1		BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION
2		FLORIDA POWER & LIGHT COMPANY
3		DIRECT TESTIMONY OF THOMAS R. KOCH
4		DOCKET NO. 130199-EI
5		APRIL 2, 2014
6		
7	Q.	Please state your name and business address.
8	A.	My name is Thomas R. Koch. My business address is 9250 W. Flagler Street, Miami,
9		Florida 33174.
10	Q.	By whom are you employed and what is your position?
11	А.	I am employed by Florida Power & Light Company (FPL) as Senior Manager, Demand-
12		Side Management Strategy, Cost & Performance.
13	Q.	Please describe your duties and responsibilities in that position.
14	А.	I am responsible for regulatory filings, reporting and cost management for FPL's
15		Demand-Side Management (DSM) related activities.
16	Q.	Please describe your educational background and professional experience.
17	A.	I have a Master of Business Administration and a Master of Science in Computer
18		Information Systems, both from University of Miami, and a Bachelor of Music from
19		West Chester University.
20		
21		I joined FPL's Finance Department in 1985 working on forecasting and regulatory
22		projects. In 1989 I became Treasury Manager responsible for FPL's short-term cash
23		management, investing and borrowing. In 1991, I joined Customer Service where I was

1 responsible for program management of various tariffed offerings, product development 2 and commercial/industrial retail market strategy. Beginning in 1998, I served in a number of positions in Distribution: Manager, Development & Planning; Manager, 3 Environmental Department; Manager, Underground Department; and Manager, Financial 4 5 Forecasting. In these positions I was responsible for: day-to-day field operations; regulatory proceedings; growth activities; policy and procedure development; and 6 7 regulation compliance. In 2009, I rejoined Customer Service, initially working on 8 securing FPL's \$200 million award from the Department of Energy's Smart Grid 9 Investment Grant program and then on DSM. I assumed my current position in 2011.

10

Q.

Are you sponsoring any exhibits in this case?

11 A. Yes. I am sponsoring Exhibits TRK-1 through TRK-8, which are attached to my 12 testimony:

13	TRK-1 –	FPL's DSM	[National	Performance	Rankings
----	---------	-----------	-----------	-------------	----------

- 14 TRK-2 2014 Technical Potential Energy Efficiency Measures
- 15 TRK-3 2014 Technical Potential Update Methodology
- 16 TRK-4 2014 Technical Potential Results Summary
- 17 TRK-5 Technical Potential for Economic Screening Sensitivities
- 18 TRK-6 2015-2024 Achievable Potential RIM & TRC
- 19 TRK-7 Proposed 2015-2024 DSM Goals
- 20 TRK-8 Solar Pilots Results

1	Q.	What is the purpose of your testimony?
2	A.	The purpose of my testimony is the following:
3		• Describe FPL's historical DSM performance
4		• Discuss impacts of significant market forces on utility-sponsored DSM
5		• Discuss the steps in FPL's DSM Goals development process for which I am
6		responsible, including the impact of significant market forces on those steps
7		• Summarize FPL's proposed 2015-2024 DSM Goals
8		• Report on the results of demand-side pilots for solar water heating and solar
9		photovoltaic technologies as part of FPL's current DSM Plan (Solar Pilots)
10	Q.	Please summarize your testimony.
11	A.	The purpose of utility-sponsored DSM in fulfilling the intent of the Florida Energy
12		Efficiency and Conservation Act (FEECA) should be straightforward - to encourage
13		customers to implement cost-effective conservation measures (which reduce peak
14		demand and/or energy usage) that they would not otherwise implement on their own.
15		Utilities' DSM programs pick up where the Florida Building Code and federal equipment
16		manufacturing standards (collectively, Codes & Standards) leave off, by promoting cost-
17		effective efficiency beyond the government mandates. The impact of Codes & Standards
18		has been dramatic and provides an important frame of reference for the role of utility
19		DSM. Because utility DSM programs are funded by the general body of customers, it is
20		important that DSM is implemented in a cost-effective manner to ensure fairness for all
21		customers. In addition, DSM represents one of two types of resources available to
22		address future load needs (the other being generation resources), so it is important that

2

the level of DSM be based on sound economic analysis in which those two types of resources compete to provide the best result for customers.

3

4 Historical DSM Performance – FPL is one of the industry leaders in DSM. For more 5 than three decades, FPL has focused on delivering DSM programs that help customers manage their energy use while maintaining the discipline to avoid promoting DSM 6 7 measures that result in higher electric rates than supply-side options. For the majority of 8 this time, consistent with FEECA and the Commission's DSM Goals Rule (Rule 25-9 17.0021), certain critical goal-setting policies have been followed to ensure the best 10 balance of resources was achieved. Following these policies yielded resource plans, 11 including DSM portfolios, which have provided the most favorable long-term electric 12 rate impact for all customers. However, in the 2009 DSM Goals proceeding, the Florida 13 Public Service Commission's (Commission) decision deviated from these policies, which 14 resulted in setting inappropriately high Goals. This is discussed in detail by FPL witness 15 Deason. The situation was partially mitigated for FPL's customers by the Commission's subsequent decision on FPL's DSM Plan (Order No. PSC-11-0346-PAA-EG, 16 17 consummated by Order No. PSC-11-0590-FOF-EG). This DSM Plan consists of the 18 DSM programs approved by the Commission in 2004 and subsequent modifications 19 approved by the Commission in 2006. With subsequent adjustments for 2012 Florida Building Code changes, this is the DSM Plan currently in place. 20

21

Significant Market Forces – There are two significant marketplace changes that are
 already affecting certain FPL DSM programs and will play an even more significant role

during future years. First, as discussed in more detail in FPL witness Sim's testimony, a number of FPL's system costs (e.g., fuel, environmental compliance, etc.) have experienced a significant decline in recent years. Reductions in system costs result in enormous benefits for all FPL customers and Florida as a whole. However, avoiding these, and other, system costs represents the main cost-effectiveness benefits achieved through DSM. Accordingly, if the costs "to be avoided" by DSM are lower, then fewer DSM programs will be cost-effective.

8

9 Second, there have been increases in mandated energy efficiency as a result of changes to 10 Codes & Standards. The effect of these Codes & Standards is positive for overall energy 11 efficiency in Florida because it means that 100% of customers are subject to 12 governmental requirements to install higher efficiency end-uses, rather than just those that a utility could induce through one of its DSM programs. However, these mandated 13 14 improvements also have the effect of significantly reducing the amount of incremental 15 efficiency benefits achievable from a participating customer installing even more efficient end-use equipment. This, in turn, diminishes the number and scope of cost-16 effective DSM programs/measures. It should be recognized that these increased Codes & 17 18 Standards represent normal external forces which FPL must account for in its forecasting and planning and necessarily will reduce the amount of cost effective utility-sponsored 19 20 DSM. This result should not be viewed as a negative, but rather as a positive in that (as a 21 whole) customer usage is much more energy efficient than it was even five years ago.

Proposed DSM Goals Development Process – As explained in greater detail by FPL 1 2 witness Sim, the Goals development process involves multiple analyses in a six-step process. First, a Technical Potential (TP) analysis determines the breadth of measures to 3 be considered and their maximum hypothetical demand and energy savings. Second, 4 FPL's resource needs during the DSM Goals timeframe are determined. 5 Third, a preliminary economic screening (Economic Potential) of the DSM measures is derived 6 based on the Participant, Rate Impact Measure (RIM), and Total Resource Cost (TRC) 7 preliminary screening tests, and their maximum rebate amounts are calculated. At this 8 stage of the process, FPL also performed Staff-requested sensitivity analyses to assess the 9 10 impact of variations in certain key assumptions: higher and lower fuel costs, shorter and 11 longer (1 and 3-year) customer payback for free ridership; and inclusion of CO₂ costs. 12 Fourth, the 10-year (2015-2024) Achievable Potential (AP) is determined based on the maximum rebate levels for all measures that passed the prior screening. In the fifth and 13 sixth steps, various resource plans are developed and analyzed, respectively, to determine 14 the optimum level of DSM Goals. I discuss the first and fourth steps (development of TP 15 16 and AP), while FPL witness Sim discusses the other steps in the analytical process.

17

FPL's Proposed 2015-2024 DSM Goals – FPL's proposed cumulative DSM Goals for 2015-2024 are 337 Summer MW, 189 Winter MW and 59 GWh. They are the result of FPL's robust analytical process, requiring months of analyses. FPL's proposed Goals were developed in compliance with Rule 25-17.0021 and the Commission's traditional policies on DSM goal-setting that have provided large cumulative amounts of DSM

2

savings over the years. FPL's proposal will establish DSM Goals at an appropriate level while continuing to maintain low electric rates for all FPL customers.

3

Solar Pilots Results - FPL is a long-time proponent of solar and currently operates 110 4 5 MW in Florida, which is far more than any other entity (utility or non-utility) in the state. In its 2009 Goals decision, the Commission directed the investor-owned FEECA utilities 6 to file demand-side pilots for solar water heating and solar photovoltaic technologies as 7 part of their DSM Plans. The Solar Pilots are subject to an annual expenditure cap, which 8 9 for FPL is approximately \$15.5 million. The Commission approved seven Solar Pilots for FPL. Since the Solar Pilots' initial launch in mid-2011 through year-end 2013, FPL's 10 11 general body of customers has spent a total of approximately \$30 million on the pilots. Analysis during the 2009 Goals proceeding showed that no demand-side solar measures 12 13 were cost-effective and FPL's experience since 2011 when FPL's Solar Pilots were first 14 launched has shown this remains the case. At this point, these Solar Pilots have run long enough to fully understand that they are an inefficient and unfair way to encourage solar. 15 16 The great majority of FPL customers, who do not participate in the Solar Pilots, are 17 subsidizing the uneconomic installation of solar measures for the very small fraction of 18 customers who do. Accordingly, it is incumbent upon proponents of such programs to 19 furnish compelling reasons and data for why the pilots should be continued after their 20 expiration at the end of 2014.

I. FPL'S HISTORICAL DSM PERFORMANCE

2

3

Q. Please provide an overview of FPL's history and results in implementing DSM.

FPL began offering DSM programs in the late 1970s prior to the Florida Legislature's 4 A. 5 adoption of FEECA in 1980. Since then, FPL has maintained a continuous commitment to DSM. As described in greater detail by FPL witness Sim, FPL has made DSM an 6 7 integral part of its Integrated Resource Planning (IRP) process and has consistently 8 evaluated DSM in accordance with the Commission's long-standing goal-setting policies. Through this process, FPL has developed a wide array of cost-effective load management 9 10 and energy efficiency programs for both residential and business customers, which have 11 achieved large cumulative reductions. Through year-end 2013, summer peak demand has been reduced by 4,753 Megawatts (MW), eliminating the need to construct the equivalent 12 13 of more than 14 new 400 MW generating units. Annual energy consumption has been 14 reduced by 66,782 Gigawatt-hours (GWh), equal to the consumption of all of FPL's 15 residential customers for more than a year. This reduction in consumption has resulted in approximately 50.7 million tons of avoided CO₂ emissions (the equivalent of removing 16 17 approximately 9.7 million passenger cars from the road). FPL's long-term continuous 18 commitment to DSM has placed us among the industry leaders in terms of reducing the demand for electricity. At the same time the discipline of working within the traditional 19 20 Commission goal-setting policies has helped ensure that our bills are among the lowest in 21 the state and well below the national average.

Q.

By what measures is FPL among the industry leaders in DSM performance?

A. The U.S. Department of Energy (DOE) reports on the results of utility DSM efforts
through its Energy Information Administration (EIA). The EIA, using utilities' selfreported data, reports both load management and energy efficiency achievement. It is
reasonable and appropriate to view EIA's results as directionally indicative of FPL's
performance.

7

As shown on Exhibit TRK-1, based on the latest EIA comparative data for the year 2012, FPL is nationally ranked 2nd in terms of cumulative MW of total DSM defined as Energy Efficiency (EE) and Load Management (LM) combined. For cumulative MW of LM and EE individually, FPL ranked 2nd and 3rd, respectively. Additionally, FPL ranked 4th in terms of EE cumulative GWh.

13

FPL's successful DSM performance is not simply due to its size. FPL system peak represents only 2% of total U.S. peak demand, but FPL has achieved 7% of the total DSM MW nationally, 9% of total EE, and 6% of total LM. So, compared to the industry, FPL has been aggressive and successful in capturing cost-effective DSM for the benefit of its customers.

19 **Q.**

. Has this success resulted in high electric rates and bills for FPL's customers?

A. No. Through disciplined evaluation of DSM and adherence to the Commission's longstanding DSM policies, FPL has been able to achieve this success while keeping electric rates low for all customers. This approach is a contributor to FPL's typical residential monthly bill being the lowest in Florida and approximately 25% below the national average. Clearly, the manner in which FPL and the Commission have historically
implemented DSM is working (including the 2011 decision modifying FPL's DSM Plan).
In other words, FPL's and the Commission's focus on cost-effective DSM has been
successfully striking the balance between energy conservation and maintaining low rates
for all customers.

Q. Please provide some examples of FPL's load management and energy efficiency programs.

8 A. FPL operates one of the largest load management programs in the nation. As of year-end 2013, FPL's Residential On Call program, established in 1987, was the largest residential 9 load control program in the United States with about 830,000 participants. Along with 10 11 FPL's 22,000 business load management participants, FPL currently has approximately 1,900 MW of summer load management demand reduction available for use by FPL's 12 13 system operators. One example of FPL's energy efficiency programs is the Residential 14 Air Conditioning program which has helped more than 1.6 million customers make their home's largest source of energy use more efficient than required by the Codes & 15 16 Standards that were applicable at the time of installation.

17 Q. Does FPL also emphasize customer education as part of its DSM portfolio?

A. Yes. FPL uses Home Energy Surveys (HES) and Business Energy Evaluations (BEE) as a foundational component of its DSM portfolio. These are used for customer education on conservation measures that make economic sense, whether offered as a part of FPL's programs or not. Since 1981, FPL has performed over 3.3 million HESs and almost 200,000 BEEs. In 2013, more than 550 residential customers per day had an HES and almost 50 business customers per day had FPL conduct a BEE. FPL also searches for the

most cost-effective delivery method that still meets our customers' needs by offering onsite, phone or online channels. Additionally, FPL extended this education to the new housing market through the BuildSmart[™] program which helps builders to meet and exceed the requirements of Florida's Energy Efficiency Code for Building Construction.

5

1

2

3

4

6 7

II. SIGNIFICANT MARKET FORCES

8 Q. What marketplace changes are impacting utility-sponsored DSM?

9 Α. There are two significant marketplace changes affecting FPL's DSM programs. First is 10 the significant decline in recent years of a number of FPL's system costs (e.g., fuel, 11 emissions allowance costs, etc.). Though these reductions result in enormous benefits for 12 all FPL customers and Florida as a whole, avoiding system costs represents the main cost-effectiveness benefits achieved through DSM. Accordingly, if the costs "to be 13 14 avoided" by DSM are lower, then fewer DSM programs will be cost-effective. FPL 15 witness Sim explains the reduction of FPL's system costs and its impact in his testimony. Second is the more stringent Codes & Standards, which impact Heating, Ventilation & 16 Air Conditioning (HVAC) and lighting measures during the Goals time period. 17

18 Q. Please elaborate on the effects of increased Codes & Standards.

A. Increased Codes & Standards impact all residents and businesses by mandating higher
 energy efficiency minimums for prospective end-use equipment installations and/or
 building design improvements. In terms of the summer peak, the cumulative impact from
 Codes and Standards based on savings beginning in 2005 and extending through 2014 is
 estimated at approximately 1,700 MW. By 2024, the impact from Codes and Standards

is projected to increase by an approximate additional 1,800 MW for a cumulative savings 1 of 3,500 MW. Thus, the cumulative impact from Codes and Standards is expected to 2 more than double during the current goal-setting period (2015 to 2024) thereby reducing 3 4 the growth in FPL's summer peak by almost 30%. Because all customers must comply 5 with these higher energy efficiency requirements, market penetration and therefore conservation impacts will be much higher as compared to induced participation in 6 7 voluntary utility programs. Utility-offered DSM programs are affected in two ways by 8 these increases. First, any utility-offered measures that are no longer above Codes & 9 Standards are rendered obsolete. The previously-achieved utility participation and energy and demand savings will now be attained by the Codes & Standards instead, 10 11 thereby replacing efficiency gains that used to be obtained from DSM programs. For example, the minimum residential air conditioning Seasonal Energy Efficiency Ratio 12 (SEER) standard is being increased from the current level of 13 to 14 in 2015. As a 13 14 result, FPL's current 14 SEER measure must be eliminated from FPL's DSM program.

15

Second, the "baseline" efficiency level will also increase, reducing the incremental 16 savings that the remaining DSM measures can achieve. For example, the residential air 17 18 conditioning SEER level increase from 13 to 14 results in a loss of 0.13 Summer kW and 275 annual kWh incremental savings for all higher SEER units. For a customer installing 19 a straight-cool air conditioner with a 16 SEER, this represents efficiency replacements of 20 21 more than 35% for both Summer kW and annual kWh from the current 0.36 Summer kW 22 and 731 annual kWh savings (relative to the previous 13 SEER baseline). This Codes & Standards replacement of participating customer demand and energy savings will 23

significantly affect utility program/measure cost-effectiveness and put downward
 pressure on proposed DSM Goals, simply because there are less savings to be realized
 through DSM programs.

4

5

Q. Will the impact of changes in Codes & Standards during the upcoming DSM Goals period be substantially greater than in prior periods?

