FILED JUL 07, 2016 DOCUMENT NO. 04341-16 FPSC - COMMISSION CLERK

BEFORE THE

FLORIDA PUBLIC SERVICE COMMISSION

IN RE: PETITION FOR RATE INCREASE BY FLORIDA POWER & LIGHT COMPANY

DOCKET NO. 160021-EI

Direct Testimony and Exhibits of

Brian C. Andrews

On behalf of

Federal Executive Agencies

July 7, 2016

Project 10228

BEFORE THE

FLORIDA PUBLIC SERVICE COMMISSION

)

IN RE: PETITION FOR RATE INCREASE BY FLORIDA POWER & LIGHT COMPANY

DOCKET NO. 160021-EI

Direct Testimony of Brian C. Andrews

1	Q	PLEASE STATE YOUR NAME AND BUSINESS ADDRESS.
2	А	Brian C. Andrews. My business address is 16690 Swingley Ridge Road, Suite 140,
3		Chesterfield, MO 63017.
4		
5	Q	WHAT IS YOUR OCCUPATION?
6	А	I am a Consultant in the field of public utility regulation with Brubaker & Associates,
7		Inc., energy, economic and regulatory consultants.
8		
9	Q	PLEASE DESCRIBE YOUR EDUCATIONAL BACKGROUND AND EXPERIENCE.
10	А	This information is included in Appendix A to my testimony.
11		
12	Q	ON WHOSE BEHALF ARE YOU APPEARING IN THIS PROCEEDING?
13	А	I am testifying on behalf of the Federal Executive Agencies ("FEA"), consisting of
14		certain agencies of the United States government, which have offices, facilities,
15		and/or installations in the service area of Florida Power & Light Company ("FPL" or
16		"Company"), from whom they purchase electricity and energy services.
17		

1	Q	WHAT IS THE SUBJECT MATTER OF YOUR DIRECT TESTIMONY?
2	А	My testimony will address FPL's proposed changes to depreciation rates for certain
3		accounts. I will propose adjustments to the survivor curves utilized for three
4		distribution accounts. My silence in regard to any issue should not be construed as
5		an endorsement of FPL's position.
6		
7	Q	PLEASE SUMMARIZE YOUR CONCLUSIONS AND RECOMMENDATIONS.
8	А	My conclusions and recommendations are summarized as follows:
9		1. FPL has overstated its depreciation rates for three distribution accounts. These
10		rates produce an excessive amount of depreciation expense and overstate the
11		test year revenue requirement.
12		2. FPL has underestimated the average service lives of three distribution accounts,
13		Accounts 362, 365 and 369.1, due to its reliance on fitting survivor curves to a set
14		of data containing outdated retirement history.
15		3. The average service lives for three distribution accounts should be based on the
16		more recent retirement history contained in the original life tables reflecting
17		retirement history from 1995-2014 rather than 1941-2014.
18		4. These adjustments to the average service lives for these three accounts result in
19		an overstatement of the 2017 test year depreciation expense of \$22.5 million, as
20		developed on Exhibit BCA-1.
21		
22	<u>Boo</u>	k Depreciation Concepts
23	Q	PLEASE EXPLAIN THE PURPOSE OF BOOK DEPRECIATION ACCOUNTING.

A Book depreciation is the recognition in a utility's income statement of the consumption or use of assets to provide utility service. Book depreciation is recorded as an expense and is included in the ratemaking formula to calculate the utility's overall
 revenue requirement.

Book depreciation provides for the recovery of the original cost of the utility's assets that are currently providing service. Book depreciation expense is not intended to provide for replacement of the current assets, but provides for capital recovery or return of current investment. Generally, this capital recovery occurs over the average service life of the investment or assets. As a result, it is critical that appropriate average service lives be used to develop the depreciation rates so no generation of ratepayers is disadvantaged.

In addition to capital recovery, depreciation rates also contain a provision for
 net salvage. Net salvage is simply the scrap or reused value less the removal cost of
 the asset being depreciated. Accordingly, a utility will also recover the net salvage
 costs over the useful life of the asset.

14

15 Q ARE THERE ANY DEFINITIONS OF DEPRECIATION ACCOUNTING THAT ARE

16 UTILIZED FOR RATEMAKING PURPOSES?

- 17 A Yes. One of the most quoted definitions of depreciation accounting is the one
- 18 contained in the Code of Federal Regulations:
- 19 "Depreciation, as applied to depreciable electric plant, means the loss 20 in service value not restored by current maintenance, incurred in connection with the consumption of prospective retirement of electric 21 22 plant in the course of service from causes which are known to be in 23 current operation and against which the utility is not protected by 24 insurance. Among the causes to be given consideration are wear and 25 tear, decay, action of the elements, inadequacy, obsolescence, 26 changes in the art, changes in demand and requirements of public authorities." 27 28
 - (Electronic Code of Federal Regulations, Title 18, Chapter 1, Subchapter C, Part 101)
- 30 31 32

29

- Effectively, depreciation accounting provides for the recovery of the original cost of an
 asset, adjusted for net salvage, over its useful life.
- 3

4 Q WHAT METHOD, PROCEDURE AND TECHNIQUE WERE USED TO CALCULATE

5

THE PROPOSED DEPRECIATION RATES FOR FPL?

6 A The proposed depreciation rates were calculated using the straight line method, the 7 average life group procedure and the remaining life technique. Under this method, 8 procedure and technique of developing depreciation rates, the unrecovered cost of 9 plant in service is adjusted for the cost of net salvage, and is recovered over the 10 remaining life of the asset or group of assets. At the end of the useful life, the asset 11 is fully depreciated.

12

13 Q IS YOUR METHOD OF CALCULATING DEPRECIATION RATES DIFFERENT

14 THAN THE COMPANY'S?

- 15 A No, both the Company and I utilized the same method to calculate depreciation rates.
- 16 FPL witness Ned Allis discusses the depreciation calculation process in his pre-filed
- 17 direct testimony and the depreciation study filed as Direct Exhibit NWA-1.
- 18

19 Q PLEASE DESCRIBE THE ACTUARIAL LIFE ANALYSIS THAT IS PERFORMED

20 TO EVALUATE HISTORICAL ASSET RETIREMENT EXPERIENCE.

- 21 A I will first provide the description of actuarial life analysis (retirement rate method) that
- is contained in the National Association of Regulatory Utility Commissioners'
- 23 ("NARUC") Public Utility Depreciation Practices manual.

24 "Actuarial analysis is the process of using statistics and probability to 25 describe the retirement history of property. The process may be used 26 as a basis for estimating the probable future life characteristics of a 27 group of property.

Actuarial analysis requires information in greater detail than do other
 life analysis models (e.g., turnover, simulation) and, as a result, may
 be impractical to implement for certain accounts (see Chapter VII).
 However, for accounts for which application of actuarial analysis is
 practical; it is a powerful analytical tool and, therefore, is generally
 considered the preferred approach.

Actuarial analysis objectively measures how the company has retired its investment. The analyst must then judge whether this historical view depicts the future life of the property in service. The analyst takes into consideration various factors, such as changes in technology, services provided, or, capital budgets."

14 (NARUC Public Utility Depreciation Practices Manual, 1996, Page 111,

15 Emphasis Added).

8

9

10

11

12

13

16 As explained by NARUC, when the required data exists, a database that contains the year of installation and the year of retirements for each vintage of 17 18 property, actuarial life analysis is the preferred method of determining the life, and 19 thus retirement, characteristics of a group of property. In this type of analysis, there 20 are two major steps. The first step is to use available aged data from the company's 21 continuing plant records to create an observed life table. The observed life table 22 provides the percent surviving for each age interval of property. The observed life 23 tables can be created from multiple combinations of placements and experience of 24 the aged property data. It is important to select a combination of data that will best reflect future lives of the property. The second step is to match the actual survivor 25 26 data from the observed life table to a standard set of mortality, or survivor curves. 27 Typically, the observed life table data is matched to Iowa Curves. The fitting process 28 is both a mathematical fitting process, which would minimize the Sum of Squared 29 Differences ("SSD") between the actual data and the lowa Curves, and a visual fitting Though the mathematically fitting process provides a curve that is 30 process. 31 theoretically possible, the visual matching process will allow the trained depreciation

- 1 professional to use informed judgment in the determination of the best fitting survivor
- 2 curve.
- 3

4 Q PLEASE PROVIDE FURTHER EXPLANATION OF THE SUM OF SQUARED

5 **DIFFERENCES STATISTICAL MEASUREMENT.**

- 6 A In the Actuarial Life Analysis section of the NARUC Depreciation Manual, it describes
- 7 SSD as follows:

8 "Generally, the goodness of fit criterion is the least sum of squared 9 deviations. The difference between the observed and projected data is 10 calculated for each data point in the observed data. This difference is 11 squared, and the resulting amounts are summed to provide a single 12 statistic that represents the quality of the fit between the observed and 13 projected curves. 14

15 The difference between the observed and projected data points is 16 squared for two reasons: (1) the importance of large differences is 17 increased, and (2) the result is a positive number, hence the squared 18 differences can be summed to generate a measure of the total 19 absolute difference between the two curves. The curves with the least 20 sum of squared deviations are considered the best fits."

