

William P. Cox Senior Attorney Florida Power & Light Company 700 Universe Boulevard Juno Beach, FL 33408-0420 (561) 304-5662 (561) 691-7135 (Facsimile) Email: will.p.cox@fpl.com

May 24, 2022

-VIA ELECTRONIC FILING-

Adam Teitzman Commission Clerk Florida Public Service Commission 2540 Shumard Oak Blvd. Tallahassee, FL 32399-0850

RE: Docket No. 20220000-OT

Florida Power & Light Company's 2022-2031 Ten Year Power Plant Site

Plan

Dear Mr. Teitzman:

Please find attached Florida Power & Light Company's responses to Staff's Third Data Request (Nos. 1-27). FPL's responses to Staff's Third Data Request Nos. 2, 8 and 12 are confidential and are being filed separately along with a Request for Confidential Classification. FPL is providing the non-confidential version of the responses to Staff's Third Data Request Nos. 2, 8, and 12 with the attached responses.

If there are any questions, please contact me at (561) 304-5662.

Sincerely,

/s/ William P. Cox William P. Cox Senior Attorney Fla. Bar No. 00093531

WPC:ec Enclosures

cc: Donald Phillips, Division of Engineering, DPhillip@psc.state.fl.us
Takira Thompson, Division of Engineering, TThompso@psc.state.fl.us

Florida Power & Light Company

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 1 Page 1 of 1

QUESTION:

Please provide all correspondence between Florida Power & Light (FPL or Utility) Company and FERC, NERC, and the FRCC regarding the 2021 Texas event and/or Florida's level of preparedness for similar winter weather conditions. As part of this response, please provide all press releases regarding FPL's system and preparedness level.

- In response to the 2021 Texas event, the North American Electric Reliability Corporation (NERC) issued the Recommendation to Industry Cold Weather Preparations for Extreme Weather Events NERC Alert on August 18, 2021. FPL's response to this NERC Alert was previously provided in FPL's response to Staff's Second Data Request No. 4. FPL did not receive an inquiry from the Federal Energy Regulatory Commission (FERC), in response to the 2021 Texas event.
- FPL provided a response to the SERC Reliability Corporation's (SERC) 2021/2022 Winter Weather Preparedness questions to Vince Ordax, Florida Reliability Coordinating Council (FRCC), on October 19, 2021. Please see Attachment No. 1 for SERC's letter to the FRCC and Attachment No. 2 for FPL's responses regarding the SERC's request.
- Please see Attachment Nos. 3 through 5 to this response for correspondence from the FRCC regarding extreme Winter loads.
- Lastly, please see Attachment No. 6 to this response for the responsive press release.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Page 1 of 2

QUESTION:

Please refer to page 6.

- a. Please define "extreme Winter event" as referenced to establish FPL's Recommended Plan. As part of this response, please indicate whether the extreme Winter event forecast is based on a single day with extremely low temperatures, or multiple days with extremely low temperatures.
- b. The second paragraph, third sentence, reads "FPL experienced very high Winter loads in 1989 and 2010." Please provide a comparison of these two special winter events FPL experienced including, but not limited to, the minimum temperatures, heating degree hours (HDHs), daily peak demands, number of customer outages of varying durations, and the number of customers affected by blackouts.
- c. Please provide all documentation used to determine the need to prepare for an extreme Winter event. This response should include any studies or reports completed, the scope and objective of any such study or report, direction from/presentations to management, etc., if any.
 - i. Were any probability studies conducted to determine the chance of an extreme Winter event occurring in the future? If not, please explain why. If so, please provide these studies.

- a. The Extreme Winter Peak demand forecasts reflect the expected winter peak demands during weather conditions like those experienced in December 1989. This extreme winter weather event resulted in early morning temperatures dropping below 30 degrees for 2 consecutive days, with a 28 degree minimum temperature for the event.
- b. The 1989 extreme winter weather event was a shorter but more severe weather event compared to the 2010 extreme winter weather event. The 1989 extreme winter weather event lasted approximately 2 days, and the minimum temperature dropped down to 28 degrees. The 2010 extreme winter weather event lasted approximately 3 days, and the minimum temperature dropped down to 33 degrees. It is not appropriate to compare cumulative heating degree hours between those events because of differences in the duration of those events.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Page 2 of 2

The 1989 extreme winter event saw a greater generation capacity shortage which required forced interruptions to avoid cascading outages on two days. Feeder interruptions were implemented in rotating cycles of approximately 15 minute duration. Affected customers experienced 2 to 5 outages on day one, and 5 to 6 outages on day two. FPL does not have records of the number of customers affected by load shedding or equipment outages.

On day one, the peak demand served was 13,988 MWH. During the hour of peak load shedding, the demand served was 13,986 MWH and the maximum load shed was 1,600MW. On day two, the peak demand served was 13,063 MWH. In the hour of peak load shedding, the demand served was 12,629 MWH and the maximum load shed was 2,800MW.

During the 2010 winter event there were no forced outages. While there were no customer outages due resulting from load shedding, there were 181,877 customer outages in the former FPL service area and 40,048 customer outages in the former Gulf service area from January 7 through January 13, 2010. The reported peak demand served was 24,346 MWH. FPL also reduced load by 561 MW through load control on hours surrounding the peak.

- c. Please see attachments to this response and note the following:
 - Attachment No. 1 is confidential in its entirety.
 - Attachment Nos. 3, 4, 9, and 14 have yellow highlighting which cannot not be removed. These attachments are not confidential.
 - Attachment No. 6 has reductions for non-responsive information.
 - i. There were no probability studies conducted to determine the chance of an extreme Winter event occurring in the future. FPL's extreme Winter planning has focused on modeling events similar to extreme Winter events that have occurred in Florida in the past, and therefore have historical precedence. FPL cannot predict when or how often such extreme Winter events will occur, but presented its Recommended Plan in order to serve its customers should one of these events occur again.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 3 Page 1 of 3

QUESTION:

Please refer to page 7.

- a. Were either of the two steps discussed in the first paragraph incorporated following Order No. 22708, issued after the 1989 extreme Winter event? If not, please explain why not.
- b. Please identify the dollar amount spent since FPL began the enhanced winterization of its generating units in 2021.
- c. Will the backup fuel capabilities FPL intends to add at Manatee Unit 3 & Ft. Myers Unit 2 for extreme Winter events be accessible during the Summer as well in case of pipeline interruptions? If not, please explain why not.
 - i. Please explain if there are any environmental restrictions for burning backup fuel at any of FPL's generating plants.
- d. Please identify the original retirement date and the anticipated retirement date for each of the five generating units the Utility intends to delay retirement of. As part of this response, please identify the cost for delaying retirement of each unit, the total amount of additional Winter capacity (megawatts (MW)) each unit is expected to provide, and how quickly each unit can be ready for Winter service.
 - i. Will each unit remain in retirement if FPL's Business As Usual Plan is deemed suitable for planning purposes? If not, please explain why.
- e. Please identify what will be included in and the cost associated with the "upgrade packages" for some of FPL's existing combined cycle generating units.

- a. The two steps discussed in the first paragraph of page 7 of FPL's 2022 Ten Year Site Plan are:
 - "(i) enhanced winterization of FPL's nuclear and fossil-fueled generating units, and (ii) enhanced cooperation and preparation between FPL and suppliers of natural gas and backup distillate fuel oil."

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 3 Page 2 of 3

Both of these steps were incorporated in FPL's business and operations planning work following the 1989 extreme Winter event, and FPL has continued winterization and fuel supply coordination efforts since that time. FPL believes that the first step in preparing for extreme weather events (including very cold Winter events) is to prepare the existing generating units and fuel supply system to be able to withstand extreme conditions and keep operating.

However, the perspective for how extreme Winter conditions could actually be has now changed based on the 2021 Texas Winter event. The Texas utilities had to deal with colder temperatures – and the associated higher load – than any they had faced before. The consequences for their customers were severe.

In reviewing the details of the Texas event as part of FPL's 2021 planning effort, a decision was made to further increase FPL's winterization and fuel supply coordination efforts. The objective was now to prepare FPL's existing generating units and fuel supply system for temperatures that could be even lower than those experienced in 1989. In FPL's early analyses of potential extreme Winter load, temperatures of 8 to 10 degrees colder than were experienced in 1989 were considered. As a consequence, the new winterization efforts discussed on page 7 of FPL's 2022 Ten Year Site Plan are based on these even-lower-than-1989 temperatures.

- b. As of April 2022, FPL has spent \$93.1 million on enhancing the winterization of its nuclear and fossil-fueled generating units.
- c. Yes.
 - i. FPL's combined cycle combustion turbines with oil backup are limited on the number of allowed operating hours combusting oil by their Title V Air Operating Permit. In general, those units are limited to 500 hours of oil operation on an annual basis. FPL's Fort Myers Units 3A & 3B do not have operating hour limits on oil operation. FPL's planned contingency for disruption of gas operation assumes a 72-hour maximum event, where the 500-hour limit would provide sufficient oil operation for several events within an annual period.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 3 Page 3 of 3

d. FPL interprets "anticipated retirement date" to mean a new retirement date in the future after these units have been converted to Winter-only operation. At this time, the "anticipated retirement dates" for these units are still to be determined, but for resource planning purposes, each of these units is projected to be capable of extreme Winter only operation for the ten-year reporting period of this Site Plan.

For each of the five units, the original planned retirement dates along with the projected Winter capacity of the unit are listed:

Manatee Unit 1:12/31/2021; 819 MW Manatee Unit 2:12/31/2021;819 MW

Gulf Clean Energy Center Unit 4:12/31/2024; 75 MW Gulf Clean Energy Center Unit 5:12/31/2026; 75 MW

Lansing Smith Unit A:12/31/2027; 40 MW

- i. If FPL's Business as Usual Plan is deemed suitable for planning purposes and the Recommended Plan is not found suitable for planning purposes, absent clear direction to the contrary from the Commission, FPL would interpret this decision regarding its 2022 Ten-Year Site Plan to be a directive from the Commission that FPL should not plan for extreme Winter. In this scenario, FPL would plan to retire these units as scheduled, including the immediate retirement of Manatee Units 1&2.
- e. The winter peak capability upgrade packages consist of combustion turbine generator and plant control system modifications, as well as upgraded balance of plant equipment. The overall costs for this work are approximately \$200,000 per incremental MW of increased winter peak capability.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 4 Page 1 of 2

QUESTION:

Please refer to page 8.

- a. Please identify all activities included in FPL's Recommended Plan that the Utility does not intend to complete if its Business As Usual Plan is deemed suitable for planning purposes.
- b. Please refer to Table ES-1 for the following questions.
 - i. Is the table based on FPL's 2022 Business As Usual Plan? Please explain.
 - ii. Please explain in detail how the projected number of customer outages were derived for each year in the forecasting horizon. As part of this response, please indicate whether these values are before or after load management and interruptible service are accounted for, provide the total number of MW associated with these outages, and identify how many 30 minute outages were accounted for each customer/whether or not there are any repeats.
 - iii. Please describe the forecasting technology, approach and model(s) used.
 - iv. Please discuss all the underlying assumptions and the selection of input variables used to arrive at the projections.
 - v. Please discuss the forecasting model(s) used to project customer outages. If they are statistical model(s), please provide the data series of the dependent variable, including also the predicted data series resulting from the model, as well as the forecast data for the dependent variable and the independent variables.

RESPONSE:

a. If FPL's Business as Usual Plan is deemed suitable for planning purposes and the Recommended Plan is not found suitable for planning purposes, absent clear direction to the contrary from the Commission, FPL would interpret such a decision regarding its 2022 Ten-Year Site Plan to be a directive from the Commission that FPL should not plan for extreme Winter weather. In this scenario, FPL will not continue with adding backup fuel capability to existing units, Winter upgrades to existing units, putting units into "Winter-Only" status in lieu of retirement, and adding capacity in the form of battery storage starting in 2027.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 4 Page 2 of 2

b. i.-iv. The customer outages projected in Table ES-1 are based on FPL's 2022 Business as Usual resource plan, and all assumptions and inputs are based on assumptions from FPL's 2022 Ten-Year Site Plan. Another assumption used in these outage calculations is the recognition that outage rotations are currently only possible at the feeder level and that certain feeders which serve critical customers (e.g., hospitals and police stations) are not rotation eligible.

The projections of customer outages were developed using a look at the hourly loads over the multi-day period around the extreme Winter peak, for each year through 2031. For each hour, all available resources are dispatched to meet the load in that hour, in the following order:

- 1) Energy efficiency
- 2) Firm Purchases
- 3) Nuclear units
- 4) Solar units (if production is available during that hour)
- 5) Combined Cycle units
- 6) Combustion Turbine units
- 7) Steam Turbine units
- 8) Battery storage units (after accounting for duration constraints)
- 9) Demand Response

After all these resources are dispatched, any remaining load to be served is considered unserved energy. FPL's System Operations department provided a "rule of thumb" estimate that every MWh of unserved energy corresponds to 400 customers being out of power for 30 minutes. This projection accounts for some customers experiencing outages more than once if the high load is high enough and persists long enough.

v. FPL's calculation of customer outages is not a statistical model, and therefore the information requested in subpart (v) is not available. Subparts (i) through (iv) of this response discuss the model used to produce projections of customer outages.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 5 Page 1 of 1

QUESTION:

Please refer to page 11. Does FPL intend to reevaluate projected demand-side management reductions for the years 2025 through 2031 if the Recommended Plan is found suitable? If not, please explain why.

RESPONSE:

FPL intends to re-evaluate the cost-effectiveness of projected demand-side management (DSM) reductions for the years 2025 through 2034 as part of the next DSM Goals proceeding that will occur in 2024. This re-evaluation will occur regardless of whether FPL's Recommended Plan is found suitable. However, if the Recommended Plan is found suitable for planning, this re-evaluation of DSM will place a greater weight (in terms of avoided generation capacity) on Winter kW reduction than would be the case if the Recommended Plan is not found suitable for planning.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 6 Page 1 of 1

QUESTION:

Please refer to page 21.

- a. Please explain why the Utility decided to begin incorporating batteries in 2027.
- b. Please provide the critical date for FPL to determine whether or not to build the first batteries in 2027. As part of this response, please explain if the decision to build batteries can occur later than 2022.
- c. Please explain if FPL has identified any potential operational or other concerns associated with batteries during multi-day outage events, such as loss of tax credits when recharging from non-renewable sources. If so, please list and describe these concerns.

RESPONSE:

- a. FPL projects that its "near-term" capacity additions in its Recommended Plan (converting existing units to "extreme Winter Only" operation and upgrading existing combined cycle units to increase their capacity during extreme Winter events) would allow FPL to meet the extreme Winter peak load and therefore minimize and/or eliminate customer outages through 2026 without additional Winter capacity. As FPL projects continued load growth for 2027 through 2031, minimization and/or elimination of customer outages during an extreme Winter event would require the addition of new Winter capacity such as that provided by battery storage units.
- b. FPL projects that new battery storage units have lead times (including siting, permitting, and construction) of approximately 36 months. Therefore, in order to meet a possible extreme Winter peak (and avoid customer outages during that event) in 2027, the "critical date" for deciding to build these batteries would be in late 2023/early 2024.
- c. FPL incorporates the duration limitations of batteries, as referenced in FPL's response to Staff's Third Data Request No. 4, in the planning it performed for the Recommended Plan through multi-day events.

As indicated in response to subpart (a) above, the need for batteries during the period from 2027 through 2031 is for the minimization and/or elimination of customer outages during an extreme Winter event. As such, in a multi-day outage, FPL's priority would be to recharge the batteries from either renewable or non-renewable sources to ensure system reliability and minimize customer outages, regardless of any potential tax implications.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 7 Page 1 of 1

QUESTION:

Please refer to pages 21 through 22. Please verify that there are no changes to the retiring of units through 2025 between FPL's Recommended and Business As Usual Plans.

RESPONSE:

The retirements listed in Tables ES-2 and ES-3 are consistent through 2025 in both the Recommended Plan and Business as Usual Plans.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 8 Page 1 of 4

QUESTION:

Please refer to pages 34 and 90.

- a. Please explain why the Exelon Generation/Hillabee plant and Rainbow Energy/Oleander PPA (Winter 2022 PPAs) contracts were entered into for the Winter of 2021-2022. As part of this response, please explain if these contracts were entered into due to extreme weather concerns. If not, please explain why.
 - i. If these contracts were entered into due to extreme weather concerns, please explain how FPL determined that these assets would be capable of providing capacity during an extreme Winter event.
 - ii. Were the Exelon Generation/Hillabee plant PPA resources and/or the Rainbow Energy/Oleander plant PPA resources necessary in meeting FPL's Winter 2021/2022 load?
- b. Please explain the discrepancy between the 320 MW Rainbow Contract and the 310 MW Oleandar Plant PPA.
- c. For each of the Winter 2022 PPAs, please provide at a minimum: the cost of the contract, cost per MW of the contract, and the term length of the contract.
 - i. For each PPA, how much, if any, energy did FPL receive during the term? As a part of this response please detail whether the PPA delivered energy during the winter peak.
- d. Please detail the timeline leading to FPL entering into each of the Winter 2022 PAAs. This timeline should include at a minimum: when FPL identified the need, when FPL began its internal approval process, when FPL began the bidding process, and when FPL entered the agreement.
- e. Please explain how FPL chose each of the Winter 2022 PPAs. This response should include an explanation of the bidding process, the number of bids FPL received, and how FPL determined that each PPA was the most cost-effective PPA.
- f. Please detail the number of bids FPL received, if any, in the process that resulted in the Winter 2022 PPAs.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 8 Page 2 of 4

- g. How did FPL determine that the Winter 2022 PPAs were the most cost effective way to meet the projected Winter 2021/2022 load?
- h. Did FPL explore alternatives to meeting the needs besides the Winter 2022 PPAs? If so, please detail the alternatives that FPL explored.
 - i. Explain if FPL considered the Winter 2022 PPAs necessary on a reserve margin basis. If so, please explain why FPL would consider them necessary given the lower values assumed in the later years of FPL's recommended plan.

- a. The purchases were entered into for the purpose of meeting a forecasted capacity shortfall under an extreme winter weather event during the 2021/2022 Winter.
 - i. 1. Exelon Generation/Hillabee (EGH): EGH has firm gas transportation rights to supply gas to the EGH facility. FPL has previously purchased capacity and energy from EGH with no delivery issues.
 - 2. Rainbow Energy/Oleander (REO): Although REO does not have firm gas transportation rights to supply gas to the REO facility, it is interconnected to the FGT pipeline on which FPL has firm gas transportation rights. Thus, FPL would be able to manage gas supply to the facility should it be needed.
 - ii. Yes, these power purchase agreements (PPA) resources were necessary in meeting FPL's winter 2021/2022 load should a forecasted extreme winter weather occur. However, in real time, neither EGH or REO were actually called on for energy as a forecasted extreme winter weather event never transpired.
- b. The contract with Rainbow Energy Marketing Corporation for the purchase of power from the Oleander Plant was for 310 MW. The "320" value was a typographical error.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 8 Page 3 of 4

- c. The total cost of the Exelon contract was contract was The contract term for both agreements was January 1, 2022 to February 28, 2022. FPL did not purchase energy pursuant to either contract, so the cost reflects the amount paid for capacity.
 - i. FPL did not call on and, therefore, did not receive energy pursuant to either contract as an extreme winter weather event never transpired.
- d. During the summer of 2021, FPL identified an approximately 500 MW capacity need for the January-February 2022 period. Based on the identified need, FPL began to identify counterparties that were directly interconnected to the FPL transmission system and had available capacity. A counterparty directly interconnected to FPL is desirable as it reduces the overall cost of transmission and is generally more reliable. This effort resulted in the identification of only one counterparty, Rainbow Energy/Oleander that met the requirements. Therefore, FPL began discussions with Rainbow Energy/Oleander to purchase up to 310 MW of capacity. Those negotiations concluded in October 2021. In conjunction with those negotiations, FPL began looking at other counterparties located outside of FPL's Balancing Authority, such as Effingham Combined Cycle, Santa Rosa Combined Cycle, and Exelon Generation/Hillabee from which to procure the balance of capacity needed. Exelon Generation/Hillabee was chosen as the most cost-effective. FPL concluded negotiations to purchase 160 MW from Exelon Generation/Hillabee in the October 2021 timeframe.
- e. The Florida market does not have much excess generation capacity. The majority of generation resources are already under contract to other end users such as Seminole and FMPA. Thus, FPL worked with counterparties that FPL knew had available capacity in the January-February 2022 timeframe. When approaching a tight capacity market, such as Florida, FPL is cautious not to alert the market so that counterparties recognize FPL is short capacity. To prevent the market from attempting to take advantage of the situation by increasing their prices, FPL approached both Exelon Generation/Hillabee and Rainbow Energy/Oleander directly for capacity. FPL negotiated pricing that was determined to be favorable to the Company, given the limited options available to purchase capacity.
- f. Please see FPL's response to subpart (e) above.
- g. Please see FPL's response to subpart (e) above.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 8 Page 4 of 4

h. & i. FPL was not analyzing the need for short-term PPAs for the then coming Winter of 2021/2022 from a reserve margin standpoint. Instead, FPL determined it was prudent to secure short-term PPAs to better protect its customers from a possible extreme Winter event (such as has just occurred in Texas the prior Winter) due to some uncertainty at the time regarding the ability to successfully be able to restart Manatee Units 1&2 on short notice. FPL did restart Manatee 1&2 successfully, which is one reason that short-term PPAs for Winter only are not projected in subsequent years in FPL's Recommended Plan.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 9 Page 1 of 2

QUESTION:

Please refer to page 57.

- a. In second full paragraph, 1., please identify the threshold temperatures used to determine the HDHs and cooling degree hours (<u>CDHs</u>) for the respective residential, commercial, and industrial energy models. Please explain whether these thresholds are the same as those that were used in previous TYSPs.
- b. In third full paragraph, referring to the statement "[t]he temperatures for each weather station are weighted based on the energy sales associated with that region," please explain if the "energy sales" are the actual data through 2021; and whether the "weight" associated with each weather station is updated annually and thus reflects 2021 energy sales by region in this TYSP.

RESPONSE:

a. The degree hours used in all energy sales models are an average for the monthly billing cycle and the threshold temperatures used to calculate the degree hours are listed below. These threshold temperatures are the same as those used in previous TYSPs. Please note that the degree hour threshold temperatures were also provided in FPL's response to Staff's First Data Request No. 14, subpart (a).

FPL residential energy sales

HDH56: heating degree hours less than or equal to 56 degrees

CDH7280: cooling degree hours greater than or equal to 72 and less than 80 degrees

CDH80: cooling degree hours greater than or equal to 80 degrees

Gulf residential energy sales

CDH67R1: cooling degree hours greater than or equal to 67 and less than 75 degrees CDH67R2: cooling degree hours greater than or equal to 75 and less than 85 degrees

CDH67R3: cooling degree hours greater than or equal to 85 degrees

HDH59R1: heating degree hours less than or equal to 59 and greater than 50

HDH59H2: heating degree hours less than or equal to 50

FPL Small Medium Commercial energy sales

CDH66: cooling degree hours greater than or equal to 66 degrees

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 9 Page 2 of 2

Gulf Small Commercial energy sales

CDH67C1: cooling degree hours greater than or equal to 67 and less than 75 degrees

CDH67C2: cooling degree hours greater than or equal to 75 degrees HDH59C1: heating degree hours less than or equal to 59 degrees

FPL Large Commercial energy sales

CDH66: cooling degree hours greater than or equal to 66 degrees

Gulf Large Commercial energy sales

CDH60C1: cooling degree hours greater than or equal to 60 and less than 73 degrees

CDH60C2: cooling degree hours greater than or equal to 73 degrees HDH50C1: heating degree hours less than or equal to 50 degrees

FPL Small Industrial energy sales

CDH72: cooling degree hours greater than or equal to 72 degrees

b. The energy sales for each region are actuals through 2021 and are updated annually. The composite temperatures in this TYSP reflect the sales by region in 2021.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 10 Page 1 of 2

QUESTION:

Please refer to the statistical customer forecasting models discussed on page 58.

- Please identify all the input variables used in each model.
- b. Please identify, with explanation, how many years of input data were used for the development of each model.

RESPONSE:

The number of historical months used for the customer models for FPL and NW FL (Gulf) varied by model. The included variables and the number of historical months used in each model are identified below.

FPL Residential Customers:

Total HH: Total households for the state of Florida

Recession: Binary variable for March to November 2001 and December 2007 to June 2009 Binary Variables for the months of April, May, Jun, July, August, September, and October

Binary Variables for years 2015, 2015, 2016, and 2017

Years of Input Data: 21 Years

Gulf Residential Customers:

Total HH: Total households for the state of Florida.

LagDep: Lag Dependent Variable.

Michael: Binary variable for October 2010

MA: Moving average

SMA: Seasonal moving average

Years of Input data: 15 years and 7 months

FPL Small and Medium Commercial Customers:

RES CUST Fcst: Residential Customer Forecast

LagDep: Lag Dependent Variable

d2013m10: Binary Variable for October 2013 d2013m11: Binary Variable for November 2013 d2018m12: Binary Variable for December 2018 d2019m1: Binary Variable for January 2019

Covid: For the months of March, April, May, June, and July of 2020 Lag Unemp Rate 6: 6-month lag applied to unemployment rate

Years of Input data: 11 years

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 10 Page 2 of 2

Gulf Small Commercial Customers:

Gulf Retail Sales: Retail sales for the Gulf service area

MA: Moving average

LagDep: Lag dependent variable

Years of Input Data: 26 years and 7 months

FPL Large Commercial Customers:

Exponential smoothing, no variables used Years of Input Data: 11 years and 7 months

Gulf Large Commercial Customers:

Exponential smoothing, no variables used Years of Input Data: 3 years and 7 months

FPL Small Industrial Customers:

FL Total Hstrts: Total housing starts for the state of Florida

Vero: Binary variable for December 2018 d201601: Binary Variable for January 2016

LagDep: Lag Dependent Variable

Years of Input Data: 14 years and 7 months

FPL Medium Industrial Customers:

Exponential smoothing, no variables used Years of Input Data: 8 years and 7 months

FPL Large Industrial Customers:

Exponential smoothing, no variables used Years of Input Data: 5 years and 7 months

Gulf Industrial Customers:

Exponential smoothing, no variables used Years of Input Data: 30 years and 7 months

FPL Other Customers:

Exponential smoothing, no variables used Years of Input Data: 11 years and 7 months

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 11 Page 1 of 1

QUESTION:

Please refer to page 62.

- a. Please elaborate on the "energy efficiency variable." Is it a binary variable?
- b. Please elaborate on "[t]he estimated impacts from code and standards are based on the energy efficiency variables in the respective energy models."

RESPONSE:

No, the energy efficiency variable is not a binary variable. This model variable represents the estimated MWh impacts from changes in energy efficiency codes and standards. The estimated MWh impacts were from an analysis performed by an external vendor. Separate impacts were estimated for residential and commercial customer classes. These MWh impacts were then transformed to be consistent with the units for the dependent variable for each respective model. For example, the energy efficiency variable for the residential energy usage model was transformed to kWh per customer per average billing day, which is consistent with the units for the dependent variable in the residential usage model.

Energy efficiency variables were included in the following energy usage models; FPL residential, FPL small/medium commercial, Gulf residential, and Gulf small commercial. These models are multiple linear regression models, where the value of the dependent variable is equal to the sum of the contributions from each of the independent variables. This can also be stated generically using the following example equation:

```
y_t = ax_{1t} + bx_{2t} + c

Where:

y_t = dependent variable at time t

a = coefficient of the first independent variable

x_{1t} = value of the first independent variable at time t

b = coefficient of the second independent variable

x_{2t} = value of the second independent variable at time t

c = constant term
```

Using the equation above, if we assume the dependent variable is residential energy usage and the first independent variable is the energy efficiency variable, the impact of the energy efficiency variable on residential energy usage is simply calculated as the product of the energy efficiency coefficient and the value of the energy efficiency variable.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 12 Page 1 of 2

QUESTION:

Please refer to page 63.

- a. Please detail the derivation of the projected private solar-caused NEL reduction, in the amount of 4,000 gigawatt-hour (GWh) by 2031, vs. 2,000 GWh by 2030 projected in FPL's 2021 TYSP. Please also explain the reasons or causes for the significant difference.
- b. Please provide FPL's latest private solar forecasts (the respective annual customer numbers by class and the annual solar energy generation by class) in MS Excel format. Please also identify the associated assumptions and forecasting model(s) utilized with specifications of the input variables and forecasting method employed.

RESPONSE:

a. As detailed in FPL's response to Staff's First Data Request No. 17, FPL's forecast of private solar adoption used in the 2022 TYSP is driven by Wood Mackenzie forecasts for installed MWdc in the state of Florida, adjusted according to the FPL's recent actual percentage share of the state. Because Wood Mackenzie does not regularly release a ten-year forecast on a quarterly basis, FPL has chosen to use their most recent (available at the time the FPL forecast is developed) five-year forecast for the first five years and the most recent ten-year forecast to extrapolate incremental growth in years six through ten. In the case of the 2022 TYSP, the Wood Mackenzie forecasts used were the *U.S. Solar Market Insight: Q3 2021* and the *U.S. Solar Market Insight: 2020 Year in Review*, respectively. For the 2022 TYSP, the Wood Mackenzie forecasts used were the *U.S. Solar Market Insight: Q3 2020* and the *10-year US solar PV installation forecast* (published October 2019), respectively.

For the 2022 TYSP, the cumulative installed capacity for the state of Florida derived from the best available Wood Mackenzie forecasts was 7,379 MWdc for year-end 2030. FPL extrapolated Wood Mackenzie's forecast by one year, by adding 10% (based on the average of Wood Mackenzie's 2029-2030 projected growth of 14% and EIA's growth 2030-2031 growth of ~6%) and arriving at 8,199 MWdc for year-end 2031 – and mid-year 2031 average of 7,789. Multiplying this amount by the FPL/Gulf combined share of the state (38.7%), an annual solar output of 1,539 kWh/kWdc (based on NREL's PVWatts tool), and a cumulative degradation factor of 97% (based on 0.5% per year) results in an expected cumulative solar generation of approximately 4,500 GWh. When adjusted to reflect only the energy impacts of new solar installations beginning August 2021, the result is an expected incremental solar generation of 3,986 GWh by 2031.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 12 Page 2 of 2

For the 2021 TYSP, the cumulative installed capacity for the state of Florida derived from the best available Wood Mackenzie forecasts was 3,906 MWdc at year-end 2029 and 4,500 at year-end 2030 – a mid-year 2030 average of 4,203 MWdc. Multiplying this amount by the FPL/Gulf combined share of the state (37.4%), an annual solar output of 1,539 kWh/kWdc (based on NREL's PVWatts tool), and a cumulative degradation factor of 97% (based on 0.5% per year) results in an expected cumulative solar generation of approximately 2,300 GWh. When adjusted to reflect only the energy impacts of solar installations beginning August 2020, the result is an expected incremental solar generation of 1,991 GWh by 2030.

Thus, the large increase between the 2021 and 2022 site plans was a result of increased projections in the underlying third-party forecasts. One driver of this increase was the extension of the federal investment tax credit (ITC) signed into law in December 2020, which was after the load forecast for the 2021 TYSP was developed. Per Wood Mackenzie's U.S. Solar Market Insight: 2020 Year in Review: "Looking ahead, we expect residential solar will reach double-digit growth in each of the next three years. The majority of the market will be customer-owned thanks to the dominance of residential solar loans, and a higher ITC value, which makes these sales even more compelling. [...] The most significant increases to our outlooks are in 2022 (which was previously the first year of ITC-related market contraction) and 2023 (which is now characterized by demand pull-in before the ITC phases down)."

b. FPL's latest complete private solar forecast was that used in the 2022 TYSP. Please see confidential Attachment No. 1 for the forecast model in Excel and reference FPL's response to Staff's First Data Request No. 17 for discussion of methodologies.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 13 Page 1 of 1

QUESTION:

Please refer to page 64 for the following questions regarding the energy-efficiency codes and standards (EECS).

- a. Please explain why the impact of the EECS on the Summer peak load is significantly higher than that on the Winter peak load.
- b. FPL's 2022 TYSP projected that the cumulative impacts from the EECS will effectively reduce the Summer peak by approximately 19% by 2031, vs. 17% by 2030 which was projected in the 2021 TYSP. Please explain the reason and/or causes for the increased projections.
- c. Please detail the derivation of the projected EECS-contributed Summer peak reduction, in the amount of 1,640 MW approximately by 2031.

- a. The impacts of energy efficiency codes and standards to FPL's Summer Peak loads are significantly higher than the impacts to FPL's Winter Peak loads because air conditioning and heating loads are the largest contributors to summer and winter peak demands, respectively, and changes in energy efficiency codes and standards have had a larger proportional impact on reducing summer air conditioning load compared to winter heating load.
- b. The minor change in the cumulative impacts from the energy-efficiency codes and standards (EECS) variable between the 2021 TYSP and the 2022 TYSP is due to a minor change in the estimate coefficient for the EECS variable. As discussed in FPL's response to Staff's Third Data Request No. 11, the impact of a single variable, such as EECS, on the forecasted value is calculated by multiplying the value of the variable times the variable's coefficient. The coefficients are estimated by the model and as additional historical observations are added, the coefficients can and do change. In this specific instance, the EECS coefficient was -0.888 in the 2022 TYSP, compared to -0.846 in the 2021 TYSP.
- c. Please see Attachment No. 1 to this response.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 14 Page 1 of 5

QUESTION:

Pages 65 through 66 read:

For the second step of the process [of determining peak demand under conditions of extreme weather], the P50 normal weather peak loads were then adjusted to reflect the additional load associated with the difference in normal weather versus the actual weather conditions experienced in December 1989. Two multiple linear regression models were developed, one each for the FPL and Gulf legacy areas, using historical daily peak loads for those days with heating load and weather variables that are consistent with those utilized in the normal weather peak load models.

- a. Was the 1989 weather event the most extreme winter weather event Gulf legacy area has had historically? If not, what was it?
- b. Please identify all the assumptions and source of the data used in the development of the multiple linear regression models. Clearly identify the source dates of each data series.
- c. Please identify and describe all dependent and independent variables in each of these regression models.
- d. In MS Excel format, please provide for each model: (1) the data series of the dependent variable, including also the predicted data series resulting from the regression; (2) the forecast data for the dependent variable and the independent variables.
- e. Please explain how FPL validated these regression models.
- f. Please explain how FPL expects to evaluate the accuracy of its forecasts resulting from these regression models.
- g. Please elaborate on "using historical daily peak loads for those days with heating load and weather variables that are consistent with those utilized in the normal weather peak load models." As in, please clarify with explanation the following:
 - i. "those days,"
 - ii. the specific date/period of the "historical daily peak loads" utilized,
 - iii. the specific date/period of the "heating load" utilized,

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 14 Page 2 of 5

- iv. the specific date/period of the "weather variables" utilized.
- h. Please elaborate on "[t]his was done by developing multiple linear regression models based on historical daily data for those days with heating load." As in, please clarify with explanation for the following:
 - i. the specific date/period of the "historical data,"
 - ii. "those days,"
 - iii. the specific date/period of the "heating load" utilized.
- i. What is FPL's basis for relying upon an extreme weather assumption (December 1989), in conjunction with historical normal load profiles, to model Winter Peak demand, and to use such models to prepare its annual Winter Peak demand forecast, thereby replacing the normal weather assumption FPL has traditionally relied upon to prepare its models and forecasts for generation planning?
- j. Please provide all documents FPL relied upon supporting the need for FPL's second step in its two step approach to modelling its Winter Peak load.
- k. Please identify any other utility(ies) known to FPL which rely upon extreme weather assumptions to prepare its models and forecasts of Winter Peak Demand for purposes of preparing its primary recommendation for generation planning to regulatory authorities.
- l. If applicable, please identify any generation planning orders or decisions, known to FPL and issued by regulatory authority(ies), that were supported by utilities' winter peak demand forecasts prepared using models and forecast data based on extreme weather assumptions.
- m. Did FPL consider any models and/or methodologies for representing extreme winter weather impacts to its Winter Peak Demand forecasts other than the method described under the heading "System Winter Peak?" If so, please provide a description of all such models and/or methodologies and provide all related supporting documents.
 - i. If FPL did consider other models or methodologies, please explain why such models/methodologies were ultimately not proposed by FPL in its 2022 TYSP.
 - ii. If FPL did not consider other models or methodologies, please explain why not.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 14 Page 3 of 5

- a. The 1989 weather event was the most extreme winter event Gulf has had historically due to temperatures remaining below freezing for almost 4 days. In 1985, there was a similar event in which the Gulf territory experienced single digit temperatures, but temperatures only remained at or below freezing for about 2 days.
- b. The 2 linear regression models are structured identically, where the dependent variable for each model is peak kW per customer and the independent variable is the daily minimum temperature. Both models also include a constant. The daily peak kW per customer values were calculate by taking the daily peak kW value and dividing that by the number of customers. The minimum temperatures were from the respective weather station(s), as described in the 2022 TYSP. The source of the FPL legacy daily peak kW was FPL's system control historical data and the source of the Gulf legacy daily peak kW was Northwest Division's system control historical data. As provided in the FPL's response to Staff First Data Request No. 14, the weather data was provided by WSI, an industry weather data vendor. These sources are consistent with those used for the P50 Winter Peak Demand models.
- c. The 2 linear regression models are structured identically, where the dependent variable for each model is peak kW per customer and the independent variable is the daily minimum temperature. Both models also include a constant.
- d. Please see Attachment No. 1 for FPL and Attachment No. 2 for Gulf.
- e. These models were validated by examination of the adjusted R-squared values and p-values of the independent variables. The adjusted R-squared values were .662 and .763 for the FPL legacy and Gulf legacy models, respectively and the p-values for all independent variables were 0.0%. Additionally, the significance F statistics for both models were 0.000, which indicate the models are statistically significant.
- f. It is not expected that the accuracy of these models can be tested directly because the weather conditions underlying the forecasts are extreme by definition and are not expected to occur each year. However, these models are statistically significant, and it is expected that the actual Winter Peak Demands would be similar to these forecasts if another 1989 extreme weather event were to occur.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 14 Page 4 of 5

- g. The phrase "those days with heating load" refer to any day between January 1, 2010 and December 31, 2020 with a minimum daily temperature of 46 degrees or lower. The specific days of the historical daily peak loads, heating load, and weather variables utilized are included in the models are provided in the attachments listed in subpart (d) of this response.
- h. These models were based on any historical day between January 1, 2010 and December 31, 2020 with a minimum daily temperature of 46 degrees or lower. The specific days included in the models are provided in the attachments listed in subpart (d) of this response.
- i. The extreme weather assumption (December 1989) was not combined with a normal load profile; instead, the extreme weather assumption regarding the expected peak hourly demand (December 1989) was combined with an extreme winter weather load profile (January 2010) to arrive at the forecasted hourly loads that were used for generation and resource planning purposes. The January 2010 hourly profile was selected for a number of reasons, including being more recent than December 1989 and also reflecting a longer duration extreme weather event. As discussed in FPL's response to Staff Third Data Request No. 2, subpart (b), the January 2010 extreme winter weather event was somewhat milder than December 1989 but over a longer duration. The purpose of using extreme winter weather conditions for developing the load forecasts was to allow FPL to take steps to better prepare for such extreme winter weather events.
- j. FPL does not possess documents supporting the need for a two-step process for forecasting extreme winter peak demands. However, it is generally recognized that models perform poorly when attempting to estimate for conditions that were not observed in history (effectively extrapolating) and the extreme winter weather conditions were well beyond those included in the historical data used to develop the P50 forecasts. Therefore, it was FPL's judgement that the extreme winter peak demand forecasts should not be developed solely using the P50 forecasting models.
- k. FPL is not currently aware of any other utility relying on extreme winter weather assumptions when preparing Winter Peak Demand forecasts for purposes of preparing its primary recommendation for generation planning to regulatory authorities. However, due to the fact that the impetus for FPL deciding to plan for extreme winter events was so recent, *i.e.*, the February 2021 Texas event, it may be too early to tell if other utilities across the U.S. have made, or will make, a similar change in their planning approach.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 14 Page 5 of 5

- 1. FPL's decision to plan for extreme winter events is consistent with the Florida Public Service Commission's Order No. 22708. This order addressed actions electric utilities were to take in the wake of the extreme winter event that occurred in Florida in 1989. In that Order, the FPSC listed a number of "suggestions for improvement". The relevant suggestion in regard to resource planning reads as follows: "10. Utilities should reflect the impact of the cold weather experienced during the Christmas holidays in their load and energy forecasts and generation and transmission plans."
- m. FPL did not consider other models or methods for representing the impacts of extreme winter weather on peak demands. The rationale for using the two-step process was that this would ensure the Company had a business as usual (P50) peak demand forecast that is consistent with prior forecasts while also having a reasonable estimate of the additional peak demand associated with a severe winter weather event. As FPL becomes aware of other methods of estimating the impact of severe winter weather, the Company would be able to test and adopt, as deemed appropriate, those improvements without fundamentally altering the P50 Winter Peak Demand forecasting methodology.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 15 Page 1 of 1

QUESTION:

Please refer to page 66, which states that rationale for FPL's extreme weather winter peak demand forecasting approach using normal weather are inadequate for estimating peak demand under extreme weather such as occurred in December 1989.

- a. Is FPL's recommendation to rely upon its extreme weather winter peak demand forecast based on an assumption that all, or nearly all, customer interruptions due to extreme winter weather in the future should be prevented?
- b. If the answer to question (a) is affirmative, please explain why FPL has made this assumption.

- a. Yes, FPL's Recommended Plan is designed to minimize and/or eliminate outages from possible extreme Winter events while minimizing the incremental cost to customers. This approach allows a high degree of certainty that FPL will be able to serve all of its customers during extreme Winter events and avoid outages similar to what occurred in Texas in 2021 and Florida in 1989.
- b. FPL has made the assumption that customer interruptions due to extreme Winter weather in the future should be minimized and/or prevented, while minimizing the incremental cost to customers, based on the customer hardship and damage to the economy that was seen in the recent 2021 Texas cold weather event.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 16 Page 1 of 1

QUESTION:

Please refer to page 70, Business as Usual Case - P50 Winter Forecast Schedule 2.1, Column (9) Commercial Average kWh Consumption Per Customer. Please explain the reasons or causes for the projected steady annual reduction in projected consumption per customer throughout the forecasting horizon.

RESPONSE:

The projected decline in Commercial Average kWh Consumption Per Customer is primarily due to changes in the mix of commercial customers. For modeling purposes, FPL separates the commercial class into 2 groups: small/medium commercial and large commercial customers. The number of small/medium commercial customers, which have a lower average consumption per customer, is projected to grow at a faster rate than the number of large commercial customers. This difference in customer growth rates results in small/medium commercial customers becoming a larger proportion of total commercial customers, which also results in a lower average consumption per customer for the total commercial class. Additional reductions in usage come from the impacts of increasing energy efficiency codes and standards.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 17 Page 1 of 1

QUESTION:

Please refer to page 71, Schedule 2.2 FPL History of Energy Consumption, Column (12) Industrial Average kWh Consumption Per Customer. Please explain the reasons or causes for the 2021 annual reduction in projected consumption per customer, from 259,969 kWh in 2020 to 247,894 kWh in 2021, or 1.2 percent approximately.

RESPONSE:

The primary driver for the decline in the Industrial Average kWh consumption Per Customer from 2020 to 2021 was the change in the industrial class customer mix. There was an increase in the number of small industrial customers, which have significantly lower average use per customer than medium and large industrial customers, the result was a decrease in the total industrial average kWh consumption per customer.

The increase in the number of small industrial customers was primarily due to growth in the number of Temporary Service Poles, or TSPs. TSPs are service accounts which provide temporary electric service to installations such as construction projects. The increase in residential housing construction has resulted in an increase in the number of TSPs.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 18 Page 1 of 1

QUESTION:

Please refer to page 72, Business As Usual Case - P50 Winter Load Schedule 2.2 Forecast of Energy Consumption, Column (12) Industrial Average kWh Consumption Per Customer. Please explain the reasons or causes for the projected reductions in projected consumption per customer in 2022 and 2023.

RESPONSE:

The primary driver for the decline in the Industrial Average kWh consumption Per Customer from 2022 to 2023 is the change in the industrial class customer mix. Small industrial customers are forecasted to grow at a higher rate than medium and large industrial customers. Because small industrial customers have significantly lower average use per customer than medium and large industrial customers, the result is a decrease in the total industrial average kWh consumption per customer.

The forecasted growth of small industrial customers is primarily due to the projected strength of residential housing starts. Residential housing starts are a driver of small industrial customer growth because Temporary Service Poles, or TSPs, are included in small industrial customers. TSPs are service accounts which provide temporary electric service to installations such as construction projects.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 19 Page 1 of 1

QUESTION:

Please refer to pages 77 and 78.

- a. Please refer to Schedule 3.2 FPL History of Winter Peak Demand, Column 10, and Schedule 3.2 Forecast of Extreme Winter Peak Demand, Column 10. Please explain why FPL anticipates an increase in Net Firm Demand from 14,993 MW in 2021 to 30,270 MW in 2022.
- b. Please refer to page 181, Schedule 7.2, Column 9. Please explain the discrepancy in the values between Schedule 7.2, Column 9, and Schedule 3.2 Forecast of Winter Peak Demand, Column 10.

- a. The projected increase in Winter Peak Net Firm Demand of 14,993 MW in 2021 to 30,270 MW in 2022 is primarily due to weather. The 2021 number was the actual reported winter peak and reflects the impacts of milder than normal weather conditions, whereas the forecasted 2022 number reflects the impacts of the severe winter weather conditions experienced in December 1989. Additionally, the forecasted 2022 number reflects the impact of continued customer growth.
- b. The differences for years 2022 through 2024 were due to a 12 MW difference in the amount of load management listed in those schedules. The differences in years 2025 through 2031 are due to rounding.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 20 Page 1 of 1

QUESTION:

Please refer to page 78, Schedule 3.2 – Forecast of Extreme Winter Peak Demand, Columns 6 and 7. Please explain how these values were determined, and why these values are increasing annually.

RESPONSE:

Column (6) of Schedule 3.2 represents the projected amounts of Residential Load Management in FPL's service territory, while Column (7) represents the amount of incremental residential energy efficiency. Both values are increasing in line with FPL's currently approved demand-side management (DSM) Plan through 2024 plus previously projected cost-effective incremental additions of DSM programs in subsequent years.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 21 Page 1 of 3

QUESTION:

Please respond to the following questions regarding the table below. The table compares FPL's Business As Usual Plan for Winter Peak Demand Forecast versus FPL's Extreme Winter Peak Demand Forecast for the ten year time horizon contained in FPL's 2022 TYSP, using the data appearing on FPL 2022 TYSP, page 78, Schedule 3.2.

- a. Is the annual difference between FPL's Extreme Winter Demand Forecast and its Business as Usual Winter Peak Demand Forecast, shown in the last two columns of the table (i.e. 9,107 MW to 10,365 MW, or approximately 43 percent annually) an accurate representation of the increase in Winter Peak demand which FPL is requesting the Commission to recognize for planning purposes relative to what FPL would have requested using normal weather assumptions similar to that used in prior years?
- b. In recommending its 2022 Extreme Winter Peak Demand forecast, does FPL believe that an extreme winter event such as that of December 1989 is expected to occur with approximately the same frequency as in the past? If not, please explain any change in frequency expected and provide all relevant support.
- c. Is it correct that FPL has prepared past Winter Peak Demand models and forecasts with the expectation of minimizing its forecast error rate, in an attempt to drive forecast peak demand error rate to be as close to zero as possible?
- d. How does FPL believe its winter peak demand forecast error rate will be impacted by its use of the proposed Extreme Weather Forecast for Winter Demand?
- e. For years in which normal weather prevails, does FPL anticipate that its average forecast error associated with its Extreme Weather Forecast for Winter Demand would be approximately 43 percent (the difference between FPL's normal weather and extreme weather demand forecasts)? Please explain why or why not?
- f. If FPL does expect that its forecast error associated with its Extreme Weather Forecast for Winter Demand will approximate 43 percent for those years in which normal weather prevails, please explain why such a result would be acceptable from a regulatory perspective in Florida.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 21 Page 2 of 3

	Table 1: FPL Winter F	Peak Demand Forecasts Cor	nparison	
	FPL's Recommended	FPL's Business as Usual		
	Plan - Extreme Winter	Plan - P50 Winter	Diffe	rence
Year	Net Firm Demand (MW)*	Net Firm Demand (MW)*	(MW)	Percentage
2022	30,270	21,163	9,106	43.0%
2023	30,783	21,527	9,256	43.0%
2024	31,312	21,894	9,418	43.0%
2025	31,675	22,121	9,554	43.2%
2026	32,125	22,438	9,687	43.2%
2027	32,494	22,673	9,821	43.3%
2028	32,938	22,982	9,956	43.3%
2029	33,406	23,318	10,088	43.3%
2030	33,844	23,632	10,212	43.2%
2031	34,364	23,999	10,364	43.2%
*Source:	FPL's 2022 TYSP, Sched	lule 3.2		

RESPONSE:

- a. Yes.
- b. FPL's recommendation to use the extreme winter peak demand forecast for resource planning purposes does not assume expectations of a change in the frequency of future occurrence of such weather events, which are infrequent and unpredictable. Instead, FPL's recommendation to use the extreme winter peak demand forecast was based on the Company's determination that the prudent course of action is take steps to be better prepared for such an extreme winter event.
- c. Yes, it is correct that FPL's previous Winter Peak Demand forecasts were P50 forecasts, which would be expected to produce the lowest possible forecast errors. FPL's current Business as Usual Plan is based on a P50 Winter Peak Demand forecast, which is consistent with prior forecasts.
- d. FPL expects forecast error rates calculated using the Extreme Winter Peak Demand forecast to be higher than the forecast error rates calculated using the current Business as Usual Plan forecast, which is consistent with prior forecasts.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 21 Page 3 of 3

- e. Generally, yes, FPL would expect future forecast error rates for normal weather years to be approximately 40% greater than historical forecast error rates when compared to the Extreme Winter Peak Demand forecast. FPL would expect future forecast error rate for normal weather years to be similar to historical forecast error rates when compared to the current Business as Usual Plan forecast. The higher expected forecast error rate for the Extreme Winter Peak Demand forecast is due to increase in the winter peak over the P50 Winter Peak Demand forecast.
- f. FPL believes that the use of an Extreme Winter Peak Demand forecast should be acceptable from a regulatory perspective in Florida when considering that the objective of using such a forecast is to better prepare FPL to serve its customers when another extreme Winter event occurs. In regard to forecast error rates, an increased error rate that compares the Extreme Winter Peak Demand forecast versus the current Business as Usual Plan forecast is to be expected in years in which an extreme Winter event does not occur. However, FPL believes that planning to serve customers when an extreme Winter event occurs is a more prudent course of action compared to not planning for such an event due to concerns over a forecast error rate metric.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 22 Page 1 of 1

QUESTION:

Please refer to page 86.

- a. Please explain why the Utility decided that batteries were the best option for resource planning.
- b. Please explain what alternatives, other than batteries, were considered in resource planning. As part of this response, please explain if combustion turbines were considered.
- c. Please provide a detailed cost comparison of FPL's Recommended Plan to its Business As Usual Plan. As part of this response, please identify the annual and cumulative present value revenue requirement, and the estimated residential bill impact for each plan.

RESPONSE:

- a. FPL considered both new solar PV units, batteries, and combustion turbines while developing its 2022 resource plans. Batteries were not considered the "best option" categorically, but they were selected in both of FPL's resource plans as they provide significant firm capacity for both Summer and Winter and can be deployed incrementally to meet resource needs. FPL did consider combustion turbines as an option at various stages of the planning analysis process, but combustion turbines were eventually not selected for the final resource plan.
- b. Please see FPL's response to subpart (a) above.
- c. Please see Attachment No. 1 to this response. Note that FPL has included annual revenue requirements and bill impacts for the Recommended Plan if FPL only experienced a normal "P50" load but still added resources to meet a higher Winter load. This scenario represents the most accurate rate and bill impacts to customers as it excludes the variable cost increases caused by modeling a higher Winter load every year from 2022-2031. FPL believes that should an extreme Winter event occur, variable costs will be higher in both plans. Therefore, the only meaningful additional costs are fixed costs, which is shown by the Recommended Plan with a P50 load forecast. Note that these bill impacts only account for the incremental new capacity cost to customers in each plan.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 23 Page 1 of 2

QUESTION:

Please refer to page 96.

- a. Please provide a similar summary of larger resource additions/retirements for FPL's Business As Usual Plan.
- b. Please explain the benefit that FPL expects battery storage to provide for the immediate extreme weather conditions that FPL is planning for if the first battery is not anticipated to be in service until 2027.

RESPONSE:

- a. A summary for major resource additions/retirements for FPL's Business as Usual Plan is below:
 - In the Business as Usual Plan, new solar (PV) additions from 2022 through 2031 of approximately 9,389 MW (nameplate);
 - A new transmission line (the NFRC line) by mid-2022 enabling a bidirectional transfer capability between FPL and FPL Northwest Florida of up to 850 MW;
 - The modernization of the existing Lauderdale power plant site in mid-2022 with the new DBEC Unit 7 CC (approximately 1,267 MW);
 - Expiration (as per terms of the contract) of 885 MW from the Shell power purchase agreement (PPA) in May 2023;
 - The retirement of FPL's ownership portion of the coal-fueled Daniel Units 1 & 2 (approximately 500 MW) by the beginning of 2024;
 - Capacity upgrades at several of FPL's existing CC units through 2026;
 - The retirement of FPL's 25% ownership portion of the coal-fueled Scherer Unit 3 (approximately 215 MW) by the end of 2028; and,
 - In the Business as Usual Plan, a total of approximately 1,800 MW of battery storage in 2029 through 2031.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 23 Page 2 of 2

b. FPL projects that its "near-term" capacity additions in its Recommended Plan (converting existing units to "extreme Winter Only" operation and upgrading existing combined cycle units to increase their capacity during extreme Winter events) would allow FPL to meet the extreme Winter peak load and therefore minimize and/or eliminate customer outages through 2026 without additional Winter capacity. As FPL projects continued load growth for 2027 through 2031, minimization and/or elimination of customer outages during an extreme Winter event would require the addition of new Winter capacity such as that provided by battery storage units.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 24 Page 1 of 1

QUESTION:

Please refer to page 179.

- a. Please refer to Schedule 7.2, Column 2. Please identify the annual MW of solar for 2022 through 2031.
- b. Please refer to page 181, Schedule 7.2, Column 2. Please explain the discrepancy between 2022 through 2025 in Schedule 7.2 for the Recommended Plan and the Business As Usual Plan.

RESPONSE:

- a. Please see Attachment No.1 to this response for a table detailing the annual nameplate MW, Firm Summer MW, and Firm Winter MW for both the Recommended Plan and Business as Usual Plan.
- b. The difference between the firm capacity projected in Schedule 7.2 for the Recommended Plan versus the firm capacity projected in Schedule 7.2 for the Business as Usual Plan is from three sources: 1) Adjustments to existing unit ratings for Extreme Winter temperatures, 2) Projected Winter-specific upgrades to FPL's combined cycle fleet, and 3) Converting several existing units to "Extreme Winter Only" operation. These adjustments, upgrades, and conversions are present in the Recommended Plan but not in the Business as Usual Plan.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 25 Page 1 of 2

QUESTION:

Please refer to FPL's 2022 TYSP and 2021 TYSP (presented as Attachment No. 1 of FPL's Response to Staff's First Data Request) for the following questions.

- a. FPL's 2021 TYSP (page 60 of Attachment No. 1) reads "Residential energy sales are projected to grow at an average annual rate of 1.2% during the forecast period." FPL's 2022 TYSP (page 59) reads "2022 residential energy sales [...] are projected to grow at an average annual rate of 1.5% over the forecast period." Please identify/explain the major drivers of the increased projection of residential energy sales.
- b. FPL's 2021 TYSP (page 61 of Attachment No. 1) reads "Commercial energy sales are projected to grow at an average annual rate of 0.9% during the forecast period." FPL's 2022 TYSP (page 60) reads "2022 commercial energy sales [...] are projected to grow at an average annual rate of 0.7% over the forecast period." Please identify/explain the major drivers of the decreased projection of commercial energy sales.
- c. FPL's 2021 TYSP (page 62 of Attachment No. 1) reads "Industrial energy sales are projected to remain mostly flat during the forecast period, only growing at an average annual rate of 0.5%." FPL's 2022 TYSP (page 60) reads "2022 industrial energy sales [...] are projected to remain flat over the forecast period." Please identify/explain the major reason(s) for the further reduced industrial energy sales projection (de minimis vs. 0.5% growth over the forecast horizon).

RESPONSE:

- a. The primary driver of the slight increase in residential energy sales growth in the 2022 TYSP was a slight increase in projected use per residential customer growth compared to that in the 2021 TYSP. The slight increase in projected residential use per customer was primarily due to an increase in projected Electric Vehicle charging.
- b. The primary driver of the slight decrease in commercial energy sales growth in the 2022 TYSP was a slight decrease in projected use per commercial customer growth compared to that in the 2021 TYSP. The slight decrease in projected commercial use per customer was primarily due to a change in commercial customer mix, where small/medium commercial customers represent a larger proportion of total commercial sales compared to large commercial customers.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 25 Page 2 of 2

c. The primary driver of the decrease in industrial energy sales growth in the 2022 TYSP was the absence of increased industrial energy sales due to the impacts of economic development tariffs. The 2021 TYSP industrial energy sales forecast included an increase in industrial energy sales due to the impacts of economic development tariffs but the inclusion of those impacts resulted in an over-forecast of industrial energy sales so the 2022 TYSP did not include those impacts.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 26 Page 1 of 1

QUESTION:

FPL's 2021 TYSP, pages 55 through 56, indicated that FPL's system winter peak forecasting model includes a binary variable "to account for the lack of a Winter post-2011." Does FPL's respective 2022 P50 Winter model and Extreme Winter model include the same type of binary variable? Please explain your response.

RESPONSE:

FPL's 2022 P50 Winter model includes the same binary variable "to account for the lack of a Winter post-2011" that is seen in FPL's 2021 TYSP. The Extreme Winter peak demand forecast was developed using a two-step process, where the P50 Winter Peak demand forecast was adjusted to reflect the impacts from weather conditions experienced during the 1989 extreme weather event. The model used to estimate the adjust for the 1989 extreme weather event did not include a binary variable for post-2011 winters.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 27 Page 1 of 1

QUESTION:

FPL provides monthly as-available energy data to the Commission broken down into five regions (South, Southeast, Northeast, West, and Northwest). Please provide a description of which counties make up the different regions. Also, please estimate the winter peak demand increase, either in MW or percentage, for each region based upon FPL's extreme weather planning assumption.

RESPONSE:

A listing of which counties are included in each as-available region can be found in Attachment No. 1 to this response. A map showing the regions and counties can be found in Attachment No. 2 to this response. FPL's forecast of the extreme winter peak demand was for the total system only.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 1 Attachment 1 of 6 Page 1 of 2

September 28, 2021

Vince Ordax Director of Operations Florida Reliability Coordinating Council, Inc. 3001 North Rocky Point Drive East, Suite 410 Tampa, Florida 33607

Re: 2021/22 Winter Weather Preparedness

Vince,

In support of our focus on a highly reliable and secure Bulk-Power System, SERC is looking to better understand the level of winter preparedness for the SERC region as we enter the 2021/2022 winter season. As such, SERC is gathering information about winter weather plans, lessons learned from the previous winter, improvements from this past winter, and implementation of best practices within the SERC footprint.

As part of this effort, SERC would like to better understand the cold weather preparations that are underway, especially related to generation preparedness, for your Reliability Coordinator (RC) Area. Please provide a document or presentation that addresses the cold weather plans for the Balancing Authorities or Local Balancing Areas within your RC footprint no later than November 19, 2021.

The following attachment has a list of topics to consider in your response.

Please feel free to reach out to Melinda Montgomery (Sr Director, Engineering and Advanced Analytics) at mmontgomery@serc1.org (o: 704-940-8206 or m: 704-975-3341) or me at teponseti@serc1.org (m: 423-240-4276) with any questions or concerns.

Best regards,

Tim

Tim Ponseti
Vice President, Operations
SERC RELIABILITY CORPORATION

cc: Stacy Dochoda, FRCC President and CEO

Richard Gilbert, FRCC Director of MS Regulatory

Attachment

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 1 Attachment 1 of 6 Page 2 of 2

Page 2

ATTACHMENT A

The following topics (if applicable) should be addressed for each Balancing Area (BA) or Local Balancing Area (LBA) within your RC footprint that is larger than 1000 MWs. Information below should include (if applicable) information regarding preparation and plans around generation, fuel supply, transmission system, winter season load forecast, and plans for extreme winter weather events.

- 1. Winter Season Peak forecast
- 2. Total generation capacity and market purchase capacity available for winter season peak
- 3. Plans to manage energy and capacity requirements of extreme winter weather
- 4. Potential energy and/or capacity constraints
- 5. Load forecasting practices that consider extreme events
- 6. Generation and Fuel Supply preparations; including winter weatherization adjustments, if applicable
- 7. Plans to maintain / improve Generation and Fuel availability during winter weather events
- 8. Best practices and Lessons Learned from the last several winters, and improvements made for this winter (generation, fuel supply, transmission system, load forecasting)
- 9. Operator training exercises
- 10. Plans for initiating and maintaining communications with neighboring balancing areas, generating resources, transmission operators, making public appeals (as applicable)
- 11. BA/LBA Plans to maintain coordinated communications with Reliability Coordinator
- 12. Plans for communicating with natural gas providers (suppliers and pipelines) to assess natural gas availability, and to coordinate gas/electric interactions during emergencies
- 13. Activities that promote a high-level of situational awareness related to regional energy. This includes, but is not limited to, maintaining awareness of fuel inventories and replenishment plans at critical facilities, status of dual fuel and demand response resources.
- 14. Considerations to minimize duration and unintended consequences of emergency extreme actions, such as load shedding.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 1 Attachment 2 of 6 Page 1 of 9

1. Winter Season Peak forecast

The FPL P50 2021/2022 Winter peak forecasted value for FPL is 20,309 MW. FPL is also examining two forecasts that assume more extreme Winter temperatures. One of these considers a high Winter peak of 26,960 MW. The other forecast is one that is based on the actual temperatures experienced in the Winter of 1989. (The 1989 Winter event was one of only three severe Winter events that have occurred in the last 45 years and it was the event that most impacted FPL's customers.) The forecasted Winter peak load for a 1989-actual temperature forecast for the Winter of 2021/2022 is 29,607 MW.

Note: All of the above referenced load amounts include 1,886 MW of non-firm load that is addressed by FPL's demand side management (demand response) programs.

2. Total generation capacity and market purchase capacity available for winter season peak

FPL's current projected total 2021/2022 winter generation and market purchased capacity is 27,422 MW. In addition, FPL has 1,886 MW of demand side management of FPL non-firm load.

3. Plans to manage energy and capacity requirements of extreme winter weather

FPL System Operation plans for TOP and BA operations, which start a year ahead and then continue the focus on weeks ahead, then days ahead and finally day ahead, to ensure an adequate level of transmission capacity and generation resources in the event of extreme winter weather. This "all available" plan also ensures that transmission capacity is maximized for purposes of the provision of transmission service to facilitate purchases and sales of power. Additionally, since significant cold fronts can be forecasted with 5 to 7 days of notice, during the winter period necessary short-term transmission and generation outages are managed with clear-up times of 3 days and 5 days or less, respectively.

4. Potential energy and/or capacity constraints

None

5. Load forecasting practices that consider extreme events

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 1 Attachment 2 of 6 Page 2 of 9

FPL's Summer and Winter peaks are typically based on a P50 load forecast. Regarding potential severe Winter peaks, FPL's load forecasting group also provides other forecast scenarios. These include a higher peak forecast and a forecast based on temperatures experienced in the Winter of 1989 which was the Winter event that most impacted FPL's customers in the last 45 years. (See FPL's response to Question # 1.)

Additionally, in the operational time frame as actual weather forecast become available (7 - 10 days out) and then as the time frame gets closer, FPL forecasts loads taking into consideration expected temperatures. As part of this operational process FPL considers multiple weather service forecasts and uses multiple load forecasting tools to determine potential system needs.

6. Generation and Fuel Supply preparations; including winter weatherization adjustments, if applicable

Each year, FPL's power plants execute a Winterization preventive maintenance process which verifies administrative and plant physical readiness for winter operations, including freeze protection and insulation condition assessment as well as operator refresher training. This annual process has been routinely updated with lessons learned from prior winter operations experiences and historical extreme winter events on our system. FPL's plants with dual fuel capability, maintain liquid fuel readiness through a year-round process in which routine testing of liquid fuel capability is performed and tracked along with live data of liquid fuel inventories throughout our system. An FPL capacity notification outlines plant capability based on summer and winter ratings, is provided to FPL's TOP and BA operations annually.

Fuel Supply Preparations - Distillate Fuel Oil

FPL uses distillate fuel oil as an emergency back-up fuel in case of any interruption to natural gas supply or during times when natural gas requirements exceed FPL's delivery capability due to extreme demand, which for FPL primarily occurs during winter peaks related to cold fronts that reach far into South Florida. Approximately 65% of FPL's combined cycle and simple cycle CT fleet can operate on distillate fuel oil. FPL has approximately 1.5 million barrels of distillate fuel oil storage capability across 9 sites that can provide an average of 88 hours of full load operation for approximately 12,000 MW of combined cycle and simple cycle CT generation. Distillate is resupplied predominately via tanker trucks which can be a slow process and depending on requirements, consumption rates can exceed replenishment rates. Therefore, FPL's target is to maintain full inventory at all facilities that have back-up distillate fuel oil on a year-round basis. At FPL's more recently modernized plants along the east coast of Florida, distillate fuel oil can also be supplied via waterborne vessels. While the lead time on bringing in supply via waterborne transportation can be longer than resupply via tanker trucks, the advantage is that larger quantities can be delivered at one time, potentially helping FPL prepare for a possible second contingency more quickly. FPL also has the capability of executing tank-to-tank transfers directly with several suppliers located within the footprint of the supply port at one of its larger combined cycle sites. FPL's distillate fuel oil system is comprised of varying tank

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 1 Attachment 2 of 6 Page 3 of 9

sizes, resupply options, and proximities to supply locations. The unique characteristics of each individual location allow FPL tremendous flexibility during contingency events to manage its distillate inventory by dispatching its fleet based on real-time resupply conditions.

Fuel Supply Preparations – Natural Gas Storage

FPL holds 4.0 BCF of firm natural gas storage capacity in Alabama and 1.0 BCF of firm natural gas storage capacity in Mississippi. Storage capacity improves reliability by helping mitigate the impact of supply disruptions and increases FPL's ability to manage supply and demand on a daily basis. Inventory levels will generally vary throughout the winter season based on several factors, including system conditions on a daily basis. Inventory levels will be adjusted, as necessary, in response to projected weather forecasts for FPL's service territory, as well as surrounding natural gas supply regions.

7. Plans to maintain / improve Generation and Fuel availability during winter weather events

- a. Following the ERCOT winter storm of 2021 FPL Operations conducted a thorough review of
 its generation sites to be able to operate through a severe cold weather event. As a result,
 FPL is in the process of upgrading all the sites (including gas yards). The scope of work
 includes:
 - i. Heat Tracing on critical piping*
 - ii. Insulation on critical piping*
 - iii. Insulated and/or heated enclosures for critical transmitters* and other instruments that could cause mis-operation if frozen.
 - iv. Shelters to protect critical valves that are outdoors or could otherwise be exposed to freezing rain
 - v. Wind Barriers to protect critical valves.
 - * Critical Piping includes both Process piping and control/sensing lines that could cause miss operation.
- b. The following sites will be completed prior to Jan 1st 2022: Turkey Point and St. Lucie nuclear units, Sanford, Okeechobee, Cape Canaveral, Manatee, and West county. The remainder of the sites will be completed prior to May 1st 2022.

Natural Gas Availability

FPL consumes approximately 650,000,000 MMBtu of natural gas on an annual basis and holds more than 2,600,000 MMBtu/day of firm transportation capacity across three delivery pipelines connected to its generation facilities. FPL also holds roughly 600,000 MMBtu/day of firm transportation capacity on several upstream pipelines that provide access to additional natural gas supply points. Given the size of its natural gas portfolio, FPL transacts for natural gas with numerous suppliers on an annual, monthly, and daily basis. FPL considers the historical

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 1 Attachment 2 of 6 Page 4 of 9

performance of its suppliers, particularly during extreme weather events, as it builds and adjusts its supply portfolio on a continuous basis. FPL maximizes the availability of natural gas to its generation fleet by maintaining a diverse portfolio of firm transportation capacity, maintaining a diverse supply portfolio, transacting with suppliers that have demonstrated high standards of performance, and improving contractual performance language when appropriate.

Distillate Fuel Oil Availability

FPL routinely utilizes multiple distillate fuel oil suppliers as part of its normal process in an effort to maintain a "pool" of suppliers that are familiar with FPL's facilities and understand FPL's process for receiving distillate fuel oil deliveries. With a "pool" of experienced suppliers, delays in resupply can be avoided, particularly during extreme weather events where timing is critical. FPL will typically engage in conversations with its distillate fuel oil suppliers in advance of an extreme weather event to create situational awareness and to discuss strategies and logistics if it should become necessary to begin resupply operations.

8. Best practices and Lessons Learned from the last several winters, and improvements made for this winter (generation, fuel supply, transmission system, load forecasting) FPL has not experienced severe weather events in over 10 years.

However, FPL has made improvements to load forecasting, generation, fuel procurement and management, and transmission facilities based on lessons learned from extreme winter conditions that were experienced during the last three winter extreme high load events that affected FPL in the last 45 years (i.e., 1977, 1989 and 2010). FPL also leverages industry lessons learned from extreme weather events to make process improvements, ensure awareness of key operating issues and continuously improve operating processes and procedures during emergency conditions.

- Load Forecast: In addition to continuing to use a P50 forecast for its resource planning work,
 FPL is now augmenting that forecast with one or more additional load forecasts based on colder Winter temperatures that result in higher Winter loads.
- Generation: FPL Operations winter readiness procedure has incorporated lessons learned
 from prior events as well as emergency readiness drills. FPL has reviewed and incorporated
 applicable lessons learned from the last major winter events across the US (2011, 2014, 2018
 and most recently 2020). In addition, please refer to question 7 for improvements being
 made for this winter.
- With respect to fuel procurement and management please refer to the response to question 13.
- Transmission: FPL has an equipment design philosophy that specifies the ratings of
 equipment, taking into account cold weather conditions, to meet or exceed National
 Electrical Safety Code (NESC) requirements. FPL also has full visibility to current and
 forecast loads being fed by the Transmission and Substation infrastructure. Extreme cold

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 1 Attachment 2 of 6 Page 5 of 9

weather forecast has been incorporated into the annual capacity planning process which is a driver for additional capacity required in the Transmission and Substation system.

FPL has implemented a number of lessons learned from prior extreme cold weather events that affect both equipment design/philosophy and operational posture:

- o Automated and remote auto-restoration restriction during periods of high loads (typically extreme heat/cold) to address the risk of substation transformer overload condition
- Auto and Power Transformer design philosophy was changed to allow for a 150% overload capacity for three hours (winter rating) mitigating peak loading concerns
- o Enhanced response posture to system alarms and post event equipment reviews
 - Strategic pre-arrangement of first responder personnel
 - Alarm response (low gas/oil/fluid)
 - Assessment of equipment (high operations, semaphores, etc.)

9. Operator training exercises

FPL holds multiple training exercises associated with generation capacity shortfalls as evidenced below. These exercises include the team involved in BA and TOP operations, as well as other corporate teams that would be involved in such event (e.g., Fuel procurement team, energy procurement team, field operations, Marketing and Communications, Customer Service, Governmental outreach; Demand side management). Specifically, for 2021;

- Annual Capacity Shortfall Dry Run held in April. This full day drill coordinated by FPL's
 Emergency Preparedness Organization simulated a significant loss of generation resulting in
 capacity shortfall. Various corporate teams simulated the deployment of emergency
 processes and tools via desktop exercises, scenario injects, and mock reports.
- Annual Capacity Shortfall Workshop scheduled for December. This half day session will
 include participation by System Operations, Demand Side Management, Marketing and
 Communications, and other customer service teams. During this session the teams will
 present the latest processes and tools to be deployed in the event of a winter capacity event.
- System Operator training:
 - Capacity Shortfall training held in the Spring. This training, including EMS simulation exercise of capacity shortfall response, included detailed review of EEA alerts, peaking capabilities, curtailing non-firm transactions, and non-firm and firm load control tools.
 - Conservative Operations training held during the Fall. This training involved the review of conservative operation posture including extreme weather conditions and minimum regional generation requirements at high system loads.
 - Energy Marketing and Trading (EMT) training held during the Fall. EMT is responsible for the procurement of fuel for FPL's generation resources and purchased

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 1 Attachment 2 of 6 Page 6 of 9

- power to serve FPL's customers. EMT provided an overview of gas pipelines and critical gas supply facilities serving FPL generation resources and the fuel procurement process.
- Power Coordinator / BA training delivered during the Fall. This training provided a
 review of the priority of dispatch of resources during a capacity shortage, including
 peaking capability of specific resources, curtailment of non-firm sales, deployment of
 non-firm load control tools and entrance criteria for EEA levels. Also, the training
 covered operator tasks for the buying and selling of emergency power.
- Renewables and Power System Stabilizer training provided during the Fall. This
 training covered the FPL West area expected contingency loadings on facilities
 during high winter peak loads and the use of FPL's new 409MW battery for
 mitigation of any potential overload contingencies.
- Generator operator training as noted in previous responses

10. Plans for initiating and maintaining communications with neighboring balancing areas, generating resources, transmission operators, making public appeals (as applicable)

The "FPL Emergency Plan for Capacity Shortages/Transmission Limitations and Long Term Fuel Shortages" describes the coordinated processes followed during a generating capacity shortfall. In addition, this Plan specifies internal roles and responsibilities in communicating with local and state emergency management agencies, regulatory and governmental agencies, major commercial and industrial customers, and the media for public appeals for conservation.

With respect to FPL's coordinated interaction with the Florida Reliability Coordinating Council (FRCC), FPL follows a statewide process for assessment of capacity performed through the FRCC. FPL capacity assessment is provided to the FRCC and FPL initiates requests for any declarations and notifications relative to the FPL system.

Also, FPL's Conservative Operations procedure specifies the notification to the FRCC RC, as well as other BAs, TOPs and GOs via the FRCC hotline and Florida Transaction Management System (FTMS) messaging system, that FPL is commencing conservative operations for extreme weather conditions.

Based on the information that FPL (as well as other entities) provides to the FRCC, the FRCC aggregates such information and provides a coordinated area wide assessment and communications of capacity issues, operating reserve margin, transmission availability, customer appeals and any plans of demand side management or Load Shed.

11. BA/LBA Plans to maintain coordinated communications with Reliability Coordinator

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 1 Attachment 2 of 6 Page 7 of 9

The FRCC coordinates information with the FRCC RC and coordinates state response to expected or actual energy emergency alerts. As mentioned in response to Question 10, the FRCC has established a statewide process for assessment of capacity. FPL's capacity assessment is provided to the FRCC and the FRCC RC initiates any declarations and notifications relative to the FPL system.

Also, Conservative Operations declarations by FPL's BA/TOP are provided to the FRCC RC, as well as other BAs, TOPs and GOs via the FRCC hotline and FTMS messaging system.

Based on the information that FPL (as well as other entities) provides to the FRCC, the FRCC aggregates such information and provides a coordinated area wide assessment and communications of capacity issues, operating reserve margin, transmission availability, customer appeals and any plans of demand side management or Load Shed.

• Note: The FRCC has been contacted regarding their supplemental input for response to this question

12. Plans for communicating with natural gas providers (suppliers and pipelines) to assess natural gas availability, and to coordinate gas/electric interactions during emergencies

In the normal course of business, FPL is constantly communicating with its natural gas suppliers. During extreme weather events, these communications become more focused on potential supply problems and options for resupply if disruptions are projected to impact FPL.

Florida's unique geographic position and pipeline delivery system requires the highest level of electric-gas coordination to ensure reliability, and therefore, FPL engages in consistent coordination with the natural gas pipelines that serve FPL's power plants. This communication takes place on a daily basis for normal operations, periodically throughout each year for planned maintenance and outages, and immediately for unplanned maintenance and outages. Consistent coordination provides an opportunity to discuss and quickly address any operational issues. With generation located at the terminus of all three interstate pipelines, the coordination of planned and unplanned maintenance and outages is imperative to ensuring reliability. For example, for planned pipeline maintenance that will impact a specific power plant or group of plants, FPL works together with the pipeline to identify opportunities to perform the pipeline maintenance in conjunction with FPL's planned generation outages to help limit the overall impact. Coordination prior to and during extreme weather events such as cold weather and hurricanes is also critical for ensuring reliability. In these cases, understanding pipeline conditions and sharing FPL's projected demand eliminates surprises and helps both FPL and the pipelines adjust more quickly to changing conditions.

FPL has developed the tools necessary to monitor real-time pipeline information relative to its generation facilities, including consumption and pressures on the system. FPL's operational

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 1 Attachment 2 of 6 Page 8 of 9

personnel that are responsible for fuel management monitor and understand appropriate pressures and flows at all times, allowing for the quick recognition of "abnormal" conditions and the implementation of procedures to address those conditions.

FPL also maintains a "Critical Facilities" list for each pipeline. Critical Facilities lists are reviewed, updated, and confirmed on an annual basis. Electric service to these facilities is excluded from load shedding and load control programs at FPL. Critical Facilities lists include information such as facility type, address, substation, feeder number, feeder rank, and whether back-up generation (along with fuel type) is installed. Critical Facilities that are served by other electric providers are also reviewed between companies.

• Note: The FRCC has been contacted regarding their supplemental input for response to this question

13. Activities that promote a high-level of situational awareness related to regional energy. This includes, but is not limited to, maintaining awareness of fuel inventories and replenishment plans at critical facilities, status of dual fuel and demand response resources.

FPL maintains organizational awareness of natural gas and distillate fuel oil availability during extreme weather events through multiple intra-day coordination calls between System Operations, PGD, and EMT. These coordination calls are utilized to convey real-time fuel availability information and to develop dispatch plans in response to fuel availability, inventory levels, distillate fuel oil resupply conditions (by location), resource availability on distillate fuel oil, and system demand.

Distillate fuel oil inventory across the fleet is viewable by all personnel through an on-line tool that was created as a result of the January 2010 cold weather event that impacted FPL's service territory. This on-line tool provides, by location, distillate fuel oil inventory (updated nightly), full load hours available, percent full for each tank, available ullage for each tank, the number of trucks that are projected to be available for resupply, the number of trucks required to fill each tank, and the number of days to fill each tank based on the projected truck availability. System dispatch is coordinated, in part, based on inventory availability by location and the resupply conditions by location.

14. Considerations to minimize duration and unintended consequences of emergency extreme actions, such as load shedding

Each day FPL performs a seven (7) day assessment and a Next Day Study process based on actual weather forecast. Through these assessments FPL is able to identify and plan its operations for the potential significant cold weather event resulting in high peak loads. In the event such cold weather conditions (and attendant high loads) are forecasted, FPL would

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 1 Attachment 2 of 6 Page 9 of 9

commence recalling any short term transmission and generation outages (respectively, 5 and 3 days in duration) such that all such facilities are in service or available for service. Additionally, FPL would commence communications with teams involved in fuel and purchase power procurement, Field Operations, Demand Side Management, Marketing and Communications, Governmental Affairs, FRCC RC, neighboring BAs and TOPs, etc.

Also, in the event of extreme winter weather related conditions resulting in high peak loads, a declaration of 'Conservative Operations' may be implemented. Associated actions include returning to service scheduled transmission outages and postponing scheduled work both transmission and generation clearance as needed for system reliability, evaluating available generation, purchases and operating reserves, and taking actions to ensure resources are available to meet demand.

Furthermore, FPL's load shedding programs and tools used by operators are designed to exclude Critical Infrastructure, Critical Customers and Facilities, etc.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 1 Attachment 3 of 6 Page 1 of 6

FRCC Document Classification: Public-Members – This document may have certain sensitivities that prohibit a PUBLIC designation.

This document is intended to be shared with, and used by, authorized FRCC Members. Please see the Distribution/Notifications

Requirements of this document for further distribution guidance and use care before distributing this document.

Planning Committee Action Item: Develop Current System Load Forecasts based on 1989 and 2010 Winter Conditions

Purpose:

During the 10/27/21 Board meeting discussion on the Long-Term Tasks Preliminary Work Plans (Task A1), Board members considered the importance of having an additional set of extreme winter load forecasts for this winter based on consistent definitions of what constitutes "extreme winter" conditions across the membership. Accordingly, the Board directed the PC to work with the Resources Subcommittee and Load Forecasting Working Group to develop two additional load forecasts, which are to be based on two significant winter weather events experienced in the FRCC area during the winters of 1989 and 2010. The Board requested that the PC complete this work by December 1, 2021.

Details and Assumptions:

The PC was directed to work with the RS and LFWG to develop 2 additional extreme winter load forecasts:

 Utility load forecast for weather conditions experienced during the December 1989 winter event.

Assumptions and entry conditions:

Assume current load and customer profile

Reference weather condition Dates: 12/22/1989 -12/25/1989

Assume 12/25/1989 weather conditions are peak load day

Assume morning peak load is a Monday (non-Holiday)

Identify estimated use of DSM if any

Identify estimated peak load and time for your utility

Identify potentially unserved load if any

 Utility load forecast for weather conditions experienced during the January 2010 winter event

Assumptions and entry conditions:

Assume current load and customer profile

Reference weather condition Dates: 1/2/2010 -1/10/2010

Assume 1/10/2010 weather conditions are peak load day

Assume morning peak load is a Monday (non-Holiday)

Identify estimated use of DSM if any

Identify estimated peak load and time for your utility

Identify potentially unserved load if any

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 1 Attachment 3 of 6 Page 2 of 6

FRCC Document Classification: Public-Members – This document may have certain sensitivities that prohibit a PUBLIC designation. This document is intended to be shared with, and used by, authorized FRCC Members. Please see the Distribution/Notifications Requirements of this document for further distribution guidance and use care before distributing this document.

Results

1. Aggregation of "December 1989 Extreme [1], [7] Winter 2021/22 Load Forecast" Data

Entity	Base Case Peak Total Winter 2021/22 Load (MW)	December 1989 Extreme Case Peak Total Winter 2021/22 Load (MW)	Percent Difference (%)	MW- Weighted Percent Difference (%)	MW-Weighted Recalculated December 1989 Total Load (MW)	Available Demand Response	MW- Weighted Recalculated December 1989 Net Load
DEF	8,813	12,256	%6E	7.7%	12,256	1,071	11,185
FMPA	1,279	1,646	78%	0.8%	1,646	0	1,646
FP	19,605	29,724	52%	24.7%	29,724	1,381	28,343
GRU	357	401	12%	0.1%	401	0	401
JEA	2,845	4,057	43%	2.8%	4,057	100	3,957
LAK	229	965	43%	0.7%	965	0	965
LWBU	61	87	43%	0.1%	87	0	87
ONC	1,212	1,540	27%	0.7%	1,540	0	1,540
RCI	162	150	%8-	%0.0	150	0	150
SEC	3,803	5,371	41%	3.6%	5,371	224	5,147
TAL	562	889	22%	0.2%	889	0	889
TEC	4,464	5,185	16%	1.3%	5,185	208	4,977
Non-TYSP	255	0	N/A	0.0%	364	0	364
Total	44.095			42.6%	62.434	2.984	59.450

The calculations within this document were based on very low probability scenarios developed to hypothetically maximize electrical load during an extreme cold weather event. The purpose of these calculations is to identify potential operations related communication or coordination improvement opportunities at FRCC and should not be construed as an FRCC member planning criteria

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 1 Attachment 3 of 6 Page 3 of 6

FRCC Document Classification: Public-Members – This document may have certain sensitivities that prohibit a PUBLIC designation.

This document is intended to be shared with, and used by, authorized FRCC Members. Please see the Distribution/Notifications

Requirements of this document for further distribution guidance and use care before distributing this document.

2. Aggregation of "January 2010 Extreme [1], [7] Winter 2021/22 Load Forecast" Data

Entity	Base Case Peak Total Winter 2021/22 Load (MW)	January 2010 Extreme Case Peak Total Winter 2021/22 Load (MW)	Percent Difference (%)	MW- Weighted Percent Difference (%)	MW- Weighted Recalculated January 2010 Total Load (MW)	Available Demand Response	NW- Weighted Recalculated January 2010 Net Load
DEF	8,813	11,003	25%	4.9%	11,003	1,071	9,932
FMPA	1,279	1,609	798	0.7%	1,609	0	1,609
Æ	19,605	26,257	34%	16.1%	26,257	1,381	24,876
GRU	357	397	11%	0.1%	397	0	397
JEA	2,845	3,612	27%	1.8%	3,612	100	3,512
LAK	677	860	27%	0.4%	860	0	860
LWBU	61	77	27%	%0:0	77	0	77
ONC	1,212	1,438	19%	0.5%	1,438	0	1,438
RCI	162	151	-2%	%0:0	151	0	151
SEC	3,803	4,341	14%	1.1%	4,341	224	4,117
TAL	562	999	19%	0.2%	999	0	999
TEC	4,464	5,018	12%	1.1%	5,018	208	4,810
Non-TYSP	255	0	N/A	0.0%	324	0	324
Total	44,095			27.0%	55,753	2,984	52,769
,							

Footnote

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 1 Attachment 3 of 6 Page 4 of 6

FRCC Document Classification: Public-Members – This document may have certain sensitivities that prohibit a PUBLIC designation. This document is intended to be shared with, and used by, authorized FRCC Members. Please see the Distribution/Notifications Requirements of this document for further distribution guidance and use care before distributing this document.

- [1] Refer to the preamble of this document for descriptions of how the word "extreme" was applied to each sensitivity case. Assumes 100% coincident peak timing among entities, which may vary operationally and result in a lower actual instantenous observed peak.
- 2] Certain entities did not provide an extreme winter peak forecast. The percent differences reported by all other entities has been weighted and applied to non-reporting entity peaks to support a consistent analytical basis for the aggregated forecast
- [3] Raw percent difference weighted by the size of the entity.
- [4] Equal to the entity provided peak unless "N/A" is shown under the "Percent Difference" column.
- [5] Demand response estimates reflect base case firm seasonal capabilities as reported to FRCC during the most recent Load and Resource Database collection effort (supporting the 2021 Ten Year Site Plans).
- [6] Assumes all firm seasonal demand response resources perform as expected.
- 7] Forecasts provided by entities do not vary other explanatory factors that could impact load, such as economic conditions, relative to the Base Case. The sensitivity is an "all else equal" re-simulation of existing models to account for deviations from normal weather conditions only.
- [8] Reedy Creek is a heavy cooling (chilled water) peaking system and has very little electric supplied heating. Almost all of the heating on property is direct natural gas fired. Subsequently, cool or even colder temps reduce and/or eliminate all chilled water consumption, thereby reducing electrical consumption relative to normal weather conditions.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 1 Attachment 3 of 6 Page 5 of 6

FRCC Document Class ification: Public-Members – This document may have certain sensitivities that prohibit a PUBLC designation. This document is intended to be shared with, and used by, authorized FRCC Members. Please see the Distribution/Notifications Requirements of this document for further distribution guidance and use care before distributing this document.

3. Comparison of Base Case and Extreme Load Winter 2021/22 Projected Reserve Margins [1], [4]

Scenario	Total Available Capacity [2]	Total Peak Demand [3]	Generatic Margin w/ Demand I	Generation Capacity Margin w/o Exercising Demand Response [4]	Net Firm Peak Demand [5]	Generation Capacity Margin with Demand Response [4], [6]	Capacity h Demand e [4], [6]
	MW	MW	MW	%	MW	MW	%
Base Case	55,327	44,095	11,232	25.5%	41,111	14,216	34.6%
December 1989 Case	55,327	62,434	-7,107	-11.38%	59,450	-4,123	-6.93%
January 2010 Case	55,327	55,753	-426	-0.76%	52,769	2,558	4.85%

Footnotes

[1] Refer to important footnotes regarding the basis of the load forecast used in a given sensitivity case in the preamble to this document above.

[2] Available capacity is consistent with firm ratings used in the 2021 Ten Year Site Plan process. Assumes that all entity resources are available for dispatch during the time of the winter peak without unforeseen forced outages. Also assumes that maintenance and other operational coordination that may be required to ensure unit availability is performed outside the boundary of typical winter peak hours.

[3] Same as Tables 1 & 2. Excludes firm seasonal demand response.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 1 Attachment 3 of 6 Page 6 of 6

FRCC Document Classification: Public-Members – This document may have certain sensitivities that prohibit a PUBLJC designation. This document is intended to be shared with, and used by, authorized FRCC Members. Please see the Distribution/Notifications Requirements of this document for further distribution guidance and use care before distributing this document.

[4] Reserve margin assumes otherwise normal operating conditions, and does not account for other compounding factors that could alter operational reserve margin, such as gas supply curtailments, forced outages, insolvency of the transmission system versus typical transfer capabilities, and misalignment of maintenance coordination, among other factors.

[5] Same as Table 1 & 2. Includes firm seasonal demand response.

[6] Assumes all firm seasonal demand response resources perform as expected.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 1 Attachment 4 of 6 Page 1 of 1

Cruz, Krysten

From: Deptula, Ryan <rdeptula@frcc.com>
Sent: Wednesday, December 1, 2021 2:37 PM

To: Planning Committee

Cc: Resource Subcommittee (RS); LFWG; Prieto, Frank; Byrne, David; Senkowicz, Eric; Dochoda, Stacy;

Wehlage, Mark; Navid Nowakhtar; Whitley, Andrew

Subject: RE: Revised PC Email Ballot Due 12/1 - Board Directed Additional Extreme Winter Load Forecast - R3

Caution - External Email (rdeptula@frcc.com)

Report this Email Quick response

Emergency response

Tips

PC Members,

Thank you for replying to this request. Quorum has been reached, and the PC has approved the *Additional Extreme Winter* 2021/22 *Load Forecast Data and Write-up*.

Please note that we were notified this afternoon that a member noticed an error in their data submittal and provided us with updated numbers. This change causes the aggregate load forecasts to *increase* by approximately 200 MW.

See attached for the final documents. If these changes raise any concern or you would like to change your vote, please let us know as soon as possible.

Confirmation of this approval will also be captured in the minutes of the December 7th, 2021 PC meeting.

Let me know if there are any questions.

Ryan Deptula Planning Engineer Florida Reliability Coordinating Council 3001 North Rocky Point East, Ste. 410 Tampa, FL 33607 813-605-3642

rdeptula@frcc.com

Our Vision is to be the premier organization for grid reliability and security in North America.

NOTICE: This electronic message may contain confidential or proprietary information that is intended solely for the individual or entity named above and access by anyone else is unauthorized. If you are not the intended recipient you are hereby notified that any dissemination, distribution, copying, or action taken in relation to the contents of and attachments to this electronic message is strictly prohibited and may be unlawful. If you have received this message in error, please notify the sender immediately and permanently delete the original and any copy of this electronic message.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 1 Attachment 5 of 6 Tab 1 of 3

Entity	Base Case Peak Total Winter 2021/22 Load (MW)	December 1989 Extreme Case Peak Total Winter 2021/22 Load (MW)	Percent Difference (%)	MW-Weighted Percent Difference (%)	MW-Weighted Recalculated December 1989 Total Load (MW)	Available Demand Response	MW-Weighted Recalculated December 1989 Net Load
DEF	8,813	12,256	39%	7.7%	12,256	1,071	11,185
FMPA	1,279	1,646	29%	0.8%	1,646	0	1,646
FPL	19,605	29,724	52%	24.7%	29,724	1,381	28,343
GRU	357	401	12%	0.1%	401	0	401
JEA	2,845	4,057	43%	2.8%	4,057	100	3,957
LAK	677	965	43%	0.7%	965	0	965
LWBU	61	87	43%	0.1%	87	0	87
ouc	1,212	1,540	27%	0.7%	1,540	0	1,540
RCI	162	150	-8%	0.0%	150	0	150
SEC	3,803	5,371	41%	3.6%	5,371	224	5,147
TAL	562	688	22%	0.2%	688	0	688
TEC	4,464	5,185	16%	1.3%	5,185	208	4,977
Non-TYSP	255	0	-100%	0.0%	364	0	364
Total	44,095			42.6%	62,434	2,984	59,450

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 1 Attachment 5 of 6 Tab 2 of 3

Entity	Base Case Peak Total Winter 2021/22 Load (MW)	January 2010 Extreme Case Peak Total Winter 2021/22 Load (MW)	Percent Difference (%)	MW-Weighted Percent Difference (%)	Recalculated	Available Demand Response	MW-Weighted Recalculated January 2010 Net Load
DEF	8,813	11,003	25%	4.9%	11,003	1,071	9,932
FMPA	1,279	1,609	26%	0.7%	1,609	0	1,609
FPL	19,605	26,257	34%	16.1%	26,257	1,381	24,876
GRU	357	397	11%	0.1%	397	0	397
JEA	2,845	3,612	27%	1.8%	3,612	100	3,512
LAK	677	860	27%	0.4%	860	0	860
LWBU	61	77	27%	0.0%	77	0	77
OUC	1,212	1,438	19%	0.5%	1,438	0	1,438
RCI	162	151	-7%	0.0%	151	0	151
SEC	3,803	4,341	14%	1.1%	4,341	224	4,117
TAL	562	666	19%	0.2%	666	0	666
TEC	4,464	5,018	12%	1.1%	5,018	208	4,810
Non-TYSP	255	0	-100%	0.0%	324	0	324
Total	44,095		-	27.0%	55,753	2,984	52,769

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 1 Attachment 5 of 6 Tab 3 of 3

Scenario	Total Available Capacity [2]	Total Peak Demand [3]	Capacity w/o Exe Den	ration Margin ercising nand nse [4]	Peak	Gener Capacity with Do Respons	Margin emand
	MW	MW	MW	%	MW	MW	%
Base Case	55,327	44,095	11,232	25.50%	41,111	14,216	34.60%
December 1989 Case	55,327	62,434	-7,107	-11.38%	59,450	-4,123	-6.93%
January 2010 Case	55,327	55,753	-426	-0.76%	52,769	2,558	4.85%

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 1 Attachment 6 of 6 Page 1 of 2

Florida Power & Light Company Media Line: 561-694-4442 Jan. 22, 2022 @FPL Newsroom

FPL offers ways to save energy and stay safe while keeping warm in cold weather

JUNO BEACH, Fla. – As temperatures drop this weekend, Florida Power & Light Company (FPL) is monitoring and preparing for the cold weather and encourages customers to be prepared, too. Heating homes can actually cost more than cooling them, driving bills higher if customers don't manage their energy use during cold weather.

Customers can implement these low-to-no-cost tips to save energy and money:

- Set and keep your thermostat to 68 degrees. Every degree below that can save you 5% on heating costs.
- Avoid changing your thermostat by more than 2 degrees at a time. This helps prevent backup heating elements from coming into play.
- Keep your water heater temperature at 115 degrees to still provide plenty of hot water and save money.
- Use electric blankets or a heated mattress cover as these are more cost effective than heating the entire home. Most importantly, use these safely and avoid running cords under your mattress.
- Let the sun in during the day by keeping south-facing windows open for natural heat.
- If you have an older home, consider reviewing your insulation and crawl space. Proper floor and attic insulation, along with tightly sealed windows and doors, are critical to keeping warm.

Be safe when using space heaters:

- Only use space heaters for limited amounts of time and not as a primary heat source. Direct space heaters to warm people, not rooms.
- Keep flammable materials and furniture at least three feet away from the heater.
- Turn off and unplug the space heater when leaving the room for an extended period of time.
- Avoid using extension cords.

Customers can activate the free <u>FPL Energy Manager</u>, an all-in-one tool that helps customers see when, where and how their home uses energy, so they can take full control of it.

For more information, visit <u>FPL.com/waystosave</u>.

Broll: http://newsroom.fpl.com/digital-library?item=1049

Florida Power & Light Company

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 1 Attachment 6 of 6 Page 2 of 2

Florida Power & Light Company is the largest vertically integrated rate-required electric utility in the U.S. as measured by retail electricity produced and sold. The company serves more than 5.7 million customer accounts supporting more than 11 million residents across Florida with clean, reliable and affordable electricity. FPL operates one of the cleanest power generation fleets in the U.S and in 2021 won the ReliabilityOne® National Reliability Excellence Award for the sixth time in the last seven years. The company received the top ranking in the southern U.S. among large electric providers, according to J.D. Power's 2021 Electric Utility Residential Customer Satisfaction StudySM and 2021 Electric Utility Business Customer Satisfaction StudySM. The company was also recognized in 2020 as one of the most trusted U.S. electric utilities by Escalent for the seventh consecutive year. FPL is a subsidiary of Juno Beach, Florida-based NextEra Energy, Inc. (NYSE: NEE), a clean energy company widely recognized for its efforts in sustainability, corporate responsibility, ethics and compliance, and diversity. NextEra Energy is ranked No. 1 in the electric and gas utilities industry in Fortune's 2021 list of "World's Most Admired Companies" and recognized on Fortune's 2021 list of companies that "Change the World." NextEra Energy is also the parent company of NextEra Energy Resources, LLC, which, together with its affiliated entities, is the world's largest generator of renewable energy from the wind and sun and a world leader in battery storage. For more information about NextEra Energy companies, visit these websites: www.NextEraEnergy.com, www.FPL.com, www.NextEraEnergyResources.com.

FPL's response to Staff's Third Set of Interrogatories No. 2, Attachment No. 1 Bates Nos. 000021-000023, is confidential in its entirety.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 3 of 24 Page 1 of 40

Turkey Point Extreme Temperature Reassessment

March 2021

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 3 of 24 Page 2 of 40

Executive Summary

In February 2021, a low temperature event resulted in a widespread loss of electricity production over region operated by the Electric Reliability Council of Texas, Inc. (ERCOT). This was due to poor extreme weather preparation by utilities. NEE reviewed the Turkey Point design for potential temperature related challenges to availability due to equipment and license issues. Based on the Miami, Fl, historical record temperatures of 27 °F and 100 °F, this evaluation examines temperatures -10 and -20°F below the record low and +10 and 20°F above the record high.

Sections in the report highlighted in yellow designate the vulnerabilities that would likely result in the units shutting down. Extreme hot temperatures for a 7-day duration would likely result in reaching the Technical Specification ultimate heat sink limit of 104°F. In addition, containment temperature limit could also be reached. On the secondary side, the Turbine Plant Cooling Water system is predicted to be limiting. Review of extreme cold temperatures for a 7-day duration identified potential vulnerabilities in uninsulated, stagnate lines that could result in Tech Spec Action Statement entries. On the secondary side, the intake screens were identified as a vulnerability to freezing.

Immediate actions are recommended for the current winter:

none

Upcoming summer readiness actions

•

Longer term corrective actions

•

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 3 of 24 Page 3 of 40 Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 3 of 24 Page 4 of 40

Table of Contents

1.	Temperature Vulnerable Locations	5
2.	Exposed Instrumentation	6
3.	Air handling / Heating	8
4.	BOP / Support Systems	11
5.	Electrical Systems	20
6.	NSSS systems	27
7.	Diesel Generator	30
8.	Biological / Chemistry	32
9.	Programs	33
10.	Material / fluids	34
11.	Licensing / Environmental	35
12.	Operations	36
13.	ERCOT Failures Equipment Review	38
14.	Turkey Point trip and down power review	39
15.	Comparison of recommendations versus summer and winter readiness plans	40

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 3 of 24 Page 5 of 40

1. Temperature Vulnerable Locations

Lead: Michael Coen

Review history of outdoor weather and determine several extreme weather events. Evaluate impact on of temperature transient and estimate area temperatures for various plant locations:

<u>Table 1</u>
<u>Plant Location Maximum and Minimum Assumed Temperatures</u>

Location	Basis	Histo	orical	Analysis	Limit
LOCATION	DdSIS	High	Low	High	Low
Outdoors	This report evaluates sustained temperatures 20 °F more and less than those expected based on the record low and high conditions for Miami, Fl.	100°F	27°F	120°F	7°F

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 3 of 24 Page 6 of 40

2. Exposed Instrumentation

Lead: Rafael Leavitt Barreto

Summary

For the EDGs, electronics and instrumentation would be the most impacted by high temps. DBD 5610-023-DB-002, Emergency Power System, Section 2.4.5. states the maximum environmental temperature for electronics (and by extension, instrumentation) is 104°F. Above this, component function may be compromised.

Site PTN	Historical High / Low (Deg F)	Heat Sink and / or Ambient Limit (Deg F /	Operability or Functional Limit based on additional analysis/calculation (Deg F / Describe)	Effect + 10F / + 20F	Effect – 10F / -20F	Comments
System / Component		Max and Min				
Immersion Heaters for: SSGFP, EDGs, DDFP, 3/4 CD, AFW L.O., and Security Diesel	Historical Ambient (Low) 2018 – 2019 – 44°F 2017 – 2018 – 41.8°F 2016 – 2017 - 41.7 °F 2015 -2016 - OOS 2014 – 2015 – 47.1°F 60M EPLAN met tower	No lower limit in reference to outdoor or indoor components with South Florida historical low ambient temperatures.	ONOP dictates criteria for reaching temperature thresholds and actions to be taken. No known issues, no WOs in for deficient Immersion heaters on components.	AFW lube oil is Shell Turbo T32. The maximum temperature for the oil is 215 C (419F). The immersion heater inside the LO reservoir is controlled by a temperature switch that turns the heater off at 110 F +/- 10 F. Based on this and high temperature resistant of the AFW turbine oil, there is no adverse effect. With the EDGs running, their respective SR vent fans and radiator fans (U4 only) maintain the room temps below the 104°F limit for electronics and instrumentation. If	AFW lube oil is Shell Turbo T32. The minimum temperature for the oil is -33 C (- 27.4F). The immersion heater inside the LO reservoir is controlled by a temperature switch that turns the heater off at 110 F +/- 10 F. An auxiliary oil pump is installed in each AFW pump skid with the purpose of injecting warm oil to the AFW bearings. The AOP starting logic is controlled by a temperature sensor that starts the pump at 65 F +/- 5. Based on this and low temperature	Built into ONOP for cold weather at different trigger points. Example: Stage room heaters in EDG building.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 3 of 24 Page 7 of 40

	1 age 7 01 40	T	T	T	T _ • •	Τ_
Site	Historical High / Low (Deg F)	Heat Sink and / or Ambient Limit	Operability or Functional Limit based on additional analysis/calculation	Effect + 10F / + 20F	Effect – 10F / -20F	Comments
PTN		(Deg F /	(Deg F / Describe)			
		Max and Min				
System /						
Component						
				this criterion is	resistance of the	
				being approached	AFW turbine oil,	
				with the engines in	there is no adverse	
				standby, the	effect.	
				respective vent fans		
				and radiator fans		
				(U4 only) may be		
				manually started.		
				,		

Scope

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 3 of 24 Page 8 of 40

3. Air handling / Heating

Lead: Jorge Garcia, Angelica Baez Roman

<u>Summary</u>

Add discussion here of recommendations, highlights and briefly describe scope

Site PTN	Historical High / Low (Deg F)	Heat Sink and / or Ambient Limit	Operability or Functional Limit based on additional analysis/calculation	Effect + 10F / + 20F	Effect – 10F / -20F	Comments
		(Deg F /	(Deg F / Describe)			
System/ Component		Max and Min				
Containment TS limit	Historically high 120°F Historically low 100°F during power operations	Heat sink limit is 104°F (cooling canal)	120°F in containment counts hours for EQ.125°F in containment requires shutdown	No effect on compressor operation. Reduced cooling performance possible.	No effect on NCC operation.	
025 / Control Room HVAC	69°F to 84°F	Personnel comfort for control room operators is limiting temperature. Vendor manual specifies a minimum ambient air temperature limit for compressor operation of 23 deg F.	The Control Room Ventilation System should maintain Control Room temperature less than 120°F and 95% relative humidity. Normal Control Room temperature is maintained at approximately 75 °F and 60% relative humidity. (FSAR Section 9.9)	Condenser fans will be on constantly, poor cooling will be achieved as refrigerant will not condense at 120 deg F ambient.	Will experience compressor cycling or tripping off on low pressure.	Control room condensing coils were replaced. Ensure units are fully charged. Consider installing Carrier Winter Accessory Package 38AE900021. Ensure compressor crankcase heaters are functioning properly.
060, 026 / Aux Building HVAC (Includes DC Equipment Rooms), Rad Waste Building HVAC	Building Temps 85F Historical Ambient (Low) 2018 – 2019 – 44°F 2017 – 2018 – 41.8°F 2016 – 2017 - 41.7°F 2015 -2016 - OOS°F 2014 – 2015 – 47.1°F 60M EPLAN met tower 85°F	Non-safety units run normally. SR units start at elevated temperature of 86 deg F. Minimum E231/E232 compressor suction pressure (low pressure switch setpoint) is 25 psig. The high pressure switch activates at 346 psig. This corresponds to R-407C refrigerant pressures of -5 deg F and 139 deg°F, respectively.	104°F is the administrative temperature limit of the Electrical Equipment rooms. No lower limit is specified.	No effect on compressor operation. Reduced cooling performance possible.	No effect on compressor operation.	** E233 & E234 Non-Safety Related HVAC for DC equipment rooms is I/S and available for cooling. Weekly walkdowns performed by maintenance to resolve low margin issues prior to weekend.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 3 of 24 Page 9 of 40

Page 9 of 40						
Site	Historical High / Low	Heat Sink and / or Ambient Limit	Operability or Functional Limit based on additional analysis/calculation	Effect + 10F / + 20F	Effect – 10F / -20F	Comments
PTN	(Deg F)	(Deg F /	(Deg F / Describe)			
System/ Component		Max and Min				
		For the NNS chillers E233 and E234 (Size 016 units), the Carrier vendor manual states: High ambient temperature operation High outdoor ambient chiller start-up and operation is possible for standard 30RAP chillers at ambient temperatures up to 120°F (50°C) at nominal voltage. The unit will additionally be able to stay running at reduced capacity up to 125°F (52°C). Low ambient temperature operation Units will start and operate down to -20°F (-29°C) on size 011 and 016 units, 45°F (7°C) on size 018-030 units, and 32°F (0°C) on size 035-150 units				
070 / Turbine Building Ventilation (LC/SWGR Rooms)	With A/C failures, historical building temps have reached >99 °F Historical Ambient (Low) 2018 – 2019 – 44°F 2017 – 2018 – 41.8°F 2016 – 2017 - 41.7°F 2015 -2016 - OOS 2014 – 2015 – 47.1°F 60M EPLAN met tower	as standard. Components located in environmentally controlled rooms – Temperature Alert for room set at 95°F. Chiller alarm limits are as follows: Evaporator Water Freeze: 36°F. With Glycol: 12.6 °F Low evap pressure unload: 100 psi High condenser pressure unload: 600 psi Low Ambient Lockout: 35.1°F	The UFSAR design limit for the equipment in the Load Center and Switchgear Rooms is 104 deg F. The administrative limit is 95 deg F.	Reduced cooling performance. Potential compressor high pressure trips if coils are dirty.	Chillers can trip off on Low Ambient Lockout.	Multiple degraded chillers with restoration actions which do not impact winter readiness. Weekly walkdowns performed by maintenance to resolve low margin issues prior to weekend. Recommend adding glycol for low temperature operation and lowering the Low Ambient Lockout alarm setting. Ensure units are fully charged with refrigerant and coils are clean for high temperature operation.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 3 of 24 Page 10 of 40

Site PTN	Historical High / Low (Deg F)	Heat Sink and / or Ambient Limit (Deg F /	Operability or Functional Limit based on additional analysis/calculation (Deg F / Describe)	Effect + 10F / + 20F	Effect – 10F / -20F	Comments
System/ Component		Max and Min				
	With A/C failures, historical has reached >99°F					
108 / EDG Building Ventilation	73°F to 83°F	None For Rooftop units, vendor manual specifies a min operating ambient temp of 40 °F and a max operating ambient temperature of 115°F.	104°F for long term reliability of control panel equipment	May cause reduction in performance and reliability or a protective action by the unit's internal safety devices above 115°F.	Internal safety devices will cause compressor to lock out.	Weekly walkdowns performed by maintenance to resolve low margin issues prior to weekend. RTU package units were replaced in 2019. Consider installing a Carrier economizer for low ambient cooling at outside air temperature below 40°F in rooftop units. Our units do not come equipped with an economizer or Winter Start Kit. Normal and emergency fans will provide backup cooling if RTUs do not function.

<u>Scope</u>

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 3 of 24 Page 11 of 40

4. BOP / Support Systems

Lead: Dominic Marra, Mike Caselli

<u>Summary</u>

Site PTN System / Component	Historical High / Low (Deg F)	Heat Sink and / or Ambient Limit (Deg F / °F Max and Min	Operability or Functional Limit based on additional analysis/calculation (Deg F / Describe)	Effect + 10F / + 20F	Effect -10 F / – 20F	Comments
008 / Turbine Plant Cooling Water	Ambient plus heat loads Turbine lube oil coolers, generators, HDPs, etc. Ambient (High) 2020 – 90.8°F (to 8/10) 2019 – 92.5°F 2018 – 92.9°F Cooling Canal System (High) 2020 – 96.3°F (to 8/10) 2019 - 96.7°F 2018 - 95.2°F 2017 - 97.8°F TPCW supply Temp max 2017 U3=99°F, U4=100.7°F 2018 U3=98.5°F, U4=102.5°F 2019 U3=98.9°F, U4=99.4°F	Components located Outdoors, South Florida Ambient — TPCW cooling to secondary provided via ICW/TPCW HX. 1 HX is I/S at a time with a standby HX available for swap. UHS limit by TS was 100°F, raised to 104°F July 2014.	105°F – Max ICW outlet temp from TPCW HX 12,000gpm – Max ICW flowrate through TPCW HX for normal operation 110 °F – High Temp Alarm on TPCW supply temp Estimated TPCW will not be able to remove heat from uprated Main turbine generators at elevated temperatures and turbine lube oil temperatures will become elevated if no mitigating strategies are implemented.	No changes in previously reviewed results. Expect Main Turbine Generator high temperature alarms and shut down of generator. Elevated turbine lube oil temperatures, elevated other secondary cooling loads such as HDPs, SGFPs, Condensate pumps.	No changes in previously reviewed results.	Normal periodic cleanings conducted based on fouling rates. Plan to maintain standby HX clean and perform cleaning timely if fouling rates warrant HX swap. Contingency to place supplemental cooling in service, and/or place the 2 nd redundant pump in service for additional flow. TPCW SCS — Annual PM of Chillers needs to be completed before summer. Standby HX cleaned prior to June 15 th 3/4-NOP-008 Section 5.2 has guidance for operating with elevated temperatures.
009, 011 / Intake & Traveling Screens Screen Wash	Cooling Canal System (CCS) Historical Ambient (Low) 2018 – 2019 – 67°F 2017 – 2018 – 60.4°F 2016 – 2017 - 65.5°F 2015 -2016 – 64.5°F 2014 – 2015 – 66.1°F Ambient (High) 2020 – 90.8 °F (to 8/10) 2019 – 92.5°F 2018 – 92.9°F	Components located Outdoors, South Florida Ambient UHS limit 104°F	No T.S or FSAR limits. Production and MW generation related. If screen wash pressure drops too low, (<65 or 75 psi), alarm received. Causing system not to run in auto. Ops action required to connect alternate screen wash supply (service water) to have traveling screens run. Condition related to pressure switch failure, sensing line blockage or	No effect to MDS predicted for durations of 7 days	Extreme low Temperatures- Unit offline. Extreme low temperatures are expected to cause freezing damage and loss of the MDS screens if screen wash is left in service. If MDS is taken out of service for	South Florida is not typically subject to temperatures low enough to cause freezing of the high saline content canal water on the intake screens. No known issues to impact ER from winter temperatures. Other: – 3A2, 4A2 & 3B2 Traveling Screen gearboxes excessively leaking oil. Low oil level in gearbox could challenge operation of traveling screen. Capital funding approved, expected to work Spring 2020. Not a winter seasonal readiness issue.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 3 of 24 Page 12 of 40

Site PTN System / Component	Historical High / Low (Deg F)	Heat Sink and / or Ambient Limit (Deg F / °F Max and Min	Operability or Functional Limit based on additional analysis/calculation (Deg F / Describe)	Effect + 10F / + 20F	Effect -10 F / – 20F	Comments
	2017 - 91.9°F Cooling Canal System (High) 2020 – 96.3°F (to 8/10) 2019 - 96.7°F 2018 - 95.2°F 2017 - 97.8°F		pump blockage or failure. Condition not related / independent of summer elevated ambient and canal temperatures. Typical debris increased loading occurs in the summer "Rainy" season. "Winter" season is a dry season with little rainfall and subsequent very infrequent increased debris challenges to intake.		prevention of freeze damage, expect DP across screen to reach threshold for resultant loss of Circ Water pumps which are secured by procedure when DP across MDS screens meets thresholds. Reduced circ water flow will result in loss of vacuum and turbine trip. Mitigating strategy could be heated water for screen wash.	Automatic traveling screens are continuously monitored with alarms in control room for deficiencies. 3A2, 4A2 & 3B2 Traveling Screen gearbox oil leaks capital funding approved, may work spring 2020 via alliance partner BHI as part of summer readiness, (Yellow WOs). Intake wells for each unit raked on alternating weekly basis (every two weeks if Ops has resources). 0-NOP-011 provides guidance to align service water alternate supply connection available. As the fixed large course 'Grizzly' screens develop issues with cleaning/ raking operations, MM contracts divers to dive and clear the fixed screens and/or guide tracks for the large rakes used manually. Traveling screen as well as Circ Pp are secured for the particular intake bay or well that is to be worked. A small loss of MW generation (8-12 MWe) is normally incurred.
010 / Circ Water	For Historical High, see ESOMs data. (Margin exists for Circ Pp motor bearing temperature Alarm = 235°F) Historical: Margin from alarm point	Components located Outdoors, South Florida Ambient UHS 104°F	No T.S or FSAR limits. Production and MW generation related. 235°F — Motor Bearing High Temp alarm 248°F — Motor Bearing High Temp trip criteria	Predicted shut down of Circ Water Pumps due to exceeding motor temperature thresholds, loss of circ water will result in low vacuum trip of turbine, unit offline.	No impact predicted.	Circ Motor bearing temperatures have margin. Not expected to be an issue for summer readiness. Motor filters are replaced on a PM to keep air flows optimum. PM for motor filter replacements ongoing.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 3 of 24 Page 13 of 40

Page 13 of 40	1	T	1		T
Historical High / Low (Deg F)	Heat Sink and / or Ambient Limit (Deg F /	Operability or Functional Limit based on additional analysis/calculation (Deg F / Describe)	Effect + 10F / + 20F	Effect -10 F / – 20F	Comments
	Max and Min				
					Contingency can be to revise existing Temporary Mod to place spot air conditioner units, (spot coolers) at motor intakes as needed. No issues expected.
Historical Ambient (Low) 2018 – 2019 – 44°F 2017 – 2018 – 41.8°F 2016 – 2017 - 41.7°F 2015 -2016 - OOS 2014 – 2015 – 47.1°F 60M EPLAN met tower Cooling Canal System (CCS) Historical Ambient (Low) 2018 – 2019 – 64°F 2017 – 2018 – 60.4°F 2016 – 2017 - 65.5°F 2015 -2016 – 64.5°F 2014 – 2015 – 66.1°F Ambient (High) 2020 – 90.8°F (to 8/10) 2019 – 92.5°F 2018 – 92.9°F Cooling Canal System (High) 2020 – 96.3°F (to 8/10) 2019 - 96.7°F 2018 - 95.2°F	Components located Outdoors, South Florida Ambient	No T.S or FSAR limits. NOTE: Terminology/ Nomenclature delta: At Turkey Point, Service Water is potable water for lavatories, not SR heat sink. Previously relied upon for makeup water to the process, (demin water) however EC now has demin water source = well water and service water as a backup supply. Used in EOPs for temporary cooling to the charging pump speed changers but low safety significance.	No impact for the 7-day duration, expected elevated aircooled pump motors.	Expect sensing lines to pressure gages and pressure switches to freeze. Frozen pressure switch for P235D will cause auto start thinking low pressure on system. Also, multiple facilities/buildings expected to experience frozen broken damaged service water piping.	Service water equipped with 3 electric motor driven pumps and one standby diesel driven pump. Water demand less now that fossil side has been torn down and now that EC for new WTP supplied by well water is up and operational. No heat exchangers associated with service water. Current existing configuration includes 3 electric driven and 1 Diesel driven service water pump. Only a radiator for the P235D DDSWP, no cleaning expected/required. System also used to provide backup system pressure/source to the fire protection system if needed, (however that is currently isolated due to an over-pressure condition, no impact to summer readiness.)
Historical Ambient (Low) 2018 – 2019 – 44°F 2017 – 2018 – 41.8°F	Cooling for I/A provided by internal coolers, along with 2 parallel 100% capacity external aftercoolers at outlet of compressors	135°F – Temp limit for resin in Air Dryers 110 °F – Hi Temp Alarm	For all compressors, Atlas Copco flow calculations performed at an ambient temperature	For 3/4CD, diesel fuel does gel and coagulate at relatively high temperatures. At	Water intrusion due to degraded cabinet gaskets was addressed on all 4 Compressor with gasket replacements.
	Historical High / Low (Deg F) Historical Ambient (Low) 2018 – 2019 – 44°F 2017 – 2018 – 41.8°F 2016 – 2017 - 41.7°F 2015 -2016 - OOS 2014 – 2015 – 47.1°F 60M EPLAN met tower Cooling Canal System (CCS) Historical Ambient (Low) 2018 – 2019 – 64°F 2017 – 2018 – 60.4°F 2017 – 2018 – 60.4°F 2016 – 2017 - 65.5°F 2015 -2016 – 64.5°F 2014 – 2015 – 66.1°F Ambient (High) 2020 – 90.8°F (to 8/10) 2019 – 92.5°F 2018 – 92.9°F Cooling Canal System (High) 2020 – 96.3°F (to 8/10) 2019 – 96.7°F 2018 – 95.2°F Historical Ambient (Low) 2018 – 2019 – 44°F	Historical High / Low (Deg F)	Historical High / Low (Deg F) Heat Sink and / or Ambient Limit (Deg F / "F Max and Min Components located Outdoors, South Florida Ambient Outdoors, South Florida Outdoors, South Florida Ambient Outdoors, South Florida O	Heat Sink and / or Ambient Limit Limit	Heat Sink and / or Ambient (Init (Init (Deg F / 1/5

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 3 of 24 Page 14 of 40

Site	Historical High / Low	Heat Sink and / or Ambient	Operability or Functional Limit	Effect + 10F / + 20F	Effect -10 F / – 20F	Comments
PTN	(Deg F)	Limit (Deg F /	based on additional analysis/calculation			
		°F	(Deg F / Describe)			
System / Component		Max and Min				
	2016 – 2017 - 41.7 °F 2015 -2016 - OOS 2014 – 2015 – 47.1°F 60M EPLAN met tower 132 °F – Air Receiver historical hi temp.		ONOP has steps dependent on dew point, to blow down various components. No known issues for winter readiness.	R.H. show that the compressed air discharge temperature in this case would be 142°F. For the external aftercoolers, the vendor performed a sizing run using 917 SCFM of air at 120 psig and 128 °F, and the external aftercoolers can obtain a 12 °F approach temperature (107 °F). All compressors have a high temperature alarm at 124°F.	begin to see the start of the process where fuel in the tank starts to get cloudy. By 10 – 15°F, gelling occurs that can block up filters, lines, and fuel rails. Review use of heaters or fuel additives to ensure diesel fuel stays in its liquid state.	3/4CM instrument air compressor corrosion has led to reliability challenges. Both have been replaced. 3/4-ONOP-013 Redundant system has 2 Diesel driven IA compressors and 2 electric motor driven IA compressors- cross tie capabilities. Temp I/A Compressor used to support maintenance activities.
014 / Condenser	Recurring vacuum transmitter spiking on U3 resolved by EC mod to slope lines completed in RFO.	Alarm set point 22.5-inch vacuum dependent on air in leakage and canal temperature.	Variable vacuum alarm set points based on turbine load 68% / 25% - Hotwell Hi / Lo Level alarm setpoint.	Expected loss of vacuum and turbine trip.	No effect expected.	Some condenser tube bundles experiencing intermittent sodium intrusion from unknown source. Could challenge CEI limits in the SG but not suspect to be related to temperature nor summer readiness. Hot well Sample Pump(s) OOS leaving hot well chemistry monitoring not available. Again, not impacted by summer readiness and temperatures. Online Condenser Tube Cleaning System, (Amertap) cleans HX while online.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 3 of 24 Page 15 of 40

	Page 15 of 40					
Site PTN	Historical High / Low (Deg F)	Heat Sink and / or Ambient Limit (Deg F / °F	Operability or Functional Limit based on additional analysis/calculation (Deg F / Describe)	Effect + 10F / + 20F	Effect -10 F / – 20F	Comments
System / Component		Max and Min				
						Hydrolazing of HX performed during outages. No outage planned for summer. Loss of vacuum due to UHS elevated temperature. Improved condenser vacuum with lower temperatures.
015 / Amertap	Ambient (High) 2020 – 90.8°F (to 8/10) 2019 – 92.5°F 2018 – 92.9°F Cooling Canal System (High) 2020 – 96.3°F (to 8/10) 2019 - 96.7°F 2018 - 95.2°F (2014 - 101.8°F)	Components located Outdoors, South Florida Ambient Seal water to pumps provided by service water.	Smaller lines especially not in use, subject to freeze damage.	No effect expected	Potential sense lines for screen DP freeze damage, loss of automatic function.	'Amertap' is also known as online Condenser Tube Cleaning System (CTCS) at other plants which maintains thermal performance and condenser vacuum. Comp actions established for field operators to monitor and perform manual backwashes as required.
019 / Intake Cooling Water	Cooling Canal System (CCS) Historical Ambient (Low) 2018 – 2019 – 64°F 2017 – 2018 – 60.4°F 2016 – 2017 - 65.5 °F 2015 -2016 – 64.5°F 2014 – 2015 – 66.1°F Historical High/Low – Bearing temperatures: See ESOMS Cooling Canal System (High) 2020 – 96.3°F (to 8/10) 2019 - 96.7°F 2018 - 95.2°F (2014 - 101.8°F)	104°F – UHS TS Operability Limit	104°F – UHS TS Operability Limit 195°F – Motor Bearing Hi Temp Alarm	Canal water temperature will increase, may challenge the TS Limit. ICW motors have OE of high bearing temperatures and increased temp may challenge motor.	Potential for freezing in stagnant water, especially in basket strainers. Expect sensing lines to pressure gages and pressure switches to freeze. Valves / bearings may become more difficult to turn due to oil / grease viscosity increase.	No winter readiness items. Related CCW system. ONOP has affected pumps being run for at least 15 minutes every 4 hours as needed. No known issues. Supplemental cooling for this and/or related CCW system is normally placed in layup status for the winter. Contingency header restoration actions are covered during pre-job briefs for ICW pp ISTs. Canal project team monitors key water quality parameters (salinity, thermal efficiency and nutrients). Remediation

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 3 of 24 Page 16 of 40

Site	Page 16 of 40 Historical High / Low	Heat Sink and / or Ambient	Operability or Functional Limit	Effect + 10F / + 20F	Effect -10 F / – 20F	Comments
PTN	(Deg F)	Limit (Deg F /	based on additional analysis/calculation	criect + 10r / + 20r	Effect -10 F / - 20F	Comments
		°F	(Deg F / Describe)			
System / Component		Max and Min				
						actions have improved water quality. Predictive models reviewed in CNO update meetings.
						ICW pp ISTs place system in SPV configuration with only 1 ICW pp providing cooling to the secondary plant. Contingency actions to restore cooling to secondary require time consuming manual field actions and CR valve manipulations and pp starts.
						ICW SCS chiller units are not functional due to multiple failed chiller units. Cool well water can still be aligned for injection to provide some supplemental cooling.
030 / Component Cooling Water	Cooling Canal System (High) 2020 – 96.3°F (to 8/10) 2019 - 96.7°F 2018 - 95.2°F (2014 - 101.8°F)	UHS TS Limit - 104°F SCS Limit – 104°F (Will isolate CCW SCS from CCW)	≤ 105°F - Normal Operation — Provide adequate RCP bearing and seal cooling 120°F — CCW Supply header hi temp alarm 180°F — CCW Return header hi temp	Higher ICW temperatures may challenge CCW Heat removal. Motors may have	Potential for freezing in stagnant water; ex. removing CCW Hx for cleaning. Expect sensing	U3 U4 CCW SCS is degraded. An AWA was issued for new SCS for CCW and is targeted for repair 2021 summer. May be an issue. 3/4-OSP-030.4 CCW HX Perf Test to
			alarm 158.6°F – Most limiting Post Accident supply header temp due to SI pp lube oil cooling	increased bearing temps.	lines to pressure gages and pressure switches to freeze. Valves / bearings	monitor for degrading trends and predict cleaning schedule. Maintenance tube plugging available for
			,,,		may become more difficult to turn due	failed HX tubes.
					to oil / grease viscosity increase. Most components	HX cleaning - loss of 1 other remaining HX is 1hr SD Action Statement. Risk is addressed via CCW HX performance
					are located in AUX building and won't be subjected to lower temps.	monitoring program prediction validation of health of in-service HXs prior to retubing a HX.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 3 of 24 Page 17 of 40

	Page 17 of 40			T == -	T	
Site PTN System /	Historical High / Low (Deg F)	Heat Sink and / or Ambient Limit (Deg F / °F Max and Min	Operability or Functional Limit based on additional analysis/calculation (Deg F / Describe)	Effect + 10F / + 20F	Effect -10 F / - 20F	Comments
Component						
073 / Condensate	Past summer 2017 Values / Margin to motor bearing alarm 3A- 168°F / 17°F 3B -173°F / 12°F 3C -173°F / 12°F 4A-171°F / 14°F 4B-155°F / 30°F 4C-155°F / 30°F	Supplemental air cooling can provide extra cooling to pump / motor bearings if needed.	Extreme high temperature, expect to reach 185°F – Motor Bearing Hi Temp Alarm 200 °F – Trip criteria for Hi motor bearing temp	Expect to reach high motor bearing shut down criteria, reduce load, loss of Cond Pps.	No effect expected.	Were high temperatures in condensate pit, but EC mod to route hot motor exhaust up and out of pit has resolved issue, regained margin. Prior to mod Cond Pps routinely ran within a few degrees of alarm. Condensate pump bearing temps used to be impacted by extended U3 EDG runs. Highest temps listed for U3 were coincident with U3 24hr EDG run. No longer applicable since EC mod implemented.
074 / Feed Water	Historical Ambient (Low) 2018 – 2019 – 44°F 2017 – 2018 – 41.8°F 2016 – 2017 - 41.7°F 2015 -2016 - OOS 2014 – 2015 – 47.1°F 60M EPLAN met tower Within margin – Lube oil high U3A=113°F, U3B=118°F	Two SGFP room ventilation fans generate air flow through rooms normally keeping temperatures with margin. For winter readiness, consider Diesel SSGFP immersion heater. Component is outside.	203 °F – Motor Brg Hi Temp Alarm 212F – Motor Brg Temp criteria to stop SGFP The item to consider for winter readiness would be the SSGFP with its diesel engine driver and an immersion oil heater which may be set at 170°F. No known issues.	Expected elevated lube oil temperatures since they are cooled by TPCW.	No effect expected.	4A SGFP motor elevated vibration monitored under ACMP. Ops and SE monitor. No maintenance planned until RFO. Unexpected maint on a SGFP would require a 50% load reduction.
087 / Turbine Lube Oil System	Historically lube oil temps maintained <120°F with automatic temp controller	TPCW provides cooling via lube oil coolers	115°F – 120°F – normal operating band for turbine lube and generator seal oil 125°F – Lube Oil Hi Temp Alarm 130°F – Begin lowering turbine load to control temp	Expect elevated temperatures	No effect expected.	Lube oil coolers not cleaned online. TPCW HX cleaned on demand as required. 3/4-NOP-008 Section 5.2 has guidance for operating with elevated temperatures.
089 / Turbine	Historically maintained within operating bands. Cooling Canal System (CCS) Historical Ambient (Low) 2018 – 2019 – 64°F	Turbine bearing cooling via turbine lube oil system.	170 °F – Turbine bearing Hi temp alarm 180 °F – Turbine trip criteria on bearing hi temp	Expect elevated temperatures	No effect expected.	No impact to lube oil temperatures or seal oil, or EHC temperatures from south Florida typical winter ambient temperatures. Adjustments to TPCW cooling water flow routinely adjusted as needed to maintain

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 3 of 24 Page 18 of 40

	Page 18 of 40					
Site PTN	Historical High / Low (Deg F)	Heat Sink and / or Ambient Limit (Deg F / °F	Operability or Functional Limit based on additional analysis/calculation (Deg F / Describe)	Effect + 10F / + 20F	Effect -10 F / - 20F	Comments
System / Component		Max and Min				
	2017 – 2018 – 60.4°F 2016 – 2017 - 65.5 °F 2015 -2016 – 64.5°F 2014 – 2015 – 66.1°F					temperatures in band since it is manual vice auto control. ARP & ONOP guidance to mitigate temperature transients. 3/4-NOP-008 Section 5.2 has guidance for operating with elevated temperatures.
090 / Generator	(CCS) Historical Ambient (Low) 2018 – 2019 – 64°F 2017 – 2018 – 60.4°F 2016 – 2017 - 65.5 °F 2015 -2016 – 64.5°F 2014 – 2015 – 66.1°F Historical high 2017 Stator delta temperature 6.2 degrees C. Margin .7 degrees C	RTD stator temperature limits delta between groups variable with generator load, typical 6.9 deg C.	Generator RTD group temps alarm at 7 and action at 7.5 and shut down limit Dependent on TPCW flow and temperature which has Supplemental Cooling System (SCS) for increased margin during summer. Not used during winter.	Expect elevated generator winding temperatures and resultant shut down. Note turbine replacements have generators operating at higher MVA.	No effect expected	Main Generator, Hydrogen gas leak rate changes with changes in Temperature and related Pressure. An ACMP exists to maintain hydrogen gas temperatures. No issues expected. Generator gas temperatures impacted via TPCW shared heat loads. U3 has elevated H2 Leakage – ACMP in effect maintaining Stator Gas temps elevated (76C-78C). ~3-4C > U4. Generator RTD Hi Temp alarm unavailable on both units due to H2 Panel on ECO to repair fittings. Normal Ops & FPDC monitoring ACMP in effect for U3 Stator Gas Temps. Comp Actions Established for OATC to monitor generator RTD temps continuously with other critical parameters See System 008 for TPCW SCS actions. Generator gas temperatures impacted via TPCW shared heat loads. U3 has elevated H2 Leakage – ACMP in effect maintaining Stator Gas temps elevated (76C-78C). ~3-4C > U4.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 3 of 24 Page 19 of 40

	rage 19 01 40					
Site	Historical High / Low	Heat Sink and / or Ambient	Operability or Functional Limit	Effect + 10F / + 20F	Effect -10 F / – 20F	Comments
PTN	(Deg F)	Limit (Deg F /	based on additional analysis/calculation			
		°F	(Deg F / Describe)			
System /		Max and Min				
Component						
						Generator RTD Hi Temp alarm unavailable on both units due to H2 Panel on ECO to repair fittings.

Scope

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 3 of 24 Page 20 of 40

5. Electrical Systems

Lead: Rafael Leavitt Barreto

Summary

Site PTN	Historical High / Low (Deg F)	Heat Sink and / or Ambient Limit	Operability or Functional Limit based on additional analysis/calculation	Effect + 10F / + 20F	Effect -10 F / – 20F	Comments
		(Deg F /	(Deg F / Describe)			
System / Component		Max and Min				
002,092,004 /	Historical Ambient (Low)	Components located	No lower limit.	Transformer is	Transformer is	SAO/Switchyard:
240 KV Switchyard /	2018 – 2019 – 44°F	Outdoors, South Florida Ambient. No lower ambient	The alarm setpoint for all transformers is oil temperature = 90C / 194°F	designed to operate at an	designed to operate at an	Routine daily monitoring in the SWYD by Operations and SAO.
McGregor	2017 – 2018 – 41.8°F	limit.	·	average ambient	average ambient	0-ONOP-002 has guidance for loss of
Substation, Main & Aux Tx,	2016 – 2017 - 41.7 °F	Components located Outdoors, South Florida	Equipment designed with margin via 6 banks of cooling fans.	temp of up to 40°C (104°F).	temp of down to minus 5°C (23°F).	McGregor Substation. Loss of McGregor Substation would challenge primary,
Startup & C Bus Tx	2015 -2016 - OOS	Ambient. No ambient limit.		8W breakers are	8W breakers are	secondary & containment temperature controls due to loss of supplemental
TX	2014 – 2015 – 47.1°F			designed to	designed to	cooling systems.
	60M EPLAN met tower			operate between from -50°C to 50°C	operate between from -50°C to 50°C	SAO is developing plan for extreme ambient temperature conditions, they will
	Ambient (High) & Inches of Rain			(-58°F to 122°F).	(-58°F to 122°C).	be reporting their findings to upper
	2020 – 90.8°F (to 8/10)					management.
	2019 – 92.5°F - 53.8"					<u>Transformers:</u>
	2018 – 92.9°F - 36.8″					Lower temperatures can aid the
	2017 - 91.9°F - 46.1"					transformer with oil cooling. Extremely low ambient temperatures can
	2017 - 31.5 1 - 40.1					bring in potentially false alarms such as low
						oil level alarms and/or gas sensing alarms.
						Extreme low temperature suggestion: all
						plant operators should be trained on how
						to recognize significant static electrification
						discharges in large transformers and what

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 3 of 24 Page 21 of 40

Cita	Historical High / La	Heat Chalmand / A lite	On and billion and From at the collection of the collection	Eff	Eff+ 40 = / 30=	6
Site	Historical High / Low	Heat Sink and / or Ambient	Operability or Functional Limit based	Effect + 10F / + 20F	Effect -10 F / – 20F	Comments
PTN	(Deg F)	Limit	on additional analysis/calculation			
	(6)	(Deg F /	(Deg F / Describe)			
		(==8:7	(2081) 2000			
		Max and Min				
System /		Wide and Willi				
Component						
						actions should be taken when such a
						condition occurs. ¹
						condition occurs.
						For extremely high ambient temperatures
						instructions for Loss of Cooling in
						procedures 0-ONOP-092.X may be
						followed.
005, 006 /	Historical Ambient (Low)	Components located in	No lower limit.	See comments	See comments	Summer Readiness Review Comments:
4.16KV SWGR	2018 – 2019 – 44°F	environmentally controlled		section	section	Summer readiness margin issues all related
	2017 – 2018 – 41.8°F	rooms – Temperature Alert for	No T.S. or FSAR limits for room			to degraded condition of HVAC system. See
480V LC	2016 – 2017 - 41.7 °F	room set at 104F and	temperature and Operability or			Sys 70 for specific margin items and
	2015 -2016 - OOS	increasing	Functional limits -			contingency plans.
	2014 – 2015 – 47.1°F	No lower limit.	If room temperature exceeds 104F			
	60M EPLAN met tower	NOTE: C 4kv bus metal house	equipment still Operable/Functional,			No winter readiness concerns.
	With A/C failures historical has	enclosure not environmentally	however engineering should be notified			Guarding of redundant train HVAC
	With A/C failures, historical has reached >99 F.	controlled.	to consider re-evaluating PM frequency based on exposure to elevated			equipment during OOS times IAW OP-AA-102-1003.
	reactica >331.	Components located in	temperature. Equipment expected to			102 1003.
		environmentally controlled	remain working at elevated temperature			Increased monitoring of room temps during
		rooms – Temperature Alert for	but exposure to elevated temperatures			HVAC equipment or alarm OOS times.
		room set at 104F.	above 104F may impact service life			
		PM frequency based on	which would be evaluated on a case by			3/4-NOP-070 has guidance for forced air
		maintaining environment	case basis.			circulation cooling through all SWGR & LC
		below 104F.				rooms if lost all HVAC cooling.
		NOTE: C 4kv bus metal house				No Diamod or I howasted Maintenan
		enclosure not environmentally controlled.				No, Planned or Unexpected Maintenance place in SPV or SFV.
		Controlled.				place ili 3r v Ol 3l v.
						Extreme Weather Review Comments:
						Equipment in Temperature Controlled
						Environment):

¹ EPRI Seasonal Readiness Guideline, Static Electricity in Oil Cooled Transformers

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 3 of 24 Page 22 of 40

<u></u>	Page 22 of 40			T		
Site	Historical High / Low	Heat Sink and / or Ambient	Operability or Functional Limit based	Effect + 10F / + 20F Effect	t -10 F / – 20F	Comments
PTN	(Deg F)	Limit	on additional analysis/calculation			
		(Deg F /	(Deg F / Describe)			
Countries /		Max and Min				
System /						
Component						
						Electrical equipment inside of 4KV SWGR
						and 480V Load Center rooms (i.e. SWGR
						3/4A, 3/4B, 3/4D, Load Centers 3/4A, 3/4B,
						3/4C, 3/4D, 3/4E, 3/4F, 3/4G, 3/4H, Emergency Load Sequencers 3A, 3B, 4A, 4B)
						is not affected provided that the HVAC
						units associated with these rooms remain
						in-service and capable of performing their
						respective functions. Refer to section 2 of
						this document for HVAC
						assessment/actions needed.
						Feedback from the HVAC engineer
						indicates additional actions may be
						warranted to ensure HVAC equipment
						functionality during severe weather
						conditions. For extreme cold weather
						conditions heat tracing capability may need
						to be added to all HVAC units supporting
						the equipment referenced. Additionally, vendor manual V001070 for these HVAC
						units recommends "Add a year-round
						glycol solution to the chilled water system
						to provide freeze protection."
						For extreme hot weather conditions, the
						same manual indicates the HVAC units have
						a standard "Maximum operating ambient temperature" of 105 deg F which could be
						increased to 125 deg F provided the HVAC
						unit was supplied with an optional high
						ambient package. Overall HVAC unit
						efficiency/performance could be affected.
						Temporary modifications similar to EC
						291227 may need to be considered and
						possibly identified as required contingencies.
						contingencies.
<u> </u>						

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 3 of 24 Page 23 of 40

Site	Page 23 of 40 Historical High / Low	Heat Sink and / or Ambient	Operability or Functional Limit based	Effect + 10F / + 20F	Effect -10 F / - 20F	Comments
		Limit	on additional analysis/calculation			
PTN	(Deg F)	(Dog 5 /	(Deg F / Degaribe)			
		(Deg F /	(Deg F / Describe)			
_		Max and Min				
System /						
Component						
						Equipment not in Temperature Controlled
						Areas: All 480V Load Centers are located in a
						temperature-controlled environment. 4kv
						SWGR 3/4C is located outdoors and it is not
						in a temperature-controlled environment.
						As such, under extreme hot weather temporary modifications similar to EC
						291227 may need to be considered and
						possibly identified as required
						contingencies. The site should consider the
						installation need to ensure the SWGR space
						heaters are functional as part of cold weather preparations and drive corrective
						actions to completion if required.
007 / 480V	Historical Ambient (Low)	Some Components located in	No T.S. or FSAR limits for room	See comments	See comments	4B MCC HVAC degraded. 4B MCC provides
MCCs/Load Centers	2018 – 2019 – 44F	environmentally controlled rooms – Temperature Alert for	temperature and Operability or Functional limits –	section	section	power for rod control cabinets. Malfunction of rod control could result in
Centers	2017 – 2018 – 41.8F	room set at 104F and rising.	Tunctional limits –			Rx Trip.
						3/4B MCC room temp alarm setpoint at
	2016 – 2017 - 41.7F	Some components in the plant, outdoor environment.	80F – 3/4B MCC Room High Temp Alarm			80°F.
	2015 -2016 - OOS					4B MCC HVAC currently being replaced and
	2014 – 2015 – 47.1F	PM frequency based on				tracked on DPSR as Operational Concern. ACMP has been issued.
		maintaining environment below 104F.	104F – 3/4B MCC Room Temp limit for			Forced air circulation and/or Temporary
	60M EPLAN met tower	DCIOW 1041.	preventing circuit card failure in control rod drive cabinets			HVAC has been established as required to
	With A/C failures, historical has		Tod drive capinets			maintain room temps
	reached ~99 F.					No, Planned or Unexpected Maintenance
						place in SPV or SFV
						Extreme Weather Review Comments:
						Equipment in Temperature Controlled
						Environment):
						480V Motor Control Centers located
						indoors (i.e. MCC 3/4B, 4D, 3/4L, 3/4M,

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 3 of 24 Page 24 of 40

Cito	Page 24 of 40	Heat Sink and / or Ambient	Openskility on Franchisms I Limit has all	Effect 10E / : 20E	Effect 10 F / 20F	Comments
Site	Historical High / Low	-	Operability or Functional Limit based	Effect + 10F / + 20F	Effect -10 F / – 20F	Comments
PTN	(Deg F)	Limit	on additional analysis/calculation			
		(Deg F /	(Deg F / Describe)			
Constant /		Max and Min				
System /						
Component						
						3/4B43) are not affected provided that the
						HVAC units associated with these rooms
						remain in-service and capable of
						performing their respective functions.
						Refer to section 2 of this document for
						HVAC assessment/actions needed.
						Feedback from the HVAC engineer
						indicates additional actions may be
						warranted to ensure HVAC equipment
						functionality during severe weather
						conditions. For extreme cold weather
						conditions heat tracing capability may need
						to be added to all HVAC units supporting the equipment referenced. Additionally,
						vendor manual V001070 for these HVAC
						units recommends "Add a year-round
						glycol solution to the chilled water system
						to provide freeze protection."
						to provide recess protection.
						For extreme hot weather conditions, the
						same manual indicates the HVAC units have
						a standard "Maximum operating ambient
						temperature" of 105 deg F which could be
						increased to 125 deg F provided the HVAC
						unit was supplied with an optional high
						ambient package. Overall HVAC unit
						efficiency/performance could be affected.
						Temporary modifications similar to EC
						291227 may need to be considered and
						possibly identified as required
						contingencies.
						Equipment not in Temperature Controlled
						Areas:

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 3 of 24 Page 25 of 40

Site	Historical High / Low	Heat Sink and / or Ambient	Operability or Functional Limit based	Effect + 10F / + 20F	Effect -10 F / - 20F	Comments
PTN	(Deg F)	Limit	on additional analysis/calculation			
	(= 38.7)	(Deg F /	(Deg F / Describe)			
System / Component		Max and Min				490V/Mateu Control Contests Inseted
						480V Motor Control Centers located outdoors (i.e. MCC 3/4A, 3/4C, 3D, NVD, 3/4E, 3/4H, F) need to ensure the MCC space heaters are functional as part of cold weather preparations and drive corrective actions to completion if required.
003 / 120V Vital AC/DC	With A/C failures, historical has reached >99 F	Components located in environmentally controlled rooms – Temperature Alert for room set at 104F. PM frequency based on maintaining environment below 104F.	No T.S. or FSAR limits for room temperature and Operability or Functional limits - If room temperature exceeds 104F equipment still Operable/Functional, however engineering should be notified to consider re-evaluating PM frequency based on exposure to elevated temperature. Equipment expected to remain working at elevated temperature but exposure to elevated temperatures above 104F may impact service life which would be evaluated on a case by case basis.	See comments section	See comments section	HVAC deficiencies and OOS times impact battery charger operability due to sensitivity of battery charger output to room temp fluctuations. HVAC equipment for the most part in a clean room. PMs on inlet filters keep coils clean. Coil cleaning not expected to be necessary. Multiple actions exist for degraded HVAC. See separate HVAC issues tracker. Increased monitoring frequency & Comp actions of battery chargers established by Ops and/or E/M during HVAC OOS times No load threat activities allowed or bi stables tripped on other protection channels during 3A CVT work window. Spare inverter available for re-alignment IAW ONOP guidance. 3A CVT Maint results in no backup for 3A inverter Extreme Weather Review Comments: All 120Vac/125Vdc equipment is located indoors and hence are not affected provided that the HVAC units associated with these rooms remain in-service and capable of performing their respective functions. Refer to section 2 of this

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 3 of 24 Page 26 of 40

	Page 26 of 40	T.,	T		12
Site	Historical High / Low	Heat Sink and / or Ambient	Operability or Functional Limit based	Effect + 10F / + 20F Effect -10 F / - 20F	Comments
PTN	(Deg F)	Limit	on additional analysis/calculation		
	(5081)	(Deg F /	(Deg F / Describe)		
		(Deg F /	(Deg r / Describe)		
System /		Max and Min			
Component					
					document for HVAC assessment/actions
					needed.
					Feedback from the HVAC engineer
					indicates additional actions may be
					warranted to ensure HVAC equipment
					functionality during severe weather
					conditions. For extreme cold weather
					conditions heat tracing capability may need
					to be added to all HVAC units supporting
					the equipment referenced. Additionally,
					vendor manual V001070 for these HVAC
					units recommends "Add a year-round
					glycol solution to the chilled water system
					to provide freeze protection."
					For extreme hot weather conditions, the
					same manual indicates the HVAC units have
					a standard "Maximum operating ambient
					temperature" of 105 deg F which could be
					increased to 125 deg F provided the HVAC
					unit was supplied with an optional high
					ambient package. Overall HVAC unit
					efficiency/performance could be affected.
					Temporary modifications similar to EC 291227 may need to be considered and
					possibly identified as required
					contingencies.
Scope				'	·

<u>Scope</u>

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 3 of 24 Page 27 of 40

6. NSSS systems

Lead: Dave Lettsome/Caselli/Angelica Baez

<u>Summary</u>

Site PTN	Historical High / Low (Deg F)	Heat Sink and / or Ambient Limit	Operability or Functional Limit based on additional analysis/calculation	Effect + 10F / + 20F	Effect -10 F / - 20F	Comments
FIN	(Deg r)	(Deg F /	(Deg F / Describe)			
System / Component		Max and Min				
020 / Primary Water	Historical Ambient (Low) 2018 – 2019 – 44°F 2017 – 2018 – 41.8°F 2016 – 2017 - 41.7°F 2015 -2016 - OOS 2014 – 2015 – 47.1°F 60M EPLAN met tower	No lower limit Primary water is used for RWST, SFP and RCS make-up water via the CVCS blender. The RCP Flowserve seal vendor manual specifies a normal seal injection temperature range of 100°F to 145°F. Refer to SFP and RWST for temperature limits.	0-ONOP-103.2 dictates at which threshold to start Refueling Water purification pumps and Primary water make-up pumps.	The PWST air cooled PW Pps piping and auto start pressure switches (PS) are located outside. No impact for the 7-day duration expected: Hotter pump motor temps not expected to challenge Pp operation. RCS make-up to the VCT or chg Pp suction will mix with warmer or cooler process flow prior to the SWI flowpath. Short duration deviations from the recommended RCP seal injection temperature range of 100°F to 145°F not expected to challenge the RCPs.	Reduced air-cooled pump motor temps not expected to challenge Pp operation. O-ONOP-103.2 provides guidance to minimize freezing effects. Pp auto start PS sense lines may freeze. Auto pp starts may not occur. Stagnate outside PW piping may freeze. Outside SFP and RWST make-up piping downstream of the CVCS blender may be stagenet and freeze.	4P16A Replace motor WO 40257378-01, 4P16B Complete grease PM WO 40388265- 01, 3P16B No motor heater amps WO 40339279-01, 3P209 Needs coating WO 40582432-01, 4P209 Seal leak WO 40598488

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 3 of 24 Page 28 of 40

Site	Page 28 o	Heat Sink and / or Ambient	Operability or Functional Limit based	Effect + 10F / + 20F	Effect -10 F / – 20F	Comments
PTN	(Deg F)	Limit	on additional analysis/calculation		-	
FIN	(Deg F)	(Deg F /	(Deg F / Describe)			
System / Component		Max and Min				
					RCS make-up to the VCT or chg Pp suction will mix with warmer or cooler process flow prior to the SWI	
033 / Spent Fuel Cooling	Maintained within operating alarm limits during normal and refueling Ops	CCW via SFP HX	135F – Alarm Setpoint 140F – Limit for normal plant Ops with core offloaded 150F – Acceptance criteria for refueling outages 180F – Max allowable limit	No adverse effect expected on SFP temperature (refer to CCW Sys 030 for CCW comments)	Outdoor piping with stagnant water is expected to freeze (i.e. make-up to SFP)	3/4-ONOP-033.1 4B SFP HX Boroscope Inspection scheduled 08/27/18 − 08/28/18 → Only 1 SFP HX allowed I/S M1-4
041 / Reactor Coolant Pump Seal	Low RCP Seal Water injection (SWI) temperature is desired for RCP Flowserve seal reliability. SWI/VCT lowest normal temperature is 110F for U3 and 100F for U4. RCP SWI supplemental cooling system provides an additional 5F of SWI cooling for improved long term RCP seal reliability.	Seal Water Injection (SWI) temperature maintained as low as possible 100-113°F per ACMP. The RCP Flowserve seal vendor manual specifies a normal seal injection (SWI) temperature range of 100°F to 145°F.	SWI provides RCP seal cooling. High SWI temp can cause 2 phase seal face cooling that can result in degraded seal performance that results in elevated CBO temperature with the following limits: >155F – Impending seal failure (within 2-3 weeks) >195F - Hi CBO temp alarm >260F – 3/4-ONOP-041.1 entry conditions.	No adverse effect expected (refer to PW Sys 020 RCS make-up comments). Potential short term increased SWI temperature not expected to adversely affect current RCP seals.	No adverse effect expected (refer to PW Sys 020 RCS make-up comments) VCT/ Seal water temp can be maintained high via Non regen TCV-*144 (Regen Hx outlet temp)	Known design deficiency has led to premature seal degradation, which causes elevated CBO temperature with increased seal friction. U3 Regen Hx degraded performance & U3 RCP CBO ACMP – challenging automatic temperature control of letdown. ACMP in place to maintain SWI low in normal band. Other ACMP actions are not affected by summer conditions. FPDC developed and implemented continuous predictive modelling to provide early warning of degraded trends. CCW SCS help reduce SWI and containment temperatures per ACMP. ACMP has redundant means to maintain temperature and other parameters to maintain health of seal. Maintenance of any

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 3 of 24 Page 29 of 40

	_	T		I	T _
Historical High / Low	•		Effect + 10F / + 20F	Effect -10 F / – 20F	Comments
(Deg F)					
	(Deg F /	(Deg F / Describe)			
	Max and Min				
					one does not create SPV or SFV for seal injection.
No RHR Seal Water High Temp alarms during last 5 summers	CCW provides Seal water cooling to RHR Pps RHR HX is heatsink for core cooling.	No alarms associated with temperature limits on RHR pp. Operating limitations listed in 3/4-OP-050. Tech Spec 3.5.4 limits RWST solution temperature to less than 100°F or greater than 39°F.	No changes in previously reviewed results.	No changes in previously reviewed results.	Running RWST Purification pump per 0- ONOP-103.2 warms tank during extreme cold events. No known countermeasures for extreme heat events.
Past OE prior to Supplemental Cooling System (SCS) reaches alarm, 120°F Historical high 2019: U3: 116.3°F U4: 116.6°F 2018: U3: 114.3°F U4: 115.9°F U3: 115.7 F (4.3F margin) U4: 116.6 F (3.4F margin)	120 F in containment counts hours for EQ. 125F in containment requires shutdown	Provides containment cooling with the use of CCW.	No changes in previously reviewed results.	No changes in previously reviewed results.	NCC HXs are located inside containment, not cleaned while online. CCW SCS degraded. Being tracked in the DPSR. Expected complete prior to summer 2021 Can re-align CCW SCS to U4 if required during summer.
	No RHR Seal Water High Temp alarms during last 5 summers Past OE prior to Supplemental Cooling System (SCS) reaches alarm, 120°F Historical high 2019: U3: 116.3°F U4: 116.6°F 2018: U3: 114.3°F U4: 115.9°F U3: 115.7 F (4.3F margin)	Limit (Deg F) Max and Min No RHR Seal Water High Temp alarms during last 5 summers CCW provides Seal water cooling to RHR Pps RHR HX is heatsink for core cooling. Past OE prior to Supplemental Cooling System (SCS) reaches alarm, 120°F Historical high 2019: U3: 116.3°F U4: 116.6°F 2018: U3: 114.3°F U4: 115.9°F U3: 115.7 F (4.3F margin)	Heat Sink and / or Ambient Limit (Deg F) Max and Min CCW provides Seal water cooling alarms during last 5 summers Past OE prior to Supplemental Cooling System (SCS) reaches alarm, 120°F Historical high 2019: U3: 116.3°F U4: 116.6°F 2018: U3: 114.3°F U4: 115.9°F U3: 115.7 F (4.3F margin) Heat Sink and / or Ambient Limit (Deg Ambient Limit (Deg F / Describe) Operability or Functional Limit based on additional analysis/calculation (Deg F / Describe) No alarms associated with temperature limits on RHR pp. Operating limitations listed in 3/4-OP-050. Tech Spec 3.5.4 limits RWST solution temperature to less than 100°F or greater than 39°F. Provides containment cooling with the use of CCW.	Heat Sink and / or Ambient Limit (Deg F) Heat Sink and / or Ambient Limit (Deg F / Describe) CCW provides Seal water cooling alarms during last 5 summers CCW provides Seal water cooling. No alarms associated with temperature limits on RHR pp. Operating limitations listed in 3/4-OP-050. Tech Spec 3.5.4 limits RWST solution temperature to less than 100°F or greater than 39°F. Past OE prior to Supplemental Cooling System (SCS) reaches alarm, 120°F Historical high 2019: U3: 116.3°F U4: 116.6°F U3: 114.3°F U4: 115.9°F U3: 115.7 F (4.3F margin) Heat Sink and / or Ambient Limit (Deg F / Describe) No alarms associated with temperature limits on RHR pp. Operating limitations listed in 3/4-OP-050. Tech Spec 3.5.4 limits RWST solution temperature to less than 100°F or greater than 39°F. Provides containment cooling with the use of CCW. Provides containment cooling with the use of CCW.	Heat Sink and / or Ambient Limit (Deg F / Max and Min CCW provides Seal water cooling alarms during last 5 summers Past OE prior to Supplemental Cooling System (SCS) reaches alarm, 120°F Historical high 2019; U3: 116.3°F U4: 116.3°F U3: 115.7°F (4.3F margin) Heat Sink and / or Ambient Limit (Deg F / Describe) Operability or Functional Limit based on additional analysis/calculation (Deg F / Describe) Fifect -10 F / - 20F Fifect -10

Scope

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 3 of 24 Page 30 of 40

7. Diesel Generator

Lead: Robert Orozco, Angelica Baez Roman

Summary

Electronics and instrumentation would be the most impacted by high temps. DBD 5610-023-DB-002, Emergency Power System, Section 2.4.5. states the maximum environmental temperature for electronics (and by extension, instrumentation) is 104°F. Above this, component function may be compromised.

Lube oil (LO) is most impacted by low temps. LO temps must be kept at or above 85°F for EDG operability per DBD 5610-023-DB-002, Sections 11.3.13 and 12.3.20. Below this, oil flow to engine components would be impeded and lead to increased wear and potential catastrophic failure.

Diesel fuel is also impacted by low temps. The problem with low temperatures is the fuel's cloud point (point at which dissolved paraffin wax comes out of solution — evidenced by hazy fuel). Enough of this wax out-of-solution would lead to plugging of fuel filters and fuel injectors, impeding the performance of the affected engine. Cloud points tend to vary depending on the season in which the fuel is delivered (i.e. fuel with higher cloud points delivered during spring / summer months). At Turkey Point, cloud points have varied from as low as 5°F to as high as 32°F. Fuel that is found to be hazy would need to be warmed, filtered, diluted with kerosene or replaced.

Air start is also impacted by low temps. Moisture in the air will condense and could adversely affect air start components if transferred.

Site PTN	Historical High / Low	Heat Sink and / or Ambient Limit	Operability or Functional Limit based on additional analysis/calculation	Effect + 10F / + 20F	Effect -10 F / – 20F	Comments
PIN	(Deg F)	(Deg F /	(Deg F / Describe)			
System / Component		Max and Min				
022, 023 / EDG	Historical Ambient (Low) 2018 – 2019 – 44°F 2017 – 2018 – 41.8°F 2016 – 2017 - 41.7°F 2015 -2016 - OOS 2014 – 2015 – 47.1°F 60M EPLAN met tower 90°F – U4 4B EDG Control Panel	Heat Sink provided via radiator and cooling water system. HVAC system for U4 Control building with ventilation fan backup.	Only EDG heaters a concern for winter readiness. Past history and issues with immersion heaters are resolved. System engineer noted that the immersion heater may not keep up if the temperature drops too low. See ONOP for actions whereby temporary heaters are staged to mitigate. Also, see last column. 90F – U4 EDG Control Building temperature alarm	With the engines running, their respective SR vent fans and radiator fans (U4 only) maintain the room temps below the 104°F limit for electronics and instrumentation. If this criterion is being approached	Currently, the immersion heaters maintain the lube oil above the 85°F operability limit. If this is challenged by extreme low temperatures, 0-ONOP-103.2, Cold/Hot Weather Conditions, have heat blowers	AB EDG Control Room HVAC Ground issue has been corrected. HX are the engine radiators and the lube oil coolers. No cleaning expected/required. U3 EDGS have new radiators as part of Fall 2019 CMM. Normal Ops and SE monitoring especially during surveillance runs. Also noted: AR 2296287 / WO 40645372 - TCV-4-111B leaks by, causing low lube oil
	Room during HVAC failure.		90F – U4 EDG Control building ventilation fan auto start	with the engines in standby, the respective vent fans and radiator fans (U4 only) may be manually started.	stationed in the rooms to keep the lube oil temps above the operability limit.	temps during cold ambient conditions. Ops able to maintain lube oil temp above 100F alarm setpoint and 85F operability limit by manual control of immersion heater (previously evaluated under AR 1721697). Corrective action is to replace valve during next CMM 2021.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 3 of 24 Page 31 of 40

Site	Page 31 of 40 Historical High / Low	Heat Sink and / or Ambient	Operability or Functional Limit based	Effect + 10F / + 20F	Effect -10 F / – 20F	Comments
Site	HISTORICAL HIGH / LOW	Limit	on additional analysis/calculation	Lilect + 10F / + 20F	Lilect -10 F / - 20F	Comments
PTN	(Deg F)	Limit	on additional analysis/calculation			
		(Deg F /	(Deg F / Describe)			
		Max and Min				
System /						
Component						
					If fuel is found to	
					be hazy during low	
					temperature	
					conditions, the fuel	
					would need to be	
					warmed, filtered,	
					diluted with	
					kerosene or	
					replaced. The fuel	
					should be checked	
					for haziness during	
					extreme low	
					temperature	
					conditions.	
					0-ONOP-103.2	
					currently requires	
					blowing down air	
					start flasks to	
					remove moisture	
					during low	
					temperature	
					conditions.	
		1			1	

<u>Scope</u>

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request
Request No. 2
Attachment 3 of 24
Page 32 of 40

8. Biological / Chemistry / Environmental

Lead:

Summary

Site PTN	Historical High / Low (Deg F)	Heat Sink and / or Ambient Limit	Operability or Functional Limit based on additional analysis/calculation	Effect + 10F / + 20F	Effect – 10F / -20F	Comments
	(= -8 - 7	(Deg F /	(Deg F / Describe)			
System / Component		Max and Min				

Scope

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 3 of 24 Page 33 of 40

9. Programs

Lead: Dave Laguardia, Mitch Guth

Summary

The information in this section was provided by the PdM engineers based on vibration, thermography, and oil analysis experience.

Site PTN System / Component	Historical High / Low (Deg F)	Heat Sink and / or Ambient Limit (Deg F / Max and Min	Operability or Functional Limit based on additional analysis/calculation (Deg F / Describe)	Effect + 10F / + 20F	Effect – 10F / -20F	Comments
ICW motor bearing temp						During elevated summer temps and no breeze, ICW motor brg temp alarms have occurred. The condition is typically resolved with replacing air filters and relocating temp equipment in the area blocking air flow. Also, not all the ICW motors have switched over to synthetic oil. The synthetic oil provides higher operating margin (higher kappa value) when operating at or above the bearing temp alarm set point. Switch over 3A, 4A, 4B ICW motors to X95 oil during the next scheduled motor PM's.

<u>Scope</u>

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 3 of 24 Page 34 of 40

10. Material / fluids

Lead:

<u>Summary</u>

Site PTN	Historical High / Low (Deg F)	Heat Sink and / or Ambient Limit (Deg F /	Operability or Functional Limit based on additional analysis/calculation (Deg F / Describe)	Effect + 10F / + 20F	Effect – 10F / -20F	Comments
System / Component		Max and Min				

<u>Scope</u>

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 3 of 24 Page 35 of 40

11. Licensing / Environmental

Lead: Mitch Guth

Summary

Site PTN	Historical High / Low (Deg F)	Heat Sink and / or Ambient Limit	Operability or Functional Limit based on additional analysis/calculation	Effect + 10F / + 20F	Effect – 10F / -20F	Comments
		(Deg F /	(Deg F / Describe)			
System / Component		Max and Min				

Scope

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 3 of 24 Page 36 of 40

12. Operations

Lead: Michael Coen

Summary

In response to elevated intake cooling canal temperatures in 2014, several initiatives were implemented in attempts to maintain margin to key systems.

- A Technical Specification change was approved raising the limit on ultimate heat sink temperature from 100 to 104F.
- Operating margin to hot temperatures was improved with implementation of supplemental cooling systems (Turbine Plant Cooling Water available, Component Cooling Water available, and Intake Cooling Water removed).
- TPCW SCS is available and will be place in service prior to the summer readiness period. CCW SCS is in service and is split between bulk cooling CCW and RCP seal water injection cooling. ICW SCS is removed and will be a large expensive project to replace (\$10M).
- Wells and pumps were installed to provide makeup to the canal system. This was used to lower canal temperature, reduce salinity, and makeup for lower canal levels. The wells installed near the intake to the plant, Loch Rosetta, are currently not in use. Other wells on the west end of the canal system are in service to address canal salinity. Efforts are in place to increase the well pump capacity from 18 MGD to 34 MGD by end of May 2021.
- A sprinkler cooling system was placed on top of containment. This was not effective and may have contributed to water intrusion problems.

Site PTN	Historical High / Low (Deg F)	Heat Sink and / or Ambient Limit	Operability or Functional Limit based on additional analysis/calculation	Effect + 10F / + 20F	Effect – 10F / -20F	Comments
		(Deg F /	(Deg F / Describe)			
System / Component		Max and Min				

Scope

Operational guidance for extreme temperatures is contained in 0-ONOP-103.2, Cold/Hot Weather Conditions, and 0-ONOP-011.1, Intake Canal Low Level or High Temperature.

Hot temperature response guidance includes reducing power based on UHS temperature and generator cooling limits. Extreme hot temperatures (+10/20 F for 7 days) would likely result in plant shutdowns required based on exceeding Tech Spec temperature limits (ultimate heat sink, containment, and refueling water storage tank).

Cold temperature response guidance includes running diesel power components, staging and energizing heaters, moving water through idle systems/piping legs/tanks, and installation of insulation on instrument lines (Temporary Modification). Extreme cold temperatures could result in frozen instrument lines on Tech Spec required tanks (RWST, PWST, DWST, and CST) and the uninsulated vertical pipe between component cooling water head and surge tanks (stagnant water). Failure to maintain RWST (39F) and BAST room (62 F) temperatures above Tech Spec limits would result in plant shutdown.

Recommendations:

- Implement modification to run power and heaters to key plant areas to mitigate cold weather and prevent running power cables through high risk fire zones requiring continuous fire watches.
- Implement modification to install insulation on instrument lines (Tech Spec required tanks RWST, PWST, DWST, CST; and Pumps/Components that have trip features Feed pump low pressure trip)
- Develop strategy to prevent freezing of CCW head tank and associated piping.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 3 of 24 Page 37 of 40

Limiting operator response / activities

- Ultimate Heat Sink 104F. Tech Spec 3.7.4 Hot Standby in 12 hours and Cold Shutdown within the following 30 hours
- Containment Temp 120 (14 days)/120F. Tech Spec 3.6.1.5 Reduce within 8 hours, or Hot Standby within next 6 hours, and Cold Shutdown within the following 30 hours.
- Refueling Water Storage Tank 39F / 100F. Tech Specs 3.1.2.5/3.5.4 Restore within 1 hours, or Hot Standby within 6 hours, and Cold Shutdown within the following 30 hours
- Boric Acid Storage Tank room 62F. Tech Spec 3.5.4 Restore within 70 hours, or Hot Standby within next 8 hours, and Cold Shutdown with the following 30 hours.
- Main Generator RTD Hi / Hi Hi Temp Alarm (variable setpoints)- Reduce reactive load. Trip reactor and turbine.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 3 of 24 Page 38 of 40

13. ERCOT Failures Equipment Review

Lead:

Contact industry counterparts / review utility releases to determine causes of equipment failures

<u>Scope</u>

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 3 of 24 Page 39 of 40

14. Turkey Point trip and down power review

Lead: Michael Coen

List all plant trips and whether they were at all temperature related


<u>Scope</u>

Florida Power & Light Company Docket No. 20220000-OT

Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 3 of 24 Page 40 of 40 15. Comparison of recommendations versus summer and winter readiness plans

Lead: Michael Coen

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 1 of 488

Zachry Nuclear

ENGINEERING STUDY R21002

FPL PTN WINTERIZATION STUDY

REVISION 0

QA CLASSIFICATION: NON-SAFETY RELATED

Prepared by:	Ronald D. Ploof		_
Reviewed by:	Lloyd E. Philpot	10/18/21 Date	_
Approved by:		Date	_

Written By: Zachry Nuclear Engineering 14 Lords Hill Road Stonington, CT 06378 FPL/NextEra, Contract 02409350, Release 00004 (PTN) Project No. 114264

Page 1 of 24
Total number of pages including Attachments - 487

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 2 of 488

Contents

1	PURPOSE3
2	EXECUTIVE SUMMARY
3	BACKGROUND4
4	INVESTIGATION 5 4.1 Phase 1 Step 1 – Analysis of Freezing Phenomena 5 4.2 Phase 1 Step 2 – P&ID Screening 6 4.3 Phase 1 Step 3 – Evaluation of P&ID Segments 6
	 4.4 Phase 1 Step 4 – Walkdown of Systems for Enclosures
5	ASSUMPTIONS9
6	EVALUATION
	6.3 Evaluation of P&ID Segments (Step 3) 14 6.3.1 Fire Protection 14 6.3.2 HVAC Systems 14 6.3.3 Existing Building Temperature Control 15 6.3.4 All Other Plant Systems 16 6.4 Walkdown of Systems for Enclosure (Step 4) 18 6.5 Walkdown of Components for Heat Tracing (Phase 2 Step 1) 18 6.6 Evaluation of TB Branch Line Field Data (Phase 2 Step 2) 20 6.7 FPL Review of Phase 2 Heat Tracing Scope 21
7	DISCUSSION OF RESULTS

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 3 of 488

ZACHRY

	7.1 Phase 1	22
	7.2 Phase 2	22
8	RECOMMENDATIONS	23
	8.1 Phase 1 Remaining Task	23
	8.1.1 The final strategy for the above ground FP piping has not been incorporated into Attachment L and needs to be performed2	23
	8.1.2 Determine final Protection strategy for the RWT2	23
	8.1.3 Determine number of additional heaters desired for supplemental heating in the RAB and add to cold weather procedure	
	8.2 Phase 2 remaining Task	23
	8.2.1 Perform Phase 2 P&ID take offs for individual vents, drains, and instruments for systems outside the TB and add to Attachment N	
	8.2.2 Perform field walkdowns to capture lengths and orientation for vents, drains, and instruments outside the TB and add to Attachment N	23
	8.2.3 Perform protection evaluation for all components outside the TB based on field data captured	d 23
9	REFERENCES	23

1 PURPOSE

The purpose of this study is to present the results of the Phase 1 "winterization" evaluation for Florida Power & Light's (FPL) Turkey Point (PTN) site located in Homestead, FL. The intent of the evaluation is to identify plant systems, structures, and components (SSCs) that are critical to power generation and susceptible to the adverse effects of freezing during a postulated weather event. Fire protection (FP) systems are included as well since their proper performance is a condition of the PTN license. Phase 1 is intended to identify critical components and present options for preventing/mitigating the effects of the cold weather. Phase 2 performs walkdowns to confirm and select the most effective preventing/mitigating method on a component-by-component basis.

2 EXECUTIVE SUMMARY

The weather conditions selected for PTN are severe and as such many systems and components are affected and potentially threaten power production either directly or as a condition of the PTN license. The methods identified for mitigating the effects of cold weather were a combination of adding heat tracing, adding insulation, changing system operation, adding temporary heating, or repairing leaks as they occur. The selected method was based on the system and potential consequences of damage. Large scale temporary tenting and use of portable heaters was not deemed feasible given available personnel and the assumed advanced warning the station would have of the event.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 4 of 488

3 BACKGROUND

In February 2021, a low temperature event resulted in a widespread loss of electricity production over the region operated by the Electric Reliability Council of Texas, Inc. (ERCOT). This was due to poor extreme weather preparation by the utilities.

On February 15, 2021, at 5:26 a.m., South Texas Project Unit 1 automatically tripped due to low steam generator water levels following the loss of feedwater pumps 11 and 13. The loss of the feedwater pumps was caused by a frozen sensing line for the feedwater pump low suction pressure trip. The sensing line is exterior to the turbine building and was not insulated.

FPL/NextEra Energy has elected to proceed with upgrading PTN to ensure uninterrupted power generation during the following postulated cold weather event:

Weather Parameter	PTN
Cold Weather Duration	96 hours
Wind Speed	10 mph
Maximum Temperature	37°F
Minimum Temperature	19°F
Temperature Profile	Sinusoidal (ASHRAE Diurnal)

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 5 of 488

Multiple power industry guides are available from the below list to assist utilities in establishing a cold weather mitigation plan and can serve as the basis for the recommended actions.