A. Yes. Codes & Standards have been increased periodically in the past. However, during 6 7 the 2015-2024 time period that is being used to set DSM Goals in this proceeding, FPL's 8 DSM portfolio will be disproportionately impacted because one of the biggest Codes & Standards increases applies to air conditioning in 2015. 9 FPL's Residential Air 10 Conditioning program is a large contributor to the overall DSM portfolio savings, 11 representing approximately 45% of Summer MW and almost 60% of annual GWh overall achievement in 2013. Therefore, the significant increase in mandated air conditioning 12 13 efficiency in 2015 will significantly reduce overall DSM portfolio achievement for FPL 14 even though the efficiency improvements will continue to provide the same fuel savings, 15 emission reductions and other benefits - the only difference is that FPL's non-16 participating customers won't have to fund the rebates to get these efficiencies.

17 Q. Has FPL's DSM portfolio been modified in the past due to changes in market 18 forces?

A. Yes. FPL's DSM portfolio has never been static. Over the decades, programs have been
 added, removed or modified to adapt to changing FPL resource requirements and market
 conditions. For example, in 2006 FPL faced increased short-term resource needs and
 significantly increased its DSM implementation by increasing load management
 recruitment and adding some new measures. More recently, in 2012, FPL removed its

1		residential air conditioning right-sizing measure because the Florida Building Code had
2		been updated to mandate it.
3		
4		III. 2014 TECHNICAL POTENTIAL UPDATE
5		(DSM GOALS DEVELOPMENT STEP 1)
6		
7	Q.	Please define Technical Potential (TP).
8	A.	FEECA requires the Commission to "evaluate the full technical potential of all
9		available demand-side and supply-side conservation and efficiency measures, including
10		demand-side renewable energy systems." (Section 366.82(3), F.S.) Therefore, a TP
11		analysis is the first in a series of steps in the DSM Goals development process. Its
12		purpose is to identify the theoretical limit to reducing summer and winter electric peak
13		demand and energy. The TP assumes every identified potential end-use measure (or
14		measures) is installed everywhere it is "technically" feasible to do so from an engineering
15		standpoint regardless of cost, customer acceptance, or any other real-world constraints
16		(such as product availability, contractor/vendor capacity, cost-effectiveness, and
17		customer preferences). Therefore, the TP in no way reflects the MW and GWh savings
18		that are achievable through real-world voluntary utility programs.
19	Q.	For 2014, why are FPL and the other FEECA Utilities updating their 2009 TPs
20		rather than conducting new TP evaluations?
21	A.	On June 17, 2013, Commission Staff held an informal meeting with interested parties
22		regarding this proceeding. At that meeting the parties agreed that the FEECA Utilities
23		would perform an update to the 2009 TP rather than a new, full TP. An update was

14 .

deemed to be reasonable due to the recency of the 2009 TP and the substantially less time and expense required to perform an update versus a full TP. The FEECA Utilities worked jointly to develop the update methodology. FPL's TP update was performed under my direction. It resulted in a thorough and wide-ranging reassessment of conservation and efficiency measures. The update required extensive iterative analytical work and continuous collaboration among the FEECA Utilities to ensure that it was comprehensive.

8 Q. How were the measures included in the 2014 TP update identified?

A. The starting point was the measures included in the 2009 TP, which was deemed a
comprehensive list of unique measures. Various sources were used to develop the list of
measures and supporting data, including utility-specific measurement and verification
(M&V) data, utility measure research data, the Florida Solar Energy Center, Itron data,
the California Database for Energy Efficient Resources (DEER), National Renewable
Energy Laboratory (NREL), the Electric Power Research Institute (EPRI), and local
equipment distributors for pricing information.

16

Building on this work, the FEECA Utilities then jointly determined which measures should be eliminated due to the Codes & Standards changes. Next, the FEECA Utilities identified new measures to be added for 2014. As was the case for the 2009 TP, a new measure had to be an existing technology, currently available in the Florida market and for which Florida-specific pricing data was available. Thus, non-commercialized "emerging" technologies were excluded. It should be noted that FPL tracks and evaluates

such technologies on an ongoing basis in its Conservation Research and Development
 program.

3

12

O.

The 2014 TP update added 25 measures and eliminated 5 measures. The 2009 TP unique 4 5 Energy Efficiency (EE) measures that were retained, those eliminated and the new The Demand Response (DR) and 6 measures added are shown in Exhibit TRK-2. 7 Photovoltaic (PV) calculations did not require measure or baseline adjustments. For purposes of the preliminary economic screening performed in the next step, the 8 9 residential measures were expanded to the three housing types and the business measures were expanded to three respective rate classes, as appropriate. This resulted in 850 10 individual measures which were then analyzed. 11

13 **the 2014 TP update.**

A. Exhibit TRK-3 provides a graphical overview of the methodology, a step-by-step
description of all the calculations performed and the relevant associated definitions. All
modifications were made to each individual measure's "bottom line" Summer MW,
Winter MW and Annual GWh amounts as computed in 2009.

Please describe how the demand and energy reduction values were calculated for

18 Q. Please summarize the results of the 2014 TP update.

A. The updates to the Summer MW, Winter MW and Annual GWh were performed for EE,
 DR and PV for both the Residential and Business sectors. It is important to note that the
 total TP for EE, DR and PV measures partially overlap each other and, therefore, are
 developed independently and cannot be added together. Exhibit TRK-4 provides the

1		detailed results by market sector for each TP update step. Overall, the results for the
2		2014 TP were generally somewhat lower than the 2009 TP.
3	Q.	Do you find the overall TP results to be reasonable?
4	А.	Yes. The decrease is not surprising given the Codes & Standards changes and the level
5		of FPL's DSM achievements over the last 30-plus years.
6	Q.	Does the 2014 TP update reflect the full technical potential of all available demand-
7		side and supply-side conservation and efficiency measures, including demand-side
8		renewable energy systems, consistent with FEECA requirements?
9	А.	Yes. The starting point was the 2009 TP, which the Commission previously reviewed
10		and determined to be an adequate assessment of the technical potential of all available
11		demand-side and supply-side conservation and efficiency measures, including demand-
12		side renewable energy systems. (Order No. PSC-09-0855-FOF-EG). Because of the
13		comprehensive, iterative approach taken to updating the 2009 TP, the TP update provides
14		an adequate assessment of the full technical potential of all measures.
15		
16		IV. ACHIEVABLE POTENTIAL
17		(DSM GOALS DEVELOPMENT STEP 4)
18		
19	Q.	Please summarize the process that FPL used to move from the TP to DSM
20		Achievable Potential.
21	A.	After the TP was updated, FPL's resource needs during the DSM Goals timeframe were
22		determined and other facets of FPL's resource planning process were then used to
23		conduct an Economic Potential (EP), or cost effectiveness screening of the DSM

measures. It should be noted that the EP is a subset of the TP and also is a theoretical 1 2 derivation as the EP represents the upper bound of potential DSM measure savings determined to be technically feasible and potentially cost-effective but without taking 3 account important real-world constraints such as product availability, 4 into 5 contractor/vendor capacity, stock turnover rates, or customer preferences. Therefore, the EP does not reflect the amount of potential peak demand and energy savings that are 6 7 likely achievable through voluntary utility programs. As described by FPL witness Sim, 8 measures from the TP are screened under both RIM and TRC cost-effectiveness tests, with the participant test and years-to-payback screening also applied in both instances. 9 10 120 measures passed the preliminary economic screening under RIM and 300 passed 11 under TRC. Also as described by FPL witness Sim, FPL conducted certain sensitivity analyses at this stage. Dr. Sim presents the number of measures that passed the various 12 13 sensitivity screenings in his Exhibit SRS-6. In Exhibit TRK-5, I provide the Summer 14 MW, Winter MW, and annual GWh TP associated with the measures that passed the EP preliminary screening. 15

16

Maximum rebates for each measure in the base case RIM and TRC screenings are also determined as part of this analysis. The measures that pass the preliminary screening tests and their maximum rebates are used as an input to the next analysis, the determination of Achievable Potential (AP) under both the RIM and TRC screening tests. The AP determination was performed under my direction.

Q.

Please explain the process FPL used to develop its RIM and TRC APs.

For each measure that passed the EP preliminary screening under either RIM or TRC, 2 A. FPL used a combination of quantitative and qualitative information and FPL's market 3 experience to develop the AP. The AP represents the sum of FPL's estimates of Summer 4 5 MW, Winter MW and Annual GWh for 2015-2024 for each measure. In contrast to the 6 TP and EP values, the AP MW and GWh values represent meaningful "real world" inputs 7 of DSM annual potential that can be used in the rest of FPL's resource planning process. 8 To calculate this, FPL estimates the 10-year customer adoption level, or participation, for 9 each measure.

10

11 Voluntary DSM programs recruit participants by providing monetary incentives (rebates) 12 and through marketing, education and training. A customer's decision on whether or not to participate in a given DSM measure is the result of many interrelated factors. 13 14 Therefore, to assist with the AP estimates, FPL employed a proprietary modeling tool 15 developed by ICF International (ICF), a leading third-party implementer of DSM 16 programs. ICF has used this tool to estimate AP over many years and in numerous other 17 jurisdictions such as Maryland, South Carolina, Georgia, Arkansas, Louisiana, 18 Mississippi, Texas, Wisconsin, and Illinois. FPL employed the modeling tool on a 19 measure-by-measure basis relying on a number of elements that reflect FPL's market 20 experience:

21

• Participant's years-to-payback (using the maximum rebates);

1	• Payback Acceptance Curves - provides the percent of customers who should
2	select a measure based on years-to-payback. These curves, provided by ICF, are
3	based on customers' stated preferences from market research;
4	• Historical adoption rates – provides "baseline" market experience reflecting both
5	the empirical and the non-quantifiable factors (such as customer awareness, etc.);
6	• Projected changes in market conditions - used to adjust historic adoption for
7	changes, such as lower projected rebates;
8	• Impacts of the delivery channel (e.g., participating independent contractors, or
9	PICs) - the number of measures that pass the EP and the new maximum rebate
10	levels can influence PICs' desire to participate and, in turn, the extent to which
11	measures are conveniently available to customers.
12	
13	For currently-offered measures, FPL started by estimating the Year 1 (2015) participation
14	using the factors listed above. For 2016-2024, FPL used a ramp-up (escalation) rate from
15	the 2015 participation value which combined customer growth and incremental further
16	market share penetration. For new measures (i.e., those not included in FPL's current
17	DSM portfolio), the Year 1 (2015) participation was assumed to be zero due the likely
18	timing of final DSM Plan and Program Standards approvals and the time and logistics
19	required to launch and generate customer awareness - all of which will likely take most
20	of 2015 to execute. For 2016-2024, FPL applied a "market diffusion" or "s-curve" from
21	Year 1 until the measure reached its steady state adoption. This type of curve generally
22	has a steeper rate of growth in market penetration than was used for the currently-offered
23	measures, which tend to be on a flatter curve reflecting maturity in the market.

For residential measures, each customer residence represents one participant. For business measures, a "participant" is normalized to 1 Summer kW. Due to the differences between various types of businesses, this normalization facilitates making the calculations on a standardized basis for these measures. The projected adoption values are translated into their respective kW and kWh amounts and then summed to create the AP under both RIM and TRC screening test paths. This AP methodology applied essentially the same approach and considerations as used in prior proceedings.

8

Q. What are FPL's RIM and TRC APs for 2015-2024?

9 A. FPL's RIM and TRC APs are shown in Exhibit TRK-6. The RIM and TRC AP Summer
10 MW amounts are quite close. As FPL witness Sim addresses, the impact of DSM on
11 FPL's Summer MW peak load is what matters for resource planning.

12 Q. Why are the 10-year AP amounts lower than the TP?

A. It should be expected that the AP will be substantially less than the TP. The TP is a theoretical construct that essentially represents 100% market penetration everywhere a measure is assumed to be technically feasible. In contrast, the AP represents the amount of demand and energy savings that are both preliminarily cost-effective and projected to be achievable in the market place over the 10-year Goals period.

18

The two significant market forces previously discussed have a major impact. Both the increased Codes & Standards and the lower avoided cost benefits substantially reduce the number of screening-passing measures and, very importantly, the size of the maximum rebates when compared to today's levels. These lower rebates restrict adoption in two ways. First, lower rebates lengthen customer paybacks making investing in incremental

1		efficiency less attractive. Second, the programs become less financially desirable to PICs
2		who deliver certain FPL programs, such as Residential Air Conditioning due to the lower
3		total rebate payments. Many air conditioning measures did not pass the screening
4		evaluation, and for those that did the maximum rebate was substantially reduced. As a
5		result, it is possible that many PICs will not find it financially attractive enough to remain
6		in the program. Compounding the projected reduced adoption, the incremental kW and
7		kWh savings per measure are reduced by the increased Codes & Standards efficiency
8		minimums – meaning that each new participant in affected measures will now yield less
9		incremental kW and kWh savings. In sum, FPL's AP is the product of normal market
10		forces which have made it more difficult for utility DSM to compete. Again, this should
11		not be viewed as a negative consequence, but rather a positive result of greater system
12		efficiency (i.e., lower avoided costs) and increased conservation and efficiency of
13		customer usage as a whole.
14		
15		V. PROPOSED DSM GOALS
16		
17	Q.	Once FPL determined its AP, how were the proposed DSM Goals determined?
18	А.	As discussed by FPL witness Sim, the AP is used as an input to the fifth and sixth steps
19		of the DSM goal development process, in which various resource plans are developed
20		and analyzed to determine the level of DSM Goals that represents an optimal mix of
21		DSM and supply-side measures and thus minimizes the overall electric rates for all
22		customers.

Q.

What are FPL's proposed DSM Goals for 2015-2024?

2 Α. FPL's proposed DSM Goals are set forth on Exhibit TRK-7. They result from the robust analytical process, requiring months of analyses and thorough vetting of all assumptions, 3 that FPL witness Sim and I describe. FPL's proposed Goals were developed in 4 5 compliance with Rule 25-17.0021 and the traditional goal-setting policies that have served FPL's customers well over the years by providing substantial amounts of DSM 6 while keeping all customer's electric rates low. FPL's proposed Summer MW Goal of 7 8 337 MW appropriately reflects the amount of cost-effective DSM reasonably achievable over the 10-year planning period and, after accounting for the 20% total reserve margin, 9 is equivalent to avoiding yet another 400 MW power plant, on top of the 14 such plants 10 11 that FPL's DSM programs have already avoided. Though both annual and cumulative figures are shown, FPL proposes the Commission return to the use of cumulative Goals 12 which had been the case prior to 2009. 13

14 **Q.**

15

Should it be surprising that the 2015-2024 Goals are lower than those established in the past?

16 А. No. Goals can and will vary, potentially significantly, from one reset period to another. 17 Projected load and resources are subject to change. Setting prospective Goals should not 18 be done based on an arbitrary target (such as previously-established Goals) but instead 19 should be based on the level that the IRP analytics determine, using current forecasts and assumptions, represent the lowest long-term electric rate impacts for FPL's customers. 20 21 The DSM Goals, whether higher or lower, are not an end in themselves, but instead 22 represent one of the resources available to meet projected needs in the most cost-effective 23 manner possible in order to keep customer bills as low as possible.

2

Q. What additional MW and GWh savings are projected to result from the increases in Codes & Standards during 2015-2024 Goals period?

A. During the 10-year Goals period, Codes & Standards are projected to reduce the summer
system peak by approximately an additional 1,800 MW. FPL's proposed Goals are in
addition to these savings. Therefore, FPL's customers will experience a large amount of
demand and energy savings from these mandates in addition to the savings resulting from
FPL's DSM Goals.

8 Q. Should the Commission establish additional goals for efficiency improvements in 9 generation, transmission and distribution?

10 A. No. As a normal part of the planning process, FPL continually looks for opportunities to 11 reduce the cost of providing electrical service to our customers. The potential for supplyside improvements is continually looked at by FPL in its ongoing resource planning 12 analyses. 13 As noted in FPL witness Sim's testimony, the fuel-efficiency of FPL's 14 generating system has dramatically improved: e.g., the heat rate of FPL's fossil fuel generating units has improved by 20% since 2001 and is continuing to improve. Supply-15 side efficiency and conservation are also analyzed in every need determination for new 16 17 generation. Rule 25-17.001, F.A.C., supports this stating: "... general goals and methods 18 for increasing the overall efficiency of the bulk electric power system of Florida are 19 broadly stated since these methods are an ongoing part of the practice of every wellmanaged electric utility's programs and shall be continued." The Commission agreed 20 21 with this position in its 2009 Goals Order. If such additional Goals are desired, they should be discussed in a separate proceeding. 22

VI. RESULTS OF FPL'S SOLAR PILOTS

2

3 Q. What is FPL's position on solar as a renewable energy resource?

A. FPL is a long-time proponent of renewables, including solar. FPL owns and operates 110
MW of solar generation in Florida and has three decades of experience in evaluating,
testing and implementing various forms of solar energy applications as discussed in
FPL's 2014 Ten Year Site Plan. This experience has demonstrated that there are certain
approaches that can be more or less effective in encouraging solar development, and FPL
believes that everyone will benefit in the long run from choosing more effective options.

Q. What did the Commission direct the FEECA Utilities to do for demand-side solar in its 2009 Goals decision?

12 A. During the 2009 Goals proceeding, analyses indicated that no demand-side solar 13 technologies were cost-effective under any of the preliminary screening tests. Therefore, 14 each FEECA utility's AP and proposed Goals excluded solar. However, the Commission in its 2009 decision directed the five investor-owned FEECA Utilities "...to file pilot 15 programs focusing on encouraging solar water heating and solar PV technologies in the 16 17 DSM program approval proceeding (Solar Pilots). Expenditures allowed for recovery 18 shall be limited to 10 percent of the average annual recovery through the Energy 19 Conservation Cost Recovery clause in the previous five years...." For FPL, this annual 20 expenditure cap is approximately \$15.5 million.

