	S02	NO _X	CO ₂	SO_2	NOx	CO ₂	S02	NOX	CO ₂
	(Tons)	(Tons)	(Tons)	(Tons)	(Tons)	(Tons)	(Tons)	(Tons)	(Tons)
2016	1,375	1,151	548,000	4	7	11,000	1,346	1,015	551,000
2017	2,259	1,782	956,000	25	5	21,000	2,227	1,565	952,000
2018	2,230	1,677	983,000	105	32	125,000	2,161	1,517	978,000
2019	2,403	1,970	1,138,000	163	106	283,000	608	429	372,000
2020	2,744	2,340	1,177,000	90	96	246,000	-26	-50	-6,000
2021	2,532	2,004	1,140,000	55	73	182,000	1,551	953	552,000
2022	1,799	1,273	925,000	22	14	25,000	1,802	1,200	906,000
2023	1,401	1,006	845,000	10	9	24,000	1,393	951	829,000
2024	1,516	1,093	846,000	6	16	39,000	1,470	1,017	816,000
2025	1,981	1,304	952,000	-3	9	19,000	1,919	1,191	918,000
2026	1,656	1,339	778,000	-22	2	9,000	658	540	413,000
2027	1,632	1,450	750,000	-29	2	19,000	424	292	179,000
2028	1,630	1,371	774,000	-35	-2	9,000	384	284	202,000
2029	1,520	1,125	787,000	-15	-1	11,000	372	248	178,000
2030	1,262	1,017	745,000	-15	-2	12,000	247	211	137,000
2031	1,263	1,066	856,000	-8	1	20,000	336	268	260,000
2032	1,281	1,016	939,000	-26	-3	9,000	286	218	186,000
2033	1,229	975	812,000	-9	0	16,000	291	229	201,000
2034	1,076	844	683,000	-6	0	17,000	269	194	155,000
2035	1,001	780	612,000	-9	0	16,000	238	177	132,000
2036	921	788	599,000	-4	0	17,000	201	172	137,000
2037	882	659	566,000	-6	0	16,000	181	145	120,000
2038	844	653	531,000	-6	0	17,000	152	146	109,000
2039	691	566	492,000	0	0	17,000	190	137	118,000
2040	611	511	433,000	-1	0	17,000	150	119	83,000
2041	571	527	417,000	-2	0	17,000	109	107	79,000
2042	506	454	401,000	1	0	17,000	122	112	95,000
2043	524	452	380,000	0	1	18,000	128	107	74,000
2044	392	397	305,000	1	0	17,000	80	94	69,000
2045	380	375	320,000	1	0	18,000	82	87	73,000
2046	253	336	264,000	1	0	18,000	65	81	59,000
2047	296	334	278,000	1	0	17,000	81	88	74,000
1 otal	40,661	32,635	22,232,000	289	365	1,319,000	19,497	13.844	10.001.000

Non-Economic Analysis Results: Emission Reductions Compared to PEEC Resource Plan

(+) Refers to a reduction in emissions to the PEEC plan when compared to all resource plans.

Docket No. 11____-EI Non-Economic Analysis Results Reduction in Fuel Use Exhibit JEE-6, Page 1 of 1

	Return to Service		GF	CC	GF	СТ
	Oil	Gas	Oil	Gas	Oil	Gas
	Bbl	MMBtu	Bbl	MMBtu	Bbl	MMBtu
	(000)	million	(000)	million	(000)	million
2016	386	4	-3	0	377	4
2017	588	6	5	0	579	6
2018	560	5	-17	-1	538	5
2019	600	4	-13	-2	124	2
2020	711	6	-29	-2	-20	0
2021	671	5	-8	-1	458	3
2022	450	5	6	0	464	4
2023	352	4	2	0	350	3
2024	375	4	-2	0	379	4
2025	496	4	-8	0	520	3
2026	475	5	-20	1	184	2
2027	467	5	-27	0	123	1
2028	466	5	-32	1	108	1
2029	422	3	-17	0	95	0
2030	348	3	-15	0	71	1
2031	332	1	-14	0	81	-1
2032	316	0	-21	0	71	0
2033	301	1	-9	0	70	0
2034	261	1	-8	0	66	0
2035	252	2	-10	0	58	0
2036	233	2	-6	0	46	0
2037	217	1	-6	0	43	0
2038	209	2	-7	0	42	0
2039	163	1	-1	0	44	0
2040	149	1	-1	0	39	0
2041	139	1	-3	0	27	0
2042	119	1	0	0	29	0
2043	125	1	-1	0	33	0
2044	97	2	0	0	18	0
2045	87	1	0	0	17	0
2046	53	1	0	0	12	0
2047	64	1	0	0	16	0
Total	10,484	90	-265	5	5,062	40

Non-Economic Analysis Results: Reduction in Fuel Use Compared to PEEC Resource Plan

(+) Refers to a reduction in fuel to the PEEC plan when compared to all resource plans.

Docket No. 11____-EI Forecasted Cost of Air Emissions Exhibit JEE-7, Page 1 of 1

	ENV II						
	\$/ton nominal						
Year	CO ₂	SO ₂	NOx				
2011	0	53	473				
2012	0	104	485				
2013	0	113	497				
2014	0	57	509				
2015	0	58	522				
2016	0	59	535				
2017	0	61	548				
2018	27	62	562				
2019	29	64	576				
2020	32	66	590				
2021	34	67	605				
2022	37	69	620				
2023	40	71	636				
2024	44	72	652				
2025	47	74	668				
2026	51	76	685				
2027	55	78	702				
2028	59	80	719				
2029	64	82	737				
2030	68	84	756				
2031	70	86	775				
2032	72	88	794				
2033	74	90	814				
2034	75	93	834				
2035	77	95	855				
2036	79	97	877				
2037	81	100	898				
2038	83	102	921				
2039	85	105	944				
2040	88	108	968				
2041	90	110	992				
2042	92	113	1,016				
2043	94	116	1,042				
2044	97	119	1,068				
2045	99	122	1,095				
2046	102	125	1,122				
2047	104	128	1,150				

Forecasted Cost of Air Emissions