21

22 Q PLEASE EXPLAIN SURVIVOR CURVES AND THE NOTATION USED TO 23 REFERENCE THEM.

24 A survivor curve is a visual representation of the amount of property existing at each А 25 age interval throughout the life of a group of property. From the survivor curve, 26 parameters required to calculate depreciation rates can be determined, such as the 27 average service life of the group of property and the composite remaining life. In this 28 case, as well as the majority of others throughout the U.S. and Canada, the Iowa 29 Curves are the general survivor curves utilized to describe the mortality 30 characteristics of group property. There are four types of lowa Curves: right-moded, 31 left-moded, symmetrical-moded, and origin-moded. Each type describes where the

1 greatest frequency of retirements occur relative to the average service life. Mr. Allis 2 provides a more detailed explanation of Iowa Curves in his Direct Exhibit NWA-1.

3 A survivor curve consists of an average service life and lowa Curve type 4 combination. When describing property with a 50-year average service life that has 5 mortality characteristics of the R2 lowa Curve, the survivor curve would simply be 6 notated as "50-R2."

7

8

IN THE ANALYSIS PERFORMED BY MR. ALLIS, DID HE RELY ON GOODNESS Q 9 OF FIT STATISTICS SUCH AS THE SSD?

10 А Yes, however, rather than reliance on the SSD, Mr. Allis utilized a statistic called the "Residual Measure." This statistic is simply the square root of the SSD divided by the 11 12 number of points that were tested for fit on the original survivor curve. As an 13 example, if in a fitting analysis to the first 50 data points of the original curve, the SSD 14 was determined for a certain lowa curve to be 100. The resulting Residual Measure 15 would be the square root of 100, which is 10, divided by 50 data points, which equals 16 This measurement indicates that the average deviation at each data point 0.2. 17 between the original survivor curve and the standardized lowa Curve is 0.2.

18

19 **Book Depreciation Recommendations**

20 Q PLEASE SUMMARIZE THE PROPOSED CHANGES THAT YOU ARE 21 RECOMMENDING TO FPL'S PROPOSED DISTRIBUTION DEPRECIATION 22 RATES.

23 А The distribution book depreciation rates should be reduced by increasing the average 24 service lives associated with the property contained in Accounts 362, 365, and 369.1

- such that the survivor curves better fit the retirement data that is reflective of more
 recent retirement history.
- 3

4 Q WHAT IS THE BASIS FOR YOUR RECOMMENDATIONS?

5 А FPL has largely based its proposals on retirement history that spans the 74 years 6 between 1941 and 2014. The use of such a long history of retirement data averages 7 out any trends of increased property lives that are expected with newer and better 8 maintenance practices. When retirement data are analyzed from more recent 9 periods, a clear trend of increasing lives can be seen for the accounts to which I 10 propose making changes. When recommending survivor curves for a group of 11 property, it is important that those recommendations reflect the analyst's best forecast 12 of the life expectations of property in the future. A more recent retirement experience 13 will more accurately reflect the future lives of property than will the reliance on data 14 that is older than the majority of property being studied.

15 It is obvious that maintenance and operational practices that occurred over 16 70 years ago are no longer relevant, as are maintenance and operational practices 17 from 30 years ago. Maintenance and operational practices are a large driver of the 18 lives of utility property; therefore, a forecast of the lives of this property should largely 19 be based on recent retirement activity. Furthermore, construction practices and 20 materials have significantly changed over the past 70 years, and the majority of the 21 investments in the accounts to which I propose adjustments were constructed after 22 1994.

23

FPL recognizes this trend of increasing service lives. Mr. Allis states:

- "the trend towards longer service lives is not uncommon" and "changes in the composition of assets in the account resulted on the estimation of longer service lives than indicated by the historical data."¹
- 4

1

2 3

5 Q DO AUTHORITATIVE TEXTS SUPPORT YOUR CLAIM THAT MORE RECENT

6 EXPERIENCE BANDS OFFER BETTER INFORMATION?

- 7 A Yes, two authoritative texts cited by FPL witness Mr. Allis both provide support for this
- 8 claim.
- 9 First, Wolf and Fitch's "Depreciation Systems," states:

10 "Recent experience bands yield the most recent retirement ratios 11 providing the forecaster with valuable information about the current 12 retirement ratios for all ages.....The ultimate combination of bands is 13 the overall band which combines all individual placement and 14 experience bands into a single, overall band. The major attribute of 15 the survivor curve obtained from this band is that it uses every 16 available exposure and retirement. On the other hand, this grand average obscures the dynamic characteristics of the life characteristics 17 of the property. In addition, it is difficult to define the meaning of the 18 resulting curve. The first retirement ratio will include observations from 19 20 all vintages and the second retirement ratio from all but the most recent. This pattern continues until the final point is based on 21 22 observations from only one vintage. It is difficult to figure out the 23 exact meaning of the overall band, and, in spite of the fact it does 24 include all the data points, it should be given limited significance." 25

- 26 (Wolf and Fitch, Depreciation Systems, 1994, Pages 186-87; emphasis
- 27 added)

Additionally, the NARUC manual states: "In general, historical data used to

- 29 forecast future retirements should not contain events that either anomalous of unlikely
- 30 to recur."
- 31 (NARUC Public Utility Depreciation Practices Manual, 1996 Page 112)

¹Ned Allis Direct Testimony at page 44.

Both of these authoritative texts on depreciation, which are cited by Mr. Allis, support
 my claim that more recent experience bands offer better information to the forecaster
 to determine the future retirement activity that is likely to occur with this property.

4

5 BCA Depreciation Model

Q PLEASE DISCUSS THE DEPRECIATION MODEL YOU CREATED TO DETERMINE THE APPROPRIATE SURVIVOR CURVES FOR THE TRANSMISSION AND DISTRIBUTION ACCOUNTS.

9 А I created an Excel-based model ("BCA Model") that tests the fit of the various Iowa 10 curves to the original life table data for the FPL accounts. The BCA Model also 11 calculates the annual original cost accrual and composite remaining for the account 12 being studied. In the fitting process, the model determines for each curve type, the average service life that minimizes the sum of the squared differences ("SSD") 13 14 between the lowa Curves and the actual data points that were determined to be significant.² This analysis provides for each dispersion, the average service life that 15 16 best fits the data. Once that analysis is performed, I conducted a visual analysis of 17 the curves that had the lowest SSD. After utilizing judgment to select the appropriate 18 curve, the model then can calculate the annual accrual amount and the 19 corresponding depreciation rate for the account. The annual accrual amount is 20 calculated in the same manner as described in the FPL Depreciation Study for the 21 Average Life Group method with the Remaining Life technique.

- 22
- 23

²Significant data points were determined by dividing the exposures for each vintage by the Age 0 vintage exposures. If that ratio was greater than 1%, the data point was determined to be significant.

1 Q HOW DOES THE BCA MODEL DEPRECIATION MODEL COMPARE TO THE FPL

2 DEPRECIATION MODEL WHEN THE SAME INPUTS ARE UTILIZED?

3 A For the accounts that I am recommending changes to, the original cost annual
4 accrual and composite remaining lives are nearly identical to what is calculated by
5 FPL. This comparison is shown below in Table 1.