Q. Please summarize the demand-side Solar Pilots that FPL has implemented to
 comply with the Commission's directive.

A. On January 31, 2011, the Commission in its Order No. PSC-11-0079-PAA-EG approved
seven Solar Pilots for FPL. There are three solar water heating (SWH) pilots: Residential
SWH; Residential SWH (Low Income New Construction); and Business SWH. There
are also three photovoltaic (PV) pilots: Residential PV; Business PV; and Business PV
for Schools. The seventh program is Renewable Research and Demonstration. The
program standards for the Solar Pilots were approved by the Commission Staff on May
13, 2011 and FPL then launched the pilots on June 29, 2011.

10

11 From their launch through year-end 2013, there have been a total of about 4,000 12 installations under FPL's Solar Pilots. All of FPL's customers (through ECCR) have paid a total of about \$30 million for the Solar Pilots during this period - an average of 13 14 approximately \$7,500 per installation. The aggregate demand and energy savings as of 15 year-end 2013 are 5.6 Summer MW, 1.6 Winter MW and 20.0 Annual GWh. Based on actual data obtained over the pilot period, all of the Solar Pilots are demonstrably not 16 cost-effective. They do not pass either RIM or TRC; therefore, those rebates are not 17 18 justifiable from the perspective of FPL's non-participating customers. In fact, as shown on TRK-8, most of the Solar Pilots do not pass the RIM screening test even with the 19 rebate set at zero. Please also see Exhibit TRK-8 for further details on FPL's cost, the 20 21 all-in system costs, achieved savings and cost-effectiveness for each Solar Pilot.

Q. Please describe FPL's experience and findings with the SWH Pilots.

2 A. The Residential and Business SWH Pilots are rebate pilots. For Residential SWH, the 3 rebate is \$1,000 per system and for Business SWH the rebate is \$30 per 1,000 Btu/day depending on system size (up to a max of \$50,000 per premise). FPL administers these 4 5 pilots through its reservation system on a first-come, first-served basis. Under the Residential SWH (Low Income New Construction) Pilot, in order to assist low income 6 customers, FPL pays the full cost of the system through non-profit organizations such as 7 Habitat for Humanity. Since the mid-2011 launch, more than 3,000 SWH systems have 8 been installed through these pilots. 9

10

The pilots remain not cost-effective. These results show that not only are the SWH Pilots 11 financially detrimental for the general body of customers, but with the exception of the 12 13 low-income pilot, the SWH Pilots are not economical for the installing participant either. This is likely one of the reasons that many customers who reserve a rebate and then do 14 their own assessment, do not end up following through to installation. The "completion 15 16 rate" for Business SWH Pilot is about 40% and Residential SWH Pilot is about 75%. The aggregate demand and energy savings as of year-end 2013 for the SWH Pilots are 17 0.8 Summer MW, 1.4 Winter MW and 5.1 Annual GWh. 18

19

Q. What are FPL's observations regarding SWH pricing?

A. Over the time that the Residential SWH Pilot has been in effect, the invoice price charged to customers by contractors has increased dramatically -- from an average of about \$5,700 per unit in 2011 to about \$7,200 per unit in 2013. This approximate 25% price increase essentially washes out the value of FPL's rebate. FPL does not know why 1 contractors have increased their cost to customers, but, as FPL stated during the 2009 2 Goals hearing, this same pricing phenomenon was also observed the last time FPL 3 offered such a program back in the 1980s. The fact that it has happened again 4 demonstrates the unintended consequences that can result from rebates. The installed 5 cost for residential customers would have to decrease by at least 60% to pass cost-6 effectiveness under the Participant test – and no utility rebate could be justified because 7 residential SWH fails the RIM screening test even with a rebate of zero.

8 Q. Please describe FPL's experience and findings with the PV Pilots.

9 A. The Residential and Business PV Pilots are also rebate pilots which FPL operates in 10 essentially the same manner as the SWH rebate pilots. For Residential PV, the rebate is 11 $2.00/\text{watt}_{dc}$ (with a max of 20,000 per premise) and for Business PV the rebate is on a declining scale from \$2.00 to \$1.00/watt_{dc} depending on system size (with a max of 12 \$50,000 per premise). The Business PV for Schools Pilot is designed to provide 13 14 educational materials and training to participating schools in conjunction with a PV 15 system and associated infrastructure. Ultimately, one or more systems will be installed at schools in 23 of the 28 school districts served by FPL. Unlike the Residential and 16 17 Business PV Pilots, FPL pays the full cost of the systems that are installed at participating schools and retains ownership for the first five years, at which point the systems are 18 19 donated to the schools. Since the mid-2011 launch, more than 950 systems have been 20 installed through the PV Pilots.

21

These pilots are not cost-effective. Despite the poor participant economics, all reservations for the Residential and Business PV Pilots fill very rapidly. However, like

SWH, actual completion rates show substantial drop outs with only about 50% of 1 business and about 75% of residential customers actually installing systems. 2 Additionally, measurement and verification (M&V) has been completed on residential 3 PV showing that actual Summer kW and annual kWh savings were lower than originally 4 estimated. M&V Summer kW was 0.34 v. FPL's original estimate of 0.42 and annual 5 kWh was 1,114 v. FPL's original estimate of 1,330 – reductions of about 20% and 15%, 6 respectively. The aggregate demand and energy savings as of year-end 2013 are 4.8 7 8 Summer MW, 0.1 Winter MW and 14.9 Annual GWh.

9

Q. What are FPL's observations regarding PV pricing?

Over the course of the pilots, the average contractor invoice for residential PV's price per 10 A. 11 kW_{dc} has declined from about \$5,400 in 2011 to \$4,100 in 2013. This approximate 25% price decline within FPL's service territory is consistent with the nation-wide trend 12 widely reported by the media and attributed to factors such as low-priced foreign-made 13 14 panels. For example, the Solar Energy Industries Association (SEIA) reported a 25% reduction in residential PV installed prices from the 3rd quarter 2011 through year-end 15 16 2013. It does not appear that FPL's rebates had any significant influence. In addition, 17 cost reductions have a long way to go. Based on the Participant screening test, the installed costs for residential PV would have to fall more than 50% from today's average 18 19 to pass - and no meaningful utility rebate could be justified because residential PV is 20 essentially breakeven under the RIM screening test with a rebate of zero.

20

21 Q. Please describe the Renewable Research and Demonstration Pilot.

A. This pilot is designed to provide education and raise public awareness of solar
 technologies through installation of demonstration PV systems in high-visibility areas

and to conduct research on emerging renewable technologies to fully understand and quantify their potential energy savings performance and applications. FPL has installed demonstration projects in places such as: the Museum of Discovery and Science in Fort Lauderdale; the Kennedy Space Center Visitor Center in Cape Canaveral; and the Imaginarium Science Museum in Fort Myers. FPL has also conducted research on renewables under this pilot, such as PV-powered pool pumps.

7

Q. At this point, have the Solar Pilots served their purpose?

A. Yes. Because the largest hurdle faced by demand-side solar was financial, the following represents a reasonable and comprehensive set of issues to test with these pilots. First, could SWH or PV become cost-effective? Second, would there be any market changes such as lower incremental customer cost and, most importantly, could this change be directly attributed to an FPL pilot? Third, would the demand and energy savings be better than assumed? Positive results for one or more of these objectives for a pilot might indicate that the measure could become financially viable.

15

As described in the preceding Solar Pilots' summaries, the findings were the opposite. 16 17 Current analysis results have validated 2009 projections. Demand-side SWH and PV remain decidedly non-cost-effective by large margins for non-participants and the 18 19 participants regardless of the preliminary cost-effectiveness screening test used. FPL did 20 not discern any significant improvements in either the availability or price of solar technologies for customers as a result of the Solar Pilots, and in one case the pricing 21 actually got noticeably worse to the detriment of the participants. The one cost reduction 22 23 that was seen could not be attributed to FPL's Pilots.

Q.

What is your conclusion with regard to the Solar Pilots?

2 A. The Solar Pilots have run for sufficient time to fully understand their performance and 3 results, and they are scheduled to expire at the end of 2014. The performance and results show that these types of pilots are clearly not cost-effective and do not appear to be an 4 efficient and equitable way to encourage demand-side solar development. Indeed, the 5 lack of cost-effectiveness of these pilots unfairly places higher rate impacts on non-6 participating customers, many of whom do not have the resources or any practical 7 incentive to incur the substantial financial outlay to participate in the pilot programs. 8 Accordingly, it is incumbent upon proponents of such programs to furnish very 9 compelling reasons and data for why the pilots ought to be extended or converted into 10 full DSM programs, rather than simply being allowed to expire. 11

12

Q. Does FPL intend to pursue alternative programs to promote solar?

A. Yes. FPL is exploring other programs that could promote solar efficiently and without cross-subsidies among customers. For example, FPL is filing in a separate docket a proposed voluntary, community-based solar partnership pilot program. That pilot program will provide an efficient way for customers to support solar that: (1) is not restricted to customers who can install solar facilities on their own property; and (2) does not rely upon subsidies from non-participating customers.

19

Q. Does this conclude your direct testimony?

20 A. Yes.

Docket No. 130199-EI FPL's DSM National Performance Rankings Exhibit TRK-1, Page 1 of 1

FPL's	DSM	National	Performance	Rankings ¹

	Cumulative DSM MW	
1	Southern California Edison Co	5,681
2	Florida Power & Light Co	4,244
3	Pacific Gas & Electric Co	2,808
4	Northern States Power Co - Minnesota	2,225
5	Duke Energy Florida, Inc	1,925
6	Alabama Power Co	1,743
7	Commonwealth Edison Co	1,431
8	Public Service Co of Colorado	1,066
9	Progress Energy Carolinas Inc (NC)	1,023
10	Tampa Electric Co	843

	Cumulative Energy Efficiency MW				
1	Southern California Edison Co	2,817			
2	Pacific Gas & Electric Co	2,808			
3	Florida Power & Light Co	2,530			
4	Northern States Power Co - Minnesota	1,478			
5	Duke Energy Florida, Inc	928			
6	Oncor Electric Delivery Company LLC	714			
7	Public Service Co of Colorado	656			
8	Tampa Electric Co	553			
9	Progress Energy Carolinas Inc (NC)	549			
10	Connecticut Light & Power Co	516			

	Cumulative Load Management MW				
1	Southern California Edison Co	2,864			
2	Florida Power & Light Co	1,714			
3	Alabama Power Co	1,250			
4	Commonwealth Edison Co	1,146			
5	Duke Energy Florida, Inc	997			
6	Northern States Power Co - Minnesota	747			
7	Baltimore Gas & Electric Co	548			
8	Duke Energy Carolinas (NC)	521			
9	Progress Energy Carolinas Inc (NC)	474			
10	Idaho Power Co	438			

	Cumulative Energy Efficiency GWh				
1	Pacific Gas & Electric Co	14,918			
2	Southern California Edison Co	14,593			
3	Northern States Power Co - Minnesota	6,236			
4.	Florida Power & Light Co	3,979			
5	Connecticut Light & Power Co	2,997			
6	Massachusetts Electric Co	2,841			
7	San Diego Gas & Electric Co	2,512			
8	Oncor Electric Delivery Company LLC	2,301			
9	Puget Sound Energy Inc	2,297			
10	Arizona Public Service Co	2,246			

FPL as Percent of Industry									
	FPL	Industry	% of Industry						
Peak MW	21,440	1,038,034	2%						
Total DSM MW	4,244	57,427	7%						
Energy Efficiency MW	2,530	28,924	9%						
Load Management MW	1,714	28,503	6%						

¹ DOE/EIA 2013 Report. 2012 data for Investor-Owned Utilities with at least 3,000 MW summer peak demand. All values are at the meter, with the exception of Peak MW.

Docket No. 130199-EI 2014 Technical Potential Energy Efficiency Measures Exhibit TRK-2, Page 1 of 3

2014	Fechnical	Potential	Energy	Efficiency	Measures -	Residential

No.	Measure Name
Mea	sures Included in 2009 Technical Potential
102	15 SEER Split-System Air Conditioner
102	17 SEER Split-System Air Conditioner
103	19 SEER Split-System Air Conditioner
105	14 SEER Solit-System Heat Pump
106	15 SEER Solit-System Heat Pump
107	17 SEER Split-System Heat Pump
111	Social Attion/Spreud Form Inculated Poor Deck
112	A C Maintenance (Outdoor Coil Cleaning)
112	AC Maintenance (Indoor Coil Cleaning)
113	Proper Defrigerant Charging and Air Flow
115	Flootronically Commutated Motors (ECM) on an Air Handler Unit
115	Dust Papair
117	Poflective Poof
117	Padiant Barrier
110	Window Film
119	Window Tinting
120	Default Window With Supscreen
121	Single Pane Clear Windows to Double Pane I out F Windows
122	Cajling R-0 to R-19 Insulation
124	Ceiling R-19 to R-38 Insulation
126	Wall 2x4 R-0 to Blow-In R-13 Insulation
120	Weather Strip/Caulk w/Blower Door
191	HE Room Air Conditioner - FER 11
192	HE Room Air Conditioner - FER 12
221	CEI (18-Watt integral hallast)
251	214'T8 1FB
301	HE Refrigerator - Energy Star version of above
351	HE Freezer
401	Heat Pump Water Heater (EF=2.9)
403	Solar Water Heater
404	AC Heat Recovery Units
405	Low Flow Showerhead
406	Pipe Wrap
407	Faucet A erators
408	Water Heater Blanket
409	Water Heater Temperature Check and Adjustment
410	Water Heater Timeclock
411	Heat Trap
502	Energy Star CW CEE Tier 2 (MEF=2.0)
503	Energy Star CW CEE Tier 3 (MEF=2.2)
701	Energy Star DW (EF=0.68)
801	Two Speed Pool Pump (1.5 hp)
802	High Efficiency One Speed Pool Pump (1.5 hp)
803	Variable-Speed Pool Pump (<1 hp)
804	PV-Powered Pool Pumps
901	Energy Star TV
921	Energy Star Set-Top Box
931	Energy Star DVD Player
941	Energy Star VCR
951	Energy Star Desktop PC
961	Energy Star Laptop PC

No.	Measure Name
New	Measures
222	LED (12-Watt)
263	LED Directional 13W (Flood, Outdoor)
302	Refrigerator recycling
352	Freezer recycling
962	Smart Plug
Elim	inated Measures
101	14 SEER Split-System Air Conditioner
109	HVAC Proper Sizing
131	14 SEER Split-System Heat Pump
610	High Efficiency CD (EF=3.01 w/moisture sensor)
1	

Docket No. 130199-EI 2014 Technical Potential Energy Efficiency Measures Exhibit TRK-2, Page 2 of 3

No.	Measure Name	No.	Measure Name
Me	asures Included in 2009 Technical Potential	Me	asures Included in 2009 Technical Potential (cont'd)
111	Premium T8, Electronic Ballast	508	Refrigeration Commissioning
112	Premium T8, EB, Reflector	509	Demand Hot Gas Defrost
113	Occupancy Sensor	510	Demand Defrost Electric
114	Continuous Dimming	511	Anti-sweat (humidistat) controls
115	Lighting Control Tune-up	513	High R-Value Glass Doors
131	CFL Screw-in 18W	514	Multiplex Compressor System
141	CFL Hardwired, Modular 18W	515	Oversized Air Cooled Condenser
151	PSMH, 250W, magnetic ballast	516	Freezer-Cooler Replacement Gaskets
153	High Bay T5	517	LED Display Lighting
161	LED Exit Sign	603	Heat Pump Water Heater (air source)
201	High Pressure Sodium 250W Lamp	604	Solar Water Heater
202	Outdoor Lighting Controls (Photocell/Timeclock)	606	Demand controlled circulating systems
301	Centrifugal Chiller, 0.51 kW/ton, 500 tons	608	Heat Recovery Unit
302	High Efficiency Chiller Motors	609	Heat Trap
304	EMS - Chiller	610	Hot Water Pipe Insulation
305	Chiller Tune Up/Diagnostics	701	PC Manual Power Management Enabling
306	VSD for Chiller Pumps and Towers	702	PC Network Power Management Enabling
307	EMS Optimization	711	Energy Star or Better Monitor
308	Aerosol Duct Sealing	712	Monitor Power Management Enabling
309	Duct/Pipe Insulation	731	Energy Star or Better Copier
311	Window Film (Standard)	732	Copier Power Management Enabling
313	Ceiling Insulation	741	Printer Power Management Enabling
314	Roof Insulation	801	Convection Oven
315	Cool Roof	811	Efficient Fryer
317	Thermal Energy Storage (TES)	901	Vending Misers (cooled machines only)
321	DX Packaged System, EER=11.9, 10 tons	-1	······································
322	Hybrid Desiccant-DX System (Trane CDO)		w Measures
323	Geothermal Heat Pump FER=13, 10 tons	125	LED Linear Tube 22W
326	DX Tune Up/ A dyanced Diagnostics	132	Flood LED 14W
327	DX full Cleaning	146	LED (12-Watt)
328	Ontimize Controls	154	Outdoor LED 104W
341	Packaged HP System FER=11.7 10 tons	203	LED High Bay 83W (400W equivalent)
361	HEPTAC FER=96 1 ton	337	Run Time Ontimizer
362	Occupancy Sensor (hotels)	- 338	Dehumidification hybrid desiccant heat numn
401	High Efficiency Ean Motor 15hn 1800rpm 92.4%	- 518	Les Machine
402	Variable Speed Drive Control	611	0.5 Equat A antar (DI) Commaraial
402	A ir Handler Ontimization	612	1.0 cpm Faucet A crator (DI) - Commercial
404	Flattanianly Commutated Mators (ECM) on an Air Handle-H-it	612	1.5 gpm1 auct Actator (D1) - Commercial
404	Demend Control Ventilation (DCV)	702	Server Virtualization
405	Energy Recovery Ventilation (DCV)		Griddle
400	Senarate Makeum Air / Ethouat Hocds AC	- 01	Steemer
501	Uigh afficiency fan motor:		Ualding Cobinat
501	Prign-entropency fan inotors		+ rooung caomet
502	Strip curtains for walk-ins		• / TRF
503	Night covers for display cases	E ^{lin}	ninatea IVI easures
504	Evaporator fan controller for MT walk-ins		High Efficiency Water Heater (electric)
505	Efficient compressor motor	_	
506	Compressor VSD retrofit		
507	Floating head pressure controls	1	