- U.S. Nuclear Regulatory Commission (NRC) Office of Inspection and Enforcement (IE) Bulletin No. 79-24: Frozen Lines, published in 1979 (Reference 1)
- Institute of Nuclear Power Operations (INPO), "Operating Experience Digest (OED) 2007-16 Cold Weather Preparations," September 2007 (Reference 2)
- INPO Rapid Operating Experience (OE) "Severe Weather Program Extreme Cold," March 2021 (Reference 3)
- Information Notice No. 98-02: Nuclear Power Plant Cold Weather Problems and Protective Measures (Reference 4)
- NRC Inspection Manual, Inspection Procedure 71111, Reactor Safety-Initiating Events, Mitigating Systems, Barrier Integrity, Issue Date 10/28/2011 (Reference 5)
- U.S. Nuclear Regulatory Commission Regulatory Guide, Office of Nuclear Regulatory Research, Regulatory Guide 1.151, Revision 1, Instrument Sensing Lines (Reference 6)
- North American Electric Reliability Corporation (NERC) "Reliability Guideline Generating Unit Winter Weather Readiness – Current Industry Practices – Version 3" (Reference 7)

Existing FPL winter preparation procedures were consulted as part of this study. Where applicable, activities specified in these procedures were included within the recommended mitigation strategy:

- OP-AA-102-1002, Nuclear Fleet Administrative Procedure, Seasonal Readiness, Revision 35 (Reference 8)
- 0-NOP-103.2, Turkey Point Plant, Off Normal Operating Procedure, Cold/Hot Weather Conditions, Revision 11 (Reference 9)

4 INVESTIGATION

The investigation addressed by this study establishes the population of plant systems and components that need protection from freezing. The investigation is intended as a continuation of the study "Turkey Point Extreme Temperature Reassessment" dated March 2021, (Reference 10). The continuation of the study was conducted in four steps as described in the subsections that follow. Results of the investigation are provided in Section 6.

4.1 Phase 1 Step 1 – Analysis of Freezing Phenomena

Step 1 established the nature and extent of the freezing potential during the postulated weather event. This entailed the use of analytical methods to quantify the freezing process inside pipes of various sizes and the benefit of incremental mitigation steps taken to prevent or slow the freezing process such as the application of insulation of various thicknesses. This process uses analytical tools developed in Excel and GOTHIC Version 8.3. The methodology is provided in the attachments C and E to this study. The use of GOTHIC is documented in Reference (12) for tracking purposes only.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 6 of 488

4.2 Phase 1 Step 2 - P&ID Screening

Step 2 conducted a rigorous screening and evaluation of system Piping and Instrumentation Diagrams (P&IDs) to identify components that are (1) critical to power generation and/or maintaining compliance with plant technical specification limiting conditions for operation and are (2) susceptible to the adverse effects of extremely cold temperatures to the point that, if not properly mitigated during these cold temperatures, could experience a loss of function. This screening was conducted as follows:

- Identify the population of systems and system P&IDs to be evaluated. This was
 accomplished via a master listing of plant documents provided by FPL and a specific
 search of these documents for drawings with flow diagram, P&ID, PID, or Piping and
 Instrument in the drawing title. The compiled list of drawings evaluated is included in
 Attachment A.
- Identify the priority of the P&ID:
 - Priority is "No" if components shown on the P&ID are within a building or enclosure.
 These P&IDs are not evaluated any further since critical components on any of these will automatically be addressed through the environmental controls taken for the enclosure (i.e., space heating of enclosed spaces).
 - Priority is "Yes" if one or more components shown on the P&ID are clearly indicated as being located outside and, therefore, subjected to the extremes of the postulated weather event. These P&IDs are evaluated more thoroughly to break down the "outside" portions of the system into unique segments for further evaluation.
 - Priority is "Maybe" if, subject to the limitations of the location identification characteristics of the subject P&ID, one or more components shown on the P&ID might be outside and, therefore, potentially subjected to the extremes of the postulated weather event. These P&IDs are also evaluated more thoroughly to break down the potentially "outside" portions of the system into unique segments for further evaluation.
 - Additional drawings such as General Arrangements or Plans and Sections were used if available for the areas of interest to provide further clarity on component locations.
 - Since the turbine building (TB) is an open deck structure, the turbine, steam, condensate, and feed systems were all treated as outside systems with priority of "Yes" or "Maybe".
- For Priority "Yes" and "Maybe" P&IDs, divide the system into unique segments and
 evaluate these segments for the function, susceptibility to freezing and recommended
 mitigation strategies. The detailed evaluation is documented in a separate spreadsheet
 whereas the P&ID markings provide the visual reference for component relative location
 in the system.

4.3 Phase 1 Step 3 – Evaluation of P&ID Segments

Step 3 documents the evaluation of each component type contained within the segments identified on the P&ID. Each segment has one or more corresponding evaluation rows in the evaluation spreadsheet. Each component type contained within the segment has a unique row in the evaluation spreadsheet as needed to capture any unique nuance of the component type's

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 7 of 488

susceptibility to freezing, the impact of freezing on component type's function, or the recommended strategy to mitigate the cold weather effects.

The evaluation captures the following specific information for each segment:

- ID a unique row identification number
- Plant identifies site
- Unit uniquely identifies either Unit 3 or Unit 4
- System identifies the unique system being evaluated. Attachment B lists the plant system designations as taken from 5610-M-3000, Sh. 1.
- P&ID provides a cross reference to the specific drawing location of the subject segment.
- Segment unique identifier for the selected P&ID.
- Types a dropdown menu is used for consistent designation of component types of interest:
 - Cooling Towers & Intake Channel
 - o Demineralizers
 - o Heat Exchangers
 - Instr. Annunciation / Indication
 - o Instr. Control / Protection
 - o Instr. Local
 - Motor Operator Valve
 - Motors
 - o Outdoor Tanks
 - o Piping
 - Relief Valves
 - o Strainers
 - Traveling Screens
 - Vents / Drains / Misc. Connections
 - Ventilation Dampers
- Component/Equipment to identify the specific component of interest.
- Normally Operating answer of Yes, No, or Standby used to identify if the segment as:
 - o Yes (Main flow path flowing),
 - o No (Not flowing), or
 - Standby (needed to be available to flow to perform a Safety Function)

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 8 of 488

- Operability/Functional Limit Determine if the piping/component is required either for plant generation, or to maintain a Technical Specification with the Unit in Mode 1.
- Basis for Action explains why this segment/equipment needs to be protected relative to impact on operability/functional limit above.
- Action Required uses dropdown menu as follows:
 - Protect physical plant change/modification (insulation, heat trace, etc.)
 - Mitigate Operator Action required (e.g., swapping trains to keep water flowing in the system, opening valves to allow trickle flow)
 - None no action required
- Recommended Strategies documents the recommended strategy/strategies for the specific segment/component. Examples of protection strategies from least costly to more costly include:
 - o No protection required,
 - Rotate operating trains to allow flow to prevent freezing in all trains,
 - Open selected vents and/or drains to allow for a limited trickle flow to prevent freezing.
 - Insulate the piping,
 - o Insulate & heat trace the piping,
 - Note: in some instances, a strategy of enclosing subsets of systems or critical components and providing space heating to control the area temperature should be considered for more cost-effective temperature control. This alternative strategy was addressed in the walkdowns of the subsequent step.

4.4 Phase 1 Step 4 – Walkdown of Systems for Enclosures

Step 4 conducts a walkdown of the site to further investigate the compiled mitigation strategies documented in Step 3. The specific objective of the walkdown is to evaluate the feasibility of applying environmental temperature controls of specific areas of the plant that could be enclosed with the use of temporary barriers to contain the heat provided by the process piping (if warm enough) or through the operation of one or more temporary space heaters within the enclosed space. Space heating large areas could be a cost-effective way of addressing multiple critical components when compared to heat tracing and insulating. The results of the walkdowns will be applied to the evaluation spreadsheets through updated recommendations for mitigation strategies.

4.5 Phase 2 Step 1 - Walkdown of Components for Heat Tracing

Phase 2 Step 1 conducts a walkdown of the site for those portions of systems where protection was required and temporary enclosures or mitigating actions were not feasible based on Phase 1 Step 4 walkdown results. The walkdown will capture actual piping/tubing lengths and orientation of branch lines that do not have flow. In addition, general observations of local ambient conditions due to proximity of piping/tubing to warm equipment and building structures that could be used as basis for local ambient temperature remaining above freezing would be captured. Attachment N was created to capture individual branch line walkdown data. The

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 9 of 488

walkdown data will then be used to evaluate against the analysis data for branch lines in Attachment E.

4.6 Phase 2 Step 2 - Evaluation of Branch Line Field Data

Phase 2 Step 2 updates Attachment N with system operating temperatures and performs a check of the branch line length and temperature against the Attachment E curves to determine if insulation or heat trace is still required. System operating temperatures for PTN will be obtained from Piping Specification MN-3.10 Rev 9, Piping Class Summary Turkey Point Units 3 & 4 (Reference 14). If a deviation or explanation was required for the operating temperature chosen, Attachment N provides in the basis in the process temperature notes column. If a deviation or explanation was required for the operating temperature chosen, Attachment N provides the basis in the process temperature notes column.

5 ASSUMPTIONS

The following assumptions form the basis of the scope of this study and its approach:

- 1. Components located inside buildings or enclosures of any kind are considered managed by local space heating which is already a fundamental part of the FPL cold weather mitigation strategy (see References 8 and 9). No special heat tracing or insulation is targeted for components located in enclosures since enhanced containment with additional tarps and added heat with the use of space heaters will be an effective strategy to prevent freezing within the enclosures.
- When addressing the addition of heat tracing and/or insulation, the threshold for freezing
 was set at 25% frozen for non-safety related components and 0% to 2% frozen for safety
 related components.
- 3. Stagnant or idle above ground systems process temperature is assumed to be 35°F.
- 4. Buried systems such as Fire Protection were assumed to be 40°F.

6 EVALUATION

6.1 The Freezing Phenomena (Step 1)

6.1.1 The Threat

Generally, water begins freezing when the temperature of the outside atmosphere reaches and is maintained below 32 degrees Fahrenheit. Water filled pipes freeze when heat is transferred from the water inside the pipe to the surrounding air. The material with which the pipes are made plays an important role in the bursting of pipes. Ice forms on the coldest surface (e.g., the pipe inner wall). The formation of ice will eventually grow radially and block the pipe. This has two primary effects that are to be prevented where possible:

 Blocked flow will cause a loss of function. This is most likely to occur in the smallest diameter pipes/tubes such as instrument sensing lines that are coincidently providing

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 10 of 488

critical input for component operation, control, and protection, loss of which could cause a loss of power generation.

 The water expands in volume by 9% when it freezes. If the water expands in a closed vessel or pipe and the pipe or vessel is not sufficiently strong to withstand the water volume increase, there is a chance the pipe or component will burst. This would result in a loss of pressure boundary integrity with common mode failure.

For the purposes of this study, the prevention/mitigation of freezing will only apply to stagnant lines. All power plant systems of interest that are operating (i.e., have water flowing) are not of concern because:

- Flowing water will not freeze when the flow rate is high enough. Generally, the minimum flow rate needed is very small compared to typical operating flow rates. See Section 6.1.2 for required flow analysis to prevent freezing of various pipe sizes and process temperatures under the assumed PTN ambient conditions.
- Operating temperatures are sufficiently above the freezing point preventing freezing from occurring at all.

6.1.2 Time to Freeze for Stagnant Systems with and without Insulation

A spreadsheet tool was developed for the FPL fleetwide assessment of the impact of the outside temperature on idle or stagnant water systems. The tool provides the percent freeze as a function of pipe diameter when the pipe contains stagnant water and is subjected to the postulated outside temperature and wind condition. The percent freeze is evaluated for each pipe diameter with no insulation to present a baseline condition and then evaluated with 1", 2", 3", or 4" of insulation to illustrate the positive impact of insulation on the reduction of the onset of or the degree of freezing that occurs.

6.1.2.1 The Effects of Insulation on the Time to Freeze for 4" Pipe

The time required to achieve the specified percent freeze is provided to establish a window of opportunity for taking prevention/mitigation actions such as initiating trickle flows or periodically swapping operating headers to minimize the duration of the stagnant condition. The following table provides an excerpt of the analysis of a stagnant 4" line with 0", 1", 2", 3", and 4" of insulation with a starting temperature of 35°F. The indicted time is in hours from the start of the postulated weather event. Times to freeze in excess of the event's duration of 96 hours are indicated with a "-".

Table 1 – PTN Time to Freeze for 4" Isolated Pipe Segment

Pipe	Ins.		Constant	10 mph	Wind		No Wind				
Size	Thk.	0%	2%	10%	25%	50%	0%	2%	10%	25%	50%
(NPS)	(in)	(hr)	(hr)	(hr)	(hr)	(hr)	(hr)	(hr)	(hr)	(hr)	(hr)
4	0	4.75	5.75	7.5	9.5	12	6.25	7.5	10.75	17.75	58.75
4	1	8.75	11.75	40	-	-	10	14	63.75	-	-
4	2	10.5	15.25	83.5	-	-	11.5	33.75	-	-	-
4	3	11.75	34.5	-	-	-	12.75	36.25	-	-	-
4	4	12.75	36.75	-	-	-	13.5	38.5	-	-	-

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 11 of 488

The basis for this analysis and the results for all pipe sizes are included in Attachment C.

6.1.3 The Effects of Trickle Flow on the Onset of Freezing

An effective method of preventing the occurrence of freezing is to maintain a minimum flow in what would normally be a dead leg. This can be accomplished through the selective opening of drains and/or vents in the system to maintain the desired minimum flow rate in the pipe of interest. The flow rate criterion is a function of the water type (fresh or salt water), the pipe diameter, the starting water temperature and the thickness of insulation, if any.

The tables below provide partial results of the PTN analysis for fresh water starting at 40° F with no insulation and with $\frac{1}{2}$ " insulation. Complete tables of results for both fresh water and salt water are included in Attachment D. The basis for this analysis was documented in Attachment N to Reference (11) and is also included in Attachment D for ease of reference.

Table 2 – PTN Minimum Trickle Flow to Avoid Freezing with 40°F Process Temperature

6.1.4 The Effects of Process Line Temperature on Dead Leg Branch Lines

Nominal				Nom. Header	Insulated	Minimum Flow to Prevent Freezing (Fresh Water)		
Pipe Size	O.D.	Schedule	I.D.	Temp.	(1/2-inch)	PTN	(19°F)	
(inch)	(inch)	-	(inch)	(°F)	(Y / N)	(gpm)	(gph)	
1/2	0.84	80	0.546		N	0.071	4.283	
1	1.315	80	0.957		N	0.629	37.762	
1 1/2	1.9	40	1.61		N	1.258	75.490	
2	2.375	40	2.067	40	N	1.797	107.848	
3	3.5	40	3.068	40	N	3.218	193.056	
4	4.5	40	4.026		N	4.773	286.353	
5	5.563	40	5.047			N	6.638	398.283
6	6.625	40	6.065		N	8.693	521.571	
1/2	0.84	80	0.546		Υ	0.0025	0.150	
1	1.315	80	0.957		Υ	0.0035	0.210	
1 1/2	1.9	40	1.61		Υ	0.0048	0.288	
2	2.375	40	2.067	40	Υ	0.0059	0.354	
3	3.5	40	3.068	40	Υ	0.0086	0.516	
4	4.5	40	4.026		Υ	0.0114	0.684	
5	5.563	40	5.047		Υ	0.0148	0.888	
6	6.625	40	6.065]	Υ	0.0187	1.122	

Branch lines without flow but not isolated from a relatively warm flowing process line can benefit from the convective and conductive heat from the warmer line. The extent of this benefit, in terms of avoiding freezing in the branch line, will be a function of the process line temperature, the branch line size and the length of the branch line (the distance from the process line). The

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 12 of 488

benefits are also a strong function of the orientation of the branch line connection relative to the process line. Upward vertical connections have the best benefit in that the natural circulation of the warmer water promotes heat transfer upward into the branch line. The opposite occurs for the downward vertical connection where natural circulation does not readily occur. The horizontal connection realizes some benefit but is substantially less than the vertical configuration. For example, a ½" line connected to a 200°F process line can be uninsulated for up to 15' in the vertical configuration but only up to 3.5' in the horizontal configuration. In the downward vertical configuration, a 200°F process line temperature offers no protection but is the low threshold for a protective benefit to start at higher temperatures albeit at much shorter lengths. Wind effects are substantial in that the outside convection film coefficient is a significant contributor to the heat loss from the branch line. To quantify the sensitivity of the branch line to wind effects, a separate analysis was conducted for the ½" line under the "no wind" scenario. Furthermore, recognizing that the addition of insulation (without heat tracing) may be a cost-effective method of avoiding freezing, all pipe/tube diameters were re-analyzed with 1" of insulation applied.

For illustration purposes, a summary of all cases for a $\frac{1}{2}$ " tube connected to a 200°F process line is as follows:

Table 3 – ½" Branch Line Freeze Protection with 200°F Process Line Temperature

	Branch Length (distance from process line) Without Freezing						
Scenario	Upward Configuration	Horizontal Configuration	Downward Configuration				
Uninsulated with wind	15'	3.5'	0'				
1" insulation with wind	>> 15'	9'	1.5'				
Uninsulated with No wind	>> 15'	8'	1'				
1" insulation with No wind	>> 15'	10'	2'				

The basis for this analysis and the extensive tables of results are included in Attachment E. Reference (12) documents the use of GOTHIC, Version 8.3, for the analysis contained in Attachment E for tracking purposes only. The initial model that Zachry created for branch lines with vertical up orientation was found not to have enough cells to allow the natural circulation mixing that occurs for this orientation. A new model was created with significantly more cells. However, this caused the computational time to increase by a factor of 5. The prior model would produce answers in less than 24 hrs. while the new required 4 or more days. Reproducing all the different diameter curves with all the preliminary temperatures and lengths would have taken months to complete. Zachry reviewed the actual field data for branch lines to determine the most prevalent temperatures, diameter, and lengths for vertical branch lines. The vertical model was then run for the smaller set of conditions. Attachment E curves for the vertical orientation were then updated. Some vertical diameters, lengths and temperatures were not analyzed. However, data from the horizontal orientation can be used in these cases which is conservative. For some vertical orientation cases, pipe diameters and temperatures all the way up to 400 degrees were not analyzed. In these cases, linear extrapolation of the lower temperature curve was done. Based on the nonlinear shape of the curves for pipe diameters that did have the full range of temperatures evaluated, a linear extrapolation is considered conservative. Tables have been produced from the curves in Attachment E for the vertical up orientation, pipe size, and temperature. Where horizontal data was used or extrapolation to higher temperatures was used, notes indicate the alternate source of data.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 13 of 488

6.1.5 Space Heating of Enclosures

A simple GOTHIC analysis was conducted that defines the amount of space heating required to maintain components located within the heated enclosure at a temperature above freezing. The amount of heat required is a linear function in relation to the size of the enclosure with slightly different relations based on the materials that form the enclosure. Three materials were considered, concrete, steel, and PTFE. The analysis is included in Attachment F. Reference (12) documents the use of GOTHIC, Version 8.3, for the analysis contained in Attachment F for tracking purposes only.

6.1.6 Turbine Building Enclosure Study

A GOTHIC model of the PSL TB was created to evaluate the feasibility of trapping process heat by hanging tarps on exterior of the building and, thereby, maintaining general area temperatures above freezing. This in turn would provide reasonable assurance that critical components in the enclosed area would be prevented from freezing. The results of this analysis are presented in Attachment G.

The general conclusion of this study is that too many gaps would exist between tarps due to obstruction extending beyond the TB boundary to effectively maintain temperatures above freezing within 10-20 ft of the exterior tarp. The vertical tarp gaps on exterior and the horizontal tarps on the Turbine deck create a chimney affect aided by the assumed 10 mph wind. Even relatively small opening has significant air flow and area wide temperature impact due to 16 F ambient temperatures. In addition, the number, size, and complexity of deploying tarps was considered prohibitive given all other station actions that would be required. After a walkdown of the PTN TB, the same general conclusions were reached and a PTN model was not deemed warranted.

Reference (12) documents the use of GOTHIC, Version 8.3, for the analysis contained in Attachment G for tracking purposes only.

6.1.7 Refueling Water Storage Tank Temperature Study

The minimum allowable temperature for the RWST allowed by the Technical Specifications LCO is 39°F for PTN. Since the tanks are required to be maintained well above freezing, a GOTHIC model of the Refueling Water Tank (RWT) was created to evaluate the temperature transient of the tank with the assumed plant ambient conditions. The results of this analysis are presented in Attachment H. GOTHIC model runs have confirmed that with no insulation and an initial RWT temperature of 54°F, the minimum RWT temperature falls to 39°F over the four-day cold snap (Attachment H). The PTN RWST tanks are coated internally and painted on exterior. These coatings will provide some insulating properties. However, their heat transfer properties could not be found and were not included in the model. In addition, the ambient temperature modeled for PTN varies between 19°F and 37°F but the RWST analysis use 16°F and 37°F. Both of these factors provide conservatism. Furthermore, with 1 inch and 2 inches of insulation, the minimum initial RWT temperatures necessary to maintain RWT temperature above 39°F over the cold snap are 41°F and 40°F, respectively. Historic PTN temperatures were not available at the time of this study. However, PSL sampling data of the RWT temperature during winter conditions has shown temperatures as low as 60.5°F. Miami area temperatures are historically above Jenson Beach temperatures by a couple of degrees.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 14 of 488

Reference (12) documents the use of GOTHIC, Version 8.3, for the analysis contained in Attachment H for tracking purposes only.

6.2 System P&ID Screening (Step 2)

The screening methodology described in Section 4.2 was completed. Heating, Ventilation, and Air Conditioning (HVAC) and Fire Protection (FP) drawings are called out separately due to the discipline-specific approach to their evaluation. Attachment A provides the results of the screening process. All P&IDs listed as "Yes" or "Maybe" in the "Priority" column were evaluated in greater detail since they contained one or more components that were or could be subjected to the outside temperature of the postulated extreme weather event.

6.3 Evaluation of P&ID Segments (Step 3)

6.3.1 Fire Protection

The entire fire protection system is normally in a standby mode. The jockey pump may start periodically to restore pressure due to minor leaks, but this does not generate any flow in the main system. A significant portion of the fire protection systems are above ground and exposed to ambient conditions. The fire system is not required for power production or part any Technical Specification LCO. As such, the FP system does have a TS LCO action statement that requires plant shutdown. However, the FP system is part of the plant license and is required to manage risk.

Fire Protection systems were evaluated by a fire protection engineer following joint conversations with PTN and corporate fire protection system stakeholders. The white paper included as Attachment I was prepared to document the agreed upon strategy.

A system-wide mitigation strategy involving the use of minimum flow through dead legs in branch lines off the main fire protection system header to prevent freezing was investigated for PSL. Due to the number of manual actions that would be necessary to execute opening all the drain valves, a second evaluation was done to determine the required trickle flow to protect the FP header supplying two hose stations on each elevation of the TB, 1 hose station in the Auxiliary Building, and the Emergency Diesel Generator Buildings for each Unit. Since the PTN FP system has relatively the same number of systems, the results were expected to be the same as PSL. Therefore, the entire PTN FP system was not evaluated for required trickle flow. Attachment J determines the required trickle flow for the Fire main to the power block and at least two hose stations for each unit TB floor elevation.

FPL decided to protect the FP main system's ability to provide manual suppression capability and utilize compensatory actions such as fire watches and control of ignition sources if automatic suppression systems become inoperable. Implementation of the white paper strategy for fire protection systems is included in Attachment L and Attachment N (Turbine Building portions only).

6.3.2 HVAC Systems

HVAC systems were evaluated by a single HVAC engineer following discussions with the FPL site HVAC engineer. Attachment K summarizes the general approach to mitigating freezing concerns with the variety of commodity types found in the plant HVAC systems. The evaluation

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 15 of 488

of HVAC components in accordance with this general approach is included in the overall component evaluation of Attachment K and as revised in Attachment N.

6.3.3 Existing Building Temperature Control

Site building housing critical components were evaluated to determine if ambient conditions within the building would remain above freezing or TS limits as applicable. The review considered historic data, existing cold weather procedure actions and ventilation system operation.

· Auxiliary Building (AB)

The AB has significant thermal mass in the interior and exterior concrete walls. In addition, there are internal heat loads due to pipe and electrical equipment heat loads. The building envelope is relatively tight due to concerns with contamination/gas and monitoring. The existing cold weather procedure directs all the AB supply fans stopped and one exhaust fan left running if AB temperature falls below 67°F to control temperature. However, the AB HVAC operating procedure 0-OP-060 (Reference 15) does allow all AB exhaust fans to be secured provided compensatory measures for radiation monitoring are implemented. The BAST room TS limit is 62°F since it has higher boric acid concentration than the RWST. One AB exhaust fan provides a flow of 40,000 cfm. With one of the AB exhaust fans running, additional supplemental heaters should still maintain temperatures. Raising 40,000 cfm of air from 28°F (37-19/2 = 24) air to 62°F would require approximately 430 kW of heat which could be done with portable heaters but not practical. The air flow out of the BAST and Charging rooms would be less than entire exhaust fan flow is 2,100 CFM and 1,700 CFM respectively (Reference 16). Attachment F provides the necessary heat for a concrete enclosure 20 ft tall to maintain the room at 50°F with the lower PSL ambient temperatures. The analysis assumes a small opening of 4 inches square for in leakage and 1 inch for exhaust. Assuming a room floor area of 2,500 ft2 which is larger than either the BAST or Charging rooms, 8 BTU/sec or 8.4 KW would be required to maintain the room at 50°F. The required room BAST requires a temperature or 62°F and the AB exhaust fan will impose some forced flow out of the room higher than the natural circulation air flow in the model. The energy required to heat the BAST and Charging room air flows assuming the lowest ambient for PTN (19 F) and a room temperature of 62 would be 28.6 and 23.1 KW respectively. The air entering the rooms will not be at ambient temperatures since some building heat will warm the air before it gets to the BAST or Charging rooms. The Charging pump room also has heat input from the pump motors and letdown process piping. . The existing procedure installs a 30 KW heater in the BAST room and 15 KW heaters in each Charging pump room. Based on the Attachment F analysis, the portable heaters appear to have the required capacity. Given the ability to stop all AB fans, the use of portable heaters should be adequate.

· Emergency Diesel Generator Building

The EDG building has large ventilation openings at ground level in the exterior of the building without any dampers. The lube oil lines for the EDG must remain above 100°F. The lube oil system has permanently installed heaters and lube oil pumps circulate oil, but excessive ambient losses may exceed the capacity of the heaters. Jacket water on exterior of the room must be maintained above freezing which will occur through lube oil heat. Anti-corrosion additives to the jacket water lowers the freezing point such that freezing is not a

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 16 of 488

concern. Inside the room jacket water has internal heaters. The existing cold weather procedure installs a 15 KW heater in each room.

Other Buildings

- SFP Building- The SFP Building will remain above freezing through heat loss from the pool.
- Control Building- The HVAC system has heating capability. Electrical equipment will also provide a source of significant heat to the building.

6.3.4 All Other Plant Systems

The component evaluation methodology described in Section 4.3 was completed. The results are compiled in the System Evaluation contained in Attachment L and includes the following mitigation strategies:

Do Nothing

o Freezing will not occur

Many segments of critical systems were deemed not to be susceptible to freezing due to process flow and temperature or process medium. No action is required for these segments.

o Allow Freezing

Doing nothing to prevent freezing means that the consequences (loss of function, loss of pressure boundary, or general component damage) is considered acceptable from the limited perspective of not causing a loss of power generation or violation technical specifications or violation of other conditions of license. The cost of this decision, in terms of money/effort not spent on prevention/mitigation must be weighed against the cumulative cost to repair/replace damaged components due to common mode failures at multiple locations. No attempt has been made as a part of this study to quantify this cost/benefit since the decision to protect or not was based solely on the direct threat to power generation or the indirect threat through violation of technical specifications or conditions of license.

Rely on Process Line Heat Source or Heat Capacity of Stagnant line

If the process line is warm enough and dead leg branch legs are close enough, the heat conduction and convection from the flowing process line to the branch line may be sufficient to keep the branch line from freezing. No attempt was made during phase 1 of this study to establish actual lengths of branch lines to determine the feasibility of this approach. Where branch line protection was deemed important to maintain a critical pressure boundary, control, or protection function, heat tracing and/or insulation was recommended with the intention that a future line-by-line assessment of heat tracing implementation would use Attachment E and consider whether proximity to the process line precludes the need for heat tracing.

For larger diameter stagnant systems such as cross connect or bypass lines, sufficient thermal mass is available such that total freezing does not occur over the 96 hrs period.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 17 of 488

Attachment C provides the pipe sizes and % freeze that will occur for PTN. If the segment in question met the freeze criteria, no protection was required.

Isolate and Drain Dead Leg Piping

In certain instances, it is recommended that selected dead legs be isolated and drained of water to eliminate freezing as an issue altogether. This is reserved for segments that have no impact on maintaining 100% power and/or maintaining the operability of safety-related systems. Selective removal of local instruments that do not provide an alarm, control, or protection function is also recommended to avoid damage from freezing. The cumulative effort to complete these activities on a large scale, however, may prove to be an excessive burden on plant staff during the winter season.

Manipulate System Flows

For these recommendations, it is recognized that system operating temperatures and flow rates are sufficiently high to avoid freezing in operating lines. Idle/standby headers, however, are subject to freezing unless the operating headers are routinely swapped to initiate flow through the normally idle header. The frequency of header swapping should fall within the time to freeze analysis included in Attachment C. The demand on plant operations staff would have to be assessed relative to the cost savings of not mitigating by other means such as heat tracing the idle headers which, for consistency and flexibility of operations, would entail heat tracing all headers.

Provide Wind Block

The wind component of the postulated weather event has a significant effect on the heat loss of dead leg piping. Erecting temporary barriers to shield critical components from the wind will significantly reduce the likelihood of freezing. However, as shown in Table 2, this strategy is most effective in protecting smaller pipes and tubes with the greatest effect noted in uninsulated pipes and tubes as shown in Table 6 (excerpt of Table 4). Note that this result is for an uninsulated ½" tube connected to a 200°F process line.

Table 4- Effect of Wind Block on an Uninsulated Branch Line

	Branch Length (Branch Length (distance from process line) Without Freezing							
Scenario	Upward	Horizontal	Downward						
	Configuration	Configuration	Configuration						
Uninsulated with wind	15'	3.5'	0'						
Uninsulated with No wind	>> 15'	8'	1'						

Provide Temporary Enclosure

Providing a temporary enclosure (without the addition of space heaters) is reserved for those components/systems that provide some element of process heat. Use of a temporary enclosure provides two immediate benefits. First, it will provide a wind block that will significantly improve the freeze resistance of smallbore pipes and tubes within the enclosure. Second, it will serve as a containment barrier that will trap process heat generated within the system and use that heat to keep the general area above freezing. Whether or not to include additional space heating will depend upon the amount of process heat that is available in the operating system contained.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 18 of 488

Provide Temporary Enclosure with Added Heat

For cases where there is no process heat being provided within the containment barrier or the process heat is insufficient to keep other dead leg components above freezing, the addition of heat via temporary space heaters is an effective way to protect a large grouping of components.

Add Insulation

Adding layers of insulation can be effective in protecting piping from freezing. The effectiveness, however, is limited to larger bore piping as shown in Tables 1 and 2 unless the small-bore line is connected to a warm process line as shown in Attachment E. However, the small-bore lengths could not be obtained from P&ID and piping drawings do not exist for the small-bore lines. Therefore, heat trace was identified as the default protection until phase 2 walkdowns.

· Add Heat Tracing and Insulation

Adding heat tracing is the most effective method of ensuring the proper freeze protection of piping, most importantly for the most vulnerable small-bore instrumentation lines supporting critical control and/or protect functions related to plant operation. Heat tracing and insulating can be an expensive modification and should be performed for lines that cannot be protected by other means already discussed. However, the small-bore lengths could not be obtained from P&ID and piping drawings do not exist for the small-bore lines. Therefore, heat trace was identified as the default protection until phase 2 walkdowns.

6.4 Walkdown of Systems for Enclosure (Step 4)

PTN system walkdowns were completed May 24 thru 28, 2021. As expected, the walkdowns confirmed that the use of temporary enclosures created from tarps could be an effective mitigation strategy by either trapping process heat or containing supplemental heat. This would be a cost-effective method for protecting large numbers of critical segments. A system-by-system summary of the walkdown results is included in Attachment M. A review of Attachment M was performed by FPL of mitigation recommendations which is captured in Attachment M. FPL project team decided the totality of the tarping and portable heaters was not achievable with expected warning time for a cold event (48 hrs) and the available station resources. The decision was made not to add anymore tarping than already exist in the cold weather procedure. Following the walkdowns, the component evaluation results of Attachment L were updated to include the final recommendations for temporary enclosure as a means of protection.

6.5 Walkdown of Components for Heat Tracing (Phase 2 Step 1)

After the decision was made that enclosing the TB with tarps was not feasible or effective and additional areas outside the TB were also not feasible, it was decided to perform a walkdown of the systems within the TB to see if heat tracing could be eliminated based on system temperature, line size, length, and orientation. Once necessary field data was acquired, it could be compared to the graphs in Attachment E for exclusion. Those lines/components identified in Attachment L requiring heat tracing that were located within the TB, were extracted from Attachment L and Attachment N was created. Attachment L used a single component entry for vents, drains, and instruments since they were small bore and would not be able to be excluded

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 19 of 488

without field data. Consequently, takeoffs were done for each vent, drain, and instrument from the P&ID and additional rows were added to the spreadsheet for each component to allow recording of field data. The following fields were added to capture the necessary TB component field data in Attachment N:

- **Component** Identifies the specific vent, drain, instrument line within a system segment. Typically, the end device is chosen as a unique identifier for the line. For piping, the pipe ID or class was chosen.
- Pipe / Tube Dia (NPS)- Diameter of line if identified on P&ID. If not, field estimate was done
- Length (ft)- The total length of the line was estimated using field measurements. The
 purpose of this length was to provide a total length of piping for comparison to graphs in
 Attachment E to eliminate heat tracing (HT). In addition, it provides heat trace vendor
 total length of pipe for bidding purposes. Tolerances used were <4ft, +/-0.5 ft >4 ft, +/- 1
 ft
- Orientation- Identifies where the branch line (Vents / Drains / Instruments Only) comes
 off the main pipe run and the orientation of its route.
 - TV = Top Vertical, the branch line penetrates the top of the main pipe run (typically a vent) and the route goes up vertically.
 - BV = Bottom Vertical, the branch line penetrates the bottom of the main pipe run (typically a drain) and its route is vertically down.
 - H = Horizontal, the branch line penetrates the main pipe run on the side (90 degrees from top) and the route continues horizontally.
- Already Insul- (Y/N)- Does existing pipe have insulation. No effort was made to
 determine insulation thickness. Thickness can be assumed based in insulation
 specification. An "I" added to any of the above orientation codes would indicate that the
 branch line is already insulated (e.g., TV-I represents an insulated top vertical
 orientation).
- **Protect-** Recommendation for protection based on initial walkdown data. At the time of the walkdown not all Attachment E branch line analysis was done.
 - o Insulate (I)
 - Heat Trace (HT)
 - Mitigate (M)
 - Not Applicable (N/A ...e.g., no action req'd)-
- Notes- any location specific information that may allow HT to be avoided such as local heat sources.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 20 of 488

6.6 Evaluation of TB Branch Line Field Data (Phase 2 Step 2)

After the field data was entered into Attachment N for systems within the TB, an evaluation was conducted to determine if Attachment E could be utilized to eliminate HT. Attachment E evaluated several diameters, temperatures, and singular orientations rather than combinations of orientations. The field data was modified in a conservative direction to select a diameter, temperature, and a singular orientation that exists in the Attachment E analysis. In cases where a conservative match could not be found, HT was identified as the default protection strategy. The following spreadsheet field definitions were used in performing the evaluation of the field data:

- Process Temp (F) this field identifies the temperature of the process line at the root of
 the subject branch line. It is this temperature that would be the primary influence on the
 feasibility of branch line self-protection. Temperatures were determined from operating
 temperature data contained in pipe specifications, heat balances, or operating logs,
 where available, for heated process lines. For lines that do not contain process heat,
 conservatively low values were chosen to reflect ambient conditions.
- Notes provides clarification for selected process temperature where warranted. Notes
 are provided at the end of Attachment N where they apply.
- Adjusted Orientation This field shows the actual orientation used in the branch line self-protection assessment to ensure the application of the self-protection analysis falls within the bounds of that analysis. Essentially, this field reduces many complex orientations to the fewer simple orientations represented in the analysis. Because the self-protection effect was best for top vertical (TV or TV-I) orientations, less effective for horizontal (H or H-I) orientations, and generally ineffective for bottom (BV or BV-I) orientations it was important to bound the complex orientations based on the most conservative element in it. For example, a top vertical orientation that immediately turns horizontal would be evaluated under the criterion of the horizontal orientation. Likewise, if it subsequently turns downward, the downward vertical orientation effect would be assumed. The only alternative to this approach would be a unique analysis for every unique orientation which was beyond the intended scope of this effort.
- Diameter Used For those instances where there was not an exact match for the actual
 diameter in the field and the analyzed diameters, the next lowest analyzed diameter was
 selected as a conservative representation of the self-protection of the subject line. This
 is conservative in that there is a strong correlation between pipe diameter and selfprotection...larger diameters being able to self-protect for greater lengths than smaller
 diameters.
- Rounded Temperature (F) to facilitate a straightforward lookup function for the
 analysis results for protected length of branch line, all process temperatures were
 rounded down to the tens place (e.g., 396°F rounded down to 390°F) and any
 temperature that exceeded 400°F was rounded down to 400°F.
- Max Allowed Length (feet) This is the lookup value obtained from the worksheet
 "Unprotected Length Lookup Table" based on the matching of lookup string of subject
 and lookup string of analysis results. A return of "Not Analyzed" means that the subject
 line is not represented in the population of analysis cases.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 21 of 488

- Branch Line Protected This is the result of a simple comparison of the self-protected length of branch line to the actual length of the branch line derived from the walkdown. If the Max Unprotected Length is greater than the actual length, the branch line can be considered self-protected. Likewise, if the actual length is greater than the Max Unprotected Length, the branch line can be considered not self-protected.
- Analysis Result: Heat Trace (HT), vs. Insulate (I) vs. Mitigate (M) vs. Already Insulated (AI) vs. No Protection Required. This is a simple check of the prior cell (described above) in that, if the branch line is self-protected (Yes in prior cell) then "No Protection Required" is reported out. If the branch line is not self-protected then this cell defaults to the prior recommended action which would include Heat Tracing (HT), Insulating (I), or initiating other Mitigating (M) strategies.

The results are captured in Attachment N. The results showed significant quantity of heat tracing required.

6.7 FPL Review of Phase 2 Heat Tracing Scope

FPL assembled a team of Engineers and Operations personnel to review the results. The team decided to utilize a risk approach to some lines identified in Phase 2 for heat tracing. The team developed the following three methods to eliminate some heat trace:

1. Small-Bore Dead leg Branch Lines Open to Flowing System

Based on observed conditions in the field, the analysis results in Attachment E appear to be overly conservative. Conduction heat transfer most likely extend farther down the pipe. For a branch line to burst, freezing needs to occur away from the end of the pipe such that an ice plug traps a water volume between the plug and the closed end of the pipe. Freezing would start on the end of the pipe since it is farthest from the process line and would be the coldest. Some sort of obstruction would have to block wind from the end of the pipe and only impinge somewhere in the middle. Short branch lines would generally see the same wind speed and coverage since there is very little length for an obstruction to block the wind in a portion of the pipe. In addition, most short branch lines are vents and drains that need to be accessible and would not have close obstructions. Based on Engineering judgment, short branch connection 2ft or less with the process pipe operating temperature of 100°F or higher, would be considered low risk for bursting and would be eliminated from heat trace scope. In some cases, walkdowns were identified to verify piping temperatures and local ambient temperatures to confirm engineering judgement for lines slightly greater than 2ft or with process temperatures less than 100°F.

2. Elevated Local Ambient Conditions

Many areas of the TB are sheltered from the wind and hot process piping, or equipment heat losses keep the local area temperatures above ambient. Based on Operator observations, some areas would be expected to remain above ambient were identified and used as basis to eliminate some heat trace. Actions were identified in some cases to perform a walkdown to verify local ambient conditions.

3. System Leakage would be Acceptable

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 22 of 488

Systems that operate at low temperature and pressure would not produce significant leakage if freezing were to cause a small-bore line to rupture. Freezing ruptures typically produce cracks rather than guillotine breaks since over pressure is relieved as soon as leakage occurs. Systems or portions of systems that are not required by Technical Specifications, have flow margin or makeup capability, and leakage would not cause flooding, were evaluated for allowable freeze damage by the FPL review team. Where the system conditions were met for allowable freeze damage and access for temporary repairs were considered feasible, heat trace protection was eliminated.

The FPL review was not done for all segments requiring heat trace. Only systems with greater than 260 ft of heat trace were evaluated. The results of the FPL evaluation are captured in Attachment N in the following fields:

- Final Protection Change This is the result of FPL's team evaluation for the final
 protection strategy. Either change in strategy or confirmatory actions or keep heat trace.
 This was not done for all components requiring heat tracing but initially only for long
 lines
- Follow-up Action A yes indicates that some follow up action is required to confirm the change in strategy. The required action is identified in the Final Protection Change field.

If no entry is made under the Final Protection Change, then the protection identified in column "Analysis Results" applies.

7 DISCUSSION OF RESULTS

7.1 Phase 1

A thorough screening of PTN systems was completed to identify components that are critical to maintaining power production and that are exposed to outside weather conditions. Such components are at risk of freezing during the postulated extreme weather event and, therefore, at risk of causing a loss of power or a violation of technical specifications if the freezing causes the loss of functionality of a critical component or system. The extent of freezing is a function of component size and nearby process line temperature as shown in Attachments C, D, and E.

Mitigation of this threat was addressed in phase 1 based on pipe diameter only and potential mitigation strategies with results captured in Attachment L. The actual length of branch lines was required to further eliminate the need for protection which is address in phase 2.

7.2 Phase 2

The goal for the FPL winterization project was to have all heat trace installed by 12/1/21. Phase 2 walkdown for all components identified in attachment L would require a significant number of resources and time to perform the walkdown. Given the project schedule, it was imperative to begin design and installation efforts as soon as possible. Therefore, it was decided to start with systems within the TB that required protection (HT or Insulation). The systems within the TB were identified by selecting associated P&IDs and only those system segments from Attachment L that required protection were captured in Attachment N. Individual component data was then entered in Attachment N and walkdowns were done to capture the required filed data. Zachry evaluated the field data to determine if HT or insulation could be eliminated based

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 23 of 488

on Attachment D or E analysis. In some cases, a higher amount of freezing was justified based on the component function. The final ZNE protection Requirements were captured in Analysis Results column of Attachment N. FPL performed further evaluation based on the risk methodology described in Section 6.7 and the results are captured in the Final Results column.

8 RECOMMENDATIONS

FPL should prepare for the next winter season by following the recommendations outlined in Attachment N for the TB scope. Additional walkdowns and evaluations are required to identify the scope of protection outside the TB. The following sections provide details on the remaining effort.

8.1 Phase 1 Remaining Task

- 8.1.1 The final strategy for the above ground FP piping has not been incorporated into Attachment L and needs to be performed.
- 8.1.2 Determine final Protection strategy for the RWT
- 8.1.3 Determine number of additional heaters desired for supplemental heating in the RAB and add to cold weather procedure

8.2 Phase 2 remaining Task

- 8.2.1 Perform Phase 2 P&ID take offs for individual vents, drains, and instruments for systems outside the TB and add to Attachment N.
- 8.2.2 Perform field walkdowns to capture lengths and orientation for vents, drains, and instruments outside the TB and add to Attachment N.
- 8.2.3 Perform protection evaluation for all components outside the TB based on field data captured.

9 REFERENCES

- U.S. Nuclear Regulatory Commission (NRC) Office of Inspection and Enforcement (IE) Bulletin No. 79-24: Frozen Lines, published in 1979
- Institute of Nuclear Power Operations (INPO), "Operating Experience Digest (OED) 2007-16 Cold Weather Preparations," September 2007
- INPO Rapid Operating Experience (OE) "Severe Weather Program Extreme Cold," March 2021
- Information Notice No. 98-02: Nuclear Power Plant Cold Weather Problems and Protective Measures
- NRC Inspection Manual, Inspection Procedure 71111, Reactor Safety-Initiating Events, Mitigating Systems, Barrier Integrity, Issue Date 10/28/2011

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 24 of 488

- 6. U.S. Nuclear Regulatory Commission Regulatory Guide, Office of Nuclear Regulatory Research, Regulatory Guide 1.151, Revision 1, Instrument Sensing Lines
- North American Electric Reliability Corporation (NERC) "Reliability Guideline Generating Unit Winter Weather Readiness – Current Industry Practices"
- OP-AA-102-1002, Nuclear Fleet Administrative Procedure, Seasonal Readiness, Revision 35
- 0-NOP-103.2, Turkey Point Plant, Off Normal Operating Procedure, COLD/HOT WEATHER CONDITIONS, Revision 11 -
- 10. FPL Study "Turkey Point Extreme Temperature Reassessment", dated March 2021
- Zachry Nuclear Engineering Evaluation 20-E04, ANO ECP Alternate Supply Evaluation, Revision 1, 01/28/21
- 12. Zachry Nuclear Engineering Evaluation 21-E02, Revision 0, "Use of GOTHIC, Version 8.3, for FPL PSL and PTN Winterization Studies"
- Miscellaneous Piping and Instrumentation (P&ID) diagrams, see Attachment A for complete listing.
- 14. Specification MN-3.10 Rev 9, Piping Class Summary Turkey Point Units 3 & 4.
- 15. 0-NOP-060, Auxiliary Building HVAC, Rev 12
- 16. 5610-M-3060 Sheet 1, Auxiliary Building Ventilation, rev 27

10 ATTACHMENTS

Attachment	Pages
A. PTN Piping and Instrumentation Diagram List	21
B. PTN System Designations List	3
C. Freezing as a Function of Diameter	5
D. Minimum Flow to Avoid Freezing	17
E. Branch Line Freeze Protection	32
F. Space Heating of Enclosures	4
G. PSL Turbine Building Enclosure Study	6
H. Refueling Water Storage Tank Temperature Study	10

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 25 of 488

ZACHRY

	Total Pages:	463
Ν	. PTN Phase 2 TB Component Freeze Protection Evaluation	123
M	. PTN Phase 1 System Walkdown Evaluation Summary	33
L.	PTN Phase 1 System Freeze Protection Evaluation	198
K	Strategies for HVAC Commodities	2
J.	PTN Fire Protection Hose Reel Flow Study	4
I.	PTN Fire Protection System Freeze Protection Strategy	5

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 26 of 488

R21002, Rev 0 Attachment A Page 1 of 21

Attachment A PTN Piping and Instrumentation Diagram List

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 27 of 488

R21002, Rev 0 Attachment A Page 2 of 21

						·	age 2 C
Unit	Document No	Document Title	Doc Sheet No	Rev	Priority	Priority Notes	Dwg Complete
Unit 0	5610-M-3012	P & I D SERVICE WATER SYSTEM TURBINE PLANT AREA	1	44	Yes		Y
Unit 0	5610-M-3012	P & I D SERVICE WATER SYSTEM AUXILIARY BUILDING AREA	2	27	Yes		Y
Unit 0	5610-M-3012	P & I D SERVICE WATER SYSTEM SOUTH SITE AREA	3	14	No	Domestic service water to south site area is not subject to TS requirements nor required for power operation. No protection strategies recommended.	Y
Unit 0	5610-M-3012	P & I D SERVICE WATER SYSTEM POTABLE WATER SUPPLY FOR WASTE DISPOSAL SYSTEM	4	6	No	Domestic service water to Radwaste Bldg is not essential for power generation.	Υ
Unit 0	5610-M-3013	P & I D INSTRUMENT AIR SYSTEM SERVICE AIR DISTRIBUTION	1	26	Maybe	Need to periodically drain tanks and low point drains.	Y
Unit 0	5610-M-3013	P & I D INSTRUMENT AIR SYSTEM CROSSTIE	2				Y
Unit 0	5610-M-3016	P & I D FIRE PROTECTION SYSTEM UNITS 1 THRU 4 TANKS & CITY WATER SUPPLY	1	19	Yes		Y
Unit 0	5610-M-3016	P & I D FIRE PROTECTION SYSTEM UNITS 1 THRU 4 SERVICE WATER PUMPS	2	34	Yes		Υ
Unit 0	5610-M-3016	P & I D FIRE PROTECTION SYSTEM UNITS 1 THRU 4 FIRE PUMPS	3	20	Yes		Y
Unit 0	5610-M-3016	P & I D FIRE PROTECTION SYSTEM UNITS 1 THRU 4 FIRE MAIN HEADER LOOPS	4	17	Yes		Y
Unit 0	5610-M-3016	P & I D FIRE PROTECTION SYSTEM UNITS 3 & 4 TURBINE PLANT AREA LOOP	5	30	Yes		Y
Unit 0	5610-M-3016	P & I D FIRE PROTECTION SYSTEM SOUTH SITE AREA	6	16	Yes		Υ
Unit 0	5610-M-3016	P & I D FIRE PROTECTION SYSTEM DELUGE WATER SUPPRESSION AUX BLDG AND EDG UNIT 3	7	17	Yes		Υ
Unit 0	5610-M-3016	P & I D FIRE PROTECTION SYSTEM DELUGE WATER SUPPRESSION EDG UNIT 4	8	9	Maybe		Y
Unit 0	5610-M-3016	P & I D FIRE PROTECTION SYSTEM HALON SUPPRESSION SYSTEM	9	5	No	Halon System, no water.	Υ
Unit 0	5610-M-3016	FIRE PROTECTION SYSTEM DELUGE WATER SUPPRESSION C-BUS, XFMR, & L.O. UNIT 3	10	13	Yes	XFMR Deluge, outside	Υ
Unit 0	5610-M-3016	FIRE PROTECTION SYSTEM DELUGE WATER SUPPRESION C-BUS, XFMR, & L.O. UNIT 4	11	18	Yes		Y
Unit 0	5610-M-3016	P & I D FIRE PROTECTION SYSTEM BACKUP FIRE	12				Y
Unit 0	5610-M-3019	INTAKE COOLING WATER SYSTEM SUPPLEMENTAL COOLING	1		Yes	ICW Supplemental cooling. Outside and run from Unit 5 to Unit 3/4 ICW Basket Strainers. The piping on this drawing does not require protection or mitigationn on its own, but to protect the SR ICW Supplmental connections to the main ICW piping, a mitigation strategy is called out for 5613-M-3019 Sh. 2 (5614-M-3019 Sh. 2) to flow this piping on a periodic basis.	Y
Unit 0	5610-M-3020	P & I D PRIMARY WATER MAKEUP SYSTEM SUPPLY FOR WASTE DISPOSAL SYSTEM	1	3	No	All equipment on drawing exists within the Aux building, Radwaste building, or connecting pipe tunnel. No outside exposure.	Y
Unit 0	5610-M-3021	P & I D WATER TREATMENT PLANT SYSTEM FILTRATION	1	19	Yes	Outside piping	Y
Unit 0	5610-M-3021	P & I D WATER TREATMENT PLANT SYSTEM DEMINERALIZER	2	23	Yes	Outside piping Outside piping	Y
Unit 0	5610-M-3021	P & I D WATER TREATMENT PLANT SYSTEM WASTE NEUTRALIZATION	4	13	Yes	Outside Piping Outside Piping	Y
Unit 0	5610-M-3021	P & ID WATER TREATMENT PLANT SAMPLING SYSTEM	5	3	Yes	Outside Piping Outside piping	Y
Unit 0	5610-M-3025	P & I D CONTROL BUILDING VENTILATION CONTROL ROOM	1	,	No.	Outside hibilik	Y
Unit 0	5610-M-3025	P & I D CONTROL BUILDING VENTILATION COMPUTER	2		Yes	Portions of safety related computer room chilled water system on Aux Bldg roof require protection	Y

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 28 of 488

R21002, Rev 0 Attachment A Page 3 of 21

Unit	Document No	Document Title	Sheet No	Rev	Priority	Priority Notes	Dwg Complete
Unit 0	5610-M-3026	P & I D RADWASTE BUILDING VENTILATION HVAC SYSTEM	1	4	No	Eqpt located indoors, not required for power generation, or not susceptible to freezing	Y
Unit 0	5610-M-3046	P & I D CHEMICAL AND VOLUME CONTROL SYSTEM BORIC ACID SYSTEM	1	30	No	Boric Acid tanks, BA batching tank, BA transfer pumps, and associated piping and instruments located within Auxiliary Building (Elevation 18'). No outside exposure.	Y
Unit 0	5610-M-3046	P & I D CHEMICAL & VOLUME CONTROL SYSTEM BORON RECYCLE SYSTEM	2	23	No	Piping, components, tanks, and instruments completely within the Aux Building (most on elevation 10.5'). No outside exposure.	Y
11-7-0	5610-M-3046	P & I D CHEMICAL AND VOLUME CONTROL SYSTEM BORON RECYCLE SYSTEM	3	13		Most of drawing is abandoned in place. Other (active) piping and components would be located within the Aux Building. No outside	,
Unit 0	5610-M-3046	P & I D CHEMICAL AND VOLUME CONTROL SYSTEM BORON RECYCLE SYSTEM	4	19	No No	exposure. Piping, components, tanks, and instruments completely within the Aux Building. No outside exposure.	Y
Unit 0	5610-M-3060	P & I D AUXILIARY BUILDING VENTILATION	1		No	Eqpt located indoors, not susceptible to freezing, or not required for power operation	Y
Unit 0	5610-M-3060	P & I D AUXILIARY BUILDING VENTILATION ELECTRICAL	3		No		Υ
Unit 0	5610-M-3061 5610-M-3061	P & I D WASTE DISPOSAL SYSTEM LIQUID WASTE HOLDUP & TRANSFER P & I D WASTE DISPOSAL SYSTEM LIQUID LAUNDRY WASTE	2	25	No	Piping, components, tanks, and instruments completely within the Aux Building (most on elevation 10.5'). No outside exposure. Piping, components, tanks, and instruments	Y
Unit 0	2010-IVI-3001	P & LU WASTE DISPUSAL STSTEM LIQUID LAUNDRY WASTE	2	15	No	completely within the Aux Building (most on elevation 10.5'). No outside exposure.	Y
	5610-M-3061	P & I D WASTE DISPOSAL SYSTEM LIQUID DRAIN HEADERS& SUMPS	з	19		Misc floor drain and equipment drain piping not susceptible to freezing; within Aux Building, Fuel Building, etc.	
Unit 0					No	RHR Pump and HX room sump pumps are located in Auxiliary Buildling (El. 10.5')	Y
Unit 0	5610-M-3061	P & I D WASTE DISPOSAL SYSTEM LIQUID POLISHING DEMINERALIZER	4	10	No	Components abandoned in place and/or within Auxiliary building (El. 18'). No outside exposure.	Y
Unit 0	5610-M-3061	P & I D WASTE DISPOSAL SYSTEM LIQUID WASTE EVAPORATOR FEED	5	17	No	Waste Holdup Tank, Waste Evap Transfer pumps, piping and components are housed within the Waste solidification building, adjacent to Aux Building and connected via underground pipe tunnel. No outside exposure.	Y
Unit 0	5610-M-3061	P & I D WASTE DISPOSAL SYSTEM LIQUID WASTE EVAPORATOR PACKAGE	6	8	No	Waste Evaporator Package (x2) abandoned in place. Any piping and components exist within the waste solidification building.	Y
Unit 0	5610-M-3061	P & ID WASTE DISPOSAL SYSTEM LIQUID SAMPLING/ MONITORING/CHEMICAL ADDITION	7	9	No	Most equipment abandoned in place. Any remaining equip exists in the Aux Buildling or Radwaste building. No outside exposure.	Y

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 29 of 488

R21002, Rev 0 Attachment A Page 4 of 21

						<u> </u>	aye 4 0
Unit	Document No	Document Title	Doc Sheet No	Rev	Priority	Priority Notes	Dwg Complete
Unit 0	5610-M-3061	P & ID WASTE DISPOSAL SYSTEM LIQUID WASTE MONITOR TANKS	8	11	No	All equipment on drawing exists within the Radwaste building. No outside exposure.	Y
Unit 0	5610-M-3061	P & I D WASTE DISPOSAL SYSTEM SOLID SPENT RESIN STORAGE	9	13	No	Piping and components either in Aux Building, pipe tunnel (underground), or Radwaste Building.	Y
Unit 0	5610-M-3061	P & ID WASTE DISPOSAL SYSTEM SOLID HOLDUP & MIXING	10	4	No	Most equipment abandoned in place. Remaining piping already heat traced.	Y
Unit 0	5610-M-3061	P & ID WASTE DISPOSAL SYSTEM SOLID CONTAINER FILL	11	4	No	Equipment abandoned in place (entire drawing).	Υ
Unit 0	5610-M-3061	P & I D WASTE DISPOSAL SYSTEM GAS WASTE COMPRESSORS	12	16	No	Equipment contained within Auxiliary Building. No outside exposure. Waste gas compressor packages located on El. 10.5'	Y
Unit 0	5610-M-3061	P & I D WASTE DISPOSAL SYSTEM GAS WASTE DECAY TANKS	13	9	No	Gas Decay tanks and components located in Aux Building Elevation 18'. No outside exposure.	Y
Unit 0	5610-M-3061	P & I D WASTE DISPOSAL SYSTEM GAS WASTE ANALYZERS	14	12	No	Gas Analyzer Package located in Aux Buildling Elevation 18'. No outside exposure.	Y
Unit 0	5610-M-3061	P & I D WASTE DISPOSAL SYSTEM LIQUID MAINT BLDG FLOOR DRAIN SYSTEM	15	1	No	Misc sumps: Decon Shower, Radwaste container filling area, Radwaste building truck bay sump. No outside exposure.	Y
Unit 0	5610-M-3065	P & I D NITROGEN & HYDROGEN SYSTEMS NITROGEN SUPPLY	1	32	Yes		Υ
Unit 0	5610-M-3065	P & I D NITROGEN & HYDROGEN SYSTEMS NITROGEN CAP SYSTEM	2	17	Yes		Υ
Unit 0	5610-M-3065	P & I D NITROGEN & HYDROGEN SYSTEMS HYDROGEN & CO2SUPPLY	3	18	Yes		Υ
Unit 0	5610-M-3069	EQUIPMENT AREA DRAIN SYSTEM -RETENTION PIT & OIL	1		No		Υ
Unit 0	5610-M-3074	P & I D FEEDWATER SYSTEM STANDBY STEAM GENERATOR FEEDWATER PUMPS	1	8	Yes		Y
Unit 0	5610-M-3074	P & I D FEEDWATER SYSTEM DEMINERALIZED STORAGE & DEAERATION	2	40	Yes		Υ
Unit 0	5610-M-3074	P & I D FEEDWATER SYSTEM NITROGEN SUPPLY TO DWST & COND STORAGE TANKS	3	12	No	Nitrogen system not susceptable to freezing	Υ
Unit 0	5610-M-3075	P & I D AUXILIARY FEEDWATER SYSTEM TURBINE DRIVE FOR AFW PUMPS	1	29	Yes	Drawing is all normally isolated steam piping (only used when AFW initiated). Only a few drains recommended for mitigation via draining or protection. Rest should not be susceptible to damage during cold weather	Y
	5610-M-3075	P & I D AUXILIARY FEEDWATER SYSTEM AUXILIARY FEEDWATER PUMPS	2	24		Drawing is the normally filled AFW piping from the CST, in standby waiting for an event, will	
Unit 0	EC10 M 2076	D S L D THIRDING DI ANT CHEMICAL ADDITION CYCTEM	1	26	Yes	require individual protection or global protection	Y
Unit 0	5610-M-3076	P & I D TURBINE PLANT CHEMICAL ADDITION SYSTEM	1				Y
Unit 0	5610-M-3094	P & I D CONTAINMENT POST ACCIDENT EVALUATION SYSTEM	1	12	No	All piping and equipment inside Auxiliary Bldg. No outside exposure and no protection assumed.	Y
Unit 0	5610-M-3094	P & I D CONTAINMENT POST ACCIDENT EVALUATION SYSTEM	2	12	No	All piping and equipment inside Auxiliary Bldg. No outside exposure and no protection assumed.	Y
Unit 0	5610-M-3094	P & I D CALIBRATION AND REAGENT GAS SUPPLY FOR P.A.H.M. SYSTEM	3	3	No	All piping and equipment inside Auxiliary Bldg. No outside exposure and no protection assumed.	Y

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 30 of 488

R21002, Rev 0 Attachment A Page 5 of 21

Unit	Document No	Document Title	Doc Sheet No	Rev	Priority	Priority Notes	Dwg Complete
	5610-M-3095	P&ID TECHNICAL SUPPORT CENTER HVAC				Eqpt located indoors or not susceptible to	
Unit 0	5610-M-3101	P & I D BREATHING AIR SYSTEM COMPRESSOR	1	11	No	freezing Most of drawing is abandoned in place.	Y
Unit 0	3010-W-3101	F & 10 BREATHING AIR 3131 EIVI CUIVIFRESSON		11	Yes	Outside exposure to the Service Water pipe.	Y
	5610-M-3101	P & I D BREATHING AIR SYSTEM SELF-CONTAINED BREATHING APPARATUS FILL STATION	2	1		Not affected by any other systems	
Unit 0					No	No impact to the surrounding	Υ
Unit 0	5610-M-381	P&ID H2 ANALYZER CALIBRATION GAS SUPPLY			No	This drawing only has piping for analyzing Oxygen and Hydrogen/Nitrogen Mixed Gas Cylinders. The gases on this draswing are not susceptible to freezing and they are also not connected to any plant systems that could cause a trip or TS Action.	Y
Unit 0	5610-M-420-303	P & I D COLD CHEMISTRY LABORATORY SAMPLE PANEL	1		No	Sampling Panel located in Cold Chemistry Lab, enclosed building, on the SW corner of the TB. Install space heater(s) in the room as needed to prevent freezing.	Y
Unit 0	5610-M-420-303	P & I D COLD CHEMISTRY LABORATORY SAMPLE PANEL	2		No	Sampling Panel located in Cold Chemistry Lab, enclosed building, on the SW corner of the TB. Install space heater(s) in the room as needed to prevent freezing.	Y
Unit 0	5610-M-420-303	P & I D COLD CHEMISTRY LABORATORY SAMPLE PANEL	3		No	Sampling Panel located in Cold Chemistry Lab, enclosed building, on the SW corner of the TB. Install space heater(s) in the room as needed to prevent freezing. No protection required for the chillers and associated piping outside.	Y
Unit 3	5613-M-013-1	INSTRUMENT AIR COMPRESSOR 3CM	1		Yes	Consider global strategy to protect either electric driven or diesel driven instrument air compressor skids from at least one unit. A single electric motor or diesel driven compressor from either units is fully capable of providing 100% of the IA needs for both units. Therefore, global strategy does not need to be implemented for all four IA compressors.	Y
Unit 3	5613-M-013-1	INSTRUMENT AIR COMPRESSOR 3CM	3		Yes	See Sh. 1	Υ
Unit 3	5613-M-013-2	INSTRUMENT AIR COMPRESSOR 3CD	1		Yes	Consider global strategy to protect either electric driven or diesel driven instrument air compressor skids from at least one unit. A single electric motor or diesel driven compressor from either units is fully capable of providing 100% of the IA needs for both units. Therefore, global strategy does not need to be implemented for all four IA compressors.	
Unit 3	5613-M-013-2	INSTRUMENT AIR COMPRESSOR 3CD	4		Yes	See Sh. 1	Υ

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 31 of 488

R21002, Rev 0 Attachment A Page 6 of 21

							T age 0 0	
Unit	Document No	Document Title	Doc Sheet No	Rev	Priority	Priority Notes	Dwg Complete	
Unit 3	5613-M-013-2	INSTRUMENT AIR COMPRESSOR 3CD FUEL SYSTEM P&ID	6		Yes	See Sh. 1	Y	
Unit 3	5613-M-013-2	INSTRUMENT AIR COMPRESSOR 3CD	7		Yes	See Sh. 1	Y	
Unit 3	5613-M-3008	P & I D TURBINE PLANT COOLING WATER SYSTEM	1	30	Yes	Outdoor stagnent legs exposed to frreezing temperatures with ~50F process flow.	Υ	
Unit 3	5613-M-3008	P & I D TURBINE PLANT COOLING WATER SYSTEM	2	22	Yes	Outdoor stagnent legs exposed to frreezing temperatures with ~50F process flow.	Y	
Unit 3	5613-M-3008	P & I D TURBINE PLANT COOLING WATER SYSTEM	3	16	Yes	Outdoor stagnent legs exposed to frreezing temperatures with ~50F process flow.	Y	
Unit 3	5613-M-3008	P & I D TURBINE PLANT COOLING WATER SYSTEM	4	16	Yes	Outdoor stagnent legs exposed to frreezing temperatures with ~50F process flow.	Y	
Unit 3	5613-M-3010	P & I D CIRCULATING WATER SYSTEM	1	33	Yes	Outdoor stagnent legs exposed to frreezing temperatures with ~50F process flow.	Y	
Unit 3	5613-M-3010	P & I D CIRCULATING WATER SYSTEM CONDENSER WATER BOX PRIMING	2	10	Yes	Outdoor stagnent legs exposed to frreezing temperatures with ~50F process flow.	Y	
Unit 3	5613-M-3010	P & I D CIRCULATING WATER SYSTEM LUBE WATER TO CIRCULATING WATER PUMPS	3	25	Yes	Outdoor stagnent legs exposed to frreezing temperatures with ~50F process flow.	Y	
Unit 3	5613-M-3011	P & I D SCREEN WASH SYSTEM	1	21	Yes	Outdoor stagnent legs exposed to frreezing temperatures with ~50F process flow.	Y	
Unit 3	5613-M-3013	P & I D INSTRUMENT AIR SYSTEM AIR COMPRESSORS	1	38	Maybe	Need to periodically drain tanks and low point drains.	Y	
Unit 3	5613-M-3013	P & I D INSTRUMENT AIR SYSTEM TURBINE BUILDING	2	29	Maybe	Need to periodically drain tanks and low point drains.	Y	
Unit 3	5613-M-3013	P & I D INSTRUMENT AIR SYSTEM TURBINE BUILDING	3	14	Maybe	Need to periodically drain tanks and low point drains.	Y	
Unit 3	5613-M-3013	P & I D INSTRUMENT AIR SYSTEM TURBINE BUILDING	4	17	Maybe	Need to periodically drain tanks and low point drains.	Y	
Unit 3	5613-M-3013	P & I D INSTRUMENT AIR SYSTEM TURBINE BUILDING	5	21	Maybe	Need to periodically drain tanks and low point drains.	Y	
Unit 3	5613-M-3013	P & I D INSTRUMENT AIR SYSTEM INSIDE CONTAINMENT	7	15	Maybe	Need to periodically drain tanks and low point drains.	Y	
Unit 3	5613-M-3013	P & I D INSTRUMENT AIR SYSTEM AUXILIARY BUILDING	8	22	Maybe	Need to periodically drain tanks and low point drains.	Y	
Unit 3	5613-M-3013	P & I D INSTRUMENT AIR SYSTEM AUXILIARY BUILDING	9	16	Maybe	Need to periodically drain tanks and low point drains.	Y	
Unit 3	5613-M-3013	P & ID INSTRUMENT AIR SYSTEM AUXILIARY BUILDING	10	16	Maybe	Need to periodically drain tanks and low point drains.	Y	
Unit 3	5613-M-3013	P & ID INSTRUMENT AIR SYSTEM AUXILIARY BUILDING	11	8	Maybe	Need to periodically drain tanks and low point drains.	Y	
Unit 3	5613-M-3013	P & I D INSTRUMENT AIR SYSTEM INTAKE AREA AND WATER TREATMENT PLANT	12	12	Maybe	Need to periodically drain tanks and low point drains.	Y	
Unit 3	5613-M-3014	P & I D CONDENSER SYSTEM	1	48	Yes		Y	
Unit 3	5613-M-3014	P & I D CONDENSER SYSTEM	2	31	Yes		Y	
Unit 3	5613-M-3014	P & I D CONDENSER SYSTEM	3	24	Yes		Y	
	5613-M-3015	P & I D AMERTAP SYSTEM NORTH MAIN CONDENSER TUBE CLEANING	1	21		Zachry recommends "blowing down" the AMERTAP system for the "Cold" weather		
Unit 3					No	conditions.	Y	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 32 of 488

R21002, Rev 0 Attachment A Page 7 of 21

Unit	Document No	Document Title	Doc Sheet No	Rev	Priority	Priority Notes	Dwg Complete
Unit 3	5613-M-3015	P & ID AMERTAP SYSTEM SOUTH MAIN CONDENSER TUBE CLEANING	2	12	No	Zachry recommends "blowing down" the AMERTAP system for the "Cold" weather conditions.	Y
Unit 3	5613-M-3018	P & I D CONDENSATE STORAGE SYSTEM	1	28	Yes	conditions.	Y
Unit 3	5613-M-3019	P & I D INTAKE COOLING WATER SYSTEM	1	42	Yes	Outdoor stagnent legs exposed to frreezing temperatures with ~50F process flow.	Y
Unit 3	5613-M-3019	P & I D INTAKE COOLING WATER SYSTEM	2	32	Yes	Outdoor stagnent legs exposed to frreezing temperatures with ~50F process flow.	Y
Unit 3	5613-M-3020	P & I D PRIMARY WATER MAKEUP SYSTEM	1	19	Yes	Piping and Tank Outside	Υ
Unit 3	5613-M-3020	P & I D PRIMARY MAKEUP WATER SYSTEM	2	36	Yes	Piping outside, in CCW Room	Υ
Unit 3	5613-M-3022	P & I D EMERGENCY DIESEL ENGINE AND OIL SYSTEM DG 3A AIR STARTING SYSTEM	1	19	No	Located in Emergency Diesel Generator Building. See SLC Procedure Cold Weather Preparations 0- ONOP-103.2. Actions required to turn on portable electric heaters and verify EDG lube oil is 90 degrees or above. Ref PTN Extreme Temp. Reassessment March 2021, FSAR 9.15.4, DBD 5610-023-DB-002 LO Temp above 85F for EDG operability.	Y
Unit 3	5613-M-3022	P & I D EMERGENCY DIESEL ENGINE AND OIL SYSTEM DG 3B AIR STARTING SYSTEM	2	18	No	Located in Emergency Diesel Generator Building. See SLC Procedure Cold Weather Preparations 0- ONOP-103.2. Actions required to turn on portable electric heaters and verify EDG lube oil is 90 degrees or above. Ref PTN Extreme Temp. Reassessment March 2021, FSAR 9.15.4, DBD 5610-023-DB-002 LO Temp above 85F for EDG operability.	Y
Unit 3	5613-M-3022	P & I D EMERGENCY DIESEL ENGINE AND OIL SYSTEM DG 3A FUEL OIL	3	25	No	Located in Emergency Diesel Generator Building. See SLC Procedure Cold Weather Preparations 0- ONOP-103.2. Actions required to turn on portable electric heaters and verify EDG lube oil is 90 degrees or above. Ref PTN Extreme Temp. Reassessment March 2021, FSAR 9.15.4, DBD 5610-023-DB-002 LO Temp above 85F for EDG operability.	Y
Unit 3	5613-M-3022	P & I D EMERGENCY DIESEL ENGINE AND OIL SYSTEM DG 3B FUEL OIL	4	19	No	Located in Emergency Diesel Generator Building. See SLC Procedure Cold Weather Preparations 0-ONOP-103.2. Actions required to turn on portable electric heaters and verify EDG lube oil is 90 degrees or above. Ref PTN Extreme Temp. Reassessment March 2021, FSAR 9.15.4, DBD 5610-023-DB-002 LO Temp above 85F for EDG operability.	Y

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 33 of 488

R21002, Rev 0 Attachment A Page 8 of 21

			Doc					
Unit	Document No	Document Title	Sheet No	Rev	Priority	Priority Notes	Dwg Complete	
	5613-M-3022	P & I D EMERGENCY DIESEL ENGINE AND OIL SYSTEM DG 3A LO & COOLING WATER	5	13		Located in Emergency Diesel Generator Building. See SLC Procedure Cold Weather Preparations 0- ONOP-103.2. Actions required to turn on portable electric heaters and verify EDG lube oil		
Unit 3					No	is 90 degrees or above. Ref PTN Extreme Temp. Reassessment March 2021, FSAR 9.15.4, DBD 5610-023-DB-002 LO Temp above 85F for EDG operability.	Y	
	5613-M-3022	P & I D EMERGENCY DIESEL ENGINE AND OIL SYSTEM DG 3B LO & COOLING WATER	6	13		Located in Emergency Diesel Generator Building. See SLC Procedure Cold Weather Preparations 0- ONOP-103.2. Actions required to turn on portable electric heaters and verify EDG lube oil is 90 degrees or above. Ref PTN Extreme Temp. Reassessment March 2021, FSAR 9.15.4, DBD 5610-023-DB-002 LO Temp above 85F for EDG		
Unit 3					No	operability.	Y	
Unit 3	5613-M-3030	P & I D COMPONENT COOLING WATER SYSTEM	1	27	Yes	Piping located in U3 CCW Pump Room (open grating) and aux bldg roof. Possibly can globally protect U3 CCW Pump Room. Other piping in Aux Bldg and no protection assumed to be needed.	Y	
Unit 3	5613-M-3030	P & I D COMPONENT COOLING WATER SYSTEM	2	23	Maybe	Piping located in U3 CCW Pump Room (open grating) and HHSI Pump Room (louvered doors open to U3 CCW Pump Rooms and ambient conditions) Possibly can globally protect both rooms. Other piping in Aux Bldg and no protection assumed to be needed.	Υ	
Unit 3	5613-M-3030	P & I D COMPONENT COOLING WATER SYSTEM	3	18	No	All portions of this drawing are fully located in the Aux Bldg, and no protection assumed	Y	
Unit 3	5613-M-3030	P & I D COMPONENT COOLING WATER SYSTEM	4	23	No	All portions of this drawing are fully located in the Aux Bldg & Containment and no protection assumed	Y	
Unit 3	5613-M-3030	P & I D COMPONENT COOLING WATER SYSTEM	5	27	No	All portions of this drawing are fully located in the Aux Bldg & Containment and no protection assumed	Y	
Unit 3	5613-M-3030	COMPONENT COOLING WATER SYSTEM	6		Yes	Portions located outside on AB Roof. Other portions inside Aux Bldg and no protection assumed	Y	
Unit 3	5613-M-3032	P & I D SAMPLE SYSTEM - SECONDARY STEAM GENERATOR BLOWDOWN	1	10	No	Piping in Containment or Sample Stations.	Υ	
Unit 3	5613-M-3032	P & ID SAMPLE SYSTEM - SECONDARY MAIN STEAM	2	5	Maybe	Piping and heat exchangers located in Turbine Building requires tenting and localized heating.	Y	
Unit 3	5613-M-3032	P & I D SAMPLE SYSTEM - SECONDARY CONDENSER HOTWELL SAMPLING	3	7	Maybe	Piping and heat exchangers located in Turbine Building requires tenting and localized heating.	Y	
Unit 3	5613-M-3032	P & I D SAMPLE SYSTEM - SECONDARY FEEDWATER SAMPLING	5	3	Mavbe	Piping and heat exchangers located in Turbine Building requires tenting and localized heating.	Υ	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 34 of 488

R21002, Rev 0 Attachment A Page 9 of 21

							Page 9 0	
Unit	Document No	Document Title	Doc Sheet No	Rev	Priority	Priority Notes	Dwg Complete	
Unit 3	5613-M-3032	P & I D SAMPLE SYSTEM-SECONDARY MOISTURE SEPARATORREHEATER SAMPLING	6	1	Maybe	Piping and heat exchangers located in Turbine Building requires tenting and localized heating.	Y	
Unit 3	5613-M-3032	P & I D SAMPLE SYSTEM - SECONDARY HEATER DRAIN SAMPLING	7		Maybe	Piping and heat exchangers located in Turbine Building requires tenting and localized heating.	Υ	
Unit 3	5613-M-3033	P & I D SPENT FUEL POOL COOLING SYSTEM	1	26	Yes	Some piping outside. Other portions inside Aux Bldg and no protection assumed	Y	
Unit 3	5613-M-3033	SPENT FUEL POOL COOLING SYSTEM	2		Yes	Some Piping Outside. Other portions inside Aux Bldg and no protection assumed	Υ	
Unit 3	5613-M-3034	P & I D SPENT FUEL POOL AND NEW FUEL STORAGE AREA	1		No	Eqpt located indoors or not required for power operation.	Y	
Unit 3	5613-M-3036	P & I D SAMPLE SYSTEM - NSSS	1	22	No	All piping in Containment or the Aux Bldg and no protection assumed	Y	
Unit 3	5613-M-3041	P & I D REACTOR COOLANT SYSTEM	1	32	No	Fully Inside Containment, no protection required	Y	
Unit 3	5613-M-3041	P & I D REACTOR COOLANT SYSTEM	2	44	No	All piping in Containment or the Aux Bldg and no protection assumed	Y	
Unit 3	5613-M-3041	P & I D REACTOR COOLANT SYSTEM REACTOR COOLANT PUMPS	3	36	No	All piping in Containment or the Aux Bldg and no protection assumed	Υ	
Unit 3	5613-M-3041	P & I D REACTOR COOLANT SYSTEM PORV CONTROL	4	7	No	All piping in Containment and no protection assumed	Υ	
Unit 3	5613-M-3046	P & I D CHEMICAL AND VOLUME CONTROL SYSTEM GAS STRIPPER PACKAGE	1	14	No	Most piping on this drawing is abandoned, and all is located in the Gas Stripper Room in the Auxiliary Building	Y	
Unit 3	5613-M-3046	P & I D CHEMICAL AND VOLUME CONTROL SYSTEM BORIC ACID EVAP PACKAGE A	2	4	No	Most piping on this drawing is abandoned. Two pipes are not abandoned and it's not clear from NAMS where the pipes are located (valve IDs not in NAMS); however one connection is a gas pipe to the Waste Disposal System on 5610-M-3061 Sh. 12 this is NNS and the other goes to the sample system located in the Sample Room in the Auxiliary Building. Therefore, it is believed these pipes are in the Auxiliary Building. Even if they were subject to freezing, there would be no adverse effect on the site.	Y	
Unit 3	5613-M-3047	P & I D CHEMICAL AND VOLUME CONTROL SYSTEM CHARGING AND LETDOWN	1	23	Yes	All piping, except as marked, is located in Containment or in the Auxiliary Building (P&V Room, Charging Pump Room, Monitor Tank Room, Reactor Coolant Filter Room). This piping is assumed to be protected from weather either by the building protection or through a global strategy as needed (space heaters deployed in rooms in the Auxiliary Building. Marked piping is located on the Auxiliary Building Roof, per NAMS.	Y	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 35 of 488

R21002, Rev 0 Attachment A Page 10 of 21

							age 10 0
Unit	Document No	Document Title	Doc Sheet No	Rev	Priority	Priority Notes	Dwg Complete
Unit 3	5613-M-3047	P & I D CHEMICAL AND VOLUME CONTROL SYSTEM CHARGING AND LETDOWN	2	58	Maybe	All piping, except as marked, is located in Containment or in the Auxiliary Building (P&V Room, Charging Pump Room, NSS Sample Room, Boric Acid Tank Room, N-S Hallway). This piping is assumed to be protected from weather either by the building protection or through a global strategy as needed (space heaters deployed in rooms in the Auxiliary Building. Marked piping is located on the Auxiliary Building Roof, per NAMS; however, it's assumed to be located in the enclosure for the VCT on the AB Roof, where global strategies could also be deployed.	Y
Unit 3	5613-M-3047	P & I D CHEMICAL AND VOLUME CONTROL SYSTEM SEAL WATER INJECTION TO RCP	3	29	No	Fully located inside Containment or the Auxiliary Building (P&V Room & Charging Pump Room). Assumed individual protection not required for piping/components inside the AB. Global strategy(such as space heaters) can be deployed as necessary.	Y
Unit 3	5613-M-3050	P & I D RESIDUAL HEAT REMOVAL SYSTEM	1	40	No	All piping in Containment or the Aux Bldg and no protection assumed	Y
Unit 3	5613-M-3053	P & I D CONTAINMENT PURGE SYSTEM AND PENETRATION COOLING SYSTEM	1	25	No	All equipment is either air lines, purge equipment not required for operation, or located in Containment or Aux Bldg	Y
Unit 3	5613-M-3056	P & I D CONTAINMENT EMERGENCY FILTER SYSTEM	1	9	No	All equipment on this P&ID was completely abdandoned in place.	Y
Unit 3	5613-M-3057	P & I D CONTAINMENT NORMAL AND EMERGENCY COOLER SYSTEMS	1	12	No	Fully Inside Containment, no protection required	Y
Unit 3	5613-M-3061	P & I D WASTE DISPOSAL SYSTEM LIQUID RCDT AND PUMPS	1	26	No	Piping and components enclosed in Rx Bldg or RAB	Υ
Unit 3	5613-M-3061	P & I D WASTE DISPOSAL SYSTEM LIQUID CONTAINMENT DRAINS	2	9	No	Piping and components enclosed in Rx Bldg	Υ
Unit 3	5613-M-3062	P & I D SAFETY INJECTION SYSTEM	1	45	Yes	RWST & piping out in yard, pipe in HHSI Pump Room and pipe in CCW Pump Room	Y
Unit 3	5613-M-3062	P & I D SAFETY INJECTION SYSTEM	2	24	Maybe	Pipe in HHSI Pump Room and pipe in CCW Pump Room (possibly can be globally protected)	Y
Unit 3	5613-M-3064	P & I D SAFETY INJECTION ACCUMULATOR SYSTEM INSIDECONTAINMENT	1	27	No	Fully Inside Containment, no protection required	Y
Unit 3	5613-M-3068	P & I D CONTAINMENT SPRAY SYSTEM	1	23	Yes	Portion of piping on Aux Bldg Roof. Other portions inside Aux Bldg and no protection assumed	Y

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 36 of 488

R21002, Rev 0 Attachment A Page 11 of 21

							age 110
Unit	Document No	Document Title	Doc Sheet No	Rev	Priority	Priority Notes	Dwg Complete
Unit 3	5613-M-3070	P & I D TURBINE BUILDING VENTILATION LOAD CENTER & SWGR ROOMS CHILLED WATER SYSTEM - TRAIN A	1	7	Maybe	System piping in Turbine Bldg operating level and Reinfored concrete Class I Load Center & SWGR Rooms. Normally operating to provide room cooling to maintain 100% power generation, however operator action can be taken to open doors and fans to provide cooling in the event of loss of A/C system, therefore not required for power generation.	Y
Unit 3	5613-M-3070	P & I D TURBINE BUILDING VENTILATION LOAD CENTER & SWGR ROOMS CHILLED WATER SYSTEM - TRAIN B	2	4	Maybe	System piping in Turbine Bldg operating level and Reinfored concrete Class I Load Center & SWGR Rooms. Normally operating to provide room cooling to maintain 100% power generation, however operator action can be taken to open doors and fans to provide cooling in the event of loss of A/C system, therefore not required for power generation.	Y
Unit 3	5613-M-3072	P & I D MAIN STEAM SYSTEM	1	46	Yes		Υ
Unit 3	5613-M-3072	P & I D MAIN STEAM SYSTEM	2	16	Yes		Y
Unit 3	5613-M-3072	P & I D MAIN STEAM SYSTEM MSIV CONTROL	3	11	Yes		Y
Unit 3	5613-M-3073	P & I D CONDENSATE SYSTEM	1	32	Yes		Y
Unit 3	5613-M-3073	P & I D CONDENSATE SYSTEM	2	41	Yes		Y
Unit 3	5613-M-3073	P & I D CONDENSATE SYSTEM	3	23	Yes		Y
Unit 3	5613-M-3074	P & I D FEEDWATER SYSTEM	1	37	Yes		Y
Unit 3	5613-M-3074	P & I D FEEDWATER SYSTEM	2	43	Yes		Υ
Unit 3	5613-M-3074	P & I D FEEDWATER SYSTEM	3	36	Yes		Y
Unit 3	5613-M-3074	P & I D FEEDWATER SYSTEM STEAM GENERATOR BLOWDOWN RECOVERY	4	32	Yes		Y
Unit 3	5613-M-3074	P & I D FEEDWATER SYSTEM LEFM DETAIL & FEEDWATER	5		Yes	LEFM sensing lines require protection. No protection required for FW Reg Valve Positioner, since all air and electrical.	Y
Unit 3	5613-M-3075	P & I D AUXILIARY FEEDWATER SYSTEM STEAM TO AUXILIARY FEEDWATER PUMP TURBINES	1	18	Yes	Located in TB, some piping potentially needs protection (steam and water systems)	Y
Unit 3	5613-M-3075	P & I D AUXILIARY FEEDWATER SYSTEM AUXILIARY FEEDWATER TO STEAM GENERATORS	2	17	Yes	Located in TB, some piping potentially needs protection (steam and water systems)	Y
Unit 3	5613-M-3075	P & I D AUXILIARY FEEDWATER SYSTEM NITROGEN SUPPLY TO AFW CONTROL VALVES	3	5	No	Nitrogen not susceptible to freezing	Υ
Unit 3	5613-M-3077	P & I D CONDENSATE POLISHING SYSTEM DEMINERALIZER	1	27	No	Drawing is VOID. All equipment on the drawing is no longer in NAMS. Connections points on other drawings are no longer shown on those drawings (for instance, no ref to this drawing on 5613-M-3073, Sh. 2)	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 37 of 488

R21002, Rev 0 Attachment A Page 12 of 21

Unit	Document No	Document Title	Doc Sheet No	Rev	Priority	Priority Notes	Dwg Complete
Unit 3	5613-M-3077	P & I D CONDENSATE POLISHING SYSTEM DEMINERALIZER	2	24	No	Drawing is VOID. All equipment on the drawing is no longer in NAMS except the Sump Pump and the Hand Switch (no protection required for these of associated piping. Connections points on other drawings are no longer shown on those drawings (for instance, no ref to this drawing on 5610-M-3074, Sh. 2)	Y
Unit 3	5613-M-3077	P & I D CONDENSATE POLISHING SYSTEM SPENT RESIN HANDLING SYSTEM	3	15	No	Drawing is VOID. All equipment on the drawing is no longer in NAMS. Connections points on other drawings are no longer shown on those drawings (for instance, no ref to this drawing on 5610-M-3061, Sh. 8)	Y
Unit 3	5613-M-3077	P & I D CONDENSATE POLISHING SYSTEM EFFLUENT SAMPLING	4	7	No	Drawing is VOID, all piping and components are hashed or abandoned.	Y
Unit 3	5613-M-3078	P & I D STEAM GENERATOR WET LAYUP SYSTEM	1	7	Maybe	The SG Wet Layup System is used during RFO conditions only. Equipment is isolated during normal operation via closed valves and spectacle flanges. Segments connected to other systems up to isolation points are evaluated, but everything inside the isolation points for the SGWL System are not evaluated.	Υ
Unit 3	5613-M-3080	P & I D CONDENSATE RECOVERY SYSTEM	1	18	Maybe	This drawing has some active components. In general, active equip is located on Ground floor of TB (partially enclosed). General mitigating actions for the area may be sufficient. Consequences of equipment failure from freezing are minimal to none.	Y
Unit 3	5613-M-3081	P & I D FEEDWATER HEATER DRAINS & VENTS SYSTEM	1	22	Maybe	Mostly hot-pipe systems, but various vents/drains/instruments in the TB will require walkdown.	Y
Unit 3	5613-M-3081	P & I D FEEDWATER HEATER DRAINS & VENTS SYSTEM	2	10	Maybe	Mostly hot-pipe systems, but various vents/drains/instruments in the TB will require walkdown.	Y
Unit 3	5613-M-3081	P & I D FEEDWATER HEATER DRAINS & VENTS SYSTEM	3	30	Maybe	Mostly hot-pipe systems, but various vents/drains/instruments in the TB will require walkdown.	Y
Unit 3	5613-M-3081	P & I D FEEDWATER HEATER DRAINS & VENTS SYSTEM	4	40	Maybe	Mostly hot-pipe systems, but various vents/drains/instruments in the TB will require walkdown.	Y
Unit 3	5613-M-3081	P & I D FEEDWATER HEATER DRAINS & VENTS SYSTEM	5	8	Maybe	Mostly hot-pipe systems, but various vents/drains/instruments in the TB will require walkdown.	Y
Unit 3	5613-M-3081	P & I D FEEDWATER HEATER DRAINS & VENTS SYSTEM	6	18	Maybe	Mostly hot-pipe systems, but various vents/drains/instruments in the TB will require walkdown.	Y

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 38 of 488

R21002, Rev 0 Attachment A Page 13 of 21

							age 10 0
Unit	Document No	Document Title	Doc Sheet No	Rev	Priority	Priority Notes	Dwg Complete
Unit 3	5613-M-3081	P & I D FEEDWATER HEATER DRAINS & VENTS SYSTEM	7		Maybe	Mostly hot-pipe systems, but various vents/drains/instruments in the TB will require walkdown.	Y
Unit 3	5613-M-3082	P & I D SECONDARY WET LAYUP SYSTEM LOOP 1	1	6	No	This drawing is applicable to RFO conditions only. Equipment is captured on other drawings showing normal operating configuration.	Y
Unit 3	5613-M-3082	P & I D SECONDARY WET LAYUP SYSTEM LOOP 2	2	11	No	This drawing is applicable to RFO conditions only. Equipment is captured on other drawings showing normal operating configuration.	Y
Unit 3	5613-M-3084	P & I D AUXILIARY STEAM SYSTEM	1	32	Maybe	Most components need no protection; vents /drain/ steam trap configurations are unknown and require walkdown to determine if mitigation is required.	Y
Unit 3	5613-M-3085	P & I D EXTRACTION STEAM SYSTEM	1	35	Maybe	Most components need no protection; vents /drain/ steam trap configurations are unknown and require walkdown to determine if mitigation is required.	Y
Unit 3	5613-M-3086	P & ID ELECTRO-HYDRAULIC CONTROL (EHC) FLUID	1		No	Hydraulic fluid (oil) of EHC unlikely to freeze under extreme cold weather conditions. Recommend further evaulation of the specific hydraulic oil used and its operational temperature range.	Y
Unit 3	5613-M-3087	P & I D TURBINE LUBE OIL SYSTEM LUBE & CONTROL OIL RESERVOIR	1	24	Maybe	Based on "Turkey Point Extreme Temperature Reassessment, March 2021", No effect on system is expected for 10F below all time record low of 27F. However, system parameters are required to be checked while in Cold Weather Procedure.	Y
Unit 3	5613-M-3087	P & I D TURBINE LUBE OIL SYSTEM LUBE & CONTROL OILCONDITIONER	2	12	Maybe	Based on "Turkey Point Extreme Temperature Reassessment, March 2021", No effect on system is expected for 10F below all time record low of 27F. However, system parameters are required to be checked while in Cold Weather Procedure.	Υ
Unit 3	5613-M-3087	P & I D TURBINE LUBE OIL SYSTEM GENERATOR SEAL OIL	3	16	Maybe	Based on "Turkey Point Extreme Temperature Reassessment, March 2021", No effect on system is expected for 10F below all time record low of 27F. However, system parameters are required to be checked while in Cold Weather Procedure.	Υ
Unit 3	5613-M-3089	P & I D TURBINE SYSTEMS - STEAM	1	50	Yes	Most components need no protection; vents /drain/ steam trap configurations are unknown and require walkdown to determine if mitigation is required.	Y

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 39 of 488

R21002, Rev 0 Attachment A Page 14 of 21

							age 14 (
Unit	Document No	Document Title	Doc Sheet No	Rev	Priority	Priority Notes	Dwg Complete
Unit 3	5613-M-3089	P & I D TURBINE SYSTEMS - STEAM	2	31	Yes	Most components need no protection; vents /drain/ steam trap configurations are unknown and require walkdown to determine if mitigation is required.	Y
Unit 3	5613-M-3090	P & I D GENERATOR SYSTEM HYDROGEN & C02 SUPPLY	1	33	Maybe	Based on "Turkey Point Extreme Temperature Reassessment, March 2021", No effect on system is expected for 10F below all time record low of 27F.	Y
Unit 3	5613-M-3094	P & I D CONTAINMENT POST ACCIDENT EVALUATION SYSTEM	1	36	No	All piping in Containment or the Aux Bldg and no protection assumed	Υ
Unit 3	5613-M-3101	P & I D BREATHING AIR SYSTEM DISTRIBUTION	1	9	No	All piping inside Containment; no protection assumed	Y
Unit 3	5613-M-3-117	MAIN GENERATOR H2 PURITY PANEL 3C19 Layout	1		Maybe	H2 Purity Panel Exposed. Has a control function and potentially iumpacted by cold weather. Consider implementing global strategy (such as tenting and/or space heaters) to protect the panel to maintain ambient temperature of 32F	Y
Unit 3	5613-M-3-117	MAIN GENERATOR H2 PURITY PANEL 3C19 P&ID	2		Maybe	See Sh. 1	Υ
Unit 4	5614-M-013-1	INSTRUMENT AIR COMPRESSOR 4CM	1		Yes	Consider global strategy to protect either electric driven or diesel driven instrument air compressor skids from at least one unit. A single electric motor or diesel driven compressor from either units is fully capable of providing 100% of the IA needs for both units. Therefore, global strategy does not need to be implemented for all four IA compressors.	
Unit 4	5614-M-013-1	INSTRUMENT AIR COMPRESSOR 4CM	3		Yes	See Sh. 1	Υ
Unit 4	5614-M-013-2	INSTRUMENT AIR COMPRESSOR 4CD	1		Yes	Consider global strategy to protect either electric driven or diesel driven instrument air compressor skids from at least one unit. A single electric motor or diesel driven compressor from either units is fully capable of providing 100% of the IA needs for both units. Therefore, global strategy does not need to be implemented for all four IA compressors.	
Unit 4	5614-M-013-2	INSTRUMENT AIR COMPRESSOR 4CD	4		Yes	See Sh. 1	Y
Unit 4	5614-M-013-2	INSTRUMENT AIR COMPRESSOR 4CD FUEL SYSTEM P&ID	6		Yes	See Sh. 1	Υ
Unit 4	5614-M-013-2	INSTRUMENT AIR COMPRESSOR 4CD	7		Yes	See Sh. 1	Υ
Unit 4	5614-M-3008	P & I D TURBINE PLANT COOLING WATER SYSTEM	1	31	Yes	Outdoor stagnent legs exposed to frreezing temperatures with ~50F process flow.	Υ
Unit 4	5614-M-3008	P & I D TURBINE PLANT COOLING WATER SYSTEM	2	32	Yes	Outdoor stagnent legs exposed to frreezing temperatures with ~50F process flow.	Υ
Unit 4	5614-M-3008	P & I D TURBINE PLANT COOLING WATER SYSTEM	3	14	Yes	Outdoor stagnent legs exposed to frreezing temperatures with ~50F process flow.	Y

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 40 of 488

R21002, Rev 0 Attachment A Page 15 of 21

		Doc				-
Document No	Document Title	Sheet	Rev	Priority	Priority Notes	Dwg Complete
514-M-3008	P & I D TURBINE PLANT COOLING WATER SYSTEM	4	16	Yes	Outdoor stagnent legs exposed to frreezing temperatures with ~50F process flow.	Y
514-M-3010	P & I D CIRCULATING WATER SYSTEM	1	29	Yes	Outdoor stagnent legs exposed to frreezing temperatures with ~50F process flow.	Υ
514-M-3010	P & I D CIRCULATING WATER SYSTEM CONDENSER WATER BOX PRIMING	2	10	Yes	Outdoor stagnent legs exposed to frreezing temperatures with ~50F process flow.	Υ
514-M-3010	P & I D CIRCULATING WATER SYSTEM LUBE WATER TO CIRCULATING WATER PUMPS	3	21	Yes	Outdoor stagnent legs exposed to frreezing temperatures with ~50F process flow.	Υ
514-M-3011	P & I D SCREEN WASH SYSTEM	1	18	Yes	Outdoor stagnent legs exposed to frreezing temperatures with ~50F process flow.	Υ
514-M-3013	P & I D INSTRUMENT AIR SYSTEM AIR COMPRESSORS	1	42	Maybe	Need to periodically drain tanks and low point drains.	Υ
514-M-3013	P & I D INSTRUMENT AIR SYSTEM TURBINE BUILDING	2	37	Maybe	Need to periodically drain tanks and low point drains.	Υ
514-M-3013	P & I D INSTRUMENT AIR SYSTEM TURBINE BUILDING	3	31	Maybe	Need to periodically drain tanks and low point drains.	Υ
514-M-3013	P & I D INSTRUMENT AIR SYSTEM TURBINE BUILDING	4	18	Maybe	Need to periodically drain tanks and low point drains.	Υ
514-M-3013	P & I D INSTRUMENT AIR SYSTEM TURBINE BUILDING	5	10	Maybe	Need to periodically drain tanks and low point drains.	Υ
514-M-3013	P & I D INSTRUMENT AIR SYSTEM INSIDE CONTAINMENT	7	14	Maybe	Need to periodically drain tanks and low point drains.	Y
514-M-3014	P & I D CONDENSER SYSTEM	1	44	Yes		Y
514-M-3014	P & I D CONDENSER SYSTEM	2	30	Yes		Y
514-M-3014	P & I D CONDENSER SYSTEM	3	27	Yes		Y
514-M-3015	P & I D AMERTAP SYSTEM NORTH MAIN CONDENSER TUBE CLEANING	1	21	No	Zachry recommends "blowing down" the AMERTAP system for the "Cold" weather conditions.	Y
514-M-3015	P & I D AMERTAP SYSTEM SOUTH MAIN CONDENSER TUBE CLEANING	2	11		Zachry recommends "blowing down" the AMERTAP system for the "Cold" weather	Y
514-M-3018	P & I D CONDENSATE STORAGE SYSTEM	1	29	No Yes	conditions.	.,
514-M-3018	P & I D INTAKE COOLING WATER SYSTEM	1	40	Yes	Cold Water Dead Legs	Y
514-W-3019 514-M-3019	P & I D INTAKE COOLING WATER STSTEM	2	29	Yes	Cold Water Dead Legs	
514-M-3019 514-M-3020	P & I D PRIMARY WATER MAKEUP SYSTEM	1	19	Yes	Piping and Tank Outside	Y
514-M-3020 514-M-3020	P & I D PRIMARY MAKEUP WATER SYSTEM	2	30	Yes	Piping and Tank Outside Piping outside, in CCW Room	Y
514-M-3022	P & I D EMERGENCY DIESEL ENGINE AND OIL SYSTEM EDG 4A AIR STARTING SYSTEM	1	13	103	Located in Emergency Diesel Generator Building. See SLC Procedure Cold Weather Preparations 0- ONOP-103.2. Actions required to turn on portable electric heaters and verify EDG lube oil is 90 degrees or above. Ref PTN Extreme Temp. Reassessment March 2021, FSAR 9.15.4, DBD 5610-023-DB-002 LO Temp above 85F for EDG	Y
514-M-3	022	P & I D EMERGENCY DIESEL ENGINE AND OIL SYSTEM EDG 4A AIR STARTING SYSTEM	P & I D EMERGENCY DIESEL ENGINE AND OIL SYSTEM EDG 4A AIR STARTING SYSTEM 1	P & I D EMERGENCY DIESEL ENGINE AND OIL SYSTEM EDG 4A AIR STARTING SYSTEM 1 13	P & I D EMERGENCY DIESEL ENGINE AND OIL SYSTEM EDG 4A AIR STARTING SYSTEM 1 13	See SLC Procedure Cold Weather Preparations 0- ONOP-103.2. Actions required to turn on portable electric heaters and verify EDG lube oil is 90 degrees or above. Ref PTN Extreme Temp. Reassessment March 2021, FSAR 9.15.4, DBD 5610-023-DB-002 LO Temp above 85F for EDG

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 41 of 488

R21002, Rev 0 Attachment A Page 16 of 21

			Doc				
Unit	Document No	Document Title	Sheet	Rev	Priority	Priority Notes	Dwg Complete
Unit 4	5614-M-3022	P & I D EMERGENCY DIESEL ENGINE AND OIL SYSTEM EDG 4B AIR STARTING SYSTEM	2	13	No	Located in Emergency Diesel Generator Building. See SLC Procedure Cold Weather Preparations 0- ONOP-103.2. Actions required to turn on portable electric heaters and verify EDG lube oil is 90 degrees or above. Ref PTN Extreme Temp. Reassessment March 2021, FSAR 9.15.4, DBD 5610-023-DB-002 LO Temp above 85F for EDG operability.	Y
Unit 4	5614-M-3022	P & I D EMERGENCY DIESEL ENGINE AND OIL SYSTEM EDG 4A FULE SYSTEM	3	8	No	Located in Emergency Diesel Generator Building. See SLC Procedure Cold Weather Preparations 0-ONOP-103.2. Actions required to turn on portable electric heaters and verify EDG lube oil is 90 degrees or above. Ref PTN Extreme Temp. Reassessment March 2021, FSAR 9.15.4, DBD 5610-023-DB-002 LO Temp above 85F for EDG operability.	Y
Unit 4	5614-M-3022	P & I D EMERGENCY DIESEL ENGINE AND OIL SYSTEM EDG 4B FUEL SYSTEM	4	8	No	Located in Emergency Diesel Generator Building. See SLC Procedure Cold Weather Preparations 0- ONOP-103.2. Actions required to turn on portable electric heaters and verify EDG lube oil is 90 degrees or above. Ref PTN Extreme Temp. Reassessment March 2021, FSAR 9.15.4, DBD 5610-023-DB-002 LO Temp above 85F for EDG operability.	Y
Unit 4	5614-M-3022	P & I D EMERGENCY DIESEL ENGINE AND OIL SYSTEM DG 4A LO & COOLING WATER	5	9	No	Located in Emergency Diesel Generator Building. See SLC Procedure Cold Weather Preparations 0- ONOP-103.2. Actions required to turn on portable electric heaters and verify EDG lube oil is 90 degrees or above. Ref PTN Extreme Temp. Reassessment March 2021, FSAR 9.15.4, DBD 5610-023-DB-002 LO Temp above 85F for EDG operability.	Y
Unit 4	5614-M-3022	P & I D EMERGENCY DIESEL ENGINE AND OIL SYSTEM DG 4B LO & COOLING WATER	6	9	No	Located in Emergency Diesel Generator Building. See SLC Procedure Cold Weather Preparations O- ONOP-103.2. Actions required to turn on portable electric heaters and verify EDG lube oil is 90 degrees or above. Ref PTN Extreme Temp. Reassessment March 2021, FSAR 9.15.4, DBD 5610-023-DB-002 LO Temp above 85F for EDG operability.	Y
Unit 4	5614-M-3030	P & I D COMPONENT COOLING WATER SYSTEM	1	34	Yes	Piping located in U4 CCW Pump Room (open grating & big gate door) and aux bldg roof. Possibly can globally protect U4 CCW Pump Room. Other piping in Aux Bldg and no protection assumed to be needed.	Y

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 42 of 488

R21002, Rev 0 Attachment A Page 17 of 21

Unit	Document No	Document Title	Sheet No	Rev	Priority	Priority Notes	Dwg Complete
Unit 4	5614-M-3030	P & I D COMPONENT COOLING WATER SYSTEM	2	26	Maybe	Piping located in U4 CCW Pump Room (open grating). Possibly can globally protect both rooms. Other piping in Aux Bldg and no protection assumed to be needed.	Y
Unit 4	5614-M-3030	P & I D COMPONENT COOLING WATER SYSTEM	3	22	No	All portions of this drawing are fully located in the Aux Bldg & Containment and no protection assumed	Y
Unit 4	5614-M-3030	P & I D COMPONENT COOLING WATER SYSTEM	4	33	No	All portions of this drawing are fully located in the Aux Bldg & Containment and no protection assumed	Y
Unit 4	5614-M-3030	COMPONENT COOLING WATER SYSTEM	5		Yes	Portions located outside on AB Roof. Other portions inside Aux Bldg and no protection assumed	Y
Unit 4	5614-M-3032	P & I D SAMPLE SYSTEM - SECONDARY STEAM GENERATOR BLOWDOWN	1	10	No	Piping in Containment or Sample Stations.	Y
Unit 4	5614-M-3032	P & ID SAMPLE SYSTEM - SECONDARY MAIN STEAM	2	4	Maybe	Piping and heat exchangers located in Turbine Building requires tenting and localized heating.	Y
Unit 4	5614-M-3032	P & ID SAMPLE SYSTEM - SECONDARY CONDENSER HOTWELLSAMPLING	3	8	Maybe	Piping and heat exchangers located in Turbine Building requires tenting and localized heating.	Y
Unit 4	5614-M-3032	P & I D SAMPLE SYSTEM - SECONDARY CONDENSATE	4		No	Drawing Marked "History" in NAMS and actual drawing is blank.	Y
Unit 4	5614-M-3032	P & I D SAMPLE SYSTEM - SECONDARY FEEDWATER SAMPLING	5	3	Maybe	Piping and heat exchangers located in Turbine Building requires tenting and localized heating.	Y
Unit 4	5614-M-3032	P & I D SAMPLE SYSTEM - SECONDARY MOISTURE SEPARATOR REHEATER SAMPLING	6	1	Maybe	Piping and heat exchangers located in Turbine Building requires tenting and localized heating.	Y
Unit 4	5614-M-3032	P & I D SAMPLE SYSTEM - SECONDARY HEATER DRAIN SAMPLING	7		Maybe	Piping and heat exchangers located in Turbine Building requires tenting and localized heating.	Y
Unit 4	5614-M-3033	P & I D SPENT FUEL POOL COOLING SYSTEM	1	31	Yes	Some piping outside. Other portions inside Aux Bldg and no protection assumed	Υ
Unit 4	5614-M-3033	SPENT FUEL POOL COOLING SYSTEM	2	1	Yes	Some piping outside. Other portions inside Aux Bldg and no protection assumed	Υ
Unit 4	5614-M-3034	P & I D SPENT FUEL POOL AND NEW FUEL STORAGE AREA	1		No	Eqpt located indoors or not required for power operation.	Υ
Unit 4	5614-M-3036	P & I D SAMPLE SYSTEM - NSSS	1	21	No	All piping in Containment or the Aux Bldg and no protection assumed	Υ
Unit 4	5614-M-3041	P & I D REACTOR COOLANT SYSTEM	1	25	No	Fully Inside Containment, no protection required	Υ
Unit 4	5614-M-3041	P & I D REACTOR COOLANT SYSTEM	2	42	No	All piping in Containment or the Aux Bldg and no protection assumed	Υ
Unit 4	5614-M-3041	P & I D REACTOR COOLANT SYSTEM REACTOR COOLANT PUMPS	3	28	No	All piping in Containment or the Aux Bldg and no protection assumed	Y
Unit 4	5614-M-3041	P & I D REACTOR COOLANT SYSTEM PORV CONTROL	4	7	No	All piping in Containment and no protection assumed	Υ

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 43 of 488

R21002, Rev 0 Attachment A Page 18 of 21

							age 10 c
Unit	Document No	Document Title	Doc Sheet No	Rev	Priority	Priority Notes	Dwg Complete
Unit 4	5614-M-3046	P & I D CHEMICAL AND VOLUME CONTROL SYSTEM GAS STRIPPER PACKAGE	1	13	No	Most piping on this drawing is abandoned, and all is located in the Gas Stripper Room in the Auxiliary Building	Y
Unit 4	5614-M-3046	P & I D CHEMICAL AND VOLUME CONTROL SYSTEM BORIC ACID EVAP PACKAGE B	2	1	No	Most piping on this drawing is abandoned. Two pipes are not abandoned; one pipe is in AB 4' elev. and it's not clear from NAMS where the other pipe is located (valve ID not in NAMS). This line goes to the sample system located in the Sample Room in the Auxiliary Building. Therefore, it is believed this pipe is in the Auxiliary Building. Even if it was subject to freezing, there would be no adverse effect on the site.	Y
Unit 4	5614-M-3047	P & I D CHEMICAL AND VOLUME CONTROL SYSTEM CHARGING AND LETDOWN	1	23	Yes	All piping, except as marked, is located in Containment or in the Auxiliary Building (P&V Room, Charging Pump Room, Monitor Tank Room, Reactor Coolant Filter Room). This piping is assumed to be protected from weather either by the building protection or through a global strategy as needed (space heaters deployed in rooms in the Auxiliary Building). Marked piping is located on the Auxiliary Building Roof, per NAMS.	Υ
Unit 4	5614-M-3047	P & I D CHEMICAL AND VOLUME CONTROL SYSTEM CHARGING AND LETDOWN	2	67	Maybe	All piping, except as marked, is located in Containment or in the Auxiliary Building (P&V Room, Charging Pump Room, NSSS Sample Room, Boric Acid Tank Room). This piping is assumed to be protected from weather either by the building protection or through a global strategy as needed (space heaters deployed in rooms in the Auxiliary Building). Marked piping is located on the Auxiliary Building Roof, per NAMS; however, it's assumed to be located in the enclosure for the VCT on the AB Roof, where global strategies could also be deployed.	Y
Unit 4	5614-M-3047	P & I D CHEMICAL AND VOLUME CONTROL SYSTEM SEAL WATER INJECTION TO RCP	3	28	No	Fully located inside Containment or the Auxiliary Building (P&V Room & Charging Pump Room). Assumed individual protection not required for piping/components inside the AB. Global strategy(such as space heaters) can be deployed as necessary.	Y
Unit 4	5614-M-3050	P & I D RESIDUAL HEAT REMOVAL SYSTEM	1	40	No	All piping in Containment or the Aux Bldg and no protection assumed	Y
Unit 4	5614-M-3053	P & I D CONTAINMENT PURGE SYSTEM AND PENETRATION COOLING SYSTEM	1	23	No	All equipment is either air lines, purge equipment not required for operation, or located in Containment or Aux Bldg	Y

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 44 of 488

R21002, Rev 0 Attachment A Page 19 of 21

						1	age 19 0
Unit	Document No	Document Title	Doc Sheet No	Rev	Priority	Priority Notes	Dwg Complete
Unit 4	5614-M-3056	P & I D CONTAINMENT EMERGENCY FILTER SYSTEM	1	9	No	All equipment on this P&ID was completely abdandoned in place.	Υ
Unit 4	5614-M-3057	P & I D CONTAINMENT NORMAL AND EMERGENCY COOLER SYSTEMS	1	16	No	Fully Inside Containment, no protection required	Υ
Unit 4	5614-M-3061	P & I D WASTE DISPOSAL SYSTEM LIQUID RCDT AND PUMPS	1	23	No	Piping and components enclosed in Rx Bldg or RAB	Y
Unit 4	5614-M-3061	P & I D WASTE DISPOSAL SYSTEM LIQUID CONTAINMENT DRAINS	2	10	No	Piping and components enclosed in Rx Bldg	Y
Unit 4	5614-M-3062	P & I D SAFETY INJECTION SYSTEM	1	40	Yes	RWST & piping out in yard, pipe in HHSI Pump Room and pipe in U4 CCW Pump Room	Y
Unit 4	5614-M-3062	P & I D SAFETY INJECTION SYSTEM	2	25	Maybe	Pipe in HHSI Pump Room and pipe in U4 CCW Pump Room (possibly can be globally protected)	Y
Unit 4	5614-M-3064	P & I D SAFETY INJECTION ACCUMULATOR SYSTEM INSIDECONTAINMENT	1	35	No	Fully Inside Containment, no protection required	Y
Unit 4	5614-M-3068	P & I D CONTAINMENT SPRAY SYSTEM	1	28	Yes	Portion of piping on Aux Bldg Roof. Other portions inside Aux Bldg and no protection assumed	Y
Unit 4	5614-M-3070	P & I D TURBINE BUILDING VENTILATION LOAD CENTER & SWGR ROOMS CHILLED WATER SYSTEM - TRAIN A	1	5	Maybe	System piping in Turbine Bldg operating level and Reinfored concrete Class I Load Center & SWGR Rooms. Normally operating to provide room cooling to maintain 100% power generation, however operator action can be taken to open doors and fans to provide cooling in the event of loss of A/C system, therefore not required for power generation.	Y
Unit 4	5614-M-3070	P & I D TURBINE BUILDING VENTILATION LOAD CENTER & SWGR ROOMS CHILLED WATER SYSTEM - TRAIN B	2	5	Maybe	System piping in Turbine Bldg operating level and Reinfored concrete Class I Load Center & SWGR Rooms. Normally operating to provide room cooling to maintain 100% power generation, however operator action can be taken to open doors and fans to provide cooling in the event of loss of A/C system, therefore not required for power generation.	Y
Unit 4	5614-M-3072	P & I D MAIN STEAM SYSTEM	1	41	Yes		Υ
Unit 4	5614-M-3072	P & I D MAIN STEAM SYSTEM	2	20	Yes		Y
Unit 4	5614-M-3072	P & I D MAIN STEAM SYSTEM MSIV CONTROL	3	11	Yes		Υ
Unit 4	5614-M-3073	P & I D CONDENSATE SYSTEM	1	28	Yes		Υ
Unit 4	5614-M-3073	P & I D CONDENSATE SYSTEM	2	34	Yes		Υ
Unit 4	5614-M-3073	P & I D CONDENSATE SYSTEM	3	26	Yes		Y
Unit 4	5614-M-3074	P & I D FEEDWATER SYSTEM	1	28	Yes		Υ
Unit 4	5614-M-3074	P & I D FEEDWATER SYSTEM	2	43	Yes		Υ
Unit 4	5614-M-3074	P & I D FEEDWATER SYSTEM	3	35	Yes		Υ
Unit 4	5614-M-3074	P & I D FEEDWATER SYSTEM STEAM GENERATOR BLOWDOWN RECOVERY	4	32	Yes		Y
Unit 4	5614-M-3074	P & I D FEEDWATER SYSTEM LEFM DETAIL & FEEDWATER	5		Yes	LEFM sensing lines require protection. No protection required for FW Reg Valve Positioner, since all air and electrical.	Y

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 45 of 488

R21002, Rev 0 Attachment A Page 20 of 21

			Doc				ugo 20 0
Unit	Document No	Document Title	Sheet	Rev	Priority	Priority Notes	Dwg Complete
Unit 4	5614-M-3075	P & I D AUXILIARY FEEDWATER SYSTEM STEAM TO AUXILIARY FEEDWATER PUMP TURBINES	1	16	Yes		Υ
Unit 4	5614-M-3075	P & I D AUXILIARY FEEDWATER SYSTEM AUXILIARY FEEDWATER TO STEAM GENERATORS	2	18	Yes		Υ
Unit 4	5614-M-3075	P & I D AUXILIARY FEEDWATER SYSTEM NITROGEN SUPPLY TO AFW CONTROL VALVES	3	3	Yes		Υ
Unit 4	5614-M-3077	P & I D CONDENSATE POLISHING SYSTEM DEMINERALIZER	1	23	No	Drawing is VOID	Y
Unit 4	5614-M-3077	P & I D CONDENSATE POLISHING SYSTEM DEMINERALIZER	2	15	No	Drawing is VOID	Y
Unit 4	5614-M-3077	P & I D CONDENSATE POLISHING SYSTEM SPENT RESIN HANDLING SYSTEM	3	13	No	Drawing is VOID	Υ
Unit 4	5614-M-3077	P & I D CONDENSATE POLISHING SYSTEM EFFLUENT SAMPLING	4	8	No	Drawing is VOID	Y
Unit 4	5614-M-3078	P & I D STEAM GENERATOR WET LAYUP SYSTEM	1	7	Maybe	The SG Wet Layup System is used during RFO conditions only. Equipment is isolated during normal operation via closed valves and spectacle flanges. Segments connected to other systems up to isolation points are evaluated, but everything inside the isolation points for the SGWL System are not evaluated.	Y
Unit 4	5614-M-3080	P & I D CONDENSATE RECOVERY SYSTEM	1	15	Yes		Υ
Unit 4	5614-M-3081	P & I D FEEDWATER HEATER DRAINS & VENTS SYSTEM	1	26	Maybe	Most components need no protection; Many control valves and vent /drain configurations are unknown and require walkdown to determine if mitigation is required.	Y
Unit 4	5614-M-3081	P & I D FEEDWATER HEATER DRAINS & VENTS SYSTEM	2	9	Maybe	Most components need no protection; Many control valves and vent /drain configurations are unknown and require walkdown to determine if mitigation is required.	Y
Unit 4	5614-M-3081	P & I D FEEDWATER HEATER DRAINS & VENTS SYSTEM	3	28	Maybe	Most components need no protection; Many control valves and vent /drain configurations are unknown and require walkdown to determine if mitigation is required.	Y
	5614-M-3081	P & I D FEEDWATER HEATER DRAINS & VENTS SYSTEM	4	36		Most components need no protection; Many control valves and vent /drain configurations are unknown and require walkdown to determine if	
Unit 4	5614-M-3081	P & I D FEEDWATER HEATER DRAINS & VENTS SYSTEM	5	9	Maybe	mitigation is required. Mostly hot-pipe systems, but various vents/drains/instruments in the TB will require	Y
Unit 4					Maybe	walkdown.	Υ
Unit 4	5614-M-3081	P & I D FEEDWATER HEATER DRAINS & VENTS SYSTEM	6	16	Maybe	Mostly hot-pipe systems, but various vents/drains/instruments in the TB will require walkdown.	Y
Unit 4	5614-M-3081	P & I D FEEDWATER HEATER DRAINS & VENTS SYSTEM	7		Maybe	Mostly hot-pipe systems, but various vents/drains/instruments in the TB will require walkdown.	Y
Unit 4	5614-M-3082	P & I D SECONDARY WET LAYUP SYSTEM LOOP 1	1	10	No	This drawing is applicable to RFO conditions only. Equipment is captured on other drawings showing normal operating configuration.	Y

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 46 of 488

R21002, Rev 0 Attachment A Page 21 of 21

			D				
Unit	Document No	Document Title	Doc Sheet No	Rev	Priority	Priority Notes	Dwg Complete
Unit 4	5614-M-3082	P & I D SECONDARY WET LAYUP SYSTEM LOOP 2	2	7	No	This drawing is applicable to RFO conditions only. Equipment is captured on other drawings showing normal operating configuration.	Y
Unit 4	5614-M-3084	P & I D AUXILIARY STEAM SYSTEM	1	28	Maybe		Υ
Unit 4	5614-M-3085	P & I D EXTRACTION STEAM SYSTEM	1	35	Maybe		Y
Unit 4	5614-M-3087	P & I D TURBINE LUBE OIL SYSTEM LUBE & CONTROL OIL RESERVOIR	1	22	Maybe	Based on "Turkey Point Extreme Temperature Reassessment, March 2021", No effect on system is expected for 10F below all time record low of 27F. However, system parameters are required to be checked while in Cold Weather Procedure.	Y
Unit 4	5614-M-3087	P & I D TURBINE LUBE OIL SYSTEM LUBE & CONTROL OIL CONDITIONER	2	10	Maybe	Based on "Turkey Point Extreme Temperature Reassessment, March 2021", No effect on system is expected for 10F below all time record low of 27F. However, system parameters are required to be checked while in Cold Weather Procedure.	Y
Unit 4	5614-M-3087	P & I D TURBINE LUBE OIL SYSTEM GENERATOR SEAL OIL	3	15	Maybe	Based on "Turkey Point Extreme Temperature Reassessment, March 2021", No effect on system is expected for 10F below all time record low of 27F. However, system parameters are required to be checked while in Cold Weather Procedure.	Y
Unit 4	5614-M-3089	P & I D TURBINE SYSTEMS - STEAM	1	44	Yes	Most components need no protection; vents /drain/ steam trap configurations are unknown and require walkdown to determine if mitigation is required.	Y
Unit 4	5614-M-3089	P & I D TURBINE SYSTEMS - STEAM	2	35	Yes	Most components need no protection; vents /drain/ steam trap configurations are unknown and require walkdown to determine if mitigation is required.	Y
Unit 4	5614-M-3090	P & I D GENERATOR SYSTEM HYDROGEN & CO2 SUPPLY	1	29	Maybe	Based on "Turkey Point Extreme Temperature Reassessment, March 2021", No effect on system is expected for 10F below all time record low of 27F.	Y
Unit 4	5614-M-3094	P & I D CONTAINMENT POST ACCIDENT EVALUATION SYSTEM	1	26	No	All piping in Containment or the Aux Bldg and no protection assumed	Y
Unit 4	5614-M-3101	P & I D BREATHING AIR SYSTEM DISTRIBUTION	1	10	No	All piping inside Containment; no protection assumed. Also, this is an air system, so not susceptible to freezing	Y
Unit 4	5614-M-3108	P & I D UNIT 4 EDG BLDG VENTILATION AIRFLOW	1		Yes	EDG radiators are immediately adjacent to the open louvers and susceptible to freezing	Υ

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 47 of 488

R21002, Rev 0 Attachment B Page 1 of 3

Attachment B PTN System Designations List

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 48 of 488

> R21002, Rev 0 Attachment B Page 2 of 3

PTN Systems List

TPCW / 008 Turbine Plant Cooling Water

CWS / 010 Circulating Water
011 Screen Wash
SWS / 012 Service Water
IAS / 013 Instrument Air
CNDSR / 014 Condenser

015 Amertap/Tube Cleaning

FP / 016 Fire Protection
CS / 018 Condensate Storage
ICW / 019 Intake Cooling Water
PMUS / 020 Primary Water Makeup
WTP / 021 Water Treatment Plant

EGD / 022 Emergency Diesel Generator & Oil

025 Control Bldg Ventilation

026 Radwaste Bldg Ventilation/HVAC
CCW / 030 Component Cooling Water
SSS / 032 Sample System - Secondary
SFPC / 033 Spent Fuel Pool Cooling

O34 Spent Fuel Pool & New Fuel Storage Area Ventilation

O36 Sample System - NSSS RCS / O41 Reactor Coolant

CVCS / 046 Chemical & Volume Control (Boric Acid/Boron/Gas Stripper)
CVCS / 047 Chemical & Volume Control (Charging/Letdown/Seal Water)

RHR / 050 Residual Heat Removal

053 Containment Purge & Penetration Cooling

056 Containment Emergency Filter

057 Containment Normal & Emergency Cooler

060 Aux Bldg Ventilation
WDS / 061 Waste Disposal
SIS / 062 Safety Injection
SIS / 064 Safety Injection

065 N2 & H2

CS / 068 Containment Spray
070 Turbine Building Ventilation

MSS / 072 Main Steam
COND / 073 Condensate
FWS / 074 Feedwater
AFWS / 075 Aux Feedwater

076 Turbine Plant Chemical Addition

CPDL / 077 Condensate Polishing
SGWLU / 078 Steam Generator Wet Layup

080 Condensate Recover

081 Feedwater Heater Drains & Vents

SWLU / 082 Secondary Wet Layup 084 Auxiliary Steam 085 Extraction Steam

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 49 of 488

> R21002, Rev 0 Attachment B Page 3 of 3

087 Turbine Lube Oil

089 Turbine Systems - Steam

090 H2 & CO2 Supply

094 Containment Post Accident Eval

BAS / 101 Breathing Air 108 U4 EDG Bldg Vent

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 50 of 488

21002, Rev 0 Attachment C Page 1 of 5

Attachment C Freezing as a Function of Pipe Diameter

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 51 of 488

> 21002, Rev 0 Attachment C Page 2 of 5

Freezing as a Function of Pipe Diameter

This attachment determines the time required for water in an isolated pipe segment to cool to 32 °F and subsequently freeze. The analysis is performed in an Excel workbook allowing users to forecast water temperature or ice conversion fraction as a function of time given the following inputs:

- Location-specific minimum and maximum daily temperatures for sinusoidal diurnal variation PTN: 19 °F to 37 °F
- Wind speed (10 mph)
- Initial liquid temperature (35 °F)
- Pipe size and insulation thickness (Various)

Solutions are generated for most standard pipe sizes from ½" to 48", with insulation thicknesses of 0, 1, 2, 3, or 4 inches, in general. Piping is assumed to be isolated from any potential heat sources, such as solar heating, branch connections to warmer process lines, or proximity to warm equipment. Therefore, losses to (or gains from) ambient are the only mechanisms of heat transfer. Heat rates through the pipe or insulation surface are calculated by interpolating data points drawn from the 3EPlus software, available from the North American Insulation Manufacturers Association (NAIMA).

The workbook includes separate worksheets for each pipe size / insulation thickness combination. On each sheet, the four-day cold weather event is broken down into 15-minute time intervals for calculating water/ice conditions as the transient progresses. For each time step, the worksheet calculates the rate of heat transfer through the pipe wall and insulation, given the current liquid and outdoor temperatures (at the start of the time step). Heat removed during the time step is deducted from the liquid enthalpy to determine the starting water temperature for the next time step.

Once liquid temperature reaches 32 °F, further heat removal through the pipe wall and insulation is deducted from the latent heat of fusion (144 BTU/lbm) rather than from the liquid's sensible heat. An ice volume fraction is calculated as the fraction of latent heat that has been lost to the environment.

The analysis does not consider any effects that pressure or salinity may have on the freezing point of water, so 32 °F is taken as the freezing point in all cases. It also ignores the thermal resistance of ice as it builds up inside the pipe wall. No thermal stratification effects within a pipe are considered.

For Turkey Point, the upper limit on the daily temperature cycle exceeds 32 °F. During these periods, ambient conditions may tend to raise liquid temperature within a pipe or thaw a portion of ice that may have formed overnight. The time step calculations in the worksheets account for this possibility.

Pipe material is assumed to be carbon steel, with insulation properties similar to calcium silicate (calsil).

Output data from the workbook has been summarized in Tables 1 for Turkey Point for both wind and no-wind conditions. These tables show the time required to reach 32 °F, and subsequently to reach 2%, 10%, 25, and 50% ice volume fractions. Results are further summarized in Table 2 to show the amount of insulation required for freeze protection as a function of pipe size and maximum allowable ice fraction. Where no amount of insulation will prevent freezing, heat tracing is identified as the recommended mitigation strategy.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 52 of 488

No.	50% (hr) 12 15.25 34.75 37.25 58 36 84 - - - 14.5
Size	(hr) 12 15.25 34.75 37.25 58 36 84 14.5 -
(NPS) (in) (hr) (hr) <t< th=""><th>12 15.25 34.75 37.25 58 36 84 - - 14.5</th></t<>	12 15.25 34.75 37.25 58 36 84 - - 14.5
0.5 1 4.5 5.5 7 8.5 10.75 5 6 7.5 9.5 0.75 1 5 5.75 7.75 9.75 12.5 5.5 6.5 8.5 11 0.76 2 5.25 6.25 8.5 11.25 16.5 5.5 6.75 9 12.25 1 1 5.5 6.5 8.75 12 34 5.75 7 9.75 13.75 1 2 6 7.25 10 14.5 38.5 6.25 7.5 10.5 16.25 1 3 5.5 6.5 9 12.25 34.5 5.75 7 9.75 13.75 1.5 1 6.25 7.5 11 33.5 60 6.75 8.25 12.5 37.25 1.5 4 7.75 9.25 15.75 60.25 - 7.75 9.5 18.25 62.5 1.5 <t< th=""><th>15.25 34.75 37.25 58 36 84 - - 14.5</th></t<>	15.25 34.75 37.25 58 36 84 - - 14.5
0.75 1 5 5.75 7.75 9.75 12.5 5.5 6.5 8.5 11 0.75 2 5.25 6.25 8.5 11.25 16.5 5.5 6.75 9 12.25 1 1 5.5 6.5 8.75 12 34 5.75 7 9.75 13.75 1 2 6 7.25 10 14.5 38.5 6.25 7.5 10.5 16.25 1 3 5.5 6.5 9 12.25 34.5 5.75 7 9.5 13 1.5 1 6.25 7.5 11 33.5 60 6.75 8.25 12.5 37.25 1.5 2 7 8.75 13.75 41 - 7.75 9.25 15.25 59.5 1.5 3 7.5 9.25 15.75 60.25 - 7.75 9.5 18.25 62.5 1.5	15.25 34.75 37.25 58 36 84 - - 14.5
0.75 2 5.25 6.25 8.5 11.25 16.5 5.5 6.75 9 12.25 1 1 5.5 6.5 8.75 12 34 5.75 7 9.75 13.75 1 2 6 7.25 10 14.5 38.5 6.25 7.5 10.5 16.25 1 3 5.5 6.5 9 12.25 34.5 5.75 7 9.5 13 1.5 1 6.25 7.5 11 33.5 60 6.75 8.25 12.5 37.25 1.5 2 7 8.75 13.75 41 - 7.5 9.25 15.25 59.5 1.5 4 7.75 9.25 15.75 60.25 - 7.75 9.5 18.25 62.5 1.5 4 7.75 9.75 33.5 63.5 - 8 10 34.25 82 2	37.25 58 36 84 - - 14.5 -
1 1 5.5 6.5 8.75 12 34 5.75 7 9.75 13.75 1 2 6 7.25 10 14.5 38.5 6.25 7.5 10.5 16.25 1 3 5.5 6.5 9 12.25 34.5 5.75 7 9.5 13 1.5 1 6.25 7.5 11 33.5 60 6.75 8.25 12.5 37.25 1.5 2 7 8.75 13.75 41 - 7.5 9.25 15.25 59.5 1.5 3 7.5 9.25 15.75 60.25 - 7.75 9.5 18.25 62.5 1.5 4 7.75 9.75 33.5 63.5 - 8 10 34.25 82 2 0 4.25 5 6 7.25 8.5 5.25 6.25 8.25 10.5 36 25 15.25<	37.25 58 36 84 - - 14.5 -
1 3 5.5 6.5 9 12.25 34.5 5.75 7 9.5 13 1.5 1 6.25 7.5 11 33.5 60 6.75 8.25 12.5 37.25 1.5 2 7 8.75 13.75 41 - 7.5 9.25 15.25 59.5 1.5 3 7.5 9.25 15.75 60.25 - 7.75 9.5 18.25 62.5 1.5 4 7.75 9.75 33.5 63.5 - 8 10 34.25 82 2 0 4.25 5 6 7.25 8.5 5.25 6.25 8.25 10.75 2 1 6.75 8.25 12.5 37.25 83.75 7.5 9.25 15.25 59.5 2 2 7.5 9.5 17 61.75 - 8 10 34.75 83 2 3 <th>36 84 - - - 14.5 -</th>	36 84 - - - 14.5 -
1 3 5.5 6.5 9 12.25 34.5 5.75 7 9.5 13 1.5 1 6.25 7.5 11 33.5 60 6.75 8.25 12.5 37.25 1.5 2 7 8.75 13.75 41 - 7.5 9.25 15.25 59.5 1.5 3 7.5 9.25 15.75 60.25 - 7.75 9.5 18.25 62.5 1.5 4 7.75 9.75 33.5 63.5 - 8 10 34.25 82 2 0 4.25 5 6 7.25 8.5 5.25 6.25 8.25 10.75 2 1 6.75 8.25 12.5 37.25 83.75 7.5 9.25 15.25 59.5 2 2 7.5 9.5 17 61.75 - 8 10 34.75 83 2 3 <th>84 - - 14.5 -</th>	84 - - 14.5 -
1.5 1 6.25 7.5 11 33.5 60 6.75 8.25 12.5 37.25 1.5 2 7 8.75 13.75 41 - 7.5 9.25 15.25 59.5 1.5 3 7.5 9.25 15.75 60.25 - 7.75 9.5 18.25 62.5 1.5 4 7.75 9.75 33.5 63.5 - 8 10 34.25 82 2 0 4.25 5 6 7.25 8.5 5.25 6.25 8.25 10.75 2 1 6.75 8.25 12.5 37.25 83.75 7.5 9.25 15.25 59.5 2 2 7.5 9.5 17 61.75 - 8 10 34.75 83 2 3 8 10.25 35.25 84 - 8.25 10.75 36.75 88.25 2.5	- - - 14.5 -
1.5 2 7 8.75 13.75 41 - 7.5 9.25 15.25 59.5 1.5 3 7.5 9.25 15.75 60.25 - 7.75 9.5 18.25 62.5 1.5 4 7.75 9.75 33.5 63.5 - 8 10 34.25 82 2 0 4.25 5 6 7.25 8.5 5.25 6.25 8.25 10.75 2 1 6.75 8.25 12.5 37.25 83.75 7.5 9.25 15.25 59.5 2 2 7.5 9.5 17 61.75 - 8 10 34.75 83 2 3 8 10.25 35.25 84 - 8.25 10.75 88.25 2 4 8.5 11 37.25 - - 8.5 11 37.25 - 2.5 1 7.5	- - 14.5 -
1.5 3 7.5 9.25 15.75 60.25 - 7.75 9.5 18.25 62.5 1.5 4 7.75 9.75 33.5 63.5 - 8 10 34.25 82 2 0 4.25 5 6 7.25 8.5 5.25 6.25 8.25 10.75 2 1 6.75 8.25 12.5 37.25 83.75 7.5 9.25 15.25 59.5 2 2 7.5 9.5 17 61.75 - 8 10 34.75 83 2 3 8 10.25 35.25 84 - 8.25 10.75 36.75 88.25 2 4 8.5 11 37.25 - - 8.5 11 37.25 - 2.5 1 7.5 9.25 16 60.75 - 8.25 10.5 36 85.5 2.5 2	- 14.5 - -
1.5 4 7.75 9.75 33.5 63.5 - 8 10 34.25 82 2 0 4.25 5 6 7.25 8.5 5.25 6.25 8.25 10.75 2 1 6.75 8.25 12.5 37.25 83.75 7.5 9.25 15.25 59.5 2 2 7.5 9.5 17 61.75 - 8 10 34.75 83 2 3 8 10.25 35.25 84 - 8.25 10.75 36.75 88.25 2.5 1 7.5 9.25 16 60.75 - 8.25 10.5 36 85.5 2.5 1 7.5 9.25 16 60.75 - 8.25 10.5 36 85.5 2.5 2 8.75 11.5 39 - - 9.25 12.25 58.5 - 2.5 3	14.5
2 0 4.25 5 6 7.25 8.5 5.25 6.25 8.25 10.75 2 1 6.75 8.25 12.5 37.25 83.75 7.5 9.25 15.25 59.5 2 2 7.5 9.5 17 61.75 - 8 10 34.75 83 2 3 8 10.25 35.25 84 - 8.25 10.75 36.75 88.25 2 4 8.5 11 37.25 - - 8.5 11 37.25 - 2.5 1 7.5 9.25 16 60.75 - 8.25 10.5 36 85.5 2.5 2 8.75 11.5 39 - - 9.25 12.25 58.5 - 2.5 3 9.25 12.5 59.25 - - 9.75 13.25 61.75 - 2.5 4	-
2 1 6.75 8.25 12.5 37.25 83.75 7.5 9.25 15.25 59.5 2 2 7.5 9.5 17 61.75 - 8 10 34.75 83 2 3 8 10.25 35.25 84 - 8.25 10.75 36.75 88.25 2 4 8.5 11 37.25 - - 8.5 11 37.25 - 2.5 1 7.5 9.25 16 60.75 - 8.25 10.5 36 85.5 2.5 2 8.75 11.5 39 - - 9.25 12.25 58.5 - 2.5 3 9.25 12.5 59.25 - - 9.75 13.25 61.75 - 2.5 4 9.75 13.5 62.5 - - 10.25 14.25 81.25 - 3 0	-
2 2 7.5 9.5 17 61.75 - 8 10 34.75 83 2 3 8 10.25 35.25 84 - 8.25 10.75 36.75 88.25 2 4 8.5 11 37.25 - - 8.5 11 37.25 - 2.5 1 7.5 9.25 16 60.75 - 8.25 10.5 36 85.5 2.5 2 8.75 11.5 39 - - 9.25 12.25 58.5 - 2.5 3 9.25 12.5 59.25 - - 9.75 13.25 61.75 - 2.5 4 9.75 13.5 62.5 - - 10.25 14.25 81.25 - 3 0 4.5 5.5 7 8.5 10.5 5.75 7 9.75 13.5 3 1 8 </th <th></th>	
2 4 8.5 11 37.25 - - 8.5 11 37.25 - 2.5 1 7.5 9.25 16 60.75 - 8.25 10.5 36 85.5 2.5 2 8.75 11.5 39 - - 9.25 12.25 58.5 - 2.5 3 9.25 12.5 59.25 - - 9.75 13.25 61.75 - 2.5 4 9.75 13.5 62.5 - - 10.25 14.25 81.25 - 3 0 4.5 5.5 7 8.5 10.5 5.75 7 9.75 13.5 3 1 8 10 34.5 82.75 - 8.75 11.5 39.75 - 3 2 9.25 12.25 58.5 - - 9.75 13.5 62.5 - 3 4 11 <th>-</th>	-
2 4 8.5 11 37.25 - - 8.5 11 37.25 - 2.5 1 7.5 9.25 16 60.75 - 8.25 10.5 36 85.5 2.5 2 8.75 11.5 39 - - 9.25 12.25 58.5 - 2.5 3 9.25 12.5 59.25 - - 9.75 13.25 61.75 - 2.5 4 9.75 13.5 62.5 - - 10.25 14.25 81.25 - 3 0 4.5 5.5 7 8.5 10.5 5.75 7 9.75 13.5 3 1 8 10 34.5 82.75 - 8.75 11.5 39.75 - 3 2 9.25 12.25 58.5 - - 9.75 13.5 62.5 - 3 4 11 <th></th>	
2.5 2 8.75 11.5 39 - - 9.25 12.25 58.5 - 2.5 3 9.25 12.5 59.25 - - 9.75 13.25 61.75 - 2.5 4 9.75 13.5 62.5 - - 10.25 14.25 81.25 - 3 0 4.5 5.5 7 8.5 10.5 5.75 7 9.75 13.5 3 1 8 10 34.5 82.75 - 8.75 11.5 39.75 - 3 2 9.25 12.25 58.5 - - 9.75 13.5 62.5 - 3 3 10 14 64.25 - - 9.75 13.5 62.5 - 3 4 11 16.5 - - 11.25 33.25 89.5 - 4 0 4.75 5.75 <th>-</th>	-
2.5 3 9.25 12.5 59.25 - - 9.75 13.25 61.75 - 2.5 4 9.75 13.5 62.5 - - 10.25 14.25 81.25 - 3 0 4.5 5.5 7 8.5 10.5 5.75 7 9.75 13.5 3 1 8 10 34.5 82.75 - 8.75 11.5 39.75 - 3 2 9.25 12.25 58.5 - - 9.75 13.5 62.5 - 3 10 14 64.25 - - 9.75 13.5 62.5 - 3 4 11 16.5 - - 10.5 15.5 84 - 3 4 11 16.5 - - - 11.25 33.25 89.5 - 4 0 4.75 5.75 7.5	-
2.5 4 9.75 13.5 62.5 - - 10.25 14.25 81.25 - 3 0 4.5 5.5 7 8.5 10.5 5.75 7 9.75 13.5 3 1 8 10 34.5 82.75 - 8.75 11.5 39.75 - 3 2 9.25 12.25 58.5 - - 9.75 13.5 62.5 - 3 10 14 64.25 - - 9.75 13.5 62.5 - 3 4 11 16.5 - - - 11.25 33.25 89.5 - 4 0 4.75 5.75 7.5 9.5 12 6.25 7.5 10.75 17.75 4 1 8.75 11.75 40 - - 10 14 63.75 - 4 2 10.5 15.25	-
3 0 4.5 5.5 7 8.5 10.5 5.75 7 9.75 13.5 3 1 8 10 34.5 82.75 - 8.75 11.5 39.75 - 3 2 9.25 12.25 58.5 - - 9.75 13.5 62.5 - 3 10 14 64.25 - - 10.5 15.5 84 - 3 4 11 16.5 - - - 11.25 33.25 89.5 - 4 0 4.75 5.75 7.5 9.5 12 6.25 7.5 10.75 17.75 4 1 8.75 11.75 40 - - 10 14 63.75 - 4 2 10.5 15.25 83.5 - - 11.5 33.75 - -	-
3 1 8 10 34.5 82.75 - 8.75 11.5 39.75 - 3 2 9.25 12.25 58.5 - - 9.75 13.5 62.5 - 3 10 14 64.25 - - 10.5 15.5 84 - 3 4 11 16.5 - - - 11.25 33.25 89.5 - 4 0 4.75 5.75 7.5 9.5 12 6.25 7.5 10.75 17.75 4 1 8.75 11.75 40 - - 10 14 63.75 - 4 2 10.5 15.25 83.5 - - 11.5 33.75 - -	-
3 2 9.25 12.25 58.5 - - 9.75 13.5 62.5 - 3 3 10 14 64.25 - - 10.5 15.5 84 - 3 4 11 16.5 - - 11.25 33.25 89.5 - 4 0 4.75 5.75 7.5 9.5 12 6.25 7.5 10.75 17.75 4 1 8.75 11.75 40 - - 10 14 63.75 - 4 2 10.5 15.25 83.5 - - 11.5 33.75 - -	37
3 3 10 14 64.25 - - 10.5 15.5 84 - 3 4 11 16.5 - - - 11.25 33.25 89.5 - 4 0 4.75 5.75 7.5 9.5 12 6.25 7.5 10.75 17.75 4 1 8.75 11.75 40 - - 10 14 63.75 - 4 2 10.5 15.25 83.5 - - 11.5 33.75 - -	-
3 4 11 16.5 - - - 11.25 33.25 89.5 - 4 0 4.75 5.75 7.5 9.5 12 6.25 7.5 10.75 17.75 4 1 8.75 11.75 40 - - 10 14 63.75 - 4 2 10.5 15.25 83.5 - - 11.5 33.75 - -	-
4 0 4.75 5.75 7.5 9.5 12 6.25 7.5 10.75 17.75 4 1 8.75 11.75 40 - - 10 14 63.75 - 4 2 10.5 15.25 83.5 - - 11.5 33.75 - -	-
4 1 8.75 11.75 40 - - 10 14 63.75 - 4 2 10.5 15.25 83.5 - - 11.5 33.75 - -	-
4 2 10.5 15.25 83.5 11.5 33.75	58.75
	-
4 3 11.75 34.5 1 12.75 36.25	-
	-
4 4 12.75 36.75 13.5 38.5	-
6 0 5.25 6.5 8.75 11.5 17.75 7 8.5 13.25 38.5	86.5
6 1 10.5 15.25 83.5 12.25 35.75	-
6 2 13.75 38.75 16 59	-
6 3 18 60.25 34 63.5	-
6 4 34.75 81.5 35.75 84.5	-
8 0 5.75 7 9.75 13.75 37.25 7.5 9.5 16 60.5	-
8 1 12.25 35.75 15.25 58	-
8 2 33 61.25 35.25 83	-
8 3 35.75 84.25 38.25	-
8 4 38.5 57.75	-
10 0 6.25 7.5 10.75 17.25 58.75 8 10.25 34.75 83	-
10 1 13.75 39 33.5 62.5	-
10 2 36 84.75 39.5	
10 3 57.25 59.75	-

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 53 of 488

	1	Table 1 -	- Time to	Freeze	e S	Segment	s – TURI	KEY POII	NT			
Pipe	Ins.			nt 10 mp						No Wind		
Size	Thk.	0%	2%	10%	25%	50%		0%	2%	10%	25%	50%
(NPS)	(in)	(hr)	(hr)	(hr)	(hr)	(hr)		(hr)	(hr)	(hr)	(hr)	(hr)
10	4	60.75	-	-	-	-		64.25	-	-	-	-
12	0	6.5	8	11.75	35.5	64.25		8.5	11	37.25	-	-
12	1	33	60.75	-	-	-		36.5	86	-	-	-
12	2	39.25	-	-	-	-		59.25	-	-	-	-
12	3	61	-	-	-	-		81.5	-	-	-	-
12	4	82.75	-	-	-	-		86.25	-	-	-	-
14	0	6.75	8.25	12.5	37	83.75		8.75	11.5	39	-	-
14	1	33	61	-	-	-		37	87.75	-	-	-
14	2	41.75	-	-	-	-		60.75	-	-	-	-
14	3	63.25	-	-	-	-		83.75	-	-	-	-
14	4	85.25	-	-	-	-		-	-	-	-	-
16	0	7	8.75	13.75	40.5	-		9.25	12.25	58.25	-	-
16	1	34.5	81.25	-	-	-		40	-	-	-	-
16	2	59.5	-	-	-	-		81.25	-	-	-	-
16	3	83.75	-	-	-	-		-	-	-	-	-
16	4	-	-	-	-	-		-	-	-	-	-
18	0	7.25	9.25	15	59.5	-		9.75	13	60.75	-	-
18	1	36	84.75	-	-	-		58.5	-	-	-	-
18	2	62.5	-	-	-	-		84.75	-	-	-	-
18	3	87.25	-	-	-	-		-	-	-	-	-
18	4	-	-	-	-	-		-	-	-	-	-
20	0	7.5	9.5	17.5	62.25	-		10	14	63.75	-	-
20	1	37.75	-	-	-	-		60.75	-	-	-	-
20	2	82	-	-	-	-		-	-	-	-	-
20	3	-	-	-	-	-		-	-	-	-	-
20	4	-	-	-	-	-		-	-	-	-	-
24	0	8	10.25	35.25	84.25	-		10.75	15.75	84.75	-	-
24	1	57.25	-	-	-	-		81.5	-	-	-	-
24	2	87.75	-	-	-	-		-	-	-	-	-
24	3	-	-	-	-	-		-	-	-	-	-
24	4	-	-	-	-	-		-	-	-	-	-
30	0	8.75	11.5	40	-	-		12	35	-	-	-
30	1	62.5	-	-	-	-		-	-	-	-	-
30	2	-	-	-	-	-		-	-	-	-	-
30	3	-	-	-	-	-		-	-	-	-	-
36	0	9.5	13	60.5	-	-		13.25	37.5	-	-	-
36	1	83.75	-	-	-	-		-	-	-	-	-
36	2	-	-	-	-	-		-	-	-	-	-
36	3	-	-	-	-	-		-	-	-	-	-
48	0	10.75	16.25	85.75	-	-		16.25	59.25	-	-	-
48	1	-	-	-	-	-		-	-	-	-	-
48	2	-	-	-	-	-		-	-	-	-	-

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 54 of 488

Table 2 – Insulation Requirements for Freeze Mitigation											
To protect against 25% freezing:											
Daily Low Daily High Heat Trace 4" Insulation 3" Insulation 2" Insulation 1" Insulation Temp °F Temp °F Required for: Required f											
Turkey Point 3 & 4	19	37	1-1/2" & Smaller	2"	-	2 1/2" - 3"	4" thru 24"				
To protect against 2% freezing: Daily Low Daily High Heat Trace 4" Insulation 3" Insulation 2" Insulation 1" Insulation											
	Daily Low Temp °F	Daily High Temp °F	Required for:	Required for:	Required for:	Required for:					
Turkey Point 3 & 4	19	37	6" & Smaller	8"	10"	12"-18"	20"+				
To protect against all freezing:											
	Daily Low Temp °F	Daily High Temp °F	Heat Trace Required for:	4" Insulation Required for:	3" Insulation Required for:	2" Insulation Required for:	1" Insulation Required for:				
Turkey Point 3 & 4	19	37	14" & Smaller	16"-18"	20"-24"	30"-36"	48"				

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 55 of 488

R21002, Rev 0 Attachment D Page 1 of 17

Attachment D Minimum Flow to Avoid Freezing

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 56 of 488

R21002, Rev 0 Attachment D Page 2 of 17

Minimum Flow to Avoid Freezing

This attachment addresses the minimum flow requirement to prevent water from freezing in pipes of various diameters.

Approach:

The approach used is documented in the pages that follow which have been extracted from Attachment N to Zachry Nuclear Engineering Evaluation 20-E04, ANO ECP Alternate Supply Evaluation, Revision 1, 01/28/21 (see Methodology section at end).

Key Inputs:

- Fluid: Fresh Water and Salt Water
- Inlet temperature: 35°F, 40°F, 45°F, 50°F,
- Air temperature: 16°F for PSL and 19°F for PTN
- Pipe diameter: various
- Wind speed: 10 miles per hour
- Pipe schedule: various
- Pipe length: 3 feet as basis for comparison. Note that the fire protection flow study uses actual/bounding lengths to address minimum flow for freeze protection.
- Pipe insulation: Cases were completed both with and without insulation for comparison

Outputs:

Tables 1 through 4 provide results for both fresh and salt water for the conditions of no insulation and $\frac{1}{2}$ " or 1" of insulation.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 57 of 488

> R21002, Rev 0 Attachment D Page 3 of 17

Table 1 - Minimum Flow to Avoid Freezing - Fresh Water with No Insulation

Nominal Pipe	O.D.	Schedule	I.D.	Nom. Header	Insulated (1/2-	Minim	um Flow to (Fresh \		eezing
Size				Temp.	inch)	PSL	(16°F)	PTN ((19°F)
(inch)	(inch)	-	(inch)	(°F)	(Y / N)	(gpm)	(gph)	(gpm)	(gph)
1/2	0.84	80	0.546		N	0.654	39.211	0.568	34.056
1	1.315	80	0.957		N	1.395	83.705	1.213	72.810
1 1/2	1.9	40	1.61		N	2.776	166.590	2.417	145.038
2	2.375	40	2.067	35	N	3.961	237.645	3.449	206.963
3	3.5	40	3.068	35	N	7.077	424.634	6.166	369.947
4	4.5	40	4.026		N	10.487	629.223	9.138	548.299
5	5.563	40	5.047		N	14.576	874.584	12.703	762.209
6	6.625	40	6.065		N	19.080	1144.775	16.630	997.779
1/2	0.84	80	0.546		N	0.243	14.588	0.071	4.283
1	1.315	80	0.957		N	0.723	43.380	0.629	37.762
1 1/2	1.9	40	1.61		N	1.444	86.664	1.258	75.490
2	2.375	40	2.067	40	N	2.063	123.787	1.797	107.848
3	3.5	40	3.068		N	3.692	221.527	3.218	193.056
4	4.5	40	4.026		N	5.476	328.534	4.773	286.353
5	5.563	40	5.047		N	7.615	456.907	6.638	398.283
6	6.625	40	6.065		N	9.972	598.301	8.693	521.571
1/2	0.84	80	0.546		N	0.034	2.042	0.024	1.411
1	1.315	80	0.957		N	0.090	5.385	0.046	2.762
1 1/2	1.9	40	1.61		N	1.046	62.769	0.127	7.627
2	2.375	40	2.067	45	N	1.495	89.701	1.303	78.163
3	3.5	40	3.068	45	N	2.677	160.621	2.333	139.995
4	4.5	40	4.026		N	3.971	238.286	3.462	207.711
5	5.563	40	5.047		N	5.524	331.467	4.816	288.961
6	6.625	40	6.065		N	7.235	434.109	6.308	378.463
1/2	0.84	80	0.546		N	0.020	1.186	0.015	0.909
1	1.315	80	0.957		N	0.035	2.125	0.025	1.477
1 1/2	1.9	40	1.61		N	0.075	4.471	0.042	2.502
2	2.375	40	2.067	E0.	N	0.178	10.661	0.065	3.920
3	3.5	40	3.068	50	N	2.159	129.521	0.491	29.442
4	4.5	40	4.026		N	3.203	192.184	2.792	167.534
5	5.563	40	5.047		N	4.456	267.372	3.885	233.096
6	6.625	40	6.065		N	5.837	350.198	5.089	305.320

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 58 of 488

Table 2 - Minimum Flow to Avoid Freezing - Salt Water with No Insulation

Nominal Pipe	O.D.	Schedule	I.D.	Nom. Header	Insulated (1/2-	Minin	num Flow to (Salt V		reezing
Size				Temp.	inch)	PSL	(16°F)	PTN	(19°F)
(inch)	(inch)	-	(inch)	(°F)	(Y / N)	(gpm)	(gph)	(gpm)	(gph)
1/2	0.84	80	0.546		N	0.640	0.516	0.556	0.402
1	1.315	80	0.957		N	1.364	0.804	1.186	0.606
1 1/2	1.9	40	1.61		N	2.711	1.272	2.360	0.906
2	2.375	40	2.067	35	N	3.866	1.812	3.367	1.224
3	3.5	40	3.068	33	N	6.905	4.62	6.016	2.4
4	4.5	40	4.026		N	10.230	613.8163	8.914	534.8393
5	5.563	40	5.047		N	14.217	853.043	12.390	743.396
6	6.625	40	6.065		N	18.608	1116.466	16.218	973.059
1/2	0.84	80	0.546		N	0.254	0.18	0.075	0.149
1	1.315	80	0.957		N	0.706	42.386	0.615	36.891
1 1/2	1.9	40	1.61		N	1.410	84.615	1.228	73.698
2	2.375	40	2.067	40	N	2.014	120.831	1.754	105.267
3	3.5	40	3.068		N	3.603	216.176	3.140	188.383
4	4.5	40	4.026		N	5.342	0.892	4.656	0.683
5	5.563	40	5.047		N	7.429	1.195	6.476	0.885
6	6.625	40	6.065		N	9.728	1.578	8.480	1.122
1/2	0.84	80	0.546		N	0.036	0.118	0.024	0.1
1	1.315	80	0.957		N	0.094	5.635	0.048	2.890
1 1/2	1.9	40	1.61		N	1.022	61.290	0.133	7.982
2	2.375	40	2.067	45	N	1.459	87.569	1.272	76.301
3	3.5	40	3.068	45	N	2.613	156.768	2.277	136.629
4	4.5	40	4.026		N	3.876	0.501	3.378	0.408
5	5.563	40	5.047		N	5.391	0.63	4.699	0.504
6	6.625	40	6.065		N	7.060	0.774	6.154	0.612
1/2	0.84	80	0.546		N	0.020	0.092	0.015	0.079
1	1.315	80	0.957		N	0.037	2.224	0.025	1.492
1 1/2	1.9	40	1.61		N	0.078	4.680	0.044	2.619
2	2.375	40	2.067	F0	N	0.186	11.158	0.068	4.103
3	3.5	40	3.068	50	N	2.107	0.289	0.514	0.243
4	4.5	40	4.026		N	3.126	0.366	2.725	0.306
5	5.563	40	5.047		N	4.349	0.45	3.791	0.372
6	6.625	40	6.065		N	5.696	0.54	4.966	0.444

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 59 of 488

Table 3 - Minimum Flow to Avoid Freezing - Fresh Water with Insulation

Nominal Pipe	O.D.	Schedule	I.D.	Nom. Header	Insulated (1/2-	Minim	um Flow to (Fresh		eezing
Size	0.5.	Janeadic		Temp.	inch)	DCI /	(16°F)	PTN (10°E\
(inch)	(inch)	-	(inch)	(°F)	(Y / N)	(gpm)	(gph)	(gpm)	(gph)
1/2	0.84	80	0.546	(1)	Υ Υ	0.0086	0.515	0.0067	0.402
1	1.315	80	0.957		Y	0.0080	0.804	0.0101	0.402
1 1/2	1.515	40	1.61		Y	0.0134	1.272	0.0101	0.906
2	2.375	40	2.067		Y	0.0212	1.812	0.0204	1.224
3	3.5	40	3.068	35	Y	0.0302	4.620	0.0204	2.400
4	4.5	40	4.026		γ*	0.0770 0.0295	1.770	0.0200	1.200
5	5.563	40	5.047		γ*	0.0253	2.712	0.0278	1.668
6	6.625	40	6.065		γ*	0.0738	4.428	0.0390	2.340
1/2	0.84	80	0.546		Y	0.0030	0.180	0.0025	0.150
1	1.315	80	0.957		Y	0.0043	0.258	0.0035	0.210
1 1/2	1.9	40	1.61		Y	0.0059	0.354	0.0048	0.288
2	2.375	40	2.067	40	Y	0.0073	0.438	0.0059	0.354
3	3.5	40	3.068		Υ	0.0110	0.660	0.0086	0.516
4	4.5	40	4.026		Υ	0.0149	0.894	0.0114	0.684
5	5.563	40	5.047		Υ	0.0199	1.194	0.0148	0.888
6	6.625	40	6.065		Υ	0.0263	1.578	0.0187	1.122
1/2	0.84	80	0.546		Υ	0.0020	0.120	0.0017	0.102
1	1.315	80	0.957		Υ	0.0027	0.162	0.0023	0.138
1 1/2	1.9	40	1.61		Υ	0.0037	0.222	0.0031	0.186
2	2.375	40	2.067		Υ	0.0045	0.270	0.0038	0.228
3	3.5	40	3.068	45	Υ	0.0065	0.390	0.0053	0.318
4	4.5	40	4.026		Υ	0.0084	0.504	0.0068	0.408
5	5.563	40	5.047		Υ	0.0105	0.630	0.0084	0.504
6	6.625	40	6.065		Υ	0.0129	0.774	0.0102	0.612
1/2	0.84	80	0.546		Υ	0.0015	0.090	0.0013	0.078
1	1.315	80	0.957		Υ	0.0021	0.126	0.0018	0.108
1 1/2	1.9	40	1.61		Υ	0.0028	0.168	0.0024	0.144
2	2.375	40	2.067		Υ	0.0034	0.204	0.0029	0.174
3	3.5	40	3.068	50	Υ	0.0048	0.288	0.0041	0.246
4	4.5	40	4.026		Υ	0.0061	0.366	0.0051	0.306
5	5.563	40	5.047		Υ	0.0075	0.450	0.0062	0.372
6	6.625	40	6.065		Υ	0.009	0.540	0.0074	0.444

^{* 1&}quot; insulation required

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 60 of 488

R21002, Rev 0 Attachment D Page 6 of 17

Table 4 - Minimum Flow to Avoid Freezing - Salt Water with Insulation

ZACHRY

Nominal Pipe	O.D.	Schedule	I.D.	Nom. Header	Insulated (1/2-	Minim		Prevent Fi Water)	eezing
Size				Temp.	inch)	PSL (16°F)		PTN (19°F)
(inch)	(inch)		(inch)	(°F)	(Y / N)	(gpm)	(gph)	(gpm)	(gph)
1/2	0.84	80	0.546		Υ	0.0027	0.162	0.0021	0.126
1	1.315	80	0.957		Υ	0.0038	0.228	0.0030	0.180
1 1/2	1.9	40	1.61		Υ	0.0053	0.318	0.0040	0.240
2	2.375	40	2.067	25	Υ	0.0065	0.390	0.0049	0.294
3	3.5	40	3.068	35	Υ	0.0096	0.576	0.0071	0.424
4	4.5	40	4.026		Υ	0.0127	0.762	0.0092	0.552
5	5.563	40	5.047		Υ	0.0166	0.996	0.0116	0.696
6	6.625	40	6.065		Υ	0.0212	1.272	0.0142	0.852
1/2	0.84	80	0.546		Υ	0.0017	0.102	0.0014	0.084
1	1.315	80	0.957		Υ	0.0024	0.144	0.0019	0.114
1 1/2	1.9	40	1.61		Υ	0.0033	0.198	0.0026	0.156
2	2.375	40	2.067	40	Υ	0.0039	0.234	0.0031	0.186
3	3.5	40	3.068	40	Υ	0.0056	0.336	0.0044	0.264
4	4.5	40	4.026		Υ	0.0071	0.426	0.0055	0.330
5	5.563	40	5.047		Υ	0.0088	0.528	0.0068	0.408
6	6.625	40	6.065		Υ	0.0107	0.642	0.008	0.480
1/2	0.84	80	0.546		Υ	0.0014	0.084	0.0011	0.066
1	1.315	80	0.957		Υ	0.0019	0.114	0.0015	0.090
1 1/2	1.9	40	1.61		Υ	0.0025	0.15	0.002	0.120
2	2.375	40	2.067	45	Υ	0.003	0.18	0.0024	0.144
3	3.5	40	3.068	45	Υ	0.0042	0.252	0.0034	0.204
4	4.5	40	4.026		Υ	0.0052	0.312	0.0042	0.252
5	5.563	40	5.047		Υ	0.0064	0.384	0.0051	0.306
6	6.625	40	6.065		Υ	0.0076	0.456	0.006	0.360
1/2	0.84	80	0.546		Υ	0.0011	0.066	0.0009	0.054
1	1.315	80	0.957		Υ	0.0019	0.114	0.0015	0.090
1 1/2	1.9	40	1.61		Υ	0.0025	0.15	0.002	0.120
2	2.375	40	2.067	50	Υ	0.003	0.18	0.0024	0.144
3	3.5	40	3.068	30	Υ	0.0042	0.252	0.0034	0.204
4	4.5	40	4.026		Υ	0.0052	0.312	0.0042	0.252
5	5.563	40	5.047		Υ	0.0064	0.384	0.0051	0.306
6	6.625	40	6.065		Υ	0.0076	0.456	0.006	0.360

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 61 of 488

> R21002, Rev 0 Attachment D Page 7 of 17

Methodology:

NATIONAL RESEARCH COUNCIL OF CANADA

DIVISION OF BUILDING RESEARCH

No.

20-E04, Rev 0 Attachment N Page 2 of 12

TECHNICAL NOTE

NOT FOR PUBLICATION

POR INTERNAL USE

PREPARED BY D. G. Stephenson CHECKED BY A. G. W.

APPROVED BY N. B. H.

DATE June 1964

PREPARED FOR. Inquiry Reply

SUBJECT PREVENTING EXPOSED WATER PIPES FROM FREEZING

A water pipe that is exposed to an environment at temperatures lower than the freezing point of water will not necessarily freeze even without insulation if there is a continuous flow through it, but when there is no flow it will freeze regardless of insulation. The required minimum flow rate depends on the temperature of the water entering the exposed section of pipe and the resistance to heat transfer from the water to the environment. This note presents an equation relating these parameters. It can be used to solve for any one of the three variables when the other two are known. Information is also presented which facilitates the calculation of the thermal resistance between water in the pipe and the environment, for conditions that could cause freezing.

Basic Equation for Heat Loss

The rate of heat transfer from fluid flowing through a pipe is:

$$Q = \frac{L \cdot \theta_{mean}}{R_{Total}}$$

where $R_{\mbox{Total}}$ is the resistance to heat flow per unit length of pipe,

L is the length of the exposed section of pipe,

θ is the difference between the fluid temperature and the ambient air temperature.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 62 of 488

> R21002, Rev 0 Attachment D Page 8 of 17

20-E04, Rev 0 Attachment N Page 3 of 12

- 2 -

Let T_{in} = temperature of fluid entering pipe, T_{out} = temperature of fluid leaving pipe, $T_{ambient}$ = temperature of the environment.

Then $\Theta_{in} = T_{in} - T_{ambient}$ $\Theta_{out} = T_{out} - T_{ambient}$ $\Theta_{mean} = \frac{\Theta_{in} - \Theta_{out}}{In (\Theta_{in}/\Theta_{out})} = \frac{T_{in} - T_{out}}{In (\Theta_{in}/\Theta_{out})}$

The heat loss can also be related to the fluid flow rate and the temperature drop between inlet and outlet.

where W is mass flow rate through the pipe, C is the specific heat of the fluid (= 1,0 for water).

Combining the two independent expressions for Q gives:

$$l \cdot n \cdot (\Theta_{in}/\Theta_{out}) = \frac{L}{WCR_{Total}}$$
or $\Theta_{in} = \Theta_{out}$
 e
 L/WCR_{Total}

Thermal Resistances

The total resistance to heat flow between fluid flowing through a pipe and the outside environment is the sum of the following four components:

(a) R_{inside}, which depends on the rate of flow and the inside diameter of the pipe. Figure 1 gives the relationship for cold water flowing through a long pipe.

(b)
$$R_{\text{pipe}} = \frac{\ln (O.D./I.D.)_{\text{pipe}}}{2\pi K_{\text{pipe}}}$$

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 63 of 488

> R21002, Rev 0 Attachment D Page 9 of 17

20-E04, Rev 0 Attachment N Page 4 of 12

- 3 -

where O.D. and I.D. are the outside and inside diameters of the pipe respectively and $K_{\mbox{pipe}}$ is the thermal conductivity of the pipe material.

Material	K (Btu ft hr *F)
Copper	220
Aluminum	120
Steel	28
Plastic	0.1

(c)
$$R_{\text{insulation}} = \frac{I \cdot n \cdot (O.D./I.D.)_{\text{insulation}}}{2 \pi K_{\text{insulation}}}$$

For most pipe insulations the conductivity has a value of about 0.025 Btu/hr ft *F.

(d)
$$R_{\text{outside}} = \frac{1}{H_c + H_R}$$

where H_C and H_R are the conductances per lineal foot of pipe due to convection and radiation respectively. H_C depends on the outside diameter of the cylinder and the velocity of the air blowing across it. The relationship is shown graphically in Figure 2. H_R depends on the diameter of the cylinder and the emissivity of the outer surface. For surfaces with a high value of emissivity, H_R is approximately equal to twice the outside diameter expressed in feet. This is usually small compared to H_C and a lower emissivity surface makes it smaller still.

Minimum Water Temperature

If a pipe is to remain completely free of ice, its inside surface temperature must not fall below 32°F, which means that the water temperature must be above 32°F. The minimum value of Tout is given by:

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 64 of 488

> R21002, Rev 0 Attachment D Page 10 of 17

20-E04, Rev 0 Attachment N Page 5 of 12

 $T_{out} = 32 + \left(\frac{R_{inside}}{R_{pipe} + R_{insulation} + R_{outside}}\right) \left(32 - T_{ambient}\right)$ or $\theta_{out} = \left(\frac{R_{Total}}{R_{pipe} + R_{insulation} + R_{outside}}\right) \left(32 - T_{ambient}\right)$

Example Problem

Find the required inlet water temperature to prevent freezing in a 500-ft length of 6-in. schedule 40 steel pipe covered by a 1-in. layer of insulation. The minimum water flow rate will be 3 gallons/min. (1800 lb/hr) and the ambient conditions are -10°F with a 30-mile-per-hour wind.

Data: 6-in. schedule 40 steel pipe

I. D. pipe = 6.065 in. O. D. pipe = 6.625 in. O. D. insulation = 8.625 in.

Solution:

A. Calculation of Thermal Resistances

$$\frac{W}{\pi \times I.D.} = \frac{1800}{\pi \times 6.065/12} = 1134$$
From Figure 1, R_{inside} = 0.25

R_{pipe} = In (6.625/6.065) / (2 π x 28) = 0.0005 i.e., negligible
R_{insulation} = In (8.625/6.625) / (2 π x 0.025) = 1.68

R_{outside} = $\frac{1}{H_c + H_R}$
Wind Speed x O. D. insulation = 30 x $\frac{8.625}{12}$ = 21.6

∴ From Figure 2, H_c = 19.8

H_R = $\frac{2 \times 8.625}{12}$ = 1.4

R_{outside} = $\frac{1}{19.8 + 1.4}$ = 0.05

R_{Total} = 0.25 + 1.68 + 0.05 = 1.98

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 65 of 488

> R21002, Rev 0 Attachment D Page 11 of 17

20-E04, Rev 0 Attachment N

- 5 -

B. Calculation of Water Outlet Temperature

$$\Theta_{\text{out}} = \left(\frac{R_{\text{Total}}}{R_{\text{pipe}} + R_{\text{insulation}} + R_{\text{outside}}}\right) = \frac{1.98}{1.73} \times 42 = 48 \text{ degrees}$$

$$T_{\text{out}} = T_{\text{ambient}} + \Theta_{\text{out}} = -10 + 48 = \frac{38 \cdot \text{F}}{1.000 \cdot \text{F}}$$

C. Calculation of Water Inlet Temperature

$$\theta_{\text{in}} = \theta_{\text{out}} = \theta_{\text{out}} = \frac{500}{1800 \times 1 \times 1.98} = 0.140$$

$$\theta_{\text{in}} = 48 e^{0.140} = 55 \text{ degrees}$$

$$T_{\text{in}} = T_{\text{ambient}} + \theta_{\text{in}} = -10 + 55 = \frac{45 \text{ °F}}{100}$$

The problem might have been to determine the minimum allowable flow rate for a given inlet temperature, say $T_{in} = 48^{\circ}F$.