TABLE 1									
Comparison of FPL and BCA Depreciation Models with FPL's Proposed Survivor Curves									
	FPL M	lodel	Delta						
Account	Original Cost Annual Accrual	Composite Remaining Life	Original Cost Annual Accrual	Composite Remaining Life	Original Cost Annual <u>Accrual</u>	Composite Remaining Life			
362 – Station Equipment 365 – Overhead Conductors and Devices	\$42,429,353 \$46,465,421	34.06 39.29	\$42,471,825 \$46,539,885	34.03 39.23	\$42,472 \$74,464	(0.03) (0.06)			
369.1 – Services - Overhead Total Sources: Exhibits NWA-1, BC/	\$11,022,092 \$99,916,866 A-2, BCA-3, BCA	47.09 A-4	\$11,003,386 \$100,015,096	47.17	(\$18,706) \$98,230	0.08			

6 As can be seen above in Table 1, the differences between the original cost annual 7 accrual amount between the BCA Model and FPL's are insignificant. The total 8 expense for these three accounts only differ by \$98,230 which is only a difference of 9 0.01% of the approximately \$100 million original cost annual accrual for these three 10 accounts.

11

 12
 Q
 WHAT CAN YOU CONCLUDE ABOUT THE RESULTS SHOWN ABOVE IN

 13
 TABLE 1?

14 A Table 1 shows that the BCA depreciation model is sufficiently benchmarked to the 15 calculations arrived at with the model utilized by FPL witness Mr. Allis. This 16 benchmarking exercise confirms the accuracy of my own model and that the results calculated by the model when utilizing different lowa Curves will be an accurate
 reflection of the composite remaining life resulting from those lowa Curves.

3

4 Distribution Proposed Survivor Curves

5 Q WHICH DISTRIBUTION ACCOUNTS ARE YOU RECOMMENDING A SURVIVOR

6 CURVE THAT DIFFERS FROM FPL PROPOSALS?

7 A I am recommending that the survivor curves used to determine the composite
8 remaining life and thus depreciation rates for Accounts 362, 365, and 369.1 be
9 changed to reflect dispersions and average service lives that better fit the more
10 recent retirement data for the property in the account.

11

12 Q PLEASE SUMMARIZE THE IMPACT ON THE DEPRECIATION EXPENSE FOR

13 THE ACCOUNTS WHICH YOU ARE RECOMMENDING SURVIVOR CURVES 14 THAT DIFFER FROM FPL'S RECOMMENDATIONS.

A Table 2 below shows the impact on each account. The sum of these three
adjustments is a reduction of \$22.5 million to FPL's 2017 test year depreciation
expense. This information is also shown in my Exhibit BCA-1.

TABLE 2 BCA Proposed Depreciation Adjustments									
	FPL Model BCA Model						Delta		
<u>Account</u>	Survivor Curve	2017 Annual Accrual	Accrual Rate	Survivor Curve	2017 Annual Accrual	Accrual Rate	2017 Annual Accrual	Accrual Rate	
362 365 369.1 Total	45-R1.5 48-R1 53-R1	\$45,136,206 \$82,040,086 \$25,050,963 \$152,227,255	2.36% 3.67% 4.30%	51-S0.5 57-R1 56-R1.5	\$38,910,129 \$66,999,688 \$23,802,458 \$129,710,304	2.04% 3.00% 4.08%	\$(6,226,077) \$(15,040,398) \$(1,248,505) \$(22,516,951)	-0.32% -0.67% -0.22%	

18

19

1 Account 362

25

26

27

2 WHAT TYPE OF PROPERTY IS CONTAINED IN ACCOUNT 362? Q 3 А This account is for Station Equipment. Per the FERC Uniform System of Accounts, 4 "This account shall include the cost installed of station equipment, 5 including transformer banks, etc., which are used for the purpose of 6 changing the characteristics of electricity in connection with its distribution." 7 8 This includes much of the equipment located within the fence at a distribution 9 10 substation, including busses, conduit, control equipment, transformers, switching 11 equipment, insulators, general station equipment, platforms, foundations, etc. 12 WHAT SURVIVOR CURVE IS FPL RECOMMENDING FOR ACCOUNT 362? 13 Q 14 FPL is proposing to use a 45-R1.5 survivor curve. That is the Iowa R1.5 dispersion А 15 curve with an average service life of 45 years. This proposal yields a composite 16 remaining life for this account of 34.06 years and a depreciation rate of 2.36%. 17 18 DO YOU AGREE WITH FPL'S RECOMMENDATION FOR THE SURVIVOR CURVE Q 19 TO UTILIZE FOR ACCOUNT 362? 20 No, I do not. Mr. Allis has chosen a survivor curve that does not account for a trend А 21 of increasing lives. The survivor curve recommended by Mr. Allis is an excellent fit for 22 the retirements experienced between 1941-2014; however, more recent retirement 23 history indicates a longer life is appropriate. Figure 1 below shows three of the 24 original survivor curves created by Mr. Allis for his actuarial analysis. All three curves

reflect property installed between 1941 and 2014; it is the years in which retirement

activity occurred that differentiates these lines. The dotted line is the overall band

which contains retirement experience from 1941 through 2014, the dashed line

- 1 contains retirement experience from 1985-2014, and the solid line contains the data
- 2 from 1995-2014.

Figure 1

As Figure 1 clearly shows, there is a trend of increasing lives as the older retirement history is removed from the analysis. As I stated earlier, it is the more recent retirement history that will be most indicative of the future lives of this property and while the overall band does contain all of the placement and retirement data, it should be given limited significance relative to more recent bands.

- 8
- 9
- 10
- . 0
- 11

1 Q DOES THE ACTUARIAL ANALYSES PERFORMED BY MR. ALLIS SHOW THERE

2 IS A TREND OF INCREASING LIVES FOR THE PROPERTY IN THIS ACCOUNT?

3 A Yes. My Table 3 below shows the average service lives that best fit the R1.5 lowa

4 Curve for each experience band analyzed by Mr. Allis for property installed between

5 1941 and 2014.

TABLE 3

Account 362 – Station Equipment Average Service Life Associated with R1.5 Iowa Curve Placements: 1941-2014

Experience Band
Average Service Life1941-2014
45.71985-2014
47.31995-2014
49.5Source: "160021 - OPC's 1st POD No. 2 - FPL - 2014 - Trans, Dist and Gen Plant - OLTs and
Preliminary Curve Fits.pdf"

6 As Table 3 shows, the average service life estimated by actuarial analysis increases

7 as the older retirement history is removed from the analysis.

8

9 Q WHAT IS YOUR RECOMMENDED SURVIVOR CURVE FOR ACCOUNT 362?

- A My recommended survivor curve for this account is the 51-S0.5 and is shown below
 in Figure 2. As can be seen in Figure 2, the 51-S0.5 survivor curve is a much better
 fit to the FPL's retirement data that was experienced between 1995 and 2014. The
 SSD for the 51-S0.5 is only 30 versus FPL's recommended 45-R1.5 which has an
 SSD of 684.
- 16
- 17
- 18
- 19

Figure 2

1QWHAT IS THE IMPACT ON THE ANNUAL ACCRUAL, ACCRUAL RATE, AND2COMPOSITE REMAINING LIFE FOR ACCOUNT 362 DUE TO A CHANGE IN THE3SURVIVOR CURVE?

- A Changing the survivor curve for Account 362 from a 45-R1.5 to a 51-S0.5 reduces the
 2017 annual accrual by \$6,226,077 to \$38,910,129. This also reduces the accrual
 rate to 2.04%, down from the FPL proposal of 2.36%. The recommendation results in
 a composite remaining life of 39.51 years versus FPL's proposal of 34.06 years. The
 calculation of composite remaining life is shown in my Exhibit BCA-2.
- 9
- 10
- 11
- 11

1 Account 365

2 Q WHAT TYPE OF PROPERTY IS CONTAINED IN ACCOUNT 365?

A This account is for Overhead Conductors and Devices. According to the FERC
Uniform System of Accounts, "This account shall include the cost installed of
overhead conductors and devices used for distribution purposes." The items
contained within this account include circuit breakers, conductors, ground wires,
insulators, lightning arresters, railroad and highway crossing guards, switches, the
initial cost of tree trimming including permits, and other line devices.

9

10 Q WHAT SURVIVOR CURVE IS FPL RECOMMENDING FOR ACCOUNT 365?

A FPL is proposing to use a 48-R1 survivor curve. That is the Iowa R1 dispersion curve
with an average service life of 48 years. This proposal yields a composite remaining
life for this account of 39.29 years and a depreciation rate of 3.67%.