2014 Technical Potential Energy Efficiency Measures - Commercial

Measures Included in 2009 Technical Potential Measures Included in 2009 Technical Potential (conf d) 10 Compressed Air-Ostroin 420 103 Compressed Air-Ostroin 420 104 Compressed Air-Streen Optimization 421 105 Compressed Air-Streen Optimization 422 106 Compressed Air-Streen Optimization 422 105 Comp Air-AsD (15 hp) 432 106 Comp Air-AsD (15 hp) 432 106 Comp Air-AsD (15 hp) 432 107 Comp Air-AsD (16 hp) 432 118 Comp Air-AsD (16 hp) 432 110 Comp Air-AsD (16 hp) 432 111 Comp Air-AsD (16 hp) 432 112 Comp Air-AsD (16 hp) 432 113 Comp Air-AsD (16 hp) 432 121 Comp Air-AsD (16 hp) 432 122 Finas -Splane (16 hP) 432 123 Comp Air-AsD (16 hp) 432 124 Finas -Splane (16 hP) 432 125 Finas -Splane (16 hP) 432 126 Finas -Splane (16 hP)	No.	Measure Name	No.	Measure Name
101 Compressed Air-Oathols 420 Ejection Molding - Impulse Cooling 102 Compressed Air-Oathols 421 Infection Molding - Impulse Cooling 103 Compressed Air-Stating 421 Infection Molding - Impulse Cooling 104 Compressed Air-Sating 421 Process control 105 Comp Air - Replace 1610 PP motor 422 Divers - Process Control 106 Comp Air - Replace 1610 PP motor 425 Divers - Optimization process (M&T) 108 Comp Air - Replace 1610 PP 420 Mainsery 101 Comp Air - Replace 1610 PP 420 Mainsery 111 Comp Air - Motor practises (100 PP) 430 Divers - Process 121 Comp Air - Motor practises (100 PP) 500 Divers - State Controls 122 Comp Air - Motor practises (100 PP) 500 Divers - State Controls 123 Paras - Controls 500 Divers - Motor practises (100 PP) 124 Paras - State Controls 500 Divers - Motor practises (100 PP) 125 Refine - Motor practises (100 PP) 500 Divers - Motor practises (100 PP) 126 Frans - Replace 1510 Protor 500 Divers - Motor practises (100 PP) 127 Frans - Replace 1510 Protor 500 Diver	Mea	sures Included in 2009 Technical Potential	Mea	sures Included in 2009 Technical Potential (cont'd)
102 Compressed Air - Controls 421 103 Compressed Air - System Optimization 422 104 Compressed Air - System Optimization 423 105 Comp Air - Replace 1-19 IF motor 424 106 Comp Air - Replace 1-19 IF motor 425 107 Comp Air - Replace 1-10 IF motor 426 108 Comp Air - Replace 1-10 IF motor 425 109 Comp Air - Replace 1-10 IF motor 420 100 Comp Air - Replace 1-10 IF motor 420 101 Comp Air - Replace 1-10 IF motor 420 112 Comp Air - ASD (-6-10 IF) 420 113 Comp Air - ASD (-6-10 IF) 500 114 Power recovery 501 115 Referey Controls 504 200 Fara - Statem Optimization 507 214 Fara - Statem Optimization 509 215 Fara - Statem Optimization 509 216 Fara - Statem Optimization 509 217 Fara - Mator practices (1-01 IF) 510 218 Fara - Statem Optimization 510 219 Fara - Statem Optimization 510 210 Fara - Statem Optimization 510 2114 Fara - Sta	101	Compressed Air-O&M	420	Injection Molding - Impulse Cooling
193 Compressed Ar: Spring Optimization 422 Efficient grading 104 Comp Ar: Arghase 15 HP motor 423 Process control 105 Comp Ar: AsD (15 hp) 425 Drives - Process Control 106 Comp Ar: AsD (16 hp) 425 Drives - Process Control 107 Comp Ar: AsD (16 hp) 425 Drives - Controls 108 Comp Ar: AsD (16 hp) 426 Drives - Controls 110 Comp Ar: AsD (16 hp) 430 Efficient drives - colling 121 Comp Ar: AsD (16 hp) 500 Bakery - Process 122 Comp Ar: AsD (16 hp) 501 Bakery - Process 123 Comp Ar: AsD (16 hp) 502 Drives - Controls 124 Pare - Controls 504 Trop-horting (glass) 125 Fans - Replace 16 JHP motor 505 Intelligent extruder (DDI) 126 Fans - Stem Optimization 505 Intelligent extruder (DDI) 127 Fans - Stem Optimization 505 Intelligent extruder (DDI) 126 Fans - Stem Optimization 505 Intelligent extruder (DDI) 127 Fans - Stem Optimization 505 Intelligent extruder (DDI) 128 Fans - Stem Optrancisee (1-51 HP) 501 Intelligent extru	102	Compressed Air - Controls	421	Injection Molding - Direct drive
164 Compressed Aix-Sking 165 Comp Air - Replace 15 HP motor 166 Comp Air - Replace 10 HP motor 167 Comp Air - Replace 10 HP motor 168 Comp Air - Replace 10 HP motor 169 Comp Air - Replace 10 HP motor 160 Comp Air - Replace 10 HP motor 161 Comp Air - ASD (Chop hp) 162 Comp Air - ASD (Chop hp) 163 Comp Air - ASD (Chop hp) 164 Drives - Optimization process (M&T) 175 Comp Air - ASD (Chop hp) 186 Comp Air - ASD (Chop hp) 187 Comp Air - ASD (Chop hp) 188 Comp Air - ASD (Chop hp) 189 Reference (Chop HP) 180 Drives - Scheduling 280 Finas - Chop Air (Agreence) 281 Finas - Chop Contols 282 Finas - Chop Contols 283 Finas - Replace 15 HP motor 284 Finas - Replace 15 HP motor 285 Finas - Replace 15 HP motor 286 Finas - ASD (Chop Hp) 287 Finas - Replace 15 HP motor 288 Finas - Replace 15 HP motor 289 Finas - ASD (Chop Hp) 281 Finas - Replace 100 HP motor 282 Finas - Rep	103	Compressed Air - System Optimization	422	Efficient grinding
105 Corp Ar - Replace 1-6 HP motor 424 Process optimization 106 Corp Ar - Motor practices (1-5 HP) 425 Drives - Process Control 107 Corp Ar - SND (-100 hP) 427 Drives - Optimization process (M&T) 108 Corp Ar - SND (-100 hP) 428 Drives - Optimization process (M&T) 109 Corp Ar - SND (-100 hP) 429 Machinery 110 Corp Ar - SND (100 hP) 500 Bakery - Process 111 Corm Ar - SND (100 hP) 500 Bakery - Process 112 Corp Ar - SND (100 hP) 500 Bakery - Process 113 Corm Ar - SND (100 hP) 500 Bakery - Process 114 Power socy corpore 501 Heal Purgs - Dyring 115 Refinery Controls 504 Top-honing (glass) 201 Fans - SND (-50 hP) 500 Bating - Process Control 203 Fans - Robice (-101 HP) 500 Bating - Optimization process (M&T) 204 Fans - SND (-50 hP) 501 Heating - Optimization process (M&T) 205 Fans - ASD (-50 hP) 501 Heating - Optimization process (M&T) 206 Fans - Motor practices (1-51 HP) 501 Heating - Optimization process (M&T) 205 Fans - Motor practice	104	Compressed Air-Sizing	423	Process control
166 Comp Air - ASD(1-5 hp) 177 Comp Air - ASD(1-5 hp) 186 Comp Air - AsD(1-6 hp) 187 Comp Air - AsD(1-6 hp) 188 Comp Air - AsD(1-6 hp) 180 Comp Air - AsD(1-6 hp) 181 Comp Air - AsD(1-6 hp) 182 Comp Air - AsD(1-6 hp) 183 Comp Air - AsD(1-6 hp) 184 Drives - Substation process (M&T) 185 Refrest (Mort Particles (1-6 HP) 186 Drives - Optimization process (M&T) 187 Part - Motor Particles (1-6 HP) 188 Drives - Optimization 189 Final - Calkad 189 Final - Calkad 180 Serial - AsD(1-5 hp) 181 Final - AsD(1-5 hp) 181 Final - AsD(1-5 hp) 182 Final - Calkad 183 Final - AsD(1-5 hp) 184 Final - AsD(1-5 hp) 184 Final - AsD(1-5 hp) 185 Difficient Caling - Control 186 Final - AsD(1-5 hp) 181 Final - AsD(1-5 hp) 182 Final - AsD(1-5 hp) 183 Final - AsD(1-5 hp) 184 Final - AsD(1-5 hp) 184 Final - AsD(1-5 hp) 1	105	Comp Air - Replace 1-5 HP motor	424	Process optimization
107 Comp Air - Motor practices (1-51P) 108 Comp Air - ASD (6-100 HP motor 109 Comp Air - ASD (6-100 HP motor 110 Comp Air - ASD (6-100 HP) 120 Comp Air - ASD (6-100 HP) 121 Comp Air - ASD (6-100 HP) 122 Comp Air - ASD (0-100 hp) 131 Comp Air - ASD (100 hp) 132 Comp Air - ASD (100 hp) 133 Comp Air - ASD (100 hp) 134 Power sovery 135 Refirery Controls 236 Fans - Controln 237 Fans - Controln 238 Fans - Improve components 239 Fans - Replace 1-51 HP motor 230 Fans - Replace 1-51 HP motor 231 Fans - Replace 1-51 HP motor 235 Fans - Replace 1-51 HP motor 236 Fans - Replace 1-51 HP motor 237 Fans - Replace 10-1 HP motor 238 Fans - Replace 10-1 HP motor 239 Fans - ASD (-010 hP) 231 Fans - Replace 10-1 HP motor 232 Optimation Refiguration process (M&T) 233 Fans - Replace 10-1 HP motor 234 Fans - Replace 10-1 HP motor 235 Fans - Replace 10-1 HP motor 236 Fans - Motor	106	Comp Air - ASD (1-5 hp)	425	Drives - Process Control
108 Comp Air - Replice 6-100 HP motor 427 Drives - Optimization process (M&T) 101 Comp Air - Motor practices (6-100 HP) 428 Drives - Scheduling 111 Comp Air - Motor practices (100+ HP) 420 Efficient Machinery 112 Comp Air - Motor practices (100+ HP) 501 Bakery - Process 113 Comp Air - Motor practices (100+ HP) 502 Dying (UVIR) 114 Power recovery 503 Har Pumps - Dying 115 Refinery Controls 504 Top-heating (gluss) 201 Fans - Controls 505 Histing - Process Control 202 Fans - Controls 505 Histing - Optimization process (M&T) 203 Fans - Replace 1-5 HP motor 509 Histing - Optimization process (M&T) 204 Fans - Replace 6-100 HP motor 501 Histing - Optimization process (M&T) 205 Fans - Replace 6-100 HP motor 501 Histing - Optimization - Operation 206 Fans - Motor practices (1-01 HP) 601 Histing - Optimization - Optimization 201 Fans - Replace 6-100 HP motor 502 Dificient desafter 212 Fans - ASD (100+ hp) 603 Histient masformers welding 213 Fans - Motor practices (100 HP) 604 Hist	107	Comp Air - Motor practices (1-5 HP)	426	Efficient drives - rolling
109 Comp Air - ASD (-5: 00 Hp) 428 Drives - Scheduling 110 Comp Air - ASD (-6: 00 HP) 429 Machiney 111 Comp Air - ASD (-0: 00 Hp) 501 Balery - Process 113 Comp Air - Motor practices (100 HP) 502 Dying (UVIR) 114 Power recovery 503 Heat Pumps - Dying 115 Refinery Controls 505 Efficient (ctric mating 202 Fans - Ontrols 505 Efficient (ctric mating 203 Fans - Source (Ctric mating 505 Heating - Process Control 204 Fans - ASD (-5: 10) 501 Heating - Scheduling 205 Fans - ASD (-5: 10) 501 Heating - Scheduling 206 Fans - ASD (-5: 10) 501 Heating - Controls 207 Fans - ASD (-5: 10) 501 Heating - Controls 208 Fans - ASD (-5: 10) 502 Optimization process (McT) 207 Fans - ASD (-0: 01 HP) 503 Efficient Gasaler 212 Fans - ASD (-0: 01 HP) 503 Heating - Controls 213 Fans - Motor practices (0: 01 HP) 601 Heating - Controls 214 Optimized on practices (0: 01 HP) 601 Heating - Controls 215	108	Comp Air - Replace 6-100 HP motor	427	Drives - Optimization process (M&T)
110 Comp Air - Motor practices (6-100 HP) 429 Machinery 111 Comp Air - ASD (100+ hp) 501 Bakery - Process 112 Comp Air - ASD (100+ hp) 501 Bakery - Process 113 Comp Air - ASD (100+ hp) 501 Bakery - Process 114 Power recovery 501 Bakery - Process 115 Refinery Controls 501 Heat Pumps - Drying 201 Fans - Oktof 501 Biteligent extruder (D01) 203 Fans - Controls 506 Intelligent extruder (D01) 204 Fans - Empore components 509 Efficient electric making 205 Fans - ASD (1-5 hp) 501 Heating - Optimization process (M&T) 206 Fans - ASD (1-5 hP) 501 Heating - Optimization process (M&T) 207 Fans - Motor practices (1-5 HP) 501 Heating - Optimization Process (M&T) 208 Fans - ASD (1-5 hp) 501 Other Process Controls (MAT) 209 Fans - ASD (100 hp) 552 Optimization Process (M&T) 211 Fans - Ropiace 1-0 HP motor 551 Efficient Acaiter 212 Fans - ASD (100 hp) 601 Other Process Controls (MAT) 214 Optimized new diving process 701 Centring al Centrols (MAT) 212 Fans - ASD (100 hp) 703 EMS - Chiller Acaiter 301 Pumps - Controls 701 Centring al Centrols (MAT) 304 Pumps - Staing 701 C	109	Comp Air - ASD (6-100 hp)	428	Drives - Scheduling
111 Comp Air - Replace 100+ IP motor 430 Efficient Machinery 112 Comp Air - Motor practices (100+ IP) 531 Balery - Process 113 Comp Air - Motor practices (100+ IP) 531 Heat Pumps - Drying 114 Power recovery 531 Heat Pumps - Drying (UVIR) 532 Pans - Okt 531 Heat Pumps - Drying (UVIR) 532 Pans - Okt 531 Heat Pumps - Drying (UVIR) 532 Pans - Okt 532 Fans - Net Porton 533 Fans - System Optimization 537 New Net Shape Casting 534 Fans - Replace 1-5 HP motor 530 Heating - Scheduling 533 535 Fans - Abol (5-5 hp) 531 Heating - Scheduling 532 536 Fans - Notor practices (1-0 HP) 531 Heating - Scheduling 532 536 Fans - Replace 100+ Protor 552 Optimization process (M&T) 532 537 Fans - Notor practices (1-0 HP) 641 Heating - Scheduling 643 538 Fans - Replace 100+ Ph 644 Heating - Scheduling 644 530 Pumps - Replace 100+ Ph 746 Centrifugal	110	Comp Air - Motor practices (6-100 HP)	429	Machinery
112 Comp Air - ASD (100+ hp) 501 Bakery - Process 113 Comp Air - ASD (100+ hp) 502 Dying (UVRR) 114 Power recovery 503 Heat Pumps - Drying 115 Refinery Controls 504 Top-heating (glass) 201 Fans - OxeM 505 Efficient dextine melting 202 Fans - Controls 506 Intelligent extruder (DOE) 203 Fans - Replace 1-S HP motor 509 Efficient dextine (TOE) 204 Fans - Improve components 509 Efficient Curing ovens 205 Fans - RSD (1-Shp) 510 Heating - Optimization process (M&T) 207 Fans - Notor practices (1-S HP) 511 Heating - Scheduling 210 Fans - Motor practices (1-00 HP motor 551 Efficient Angeron Refigeration - Operations 210 Fans - ASD (100+ hp) 651 Efficient dexing (Match + site) 211 Fans - Motor practices (100 HP) 661 Efficient process (welding, etc.) 212 Fans - ASD (1-On HP) 661 Efficient process (welding, etc.) 213 Fans - Motor practices (100- HP) 661 Efficient Process (welding, etc.) 214 Optizing driving process 701 Efficient Process (welding, etc.) 215 Pans - ASD (1-Shp) 701 Efficient Process (welding, etc.) 216 Pangs - ASD (1-Shp) 701 Efficient Process (welding, etc.) 217 Pans - Beplace 5-10 HP motor 703 EMS	111	Comp Air - Replace 100+ HP motor	430	Efficient Machinery
113 Corp Air - Motor practices (100+14P) 502 Dying (UV/R) 114 Power covery 503 Hear Pumps - Dying 115 Refinery Controls 504 Top-heating (glass) 201 Fans - Controls 505 Efficient destrine mining 202 Fans - Controls 506 Intelligent extuder (COE) 203 Fans - Replace 1-5 HP motor 506 Efficient extuder (COE) 204 Fans - ASD (1-5 hp) 510 Heating - Scheduling 207 Fans - ASD (1-5 hp) 510 Heating - Coptimization process (M&T) 207 Fans - ASD (1-0 hp) 510 Heating - Coptimization process (M&T) 210 Fans - Motor practices (1-5 HP) 510 Heating - Scheduling 211 Fans - ASD (6-100 hp) 631 New transformers weiding 212 Fans - Motor practices (100-HP) 643 Heating - Scheduling, etc.) 214 Optimizetion rescience 510 Heating - Scheduling, etc.) 214 Optimizetion rescience 701 Centrifugal Chiler, 0.51 kW/ton, 500 tons 301 Pumps - ASD (6100 hP) 704 Centrifugal Chiler, 0.51 kW/ton,	112	Comp Air - ASD (100+ hp)	501	Bakery - Process
114 Power recovery 503 Hear Pumps - Dyring 115 Refinery Controls 504 Top-h-casing (glass) 201 Fans - Oktob 505 Efficient extruder (DOE) 203 Fans - System Optimization 505 Intelligent extruder (DOE) 204 Fans - Improve components 508 Heating - Process Control 205 Fans - RS (L-5 hp) 501 Heating - Optimization process (M&T) 207 Fans - Notor practices (1-5 HP) 511 Heating - Optimization extraction - Operations 208 Fans - Replace 6100 HP motor 551 Efficient Refrigeration - Operations 209 Fans - ASD (1-6 hp) 551 Efficient Refrigeration - Operations 209 Fans - ASD (1-00 hp) 552 Optimization Refrigeration - Operations 210 Fans - Motor practices (100 HP) 661 Other Process Controls (batch + site) 211 Fans - Motor practices (100 HP) 661 Efficient processes (welding, etc.) 212 Fans - ASD (00+ hp) 663 New transformers welding 213 Fans - Motor practices (100 HP) 664 Efficient processes (welding, etc.) 214 Optimization 701 Entifyial Othoris 305 Pumps - Controls 703 304 Pumps - String 704 Chiller Tune Up/Diagnostics 305 Pumps - Solitag 705 EMS Optimization 306 Pumps - ASD (0-10 hp) 707 Aerosol Duct Sealing 307 Pumps - Motor practices (1-5HP) 708 Eacident Dy System (Trane CDQ) 308 Pumps - ASD (0-10 hp)	113	Comp Air - Motor practices (100+ HP)	502	Drying (UV/IR)
115 Refnery Controls 504 Top-heating (glass) 201 Fans - Koek 505 Efficient deciris melting 202 Yans - Controls 500 Intelligent extruder (DOE) 203 Fans - Koyne components 508 Heating - Process Control 204 Fans - Enpose of DP Protor 509 Efficient Curing ovens 205 Fans - ASD (-15-hp) 510 Heating - Dynamics (Controls 207 Fans - Motor practices (1-5 HP) 511 Heating - Scheduling 208 Fans - Replace (-10 HP motor 551 Efficient Refrigeration - Operations 209 Fans - ASD (-6100 hp) 601 Other Process Controls (Batch + site) 211 Fans - ANdor practices (100+ HP) 601 Other Process Controls (Batch + site) 212 Fans - ASD (100+ hp) 602 Efficient desalter 213 Fans - Motor practices (100+ HP) 604 Efficient processe (welding, etc.) 214 Optimized on practices (100+ HP) 604 Efficient genery Chiller Nuros and Towers 205 Parnys - System Optimization 704 Chiller Tune Up/Diagnostics 304 Parnys - ASD (100+ hp) 704 Aerosol Duet Sealing 304 Parnys - ASD (100+ hp) 710 Roof Insultation <	114	Power recovery	503	Heat Pumps - Drying
