Hopping Green & Sams

Attorneys and Courselors

Writer's Direct Dial No. (850) 425-2359

April 12, 2019

BY E-FILING

Adam Teitzman Commission Clerk Florida Public Service Commission 2540 Shumard Oak Boulevard Tallahassee, FL 32399

> Re: In re: Commission review of numeric conservation goals (JEA), Docket No. 20190020-EG

Dear Mr. Teitzman:

Enclosed for filing on behalf of JEA in the above docket are the following:

- JEA's Petition for Approval of Numeric Conservation Goals;
- Pre-filed Testimony of **Donald P. Wucker**, along with attached Exhibit Nos. _____ [DPW-1] through ____ [DPW-7]; and
- Pre-filed Testimony of **Bradley E. Kushner**, along with attached Exhibit Nos. _____ [BEK-1] through ___ [BEK-3].

By copy of this letter, the enclosed documents have been furnished to the parties on the attached certificate of service by electronic mail.

Please acknowledge receipt and filing of the above. If you have any questions concerning this filing, please contact me at 425-2359.

Thank you for your assistance in connection with this matter.

Very truly yours,

HOPPING GREEN & SAMS, P.A.

En Ve,

By:

Gary V. Perko Brooke E. Lewis

Attorneys for JEA

GVP/mee Enclosures

CERTIFICATE OF SERVICE

I HEREBY CERTIFY that a true and correct copy of the foregoing has been furnished by electronic delivery, this <u>12th</u> day of April, 2019, to the following:

Florida Public Service Commission

Ashley Weisenfeld Margo DuVal Charles Murphy Rachael Dziechciarz 2540 Shumard Oak Blvd Tallahassee, FL 32399-0850 aweisenf@psc.state.fl.us mduval@psc.state.fl.us cmurphy@psc.state.fl.us rdziechc@psc.state.fl.us

Office of Public Counsel

Patricia A. Christensen, Thomas A. (Tad) David A. Mireille Fall-Fry 111 West Madison Street, Room 812 Tallahassee, FL 32399-1400 <u>christensen.patty@leg.state.fl.us</u> <u>david.tad@leg.state.fl.us</u> <u>fall-fry.mireille@leg.state</u> <u>kelly.jr@leg.state.fl.us.fl.us</u>

Florida Department of Agriculture and Consumer Services

Erick Saylar Joan T. Matthews Allan J. Charles 407 South Calhoun Street, Suite 520 Tallahassee, FL 32399 erik.sayler@FreshFromFlorida.com joan.matthews@FreshFromFlorida.com allan.charles@FreshFromFlorida.com

Florida Power & Light Company

William P. Cox Christopher T. Wright 700 Universe Blvd Juno Beach, FL 33408 <u>will.cox@FPL.com</u> christopher.wright@fpl.com

Florida Power & Light Company

c/o Charles A. Guyton Gunster Law Firm 215 South Monroe Street, Suite 601 Tallahassee, FL 32301-1804 cguyton@gunster.com

Duke Energy Florida

Dianne M. Triplett Matthew R. Bernier Post Office Box 14042 St. Petersburg, Florida <u>dianne.triplett@duke-energy.com</u> matthew.bernier@duke-energy.com

Tampa Electric Company

c/o James Beasley Jeffrey Wahlen Malcom Means Post Office Box 391 Tallahassee, FL 32302 jbeasley@ausley.com jwahlen@ausley.com mmeans@ausley.com

Gulf Power Company

Russell A. Badders One Energy Place Pensacola, FL 32520 Russell.Badders@nexteraenergy.com

Gulf Power Company

c/o Steven Griffin Beggs & Lane P.O. Box 12950 Pensacola, FL 32591-2950 <u>srg@beggslane.com</u>

OUC

c/o Robert Scheffel Wright 1300 Thomaswood Drive Tallahassee, Florida 32308 schef@gbwlegal.com

Florida Public Utilities Company

c/o Beth Keating Gunster Law Firm 215 South Monroe Street, Suite 601 Tallahassee FL 32301 <u>bkeating@gunster.com</u>

Southern Alliance for Clean Energy George Cavros 120 E. Oakland Park Blvd., Suite 105 Fort Lauderdale, FL 33334 george@cleanenergy.org

Southern Alliance for Clean Energy

c/o Bradley Marshall Bonnie Malloy Earthjustice 111 S. Martin Luther King Jr. Blvd. Tallahassee, Florida 32301 <u>bmarshall@earthjustice.org</u> <u>bmalloy@earthjustice.org</u>

San U/L

Attorney

BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION

In re: Commission review of numeric conservation goals (Florida Power & Light Company).	DOCKET NO. 20190015-EG
In re: Commission review of numeric conservation goals (Gulf Power Company).	DOCKET NO. 20190016-EG
In re: Commission review of numeric conservation goals (Florida Public Utilities Company).	DOCKET NO. 20190017-EG
In re: Commission review of numeric conservation goals (Duke Energy Florida, LLC).	DOCKET NO. 20190018-EG
In re: Commission review of numeric conservation goals (Orlando Utilities Commission).	DOCKET NO. 20190019-EG
In re: Commission review of numeric conservation goals (JEA).	DOCKET NO. 20190020-EG
In re: Commission review of numeric	DOCKET NO. 20190021-EG
conservation goals (Tampa Electric Company).	DATED: April 12, 2019

JEA'S PETITION FOR APPROVAL OF <u>NUMERIC CONSERVATION GOALS</u>

JEA, by and through its undersigned attorneys, files this petition with proposed numeric conservation goals and requests that the Florida Public Service Commission (Commission) accept, approve and adopt JEA's proposed goals pursuant to section 366.82, Florida Statutes, and Rules 25-17.001 and 25-17.0021, Florida Administrative Code. In support, JEA states:

1. JEA is subject to section 366.82, Florida Statutes, part of the Florida Energy

Efficiency and Conservation Act (FEECA), which requires the Commission to adopt and

periodically review goals to increase the efficiency of energy consumption, increase the

development of demand side renewable energy systems, reduce and control the growth rates of

electric consumption and weather sensitive peak demand, and encourage the development of demand side renewable energy resources.

2. All notices, pleadings and other communications required to be served on the petition should be directed to:

Gary V. Perko Brooke E. Lewis Hopping Green & Sams, P.A. 119 S. Monroe St., Suite 300 P.O. Box 6526 (32314) Tallahassee, FL 32301 gperko@hgslaw.com blewis@hgslaw.com

3. The testimony of Donald P. Wucker and Bradley E. Kushner filed contemporaneously with this petition, as well as the testimony of Jim Herndon filed separately, explain the methodology by which JEA's proposed goals were derived and, along with the exhibits attached to the testimony, satisfy the minimum filing requirements established in the Order Consolidating Dockets and Establishing Procedure entered on February 18, 2019. *See* Order No. PSC-2019-0062-PCO-EG.

4. As discussed in the testimony of Mr. Wucker and Mr. Kushner, JEA generally utilized the same methodology used in the 2009 and 2014 goal-setting proceedings to identify and evaluate potential conservation measures. Based on the results of those evaluations, JEA proposes FEECA goals of 0 MW (summer and winter) and 0 MWh (annual energy) for both the residential and commercial/industrial classes.

5. JEA knows of no material facts in dispute regarding the relief requested herein.

WHEREFORE, JEA requests that the Florida Public Service Commission enter an order approving and establishing the Company's proposed numeric conservation goals for the period 2020-2029 pursuant to section 366.82, Florida Statutes, and Rule 25-17.0021, Florida

Administrative Code, and grant such other relief as is just and reasonable under the facts and law as determined by the Commission.

Respectfully submitted this 12th day of April, 2019.

HOPPING GREEN & SAMS, P.A.

Gary V. Perko (Fla. Bar No. 855898) Brooke E. Lewis (Fla. Bar No. 710881) P.O. Box 6526 119 S. Monroe Street, Suite 300 (32301) Tallahassee, FL 32314 Phone: 850.222.7500 Fax: 850.224.8551 gperko@hgslaw.com blewis@hgslaw.com

Attorneys for JEA

1		BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION
2		DIRECT TESTIMONY OF DONALD P. WUCKER
3		ON BEHALF OF
4		JEA
5		DOCKET NO. 20190020-EG
6		APRIL 12, 2019
7		
8	Q.	Please state your name and business address.
9	A.	My name is Donald P. Wucker. My business address is 21 West Church Street,
10		Jacksonville, Florida 32302.
11		
12	Q.	By whom are you employed and in what capacity?
13	A.	I am employed by JEA. My current responsibility is DSM Portfolio Management. Over
14		the past 15 years my duties have progressed to include DSM Measure and Program
15		Analysis and serving as a key strategic guiding resource on related industry and market
16		initiatives. Additionally, I proactively anticipate expected changes in corporate planning
17		and act to identify, incorporate and document changes as needed.
18		
19	Q.	Please summarize your educational background and professional experience.
20	A.	I hold a Bachelor of Science in Mechanical Engineering from the University of Florida. I
21		am an actively licensed Professional Engineer (PE) in the State of Florida. I also held a
22		PE license in the states of Louisiana and Alabama, which are currently inactive. With
23		more than 35 years in the energy industry, my experience includes the design of building
24		mechanical systems such as heating, ventilation, air conditioning, refrigeration and
25		plumbing systems for domestic, commercial and industrial applications. I have also been

