

Kenneth M. Rubin Senior Counsel Florida Power & Light Company 700 Universe Boulevard Juno Beach, FL 33408-0420 (561) 691-2512 (561) 691-7135 (Facsimile) E-mail: Ken.rubin@fpl.com

April 16, 2018

-VIA ELECTRONIC FILING-

Ms. Carlotta S. Stauffer, Commission Clerk Office of Commission Clerk Florida Public Service Commission 2540 Shumard Oak Boulevard Tallahassee, FL 32399-0850

Re: Docket No. 20170215-EU

Dear Ms. Stauffer:

Enclosed for filing is Florida Power & Light Company's Power Point presentation for the Commission Workshop scheduled for May 2-3, 2018.

If you should have any questions regarding this transmittal, please contact me at (561) 691-2512.

Respectfully submitted,

<u>/s/ Kenneth M. Rubin</u> Kenneth M. Rubin Fla. Bar No. 349038

Enclosures cc: Counsel for Parties of Record (w/encl.)

Florida Power & Light Company

May 2, 2018 FPSC Workshop Storm Preparedness/Response

Bryan Olnick, Vice-President - Distribution Operations

FPL Power Delivery (Transmission and Distribution) 3,000 employees serving more than 75,000 miles of power lines half of Florida 1.2 million poles and structures vast majority of customers 600+ substations live within 20 miles of coast CHANGING THE CURRENT.

Requested Workshop Presentation Topics

- Overview Prevention & Restoration
- Infrastructure Performance Hardened vs. Non-hardened / Other
- Infrastructure Performance Overhead vs. Underground Facilities
- Impediments to Restoration
- Customer and Stakeholder Communication
- Suggested Improvements

2016 & 2017 Storm Seasons Overview

- FPL's service territory threatened with Category 4 and 5 storms
- Hurricanes Matthew and Irma were massive storms that impacted FPL's entire service territory
- For both Matthew and Irma, FPL's infrastructure hardening investments, storm preparedness initiatives and well-tested storm restoration processes resulted in improved infrastructure resiliency performance and reduced restoration times

Overview - Prevention & Restoration

- Infrastructure hardening
- Smart grid / technology
- Pole/structure inspections
- Tree trimming / vegetation management

- Storm preparedness
- Restoration

Infrastructure Hardening - Distribution

Investments in feeder hardening have reduced outages and restoration times

- Day-to-day and storm reliability benefits
- 95% of CIF/Community feeders hardened
- >40% of all feeders hardened / UG
- By 2024, 100% of feeders hardened / UG

Consistently supports municipal OH to UG conversions

Hardening does not prevent all outages, but provides for faster restoration when outages occur

Infrastructure Hardening - Transmission

Two initiatives completed

- Replaced all ceramic post insulators (line protective device) – Wilma lesson learned
- Installed flood monitoring/mitigation equipment in over one-third of FPL's substations - Sandy lesson learned

Replacing all wood structures

- >90% are now steel / concrete
- 100% steel / concrete by 2022

Hardened transmission system performed well during Matthew and Irma

Smart Grid / Technology

Automated Feeder Switches (AFS)

- Self-healing technology
- Help avoid customer interruptions day-to-day and storms

Drones

- Facilitate damage assessments
- Mobile Command Centers/Community Response Vehicles/Mobile Office Containers
 - Deployed to storm impacted areas

Smart Meters

Help reduce restoration time – day-to-day / storms

Pole / Structure Inspections

FPL annually inspects / tests for strength and loading

1.2 million distribution poles

- Annually inspect/test 1/8 of system (wood/concrete)
- First 8-year cycle completed; 50% through second cycle

65,000 transmission structures

- Visually inspect 100% of structures annually
- Strength/load test: Wood (6-year cycle); concrete (10-yr. cycle)

Tree Trimming / Vegetation Management

Distribution

- Trim 15,000 miles annually
- Feeders: 3-yr. avg. cycle
- Laterals: 6-yr. avg. cycle
- Before peak of storm season inspect/trim all CIF feeders

Transmission

- Meet mandatory NERC-established requirements
- Inspect at least 2 times per year
- Maintain clearances on all 6,900 miles annually

Storm Preparedness

Preparations

- Storm preparedness is a year-round focus
- Train all storm functions for understanding / process efficiency
- Conduct annual corporate-wide storm drill
- Conduct annual staging site drill
- Secure contractor/mutual aid agreements
- Secure staging sites/logistics agreements
- Increase material and supply inventories

Restoration

Hurricanes Matthew & Irma

- Most severe storms to impact FPL in recent history
- Both impacted FPL's entire service territory
- Irma, slow moving & much more damaging
- Largest resource pre-staging events in FPL's history

CHANGING THE CURRENT.