Solution:

- A. as in first example assuming that flow will be laminar and R_{inside} = .25 regardless of flow rate
- B. as in first example
- C. Calculation of Minimum Flow Rate

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 66 of 488

> R21002, Rev 0 Attachment D Page 12 of 17

.10 Laminar Flow Turbulent Flow

Output

W in lb/hr

I.D. in ft

FIGURE 1
THERMAL RESISTANCE BETWEEN PIPE AND WATER FLOWING THROUGH IT

<u>₩</u> Л 1. D. 10⁴

105

103

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 67 of 488

> R21002, Rev 0 Attachment D Page 13 of 17

20-E04, Rev 0 Attachment N Page 8 of 12

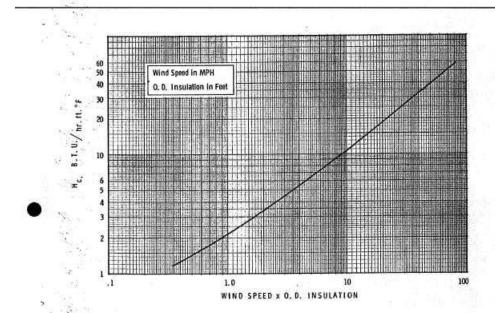


FIGURE 2
CONVECTIVE HEAT TRANSFER FROM CYLINDER TO AIR IN CROSSFLOW

AA 3150

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 68 of 488

ZACHRY

BENCHMARK CASE	1
Inputs	10
Flow Rate (gpm)	3.596
Inlet Temperature (F)	48
Density (lbm/ft³)	62.4
Flow rate (lbm/hr)	1,799.79
Length (ft)	500
ID Pipe (in)	6.065
OD _{Pipe} (in)	6.625
OD _{Insulation} (in)	8.625
Ambient Temp (F)	-10
Wind Speed (mph)	30
Pipe Conductivity (K(BTU/ft*hr*F)	28
Insulation Conductivity (K(BTU/ft*hr*F)	0.025
Specific Heat of Water	1

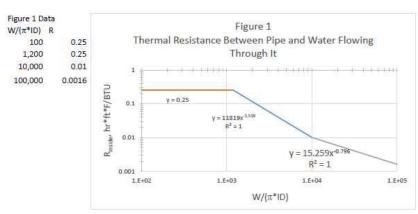
olution:	
. Calculation of Thermal Resi	istances
V/(π*ID)	1,133.50
inside	0.25
pipe	0.000501996
insulation	1.679495849
Vind Speed * OD Insulation	21.5625
c	19.92629455
R	1.4375
outside	0.046808164
total	1.976806009

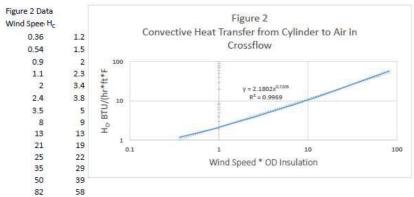
B. Calculation of Water Outlet Temperature
θουτ 48.08059037 required bulk water $T_{out}(F) 38.08059037 temperature to prevent water from freezing within the inside$

C. Calculation of Water Inlet Temperature Given boundary layer.

θin 55.34 T_{in} (F) 45.34

C. Calculation of Required Water Flow Rate Given Temp


 $\begin{array}{lll} \theta in & 58 \\ In(\theta_n/\theta_{out}) & 0.187564441 \\ Flow Rate (lbm/hr) & 1,348.51 \\ Density (lbm/ft^3) & 62.4 \\ Flow Rate (gpm) & 2.69 \end{array}$


Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 69 of 488

> R21002, Rev 0 Attachment D Page 15 of 17

20-E04, Rev 0 Attachment N Page 10 of 12

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 70 of 488

ANO ECP Temporary HDPE Piping Example Inputs Flow Rate (gpm) Inlet Temperature (F) Density (lbm/ft3) 62.4 Flow rate (lbm/hr) 28,528.38 Length (ft) 2500 ID Pipe (in) 26.26 OD_{Pipe} (in) 30 OD_{Insulation} (in) 30 Ambient Temp (F) 19 Wind Speed (mph) 30 Pipe Conductivity (K(BTU/ft*hr*F) 0.1 Insulation Conductivity (K(BTU/ft*hr*F) 0.025 Specific Heat of Water

ZACHRY

Solution:	
A. Calculation of Thermal Res	istances
W/(π*ID)	4,149.67
R _{inside}	0.03805711
R _{pipe}	0.211915623
R _{insulation}	0
Wind Speed * OD to sulation	75
H _c	48.91904561
H _R	5
Routside	0.018546322
R _{total}	0.268519055

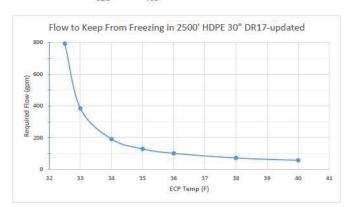
B. Calculation of Water Outlet Temperature the required bulk water θ out 15.14674242 temperature to prevent $T_{\text{out}}(F)$ 34.14674242 water from freezing within the inside boundary layer.

C. Calculation of Water Inlet Temperature Given Flow θ in 20.99 $T_{\rm in}$ (F) 39.99

C. Calculation of Required Water Flow Rate Given Temp

In(\text{\text{\$\text{\$\ell}\$}(\text{\$\ell\$}_{\text{\$\ell\$}}(\text{\$\ell\$}_{\text{\$\ell\$}}(\text{\$\ell\$}_{\text{\$\ell\$}}) \\
\text{\$0.326736951} \\
\text{Flow Rate (lbm/hr)} \\
\text{\$2.494.87} \\
\text{\$\text{\$\ell\$}} \\
\text{\$\ell\$} \\
\text{\$\text{\$\ell\$}} \\
\text{\$\ell\$} \\
\text{\$\el

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 71 of 488



20-E04, Rev 0 Attachment N Page 12 of 12

Flow to Keep From Freezing in 2500' HDPE 30" DR17

ZACHRY

ECP Temp (F) Req'd Flow (gpm)
40 57
38 72
36 101
35 129
34 191
33 385
32.5 793

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 72 of 488

R21002, Rev 0 Attachment E Page 1 of 32

Attachment E Branch Line Freeze Protection

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 73 of 488

> R21002, Rev 0 Attachment E Page 2 of 32

Branch Line Freeze Protection

Analysis summary:

The heat transfer model of a dead-leg pipe segment is simulated in GOTHIC using a 3D subdivided control volume, fixed at one end to a constant-temperature flowing process fluid. The dead leg volume dimensions correspond to the length and inside diameter of the pipe segment under consideration, with a cylindrical blockage establishing the correct internal free volume and surface area distributions. The dead leg pipe segments are nodalized in 12 equal axial nodes. In the transverse direction, three nodes divide the volume. This arrangement permits buoyancy-driven fluid exchange between the dead leg and the process fluid through a 3D connector.

The process fluid pipe is subdivided in the axial and transverse direction with sufficient granularity to accommodate the 3D connector to the dead leg. Other 3D connectors link the process fluid with upstream and downstream lumped volumes that provide the source and sink for the process fluid via connected boundary conditions.

Figure 4 - GOTHIC Control Volume Arrangement

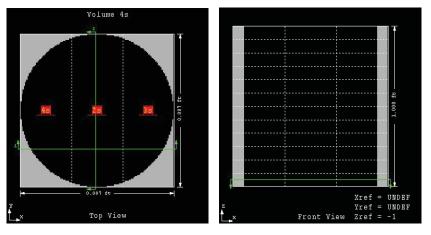


Figure 5 – Dead Leg Subdivided Volume

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 74 of 488

R21002, Rev 0 Attachment E Page 3 of 32

Thermal conductors representing the pipe wall span the length of the dead-leg pipe, one in each of the three transverse node planes. Surface A contacts the fluid, and surface B contacts the outside atmosphere. 2D assemblies defined for each conductor account for heat transmission through the pipe wall from the warm process pipe toward the end of the dead leg.

GOTHIC's "direct" surface option governs heat transfer from the dead leg liquid to the inner pipe wall. This option is appropriate for general use when boiling is not expected.

For the outside pipe or insulation surface in a 10-mph wind, a thermal boundary condition controls the heat transfer rate, where the time-varying ambient temperature corresponds to the plant-specific sinusoidal cold-weather temperature profile for St. Lucie. A diameter-specific heat transfer coefficient reflects the constant 10 mph wind conditions. The correlation applied to calculate the heat transfer coefficient is described below.

For the outside pipe or insulation surface with no wind effects, GOTHIC's default heat transfer coefficient for natural convection over a horizontal pipe is used. In this case, heat transfer occurs to a separate temperature-controlled volume with zero air flow, rather than a thermal boundary condition.

On the process side of the 2D conductor assemblies, a specified-temperature thermal boundary condition forces the inboard edge of the assembly to match the process fluid temperature. At the outboard end, the selected surface option matches that applied to the pipe/insulation outer surface.

Assumptions:

- While the postulated cold weather event lasts 4 days, only the first diurnal cycles is evaluated.
 Since the temperature change occurs very slowly, the system always remains in a quasi-steady state, so overnight transients are essentially identical.
- Freezing is considered as being "prevented" if the minimum liquid temperature in all dead leg cells remains above 33 °F, and GOTHIC does not predict ice formation on any heat conducting surface (indicated by an ice volume fraction, α_i, greater than 0.01).
- Pipe dimensions correspond to Schedule 40 for the indicated NPS. Material properties correspond to carbon steel.
- The process fluid piping is assigned an arbitrary diameter of 8 inches, with an arbitrarily low flow rate at a fixed temperature. Process flow through the small subdivisions at the intersection of the dead leg contributes to the time step limitations for the GOTHIC scenarios. A lower process flow permits faster case run times, so a slow flow rate is selected. Undocumented sensitivity cases show that increasing process fluid flow rate does not significantly impact the overnight temperature profiles in the dead legs.
- Initial temperature in the dead leg is 40 °F. (This has little impact on the analysis, since quasisteady state conditions are established very early, which track with the sinusoidal outdoor temperature.)
- Process pipe wall temperature matches the fixed fluid temperature.
- Heat transfer conditions at the outer surface are reasonably modeled using textbook heat transfer correlations for a cylinder in crossflow. Calculated HTCs are diameter-specific.
- Calcium silicate (cal-sil) insulation properties from Ref. [2] are assumed.

GOTHIC cases are run to evaluate combinations of the following scenario inputs:

- ½" to 4" NPS branch lines, oriented downward, horizontally, and upward
- 50 °F to 400 °F process fluid, typically in increments of 10, 25, or 50 °F

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 75 of 488

For each temperature / pipe diameter combination considered, dead leg pipe length is gradually incremented upward from 0.5 ft until freezing conditions are encountered to identify the maximum allowable no-freeze pipe length.

Calculation of Heat Transfer Coefficient for Air Crossflow over the Pipe

Governing Equation

From Ref. [1] (Incropera), Sec. 7.4.1, the heat transfer coefficient at the surface of a cylinder in convective crossflow may be estimated using the following correlation:

$$Nu_D \equiv \frac{hD}{k} = 0.3 + \frac{0.62Re_D^{1/2}Pr^{1/3}}{\left[1 + \left(0.4/Pr\right)^{2/3}\right]^{1/4}} \left[1 + \left(\frac{Re_D}{282,000}\right)^{5/8}\right]^{4/5}$$
 Eqn. 1

Where:

Nu_D = Nusselt number (dimensionless)

h = heat transfer coefficient, BTU/ft2-sec-°F

D = cylinder outer diameter, ft

k = thermal conductivity of convective fluid (air, BTU/sec-ft-°F)

Pr = Prandtl number (dimensionless)

Re_D = Reynolds number (dimensionless)

Values for Pr, Re_D, and k are determined as follows:

Prandtl Number

The Prandtl number relates mass and energy diffusion rates at the fluid-surface boundary layer. For air, in cold weather conditions, a value of 0.717 is interpolated from Table A.4 of Ref. [1], corresponding to 260 K (25 °F).

Reynolds Number

For a cylinder in crossflow, the Reynolds number is a function of fluid velocity, cylinder diameter, and kinematic viscosity, as shown in Section 7.4.1 of Ref. [1]:

$$Re_D = \frac{VD}{v}$$
 Eqn. 2

Where:

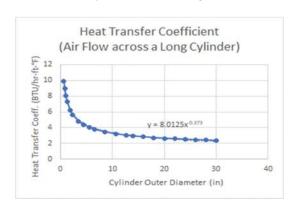
V = air velocity, specified as 10 mph (14.7 ft/sec) for FPL winter conditions $v = kinematic viscosity, ft^2/sec$

Kinematic viscosity is a function of temperature. Interpolating from Table A.4 of Ref. [1] gives the following value for air at 260 K (25 °F), representative of the ambient temperatures being evaluated:

$$v = 1.14 \times 10^{-5} \text{ m}^2/\text{sec} = 1.33 \times 10^{-4} \text{ ft}^2/\text{sec}$$

Thermal Conductivity of Air

Interpolating from Table A.4 of Ref. [1] gives the following thermal conductivity for air at 260 K (25 °F), representative of the outdoor temperature range being evaluated:


 $k = 0.0231 \text{ W/m-K} = 0.0133 \text{ BTU/hr-ft-}^{\circ}\text{F}$

Application to PSL/PTN Conditions

Using the Eqn. 1, heat transfer coefficients are calculated below for a variety of pipe sizes, given the 10 mph wind speed input considered for FPL.

NPS	Outer Diameter		Reynolds Number	Nusselt Number	Heat Transfer Coefficient (Eqn. 1)
	(in)	(ft)	(Eqn. 2)	(Eqn 1)	(BTU/hr-ft-°F)
3/8	0.675	0.056	6226	41.6	9.87
1/2	0.84	0.070	7748	46.8	8.93
3/4	1.05	0.088	9686	52.9	8.07
1	1.315	0.110	12130	60.0	7.3
1-1/2	1.9	0.158	17526	73.8	6.22
2	2.375	0.198	21908	84.0	5.66
3	3.5	0.292	32285	105.6	4.83
4	4.5	0.375	41509	123.0	4.38
5	5.563	0.464	51315	140.3	4.04
6	6.625	0.552	61111	156.7	3.79
8	8.625	0.719	79559	185.9	3.45
10	10.75	0.896	99161	215.0	3.2
12	12.75	1.063	117610	241.4	3.03

Presented graphically, the heat transfer coefficients conform very well to a power function curve fit, which is used to develop the coefficients assigned to the individual GOTHIC cases:

Power Curve Approximation:

b	log10(a)	а
-0.373	0.904	8.013

$$h = a \cdot d^b$$

Figure 6 – Power curve approximation for heat transfer coefficient with 10 mph wind

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 77 of 488

Calcium Silicate Insulation Properties

Material properties for calcium silicate are taken from [2]. For specific heat, [2] provides a range of 0.8 - 1.2 kj/kg-K. To minimize the effectiveness of the cal-sil as a heat sink, the lower end of this band is selected. Conductivity is extrapolated back to -18C (0F) to cover cold weather conditions.

Temp	Density	Cond.	Sp. Heat
°C	kg/m³	W/m-K	kJ/kg-K
-18	260	0.07	0.8
200	260	0.08	0.8
400	260	0.09	0.8
600	260	0.12	0.8
800	260	0.15	0.8

Converting to English units:

Temp	Density	Cond.	Sp. Heat
°F	lbm/ft³	BTU/hr-ft-F	BTU/lbm-F
0	16.2	0.04	0.19
392	16.2	0.046	0.19
752	16.2	0.052	0.19
1112	16.2	0.069	0.19
1472	16.2	0.087	0.19

Only the first row of data is utilized in the models, since the overall temperature range is small for the cold weather cases.

References

- Incropera, Frank P., et. al., "Fundamentals of Heat and Mass Transfer, Sixth Edition", John Wiley & Sons. Inc., 2007.
- Microcal 1100 Datasheet for Lightweight Calcium Silicate Boards, Data Sheet 33.7: https://www.silca-online.de/fileadmin/2.pdf/04.produktdatenblaetter-ht-en/PDB-MICROCAL EN.pdf

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 78 of 488

> R21002, Rev 0 Attachment E Page 7 of 32

Results – Uninsulated Branch Lines

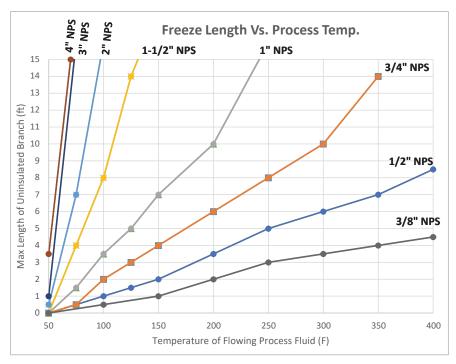


Figure 7 – Max allowable lengths of <u>uninsulated horizontal</u> branch lines

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 79 of 488

> R21002, Rev 0 Attachment E Page 8 of 32

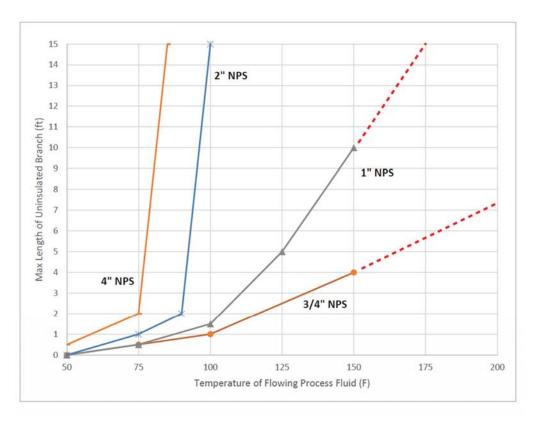


Figure 8 – Max allowable lengths of <u>uninsulated upward</u> oriented branch lines

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 80 of 488

> R21002, Rev 0 Attachment E Page 9 of 32

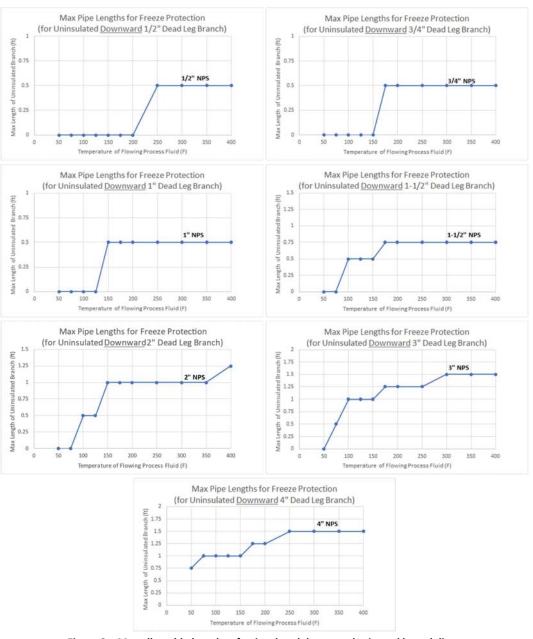


Figure 9 – Max allowable lengths of <u>uninsulated downward</u> oriented branch lines

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 81 of 488

> R21002, Rev 0 Attachment E Page 10 of 32

Results - Branch Lines with 1" Insulation

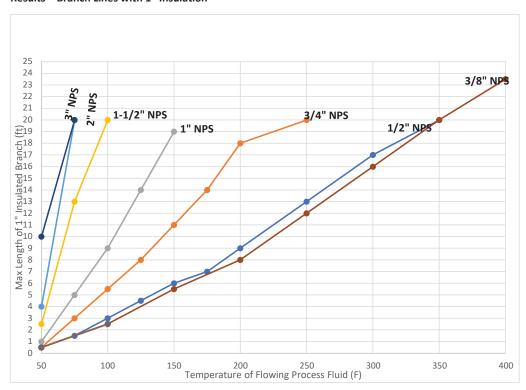


Figure 10 – Max allowable lengths of 1" insulated horizontal branch lines

(Use Horizontal)

Figure 11 – Max allowable lengths of 1" insulated upward oriented branch lines

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 82 of 488

> R21002, Rev 0 Attachment E Page 11 of 32

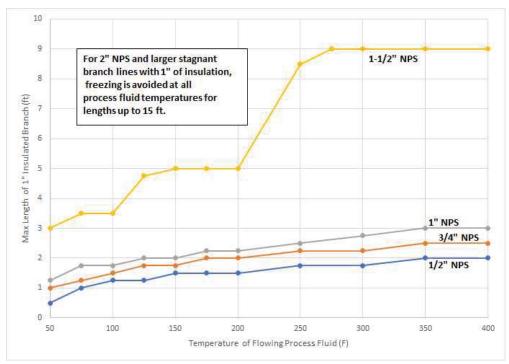


Figure 12 – Max allowable lengths of 1" insulated downward oriented branch lines

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 83 of 488

> R21002, Rev 0 Attachment E Page 12 of 32

Results -- Sensitivity Cases for 1/2" Branch Lines with and without Wind Effects

Additional GOTHIC cases were performed to demonstrate the effect of wind speed on the propensity for dead legs to freeze under the postulated cold weather temperature conditions. For cases with no wind, GOTHIC's default heat transfer coefficient correlations for natural circulation air flow around a horizontal pipe are used. Figures 13 through 15 show that wind speed is a significant contributor to the maximum allowable length when branch lines are uninsulated. However, the wind effect is significantly reduced when the branch line is insulated, as shown in Figures 16 through 18.

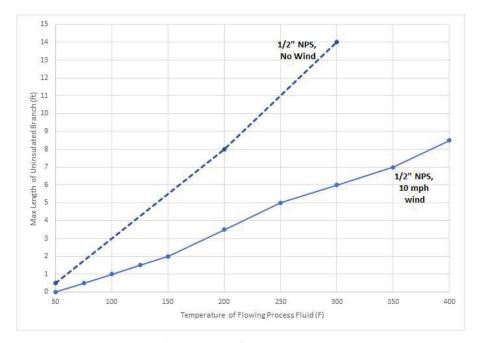


Figure 13 – Max allowable lengths of <u>uninsulated ½" horizontal</u> dead leg branch lines, with and without wind effects

R21002, Rev 0 Attachment E Page 13 of 32

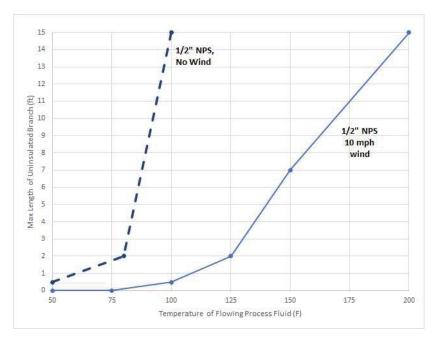


Figure 14 – Max allowable lengths of $\underline{\text{uninsulated } \underline{\%''}}$ upward dead leg branch lines, with and without wind effects

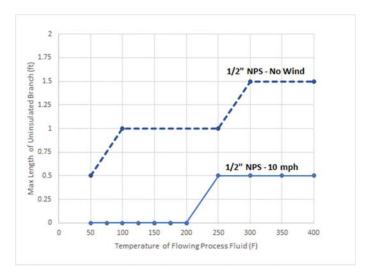


Figure 15 – Max allowable lengths of $\underline{\text{uninsulated } 2'' \text{downward}}$ dead leg branch lines, with and without wind effects

R21002, Rev 0 Attachment E Page 14 of 32

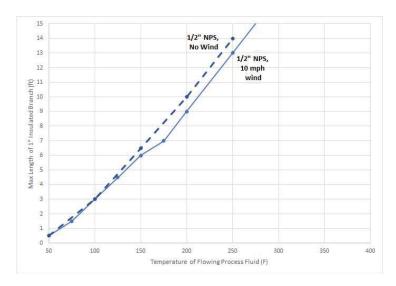


Figure 16 – Max allowable lengths of ½" <u>horizontal</u> dead leg branch lines <u>with 1" insulation</u>, with and without wind effects

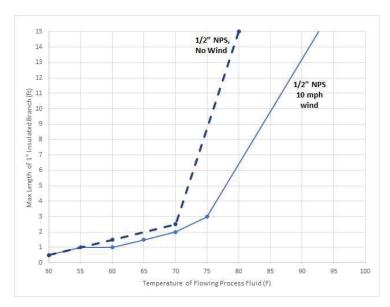


Figure 17 – Max allowable lengths of $\frac{1}{2}$ " upward dead leg branch lines with 1" insulation, with and without wind effects

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 86 of 488

> R21002, Rev 0 Attachment E Page 15 of 32

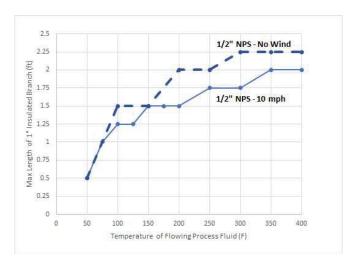
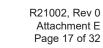


Figure 18 – Max allowable lengths of $\frac{1}{2}$ " downward dead leg branch lines with 1" insulation, with and without wind effects

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 87 of 488



Vertical Upward Analysis Values

Orientation	Orientation Code	NPS	Temperature	Maximum Unprotected Length	Basis:
Upward	TV	0.375	40	0.00	Н
Upward	TV	0.375	50	0.00	Н
Upward	TV	0.375	60	0.10	Н
Upward	TV	0.375	70	0.20	Н
Upward	TV	0.375	80	0.30	Н
Upward	TV	0.375	90	0.40	Н
Upward	TV	0.375	100	0.50	Н
Upward	TV	0.375	110	0.60	Н
Upward	TV	0.375	120	0.70	Н
Upward	TV	0.375	130	0.80	Н
Upward	TV	0.375	140	0.90	Н
Upward	TV	0.375	150	1.00	Н
Upward	TV	0.375	160	1.20	Н
Upward	TV	0.375	170	1.40	Н
Upward	TV	0.375	180	1.60	Н
Upward	TV	0.375	190	1.80	Н
Upward	TV	0.375	200	2.00	Н
Upward	TV	0.375	210	2.20	Н
Upward	TV	0.375	220	2.40	Н
Upward	TV	0.375	230	2.60	Н
Upward	TV	0.375	240	2.80	Н
Upward	TV	0.375	250	3.00	Н
Upward	TV	0.375	260	3.10	Н
Upward	TV	0.375	270	3.20	Н
Upward	TV	0.375	280	3.30	Н
Upward	TV	0.375	290	3.40	Н
Upward	TV	0.375	300	3.50	Н
Upward	TV	0.375	310	3.60	Н
Upward	TV	0.375	320	3.70	Н
Upward	TV	0.375	330	3.80	Н
Upward	TV	0.375	340	3.90	Н
Upward	TV	0.375	350	4.00	Н
Upward	TV	0.375	360	4.10	Н
Upward	TV	0.375	370	4.20	Н
Upward	TV	0.375	380	4.30	Н
Upward	TV	0.375	390	4.40	Н
Upward	TV	0.375	400	4.5	Н

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 88 of 488

Orientation	Orientation Code	NPS	Temperature	Maximum Unprotected Length	Basis:
Upward	TV	0.50	40	0.00	Н
Upward	TV	0.50	50	0.00	Н
Upward	TV	0.50	60	0.20	Н
Upward	TV	0.50	70	0.40	Н
Upward	TV	0.50	75	0.50	Н
Upward	TV	0.50	80	0.60	Н
Upward	TV	0.50	90	0.80	Н
Upward	TV	0.50	100	1.00	Н
Upward	TV	0.50	110	1.20	Н
Upward	TV	0.50	120	1.40	Н
Upward	TV	0.50	125	1.50	Н
Upward	TV	0.50	130	1.60	Н
Upward	TV	0.50	140	1.80	Н
Upward	TV	0.50	150	2.00	Н
Upward	TV	0.50	160	2.30	Н
Upward	TV	0.50	170	2.60	Н
Upward	TV	0.50	180	2.90	Н
Upward	TV	0.50	190	3.20	Н
Upward	TV	0.50	200	3.50	Н
Upward	TV	0.500	210	3.80	Н
Upward	TV	0.500	220	4.10	Н
Upward	TV	0.500	230	4.40	Н
Upward	TV	0.500	240	4.70	Н
Upward	TV	0.500	250	5.00	Н
Upward	TV	0.500	260	5.20	Н
Upward	TV	0.500	270	5.40	Н
Upward	TV	0.500	280	5.60	Н
Upward	TV	0.500	290	5.80	Н
Upward	TV	0.500	300	6.00	Н
Upward	TV	0.500	310	6.20	Н
Upward	TV	0.500	320	6.40	Н
Upward	TV	0.500	330	6.60	Н
Upward	TV	0.500	340	6.80	Н
Upward	TV	0.500	350	7.00	Н
Upward	TV	0.500	360	7.30	Н
Upward	TV	0.500	370	7.60	Н
Upward	TV	0.500	380	7.90	Н
Upward	TV	0.500	390	8.20	Н

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 89 of 488

Orientation	Orientation Code	NPS	Temperature	Maximum Unprotected Length	Basis:
Upward	TV	0.500	400	8.500	Н
Upward	TV	0.75	40	0.00	ı
Upward	TV	0.75	50	0.00	А
Upward	TV	0.75	60	0.20	ı
Upward	TV	0.75	70	0.40	I
Upward	TV	0.75	75	0.50	А
Upward	TV	0.75	80	0.60	I
Upward	TV	0.75	90	0.80	I
Upward	TV	0.75	100	1.00	Α
Upward	TV	0.75	110	2.60	I
Upward	TV	0.75	120	4.20	I
Upward	TV	0.75	125	2.50	А
Upward	TV	0.75	130	7.40	L
Upward	TV	0.75	140	12.20	L
Upward	TV	0.75	150	4.00	L
Upward	TV	0.750	160	4.60	L
Upward	TV	0.750	170	5.20	L
Upward	TV	0.750	180	5.80	L
Upward	TV	0.750	190	6.40	L
Upward	TV	0.750	200	7.00	L
Upward	TV	0.750	210	7.60	L
Upward	TV	0.750	220	8.20	L
Upward	TV	0.750	230	8.80	L
Upward	TV	0.750	240	9.40	L
Upward	TV	0.750	250	10.00	L
Upward	TV	0.750	260	10.60	L
Upward	TV	0.750	270	11.20	L
Upward	TV	0.750	280	11.80	L
Upward	TV	0.750	290	12.40	L
Upward	TV	0.750	300	13.00	L
Upward	TV	0.750	310	13.60	L
Upward	TV	0.750	320	14.20	L
Upward	TV	0.750	330	14.80	L
Upward	TV	0.750	340	15.40	L
Upward	TV	0.750	350	16.00	L
Upward	TV	0.750	360	16.60	L
Upward	TV	0.750	370	17.20	L
Upward	TV	0.750	380	17.80	L

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 90 of 488

Orientation	Orientation Code	NPS	Temperature	Maximum Unprotected Length	Basis:
Upward	TV	0.750	390	18.40	L
Upward	TV	0.750	400	19.00	L
Upward	TV	1.00	40	0.00	ı
Upward	TV	1.00	50	0.00	А
Upward	TV	1.00	60	0.20	I
Upward	TV	1.00	70	0.40	I
Upward	TV	1.00	75	0.50	А
Upward	TV	1.00	80	0.70	I
Upward	TV	1.00	90	1.10	I
Upward	TV	1.00	100	1.50	А
Upward	TV	1.00	110	3.00	I
Upward	TV	1.00	115	4.50	ļ
Upward	TV	1.00	120	11.75	Ţ
Upward	TV	1.00	125	5.00	А
Upward	TV	1.000	130	19.00	1
Upward	TV	1.000	140	19.00	1
Upward	TV	1.000	150	10.00	А
Upward	TV	1.000	160	12.00	L
Upward	TV	1.000	170	14.00	L
Upward	TV	1.000	180	16.00	L
Upward	TV	1.000	190	18.00	L
Upward	TV	1.000	200	20.00	L
Upward	TV	1.000	210	20.00	L
Upward	TV	1.000	220	20.00	L
Upward	TV	1.000	230	20.00	L
Upward	TV	1.000	240	20.00	L
Upward	TV	1.000	250	20.00	L
Upward	TV	1.000	260	20.00	L
Upward	TV	1.000	270	20.00	L
Upward	TV	1.000	280	20.00	L
Upward	TV	1.000	290	20.00	L
Upward	TV	1.000	300	20.00	L
Upward	TV	1.000	310	20.00	L
Upward	TV	1.000	320	20.00	L
Upward	TV	1.000	330	20.00	L
Upward	TV	1.000	340	20.00	L
Upward	TV	1.000	350	20.00	L
Upward	TV	1.000	360	20.00	L

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 91 of 488

Orientation	Orientation Code	NPS	Temperature	Maximum Unprotected Length	Basis:
Upward	TV	1.000	370	20.00	L
Upward	TV	1.000	380	20.00	L
Upward	TV	1.000	390	20.00	L
Upward	TV	1.000	400	20.00	L
Upward	TV	1.50	40	0.00	Н
Upward	TV	1.50	50	0.00	А
Upward	TV	1.50	60	1.60	Н
Upward	TV	1.50	70	3.20	Н
Upward	TV	1.50	75	4.00	Α
Upward	TV	1.50	80	4.80	Н
Upward	TV	1.50	90	6.40	Н
Upward	TV	1.50	100	8.00	Α
Upward	TV	1.50	110	10.40	Н
Upward	TV	1.500	120	12.80	Н
Upward	TV	1.500	130	14.80	Н
Upward	TV	1.500	140	16.40	Н
Upward	TV	1.500	150	18.00	А
Upward	TV	1.500	160	18.00	Н
Upward	TV	1.500	170	18.00	Н
Upward	TV	1.500	180	18.00	Н
Upward	TV	1.500	190	18.00	Н
Upward	TV	1.500	200	18.00	Н
Upward	TV	1.500	210	18.00	Н
Upward	TV	1.500	220	18.00	Н
Upward	TV	1.500	230	18.00	Н
Upward	TV	1.500	240	18.00	Н
Upward	TV	1.500	250	18.00	Н
Upward	TV	1.500	260	18.00	Н
Upward	TV	1.500	270	18.00	Н
Upward	TV	1.500	280	18.00	Н
Upward	TV	1.500	290	18.00	Н
Upward	TV	1.500	300	18.00	Н
Upward	TV	1.500	310	18.00	Н
Upward	TV	1.500	320	18.00	Н
Upward	TV	1.500	330	18.00	Н
Upward	TV	1.500	340	18.00	Н
Upward	TV	1.500	350	18.00	Н
Upward	TV	1.500	360	18.00	Н

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 92 of 488

Orientation	Orientation Code	NPS	Temperature	Maximum Unprotected Length	Basis:
Upward	TV	1.500	370	18.00	Н
Upward	TV	1.500	380	18.00	Н
Upward	TV	1.500	390	18.00	Н
Upward	TV	1.500	400	18.00	Н
Upward	TV	2.00	40	0.00	l l
Upward	TV	2.00	50	0.00	А
Upward	TV	2.00	60	0.40	1
Upward	TV	2.00	70	0.80	I
Upward	TV	2.00	75	1.00	А
Upward	TV	2.00	80	1.50	ļ
Upward	TV	2.00	90	2.00	Α
Upward	TV	2.00	100	15.00	Α
Upward	TV	2.000	110	20.00	L
Upward	TV	2.000	120	20.00	L
Upward	TV	2.000	130	20.00	L
Upward	TV	2.000	140	20.00	L
Upward	TV	2.000	150	20.00	L
Upward	TV	2.000	160	20.00	L
Upward	TV	2.000	170	20.00	L
Upward	TV	2.000	180	20.00	L
Upward	TV	2.000	190	20.00	L
Upward	TV	2.000	200	20.00	L
Upward	TV	2.000	210	20.00	L
Upward	TV	2.000	220	20.00	L
Upward	TV	2.000	230	20.00	L
Upward	TV	2.000	240	20.00	L
Upward	TV	2.000	250	20.00	L
Upward	TV	2.000	260	20.00	L
Upward	TV	2.000	270	20.00	L
Upward	TV	2.000	280	20.00	L
Upward	TV	2.000	290	20.00	L
Upward	TV	2.000	300	20.00	L
Upward	TV	2.000	310	20.00	L
Upward	TV	2.000	320	20.00	L
Upward	TV	2.000	330	20.00	L
Upward	TV	2.000	340	20.00	L
Upward	TV	2.000	350	20.00	L
Upward	TV	2.000	360	20.00	L

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 93 of 488

Orientation	Orientation Code	NPS	Temperature	Maximum Unprotected Length	Basis:
Upward	TV	2.000	370	20.00	L
Upward	TV	2.000	380	20.00	L
Upward	TV	2.000	390	20.00	L
Upward	TV	2.000	400	20.00	L
Upward	TV	3.00	40	0.10	Н
Upward	TV	3.00	50	1.00	Н
Upward	TV	3.00	60	7.00	Н
Upward	TV	3.00	70	13.00	Н
Upward	TV	3.00	75	16.00	Н
Upward	TV	3.00	80	16.00	Н
Upward	TV	3.00	85	16.00	Н
Upward	TV	3.00	90	16.00	Н
Upward	TV	3.00	100	16.00	Н
Upward	TV	3.000	110	20.00	TV-2
Upward	TV	3.000	120	20.00	TV-2
Upward	TV	3.000	130	20.00	TV-2
Upward	TV	3.000	140	20.00	TV-2
Upward	TV	3.000	150	20.00	TV-2
Upward	TV	3.000	160	20.00	TV-2
Upward	TV	3.000	170	20.00	TV-2
Upward	TV	3.000	180	20.00	TV-2
Upward	TV	3.000	190	20.00	TV-2
Upward	TV	3.000	200	20.00	TV-2
Upward	TV	3.000	210	20.00	TV-2
Upward	TV	3.000	220	20.00	TV-2
Upward	TV	3.000	230	20.00	TV-2
Upward	TV	3.000	240	20.00	TV-2
Upward	TV	3.000	250	20.00	TV-2
Upward	TV	3.000	260	20.00	TV-2
Upward	TV	3.000	270	20.00	TV-2
Upward	TV	3.000	280	20.00	TV-2
Upward	TV	3.000	290	20.00	TV-2
Upward	TV	3.000	300	20.00	TV-2
Upward	TV	3.000	310	20.00	TV-2
Upward	TV	3.000	320	20.00	TV-2
Upward	TV	3.000	330	20.00	TV-2
Upward	TV	3.000	340	20.00	TV-2
Upward	TV	3.000	350	20.00	TV-2

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 94 of 488

Orientation	Orientation Code	NPS	Temperature	Maximum Unprotected Length	Basis:
Upward	TV	3.000	360	20.00	TV-2
Upward	TV	3.000	370	20.00	TV-2
Upward	TV	3.000	380	20.00	TV-2
Upward	TV	3.000	390	20.00	TV-2
Upward	TV	3.000	400	20.00	TV-2
Upward	TV	4.00	40	0.00	- 1
Upward	TV	4.00	50	0.50	А
Upward	TV	4.00	60	1.10	1
Upward	TV	4.00	70	1.70	1
Upward	TV	4.00	75	2.00	Į
Upward	TV	4.00	80	8.50	Į
Upward	TV	4.00	85	15.00	А
Upward	TV	4.000	90	20.00	L
Upward	TV	4.000	100	20.00	L
Upward	TV	4.000	110	20.00	L
Upward	TV	4.000	120	20.00	L
Upward	TV	4.000	130	20.00	L
Upward	TV	4.000	140	20.00	L
Upward	TV	4.000	150	20.00	L
Upward	TV	4.000	160	20.00	L
Upward	TV	4.000	170	20.00	L
Upward	TV	4.000	180	20.00	L
Upward	TV	4.000	190	20.00	L
Upward	TV	4.000	200	20.00	L
Upward	TV	4.000	210	20.00	L
Upward	TV	4.000	220	20.00	L
Upward	TV	4.000	230	20.00	L
Upward	TV	4.000	240	20.00	L
Upward	TV	4.000	250	20.00	L
Upward	TV	4.000	260	20.00	L
Upward	TV	4.000	270	20.00	L
Upward	TV	4.000	280	20.00	L
Upward	TV	4.000	290	20.00	L
Upward	TV	4.000	300	20.00	L
Upward	TV	4.000	310	20.00	L
Upward	TV	4.000	320	20.00	L
Upward	TV	4.000	330	20.00	L
Upward	TV	4.000	340	20.00	L

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 95 of 488

Orientation	Orientation Code	NPS	Temperature	Maximum Unprotected Length	Basis:
Upward	TV	4.000	350	20.00	L
Upward	TV	4.000	360	20.00	L
Upward	TV	4.000	370	20.00	L
Upward	TV	4.000	380	20.00	L
Upward	TV	4.000	390	20.00	L
Upward	TV	4.000	400	20.00	L
Upward-Ins	TV-I	0.375	40	Not Analyzed	NA
Upward-Ins	TV-I	0.375	50	0.50	H-I
Upward-Ins	TV-I	0.375	55	0.50	H-I
Upward-Ins	TV-I	0.375	60	0.90	H-I
Upward-Ins	TV-I	0.375	65	0.90	H-I
Upward-Ins	TV-I	0.375	70	1.30	H-I
Upward-Ins	TV-I	0.375	75	1.30	H-I
Upward-Ins	TV-I	0.375	80	1.70	H-I
Upward-Ins	TV-I	0.375	90	2.10	H-I
Upward-Ins	TV-I	0.375	100	2.50	H-I
Upward-Ins	TV-I	0.375	110	3.10	H-I
Upward-Ins	TV-I	0.375	120	3.70	H-I
Upward-Ins	TV-I	0.375	130	4.30	H-I
Upward-Ins	TV-I	0.375	140	4.90	H-I
Upward-Ins	TV-I	0.375	150	5.50	H-I
Upward-Ins	TV-I	0.375	160	6.00	H-I
Upward-Ins	TV-I	0.375	170	6.50	H-I
Upward-Ins	TV-I	0.375	180	7.00	H-I
Upward-Ins	TV-I	0.375	190	7.50	H-I
Upward-Ins	TV-I	0.375	200	8.00	H-I
Upward-Ins	TV-I	0.375	210	8.80	H-I
Upward-Ins	TV-I	0.375	220	9.60	H-I
Upward-Ins	TV-I	0.375	230	10.40	H-I
Upward-Ins	TV-I	0.375	240	11.20	H-I
Upward-Ins	TV-I	0.375	250	12.00	H-I
Upward-Ins	TV-I	0.375	260	12.80	H-I
Upward-Ins	TV-I	0.375	270	13.60	H-I
Upward-Ins	TV-I	0.375	280	14.40	H-I
Upward-Ins	TV-I	0.375	290	15.20	H-I
Upward-Ins	TV-I	0.375	300	16.00	H-I
Upward-Ins	TV-I	0.375	310	16.80	H-I
Upward-Ins	TV-I	0.375	320	17.60	H-I

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 96 of 488

Orientation	Orientation Code	NPS	Temperature	Maximum Unprotected Length	Basis:
Upward-Ins	TV-I	0.375	330	18.40	H-I
Upward-Ins	TV-I	0.375	340	19.20	H-I
Upward-Ins	TV-I	0.375	350	20.00	H-I
Upward-Ins	TV-I	0.375	360	20.70	H-I
Upward-Ins	TV-I	0.375	370	21.40	H-I
Upward-Ins	TV-I	0.375	380	22.10	H-I
Upward-Ins	TV-I	0.375	390	22.80	H-I
Upward-Ins	TV-I	0.375	400	23.50	H-I
Upward-Ins	TV-I	0.50	40	0.00	H-I
Upward-Ins	TV-I	0.50	50	0.50	H-I
Upward-Ins	TV-I	0.50	55	0.50	H-I
Upward-Ins	TV-I	0.50	60	0.90	H-I
Upward-Ins	TV-I	0.50	65	0.90	H-I
Upward-Ins	TV-I	0.50	70	1.50	H-I
Upward-Ins	TV-I	0.50	75	1.50	H-I
Upward-Ins	TV-I	0.50	80	1.80	H-I
Upward-Ins	TV-I	0.50	90	2.40	H-I
Upward-Ins	TV-I	0.50	100	3.00	H-I
Upward-Ins	TV-I	0.50	110	3.60	H-I
Upward-Ins	TV-I	0.50	120	4.20	H-I
Upward-Ins	TV-I	0.50	130	4.50	H-I
Upward-Ins	TV-I	0.50	140	4.80	H-I
Upward-Ins	TV-I	0.50	150	5.40	H-I
Upward-Ins	TV-I	0.50	160	6.00	H-I
Upward-Ins	TV-I	0.50	170	6.40	H-I
Upward-Ins	TV-I	0.50	180	6.80	H-I
Upward-Ins	TV-I	0.50	190	7.00	H-I
Upward-Ins	TV-I	0.50	200	7.40	H-I
Upward-Ins	TV-I	0.50	210	8.20	H-I
Upward-Ins	TV-I	0.50	220	9.00	H-I
Upward-Ins	TV-I	0.50	230	9.80	H-I
Upward-Ins	TV-I	0.50	240	10.60	H-I
Upward-Ins	TV-I	0.50	250	11.40	H-I
Upward-Ins	TV-I	0.50	260	12.20	H-I
Upward-Ins	TV-I	0.50	270	13.00	H-I
Upward-Ins	TV-I	0.50	280	13.80	H-I
Upward-Ins	TV-I	0.50	290	14.60	H-I
Upward-Ins	TV-I	0.50	300	15.40	H-I

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 97 of 488

Orientation	Orientation Code	NPS	Temperature	Maximum Unprotected Length	Basis:
Upward-Ins	TV-I	0.50	310	16.20	H-I
Upward-Ins	TV-I	0.50	320	17.00	H-I
Upward-Ins	TV-I	0.50	330	17.60	H-I
Upward-Ins	TV-I	0.50	340	18.20	H-I
Upward-Ins	TV-I	0.50	350	18.80	H-I
Upward-Ins	TV-I	0.50	360	19.40	H-I
Upward-Ins	TV-I	0.50	370	20.00	H-I
Upward-Ins	TV-I	0.50	380	20.00	H-I
Upward-Ins	TV-I	0.50	390	20.00	H-I
Upward-Ins	TV-I	0.50	400	20.00	H-I
Upward-Ins	TV-I	0.75	40	0.00	H-I
Upward-Ins	TV-I	0.75	50	0.50	H-I
Upward-Ins	TV-I	0.75	55	0.50	H-I
Upward-Ins	TV-I	0.75	60	1.50	H-I
Upward-Ins	TV-I	0.75	65	1.50	H-I
Upward-Ins	TV-I	0.75	70	2.50	H-I
Upward-Ins	TV-I	0.75	72.5	2.50	H-I
Upward-Ins	TV-I	0.75	75	3.00	H-I
Upward-Ins	TV-I	0.75	80	3.50	H-I
Upward-Ins	TV-I	0.75	90	4.50	H-I
Upward-Ins	TV-I	0.75	100	5.50	H-I
Upward-Ins	TV-I	0.75	110	6.50	H-I
Upward-Ins	TV-I	0.75	120	7.50	H-I
Upward-Ins	TV-I	0.75	130	8.60	H-I
Upward-Ins	TV-I	0.75	140	9.80	H-I
Upward-Ins	TV-I	0.75	150	11.00	H-I
Upward-Ins	TV-I	0.75	160	12.20	H-I
Upward-Ins	TV-I	0.75	170	13.40	H-I
Upward-Ins	TV-I	0.75	180	14.80	H-I
Upward-Ins	TV-I	0.75	190	16.40	H-I
Upward-Ins	TV-I	0.75	200	18.00	H-I
Upward-Ins	TV-I	0.75	210	18.40	H-I
Upward-Ins	TV-I	0.75	220	18.80	H-I
Upward-Ins	TV-I	0.75	230	19.20	H-I
Upward-Ins	TV-I	0.75	240	19.60	H-I
Upward-Ins	TV-I	0.75	250	20.00	H-I
Upward-Ins	TV-I	0.75	260	20.00	H-I
Upward-Ins	TV-I	0.75	270	20.00	H-I

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 98 of 488

Orientation	Orientation Code	NPS	Temperature	Maximum Unprotected Length	Basis:
Upward-Ins	TV-I	0.75	280	20.00	H-I
Upward-Ins	TV-I	0.75	290	20.00	H-I
Upward-Ins	TV-I	0.75	300	20.00	H-I
Upward-Ins	TV-I	0.75	310	20.00	H-I
Upward-Ins	TV-I	0.75	320	20.00	H-I
Upward-Ins	TV-I	0.75	330	20.00	H-I
Upward-Ins	TV-I	0.75	340	20.00	H-I
Upward-Ins	TV-I	0.75	350	20.00	H-I
Upward-Ins	TV-I	0.75	360	20.00	H-I
Upward-Ins	TV-I	0.75	370	20.00	H-I
Upward-Ins	TV-I	0.75	380	20.00	H-I
Upward-Ins	TV-I	0.75	390	20.00	H-I
Upward-Ins	TV-I	0.75	400	20.00	H-I
Upward-Ins	TV-I	1.00	40	0.50	H-I
Upward-Ins	TV-I	1.00	50	1.00	H-I
Upward-Ins	TV-I	1.00	55	1.00	H-50
Upward-Ins	TV-I	1.00	60	2.60	H-I
Upward-Ins	TV-I	1.00	65	2.60	H-60
Upward-Ins	TV-I	1.00	70	4.20	H-I
Upward-Ins	TV-I	1.00	75	5.00	H-I
Upward-Ins	TV-I	1.00	80	5.80	H-I
Upward-Ins	TV-I	1.00	90	7.40	H-I
Upward-Ins	TV-I	1.00	100	9.00	H-I
Upward-Ins	TV-I	1.00	110	11.00	H-I
Upward-Ins	TV-I	1.00	120	13.00	H-I
Upward-Ins	TV-I	1.00	130	14.00	H-125
Upward-Ins	TV-I	1.00	140	14.00	H-125
Upward-Ins	TV-I	1.00	150	19.00	H-I
Upward-Ins	TV-I	1.00	160	19.00	H-I
Upward-Ins	TV-I	1.00	170	19.00	H-I
Upward-Ins	TV-I	1.00	180	19.00	H-I
Upward-Ins	TV-I	1.00	190	19.00	H-I
Upward-Ins	TV-I	1.00	200	19.00	H-I
Upward-Ins	TV-I	1.00	210	19.00	H-I
Upward-Ins	TV-I	1.00	220	19.00	H-I
Upward-Ins	TV-I	1.00	230	19.00	H-I
Upward-Ins	TV-I	1.00	240	19.00	H-I
Upward-Ins	TV-I	1.00	250	19.00	H-I

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 99 of 488

Orientation	Orientation Code	NPS	Temperature	Maximum Unprotected Length	Basis:
Upward-Ins	TV-I	1.00	260	19.00	H-I
Upward-Ins	TV-I	1.00	270	19.00	H-I
Upward-Ins	TV-I	1.00	280	19.00	H-I
Upward-Ins	TV-I	1.00	290	19.00	H-I
Upward-Ins	TV-I	1.00	300	19.00	H-I
Upward-Ins	TV-I	1.00	310	19.00	H-I
Upward-Ins	TV-I	1.00	320	19.00	H-I
Upward-Ins	TV-I	1.00	330	19.00	H-I
Upward-Ins	TV-I	1.00	340	19.00	H-I
Upward-Ins	TV-I	1.00	350	19.00	H-I
Upward-Ins	TV-I	1.00	360	19.00	H-I
Upward-Ins	TV-I	1.00	370	19.00	H-I
Upward-Ins	TV-I	1.00	380	19.00	H-I
Upward-Ins	TV-I	1.00	390	19.00	H-I
Upward-Ins	TV-I	1.00	400	19.00	H-I
Upward-Ins	TV-I	1.50	40	1.00	H-I
Upward-Ins	TV-I	1.50	50	2.50	H-I
Upward-Ins	TV-I	1.50	55	2.50	H-50
Upward-Ins	TV-I	1.50	60	6.70	Н
Upward-Ins	TV-I	1.50	65	6.70	H-60
Upward-Ins	TV-I	1.50	70	10.90	Н
Upward-Ins	TV-I	1.50	80	13.00	H-75
Upward-Ins	TV-I	1.50	90	17.20	H-I
Upward-Ins	TV-I	1.50	100	20.00	H-I
Upward-Ins	TV-I	1.50	110	20.00	H-I
Upward-Ins	TV-I	1.50	120	20.00	H-I
Upward-Ins	TV-I	1.50	130	20.00	H-I
Upward-Ins	TV-I	1.50	140	20.00	H-I
Upward-Ins	TV-I	1.50	150	20.00	H-I
Upward-Ins	TV-I	1.50	160	20.00	H-I
Upward-Ins	TV-I	1.50	170	20.00	H-I
Upward-Ins	TV-I	1.50	180	20.00	H-I
Upward-Ins	TV-I	1.50	190	20.00	H-I
Upward-Ins	TV-I	1.50	200	20.00	H-I
Upward-Ins	TV-I	1.50	210	20.00	H-I
Upward-Ins	TV-I	1.50	220	20.00	H-I
Upward-Ins	TV-I	1.50	230	20.00	H-I
Upward-Ins	TV-I	1.50	240	20.00	H-I

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 100 of 488

Orientation	Orientation Code	NPS	Temperature	Maximum Unprotected Length	Basis:
Upward-Ins	TV-I	1.50	250	20.00	H-I
Upward-Ins	TV-I	1.50	260	20.00	H-I
Upward-Ins	TV-I	1.50	270	20.00	H-I
Upward-Ins	TV-I	1.50	280	20.00	H-I
Upward-Ins	TV-I	1.50	290	20.00	H-I
Upward-Ins	TV-I	1.50	300	20.00	H-I
Upward-Ins	TV-I	1.50	310	20.00	H-I
Upward-Ins	TV-I	1.50	320	20.00	H-I
Upward-Ins	TV-I	1.50	330	20.00	H-I
Upward-Ins	TV-I	1.50	340	20.00	H-I
Upward-Ins	TV-I	1.50	350	20.00	H-I
Upward-Ins	TV-I	1.50	360	20.00	H-I
Upward-Ins	TV-I	1.50	370	20.00	H-I
Upward-Ins	TV-I	1.50	380	20.00	H-I
Upward-Ins	TV-I	1.50	390	20.00	H-I
Upward-Ins	TV-I	1.50	400	20.00	H-I
Upward-Ins	TV-I	2.00	40	2.00	H-I
Upward-Ins	TV-I	2.00	50	4.00	H-I
Upward-Ins	TV-I	2.00	55	4.00	H-50
Upward-Ins	TV-I	2.00	60	10.40	Н
Upward-Ins	TV-I	2.00	65	10.40	H-60
Upward-Ins	TV-I	2.00	70	16.80	H-I
Upward-Ins	TV-I	2.00	80	20.00	H-I
Upward-Ins	TV-I	2.00	90	20.00	H-I
Upward-Ins	TV-I	2.00	100	20.00	H-I
Upward-Ins	TV-I	2.00	110	20.00	H-I
Upward-Ins	TV-I	2.00	120	20.00	H-I
Upward-Ins	TV-I	2.00	130	20.00	H-I
Upward-Ins	TV-I	2.00	140	20.00	H-I
Upward-Ins	TV-I	2.00	150	20.00	H-I
Upward-Ins	TV-I	2.00	160	20.00	H-I
Upward-Ins	TV-I	2.00	170	20.00	H-I
Upward-Ins	TV-I	2.00	180	20.00	H-I
Upward-Ins	TV-I	2.00	190	20.00	H-I
Upward-Ins	TV-I	2.00	200	20.00	H-I
Upward-Ins	TV-I	2.00	210	20.00	H-I
Upward-Ins	TV-I	2.00	220	20.00	H-I
Upward-Ins	TV-I	2.00	230	20.00	H-I

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 101 of 488

Orientation	Orientation Code	NPS	Temperature	Maximum Unprotected Length	Basis:
Upward-Ins	TV-I	2.00	240	20.00	H-I
Upward-Ins	TV-I	2.00	250	20.00	H-I
Upward-Ins	TV-I	2.00	260	20.00	H-I
Upward-Ins	TV-I	2.00	270	20.00	H-I
Upward-Ins	TV-I	2.00	280	20.00	H-I
Upward-Ins	TV-I	2.00	290	20.00	H-I
Upward-Ins	TV-I	2.00	300	20.00	H-I
Upward-Ins	TV-I	2.00	310	20.00	H-I
Upward-Ins	TV-I	2.00	320	20.00	H-I
Upward-Ins	TV-I	2.00	330	20.00	H-I
Upward-Ins	TV-I	2.00	340	20.00	H-I
Upward-Ins	TV-I	2.00	350	20.00	H-I
Upward-Ins	TV-I	2.00	360	20.00	H-I
Upward-Ins	TV-I	2.00	370	20.00	H-I
Upward-Ins	TV-I	2.00	380	20.00	H-I
Upward-Ins	TV-I	2.00	390	20.00	H-I
Upward-Ins	TV-I	2.00	400	20.00	H-I
Upward-Ins	TV-I	3.00	40	5.00	H-I
Upward-Ins	TV-I	3.00	50	10.00	H-I
Upward-Ins	TV-I	3.00	55	10.00	H-I
Upward-Ins	TV-I	3.00	60	14.00	H-I
Upward-Ins	TV-I	3.00	70	18.00	H-I
Upward-Ins	TV-I	3.00	80	20.00	H-75
Upward-Ins	TV-I	3.00	90	20.00	H-I
Upward-Ins	TV-I	3.00	100	20.00	H-I
Upward-Ins	TV-I	3.00	110	20.00	H-I
Upward-Ins	TV-I	3.00	120	20.00	H-I
Upward-Ins	TV-I	3.00	130	20.00	H-I
Upward-Ins	TV-I	3.00	140	20.00	H-I
Upward-Ins	TV-I	3.00	150	20.00	H-I
Upward-Ins	TV-I	3.00	160	20.00	H-I
Upward-Ins	TV-I	3.00	170	20.00	H-I
Upward-Ins	TV-I	3.00	180	20.00	H-I
Upward-Ins	TV-I	3.00	190	20.00	H-I
Upward-Ins	TV-I	3.00	200	20.00	H-I
Upward-Ins	TV-I	3.00	210	20.00	H-I
Upward-Ins	TV-I	3.00	220	20.00	H-I
Upward-Ins	TV-I	3.00	230	20.00	H-I

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 102 of 488

Orientation	Orientation Code	NPS	Temperature	Maximum Unprotected Length	Basis:
Upward-Ins	TV-I	3.00	240	20.00	H-I
Upward-Ins	TV-I	3.00	250	20.00	H-I
Upward-Ins	TV-I	3.00	260	20.00	H-I
Upward-Ins	TV-I	3.00	270	20.00	H-I
Upward-Ins	TV-I	3.00	280	20.00	H-I
Upward-Ins	TV-I	3.00	290	20.00	H-I
Upward-Ins	TV-I	3.00	300	20.00	H-I
Upward-Ins	TV-I	3.00	310	20.00	H-I
Upward-Ins	TV-I	3.00	320	20.00	H-I
Upward-Ins	TV-I	3.00	330	20.00	H-I
Upward-Ins	TV-I	3.00	340	20.00	H-I
Upward-Ins	TV-I	3.00	350	20.00	H-I
Upward-Ins	TV-I	3.00	360	20.00	H-I
Upward-Ins	TV-I	3.00	370	20.00	H-I
Upward-Ins	TV-I	3.00	380	20.00	H-I
Upward-Ins	TV-I	3.00	390	20.00	H-I
Upward-Ins	TV-I	3.00	400	20.00	H-I
Upward-Ins	TV-I	4.00	40	0.50	H-I
Upward-Ins	TV-I	4.00	50	15.00	H-50
Upward-Ins	TV-I	4.00	55	15.00	H-50
Upward-Ins	TV-I	4.00	60	15.00	H-50
Upward-Ins	TV-I	4.00	70	15.00	H-50
Upward-Ins	TV-I	4.00	80	15.00	H-50
Upward-Ins	TV-I	4.00	90	15.00	H-50
Upward-Ins	TV-I	4.00	100	15.00	H-I
Upward-Ins	TV-I	4.00	110	15.00	H-I
Upward-Ins	TV-I	4.00	120	15.00	H-I
Upward-Ins	TV-I	4.00	130	15.00	H-I
Upward-Ins	TV-I	4.00	140	15.00	H-I
Upward-Ins	TV-I	4.00	150	15.00	H-I
Upward-Ins	TV-I	4.00	160	15.00	H-I
Upward-Ins	TV-I	4.00	170	15.00	H-I
Upward-Ins	TV-I	4.00	180	15.00	H-I
Upward-Ins	TV-I	4.00	190	15.00	H-I
Upward-Ins	TV-I	4.00	200	15.00	H-I
Upward-Ins	TV-I	4.00	210	15.00	H-I
Upward-Ins	TV-I	4.00	220	15.00	H-I
Upward-Ins	TV-I	4.00	230	15.00	H-I

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 103 of 488

Orientation	Orientation Code	NPS	Temperature	Maximum Unprotected Length	Basis:
Upward-Ins	TV-I	4.00	240	15.00	H-I
Upward-Ins	TV-I	4.00	250	15.00	H-I
Upward-Ins	TV-I	4.00	260	15.00	H-I
Upward-Ins	TV-I	4.00	270	15.00	H-I
Upward-Ins	TV-I	4.00	280	15.00	H-I
Upward-Ins	TV-I	4.00	290	15.00	H-I
Upward-Ins	TV-I	4.00	300	15.00	H-I
Upward-Ins	TV-I	4.00	310	15.00	H-I
Upward-Ins	TV-I	4.00	320	15.00	H-I
Upward-Ins	TV-I	4.00	330	15.00	H-I
Upward-Ins	TV-I	4.00	340	15.00	H-I
Upward-Ins	TV-I	4.00	350	15.00	H-I
Upward-Ins	TV-I	4.00	360	15.00	H-I
Upward-Ins	TV-I	4.00	370	15.00	H-I
Upward-Ins	TV-I	4.00	380	15.00	H-I
Upward-Ins	TV-I	4.00	390	15.00	H-I
Upward-Ins	TV-I	4.00	400	15.00	H-I

- A Based on GOTHIC analysis from Attachment E.
- B Bounded by lower temperature GOTHIC Attachment E analysis.
- H Based on horizontal GOTHIC analysis from Attachment E for same NPS and temperature.
- H-125 Based on horizontal GOTHIC analysis from Attachment E for temperature of 125 °F.
- H-50 Based on horizontal GOTHIC analysis from Attachment E for temperature of 50 °F.
- $\mbox{H-60}$ Based on horizontal GOTHIC analysis from Attachment E for temperature of 60 $^{\circ}\mbox{F}.$
- $\mbox{H-75}$ Based on horizontal GOTHIC analysis from Attachment E for temperature of 75 $^{\circ}\mbox{F}.$
- H-I Based on insulated horizontal GOTHIC analysis from Attachment E for same NPS and temperature.
- I Based on interpolation between analysis points from GOTHIC analysis from Attachment E.
- L- Based on using GOTHIC analysis from Attachment E at a lower temperature and assuming a linear relationship for higher temperatures.
- NA Size not analyzed
- TV-2- Based on using Top Vertical 2-inch NPS data

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 104 of 488

R21002, Rev 0 Attachment F Page 1 of 4

Attachment F Space Heating of Enclosures

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 105 of 488

> R21002, Rev 0 Attachment F Page 2 of 4

Space Heating of Enclosures

Objective:

 Define the temporary space heater input requirements to maintain a desired temperature inside an enclosure during the postulated extreme weather event occurring outside the enclosure.

Postulated Weather Event:

- Cold Weather Duration 96 hours
- Wind Speed 10 mph
- Maximum Temperature 32°F (PSL), 37°F (PTN)
- Minimum Temperature 16°F (PSL), 19°F (PTN)
- Temperature Profile Sinusoidal (ASHRAE Diurnal)

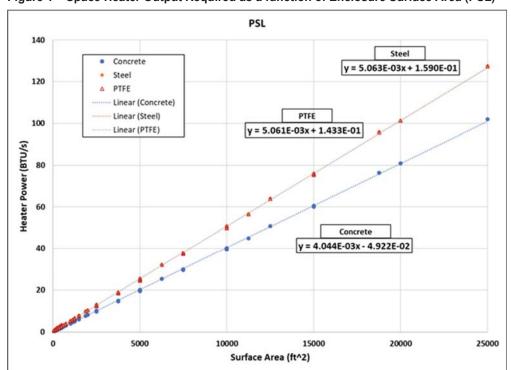
Analysis tool:

• GOTHIC, Version 8.3

Inputs/Approach:

- The initial temperatures were 60°F in the room and 50°F as the ambient.
- · No credit is taken of sunlight on the outside surface.
- No credit is taken for process-related heat sources inside the enclosure.
- The ambient temperature was immediately decreased to the maximum cold wave temperature and oscillating to the low cold wave temperature and back in a sine wave over a 24-hour period repeated for 4 days.
- Room volumes of 1000, 2500, 5000, 7500, 10,000, 25,000, 50,000, 75,000, and 100,000 ft³ are used.
- The rooms are 20' tall with a square floor area, subdivided into a 2x2x2 grid of cells with a heater in a corner away from the wall
- Leakage flow paths are considered minimal due to the interest in containing heat. Paths of 1"x1" at the top and 4"x4" at the bottom are included.
- Wall surface areas are multiples of the volume divided by the height. Multipliers of 1, 2, 3, 4, and 5 are used. So, as the rooms get larger the wall surface areas analyzed get larger.
- There were 45 cases with 3" thick concrete wall, 45 cases with 0.0148" steel wall, and 45 cases assuming the use of a durable, high strength coated synthetic woven fabric, such as PTFE coated glass fiber.
- The temperature profiles of both PSL and PTN sites were evaluated for a total of 270 cases.
- The heater power is controlled to achieve 50°F for the transient using a controller. The temperatures remain within ~1°F of this target.

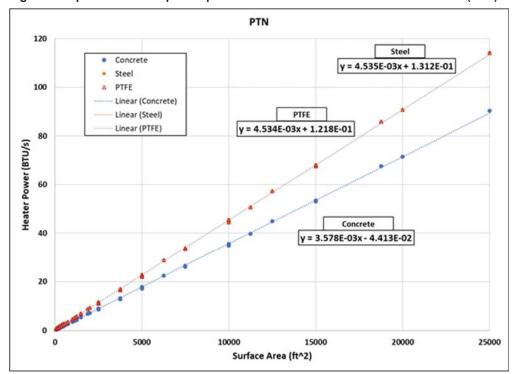
Results


- A review of the data from 270 cases shows that the required heater power is approximately linear with surface area across the volumes analyzed (see Figures 1 and 2 for PSL and PTN respectively).
- For a given surface area there is an insignificant effect of the room volume for the given air leakage. As expected, the required heater power is greater for steel walls.
- The heater power is greater for St. Lucie because of the lower ambient temperatures.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 106 of 488

> R21002, Rev 0 Attachment F Page 3 of 4

Figure 1 - Space Heater Output Required as a function of Enclosure Surface Area (PSL)



Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 107 of 488

> R21002, Rev 0 Attachment F Page 4 of 4

Figure 2 - Space Heater Output Required as a function of Enclosure Surface Area (PTN)

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 108 of 488

R21002, Rev 0 Attachment G Page 1 of 6

Attachment G PSL Turbine Building Enclosure Study

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 109 of 488

> R21002, Rev 0 Attachment G Page 2 of 6

Turbine Building Enclosure Evaluation

Objective:

 Perform a preliminary evaluation using GOHTIC of proposed enclosure of a turbine building using tarps.

Postulated Weather Event:

- Cold Weather Duration 96 hours
- Wind Speed 10 mph
- Maximum Temperature 32°F (PSL), 37°F (PTN)
- Minimum Temperature 16°F (PSL), 19°F (PTN)
- Temperature Profile Sinusoidal (ASHRAE Diurnal)

Analysis tool:

• GOTHIC, Version 8.3

Inputs/Approach:

- The PSL Unit 2 turbine building was used for the model configuration.
- The initial temperature in the turbine building was 60°F and 32°F for the ambient.
- No credit is taken of sunlight on the outside surface.
- Credit is taken for process-related heat sources inside the turbine building, excluding piping.
- The ambient temperature was changed to oscillated from the initial temperature to the low cold wave temperature and back in a sine wave over a 24-hour period.
- The turbine building control volumes was subdivided into approximately 5'x5'x5' cells to allow temperature resolution.
- Major rooms (e.g., switchgear room, battery room, CAS) and equipment (e.g., condensers, LP heaters, Main Feedwater Pumps, Air Compressors) were blocked out to remove significant volume from the building volume.
- Openings through the enclosing tarps were modeled between the turbine building
 volume the atmosphere volume over an appropriate number of cells for total area and
 percent opening. This included opening between the ground floor and mezzanine and
 between the mezzanine and operating deck, as well as around piping, conduits, cable
 trays, etc.
- The mezzanine floor and operating deck were included as thermal conductors, but the ground floor was omitted.
- Hot equipment was modelled as thin thermal conductors with a constant surface temperature of 120°F. The condenser surfaces were also modelled as thin thermal conductors at a constant temperature of 100°C. The condensate pumps were modelled as thin thermal conductors with a constant heat rate based on a rate motor power of 4000 HP per pump.

Results

 The temperatures within the building followed the cold atmospheric temperatures with the corners of the building and regions along the East side nearly as cold.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 110 of 488

> R21002, Rev 0 Attachment G Page 3 of 6

- Additional heat sources could be added, including the steam, feedwater, condensate, and circulating water piping, particularly around the East side of the building. However, it is unlikely that the temperatures in critical areas could be maintained above freezing with the expected coverage of the tarp enclosures.
- Significant tightening of the openings in the tarp enclosure would have to be made to
 ensure that the internal heat sources could maintain warm temperatures in the areas of
 important equipment.
- Figure 1 shows the temperatures of the Turbine building at two times with the nominal openings, 1) the top two images are the start of the simulation with the ambient temperature at 32°F, and 2) the bottom two images show are near the 12-hour point when the ambient temperature is near 16°F. The left two images are shown from the SE corner and the right two images are shown from the NW corner. Grey shows the blocked regions.
- Figure 2 shows the temperatures at various slices at various elevations in the turbine building ground floor with the ambient temperature at 16°F with the nominal openings. The images are shown from the SE corner.
- Figure 3 shows the temperatures at various slices at various elevations in the turbine building mezzanine floor with the ambient temperature at 16°F with the nominal openings. The images are shown from the SE corner.
- Figure 4 shows the temperatures of the Turbine building at two times with the openings reduced by 75%, 1) the top two images are the start of the simulation with the ambient temperature at 32°F, and 2) the bottom two images show are near the 12-hour point when the ambient temperature is near 16°F. The left two images are shown from the SE corner and the right two images are shown from the NW corner. Grey shows the blocked regions.
- Figure 5 shows the temperatures at various slices at various elevations in the turbine building ground floor with the ambient temperature at 16°F with the openings reduced by 75%. The images are shown from the SE corner.
- Figure 6 shows the temperatures at various slices at various elevations in the turbine building mezzanine floor with the ambient temperature at 16°F with the openings reduced by 75%. The images are shown from the SE corner.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 111 of 488

> R21002, Rev 0 Attachment G Page 4 of 6

Figure 1 – PSL Unit #2 TB – Temperature with Ambient at 32°F and 16°F – Nominal Openings

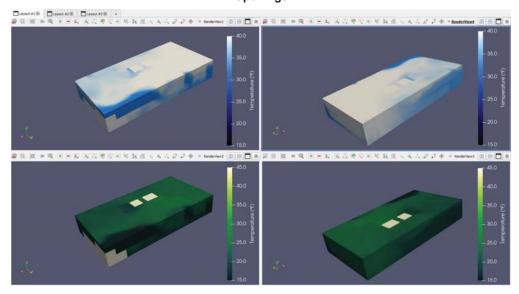
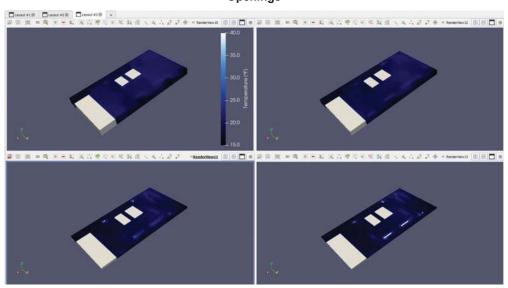



Figure 2 – PSL Unit #2 TB – Ground Floor – Temperature with Ambient 16°F – Nominal Openings

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 112 of 488

> R21002, Rev 0 Attachment G Page 5 of 6

Figure 3 – PSL Unit #2 TB – Mezzanine Floor – Temperature with Ambient 16°F – Nominal Openings

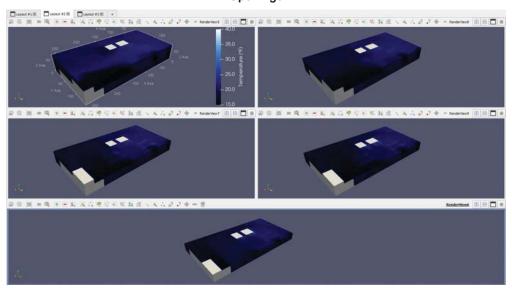
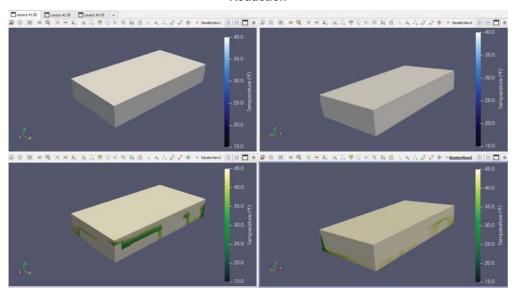



Figure 4 – PSL Unit #2 TB – Temperature with Ambient at 32°F and 16°F – 75% Opening Reduction

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 113 of 488

> R21002, Rev 0 Attachment G Page 6 of 6

Figure 5 – PSL Unit #2 TB – Ground Floor – Temperature with Ambient 16°F – 75% Opening Reduction

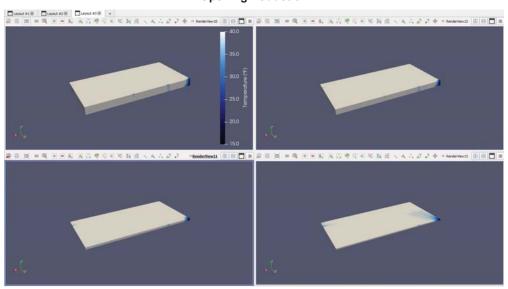
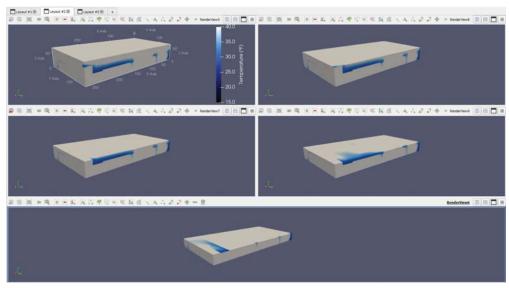



Figure 6 – PSL Unit #2 TB – Mezzanine Floor – Temperature with Ambient 16°F – 75% Opening Reduction

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 114 of 488

21002, Rev 0 Attachment H Page 1 of 10

Attachment H PTN Refueling Water Storage Tank Temperature Study

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 115 of 488

> 21002, Rev 0 Attachment H Page 2 of 10

Turkey Point RWST Winterization GOTHIC Model

A GOTHIC model, shown in Figure 1, is used to evaluate the cooldown behavior of the Turkey Point Refueling Water Storage Tank (RWST) over a four-day period in which the daily temperature cycles between 16°F and 37°F, and the wind speed is 10 mph to determine the minimum RWST temperature necessary to prevent a cooldown to less than 39°F (Technical Specification LCO 3.5.4) over the course of the four-day cold snap. Because of the potential for the water along the tank walls and along the surface of the water to cooldown faster than the water in the interior of the RWST, the tank is modeled with a subdivided control volume. The planes at the tank shell start at 3 inches and increase logarithmically from that grid boundary toward the tank centerline. Planes in the Z-direction are 2.4 feet in height up to the knuckle where the umbrella roof meets the cylindrical shell with a couple planes withing the dome region. Because of symmetry, only a thin wedge is needed to represent the RWST. To obtain the desired plane width near the cylindrical shell an angle of ~19° is used.

The RWST has two vents giving significant margin to inflow of air as the water density increases along with the air volume. Therefore, placement and size of a vent is not critical. The top and side views of this control volume are shown in Figure 2 and Figure 3. The model run time is 4-5 hours for this slim wedge of the tank. A second subdivided control volume represents the atmosphere and has grid lines in the Z-direction only which match the z-axis grid lines of the RWST.

The tank wall and dome are modeled with conductors consisting of 5/16-inch of carbon steel, consistent with the dome and the upper portion of the tank wall. The tank wall consists of three sections:

- The lowest ring has a thickness of ~7/16-inch (0.423")
- The middle ring has a thickness of ~3/8 inch (0.367")
- The upper ring has a thickness of 5/16-inch

Modeling the entire wall at the 5/16-inch thickness conservatively minimizes heat capacity. Although painted, no coatings are included on the cases analyzed because the paint acts as a weak insulator. Multiple tank wall configurations are considered:

- Bare Metal
 - o No insulation
 - o 1 inch of insulation
 - 2 inches of insulation

The insulation under consideration is $ProRox^{\otimes} PSM 660 ALU^{UK}$, with a thermal conductivity of 0.023 Btu/hr·ft·°F (0.040 W/m·K) at 122°F (50°C). The thermal conductivity is varied as a function of temperature with a 2nd order curve fit used to extrapolate the data to the range of temperatures analyzed.

References

- 1. Drawing 5610-C-18-393 Sh1 Rev 007, Primary and Refueling Water Storage Tanks
- Calculation CN-SEE-IV-08-16, Rev 0, Turkey Point Units 3 & 4 RWST Draindown Analysis
- 3. Turkey Point technical Specifications LCO 3/4.5.4 Refueling Water Storage Tank

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 116 of 488

> 21002, Rev 0 Attachment H Page 3 of 10

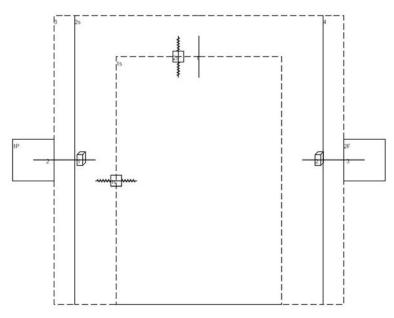


Figure 1: Diagram of the GOTHIC Model of the Turkey Point RWST

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 117 of 488

> 21002, Rev 0 Attachment H Page 4 of 10

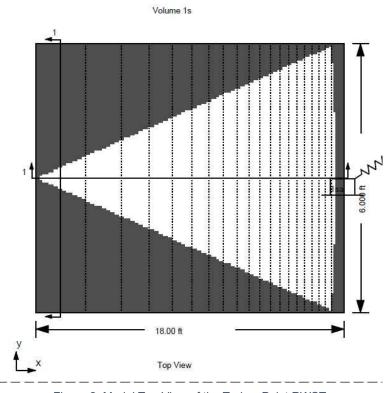


Figure 2: Model Top View of the Turkey Point RWST

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 118 of 488

> 21002, Rev 0 Attachment H Page 5 of 10

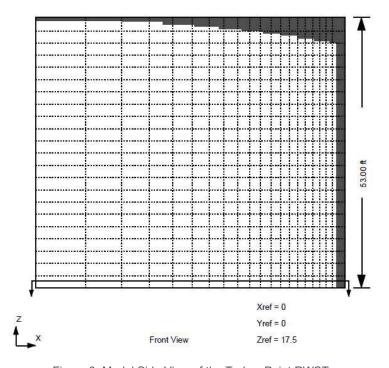


Figure 3: Model Side View of the Turkey Point RWST

GOTHIC model runs have confirmed that with bare metal, no insulation and an initial RWST temperature of 65°F, the minimum RWST temperature falls to 44.6°F over the four-day cold snap. The results of additional cases analyzed are shown in Figure 4. The lowest initial temperature analyzed that remains above 39°F after four hours is 54°F. The smoothness of the response degrades as the water temperature approaches freezing because of the reversal in the slope of the density with decreasing temperature. The decrease in the water density at these low temperatures upsets the circulation pattern that exists prior to this time. This change in circulation patterns can be seen in the liquid velocity vectors graphs (Figure 5) at four days for two cases with bare metal and no insulation with initial temperatures of 65°F and 52°F. Because of the buoyancy driven flows the RWST stays well mixed with an insignificant temperature difference through the liquid as can be seen in Figure 6. Therefore, use of a control variable to determine the minimum tank temperature is appropriate.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 119 of 488

> 21002, Rev 0 Attachment H Page 6 of 10

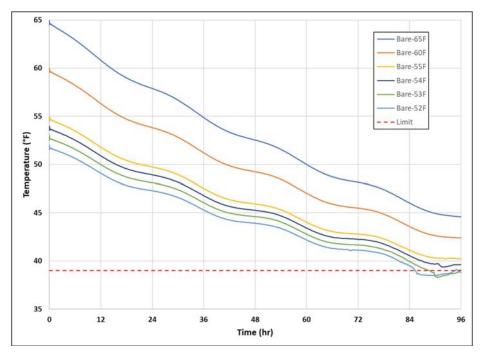


Figure 4: RWST Temperature, Bare Metal, No Insulation

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 120 of 488

> 21002, Rev 0 Attachment H Page 7 of 10

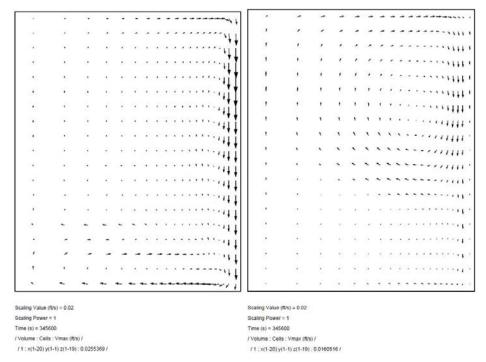


Figure 5: RWST Liquid Velocity Vectors, Bare Metal, No Insulation, 65°F (left) and 52°F (right) at 4 Days

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 121 of 488

> 21002, Rev 0 Attachment H Page 8 of 10

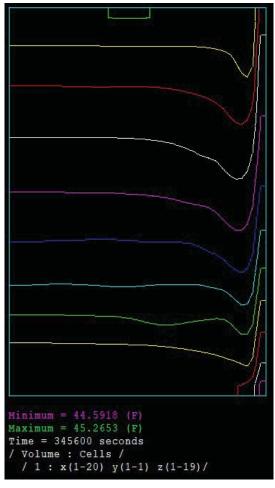


Figure 6: RWST Liquid Temperature Contours, Bare Metal, No Insulation, 65°F at 4 Days

With 1 inch and 2 inches of insulation, the minimum initial RWST temperatures necessary to maintain RWST temperature above 39°F over the cold snap are 42°F and 41°F, respectively (Figure 7 and Figure 8).

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 122 of 488

> 21002, Rev 0 Attachment H Page 9 of 10

Figure 7: RWST Liquid Temperature, 1" Insulation

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 123 of 488

> 21002, Rev 0 Attachment H Page 10 of 10

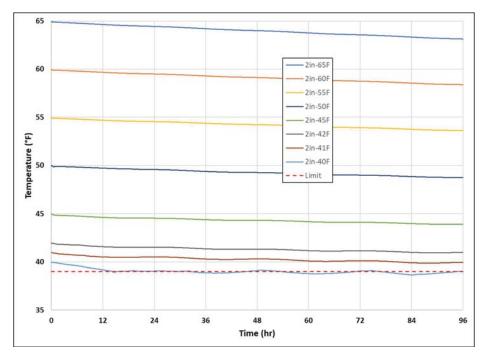


Figure 8: RWST Liquid Temperature, 2" Insulation

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 124 of 488

R21002, Rev 0 Attachment I Page 1 of 5

Attachment I PTN Fire Protection Freeze Protection Strategy

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 125 of 488

R21002, Rev 0 Attachment I Page 2 of 5

PTN - Fire Protection System Freeze Protection Strategy

This paper addresses the general strategies to be employed at PTN site to protect the fire protection systems from freezing during the postulated cold weather event.

Water Supply

Water supply for the fire protection systems is provided via below-ground and above-ground piping to the stationary fire pumps. Piping from pumps to the site fire loop valve pit is also above-ground. Below-ground piping is protected by soil from freezing whereas above-ground piping is susceptible to freezing.

Recommendation for below-ground piping:

· None, no action required.

Recommendation for above-ground piping:

- The preferred strategy is to utilize flow to prevent freezing where possible.
- If strategy for wet pipe/deluge/hose station uses continuous or intermittent flow, evaluate for credit for the above-ground mitigation strategy.
- If implementation of a flow strategy cannot be achieved, heat trace and insulate where feasible.

Fire Pumps

PTN uses one (1) electric driven fire pump and one (1) diesel driven fire pump. NFPA 20 Section 4.13.3.1 establishes that pump rooms or pump houses, where required, be maintained above 40°F; additionally, per NFPA 20 Section 11.6.5.1, the temperature of the pump room, pump house, or area where engines are installed shall be designed so that the temperature is maintained at the minimum recommended by the engine manufacturer.

Per PTN personnel, the diesel driven fire pump is located within an unheated pumphouse enclosure. Diesel fuel is susceptible to "gelling" in cold climates as the paraffins in the fuel solidify out; paraffins start to crystalize out at approx. 32°F and have the potential to clog the fuel filter. Temperatures necessary for this gelling to be of significance are on the order of 10°F - 15°F; at these temperatures clogging of the tank, fuel filter, and/or fuel lines can occur. Use of additives to lower the cloud point (temperature at which paraffin wax begins to crystallize) can be mixed with the diesel fuel. Of concern is also water entrainment within the fuel or coolant; ice formation has the potential to clog lines or filters at temperatures ranging from 20°F to 30°F.

Recommendations:

 Operating pumps with a combination of recirculation, and calculated system demand, will minimize chances of pump freezing, ensure pump doesn't overheat, and provide flow to various water suppression systems susceptible to freezing.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 126 of 488

R21002, Rev 0 Attachment I Page 3 of 5

- Consideration of water source level requirements and rate of replenishment must be evaluated as well for completeness.
- Site environmental limits on operating the diesel-driven pump needs to be evaluated; alternating between electric and diesel pumps can be effective if de-energized pump is maintained in a condition that precludes freezing - evaluation of operation schedule, based on system configuration, is required.
- Use appropriate additives consistent with the anticipated temperature profile to reduce potential for fuel gelling or icing. Utilize a winter mix for diesel engine coolant if only water is used.
- If implementation of a flow strategy cannot be achieved, place fire pumps in
 conditioned enclosures (temporary or permanent) to minimize potential for pump
 freezing. Temporary insulated enclosures for pumps can be installed with space heaters
 to keep pumps above 40°F. In the case of the existing enclosure for the diesel driven fire
 pump at PTN, a heater should be considered if inside temperatures have the potential
 to be sustained below 40°F.
- Walkdowns are required to determine length of above-ground piping. Dependent upon length of above-ground pipe, recommendations could include application of heat trace and/or insulation if utilization of flow to mitigate freezing is not practicable.

Fire Loop Piping

Most of the piping associated with the main fire loops at PTN are buried and therefore not considered impacted by the postulated weather event. Dry-barrel hydrants are used around the sites and not considered likely to freeze as they are not full of water.

Recommendation:

• None, no action required.

Pre-Action Systems

Pre-action systems are not predisposed to freezing in the overhead as the smaller lines are air or nitrogen filled. Risk of freezing is limited to the wet-pipe portion of the system fed from the site fire loop and terminating at the deluge valve.

Recommendations:

- Focus should be on high-risk protected systems (i.e., EDG, Transformers, etc.).
- Heat tracing and insulating the water-filled portion of the line, up to and including the deluge valve, would allow the system to remain operable.
- Providing a trickle flow via the piping drain line (directed to site drain) could mitigate line freezing by maintaining water flow.

Deluge Systems

Like pre-action systems, deluge systems are not pre-disposed to freezing as these open systems are not normally filled with water. At issue are low-points in the piping that do not effectively

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 127 of 488

R21002, Rev 0 Attachment I Page 4 of 5

drain. Freezing in these areas could rupture pipe/fittings leaving the system effectively inoperable.

Recommendations:

- Focus should be on high risk protected systems (i.e., EDG, Transformers, etc.).
- Installation of low-point drain valves or weep-holes to ensure proper draining of the
 deluge piping. Use of weep-holes is limited as they can affect spray discharge patterns
 and would require vendor analysis to establish quantity and size supportable by the
 system. NOTE: PTN does not have low-point drains or weep-holes installed in any of the
 installed deluge systems; however, an LTAM (PTN-14-0005) for Low Point Drains in
 Deluge Systems at PTN has been identified.
- Deluge valve should be protected from freezing via use of electric heat tracing and insulation, heated temporary enclosure, or insulation (fixed or flexible jacketing, etc.).
- Providing a trickle flow via the piping drain line (directed to site drain) could mitigate line freezing by maintaining water flow.

Wet-Pipe Systems

Due to their nature, wet-pipe systems will be pre-disposed to freezing. Application of antifreeze in the lines is not recommended due to flammability issues associated with the antifreeze and the locations around the sites that employ these wet-pipe sprinkler systems.

Recommendations:

- Focus should be on high risk protected systems (i.e., EDG, Transformers, etc.).
- Declare systems not available for the duration of postulated weather event and employ compensatory actions in those areas.
- It is further recommended, to prevent potential damage to the system resulting from frozen lines, that the system be drained. This would ensure that the system would not be declared inoperable following the postulated event.

Hose Stations

Above ground wet pipe leading to the hose station is susceptible to freezing.

Recommendation:

 Maintain operability of the hose stations opening drain valves to keep water moving through the dead-legs that feed the hose stations. Lines feeding the hose stations at PTN are fed by 2.5" minimum. Requisite flow through the small-bore drains on those lines feeding these hose stations, to minimize freezing, would not be significant.

Gaseous Suppression Systems

Gaseous suppression systems are not considered susceptible to cold weather events like water-based systems are. Discharge times may be affected by the system piping temperature being lower than normal; however, as these gaseous systems are typically employed in a flooding

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 128 of 488

R21002, Rev 0 Attachment I Page 5 of 5

capacity and the low boiling points of these suppressants are suited for use at the temperatures being considered.

In the event lower temperatures reduces gas pressure below required levels, the system would be left "in service" but declared non-functional and the appropriate compensatory measures executed.

Recommendation:

• None, no action required.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 129 of 488

21002, Rev 0 Attachment J Page 1 of 4

Attachment J PTN Fire Protection Hose Reel Flow Study

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 130 of 488

> 21002, Rev 0 Attachment J Page 2 of 4

PTN Fire Protection Hose Reel Flow Study

Evaluation Summary

Consistent with previously established methodology, it was deemed that maintaining fire water flow throughout the site was not considered practicable due to the number of potential flow locations. To provide a more manageable quantity, focus is limited to hose-stations within the power block; this revised approach assumes that water-based suppression systems for non-essential buildings would be declared un-available for the duration of the winter-freeze event. Hotel packs would be staged near adjacent hydrants in the event a fire occurred. For those areas inside considered essential, where automatic suppression systems are subject to cold temperatures, and cannot be protected, those suppression systems would also be declared un-available; reliance would be on hose-stations for fire suppression. Hose-stations were identified via drawing series 5610-M-3016. Those sections of fire protection piping evaluated are tabulated below.

Location	Elev.	Line No.	Component	Length (ft.)	Min. Flow (gpm)
YARD	18'-0"	16"/14"-11-F	FWP P-101 SUCT.	10.5	0.15
YARD	18'-0"	10"-11-F	FWP P-101 DISCH.	63.5	0.80
YARD	18'-0"	14"-11-F	FWP P-39 SUCT.	21.5	0.30
YARD	18'-0"	10"-11-F	FWP P-39 DISCH.	39.5	0.50
YARD	18'-0"	10"-11-F	FP TO 1-4 FIRE LOOP HDR	84.5	1.25
YARD	18'-0"	16"/14"-11-F	FP CROSS CONNECT	61.0	0.15
YARD	18'-0"	2-1/2"-11-F	FWP P-234A SUCT.	33.5	0.40
YARD	18'-0"	2-1/2"-11-F	FWP P-234B SUCT.	41.0	0.40
YARD	18'-0"	2-1/2"-11-F	FWP P-234A/B CROSS	3.0	0.10
YARD	18'-0"	1-1/2"-11-F	FWP P-234A DISCH.	3.0	0.10
YARD	18'-0"	1-1/2"-11-F	FWP P-234B DISCH.	3.0	0.10
YARD	18'-0"	1-1/2"-11-F	JP TO 1-4 FIRE LOOP HDR	10.0	0.10
U3 TB	44'-6"	10"-11-F	10" FIRE HEADER	324.0	4.10
U3 TB	37'-0"	10"-11-F	10" FIRE HEADER (INSUL.)	38.0	0.10
U3/4 TB	14'-0"	10"-11-H	10" FIRE LOOP (BURIED)	N/A	N/A
U3 TB	42'-0"	4"-11-F	HS-03-06	40.5	0.40
U4 TB	42'-0"	4"-11-F	HS-04-05	40.5	0.40
U4 TB	42'-0"	4"-11-F	HS-04-08	40.5	0.40
U3/4 TB	39'-0"	6"-11-F	6" FIRE HEADER	646.5	19.50
U3 TB	18'-0"	2-1/2"-11-F	HS-03-01	19.5	0.20
U3 TB	18'-0"	2-1/2"-11-F	HS-03-02	26.5	0.25
U3 TB	18'-0"	2-1/2"-11-F	HS-03-03	46.0	0.40
U3 TB	30'-0"	2-1/2"-11-F	HS-03-04	10.5	0.10
U3 TB	30'-0"	2-1/2"-11-F	HS-03-05	31.0	0.30
U3 TB	42'-0"	2-1/2"-11-F	HS-03-07	29.0	0.25
U3 TB	42'-0"	2-1/2"-11-F	HS-03-08	29.0	0.25
U4 TB	18'-0"	2-1/2"-11-F	HS-04-01	26.5	0.25
U4 TB	30'-0"	2-1/2"-11-F	HS-04-03	10.5	0.10
U4 TB	42'-0"	2-1/2"-11-F	HS-04-06	29.0	0.25
U4 TB	42'-0"	2-1/2"-11-F	HS-04-07	29.0	0.25
U4 TB	28'-0"	4"-11-F	BRANCH	31.5	0.35

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 131 of 488

21002, Rev 0 Attachment J eel Flow Study Page 3 of 4

PTN Fire Protection Hose Reel Flow Study

Location	Elev.	Line No.	Component	Length (ft.)	Min. Flow (gpm)
U4 TB	18'-0"	2-1/2"-11-F	HS-04-02	27.0	0.25
U4 TB	30'-0"	2-1/2"-11-F	HS-04-04	5.0	0.10
YARD	27'-0"	4"-11-F	AUX. BLDG. FIRE HEADER	88.0	1.00
U3 AB	58'-0"	1-1/2"-11-F	HS-AB-04	87.0	1.00
U4 AB	58'-0"	1-1/2"-11-F	HS-AB-05	87.0	1.00

To preclude freezing, the total flow required by the U3/4 Turbine Building hose-stations (HS-03-01, HS-03-02, HS-03-03, HS-03-04, HS-03-05, HS-03-07, HS-03-08, HS-04-01, HS-04-03, HS-04-04, HS-04-06, and HS-04-07) supplied via fire header 6"-11-F, is approximately 3 gpm. The 6" fire header, which supplies the aforementioned hose-stations, requires a flow of approximately 20 gpm to preclude it freezing anywhere along the line. The U3/4 Turbine Building has three (3) hose stations (HS-03-06, HS-04-05, and HS-04-08), supplied via fire header 10"-11-H, which would require approximately 0.4 gpm each (1.2 gpm total) to preclude their freezing during the event; as 10"-11-H is below grade, no minimum flow is considered as it is not considered susceptible to freezing during the postulated event.

Additionally, it was also identified that ancillary flow to the Auxiliary Building Header (via 4"-11-F) and two (2) hose-stations (HS-AB-04 and HS-AB-05) of approximately 3 gpm would be required. Therefore, total flow required to ensure the identified hose-stations around PTN is approximately 25 gpm (20 gpm + 1.2 gpm + 3 gpm).

As the piping around the electric and diesel fire pumps (P-39 and P-101, respectively) and jockey pumps (P-234A and P-234B) are primarily above ground. The required flow necessary preclude fire pump and jockey pump piping is conservatively 1 gpm; however, the flow necessary to preclude the pump discharge common piping to the 1-4 Fire Loop Header from freezing is approximately 1.25 gpm. Of note, the total demand flow of 25 gpm exceeds the require flow necessary to protect the fire pumps; therefore, opening hose-stations valves to an adequate minimum flow of approximately 2 gpm would ensure that the hose-stations, 6" fire header, and the yard piping would be adequately protected for the duration of the event.

Reliance on personnel to manually open these valves during the event could be problematic due to the nature of the event – consideration should be given to installation of thermostatic freeze protection valves such as the HAT/FP made by ThermOmegaTech (as shown right), at the hose station, just upstream of the hose valve. The discharge from the HAT/FP could then be routed to drains near the hose stations at their elevation or over the side of the turbine building down to grade elevation drains – gravity would help ensure that this flow kept moving to the drains.

Per the vendor, the HAT/FP utilizes a thermostatic wax actuator to automatically monitor ambient or water temperatures and will bleed off the cold water in the lines before freezing can occur. These valves initiate flow when the thermostatic actuator senses the valve's set-point, typically 35°F (1.6°C), and will remain open if the discharge water temperature is below 5 degrees above that, typically 40°F (4.4°C). The HAT/FP freeze protection valve can be installed in either the

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 132 of 488

21002, Rev 0 Attachment J ow Study Page 4 of 4

PTN Fire Protection Hose Reel Flow Study

standard (monitors ambient air temperature) orientation or reverse flow (senses water temperature) orientation.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 133 of 488

R21002, Rev 0 Attachment K Page 1 of 2

Attachment K Strategies for HVAC Commodities

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 134 of 488

R21002, Rev 0 Attachment K Page 2 of 2

ID	Types (Instr, Piping, Tanks, etc.)	Normally Operating?	Basis for Action	Action Required	Recommended Strategies (Incl Long Lead Items, Outage work, etc.)
1	Ducting	Yes	Not effected by cold temperatures	None	None
2	Instruments - General	Yes	Not effected by cold temperatures	None	None
3	Filter Train	Yes	Filter trains are not effected by cold weather	None	None
4	Filter Train	Yes	Filter trains with a demister can be effected by cold weather due to freezing moisture.	Mitigate	If the demister is within a building, no action required. Otherwise, ensure demister is provided heat. Filters are not affect by cold weather.
5	Fan	Yes	Cold weather has little to no affect on a fan or its motor.	None	None
6	Air Handling Unit	Yes	If AHU has cooling coil, then subject to freezing	Mitigate	Keep unit in operation. Do not use cooling mode. If not exposed to environment, then no action required.
7	Air Handling Unit	Yes	If AHU does not have cooling coil, then not subject to freezing	None	None
8	Air Condensing Unit	Yes	Motors and condensers are generally unaffected by cold weather. Likely neither will be required to operate.	None	No Action required. Cold weather should not have an adverse affect on this equipment.
9	Roof Ventilators	Yes	Motors are generally unaffected by cold weather	None	None
10	Power Ventilator	Yes	Motors are generally unaffected by cold weather	None	None
11	Thru Wall AC Units	Yes	Thru-wall units have condensate lines and is subject to freezing.	Mitigate	Turn off, or go into fan only mode
12	Heat Pump	Yes	Heat Pumps have condensate lines and is subject to freezing.	Mitigate	Turn off, or go into fan or heating mode
13	Motor Operated Damper	Standby	Damper is exposed to environment	None	No action required. Motor is not exposed and should be able to overcome any lubricant viscosity change within damper
14	Motor Operator Valve	Standby	Valve is exposed to environment	None	No action required. Motor is not exposed and should be able to overcome any lubricant viscosity change within valve
15	Motor Operated Louver	Standby	Louver is exposed to environment	None	No action required. Motor is not exposed and should be able to overcome any lubricant viscosity change within louver

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 135 of 488

R21002, Rev 0 Attachment L Page 1 of 198

Attachment L PTN Phase 1 System Freeze Protection Evaluation

R21002, Rev 0 Attachment L Page 2 of 198

ID	Plant	Unit	PTN System	P&ID	Segment	Types (Instr, Piping, Tanks,	Component/Equipment	Normally	Operability/Functional Limit	Basis for Action	Action	Recommended Strategies	Remarks	Other Key References & Inputs
1	PTN	0	SWS / 012	5610-M-3012 Sh. 1	1	etc.)		Operating			Required	(Incl Long Lead Items, Outage work, etc.) Varying flow rates due to normal SW demands in	Tellidio	Cuter ney nererences a impact
1	PIN	0	3W3/012	3010-W-3012 3II. 1	1		8", 6", 4" service water header	Yes	N/A	Normally flowing	None	downstream buildings are expected to preclude freezing in the SW header.		
2	PTN	0	SWS / 012	5610-M-3012 Sh. 1	1	Vents / Drains / Misc. Connections	Various vents, drains, service taps	No	Not required for power generation	None	None	None		
3	PTN	0	SWS / 012	5610-M-3012 Sh. 1	2	Piping	2" supply to service water taps at U3 DGs	No	Not required for power generation	None	None	None		
4	PTN	0	SWS / 012	5610-M-3012 Sh. 1	3	Piping	6" header supply to Aux Bldg SW loads	Yes	Supplies N2 compressor seals and other loads	Normally flowing	None	Varying flow rates due to normal SW demands in downstream buildings are expected to preclude freezing in the SW header.	See entries for 5610-M-3012 Sh. 2, this worksheet	
5	PTN	0	SWS / 012	5610-M-3012 Sh. 1	4	Piping	2" & 1" supply to AFW pump oil coolers (alternate cooling water supply)	No	Not required for power generation	None	None	None		
6	PTN	0	SWS / 012	5610-M-3012 Sh. 1	5	Piping	1-1/2" supply to containment hatch area SW taps	No	Not required for power generation	None	None	None		
7	PTN	0	SWS / 012	5610-M-3012 Sh. 1	6	Piping	1/2" - 2" supply to T.O. shack water cooler & shower/fountain	No	Not required for power generation	None	None	None		
8	PTN	0	SWS / 012	5610-M-3012 Sh. 1	7	Piping	2-1/2" & 2" piping to Control Building computer room	Yes	Not required for power generation	None	None	None		
9	PTN	0	SWS / 012	5610-M-3012 Sh. 1	7	Instr. Local	Local pressure instrument	Yes	Not required for power generation	None	None	None		
10	PTN	0	SWS / 012	5610-M-3012 Sh. 1	8	Piping	3" supply to south site SW loads	Yes	Not required for power generation	None	None	None		
11	PTN	0	SWS / 012	5610-M-3012 Sh. 1	9	Piping	2" & 1-1/2" SW supply to various loads & taps	Yes	Not required for power generation	None	None	None	See entry for 5610-M-3012 Sh. 3, this worksheet	
12	PTN	0	SWS / 012	5610-M-3012 Sh. 1	9	Vents / Drains / Misc. Connections	Various vents, drains, service taps	No	Not required for power generation	None	None	None		
13	PTN	0	SWS / 012	5610-M-3012 Sh. 1	10	Piping	1-1/2" line to abandoned breathing air compressor	No	Not required for power generation	None	None	None		
14	PTN	0	SWS / 012	5610-M-3012 Sh. 1	11	Piping	1-1/2" line to abandoned piping in TPCW system	No	Not required for power generation	None	None	None		
15	PTN	0	SWS / 012	5610-M-3012 Sh. 1	12	Piping	1-1/2" SW line to cold chemistry lab	No	Not required for power generation	None	None		It is presumed that an alternate supply of domestic water can be supplied to the cold chemistry lab if required.	
16	PTN	0	SWS / 012	5610-M-3012 Sh. 1	13	Piping	2"-3/4" supply to U4 Amertap condenser cleaning	Yes	Not required for power generation	None	None	None		
17	PTN	0	SWS / 012	5610-M-3012 Sh. 1	13	Vents / Drains / Misc. Connections	Various vents, drains, service taps	No	Not required for power generation	None	None	None		
18	PTN	0	SWS / 012	5610-M-3012 Sh. 1	14		2" & 1-1/2" SW supply to various loads & taps	Yes	Not required for power generation	None	None	None		
19	PTN	0	SWS / 012	5610-M-3012 Sh. 1	15	Piping	2"-3/4" supply to U3 Amertap condenser cleaning	Yes	Not required for power generation	None	None	None		
20	PTN	0	SWS / 012	5610-M-3012 Sh. 1	16	Piping	2" & 1-1/2" SW supply to various manifolds & taps	Yes	Not required for power generation	None	None	None		
21	PTN	0	SWS / 012	5610-M-3012 Sh. 1	17	Piping	2" & 1-1/2" SW supply to various manifolds & taps	Yes	Not required for power generation	None	None	None		
22	PTN	0	SWS / 012	5610-M-3012 Sh. 1	18	Piping	8" header to U3/U4 TPCW system LO coolers (alternate supply)	No	Not required for power generation	None	None	None		
23	PTN	0	SWS / 012	5610-M-3012 Sh. 1	18	Vents / Drains / Misc. Connections	Various vents, drains	No	Not required for power generation	None	None	None		
24	PTN	0	SWS / 012	5610-M-3012 Sh. 2	1	Piping	3" Piping to backup circ water pump lube water supply	No	N/A	None	None	None	Backup secondary system, not required for power generation.	
25	PTN	0	SWS / 012	5610-M-3012 Sh. 2	2	Piping	1" & 1/2" Piping to makeup water vacuum pump seal supply	Yes	N/A	Normally flowing	None	None	GTM Skid not required for short term power operation.	
26	PTN	0	SWS / 012	5610-M-3012 Sh. 2	3	Piping	1/2" supply to nitrogen compressor seal	Standby	Intermittently required for normal operation of N2 compressor	Ensure continued availabilty of nitrogen to plant loads	Protect	insulate and heat trace Alternative: Have sufficient N2 supply on hand in storage tanks or tanker truck to preclude the need to operate the N2 compressors over the 4 day freeze event.		
27	PTN	0	SWS / 012	5610-M-3012 Sh. 2	4	Piping	6" to 1-1/2" supply to various building loads	Yes	Not required for power generation	Normally flowing	None	Varying flow rates due to normal SW demands in downstream buildings are expected to preclude freezing in the SW header.		
28	PTN	0	SWS / 012	5610-M-3012 Sh. 2	4	Vents / Drains / Misc. Connections	Various vents, drains, service taps	No	Not required for power generation	None	None	None		
29	PTN	0	SWS / 012	5610-M-3012 Sh. 2	5	Piping	6" service water header outside Aux Bldg	Yes	Supplies N2 compressor seals and other loads	Normally flowing	None	Varying flow rates due to normal SW demands in downstream buildings are expected to preclude freezing in the SW header.		
30	PTN	0	SWS / 012	5610-M-3012 Sh. 2	5	Vents / Drains / Misc. Connections	Various vents, drains, service taps	No	Not required for power generation	None	None	None		
31	PTN	0	SWS / 012	5610-M-3012 Sh. 2	6		2" - 1/2" piping to Swloads	Yes	Not required for power generation	None	None	None	This segment supplies the TSC and the nuclear chemistry building lab sink, among other loads. It is presumed that alternative sources of domestic water could be made available to these locations if freezing conditions were encountered.	
32	PTN	0	SWS / 012	5610-M-3012 Sh. 2	6	Vents / Drains / Misc. Connections	Various vents, drains, service taps	No	Not required for power generation	None	None	None		

Florida Power & Light Company Docket No. 20220000-OT

Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 136 of 488

R21002, Rev 0 Attachment L Page 3 of 198

_											_			
	33 PTI	0	SWS / 012	5610-M-3012 Sh. 3	-		-		-	-	None	None	Domestic service water failure in these locations is not a concern for power generation and is not subject to Technical Specification requirements. No control room alarm or annunciation is depicted on this sheet. No protection strategies are recommended.	-
	34 PTI		SWS / 012	5610-M-3012 Sh. 4	1	Piping	2" SW supply to Radwaste Bldg	Yes	Not required for power generation	None	None	None		
	35 PTI	1 0	SWS / 012	5610-M-3012 Sh. 4	2	Piping	1" - 1/2" shower/eyewash lines	No	Not required for power generation	None	None	None		D ONOU 107 I already
	12 PTI		IAS / 013	5610-M-3013	atire Drawi	Vents / Drains / Micr	Small Bore Drains	No	The Instrument Air System (IAS) consists of air compressors, receiver tanks, aftercoolers, moisture separators, desiccant dryers, particulate filters, instrumentation and interconnecting piping and valves. The system is designed to provide a continuous reliable air source during normal plant operation.		None	None - The desiccant dryers are capable	In accordance with 0-ONOP-103.2, "Cold/Hot Weather Conditions" IF outside air temperature is predicted to be lower than 32"F, THEN PERFORM the following: BLOWDOWN instrument air lines to Remove any Trapped Water, BLOWDOWN air lines exposed to outside air temperature to remove any trapped water.	U-ONUP-TUS.2 afready addresses the following: • IAS-046, IA 0F5A PARTICULATE FILTER DRAIN VALVE • IAS-047, IA 0F5B PARTICULATE FILTER DRAIN VALVE • IAS-047, IA 0F5B PARTICULATE FILTER DRAIN VALVE • IMMODIAN
	13 PTI	0	IAS/013	5610-M-3013, Sh. 1	itire Drawi	Vents / Drains / Misc. Connections	Small Bore Drains	No	The Instrument Air System (IAS) consists of air compressors, receiver tanks, aftercoolers, moisture separators, desiccant dryers, particulate filters, instrumentation and interconnecting piping and valves. The system is designed to provide a continuous reliable air source during normal plant operation.	Dead Ended Legs	None	None - The desiccant dryers are capable of lowering the dewpoint of the instrument air to 40°F which satisfies the ISA standard of 18°F below minimum ambient temperature.	In accordance with 0-ONOP-103.2, "Cold/Hot Weather Conditions" IF outside air temperature is predicted to be lower than 32°F, THEN PERFORM the following: BLOWDOWN instrument air lines to Remove any Trapped Water, BLOWDOWN air lines exposed to outside air temperature to remove any trapped water.	Ine following shall be specifically added to 0-ONOP-103.2: Ensure Valves (IAS-068) is periodically opened to drain the associated line (4"-17-5). Some or all of the following valves should be evaluated as being Normally Closed in lieu o Normally Open (3-40-207, 4-40 207, -207A, -208). Then consider if any of the closed valves should be added to 0-ONOP-103.2. (This assumes all the Air Connections are above the branch piping centerlines)
	1 PTI	0	FP / 016	5610-M-3016 SH 1	1	Outdoor Tanks	Raw Water Storage Tanks T63A/B and raw water supply to tank	Yes	Provides water supply for Fire Protection system via Fire Pumps P101 & P39 and Jockey Pumps P234A/B and water to the Service Water Pumps	Maintain Fire Protection system function	Protect	Large water source would take days to freeze. If pumps are place in service to provide minimal flow with recirculation the pump heat could offset some temperature drop (limited) in the tank.	Tank capacities are 500,000 gallons for T63A and 750,000 gallons for T63B; both are aboveground Storage Tanks. 800 gpm supply from Miami Dade Water and Sewer.	oranei piping centerimes)
	2 PTf	0	FP / 016	5610-M-3016 SH 1	2	Piping	Piping from municipality	Yes	Provides water to Raw Water Storage Tank	Maintain Fire Protection system function	None	Underground piping not susceptible to freeze event.		
	16 PTI	0	FP/016	5610-M-3016 SH 10	1	Piping	Various suppression system piping and components	Standby	Provides water for local fire fighting application	Maintain Fire Protection system function	Protect		Most buildings presumed to have source of heat available to keep temperatures above 40°F to preclude freezing of fire protection piping. Buildings without heat need mitigation strategies.	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 137 of 488

R21002, Rev 0 Attachment L Page 4 of 198

17	PTN	0	FP / 016	5610-M-3016 SH 11	1	Piping	Various suppression system piping and components	Standby	Provides water for local fire fighting application	Maintain Fire Protection system function	Protect	Deluge systems: install drain piping (with valves) or weep holes on low points for proper drainage; weep holes would require vendor guidance to ensure that flow pattern and volume not adversely impacted. Additionally, insulation and heat trace of above-ground lines to the deluge valves and pressure switches. LTAM for Low Point Drains in Deluge System(s) is PTN-14-0005. Focus should be on high-risk protected systems (i.e., EDG, Transformers, etc.).	Most buildings presumed to have source of heat available to keep temperatures above 40°F to preclude freezing of fire protection piping. Buildings without heat need mitigation strategies.	
18	PTN	0	FP / 016	5610-M-3016 SH 11	2	Piping	Various suppression system piping and components	Standby	Provides water for local fire fighting application	Maintain Fire Protection system function	Protect	Focus should be on high-risk protected systems (i.e., EDG, Transformers, etc.). Wet Pipe systems: declare system as nonfunctional and drain; employ comepensatory actions. Declaring nonfunctional and draining prevents potential damage to system which would render inoperable.	Most buildings presumed to have source of heat available to keep temperatures above 40°F to preclude freezing of fire protection piping. Buildings without heat need mitigation strategies.	
19	PTN	0	FP / 016	5610-M-3016 SH 12	1	Piping	Various suppression system piping and components	No	Provides backup to the Fire Water Pumps in event of failure of the Fire Water Pumps	Maintain Fire Protection system function	Mitigate	Backup pumps connected to Fire Loop via hose connections. Need walkdown to establish above-ground an dbelow-ground piping		
3	PTN	0	FP / 016	5610-M-3016 SH 2	1	Piping	Service Water piping from Raw Water Storage Tanks to Service Water Pumps	Yes	Provides Service water to Raw Water Supply Manifold, WTP Area, TSC and U4 Diesel Rooms, Turbine Plant and backup supply to Units 1 - 4 Fire Loop	Maintain Fire	Protect	Above ground piping may or may not be susceptible to freezing depending upon service water system demands.		
5	PTN	0	FP/016	5610-M-3016 SH 3	1	Piping	Fire water piping from the Raw Water Storage Tanks to the two (2) 100% capacity Fire Pumps and two (2) Jockey Pumps. From Pumps to site Fire Water Distribution Loop.	Standby	Provides water to site Fire Loop	Maintain Fire Protection system function	Protect	Operating pumps with a combination of recirculation, and calculated system demand, will minimize chances of pump freezing, ensure pump doesn't overheat, and provide flow to various water suppression systems susceptible to freezing. Site environmental limits on operating the diesel-driven pump needs to be evaluated; alternating between electric and diesel pumps can be effective if de-energized pump is maintained in a condition that precludes freezing evaluation of operation schedule based on system configuration is considered required. If implementation of a flow strategy cannot be achieved, place pumps in enclosures (temporary or permanent) - the Diesel at PTN is in an unheated enclosure; NFPA 20 Section 4.13.3 states pump rooms or houses be maintained greater than 40°F. Addition of space heater should be utilized if ambient temperatures fall below 40°F. Walkdowns required to determine length of aboveground piping. Dependent upon length of pipe recommendations would include application of heat trace and insulation if utilization of flow to mitigate freezing is not possible.	Aboveground piping, Pumps operates in "Standby Mode" - fire piping is effectively deadleg piping. Diesel fuel is susceptible to "gelling" in cold climates as the paraffins in the fuel solidify out - this has the potential to clog the fuel filter. Paraffins start to crystallize out at approx. 32°F. Temperatures necessary for gelling to be of significance are on the order of 10°F - 15°F; at these temperatures clogging of the tank, fuel filter, and/or fuel lines can occur. Of greater concern is water entrainment within the fuel; frozen water has the potential to clog fuel lines or filters at temperatures ranging from 20°F to 30°F. Use of additives to lower the cloud point (temperature at which paraffin wax begins to crystallize) can be mixed with the diesel fuel.	
4	PTN	0	FP/016	5610-M-3016 SH 3	2	Piping	Diesel Engine Fuel & Coolant Lines	Standby	Provides motive power to Diesel Drive Fire Pump P101; 100% capacity for Design Basis Fire	Maintain Fire Protection system function	Protect	Coolant and fuel lines are susceptible to freezing due to water within the lines. "Gelling" of fuel is a result of the paraffins in diesel fuel solidifying due to low temperature over period days; engine block heater and/or use of winterized fuel (additives to minimize gelling) counter this gelling. Insulating or heat tracing of lines should be considered. Switching to a winter blend of water and anti-freeze, if not already done, should be considered for the engine coolant. A temporary enclosure over the diesel engine could be used as well to maintain ambient temperatures within tolerable limits - combustion ventilation requirements could be problematic.	Aboveground Diesel Engine	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 138 of 488 R21002, Rev 0

R21002, Rev 0 Attachment L Page 5 of 198

6	PTN	0	FP/016	5610-M-3016 SH 3	2	Piping	Diesel Engine Fuel & Coolant Lines	Standby	Provides motive power to Diesel Drive Fire Pump P101; 100% capacity for Design Basis Fire	Maintain Fire Protection system function	Protect	Coolant and fuel lines are susceptible to freezing due to water within the lines. "Gelling" of fuel is a result of the paraffins in diesel fuel solidifying due to low temperature over period days; engine block heater and/or use of winterized fuel (additives to minimize gelling) counter this gelling, Insulating or heat tracing of lines should be considered. Switching to a winter blend of water and anti-freeze, if not already done, should be considered for the engine coolant. A temporary enclosure over the diesel engine could be used as well to maintain ambient temperatures within tolerable limits - combustion ventilation requirements could be problematic.	Aboveground Diesel Engine	
7	PTN	0	FP / 016	5610-M-3016 SH 4	1	Piping	Fire loop piping	Standby	Turkey Point Fire Loop provides water to various suppression systems around the site covering PTN Units 1 - 4	Maintain Fire Protection system function	None	Underground piping not susceptible to freeze event.	All main fire loop piping is underground which is effectively protected for 4 day cold snap.	
8	PTN	0	FP/016	5610-M-3016 SH 4	2	Piping	Various suppression system piping and components	Standby	Provides water for local fire fighting application	Maintain Fire Protection system function	Protect	Focus should be on high-risk protected systems (i.e., EDG, Transformers, etc.). Pre- Action Systems: heat trace/insulate the standpiping up to the releasing valve. Utilize drain lines at releasing valve and hose stations to provide minimum flow to keep dead leg flow moving. Route water to drains to preclude ice hazards. Wet Pipe systems: declare system as INOPERABLE and drain; place firewatches. Deluge systems: install drain piping (with valves) or weep holes on low points for proper drainage; weep holes would require vendor guidance to ensure that flow pattern and volume not adversely impacted. Additionally, insulation and heat trace of lines to the deluge valves and pressure switches. LTAM for Low Point Drains in Deluge System(s) is PTN-14-0005	Most buildings presumed to have source of heat available to keep temperatures above 40°F to preclude freezing of fire protection piping. Buildings without heat need mitigation strategies.	
9	PTN	0	FP / 016	5610-M-3016 SH 5	1	Piping	Fire loop piping	Standby	Turkey Point Fire Loop provides water to various suppression systems around the site.	Maintain Fire Protection system function	None	Underground piping not susceptible to freeze event.	All main fire loop piping is underground which is effectively protected for 4 day cold snap.	
10	PTN	0	FP / 016	5610-M-3016 SH 6	1	Piping	Fire Loop Piping	Standby	Provides water for local fire fighting application	Maintain Fire Protection system function	None	Underground piping not susceptible to freeze event.	All main fire loop piping is underground which is effectively protected for 4 day cold snap.	
11	PTN	0	FP/016	5610-M-3016 SH 6	2	Piping	Fire Loop Piping and various suppression system piping and components	Standby	Provides water for local fire fighting application	Maintain Fire Protection system function	Protect	Focus should be on high-risk protected systems (i.e., EDG, Transformers, etc.). Pre-Action Systems: heat trace/insulate the standpiping up to the releasing valve. Utilize drain lines at releasing valve and hose stations to provide minimum flow to keep dead leg flow moving. Route water to drains to preclude ice hazards. Wet Pipe systems: declare system as INOPERABLE and drain; place firewatches. Deluge systems: install drain piping (with valves) or weep holes on low points for proper drainage; weep holes would require vendor guidance to ensure that flow pattern and volume not adversely impacted. Additionally, insulation and heat trace of lines to the deluge valves and pressure switches.	Most buildings presumed to have source of heat available to keep temperatures above 40°F to preclude freezing of fire protection piping. Buildings without heat need mitigation strategies.	
12	PTN	0	FP / 016	5610-M-3016 SH 7	1	Piping	Various suppression system piping and components	Standby	Provides water for local fire fighting application	Maintain Fire Protection system function	Protect	Focus should be on high-risk protected systems (i.e., EDG, Transformers, etc.).	Most buildings presumed to have source of heat available to keep temperatures above 40°F to preclude freezing of fire protection piping. Buildings without heat need mitigation strategies.	
13	PTN	0	FP / 016	5610-M-3016 SH 8	1	Piping	Various suppression system piping and components	Standby	Provides water for local fire fighting application	Maintain Fire Protection system function	Protect	Pre-Action Systems: heat trace/insulate the standpiping up to the releasing valve. Utilize drain lines at releasing valve and hose stations to provide minimum flow to keep dead leg flow moving. Route water to drains to preclude ice hazards. Focus should be on high-risk protected systems.	Most buildings presumed to have source of heat available to keep temperatures above 40°F to preclude freezing of fire protection piping. Buildings without heat need mitigation strategies.	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 139 of 488

R21002, Rev 0 Attachment L Page 6 of 198

14	PTN	0	FP / 016	5610-M-3016 SH 8	2	Piping	Various suppression system piping and components	Standby	Provides water for local fire fighting application	Maintain Fire Protection system function	Protect	Wet Pipe systems: declare system as nonfunctional and drain; place firewatches. Declaring nonfunctional and draining prevents potential damage to system which would render inoperable. Focus should be on high-risk protected systems.	Most buildings presumed to have source of heat available to keep temperatures above 40°F to preclude freezing of fire protection piping. Buildings without heat need mitigation strategies.	
15	PTN	0	FP / 016	5610-M-3016 SH 9	1	Piping	Various suppression system piping and components	Standby	Provides gaseous suppression for fire fighting application	Maintain Fire Protection system function	None	Gaseous Systems not considered as susceptible to failure due to lowered ambient temperatures - discharge may be slowed. In the event temperatures reduce gas pressure below required limits, system should be declared "nonfunctional" and compensatory actions initiated.	Gaseous suppression is two-phase flow of liquid and gas - piping temperature affects the rate of suppressant phase change from liquid to gas.	
1	PTN	0	ICW / 019	5610-M-3019 Sh. 1	1	Piping	8", 10" & 12" Main Piping	No	Provides supplemental cooling for ICW via injecting chilled Unit 5 well water into either the Unit 3 or Unit 4 ICW system piping upstream of the Unit 3 or Unit 4 CCW heat exchangers in order to mitigate elevated Containment temperatures. This is a NNS system.	None	Mitigate	Align and run the system to ensure flow through the supplemental line on a periodic basis to protect the SR piping on 5613/4-M-3019 Sh. 2. The smallest sized pipe in the full supplemental system is 4", therefore, with no insulaton flow needs to be established every 9.5 hours to prevent >25% freezing. (UHS Temperature ~50°F Min.)	Protection of the piping on this P&ID is not required, since the system would not need to be used during a severe cold weather event (only needed during extreme hot summer weather when ICW temperatures are high and Containment temperature is near the 120F TS limit. This piping is NNS and a break or damage to this piping would not impact unit generation or require a shutdown However, on 5613/4-M-3019 Sh. 2, to prevent damage to the SR portion of this system, it is recommended a "Mitigate" strategy is used, and running the supplemental system on a periodic basis to prevent freezing. Per 0-ONOP-103.2, "ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure". Another option is don't mitigate this system and protect the SR ICW Supplemental piping with 1" insulation to prevent >25% freezing.	5613-M-3019 Sh. 2 5614-M-3019 Sh. 2 EC 283870 0-ONOP-103.2
2	PTN	0	ICW / 019	5610-M-3019 Sh. 1	1	Piping	Unit 5 Well Pump and Pump 0P9	No	See above for piping		Mitigate	See above for piping Determine what protection is needed to maintain	See above for piping	
3	PTN	0	ICW / 019	5610-M-3019 Sh. 1	1	Motors	Unit 5 Well Pump and Pump 0P9	No	See above for piping		Protect	the motor. A mitigate option is to use tenting and space heaters.		
4	PTN	0	ICW / 019	5610-M-3019 Sh. 1	1	Vents / Drains / Misc. Connections	All vents, drains, and connections	No	None		None	No protection required	A break in any of these lines would cause leakage from the system; however, the system is NNS, there would only be minimal system leakage, and a majority of flow would still go through the system to prevent freezing of the main SR pipe.	
5	PTN	0	ICW / 019	5610-M-3019 Sh. 1	1	Heat Exchangers	Chillers	No	See above for piping		Protect	Determine what protection is needed to maintain the chillers. The chillers are not required to be functional, but the flow path through them cannot freeze and prevent system from flowing. A mitigate option is to use tenting and space heaters.	See above for piping	
6	PTN	0	ICW / 019	5610-M-3019 Sh. 1	1	Instr. Local	All local instruments	No	None		None	No protection required	A break in any of these lines would cause leakage from the system; however, the system is NNS, there would only be minimal system leakage, and a majority of flow would still go through the system to prevent freezing of the main SR pipe.	
1	PTN	0	WTP/021	5610-M-3021 Sh. 1	1	Piping	8"-10-F Pipe and 6"-10-F Pipe	Yes	Inlet Flow to Raw Water Pump	Pressure Boundary	None	None	No impact on the power generation. Location: RWT Area Suggestion: To avoid freezing and possible damage to equipment, consider adding heat tracing and insulation	Water Treatment System or primary water make-up system does not create any abnormal condition in reactor operation; therefore a componet failure or temporary outage is not important for reactor safety per UFSAR 9.6.3
2	PTN	0	WTP / 021	5610-M-3021 Sh. 1	2	Pump	P17A and P17B Raw Water Pump	Yes	Inlet / Outlet Flow	Pressure Boundary	None	None	RWT Area	Water Treatment System or primary water make-up system does not create any abnormal condition in reactor operation; therefore a componet failure or temporary outage is not important for reactor safety per UFSAR 9.6.3
3	PTN	0	WTP / 021	5610-M-3021 Sh. 1	3	Piping	3" Pipe and 6" -10-F Pipe	Yes	Outlet Flow to Water Purification Plant	Pressure Boundary	None	None	No impact on the power generation. Location: RWT Area Suggestion: To avoid freezing and possible damage to equipment, consider adding heat tracing and insulation	Water Treatment System or primary water make-up system does not create any abnormal condition in reactor operation; therefore a componet failure or temporary outage is not important for reactor safety per UFSAR 9.6.3

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 140 of 488 Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 141 of 488

> R21002, Rev 0 Attachment L Page 7 of 198

4	PTN	0	WTP/021	5610-M-3021 Sh. 1	3	Vents / Drains / Misc. Connections	4"-10-F Pipe reducer 6"-10-F pipe capped welded	No	Pressure Boundary	Dead Leg	None	None	No impact on the power generation. Location: RWT Area Suggestion: To avoid freezing and possible damage to equipment, consider adding heat tracing and insulation	Water Treatment System or primary water make-up system does not create any abnormal condition in reactor operation; therefore a componet failure or temporary outage is not important for reactor safety per UFSAR 9.6.3
5	PTN	0	WTP / 021	5610-M-3021 Sh. 1	4	Piping	8" Pipe reducer to 6" Pipe	No	Raw Water Supply to WTP	Pressure Boundary	None	None	No impact on the power generation. Location: WTP Area Suggestion: To avoid freezing and possible damage to equipment, consider adding heat tracing and insulation	Water Treatment System or primary water make-up system does not create any abnormal condition in reactor operation; therefore a componet failure or temporary outage is not important for reactor safety per UFSAR 9.6.3
6	PTN	0	WTP / 021	5610-M-3021 Sh. 1	5	Piping	6" Pipe	Yes	Supply from the Raw Water Supply and Service Water System	Pressure Boundary	None	None	No impact on the power generation. Location: RWT Area Suggestion: To avoid freezing and possible damage to equipment, consider adding heat tracing or insulation.	Water Treatment System or primary water make-up system does not create any abnormal condition in reactor operation; therefore a componet failure or temporary outage is not important for reactor safety per UFSAR 9.6.3
7	PTN	0	WTP / 021	5610-M-3021 Sh. 1	6	Piping	8" Pipe	Yes	Supply from Well Water; Supply to CWP Lube Water Storage Tank; Waste Header	Pressure Boundary	None	None	No impact on the power generation. Location: East of New WTP Area. Suggestion: To avoid freezing and possible damage to equipment, consider adding heat tracing and insulation	Water Treatment System or primary water make-up system does not create any abnormal condition in reactor operation; therefore a componet failure or temporary outage is not important for reactor safety per UFSAR 9.6.3
8	PTN	0	WTP / 021	5610-M-3021 Sh. 1	7	Piping	1/2" Pipe	Yes	Instrument Air	Provides Instrument Air	None	None	No impact on the power generation. Location; East of New WTP Area Suggestion: To avoid freezing and possible damage to equipment, consider adding heat tracing and insulation.	Water Treatment System or primary water make-up system does not create any abnormal condition in reactor operation; therefore a componet failure or temporary outage is not important for reactor safety per UFSAR 9.6.3
9	PTN	0	WTP/021	5610-M-3021 Sh. 1	8	Vents / Drains / Misc. Connections	3/4" Pipe	No	None	Dead Leg	None	None	No impact on the power generation. Location: 397 - WTP Area Suggestion: To avoid freezing and possible damage to equipment, consider adding heat tracing and insulation	Water Treatment System or primary water make-up system does not create any abnormal condition in reactor operation; therefore a componet failure or temporary outage is not important for reactor safety per UFSAR 9.6.3
10	PTN	0	WTP / 021	5610-M-3021 Sh. 1	9	Vents / Drains / Misc. Connections	6" Pipe and 3/4" Pipe	No	Fire Department Connection	Pressure Boundry	None	None	No impact on the power generation. Location: East of new WTP Area Suggestion: To avoid freezing and possible damage to equipment, consider adding heat tracing and insulation.	Water Treatment System or primary water make-up system does not create any abnormal condition in reactor operation; therefore a componet failure or temporary outage is not important for reactor safety per UFSAR 9.6.3
11	PTN	0	WTP / 021	5610-M-3021 Sh. 1	10	Pipe	6" Pipe	No	None	Pressure Boundry	None	Inspect during walkdown		Water Treatment System or primary water make-up system does not create any abnormal condition in reactor operation; therefore a componet failure or temporary outage is not important for reactor safety per UFSAR 9.6.3

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 142 of 488

> R21002, Rev 0 Attachment L Page 8 of 198

12	PTN	0	WTP / 021	5610-M-3021 Sh. 1	11	Pipe	6" Pipe	Yes	Product Water to Demin Water System	Pressure Boundry	None	None	No impact on the power generation. Location: East of new WTP Area Suggestion: To avoid freezing and possible damage to equipment, consider adding heat tracing and insulation	Water Treatment System or primary water make-up system does not create any abnormal condition in reactor operation; therefore a componet failure or temporary outage is not important for reactor safety per UFSAR 9.6.3
13	PTN	0	WTP / 021	5610-M-3021 Sh. 1	12	Pipe	8" Pipe	Yes	Waste Water Intake Canal	None	None	Inspect during walkdown		Water Treatment System or primary water make-up system does not create any abnormal condition in reactor operation; therefore a componet failure or temporary outage is not important for reactor safety per UFSAR 9.6.3
14	PTN	0	WTP / 021	5610-M-3021 Sh. 1	13	Pipe	8" Pipe and 6" Pipe	Yes	Supply Water to Lube Water Storage Tank	Pressure Boundary	None	None	No impact on the power generation. Location: East of new WTP Area Suggestion: To avoid freezing and possible damage to equipment, consider adding heat tracing and insulation	Water Treatment System or primary water make-up system does not create any abnormal condition in reactor operation; therefore a componet failure or temporary outage is not important for reactor safety per UFSAR 9.6.3
15	PTN	0	WTP / 021	5610-M-3021 Sh. 2	1	Piping	6"-9-S Pipe	Yes	Product Water from WTP	Pressure Boundary	None	None	No impact on the power generation. Location: WTP Area Suggestion: To avoid freezing and possible damage to equipment, consider adding heat tracing and insulation	Water Treatment System or primary water make-up system does not create any abnormal condition in reactor operation; therefore a componet failure or temporary outage is not important for reactor safety per UFSAR 9.6.3
16	PTN	0	WTP / 021	5610-M-3021 Sh. 2	1	Piping	4" Pipe	No	None	Dead Leg	None	None	No impact on the power generation. Location: WTP Area Suggestion: To avoid freezing and possible damage to equipment, consider adding heat tracing and insulation	Water Treatment System or primary water make-up system does not create any abnormal condition in reactor operation; therefore a componet failure or temporary outage is not important for reactor safety per UFSAR 9.6.3
17	PTN	0	WTP / 021	5610-M-3021 Sh. 2	1	Piping	Control Valve CV-539	Yes	Maintain Primary Water Flow	Pressure Boundary/ Flow Control	None	None		Water Treatment System or primary water make-up system does not create any abnormal condition in reactor operation; therefore a componet failure or temporary outage is not important for reactor safety per UFSAR 9.6.3
18	PTN	0	WTP / 021	5610-M-3021 Sh. 2	1	Vents / Drains / Misc. Connections	Pipe connected to Shutoff Valve	No	None	Dead Leg	None	None	No impact on the power generation. Location: WTP Area Suggestion: To avoid freezing and possible damage to equipment, consider adding heat tracing and insulation	Water Treatment System or primary water make-up system does not create any abnormal condition in reactor operation; therefore a componet failure or temporary outage is not important for reactor safety per UFSAR 9.6.3
19	PTN	0	WTP / 021	5610-M-3021 Sh. 2	1	Instr. Control / Protection	Instrument air tubing/ controller for CV-539	Yes	CV-539 control	Flow Control	None	None	No impact on the power generation. Suggestion: To avoid freezing and possible damage to equipment, consider adding heat tracing and insulation.	Water Treatment System or primary water make-up system does not create any abnormal condition in reactor operation; therefore a componet failure or temporary outage is not important for reactor safety per UFSAR 9.6.3

R21002, Rev 0 Attachment L Page 9 of 198

20	PTN	0	WTP / 021	5610-M-3021 Sh. 2	1	Drains / Misc. Connections	4-3/4"-9 Pipe	No	None	Dead Leg	None	None	No impact on the power generation. Location: WTP Area Suggestion: To avoid freezing and possible damage to equipment, consider adding heat tracing and insulation	Water Treatment System or primary water make-up system does not create any abnormal condition in reactor operation; therefore a componet failure or temporary outage is not important for reactor safety per UFSAR 9.6.3
21	PTN	0	WTP / 021	5610-M-3021 Sh. 2	2	Vents / Drains / Misc. Connections	3/8" x.065" SS Tubing	No	Primary Sensing Element	Pressure Boundary	None	None	No impact on the power generation. Location: WTP Area Suggestion: To avoid freezing and possible damage to equipment, consider adding heat tracing and insulation	Water Treatment System or primary water make-up system does not create any abnormal condition in reactor operation; therefore a componet failure or temporary outage is not important for reactor safety per UFSAR 9.6.3
22	PTN	0	WTP / 021	5610-M-3021 Sh. 2	2	Vents / Drains / Misc. Connections	3/8" x.065" SS Tubing	Yes	Water Sample to Chemistry Lab	Pressure Boundary	None	None	No impact on the power generation. Location: WTP Area Suggestion: To avoid freezing and possible damage to equipment, consider adding heat tracing and insulation	Water Treatment System or primary water make-up system does not create any abnormal condition in reactor operation; therefore a componet failure or temporary outage is not important for reactor safety per UFSAR 9.6.3
23	PTN	0	WTP / 021	5610-M-3021 Sh. 2	3	Bypass Connection / Vents / Drains / Misc. Connections	3/4" Pipe	No	None	Dead Leg	None	None	No impact on the power generation. Location: 397- WTP Area Suggestion: To avoid freezing and possible damage to equipment, consider adding heat tracing and insulation	Water Treatment System or primary water make-up system does not create any abnormal condition in reactor operation; therefore a componet failure or temporary outage is not important for reactor safety per UFSAR 9.6.3
24	PTN	0	WTP / 021	5610-M-3021 Sh. 2	3	Bypass Connection / Vents / Drains / Misc. Connections	3/4" pipe	Yes	Maintain Primary Water Flow to EDG Cooling System	Pressure boundary	None	None	No impact on the power generation. Location: 386 WTP Chem Storage Area Suggestion: To avoid freezing and possible damage to equipment, consider adding heat tracing and insulation	Water Treatment System or primary water make-up system does not create any abnormal condition in reactor operation; therefore a componet failure or temporary outage is not important for reactor safety per UFSAR 9.6.3
25	PTN	0	WTP / 021	5610-M-3021 Sh. 3	Void	Void	Void	Void	Void	Void	Void	Void	Void	Void
27	PTN	0	WTP / 021	5610-M-3021 Sh. 4	1	Vents / Drains / Misc. Capped Connections	1" Pipe and 2" Pipe	No	Local Indication / Alternate Air Supply to Water Storage Tank	None	None	None	No impact on the power generation. Suggestion : To avoid freezing and possible damage to equipment, consider adding heat tracing and insulation	No T.S or FSAR limits per TP Extreme Temperature Reassessment
28	PTN	0	WTP / 021	5610-M-3021 Sh. 4	2	Vents / Drains / Misc. Capped Connections	1" and 3/8" SS Tubing	No	Manual Grab Sample	Water Sample	None	None	No impact on the power generation. Suggestion : To avoid freezing and possible damage to equipment, consider adding heat tracing and insulation	No T.S or FSAR limits per TP Extreme Temperature Reassessment
29	PTN	0	WTP / 021	5610-M-3021 Sh. 4	3	Piping	3" Pipe	Yes	Level Transmitter	Lo LVL Audible and Visual Alarm	None	None	No impact on the power generation. Suggestion: To avoid freezing and possible damage to equipment, consider adding heat tracing and insulation	No T.S or FSAR limits per TP Extreme Temperature Reassessment
30	PTN	0	WTP / 021	5610-M-3021 Sh. 4	4	Piping	8" Pipe and 4" Pipe	Yes	Lube Water Pump Suction Line	Lube Water to Circulating Water Pumps	None	None	No impact on the power generation. Suggestion: To avoid freezing and possible damage to equipment, consider adding heat tracing and insulation	No T.S or FSAR limits per TP Extreme Temperature Reassessment
31	PTN	0	WTP / 021	5610-M-3021 Sh. 4	4	Piping	3/4" Pipe	No	None	Dead Leg	None	None	No impact on the power generation. Suggestion: To avoid freezing and possible damage to equipment, consider adding heat tracing and insulation	No T.S or FSAR limits per TP Extreme Temperature Reassessment
32	PTN	0	WTP / 021	5610-M-3021 Sh. 4	5	Piping	8" Pipe and 6" Pipe	Yes	Supply Water from WTP to Lube Storage Tank; Lube Storage Tank Overflow Drain to Intake Canal	Pressure Boundary	None	None	No impact on the power generation. Suggestion: To avoid freezing and possible damage to equipment, consider adding heat tracing and insulation	No T.S or FSAR limits per TP Extreme Temperature Reassessment
33	PTN	0	WTP / 021	5610-M-3021 Sh. 4	5	Vents / Drains / Misc. Connections	3" Pipe and 4" Pipe	No	Pressure Releif	Safety Releif Valve	None	None	No impact on the power generation. Suggestion: To avoid freezing and possible damage to equipment, consider adding heat tracing and insulation	No T.S or FSAR limits per TP Extreme Temperature Reassessment
34	PTN	0	WTP / 021	5610-M-3021 Sh. 4	6	Piping	3" Pipe; 4" Pipe; 6" Pipe; 10" Pipe; 8" Pipe	Yes	Sump Drain to Intake Canal	Stagnent Water to Freeze up	None	None	No impact on the power generation. Suggestion: To avoid freezing and possible damage to equipment, consider adding heat tracing and insulation	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 143 of 488

R21002, Rev 0 Attachment L Page 10 of 198

35	PTN	0	WTP / 021	5610-M-3021 Sh. 4	7	Vents / Drains / Misc. Connections	50-704 Shutoff Valve connected to the Lube Storage tank	No	None	Dead Leg	None	None	No impact on the power generation. Suggestion: To avoid freezing and possible damage to equipment, consider adding heat tracing and insulation	
36	PTN	0	WTP / 021	5610-M-3021 Sh. 4	8	Vents / Drains / Misc. Blind Flanged Connections	6" Pipe and 1" Pipe	No	None	Pressure Boundary	None	None	No impact on the power generation. Suggestion: To avoid freezing and possible damage to	
37	PTN	0	WTP / 021	5610-M-3021 Sh. 4	9	Vents / Drains / Misc.	1" Pipe	No	None	None	None	None	equipment,consider adding heat tracing and insulation	
37	FIN		W1F / UZ1	3010-101-3021 311. 4	9	Connections		NO	None	None	None	None		
26	PTN	0	WTP / 021	5610-M-3021 Sh. 4		Outdoor Tank	CWP Lube Water Storage Tank	Yes	CWP Lube Water Storage Tank is used in circulating water pumps lube water system per UFSAR 9.6-9	Reject Waste Water from WTP	None	No protection required, tank and contents will not freeze.	An outdoor tank vent can be blocked by ice formation, creating a vacuum. The vacuum condition can adversely affect the tank parameters being monitored and cause unwanted system protective actuations.	No T.S or FSAR limits per TP Extreme Temperature Reassessment
38	PTN	0	WTP / 021	5610-M-3021 Sh. 5	1	Piping	3/8" x .065" SS Tubing	Yes	Water Sample	Product Water Sample to Nuclear Chemstry Lab	None	None	No impact on the power generation. Suggestion: To avoid freezing and possible damage to equipment, consider adding heat tracing and insulation	
39	PTN	0	WTP / 021	5610-M-3021 Sh. 6	Void	Void	Void	Void	Void	Void	Void	Void	Void	Void
32	PTN	0	025	5610-M-3025 Sh. 1	1	Ducting	Control Bldg supply and exhaust ductwork	Yes	TS 3/4.7.5; CREVS availability required to provide habitable environment for post-accident plant operations	Not affected by cold temperatures	None	None	Ducting is not susceptible to damage from freezing	
33	PTN	0	025	5610-M-3025 Sh. 1	1	Instruments - General	Local D/P gages, damper position switches, temperature indication switches (thermostats), duct flow elements / switches	Yes	TS 3/4.7.5; CREVS availability required to provide habitable environment for post-accident plant operations	Located inside control building; not affected by cold temperatures	None	None	No instruments contain water that is susceptible to freezing	
34	PTN	0	025	5610-M-3025 Sh. 1	1	Instr. Control / Protection	Normal intake radiation monitors (CREVS Actuation)	Yes	TS 3/4.7.5; CREVS availability required to provide habitable environment for post-accident plant operations	Located inside control building equipment room; not affected by cold temperatures	None	None		
35	PTN	0	025	5610-M-3025 Sh. 1	1	Filter Train	CREVS recirc filters; compensatory filter unit	Standby	TS 3/4.7.5; CREVS availability required to provide habitable environment for post-accident plant operations	Filter trains are not affected by cold weather	None	None		
36	PTN	0	025	5610-M-3025 Sh. 1	1	Air Handling Unit	A, B, C CREVS AHUs	Yes	TS 3/4.7.5; CREVS availability required to provide habitable environment for post-accident plant operations	Cold weather has little to no effect on a fan or its motor. Coils are direct expansion (DX), not subject to freezing	None	None	Control room HVAC system does not include heating capability. Control building environment is assumed to be maintained above freezing by general measures taken by PTN for building interiors.	
37	PTN	0	025	5610-M-3025 Sh. 1	1	Air Condensing Unit	Control Room AHU condensing unit	Yes	TS 3/4.7.5; CREVS availability required to provide habitable environment for post-accident plant operations	Motors and condensers are generally unaffected by cold weather.	None	None		
38	PTN	0	025	5610-M-3025 Sh. 1	1	Fan	CREVS filter supply fans; Compensatory filter supply fan	Standby	TS 3/4.7.5; CREVS availability required to provide habitable environment for post-accident plant operations	Fans are located indoors. Cold weather has little to no effect on a fan or its motor. Outdoor kitchen fan ductwork blanked off.	None	None		
39	PTN	0	025	5610-M-3025 Sh. 1	1	Motor Operated Damper	Indoor and outdoor motor operated dampers	Yes	TS 3/4.7.5; CREVS availability required to provide habitable environment for post-accident plant operations	For the three outdoor supply dampers, gearbox lubricant may impart additional resisting torque on the damper motors at reduced temperatures that could impede full- range damper operation. Other dampers are internal to the SFP area.	Protect	Verify the damper motor/gearbox lubricant is adequate for cold-weather conditions to avoid excessive resisting torque.		
65	PTN	0	025	5610-M-3025 Sh. 2	1	Piping	Computer room chilled water piping, portions on Aux Bldg roof serving train A and B chiller packages	Yes	instrumentation operability;	safety related chilled water system is required to maintain computer room temps within EQ limits	Protect	Insulate and heat trace the standby chilled water train; Alternative: periodically cycle chilled water flow in the idle train, or run both trains continuously.		
66	PTN	0	025	5610-M-3025 Sh. 2	1	Vents / Drains / Misc. Connections	Various manual vent and drains	No	TS 3/4.3.3 Monitoring instrumentation operability; (Chilled water pressure boundary)	safety related chilled water system is required to maintain computer room temps within EQ limits	Protect	Insulate and heat trace dead legs, if warranted by length and existing insulation configuration.		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 144 of 488 R21002 Rev 0

R21002, Rev 0
Attachment L
Page 11 of 198

														·
67	PTN	0	025	5610-M-3025 Sh. 2	1	Heat Exchangers	Chiller evaporator	Yes	TS 3/4.3.3 Monitoring instrumentation operability;	safety related chilled water system is required to maintain computer room temps within EQ limits	Protect	Insulate / cover / enclose chiller evaporator to prevent freezing in standby unit Alternative: periodically cycle chilled water flow in the idle train, or run both trains continuously.		
68	PTN	0	025	5610-M-3025 Sh. 2	1	Outdoor Tanks	Chilled water air separator	Yes	TS 3/4.3.3 Monitoring instrumentation operability;	safety related chilled water system is required to maintain computer room temps within EQ limits	Protect	Insulate / cover / enclose chiller air separator to prevent freezing in standby unit Alternative: periodically cycle chilled water flow in the idle train, or run both trains continuously.		
69	PTN	0	025	5610-M-3025 Sh. 2	1	Instr. Local	Local pressure indication	Yes	None	Local indication not required for power	None	None		
70	PTN	0	025	5610-M-3025 Sh. 2	1	Instr. Control / Protection	Pressure, flow, and temperature transmitters	Yes	TS 3/4.3.3 Monitoring instrumentation operability; Alarm annunciation in control room	operation safety related chilled water system is required to maintain computer room temps within EQ limits	Protect	Insulate and heat trace pressure and flow instrument tubing		
71	PTN	0	025	5610-M-3025 Sh. 2	2	Piping	Piping to expansion tank	Yes	TS 3/4.3.3 — Monitoring instrumentation operability;	safety related chilled water system is required to maintain computer room temps within EQ limits	Protect	Insulate and heat trace both trains		
72	PTN	0	025	5610-M-3025 Sh. 2	2	Vents / Drains / Misc. Connections	Various manual vent and drains	No	Chilled water pressure boundary	safety related chilled water system is required to maintain computer room temps within EQ limits	Protect	Insulate and heat trace dead legs, if warranted by length and existing insulation configuration.		
73	PTN	0	025	5610-M-3025 Sh. 2	2	Outdoor Tanks	Chilled water expansion tank	Yes	TS 3/4.3.3 Monitoring instrumentation operability;	safety related chilled water system is required to maintain computer room temps within EQ limits	Protect	Insulate / cover / enclose chiller expansion tanks to prevent freezing, if required based on size and insulation configuration		
74	PTN	0	025	5610-M-3025 Sh. 2	2	Instr. Control / Protection	Expansion tank level gage and switch	Yes	TS 3/4.3.3 — Monitoring instrumentation operability; Alarm annunciation in control room	safety related chilled water system is required to maintain computer room temps within EQ limits	Protect	Insulate and heat trace level gage sensing lines		
75	PTN	0	025	5610-M-3025 Sh. 2	3	Piping	Chilled water makeup line	No	None	Not required for power	None	None	Ensure sufficient expansion tank inventory before cold weather	
76	PTN	0	025	5610-M-3025 Sh. 2	3	Instr. Local	Local pressure indication	No	None	Local indication not required for power operation	None	None	event;	
56	PTN	0	026	5610-M-3026 Sh. 1	1	Ducting	Radwaste supply, filtration, and exhaust ductwork	Yes	Not required for power generation, but required for continuous radiation monitoring of radwaste areas	Not affected by cold temperatures	None	None	Ducting is not susceptible to damage from freezing	
57	PTN	0	026	5610-M-3026 Sh. 1	1	Instruments - General	Local D/P gages; Bldg inlet filter media limit switches;	Yes	Local indication only, not required for power generation	Located inside control building; not affected by cold temperatures	None	None	No instruments contain water that is susceptible to freezing	
58	PTN	0	026	5610-M-3026 Sh. 1	1	Instr. Annunciation / Indication	temperature switches and transmitters for AHU and fan control	Yes	Not required for power operation	Not affected by cold temperatures	None	None	Instruments contains no water that is susceptible to freezing	
59	PTN	0	026	5610-M-3026 Sh. 1	1	Filter Train	Radwaste bldg exhaust filtration	Yes	Not required for power generation, but required for continuous radiation monitoring of radwaste areas	Filter trains are located indoors and are not affected by cold weather	None	None		
60	PTN	0	026	5610-M-3026 Sh. 1	1	Filter	Air handler pre-filters	Yes	Not required for power generation	Radwaste AHUs are located indoors; cooling function not required for power generation, likely not used during cold weather event	None	None		
61	PTN	0	026	5610-M-3026 Sh. 1	1	Fan	Radwaste bldg exhaust filtration fans	Yes	Not required for power generation, but required for continuous radiation monitoring of radwaste areas	Fans are located indoors. Cold weather has little to no effect on a fan or its motor.	None	None		
62	PTN	0	026	5610-M-3026 Sh. 1	1	Air Handling Unit	Radwaste Control room AHU; Respirator repair room AHU; Respirator drying room AHU;	Yes	Not required for power generation	Cold weather has little to no effect on a fan or its motor. Coils are direct expansion (DX), not subject to freezing.	None	None	Radwaste control room and respirator room AHUs do not include heating capability. Building environment is assumed to be maintained above freezing by general measures taken by PTN for building interiors.	