210 Fans - Controls 305 Efficient electric menting 220 Fans - Controls 560 Intelligent estruder (DOB) 203 Fans - System Optimization 500 Efficient Curing oversa 204 Fans - Improve components 500 Efficient Curing oversa 205 Fans - Replace 1-51 PP motor 500 Efficient Curing oversa 206 Fans - Motor practices (1-51 HP) 511 Heating - Optimization process (M&T) 207 Fans - Motor practices (1-01 HP) 511 Heating - Optimization - Operations 208 Fans - Replace -100 HP motor 621 Efficient Refrigeration - Operations 219 Fans - Motor practices (100+HP) 601 Cher Process Controls (batch + site) 211 Fans - Replace 100 HP motor 601 Cher Process Controls (batch + site) 212 Fans - Motor practices (100+HP) 601 New transformers welding 213 Fans - Motor practices (100+HP) 601 High Efficiency Chiller Motors 210 Pumps - Oattrols 703 EMS - Chiller 202 Pumps - Siting 703 KND for Chiller Motors 203 Pumps - System Optimization 704 Chiller Tune Up/Diagnostics 204 Pumps - Replace 1-51 HP motor 703 KND for Chiller Pumps and Towers 205 Pumps - ASD (1-50 hp) 707 Aeroso Ibuel Seating 207 Pumps - Sol (0-50 hp) 701 Resol Sol Duel Seating 208 Pumps - Re	115	Refinery Controls	504	Top-heating (glass)
202 Fans - Controls 366 Intelligent extruder (DOE) 203 Fans - Suptem Optimization 507 Near Net N Shape Casting 204 Fans - Maprove components 508 Heating - Process Control 205 Fans - ASD (1-5 hp) 510 Heating - Optimization process (M&T) 207 Fans - ASD (1-5 hp) 511 Heating - Scheduling 208 Fans - ASD (6-100 HP motor 552 Optimization Refrigeration - Operations 209 Fans - ASD (6-100 HP motor 620 Efficient Process Controls (batch + site) 211 Fans - Motor practices (100+ HP) 601 Cher Process Controls (batch + site) 212 Fans - Motor practices (100+ HP) 604 Efficient processes (weiding, etc.) 212 Fans - Motor practices (100+ HP) 604 Histicat processes (weiding, etc.) 213 Pans - Motor practices (100+ HP) 604 Histicat Process (weiding, etc.) 214 Optimization 701 Centrifugal Chiller, 051 kW (nn, 500 tons 301 Pumps - System Optimization 704 Chiller - Tune U/D/Dagnostics 304 Pumps - Sizing 705 Kin Optimization <t< td=""><td>201</td><td>Fans - O&M</td><td>505</td><td>Efficient electric melting</td></t<>	201	Fans - O&M	505	Efficient electric melting
202 Frans - system Optimization 500 204 Frans - Improve components 500 205 Frans - Replace 1-5 HP motor 500 206 Frans - ASD (1-5 hp) 510 207 Frans - Motor practices (1-5 HP) 511 208 Frans - Replace 6-100 HP motor 521 209 Frans - ASD (6-100 hp) 522 210 Frans - Motor practices (5-100 HP) 600 211 Frans - Replace 6-100 HP motor 601 212 Frans - ASD (6-100 hp) 603 213 Frans - Motor practices (100+ HP) 603 214 Optimized drying process 701 215 Anas - Motor practices (100+ HP) 603 216 Pans - Motor practices (100+ HP) 604 217 Pans - Motor practices (100+ HP) 601 218 Anas - Motor practices (100+ HP) 601 219 Pumps - Oatmins 701 301 Pumps - Controls 701 302 Pumps - System Optimization 704 703 Pumps - System Optimization 704 704 Pumps - Replace 1-5 HP motor 705 705 Pumps - ASD (1-5 HP) 706 706 Pumps - ASD (1-0 HP) 706 707 Pumps - Motor practices (1-5 HP) 708 708 Pumps - ASD (1-0 HP) 701 709 Pumps - ASD (1-0 HP) 701 701 Roof Insulation 704 <td>202</td> <td>Fans - Controls</td> <td>506</td> <td>Intelligent extruder (DOE)</td>	202	Fans - Controls	506	Intelligent extruder (DOE)
Arm process components 388 Heating - Process Control 205 Fans - Replace 1-5 HP motor 509 Efficient Curing ovens 206 Fans - Asplace 1-5 HP motor 510 Heating - Optimization process (M&T) 207 Fans - Motor practices (1-5 HP) 511 Heating - Scheduling 209 Fans - Asplace 5-10P HP motor 552 Optimization Refigeration 209 Fans - Motor practices (6-100 HP) 601 Other Process Controls (batch + site) 211 Fans - Motor practices (00+ HP) 603 New transformers welding 213 Fans - Motor practices (100+ HP) 604 Efficient Drocesses (welding, etc.) 214 Optimized trying process 701 Centring al Chiller Aots 702 303 Pumps - System Optimization 704 High Efficient Oring outs 703 304 Pumps - ASD (1-5 hp) 707 Aeros O Duct Sealing 703 EMS - Chiller 305 Pumps - ASD (1-5 hp) 701 Aeros of Duct Sealing 703 Window Film 308 Pumps - ASD (1-6 hp) 703 Koof Insulation <td>203</td> <td>rans - System Optimization</td> <td>507</td> <td>Near Net Shape Casting</td>	203	rans - System Optimization	507	Near Net Shape Casting
200 Finis - Kepace 1-9 Pr (DOO) 300 Efficient Ching ovens 200 Fanis - ASD (1-5 hp) 510 Hetting - Optimization process (M&T) 201 Fanis - Replace 6-100 HP motor 551 Efficient Refrigeration - Operations 209 Fans - ASD (6-100 hp) 552 Optimization Refrigeration - Operations 201 Fans - ASD (100+ hp) 601 Other Process Controls (batch + site) 211 Fans - Replace 100+ HP motor 602 Efficient desafter 212 Fans - ASD (100+ hp) 603 New transformers welding 213 Pans - Notor practices (100+ HP) 604 Efficient processes (welding, etc.) 214 Optimize drying process 701 Centrifugal Chiller, 0.51 kW/ton, 500 tons 219 Pumps - OAM 702 High Efficienty Censes (welding, etc.) 219 Pumps - System Optimization 704 Chiller Motors 303 Pumps - System Optimization 706 EMS Optimization - Chiller 304 Pumps - Sating 705 VSD for Chiller Motors 305 Pumps - Replace 1-5 HP motor 708 Dest/Pipe Insulation 306 Pumps - ASD (106 hp) 701 Racrosl Duet Sealing 307 Pumps - Motor practices (1-5 HP) 708 Dest/Pipe Insulation 308 Pumps - Replace 1-00 HP motor 709 Window Film 309 Pumps - AsD (100 hp) 711 Cool Roof 311 Pumps - Motor practices (100 HP) 712 Cool Roof 312 Pumps - Motor practices (100 HP) 723 Bothernul Heat Pump, EEN=11.9, 10 tons 3	204	Fans - Improve components	508	Heating - Process Control
2000 Faus - Nature (Sec) (25) 2000 Faus - Nature (Sec) (25) 2007 Faus - Nature (Sec) (25) 2008 Faus - ASD (6-100 hp) 2019 Faus - Nature (Sec) (25) 2017 Faus - Nature (Sec) (25) 2018 Faus - Nature (Sec) (25) 2018 Faus - Nature (Sec) (25) 2118 Faus - ASD (6-100 hp) 2121 Faus - ASD (100 + hp) 2131 Faus - Nature (Sec) (20) + HP 2141 Optimized for practices (100 + HP) 2132 Faus - ASD (100 + hp) 2133 Faus - Nature (Sec) (20) + HP 2141 Optimized for ing process 2141 Optimized for ing process 2151 Heating - Up/Diagnostics 2161 Pumps - System Optimization 2172 Pumps - Sizing 2181 Pumps - Sach (1-5) hp) 2191 Pumps - Sach (1-5) hp) 2192 Pumps - Sach (1-5) hp) 2111 Color fausulation	205	Fans - ASD (1.5 hp)	509	Lincient Curing ovens
2011 TREAM 9 - SCREGUING 2021 Frans - Replace (-10 HP) 203 Frans - Replace (-10 HP) 210 Frans - Neplace (-10 HP) 211 Frans - Replace (-10 HP) 212 Frans - Replace (-10 HP) 213 Frans - Replace (-10 HP) 214 Optimized rying process 212 Frans - Motor practices (-100 HP) 213 Frans - Motor practices (100+ HP) 214 Optimized rying process 301 Pumps - Controls 302 Pumps - Controls 303 Pumps - System Optimization 304 Pumps - Sizing 305 Pumps - Surging 306 Pumps - ASD (1-5 hp) 307 Pumps - ASD (5-10 hP motor 308 Pumps - ASD (5-10 hP) 309 Pumps - ASD (5-10 hP) 309 Pumps - ASD (5-10 hP) 301 Pumps - Replace 100 + HP motor 302 Pumps - Replace 100 + HP motor 303 Pumps - Replace 100 + HP motor 304 Pumps - Replace 100 + HP 305 Pumps - ASD (6-10 hP) 31	200	Fans - Motor practices (1-5 HD)	510	Heating - Optimization process (M&1)
201 Pairs - Keplace Orion In Indion 201 Pairs - ASD (6-100 hp) 210 Pairs - ASD (6-100 hp) 552 Optimization Refigeration 211 Fans - ASD (100+ hp) 601 Other Process Controls (batch + site) 212 Fans - ASD (100+ hp) 601 Efficient desafter 213 Fans - ASD (100+ hp) 604 Efficient desafter 214 Optimization Refigeration 604 Efficient processes (welding, etc.) 214 Optimization Refigeration 701 Centrifugal Chiller, 0.51 kW/ton, 500 tons 301 Pumps - OAKM 703 EMS - Chiller 703 EMS - Chiller 302 Pumps - System Optimization 704 Chiller Tume Up/Diagnostics 705 VSD for Chiller Pumps and Towers 304 Pumps - Septace 1-5 HP motor 706 EMS Optimization - Chiller 706 EMS Optimization - Chiller 305 Pumps - Replace 1-5 HP 706 EMS Optimization - Chiller 707 Aerosoil Duet Sealing 307 Pumps - Replace 1-5 HP 706 EMS Optimization - Chiller 707 308 Pumps - Replace 1-0 HP motor 709 Window Film <t< td=""><td>207</td><td>Fans - Replace 6-100 HP motor</td><td>551</td><td>Efficient Petriceration Operations</td></t<>	207	Fans - Replace 6-100 HP motor	551	Efficient Petriceration Operations
105 Tabs TADU (The The Controls) 105 105 The Controls (The Theorem Controls (Theorem Controls (Theo	208	Fans - ASD (6-100 hp)	552	Optimization Refrigeration
111 Fans - Replace 100+ HP motor 121 Fans - ASD (100+ hp) 121 Fans - ASD (100+ hp) 122 Fans - Motor practices (100+ HP) 124 Optimize drying process 120 Pumps - Cantrols 121 Pumps - System Optimization 122 Pumps - System Optimization 123 Pumps - System Optimization 124 Optimize Applace 1-5 HP motor 125 Pumps - System Optimization 126 Pumps - Suging 127 Pumps - Suging 128 Pumps - System Optimization 129 Pumps - ASD (1-5 hp) 120 Pumps - ASD (1-5 hp) 121 Pumps - ASD (5-100 HP motor 120 Pumps - Replace 1-5 HP motor 120 Pumps - Replace 100+ IP motor 1310 Pumps - Replace 100+ IP 1311 Pumps - Replace 100+ IP 1312 Pumps - Motor practices (100+ HP) 1313 Pumps - Motor practices (100+ HP) 1314 Pumps - Motor practices (100+ HP) 1312 Pumps - Motor practices (100+ HP) 1313 Pumps	210	Fans - Motor practices (6-100 HP)	601	Other Process Controls (hatch + site)
111 Lines Top Jacon Trains (197) 121 Fans - Motor practices (100+ HP) 121 Pans - Motor practices (100+ HP) 121 Optimize drying process 130 Pumps - OakM 130 Pumps - Controls 131 Pumps - Controls 132 Pumps - System Optimization 133 Pumps - Sizing 136 Pumps - Sizing 137 Pumps - Sizing 138 Pumps - Sizing 139 Pumps - Sizing 130 Pumps - Sizing 130 Pumps - ASD (1-5 hp) 130 Pumps - ASD (1-5 hp) 130 Pumps - Replace 104 HP motor 130 Pumps - ASD (100+ hp) 131 Pumps - ASD (100+ hp) 132 Pumps - ASD (100+ hP) 133 Pumps - ASD (100+ hP) 134 Pumps - Settime (100+ HP) 135 Pumps - Motor practices (100+ HP) 136 Pumps - Settime (100+ HP) 137 Pumps - Motor practices (100+ HP) 138 Pumps - Motor practices (100+ HP) 139 Pumps - Motor practic	211	Fans - Replace 100+ HP motor	602	Efficient desalter
213 Fans - Motor practices (100+ HP) 214 Optimize drying process 301 Pumps - O&M 302 Pumps - Controls 303 Pumps - System Optimization 304 Pumps - System Optimization 305 Pumps - System Optimization 306 Pumps - System Optimization 307 Pumps - System Optimization 308 Pumps - ASD (1-5 hp) 309 Pumps - ASD (1-00 hp) 310 Pumps - ASD (6-100 hp) 311 Pumps - ASD (100 hp) 312 Pumps - ASD (100 hp) 313 Pumps - ASD (100 hp) 314 Pumps - ASD (100 hp) 315 Pumps - ASD (100 hp) 316 Pumps - ASD (100 hp) 317 Pumps - ASD (100 hp) 318 Pumps - ASD (100 hp) 319 Pumps - ASD (100 hp) 311 Pumps - Motor practices (100 HP) 312 Pumps - Motor practices (100 HP) 313 Pumps -	212	Fans - ASD (100+hp)	603	New transformers welding
214 Optimize drying process 701 Centrifugal Chiller, 0.51 kW/ton, 500 tons 301 Pumps - O&M 702 High Efficiency Chiller Motors 302 Pumps - System Optimization 703 EMS - Chiller 303 Pumps - System Optimization 704 Chiller Tune Up/Diagnostics 304 Pumps - System Optimization 705 EMS Optimization - Chiller 305 Pumps - Replace 1-5 HP motor 706 EMS Optimization - Chiller 306 Pumps - ASD (1-5 hp) 707 Aerosol Duct Sealing 307 Pumps - Replace 6-100 HP motor 709 Window Film 308 Pumps - ASD (100 H pp) 711 Cool Roof 311 Pumps - ASD (100 H hp) 711 Cool Roof 312 Pumps - ASD (100 H hp) 722 DX Packaged System, EER=11.9, 10 tons 312 Pumps - Notor practices (100 HP) 711 Cool Cleaning 313 Pumps - Suppromediates 724 DX Tune Up/ Advanced Diagnostics 320 Ock//drives spinning machines 726 Dy chimize Controls 403 Air conveying systems 726 Optimize Controls <	213	Fans - Motor practices (100+ HP)	604	Efficient processes (welding, etc.)
301 Pumps - O&M 302 Pumps - System Optimization 303 Pumps - System Optimization 304 Pumps - System Optimization 305 Pumps - Replace 1-5 HP motor 306 Pumps - ASD (1-5 hp) 307 Pumps - AsD (1-5 hp) 308 Pumps - AsD (1-5 hp) 309 Pumps - AsD (1-5 hp) 301 Pumps - AsD (5-100 HP motor 302 Pumps - AsD (5-100 HP motor 303 Pumps - AsD (5-100 HP) 310 Pumps - AsD (5-100 HP) 311 Pumps - AsD (5-100 HP) 312 Pumps - ASD (100+ hp) 313 Pumps - Nator practices (100 HP) 311 Pumps - Nator practices (100 HP) 312 Pumps - Nator practices (100 HP) 313 Pumps - Nator practices (100 HP) 314 Pumps - Suppare Process (Mixing) - O&M 305 Pumps - Nator practices (100 HP) 313 Pumps - Suppare machines 304 Air conveying systems 305 Pumps - Mator practices (100 HP) 313 Pumps - Mator practices (100 HP) 314 <t< td=""><td>214</td><td>Optimize drying process</td><td>701</td><td>Centrifugal Chiller, 0.51 kW/ton, 500 tons</td></t<>	214	Optimize drying process	701	Centrifugal Chiller, 0.51 kW/ton, 500 tons
302 Pumps - Controls 303 Pumps - System Optimization 304 Pumps - Sizing 305 Pumps - Replace 1-5 HP motor 306 Pumps - ASD (1-5 hp) 307 Pumps - Motor practices (1-5 HP) 308 Pumps - ASD (6-100 HP motor 309 Pumps - ASD (6-100 HP motor 301 Pumps - Notor practices (6-100 HP) 301 Pumps - Notor practices (6-100 HP) 302 Pumps - Notor practices (6-100 HP) 303 Pumps - ASD (6-100 hp) 304 Pumps - Notor practices (100 HP) 305 Pumps - Notor practices (100 HP) 306 Pumps - Notor practices (100 HP) 311 Pumps - Notor practices (100 HP) 312 Pumps - Notor practices (100 HP) 313 Pumps - Notor practices (100 HP) 314 Ode Midrives spinning machines 405 Drives - EE motor 406 Rep Forming paper machine 407 High Consistency forming 408 Optimization control PM 409 Efficient Printing press (fewer cylinders) 411 Light cylinders	301	Pumps - O&M	702	High Efficiency Chiller Motors
303 Pumps - System Optimization 704 Chiller Tune Up/Diagnostics 304 Pumps - Sizing 705 VSD for Chiller Pumps and Towers 305 Pumps - Replace 1-5 HP motor 706 EMS Optimization - Chiller 306 Pumps - ASD (1-5 hp) 707 Aerosol Duct Sealing 307 Pumps - Motor practices (1-5 HP) 708 Duct/Pipe Insulation 308 Pumps - Replace 6-100 HP motor 709 Window Film 309 Pumps - ASD (6-100 hp) 710 Roof Insulation 310 Pumps - Replace 100+ HP motor 711 Cool Roof 311 Pumps - ASD (100+ hp) 711 Cool Roof 312 Pumps - Astor practices (100+ HP) 722 Hybrid Desiccant-DX System (Trane CDQ) 313 Pumps - Statices (100+ HP) 723 Geothermal Heat Pump, EER=13, 10 tons 401 Bakery - Process (Mixing) - O&M 724 DX Tune Up/ Advanced Diagnostics 402 O&M/drives spinning machines 725 DX Coil Cleaning 403 Are conveying systems 726 Optimize Controls 404 Replace V-Belts 803 CFL Mardwired, Modular 18W <td>302</td> <td>Pumps - Controls</td> <td>703</td> <td>EMS - Chiller</td>	302	Pumps - Controls	703	EMS - Chiller
304 Pumps - Sizing 705 VSD for Chiller Pumps and Towers 305 Pumps - Replace 1-5 HP motor 706 EMS Optimization - Chiller 306 Pumps - ASD (1-5 hp) 707 Aerosol Duct Sealing 307 Pumps - Motor practices (1-5 HP) 708 Duct/Pipe Insulation 308 Pumps - ASD (6-100 hp) 701 Roof Insulation 309 Pumps - Motor practices (6-100 HP) 710 Roof Insulation 310 Pumps - Motor practices (6-100 HP) 711 Cool Roof 311 Pumps - Motor practices (100+ HP) 721 DX Packaged System, EER=11.9, 10 tons 312 Pumps - Motor practices (100+ HP) 723 Geothermal Heat Pump, EER=13, 10 tons 313 Pumps - Motor practices (100+ HP) 724 DX Tune Up/ Advanced Diagnostics 725 DX Coil Cleaning 725 DX Coil Cleaning 403 Air conveying systems 726 Optimize Controls 404 Replace V-Belts 801 Premium T8, Electronic Ballast 405 Drives - EE motor 802 CFL Hardwired, Modular 18W 406 Gap Forming paper machines 732 Rot H	303	Pumps - System Optimization	704	Chiller Tune Up/Diagnostics