14

15 Q DO YOU AGREE WITH FPL'S RECOMMENDATION FOR THE SURVIVOR CURVE 16 TO UTILIZE FOR ACCOUNT 365?

17 А No, I do not. Mr. Allis has chosen a survivor curve that does not account for a trend 18 of increasing lives. The survivor curve recommended by Mr. Allis is an excellent fit for 19 the retirements experienced between 1941-2014; however more recent retirement 20 history indicates a longer life is appropriate. Figure 3 below shows three of the 21 original survivor curves created by Mr. Allis for his actuarial analysis. All three curves 22 reflect property installed between 1941 and 2014; it is the years in which retirement 23 activity occurred that differentiates these lines. The dotted line is the overall band 24 which contains retirement experience from 1941 through 2014, the dashed line

contains retirement experience from 1985-2014, and the solid line contains the data

2 from 1995-2014.

1

Figure 3

As Figure 3 clearly shows, there is a trend of increasing lives as the older retirement history is removed from the analysis. As I stated earlier, it is the more recent retirement history that will be most indicative of the future lives of this property and while the overall band does contain all of the placement and retirement data, it should be given limited significance relative to more recent bands.

- 10
- 11

1 Q DOES THE ACTUARIAL ANALYSES PERFORMED BY MR. ALLIS SHOW THERE

2 IS A TREND OF INCREASING LIVES FOR THE PROPERTY IN THIS ACCOUNT?

3 A Yes. My Table 4 below shows the average service lives that best fit the R1 lowa

4 Curve for each experience band analyzed by Mr. Allis for property installed between

5 1941 and 2014.

TABLE 4

Account 365 – Overhead Conductors and Devices Average Service Life Associated with R1 Iowa Curve Placements: 1941-2014

 Experience Band
 1941-2014
 1985-2014
 1995-2014

 Average Service Life
 48.5
 51.9
 57.3

 Source: "160021 - OPC's 1st POD No. 2 - FPL - 2014 - Trans, Dist and Gen Plant - OLTs and Preliminary Curve Fits.pdf"
 OLTS and Section 1995-2014

6 As Table 4 shows, the average service life estimated by actuarial analysis increases

7 as the older retirement history is removed from the analysis.

8

9 Q WHAT IS YOUR RECOMMENDED SURVIVOR CURVE FOR ACCOUNT 365?

A My recommended survivor curve for this account is the 57-R1 and is shown below in
Figure 4. As can be seen in Figure 4, the 57-R1 survivor curve is a much better fit to
the FPL's retirement data that was experienced between 1995 and 2014. The SSD
for the 57-R1 is only 28 versus FPL's recommended 48-R1 which has an SSD of
1,527.

19

2 Q WHAT IS THE IMPACT ON THE ANNUAL ACCRUAL, ACCRUAL RATE, AND 3 COMPOSITE REMAINING LIFE FOR ACCOUNT 365 DUE TO A CHANGE IN THE 4 SURVIVOR CURVE?

A Changing the survivor curve for Account 365 from a 48-R1 to a 57-R1 reduces the
2017 annual accrual by \$15,040,398 to \$66,999,688. This also reduces the accrual
rate to 3.00%, down from the FPL proposal of 3.67%. The recommendation results in
a composite remaining life of 48.11 years versus FPL's proposal of 39.29 years. The
calculation of composite remaining life is shown in my Exhibit BCA-3.

10

1

- 11
- 12

1 Account 369.1

2	Q	WHAT TYPE OF PROPERTY IS CONTAINED IN ACCOUNT 369.1?									
3	А	This account is for Overhead Services. Per the FERC Uniform System of Accounts									
4		or Account 369,									
5 6 7 8 9		"This account shall include the cost installed of overhead conductors leading from a point where wires leave the last pole of the overhead system or the distribution box or the top of the pole of the distribution line, to the point of connection with the customer's outlet or wiring."									
10		The items contained within this account include brackets, cables and wires,									
11		insulators, inspection, permits, suspension wire, and service switch.									
12											
13	Q	WHAT SURVIVOR CURVE IS FPL RECOMMENDING FOR ACCOUNT 369.1?									
14	А	FPL is proposing to use a 53-R1 survivor curve. That is the Iowa R1 dispersion curve									
15		with an average service life of 53 years. This proposal yields a composite remaining									
16		life for this account of 47.09 years and a depreciation rate of 4.30%.									
17											
18	Q	DO YOU AGREE WITH FPL'S RECOMMENDATION FOR THE SURVIVOR CURVE									
19		TO UTILIZE FOR ACCOUNT 369.1?									
20	А	No, I do not. Mr. Allis has chosen a survivor curve that does not account for a trend									
21		of increasing lives. The survivor curve recommended by Mr. Allis is an excellent fit for									
22		the retirements experienced between 1941-2014; however more recent retirement									
23		history indicates a longer life is appropriate. Figure 5 below shows three of the									
24		original survivor curves created by Mr. Allis for his actuarial analysis. All three curves									
25		reflect property installed between 1941 and 2014; it is the years in which retirement									
26		activity occurred that differentiates these lines. The dotted line is the overall band									
27		which contains retirement experience from 1941 through 2014, the dashed line									

1

contains retirement experience from 1985-2014, and the solid line contains the data

2 from 1995-2014.

Figure 5

As Figure 5 clearly shows, there is a trend of increasing lives as the older retirement history is removed from the analysis. As I stated earlier, it is the more recent retirement history that will be most indicative of the future lives of this property and while the overall band does contain all of the placement and retirement data, it should be given limited significance relative to more recent bands.

- 8
- 9
- 10
- -
- 11

1 Q DOES THE ACTUARIAL ANALYSES PERFORMED BY MR. ALLIS SHOW THERE

2 IS A TREND OF INCREASING LIVES FOR THE PROPERTY IN THIS ACCOUNT?

3 A Yes. My Table 5 below shows the average service lives that best fit the R1 Iowa

4 Curve for each experience band analyzed by Mr. Allis for property installed between

5 1941 and 2014.

TABLE 5

Account 369.1 – Services - Overhead Average Service Life Associated with R1 Iowa Curve Placements: 1941-2014

6 As Table 5 shows, the average service life estimated by actuarial analysis increases

7 as the older retirement history is removed from the analysis.

8

9 Q WHAT IS YOUR RECOMMENDED SURVIVOR CURVE FOR ACCOUNT 369.1?

A My recommended survivor curve for this account is the 56-R1.5 and is shown below
in Figure 6. As can be seen in Figure 6, the 56-R1.5 survivor curve is a much better
fit to the FPL's retirement data that was experienced between 1995 and 2014. The
SSD for the 56-R1.5 is only 61 versus FPL's recommended 53-R1 which has an SSD
of 1,422.

19

1 Q WHAT IS THE IMPACT ON THE ANNUAL ACCRUAL, ACCRUAL RATE, AND 2 COMPOSITE REMAINING LIFE FOR ACCOUNT 369.1 DUE TO A CHANGE IN 3 THE SURVIVOR CURVE?