Florida Power & Light Company Docket No. 20220000-OT

Ten-Year Site Plan
Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 145 of 488 R21002, Rev 0

R21002, Rev 0 Attachment L Page 12 of 198

63	PTN	0	026	5610-M-3026 Sh. 1	1	Air Condensing Unit	Condensers for Radwaste Control Room AHU and respirator repair room AHU	Yes	Not required for power generation	Motors and condensers are generally unaffected by cold weather. This unit is not required for power generation.	None	None		
64	PTN	0	026	5610-M-3026 Sh. 1	1	Filter	Radwaste bldg inlet filtration media rolls	Yes	Not required for power generation	Filter roll motors are indoors	None	None		
44	PTN	0	060	5610-M-3060 Sh. 1	1	Ducting	Aux Bldg supply and exhaust ductwork	Yes	Non-safety related, but required to be available for post-accident heat removal in Aux Bldg	Not affected by cold temperatures	None	None	Ducting is not susceptible to damage from freezing	
45	PTN	0	060	5610-M-3060 Sh. 1	1	Instruments - General	Local D/P gages, exhaust damper position switches	Yes	Local indication only, not required for power generation	Located inside control building; not affected by cold temperatures	None	None	No instruments contain water that is susceptible to freezing	
46	PTN	0	060	5610-M-3060 Sh. 1	1	Instr. Annunciation / Indication	plant stack flow element / transmitter	Yes	Input to SPDS/SAS	Not affected by cold temperatures	None	None	Instruments contains no water that is susceptible to freezing	
47	PTN	0	060	5610-M-3060 Sh. 1	1	Instr. Annunciation / Indication	U3 SFP SPING radiation detector	Yes	Input to SPDS/SAS	Not required for power operations (no longer in Tech Spec's); Vent stack SPING is located in the Aux Bldg fan room. Procedures call for portable monitoring in the event the SPING monitors fail	None	None		
48	PTN	0	060	5610-M-3060 Sh. 1	1	Filter Train	Aux Bldg exhaust pre-filters and HEPA filters Radioactive lab exhaust filters	Yes	Promotes	Filter trains are located indoors and are not affected by cold weather	None	None		
49	PTN	0	060	5610-M-3060 Sh. 1	1	Filter	Supply fan prefilters Laundry area filters	Yes	Not required for power generation	Filter trains are not affected by cold weather	None	None		
50	PTN	0	060	5610-M-3060 Sh. 1	1	Fan	Aux Bldg Exhaust Fans	Yes	Non-safety related, but should be available for bldg heat removal as indicated by UFSAR Sec 9.8.1.2. Fans promote movement of potentially contaminated air away from non- contaminated areas.	Fans are located indoors. Cold weather has little to no effect on a fan or its motor.	None	None	O-ONOP-103.2 calls for turning off one exhaust fan to help mitigate low temperature conditions in the Aux Bldg. Aux Bldg HVAC does not include heating capability. Building environment is assumed to be maintained above freezing by general measures taken by PTN for building interiors.	
51	PTN	0	060	5610-M-3060 Sh. 1	1	Fan	Aux Bldg Supply Fans	Yes	None	Supply fans are outdoors, but fans and motors are generally unaffected by cold weather.	None	None	O-ONOP-103.2 calls for turning off both supply fans to help mitigate low temperature conditions in the Aux Bldg.	
52	PTN	0	060	5610-M-3060 Sh. 1	1	Fan	Filtered exhaust fans from radioactive lab	Yes	None	Fans are located indoors. Cold weather has little to no effect on a fan or its motor.	None	None		
53	PTN	0	060	5610-M-3060 Sh. 1	1	Motor Operated Damper	Aux Bldg exhaust fan motor operated dampers	Yes	Flow path for bldg heat removal and discharge to plant stack	No action required. Dampers are internal to the Aux Bldg.	None	None		
54	PTN	0	025	5610-M-3060 Sh. 1	1	Air Handling Unit	Laundry area AHU	Yes	Not required for power generation	Cold weather has little to no effect on a fan or its motor. Coils are direct expansion (DX), not subject to freezing.	None	None		
55	PTN	0	025	5610-M-3060 Sh. 1	1	Air Condensing Unit	Condenser for laundry area AHU	Yes	Not required for power generation	Motors and condensers are generally unaffected by cold weather. This unit is not required for power generation.	None	None	Condensing unit for the laundry area AHU is not shown on this P&ID. However, it is depicted on 5610-M-1519	
40	PTN	0	060	5610-M-3060 Sh. 3	1	Ducting	Electrical Eqpt Room supply and exhaust ductwork	Standby	Safety-related cooling system, required for temperature control in Electrical Eqpt Rm	Not affected by cold temperatures	None	None	Ducting is not susceptible to damage from freezing	
41	PTN	0	060	5610-M-3060 Sh. 3	1	Instr. Control / Protection	Temperature instrument/switches	Standby	Provides auto-start signal to safety- related Electrical Eqpt Rm AHUs. Includes Control Room annunciation	Located inside Electrical Eqpt Rm; not sensitive to cold temperatures	None	None		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 146 of 488

R21002, Rev 0 Attachment L Page 13 of 198

													<u>'</u>
42	PTN	0	060	5610-M-3060 Sh. 3	1	Air Handling Unit	Electrical Eqpt Room safety- related AHUs	Standby	Safety-related cooling system, required for temperature control in Electrical Eqpt Rm	Cold weather has little to no effect on a fan or its motor. Coils are direct expansion (DX), not subject to freezing. Units are located inside the Electrical Eqpt Rm.	None	None	Electrical Eqpt Rm safety-related AHUs do not include heating capability. Environment is assumed to be maintained above freezing by general measures taken by PTN for building interiors. The need for air conditioning in the Electrical Equipment Room during the postulated freeze event is unlikely.
43	PTN	0	060	5610-M-3060 Sh. 3	1	Air Condensing Unit	Rooftop condensers for Electrical Eqpt Room safety-related AHUs	Standby	Safety-related cooling system, required for temperature control in Electrical Eqpt Rm	Motors and condensers are generally unaffected by cold weather.	None	None	
1	PTN	0	065	5610-M-3065, SH 1	1	piping	valves	Yes	flow path	pressure boundary integrity, moisture may be present in line	No	If freezing conditions occur, blow down drain lines	Gaseous system should not be a freeze concern, Unless there is moisture in the lines
2	PTN	0	065	5610-M-3065, SH 1	2	piping	PCV	Yes	flow path	pressure boundary integrity	No	If freezing conditions occur, blow down drain lines	Gaseous system should not be a freeze concern, Unless there is moisture in the lines
3	PTN	0	065	5610-M-3065, SH 1	3	piping	PCV, valves	Yes	flow path	pressure boundary integrity	No	If freezing conditions occur, blow down drain lines	Gaseous system should not be a freeze concern, Unless there is moisture in the lines
4	PTN	0	065	5610-M-3065, SH 1	4	piping	piping, valves	Yes	flow path	pressure boundary integrity	No	None	Gaseous system should not be a freeze concern, Unless there is moisture in the lines
5	PTN	0	065	5610-M-3065, SH 1	5	Instr. Local	N2 Compressors, pressure switches	Yes	flow path	pressure boundary integrity	No	None	Gaseous system should not be a freeze concern, Unless there is moisture in the lines
6	PTN	0	065	5610-M-3065, SH 1	6	piping	drain	No	flow path	pressure boundary integrity, moisture may be present in line	No	If freezing conditions occur, blow down drain lines	Gaseous system should not be a freeze concern, Unless there is moisture in the lines, drain blow path exists in case of mositure
7	PTN	0	065	5610-M-3065, SH 1	7	piping	piping, valves	Yes	flow path	pressure boundary integrity	No	None	Gaseous system should not be a freeze concern, Unless there is moisture in the lines
8	PTN	0	065	5610-M-3065, SH 1	8	piping	pressure switches	Yes	flow path	pressure boundary integrity	No	None	Gaseous system should not be a freeze concern, Unless there is moisture in the lines
9	PTN	0	065	5610-M-3065, SH 1	9	Instr. Control / Protection	pressure switches, volume chamber	Yes	flow path	pressure boundary	No	None	Gaseous system should not be a freeze concern, Unless there is
10	PTN	0	065	5610-M-3065, SH 1	10	Instr. Control / Protection	N2 Compressor	Yes	flow path	pressure boundary	No	None	moisture in the lines Gaseous system should not be a freeze concern, Unless there is
11	PTN	0	065	5610-M-3065, SH 1	12	Instr. Control / Protection	pressure control valve	Yes	flow path	pressure boundary	No	None	moisture in the lines Gaseous system should not be a freeze concern, Unless there is
12	PTN	0	065	5610-M-3065, SH 1	13	Instr. Control / Protection	pressure indicators	Yes	flow path	pressure boundary	No	None	moisture in the lines Gaseous system should not be a freeze concern, Unless there is
13	PTN	0	065	5610-M-3065, SH 1	14	Instr. Control / Protection	pressure transmitters, indicators,	Yes	flow path	integrity pressure boundary	No	None	moisture in the lines Gaseous system should not be a freeze concern, Unless there is
14	PTN	0	065	5610-M-3065, SH 1	15	Instr. Control / Protection	relief valves pressure control valve, indiccation	Yes	flow path	integrity pressure boundary	No	None	moisture in the lines Gaseous system should not be a freeze concern, Unless there is
-										integrity pressure boundary	No.		moisture in the lines Gaseous system should not be a freeze concern, Unless there is
15	PTN	0	065	5610-M-3065, SH 1	16	Instr. Control / Protection	pressure control valve	Yes	flow path	integrity pressure boundary	No	None	moisture in the lines Gaseous system should not be a freeze concern, Unless there is
16	PTN	0	065	5610-M-3065, SH 1	17	Instr. Control / Protection	pressure control valve	Yes	flow path	integrity pressure boundary	No	None	moisture in the lines Gaseous system should not be a freeze concern, Unless there is
17	PTN	0	065	5610-M-3065, SH 1	18	Instr. Control / Protection	pressure control valve	Yes	flow path	integrity	No	None	moisture in the lines
18	PTN	0	065	5610-M-3065, SH 1	19	piping	piping, valves	Yes	flow path	pressure boundary integrity	No	None	Gaseous system should not be a freeze concern, Unless there is moisture in the lines
19	PTN	0	065	5610-M-3065, SH 1	20	piping	piping, valves	Yes	flow path	pressure boundary integrity	No	None	Gaseous system should not be a freeze concern, Unless there is moisture in the lines
20	PTN	0	065	5610-M-3065, SH 1	21	piping	relief valve	Yes	flow path	pressure boundary integrity	No	None	Gaseous system should not be a freeze concern, Unless there is moisture in the lines
21	PTN	0	065	5610-M-3065, SH 1	22	piping	Valves	Yes	flow path	pressure boundary integrity	No	None	Gaseous system should not be a freeze concern, Unless there is moisture in the lines
22	PTN	0	065	5610-M-3065, SH 1	23	piping	Valves	Yes	flow path	pressure boundary integrity	No	None	Gaseous system should not be a freeze concern, Unless there is moisture in the lines
23	PTN	0	065	5610-M-3065, SH 1	24	piping	pressure regulating valve	Yes	flow path	pressure boundary integrity	No	None	Gaseous system should not be a freeze concern, Unless there is moisture in the lines
24	PTN	0	065	5610-M-3065, SH 1	25	piping	PCV, valves	Yes	flow path	pressure boundary integrity	No	None	Gaseous system should not be a freeze concern, Unless there is moisture in the lines
25	PTN	0	065	5610-M-3065, SH 1	26	Instr. Control / Protection	pressure switches	Yes	flow path	pressure boundary integrity	No	None	Gaseous system should not be a freeze concern, Unless there is moisture in the lines
26	PTN	0	065	5610-M-3065, SH 1	27	Instr. Control / Protection	pressure switches	Yes	flow path	pressure boundary	No	None	Gaseous system should not be a freeze concern, Unless there is moisture in the lines
42	PTN	0	065	5610-M-3065, SH 3	1	Vents / Drains / Misc. Connections	piping, val;ves	Yes	flow path	integrity pressure boundary integrity, no moisture in line, as no dryers present	none	none	H2 gas is supplied mositure free
43	PTN	0	065	5610-M-3065, SH 3	2	Outdoor Tanks	bottles	Yes	flow path	pressure boundary integrity, no moisture in line, as no dryers present	none	none	H2 gas is supplied mositure free
44	PTN	0	065	5610-M-3065, SH 3	3	Piping	piping, pressure indcators	Yes	flow path	pressure boundary integrity, no moisture in line, as no dryers present	none	none	H2 gas is supplied mositure free

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 147 of 488

R21002, Rev 0 Attachment L Page 14 of 198

45	PTN	0	065	5610-M-3065, SH 3	4	Instr. Local	pressure indcators	Yes	flow path	pressure boundary integrity, no moisture in line, as no dryers present	none	none	H2 gas is supplied mositure free
46	PTN	0	065	5610-M-3065, SH 3	5	Piping	header to Generators 3 and 4	Yes	flow path	pressure boundary integrity, no moisture in line, as no dryers present	none	none	H2 gas is supplied mositure free
47	PTN	0	065	5610-M-3065, SH 3	6	Instr. Local	excess flkow valves, transmitters, indcators	Yes	flow path	pressure boundary integrity, no moisture in line, as no dryers present	none	none	H2 gas is supplied mositure free
48	PTN	0	065	5610-M-3065, SH 3	7	Piping	valves	Yes	flow path	pressure boundary integrity, no moisture in line, as no dryers present	none	none	H2 gas is supplied mositure free
49	PTN	0	065	5610-M-3065, SH 3	8	Vents / Drains / Misc. Connections	H2 Supply package	Standby	flow path	pressure boundary integrity, no moisture in line, as no dryers present	none	none	H2 gas is supplied mositure free
50	PTN	0	065	5610-M-3065, SH 3	9	Piping	valves, relief valves	Yes	flow path	pressure boundary integrity, no moisture in line, as no dryers present	none	none	H2 gas is supplied mositure free
1	PTN	0	FWS / 074	5610-M-3074, Sh 1	1	Piping	6", 8" & 10" above ground pipe	Standby	The Standby SG Feedwater system supports AFW during some scenarios. (DBD 5610-075-DB-001, section 4.1.5) TS 3.7.1.2 action 2 relies on Standby FW when AFW is inoperable	Support AFW capability	Protect	Check for insulation and location relative to heat source and wind block	
2	PTN	0	FWS / 074	5610-M-3074, Sh 1	1	Vents / Drains / Misc. Connections	small dia. Piping / tubing, instrumentation	Standby	maintains standby function of Feedwater	Support AFW capability	Protect	Insulate and heat trace	
3	PTN	0	FWS / 074	5610-M-3074, Sh 1	2	Piping	3" Standby pump recirculation	Standby	maintains standby function of Feedwater	Support AFW capability	Protect	Check for insulation and location relative to heat source and wind block	
4	PTN	0	FWS / 074	5610-M-3074, Sh 1	2	Vents / Drains / Misc.	piping	Standby	maintains standby function of	Support AFW capability	Protect	Insulate and heat trace	
5	PTN	0	FWS / 074	5610-M-3074, Sh 1	3	Connections Instr. Control / Protection	Diesel driven Standby Feedwater pump, fuel system, controls and instrumentation	Standby	Feedwater maintains standby function of Feedwater	Support AFW capability		Construct temporary shelter with temp heat for expected extreme cold conditions. Walkdown necessary to evaluate	
7	PTN	0	FWS / 074	5610-M-3074, Sh 2	1	Piping	Large 6" to 10" piping and components	Yes	The Standby SG Feedwater system supports AFW during some scenarios. (DBD 5610-075-DB-001, section 4.1.5) TS 3.7.1.2 action 2 relies on Standby FW when AFW is inoperable	Support AFW capability	Protect	Check for insulation and location relative to heat source and wind block	
8	PTN	0	FWS / 074	5610-M-3074, Sh 2	1	Vents / Drains / Misc. Connections		Yes	maintains standby function of Feedwater	Support AFW capability	Protect	Insulate and heat trace	
9	PTN	0	FWS / 074	5610-M-3074, Sh 2	2	Vents / Drains / Misc. Connections	Tank level instrumentation	Yes	maintains standby function of Feedwater	Support AFW capability	Protect	Insulate and heat trace	
10	PTN	0	FWS / 074	5610-M-3074, Sh 2	3	Piping	Vendor Degasifier Skid	Standby	Support Demin. Water operation		Protect	Check for insulation and location relative to heat source and wind block, possible heat trace.	
11	PTN	0	FWS / 074	5610-M-3074, Sh 2	4	Piping	2" piping and below, Vent tank	Yes	Support Demin. Water tank operation,	Support AFW capability	Protect	Insulate and heat trace	
12	PTN	0	FWS / 074	5610-M-3074, Sh 2	5	Piping	Demineralized Water Degas Skid instrument panel	Standby	Support Demin. Water operation		Protect	Check for insulation and location relative to heat source and wind block, possible heat trace.	
13	PTN	0	FWS / 074	5610-M-3074, Sh 2	6	Piping	Demin Water Degas Skid	Standby	Support Demin. Water operation		Protect	Check for insulation and location relative to heat source and wind block, possible heat trace.	
6	PTN	0	FWS / 074	5610-M-3074, Sh 2		Outdoor Tanks	Memineralized Water Storage Tank	Yes	Tech Spec min. capacity 145,000 gal.	Support AFW capability	None	None	Large tank not susceptable to significant freeze in local cold weather conditions.
14	PTN	0	FWS / 074	5610-M-3074, Sh 3	1	Piping	Nitrogen supply to DWST	Yes	Supports DWST and Condensate Storage		None	None	Dry Nitrogen
1	PTN	0	AFWS / 075	5610-M-3075, Sh. 1	1	Piping	4" & 3" Steam Piping downstream of start signal MOVs to AFW Pump Turbines	No	Tech Spec 3.7.1.2 requires 2 independent AFW trains including 3 steam supplies, 3 pumps and discharge flowpaths	Maintain AFW capability for decay heat removal	None	No protection Required	During normal operation, this piping is isolated and dry. Any residual water or minimal steam passby from the upstream MOVs in the line will be drained via the steam traps to the station drains. There will be no water that congregates in the line that could freeze and break the line. O-ONOP-103.2 acknowledges AFW is subject to cold weather and may require additional mitigation.
2	PTN	0	AFWS / 075	5610-M-3075, Sh. 1	1	Vents / Drains / Misc. Connections	1/2", 3/8", 3/4" Vents	No	Tech Spec 3.7.1.2	AFW Pressure Boundary/dead leg	None	No protection Required	No residual water expected to gather and cause an adverse impact on the system.
3	PTN	0	AFWS / 075	5610-M-3075, Sh. 1	1	Instr. Annunciation / Indication	PIT, PoT	Yes	Tech Spec 3.7.1.2	AFW Pressure Boundary/dead leg	None	No protection Required	No residual water expected to gather and cause an adverse impact on the system.
4	PTN	0	AFWS / 075	5610-M-3075, Sh. 1	1	Vents / Drains / Misc. Connections	Flanges	No	Tech Spec 3.7.1.2	AFW Pressure Boundary/dead leg	None	No protection Required	Impact on the system. No residual water expected to gather and cause an adverse limpact on the system.
5	PTN	0	AFWS / 075	5610-M-3075, Sh. 1	1	Motor Operator Valve	MOVs upstream of Steam Turbines	No	Tech Spec 3.7.1.2	Maintain AFW capability for decay heat removal		Determine if MOV is susceptible to be adversely impacted by cold weather and if protection is required.	0-ONOP-103.2 acknowledges AFW is subject to cold weather and may require additional mitigation.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 148 of 488

R21002, Rev 0 Attachment L Page 15 of 198

6	PTN	0	AFWS / 075	5610-M-3075, Sh. 1	2	Piping	4" Drain Piping to Steam Traps	No	Tech Spec 3.7.1.2	AFW Pressure Boundary/dead leg	None	No protection Required	During normal operation, this piping is isolated and dry. Any residual water or minimal steam passby from the upstream MOVs in the line will be drained via the steam traps to the station drains. There will be no water that congregates in the line that could freeze and break the line. O-ONOP-103.2 acknowledges AFW is subject to cold weather and may require additional mitigation.	
7	PTN	0	AFWS / 075	5610-M-3075, Sh. 1	2	Vents / Drains / Misc. Connections	1" Drains	No	Tech Spec 3.7.1.2	AFW Pressure Boundary/dead leg	Mitigate	Options: 1. Drain any residual water out of these lines at the start of a cold weather event. 2. If draining is not possible, recommend heat trace/insulate the drains to prevent freezing, which would adversely impact the AFW pressure boundary	0-ONOP-103.2 acknowledges AFW is subject to cold weather and may require additional mitigation.	
8	PTN	0	AFWS / 075	5610-M-3075, Sh. 1	3	Piping	2", 1/2", 3/8" Drain Piping to Steam Traps	No	Tech Spec 3.7.1.2	AFW Pressure Boundary/dead leg	None	No protection Required	During normal operation, this piping is isolated and dry. Any residual water or minimal steam passby from the upstream MOVs in the line will be drained via the steam traps to the station drains. There will be no water that congregates in the line that could freeze and break the line. OONOP-103.2 acknowledges AFW is subject to cold weather and may require additional mitigation.	
9	PTN	0	AFWS / 075	5610-M-3075, Sh. 1	3	Vents / Drains / Misc. Connections	1" Drains	No	Tech Spec 3.7.1.2	AFW Pressure Boundary/dead leg	Mitigate	Options: 1. Drain any residual water out of these lines at the start of a cold weather event. 2. If draining is not possible, recommend heat trace/insulate the drains to prevent freezing, which would adversely impact the AFW pressure boundary	0-ONOP-103.2 acknowledges AFW is subject to cold weather and may require additional mitigation.	
10	PTN	0	AFWS / 075	5610-M-3075, Sh. 1	4	Piping	NNS Open Drain Piping from steam traps and MOVs (multiple sizes)	No	None	N/A	None	INO Protection Required	NNS piping, open drains, no adverse impact on the AFW system if piping were to freeze	
11	PTN	0	AFWS / 075	5610-M-3075, Sh. 1	5	Piping	1/2" bypass pipe, SR side	No	Tech Spec 3.7.1.2	AFW Pressure Boundary/dead leg	None	No protection Required	During normal operation, this piping is isolated and dry. Any residual water or minimal steam passby from the upstream MOVs in the line will be drained via the steam traps to the station drains. There will be no water that congregates in the line that could freeze and break the line. O-ONOP-103.2 acknowledges AFW is subject to cold weather and may require additional mitigation.	
12	PTN	0	AFWS / 075	5610-M-3075, Sh. 1	6	Piping	3/8" SR piping from MOVs	No	Tech Spec 3.7.1.2	AFW Pressure Boundary/dead leg	None	No protection Required	During normal operation, this piping is isolated and dry. Any residual water or minimal steam passby from the upstream MOVs in the line will be drained via this line. 0-ONOP-103.2 acknowledges AFW is subject to cold weather and may require additional mitigation.	
13	PTN	0	AFWS / 075	5610-M-3075, Sh. 1	7	Piping	Packing leakoff from MOVs and Governor Valves	No	None	N/A	None	No Protection Required	NNS piping, open drains, no adverse impact on the AFW system if piping were to freeze	
14	PTN	0	AFWS / 075	5610-M-3075, Sh. 1	8	Piping	SR 1/2" Piping from Steam Turbine	No	Tech Spec 3.7.1.2	AFW Pressure Boundary/dead leg	None	No protection Required	During normal operation, this piping is isolated and dry. Any residual water or minimal steam passby from the upstream MOVs in the line will be drained via this line. 0-ONOP-103.2 acknowledges AFW is subject to cold weather and may require additional mitigation.	
15	PTN	0	AFWS / 075	5610-M-3075, Sh. 1	9	Piping	NNS downstream piping from steam turbine to atmosphere and drains and packing leakoff from MOVs	No	None	N/A	None		NNS piping, open drains, no adverse impact on the AFW system if piping were to freeze	
16	PTN	0	AFWS / 075	5610-M-3075, Sh. 1	10	Piping	NNS drain piping from steam turbines	No	None	N/A	None	No Protection Required	NNS piping, open drains, no adverse impact on the AFW system if piping were to freeze	
17	PTN	0	AFWS / 075	5610-M-3075, Sh. 2	1	Piping	8" Inlet Pipe	Standby	Tech Spec 3.7.1.2	Pipe full flow required for AFW to maintain functionality	Protect	Heat Trace & Insulate to prevent greater than 2% freezing for full AFW flow		
18	PTN	0	AFWS / 075	5610-M-3075, Sh. 2	1	Vents / Drains / Misc. Connections	3/4" Vents	No	Tech Spec 3.7.1.2	AFW Pressure Boundary/dead leg	Protect	Heat Trace & Insulate to prevent full freezing and potential pressure boundary breach.		
19	PTN	0	AFWS / 075	5610-M-3075, Sh. 2	2	Piping	6" Inlet Pipe	Standby	Tech Spec 3.7.1.2	Pipe full flow required for AFW to maintain functionality	Protect	Heat Trace & Insulate to prevent greater than 2% freezing for full AFW flow		
20	PTN	0	AFWS / 075	5610-M-3075, Sh. 2	2	Vents / Drains / Misc. Connections	1/2" Connections	No	Tech Spec 3.7.1.2	AFW Pressure Boundary/dead leg	Protect	Heat Trace & Insulate to prevent full freezing and potential pressure boundary breach.		
21	PTN	0	AFWS / 075	5610-M-3075, Sh. 2	2	Instr. Annunciation / Indication	PIT	No	Tech Spec 3.7.1.2	AFW Pressure Boundary/dead leg	Protect	Heat Trace & Insulate to prevent full freezing and potential pressure boundary breach.		
22	PTN	0	AFWS / 075	5610-M-3075, Sh. 2	2	Vents / Drains / Misc. Connections	Flange Connection	No	Tech Spec 3.7.1.2	AFW Pressure Boundary/dead leg	Protect	Heat Trace & Insulate to prevent full freezing and potential pressure boundary breach.		
23	PTN	0	AFWS / 075	5610-M-3075, Sh. 2	3	Piping	4" Pipe	Standby	Tech Spec 3.7.1.2	Pipe full flow required for AFW to maintain functionality	Protect	Heat Trace & Insulate to prevent greater than 2% freezing for full AFW flow		
24	PTN	0	AFWS / 075	5610-M-3075, Sh. 2	3	Instr. Annunciation / Indication	AFW Pump PIT	No	Tech Spec 3.7.1.2	AFW Pressure Boundary/dead leg	Protect	Heat Trace & Insulate to prevent full freezing and potential pressure boundary breach.]
25	PTN	0	AFWS / 075	5610-M-3075, Sh. 2	4		2.5" Pipe	Standby	Tech Spec 3.7.1.2	Pipe full flow required for AFW to maintain functionality	Protect	Heat Trace & Insulate to prevent greater than 2% freezing for full AFW flow		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 149 of 488

R21002, Rev 0 Attachment L Page 16 of 198

Prof. Prof															
Part Control													Heat Trace & Insulate to prevent greater than 2%		
Part	26 P	PTN	0	AFWS / 075	5610-M-3075, Sh. 2	5	Piping	6" Pipe	Standby	Tech Spec 3.7.1.2		Protect			
1	-						Vents / Drains / Miss						Heat Trace & Inculate to propert full fracting and		
March	27 P	PTN	0	AFWS / 075	5610-M-3075, Sh. 2	5		1" Connection off reducer	No	Tech Spec 3.7.1.2		Protect			
March Marc	-														
Part	28 P	PTN	0	AFWS / 075	5610-M-3075, Sh. 2	5		1/2" Connection	No	Tech Spec 3.7.1.2		Protect			
1	20 [DTN	0	AEWS / 075	5610 M 2075 Sh 2	-	Instr. Annunciation /	DIT	No	Toch Spor 2 7 1 2		Protect			
1	23 1	FIIN	0	AI W3/ 0/3	3010-101-3073, 311. 2	,	Indication	FII	NO	Tech Spec 3.7.1.2	Boundary/dead leg	Frotect			
1							Vents / Drains / Misc.				AFW Pressure		1 *		
Process	30 P	PTN	0	AFWS / 075	5610-M-3075, Sh. 2	5		4" BDB/FLEX Connection	No	Tech Spec 3.7.1.2		Protect			
1	-+														
2	31 P	PTN	0	AFWS / 075	5610-M-3075, Sh. 2	6	Piping	3/4", 1", 1.5" Pipe	Standby	Tech Spec 3.7.1.2		Protect			
1	-						Vents / Drains / Misc								
1	32 P	PTN	0	AFWS / 075	5610-M-3075, Sh. 2	6		3/4" Connection	No	Tech Spec 3.7.1.2		Protect			
1	22 [DTN	0	A EVA/S / 0.75	E610 M 207E Ch 2	-	Doliof Values	150 DSIC	No	Took Space 2.7.1.2		Drotost	Heat Trace & Insulate to prevent full freezing and		
13 FPN 0 APVS / 107 Selection from the control of the co	33 P	PIN	U	AFW5 / U/5	5610-IVI-3075, Sn. 2	ь	Relief valves	150 PSIG	NO	Tech Spec 3.7.1.2	Boundary/dead leg	Protect	potential pressure boundary breach.		
Second Continue of the Conti	34 F	PTN	0	AFWS / 075	5610-M-3075, Sh. 2	6		1" Connection	No	Tech Spec 3 7 1 2		Protect			
20 1/10 1/				,			Connections	T connection	***	100115000 5171212		- Total			
16 FPN 0 AVM-7/075 SELDAM-5075, 6.2 7 Piping Pipe 16 Toch Spec 3.7.12 AVM Protestary According/yield and production of prevent-3/55 freezing Literal Trace of microbial production of prevent-3/55 freezing Literal Trace and microbial produc	35 P	PTN	0	AFWS / 075	5610-M-3075, Sh. 2	6	Heat Exchangers	Lube Oil Cooler	Standby	Tech Spec 3.7.1.2		Protect			
Pril	-+	_									Cooling				
Print Control Print Co	36 F	PTN	0	AFWS / 075	5610-M-3075, Sh. 2	7	Pining	2" Pine	No	Tech Spec 3.7.1.2		Protect			
37 PTN 0 APMS / 075 \$510 M A075, \$0, 2 7 Versity / Damis, / Mosc Connection No Tach Spec 2.7.1.2 All Ym Resource Sundardy / deadled Protection Connection Conne			ŭ	/ 1103 / 073	3010 111 3073, 3111 2	<i>'</i>		2 1.60		100115000 5171212	Boundary/dead leg	l'ioteet			
Sign Pin District State Conventions Falling Editions Format Conting water from port label and formation of property and surface and models Format Conting water from port label and formation of property and surface and models Format Conting water from port label and models Format Contin															
## PIN 0 AVW 5/075 SELD AH 3075, Sh. 2 8 Piping 1*Pipe No Name - No Name - No Name - No Name No Protection Required disclaration of the piping face of the piping fac	37 P	PTN	0	AFWS / 075	5610-M-3075, Sh. 2	7		2" Flange Connection	No	Tech Spec 3.7.1.2		Protect	1. 4" Insulation to prevent >25% freezing		
Prince P							Connections				Bouriuary/ueau ieg		2. Heat Trace and insulate		
APP Print O APPS / OS 5610-M-3075, Sh. 2 9 Paing Conference to the local or reservoir, relief valve, local increases. The responsible of the conference to t	38 F	PTN	0	AFWS / 075	5610-M-3075, Sh. 2	8	Pining	1" Pine	No	None	_	None	No Protection Required	Former cooling water loop for lube oil from Service Water. Not	
Solid Maritima Lubricating of the Maritima Characteristics). 1 PTM 0 AFWS / 075 5610 M-3076, 5x. 2 10 Pping 1*Pping 1*Pping 1*Pping 1*Pping 1*NS to 3/8* tubing 0 AFWS 1 AFWS 10 AFWS				,			0		***					utilized anymore, so no adverse condition if piping fails.	
PFIN 0 APWS / 075 5610-M-3075, 9h. 2 9 Piping exervoir_relit valve, local ingramation of connections). No Tech Spec 3.7.1.2 Oil for the APW Pump As Turting the temperature depositor persure from the motor driven auxiliary all pump (ADP). Tech Spec 3.7.1.2 APW Pressure Studenty (Noted leg through the connections). No Chemiscal injection for ph control and connections. No Chemiscal injection for ph control and pump (ADP). Tech Spec 3.7.1.2 APW Pressure Studenty (Noted leg through the connections). No Chemiscal injection for ph control and progressive boundary (Noted leg through the control damp connection). No Chemiscal injection for ph control and progressive boundary (Noted leg through the control damp connection). No Chemiscal injection for ph control and progressive boundary (Noted leg through the control damp control d															
sistuments, main oil pump, and connections. A Tech Spec 3.7.1.2 Bridge Protect Source Special Specia	20 [DTN	.	AEWS / 07E	5610 M 2075 Sh 2		Dining		No	Toch Spor 2 7 1 2		None	No protection Required		V000126
connections). O APNS / 075 Seld-M-3075, Sh. 2 30 Piping 1*Pipe No Tech Spec 2.7.1.2 RAW Pressure Boundary Vised leg software pressure boundary in the members of the day event and heat trace lines that will be members of the day event personal for the state of the	33 [- 110	١	AI W3 / 0/3	3010-101-3073, 311. 2	,	ripilig		INO	recir spec 3.7.1.2		INOTIE			V000120
AFW Pressure Soundary/Gead leg votes. PTN 0 APWS/075 5610-M-3076 1 Outdoor Tanks Chemical addition ta											C Turbine			on the motor unverrauxmary on pump (AOI)	
Demission for pH control and configuration for the state passage for chemistry over at the 4 day event period. Evaluate for phenomena for post accident operation of configuration for pH control and configuration for phenomena for phenomen	40 /		_	15145 (075	5540 14 2075 51 2	4.0	p: :			T 16 0710	AFW Pressure		Heat Trace & Insulate to prevent full freezing and		
PTN O O76 S610-M-3076 1 Outdoor Tanks Chemical addition tanks No Chemical addition tanks O2 scavening. Counted during power operation Chemical injection for pit control during power operation Protect operation Chemical addition tanks O2 scavening. Chemical injection for pit control and properties Chemistry counter of Language Chemistry counter	40 P	PIN	0	AFWS / 0/5	5610-M-3075, Sh. 2	10	Piping	1" Pipe	No	Tech Spec 3.7.1.2	Boundary/dead leg	Protect	potential pressure boundary breach.		
PTN 0 0 076 5619-M-3076 1 Dutdoor Tanks Chemical addition tanks Chemical injection for pH control and creative for chemistry control during power operation or cause of the tanks taked the protect control during power operation or captured for chemistry control during power operation or captured for photostaping protects of the captured for chemistry control during power operation or captured for chemistry control and for purpose and captured for chemistry control and captured for chemistry control and captured for purpose and captured for purpose and captured for purpose and captured for chemistry control and captured for purpose for purpose and captured for purpose for purpose for purpose											Intermittent operation		Insulate tanks that will be intermittently used by		
Chemical addition tanks Chemical addition fanks Chemical addition fanks Chemical addition fanks Chemical addition for pit control during power operation Intermittent upgration control during power operation Intermittent upgration control during power operation Intermittent upgration control during power operation Control during power operation Chemical addition of pit control and required for chemical configuration for configuration from walkdown. Intermittent upgration control during power operation Control during power operation Control during power operation Chemical inection for pit control and required for chemical configuration for control and required for chemical c								Chemical feed tanks		Chemimical injection for pH control and					
prince of the properties of th	1 P	PTN	0	076	5610-M-3076	1	Outdoor Tanks		No			Protect			
PTN 0 076 5610-M-3076 1 Piping 1"NPS to 3/8" tubing 02 scavenging. The second of the															
PTN 0 076 5610-M-3076 1 Piping 1"NPS to 3/8" tubing 02 scavenging. The second of the	-+												-		
PTN 0 0 076 5610-M-3076 1 Piping 1* NPS to 3/8* tubing 02 scavenging. Protect or Chemistry operation of percental injection for percental or Chemistry operation of percental precental pr											Intermittent operation		Insulate and heat trace lines that will be		
O2 scavenging. Control during power operation operation operation operation operation operation of operation operation operation. O3 ptm	2 F	PTN	0	076	5610-M-3076	1	Piping	1" NPS to 3/8" tubing	No			Protect			
3 PTN 0 076 5610-M-3076 1 Vents / Drains / Misc. Connections	- '		-			-				O2 scavenging.			1		
3 PTN 0 076 5610-M-3076 1 Vents / Urains / Misc. Connections hose connections have been dead where the 4 day event. Tark level sight glasses; Chemical feed pump discharge pressure boundary index the finite injection pressure boundary index the day event. Tark level sight glasses; Chemical feed pump discharge pressure gages in the 4 day event. Total level sight glasses; Chemical feed pump discharge pressure gages in the 4 day event. Total level sight glasses; Chemical feed pump discharge pressure gages in the 4 day event. Total level sight glasses; Chemical feed pump discharge pressure gages in the 4 day event. Total infection only none has the 4 day event. Total indication only none level the 4 day event. Total indication only none level the 4 day event. Total indication only none level the 4 day event. Total indication only none level the 4 day event. Total indication only none level the 4 day event. Total indication only none level the 4 day event. Total indication only none level the 4 day event. Total indication only none level the 4 day event. Total indication only none level the 4 day event. Total indication only none level the 4 day event. Total indication only none level event event event event event event the 4 day event. Total indication only none level event event event event event event interintently used by Chemistry over the 4 day event. Total i											operation				
Solition							Vents / Drains / Miss	Various vents, drains, flevible			Maintain chemical		Insulate and heat trace lines that will be		
A PTN 0 076 S610-M-3076 1 Relief Valves Chemical addition pump discharge relief valves No System pressure boundary infact boundary infact injection pressure boundary infact injection pressur	3 P	PTN	0	076	5610-M-3076	1			No	System pressure boundary	injection pressure	Protect	intermittently used by Chemistry over the 4 day		
4 PTN 0 0 076 5610-M-3076 1 Relief Valves discharge relief valves 5 PTN 0 0 076 5610-M-3076 1 instr. Local Tank level sight glasses; Chemical feed pump discharge pressure gages pressure gages 7 PTN 0 TSC HVAC 5610-M-3095 1 Ducting TSC Bidg supply and exhaust ductwork Local D/P gages, temperature switches, pressure test ports, radiation sensor 27 PTN 0 TSC HVAC 5610-M-3095 1 Filter Train Prefilters, HEPA filters, carbon filters for TSC HVAC filter train on in service Tank level sight glasses; Chemical feed pump discharge pressure gages No None Local Indication only none None							Connections	nose connections							
discharge relief valves discharge relief valves valves discharge relief valves	, [.			075	FC40 M 2075	,	D-H-fry I	Chemical addition pump				Durate :	1 1		
Tank level sight glasses; Chemical feed pump discharge pressure gages PTN 0 TSC HVAC 5610-M-3095 1 Ducting TSC Bldg supply and exhaust ductwork Yes ductwork TSC Bldg supply and exhaust ductwork Yes accident operations support and exhaust accident operations support and exhaust accident operations support and exhaust the provide habitable environment for post-accident operations support and exhaust the provide habitable environment for post-accident operations support and exhaust the provide habitable environment for post-accident operations support and exhaust the provide habitable environment for post-accident operations support and provide habitable environment for post-accident operations support and exhaust the provide habitable environment for post-accident operations support and provide habitable environment for post-accident operations support, normally not affected by cold weather; Located inside the TSC. Filter trains are not affected by cold weather; Located inside the TSC. Filter trains contains moisture indicator and heating incortains and provide habitable environment for post-accident operations support; normally not affected by cold weather; Located inside the TSC.	4 P	rIN	U	U/6	5010-IVI-3U/6	1	Keller Valves		INO	pystein pressure boundary		Protect			
5 PTN 0 076 5610-M-3076 1 instr. Local Chemical feed pump discharge pressure gages 75 PTN 0 TSC HVAC 5610-M-3095 1 Ducting TSC Bldg supply and exhaust ductwork Local D/P gages, temperature switches, pressure test ports, radiation sensor 1 Instruments - General Switches, pressure test ports, radiation sensor 27 PTN 0 TSC HVAC 5610-M-3095 1 Filter Train Prefilters, HEPA filters, carbon filters for TSC HVAC filter train not in service 28 PTN 0 TSC HVAC 5610-M-3095 1 Filter Train Prefilters, LECAL D/P ALL DELAY DELA	+	+						Tank level sight glasses:			oounuary mildil		anc 4 day event.		
pressure gages Private provide habitable environment for post-accident operations support accident operations accident operations support accident operations support accident operations accident operations support accident operations accident operations support accident operations accident operations accident operations accident operations support accident operations acc	5 F	PTN	0	076	5610-M-3076	1	instr. Local		No	None	Local indication only	none	None		
25 PTN 0 TSC HVAC 5610-M-3095 1 Ducting TSC Bldg supply and exhaust ductwork Yes ductwork 26 PTN 0 TSC HVAC 5610-M-3095 1 Instruments - General Switches, pressure test ports, radiation sensor 27 PTN 0 TSC HVAC 5610-M-3095 1 Filter Train Prefilters, HEPA filters, carbon filters for TSC HVAC filter train not in service 28 PTN 0 TSC HVAC 5610-M-3095 1 Filter Train Prefilters, HEPA filters, carbon filters for TSC HVAC filter train not in service Provide habitable environment for post-accident operations support accident operations support to a fifected by cold temperatures and	. .		-			-				1					
26 PTN 0 TSC HVAC 5610-M-3095 1 Instruments - General switches, pressure test ports, radiation sensor	25 .	DTNI	0	TCC LIVAC	E610 M 200F	1	Ducting		Voc	Provide habitable environment for post-	Not affected by cold	None	None		
26 PTN 0 TSC HVAC 5610-M-3095 1 Instruments - General switches, pressure test ports, radiation sensor	23 P	FIN	U	ISC HVAC	2010-IVI-3032	1	Ducting	ductwork	res	accident operations support		None	None		
26 PTN 0 TSC HVAC 5610-M-3095 1 Instruments - General switches, pressure test ports, radiation sensor Yes accident operations support affected by cold temperatures; All located inside the TSC located inside the TSC Filter trains are not affected by cold weather; Located inside the TSC Filter trains are not affected by cold weather; Located inside the TSC. Filter trains are not inside the TSC Filter trains are not inside the TSC Filter trains are not inside the TSC. Filter trains are not inside the TSC Filter trains are not inside the TSC Filter trains are not inside the TSC. Filter trains are not inside the TSC Filter trains are not inside the TSC Filter trains are not inside the TSC. Filter trains are not inside the TSC Filter trains are not inside the TSC Filter trains are not inside the TSC. Filter trains are not inside the TSC Filter trains are not inside the TSC Filter trains are not inside the TSC. Filter trains are not inside the TSC Filter trains are			Ţ			П									
27 PTN 0 TSC HVAC 5610-M-3095 1 Instruments - General switches, pressure test ports, radiation sensor Yes accident operations support temperatures; All located inside the TSC Filter trains are not affected by cold weather; Located inside the TSC washer; Located inside the TSC Filter trains are not affected by cold weather; Located inside the TSC washer; Located inside the TSC Filter trains are not affected by cold weather; Located inside the TSC Filter trains are not affected by cold weather; Located inside the TSC Filter trains are not affected by cold weather; Located inside the TSC Filter trains are not affected by cold weather; Located inside the TSC Filter trains are not affected by cold weather; Located inside the TSC Filter trains are not affected by cold weather; Located inside the TSC Filter trains are not affected by cold weather; Located inside the TSC Filter trains are not affected by cold weather; Located inside the TSC Filter trains are not affected by cold weather; Located inside the TSC Filter trains are not affected by cold weather; Located inside the TSC Filter trains are not affected by cold weather; Located inside the TSC Filter trains are not affected by cold weather; Located inside the TSC Filter trains are not affected by cold weather; Located inside the TSC Filter trains are not affected by cold weather; Located inside the TSC Filter trains are not affected by cold weather; Located inside the TSC Filter trains are not affected by cold weather; Located inside the TSC Filter trains are not affected by cold weather; Located inside the TSC Filter trains are not affected by cold weather; Located inside the TSC Filter trains are not affected by cold weather; Located inside the TSC Filter trains are not affected by cold weather; Located inside the TSC Filter trains are not affected by cold weather; Located inside the TSC Filter trains are not affected by cold weather; Located inside the TSC Filter trains are not affected by cold weat										Provide habitable environment for nost-					
27 PTN 0 TSC HVAC 5610-M-3095 1 Filter Train Prefilters, HEPA filters, carbon filters for TSC HVAC filter train are not affected by cold weather; Located inside the TSC Standby Provide habitable environment for post-accident operations support; normally not in service None trains contains moisture indicator and heating	26 P	PTN	0	TSC HVAC	5610-M-3095	1	Instruments - General		Yes	I .		None	None		
27 PTN 0 TSC HVAC 5610-M-3095 1 Filter Train Prefilters, HEPA filters, carbon filters for TSC HVAC filter train of filters for TSC HVAC filter train on target of the provide habitable environment for post-accident operations support; normally not in service Filter train contains moisture indicator and heating								radiation sensor							
27 PTN 0 TSC HVAC 5610-M-3095 1 Filter Train Prefilters, HEPA filters, carbon filters for TSC HVAC filter train of filters for TSC HVAC filter train on the filt	-	+									Cile - e e e e e e e e e e	-			
27 PTN 0 TSC HVAC 5610-M-3095 1 Filter Train Prefilters, HEPA filters, carbon filters for TSC HVAC filter train standby Provide habitable environment for post-accident operations support; normally not in service relations support; normally not in service weather; Located inside the TSC. Filter train contains moisture indicator and heating															
27 PTN 0 TSC HVAC 5610-M-3095 1 Filter Train filters for TSC HVAC filter f															
27 PTN 0 TSC HVAC 5510-M-3095 1 Filter Train filters for TSC HVAC filter train filters for TSC HVAC filter train not in service indicator and heating								Prefilters, HEPA filters, carbon		'					
not in service indicator and heating	27 P	PTN	0	TSC HVAC	5610-M-3095	1	Filter Train		Standby			None	None		
										not in service					
control.															
Provide habitable environment for post- Cold weather has little										Provide habitable environment for post-	Cold weather has little				
28 PTN 0 TSC HVAC 5610-M-3095 1 Fan TSC Filter unit fan Standby accident operations support; normally to no effect on a fan or None None	1			I TECHNIAC	E 6 1 0 M 2 2 0 0 E	1	Fan	TSC Filter unit fan	Standby	accident operations support: normally	to no effect on a fan or	None	None		I
not in service its motor.	28 P	PTN	0	ISC HVAC	2010-IAI-2032	- 1	1 011	Toe Titter diliterali	Stariaby			110110			

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 150 of 488

R21002, Rev 0 Attachment L Page 17 of 198

													<u>'</u>
										AHU uses direct			TSC HVAC system does not include heating capability. TSC
20	DTN		TECHNIAC	FC40 M 200F	4	Air Hendline Heit	TCC ALLL	V	Provide habitable environment for post-	expansion (DX) coil for	None	Name	environment is assumed to be maintained above freezing by
29	PTN	0	TSC HVAC	5610-M-3095	1	Air Handling Unit	TSC AHU	Yes	accident operations support	cooling, not subject to freezing. AHU is	None	None	general cold-weather measures taken by PTN for building
										located indoors.			interiors.
										Motors and condensers			
30	PTN	0	TSC HVAC	5610-M-3095	1	Air Condensing Unit	TSC AHU Condensing Unit	Yes	Provide habitable environment for post-	are generally	None	None	
50	' '	Ü	150	3010 111 3033	-	7 th condensing offic	ise wife condensing office	1.03	accident operations support	unaffected by cold	, , , , ,	None	
-										weather. No action required.			
							TSC intake and filter train		Provide habitable environment for post-	Damper motors are			
31	PTN	0	TSC HVAC	5610-M-3095	1	Motor Operated Damper	supply/exhaust/bypass/recirc	Standby	accident operations support	internal to the TSC	None	None	
							motorized dampers			equipment room.			
													No impact on the power generation or T.S
													No. in contrast of the contras
2	PTN	0	SWS / 012	5610-M-3101 Sh. 1	1	Piping	1-1/2"-10-F Pipe	No	None	Pressure Boundary	None	None	No impact on the surrounding systems
-	' '	-	,		-	1.19.116	1 1/2 10 1 1 1/2		Hone	r ressure boundary	, , , , ,		Suggestion : To avoid freezing and possible damage to service
													water piping, consider adding heat tracing and insulation or
													establishing a trickle flow through cracked open drain lines.
,	PTN	0	TPCW / 008	5610-M-3101 Sh. 1	2	Dieles	2024/200	No	Nama	Daniel I an	None	Consider isolating and draining as much of the	This TOCKNII
3	PIN	0	TPCW / 008	5610-W-3101 Sn. 1	2	Piping	2&2-1/2" Pipe	NO	None	Dead Leg	None	unused piping as possible and heat trace and insulate dead leg to avoid freezing.	This TPCW line appears to be connected to TPCW pump suction.
												Verify isolated segment is drained of water to	
4	PTN	0	TPCW / 008	5610-M-3101 Sh. 1	3	Piping	2&2-1/2" Pipe	No	None	Dead Leg	None	avoid freezing and possible damage.	This TPCW line appears to be completely isolated
1	PTN	0	BAS / 102	5610-M-3101 Sh. 1		all	all	No	None	None	None	None	Equipment is abandoned in place.
_			0.45 / 400	5540 44 0404 51 0									The Self-Contained Breathing Apparatus Fill Station is not
5	PTN	0	BAS / 102	5610-M-3101 Sh. 2		Piping	Pipe	No	None	Pressure Boundary	None		connected to any other systems and no impact to the surrounding equipment.
										pressure boundary			ечириенс.
27		0	065							integrity, moisture may		If freezing conditions occur, blow down drain	Gaseous system should not be a freeze concern, Unless there is
	PTN			5610-M-3965, SH 2	1	Piping	piping, valves	Yes	flow path	be present in line	No	lines	moisture in the lines
1		_								pressure boundary			
28	PTN	0	065	5610-M-3965, SH 2	2		piping, valves, pressure indications	Yes	flow path	integrity, moisture may be present in line	No	If freezing conditions occur, blow down drain lines	Gaseous system should not be a freeze concern, Unless there is moisture in the lines
	FIN			3010-101-3303, 311 2			Illuications	ies		pressure boundary	INO	inies	mosture in the lines
29		0	065							integrity, moisture may		If freezing conditions occur, blow down drain	Gaseous system should not be a freeze concern, Unless there is
	PTN			5610-M-3965, SH 2	3		piping, Pressure control valves	Yes	flow path	be present in line	No	lines	moisture in the lines
20		0	0.05							pressure boundary		If for a size and distance a serve black down down	Construction should not be a financial library throw in
30	PTN	U	065	5610-M-3965, SH 2	4		piping, Pressure control valves	Yes	flow path	integrity, moisture may be present in line	No	If freezing conditions occur, blow down drain lines	Gaseous system should not be a freeze concern, Unless there is moisture in the lines
				3010 W 3303, 3112			piping, ressare control valves	1.03		pressure boundary	110	mics .	module in the inte
31		0	065							integrity, moisture may		If freezing conditions occur, blow down drain	Gaseous system should not be a freeze concern, Unless there is
	PTN			5610-M-3965, SH 2	5		piping, Pressure control valves	Yes	flow path	be present in line	No	lines	moisture in the lines
		0	0.55							pressure boundary		If for a size and distance a serve black down down	Construction through and have forces are seen the least throw in
32	PTN	U	065	5610-M-3965, SH 2	6		piping, valves	Yes	flow path	integrity, moisture may be present in line	No	If freezing conditions occur, blow down drain lines	Gaseous system should not be a freeze concern, Unless there is moisture in the lines
	1111			3010 111 3303, 311 2	- 0		piping, raives	103		pressure boundary	110	mics .	mostare in the mes
33		0	065							integrity, moisture may		If freezing conditions occur, blow down drain	Gaseous system should not be a freeze concern, Unless there is
	PTN			5610-M-3965, SH 2	7		piping, Pressure control valves	Yes	flow path	be present in line	No	lines	moisture in the lines
34		0	065							pressure boundary		If froming conditions occur blow down deals	Gasagus system should not be a freeze concern. Unless there is
34	PTN	U	I	5610-M-3965, SH 2	8		piping, Pressure control valves	Yes	flow path	integrity, moisture may be present in line	No	If freezing conditions occur, blow down drain lines	Gaseous system should not be a freeze concern, Unless there is moisture in the lines
	1						F - 0/			pressure boundary	i -		
35		0	065							integrity, moisture may		If freezing conditions occur, blow down drain	Gaseous system should not be a freeze concern, Unless there is
<u> </u>	PTN			5610-M-3965, SH 2	9		piping, Pressure control valves	Yes	flow path	be present in line	No	lines	moisture in the lines
36		0	065							pressure boundary integrity, moisture may		If freezing conditions occur, blow down drain	Gaseous system should not be a freeze concern, Unless there is
30	PTN	U		5610-M-3965, SH 2	10		piping, bottles	Yes	flow path	be present in line	No	lines	moisture in the lines
							F F 07 7		r e e	pressure boundary	<u> </u>		
37		0	065							integrity, moisture may		If freezing conditions occur, blow down drain	Gaseous system should not be a freeze concern, Unless there is
<u> </u>	PTN			5610-M-3965, SH 2	11		piping, bottles	Yes		be present in line	No	lines	moisture in the lines
20		0	065							pressure boundary		If freezing conditions occur, blow down drain	Gaseous system should not be a freeze concern, Unless there is
38	PTN	U		5610-M-3965, SH 2	12		piping, bottles	Yes	flow path	be present in line	No		moisture in the lines
	'									pressure boundary			
39		0	065							integrity, moisture may			Gaseous system should not be a freeze concern, Unless there is
	PTN			5610-M-3965, SH 2	13		valve	Yes		be present in line	No	lines	moisture in the lines
40		0	065				piping, valves, pressure			pressure boundary integrity, moisture may		If freezing conditions occur, blow down drain	Gaseous system should not be a freeze concern, Unless there is
1 40	PTN	J		5610-M-3965, SH 2	14		indications	Yes	flow path	be present in line	No		moisture in the lines
										pressure boundary			
41		0	065				l	l		integrity, moisture may	l		Gaseous system should not be a freeze concern, Unless there is
	PTN			5610-M-3965, SH 2	15		piping, valves	Yes	flow path	be present in line	No	lines	moisture in the lines

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 151 of 488

R21002, Rev 0 Attachment L Page 18 of 198

														•
1	PTN	0	SSS / 032	5610-M-420-303 Sh. 1	dl Segmen	Piping	All	Yes	Monitoring, sampling, and analysis of radioactive liquid and gaseous effluents in accordance with 10 CFR 20.1302 and with the methodology and parameters in the ODCM. (T.S. Administrative Controls)	Local Sampling Requirement	Mitigate	Install temporary space heater(s) in the Cold Chemistry Lab, which is enclosed, as required to protect the Sampling Panels.	Sampling Panels for both Units located in the Cold Chemistry Lab on the SW corner of the Turbine Building, Ground Elevation (18').	
2	PTN	0	SSS / 032	5610-M-420-303 Sh. 2	JI Segmen	Piping	All	Yes	Monitoring, sampling, and analysis of radioactive liquid and gaseous effluents in accordance with 10 CFR 20.1302 and with the methodology and parameters in the ODCM. (T.S. Administrative Controls)	Local Sampling Requirement	Mitigate	Install temporary space heater(s) in the Cold Chemistry Lab, which is enclosed, as required to protect the Sampling Panels.	Sampling Panels for both Units located in the Cold Chemistry Lab on the SW corner of the Turbine Building, Ground Elevation (18').	
3	PTN	0	SSS / 032	5610-M-420-303 Sh. 3	All Segments except chillers and associate d piping outside the Cold Chem Lab	Piping	All except chillers and associated piping outside the Cold Chem Lab	Yes	Monitoring, sampling, and analysis of radioactive liquid and gaseous effluents in accordance with 10 CFR 20.1302 and with the methodology and parameters in the ODCM. (T.S. Administrative Controls)	Local Sampling Requirement	Mitigate	Install temporary space heater(s) in the Cold Chemistry Lab, which is enclosed, as required to protect the Sampling Panels.	Sampling Panels for both Units located in the Cold Chemistry Lab on the SW corner of the Turbine Building, Ground Elevation (18').	
4	PTN	0	SSS / 032	5610-M-420-303 Sh. 3	Chillers and associate d piping outside the Cold Chem Lab	Piping	Chillers and associated piping outside the Cold Chem Lab	Yes	None	N/A	None	No protection required.		
1	PTN	3	IAS / 013	5613-M-013-1 Sh. 1 5613-M-013-1 Sh. 3	-		IA Electric Compressor Skid 3CM	Yes	No Safety function; however, it normally provides air to components that require instrument air. Nitrogen stations are the SR backup. Compressor only specified to 32F.	-	Protect	Consider implementing global strategy (such as tenting and/or space heaters) to protect the electric compressor skid.	Consider global strategy to protect either electric driven or diesel driven instrument air compressor skids from at least one unit. A single electric motor or diesel driven compressor from either unit is fully capable of providing 100% of the IA needs for both units. Therefore, global strategy does not need to be implemented for all four IA compressors.	5613-M-3013 Sh. 1
2	PTN	3	IAS / 013	5613-M-013-2 Sh. 1 5613-M-013-2 Sh. 4 5613-M-013-2 Sh. 6 5613-M-013-2 Sh. 7	-		IA Diesel Driven Compressor Skid 3CD	Yes	No Safety function; however, it normally provides air to components that require instrument air. Nitrogen stations are the SR backup. Compressor only specified to 32F.	-	Protect	Consider implementing global strategy (such as tenting and/or space heaters) to protect the diesel driven compressor skid.	Consider global strategy to protect either electric driven or diesed driven instrument air compressor skids from at least one unit. A single electric motor or diesel driven compressor from either unit is fully capable of providing 100% of the IA needs for both units. Therefore, global strategy does not need to be implemented for all four IA compressors.	5613-M-3013 Sh. 1
1	PTN	3	TPCW / 008	5613-M-3008, Sh. 1	1	Instrumentation - Local	PI-3-1468, -1469, -1470, -6900	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Local Indication		The instrumentation shall be removed as part of the Cold Weather Preparation plan and the root and/or instrument valve will be cracked open to implement a trickle flow to minimize the potential for freezing. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water).	Un-insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst.	
2	PTN	3	TPCW / 008	5613-M-3008, Sh. 1	1	Instrumentation - Control / Protection	FE (FT)-3-6900	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Remote / CR Ind. / Alarm	Protect	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace — Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions. Insulate the branch connection and implement a trickle flow to ensure freezing does not occur. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water).	Un-Insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst.	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 152 of 488 Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 153 of 488

> R21002, Rev 0 Attachment L Page 19 of 198

														F
3	PTN	3	TPCW / 008	5613-M-3008, Sh. 1	1	Instrumentation - Annunciation / Recorder / Indication	PS-3-1621, TS-3-4102, -4103, - 4104, -4105	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Remote / CR Ind. / Alarm	Protect	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace — Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions. Insulate the branch connection and implement a trickle flow to ensure freezing does not occur. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water).	Un-insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst.	
4	PTN	3	TPCW / 008	5613-M-3008, Sh. 1	1	Piping	3-20"-8-F	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.	
5	PTN	3	TPCW / 008	5613-M-3008, Sh. 1	1	Piping	3-16"-8-F	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.	
6	PTN	3	TPCW / 008	5613-M-3008, Sh. 1	1	Motors	Turbine Plant Cooling Water Pump Motors (A, B)	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	Swap Pumps and Trains Regularly	Prevent Component Failure from Insufficient Lubrication. During normal operation, water is circulated by one running turbine cooling water pump and the heat removed is transferred to the intake cooling water system through the two turbine cooling water heat exchangers	
7	PTN	3	TPCW / 008	5613-M-3008, Sh. 1	1	Heat Exchangers	Turbine Cooling Water Heat Exchangers (3A, 3B)	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance. During normal operation, water is circulated by one running turbine cooling water pump and the heat removed is transferred to the intake cooling water system through the two turbine cooling water heat exchangers	Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.
8	PTN	3	TPCW / 008	5613-M-3008, Sh. 1	1	Relief Valves	RV-3-171A, -171B	No	Protect Turbine Cooling Water Heat Exchangers (3A, 3B)	Dead Ended Water Leg	Protect	Relief Valves are often located at relative high points within the system piping, as such gas trapped upstream of the vent isolation valve will act as an accumulator to absorb the pressure rise associated with the expansion of ice forming in the branch connection. Trapped water will cause valve to relieve avoiding freezing.		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 154 of 488

> R21002, Rev 0 Attachment L Page 20 of 198

														•
9	PTN	3	TPCW / 008	5613-M-3008, Sh. 1	1	Vents / Drains / Misc. Connections	Small Bore Vents, Drains & Test Connections	No	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Dead Ended Water Leg	Mitigate	Vents are located at relative high points within the system piping, as such gas trapped upstream of the vent isolation valve will act as an accumulator to absorb the pressure rise associated with the expansion of ice forming in the branch connection. Based on Operations experience, identify if trapped gas exists. If the existence of trapped gas is not known, a limited amount of gas (air, nitrogen, etc.) can be added to the vent in support of the Cold Weather Preparation plan. Drain - Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions. Insulate the branch connection and implement a trickle flow to ensure freezing does not occur. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water).	Un-insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst.	
10	PTN	3	TPCW / 008	5613-M-3008, Sh. 1	2	Piping	3-8"-8-5	No	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained.	Plant Performance Open 3-60-887, -888, -889, -890 periodically to allow flow through the branch lines.	Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.
1:	PTN	3	TPCW/008	5613-M-3008, Sh. 1	2	Vents / Drains / Misc. Connections	Small Bore Vents & Drains	No	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Dead Ended Water Leg	Mitigate	Vents are located at relative high points within the system piping, as such gas trapped upstream of the vent isolation valve will act as an accumulator to absorb the pressure rise associated with the expansion of ice forming in the branch connection. Based on Operations experience, identify if trapped gas exists. If the existence of trapped gas is not known, a limited amount of gas (air, nitrogen, etc.) can be added to the vent in support of the Cold Weather Preparation plan. Drain - Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions. Insulate the branch connection and implement a trickle flow to ensure freezing does not occur. Trickle flow determination is based on calculated trickle flowvrates contained in Table 1 (Fresh Water).	Un-insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	
12	PTN	3	TPCW / 008	5613-M-3008, Sh. 1	3	Piping	3-2"-8-F	Standby	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.	
13	PTN	3	TPCW / 008	5613-M-3008, Sh. 1	3	Piping	3-1"-8-F	Standby	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 155 of 488

> R21002, Rev 0 Attachment L Page 21 of 198

14	PTN	3	TPCW / 008	5613-M-3008, Sh. 1	3	Outdoor Tanks	T.P.C.W. Additive Tank	No	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.	
15	PTN	3	TPCW / 008	5613-M-3008, Sh. 1	3	Relief Valves	RV-3-1437	No	Protect T.P.C.W. Additive Tank	Dead Ended Water Leg	Protect	Relief Valves are often located at relative high points within the system piping, as such gas trapped upstream of the vent isolation valve will act as an accumulator to absorb the pressure rise associated with the expansion of ice forming in the branch connection. Trapped water will cause valve to relieve avoiding freezing.	Dead Legs May Freeze and Burst.	
16	PTN	3	TPCW / 008	5613-M-3008, Sh. 1	4	Instrumentation - Annunciation / Recorder / Indication	LS-3-1527, -1528	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Remote / CR Ind. / Alarm	Protect	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace — Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions. Insulate the branch connection and implement a trickle flow to ensure freezing does not occur. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water).	Un-Insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst.	
17	PTN	3	TPCW / 008	5613-M-3008, Sh. 1	4	Instrumentation - Local	FM-3-0540, LG-3-1422, -1423, - 1424	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Local Indication	Protect	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions.	Un-insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst.	
18	PTN	3	TPCW / 008	5613-M-3008, Sh. 1	4	Instrumentation - Control / Protection	LC-3-1530	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Control Function	Protect	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions.	Un-Insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst.	
19	PTN	3	TPCW / 008	5613-M-3008, Sh. 1	4	Piping	3-2"-3-D, 3-2"-8-F	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Valves (3-60-004, -007, -086) shall either be opened periodically to permit flow through CV-3-1530 bypass, FM-3-0540 bypass, condensate addition bypass, respectively, or crack open to ensure trickle flow.	water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per
20	PTN	3	TPCW / 008	5613-M-3008, Sh. 1	4	Piping	3-8"-8-F	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Valve (3-60-021) shall either be opened periodically to permit flow through the T. P.C. W. Surge Tank drain or crack open to ensure trickle flow.	Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 156 of 488

> R21002, Rev 0 Attachment L Page 22 of 198

														ı
21	PTN	3	TPCW / 008	5613-M-3008, Sh. 1	4	Vents / Drains / Misc. Connections	Small Bore Vents & Drains	No	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Dead Ended Water Leg	Mitigate	Vents are located at relative high points within the system piping, as such gas trapped upstream of the vent isolation valve will act as an accumulator to absorb the pressure rise associated with the expansion of ice forming in the branch connection. Based on Operations experience, identify if trapped gas exists. If the existence of trapped gas is not known, a limited amount of gas (air, nitrogen, etc.) can be added to the vent in support of the Cold Weather Preparation plan. Drain - Options Insulate and heat trace — Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions. Insulate the branch connection and implement a trickle flow to ensure freezing does not occur. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water).	Un-insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	
22	PTN	3	TPCW / 008	5613-M-3008, Sh. 2	1	Instrumentation - Annunciation / Recorder / Indication	FE(FI)-3-1410	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Remote / CR Ind. / Alarm	Protect	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace — Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions.	Un-insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst.	
23	PTN	3	TPCW / 008	5613-M-3008, Sh. 2	1	Piping	3-16"-8-F	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance	
24	PTN	3	TPCW / 008	5613-M-3008, Sh. 2	1	Piping	3-12"-8-F	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance	
25	PTN	3	TPCW / 008	5613-M-3008, Sh. 2	1	Piping	3-10"-8-F	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.	
26	PTN	3	TPCW / 008	5613-M-3008, Sh. 2	1	Piping	3-8"-8-F	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 157 of 488

> R21002, Rev 0 Attachment L Page 23 of 198

27	PTN	3	TPCW/008	5613-M-3008, Sh. 2	1	Vents / Drains / Misc. Connections	Small Bore Drains	No	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Dead Ended Water Leg	Mitigate	Drain - Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions. Insulate the branch connection and implement a trickle flow to ensure freezing does not occur. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water).	Un-insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	
28	PTN	3	TPCW / 008	5613-M-3008, Sh. 2	2	Instrumentation - Local	PI-3-1475, -1476, -1477, -1478	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Local Indication	None	The instrumentation shall be removed as part of the Cold Weather Preparation plan and the root and/or instrument valve will be cracked open to implement a trickle flow to minimize the potential for freezing. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water).	Un-Insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst.	
29	PTN	3	TPCW / 008	5613-M-3008, Sh. 2	2	Instrumentation - Local	FG-3-1406, -1415	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance. During normal operation, water is circulated by one running turbine cooling water pump and the heat removed is transferred to the intake cooling water system through the two turbine cooling water heat exchangers	Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.
30	PTN	3	TPCW / 008	5613-M-3008, Sh. 2	2	Piping	3-2"-8-F	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.	
31	PTN	3	TPCW / 008	5613-M-3008, Sh. 2	2	Piping	3-1 1/2"-8-F	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Per O-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.	
32	PTN	3	TPCW / 008	5613-M-3008, Sh. 2	2	Heat Exchangers	Feedwater Pump Lube Oil Coolers	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance. During normal operation, water is circulated by one running turbine cooling water pump and the heat removed is transferred to the intake cooling water system through the two turbine cooling water heat exchangers	Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.
33	PTN	3	TPCW / 008	5613-M-3008, Sh. 2	2	Strainers	YS-3-3425A, -B	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	Open Valves (3-60-741A, -741B) periodically to allow flow through the strainer drain lines. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance. During normal operation, water is circulated by one running turbine cooling water pump and the heat removed is transferred to the intake cooling water system through the two turbine cooling water heat exchangers	Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.
34	PTN	3	TPCW / 008	5613-M-3008, Sh. 2	3	Piping	3-2"-8-F, 3-1 1/2"-8-F	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.	

Ten-Year Site Plan Staff's Third Data Request

R21002, Rev 0 Attachment L Page 24 of 198

												Relief Valves are often located at relative high points within the system piping, as such gas		
35	PTN	3	TPCW / 008	5613-M-3008, Sh. 2	3	Relief Valves	RV-3-6720	No	Protect Various Sample Coolers	Dead Ended Water Leg	Protect	trapped upstream of the vent isolation valve will act as an accumulator to absorb the pressure rise associated with the expansion of ice forming in the branch connection. Trapped water will cause valve to relieve avoiding freezing.		
36	PTN	3	TPCW / 008	5613-M-3008, Sh. 2	4	Instrumentation - Local	PI-3-1471, -1472, -1473, -1474,	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Local Indication	None	The instrumentation shall be removed as part of the Cold Weather Preparation plan and the root and/or instrument valve will be cracked open to implement a trickle flow to minimize the potential for freezing. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water).	Un-Insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst.	
37	PTN	3	TPCW / 008	5613-M-3008, Sh. 2	4	Piping	3-10"-8-F	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.	
38	PTN	3	TPCW / 008	5613-M-3008, Sh. 2	4	Piping	3-2"-8-F	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.	
39	PTN	3	TPCW / 008	5613-M-3008, Sh. 2	4	Valves	Bypass valves Around CV-3-2200	No	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Dead Ended Water Leg	Mitigate	Open Valve (3-60-116) periodically to allow flow through the bypass around valves (CV-3-2200).	Un-Insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	
40	PTN	3	TPCW/008	5613-M-3008, Sh. 2	4	Vents / Drains / Misc. Connections	Small Bore Vents & Drains	No	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Dead Ended Water Leg	Mitigate	Vents are located at relative high points within the system piping, as such gas trapped upstream of the vent isolation valve will act as an accumulator to absorb the pressure rise associated with the expansion of ice forming in the branch connection. Based on Operations experience, identify if trapped gas exists. If the existence of trapped gas is not known, a limited amount of gas (air, nitrogen, etc.) can be added to the vent in support of the Cold Weather Preparation plan. Drain - Options Insulate and heat trace — Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions. Insulate the branch connection and implement a trickle flow to ensure freezing does not occur. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water).	Un-insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	
41	PTN	3	TPCW / 008	5613-M-3008, Sh. 3	1	Instrumentation - Local	FG-3-1416	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance. During normal operation, water is circulated by one running turbine cooling water pump and the heat removed is transferred to the intake cooling water system through the two turbine cooling water heat exchangers	Per 0-0NOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.

Florida Power & Light Company Docket No. 20220000-OT

Request No. 2 Attachment 4 of 24 Page 158 of 488

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 159 of 488

> R21002, Rev 0 Attachment L Page 25 of 198

42	PTN	3	TPCW / 008	5613-M-3008, Sh. 3	1	Piping	3-16"-8-F	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA. The turbine cooling water system is	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance	
43	PTN	3	TPCW / 008	5613-M-3008, Sh. 3	1	Piping	3-4"-8-F	Yes	designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Per O-ONOP-10.3.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.	
44	PTN	3	TPCW / 008	5613-M-3008, Sh. 3	1	Piping	3-3"-8-F	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Per O-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.	
45	PTN	3	TPCW / 008	5613-M-3008, Sh. 3	1	Piping	3-2 1/2"-8-F	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.	
46	PTN	3	TPCW / 008	5613-M-3008, Sh. 3	2	Instrumentation - Local	FE(FI-3-861, -862, PI-3-861, 862, 863, 864	Yes	FG-3-1410, -1407, -1411, -1405, -1409, - 1408+147:N47	Local Indication	None	The instrumentation shall be removed as part of the Cold Weather Preparation plan and the root and/or instrument valve will be cracked open to implement a trickle flow to minimize the potential for freezing. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water).		systems exposed to outside temperatures
47	PTN	3	TPCW / 008	5613-M-3008, Sh. 3	2	Piping	3-2"-8-F	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.	
48	PTN	3	TPCW / 008	5613-M-3008, Sh. 3	2	Heat Exchangers	EHC Heat Exchangers 3E01, 3E02	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance. During normal operation, water is circulated by one running turbine cooling water pump and the heat removed is transferred to the intake cooling water system through the two turbine cooling water heat exchangers	Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.

R21002, Rev 0 Attachment L Page 26 of 198

														F
49	PTN	3	TPCW / 008	5613-M-3008, Sh. 3	2	Vents / Drains / Misc. Connections	Small Bore Vents & Drains	No	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Dead Ended Water Leg	Mitigate	Vents are located at relative high points within the system piping, as such gas trapped upstream of the vent isolation valve will act as an accumulator to absorb the pressure rise associated with the expansion of ice forming in the branch connection. Based on Operations experience, identify if trapped gas exists. If the existence of trapped gas is not known, a limited amount of gas (air, nitrogen, etc.) can be added to the vent in support of the Cold Weather Preparation plan. Drain - Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions. Insulate the branch connection and implement a trickle flow to ensure freezing does not occur. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water).	Un-insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	
50	PTN	3	TPCW / 008	5613-M-3008, Sh. 3	3	Instrumentation - Local	PI-3-2016	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Local Indication	None	The instrumentation shall be removed as part of the Cold Weather Preparation plan and the root and/or instrument valve will be cracked open to implement a trickle flow to minimize the potential for freezing. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water).	Un-insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst.	
51	PTN	3	TPCW / 008	5613-M-3008, Sh. 3	3	Instrumentation - Local	FG-3-1410, -1407, -1411, -1405, - 1409, -1408	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance. During normal operation, water is circulated by one running turbine cooling water pump and the heat removed is transferred to the intake cooling water system through the two turbine cooling water heat exchangers	Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.
52	PTN	3	TPCW / 008	5613-M-3008, Sh. 3	3	Strainers	YS-3-3426	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	Open Valves (3-60-746) periodically to allow flow through the strainer drain line. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance. During normal operation, water is circulated by one running turbine cooling water pump and the heat removed is transferred to the intake cooling water system through the two turbine cooling water heat exchangers	Per O-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.
53	PTN	3	TPCW / 008	5613-M-3008, Sh. 3	3	Heat Exchangers	Heater Drain Pump 3A, 3B (Stuffing Box Cooler, Mechanical Seal Quenching, Motor Bearing Cooler)	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance. During normal operation, water is circulated by one running turbine cooling water pump and the heat removed is transferred to the intake cooling water system through the two turbine cooling water heat exchangers	Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.
54	PTN	3	TPCW / 008	5613-M-3008, Sh. 3	3	Piping	3-2"-8-F, 3-11/2"-8-F	Yes	Inneration and normal shutdown. The	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.	
55	PTN	3	TPCW / 008	5613-M-3008, Sh. 3	4	Instrumentation - Local	PI-3-5023	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Local Indication	None	The instrumentation shall be removed as part of the Cold Weather Preparation plan and the root and/or instrument valve will be cracked open to implement a trickle flow to minimize the potential for freezing. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water).	Un-Insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst.	

Florida Power & Light Company Docket No. 20220000-OT

Ten-Year Site Plan
Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 160 of 488 Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 161 of 488

> R21002, Rev 0 Attachment L Page 27 of 198

56	PTN	3	TPCW / 008	5613-M-3008, Sh. 3	4	Piping	2", 1", 3/4", 1/2"	Yes	FE(FI)-3-1411, PI-3-1479+I56:N56	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.	
57	PTN	3	TPCW / 008	5613-M-3008, Sh. 3	4	Heat Exchangers	Steam Generator A, B, C Blowdown Sample Coolers, LSC Steam Generator A, B, C, Feedwater Sample Coolers, Main Steal Sample Coolers, Steam Generator Wet Layup Pump A, B, C Seal Flush Cooler, Steam Generator Wet Layup Pump Sample Cooler, Steam Generator A, B, C to Sample Hood Sample Coolers	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F. Open Valves (3-60-704, -708) periodically to ensure flow through SPARE heat exchanger (SC-3-1429).	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance. During normal operation, water is circulated by one running turbine cooling water pump and the heat removed is transferred to the intake cooling water system through the two turbine cooling water heat exchangers	Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.
58	PTN	3	TPCW/008	5613-M-3008, Sh. 3	4	Vents / Drains / Misc. Connections	Small Bore Vents & Drains	No	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Dead Ended Water Leg	Mitigate	Vents are located at relative high points within the system piping, as such gas trapped upstream of the vent isolation valve will act as an accumulator to absorb the pressure rise associated with the expansion of ice forming in the branch connection. Based on Operations experience, identify if trapped gas exists. If the existence of trapped gas is not known, a limited amount of gas (air, nitrogen, etc.) can be added to the vent in support of the Cold Weather Preparation plan. Drain - Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions. Insulate the branch connection and implement a trickle flow determination is based on calculated trickle flow determination is based on calculated trickle flow actions.	Un-insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	
59	PTN	3	TPCW / 008	5613-M-3008, Sh. 4	1	Instrumentation - Local	FE(FI)-3-1411, PI-3-1479	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Local Indication	None	The instrumentation shall be removed as part of the Cold Weather Preparation plan and the root and/or instrument valve will be cracked open to implement a trickle flow to minimize the potential for freezing. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water).	Un-insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst.	
60	PTN	3	TPCW / 008	5613-M-3008, Sh. 4	1	Piping	3-16"-8-F	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance	
61	PTN	3	TPCW / 008	5613-M-3008, Sh. 4	1	Valves	Bypass valves Around CV-3-2203	No	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Dead Ended Water Leg	Mitigate	Open Valve (3-60-212) periodically to allow flow through the bypass around valves (CV-3-2203).	Un-insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	

R21002 Rev 0

R21002, Rev 0 Attachment L Page 28 of 198

														F
62	PTN	3	TPCW / 008	5613-M-3008, Sh. 4	1	Vents / Drains / Misc. Connections	Small Bore Drains	No	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Dead Ended Water Leg	Mitigate	Drain - Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions. Insulate the branch connection and implement a trickle flow to ensure freezing does not occur. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water).	Un-insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	
63	PTN	3	TPCW / 008	5613-M-3008, Sh. 4	2	Instrumentation - Local	PX-3-1467, -1469, PI-3-1570, - 1571	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Local Indication	None	The instrumentation shall be removed as part of the Cold Weather Preparation plan and the root and/or instrument valve will be cracked open to implement a trickle flow to minimize the potential for freezing. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water).	Un-insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst.	
64	PTN	3	TPCW / 008	5613-M-3008, Sh. 4	2	Instrumentation - Local	FG-3-1412, -1413	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	Plant Performance. During normal operation, water is circulated by one running	Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.
65	PTN	3	TPCW / 008	5613-M-3008, Sh. 4	2	Piping	3-8"-8-F	No	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained. Open Valves (3-60-262, -269) periodically to maintain flow through Air Side and Hydrogen Seal Oil Coolers	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.	
66	PTN	3	TPCW / 008	5613-M-3008, Sh. 4	2	Piping	3-4"-8-F	No	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained. Open Valves (3-60-262, -269) periodically to maintain flow through Air Side and Hydrogen Seal Oil Coolers	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Per O-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.	
67	PTN	3	TPCW / 008	5613-M-3008, Sh. 4	2	Piping	3-3"-8-F	No	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained. Open Valves (3-60-262, -269) periodically to maintain flow through Air Side and Hydrogen Seal Oil Coolers	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.	
68	PTN	3	TPCW / 008	5613-M-3008, Sh. 4	3	Instrumentation - Local	PX-3-1477, -1482, -1515, -1516, - 1517, -1518 PI-3-1503, -1504, - 1505, -1506, -1554, -1579, FE(FI)- 3-1455,	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Local Indication	None	The instrumentation shall be removed as part of the Cold Weather Preparation plan and the root and/or instrument valve will be cracked open to implement a trickle flow to minimize the potential for freezing. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water).	Un-insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst.	
69	PTN	3	TPCW / 008	5613-M-3008, Sh. 4	3	Piping	3-8"-8-F	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 162 of 488

R21002, Rev 0 Attachment L Page 29 of 198

70	PTN	3	TPCW / 008	5613-M-3008, Sh. 4	3	Piping	3-6"-8-F	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA. The turbine cooling water system is	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Per O-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.	
71	PTN	3	TPCW / 008	5613-M-3008, Sh. 4	3	Piping	3-3"-8-F	Yes	designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Per O-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.	
72	PTN	3	TPCW / 008	5613-M-3008, Sh. 4	3	Piping	3-2 1/2"-8-F	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.	
73	PTN	3	TPCW / 008	5613-M-3008, Sh. 4	3	Valves	Bypass valves Around Valves (3-60-221, -225, -235, -242, -249, -254)	No	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Dead Ended Water Leg	Mitigate	Open Valve (3-60-226, -222, -236, -243, -250, - 255) periodically to allow flow through the bypass around valves (3-60-221, -225, -235, -242, -249, -254).	Un-Insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	
74	PTN	3	TPCW/008	5613-M-3008, Sh. 4	3	Vents / Drains / Misc. Connections	Small Bore Vents & Drains	No	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Dead Ended Water Leg		Vents are located at relative high points within the system piping, as such gas trapped upstream of the vent isolation valve will act as an accumulator to absorb the pressure rise associated with the expansion of ice forming in the branch connection. Based on Operations experience, identify if trapped gas exists. If the existence of trapped gas is not known, a limited amount of gas (air, nitrogen, etc.) can be added to the vent in support of the Cold Weather Preparation plan. Drain - Options Insulate and heat trace — Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions. Insulate the branch connection and implement a trickle flow to ensure freezing does not occur. Trickle flow determination is based on accluated trickle flowrates contained in Table 1 (Fresh Water).	Un-insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	
75	PTN	3	TPCW / 008	5613-M-3008, Sh. 4	4	Instrumentation - Local	PX-3-14781479, -1480, -1481, Pl 3-1481, -1482, -1483, -1484	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Local Indication	l .	The instrumentation shall be removed as part of the Cold Weather Preparation plan and the root and/or instrument valve will be cracked open to implement a trickle flow to minimize the potential for freezing. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water).	Un-insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst.	
76	PTN	3	TPCW / 008	5613-M-3008, Sh. 4	4	Instrumentation - Local	FG-3-1425, -1426	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance. During normal operation, water is circulated by one running turbine cooling water pump and the heat removed is transferred to the intake cooling water system through the two turbine cooling water heat exchangers	

Florida Power & Light Company Docket No. 20220000-OT

Ten-Year Site Plan
Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 163 of 488

R21002, Rev 0 Attachment L Page 30 of 198

Florida Power & Light Company Docket No. 20220000-OT

Ten-Year Site Plan
Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 164 of 488

77	PTN	3	TPCW / 008	5613-M-3008, Sh. 4	4	Piping	3-8"-8-F	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance	
78	PTN	3	TPCW / 008	5613-M-3008, Sh. 4	4	Heat Exchangers	Condensate Pump A, B, C Motor Coolers, Generator Hydrogen Cooler A, B, C, D	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance. During normal operation, water is circulated by one running turbine cooling water pump and the heat removed is transferred to the intake cooling water system through the two turbine cooling water heat exchangers	Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.
79	PTN	3	TPCW / 008	5613-M-3008, Sh. 4	4	Valves	Bypass valves Around Throttle Valves	No	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Dead Ended Water Leg	Mitigate	Open Valves (3-60-189, -196, -203, -210) periodically to allow flow through the bypass around valves (3-60-188, -195, -202, -209, respectively).	Un-insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	
80	PTN	3	TPCW / 008	5613-M-3008, Sh. 4	4	Vents / Drains / Misc. Connections	Small Bore Vents	No	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Dead Ended Water Leg	Mitigate	Vents are located at relative high points within the system piping, as such gas trapped upstream of the vent isolation valve will act as an accumulator to absorb the pressure rise associated with the expansion of ice forming in the branch connection. Based on Operations experience, identify if trapped gas exists. If the existence of trapped gas is not known, a limited amount of gas (air, nitrogen, etc.) can be added to the vent in support of the Cold Weather Preparation plan.	Un-Insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	
1	PTN	3	CWS / 010	5613-M-3010, Sh. 1	1	Instrumentation - Local	PI-3-1006, -1007, -1008, -1009, - 1459, -1462 PX-3-1504, -1505, - 1506, -1507, -1635, -1636, -1637, - 1638, -1639, -1640, -1641, -1642	Yes	None	Local Indication	None	The instrumentation shall be removed as part of the Cold Weather Preparation plan and the root and/or instrument valve will be cracked open to implement a trickle flow to minimize the potential for freezing. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water) and Table 2 (Saltwater).	Un-Insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst.	
2	PTN	3	CWS / 010	5613-M-3010, Sh. 1	1	Instrumentation - Local	FG-3-1417, -1418, -1419, -1420	Yes	None	Maintain NSR Cooling and Plant Power Production	None	No Action Required as Long as Flow is Maintained. CW Temperature as Low as 50°F	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance.	
3	PTN	3	CWS / 010	5613-M-3010, Sh. 1	1	Piping	108", 90", 84"	Yes	None	Maintain NSR Cooling and Plant Power Production	None	No Action Required as Long as Flow is Maintained. CW Temperature as Low as 50°F	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance	
4	PTN	3	CWS / 010	5613-M-3010, Sh. 1	1	Piping	3-6"-7-L	Yes	None	Maintain NSR Cooling and Plant Power Production	None	No Action Required as Long as Flow is Maintained. CW Temperature as Low as 50°F	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance	
5	PTN	3	CWS / 010	5613-M-3010, Sh. 1	1	Motors	Circulating Wate Pump 3A1, 3A2, 3B1, 3B2 Motors	Yes	None	Maintain NSR Cooling and Plant Power Production	Mitigate	Swap Pumps and Trains Regularly	Prevent Component Failure from Insufficient Lubrication. During normal operation, water is circulated by more than one Circulating Water Pumps. During cold weather operation, pumps are secured. Swap pumps operating.	
6	PTN	3	CWS / 010	5613-M-3010, Sh. 1	1	Motor Operators	MOV-3-1413, -1414, -1415, -1416	Yes	None	Maintain NSR Cooling and Plant Power Production	Mitigate	Enclose/Tent with Heat	Prevent Component Failure from Insufficient Lubrication	
										1150 G 11			Maintaining Flow Avoids Freezing Which Could Lead to Degraded	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 165 of 488

> R21002, Rev 0 Attachment L Page 31 of 198

	8 PTI	N 3	: cw	vs / 010	5613-M-3010, Sh. 1	1	Vents / Drains / Misc. Connections	Small Bore Vents & Drains	No	None	Dead Ended Water Leg	Mitigate	Vents are located at relative high points within the system piping, as such gas trapped upstream of the vent isolation valve will act as an accumulator to absorb the pressure rise associated with the expansion of ice forming in the branch connection. Based on Operations experience, identify if trapped gas exists. If the existence of trapped gas is not known, a limited amount of gas (air, nitrogen, etc.) can be added to the vent in support of the Cold Weather Preparation plan. Drain - Options Insulate and heat trace - Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions. Insulate the branch connection and implement a trickle flow to ensure freezing does not occur. Trickle flow determination is based on calculated trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water) and Table 2 (Saltwater).	Un-insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst. CW Temperature as Low as 50°F	
	9 PT	N 3	: cw	VS / 010	5613-M-3010, Sh. 1	1	Vents / Drains / Misc. Connections	Pitot Tube Connections	No	None	Dead Ended Water Leg	Mitigate	Insulate the branch connection and implement a trickle flow to ensure freezing does not occur. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water) and Table 2 (Saltwater).	Un-insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst. CW Temperature as Low as 50°F	
	LO PTI	N 3	: cw	VS / 010	5613-M-3010, Sh. 1	2	Piping	2"	Yes	None	Maintain NSR Cooling and Plant Power Production	None	No Action Required as Long as Flow is Maintained. CW Temperature as Low as 50°F	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Ensure SV-3-1413 and -1414 cycle regularly to ensure flow through the piping.	
:	L1 PTI	N 3	: cw	VS / 010	5613-M-3010, Sh. 1	2	Vents / Drains / Misc. Connections	SRHS-3-001 Connection	No	None	Dead Ended Water Leg	Mitigate	Insulate the branch connection and implement a trickle flow to ensure freezing does not occur. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water) and Table 2 (Saltwater).	Un-Insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst. CW Temperature as Low as 50°F	
	12 PTI	N 3	s cw	WS / 010	5613-M-3010, Sh. 2	1	Instrumentation - Local	PI-3-1536, -1537, -1538, -1539, -	Yes	None	Local Indication	None	The instrumentation shall be removed as part of the Cold Weather Preparation plan and the root and/or instrument valve will be cracked open to implement a trickle flow to minimize the potential for freezing. Trickle flow determination is based on calculated trickle flowates contained in Table 1 (Fresh Water) and Table 2 (Saltwater).	Un-Insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst.	
	l3 PTI	N 3	: CW	NS / 010	5613-M-3010, Sh. 2	1	Instrumentation - Annunciation / Recorder / Indication	PS-3-2036, -2037, -2038, -2039	Yes	Indication provided to CR and/or Plant Computer.	Remote / CR Ind. / Alarm	Protect	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions. Insulate the branch connection and implement a trickle flow to ensure freezing does not occur. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water) and Table 2 (Saltwater).	Prevent Freezing to Provide CR Operators Plant Status	

R21002, Rev 0 Attachment L Page 32 of 198

14 F	TN	3	CWS / 010	5613-M-3010, Sh. 2	1	Instrumentation - Control / Protection	PS-3-2040, -2041, -2042, 2043	Yes	Provides Controlling Function	Remote / CR Ind. / Alarm	Protect	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions. Insulate the branch connection and implement a trickle flow to ensure freezing does not occur. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water) and Table 2 (Saltwater).	Prevent Freezing to Provide Controlling Functionality	
15 F	TN	3	CWS / 010	5613-M-3010, Sh. 2	1	Piping	3-8"-7-F, 3-6"-7-F, 3-4"-7-F	Yes	None	Maintain NSR Cooling and Plant Power Production	None	No Action Required as Long as Flow is Maintained. CW Temperature as Low as 50°F	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance	
16 F	TN	3	CWS / 010	5613-M-3010, Sh. 2	1	Piping	1" and Smaller Drain Piping around Moisture Separator	Standby	None	Dead Ended Water Leg	Mitigate	No Action Required as Long as Flow is Maintained. CW Temperature as Low as 50°F	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Open Valve (3-50-1028) periodically to drain the Moistrure Separator drain piping.	
17 F	TN	3	CWS / 010	5613-M-3010, Sh. 2	1	Vents / Drains / Misc. Connections	Small Bore Vents	No	None	Potentially Ice Block Vent	None	No Action Required	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance CW Temperature as Low as 50°F	
18 F	TN	3	CWS / 010	5613-M-3010, Sh. 3	1	Instrumentation - Local	PI-3-1697, -1696, -1522, -3661, - 1495, -1523, -1524, -1525, -1526, - 1527, -1528, -1529, 1530, PX-3- 3403	Yes	None	Local Indication	None	The instrumentation shall be removed as part of the Cold Weather Preparation plan and the root and/or instrument valve will be cracked open to implement a trickle flow to minimize the potential for freezing. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water) and Table 2 (Saltwater).	Un-Insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst.	
19 F	TN	3	CWS / 010	5613-M-3010, Sh. 3	1	Instrumentation - Local	Fi-3-1414, -1452, -1454, -1403	Yes	None	Local Indication	Mitigate	Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing.	Un-Insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst.	
20 F	TN	3	CWS / 010	5613-M-3010, Sh. 3	1	Instrumentation - Control / Protection	PC-3-1700, PS-3-2001, -2006, - 2012, -2019, -2044, -2045, -2061	Yes	Provides Controlling Function	Remote / CR Ind. / Alarm	Protect	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions. Insulate the branch connection and implement a trickle flow to ensure freezing does not occur. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water) and Table 2 (Saltwater).	Prevent Freezing to Provide Controlling Functionality	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 166 of 488 Florida Power & Light Company
Docket No. 20220000-OT
Ten-Year Site Plan
Staff's Third Data Request
Request No. 2
Attachment 4 of 24
Page 167 of 488

R21002, Rev 0 Attachment L Page 33 of 198

														F
21	PTN	3	CWS/010	5613-M-3010, Sh. 3	1	Instrumentation - Annunciation / Recorder / Indication	PoS-3-1700, PS-3-2018	Yes	Indication provided to CR and/or Plant Computer.	Remote / CR Ind. / Alarm	Protect	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions. Insulate the branch connection and implement a trickle flow to ensure freezing does not occur. Trickle flow determination is based on calculated trickle flow drace was a contained in Table 1 (Fresh Water) and Table 2 (Saltwater).	Prevent Freezing to Provide CR Operators Plant Status	
22	PTN	3	creen Wash / 01	5613-M-3011, Sh. 1	1	Instrumentation - Local	PI-3-202, -2021, -2022, -2023	Yes	None	Local Indication	None	The instrumentation shall be removed as part of the Cold Weather Preparation plan and the root and/or instrument valve will be cracked open to implement a trickle flow to minimize the potential for freezing. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water) and Table 2 (Saltwater).	Un-Insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst.	
23	PTN	3	creen Wash / 01	5613-M-3011, Sh. 1	1	Instrumentation - Control / Protection	PS-3-202, -2021, -2022, -2023	Yes	Provides Controlling Function	Remote / CR Ind. / Alarm	Protect	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions. Insulate the branch connection and implement a trickle flow to ensure freezing does not occur. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water) and Table 2 (Saltwater).	Prevent Freezing to Provide Controlling Functionality	
24	PTN	3	creen Wash / 01	5613-M-3011, Sh. 1	1	Piping	3"	Yes	None	Maintain NSR Cooling and Plant Power Production	None	No Action Required as Long as Flow is Maintained. CW Temperature as Low as 50°F	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance	
25	PTN	3	creen Wash / 01	5613-M-3011, Sh. 1	1	Piping	1 1/2"	Yes	None	Maintain NSR Cooling and Plant Power Production	None	No Action Required as Long as Flow is Maintained. CW Temperature as Low as 50°F	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Open Valves (3-50-142, -195, -206, -207) periodically to allow flow to the respective spargers and clear the 1 1/2" lines.	
26	PTN	3	creen Wash / 01	5613-M-3011, Sh. 1	1	Vents / Drains / Misc. Connections	1 1/2" Hose Connections	Yes	None	Maintain NSR Cooling and Plant Power Production	None	No Action Required as Long as Flow is Maintained. CW Temperature as Low as 50°F	to the respective spargers and clear the 1.1/2 lines. Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Open Valves (3-50-148, -191, -197, -208) periodically to allow flow through the dead ended hose connections.	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 168 of 488

> R21002, Rev 0 Attachment L Page 34 of 198

													Pa
1	PTN	3	IAS / 013	5613-M-3013, Sh. 1	itire Drawi	Vents / Drains / Misc. Connections	Small Bore Drains	No	The Instrument Air System (IAS) consists of air compressors, receiver tanks, aftercoolers, moisture separators, desiccant dryers, particulate filters, instrumentation and interconnecting piping and valves. The system is designed to provide a continuous reliable air source during normal plant operation.	Dead Ended Legs	None	None - The desiccant dryers are capable of lowering the dewpoint of the instrument air to 40°F which satisfies the ISA standard of 18°F below minimum ambient temperature.	0-ONOP-103.2 aiready addresses the following: * 3-40-2264, 3CA2 IA AFTERCOOLER DRAIN YS-3-1427 BLOWDOWN VALVE * 3-40-2261, 3CA1 IA AFTERCOOLER DRAIN YS-3-1426 BLOWDOWN VALVE * 3-40-226, 3T10 IA RECEIVER TANK DRAIN YS-3-1423 BLOWDOWN VALVE * 3-40-2027, 3F37 MIST ELIMINATOR DRAIN YS-3-1422 BLOWDOWN VALVE * 3-40-2027, UNIT 3 IA 3CM DISCHARGE PIPING DRAIN YS-3-1428 BLOWDOWN VALVE * 3-40-270, UNIT 3 IA DISCHARGE PIPING DRAIN YS-3-1435 BLOWDOWN VLV * 3-40-2312, UNIT 3 IA DISCHARGE PIPING DRAIN YS-3-1431 STRAINER 8/D VLV * IAS-3-047, UNIT 3 IA 3F5B PARTICULATE FILTER DRAIN VALVE * IAS-3-046, UNIT 3 IA 3F5A DABTICIL ATE FILTER DRAIN
9	PTN	3	IAS / 013	5613-M-3013, Sh. 10	itire Drawi	Vents / Drains / Misc. Connections	Small Bore Drains	No	The Instrument Air System (IAS) consists of air compressors, receiver tanks, aftercoolers, moisture separators, desiccant dryers, particulate filters, instrumentation and interconnecting piping and valves. The system is designed to provide a continuous reliable air source during normal plant operation.	Dead Ended Legs	None	None - The desiccant dryers are capable of lowering the dewpoint of the instrument air to 40°F which satisfies the ISA standard of 18°F below minimum ambient temperature.	The following shall be specifically added to 0-ONOP-103.2: Ensure Valves (40-1858) is periodically opened to drain the associated line. Numerous other potentially dead ended lines exist on the P&ID. These locations will need to be verified based on plant walkdown and configuration determination. (This assumes all the Air Connections are above the branch piping centerlines)
10	PTN	3	IAS / 013	5613-M-3013, Sh. 11	itire Drawi	Vents / Drains / Misc. Connections	Small Bore Drains	No	The Instrument Air System (IAS) consists of air compressors, receiver tanks, aftercoolers, moisture separators, desiccant dryers, particulate filters, instrumentation and interconnecting piping and valves. The system is designed to provide a continuous reliable air source during normal plant operation.	Dead Ended Legs	None	None - The desiccant dryers are capable of lowering the dewpoint of the instrument air to 40°F which satisfies the ISA standard of 18°F below minimum ambient temperature.	The following shall be specifically added to 0-ONOP-103.2: Ensure Valves (40-1795) is periodically opened to drain the associated line. Numerous other potentially dead ended lines exist on the P&ID. These locations will need to be verified based on plant walkdown and configuration determination. (This assumes all the Air Connections are above the branch piping centerlines)

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 169 of 488

> R21002, Rev 0 Attachment L Page 35 of 198

11	PTN	3	IAS / 013	5613-M-3013, Sh. 12	itire Drawi	Vents / Drains / Misc. Connections	Small Bore Drains	No	The Instrument Air System (IAS) consists of air compressors, receiver tanks, aftercoolers, moisture separators, desiccant dryers, particulate filters, instrumentation and interconnecting piping and valves. The system is designed to provide a continuous reliable air source during normal plant operation.	Dead Ended Legs	None	None - The desiccant dryers are capable of lowering the dewpoint of the instrument air to 40°F which satisfies the ISA standard of 18°F below minimum ambient temperature.	In accordance with 0-ONOP-103.2, "Cold/Hot Weather Conditions" IF outside air temperature is predicted to be lower than 32"F, THEN PERFORM the following: BLOWDOWN instrument air lines to Remove any Trapped Water, BLOWDOWN air lines exposed to outside air temperature to remove any trapped water.	The following shall be specifically added to 0-ONOP-103.2: Ensure Valves (3-40-389A) is periodically opened to drain the associated line. Numerous other potentially dead ended lines exist on the P&ID. These locations will need to be verified based on plant walkdown and configuration determination. (This assumes all the Air Connections are above the branch poings centerlines)
2	PTN	3	IAS/013	5613-M-3013, Sh. 2	itire Drawi	Vents / Drains / Misc. Connections	Small Bore Drains	No	The Instrument Air System (IAS) consists of air compressors, receiver tanks, aftercoolers, moisture separators, desiccant dryers, particulate filters, instrumentation and interconnecting piping and valves. The system is designed to provide a continuous reliable air source during normal plant operation.	Dead Ended Legs	None	None - The desiccant dryers are capable of lowering the dewpoint of the instrument air to 40°F which satisfies the ISA standard of 18°F below minimum ambient temperature.	In accordance with 0-ONOP-103.2, "Cold/Hot Weather Conditions" IF outside air temperature is predicted to be lower than 32"F, THEN PERFORM the following: BLOWDOWN instrument air lines to Remove any Trapped Water, BLOWDOWN air lines exposed to outside air temperature to remove any trapped water.	branch piping centerlines) The Tollowing Shall De specifically added to 0-ONOP- 103.2: Ensure Valve (3-40-2244) off Instrument Air Accumulator is periodically opened to drain the accumulator. Ensure Valve (3-40-186) off the IA Distribution Supply Inside Containment is periodically opened to drain the line. Ensure Valves (3-40-1513, - 1514, -1515, -1516, -1517, - 1514, -1519, -1520) off the Air Reserve Flasks (A, B, C, D, E, F, G, H) are periodically opened to drain the flasks. Ensure Valve (3-40-405D) of the IA Turbine Building Distribution supply is periodically opened to drain the line. Ensure Valves (3-40-429A, - 422B) are periodically opened.
3	PTN	3	IAS / 013	5613-M-3013, Sh. 3	itire Drawi	Vents / Drains / Misc. Connections	Small Bore Drains	No	The Instrument Air System (IAS) consists of air compressors, receiver tanks, aftercoolers, moisture separators, desiccant dryers, particulate filters, instrumentation and interconnecting piping and valves. The system is designed to provide a continuous reliable air source during normal plant operation.	Dead Ended Legs	None	None - The desiccant dryers are capable of lowering the dewpoint of the instrument air to 40°F which satisfies the ISA standard of 18°F below minimum ambient temperature.	In accordance with 0-ONOP-103.2, "Cold/Hot Weather Conditions" IF outside air temperature is predicted to be lower than 32°F, THEN PERFORM the following: BLOWDOWN instrument air lines to Remove any Trapped Water, BLOWDOWN air lines exposed to outside air temperature to remove any trapped water.	The following shall be specifically added to 0-ONOP-103.2: Ensure Valves (3-40-460, -478, -489C, -359, -661, -417) are periodically opened to drain the associated line. Numerous other potentially dead ended lines exist on the P&ID. These locations will need to be verified based on plant walkdown and configuration determination. (This assumes all the Air Connections are above the branch piping centerlines)
4	PTN	3	IAS / 013	5613-M-3013, Sh. 4	itire Drawi	Vents / Drains / Misc. Connections	Small Bore Drains	No	The Instrument Air System (IAS) consists of air compressors, receiver tanks, aftercoolers, moisture separators, desiccant dryers, particulate filters, instrumentation and interconnecting piping and valves. The system is designed to provide a continuous reliable air source during normal plant operation.	Dead Ended Legs	None	None - The desiccant dryers are capable of lowering the dewpoint of the instrument air to 40°F which satisfies the ISA standard of 18°F below minimum ambient temperature.		The following shall be specifically added to 0-ONOP-103.2: Ensure Valves (3-40-547, -489B) are periodically opened to drain the associated line. (This assumes all the Air Connections are above the branch piping centerlines)

R21002, Rev 0 Attachment L Page 36 of 198

_														
5	PTN	3	IAS / 013	5613-M-3013, Sh. 5	itire Drawi	Vents / Drains / Misc. Connections	Small Bore Drains	No	The Instrument Air System (IAS) consists of air compressors, receiver tanks, aftercoolers, moisture separators, desiccant dryers, particulate filters, instrumentation and interconnecting piping and valves. The system is designed to provide a continuous reliable air source during normal plant operation.	Dead Ended Legs	None	None - The desiccant dryers are capable of lowering the dewpoint of the instrument air to 40°F which satisfies the ISA standard of 18°F below minimum ambient temperature.	In accordance with 0-ONOP-103.2, "Cold/Hot Weather Conditions" IF outside air temperature is predicted to be lower than 32*F, THEN PERFORM the following: BLOWDOWN instrument air lines to Remove any Trapped Water, BLOWDOWN air lines exposed to outside air temperature to remove any trapped water.	The following shall be specifically added to 0-ONOP-103.2: Ensure Valves (3-40-627, -626, -653) are periodically opened to drain the associated line. (This assumes all the Air Connections are above the branch piping centerlines)
6	PTN	3	IAS / 013	5613-M-3013, Sh. 7	itire Drawi	Vents / Drains / Misc. Connections	Small Bore Drains	No	The Instrument Air System (IAS) consists of air compressors, receiver tanks, aftercoolers, moisture separators, desiccant dryers, particulate filters, instrumentation and interconnecting piping and valves. The system is designed to provide a continuous reliable air source during normal plant operation.	Dead Ended Legs	None	None - The desiccant dryers are capable of lowering the dewpoint of the instrument air to 40°F which satisfies the ISA standard of 18°F below minimum ambient temperature.	In accordance with 0-ONOP-103.2, "Cold/Hot Weather Conditions" IF outside air temperature is predicted to be lower than 32*F, THEN PERFORM the following: BLOWDOWN instrument air lines to Remove any Trapped Water, BLOWDOWN air lines exposed to outside air temperature to remove any trapped water.	Majority of Piping on This P&ID is within Containment. The following shall be specifically added to 0-ONOP-103.2: Ensure Valves (3-40-716A, -716B, -716C) are periodically opened to drain the associated Accumulator Tank (3175A, 3175B, 3175C). (This assumes all the Air Connections are above the branch piping centerlines)
7	PTN	3	IAS / 013	5613-M-3013, Sh. 8	stire Drawi	Vents / Drains / Misc. Connections	Small Bore Drains	No	The Instrument Air System (IAS) consists of air compressors, receiver tanks, aftercoolers, moisture separators, desiccant dryers, particulate filters, instrumentation and interconnecting piping and valves. The system is designed to provide a continuous reliable air source during normal plant operation.	Dead Ended Legs	None	None - The desiccant dryers are capable of lowering the dewpoint of the instrument air to 40°F which satisfies the ISA standard of 18°F below minimum ambient temperature.	In accordance with 0-ONOP-103.2, "Cold/Hot Weather Conditions" IF outside air temperature is predicted to be lower than 32*F, THEN PERFORM the following: BLOWDOWN instrument air lines to Remove any Trapped Water, BLOWDOWN air lines exposed to outside air temperature to remove any trapped water.	branch piping centerlines) Depending on the environmental conditions, the following may be specifically added to 0-ONOP-103.2: Valves 4-40-826 (Control Room) and 40-715 (Cable Spreading Room) to ensure dry IA in the Control Room. Numerous other potentially dead ended lines exist on the P&ID. These locations will need to be verified based on plant walkdown and configuration determination. (This assumes all the Air Connections are above the branch piping centerlines)
8	PTN	3	IAS / 013	5613-M-3013, Sh. 9	itire Drawi	Vents / Drains / Misc. Connections	Small Bore Drains	No	The Instrument Air System (IAS) consists of air compressors, receiver tanks, aftercoolers, moisture separators, desiccant dryers, particulate filters, instrumentation and interconnecting piping and valves. The system is designed to provide a continuous reliable air source during normal plant operation.	Dead Ended Legs	None	None - The desiccant dryers are capable of lowering the dewpoint of the instrument air to 40°F which satisfies the ISA standard of 18°F below minimum ambient temperature.	In accordance with 0-ONOP-103.2, "Cold/Hot Weather Conditions" IF outside air temperature is predicted to be lower than 32°F, THEN PERFORM the following: BLOWDOWN instrument air lines to Remove any Trapped Water, BLOWDOWN air lines exposed to outside air temperature to remove any trapped water.	The following shall be specifically added to 0-ONOP-103.2: Ensure Valves (40-1129, -1418) are periodically opened to drain the associated line. Numerous other potentially dead ended lines exist on the P&ID. These locations will need to be verified based on plant walkdown and configuration determination. (This assumes all the Air Connections are above the branch piping centerlines)
1	PTN	3	CNDSR / 014	5613-M-3014 SH 1	1	Piping	Direct piping connections to Condenser 3B Misc pipe sizes from 1" to 18", and 30" and 72".	Yes	Condenser pressure boundary; Maintain condenser vacuum.	Normal Condensate/steam flow adequate to prevent freezing.	None	None	Inspect during walkdown, insulation may already be present. Condenser and active piping will be hot.	. Figure 2
2	PTN	3	CNDSR / 014	5613-M-3014 SH 1	2	Piping	8", 10" piping Air Removal Header to Steam Jet Air Ejectors	Yes	Condenser pressure boundary; Maintain condenser vacuum.	Normal Condensate/steam flow adequate to prevent freezing.	None	None	Inspect during walkdown, insulation may already be present. Condenser and active piping will be hot.	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 170 of 488

R21002, Rev 0 Attachment L Page 37 of 198

														'
3	PTN	3	CNDSR / 014	5613-M-3014 SH 1	3	Piping	2" piping and control valves (air operated)	Yes	Condenser pressure boundary; Maintain condenser vacuum.	Normal Condensate/steam flow adequate to prevent freezing.	Protect	Ensure 2" piping and valves are insulated. This is likely on a lower level of the TB and so a global strategy of enclosing the area with tarps and using space heaters may be taken.	Inspect during walkdown, insulation may already be present. Condenser will be hot. Piping and control valves may be in a partially enclosed area that will be mitigated using global strategies.	5613-M-3014 SH 2, 5610-M-3074 SH 2
4	PTN	3	CNDSR / 014	5613-M-3014 SH 1	4	Piping	12" Steam Trap Drain Header, 3-12"-2-C	Yes	Condenser pressure boundary; Maintain condenser vacuum.	Normal Condensate/steam flow adequate to prevent freezing.	None	None	Inspect during walkdown, insulation may already be present. Condenser and active piping will be hot.	
5	PTN	3	CNDSR / 014	5613-M-3014 SH 1	4	Piping	Individual steam trap drain connections to header. Misc piping 2", 1 1/2", 1", 3/4", 1/2"	Yes	Condenser pressure boundary; Maintain condenser vacuum.	Normal Condensate/steam flow adequate to prevent freezing.	None	None	Inspect during walkdown, insulation may already be present. Condenser and active piping will be hot.	
6	PTN	3	CNDSR / 014	5613-M-3014 SH 1	4	Vents / Drains / Misc. Connections	4 capped pipe ends & 3 pipe studs with closed valves (3-30-991, 3-30-992, and 3-30-993)	No	Condenser pressure boundary; Maintain condenser vacuum.	Dead Leg	Protect	Ensure capped and dead end pipe connections are insulated.	Inspect during walkdown, insulation may already be present. Condenser and active piping will be hot.	
7	PTN	3	CNDSR / 014	5613-M-3014 SH 1	4	Piping	Isolated lines and drains upstream of 3-30-999 (line 3-1 1/2"-2-CM common header)	No	Condenser pressure boundary; Maintain condenser vacuum.	Dead Leg	Protect	Ensure piping and any drains are insulated upto the first isolation valve (see pink circles on markup) This is likely on a lower level of the TB and so a global strategy of enclosing the area with tarps and using space heaters may be taken.	Inspect during walkdown, insulation may already be present.	
8	PTN	3	CNDSR / 014	5613-M-3014 SH 1	5	Piping	3/4" and 1/2" instrument line piping	Yes	Condenser pressure boundary; Maintain condenser vacuum.	Dead Leg	Protect	Ensure instrument line piping is insulated. If piping is located on a lower level of the TB and a global strategy of enclosing the area with tarps and using space heaters may be taken.	Inspect during walkdown, insulation may already be present.	
9	PTN	3	CNDSR / 014	5613-M-3014 SH 1	5	Instr. Control / Protection	2 Pressure Switches (PS); 3 Pressure Indicating Transmitter (PIT) PS input to Steam Dump system. PITs have CR alarm/annunciation and input to Turbine Control Sys, Turbine trip, etc.	Yes	Condenser pressure boundary; Maintain condenser vacuum.	Dead Leg	Protect	Ensure instruments are insulated. Normal fluid temp may preclude freezing with insulation. If piping is located on a lower level of the TB and a global strategy of enclosing the area with tarps and using space heaters may be taken.	Inspect during walkdown, insulation may already be present.	
10	PTN	3	CNDSR / 014	5613-M-3014 SH 1	h Condens	Heat Exchangers	South Condenser 3B	Yes	Condenser pressure boundary; Maintain condenser vacuum.	Normal fluid conditions adequate to prevent freezing.	None	None		
11	PTN	3	CNDSR / 014	5613-M-3014 SH 1	h Condens	Instr. Local	Temporary pressure instrument (PX) (x6); Temporary temperature instrument (TX) (x1)	No	None	Dead Leg	Protect	Ensure instrument and instrument lines are well insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of intrument tubing, valve, and port in proximity to Condenser. Condenser will be hot.	
12	PTN	3	CNDSR / 014	5613-M-3014 SH 1	h Condens	Instr. Annunciation / Indication	3/4" tubing/pipe Level Transmitter (LT) Condenser level with control room annunciation (high/low)	Yes	None	Dead Leg	Protect	Ensure instrument and instrument lines are well insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of intrument tubing, valve, and port in proximity to Condenser. Condenser will be hot.	
13	PTN	3	CNDSR / 014	5613-M-3014 SH 1	h Condens	Instr. Local	Local level guage (x2)	Yes	None	Dead Leg	Protect	Ensure instrument and instrument lines are well insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of intrument tubing, valve, and port in proximity to Condenser. Condenser will be hot.	
14	PTN	3	CNDSR / 014	5613-M-3014 SH 1	h Condens	Motor Operator Valve	Vent (screened open flange) with Motor Op Valve MOV-3-VAB1	Standby	None	Dead Leg	Protect	Ensure vent pipe and MOV are insulated or in close proximity to the condenser which would preclude freezing.	Inspect during walkdown, insulation may already be present. Evaluate length of vent pipe and location of MOV in proximity to Condenser. Condenser will be hot.	
15	PTN	3	CNDSR / 014	5613-M-3014 SH 1	h Condens	Vents / Drains / Misc. Connections	Capped piping 1 1/2" pipe (leak detect) (x8) 1" pipe (x1)	No	None	Dead Leg	Protect	Ensure piping and end cap are insulated.	Include with global freeze evaluation for MOVs Inspect during walkdown, insulation may already be present. Evaluate length of piping in proximity to Condenser. Condenser will be hot.	
16	PTN	3	CNDSR / 014	5613-M-3014 SH 2	1	Piping	Direct piping connections to Condenser 3A Misc pipe sizes from 1" to 18", and 30" and 72".	Yes	Condenser pressure boundary; Maintain condenser vacuum.	Normal Condensate/steam flow adequate to prevent freezing.	None	None	Inspect during walkdown, insulation may already be present. Condenser and active piping will be hot.	
17	PTN	3	CNDSR / 014	5613-M-3014 SH 2	2	Piping	8", 10" piping Air Removal Header to Steam Jet Air Ejectors	Yes	Condenser pressure boundary; Maintain condenser vacuum.	Normal Condensate/steam flow adequate to prevent freezing.	None	None	Inspect during walkdown, insulation may already be present. Condenser and active piping will be hot.	

Florida Power & Light Company Docket No. 20220000-OT

Ten-Year Site Plan
Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 171 of 488

R21002, Rev 0 Attachment L Page 38 of 198

18	PTN	3	CNDSR / 014	5613-M-3014 SH 2	3	Piping	10" header, and 2" piping and control valves (air operated)	Yes	Condenser pressure boundary; Maintain condenser vacuum.	Normal Condensate/steam flow adequate to prevent freezing.	Protect	Ensure 2" piping and valves are insulated. This is likely on a lower level of the TB and so a global strategy of enclosing the area with tarps and using space heaters may be taken.	Inspect during walkdown, insulation may already be present. Condenser will be hot. Piping and control valves may be in a partially enclosed area that will be mitigated using global strategies.	5613-M-3014 SH 1, 5610-M-3074 SH 2
19	PTN	3	CNDSR / 014	5613-M-3014 SH 2	4	Piping	12" Steam Trap Drain Header, 3-12"-2-C	Yes	Condenser pressure boundary; Maintain condenser vacuum.	Normal Condensate/steam flow adequate to prevent freezing.	None	None	Inspect during walkdown, insulation may already be present. Condenser and active piping will be hot.	
20	PTN	3	CNDSR / 014	5613-M-3014 SH 2	4	Piping	Individual steam trap drain connections to header. Misc 1/2" piping	Yes	Condenser pressure boundary; Maintain condenser vacuum.	Normal Condensate/steam flow adequate to prevent freezing.	None	None	Inspect during walkdown, insulation may already be present. Condenser and active piping will be hot.	
21	PTN	3	CNDSR / 014	5613-M-3014 SH 2	5	Piping	3/4" and 1/2" instrument line piping	Yes	Condenser pressure boundary; Maintain condenser vacuum.	Dead Leg		Ensure instrument line piping is insulated. If piping is located on a lower level of the TB and a global strategy of enclosing the area with tarps and using space heaters may be taken.	Inspect during walkdown, insulation may already be present.	
22	PTN	3	CNDSR / 014	5613-M-3014 SH 2	5	Instr. Control / Protection	3 Pressure Indicating Transmitter (PIT) PITs have CR alarm/annunciation and input to Turbine Control Sys, Turbine trip, etc.	Yes	Condenser pressure boundary; Maintain condenser vacuum.	Dead Leg	Protect	Ensure instruments are insulated. Normal fluid temp may preclude freezing with insulation. If piping is located on a lower level of the TB and a global strategy of enclosing the area with tarps and using space heaters may be taken.	Inspect during walkdown, insulation may already be present.	
23	PTN	3	CNDSR / 014	5613-M-3014 SH 2	h Condens	Heat Exchangers	North Condenser 3A	Yes	Condenser pressure boundary; Maintain condenser vacuum.	Normal fluid conditions adequate to prevent freezing.	None	None		
24	PTN	3	CNDSR / 014	5613-M-3014 SH 2	h Condens	Instr. Local	Temporary pressure instrument (PX) (x6); Temporary temperature instrument (TX) (x1)	No	None	Dead Leg	Protect	Ensure instrument and instrument lines are well insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of intrument tubing, valve, and port in proximity to Condenser.	
25	PTN	3	CNDSR / 014	5613-M-3014 SH 2	h Condens	Instr. Control / Protection	3/4" tubing/pipe Level Controler (LC) Condenser level control with signal input to condenser water makeup spray valves (suction from DWST)	Standby	None	Dead Leg	Protect	Ensure instrument and instrument lines are well insulated.	Condenser will be hot. Inspect during walkdown, insulation may already be present. Evaluate length of intrument tubing, valve, and port in proximity to Condenser. Condenser will be hot.	
26	PTN	3	CNDSR / 014	5613-M-3014 SH 2	h Condens	Instr. Local	Local level guage (x3)	Yes	None	Dead Leg	Protect	Ensure instrument, instrument lines, and drains are well insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of intrument tubing, valve, and port in proximity to Condenser.	
27	PTN	3	CNDSR / 014	5613-M-3014 SH 2	h Condens	Motor Operator Valve	Vent (screened open flange) with Motor Op Valve MOV-3-VAB	Standby	None	Dead Leg	Protect	Ensure vent pipe and MOV are insulated or in close proximity to the condenser which would preclude freezing.	Condenser will be hot. Inspect during walkdown, insulation may already be present. Evaluate length of vent pipe and location of MOV in proximity to Condenser. Condenser will be hot. Include with global freeze evaluation for MOVs	
28	PTN	3	CNDSR / 014	5613-M-3014 SH 2	h Condens	Vents / Drains / Misc. Connections	Capped piping 1 1/2" pipe (leak detect) (x8)	No	None	Dead Leg	Protect	Ensure piping and end cap are insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of piping in proximity to Condenser. Condenser will be hot.	
29	PTN	3	CNDSR / 014	5613-M-3014 SH 3	1	Piping	2", 1 1/2", 1" Piping Main steam supply to steam jet air ejectors.	Yes	Required for power operations; Maintain condenser vacuum.	Normal Steam Flow adequate to prevent freezing.	None	None	Inspect during walkdown, insulation may already be present. Steam piping will be hot.	
30	PTN	3	CNDSR / 014	5613-M-3014 SH 3	1	Instr. Local	Local Pressure indication (PI) 1/2" tubing and open root valve.	Yes	None	Dead Leg		Ensure instrument and instrument lines are well insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of intrument tubing, valve, and instrument in proximity to main line. Steam piping will be hot and flowing.	
31	PTN	3	CNDSR / 014	5613-M-3014 SH 3	1	Instr. Annunciation / Indication	Pressure Switch (PS) with control room annunciation. Local Pressure indication (PI) 1/2" tubing and open root valve.	Yes	None	Dead Leg	Protect	Ensure instrument and instrument lines are well insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of intrument tubing, valve, and instrument in proximity to main line. Steam piping will be hot and flowing.	
32	PTN	3	CNDSR / 014	5613-M-3014 SH 3	2	Piping	1" Piping Steam trap and drain for segment 1.	Yes	Required for power operations; Maintain condenser vacuum.	Normal Steam/condensate Flow adequate to prevent freezing.	None	None	Inspect during wallkdown, insulation may already be present. Drain piping will be hot.	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 172 of 488

R21002, Rev 0 Attachment L Page 39 of 198

														'
33	PTN	3	CNDSR / 014	5613-M-3014 SH 3	2	Strainers	Steam trap ST-3-1404; Wye Strainer YS-3-3412	Yes	Required for power operations; Maintain condenser vacuum.	Normal Steam/condensate Flow adequate to	None	None	Inspect during walkdown, insulation may already be present.	
							wye stramer 15-5-5412		Iviaintain condenser vacuum.	prevent freezing.			Drain piping will be hot.	
34	PTN	3	CNDSR / 014	5613-M-3014 SH 3	2	Vents / Drains / Misc. Connections	1" Drain (Piping & valve)	No	None	Dead Leg	Protect	Ensure piping and drain valve are insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of piping in proximity to main 1" piping.	
													Main piping will be hot.	
35	PTN	3	CNDSR / 014	5613-M-3014 SH 3	3	Piping	10", 8" piping Air Removal header from	Yes	Required for power operations; Maintain condenser vacuum.	Normal Air flow from condenser will prevent	None	None	Inspect during walkdown, insulation may already be present.	
							condensers A & B			line from freezing.			Main piping will be hot.	
36	PTN	3	CNDSR / 014	5613-M-3014 SH 3	3	Vents / Drains / Misc. Connections	8" Vent/Vacuum breaker	No	Required for power operations; Condenser vacuum boundary	Dead Leg	Protect	Ensure piping and vacuum breaker valve are insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of piping in proximity to main 10" line. Main piping will be hot.	
							Local Pressure indication (PI)						Inspect during walkdown, insulation may already be present.	
37	PTN	3	CNDSR / 014	5613-M-3014 SH 3	3	Instr. Local	1/4" tubing and open root valve; branch from 8" vacuum breaker	Yes	Required for power operations; Condenser vacuum boundary	Dead Leg	Protect	Ensure instrument and instrument lines are well insulated.	Evaluate length of intrument tubing, valve, and instrument in proximity to main line. Main 10" header will be hot and flowing.	
							Local Pressure indication (PI)						Inspect during walkdown, insulation may already be present.	
38	PTN	3	CNDSR / 014	5613-M-3014 SH 3	3	Instr. Local	(x2) 1/2" tubing and open root valve; branch from 8" lines into SJAEs	Yes	Required for power operations; Condenser vacuum boundary	Dead Leg	Protect	Ensure instrument and instrument lines are well insulated.	Evaluate length of intrument tubing, valve, and instrument in proximity to main line.	
-							3" piping						Main 10" header will be hot and flowing.	
39	PTN	3	CNDSR / 014	5613-M-3014 SH 3	4	Piping	SJAEs to Inner Condenser to SJAEs	Yes	Required for power operations; Maintain condenser vacuum.	Normal Air flow from condenser will prevent line from freezing.	None	None	Inspect during walkdown, insulation may already be present. Main piping will be hot.	
							to After Condenser 1" relief valve (x2)							
40	PTN	3	CNDSR / 014	5613-M-3014 SH 3	4	Relief Valves	pressure relief on first set of	Yes	Required for power operations; Maintain condenser vacuum.	Normal Steam Flow adequate to prevent freezing.	None	None	Inspect during walkdown, insulation may already be present. Main piping and SJAEs will be hot.	
-							SJAEs 24" piping			-				
41	PTN	3	CNDSR / 014	5613-M-3014 SH 3	5	Piping		Yes	Required for power operations;	Normal flow of condensate will keep	None	None	Inspect during walkdown, insulation may already be present.	5610-M-3073 SH 2
							Cooling water (condensate) to SJAE inner and after condensers		Maintain condenser vacuum.	line from freezing			Main piping will be warm, SJAE condensers will be warm.	
							24" piping		Required for power operations;	Normal flow of			Inspect during walkdown, insulation may already be present.	
42	PTN	3	CNDSR / 014	5613-M-3014 SH 3	6	Piping	Cooling water (condensate) from SJAE inner and after condensers	Yes	Maintain condenser vacuum.	condensate will keep line from freezing	None	None	Main piping will be warm, SJAE condensers will be warm.	5610-M-3073 SH 2
							SAE IIIICI and arter condensers		Change Lat Air Finaton is an aviewed for	Condenser and			I and the state of	
43	PTN	3	CNDSR / 014	5613-M-3014 SH 3	7	Piping	1" Piping SJAE condenser drains	Yes	Steam Jet Air Ejector is required for power operation to maintain condenser	condensate drain will	None	None	Inspect during walkdown, insulation may already be present.	
-									vacuum.	be warm.			Piping will be warm, SJAE condensers will be warm. Inspect during walkdown, insulation may already be present.	
							Local level gauge (x2)		Steam Jet Air Ejector is required for				Evaluate length of intrument tubing, and instrument in proximity	
44	PTN	3	CNDSR / 014	5613-M-3014 SH 3	7	Instr. Local	indicates liquid level in condenser	Yes	power operation to maintain condenser vacuum.	Dead Leg	Protect	Ensure instrument and instrument lines are well insulated.	to main line.	
							drain line.						Piping will be warm, SJAE condensers will be warm.	
													Inspect during walkdown, insulation may already be present.	
1							2", 3" piping						Piping will be warm, SJAE condensers will be warm.	
45	PTN	3	CNDSR / 014	5613-M-3014 SH 3	8	Dining	= 7 F F F F F F F F F F F F F F F F F F	Voc	Steam Jet Air Ejector is required for	Condenser and	None	None	, , , , , , , , , , , , , , , , , , ,	
45	PIN	3	CND3K / 014	3013-IVI-3014 3FI 3	•	Piping	SJAE condensers drain to North	Yes	power operation to maintain condenser vacuum.	condensate drain will be warm.	None	None	SJAEs and SJAE condensers are located on TB operating deck	
							Condenser						(exposed outside), majority of condeser drain however would be	
													on TB mezzanine and ground floor with connection to condenser - global mitigating strategies may apply.	
													Inspect during walkdown, insulation may already be present.	
1													Evaluate length of intrument tubing, and instrument in proximity	
							Local level gauge and 1/2" tubing						to main line.	
46	PTN	3	CNDSR / 014	5613-M-3014 SH 3	8	Instr. Local	indicates liquid level in condenser	Yes	Steam Jet Air Ejector is required for power operation to maintain condenser	Dead Leg	Protect	Ensure instrument and instrument lines are well insulated.	Piping will be warm, SJAE condensers will be warm.	
							drain line.		vacuum.			nisolocco.	SJAEs and SJAE condensers are located on TB operating deck	
1													(exposed outside), majority of condeser drain however would be	
1													on TB mezzanine and ground floor with connection to condenser -	
-	 						1/2" capped pipe (closed root				+		global mitigating strategies may apply. Inspect during walkdown, insulation may already be present.	
1						Vents / Drains / Misc.	valve)		SJAE condenser drain pressure			Ensure isolated pipe and pipe ends, and isolation	Evaluate length of piping in proximity to main line.	
47	PTN	3	CNDSR / 014	5613-M-3014 SH 3	8	Connections		No	boundary	Dead Leg	Protect	valves are well insulated.		
1							1/2" line (isolated) from Condensate Sys Loop Seal Fill		· ·				Main SJAE condenser drain piping will be warm, SJAE condensers will be warm.	
	1		1			1	Condensate bys Loop Sear Fill		1	1	1		rem se realli.	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 173 of 488

R21002, Rev 0 Attachment L Page 40 of 198

48	PTN	3	CNDSR / 014	5613-M-3014 SH 3	9	Piping	4" piping, misc insluating flanges SJAE condenser (air/steam side) discharge to Aux Building Ventilation	Yes	Steam Jet Air Ejector is required for power operation to maintain condenser vacuum.	Condenser and condensate drain will be warm.	None	None	Inspect during walkdown, insulation may already be present. Piping will be warm, SJAE condensers will be warm.	
49	PTN	3	CNDSR / 014	5613-M-3014 SH 3	9	Instr. Local	Local gauges and 3/8" tubing press differential (dPI) Flow indication (FI) Flow element (FE)	Yes	None	Dead Leg	Protect	Ensure instrument and instrument lines are well insulated.	Inspect during walkdown, insulation may already be present.	
50	PTN	3	CNDSR / 014	5613-M-3014 SH 3	9	Instr. Local	Local flow indicator (FI)	Yes	None	Dead Leg	Protect	Ensure instrument and instrument lines are well insulated.	Inspect during walkdown, insulation may already be present. P&ID symbol indicates flow indicator is already heat traced. Verify during walkdown.	
51	PTN	3	CNDSR / 014	5613-M-3014 SH 3	9	Instr. Annunciation / Indication	Radiation detector (RD) with control room alarm/annunciation	Yes	Used to determine radiation levels in Aux Bldg exhaust ventilation.	Dead Leg	Protect	Ensure instrument is well insulated.	Inspect during walkdown, insulation may already be present. Instrument is installed in-line along the 4" piping.	
52	PTN	3	CNDSR / 014	5613-M-3014 SH 3	9	Vents / Drains / Misc. Connections	1/2" drain/vent, 1" isolated conn. for flex hose and chem testing (note 6), 1" drain (x2) 1/2" line (isolated) from Condensate Sys Loop Seal Fill	No	None	Dead Leg	Protect	Ensure isolated pipe and pipe ends, and isolation valves are well insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of piping in proximity to main line. Main 4" SJAE exhaust line expected to be warm.	
1	PTN	3	CS / 018	5613-M-3018, Sh. 1	-	Outdoor Tanks	Unit 3 CST	Yes	TS 3.7.1.3 - Cond Storage Tank min volume 210,000 gal. Action: Restore volume within 4 hrs, or attain HSB in 6 hrs.	Maintain aux feedwater injection capability after reactor trip for sufficient duration to achieve cold shutdown.	None	None	Preliminary analysis shows that postulated cold weather conditions will not induce freezing temperatures within the large volume of the CST, even without crediting heated influx of liquid inventory or the shielding effect of the concrete missile structure. Cold weather effects on lines and components attached to the CST are addressed in subsequent entries on this sheet.	
1	PTN	3	ICW / 019	5613-M-3019, Sh. 1	1	Instrumentation - Local	PI(X)-3-1450, -1451, -1452, PI-3- 1488, -1489, -6901, -6902, dPI-3- 1400, -1401, FE(FI)-3-1430	Yes	None	Local Indication	Mitigate	Safety Related piping boundary As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions. Insulate the branch connection and implement a trickle flow to ensure freezing does not occur. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water) and Table 2 (Saltwater).	Un-insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst. (UHS Temperature ~50°F Min.)	
2	PTN	3	ICW / 019	5613-M-3019, Sh. 1	1	Instrumentation - Annunciation / Recorder / Indication	PS-3-1619, -1620, PI-3-1619, - 1620, PT-3-1619, -1620	Yes	Indication provided to CR and/or Plant Computer.	Remote / CR Ind. / Alarm	Protect	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions. Insulate the branch connection and implement a trickle flow to ensure freezing does not occur. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water) and Table 2 (Saltwater).	Prevent Freezing to Provide CR Operators Plant Status	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 174 of 488

R21002, Rev 0 Attachment L Page 41 of 198

														P
3	PTN	3	ICW / 019	5613-M-3019, Sh. 1	1	Piping	Safety Related Piping 3-24"-13-L, 3-36"-13-L, 3-30"-13-L	Yes	T.S. 3.7.4 - At least two independent intake cooling water headers and three ICW pumps shall be operable when in Modes 1 - 4. ACTION: a. With only two ICW pumps with independent power supplies OPERABLE, restore the inoperable ICW pump to OPERABLE status within 14 days or in accordance with the Risk Informed Completion Time Program, or be in HOT STANDBY within the next 6 hours and in COLD SHUTDOWN within the following 30 hours. b. With only one ICW pump OPERABLE or with two ICW pumps OPERABLE, but not from independent power supplies, restore two pumps from independent power supplies to OPERABLE status within 72 hours or in accordance with the Risk Informed Completion Time Program, or be in HOT STANDBY within the next 6 hours and in COLD SHUTDOWN within the following 30 hours.	Maintain SR Cooling	Mitigate	Insulate and/or Swap Trains Regularly (UHS Temperature ~50°F Min.)	Insulation Thickness Required to Preclude Icing 1/2" Insulation (>38"F Water), 1" Insulation (>34"F Water) 0-ONOP-103.2 states, "ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure"	
4	PTN	3	ICW / 019	5613-M-3019, Sh. 1	1	Piping	Safety Related Piping 3-2"-12-L, 3-4"-12-L	Yes	the following 30 hours. T.S. 3.7.4 - At least two independent intake cooling water headers and three ICW Pumps shall be operable when in Modes 1 - 4. ACTION: a. With only two ICW pumps with independent power supplies OPERABLE, restore the inoperable ICW pump to OPERABLE status within 14 days or in accordance with the Risk Informed Completion Time Program, or be in HOT STANDBY within the next 6 hours and in COLD SHUTDOWN within the following 30 hours. b. With only one ICW pump OPERABLE or with two ICW pumps OPERABLE, but not from independent power supplies, restore two pumps from independent power supplies to OPERABLE status within 72 hours or in accordance with the Risk Informed Completion Time Program, or be in HOT STANDBY within the next 6 hours and in COLD SHUTDOWN within the following 30 hours.	Maintain SR Cooling	Mitigate		Insulation Thickness Required to Preclude Icing 1/2" Insulation (>38"F Water), 1" Insulation (>34"F Water) 0-ONOP-103.2 states, "ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure"	
5	PTN	3	ICW / 019	5613-M-3019, Sh. 1	1	Piping	Non-Safety Related Piping 3-24"-13-L, 3-36"-13-L, 3-30"-13-L	Yes	None	NSR Cooling Requirement - Cross- Connect	Mitigate	Insulate and/or Swap Trains Regularly (UHS Temperature ~50°F Min.)	Insulation Thickness Required to Preclude Icing 1/2" Insulation (>38"F Water), 1" Insulation (>34"F Water) 0-ONOP-103.2 states, "ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure"	
6	PTN	3	ICW / 019	5613-M-3019, Sh. 1	1	Piping	Non-Safety Related Piping 3-8"-13-L, 3-4"-13-L	Yes	None	NSR Cooling Requirement - Cross- Connect	Mitigate	Insulate and/or Swap Trains Regularly (UHS Temperature ~50°F Min.)	U-ONOP-103.2 states, "ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure"	0-ONOP-103.2
7	PTN	3	ICW / 019	5613-M-3019, Sh. 1	1	Piping	Non-Safety Related Piping 3-2"-13-L	Yes	None	Capped Piping	Mitigate	Insulate the branch connection and implement a trickle flow to ensure freezing does not occur. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water) and Table 2 (Saltwater).	Insulation Thickness Required to Preclude Icing 1/2" Insulation (>38"F Water), 1" Insulation (>34"F Water) 0-ONOP-103.2 states, "ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure"	0-ONOP-103.2

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 176 of 488

> R21002, Rev 0 Attachment L Page 42 of 198

														Р
8 1	PTN	3	ICW / 019	5613-M-3019, Sh. 1	1	Motors	ICW Pump Motors (3A, 3B, 3C)	Yes	I.S. 3.7.4 - At Teast two independent intake cooling water headers and three ICW Pumps shall be operable when in Modes 1 - 4. ACTION: C. With only one intake cooling water loop OPERABLE, restore at least two loops to OPERABLE status within 72 hours or be in at least HOT STANDBY within the next 6 hours and in HOT SHUTDOWN within the following 6 hours and in COLD SHUTDOWN within the following 30 hours. One, two, or three pumps are operated as required to support normal plant operating conditions. The A and B pumps are powered by 4160 volt buses backed up by each train's associated EDG. The C pump is powered by a swing 4160 volt SR bus which can be powered, through aligning the bus manually, by either the train A or train B EDG associated with the same unit. This pump is interlocked, such that, it starts on a loss of offsite power or safety injection signal, if the breaker for the A or B (LOW pump)	Maintain SR Cooling	Protect	Swap Pumps and Trains Regularly	Prevent Component Failure from Insufficient Lubrication Per UFSAR Section 6.2.4 (INSPECTIONS AND TESTS), "Idle intake cooling water and component cooling water pumps will be put in service periodically as part of the normal rotation of machinery use."	
9	PTN	3	ICW / 019	5613-M-3019, Sh. 1	1	Cooling Towers and Intake Channel	Intake Canal	Yes	None	Maintain SR Cooling	Mitigate	Maintain Operation of ICW and CW Systems	Prevent Frazil Ice from Impacting Heat Transfer	
10	PTN	3	ICW / 019	5613-M-3019, Sh. 1	1	Heat Exchangers	T. P. C. W. Heat Exchanger 3A, 3B	Yes	None	NSR Cooling Requirement	Mitigate	No Action Required as Long as Flow is Maintained.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance	
11	PTN	3	ICW / 019	5613-M-3019, Sh. 1	1	Relief Valves	RV-3-128A, -128B	Yes	Protect Turbine Plant Cooling Water Heat Exchangers	Dead Ended Water Leg	Protect	Relief Valves are often located at relative high points within the system piping, as such gas trapped upstream of the vent isolation valve will act as an accumulator to absorb the pressure rise associated with the expansion of ice forming in the branch connection. Trapped water will cause valve to relieve avoiding freezing.		
12	PTN	3	ICW / 019	5613-M-3019, Sh. 1	1	Strainers	BS-3-1400, -1401	Yes	None	NSR Cooling Requirement Avoid Strainer Flow Obstruction	Mitigate	No Action Required as Long as Flow is Maintained.	Avoid Freezing Leading to Low Flow & Degraded Plant Performance 0-ONOP-103.2 states, "ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure"	0-ONOP-103.2
13	PTN	3	ICW / 019	5613-M-3019, Sh. 1	1	Valves	POV-3-4882, -4883 Bypasses	Yes	None	Dead Ended Bypass Water Leg	Mitigate	Open Valves (3-50-315 & 3-50-335) periodically to preclude ice buildup within the POC bypasses.	Un-Insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst.	0-ONOP-103.2 states, "CYCLE POV-*-4882 and POV-*-4883, ICW TO THE TPCW HEAT EXCHANGERS INLET ISOLATION VALVES, at least once per shift"
14	PTN	3	ICW / 019	5613-M-3019, Sh. 1	1	Vents / Drains / Misc. Connections	BS-3-1400, -1401 Manual Drains	Yes	None	Dead Ended Strainer Drain Water Leg	Mitigate	Open Valves (3-50-316 & 3-50-336) periodically to preclude ice buildup within the Strainer Drains.	Un-insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst. 0-ONOP-103.2 states, "ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure"	0-ONOP-103.2

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 177 of 488

> R21002, Rev 0 Attachment L Page 43 of 198

15	PTN	3	ICW / 019	5613-M-3019, Sh. 1	1	Vents / Drains / Misc. Connections	Small Bore Vents & Drains	No	None	Dead Ended Water Leg	Mitigate	Vents are located at relative high points within the system piping, as such gas trapped upstream of the vent isolation valve will act as an accumulator to absorb the pressure rise associated with the expansion of ice forming in the branch connection. Based on Operations experience, identify if trapped gas exists. If the existence of trapped gas is not known, a limited amount of gas (air, nitrogen, etc.) can be added to the vent in support of the Cold Weather Preparation plan. Drain - Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions. Insulate the branch connection and implement a trickle flow to ensure freezing does not occur. Trickle flow determination is based on calculated trickle flowters on and Table 1 (Fresh Water) and Table 2 (Saltwater).	Un-Insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst.	
16	PTN	3	ICW / 019	5613-M-3019, Sh. 2	1	Instrumentation - Local	dPI-3-1402, -1403, FI-1407, -1408, -1409, PI-3-1519, -1520	Yes	None	Local Indication	Mitigate	Safety Related piping boundary As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions. Insulate the branch connection and implement a trickle flow to ensure freezing does not occur. Trickle flow determination is based on calculated trickle flowwartes contained in Table 1 (Fresh Water) and Table 2 (Saltwater).	Un-Insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst. (UHS Temperature ~50°F Min.)	
17	PTN	3	ICW / 019	5613-M-3019, Sh. 2	1	Piping	Safety Related Piping 3-30"-13-L, 3-20"-13-L, 3-24"-13-L	Yes	T.S. 3.7.4 - At least two independent intake cooling water headers and three ICW Pumps shall be operable when in Modes 1 - 4. ACTION: a. With only two ICW pumps with independent power supplies OPERABLE, restore the inoperable ICW pump to OPERABLE status within 14 days or in accordance with the Risk Informed Completion Time Program, or be in HOT STANDBY within the next 6 hours and in COLD SHUTDOWN within the following 30 hours. b. With only one ICW pump OPERABLE or with two ICW pumps OPERABLE, but not from independent power supplies, restore two pumps from independent power supplies to OPERABLE status within 72 hours or in accordance with the Risk Informed Completion Time Program, or be in HOT STANDBY within the next 6 hours and in COLD SHUTDOWN within the following 30 hours.		Mitigate	Insulate and/or Swap Trains Regularly (UHS Temperature ~50°F Min.)	Insulation Thickness Required to Preclude Icing 1/2" Insulation (>38"F Water), 1" Insulation (>34"F Water) 0-ONOP-103.2 states, "ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure"	
18	PTN	3	ICW / 019	5613-M-3019, Sh. 2	1	Piping	Chemical Injection Points	Yes	None	Dead Ended Bypass Water Leg	Mitigate	Open Valves (3-50-862, -863, -864, -865, -866 & 3 50-867) periodically to preclude ice buildup within the Chemical Injection Points.	Un-Insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst.	

R21002, Rev 0 Attachment L Page 44 of 198

														Г
									During the recirculation mode, the					
									Component Cooling System is used to					
									cool the recirculation fluid as it passes			No Action Required as Long as Flow is		
									through the residual heat exchanger.			Maintained	Maintaining Flow Avoids Freezing Which Could Lead to Degraded	
									(UFSAR Section 6.2.2)			Wantanea.	Plant Performance	
							Component Cooling Water Heat			SR Cooling		One pump and three component cooling water		
19	PTN	3	ICW / 019	5613-M-3019, Sh. 2	1	Heat Exchangers	Exchanger 3A, 3B	Yes	Since the heat is transferred from the	Requirement	Mitigate	heat exchangers are normally operated to	0-ONOP-103.2 states, "ESTABLISH water flow through idle	0-ONOP-103.2
									component cooling water to the intake			provide cooling water for various components	systems exposed to outside temperatures	
									cooling water, the component cooling			located in the auxiliary and containment	for 5 minutes every 2 hours per applicable	
									loop serves as an intermediate system			buildings. (UFSAR Section 9.3.1)	procedure"	
									between the reactor coolant and intake					
									cooling water system. (UFSAR Section 9.3.2)					
_									9.3.2)	SR Cooling		No Action Required as Long as Flow is		
									Per Note 6 of 5613-M-3019, sh. 2,	Requirement		Maintained.		
20	PTN	3	ICW / 019	5613-M-3019, Sh. 2	1	Strainers	3F228A, B	Yes	"Filter Handwheel is restrained to		Mitigate		Avoid Freezing Leading to Low Flow & Degraded Plant	
									maintain streainer in the "backwash"	Avoid Strainer Flow		Strainer in "Backwash" ensure flow through the	Performance	
									position."	Obstruction		strainers.		
												Vents are located at relative high points within		
												the system piping, as such gas trapped upstream		
												of the vent isolation valve will act as an		
												accumulator to absorb the pressure rise		
												associated with the expansion of ice forming in		
												the branch connection. Based on Operations		
												experience, identify if trapped gas exists. If the		
												existence of trapped gas is not known, a limited		
												amount of gas (air, nitrogen, etc.) can be added		
												to the vent in support of the Cold Weather		
												Preparation plan.		
						Vents / Drains / Misc.							Un-Insulated and Non-Heat Traced Component May Freeze. Dead	
21	PTN	3	ICW / 019	5613-M-3019, Sh. 2	1	Connections	Small Bore Vents & Drains	No	None	Dead Ended Water Leg	Mitigate	Drain - Options	Legs May Freeze and Burst.	
												Insulate and heat trace – Insulate and heat trace		
												the dead legs of piping susceptible to freezing.		
												As appropriate, tent or enclose area and provide		
												temporary heating based on surrounding heat		
												sources and walkdown conditions.		
												landa the basel and the landa		
												Insulate the branch connection and implement a trickle flow to ensure freezing does not occur.		
												Trickle flow determination is based on calculated		
												trickle flowrates contained in Table 1 (Fresh		
												Water) and Table 2 (Saltwater).		
												Swan Trains Dogwlady	Un-Insulated and Non-Heat Traced Component May Freeze. Dead	
										NCD Cooling		Swap Trains Regularly	Legs May Freeze and Burst.	
										NSR Cooling		Open Valves (3-50-346, -874, -872, -326)		
22	PTN	3	ICW / 019	5613-M-3019, Sh. 2	1	Piping	3-4"-14-L, 3-8"-13-L	Yes	None	Requirement - Supplemental ICW	Mitigate	periodically to ensure flow through the	0-ONOP-103.2 states, "ESTABLISH water flow through idle	0-ONOP-103.2
										Strainer Flushing		supplemental line	systems exposed to outside temperatures	
										Strainer Trashing		(LIHS Temperature ~50°F Min.)	for 5 minutes every 2 hours per applicable	
													procedure"	
23	PTN	3	ICW / 019	5613-M-3019, Sh. 3				No	None	None	None		Abandoned In Place	
24	PTN	3	ICW / 019	5613-M-3019, Sh. 4	itire Drawi	ng		No	None	None	None		VOID	
													Loss of the PMUS will not cause a shutdown due to generation	
													loss or a Tech Spec Action, therefore, protection is not required.	
7	PTN	3	PMUS / 020	5613-M-3020, Sh. 1	1	Piping	4" Pipe	Yes	One line is normally in operation per	L	None		FPL Operations to provide input if the PWST and PMUS will be	
'	''''	J	/ 14103 / 020	3013 IVI 3020, 3II. I	*	ı ıbıııg	pc	1 €3	UFSAR 9.6.2				required to be operable over a max 4 day period. If the system is continuously running (one train), would prevent freezing. 1" of	
													insulation can be used to prevent >25% freezing in 4" standby	
													pipe. 2" insulation required for 3" pipe	
			. 1						One line is normally in operation per				See Segment 1, Piping for this P&ID to determine if protection	
9	PTN	3	PMUS / 020	5613-M-3020, Sh. 1	2	Piping	3" Pipe	Yes	UFSAR 9.6.2	-	None	No Protection Recommended	required	
10	PTN	3	PMUS / 020	5613-M-3020, Sh. 1	2	Instr. Local	PI	Yes	-	Dead Leg	None	No Protection Recommended	· ·	
	PTN	2			2		DC .		Controls Rumn				Conservatively protect control function, although not required	
11	PIN	3	PMUS / 020	5613-M-3020, Sh. 1	2	Instr. Control / Protection	PS	Yes	Controls Pump	Dead Leg	Protect	Heat Trace & 1" Insulation	(see Segment 1, Piping)	
12	PTN	3	PMUS / 020	5613-M-3020, Sh. 1	2	Instr. Annunciation /	PS	Yes	Appunciator	Doad Log	Protect	Heat Trace & 1" Insulation	Conservatively protect alarm function, although not required (see	
		3				Indication			Annunciator	Dead Leg	Protect		Segment 1, Piping)	
13	PTN	3	PMUS / 020	5613-M-3020, Sh. 1	3	Piping	3/4" pipe	Yes	-	-	None	No Protection Recommended		
14	PTN	3	PMUS / 020	5613-M-3020, Sh. 1	4	Piping	1.5" Pipe	No	-	-	None	No Protection Recommended		
15	PTN	3	PMUS / 020	5613-M-3020, Sh. 1	5	Piping	3" Pipe	No	-	-	None	No Protection Recommended		
16	PTN	3	PMUS / 020	5613-M-3020, Sh. 1	6	Piping	3" Pipe	No	-	-	None	No Protection Recommended		
17	PTN	3	PMUS / 020	5613-M-3020, Sh. 1	7	Piping	1/4"-1" pipe	No	-	-	None	No Protection Recommended		
18	PTN	3	PMUS / 020	5613-M-3020, Sh. 1	8	Piping	3"-1.5" pipe	No	-	-	None	No Protection Recommended		
19	PTN	3	PMUS / 020	5613-M-3020, Sh. 1	9	Piping	3" Pipe	No	-	-	None	No Protection Recommended		
20	PTN	3	PMUS / 020	5613-M-3020, Sh. 1	9	Vents / Drains / Misc.	Connection	No	-	-	None	No Protection Recommended		
21	PTN	3	PMUS / 020	5613-M-3020, Sh. 1	10	Connections	2 E" Pino				None	No Protection Recommended		
1 41	FIIN	3	1 10103 / 020	JULJ-1VI-JUZU, JII. I	10	Piping	2.5" Pipe		F .	I ⁻	INOTIE	INO FTOLECTION RECOMMENDED		

Florida Power & Light Company Docket No. 20220000-OT

Ten-Year Site Plan
Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 178 of 488

R21002, Rev 0 Attachment L Page 45 of 198

	22 PTN	3	PMUS / 020	5613-M-3020, Sh. 1	11	Piping	3" Pipe	No		-	None	No Protection Recommended		
	23 PTN	3	PMUS / 020	5613-M-3020, Sh. 1	12	Piping	4" Pipe	No	-	-	None	No Protection Recommended		
	24 PTN	3	PMUS / 020	5613-M-3020, Sh. 1	13	Piping	2.5" Pipe	No	-	-	None	No Protection Recommended		
	1 PTN	3	PMUS / 020	5613-M-3020, Sh. 1	-	Outdoor Tanks	Primary Water Storage Tank (PWST)	No	Per UFSAR 9.6.2, PWST and the Primary Water Makeup System (PMUS) are not required for Safe Shutdown. However, they are used to provide makeup water to systems such as RCS and CVCS during normal plant operation.	-	None	No Protection Recommended	Based on the size of the tank, the contents will not freeze over a four day period.	
	2 PTN	3	PMUS / 020	5613-M-3020, Sh. 1	=	Vents / Drains / Misc. Connections	1" Connections	No	Tank Pressure Boundary	Dead Leg	None	No Protection Recommended		
L	3 PTN	3	PMUS / 020	5613-M-3020, Sh. 1	-	Vents / Drains / Misc. Connections	3/4" Vent	No	Tank Pressure Boundary	Dead Leg	None	No Protection Recommended		
	4 PTN	3	PMUS / 020	5613-M-3020, Sh. 1	-	Vents / Drains / Misc. Connections	4" Drain	No	Tank Pressure Boundary	Dead Leg	None	No Protection Recommended		
	5 PTN	3	PMUS / 020	5613-M-3020, Sh. 1	-	Instr. Local	3" pipe to LI	Yes	Tank Pressure Boundary	Dead Leg	None	No Protection Recommended		
	6 PTN	3	PMUS / 020	5613-M-3020, Sh. 1	-	Instr. Control / Protection	3/4" pipe to LI & Sample Sink Piping	Yes	Tank Pressure Boundary and level control	Dead Leg	Protect	Heat Trace & 1" Insulation	Also has an annuciator function Recommended to protect since it has a control function.	
	8 PTN	3	PMUS / 020	5613-M-3020, Sh. 1	-	Motors	Primary Water Pumps	Yes	One line is normally in operation per UFSAR 9.6.2	-	None	No Protection Recommended	See Segment 1, Piping for this P&ID to determine if protection required	
	25 PTN	3	PMUS / 020	5613-M-3020, Sh. 2	1	Piping	3" Pipe	Yes	PMUS is normally in operation per UFSAR 9.6.2. Providing makeup water for multiple systems and can be used to fill the CSTs	-	None	No Protection Recommended	Loss of the PMUS will not cause a shutdown due to generation loss or a Tech Spec Action, therefore, protection is not required. FPL Operations to provide input if the PWST and PMUS will be required to be operable over a max 4 day period. If the system is continuously running (one train), would prevent freezing. 2" insulation required for 3" pipe (prevent >25% freezing).	
	26 PTN	3	PMUS / 020	5613-M-3020, Sh. 2	2	Piping	2" Pipe	Yes	Makeup water to Radwaste Bldg	-	None	No Protection Recommended	Located in the CCW Pump Room. If protection was determined to be necessary, global startegy could be used for the CCW Pump Room, which has an open grating roof, but concrete walls.	
	27 PTN	3	PMUS / 020	5613-M-3020, Sh. 2	3	Piping	3" Pipe & PI	Yes	Makeup water to Radwaste Bldg	-	None	No Protection Recommended		
	28 PTN	3	PMUS / 020	5613-M-3020, Sh. 2	4	Piping	3" Pipe	Yes	PMUS to various systems (CCW, CVCS, WD, RCS, etc.)	-	None	No Protection Recommended	See Segment 1, Piping for this P&ID to determine if protection required Located in CCW Pump room, so global strategy could be used if protection is required.	
	PTN	3	PMUS / 020	5613-M-3020, Sh. 2	5	Piping	2" Pipe		None	-	None	No Protection Recommended	Located in the CCW Pump Room	
	30 PTN	3	PMUS / 020	5613-M-3020, Sh. 2	6	Piping	2" Pipe	No	None	-	None	No Protection Recommended		
L	B1 PTN	3	PMUS / 020	5613-M-3020, Sh. 2	7	Vents / Drains / Misc. Connections	Connections		None	-	None	No Protection Recommended		
L	32 PTN	3	PMUS / 020	5613-M-3020, Sh. 2	8	Piping	3" Pipe		Makeup water to various systems. Also flow can be provided to the CSTs	-	None	No Protection Recommended	See Segment 1, Piping for this P&ID to determine if protection required	
	33 PTN	3	PMUS / 020	5613-M-3020, Sh. 2	9	Vents / Drains / Misc. Connections	Connections	No	None	-	None	No Protection Recommended		
	34 PTN	3	PMUS / 020	5613-M-3020, Sh. 2	10	Piping	3" Pipe		Makeup water to the CSTs	-	None	No Protection Recommended	See Segment 1, Piping for this P&ID to determine if protection required	
-	B5 PTN	3	PMUS / 020	5613-M-3020, Sh. 2	11	Piping	3" Pipe & FI	No	None	-	None	No Protection Recommended		
	B6 PTN	3	PMUS / 020	5613-M-3020, Sh. 2	12	Piping	3" Pipe	No	Makeup water to various systems.	-	None	No Protection Recommended	See Segment 1, Piping for this P&ID to determine if protection required	
	37 PTN	3	PMUS / 020	5613-M-3020, Sh. 2	13	Piping	3" Pipe & 1" Pipe	No	Makeup water to various systems.	-	None	No Protection Recommended	See Segment 1, Piping for this P&ID to determine if protection required Located in CCW Pump room, so global strategy could be used if protection is required.	
	38 PTN	3	PMUS / 020	5613-M-3020, Sh. 2	14	Piping	Multiple pipe sizes, Lab Demin Water Tank, water to AB Vent Chillers, Control Room, and Lab. There is a	No	Makeup water to various systems.	-	None	No Protection Recommended		
	9 PTN	3	PMUS / 020	5613-M-3020, Sh. 2	14	Instr. Control / Protection	LS for SOV control	Yes	Controls level in the Lab Demin Water Tank	-	Protect	Heat Trace & 1" Insulation	Conservatively protect all control instrumentation; however, loss of this function would have no generation risk for the site or require a TS Action.	
	6 PTN	3	EDG HVAC / 108	5613-M-3022 Sh. 5	1	Radiator	EDG 3A cooling water radiator	Standby	TS 3/4.8.1 requires operable AC power sources, including EDGs. Cooling water required for EDG operation	With temporary heaters placed per 0-ONOP-103.2, radiators may still be susceptible to freezing due to location at exterior wall and possible in-flow of air through the exhaust louvers when EDGs are not running.	Protect	Ensure temporary heaters from 0-ONOP-103.2 are supplying sufficient heat to the location of the radiator. Consider temperature checks on the radiator tubing in addition the lube oil temperature checks already performed for 0-ONOP-103.2		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 179 of 488

R21002, Rev 0 Attachment L Page 46 of 198

7	PTN	3	EDG HVAC / 108	5613-M-3022 Sh. 6	1	Radiator	EDG 3B cooling water radiator	Standby	TS 3/4.8.1 requires operable AC power sources, including EDGs. Cooling water required for EDG operation	With temporary heaters placed per 0-ONOP-103.2, radiators may still be susceptible to freezing due to location at exterior wall and possible in-flow of air through the exhaust louvers when EDGs are not running.	Protect	Ensure temporary heaters from 0-ONOP-103.2 are supplying sufficient heat to the location of the radiator. Consider temperature checks on the radiator tubing in addition the lube oil temperature checks already performed for 0-ONOP-103.2	
2	PTN	3	CCW / 030	5613-M-3030, Sh. 1	1	Piping	18" Pipe (Supply & Return)	Yes	Normally both trains of CCW (supply & return) are operating. There are only certain times for CCW pump testing that the headers are split, and TS Actions are entered, per UFSAR 9.3.2.		None		In CCW Pump Room (See top Remark for this P&ID) CCW will normally be flowing through both trains of Supply and Discharge, and this will prevent freezing.
3	PTN	3	CCW / 030	5613-M-3030, Sh. 1	1	Instr. Control / Protection	Rad Detection, FTs	Yes	CCW Pressure Boundary & Controls (Rad detection and flow indication)	Dead Leg	Mitigate	Options: 1. Mitigate - Global Strategy to protect CCW Pump Room 2. Protect - Heat Trace & 1" Insulation	In CCW Pump Room (See top Remark for this P&ID)
4	PTN	3	CCW / 030	5613-M-3030, Sh. 1	1	Instr. Local	PI	Yes	CCW Pressure Boundary	Dead Leg	Mitigate	Options: 1. Mitigate - Global Strategy to protect CCW Pump Room 2. Protect - Heat Trace & 1" Insulation	In CCW Pump Room (See top Remark for this P&ID)
5	PTN	3	CCW / 030	5613-M-3030, Sh. 1	1	Vents / Drains / Misc. Connections	18" connection	No	CCW Pressure Boundary	Dead Leg	Mitigate	Options: 1. Mitigate - Global Strategy to protect CCW Pump Room 2. Protect - 1" Insulation to prevent >25% freezing	In CCW Pump Room (See top Remark for this P&ID)
6	PTN	3	CCW / 030	5613-M-3030, Sh. 1	1	Vents / Drains / Misc. Connections	10" connection	No	CCW Pressure Boundary	Dead Leg	Mitigate	Options: 1. Mitigate - Global Strategy to protect CCW Pump Room 2. Protect - 1" Insulation to prevent >25% freezing	In CCW Pump Room (See top Remark for this P&ID)
7	PTN	3	CCW / 030	5613-M-3030, Sh. 1	1	Vents / Drains / Misc. Connections	3/4" Vents	No	CCW Pressure Boundary	Dead Leg	Mitigate	Options: 1. Mitigate - Global Strategy to protect CCW Pump Room 2. Protect - Heat Trace & 1" Insulation	In CCW Pump Room (See top Remark for this P&ID)
8	PTN	3	CCW / 030	5613-M-3030, Sh. 1	2	Piping	16" Pipe (Pump & HX inlet and outlets)	Yes	UFSAR 9.3.2 - Normally 1 pump is operating with 2-3 Heat Exchangers. Therefore, some of this piping is expected to be stagnant while other portions will be flowing	Maintain required flow	Mitigate	Options: 1. Mitigate - Global Strategy to protect CCW Pump Room 2. Mitigate - swap operating pumps and HXs on certain intervals to prevent freezing of any pipe 3. Protect - 1" Insulation to prevent >25% freezing	In CCW Pump Room (See top Remark for this P&ID)
9	PTN	3	CCW / 030	5613-M-3030, Sh. 1	2	Vents / Drains / Misc. Connections	2" Connection	No	CCW Pressure Boundary	Dead Leg	Mitigate	Options: 1. Mitigate - Global Strategy to protect CCW Pump Room	In CCW Pump Room (See top Remark for this P&ID)
10	PTN	3	CCW / 030	5613-M-3030, Sh. 1	2	Instr. Local	PI, IST	Yes	CCW Pressure Boundary	Dead Leg	Mitigate	Options: 1. Mitigate - Global Strategy to protect CCW Pump Room 2. Protect - Heat Trace & 1" Insulation	In CCW Pump Room (See top Remark for this P&ID)
11	PTN	3	CCW / 030	5613-M-3030, Sh. 1	2	Vents / Drains / Misc. Connections	1", 3/4" Vents, Drains, Test Connections	No	CCW Pressure Boundary	Dead Leg	Mitigate	Options: 1. Mitigate - Global Strategy to protect CCW Pump Room 2. Protect - Heat Trace & 1" Insulation	In CCW Pump Room (See top Remark for this P&ID)
12	PTN	3	CCW / 030	5613-M-3030, Sh. 1	2	Vents / Drains / Misc. Connections	16" Connections	No	CCW Pressure Boundary	Dead Leg	Mitigate	2. Protect - Heat Trace & 1" Insulation	In CCW Pump Room (See top Remark for this P&ID)
13	PTN	3	CCW / 030	5613-M-3030, Sh. 1	2	Instr. Control / Protection	PI	Yes	CCW Pressure Boundary & PC to control pumps	Dead Leg	Mitigate		In CCW Pump Room (See top Remark for this P&ID) Also provides an annunciator function
14	PTN	3	CCW / 030	5613-M-3030, Sh. 1	2	Heat Exchangers	CCW HXs	Yes	T5 3.7.2 - 2 of 3 HXs required to be operable Action : With less than 2 HXs operable, two need to be restored within 1 hour. CCW Pressure Boundary - normally 2-3 HXs are operating at a time.	Maintain required flow	Mitigate	Options: 1. Mitigate - Global Strategy to protect CCW Pump Room 2. Mitigate - use all 3 HXs 3. Mitigate - swap operating HXs on certain intervals to prevent freezing of any 3. Protect - 1" Insulation to prevent >25% freezing	In CCW Pump Room (See top Remark for this P&ID)

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 180 of 488

R21002, Rev 0 Attachment L Page 47 of 198

15	PTN	3	CCW / 030	5613-M-3030, Sh. 1	3	Piping	14" Pipe	Yes	UFSAR 9.3.2 - Normally 1 pump is operating. Therefore, 2 of the pumps and piping are expected to be stagnant while 3rd is flowing	Maintain required flow	Mitigate	Options: 1. Mitigate - Global Strategy to protect CCW Pump Room 2. Mitigate - swap operating pump on certain interval to prevent freezing of any pipe 3. Protect - 1" insulation to prevent >25% freezing	In CCW Pump Room (See top Remark for this P&ID)	
16	PTN	3	CCW / 030	5613-M-3030, Sh. 1	3	Piping	Pumps	Yes	UFSAR 9.3.2 - Normally 1 pump is operating. Therefore, 2 of the pumps and piping are expected to be stagnant while 3rd is flowing TS 3.7.2 - All 3 pumps required to be operable	Maintain required flow	Mitigate	Options: 1. Mitigate - Global Strategy to protect CCW Pump Room 2. Mitigate - swap operating pump on certain interval to prevent freezing of any pipe 3. Protect - Insulate and/or heat trace as required to protect the pump.	In CCW Pump Room (See top Remark for this P&ID)	
17	PTN	3	CCW / 030	5613-M-3030, Sh. 1	3	Vents / Drains / Misc. Connections	Vents, Drains, Test Connections	No	CCW Pressure Boundary	Dead Leg	Mitigate	Options: 1. Mitigate - Global Strategy to protect CCW Pump Room 2. Protect - Heat Trace & 1" Insulation	In CCW Pump Room (See top Remark for this P&ID)	
18	PTN	3	CCW / 030	5613-M-3030, Sh. 1	3	Instr. Local	PI, IST	Yes	CCW Pressure Boundary	Dead Leg	Mitigate	Options: 1. Mitigate - Global Strategy to protect CCW Pump Room 2. Protect - Heat Trace & 1" Insulation	In CCW Pump Room (See top Remark for this P&ID)	
19	PTN	3	CCW / 030	5613-M-3030, Sh. 1	3	Motors	Pump Motors	Yes	TS 3.7.2 - All 3 pumps/motors required to be operable Action: With two operable pumps, inoperable pump need to be restored within 30 days. With 2 inoperable pumps, or requires action in 72 hours.	Maintain operable equipment		Determine if protection is needed to protect the motors. Options: 1. Mitigate - Global Strategy to protect CCW Pump Room 2. Protect in some capacity	In CCW Pump Room (See top Remark for this P&ID)	
20	PTN	3	CCW/030	5613-M-3030, Sh. 1	4	Piping	12" Pipe	Yes	One train of this CCW piping is operating at a time, the other train is isolated	-	Mitigate	Options: 1. Mitigate - Global Strategy to protect CCW Pump Room 2. Mitigate by swapping trains on certain intervals to allow flow is both trains to prevent freezing. 3. Protect - 1" Insulation to protect against >25% freezing.	In CCW Pump Room (See top Remark for this P&ID)	
21	PTN	3	CCW / 030	5613-M-3030, Sh. 1	5	Piping	12" Pipe	Yes	CCW flow to SFP, Seal Water, Non- Regen HXs and Charging pump oil coolers (single pipe). Flow is provided from either Train A or B.	-	None	No Protection Required	In CCW Pump Room (See top Remark for this P&ID) Continuous flow expected in this piping and will prevent freezing.	
22	PTN	3	CCW / 030	5613-M-3030, Sh. 1	6	Piping	1" Pipe	No	CCW Pressure Boundary	-	Mitigate	Options: 1. Mitigate - Global Strategy to protect CCW Pump Room 2. Protect - Heat Trace & 1" Insulation	In CCW Pump Room (See top Remark for this P&ID)	
23	PTN	3	CCW / 030	5613-M-3030, Sh. 1	7	Piping	1" Pipe	No	None - isolated from SR CCW piping, break in this piping will not impact CCW	-	None	No Protection Required	In CCW Pump Room (See top Remark for this P&ID)	
24	PTN	3	CCW / 030	5613-M-3030, Sh. 1	7	Vents / Drains / Misc. Connections	1" Drain and connection	No	None - isolated from SR CCW piping, break in this piping will not impact CCW	-	None	No Protection Required	In CCW Pump Room (See top Remark for this P&ID)	
27	PTN	3	CCW / 030	5613-M-3030, Sh. 1	8	Piping	4" Pipe	Yes	CCW Pressure Boundary	-	Mitigate	Options: 1. Mitigate - Global Strategy to protect CCW Pump Room 2. Protect - 1" Insulation	In CCW Pump Room (See top Remark for this P&ID)	
28	PTN	3	CCW / 030	5613-M-3030, Sh. 1	9	Piping	3" Pipe	No	CCW Pressure Boundary	-	Mitigate	Options: 1. Mitigate - Global Strategy to protect CCW Pump Room 2. Protect - 2" Insulation	In CCW Pump Room (See top Remark for this P&ID)	
29	PTN	3	CCW / 030	5613-M-3030, Sh. 1	10	Piping	2" Pipe	No	CCW Pressure Boundary	-	Mitigate	Options: 1. Mitigate - Global Strategy to protect CCW Pump Room 2. Protect - 4" Insulation 3. Protect - Heat Trace & 1" Insulation	In CCW Pump Room (See top Remark for this P&ID)	
30	PTN	3	CCW / 030	5613-M-3030, Sh. 1	10	Instr. Local	PI	Yes	CCW Pressure Boundary	-	Mitigate	Options: 1. Mitigate - Global Strategy to protect CCW Pump Room 2. Protect - Heat Trace & 1" Insulation	In CCW Pump Room (See top Remark for this P&ID)	
31	PTN	3	CCW / 030	5613-M-3030, Sh. 1	11	Piping	3" Pipe	No	None - isolated from SR CCW piping, break in this piping will not impact CCW	-	None	No Protection Required	In CCW Pump Room (See top Remark for this P&ID)	
32	PTN	3	CCW / 030	5613-M-3030, Sh. 1	12	Piping	1" Pipe	No	CCW Pressure Boundary	-	Mitigate	Options: 1. Mitigate - Global Strategy to protect CCW Pump Room 2. Protect - Heat Trace & 1" Insulation	In CCW Pump Room (See top Remark for this P&ID)	
33	PTN	3	CCW / 030	5613-M-3030, Sh. 1	13	Piping	2" Pipe	Yes	CCW Pressure Boundary	-	Protect	Options: 1. Protect - 4" Insulation 3. Protect - Heat Trace & 1" Insulation	On Aux Bldg Roof	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 181 of 488

R21002, Rev 0 Attachment L Page 48 of 198

34	PTN	3	CCW / 030	5613-M-3030, Sh. 1	13	Vents / Drains / Misc.	Vacuum Breakers	Yes	CCW Pressure Boundary	_	Protect	Heat Trace & 1" Insulation	On Aux Bldg Roof
35	PTN	3	CCW / 030	5613-M-3030, Sh. 1	13	Connections Vents / Drains / Misc.	1/2" Vent	No	CCW Pressure Boundary	-	Protect		On Aux Bldg Roof
						Connections	IT IT		·				
39	PTN	3	CCW / 030	5613-M-3030, Sh. 1 5613-M-3030, Sh. 1	13	Instr. Control / Protection Piping	2" Pipe	Yes Yes	One train of this CCW piping is operating at a time to provide cooling to the HHSI Pumps, and flow from the other train is isolated	-	Protect	Heat Trace & 1" Insulation Options: 1. Mitigate - Global Strategy to protect CCW Pump Room 2. Mitigate by swapping trains on certain intervals to allow flow is both trains to prevent freezing. 3. Protect - 4" Insulation to protect against >25% freezing. 4. Protect - Heat Trace & 1" Insulation	On Aux Bldg Roof In CCW Pump Room (See top Remark for this P&ID)
1	PTN	3	CCW/030	5613-M-3030, Sh. 1			-		-			-	A majority of the CCW piping on this P&ID is located in the U3 CCW Pump Room, which has concrete walls but an open grating roof. It is recommended that a global strategy for the room is used. An example strategy is deploying tarps or equivalent during cold weather events over the grating to enclose the room and then temporary space heaters are deployed in the room to maintain a temperature above freezing. If a global strategy cannot be used, then individual piping and components will be required to be protected or mitigated as necessary. Piping located in the Auxiliary Building is assumed to be able to be protected by a global strategy (deployment of space heaters), and individuval protection/mitigation strategies are not necessary.
25	PTN	3	CCW / 030	5613-M-3030, Sh. 1	-	Outdoor Tanks	Chem Pot Feeder	No	None - isolated from SR CCW piping, break in this tank will not impact CCW	-	None	No Protection Required	In CCW Pump Room (See top Remark for this P&ID)
26	PTN	3	CCW / 030	5613-M-3030, Sh. 1	=	Vents / Drains / Misc. Connections	1" Vent	No	None - isolated from SR CCW piping, break in this piping will not impact CCW		None	No Protection Required	In CCW Pump Room (See top Remark for this P&ID)
37	PTN	3	CCW / 030	5613-M-3030, Sh. 1	-	Outdoor Tanks	CCW Head Tank	Yes	CCW Pressure Boundary	-	None		On Aux Bldg Roof
38	PTN	3	CCW / 030	5613-M-3030, Sh. 1	-	Instr. Local	LI	Yes	CCW Pressure Boundary	-	Protect	Heat Trace & 1" Insulation	On Aux Bldg Roof
41	PTN	3	CCW / 030	5613-M-3030, Sh. 2	1	Piping	18" Pipe (Supply & Return)	Yes	Normally both trains of CCW (supply & return) are operating. There are only certain times for CCW pump testing that the headers are split, and TS Actions are entered, per UFSAR 9.3.2.	Maintain required flow	None	No recommended protection	In CCW Pump Room (See top Remark for this P&ID) CCW will normally be flowing through both trains of Supply and Discharge, and this will prevent freezing.
42	PTN	3	CCW / 030	5613-M-3030, Sh. 2	1	Vents / Drains / Misc. Connections	Drains	No	CCW Pressure Boundary	-	Mitigate		Walkdown - unclear if these 3 drains are in the CCW pump Room or Aux Bldg. (See top Remark for this P&ID)
43	PTN	3	CCW / 030	5613-M-3030, Sh. 2	2	Piping	12" Pipe	Yes	CCW flow to SFP, Seal Water, Non- Regen HXs and Charging pump oil coolers (single pipe). Flow is provided from either Train A or B.	-	None	No Protection Required	In CCW Pump Room (See top Remark for this P&ID) Continuous flow expected in this piping and will prevent freezing.
44	PTN	3	CCW/030	5613-M-3030, Sh. 2	3	Piping	2" Pipe	Yes	One train of this CCW piping is operating at a time to provide cooling to the HHSI Pumps, and flow from the other train is isolated	-	Mitigate	Options: 1. Mitigate - Global Strategy to protect CCW Pump Room 2. Mitigate by swapping trains on certain intervals to allow flow is both trains to prevent freezing. 3. Protect - 4" Insulation to protect against >25% freezing. 4. Protect - Heat Trace & 1" Insulation	In CCW Pump Room (See top Remark for this P&ID)
45	PTN	3	CCW/030	5613-M-3030, Sh. 2	4	Piping	2" Pipe	Yes	One train of this CCW piping is operating at a time to provide cooling to the HHSI Pumps, and flow from the other train is isolated	-	Mitigate	Options: 1. Mitigate - Global Strategy to protect HHSI Pump Room 2. Mitigate by swapping trains on certain intervals to allow flow is both trains to prevent freezing. 3. Protect - 4" insulation to protect against >25% freezing. 4. Protect - Heat Trace & 1" insulation	In HHSI Pump Room (See top Remark for this P&ID)
46	PTN	3	CCW / 030	5613-M-3030, Sh. 2	5	Piping	1" Pipe	Yes	One train of this CCW piping is operating at a time to provide cooling to the HHSI Pumps, and flow from the other train is isolated	-	Mitigate	Options: 1. Mitigate - Global Strategy to protect HHSI Pump Room 2. Mitigate by swapping trains on certain intervals to allow flow is both trains to prevent freezing. 3. Protect - Heat Trace & 1" Insulation	In HHSI Pump Room (See top Remark for this P&ID)

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 182 of 488

R21002, Rev 0 Attachment L Page 49 of 198

47	PTN	3	CCW / 030	5613-M-3030, Sh. 2	6	Piping	1" Pipe	Yes	CCW Flow to HHSI Pumps	-	None	No Protection Required	In CCW Pump Room (See top Remark for this P&ID) Continuous flow expected in this piping and will prevent freezing. HHSI Pumps and Motors evaluated as part of 5613-M-3062, SH. 1
40	PTN	3	CCW / 030	5613-M-3030, Sh. 2	-		-		-	-		-	A majority of the CCW piping on this P&ID is located in the U3 CCW Pump Room, which has concrete walls but an open grating roof. It is recommended that a global strategy for the room is used. An example strategy is deploying tarps or equivalent during cold weather events over the grating to enclose the room and then temporary space heaters are deployed in the room to maintain a temperature above freezing. If a global strategy cannot be used, then individual piping and components will be required to be protected or mitigated as necessary. Piping that is located in the HHSI Pump Room are fully enclosed, but has louvered doors that are open to the CCW Pumps Rooms and outside weather (no HVAC). It is recommended the louvcers are covered and space heaters installed in here to protect all piping, or individual piping and components will need protection. Piping located in the Auxiliary Building is assumed to be able to be protected by a global strategy (deployment of space heaters), and individual protection/mitigation strategies are not necessary.
48	PTN	3	CCW / 030	5613-M-3030, Sh. 3	-		-		-	-		-	All portions of this drawing are located in the Auxiliary Building (Sample Room, Boric Acid Evaporator Room, Pipe & Valve Room, PASS, Aux Bldg 10 ft, etc.). Auxiliary Building does not have heating; however, it is expected that a global strategy can be used (i.e., space heaters as needed), in order to prevent freezing/cold temperatures in these locations to allow for systems to continue operating.
49	PTN	3	CCW / 030	5613-M-3030, Sh. 4	=		-		-	-			All portions of this drawing are located in the Auxiliary Building (Pipe & Valve Room, RHR HX Room) and Containment. Auxiliary Building does not have heating; however, it is expected that a global strategy can be used (i.e., space heaters as needed), in order to prevent freezing/cold temperatures in these locations to allow for systems to continue operating. Containment is expected to stay warm on its own.
50	PTN	3	CCW / 030	5613-M-3030, Sh. 5	-		-		-	-		-	All portions of this drawing are located in the Auxiliary Building (Pipe & Valve Room) and Containment. Auxiliary Building does not have heating; however, it is expected that a global strategy can be used (i.e., space heaters as needed), in order to prevent freezing/cold temperatures in these locations to allow for systems to continue operating. Containment is expected to stay warm on its own.
51	PTN	3	CCW / 030	5613-M-3030, Sh. 6	1	Piping	8" Pipe	No	CCW SR Pressure Boundary	-	None	No Protection Required	Per UFSAR 9.3.2, the Supplemental Cooling System (SCS) was installed to provide supplemental cooling to U3 or U4 Normal Containment Coolers to maintain normal Containment temperature within TS limits when Intake Cooling Water temperature is high. This piping is the Safety Related (SR) supplemental loop that provides cooling to Non-Nuclear Safety Related (NNS) chiller loops. The SCS cooling function is NNS, but the pressure boundary of the CCW is SR. There are already safety provisions in place to automatically isolate the SR piping on the roof of the AB if the pressure boundary is breached. In addition, during a winter event, this system is not expected to be required since it's only for high temperature in containment and high ICW temperature. Normally the SR portion of the loop that goes to the roof is isolated from the CCW system in the U4 Boric Acid Evaporation Room (4-792A&B per Sh. 3). If protection is required, 1° insulation is necessary to prevent >25% freezing.
52	PTN	3	CCW / 030	5613-M-3030, Sh. 6	1	Heat Exchangers	E250	No	CCW SR Pressure Boundary	-	None	No Protection Required	See Segment 1, Piping for this P&ID. If protection was required, insulation and/or heat trace to be used to prevent >25% freezing.
53 54	PTN PTN	3	CCW / 030	5613-M-3030, Sh. 6 5613-M-3030, Sh. 6	1	Motors Piping	P254 Pump Motor	No No	None CCW SR Pressure Boundary	-	None None	No Protection Required No Protection Required	See Segment 1, Piping for this P&ID. If protection was required,
						Vents / Drains / Misc.	·					·	insulation and/or heat trace to be used to prevent >25% freezing. See Segment 1, Piping for this P&ID. If protection was required,
55	PTN	3	CCW / 030	5613-M-3030, Sh. 6	1	Connections	3/4" Vents & Drains	No	CCW SR Pressure Boundary	Dead Leg	None	No Protection Required	heat trace and 1" insulation to be used to prevent >25% freezing.
56	PTN	3	CCW / 030	5613-M-3030, Sh. 6	1	Instr. Local	PI	Yes	CCW SR Pressure Boundary	Dead Leg	None	No Protection Required	See Segment 1, Piping for this P&ID. If protection was required, heat trace and 1" insulation to be used to prevent >25% freezing.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 183 of 488

R21002, Rev 0 Attachment L Page 50 of 198

57	PTN	3	CCW/030	5613-M-3030, Sh. 6	2	Piping	4", 6", 8", 10" Piping, NNS SCS Pump Skid, SCS Chiller Skids, Vents & Drains	No	NNS SCS Supplemental Chiller Loop for U3	-	None	No Protection Required	Per UFSAR 9.3.2, the SCS was installed to provide supplemental cooling to U3 or U4 Normal Containment Coolers to maintain normal Containment temperature within TS limits when Intake Cooling Water temperature is high. The SCS cooling function is NNS. In addition, during a winter event, this system is not expected to be required since it's only for high temperature in containment and high ICW temperature. No protection required to prevent generation loss or TS Action.	
58	PTN	3	CCW / 030	5613-M-3030, Sh. 6	3	Piping	3" Pipe	No	NNS SCS Supplemental Chiller Loop for U3	-	None	No Protection Required	See Segment 2, Piping for this P&ID	
59	PTN	3	CCW / 030	5613-M-3030, Sh. 6	4	Piping	2" Pipe	No	NNS SCS Supplemental Chiller Loop for U3	-	None	No Protection Required	See Segment 2, Piping for this P&ID	
60	PTN	3	CCW / 030	5613-M-3030, Sh. 6	-		-		-	-		-	Portions of this drawing located in the Auxiliary Building. Auxiliary Building does not have heating; however, it is expected that a global strategy can be used (i.e., space heaters as needed), in order to prevent freezing/cold temperatures in these locations to allow for systems to continue operating.	
1	PTN	3	SS / 032	5613-M-3032, Sh. 1	1	Instrumentation - Local	FI-3-5116, -5117, -5118	Standby	Monitoring, sampling, and analysis of radioactive liquid and gaseous effluents in accordance with 10 CFR 20.1302 and with the methodology and parameters in the ODCM. (T.S. Administrative Controls)	Local Sampling Require	r Mitigate	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions.	Sampling System equipment is located inside the Auxiliary Building with most of it in the Sampling Room. The sample sink, which is located in the Sampling Room, contains a drain line to the Waste Disposal System. Local instrumentation is provided to permit manual control of sampling operations and to ensure that the samples are at suitable temperatures and pressures before diverting flow to the sample sink.	
2	PTN	3	SS / 032	5613-M-3032, Sh. 1	1	Piping	All Piping and Tubing	Standby	Monitoring, sampling, and analysis of radioactive liquid and gaseous effluents in accordance with 10 CFR 20.1302 and with the methodology and parameters in the ODCM. (T.S. Administrative Controls)	Local Sampling Require	r Mitigate	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions.	Sampling System equipment is located inside the Auxiliary Building with most of it in the Sampling Room. The sample sink, which is located in the Sampling Room, contains a drain line to the Waste Disposal System. Local instrumentation is provided to permit manual control of sampling operations and to ensure that the samples are at suitable temperatures and pressures before diverting flow to the sample sink.	
3	PTN	3	SS / 032	5613-M-3032, Sh. 1	1	Heat Exchangers	Steam Generator A, B, C To Sample Hood Sample Conditioner Blowdown (Inside Sampling Room) Steam Generator A, B, C Blowdown Sample Cooler (Outside Sampling Room in Turbine Building)	Standby	Monitoring, sampling, and analysis of radioactive liquid and gaseous effluents in accordance with 10 CFR 20.1302 and with the methodology and parameters in the ODCM. (T.S. Administrative Controls)	Local Sampling Require	r Mitigate	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions.	Sampling System equipment is located inside the Auxiliary Building with most of it in the Sampling Room. The sample sink, which is located in the Sampling Room, contains a drain line to the Waste Disposal System. Local instrumentation is provided to permit manual control of sampling operations and to ensure that the samples are at suitable temperatures and pressures before diverting flow to the sample sink.	
4	PTN	3	SS / 032	5613-M-3032, Sh. 1	1	Motor Operators	MOV-3-1425, -1426, -1427	Standby	Monitoring, sampling, and analysis of radioactive liquid and gaseous effluents in accordance with 10 CFR 20.1302 and with the methodology and parameters in the ODCM. (T.S. Administrative Controls)	Containment Isolation	Mitigate	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions.	Sampling System equipment is located inside the Auxiliary Building with most of it in the Sampling Room. The sample sink, which is located in the Sampling Room, contains a drain line to the Waste Disposal System. Local instrumentation is provided to permit manual control of sampling operations and to ensure that the samples are at suitable temperatures and pressures before diverting flow to the sample sink.	Maximum distance from penetration 10'-0"

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 184 of 488 R21002. Rev 0

R21002, Rev 0 Attachment L Page 51 of 198

5	PTN	3	SS / 032	5613-M-3032, Sh. 1	1	Valves	3-20-536, -537, -538	No	Monitoring, sampling, and analysis of radioactive liquid and gaseous effluents in accordance with 10 CFR 20.1302 and with the methodology and parameters in the ODCM. (T.S. Administrative Controls)	Bypass around FI-3-511(Mitigate	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions.	Sampling System equipment is located inside the Auxiliary Building with most of it in the Sampling Room. The sample sink, which is located in the Sampling Room, contains a drain line to the Waste Disposal System. Local instrumentation is provided to permit manual control of sampling operations and to ensure that the samples are at suitable temperatures and pressures before diverting flow to the sample sink.	
9	PTN	3	55/032	5613-M-3032, Sh. 2	1	Piping	All Piping and Tubing	Standby	Monitoring, sampling, and analysis of radioactive liquid and gaseous effluents in accordance with 10 CFR 20.1302 and with the methodology and parameters in the ODCM. (T.S. Administrative Controls)	Local Sampling Requirer	Mitigate	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions.		Room/Location 311 Sample Station Mezzanine
10	PTN	3	\$5/032	5613-M-3032, Sh. 2	1	Heat Exchangers	SC-3-1432, -1433, -1434		Monitoring, sampling, and analysis of radioactive liquid and gaseous effluents in accordance with 10 CFR 20.1302 and with the methodology and parameters in the ODCM. (T.S. Administrative Controls)	Local Sampling Requirer	Mitigate	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions.		Room/Location 311 Sample Station Mezzanine
11	PTN	3	SS / 032	5613-M-3032, Sh. 2	1	Vents / Drains / Misc. Connections	Small Bore Drains to Sample Sink	Standby	Monitoring, sampling, and analysis of radioactive liquid and gaseous effluents in accordance with 10 CFR 20.1302 and with the methodology and parameters in the ODCM. (T.S. Administrative Controls)	Local Sampling Requirer	Mitigate	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions. Insulate the branch connection and implement a trickle flow to ensure freezing does not occur. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water) and Table 2 (Saltwater).		Room/Location 311 Sample Station Mezzanine
12	PTN	3	SS / 032	5613-M-3032, Sh. 3	1	Instrumentation - Local	PI-3-6751, -6752, -6753, -6754, PI- 3-6745, -6746, -6747, -6748, LG- 3433, -3434, -3435, -3436	Standby	Monitoring, sampling, and analysis of radioactive liquid and gaseous effluents in accordance with 10 CFR 20.1302 and with the methodology and parameters in the ODCM. (T.S. Administrative Controls)	Local Sampling Requirer	Mitigate	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions.		Room/Location 318 (East Condensate Pit)

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 185 of 488 Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24

R21002, Rev 0 Attachment L Page 52 of 198

13	PTN	3	SS / 032	5613-M-3032, Sh. 3	1	Instrumentation - Control / Protection	LS-3-6745, -6746, -6747, -6748, PS-3-6745, -6746, -6747, -6748,	Standby	Monitoring, sampling, and analysis of radioactive liquid and gaseous effluents in accordance with 10 CFR 20.1302 and with the methodology and parameters in the ODCM. (T.S. Administrative Controls)	Pump Control	Mitigate	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions.	Sampling System equipment is located inside the Turbine Building.	Room/Location 318 (East Condensate Pit)
14	PTN	3	SS / 032	5613-M-3032, Sh. 3	1	Piping	All Piping and Tubing	Standby	Monitoring, sampling, and analysis of radioactive liquid and gaseous effluents in accordance with 10 CFR 20.1302 and with the methodology and parameters in the ODCM. (T.S. Administrative Controls)	Local Sampling Requirer	Mitigate	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace – Insulate and heat trace the dead legs of ping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions.	Sampling System equipment is located inside the Turbine Building.	Room/Location 318 (East Condensate Pit)
15	PTN	3	55 / 032	5613-M-3032, Sh. 3	1	Outdoor Tanks	Seal Buffer Tank (4 times)	Standby	Monitoring, sampling, and analysis of radioactive liquid and gaseous effluents in accordance with 10 CFR 20.1302 and with the methodology and parameters in the ODCM. (T.S. Administrative Controls)	Local Sampling Requirer	Mitigate	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions.	Sampling System equipment is located inside the Turbine Building.	Room/Location 318 (East Condensate Pit)
16	PTN	3	S5 / 032	5613-M-3032, Sh. 3	1	Valves	PCV-3-615, -616, -617, -618	Standby	Monitoring, sampling, and analysis of radioactive liquid and gaseous effluents in accordance with 10 CFR 20.1302 and with the methodology and parameters in the ODCM. (T.S. Administrative Controls)	Pressue and Flow Contro	Mitigate	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions.	Sampling System equipment is located inside the Turbine Building. Bypass Valves (3-20-915, -916, -917, -918) should periodically be opened to preclude ice formation in the bypasses around PCV-3-615, -616, -617, -618, respectively.	Room/Location 318 (East Condensate Pit)
17	PTN	3	SS/032	5613-M-3032, Sh. 3	1	Vents / Drains / Misc. Connections	Small Bore Vents and Drains	Standby	Monitoring, sampling, and analysis of radioactive liquid and gaseous effluents in accordance with 10 CFR 20.1302 and with the methodology and parameters in the ODCM. (T.S. Administrative Controls)	Local Sampling Requirer	Mitigate	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace — Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions. Insulate the branch connection and implement a trickle flow to ensure freezing does not occur. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water) and Table 2 (Saltwater).	Sampling System equipment is located inside the Turbine Building.	Room/Location 318 (East Condensate Pit)

Page 186 of 488

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 187 of 488

> R21002, Rev 0 Attachment L Page 53 of 198

18	PTN	3	SS / 032	5613-M-3032, Sh. 5	1	Piping	All Piping and Tubing	Standby	Monitoring, sampling, and analysis of radioactive liquid and gaseous effluents in accordance with 10 CFR 20.1302 and with the methodology and parameters in the ODCM. (T.S. Administrative Controls)	Local Sampling Requirer	Mitigate	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions.	Sampling System equipment is located inside the Turbine Building.	Room/Location 311 Sample Station Mezzanine
19	PTN	3	SS / 032	5613-M-3032, Sh. 5	1	Heat Exchangers	SC-3-1430, -1431	Standby	Monitoring, sampling, and analysis of radioactive liquid and gaseous effluents in accordance with 10 CFR 20.1302 and with the methodology and parameters in the ODCM. (T.S. Administrative Controls)	Local Sampling Requirer	Mitigate	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions.	Sampling System equipment is located inside the Turbine Building.	Room/Location 311 Sample Station Mezzanine
20	PTN	3	SS / 032	5613-M-3032, Sh. 6	1	Piping	All Tubing	Standby	Monitoring, sampling, and analysis of radioactive liquid and gaseous effluents in accordance with 10 CFR 20.1302 and with the methodology and parameters in the ODCM. (T.S. Administrative Controls)	Local Sampling Requirer	Mitigate	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions.	Sampling System equipment is located inside the Turbine Building.	Room/Location 321 South Main Condenser Area
21	PTN	3	SS / 032	5613-M-3032, Sh. 6	1	Heat Exchangers	SC-3-1437, -1438, -1439, -1440	Standby	Monitoring, sampling, and analysis of radioactive liquid and gaseous effluents in accordance with 10 CFR 20.1302 and with the methodology and parameters in the ODCM. (T.S. Administrative Controls)	Local Sampling Requirer	Mitigate	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace — Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions.	Sampling System equipment is located inside the Turbine Building.	Room/Location 321 South Main Condenser Area
22	PTN	3	SS / 032	5613-M-3032, Sh. 7	1	Piping	All Tubing	Standby	Monitoring, sampling, and analysis of radioactive liquid and gaseous effluents in accordance with 10 CFR 20.1302 and with the methodology and parameters in the ODCM. (T.S. Administrative Controls)	Local Sampling Requirer	Mitigate	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace — Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions.	Sampling System equipment is located inside the Turbine Building.	Room/Location 321 South Main Condenser Area
23	PTN	3	SS / 032	5613-M-3032, Sh. 7	1	Heat Exchangers	SC-3-1435, -1436	Standby	Monitoring, sampling, and analysis of radioactive liquid and gaseous effluents in accordance with 10 CFR 20.1302 and with the methodology and parameters in the ODCM. (T.S. Administrative Controls)	Local Sampling Requirer	Mitigate	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace — Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions.	Sampling System equipment is located inside the Turbine Building.	Room/Location 321 South Main Condenser Area

R21002, Rev 0 Attachment L Page 54 of 198

1	PTN	3	SFPC / 033	5613-M-3033 Sh. 1	1	Piping	10" Pipe	No	Provides supplemental cooling to the SFP. There are two loops, both 100% capacity for normal operations	-	None	No Protection Required	Only a portion of the 10" pipe goes outside for one of the loop (that is noted on the P&ID). To protect against freezing, 1" of insulation would be required, or freezing could be mitigated by using the supplemental cooling loop to provide flow in the line and prevent freezing on a set interval.	
2	PTN	3	SFPC / 033	5613-M-3033 Sh. 1	2	Piping	2" Pipe	No	Allows flow back to the RWST from the SFP Cooling System.	-	None	No Protection Required	It's unclear if this pipe is outside or not. Valve 3-817 is inside the SFP HX Rm and valve 3-817A is stated to be on the Cask Handling Facility West wall from NAMS (unclear if inside or outside). Check to see if physically outside on a walkdown. However, no protection should be required since it wouldn't cause a generation loss of a TS Action if the piping were to freeze or break.	
3	PTN	3	SFPC / 033	5613-M-3033 Sh. 1	3	Piping	2" Pipe	No	RWST Pressure Boundary	-	Protect	Options: 1. 4" insulation on 2" piping through safety boundary change (protect against >25% freezing) 2. Heat Trace & 1" Insulation	Could protect only up to Valve 3-805A and shut this valve, and the remainder of the pipe along with other segments (see below) would not require protection.	
6	PTN	3	SFPC / 033	5613-M-3033 Sh. 1	4	Piping	2" Pipe	No	RWST Pressure Boundary	-	Protect	Options: 1. 4" insulation on 2" piping through safety boundary change (protect against >25% freezing) 2. Heat Trace & 1" Insulation	See Segment 3if valve 3-805A can be closed during cold weather, this segment does not require protection	
7	PTN	3	SFPC / 033	5613-M-3033 Sh. 1	5	Piping	2" Pipe	No	RWST Pressure Boundary	-	Protect	Options: 1. 4" insulation on 2" piping through safety boundary change (protect against >25% freezing) 2. Heat Trace & 1" Insulation	See Segment 3if valve 3-805A can be closed during cold weather, this segment does not require protection	
8	PTN	3	SFPC / 033	5613-M-3033 Sh. 1	6	Piping	3/4" Pipe to PI	Yes	RWST Pressure Boundary	-	Protect	Heat Trace & 1" Insulation	See Segment 3if valve 3-805A can be closed during cold weather, this segment does not require protection	
9	PTN	3	SFPC / 033	5613-M-3033 Sh. 1	7	Piping	2" Pipe	No	None	-	None	No Protection Required	Based on the check valve and diaphragm valve at the safety class changes, a break in this line would not impact the RWST pressure boundary.	
10	PTN	3	SFPC / 033	5613-M-3033 Sh. 1	8	Piping	2" Pipe	No	RWST Pressure Boundary	-	Protect	Options: 1. 4" insulation on 2" piping through safety boundary change (protect against >25% freezing) 2. Heat Trace & 1" Insulation	See Segment 3if valve 3-805A can be closed during cold weather, this segment does not require protection	
4	PTN	3	SFPC / 033	5613-M-3033 Sh. 1	-	Motors	Refueling Water Purification Pump Motor	No	Operation of the pump	-	None	No Protection Required	Pump operation not critical to maintain generation or initiate a TS Action.	
5	PTN	3	SFPC / 033	5613-M-3033 Sh. 1	-	Piping	Refueling Water Purification Pump	No	RWST Pressure Boundary	-	Protect	Options: 1. Insulate and/or heat trace the pump (unclear based on pump size which is required) 2. Operate the pump on a interval basis to prevent freezing of water in the pump.	See Segment 3if valve 3-805A can be closed during cold weather, this segment does not require protection	
11	PTN	3	SFPC / 033	5613-M-3033 Sh. 2	1	Piping	1.5" Pipe	No	None	-	None	No Protection Required		
12	PTN	3	SFPC / 033	5613-M-3033 Sh. 2	2	Piping	1.5" Pipe	No	None	Not affected by cold	None	No Protection Required		
17	PTN	3	034	5613-M-3034	1	Ducting	U3 SFP Bldg supply and exhaust ductwork	Yes	None	temperatures	None	None	Ducting is not susceptible to damage from freezing	
18	PTN	3	034	5613-M-3034	1	Instruments - General	Local D/P gages	Yes	None	Not affected by cold temperatures, not required for power operation	None	None	No instruments contain water that is susceptible to freezing	
19	PTN	3	034	5613-M-3034	1	Instr. Control / Protection	U3 SFP SPING radiation detector	Yes	Input to SPDS/SAS	Not required for power operations (no longer in Tech Spec's); Procedures call for portable monitoring in the event the SPING monitors fail	None	None	Past CR's have noted condensation in the SPING filter housing when the SFP was particularly warm with high moisture content in the SFP ambient air. This was before the SPING was replaced.	
20	PTN	3	034	5613-M-3034	1	Filter Train	Prefilters and HEPA filters for U3 SFP fans	Yes	None	Filter trains are not affected by cold weather	None	None		
21	PTN	3	034	5613-M-3034	1	Filter Train	Prefilters and HEPA filters for U3 cask handling facility	No	None	Not required for power operation	None	None		
22	PTN	3	034	5613-M-3034	1	Fan	U3 SFP exhaust fan, new fuel and SFP hx room supply fans	Yes	None	Cold weather has little to no effect on a fan or its motor.	None	None		
23	PTN	3	034	5613-M-3034	1	Fan	U3 cask handling fan	No	None	Not required for power operation	None	None		
24	PTN	3	034	5613-M-3034	1	Motor Operated Damper	U3 SFP supply and exhaust dampers, SFP HX Rm exhaust damper, new fuel storage area exhaust damper	Yes	None	SFP supply dampers do not need to reposition for normal operation or accident conditions.	None		Supply dampers to SFP area are outside, so gearbox lubricant at reduced temperatures may impart additional resisting torque on the damper motors. Other dampers are internal to the SFP area.	
21	PTN	3	CVCS / 046	5613-M-3046 Sh. 1	-		-		-	-		-	Most piping on this drawing is abandoned, and all is located in the Gas Stripper Room in the Auxiliary Building	
			•		•						•	•		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 188 of 488

R21002, Rev 0 Attachment L Page 55 of 198

22	PTN	3	CVCS / 046	5613-M-3046 Sh. 2	-		-		-	-		-	Most piping on this drawing is abandoned. Two pipes are not abandoned and it's not clear from NAMS where the pipes are located (valve IDs not in NAMS); however one connection is a gas pipe to the Waste Disposal System on 5610-M-3061 Sh. 12 this is NNS and the other goes to the sample system located in the Sample Room in the Auxiliary Building. Therefore, it is believed these pipes are in the Auxiliary Building. Even if they were subject to freezing, there would be no adverse effect on the site.
1	PTN	3	CVCS / 047	5613-M-3047 Sh. 1	1	Piping	3" Pipe	No	None	-	None	No Protection Recommended	Located on AB Roof. Manual Operation to fill the Demineralizers from the Resin Fill Tank. Requires connection of flex hoses. Non-Nuclear Safety Related System
2	PTN	3	CVCS / 047	5613-M-3047 Sh. 1	2	Piping	2" Pipe	No	None	-	None	No Protection Recommended	Located on AB Roof. Manual Operation to fill the Demineralizers or the Resin Fill Tank with Primary Water. Requires connection of flex hoses. Non-Nuclear Safety Related System
3	PTN	3	CVCS / 047	5613-M-3047 Sh. 1	3	Piping	2" Pipe	No	None	-	None	No Protection Recommended	Located on AB Roof. Manual Operation to fill the Demineralizers or the Resin Fill Tank with Primary Water. Requires connection of flex hoses. Non-Nuclear Safety Related System
4	PTN	3	CVCS / 047	5613-M-3047 Sh. 1	4	Piping	3" Pipe	No	None	-	None	No Protection Recommended	Located on AB Roof. Manual Operation to fill the Demineralizers from the Resin Fill Tank. Requires connection of flex hoses. Non-Nuclear Safety Related System
5	PTN	3	CVCS / 047	5613-M-3047 Sh. 1	-		-		-	-		-	All piping, except as marked, is located in Containment or in the Auxiliary Building (P&V Room, Charging Pump Room, Monitor Tank Room, Reactor Coolant Filter Room). This piping is assumed to be protected from weather either by the building protection or through a global strategy as needed (space heaters deployed in rooms in the Auxiliary Building.
8	PTN	3	CVCS / 047	5613-M-3047 Sh. 2	1	Piping	4" Pipe	Yes	VCT to Charging Pumps (NNS)	-	Mitigate	Options: 1. Mitigate - Global Strategy using space heater(s) in the AB Roof VCT Enclosure to protect against freezing this pipe. 2. Protect - 1" insulation to prevent >25% Freezing 3. Protect - Heat Trace & 1" Insulation for <2% feezing.	Assumed to be in the VCT Enclosure on the AB Roof. Should be walked down to make sure it's not exposed outside the walls.
9	PTN	3	CVCS / 047	5613-M-3047 Sh. 2	2	Vents / Drains / Misc. Connections	1" Drain	No	CVCS Boundary (NNS)	Dead Leg	Mitigate	Options: 1. Mitigate – Global Strategy using space heater(s) in the AB Roof VCT Enclosure to protect against freezing this pipe. 2. Heat Trace & 1" Insulation	Assumed to be in the VCT Enclosure on the AB Roof. Should be walked down to make sure it's not exposed outside the walls.
10	PTN	3	CVCS / 047	5613-M-3047 Sh. 2	3	Vents / Drains / Misc. Connections	3/8" Drains	No	VCT Boundary	Dead Leg	Mitigate	Options: 1. Mitigate – Global Strategy using space heater(s) in the AB Roof VCT Enclosure to protect against freezing this pipe. 2. Protect – Heat Trace & 1" Insulation	Assumed to be in the VCT Enclosure on the AB Roof. Should be walked down to make sure it's not exposed outside the walls.
11	PTN	3	CVCS / 047	5613-M-3047 Sh. 2	3	Instr. Control / Protection	LTs	Yes	Flow to/from the VCT	Dead Leg	Mitigate	Options: 1. Mitigate – Global Strategy using space heater(s) in the AB Roof VCT Enclosure to protect against freezing this pipe. 2. Protect – Heat Trace & 1" Insulation	Assumed to be in the VCT Enclosure on the AB Roof. Should be walked down to make sure it's not exposed outside the walls.
12	PTN	3	CVCS / 047	5613-M-3047 Sh. 2	4	Piping	1" Pipe	Yes	Inlet to the VCT	-	Mitigate	Options: 1. Mitigate - Global Strategy using space heater(s) in the AB Roof VCT Enclosure to protect against freezing this pipe. 2. Heat Trace & 1" Insulation	Assumed to be in the VCT Enclosure on the AB Roof. Should be walked down to make sure it's not exposed outside the walls.
13	PTN	3	CVCS / 047	5613-M-3047 Sh. 2	5	Piping	2" Pipe	Yes	Inlet to the VCT	-	Mitigate	Options: 1. Mitigate - Global Strategy using space heater(s) in the AB Roof VCT Enclosure to protect against freezing this pipe. 2. Protect - 4" insulation to prevent >25% Freezing 3. Protect - Heat Trace & 1" Insulation for <2% feezing.	Assumed to be in the VCT Enclosure on the AB Roof. Should be walked down to make sure it's not exposed outside the walls.
14	PTN	3	CVCS / 047	5613-M-3047 Sh. 2	6	Piping	2" Pipe	No	RV line and pipe from VCT	-	Mitigate	Options: 1. Mitigate - Global Strategy using space heater(s) in the AB Roof VCT Enclosure to protect against freezing this pipe. 2. Protect - 4" Insulation to prevent >25% Freezing 3. Protect - Heat Trace & 1" Insulation for <2% feezing.	Assumed to be in the VCT Enclosure on the AB Roof. Should be walked down to make sure it's not exposed outside the walls.
15	PTN	3	CVCS / 047	5613-M-3047 Sh. 2	7	Piping	3/4" Pipe	No	VCT Boundary	-	Mitigate	Options: 1. Mitigate - Global Strategy using space heater(s) in the AB Roof VCT Enclosure to protect against freezing this pipe. 2. Protect - Heat Trace & 1" Insulation	Assumed to be in the VCT Enclosure on the AB Roof. Should be walked down to make sure it's not exposed outside the walls.