305Pumps - Replace 1-5 HP motor706EMS Optimization - Chiller306Pumps - ASD (1-5 hp)707Aerosol Duct Sealing307Pumps - Motor practices (1-5 HP)708Duct/Pipe Insulation308Pumps - ASD (6-100 hp)700Window Film309Pumps - ASD (6-100 hp)710Roof Insulation310Pumps - Motor practices (6-100 HP)711Cool Roof311Pumps - Motor practices (6-100 HP)712DX Packaged System, EER=11.9, 10 tons312Pumps - ASD (100+ hp)722Hybrid Desiccant-DX System (Trane CDQ)313Pumps - Notor practices (100+ HP)723Geothermal Heat Pump, EER=13, 10 tons401Bakery - Process (Mixing) - O&M724DX Tune Up/ Advanced Diagnostics402O&M/drives spinning machines725DX Coil Cleaning403Air conveying systems726Optimize Controls404Replace V-Belts801Premium 'T8, Electronic Ballast405Drives - EE motor802CFL Liardwired, Modular 18W406Gap Forming paper machine803Occupancy Sensor407High Consistency forming804High Bay T5408Optimization control PM805Occupancy Sensor409Efficient practices printing press902Membranes for wastewater411Light cylinders733Dehumidification Hybrid Desiccant Heat Pump (5 Ton)414Clean Room - New Designs806LED Linear Tube 22W415Drives - Process Contr	304	Pumps - Sizing	705	VSD for Chiller Pumps and Towers
306Pumps - ASD (1-5 hp)707Aerosol Duct Sealing307Pumps - Motor practices (1-5 HP)708Duct/Pipe Insulation308Pumps - Replace 6-100 HP motor709Window Film309Pumps - ASD (6-100 hp)710Roof Insulation310Pumps - Motor practices (6-100 HP)711Cool Rood311Pumps - Motor practices (100+HP)721DX Packaged System, EER=11.9, 10 tons312Pumps - Motor practices (100+HP)722Hybrid Desiccant-DX System (Trane CDQ)313Pumps - Motor practices (100+HP)724DX Tune Up/ Advanced Diagnostics401Bakery - Process (Mixing) - O&M724DX Tune Up/ Advanced Diagnostics402O&M/drives spinning machines725DX Coil Cleaning403Air conveying systems726Optimize Controls404Replace V-Belts801Premium T8, Electronic Ballast405Drives - EE motor802CFL Screw-in 18W406Gap Forming paper machine803Oct LScrew-in 18W407High consistency forming804High Bay T5408Optimization control PM805Occupancy Sensor409Efficient Printing press902Membranes for wastewater411Light cylinders732Run Time Optimizer412Efficient drives732Run Time Optimizer413Clean Room - New Designs806LED Linear Tube 22W414Clean Room - New Designs806LED Linear Tube 22W415	305	Pumps - Replace 1-5 HP motor	706	EMS Optimization - Chiller
307Pumps - Motor practices (1-5 HP)708Duct/Pipe Insulation308Pumps - Replace 6-100 HP motor709Window Film309Pumps - ASD (6-100 hp)710Roof Insulation310Pumps - Motor practices (6-100 HP)711Cool Roof311Pumps - Replace 100+ HP motor721DX Packaged System, EER=11.9, 10 tons312Pumps - ASD (100+ hp)722Hybrid Desiccant-DX System (Trane CDQ)313Pumps - Motor practices (100+ HP)723Geothermal Heat Pump, EER=13, 10 tons401Bakery - Process (Mixing) - O&M724DX Tune Up/ Advanced Diagnostics402O&M/drives spinning machines725Dy Coil Cleaning403Air conveying systems726Optimize Controls404Replace V-Belts801Premium T8, Electronic Ballast405Drives - EE motor802CFL Screw-in 18W406Gap Forming paper machine803CFL Screw-in 18W407High Consistency forming804High Bay T5408Optimization control PM805Occupancy Sensor409Efficient practices printing press902411Light cylinders733Dehumidification Hybrid Desiccant Heat Pump (5 Ton)414Clean Room - New Designs806IED Linear Tube 22W415Drives - Process Controls (batch + site)807Floor IED 14W	306	Pumps - ASD (1-5 hp)	707	Aerosol Duct Sealing
308Pumps - Replace 6-100 HP motor709Window Film309Pumps - ASD (6-100 hp)710Roof Insulation310Pumps - Motor practices (6-100 HP)711Cool Roof311Pumps - Replace 100+ HP motor721DX Packaged System, EER=11.9, 10 tons312Pumps - ASD (100+ hp)722Hybrid Desiccant-DX System (Trane CDQ)313Pumps - Motor practices (100+ HP)723Geothermal Heat Pump, EER=13, 10 tons401Bakery - Process (Mixing) - O&M724DX Tune Up/ Advanced Diagnostics402O&M/drives spinning machines725DX Coil Cleaning403Air conveying systems726Optimize Controls404Replace V-Belts801Premium T8, Electronic Ballast405Drives - EE motor802CFL Screw-in 18W406Gap Forming paper machine803CFL Screw-in 18W407High Consistency forming804High Bay T5408Optimization control PM805Occupancy Sensor409Efficient practices printing press902Membranes for wastewater410Efficient drives732Run Time Optimizer411Light cylinders733Dehumidification Hybrid Desiccant Heat Pump (5 Ton)414Clean Room - New Designs806LED Linear Tube 22W415Drives - Process Controls (batch + site)807Floor LED 14W416Drives - Process Controls (batch + site)807Floor LED 14W	307	Pumps - Motor practices (1-5 HP)	708	Duct/Pipe Insulation
309Pumps - ASD (6-100 hp)710Roof Insulation310Pumps - Motor practices (6-100 HP)711Cool Roof311Pumps - Replace 100+ HP motor721DX Packaged System, EER=11.9, 10 tons312Pumps - ASD (100+ hp)722Hybrid Desiccant-DX System (Trane CDQ)313Pumps - Motor practices (100+ HP)723Geothermal Heat Pump, EER=13, 10 tons401Bakery - Process (Mixing) - O&M724DX Tune Up/ Advanced Diagnostics402O&M/drives spinning machines725DX Coil Cleaning403Air conveying systems726Optimize Controls404Replace V-Belts801Premium 78, Electronic Ballast405Drives - EE motor802CFL Screw-in 18W406Gap Forming paper machine803CFL Screw-in 18W407High Consistency forming804High Bay T5408Optimization control PM805Occupancy Sensor409Efficient practices printing press902Membranes for wastewater410Efficient drives732Run Time Optimizer413Clean Room - Controls733Dehumidification Hybrid Desiccant Heat Pump (5 Ton)414Clean Room - New Designs807Flood LED 14W415Drives - Process Controls (batch + site)807Flood LED 14W	308	Pumps - Replace 6-100 HP motor	709	Window Film
310 Pumps - Motor practices (6-100 HP) 711 Cool Roof 311 Pumps - Replace 100+ HP motor 721 DX Packaged System, EER=11.9, 10 tons 312 Pumps - ASD (100+ Hp) 722 Hybrid Desiccant-DX System (Trane CDQ) 313 Pumps - Motor practices (100+ HP) 723 Geothermal Heat Pump, EER=13, 10 tons 401 Bakery - Process (Mixing) - O&M 724 DX Ture Up/ Advanced Diagnostics 402 O&M/drives spinning machines 725 DX Coil Cleaning 403 Air conveying systems 726 Optimize Controls 404 Replace V-Belts 801 Premium T8, Electronic Ballast 405 Drives - EE motor 802 CFL Screw-in 18W 406 Gap Forming paper machine 803 CFL Screw-in 18W 407 High Consistency forming 804 High Bay T5 408 Optimization control PM 805 Occupancy Sensor 401 Efficient Printing press (fewer cylinders) 732 Run Time Optimizer 411 Light cylinders 732 Run Time Optimizer 413 Clean Room - New Designs 806 LED Linear Tube 22W <td>309</td> <td>Pumps - ASD (6-100 hp)</td> <td>710</td> <td>Roof Insulation</td>	309	Pumps - ASD (6-100 hp)	710	Roof Insulation
311 Pumps - Replace 100+ HP motor 721 DX Packaged System, EER=11.9, 10 tons 312 Pumps - ASD (100+ hp) 722 Hybrid Desiccant-DX System (Trane CDQ) 313 Pumps - Motor practices (100+ HP) 723 Geothermal Heat Pump, EER=13, 10 tons 401 Bakery - Process (Mixing) - O&M 724 DX Tune Up/ Advanced Diagnostics 402 O&M/drives spinning machines 725 DX Coll Cleaning 403 Air conveying systems 726 Optimize Controls 404 Replace V-Belts 801 Premium T8, Electronic Ballast 405 Drives - EE motor 802 CFL Hardwired, Modular 18W 406 Gap Forming paper machine 803 CFL Screw-in 18W 407 High Consistency forming 804 High Bay T5 408 Optimization control PM 805 Occupancy Sensor 401 Efficient practices printing press 902 Membranes for wastewater 410 Efficient drives 732 Run Time Optimizer 413 Clean Room - Controls 733 Dehumidification Hybrid Desiccant Heat Pump (5 Ton) 414 Clean Room - New Designs 807	310	Pumps - Motor practices (6-100 HP)	711	Cool Roof
312 Pumps - ASD (100+ hp) 722 Hybrid Desiccant-DX System (Trane CDQ) 313 Pumps - Motor practices (100+ HP) 723 Geothermal Heat Pump, EER=13, 10 tons 401 Bakery - Process (Mixing) - O&M 724 DX Tune Up/ A dvanced Diagnostics 402 O&M/drives spinning machines 725 DX Coil Cleaning 403 Air conveying systems 726 Optimize Controls 404 Replace V-Belts 801 Premium T8, Electronic Ballast 405 Drives - EE motor 802 CFL Hardwired, Modular 18W 406 Gap Forming paper machine 803 CFL Serew-in 18W 407 High Consistency forming 804 High Bay T5 408 Optimization control PM 805 Occupancy Sensor 401 Efficient Printing press (fewer cylinders) 902 Membranes for wastewater 411 Light cylinders 733 Dehumidification Hybrid Desiccant Heat Pump (5 Ton) 414 Clean Room - New Designs 806 LED Linear Tube 22W 415 Drives - Process Controls (batch + site) 807 Flood LED 14W	311	Pumps - Replace 100+ HP motor	721	DX Packaged System, EER=11.9, 10 tons
513 Pumps - Motor practices (100+ HP) 723 Geothermal Heat Pump, EER=13, 10 tons 401 Bakery - Process (Mixing) - O&M 724 DX Tune Up/ A dvanced Diagnostics 402 O&M/drives spinning machines 725 DX Coil Cleaning 403 Air conveying systems 726 Optimize Controls 404 Replace V-Belts 801 Premium T8, Electronic Ballast 405 Drives - EE motor 802 CFL Hardwired, Modular 18W 406 Gap Forming paper machine 803 CFL Serewine 18W 407 High Consistency forming 804 High Bay T5 408 Optimization control PM 805 Occupancy Sensor 401 Efficient Printing press (fewer cylinders) 902 Membranes for wastewater 411 Light cylinders 732 Run Time Optimizer 413 Clean Room - Controls 733 Dehumidification Hybrid Desiccant Heat Pump (5 Ton) 414 Clean Room - New Designs 806 LED Linear Tube 22W 415 Drives - Process Controls (batch + site) 807 Flood LED 14W	312	Pumps - ASD (100+ hp)	722	Hybrid Desiccant-DX System (Trane CDQ)
401 Bakery - Frocess (Mixang) - U&M 724 DX Tune Up/ Advanced Diagnostics 402 O&M/drives spinning machines 725 DX Coil Cleaning 403 Air conveying systems 726 Optimize Controls 404 Replace V-Belts 801 Premium T8, Electronic Ballast 405 Drives - EE motor 802 CFL Hardwired, Modular 18W 406 Gap Forming paper machine 803 CFL Screw-in 18W 408 Optimization control PM 805 Occupancy Sensor 409 Efficient practices printing press 902 Membranes for wastewater 410 Efficient drives 732 Run Time Optimizer 413 Clean Room - Controls 733 Dehumidification Hybrid Desiccant Heat Pump (5 Ton) 414 Clean Room - New Designs 805 IED Linear Tube 22W 415 Drives - Process Controls (batch + site) 807 Flood LED 14W	313	Pumps - Motor practices (100+ HP)	723	Geothermal Heat Pump, EER=13, 10 tons
402 Occurrences spinning machines 725 DX Coll Clearing 403 Air conveying systems 726 Optimize Controls 404 Replace V-Belts 801 Premium T8, Electronic Ballast 405 Drives - EE motor 802 CFL Hardwired, Modular 18W 406 Gap Forming paper machine 803 CFL Screw-in 18W 407 High Consistency forming 804 High Bay T5 408 Optimization control PM 805 Occupancy Sensor 409 Efficient practices printing press 902 Membranes for wastewater 410 Efficient drives 732 Run Time Optimizer 412 Efficient drives 733 Dehumidification Hybrid Desiccant Heat Pump (5 Ton) 414 Clean Room - New Designs 806 LED Linear Tube 22W 415 Drives - Process Controls (batch + site) 807 Flood LED 14W	401	Dakery - Process (Mixing) - O&M	724	DA Tune Up/ Advanced Diagnostics
1.00 FAL CORVENIS SYSTEMS 1725 Optimize Controls 404 Replace V-Belts 801 Premium T& Electronic Ballast 405 Drives - EE motor 802 CFL Hardwired, Modular 18W 406 Gap Forming paper machine 803 CFL Screw-in 18W 407 High Consistency forming 804 High Bay T5 408 Optimization control PM 805 Occupancy Sensor 409 Efficient practices printing press 902 Membranes for wastewater 410 Efficient drives 732 Run Time Optimizer 411 Light cylinders 733 Dehumidification Hybrid Desiccant Heat Pump (5 Ton) 414 Clean Room - New Designs 806 LED Linear Tube 22W 415 Drives - Process Controls (batch + site) 807 Flood LED 14W	402		725	DA Coll Cleaning
100 Fremuum 16, Electronic Ballast 405 Drives - EE motor 406 Gap Forming paper machine 407 High Consistency forming 408 Optimization control PM 409 Efficient practices printing press 400 Efficient Printing press (fewer cylinders) 411 Light cylinders 412 Efficient drives 413 Clean Room - Controls 414 Clean Room - New Designs 415 Drives - Process Controls (batch + site) 416 Drives - Process Controls (batch + site)	403	All conveying systems	/26	Optimize Controls
100 Darks - Le indivit 406 Gap Forming paper machine 407 High Consistency forming 408 Optimization control PM 409 Efficient practices printing press 409 Efficient practices printing press 409 Efficient Printing press (fewer cylinders) 410 Efficient drives 411 Light cylinders 412 Efficient drives 413 Clean Room - Controls 414 Clean Room - New Designs 415 Drives - Process Controls (batch + site) 416 Drives - Process Controls (batch + site)	404	Drives - FF motor	801	CET Hardwired Module- 19W
407 High Consistency forming 603 CFL Sciewini Tow 407 High Consistency forming 804 High Bay T5 408 Optimization control PM 805 Occupancy Sensor 409 Efficient practices printing press 902 Membranes for wastewater 410 Efficient Printing press (fewer cylinders) 902 Membranes for wastewater 411 Light cylinders 732 Run Time Optimizer 413 Clean Room - Controls 733 Dehumidification Hybrid Desiccant Heat Pump (5 Ton) 414 Clean Room - New Designs 806 LED Linear Tube 22W 415 Drives - Process Controls (batch + site) 807 Flood LED 14W	405	Gan Forming paper machine	802	CEL Scrawin 18W
408 Optimization control PM 409 Efficient practices printing press 410 Efficient Printing press (fewer cylinders) 411 Light cylinders 412 Efficient drives 413 Clean Room - Controls 414 Clean Room - New Designs 415 Drives - Process Controls (batch + site) 416 Drives - Process Controls (batch + site)	407	High Consistency forming	80.4	High Bay TS
409 Efficient practices printing press 409 Efficient practices printing press 410 Efficient Printing press (fewer cylinders) 411 Light cylinders 412 Efficient drives 413 Clean Room - Controls 414 Clean Room - New Designs 415 Drives - Process Controls (batch + site) 416 Drives - Process Controls (batch + site)	408	Optimization control PM	805	Occupancy Sensor
New Measures 410 Efficient Printing press (fewer cylinders) 411 Light cylinders 412 Efficient drives 413 Clean Room - Controls 414 Clean Room - New Designs 415 Drives - Process Controls (batch + site) 416 Drives - Process Controls (batch + site)	409	Efficient practices printing press	902	Membranes for wastewater
411 Light cylinders 412 Efficient drives 413 Clean Room - Controls 414 Clean Room - New Designs 415 Drives - Process Controls (batch + site) 416 Drives - Process Controls (batch + site)	410	Efficient Printing press (fewer cylinders)		
412 Efficient drives 732 Run Time Optimizer 413 Clean Room - Controls 733 Dehumidification Hybrid Desiccant Heat Pump (5 Ton) 414 Clean Room - New Designs 806 LED Linear Tube 22W 415 Drives - Process Controls (batch + site) 807 Flood LED 14W	411	Light cylinders	New	Measures
413 Clean Room - Controls 414 Clean Room - New Designs 415 Drives - Process Controls (batch + site) 416 Drives - Process Controls (batch + site)	412	Efficient drives	732	Run Time Ontimizer
414 Clean Room - New Designs 415 Drives - Process Controls (batch + site)	413	Clean Room - Controls	733	Dehumidification Hybrid Desiccant Heat Pump (5 Ton)
415 Drives - Process Controls (batch + site) 807 Flood LED 14W 416 Drives - Drives - Armonia - Armo	414	Clean Room - New Designs	806	LED Linear Tube 22W
	415	Drives - Process Controls (batch + site)	807	Flood LED 14W
1416 Process Drives - ASD I 808 [LED High Bay 83W	416	Process Drives - ASD	808	LED High Bay 83W
417 O&M - Extruders/Injection Molding	417	O&M - Extruders/Injection Molding	<u> </u>	
418 Extruders/Injection Moulding - multipump Eliminated Measures	418	Extruders/Injection Moulding - multipump	Elim	inated Measures
419 Direct drive Extruders None	419	Direct drive Extruders		None