1		involved with a wide variety of energy retrofits including both as an engineer and as a
2		contractor. For the past 15 years I have been given increasing responsibility for the
3		development and implementation of JEA's DSM programs. I submitted pre-filed direct
4		testimony on behalf of JEA when the Commission last established DSM goals for JEA in
5		Docket No. 20130203-EM.
6		
7	Q.	What is the purpose of your testimony in this proceeding?
8	A.	The purpose of my testimony is to discuss (1) how JEA is governed; (2) recent trends in
9		JEA's system load growth; and (3) JEA's proposed DSM goals and the process used to
10		develop them. My testimony includes discussion related to JEA's existing conservation
11		and DSM programs, how the base load forecast was developed, how supply-side
12		efficiencies are incorporated into JEA's planning process, and how JEA's proposed goals
13		encourage demand-side renewable energy systems.
14		
15	Q.	Are you sponsoring any exhibits to your testimony?
15 16	Q. A.	Are you sponsoring any exhibits to your testimony? Yes. Exhibit No [DPW-1] is a copy of my resume. Exhibit No [DPW-2] presents
15 16 17	Q. A.	Are you sponsoring any exhibits to your testimony? Yes. Exhibit No [DPW-1] is a copy of my resume. Exhibit No [DPW-2] presents JEA's existing Florida Energy Efficiency and Conservation Act (FEECA) goals. Exhibit
15 16 17 18	Q. A.	Are you sponsoring any exhibits to your testimony? Yes. Exhibit No [DPW-1] is a copy of my resume. Exhibit No [DPW-2] presents JEA's existing Florida Energy Efficiency and Conservation Act (FEECA) goals. Exhibit No [DPW-3] presents a list of the DSM and conservation programs included in JEA's
15 16 17 18 19	Q. A.	Are you sponsoring any exhibits to your testimony? Yes. Exhibit No [DPW-1] is a copy of my resume. Exhibit No [DPW-2] presents JEA's existing Florida Energy Efficiency and Conservation Act (FEECA) goals. Exhibit No [DPW-3] presents a list of the DSM and conservation programs included in JEA's existing DSM Plan. Exhibit No [DPW-4] summarizes the historical participation in
15 16 17 18 19 20	Q. A.	Are you sponsoring any exhibits to your testimony? Yes. Exhibit No [DPW-1] is a copy of my resume. Exhibit No [DPW-2] presents JEA's existing Florida Energy Efficiency and Conservation Act (FEECA) goals. Exhibit No [DPW-3] presents a list of the DSM and conservation programs included in JEA's existing DSM Plan. Exhibit No [DPW-4] summarizes the historical participation in JEA's existing FEECA DSM programs. Exhibit No [DPW-5] presents the results of
15 16 17 18 19 20 21	Q. A.	Are you sponsoring any exhibits to your testimony? Yes. Exhibit No [DPW-1] is a copy of my resume. Exhibit No [DPW-2] presents JEA's existing Florida Energy Efficiency and Conservation Act (FEECA) goals. Exhibit No [DPW-3] presents a list of the DSM and conservation programs included in JEA's existing DSM Plan. Exhibit No [DPW-4] summarizes the historical participation in JEA's existing FEECA DSM programs. Exhibit No [DPW-5] presents the results of Nexant's economic and achievable potential analysis for JEA. Exhibit No [DPW-6]
15 16 17 18 19 20 21 22	Q. A.	Are you sponsoring any exhibits to your testimony? Yes. Exhibit No [DPW-1] is a copy of my resume. Exhibit No [DPW-2] presents JEA's existing Florida Energy Efficiency and Conservation Act (FEECA) goals. Exhibit No [DPW-3] presents a list of the DSM and conservation programs included in JEA's existing DSM Plan. Exhibit No [DPW-4] summarizes the historical participation in JEA's existing FEECA DSM programs. Exhibit No [DPW-5] presents the results of Nexant's economic and achievable potential analysis for JEA. Exhibit No [DPW-6] presents a summary of JEA's marketing and educational activities. Exhibit No
 15 16 17 18 19 20 21 22 23 	Q. A.	Are you sponsoring any exhibits to your testimony? Yes. Exhibit No [DPW-1] is a copy of my resume. Exhibit No [DPW-2] presents JEA's existing Florida Energy Efficiency and Conservation Act (FEECA) goals. Exhibit No [DPW-3] presents a list of the DSM and conservation programs included in JEA's existing DSM Plan. Exhibit No [DPW-4] summarizes the historical participation in JEA's existing FEECA DSM programs. Exhibit No [DPW-5] presents the results of Nexant's economic and achievable potential analysis for JEA. Exhibit No [DPW-6] presents a summary of JEA's marketing and educational activities. Exhibit No [DPW-7] presents analysis of the estimated average bill impacts on residential
 15 16 17 18 19 20 21 22 23 24 	Q. A.	Are you sponsoring any exhibits to your testimony? Yes. Exhibit No [DPW-1] is a copy of my resume. Exhibit No [DPW-2] presents JEA's existing Florida Energy Efficiency and Conservation Act (FEECA) goals. Exhibit No [DPW-3] presents a list of the DSM and conservation programs included in JEA's existing DSM Plan. Exhibit No [DPW-4] summarizes the historical participation in JEA's existing FEECA DSM programs. Exhibit No [DPW-5] presents the results of Nexant's economic and achievable potential analysis for JEA. Exhibit No [DPW-6] presents a summary of JEA's marketing and educational activities. Exhibit No [DPW-7] presents analysis of the estimated average bill impacts on residential customers.

1	Q.	How is JEA governed?
2	A.	JEA is a municipal electric utility governed by a Board of Directors consisting of seven
3		members appointed by the Mayor of the City of Jacksonville and approved by the City
4		Council. The Board of Directors sets the rates and policies governing JEA's operations.
5		The JEA operating budget requires City Council approval. JEA's board meetings are
6		open to the general public and ratepayers are permitted to participate in board meetings.
7		JEA's Board of Directors sets policies consistent with the best interest of JEA's
8		customers and community.
9		
10	Q.	Please describe JEA's service territory.
11	A.	JEA is the municipal electric utility provider for the City of Jacksonville and portions of
12		Clay, St. Johns, and Nassau Counties.
13		
14	Q.	Please describe the demographics of JEA's customer base.
15	A.	JEA serves approximately 466,000 customers. JEA's customers are approximately 88
16		percent residential. Approximately 35 percent of Jacksonville's population lives in
17		households whose income is less than twice the Federal Poverty Level (\$33,820 for a
18		family of 2). Any impacts on rates resulting from implementation of DSM measures
19		would have a disproportionate impact on low income customers. Furthermore, rental
20		customers have less control over energy conservation efforts than homeowners.
21		
22	Q.	Please discuss how JEA's loads have changed since the last goal setting in 2014.
23	A.	JEA's load growth has increased over the past 5 year period. JEA experienced an
24		increase of approximately 1.22 percent in net energy for load (NEL) and approximately
25		9.1 percent in net firm peak demand since the last potential study was performed. JEA's

1		average annual growth rates over the next 10 years are projected to be low at
2		approximately 0.57 percent (NEL), 0.61 percent (winter peak demand) and 0.40 percent
3		(summer peak demand).
4		
5	Q.	What are JEA's existing FEECA goals based on?
6	A.	The Public Service Commission (Commission) set goals for JEA in 2014, based on a
7		Settlement Agreement of the parties. See Order No. PSC-14-0696-FOF-EU. The
8		Settlement Agreement recognized the role of the municipal utility's governing body to
9		determine the appropriate level of investment in conservation programs and associated
10		rate impacts. JEA's existing FEECA goals are presented in Exhibit No [DPW-2].
11		
12	Q.	What cost-effectiveness test or tests are appropriate for setting JEA's goals under
13		FEECA.
14	A.	Section 366.82, Florida Statutes (F.S.), requires the Commission to consider, among
15		other things, the costs and benefits to the participating ratepayers as well as the general
16		body of ratepayers as a whole, including utility incentives and participant contributions.
17		However, Section 366.82 does not dictate which cost-effectiveness test must be used to
18		establish DSM goals. In 2014 (Order No. PSC-14-0696-FOF-EU), the Commission
19		determined that the Participant test is appropriate for calculating the costs and benefits to
20		the customers participating in the energy savings and demand reduction measures. The
21		Commission further determined that consideration of both the Rate Impact Measure
22		(RIM) and Total Resource Cost (TRC) tests is necessary to reflect the benefits and costs
23		incurred by the general body of ratepayers as a whole, including utility incentives and
24		participant contributions.

1		Because the RIM test ensures no impact to customers' rates, it is particularly appropriate
2		in establishing DSM goals for municipal utilities, such as JEA. Local governing is a
3		fundamental aspect of public power. It provides the necessary latitude to make local
4		decisions regarding the community's investment in energy efficiency that best suit our
5		local needs and values. Local decisions are based on input from citizens who can speak
6		out on electric power issues at governing board meetings. Accordingly, as the
7		Commission has recognized in prior proceedings, it is appropriate to set goals based on
8		RIM, but to defer to the municipal utilities' governing bodies to determine the level of
9		investment in any non-RIM based measures. See In re: Adoption of Numeric
10		Conservation Goals and Consideration of National Energy Policy Act Standards (Section
11		111), Order No. PSC-95-0461-FOF-EG (April 10, 1995).
12		
13	Q.	Please describe JEA's current FEECA demand-side management programs.
14	А.	Exhibit No [DPW-3] includes a summary of the DSM and conservation programs
15		included in JEA's existing Commission-approved DSM Plan.
16		
17	Q.	What is the historic participation rate of JEA's current FEECA demand-side
18		management programs?
19	А.	Exhibit No [DPW-4] presents the historic participation rates in JEA's current FEECA
20		demand-side management programs
21		
22	Q.	What are the cumulative kilowatt (kW) and kilowatt hour (kWh) savings associated
23		with JEA's current FEECA demand-side management programs?