- A Changing the survivor curve for Account 369.1 from a 53-R1 to a 56-R1.5 reduces
 the 2017 annual accrual by \$1,248,505 to \$23,802,458. This also reduces the
 accrual rate to 4.08%, down from the FPL proposal of 4.30%. The recommendation
 results in a composite remaining life of 49.56 years versus FPL's proposal of 47.09
 years. The calculation of composite remaining life is shown in my Exhibit BCA-4.
- 10
- 11

1 Q DOES THIS CONCLUDE YOUR DIRECT TESTIMONY?

2 A Yes, it does.

Qualifications of Brian C. Andrews

1	Q	PLEASE STATE YOUR NAME AND BUSINESS ADDRESS.
2	А	Brian C. Andrews. My business address is 16690 Swingley Ridge Road, Suite 140,
3		Chesterfield, MO 63017.
4		
5	Q	PLEASE STATE YOUR OCCUPATION.
6	А	I am a Consultant in the field of public utility regulation with the firm of Brubaker &
7		Associates, Inc. ("BAI"), energy, economic and regulatory consultants.
8		
9	Q	PLEASE STATE YOUR EDUCATIONAL BACKGROUND AND PROFESSIONAL
10		EMPLOYMENT EXPERIENCE.
11	А	I received a Bachelor of Science Degree in Electrical Engineering from the
12		Washington University in St. Louis/University of Missouri - St. Louis Joint Engineering
13		Program. I have also received a Master of Science Degree in Applied Economics
14		from Georgia Southern University.
15		I have attended training seminars on multiple topics including class cost of
16		service, depreciation, power risk analysis, production cost modeling, cost-estimation
17		for transmission projects, transmission line routing, MISO load serving entity
18		fundamentals and more.
19		Additionally, I am a certified Engineer Intern in the State of Missouri, and I am
20		a member of the Society of Depreciation Professionals.
21		In January 2012, I accepted the position of Engineer Intern with BAI. Upon
22		graduation, in May 2012, I was offered the position of Assistant Engineer. In January
23		2014, I was promoted to Associate Consultant and in January 2016, I was promoted

1 to Consultant. At BAI. I have been involved with several regulated and competitive 2 electric service issues. These have included book depreciation, fuel and purchased 3 power cost, transmission planning, transmission line routing, resource planning 4 including renewable portfolio standards compliance, electric price forecasting, class 5 cost of service, power procurement, and rate design. This has involved use of power 6 flow, production cost, cost of service, and various other analyses and models to 7 address these issues, utilizing, but not limited to, various programs such as STRATEGIST, RealTime, PSS/E, MatLab, R Studio, ArcGIS, Excel, and the United 8 9 States Department of Energy/Bonneville Power Administration's Corona and Field 10 Effects ("CAFE") Program. Additionally, I have received extensive training on the PLEXOS Integrated Energy Model. 11

BAI was formed in April 1995. BAI provides consulting services in the economic, technical, accounting, and financial aspects of public utility rates and in the acquisition of utility and energy services through RFPs and negotiations, in both regulated and unregulated markets. Our clients include large industrial and institutional customers, some utilities and, on occasion, state regulatory agencies. We also prepare special studies and reports, forecasts, surveys and siting studies, and present seminars on utility-related issues.

In general, we are engaged in energy and regulatory consulting, economic
analysis and contract negotiation. In addition to our main office in St. Louis, the firm
also has branch offices in Phoenix, Arizona and Corpus Christi, Texas.

\\Doc\Shares\ProlawDocs\MED\10228\Testimony-BAI\301299.docx

BCA Recommended Adjustments

FLORIDA POWER AND LIGHT COMPANY

ESTIMATED SURVIVOR CURVE, NET SALVAGE, ORIGINAL COST, BOOK RESERVE AND CALCULATED REMAINING LIFE ANNUAL DEPRECIATION ACCRUALS AND RATES RELATED TO ELECTRIC PLANT IN SERVICE AS OF DECEMBER 31, 2017

	SURVIVOR CURVE (1)	NET <u>SALVAGE</u> (2)	ORIGINAL COST (3)	BOOK RESERVE (4)	FUTURE ACCRUALS (5)=(100%-(2))x(3)-(4)	COMPOSITE REMAINING LIFE (6)	ANNUAL DEPRECIATION ACCRUALS (7)=(5)/(6)	ANNUAL DEPRECIATION RATE (8)=(7)/(3)
I. FPL Proposal								
362 STATION EQUIPMENT 365 OVERHEAD CONDUCTORS AND DEVICES 369.1 SERVICES - OVERHEAD	45 - R1.5 48 - R1 53 - R1	(10) (80) (125)	1,911,232,119 2,233,914,472 583,179,472	565,016,145 797,691,076 132,503,973	1,537,339,186 3,223,354,972 1,179,649,839	34.06 39.29 47.09	45,136,206 82,040,086 25,050,963	2.36 3.67 4.30
TOTAL			4,728,326,063	1,495,211,194	5,940,343,997	39.02	152,227,255	3.22
II. BCA Proposal								
362 STATION EQUIPMENT 365 OVERHEAD CONDUCTORS AND DEVICES 369.1 SERVICES - OVERHEAD	51 - S0.5 57 - R1 56 - R1.5	(10) (80) (125)	1,911,232,119 2,233,914,472 583,179,472	565,016,145 797,691,076 132,503,973	1,537,339,186 3,223,354,972 1,179,649,839	39.51 48.11 49.56	38,910,129 66,999,688 23,802,458	2.04 3.00 4.08
TOTAL			4,728,326,063	1,495,211,194	5,940,343,997	45.80	129,712,275	2.74
III. Depreciation Expense and Rate Adjustment								
362 STATION EQUIPMENT 365 OVERHEAD CONDUCTORS AND DEVICES 369.1 SERVICES - OVERHEAD	6 - 9 - 3 -		- -	- -	- - -	5.45 8.82 2.47	(6,226,077) (15,040,398) (1,248,505)	(0.33) (0.67) (0.21)
TOTAL							(22,514,980)	(0.48)

Docket No. 160021-EI Depreciation Exhibit BCA-1, Page 1 of 1

Account 362 Station Equipment Calculation of Composite Remaining Life Related to Original Cost at December 31, 2017

Account 362 Survivor Curve 51-S0.5 Total Annual Accrual37,475,140Composite Remaining Life39.51