2014 Technical Potential Energy Efficiency Measures - Industrial

2014 Technical Potential Update Methodology

Definitions

- **Technical Potential (TP)** An analysis performed in the DSM Goals development process to identify the theoretical limit of electric peak demand (MW) and energy (GWh) reductions. The TP assumes every measure is installed everywhere it could be physically installed, regardless of cost, customer acceptance or any other real-world constraints. The 2014 TP is the 2009 TP updated to reflect subsequent technology and marketplace changes.
- Codes & Standards Florida Building Codes and Federal equipment manufacturing standards.
- **Baseline Measure** A measure which represents the minimum demand and energy impacts for a technology (e.g., 14 SEER for air conditioning as prescribed by 2015 Codes & Standards). The Baseline Measure serves as the basis for calculating the incremental impacts for related Dependent Measures.
- **Dependent Measure** A measure related to a Baseline Measure with demand and energy impact values that are incremental to its Baseline Measure (e.g., a 15 SEER air conditioner v. the 14 SEER Baseline Measure).
 - **Competing Measure** A Dependent Measure which "competes" or displaces another similar measure from being implemented (e.g., high efficiency air-conditioners with SEERs of 15 or 17 could not both be installed to serve the same cooling load).
 - **Complimentary Measure** A Dependent Measure that can add incremental demand and energy impacts independent of other measures (e.g., ceiling insulation). The size of these measures' incremental impacts can be affected by other measures (e.g., impact of ceiling insulation can be affected by the level of air conditioning efficiency).

Docket No. 130199-EI 2014 Technical Potential Update Methodology Exhibit TRK-3, Page 2 of 4

2014 Technical Potential Update Methodology (cont'd)

Updating the Energy Efficiency (EE) measures included all steps. Only step 3 was performed for Demand Response (DR) and Photovoltaic (PV) measures because there were no applicable Codes & Standards changes or new measures.

2014 Technical Potential Update Methodology (cont'd)

1. Adjusted Existing Energy Efficiency (EE) Measures

a. Removed Obsolete Baseline Measures

- 1. Identified each 2009 TP Baseline Measure affected by new Codes & Standards (e.g., 13 SEER straight-cool air conditioner was replaced in 2015).
- 2. Identified the new Baseline Measures replacing the obsolete ones (e.g., 14 SEER air conditioner).
- 3. Determined each new Baseline Measure's kW and kWh impact values.
- 4. Zeroed out each new Baseline Measure's impact values because no incremental potential is attributable to any measure required by Codes & Standards.

b. Reduced Associated Dependent Measures' Impacts

- 1. Calculated the incremental difference in the energy impacts between the associated Dependent Measures and the new Baseline Measures.
- 2. Calculated the incremental difference between associated Dependent Measures and their 2009 TP Baseline Measure.
- 3. Calculated the Adjustment Factor for each by dividing the values from Step 1 by the values from Step 2.
- 4. Multiplied the affected Dependent Measures' 2009 TP total energy impacts by their Adjustment Factors.

2. Added New Energy Efficiency Measures

a. Competing Measures

- 1. Identified the appropriate Baseline Measures.
- 2. Identified existing Dependent Measures associated to these Baseline Measures.
- 3. Calculated the available incremental demand/energy impacts remaining for the New Measure (Baseline Measure impact less the sum of the impacts from the existing Dependent Measures).
- 4. Calculated the incremental percentage of demand/energy impacts for each New Competing Measure from the associated Baseline Measure.
- 5. Multiplied the values from Step 3 by the values from Step 4.

b. Complimentary Measures

- 1. Same as Competing Measures Step 1.
- 2. Same as Competing Measures Step 2.
- 3. Same as Competing Measures Step 3.
- 4. Calculated the maximum percentage of demand/energy impacts for each new Complimentary Measure from the associated Baseline Measure.
- 5. Same as Competing Measures Step 5.

3. Adjusted for Marketplace Changes

a. Overall Market Growth

- 1. Calculated 5-year overall customer growth percentage from year-end 2007 (actuals which were used as basis for 2009 TP) through 2012 based on values reported in the 2013 Ten-Year Site Plan.
- 2. Multiplied the total overall demand/energy impacts by the value from Step 1.
- 3. Added the values from Step 2 to the total overall demand/energy impacts.

b. Program Achievements – EE

- 1. Calculated 5-year (2008-2012) demand/energy DSM program achievements as reported in the utilities' Annual Reports.
- 2. Subtracted the values from Step 1 from the total overall demand/energy impacts.

Docket No. 130199-EI 2014 Technical Potential Update Methodology Exhibit TRK-3, Page 4 of 4

2014 Technical Potential Update Methodology (cont'd)

3. Adjusted for Marketplace Changes (cont'd)

c. Program Achievements – Demand Response (DR)

- 1. Calculated 5-year (2008-2012) demand/energy DSM program achievements as reported in the DSM Annual Reports.
- 2. Subtracted the values from Step 1 from the 2009 TP total overall demand/energy impacts for DR.

d. Program Achievements – Photovoltaic (PV)

- 1. Calculated 5-year (2008-2012) demand/energy values as reported in the Net Metering Reports, whether or not the installations were part of the utility's Solar Pilots.
- 2. Subtracted the values from Step 1 from the 2009 TP total overall demand/energy impacts for PV.

2014 Technical Potential Results Summary

Energy Efficiency (EE)

	s	Summer MW			Winter MW			Annual GWh		
	Residential	Business	Total	Residential	Business	Total	Residential	Business	Total	
2009 Technical Potential	5,713	2,287	8,000	3,486	1,298	4,784	20,245	11,604	31,849	
2014 Updates										
1. Codes & Standards	(830)	(256)	(1,086)	(444)	(132)	(575)	(2,878)	(1,305)	(4,183)	
2. New Measures	<u>182</u>	<u>349</u>	<u>531</u>	<u>178</u>	<u>125</u>	<u>303</u>	<u>1,825</u>	<u>2,351</u>	4,177	
Subtotal	<u>5,066</u>	2.380	<u>7.446</u>	<u>3.221</u>	<u>1.291</u>	<u>4.512</u>	<u>19.192</u>	<u>12.650</u>	<u>31,842</u>	
3. Marketplace Changes										
a. Growth	91	43	134	58	23	81	345	228	573	
b. Achievement	<u>(308)</u>	(126)	<u>(434)</u>	<u>(136)</u>	<u>(47)</u>	<u>(183)</u>	<u>(623)</u>	(325)	<u>(947)</u>	
Subtotal - Marketplace Changes	(217)	(83)	(300)	(78)	(24)	(102)	(277)	(97)	(374)	
2014 Updated Technical Potential	4,849	2,297	7,146	3,143	1,267	4,410	18,915	12,553	31,468	

Demand Response (DR)

	S	ummer MW	,	Winter MW			
	Residential	Business	Total	Residential	Business	Total	
2009 Technical Potential (High Case)	1,367	845	2,212	2,153	350	2,503	
2014 Updates							
3. Marketplace Changes	1						
a. Growth	25	15	40	39	6	45	
b. Achievement	<u>(75)</u>	<u>(111)</u>	<u>(186)</u>	<u>(10)</u>	(145)	<u>(155)</u>	
Subtotal - Marketplace Changes	(50)	(96)	(146)	29	(139)	(110)	
2014 Updated Technical Potential	1,317	749	2,066	2,182	211	2,393	

Photovoltaic (PV)

	S	Summer MW			Winter MW			Annual GWh		
	Residential	Business	Total	Residential	Business	Total	Residential	Business	Total	
2009 Technical Potential	8,703	5,112	13,815	1,585	649	2,234	23,982	13,506	37,488	
2014 Updates										
3. Marketplace Changes										
a. Growth	157	92	249	29	12	40	432	243	675	
b. Achievement	(4)	<u>(5)</u>	<u>(9)</u>	<u>(0)</u>	<u>(0)</u>	<u>(0)</u>	<u>(13)</u>	<u>(14)</u>	<u>(27)</u>	
Subtotal - Marketplace Changes	153	87	240	28	12	40	419	229	648	
2014 Updated Technical Potential	8,856	5,199	14,055	1,613	661	2,274	24,401	13,735	38,136	

Docket No. 130199-EI Technical Potential for Economic Screening Sensitivities Exhibit TRK-5, Page 1 of 1

Technical Potential for Economic Screening Sensitivities

							r				
			Number of DSM Measures		Summ	Summer MW		Winter MW		Annual GWh	
	Fuel	Years -to-	Surviving RIM	Surviving TRC	Surviving RIM	Surviving TRC	Surviving RIM	Surviving TRC	Surviving RIM	Surviving TRC	
Case	Forecast	Payback Test	Path Screening	Path Screening	Path Screening	Path Screening	Path Screening	Path Screening	Path Screening	Path Screening	
Base Case											
Without CO2	Medium	2	120	300	1,675	2,295	1,258	1,384	5,328	8,753	
With CO2	Medium	2	124	301	1,550	2,155	1,193	1,401	4,775	8,582	
Sensitivities											
Case 1	High	2	231	290	1,864	2,267	1,312	1,367	6,461	8,545	
Case 2	Low	2	62	274	1,428	2,422	1,078	1,365	3,567	8,770	
Case 3	Medium	1	140	393	1,952	2,913	1,295	1,651	6,306	12,192	
Case 4	Medium	3	67	193	1,139	1,400	1,058	1,091	3,280	4,820	
Case 5	High	1	293	391	2,184	2,891	1,414	1,651	7,928	12,082	
Case 6	High	3	151	187	1,315	1,399	1,108	1,088	4,316	4,806	
Case 7	Low	1	63	371	1,429	2,716	1,079	1,622	3,573	11,206	
Case 8	Low	3	43	169	1,006	1,362	1,033	1,085	2,636	4,578	

Docket No. 130199-EI 2015-2024 Achievable Potential – RIM Exhibit TRK-6, Page 1 of 2

		FPL Achiev	able Pot	ential - Com	bined (R	IM)	
	Sum	mer MW	Win	nter MW	Annual GWh		
Year	Annual	Cumulative	Annual	Cumulative	Annual	Cumulative	
2015	48.1	48.1	29.2	29.2	41.1	41.1	
2016	49.6	97.7	30.0	59.2	45.6	86.7	
2017	50.8	148.5	30.9	90.1	47.5	134.2	
2018	51.6	200.1	31.5	121.6	49.5	183.7	
2019	52.3	252.4	32.1	153.7	51.5	235.3	
2020	53.1	305.5	32.7	186.5	53.6	288.9	
2021	53.9	359.3	33.4	219.9	55.8	344.7	
2022	54.7	414.1	34.1	253.9	58.1	402.8	
2023	55.6	469.6	34.8	288.7	60.5	463.3	
2024	56.5	526.1	35.5	324.2	62.9	526.3	