1	A.	JEA has exceeded all its FEECA goals for both the Residential and
2		Commercial/Industrial Sectors. The cumulative values from 2015 through 2018 are as
3		follows:
4		• Residential Winter Peak megawatt (MW) Reduction is 9.0 MWs
5		• Residential Summer Peak MW Reduction is 13.0 MWs
6		• Residential gigawatt hour (GWh) Energy Reduction is 29.8 GWhs
7		• Commercial/Industrial Winter Peak MW Reduction is 0.1 MWs
8		Commercial/Industrial Summer Peak MW Reduction is 2.3 MWs
9		• Commercial/Industrial GWh Energy Reduction is 6.4 GWhs
10		
11	Q.	Have JEA's current demand-side management programs been impacted by building
12		code and appliance efficiency standards?
13	A.	Yes. Building codes and appliance efficiency standards have and continue to become
14		more stringent, increasing the minimum efficiency requirements for buildings and
15		appliances. As building codes become more stringent and appliance efficiency standards
16		increase, the incremental cost to achieve the next level of efficiency typically outweighs
17		the savings/benefits over the life cycle of the measure.
18		
19	Q.	Has JEA taken any action to increase the level of customer awareness of, and
20		participation in, conservation and DSM programs?
21	А.	Yes. JEA uses numerous approaches to promote customer awareness and participation in
22		conservation and efficient products. Exhibit No. [DPW-6] presents a summary of
23		JEA's marketing and educational activities.
24		
25	Q.	How did JEA evaluate DSM measures for this proceeding?

1	A.	JEA joined a collaborative (the Collaborative) with the other Florida Energy Efficiency
2		and Conservation Act (FEECA) jurisdictional utilities to engage a single contractor
3		(Nexant) to evaluate DSM measures in each of the utilities' service areas. Nexant
4		identified DSM measures and evaluated the technical, economic, and achievable potential
5		for DSM in JEA's service area.
6		
7	Q.	Based on the results of that evaluation, what is JEA proposing as its FEECA goals?
8	A.	As discussed in the Market Potential Study report attached to the direct testimony of Jim
9		Herndon, Nexant's economic analysis indicated that there are no cost effective RIM
10		measures. Accordingly, JEA is proposing goals of 0 MW of summer and winter peak
11		demand and 0 GWh of annual energy reductions for residential, commercial, and
12		industrial customer classes.
13		
14	Q.	How were potential DSM measures identified and evaluated for JEA for purposes of
15		this proceeding?
16	A.	As described in the direct testimony of Jim Herndon and the Market Potential Study
17		attached to his testimony, Nexant developed a list of DSM measures for consideration
18		based on the 2014 Technical Potential Study, Nexant's DSM measure library, and
19		discussion with the FEECA utilities.
20		
21	Q.	Please describe the process of how Nexant was selected to be the consulting firm
22		utilized to provide the necessary assistance in the DSM goals setting process.
22		The Collaborative selected Nevent through a request for proposals (PFD) process
23	A.	The Conaborative selected Nexant through a request for proposals (KIA) process
23 24	A.	administered by Florida Power & Light Company. The RFP was issued to several

Q.

What were Nexant's responsibilities with regard to JEA?

2 A. As more fully described in the direct testimony of Jim Herndon and the Market Potential 3 Study attached to his testimony, the FEECA utilities retained Nexant to analyze the 4 technical potential for energy efficiency, demand response, and demand side renewable 5 energy across residential, commercial, and industrial customer classes. For JEA, Nexant 6 also conducted the economic screening for the economic and achievable scenarios and analyzed economic potential and achievable potential based on the passing measures. 7 8 9 Q. How has JEA's Technical Potential Study been updated and modified, including 10 any measures eliminated or added compared to the 2014 Technical Potential Study? 11 A. Rather than updating and modifying JEA's 2014 Technical Potential Study, Nexant 12 performed a complete and extensive new analysis of technical, economic, and achievable 13 potential for energy efficiency, demand response, and demand-side renewable energy 14 measures for the 2020-2029 time period. The analysis included 278 energy efficiency, 15 demand response, and demand-side renewable energy measures. The measures analyzed 16 as well as a comparison to the 2014 measures list are included in the direct testimony of 17 Jim Herndon. 18 19 **O**. Did JEA's Technical Potential Study include any changes associated with changes to

20 the building code or appliance efficiency standards?

A. Yes. As detailed in the Market Potential Study attached to the direct testimony of Jim
 Herndon, Nexant considered current and planned Florida building codes and federal
 equipment standards for baseline equipment in performing its analysis.

1	Q.	How was JEA's Base Case forecast for customer winter and summer demand and
2		annual energy for load developed?
3	A.	In performing its analysis, Nexant utilized the 2020 load forecast from JEA's 2017 Ten-
4		Year Site Plan, the most recent ten-year site plan available at the time the analysis began.
5		
6		Annually, JEA develops forecasts of seasonal peak demand, net energy for load (NEL),
7		interruptible customer demand, DSM, and the impact of plug-in electric vehicles (PEV).
8		JEA removes from the total forecast all seasonal, coincidental non-firm sources and adds
9		sources of additional demand to derive a firm load forecast.
10		
11		JEA's load forecast utilized 10 years of historical data (2007 to 2016) which captured the
12		pre-2008/09 economic downturn, the 2008/09 economic downturn, and the post-recession
13		recovery. Using this shorter period allowed JEA to capture the more recent trends in
14		customer behavior, energy efficiency and conservation, with these trends captured in the
15		actual data and used to forecast projections.
16		
17		JEA normalizes its historical seasonal peaks using historical maximum and minimum
18		temperatures. JEA then develops the seasonal peak forecasts using multiple regression
19		analysis of normalized historical seasonal peaks, normalized historical and forecasted
20		residential, commercial and industrial energy for winter/summer peak months, heating
21		degree hour for the 72 hours leading to winter peak and cooling degree hours for the 48
22		hours leading to summer peak.
23		
24		JEA's residential energy forecast was developed using multiple regression analysis of
25		weather normalized historical residential energy, total population, median household

1		income, total residential premise ID from JEA's data warehouse and JEA's residential
2		electric rate.
3		
4		The commercial energy forecast was developed using multiple regression analysis of
5		weather normalized historical commercial energy, commercial inventory square footages,
6		total population and gross product.
7		
8		The industrial energy forecast was developed using multiple regression analysis of
9		weather normalized historical industrial energy, total number of industrial employment
10		and total retail sales product for existing industrial accounts. JEA then layered in the
11		estimated energy for new industrial customers to the forecasted industrial energy.
12		JEA's forecast also considered lighting energy demand and PEV peak demand.
13		
14	Q.	How are supply-side efficiencies incorporated in JEA's planning process?
14 15	Q. A.	How are supply-side efficiencies incorporated in JEA's planning process? JEA continually monitors the operation of its generating units and determines methods to
14 15 16	Q. A.	How are supply-side efficiencies incorporated in JEA's planning process? JEA continually monitors the operation of its generating units and determines methods to utilize and/or modify the system in the most efficient manner. A recent example of
14 15 16 17	Q. A.	How are supply-side efficiencies incorporated in JEA's planning process? JEA continually monitors the operation of its generating units and determines methods to utilize and/or modify the system in the most efficient manner. A recent example of improvements to the efficiency of supply-side resources is advanced gas path additions
14 15 16 17 18	Q. A.	How are supply-side efficiencies incorporated in JEA's planning process? JEA continually monitors the operation of its generating units and determines methods to utilize and/or modify the system in the most efficient manner. A recent example of improvements to the efficiency of supply-side resources is advanced gas path additions and compressor modifications that JEA is completing on the Brandy Branch combustion
14 15 16 17 18 19	Q. A.	How are supply-side efficiencies incorporated in JEA's planning process? JEA continually monitors the operation of its generating units and determines methods to utilize and/or modify the system in the most efficient manner. A recent example of improvements to the efficiency of supply-side resources is advanced gas path additions and compressor modifications that JEA is completing on the Brandy Branch combustion turbine units 2 and 3.
14 15 16 17 18 19 20	Q. A.	How are supply-side efficiencies incorporated in JEA's planning process? JEA continually monitors the operation of its generating units and determines methods to utilize and/or modify the system in the most efficient manner. A recent example of improvements to the efficiency of supply-side resources is advanced gas path additions and compressor modifications that JEA is completing on the Brandy Branch combustion turbine units 2 and 3.
 14 15 16 17 18 19 20 21 	Q. A.	How are supply-side efficiencies incorporated in JEA's planning process? JEA continually monitors the operation of its generating units and determines methods to utilize and/or modify the system in the most efficient manner. A recent example of improvements to the efficiency of supply-side resources is advanced gas path additions and compressor modifications that JEA is completing on the Brandy Branch combustion turbine units 2 and 3. How do supply-side efficiencies impact demand-side management programs?
 14 15 16 17 18 19 20 21 22 	Q. A. Q. A.	How are supply-side efficiencies incorporated in JEA's planning process? JEA continually monitors the operation of its generating units and determines methods to utilize and/or modify the system in the most efficient manner. A recent example of improvements to the efficiency of supply-side resources is advanced gas path additions and compressor modifications that JEA is completing on the Brandy Branch combustion turbine units 2 and 3. How do supply-side efficiencies impact demand-side management programs? Improvements to the efficiency of supply-side resources (i.e. lower operating costs)
 14 15 16 17 18 19 20 21 22 23 	Q. A. Q. A.	How are supply-side efficiencies incorporated in JEA's planning process? JEA continually monitors the operation of its generating units and determines methods to utilize and/or modify the system in the most efficient manner. A recent example of improvements to the efficiency of supply-side resources is advanced gas path additions and compressor modifications that JEA is completing on the Brandy Branch combustion turbine units 2 and 3. How do supply-side efficiencies impact demand-side management programs? Improvements to the efficiency of supply-side resources (i.e. lower operating costs) should reduce the cost-effectiveness of DSM programs, all else being equal.
 14 15 16 17 18 19 20 21 22 23 24 	Q. A. Q. A.	 How are supply-side efficiencies incorporated in JEA's planning process? JEA continually monitors the operation of its generating units and determines methods to utilize and/or modify the system in the most efficient manner. A recent example of improvements to the efficiency of supply-side resources is advanced gas path additions and compressor modifications that JEA is completing on the Brandy Branch combustion turbine units 2 and 3. How do supply-side efficiencies impact demand-side management programs? Improvements to the efficiency of supply-side resources (i.e. lower operating costs) should reduce the cost-effectiveness of DSM programs, all else being equal.