	Average Annual Accrual		Remaining		Future Accrual		
Year Installed	Original Cost	Life	Rate	Amount	Life	Rate	Amount
1941	\$ 28,831	51.00	1.96	\$ 565	8.71	0.1708	\$ 4,924
1942	\$ 2,916	51.00	1.96	\$ 57	9.05	0.1775	\$ 518
1944	\$ 1,146 \$ 0,217	51.00	1.96	\$ 22 ¢ 191	9.75	0.1911	\$ 219 ¢ 1.925
1945	\$ 51.499	51.00	1.90	\$ 1206	10.10	0.1980	\$ 12.602
1940	\$ 32,926	51.00	1.96	\$ 646	10.45	0.2049	\$ 6.976
1948	\$ 75.241	51.00	1.96	\$ 1.475	11.16	0.2189	\$ 16,467
1949	\$ 165.404	51.00	1.96	\$ 3,243	11.52	0.2259	\$ 37,365
1950	\$ 117.001	51.00	1.96	\$ 2,294	11.88	0.2330	\$ 27.261
1951	\$ 171,323	51.00	1.96	\$ 3,359	12.25	0.2401	\$ 41,142
1952	\$ 76,923	51.00	1.96	\$ 1,508	12.61	0.2473	\$ 19,027
1953	\$ 249,994	51.00	1.96	\$ 4,902	12.98	0.2546	\$ 63,650
1954	\$ 445,754	51.00	1.96	\$ 8,740	13.36	0.2619	\$ 116,755
1955	\$ 491,062	51.00	1.96	\$ 9,629	13.73	0.2693	\$ 132,246
1956	\$ 566,904	51.00	1.96	\$ 11,116	14.11	0.2768	\$ 156,891
1957	\$ 390,069	51.00	1.96	\$ 7,648	14.50	0.2843	\$ 110,882
1958	\$ 1,059,911	51.00	1.96	\$ 20,783	14.88	0.2918	\$ 309,325
1959	\$ 844,191	51.00	1.96	\$ 16,553	15.27	0.2995	\$ 252,827
1960	\$ 885,211	51.00	1.96	\$ 17,357	15.67	0.3072	\$ 271,948
1961	\$ 675,888	51.00	1.96	\$ 13,253	16.07	0.3150	\$ 212,913
1962	\$ 1,143,691	51.00	1.96	\$ 22,425	16.47	0.3229	\$ 369,286
1905	\$ 1,495,438 \$ 2,042,064	51.00	1.96	\$ 29,322 \$ 40.079	10.67	0.3308	\$ 494,703
1904	\$ 2,043,504	51.00	1.90	\$ 58.830	17.28	0.3389	\$ 1.041.170
1966	\$ 2 975 856	51.00	1.96	\$ 58,350	18 12	0.3552	\$ 1,041,170
1967	\$ 4.717.915	51.00	1.96	\$ 92.508	18.54	0.3635	\$ 1.715.193
1968	\$ 9,069,315	51.00	1.96	\$ 177,830	18.97	0.3720	\$ 3,373,376
1969	\$ 2,817,925	51.00	1.96	\$ 55,253	19.40	0.3805	\$ 1,072,106
1970	\$ 10,238,916	51.00	1.96	\$ 200,763	19.84	0.3891	\$ 3,983,610
1971	\$ 7,257,861	51.00	1.96	\$ 142,311	20.29	0.3978	\$ 2,887,006
1972	\$ 10,389,176	51.00	1.96	\$ 203,709	20.74	0.4066	\$ 4,224,191
1973	\$ 6,683,396	51.00	1.96	\$ 131,047	21.19	0.4155	\$ 2,777,123
1974	\$ 11,270,041	51.00	1.96	\$ 220,981	21.65	0.4246	\$ 4,784,932
1975	\$ 10,530,627	51.00	1.96	\$ 206,483	22.12	0.4337	\$ 4,567,497
1976	\$ 4,721,315	51.00	1.96	\$ 92,575	22.59	0.4430	\$ 2,091,639
1977	\$ 3,339,147	51.00	1.96	\$ 65,473	23.07	0.4524	\$ 1,510,737
1978	\$ 3,303,488	51.00	1.96	\$ 64,774	23.56	0.4620	\$ 1,526,124
1979	\$ 4,668,052	51.00	1.96	\$ 91,530	24.05	0.4716	\$ 2,201,680
1980	\$ 10,414,997 \$ 11,720,497	51.00	1.96	\$ 204,210	24.55	0.4815	\$ 5,014,422 \$ 5,759,648
1982	\$ 16,160,909	51.00	1.96	\$ 316.881	25.58	0.5015	\$ 8,104,991
1983	\$ 10,022,484	51.00	1.96	\$ 196,519	26.10	0.5118	\$ 5.129.213
1984	\$ 8,854,594	51.00	1.96	\$ 173,619	26.63	0.5222	\$ 4,623,678
1985	\$ 13,773,729	51.00	1.96	\$ 270,073	27.17	0.5327	\$ 7,337,905
1986	\$ 17,189,722	51.00	1.96	\$ 337,053	27.72	0.5435	\$ 9,342,261
1987	\$ 18,015,166	51.00	1.96	\$ 353,239	28.27	0.5544	\$ 9,987,293
1988	\$ 19,331,782	51.00	1.96	\$ 379,055	28.84	0.5655	\$ 10,931,361
1989	\$ 38,347,064	51.00	1.96	\$ 751,903	29.41	0.5767	\$ 22,115,480
1990	\$ 56,244,012	51.00	1.96	\$ 1,102,824	30.00	0.5882	\$ 33,080,651
1991	\$ 60,354,412	51.00	1.96	\$ 1,183,420	30.59	0.5998	\$ 36,200,474
1992	\$ 55,822,192	51.00	1.96	\$ 1,094,553	31.19	0.6116	\$ 34,142,546
1993	\$ 34,567,948	51.00	1.96	\$ 677,803	31.81	0.6237	\$ 21,558,907
1994	\$ 23,500,033 \$ 1/ 110 /1/	51.00	1.90	\$ 470,309 \$ 276.851	32.43	0.0339	 <i>μ</i> = μ = μ = μ = μ = μ = μ = μ = μ = μ =
1995	\$ 17 228 320	51.00	1.90	\$ 270,831	33.07	0.0484	\$ 11 388 854
1997	\$ 28.596.145	51.00	1.96	\$ 560.709	34.37	0.6740	\$ 19.272.711
1998	\$ 26,980,140	51.00	1.96	\$ 529.022	35.04	0.6871	\$ 18.538.125
1999	\$ 41,923,967	51.00	1.96	\$ 822,039	35.72	0.7005	\$ 29,367,025
2000	\$ 56,779,452	51.00	1.96	\$ 1,113,323	36.42	0.7141	\$ 40,546,741
2001	\$ 53,821,029	51.00	1.96	\$ 1,055,314	37.13	0.7280	\$ 39,181,092
2002	\$ 63,250,785	51.00	1.96	\$ 1,240,211	37.85	0.7421	\$ 46,940,118
2003	\$ 69,787,213	51.00	1.96	\$ 1,368,377	38.58	0.7565	\$ 52,796,238
2004	\$ 49,971,565	51.00	1.96	\$ 979,835	39.33	0.7712	\$ 38,538,533
2005	\$ 58,153,381	51.00	1.96	\$ 1,140,262	40.09	0.7862	\$ 45,718,247
2006	\$ 62,935,447	51.00	1.96	\$ 1,234,028	40.87	0.8014	\$ 50,437,141
2007	\$ 49,870,120 \$ 40,055,770	51.00	1.90	> 9//,963 ¢ 070 E2E	41.00	0 8000	\$ 40,746,226 \$ 41,602,527
2008	> 43,355,773 ¢ 40,375,007	51.00	1.90	> 3/3,525 ¢ 701 601	42.47	0.0328	\$ 41,002,527 \$ 24,276,440
2009	\$ 22,415,508	51.00	1.90	\$ /39,084	43.30	0.84654	\$ 10 208 281
2010	\$ 57.727.911	51.00	1.96	\$ 1,131.920	44.99	0.8822	\$ 50.926.447
2012	\$ 33.963.154	51.00	1.96	\$ 665.944	45.86	0.8993	\$ 30.542.972
2013	\$ 49,992,488	51.00	1.96	\$ 980,245	46.75	0.9168	\$ 45,830,854
2014	\$ 78,243,333	51.00	1.96	\$ 1,534,183	47.66	0.9346	\$ 73,123,445
2015	\$ 112,738,888	51.00	1.96	\$ 2,210,566	48.59	0.9527	\$ 107,410,994
2016	\$ 191,061,698	51.00	1.96	\$ 3,746,308	49.54	0.9713	\$ 185,579,636
2017	\$ 180,508,294	51.00	1.96	\$ 3,539,378	50.51	0.9903	\$ 178,758,448
Total	\$ 1,911,232,119		1	\$ 37,475,140	39.51	1	\$ 1,480,825,417

Account 365 Overhead Conductors and Devices Calculation of Composite Remaining Life Related to Original Cost at December 31, 2017

Account 365 Survivor Curve 57-R1 Total Annual Accrual Composite Remaining Life 39,191,482 48.11