2015-2024 Achievable Potential – RIM²

		FPL Achievable Potential - Residential (RIM)										
	Sum	mer MW	Win	ter MW	Annual GWh							
Year	Annual	Cumulative	Annual	Cumulative	Annual	Cumulative						
2015	25.3	25.3	15.6	15.6	21.6	21.6						
2016	25.6	50.9	15.8	31.3	22.2	43.7						
201 7	25.9	76.8	16.0	47.3	22.8	66.6						
2018	26.2	103.0	16.2	63.5	23.5	90.1						
2019	26.5	129.5	16.4	79.9	24.2	114.3						
2020	26.9	156.4	16.7	96.6	25.0	139.2						
2021	27.3	183.7	16.9	113.5	25.7	165.0						
2022	27.6	211.3	17.2	130.7	26.5	191.5						
2023	28.0	239.4	17.5	148.2	27.4	218.9						
2024	28.5	267.8	17.8	166.0	28.3	247.2						

FPL Achievable Potential - Business (RIM)

	Sum	mer MW	Win	iter MW	Ann	ual GWh
Year	Annual	Cumulative	Annual	Cumulative	Annual	Cumulative
2015	22.8	22.8	13.6	13.6	19.6	19.6
2016	24.0	46.8	14.3	27.9	23.4	43.0
2017	24.9	71.8	14.9	42.8	24.7	67.7
2018	25.3	97.1	15.3	58.1	26.0	93.7
2019	25.8	122.9	15.7	73.8	27.3	121.0
2020	26.2	149.0	16.1	89.9	28.7	149.7
2021	26.6	175.7	16.5	106.4	30.1	179.8
2022	27.1	202.7	16.9	123.2	31.6	211.3
2023	27.5	230.3	17.3	140.5	33.1	244.4
2024	28.0	258.3	17.7	158.2	34.7	279.1

Docket No. 130199-EI 2015-2024 Achievable Potential – TRC Exhibit TRK-6, Page 2 of 2

		FPL Achievable Potential - Combined (TRC)			RC)	
	Sum	mer MW	Win	ter MW	Ann	ual GWh
Year	Annual	Cumulative	Annual	Cumulative	Annual	Cumulative
2015	47.4	47.4	38.1	38.1	64.0	64.0
2016	52.2	99. 7	41.4	79.5	87.2	151.2
2017	54.2	153.8	43.1	122.6	93.4	244.7
2018	55.6	209.4	44.5	167.2	99.9	344.6
2019	57.1	266.5	46.0	213.2	106.7	451.3
2020	58.6	325.2	47.6	260.8	113.7	565.0
2021	60.2	385.4	49.3	310.1	121.0	685.9
2022	61.9	447.3	51.0	361.1	128.5	814.4
2023	63.6	510.9	52.7	413.8	136.4	950.9
2024	65.5	576.4	54.6	468.4	144.7	1,095.6

2015-2024 Achievable Potential – TRC³

		FPL Achievable Potential - Residential (TRC)				
	Sum	mer MW	Win	iter MW	Ann	ual GWh
Year	Annual	Cumulative	Annual	Cumulative	Annual	Cumulative
2015	17.5	17.5	16.6	16.6	6.3	6.3
2016	20.0	37.5	18.4	35.0	17.2	23.5
2017	20.5	58.0	18.9	53.8	18.9	42.5
2018	21.1	79.1	19.4	73.2	20.8	63.3
2019	21.7	100.8	20.0	93.2	22.9	86.3
2020	22.3	123.1	20.6	113.8	25.2	111.5
2021	23.0	146.1	21.3	135.1	27.7	139.2
2022	23.8	170.0	22.1	157.2	30.5	169.7
2023	24.7	194.6	22.9	180.1	33.5	203.1
2024	25.6	220.2	23.7	203.8	36.7	239.8

FPL Achievable Potential - Business (TRC)

	Summer MW		Win	nter MW	Ann	ual GWh
Year	Annual	Cumulative	Annual	Cumulative	Annual	Cumulative
2015	29.9	29.9	21.4	21.4	57.7	57.7
2016	32.2	62.1	23.1	44.5	70.0	127.7
2017	33.7	95.8	24.3	68.8	74.5	202.2
2018	34.5	130.3	25.2	94.0	79.1	281.3
2019	35.4	165.8	26.1	120.0	83.7	365.0
2020	36.3	202.1	27.0	147.0	88.5	453.5
2021	37.2	239.3	27.9	175.0	93.2	546.7
2022	38.1	277.3	28.9	203.9	98.1	644.7
2023	39.0	316.3	29.9	233.7	103.0	747.7
2024	39.9	356.1	30.8	264.6	108.0	855.8

³ Values are at the Generator

Docket No. 130199-EI 2015-2024 Proposed Goals Exhibit TRK-7, Page 1 of 1

		FPL Proposed Goals - Combined				
	Sum	mer MW	Win	ter MW	Ann	ual GWh
Year	Annual	Cumulative	Annual	Cumulative	Annual	Cumulative
2015	26.2	26.2	16.3	16.3	2.4	2.4
2016	29.7	55.9	18.2	34.5	2.7	5.1
2017	31.2	87.1	18.7	53.3	3.2	8.3
2018	32.5	119.7	19.0	72.3	3.7	12.0
2019	34.4	154.0	19.4	91.7	4.2	16.1
2020	34.9	188.9	19.4	111.1	5.3	21.5
2021	35.6	224.5	19.5	130.6	6.7	28.1
2022	36.4	260.9	19.5	150.1	8.3	36.5
2023	37.3	298.2	19.5	169.6	10.2	46.7
2024	38.5	336.7	19.5	189.1	12.5	59.2

<u>2015-2024 Proposed Goals</u>⁴

	FPL Proposed Goals - Residential					
	Sum	mer MW	Win	ter MW	Ann	ual GWh
Year	Annual	Cumulative	Annual	Cumulative	Annual	Cumulative
2015	15.7	15.7	12.3	12.3	1.8	1.8
2016	15.9	31.6	12.3	24.6	2.2	3.9
2017	16.2	47.8	12.3	36.9	2.7	6.6
2018	16.5	64.3	12.3	49.1	3.3	9.9
2019	16.9	81.2	12.3	61.4	4.1	14.0
2020	17.4	98.6	12.3	73.7	5.0	19.0
2021	18.0	116.6	12.3	86.0	6.2	25.2
2022	18.7	135.4	12.3	98.3	7.7	32.8
2023	19.7	155.0	12.3	110.6	9.5	42.3
2024	20.8	175.8	12.3	122.8	11.7	54.0

FPL Proposed Goals - Business

	Sum	mer MW	Win	ter MW	Ann	ual GWh
Year	Annual	Cumulative	Annual	Cumulative	Annual	Cumulative
2015	10.5	10.5	4.1	4.1	0.6	0.6
2016	13.8	24.3	5.9	10.0	0.6	1.2
2017	15.0	39.3	6.4	16.4	0.5	1.7
2018	16.0	55.3	6.7	23.1	0.4	2.1
2019	17.5	72.8	7.1	30.2	0.1	2.2
2020	17.5	90.3	7.1	37.4	0.3	2.5
2021	17.6	107.9	7.2	44.6	0.5	2.9
2022	17.6	125.5	7.2	51.8	0.7	3.6
2023	17.7	143.2	7.2	59.0	0.8	4.4
2024	17.7	160.9	7.2	66.2	0.8	5.2

⁴ Values are at the Generator

Solar Pilots Results – Costs⁵ & Achievements

Pilot	FPL Cost
Solar Water Heating (SWH)	T
Residential	\$575,845
Residential - Low Income New Construction	\$11,169
Business	\$111,022
Photovoltaic (PV)	
Residential	\$3,217,910
Business	\$960,138
Business PV for Schools	\$3,500
Research & Demonstration	\$23,285
Non-Program Specific (e.g., systems, etc.)	\$2,375,929
TOTAL	\$7,278,799

Pilot	Summer MW	Winter MW	Annu: GWh
Solar Water Heating (SWH)			
Residential	0.1	0.3	0.
Residential - LINC	0.0	0.0	0.
Business	0.1	0.0	0.
Photovoltaic (PV)			
Residential	0.8	0.0	2.
Business	0.3	0.0	0.
Business PV for Schools	0.0	0.0	0.
TOTAL	1.3	0.3	4.4

Pilot	FPL Cost
Solar Water Heating (SWH)	
Residential	\$1,580,152
Residential - Low Income New Construction	\$429,673
Business	\$392,078
Photovoltaic (PV)	
Residential	\$3,415,009
Business	\$2,579,369
Business PV for Schools	\$857,303
Research & Demonstration	\$537,874
Non-Program Specific (e.g., systems, etc.)	\$548,685
TOTAL	\$10,340,142

Pilot	Summer MW	Winter MW	Annual GWh
Solar Water Heating (SWH)			
Residential	0.3	0,6	1.8
Residential - LINC	0.0	0.1	0.2
Business	0.1	0.0	0.2
Photovoltaic (PV)			
Residential	0.8	0.0	2.4
Business	0.7	0.0	2.2
Business PV for Schools	0.0	0.0	0.0
TOTAL	1.8	0.7	6.7

Pilot	FPL Cost		
Solar Water Heating (SWH)			
Residential	\$1,392,853		
Residential - Low Income New Construction	\$480,153		
Business	\$126,308		
Photovoltaic (PV)			
Residential	\$4,412,975		
Business	\$1,948,955		
Business PV for Schools	\$3,197,165		
Research & Demonstration	\$597,682		
Non-Program Specific (e.g., systems, etc.)	\$78,483		
TOTAL	\$12.234.572		

Summer MW	Winter MW	Annual GWh
0.3	0.5	1.7
0.0	0.1	0.2
0.0	0.0	0.0
1.0	0.0	3.2
1.2	0.0	3.6
0.1	0.0	0.3
2.6	0.6	9.0
	Summer MW 0.3 0.0 0.0 1.0 1.2 0.1 2.6	Summer MW Winter MW 0.3 0.5 0.0 0.1 0.0 0.0 1.0 0.0 1.2 0.0 0.1 0.0 2.6 0.6

Total									
Pilot	FPL Cost	Pilot	Summer MW	Winter MW	Annual GWh				
Solar Water Heating (SWH)		Solar Water Heating (SWH)							
Residential	\$3,548,850	Residential	0.7	1.3	4.3				
Residential - Low Income New Construction	\$920,995	Residential - LINC	0.1	0.1	0.3				
Business	\$629,408	Business	0.1	0.0	0.4				
Photovoltaic (PV)		Photovoltaic (PV)							
Residential	\$11,045,895	Residential	2.6	0.1	8.1				
Business	\$5,488,461	Business	2.1	0.1	6.6				
Business PV for Schools	\$4,057,967	Business PV for Schools	0.1	0.0	0.3				
Research & Demonstration	\$1,158,841	TOTAL	5.6	1.6	20.0				
Non-Program Specific (e.g., systems, etc.)	\$3,003,097								
TOTAL	\$29,853,513								

⁵ Costs include both O&M and capital expenditures

All-In System Costs									
	Average All-In Cost			Average Size (SWH=gallons & PV=kW)			Average Unit Cost (SWH=\$/gal & PV=\$/kW)		
Pilot	2011	2012	2013	2011	2012	2013	2011	2012	2013
Solar Water Heating (SWH)	Solar Water Heating (SWH)								
Residential	\$5,700	\$6,800	\$7,200	78	79	79	\$73	\$86	\$91
Residential - Low Income New Construction	n/a	\$3,300	\$4,000	n/a	67	80	n/a	\$49	\$50
Business	\$33,400	\$52,000	\$15,300	354	453	159	\$94	\$115	\$96
Photovoltaic (PV)									
Residential	\$33,500	\$34,400	\$33,600	6.2	7.3	8.2	\$5,400	\$4,700	\$4,100
Business	\$114,000	\$117,600	\$114,800	19.3	23.1	26.8	\$5,900	\$5,100	\$4,300
Business PV for Schools ⁶	n/a	n/a	\$66,500	n/a	n/a	6.6	n/a	n/a	\$10,100

Solar Pilots Results - All-In System Costs, Cost-Effectiveness & Completion Rates

Cost-Effectiveness Screening								
	Current Rebates			Zero Rebate				
Pilot	RIM	TRC	Participant	RIM	TRC	Participant		
Solar Water Heating (SWH)								
Residential	0.51	0.18	0.50	0.74	0.18	0.40		
Residential - Low Income New Construction	0.21	0.28	1.52	0.59	0.28	0.52		
Business	0.34	0.19	0.58	0.43	0.19	0.42		
Photovoltaic (PV)								
Residential	0.46	0.27	0.74	1.01	0.27	0.40		
Business	0.64	0.33	0.67	1.02	0.33	0.47		
Business PV for Schools	0.13	0.15	1.19	0.53	0.15	0.19		

Solar Water Heating (SWH) ⁷									
0.5	Reserv	ations	Install	ations	Completion Rate				
Utter	r Residential Business Residential Business				Residential	Business			
#1 - 6/29/11	773	47	498	13	64%	28%			
#2 - 10/27/11	1,594	38	1,232	20	77%	53%			
#3 - 10/16/12	1,491	11	1,191	5	80%	45%			
#4 - 10/15/13	428	5	47	0	11%	0%			
Total	4,286	101	2,968	38					

Photovoltaic (PV) ⁷								
0.5	Reserv	ations	Install	ations	Completion Rate			
Uner	Residential	Business	Residential	Business	Residential	Business		
#1 - 6/29/11	244	59	181	34	74%	58%		
#2 - 8/30/11	179	42	119	18	66%	43%		
#3 - 10/27/11	98	42	78	23	80%	55%		
#4 - 5/3/12	86	40	75	20	87%	50%		
#5 - 10/16/12	337	151	273	87	81%	58%		
#6 - 10/15/13	357	118	48	0	13%	0%		
Total	1,301	452	774	182				

 ⁶ Business PV for Schools includes additional infrastructure, etc.
 ⁷ Installations currently pending in 2014 for SWH Offer #4 and PV Offers #5 and #6.

CERTIFICATE OF SERVICE DOCKET NO. 130199-EI

I HEREBY CERTIFY that a true and correct copy of FPL's Petition for Approval of Numeric Conservation Goals with accompanying testimony and exhibits was served by electronic delivery this 2nd day of April, 2014 to the following:

Charles Murphy, Esq. Lee Eng Tan, Esq. Division of Legal Services Florida Public Service Commission 2540 Shumard Oak Blvd. Tallahassee, Florida 32399-0850 Cmurphy@psc.state.fl.us Ltan@psc.state.fl.us

Diana A. Csank, Esq. Sierra Club 50 F Street, N.W., 8th Floor Washington, D.C. 20001 Diana.Csank@Sierraclub.org Attorney for Sierra Club

George Cavros, Esq. Southern Alliance for Clean Energy 120 E. Oakland Park Blvd., Suite 105 Fort Lauderdale, FL 33334 george@cavros-law.com Attorney for SACE

James W. Brew, Esq. F. Alvin Taylor, Esq. Brickfield, Burchette, Ritts & Stone, P.C. 1025 Thomas Jefferson Street, NW Eighth Floor, West Tower Washington, DC 20007-5201 jbrew@bbrslaw.com ataylor@bbrslaw.com Attorneys for PCS Phosphate-White Springs Steven L. Hall, Senior Attorney Office of General Counsel Florida Department of Agriculture & Consumer Services 407 South Calhoun Street, Suite 520 Tallahassee, FL 32399 Steven.Hall@freshfromflorida.com Attorney for DOACS

Jon C. Moyle, Jr., Esq. Karen Putnal, Esq. Moyle Law Firm, P.A. 118 N. Gadsden Street Tallahassee, FL 32301 jmoyle@moylelaw.com kputnal@moylelaw.com Attorneys for FIPUG

Alisa Coe, Esq. David G. Guest, Esq. Earthjustice 111 S. Martin Luther King Jr. Blvd. Tallahassee, FL 32301 acoe@earthjustice.org dguest@earthjustice.org Attorneys for SACE

J. Stone, Esq. R. Badders, Esq. S. Griffin, Esq. Beggs & Lane P.O. Box 12950 Pensacola, FL 32591-2950 jas@beggslane.com rab@beggslane.com srg@beggslane.com Attorneys for Gulf Power Company Dianne M. Triplett, Esq. Matthew R. Bernier, Esq. 299 First Avenue North St. Petersburg, Florida dianne.triplett@duke-energy.com matthew.bernier@duke-energy.com Attorneys for Duke Energy

J. Beasley, Esq J. Wahlen, Esq. A. Daniels, Esq. Ausley Law Firm Post Office Box 391 Tallahassee, FL 32302 jbeasley@ausley.com jwahlen@ausley.com adaniel@ausley.com Attorneys for Tampa Electric

Mr. W. Christopher Browder P. O. Box 3193 Orlando, FL 32802-3193 cbrowder@ouc.com Orlando Utilities Commission

Ms. Cheryl M. Martin 1641 Worthington Road, Suite 220 West Palm Beach, FL 33409-6703 cyoung@fpuc.com Florida Public Utilities Company Mr. Paul Lewis, Jr., Esq. 106 East College Avenue, Suite 800 Tallahassee, FL 32301-7740 paul.lewisjr@duke-energy.com

Ms. Paula K. Brown Regulatory Affairs P. O. Box 111 Tampa, FL 33601-0111 Regdept@tecoenergy.com Tampa Electric

Mr. P. G. Para 21 West Church Street, Tower 16 Jacksonville, FL 32202-3158 parapg@jea.com JEA

Mr. Robert L. McGee, Jr. One Energy Place Pensacola, FL 32520-0780 rlmcgee@southernco.com

By: <u>s/ John T. Butler</u> John T. Butler Fla. Bar No. 283479