1	Q.	Has JEA provided an adequate assessment of the full technical potential of available
2		demand-side and supply-side conservation and efficiency measures, including
3		demand-side renewable energy systems?
4	А.	Yes. As detailed in the direct testimony of Jim Herndon and the Market Potential Study
5		attached to his testimony, Nexant performed an adequate assessment of the technical
6		potential of demand-side and supply-side conservation and efficiency measures,
7		including demand-side renewable energy systems. Drawing upon its recognized
8		expertise, Nexant utilized its state-of-the art model to comprehensively analyze the full
9		technical potential of energy efficiency, demand response, and demand-side renewable
10		energy technologies.
11		
12	Q.	Ultimately, how many DSM measures were identified for analysis?
13	А.	278 DSM measures were identified and included in the analysis.
14		
15	Q.	How was economic potential defined and estimated for this study?
16	А.	Economic potential was determined for JEA by Nexant as discussed in the direct
17		testimony of Jim Herndon and Market Potential Study attached to his testimony.
18		
19	Q.	How did the analysis account for free-riders?
20	А.	In addition to the economic screening based on the RIM and TRC tests, measures that
21		demonstrated simple payback periods of less than 2 years with no incentive applications
22		were excluded from the RIM and TRC portfolios and screened from the achievable
23		potential analysis. Sensitivity evaluations were performed in order to evaluate the impact
24		of shorter (1 year payback) and longer (3 year payback) free-ridership exclusion periods
25		in accordance with the minimum testimony requirements set forth in the Commission's

1		Order Consolidating Dockets and Establishing Procedure (Order No. PSC-2019-0062-
2		PCO-EG, issued February 18, 2019).
3		
4	Q.	How was JEA's achievable potential for the 2020-2029 period determined?
5	A.	Achievable potential was determined for JEA by Nexant as discussed in the direct
6		testimony of Jim Herndon and Market Potential Study attached to his testimony.
7		
8	Q.	What are JEA's estimated achievable potentials for residential and
9		commercial/industrial energy efficiency?
10	A.	Nexant's analysis determined that there is no achievable potential for residential or non-
11		residential energy efficiency for JEA based on the RIM test. Under the TRC test, savings
12		potential for residential customers is 11 MW summer peak, 10 MW winter peak, and 86
13		GWh. For non-residential customers, the savings potential is 23 MW summer peak, 14
14		MW winter peak, and 176 GWh. Again, however, the RIM test in the appropriate test for
15		evaluating achievable potential for municipal utilities such as JEA.
16		
17	Q.	What are JEA's estimated achievable potentials for residential and
18		commercial/industrial demand response?
19	A.	Nexant's analysis determined that there is no achievable potential for residential or non-
20		residential energy efficiency for JEA based on the RIM and TRC tests.
21		
22	Q.	What are JEA's estimated achievable potentials for residential and
23		commercial/industrial demand-side renewable energy technology?
24	A.	Nexant's analysis determined that there is no achievable potential for demand-side
25		renewable energy systems for JEA based on the RIM and TRC tests.

1	Q.	Did JEA's analysis take into consideration the costs and benefits to customers
2		participating in the measure, pursuant to Section 366.82(3)(a), F.S?
3	A.	Yes. The analysis performed by Nexant for JEA is based on forecasts of achievable
4		potential that are driven primarily by measure-level assessments of cost-effectiveness to
5		customers. Specifically, customer cost-effectiveness is assessed using the Participant
6		Test, where benefits are calculated based on customer bill savings and costs are based on
7		participant costs of acquiring and installing the energy efficiency measure (net of utility
8		program incentives). Both the participant benefits and participant costs are assessed on
9		present value basis over the life of the measure.
10		
11	Q.	Did JEA's analysis take into consideration the costs and benefits to the general body
12		of ratepayers as a whole, including utility incentives and participant contributions,
13		pursuant to Section 366.82, F.S.?
14	A.	Yes. Nexant's analysis of achievable potential for JEA included consideration of the
15		costs and benefits to the general body of ratepayers as a whole, including utility
16		incentives and participant contributions, through use of the RIM and Participant tests.
17		
18	Q.	Did JEA's analysis of potential DSM measures consider the need for incentives to
19		promote both customer-owned and utility-owned energy efficiency and demand-side
20		renewable energy systems pursuant to Section 366.82, F.S.
21	A.	Yes. Nexant's analysis comprehensively analyzed customer-owned energy efficiency
22		measures and none were found to be cost-effective for JEA under the RIM test. JEA's
23		load forecast reflects the impacts of net metering associated with customer-owned
24		rooftop solar photovoltaic (PV) systems, and this load forecast was used as the basis for
25		the cost-effectiveness analysis performed by Nexant for this Docket. As such, incentives

1		to promote customer-owned demand-side renewable energy system are adequately
2		reflected in JEA's proposed goals. Utility-owned energy efficiency and renewable
3		energy systems are supply-side issues.
4		
5	Q.	How do JEA's proposed goals encourage the development of demand-side
6		renewable energy systems?
7	А.	Nexant fully considered demand-side renewable energy systems and found no achievable
8		potential for these measures. Therefore, JEA is not proposing goals associated with
9		demand-side renewable energy systems.
10		
11	Q.	Do JEA's proposed goals adequately reflect the costs imposed by State and Federal
12		regulations on the emission of greenhouse gases, pursuant to Section 366.82(3)(d),
13		F.S. ?
14	A.	Yes. There are currently no costs imposed by State and Federal regulation on the
15		emissions of greenhouse gases. While there is much speculation on the potential for
16		greenhouse gas emissions regulation, it would be inappropriate to establish DSM goals
17		that would increase customer rates based on speculation related to yet-to-be defined
18		potential regulations of emissions of greenhouse gases.
19		
20	Q.	Did JEA's analysis use an appropriate methodology in the consideration of free
21		riders?
22	A.	Yes. The screening criteria used by Nexant were based on simple payback to the
23		customer (2 years or less) and were designed to remove measures from the achievable
24		potential forecasts that exhibit the key characteristic most associated with high levels of
25		free-ridership in utility rebate programs, i.e. measures with naturally high levels of cost-

1		effectiveness to the customer. The sensitivity of total achievable potential to this
2		particular screening criterion was tested using alternative simple payback screening
3		values (1 year and 3 years). In addition to this screening step, the naturally occurring
4		analysis performed in estimating achievable potential represents an estimate of the
5		amount of "free riders" that are reasonably expected to participate in the particular
6		program offering simulated. In this sense, the payback-based screening criteria were
7		implemented to develop portfolios with necessarily low free-ridership levels, and within
8		the achievable potential forecasts for those portfolios, the forecasting methodology
9		produces explicit estimates of the expected level of free-ridership within those programs.
10		
11	Q.	Please discuss the economic and achievable potential for residential and
12		commercial/industrial winter and summer demand and annual energy savings for
13		the base fuel forecast, including the effects of free ridership, but not any costs
14		associated with carbon dioxide emissions, for both RIM-based and TRC-based
15		evaluations.
16	A.	Exhibit No [DPW-5] summarizes the results of Nexants's economic and achievable
17		potential analysis for JEA for both RIM-based and TRC-based evaluations.
18		
19	Q.	Please provide an estimate of the average residential customer bill impact for the
20		RIM-based and TRC-based achievable portionos.
20 21	A.	There is no residential customer bill impact for the RIM-based achievable portfolio, as
20 21 22	A.	There is no residential customer bill impact for the RIM-based achievable portfolio, as there are no DSM measures that pass the RIM test for JEA. Exhibit No [DPW-7]
 20 21 22 23 	A.	There is no residential customer bill impact for the RIM-based achievable portfolio, as there are no DSM measures that pass the RIM test for JEA. Exhibit No [DPW-7] presents the analysis of the estimated bill impacts on residential customers for the TRC-

1		residential bill impact of the TRC-based achievable portfolio would be approximately 2.5
2		percent by 2029.
3		
4	Q.	Does this conclude your testimony?
5	A.	Yes it does.
6		
7		

Docket No. 20190020-EG Resume of Donald P. Wucker Exhibit No. ___ [DPW-1], Page 1 of 2

RESUME OF

Donald Wucker, Management of Demand Side Management Portfolio

JEA

Qualifications and Experience:

Summary: 35 years of progressive experience in building energy systems. Over 30 years as a licensed professional engineer and certified mechanical contractor in the State of Florida.