Florida Power & Light Company Docket No. 20220000-OT

Ten-Year Site Plan
Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 189 of 488

R21002, Rev 0 Attachment L Page 56 of 198

16	PTN	3	CVCS / 047	5613-M-3047 Sh. 2	8	Piping	2" Pipe	No	RV Discharge from VCT	_	None	No protection required downstream of RV	Assumed to be in the VCT Enclosure on the AB Roof. Should be	
-							- 1,72				-	Options:	walked down to make sure it's not exposed outside the walls.	
17	PTN	3	CVCS / 047	5613-M-3047 Sh. 2	9	Vents / Drains / Misc. Connections	1/4" Drain	No	VCT Pressure Boundary	Dead Leg	Mitigate	Mitigate - Global Strategy using space heater(s) in the AB Roof VCT Enclosure to protect against freezing this pipe. Protect - Heat Trace & 1" Insulation	Assumed to be in the VCT Enclosure on the AB Roof. Should be walked down to make sure it's not exposed outside the walls.	
18	PTN	3	CVCS / 047	5613-M-3047 Sh. 2	9	Instr. Local	1/4" PI	Yes	VCT Pressure Boundary	Dead Leg	Mitigate	Options: 1. Mitigate - Global Strategy using space heater(s) in the AB Roof VCT Enclosure to protect against freezing this pipe. 2. Protect - Heat Trace & 1" Insulation	Assumed to be in the VCT Enclosure on the AB Roof. Should be walked down to make sure it's not exposed outside the walls.	
19	PTN	3	CVCS / 047	5613-M-3047 Sh. 2	10	Piping	3" Pipe	Yes	Inlet to the VCT	-	Mitigate	Options: 1. Mitigate - Global Strategy using space heater(s) in the AB Roof VCT Enclosure to protect against freezing this pipe. 2. Protect - 2" Insulation to prevent >25% Freezing 3. Protect - Heat Trace & 1" Insulation for <2% feezing.	Assumed to be in the VCT Enclosure on the AB Roof. Should be walked down to make sure it's not exposed outside the walls.	
20	PTN	3	CVCS / 047	5613-M-3047 Sh. 2	11	Piping	3/4" Pipe	Yes	Inlet to the VCT	-	Mitigate	Options: 1. Mitigate - Global Strategy using space heater(s) in the AB Roof VCT Enclosure to protect against freezing this pipe. 2. Protect - Heat Trace & 1" Insulation	Assumed to be in the VCT Enclosure on the AB Roof. Should be walked down to make sure it's not exposed outside the walls.	
6	PTN	3	CVCS / 047	5613-M-3047 Sh. 2	-		-		-	-		-	All piping, except as marked, is located in Containment or in the Auxiliary Building (P&V Room, Charging Pump Room, NSSS Sample Room, Boric Acid Tank Room, N-S Hallway). This piping is assumed to be protected from weather either by the building protection or through a global strategy as needed (space heaters deployed in rooms in the Auxiliary Building.	
7	PTN	3	CVCS / 047	5613-M-3047 Sh. 2	-	Outdoor Tanks	Volume Control Tank	Yes	Quality Related per NAMS. Used to provide flow to the Charging Pumps of the CVCS for injection to the RCS per UFSAR 9.2.1	CVCS protection	None	No protection required, tank and contents will not freeze.	The VCT is located on the roof of the Auxiliary Building; however, it is enclosed in a concrete enclosure to be protected from missiles. A global strategy is recommended for the enclosure for the VCT, like the Auxililiary Building, where space heaters can be deployed as necessary.	
1	PTN	3	RHR / 050	5613-M-3050 Sh. 1	All		-		-	-	None	No protection recommended	All portions of this drawing are located inside the Auxiliary Building or Containment.	
1	PTN	3	053	5613-M-3053	1	Piping	Piping for containment penetrations for air systems (purge, ILRT pressure test connections, personnel & escape hatch & appurtenances)	No	None	Not required for power operation	None	None (Air penetrations are isolated for normal operation).	Summer Su	
2	PTN	3	053	5613-M-3053	1	Ducting	Containment purge ducting	No	None	Not required for power operation	None	None		
3	PTN	3	053	5613-M-3053	1	Filter Train	Purge roughing filters	No	None	Not required for power operation	None	None		
4	PTN	3	053	5613-M-3053	1	Fan	Containment purge supply and exhaust fans	No	None	Not required for power operation	None	None		
5	PTN	3	053	5613-M-3053	1	Motor Operated Damper	Motor operated purge supply and	No	None	Not required for power	None	None		
6	PTN	3	053	5613-M-3053	1	Ventilation Dampers	exhaust fan dampers Piston-operated purge supply and exhaust containment isolation dampers	No	Normally closed; closure capabiltiy required for TS 3/4.6.4	operation Purge not required for power generation; dampers already in position for containment isolation	None	None		
7	PTN	3	053	5613-M-3053	1	Instr. Annunciation / Indication	Remote valve position indication for containment purge isolation valves	Yes	Required for Control Room indication of containment isolation status	Purge isolation valves normally closed,	None	None		
8	PTN	3	053	5613-M-3053	1	Instr. Local	Local pressure indication at personnel and escape hatch	Yes	None	Not required for power operation	None	None		
9	PTN	3	053	5613-M-3053	2	Piping	2" & 1/2" Instr Air Bleed Line	Yes	TS 3/4.6.1.4 Containment internal pressure to be maintained between -2 and +1 psig	None requried since Instr air bleed condensate drain line is located inside the Aux Bldg. See remarks.	None	None	IA bleed line is normally open to vent off instrument air leakage in containment to prevent excessive ambient pressure buildup. The bleed line passes from containment, through the Aux Bldg, then through the Aux Bldg roof to the purge exhaust duct. The condensate drain valve (3-11-018) is normally open to drain condensate from the bleed line. The condensate drain taps into the IA purge line within the Aux Bldg, so the exterior portion of the IA purge line would not contain liquid condensate that could be subject to freezing.	EC-277336, Sec. 2.1.1.2
10	PTN	3	053	5613-M-3053	2	Instr. Annunciation / Indication	Remote valve position indication for instrument air bleed	Yes	Required for control room indication of containment isolation status	Located inside Aux Bldg	None	None		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 190 of 488

R21002, Rev 0 Attachment L Page 57 of 198

11	PTN	3	053	5613-M-3053	2	Vents / Drains / Misc.	3/4" drain line (dead leg) on bleed	No	None	Located inside Aux Bldg	None	None		
12	PTN	3	053	5613-M-3053	3	Connections	Cooling fans for high-temperature containment penetrations for main steam (MS), main feed (MF), and letdown.	Voc	Normally operating to provide cooling to containment penetrations over 150 °F; MS and MF penetration fans can be OOC for up to 7 days before repairs are required to be initiated; Letdown penetration fans, up to 30 days.	Allowable OOC time exceeds postulated 4- day freeze	None	None	Fans are normally operating; cold weather event is not expected to interrupt operation. No impact on operations even if fans are lost.	3-NOP-057 Sec 2.2, Step 5
13	PTN	3	053	5613-M-3053	3	Ducting	Supply to penetration cooling	Yes	None	Ductwork not affected by freezing temperatures	None	None		
14	PTN	3	053	5613-M-3053	3	Motor Operated Damper	Main steam penetrtion fan supply valve to west electrical penetration room	Yes	MS penetration fans can be OOC for up to 7 days before repairs are required to be initiated	Allowable OOC time	None	None	Cold weather is not expected to impact motorized damper operation.	
16	PTN	3	SIS / 062	5613-M-3062, Sh. 1	1	Piping	16" Pipe	Standby	T.S. 3.5.2.a & d - Operable flow path taking suction from RWST to RCS Cold Legs ACTION: With the suction flow path from the refueling water storage tank inoperable, restore the suction flow path to OPERABLE status within 1 hour or be in at least HOT STANDBY within the next 6 hours and in HOT SHUTDOWN within the following 6 hours.	Provide flow path for ECCS.	Protect	Options: 1. 3" Insulation (<2% freezing), or 2. Heat Trace & 1" Insulation. Possible need to evaluate heat trace/insulation or possible enclose with heater if water in pipe needs to be maintained greater than 39F.	Full flow path (less than 2% freezing criteria) assumed to be required for Tech Specs; however, could evaluate if a lower flow is allowed. A portion of this pipe is in a trench to the Aux Bldg. Does the pipe need to be 39F or greater to comply with the Tech Spec? Not clear in the Tech Specs, and no temperature instrumentation on the piping.	
17	PTN	3	SIS / 062	5613-M-3062, Sh. 1	1	Motor Operator Valve	2 MOVs	No	Operable ECCS Flowpath	Provide ability to isolate RWT to go into Recirculation		Evaluate further if the MOVs require protection from cold weather (operating temperatures qualified to, internal heater, etc.) and determine a strategy if required.		
18	PTN	3	SIS / 062	5613-M-3062, Sh. 1	2	Piping	8" Pipe	Standby	T.S. 3.5.2.a & d - Operable flow path taking suction from RWST to RCS Cold Legs ACTION: With the suction flow path from the refueling water storage tank inoperable, restore the suction flow path to OPERABLE status within 1 hour or be in at least HOT STANDBY within the next 6 hours and in HOT SHUTDOWN within the following 6 hours.	Provide flow path for ECCS.	Protect	Heat Trace & 1" Insulation. Possible need to evaluate heat trace/insulation or possible enclose with heater if water in pipe needs to be maintained greater than 39F.	Full flow path (less than 2% freezing criteria) assumed to be required for Tech Specs; however, could evaluate if a lower flow is allowed. A portion of this pipe is in a trench to the HHSI Pump Room. Does the pipe need to be 39F or greater to comply with the Tech Spec? Not clear in the Tech Specs, and no temperature instrumentation on the piping.	
19	PTN	3	SIS / 062	5613-M-3062, Sh. 1	2	Vents / Drains / Misc. Connections	3/4" Vent	No	RWST Pressure Boundary	Maintain pressure boundary for the piping, Dead Legs	Protect	Provide 1" insulation & heat tracing.	With no protection the piping will freeze and there is a potential the piping and/or valve could crack when water freezes. This will only be known once it begins to thaw. Conservatively recommend protecting to prevent potential system leakage.	
20	PTN	3	SIS / 062	5613-M-3062, Sh. 1	3	Piping	4" Pipe	No	T.S. 3.1.2.5 - Available RWST with solution temperature above 39F. Action: With the RWST inoperable, restore the tank to OPERABLE status within 1 hour or be in at least HOT STANDBY within the next 6 hours and in COLD SHUTDOWN within the following 30 hours.	Maintain RWST pressure boundary and have a flow path for the CVCS.	Protect	Options: 1. 1" insulation on 4" piping through safety boundary change (protect against >25% freezing) 2. Heat Trace & 1" Insulation Possible need to evaluate heat trace/insulation or possible enclose with heater if water in pipe needs to be maintained greater than 39F.	Full flow path (less than 2% freezing criteria) assumed to be required for Tech Specs; however, could evaluate if a lower flow is allowed. A portion of this pipe is in a trench to the Aux Bldg. Does the pipe need to be 39F or greater to comply with the Tech Spec? Not clear in the Tech Specs, and no temperature instrumentation on the piping.	
21	PTN	3	SIS / 062	5613-M-3062, Sh. 1	4	Piping	2" Pipe	No	RWST Pressure Boundary	-	Protect	Options: 1. 4" insulation on 2" piping through safety boundary change (protect against >25% freezing) 2. Heat Trace & 1" Insulation		
22	PTN	3	SIS / 062	5613-M-3062, Sh. 1	5	Piping	2" Pipe, connection to RO Silica Skid	No	None	-	None	No protection required.	Will not adversely affect the RWST if piping freezes or breaks	
23	PTN	3	SIS / 062	5613-M-3062, Sh. 1	5	Vents / Drains / Misc. Connections	1/2" Vent	No	None	-	None	No protection required.	Will not adversely affect the RWST if piping freezes or breaks	
24	PTN	3	SIS / 062	5613-M-3062, Sh. 1	6	Piping	6" Pipe	No	RWST Pressure Boundary	-	Protect	1" Insulation	Protects against >25% freezing in the pipe	
25	PTN	3	SIS / 062	5613-M-3062, Sh. 1	7	Piping	6" Pipe	No	CSP Full Flow Recirculation Line, Class B (SR) Piping	-	Protect	1" Insulation	Located on Aux Bldg Room per NAMS. Piping is normally isolated on both sides, so protection may not be required. If line is not utilized, a break or freeze of the line does not require a shutdown. Insulation size recommended to prevent >25% freezing since full flow is not required. Operator action needed to use the line.	
26	PTN	3	SIS / 062	5613-M-3062, Sh. 1	7	Vents / Drains / Misc. Connections	3/4" Vent	No	None	Dead Leg	Protect	Heat Trace & 1" Insulation	See Segment 7, Piping for discussion of location and if protection is necessary.	
27	PTN	3	SIS / 062	5613-M-3062, Sh. 1	8	Piping	4" Pipe to RWST Drain Piping (NSR portion)	No	None	-	None	No protection required.	Will not adversely affect the RWST if piping freezes or breaks	
28	PTN	3	SIS / 062	5613-M-3062, Sh. 1	8	Vents / Drains / Misc. Connections	Piping to RO Silica Skid	No	None	-	None	No protection required.	Will not adversely affect the RWST if piping freezes or breaks	

Florida Power & Light Company Docket No. 20220000-OT

Ten-Year Site Plan
Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 191 of 488

R21002, Rev 0 Attachment L Page 58 of 198

29	PTN	3	SIS / 062	5613-M-3062, Sh. 1	9	Piping	2" Pipe	Yes	RWST Pressure Boundary & pipe to LT	Dead Leg	Protect	Options: 1. 4" insulation on 2" piping through safety boundary change (protect against >25% freezing) 2. Heat Trace & 1" Insulation		
30	PTN	3	SIS / 062	5613-M-3062, Sh. 1	9	Instr. Control / Protection	LT	Yes	T.S. 3.5.4 - A minimum contained volume 320,000 gallons of borated water when in Modes 1-4 ACTION: With the refueling water tank inoperable, restore the tank to ODERABLE Status within 1 hour or be in at least HOT STANDBY within 6 hours and in COLD SHUTDOWN within the following 30 hours.	Required to know level in the RWST. Dead Leg	Protect	Provide insulation $(1")$ & heat tracing for the level instruments and piping.		
						V /2 : /26			T.S. 3.1.2.5 has the same LCO and action.					
31	PTN	3	SIS / 062	5613-M-3062, Sh. 1	9	Vents / Drains / Misc. Connections	Test Connection	No	RWST Pressure Boundary	Dead Leg	Protect	Heat Trace & 1" Insulation		
32	PTN	3	SIS / 062	5613-M-3062, Sh. 1	9	Vents / Drains / Misc. Connections	3/8" Drain	No	RWST Pressure Boundary	Dead Leg	Protect	Heat Trace & 1" Insulation		
33	PTN	3	SIS / 062	5613-M-3062, Sh. 1	10	Piping	2" Pipe	No	RWST Pressure Boundary	-	Protect	Options: 1. 4" insulation on 2" piping through safety boundary change (protect against >25% freezing) 2. Heat Trace & 1" Insulation		
34	PTN	3	SIS / 062	5613-M-3062, Sh. 1	11	Piping	16" Pipe	Standby	TS 3.5.2.d - ECCS Flowpath to RHR and CS Pumps. Action: With the suction flow path from the refueling water storage tank inoperable, restore the suction flow path to OPERABLE status within 1 hour or be in at least HOT STANDBY within the next 6 hours and in HOT SHUTDOWN within the following 6 hours.	Operable ECCS	Protect	Options: 1. Use global heating strategy for the U3 CCW Pump Room to prevent freezing 2. 1" Insulation (no freezing >25%) 3. Heat Trace & 1" Insulation (no freezing or maintain temp in pipe >39F	Located in U3 CCW Pump Room, which is enclosed by concrete on the sides, but roof is all grating/open to outside atmosphere and there is no HVAC. Recommend using tarps to cover grating and installing space heater(s) to protect area. If this cannot be performed than individual heating strategies for all piping/components will be required.	
35	PTN	3	SIS / 062	5613-M-3062, Sh. 1	12		HHSI pumps suction and discharge flow paths, cross connects with U4 piping, recirculation and test lines	Standby	T.S. 3.5.2.a & d - Operable flow path taking suction from RWST to RCS Cold Legs ACTION: With the suction flow path from the refueling water storage tank inoperable, restore the suction flow path to OPERABLE status within 1 hour or be in at least HOT STANDBY within the next 6 hours and in HOT SHUTDOWN within the following 6 hours.	Operable ECCS	Protect	Options: 1. Use global heating strategy for the HHSI Pump Room to prevent freezing 2. Insulation and/or Heat Trace individual piping and components.	Located in HHSI Pump Room, which is fully enclosed by concrete, but doors are louvered, there is no HVAC, and room is open to the CCW Pump Rooms, which is open to the environment. Recommend covering door louvers and installing space heater(s) to protect area. If this cannot be performed than individual heating strategies for all piping/components will be required.	
36	PTN	3	SIS / 062	5613-M-3062, Sh. 1	13		HHSI Pumps and associated cooling	Standby	T.S. 3.5.2.a & d - Operable flow path taking suction from RWST to RCS Cold Legs ACTION: With the suction flow path from the refueling water storage tank	Operable ECCS	Protect	Options: 1. Use global heating strategy for the HHSI Pump Room to prevent freezing 2. Insulation and/or Heat Trace individual piping and components.	Located in HHSI Pump Room, which is fully enclosed by concrete, but doors are louvered, there is no HVAC, and room is open to the CCW Pump Rooms, which is open to the environment. Recommend covering door louvers and installing space heater(s) to protect area. If this cannot be performed than individual heating strategies for all piping/components will be required.	
37	PTN	3	SIS / 062	5613-M-3062, Sh. 1	14	Piping	3" Pipe	Standby	T.S. 3.5.2.a & d - Operable flow path taking suction from RWST to RCS Cold Legs ACTION: With the suction flow path from the refueling water storage tank	Operable ECCS	Protect	Options: 1. Use global heating strategy for the U3 CCW Pump Room to prevent freezing 2. 2" Insulation (no freezing >25%) 3. Heat Trace & 1" Insulation (no freezing or maintain temp in pipe >39F	Located in U3 CCW Pump Room, which is enclosed by concrete on the sides, but roof is all grating/open to outside atmosphere and there is no HVAC. Recommend using tarps to cover grating and installing space heater(s) to protect area. If this cannot be performed than individual heating strategies for all piping/components will be required.	
38	PTN	3	SIS / 062	5613-M-3062, Sh. 1	15	Piping	3/4" Pipe	No	RWST Pressure Boundary	-	Protect	Options: 1. Use global heating strategy for the U3 CCW Pump Room to prevent freezing 2. Heat Trace & 1" Insulation	Located in U3 CCW Pump Room, which is enclosed by concrete on the sides, but roof is all grating/open to outside atmosphere and there is no HVAC. Recommend using tarps to cover grating and installing space heater(s) to protect area. If this cannot be performed than individual heating strategies for all cains (company trivill be, required.	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 192 of 488

R21002, Rev 0 Attachment L Page 59 of 198

cated in U3 CCW Pump Room, which is enclosed by concrete or Use global heating strategy for the U3 CCW the sides, but roof is all grating/open to outside atmosphere and ump Room to prevent freezing here is no HVAC. Recommend using tarps to cover grating and 5613-M-3062, Sh. 1 PTN SIS / 062 16 RWST Pressure Boundary 39 Piping 2" Pipe . 4" Insulation (no freezing >25%) nstalling space heater(s) to protect area. If this cannot be 3. Heat Trace & 1" Insulation (no freezing or performed than individual heating strategies for all piping/components will be required. naintain temp in pipe >39F ted in U3 CCW Pump Room, which is enclosed by concrete valuate further if the MOVs require protection he sides, but roof is all grating/open to outside atmosphere and there is no HVAC. Recommend using tarps to cover grating and from cold weather (operating temperatures PTN SIS / 062 5613-M-3062, Sh. 1 16 2 MOVs Standby Motor Operator Valve ualified to, internal heater, etc.) and determine nstalling space heater(s) to protect area. If this cannot be a strategy if required. rformed than individual heating strategies for all piping/components will be required. T.S. 3.5.4 - Min Temp of 39F when in Modes 1-4 leed to perform further evaluation if the min ACTION: With the refueling water tank lume (320,000 gal) in the RWST will be lower noperable, restore the tank to rently per 0-ONOP-103.2, the only action is to refer to T.S. to 39F based on new temperature profile. If PERABLE status within **1 hour** or be in Maintain ability for 3.5.4 if temperature is dropping. Temperature can be measured 0-ONOP-103.2 efueling Water Storage Tank RWST could reach 39F, then some options SIS / 062 5613-M-3062, Sh. 1 Outdoor Tanks at least HOT STANDBY within 6 hours by placing the RWST on recirculation via 3-NOP-033, but the nclude insulating, adding recirculation heater(s and in COLD SHUTDOWN within the poling and Boration rocedure does not use this stratgey to consider raising the RWST as a temporary skid owing 30 hours. mperature. design/installation/operation, permanent nersion heater(s), etc. C.S. 3.1.2.5 has the same LCO and Allow for tank venting and prevent vacuum nts to atmosphere (unclear of ulate vent to prevent vacuum forming in the 5613-M-3062, Sh. 1 SIS / 062 perable RWST ize and it there is a loop seal via tank when draining (thickness to be determined Connections sed on pipe size) F.S. 3.5.4 - A minimum contained olume 320,000 gallons of borated water when in Modes 1-4 ACTION: With the refueling water tank operable, restore the tank to Piping to LT with associated test PERABLE status within **1 hour** or be in ovide insulation (1") & heat tracing for the level 5613-M-3062, Sh. 1 Instr. Control / Protection nnection and drain at least HOT STANDBY within 6 hours in the RWST. Dead Leg struments and piping. and in COLD SHUTDOWN within the .S. 3.1.2.5 has the same LCO and otection only required through the safety boundary change of B Vents / Drains / Misc. " Pipe to 1" Drain and 3/8" 1. 4" insulation on 2" piping through safety to D, the remainder of the piping is not required to be protected SIS / 062 5613-M-3062, Sh. 1 RWST Pressure Boundary Dead Leg boundary change (protect against >25% freezi ownstream of the locked closed valve, the system can be pened to protect damage to piping and components. otection only required through the safety boundary change of B Vents / Drains / Misc. 1. 1" insulation on 4" piping through safety to D, the remainder of the piping is not required to be protected 15 5613-M-3062, Sh. 1 PTN SIS / 062 " Pipe to 3/4" Drain RWST Pressure Boundary Dead Leg ndary change (protect against >25% freezing) wnstream of the locked closed valve, the system can be 2. Heat Trace & 1" Insulation opened to protect damage to piping and components. TS 3.5.2 - The following Emergency Core Cooling System (ECCS) equipment and flow paths shall be OPERABLE: Four ocated in HHSI Pump Room, which is fully enclosed by concrete but doors are louvered, there is no HVAC, and room is open to the afety Injection (SI) pumps, each . Use global heating strategy for the HHSI Pump CCW Pump Rooms, which is open to the environment 5613-M-3062, Sh. 2 SIS / 062 Piping intain flowpath capable of being powered from its Room to prevent freezing 2. Heat Trace & 1" Insulation commend covering door louvers and installing space heater(s) sociated OPERABLE diesel generator o protect area. If this cannot be performed than individual with discharge flow paths aligned to the ng strategies for all piping/components will be required. RCS cold legs. Use global heating strategy for the HHSI Pump 5613-M-3062, Sh. 2 SIS / 062 Instr. Control / Protection See Segment 1, Piping See Segment 1, Piping Room to prevent freezing 2. Heat Trace & 1" Insulatio 1. Use global heating strategy for the HHSI Pump SIS / 062 5613-M-3062, Sh. 2 Instr. Control / Protection See Segment 1, Piping ee Segment 1, Piping oom to prevent freezing 2. Heat Trace & 1" Insulation Vents / Drains / Misc. Use global heating strategy for the HHSI Pump PTN 5613-M-3062, Sh. 2 SIS / 062 3/4" Drain See Segment 1. Piping Dead Leg . Heat Trace & 1" Insulation TS 3.5.2 - The following Emergency Core Cooling System (ECCS) equipment and cated in U3 CCW Pump Room, which is enclosed by concrete o low paths shall be OPERABLE: Four he sides, but roof is all grating/open to outside atmosphere and Use global heating strategy for the U3 CCW here is no HVAC. Recommend using tarps to cover grating and afety Injection (SI) pumps, each 5613-M-3062, Sh. 2 10 SIS / 062 Piping " Pipe apable of being powered from its stalling space heater(s) to protect area. If this cannot be sociated OPERABLE diesel generator 2. Heat Trace & 1" Insulation performed than individual heating strategies for all with discharge flow paths aligned to the ping/components will be required. RCS cold legs.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 193 of 488

R21002, Rev 0 Attachment L Page 60 of 198

_														1
3	PTN	3	CS / 068	5613-M-3068, Sh. 1	1	Piping	6" Pipe	No	CSP Full Flow Recirculation Line, Class B (SR) Piping	-	Protect	1" Insulation	Located on Aux Bldg Room per NAMS. Piping is normally isolated on both sides, so protection may not be required. If line is not utilized, a break or freeze of the line does not require a shutdown. Insulation size recommended to prevent >25% freezing since full flow is not required. Operator action needed to use the line.	
4	PTN	3	CS / 068	5613-M-3068, Sh. 1	1	Instr. Local	Flow element	Yes	None	Dead Leg	Protect	Heat Trace & 1" Insulation	See Segment 1 piping for discussion of location and if protection is necessary.	
5	PTN	3	CS / 068	5613-M-3068, Sh. 1	1	Vents / Drains / Misc. Connections	3/4" Vent	No	None	Dead Leg	Protect	Heat Trace & 1" Insulation	See Segment 1 piping for discussion of location and if protection is necessary.	
2	PTN	3	CS / 068	5613-M-3068, Sh. 1	All but 1		-		-	-	None	No protection recommended	All portions of this drawing, except Segment 1, are located inside the Auxiliary Building or Containment.	
1	PTN	3	070	5613-M-3070, Sh. 1 TB Ventilation, Load Center & SWGR Rooms Chilled Water System - Train A	1	Piping	Small-bore pipe, Air Handling Units. Equipment located on Ground Floor EL 18'-0" and EL 30'- 0" LC/Switchgear Enclosure	Yes	Normally operating to provide room cooling to maintain 100% power generation, however operator action can be taken as noted to open doors and fans to provide cooling in the event of loss of A/C system.	N/A	Mitigate	Add Glycol to chillers for low temperature operation or provide operator action to open doors and provide fans to cool Load Center and Switchgear Rooms.	Chilled Water System not safety related and if rendered non- functional, operator action to open doors and start fan locally to provide once-through ventilation can provide adequate room cooling (UFSAR 9.16.3). Based on "Turkey Point Extreme Temperature Reassessment, March 2021", Chillers can trip off on Low Ambient Lockout (35.1 F). Load Center/Switchgear Enclosures are reinforced concrete Class I structures (UFSAR 5.3.2). The UFSAR design limit for equipment in the LC/Switchgear Rooms is 104 deg F. The administrative limit temperature alert is 95 deg F. Chiller alarm limits are 36 deg F, with glycol 12.6 deg F. Note that one chiller in a single train may provide adequate cooling for 7 days during emergency operations with operator action. (UFSAR 9.16)	UFSAR 9.16, UFSAR 5.3.2, Turkey Point Extreme Temperature Reassessment p.7
2	PTN	3	070	5613-M-3070, Sh. 1 TB Ventilation, Load Center & SWGR Rooms Chilled Water System - Train A	2	Piping	Small Bore Piping, Chillers, Pumps, transfer pump, Expansion tank. Turbine Building from outside LC/SWGR room up TB EL. 44'-6 1/4"	Yes	Normally operating to provide room cooling to maintain 100% power generation, however operator action can be taken as noted to open doors and fans to provide cooling in the event of loss of A/C system.	N/A	Mitigate	Add Glycol to chillers for low temperature operation or provide operator action to open doors and provide fans to cool Load Center and Switchgear Rooms.	Chilled Water System not safety related and if rendered non- functional, operator action to open doors and start fan locally to provide once-through ventilation can provide adequate room cooling (UFSAR 9.16.3). Based on "Turkey Point Extreme Temperature Reassessment, March 2021", Chillers can trip off on Low Ambient Lockout (35.1 F). Load Center/Switchgear Enclosures are reinforced concrete Class I structures (UFSAR 5.3.2). The UFSAR design limit for equipment in the LC/Switchgear Rooms is 104 deg F. The administrative limit temperature alert is 95 deg F. Chiller alarm limits are 36 deg F, with glycol 12.6 deg F. Note that one chiller in a single train may provide adequate cooling for 7 days during emergency operations with operator action. (UFSAR 9.16)	UFSAR 9.16, UFSAR 5.3.2, Turkey Point Extreme Temperature Reassessment p.7
3	PTN	3	070	5613-M-3070, Sh. 2 TB Ventilation, Load Center & SWGR Rooms Chilled Water System - Train B	1	Piping	Small-bore pipe, Air Handling Units. Equipment located on Ground Floor EL 18'-0" and EL 30'- 0" LC/Switchgear Enclosure	Yes	Normally operating to provide room cooling to maintain 100% power generation, however operator action can be taken as noted to open doors and fans to provide cooling in the event of loss of A/C system.	N/A	Mitigate	Add Glycol to chillers for low temperature operation or provide operator action to open doors and provide fans to cool Load Center and Switchgear Rooms.	Chilled Water System not safety related and if rendered non- functional, operator action to open doors and start fan locally to provide once-through ventilation can provide adequate room cooling (UFSAR 9.16.3). Based on "Turkey Point Extreme Temperature Reassessment, March 2021", Chillers can trip off on Low Ambient Lockout (35.1 F). Load Center/Switchgear Enclosures are reinforced concrete Class I structures (UFSAR 5.3.2). The UFSAR design limit for equipment in the LC/Switchgear Rooms is 104 deg F. The administrative limit temperature alert is 95 deg F. Chiller alarm limits are 36 deg F, with glycol 12.6 deg F. Note that one chiller in a single train may provide adequate cooling for 7 days during emergency operations with operator action. (UFSAR 9.16)	UFSAR 9.16, UFSAR 5.3.2, Turkey Point Extreme Temperature Reassessment p.7
4	PTN	3	070	5613-M-3070, Sh. 2 TB Ventilation, Load Center & SWGR Rooms Chilled Water System - Train B	2	Piping	Small Bore Piping, Chillers, Pumps, transfer pump, Expansion tank. Turbine Building from outside LC/SWGR room up TB EL. 44'-6 1/4"	Yes	Normally operating to provide room cooling to maintain 100% power generation, however operator action can be taken as noted to open doors and fans to provide cooling in the event of loss of A/C system.	N/A	Mitigate	Add Glycol to chillers for low temperature operation or provide operator action to open doors and provide fans to cool Load Center and Switchgear Rooms.	Chilled Water System not safety related and if rendered non- functional, operator action to open doors and start fan locally to provide once-through ventilation can provide adequate room cooling (UFSAR 9.16.3). Based on "Turkey Point Extreme Temperature Reassessment, March 2021", Chillers can trip off on Low Ambient Lockout (35.1 F). Load Center/Switchgaer Enclosures are reinforced concrete Class I structures (UFSAR 5.3.2). The UFSAR design limit for equipment in the LC/Switchgear Rooms is 104 deg F. The administrative limit temperature alert is 95 deg F. Chiller alarm limits are 36 deg F, with glycol 12.6 deg F. Note that one chiller in a single train may provide adequate cooling for 7 days during emergency operations with operator action. (UFSAR 9.16)	UFSAR 9.16, UFSAR 5.3.2, Turkey Point Extreme Temperature Reassessment p.7
1	PTN	3	MSS / 072	5613-M-3072 SH 1	1	Piping	26" main steam line (x3); 30" main steam header	Yes	Requied for Power Generation; Main Steam pressure boundary	Normal Steam flow adequate to prevent freezing. Steam Lines already insulated.	None	None		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 194 of 488

R21002, Rev 0 Attachment L Page 61 of 198

2	PTN	3	MSS / 072	5613-M-3072 SH 1	1	Instr. Control / Protection	Pressure Transmitter (PT) (x3, each steam line) 3/4" piping to instrument Press. Input to Steam Break Protection, Safety Assessment System (SAS), and Safety Parameter Display System (SPDS)	Yes	Requied for Power Generation; Main Steam pressure boundary	Dead Leg	Protect	Ensure instrument and instrument lines are well insulated. Continued implementation of Section 3.2, Step 6.E of Procedure 0-ONOP-103.2 applies.	Inspect during walkdown, insulation may already be present. Evaluate length of instrument pipe/tube against dead leg freeze criteria. Main steam piping will be hot.	
3	PTN	3	MSS / 072	5613-M-3072 SH 1	1	Instr. Control / Protection	Pressure Transmitter (PT) (x2, each steam line) 3/4", 1" piping to instrument Local pressure gauge (one per steam line) PT reading is input to Digital Data Processing System (DDPS), and Steam Gen Steam Dump to Atmos (SDTA). Control of atmospheric dump.	Yes	Requied for Power Generation; Main Steam pressure boundary	Dead Leg	Protect	Ensure instrument and instrument lines are well insulated. Continued implementation of Section 3.2, Step 6.E of Procedure 0-ONOP-103.2 applies.	Inspect during walkdown, insulation may already be present. Evaluate length of instrument pipe/tube against dead leg freeze criteria. Main steam piping will be hot.	
4	PTN	3	MSS / 072	5613-M-3072 SH 1	1	Motor Operator Valve	MSIV Bypass (2" MOV) (normaly closed; one per MSIV) Includes position switch	No	Maintain Steam Boundary	Normal Steam flow adequate to prevent freezing. Steam Lines already insulated.	None	None	Likely to be mounted in close proximity to MSIVs such that normal process flow will keep 2" line and MOV warm. Include with global freeze evaluation for MOVs	
5	PTN	3	MSS / 072	5613-M-3072 SH 1	1	Instr. Control / Protection	Pressure Transmitter (PT) (x1, each steam line) 3/4" piping to instrument Press. Input to Steam Break Protection, Safety Assessment System (SAS), and Safety Parameter Display System (SPDS) Downstream of MSIV and check valve (MS header Pressure)	Yes	Requied for Power Generation; Main Steam pressure boundary	Dead Leg	Protect	Ensure instrument and instrument lines are well insulated. Continued implementation of Section 3.2, Step 6.E of Procedure 0-ONOP-103.2 applies.	Inspect during walkdown, insulation may already be present. Evaluate length of instrument pipe/tube against dead leg freeze criteria. Main steam piping will be hot.	
6	PTN	3	MSS / 072	5613-M-3072 SH 1	1	Vents / Drains / Misc. Connections	capped pipe (x2, each MS line)	Yes	Requied for Power Generation; Main Steam pressure boundary	Normal Steam flow adequate to prevent freezing. Steam Lines already insulated.	None	None	Likely to be mounted in close proximity to MS lines such that normal process flow will keep the capped line warm.	
7	PTN	3	MSS / 072	5613-M-3072 SH 1	2	Piping	6", 10", 14", 30" piping Main Steam Lines to atmos dump valves, and silencer	Standby	Requied for Power Generation; Main Steam pressure boundary	Normal Steam flow adequate to prevent freezing. Steam Lines already insulated.	None	None	Inspect during walkdown, insulation may already be present. 6" portion upstream of atmos steam dump expected to be short. Main steam piping will be hot.	
8	PTN	3	MSS / 072	5613-M-3072 SH 1	3	Piping	14", 12", 10" piping	Standhy	TS 3.7.1.1 - All MS safety valves shall be operable (4hr LCO) MS Safety valves must be available for passive plant cooldown following closures of MSIVs and/or seismic event.	Normal Steam flow adequate to prevent freezing. Steam Lines already insulated.	None	None	Branches to safety valves from MS piping are large piping. With MS process flow (hot), and large piping, MS safety valves are at low to no risk of freezing or failure.	
9	PTN	3	MSS / 072	5613-M-3072 SH 1	3	Relief Valves	MS Safety relief valves (x4 per steam line)	Standby	MS Safety valves must be available for passive plant cooldown following	Normal Steam flow adequate to prevent freezing. Steam Lines already insulated.	None	None	Branches to safety valves from MS piping are large piping. With MS process flow (hot), and large piping, MS safety valves are at low to no risk of freezing or failure.	
10	PTN	3	MSS / 072	5613-M-3072 SH 1	4	Piping	1/2" and 1 1/2" piping MSIV leakoff drain and steam trap (x1 per MSIV)	Yes	TS 3.7.1.5 - Each MSIV shall be operable (24hr LCO) Provides a drain path for collected condensate in the MSIV	Normal Steam flow adequate to prevent freezing. Steam Lines already insulated.	Protect	Ensure 1/2" and 1 1/2" piping and steam trap are insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of instrument pipe/tube against dead leg freeze criteria. Main steam piping and MSIV will be hot.	
11	PTN	3	MSS / 072	5613-M-3072 SH 1	4	Strainers	1/2" steam trap (x1 per line)	Yes		Normal Steam flow adequate to prevent freezing. Steam Lines already insulated.	Protect	Ensure steam trap is insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of instrument pipe/tube against dead leg freeze criteria. Main steam piping and MSIV will be hot.	

Florida Power & Light Company Docket No. 20220000-OT

Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 195 of 488

R21002, Rev 0 Attachment L Page 62 of 198

nspect during walkdown, insulation may already be present. TS 3.7.1.5 - Each MSIV shall be adequate to prevent perable (24hr LCO) ezing. 12 MSS / 072 5613-M-3072 SH 1 PTN Steam trap bypass nsure Steam trap bypass is insulated Piping Class B pressure boundary team Lines already Main steam piping and MSIV will be hot. TS 3.7.1.5 - Each MSIV shall be nspect during walkdown, insulation may already be present. Evaluate length of instrument pipe/tube against dead leg freeze operable (24hr LCO) Vents / Drains / Misc. 13 PTN MSS / 072 5613-M-3072 SH 1 Dead Leg Ensure drain is insulated Connections rovides a drain path for collected closed root valves. Main steam piping and MSIV will be hot. ndensate in the MSIV TS 3.7.1.2 - two independent AFW Trains, including 3 steam supply rmal Steam flow flowpaths, 3 pumps, and associated adequate to prevent Ainimum steam flow through this 3" line, then 2" steam trap line 3" piping water discharge flowpaths shall be PTN MSS / 072 5613-M-3072 SH 1 Piping o condenser keep line warm when Aux Feedwater steam supply 5613-M-3075 SH 1 (x1 per main steam line) OPERABLE eam Lines already eam supply to turbine driven AFW dequate to prevent 30" main steam supply piping to equied for Power Generation; 15 PTN MSS / 072 5613-M-3072 SH 1 Piping 5613-M-3089 SH 1 rbine stop valves (x2) ain Steam pressure boundary eam Lines already insulated. Inspect during walkdown, insulation may already be present. valuate length of instrument pipe/tube against dead leg freeze Requied for Power Generation; MSS / 072 5613-M-3072 SH 1 Instr. Local Dead Leg ressure transmitter (PT) (x1) Main Steam pressure boundary nued implementation of Section 3.2, Step 6.E of Procedure 0-ONOP-103.2 applies. Main steam piping will be hot. Normal Steam flow adequate to prevent Requied for Power Generation; freezing. 17 PTN MSS / 072 5613-M-3072 SH 1 Piping Steam Dump Header and MSR Yes 5613-M-3072 SH 2 ain Steam pressure boundary eheaters (tubeside) team Lines already insulated. Normal Steam flow ize unknown - estimate 1" or 2' adequate to prevent spect during walkdown, insulation may already be present. freezing. 18 PTN MSS / 072 5613-M-3072 SH 1 5613-M-3014 SH 1 Piping Maintain Steam Boundary ubine stop valve steam supply cess fluid will be flowing and hot. ondensate drain. Steam Lines already insulated. adequate to prevent spect during walkdown, insulation may already be present. freezing. PTN MSS / 072 5613-M-3072 SH 1 19 8 Strainers steam trap (x1 per line) Yes Maintain Steam Boundary cess fluid will be flowing and hot. Steam Lines already insulated. Normal Steam flow spect during walkdown, insulation may already be present. adequate to prevent Size unknown - estimate 1" or 2' aluate length of pipe in proximity to active process line. reezing. PTN MSS / 072 5613-M-3072 SH 1 8 Maintain Steam Boundary 20 Piping team trap bypass Steam Lines already ocess fluid will be flowing and hot. insulated. Prains from steam traps and spect during walkdown, insulation may already be present. Vents / Drains / Misc. valuate length of drain against dead leg freeze criteria. active line 21 PTN MSS / 072 5613-M-3072 SH 1 Maintain Steam Boundary Dead Leg Ensure drains are insulated osed root valves. ocess fluid will be flowing and hot. adequate to prevent spect during walkdown, insulation may already be present. freezing. 22 MSS / 072 5613-M-3072 SH 1 Piping laintain Steam Boundary 5613-M-3089 SH 1 rains from turbine stop valves ocess fluid will be flowing and hot. turn to steam header team Lines already insulated. adequate to prevent " steam supply to Auxiliary Requied for Power Generation; reezing. 5613-M-3084 SH 2 23 5613-M-3072 SH 1 10 PTN MSS / 072 Piping Main Steam pressure boundary team Lines already insulated. Normal Steam flow adequate to prevent sure pipe and tubing are insulated. pect during walkdown, insulation may already be present. 3/4" piping; 3/8" tubing valuate length of intrument tubing, valve, and port in proximity reezing. equied for Power Generation: 24 PTN MSS / 072 5613-M-3072 SH 1 11 Piping his is likely on a lower level of the TB and so a o active process line. 5613-M-3032 SH 2 Main Steam pressure boundary owever, small dia global strategy of enclosing the area with tarps oolers (x3) nd using space heaters may be taken. cess fluid will be flowing and hot. pipe/tube should be

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 196 of 488

R21002, Rev 0 Attachment L Page 63 of 198

														ŀ
25	PTN	3	MSS / 072	5613-M-3072 SH 1	11	Instr. Local	Temporary Instrument Port Pressure (PX) (1 per MS line) Closed root valve; 3/8" tubing Main steam to Secondary sample coolers (x3)	Yes	Requied for Power Generation; Main Steam pressure boundary	Normal Steam flow adequate to prevent freezing. Steam Lines already insulated.	Protect	Ensure instrument and instrument lines are well insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of intrument tubing, valve, and port in proximity to active process line. Process fluid will be flowing and hot.	
26	PTN	3	MSS / 072	5613-M-3072 SH 1	12	Piping	3/4" piping (x3) Main steam to Wet Layup System	No	None - not active during normal operation Main steam pressure boundary	Dead Leg	Protect	Insulate 3/4" piping that may be exposed to outdoor conditions.	MS supply to wet layup system is isolated during normal operation. Downsteam valves SGWL-3-024, -022, -028, -030, -046, and -048 are locked closed during normal operation. See Dwg 5613-N-3078 SH 1, Note 4.	Note 4
27	PTN	3	MSS / 072	5613-M-3072 SH 2	1	Piping	24" Steam dump header	Yes	Requied for Power Generation; Main Steam pressure boundary	Normal Steam flow adequate to prevent freezing. Steam Lines already insulated.	None	None		
28	PTN	3	MSS / 072	5613-M-3072 SH 2	2	Piping	10", 8" Main steam piping to MSRs (x4)	Yes	Requied for Power Generation; Main Steam pressure boundary	Normal Steam flow adequate to prevent freezing. Steam Lines already insulated.	None	None		
29	PTN	3	MSS / 072	5613-M-3072 SH 2	2	Instr. Local	Flow Element (FE), Flow Indication (FI), Temporary flow instrument (FX) 1/2", 3/8" tubing	Yes	None	Dead Leg	Protect	Ensure instrument and instrument lines are well insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of intrument tubing, valve, and port in proximity to active process line. Main line will be flowing and hot.	
30	PTN	3	MSS / 072	5613-M-3072 SH 2	2	Instr. Local	MSR inlet steam flow (x4) Pressure Indicators (PI) (PX) 3/4" pipe, 3/8" tubing MSR inlet pressure (x4)	Yes	None	Dead Leg	Protect	Ensure instrument and instrument lines are well insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of intrument tubing, valve, and port in proximity to active process line.	
31	PTN	3	MSS / 072	5613-M-3072 SH 2	2	Motor Operator Valve	8" MOV primary steam inlet to MSRs. MOV-3-1431, -1432, -1433, -1434	Yes	None	Normal Steam flow adequate to prevent freezing. Steam Lines already insulated.	None	None	Main line will be flowing and hot. Include with global freeze evaluation for MOVs.	
32	PTN	3	MSS / 072	5613-M-3072 SH 2	2	Vents / Drains / Misc. Connections	3/4" vent one per MSR inlet	No	None	Dead Leg	Protect	Ensure vent and vent valve are well insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of vent piping and distance of valve to the active process line. Main line will be flowing and hot.	
33	PTN	3	MSS / 072	5613-M-3072 SH 2	3	Piping	8" piping "Timing Loop" (MOV bypass) Contains temperature control valve (MSR inlet) one per MSR	No	None	Stagnant line, connected to flowing steam line.	Mitigate	Consider cycling the control valve periodically (once per 24 hours) to keep line warm [2% freeze criteria].	Inspect during walkdown, insulation may already be present. Main line will be flowing and hot.	
34	PTN	3	MSS / 072	5613-M-3072 SH 2	3	Vents / Drains / Misc. Connections	3/4" Drain one per timing loop	No	None	Dead Leg	Protect	Ensure drain and drain valve are well insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of drain piping and distance of valve to the active process line. Main line likely to be warm with intermitent operation and connection to main steam line to MSR.	
35	PTN	3	MSS / 072	5613-M-3072 SH 2	4	Piping	1" piping "purge loop" (MOV bypass) Contains air operated control valve (MSR inlet) one per MSR	No	None	Stagnant line, connected to flowing steam line.	Mitigate	Given small diameter of pipe (1") ensure line is insulated. Consider cycling the control valve periodically (every 4-6 hours) to keep line warm [2% freeze criteria].	Inspect during walkdown, insulation may already be present. Main line will be flowing and hot.	
36	PTN	3	MSS / 072	5613-M-3072 SH 2	5	Piping	4" piping (x2) (MSR B to A supply crosstie, MSR D to C supply crosstie) 1/2" piping with steam traps (x10)	Yes	Maintain Steam Boundary	Normal Steam flow adequate to prevent freezing.	None	None	Inspect during walkdown, insulation may already be present. Process fluid will be flowing and hot.	
37	PTN	3	MSS / 072	5613-M-3072 SH 2	5	Strainers	Steam trap branches from main supply lines (x10)	Yes	Maintain Steam Boundary	Normal Steam flow adequate to prevent freezing.	None	Ensure each steam trap bypass (isolated) is insulated to prevent freezing. Insulate drain connection from each steam trap.	Inspect during walkdown, insulation may already be present. Evaluate length of drain piping and distance of valve to the active process line. Process fluid will be flowing and hot.	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 197 of 488

R21002, Rev 0 Attachment L Page 64 of 198

PTN	3	MSS / 072	5613-M-3072 SH 2	5	Instr. Local	Flow Element (FE), Flow Indication (FI), Temporary flow instrument (FX) 1/2", 3/8" tubing 2 locations: 1) 4" supply crosstie MSR A/B	Yes	None	Dead Leg	Protect	Ensure instrument and instrument lines are well insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of intrument tubing, valve, and port in proximity to active process line. Main line will be flowing and hot.	
PTN	3	MSS / 072	5613-M-3072 SH 2	5	Vents / Drains / Misc. Connections	misc drains upstream of steam traps	No	None	Dead Leg	Protect	Ensure drain and drain valve are well insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of drain piping and distance of valve to the active process line.	
						12", 10", 18" Piping						Main line likely to be warm with steam flow.	
PTN	3	MSS / 072	5613-M-3072 SH 2	6	Piping	Includes 10" hydraulic steam dump valves. Steam dump header to steam	Standby	Requied for Power Generation; Main Steam pressure boundary	adequate to prevent freezing.	None	None	steam flow through dump valve leakoffs keep line warm and prevent freezing.	
						dump valves, and discharge to condensers (x4)			insulated.			levels of the TB (partially enclosed.	
PTN	3	MSS / 072	5613-M-3072 SH 2	6	Vents / Drains / Misc. Connections	3/4" Drain (upstream of CV-3-2827)	No	Maintain Steam Boundary	Dead Leg	Protect	Ensure drain and drain valve are well insulated.	Evaluate length of drain piping and distance of valve to the active process line.	
						Size unknown - estimate 1" or 2"			Normal Steam flow			Steam dump valves closed during normal operation, but minimum	
PTN	3	MSS / 072	5613-M-3072 SH 2	7	Piping	Valve leakoff drain lines from steam dump valves to main	Yes	None	freezing.	None	None	prevent freezing.	
						condenser.			insulated.			levels of the TB (partially enclosed.	
PTN	3	MSS / 072	5613-M-3072 SH 2	8	Piping	Hydraulic oil lines for steam dump valve actuator.	Standby	None	Hydraulic oil likely has very low (below 0°F) freezing point. Freezing of valve hydraulics unlikely.	None	None	extreme outdoor conditions., likely in lower level of TB (partially enclosed), and close to condensers. Steam dump valve opening time is not critical to plant operation or safety function. No concern if hydraulic fluid is slightly more	
PTN	3	MSS / 072	5613-M-3072 SH 2	R A, B, C, ar	Heat Exchangers	MSR A, B, C, and D	Yes	Requied for Power Generation; Main Steam pressure boundary	Normal Steam flow adequate to prevent freezing.	None	None	Inspect during walkdown, expect MSR is fully insulated.	
PTN	3	MSS / 072	5613-M-3072 SH 2	R A, B, C, ar	Instr. Control / Protection	Temperature Element (TE), temperature measurement is used as input into temperature control valve on "timing loop" (MSR steam inlet)	Yes	Requied for Power Generation; Main Steam pressure boundary	Dead Leg	Protect	Ensure temperature element is insulated.	Inspect during walkdown, expect MSR is fully insulated. Ensure temperature element is insulated. MSR will be hot, and no susceptible to freezing.	
PTN	3	MSS / 072	5613-M-3072 SH 3	1	Piping	1" instrument air piping, and MSIV valve hold open components	Standby	TS 3.7.1.5 - Each MSIV shall be operable (24hr LCO)	Instrument air lines will not freeze/fail	None	None	No components on this drawing are susceptible to moisture accumulation and freezing. Inst Air lines (dry air) MSIV body and valve stem - warm due to flowing steam	
PTN	3	COND / 073	5613-M-3073, Sh. 1	1	Piping	20" & 30" condensate suction Piping, pumps A. B. C	Yes	Required for power generation	Normally flowing	None	None		
PTN	3	COND / 073	5613-M-3073, Sh. 1	1	Vents / Drains / Misc. Connections	manual vent, drain lines	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
PTN	3	COND / 073	5613-M-3073, Sh. 1	1	Instr. Local	suction pressure gages	Yes	N/A	Dead Leg	Protect	Insulate and heat trace.		
PTN	3	COND / 073	5613-M-3073, Sh. 1		Relief Valves	relief valve	No	N/A	None	None	None		
PTN	3	COND / 073	5613-M-3073, Sh. 1	2	Piping	pump seals	Yes	Required for power generation	Normally flowing	None	None Insulate and heat trace		
PTN	3	COND / 073	5613-M-3073, Sh. 1	2	Vents / Drains / Misc. Connections	manual drains	No	N/A	Dead Leg	Protect	mounted the field thate.		
PTN	3	COND / 073	5613-M-3073, Sh. 1	2	Strainers	condensate pump seal supply strainers	Yes	Required for power generation	None	None	None	Normally flowing	
PTN	3	COND / 073	5613-M-3073, Sh. 1	2	Instr. Local	condensate pump seal supply pressure gages	Yes	N/A	Dead Leg	Protect	Insulate and heat trace.		
PTN	3	COND / 073	5613-M-3073, Sh. 1	3	Piping	18", 20" & 24" condensate discharge piping,	Yes	Required for power generation	None	None	None: lines normally flowing		
PTN	3	COND / 073	5613-M-3073, Sh. 1	3	Instr. Annunciation / Indication	Condensate Pumps discharge line flow transmitter / indication	Yes	Required for power generation	Condensate flow control and annunciation in control room	Protect	Insulate and heat trace flow transmitter sensing lines		
	PTN	PTN 3	PTN 3 MSS/072 PTN 3 COND/073 PTN 3 COND/073	PTN 3 MSS / 072 5613-M-3072 SH 2 PTN 3 COND / 073 5613-M-3073, Sh . 1 PTN 3 COND / 073 5613-M-3073, Sh . 1 PTN 3 COND / 073 5613-M-3073, Sh . 1 PTN 3 COND / 073 5613-M-3073, Sh . 1 PTN 3 COND / 073 5613-M-3073, Sh . 1 PTN 3 COND / 073 5613-M-3073, Sh . 1 PTN 3 COND / 073 5613-M-3073, Sh . 1 PTN 3 COND / 073 5613-M-3073, Sh . 1 PTN 3 COND / 073 561	PTN 3 MSS / 072 5613-M-3072 SH 2 5 PTN 3 MSS / 072 5613-M-3072 SH 2 6 PTN 3 MSS / 072 5613-M-3072 SH 2 6 PTN 3 MSS / 072 5613-M-3072 SH 2 7 PTN 3 MSS / 072 5613-M-3072 SH 2 8 PTN 3 MSS / 072 5613-M-3072 SH 2 RA, B, C, at PTN 3 MSS / 072 5613-M-3072 SH 2 RA, B, C, at PTN 3 MSS / 072 5613-M-3072 SH 3 1 PTN 3 COND / 073 5613-M-3073, Sh 1 1 PTN 3 COND / 073 5613-M-3073, Sh 1 1 PTN 3 COND / 073 5613-M-3073, Sh 1 1 PTN 3 COND / 073 5613-M-3073, Sh 1 2 PTN 3 COND / 073 5613-M-3073, Sh 1 2 PTN 3 COND / 073 5613-M-3073, Sh 1 2 PTN 3 CON	PTN 3 MSS / 072 5613-M-3072 SH 2 5 Vents / Drains / Misc. Connections PTN 3 MSS / 072 5613-M-3072 SH 2 6 Plping PTN 3 MSS / 072 5613-M-3072 SH 2 6 Vents / Drains / Misc. Connections PTN 3 MSS / 072 5613-M-3072 SH 2 7 Plping PTN 3 MSS / 072 5613-M-3072 SH 2 8 Piping PTN 3 MSS / 072 5613-M-3072 SH 2 8.A, B, C, at Heat Exchangers PTN 3 MSS / 072 5613-M-3072 SH 2 8.A, B, C, at Instr. Control / Protection PTN 3 MSS / 072 5613-M-3072 SH 3 1 Piping PTN 3 COND / 073 5613-M-3073, Sh. 1 1 Piping PTN 3 COND / 073 5613-M-3073, Sh. 1 1 Piping PTN 3 COND / 073 5613-M-3073, Sh. 1 1 Relief Valves PTN 3 COND / 073 5613-M-3073, Sh. 1	PTN 3 MSS / 072 5613-M-3072 SH 2 5 Instr. Local 1/2*, 3/8* tubing 2 locations: 1,14* supply prossise MSR A/B 2,10* actions: 1,14* supply actions: 1,14	PTIN 3	PTN 3	Fire	Property Property	Part	Part

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 198 of 488

R21002, Rev 0 Attachment L Page 65 of 198

														F
11	PTN	3	COND / 073	5613-M-3073, Sh. 1	3	Vents / Drains / Misc. Connections	Manual drains	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
12	PTN	3	COND / 073	5613-M-3073, Sh. 1	3	Vents / Drains / Misc. Connections	Manual vents	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
13	PTN	3	COND / 073	5613-M-3073, Sh. 1	3	Vents / Drains / Misc. Connections	bypass/warmup valves around main isolation gate valves (x3)	No	N/A	A break at the bypass valves could compromise operating condensate header	Protect	Insulate and heat trace Alternative: routing through warm regions of the TB or proximity of isolation valve to flowing condensate header may preclude freezing		
14	PTN	3	COND / 073	5613-M-3073, Sh. 1	3	Instr. Local	local condensate pump discharge pressure instruments	Yes	N/A	Dead Leg	Protect	Insulate and heat trace.		
15	PTN	3	COND / 073	5613-M-3073, Sh. 1	4	Piping	2" condensate pump casing vent return to hotwell	Yes	N/A	Normally flowing	None	None		
16	PTN	3	COND / 073	5613-M-3073, Sh. 1	5	Piping	10" condensate pump recirc lines upstream of normally closed isolation	No	N/A	Break in these legs could compromise operating condensate header (upstream side of isolation valve) or condenser vacuum (downstream side)	Protect	Insulate, 2" Alternative: location in warm regions of the TB may preclude the need to protect	Condensate lines are likely insulated already	
17	PTN	3	COND / 073	5613-M-3073, Sh. 1	5	Instr. Annunciation / Indication	Condensate Pumps recirc. line flow transmitter / indication	Standby	N/A	Dead Leg	Protect	Insulate and heat trace.		
18	PTN	3	COND / 073	5613-M-3073, Sh. 1	5	Vents / Drains / Misc. Connections	Manual drains	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
19	PTN	3	COND / 073	5613-M-3073, Sh. 1	5	Vents / Drains / Misc. Connections	Manual vents	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
20	PTN	3	COND / 073	5613-M-3073, Sh. 1	6	Piping	1/2" & 1/4" condensate header sample lines	No	N/A	Breaks in these legs could compromise operating condensate header and preclude sampling capability	Protect	Insulate and heat trace Alternative 1: location in warm regions of the TB may preclude the need to protect Alternative 2: maintain trickle flow to sampling panel		
21	PTN	3	COND / 073	5613-M-3073, Sh. 1	6	Instr. Local	local condensate discharge sample line pressure instruments	Yes	N/A	Dead Leg	Protect	Insulate and heat trace.		
22	PTN	3	COND / 073	5613-M-3073, Sh. 1	7	Piping	1" condensate pump seal supply from condensate header	Yes	Required for power generation	None	None	None: lines normally flowing		
23	PTN	3	COND / 073	5613-M-3073, Sh. 1	8	Piping	1/4", 1/2", & 1" hotwell sample pumps seal supply from condensate storage & condensate header	No	N/A	Break in this dead leg could compromise operating condensate header, CST inventory, and preclude sample pump operation.	Protect	Insulate and heat trace Alternative: routing through warm regions of the TB may preclude the need to heat trace		
24	PTN	3	COND / 073	5613-M-3073, Sh. 1	9	Piping	2" LP turbine steam exhaust hood spray	No	N/A	Breaks in this line could compromise operating condensate header or condenser vacuum.	Protect	Insulate and heat trace Alternative: location in warm regions of the TB may preclude the need to insulate		
25	PTN	3	COND / 073	5613-M-3073, Sh. 1	10	Piping	3/8" & 1/2" loop seal fill line	No	N/A	Breaks in this line could compromise operating condensate header or condenser vacuum.	Protect	Insulate and heat trace Alternative: location in warm regions of the TB may preclude the need to insulate		
26	PTN	3	COND / 073	5613-M-3073, Sh. 2	1	Piping	24" condensate line from the main condensate header to the LP heaters	Yes	Required for power generation	Normally flowing	None	None		
27	PTN	3	COND / 073	5613-M-3073, Sh. 2	1	Vents / Drains / Misc. Connections	manual vent, drain lines	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
28	PTN	3	COND / 073	5613-M-3073, Sh. 2	1	Instr. Local	temperature & pressure gages	Yes	N/A	Dead Leg	Protect	Insulate and heat trace.		
29	PTN	3	COND / 073	5613-M-3073, Sh. 2	1	Instr. Annunciation / Indication	Condensate line flow transmitter / indication	Yes	Required for power generation	Condensate flow control and annunciation in control room	Protect	Insulate and heat trace flow transmitter sensing lines		
30	PTN	3	COND / 073	5613-M-3073, Sh. 2	2	Piping	16" condensate line from heater drains to LP heaters bypass and FW pump discharge	Yes	Required for power generation	Normally flowing	None	None		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 199 of 488

R21002, Rev 0 Attachment L Page 66 of 198

														Г
31	PTN	3	COND / 073	5613-M-3073, Sh. 2	3	Piping	14" condensate bypass line to LP heaters bypass and FW pump discharge	No	N/A	Breaks in this line could compromise operating condensate header or condenser vacuum.	Protect	Insulate and heat trace Alternative: location in warm regions of the TB may preclude the need to insulate		
32	PTN	3	COND / 073	5613-M-3073, Sh. 2	3	Vents / Drains / Misc. Connections	manual drain lines	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
33	PTN	3	COND / 073	5613-M-3073, Sh. 2	4	Piping	2" condensate line for surge tank makeup	No	N/A	Breaks in this line could compromise operating condensate header .	Protect	Insulate and heat trace Alternative: location in warm regions of the TB may preclude the need to insulate		
34	PTN	3	COND / 073	5613-M-3073, Sh. 2	5	Piping	2" condensate line to desuperheater valve (abandoned) and chem. Addition	No	N/A	Breaks in this line could compromise operating condensate header .	Protect	Insulate and heat trace Alternative: location in warm regions of the TB may preclude the need to insulate		
35	PTN	3	COND / 073	5613-M-3073, Sh. 2	6	Piping	1/2" condensate line from CST	No	N/A	Breaks in this line could compromise operating condensate header .	Protect	Insulate and heat trace Alternative: location in warm regions of the TB may preclude the need to insulate		
36	PTN	3	COND / 073	5613-M-3073, Sh. 2	7	Piping	6" wet layup line	No	N/A	Breaks in this line could compromise operating condensate header .	1	Insulate and heat trace Alternative: location in warm regions of the TB may preclude the need to insulate		
37	PTN	3	COND / 073	5613-M-3073, Sh. 2	8	Piping	4" condensate line to discharge canal	No	N/A	Breaks in this line could compromise operating condensate header .	Protect	Insulate and heat trace Alternative: location in warm regions of the TB may preclude the need to insulate	Entire line is outside the TB. A portion of the line is buried.	
38	PTN	3	COND / 073	5613-M-3073, Sh. 2	8	Vents / Drains / Misc. Connections	manual drain lines	No	N/A	Dead Leg	Protect	Insulate and heat trace.	Entire line is outside the TB.	
39	PTN	3	COND / 073	5613-M-3073, Sh. 2	9	Piping	4" condensate line to heater drain pump suction	No	N/A	Breaks in this line could compromise operating condensate header .	Protect	Insulate and heat trace Alternative: location in warm regions of the TB may preclude the need to insulate		
40	PTN	3	COND / 073	5613-M-3073, Sh. 2	10	Piping	14" condensate line through the gland steam condenser	Yes	Required for power generation	Normally flowing	None	None		
41	PTN	3	COND / 073	5613-M-3073, Sh. 2	10	Vents / Drains / Misc. Connections	manual drain lines	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
42	PTN	3	COND / 073	5613-M-3073, Sh. 2	11	Piping	6" & 18" condensate line to DWST	No	N/A	Breaks in this line could compromise operating condensate header .	Protect	Insulate and heat trace Alternative: location in warm regions of the TB may preclude the need to insulate		
43	PTN	3	COND / 073	5613-M-3073, Sh. 2	11	Vents / Drains / Misc. Connections	manual drain lines	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
44	PTN	3	COND / 073	5613-M-3073, Sh. 2	11	Instr. Local	pressure gage	Yes	N/A	Dead Leg	Protect	Insulate and heat trace.		
45	PTN	3	COND / 073	5613-M-3073, Sh. 2	12	Piping	4" condensate line to FW pump seals	Yes	Required for power generation	Normally flowing	None	None		
46	PTN	3	COND / 073	5613-M-3073, Sh. 2	13	Piping	10" condensate line to condenser	Yes	Required for power generation	Normally flowing	None	None		
47	PTN	3	COND / 073	5613-M-3073, Sh. 2	13	Instr. Annunciation / Indication	Condensate line flow transmitter / indication	Yes	Required for power generation	Condensate flow control and annunciation in control room	Protect	Insulate and heat trace flow transmitter sensing lines		
48	PTN	3	COND / 073	5613-M-3073, Sh. 2	13	Piping	8" control valve bypass	No	N/A	Breaks in this line could compromise operating condensate header .	Protect	Insulate and heat trace Alternative: location in warm regions of the TB may preclude the need to insulate		
49	PTN	3	COND / 073	5613-M-3073, Sh. 2	14	Piping	1/2" chemical injection line	No	N/A	Breaks in this line could compromise operating condensate header .	Protect	Insulate and heat trace Alternative: location in warm regions of the TB may preclude the need to insulate		
50	PTN	3	COND / 073	5613-M-3073, Sh. 2	15	Piping	1/2" chemical injection line	No	N/A	Breaks in this line could compromise operating condensate header .	Protect	Insulate and heat trace Alternative: location in warm regions of the TB may preclude the need to insulate		
51	PTN	3	COND / 073	5613-M-3073, Sh. 2	16	Piping	18"SJAE condenser bypass line	No	N/A	Breaks in this line could compromise operating condensate header .	Protect	Insulate and heat trace Alternative: location in warm regions of the TB may preclude the need to insulate		
2	PTN	3	COND / 073	5613-M-3074, Sh. 2	1	Piping	8" & 10" AFW pumps supply	Yes	TS 3.7.1.3 - Cond Storage Tank min volume 210,000 gal. Action: Restore volume within 4 hrs, or attain HSB in 6 hrs.	Break in this line could compromise CST inventory and diminish AFW pump supply.	Protect	Insulate, 2" Alternative: location in warm regions of the TB may preclude the need to protect	Condensate lines are likely insulated already	

Florida Power & Light Company Docket No. 20220000-OT

Ten-Year Site Plan
Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 200 of 488

R21002, Rev 0 Attachment L Page 67 of 198

3	PTN	3	COND / 073	5613-M-3074, Sh. 2	1	Vents / Drains / Misc. Connections	manual vent	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
52	PTN	3	COND / 073	5613-M-3073, Sh. 3	1	Piping	24" main condensate header upstream of feed heaters	Yes	Required for power generation	None	None	None: lines normally flowing		
4	PTN	3	COND / 073	5613-M-3073, Sh. 3	2	Piping	4" & 10" condensate transfer pump suction	Standby	Required for power generation	Ensure availability of routine makeup water for power operation	Protect	Insulate and heat trace		
5	PTN	3	COND / 073	5613-M-3073, Sh. 3	2	Vents / Drains / Misc. Connections	Condensate Transfer pump vent	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
6	PTN	3	COND / 073	5613-M-3073, Sh. 3	2	Tank	chemical addition tank	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
53	PTN	3	COND / 073	5613-M-3073, Sh. 3	2	Piping	18" condensate through LP heaters 1A, 2A, 3A, 4A, 5A	Yes	Required for power generation	Normally flowing	None	None		
54	PTN	3	COND / 073	5613-M-3073, Sh. 3	2	Vents / Drains / Misc. Connections	Manual drains	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
55	PTN	3	COND / 073	5613-M-3073, Sh. 3	2	Vents / Drains / Misc. Connections	Manual vents	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
56	PTN	3	COND / 073	5613-M-3073, Sh. 3	2	Vents / Drains / Misc. Connections	Pressure test connections	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
57	PTN	3	COND / 073	5613-M-3073, Sh. 3	2	Relief Valves	LP heater condensate side relief valves	Yes	N/A	Dead Leg	Protect	Insulate and heat trace.	Relief valve not required at power	
7	PTN	3	COND / 073	5613-M-3073, Sh. 3	3	Piping	6" condensate transfer pump discharge piping	Standby	Required for power generation	Ensure availability of routine makeup water for power operation	Protect	Insulate and heat trace		
8	PTN	3	COND / 073	5613-M-3073, Sh. 3	3	Instr. Local	Condensate Transfer pump discharge pressure PI	Yes	N/A	Dead Leg	Protect	Insulate and heat trace.		
9	PTN	3	COND / 073	5613-M-3073, Sh. 3	3	Piping	6" crosstie with Unit 4 condensate transfer	No	N/A	Dead Leg	Protect	Insulate and heat trace.	Line normally isolated from header.	
58	PTN	3	COND / 073	5613-M-3073, Sh. 3	3	Piping	18" condensate through LP heaters 1B, 2B, 3B, 4B, 5B	Yes	Required for power generation	Normally flowing	None	None		
59	PTN	3	COND / 073	5613-M-3073, Sh. 3	3	Vents / Drains / Misc. Connections	Manual drains	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
60	PTN	3	COND / 073	5613-M-3073, Sh. 3	3	Vents / Drains / Misc. Connections	Manual vents	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
61	PTN	3	COND / 073	5613-M-3073, Sh. 3	3	Vents / Drains / Misc. Connections	Pressure test connections	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
62	PTN	3	COND / 073	5613-M-3073, Sh. 3	3	Relief Valves	LP heater condensate side relief valves	Yes	N/A	Dead Leg	Protect	Insulate and heat trace.	Relief valve not required at power	
10	PTN	3	COND / 073	5613-M-3073, Sh. 3	4	Piping	1" condensate pump seal supply from condensate header	Yes	Required for power generation	None	None	None: lines normally flowing		
63	PTN	3	COND / 073	5613-M-3073, Sh. 3	4	Piping	14" FWH 1A, 1B, 2A, 2B bypass	No	N/A	Break in this line could compromise main condensate supply line	Mitigate	Insulate, 1" Alternative: routing through warm regions of the TB may preclude the need to insulate	This line should already be insulated, so protection should be limited to verifying insulation is installed / intact.	
11	PTN	3	COND / 073	5613-M-3073, Sh. 3	5	Piping	10" condensate reject to DWST	Standby	Required for power generation	Ensure availability of routine water storage for power operation	Protect	Insulate and heat trace		
64	PTN	3	COND / 073	5613-M-3073, Sh. 3	5	Piping	2" and 3" connection to wet layup system (condensate side of isolation)	No	N/A	Break in this leg could compromise operating condensate header	Protect	Insulate and heat trace, up through first isolation valve Alternative: routing through warm regions of the TB may preclude the need to insulate		
12	PTN	3	COND / 073	5613-M-3073, Sh. 3	6	Piping	3" condensate recovery return	Standby	Required for power generation	Ensure availability of routine water storage for power operation	Protect	Insulate and heat trace		
65	PTN	3	COND / 073	5613-M-3073, Sh. 3	6	Piping	14" bypass lines around LP htrs 3A, 3B, 4A, 4B, 5A, and 5B	No	N/A	Break in these leg could compromise operating feedwater header		The regions of the TB or proximity of isolation valve to flowing condensate header may preclude freezing	This line should already be insulated, so protection should be limited to verifying insulation is installed / intact.	
66	PTN	3	COND / 073	5613-M-3073, Sh. 3	6	Vents / Drains / Misc. Connections	Manual drains	No	N/A	Dead Leg	Protect	Insulate and heat trace.		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 201 of 488

R21002, Rev 0 Attachment L Page 68 of 198

														F
67	PTN	3	COND / 073	5613-M-3073, Sh. 3	6	Vents / Drains / Misc. Connections	Manual vents	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
13	PTN	3	COND / 073	5613-M-3073, Sh. 3	7	Piping	6" condensate return	Standby	Required for power generation	Ensure availability of routine water storage for power operation	Protect	Insulate and heat trace		
68	PTN	3	COND / 073	5613-M-3073, Sh. 3	7	Piping	12" and 16" heater drain tank pump discharge line	Yes	Required for power generation	Normally flowing	None	None		
14	PTN	3	COND / 073	5613-M-3073, Sh. 3	8	Piping	2" surge tank supply and EDG cooling water makeup	No	N/A	Dead Leg	Protect	Insulate and heat trace.	Line normally isolated from header.	
15	PTN	3	COND / 073	5613-M-3073, Sh. 3	8	Vents / Drains / Misc. Connections	Manual drains	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
16	PTN	3	COND / 073	5613-M-3073, Sh. 3	9	Piping	1/2"condensate system supply	No	N/A	Dead Leg	Protect	Insulate and heat trace.	Line normally isolated from header.	
17	PTN	3	COND / 073	5613-M-3073, Sh. 3	10	Piping	2" alternate surge tank supply and EDG cooling water makeup from Unit 4	Standby	Required for power generation	Ensure availability of CST supply from Unit 4	Protect	Insulate and heat trace		
18	PTN	3	COND / 073	5613-M-3073, Sh. 3	11	Piping	4" & 6" supply to chemical feed and wet layup	No	N/A	Break in this dead leg could compromise CST inventory.	Protect	Insulate and heat trace		
19	PTN	3	COND / 073	5613-M-3073, Sh. 3	12	Piping	6" primary water makeup supply to CST	Yes	N/A	Break in this dead leg could compromise CST inventory.	Protect	Insulate and heat trace		
20	PTN	3	COND / 073	5613-M-3073, Sh. 3	12	Instr. Local	flow indicator	Yes	N/A	Dead Leg	Protect	Insulate and heat trace.		
21	PTN	3	COND / 073	5613-M-3073, Sh. 3	13	Piping	4" flow indicator and control valve bypass line	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
22	PTN	3	COND / 073	5613-M-3073, Sh. 3	14	Piping	2 1/2" AFW Pump recirc line	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
23	PTN	3	COND / 073	5613-M-3073, Sh. 3	15	Piping	2" and 8" CST overflow line to drain	Yes	Required for power generation	None	None	None: lines normally empty		
24	PTN	3	COND / 073	5613-M-3073, Sh. 3	16	Piping	4" CST drain	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
25	PTN	3	COND / 073	5613-M-3073, Sh. 3	16	Piping	1/2" Flex connection	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
26	PTN	3	COND / 073	5613-M-3073, Sh. 3	17	Instr. Control / Protection	CST level switch for CST makeup CV	Yes	TS 3.7.1.3 - Cond Storage Tank min volume 210,000 gal. Action: Restore volume within 4 hrs, or attain HSB in 6 hrs.	Maintain aux feedwater injection capability after reactor trip for sufficient duration to achieve cold shutdown.	Protect	Insulate / Heat trace.		
27	PTN	3	COND / 073	5613-M-3073, Sh. 3	17	Vents / Drains / Misc. Connections	manual drain lines	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
28	PTN	3	COND / 073	5613-M-3073, Sh. 3	17	Piping	1" level switch piping	Yes	N/A	Dead Leg	Protect	Insulate and heat trace.		
29	PTN	3	COND / 073	5613-M-3073, Sh. 3	18	Instr. Annunciation / Indication	CST level transmitter / indication	Yes	T5 3.7.1.3 - Cond Storage Tank min volume 210,000 gal. Action: Restore volume within 4 hrs, or attain HSB in 6 hrs.	Maintain aux feedwater injection capability after reactor trip for sufficient duration to achieve cold shutdown.	Protect	Insulate / Heat trace.		
30	PTN	3	COND / 073	5613-M-3073, Sh. 3	18	Vents / Drains / Misc. Connections	manual vents, drains and test connections	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
31	PTN	3	COND / 073	5613-M-3073, Sh. 3	18	Piping	3/8", 1", & 3" level transmitter piping	Yes	N/A	Dead Leg	Protect	Insulate and heat trace.		
32	PTN	3	COND / 073	5613-M-3073, Sh. 3	19	Piping	6" condensate supply to feedwater system	No	N/A	Breaks in this line could compromise operating feedwater header .	Protect	Insulate and heat trace	Line normally isolated from header.	
1	PTN	3	FWS / 074	5613-M-3074, Sh. 1	1	Piping	14" & 20" FW pump suction line	Yes	Required for power generation	Normally flowing	None	None		
2	PTN	3	FWS / 074	5613-M-3074, Sh. 1	1	Instr. Local	Feed pump suction local pressure gages	Yes	N/A	Dead Leg	Protect	Insulate and heat trace.		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 202 of 488

R21002, Rev 0 Attachment L Page 69 of 198

														F
3	PTN	3	FWS / 074	5613-M-3074, Sh. 1	1	Vents / Drains / Misc. Connections	Manual vents & drains	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
4	PTN	3	FWS / 074	5613-M-3074, Sh. 1	1	Instr. Control / Protection	Feedwater suction line pressure transmitters	Yes	Required for power generation	Feedwater suction pressure signal to DCS	Protect	Insulate and heat trace pressure transmitter sensing line		
5	PTN	3	FWS / 074	5613-M-3074, Sh. 1	1	Instr. Control / Protection	Feedwater suction line flow transmitters	Yes	Required for power generation	Feedwater suction flow signal to ADC	Protect	insulate and heat trace flow transmitter sensing lines		
6	PTN	3	FWS / 074	5613-M-3074, Sh. 1	2	Piping	18" FW pump discharge	Yes	Required for power generation	Normally flowing	None	None		
7	PTN	3	FWS / 074	5613-M-3074, Sh. 1	2	Instr. Control / Protection	Feed pump discharge pressure transmitter to recirc. CV	Yes	N/A	Feedwater discharge pressure signal to ADC	Protect	Insulate and heat trace.		
8	PTN	3	FWS / 074	5613-M-3074, Sh. 1	2	Motor Operator Valve	Feed pump discharge isolation MOVs	Yes	Close on SIAS	Normally open with process fluid flowing	None	None	Include with global freeze evaluation for MOVs	
9	PTN	3	FWS / 074	5613-M-3074, Sh. 1	2	Piping	14" FW pump discharge crosstie	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
10	PTN	3	FWS / 074	5613-M-3074, Sh. 1	3	Piping	8" FW recirc line back to FW pump suction	Standby	N/A	Break in this leg could compromise operating feedwater header	Protect		This line should already be insulated, so protection should be limited to verifying insulation is installed / intact.	
11	PTN	3	FWS / 074	5613-M-3074, Sh. 1	3	Instr. Control / Protection	Recirc line flow transmitter	Standby	N/A	Feedwater recirc. flow signal to ADC	Protect	insulate and heat trace flow transmitters		
12	PTN	3	FWS / 074	5613-M-3074, Sh. 1	3	Vents / Drains / Misc. Connections	Manual vents & drains	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
13	PTN	3	FWS / 074	5613-M-3074, Sh. 1	4	Piping	6" & 8" FW recirc line back to condenser	Standby	N/A	Break in this leg could compromise operating feedwater line or condenser vacuum	Protect	Insulate, 1" (see remarks) Alternative: Pipe geometry may result in this line being normally drained of liquid.	This line should already be insulated, so protection should be limited to verifying insulation is installed / intact.	
14	PTN	3	FWS / 074	5613-M-3074, Sh. 1	4	Instr. Control / Protection	Recirc line flow transmitter	Standby	N/A	Feedwater recirc. flow signal to ADC	Protect	insulate and heat trace flow transmitters		
15	PTN	3	FWS / 074	5613-M-3074, Sh. 1	4	Vents / Drains / Misc. Connections	Manual drains	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
16	PTN	3	FWS / 074	5613-M-3074, Sh. 1	4	Vents / Drains / Misc. Connections	Manual vents	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
17	PTN	3	FWS / 074	5613-M-3074, Sh. 1	5	Piping	14" line from heater drain system	No	N/A	Break in this leg could compromise operating feedwater line	Protect		This line should already be insulated, so protection should be limited to verifying insulation is installed / intact.	
18	PTN	3	FWS / 074	5613-M-3074, Sh. 2	1	Piping	18" & 24" FW pump discharge to HP FWH	Yes	Required for power generation	Normally flowing	None	None	All FW pump lube oil lines assumed to be impervious to freezing effects.	
19	PTN	3	FWS / 074	5613-M-3074, Sh. 2	1	Vents / Drains / Misc. Connections	Manual vents & drains	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
20	PTN	3	FWS / 074	5613-M-3074, Sh. 2	1	Vents / Drains / Misc. Connections	Bypass/warmup valves around FWH 3-way valves	No	N/A	A break at the bypass valves could compromise operating FW header	Protect	Insulate and heat trace		
21	PTN	3	FWS / 074	5613-M-3074, Sh. 2	1	Instr. Local	Pressure & temperature indication	Yes	N/A	Dead Leg	Protect	Insulate and heat trace.		
22	PTN	3	FWS / 074	5613-M-3074, Sh. 2	2	Piping	18" & 24" feedwater bypass around HP heaters 6A/6B	No	N/A	Break in this leg could compromise operating feedwater header	Protect		This line should already be insulated, so protection should be limited to verifying insulation is installed / intact.	
23	PTN	3	FWS / 074	5613-M-3074, Sh. 2	3	Piping	FW pump lube oil cooler cooling water	Yes	Required for power generation	Normally flowing	None	None		
24	PTN	3	FWS / 074	5613-M-3074, Sh. 2	4	Piping	12" branch line off main FW header	No	N/A	Break in this leg could compromise operating feedwater header	Protect	Insulate and heat trace		
25	PTN	3	FWS / 074	5613-M-3074, Sh. 2	4	Vents / Drains / Misc. Connections	Manual vents & drains	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
26	PTN	3	FWS / 074	5613-M-3074, Sh. 2	5	Piping	10" line to the condenser	No	N/A	Dead Leg	Protect		This line should already be insulated, so protection should be limited to verifying insulation is installed / intact.	
27	PTN	3	FWS / 074	5613-M-3074, Sh. 2	6	Piping	10" line to the condenser	No	N/A	Dead Leg	Protect		This line should already be insulated, so protection should be limited to verifying insulation is installed / intact.	
28	PTN	3	FWS / 074	5613-M-3074, Sh. 2	7	Piping	6" line to wet layup	No	N/A	Dead Leg	Protect	Insulate and heat trace.		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 203 of 488

R21002, Rev 0 Attachment L Page 70 of 198

29	PTN	3	FWS / 074	5613-M-3074, Sh. 2	8	Piping	10" line to circ water and the discharge canal	No	N/A	Dead Leg	Protect	Insulate and heat trace.	This line should already be insulated, so protection should be limited to verifying insulation is installed / intact.	
30	PTN	3	FWS / 074	5613-M-3074, Sh. 2	8	Vents / Drains / Misc. Connections	Manual vents & drains	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
31	PTN	3	FWS / 074	5613-M-3074, Sh. 2	9	Piping	4" FW pump seal water return	Yes	N/A	Normally flowing	None	None		
32	PTN	3	FWS / 074	5613-M-3074, Sh. 2	9	Vents / Drains / Misc. Connections	Manual vents	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
33	PTN	3	FWS / 074	5613-M-3074, Sh. 2	9	Instr. Local	Temperature indication	Yes	N/A	Dead Leg	Protect	Insulate and heat trace.		
34	PTN	3	FWS / 074	5613-M-3074, Sh. 2	9	Tank	FW Pump seal water tank	Yes	N/A	Normally flowing	None	None		
35	PTN	3	FWS / 074	5613-M-3074, Sh. 2	10	Piping	2", 3" & 4" FW pump seal water supply	Yes	N/A	Normally flowing	None	None		
36	PTN	3	FWS / 074	5613-M-3074, Sh. 2	10	Vents / Drains / Misc. Connections	Manual drains	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
37	PTN	3	FWS / 074	5613-M-3074, Sh. 2	10	Instr. Local	Pressure & diff. pressure indication	Yes	N/A	Dead Leg	Protect	Insulate and heat trace.		
38	PTN	3	FWS / 074	5613-M-3074, Sh. 2	11	Piping	2" & 3" FW pump seal water return to heater drain tank	Yes	N/A	Normally flowing	None	None		
39	PTN	3	FWS / 074	5613-M-3074, Sh. 2	11	Instr. Local	Pressure & temperature indication	Yes	N/A	Dead Leg	Protect	Insulate and heat trace.		
40	PTN	3	FWS / 074	5613-M-3074, Sh. 2	11	Vents / Drains / Misc. Connections	Manual vents & drains	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
41	PTN	3	FWS / 074	5613-M-3074, Sh. 2	11	Piping	3" CV bypass line	No	N/A	Break in this leg could compromise FW pump operation	Protect	Insulate and heat trace.		
42	PTN	3	FWS / 074	5613-M-3074, Sh. 2	12	Piping	3" FW pump seal water crosstie line	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
43	PTN	3	FWS / 074	5613-M-3074, Sh. 2	13	Piping	3" & 4" seal water tank level control line to the condenserFW pump seal water crosstie line	Yes	N/A	Normally flowing	None	None		
44	PTN	3	FWS / 074	5613-M-3074, Sh. 2	13	Vents / Drains / Misc. Connections	Manual vents & drains	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
45	PTN	3	FWS / 074	5613-M-3074, Sh. 3	1	Piping	14" & 24" FW headers, including feed reg valves, LEFM and feed isolation valves	Yes	Required for power generation	Normally flowing	None	None		
46	PTN	3	FWS / 074	5613-M-3074, Sh. 3	1	Motor Operator Valve	motor-operated FRV isolation	No	N/A - not required to reposition for	Remains open	None	None		
			,				valve		normal or accident	· ·				
47	PTN	3	FWS / 074	5613-M-3074, Sh. 3	1	Instr. Control / Protection	LEFM pressure transmitters	Yes	Required for power generation	Ensure LEFM input to continuous calorimetric analysis	c Protect	insulate and heat trace LEFM pressure transmitter sensing lines		
48	PTN	3	FWS / 074	5613-M-3074, Sh. 3	1	Instr. Control / Protection	Venturi flow transmitters	Yes	N/A	backup to LEFM, input to DCS	Protect	insulate and heat trace venturi flow transmitters		
49	PTN	3	FWS / 074	5613-M-3074, Sh. 3	1	Instr. Annunciation / Indication	Feed header pressure control room indication	Yes	N/A	Preserve control room feedwater pressure indication	Protect	Insulate and heat trace pressure transmitter sensing lines		
50	PTN	3	FWS / 074	5613-M-3074, Sh. 3	2	Piping	6" line from condensate transfer pumps	No	N/A	A break in this line could compromise operating FW header	Protect	Insulate and heat trace		
51	PTN	3	FWS / 074	5613-M-3074, Sh. 3	3	Piping	6" FW motor-operated FRV bypass	No	N/A	Break in this leg could compromise operating feedwater header	Protect	Insulate and heat trace	This line should already be insulated, so protection should be limited to verifying insulation is installed / intact.	
52	PTN	3	FWS / 074	5613-M-3074, Sh. 3	4	Piping	4" AFW piping connected to main feed headers	Standby	T.S. 3.7.1.2 - All 3 AFW pumps and two independent flow paths to remain operable. Action: Allowable time to restore varies by equipment inoperable: -Restore to both flow paths within 72 hrs. -Restore to one flow path within 2 hrs. -Restore single steam driven pump: 4 hrs.	capability after reactor trip for sensible and decay heat removal to achieve cold shutdown	Protect	Insulate / Heat trace.	This line should already be insulated, so protection should be limited to verifying insulation is installed / intact.	
53	PTN	3	FWS / 074	5613-M-3074, Sh. 3	5	Piping	1/2" Piping (hydrazine injection)	Yes	N/A	Normally flowing	None	None		
54	PTN	3	FWS / 074	5613-M-3074, Sh. 3	6	Piping	2" line to/from wet layup	No	N/A	A break at the bypass valves could compromise operating FW header	Protect	Insulate and heat trace		
				1		I .	l .		1	I ve licauci		1		l .

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 204 of 488

R21002, Rev 0 Attachment L Page 71 of 198

55	PTN	3	FWS / 074	5613-M-3074, Sh. 4	1	Piping	6" blowdown piping	Yes	Required for power generation	Normally flowing	None	None		
56	PTN	3	FWS / 074	5613-M-3074, Sh. 4	1	Vents / Drains / Misc. Connections	3/4" test connections	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
57	PTN	3	FWS / 074	5613-M-3074, Sh. 4	1	Vents / Drains / Misc. Connections	3/4" manual vents	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
58	PTN	3	FWS / 074	5613-M-3074, Sh. 4	1	Instr. Control / Protection	Flow transmitters	Yes	N/A	Blowdown flow signal to ADC	Protect	Insulate and heat trace.		
59	PTN	3	FWS / 074	5613-M-3074, Sh. 4	1	Instr. Local	Temperature indication	Yes	N/A	Dead Leg	Protect	insulate and heat trace.		
60	PTN	3	FWS / 074	5613-M-3074, Sh. 4	1	Piping	3/4" & 2" CV bypass line	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
61	PTN	3	FWS / 074	5613-M-3074, Sh. 4	2	Tank	7250 gal. SG Blowdown Tank	Yes	N/A	Normally flowing, maintained at >350 F	None	None		
62	PTN	3	FWS / 074	5613-M-3074, Sh. 4	2	Piping	6", 8" & 14" Blowdown Tank relief lines	Yes	N/A	Dead Leg	Protect		This line should already be insulated, so protection should be limited to verifying insulation is installed / intact.	
63	PTN	3	FWS / 074	5613-M-3074, Sh. 4	2	Piping	8" & 10" Blowdown Tank relief valve discharge lines	No	N/A	Open to drain	None	None		
64	PTN	3	FWS / 074	5613-M-3074, Sh. 4	2	Instr. Control / Protection	Blowdown Tank level instrumentation lines	Yes	N/A	Dead Leg	Protect	Insulate and heat trace.		
65	PTN	3	FWS / 074	5613-M-3074, Sh. 4	3	Piping	6", 8", & 10" SG Blowdown Tank discharge line	Yes	N/A	Normally flowing	None	None		
66	PTN	3	FWS / 074	5613-M-3074, Sh. 4	3	Vents / Drains / Misc. Connections	Manual vents & drains	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
67	PTN	3	FWS / 074	5613-M-3074, Sh. 4	3	Piping	6" isolated abandoned HX line	No	N/A	Dead Leg	None	Insulate and heat trace.	This line should already be insulated, so protection should be limited to verifying insulation is installed / intact.	
68	PTN	3	FWS / 074	5613-M-3074, Sh. 4	3	Vents / Drains / Misc. Connections	Relief Valve	No	N/A	Dead Leg	Protect		This line should already be insulated, so protection should be limited to verifying insulation is installed / intact.	
69	PTN	3	FWS / 074	5613-M-3074, Sh. 4	3	Piping	10" isolated blind flanged line	No	N/A	Dead Leg	None		This line should already be insulated, so protection should be limited to verifying insulation is installed / intact.	
70	PTN	3	FWS / 074	5613-M-3074, Sh. 4	3	Instr. Local	Flow transmitter	Yes	N/A	Dead Leg	Protect	Insulate and heat trace.		
71	PTN	3	FWS / 074	5613-M-3074, Sh. 4	4	Piping	1 1/2" & 2" blowdown tank steam discharge to the condenser	No	N/A	Dead Leg	None	l .	This line should already be insulated, so protection should be limited to verifying insulation is installed / intact.	
72	PTN	3	FWS / 074	5613-M-3074, Sh. 4	4	Vents / Drains / Misc. Connections	Manual drains	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
73	PTN	3	FWS / 074	5613-M-3074, Sh. 4	4	Piping	3/4" strainer bypass	No	N/A	Dead Leg	None	Insulate and heat trace.		
74	PTN	3	FWS / 074	5613-M-3074, Sh. 4	5	Piping	12", 16", & 20" blowdown tank steam discharge to extraction steam	No	N/A	Dead Leg	None		This line should already be insulated, so protection should be limited to verifying insulation is installed / intact.	
75	PTN	3	FWS / 074	5613-M-3074, Sh. 4	5	Vents / Drains / Misc. Connections	Manual vents	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
76	PTN	3	FWS / 074	5613-M-3074, Sh. 4	6	Piping	1" SG Blowdown sample system return	Yes	N/A	Normally flowing	None	None		
77	PTN	3	FWS / 074	5613-M-3074, Sh. 4	7	Piping	2 1/2" waste holdup tank connection	No	N/A	Dead Leg	None	Insulate and heat trace.	This line should already be insulated, so protection should be limited to verifying insulation is installed / intact.	
78	PTN	3	FWS / 074	5613-M-3074, Sh. 4	8	Piping	2" wet layup line	No	N/A	Dead Leg	None	Insulate and heat trace.		
79	PTN	3	FWS / 074	5613-M-3074, Sh. 4	9	Piping	20" Blowdown Tank exhaust to atmosphere	No	N/A	Line is void of water due to open drain	None	None		
1	PTN	3	FWS / 074	5613-M-3074, Sh. 5	1	Instr. Control / Protection	LEFM pressure, flow and temperature transmitters + Pressure test points and Vent	Yes	Required for power generation	Ensure LEFM input to continuous calorimetric analysis	Protect	Heat Trace and Insulate LEFM insturment transmitter sensing lines.		
2	PTN	3	FWS / 074	5613-M-3074, Sh. 5	2	Instr. Control / Protection	Air and instrument electrical lines for FW Regulating Valve Positioners	Yes	Required for power generation	Ensure required air for FCV positioning	None		No protection required for the FW Reg VIv Positioners - fully controlled by instrument air and instrument electrical, which is not subject to freezing or adverse impact by cold weather.	
1	PTN	3	AFWS / 075	5613-M-3075 Sh 1	1	Piping	3" steam piping up to AFW pump start signal MOV	Yes	Tech Spec 3.7.1.2 requires 2 independent AFW trains including 3 steam supplies, 3 pumps and discharge flowpaths	Maintain AFW capability for decay heat removal	none		0-ONOP-103.2 acknowledges AFW is subject to cold weather and may require additional mitigation.	

Florida Power & Light Company Docket No. 20220000-OT

Ten-Year Site Plan
Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 205 of 488

R21002, Rev 0 Attachment L Page 72 of 198

													· ·
2	PTN	3	AFWS / 075	5613-M-3075 Sh 1	1	Vents / Drains / Misc. Connections	3/4" Test Connection	No	Tech Spec 3.7.1.2	AFW Pressure Boundary/dead leg	protect	Possible insulate / heat trace to maintain pressure boundary, depending on routing configuration and location.	0-ONOP-103.2 acknowledges AFW is subject to cold weather and may require additional mitigation.
3	PTN	3	AFWS / 075	5613-M-3075 Sh 1	1	Motor Operator Valve	MOVS from Main Steam to Steam Turbines, normally closed	No	Tech Spec 3.7.1.2	Maintain AFW capability for decay heat removal		Determine if MOV is susceptible to be adversely impacted by cold weather and if protection is required.	0-ONOP-103.2 acknowledges AFW is subject to cold weather and may require additional mitigation.
4	PTN	3	AFWS / 075	5613-m-3075 Sh 1	2	Piping	2", 1/2" steam drain trap piping	Yes	Tech Spec 3.7.1.2	Maintain AFW capability for decay heat removal	none	check insulated, piping maintained in standby, should provide sufficient heat, verifiy via walkdown	0-ONOP-103.2 acknowledges AFW is subject to cold weather and may require additional mitigation.
5	PTN	3	AFWS / 075	5613-m-3075 Sh 1	2	Vents / Drains / Misc. Connections	1" connection	No	Tech Spec 3.7.1.2	AFW Pressure Boundary/dead leg	protect	Possible insulate / heat trace to maintain pressure boundary, depending on routing configuration and location.	0-ONOP-103.2 acknowledges AFW is subject to cold weather and may require additional mitigation.
6	PTN	3	AFWS / 075	5613-m-3075 Sh 1	3	Piping	manual drain trap piping, 1/2"	Yes	Tech Spec 3.7.1.2	manually operated line, during normal system operation, extended length of line may be subject to freezing	Mitigate	Check insulation, check routing. May be candidate for operator blowdown or trickle flow.	0-ONOP-103.2 acknowledges AFW is subject to cold weather and may require additional mitigation.
7	PTN	3	AFWS / 075	5613-m-3075 Sh 1	4	Piping	4" steam piping, downstream of start signal MOV to AFW pump turbines	No	Tech Spec 3.7.1.2	Maintain AFW capability for decay heat removal	protect	Check if insuled and routing. Determine how much residual water can be held in the piping, if that would be subject to freezing. If already insulated and minimal amount of water could freeze in line, no additional protection required.	0-ONOP-103.2 acknowledges AFW is subject to cold weather and may require additional mitigation.
8	PTN	3	AFWS / 075	5613-m-3075 Sh 1	4	Vents / Drains / Misc. Connections	3/4" and 1/2" connections	No	Tech Spec 3.7.1.2	AFW Pressure Boundary/dead leg	protect	Check if insuled and routing. Determine how much residual water can be held in the piping, if that would be subject to freezing. If already insulated and minimal amount of water could freeze in line, no additional protection required.	0-ONOP-103.2 acknowledges AFW is subject to cold weather and may require additional mitigation.
9	PTN	3	AFWS / 075	5613-m-3075 Sh 1	5	Piping	1/2" steam drain trap downstream piping	Yes	None	-	none	No protection required, NNS piping	
10	PTN	3	AFWS / 075	5613-m-3075 Sh 1	6	Piping	1/2" bypass pipe, SR side	No	Tech Spec 3.7.1.2	AFW Pressure Boundary/dead leg	protect	Possible insulate / heat trace to maintain pressure boundary, depending on routing configuration and location.	0-ONOP-103.2 acknowledges AFW is subject to cold weather and may require additional mitigation.
11	PTN	3	AFWS / 075	5613-m-3075 Sh 1	7	Piping	1/2" bypass pipe, NNS side	No	None	-	none	No protection required, NNS piping	
12	PTN	3	AFWS / 075	5613-m-3075 Sh 1	8	Piping	4" & 6" piping from aux steam, NNS	No	None	-	none	No protection required, NNS piping	
13	PTN	3	AFWS / 075	5613-M-3075 Sh 2	1	Piping	4" and 6" AFW piping, up to control valve	No	Tech Spec 3.7.1.2 requires 2 independent AFW trains including 3 steam supplies, 3 pumps and discharge flowpaths	maintain AFW capability for decay heat removal	protect		0-ONOP-103.2 acknowledges AFW is subject to cold weather and may require additional mitigation.
14	PTN	3	AFWS / 075	5613-M-3075 Sh 2	1	Vents / Drains / Misc. Connections	3/4" Vent & 1" Connection	No	ITech Spec 3 7 1 2	AFW Pressure Boundary/dead leg	protect	Possible insulate / heat trace to maintain pressure boundary, depending on routing configuration and location.	0-ONOP-103.2 acknowledges AFW is subject to cold weather and may require additional mitigation.
15	PTN	3	AFWS / 075	5613-M-3075 Sh 2	2	Piping	4" AFW piping, downstream control valve	No	Tech Spec 3.7.1.2	maintain AFW capability for decay heat removal	protect	Possible insulate / heat trace to maintain full flow, depending on routing configuration and location.	0-ONOP-103.2 acknowledges AFW is subject to cold weather and may require additional mitigation.
16	PTN	3	AFWS / 075	5613-M-3075 Sh 2	3	Piping	1/2" and 3/8" tubing for air / N2 for AFW control valve positioner	No	Tech Spec 3.7.1.2		none	Air/N2 not susceptable to freezing.	N2 and air tubing for control of AFW flow. N2 and air not susceptable to freezing.
17	PTN	3	AFWS / 075	5613-M-3075 Sh 2	4	Instr. Control / Protection	1/2" tubing for AFW flow element / transmitter	No	Tech Spec 3.7.1.2	maintain AFW capability for decay heat removal	protect	Possible insulate / heat trace, depending on routing configuration and location.	0-ONOP-103.2 acknowledges AFW is subject to cold weather and may require additional mitigation.
18	PTN	3	AFWS / 075	5613-M-3075 Sh 3	1	Piping	N2 tubing and instrumentation	No			None		0-ONOP-103.2 acknowledges AFW is subject to cold weather and
1	PTN	3	SGWLU / 078	5613-M-3078, Sh. 1	1	Piping	1" Pipe up to normally closed	No	Primary Makeup Water System Pressure	Dead leg	None	No Protection Required	may require additional mitigation. No adverse impact to nunit operation or required TS action for heads in this raise.
2	PTN	3	SGWLU / 078	5613-M-3078, Sh. 1	2	Piping	valve SGWL-3-001 2" Pipe up to locked closed valves during normal operation SGWL-3-011, -031, -049	No	Boundary (NNS)	Dead leg	Protect	Options: 1. 4" Insulation to prevent >25% freezing for the piping 2. Heat Trace & Insulate	break in this pipe
3	PTN	3	SGWLU / 078	5613-M-3078, Sh. 1	3	Piping	1" Pipe up to normally closed valve SGWL-3-006	No	Nitrogen line (NNS)	Dead leg	None		Air line, not subject to freezing
4	PTN	3	SGWLU / 078	5613-M-3078, Sh. 1	4	Piping	2" Pipe up to locked closed valves during normal operation SGWL-3- 007, -025, -042	No	FW System Pressure Boundary (SR)	Dead leg	Protect	Options: 1. 4" Insulation to prevent >25% freezing for the piping 2. Heat Trace & Insulate	
5	PTN	3	SGWLU / 078	5613-M-3078, Sh. 1	5	Piping	3/4" Pipe to SGWL-3-022, -028, -	No	FW System Pressure Boundary (SR)	Dead leg	Protect	Heat Trace & Insulate	
6	PTN	3	SGWLU / 078	5613-M-3078, Sh. 1	6	Piping	IA to PICs		IA Pressure Boundary	Dead leg	None	No Protection Required	Air line, not subject to freezing
7	PTN	3	SGWLU / 078	5613-M-3078, Sh. 1	-		-		-	-		-	The SG Wet Layup System is used during RFO conditions only. Equipment is isolated during normal operation via closed valves and spectacle flanges. Segments connected to other systems up to isolation points are evaluated, but everything inside the isolation points for the SGWL System are not evaluated.

Florida Power & Light Company Docket No. 20220000-OT

Ten-Year Site Plan
Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 206 of 488

R21002, Rev 0 Attachment L Page 73 of 198

1	PTN	3	080	5613-M-3080 SH 1	1	Piping	3" piping from gland seal condenser drain	Yes	None	Not required for Power operation; no safety function	None	None	Gland steam condenser and condenser receiver are located on ground floor of TB (partially enclosed). A break in this line should not effect power operation, since the condensate collected is ultimately dumped to waste drains.	
2	PTN	3	080	5613-M-3080 SH 1	2	Piping	1" piping from LP Turbine South gland seal exhaust drain loop seals.	Yes	None	Not required for Power operation; no safety function	None	None	Gland steam condenser and condenser receiver are located on ground floor of TB (partially enclosed). A break in this line should not effect power operation, since the condensate collected is ultimately dumped to waste drains.	
3	PTN	3	080	5613-M-3080 SH 1	3	Piping	2", 3" piping, check valve, reducer Gland Steam Condenser Drain Pump (Gland Steam Condenser Receiver to Condensate Recovery Tank)	Standby	None	Not required for Power operation; no safety function	None	None	Gland steam condenser and condenser receiver are located on ground floor of TB (partially enclosed). A break in this line should not effect power operation, since the condensate collected is ultimately dumped to waste drains.	
4	PTN	3	080	5613-M-3080 SH 1	3	Instr. Control / Protection	Level switches for Gland Steam Condenser Drain Pump Start/stop control of pump and control room annunciation (high level).	Standby	Transfer gland steam condensate to larger condensate recovery tank.	Dead Leg	Protect	Suggest insulating level switches and instrument tubing. Alternate option would be take actions to enclose and heat the general area.	Inspect during walkdown, insulation may already be present. Evaluate length of instrument pipe/tube against dead leg freeze criteria.	
5	PTN	3	080	5613-M-3080 SH 1	4	Piping	3" overflow piping from condensate recovery tank	Standby	None	Not required for Power operation; no safety function	None	None	Gland steam condenser and condenser receiver are located on ground floor of TB (partially enclosed). A break in this line should not effect power operation, since the condensate collected is ultimately dumped to waste drains.	
6	PTN	3	080	5613-M-3080 SH 1	5	Piping	4", 6" piping Condenser Pit Sump	Standby	None	Ground floor of TB (partially enclosed)	Mitigate	Recommend evaluate as part of general approach for TB ground floor. Possible mitigating action is further enclose area and add space heaters.	Condenser sump pit located on ground floor of TB, and partially enclosed. Evaluate as part of overall approach for the TB ground floor.	
7	PTN	3	080	5613-M-3080 SH 1	5	Vents / Drains / Misc. Connections	1" vent	No	None	Dead Leg	Mitigate	Recommend evaluate as part of general approach for TB ground floor. Possible mitigating action is further enclose area and add space heaters.	Condenser sump pit located on ground floor of TB, and partially enclosed. Evaluate as part of overall approach for the TB ground floor.	
8	PTN	3	080	5613-M-3080 SH 1	5	Instr. Control / Protection	Level switch for condenser pit sump pump with control room annunciation and alarm (high)	Yes	None	Dead Leg	Mitigate	Recommend evaluate as part of general approach for TB ground floor. Possible mitigating action is further enclose area and add space heaters.	Condenser sump pit located on ground floor of TB, and partially enclosed. Evaluate as part of overall approach for the TB ground floor.	
9	PTN	3	080	5613-M-3080 SH 1	sate Recov	Outdoor Tanks	Condensate Recovery Tank	Yes	None	Process fluid is likely warm. Tank has no safety function.	None	None	The Condensate Recovery Tank is located outside between the Diesel Generator Buildling and RX buildling (more exposed to extreme cold). The tank does not have a safety function or power operation function. It holds gland steam condensate which is then drained to waste drains.	
10	PTN	3	080	5613-M-3080 SH 1	sate Recov	Instr. Local	Local level gauge	Yes	None	Tank has no safety function	None	None	Freezing or failure of the level gauge may cause condnesate in tank to spill. No consequence on power generation on loss of tank. Recommend evaluating potential flooding consequenses/risks based on surrounding area and size of tank (# of gal).	
11	PTN	3	080	5613-M-3080 SH 1	sate Recov	Vents / Drains / Misc. Connections	4" vents (x2)	Yes	None	Tank has no safety function	None	None	Freezing failure of the vents would have no consequence.	
1	PTN	3	081	5613-M-3081 SH 1	1	Piping	4" Piping from MSR 25B to RHTR Drain Tk 3A (Vent) [3-4"-2-C]	Yes	FW Heater Drain system flowpath	Pressure houndary/	None	None. Normal operation will keep piping and components warm and well above freezing.		
2	PTN	3	081	5613-M-3081 SH 1	1	Vents / Drains / Misc. Connections	1/2" Vent; capped pipe	Yes	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation will keep piping and components warm and well above freezing. Configuration/location is unknown. Inspect during walkdown to determine if actions are required.	Inspect during walkdown. Configuration/location of vent is unknown. Expected to be short runs of pipe and potentially insulated already. Main piping will be hot.	
3	PTN	3	081	5613-M-3081 SH 1	2	Piping	12" and 8" Piping to RHTR Drain Tk 3A (Drain) [3-12"-2-C, 3-8"-2-C]	Yes	FW Heater Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 207 of 488

R21002, Rev 0 Attachment L Page 74 of 198

4	PTN	3	081	5613-M-3081 SH 1	2	Vents / Drains / Misc. Connections	Test Connection (PX) and 1/2 piping	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation will keep piping and components warm on system side of isolation valve. Configuration/location components is unknown. Inspect during walkdown to determine if actions are required.	Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required.	
5	PTN	3	081	5613-M-3081 SH 1	3	Piping	3" and 4" piping from MSR 25B to 6A FW HTR [4"-5CM, 3"-4CM] Includes manual throttled valve 3- 30-1130	Yes	FW Heater Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.		
6	PTN	3	081	5613-M-3081 SH 1	3	Instr. Local	PI & associated 3/4" pipe & Valve	Yes	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
7	PTN	3	081	5613-M-3081 SH 1	3	Vents / Drains / Misc. Connections	1" Drains	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
8	PTN	3	081	5613-M-3081 SH 1	3	Vents / Drains / Misc. Connections	3/4" Vents	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
9	PTN	3	081	5613-M-3081 SH 1	3	Vents / Drains / Misc. Connections	(4) Blind flanged sections	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
10	PTN	3	081	5613-M-3081 SH 1	4	Piping	1" piping/ reducers - bypass Valve 3-30-1130	No	None	Pressure boundary/ system integrity	Protect		Inspect during walkdown. Configuration/location is unknown. Expected to be short runs of pipe and potentially insulated already. Main piping will be hot.	
11	PTN	3	081	5613-M-3081 SH 1	5	Piping	3" piping to 3B Condenser [3"-5CM] 1" orifice bypass line [1"-3CM]	No	None	Pressure boundary/ system integrity/ Cond Vacuum	Protect	Inspect during walkdown. Segment is normally isolated from HD but open to condenser side. Configuration/location is unknown. Inspect during walkdown to determine if actions are required.	Not used in normal operation. Chain operated isolation valve.	
12	PTN	3	081	5613-M-3081 SH 1	5	Vents / Drains / Misc. Connections	3/4" Vent	No	None	Pressure boundary/ system integrity/ Cond Vacuum	Protect	Inspect during walkdown. Segment is normally isolated from HD but open to condenser side. Configuration/location is unknown. Inspect during walkdown to determine if actions are required.		
13	PTN	3	081	5613-M-3081 SH 1	5	Vents / Drains / Misc. Connections	1" Drain	No	None	Pressure boundary/ system integrity/ Cond Vacuum	Protect	Inspect during walkdown. Segment is normally open to condenser side up to isolation valve. Configuration/location is unknown. Inspect during walkdown to determine if actions are required.		
14	PTN	3	081	5613-M-3081 SH 1	6	Piping	8" piping to Ext Steam/ 6A FW HTR [8"-5CM]	Yes	FW Heater Drain system flowpath to 6A HW HTR	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.		
15	PTN	3	081	5613-M-3081 SH 1	6	Vents / Drains / Misc. Connections	3/4" Vent	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
16	PTN	3	081	5613-M-3081 SH 1	7	Piping	8" Piping from MSDT 3B Shell Side Drain Tank to HTR Drain Tk 3A [3-8"-5-CM]	Yes	Flowpath to 3A HTR Drain Tank	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.		
17	PTN	3	081	5613-M-3081 SH 1	7	Piping	Control Valve CV-3-1503A	Yes	Control Shell Side drain tank flow to maintain HDT level (with CV-3-1503B)	Pressure Boundary/ Flow Control	None	None. Normal operation will keep valve body/ piping warm and well above freezing.		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 208 of 488

R21002, Rev 0 Attachment L Page 75 of 198

18	PTN	3	081	5613-M-3081 SH 1	7	Instr. Control / Protection	Instrument air tubing/ controller for CV-3-1503A	Yes	CV-3-1503A control	Flow Control	Protect	Inspect during walkdown. Air lines not subject to freezing. Ensure valve actuator, controller, and, connected control wiring are adequately insulated/protected from elements.	Components should be in close proximity to hot piping. Walkdown to determine if measures are required.
19	PTN	3	081	5613-M-3081 SH 1	7	Vents / Drains / Misc. Connections	3/4" Drain/connection	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	
20	PTN	3	081	5613-M-3081 SH 1	8	Piping	1/2" pipe - 1/4 SS Tubing to Sample System	Yes	Provide required sampling flowpath	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Configuration/location of components is unknown. Insulate and heat trace as appropriate.	Uninsulated and non heat-traced tubing may freeze/ dead legs may burst.
21	PTN	3	081	5613-M-3081 SH 1	8	Vents / Drains / Misc. Connections	Test Connection (PX) and associated piping (3/8")	No	None	Pressure boundary/ system integrity	Protect	Insulate and neat trace as appropriate.	Uninsulated and non heat-traced tubing may freeze/ dead legs may burst.
22	PTN	3	081	5613-M-3081 SH 1	9	Piping	10" piping	Yes	Flowpath to 3B Condenser	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.	
23	PTN	3	081	5613-M-3081 SH 1	9	Piping	Control Valve CV-3-1503B	Yes	Control Shell Side drain tank flow to maintain HDT level (with CV-3-1503A)	Pressure Boundary/ Flow Control	None	None. Normal operation will keep valve body/ piping warm and well above freezing.	
24	PTN	3	081	5613-M-3081 SH 1	9	Instr. Control / Protection	Instrument air tubing/ controller for CV-3-1503B	Yes	CV-3-1503B control	Flow Control	Protect	Inspect during walkdown. Air lines not subject to freezing. Ensure valve actuator, controller, and, connected control wiring are adequately insulated/protected from elements.	Components should be in close proximity to hot piping. Walkdown to determine if measures are required.
25	PTN	3	081	5613-M-3081 SH 1	9	Vents / Drains / Misc. Connections	3/4" Drain/connection	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	
26	PTN	3	081	5613-M-3081 SH 1	10	Piping	8" Pipe to 3B Condenser [3-8"-5-D] [Bypass CV-3-1503B]	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm outside isolation valves. Configuration/location/ length of pipe b/t valves is unknown - potential deadleg Inspect during walkdown to determine if actions are required. If appropriate, ensure pipe section is drained.	
27	PTN	3	081	5613-M-3081 SH 1	10	Vents / Drains / Misc. Connections	3/4" Drain/connection	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Drain on normally isolated section of pipe. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	
28	PTN	3	081	5613-M-3081 SH 1	11	Piping	10" Piping from Drain Tks outlet control valves [CV-3-1503B, - 1523B) to 3B Condenser	Yes	Flowpath to 3B Condenser	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.	
29	PTN	3	081	5613-M-3081 SH 1	12	Instr. Control / Protection	Level transmitters and associated piping/valves	Yes	Provide signal for control valves	System Flow control	Protect	Inspect during walkdown. Components are in close proximity to hot piping, but configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	
30	PTN	3	081	5613-M-3081 SH 1	12	Vents / Drains / Misc. Connections	1" Vents	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Configuration/location of components is unknown. (shown as inside MSR on P&ID) Inspect during walkdown to determine if actions are required.	Location/configuration unclear.
31	PTN	3	081	5613-M-3081 SH 1	12	Vents / Drains / Misc. Connections	1" Drains	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	Location/configuration unclear.
32	PTN	3	081	5613-M-3081 SH 1	13	Piping	4" Piping from MSR 25A to RHTR Drain Tk 3A (Vent) [3-4"-2-C]	Yes	FW Heater Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.	
33	PTN	3	081	5613-M-3081 SH 1	13	Vents / Drains / Misc. Connections	1/2" Vent; capped pipe	Yes	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation will keep piping and components warm and well above freezing. Configuration/location is unknown. Inspect	Inspect during walkdown. Configuration/location of vent is unknown. Expected to be short runs of pipe and potentially insulated already. Main piping will be hot.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 209 of 488

R21002, Rev 0 Attachment L Page 76 of 198

34	PTN	3	081	5613-M-3081 SH 1	14	Piping	12" and 8" Piping to RHTR Drain Tk 3A (Drain) [3-12"-2-C, 3-8"-2-C]	Yes	FW Heater Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.		
35	PTN	3	081	5613-M-3081 SH 1	14	Vents / Drains / Misc. Connections	Test Connection (PX) and 1/2 piping	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation will keep piping and components warm on system side of isolation valve. Configuration/location components is unknown. Inspect during walkdown to determine if actions are required.	Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required.	
36	PTN	3	081	5613-M-3081 SH 1	15	Piping	3" and 4" piping from MSR 25A to 6A FW HTR [4"-5CM, 3"-4CM] Includes manual throttled valve 3- 30-1130	Yes	FW Heater Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.		
37	PTN	3	081	5613-M-3081 SH 1	15	Instr. Local	PI & associated 3/4" pipe & Valve	Yes	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
38	PTN	3	081	5613-M-3081 SH 1	15	Vents / Drains / Misc. Connections	1" Drains	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
39	PTN	3	081	5613-M-3081 SH 1	15	Vents / Drains / Misc. Connections	3/4" Vents	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
40	PTN	3	081	5613-M-3081 SH 1	15	Vents / Drains / Misc. Connections	(4) Blind flanged sections	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
41	PTN	3	081	5613-M-3081 SH 1	16	Piping	1" piping/ reducers - bypass Valve 3-30-1130	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. The line is exposed to warm system flow on both	Inspect during walkdown. Configuration/location is unknown. Expected to be short runs of pipe and potentially insulated already. Main piping will be hot.	
42	PTN	3	081	5613-M-3081 SH 1	17	Piping	3" piping to 3B Condenser [3"-5CM] 1" orifice bypass line [1"-3CM]	No	None	Pressure boundary/ system integrity/ Cond Vacuum	Protect	Inspect during walkdown. Segment is normally isolated from HD but open to condenser side. Configuration/location is unknown. Inspect during walkdown to determine if actions are required.	Not used in normal operation.	
43	PTN	3	081	5613-M-3081 SH 1	17	Vents / Drains / Misc. Connections	3/4" Vent	No	None	Pressure boundary/ system integrity/ Cond Vacuum	Protect	Inspect during walkdown. Segment is normally isolated from HD but open to condenser side. Configuration/location is unknown. Inspect during walkdown to determine if actions are required.		
44	PTN	3	081	5613-M-3081 SH 1	17	Vents / Drains / Misc. Connections	1" Drain	No	None	Pressure boundary/ system integrity/ Cond Vacuum	Protect	Inspect during walkdown. Segment is normally open to condenser side up to isolation valve. Configuration/location is unknown. Inspect during walkdown to determine if actions are required.		
45	PTN	3	081	5613-M-3081 SH 1	18	Piping	8" & 10" Piping from MSDT 3A Shell Side Drain Tank to HTR Drain Tk 3A [3-8"-5-CM, 3-10"-5-CM]	Yes	Flowpath to 3A HTR Drain Tank	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.		
46	PTN	3	081	5613-M-3081 SH 1	18	Piping	Control Valve CV-3-1523A	Yes	Control Shell Side drain tank flow to maintain HDT level (with CV-3-1523B)	Pressure Boundary/ Flow Control	None	None. Normal operation will keep valve body/ piping warm and well above freezing.		
47	PTN	3	081	5613-M-3081 SH 1	18	Instr. Control / Protection	Instrument air tubing/ controller for CV-3-1523A	Yes	CV-3-1523A control	Flow Control	Protect	Inspect during walkdown. Air lines not subject to freezing. Ensure valve actuator, controller, and, connected control wiring are adequately insulated/protected from elements.	Components should be in close proximity to hot piping. Walkdown to determine if measures are required.	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 210 of 488

R21002, Rev 0 Attachment L Page 77 of 198

48	PTN	3	081	5613-M-3081 SH 1	18	Vents / Drains / Misc. Connections	3/4" Drain/connection	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
49	PTN	3	081	5613-M-3081 SH 1	19	Piping	1/2" pipe - 1/4 SS Tubing to Sample System	Yes	Provide required sampling flowpath	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Configuration/location of components is unknown. Insulate and heat trace as appropriate.	Uninsulated and non heat-traced tubing may freeze/ dead legs may burst.	
50	PTN	3	081	5613-M-3081 SH 1	19	Vents / Drains / Misc. Connections	Test Connection (PX) and associated piping (3/8")	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Configuration/location of components is unknown. Insulate and heat trace as appropriate.	Uninsulated and non heat-traced tubing may freeze/ dead legs may burst.	
51	PTN	3	081	5613-M-3081 SH 1	20	Piping	10" piping	Standby	Flowpath to 3B Condenser	Pressure boundary/ system integrity	Protect	Inspect during walkdown/ verify normal flow with operations. Normal operation will keep piping and components warm up to control valve; downstream is condenser, but configuration and location of piping is unknown. Line should be insulated. Need to walkdown to determine if action is required.	P&ID indicates this flowpath not normally used, but control valves controls flow. Need to confirm whether line is normally active.	
52	PTN	3	081	5613-M-3081 SH 1	20	Piping	Control Valve CV-3-1523B	Yes	Control Shell Side drain tank flow to maintain HDT level (with CV-3-1523A)	Pressure Boundary/ Flow Control	Protect	Inspect during walkdown/ verify normal flow with operations. Normal operation should keep valve body/ piping warm and well above freezing.		
53	PTN	3	081	5613-M-3081 SH 1	20	Instr. Control / Protection	Instrument air tubing/ controller for CV-3-1523B	Yes	CV-3-1523B control	Flow Control	Protect	Inspect during walkdown. Air lines not subject to freezing. Ensure valve actuator, controller, and, connected control wiring are adequately insulated/protected from elements.	Components should be in close proximity to hot piping. Walkdown to determine if measures are required.	
54	PTN	3	081	5613-M-3081 SH 1	20	Vents / Drains / Misc. Connections	3/4" Drain/connection	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
55	PTN	3	081	5613-M-3081 SH 1	21	Piping	8" Pipe to 3B Condenser [3-8"-5-D] [Bypass CV-3-1523B]	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm outside isolation valves. Configuration/location/ length of pipe b/t valves is unknown - potential deadleg Inspect during walkdown to determine if actions are required. If appropriate, ensure pipe section is drained.		
56	PTN	3	081	5613-M-3081 SH 1	21	Vents / Drains / Misc. Connections	3/4" Drain/connection	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Drain on normally isolated section of pipe. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
57	PTN	3	081	5613-M-3081 SH 1	22	Piping	10" Piping from Drain Tks outlet control valve [CV-3-1523B) to 3B Condenser	No	Flowpath to 3B Condenser	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Pipe is open to condenser and piping from CV-3- 1503B, but configuration and location of piping is unknown. Line should be insulated. Need to walkdown to determine if action is required.	P&ID indicates this flowpath not normally used, but control valves controls flow. Need to confirm whether line is normally active.	
58	PTN	3	081	5613-M-3081 SH 1	23	Instr. Control / Protection	Level transmitters and associated piping/valves	Yes	Provide signal for control valves	System Flow control	Protect	Inspect during walkdown. Components are in close proximity to hot piping, but configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
59	PTN	3	081	5613-M-3081 SH 1	23	Vents / Drains / Misc. Connections	1" Vents	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Configuration/location of components is unknown. (shown as inside MSR on P&ID) Inspect during walkdown to determine if actions are required.	Location/configuration unclear. Loss of integrity of drain/vent may impact level controls.	
60	PTN	3	081	5613-M-3081 SH 1	23	Vents / Drains / Misc. Connections	1" Drains	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	Location/configuration unclear. Loss of integrity of drain/vent may impact level controls.	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 211 of 488

R21002, Rev 0 Attachment L Page 78 of 198

														ŀ
61	PTN	3	081	5613-M-3081 SH 2	1	Piping	2" vent RHTR Drain Tank 3A to ES system/ FW HTR 6A [3-2"-2-C]	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve (which is not shown on this P&ID) Piping should be insulated. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
62	PTN	3	081	5613-M-3081 SH 2	2	Piping	8" & 4" Drains/Vents from MSRs A/B to RHTR Drain Tank 3A [3-8"-2-C, 3-4"-2-C]	Yes	FW Heater Drain system flowpath	FW Drain system flowpath	None	None. Normal operation should keep piping and components warm and well above freezing.	Piping is expected to be insulated.	
63	PTN	3	081	5613-M-3081 SH 2	3	Instr. Control / Protection	RHTR Drain Tank 3A Level transmitters and associated piping/valves	Yes	Provide signal for control valves	System Flow control	Protect	Inspect during walkdown. Components are in close proximity to hot piping, but configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
64	PTN	3	081	5613-M-3081 SH 2	3	Vents / Drains / Misc. Connections	1" Vents and drains	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	Loss of integrity of drain/vent may impact level controls.	
65	PTN	3	081	5613-M-3081 SH 2	4	Piping	10" piping from RHTR Drain Tank 3A to 6A FW HTR [3-10"-2-C, 3-10-2-CM, 3-10"-5-D]	Yes	None	FW Drain system flowpath	None	None. Normal operation should keep piping and components warm and well above freezing.	Piping is expected to be insulated.	
66	PTN	3	081	5613-M-3081 SH 2	4	Piping	Control valve CV-3-1505	Yes	Controls flow from RHTR Drain Tank to maintain FW HTR 6A level	Pressure Boundary/ Flow Control	None	None. Normal operation should keep valve body/ piping warm and well above freezing.		
67	PTN	3	081	5613-M-3081 SH 2	4	Instr. Control / Protection	Instrument air tubing/ controller for CV-3-1505	Yes	CV-3-1505 Control	Flow Control	Protect	Inspect during walkdown. Air lines not subject to freezing. Ensure valve actuator, controller, and, connected control wiring are adequately insulated/protected from elements.	Components should be in close proximity to hot piping. Walkdown to determine if measures are required.	
68	PTN	3	081	5613-M-3081 SH 2	4	Instr. Annunciation / Indication	Flow indication and associated valves, 1/2" tubing. [FE/FI 3-5120] [3-1/2"-2-C]	Yes	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Components are in close proximity to hot piping, but configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
69	PTN	3	081	5613-M-3081 SH 2	4	Vents / Drains / Misc. Connections	3/4" Drain/connection	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
70	PTN	3	081	5613-M-3081 SH 2	4	Vents / Drains / Misc. Connections	3/4" vent	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
71	PTN	3	081	5613-M-3081 SH 2	4	Vents / Drains / Misc. Connections	Blind Flange	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
72	PTN	3	081	5613-M-3081 SH 2	5	Piping	10" piping/ bypass FE-3-5120 [3-10"-2-C]	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm outside isolation valves. Configuration/location/ length of pipe b/t valves is unknown - potential deadleg inspect during walkdown to determine if actions are required. if appropriate, ensure pipe section is drained.		
73	PTN	3	081	5613-M-3081 SH 2	5	Vents / Drains / Misc. Connections	3/4" Drain/connection	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Drain on normally isolated section of pipe. Configuration/location of components is unknown. Inspect during walkdown to determine If actions are required.		
74	PTN	3	081	5613-M-3081 SH 2	6	Piping	8" piping/ bypass CV-3-1505 [3-8"-2-C, 3-8"-5-E]	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm on both sides of isolation valve. Configuration/location/ length of pipe is unknown - potential deadleg Inspect during walkdown to determine if actions are required. if appropriate, ensure pipe section is drained/vented.		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 212 of 488

R21002, Rev 0 Attachment L Page 79 of 198

														Г
75	PTN	3	081	5613-M-3081 SH 2	6	Vents / Drains / Misc. Connections	3/4"drain/connection	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Drain on normally isolated section of pipe. Configuration/location of components is unknown. Inspect during walkdown to determine If actions are required.	Potential deadleg based on installed configuration.	
76	PTN	3	081	5613-M-3081 SH 2	7	Piping	10" piping to 3B Condenser [3-10"-2-6, 3-10"-10-5-E]	Standby	FW Heater Drain system flowpath; divert RHTR tank drains to 3B Condenser if 6A FW HTR level is high.	Pressure boundary/ system integrity	Protect		P&ID indicates this flowpath not normally used, but control valves controls flow. Need to confirm whether line is normally active.	
77	PTN	3	081	5613-M-3081 SH 2	7	Piping	Control valve CV-3-1515	Yes	Control flow - divert to 3B condenser	Pressure boundary/ Flow Control	Protect	Inspect during walkdown/ verify normal flow with operations. Normal operation should keep valve body/ piping warm and well above freezing.		
78	PTN	3	081	5613-M-3081 SH 2	7	Instr. Control / Protection	Instrument air tubing/ controller for CV-3-1515	Yes	CV-3-1515 control	Flow Control	Protect	Inspect during walkdown. Air lines not subject to freezing. Ensure valve actuator, controller, and, connected control wiring are adequately insulated/protected from elements.	Components should be in close proximity to hot piping. Walkdown to determine if measures are required.	
79	PTN	3	081	5613-M-3081 SH 2	7	Vents / Drains / Misc. Connections	3/4"drain/connection	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
80	PTN	3	081	5613-M-3081 SH 2	7	Vents / Drains / Misc. Connections	Blind Flange	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
81	PTN	3	081	5613-M-3081 SH 2	8	Piping	8" piping/ bypass CV-3-1515 [3-8"-2-C, 3-8"-5-E]	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm outside isolation valves. Configuration/location/ length of pipe b/t valves is unknown - potential deadleg Inspect during walkdown to determine if actions are required. If appropriate, ensure pipe section is drained.		
82	PTN	3	081	5613-M-3081 SH 2	8	Vents / Drains / Misc. Connections	3/4" Drain/connection	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Drain on normally isolated section of pipe. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
83	PTN	3	081	5613-M-3081 SH 2	9	Piping	2" vent RHTR Drain Tank 3B to ES system/ FW HTR 6B [3-2"-2-C]	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve (which is not shown on this P&ID) Piping should be insulated. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
84	PTN	3	081	5613-M-3081 SH 2	10	Piping	8" & 4" Drains/Vents from MSRs C/D to RHTR Drain Tank 3B [3-8"-2-C, 3-4"-2-C]	Yes	FW Heater Drain system flowpath	FW Drain system flowpath	None	None. Normal operation should keep piping and components warm and well above freezing.	Piping is expected to be insulated.	
85	PTN	3	081	5613-M-3081 SH 2	11	Instr. Control / Protection	RHTR Drain Tank 3B Level transmitters and associated piping/valves	Yes	Provide signal for control valves	System Flow control	Protect	Inspect during walkdown. Components are in close proximity to hot piping, but configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
86	PTN	3	081	5613-M-3081 SH 2	11	Vents / Drains / Misc. Connections	1" Vents and drains	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	Loss of integrity of drain/vent may impact level controls.	
87	PTN	3	081	5613-M-3081 SH 2	12	Piping	10" piping from RHTR Drain Tank 3B to 6B FW HTR [3-10"-2-C, 3-10-2-CM, 3-10"-5-D]	Yes	None	FW Drain system flowpath	None	None. Normal operation should keep piping and components warm and well above freezing.	Piping is expected to be insulated.	
88	PTN	3	081	5613-M-3081 SH 2	12	Piping	Control valve CV-3-1506	Yes	Controls flow from RHTR Drain Tank to maintain FW HTR 6B level	Pressure Boundary/ Flow Control	None	None. Normal operation should keep valve body/ piping warm and well above freezing.		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 213 of 488

R21002, Rev 0 Attachment L Page 80 of 198

														'
89	PTN	3	081	5613-M-3081 SH 2	12	Instr. Control / Protection	Instrument air tubing/ controller for CV-3-1506	Yes	CV-3-1506 Control	Flow Control	Protect	control wiring are adequately insulated/protected from elements.	Components should be in close proximity to hot piping. Walkdown to determine if measures are required.	
90	PTN	3	081	5613-M-3081 SH 2	12	Instr. Annunciation / Indication	Flow indication and associated valves, 1/2" tubing. [FE/FI 3-5121] [3-1/2"-2-C]	Yes	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Components are in close proximity to hot piping, but configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
91	PTN	3	081	5613-M-3081 SH 2	12	Vents / Drains / Misc. Connections	3/4" Drain/connection	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
92	PTN	3	081	5613-M-3081 SH 2	12	Vents / Drains / Misc. Connections	3/4" vent	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
93	PTN	3	081	5613-M-3081 SH 2	12	Vents / Drains / Misc. Connections	Blind Flange	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
94	PTN	3	081	5613-M-3081 SH 2	13	Piping	10" piping/ bypass FE-3-5121 [3-10"-2-C]	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm outside isolation valves. Configuration/location/ length of pipe b/t valves is unknown - potential deadleg Inspect during walkdown to determine if actions are required. If appropriate, ensure pipe section is drained.		
95	PTN	3	081	5613-M-3081 SH 2	13	Vents / Drains / Misc. Connections	3/4" Drain/connection	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Drain on normally isolated section of pipe. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
96	PTN	3	081	5613-M-3081 SH 2	14	Piping	8" piping/ bypass CV-3-1505 [3-8"-2-C, 3-8"-5-D]	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm on both sides of isolation valve. Configuration/location/ length of pipe is unknown - potential deadleg Inspect during walkdown to determine if actions are required. If appropriate, ensure pipe section is drained/wented.		
97	PTN	3	081	5613-M-3081 SH 2	14	Vents / Drains / Misc. Connections	3/4"drain/connection	No	None	Pressure boundary/ system integrity/ deadleg	Protect	unknown. Inspect during walkdown to determine if actions are required.	Potential deadleg based on installed configuration.	
98	PTN	3	081	5613-M-3081 SH 2	15	Piping	10" piping to 3B Condenser [3-10"-2-C, 3-10"-5-E]	Standby	FW Heater Drain system flowpath; divert RHTR tank drains to 3B Condenser if 6B FW HTR level is high.	Pressure boundary/ system integrity	Protect	location of piping is unknown. Line should be insulated. Need to walkdown to determine if action is required.	P&ID indicates this flowpath not normally used, but control valves controls flow. Need to confirm whether line is normally active.	
99	PTN	3	081	5613-M-3081 SH 2	15	Piping	Control valve CV-3-1516	Yes	Control flow - divert to 3B condenser	Pressure boundary/ Flow Control	Protect	Inspect during walkdown/ verify normal flow with operations. Normal operation should keep valve body/ piping warm and well above freezing.		
100	PTN	3	081	5613-M-3081 SH 2	15	Instr. Control / Protection	Instrument air tubing/ controller for CV-3-1516	Yes	CV-3-1516 control	Flow Control	Protect	Inspect during walkdown. Air lines not subject to freezing. Ensure valve actuator, controller, and, connected control wiring are adequately insulated/protected from elements.	Components should be in close proximity to hot piping. Walkdown to determine if measures are required.	
101	PTN	3	081	5613-M-3081 SH 2	15	Vents / Drains / Misc. Connections	3/4"drain/connection	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		

Florida Power & Light Company Docket No. 20220000-OT

Ten-Year Site Plan
Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 214 of 488

R21002, Rev 0 Attachment L Page 81 of 198

102	PTN	3	081	5613-M-3081 SH 2	15	Vents / Drains / Misc. Connections	Blind Flange	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
103	PTN	3	081	5613-M-3081 SH 2	16	Piping	8" piping/ bypass CV-3-1516 [3-8"-2-C, 3-8"-5-E]	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm outside isolation valves. Configuration/location/ length of pipe b/t valves is unknown - potential deadleg Inspect during walkdown to determine if actions are required. If appropriate, ensure pipe section is drained.		
104	PTN	3	081	5613-M-3081 SH 2	16	Vents / Drains / Misc. Connections	3/4" Drain/connection	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Drain on normally isolated section of pipe. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
109	PTN	3	081	5613-M-3081 SH 3	1	Instr. Control / Protection	6A FW HTR Level transmitters and associated piping/valves	Yes	Provide signal for control valves	System Flow control	Protect	Inspect during walkdown. Components are in close proximity to hot piping, but configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
110	PTN	3	081	5613-M-3081 SH 3	1	Vents / Drains / Misc. Connections	1" Vents and drains	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	Loss of integrity of drain/vent may impact level controls.	
111	PTN	3	081	5613-M-3081 SH 3	2	Piping	10" piping from RHTR Drain Tank 3A to 6A FW HTR [3-10"-5-D]	Yes	FW Drain system flowpath	FW Drain system flowpath	None	None. Normal operation should keep piping and components warm and well above freezing.	Piping is expected to be insulated.	
112	PTN	3	081	5613-M-3081 SH 3	3	Piping	1" Piping from 6A FW HTR to 3B Condenser [3-1"-5-D]	Yes	FW Drain system flowpath	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm and well above freezing; Configuration/location of components is unknown. Confirm expected flow and temperatures in system and determine is actions are required.		
113	PTN	3	081	5613-M-3081 SH 3	3	Piping	1" piping - bypass Orifice	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm on both sides of isolation valve. Configuration/location/ length of pipe is unknown - potential deadleg Inspect during walkdown to determine if actions are required.		
114	PTN	3	081	5613-M-3081 SH 3	4	Piping	1" and 1 1/2" piping from 6A FW HTR to 3B Condenser [3-1"-5-E, 3-1 1/2"-5-E]	Yes	FW Drain system flowpath	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm and well above freezing; Configuration/location of components is unknown. Confirm expected flow and temperatures in system and determine is actions are required.		
115	PTN	3	081	5613-M-3081 SH 3	5	Piping	14" and 10" piping from 6A FW HTR to 5A FW HTR [3-14"-5-D, 3-10"-5-D]	Yes	None	FW Drain system flowpath	None	None. Normal operation should keep piping and components warm and well above freezing.	Piping is expected to be insulated.	
116	PTN	3	081	5613-M-3081 SH 3	5	Piping	Control valve CV-3-1517A	Yes	Flowpath from 6A to 5A FW HTR	Pressure boundary/ Flow Control	None	None. Normal operation should keep valve body/ piping warm and well above freezing.	Valve Fails Open	
117	PTN	3	081	5613-M-3081 SH 3	5	Instr. Control / Protection	Instrument air tubing/ controller for CV-3-1517A	Yes	CV-3-1517A Control	Flow Control	Protect		Components should be in close proximity to hot piping. Walkdown to determine if measures are required.	
118	PTN	3	081	5613-M-3081 SH 3	5	Vents / Drains / Misc. Connections	1/2" and 1" connections; Various test connections [PX, TX, FX]	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation points. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
119	PTN	3	081	5613-M-3081 SH 3	5	Vents / Drains / Misc. Connections	Blind Flange	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		

Florida Power & Light Company Docket No. 20220000-OT

Ten-Year Site Plan
Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 215 of 488

R21002, Rev 0 Attachment L Page 82 of 198

120	PTN	3	081	5613-M-3081 SH 3	6	Piping	8" piping/ bypass CV-3-1517A [3-8"-2-D]	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm on both sides of isolation valve. Configuration/location/ length of pipe is unknown - potential deadleg. Inspect during walkdown to determine if actions are required. If appropriate, ensure pipe section is drained/vented.		
121	PTN	3	081	5613-M-3081 SH 3	6	Vents / Drains / Misc. Connections	3/4" Drain/connection	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Drain on normally isolated section of pipe. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	Potential deadleg based on installed configuration.	
122	PTN	3	081	5613-M-3081 SH 3	7	Piping	10" piping from 6A FW HTR to 3A Condenser [3-10"-5-D, 3-10"-5-E]	Standby	FW Heater Drain system flowpath; divert 6A FW HTR drain to 3A Condenser based on HTR level	Pressure boundary/ system integrity	Protect	Inspect during walkdown/ verify normal flow with operations. Normal operations will keep piping and components warm up to control valve; downstream is condenser, but configuration and location of piping is unknown. Line should be insulated. Need to walkdown to determine if action is required.	P&ID indicates this flowpath not normally used, but control valves controls flow. Need to confirm whether line is normally active.	
123	PTN	3	081	5613-M-3081 SH 3	7	Piping	Control valve CV-3-1517B	Yes	Control flow - divert to 3A condenser	Pressure boundary/ Flow Control	Protect	Inspect during walkdown/ verify normal flow with operations. Normal operation should keep valve body/ piping warm and well above freezing.		
124	PTN	3	081	5613-M-3081 SH 3	7	Instr. Control / Protection	Instrument air tubing/ controller for CV-3-1517B	Yes	CV-3-1517B control	Flow Control	Protect	Inspect during walkdown. Air lines not subject to freezing. Ensure valve actuator, controller, and, connected control wiring are adequately insulated/protected from elements.	Components should be in close proximity to hot piping. Walkdown to determine if measures are required.	
125	PTN	3	081	5613-M-3081 SH 3	7	Vents / Drains / Misc. Connections	3/4" drains	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
126	PTN	3	081	5613-M-3081 SH 3	7	Vents / Drains / Misc. Connections	Blind Flange	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
127	PTN	3	081	5613-M-3081 SH 3	8	Piping	8" piping/ bypass CV-3-1517B [3-8"-5-E]	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm outside isolation valves. Configuration/location/ length of pipe b/t valves is unknown - potential deadleg Inspect during walkdown to determine if actions are required. If appropriate, ensure pipe section is drained.		
128	PTN	3	081	5613-M-3081 SH 3	8	Vents / Drains / Misc. Connections	3/4" Drain/connection	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Drain on normally isolated section of pipe. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
131	PTN	3	081	5613-M-3081 SH 3	9	Instr. Control / Protection	5A FW HTR Level transmitters and associated piping/valves	Yes	Provide signal for control valves	System Flow control	Protect	Inspect during walkdown. Components are in close proximity to hot piping, but configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
132	PTN	3	081	5613-M-3081 SH 3	9	Vents / Drains / Misc. Connections	1" Vents and drains	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	Loss of integrity of drain/vent may impact level controls.	
133	PTN	3	081	5613-M-3081 SH 3	10	Piping	1" & 1 1/2" pipe - vent from 5A FW HTR shell to 3B condenser [3-1"-5-D, 3-1 1/2"-5-D]	Yes	FW Drain system flowpath	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm and well above freezing; Configuration/location of components is unknown. Confirm expected flow and temperatures in system and determine is actions are required.		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 216 of 488

R21002, Rev 0 Attachment L Page 83 of 198

134	PTN	3	081	5613-M-3081 SH 3	11	Piping	1" pipe - Bypass flow orifice	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm on both sides of isolation valve. Configuration/location/ length of pipe is unknown - potential deadleg Inspect during walkdown to determine if actions are required.		
135	PTN	3	081	5613-M-3081 SH 3	12	Piping	10" piping - Vent line from 5A FW HTR to HTR Drain Tanks [3-10"-5-D, 3-10"-5-E]	Yes	FW Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation should keep piping and components warm and well above freezing.		
136	PTN	3	081	5613-M-3081 SH 3	13	Piping	24" & 16" piping - Drain from 5A FW HTR to HTR Drain Tanks [3-24"-5-D, 3-16"-5-D]	Yes	FW Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation should keep piping and components warm and well above freezing.		
137	PTN	3	081	5613-M-3081 SH 3	13	Vents / Drains / Misc. Connections	Test connections [TX, PX]	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation points. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
138	PTN	3	081	5613-M-3081 SH 3	14	Piping	3" piping for SWLU connection to 5A FW HTR drain line 3-3"-5-D	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. This ties into SWLU connection point - which is isolated. Configuration/location of components is unknown. Inspect during walkdown, evaluate configuration for dead-leg potential, determine if actions are required.		
143	PTN	3	081	5613-M-3081 SH 3	15	Instr. Control / Protection	6B FW HTR Level transmitters and associated piping/valves	Yes	Provide signal for control valves	System Flow control	Protect	Inspect during walkdown. Components are in close proximity to hot piping, but configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
144	PTN	3	081	5613-M-3081 SH 3	15	Vents / Drains / Misc. Connections	1" Vents and drains	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	Loss of integrity of drain/vent may impact level controls.	
145	PTN	3	081	5613-M-3081 SH 3	16	Piping	10" piping from RHTR Drain Tank 3B to 6B FW HTR [3-10"-5-D]	Yes	FW Drain system flowpath	FW Drain system flowpath	None	None.	Piping is expected to be insulated.	
146	PTN	3	081	5613-M-3081 SH 3	17	Piping	1" Piping from 6B FW HTR to 3B Condenser [3-1"-5-D]	Yes	FW Drain system flowpath	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm and well above freezing; Configuration/location of components is unknown. Confirm expected flow and temperatures in system and determine is actions are required.		
147	PTN	3	081	5613-M-3081 SH 3	17	Piping	1" piping - bypass Orifice	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm on both sides of isolation valve. Configuration/location/ length of pipe is unknown - potential deadleg Inspect during walkdown to determine if actions are required.		
148	PTN	3	081	5613-M-3081 SH 3	18	Piping	14" and 10" piping from 6B FW HTR to 5B FW HTR [3-14"-5-D, 3-10"-5-D]	Yes	None	FW Drain system flowpath	None	None.	Piping is expected to be insulated.	
149	PTN	3	081	5613-M-3081 SH 3	18	Piping	Control valve CV-3-1518A	Yes	Flowpath from 6B to 5B FW HTR	Pressure boundary/ Flow Control	None	None. Normal operation should keep valve body/ piping warm and well above freezing.	Valve Fails Open	
150	PTN	3	081	5613-M-3081 SH 3	18	Instr. Control / Protection	Instrument air tubing/ controller for CV-3-1517A8	Yes	CV-3-1518A Control	Flow Control	Protect	Inspect during walkdown. Air lines not subject to freezing. Ensure valve actuator, controller, and, connected control wiring are adequately insulated/protected from elements.	Components should be in close proximity to hot piping. Walkdown to determine if measures are required.	
151	PTN	3	081	5613-M-3081 SH 3	18	Vents / Drains / Misc. Connections	1/2" and 1" connections; Various test connections [PX, TX, FX]	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation points. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
152	PTN	3	081	5613-M-3081 SH 3	18	Vents / Drains / Misc. Connections	Blind Flange	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		

Florida Power & Light Company Docket No. 20220000-OT

Ten-Year Site Plan
Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 217 of 488

R21002, Rev 0 Attachment L Page 84 of 198

153	PTN	3	081	5613-M-3081 SH 3	19	Piping	8" piping/ bypass CV-3-1518A [3-8"-5-D]	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm on both sides of isolation valve. Configuration/location/ length of pipe is unknown - potential deadleg. Inspect during walkdown to determine if actions are required. If appropriate, ensure pipe section is drained/vented.		
154	PTN	3	081	5613-M-3081 SH 3	19	Vents / Drains / Misc. Connections	3/4" Drain/connection	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Drain on normally isolated section of pipe. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	Potential deadleg based on installed configuration.	
155	PTN	3	081	5613-M-3081 SH 3	20	Piping	10" piping from 6B FW HTR to 3B Condenser [3-10"-5-D, 3-10"-5-E]	Standby	FW Heater Drain system flowpath; divert 6B FW HTR drain to 3B Condenser based on HTR level	Pressure boundary/ system integrity	Protect	Inspect during walkdown/ verify normal flow with operations. Normal operation will keep piping and components warm up to control valve; downstream is condenser, but configuration and location of piping is unknown. Line should be insulated. Need to walkdown to determine if action is required.	P&ID indicates this flowpath not normally used, but control valves controls flow. Need to confirm whether line is normally active.	
156	PTN	3	081	5613-M-3081 SH 3	20	Piping	Control valve CV-3-1518B	Yes	Control flow - divert to 3A condenser	Pressure boundary/ Flow Control	Protect	Inspect during walkdown/ verify normal flow with operations. Normal operation should keep valve body/ piping warm and well above freezing.		
157	PTN	3	081	5613-M-3081 SH 3	20	Instr. Control / Protection	Instrument air tubing/ controller for CV-3-1518B	Yes	CV-3-1518B control	Flow Control	Protect	Inspect during walkdown. Air lines not subject to freezing. Ensure valve actuator, controller, and, connected control wiring are adequately insulated/protected from elements.	Components should be in close proximity to hot piping. Walkdown to determine if measures are required.	
158	PTN	3	081	5613-M-3081 SH 3	20	Vents / Drains / Misc. Connections	3/4" drains	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
159	PTN	3	081	5613-M-3081 SH 3	20	Vents / Drains / Misc. Connections	Blind Flange	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
160	PTN	3	081	5613-M-3081 SH 3	21	Piping	8" piping/ bypass CV-3-1518B [3-8"-5-D]	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm outside isolation valves. Configuration/location/ length of pipe b/t valves is unknown - potential deadleg Inspect during walkdown to determine if actions are required. if appropriate, ensure pipe section is drained.		
161	PTN	3	081	5613-M-3081 SH 3	21	Vents / Drains / Misc. Connections	3/4" Drain/connections	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Drain on normally isolated section of pipe. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
164	PTN	3	081	5613-M-3081 SH 3	22	Instr. Control / Protection	5B FW HTR Level transmitters and associated piping/valves	Yes	Provide signal for control valves	System Flow control	Protect	Inspect during walkdown. Components are in close proximity to hot piping, but configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
165	PTN	3	081	5613-M-3081 SH 3	22	Vents / Drains / Misc. Connections	1" Vents and drains	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	Loss of integrity of drain/vent may impact level controls.	
166	PTN	3	081	5613-M-3081 SH 3	23	Piping	1" & 1 1/2" pipe - vent from 58 FW HTR shell to 38 condenser [3-1"-5-D, 3-1 1/2"-5-D]	Yes	FW Drain system flowpath	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm and well above freezing; Configuration/location of components is unknown. Confirm expected flow and temperatures in system and determine is actions are required.		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 218 of 488

R21002, Rev 0 Attachment L Page 85 of 198

167	PTN	3	081	5613-M-3081 SH 3	24	Piping	1" pipe - Bypass flow orifice	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm on both sides of isolation valve. Configuration/location/ length of pipe is unknown - potential deadleg Inspect during walkdown to determine if actions are required.	
168	PTN	3	081	5613-M-3081 SH 3	25	Piping	10" piping - Vent line from 5A FW HTR to HTR Drain TBnks [3-10"-5-D]		FW Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation should keep piping and components warm and well above freezing.	
169	PTN	3	081	5613-M-3081 SH 3	26	Piping	24" & 16" piping - Drain from 5B FW HTR to HTR Drain Tanks [3-24"-5-D, 3-16"-5-D]	Yes	FW Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation should keep piping and components warm and well above freezing.	
170	PTN	3	081	5613-M-3081 SH 3	26	Vents / Drains / Misc. Connections	Test connections [TX, PX]	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation points. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	
171	PTN	3	081	5613-M-3081 SH 3	27	Piping	3" piping for SWLU connection to 5B FW HTR drain line 3-3"-5-D	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. This ties into SWLU connection point - which is isolated. Configuration/location of components is unknown. Inspect during walkdown, evaluate configuration for dead-leg potential, determine if actions are required.	
129	PTN	3	081	5613-M-3081 SH 3	5A FW HTR	Heat Exchangers	5A FW HTR	Yes	Secondary system flowpath/ required for 100% power	N/A	None	None. Normal System flow will keep tank well above freezing.	
130	PTN	3	081	5613-M-3081 SH 3	5A FW HTR	Relief Valves	5A FWHTR Tank Relief Valve RV-3- 3422	Standby	Overpressure relief for FW HTR	Pressure boundary/ Tank pressure relief	Protect	Inspect during walkdown. Components are in close proximity to hot piping, but configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	
162	PTN	3	081	5613-M-3081 SH 3	5B FW HTF	Heat Exchangers	5B FW HTR	Yes	Secondary system flowpath/ required for 100% power	N/A	None	None. Normal System flow will keep tank well above freezing.	
163	PTN	3	081	5613-M-3081 SH 3	5B FW HTF	Relief Valves	5B FWHTR Tank Relief Valve RV-3- 3423	Standby	Overpressure relief for FW HTR	Pressure boundary/ Tank pressure relief	Protect	Inspect during walkdown. Components are in close proximity to hot piping, but configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	
105	PTN	3	081	5613-M-3081 SH 3	6A FW HTR	Heat Exchangers	6A FW HTR	Yes	Secondary system flowpath/ required for 100% power	N/A	None	None. Normal System flow will keep tank well above freezing.	
106	PTN	3	081	5613-M-3081 SH 3	6A FW HTR	Vents / Drains / Misc. Connections	6A FWHTR 1 1/2" drains	No	None	Pressure boundary	Protect	Inspect during walkdown. Components are in close proximity to hot piping, but configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	
107	PTN	3	081	5613-M-3081 SH 3	6A FW HTR	Vents / Drains / Misc. Connections	Capped pipe stub on 6A FW HTR	No	None	Pressure boundary	Protect	Inspect during walkdown. Components are in close proximity to hot piping, but configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	
108	PTN	3	081	5613-M-3081 SH 3	6A FW HTR	Relief Valves	6A FWHTR Tank Relief Valve RV-3- 3424	Standby	Overpressure relief for FW HTR	Pressure boundary/ Tank pressure relief	Protect	Inspect during walkdown. Components are in close proximity to hot piping, but configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	
139	PTN	3	081	5613-M-3081 SH 3	6B FW HTF	Heat Exchangers	6B FW HTR	Yes	Secondary system flowpath/ required for 100% power	N/A	None	None. Normal System flow will keep tank well above freezing.	
140	PTN	3	081	5613-M-3081 SH 3	6B FW HTF	Vents / Drains / Misc. Connections	6B FWHTR 1 1/2" tank drains	No	None	Pressure boundary	Protect	Inspect during walkdown. Components are in close proximity to hot piping, but configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	
141	PTN	3	081	5613-M-3081 SH 3	6B FW HTF	Vents / Drains / Misc. Connections	Capped pipe stub on 6B FW HTR	No	None	Pressure boundary	Protect	Inspect during walkdown. Components are in close proximity to hot piping, but configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	
142	PTN	3	081	5613-M-3081 SH 3	6B FW HTF	Relief Valves	6B FWHTR Tank Relief Valve RV-3- 3425	Standby	Overpressure relief for FW HTR	Pressure boundary/ Tank pressure relief	Protect	Inspect during walkdown. Components are in close proximity to hot piping, but configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 219 of 488

R21002, Rev 0 Attachment L Page 86 of 198

														ŀ
							10" piping to 3A HDT from MSR A			D/		None.		
172	PTN	3	081	5613-M-3081 SH 4	1	Piping	Drain	Yes	Heater Drain system flowpath	Pressure boundary/	None	Normal operation should keep piping and		
							[3-10"-5-CM]			system integrity		components warm and well above freezing.		
							8" piping to 3A HDT from MSR B			Pressure boundary/		None.		
173	PTN	3	081	5613-M-3081 SH 4	2	Piping	Drain	Yes	Heater Drain system flowpath	system integrity	None	Normal operation should keep piping and		
							[3-8"-5-CM]					components warm and well above freezing.		
174	PTN	3	081	5613-M-3081 SH 4	3	Dining	16" piping from 5A FW HTR Drain to 3A HDT	Vos	Heater Drain system flowpath	Pressure boundary/	None	None.		
1/4	PIN	3	081	5613-W-3081 SH 4	3	Piping	[3-16"-5-D]	Yes	Heater Drain system flowpath	system integrity	None	Normal operation should keep piping and components warm and well above freezing.		
							[3-10 -3-0]					None.		
175	PTN	3	081	5613-M-3081 SH 4	4	Piping	Piping from Seal Water to 3A HDT	Yes	Heater Drain system flowpath	Pressure boundary/	None	1	Assume 3" (ref. P&ID 5613-M-3074 Sh 2)	
		1								system integrity		components warm and well above freezing.		
							6", 16", 24" piping from 5A FW			Danas havedand		None.		
176	PTN	3	081	5613-M-3081 SH 4	5	Piping	HTR and Seal Water to 3A HDT	Yes	Heater Drain system flowpath	Pressure boundary/ system integrity	None	Normal operation should keep piping and		
							[3-6"-5-D, 3-16"-5-D, 3-24"-5-D]			system integrity		components warm and well above freezing.		
												Inspect during walkdown.		
177	PTN	3	081	5613-M-3081 SH 4	5	Vents / Drains / Misc.	3/4" Drain	No	None	Pressure boundary/	Protect	Configuration/location of components is		
						Connections				system integrity		unknown. Inspect during walkdown to determine		
												if actions are required. Inspect during walkdown.		
						Vents / Drains / Misc.				Pressure boundary/		Configuration/location of components is		
178	PTN	3	081	5613-M-3081 SH 4	5	Connections	Welded pipe caps (2 of them)	Yes	None	system integrity	Protect	unknown. Inspect during walkdown to determine	Configuration unclear from P&ID.	
										-,,		if actions are required.		
							10" piping from 5A FW HTR vent			D		None.		
179	PTN	3	081	5613-M-3081 SH 4	6	Piping	to 3B HDT	Yes	Heater Drain system flowpath	Pressure boundary/ system integrity	None	Normal operation should keep piping and		
							[3-10"-5-D]			System mitegrity		components warm and well above freezing.		
		T										Inspect during walkdown.		
180	PTN	3	081	5613-M-3081 SH 4	6	Vents / Drains / Misc.	Connection (size not marked)	No	None	Pressure boundary/	Protect	Configuration/location of components is	Closed valve 3-30-593	
	"	-			_	Connections	la contraction (contraction)			system integrity		unknown. Inspect during walkdown to determine		
							4011			1		if actions are required.		
101	PTN	,	081	E613 M 2001 CH 4	7		10" piping from 5A FW HTR vent	Vos	Heater Drain system flowpath	Pressure boundary/	None	None.		
181	PIN	3	081	5613-M-3081 SH 4	,	Piping	to 3B HDT [3-10"-5-D]	Yes	Heater Drain system flowpath	system integrity	None	Normal operation should keep piping and components warm and well above freezing.		
							[3-10 -3-D]					Inspect during walkdown.		
						Vents / Drains / Misc.				Pressure boundary/		Configuration/location of components is		
182	PTN	3	081	5613-M-3081 SH 4	7	Connections	Connection (size not marked)	No	None	system integrity	Protect	unknown. Inspect during walkdown to determine	Closed valve 3-30-591	
										, , ,		if actions are required.		
							12" cross-connect piping 5A/5B			Pressure boundary/		None.		
183	PTN	3	081	5613-M-3081 SH 4	8	Piping	FW HTR to 3A/3B HDT	Yes	Heater Drain system flowpath	system integrity	None	Normal operation should keep piping and		
							[3-12"-5-D]			system integrity		components warm and well above freezing.		
												Inspect during walkdown.		
184	DTN	,	004	5613-M-3081 SH 4			3A HDT Level transmitters and	V				Components are in close proximity to hot piping,		
184	PTN	3	081	5613-W-3081 SH 4	9	Instr. Control / Protection	associated piping/valves	Yes	Provide signal for control valves	System Flow control	Protect	but configuration/location of components is		
												unknown. Inspect during walkdown to determine if actions are required.		
												Inspect during walkdown.		
		_			_	Vents / Drains / Misc.				Pressure boundary/		Configuration/location of components is		
185	PTN	3	081	5613-M-3081 SH 4	9	Connections	1" and 1/2" Vents and drains	No	None	system integrity	Protect	unknown. Inspect during walkdown to determine	Loss of integrity of drain/vent may impact level controls.	
												if actions are required.		
												Inspect during walkdown.		
							3B HDT Level transmitters and					Components are in close proximity to hot piping,		
186	PTN	3	081	5613-M-3081 SH 4	10	Instr. Control / Protection	associated piping/valves	Yes	Provide signal for control valves	System Flow control	Protect	but configuration/location of components is		
												unknown. Inspect during walkdown to determine		
											-	if actions are required. Inspect during walkdown.		
						Vents / Drains / Misc.	1" and 1/2" Vents and drains, test			Pressure boundary/		Configuration/location of components is		
187	PTN	3	081	5613-M-3081 SH 4	10	Connections	connection [PX]	No	None	system integrity	Protect	unknown. Inspect during walkdown to determine	Loss of integrity of drain/vent may impact level controls.	
						Connections	Cocction [1 x]			3,3tem megnty		if actions are required.		
										1		Inspect during walkdown.		
						V / D- : / : *				D		Components are in close proximity to hot piping,		
188	PTN	3	081	5613-M-3081 SH 4	11	Vents / Drains / Misc.	3B HDT capped connections	No	None	Pressure boundary/	Protect	but configuration/location of components is		
						Connections				system integrity		unknown. Inspect during walkdown to determine		
										1		if actions are required.		
							10" piping to 3B HDT from MSR C			Pressure boundary/		None.		
189	PTN	3	081	5613-M-3081 SH 4	12	Piping	Drain	Yes	Heater Drain system flowpath	system integrity	None	Normal operation should keep piping and		
-							[3-10"-5-CM]			1	-	components warm and well above freezing.		
190	PTN	3	081	5613-M-3081 SH 4	13	Dining	8" piping to 3B HDT from MSR D	Voc	Heater Drain system flowpath	Pressure boundary/	None	None. Normal operation should keep piping and		
190	PIN	3	001	J013-IVI-3U01 3H 4	13	Piping	Drain [3-8"-5-CM]	Yes	neater Drain system nowpath	system integrity	None	components warm and well above freezing.		
							16" piping from 5B FW HTR Drain			1		None.		
191	PTN	3	081	5613-M-3081 SH 4	14		to 3B HDT	Yes	Heater Drain system flowpath	Pressure boundary/	None	Normal operation should keep piping and		
		-					[3-16"-5-D]			system integrity		components warm and well above freezing.		
										Proceura haundans		None.		
192	PTN	3	081	5613-M-3081 SH 4	15	Piping	Piping from Seal Water to 3B HDT	Yes	Heater Drain system flowpath	Pressure boundary/ system integrity	None	Normal operation should keep piping and	Assume 3" (ref. P&ID 5613-M-3074 Sh 2)	
										System milegrity		components warm and well above freezing.		
		_					6", 16", 24" piping from 5B FW			Pressure boundary/	l	None.		
193	PTN	3	081	5613-M-3081 SH 4	16	Piping	HTR and Seal Water to 3B HDT	Yes	Heater Drain system flowpath	system integrity	None	Normal operation should keep piping and		
							[3-6"-5-D, 3-16"-5-D, 3-24"-5-D]		l .	1		components warm and well above freezing.		