EPL

	Wilma	Matthew	Irma
Customer outages	3.2M	1.2M	4.4M
Staging sites	20	22	29
% Restored / days	50% / 5	99% / 2	50% / 1
All restored (days)	18	4	10
Avg. days to restore	5.4	>1	2.1

Requested Workshop Presentation Topics

- Overview Prevention & Restoration
- Infrastructure Performance Hardened vs. Non-hardened / Other
- Infrastructure Performance Overhead vs. Underground Facilities
- Impediments to Restoration
- Customer and Stakeholder Communication
- Suggested Improvements

Infrastructure Performance – Hardened vs. Non-hardened / Other

Distribution Poles / Feeders

Transmission Structures / Flood Mitigation

Smart Grid / Technology

Infrastructure Performance – Distribution Poles / Feeders

Pole failures	Hardened	Non-hardened	
Matthew	0	408	
Irma	26	2,834	
Feeders (outages) – Hardened vs. Non-hardened			
Matthew	Hardened - 32% better		
Irma	Hardened – 16% better		
Feeders (restoration) - Hardened vs. Non-bardened			

Irma

Hardened – 50% faster

Hardened facilities performed significantly better than non-hardened facilities

Infrastructure Performance – Transmission Structures & Flood Mitigation

Structure failures	Hardened	Non-hardened
Matthew	0	0
Irma	0	5

Substations pro-actively de-energized as a result of flood monitoring system notifications

Matthew	1
Irma	2

Transmission system performed well overall, with hardened facilities performing better than non-hardened facilities

Infrastructure Performance – Smart Grid / Technology

Self-healing AFS avoided customer outages

- Matthew 118,000
- Irma 546,000

Drones facilitated damage assessments, reducing restoration time

Mobile Command Centers & Community Response Vehicles enabled situational awareness and improved customer interactions

Smart meters reduced restoration times

Requested Workshop Presentation Topics

18

- Overview Prevention & Restoration
- Infrastructure Performance Hardened vs. Non-hardened / Other
- Infrastructure Performance Overhead vs. Underground Facilities
- Impediments to Restoration
- Customer and Stakeholder Communication
- Suggested Improvements

Infrastructure Performance – Overhead vs. Underground Facilities

Infrastructure Performance – Overhead vs. Underground Facilities

Feeder Outages			
	Matthew	Irma	
Hybrid vs. Underground	Underground 94% better	Underground 66% better	
Overhead vs. Underground	Underground 96% better	Underground 78% better	

Lateral outages		
	Matthew	Irma
Overhead vs. Underground	Underground 95% better	Underground 83% better

Note - Hybrid feeders consist of both OH and UG facilities

Underground facilities performed significantly better than overhead facilities

Infrastructure Performance – Primary Outage Causes

Infrastructure Performance – Primary Outage Causes

Requested Workshop Presentation Topics

22

- Overview Prevention & Restoration
- Infrastructure Performance Hardened vs. Non-hardened / Other
- Infrastructure Performance Overhead vs. Underground Facilities
- Impediments to Restoration
- Customer and Stakeholder Communication
- Suggested Improvements

Impediments to Restoration

Uprooted / broken trees

- Wrong trees in the wrong place was the primary cause of outages
- Downed trees also required clearing to gain access, extending restoration
- Storm surge / flooding
 - Delayed restoration access / repairs

Traffic congestion Extended crews travel time

Requested Workshop Presentation Topics

25

- Overview Prevention & Restoration
- Infrastructure Performance Hardened vs. Non-hardened / Other
- Infrastructure Performance Overhead vs. Underground Facilities
- Impediments to Restoration
- Customer and Stakeholder Communication
- Suggested Improvements

Customer and Stakeholder Communication

Expanded digital/face-to-face communications

Frequently used Facebook Live broadcasts to provide broad restoration updates

Targeted social posts with area-specific information

Pushed texted communications to update customers

Launched new FPL Mobile App for easy access to information

Established community response kiosks in hardest hit areas

27

Proactive local stakeholder engagement

- FPL personnel, staffed at 32 EOCs, maintained steady contact with 100% of counties served
 - FPL President/CEO hosted multiple conference calls with key local government leaders to provide updates/obtain input
- Company leaders (at times accompanied by local leaders) made daily in-person site visits to impacted areas
- Sent daily e-mail updates and provided hourly updates to Governmental Portal website with franchise-level information

Key communication improvements

Digital Systems

 Completed initial system improvements to ensure the capacity of our digital systems can now handle extreme volumes of customer traffic – even beyond the volume experienced during Hurricane Irma.

Restoration Information

 Working to provide more consistent, accurate and timely restoration information to our customers and stakeholders.

29

Requested Workshop Presentation Topics

30

- Overview Prevention & Restoration
- Infrastructure Performance Hardened vs. Non-hardened / Other
- Infrastructure Performance Overhead vs. Underground Facilities
- Impediments to Restoration
- Customer and Stakeholder Communication
- Suggested Improvements

Suggested Improvements

2018-2020 Underground Lateral Pilot

- Initiated primarily as a result of Matthew/Irma learnings
- Will provide valuable insight for future lateral overhead to underground conversions
 - Barriers
 - Experience with infrastructure design options
 - Customer acceptance/resistance/participation
 - Customer property repairs/meter can conversions
 - Easements/land rights
 - Permitting/municipal coordination
 - Project duration
 - Resource/cost impacts
 - Pole attachment considerations
- Involves laterals spread throughout all 16 FPL management areas and 10 of the most populated counties in FPL's service territory
- Estimating construction to begin July 2018

Suggested Improvements (continued)

Vegetation Management

 Change state laws/local ordinances to adopt/enforce "Right Tree, Right Place" philosophy and provide utilities' rights to clear/remove vegetation near electric facilities – including outside of rights-of-way or easements

Pole Inspections

Work with legislature to enact law requiring pole inspection program for non-electric utilities that own poles with electric facilities attached

20

Questions?