Areas of Experience

- Engineering and Economic Analysis of Building Energy Systems including Design, Operations and Maintenance
- Design of Building Mechanical, Plumbing and Fuel Systems including Residential, Commercial and Industrial
- Use of Engineering and Economic Software Modeling Tools
- Implementation of Demand Side Management Programs

Experience

JEA

JEA

Management of Demand Side Management Portfolio Responsible for:

- Economic and technical analysis of demand side management measures, programs and portfolio
- Engineering and economic support for the design, implementation and operation of utility sponsored demand side management programs

Research Project Consultant Responsible for the identification, evaluation and business case development of emerging technologies that would benefit the utility

Winn-Dixie Stores, Inc.

Senior Mechanical Engineer

Responsible for the design and implementation of commercial and industrial mechanical systems to support manufacturing and logistics facilities which included the signing and sealing of specifications and plans for industrial ammonia systems

Reynolds Smith & Hills

Senior Mechanical Engineer

Managed a team of project engineers and designers to develop plans for various building mechanical systems and energy studies which included the signing and sealing of specifications and plans

2005-Present

2004-2005

1997-2004

1994-1997

1993-1994/1990-1991

Senior Mechanical Engineer Managed a team of project engineers and designers to develop plans for various building mechanical systems which included the signing and sealing of specifications and plans **Honeywell Corporation** 1991-1993 **Facilities Planner** Worked with schools, industrial plants, and hospitals to analyze the operation of facilities, to perform energy audits, develop guaranteed energy retrofits, evaluate maintenance programs, analyze building comfort/health problems and engineer corrective designs 1990-1990 St. Luke's Hospital **Mechanical Engineer** Provided engineering, supervision, and design expertise to maintain and optimize mechanical and utility systems **Mayport Naval Station** 1988-1990 **General Engineer** Provided a multi-disciplined knowledge of engineering principles and practices concerning facility design, construction, maintenance, and support services **The Haskell Company** 1983-1988 **Mechanical Engineer** Engineered specifications plans for various building mechanical systems C. J. Wucker & Sons Refrigeration 1975-1983 Service Technician Repaired and maintained commercial heating, ventilation, air conditioning and refrigeration systems

Education

Experience (cont.)

Sverdrup Corporation

Bachelor of Science in Mechanical Engineering from University of Florida Associate of Art in Pre-Engineering Florida Junior College

Past & Current Memberships

American Society of Heating Refrigeration and Air Conditioning Engineers Association of Energy Engineers Association of Energy Service Professionals International Institute of Ammonia Refrigeration **Toastmasters International** PI TAU SIGMA Honorary Mechanical Engineering Society

r													
	Table 1 JEA's Existing Commission-Approved												
	Residential Demand and Energy Goals												
Year	Winter Peak MW Reduction	Summer Peak MW Reduction	GWH Energy Reduction										
2015	0.96	0.94	2.50										
2016	0.96	0.94	2.50										
2017	0.96	0.94	2.50										
2018	0.96	0.94	2.50										
2019	0.96	0.94	2.50										
2020	0.96	0.94	2.50										
2021	0.96	0.94	2.50										
2022	0.96	0.94	2.50										
2023	0.96	0.94	2.50										
2024	0.96	0.94	2.50										
Total	9.6	9.4	25.0										

Table 2												
JEA's Existing Commission-Approved												
Commercial/Industrial Demand and Energy Goals												
Year	Winter Peak MW Reduction	Summer Peak MW Reduction	GWH Energy Reduction									
2015	0.007	0.14	0.08									
2016	0.007	0.14	0.08									
2017	0.007	0.14	0.08									
2018	0.007	0.14	0.08									
2019	0.007	0.14	0.08									
2020	0.007	0.14	0.08									
2021	0.007	0.14	0.08									
2022	0.007	0.14	0.08									
2023	0.007	0.14	0.08									
2024	0.007	0.14	0.08									
Total	0.07	1.40	0.80									

DSM and Conservation Programs Included in JEA's Existing DSM Plan

A. Residential Programs

- 1. <u>Residential Energy Audit Program</u> uses auditors to examine homes, educate customers and make recommendations on low-cost or no-cost energy-saving practices and measures.
- 2. <u>Residential Solar Water Heating</u> pays a financial incentive to customers to encourage the installation and use of solar water heating technology.
- 3. <u>Residential Net Metering</u> promotes the use of solar photovoltaic systems by purchasing excessive power from residential customers implementing these systems and offers a rebate for qualified battery installations.
- 4. <u>Neighborhood Efficiency Program</u> offers education concerning the efficient use of energy & water as well as the direct installation of over a dozen electric & water efficient measures such as high-efficiency lighting, insulation, weather sealing, shower heads and aerators at no cost to income qualified customers.

B. Commercial Programs

- 1. <u>Commercial Energy Audit Program</u> uses auditors to examine business, educate customers and make recommendations on low-cost or no-cost energy-saving practices and measures.
- 2. <u>Commercial Net Metering</u> promotes the use of solar photovoltaic systems by purchasing excessive power from commercial customers implementing these systems and offers a rebate for qualified battery installations.

Historic Participation Rate of JEA's Current FEECA DSM Programs

Program Name: Program Start Da Reporting Period	ate:	JEA REA: Residenti 1978 2018	al Energy Audits					
а	ь	с	d	e	f	g	h	1

Year 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024	Total Number of <u>Customers</u> 390,376 397,057 403,655 409,756 415,662 421,331 426,984 432,669 438,312 443,879	Total Number of Eligible <u>Customers</u> 390,376 397,057 403,855 409,756 415,662 421,331 426,984 432,669 438,312 443,879	Projected Cumulative Number of Program <u>Participants</u> 4,500 9,000 13,500 18,000 22,500 27,000 31,500 36,000 40,500	Projected Cumulative Penetration Level % (d/cx100) 1.2% 2.3% 3.3% 4.4% 5.4% 6.4% 6.4% 6.4% 8.3% 9.2% 10.1%	Actual Annual Number of Program 20,171 16,730 16,516 14,681	Actual Cumulative Number of Program Participants 20,171 38,901 53,417 68,098	Actual Cumulative Penetration Level % (g/cx100) 5.2% 9.3% 13.2% 16.6%	Actual Participation Over (Under) Projected Participants (<u>a-d)</u> 15,671 27,901 39,917 50,098
Estimated Appual Demand and Energy Savings		5	Per Ins	tallation	Progra	m Total		
Cummer LW D	- dualian			@meter	@generator	@meter	@generator	•
Winter kW Red	luction			0.100	0.106	1,408.1	1,550.2	
kWH Reduction	1			200	208	2,936,200.0	3,053,648.0	

Utility Cost per Installation

Total Program Cost of the Utility (Administration and Incentives) Net Benefits of Measures Installed During Reporting Period \$ 102.80 \$ 1,509,207 \$ (6,075)

Docket No. 20190020-EG Historic Participation Rate of JEA's Current FEECA Programs Exhibit No. ___ [DPW-4], Page 2 of 6

Reporting Period:		2018						
а	b	с	d	e	f	g	h	1
								Actual
			Projected	Projected	Actual	Actual	Actual	Participation
		Total	Cumulative	Cumulative	Annual	Cumulative	Cumulative	Over (Under)
	Total	Number of	Number of	Penetration	Number of	Number of	Penetration	Projected
	Number of	Eligible	Program	Level %	Program	Program	Level %	Participants
Year	Customers	Customers	Participants	(d/cx100)	Participants	Participants	(g/cx100)	(g-d)
2015	390,376	390,376	20	0.01%	20	20	0.0%	0
2016	397,057	397,057	40	0.01%	1	21	0.0%	(19)
2017	403,655	403,655	60	0.01%	0	21	0.0%	(39)
2018	409,756	409,756	80	0.02%	2	23	0.0%	(57)
2019	415,662	415,662	100	0.02%				
2020	421,331	421,331	120	0.03%				
2021	426,984	426,984	140	0.03%				
2022	432,669	432,669	160	0.04%				
2023	438,312	438,312	180	0.04%				
2024	443,879	443,879	200	0.05%				
Estimated Annu	al Demand and	Energy Saving	5	Per Ins	tallation	Progra	m Total	
				@meter	@generator	@meter	@generator	•
Summer kW Re	duction			0.420	0.443	0.8	0.9	
March - Link David				0.475	0.408	10	10	

JEA

2002

Program Name: Program Start Date: RSWH: Residential Solar Water Heating

Winter kW Reduction	0.475	0.496	1.0	1.0	
kWH Reduction	2,322	2,417	4,644.5	4,834.0	
			•		
Utility Cost per Installation					\$ 1,130
Total Program Cost of the Utility (Administration and Incentives)					\$ 2,260
Net Benefits of Measures Installed During Reporting Period					\$ (987)

Docket No. 20190020-EG Historic Participation Rate of JEA's Current FEECA Programs Exhibit No. ___ [DPW-4], Page 3 of 6