			Average Annual Accrual			Future Accrual		
Year Installed	Original Cost	Life	Rate	Amount	Life	Rate	Amount	
1941	\$ 570,915	57.00	1.75	\$ 10,016	12.51	0.2195	\$ 125,340	
1942	\$ 101,818	57.00	1.75	\$ 1,786	12.90	0.2263	\$ 23,039	
1943	\$ 18,943	57.00	1.75	\$ 332	13.29	0.2331	\$ 4,416	
1944	\$ 17,061	57.00	1.75	\$ 299	13.68	0.2400	\$ 4,095	
1945	\$ 38,000	57.00	1.75	\$ 667	14.08	0.2470	\$ 9,386	
1946	\$ 144,703	57.00	1.75	\$ 2,539	14.48	0.2541	\$ 36,766	
1947	\$ 262,274	57.00	1.75	\$ 4,601	14.89	0.2613	\$ 68,519	
1948	\$ 357,207	57.00	1.75	\$ 6,267	15.31	0.2685	\$ 95,914	
1949	\$ 533,170	57.00	1.75	\$ 9,354	15.72	0.2759	\$ 147,079	
1950	\$ 505,179	57.00	1.75	\$ 8,863	16.15	0.2833	\$ 143,117	
1951	\$ 292,915	57.00	1.75	\$ 5,139	16.58	0.2908	\$ 85,190	
1952	\$ 331,549	57.00	1.75	\$ 5,817	17.01	0.2985	\$ 98,955	
1953	\$ 226,381	57.00	1.75	\$ 3,972	17.45	0.3062	\$ 69,315	
1954	\$ 225,363	57.00	1.75	\$ 3,954	17.90	0.3140	\$ 70,766	
1955	\$ 187,138	57.00	1.75	\$ 3,283	18.35	0.3219	\$ 60,245	
1956	\$ 107,138	57.00	1.75	\$ 1,880	18.81	0.3299	\$ 35,350	
1957	\$ 218,067	57.00	1.75	\$ 3,826	19.27	0.3381	\$ 73,720	
1958	\$ 256,711	57.00	1.75	\$ 4,504	19.74	0.3463	\$ 88,895	
1959	\$ 292,872	57.00	1.75	\$ 5,138	20.21	0.3546	\$ 103,853	
1960	\$ 342,292	57.00	1.75	\$ 6,005	20.69	0.3630	\$ 124,261	
1961	\$ 867,500	57.00	1.75	\$ 15,219	21.18	0.3716	\$ 322,321	
1962	\$ 944,368	57.00	1.75	\$ 16,568	21.67	0.3802	\$ 359,035	
1963	\$ 1,082,040	57.00	1.75	\$ 18,983	22.17	0.3889	\$ 420,829	
1964	\$ 1,360,660	57.00	1.75	\$ 23,871	22.67	0.3978	\$ 541,219	
1965	\$ 1,372,596	57.00	1.75	\$ 24,081	23.18	0.4067	\$ 558,250	
1966	\$ 1,628,768	57.00	1.75	\$ 28,575 \$ 25,270	23.70	0.4158	5 6//,192 6 054.445	
1967	\$ 2,010,705	57.00	1.75	\$ 35,276 \$ 40,200	24.22	0.4249	\$ 854,415	
1908	> 2,3U2,253	57.00	1.75	\$ 40,390 \$ 67,364	24.75	0.4342	> 999,041 ¢ 1,703,465	
1070	\$ 3,833,000 \$ 0,022,404	57.00	1.75	2 07,301 C 1E0 100	23.28	0.4430	\$ 1,705,105	
1970	γ 3,033,491 ζ 6,289,255	57.00	1.75	\$ 100,402 \$ 112.076	23.82	0.4551	γ 4,092,785 ζ 2 655 650	
1972	\$ 8,927,775	57.00	1.75	\$ 156.628	26.97	0.4027	\$ 4 217 133	
1973	\$ 8,896,376	57.00	1.75	\$ 156,020	27.48	0.4822	\$ 4 289 542	
1974	\$ 8,319,129	57.00	1.75	\$ 145,950	28.05	0.4921	\$ 4.093.723	
1975	\$ 8,977,045	57.00	1.75	\$ 157,492	28.62	0.5021	\$ 4,507,433	
1976	\$ 7,830,896	57.00	1.75	\$ 137,384	29.20	0.5122	\$ 4,011,218	
1977	\$ 7,387,292	57.00	1.75	\$ 129,602	29.78	0.5225	\$ 3,859,539	
1978	\$ 9,445,894	57.00	1.75	\$ 165,717	30.37	0.5328	\$ 5,032,699	
1979	\$ 16,568,110	57.00	1.75	\$ 290,669	30.96	0.5432	\$ 9,000,235	
1980	\$ 18,259,852	57.00	1.75	\$ 320,348	31.56	0.5538	\$ 10,111,529	
1981	\$ 17,096,392	57.00	1.75	\$ 299,937	32.17	0.5644	\$ 9,648,954	
1982	\$ 13,949,771	57.00	1.75	\$ 244,733	32.78	0.5751	\$ 8,022,742	
1983	\$ 17,778,309	57.00	1.75	\$ 311,900	33.40	0.5859	\$ 10,416,995	
1984	\$ 22,056,876	57.00	1.75	\$ 386,963	34.02	0.5968	\$ 13,164,635	
1985	\$ 20,950,409	57.00	1.75	\$ 367,551	34.65	0.6078	\$ 12,734,664	
1986	\$ 21,698,395	57.00	1.75	\$ 380,674	35.28	0.6189	\$ 13,430,013	
1987	\$ 25,224,046	57.00	1.75	\$ 442,527	35.92	0.6301	\$ 15,894,021	
1988	\$ 33,395,952	57.00	1.75	\$ 585,894	36.56	0.6414	\$ 21,419,015	
1989	\$ 40,769,641	57.00	1.75	\$ 715,257	37.20	0.6527	\$ 26,610,057	
1990	\$ 44,078,469	57.00	1.75	\$ 773,306	37.85	0.6641	\$ 29,272,618	
1991	\$ 36,269,351	57.00	1.75	\$ 636,304	38.51	0.6756	\$ 24,502,876	
1992	\$ 31,020,465	57.00	1.75	\$ 544,219	39.17	0.6871	\$ 21,314,937	
1993	\$ 38,840,856	57.00	1.75	\$ 681,419	39.83	0.6987	\$ 27,139,355	
1994	20,928,400 \$ 22,972,125	57.00	1.75	\$ 4/2,428 \$ 110.007	40.49	0.7104	\$ 17,13U,123 \$ 17,220,70E	
1006	\$ 22,073,123	57.00	1.75	\$ 200.262	41.10	0.7221	\$ 16 226 105	
1990	\$ 24,244,505	57.00	1.75	\$ <u>1</u> 21 952	41.00	0.7355	\$ 18 361 530	
1997	\$ 20 772 212	57.00	1.75	γ +31,332 \$ 520,324	42.31	0.7438	ς 22 802 700	
1990	\$ 29 086 968	57.00	1.75	\$ 510,254 \$ 510,254	43.13	0.7696	\$ 22,030,703	
2000	\$ 35 399 6 <i>4</i> 1	57.00	1 75	\$ 621.046	44 55	0 7816	\$ 27,667,333	
2001	\$ 29.899.291	57.00	1.75	\$ 524,549	45.24	0,7936	\$ 23.728.013	
2002	\$ 37.000.718	57.00	1.75	\$ 649.135	45.92	0.8057	\$ 29.810.521	
2003	\$ 52.099.200	57.00	1.75	\$ 914.021	46.61	0.8178	\$ 42.606.587	
2004	\$ 42,670,834	57.00	1.75	\$ 748,611	47.31	0.8300	\$ 35,415,424	
2005	\$ 55,211,155	57.00	1.75	\$ 968,617	48.00	0.8422	\$ 46,498,164	
2006	\$ 67,963,338	57.00	1.75	\$ 1,192,339	48.70	0.8545	\$ 58,072,261	
2007	\$ 51,704,148	57.00	1.75	\$ 907,090	49.41	0.8668	\$ 44,816,978	
2008	\$ 46,002,919	57.00	1.75	\$ 807,069	50.11	0.8792	\$ 40,445,008	
2009	\$ 44,316,211	57.00	1.75	\$ 777,477	50.82	0.8916	\$ 39,513,537	
2010	\$ 43,439,316	57.00	1.75	\$ 762,093	51.54	0.9041	\$ 39,274,983	
2011	\$ 53,030,756	57.00	1.75	\$ 930,364	52.25	0.9167	\$ 48,613,553	
2012	\$ 51,840,905	57.00	1.75	\$ 909,490	52.97	0.9293	\$ 48,177,675	
2013	\$ 79,850,399	57.00	1.75	\$ 1,400,884	53.70	0.9420	\$ 75,221,679	
2014	\$ 140,383,761	57.00	1.75	\$ 2,462,873	54.42	0.9548	\$ 134,038,125	
2015	\$ 268,809,881	57.00	1.75	\$ 4,/15,963	55.16	0.9676	\$ 260,109,427	
2010	\$ 252,234,333 \$ 251 /79 103	57.00	1.75	\$ 4,074,290 \$ A A11 007	56.63	0.5605	\$ 241,/14,000 \$ 240,846,001	
2017	ې ۲۵۱٬4/۵٫۱۵۲ ک	57.00	1.73	, →,411,07/	50.05	0.3333	, ∠+3,040,001	
Total	\$ 2,233.914.472	1	1	\$ 39,191.482	48.11	1	\$ 1,885.557.644	
	,,			,				

Account 369.1 Services - Overhead Calculation of Composite Remaining Life Related to Original Cost at December 31, 2017

Account 369.1 Survivor Curve 56-R1.5 Total Annual Accrual Composite Remaining Life 10,413,919 49.56