Florida Power & Light Company Docket No. 20220000-OT

Ten-Year Site Plan
Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 220 of 488

R21002, Rev 0 Attachment L Page 87 of 198

194	PTN	3	081	5613-M-3081 SH 4	16	Vents / Drains / Misc. Connections	3/4" Drain	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
195	PTN	3	081	5613-M-3081 SH 4	16	Vents / Drains / Misc. Connections	Welded pipe caps (2 of them)	Yes	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	Configuration unclear from P&ID.	
196	PTN	3	081	5613-M-3081 SH 4	17	Piping	14", 16", and 18" pipe from HDTs to HDPumps A and B [3-14"-5-D, 3-16"-5-D, 3-18"-5-D]	Yes	Heater Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation should keep piping and components warm and well above freezing.		
197	PTN	3	081	5613-M-3081 SH 4	17	Instr. Local	Local Pressure Indicator PI-3-6695	Yes	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
198	PTN	3	081	5613-M-3081 SH 4	17	Vents / Drains / Misc. Connections	Various test connections	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
199	PTN	3	081	5613-M-3081 SH 4	17	Vents / Drains / Misc. Connections	1" drains	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
200	PTN	3	081	5613-M-3081 SH 4	18	Piping	12" piping from HDT 3A/3B to 3B condenser [3-12"-5-D, 3-12"-5-CM]	No	Flowpath from HDTs to 3B condenser (assume on HD pump trip)	Pressure boundary/ Flow Control	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve (w HDT upsteam and open to Condenser on the other). However, configuration/location of components is unknown. Inspect during walkdown to determine if actions are required and whether dead leg sections of pipe is a concern.		
201	PTN	3	081	5613-M-3081 SH 4	18	Piping	Control valve CV-3-1510B	Standby	Flowpath from HDTs to 3B condenser	Pressure boundary/ Flow Control	None	Inspect during walkdown. Normal operation should keep the valve warm (w HDT on one side and condenser on the other). However, configuration/location of components is unknown. Inspect during walkdown to determine if actions are required and whether dead leg sections of pipe is a concern.		
202	PTN	3	081	5613-M-3081 SH 4	18	Instr. Control / Protection	Instrument air tubing/ controller for CV-3-1510B	Standby	CV-3-1510B Control	Flow Control	Protect	Inspect during walkdown. Air lines not subject to freezing. Ensure valve actuator, controller, and, connected control wiring are adequately insulated/protected from elements.		
203	PTN	3	081	5613-M-3081 SH 4	18	Vents / Drains / Misc. Connections	1" Drain	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation points. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
204	PTN	3	081	5613-M-3081 SH 4	19	Piping	10" piping from HDT 3A/3B to 3B condenser/ bypass control valve CN-3-1510B [3-10"-5-D]	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm outside isolation valves. Configuration/location/ length of pipe b/t valves is unknown - potential deadleg Inspect during walkdown to determine if actions are required. (unlikely a concern for 10° piping) if appropriate, ensure pipe section is drained.		
205	PTN	3	081	5613-M-3081 SH 4	19	Vents / Drains / Misc. Connections	Connection (size not marked)	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Drain on normally isolated section of pipe. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
206	PTN	3	081	5613-M-3081 SH 4	20	Piping	4" piping from Main Condensate Header to HD Pump suction header	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve (w HD header upsteam and to Condensate systen on the other). However, configuration/location of components is unknown. Inspect during walkdown to determine if actions are required and whether dead leg sections of pipe is a concern.		

Florida Power & Light Company Docket No. 20220000-OT

Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 221 of 488

R21002, Rev 0 Attachment L Page 88 of 198

207	PTN	3	081	5613-M-3081 SH 4	20	Piping	Control valve CV-3-1900	Standby	None	Pressure boundary/ Flow Control	Protect	Inspect during walkdown. Normal operation should keep the valve warm (w HD header on one side and condensate system on the other). However, configuration/location of components is unknown. Inspect during walkdown to determine if actions are required and whether dead leg sections of pipe is a concern.	Valve normally closed; fails closed	
208	PTN	3	081	5613-M-3081 SH 4	20	Instr. Control / Protection	Instrument air tubing/ controller for CV-3-1900	Standby	CV-3-1900 Control	Flow Control	Protect	Inspect during walkdown. Air lines not subject to freezing. Ensure valve actuator, controller, and, connected control wiring are adequately insulated/protected from elements.		
209	PTN	3	081	5613-M-3081 SH 4	20	Vents / Drains / Misc. Connections	3/4" drain/connection	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
210	PTN	3	081	5613-M-3081 SH 4	21	Piping	3" piping from Condensate Header to HD pump suction header - Bypass control valve CN- 3-1900 [3-3"-3-D]	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm outside isolation valves. Configuration/location/ length of pipe b/t valves is unknown - potential deadleg Inspect during walkdown to determine if actions are required. If appropriate, ensure pipe section is drained.		
211	PTN	3	081	5613-M-3081 SH 4	21	Vents / Drains / Misc. Connections	[3-3"-5-CM]	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Drain on normally isolated section of pipe. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
212	PTN	3	081	5613-M-3081 SH 4	22	Piping	3" piping to SWLU connection	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. This ties into SWLU connection point - which is isolated. Configuration/location of components is unknown. Inspect during walkdown, evaluate configuration for dead-leg potential, determine if actions are required.		
213	PTN	3	081	5613-M-3081 SH 4	23	Piping	1" piping; HD Pump vent to 3A HDT [3-1"-5-D]	Yes	Vent for HD pump	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Configuration/ routing of piping is unknown. Potentially a long run of 1" pipe. Inspect during walkdown to determine if actions are required.	Discuss with operations to determine the amount of flow these vents see.	
214	PTN	3	081	5613-M-3081 SH 4	24	Piping	1/2" to 1/4" SS tubing from A HD Pump discharge to sample system	Yes	Monitoring, sampling, and secondary system	Local Sampling Requirement, pressure boundry	Protect	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing.	Unclear whether flow is continuous or drawn as needed from sample sink	
215	PTN	3	081	5613-M-3081 SH 4	24	Instr. Local	Local Pressure Indicator PI-3-1437	Yes	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Configuration/location of components is unknown. Expected to be in close proximity to hot piping. Inspect during walkdown to determine if actions are required.		
216	PTN	3	081	5613-M-3081 SH 4	24	Vents / Drains / Misc. Connections	Test connection [PX]	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Configuration/location of components is unknown. Expected to be in close proximity to hot piping. Inspect during walkdown to determine if actions are required.		
217	PTN	3	081	5613-M-3081 SH 4	25	Piping	1/2" to 1/4" SS tubing from B HD Pump discharge to sample system	Yes	Monitoring, sampling, and secondary system	Local Sampling Requirement, pressure boundry	Protect	Insulate and Heat Trace Ensure Tubing Above Freezing Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing.	Unclear whether flow is continuous or drawn as needed from sample sink	
218	PTN	3	081	5613-M-3081 SH 4	25	Instr. Local	Local Pressure Indicator PI-3-1438	Yes	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Configuration/location of components is unknown. Expected to be in close proximity to hot piping. Inspect during walkdown to determine if actions are required.		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 222 of 488

R21002, Rev 0 Attachment L Page 89 of 198

219	PTN	3	081	5613-M-3081 SH 4	25	Vents / Drains / Misc. Connections	Test connection [PX]	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Configuration/location of components is unknown. Expected to be in close proximity to hot piping. Inspect during walkdown to determine if actions are required.		
220	PTN	3	081	5613-M-3081 SH 4	26	Piping	3" piping from HD Pump Discharge to 3B HDT - Recirc piping [3-3"-3-D, 3-3"-3-CM, 3-4"-3-CM, 3-4"-3-D]	Yes	Heater Drain pump recirc flowpath	Required for HD pump operation/ pressure boundary	Protect	inspect during walkdown. Assuming continuous recirc flow, normal operation should keep piping and components warm and well above freezing. Discuss normal flowrate with operations. Confirm that piping is insulated.	Confirm with operations that recirc is continuous flow.	
221	PTN	3	081	5613-M-3081 SH 4	27	Piping	12" and 16" HD Pump A and B Discharge piping [3-12"-3-D, 3-16"-3-D, 3-16"-3- CM, 3-16"-3-D]	Yes	Heater Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation should keep piping and components warm and well above freezing.		
222	PTN	3	081	5613-M-3081 SH 4	27	Piping	Control valve CV-3-1510A	Yes	Heater Drain system flowpath	Pressure boundary/ Flow Control	None	None. Normal operation should keep piping and components warm and well above freezing.	Valve normally open; fails open	
223	PTN	3	081	5613-M-3081 SH 4	27	Instr. Control / Protection	Instrument air tubing/ controller for CV-3-1510A	Standby	CV-3-1510A Control	Flow Control	Protect	Inspect during walkdown. Air lines not subject to freezing. Ensure valve actuator, controller, and, connected control wiring are adequately insulated/protected from elements.		
224	PTN	3	081	5613-M-3081 SH 4	27	Vents / Drains / Misc. Connections	Test connection [PX]	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Configuration/location of components is unknown. Expected to be in close proximity to hot piping. Inspect during walkdown to determine if actions are required.		
225	PTN	3	081	5613-M-3081 SH 4	27	Vents / Drains / Misc. Connections	Vents and drains (2 of each)	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Vents/drains are exposed to hot piping, but configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
226	PTN	3	081	5613-M-3081 SH 4	28	Piping	3/4" piping - bypass HD pump A/B discharge check valves	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm outside isolation valves. Configuration/location/ length of pipe b/t valves is unknown - potential deadleg Inspect during walkdown to determine if actions are required. if appropriate/possible, ensure pipe section is drained.		
227	PTN	3	081	5613-M-3081 SH 4	29	Instr. Annunciation / Indication	Piping/Tubing/valves associated with FIT-3-1404	Yes	Flow indication/ transmitter	Flow indication/ pressure boundary	Protect	Insulate and Heat Trace Ensure Tubing Above Freezing Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing.		
228	PTN	3	081	5613-M-3081 SH 4	29	Vents / Drains / Misc. Connections	Test points associated with FIT-3-1404	No	None	Pressure boundary/ system integrity	Protect	Insulate and Heat Trace Ensure Tubing Above Freezing Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing.		
229	PTN	3	081	5613-M-3081 SH 4	30	Piping	12" piping from A/B HD Pumps to FW PP suction/ bypass control valve CN-3-1510A [3-12"-3-D]	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm outside isolation valves. Configuration/location/ length of pipe b/t valves is unknown - potential deadleg Inspect during walkdown to determine if actions are required. (unlikely a concern for 12" piping) if appropriate, ensure pipe section is drained.		
230	PTN	3	081	5613-M-3081 SH 4	30	Vents / Drains / Misc. Connections	Connection (size not marked)	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Drain on normally isolated section of pipe. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
231	PTN	3	081	5613-M-3081 SH 4	31	Instr. Control / Protection	Flex tubing installed to either side of CV-3-1510A; HD pump interlock	Yes	HD pump interlock	Pressure boundary/ Pump interlock function	Protect	Configuration is unknown. Insulate and Heat Trace to ensure Tubing Above Freezing. Walkdown to confirm location.		
242	PTN	3	081	5613-M-3081 Sh. 5	1	Piping	2" Pipe	Yes	FW Heater Drain system vent flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 223 of 488

R21002, Rev 0 Attachment L Page 90 of 198

													F
243	PTN	3	081	5613-M-3081 Sh. 5	2	Piping	2.5" Pipe	Yes	FW Heater Drain system vent flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.	
244	PTN	3	081	5613-M-3081 Sh. 5	3	Piping	6" Pipe	Yes	FW Heater Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.	
245	PTN	3	081	5613-M-3081 Sh. 5	3	Instr. Local	PX & FX	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required (i.e., Heat Trace & 1" Insulation).	
246	PTN	3	081	5613-M-3081 Sh. 5	3	Vents / Drains / Misc. Connections	1" Connection	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required (i.e., Heat Trace & 1" Insulation).	
247	PTN	3	081	5613-M-3081 Sh. 5	3	Vents / Drains / Misc. Connections	6" Connection	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the flange. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required (i.e., 1" Insulation needed to keep piping from >25% freezing).	
248	PTN	3	081	5613-M-3081 Sh. 5	4	Piping	3" Pipe	Yes	FW Heater Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.	
249	PTN	3	081	5613-M-3081 Sh. 5	5	Piping	4" Pipe	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required (i.e., 1" Insulation needed to keep piping from >25% freezing).	
250	PTN	3	081	5613-M-3081 Sh. 5	6	Piping	6" Pipe	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to verify that piping is insulated already. If not, 1" Insulation needed to keep piping from >25% freezing. Another option is to mitigate by opening the CV valve to the Condenser flow path so there is flow in this piping on a periodic basis to prevent freezing.	
251	PTN	3	081	5613-M-3081 Sh. 5	6	Vents / Drains / Misc. Connections	6" Connection	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to verify that piping is insulated already. If not, 1" Insulation needed to keep piping from >25% freezing.	
252	PTN	3	081	5613-M-3081 Sh. 5	7	Piping	3" Pipe	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to verify that piping is insulated already. If not, 2" Insulation needed to keep piping from >25% freezing. Another option is to mitigate by opening the CV valve to the Condenser flow path so there is flow in this piping on a periodic basis to prevent freezing.	
253	PTN	3	081	5613-M-3081 Sh. 5	7	Vents / Drains / Misc. Connections	3/4" Connection	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required (i.e., Heat Trace & 1" Insulation).	
254	PTN	3	081	5613-M-3081 Sh. 5	8	Piping	4" Pipe	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to verify that piping is insulated aiready. If not, 1" Insulation needed to keep piping from >25% freezing.	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 224 of 488 Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 225 of 488

> R21002, Rev 0 Attachment L Page 91 of 198

255	PTN	3	081	5613-M-3081 Sh. 5	8	Vents / Drains / Misc. Connections	3/4" Connection	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required (i.e., Heat Trace & 1" Insulation).	
266	PTN	3	081	5613-M-3081 Sh. 5	9	Piping	8" Pipe	Yes	FW Heater Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.	
267	PTN	3	081	5613-M-3081 Sh. 5	9	Instr. Local	PX & FX	No	None	Pressure boundary/ system integrity/ deadleg	Protect	inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required (i.e., Heat Trace & 1" Insulation).	
268	PTN	3	081	5613-M-3081 Sh. 5	9	Vents / Drains / Misc. Connections	1" Connection	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required (i.e., Heat Trace & 1" Insulation).	
269	PTN	3	081	5613-M-3081 Sh. 5	9	Vents / Drains / Misc. Connections	3/4" Connection	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required (i.e., Heat Trace & 1" Insulation).	
270	PTN	3	081	5613-M-3081 Sh. 5	9	Vents / Drains / Misc. Connections	8" Flange	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the flange. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required (i.e., 1" Insulation needed to keep piping from >25% freezing).	
271	PTN	3	081	5613-M-3081 Sh. 5	10	Piping	6" Pipe	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required (i.e., 1" Insulation needed to keep piping from >25% freezing).	
272	PTN	3	081	5613-M-3081 Sh. 5	11	Piping	1.5" Pipe	No	None	Pressure boundary/ system integrity/ dead leg	Protect	Inspect during walkdown. This ties into SWLU connection point - which is isolated. Configuration/location of components is unknown. Inspect during walkdown, evalute configuration for dead-leg potential, determine if actions are required.	
273	PTN	3	081	5613-M-3081 Sh. 5	12	Piping	8" Pipe	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to verify that piping is insulated already. If not, 1" Insulation needed to keep piping from >25% freezing. Another option is to mitigate by opening the CV valve to the Condenser flow path so there is flow in this piping on a periodic basis to prevent freezing.	
274	PTN	3	081	5613-M-3081 Sh. 5	12	Vents / Drains / Misc. Connections	8" Connection	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to verify that piping is insulated already. If not, 1" insulation needed to keep piping from >25% freezing.	
275	PTN	3	081	5613-M-3081 Sh. 5	13	Piping	6" Pipe	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to verify that piping is insulated already. If not, 1" Insulation needed to keep piping from >25% freezing. Another option is to mitigate by opening the CV valve to the Condenser flow path so there is flow in this piping on a periodic basis to prevent freezing.	

R21002, Rev 0 Attachment L Page 92 of 198

276	PTN	3	081	5613-M-3081 Sh. 5	13	Vents / Drains / Misc. Connections	3/4" Connection	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required (i.e., Heat Trace & 1" Insulation).	
277	PTN	3	081	5613-M-3081 Sh. 5	14	Piping	6" Pipe	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to verify that piping is insulated already. If not, 1" Insulation needed to keep piping from >25% freezing.	
278	PTN	3	081	5613-M-3081 Sh. 5	14	Vents / Drains / Misc. Connections	3/4" Connection	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required (i.e., Heat Trace & 1" Insulation).	
279	PTN	3	081	5613-M-3081 Sh. 5	15	Piping	1.5" Pipe	Yes	FW Heater Drain system vent flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.	
280	PTN	3	081	5613-M-3081 Sh. 5	16	Piping	1.5" Pipe	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to verify that piping is insulated aiready. If length of bypass is short, may not require more than insulation. If long or water can gather in pipe, could require heat trace to prevent freezing.	
281	PTN	3	081	5613-M-3081 Sh. 5	17	Piping	2" Pipe	Yes	FW Heater Drain system vent flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.	
282	PTN	3	081	5613-M-3081 Sh. 5	18	Piping	1" Pipe	Yes	FW Heater Drain system vent flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.	
283	PTN	3	081	5613-M-3081 Sh. 5	19	Piping	1" Pipe	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to verify that piping is insulated aiready. If length of bypass is short, may not require more than insulation. If long or water can gather in pipe, could require heat trace to prevent freezing.	
284	PTN	3	081	5613-M-3081 Sh. 5	20	Piping	1.5" Pipe	Yes	FW Heater Drain system vent flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.	
235	PTN	3	081	5613-M-3081 Sh. 5	21	Piping	1.5" Instrument Piping	Yes	Piping to all of the Instruments associated with Heatert Drains for the FWHs	Pressure boundary/ system integrity/ deadleg/instrument loop	Protect	Inspect during walkdown for length. Heat Trace and 1" Insulation recommended to due to unknown length.	
236	PTN	3	081	5613-M-3081 Sh. 5	21	Instr. Local	LG	Yes	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown for length. Heat Trace and 1" Insulation recommended to due to unknown length.	
237	PTN	3	081	5613-M-3081 Sh. 5	21	Instr. Annunciation / Indication	LS	Yes	CR Annunciator	Pressure boundary/ system integrity/ deadleg/instrument alarm	Protect	Inspect during walkdown for length. Heat Trace and 1" Insulation recommended to due to unknown length.	
238	PTN	3	081	5613-M-3081 Sh. 5	21	Instr. Control / Protection	LS & LC	Yes	Control to CVs for flow for FWHs 3E3A/B and SV for Extraction Steam	Pressure boundary/ system integrity/ deadleg/instrument control	Protect	Inspect during walkdown for length. Heat Trace and 1" Insulation recommended to due to unknown length. No protection required for the airline to/from the LC, not subjected to freezing.	
239	PTN	3	081	5613-M-3081 Sh. 5	21	Vents / Drains / Misc. Connections	Vents	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown for length. Heat Trace and 1" Insulation recommended to due to unknown length.	
240	PTN	3	081	5613-M-3081 Sh. 5	21	Vents / Drains / Misc. Connections	Drains	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown for length. Heat Trace and 1" Insulation recommended to due to unknown length.	
241	PTN	3	081	5613-M-3081 Sh. 5	21	Vents / Drains / Misc. Connections	Connections	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown for length. Heat Trace and 1" Insulation recommended to due to unknown length.	
259	PTN	3	081	5613-M-3081 Sh. 5	22	Piping	1.5" Instrument Piping	Yes	Piping to all of the Instruments associated with Heatert Drains for the FWHs	Pressure boundary/ system integrity/ deadleg/instrument loop	Protect	Inspect during walkdown for length. Heat Trace and 1" Insulation recommended to due to unknown length.	
260	PTN	3	081	5613-M-3081 Sh. 5	22	Instr. Local	LG	Yes	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown for length. Heat Trace and 1" Insulation recommended to due to unknown length.	

Florida Power & Light Company Docket No. 20220000-OT

Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 226 of 488

R21002, Rev 0 Attachment L Page 93 of 198

														ŀ
261	PTN	3	081	5613-M-3081 Sh. 5	22	Instr. Annunciation / Indication	LS	Yes	CR Annunciator	Pressure boundary/ system integrity/ deadleg/instrument alarm	Protect	Inspect during walkdown for length. Heat Trace and 1" Insulation recommended to due to unknown length.		
262	PTN	3	081	5613-M-3081 Sh. 5	22	Instr. Control / Protection	LS & LC	Yes	Control to CVs for flow to FWHs and Condensers and SV for Extraction Steam	Pressure boundary/ system integrity/ deadleg/instrument control	Protect	Inspect during walkdown for length. Heat Trace and 1" Insulation recommended to due to unknown length. No protection required for the airline to/from the LC, not subjected to freezing.		
263	PTN	3	081	5613-M-3081 Sh. 5	22	Vents / Drains / Misc. Connections	Vents	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown for length. Heat Trace and 1" Insulation recommended to due to unknown length.		
264	PTN	3	081	5613-M-3081 Sh. 5	22	Vents / Drains / Misc. Connections	Drains	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown for length. Heat Trace and 1" Insulation recommended to due to unknown length.		
265	PTN	3	081	5613-M-3081 Sh. 5	22	Vents / Drains / Misc. Connections	Connections	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown for length. Heat Trace and 1" Insulation recommended to due to unknown length.		
232	PTN	3	081	5613-M-3081 Sh. 5	-	Heat Exchangers	FWH 3E4A/B	Yes	Required for generation	Pressure boundary/ system integrity	None		FWHs will be in operation and hot which will prevent freezing. In addition, the FWHs should alos be insulated already.	
233	PTN	3	081	5613-M-3081 Sh. 5	i	Relief Valves	RV (4" Inlet, 6" Outlet per NAMS)	Standby	Relieves at 100 psig for the FWHs	Prevent overpressurization of the FWHs	Protect	Inspect during walkdown, possibly already insulated. Otherwise, 1" Insulation to prevent >25% freezing.		
234	PTN	3	081	5613-M-3081 Sh. 5	ı	Vents / Drains / Misc. Connections	1.5" Drains	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required (i.e., Heat Trace & 1" Insulation).		
256	PTN	3	081	5613-M-3081 Sh. 5	-	Heat Exchangers	FWH 3E3A/B	Yes	Required for generation	Pressure boundary/ system integrity	None		FWHs will be in operation and hot which will prevent freezing. In addition, the FWHs should alos be insulated already.	
257	PTN	3	081	5613-M-3081 Sh. 5	-	Relief Valves	RV (4" Inlet, 6" Outlet per NAMS)	Standby	Relieves at 100 psig for the FWHs	Prevent overpressurization of the FWHs	Protect	Options: 1. Inspect during walkdown, possibly already insulated 2. 1" Insulation to prevent >25% freezing.	addition, the t with should did see insulated directly.	
258	PTN	3	081	5613-M-3081 Sh. 5	-	Vents / Drains / Misc. Connections	1.5" Drains	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required (i.e., Heat Trace & 1" Insulation).		
285	PTN	3	081	5613-M-3081 Sh. 6	1	Piping	8" Pipe	Yes	FW Heater Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.		
295	PTN	3	081	5613-M-3081 Sh. 6	2	Piping	3" Pipe	Yes	FW Heater Drain system vent flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.		
296	PTN	3	081	5613-M-3081 Sh. 6	3	Piping	3" Pîpe	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to verify that piping is insulated already. If length of bypass is short, may not require more than insulation. If long or water can gather in pipe, could require 2" Insulation to prevent >25% freezing.		
297	PTN	3	081	5613-M-3081 Sh. 6	4	Piping	1" Pipe	Yes	FW Heater Drain system vent flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.		
298	PTN	3	081	5613-M-3081 Sh. 6	5	Piping	1" Pipe	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to verify that piping is insulated already. If length of bypass is short, may not require more than insulation. If long or water can gather in pipe, could require heat trace to prevent freezing.		
299	PTN	3	081	5613-M-3081 Sh. 6	6	Piping	10" Pipe	No	None	Pressure boundary/ system integrity/ dead leg	Protect	Inspect during walkdown. This ties into SWLU connection point - which is isolated. Configuration/location of components is unknown. Inspect during walkdown, evalute configuration for dead-leg potential, determine if actions are required. 1" Insulation would protect against >25% freezing.		

Florida Power & Light Company Docket No. 20220000-OT

Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 227 of 488 Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 228 of 488

> R21002, Rev 0 Attachment L Page 94 of 198

300	PTN	3	081	5613-M-3081 Sh. 6	7	Piping	2" Pipe	No	None	Pressure boundary/ system integrity/ dead leg	Protect	Inspect during walkdown. This ties into SWLU connection point - which is isolated. Configuration/location of components is unknown. Inspect during walkdown, evalute configuration for dead-leg potential, determine if actions are required. 4" Insulation would protect against >25% freezing, or Heat Trace & 1" Insulation to prevent freezing.	
301	PTN	3	081	5613-M-3081 Sh. 6	8	Piping	10" Pipe	Yes	FW Heater Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.	
302	PTN	3	081	5613-M-3081 Sh. 6	8	Vents / Drains / Misc. Connections	1" Connection	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required (i.e., Heat Trace & 1" Insulation).	
303	PTN	3	081	5613-M-3081 Sh. 6	8	Instr. Local	PX	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required (i.e., Heat Trace & 1" Insulation).	
304	PTN	3	081	5613-M-3081 Sh. 6	9	Piping	8" Pipe	Yes	FW Heater Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.	
305	PTN	3	081	5613-M-3081 Sh. 6	9	Vents / Drains / Misc. Connections	3/4" Connection	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required (i.e., Heat Trace & 1" Insulation).	
306	PTN	3	081	5613-M-3081 Sh. 6	10	Piping	14" Pipe	Yes	FW Heater Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.	
307	PTN	3	081	5613-M-3081 Sh. 6	10	Vents / Drains / Misc. Connections	14" Flange	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the flange. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required (i.e., 1" Insulation needed to keep piping from >25% freezing).	
317	PTN	3	081	5613-M-3081 Sh. 6	11	Piping	8" Pipe	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required (i.e., 1" Insulation needed to keep piping from >25% freezing).	
318	PTN	3	081	5613-M-3081 Sh. 6	12	Piping	10" Pipe	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to verify that piping is insulated already. If not, 1" Insulation needed to keep piping from >25% freezing. Another option is to mitigate by opening the CV valve to the Condenser flow path so there is flow in this piping on a periodic basis to prevent freezing.	
319	PTN	3	081	5613-M-3081 Sh. 6	12	Vents / Drains / Misc. Connections	3/4" Connection	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to verify that piping is insulated already. If not, 1" insulation needed to keep piping from >25% freezing.	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 229 of 488

> R21002, Rev 0 Attachment L Page 95 of 198

320	PTN	3	081	5613-M-3081 Sh. 6	13	Piping	12" Pipe	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to verify that piping is insulated already. If not, 1" Insulation needed to keep piping from >25% freezing. Another option is to mitigate by opening the CV valve to the Condenser flow path so there is flow in this piping on a periodic basis to prevent freezing.	
321	PTN	3	081	5613-M-3081 Sh. 6	13	Vents / Drains / Misc. Connections	12" Flange	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to verify that piping is insulated aiready. If not, 1" Insulation needed to keep piping from >25% freezing.	
322	PTN	3	081	5613-M-3081 Sh. 6	14	Piping	8" Pipe	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to verify that piping is insulated already. If not, 1" Insulation needed to keep piping from >25% freezing.	
323	PTN	3	081	5613-M-3081 Sh. 6	14	Vents / Drains / Misc. Connections	3/4" Connection	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to verify that piping is insulated already. If not, 1" Insulation needed to keep piping from >25% freezing.	
324	PTN	3	081	5613-M-3081 Sh. 6	15	Piping	1.5" Pipe	Yes	FW Heater Drain system vent flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.	
325	PTN	3	081	5613-M-3081 Sh. 6	16	Piping	1.5" Pipe	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to verify that piping is insulated aiready. If length of bypass is short, may not require more than insulation. If long or water can gather in pipe, could require heat trace to prevent freezing.	
326	PTN	3	081	5613-M-3081 Sh. 6	17	Piping	4" Pipe	Yes	FW Heater Drain system vent flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.	
327	PTN	3	081	5613-M-3081 Sh. 6	18	Piping	4" Pipe	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to verify that piping is insulated already. If length of bypass is short, may not require more than insulation. If long or water can gather in pipe, could require 1" Insulation to prevent >25% freezing.	
328	PTN	3	081	5613-M-3081 Sh. 6	19	Piping	12" Pipe	Yes	FW Heater Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.	
329	PTN	3	081	5613-M-3081 Sh. 6	19	Vents / Drains / Misc. Connections	3/4" & 1" Drains	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required (i.e., Heat Trace & 1" Insulation).	
330	PTN	3	081	5613-M-3081 Sh. 6	19	Instr. Local	PX	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required (i.e., Heat Trace & 1" Insulation).	
331	PTN	3	081	5613-M-3081 Sh. 6	20	Piping	10" Pipe	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required (i.e., 1" Insulation needed to keep piping from >25% freezing).	

R21002, Rev 0 Attachment L Page 96 of 198

332	PTN	3	081	5613-M-3081 Sh. 6	21	Piping	12" Pipe	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to verify that piping is insulated already. If not, 1" insulation needed to keep piping from >25% freezing. Another option is to mitigate by opening the CV valve to the Condenser flow path so there is flow in this piping on a periodic basis to prevent freezing.	
333	PTN	3	081	5613-M-3081 Sh. 6	22	Piping	8" Pipe	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to verify that piping is insulated already. If not, 1" Insulation needed to keep piping from >25% freezing. Another option is to mitigate by opening the CV valve to the Condenser flow path so there is flow in this piping on a periodic basis to prevent freezing.	
334	PTN	3	081	5613-M-3081 Sh. 6	22	Vents / Drains / Misc. Connections	3/4" Connection	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to verify that piping is insulated already. If not, 1" Insulation needed to keep piping from >25% freezing.	
335	PTN	3	081	5613-M-3081 Sh. 6	23	Piping	10" Pipe	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to verify that piping is insulated already. If not, 1" Insulation needed to keep piping from >25% freezing.	
336	PTN	3	081	5613-M-3081 Sh. 6	23	Vents / Drains / Misc. Connections	3/4" Connection	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to verify that piping is insulated already. If not, 1" Insulation needed to keep piping from >25% freezing.	
337	PTN	3	081	5613-M-3081 Sh. 6	24	Piping	12" Pipe	No	None	Pressure boundary/ system integrity/ dead leg	Protect	Inspect during walkdown. This ties into SWLU connection point - which is isolated. Configuration/location of components is unknown. Inspect during walkdown, evalute configuraiton for dead-leg potential, determine if actions are required. 1" Insulation would protect against >25% freezing.	
338	PTN	3	081	5613-M-3081 Sh. 6	25	Piping	2" Pipe	No	None	Pressure boundary/ system integrity/ dead leg	Protect	Inspect during walkdown. This ties into SWLU connection point - which is isolated. Configuration/location of components is unknown. Inspect during walkdown, evalute configuraiton for dead-leg potential, determine if actions are required. 4" Insulation would protect against >25% freezing, or Heat Trace & 1" Insulation to prevent freezing.	
288	PTN	3	081	5613-M-3081 Sh. 6	26	Piping	1.5" Pipe	Yes	Piping to all of the Instruments associated with Heatert Drains for the FWHs	Pressure boundary/ system integrity/ deadleg/instrument loop	Protect	Inspect during walkdown for length. Heat Trace and 1" Insulation recommended to due to unknown length.	
289	PTN	3	081	5613-M-3081 Sh. 6	26	Instr. Control / Protection	LC, LS	Yes	Control to CVs for flow to FWHs and Condensers	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown for length. Heat Trace and 1" Insulation recommended to due to unknown length. No protection required for the airline to/from the LC, not subjected to freezing.	
290	PTN	3	081	5613-M-3081 Sh. 6	26	Instr. Annunciation / Indication	LS	Yes	CR Annunciator	Pressure boundary/ system integrity/ deadleg/instrument alarm	Protect	Inspect during walkdown for length. Heat Trace and 1" Insulation recommended to due to unknown length.	
291	PTN	3	081	5613-M-3081 Sh. 6	26	Instr. Local	LI, LGs	Yes	None	Pressure boundary/ system integrity/ deadleg/instrument control	Protect	Inspect during walkdown for length. Heat Trace and 1" Insulation recommended to due to unknown length.	
292	PTN	3	081	5613-M-3081 Sh. 6	26	Vents / Drains / Misc. Connections	Vents	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown for length. Heat Trace and 1" Insulation recommended to due to unknown length.	
293	PTN	3	081	5613-M-3081 Sh. 6	26	Vents / Drains / Misc. Connections	Drains	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown for length. Heat Trace and 1" Insulation recommended to due to unknown length.	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 230 of 488

R21002, Rev 0 Attachment L Page 97 of 198

						Vents / Drains / Misc.				Pressure boundary/		Inspect during walkdown for length. Heat Trace		
294	PTN	3	081	5613-M-3081 Sh. 6	26	Connections	3/4" Connections	No	None	system integrity/	Protect	and 1" Insulation recommended to due to		
										deadleg Pressure boundary/		unknown length.		
210	PTN	3	004	EC42 M 2004 Ch C	27	Dining	4 Ell Dine	V	Piping to all of the Instruments	system integrity/	Dtt	Inspect during walkdown for length. Heat Trace		
310	PIN	3	081	5613-M-3081 Sh. 6	27	Piping	1.5" Pipe	Yes	associated with Heatert Drains for the FWHs	deadleg/instrument	Protect	and 1" Insulation recommended to due to unknown length.		
									1	loop		<u> </u>		
										Pressure boundary/		Inspect during walkdown for length. Heat Trace and 1" Insulation recommended to due to		
311	PTN	3	081	5613-M-3081 Sh. 6	27	Instr. Control / Protection	LC, LS	Yes	Control to CVs for flow to Condensers	system integrity/	Protect	unknown length.		
							'			deadleg		No protection required for the airline to/from the		
												LC, not subjected to freezing.		
										Pressure boundary/		Inspect during walkdown for length. Heat Trace		
312	PTN	3	081	5613-M-3081 Sh. 6	27	Instr. Annunciation / Indication	LS	Yes	CR Annunciator	system integrity/ deadleg/instrument	Protect	and 1" Insulation recommended to due to		
						marcación				alarm		unknown length.		
										Pressure boundary/		Inspect during walkdown for length. Heat Trace		
313	PTN	3	081	5613-M-3081 Sh. 6	27	Instr. Local	LI, LGs	Yes	None	system integrity/	Protect	and 1" Insulation recommended to due to		
										deadleg/instrument control		unknown length.		
										Pressure boundary/		Inspect during walkdown for length. Heat Trace		
314	PTN	3	081	5613-M-3081 Sh. 6	27	Vents / Drains / Misc. Connections	Vents	No	None	system integrity/	Protect	and 1" Insulation recommended to due to		
						Connections				deadleg		unknown length.		
315	PTN	3	081	5613-M-3081 Sh. 6	27	Vents / Drains / Misc.	Drains	No	None	Pressure boundary/ system integrity/	Protect	Inspect during walkdown for length. Heat Trace and 1" Insulation recommended to due to		
313	' '''		001	3013 W 3001 3H. 0	2,	Connections	Dianis	140	None	deadleg	Frotect	unknown length.		
						Vents / Drains / Misc.				Pressure boundary/		Inspect during walkdown for length. Heat Trace		
316	PTN	3	081	5613-M-3081 Sh. 6	27	Connections	3/4" Connections	No	None	system integrity/	Protect	and 1" Insulation recommended to due to		
							-			deadleg		unknown length.	Full will be in a section and between the will are section to	
286	PTN	3	081	5613-M-3081 Sh. 6	-	Heat Exchangers	FWH 3E2A/B	Yes	Required for generation	Pressure boundary/ system integrity	None	No protection recommended	FWHs will be in operation and hot which will prevent freezing. In addition, the FWHs should alos be insulated already.	
										-,		Inspect during walkdown.		
												Normal operation should keep piping and		
207	PTN	3	004	EC42 M 2004 Ch C		Vents / Drains / Misc.	4.5%	NI-	l	Pressure boundary/		components warm up to the isolation valve.		
287	PIN	3	081	5613-M-3081 Sh. 6	-	Connections	1.5" Drains	No	None	system integrity/ deadleg	Protect	Configuration/location of components is unknown. Inspect during walkdown to determine		
										deddieg		if actions are required (i.e., Heat Trace & 1"		
												Insulation).		
308	PTN	3	081	5613-M-3081 Sh. 6	-	Heat Exchangers	FWH 3E1A/B	Yes	Required for generation	Pressure boundary/	None	No protection recommended	FWHs will be in operation and hot which will prevent freezing. In	
						-				system integrity		Inspect during walkdown.	addition, the FWHs should alos be insulated already.	
												Normal operation should keep piping and		
						Vents / Drains / Misc.				Pressure boundary/		components warm up to the isolation valve.		
309	PTN	3	081	5613-M-3081 Sh. 6	-	Connections	1.5" Drain	No	None	system integrity/	Protect	Configuration/location of components is		
										deadleg		unknown. Inspect during walkdown to determine if actions are required (i.e., Heat Trace & 1"		
												Insulation).		
												Inspect during walkdown.		
	l	_					Level transmitters and associated					Components are in close proximity to hot piping,		
342	PTN	3	081	5613-M-3081 Sh. 7	1	Instr. Control / Protection	piping/valves	Yes	Provide signal for control valves	System Flow control	Protect	but configuration/location of components is unknown. Inspect during walkdown to determine		
												if actions are required.		
												Inspect during walkdown.		
		_				Vents / Drains / Misc.				Pressure boundary/	L	Configuration/location of components is		
343	PTN	3	081	5613-M-3081 Sh. 7	1	Connections	1" Vents	No	None	system integrity	Protect	unknown. (shown as inside MSR on P&ID) Inspect during walkdown to determine if actions are	Location/configuration unclear.	
												required.		
												Inspect during walkdown.		
												Normal operation should keep piping and		
344	PTN	3	081	5613-M-3081 Sh. 7	1	Vents / Drains / Misc.	1" Drains	No	None	Pressure boundary/	Protect	components warm up to the isolation valve.	Location/configuration unclear.	
						Connections				system integrity		Configuration/location of components is unknown. Inspect during walkdown to determine		
	L											if actions are required.		
							4" Piping from MSR 25B to RHTR			Pressure boundary/		None.		
345	PTN	3	081	5613-M-3081 Sh. 7	2	Piping	Drain Tk 3A (Vent)	Yes	FW Heater Drain system flowpath	system integrity	None	Normal operation will keep piping and		
\vdash	\vdash						[3-4"-2-C]			1	 	components warm and well above freezing. Inspect during walkdown.		
												Normal operation will keep piping and		
346	PTN	3	081	5613-M-3081 Sh. 7	2	Vents / Drains / Misc.	1/2" Vent	No	None	Pressure boundary/	Protect	components warm and well above freezing.		
340	''''		331	3515 3601 511. 7	-	Connections	±/ = VCIIC	.40		system integrity	. rotett	Configuration/location is unknown. Inspect		
												during walkdown to determine if actions are required.		
												Inspect during walkdown.		
												Normal operation will keep piping and		
347	PTN	3	081	5613-M-3081 Sh. 7	2	Vents / Drains / Misc.	capped pipe	No	None	Pressure boundary/	Protect	components warm and well above freezing.		
						Connections				system integrity		Configuration/location is unknown. Inspect		
												during walkdown to determine if actions are required.		
							1		I .			144.	1	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 231 of 488

R21002, Rev 0 Attachment L Page 98 of 198

348	PTN	3	081	5613-M-3081 Sh. 7	3	Piping	12" and 8" Piping to RHTR Drain Tk 3A (Drain)	Yes	FW Heater Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.	
349	PTN	3	081	5613-M-3081 Sh. 7	4	Piping	4" piping from MSR to 6B FW HTR	Yes	FW Heater Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.	
350	PTN	3	081	5613-M-3081 Sh. 7	5	Piping	3" piping from MSR to 6B FW HTR	Yes	FW Heater Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and	
												components warm and well above freezing. Inspect during walkdown. Normal operation should keep piping and	
351	PTN	3	081	5613-M-3081 Sh. 7	5	Instr. Local	PI	Yes	None	Pressure boundary/ system integrity	Protect	components warm. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	
352	PTN	3	081	5613-M-3081 Sh. 7	5	Vents / Drains / Misc. Connections	3/4" Vent	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	
353	PTN	3	081	5613-M-3081 Sh. 7	5	Vents / Drains / Misc. Connections	1" Drain	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm. Configuration/location of components is unknown. Inspect during walkdown to determine	
354	PTN	3	081	5613-M-3081 Sh. 7	6	Piping	2" piping from MSR to 6B FW HTR	Yes	FW Heater Drain system flowpath	Pressure boundary/ system integrity	None	if actions are required. None. Normal operation will keep piping and components warm and well above freezing.	
355	PTN	3	081	5613-M-3081 Sh. 7	7	Piping	3" piping from MSR to 6B FW HTR	Yes	FW Heater Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.	
356	PTN	3	081	5613-M-3081 Sh. 7	7	Vents / Drains / Misc. Connections	Flanges	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm. Configuration/location of components is unknown. Inspect during walkdown to determine	
357	PTN	3	081	5613-M-3081 Sh. 7	7	Vents / Drains / Misc. Connections	3/4" Vent	No	None	Pressure boundary/ system integrity	Protect	If actions are required. Inspect during walkdown. Normal operation should keep piping and components warm. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	
358	PTN	3	081	5613-M-3081 Sh. 7	7	Vents / Drains / Misc. Connections	1" Drain	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	
359	PTN	3	081	5613-M-3081 Sh. 7	8	Piping	4" piping from MSR to 6B FW HTR	Yes	FW Heater Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.	
360	PTN	3	081	5613-M-3081 Sh. 7	8	Vents / Drains / Misc. Connections	Flanges	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	
361	PTN	3	081	5613-M-3081 Sh. 7	8	Vents / Drains / Misc. Connections	3/4" Vent	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	
362	PTN	3	081	5613-M-3081 Sh. 7	9	Piping	8" piping from MSR to 6B FW HTR	Yes	FW Heater Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.	
363	PTN	3	081	5613-M-3081 Sh. 7	9	Vents / Drains / Misc. Connections	Flange	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	

Florida Power & Light Company Docket No. 20220000-OT

Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 232 of 488

R21002, Rev 0 Attachment L Page 99 of 198

364	PTN	3	081	5613-M-3081 Sh. 7	10	Piping	1" Pipe	No	None	Pressure boundary/ system integrity	Protect	sides of closed valve; Configuration/location of is unknown. Inspect during walkdown to determine if actions are required.	Inspect during walkdown. Configuration/location is unknown. Expected to be short runs of pipe and potentially insulated already. Main piping will be hot.	
365	PTN	3	081	5613-M-3081 Sh. 7	11	Piping	3" Pipe	No	None	Pressure boundary/ system integrity/ Cond Vacuum	Protect	Inspect during walkdown. Segment is normally isolated from HD but open to condenser side. Configuration/location is unknown. Inspect during walkdown to determine if actions are required.	Not used in normal operation. Chain operated isolation valve.	
366	PTN	3	081	5613-M-3081 Sh. 7	11	Vents / Drains / Misc. Connections	3/4" Vent	No	None	Pressure boundary/ system integrity/ Cond Vacuum	Protect	Inspect during walkdown. Segment is normally isolated from HD but open to condenser side. Configuration/location is unknown. Inspect during walkdown to determine if actions are required.		
367	PTN	3	081	5613-M-3081 Sh. 7	11	Vents / Drains / Misc. Connections	1" Drain	No	None	Pressure boundary/ system integrity/ Cond Vacuum		Inspect during walkdown. Segment is normally open to condenser side up to isolation valve. Configuration/location is unknown. Inspect during walkdown to determine if actions are required.		
368	PTN	3	081	5613-M-3081 Sh. 7	12	Piping	1" Pipe	No	None	Pressure boundary/ system integrity/ Cond Vacuum		Inspect during walkdown. Segment is normally isolated from HD but open to condenser side. Configuration/location is unknown. Inspect during walkdown to determine if actions are required.		
369	PTN	3	081	5613-M-3081 Sh. 7	13	Piping	1/2" piping	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation will keep piping and components warm on system side of isolation valve. Configuration/location components is unknown. Inspect during walkdown to determine if actions are required.	Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required.	
370	PTN	3	081	5613-M-3081 Sh. 7	13	Instr. Local	Test Connection (PX) and	No	None	Pressure boundary/ system integrity		Inspect during walkdown. Normal operation will keep piping and components warm on system side of isolation valve. Configuration/location components is unknown. Inspect during walkdown to determine if actions are required.	Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required.	
371	PTN	3	081	5613-M-3081 Sh. 7	14	Piping	8" Pipe	Yes	Flowpath to 3B HTR Drain Tank & Condenser	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.		
372	PTN	3	081	5613-M-3081 Sh. 7	14	Vents / Drains / Misc. Connections	3/4" Connection	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
373	PTN	3	081	5613-M-3081 Sh. 7	14	Vents / Drains / Misc. Connections	Flange	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
374	PTN	3	081	5613-M-3081 Sh. 7	15	Piping	1/4", 3/8", 1/2" to sample system	Yes	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
375	PTN	3	081	5613-M-3081 Sh. 7	15	Instr. Local	Pressure Test Connection	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
376	PTN	3	081	5613-M-3081 Sh. 7	16	Piping	10" Pipe	Yes	Condenser Flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 233 of 488

R21002, Rev 0 Attachment L Page 100 of 198

377	PTN	3	081	5613-M-3081 Sh. 7	16	Vents / Drains / Misc. Connections	3/4" Connection	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	
378	PTN	3	081	5613-M-3081 Sh. 7	17	Piping	6" Pipe and CV	Yes	Condenser Flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.	
379	PTN	3	081	5613-M-3081 Sh. 7	18	Piping	10" Pipe	Yes	Condenser Flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.	
380	PTN	3	081	5613-M-3081 Sh. 7	18	Vents / Drains / Misc. Connections	Flange	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	
381	PTN	3	081	5613-M-3081 Sh. 7	19	Piping	8" Pipe	No	Bypass to Condenser	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	
382	PTN	3	081	5613-M-3081 Sh. 7	19	Vents / Drains / Misc. Connections	3/4" Connection	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	
339	PTN	3	081	5613-M-3081 Sh. 7	-	Heat Exchangers	MSR 3T25C/D	Yes	MSR	-	None	No protection recommended	MSR is already insulated and is hot
340	PTN	3	081	5613-M-3081 Sh. 7	-	Outdoor Tanks	Shell Side Drain Tank	Yes	Drain Tank	-	None	No protection recommended	MSR is already insulated and is hot
341	PTN	3	081	5613-M-3081 Sh. 7	-	Vents / Drains / Misc. Connections	Drain Tank Connections	No	Drain Tank Pressure Boundary	Pressure boundary/ system integrity/ dead leg	Protect	Inspect during walkdwon to determine if already insulated, lentth and if add'l protection is required. If short and/or insulated, no protection should be needed	
1	PTN	3	084	5613-M-3084 SH 1	1	Piping	Piping from MS to AS. Pipe sections: [3-3"-2-C, 3-10-076, 3-10-077, 3-1"-2-C, 3-3/4"-2-C, 3-1"-2-C]	Yes	Flowpath to Aux Priming Ejectors (CW - waterbox vacuum) Alternate supply to AFW pumps	Pressure boundary	None	Normal operation will keep piping and components warm and well above freezing.	Either U3 or U4 reducing station will be in service. AFW pumps supply - unable to determine if/where this path is credited
2	PTN	3	084	5613-M-3084 SH 1	1	Piping	Check valve 3-10-077 Aux Steam Reducing Station control valves CV-3-1601, 1601A	Yes	Flow Controlled by CV-13-1601; Either U3 or U4 supply is in service. (P&ID shows U3 in service)	Pressure boundary/ Flow control	None	Normal operation will keep piping and components warm and well above freezing.	
3	PTN	3	084	5613-M-3084 SH 1	1	Instr. Control / Protection	Instrument Air Tubing / position controller to valves CV-3-1601, 1601A	Yes	CV-3-1601 control (flowpath to Aux Priming Ejectors)	Flow control/ Valve fails closed on loss of signal	Protect	Air lines not subject to freezing. Ensure valve actuator, solenoid valve, and, connected control wiring are adequately insulated/protected from elements.	Components should be in close proximity to hot piping. Walkdown to determine if measures are required.
4	PTN	3	084	5613-M-3084 SH 1	1	Instr. Control / Protection	PC-3-1601 and associated piping	Yes	Flowpath to Aux Priming Ejectors (Circ water)	Pressure boundary; Condenser Performance	Protect	Normal operation will keep piping and components warm and well above freezing.	Either U3 or U4 reducing station will be in service.
5	PTN	3	084	5613-M-3084 SH 1	1	Instr. Annunciation /	PI-3-1717 and associated piping.	Yes	None	Pressure boundary	None	Normal operation will keep piping and	
6	PTN	3	084	5613-M-3084 SH 1	1	Indication Vents / Drains / Misc. Connections	Valves/ drains/ Steam Trap	Yes	None	Pressure boundary	Protect	components warm and well above freezing. Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required.	Configuration/location of drains is unknown. Inspect during walkdown.
7	PTN	3	084	5613-M-3084 SH 1	2	Piping	Piping [3-6"-2-C] Valves [SLWU-3-001, SLWU-3-002 (check vlv)]	No	None	Pressure boundary	None	Normal operation will keep piping and components warm and well above freezing (on steam side). Potential dead leg concern between	Pipe section used for WLU only. Pipe will be filled to check valve. Configuration between isolation and check valve is unknown; confirm no dead leg concern.
8	PTN	3	084	5613-M-3084 SH 1	3	Piping	Piping from the U4 AS HDR to class boundry. [6"-6-D, 3-10-078, 3-6"-6-D]	Yes	None	Pressure boundary	None	Normal operation will keep piping and components warm and well above freezing. Header should be hot to the U4 isolation valve	
9	PTN	3	084	5613-M-3084 SH 1	3	Relief Valves	Relief valves [RV-3-6264, RV-3- 1422]	Standby	Overpressure control for AS	Overpressure relief	Protect	Ensure operability of relief valve. Normal flow should keep components warm, exhaust configuration is unknown.	Location and configuration is unknown. Walkdown to evaluate whether additional measures are required.
10	PTN	3	084	5613-M-3084 SH 1	3	Vents / Drains / Misc. Connections	Drain 3-10-41B Capped pipe section 3-2"-3-D Steam Trap	Yes	None	Pressure boundary	Protect	Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required.	Configuration/location of drains is unknown. Inspect during walkdown.

Florida Power & Light Company Docket No. 20220000-OT

Ten-Year Site Plan
Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 234 of 488

R21002, Rev 0 Attachment L Page 101 of 198

									Flowpath is not normally used and leads				
11	PTN	3	084	5613-M-3084 SH 1	4	Distant	Class Piping [3-6"-3-D] to AFW	Voc	to locked closed valve.	Danas da sun da su		Normal operation will keep piping and	
11	PIN	3	084	5613-W-3084 SH 1	4	Piping	pumps	Yes	Unable to determine if/where this path	Pressure boundary	None	components warm and well above freezing.	
									is credited.				
							Piping [3-4"-6-D] to		NI/A . Londo do la plant plant de la columbia /			Named acception will be a minimum and	
12	PTN	3	084	5613-M-3084 SH 1	4	Piping	Locked Close isolation valve [3-10-	Yes	N/A; Leads to locked closed valve/	Pressure boundary	None	Normal operation will keep piping and	
							400]		abondoned equipment.			components warm and well above freezing.	
												Normal operation will keep piping and	
												components warm and well above freezing.	
13	PTN	3	084	5613-M-3084 SH 1	4	Vents / Drains / Misc.	Steam Trap/Drains	Yes	None	Pressure boundary	Protect	Configuration/location of drains is unknown.	Configuration/location of drains is unknown. Inspect during
						Connections				,		Inspect during walkdown to determine if actions	walkdown.
												are required.	
							Piping to Aux Priming Ejectors [3-			Pressure boundary;			
14	PTN	3	084	5613-M-3084 SH 1	5	Piping	2"-6-D]	Yes	Flowpath to Aux Priming Ejectors (Circ	Condenser	None	Normal operation will keep piping and	
-		.			•	1	2 0 0,		water)	Performance		components warm and well above freezing.	
							Piping from MS to Turbine Gland			Provide Gland Seal		Normal operation will keep piping and	
15	PTN	3	084	5613-M-3084 SH 1	6	Piping	Seal [3-2 1/2"-2-C]	Yes	None	Steam	None	components warm and well above freezing.	
							500. [5 2 1/2 2 0]			Steam		Normal operation will keep piping and	
												components warm and well above freezing.	
16	PTN	3	084	5613-M-3084 SH 1	6	Vents / Drains / Misc.	Steam Trap	Yes	None	Pressure boundary	Protect	Configuration/location of drains is unknown.	Configuration/location of drains is unknown. Inspect during
1		٠		3013 111 300 1311 1		Connections	Steam riap	103		ressure boundary	1100000	Inspect during walkdown to determine if actions	walkdown.
												are required.	
							Piping to Steam Jet Air Ejectors [3-			Condenser		Normal operation will keep piping and	
17	PTN	3	084	5613-M-3084 SH 1	7	Piping	2"-2-C]	Yes	Provide steam for SJAE	Performance	None	components warm and well above freezing.	SJAEs on TB Op floor
		-					2 -2-CJ		<u> </u>	renormance			
												Normal operation will keep piping and	
40	PTN	,	004	E612 M 2004 CU 1	7	Vents / Drains / Misc.	Values / drains / Starra Tarra	V	Nana	Drossuro hat	Drote -+	components warm and well above freezing.	Configuration/location of drains is unknown. Inspect during
18	PIN	3	084	5613-M-3084 SH 1	/	Connections	Valves/ drains/ Steam Traps	Yes	None	Pressure boundary	Protect	Configuration/location of drains is unknown.	walkdown.
												Inspect during walkdown to determine if actions	
												are required.	
19	PTN	3	084	5613-M-3084 SH 1	8	Piping	Piping to Hogging Ejectors	No	Hogging Ejectors Isolated during	None	None	Normal operation will keep piping and	
						, ,			operation			components warm and well above freezing.	
20	PTN	3	084	5613-M-3084 SH 1	9	Piping	Piping to Main Priming Ejectors	No	Main Priming Ejectors Isolated during	None	None	Normal operation will keep piping and	
									operation			components warm and well above freezing.	
							ES from HP turbine exhaust to					Normal steam flow will keep piping and	
21	PTN	3	085	5613-M-3085 SH 1	1	Piping	5A/5B FW HTRS	Yes	Steam to FW HTRs	N/A	None	components warm and well above freezing.	
							[3-16"-4-CM, 3-10"-4-E]					components warm and wen above necessing.	
22	PTN	3	085	5613-M-3085 SH 1	1	Piping	Control Valves	Yes	FW HTR level control	N/A	None	Normal steam flow will keep piping and	
		,	005	3013 W 3003 3H 1		Tiping	[BTV-3-1518, -1520]	103	1 W TITK IEVEL CONTROL	N/A	IVOIIC	components warm and well above freezing.	
												Air system not susceptible to freezing.	
23	PTN	3	085	5613-M-3085 SH 1	1	Instr. Control / Protection	Instrument air tubing/ solenoid/	Yes	FW HTR level control	Maintain FW HTR level	Protect	Ensure valve actuator, solenoid valve, and,	Components should be in close proximity to hot piping.
23			005	3013 W 3003 311 1		mstr. control/ Frotection	controller for BTV-3-1518, -1520	103	I W III K level collil of	control	riotect	connected control wiring are adequately	Walkdown to determine if measures are required.
		1										1	
												insulated/protected from elements.	
												Normal operation will keep piping and	
						Vents / Drains / Misc	PX test points: Various					Normal operation will keep piping and components warm and well above freezing.	Configuration/location of drains is unknown. Inspect during
24	PTN	3	085	5613-M-3085 SH 1	1	Vents / Drains / Misc.	PX test points; Various	No	None	Pressure boundary	Protect	Normal operation will keep piping and	Configuration/location of drains is unknown. Inspect during
24	PTN	3	085	5613-M-3085 SH 1	1	Vents / Drains / Misc. Connections	PX test points; Various vents/drains	No	None	Pressure boundary	Protect	Normal operation will keep piping and components warm and well above freezing.	Configuration/location of drains is unknown. Inspect during walkdown.
24	PTN	3	085	5613-M-3085 SH 1	1			No	None	Pressure boundary	Protect	Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown.	
24	PTN	3	085	5613-M-3085 SH 1	1			No	None	Pressure boundary	Protect	Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions	
24		3	085		1	Connections	vents/drains	No	None	Pressure boundary	Protect	Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required.	walkdown.
24	PTN PTN	3	085	5613-M-3085 SH 1 5613-M-3085 SH 1	1	Connections Vents / Drains / Misc.	vents/drains Steam traps	No	None	Pressure boundary Pressure boundary	Protect	Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required. Normal operation will keep piping and	walkdown. Configuration/location of drains is unknown. Inspect during
						Connections	vents/drains					Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required. Normal operation will keep piping and components warm and well above freezing.	walkdown.
						Connections Vents / Drains / Misc.	vents/drains Steam traps [ST-3-19,-20,-21,-22]					Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required. Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown.	walkdown. Configuration/location of drains is unknown. Inspect during
						Connections Vents / Drains / Misc.	vents/drains Steam traps					Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required. Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions	walkdown. Configuration/location of drains is unknown. Inspect during
						Connections Vents / Drains / Misc.	vents/drains Steam traps [ST-3-19,-20,-21,-22]					Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required. Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions	walkdown. Configuration/location of drains is unknown. Inspect during
						Connections Vents / Drains / Misc.	vents/drains Steam traps [ST-3-19,-20,-21,-22] ES from HP turbine exhaust to					Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required. Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions	walkdown. Configuration/location of drains is unknown. Inspect during
25	PTN	3	085	5613-M-3085 SH 1	1	Connections Vents / Drains / Misc. Connections	vents/drains Steam traps [ST-3-19,-20,-21,-22] ES from HP turbine exhaust to 6A/6B FW HTRS	Yes	None	Pressure boundary	Protect	Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required. Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required.	walkdown. Configuration/location of drains is unknown. Inspect during
						Connections Vents / Drains / Misc.	vents/drains Steam traps [ST-3-19,-20,-21,-22] ES from HP turbine exhaust to 6A/6B FW HTRS			Pressure boundary		Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required. Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required. Normal steam flow will keep piping and	walkdown. Configuration/location of drains is unknown. Inspect during walkdown.
25	PTN	3	085	5613-M-3085 SH 1	1	Connections Vents / Drains / Misc. Connections	vents/drains Steam traps [ST-3-19,-20,-21,-22] ES from HP turbine exhaust to 6A/68 FW HTRS [3-12"-4-CM, 3-12"-4-D]	Yes	None	Pressure boundary	Protect	Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required. Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required. Normal steam flow will keep piping and	walkdown. Configuration/location of drains is unknown. Inspect during walkdown. Connections shown are piping only (no valves shown on this
25	PTN	3	085	5613-M-3085 SH 1	1	Connections Vents / Drains / Misc. Connections	vents/drains Steam traps [ST-3-19,-20,-21,-22] ES from HP turbine exhaust to 6A/6B FW HTRS [3-12"-4-CM, 3-12"-4-D] Connections to Condenser Drains, SWLU, MSR Drains	Yes	None	Pressure boundary	Protect	Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required. Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required. Normal steam flow will keep piping and	walkdown. Configuration/location of drains is unknown. Inspect during walkdown. Connections shown are piping only (no valves shown on this
25	PTN	3	085	5613-M-3085 SH 1	1	Connections Vents / Drains / Misc. Connections	vents/drains Steam traps [ST-3-19,-20,-21,-22] ES from HP turbine exhaust to 6A/6B FW HTRS [3-12"-4-CM, 3-12"-4-D] Connections to Condenser Drains, SWLU, MSR Drains [3-1"-4-U, 3-1 1/2"-4-D, 3-2"-2-C,	Yes	None	Pressure boundary	Protect	Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required. Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required. Normal steam flow will keep piping and	walkdown. Configuration/location of drains is unknown. Inspect during walkdown. Connections shown are piping only (no valves shown on this
25	PTN	3	085	5613-M-3085 SH 1	1	Connections Vents / Drains / Misc. Connections	vents/drains Steam traps [ST-3-19,-20,-21,-22] ES from HP turbine exhaust to 6A/6B FW HTRS [3-12"-4-CM, 3-12"-4-D] Connections to Condenser Drains, SWLU, MSR Drains	Yes	None	Pressure boundary	Protect	Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required. Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required. Normal steam flow will keep piping and components warm and well above freezing.	walkdown. Configuration/location of drains is unknown. Inspect during walkdown. Connections shown are piping only (no valves shown on this
25	PTN	3	085	5613-M-3085 SH 1	1	Connections Vents / Drains / Misc. Connections	vents/drains Steam traps [ST-3-19,-20,-21,-22] ES from HP turbine exhaust to 6A/68 FW HTRS [3-12"-4-CM, 3-12"-4-D] Connections to Condenser Drains, SWLU, MSR Drains [3-1"-4-U, 3-1 1/2"-4-D, 3-2"-2-C, 8"-5CM]	Yes	None	Pressure boundary	Protect	Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required. Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required. Normal steam flow will keep piping and components warm and well above freezing. Normal steam flow will keep piping and components warm and well above freezing.	walkdown. Configuration/location of drains is unknown. Inspect during walkdown. Connections shown are piping only (no valves shown on this
25	PTN	3	085	5613-M-3085 SH 1 5613-M-3085 SH 1	2	Vents / Drains / Misc. Connections Piping	vents/drains Steam traps [ST-3-19,-20,-21,-22] ES from HP turbine exhaust to 6A/6B FW HTRS [3-12"-4-CM, 3-12"-4-D] Connections to Condenser Drains, SWLU, MSR Drains [3-1"-4-U, 3-1 1/2"-4-D, 3-2"-2-C, 8"-SCM] Connection to RHTR Drain Tank	Yes	None Steam to FW HTRs	Pressure boundary	Protect	Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required. Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required. Normal steam flow will keep piping and components warm and well above freezing.	walkdown. Configuration/location of drains is unknown. Inspect during walkdown. Connections shown are piping only (no valves shown on this
25	PTN	3	085	5613-M-3085 SH 1	1	Connections Vents / Drains / Misc. Connections	vents/drains Steam traps [ST-3-19,-20,-21,-22] ES from HP turbine exhaust to 6A/6B FW HTRS [3-12"-4-CM, 3-12"-4-D] Connections to Condenser Drains, SWLU, MSR Drains [3-1"-4-U, 3-1 1/2"-4-D, 3-2"-2-C, 8"-5CM] Connection to RHTR Drain Tank vent	Yes	None	Pressure boundary	Protect	Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required. Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required. Normal steam flow will keep piping and components warm and well above freezing. Normal operation will keep piping on steam side of isolation valve warm and well above freezing. Configuration/location of piping is unknown.	walkdown. Configuration/location of drains is unknown. Inspect during walkdown. Connections shown are piping only (no valves shown on this
25	PTN	3	085	5613-M-3085 SH 1 5613-M-3085 SH 1	2	Vents / Drains / Misc. Connections Piping	vents/drains Steam traps [ST-3-19,-20,-21,-22] ES from HP turbine exhaust to 6A/6B FW HTRS [3-12"-4-CM, 3-12"-4-D] Connections to Condenser Drains, SWLU, MSR Drains [3-1"-4-U, 3-1 1/2"-4-D, 3-2"-2-C, 8"-SCM] Connection to RHTR Drain Tank	Yes	None Steam to FW HTRs	Pressure boundary	Protect	Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required. Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required. Normal steam flow will keep piping and components warm and well above freezing. Normal operation will keep piping on steam side of isolation valve warm and well above freezing. Configuration/location of piping is unknown. Inspect during walkdown to determine if actions inspect during walkdown to determine if actions in the configuration/location of piping is unknown.	walkdown. Configuration/location of drains is unknown. Inspect during walkdown. Connections shown are piping only (no valves shown on this
25	PTN	3	085	5613-M-3085 SH 1 5613-M-3085 SH 1	2	Vents / Drains / Misc. Connections Piping	vents/drains Steam traps [ST-3-19,-20,-21,-22] ES from HP turbine exhaust to 6A/6B FW HTRS [3-12"-4-CM, 3-12"-4-D] Connections to Condenser Drains, SWLU, MSR Drains [3-1"-4-U, 3-1 1/2"-4-D, 3-2"-2-C, 8"-5CM] Connection to RHTR Drain Tank vent	Yes	None Steam to FW HTRs	Pressure boundary	Protect	Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required. Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required. Normal steam flow will keep piping and components warm and well above freezing. Normal operation will keep piping on steam side of isolation valve warm and well above freezing. Configuration/location of piping is unknown.	walkdown. Configuration/location of drains is unknown. Inspect during walkdown. Connections shown are piping only (no valves shown on this
25	PTN PTN	3 3	085 085	5613-M-3085 SH 1 5613-M-3085 SH 1	2	Connections Vents / Drains / Misc. Connections Piping Piping	vents/drains Steam traps [ST-3-19,-20,-21,-22] ES from HP turbine exhaust to 6A/6B FW HTRS [3-12"-4-CM, 3-12"-4-D] Connections to Condenser Drains, SWLU, MSR Drains [3-1"-4-U, 3-1 1/2"-4-D, 3-2"-2-C, 8"-5CM] Connection to RHTR Drain Tank vent [3-2"-2-C]	Yes	None Steam to FW HTRs	Pressure boundary N/A Pressure Boundary	Protect	Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required. Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required. Normal steam flow will keep piping and components warm and well above freezing. Normal operation will keep piping on steam side of isolation valve warm and well above freezing. Normal operation will keep piping is unknown. Inspect during walkdown to determine if actions are required.	walkdown. Configuration/location of drains is unknown. Inspect during walkdown. Connections shown are piping only (no valves shown on this
25	PTN	3	085	5613-M-3085 SH 1 5613-M-3085 SH 1	2	Vents / Drains / Misc. Connections Piping	vents/drains Steam traps [ST-3-19,-20,-21,-22] ES from HP turbine exhaust to 6A/6B FW HTRS [3-12"-4-CM, 3-12"-4-D] Connections to Condenser Drains, SWLU, MSR Drains [3-1"-4-U, 3-1 1/2"-4-D, 3-2"-2-C, 8"-SCM] Connection to RHTR Drain Tank vent [3-2"-2-C] Control Valves	Yes	None Steam to FW HTRs	Pressure boundary	Protect	Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required. Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required. Normal steam flow will keep piping and components warm and well above freezing. Normal steam flow will keep piping on steam side of isolation valve warm and well above freezing. Oorfiguration/location of piping is unknown. Inspect during walkdown to determine if actions are required.	walkdown. Configuration/location of drains is unknown. Inspect during walkdown. Connections shown are piping only (no valves shown on this
25	PTN PTN	3 3	085 085	5613-M-3085 SH 1 5613-M-3085 SH 1	2	Connections Vents / Drains / Misc. Connections Piping Piping	vents/drains Steam traps [ST-3-19,-20,-21,-22] ES from HP turbine exhaust to 6A/6B FW HTRS [3-12"-4-CM, 3-12"-4-D] Connections to Condenser Drains, SWLU, MSR Drains [3-1"-4-U, 3-1 1/2"-4-D, 3-2"-2-C, 8"-5CM] Connection to RHTR Drain Tank vent [3-2"-2-C]	Yes	None Steam to FW HTRs	Pressure boundary N/A Pressure Boundary	Protect None Protect	Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required. Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required. Normal steam flow will keep piping and components warm and well above freezing. Normal steam flow will keep piping on steam side of isolation valve warm and well above freezing. Configuration/location of piping is unknown. Inspect during walkdown to determine if actions are required. Normal steam flow will keep piping and components warm and well above freezing.	walkdown. Configuration/location of drains is unknown. Inspect during walkdown. Connections shown are piping only (no valves shown on this
25	PTN PTN	3 3	085 085	5613-M-3085 SH 1 5613-M-3085 SH 1	2	Connections Vents / Drains / Misc. Connections Piping Piping	vents/drains Steam traps [ST-3-19,-20,-21,-22] ES from HP turbine exhaust to 6A/6B FW HTRS [3-12"-4-CM, 3-12"-4-D] Connections to Condenser Drains, SWLU, MSR Drains [3-1"-4-U, 3-1 1/2"-4-D, 3-2"-2-C, 8"-5CM] Connection to RHTR Drain Tank vent [3-2"-2-C] Control Valves [BTV-3-1522, -1524]	Yes	None Steam to FW HTRs	Pressure boundary N/A Pressure Boundary	Protect None Protect	Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required. Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required. Normal steam flow will keep piping and components warm and well above freezing. Normal operation will keep piping on steam side of isolation valve warm and well above freezing. Configuration/location of piping is unknown. Inspect during walkdown to determine if actions are required. Normal steam flow will keep piping and configuration/location of piping is unknown. Inspect during walkdown to determine if actions are required. Normal steam flow will keep piping and components warm and well above freezing. Air system not susceptible to freezing.	walkdown. Configuration/location of drains is unknown. Inspect during walkdown. Connections shown are piping only (no valves shown on this P&ID). Therefore, assumed warm and above freezing.
25	PTN PTN	3 3	085 085	5613-M-3085 SH 1 5613-M-3085 SH 1	2	Connections Vents / Drains / Misc. Connections Piping Piping	vents/drains Steam traps [ST-3-19,-20,-21,-22] ES from HP turbine exhaust to 6A/6B FW HTRS [3-12"-4-CM, 3-12"-4-D] Connections to Condenser Drains, SWLU, MSR Drains [3-1"-4-U, 3-1 1/2"-4-D, 3-2"-2-C, 8"-SCM] Connection to RHTR Drain Tank vent [3-2"-2-C] Control Valves [BTV-3-1522, -1524] Instrument air tubing/ solenoid/	Yes	None Steam to FW HTRs	Pressure boundary N/A Pressure Boundary N/A Maintain FW HTR level	Protect None Protect	Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required. Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required. Normal steam flow will keep piping and components warm and well above freezing. Normal steam flow will keep piping and components warm and well above freezing. Normal operation will keep piping on steam side of isolation valve warm and well above freezing. Configuration/location of piping is unknown. Inspect during walkdown to determine if actions are required. Normal steam flow will keep piping and components warm and well above freezing. Air system not susceptible to freezing. Ensure valve actuator, solenoid valve, and,	walkdown. Configuration/location of drains is unknown. Inspect during walkdown. Connections shown are piping only (no valves shown on this P&ID). Therefore, assumed warm and above freezing.
25 26 27 28	PTN PTN PTN	3 3 3	085 085 085	5613-M-3085 SH 1 5613-M-3085 SH 1 5613-M-3085 SH 1	2 2	Vents / Drains / Misc. Connections Piping Piping	vents/drains Steam traps [ST-3-19,-20,-21,-22] ES from HP turbine exhaust to 6A/6B FW HTRS [3-12"-4-CM, 3-12"-4-D] Connections to Condenser Drains, SWLU, MSR Drains [3-1"-4-U, 3-1 1/2"-4-D, 3-2"-2-C, 8"-5CM] Connection to RHTR Drain Tank vent [3-2"-2-C] Control Valves [BTV-3-1522, -1524]	Yes Yes No Yes	None Steam to FW HTRs None FW HTR level control	Pressure boundary N/A Pressure Boundary	Protect None Protect	Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required. Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required. Normal steam flow will keep piping and components warm and well above freezing. Normal steam flow will keep piping and components warm and well above freezing. Normal operation will keep piping on steam side of isolation valve warm and well above freezing. Configuration/location of piping is unknown. Inspect during walkdown to determine if actions are required. Normal steam flow will keep piping and components warm and well above freezing. Air system not susceptible to freezing. Air system not susceptible to freezing. Ensure valve actuator, solenoid valve, and, connected control wiring are adequately	walkdown. Configuration/location of drains is unknown. Inspect during walkdown. Connections shown are piping only (no valves shown on this P&ID). Therefore, assumed warm and above freezing.
25 26 27 28	PTN PTN PTN	3 3 3	085 085 085	5613-M-3085 SH 1 5613-M-3085 SH 1 5613-M-3085 SH 1	2 2	Vents / Drains / Misc. Connections Piping Piping	vents/drains Steam traps [ST-3-19,-20,-21,-22] ES from HP turbine exhaust to 6A/6B FW HTRS [3-12"-4-CM, 3-12"-4-D] Connections to Condenser Drains, SWLU, MSR Drains [3-1"-4-U, 3-1 1/2"-4-D, 3-2"-2-C, 8"-SCM] Connection to RHTR Drain Tank vent [3-2"-2-C] Control Valves [BTV-3-1522, -1524] Instrument air tubing/ solenoid/	Yes Yes No Yes	None Steam to FW HTRs None FW HTR level control	Pressure boundary N/A Pressure Boundary N/A Maintain FW HTR level	Protect None Protect	Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required. Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required. Normal steam flow will keep piping and components warm and well above freezing. Normal operation will keep piping on steam side of isolation valve warm and well above freezing. Configuration/location of piping is unknown. Inspect during walkdown to determine if actions are required. Normal steam flow will keep piping and components warm and well above freezing. Normal steam flow will keep piping and components warm and well above freezing. Air system not susceptible to freezing. Ensure valve actuator, solenoid valve, and, connected control wiring are adequately insulated/protected from elements.	walkdown. Configuration/location of drains is unknown. Inspect during walkdown. Connections shown are piping only (no valves shown on this P&ID). Therefore, assumed warm and above freezing.
25 26 27 28	PTN PTN PTN	3 3 3	085 085 085	5613-M-3085 SH 1 5613-M-3085 SH 1 5613-M-3085 SH 1	2 2	Vents / Drains / Misc. Connections Piping Piping	vents/drains Steam traps [ST-3-19,-20,-21,-22] ES from HP turbine exhaust to 6A/6B FW HTRS [3-12"-4-CM, 3-12"-4-D] Connections to Condenser Drains, SWLU, MSR Drains [3-1"-4-U, 3-1 1/2"-4-D, 3-2"-2-C, 8"-SCM] Connection to RHTR Drain Tank vent [3-2"-2-C] Control Valves [BTV-3-1522, -1524] Instrument air tubing/ solenoid/	Yes Yes No Yes	None Steam to FW HTRs None FW HTR level control	Pressure boundary N/A Pressure Boundary N/A Maintain FW HTR level	Protect None Protect	Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required. Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required. Normal steam flow will keep piping and components warm and well above freezing. Normal steam flow will keep piping and components warm and well above freezing. Normal operation will keep piping on steam side of isolation valve warm and well above freezing. Configuration/location of piping is unknown. Inspect during walkdown to determine if actions are required. Normal steam flow will keep piping and components warm and well above freezing. Air system not susceptible to freezing. Ensure valve actuator, solenoid valve, and, connected control wiring are adequately insulated/protected from elements.	walkdown. Configuration/location of drains is unknown. Inspect during walkdown. Connections shown are piping only (no valves shown on this P&ID). Therefore, assumed warm and above freezing.
25 26 27 28 29	PTN PTN PTN PTN	3 3 3 3	085 085 085 085	5613-M-3085 SH 1 5613-M-3085 SH 1 5613-M-3085 SH 1 5613-M-3085 SH 1	2 2 2	Vents / Drains / Misc. Connections Piping Piping	vents/drains Steam traps [ST-3-19,-20,-21,-22] ES from HP turbine exhaust to 6A/6B FW HTRS [3-12"-4-CM, 3-12"-4-D] Connections to Condenser Drains, SWLU, MSR Drains [3-1"-4-U, 3-1 1/2"-4-D, 3-2"-2-C, 8"-SCM] Connection to RHTR Drain Tank vent [3-2"-2-C] Control Valves [BTV-3-1522, -1524] Instrument air tubing/ solenoid/	Yes Yes No Yes Yes	None Steam to FW HTRs None FW HTR level control FW HTR level control	Pressure boundary N/A Pressure Boundary N/A Maintain FW HTR level control	Protect None Protect None	Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required. Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required. Normal steam flow will keep piping and components warm and well above freezing. Normal steam flow will keep piping and components warm and well above freezing. Normal operation will keep piping is unknown. Inspect during walkdown to determine if actions are required. Normal steam flow will keep piping is unknown. Inspect during walkdown to determine if actions are required. Normal steam flow will keep piping and components warm and well above freezing. Air system not susceptible to freezing. Ensure valve actuator, solenoid valve, and, connected control wiring are adequately insulated/protected from elements. Normal operation will keep piping and components warm and well above freezing.	walkdown. Configuration/location of drains is unknown. Inspect during walkdown. Connections shown are piping only (no valves shown on this P&ID). Therefore, assumed warm and above freezing.
25 26 27 28	PTN PTN PTN	3 3 3	085 085 085	5613-M-3085 SH 1 5613-M-3085 SH 1 5613-M-3085 SH 1	2 2	Vents / Drains / Misc. Connections Piping Piping Piping Instr. Control / Protection	vents/drains Steam traps [ST-3-19,-20,-21,-22] ES from HP turbine exhaust to 6A/6B FW HTRS [3-12"-4-CM, 3-12"-4-D] Connections to Condenser Drains, SWLU, MSR Drains [3-1"-4-U, 3-1 1/2"-4-D, 3-2"-2-C, 8"-5CM] Connection to RHTR Drain Tank vent [3-2"-2-C] Control Valves [BTV-3-1522, -1524] Instrument air tubing/ solenoid/ controller for BTV-3-1522, -1524 Local Indication (PI) and	Yes Yes No Yes	None Steam to FW HTRs None FW HTR level control	Pressure boundary N/A Pressure Boundary N/A Maintain FW HTR level	Protect None Protect	Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required. Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required. Normal steam flow will keep piping and components warm and well above freezing. Normal operation will keep piping on steam side of isolation valve warm and well above freezing. Configuration/location of piping is unknown. Inspect during walkdown to determine if actions are required. Normal steam flow will keep piping and components warm and well above freezing. Air system not susceptible to freezing. Ensure valve actuator, solenoid valve, and, connected control wiring are adequately insulated/protected from elements. Normal operation will keep piping and components warm and well above freezing.	walkdown. Configuration/location of drains is unknown. Inspect during walkdown. Connections shown are piping only (no valves shown on this P&ID). Therefore, assumed warm and above freezing. Components should be in close proximity to hot piping. Walkdown to determine if measures are required. Configuration/location of drains is unknown. Inspect during
25 26 27 28 29	PTN PTN PTN PTN	3 3 3 3	085 085 085 085	5613-M-3085 SH 1 5613-M-3085 SH 1 5613-M-3085 SH 1 5613-M-3085 SH 1	2 2 2	Connections Vents / Drains / Misc. Connections Piping Piping Piping Instr. Control / Protection	vents/drains Steam traps [ST-3-19,-20,-21,-22] ES from HP turbine exhaust to 6A/6B FW HTRS [3-12"-4-CM, 3-12"-4-D] Connections to Condenser Drains, SWLU, MSR Drains [3-1"-4-U, 3-1 1/2"-4-D, 3-2"-2-C, 8"-5CM] Connection to RHTR Drain Tank vent [3-2"-2-C] Control Valves [BTV-3-1522, -1524] Instrument air tubing/ solenoid/ controller for BTV-3-1522, -1524	Yes Yes No Yes Yes	None Steam to FW HTRs None FW HTR level control FW HTR level control	Pressure boundary N/A Pressure Boundary N/A Maintain FW HTR level control	Protect None Protect None	Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required. Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required. Normal steam flow will keep piping and components warm and well above freezing. Normal steam flow will keep piping and components warm and well above freezing. Normal operation will keep piping is unknown. Inspect during walkdown to determine if actions are required. Normal steam flow will keep piping is unknown. Inspect during walkdown to determine if actions are required. Normal steam flow will keep piping and components warm and well above freezing. Air system not susceptible to freezing. Ensure valve actuator, solenoid valve, and, connected control wiring are adequately insulated/protected from elements. Normal operation will keep piping and components warm and well above freezing.	Configuration/location of drains is unknown. Inspect during walkdown. Connections shown are piping only (no valves shown on this P&ID). Therefore, assumed warm and above freezing. Components should be in close proximity to hot piping. Walkdown to determine if measures are required.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 235 of 488

R21002, Rev 0 Attachment L Page 102 of 198

31	PTN	3	085	5613-M-3085 SH 1	2	Vents / Drains / Misc. Connections	PX test points; Various vents/drains	No	None	Pressure boundary	Protect	Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required.	Configuration/location of drains is unknown. Inspect during walkdown.	
32	PTN	3	085	5613-M-3085 SH 1	2	Vents / Drains / Misc. Connections	Steam traps [ST-3-17,-18]	Yes	None	Pressure boundary	Protect	Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required.	Configuration/location of drains is unknown. Inspect during walkdown.	
33	PTN	3	085	5613-M-3085 SH 1	3	Piping	Piping from Condenser to 3B FW HTR Connection to Turbine Cold Reheat STM Line DRN	Yes	Steam to FW HTRs	N/A	None	Normal steam flow will keep piping and components warm and well above freezing.	Connections shown are piping only (no closed valves shown on this P&ID). Therefore, assumed warm and above freezing.	
34	PTN	3	085	5613-M-3085 SH 1	3	Piping	Control Valves [BTV-3-1509, -1510]	Yes	FW HTR level control	N/A	None	Normal steam flow will keep piping and components warm and well above freezing.		
35	PTN	3	085	5613-M-3085 SH 1	3	Instr. Control / Protection	Instrument air tubing/ solenoid/ controller for BTV-3-1509, -1510	Yes	FW HTR level control	Maintain FW HTR level control	Protect	Air system not susceptible to freezing. Ensure valve actuator, solenoid valve, and, connected control wiring are adequately insulated/protected from elements.	Components should be in close proximity to hot piping. Walkdown to determine if measures are required.	
36	PTN	3	085	5613-M-3085 SH 1	3	Vents / Drains / Misc. Connections	PX test points; Various vents/drains	No	None	Pressure boundary	Protect	Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required.	Configuration/location of drains is unknown. Inspect during walkdown.	
37	PTN	3	085	5613-M-3085 SH 1	3	Vents / Drains / Misc. Connections	Steam traps [ST-3-27,-28, -31, -32]	Yes	None	Pressure boundary	Protect	Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required.	Configuration/location of drains is unknown. Inspect during walkdown.	
38	PTN	3	085	5613-M-3085 SH 1	4	Piping	Piping from Condenser to 4B FW HTR Connections to SWLU, SG Blowdown Recovery System	Yes	Steam to FW HTRs	N/A	None	Normal steam flow will keep piping and components warm and well above freezing.	Connections shown are piping only (no closed valves shown on this P&ID). Therefore, assumed warm and above freezing.	
39	PTN	3	085	5613-M-3085 SH 1	4	Piping	Control Valves [BTV-3-1514]	Yes	FW HTR level control	N/A	None	Normal steam flow will keep piping and components warm and well above freezing.		
40	PTN	3	085	5613-M-3085 SH 1	4	Instr. Control / Protection	Instrument air tubing/solenoid/ controller for BTV-3-1514	Yes	FW HTR level control	Maintain FW HTR level control	Protect	Air system not susceptible to freezing. Ensure valve actuator, solenoid valve, and, connected control wiring are adequately insulated/protected from elements.	Components should be in close proximity to hot piping. Walkdown to determine if measures are required.	
41	PTN	3	085	5613-M-3085 SH 1	4	Vents / Drains / Misc. Connections	PX test points; Various vents/drains	No	None	Pressure boundary	Protect	Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required.	Configuration/location of drains is unknown. Inspect during walkdown.	
42	PTN	3	085	5613-M-3085 SH 1	4	Vents / Drains / Misc. Connections	Steam trap [ST-3-24]	Yes	None	Pressure boundary	Protect	Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required.	Configuration/location of drains is unknown. Inspect during walkdown.	
43	PTN	3	085	5613-M-3085 SH 1	5	Piping	Piping from Condenser to 3A FW HTR Connection to Turbine Cold Reheat STM Line DRN	Yes	Steam to FW HTRs	N/A	None	Normal steam flow will keep piping and components warm and well above freezing.	Connections shown are piping only (no closed valves shown on this P&ID). Therefore, assumed warm and above freezing.	
44	PTN	3	085	5613-M-3085 SH 1	5	Piping	Control Valves [BTV-3-1507, -1508]	Yes	FW HTR level control	N/A	None	Normal steam flow will keep piping and components warm and well above freezing.		
45	PTN	3	085	5613-M-3085 SH 1	5	Instr. Control / Protection	Instrument air tubing/ solenoid/ controller for BTV-3-1507, -1508	Yes	FW HTR level control	Maintain FW HTR level control	Protect	Air system not susceptible to freezing. Ensure valve actuator, solenoid valve, and, connected control wiring are adequately insulated/protected from elements.	Components should be in close proximity to hot piping. Walkdown to determine if measures are required.	
46	PTN	3	085	5613-M-3085 SH 1	5	Vents / Drains / Misc. Connections	PX test points; Various vents/drains	No	None	Pressure boundary	Protect	Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required.	Configuration/location of drains is unknown. Inspect during walkdown.	
47	PTN	3	085	5613-M-3085 SH 1	5	Vents / Drains / Misc. Connections	Steam traps [ST-3-25,-26, -29, -30]	Yes	None	Pressure boundary	Protect	Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required.	Configuration/location of drains is unknown. Inspect during walkdown.	
48	PTN	3	085	5613-M-3085 SH 1	6	Piping	Piping from Condenser to 4A FW HTR Connections to SWLU, SG Blowdown Recovery System	Yes	Steam to FW HTRs	N/A	None	Normal steam flow will keep piping and components warm and well above freezing.	Connections shown are piping only (no valves shown on this P&ID). Therefore, assumed warm and above freezing.	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 236 of 488

R21002, Rev 0 Attachment L Page 103 of 198

														1 0
49	PTN	3	085	5613-M-3085 SH 1	6	Piping	Control Valves [BTV-3-1512]	Yes	FW HTR level control	N/A	None	Normal steam flow will keep piping and components warm and well above freezing.		
50	PTN	3	085	5613-M-3085 SH 1	6	Instr. Control / Protection	Instrument air tubing/ solenoid/ controller for BTV-3-1512	Yes	FW HTR level control	Maintain FW HTR level control	Protect	Air system not susceptible to freezing. Ensure valve actuator, solenoid valve, and, connected control wiring are adequately insulated/protected from elements.	Components should be in close proximity to hot piping. Walkdown to determine if measures are required.	
51	PTN	3	085	5613-M-3085 SH 1	6	Vents / Drains / Misc. Connections	PX test points; Various vents/drains	No	None	Pressure boundary	Protect	Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required.	Configuration/location of drains is unknown. Inspect during walkdown.	
52	PTN	3	085	5613-M-3085 SH 1	6	Vents / Drains / Misc. Connections	Steam trap [ST-3-23]	Yes	None	Pressure boundary	Protect	Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required.	Configuration/location of drains is unknown. Inspect during walkdown.	
1	PTN	3	087	5613-M-3087, Sh. 1 Turbine Lube Oil System - Lube Oil Reservoir	N/A	Piping	3", 6" pipe, small-bore pipe, Lube Oil Resevoir, Lube Oil Coolers. Equipment located on Ground Floor EL 18' - 0" Turbine Building	Yes	While in cold weather procedure, frequently check that secondary parameters are stable. This includes Turbine Generator Parameters for lube oil, seal oil, and vibration. Required for power generation.	N/A	None	No Protection Required	System lubrication for normal operation. Based on "Turkey Point Extreme Temperature Reassessment, March 2021", No effect on system is expected for 10F below all time record low of 27F.	FSAR 10.2.3, Procedure 0- ONOP-103.2, p12,13, Turkey Point Extreme Temperature Reassessment p.14
2	PTN	3	087	5613-M-3087, Sh. 2 Turbine Lube Oil System - Lube Oil Conditioner	N/A	Piping	2", 3 " Pipe, Lube Oil Conditioner, heaters, transfer pump, Lube Oil Storage Tank	Yes	While in cold weather procedure, frequently check that secondary parameters are stable. This includes Turbine Generator Parameters for lube oil, seal oil, and vibration. Required for power generation.	N/A	None	No Protection Required	System lubrication for normal operation. Based on "Turkey Point Extreme Temperature Reassessment, March 2021", No effect on system is expected for 10F below all time record low of 27F.	FSAR 10.2.3, Procedure 0- ONOP-103.2, p12,13, Turkey Point Extreme Temperature Reassessment p.14
3	PTN	3	087	5613-M-3087, Sh. 3 Turbine Lube Oil System - Generator Seal Oil	N/A	Piping	3", 4", small bore pipe, Oil defoaming tank, Loop Seal Tank, Seal Oil Coolers, Seal Oil Pumps	Yes	While in cold weather procedure, frequently check that secondary parameters are stable. This includes Turbine Generator Parameters for lube oil, seal oil, and vibration. Required for power generation.	N/A	None	No Protection Required	Used to Prevent Hydrogen leakage from Generator. Based on "Turkey Point Extreme Temperature Reassessment, March 2021", No effect on system is expected for 10F below all time record low of 27F.	FSAR 10.2.3, Procedure 0- ONOP-103.2, p12,13, Turkey Point Extreme Temperature Reassessment p.14
1	PTN	3	089	5613-M-3089 SH 1	1	Piping	30" piping, Turbine stop valves (x2) (from Main Steam Header to HP Turbine)	Yes	Requied for Power Generation	Normal Steam flow adequate to prevent freezing.	None	None		
2	PTN	3	089	5613-M-3089 SH 1	1	Piping	4" turbine stop valve bypass (normally closed) (x2)	Yes	Requied for Power Generation; Main steam pressure boundary	Normal Steam flow adequate to prevent freezing.	None	None	No strategy expected. Normal steam flow will keep both sides of closed valve warm.	
3	PTN	3	089	5613-M-3089 SH 1	1	Piping	18" piping (x4), Turbine control valves (x4) (from Main Steam Header to HP Turbine)	Yes	Requied for Power Generation	Normal Steam flow adequate to prevent freezing.	None	None		
4	PTN	3	089	5613-M-3089 SH 1	1	Instr. Control / Protection	1", 1 1/2" instrument line to Pressure Transmitter (x2) (for steam break protection and control; control of steam dump valves)	Yes	Requied for Power Generation; Main steam pressure boundary	Dead leg	Protect	Ensure instrument and instrument lines are well insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of instrument pipe/tube against dead leg freeze criteria. Main steam piping will be hot.	
5	PTN	3	089	5613-M-3089 SH 1	1	Instr. Annunciation / Indication	1", 1 1/2" instrument line to Pressure Indication & Transmitter (x4) (control room indication of HP turbine supply pressure)	Yes	Requied for Power Generation; Main steam pressure boundary	Dead leg	None	None	Inspect during walkdown, insulation may already be present. Evaluate length of instrument pipe/tube against dead leg freeze criteria. Main steam piping will be hot.	
6	PTN	3	089	5613-M-3089 SH 1	1	Vents / Drains / Misc. Connections	1/2" drains (closed) off of PIT instrument lines	Yes	Requied for Power Generation; Main steam pressure boundary	Dead leg	Protect	Ensure instrument drain is insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of instrument pipe/tube against dead leg freeze criteria. Main steam piping will be hot.	
7	PTN	3	089	5613-M-3089 SH 1	2	Piping	32" & 45" Steam piping (from HP Turbine to 4 MSRs)	Yes	Requied for Power Generation	Normal Steam flow adequate to prevent freezing.	None	None		
8	PTN	3	089	5613-M-3089 SH 1	2	Instr. Annunciation / Indication	PI and PT instruments 1/2" instrument tubing	Yes	Requied for Power Generation; Main steam pressure boundary	Dead leg	None	None	Inspect during walkdown, insulation may already be present. Evaluate length of instrument pipe/tube against dead leg freeze criteria. Main steam piping will be hot.	
9	PTN	3	089	5613-M-3089 SH 1	2	Instr. Local	Temporary Instrument ports: PX (x3) SN (x2) with closed root valve	No	Main steam pressure boundary	Dead leg	None	None	Inspect during walkdown, insulation may already be present. Evaluate length of instrument pipe/tube against dead leg freeze criteria. Main steam piping will be hot.	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 237 of 488

R21002, Rev 0 Attachment L Page 104 of 198

														F
10	PTN	3	089	5613-M-3089 SH 1	3	Piping	36" & 60" Steam piping	Yes	Maintain steam pressure boundary.	Normal Steam flow adequate to prevent	None	None		
11	PTN	3	089	5613-M-3089 SH 1	3	Piping	(from 4 MSRs to 2 LP Turbines) Reheat stop valves (x4); interceptor valves (x4) (from 4 MSRs to 2 LP Turbines)	Yes	Maintain steam pressure boundary.	freezing. Normal Steam flow adequate to prevent freezing.	None	None		
12	PTN	3	089	5613-M-3089 SH 1	3	Vents / Drains / Misc. Connections	1/2" vent (closed)(x4) 3/4" vent (closed)(x4) 3/4" capped end	No	Maintain steam pressure boundary.	Dead leg	None	None	Inspect during walkdown, insulation may already be present. Evaluate length of vent pipe against dead leg freeze criteria. Main steam piping will be hot.	
13	PTN	3	089	5613-M-3089 SH 1	3	Instr. Annunciation / Indication	(from 4 MSRs to 2 LP Turbines) TE (temperature element) (x6) PI/PT (press indicator and transmitter)(x5)(3/4" tubing)	Yes	Maintain steam pressure boundary.	Dead leg	None	None	Inspect during walkdown, insulation may already be present. Evaluate length of vent pipe against dead leg freeze criteria. Main steam piping will be hot.	
14	PTN	3	089	5613-M-3089 SH 1	3	Instr. Control / Protection	(from 4 MSRs to 2 LP Turbines) PIT (x3) (pressure indicator and transmitter) (input to Turbine Control System)	Yes	Maintain steam pressure boundary.	Dead leg	Protect	Ensure instrument and instrument lines are well insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of vent pipe against dead leg freeze criteria. Main steam piping will be hot.	
15	PTN	3	089	5613-M-3089 SH 1	4	Piping	1 1/4", 1 1/2", 2", 2 1/2", 3", 4", 5", 6" piping and reducers. (Valve leakoffs to Gland Steam Cond or South Cond)	Yes	Maintain steam pressure boundary.	Normal Steam flow adequate to prevent freezing.	None	None		5613-M-3014 SH 1 5613-M-3089 SH 2
16	PTN	3	089	5613-M-3089 SH 1	5	Piping	1" and 1 1/2" piping, flow control valves (normally closed, fail open) HP steam supply drains to the South Condenser. These drains are used to direct condensate to condenser.	Yes	None	Likely located on TB Mezz level between HP turbine and south condenser	None	None	Inspect during walkdown. Expected to be short runs of pipe and potentially insulated already. Main steam piping and condenser will be hot. Assume FCVs on these lines are not opened during normal operation. However orifice plate keeps constant flow open in one leg (bypassing HP turbine.)	5613-M-3014 SH 1
17	PTN	3	089	5613-M-3089 SH 1	5	Instr. Local	Temporary Instrument ports: PX (x4) (closed root valve)	No	Main steam pressure boundary	Dead leg	None	None	Inspect during walkdown. Expected to be short runs of pipe and potentially insulated already.	
18	PTN	3	089	5613-M-3089 SH 1	5	Instr. Annunciation / Indication	PI and PT instruments instrument tubing	Yes	Main steam pressure boundary	Dead leg	None	None	Main steam line will be hot. Inspect during walkdown, insulation may already be present. Evaluate length of instrument pipe/tube against dead leg freeze criteria.	
19	PTN	3	089	5613-M-3089 SH 1	6	Piping	1 1/2" piping Turbine stop valve leakoffs to HP turbine cylinder heating	Yes	Main steam pressure boundary	Normal Steam flow adequate to prevent freezing.	None	None	Main steam piping will be hot. Inspect during walkdown. May be insulated already. Main steam piping will be hot.	5613-M-3089 SH 2
20	PTN	3	089	5613-M-3089 SH 1	7	Piping	16" piping (x2) Extraction Steam to Feedwater Heater 5A/B	Yes	Main steam pressure boundary	Normal Steam flow adequate to prevent freezing.	None	None		5613-M-3085 SH 1
21	PTN	3	089	5613-M-3089 SH 1	8	Piping	3", 1 1/2", and 1" piping HP turbine exhaust to FW Htr 3A/B drain and drain to South cond.	Yes	Main steam pressure boundary	Normal Steam flow adequate to prevent freezing.	None	None	Inspect during walkdown, insulation may already be present. Main steam piping will be hot.	5613-M-3014 SH 1 5613-M-3085 SH 1
22	PTN	3	089	5613-M-3089 SH 1	9	Piping	1 1/2" piping HP turbine exhaust drain to South cond.	Yes	Main steam pressure boundary	Normal Steam flow adequate to prevent freezing.	None	None	Inspect during walkdown, insulation may already be present. Main steam piping will be hot.	5613-M-3014 SH 1
23	PTN	3	089	5613-M-3089 SH 1	10	Piping	1" piping HP turbine exhaust to extraction steam.	Yes	Main steam pressure boundary	Normal Steam flow adequate to prevent freezing.	None	None	Inspect during walkdown, insulation may already be present. Main steam piping will be hot.	5613-M-3085 SH 1
24	PTN	3	089	5613-M-3089 SH 1	11	Piping	1" piping HP turbine bypass	Yes	Maintain steam pressure boundary.	Normal Steam flow adequate to prevent freezing.	None	None	Inspect during walkdown, insulation may already be present. Main steam piping will be hot.	
25	PTN	3	089	5613-M-3089 SH 1		Heat Exchangers	MSR 3A, 3B, 3C, and 3D	Yes	Requied for Power Generation	Normal Steam flow adequate to prevent freezing.	None	None		
26	PTN	3	089	5613-M-3089 SH 1		Instr. Local	PI (pressure indicator) (x2 per MSR) 1" instrument tube	Yes	Requied for Power Generation	Dead leg	None	None	Inspect during walkdown. Expected to be short runs of pipe and potentially insulated already.	
							MSR 3A, 3B, 3C, and 3D						MSR will be hot.	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 238 of 488

R21002, Rev 0 Attachment L Page 105 of 198

													·
27	PTN	3	089	5613-M-3089 SH 1		Instr. Annunciation / Indication	TE (temperature element) (x2 per MSR) (closed root valve) MSR 3A, 3B, 3C, and 3D	Yes	Requied for Power Generation	Dead leg	None	None	Inspect during walkdown. Expected to be short runs of pipe and potentially insulated already. MSR will be hot.
28	PTN	3	089	5613-M-3089 SH 1		Instr. Local	Temporary Instrument ports: PX (x2 per MSR) (closed root valve) MSR 3A, 3B, 3C, and 3D	No	Main steam pressure boundary	Dead leg	None	None	Inspect during walkdown. Expected to be short runs of pipe and potentially insulated already. MSR will be hot.
29	PTN	3	089	5613-M-3089 SH 1		Relief Valves	One relief valve per shell. MSR 3A, 3B, 3C, and 3D	Standby	Requied for Power Generation	Normal steam flow keeps line warm and well above freezing. MSRs already insulated.	None	No additional strategies - normal steam flow will keep piping and components warm and well above freezing.	Located on TB operating deck. Inspect during walkdown. MSR will be hot, unlikely to freeze. Verify close to MSR
30	PTN	3	089	5613-M-3089 SH 1		Instr. Annunciation / Indication	TE (temperature element) (one per LP Turbine) (LP Turbine 3B South & 3A North)	Yes	Main steam pressure boundary	Dead leg	None	None	Inspect during walkdown. Expected to be short runs of pipe and potentially insulated already. LP Turbine will be hot.
31	PTN	3	089	5613-M-3089 SH 2	1	Piping	2", 2 1/2", 3", 3 1/2", 4", 5", 6", 8", 10" piping, reducers, one air operated control valve (2.5") this segment is main steam supply to turbine gland seal lines (HP and LP turbines)	Yes	Maintain steam pressure boundary.	Normal Steam flow adequate to prevent freezing.	None	None	Inspect during walkdown, insulation likely already be present. Steam piping will be hot.
32	PTN	3	089	5613-M-3089 SH 2	1	Instr. Control / Protection	Pressure Control Instrument (PC x2)	Yes	Maintain steam pressure boundary. Regulate gland seal supply steam conditions.	Dead leg	Protect	Ensure instrument and instrument lines are well insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of vent pipe against dead leg freeze criteria. Main steam piping will be hot.
33	PTN	3	089	5613-M-3089 SH 2	1	Instr. Annunciation / Indication	Pressure Transmitter (PT) teed off of 4" pipe near HP Turb gland seal inlet. PT instrument has 1/2" tubing. PT has local/remote indication and control room alarm on low pressure.	Yes	Maintain steam pressure boundary. Regulate gland seal supply steam conditions.	Dead leg	Protect	Ensure instrument and instrument lines are well insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of vent pipe against dead leg freeze criteria. Main steam piping will be hot.
34	PTN	3	089	5613-M-3089 SH 2	1	Instr. Local	Pressure Indicator (PI) w/ 3/8" and 1/2" instrument tubing.	Yes	Maintain steam pressure boundary.	Dead leg	None	None	Inspect during walkdown. Expected to be short runs of pipe and potentially insulated already. Main steam piping will be hot.
35	PTN	3	089	5613-M-3089 SH 2	1	Strainers	Wye strainers (x6)	Yes	Maintain steam pressure boundary.	Normal Steam flow adequate to prevent freezing.	None	None	Inspect during walkdown, insulation likely already be present. Steam piping will be hot.
36	PTN	3	089	5613-M-3089 SH 2	1	Vents / Drains / Misc. Connections	1 1/2" drains (x2) and 2" drains (x4) from Wye strainers	No	Maintain steam pressure boundary.	Dead leg	None	None	Inspect during walkdown, insulation may already be present. Short drain connected to hot steam pipe. Steam piping and strainer will be hot.
37	PTN	3	089	5613-M-3089 SH 2	1	Relief Valves	relief valve (25 psig) and rupture disc (100 psig)	Standby	Provide over-pressure protection for gland seal steam piping.	Normal Steam flow adequate to prevent freezing.	None	None	Inspect during walkdown, insulation may already be present. Relief valve and rupture disc likely installed in close proximity to main 10" pipe. Therefore, hot process flow in main pipe will keep relief valve and rupture disc from freezing. Steam piping will be hot.
38	PTN	3	089	5613-M-3089 SH 2	2	Piping	1", 8", 10" piping, reducers, and one air operated control valve (6") These segments are misc condensate drain lines from turbine gland seal supply lines to the South and North condensers.	Yes	Maintain turbine gland seal pressure boundary.	Normal Steam flow adequate to prevent freezing.	None	None	Inspect during walkdown, insulation likely already be present. Steam piping will be hot.
39	PTN	3	089	5613-M-3089 SH 2	3	Piping	2 1/2", 4", 5", 8", 10" piping, reducers Turbine gland seal exhaust piping to Gland Steam Condenser	Yes	Maintain turbine gland seal pressure boundary.	Normal Steam flow adequate to prevent freezing.	None	None	Inspect during walkdown, insulation likely already be present. Steam piping will be hot.
40	PTN	3	089	5613-M-3089 SH 2	4	Piping	1 1/4", 1 1/2", 3" piping and reducers, one air operated control valve on each main 3" line.	Yes	Maintain turbine gland seal pressure boundary.	Normal Steam flow adequate to prevent freezing.	None	None	Inspect during walkdown, insulation likely already be present. Steam piping will be hot.

Florida Power & Light Company Docket No. 20220000-OT

Ten-Year Site Plan
Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 239 of 488 Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 240 of 488

> R21002, Rev 0 Attachment L Page 106 of 198

														1 6
41	PTN	3	089	5613-M-3089 SH 2	4	Relief Valves	relief valve teed off the 3" main line (x2)	Standby	Provide over-pressure protection for cylinder heating piping	Normal Steam flow adequate to prevent freezing.	None	None	Inspect during walkdown, insulation may already be present. Relief valve is likely installed in close proximity to main 3" pipe. Therefore, hot process flow in main pipe will keep relief valve from freezing. Steam piping will be hot.	
42	PTN	3	089	5613-M-3089 SH 2	4	Strainers	Wye strainers (x2)	Yes	Maintain steam pressure boundary.	Normal Steam flow adequate to prevent freezing.	None	None	Inspect during walkdown, insulation likely already be present. Steam piping will be hot.	
43	PTN	3	089	5613-M-3089 SH 2	4	Vents / Drains / Misc. Connections	3/4" drains (x2) from Wye strainers	No	Maintain steam pressure boundary.	Dead leg	None	None	Inspect during walkdown, insulation may already be present. Short drain connected to hot steam pipe. Steam piping and strainer will be hot.	
44	PTN	3	089	5613-M-3089 SH 2	5	Vents / Drains / Misc. Connections	Pipe size not shown. LP turbine water trough drain to "Waste Drain Near Bowser Filter"	Yes	None	Dead leg	None	None	Inspect during walkdown, may actually be internal to condenser. Turbine and condenser will be hot and preclude freezing.	
45	PTN	3	089	5613-M-3089 SH 2	6	Vents / Drains / Misc. Connections	1" loop seal drains from LP Turbine gland seal exhaust to either an equipment drain or gland steam condensate reciever.	Yes	None	Dead leg	None	None	Inspect during walkdown, may actually be internal to condenser. Turbine and condenser will be hot and preclude freezing.	
46	PTN	3	089	5613-M-3089 SH 2	7	Piping	6", 1" piping Turbine valves steam leakoffs to gland steam condenser	Yes	None	Normal Steam flow adequate to prevent freezing.	None	None	Inspect during walkdown, insulation may already be present. Steam piping will be hot.	
47	PTN	3	089	5613-M-3089 SH 2	8	Piping	3" piping, loop seal Gland steam condenser drain to condensate recovery reciever	Yes	None	Normal process flow is warm. Gland steam condenser and Cond. Recovery Receiver are located on TB ground floor and partially enclosed.	None	None	Inspect during walkdown, insulation may already be present. Process piping will be hot.	5613-M-3080 SH 1
48	PTN	3	089	5613-M-3089 SH 2	8	Vents / Drains / Misc. Connections	vent and overflow pipe	Yes	None	Normal process flow is warm. Gland steam condenser and Cond. Recovery Receiver are located on TB ground floor and partially enclosed.	None	None	Inspect during walkdown, insulation may already be present. Process piping will be hot.	
49	PTN	3	089	5613-M-3089 SH 2	8	Instr. Local	Temporary Instrument port:	No	None	Dead leg	None	None	Inspect during walkdown. Expected to be short run of pipe and potentially insulated already. Process piping will be warm. Location is ground floor of TB (partially enclosed between condensers and Rx bldg). Location may preclude freezing.	
50	PTN	3	089	5613-M-3089 SH 2	9	Piping	6" piping disch to atmos, 1 1/2" drain piping, exhaust blower (x2) Air exhaust from Gland Steam Condenser	Yes	None	Normal process flow is warm. Gland steam condenser is located on TB ground floor and partially enclosed.		None	Inspect during walkdown, insulation may already be present. Process piping will be warm. Location is ground floor of TB (partially enclosed between condensers and Rx bldg). Location may preclude freezing.	
51	PTN	3	089	5613-M-3089 SH 2	Gland Steam Condense r	Heat Exchangers	Gland Steam Condenser	Yes	Condenses gland steam exhaust from turbines.	Normal Steam flow adequate to prevent freezing.	None	None	Inspect during walkdown, insulation may already be present. Gland Steam Condenser will be hot/warm. Location is ground floor of TB (partially enclosed between condensers and Rx bldg). Location may also preclude freezing.	
52	PTN	3	089	5613-M-3089 SH 2	Gland Steam Condense r	Instr. Local	PI (pressure indicator) local indication of gland steam cond shell pressure	Yes	None	Dead leg	None	None	Inspect during walkdown, insulation may already be present. Evaluate length of vent pipe against dead leg freeze criteria. Gland Steam Condenser will be hot/warm. Location is ground floor of TB (partially enclosed between condensers and Rx bldg). Location may also preclude freezing.	
53	PTN	3	089	5613-M-3089 SH 2	HP Turbine	Instr. Local	Temperature Element (TE x5), Pressure indication (PI x4), 1/2" tubing and open root valve.	Yes	Requied for Power Generation; Main steam pressure boundary	Dead leg	None	None	Inspect during walkdown, insulation may already be present. Proximity of instruments to HP Turbine. HP turbine will be hot. Temp Element and pressure indicators unlikely to freeze.	

R21002, Rev 0 Attachment L Page 107 of 198

														ı
54	PTN	3	089	5613-M-3089 SH 2	HP Turbine	Instr. Control / Protection	DP controler (x2)	Yes	Requied for Power Generation; Main steam pressure boundary; Regulates incoming cylinder heating steam flow.	Dead leg	Protect	Ensure instrument and instrument lines are well insulated.	Inspect during walkdown, insulation may already be present. Proximity of instruments to HP Turbine. HP turbine will be hot. Temp Element and pressure indicators unlikely to freeze.	
55	PTN	3	089	5613-M-3089 SH 2	LP Turbine North & South	Instr. Local	Temperature Element (1 per turbine), Temperature indicator (1 per turbine),	Yes	Maintain turbine pressure boundary	Dead leg	None	None	Inspect during walkdown, insulation may already be present. Proximity of instruments to HP Turbine. LP turbine will be hot. Temp Element and indicator unlikely to freeze.	
56	PTN	3	089	5613-M-3089 SH 2	LP Turbine North & South	Instr. Local	Temporary Instrument ports: PX (x4 on each turbine) with closed root valve	No	Maintain turbine pressure boundary	Dead leg	None	None	Inspect during walkdown, insulation may already be present. Proximity of instruments to HP Turbine. LP turbine will be hot. Temp Element and indicator unlikely to freeze.	
57	PTN	3	089	5613-M-3089 SH 2	LP Turbine North & South	Instr. Control / Protection	TC (Temperature controller) one on each LP Turbine, actuates Exhaust hood sprays to regulate LP turbine exhaust temp.	Standby	Maintain turbine pressure boundary	Dead leg	Protect	Ensure capillary instrument tubing is insulated.	Inspect during walkdown, insulation may already be present. Proximity of instruments to HP Turbine. HP turbine will be hot. Temp Element and pressure indicators unlikely to freeze.	
1	PTN	3	090	5613-M-3090, Sh. 1 Generator System Hydrogen & CO2 Supply	N/A	Piping	Small bore piping, gas dryer, reactivating blower, Equipment located on Ground Floor EL 18' - 0" Turbine Building	Yes	Required to maintain 100% power generation.	N/A	None	No Protection Required - Gas system	Based on "Turkey Point Extreme Temperature Reassessment, March 2021", No effect on system is expected for 10F below all time record low of 27F. Note: Hydrogen gas leak rate changes with temperature and pressure. U3 has e	FSAR 10.1.1, 10.2.2 (p. 10.2-3) Nothing in Cold Weather Procedure 0-ONOP-103.2, See Turkey Point Extreme Temperature Reassessment, Mar 2021, p.14
3	PTN	3	090	5613-M-3-117 Sh. 1 5613-M-3-117 Sh. 2	-		Main Generator H2 Purity Panel 3C19	Yes	No safety function; however, provides control to pressure analysis components and alarms in the CR. Panel only qualified to 32F	-	Protect	Consider implementing global strategy (such as tenting and/or space heaters) to protect the panel to maintain ambient temperature of 32F	-	5613-M-3090 Sh. 1
1	PTN	4	IAS / 013	5614-M-013-1 Sh. 1 5614-M-013-1 Sh. 3	-		IA Electric Compressor Skid 4CM	Yes	No Safety function; however, it normally provides air to components that require instrument air. Nitrogen stations are the SR backup. Compressor only specified to 32F.	-	Protect	Consider implementing global strategy (such as tenting and/or space heaters) to protect the electric compressor skid.	Consider global strategy to protect either electric driven or diesel driven instrument air compressor skids from at least one unit. A single electric motor or diesel driven compressor from either units is fully capable of providing 100% of the IA needs for both units. Therefore, global strategy does not need to be implemented for all four IA compressors.	5614-M-3013 Sh. 1
2	PTN	4	IAS / 013	5614-M-013-2 Sh. 1 5614-M-013-2 Sh. 4 5614-M-013-2 Sh. 6 5614-M-013-2 Sh. 7	-		IA Diesel Driven Compressor Skid 4CD	Yes	No Safety function; however, it normally provides air to components that require instrument air. Nitrogen stations are the SR backup. Compressor only specified to 32F.	-	Protect	Consider implementing global strategy (such as tenting and/or space heaters) to protect the diesel driven compressor skid.	Consider global strategy to protect either electric driven or diesel driven instrument air compressor skids from at least one unit. A single electric motor or diesel driven compressor from either units is fully capable of providing 100% of the IA needs for both units. Therefore, global strategy does not need to be implemented for all four IA compressors.	5614-M-3013 Sh. 1
1	PTN	4	TPCW / 008	5614-M-3008, Sh. 1	1	Instrumentation - Local	PI-4-1467, -1468, -1469, -1470, - 6900	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Local Indication	None	The instrumentation shall be removed as part of the Cold Weather Preparation plan and the root and/or instrument valve will be cracked open to implement a trickle flow to minimize the potential for freezing. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water).	Un-Insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst.	
2	PTN	4	TPCW/008	5614-M-3008, Sh. 1	1	Instrumentation - Control / Protection	FE (FT)-4-6900	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Remote / CR Ind. / Alarn	• Protect	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions. Insulate the branch connection and implement a trickle flow to ensure freezing does not occur. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water).	Un-insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst.	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 241 of 488 Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 242 of 488

> R21002, Rev 0 Attachment L Page 108 of 198

														Pa
:	PTN	4	TPCW/008	5614-M-3008, Sh. 1	1	Instrumentation - Annunciation / Recorder / Indication	PT (PS)-4-1621	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Remote / CR Ind. / Alarm	Protect	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace — Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions. Insulate the branch connection and implement a trickle flow to ensure freezing does not occur. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water).	Un-insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst.	
	PTN	4	TPCW / 008	5614-M-3008, Sh. 1	1	Piping	4-20"-8-F	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Per O-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.	
!	PTN	4	TPCW / 008	5614-M-3008, Sh. 1	1	Piping	4-16"-8-F	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Per 0-0NOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.	
	PTN	4	TPCW / 008	5614-M-3008, Sh. 1	1	Motors	Turbine Plant Cooling Water Pump Motors (A, B)	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	Swap Pumps and Trains Regularly	Prevent Component Failure from Insufficient Lubrication. During normal operation, water is circulated by one running turbine cooling water pump and the heat removed is transferred to the intake cooling water system through the two turbine cooling water heat exchangers	
:	PTN	4	TPCW / 008	5614-M-3008, Sh. 1	1	Heat Exchangers	Turbine Cooling Water Heat Exchangers (3A, 3B)	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance. During normal operation, water is circulated by one running turbine cooling water pump and the heat removed is transferred to the intake cooling water system through the two turbine cooling water heat exchangers	Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.
:	PTN	4	TPCW / 008	5614-M-3008, Sh. 1	1	Relief Valves	RV-4-171A, -171B	No	Protect Turbine Cooling Water Heat Exchangers (3A, 3B)	Dead Ended Water Leg	Protect	Relief Valves are often located at relative high points within the system piping, as such gas trapped upstream of the vent isolation valve will act as an accumulator to absorb the pressure rise associated with the expansion of ice forming in the branch connection. Trapped water will cause valve to relieve avoiding freezing.	Dead Legs May Freeze and Burst.	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 243 of 488

> R21002, Rev 0 Attachment L Page 109 of 198

														Pa
ç	PTN	4	TPCW/008	5614-M-3008, Sh. 1	1	Vents / Drains / Misc. Connections	Small Bore Vents, Drains & Test Connections	No	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Dead Ended Water Leg	Mitigate	Vents are located at relative high points within the system piping, as such gas trapped upstream of the vent isolation valve will act as an accumulator to absorb the pressure rise associated with the expansion of ice forming in the branch connection. Based on Operations experience, identify if trapped gas exists. If the existence of trapped gas is not known, a limited amount of gas (air, nitrogen, etc.) can be added to the vent in support of the Cold Weather Preparation plan. Drain - Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions. Insulate the branch connection and implement a trickle flow to ensure freezing does not occur. Trickle flow determination is based on calculated trickle flow for the content of the calculated trickle flow determination is based on calculated trickle flow for the calculated trickle fl	Un-Insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst.	
1) PTN	4	TPCW / 008	5614-M-3008, Sh. 1	2	Piping	4-8"-8-5	No	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Open 3-60-887, -888, -889, -890 periodically to allow flow through the branch lines.	Per 0-0NOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.
1	L PTN	4	TPCW / 008	5614-M-3008, Sh. 1	2	Vents / Drains / Misc. Connections	Small Bore Vents & Drains	No	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Dead Ended Water Leg	Mitigate	Vents are located at relative high points within the system piping, as such gas trapped upstream of the vent isolation valve will act as an accumulator to absorb the pressure rise associated with the expansion of ice forming in the branch connection. Based on Operations experience, identify if trapped gas exists. If the existence of trapped gas is not known, a limited amount of gas (air, nitrogen, etc.) can be added to the vent in support of the Cold Weather Preparation plan. Drain - Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions. Insulate the branch connection and implement a trickle flow to ensure freezing does not occur. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water).		
1	2 PTN	4	TPCW / 008	5614-M-3008, Sh. 1	3	Piping	4-2"-8-F	Standby	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Per 0-0NOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.	
1	3 PTN	4	TPCW / 008	5614-M-3008, Sh. 1	3	Piping	4-1"-8-F	Standby	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 244 of 488

> R21002, Rev 0 Attachment L Page 110 of 198

14	PTN	4	TPCW / 008	5614-M-3008, Sh. 1	3	Outdoor Tanks	T.P.C.W. Additive Tank	No	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Per O-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.	
15	PTN	4	TPCW / 008	5614-M-3008, Sh. 1	3	Relief Valves	RV-4-1437	No	Protect T.P.C.W. Additive Tank	Dead Ended Water Leg	Protect	Relief Valves are often located at relative high points within the system piping, as such gas trapped upstream of the vent isolation valve will act as an accumulator to absorb the pressure rise associated with the expansion of ice forming in the branch connection. Trapped water will cause valve to relieve avoiding freezing.	Dead Legs May Freeze and Burst.	
16	PTN	4	TPCW/008	5614-M-3008, Sh. 1	4	Instrumentation - Annunciation / Recorder / Indication	LS-4-1527, -1528	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Remote / CR Ind. / Alarm	Protect	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions. Insulate the branch connection and implement a trickle flow to ensure freezing does not occur. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water).	Un-insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst.	
17	PTN	4	TPCW/008	5614-M-3008, Sh. 1	4	Instrumentation - Local	FM-4-0540, LG-4-1422, -1423, - 1424	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Local Indication	Protect	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace — Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions.	Un-insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst.	
18	PTN	4	TPCW/008	5614-M-3008, Sh. 1	4	Instrumentation - Control / Protection	LC-4-1530	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Control Function	Protect	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions.	Un-insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst.	
19	PTN	4	TPCW / 008	5614-M-3008, Sh. 1	4	Piping	4-2"-4-D, 3-2"-8-F	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Valves (4-60-004, -007, -086) shall either be opened periodically to permit flow through CV-4-1530 bypass, FM-4-0540 bypass, condensate addition bypass, respectively, or crack open to ensure trickle flow.	Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.
20	PTN	4	TPCW / 008	5614-M-3008, Sh. 1	4	Piping	4-8"-8-F	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Valve (4-60-021) shall either be opened periodically to permit flow through the T. P.C. W. Surge Tank drain or crack open to ensure trickle flow.	Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 245 of 488

> R21002, Rev 0 Attachment L Page 111 of 198

														Pa
21	PTN	4	TPCW/008	5614-M-3008, Sh. 1	4	Vents / Drains / Misc. Connections	Small Bore Vents & Drains	No	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Dead Ended Water Leg	Mitigate	Vents are located at relative high points within the system piping, as such gas trapped upstream of the vent isolation valve will act as an accumulator to absorb the pressure rise associated with the expansion of ice forming in the branch connection. Based on Operations experience, identify if trapped gas exists. If the existence of trapped gas is not known, a limited amount of gas (air, nitrogen, etc.) can be added to the vent in support of the Cold Weather Preparation plan. Drain - Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions. Insulate the branch connection and implement a trickle flow to ensure freezing does not occur. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water).	Un-insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	
22	PTN	4	TPCW / 008	5614-M-3008, Sh. 1	5	Piping	4-1"-8-F, 4-2 1/2"-8-F	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance	Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.
23	PTN	4	TPCW/008	5614-M-3008, Sh. 1	5	Vents / Drains / Misc. Connections	Small Bore Vents & Drains	No	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since i is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Dead Ended Water Leg	Mitigate	Vents are located at relative high points within the system piping, as such gas trapped upstream of the vent isolation valve will act as an accumulator to absorb the pressure rise associated with the expansion of ice forming in the branch connection. Based on Operations experience, identify if trapped gas exists. If the existence of trapped gas is not known, a limited amount of gas (air, nitrogen, etc.) can be added to the vent in support of the Cold Weather Preparation plan. Drain - Options Drain - Options As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions. Insulate the branch connection and implement a trickle flow to ensure freezing does not occur. Trickle flow determination is based on calculated trickle flow determination is based on calculated trickle flow determination is based on calculated trickle flow waters contained in Table 1 (Fresh Water).	Un-insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	
24	PTN	4	TPCW / 008	5614-M-3008, Sh. 2	1	Instrumentation - Annunciation / Recorder / Indication	FE(FI)-4-1410	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Remote / CR Ind. / Alarn	Protect	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace — Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions.	Un-insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst.	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 246 of 488

> R21002, Rev 0 Attachment L Page 112 of 198

25	PTN	4	TPCW / 008	5614-M-3008, Sh. 2	1	Piping	4-16"-8-F	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA. The turbine cooling water system is	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance	
26	PTN	4	TPCW / 008	5614-M-3008, Sh. 2	1	Piping	4-12"-8-F	Yes	designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance	
27	PTN	4	TPCW / 008	5614-M-3008, Sh. 2	1	Piping	4-10"-8-F	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Per 0-0NOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.	
28	PTN	4	TPCW / 008	5614-M-3008, Sh. 2	1	Piping	4-8"-8-F	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Per 0-0NOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.	
29	PTN	4	TPCW / 008	5614-M-3008, Sh. 2	1	Vents / Drains / Misc. Connections	Small Bore Drains	No	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe sh	Dead Ended Water Leg	Mitigate	Drain - Options Insulate and heat trace — Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions. Insulate the branch connection and implement a trickle flow to ensure freezing does not occur. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water).	Un-Insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	
30	PTN	4	TPCW / 008	5614-M-3008, Sh. 2	2	Instrumentation - Local	PI-4-1475, -1476, -1477, -1478	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Local Indication	None	The instrumentation shall be removed as part of the Cold Weather Preparation plan and the root and/or instrument valve will be cracked open to implement a trickle flow to minimize the potential for freezing. Trickle flow determination is based on calculated trickle flowartes contained in Table 1 (Fresh Water).	Un-Insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst.	
31	PTN	4	TPCW / 008	5614-M-3008, Sh. 2	2	Instrumentation - Local	FG-4-1406, -1415	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance. During normal operation, water is circulated by one running turbine cooling water pump and the heat removed is transferred to the intake cooling water system through the two turbine cooling water heat exchangers	Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.
32	PTN	4	TPCW / 008	5614-M-3008, Sh. 2	2	Piping	4-2"-8-F	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.	

Staff's Third Data Request
Request No. 2
Attachment 4 of 24
Page 247 of 488

R21002, Rev 0 Attachment L Page 113 of 198

														Га
33	PTN	4	TPCW / 008	5614-M-3008, Sh. 2	2	Piping	4-2"-8-F, 4-1 1/2"-8-F	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.	
34	PTN	4	TPCW / 008	5614-M-3008, Sh. 2	2	Heat Exchangers	Feedwater Pump Lube Oil Coolers (East, West)	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance. During normal operation, water is circulated by one running turbine cooling water pump and the heat removed is transferred to the intake cooling water system through the two turbine cooling water heat exchangers	Per O-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.
35	PTN	4	TPCW / 008	5614-M-3008, Sh. 2	3	Piping	4-2 1/2"-8-F, 4-2"-8-F, 4-1 1/2"-8- F	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.	
36	PTN	4	TPCW / 008	5614-M-3008, Sh. 2	3	Heat Exchangers	Sample Coolers (SC-4-1435, - 1436, -1437, -1438, -1439, -1440)	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance. During normal operation, water is circulated by one running turbine cooling water pump and the heat removed is transferred to the intake cooling water system through the two turbine cooling water heat exchangers	Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.
37	PTN	4	TPCW / 008	5614-M-3008, Sh. 2	3	Relief Valves	RV-4-6720	No	Protect Various Sample Coolers	Dead Ended Water Leg	Protect	Relief Valves are often located at relative high points within the system piping, as such gas trapped upstream of the vent isolation valve will act as an accumulator to absorb the pressure rise associated with the expansion of ice forming in the branch connection. Trapped water will cause valve to relieve avoiding freezing.	Dead Legs May Freeze and Burst.	
38	PTN	4	TPCW / 008	5614-M-3008, Sh. 2	4	Instrumentation - Local	Pl-4-1471, -1472, -1473, -1474,	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Local Indication	None	The instrumentation shall be removed as part of the Cold Weather Preparation plan and the root and/or instrument valve will be cracked open to implement a trickle flow to minimize the potential for freezing. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water).	Un-insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst.	
39	PTN	4	TPCW / 008	5614-M-3008, Sh. 2	4	Piping	3-10"-8-F	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.	
40	PTN	4	TPCW / 008	5614-M-3008, Sh. 2	4	Valves	Bypass valves Around CV-4-2200	No	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Dead Ended Water Leg	Mitigate	Open Valve (4-60-116) periodically to allow flow through the bypass around valves (CV-4-2200).	Un-insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	

Florida Power & Light Company Docket No. 20220000-OT

Ten-Year Site Plan

R21002, Rev 0 Attachment L Page 114 of 198

														Pa
41	PTN	4	TPCW/008	5614-M-3008, Sh. 2	4	Vents / Drains / Misc. Connections	Small Bore Vents & Drains	No	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Dead Ended Water Leg	Mitigate	Vents are located at relative high points within the system piping, as such gas trapped upstream of the vent isolation valve will act as an accumulator to absorb the pressure rise associated with the expansion of ice forming in the branch connection. Based on Operations experience, identify if trapped gas exists. If the existence of trapped gas is not known, a limited amount of gas (air, nitrogen, etc.) can be added to the vent in support of the Cold Weather Preparation plan. Drain - Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions. Insulate the branch connection and implement a trickle flow to ensure freezing does not occur. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water).	Un-insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	
42	PTN	4	TPCW / 008	5614-M-3008, Sh. 2	5	Instrumentation - Local	FE(FI-4-861, -862, PI-4-861, 862, 863, 864	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Local Indication	None	and/or instrument valve will be cracked open to implement a trickle flow to minimize the	Un-Insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst. Open Valve (4-60-874, -878) periodically to maintain flow through flow element bypasses.	Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.
43	PTN	4	TPCW / 008	5614-M-3008, Sh. 2	5	Piping	4-3"-8-F, 4-2"-8-F	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.	
44	PTN	4	TPCW / 008	5614-M-3008, Sh. 2	5	Strainers	YS-4-8601, -8602	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.	
45	PTN	4	TPCW / 008	5614-M-3008, Sh. 2	5	Heat Exchangers	EHC Heat Exchangers 4E01, 4E02	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	Plant Performance. During normal operation, water is circulated by one running	Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 248 of 488

R21002, Rev 0 Attachment L Page 115 of 198

														Р
46	PTN	4	TPCW/008	5614-M-3008, Sh. 2	5	Vents / Drains / Misc. Connections	Small Bore Vents & Drains	No	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Dead Ended Water Leg	Mitigate	Vents are located at relative high points within the system piping, as such gas trapped upstream of the vent isolation valve will act as an accumulator to absorb the pressure rise associated with the expansion of ice forming in the branch connection. Based on Operations experience, identify if trapped gas exists. If the existence of trapped gas is not known, a limited amount of gas (air, nitrogen, etc.) can be added to the vent in support of the Cold Weather Preparation plan. Drain - Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions. Insulate the branch connection and implement a trickle flow to ensure freezing does not occur. Trickle flow determination is based on calculated trickle flow for the content of the	Un-insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	
47	PTN	4	TPCW / 008	5614-M-3008, Sh. 3	1	Instrumentation - Local	FG-4-1416	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance. During normal operation, water is circulated by one running turbine cooling water pump and the heat removed is transferred to the intake cooling water system through the two turbine cooling water heat exchangers	Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.
48	PTN	4	TPCW / 008	5614-M-3008, Sh. 3	1	Piping	4-4"-8-F	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.	
49	PTN	4	TPCW / 008	5614-M-3008, Sh. 3	1	Piping	4-3"-8-F	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.	
50	PTN	4	TPCW / 008	5614-M-3008, Sh. 3	1	Piping	4-2 1/2"-8-F	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Per O-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.	
51	PTN	4	TPCW / 008	5614-M-3008, Sh. 3	3	Instrumentation - Local	FG-4-1410, -1407, -1411, -1405, - 1409, -1408	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance. During normal operation, water is circulated by one running turbine cooling water pump and the heat removed is transferred to the intake cooling water system through the two turbine cooling water heat exchangers	water flow through idle systems exposed to outside temperatures
52	PTN	4	TPCW / 008	5614-M-3008, Sh. 3	3	Heat Exchangers	Heater Drain Pump 4A,4B (Stuffing Box Cooler, Mechanical Seal Quenching, Motor Bearing Cooler)	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance. During normal operation, water is circulated by one running turbine cooling water pump and the heat removed is transferred to the intake cooling water system through the two turbine cooling water heat exchangers	Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.

Florida Power & Light Company Docket No. 20220000-OT

Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 249 of 488 Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 250 of 488

> R21002, Rev 0 Attachment L Page 116 of 198

53	PTN	4	TPCW / 008	5614-M-3008, Sh. 3	3	Piping	4-2"-8-F, 4-1 1/2"-8-F	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Per 0-0NOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.	
54	PTN	4	TPCW / 008	5614-M-3008, Sh. 3	4	Piping	2", 1", 3/4", 1/2"	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.	
55	PTN	4	TPCW / 008	5614-M-3008, Sh. 3	4	Heat Exchangers	Steam Generator A, B, C Blowdown Sample Coolers, LSC Steam Generator A, B, C, Feedwater Sample Coolers, Main Steam Sample Coolers, Steam Generator Wet Layup Pump A, B, C Seal Flush Cooler, Steam Generator Wet Layup Pump Sample Cooler, Steam Generator A, B, C to Sample Hood Sample Coolers	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F. Open Valves (4-60-707, -709) periodically to ensure flow through SPARE heat exchanger (SC-4-1429).	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance. During normal operation, water is circulated by one running turbine cooling water pump and the heat removed is transferred to the intake cooling water system through the two turbine cooling water heat exchangers	Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.
56	PTN	4	TPCW/008	5614-M-3008, Sh. 3	4	Vents / Drains / Misc. Connections	Small Bore Vents & Drains	No	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Dead Ended Water Leg	Mitigate	Vents are located at relative high points within the system piping, as such gas trapped upstream of the vent isolation valve will act as an accumulator to absorb the pressure rise associated with the expansion of ice forming in the branch connection. Based on Operations experience, identify if trapped gas exists. If the existence of trapped gas is not known, a limited amount of gas (air, nitrogen, etc.) can be added to the vent in support of the Cold Weather Preparation plan. Drain - Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions. Insulate the branch connection and implement a trickle flow to ensure freezing does not occur. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water).	Un-insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	
57	PTN	4	TPCW / 008	5614-M-3008, Sh. 4	1	Instrumentation - Local	FE(FI)-4-1411, PI-4-1479	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Local Indication	None	The instrumentation shall be removed as part of the Cold Weather Preparation plan and the root and/or instrument valve will be cracked open to implement a trickle flow to minimize the potential for freezing. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water).	Un-insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst.	
58	PTN	4	TPCW / 008	5614-M-3008, Sh. 4	1	Piping	4-16"-8-F	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance	
59	PTN	4	TPCW / 008	5614-M-3008, Sh. 4	1	Valves	Bypass valves Around CV-4-2203	No	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Dead Ended Water Leg	Mitigate	Open Valve (4-60-212) periodically to allow flow through the bypass around valves (CV-4-2203).	Un-insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 251 of 488

> R21002, Rev 0 Attachment L Page 117 of 198

60	PTN	4	TPCW / 008	5614-M-3008, Sh. 4	1	Vents / Drains / Misc. Connections	Small Bore Drains	No	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Dead Ended Water Leg	Mitigate	Drain - Options Insulate and heat trace — Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions. Insulate the branch connection and implement a trickle flow to ensure freezing does not occur. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water).	Un-insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	
61	PTN	4	TPCW / 008	5614-M-3008, Sh. 4	2	Instrumentation - Local	PX-4-1467, -1469, PI-4-1570, - 1571	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Local Indication	None	The instrumentation shall be removed as part of the Cold Weather Preparation plan and the root and/or instrument valve will be cracked open to implement a trickle flow to minimize the potential for freezing. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water).	Un-insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst.	
62	PTN	4	TPCW / 008	5614-M-3008, Sh. 4	2	Instrumentation - Local	FG-4-1412, -1413	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance. During normal operation, water is circulated by one running turbine cooling water pump and the heat removed is transferred to the intake cooling water system through the two turbine cooling water heat exchangers	Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.
63	PTN	4	TPCW / 008	5614-M-3008, Sh. 4	2	Piping	4-4"-8-F	No	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.	
64	PTN	4	TPCW / 008	5614-M-3008, Sh. 4	2	Piping	4-3"-8-F	No	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained. Open Valves (4-60-269) periodically to maintain flow through Air Side and Hydrogen Seal Oil Cooler	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.	
65	PTN	4	TPCW / 008	5614-M-3008, Sh. 4	2	Piping	4-2 1/2"-8-F	No	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained. Open Valves (4-60-262) periodically to maintain flow through Air Side and Hydrogen Seal Oil Cooler	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.	
66	PTN	4	TPCW / 008	5614-M-3008, Sh. 4	3	Instrumentation - Local	PX-4-1477, -1482, -1515, -1516, - 1517, -1518 PI-4-1503, -1504, - 1505, -1506, -1554, -1579, FE(FI)- 4-1455,	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Local Indication	None	The instrumentation shall be removed as part of the Cold Weather Preparation plan and the root and/or instrument valve will be cracked open to implement a trickle flow to minimize the potential for freezing. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water).	Un-insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst.	
67	PTN	4	TPCW / 008	5614-M-3008, Sh. 4	3	Piping	4-6"-8-F	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 252 of 488

> R21002, Rev 0 Attachment L Page 118 of 198

													1	
68	PTN	4	TPCW / 008	5614-M-3008, Sh. 4	3	Piping	4-4"-8-F	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.	
69	PTN	4	TPCW / 008	5614-M-3008, Sh. 4	3	Piping	4-3"-8-F	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.	
70	PTN	4	TPCW / 008	5614-M-3008, Sh. 4	3	Piping	4-2 1/2"-8-F	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Per 0-0NOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.	
71	PTN	4	TPCW / 008	5614-M-3008, Sh. 4	3	Valves	Bypass valves Around Valves (3-60-221, -225, -235, -242, -249, -254)	No	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Dead Ended Water Leg	Mitigate	Open Valve (4-60-226, -222, -236, -243, -250, - 255) periodically to allow flow through the bypass around valves (4-60-225, -221, -235, -242, -249, -254).	Un-Insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	
72	PTN	4	TPCW / 008	5614-M-3008, Sh. 4	3	Vents / Drains / Misc. Connections	Small Bore Vents & Drains	No	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Dead Ended Water Leg	Mitigate	Vents are located at relative high points within the system piping, as such gas trapped upstream of the vent isolation valve will act as an accumulator to absorb the pressure rise associated with the expansion of ice forming in the branch connection. Based on Operations experience, identify if trapped gas exists. If the existence of trapped gas is not known, a limited amount of gas (air, nitrogen, etc.) can be added to the vent in support of the Cold Weather Preparation plan. Drain - Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions. Insulate the branch connection and implement a trickle flow to ensure freezing does not occur. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water).	Un-Insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	
73	PTN	4	TPCW / 008	5614-M-3008, Sh. 4	4	Instrumentation - Local	PX-4-14781479, -1480, -1481, PI- 4-1481, -1482, -1483, -1484	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Local Indication	None	The instrumentation shall be removed as part of the Cold Weather Preparation plan and the root and/or instrument valve will be cracked open to implement a trickle flow to minimize the potential for freezing. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water).		
74	PTN	4	TPCW / 008	5614-M-3008, Sh. 4	4	Instrumentation - Local	FG-4-1426	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance. During normal operation, water is circulated by one running turbine cooling water pump and the heat removed is transferred to the intake cooling water system through the two turbine cooling water heat exchangers	

R21002, Rev 0 Attachment L Page 119 of 198

75	PTN	4	TPCW / 008	5614-M-3008, Sh. 4	4	Piping	4-8"-8-F	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance	
76	PTN	4	TPCW / 008	5614-M-3008, Sh. 4	4	Piping	1"	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance	
77	PTN	4	TPCW / 008	5614-M-3008, Sh. 4	4	Heat Exchangers	Condensate Pump A, B, C Motor Coolers, Generator Hydrogen Cooler A, B, C, D	Yes	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Maintain NSR Cooling and Plant Power Production	Mitigate	No Action Required as Long as Flow is Maintained. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance. During normal operation, water is circulated by one running turbine cooling water pump and the heat removed is transferred to the intake cooling water system through the two turbine cooling water heat exchangers	Per 0-ONOP-103.2, ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure.
78	PTN	4	TPCW / 008	5614-M-3008, Sh. 4	4	Valves	Bypass valves Around Throttle Valves	No	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Dead Ended Water Leg	Mitigate	Open Valves (4-60-189, -196, -203, -210) periodically to allow flow through the bypass around valves (4-60-188, -195, -202, -209, respectively).	Un-Insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	
79	PTN	4	TPCW / 008	5614-M-3008, Sh. 4	4	Vents / Drains / Misc. Connections	Small Bore Vents	No	The turbine cooling water system is designed to provide a heat sink for power cycle equipment during normal operation and normal shutdown. The system serves no safety function since it is not required to achieve safe shutdown or to mitigate the consequences of a LOCA.	Dead Ended Water Leg	Mitigate	Vents are located at relative high points within the system piping, as such gas trapped upstream of the vent isolation valve will act as an accumulator to absorb the pressure rise associated with the expansion of ice forming in the branch connection. Based on Operations experience, identify if trapped gas exists. If the existence of trapped gas is not known, a limited amount of gas (air, nitrogen, etc.) can be added to the vent in support of the Cold Weather Preparation plan.	Un-insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst. With ICW Temperature as Low as 50°F, TC temperature will be approximately 57 - 60°F.	
1	PTN	4	CWS / 010	5614-M-3010, Sh. 1	1	Instrumentation - Local	PI-4-1006, -1007, -1008, -1009, - 1459, -1460, -1461, -1462, PX-4- 1504, -1505, -1506, -1507, -1635, - 1636, -1637, -1638, -1640, 1641, -1642	Yes	None	Local Indication	None	The instrumentation shall be removed as part of the Cold Weather Preparation plan and the root and/or instrument valve will be cracked open to implement a trickle flow to minimize the potential for freezing. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water) and Table 2 (Saltwater).	Un-Insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst.	
2	PTN	4	CWS / 010	5614-M-3010, Sh. 1	1	Instrumentation - Local	FG-4-1417, -1418, -1419, -1420	Yes	None	Maintain NSR Cooling and Plant Power Production	None	No Action Required as Long as Flow is Maintained. CW Temperature as Low as 50°F	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance.	
3	PTN	4	CWS / 010	5614-M-3010, Sh. 1	1	Piping	108", 90", 84"	Yes	None	Maintain NSR Cooling and Plant Power Production	None	No Action Required as Long as Flow is Maintained. CW Temperature as Low as 50°F	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance	
4	PTN	4	CWS / 010	5614-M-3010, Sh. 1	1	Piping	4-6"-7-R	Yes	None	Maintain NSR Cooling and Plant Power Production	None	No Action Required as Long as Flow is Maintained. CW Temperature as Low as 50°F	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance	
5	PTN	4	CWS / 010	5614-M-3010, Sh. 1	1	Piping	4-2"-7-U	Yes	None	Maintain NSR Cooling and Plant Power Production	None	No Action Required as Long as Flow is Maintained. CW Temperature as Low as 50°F	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance	
6	PTN	4	CWS / 010	5614-M-3010, Sh. 1	1	Motors	Circulating Wate Pump 4A1, 4A2, 4B1, 4B2 Motors	Yes	None	Maintain NSR Cooling and Plant Power Production	Mitigate	Swap Pumps and Trains Regularly	Prevent Component Failure from Insufficient Lubrication. During normal operation, water is circulated by more than one Circulating Water Pumps. During cold weather operation, pumps	
7	PTN	4	CWS / 010	5614-M-3010, Sh. 1	1	Motor Operators	MOV-4-1413, -1414, -1415, -1416	Yes	None	Maintain NSR Cooling and Plant Power Production	Mitigate	Enclose/Tent with Heat	are secured. Swap pumps operating. Prevent Component Failure from Insufficient Lubrication	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 253 of 488

R21002, Rev 0 Attachment L Page 120 of 198

														Р
8	PTN	4	CWS / 010	5614-M-3010, Sh. 1	1	Heat Exchangers	North Condenser (4E7A), South Condenser (4E7B)	Yes	None	NSR Cooling Requiremen	None	No Action Required	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance CW Temperature as Low as 50°F	
9	PTN	4	CWS / 010	5614-M-3010, Sh. 1	1	Vents / Drains / Misc. Connections	Small Bore Vents & Drains	No	None	Dead Ended Water Leg	Mitigate	Vents are located at relative high points within the system piping, as such gas trapped upstream of the vent isolation valve will act as an accumulator to absorb the pressure rise associated with the expansion of ice forming in the branch connection. Based on Operations experience, identify if trapped gas exists. If the existence of trapped gas is not known, a limited amount of gas (air, nitrogen, etc.) can be added to the vent in support of the Cold Weather Preparation plan. Drain - Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions. Insulate the branch connection and implement a trickle flow to ensure freezing does not occur. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water) and Table 2 (Saltwater).	Un-insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst. CW Temperature as Low as 50°F	
10	PTN	4	CWS / 010	5614-M-3010, Sh. 1	1	Vents / Drains / Misc. Connections	Pitot Tube Connections	No	None	Dead Ended Water Leg	Mitigate	Insulate the branch connection and implement a trickle flow to ensure freezing does not occur. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water) and Table 2 (Saltwater).	Un-Insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst. CW Temperature as Low as 50°F	
11	PTN	4	CWS / 010	5614-M-3010, Sh. 1	2	Piping	2"	Yes	None	Maintain NSR Cooling and Plant Power Production	None	No Action Required as Long as Flow is Maintained. CW Temperature as Low as 50°F	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Ensure SV-4-1413 and -1414 cycle regularly to ensure flow through the piping.	
12	PTN	4	CWS / 010	5614-M-3010, Sh. 1	3	Instrumentation - Local	PI-4-3420, -3425	No	None	Local Indication	None	The instrumentation shall be removed as part of the Cold Weather Preparation plan and the root and/or instrument valve will be cracked open to implement a trickle flow to minimize the potential for freezing. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water) and Table 2 (Saltwater).	Un-insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst.	
13	PTN	4	CWS / 010	5614-M-3010, Sh. 1	3	Piping	4-6"-13-T, 4-18"-13-T	Yes	None	Maintain NSR Cooling and Plant Power Production	None	No Action Required as Long as Flow is Maintained. CW Temperature as Low as 50°F	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Ensure SV-4-1413 and -1414 cycle regularly to ensure flow through the piping.	
14	PTN	4	CWS / 010	5614-M-3010, Sh. 2	1	Instrumentation - Local	Pl-4-1536, -15371538, -1539, - 1590,	Yes	None	Local Indication	None	The instrumentation shall be removed as part of the Cold Weather Preparation plan and the root and/or instrument valve will be cracked open to implement a trickle flow to minimize the potential for freezing. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water) and Table 2 (Saltwater).	Un-insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst.	

Florida Power & Light Company Docket No. 20220000-OT

Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 254 of 488 Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 255 of 488

> R21002, Rev 0 Attachment L Page 121 of 198

														Pa
15	PTN	4	CWS / 010	5614-M-3010, Sh. 2	1	Instrumentation - Annunciation / Recorder / Indication	PS-4-2036, -2037, -2038, -2039, - 2040, -2041, -2042, -2043	Yes	Indication provided to CR and/or Plant Computer.	Remote / CR Ind. / Alarm	Protect	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions. Insulate the branch connection and implement a trickle flow to ensure freezing does not occur. Trickle flow determination is based on calculated trickle flow dretermination is based on calculated trickle flow areas contained in Table 1 (Fresh Water) and Table 2 (Saltwater).	Prevent Freezing to Provide CR Operators Plant Status	
16	PTN	4	CWS / 010	5614-M-3010, Sh. 2	1	Instrumentation - Control / Protection	PS-3-2040, -2041, -2042, 2043	Yes	Provides Controlling Function	Remote / CR Ind. / Alarm	Protect	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions. Insulate the branch connection and implement a trickle flow to ensure freezing does not occur. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water) and Table 2 (Saltwater).	Prevent Freezing to Provide Controlling Functionality	
17	PTN	4	CWS / 010	5614-M-3010, Sh. 2	1	Piping	4-8"-7-F, 4-6"-7-F, 4-4"-7-F	Yes	None	Maintain NSR Cooling and Plant Power Production	None	No Action Required as Long as Flow is Maintained. CW Temperature as Low as 50°F	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance	
18	PTN	4	CWS / 010	5614-M-3010, Sh. 2	1	Piping	1" and Smaller Drain Piping around Moisture Separator	Standby	None	Dead Ended Water Leg	Mitigate	No Action Required as Long as Flow is Maintained. CW Temperature as Low as 50°F	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Open Valve (4-50-1028) periodically to drain the Moisture Separator drain piping.	
19	PTN	4	CWS / 010	5614-M-3010, Sh. 2	1	Vents / Drains / Misc. Connections	Small Bore Vents	No	None	Potentially Ice Block Ven	None	No Action Required	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance CW Temperature as Low as 50°F	
20	PTN	4	CWS / 010	5614-M-3010, Sh. 3	1	Instrumentation - Local	PI-4-1699, -1700, -1522, -3661, - 1495, -1523, -1524, -1525, -1526, - 1527, -1528, -1529, -1530	Yes	None	Local Indication	None	The instrumentation shall be removed as part of the Cold Weather Preparation plan and the root and/or instrument valve will be cracked open to implement a trickle flow to minimize the potential for freezing. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water) and Table 2 (Saltwater).	Un-insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst.	
21	PTN	4	CWS / 010	5614-M-3010, Sh. 3	1	Instrumentation - Local	FI-4-1414, -1452, -1454, -1403	Yes	None	Local Indication	Mitigate	Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing.	Un-Insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst.	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 256 of 488

> R21002, Rev 0 Attachment L Page 122 of 198

														га
22	PTN	4	CWS / 010	5614-M-3010, Sh. 3	1	Instrumentation - Control / Protection	PC-4-1700, PS-4-2001, -2006, - 2012, -2019, -2044, -2045, -2061	Yes	Provides Controlling Function	Remote / CR Ind. / Alarn	Protect	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions. Insulate the branch connection and implement a trickle flow to ensure freezing does not occur. Trickle flow determination is based on calculated trickle flow dreamination is based on calculated trickle flowrates contained in Table 1 (Fresh Water) and Table 2 (Saltwater).	Prevent Freezing to Provide Controlling Functionality	
23	PTN	4	CWS / 010	5614-M-3010, Sh. 3	1	Instrumentation - Annunciation / Recorder / Indication	PoS-4-1700, PS-4-2018	Yes	Indication provided to CR and/or Plant Computer.	Remote / CR Ind. / Alarn	Protect	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions. Insulate the branch connection and implement a trickle flow to ensure freezing does not occur. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water) and Table 2 (Saltwater).	Prevent Freezing to Provide CR Operators Plant Status	
24	PTN	4	CWS / 010	5614-M-3010, Sh. 3	1	Piping	4-3"-10-Y. 4-2"-10-Y, 4-1 1/2"-10- Y, 4-3/4"-10	Yes	None	Maintain NSR Cooling and Plant Power Production	None	No Action Required as Long as Flow is Maintained.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance	
25	PTN	4	Screen Wash / 011	5614-M-3011, Sh. 1	1	Instrumentation - Local	PI-4-1000, -2020, -2021, -2022, - 2023	Yes	None	Local Indication	None	CW Temperature as Low as 50°F The instrumentation shall be removed as part of the Cold Weather Preparation plan and the root and/or instrument valve will be cracked open to implement a trickle flow to minimize the potential for freezing. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water) and Table 2 (Saltwater).	Un-Insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst.	
26	PTN	4	Screen Wash / 011	5614-M-3011, Sh. 1	1	Instrumentation - Control / Protection	PS-4-1000, -2020, -2021, -2022, - 2023	Yes	Provides Controlling Function	Remote / CR Ind. / Alarn	Protect	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions. Insulate the branch connection and implement a trickle flow to ensure freezing does not occur. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water) and Table 2 (Saltwater).		
27	PTN	4	Screen Wash / 011	5614-M-3011, Sh. 1	1	Piping	6", 3"	Yes	None	Maintain NSR Cooling and Plant Power Production	None	No Action Required as Long as Flow is Maintained. CW Temperature as Low as 50°F	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance	
28	PTN	4	Screen Wash / 011	5614-M-3011, Sh. 1	1	Piping	1 1/2"	Yes	None	Maintain NSR Cooling and Plant Power Production	None	No Action Required as Long as Flow is Maintained. CW Temperature as Low as 50°F	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Open Valves (4-50-149, -178, -206, -207) periodically to allow flow to the respective spargers and clear the 1 1/2" lines.	

R21002 Rev 0

R21002, Rev 0 Attachment L Page 123 of 198

														Pa
29	PTN	4	Screen Wash / 011	5614-M-3011, Sh. 1	1	Vents / Drains / Misc. Connections	1 1/2" Hose Connections	Yes	None	Maintain NSR Cooling and Plant Power Production	None	No Action Required as Long as Flow is Maintained. CW Temperature as Low as 50°F	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance Open Valves (4-50-146, -154, -197, -208) periodically to allow flow through the dead ended hose connections.	
1	PTN	4	IAS / 013	5614-M-3013, Sh. 1	itire Drawi	Vents / Drains / Misc. Connections	Small Bore Drains	No	The Instrument Air System (IAS) consists of air compressors, receiver tanks, aftercoolers, moisture separators, desiccant dryers, particulate filters, instrumentation and interconnecting piping and valves. The system is designed to provide a continuous reliable air source during normal plant operation.	Dead Ended Legs	None	None - The desiccant dryers are capable of lowering the dewpoint of the instrument air to 40°F which satisfies the ISA standard of 18°F below minimum ambient temperature.	In accordance with 0-ONOP-103.2, "Cold/Hot Weather Conditions" IF outside air temperature is predicted to be lower than 32°F,	JOHOND-TUS.2 aiready addresses the following: 4.4-0-351, UNIT 4 IA 4F40B DRYER PREFILTER DRAIN YS-4-1430 BLOWDOWN IAS-4-047, UNIT 4 IA 4F5B PARTICULATE FILTER DRAIN YALVE 1AS-4-046, UNIT 4 IA 4F5A PARTICULATE FILTER DRAIN VALVE 4.4-0-347, UNIT 4 IA 4F40A DRYER PREFILTER DRAIN YS-4-1429 BLOWDOWN 4.4-0-2027, 4F37 MIST ELIMINATOR DRAIN YS-4-1422 BLOWDOWN VALVE 4.4-0-2026, 4T10 IA RECEIVER TANK DRAIN YS-4-1423 BLOWDOWN VALVE 4.4-0-2267, UNIT 4 IA 4CA182 BLOWDOWN VALVE 4.4-0-2261, ACA1 IA AFTERCOOLER DRAIN YS-4-1424 STRAINER BLOWDOWN VLV 4.4-0-2261, 4CA1 IA AFTERCOOLER DRAIN YS-4-1426 BLOWDOWN VALVE 4.4-0-2264, 4CA2 IA AFTERCOOLER DRAIN YS-4-1426 BLOWDOWN VALVE 4.4-0-2264, 4CA2 IA AFTERSOOMER STRAINENS A
2	PTN	4	IAS / 013	5614-M-3013, Sh. 2	itire Drawi	Vents / Drains / Misc. Connections	Small Bore Drains	No	The Instrument Air System (IAS) consists of air compressors, receiver tanks, aftercoolers, moisture separators, desiccant dryers, particulate filters, instrumentation and interconnecting piping and valves. The system is designed to provide a continuous reliable air source during normal plant operation.	Dead Ended Legs	None	None - The desiccant dryers are capable of lowering the dewpoint of the instrument air to 40°F which satisfies the ISA standard of 18°F below minimum ambient temperature.	In accordance with 0-ONOP-103.2, "Cold/Hot Weather Conditions" IF outside air temperature is predicted to be lower than 32°F, THEN PERFORM the following: BLOWDOWN instrument air lines to Remove any Trapped Water, BLOWDOWN air lines exposed to outside air temperature to remove any trapped water.	specifically added to 0-ONOP-103.2: Ensure Valve (4-40-2244) off Instrument Air Accumulator is periodically opened to drain the accumulator. Ensure Valves (4-40-079, -192) off the IA Distribution Supply to the Radwaste Building is periodically opened to drain the line. Ensure Valves (4-40-1513, -1514, -1519, -1520) off the Air Reserve Flasks (A, B, C, D, E, F, G, H) are periodically opened to drain the flasks. Ensure Valve (4-40-359) is periodically opened to drain the Turbine Deck Panel. Ensure Valves (4-40-358C, -422B) are periodically opened to drain the Turbine Deck Panel.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 257 of 488 Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 258 of 488

> R21002, Rev 0 Attachment L Page 124 of 198

														Pa
3	PTN	4	IAS/013	5614-M-3013, Sh. 3	itire Drawi	Vents / Drains / Misc. Connections	Small Bore Drains	No	The Instrument Air System (IAS) consists of air compressors, receiver tanks, aftercoolers, moisture separators, desiccant dryers, particulate filters, instrumentation and interconnecting piping and valves. The system is designed to provide a continuous reliable air source during normal plant operation.	Dead Ended Legs	None	None - The desiccant dryers are capable of lowering the dewpoint of the instrument air to 40°F which satisfies the ISA standard of 18°F below minimum ambient temperature.	In accordance with 0-ONOP-103.2, "Cold/Hot Weather Conditions" IF outside air temperature is predicted to be lower than 32°F, THEN PERFORM the following: BLOWDOWN instrument air lines to Remove any Trapped Water, BLOWDOWN air lines exposed to outside air temperature to remove any trapped water.	The following shall be specifically added to 0-ONOP-103.2: Ensure Valves (4-40-467, -478, -489C, -1317, -1360) are periodically opened to drain the associated line. Numerous other potentially dead ended lines exist on the P&ID. These locations will need to be verified based on plant walkdown and configuration determination. (This assumes all the Air Connections are above the branch piping centerlines)
4	PTN	4	IAS / 013	5614-M-3013, Sh. 4	itire Drawi	Vents / Drains / Misc. Connections	Small Bore Drains	No	The Instrument Air System (IAS) consists of air compressors, receiver tanks, aftercoolers, moisture separators, desiccant dryers, particulate filters, instrumentation and interconnecting piping and valves. The system is designed to provide a continuous reliable air source during normal plant operation.	Dead Ended Legs	None	None - The desiccant dryers are capable of lowering the dewpoint of the instrument air to 40°F which satisfies the ISA standard of 18°F below minimum ambient temperature.	In accordance with 0-ONOP-103.2, "Cold/Hot Weather Conditions" IF outside air temperature is predicted to be lower than 32°F, THEN PERFORM the following: BLOWDOWN instrument air lines to Remove any Trapped Water, BLOWDOWN air lines exposed to outside air temperature to remove any trapped water.	The following shall be specifically added to 0-ONOP-103.2: Ensure Valves (4-40-547, -626, -1320, -1336) are periodically opened to drain the associated lined. Numerous other potentially dead ended lines exist on the P&IO. These locations will need to be verified based on plant walkdown and configuration determination. (This assumes all the Air Connections are above the
5	PTN	4	IAS/013	5614-M-3013, Sh. S	itire Drawi	Vents / Drains / Misc. Connections	Small Bore Drains	No	The Instrument Air System (IAS) consists of air compressors, receiver tanks, aftercoolers, moisture separators, desiccant dryers, particulate filters, instrumentation and interconnecting piping and valves. The system is designed to provide a continuous reliable air source during normal plant operation.	Dead Ended Legs	None	None - The desiccant dryers are capable of lowering the dewpoint of the instrument air to 40°F which satisfies the ISA standard of 18°F below minimum ambient temperature.	In accordance with 0-ONOP-103.2, "Cold/Hot Weather Conditions" IF outside air temperature is predicted to be lower than 32"F, THEN PERFORM the following: BLOWDOWN instrument air lines to Remove any Trapped Water, BLOWDOWN air lines exposed to outside air temperature to remove any trapped water.	branch piping centerlines) The following shall be specifically added to 0-ONOP- 103.2: Ensure Valves (4-40-520A, - 530C, -1358) are periodically opened to drain the associated line. Numerous other potentially dead ended lines exist on the P&ID. These locations will need to be verified based on plant walkdown and configuration determination. (This assumes all the Air Connections are above the branch piping centerlines)

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 259 of 488

> R21002, Rev 0 Attachment L Page 125 of 198

														Pa
6	PTN	4	IAS / 013	5614-M-3013, Sh. 7	itire Drawi	Vents / Drains / Misc. Connections	Small Bore Drains	No	The Instrument Air System (IAS) consists of air compressors, receiver tanks, aftercoolers, moisture separators, desiccant dryers, particulate filters, instrumentation and interconnecting piping and valves. The system is designed to provide a continuous reliable air source during normal plant operation.	Dead Ended Legs	None	None - The desiccant dryers are capable of lowering the dewpoint of the instrument air to 40°F which satisfies the ISA standard of 18°F below minimum ambient temperature.	In accordance with 0-ONOP-103.2, "Cold/Hot Weather Conditions" IF outside air temperature is predicted to be lower than 32°F, THEN PERFORM the following: BLOWDOWN instrument air lines to Remove any Trapped Water, BLOWDOWN air lines exposed to outside air temperature to remove any trapped water.	Majority of Piping on This P&ID is within Containment. The following shall be specifically added to 0-ONOP-103.2: Ensure Valves (4-40-716A, - 716B, -716C) are periodically opened to drain the associated Accumulator Tank (4T75A, 4T75B, 4T75C). Numerous other potentially dead ended lines exist on the P&ID. These locations will need to be verified based on plant walkdown and configuration determination. (This assumes all the Air Connections are above the branch piping centerlines)
1	PTN	4	CNDSR / 014	5614-M-3014 SH 1	1	Piping	Direct piping connections to Condenser 3B Misc pipe sizes from 1" to 18", and 30" and 72".	Yes	Condenser pressure boundary; Maintain condenser vacuum.	Normal Condensate/steam flow adequate to prevent freezing.	None	None	Inspect during walkdown, insulation may already be present. Condenser and active piping will be hot.	
2	PTN	4	CNDSR / 014	5614-M-3014 SH 1	2	Piping	8", 10" piping Air Removal Header to Steam Jet	Yes	Condenser pressure boundary; Maintain condenser vacuum.	Normal Condensate/steam flow adequate to	None	None	Inspect during walkdown, insulation may already be present. Condenser and active piping will be hot.	
3	PTN	4	CNDSR / 014	5614-M-3014 SH 1	3	Piping	Air Ejectors 2" piping and control valves (air operated) Condensate Makeup Spray (from Deimineralized Water Storage Tank)	Yes	Condenser pressure boundary; Maintain condenser vacuum.	Normal Condensate/steam flow adequate to prevent freezing.	Protect	Ensure 2" piping and valves are insulated. This is likely on a lower level of the TB and so a global strategy of enclosing the area with tarps and using space heaters may be taken.	Inspect during walkdown, insulation may already be present. Condenser will be hot. Piping and control valves may be in a partially enclosed area that will be mitigated using global strategies.	5614-M-3014 SH 2, 5610-M-3074 SH 2
4	PTN	4	CNDSR / 014	5614-M-3014 SH 1	4	Piping	12" Steam Trap Drain Header, 4-12"-2-C	Yes	Condenser pressure boundary; Maintain condenser vacuum.	Normal Condensate/steam flow adequate to prevent freezing.	None	None	Inspect during walkdown, insulation may already be present. Condenser and active piping will be hot.	
5	PTN	4	CNDSR / 014	5614-M-3014 SH 1	4	Piping	Individual steam trap drain connections to header. Misc piping 2", 1 1/2", 1", 3/4", 1/2"	Yes	Condenser pressure boundary; Maintain condenser vacuum.	Normal Condensate/steam flow adequate to prevent freezing.	None	None	Inspect during walkdown, insulation may already be present. Condenser and active piping will be hot.	
6	PTN	4	CNDSR / 014	5614-M-3014 SH 1	4	Vents / Drains / Misc. Connections	3 pipe studs with closed valves (30-1041, 4-30-984, 4-30-981, and 4-30-981A)	No	Condenser pressure boundary; Maintain condenser vacuum.	Dead Leg	Protect	Ensure capped and dead end pipe connections are insulated.	Inspect during walkdown, insulation may already be present. Condenser and active piping will be hot.	
7	PTN	4	CNDSR / 014	5614-M-3014 SH 1	5	Piping	3/4" and 1/2" instrument line piping	Yes	Condenser pressure boundary; Maintain condenser vacuum.	Dead Leg	Protect	Ensure instrument line piping is insulated. If piping is located on a lower level of the TB and a global strategy of enclosing the area with tarps and using space heaters may be taken.	Inspect during walkdown, insulation may already be present.	
8	PTN	4	CNDSR / 014	5614-M-3014 SH 1	5	Instr. Control / Protection	2 Pressure Switches (PS); 3 Pressure Indicating Transmitter (PIT) PS input to Steam Dump system. PITs have CR alarm/annunciation and input to Turbine Control Sys, Turbine trip, etc.	Yes	Condenser pressure boundary; Maintain condenser vacuum.	Dead Leg	Protect	Ensure instruments are insulated. Normal fluid temp may preclude freezing with insulation. If piping is located on a lower level of the TB and a global strategy of enclosing the area with tarps and using space heaters may be taken.	Inspect during walkdown, insulation may already be present.	
9	PTN	4	CNDSR / 014	5614-M-3014 SH 1	5	Vents / Drains / Misc. Connections	One capped pipe with closed root valve (near PS 4-1613A)	No	Condenser pressure boundary; Maintain condenser vacuum.	Dead Leg	Protect	Ensure capped pipe and valve connections are insulated.	Inspect during walkdown, insulation may already be present. Condenser and active piping will be hot.	
10	PTN	4	CNDSR / 014	5614-M-3014 SH 1	h Condens	Heat Exchangers	South Condenser 4B	Yes	Condenser pressure boundary; Maintain condenser vacuum.	Normal fluid conditions adequate to prevent freezing.	None	None		
11	PTN	4	CNDSR / 014	5614-M-3014 SH 1	h Condens	Instr. Local	Temporary pressure instrument (PX) (x6); Temporary temperature instrument (TX) (x1)	No	None	Dead Leg	Protect	Ensure instrument and instrument lines are well insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of intrument tubing, valve, and port in proximity to Condenser. Condenser will be hot.	
							3/4" tubing/pipe		1	1			l .	