		JEA								
Program Name: Program Start Date: Reporting Period:		RSNM: Residential Solar Net Metering 2009 2018								
а	b	c	d	e	f	g	h	I.		
<u>Year</u> 2015 2016 2017 2018 2019 2020 2021	Total Number of <u>Customers</u> 390,376 397,057 403,655 409,756 415,662 421,331 426,984	Total Number of Eligible <u>Customers</u> 390,376 397,057 403,655 409,756 415,662 421,331 426,984	Projected Cumulative Number of Program Participants 41 82 123 184 205 246 287	Projected Cumulative Penetration Level % (d/cx100) 0.01% 0.02% 0.02% 0.03% 0.04% 0.05% 0.06% 0.07%	Actual Annual Number of Program <u>Participants</u> 250 406 349 330	Actual Cumulative Number of Program Participants 250 656 1,005 1,335	Actual Cumulative Penetration Level % (<u>g/cx100)</u> 0.08% 0.17% 0.25% 0.33%	Actual Participation Over (Under) Projected Participants (<u>g-d)</u> 209 574 882 1,171)	
2022 2023	432,669 438,312	432,669 438,312	328 369	0.08%						
2024	443,879	443,879	410	0.09%						
Estimated Annu	al Demand and	d Energy Savings		Per Ins	tallation	Program				
Summer kW Re Winter kW Red kWH Reduction	eduction uction			<u>@meter</u> 2.80 0.00 7,982	@generator 2.95 0.00 8,309	<u>@meter</u> 924.0 0.0 2,634,060.0	@generator 973.5 0.0 2,741,970.0			
Utility Cost per I Total Program (Net Benefits of I	Installation Cost of the Utilit Measures Insta	y (Administration Illed During Repo	n and Incentives) orting Period)				\$ 770.88 \$ 254,390 \$ (863,532	;) 2)	

Docket No. 20190020-EG Historic Participation Rate of JEA's Current FEECA Programs Exhibit No. ___ [DPW-4], Page 4 of 6

Program Name: Program Start Date: Reporting Period:		JEA NEE: Neighborhood Energy Efficiency 2008 2018									
а	ь	с	d	e	f	g	h	1			
	Total	Total Number of	Projected Cumulative Number of	Projected Cumulative Penetration	Actual Annual Number of	Actual Cumulative Number of	Actual Cumulative Penetration	Actual Participation Over (Under) Projected			

	Number of	Eligible	Program	Level %	Program	Program	Level %	Projected Participants
Year	Customers	Customers	Participants	(d/cx100)	Participants	Participants	(g/cx100)	(g-d)
2015	368,783	117,113	1,500	1.3%	1,005	1,005	0.9%	(495)
2016	372,471	119,117	3,000	2.5%	1,518	2,523	2.1%	(477)
2017	376,196	121,097	4,500	3.7%	1,225	3,748	3.1%	(752)
2018	379,958	122,927	6,000	4.9%	1,294	5,042	4.1%	(958)
2019	383,758	124,699	7,500	6.0%				
2020	387,595	126,399	9,000	7.1%				
2021	391,471	128,095	10,500	8.2%				
2022	395,386	129,801	12,000	9.2%				
2023	399,340	131,494	13,500	10.3%				
2024	403,333	133,164	15,000	11.3%				

Estimated Annual Demand and Energy Savings	Per In:	stallation	Program Total			
_	@meter	@generator	@meter	@generator	•	
Summer kW Reduction	0.353	0.373	456.8	482.7		
Winter kW Reduction	0.353	0.369	456.8	477.5		
kWH Reduction	858	893	1,110,252.0	1,155,542.0		
Utility Cost per Installation Total Program Cost of the Utility (Administration and Incentives) Net Benefits of Measures Installed During Reporting Period					\$ \$ \$	331 428,314 16,854

Docket No. 20190020-EG Historic Participation Rate of JEA's Current FEECA Programs Exhibit No. ___ [DPW-4], Page 5 of 6

h

1

f g

	JEA
Program Name:	CEA: Commercial Energy Audits
Program Start Date:	1978
Reporting Period:	2018

с

а

b

d

Year	Total Number of Customers	Total Number of Eligible Customers	Projected Cumulative Number of Program Participants	Projected Cumulative Penetration Level % (d/cx100)	Actual Annual Number of Program Participants	Actual Cumulative Number of Program Participants	Actual Cumulative Penetration Level % (g/cx100)	Actual Participation Over (Under) Projected Participants (g-d)
2015	50,506	50,506	200	0.4%	245	245	0.5%	45
2016	51,136	51,136	400	0.8%	207	452	0.9%	52
2017	51,698	51,698	600	1.2%	146	598	1.2%	(2)
2018	52,187	52,187	800	1.5%	137	735	1.4%	(65)
2019	52,639	52,639	1,000	1.9%				
2020	53,069	53,069	1,200	2.3%				
2021	53,492	53,492	1,400	2.6%				
2022	53,908	53,908	1,600	3.0%				
2023	54,321	54,321	1,800	3.3%				
2024	54,735	54,735	2,000	3.7%				

e

Estimated Annual Demand and Energy Savings	Per Ins	stallation	Program Total			
Summer kW Reduction	@meter 0.120	@generator 0.127	<u>@meter</u> 16.4	@generator 17.4	-	
Winter kW Reduction kWH Reduction	0.120 540	0.125 562	16.4 73,980.0	17.1 76,994.0		
Utility Cost per Installation Total Program Cost of the Utility (Administration and Incentives) Net Benefits of Measures Installed During Reporting Period					\$ \$ \$	221 30,277 885

Docket No. 20190020-EG Historic Participation Rate of JEA's Current FEECA Programs Exhibit No. ___ [DPW-4], Page 6 of 6

Program Nam Program Start Reporting Peri	e: Date: od:	JEA CSNM: Comme 2009 2018	ercial Solar Net I	Metering					
а	b	с	d	e	f	g	h	1	
								Actu	al
			Projected	Projected	Actual	Actual	Actual	Particip	ation
		Total	Cumulative	Cumulative	Annual	Cumulative	Cumulative	Over (U	nder)
	Total	Number of	Number of	Penetration	Number of	Number of	Penetration	Projec	ted
	Number of	Eligible	Program	Level %	Program	Program	Level %	Particip	ants
Year	Customers	Customers	Participants	(d/cx100)	Participants	Participants	(g/cx100)	(g-d)
2015	50,506	50,506	8	0.02%	1	1	0.00%	(7)	-
2016	51,136	51,136	16	0.03%	7	8	0.02%	(8)	
2017	51,698	51,698	24	0.05%	74**	82	0.16%	58	
2018	52,187	52,187	32	0.06%	63**	145	0.28%	113	
2019	52,639	52,639	40	0.08%					
2020	53,069	53,069	48	0.09%					
2021	53,492	53,492	56	0.10%					
2022	53,908	53,908	64	0.12%					
2023	54,321	54,321	72	0.13%					
2024	54,735	54,735	80	0.15%					
Estimated Ann	ual Demand and	d Energy Savings	5	Per Ins	tallation	Progra	m Total		
				@meter	@generator	@meter	@generator	•	
Summer kW R	leduction			14.10	14.900	888.3	938.7		
Winter kW Re	duction			0.00	0.000	0.0	0.0		
kWH Reductio	n			39,553	41,175	2,491,839.0	2,594,025.0		
Utility Cost per	Installation							\$ 2	2,300
Total Program	Cost of the Utilit	ty (Administration	n and Incentives)				\$ 144	4,900
Net Benefits of	Measures Insta	led During Repo	orting Period	*				\$ (925	5,775)
			-						

** Participant count determined by taking savings values and dividing by the filed, deemed kWh savings per participant

ENERGY EFFICIENCY Economic Potential	Summer Peak Demand (MW)	Winter Peak Demand (MW)	Energy (GWh)							
RIM SCENARIO										
Residential	0	0	0							
Non-Residential	0	0	1							
Total	0	0	1							
TRC SCENARIO										
Residential	113	66	419							
Non-Residential	89	52	605							
Total	202	118	1,024							

Economic and Achievable Potential Results

ENERGY EFFICIENCY Achievable Potential	Summer Peak Demand (MW)	Winter Peak Demand (MW)	Energy (GWh)					
RIM SCENARIO								
Residential	0	0	0					
Non-Residential	0	0	0					
Total	0	0	0					
TRC SCENARIO								
Residential	11	10	86					
Non-Residential	23	14	176					
Total	34	24	262					

DEMAND RESPONSE Economic Potential	Summer Savings (MW)	Winter Savings (MW)					
RIM and TRC SCENARIO							
Residential	489	1,150					
Non-Residential	538	503					
Total	1,027	1,653					

DEMAND RESPONSE Achievable Potential Nexant found there to be no cost-effective potential for JEA.

Note: The achievable program potential includes estimated program costs and incentives, whereas the economic potential scenario does not.

DEMAND-SIDE RENEWABLE ENERGY (DSRE) systems Nexant found there to be no cost-effective Economic or Achievable potential for JEA.

Summary of Marketing and Educational Activities

JEA places a high priority on providing customers tips and tools to help them manage their energy use as efficiently as possible. Since most of JEA's customers are budget constrained our messages place an emphasis on "low to no cost" measures as shown on our "Home Energy and Water Efficiency Resource Investment Curve".