		Average Annual Accrual		Remaining	Future Accrual		
Year Installed	Original Cost	Life	Rate	Amount	Life	Rate	Amount
1941	\$ 70,554	56.00	1.79	\$ 1,260	10.17	0.1816	\$ 12,815
1942	\$ 14,833	56.00	1.79	\$ 265	10.49	0.1872	\$ 2,777
1943	\$ 5,400	56.00	1.79	\$ 96	10.80	0.1929	\$ 1,042
1944	\$ 2,698	56.00	1.79	\$ 48	11.13	0.1987	\$ 536
1945	\$ 10,304	56.00	1.79	\$ 184	11.46	0.2046	\$ 2,108
1946	\$ 26,060	56.00	1.79	\$ 465 ¢ 1.222	11.79	0.2106	\$ 5,488
1947	\$ 74,071	56.00	1.79	\$ 1,323	12.14	0.2167	\$ 16,054
1948	\$ 99,231	56.00	1.79	\$ 1,772	12.49	0.2230	\$ 22,126
1949	\$ 242,307	56.00	1.79	\$ 4,326 \$ 4,667	12.64	0.2293	\$ 55,584 \$ 61,636
1950	\$ 201,348	56.00	1.79	\$ 4,007	13.21	0.2358	\$ 62,784
1951	\$ 349.990	56.00	1.75	\$ 6,024	13.96	0.2423	\$ 87.239
1953	\$ 318 665	56.00	1.79	\$ 5,690	14 35	0.2562	\$ 81.640
1954	\$ 332 921	56.00	1.79	\$ 5,050	14.55	0.2633	\$ 87,650
1955	\$ 431 932	56.00	1.79	\$ 7,713	15 15	0.2005	\$ 116.843
1956	\$ 461,208	56.00	1.79	\$ 8,236	15.56	0.2779	\$ 128,173
1957	\$ 528.181	56.00	1.79	\$ 9.432	15.99	0.2855	\$ 150.776
1958	\$ 531,445	56.00	1.79	\$ 9,490	16.42	0.2932	\$ 155,810
1959	\$ 479,560	56.00	1.79	\$ 8,564	16.86	0.3011	\$ 144,380
1960	\$ 453,755	56.00	1.79	\$ 8,103	17.31	0.3091	\$ 140,263
1961	\$ 454,990	56.00	1.79	\$ 8,125	17.77	0.3173	\$ 144,382
1962	\$ 499,121	56.00	1.79	\$ 8,913	18.24	0.3257	\$ 162,571
1963	\$ 500,033	56.00	1.79	\$ 8,929	18.72	0.3343	\$ 167,145
1964	\$ 489,437	56.00	1.79	\$ 8,740	19.21	0.3430	\$ 167,871
1965	\$ 477,959	56.00	1.79	\$ 8,535	19.70	0.3519	\$ 168,181
1966	\$ 513,909	56.00	1.79	\$ 9,177	20.21	0.3609	\$ 185,481
1967	\$ 628,281	56.00	1.79	\$ 11,219	20.73	0.3701	\$ 232,555
1968	\$ 781,749	56.00	1.79	\$ 13,960	21.25	0.3795	\$ 296,698
1969	\$ 833,032	56.00	1.79	\$ 14,876	21.79	0.3891	\$ 324,114
1970	\$ 1,019,609	56.00	1.79	\$ 18,207	22.33	0.3988	\$ 406,605
1971	\$ 1,025,430	56.00	1.79	\$ 18,311	22.88	0.4087	\$ 419,043
1972	\$ 1,268,759	56.00	1.79	\$ 22,656	23.45	0.4187	\$ 531,210
1973	\$ 1,256,093	56.00	1.79	\$ 22,430 \$ 10,229	24.02	0.4289	\$ 538,702 \$ 472.165
1974	\$ 1,077,310	56.00	1.79	\$ 19,238 \$ 10,019	24.00	0.4392	\$ 473,105 \$ 479,025
1975	\$ 1,004,555	56.00	1.79	\$ 19,018	25.18	0.4497	\$ 572.080
1970	\$ 1,242,750	56.00	1.79	\$ 26,192	25.78	0.4003	\$ 605.825
1978	\$ 1 524 693	56.00	1.75	\$ 20,374	27.00	0.4711	\$ 735.004
1979	\$ 2,677,648	56.00	1.75	\$ 47,815	27.00	0.4821	\$ 1 320 459
1980	\$ 2,779.261	56.00	1.79	\$ 49.630	28.24	0.5044	\$ 1.401.729
1981	\$ 2,425,787	56.00	1.79	\$ 43,318	28.88	0.5157	\$ 1,251,002
1982	\$ 1.885.467	56.00	1.79	\$ 33.669	29.52	0.5272	\$ 994.018
1983	\$ 3,058,814	56.00	1.79	\$ 54,622	30.17	0.5388	\$ 1,648,146
1984	\$ 3,569,666	56.00	1.79	\$ 63,744	30.83	0.5506	\$ 1,965,326
1985	\$ 3,830,347	56.00	1.79	\$ 68,399	31.50	0.5624	\$ 2,154,312
1986	\$ 3,673,629	56.00	1.79	\$ 65,601	32.17	0.5744	\$ 2,110,250
1987	\$ 3,956,954	56.00	1.79	\$ 70,660	32.85	0.5865	\$ 2,320,944
1988	\$ 4,187,236	56.00	1.79	\$ 74,772	33.53	0.5988	\$ 2,507,224
1989	\$ 4,736,577	56.00	1.79	\$ 84,582	34.22	0.6111	\$ 2,894,608
1990	\$ 4,983,658	56.00	1.79	\$ 88,994	34.92	0.6236	\$ 3,107,668
1991	\$ 4,659,939	56.00	1.79	\$ 83,213	35.62	0.6361	\$ 2,964,352
1992	\$ 3,790,753	56.00	1.79	\$ 67,692	36.33	0.6488	\$ 2,459,441
1993	\$ 4,196,728	56.00	1.79	\$ 74,942	37.05	0.6616	\$ 2,776,401
1994	\$ 4,615,686	56.00	1.79	\$ 82,423	37.77	0.6744	\$ 3,112,918
1995	\$ 3,995,295	56.00	1.79	\$ 71,345	38.49	0.6874	\$ 2,746,287
1996	\$ 3,783,483	56.00	1.79	\$ 67,562	39.22	0.7004	\$ 2,650,064
1997	\$ 3,771,443	50.00	1.79	\$ 67,347	39.96	0.7136	\$ 2,691,172
1998	> 3,759,044	50.00	1.79	> b/,12b	40.70	0.7208	> 2,/32,01/ ¢ 2,077,010
1333	> 4,023,000 \$ 4,673,777	56.00	1.79	\$ /1,000 \$ 92.440	41.44	0.7401	\$ 2,577,613
2000	÷ 4,072,777	56.00	1.75	ຸ 05,442 ຊີ ຊາຊຊດ	42.13	0.7555	\$ 2,520,820 \$ 2,547,112
2001	\$ 5 615 895	56.00	1 79	\$ 100 284	43 71	0 7805	\$ 4 383 109
2002	\$ 6.467.202	56.00	1.79	\$ 115.486	44,47	0.7941	\$ 5.135.597
2003	\$ 6.628.852	56.00	1.79	\$ 118.372	45.24	0.8078	\$ 5,354,745
2005	\$ 14,623.427	56.00	1.79	\$ 261,133	46.01	0.8216	\$ 12,014.124
2006	\$ 10,987,785	56.00	1.79	\$ 196,210	46.78	0.8354	\$ 9,179,350
2007	\$ 16,939,523	56.00	1.79	\$ 302,491	47.56	0.8493	\$ 14,387,331
2008	\$ 2,687,214	56.00	1.79	\$ 47,986	48.35	0.8633	\$ 2,319,952
2009	\$ 8,035,125	56.00	1.79	\$ 143,484	49.13	0.8774	\$ 7,050,054
2010	\$ 7,978,992	56.00	1.79	\$ 142,482	49.93	0.8916	\$ 7,113,697
2011	\$ 8,262,703	56.00	1.79	\$ 147,548	50.72	0.9058	\$ 7,484,151
2012	\$ 8,976,244	56.00	1.79	\$ 160,290	51.52	0.9201	\$ 8,258,769
2013	\$ 10,058,511	56.00	1.79	\$ 179,616	52.33	0.9344	\$ 9,399,053
2014	\$ 13,716,886	56.00	1.79	\$ 244,944	53.14	0.9489	\$ 13,015,742
2015	\$ 55,342,499	56.00	1.79	\$ 988,259	53.95	0.9634	\$ 53,317,137
2016	\$ 143,210,232	56.00	1.79	\$ 2,557,326	54.77	0.9780	\$ 140,058,652
2017	\$ 154,901,049	56.00	1.79	\$ 2,766,090	55.59	0.9927	\$ 153,763,323
Total	\$ 583,179,472			\$ 10,413,919	49.56		\$ 516,124,172