R21002, Rev 0

R21002, Rev 0 Attachment L Page 126 of 198

														Га
12	PTN	4	CNDSR / 014	5614-M-3014 SH 1	h Condens	Instr. Annunciation / Indication	Level Transmitter (LT) Condenser level with control room annunciation (high/low)	Yes	None	Dead Leg	Protect	Ensure instrument and instrument lines are well insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of intrument tubing, valve, and port in proximity to Condenser.	
13	PTN	4	CNDSR / 014	5614-M-3014 SH 1	h Condens	Instr. Local	Local level guage (x2)	Yes	None	Dead Leg	Protect	Ensure instrument and instrument lines are well insulated.	Condenser will be hot. Inspect during walkdown, insulation may already be present. Evaluate length of intrument tubing, valve, and port in proximity to Condenser.	
14	PTN	4	CNDSR / 014	5614-M-3014 SH 1	h Condens	Motor Operator Valve	Vent (screened open flange) with Motor Op Valve MOV-4-VAB1	Standby	None	Dead Leg	Protect	Ensure vent pipe and MOV are insulated or in close proximity to the condenser which would preclude freezing.	Condenser will be hot. Inspect during walkdown, insulation may already be present. Evaluate length of vent pipe and location of MOV in proximity to Condenser. Condenser will be hot. Include with global freeze evaluation for MOVs	
15	PTN	4	CNDSR / 014	5614-M-3014 SH 1	h Condens	Vents / Drains / Misc. Connections	Capped piping 1 1/2" pipe (leak detect) (x8) 1" pipe (4-1"-E) (x1)	No	None	Dead Leg	Protect	Ensure piping and end cap are insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of piping in proximity to Condenser. Condenser will be hot.	
16	PTN	4	CNDSR / 014	5614-M-3014 SH 2	1	Piping	Direct piping connections to Condenser 4A Misc pipe sizes from 1" to 18", and 30" and 72".	Yes	Condenser pressure boundary; Maintain condenser vacuum.	Normal Condensate/steam flow adequate to prevent freezing.	None	None	Inspect during walkdown, insulation may already be present. Condenser and active piping will be hot.	
17	PTN	4	CNDSR / 014	5614-M-3014 SH 2	2	Piping	8", 10" piping Air Removal Header to Steam Jet Air Ejectors	Yes	Condenser pressure boundary; Maintain condenser vacuum.	Normal Condensate/steam flow adequate to prevent freezing.	None	None	Inspect during walkdown, insulation may already be present. Condenser and active piping will be hot.	
18	PTN	4	CNDSR / 014	5614-M-3014 SH 2	3	Piping	10" header, and 2" piping and control valves (air operated) Condensate Makeup Spray (from Demineralized Water Storage Tank)	Yes	Condenser pressure boundary; Maintain condenser vacuum.	Normal Condensate/steam flow adequate to prevent freezing.	Protect	Ensure 2" piping and valves are insulated. This is likely on a lower level of the TB and so a global strategy of enclosing the area with tarps and using space heaters may be taken.	Inspect during walkdown, insulation may already be present. Condenser will be hot. Piping and control valves may be in a partially enclosed area that will be mitigated using global strategies.	5614-M-3014 SH 1, 5610-M-3074 SH 2
19	PTN	4	CNDSR / 014	5614-M-3014 SH 2	4	Piping	12" Steam Trap Drain Header, 4-12"-2-C	Yes	Condenser pressure boundary; Maintain condenser vacuum.	Normal Condensate/steam flow adequate to prevent freezing.	None	None	Inspect during walkdown, insulation may already be present. Condenser and active piping will be hot.	
20	PTN	4	CNDSR / 014	5614-M-3014 SH 2	4	Piping	Individual steam trap drain connections to header. Misc 1/2", 3/4", 1" piping	Yes	Condenser pressure boundary; Maintain condenser vacuum.	Normal Condensate/steam flow adequate to prevent freezing.	None	None	Inspect during walkdown, insulation may already be present. Condenser and active piping will be hot.	
21	PTN	4	CNDSR / 014	5614-M-3014 SH 2	5	Piping	3/4" and 1/2" instrument line piping	Yes	Condenser pressure boundary; Maintain condenser vacuum.	Dead Leg	Protect	Ensure instrument line piping is insulated. If piping is located on a lower level of the TB and a global strategy of enclosing the area with tarps and using space heaters may be taken.	Inspect during walkdown, insulation may already be present.	
22	PTN	4	CNDSR / 014	5614-M-3014 SH 2	5	Instr. Control / Protection	3 Pressure Indicating Transmitter (PIT) PITs have CR alarm/annunciation and input to Turbine Control Sys, Turbine trip, etc.	Yes	Condenser pressure boundary; Maintain condenser vacuum.	Dead Leg	Protect	Ensure instruments are insulated. Normal fluid temp may preclude freezing with insulation. If piping is located on a lower level of the TB and a global strategy of enclosing the area with tarps and using space heaters may be taken.	Inspect during walkdown, insulation may already be present.	
23	PTN	4	CNDSR / 014	5614-M-3014 SH 2	h Condens	Heat Exchangers	North Condenser 4A	Yes	Condenser pressure boundary; Maintain condenser vacuum.	Normal fluid conditions adequate to prevent freezing.	None	None		
24	PTN	4	CNDSR / 014	5614-M-3014 SH 2	h Condens	ı Instr. Local	Temporary pressure instrument (PX) (x6); Temporary temperature instrument (TX) (x1)	No	None	Dead Leg	Protect	Ensure instrument and instrument lines are well insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of intrument tubing, valve, and port in proximity to Condenser. Condenser will be hot.	
25	PTN	4	CNDSR / 014	5614-M-3014 SH 2	h Condens	Instr. Control / Protection	3/4" tubing/pipe Level Controler (LC) Condenser level control with signal input to condenser water makeup spray valves (suction from DWST)	Standby	None	Dead Leg	Protect	Ensure instrument, instrument lines, and drains are well insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of intrument tubing, valve, and port in proximity to Condenser. Condenser will be hot.	
26	PTN	4	CNDSR / 014	5614-M-3014 SH 2	h Condens	Instr. Local	Local level guage (x3)	Yes	None	Dead Leg	Protect	Ensure instrument and instrument lines are well insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of intrument tubing, valve, and port in proximity to Condenser. Condenser will be hot.	
												insulateu.	Condenser will be hot.	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 260 of 488

R21002, Rev 0 Attachment L Page 127 of 198

														P
27	PTN	4	CNDSR / 014	5614-M-3014 SH 2	h Condens	Motor Operator Valve	Vent (screened open flange) with Motor Op Valve MOV-4-VAB	Standby	None	Dead Leg	Protect	Ensure vent pipe and MOV are insulated or in close proximity to the condenser which would preclude freezing.	Inspect during walkdown, insulation may already be present. Evaluate length of vent pipe and location of MOV in proximity to Condenser. Condenser will be hot. Include with global freeze evaluation for MOVs	
28	PTN	4	CNDSR / 014	5614-M-3014 SH 2	h Condens	Vents / Drains / Misc. Connections	Capped piping 1 1/2" pipe (leak detect) (x8)	No	None	Dead Leg	Protect	Ensure piping and end cap are insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of piping in proximity to Condenser. Condenser will be hot.	
							2", 1 1/2", 1" Piping			Normal Steam Flow			Inspect during walkdown, insulation may already be present.	
29	PTN	4	CNDSR / 014	5614-M-3014 SH 3	1	Piping	Main steam supply to steam jet air ejectors.	Yes	Required for power operations; Maintain condenser vacuum.	adequate to prevent freezing.	None	None	Steam piping will be hot.	
30	PTN	4	CNDSR / 014	5614-M-3014 SH 3	1	Instr. Local	Local Pressure indication (PI) 1/2" tubing and open root valve.	Yes	None	Dead Leg	Protect	Ensure instrument and instrument lines are well insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of intrument tubing, valve, and instrument in proximity to main line.	
31	PTN	4	CNDSR / 014	5614-M-3014 SH 3	1	Strainers	Wye Strainer YS-4-3400	Yes	Required for power operations; Maintain condenser vacuum.	Normal Steam/condensate Flow adequate to prevent freezing.	None	None	Steam piping will be hot and flowing. Inspect during walkdown, insulation may already be present. Steam piping will be hot and flowing.	
32	PTN	4	CNDSR / 014	5614-M-3014 SH 3	1	Vents / Drains / Misc. Connections	1/2" Drain (Piping & valve)(wye strainer drain)	No	None	Dead Leg	Protect	Ensure piping and drain valve are insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of piping in proximity to connected wye strainer and 2" steam piping.	
33	PTN	4	CNDSR / 014	5614-M-3014 SH 3	1	Instr. Annunciation / Indication	Pressure Switch (PS) with control room annunciation. Local Pressure indication (PI)	Yes	None	Dead Leg	Protect	Ensure instrument and instrument lines are well insulated.	Main piping will be hot. Inspect during walkdown, insulation may already be present. Evaluate length of intrument tubing, valve, and instrument in proximity to main line.	
							1/2" tubing and open root valve. 1" Piping			Normal			Steam piping will be hot and flowing.	
34	PTN	4	CNDSR / 014	5614-M-3014 SH 3	2	Piping	Steam trap and drain for segment 1.	Yes	Required for power operations; Maintain condenser vacuum.	Steam/condensate Flow adequate to prevent freezing.	None	None	Inspect during walkdown, insulation may already be present. Drain piping will be hot.	
35	PTN	4	CNDSR / 014	5614-M-3014 SH 3	2	Strainers	Steam trap ST-4-1404; Wye Strainer YS-4-3412	Yes	Required for power operations; Maintain condenser vacuum.	Normal Steam/condensate Flow adequate to prevent freezing.	None	None	Inspect during walkdown, insulation may already be present. Drain piping will be hot.	
36	PTN	4	CNDSR / 014	5614-M-3014 SH 3	2	Vents / Drains / Misc. Connections	1" Drain (Piping & valve)	No	None	Dead Leg	Protect	Ensure piping and drain valve are insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of piping in proximity to main 1" piping.	
							10", 8" piping		Required for power operations;	Normal Air flow from			Main piping will be hot. Inspect during walkdown, insulation may already be present.	
37	PTN	4	CNDSR / 014	5614-M-3014 SH 3	3	Piping	Air Removal header from condensers A & B	Yes	Maintain condenser vacuum.	condenser will prevent line from freezing.	None	None	Main piping will be hot.	
38	PTN	4	CNDSR / 014	5614-M-3014 SH 3	3	Vents / Drains / Misc. Connections	8" Vent/Vacuum breaker	No	Required for power operations; Condenser vacuum boundary	Dead Leg	Protect	Ensure piping and vacuum breaker valve are insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of piping in proximity to main 10" line. Main piping will be hot.	
39	PTN	4	CNDSR / 014	5614-M-3014 SH 3	3	Instr. Local	Local Pressure indication (PI) 1/4" tubing and open root valve; branch from 8" vacuum breaker	Yes	Required for power operations; Condenser vacuum boundary	Dead Leg	Protect	Ensure instrument and instrument lines are well insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of intrument tubing, valve, and instrument in proximity to main line.	
40	PTN	4	CNDSR / 014	5614-M-3014 SH 3	3	Instr. Local	line Local Pressure indication (PI) (x2) 1/2" tubing and open root valve; branch from 8" lines into SJAEs	Yes	Required for power operations; Condenser vacuum boundary	Dead Leg	Protect	Ensure instrument and instrument lines are well insulated.	Main 10" header will be hot and flowing. Inspect during walkdown, insulation may already be present. Evaluate length of intrument tubing, valve, and instrument in proximity to main line. Main 8" nining will be hot and flowing.	
							3" piping			Normal Air flow from			Main 8" piping will be hot and flowing. Inspect during walkdown, insulation may already be present.	
41	PTN	4	CNDSR / 014	5614-M-3014 SH 3	4	Piping	SJAEs to Inner Condenser to SJAEs to After Condenser	Yes	Required for power operations; Maintain condenser vacuum.	condenser will prevent line from freezing.	None	None	Main piping will be hot.	
42	PTN	4	CNDSR / 014	5614-M-3014 SH 3	4	Relief Valves	1/2" relief valve (x2) pressure relief on first set of SJAEs	Yes	Required for power operations; Maintain condenser vacuum.	Normal Steam Flow adequate to prevent freezing.	None	None	Inspect during walkdown, insulation may already be present. Main piping and SJAEs will be hot.	
43	PTN	4	CNDSR / 014	5614-M-3014 SH 3	5	Piping	24" piping Cooling water (condensate) to SJAE inner and after condensers	Yes	Required for power operations; Maintain condenser vacuum.	Normal flow of condensate will keep line from freezing	None	None	Inspect during walkdown, insulation may already be present. Main piping will be warm, SJAE condensers will be warm.	5610-M-3073 SH 2

Florida Power & Light Company Docket No. 20220000-OT

Ten-Year Site Plan
Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 261 of 488

R21002, Rev 0 Attachment L Page 128 of 198

														Р
44	PTN	4	CNDSR / 014	5614-M-3014 SH 3	6	Piping	24" piping Cooling water (condensate) from SJAE inner and after condensers	Yes	Required for power operations; Maintain condenser vacuum.	Normal flow of condensate will keep line from freezing	None	None	Inspect during walkdown, insulation may already be present. Main piping will be warm, SJAE condensers will be warm.	5610-M-3073 SH 2
45	PTN	4	CNDSR / 014	5614-M-3014 SH 3	7	Piping	1" Piping SJAE condenser drains	Yes	Steam Jet Air Ejector is required for power operation to maintain condenser vacuum.	Condenser and condensate drain will be warm.	None	None	Inspect during walkdown, insulation may already be present. Piping will be warm, SJAE condensers will be warm.	
46	PTN	4	CNDSR / 014	5614-M-3014 SH 3	7	Instr. Local	Local level gauge (x2) indicates liquid level in condenser drain line.	Yes	Steam Jet Air Ejector is required for power operation to maintain condenser vacuum.	Dead Leg	Protect	Ensure instrument and instrument lines are well insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of intrument tubing, and instrument in proximity to main line. Piping will be warm, SJAE condensers will be warm.	
47	PTN	4	CNDSR / 014	5614-M-3014 SH 3	8	Piping	2", 3" piping SJAE condensers drain to North Condenser	Yes	Steam Jet Air Ejector is required for power operation to maintain condenser vacuum.	Condenser and condensate drain will be warm.	None	None	Inspect during walkdown, insulation may already be present. Piping will be warm, SIAE condensers will be warm. SIAEs and SIAE condensers are located on TB operating deck (exposed outside), majority of condeser drain however would be on TB mezzanine and ground floor with connection to condenser global mitigating strategies may apply.	
48	PTN	4	CNDSR / 014	5614-M-3014 SH 3	8	Instr. Local	Local level gauge and 1/2" tubing indicates liquid level in condenser drain line.	Yes	Steam Jet Air Ejector is required for power operation to maintain condenser vacuum.	Dead Leg	Protect	Ensure instrument and instrument lines are well insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of intrument tubing, and instrument in proximity to main line. Piping will be warm, SJAE condensers will be warm. SJAEs and SJAE condensers are located on TB operating deck (exposed outside), majority of condeser drain however would be on TB mezzanine and ground floor with connection to condenser global mitigating strategies may apply.	
49	PTN	4	CNDSR / 014	5614-M-3014 SH 3	8	Vents / Drains / Misc. Connections	1/2" capped pipe (closed root valve) 1/2" line (isolated) from Condensate Sys Loop Seal Fill	No	SIAE condenser drain pressure boundary	Dead Leg	Protect	Ensure isolated pipe and pipe ends, and isolation valves are well insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of piping in proximity to main line. Main SJAE condenser drain piping will be warm, SJAE condensers will be warm.	
50	PTN	4	CNDSR / 014	5614-M-3014 SH 3	9	Piping	4" piping, misc insluating flanges SJAE condenser (air/steam side) discharge to Aux Building Ventilation	Yes	Steam Jet Air Ejector is required for power operation to maintain condenser vacuum.	SJAE Condenser discharge will be warm.	None	None	Inspect during walkdown, insulation may already be present. Piping will be warm, SIAE condensers will be warm.	
51	PTN	4	CNDSR / 014	5614-M-3014 SH 3	9	Instr. Local	Local gauges and 3/8" tubing press differential (dPI) Flow indication (FI) Flow element (FE)	Yes	None	Dead Leg	Protect	Ensure instrument and instrument lines are well insulated.	Inspect during walkdown, insulation may already be present.	
52	PTN	4	CNDSR / 014	5614-M-3014 SH 3	9	Instr. Local	Local flow indicator (FI)	Yes	None	Dead Leg	Protect	Ensure instrument and instrument lines are well insulated.	Inspect during walkdown, insulation may already be present. P&ID symbol indicates flow indicator is already heat traced. Verify during walkdown.	
53	PTN	4	CNDSR / 014	5614-M-3014 SH 3	9	Instr. Annunciation / Indication	Radiation detector (RD) with control room alarm/annunciation	Yes	Used to determine radiation levels in SJAE condenser air/steam side discharge to Aux Bldg exhaust ventilation.	Dead Leg	Protect	Ensure instrument is well insulated.	Inspect during walkdown, insulation may already be present. Instrument is installed in-line along the 4" piping.	
54	PTN	4	CNDSR / 014	5614-M-3014 SH 3	9	Vents / Drains / Misc. Connections	1/2" drain/vent, 1" isolated conn. for flex hose and chem testing (note 7) 1" line (isolated) from Condensate Sys Loop Seal Fill	No	None	Dead Leg	Protect	Ensure isolated pipe and pipe ends, and isolation valves are well insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of piping in proximity to main line. Main 4" SJAE exhaust line expected to be warm.	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 262 of 488

R21002, Rev 0 Attachment L Page 129 of 198

														Pa
1	PTN	4	AMERTAP / 015	5614-M-3015, Sh. 1	egment AL	Piping	All piping, pumps, valves and handling equipment.	Yes	None	Indication / Control Inst	Protect	Zachry proposes isolating and draining (blowing down) the Condenser Tube Cleaning and Debris Filter Systems at the start of the cold weather period and reinstating them following temperature increases. This will result in no permanent impact to the systems and minimal impact to Procedure 0-ONOP-103.2 "Cold/Hot Weather Conditions."	With respect to microbiologicals, various microbiological growths prosper at different temperatures. Therefore, the temperature of the Ultimate Heat Sink (UHS) being its lowest during the cold weather period will not have a significant impact on the growth inside the condenser tubes. It is believed the growth on condenser tubes will be minimal during the postulated four (4) day period of extremely cold weather. With respect to scale, many compounds, most notably calcium carbonate (CacO3), become less water-soluble as the temperature rises. When a compound in recirculating water reaches its saturation point in a condenser, the compound precipitates and forms a layer of scale on the tubes. Calcium carbonate scaling is the most common type; however, calcium sulfate and phosphate, manganese compounds and silicates can also precipitate. Hard, adhering scale is difficult to remove and often requires mechanical tube cleaning and / or water lancing. This is generally a long term buildup process that would not be affected by a four (4) day cessation of the subject systems.	
2	PTN	4	AMERTAP / 015	5614-M-3015, Sh. 2	egment AL	Piping	All piping, pumps, valves and handling equipment.	Yes	None	Indication / Control Inst	Protect	Zachry proposes isolating and draining (blowing down) the Condenser Tube Cleaning and Debris Filter Systems at the start of the cold weather period and reinstating them following temperature increases. This will result in no permanent impact to the systems and minimal impact to Procedure 0-ONOP-103.2 "Cold/Hot Weather Conditions."	With respect to microbiologicals, various microbiological growths prosper at different temperatures. Therefore, the temperature of the Ultimate Heat Sink (UHS) being its lowest during the cold weather period will not have a significant impact on the growth inside the condenser tubes. It is believed the growth on condenser tubes will be minimal during the postulated four (4) day period of extremely cold weather. With respect to scale, many compounds, most notably calcium carbonate (CaCO3), become less water-soluble as the temperature rises. When a compound in recirculating water reaches its saturation point in a condenser, the compound precipitates and forms a layer of scale on the tubes. Calcium carbonate scaling is the most common type; however, calcium sulfate and phosphate, manganese compounds and silicates can also precipitate. Hard, adhering scale is difficult to remove and often requires mechanical tube cleaning and / or water lancing. This is generally a long term buildup process that would not be affected by a four (4) day cessation of the subject systems.	
2	PTN	4	AMERTAP / 015	5614-M-3015, Sh. 2	1	Piping	8" & 10" AFW pumps supply	Yes	TS 3.7.1.3 - Cond Storage Tank min volume 210,000 gal. Action: Restore volume within 4 hrs, or attain HSB in 6 hrs.	Break in this line could compromise CST inventory and diminish AFW pump supply.	Protect	Insulate, 2"	Condensate lines are likely insulated already	
3	PTN	4	AMERTAP / 015	5614-M-3015, Sh. 2	1	Piping	10" blind flange connections	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
4	PTN	4	AMERTAP / 015	5614-M-3015, Sh. 2	1	Vents / Drains / Misc. Connections	manual vent	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
5	PTN	4	AMERTAP / 015	5614-M-3015, Sh. 2	2	Piping	4" & 10" condensate transfer pump suction	Standby	Required for power generation	Ensure availability of routine makeup water for power operation	Protect	Insulate and heat trace		
6	PTN	4	AMERTAP / 015	5614-M-3015, Sh. 2	2	Vents / Drains / Misc. Connections	Condensate Transfer pump vent	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
7	PTN	4	AMERTAP / 015	5614-M-3015, Sh. 2	2	Vents / Drains / Misc. Connections	manual drain	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
8	PTN	4	AMERTAP / 015	5614-M-3015, Sh. 2	2	Tank	chemical addition tank	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
9	PTN	4	AMERTAP / 015	5614-M-3015, Sh. 2	3	Piping	6" condensate transfer pump discharge piping	Standby	Required for power generation	Ensure availability of routine makeup water for power operation	Protect	Insulate and heat trace		
10	PTN	4	AMERTAP / 015	5614-M-3015, Sh. 2	3	Instr. Local	Condensate Transfer pump discharge pressure PI	Yes	N/A	Dead Leg	Protect	Insulate and heat trace.		
11	PTN	4	AMERTAP / 015	5614-M-3015, Sh. 2	3	Piping	6" crosstie with Unit 3 condensate transfer	No	N/A	Dead Leg	Protect	Insulate and heat trace.	Line normally isolated from header.	
12	PTN	4	AMERTAP / 015	5614-M-3015, Sh. 2	4	Piping	1" condensate pump seal supply from condensate header	Yes	Required for power generation	None	None	None: lines normally flowing		
13	PTN	4	AMERTAP / 015	5614-M-3015, Sh. 2	5	Piping	10" condensate reject to/from DWST	Standby	Required for power generation	Ensure availability of routine water storage for power operation	Protect	Insulate and heat trace		

Florida Power & Light Company Docket No. 20220000-OT

Ten-Year Site Plan
Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 263 of 488 Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 264 of 488

> R21002, Rev 0 Attachment L Page 130 of 198

														Paç
14	PTN	4	AMERTAP / 015	5614-M-3015, Sh. 2	6	Piping	3" condensate recovery return	Standby	Required for power generation	Ensure availability of routine water storage for power operation	Protect	Insulate and heat trace		
15	PTN	4	AMERTAP / 015	5614-M-3015, Sh. 2	7	Piping	6" condensate return	Standby	Required for power generation	Ensure availability of routine water storage for power operation	Protect	Insulate and heat trace		
16	PTN	4	AMERTAP / 015	5614-M-3015, Sh. 2	8	Piping	2" surge tank supply	No	N/A	Dead Leg	Protect	Insulate and heat trace.	Line normally isolated from header.	
17	PTN	4	AMERTAP / 015	5614-M-3015, Sh. 2	10	Piping	2" alternate surge tank supply from Unit 3	Standby	Required for power generation	Ensure availability of CST supply from Unit 4	Protect	Insulate and heat trace		
18	PTN	4	AMERTAP / 015	5614-M-3015, Sh. 2	10	Vents / Drains / Misc. Connections	manual drain	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
19	PTN	4	AMERTAP / 015	5614-M-3015, Sh. 2	11	Piping	1", 4" & 6" supply to chemical feed and wet layup from primary water header and condensate transfer pump	No	N/A	Break in this dead leg could compromise CST inventory.	Protect	Insulate and heat trace		
20	PTN	4	AMERTAP / 015	5614-M-3015, Sh. 2	12	Piping	6" primary water makeup supply to CST	Yes	N/A	Break in this dead leg could compromise CST inventory.	Protect	Insulate and heat trace		
21	PTN	4	AMERTAP / 015	5614-M-3015, Sh. 2	12	Instr. Local	flow indicator	Yes	N/A	Dead Leg	Protect	Insulate and heat trace.		
22	PTN	4	AMERTAP / 015	5614-M-3015, Sh. 2	13	Piping	4" flow indicator and control valve bypass line	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
23	PTN	4	AMERTAP / 015	5614-M-3015, Sh. 2	14	Piping	2 1/2" AFW Pump recirc line	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
24	PTN	4	AMERTAP / 015	5614-M-3015, Sh. 2	15	Piping	2" and 8" CST overflow line to drain	Yes	Required for power generation	None	None	None: lines normally empty		
25	PTN	4	AMERTAP / 015	5614-M-3015, Sh. 2	16	Piping	4" CST drain	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
26	PTN	4	AMERTAP / 015	5614-M-3015, Sh. 2	16	Piping	1/2" Flex connection	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
27	PTN	4	AMERTAP / 015	5614-M-3015, Sh. 2	17	Instr. Control / Protection	CST level switch for CST makeup CV	Yes	TS 3.7.1.3 - Cond Storage Tank min volume 210,000 gal. Action: Restore volume within 4 hrs, or attain HSB in 6 hrs.	Maintain aux feedwater injection capability after reactor trip for sufficient duration to achieve cold shutdown.	Protect	Insulate / Heat trace.		
28	PTN	4	AMERTAP / 015	5614-M-3015, Sh. 2	17	Vents / Drains / Misc. Connections	manual drain lines	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
29	PTN	4	AMERTAP / 015	5614-M-3015, Sh. 2	17	Piping	1" level switch piping	Yes	N/A	Dead Leg	Protect	Insulate and heat trace.		
30	PTN	4	AMERTAP / 015	5614-M-3015, Sh. 2	18	Instr. Annunciation / Indication	CST level transmitter / indication	Yes	TS 3.7.1.3 - Cond Storage Tank min volume 210,000 gal. Action: Restore volume within 4 hrs, or attain HSB in 6 hrs.	Maintain aux feedwater injection capability after reactor trip for sufficient duration to achieve cold shutdown.	Protect	Insulate / Heat trace.		
31	PTN	4	AMERTAP / 015	5614-M-3015, Sh. 2	18	Vents / Drains / Misc. Connections	manual vents, drains and test connections	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
32	PTN	4	AMERTAP / 015	5614-M-3015, Sh. 2	18	Piping	3/8", 1", & 3" level transmitter piping	Yes	N/A	Dead Leg	Protect	Insulate and heat trace.		
33	PTN	4	AMERTAP / 015	5614-M-3015, Sh. 2	19	Piping	6" condensate supply to feedwater system	No	N/A	Breaks in this line could compromise operating feedwater header .		Insulate and heat trace	Line normally isolated from header.	
1	PTN	4	CS / 018	5614-M-3018, Sh. 1	-	Outdoor Tanks	Unit 3 CST	Yes	TS 3.7.1.3 - Cond Storage Tank min volume 210,000 gal. Action: Restore volume within 4 hrs, or attain HSB in 6 hrs.	Maintain aux feedwater injection capability after reactor trip for sufficient duration to achieve cold shutdown.	None	None	Preliminary analysis shows that postulated cold weather conditions will not induce freezing temperatures within the large volume of the CST, even without crediting heated influx of liquid inventory or the shielding effect of the concrete missile structure. Cold weather effects on lines and components attached to the CST are addressed in subsequent entries on this sheet.	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 265 of 488

> R21002, Rev 0 Attachment L Page 131 of 198

														Pi
1	PTN	4	ICW / 019	5614-M-3019, Sh. 1	1	Instrumentation - Local	PI(X)-4-1450, -1451, -1452, PI-4- 1488, -1489, -6901, -6902, FE(FI)- 3-1430, dPI-4-1400, -1401	Yes	None	Local Indication	Mitigate	Safety Related piping boundary As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions. Insulate the branch connection and implement a trickle flow to ensure freezing does not occur. Trickle flow determination is based on calculated trickle flowartes contained in Table 1 (Fresh Water) and Table 2 (Saltwater).	Un-Insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst. (UHS Temperature ~50°F Min.)	
2	PTN	4	ICW / 019	5614-M-3019, Sh. 1	1	Instrumentation - Annunciation / Recorder / Indication	PS-4-1619, -1620, PI-4-1619, - 1620, PT-4-1619, -1620	Yes	Indication provided to CR and/or Plant Computer.	Remote / CR Ind. / Alarm	Protect	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions. Insulate the branch connection and implement a trickle flow to ensure freezing does not occur. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water) and Table 2 (Saltwater).	Prevent Freezing to Provide CR Operators Plant Status	
3	PTN	4	ICW / 019	5614-M-3019, Sh. 1	1	Piping	Safety Related Piping 4-24"-13-L, 4-36"-13-L, 3-30"-13-L	Yes	T.S. 3.7.4 - At least two independent intake cooling water headers and three ICW Pumps shall be operable when in Modes 1 - 4. ACTION: a. With only two ICW pumps with independent power supplies OPERABLE, restore the inoperable ICW pump to OPERABLE status within 14 days or in accordance with the Risk Informed Completion Time Program, or be in HOT STANDBY within the next 6 hours and in COLD SHUTDOWN within the following 30 hours. b. With only one ICW pump OPERABLE or with two ICW pumps OPERABLE, but not from independent power supplies, restore two pumps from independent power supplies to OPERABLE status within 72 hours or in accordance with the Risk Informed Completion Time Program, or be in HOT STANDBY within the next 6 hours and in COLD SHUTDOWN within the following 30 hours.	Maintain SR Cooling	Mitigate	Insulate and/or Swap Trains Regularly (UHS Temperature ~50°F Min.)	Insulation Thickness Required to Preclude Icing 1/2" Insulation (>38"F Water), 1" Insulation (>34"F Water) 0-ONOP-103.2 states, "ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure"	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 266 of 488

> R21002, Rev 0 Attachment L Page 132 of 198

														Pa
4	PTN	4	ICW/019	5614-M-3019, Sh. 1	1	Piping	Safety Related Piping 3-2"-12-L, 3-4"-12-L	Yes	T.S. 3.7.4 - At least two independent intake cooling water headers and three ICW Pumps shall be operable when in Modes 1 - 4. ACTION: a. With only two ICW pumps with independent power supplies OPERABLE, restore the inoperable ICW pump to OPERABLE status within 14 days or in accordance with the Risk Informed Completion Time Program, or be in HOT STANDBY within the next 6 hours and in COLD SHUTDOWN within the following 30 hours. b. With only one ICW pump OPERABLE or with two ICW pumps OPERABLE, but not from independent power supplies, restore two pumps from independent power supplies to OPERABLE status within 72 hours or in accordance with the Risk Informed Completion Time Program, or be in HOT STANDBY within the next 6 hours and in COLD SHUTDOWN within the following 30 hours.		Mitigate	Insulate and/or Swap Trains Regularly (UHS Temperature ~50°F Min.)	Insulation Thickness Required to Preclude Icing 1/2" Insulation (>38"F Water), 1" Insulation (>34"F Water) 0-ONOP-103.2 states, "ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure"	
5	PTN	4	ICW / 019	5614-M-3019, Sh. 1	1	Piping	Non-Safety Related Piping 3-24"-13-L, 3-36"-13-L, 3-30"-13-L	Yes	None	NSR Cooling Requirement - Cross- Connect	Mitigate	Insulate and/or Swap Trains Regularly (UHS Temperature ~50°F Min.)	Insulation Thickness Required to Preclude Icing 1/2" Insulation (>38"F Water), 1" Insulation (>34"F Water) 0-ONOP-103.2 states, "ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure"	
6	PTN	4	ICW / 019	5614-M-3019, Sh. 1	1	Piping	Non-Safety Related Piping 4-8"-13-L, 4-4"-13-L	Yes	None	NSR Cooling Requirement - Cross- Connect	Mitigate	Insulate and/or Swap Trains Regularly (UHS Temperature ~50°F Min.)	O-ONOP-103.2 states, "ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure"	0-ONOP-103.2
7	PTN	4	ICW / 019	5614-M-3019, Sh. 1	1	Piping	Non-Safety Related Piping 4-2"-12-L	Yes	None	Capped Piping	Mitigate	Insulate the branch connection and implement a trickle flow to ensure freezing does not occur. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water) and Table 2 (Saltwater).	Insulation Thickness Required to Preclude Icing 1/2" Insulation (>38"F Water), 1" Insulation (>34"F Water) 0-ONOP-103.2 states, "ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure"	0-ONOP-103.2

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 267 of 488

> R21002, Rev 0 Attachment L Page 133 of 198

														Pa
8	PTN	4	ICW / 019	5614-M-3019, Sh. 1	1	Motors	ICW Pump Motors (4A, 4B, 4C)	Yes	I.S. 3.7.4 - At least two independent intake cooling water headers and three ICW Pumps shall be operable when in Modes 1 - 4. ACTION: c. With only one intake cooling water loop OPERABLE, restore at least two loops to OPERABLE status within 72 hours or be in at least HOT STANDBY within the next 6 hours and in HOT SHUTDOWN within the following 6 hours and in COLD SHUTDOWN within the following 30 hours. One, two, or three pumps are operated as required to support normal plant operating conditions. The A and B pumps are powered by 4160 volt buses backed up by each train's associated EDG. The C pump is powered by a swing 4160 volt SR bus which can be powered, through aligning the bus manually, by either the train A or train B EDG associated with the same unit. This pump is interlocked, such that, it starts on a loss of offsite power or safety injection signal, if the preader for the App or BLOW pump.	Maintain SR Cooling	Protect	Swap Pumps and Trains Regularly	Prevent Component Failure from Insufficient Lubrication Per UFSAR Section 6.2.4 (INSPECTIONS AND TESTS), "Idle intake cooling water and component cooling water pumps will be put in service periodically as part of the normal rotation of machinery use."	
9	PTN	4	ICW / 019	5614-M-3019, Sh. 1	1	Cooling Towers and Intake Channel	Intake Canal	Yes	None	Maintain SR Cooling	Mitigate	Maintain Operation of ICW and CW Systems	Prevent Frazil Ice from Impacting Heat Transfer	
10	PTN	4	ICW / 019	5614-M-3019, Sh. 1	1	Heat Exchangers	T. P. C. W. Heat Exchanger 4A, 4B	Yes	None	NSR Cooling Requirement	Mitigate	No Action Required as Long as Flow is Maintained.	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance	
11	PTN	4	ICW / 019	5614-M-3019, Sh. 1	1	Relief Valves	RV-4-128A, -128B	Yes	Protect Turbine Plant Cooling Water Heat Exchangers	Dead Ended Water Leg	Protect	Relief Valves are often located at relative high points within the system piping, as such gas trapped upstream of the vent isolation valve will act as an accumulator to absorb the pressure rise associated with the expansion of ice forming in the branch connection. Trapped water will cause valve to relieve avoiding freezing.		
12	PTN	4	ICW / 019	5614-M-3019, Sh. 1	1	Strainers	BS-4-1400, -1401	Yes	None	NSR Cooling Requirement Avoid Strainer Flow Obstruction	Mitigate	No Action Required as Long as Flow is Maintained.	Avoid Freezing Leading to Low Flow & Degraded Plant Performance 0-ONOP-103.2 states, "ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure"	0-ONOP-103.2
13	PTN	4	ICW / 019	5614-M-3019, Sh. 1	1	Valves	POV-4-4882, -4883 Bypasses	Yes	None	Dead Ended Bypass Water Leg	Mitigate	Open Valves (4-50-315 & 4-50-335) periodically to preclude ice buildup within the POC bypasses.	Un-Insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst.	0-ONOP-103.2 states, "CYCLE POV-*-4882 and POV-*-4883, ICW TO THE TPCW HEAT EXCHANGERS INLET ISOLATION VALVES, at least once per shift"
14	PTN	4	ICW / 019	5614-M-3019, Sh. 1	1	Vents / Drains / Misc. Connections	BS-4-1400, -1401 Manual Drains	Yes	None	Dead Ended Strainer Drain Water Leg	Mitigate		Un-insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst. 0-ONOP-103.2 states, "ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure"	0-ONOP-103.2

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 268 of 488

> R21002, Rev 0 Attachment L Page 134 of 198

														Pa
15	PTN	4	ICW / 019	5614-M-3019, Sh. 1	1	Vents / Drains / Misc. Connections	Small Bore Vents & Drains	No	None	Dead Ended Water Leg	Mitigate	Vents are located at relative high points within the system piping, as such gas trapped upstream of the vent isolation valve will act as an accumulator to absorb the pressure rise associated with the expansion of ice forming in the branch connection. Based on Operations experience, identify if trapped gas exists. If the existence of trapped gas is not known, a limited amount of gas (air, nitrogen, etc.) can be added to the vent in support of the Cold Weather Preparation plan. Drain - Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions. Insulate the branch connection and implement a trickle flow to ensure freezing does not occur. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water) and Table 2 (Saltwater).	Un-insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst.	
16	PTN	4	ICW / 019	5614-M-3019, Sh. 2	1	Instrumentation - Local	dPI-4-1402, -1403, FI-4-1407, - 1408, -1409, PI-4-1519, -1520, - 1521	Yes	None	Local Indication	Mitigate	Safety Related piping boundary As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions. Insulate the branch connection and implement a trickle flow to ensure freezing does not occur. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water) and Table 2 (Saltwater).	Un-insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst. (UHS Temperature ~50°F Min.)	
17	PTN	4	ICW / 019	5614-M-3019, Sh. 2	1	Piping	Safety Related Piping 4-30"-13-L, 4-20"-13-L, 4-24"-13-L	Yes	T.S. 3.7.4 - At least two independent intake cooling water headers and three ICW Pumps shall be operable when in Modes 1 - 4. ACTION: a. With only two ICW pumps with independent power supplies OPERABLE, restore the inoperable ICW pump to OPERABLE status within 14 days or in accordance with the Risk Informed Completion Time Program, or be in HOT STANDBY within the next 6 hours and in COLD SHUTDOWN within the following 30 hours. b. With only one ICW pump OPERABLE or with two ICW pumps OPERABLE, but not from independent power supplies, restore two pumps from independent power supplies to OPERABLE status within 72 hours or in accordance with the Risk Informed Completion Time Program, or be in HOT STANDBY within the next 6 hours and in COLD SHUTDOWN within the following 30 hours.		Mitigate	Insulate and/or Swap Trains Regularly	Insulation Thickness Required to Preclude Icing 1/2" Insulation (>38"F Water), 1" Insulation (>34"F Water) 0-ONOP-103.2 states, "ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure"	

R21002, Rev 0 Attachment L Page 135 of 198

														Pa
18	PTN	4	ICW / 019	5614-M-3019, Sh. 2	1	I Heat Exchangers	Component Cooling Water Heat Exchanger 4A, 4B	Yes	During the recirculation mode, the Component Cooling System is used to cool the recirculation fluid as it passes through the residual heat exchanger. (UFSAR Section 6.2.2) Since the heat is transferred from the component cooling water to the intake cooling water, the component cooling loop serves as an intermediate system between the reactor coolant and intake cooling water system. (UFSAR Section 9.3.2)	SR Cooling Requirement	Mitigate	No Action Required as Long as Flow is Maintained. One pump and three component cooling water heat exchangers are normally operated to provide cooling water for various components located in the auxiliary and containment buildings. (UFSAR Section 9.3.1)	Maintaining Flow Avoids Freezing Which Could Lead to Degraded Plant Performance 0-ONOP-103.2 states, "ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure"	0-ONOP-103.2
19	PTN	4	ICW / 019	5614-M-3019, Sh. 2	1	Strainers	BS-4-1402, -1403	Yes	None	NSR Cooling Requirement Avoid Strainer Flow Obstruction	Mitigate	No Action Required as Long as Flow is Maintained.	Avoid Freezing Leading to Low Flow & Degraded Plant Performance 0-ONOP-103.2 states, "ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure"	O-ONOP-103.2 Open Valves (4-50-325, -873, - 345, -875) periodically to ensure flow through 4-8"-14-L piping.
20	PTN	4	ICW / 019	5614-M-3019, Sh. 2	1	Strainers	4F228A, B	Yes	Per Note 5 of 5614-M-3019, sh. 2, "Filter Handwheel is restrained to maintain streainer in the "backwash" position."	SR Cooling Requirement Avoid Strainer Flow Obstruction	Mitigate	No Action Required as Long as Flow is Maintained. Strainer in "Backwash" ensure flow through the strainers.	Avoid Freezing Leading to Low Flow & Degraded Plant Performance	
21	PTN	4	ICW / 019	5614-M-3019, Sh. 2	1	Vents / Drains / Misc. Connections	Small Bore Vents & Drains	No	None	Dead Ended Water Leg	Mitigate	Vents are located at relative high points within the system piping, as such gas trapped upstream of the vent isolation valve will act as an accumulator to absorb the pressure rise associated with the expansion of ice forming in the branch connection. Based on Operations experience, identify if trapped gas exists. If the existence of trapped gas is not known, a limited amount of gas (air, nitrogen, etc.) can be added to the vent in support of the Cold Weather Preparation plan. Drain - Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions. Insulate the branch connection and implement a trickle flow to ensure freezing does not occur. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water) and Table 2 (Saltwater).	Un-insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst.	
22	PTN	4	ICW / 019	5614-M-3019, Sh. 2	2	Piping	4-4"-14-L, 4-8"-13-L	Yes	None	NSR Cooling Requirement - Supplemental ICW Strainer Flushing	Mitigate	Swap Trains Regularly Open Valves (4-50-346, -874, -872, -326) periodically to ensure flow through the ICW supplemental line. (UHS Temperature ~50°F Min.)	Un-insulated and Non-Heat Traced Component May Freeze. Dead Legs May Freeze and Burst. 0-ONOP-103.2 states, "ESTABLISH water flow through idle systems exposed to outside temperatures for 5 minutes every 2 hours per applicable procedure"	0-ONOP-103.2
8	PTN	4	PMUS / 020	5614-M-3020, Sh. 1	1	Piping	4" Pipe	Yes	One line is normally in operation per UFSAR 9.6.2	-	None	No Protection Recommended	Loss of the PMUS will not cause a shutdown due to generation loss or a Tech Spec Action, therefore, protection is not required. FPL Operations to provide input if the PWST and PMUS will be required to be operable over a max 4 day period. If the system is continuously running (one train), would prevent freezing. 1" of insulation can be used to prevent >25% freezing in 4" standby pipe. 2" insulation required for 3" pipe	
10	PTN	4	PMUS / 020	5614-M-3020, Sh. 1	2	Piping	3" Pipe	Yes	One line is normally in operation per UFSAR 9.6.2	-	None	No Protection Recommended	See Segment 1, Piping for this P&ID to determine if protection required	
11	PTN	4	PMUS / 020	5614-M-3020, Sh. 1	2	Instr. Local	PI	Yes	-	Dead Leg	None	No Protection Recommended		
12	PTN	4	PMUS / 020	5614-M-3020, Sh. 1	2	Instr. Control / Protection	PS	Yes	Controls Pump	Dead Leg	Protect	Heat Trace & 1" Insulation	Conservatively protect control function, although not required (see Segment 1, Piping)	
13	PTN	4	PMUS / 020	5614-M-3020, Sh. 1	2	Instr. Annunciation / Indication	PS	Yes	Annunciator	Dead Leg	Protect	Heat Trace & 1" Insulation	Conservatively protect alarm function, although not required (see Segment 1, Piping)	
14	PTN	4	PMUS / 020	5614-M-3020, Sh. 1	3	Piping	3/4" pipe	Yes	-	-	None	No Protection Recommended		
15	PTN	4	PMUS / 020	5614-M-3020, Sh. 1	4	Piping	1.5" Pipe	No	-	-	None	No Protection Recommended		
16 17	PTN PTN	4	PMUS / 020 PMUS / 020	5614-M-3020, Sh. 1 5614-M-3020, Sh. 1	5 6	Piping Piping	2" Pipe 1.5" to 3" Pipe	No No	-	-	None None	No Protection Recommended No Protection Recommended		
18	PTN	4	PMUS / 020	5614-M-3020, Sh. 1	7	Piping	1/4"-1/2" pipe	No	-	-	None	No Protection Recommended		
			,			r0	7 FF:	-	1	•				

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 269 of 488

R21002, Rev 0 Attachment L Page 136 of 198

														Pa
19	PTN	4	PMUS / 020	5614-M-3020, Sh. 1	8	Piping	2" pipe	No	-	-	None	No Protection Recommended		
20	PTN	4	PMUS / 020	5614-M-3020, Sh. 1	9	Piping	3" Pipe & Capped Section	No	-	-	None	No Protection Recommended		
21	PTN	4	PMUS / 020	5614-M-3020, Sh. 1	10	Piping	3" Pipe	No	-	-	None	No Protection Recommended		
22	PTN	4	PMUS / 020	5614-M-3020, Sh. 1	11	Piping	3" & 4" Pipe	No	-	-	None	No Protection Recommended		
23	PTN	4	PMUS / 020	5614-M-3020, Sh. 1	12	Piping	2.5" Pipe	No	-	-	None	No Protection Recommended		
1	PTN	4	PMUS / 020	5614-M-3020, Sh. 1	=	Outdoor Tanks	Primary Water Storage Tank (PWST)	No	Per UFSAR 9.6.2, PWST and the Primary Water Makeup System (PMUS) are not required for Safe Shutdown. However, they are used to provide makeup water to systems such as RCS and CVCS during normal plant operation.	-	None	No Protection Recommended	Based on the size of the tank, the contents will not freeze over a four day period.	
2	PTN	4	PMUS / 020	5614-M-3020, Sh. 1	-	Vents / Drains / Misc. Connections	1" Connections	No	Tank Pressure Boundary	Dead Leg	None	No Protection Recommended		
3	PTN	4	PMUS / 020	5614-M-3020, Sh. 1	-	Vents / Drains / Misc. Connections	3/4" Vent	No	Tank Pressure Boundary	Dead Leg	None	No Protection Recommended		
4	PTN	4	PMUS / 020	5614-M-3020, Sh. 1	-	Vents / Drains / Misc. Connections	4" Drain	No	·	Dead Leg	None	No Protection Recommended		
5	PTN	4	PMUS / 020	5614-M-3020, Sh. 1	-	Instr. Local	3" pipe to LI	Yes		Dead Leg	None	No Protection Recommended		
6	PTN	4	PMUS / 020	5614-M-3020, Sh. 1	-	Instr. Control / Protection	3/4" pipe to LI & Sample Sink	Yes	Tank Pressure Boundary and level	Dead Leg	Protect	Heat Trace & 1" Insulation	Also has an annuciator function	
7	PTN	4	PMUS / 020	5614-M-3020, Sh. 1		Piping	6" Open Pipe (Loop Seal?)	Yes	Control Tank Pressure Boundary		None	No Protection Recommended	Recommended to protect since it has a control function.	
									One line is normally in operation per				See Segment 1, Piping for this P&ID to determine if protection	
9	PTN	4	PMUS / 020	5614-M-3020, Sh. 1	-	Motors	Primary Water Pumps	Yes	UFSAR 9.6.2	-	None	No Protection Recommended	required	
24	PTN	4	PMUS / 020	5614-M-3020, Sh. 2	1	Piping	3" Pipe	Yes	PMUS is normally in operation per UFSAR 9.6.2. Providing makeup water for multiple systems and can be used to fill the CSTs	-	None	No Protection Recommended	Loss of the PMUS will not cause a shutdown due to generation loss or a Tech Spec Action, therefore, protection is not required. FPL Operations to provide input if the PWST and PMUS will be required to be operable over a max 4 day period. If the system is continuously running (one train), would prevent freezing. 2" insulation required for 3" pipe (prevent >25% freezing).	
25	PTN	4	PMUS / 020	5614-M-3020, Sh. 2	2	Piping	3" Pipe to U3 PWST Header	Yes	PMUS to various systems via U3 PWST Header (including CSTs)	-	None	No Protection Recommended	See Segment 1, Piping for this P&ID to determine if protection required	
26	PTN	4	PMUS / 020	5614-M-3020, Sh. 2	3	Piping	3" Pipe	Yes	PMUS to various systems	-	None	No Protection Recommended	See Segment 1, Piping for this P&ID to determine if protection required Located in CCW Pump room, so global strategy could be used if protection is required.	
27	PTN	4	PMUS / 020	5614-M-3020, Sh. 2	4	Piping	2" Pipe	No	None	-	None	No Protection Recommended	Located in the CCW Pump Room	
28	PTN	4	PMUS / 020	5614-M-3020, Sh. 2	5	Piping	3" Pipe	No	Makeup water to various systems.	-	None	No Protection Recommended	See Segment 1, Piping for this P&ID to determine if protection required	
29	PTN	4	PMUS / 020	5614-M-3020, Sh. 2	5	Vents / Drains / Misc. Connections	Connections	No	None	-	None	No Protection Recommended		
30	PTN	4	PMUS / 020	5614-M-3020, Sh. 2	5	Vents / Drains / Misc. Connections	3/4" Connection	No	None	-	None	No Protection Recommended		
31	PTN	4	PMUS / 020	5614-M-3020, Sh. 2	5	Instr. Local	FI	Yes	None	-	None	No Protection Recommended		
32	PTN	4	PMUS / 020	5614-M-3020, Sh. 2	6	Piping	3" Pipe & 1" Pipe	No	Makeup water to various systems.	-	None	No Protection Recommended	See Segment 1, Piping for this P&ID to determine if protection required Located in CCW Pump room, so global strategy could be used if protection is required.	
8	PTN	4	EDG HVAC / 108	5614-M-3022 Sh. 5	1	Radiator	EDG 4A cooling water radiator	Standby	TS 3/4.8.1 requires operable AC power sources, including EDGs. Cooling water required for EDG operation	With temporary heaters placed per 0-ONOP-103.2, radiators may still be susceptible to freezing due to location at exterior wall and possible in-flow of air through the exhaust louvers when EDGs are not running.	Protect	Ensure temporary heaters from 0-ONOP-103.2 are supplying sufficient heat to the location of the radiator. Consider temperature checks on the radiator tubing in addition the lube oil temperature checks already performed for 0-ONOP-103.2		
9	PTN	4	EDG HVAC / 108	5614-M-3022 Sh. 6	1	Radiator	EDG 4B cooling water radiator	Standby	TS 3/4.8.1 requires operable AC power sources, including EDGs. Cooling water required for EDG operation	With temporary heaters placed per 0-ONOP-103.2, radiators may still be susceptible to freezing due to location at exterior wall and possible in-flow of air through the exhaust louvers when EDGs are not running.	Protect	Ensure temporary heaters from 0-ONOP-103.2 are supplying sufficient heat to the location of the radiator. Consider temperature checks on the radiator tubing in addition the lube oil temperature checks already performed for 0-ONOP-103.2		
2	PTN	4	CCW / 030	5614-M-3030, Sh. 1	1	Piping	18" Pipe (Supply & Return)	Yes	Normally both trains of CCW (supply & return) are operating. There are only certain times for CCW pump testing that the headers are split, and TS Actions are entered, per UFSAR 9.3.2.	Maintain required flow	None	No recommended protection	In CCW Pump Room (See top Remark for this P&ID) CCW will normally be flowing through both trains of Supply and Discharge, and this will prevent freezing.	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 270 of 488

R21002, Rev 0 Attachment L Page 137 of 198

														•
3	PTN	4	CCW / 030	5614-M-3030, Sh. 1	1	Instr. Control / Protection	Rad Detection, FTs	Yes	CCW Pressure Boundary & Controls (Rad detection and flow indication)	Dead Leg	Mitigate	Options: 1. Mitigate - Global Strategy to protect CCW Pump Room 2. Protect - Heat Trace & 1" Insulation	In CCW Pump Room (See top Remark for this P&ID)	
4	PTN	4	CCW / 030	5614-M-3030, Sh. 1	1	Instr. Local	PI, FTs	Yes	CCW Pressure Boundary	Dead Leg	Mitigate	Options: 1. Mitigate - Global Strategy to protect CCW Pump Room 2. Protect - Heat Trace & 1" Insulation	In CCW Pump Room (See top Remark for this P&ID)	
5	PTN	4	CCW / 030	5614-M-3030, Sh. 1	1	Vents / Drains / Misc. Connections	18" connection	No	CCW Pressure Boundary	Dead Leg	Mitigate	Options: 1. Mitigate - Global Strategy to protect CCW Pump Room 2. Protect - 1" Insulation to prevent >25% freezing	In CCW Pump Room (See top Remark for this P&ID)	
6	PTN	4	CCW / 030	5614-M-3030, Sh. 1	1	Vents / Drains / Misc. Connections	3/8" Connections	No	CCW Pressure Boundary	Dead Leg	Mitigate	Options: 1. Mitigate - Global Strategy to protect CCW Pump Room 2. Protect - Heat Trace & 1" Insulation	In CCW Pump Room (See top Remark for this P&ID)	
7	PTN	4	CCW / 030	5614-M-3030, Sh. 1	1	Vents / Drains / Misc. Connections	3/4" Vents	No	CCW Pressure Boundary	Dead Leg	Mitigate	Options: 1. Mitigate - Global Strategy to protect CCW Pump Room 2. Protect - Heat Trace & 1" Insulation	In CCW Pump Room (See top Remark for this P&ID)	
8	PTN	4	CCW / 030	5614-M-3030, Sh. 1	2	Piping	16" Pipe (Pump & HX inlet and outlets)	Yes	UFSAR 9.3.2 - Normally 1 pump is operating with 2-3 Heat Exchangers. Therefore, some of this piping is expected to be stagnant while other portions will be flowing	Maintain required flow	Mitigate	Options: 1. Mitigate - Global Strategy to protect CCW Pump Room 2. Mitigate - swap operating pumps and HXs on certain intervals to prevent freezing of any pipe 3. Protect - 1" Insulation to prevent >25% freezing	In CCW Pump Room (See top Remark for this P&ID)	
9	PTN	4	CCW / 030	5614-M-3030, Sh. 1	2	Vents / Drains / Misc. Connections	2" Connection	No	CCW Pressure Boundary	Dead Leg	Mitigate	Options: 1. Mitigate - Global Strategy to protect CCW Pump Room 2. Protect - 4" Insulation to prevent >25% freezing 3. Heat Trace & 1" Insulation	In CCW Pump Room (See top Remark for this P&ID)	
10	PTN	4	CCW / 030	5614-M-3030, Sh. 1	2	Instr. Local	PI, IST	Yes	CCW Pressure Boundary	Dead Leg	Mitigate	Options: 1. Mitigate - Global Strategy to protect CCW Pump Room 2. Protect - Heat Trace & 1" Insulation	In CCW Pump Room (See top Remark for this P&ID)	
11	PTN	4	CCW / 030	5614-M-3030, Sh. 1	2	Vents / Drains / Misc. Connections	1", 3/4" Vents, Drains, Test Connections	No	CCW Pressure Boundary	Dead Leg	Mitigate	Options: 1. Mitigate - Global Strategy to protect CCW Pump Room 2. Protect - Heat Trace & 1" Insulation	In CCW Pump Room (See top Remark for this P&ID)	
12	PTN	4	CCW / 030	5614-M-3030, Sh. 1	2	Vents / Drains / Misc. Connections	16" Connections	No	CCW Pressure Boundary	Dead Leg	Mitigate	Options: 1. Mitigate - Global Strategy to protect CCW Pump Room 2. Protect - Heat Trace & 1" Insulation	In CCW Pump Room (See top Remark for this P&ID)	
13	PTN	4	CCW / 030	5614-M-3030, Sh. 1	2	Instr. Control / Protection	PI, PC	Yes	CCW Pressure Boundary & PC to control pumps	Dead Leg	Mitigate	Options: 1. Mitigate - Global Strategy to protect CCW Pump Room 2. Protect - Heat Trace & 1" Insulation	In CCW Pump Room (See top Remark for this P&ID) Also provides an annunciator function	
14	PTN	4	CCW / 030	5614-M-3030, Sh. 1	2	Heat Exchangers	CCW HXs	Yes	TS 3.7.2 - 2 of 3 HXs required to be operable Action : With less than 2 HXs operable, two need to be restored within 1 hour. CCW Pressure Boundary - normally 2-3 HXs are operating at a time.	Maintain required flow	Mitigate	Options: 1. Mitigate - Global Strategy to protect CCW Pump Room 2. Mitigate - use all 3 HXs 3. Mitigate - swap operating HXs on certain intervals to prevent freezing of any 3. Protect - 1" Insulation to prevent >25% freezing	In CCW Pump Room (See top Remark for this P&ID)	
15	PTN	4	CCW / 030	5614-M-3030, Sh. 1	3	Piping	14" Pipe	Yes	UFSAR 9.3.2 - Normally 1 pump is operating. Therefore, 2 of the pumps and piping are expected to be stagnant while 3rd is flowing	Maintain required flow	Mitigate	Options: 1. Mitigate - Global Strategy to protect CCW Pump Room 2. Mitigate - swap operating pump on certain interval to prevent freezing of any pipe 3. Protect - 1" Insulation to prevent >25% freezing	In CCW Pump Room (See top Remark for this P&ID)	
16	PTN	4	CCW/030	5614-M-3030, Sh. 1	3	Piping	Pumps	Yes	UFSAR 9.3.2 - Normally 1 pump is operating. Therefore, 2 of the pumps and piping are expected to be stagnant while 3rd is flowing TS 3.7.2 - All 3 pumps required to be operable	Maintain required flow	Mitigate	Options: 1. Mitigate - Global Strategy to protect CCW Pump Room 2. Mitigate - swap operating pump on certain interval to prevent freezing of any pipe 3. Protect - Insulate and/or heat trace as required to protect the pump.	In CCW Pump Room (See top Remark for this P&ID)	
17	PTN	4	CCW / 030	5614-M-3030, Sh. 1	3	Vents / Drains / Misc. Connections	Vents, Drains	No	CCW Pressure Boundary	Dead Leg	Mitigate	Options: 1. Mitigate - Global Strategy to protect CCW Pump Room 2. Protect - Heat Trace & 1" Insulation	In CCW Pump Room (See top Remark for this P&ID)	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 271 of 488

R21002, Rev 0 Attachment L Page 138 of 198

18	PTN	4	CCW / 030	5614-M-3030, Sh. 1	3	Instr. Local	PI, IST	Yes	CCW Pressure Boundary	Dead Leg	Mitigate	Options: 1. Mitigate - Global Strategy to protect CCW Pump Room 2. Protect - Heat Trace & 1" Insulation	In CCW Pump Room (See top Remark for this P&ID)	
19	PTN	4	CCW / 030	5614-M-3030, Sh. 1	3	Motors	Pump Motors	Yes	TS 3.7.2 - All 3 pumps/motors required to be operable Action: With two operable pumps, inoperable pump need to be restored within 30 days. With 2 inoperable pumps, or requires action in 72 hours.	l Maintain operable equipment		Determine if protection is needed to protect the motors. Options: 1. Mitigate - Global Strategy to protect CCW Pump Room 2. Protect in some capacity	In CCW Pump Room (See top Remark for this P&ID)	
20	PTN	4	CCW / 030	5614-M-3030, Sh. 1	3	Vents / Drains / Misc. Connections	14" Connections	No	CCW Pressure Boundary	Dead Leg	Mitigate	Options: 1. Mitigate - Global Strategy to protect CCW Pump Room 2. Protect - Heat Trace & 1" Insulation	In CCW Pump Room (See top Remark for this P&ID)	
21	PTN	4	CCW / 030	5614-M-3030, Sh. 1	4	Piping	12" Pipe	Yes	One train of this CCW piping is operating at a time, the other train is isolated	-	Mitigate	Options: 1. Mitigate - Global Strategy to protect CCW Pump Room 2. Mitigate by swapping trains on certain intervals to allow flow is both trains to prevent freezing. 3. Protect - 1" Insulation to protect against >25% freezing.	In CCW Pump Room (See top Remark for this P&ID)	
22	PTN	4	CCW / 030	5614-M-3030, Sh. 1	5	Piping	12" Pipe	Yes	CCW flow to SFP, Seal Water, Non- Regen HXs and Charging pump oil coolers (single pipe). Flow is provided from either Train A or B.	-	None	No Protection Required	In CCW Pump Room (See top Remark for this P&ID) Continuous flow expected in this piping and will prevent freezing.	
23	PTN	4	CCW / 030	5614-M-3030, Sh. 1	6	Piping	1" Pipe	No	CCW Pressure Boundary	-	Mitigate	Options: 1. Mitigate - Global Strategy to protect CCW Pump Room 2. Protect - Heat Trace & 1" Insulation	In CCW Pump Room (See top Remark for this P&ID)	
24	PTN	4	CCW / 030	5614-M-3030, Sh. 1	7	Piping	1" Pipe	No	None - isolated from SR CCW piping, break in this piping will not impact CCW	-	None	No Protection Required	In CCW Pump Room (See top Remark for this P&ID)	
25	PTN	4	CCW / 030	5614-M-3030, Sh. 1	7	Vents / Drains / Misc. Connections	1" Drain and connection	No	None - isolated from SR CCW piping, break in this piping will not impact CCW	-	None	No Protection Required	In CCW Pump Room (See top Remark for this P&ID)	
28	PTN	4	CCW / 030	5614-M-3030, Sh. 1	8	Piping	4" Pipe	Yes	CCW Pressure Boundary	-	Mitigate	Options: 1. Mitigate - Global Strategy to protect CCW Pump Room 2. Protect - 1" Insulation	In CCW Pump Room (See top Remark for this P&ID)	
29	PTN	4	CCW / 030	5614-M-3030, Sh. 1	8	Vents / Drains / Misc. Connections	2" Connection	No	CCW Pressure Boundary	-	Mitigate	Options: 1. Mitigate - Global Strategy to protect CCW Pump Room 2. Protect - 4" Insulation 3. Protect - Heat Trace & 1" Insulation	In CCW Pump Room (See top Remark for this P&ID)	
30	PTN	4	CCW / 030	5614-M-3030, Sh. 1	9	Piping	3" Pipe	No	CCW Pressure Boundary	-	Mitigate	Options: 1. Mitigate - Global Strategy to protect CCW Pump Room 2. Protect - 2" Insulation	In CCW Pump Room (See top Remark for this P&ID)	
31	PTN	4	CCW / 030	5614-M-3030, Sh. 1	10	Piping	2" Pipe	No	CCW Pressure Boundary	-	Mitigate	Options: 1. Mitigate - Global Strategy to protect CCW Pump Room 2. Protect - 4" Insulation 3. Protect - Heat Trace & 1" Insulation	In CCW Pump Room (See top Remark for this P&ID)	
32	PTN	4	CCW / 030	5614-M-3030, Sh. 1	10	Instr. Local	PI	Yes	CCW Pressure Boundary	-	Mitigate	Options: 1. Mitigate - Global Strategy to protect CCW Pump Room 2. Protect - Heat Trace & 1" Insulation	In CCW Pump Room (See top Remark for this P&ID)	
33	PTN	4	CCW / 030	5614-M-3030, Sh. 1	11	Piping	3" Pipe	No	None - isolated from SR CCW piping, break in this piping will not impact CCW	-	None	No Protection Required	In CCW Pump Room (See top Remark for this P&ID)	
34	PTN	4	CCW / 030	5614-M-3030, Sh. 1	12	Piping	1" Pipe	No	CCW Pressure Boundary	-	Mitigate	Options: 1. Mitigate - Global Strategy to protect CCW Pump Room 2. Protect - Heat Trace & 1" Insulation	In CCW Pump Room (See top Remark for this P&ID)	
35	PTN	4	CCW / 030	5614-M-3030, Sh. 1	13	Piping	2" Pipe	Yes	CCW Pressure Boundary	-	Protect	Options: 1. Protect - 4" Insulation 3. Protect - Heat Trace & 1" Insulation	On Aux Bldg Roof	
36	PTN	4	CCW / 030	5614-M-3030, Sh. 1	13	Vents / Drains / Misc. Connections	Vacuum Breakers	Yes	CCW Pressure Boundary	-	Protect	Heat Trace & 1" Insulation	On Aux Bldg Roof	
37	PTN	4	CCW / 030	5614-M-3030, Sh. 1	13	Vents / Drains / Misc. Connections	1/2" Vent	No	CCW Pressure Boundary	-	Protect	Heat Trace & 1" Insulation	On Aux Bldg Roof	
38	PTN	4	CCW / 030	5614-M-3030, Sh. 1	13	Instr. Control / Protection	LT	Yes	CCW Pressure Boundary	-	Protect	Heat Trace & 1" Insulation	On Aux Bldg Roof	

Florida Power & Light Company Docket No. 20220000-OT

Ten-Year Site Plan
Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 272 of 488 Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 273 of 488

> R21002, Rev 0 Attachment L Page 139 of 198

														Г
41	PTN	4	CCW / 030	5614-M-3030, Sh. 1	14	Piping	2" Pipe	Yes	One train of this CCW piping is operating at a time to provide cooling to the HHSI Pumps, and flow from the other train is isolated	-	Mitigate	Options: 1. Mitigate - Global Strategy to protect CCW Pump Room 2. Mitigate by swapping trains on certain intervals to allow flow is both trains to prevent freezing. 3. Protect - 4" Insulation to protect against >25% freezing. 4. Protect - Heat Trace & 1" Insulation	In CCW Pump Room (See top Remark for this P&ID)	
1	PTN	4	CCW/030	5614-M-3030, Sh. 1	-		-		-	-		-	A majority of the CCW piping on this P&ID is located in the U4 CCW Pump Room, which has concrete walls but an open grating roof and a large personnel gate. It is recommended that a global strategy for the room is used. An example strategy is deploying tarps or equivalent during cold weather events over the grating and doorway to enclose the room and then temporary space heaters are deployed in the room to maintain a temperature above freezing. If a global strategy cannot be used, then individual piping and components will be required to be protected or mitigated as necessary. Piping located in the Auxiliary Building is assumed to be able to be protected by a global strategy (deployment of space heaters), and individual protection/mitigation strategies are not necessary.	
26	PTN	4	CCW / 030	5614-M-3030, Sh. 1	-	Outdoor Tanks	Chem Pot Feeder	No	None - isolated from SR CCW piping, break in this tank will not impact CCW	-	None	No Protection Required	In CCW Pump Room (See top Remark for this P&ID)	
27	PTN	4	CCW / 030	5614-M-3030, Sh. 1	-	Vents / Drains / Misc. Connections	1" Vent	No	None - isolated from SR CCW piping, break in this piping will not impact CCW	-	None	No Protection Required	In CCW Pump Room (See top Remark for this P&ID)	
39	PTN	4	CCW / 030	5614-M-3030, Sh. 1	-	Outdoor Tanks	CCW Head Tank	Yes	CCW Pressure Boundary	-	None	No Protection Required	On Aux Bldg Roof	
40	PTN	4	CCW / 030	5614-M-3030, Sh. 1	-	Instr. Local	LI & 1/2" Vent	Yes	CCW Pressure Boundary	-	Protect	Heat Trace & 1" Insulation	On Aux Bldg Roof	
43	PTN	4	CCW / 030	5614-M-3030, Sh. 2	1	Piping	18" Pipe (Supply & Return)	Yes	Normally both trains of CCW (supply & return) are operating. There are only certain times for CCW pump testing that the headers are split, and TS Actions are entered, per UFSAR 9.3.2.			No recommended protection	In CCW Pump Room (See top Remark for this P&ID) CCW will normally be flowing through both trains of Supply and Discharge, and this will prevent freezing.	
44	PTN	4	CCW / 030	5614-M-3030, Sh. 2	2	Piping	12" Pipe	Yes	CCW flow to SFP, Seal Water, Non- Regen HXs and Charging pump oil coolers (single pipe). Flow is provided from either Train A or B.	-	None	No Protection Required	In CCW Pump Room (See top Remark for this P&ID) Continuous flow expected in this piping and will prevent freezing.	
42	PTN	4	CCW/030	5614-M-3030, Sh. 2	-		-		-	-		-	A majority of the CCW piping on this P&ID is located in the U4 CCW Pump Room, which has concrete walls but an open grating roof and large personnel gate. It is recommended that a global strategy for the room is used. An example strategy is deploying tarps or equivalent during cold weather events over the grating and gate to enclose the room and then temporary space heaters are deployed in the room to maintain a temperature above freezing. If a global strategy cannot be used, then individual piping and components will be required to be protected or mitigated as necessary. Piping located in the Auxiliary Building is assumed to be able to be protected by a global strategy (deployment of space heaters), and individuval protection/mitigation strategies are not necessary.	
45	PTN	4	CCW / 030	5614-M-3030, Sh. 3	-		-		-	-		-	All portions of this drawing are located in the Auxiliary Building (Pipe & Valve Room, RHR HX Room) and Containment. Auxiliary Building does not have heating; however, it is expected that a global strategy can be used (i.e., space heaters as needed), in order to prevent freezing/cold temperatures in these locations to allow for systems to continue operating. Containment is expected to stay warm on its own.	
46	PTN	4	CCW / 030	5614-M-3030, Sh. 4	-		-		-	-			All portions of this drawing are located in the Auxiliary Building (Pipe & Valve Room) and Containment. Auxiliary Building does not have heating; however, it is expected that a global strategy can be used (i.e., space heaters as needed), in order to prevent freezing/cold temperatures in these locations to allow for systems to continue operating. Containment is expected to stay warm on its own.	
47	PTN	4	CCW / 030	5614-M-3030, Sh. 5	1	Piping	4", 6", 8", 10" Piping, NNS SCS Pump Skid, SCS Chiller Skids, Vents & Drains, RV	No	NNS SCS Supplemental Chiller Loop for U4	-	None	No Protection Required	Per UFSAR 9.3.2, the SCS was installed to provide supplemental cooling to U3 or U4 Normal Containment Coolers to maintain normal Containment temperature within T5 limits when Intake Cooling Water temperature is high. The SCS cooling function is NNS. In addition, during a winter event, this system is not expected to be required since it's only for high temperature in containment and high ICW temperature. No protection required to prevent generation loss or T5 Action.	
48	PTN	4	CCW / 030	5614-M-3030, Sh. 5	2	Piping	3" Pipe	No	NNS SCS Supplemental Chiller Loop for U4	-	None	No Protection Required	See Segment 2, Piping for this P&ID	

R21002, Rev 0 Attachment L Page 140 of 198

	49	PTN	4	CCW / 030	5614-M-3030, Sh. 5	3	Piping	2" Pipe	No	NNS SCS Supplemental Chiller Loop for U4	-	None	No Protection Required	See Segment 2, Piping for this P&ID	
	50	PTN	4	CCW / 030	5614-M-3030, Sh. 5	-		-		-	-		-	Portions of this drawing located in the Auxiliary Building. Auxiliary Building does not have heating; however, it is expected that a global strategy can be used (i.e., space heaters as needed), in order to prevent freezing/cold temperatures in these locations to allow for systems to continue operating.	
	1	PTN	4	SS / 032	5614-M-3032, Sh. 1	1	Instrumentation - Local	FI-4-5116, -5117, -5118	Standby	Monitoring, sampling, and analysis of radioactive liquid and gaseous effluents in accordance with 10 CFR 20.1302 and with the methodology and parameters in the ODCM. (T.S. Administrative Controls)	Local Sampling Require	er Mitigate	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions.	Sampling System equipment is located inside the Auxiliary Building with most of it in the Sampling Room. The sample sink, which is located in the Sampling Room, contains a drain line to the Waste Disposal System. Local instrumentation is provided to permit manual control of sampling operations and to ensure that the samples are at suitable temperatures and pressures before diverting flow to the sample sink.	
	2	PTN	4	SS / 032	5614-M-3032, Sh. 1	1	Piping	All Piping and Tubing	Standby	Monitoring, sampling, and analysis of radioactive liquid and gaseous effluents in accordance with 10 CFR 20.1302 and with the methodology and parameters in the ODCM. (T.S. Administrative Controls)	Local Sampling Require	er Mitigate	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions.	Sampling System equipment is located inside the Auxiliary Building with most of it in the Sampling Room. The sample sink, which is located in the Sampling Room, contains a drain line to the Waste Disposal System. Local instrumentation is provided to permit manual control of sampling operations and to ensure that the samples are at suitable temperatures and pressures before diverting flow to the sample sink.	
•	3	PTN	4	SS / 032	5614-M-3032, Sh. 1	1	Heat Exchangers	Steam Generator A, B, C To Sample Hood Sample Conditioner Blowdown (Inside Sampling Room) Steam Generator A, B, C Blowdown Sample Cooler and LSC Steam Generator A, B, C (Outside Sampling Room in Turbine Building)	Standby	Monitoring, sampling, and analysis of radioactive liquid and gaseous effluents in accordance with 10 CFR 20.1302 and with the methodology and parameters in the ODCM. (T.S. Administrative Controls)	Local Sampling Require	er Mitigate	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions.	Sampling System equipment is located inside the Auxiliary Building with most of it in the Sampling Room. The sample sink, which is located in the Sampling Room, contains a drain line to the Waste Disposal System. Local instrumentation is provided to permit manual control of sampling operations and to ensure that the samples are at suitable temperatures and pressures before diverting flow to the sample sink.	
•	4	PTN	4	SS / 032	5614-M-3032, Sh. 1	1	Motor Operators	MOV-4-1425, -1426, -1427	Standby	Monitoring, sampling, and analysis of radioactive liquid and gaseous effluents in accordance with 10 CFR 20.1302 and with the methodology and parameters in the ODCM. (T.S. Administrative Controls)	Containment Isolation	Mitigate	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions.	Sampling System equipment is located inside the Auxiliary Building with most of it in the Sampling Room. The sample sink, which is located in the Sampling Room, contains a drain line to the Waste Disposal System. Local instrumentation is provided to permit manual control of sampling operations and to ensure that the samples are at suitable temperatures and pressures before diverting flow to the sample sink.	Maximum distance from penetration 10'-0"
	5	PTN	4	SS / 032	5614-M-3032, Sh. 1	1	Valves	4-20-536, -537, -538	No	Monitoring, sampling, and analysis of radioactive liquid and gaseous effluents in accordance with 10 CFR 20.1302 and with the methodology and parameters in the ODCM. (T.S. Administrative Controls)	Bypass around FI-4-513	L€ Mitigate	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace — Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions.		Open Valves (4-20-536, -537, - 538) periodically to clear ice formation in bypass lines.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 274 of 488 Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 275 of 488

> R21002, Rev 0 Attachment L Page 141 of 198

6	PTN	4	SS / 032	5614-M-3032, Sh. 2	1	Piping	All Piping and Tubing	Standby	Monitoring, sampling, and analysis of radioactive liquid and gaseous effluents in accordance with 10 CFR 20.1302 and with the methodology and parameters in the ODCM. (T.S. Administrative Controls)	Local Sampling Requirer	Mitigate	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions.		Room/Location 411 Sample Station Mezzanine
7	PTN	4	SS / 032	5614-M-3032, Sh. 2	1	Heat Exchangers	SC-4-1432, -1433, -1434	Standby	Monitoring, sampling, and analysis of radioactive liquid and gaseous effluents in accordance with 10 CFR 20.1302 and with the methodology and parameters in the ODCM. (T.S. Administrative Controls)	Local Sampling Requirer	Mitigate	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions.		Room/Location 411 Sample Station Mezzanine
8	PTN	4	SS / 032	5614-M-3032, Sh. 2	1	Vents / Drains / Misc. Connections	Small Bore Drains to Sample Sink	Standby	Monitoring, sampling, and analysis of radioactive liquid and gaseous effluents in accordance with 10 CFR 20.1302 and with the methodology and parameters in the ODCM. (T.S. Administrative Controls)	Local Sampling Requirer	Mitigate	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions. Insulate the branch connection and implement a trickle flow to ensure freezing does not occur. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water) and Table 2 (Saltwater).	Sampling System equipment is located inside the Turbine Building.	Room/Location 411 Sample Station Mezzanine
9	PTN	4	SS / 032	5614-M-3032, Sh. 3	1	Instrumentation - Local	PI-4-6751, -6752, -6753, -6754, PI- 4-6745, -6746, -6747, -6748, LG-4- 3435, -3436, -3437, -3438		Monitoring, sampling, and analysis of radioactive liquid and gaseous effluents in accordance with 10 CFR 20.1302 and with the methodology and parameters in the ODCM. (T.S. Administrative Controls)	Local Sampling Requirer	Mitigate	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace — Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions.		Room/Location 418 (East Condensate Pit)
10	PTN	4	SS / 032	5614-M-3032, Sh. 3	1	Instrumentation - Control / Protection	LS-4-6745, -6746, -6747, -6748, PS-4-6745, -6746, -6747, -6748,	Standby	Monitoring, sampling, and analysis of radioactive liquid and gaseous effluents in accordance with 10 CFR 20.1302 and with the methodology and parameters in the ODCM. (T.S. Administrative Controls)	Pump Control	Mitigate	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions.		Room/Location 418 (East Condensate Pit)

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 276 of 488

> R21002, Rev 0 Attachment L Page 142 of 198

11	PTN	4	SS / 032	5614-M-3032, Sh. 3	1	Piping	All Piping and Tubing	Standby	Monitoring, sampling, and analysis of radioactive liquid and gaseous effluents in accordance with 10 CFR 20.1302 and with the methodology and parameters in the ODCM. (T.S. Administrative Controls)	Local Sampling Require		Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace — Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions.	Sampling System equipment is located inside the Turbine Building.	Room/Location 418 (East Condensate Pit)
12	PTN	4	SS / 032	5614-M-3032, Sh. 3	1	Outdoor Tanks	Seal Buffer Tank (4 times)	Standby	Monitoring, sampling, and analysis of radioactive liquid and gaseous effluents in accordance with 10 CFR 20.1302 and with the methodology and parameters in the ODCM. (T.S. Administrative Controls)	Local Sampling Require		Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace — Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions.	Sampling System equipment is located inside the Turbine Building.	Room/Location 418 (East Condensate Pit)
13	PTN	4	SS / 032	5614-M-3032, Sh. 3	1	Valves	PCV-4-615, -616, -617, -618	Standby	Monitoring, sampling, and analysis of radioactive liquid and gaseous effluents in accordance with 10 CFR 20.1302 and with the methodology and parameters in the ODCM. (T.S. Administrative Controls)	Pressue and Flow Contr		Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace — Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions.	Sampling System equipment is located inside the Turbine Building. Bypass Valves (4-20-915, -916, -917, -918) should periodically be opened to preclude ice formation in the bypasses around PCV-4-615, -616, -617, -618, respectively.	Room/Location 418 (East Condensate Pit)
14	PTN	4	SS / 032	5614-M-3032, Sh. 3	1	Vents / Drains / Misc. Connections	Small Bore Vents and Drains	Standby	Monitoring, sampling, and analysis of radioactive liquid and gaseous effluents in accordance with 10 CFR 20.1302 and with the methodology and parameters in the ODCM. (T.S. Administrative Controls)	Local Sampling Require	n Mitigate	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace — Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions. Insulate the branch connection and implement a trickle flow to ensure freezing does not occur. Trickle flow determination is based on calculated trickle flowrates contained in Table 1 (Fresh Water) and Table 2 (Saltwater).	Sampling System equipment is located inside the Turbine Building.	Room/Location 418 (East Condensate Pit)
15	PTN	4	SS / 032	5614-M-3032, Sh. 5	1	Piping	All Piping and Tubing	Standby	Monitoring, sampling, and analysis of radioactive liquid and gaseous effluents in accordance with 10 CFR 20.1302 and with the methodology and parameters in the ODCM. (T.S. Administrative Controls)	Local Sampling Require		Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace — Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions.	Sampling System equipment is located inside the Turbine Building.	Room/Location 411 Sample Station Mezzanine

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 277 of 488

> R21002, Rev 0 Attachment L Page 143 of 198

16	PTN	4	SS / 032	5614-M-3032, Sh. 5	1	Heat Exchangers	SC-4-1430, -1431	Standby	Monitoring, sampling, and analysis of radioactive liquid and gaseous effluents in accordance with 10 CFR 20.1302 and with the methodology and parameters in the ODCM. (T.S. Administrative Controls)	Local Sampling Require	Mitigate	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions.	Sampling System equipment is located inside the Turbine Building.	Room/Location 411 Sample Station Mezzanine
17	PTN	4	SS / 032	5614-M-3032, Sh. 6	1	Piping	All Tubing	Standby	Monitoring, sampling, and analysis of radioactive liquid and gaseous effluents in accordance with 10 CFR 20.1302 and with the methodology and parameters in the ODCM. (T.S. Administrative Controls)	Local Sampling Require	Mitigate	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions.	Sampling System equipment is located inside the Turbine Building.	Room/Location 421 South Main Condenser Area
18	PTN	4	SS / 032	5614-M-3032, Sh. 6	1	Heat Exchangers	SC-4-1437, -1438, -1439, -1440	Standby	Monitoring, sampling, and analysis of radioactive liquid and gaseous effluents in accordance with 10 CFR 20.1302 and with the methodology and parameters in the ODCM. (T.S. Administrative Controls)	Local Sampling Require	Mitigate	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions.	Sampling System equipment is located inside the Turbine Building.	Room/Location 421 South Main Condenser Area
19	PTN	4	SS / 032	5614-M-3032, Sh. 7	1	Piping	All Tubing	Standby	Monitoring, sampling, and analysis of radioactive liquid and gaseous effluents in accordance with 10 CFR 20.1302 and with the methodology and parameters in the ODCM. (T.S. Administrative Controls)	Local Sampling Require	r Mitigate	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions.	Sampling System equipment is located inside the Turbine Building.	Room/Location 421 South Main Condenser Area
23	PTN	4	SS / 032	5614-M-3032, Sh. 7	1	Heat Exchangers	SC-4-1435, -1436	Standby	Monitoring, sampling, and analysis of radioactive liquid and gaseous effluents in accordance with 10 CFR 20.1302 and with the methodology and parameters in the ODCM. (T.S. Administrative Controls)	Local Sampling Require	n Mitigate	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing. As appropriate, tent or enclose area and provide temporary heating based on surrounding heat sources and walkdown conditions.	Sampling System equipment is located inside the Turbine Building.	Room/Location 421 South Main Condenser Area
1	PTN	4	SFPC / 033	5614-M-3033 Sh. 1	1	Piping	10" Pipe	No	Provides supplemental cooling to the SFP. There are two loops, both 100% capacity for normal operations	-	None	No Protection Required	Only a portion of the 10" pipe goes outside for one of the loop (that is noted on the P&ID). To protect against freezing, 1" of insulation would be required, or freezing could be mitigated by using the supplemental cooling loop to provide flow in the line and prevent freezing on a set interval.	
2	PTN	4	SFPC / 033	5614-M-3033 Sh. 1	2	Piping	2" Pipe	No	RWST Pressure Boundary	-	Protect	Options: 1. 4" insulation on 2" piping through safety boundary change (protect against >25% freezing) 2. Heat Trace & 1" Insulation	Could protect only up to Valve 4-805A and shut this valve, and the remainder of the pipe along with other segments (see below) would not require protection.	

R21002, Rev 0 Attachment L Page 144 of 198

														1 6
5	PTN	4	SFPC / 033	5614-M-3033 Sh. 1	3	Piping	2" Pipe	No	RWST Pressure Boundary	-	Protect	Options: 1. 4" insulation on 2" piping through safety boundary change (protect against >25% freezing) 2. Heat Trace & 1" Insulation	See Segment 2if valve 4-805A can be closed during cold weather, this segment does not require protection	
6	PTN	4	SFPC / 033	5614-M-3033 Sh. 1	4	Piping	2" Pipe	No	RWST Pressure Boundary	-	Protect	Options: 1. 4" insulation on 2" piping through safety boundary change (protect against >25% freezing) 2. Heat Trace & 1" Insulation	See Segment 2if valve 4-805A can be closed during cold weather, this segment does not require protection	
7	PTN	4	SFPC / 033	5614-M-3033 Sh. 1	5	Piping	3/4" Pipe to PI	Yes	RWST Pressure Boundary	-	Protect	Heat Trace & 1" Insulation	See Segment 2if valve 4-805A can be closed during cold weather, this segment does not require protection	
8	PTN	4	SFPC / 033	5614-M-3033 Sh. 1	6	Piping	2" Pipe	No	None	-	None	No Protection Required	Based on the check valve and diaphragm valve at the safety class changes, a break in this line would not impact the RWST pressure boundary.	
9	PTN	4	SFPC / 033	5614-M-3033 Sh. 1	7	Piping	2" Pipe	No	RWST Pressure Boundary	-	Protect	Options: 1. 4" insulation on 2" piping through safety boundary change (protect against >25% freezing) 2. Heat Trace & 1" Insulation	See Segment 2if valve 4-805A can be closed during cold weather, this segment does not require protection	
3	PTN	4	SFPC / 033	5614-M-3033 Sh. 1	-	Motors	Refueling Water Purification Pump Motor	No	Operation of the pump	-	None	No Protection Required	Pump operation not critical to maintain generation or initiate a TS Action.	
4	PTN	4	SFPC / 033	5614-M-3033 Sh. 1	-	Piping	Refueling Water Purification Pump	No	RWST Pressure Boundary	-	Protect	Options: 1. Insulate and/or heat trace the pump (unclear based on pump size which is required) 2. Operate the pump on a interval basis to prevent freezing of water in the pump.	See Segment 2if valve 4-805A can be closed during cold weather, this segment does not require protection	
10	PTN	4	SFPC / 033	5614-M-3033 Sh. 2	1	Piping	1.5" Pipe	No	None	-	None	No Protection Required		
11	PTN	4	SFPC / 033	5614-M-3033 Sh. 2	2	Piping	1.5" Pipe	No	None	-	None	No Protection Required		
10	PTN	4	034	5614-M-3034	1	Ducting	U4 SFP Bldg supply and exhaust ductwork	Yes	None	Not affected by cold temperatures	None	None	Ducting is not susceptible to damage from freezing	
11	PTN	4	034	5614-M-3034	1	Instruments - General	Local D/P gages	Yes	None	Not affected by cold temperatures, not required for power operation	None	None	No instruments contain water that is susceptible to freezing	
12	PTN	4	034	5614-M-3034	1	Filter Train	Prefilters and HEPA filters for U4 SFP fans	Yes	None	Filter trains are not affected by cold weather	None	None		
13	PTN	4	034	5614-M-3034	1	Filter Train	Prefilters and HEPA filters for U4 cask handling facility	No	None	Not required for power operation	None	None		
14	PTN	4	034	5614-M-3034	1	Fan	U4 SFP exhaust fan, new fuel and SFP hx room supply fans	Yes	None	Required for continuous radiation monitoring, but cold weather has little to no effect on a fan or its motor.	None	None		
15	PTN	4	034	5614-M-3034	1	Fan	U4 cask handling fan	No	None	Not required for power operation	None	None		
16	PTN	4	034	5614-M-3034	1	Motor Operated Damper	U4 SFP supply and exhaust dampers, SFP HX Rm exhaust damper, new fuel storage area exhaust damper	Yes	None	SFP supply dampers do not need to reposition for normal operation or accident conditions.	None		Supply dampers to SFP area are outside, so gearbox lubricant at reduced temperatures may impart additional resisting torque on the damper motors. Other dampers are internal to the SFP area.	
22	PTN	4	CVCS / 046	5614-M-3046 Sh. 1	-		-		-	-		-	Most piping on this drawing is abandoned, and all is located in the Gas Stripper Room in the Auxiliany Building, and therefore assumed to be protected via a global strategy. Even if the pipes were subject to freezing, there would be no adverse effect on the site.	
23	PTN	4	CVCS / 046	5614-M-3046 Sh. 2	-		-		-	-		-	Most piping on this drawing is abandoned. Two pipes are not abandoned. One pipe is located on the Aux Bldg 4' Elevation. It's not clear from NAMS where the other pipe is located (valve ID not in NAMS); however, it goes to the sample system located in the Sample Room in the Auxiliary Building. Therefore, it is believed this pipe is also in the Auxiliary Building. Even if the pipe was subject to freezing, there would be no adverse effect on the site.	
1	PTN	4	CVCS / 047	5614-M-3047 Sh. 1	1	Piping	3" Pipe	No	None	-	None	No Protection Recommended	Located on AB Roof. Manual Operation to fill the Demineralizers from the Resin Fill Tank. Requires connection of flex hoses. Non-Nuclear Safety Related System	
2	PTN	4	CVCS / 047	5614-M-3047 Sh. 1	-		-		-	-		-	All piping, except as marked, is located in Containment or in the Auxiliary Building (P&V Room, Charging Pump Room, Monitor Tank Room, Reactor Coolant Filter Room). This piping is assumed to be protected from weather either by the building protection or through a global strategy as needed (space heaters deployed in rooms in the Auxiliary Building).	

Florida Power & Light Company Docket No. 20220000-OT

Ten-Year Site Plan
Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 278 of 488

R21002, Rev 0 Attachment L Page 145 of 198

														Pa
5	PTN	4	CVCS / 047	5614-M-3047 Sh. 2	1	Piping	4" Pipe	Yes	VCT to Charging Pumps (NNS)	-	Mitigate	Options: 1. Mitigate - Global Strategy using space heater(s) in the AB Roof VCT Enclosure to protect against freezing this pipe. 2. Protect - 1" Insulation to prevent >25% Freezing 3. Protect - Heat Trace & 1" Insulation for <2% feezing.	Assumed to be in the VCT Enclosure on the AB Roof. Should be walked down to make sure it's not exposed outside the walls.	
6	PTN	4	CVCS / 047	5614-M-3047 Sh. 2	2	Vents / Drains / Misc. Connections	1" Drain	No	CVCS Boundary (NNS)	Dead Leg	Mitigate	Options: 1. Mitigate - Global Strategy using space heater(s) in the AB Roof VCT Enclosure to protect against freezing this pipe. 2. Heat Trace & 1" Insulation	Assumed to be in the VCT Enclosure on the AB Roof. Should be walked down to make sure it's not exposed outside the walls.	
7	PTN	4	CVCS / 047	5614-M-3047 Sh. 2	3	Piping	2" Pipe	No	VCT Boundary	Dead Leg	Mitigate	Options: 1. Mitigate - Global Strategy using space heater(s) in the AB Roof VCT Enclosure to protect against freezing this pipe. 2. Protect - 4" Insulation to protect against >25% freezing. 3. Protect - Heat Trace & 1" Insulation	Assumed to be in the VCT Enclosure on the AB Roof. Should be walked down to make sure it's not exposed outside the walls.	
8	PTN	4	CVCS / 047	5614-M-3047 Sh. 2	3	Vents / Drains / Misc. Connections	3/8" Drains	No	VCT Boundary	Dead Leg	Mitigate	Options: 1. Mitigate - Global Strategy using space heater(s) in the AB Roof VCT Enclosure to protect against freezing this pipe. 2. Protect - Heat Trace & 1" Insulation	Assumed to be in the VCT Enclosure on the AB Roof. Should be walked down to make sure it's not exposed outside the walls.	
9	PTN	4	CVCS / 047	5614-M-3047 Sh. 2	3	Instr. Control / Protection	LTs	Yes	Flow to/from the VCT	Dead Leg	Mitigate	Options: 1. Mitigate - Global Strategy using space heater(s) in the AB Roof VCT Enclosure to protect against freezing this pipe. 2. Protect - Heat Trace & 1" Insulation	Assumed to be in the VCT Enclosure on the AB Roof. Should be walked down to make sure it's not exposed outside the walls.	
10	PTN	4	CVCS / 047	5614-M-3047 Sh. 2	4	Piping	1" Pipe	Yes	Inlet to the VCT	-	Mitigate	Options: 1. Mitigate - Global Strategy using space heater(s) in the AB Roof VCT Enclosure to protect against freezing this pipe. 2. Heat Trace & 1" Insulation	Assumed to be in the VCT Enclosure on the AB Roof. Should be walked down to make sure it's not exposed outside the walls.	
11	PTN	4	CVCS / 047	5614-M-3047 Sh. 2	5	Piping	2" Pipe	Yes	Inlet to the VCT both from Letdown from Reactor Coolant Filters and Pump Recirculation Line	-	Mitigate	Options: 1. Mitigate - Global Strategy using space heater(s) in the AB Roof VCT Enclosure to protect against freezing this pipe. 2. Protect - 4" Insulation to prevent >25% Freezing 3. Protect - Heat Trace & 1" Insulation for <2% feezing.	Assumed to be in the VCT Enclosure on the AB Roof. Should be walked down to make sure it's not exposed outside the walls.	
12	PTN	4	CVCS / 047	5614-M-3047 Sh. 2	6	Piping	2" Pipe	No	RV line and pipe from VCT	-	Mitigate	Options: 1. Mitigate - Global Strategy using space heater(s) in the AB Roof VCT Enclosure to protect against freezing this pipe. 2. Protect - 4" Insulation to prevent >25% Freezing 3. Protect - Heat Trace & 1" Insulation for <2% feezing.	Assumed to be in the VCT Enclosure on the AB Roof. Should be walked down to make sure it's not exposed outside the walls.	
13	PTN	4	CVCS / 047	5614-M-3047 Sh. 2	7	Piping	3/4" Pipe	No	VCT Boundary	-	Mitigate	Options: 1. Mitigate - Global Strategy using space heater(s) in the AB Roof VCT Enclosure to protect against freezing this pipe. 2. Protect - Heat Trace & 1" Insulation	Assumed to be in the VCT Enclosure on the AB Roof. Should be walked down to make sure it's not exposed outside the walls.	
14	PTN	4	CVCS / 047	5614-M-3047 Sh. 2	8	Piping	2" Pipe	No	RV Discharge from VCT	-	None	No protection required downstream of RV	Assumed to be in the VCT Enclosure on the AB Roof. Should be	
15	PTN	4	CVCS / 047	5614-M-3047 Sh. 2	9	Vents / Drains / Misc. Connections	1/4" Drain	No	VCT Pressure Boundary	Dead Leg	Mitigate	Options: 1. Mitigate - Global Strategy using space heater(s) in the AB Roof VCT Enclosure to protect against freezing this pipe. 2. Protect - Heat Trace & 1" Insulation	walked down to make sure it's not exposed outside the walls. Assumed to be in the VCT Enclosure on the AB Roof. Should be walked down to make sure it's not exposed outside the walls.	
16	PTN	4	CVCS / 047	5614-M-3047 Sh. 2	9	Instr. Local	1/4" PI	Yes	VCT Pressure Boundary	Dead Leg	Mitigate	Options: 1. Mitigate - Global Strategy using space heater(s) in the AB Roof VCT Enclosure to protect against freezing this pipe. 2. Protect - Heat Trace & 1" Insulation	Assumed to be in the VCT Enclosure on the AB Roof. Should be walked down to make sure it's not exposed outside the walls.	
17	PTN	4	CVCS / 047	5614-M-3047 Sh. 2	10	Piping	3/4" Pipe	Yes	VCT Pressure Boundary	-	Mitigate	Options: 1. Mitigate - Global Strategy using space heater(s) in the AB Roof VCT Enclosure to protect against freezing this pipe. 2. Protect - Heat Trace & 1" Insulation	Assumed to be in the VCT Enclosure on the AB Roof. Should be walked down to make sure it's not exposed outside the walls.	
18	PTN	4	CVCS / 047	5614-M-3047 Sh. 2	11	Instr. Control / Protection	3/4" Pipe to PT (Control & Alarm) and PI (Local)	Yes	Signal to SPDS/SAS	Dead Leg	Mitigate	Options: 1. Mitigate - Global Strategy using space heater(s) in the AB Roof VCT Enclosure to protect against freezing this pipe. 2. Protect - Heat Trace & 1" Insulation	Assumed to be in the VCT Enclosure on the AB Roof. Should be walked down to make sure it's not exposed outside the walls.	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 279 of 488 R21002, Rev 0

R21002, Rev 0 Attachment L Page 146 of 198

														1 0
19	PTN	4	CVCS / 047	5614-M-3047 Sh. 2	12	Piping	3" Pipe	Yes	Inlet to the VCT	-	Mitigate	Options: 1. Mitigate - Global Strategy using space heater(s) in the AB Roof VCT Enclosure to protect against freezing this pipe. 2. Protect - 2" insulation to prevent >25% Freezing 3. Protect - Heat Trace & 1" Insulation for <2% feezing.	Assumed to be in the VCT Enclosure on the AB Roof. Should be walked down to make sure it's not exposed outside the walls.	
20	PTN	4	CVCS / 047	5614-M-3047 Sh. 2	13	Piping	3/4" Pipe	Yes	Inlet to the VCT	-	Mitigate	Options: 1. Mitigate - Global Strategy using space heater(s) in the AB Roof VCT Enclosure to protect against freezing this pipe. 2. Protect - Heat Trace & 1" Insulation	Assumed to be in the VCT Enclosure on the AB Roof. Should be walked down to make sure it's not exposed outside the walls.	
3	PTN	4	CVCS / 047	5614-M-3047 Sh. 2	-		-		-	-		-	All piping, except as marked, is located in Containment or in the Auxiliary Building (P&V Room, Charging Pump Room, Gas Stripper Room, Boric Acid Tank Room, etc.). This piping is assumed to be protected from weather either by the building protection or through a global strategy as needed (space heaters deployed in rooms in the Auxiliary Building).	
4	PTN	4	CVCS / 047	5614-M-3047 Sh. 2	-	Outdoor Tanks	Volume Control Tank	Yes	Quality Related per NAMS. Used to provide flow to the Charging Pumps of the CVCS for injection to the RCS per UFSAR 9.2.1	CVCS protection	None	No protection required, tank and contents will not freeze.	The VCT is located on the roof of the Auxiliary Building; however, it is enclosed in a concrete enclosure to be protected from missiles. A global strategy is recommended for the enclosure for the VCT, like the Auxililiary Building, where space heaters can be deployed as necessary.	
21	PTN	4	CVCS / 047	5614-M-3047 Sh. 3	-		-		-	-		-	All piping is located in Containment or in the Auxiliary Building (P&V Room and Charging Pump Room). This piping is assumed to be protected from weather either by the building protection or through a global strategy as needed (space heaters deployed in rooms in the Auxiliary Building).	
1	PTN	4	RHR / 050	5614-M-3050 Sh. 1	All		-		-	-	None	No protection recommended	All portions of this drawing are located inside the Auxiliary Building or Containment. All piping is assumed to be protected from weather either by the building protection or through a global strategy as needed (space heaters deployed in rooms in the Auxiliary Building).	
1	PTN	4	053	5614-M-3053	1	Piping	Piping for containment penetrations for air systems (purge, ILRT pressure test connections, personnel & escape hatch & appurtenances)	No	None	Not required for power operation	None	None (Air penetrations are isolated for normal operation.)		
2	PTN	4	053	5614-M-3053	1	Ducting	Containment purge ducting	No	None	Not required for power operation	None	None		
3	PTN	4	053	5614-M-3053	1	Filter Train	Purge roughing filters	No	None	Not required for power operation	None	None		
4	PTN	4	053	5614-M-3053	1	Fan	Containment purge supply and exhaust fans	No	None	Not required for power operation	None	None		
5	PTN	4	053	5614-M-3053	1	Motor Operated Damper	Motor operated purge supply and exhaust fan dampers	No	None	Not required for power operation	None	None		
6	PTN	4	053	5614-M-3053	1	Ventilation Dampers	Piston-operated purge supply and exhaust containment isolation dampers	No	Normally closed; closure capability required for TS 3/4.6.4	Purge not required for power generation; dampers already in position for containment isolation	None	None		
7	PTN	4	053	5614-M-3053	1	Instr. Annunciation / Indication	Remote valve position indication for containment purge isolation valves	Yes	Required for Control Room indication of containment isolation status	Purge isolation valves normally closed, expected to stay closed; position indication not affected by cold temperatures	None	None		
8	PTN	4	053	5614-M-3053	1	Instr. Local	Local pressure indication at personnel and escape hatch	Yes	None	Not required for power operation	None	None		
9	PTN	4	053	5614-M-3053	2	Piping	2" & 1/2" Instr Air Bleed Line	Yes	TS 3/4.6.1.4 Containment internal pressure to be maintained between -2 and +1 psig	None required since Instr air bleed line is located inside the Aux Bldg. See remarks.	None	None	IA bleed line is normally open to vent off instrument air leakage in containment to prevent excessive ambient pressure buildup. The bleed line passes from containment, through the Aux Bldg, then through the Aux Bldg roof to the purge exhaust duct. The air passing through this line is at containment temperature, so any moisture entrained in the air is not subject to freezing in the portion of the line beyond the Aux Bldg roof penetration.	
10	PTN	4	053	5614-M-3053	2	Instr. Annunciation / Indication	Remote valve position indication for instrument air bleed	Yes	Required for control room indication of containment isolation status	Located inside Aux Bldg	None	None		
11	PTN	4	053	5614-M-3053	2	Vents / Drains / Misc. Connections	3/4" drain line (dead leg) on bleed line	No	None	Located inside Aux Bldg	None	None		
					_									

Florida Power & Light Company Docket No. 20220000-OT

Ten-Year Site Plan
Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 280 of 488

R21002, Rev 0 Attachment L Page 147 of 198

12	PTN	4	053	5614-M-3053	3	Fan	Cooling fans for high-temperature containment penetrations for main steam (MS), main feed (MF), and letdown.	Yes	Normally operating to provide cooling to containment penetrations over 150 °F; MS and MF penetration fans can be OOC for up to 7 days before repairs are required to be initiated, Letdown penetration fans, up to 30 days.	Allowable OOC time exceeds postulated 4- day freeze	None	None	Fans are normally operating; cold weather event is not expected to interrupt operation. No impact on operations even if fans are lost.	4-NOP-057 Sec 2.2, Step 5
13	PTN	4	053	5614-M-3053	3	Ducting	Supply to penetration cooling	Yes		Ductwork not affected by freezing temperatures	None	None		
14	PTN	4	053	5614-M-3053	3	Motor Operated Damper	Main steam penetration fan supply valve to west electrical penetration room	Yes	be initiated		None	INone	Cold weather is not expected to impact motorized damper operation.	4-NOP-057 Sec 2.2, Step 5
25	PTN	4	SIS / 062	5614-M-3062, Sh. 1	1	Piping	16" Pipe		T.S. 3.5.2.a & d - Operable flow path taking suction from RWST to RCS Cold Legs ACTION: With the suction flow path from the refueling water storage tank inoperable, restore the suction flow path to OPERABLE status within 1 hour or be in at least HOT STANDBY within the next 6 hours and in HOT SHUTDOWN within the following 6 hours.	Provide flow path for ECCS.	Protect	Options: 1. 3" Insulation (<2% freezing), or 2. Heat Trace & 1" Insulation. Possible need to evaluate heat trace/insulation or possible enclose with heater if water in pipe needs to be maintained greater than 39F.	Full flow path (less than 2% freezing criteria) assumed to be required for Tech Specs; however, could evaluate if a lower flow is allowed. A portion of this pipe is in a trench to the Aux Bldg. Does the pipe need to be 39F or greater to comply with the Tech Spec? Not clear in the Tech Specs, and no temperature instrumentation on the piping.	
26	PTN	4	SIS / 062	5614-M-3062, Sh. 1	1	Motor Operator Valve	2 MOVs	No	Operable ECCS Flowpath	Provide ability to isolate RWT to go into Recirculation		Evaluate further if the MOVs require protection from cold weather (operating temperatures qualified to, internal heater, etc.) and determine a strategy if required.		
27	PTN	4	SIS / 062	5614-M-3062, Sh. 1	2	Piping	8" Pipe	Standby	T.S. 3.5.2.a & d - Operable flow path taking suction from RWST to RCS Cold Legs ACTION: With the suction flow path from the refueling water storage tank inoperable, restore the suction flow path to OPERABLE status within 1 hour or be in at least HOT STANDBY within the next 6 hours and in HOT SHUTDOWN within the following 6 hours.	Provide flow path for ECCS.	Protect	Heat Trace & 1" Insulation. Possible need to evaluate heat trace/insulation or possible enclose with heater if water in pipe needs to be maintained greater than 39F.	Full flow path (less than 2% freezing criteria) assumed to be required for Tech Specs; however, could evaluate if a lower flow is allowed. A portion of this pipe is in a trench to the HHSI Pump Room. Does the pipe need to be 39F or greater to comply with the Tech Spec; Not clear in the Tech Specs, and no temperature instrumentation on the piping.	
28	PTN	4	SIS / 062	5614-M-3062, Sh. 1	2	Vents / Drains / Misc. Connections	3/4" Vent	No		Maintain pressure boundary for the piping, Dead Legs	Protect	Provide 1" insulation & heat tracing.	With no protection the piping will freeze and there is a potential the piping and/or valve could crack when water freezes. This will only be known once it begins to thaw. Conservatively recommend protecting to prevent potential system leakage.	
29	PTN	4	SIS / 062	5614-M-3062, Sh. 1	3	Piping	16" Pipe	Standby	TS 3.5.2.d - ECCS Flowpath to RHR and CS Pumps. Action: With the suction flow path from the refueling water storage tank inoperable, restore the suction flow path to OPERABLE status within 1 hour or be in at least HOT STANDBY within the next 6 hours and in HOT SHUTDOWN within the following 6 hours.	Operable ECCS	Protect	Use global heating strategy for the U4 CCW Pump Room to prevent freezing 1" Insulation (no freezing >25%) Heat Trace & 1" Insulation (no freezing or	Located in U4 CCW Pump Room, which is enclosed by concrete on the sides (except large doorway), but roof is all grating/open to outside atmosphere and there is no HVAC. Recommend using tarps to cover grating and doorway, and installing space heater(s) to protect area. If this cannot be performed than individual heating strategies for all piping/components will be required.	
30	PTN	4	SIS / 062	5614-M-3062, Sh. 1	4	Piping	4" Pîpe	No		Maintain RWST pressure boundary and have a flow path for the CVCS.	Protect	1. 1" insulation on 4" piping through safety boundary change (protect against >25% freezing) 2. Heat Trace & 1" insulation Possible need to evaluate heat trace/insulation or possible enclose with heater if water in pipe	Full flow path (less than 2% freezing criteria) assumed to be required for Tech Specs, however, could evaluate if a lower flow is allowed. A portion of this pipe is in a trench to the Aux Bldg. Does the pipe need to be 39F or greater to comply with the Tech Spec? Not clear in the Tech Specs, and no temperature instrumentation on the piping.	
31	PTN	4	SIS / 062	·	5	Piping	2" Pipe	No	RWST Pressure Boundary	-	Protect	Options: 1. 4" insulation on 2" piping through safety boundary change (protect against >25% freezing) 2. Heat Trace & 1" Insulation		
32	PTN	4	SIS / 062	5614-M-3062, Sh. 1	6	Piping	6" Pipe	No	RWST Pressure Boundary	-	Protect	1" Insulation	Protects against >25% freezing in the pipe	
33	PTN	4	SIS / 062	5614-M-3062, Sh. 1	7	Piping	6" Pipe	No	CSP Full Flow Recirculation Line, Class B (SR) Piping	-	Protect	1" Insulation	Located in Aux Bldg Room per NAMS. Piping is normally isolated on both sides, so protection may not be required. If line is not utilized, a break or freeze of the line does not require a shutdown. Insulation size recommended to prevent >25% freezing since full flow is not required. Operator action needed to use the line.	
34	PTN	4	SIS / 062	5614-M-3062, Sh. 1	7	Vents / Drains / Misc. Connections	3/4" Vent	No	None	Dead Leg	Protect	THEAT Trace & 1 Insulation	See Segment 7, Piping for discussion of location and if protection is necessary.	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 281 of 488

R21002, Rev 0 Attachment L Page 148 of 198

														Р
35	PTN	4	SIS / 062	5614-M-3062, Sh. 1	8	Piping	2" Pipe	No	RWST Pressure Boundary	-	Protect	Options: 1. 4" insulation on 2" piping through safety boundary change (protect against >25% freezing) 2. Heat Trace & 1" Insulation		
36	PTN	4	SIS / 062	5614-M-3062, Sh. 1	9	Piping	2" Pipe	No	RWST Pressure Boundary	-	Protect	Options: 1. Use global heating strategy for the U4 CCW Pump Room to prevent freezing 2. 4" Insulation (no freezing >25%) 3. Heat Trace & 1" Insulation (no freezing or maintain temp in pipe >39F	Located in U4 CCW Pump Room, which is enclosed by concrete on the sides (except large doorway), but roof is all grating/open to outside atmosphere and there is no HVAC. Recommend using tarps to cover grating and doorway, and installing space heater(s) to protect area. If this cannot be performed than individual heating strategies for all piping/components will be required.	
37	PTN	4	SIS / 062	5614-M-3062, Sh. 1	9	Motor Operator Valve	2 MOVs	Standby	-	-		Evaluate further if the MOVs require protection from cold weather (operating temperatures qualified to, internal heater, etc.) and determine a strategy if required.	Located in U4 CCW Pump Room, which is enclosed by concrete on the sides (except large doorway), but roof is all grating/open to outside atmosphere and there is no HVAC. Recommend using tarps to cover grating and doorway, and installing space heater(s) to protect area. If this cannot be performed than individual heating strategies for all piping/components will be required.	
38	PTN	4	SIS / 062	5614-M-3062, Sh. 1	9	Vents / Drains / Misc. Connections	3/4" Drain	No	Class B (SR) Piping	Dead Leg	Protect	Heat Trace & 1" Insulation	Located in U4 CCW Pump Room, which is enclosed by concrete on the sides (except large doorway), but roof is all grating/open to outside atmosphere and there is no HVAC. Recommend using tarps to cover grating and doorway, and installing space heater(s) to protect area. If this cannot be performed than individual heating strategies for all piping/components will be required.	
39	PTN	4	SIS / 062	5614-M-3062, Sh. 1	10	Piping	2" Pipe	Yes	RWST Pressure Boundary & pipe to LT	Dead Leg	Protect	Options: 1. 4" insulation on 2" piping through safety boundary change (protect against >25% freezing) 2. Heat Trace & 1" Insulation		
40	PTN	4	SIS / 062	5614-M-3062, Sh. 1	10	Piping	3/8" Pipe	Yes	RWST Pressure Boundary & pipe to LT T.S. 3.5.4 - A minimum contained	Dead Leg	Protect	Heat Trace & 1" Insulation		
41	PTN	4	SIS / 062	5614-M-3062, Sh. 1	10	Instr. Control / Protection	LT	1	volume 320,000 gallons of borated water when in Modes 1-4 ACTION: With the refueling water tank inoperable, restore the tank to OPERABLE status within 1 hour or be in at least HOT STANDBY within 6 hours and in COLD SHUTDOWN within the following 30 hours. T.S. 3.1.2.5 has the same LCO and	Required to know level in the RWST. Dead Leg	Protect	Provide insulation (1") & heat tracing for the level instruments and piping.		
42	PTN	4	SIS / 062	5614-M-3062, Sh. 1	10	Vents / Drains / Misc.	Test Connection	No	action. RWST Pressure Boundary	Dead Leg	Protect	Heat Trace & 1" Insulation		
43	PTN	4	SIS / 062	5614-M-3062, Sh. 1	10	Connections Vents / Drains / Misc.	1/4" Drain	No	RWST Pressure Boundary	Dead Leg	Protect	Heat Trace & 1" Insulation		
44	PTN	4	SIS / 062	5614-M-3062, Sh. 1	11	Connections Piping	3/4" Pipe		RWST Pressure Boundary	-	Protect	Options: 1. Use global heating strategy for the U4 CCW Pump Room to prevent freezing 2. Heat Trace & 1" Insulation	Located in U4 CCW Pump Room, which is enclosed by concrete on the sides (except large doorway), but roof is all grating/open to outside atmosphere and there is no HVAC. Recommend using tarps to cover grating and doorway, and installing space heater(s) to protect area. If this cannot be performed than individual heating strategies for all piping/components will be required.	
45	PTN	4	SIS / 062	5614-M-3062, Sh. 1	12		HHSI pumps suction and discharge flow paths, cross connects with U4 piping, recirculation and test lines		T.S. 3.5.2.a & d - Operable flow path taking suction from RWST to RCS Cold Legs ACTION: With the suction flow path from the refueling water storage tank inoperable, restore the suction flow path to OPERABLE status within 1 hour or be in at least HOT STANDBY within the next 6 hours and in HOT SHUTDOWN within the following 6 hours.	Operable ECCS		Options: 1. Use global heating strategy for the HHSI Pump Room to prevent freezing 2. Insulation and/or Heat Trace individual piping and components.	Located in HHSI Pump Room, which is fully enclosed by concrete, but doors are louvered, there is no HVAC, and room is open to the CCW Pump Rooms, which is open to the environment. Recommend covering door louvers and installing space heater(s) to protect area. If this cannot be performed than individual heating strategies for all piping/components will be required.	
46	PTN	4	SIS / 062	5614-M-3062, Sh. 1	13		HHSI Pumps and associated cooling	Standby	T.S. 3.5.2.a & d - Operable flow path taking suction from RWST to RCS Cold Legs ACTION: With the suction flow path from the refueling water storage tank inoperable, restore the suction flow path to OPERABLE status within 1 hour or be in at least HOT STANDBY within the next 6 hours and in HOT SHUTDOWN within the following 6 hours.	Operable ECCS	Protect	Options: 1. Use global heating strategy for the HHSI Pump Room to prevent freezing 2. Insulation and/or Heat Trace individual piping and components.	Located in HHSI Pump Room, which is fully enclosed by concrete, but doors are louvered, there is no HVAC, and room is open to the CCW Pump Rooms, which is open to the environment. Recommend covering door louvers and installing space heater(s) to protect area. If this cannot be performed than individual heating strategies for all piping/components will be required.	

Florida Power & Light Company Docket No. 20220000-OT

Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 282 of 488 R21002, Rev 0

R21002, Rev 0 Attachment L Page 149 of 198

														Pa
47	PTN	4	SIS / 062	5614-M-3062, Sh. 1	14	Piping	3" Pipe	Standby	T.S. 3.5.2.a & d - Operable flow path taking suction from RWST to RCS Cold Legs ACTION: With the suction flow path from the refueling water storage tank inoperable, restore the suction flow path to OPERABLE status within 1 hour or be in at least HOT STANDBY within the next 6 hours and in HOT SHUTDOWN within the following 6 hours.	Operable ECCS	Protect	Options: 1. Use global heating strategy for the U4 CCW Pump Room to prevent freezing 2. 2" Insulation (no freezing >25%) 3. Heat Trace & 1" Insulation (no freezing or maintain temp in pipe >39F	Located in U4 CCW Pump Room, which is enclosed by concrete on the sides (except large doorway), but roof is all grating/open to outside atmosphere and there is no HVAC. Recommend using tarps to cover grating and doorway, and installing space heater(s) to protect area. If this cannot be performed than individual heating strategies for all piping/components will be required.	
48	PTN	4	SIS / 062	5614-M-3062, Sh. 1	14	Vents / Drains / Misc. Connections	3/4" Drain	No	SI Pressure Boundary	Operable ECCS	Protect	Heat Trace & 1" Insulation	Located in U4 CCW Pump Room, which is enclosed by concrete on the sides (except large doorway), but roof is all grating/open to outside atmosphere and there is no HVAC. Recommend using tarps to cover grating and doorway, and installing space heater(s) to protect area. If this cannot be performed than individual heating strategies for all piping/components will be required.	
49	PTN	4	SIS / 062	5614-M-3062, Sh. 1	15	Piping	3/4" Pipe	No	SI Pressure Boundary	Operable ECCS	Protect	Heat Trace & 1" Insulation	Located in U4 CCW Pump Room, which is enclosed by concrete on the sides (except large doorway), but roof is all grating/open to outside atmosphere and there is no HVAC. Recommend using tarps to cover grating and doorway, and installing space heater(s) to protect area. If this cannot be performed than individual heating strategies for all piping/components will be required.	
50	PTN	4	SIS / 062	5614-M-3062, Sh. 1	16	Piping	1/2" Pipe	No	None	-	None	No Protection Required	Located in U4 CCW Pump Room, which is enclosed by concrete on the sides (except large doorway), but roof is all grating/open to outside atmosphere and there is no HVAC. Recommend using tarps to cover grating and doorway, and installing space heater(s) to protect area. If this cannot be performed than individual heating strategies for all piping/components will be required.	
18	PTN	4	SIS / 062	5614-M-3062, Sh. 1	-	Outdoor Tanks	Refueling Water Storage Tank (RWST)	Yes	T.S. 3.5.4 - Min Temp of 39F when in Modes 1.4 ACTION: With the refueling water tank inoperable, restore the tank to OPERABLE status within 1 hour or be in at least HOT STANDBY within 6 hours and in COLD SHUTDOWN within the following 30 hours. T.S. 3.1.2.5 has the same LCO and action.	Maintain ability for Emergency Core Cooling and Boration	Protect	Need to perform further evaluation if the min volume (320,000 gal) in the RWST will be lowered to 39F based on new temperature profile. If RWST could reach 39F, then some options include insulating, adding recirculation heater(s) as a temporary skid design/installation/operation, permanent immersion heater(s), etc.	S.5.4 if temperature is dropping. Temperature can be measured by placing the BMST on recirculation via 4.MOP.033 but the	0-ONOP-103.2 4-NOP-033
19	PTN	4	SIS / 062	5614-M-3062, Sh. 1	-	Vents / Drains / Misc. Connections	Vents to atmosphere (unclear of size and it there is a loop seal via the P&ID)	No	Operable RWST	Allow for tank venting and prevent vacuum generation	Protect	Insulate vent to prevent vacuum forming in the tank when draining (thickness to be determined based on pipe size)		
20	PTN	4	SIS / 062	5614-M-3062, Sh. 1	-	Instr. Control / Protection	2" & 3/8" Piping to LT with associated test connection and drain	Yes	T.S. 3.5.4 - A minimum contained volume 320,000 gallons of borated water when in Modes 1-4 ACTION: With the refueling water tank inoperable, restore the tank to OPERABLE status within 1 hour or be in at least HOT STANDBY within 6 hours and in COLD SHUTDOWN within the following 30 hours. T.S. 3.1.2.5 has the same LCO and action.	Required to know level in the RWST. Dead Leg	Protect	Provide insulation (1") & heat tracing for the level instruments and piping.		
21	PTN	4	SIS / 062	5614-M-3062, Sh. 1	-	Vents / Drains / Misc. Connections	2" Pipe to 1" Drain and 3/8" connection to sample sink	No	RWST Pressure Boundary	Dead Leg	Protect	Options: 1. 4" insulation on 2" piping through safety boundary change (protect against >25% freezing) 2. Heat Trace & 1" Insulation	Protection only required through the safety boundary change of B to D, the remainder of the piping is not required to be protected. Downstream of the locked closed valve, the system can be opened to protect damage to piping and components.	
22	PTN	4	SIS / 062	5614-M-3062, Sh. 1	-	Vents / Drains / Misc. Connections	1" Pipe, 3/8" Pipe	No	RWST Pressure Boundary	Dead Leg	Protect	Heat Trace & 1" Insulation through 4-897D	Protection only required through the safety boundary change of B to D, the remainder of the piping is not required to be protected. Downstream of the locked closed valve, the system can be opened to protect damage to piping and components.	
23	PTN	4	SIS / 062	5614-M-3062, Sh. 1	-	Vents / Drains / Misc. Connections	4" Pipe	No	RWST Pressure Boundary	Dead Leg	Protect	1" Insulation on 4" Pipe through 4-894R	Protection only required through the safety boundary change of B to D, the remainder of the piping is not required to be protected. Downstream of the locked closed valve, the system can be opened to protect damage to piping and components.	
24	PTN	4	SIS / 062	5614-M-3062, Sh. 1	-	Vents / Drains / Misc. Connections	Overflow piping	No	None	-	None	No Protection Required.		

Florida Power & Light Company Docket No. 20220000-OT

Ten-Year Site Plan
Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 283 of 488

R21002, Rev 0 Attachment L Page 150 of 198

٤	B PTN	4	SIS / 062	5614-M-3062, Sh. 2	1	Piping	4" Pipe	Standby	TS 3.5.2 - The following Emergency Core Cooling System (ECCS) equipment and flow paths shall be OPERABLE: Four Safety Injection (SI) pumps, each capable of being powered from its associated OPERABLE diesel generator, with discharge flow paths aligned to the RCS cold legs.	Maintain flowpath	Protect	Options: 1. Use global heating strategy for the HHSI Pump Room to prevent freezing 2. Heat Trace & 1" Insulation	Located in HHSI Pump Room, which is fully enclosed by concrete, but doors are louvered, there is no HVAC, and room is open to the CCW Pump Rooms, which is open to the environment. Recommend covering door louvers and installing space heater(s) to protect area. If this cannot be performed than individual heating strategies for all piping/components will be required.
Ġ	PTN	4	SIS / 062	5614-M-3062, Sh. 2	1	Instr. Control / Protection	PI	Yes	See Segment 1, Piping	Control	Protect	Options: 1. Use global heating strategy for the HHSI Pump Room to prevent freezing 2. Heat Trace & 1" Insulation	See Segment 1, Piping
1	D PTN	4	SIS / 062	5614-M-3062, Sh. 2	1	Instr. Control / Protection	FI	Yes	See Segment 1, Piping	Control	Protect	Options: 1. Use global heating strategy for the HHSI Pump Room to prevent freezing 2. Heat Trace & 1" Insulation	See Segment 1, Piping
1	1 PTN	4	SIS / 062	5614-M-3062, Sh. 2	2	Piping	4" Pipe	Standby	TS 3.5.2 - The following Emergency Core Cooling System (ECCS) equipment and flow paths shall be OPERABLE: Four Safety Injection (SI) pumps, each capable of being powered from its associated OPERABLE diesel generator, with discharge flow paths aligned to the RCS cold legs.	Maintain flowpath	Protect	Options: 1. Use global heating strategy for the U4 CCW Pump Room to prevent freezing 2. Heat Trace & 1" Insulation	Located in U4 CCW Pump Room, which is enclosed by concrete on the sides, but roof is all grating/open to outside atmosphere and there is no HVAC. Recommend using tarps to cover grating and installing space heater(s) to protect area. If this cannot be performed than individual heating strategies for all piping/components will be required.
1	2 PTN	4	SIS / 062	5614-M-3062, Sh. 2	3	Piping	4" Pipe	Standby	TS 3.5.2 - The following Emergency Core Cooling System (ECCS) equipment and flow paths shall be OPERABLE: Four Safety Injection (SI) pumps, each capable of being powered from its associated OPERABLE diesel generator, with discharge flow paths aligned to the RCS cold legs.	Maintain flowpath	Protect	Options: 1. Use global heating strategy for the HHSI Pump Room to prevent freezing 2. Heat Trace & 1" Insulation	Located in HHSI Pump Room, which is fully enclosed by concrete, but doors are louvered, there is no HVAC, and room is open to the CCW Pump Rooms, which is open to the environment. Recommend covering door louvers and installing space heater(s) to protect area. If this cannot be performed than individual heating strategies for all piping/components will be required.
1	3 PTN	4	SIS / 062	5614-M-3062, Sh. 2	3	Vents / Drains / Misc. Connections	3/4" Drain	No	See Segment 3, Piping	Dead Leg	Protect	Options: 1. Use global heating strategy for the HHSI Pump Room to prevent freezing 2. Heat Trace & 1" Insulation	See Segment 3, Piping
1	4 PTN	4	SIS / 062	5614-M-3062, Sh. 2	4	Piping	3/4" & 1/2" Pipe	No	See Segment 1, Piping	-	Protect	Options: 1. Use global heating strategy for the HHSI Pump Room to prevent freezing 2. Heat Trace & 1" Insulation	See Segment 1, Piping
1	5 PTN	4	SIS / 062	5614-M-3062, Sh. 2	5	Piping	1/2" Pipe	No	None	-	None	No Protection Required	
	6 PTN	4	SIS / 062	5614-M-3062, Sh. 2	6	Piping	3/4" Pipe	No	SI Pressure Boundary	-	Protect	Options: 1. Use global heating strategy for the U4 CCW	Stated to be in the RHR Pipe Tunne, Unclear if it's in the Aux Bldg or U4 CCW Pump Room. See Segment 2, Piping
1	7 PTN	4	SIS / 062	5614-M-3062, Sh. 2	6	Vents / Drains / Misc. Connections	3/4" Drain	No	SI Pressure Boundary	Dead Leg	Protect		Stated to be in the RHR Pipe Tunne, Unclear if it's in the Aux Bldg or U4 CCW Pump Room. See Segment 2, Piping
;	PTN	4	SIS / 062	5614-M-3062, Sh. 2	All but 1-6		-		-	-	None	No protection recommended	All portions of this drawing, except Segments 1-6, are located inside the Auxiliary Building or Containment. All piping is assumed to be protected from weather either by the building protection or through a global strategy as needed (space heaters deployed in rooms in the Auxiliary Building).
	. PTN	4	SIS / 064	5614-M-3064 Sh. 1	All		-		-	-	None	No protection recommended	All portions of this drawing are located inside Containment. All piping is assumed to be protected from weather either by the building protection and ambient heat sources. No global strategy assumed to be required.
4	PTN	4	CS / 068	5614-M-3068, Sh. 1	1	Piping	6" Pipe	No	CSP Full Flow Recirculation Line, Class B (SR) Piping	-	Protect	1" Insulation	Located on Aux Bldg Room per NAMS. Piping is normally isolated on both sides, so protection may not be required. If line is not utilized, a break or freeze of the line does not require a shutdown. Insulation size recommended to prevent >25% freezing since full flow is not required. Operator action needed to use the line.
	PTN	4	CS / 068	5614-M-3068, Sh. 1	1	Instr. Local	Flow element	Yes	None	Dead Leg	Protect	Heat Trace & 1" Insulation	See Segment 1 piping for discussion of location and if protection is necessary.
-	PTN	4	CS / 068	5614-M-3068, Sh. 1	1	Vents / Drains / Misc. Connections	3/4" Connection	No	None	Dead Leg	Protect	Heat Trace & 1" Insulation	See Segment 1 piping for discussion of location and if protection is necessary.
3	S PTN	4	CS / 068	5614-M-3068, Sh. 1	All but 1		-		-	-	None	No protection recommended	All portions of this drawing, except Segment 1, are located inside the Auxiliary Building or Containment. All piping is assumed to be protected from weather either by the building protection or through a global strategy as needed (space heaters deployed in rooms in the Auxiliary Building).

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 284 of 488

R21002, Rev 0 Attachment L Page 151 of 198

														Pa
1	PTN	4	070	5614-M-3070, Sh. 1 TB Ventilation, Load Center & SWGR Rooms Chilled Water System - Train A	1	Piping	Small-bore pipe, Air Handling Units. Equipment located on Ground Floor EL 18'-0" and EL 30'- 0" LC/Switchgear Enclosure	Yes	Normally operating to provide room cooling to maintain 100% power generation, however operator action can be taken as noted to open doors and fans to provide cooling in the event of loss of A/C system.	N/A	Mitigate	Add Glycol to chillers for low temperature operation or provide operator action to open doors and provide fans to cool Load Center and Switchgear Rooms.	Chilled Water System not safety related and if rendered non- functional, operator action to open doors and start fan locally to provide once-through ventilation can provide adequate room cooling (UFSAR 9.16.3). Based on "Turkey Point Extreme Temperature Reassessment, March 2021", Chillers can trip off on Low Ambient Lockout (35.1 F). Load Center/Switchgear Enclosures are reinforced concrete Class I structures (UFSAR 5.3.2). The UFSAR design limit for equipment in the LC/Switchgear Rooms is 104 deg F. The administrative limit temperature alert is 95 deg F. Chiller alarm limits are 36 deg F, with glycol 12.6 deg F. Note that one chiller in a single train may provide adequate cooling for 7 days during emergency operations with operator action. (UFSAR 9.16)	UFSAR 9.16, UFSAR 5.3.2, Turkey Point Extreme Temperature Reassessment p.7
2	PTN	4	070	5614-M-3070, Sh. 1 TB Ventilation, Load Center & SWGR Rooms Chilled Water System - Train A	2	Piping	Small Bore Piping, Chillers, Pumps, transfer pump, Expansion tank. Turbine Building from outside LC/SWGR room up TB EL. 44'-6 1/4"	Yes	Normally operating to provide room cooling to maintain 100% power generation, however operator action can be taken as noted to open doors and fans to provide cooling in the event of loss of A/C system.	N/A	Mitigate	Add Glycol to chillers for low temperature operation or provide operator action to open doors and provide fans to cool Load Center and Switchgear Rooms.	Chilled Water System not safety related and if rendered non- functional, operator action to open doors and start fan locally to provide once-through ventilation can provide adequate room cooling (UFSAR 9.16.3). Based on "Turkey Point Extreme Temperature Reassessment, March 2021", Chillers can trip off on Low Ambient Lockout (35.1 F). Load Center/Switchgear Enclosures are reinforced concrete Class I structures (UFSAR 5.3.2). The UFSAR design limit for equipment in the LC/Switchgear Rooms is 104 deg F. The administrative limit temperature alert is 95 deg F. Chiller alarm limits are 36 deg F, with glycol 12.6 deg F. Note that one chiller in a single train may provide adequate cooling for 7 days during emergency operations with operator action. (UFSAR 9.16)	UFSAR 9.16, UFSAR 5.3.2, Turkey Point Extreme Temperature Reassessment p.7
3	PTN	4	070	5614-M-3070, Sh. 2 TB Ventilation, Load Center & SWGR Rooms Chilled Water System - Train B	1	Piping	Small-bore pipe, Air Handling Units. Equipment located on Ground Floor EL 18'-0" and EL 30'- 0" LC/Switchgear Enclosure	Yes	Normally operating to provide room cooling to maintain 100% power generation, however operator action can be taken as noted to open doors and fans to provide cooling in the event of loss of A/C system.	N/A	Mitigate	Add Glycol to chillers for low temperature operation or provide operator action to open doors and provide fans to cool Load Center and Switchgear Rooms.	Chilled Water System not safety related and if rendered non- functional, operator action to open doors and start fan locally to provide once-through ventilation can provide adequate room cooling (UFSAR 9.16.3). Based on "Turkey Point Extreme Temperature Reassessment, March 2021", Chillers can trip off on Low Ambient Lockout (35.1 F). Load Center/Switchgear Enclosures are reinforced concrete Class I structures (UFSAR 5.3.2). The UFSAR design limit for equipment in the LC/Switchgear Rooms is 104 deg F. The administrative limit temperature alert is 95 deg F. Chiller alarm limits are 36 deg F, with glycol 12.6 deg F. Note that one chiller in a single train may provide adequate cooling for 7 days during emergency operations with operator action. (UFSAR 9.16)	UFSAR 9.16, UFSAR 5.3.2, Turkey Point Extreme Temperature Reassessment p.7
4	PTN	4	070	5614-M-3070, Sh. 2 TB Ventilation, Load Center & SWGR Rooms Chilled Water System - Train B		Piping	Small Bore Piping, Chillers, Pumps, transfer pump, Expansion tank. Turbine Building from outside LC/SWGR room up TB EL. 44'-6 1/4"	Yes	Normally operating to provide room cooling to maintain 100% power generation, however operator action can be taken as noted to open doors and fans to provide cooling in the event of loss of A/C system.	N/A	Mitigate	Add Glycol to chillers for low temperature operation or provide operator action to open doors and provide fans to cool Load Center and Switchgear Rooms.	Chilled Water System not safety related and if rendered non- functional, operator action to open doors and start fan locally to provide once-through ventilation can provide adequate room cooling (UFSAR 9.16.3). Based on "Turkey Point Extreme Temperature Reassessment, March 2021", Chillers can trip off on Low Ambient Lockout (35.1 F). Load Center/Switchgear Enclosures are reinforced concrete Class I structures (UFSAR 5.3.2). The UFSAR design limit for equipment in the LC/Switchgear Rooms is 104 deg F. The administrative limit temperature alert is 95 deg F. Chiller alarm limits are 36 deg F, with glycol 12.6 deg F. Note that one chiller in a single train may provide adequate cooling for 7 days during emergency operations with operator action. (UFSAR 9.16)	UFSAR 9.16, UFSAR 5.3.2, Turkey Point Extreme Temperature Reassessment p.7
1	PTN	4	MSS / 072	5614-M-3072 SH 1	1	Piping	26" main steam line (x3); 30" main steam header	Yes	Requied for Power Generation; Main Steam pressure boundary	Normal Steam flow adequate to prevent freezing. Steam Lines already insulated.	None	None		
2	PTN	4	MSS / 072	5614-M-3072 SH 1	1	Instr. Control / Protection	Pressure Transmitter (PT) (x3, each steam line) 3/4" piping to instrument Press. Input to Steam Break Protection, Safety Assessment System (SAS), and Safety Parameter Display System (SPDS)	Yes	Requied for Power Generation; Main Steam pressure boundary	Dead Leg	Protect	Ensure instrument and instrument lines are well insulated. Continued implementation of Section 3.2, Step 6.E of Procedure 0-ONOP-103.2 applies.	Inspect during walkdown, insulation may already be present. Evaluate length of instrument pipe/tube against dead leg freeze criteria. Main steam piping will be hot.	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 285 of 488

R21002, Rev 0 Attachment L Page 152 of 198

														Pa
3	PTN	4	MSS / 072	5614-M-3072 SH 1	1	Instr. Control / Protection	Pressure Transmitter (PT) (x2, each steam line) 3/4", 1" piping to instrument Local pressure gauge (one per steam line) PT reading is input to Digital Data Processing System (DDPS), and Steam Gen Steam Dump to Atmos (SDTA). Control of atmospheric dump.	Yes	Requied for Power Generation; Main Steam pressure boundary	Dead Leg	Protect	Ensure instrument and instrument lines are well insulated. Continued implementation of Section 3.2, Step 6.E of Procedure 0-ONOP-103.2 applies.	Inspect during walkdown, insulation may already be present. Evaluate length of instrument pipe/tube against dead leg freeze criteria. Main steam piping will be hot.	
4	PTN	4	MSS / 072	5614-M-3072 SH 1	1	Motor Operator Valve	MSIV Bypass (2" MOV) (normaly closed; one per MSIV) Includes position switch	No	Maintain Steam Boundary	Normal Steam flow adequate to prevent freezing. Steam Lines already insulated.	None	None	Likely to be mounted in close proximity to MSIVs such that normal process flow will keep 2" line and MOV warm. Include with global freeze evaluation for MOVs	
5	PTN	4	MSS / 072	5614-M-3072 SH 1	1	Instr. Control / Protection	Pressure Transmitter (PT) (x1, each steam line) 3/4" piping to instrument Press. Input to Steam Break Protection, Safety Assessment System (SAS), and Safety Parameter Display System (SPDS) Downstream of MSIV and check valve (MS header Pressure)	Yes	Requied for Power Generation; Main Steam pressure boundary	Dead Leg	Protect	Ensure instrument and instrument lines are well insulated. Continued implementation of Section 3.2, Step 6.E of Procedure 0-ONOP-103.2 applies.	Inspect during walkdown, insulation may already be present. Evaluate length of instrument pipe/tube against dead leg freeze criteria. Main steam piping will be hot.	
6	PTN	4	MSS / 072	5614-M-3072 SH 1	1	Vents / Drains / Misc. Connections	capped pipe (x2, each MS line)	Yes	Requied for Power Generation; Main Steam pressure boundary	Normal Steam flow adequate to prevent freezing. Steam Lines already insulated.	None	None	Likely to be mounted in close proximity to MS lines such that normal process flow will keep the capped line warm.	
7	PTN	4	MSS / 072	5614-M-3072 SH 1	2	Piping	6", 10", 14", 30" piping Main Steam Lines to atmos dump valves, and silencer	Standby	Requied for Power Generation; Main Steam pressure boundary	Normal Steam flow adequate to prevent freezing. Steam Lines already insulated.	None	None	Inspect during walkdown, insulation may already be present. 6" portion upstream of atmos steam dump expected to be short. Main steam piping will be hot.	
8	PTN	4	MSS / 072	5614-M-3072 SH 1	3	Piping	14", 12", 10", 8", 6" piping	Standby	TS 3.7.1.1 - All MS safety valves shall be operable (4hr LCO) MS Safety valves must be available for passive plant cooldown following closures of MSIVs and/or seismic event.	Normal Steam flow adequate to prevent freezing. Steam Lines already insulated.	None	None	Branches to safety valves from MS piping are large piping. With MS process flow (hot), and large piping, MS safety valves are at low to no risk of freezing or failure.	
9	PTN	4	MSS / 072	5614-M-3072 SH 1	3	Relief Valves	MS Safety relief valves (x4 per steam line)	Standby	TS 3.7.1.1 - All MS safety valves shall be operable (4hr LCO) MS Safety valves must be available for passive plant cooldown following closures of MSIVs and/or seismic event.	Normal Steam flow adequate to prevent freezing. Steam Lines already insulated.	None	None	Branches to safety valves from MS piping are large piping. With MS process flow (hot), and large piping, MS safety valves are at low to no risk of freezing or failure.	
10	PTN	4	MSS / 072	5614-M-3072 SH 1	4	Piping	1/2" and 1 1/2" piping MSIV leakoff drain and steam trap (x1 per MSIV)	Yes	TS 3.7.1.5 - Each MSIV shall be operable (24hr LCO) Provides a drain path for collected condensate in the MSIV	Normal Steam flow adequate to prevent freezing. Steam Lines already insulated.	Protect	Ensure 1/2" and 1 1/2" piping and steam trap are insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of instrument pipe/tube against dead leg freeze criteria. Main steam piping and MSIV will be hot.	
11	PTN	4	MSS / 072	5614-M-3072 SH 1	4	Strainers	1/2" steam trap (x1 per line)	Yes	TS 3.7.1.5 - Each MSIV shall be operable (24hr LCO) Class B pressure boundary	Normal Steam flow adequate to prevent freezing. Steam Lines already insulated.	Protect	Ensure steam trap is insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of instrument pipe/tube against dead leg freeze criteria. Main steam piping and MSIV will be hot.	
12	PTN	4	MSS / 072	5614-M-3072 SH 1	4	Piping	Steam trap bypass	No	TS 3.7.1.5 - Each MSIV shall be operable (24hr LCO) Class B pressure boundary	Normal Steam flow adequate to prevent freezing. Steam Lines already insulated.	Protect	Ensure Steam trap bypass is insulated	Inspect during walkdown, insulation may already be present. Evaluate length of instrument pipe/tube against dead leg freeze criteria. MSIV and MSIV drain will be hot.	
13	PTN	4	MSS / 072	5614-M-3072 SH 1	4	Vents / Drains / Misc. Connections	Drain from 1/2" line w/ 2 closed root valves. Strainer Drain w/ 1 closed root valve.	No	TS 3.7.1.5 - Each MSIV shall be operable (24hr LCO) Provides a drain path for collected condensate in the MSIV	Dead Leg	Protect	Ensure drain is insulated	Inspect during walkdown, insulation may already be present. Evaluate length of instrument pipe/tube against dead leg freeze criteria. MSIV and MSIV drain will be hot.	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 286 of 488

R21002, Rev 0 Attachment L Page 153 of 198

														P
14	PTN	4	MSS / 072	5614-M-3072 SH 1	5	Piping	3" piping (x1 per main steam line) "to AFW System"	Yes	TS 3.7.1.2 - two independent AFW Trains, including 3 steam supply flowpaths, 3 pumps, and associated water discharge flowpaths shall be OPERABLE steam supply to turbine driven AFW pump.	Normal Steam flow adequate to prevent freezing. Steam Lines already insulated.	None	None	Minimum steam flow through this 3" line, then 2" steam trap line to condenser keep line warm when Aux Feedwater steam supply valves are closed.	5614-M-3075 SH 1
15	PTN	4	MSS / 072	5614-M-3072 SH 1	6	Piping	30" main steam supply piping to turbine stop valves (x2)	Yes	Requied for Power Generation; Main Steam pressure boundary	Normal Steam flow adequate to prevent freezing. Steam Lines already	None	None		5614-M-3089 SH 1
16	PTN	4	MSS / 072	5614-M-3072 SH 1	6	Instr. Local	Pressure Indicators (PI) (x3) Pressure transmitter (PT) (x1)	Yes	Requied for Power Generation; Main Steam pressure boundary	Dead Leg	Protect	Ensure instrument and instrument lines are well insulated. Continued implementation of Section 3.2, Step 6.E of Procedure 0-ONOP-103.2 applies.	Inspect during walkdown, insulation may already be present. Evaluate length of instrument pipe/tube against dead leg freeze criteria. Main steam piping will be hot.	
17	PTN	4	MSS / 072	5614-M-3072 SH 1	7	Piping	24" and 8" main steam supply to Steam Dump Header and MSR reheaters (tubeside)	Yes	Requied for Power Generation; Main Steam pressure boundary	Normal Steam flow adequate to prevent freezing. Steam Lines already insulated.	None	None		5614-M-3072 SH 2
18	PTN	4	MSS / 072	5614-M-3072 SH 1	8	Piping	Size unknown - estimate 1" or 2" Tubine stop valve steam supply condensate drain.	Yes	Maintain Steam Boundary	Normal Steam flow adequate to prevent freezing. Steam Lines already insulated.	None	None	Inspect during walkdown, insulation may already be present. Process fluid will be flowing and hot.	5614-M-3014 SH 1
19	PTN	4	MSS / 072	5614-M-3072 SH 1	8	Strainers	steam trap (x1 per line)	Yes	Maintain Steam Boundary	Normal Steam flow adequate to prevent freezing. Steam Lines already insulated.	None	None	Inspect during walkdown, insulation may already be present. Process fluid will be flowing and hot.	
20	PTN	4	MSS / 072	5614-M-3072 SH 1	8	Piping	Size unknown - estimate 1" or 2" Steam trap bypass	No	Maintain Steam Boundary	Normal Steam flow adequate to prevent freezing. Steam Lines already insulated.	None	None	Inspect during walkdown, insulation may already be present. Evaluate length of pipe in proximity to active process line. Process fluid will be flowing and hot.	
21	PTN	4	MSS / 072	5614-M-3072 SH 1	8	Vents / Drains / Misc. Connections	Drains from steam traps and active line closed root valves.	No	Maintain Steam Boundary	Dead Leg	Protect	Ensure drains are insulated	Inspect during walkdown, insulation may already be present. Evaluate length of drain against dead leg freeze criteria. Process fluid will be flowing and hot.	
22	PTN	4	MSS / 072	5614-M-3072 SH 1	9	Piping	1" piping Drains from turbine stop valves - return to steam header	Yes	Maintain Steam Boundary	Normal Steam flow adequate to prevent freezing. Steam Lines already insulated.	None	None	Inspect during walkdown, insulation may already be present. Process fluid will be flowing and hot.	5614-M-3089 SH 1
23	PTN	4	MSS / 072	5614-M-3072 SH 1	10	Piping	4" steam supply to Auxiliary Steam Header	Yes	Requied for Power Generation; Main Steam pressure boundary	Normal Steam flow adequate to prevent freezing. Steam Lines already insulated.	None	None		5614-M-3084 SH 2
24	PTN	4	MSS / 072	5614-M-3072 SH 1	11	Piping	3/4" piping; 3/8" tubing Main steam to Secondary sample coolers (x3)	Yes	Requied for Power Generation; Main Steam pressure boundary	Normal Steam flow adequate to prevent freezing. However, small dia pipe/tube should be insulated	Protect	Ensure pipe and tubing are insulated. This is likely on a lower level of the TB and so a global strategy of enclosing the area with tarps and using space heaters may be taken.	Inspect during walkdown, insulation may already be present. Evaluate length of intrument tubing, valve, and port in proximity to active process line. Process fluid will be flowing and hot.	5614-M-3032 SH 2
25	PTN	4	MSS / 072	5614-M-3072 SH 1	12	Piping	3/4" piping (x3) Main steam to Wet Layup System	No	None - not active during normal operation Main steam pressure boundary	Dead Leg	Protect	Insulate 3/4" piping that may be exposed to outdoor conditions.	MS supply to wet layup system is isolated during normal operation. Downsteam valves SGWL-3-024, -022, -028, -030, -046, and -048 are locked closed during normal operation. See Dwg 5613-N-3078 SH 1, Note 4.	5614-N-3078 SH 1, Note 4
26	PTN	4	MSS / 072	5614-M-3072 SH 2	1	Piping	24" Steam dump header	Yes	Requied for Power Generation; Main Steam pressure boundary	Normal Steam flow adequate to prevent freezing. Steam Lines already insulated.	None	None		

Florida Power & Light Company Docket No. 20220000-OT

Ten-Year Site Plan
Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 287 of 488 R21002, Rev 0

R21002, Rev 0 Attachment L Page 154 of 198

														Pa
27	PTN	4	MSS / 072	5614-M-3072 SH 2	1	Vents / Drains / Misc. Connections	misc vent (assume 3/4")(closed root valve)	No	Main Steam pressure boundary	Dead Leg	Protect	Ensure vent and vent valve are well insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of vent piping and distance of valve to the active process line. Main line will be flowing and hot.	
28	PTN	4	MSS / 072	5614-M-3072 SH 2	2	Piping	10", 8" Main steam piping to MSRs (x4)	Yes	Requied for Power Generation; Main Steam pressure boundary	Normal Steam flow adequate to prevent freezing. Steam Lines already insulated.	None	None		
29	PTN	4	MSS / 072	5614-M-3072 SH 2	2	Instr. Local	Flow Element (FE), Flow Indication (FI), Temporary flow instrument (FX) 1/2", 3/8" tubing MSR inlet steam flow (x4)	Yes	None	Dead Leg	Protect	Ensure instrument and instrument lines are well insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of intrument tubing, valve, and port in proximity to active process line. Main line will be flowing and hot.	
30	PTN	4	MSS / 072	5614-M-3072 SH 2	2	Instr. Local	Pressure Indicators (PI) (PX) 3/4" pipe, 3/8" tubing MSR inlet pressure (x4)	Yes	None	Dead Leg	Protect	Ensure instrument and instrument lines are well insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of intrument tubing, valve, and port in proximity to active process line.	
31	PTN	4	MSS / 072	5614-M-3072 SH 2	2	Motor Operator Valve	8" MOV primary steam inlet to MSRs. MOV-4-1431, -1432, -1433, -1434	Yes	None	Normal Steam flow adequate to prevent freezing. Steam Lines already insulated.	None	None	Main line will be flowing and hot. Include with global freeze evaluation for MOVs.	
32	PTN	4	MSS / 072	5614-M-3072 SH 2	2	Vents / Drains / Misc. Connections	3/4" vent one per MSR inlet	No	None	Dead Leg	Protect	Ensure vent and vent valve are well insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of vent piping and distance of valve to the active process line. Main line will be flowing and hot.	
33	PTN	4	MSS / 072	5614-M-3072 SH 2	3	Piping	8" piping "Timing Loop" (MOV bypass) Contains temperature control valve (MSR inlet)	No	None	Stagnant line, connected to flowing steam line.	Mitigate	Consider cycling the control valve periodically (once per 24 hours) to keep line warm [2% freeze criteria].	Inspect during walkdown, insulation may already be present. Main line will be flowing and hot.	
34	PTN	4	MSS / 072	5614-M-3072 SH 2	3	Vents / Drains / Misc. Connections	one per MSR Drain (size unkown - estimate 3/4") one per timing loop	No	None	Dead Leg	Protect	Ensure drain and drain valve are well insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of drain piping and distance of valve to the active process line. Main line likely to be warm with intermitent operation and connection to main steam line to MSR.	
35	PTN	4	MSS / 072	5614-M-3072 SH 2	4	Piping	1" piping "purge loop" (MOV bypass) Contains air operated control valve (MSR inlet)	No	None	Stagnant line, connected to flowing steam line.	Mitigate	Given small diameter of pipe (1") ensure line is insulated. Consider cycling the control valve periodically (every 4-6 hours) to keep line warm [2% freeze criteria].	Inspect during walkdown, insulation may already be present. Main line will be flowing and hot.	
38	PTN	4	MSS / 072	5614-M-3072 SH 2	5	Piping	one per MSR 4" piping (x2) (MSR B to A supply crosstie, MSR D to C supply crosstie) 1/2" piping with steam traps (x10)	Yes	Maintain Steam Boundary	Normal Steam flow adequate to prevent freezing.	None	None	Inspect during walkdown, insulation may already be present. Process fluid will be flowing and hot.	
39	PTN	4	MSS / 072	5614-M-3072 SH 2	5	Strainers	Steam trap branches from main supply lines (x10)	Yes	Maintain Steam Boundary	Normal Steam flow adequate to prevent freezing.	None	Ensure each steam trap bypass (isolated) is insulated to prevent freezing. Insulate drain connection from each steam trap.	Inspect during walkdown, insulation may already be present. Evaluate length of drain piping and distance of valve to the active process line. Process fluid will be flowing and hot.	
40	PTN	4	MSS / 072	5614-M-3072 SH 2	5	Instr. Local	Flow Element (FE), Flow Indication (FI), Temporary flow instrument (FX) 1/2", 3/8" tubing 2 locations: 1/4" supply crosstie MSR A/B 2/4" supply crosstie MSR C/D	Yes	None	Dead Leg	Protect	Ensure instrument and instrument lines are well insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of intrument tubing, valve, and port in proximity to active process line. Main line will be flowing and hot.	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 288 of 488

R21002, Rev 0 Attachment L Page 155 of 198

														Pa
41	PTN	4	MSS / 072	5614-M-3072 SH 2	5	Vents / Drains / Misc. Connections	misc drains upstream of steam traps	No	None	Dead Leg	Protect	Ensure drain and drain valve are well insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of drain piping and distance of valve to the active process line. Main line likely to be warm with steam flow.	
42	PTN	4	MSS / 072	5614-M-3072 SH 2	6	Piping	12", 10", 18" Piping Includes 10" hydraulic steam dump valves. Steam dump header to steam dump valves, and discharge to	Standby	Requied for Power Generation; Main Steam pressure boundary	Normal Steam flow adequate to prevent freezing. Steam Lines already	None	None	Steam dump valves closed during normal operation, but minimum steam flow through dump valve leakoffs keep line warm and prevent freezing. Expect that steam dump lines are already insulated and in lower	
							condensers (x4)			insulated.			levels of the TB (partially enclosed.	
43	PTN	4	MSS / 072	5614-M-3072 SH 2	6	Vents / Drains / Misc. Connections	3/4" Drain (upstream of CV-3-2827)	No	Maintain Steam Boundary	Dead Leg	Protect	Ensure drain and drain valve are well insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of drain piping and distance of valve to the active process line.	
										Normal Steam flow		+	Main line likely to be warm with steam flow. Steam dump valves closed during normal operation, but minimum	
							Size unknown - estimate 1" or 2"			adequate to prevent freezing.			steam flow through dump valve leakoffs keep line warm and prevent freezing.	
44	PTN	4	MSS / 072	5614-M-3072 SH 2	7	Piping	Valve leakoff drain lines from steam dump valves to main	Yes	None	Steam Lines already	None	None	Expect that steam dump lines are already insulated and in lower	
							condenser.			insulated.			levels of the TB (partially enclosed).	
										Hydraulic oil likely has			Inspect during walkdown for exposure of hydraulic lines to extreme outdoor conditions. The valves are likely in lower level of	
										very low (below 0°F)			TB (partially enclosed), and close to condensers.	
45	PTN	4	MSS / 072	5614-M-3072 SH 2	8	Piping	Hydraulic oil lines for steam dump valve actuator.	Standby	None	freezing point. Freezing	None	None		
										of valve hydraulics unlikely.			Steam dump valve opening time is not critical to plant operation or safety function. No concern if hydraulic fluid is slightly more	
										drinkery.			viscous because of low outdoor temperatures.	
36	PTN	4	MSS / 072	5614-M-3072 SH 2	A B C a	Hoot Evelongers	MCD A. D. C. and D.	Vos	Requied for Power Generation;	Normal Steam flow	None	None	Inspect during walkdown, expect MSR is fully insulated.	
36	PIN	4	IVISS / U/2	5614-W-3072 SH 2	K A, B, C, al	Heat Exchangers	MSR A, B, C, and D	Yes	Main Steam pressure boundary	adequate to prevent freezing.	None	None	MSR will be hot, and not susceptible to freezing.	
							Temperature Element (TE),						Inspect during walkdown, expect MSR is fully insulated. Ensure	
37	PTN	4	MSS / 072	5614-M-3072 SH 2	R A, B, C, a	Instr. Control / Protection	temperature measurement is used as input into temperature	Yes	Requied for Power Generation;	Dead Leg	Protect	Ensure temperature element is insulated.	temperature element is insulated.	
							control valve on "timing loop"		Main Steam pressure boundary				MSR will be hot, and not susceptible to freezing.	
							(MSR steam inlet)						No components on this drawing are susceptible to moisture	
							1" instrument air piping, and		TS 3.7.1.5 - Each MSIV shall be	Instrument air lines will			accumulation and freezing.	
46	PTN	4	MSS / 072	5614-M-3072 SH 3	1	Piping	MSIV valve hold open components	Standby	operable (24hr LCO)	not freeze/fail	None	None	Inst Air lines (dry air)	
							1						MSIV body and valve stem - warm due to flowing steam.	
1	PTN	4	C / 12	5614-M-3073, Sh. 1	1	Piping	30" condensate suction Piping, pumps A, B, C	Yes	Required for power generation	Normally flowing	None	None		
						Vents / Drains / Misc.	pullips A, B, C					Insulate and heat trace.		
2	PTN	4	C / 12	5614-M-3073, Sh. 1	1	Connections	manual vent, drain lines	No	N/A	Dead Leg	Protect			
												Insulate and heat trace.		
3	PTN	4	C / 12	5614-M-3073, Sh. 1	1	Instr. Local	suction pressure gages	Yes	N/A	Dead Leg	Protect			
4	PTN	4	C / 12	5614-M-3073, Sh. 1	1	Relief Valves	relief valve	No	N/A	None	None	None		
5	PTN	4	C / 12	5614-M-3073, Sh. 1	2	Piping	1" & 1/2" condensate recirc to pump seals	Yes	Required for power generation	Normally flowing	None	None		
						Vents / Drains / Misc.						Insulate and heat trace.		
6	PTN	4	C / 12	5614-M-3073, Sh. 1	2	Connections	manual vents & drains	No	N/A	Dead Leg	Protect			
7	PTN	4	C / 12	5614-M-3073, Sh. 1	2	Strainers	condensate pump seal supply	Yes	Required for power generation	None	None	None	Normally flowing	
							strainers			+		Insulate and heat trace.		
8	PTN	4	C / 12	5614-M-3073, Sh. 1	2	Instr. Local	condensate pump seal supply pressure gages	Yes	N/A	Dead Leg	Protect			
			0.1:-		T .		condensate pump seal supply	.,				Insulate and heat trace.		
9	PTN	4	C / 12	5614-M-3073, Sh. 1	2	Instr. Local	flow indicator	Yes	N/A	Dead Leg	Protect			
10	PTN	4	C / 12	5614-M-3073, Sh. 1	3	Piping	18", 20" & 24" condensate discharge piping,	Yes	Required for power generation	None	None	None: lines normally flowing		
11	PTN	4	C / 12	5614-M-3073, Sh. 1	3	Instr. Annunciation / Indication	Condensate Pumps discharge line flow transmitter / indication	Yes	Required for power generation	Condensate flow control and annunciation in control room	Protect	Insulate and heat trace flow transmitter sensing lines		
						Vents / Drains / Misc.				Toolii		Insulate and heat trace.		
12	PTN	4	C / 12	5614-M-3073, Sh. 1	3	Connections	Manual drains	No	N/A	Dead Leg	Protect			
13	PTN	4	C / 12	5614-M-3073, Sh. 1	3	Vents / Drains / Misc. Connections	Manual vents	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
							1		1			1		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 289 of 488

R21002, Rev 0 Attachment L Page 156 of 198

														Pa
14	PTN	4	C / 12	5614-M-3073, Sh. 1	3	Vents / Drains / Misc. Connections	bypass/warmup valves around main isolation gate valves (x3)	No	N/A	A break at the bypass valves could compromise operating condensate header	Protect	Insulate and heat trace		
15	PTN	4	C / 12	5614-M-3073, Sh. 1	3	Instr. Local	local condensate pump discharge pressure instruments	Yes	N/A	Dead Leg	Protect	Insulate and heat trace.		
16	PTN	4	C / 12	5614-M-3073, Sh. 1	4	Piping	1" & 2" condensate pump casing vent return to hotwell	Yes	N/A	Normally flowing	None	None		
17	PTN	4	C / 12	5614-M-3073, Sh. 1	5	Piping	10" condensate pump recirc lines upstream of normally closed isolation	No	N/A	Break in these legs could compromise operating condensate header (upstream side of isolation valve) or condenser vacuum (downstream side)	Protect	Insulate, 2"	Condensate lines are likely insulated already	
18	PTN	4	C / 12	5614-M-3073, Sh. 1	5	Instr. Annunciation / Indication	Condensate Pumps recirc. line flow transmitter / indication	Standby	N/A	Dead Leg	Protect	Insulate and heat trace.		
19	PTN	4	C / 12	5614-M-3073, Sh. 1	5	Vents / Drains / Misc. Connections	Manual drains	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
20	PTN	4	C / 12	5614-M-3073, Sh. 1	5	Vents / Drains / Misc. Connections	Manual vents	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
21	PTN	4	C/12	5614-M-3073, Sh. 1	6	Piping	1/2", 3/8" & 1/4" condensate header sample lines	No	N/A	Breaks in these legs could compromise operating condensate header and preclude sampling capability	Protect	Insulate and heat trace Alternative: maintain trickle flow to sampling panel		
22	PTN	4	C / 12	5614-M-3073, Sh. 1	6	Instr. Local	local condensate discharge sample line pressure instruments and test point	Yes	N/A	Dead Leg	Protect	Insulate and heat trace.		
23	PTN	4	C / 12	5614-M-3073, Sh. 1	7	Piping	1" condensate pump seal supply from condensate header	Yes	Required for power generation	None	None	None: lines normally flowing		
24	PTN	4	C/12	5614-M-3073, Sh. 1	8	Piping	1/4", 1/2", & 1" hotwell sample pumps seal supply from condensate storage & condensate header	No	N/A	Break in this dead leg could compromise operating condensate header, CST inventory, and preclude sample pump operation.	Protect	Insulate and heat trace		
25	PTN	4	C / 12	5614-M-3073, Sh. 1	9	Piping	2" LP turbine steam exhaust hood spray	No	N/A	Breaks in this line could compromise operating condensate header or condenser vacuum.	Protect	Insulate and heat trace		
26	PTN	4	C / 12	5614-M-3073, Sh. 2	1	Piping	24" condensate line from the main condensate header to the LP heaters	Yes	Required for power generation	Normally flowing	None	None		
27	PTN	4	C / 12	5614-M-3073, Sh. 2	1	Vents / Drains / Misc. Connections	manual vent, drain, & abandoned lines	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
28	PTN	4	C / 12	5614-M-3073, Sh. 2	1	Instr. Local	temperature & pressure gages	Yes	N/A	Dead Leg	Protect	Insulate and heat trace.		
29	PTN	4	C / 12	5614-M-3073, Sh. 2	1	Instr. Annunciation / Indication	Condensate line flow transmitter / indication	Yes	Required for power generation	Condensate flow control and annunciation in control room	Protect	Insulate and heat trace flow transmitter sensing lines		
30	PTN	4	C / 12	5614-M-3073, Sh. 2	2	Piping	16" condensate line from heater drains to LP heaters bypass and FW pump discharge	Yes	Required for power generation	Normally flowing	None	None		
31	PTN	4	C/12	5614-M-3073, Sh. 2	3	Piping	14" condensate bypass line to LP heaters bypass and FW pump discharge	No	N/A	Breaks in this line could compromise operating condensate header or condenser vacuum.	Protect	Insulate and heat trace		
32	PTN	4	C / 12	5614-M-3073, Sh. 2	3	Vents / Drains / Misc. Connections	manual drain lines	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
33	PTN	4	C / 12	5614-M-3073, Sh. 2	4	Piping	1/2" condensate line to SJAE loop seal fill	No	N/A	Breaks in this line could compromise operating condensate header .		Insulate and heat trace.		