Using a multi-channel approach, efficiency messaging is included through all channels: paid media—radio, television, print, billboard, online, social media; earned media—news releases and interviews; owned media—our website, social media, email campaigns, bill insert, bill messages, bill envelope back, brochures, public speaking, workshops, trade shows, videos, and community events. Our most recent annual accomplishments are as follow:

Paid Media:

•	Your JEA Minute	52 segments
•	TV Spots (energy, and water conservation, irrigation)	5
•	Radio Spots (energy, and water conservation, irrigation)	6
•	Digital Billboards (energy, and water conservation, irrigation)	10
•	Online Banners (energy, and water conservation, irrigation)	5
•	Paid Social	10
•	Print Ad (energy, and water conservation, Irrigation)	3

E Communications:

Docket No. 20190020-EG Summary of JEA Marketing & Educational Activities Exhibit No. ____ [DPW-6], Page 2 of 2

•	Unique Visitors to jea.com	7,515,829
•	Customer Emails Sent	4,387,864
•	My JEA Utility Tracker—number of customers with access	~466,000
	 Number of customers who accessed 	61,861
•	Social Media	
	 JEA Facebook Contacts 	28,641,929
	 Facebook Followers 	40,738
	o YouTube Views	147,974
	 YouTube Subscribers 	2,043
	o JEA Twitter Contacts	5,712,446
	 Twitter Followers 	7,164
Bil	l Related Communications:	
•	Bill insert	12
•	Bill envelope back (efficiency messages)	6
•	Bill messages—residential and commercial messages on efficiency tips	40
Со	mmunity Programs:	
•	Museum of Science and History Exhibit on Energy and Efficiency	140,977 annually
•	Retail Store Events	
	 In Store events educating customers on LEDs 	60
In	School Programs:	
•	Conservation and Efficiency Materials	65,799
•	Tree Hill School Program Attendance	13,271
•	Energy and Water Detective	3,751
In	Home Programs:	
	Residential Energy Audit/Assessments	14,681
	(Educational focus on causes of cause of high bills and emphasis on low to no	
	cost measures)	
	Neighborhood Energy Efficiency Program	
	1,104	
	furnished and installed)	

JEA is committed to maintaining its high priority emphasis in assisting and educating our customers with current knowledge in managing their energy use as efficiently as possible.

Estimated Cumulative Annual Bill Impacts for 2020 through 2029 Residential Customers - DSM Measures Passing TRC Test										
Calendar Year	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029
Percent Increase	0.4%	0.6%	0.9%	1.2%	1.4%	1.7%	2.0%	2.2%	2.4%	2.5%

1		BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION
2		DIRECT TESTIMONY OF BRADLEY E. KUSHNER
3		ON BEHALF OF
4		JEA
5		DOCKET NO. 20190020-EG
6		APRIL 12, 2019
7		
8	Q.	Please state your name and business address.
9	A.	My name is Bradley E. Kushner. My business address is 2465 Southern Hills Ct.,
10		Oviedo, Florida 32765.
11		
12	Q.	By whom are you employed and in what capacity?
13	A.	I am employed by nFront Consulting LLC as an Executive Consultant.
14		
15	Q.	What are your responsibilities in that position?
16	A.	My responsibilities include project management and project support for various projects
17		for electric utility clients. These projects include integrated resource plans, power supply
18		studies, power supply requests for proposals, demand-side management/conservation
19		reports, and other regulatory filings.
20		
21	Q.	Please describe nFront Consulting LLC.
22	A.	nFront Consulting is organized into two service practices – Energy and Transmission &
23		Delivery. nFront Consulting's Energy Practice provides advisory services to support and
24		optimize the assets, programs, systems, and business operations of our electric industry
25		clients nFront Consulting assists in the areas of planning, implementing, and managing

1 resources, portfolios, and individual business unit operations. nFront Consulting interacts 2 on behalf of our clients with regulatory, political, and environmental agencies; the 3 financial community; and other professional service providers on national, state, and 4 local levels to complete large-scale transactions, projects, or programs. 5 6 nFront Consulting's Transmission and Delivery Services Practice provides independent 7 transmission consulting, analyses and advisory services to support project financing, 8 acquisitions, development, transmission risk, curtailment and congestion assessments, 9 transmission planning, resource integration, and open access, expert witness and 10 regulatory services. 11 12 **Q**. Please state your educational background and professional experience. 13 A. I received my Bachelors of Science in Mechanical Engineering from the University of Missouri-Columbia in 2000 and my Masters of Business Administration from Emporia 14 15 State University in 2013. I have nearly 20 years of experience in the engineering and 16 consulting industry. I have experience in the development of integrated resource plans, 17 ten-year-site plans, DSM plans, and other capacity planning studies for clients throughout 18 the United States. Utilities in Florida for which I have worked include JEA, Florida 19 Municipal Power Agency, Kissimmee Utility Authority, OUC, Lakeland Electric, 20 Gainesville Regional Utilities (GRU), Reedy Creek Improvement District, Tampa 21 Electric Company, and the City of Tallahassee. I have performed production cost 22 modeling and economic analysis, and otherwise participated in six Need for Power 23 Applications that have been filed on behalf of Florida utilities and approved by the 24 Florida Public Service Commission (FPSC). I have also testified before the FPSC in 25 Need for Power and Conservation Goal proceedings.

1	Q.	What is the purpose of your testimony in this proceeding?
2	A.	The purpose of my testimony in this proceeding is to discuss the methodology used to
3		develop the avoided capacity costs that were provided to Nexant for use in their analyses
4		of DSM measures for JEA. I will also discuss JEA's fuel forecasts used in the production
5		cost modeling that formed the basis for the avoided energy costs provided to Nexant.
6		
7	Q.	Are you sponsoring any exhibits to your testimony?
8	A.	Yes. Exhibit No. [BEK-1] is a copy of my resume. Exhibit No. [BEK-2]
9		summarizes the avoided unit costs. Exhibit No [BEK-3] summarizes JEA's fuel price
10		forecast.
11		
12	Q.	How was the timing of avoidable capacity additions determined?
13	A.	Based on JEA's current load forecast over the next 20 years and its existing and planned
14		future generating resources, JEA is anticipated to require additional capacity to maintain
15		a 15 percent reserve margin over the 2020 through 2022 period, and again beginning in
16		2029. Given the timing and magnitude of the anticipated capacity requirements for the
17		2020 through 2022 period, it has been assumed that JEA would purchase capacity to
18		maintain its reserve margin requirements. For the anticipated capacity requirements
19		beginning in 2029, it has been assumed that JEA would install a new simple cycle F-class
20		combustion turbine at the existing Greenland Energy Center (GEC). Following
21		installation of the new simple cycle unit in 2029, additional capacity is projected to be
22		required in 2039 to maintain reserve margin requirements, at which time a second new
23		simple cycle F-class combustion turbine is assumed to be installed at GEC. JEA has
24		made no commitments to any of these short-term purchases or simple cycle unit
25		additions, and for purposes of this docket, each of these is considered avoidable capacity.

1	Q.	How were capital costs for these additions calculated?			
2	A.	Capital costs for the 2020 through 2022 purchases were treated as demand costs			
3		associated with a power purchase agreement (PPA), and were based on short-term market			
4		alternatives available to JEA.			
5					
6		Capital costs for the new simple cycle F-class combustion turbines were based on			
7		estimates used by JEA for resource planning activities. Capital costs were escalated to			
8		the year the new units are assumed to be in-service (i.e., 2029 and 2039) using a 2.0			
9		percent annual escalation rate, and include costs for interest during construction to			
10		determine an estimated in-service year installed cost. Resulting installed costs were			
11		multiplied by a fixed charge rate to determine a levelized installed capital cost, which			
12		was divided by the output of the combustion turbine to develop a levelized installed			
13		capital cost per kW.			
14					
15	Q.	How were fixed operating and maintenance (O&M) costs for these additions			
16		calculated?			
17	A.	Fixed O&M costs for the 2020 through 2022 purchases were included in the demand			
18		costs for the PPA discussed previously.			
19					
20		Fixed O&M costs for the new simple cycle F-class combustion turbines were based on			
21		estimates used by JEA for resource planning activities. The fixed O&M cost estimates,			
22		in \$/kW-yr., were escalated to nominal dollars at a 2.0 percent escalation rate.			
23		In addition to the fixed O&M costs, a natural gas pipeline usage charge of \$0.28/MMBtu			
24		was included for the new simple cycle F-class combustion turbines to reflect costs for			

1		utilizing the existing natural gas lateral at GEC. This cost was converted to a fixed cost				
2		per kW-yr based on an assumed 5 percent capacity factor.				
3						
4	Q.	Please discuss how the total avoided costs per kW were calculated.				
5	A.	Total avoided costs per kW were calculated by adding the avoided capital costs (or				
6		demand charges in the case of the PPA discussed previously) to the avoided fixed O&M				
7		costs and the natural gas pipeline usage charge. The resulting annual avoided costs per				
8		kW were determined by dividing by the total kW installed in each year. This approach				
9		was used in order to capture the difference in installed costs for the simple cycle				
10		combustion turbine added in 2039 as compared to the simple cycle added in 2029 due to				
11		escalation of the capital costs to in-service year dollars. The avoided costs per kW are				
12		presented in Exhibit No [BEK-2].				
13						
14	Q.	Please discuss the base case fuel forecast.				
15	A.	Exhibit No. [BEK-3] provides a summary of JEA's fuel price projections for natural				
16		gas, coal (including a blend of coal/natural gas/petroleum coke for JEA's Northside solid				
17		fuel units), and diesel fuel. These projections were developed utilizing information				
18		obtained from sources routinely utilized in the utility industry, including the New York				
19		Mercantile Exchange (NYMEX) and the U.S. Energy Information Administration.				
20						
21	Q.	Did JEA consider high and low fuel price sensitivities?				

A. Yes. In addition to the base case fuel price forecasts, JEA considered high and low fuel
price sensitivities. The high and low fuel price projections provide a band of plus/minus
24 25 percent around the base case fuel price projections. This high and low band is

1		consistent with what JEA used in the previous FEECA goal-setting process. See Docket
2		No. 130203-EM, Direct Testimony of Vento and Wucker, p. 10, l. 5-8 (Apr. 2, 2014).
3		
4	Q.	How were energy costs for each of the cases previously identified in your testimony
5		developed?
6	A.	Under my direction and supervision, JEA utilized ProSym, an industry accepted
7		production cost model, to perform production cost modeling of its electric generating
8		system, taking into account existing and planned future generating resources, the avoided
9		units, its load forecast, and the base fuel price projections discussed previously in my
10		testimony.
11		
12		The resulting energy costs were taken from the ProSym output and include fuel as well as
13		non-fuel variable O&M costs associated with dispatch of JEA's resources to meet
14		forecast system demand requirements. The ProSym output was provided to Nexant for
15		use in the economic analysis.
16		
17	Q.	Were energy costs developed for each of the fuel price cases discussed previously in
18		your testimony?
19	A.	Yes. The energy costs developed using the base case fuel price projections were
20		increased by 25 percent for the high fuel price sensitivity and decreased by 25 percent for
21		the low fuel price sensitivity.
22		
23	Q.	Does this conclude your testimony?
24	А.	Yes it does.
25		
26		6

Docket No. 20190020-EG Resume of Bradley E. Kushner Exhibit No. [BEK-1], Page 1 of 3

RESUME OF BRADLEY E. KUSHNER

OVERVIEW

Mr. Kushner has close to 20 years in the energy industry with a specialty in electric utility system resource planning. His expertise includes the following areas:

- Conservation / Demand-Side Management / Energy Efficiency
- Expert Testimony
- Regulatory Compliance and Support
- Integrated Resource Plans
- Power Supply Studies
- Conventional Energy Technologies
- Renewable Energy Technologies
- Economic Analysis
- Production Cost Modeling
- Independent Engineering
- Project Management
- Power Supply Requests for Proposals (RFPs)

Mr. Kushner has provided testimony in many conservation and energy efficiency dockets, power plant need determination proceedings, and integrated resource plans. Mr. Kushner has managed numerous integrated resource plans, need for power applications, power supply studies, demand-side management/energy efficiency/conservation evaluations and power supply request for proposals (RFPs), among other studies. Mr. Kushner has a demonstrated ability to manage internal and external project teams with diverse experience levels and areas of expertise, both in co-located and virtual environments. Mr. Kushner's experience in project management and expertise in the areas outlined above allow him to collaborate with clients to deliver outstanding services to his clients. His ability to effectively communicate in writing and verbally helps to keep stakeholders informed throughout project lifecycles, and has contributed to his successful experiences as a witness and in formal presentations to clients' Board of Directors.

PROJECT EXPERIENCE

Demand-Side Management / Energy Efficiency/ Conservation (DSM/EE/Conservation)

Mr. Kushner's experience with the evaluation of DSM/EE/Conservation is highlighted by his involvement in the development of conservation goals and demand-side management plans for Florida utilities as part of the 2009 and 2014 Florida Energy Efficiency and Conservation Act (FEECA) filings. Mr. Kushner led development of the filings and testified as to the appropriateness of the numeric goals and process utilized to evaluate the cost-effectiveness of DSM/EE/Conservation programs.

Witness Support

Mr. Kushner has testified as an witness in numerous proceedings related to Determination of Need petitions

Docket No. 20190020-EG Resume of Bradley E. Kushner Exhibit No. ___ [BEK-1], Page 2 of 3

and Florida Energy Efficiency and Conservation Act (FEECA) filings in the State of Florida, and has been involved as an witness in integrated resource planning (IRP) proceedings elsewhere in the United States. Related experience includes coordinating/leading responses to hundreds of interrogatories and production of document requests.

Electric Utility System Resource Planning / Production Cost Modeling

With his extensive experience in Electric Utility System Resource Planning and production cost modeling, Mr. Kushner recognizes that while industry best practices provide effective guidelines, the unique nature of each client's situation require strategic thinking and the ability to develop plans that are specific to the client's needs. Mr. Kushner's expertise in generation (including conventional and renewable technologies), demand-side management, and fundamentals of production cost modeling allow Mr. Kushner to deliver comprehensive resource plans that clients can utilize for future decision making.

Integrated Resource Plans /Power Supply Studies

Mr. Kushner has been involved as the project manager, study manager, and lead analyst on several integrated resource plans (IRP) or power supply studies during his professional career. Mr. Kushner has been involved in such studies for clients in Alaska, Colorado, Florida, Massachusetts, Michigan, New York, Oklahoma, Texas, and Wisconsin, as well as other states and territories.

Power Supply Requests for Proposals (RFPs)

Power purchases are often an important component of electric utility system planning, and conducting a competitive power supply RFP process may be critical to the ensuring the most cost-effective, reliable, and environmentally responsible alternatives are being considered. Mr. Kushner has experience in the complete RFP lifecycle, including collaborating with clients to develop the RFP, supporting clients during issuance and subsequent management of the RFP process, screening and evaluating RFP responses, presenting the results of the RFP to clients and stakeholders, and supporting negotiations related to power purchase agreements. Mr. Kushner has been managed or otherwise been involved in numerous RFP processes focused on both conventional and renewable generating technologies.

Independent Engineering / Project Financing Support

Mr. Kushner has managed projects in the area of independent engineering, related to merger and acquisition support as well as development of new power projects. Most recently, Mr. Kushner managed the independent engineering assessment of a new biomass facility in North America for which the developer was trying to obtain project financing. The independent engineering assessment included development of a due diligence report on behalf of the developer, supporting negotiations with potential investors, supporting development of the credit agreement with the eventual loan syndicate, and monthly construction monitoring activities.

PROFESSIONAL HISTORY

Mr. Kushner began his career with Black & Veatch Corporation in 2000 and has been involved in electric utility system resource planning and independent engineering engagements since that time in various roles at Black & Veatch. Most recently, Mr. Kushner was Department Head for Black & Veatch's Management Consulting group and was a Director for Black & Veatch Management Consulting LLC's electric system resource planning service offering before joining nFront Consulting LLC in 2016.

Docket No. 20190020-EG Resume of Bradley E. Kushner Exhibit No. ____ [BEK-1], Page 3 of 3

EDUCATIONAL

Mr. Kushner's educational background includes a B.S. in Mechanical Engineering from the University of Missouri - Columbia and a Masters of Business Administration from Emporia State University.

	-			
	All Avoided Costs in Nominal Dollars			
			Avoided GEC	
	Avoided	Avoided	Natural Gas	Total
	Capital Cost	Fixed O&M	Charge per	Avoided Cost
Year	per kW	per kW	kW	per kW
2029	\$49.49	\$9.95	\$1.24	\$60.68
2030	\$49.49	\$10.15	\$1.24	\$60.87
2031	\$49.49	\$10.35	\$1.24	\$61.08
2032	\$49.49	\$10.56	\$1.24	\$61.28
2033	\$49.49	\$10.77	\$1.24	\$61.50
2034	\$49.49	\$10.98	\$1.24	\$61.71
2035	\$49.49	\$11.20	\$1.24	\$61.93
2036	\$49.49	\$11.43	\$1.24	\$62.15
2037	\$49.49	\$11.65	\$1.24	\$62.38
2038	\$54.91	\$11.89	\$1.24	\$68.04
2039	\$54.91	\$12.13	\$1.24	\$68.27
2040	\$54.91	\$12.37	\$1.24	\$68.52
2041	\$54.91	\$12.62	\$1.24	\$68.76
2042	\$54.91	\$12.87	\$1.24	\$69.02
2043	\$54.91	\$13.12	\$1.24	\$69.27
2044	\$54.91	\$13.39	\$1.24	\$69.54
2045	\$54.91	\$13.66	\$1.24	\$69.80
2046	\$54.91	\$13.93	\$1.24	\$70.08
2047	\$54.91	\$14.21	\$1.24	\$70.35
2048	\$54.91	\$14.49	\$1.24	\$70.64
2049	\$54.91	\$14.78	\$1.24	\$70.93
2050	\$54.91	\$15.08	\$1.24	\$71.22

	JEA Fuel Price Projections - Base Case (Nominal \$/MMBtu)				
Natural Gas -		Natural Gas - All Sites			
	Greenland	Besides Greenland			Northside 1 and 2
Year	Energy Center	Energy Center	Fuel Oil	Scherer 4 Coal	Coal/Petcoke Blend
2020	3.11	3.18	16.43	2.51	3.30
2021	3.10	3.17	16.30	2.56	3.25
2022	3.19	3.26	16.88	2.62	3.31
2023	3.36	3.43	17.43	2.69	3.38
2024	3.52	3.59	18.05	2.75	3.48
2025	3.70	3.76	18.62	2.82	3.57
2026	3.81	3.87	19.08	2.89	3.65
2027	3.93	3.99	19.70	2.95	3.69
2028	4.02	4.09	20.37	3.02	3.77
2029	4.16	4.23	21.11	3.09	3.83
2030	4.25	4.31	21.74	3.16	3.90
2031	4.34	4.40	22.52	3.22	3.97
2032	4.43	4.49	23.13	3.29	4.04
2033	4.52	4.58	23.86	3.37	4.10
2034	4.61	4.66	24.64	3.45	4.18
2035 2036	4.69	4.74	25.30	3.54	4.26
	4.88	4.93	25.94	3.62	4.36
2037	4.99	5.04	26.99	3.71	4.46
2038	5.16	5.21	27.68	3.79	4.59
2039	5.31	5.36	28.47	3.88	4.73
2040	5.44	5.49	29.25	3.96	4.87
2041	5.58	5.63	30.07	4.05	4.99
2042	5.76	5.80	30.69	4.14	5.13
2043	5.92	5.96	31.35	4.23	5.27
2044	6.09	6.14	31.97	4.32	5.42
2045	6.27	6.31	32.69	4.42	5.59
2046	6.44	6.48	33.24	4.51	5.73
2047	6.63	6.67	34.04	4.60	5.91
2048	6.87	6.90	34.85	4.70	6.10
2049	7.08	7.12	35.38	4.79	6.30
2050	7.33	7.36	36.17	4.90	6.51