Florida Power & Light Company Docket No. 20220000-OT

Ten-Year Site Plan
Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 290 of 488 R21002, Rev 0

R21002, Rev 0 Attachment L Page 157 of 198

34	PTN	4	C / 12	5614-M-3073, Sh. 2	5	Piping	2" condensate line for surge tank makeup	No	N/A	Breaks in this line could compromise operating condensate header .		Insulate and heat trace.		
35	PTN	4	C/12	5614-M-3073, Sh. 2	5	Piping	1" condensate line to desuperheater valve (abandoned) and chem. addition	No	N/A	Breaks in this line could compromise operating condensate header .		Insulate and heat trace.		
36	PTN	4	C/12	5614-M-3073, Sh. 2	6	Piping	1/2" & 4" abandoned line	No	N/A	Breaks in this line could compromise operating condensate header .		Insulate and heat trace.		
37	PTN	4	C/12	5614-M-3073, Sh. 2	7	Piping	6" wet layup line	No	N/A	Breaks in this line could compromise operating condensate header .		Insulate and heat trace.		
38	PTN	4	C/12	5614-M-3073, Sh. 2	8	Piping	4" condensate line to discharge canal	No	N/A	Breaks in this line could compromise operating condensate header .		Insulate and heat trace.	Entire line is outside the TB. A portion of the line is buried.	
39	PTN	4	C / 12	5614-M-3073, Sh. 2	8	Vents / Drains / Misc. Connections	manual drain lines	No	N/A	Dead Leg	Protect	Insulate and heat trace.	Entire line is outside the TB.	
40	PTN	4	C / 12	5614-M-3073, Sh. 2	9	Piping	4" condensate line to heater drain pump suction	No	N/A	Breaks in this line could compromise operating condensate header .		Insulate and heat trace.		
41	PTN	4	C / 12	5614-M-3073, Sh. 2	10	Piping	14" condensate line through the	Yes	Required for power generation	Normally flowing	None	None		
42	PTN	4	C / 12	5614-M-3073, Sh. 2	10	Vents / Drains / Misc. Connections	gland steam condenser manual drain lines	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
43	PTN	4	C / 12	5614-M-3073, Sh. 2	10	Relief Valves	3/4" Relief valve off a 1" line	Standby	N/A	Dead Leg	Protect	Insulate and heat trace.		
44	PTN	4	C/12	5614-M-3073, Sh. 2	11	Piping	6" condensate line to DWST (capped)	No	N/A	Breaks in this line could compromise operating condensate header .		Insulate and heat trace.		
45	PTN	4	C / 12	5614-M-3073, Sh. 2	11	Vents / Drains / Misc. Connections	manual drain lines	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
46	PTN	4	C / 12	5614-M-3073, Sh. 2	11	Instr. Local	pressure gage	Yes	N/A	Dead Leg	Protect	Insulate and heat trace.		
47	PTN	4	C / 12	5614-M-3073, Sh. 2	12	Piping	4" condensate line to FW pump seals	Yes	Required for power generation	Normally flowing	None	None		
48	PTN	4	C / 12	5614-M-3073, Sh. 2	13	Piping	10" & 18" condensate line to condenser	Yes	Required for power generation	Normally flowing	None	None		
49	PTN	4	C / 12	5614-M-3073, Sh. 2	13	Piping	18" condensate branch line to condenser (downstream of valve 4-20-009)	Yes	N/A	Breaks in this line could compromise operating condensate header .		Insulate and heat trace.		
50	PTN	4	C / 12	5614-M-3073, Sh. 2	13	Piping	8" control valve bypass	No	N/A	Breaks in this line could compromise operating condensate header .		Insulate and heat trace.		
51	PTN	4	C / 12	5614-M-3073, Sh. 2	14	Piping	1/2" chemical injection line	No	N/A	Breaks in this line could compromise operating condensate header .		Insulate and heat trace.		
52	PTN	4	C / 12	5614-M-3073, Sh. 2	15	Piping	1/2" chemical injection line	No	N/A	Breaks in this line could compromise operating condensate header .		Insulate and heat trace.		
53	PTN	4	C / 12	5614-M-3073, Sh. 2	16	Piping	18"SJAE condenser bypass line	No	N/A	Breaks in this line could compromise operating condensate header .		Insulate and heat trace.		
54	PTN	4	C / 12	5614-M-3073, Sh. 3	1	Piping	24" main condensate header upstream of feed heaters	Yes	Required for power generation	None	None	None: lines normally flowing		
55	PTN	4	C / 12	5614-M-3073, Sh. 3	2	Piping	18" condensate through LP heaters 1A, 2A, 3A, 4A, 5A	Yes	Required for power generation	Normally flowing	None	None		
56	PTN	4	C / 12	5614-M-3073, Sh. 3	2	Vents / Drains / Misc. Connections	Manual drains	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
							1						1	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 291 of 488

R21002, Rev 0 Attachment L Page 158 of 198

													Pa
PTN	4	C / 12	5614-M-3073, Sh. 3	2	Vents / Drains / Misc. Connections	Manual vents	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
PTN	4	C / 12	5614-M-3073, Sh. 3	2	Vents / Drains / Misc. Connections	Pressure test connections	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
PTN	4	C / 12	5614-M-3073, Sh. 3	2	Vents / Drains / Misc. Connections	Pressure instruments and temperature elements	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
PTN	4	C / 12	5614-M-3073, Sh. 3	2	Relief Valves	LP heater condensate side relief valves	Yes	N/A	Dead Leg	Protect	Insulate and heat trace.	Relief valve not required at power	
PTN	4	C / 12	5614-M-3073, Sh. 3	3	Piping	18" condensate through LP heaters 1B, 2B, 3B, 4B, 5B	Yes	Required for power generation	Normally flowing	None	None		
PTN	4	C/12	5614-M-3073, Sh. 3	3	Vents / Drains / Misc. Connections	Manual drains	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
PTN	4	C / 12	5614-M-3073, Sh. 3	3	Vents / Drains / Misc. Connections	Manual vents	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
PTN	4	C / 12	5614-M-3073, Sh. 3	3	Vents / Drains / Misc. Connections	Pressure test connections	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
PTN	4	C / 12	5614-M-3073, Sh. 3	3	Vents / Drains / Misc. Connections	Pressure instruments and temperature elements	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
PTN	4	C / 12	5614-M-3073, Sh. 3	3	Relief Valves	LP heater condensate side relief valves	Yes	N/A	Dead Leg	Protect	Insulate and heat trace.	Relief valve not required at power	
PTN	4	C / 12	5614-M-3073, Sh. 3	4	Piping	14" FWH 1A, 1B, 2A, 2B bypass	No	N/A	Break in this line could compromise main condensate supply line	Protect	Insulate, 1"	This line should already be insulated, so protection should be limited to verifying insulation is installed / intact.	
PTN	4	C / 12	5614-M-3073, Sh. 3	5	Piping	2" and 3" connection to wet layup system (condensate side of isolation)	No	N/A	Break in this leg could compromise operating condensate header	Protect	Insulate and heat trace, up through first isolation valve		
PTN	4	C/12	5614-M-3073, Sh. 3	6	Piping	14" bypass lines around LP htrs 3A, 3B, 4A, 4B, 5A, and 5B	No	N/A	Break in these leg could compromise operating feedwater header	Protect			
PTN	4	C / 12	5614-M-3073, Sh. 3	6	Vents / Drains / Misc. Connections	Manual drains	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
PTN	4	C / 12	5614-M-3073, Sh. 3	6	Vents / Drains / Misc. Connections	Manual vents	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
PTN	4	C / 12	5614-M-3073, Sh. 3	7	Piping	12" and 16" heater drain tank pump discharge line	Yes	Required for power generation	Normally flowing	None	None		
PTN	4	FWS / 074	5614-M-3074, Sh. 1	1	Piping	14" & 20" FW pump suction line	Yes	Required for power generation	Normally flowing	None	None		
PTN	4	FWS / 074	5614-M-3074, Sh. 1	1	Instr. Local	Feed pump suction local pressure gages	Yes	N/A	Dead Leg	Protect	Insulate and heat trace.		
PTN	4	FWS / 074	5614-M-3074, Sh. 1	1	Vents / Drains / Misc. Connections	Manual vents & drains	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
PTN	4	FWS / 074	5614-M-3074, Sh. 1	1	Instr. Control / Protection	Feedwater suction line pressure transmitters	Yes	Required for power generation	Feedwater suction pressure signal to DCS	Protect	Insulate and heat trace pressure transmitter sensing line		
PTN	4	FWS / 074	5614-M-3074, Sh. 1	1	Instr. Control / Protection	Feedwater suction line flow	Yes	Required for power generation	Feedwater suction flow	Protect	insulate and heat trace flow transmitter sensing		
PTN	4	FWS / 074	5614-M-3074, Sh. 1	2	Piping		Yes			None	None		
	4	FWS / 074	5614-M-3074, Sh. 1	2	Instr. Control / Protection	Feed pump discharge pressure transmitter to recirc. CV	Yes	N/A	Feedwater discharge pressure signal to ADC	Protect	Insulate and heat trace.		
PTN	4	FWS / 074	5614-M-3074, Sh. 1	2	Motor Operator Valve	Feed pump discharge isolation MOVs	Yes	Close on SIAS	Normally open with process fluid flowing	None	None	Include with global freeze evaluation for MOVs	
PTN	4	FWS / 074	5614-M-3074, Sh. 1	2	Piping	14" FW pump discharge crosstie	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
PTN	4	FWS / 074	5614-M-3074, Sh. 1	3	Piping	8" FW recirc line back to FW pump suction	Standby	N/A	feedwater header	Protect			
PTN	4	FWS / 074	5614-M-3074, Sh. 1	3	Instr. Control / Protection	Recirc line flow transmitter	Standby	N/A	Feedwater recirc. flow signal to ADC	Protect	insulate and heat trace flow transmitters		
PTN	4	FWS / 074	5614-M-3074, Sh. 1	3	Vents / Drains / Misc. Connections	Manual vents & drains	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
	PTN	PTN 4	PTN	PTN 4 C/12 5614-M-3073, Sh. 3 PTN 4 FWS/074 5614-M-3073, Sh. 1 PTN 4	PTN 4 C/12 5614-M-3073, Sh. 3 2 PTN 4 C/12 5614-M-3073, Sh. 3 2 PTN 4 C/12 5614-M-3073, Sh. 3 2 PTN 4 C/12 5614-M-3073, Sh. 3 3 PTN 4 C/12 5614-M-3073, Sh. 3 6 PTN 4 C/12 5614-M-3073, Sh. 3 6 PTN 4 C/12 5614-M-3073, Sh. 3 6 PTN 4 C/12 5614-M-3073, Sh. 3 7 PTN 4 C/12 5614-M-3073, Sh. 3 7	PTN 4 C/12 5614-M-3073, Sh. 3 2 Connections PTN 4 C/12 5614-M-3073, Sh. 3 2 Vents / Drains / Misc. Connections PTN 4 C/12 5614-M-3073, Sh. 3 2 Vents / Drains / Misc. Connections PTN 4 C/12 5614-M-3073, Sh. 3 3 Piping PTN 4 C/12 5614-M-3073, Sh. 3 3 Vents / Drains / Misc. Connections PTN 4 C/12 5614-M-3073, Sh. 3 3 Vents / Drains / Misc. Connections PTN 4 C/12 5614-M-3073, Sh. 3 3 Vents / Drains / Misc. Connections PTN 4 C/12 5614-M-3073, Sh. 3 3 Vents / Drains / Misc. Connections PTN 4 C/12 5614-M-3073, Sh. 3 3 Relief Valves PTN 4 C/12 5614-M-3073, Sh. 3 5 Piping PTN 4 C/12 5614-M-3073, Sh. 3 6 Piping PTN 4 C/12 5614-M-3073, Sh. 3 <td>FIN 4 C / 12 S614-M-3073, Sh. 3 2 Connections Pressure test connections PTN 4 C / 12 S614-M-3073, Sh. 3 2 Vents / Drains / Misc. Connections Pressure test connections PTN 4 C / 12 S614-M-3073, Sh. 3 2 Vents / Drains / Misc. Connections Pressure instruments and temperature elements PTN 4 C / 12 S614-M-3073, Sh. 3 3 Pipping 18° condensate through IP meater condensate side relief valves PTN 4 C / 12 S614-M-3073, Sh. 3 3 Vents / Drains / Misc. Connections Manual drains PTN 4 C / 12 S614-M-3073, Sh. 3 3 Vents / Drains / Misc. Connections Pressure test connections PTN 4 C / 12 S614-M-3073, Sh. 3 3 Vents / Drains / Misc. Connections Pressure test connections PTN 4 C / 12 S614-M-3073, Sh. 3 3 Vents / Drains / Misc. Connections Pressure test connections PTN 4 C / 12 S614-M-3073, Sh. 3 3 Relief valves Pressure test</td> <td>PTN 4 C / 12 S614-M-3073, Sh. 3 2 Vents / Drains / Misc. PTN 4 C / 12 S614-M-3073, Sh. 3 2 Vents / Drains / Misc. Connections PTN 4 C / 12 S614-M-3073, Sh. 3 2 Vents / Drains / Misc. Connections PTN 4 C / 12 S614-M-3073, Sh. 3 3 Piping 18° condensate side relief valves PTN 4 C / 12 S614-M-3073, Sh. 3 3 Piping 18° condensate through IP yes PTN 4 C / 12 S614-M-3073, Sh. 3 3 Vents / Drains / Misc. Connections PTN 4 C / 12 S614-M-3073, Sh. 3 3 Vents / Drains / Misc. Connections PTN 4 C / 12 S614-M-3073, Sh. 3 3 Vents / Drains / Misc. Connections PTN 4 C / 12 S614-M-3073, Sh. 3 3 Vents / Drains / Misc. Connections PTN 4 C / 12 S614-M-3073, Sh. 3 3 Vents / Drains / Misc. Connections PTN 4 C / 12 S614-M-3073, Sh. 3 3 Vents / Drains / Misc. Connections PTN 4 C / 12 S614-M-3073, Sh. 3 3 Vents / Drains / Misc. Connections PTN 4 C / 12 S614-M-3073, Sh. 3 3 Piping 14° Fresture test connections PTN 4 C / 12 S614-M-3073, Sh. 3 3 Piping 14° Fresture test connections PTN 4 C / 12 S614-M-3073, Sh. 3 3 Piping 14° Fresture test connections PTN 4 C / 12 S614-M-3073, Sh. 3 5 Piping 14° Fresture test connections PTN 4 C / 12 S614-M-3073, Sh. 3 6 Piping 14° Fresture test connections PTN 4 C / 12 S614-M-3073, Sh. 3 6 Piping 14° Fresture test connections PTN 4 C / 12 S614-M-3073, Sh. 3 6 Piping 14° Fresture test connections PTN 4 C / 12 S614-M-3073, Sh. 3 6 Piping 14° Fresture test connections PTN 4 C / 12 S614-M-3073, Sh. 3 6 Piping 14° Fresture test connections PTN 4 C / 12 S614-M-3073, Sh. 3 6 Piping 14° Fresture test connections PTN 5 Fresture test connections PTN 6 Fresture test connections PTN 7 Piping 14° Fresture test connections PTN 8 Fresture test connections PTN 9 Fresture test connections PTN 10 Fresture test through IP yes PTN 10 Fresture through IP yes PTN 10 Fresture through IP yes PTN 10 Fresture through IP ye</td> <td> PTN</td> <td> First </td> <td> Prof. </td> <td> Manual Professor Manual Prof</td> <td> </td>	FIN 4 C / 12 S614-M-3073, Sh. 3 2 Connections Pressure test connections PTN 4 C / 12 S614-M-3073, Sh. 3 2 Vents / Drains / Misc. Connections Pressure test connections PTN 4 C / 12 S614-M-3073, Sh. 3 2 Vents / Drains / Misc. Connections Pressure instruments and temperature elements PTN 4 C / 12 S614-M-3073, Sh. 3 3 Pipping 18° condensate through IP meater condensate side relief valves PTN 4 C / 12 S614-M-3073, Sh. 3 3 Vents / Drains / Misc. Connections Manual drains PTN 4 C / 12 S614-M-3073, Sh. 3 3 Vents / Drains / Misc. Connections Pressure test connections PTN 4 C / 12 S614-M-3073, Sh. 3 3 Vents / Drains / Misc. Connections Pressure test connections PTN 4 C / 12 S614-M-3073, Sh. 3 3 Vents / Drains / Misc. Connections Pressure test connections PTN 4 C / 12 S614-M-3073, Sh. 3 3 Relief valves Pressure test	PTN 4 C / 12 S614-M-3073, Sh. 3 2 Vents / Drains / Misc. PTN 4 C / 12 S614-M-3073, Sh. 3 2 Vents / Drains / Misc. Connections PTN 4 C / 12 S614-M-3073, Sh. 3 2 Vents / Drains / Misc. Connections PTN 4 C / 12 S614-M-3073, Sh. 3 3 Piping 18° condensate side relief valves PTN 4 C / 12 S614-M-3073, Sh. 3 3 Piping 18° condensate through IP yes PTN 4 C / 12 S614-M-3073, Sh. 3 3 Vents / Drains / Misc. Connections PTN 4 C / 12 S614-M-3073, Sh. 3 3 Vents / Drains / Misc. Connections PTN 4 C / 12 S614-M-3073, Sh. 3 3 Vents / Drains / Misc. Connections PTN 4 C / 12 S614-M-3073, Sh. 3 3 Vents / Drains / Misc. Connections PTN 4 C / 12 S614-M-3073, Sh. 3 3 Vents / Drains / Misc. Connections PTN 4 C / 12 S614-M-3073, Sh. 3 3 Vents / Drains / Misc. Connections PTN 4 C / 12 S614-M-3073, Sh. 3 3 Vents / Drains / Misc. Connections PTN 4 C / 12 S614-M-3073, Sh. 3 3 Piping 14° Fresture test connections PTN 4 C / 12 S614-M-3073, Sh. 3 3 Piping 14° Fresture test connections PTN 4 C / 12 S614-M-3073, Sh. 3 3 Piping 14° Fresture test connections PTN 4 C / 12 S614-M-3073, Sh. 3 5 Piping 14° Fresture test connections PTN 4 C / 12 S614-M-3073, Sh. 3 6 Piping 14° Fresture test connections PTN 4 C / 12 S614-M-3073, Sh. 3 6 Piping 14° Fresture test connections PTN 4 C / 12 S614-M-3073, Sh. 3 6 Piping 14° Fresture test connections PTN 4 C / 12 S614-M-3073, Sh. 3 6 Piping 14° Fresture test connections PTN 4 C / 12 S614-M-3073, Sh. 3 6 Piping 14° Fresture test connections PTN 4 C / 12 S614-M-3073, Sh. 3 6 Piping 14° Fresture test connections PTN 5 Fresture test connections PTN 6 Fresture test connections PTN 7 Piping 14° Fresture test connections PTN 8 Fresture test connections PTN 9 Fresture test connections PTN 10 Fresture test through IP yes PTN 10 Fresture through IP yes PTN 10 Fresture through IP yes PTN 10 Fresture through IP ye	PTN	First	Prof.	Manual Professor Manual Prof	

Florida Power & Light Company Docket No. 20220000-OT

Ten-Year Site Plan
Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 292 of 488

R21002, Rev 0 Attachment L Page 159 of 198

13	PTN	4	FWS / 074	5614-M-3074, Sh. 1	4	Piping	6" & 8" FW recirc line back to condenser	Standby	N/A	Break in this leg could compromise operating feedwater line or condenser vacuum	Protect	Insulate, 1" (see remarks) Alternative: Pipe geometry may result in this line being normally drained of liquid.	This line should already be insulated, so protection should be limited to verifying insulation is installed / intact.	
14	PTN	4	FWS / 074	5614-M-3074, Sh. 1	4	Instr. Control / Protection	Recirc line flow transmitter	Standby	N/A	Feedwater recirc. flow	Protect	insulate and heat trace flow transmitters		
			<u> </u>	-				,		signal to ADC		Insulate and heat trace.		
15	PTN	4	FWS / 074	5614-M-3074, Sh. 1	4	Vents / Drains / Misc. Connections	Manual drains	No	N/A	Dead Leg	Protect			
16	PTN	4	FWS / 074	5614-M-3074, Sh. 1	4	Vents / Drains / Misc. Connections	Manual vents	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
17	PTN	4	FWS / 074	5614-M-3074, Sh. 1	5	Piping	14" line from heater drain system	No	N/A	Break in this leg could compromise operating feedwater line	Protect	Insulate, 1" (see remarks)	This line should already be insulated, so protection should be limited to verifying insulation is installed / intact.	
18	PTN	4	FWS / 074	5614-M-3074, Sh. 2	1	Piping	18" & 24" FW pump discharge to HP FWH	Yes	Required for power generation	Normally flowing	None	None	All FW pump lube oil lines assumed to be impervious to freezing effects.	
19	PTN	4	FWS / 074	5614-M-3074, Sh. 2	1	Vents / Drains / Misc. Connections	Manual vents & drains	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
20	PTN	4	FWS / 074	5614-M-3074, Sh. 2	1	Vents / Drains / Misc. Connections	Bypass/warmup valves around FWH 3-way valves	No	N/A	A break at the bypass valves could compromise operating FW header	Protect	Insulate and heat trace Alternative: routing through warm regions of the TB or proximity of isolation valve to flowing FW header may preclude freezing		
21	PTN	4	FWS / 074	5614-M-3074, Sh. 2	1	Instr. Local	Pressure & temperature indication	Yes	N/A	Dead Leg	Protect	Insulate and heat trace.		
22	PTN	4	FWS / 074	5614-M-3074, Sh. 2	2	Piping	18" & 24" feedwater bypass around HP heaters 6A/6B	No	N/A	Break in this leg could compromise operating feedwater header	Protect	Insulate, 1"	This line should already be insulated, so protection should be limited to verifying insulation is installed / intact.	
23	PTN	4	FWS / 074	5614-M-3074, Sh. 2	3	Piping	FW pump lube oil cooler cooling water	Yes	Required for power generation	Normally flowing	None	None		
24	PTN	4	FWS / 074	5614-M-3074, Sh. 2	4	Piping	12" branch line off main FW header	No	N/A	Break in this leg could compromise operating feedwater header	Protect	Insulate and heat trace		
25	PTN	4	FWS / 074	5614-M-3074, Sh. 2	4	Vents / Drains / Misc. Connections	Manual vents & drains	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
26	PTN	4	FWS / 074	5614-M-3074, Sh. 2	5	Piping	10" line to the condenser	No	N/A	Dead Leg	Protect	Insulate and heat trace.	This line should already be insulated, so protection should be limited to verifying insulation is installed / intact.	
27	PTN	4	FWS / 074	5614-M-3074, Sh. 2	6	Piping	10" line to the condenser	No	N/A	Dead Leg	Protect	Insulate and heat trace.	This line should already be insulated, so protection should be limited to verifying insulation is installed / intact.	
28	PTN	4	FWS / 074	5614-M-3074, Sh. 2	7	Piping	6" line to wet layup	No	N/A	Dead Leg	Protect	Insulate and heat trace.	This line is isolated and capped.	
29	PTN	4	FWS / 074	5614-M-3074, Sh. 2	8	Piping	10" line to circ water and the discharge canal	No	N/A	Dead Leg	Protect	Insulate and heat trace.	This line should already be insulated, so protection should be limited to verifying insulation is installed / intact.	
30	PTN	4	FWS / 074	5614-M-3074, Sh. 2	8	Vents / Drains / Misc. Connections	Manual vents & drains	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
31	PTN	4	FWS / 074	5614-M-3074, Sh. 2	9	Piping	4" FW pump seal water return	Yes	N/A	Normally flowing	None	None		
32	PTN	4	FWS / 074	5614-M-3074, Sh. 2	9	Vents / Drains / Misc. Connections	Manual vents	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
33	PTN	4	FWS / 074	5614-M-3074, Sh. 2	9	Instr. Local	Temperature indication	Yes	N/A	Dead Leg	Protect	Insulate and heat trace.		
34	PTN	4	FWS / 074	5614-M-3074, Sh. 2	9	Tank	FW Pump seal water tank	Yes	N/A	Normally flowing	None	None		
35	PTN	4	FWS / 074	5614-M-3074, Sh. 2	10	Piping	2", 3" & 4" FW pump seal water supply	Yes	N/A	Normally flowing	None	None		
36	PTN	4	FWS / 074	5614-M-3074, Sh. 2	10	Vents / Drains / Misc. Connections	Manual drains	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
37	PTN	4	FWS / 074	5614-M-3074, Sh. 2	10	Instr. Local	Pressure & diff. pressure indication	Yes	N/A	Dead Leg	Protect	Insulate and heat trace.		
38	PTN	4	FWS / 074	5614-M-3074, Sh. 2	11	Piping	2" & 3" FW pump seal water return to heater drain tank	Yes	N/A	Normally flowing	None	None		

Florida Power & Light Company Docket No. 20220000-OT

Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 293 of 488

R21002, Rev 0 Attachment L Page 160 of 198

39	PTN	4	FWS / 074	5614-M-3074, Sh. 2	11	Instr. Local	Pressure & temperature indication	Yes	N/A	Dead Leg	Protect	Insulate and heat trace.		
40	PTN	4	FWS / 074	5614-M-3074, Sh. 2	11	Vents / Drains / Misc. Connections	Manual vents & drains	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
41	PTN	4	FWS / 074	5614-M-3074, Sh. 2	11	Piping	3" CV bypass line	No	N/A	Break in this leg could compromise FW pump operation	Protect	Insulate and heat trace.		
42	PTN	4	FWS / 074	5614-M-3074, Sh. 2	12	Piping	3" FW pump seal water crosstie line	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
43	PTN	4	FWS / 074	5614-M-3074, Sh. 2	13	Piping	3" & 4" seal water tank level control line to the condenserFW pump seal water crosstie line	Yes	N/A	Normally flowing	None	None		
44	PTN	4	FWS / 074	5614-M-3074, Sh. 2	13	Vents / Drains / Misc. Connections	Manual vents & drains	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
45	PTN	4	FWS / 074	5614-M-3074, Sh. 2	14	Piping	1/2" chemical injection lines	No	N/A	Dead Leg	Protect	Insulate and heat trace.	No longer in service.	
46	PTN	4	FWS / 074	5614-M-3074, Sh. 2	15	Piping	6" Standby FW pump line	Standby	N/A	Dead Leg	Protect	Insulate and heat trace.	This line should already be insulated, so protection should be limited to verifying insulation is installed / intact.	
47	PTN	4	FWS / 074	5614-M-3074, Sh. 3	1	Piping	14" & 24" FW headers, including feed reg valves, LEFM and feed isolation valves	Yes	Required for power generation	Normally flowing	None	None		
48	PTN	4	FWS / 074	5614-M-3074, Sh. 3	1	Motor Operator Valve	motor-operated FRV isolation valve	No	N/A - not required to reposition for normal or accident	Remains open	None	None	Include with global freeze evaluation for MOVs	
49	PTN	4	FWS / 074	5614-M-3074, Sh. 3	1	Instr. Control / Protection	LEFM pressure transmitters	Yes		Ensure LEFM input to continuous calorimetric analysis	Protect	insulate and heat trace LEFM pressure transmitter sensing lines		
50	PTN	4	FWS / 074	5614-M-3074, Sh. 3	1	Instr. Control / Protection	Venturi flow transmitters	Yes	N/A	backup to LEFM, input to DCS	Protect	insulate and heat trace venturi flow transmitters		
51	PTN	4	FWS / 074	5614-M-3074, Sh. 3	1	Instr. Annunciation / Indication	Feed header pressure control room indication	Yes	N/A	Preserve control room feedwater pressure indication	Protect	Insulate and heat trace pressure transmitter sensing lines		
52	PTN	4	FWS / 074	5614-M-3074, Sh. 3	2	Piping	6" line from condensate transfer pumps	No	N/A	A break in this line could compromise operating FW header	Protect	Insulate and heat trace		
53	PTN	4	FWS / 074	5614-M-3074, Sh. 3	3	Piping	6" FW motor-operated FRV bypass	No		Break in this leg could	Protect		This line should already be insulated, so protection should be limited to verifying insulation is installed / intact.	
54	PTN	4	FWS / 074	5614-M-3074, Sh. 3	4	Piping	4" AFW piping connected to main feed headers	Standby	by equipment inoperable: -Restore to both flow paths within 72 hrs.	Maintain aux feedwater injection capability after reactor trip for sensible and decay heat removal to achieve cold shutdown.	Protect		This line should already be insulated, so protection should be limited to verifying insulation is installed / intact.	
55	PTN	4	FWS / 074	5614-M-3074, Sh. 3	5	Piping	1/2" Piping (hydrazine injection)	Yes			None	None		
56	PTN	4	FWS / 074	5614-M-3074, Sh. 3	6	Piping	2" line to/from wet layup	No	N/A	A break at the bypass valves could compromise operating FW header	Protect	Insulate and heat trace		
57	PTN	4	FWS / 074	5614-M-3074, Sh. 4	1	Piping	6" blowdown piping	Yes	Required for power generation	Normally flowing	None	None		
58	PTN	4	FWS / 074	5614-M-3074, Sh. 4	1	Vents / Drains / Misc. Connections	3/4" test connections	No		Dead Leg	Protect	Insulate and heat trace.		
59	PTN	4	FWS / 074	5614-M-3074, Sh. 4	1	Vents / Drains / Misc. Connections	3/4" manual vents	No	N/A	Dead Leg	Protect	Insulate and heat trace.		
60	PTN	4	FWS / 074	5614-M-3074, Sh. 4	1	Instr. Control / Protection	Flow transmitters	Yes	N/A	Blowdown flow signal to ADC	Protect	Insulate and heat trace.		
61	PTN	4	FWS / 074	5614-M-3074, Sh. 4	1	Instr. Local	Temperature indication	Yes	N/A	Dead Leg	Protect	Insulate and heat trace.		
62	PTN	4	FWS / 074	5614-M-3074, Sh. 4	1	Piping	3/4" & 2" CV bypass line	No		Dead Leg	Protect	Insulate and heat trace.		
63	PTN	4	FWS / 074	5614-M-3074, Sh. 4	2	Tank	7250 gal. SG Blowdown Tank	Yes		Normally flowing, maintained at >350 F	None	None		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 294 of 488

R21002, Rev 0 Attachment L Page 161 of 198

													F
64	PTN	4	FWS / 074	5614-M-3074, Sh. 4	2	Piping	6", 8" & 14" Blowdown Tank relief lines	Yes	N/A	Dead Leg	Protect	Insulate and heat trace.	This line should already be insulated, so protection should be limited to verifying insulation is installed / intact.
65	PTN	4	FWS / 074	5614-M-3074, Sh. 4	2	Piping	8" & 10" Blowdown Tank relief valve discharge lines	No	N/A	Open to drain	None	None	
66	PTN	4	FWS / 074	5614-M-3074, Sh. 4	2	Instr. Control / Protection	Blowdown Tank level instrumentation lines	Yes	N/A	Dead Leg	Protect	insulate and heat trace.	
67	PTN	4	FWS / 074	5614-M-3074, Sh. 4	3	Piping	6", 8", & 10" SG Blowdown Tank discharge line	Yes	N/A	Normally flowing	None	None	
68	PTN	4	FWS / 074	5614-M-3074, Sh. 4	3	Vents / Drains / Misc. Connections	Manual vents & drains	No	N/A	Dead Leg	Protect	Insulate and heat trace.	
69	PTN	4	FWS / 074	5614-M-3074, Sh. 4	3	Piping	6" isolated abandoned HX line	No	N/A	Dead Leg	None	Insulate and heat trace.	This line should already be insulated, so protection should be limited to verifying insulation is installed / intact.
70	PTN	4	FWS / 074	5614-M-3074, Sh. 4	3	Vents / Drains / Misc. Connections	Relief Valve	No	N/A	Dead Leg	Protect	Insulate and heat trace.	This line should already be insulated, so protection should be limited to verifying insulation is installed / intact.
71	PTN	4	FWS / 074	5614-M-3074, Sh. 4	3	Instr. Local	Flow transmitter	Yes	N/A	Dead Leg	Protect	insulate and heat trace.	
72	PTN	4	FWS / 074	5614-M-3074, Sh. 4	4	Piping	1 1/2" & 2" blowdown tank steam discharge to the condenser	No	N/A	Dead Leg	None	Insulate and heat trace.	This line should already be insulated, so protection should be limited to verifying insulation is installed / intact.
73	PTN	4	FWS / 074	5614-M-3074, Sh. 4	4	Vents / Drains / Misc. Connections	Manual drains	No	N/A	Dead Leg	Protect	Insulate and heat trace.	
74	PTN	4	FWS / 074	5614-M-3074, Sh. 4	4	Piping	3/4" strainer bypass	No	N/A	Dead Leg	None	Insulate and heat trace.	
75	PTN	4	FWS / 074	5614-M-3074, Sh. 4	5	Piping	12", 16", & 20" blowdown tank steam discharge to extraction steam	No	N/A	Dead Leg	None	Insulate and heat trace.	This line should already be insulated, so protection should be limited to verifying insulation is installed / intact.
76	PTN	4	FWS / 074	5614-M-3074, Sh. 4	5	Vents / Drains / Misc. Connections	Manual vents	No	N/A	Dead Leg	Protect	Insulate and heat trace.	
77	PTN	4	FWS / 074	5614-M-3074, Sh. 4	6	Piping	1" SG Blowdown sample system return	Yes	N/A	Normally flowing	None	None	
78	PTN	4	FWS / 074	5614-M-3074, Sh. 4	7	Piping	2 1/2" waste holdup tank connection	No	N/A	Dead Leg	None	Insulate and heat trace.	This line should already be insulated, so protection should be limited to verifying insulation is installed / intact.
79	PTN	4	FWS / 074	5614-M-3074, Sh. 4	8	Piping	2" wet layup line	No	N/A	Dead Leg	None	Insulate and heat trace.	
80	PTN	4	FWS / 074	5614-M-3074, Sh. 4	9	Piping	20" Blowdown Tank exhaust to atmosphere	No	N/A	Line is void of water due to open drain	None	None	
1	PTN	4	FWS / 074	5614-M-3074, Sh. 5	1	Instr. Control / Protection	LEFM pressure, flow and temperature transmitters + Pressure test points and Vent	Yes	Required for power generation	Ensure LEFM input to continuous calorimetric analysis	Protect	Heat Trace and Insulate LEFM instrument transmitter sensing lines.	
2	PTN	4	FWS / 074	5614-M-3074, Sh. 5	2	Instr. Control / Protection	Air and instrument electrical lines for FW Regulating Valve Positioners	Yes	Required for power generation	Ensure required air for FCV positioning	None		No protection required for the FW Reg VIv Positioners - fully controlled by instrument air and instrument electrical, which is not subject to freezing or adverse impact by cold weather.
1	PTN	4	AFWS / 075	5614-M-3075 Sh 1	1	Piping	3" steam piping up to AFW steam supply MOV	Yes	Tech Spec 3.7.1.2 requires 2 independent AFW trains including 3 steam supplies, 3 pumps and discharge flowpaths	Maintain steam supply to AFW for decay heat removal	none	Piping is insulated and maintained at steam-filled conditions on standby with condensate traps on service.	0-ONOP-103.2 acknowledges AFW is subject to cold weather and may require additional mitigation.
2	PTN	4	AFWS / 075	5614-M-3075 Sh 1	1	Vents / Drains / Misc. Connections	3/4" Test Connection	No	Tech Spec 3.7.1.2	AFW Pressure Boundary/dead leg	protect	configuration and location. Not required if upward-oriented.	0-ONOP-103.2 acknowledges AFW is subject to cold weather and may require additional mitigation.
3	PTN	4	AFWS / 075	5614-M-3075 Sh 1	1	Motor Operator Valve	MOVS from Main Steam to Steam Turbines, normally closed	No	Tech Spec 3.7.1.2	Maintain steam supply to AFW for decay heat removal		Determine if MOV is susceptible to be adversely impacted by cold weather and if protection is required.	0-ONOP-103.2 acknowledges AFW is subject to cold weather and may require additional mitigation.
4	PTN	4	AFWS / 075	5614-M-3075 Sh 1	2	Piping	3" steam drain trap piping upstream of AFW steam supply MOV	Yes	Tech Spec 3.7.1.2	Maintain steam supply to AFW for decay heat removal	none	Trap drain piping is continually supplied from on- service steam trap from steam-filled AFW supply lines.	0-ONOP-103.2 acknowledges AFW is subject to cold weather and may require additional mitigation.
5	PTN	4	AFWS / 075	5614-M-3075 Sh 1	3	Piping	manual drain trap piping, 1/2"	No	N/A	AFW steam supply pressure boundary (dead leg, manual steam trap drain)	none	Piping is insulated and maintained at steam-filled conditions on standby with condensate traps on service.	0-ONOP-103.2 acknowledges AFW is subject to cold weather and may require additional mitigation.
6	PTN	4	AFWS / 075	5614-M-3075 Sh 1	4	Piping	4" steam piping, downstream of steam supply MOV to AFW pump turbines	No	Tech Spec 3.7.1.2	Maintain steam supploy to AFW for decay heat removal	protect	Check insulation status and routing. Determine how much residual water can be held in the piping, if that would be subject to freezing. If already insulated and minimal amount of water could freeze in line, no additional protection required.	0-ONOP-103.2 acknowledges AFW is subject to cold weather and may require additional mitigation.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 295 of 488

R21002, Rev 0 Attachment L Page 162 of 198

7	PTN	4	AFWS / 075	5614-M-3075 Sh 1	4	Vents / Drains / Misc. Connections	3/4" and 1/2" connections	No	Tech Spec 3.7.1.2	AFW Pressure Boundary/dead leg	protect	Check if insulated and routing. Determine how much residual water can be held in the piping, if that would be subject to freezing. If already insulated and minimal amount of water could freeze in line, no additional protection required. Verify no downward-oriented dead-end connections	0-ONOP-103.2 acknowledges AFW is subject to cold weather and may require additional mitigation.	
8	PTN	4	AFWS / 075	5614-M-3075 Sh 1	5	Piping	1/2" steam trap drain lines	Yes	None	-	none	No protection required, steam trap drain normally on service providing drain path back to condenser		
9	PTN	4	AFWS / 075	5614-M-3075 Sh 1	6	Piping	1/2" bypass pipe, SR side	No	Tech Spec 3.7.1.2	AFW Pressure Boundary/dead leg	protect	Possible insulate / heat trace to maintain pressure boundary, depending on routing configuration and location.	0-ONOP-103.2 acknowledges AFW is subject to cold weather and may require additional mitigation.	
10	PTN	4	AFWS / 075	5614-M-3075 Sh 1	7	Piping	1/2" bypass pipe, NNS side	No	None	Pressure boundary for condenser vacuum	protect	Possible insulate / heat trace to maintain pressure boundary, depending on routing configuration and location.	0-ONOP-103.2 acknowledges AFW is subject to cold weather and may require additional mitigation.	
11	PTN	4	AFWS / 075	5614-M-3075 Sh 1	8	Piping	4" & 6" piping from aux steam, NNS	No	None	-	none	check insulated; piping is maintained at steam- filled conditions in standby, should provide sufficient heat, verifiy via walkdown that closed valve would not collect condensate		
12	PTN	4	AFWS / 075	5614-M-3075 Sh 1	9	Piping	1" drain on line to steam trap drain header	No	Tech Spec 3.7.1.2	AFW Pressure Boundary/dead leg	protect	Possible insulate / heat trace to maintain pressure boundary, depending on routing configuration and location.	0-ONOP-103.2 acknowledges AFW is subject to cold weather and may require additional mitigation.	
13	PTN	4	AFWS / 075	5614-M-3075 Sh 1	10	Piping	AFW steam supply trap bypass line	No	Tech Spec 3.7.1.2	AFW and/or condenser vacuum pressure boundary/dead leg	protect	Possible insulate / heat trace to maintain pressure boundary, depending on routing configuration and location.	0-ONOP-103.2 acknowledges AFW is subject to cold weather and may require additional mitigation.	
14	PTN	4	AFWS / 075	5614-M-3075 Sh 1	11	Piping	1/2" AFW supply steam trap drain manual discharge tailpieces	No	None	None	None	Normally isolated, not required for power operation, normally drains to floor drains		
15	PTN	4	AFWS / 075	5614-M-3075 Sh 1	12	Piping	1/2" drain from isolated Aux Stm supply check valve	No	Tech Spec 3.7.1.2	AFW Steam Supply Pressure Boundary	Protect	Check if insulated and routing. Determine how much residual water can be held in the piping. Upstream line is not normally pressurized / steam filled, so steam trap is not normally passing hot condensate, and any residual liquid could be subject to freezing. If orientation precludes collection of condensate, no action required.	0-ONOP-103.2 acknowledges AFW is subject to cold weather and may require additional mitigation.	
16	PTN	4	AFWS / 075	5614-M-3075 Sh 1	13	Piping	1/2" bypass around drain from isolated Aux Stm supply check valve	No	Tech Spec 3.7.1.2	AFW Steam Supply Pressure Boundary	Protect	Check if insulated and routing. Determine how much residual water can be held in the piping. Upstream line is not normally pressurized / steam filled, so steam trap is not normally passing hot condensate, and any residual liquid could be subject to freezing. If orientation precludes collection of condensate, no action required.	0-ONOP-103.2 acknowledges AFW is subject to cold weather and may require additional mitigation.	
17	PTN	4	AFWS / 075	5614-M-3075 Sh 1	14	Piping	1/2" condensate drain path from isolated Aux Stm supply check valve steam trap	No	None	None	none	None steam piping is not normally pressurized, so condensate is not expected to collect in the steam trap tailpiece		
18	PTN	4	AFWS / 075	5614-M-3075 Sh 1	15	Piping	1/2" bypass around drain from isolated Aux Stm supply check valve (downstream side of closed bypass valve)	No	None	None	none	None steam piping is not normally pressurized, so condensate is not expected to collect in the steam trap tailpiece		
19	PTN	4	AFWS / 075	5614-M-3075 Sh 2	1	Piping	4" and 6" AFW piping, up to control valve	No	Tech Spec 3.7.1.2 requires 2 independent AFW trains including 3 steam supplies, 3 pumps and discharge flowpaths	maintain AFW capability for decay heat removal	protect	Possible insulate / heat trace to maintain full flow (<2% freezing), depending on routing configuration and location.	0-ONOP-103.2 acknowledges AFW is subject to cold weather and may require additional mitigation.	
20	PTN	4	AFWS / 075	5614-M-3075 Sh 2	1	Vents / Drains / Misc. Connections	3/4" Vent & 1" Connection	No	Tech Spec 3.7.1.2	AFW Pressure Boundary/dead leg	protect	Possible insulate / heat trace to maintain pressure boundary, depending on routing configuration and location.	0-ONOP-103.2 acknowledges AFW is subject to cold weather and may require additional mitigation.	
21	PTN	4	AFWS / 075	5614-M-3075 Sh 2	2	Piping	4" AFW piping, downstream control valve	No	Tech Spec 3.7.1.2	maintain AFW capability for decay heat removal	protect	Possible insulate / heat trace to maintain full flow, depending on routing configuration and location.	0-ONOP-103.2 acknowledges AFW is subject to cold weather and may require additional mitigation.	
22	PTN	4	AFWS / 075	5614-M-3075 Sh 2	3	Piping	1/2" and 3/8" tubing for air / N2 for AFW control valve positioner	No	Tech Spec 3.7.1.2		none	Air/N2 not susceptable to freezing.	N2 and air tubing for control of AFW flow. N2 and air not susceptable to freezing.	
23	PTN	4	AFWS / 075	5614-M-3075 Sh 2	4	Instr. Control / Protection	1/2" tubing for AFW flow element / transmitter	No	Tech Spec 3.7.1.2	maintain AFW capability for decay heat removal	protect	Possible insulate / heat trace, depending on routing configuration and location.	0-ONOP-103.2 acknowledges AFW is subject to cold weather and may require additional mitigation.	
24	PTN	4	AFWS / 075	5614-M-3075 Sh 3	1	Piping	N2 tubing and instrumentation	No			None	N2 not susceptable to freezing.	0-ONOP-103.2 acknowledges AFW is subject to cold weather and may require additional mitigation.	
1	PTN	4	SGWLU / 078	5614-M-3078, Sh. 1	1	Piping	1" Pipe up to normally closed valve SGWL-4-002	No	Primary Makeup Water System Pressure Boundary (NNS)	Dead leg	None	No Protection Required	No adverse impact on unit operation or required TS action for break in this pipe	
2	PTN	4	SGWLU / 078	5614-M-3078, Sh. 1	2	Piping	2" Pipe up to locked closed valves during normal operation SGWL-4- 011, -031, -049	No	FW System Pressure Boundary (SR)	Dead leg	Protect	Options: 1. 4" Insulation to prevent >25% freezing for the piping 2. Heat Trace & Insulate		
3	PTN	4	SGWLU / 078	5614-M-3078, Sh. 1	3	Piping	1" Pipe up to normally closed valve SGWL-4-006	No	Nitrogen line (NNS)	Dead leg	None	No Protection Required	Air line, not subject to freezing	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 296 of 488

R21002, Rev 0 Attachment L Page 163 of 198

							2" Pipe up to locked closed valves					Options: 1. 4" Insulation to prevent >25% freezing for the	
4	PTN	4	SGWLU / 078	5614-M-3078, Sh. 1	4		during normal operation SGWL-4- 007, -025, -042	No	FW System Pressure Boundary (SR)	Dead leg	Protect	piping 2. Heat Trace & Insulate	
5	PTN	4	SGWLU / 078	5614-M-3078, Sh. 1	5	Piping	3/4" Pipe to SGWL-4-022, -028, -	No	FW System Pressure Boundary (SR)	Dead leg	Protect	Heat Trace & Insulate	
-	PTN	4	SGWLU / 078	5614-M-3078, Sh. 1	6	Piping	046 IA to PICs		IA Pressure Boundary	Dead leg	None	No Protection Required	Air line, not subject to freezing
7	PTN	4	SGWLU / 078	5614-M-3078, Sh. 1	-	Piping	-		-	-	None	-	The SG Wet Layup System is used during RFO conditions only. Equipment is isolated during normal operation via closed valves and spectacle flanges. Segments connected to other systems up to isolation points are evaluated, but everything inside the isolation points for the SGWL System are not evaluated.
1	PTN	4	080	5614-M-3080 SH 1	1	Piping	3" piping from gland seal condenser drain	Yes	None	Not required for Power operation; no safety function	None	None	Gland steam condenser and condenser receiver are located on ground floor of TB (partially enclosed). A break in this line should not effect power operation, since the condensate collected is ultimately dumped to waste drains.
2	PTN	4	080	5614-M-3080 SH 1	2	Piping	2", 3" piping, check valve, reducer Gland Steam Condenser Drain Pump (Gland Steam Condenser Receiver to Condensate Recovery Tank)	Standby	None	Not required for Power operation; no safety function	None	None	Gland steam condenser and condenser receiver are located on ground floor of TB (partially enclosed). A break in this line should not effect power operation, since the condensate collected is ultimately dumped to waste drains.
3	PTN	4	080	5614-M-3080 SH 1	2	Instr. Control / Protection	Level switches for Gland Steam Condenser Drain Pump Start/stop control of pump and control room annunciation (high level).	Standby	Transfer gland steam condensate to larger condensate recovery tank.	Dead Leg	Protect	Suggest insulating level switches and instrument tubing. Alternate option would be take actions to enclose and heat the general area.	Inspect during walkdown, insulation may already be present. Evaluate length of instrument pipe/tube against dead leg freeze criteria.
4	PTN	4	080	5614-M-3080 SH 1	3	Piping	3" overflow piping from condensate recovery tank	Standby	None	Not required for Power operation; no safety function	None	None	Gland steam condenser and condenser receiver are located on ground floor of TB (partially enclosed). A break in this line should not effect power operation, since the condensate collected is ultimately dumped to waste drains.
8	PTN	4	080	5614-M-3080 SH 1	4	Piping	4", 6" piping Condenser Pit Sump	Standby	None	Ground floor of TB (partially enclosed)	Mitigate	Recommend evaluate as part of general approach for TB ground floor. Possible mitigating action is further enclose area	Condenser sump pit located on ground floor or 16, and partially enclosed.
												and add space heaters.	Evaluate as part of overall approach for the TB ground floor.
9	PTN	4	080	5614-M-3080 SH 1	4	Vents / Drains / Misc. Connections	1" vent	No	None	Dead Leg	Mitigate	Recommend evaluate as part of general approach for TB ground floor. Possible mitigating action is further enclose area and add space heaters.	Condenser sump pit located on ground floor of TB, and partially enclosed. Evaluate as part of overall approach for the TB ground floor.
10	PTN	4	080	5614-M-3080 SH 1	4	Instr. Control / Protection	Level switch for condenser pit sump pump with control room annunciation and alarm (high)	Yes	None	Dead Leg	Mitigate	Recommend evaluate as part of general approach for TB ground floor. Possible mitigating action is further enclose area	Condenser sump pit located on ground floor of TB, and partially enclosed. Evaluate as part of overall approach for the TB ground floor.
5	PTN	4	080	5614-M-3080 SH 1	sate Recov	Outdoor Tanks	Condensate Recovery Tank	Yes	None	Process fluid is likely warm. Tank has no safety function.	None	None	The Condensate Recovery Tank is located outside between the Diesel Generator Buildling and RX buildling (more exposed to extreme cold). The tank does not have a safety function or power operation function. It holds gland steam condensate which is then drained to waste drains.
6	PTN	4	080	5614-M-3080 SH 1	sate Recov	Instr. Local	Local level gauge	Yes	None	Tank has no safety function	None	None	Freezing or failure of the level gauge may cause condnesate in tank to spill. No consequence on power generation on loss of tank. Recommend evaluating potential flooding consequenses/risks based on surrounding area and size of tank (# of gal).
7	PTN	4	080	5614-M-3080 SH 1	sate Recov	Vents / Drains / Misc. Connections	4" vents (x2)	Yes	None	Tank has no safety function	None		Freezing failure of the vents would have no consequence.
1	PTN	4	081	5614-M-3081 SH 1	1		4" Piping from MSR 4B to RHTR Drain Tk 4A (Vent) [4-4"-2-C]	Yes	FW Heater Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.	
2	PTN	4	081	5614-M-3081 SH 1	1	Vents / Drains / Misc. Connections	1/2" Vent; capped pipe	Yes	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation will keep piping and components warm and well above freezing. Configuration/location is unknown. Inspect during walkdown to determine if actions are required.	Inspect during walkdown. Configuration/location of vent is unknown. Expected to be short runs of pipe and potentially insulated already. Main piping will be hot.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 297 of 488

R21002, Rev 0 Attachment L Page 164 of 198

														Pa
3	PTN	4	081	5614-M-3081 SH 1	2	Piping	12" and 8" Piping to RHTR Drain Tk 4A (Drain) [4-12"-2-C, 4-8"-2-C]	Yes	FW Heater Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.		
4	PTN	4	081	5614-M-3081 SH 1	2	Vents / Drains / Misc. Connections	Test Connection (PX) and 1/2 piping	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation will keep piping and components warm on system side of isolation valve. Configuration/location components is unknown. Inspect during walkdown to determine if actions are required.	Expected to be short runs of pipe in close proximity to hot piping.	
5	PTN	4	081	5614-M-3081 SH 1	3	Piping	3" and 4" piping from MSR 25B to 6A FW HTR [4"-5CM, 3"-4CM] Includes manual throttled valve 4- 30-1130	Yes	FW Heater Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.		
6	PTN	4	081	5614-M-3081 SH 1	3	Instr. Local	PI & associated 3/4" pipe & Valve	Yes	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
7	PTN	4	081	5614-M-3081 SH 1	3	Vents / Drains / Misc. Connections	1" Drains	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
8	PTN	4	081	5614-M-3081 SH 1	3	Vents / Drains / Misc. Connections	3/4" Vents	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
9	PTN	4	081	5614-M-3081 SH 1	3	Vents / Drains / Misc. Connections	(5) Blind flanged or capped sections	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
11	PTN	4	081	5614-M-3081 SH 1	5	Piping	3" piping to 48 Condenser [3"-5CM] 1" orifice bypass line [1"-3CM]	No	None	Pressure boundary/ system integrity/ Cond Vacuum	Protect	Inspect during walkdown. Segment is normally isolated from HD but open to condenser side. Configuration/location is unknown. Inspect during walkdown to determine if actions are required.	Not used in normal operation. Chain operated isolation valve.	
12	PTN	4	081	5614-M-3081 SH 1	5	Vents / Drains / Misc. Connections	3/4" Vent	No	None	Pressure boundary/ system integrity/ Cond Vacuum	Protect	Inspect during walkdown. Segment is normally isolated from HD but open to condenser side. Configuration/location is unknown. Inspect during walkdown to determine if actions are required.		
13	PTN	4	081	5614-M-3081 SH 1	5	Vents / Drains / Misc. Connections	1" Drain	No	None	Pressure boundary/ system integrity/ Cond Vacuum	Protect	Inspect during walkdown. Segment is normally open to condenser side up to isolation valve. Configuration/location is unknown. Inspect during walkdown to determine if actions are required.		
14	PTN	4	081	5614-M-3081 SH 1	6	Piping	8" piping to Ext Steam/ 6A FW HTR [8"-5CM]	Yes	FW Heater Drain system flowpath to 6A HW HTR	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.		
15	PTN	4	081	5614-M-3081 SH 1	6	Vents / Drains / Misc. Connections	Blind flange/ connection	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Assumed to be right off main pipe section and will likely not require additional measures - but configuration/location is unknown. Inspect during walkdown to determine if actions are required.		
16	PTN	4	081	5614-M-3081 SH 1	7	Piping	8" Piping from MSDT 4B Shell Side Drain Tank to HTR Drain Tk 4A [4-8"-5-CM]	Yes	Flowpath to 4A HTR Drain Tank	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.		
17	PTN	4	081	5614-M-3081 SH 1	7	Piping	Control Valve CV-4-1503A	Yes	Control Shell Side drain tank flow to maintain HDT level (with CV-4-1503B)	Pressure Boundary/ Flow Control	None	None. Normal operation will keep valve body/ piping warm and well above freezing.		

Florida Power & Light Company Docket No. 20220000-OT

Ten-Year Site Plan
Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 298 of 488

R21002, Rev 0 Attachment L Page 165 of 198

														Pa
18	PTN	4	081	5614-M-3081 SH 1	7	Instr. Control / Protection	Instrument air tubing/ controller for CV-4-1503A	Yes	CV-3-1504A control	Flow Control	Protect	Inspect during walkdown. Air lines not subject to freezing. Ensure valve actuator, controller, and, connected control wiring are adequately insulated/protected from elements.	Components should be in close proximity to hot piping. Walkdown to determine if measures are required.	
19	PTN	4	081	5614-M-3081 SH 1	7	Vents / Drains / Misc. Connections	3/4" Drain/connection, Blind Flanged pipe section	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve/blind flange. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
20	PTN	4	081	5614-M-3081 SH 1	8	Piping	1/2" pipe - 1/4 SS Tubing to Sample System	Yes	Provide required sampling flowpath	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Configuration/location of components is unknown. Insulate and heat trace as appropriate.	Uninsulated and non heat-traced tubing may freeze/ dead legs may burst.	
21	PTN	4	081	5614-M-3081 SH 1	8	Vents / Drains / Misc. Connections	Test Connection (PX) and associated piping (3/8")	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Configuration/location of components is unknown. Insulate and heat trace as appropriate.	Uninsulated and non heat-traced tubing may freeze/ dead legs may burst.	
22	PTN	4	081	5614-M-3081 SH 1	9	Piping	10" piping [4-10"-5-D; 4-10"-5-SM]	Yes	Flowpath to 4B Condenser	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.		
23	PTN	4	081	5614-M-3081 SH 1	9	Piping	Control Valve CV-4-1503B	Yes	Control Shell Side drain tank flow to maintain HDT level (with CV-4-1503A)	Pressure Boundary/ Flow Control	None	None. Normal operation will keep valve body/ piping warm and well above freezing.		
24	PTN	4	081	5614-M-3081 SH 1	9	Instr. Control / Protection	Instrument air tubing/ controller for CV-4-1503B	Yes	CV-4-1503B control	Flow Control	Protect	Inspect during walkdown. Air lines not subject to freezing. Ensure valve actuator, controller, and, connected control wiring are adequately insulated/protected from elements.	Components should be in close proximity to hot piping. Walkdown to determine if measures are required.	
25	PTN	4	081	5614-M-3081 SH 1	9	Vents / Drains / Misc. Connections	3/4" Drain/connection	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
26	PTN	4	081	5614-M-3081 SH 1	10	Piping	8" Pipe to 4B Condenser [4-8"-5-D] [Bypass CV-4-1503B]	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm outside isolation valves. Configuration/location/ length of pipe b/t valves is unknown - potential deadleg Inspect during walkdown to determine if actions are required. If appropriate, ensure pipe section is drained.		
27	PTN	4	081	5614-M-3081 SH 1	10	Vents / Drains / Misc. Connections	3/4" Drain/connection	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Drain on normally isolated section of pipe. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
28	PTN	4	081	5614-M-3081 SH 1	11	Piping	10" Piping from Drain Tks outlet control valves [CV-4-1503B, - 1523B) to 4B Condenser	Yes	Flowpath to 4B Condenser	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.		
29	PTN	4	081	5614-M-3081 SH 1	12	Instr. Control / Protection	Level transmitters and associated piping/valves	Yes	Provide signal for control valves	System Flow control	Protect	Inspect during walkdown. Components are in close proximity to hot piping, but configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
30	PTN	4	081	5614-M-3081 SH 1	12	Vents / Drains / Misc. Connections	MSR 4B - 1" Vents	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Configuration/location of components is unknown. (shown as inside MSR on P&ID) Inspect during walkdown to determine if actions are required.	Location/configuration unclear.	
31	PTN	4	081	5614-M-3081 SH 1	12	Vents / Drains / Misc. Connections	MSR 4B - 1" Drains	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	Location/configuration unclear.	
32	PTN	4	081	5614-M-3081 SH 1	13	Piping	4" Piping from MSR 4A to RHTR Drain Tk 4A (Vent) [4-4"-2-C]	Yes	FW Heater Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.		
33	PTN	4	081	5614-M-3081 SH 1	13	Vents / Drains / Misc. Connections	3/4" Vent; capped pipe	Yes	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation will keep piping and components warm and well above freezing. Configuration/location is unknown. Inspect during walkdown to determine if actions are required.	Inspect during walkdown. Configuration/location of vent is unknown. Expected to be short runs of pipe and potentially insulated already. Main piping will be hot.	

Florida Power & Light Company Docket No. 20220000-OT

Ten-Year Site Plan
Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 299 of 488

R21002, Rev 0 Attachment L Page 166 of 198

														P
34	PTN	4	081	5614-M-3081 SH 1	14	Piping	12" and 8" Piping to RHTR Drain Tk 4A (Drain) [4-12"-2-C, 4-8"-2-C]	Yes	FW Heater Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.		
35	PTN	4	081	5614-M-3081 SH 1	14	Vents / Drains / Misc. Connections	Test Connection (PX) and 1/2 piping	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation will keep piping and components warm on system side of isolation valve. Configuration/location components is unknown. Inspect during walkdown to determine if actions are required.	Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required.	
36	PTN	4	081	5614-M-3081 SH 1	15	Piping	3" and 4" piping from MSR 25A to 6A FW HTR [4"-5CM, 3"-4CM] Includes manual throttled valve 4- 30-1129	Yes	FW Heater Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.		
37	PTN	4	081	5614-M-3081 SH 1	15	Instr. Local	PI & associated 3/4" pipe & Valve	Yes	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
38	PTN	4	081	5614-M-3081 SH 1	15	Vents / Drains / Misc. Connections	1" Drains	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
39	PTN	4	081	5614-M-3081 SH 1	15	Vents / Drains / Misc. Connections	3/4" Vents	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
40	PTN	4	081	5614-M-3081 SH 1	15	Vents / Drains / Misc. Connections	(4) Blind flanged sections and (2) welded caps	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
42	PTN	4	081	5614-M-3081 SH 1	17	Piping	3" piping to 4A Condenser [3"-5CM] 1" orifice bypass line [1"-3CM]	No	None	Pressure boundary/ system integrity/ Cond Vacuum	Protect	Inspect during walkdown. Segment is normally isolated from HD but open to condenser side. Configuration/location is unknown. Inspect during walkdown to determine if actions are required.	Not used in normal operation.	
43	PTN	4	081	5614-M-3081 SH 1	17	Vents / Drains / Misc. Connections	3/4" Vent	No	None	Pressure boundary/ system integrity/ Cond Vacuum	Protect	Inspect during walkdown. Segment is normally isolated from HD but open to condenser side. Configuration/location is unknown. Inspect during walkdown to determine if actions are required.		
44	PTN	4	081	5614-M-3081 SH 1	17	Vents / Drains / Misc. Connections	1" Drain	No	None	Pressure boundary/ system integrity/ Cond Vacuum	Protect	Inspect during walkdown. Segment is normally open to condenser side up to isolation valve. Configuration/location is unknown. Inspect during walkdown to determine if actions are required.		
45	PTN	4	081	5614-M-3081 SH 1	17	Vents / Drains / Misc. Connections	(4) Blind flanged connections	No	None	Pressure boundary/ system integrity/ Cond Vacuum	Protect	Inspect during walkdown. Segment is normally open to condenser side up to isolation valve. Configuration/location is unknown. Inspect during walkdown to determine if actions are required.		
46	PTN	4	081	5614-M-3081 SH 1	18	Piping	8" & 10" Piping from MSDT 4A Shell Side Drain Tank to HTR Drain Tk 4A [4-8"-5-CM, 4-10"-5-CM]	Yes	Flowpath to 4A HTR Drain Tank	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.		
47	PTN	4	081	5614-M-3081 SH 1	18	Piping	Control Valve CV-4-1523A	Yes	Control Shell Side drain tank flow to maintain HDT level (with CV-4-1523A)	Pressure Boundary/ Flow Control	None	None. Normal operation will keep valve body/ piping warm and well above freezing.		
48	PTN	4	081	5614-M-3081 SH 1	18	Instr. Control / Protection	Instrument air tubing/ controller for CV-4-1523A	Yes	CV-4-1523A control	Flow Control	Protect	warm and wen above reezing. Inspect during walkdown. Air lines not subject to freezing. Ensure valve actuator, controller, and, connected control wiring are adequately insulated/protected from elements.	Components should be in close proximity to hot piping. Walkdown to determine if measures are required.	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 300 of 488

R21002, Rev 0 Attachment L Page 167 of 198

														Р
49	PTN	4	081	5614-M-3081 SH 1	18	Vents / Drains / Misc. Connections	3/4" Drain/connection	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
50	PTN	4	081	5614-M-3081 SH 1	18	Vents / Drains / Misc. Connections	Blind flange/ connection	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
51	PTN	4	081	5614-M-3081 SH 1	19	Piping	1/2" pipe - 1/4 SS Tubing to Sample System	Yes	Provide required sampling flowpath	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Configuration/location of components is unknown. Insulate and heat trace as appropriate.	Uninsulated and non heat-traced tubing may freeze/ dead legs may burst.	
52	PTN	4	081	5614-M-3081 SH 1	19	Vents / Drains / Misc. Connections	Test Connection (PX) and associated piping (3/8")	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Configuration/location of components is unknown. Insulate and heat trace as appropriate.	Uninsulated and non heat-traced tubing may freeze/ dead legs may burst.	
53	PTN	4	081	5614-M-3081 SH 1	20	Piping	10" piping [4-10"-5-D]	Standby	Flowpath to 4B Condenser	Pressure boundary/ system integrity	Protect	Inspect during walkdown/ verify normal flow with operations. Normal operation will keep piping and components warm up to control valve; downstream is condenser, but configuration and location of piping is unknown. Line should be insulated. Need to walkdown to determine if action is required.	P&ID indicates this flowpath not normally used, but control valves controls flow. Need to confirm whether line is normally active.	
54	PTN	4	081	5614-M-3081 SH 1	20	Piping	Control Valve CV-4-1523B	Yes	Control Shell Side drain tank flow to maintain HDT level (with CV-4-1523A)	Pressure Boundary/ Flow Control	Protect	Inspect during walkdown/ verify normal flow with operations. Normal operation should keep valve body/ piping warm and well above freezing.	Valve fails open	
55	PTN	4	081	5614-M-3081 SH 1	20	Instr. Control / Protection	Instrument air tubing/ controller for CV-4-1523B	Yes	CV-4-1523B control	Flow Control	Protect	Inspect during walkdown. Air lines not subject to freezing. Ensure valve actuator, controller, and, connected control wiring are adequately insulated/protected from elements.	Components should be in close proximity to hot piping. Walkdown to determine if measures are required.	
56	PTN	4	081	5614-M-3081 SH 1	20	Vents / Drains / Misc. Connections	3/4" Drain/connection	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
57	PTN	4	081	5614-M-3081 SH 1	20	Vents / Drains / Misc. Connections	Blind flange/ connection	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
58	PTN	4	081	5614-M-3081 SH 1	21	Piping	8" Pipe to 4B Condenser [4-8"-5-D] [Bypass CV-4-1523B]	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm outside isolation valves. Configuration/location/ length of pipe b/t valves is unknown - potential deadleg Inspect during walkdown to determine if actions are required. if appropriate, ensure pipe section is drained.		
59	PTN	4	081	5614-M-3081 SH 1	21	Vents / Drains / Misc. Connections	3/4" Drain/connection	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Drain on normally isolated section of pipe. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
60	PTN	4	081	5614-M-3081 SH 1	22	Piping	10" Piping from Drain Tks outlet control valve (CV-4-1523B) to 4B Condenser	No	Flowpath to 4B Condenser	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Pipe is open to condenser and piping from CV-4- 1503B, but configuration and location of piping is unknown. Line should be insulated. Need to walkdown to determine if action is required.	P&ID indicates this flowpath not normally used, but control valves controls flow. Need to confirm whether line is normally active.	
61	PTN	4	081	5614-M-3081 SH 1	23	Instr. Control / Protection	Level transmitters and associated piping/valves	Yes	Provide signal for control valves	System Flow control	Protect	Inspect during walkdown. Components are in close proximity to hot piping, but configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
62	PTN	4	081	5614-M-3081 SH 1	23	Vents / Drains / Misc. Connections	MSR 4A - 1" Vents	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Configuration/location of components is unknown. (shown as inside MSR on P&ID) Inspect during walkdown to determine if actions are required.	Location/configuration unclear. Loss of integrity of drain/vent may impact level controls.	

Florida Power & Light Company Docket No. 20220000-OT

Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 301 of 488

R21002, Rev 0 Attachment L Page 168 of 198

														Pa
63	PTN	4	081	5614-M-3081 SH 1	23	Vents / Drains / Misc. Connections	MSR 4A - 1" Drains	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	Location/configuration unclear. Loss of integrity of drain/vent may impact level controls.	
41	PTN	4	081	5614-M-3081 SH 1	6 (not used	d)							#16 not used for this markup	
10	PTN	4	081	5614-M-3081 SH 1	1 (not used	i)							#4 not used for this markup	
64	PTN	4	081	5614-M-3081 SH 2	1	Piping	2" vent RHTR Drain Tank 4A to ES system/ FW HTR 6A [4-2"-2-C]	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve (which is not shown on this P&ID) Piping should be insulated. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
65	PTN	4	081	5614-M-3081 SH 2	2	Piping	8" & 4" Drains/Vents from MSRs A/B to RHTR Drain Tank 4A [4-8"-2-C, 4-4"-2-C]	Yes	FW Heater Drain system flowpath	FW Drain system flowpath	None	None. Normal operation should keep piping and components warm and well above freezing.	Piping is expected to be insulated.	
66	PTN	4	081	5614-M-3081 SH 2	3	Instr. Control / Protection	RHTR Drain Tank 4A Level transmitters and associated piping/valves	Yes	Provide signal for control valves	System Flow control	Protect	Inspect during walkdown. Components are in close proximity to hot piping, but configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
67	PTN	4	081	5614-M-3081 SH 2	3	Vents / Drains / Misc. Connections	1" Vents and drains	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	Loss of integrity of drain/vent may impact level controls.	
68	PTN	4	081	5614-M-3081 SH 2	4	Piping	10" piping from RHTR Drain Tank 3A to 6A FW HTR [4-10"-2-C, 4-10"-5-D]	Yes	None	FW Drain system flowpath	None	None. Normal operation should keep piping and components warm and well above freezing.	Piping is expected to be insulated.	
69	PTN	4	081	5614-M-3081 SH 2	4	Piping	Control valve CV-4-1505	Yes	Controls flow from RHTR Drain Tank to maintain FW HTR 6A level	Pressure Boundary/ Flow Control	None	None. Normal operation should keep valve body/ piping warm and well above freezing.		
70	PTN	4	081	5614-M-3081 SH 2	4	Instr. Control / Protection	Instrument air tubing/ controller for CV-4-1505	Yes	CV-4-1505 Control	Flow Control	Protect	Inspect during walkdown. Air lines not subject to freezing. Ensure valve actuator, controller, and, connected control wiring are adequately insulated/protected from elements.	Components should be in close proximity to hot piping. Walkdown to determine if measures are required.	
71	PTN	4	081	5614-M-3081 SH 2	4	Instr. Annunciation / Indication	Flow indication and associated valves, 1/2" tubing. [FE/FI 4-5120] [4-1/2"-2-C]	Yes	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Components are in close proximity to hot piping, but configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
72	PTN	4	081	5614-M-3081 SH 2	4	Vents / Drains / Misc. Connections	3/4" Drain/connection	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
73	PTN	4	081	5614-M-3081 SH 2	4	Vents / Drains / Misc. Connections	3/4" vent	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
74	PTN	4	081	5614-M-3081 SH 2	4	Vents / Drains / Misc. Connections	Blind Flange	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
75	PTN	4	081	5614-M-3081 SH 2	5	Piping	10" piping/ bypass FE-4-5120 [4-10"-2-C]	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm outside isolation valves. Configuration/location/ length of pipe b/t valves is unknown - potential deadleg Inspect during walkdown to determine if actions are required. If appropriate, ensure pipe section is drained.		
76	PTN	4	081	5614-M-3081 SH 2	5	Vents / Drains / Misc. Connections	3/4" Drain/connection	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Drain on normally isolated section of pipe. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 302 of 488

R21002, Rev 0 Attachment L Page 169 of 198

														Pa
77	PTN	4	081	5614-M-3081 SH 2	6	Piping	8" piping/ bypass CV-4-1505 [4-8"-2-C, 4-8"-5-D]	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm on both sides of isolation valve. Configuration/location/ length of pipe is unknown - potential deadleg Inspect during walkdown to determine if actions are required. if appropriate, ensure pipe section is drained/vented.		
78	PTN	4	081	5614-M-3081 SH 2	6	Vents / Drains / Misc. Connections	3/4"drain/connection	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Drain on normally isolated section of pipe. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	Potential deadleg based on installed configuration.	
79	PTN	4	081	5614-M-3081 SH 2	7	Piping	10" piping to 4B Condenser [4-10"-2-C, 4-10"-5-E]	Standby	FW Heater Drain system flowpath; divert RHTR tank drains to 4B Condenser based on 6A FW HTR level	Pressure boundary/ system integrity	Protect	Inspect during walkdown/ verify normal flow with operations. Normal operation will keep piping and components warm up to control valve;	P&ID indicates this flowpath not normally used, but control valves controls flow. Need to confirm whether line is normally active.	
80	PTN	4	081	5614-M-3081 SH 2	7	Piping	Control valve CV-4-1515	Yes	Control flow - divert to 4B condenser	Pressure boundary/ Flow Control	Protect	Inspect during walkdown/verify normal flow with operations. Normal operation should keep valve body/ piping warm and well above freezing.		
81	PTN	4	081	5614-M-3081 SH 2	7	Instr. Control / Protection	Instrument air tubing/ controller for CV-4-1515	Yes	CV-4-1515 control	Flow Control	Protect	Inspect during walkdown. Air lines not subject to freezing. Ensure valve actuator, controller, and, connected control wiring are adequately Insulated/protected from elements.	Components should be in close proximity to hot piping. Walkdown to determine if measures are required.	
82	PTN	4	081	5614-M-3081 SH 2	7	Vents / Drains / Misc. Connections	3/4"drain/connection	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
83	PTN	4	081	5614-M-3081 SH 2	7	Vents / Drains / Misc. Connections	Blind Flange/ connection	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
84	PTN	4	081	5614-M-3081 SH 2	8	Piping	8" piping/ bypass CV-4-1515 [4-8"-2-C, 4-8"-5-E]	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm outside isolation valves. Configuration/location/ length of pipe b/t valves is unknown - potential deadleg Inspect during walkdown to determine if actions are required. If appropriate, ensure pipe section is drained.		
85	PTN	4	081	5614-M-3081 SH 2	8	Vents / Drains / Misc. Connections	3/4" Drain/connection	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Drain on normally isolated section of pipe. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
86	PTN	4	081	5614-M-3081 SH 2	9	Piping	2" vent RHTR Drain Tank 4B to ES system/ FW HTR 6B [4-2"-2-C]	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve (which is not shown on this P&ID) Piping should be insulated. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
87	PTN	4	081	5614-M-3081 SH 2	10	Piping	8" & 4" Drains/Vents from MSRs C/D to RHTR Drain Tank 4B [4-8"-2-C, 4-4"-2-C]	Yes	FW Heater Drain system flowpath	FW Drain system flowpath	None	None. Normal operation should keep piping and components warm and well above freezing.	Piping is expected to be insulated.	
88	PTN	4	081	5614-M-3081 SH 2	11	Instr. Control / Protection	RHTR Drain Tank 4B Level transmitters and associated piping/valves	Yes	Provide signal for control valves	System Flow control	Protect	Inspect during walkdown. Components are in close proximity to hot piping, but configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
89	PTN	4	081	5614-M-3081 SH 2	11	Vents / Drains / Misc. Connections	1" Vents and drains	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	Loss of integrity of drain/vent may impact level controls.	

Florida Power & Light Company Docket No. 20220000-OT

Ten-Year Site Plan
Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 303 of 488

R21002, Rev 0 Attachment L Page 170 of 198

														P
90	PTN	4	081	5614-M-3081 SH 2	12	Piping	10" piping from RHTR Drain Tank 4B to 6B FW HTR [4-10"-2-C, 4-10"-5-D]	Yes	None	FW Drain system flowpath	None	None. Normal operation should keep piping and components warm and well above freezing.	Piping is expected to be insulated.	
91	PTN	4	081	5614-M-3081 SH 2	12	Piping	Control valve CV-4-1506	Yes	Controls flow from RHTR Drain Tank to maintain FW HTR 6B level	Pressure Boundary/ Flow Control	None	None. Normal operation should keep valve body/ piping warm and well above freezing.		
92	PTN	4	081	5614-M-3081 SH 2	12	Instr. Control / Protection	Instrument air tubing/ controller for CV-4-1506	Yes	CV-4-1506 Control	Flow Control	Protect	Inspect during walkdown. Air lines not subject to freezing. Ensure valve actuator, controller, and, connected control wiring are adequately insulated/protected from elements.	Components should be in close proximity to hot piping. Walkdown to determine if measures are required.	
93	PTN	4	081	5614-M-3081 SH 2	12	Instr. Annunciation / Indication	Flow indication and associated valves, 1/2" tubing. [FE/FI 4-5121] [4-1/2"-2-C]	Yes	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Components are in close proximity to hot piping, but configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
94	PTN	4	081	5614-M-3081 SH 2	12	Vents / Drains / Misc. Connections	3/4" Drain/connection	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
95	PTN	4	081	5614-M-3081 SH 2	12	Vents / Drains / Misc. Connections	3/4" vent	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
96	PTN	4	081	5614-M-3081 SH 2	12	Vents / Drains / Misc. Connections	Blind Flange/ connection	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
97	PTN	4	081	5614-M-3081 SH 2	13	Piping	10" piping/ bypass FE-4-5121 [4-10"-2-C]	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm outside isolation valves. Configuration/location/ length of pipe b/t valves is unknown - potential deadleg Inspect during walkdown to determine if actions are required. If appropriate, ensure pipe section is drained.		
98	PTN	4	081	5614-M-3081 SH 2	13	Vents / Drains / Misc. Connections	3/4" Drain/connection	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Drain on normally isolated section of pipe. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
99	PTN	4	081	5614-M-3081 SH 2	14	Piping	8" piping/ bypass CV-4-1505 [4-8"-2-C, 4-8"-5-D]	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm on both sides of isolation valve. Configuration/location/ length of pipe is unknown - potential deadleg Inspect during walkdown to determine if actions are required. if appropriate, ensure pipe section is drained/vented.		
100	PTN	4	081	5614-M-3081 SH 2	14	Vents / Drains / Misc. Connections	3/4"drain/connection	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Drain on normally isolated section of pipe. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	Potential deadleg based on installed configuration.	
101	PTN	4	081	5614-M-3081 SH 2	15	Piping	10" piping to 4B Condenser [4-10"-2-C, 4-10"-5-E]	Standby	FW Heater Drain system flowpath; divert RHTR tank drains to 4B Condenser based on 6A FW HTR level	Pressure boundary/ system integrity	Protect	Inspect during walkdown/ verify normal flow with operations. Normal operation will keep piping and components warm up to control valve;	P&ID indicates this flowpath not normally used, but control valves controls flow. Need to confirm whether line is normally active.	
102	PTN	4	081	5614-M-3081 SH 2	15	Piping	Control valve CV-4-1516	Yes	Control flow - divert to 4B condenser	Pressure boundary/ Flow Control	Protect	Inspect during walkdown/ verify normal flow with operations. Normal operation should keep valve body/ piping warm and well above freezing.		
103	PTN	4	081	5614-M-3081 SH 2	15	Instr. Control / Protection	Instrument air tubing/ controller for CV-4-1516	Yes	CV-4-1516 control	Flow Control	Protect	Inspect during walkdown. Air lines not subject to freezing. Ensure valve actuator, controller, and, connected control wiring are adequately insulated/protected from elements.	Components should be in close proximity to hot piping. Walkdown to determine if measures are required.	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 304 of 488 R21002, Rev 0 Attachment L Page 171 of 198

														Pa
104	PTN	4	081	5614-M-3081 SH 2	15	Vents / Drains / Misc. Connections	3/4"drain/connection	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
105	PTN	4	081	5614-M-3081 SH 2	15	Vents / Drains / Misc. Connections	Blind Flange	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
106	PTN	4	081	5614-M-3081 SH 2	16	Piping	8" piping/ bypass CV-4-1516 [4-8"-2-C, 4-8"-5-E]	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm outside isolation valves. Configuration/location/ length of pipe b/t valves is unknown - potential deadleg inspect during walkdown to determine if actions are required. P&ID does not show a drain valve in between closed valves. if appropriate, ensure pipe section is drained.		
110	PTN	4	081	5614-M-3081 SH 3	1	Instr. Control / Protection	6A FW HTR Level transmitters and associated piping/valves	Yes	Provide signal for control valves	System Flow control	Protect	Inspect during walkdown. Components are in close proximity to hot piping, but configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
111	PTN	4	081	5614-M-3081 SH 3	1	Vents / Drains / Misc. Connections	1" Vents and drains	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	Loss of integrity of drain/vent may impact level controls.	
112	PTN	4	081	5614-M-3081 SH 3	2	Piping	10" piping from RHTR Drain Tank 4A to 6A FW HTR [4-10"-5-D]	Yes	FW Drain system flowpath	FW Drain system flowpath	None	None. Normal operation should keep piping and components warm and well above freezing.	Piping is expected to be insulated.	
113	PTN	4	081	5614-M-3081 SH 3	3	Piping	1" Piping from 6A FW HTR to 4B Condenser [4-1"-5-D]	Yes	FW Drain system flowpath	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm and well above freezing; Configuration/location of components is unknown. Confirm expected flow and temperatures in system and determine if actions are required.		
114	PTN	4	081	5614-M-3081 SH 3	3	Piping	1" piping - bypass Orifice	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm on both sides of isolation valve. Configuration/location/ length of pipe is unknown - potential deadleg Inspect during walkdown to determine if actions are required.		
115	PTN	4	081	5614-M-3081 SH 3	4	Piping	1" and 1 1/2" piping from 6A FW HTR to 4B Condenser [4-1"-5-E, 4-1 1/2"-5-E]	Yes	FW Drain system flowpath	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm and well above freezing; Configuration/location of components if unknown. Confirm expected flow and temperatures in system and determine is actions are required.		
116	PTN	4	081	5614-M-3081 SH 3	5	Piping	14" and 10" piping from 6A FW HTR to 5A FW HTR [4-14"-5-D, 4-10"-5-D]	Yes	None	FW Drain system flowpath	None	None. Normal operation should keep piping and components warm and well above freezing.	Piping is expected to be insulated.	
117	PTN	4	081	5614-M-3081 SH 3	5	Piping	Control valve CV-4-1517A	Yes	Flowpath from 6A to 5A FW HTR	Pressure boundary/ Flow Control	None	None. Normal operation should keep valve body/ piping warm and well above freezing.	Valve Fails Open	
118	PTN	4	081	5614-M-3081 SH 3	5	Instr. Control / Protection	Instrument air tubing/ controller for CV-4-1517A	Yes	CV-4-1517A Control	Flow Control	Protect	Inspect during walkdown. Air lines not subject to freezing. Ensure valve actuator, controller, and, connected control wiring are adequately insulated/protected from elements.	Components should be in close proximity to hot piping. Walkdown to determine if measures are required.	
119	PTN	4	081	5614-M-3081 SH 3	5	Vents / Drains / Misc. Connections	1/2" and 3/4" connections; Various test connections [PX, TX, FX]	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation points. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
120	PTN	4	081	5614-M-3081 SH 3	5	Vents / Drains / Misc. Connections	Flange connection/ drains [4-1/2"-5-D]	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 305 of 488 Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 306 of 488

> R21002, Rev 0 Attachment L Page 172 of 198

														Pa
121	PTN	4	081	5614-M-3081 SH 3	6	Piping	8" piping/ bypass CV-4-1517A [4-8"-5-D]	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm on both sides of isolation valve. Configuration/location/ length of pipe is unknown - potential deadleg. P&ID does not show a drain valve on this section of pipe. Inspect during walkdown to determine if actions are required. If appropriate, ensure pipe section is drained/vented.		
122	PTN	4	081	5614-M-3081 SH 3	7	Piping	10" piping from 6A FW HTR to 4A Condenser [4-10"-5-D, 4-10"-5-E]	Standby	FW Heater Drain system flowpath; divert 6A FW HTR drain to 4A Condenser based on HTR level	Pressure boundary/ system integrity	Protect		P&ID indicates this flowpath not normally used, but control valves controls flow. Need to confirm whether line is normally active.	
123	PTN	4	081	5614-M-3081 SH 3	7	Piping	Control valve CV-4-1517B	Yes	Control flow - divert to 4A condenser	Pressure boundary/ Flow Control	Protect	Inspect during walkdown/ verify normal flow with operations. Normal operation should keep valve body/ piping warm and well above freezing.		
124	PTN	4	081	5614-M-3081 SH 3	7	Instr. Control / Protection	Instrument air tubing/ controller for CV-4-1517B	Yes	CV-4-1517B control	Flow Control	Protect	Inspect during walkdown. Air lines not subject to freezing. Ensure valve actuator, controller, and, connected	Components should be in close proximity to hot piping. Walkdown to determine if measures are required.	
125	PTN	4	081	5614-M-3081 SH 3	7	Vents / Drains / Misc. Connections	3/4" drains	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
126	PTN	4	081	5614-M-3081 SH 3	7	Vents / Drains / Misc. Connections	Blind Flange/ connection	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
127	PTN	4	081	5614-M-3081 SH 3	8	Piping	8" piping/ bypass CV-4-1517B [4-8"-5-D, 4-8"-5-E]	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm outside isolation valves. Configuration/location/ length of pipe b/t valves is unknown - potential deadleg Inspect during walkdown to determine if actions are required. if appropriate, ensure pipe section is drained.		
128	PTN	4	081	5614-M-3081 SH 3	8	Vents / Drains / Misc. Connections	3/4" Drain/connection	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Drain on normally isolated section of pipe. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
131	PTN	4	081	5614-M-3081 SH 3	9	Instr. Control / Protection	5A FW HTR Level transmitters and associated piping/valves	Yes	Provide signal for control valves	System Flow control	Protect	Inspect during walkdown. Components are in close proximity to hot piping, but configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
132	PTN	4	081	5614-M-3081 SH 3	9	Vents / Drains / Misc. Connections	1" Vents and drains	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown.	Loss of integrity of drain/vent may impact level controls.	
133	PTN	4	081	5614-M-3081 SH 3	10	Piping	1" & 1 1/2" pipe - vent from 5A FW HTR shell to 4B condenser [4-1"-5-D, 4-1 1/2"-5-D]	Yes	FW Drain system flowpath	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm and well above freezing; Configuration/location of components is unknown. Confirm expected flow and temperatures in system and determine is actions are required.		
134	PTN	4	081	5614-M-3081 SH 3	11	Piping	1" pipe - Bypass flow orifice	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm on both sides of isolation valve. Configuration/location/ length of pipe is unknown - potential deadleg Inspect during walkdown to determine if actions are required.		

R21002, Rev 0 Attachment L Page 173 of 198

														Pa
135	PTN	4	081	5614-M-3081 SH 3	12	Piping	10" piping - Vent line from 5A FW HTR to HTR Drain Tanks [4-10"-5-D]	Yes	FW Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation should keep piping and		
136	PTN	4	081	5614-M-3081 SH 3	13	Piping	24" & 16" piping - Drain from 5A FW HTR to HTR Drain Tanks	Yes	FW Drain system flowpath	Pressure boundary/ system integrity	None	components warm and well above freezing. None. Normal operation should keep piping and		
137	PTN	4	081	5614-M-3081 SH 3	13	Vents / Drains / Misc. Connections	[4-24"-5-D, 4-16"-5-D] Test connections [TX, PX]	No	None	Pressure boundary/ system integrity	Protect	components warm and well above freezing. Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation points. Configuration/location of components is unknown. Inspect during walkdown to determine		
138	PTN	4	081	5614-M-3081 SH 3	13	Vents / Drains / Misc. Connections	1" cap/drain	No	None	Pressure boundary/ system integrity	Protect	If actions are required. Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation points. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
139	PTN	4	081	5614-M-3081 SH 3	14	Piping	3" piping for SWLU connection to 5A FW HTR drain line 4-3"-5-D	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. This ties into SWLU connection point - which is isolated. Configuration/location of components is unknown. Inspect during walkdown, evaluate configuration for dead-leg potential, determine if actions are required.		
143	PTN	4	081	5614-M-3081 SH 3	15	Instr. Control / Protection	6B FW HTR Level transmitters and associated piping/valves	Yes	Provide signal for control valves	System Flow control	Protect	Inspect during walkdown. Components are in close proximity to hot piping, but configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
144	PTN	4	081	5614-M-3081 SH 3	15	Vents / Drains / Misc. Connections	1" Vents and drains	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	Loss of integrity of drain/vent may impact level controls.	
145	PTN	4	081	5614-M-3081 SH 3	16	Piping	10" piping from RHTR Drain Tank 4B to 6B FW HTR [4-10"-5-D]	Yes	FW Drain system flowpath	FW Drain system flowpath	None	None. Normal operation should keep piping and components warm and well above freezing.	Piping is expected to be insulated.	
146	PTN	4	081	5614-M-3081 SH 3	17	Piping	1" Piping from 68 FW HTR to 4B Condenser [4-1"-5-D]	Yes	FW Drain system flowpath	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm and well above freezing; Configuration/location of components if unknown. Confirm expected flow and temperatures in system and determine is actions are required.		
147	PTN	4	081	5614-M-3081 SH 3	17	Piping	1" piping - bypass Orifice	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm on both sides of isolation valve. Configuration/location/ length of pipe is unknown - potential deadleg Inspect during walkdown to determine if actions are required.		
148	PTN	4	081	5614-M-3081 SH 3	18	Piping	14" and 10" piping from 6B FW HTR to 5B FW HTR [4-14"-5-D, 4-10"-5-D, 4-10"-5- CM]	Yes	None	FW Drain system flowpath	None	None. Normal operation should keep piping and components warm and well above freezing.	Piping is expected to be insulated.	
149	PTN	4	081	5614-M-3081 SH 3	18	Piping	Control valve CV-4-1518A	Yes	Flowpath from 6B to 5B FW HTR	Pressure boundary/ Flow Control	None	None. Normal operation should keep valve body/ piping warm and well above freezing.	Valve Fails Open	
150	PTN	4	081	5614-M-3081 SH 3	18	Instr. Control / Protection	Instrument air tubing/ controller for CV-4-1518A	Yes	CV-4-1518A Control	Flow Control	Protect	Inspect during walkdown.	Components should be in close proximity to hot piping. Walkdown to determine if measures are required.	
151	PTN	4	081	5614-M-3081 SH 3	18	Vents / Drains / Misc. Connections	1/2" and 3/4" connections; Various test connections [PX, TX, FX]	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation points. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
152	PTN	4	081	5614-M-3081 SH 3	18	Vents / Drains / Misc. Connections	Flange connection/ drain [4-1/2"-5-D]	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		

Florida Power & Light Company Docket No. 20220000-OT

Ten-Year Site Plan
Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 307 of 488 Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 308 of 488

> R21002, Rev 0 Attachment L Page 174 of 198

														Г
153	PTN	4	081	5614-M-3081 SH 3	19	Piping	8" piping/ bypass CV-4-1518A [4-8"-5-D]	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm on both sides of isolation valve. Configuration/location/ length of pipe is unknown - potential deadleg. Inspect during walkdown to determine if actions are required. if appropriate, ensure pipe section is drained/vented.		
154	PTN	4	081	5614-M-3081 SH 3	20	Piping	10" piping from 6B FW HTR to 4B Condenser [4-10"-5-D, 4-10"-5-E]	Standby	FW Heater Drain system flowpath; divert 6B FW HTR drain to 4B Condenser based on HTR level	Pressure boundary/ system integrity	Protect	Inspect during walkdown/ verify normal flow with operations. Normal operation will keep piping and components warm up to control valve;	P&ID indicates this flowpath not normally used, but control valves controls flow. Need to confirm whether line is normally active.	
155	PTN	4	081	5614-M-3081 SH 3	20	Piping	Control valve CV-4-1518B	Yes	Control flow - divert to 4A condenser	Pressure boundary/ Flow Control	Protect	Inspect during walkdown/ verify normal flow with operations. Normal operation should keep valve body/ piping warm and well above freezing.		
156	PTN	4	081	5614-M-3081 SH 3	20	Instr. Control / Protection	Instrument air tubing/ controller for CV-4-1518B	Yes	CV-4-1518B control	Flow Control	Protect	Inspect during walkdown. Air lines not subject to freezing. Ensure valve actuator, controller, and, connected control wiring are adequately insulated/protected from elements.	Components should be in close proximity to hot piping. Walkdown to determine if measures are required.	
157	PTN	4	081	5614-M-3081 SH 3	20	Vents / Drains / Misc. Connections	3/4" drains	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
158	PTN	4	081	5614-M-3081 SH 3	20	Vents / Drains / Misc. Connections	Blind Flange	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
159	PTN	4	081	5614-M-3081 SH 3	21	Piping	8" piping/ bypass CV-4-1518B [4-8"-5-D, 4-8"-5-E]]	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm outside isolation valves. Configuration/location/ length of pipe b/t valves is unknown - potential deadleg Inspect during walkdown to determine if actions are required. If appropriate, ensure pipe section is drained.		
160	PTN	4	081	5614-M-3081 SH 3	21	Vents / Drains / Misc. Connections	3/4" Drain/connections	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Drain on normally isolated section of pipe. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
163	PTN	4	081	5614-M-3081 SH 3	22	Instr. Control / Protection	5B FW HTR Level transmitters and associated piping/valves	Yes	Provide signal for control valves	System Flow control	Protect	Inspect during walkdown. Components are in close proximity to hot piping, but configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
164	PTN	4	081	5614-M-3081 SH 3	22	Vents / Drains / Misc. Connections	1" Vents and drains	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	Loss of integrity of drain/vent may impact level controls.	
165	PTN	4	081	5614-M-3081 SH 3	23	Piping	1" & 1 1/2" pipe - vent from 5B FW HTR shell to 4B condenser [4-1"-5-D, 4-1 1/2"-5-D]	Yes	FW Drain system flowpath	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm and well above freezing; Configuration/location of components is unknown. Confirm expected flow and temperatures in system and determine is actions are required.		
166	PTN	4	081	5614-M-3081 SH 3	24	Piping	1" pipe - Bypass flow orifice	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm on both sides of isolation valve. Configuration/location/ length of pipe is unknown - potential deadleg Inspect during walkdown to determine if actions are required.		
167	PTN	4	081	5614-M-3081 SH 3	25	Piping	10" piping - Vent line from 5A FW HTR to HTR Drain TBnks [3-10"-5-D]	Yes	FW Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation should keep piping and components warm and well above freezing.		

R21002, Rev 0 Attachment L Page 175 of 198

														Pa
160	DTN		004	5644 M 2004 SH 2	26	Dimin	24" piping - Drain from 5B FW	V	CM Design and an flavorable	Pressure boundary/	Name	None.		
168	PTN	4	081	5614-M-3081 SH 3	26	Piping	HTR to HTR Drain Tanks [4-24"-5-D]	Yes	FW Drain system flowpath	system integrity	None	Normal operation should keep piping and components warm and well above freezing.		
							[121 33]					Inspect during walkdown.		
												Normal operation should keep piping and		
169	PTN	4	081	5614-M-3081 SH 3	26	Vents / Drains / Misc.	Test connections [TX, PX]	No	None	Pressure boundary/	Protect	components warm up to the isolation points.		
		.				Connections	, , , , , ,			system integrity		Configuration/location of components is		
												unknown. Inspect during walkdown to determine		
												if actions are required. Inspect during walkdown.		
												Normal operation should keep piping and		
170	PTN	4	081	5614-M-3081 SH 3	26	Vents / Drains / Misc.	Con/1" drain	No	None	Pressure boundary/	Drotost	components warm up to the isolation points.		
1,0	FIN	7	081	3014-101-3081 311 3	20	Connections	Cap/ 1" drain	INO	livorie	system integrity	Protect	Configuration/location of components is		
												unknown. Inspect during walkdown to determine		
												if actions are required. Inspect during walkdown. This ties into SWLU		
												connection point - which is isolated.		
							3" piping for SWLU connection to			Pressure boundary/		Configuration/location of components is		
171	PTN	4	081	5614-M-3081 SH 3	27	Piping	5B FW HTR drain line	No	None	system integrity/	Protect	unknown.		
							[4-3"-5-D]			deadleg		Inspect during walkdown, evaluate configuration		
												for dead-leg potential, determine if actions are		
												required. None.		
129	PTN	4	081	5614-M-3081 SH 3	5A FW	Heat Exchangers	5A FW HTR	Yes	Secondary system flowpath/ required	N/A	None	Normal System flow will keep tank well above		
					HTR				for 100% power	.,		freezing.		
												Inspect during walkdown.		
					5A FW		5A FWHTR Tank Relief Valve RV-4-			Pressure boundary/		Components are in close proximity to hot piping,		
130	PTN	4	081	5614-M-3081 SH 3	HTR	Relief Valves	3422	Standby	Overpressure relief for FW HTR	Tank pressure relief	Protect	but configuration/location of components is		
												unknown. Inspect during walkdown to determine if actions are required.		
												None.		
161	PTN	4	081	5614-M-3081 SH 3	5B FW HTR	Heat Exchangers	5B FW HTR	Yes	Secondary system flowpath/ required	N/A	None	Normal System flow will keep tank well above		
									for 100% power			freezing.		
												Inspect during walkdown.		
162	PTN	4	081	5614-M-3081 SH 3	5B FW HTR	Relief Valves	5B FWHTR Tank Relief Valve RV-4-	Standby	Overpressure relief for FW HTR	Pressure boundary/	Drotost	Components are in close proximity to hot piping, but configuration/location of components is		
102	' '''	7	001	3014 101 3001 311 3	56 1 W 11111	ivellet valves	3423	Stariaby	overpressure relier for t w titk	Tank pressure relief	Protect	unknown. Inspect during walkdown to determine		
												if actions are required.		
					6A FW				Secondary system flowpath/ required			None.		
107	PTN	4	081	5614-M-3081 SH 3	HTR	Heat Exchangers	6A FW HTR	Yes	for 100% power	N/A	None	Normal System flow will keep tank well above		
												freezing. Inspect during walkdown.		
												Components are in close proximity to hot piping,		
108	PTN	4	081	5614-M-3081 SH 3	6A FW	Vents / Drains / Misc.	6A FWHTR 1 1/2" drains	No	None	Pressure boundary	Protect	but configuration/location of components is		
					HTR	Connections						unknown. Inspect during walkdown to determine		
												if actions are required.		
												Inspect during walkdown.		
109	PTN	4	081	5614-M-3081 SH 3	6A FW	Relief Valves	6A FWHTR Tank Relief Valve RV-4-	Standby	Overpressure relief for FW HTR	Pressure boundary/	Protect	Components are in close proximity to hot piping, but configuration/location of components is		
		.			HTR		3424	,		Tank pressure relief		unknown. Inspect during walkdown to determine		
												if actions are required.		
		, 7	05:					.,	Secondary system flowpath/ required			None.		
140	PTN	4	081	5614-M-3081 SH 3	6B FW HTR	Heat Exchangers	6B FW HTR	Yes	for 100% power	N/A	None	Normal System flow will keep tank well above		
	 										1	freezing. Inspect during walkdown.		
												Components are in close proximity to hot piping,		
141	PTN	4	081	5614-M-3081 SH 3	6B FW HTR	Vents / Drains / Misc. Connections	6B FWHTR 1 1/2" tank drains	No	None	Pressure boundary	Protect	but configuration/location of components is		
						Connections						unknown. Inspect during walkdown to determine		
-											1	if actions are required.		
												Inspect during walkdown. Components are in close proximity to hot piping,		
142	PTN	4	081	5614-M-3081 SH 3	6B FW HTR	Relief Valves	6B FWHTR Tank Relief Valve RV-4-	Standby	Overpressure relief for FW HTR	Pressure boundary/	Protect	but configuration/location of components is		
	"						3425	,		Tank pressure relief		unknown. Inspect during walkdown to determine		
												if actions are required.		
		,]	05:				10" piping to 4A HDT from MSR A	.,		Pressure boundary/		None.		
172	PTN	4	081	5614-M-3081 SH 4	1	Piping	Drain [4-10"-5-CM]	Yes	Heater Drain system flowpath	system integrity	None	Normal operation should keep piping and components warm and well above freezing.		
-	 						8" piping to 4A HDT from MSR B				1	None.		
173	PTN	4	081	5614-M-3081 SH 4	2	Piping	Drain	Yes	Heater Drain system flowpath	Pressure boundary/	None	Normal operation should keep piping and		
						-	[4-8"-5-CM]		•	system integrity		components warm and well above freezing.		
	T	, 7	05:		I . 7		16" piping from 5A FW HTR Drain		L <u>.</u>	Pressure boundary/	l	None.		
174	PTN	4	081	5614-M-3081 SH 4	3	Piping	to 4A HDT	Yes	Heater Drain system flowpath	system integrity	None	Normal operation should keep piping and		
	 						[4-16"-5-D]					components warm and well above freezing. None.		
175	PTN	4	081	5614-M-3081 SH 4	4	Piping	Piping from Seal Water to 4A HDT	Yes	Heater Drain system flowpath	Pressure boundary/	None		Assume 3" (ref. P&ID 5614-M-3074 Sh 2)	
							· -			system integrity		components warm and well above freezing.	·	

Florida Power & Light Company Docket No. 20220000-OT

Ten-Year Site Plan
Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 309 of 488

R21002, Rev 0 Attachment L Page 176 of 198

														Р
176	PTN	4	081	5614-M-3081 SH 4	5	Piping	6", 16", 24" piping from 5A FW HTR and Seal Water to 4A HDT [4-6"-5-D, 4-16"-5-D, 4-24"-5-D]	Yes	Heater Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation should keep piping and components warm and well above freezing.		
177	PTN	4	081	5614-M-3081 SH 4	5	Vents / Drains / Misc. Connections	Cap & 3/4" Drain	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	Configuration unclear from P&ID.	
178	PTN	4	081	5614-M-3081 SH 4	5	Vents / Drains / Misc. Connections	Welded pipe cap	Yes	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	Configuration unclear from P&ID.	
179	PTN	4	081	5614-M-3081 SH 4	6	Piping	10" piping from 5B FW HTR vent to 4A HDT [4-10"-5-D]	Yes	Heater Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation should keep piping and components warm and well above freezing.		
180	PTN	4	081	5614-M-3081 SH 4	6	Vents / Drains / Misc. Connections	Connection (size not marked)	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	Closed valve 4-30-593	
181	PTN	4	081	5614-M-3081 SH 4	7	Piping	10" piping from 5A FW HTR vent to 5B HDT [4-10"-5-D]	Yes	Heater Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation should keep piping and components warm and well above freezing.		
182	PTN	4	081	5614-M-3081 SH 4	7	Vents / Drains / Misc. Connections	Connection (size not marked)	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	Closed valve 4-30-591	
183	PTN	4	081	5614-M-3081 SH 4	8	Piping	12" cross-connect piping 5A/5B FW HTR to 4A/4B HDT [4-12"-5-D]	Yes	Heater Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation should keep piping and components warm and well above freezing.		
184	PTN	4	081	5614-M-3081 SH 4	9	Instr. Control / Protection	4A HDT Level transmitters and associated piping/valves	Yes	Provide signal for control valves	System Flow control	Protect	inspect during walkdown. Components are in close proximity to hot piping, but configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
185	PTN	4	081	5614-M-3081 SH 4	9	Vents / Drains / Misc. Connections	1" and 1/2" Vents and drains	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	Loss of integrity of drain/vent may impact level controls.	
186	PTN	4	081	5614-M-3081 SH 4	10	Instr. Control / Protection	4B HDT Level transmitters and associated piping/valves	Yes	Provide signal for control valves	System Flow control	Protect	inspect during walkdown. Components are in close proximity to hot piping, but configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
187	PTN	4	081	5614-M-3081 SH 4	10	Vents / Drains / Misc. Connections	1" and 1/2" Vents and drains, capped pipe section	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	Loss of integrity of drain/vent may impact level controls.	
188	PTN	4	081	5614-M-3081 SH 4	11	Vents / Drains / Misc. Connections	4B HDT capped connections	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Components are in close proximity to hot piping, but configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
189	PTN	4	081	5614-M-3081 SH 4	12	Piping	10" piping to 4B HDT from MSR C Drain [4-10"-5-CM]	Yes	Heater Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation should keep piping and components warm and well above freezing.		
190	PTN	4	081	5614-M-3081 SH 4	13	Piping	8" piping to 4B HDT from MSR D Drain [4-8"-5-CM]	Yes	Heater Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation should keep piping and components warm and well above freezing.		
191	PTN	4	081	5614-M-3081 SH 4	14	Piping	16" piping from 5B FW HTR Drain to 4B HDT [4-16"-5-D]	Yes	Heater Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation should keep piping and components warm and well above freezing.		
192	PTN	4	081	5614-M-3081 SH 4	15	Piping	Piping from Seal Water to 4B HDT	Yes	Heater Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation should keep piping and components warm and well above freezing.	Assume 3" (ref. P&ID 5613-M-3074 Sh 2)	
193	PTN	4	081	5614-M-3081 SH 4	16	Piping	6", 16", 24" piping from 5B FW HTR and Seal Water to 4B HDT [4-6"-5-D, 4-16"-5-D, 4-24"-5-D]	Yes	Heater Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation should keep piping and components warm and well above freezing.		
194	PTN	4	081	5614-M-3081 SH 4	16	Vents / Drains / Misc. Connections	Cap & 3/4" Drain	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	Configuration unclear from P&ID.	
195	PTN	4	081	5614-M-3081 SH 4	16	Vents / Drains / Misc. Connections	Welded pipe cap	Yes	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	Configuration unclear from P&ID.	
196	PTN	4	081	5614-M-3081 SH 4	17	Piping	14", 16", and 18" pipe from HDTs to HDPumps A and B [4-14"-5-D, 4-16"-5-D, 4-18"-5-D]	Yes	Heater Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation should keep piping and components warm and well above freezing.		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 310 of 488 R21002 Rev 0

R21002, Rev 0
Attachment L
Page 177 of 198

														1 6
197	PTN	4	081	5614-M-3081 SH 4	17	Instr. Local	Local Pressure Indicator PI-4-6695	Yes	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
198	PTN	4	081	5614-M-3081 SH 4	17	Vents / Drains / Misc. Connections	Various test connections	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
199	PTN	4	081	5614-M-3081 SH 4	17	Vents / Drains / Misc. Connections	1" drains	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
200	PTN	4	081	5614-M-3081 SH 4	18	Piping	12" piping from HDT 4A/48 to 48 condenser [4-12"-5-D, 4-12"-5-CM]	No	Flowpath from HDTs to 4B condenser	Pressure boundary/ Flow Control	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve (w HDT upsteam and open to Condenser on the other). However, configuration/location of components is unknown. Inspect during walkdown to determine if actions are required and whether dead leg sections of pipe is a concern.	Flowpath for HD pump trip?	
201	PTN	4	081	5614-M-3081 SH 4	18	Piping	Control valve CV-4-1510B	Standby	Flowpath from HDTs to 4B condenser	Pressure boundary/ Flow Control	None	Inspect during walkdown. Normal operation should keep the valve warm (w HDT on one side and condenser on the other). However, configuration/location of components is unknown. Inspect during walkdown to determine if actions are required and whether dead leg sections of pipe is a concern.		
202	PTN	4	081	5614-M-3081 SH 4	18	Instr. Control / Protection	Instrument air tubing/ controller for CV-4-1510B	Standby	CV-4-1510B Control	Flow Control	Protect	Inspect during walkdown. Air lines not subject to freezing. Ensure valve actuator, controller, and, connected control wiring are adequately insulated/protected from elements.		
203	PTN	4	081	5614-M-3081 SH 4	18	Vents / Drains / Misc. Connections	1" Drain	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation points. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
204	PTN	4	081	5614-M-3081 SH 4	19	Piping	10" piping from HDT 4A/4B to 4B condenser/ bypass control valve CN-4-1510B [4-10"-5-D]	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm outside isolation valves. Configuration/location/ length of pipe b/t valves is unknown - potential deadleg Inspect during walkdown to determine if actions are required. (unlikely a concern for 10" piping) if appropriate, ensure pipe section is drained.		
205	PTN	4	081	5614-M-3081 SH 4	19	Vents / Drains / Misc. Connections	Connection (size not marked)	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Drain on normally isolated section of pipe. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
206	PTN	4	081	5614-M-3081 SH 4	20	Piping	4" piping from Main Condensate Header to HD Pump suction header [4-4"-3-D]	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve (w HD header upsteam and to Condensate systen on the other). However, configuration/location of components is unknown. Inspect during walkdown to determine if actions are required and whether dead leg sections of pipe is a concern.		
207	PTN	4	081	5614-M-3081 SH 4	20	Piping	Control valve CV-4-1900	Standby	None	Pressure boundary/ Flow Control	Protect	Inspect during walkdown. Normal operation should keep the valve warm (w HD header on one side and condensate system on the other). However, configuration/location of components is unknown. Inspect during walkdown to determine if actions are required and whether dead leg sections of pipe is a concern.	Valve normally closed; fails closed	
208	PTN	4	081	5614-M-3081 SH 4	20	Instr. Control / Protection	Instrument air tubing/ controller for CV-4-1900	Standby	CV-4-1900 Control	Flow Control	Protect	Inspect during walkdown. Air lines not subject to freezing. Ensure valve actuator, controller, and, connected control wiring are adequately insulated/protected from elements.		

Florida Power & Light Company Docket No. 20220000-OT

Ten-Year Site Plan
Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 311 of 488

R21002, Rev 0 Attachment L Page 178 of 198

														Pa
209	PTN	4	081	5614-M-3081 SH 4	20	Vents / Drains / Misc. Connections	3/4" drain/connection	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
210	PTN	4	081	5614-M-3081 SH 4	21	Piping	3" piping from Condensate Header to HD pump suction header - Bypass control valve CV- 4-1900 [4-3"-3-D]	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm outside isolation valves. Configuration/location/ length of pipe b/t valves is unknown - potential deadleg Inspect during walkdown to determine if actions are required. if appropriate, ensure pipe section is drained.		
211	PTN	4	081	5614-M-3081 SH 4	21	Vents / Drains / Misc. Connections	3/4" drain	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Drain on normally isolated section of pipe. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
212	PTN	4	081	5614-M-3081 SH 4	22	Piping	3" piping to SWLU connection	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. This ties into SWLU connection point - which is isolated. Configuration/location of components is unknown. Inspect during walkdown, evaluate configuration for dead-leg potential, determine if actions are required.		
213	PTN	4	081	5614-M-3081 SH 4	23	Piping	1" piping; HD Pump vent to 4A HDT [4-1"-5-D]	Yes	Vent for HD pump	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Configuration/ routing of piping is unknown. Potentially a long run of 1" pipe. Inspect during walkdown to determine if actions are required.	Discuss with operations to determine the amount of flow these vents see.	
214	PTN	4	081	5614-M-3081 SH 4	24	Piping	1/2" to 1/4" SS tubing from A HD Pump discharge to sample system	Yes	Monitoring, sampling, and secondary system	Local Sampling Requirement, pressure boundry	Protect	Insulate and Heat Trace Ensure Small Bore Piping/Tubing Above Freezing Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing.	Unclear whether flow is continuous or drawn as needed from sample sink	
215	PTN	4	081	5614-M-3081 SH 4	24	Instr. Local	Local Pressure Indicator PI-4-1437	Yes	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Configuration/location of components is unknown. Expected to be in close proximity to hot piping. Inspect during walkdown to determine if actions are required.		
216	PTN	4	081	5614-M-3081 SH 4	24	Vents / Drains / Misc. Connections	Test connection [PX]	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Configuration/location of components is unknown. Expected to be in close proximity to hot piping. Inspect during walkdown to determine if actions are required.		
217	PTN	4	081	5614-M-3081 SH 4	25	Piping	1/2" to 1/4" SS tubing from B HD Pump discharge to sample system	Yes	Monitoring, sampling, and secondary system	Local Sampling Requirement, pressure boundry	Protect	Insulate and Heat Trace Ensure Tubing Above Freezing Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing.	Unclear whether flow is continuous or drawn as needed from sample sink	
218	PTN	4	081	5614-M-3081 SH 4	25	Instr. Local	Local Pressure Indicator PI-4-1438	Yes	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Configuration/location of components is unknown. Expected to be in close proximity to hot piping. Inspect during walkdown to determine if actions are required.		
219	PTN	4	081	5614-M-3081 SH 4	25	Vents / Drains / Misc. Connections	Test connection [PX]	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Configuration/location of components is unknown. Expected to be in close proximity to hot piping. Inspect during walkdown to determine if actions are required.		
220	PTN	4	081	5614-M-3081 SH 4	26	Piping	3" piping from HD Pump Discharge to 4B HDT - Recirc piping [4-3"-3-D, 4-3"-3-CM, 4-4"-3-CM, 4-4"-3-D]	Yes	Heater Drain pump recirc flowpath	Required for HD pump operation/ pressure boundary	Protect	Inspect during walkdown. Assuming continuous recirc flow, normal operation should keep piping and components warm and well above freezing. Discuss normal flowrate with operations. Confirm that piping is insulated.	Confirm with operations that recirc is continuous flow.	
221	PTN	4	081	5614-M-3081 SH 4	27	Piping	12" and 16" HD Pump A and B Discharge piping [4-12"-3-D, 4-16"-3-D, 4-16"-3- CM]	Yes	Heater Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation should keep piping and components warm and well above freezing.		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 312 of 488

R21002, Rev 0 Attachment L Page 179 of 198

														Pa
222	PTN	4	081	5614-M-3081 SH 4	27	Piping	Control valve CV-4-1510A	Yes	Heater Drain system flowpath	Pressure boundary/ Flow Control	None	None. Normal operation should keep piping and components warm and well above freezing.	Valve normally open; fails open	
223	PTN	4	081	5614-M-3081 SH 4	27	Instr. Control / Protection	Instrument air tubing/ controller for CV-4-1510A	Standby	CV-4-1510A Control	Flow Control	Protect	Inspect during walkdown. Air lines not subject to freezing. Ensure valve actuator, controller, and, connected control wiring are adequately insulated/protected from elements.		
224	PTN	4	081	5614-M-3081 SH 4	27	Vents / Drains / Misc. Connections	Test connection [PX]	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Configuration/location of components is unknown. Expected to be in close proximity to hot piping. Inspect during walkdown to determine if actions are required.		
225	PTN	4	081	5614-M-3081 SH 4	27	Vents / Drains / Misc. Connections	Vents and drains (2 of each)	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Vents/drains are exposed to hot piping, but configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
226	PTN	4	081	5614-M-3081 SH 4	28	Piping	3/4" piping - bypass HD pump A/B discharge check valves	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm outside isolation valves. Configuration/location/ length of pipe b/t valves is unknown - potential deadleg inspect during walkdown to determine if actions are required. If appropriate/possible, ensure pipe section is drained.		
227	PTN	4	081	5614-M-3081 SH 4	29	Instr. Annunciation / Indication	Piping/ Tubing/ valves associated with FIT-3-1404	Yes	Flow indication/ transmitter	Flow indication/ pressure boundary	Protect	Insulate and Heat Trace Ensure Tubing Above Freezing Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing.		
228	PTN	4	081	5614-M-3081 SH 4	29	Vents / Drains / Misc. Connections	Test points associated with FIT-4-1404	No	None	Pressure boundary/ system integrity	Protect	Insulate and Heat Trace Ensure Tubing Above Freezing Options Insulate and heat trace – Insulate and heat trace the dead legs of piping susceptible to freezing.		
229	PTN	4	081	5614-M-3081 SH 4	30	Piping	12" piping from A/B HD Pumps to FW PP suction/ bypass control valve CN-4-1510A [4-12"-3-D]	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm outside isolation valves. Configuration/location/ length of pipe b/t valves is unknown - potential deadleg Inspect during walkdown to determine if actions are required. (unlikely a concern for 12" piping) if appropriate, ensure pipe section is drained.		
230	PTN	4	081	5614-M-3081 SH 4	30	Vents / Drains / Misc. Connections	Connection (size not marked)	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Drain located on normally isolated section of pipe. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
231	PTN	4	081	5614-M-3081 SH 4	31	Instr. Control / Protection	Flex tubing installed to either side of CV-4-1510A; HD pump interlock	Yes	HD pump interlock	Pressure boundary/ Pump interlock function	Protect	Configuration is unknown. Insulate and Heat Trace to ensure Tubing Above Freezing. Walkdown to confirm location.		
242	PTN	4	081	5614-M-3081 Sh. 5	1	Piping	2" Pipe	Yes	FW Heater Drain system vent flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.		
243	PTN	4	081	5614-M-3081 Sh. 5	2	Piping	2.5" Pipe	Yes	FW Heater Drain system vent flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.		
244	PTN	4	081	5614-M-3081 Sh. 5	3	Piping	6" Pipe	Yes	FW Heater Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.		
245	PTN	4	081	5614-M-3081 Sh. 5	3	Instr. Local	PX & FX	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required (i.e., Heat Trace & 1" Insulation).		

Florida Power & Light Company Docket No. 20220000-OT

Ten-Year Site Plan
Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 313 of 488 Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 314 of 488

> R21002, Rev 0 Attachment L Page 180 of 198

													гаς
246	PTN	4	081	5614-M-3081 Sh. 5	3	Vents / Drains / Misc. Connections	1" Connection	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required (i.e., Heat Trace & 1" Insulation).	
247	PTN	4	081	5614-M-3081 Sh. 5	3	Vents / Drains / Misc. Connections	6" Connection	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the flange. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required (i.e., 1" insulation needed to keep piping from >25% freezing).	
248	PTN	4	081	5614-M-3081 Sh. 5	4	Piping	3" Pipe	Yes	FW Heater Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.	
249	PTN	4	081	5614-M-3081 Sh. 5	5	Piping	4" Pipe	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required (i.e., 1" insulation needed to keep piping from >25% freezing).	
250	PTN	4	081	5614-M-3081 Sh. 5	5	Vents / Drains / Misc. Connections	3/4" Connection	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required (i.e., Heat Trace & 1" Insulation).	
251	PTN	4	081	5614-M-3081 Sh. 5	6	Piping	6" Pipe	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to verify that piping is insulated already. If not, 1" Insulation needed to keep piping from >25% freezing. Another option is to mitigate by opening the CV valve to the Condenser flow path so there is flow in this piping on a periodic basis to prevent freezing.	
252	PTN	4	081	5614-M-3081 Sh. 5	6	Vents / Drains / Misc. Connections	6" Connection	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to verify that piping is insulated already. If not, 1" insulation needed to keep piping from >25% freezing.	
253	PTN	4	081	5614-M-3081 Sh. 5	7	Piping	3" Pipe	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to verify that piping is insulated already. If not, 2" Insulation needed to keep piping from >25% freezing. Another option is to mitigate by opening the CV valve to the Condenser flow path so there is flow in this piping on a periodic basis to prevent freezing.	
254	PTN	4	081	5614-M-3081 Sh. 5	7	Vents / Drains / Misc. Connections	3/4" Connection	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required (i.e., Heat Trace & 1" Insulation).	
255	PTN	4	081	5614-M-3081 Sh. 5	8	Piping	4" Pipe	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to verify that piping is insulated already. If not, 1" Insulation needed to keep piping from >25% freezing.	
256	PTN	4	081	5614-M-3081 Sh. 5	8	Vents / Drains / Misc. Connections	3/4" Connection	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required (i.e., Heat Trace & 1" Insulation).	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 315 of 488

> R21002, Rev 0 Attachment L Page 181 of 198

													гац
267	PTN	4	081	5614-M-3081 Sh. 5	9	Piping	8" Pipe	Yes	FW Heater Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.	
268	PTN	4	081	5614-M-3081 Sh. 5	9	Instr. Local	PX & FX	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required (i.e., Heat Trace & 1" Insulation).	
269	PTN	4	081	5614-M-3081 Sh. 5	9	Vents / Drains / Misc. Connections	1" Connection	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required (i.e., Heat Trace & 1" Insulation).	
270	PTN	4	081	5614-M-3081 Sh. 5	9	Vents / Drains / Misc. Connections	3/4" Connection	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required (i.e., Heat Trace & 1" Insulation).	
271	PTN	4	081	5614-M-3081 Sh. 5	9	Vents / Drains / Misc. Connections	8" Flange	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the flange. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required (i.e., 1" Insulation needed to keep piping from >25% freezing).	
272	PTN	4	081	5614-M-3081 Sh. 5	10	Piping	6" Pipe	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required (i.e., 1" Insulation needed to keep piping from >25% freezing).	
273	PTN	4	081	5614-M-3081 Sh. 5	11	Piping	1.5" Pipe	No	None	Pressure boundary/ system integrity/ dead leg	Protect	Inspect during walkdown. This ties into SWLU connection point - which is isolated. Configuration/location of components is unknown. Inspect during walkdown, evalute configuration for dead-leg potential, determine if actions are required.	
274	PTN	4	081	5614-M-3081 Sh. 5	12	Piping	8" Pipe	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to verify that piping is insulated already. If not, 1" insulation needed to keep piping from >25% freezing. Another option is to mitigate by opening the CV valve to the Condenser flow path so there is flow in this piping on a periodic basis to prevent freezing.	
275	PTN	4	081	5614-M-3081 Sh. 5	12	Vents / Drains / Misc. Connections	8" Connection	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to verify that piping is insulated already. If not, 1" insulation needed to keep piping from >25% freezing.	
276	PTN	4	081	5614-M-3081 Sh. 5	13	Piping	6" Pipe	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to verify that piping is insulated already. If not, 1" insulation needed to keep piping from >25% freezing. Another option is to mitigate by opening the CV valve to the Condenser flow path so there is flow in this piping on a periodic basis to prevent freezing.	
277	PTN	4	081	5614-M-3081 Sh. 5	13	Vents / Drains / Misc. Connections	3/4" Connection	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required (i.e., Heat Trace & 1" Insulation).	

R21002, Rev 0

R21002, Rev 0 Attachment L Page 182 of 198

													1 6
278	PTN	4	081	5614-M-3081 Sh. 5	14	Piping	6" Pipe	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to verify that piping is insulated already. If not, 1" Insulation needed to keep piping from >25% freezing.	
279	PTN	4	081	5614-M-3081 Sh. 5	14	Vents / Drains / Misc. Connections	3/4" Connection	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required (i.e., Heat Trace & 1" Insulation).	
280	PTN	4	081	5614-M-3081 Sh. 5	15	Piping	1.5" Pipe	Yes	FW Heater Drain system vent flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.	
281	PTN	4	081	5614-M-3081 Sh. 5	16	Piping	1.5" Pipe	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to verify that piping is insulated already. If length of bypass is short, may not require more than insulation. If long or water can gather in pipe, could require heat trace to prevent freezing.	
282	PTN	4	081	5614-M-3081 Sh. 5	17	Piping	2" Pipe	Yes	FW Heater Drain system vent flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.	
283	PTN	4	081	5614-M-3081 Sh. 5	18	Piping	1" Pipe	Yes	FW Heater Drain system vent flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.	
284	PTN	4	081	5614-M-3081 Sh. 5	19	Piping	1" Pipe	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to verify that piping is insulated already. If length of bypass is short, may not require more than insulation. If long or water can gather in pipe, could require heat trace to prevent freezing.	
285	PTN	4	081	5614-M-3081 Sh. 5	20	Piping	1.5" Pipe	Yes	FW Heater Drain system vent flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.	
235	PTN	4	081	5614-M-3081 Sh. 5	21	Piping	1.5" Instrument Piping	Yes	Piping to all of the Instruments associated with Heatert Drains for the FWHs	Pressure boundary/ system integrity/ deadleg/instrument loop	Protect	Inspect during walkdown for length. Heat Trace and 1" Insulation recommended to due to unknown length.	
236	PTN	4	081	5614-M-3081 Sh. 5	21	Instr. Local	LG	Yes	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown for length. Heat Trace and 1" Insulation recommended to due to unknown length.	
237	PTN	4	081	5614-M-3081 Sh. 5	21	Instr. Annunciation / Indication	LS	Yes	CR Annunciator	Pressure boundary/ system integrity/ deadleg/instrument alarm	Protect	Inspect during walkdown for length. Heat Trace and 1" Insulation recommended due to unknown length.	
238	PTN	4	081	5614-M-3081 Sh. 5	21	Instr. Control / Protection	LS & LC	Yes	Control to CVs for flow for FWHs 3E3A/B and SV for Extraction Steam	Pressure boundary/ system integrity/ deadleg/instrument control	Protect	Inspect during walkdown for length. Heat Trace and 1" Insulation recommended due to unknown length. No protection required for the airline to/from the LC, not subjected to freezing.	
239	PTN	4	081	5614-M-3081 Sh. 5	21	Vents / Drains / Misc. Connections	Vents	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown for length. Heat Trace and 1" Insulation recommended to due to unknown length.	
240	PTN	4	081	5614-M-3081 Sh. 5	21	Vents / Drains / Misc. Connections	Drains	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown for length. Heat Trace and 1" Insulation recommended to due to unknown length.	
241	PTN	4	081	5614-M-3081 Sh. 5	21	Vents / Drains / Misc. Connections	Connections	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown for length. Heat Trace and 1" Insulation recommended to due to unknown length.	
260	PTN	4	081	5614-M-3081 Sh. 5	22	Piping	1.5" Instrument Piping	Yes	Piping to all of the Instruments associated with Heatert Drains for the FWHs	Pressure boundary/ system integrity/ deadleg/instrument loop	Protect	Inspect during walkdown for length. Heat Trace and 1" Insulation recommended to due to unknown length.	
261	PTN	4	081	5614-M-3081 Sh. 5	22	Instr. Local	LG	Yes	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown for length. Heat Trace and 1" Insulation recommended to due to unknown length.	
262	PTN	4	081	5614-M-3081 Sh. 5	22	Instr. Annunciation / Indication	LS	Yes	CR Annunciator	Pressure boundary/ system integrity/ deadleg/instrument alarm	Protect	Inspect during walkdown for length. Heat Trace and 1" Insulation recommended due to unknown length.	

Florida Power & Light Company Docket No. 20220000-OT

Ten-Year Site Plan
Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 316 of 488 R21002. Rev 0

R21002, Rev 0 Attachment L Page 183 of 198

263	PTN	4	081	5614-M-3081 Sh. 5	22	Instr. Control / Protection	LS & LC	Yes	Control to CVs for flow to FWHs and Condensers and SV for Extraction Steam	Pressure boundary/ system integrity/ deadleg/instrument control	Protect	Inspect during walkdown for length. Heat Trace and 1" Insulation recommended due to unknown length. No protection required for the airline to/from the LC, not subjected to freezing.		
264	PTN	4	081	5614-M-3081 Sh. 5	22	Vents / Drains / Misc. Connections	Vents	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown for length. Heat Trace and 1" insulation recommended to due to unknown length.		
265	PTN	4	081	5614-M-3081 Sh. 5	22	Vents / Drains / Misc. Connections	Drains	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown for length. Heat Trace and 1" insulation recommended to due to unknown length.		
266	PTN	4	081	5614-M-3081 Sh. 5	22	Vents / Drains / Misc. Connections	Connections	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown for length. Heat Trace and 1" insulation recommended to due to unknown length.		
232	PTN	4	081	5614-M-3081 Sh. 5	-	Heat Exchangers	FWH 4E4A/B	Yes	Required for generation	Pressure boundary/ system integrity	None	None. Normal System flow will keep tank well above freezing.	FWHs will be in operation and hot which will prevent freezing. In addition, the FWHs should also be insulated already.	
233	PTN	4	081	5614-M-3081 Sh. 5	-	Relief Valves	RV (4" Inlet, 6" Outlet per NAMS)	Standby	Relieves at 100 psig for the FWHs	Prevent overpressurization of the FWHs	Protect	Inspect during walkdown, possibly already insulated. Otherwise, 1" Insulation to prevent >25% freezing.		
234	PTN	4	081	5614-M-3081 Sh. 5	-	Vents / Drains / Misc. Connections	1.5" Drains	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required (i.e., Heat Trace & 1" Insulation).		
257	PTN	4	081	5614-M-3081 Sh. 5	-	Heat Exchangers	FWH 4E3A/B	Yes	Required for generation	Pressure boundary/ system integrity	None	None. Normal System flow will keep tank well above freezing.	FWHs will be in operation and hot which will prevent freezing. In addition, the FWHs should also be insulated already.	
258	PTN	4	081	5614-M-3081 Sh. 5	-	Relief Valves	RV (4" Inlet, 6" Outlet per NAMS)	Standby	Relieves at 100 psig for the FWHs	Prevent overpressurization of the FWHs	Protect	Options: 1. Inspect during walkdown, possibly already insulated 2. 1" Insulation to prevent >25% freezing.		
259	PTN	4	081	5614-M-3081 Sh. 5	-	Vents / Drains / Misc. Connections	1.5" Drains	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required (i.e., Heat Trace & 1" Insulation).		
286	PTN	4	081	5614-M-3081 Sh. 6	1	Piping	8" Pipe	Yes	FW Heater Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.		
296	PTN	4	081	5614-M-3081 Sh. 6	2	Piping	3" Pipe	Yes	FW Heater Drain system vent flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.		
297	PTN	4	081	5614-M-3081 Sh. 6	3	Piping	3™ Pipe	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to verify that piping is insulated already. If length of bypass is short, may not require more than insulation. If long or water can gather in pipe, could require 2" Insulation to prevent >25% freezing.		
298	PTN	4	081	5614-M-3081 Sh. 6	4	Piping	1" Pipe	Yes	FW Heater Drain system vent flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.		
299	PTN	4	081	5614-M-3081 Sh. 6	5	Piping	1" Pipe	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to verify that piping is insulated already. If length of bypass is short, may not require more than insulation. If long or water can gather in pipe, could require heat trace to prevent freezing.		
300	PTN	4	081	5614-M-3081 Sh. 6	6	Piping	10" Pipe	No	None	Pressure boundary/ system integrity/ dead leg	Protect	Inspect during walkdown. This ties into SWLU connection point - which is isolated. Configuration/location of components is unknown. Inspect during walkdown, evalute configuraiton for dead-leg potential, determine if actions are required. 1" Insulation would protect against >25% freezing.		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 317 of 488 Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 318 of 488

> R21002, Rev 0 Attachment L Page 184 of 198

301	PTN	4	081	5614-M-3081 Sh. 6	7	Piping	2" Pipe	No	None	Pressure boundary/ system integrity/ dead leg	Protect	Inspect during walkdown. This ties into SWLU connection point - which is isolated. Configuration/location of components is unknown. Inspect during walkdown, evalute configuration for dead-leg potential, determine if actions are required. 4" Insulation would protect against >25% freezing, or Heat Trace & 1" Insulation to prevent freezing.	
302	PTN	4	081	5614-M-3081 Sh. 6	8	Piping	10" Pipe	Yes	FW Heater Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.	
303	PTN	4	081	5614-M-3081 Sh. 6	8	Vents / Drains / Misc. Connections	1" Connection	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required (i.e., Heat Trace & 1" Insulation).	
304	PTN	4	081	5614-M-3081 Sh. 6	8	Instr. Local	PX	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required (i.e., Heat Trace & 1" Insulation).	
305	PTN	4	081	5614-M-3081 Sh. 6	9	Piping	8" Pipe	Yes	FW Heater Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.	
306	PTN	4	081	5614-M-3081 Sh. 6	9	Vents / Drains / Misc. Connections	3/4" Connection	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required (i.e., Heat Trace & 1" Insulation).	
307	PTN	4	081	5614-M-3081 Sh. 6	10	Piping	14" Pipe	Yes	FW Heater Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.	
308	PTN	4	081	5614-M-3081 Sh. 6	10	Vents / Drains / Misc. Connections	14" Flange	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the flange. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required (i.e., 1" Insulation needed to keep piping from >25% freezing).	
318	PTN	4	081	5614-M-3081 Sh. 6	11	Piping	8" Pipe	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required (i.e., 1" Insulation needed to keep piping from >25% freezing).	
319	PTN	4	081	5614-M-3081 Sh. 6	12	Piping	10" Pipe	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to verify that piping is insulated aiready. If not, 1" Insulation needed to keep piping from >25% freezing. Another option is to mitigate by opening the CV valve to the Condenser flow path so there is flow in this piping on a periodic basis to prevent freezing.	
320	PTN	4	081	5614-M-3081 Sh. 6	12	Vents / Drains / Misc. Connections	3/4" Connection	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to verify that piping is insulated already. If not, 1" insulation needed to keep piping from >25% freezing.	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 319 of 488

> R21002, Rev 0 Attachment L Page 185 of 198

													1 4
321	PTN	4	081	5614-M-3081 Sh. 6	13	Piping	12" Pipe	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to verify that piping is insulated already. If not, 1" Insulation needed to keep piping from >25% freezing. Another option is to mitigate by opening the CV valve to the Condenser flow path so there is flow in this piping on a periodic basis to prevent freezing.	
322	PTN	4	081	5614-M-3081 Sh. 6	13	Vents / Drains / Misc. Connections	12" Flange	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to verify that piping is insulated aiready. If not, 1" Insulation needed to keep piping from >25% freezing.	
323	PTN	4	081	5614-M-3081 Sh. 6	14	Piping	8" Pipe	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to verify that piping is insulated already. If not, 1" Insulation needed to keep piping from >25% freezing.	
324	PTN	4	081	5614-M-3081 Sh. 6	14	Vents / Drains / Misc. Connections	3/4" Connection	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to verify that piping is insulated already. If not, 1" Insulation needed to keep piping from >25% freezing.	
325	PTN	4	081	5614-M-3081 Sh. 6	15	Piping	1.5" Pipe	Yes	FW Heater Drain system vent flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.	
326	PTN	4	081	5614-M-3081 Sh. 6	16	Piping	1.5" Pipe	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to verify that piping is insulated aiready. If length of bypass is short, may not require more than insulation. If long or water can gather in pipe, could require heat trace to prevent freezing.	
327	PTN	4	081	5614-M-3081 Sh. 6	17	Piping	4" Pipe	Yes	FW Heater Drain system vent flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.	
328	PTN	4	081	5614-M-3081 Sh. 6	18	Piping	4" Pipe	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to verify that piping is insulated aiready. If length of bypass is short, may not require more than insulation. If long or water can gather in pipe, could require 1" Insulation to prevent >25% freezing.	
329	PTN	4	081	5614-M-3081 Sh. 6	19	Piping	12" Pipe	Yes	FW Heater Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.	
330	PTN	4	081	5614-M-3081 Sh. 6	19	Vents / Drains / Misc. Connections	3/4" & 1" Drains	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required (i.e., Heat Trace & 1" Insulation).	
331	PTN	4	081	5614-M-3081 Sh. 6	19	Instr. Local	PX	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required (i.e., Heat Trace & 1" insulation).	
332	PTN	4	081	5614-M-3081 Sh. 6	19	Vents / Drains / Misc. Connections	12" Flange	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the flange. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required (i.e., 1" Insulation needed to keep piping from >25% freezing).	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 320 of 488

> R21002, Rev 0 Attachment L Page 186 of 198

333	PTN	4	081	5614-M-3081 Sh. 6	20	Piping	10" Pipe	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required (i.e., 1" Insulation needed to keep piping from >25% freezing). Inspect during walkdown.	
334	PTN	4	081	5614-M-3081 Sh. 6	21	Piping	12" Pipe	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Configuration/location of components is unknown. Inspect during walkdown to verify that piping is insulated already. If not, 1" Insulation needed to keep piping from 25% freezing. Another option is to mitigate by opening the CV valve to the Condenser flow path so there is flow in this piping on a periodic basis to prevent freezing.	
335	PTN	4	081	5614-M-3081 Sh. 6	22	Piping	8" Pipe	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to verify that piping is insulated already. If not, 1" Insulation needed to keep piping from >25% freezing. Another option is to mitigate by opening the CV valve to the Condenser flow path so there is flow in this piping on a periodic basis to prevent freezing.	
336	PTN	4	081	5614-M-3081 Sh. 6	22	Vents / Drains / Misc. Connections	3/4" Connection	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to verify that piping is insulated already. If not, 1" Insulation needed to keep piping from >25% freezing.	
337	PTN	4	081	5614-M-3081 Sh. 6	23	Piping	10" Pipe	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to verify that piping is insulated already. If not, 1" Insulation needed to keep piping from >25% freezing.	
338	PTN	4	081	5614-M-3081 Sh. 6	23	Vents / Drains / Misc. Connections	3/4" Connection	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Configuration/location of components is unknown. Inspect during walkdown to verify that piping is Insulated already. If not, 1" Insulation needed to keep piping from >25% freezing.	
339	PTN	4	081	5614-M-3081 Sh. 6	24	Piping	12" Pipe	No	None	Pressure boundary/ system integrity/ dead leg	Protect	Inspect during walkdown. This ties into SWLU connection point - which is isolated. Configuration/location of components is unknown. Inspect during walkdown, evalute configuration for dead-leg potential, determine if actions are required. 1" Insulation would protect against >25% freezing.	
340	PTN	4	081	5614-M-3081 Sh. 6	25	Piping	2" Pipe	No	None	Pressure boundary/ system integrity/ dead leg	Protect	Inspect during walkdown. This ties into SWLU connection point - which is isolated. Configuration/location of components is unknown. Inspect during walkdown, evalute configuration for dead-leg potential, determine if actions are required. 4" Insulation would protect against >25% freezing, or Heat Trace & 1" Insulation to prevent freezing.	
289	PTN	4	081	5614-M-3081 Sh. 6	26	Piping	1.5" Pipe	Yes	Piping to all of the Instruments associated with Heatert Drains for the FWHs	Pressure boundary/ system integrity/ deadleg/instrument loop	Protect	Inspect during walkdown for length. Heat Trace and 1" Insulation recommended to due to unknown length.	
290	PTN	4	081	5614-M-3081 Sh. 6	26	Instr. Control / Protection	LC, LS	Yes	Control to CVs for flow to FWHs and Condensers	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown for length. Heat Trace and 1" Insulation recommended due to unknown length. No protection required for the airline to/from the LC, not subjected to freezing.	
291	PTN	4	081	5614-M-3081 Sh. 6	26	Instr. Annunciation / Indication	LS	Yes	CR Annunciator	Pressure boundary/ system integrity/ deadleg/instrument alarm	Protect	Inspect during walkdown for length. Heat Trace and 1" Insulation recommended due to unknown length.	
292	PTN	4	081	5614-M-3081 Sh. 6	26	Instr. Local	LI, LGs	Yes	None	Pressure boundary/ system integrity/ deadleg/instrument control	Protect	Inspect during walkdown for length. Heat Trace and 1" Insulation recommended to due to unknown length.	

R21002, Rev 0 Attachment L Page 187 of 198

														Pa
293	PTN	4	081	5614-M-3081 Sh. 6	26	Vents / Drains / Misc. Connections	Vents	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown for length. Heat Trace and 1" Insulation recommended to due to unknown length.		
294	PTN	4	081	5614-M-3081 Sh. 6	26	Vents / Drains / Misc. Connections	Drains	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown for length. Heat Trace and 1" Insulation recommended to due to unknown length.		
295	PTN	4	081	5614-M-3081 Sh. 6	26	Vents / Drains / Misc. Connections	3/4" Connections	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown for length. Heat Trace and 1" Insulation recommended to due to unknown length.		
311	PTN	4	081	5614-M-3081 Sh. 6	27	Piping	1.5" Pipe	Yes	Piping to all of the Instruments associated with Heatert Drains for the FWHs	Pressure boundary/ system integrity/ deadleg/instrument loop	Protect	Inspect during walkdown for length. Heat Trace and 1" Insulation recommended to due to unknown length.		
312	PTN	4	081	5614-M-3081 Sh. 6	27	Instr. Control / Protection	LC, LS	Yes	Control to CVs for flow to Condensers	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown for length. Heat Trace and 1" Insulation recommended due to unknown length. No protection required for the airline to/from the LC, not subjected to freezing.		
313	PTN	4	081	5614-M-3081 Sh. 6	27	Instr. Annunciation / Indication	LS	Yes	CR Annunciator	Pressure boundary/ system integrity/ deadleg/instrument alarm	Protect	Inspect during walkdown for length. Heat Trace and 1" Insulation recommended due to unknown length.		
314	PTN	4	081	5614-M-3081 Sh. 6	27	Instr. Local	LI, LGs	Yes	None	Pressure boundary/ system integrity/ deadleg/instrument control	Protect	Inspect during walkdown for length. Heat Trace and 1" Insulation recommended to due to unknown length.		
315	PTN	4	081	5614-M-3081 Sh. 6	27	Vents / Drains / Misc. Connections	Vents	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown for length. Heat Trace and 1" Insulation recommended to due to unknown length.		
316	PTN	4	081	5614-M-3081 Sh. 6	27	Vents / Drains / Misc. Connections	Drains	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown for length. Heat Trace and 1" Insulation recommended to due to unknown length.		
317	PTN	4	081	5614-M-3081 Sh. 6	27	Vents / Drains / Misc. Connections	3/4" Connections	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown for length. Heat Trace and 1" Insulation recommended to due to unknown length.		
287	PTN	4	081	5614-M-3081 Sh. 6	-	Heat Exchangers	FWH 4E2A/B	Yes	Required for generation	Pressure boundary/ system integrity	None	None. Normal System flow will keep tank well above freezing.	FWHs will be in operation and hot which will prevent freezing. In addition, the FWHs should also be insulated already.	
288	PTN	4	081	5614-M-3081 Sh. 6	-	Vents / Drains / Misc. Connections	1.5" Drains	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required (i.e., Heat Trace & 1" Insulation).		
309	PTN	4	081	5614-M-3081 Sh. 6	-	Heat Exchangers	FWH 4E1A/B	Yes	Required for generation	Pressure boundary/ system integrity	None	None. Normal System flow will keep tank well above freezing.	FWHs will be in operation and hot which will prevent freezing. In addition, the FWHs should also be insulated already.	
310	PTN	4	081	5614-M-3081 Sh. 6	-	Vents / Drains / Misc. Connections	1.5" Drain	No	None	Pressure boundary/ system integrity/ deadleg	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required (i.e., Heat Trace & 1" Insulation).		
344	PTN	4	081	5614-M-3081 Sh. 7	1	Instr. Control / Protection	Level transmitters and associated 2" piping/valves	Yes	Provide signal for control valves	System Flow control	Protect	Inspect during walkdown. Components are in close proximity to hot piping, but configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
345	PTN	4	081	5614-M-3081 Sh. 7	1	Vents / Drains / Misc. Connections	1" Vents	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Configuration/location of components is unknown. (shown as inside MSR on P&ID) Inspect during walkdown to determine if actions are required.	Location/configuration unclear.	
346	PTN	4	081	5614-M-3081 Sh. 7	1	Vents / Drains / Misc. Connections	1" Drains	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	Location/configuration unclear.	
347	PTN	4	081	5614-M-3081 Sh. 7	2	Piping	4" Piping from MSR to RHTR Drain Tk (Vent)	Yes	FW Heater Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 321 of 488 Ten-Year Site Plan
Staff's Third Data Request
Request No. 2
Attachment 4 of 24
Page 322 of 488

Florida Power & Light Company Docket No. 20220000-OT

> R21002, Rev 0 Attachment L Page 188 of 198

													Pa
348	PTN	4	081	5614-M-3081 Sh. 7	2	Vents / Drains / Misc. Connections	3/4" Vent	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation will keep piping and components warm and well above freezing. Configuration/location is unknown. Inspect during walkdown to determine if actions are required.	
349	PTN	4	081	5614-M-3081 Sh. 7	2	Vents / Drains / Misc. Connections	1" capped pipe	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation will keep piping and components warm and well above freezing. Configuration/location is unknown. Inspect during walkdown to determine if actions are required.	
350	PTN	4	081	5614-M-3081 Sh. 7	3	Piping	12" and 8" Piping to RHTR Drain Tk (Drain)	Yes	FW Heater Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.	
351	PTN	4	081	5614-M-3081 Sh. 7	3	Vents / Drains / Misc. Connections	Vent	Yes	FW Heater Drain system flowpath	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation will keep piping and components warm and well above freezing. Configuration/location is unknown. Inspect during walkdown to determine if actions are required.	
352	PTN	4	081	5614-M-3081 Sh. 7	4	Piping	4" piping from MSR to FW HTR	Yes	FW Heater Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.	
353	PTN	4	081	5614-M-3081 Sh. 7	5	Piping	3" piping from MSR to FW HTR	Yes	FW Heater Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.	
354	PTN	4	081	5614-M-3081 Sh. 7	5	Instr. Local	PI	Yes	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	
355	PTN	4	081	5614-M-3081 Sh. 7	5	Vents / Drains / Misc. Connections	3/4" Vent	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	
356	PTN	4	081	5614-M-3081 Sh. 7	5	Vents / Drains / Misc. Connections	1" Drain	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	
357	PTN	4	081	5614-M-3081 Sh. 7	5	Vents / Drains / Misc. Connections	3" Capped Pipe	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	
358	PTN	4	081	5614-M-3081 Sh. 7	6	Piping	2" piping from MSR to FW HTR	Yes	FW Heater Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.	
359	PTN	4	081	5614-M-3081 Sh. 7	7	Piping	3" piping from MSR to FW HTR	Yes	FW Heater Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.	
360	PTN	4	081	5614-M-3081 Sh. 7	7	Vents / Drains / Misc. Connections	Flanges	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	
361	PTN	4	081	5614-M-3081 Sh. 7	7	Vents / Drains / Misc. Connections	3/4" Vent	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	
362	PTN	4	081	5614-M-3081 Sh. 7	7	Vents / Drains / Misc. Connections	1" Drain	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.	

R21002, Rev 0 Attachment L Page 189 of 198

														Pa
363	PTN	4	081	5614-M-3081 Sh. 7	7	Vents / Drains / Misc. Connections	3" Capped Pipe	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
364	PTN	4	081	5614-M-3081 Sh. 7	8	Piping	4" piping from MSR to 6B FW HTR	Yes	FW Heater Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.		
365	PTN	4	081	5614-M-3081 Sh. 7	8	Vents / Drains / Misc. Connections	Flanges	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
366	PTN	4	081	5614-M-3081 Sh. 7	8	Vents / Drains / Misc. Connections	3/4" Vent	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
367	PTN	4	081	5614-M-3081 Sh. 7	9	Piping	8" piping from MSR to FW HTR	Yes	FW Heater Drain system flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.		
368	PTN	4	081	5614-M-3081 Sh. 7	9	Vents / Drains / Misc. Connections	Flange	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
369	PTN	4	081	5614-M-3081 Sh. 7	11	Piping	3" Pipe	No	None	Pressure boundary/ system integrity/ Cond Vacuum	Protect	Inspect during walkdown. Segment is normally isolated from HD but open to condenser side. Configuration/location is unknown. Inspect during walkdown to determine if actions are required.	Not used in normal operation. Chain operated isolation valve.	
370	PTN	4	081	5614-M-3081 Sh. 7	11	Vents / Drains / Misc. Connections	3/4" Vent	No	None	Pressure boundary/ system integrity/ Cond Vacuum	Protect	Inspect during walkdown. Segment is normally isolated from HD but open to condenser side. Configuration/location is unknown. Inspect during walkdown to determine if actions are required.		
371	PTN	4	081	5614-M-3081 Sh. 7	11	Vents / Drains / Misc. Connections	1" Drain	No	None	Pressure boundary/ system integrity/ Cond Vacuum	Protect	Inspect during walkdown. Segment is normally open to condenser side up to isolation valve. Configuration/location is unknown. Inspect during walkdown to determine if actions are required.		
372	PTN	4	081	5614-M-3081 Sh. 7	11	Vents / Drains / Misc. Connections	3" Flanges	No	None	Pressure boundary/ system integrity/ Cond Vacuum	Protect	Inspect during walkdown. Segment is normally open to condenser side up to isolation valve. Configuration/location is unknown. Inspect during walkdown to determine if actions are required.		
373	PTN	4	081	5614-M-3081 Sh. 7	12	Piping	1" Pipe	No	None	Pressure boundary/ system integrity/ Cond Vacuum	Protect	Inspect during walkdown. Segment is normally isolated from HD but open to condenser side. Configuration/location is unknown. Inspect during walkdown to determine if actions are required.		
374	PTN	4	081	5614-M-3081 Sh. 7	13	Piping	1/2" piping	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation will keep piping and components warm on system side of isolation valve. Configuration/location components is unknown. Inspect during walkdown to determine if actions are required.	Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required.	
375	PTN	4	081	5614-M-3081 Sh. 7	13	Instr. Local	Test Connection (PX) and	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation will keep piping and components warm on system side of isolation valve. Configuration/location components is unknown. Inspect during walkdown to determine if actions are required.	Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required.	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 323 of 488

R21002, Rev 0 Attachment L Page 190 of 198

376	PTN	4	081	5614-M-3081 Sh. 7	14	Piping	8" Pipe	Yes	Flowpath to 3B HTR Drain Tank & Condenser	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and		
377	PTN	4	081	5614-M-3081 Sh. 7	14	Vents / Drains / Misc. Connections	3/4" Connection	No	None	Pressure boundary/ system integrity	Protect	components warm and well above freezing. Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
378	PTN	4	081	5614-M-3081 Sh. 7	14	Vents / Drains / Misc. Connections	Flange	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
379	PTN	4	081	5614-M-3081 Sh. 7	15	Piping	1/4", 3/8", 1/2" to sample system	Yes	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
380	PTN	4	081	5614-M-3081 Sh. 7	15	Instr. Local	Pressure Test Connection	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
381	PTN	4	081	5614-M-3081 Sh. 7	16	Piping	10" Pipe	Yes	Condenser Flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.		
382	PTN	4	081	5614-M-3081 Sh. 7	16	Vents / Drains / Misc. Connections	3/4" Connection	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
383	PTN	4	081	5614-M-3081 Sh. 7	17	Piping	6" Pipe and CV	Yes	Condenser Flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.		
384	PTN	4	081	5614-M-3081 Sh. 7	18	Piping	10" Pipe	Yes	Condenser Flowpath	Pressure boundary/ system integrity	None	None. Normal operation will keep piping and components warm and well above freezing.		
385	PTN	4	081	5614-M-3081 Sh. 7	18	Vents / Drains / Misc. Connections	Flange	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
386	PTN	4	081	5614-M-3081 Sh. 7	19	Piping	8" Pipe	No	Bypass to Condenser	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
387	PTN	4	081	5614-M-3081 Sh. 7	19	Vents / Drains / Misc. Connections	3/4" Connection	No	None	Pressure boundary/ system integrity	Protect	Inspect during walkdown. Normal operation should keep piping and components warm up to the isolation valve. Configuration/location of components is unknown. Inspect during walkdown to determine if actions are required.		
341	PTN	4	081	5614-M-3081 Sh. 7	-	Heat Exchangers	MSR 4T25C/D	Yes	MSR	-	None	None. Normal System flow will keep tank well above freezing.	MSR is already insulated and is hot	
342	PTN	4	081	5614-M-3081 Sh. 7	-	Outdoor Tanks	Shell Side Drain Tank	Yes	Drain Tank	-	None	No protection recommended	MSR is already insulated and is hot	
343	PTN	4	081	5614-M-3081 Sh. 7	-	Vents / Drains / Misc. Connections	Drain Tank Connections	No	Drain Tank Pressure Boundary	Pressure boundary/ system integrity/ dead leg		Inspect during walkdwon to determine if already insulated, lentth and if add'l protection is required. If short and/or insulated, no protection should be needed		
1	PTN	4	084	5614-M-3084 SH 1	0	N/A Remark only	N/A Remark only	N/A Remark only	N/A Remark only	N/A Remark only	N/A Remark only	N/A Remark only	This evaluation is performed assuming the U4 steam reducing station is NOT in service, and A5 is supplied from U3 (as shown on P&ID's). Discuss with operations regarding usual line-up. Both U3 and U4 should be prepared for either operating configuration.	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 324 of 488

R21002, Rev 0 Attachment L Page 191 of 198

2	PTN	4	084	5614-M-3084 SH 1	1	Piping	Piping from MS to AS. Pipe sections: [4-4"-2-C, 4-3"-2-C, 4-6"-4-C, 4-1"-2-C, 4-3/4"-2-C] Check valve 4-10-077	No	When in service: flowpath to Aux Priming Ejectors (CW - waterbox vacuum) Alternate supply to AFW pumps	Pressure boundary/ deadleg	Protect	Inspect during walkdown. Configuration/location of piping is unknown. Inspect/evaluate pipe sections between closed valves, as well as piping between closed control valves and check valve 4-10-077.	Either U3 or U4 reducing station will be in service. AFW pumps supply - unable to determine if/where this path is credited	
3	PTN	4	084	5614-M-3084 SH 1	1	Piping	Aux Steam Reducing Station control valves CV-4-1601, 1601A	No	Flow Controlled by CV-4-1601; Either U3 or U4 supply is in service. (P&ID shows U3 in service)	Pressure boundary/ Flow control	Protect	Inspect during walkdown. Configuration/location of piping is unknown. Inspect/evaluate pipe sections between closed valves, as well as piping between closed control valves and check valve 4-10-077.		
4	PTN	4	084	5614-M-3084 SH 1	1	Instr. Control / Protection	Instrument Air Tubing / position controller to valves CV-4-1601, 1601A	No	When in service: CV-4-1601 control (flowpath to Aux Priming Ejectors)	Flow control/ Valve fails closed on loss of signal	Protect	Inspect during walkdown. Air lines not subject to freezing. Ensure valve actuator, solenoid valve, and, connected control wiring are adequately insulated/protected from elements.		
5	PTN	4	084	5614-M-3084 SH 1	1	Instr. Control / Protection	PC-4-1601 and associated piping	No	None	Pressure boundary; Condenser Performance	Protect	Inspect during walkdown. Connects to dead leg of pipe (when U4 not in service as shown on P&ID).	Either U3 or U4 reducing station will be in service.	
6	PTN	4	084	5614-M-3084 SH 1	1	Instr. Annunciation / Indication	PI-4-1717 and associated piping.	No	None	Pressure boundary	Protect	Inspect during walkdown. Connects to dead leg of pipe (when U4 not in service as shown on P&ID).		
7	PTN	4	084	5614-M-3084 SH 1	1	Vents / Drains / Misc. Connections	Valves/ drains/ Steam Trap [ST-4-54, -56]	Yes	None	Pressure boundary	Protect	Inspect during walkdown. Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required.	Configuration/location of drains is unknown. Inspect during walkdown.	
8	PTN	4	084	5614-M-3084 SH 1	1	Vents / Drains / Misc. Connections	Valves/ drains/ Steam Trap [ST-4-15]	No	None	Pressure boundary	Protect	Inspect during walkdown. Steam trap and associated piping/ valves/ connections connect to isolated section of pipe. Walkdown configuration/location to determine whether any actions are required.		
9	PTN	4	084	5614-M-3084 SH 1	2	Piping	Piping [4-6"-2-C] Valves [SLWU-4-001, SLWU-4-002 (check vlv)]	No		Pressure boundary	None	Normal operation will keep piping and components warm and well above freezing (on steam side). Potential dead leg concern between isolation valve and check valve.	Pipe section used for WLU only. Pipe will be filled to check valve. Configuration between isolation and check valve is unknown; confirm no dead leg concern.	
10	PTN	4	084	5614-M-3084 SH 1	3	Piping	Piping from the U4 AS HDR to class boundry. [6"-6-D, 4-10-078, 4-6"-6-D, 4-4"-6-D]	Yes	None	Pressure boundary	None	Normal operation will keep piping and components warm and well above freezing. Header should be hot to the U4 isolation valve		
11	PTN	4	084	5614-M-3084 SH 1	3	Relief Valves	Relief valves [RV-4-6264, RV-4- 1422]	Standby	Overpressure control for AS	Overpressure relief	Protect	Inspect during walkdown. Ensure operability of relief valve. Normal flow should keep components warm, exhaust configuration is unknown.	Location and configuration is unknown. Walkdown to evaluate whether additional measures are required.	
12	PTN	4	084	5614-M-3084 SH 1	3	Vents / Drains / Misc. Connections	Drain 4-10-41B Capped pipe sections [4-4"-6-D, 4- 3"-6-D, piping to LC valve 10-259] Steam Trap	Yes	None	Pressure boundary	Protect	Inspect during walkdown. Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required.	Configuration/location of drains is unknown. Inspect during walkdown.	
13	PTN	4	084	5614-M-3084 SH 1	4	Piping	Piping to AFW pumps [4-4"-6-D]	Yes	Flowpath is not normally used and leads to locked closed valve. Unable to determine if/where this path is credited.	Pressure boundary	None	Normal operation will keep piping and components warm and well above freezing.		
14	PTN	4	084	5614-M-3084 SH 1	5	Piping	Piping to Aux Priming Ejectors [4- 2"-6-D]	Yes	Flowpath to Aux Priming Ejectors (Circ water)	Pressure boundary; Condenser Performance	None	Normal operation will keep piping and components warm and well above freezing.		
15	PTN	4	084	5614-M-3084 SH 1	6	Piping	Piping from MS to Turbine Gland Seal [4-2 1/2"-2-C]	Yes	None	Provide Gland Seal Steam	None	Normal operation will keep piping and components warm and well above freezing.		
16	PTN	4	084	5614-M-3084 SH 1	7	Piping	Piping to Steam Jet Air Ejectors [4-2"-2-C]	Yes	Provide steam for SJAE	Condenser Performance	None	Normal operation will keep piping and components warm and well above freezing.	SJAEs on TB Op floor	
17	PTN	4	084	5614-M-3084 SH 1	8	Piping	Piping to Hogging Ejectors [4-2"-2-C]	No	Hogging Ejectors Isolated during operation	None	None	Normal operation will keep piping and components warm and well above freezing.		
18	PTN	4	084	5614-M-3084 SH 1	9	Piping	Piping to Main Priming Ejectors	No	Main Priming Ejectors Isolated during operation	None	None	Normal operation will keep piping and components warm and well above freezing.		
19	PTN	4	085	5614-M-3085 SH 1	1	Piping	ES from HP turbine exhaust to 5A/5B FW HTRS [4-16"-4-CM]	Yes	Steam to FW HTRs	N/A	None	Normal steam flow will keep piping and components warm and well above freezing.		
20	PTN	4	085	5614-M-3085 SH 1	1	Piping	Control Valves [BTV-4-1518, -1520]	Yes	FW HTR level control	N/A	None	Normal steam flow will keep piping and components warm and well above freezing.		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 325 of 488

R21002, Rev 0 Attachment L Page 192 of 198

21	PTN	4	085	5614-M-3085 SH 1	1	Instr. Control / Protection	Instrument air tubing/solenoid/ controller for BTV-4-1518, -1520	Yes	FW HTR level control	Maintain FW HTR level control	Protect	Inspect during walkdown. Air system not susceptible to freezing. Ensure valve actuator, solenoid valve, and, connected control wiring are adequately insulated/protected from elements.	Components should be in close proximity to hot piping. Walkdown to determine if measures are required.	
22	PTN	4	085	5614-M-3085 SH 1	1	Vents / Drains / Misc. Connections	PX test points; Various vents/drains	No	None	Pressure boundary	Protect	Inspect during walkdown. Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required.	Configuration/location of drains is unknown. Inspect during walkdown.	
23	PTN	4	085	5614-M-3085 SH 1	1	Vents / Drains / Misc. Connections	Steam traps [ST-4-19,-20,-21,-22]	Yes	None	Pressure boundary	Protect	Inspect during walkdown. Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required.	Configuration/location of drains is unknown. Inspect during walkdown.	
24	PTN	4	085	5614-M-3085 SH 1	2	Piping	ES from HP turbine exhaust to 6A/68 FW HTRS [4-12"-4-CM] Connections to Condenser Drains, SWLU, MSR Drains [4-1"-4-U, 4-2"-4-C, 4-1 1/2"-4-D, 8"-5CM]	Yes	Steam to FW HTRs	N/A	None	Normal steam flow will keep piping and components warm and well above freezing.	Connections shown are piping only (no valves shown on this P&ID). Therefore, assumed warm and above freezing.	
25	PTN	4	085	5614-M-3085 SH 1	2	Piping	Connection to RHTR Drain Tank vent [4-2"-2-C]	No	None	Pressure Boundary	Protect	Inspect during walkdown. Normal operation will keep piping on steam side of isolation valve warm and well above freezing. Configuration/location of piping is unknown. Inspect during walkdown to determine if actions are required.		
26	PTN	4	085	5614-M-3085 SH 1	2	Piping	Control Valves [BTV-4-1522, -1524]	Yes	FW HTR level control	N/A	None	Normal steam flow will keep piping and components warm and well above freezing.		
27	PTN	4	085	5614-M-3085 SH 1	2	Instr. Control / Protection	Instrument air tubing/ solenoid/ controller for BTV-4-1522, -1524	Yes	FW HTR level control	Maintain FW HTR level control	Protect	Inspect during walkdown. Air system not susceptible to freezing. Ensure valve actuator, solenoid valve, and, connected control wiring are adequately insulated/protected from elements.	Components should be in close proximity to hot piping. Walkdown to determine if measures are required.	
28	PTN	4	085	5614-M-3085 SH 1	2	Vents / Drains / Misc. Connections	PX test points; Various vents/drains	No	None	Pressure boundary	Protect	Inspect during walkdown. Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required.	Configuration/location of drains is unknown. Inspect during walkdown.	
29	PTN	4	085	5614-M-3085 SH 1	2	Vents / Drains / Misc. Connections	Steam traps [ST-4-17,-18]	Yes	None	Pressure boundary	Protect	Inspect during walkdown. Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required.	Configuration/location of drains is unknown. Inspect during walkdown.	
30	PTN	4	085	5614-M-3085 SH 1	3	Piping	Piping from Condenser to 3B FW HTR Connection to Turbine Cold Reheat STM Line DRN	Yes	Steam to FW HTRs	N/A	None	Normal steam flow will keep piping and components warm and well above freezing.	Connections shown are piping only (no closed valves shown on this P&ID). Therefore, assumed warm and above freezing.	
31	PTN	4	085	5614-M-3085 SH 1	3	Piping	Control Valves [BTV-4-1509, -1510]	Yes	FW HTR level control	N/A	None	Normal steam flow will keep piping and components warm and well above freezing.		
32	PTN	4	085	5614-M-3085 SH 1	3	Instr. Control / Protection	Instrument air tubing/solenoid/ controller for BTV-4-1509, -1510	Yes	FW HTR level control	Maintain FW HTR level control	Protect	Inspect during walkdown. Air system not susceptible to freezing. Ensure valve actuator, solenoid valve, and, connected control wiring are adequately insulated/protected from elements.	Components should be in close proximity to hot piping. Walkdown to determine if measures are required.	
33	PTN	4	085	5614-M-3085 SH 1	3	Vents / Drains / Misc. Connections	PX test points; Various vents/drains	No	None	Pressure boundary	Protect	Inspect during walkdown. Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required.	Configuration/location of drains is unknown. Inspect during walkdown.	
34	PTN	4	085	5614-M-3085 SH 1	3	Vents / Drains / Misc. Connections	Steam traps [ST-4-27,-28, -31, -32]	Yes	None	Pressure boundary	Protect	Inspect during walkdown. Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required.	Configuration/location of drains is unknown. Inspect during walkdown.	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 326 of 488

R21002, Rev 0 Attachment L Page 193 of 198

35	PTN	4	085	5614-M-3085 SH 1	4	Piping	Piping from Condenser to 4B FW HTR Connections to SWLU, SG Blowdown Recovery System	Yes	Steam to FW HTRs	N/A	None	Normal steam flow will keep piping and components warm and well above freezing.	Connections shown are piping only (no closed valves shown on this P&ID). Therefore, assumed warm and above freezing.	
36	PTN	4	085	5614-M-3085 SH 1	4	Piping	Control Valves	Yes	FW HTR level control	N/A	None	Normal steam flow will keep piping and		
37	PTN	4	085	5614-M-3085 SH 1	4	Instr. Control / Protection	[BTV-4-1514] Instrument air tubing/ solenoid/ controller for BTV-4-1514	Yes	FW HTR level control	Maintain FW HTR level control	Protect	components warm and well above freezing. Inspect during walkdown. Air system not susceptible to freezing. Ensure valve actuator, solenoid valve, and, connected control wiring are adequately insulated/protected from elements.	Components should be in close proximity to hot piping. Walkdown to determine if measures are required.	
38	PTN	4	085	5614-M-3085 SH 1	4	Vents / Drains / Misc. Connections	PX test points; Various vents/drains	No	None	Pressure boundary	Protect	Inspect during walkdown. Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required.	Configuration/location of drains is unknown. Inspect during walkdown.	
39	PTN	4	085	5614-M-3085 SH 1	4	Vents / Drains / Misc. Connections	Steam trap [ST-3-24]	Yes	None	Pressure boundary	Protect	Inspect during walkdown. Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required.	Configuration/location of drains is unknown. Inspect during walkdown.	
40	PTN	4	085	5614-M-3085 SH 1	5	Piping	Piping from Condenser to 3A FW HTR Connection to Turbine Cold Reheat STM Line DRN	Yes	Steam to FW HTRs	N/A	None	Normal steam flow will keep piping and components warm and well above freezing.	Connections shown are piping only (no closed valves shown on this P&ID). Therefore, assumed warm and above freezing.	
41	PTN	4	085	5614-M-3085 SH 1	5	Piping	Control Valves [BTV-4-1507, -1508]	Yes	FW HTR level control	N/A	None	Normal steam flow will keep piping and components warm and well above freezing.		
42	PTN	4	085	5614-M-3085 SH 1	5	Instr. Control / Protection	Instrument air tubing/ solenoid/ controller for BTV-4-1507, -1508	Yes	FW HTR level control	Maintain FW HTR level control	Protect	Inspect during walkdown. Air system not susceptible to freezing. Ensure valve actuator, solenoid valve, and, connected control wiring are adequately insulated/protected from elements.	Components should be in close proximity to hot piping. Walkdown to determine if measures are required.	
43	PTN	4	085	5614-M-3085 SH 1	5	Vents / Drains / Misc. Connections	PX test points; Various vents/drains	No	None	Pressure boundary	Protect	Inspect during walkdown. Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required.	Configuration/location of drains is unknown. Inspect during walkdown.	
44	PTN	4	085	5614-M-3085 SH 1	5	Vents / Drains / Misc. Connections	Steam traps [ST-4-25,-26, -29, -30]	Yes	None	Pressure boundary	Protect	Inspect during walkdown. Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required.	Configuration/location of drains is unknown. Inspect during walkdown.	
45	PTN	4	085	5614-M-3085 SH 1	6	Piping	Piping from Condenser to 4A FW HTR Connections to SWLU, SG Blowdown Recovery System	Yes	Steam to FW HTRs	N/A	None	Normal steam flow will keep piping and components warm and well above freezing.	Connections shown are piping only (no valves shown on this P&ID). Therefore, assumed warm and above freezing.	
46	PTN	4	085	5614-M-3085 SH 1	6	Piping	Control Valves [BTV-4-1512]	Yes	FW HTR level control	N/A	None	Normal steam flow will keep piping and components warm and well above freezing.		
47	PTN	4	085	5614-M-3085 SH 1	6	Instr. Control / Protection	Instrument air tubing/ solenoid/ controller for BTV-4-1512	Yes	FW HTR level control	Maintain FW HTR level control	Protect	Inspect during walkdown. Air system not susceptible to freezing. Ensure valve actuator, solenoid valve, and, connected control wiring are adequately insulated/protected from elements.	Components should be in close proximity to hot piping. Walkdown to determine if measures are required.	
48	PTN	4	085	5614-M-3085 SH 1	6	Vents / Drains / Misc. Connections	PX test points; Various vents/drains	No	None	Pressure boundary	Protect	Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required.	Configuration/location of drains is unknown. Inspect during walkdown.	
49	PTN	4	085	5614-M-3085 SH 1	6	Vents / Drains / Misc. Connections	Steam trap [ST-4-23]	Yes	None	Pressure boundary	Protect	Normal operation will keep piping and components warm and well above freezing. Configuration/location of drains is unknown. Inspect during walkdown to determine if actions are required.	Configuration/lo+A38:N50cation of drains is unknown. Inspect during walkdown.	
1	PTN	4	087	5614-M-3087, Sh. 1 Turbine Lube Oil System - Lube Oil Reservoir	N/A	Piping	3", 6" pipe, small-bore pipe, Lube Oil Resevoir, Lube Oil Coolers. Equipment located on Ground Floor EL 18' - 0" Turbine Building	Yes	While in cold weather procedure, frequently check that secondary parameters are stable. This includes Turbine Generator Parameters for lube oil, seal oil, and vibration. Required for nower generation.	N/A	None	No Protection Required	System lubrication for normal operation. Based on "Turkey Point Extreme Temperature Reassessment, March 2021", No effect on system is expected for 10F below all time record low of 27F.	FSAR p.10.2-3, Procedure 0- ONOP-103.2, p12,13, Turkey Point Extreme Temperature Reassessment p.14

Florida Power & Light Company Docket No. 20220000-OT

Ten-Year Site Plan
Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 327 of 488

R21002, Rev 0 Attachment L Page 194 of 198

2	PTN	4	087	5614-M-3087, Sh. 2 Turbine Lube Oil System - Lube Oil Reservoir	N/A	Piping	2", 3 " Pipe, Lube Oil Conditioner, heaters, transfer pump, Lube Oil Storage Tank	Yes	While in cold weather procedure, frequently check that secondary parameters are stable. This includes Turbine Generator Parameters for lube oil, seal oil, and vibration. Required for power generation.	N/A	None	No Protection Required	System lubrication for normal operation. Based on "Turkey Point Extreme Temperature Reassessment, March 2021", No effect on system is expected for 10F below all time record low of 27F.	FSAR p.10.2-3, Procedure 0- ONOP-103.2, p12,13, Turkey Point Extreme Temperature Reassessment p.14
3	PTN	4	087	5614-M-3087, Sh. 3 Turbine Lube Oil System - Lube Oil Reservoir	N/A	Piping	3", 4", small bore pipe, Oil defoaming tank, Loop Seal Tank, Seal Oil Coolers, Seal Oil Pumps	Yes	While in cold weather procedure, frequently check that secondary parameters are stable. This includes Turbine Generator Parameters for lube oil, seal oil, and vibration. Required for power generation.	N/A	None	No Protection Required	Used to Prevent Hydrogen leakage from Generator. Based on "Turkey Point Extreme Temperature Reassessment, March 2021", No effect on system is expected for 10F below all time record low of 27F.	FSAR p.10.2-3, Procedure 0- ONOP-103.2, p12,13, Turkey Point Extreme Temperature Reassessment p.14
1	PTN	4	089	5614-M-3089 SH 1	1	Piping	30" piping, Turbine stop valves (x2) (from Main Steam Header to HP Turbine)	Yes	Requied for Power Generation	Normal Steam flow adequate to prevent freezing.	None	None		
2	PTN	4	089	5614-M-3089 SH 1	1	Piping	4" turbine stop valve bypass (normally closed) (x2)	Yes	Requied for Power Generation; Main steam pressure boundary	Normal Steam flow adequate to prevent freezing.	None	None	No strategy expected. Normal steam flow will keep both sides of closed valve warm.	
3	PTN	4	089	5614-M-3089 SH 1	1	Piping	18" piping (x4), Turbine control valves (x4) (from Main Steam Header to HP Turbine)	Yes	Requied for Power Generation	Normal Steam flow adequate to prevent freezing.	None	None	Turbine Control valves have Electro-Hydraulic Control (EHC) acuator. Hydraulic oil and electrical components not suseptable to freezing.	
4	PTN	4	089	5614-M-3089 SH 1	1	Instr. Control / Protection	1", 1 1/2" instrument line to Pressure Transmitter (x2) (for steam break protection and control; control of steam dump valves)	Yes	Requied for Power Generation; Main steam pressure boundary	Dead leg	Protect	Ensure instrument and instrument lines are well insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of instrument pipe/tube against dead leg freeze criteria. Main steam piping will be hot.	
5	PTN	4	089	5614-M-3089 SH 1	1	Instr. Control / Protection	(x4) (Pressure Indication & Transmitter (x4) (Pressure reading controls turbine control valve position based on turb inlet pressure; control room indication of HP turbine supply pressure)	Yes	Requied for Power Generation; Main steam pressure boundary	Dead leg	Protect	Ensure instrument and instrument lines are well insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of instrument pipe/tube against dead leg freeze criteria. Main steam piping will be hot.	
6	PTN	4	089	5614-M-3089 SH 1	1	Vents / Drains / Misc. Connections	1/2" drains (closed) off of PIT instrument lines	Yes	Requied for Power Generation; Main steam pressure boundary	Dead leg	Protect	Ensure instrument drain is insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of instrument pipe/tube against dead leg freeze criteria. Main steam piping will be hot.	
7	PTN	4	089	5614-M-3089 SH 1	2	Piping	32" & 45" Steam piping (from HP Turbine to 4 MSRs)	Yes	Requied for Power Generation	Normal Steam flow adequate to prevent freezing.	None	None		
8	PTN	4	089	5614-M-3089 SH 1	2	Instr. Annunciation / Indication	PI and PT instruments 1/2" instrument tubing	Yes	Requied for Power Generation; Main steam pressure boundary	Dead leg	None	None	Inspect during walkdown, insulation may already be present. Evaluate length of instrument pipe/tube against dead leg freeze criteria. Main steam piping will be hot.	
9	PTN	4	089	5614-M-3089 SH 1	2	Instr. Local	Temporary Instrument ports: PX (x2) SN (x1) with closed root valve	No	Main steam pressure boundary	Dead leg	None	None	Inspect during walkdown, insulation may already be present. Evaluate length of instrument pipe/tube against dead leg freeze criteria. Main steam piping will be hot.	
10	PTN	4	089	5614-M-3089 SH 1	2	Vents / Drains / Misc. Connections	1/2" instrument tubing w/ closed root valve (no instrument) (x2)	No	Main steam pressure boundary	Normal Steam flow adequate to prevent freezing.	Protect	Ensure valve and instrument lines are well insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of instrument pipe/tube against dead leg freeze criteria. Main steam piping will be hot.	
11	PTN	4	089	5614-M-3089 SH 1	2	Vents / Drains / Misc. Connections	Misc expansion joints, and manways (blind flanged).	No	Main steam pressure boundary	Normal Steam flow adequate to prevent freezing.	None	None		
17	PTN	4	089	5614-M-3089 SH 1	3	Piping	36" & 60" Steam piping (from 4 MSRs to 2 LP Turbines)	Yes	Maintain steam pressure boundary.	Normal Steam flow adequate to prevent freezing.	None	None		
18	PTN	4	089	5614-M-3089 SH 1	3	Piping	Reheat stop valves (x4); interceptor valves (x4) (from 4 MSRs to 2 LP Turbines)	Yes	Maintain steam pressure boundary.	Normal Steam flow adequate to prevent freezing.	None	None	Reheat stop valves and interceptor valves have Electro-Hydraulic Control (EHC) acuator. Hydraulic oil and electrical components not suseptable to freezing.	
19	PTN	4	089	5614-M-3089 SH 1	3	Vents / Drains / Misc. Connections	1/2" vent (closed)(x8) (from 4 MSRs to 2 LP Turbines)	No	Maintain steam pressure boundary.	Dead leg	None	None	Inspect during walkdown, insulation may already be present. Evaluate length of vent pipe against dead leg freeze criteria. Main steam piping will be hot.	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 328 of 488

R21002, Rev 0 Attachment L Page 195 of 198

														P
20	PTN	4	089	5614-M-3089 SH 1	3	Instr. Annunciation / Indication	TE (temperature element) (x6) PI/PT (press indicator and transmitter)(x5)(3/4" tubing) (from 4 MSRs to 2 LP Turbines)	Yes	Maintain steam pressure boundary.	Dead leg	None	None	Inspect during walkdown, insulation may already be present. Evaluate length of vent pipe against dead leg freeze criteria. Main steam piping will be hot.	
21	PTN	4	089	5614-M-3089 SH 1	3	Instr. Local	Temporary Instrument ports: TX (x4) and tubing (no root valve - thermowell?) downstream of reheat stop valves	No	Main steam pressure boundary	Dead leg	None	None	Inspect during walkdown. Expected to be short runs of pipe and potentially insulated already. MSR will be hot.	
22	PTN	4	089	5614-M-3089 SH 1	3	Instr. Annunciation / Indication	PT and PI (active) plus 3/4" tubing (x2); PX with 3/8" tubing (closed root valve)(x2)	Yes	Maintain steam pressure boundary.	Dead leg	Protect	Ensure instrument and instrument lines are well insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of vent pipe against dead leg freeze criteria. Main steam piping will be hot.	
23	PTN	4	089	5614-M-3089 SH 1	3	Instr. Control / Protection	PIT (x3) (pressure indicator and transmitter) (input to Turbine Control System)	Yes	Maintain steam pressure boundary.	Dead leg	Protect	Ensure instrument and instrument lines are well insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of vent pipe against dead leg freeze criteria. Main steam piping will be hot.	
24	PTN	4	089	5614-M-3089 SH 1	4	Piping	1 1/4", 1 1/2", 2", 2 1/2", 3", 4", 5", 6" piping and reducers. (Valve leakoffs to Gland Steam Cond or South Cond)	Yes	Maintain steam pressure boundary.	Normal Steam flow adequate to prevent freezing.	None	None		5614-M-3014 SH 1 5614-M-3089 SH 2
25	PTN	4	089	5614-M-3089 SH 1	5	Piping	1" and 1 1/2" piping, flow control valves (normally closed, fail open) HP steam supply drains to the South Condenser. These drains are used to direct condensate to condenser.	Yes	None	Likely located on TB Mezz level between HP turbine and south condenser	None	None	Inspect during walkdown. Expected to be short runs of pipe and potentially insulated already. Main steam piping and condenser will be hot. Assume FCVs on these lines are not opened during normal operation. However orifice plate keeps constant flow open in one leg (bypassing HP turbine.)	5614-M-3014 SH 1
26	PTN	4	089	5614-M-3089 SH 1	5	Instr. Local	Temporary Instrument ports: PX (x3) (closed root valve)	No	Main steam pressure boundary	Dead leg	None	None	Inspect during walkdown. Expected to be short runs of pipe and potentially insulated already. Main steam line will be hot.	
27	PTN	4	089	5614-M-3089 SH 1	5	Instr. Annunciation / Indication	PI and PT instruments and instrument tubing	Yes	Main steam pressure boundary	Dead leg	Protect	Ensure instrument and instrument lines are well insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of instrument tube against dead leg freeze criteria. Main steam piping will be hot.	
28	PTN	4	089	5614-M-3089 SH 1	5	Vents / Drains / Misc. Connections	closed vent on active PI/PT instrument line	No	Main steam pressure boundary	Dead leg	Protect	Ensure vent valve and tube are well insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of vent pipe against dead leg freeze criteria. Main steam piping will be hot.	
29	PTN	4	089	5614-M-3089 SH 1	6	Piping	1 1/2" piping Turbine stop valve leakoffs to HP turbine cylinder heating	Yes	Main steam pressure boundary	Normal Steam flow adequate to prevent freezing.	None	None	Inspect during walkdown. May be insulated already. Main steam piping will be hot.	5614-M-3089 SH 2
30	PTN	4	089	5614-M-3089 SH 1	7	Piping	16" piping (x2) Extraction Steam to Feedwater Heater 5A/B	Yes	Main steam pressure boundary	Normal Steam flow adequate to prevent freezing.	None	None		5614-M-3085 SH 1
31	PTN	4	089	5614-M-3089 SH 1	8	Piping	1 1/2", and 1" piping HP turbine exhaust to FW Htr 3A drain and drain to South cond.	Yes	Main steam pressure boundary	Normal Steam flow adequate to prevent freezing.	None	None	Inspect during walkdown, insulation may already be present. Main steam piping will be hot.	5614-M-3014 SH 1 5614-M-3085 SH 1
32	PTN	4	089	5614-M-3089 SH 1	9	Piping	1 1/2" piping HP turbine exhaust drain to South cond.	Yes	Main steam pressure boundary	Normal Steam flow adequate to prevent freezing.	None	None	Inspect during walkdown, insulation may already be present. Main steam piping will be hot.	5614-M-3014 SH 1
33	PTN	4	089	5614-M-3089 SH 1	10	Piping	1" piping HP turbine exhaust to extraction steam.	Yes	Main steam pressure boundary	Normal Steam flow adequate to prevent freezing.	None	None	Inspect during walkdown, insulation may already be present. Main steam piping will be hot.	5614-M-3085 SH 1
34	PTN	4	089	5614-M-3089 SH 1	11	Piping	1" piping HP turbine bypass	Yes	Maintain steam pressure boundary.	Normal Steam flow adequate to prevent freezing.	None	None	Inspect during walkdown, insulation may already be present. Main steam piping will be hot.	
12	PTN	4	089	5614-M-3089 SH 1		Heat Exchangers	MSR 3A, 3B, 3C, and 3D	Yes	Requied for Power Generation	Normal Steam flow adequate to prevent freezing.	None	None		
13	PTN	4	089	5614-M-3089 SH 1		Instr. Local	PI (pressure indicator) (x2 per MSR) 1" and 3/8" instrument tube MSR 3A, 3B, 3C, and 3D	Yes	Requied for Power Generation	Dead leg	None	None	Inspect during walkdown. Expected to be short runs of pipe and potentially insulated already. MSR will be hot.	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 329 of 488

R21002, Rev 0 Attachment L Page 196 of 198

													Pa
14	PTN	4	089	5614-M-3089 SH 1		Instr. Annunciation / Indication	TE (temperature element) (x2 per MSR)	Yes	Requied for Power Generation	Dead leg	None	None	Inspect during walkdown. Expected to be short runs of pipe and potentially insulated already.
							MSR 3A, 3B, 3C, and 3D						MSR will be hot.
15	PTN	4	089	5614-M-3089 SH 1		Instr. Local	Temporary Instrument ports: PX (x2 per MSR) and 3/8" tubing (closed root valve)	No	Main steam pressure boundary	Dead leg	None	None	Inspect during walkdown. Expected to be short runs of pipe and potentially insulated already.
							MSR 3A, 3B, 3C, and 3D						MSR will be hot.
16	PTN	4	089	5614-M-3089 SH 1		Relief Valves	One relief valve per MSR shell. MSR 3A, 3B, 3C, and 3D	Standby	Requied for Power Generation	Normal steam flow keeps line warm and well above freezing. MSRs already insulated.	None	No additional strategies - normal steam flow will keep piping and components warm and well above freezing.	Located on TB operating deck. Inspect during walkdown. MSR will be hot, unlikely to freeze. Verify close to MSR
35	PTN	4	089	5614-M-3089 SH 2	1	Piping	2", 2 1/2", 3", 3 1/2", 4", 5", 6", 8", 10" piping, reducers, one air operated control valve (2.5") this segment is main steam supply to turbine gland seal lines (HP and LP turbines)	Yes	Maintain steam pressure boundary.	Normal Steam flow adequate to prevent freezing.	None	None	Inspect during walkdown, insulation likely already be present. Steam piping will be hot.
36	PTN	4	089	5614-M-3089 SH 2	1	Instr. Control / Protection	Pressure Control Instrument (PC x2) plus 1/2" tubing	Yes	Maintain steam pressure boundary. Regulate gland seal supply steam conditions.	Dead leg	Protect	Ensure instrument and instrument lines are well insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of vent pipe against dead leg freeze criteria.
37	PTN	4	089	5614-M-3089 SH 2	1	Instr. Local	Pressure Indicator (PI) w/ 3/8" and 1/2" instrument tubing.	Yes	Maintain steam pressure boundary.	Dead leg	None	None	Main steam piping will be hot. Inspect during walkdown. Expected to be short runs of pipe and potentially insulated already. Main steam piping will be hot.
38	PTN	4	089	5614-M-3089 SH 2	1	Instr. Annunciation / Indication	Pressure Transmitter (PT) teed off of 4" pipe near HP Turb gland seal inlet. PT instrument has 1/2" tubing. PT has local/remote indication and control room alarm on low pressure.	Yes	Maintain steam pressure boundary. Regulate gland seal supply steam conditions.	Dead leg	Protect	Ensure instrument and instrument lines are well insulated.	Inspect during walkdown, insulation may already be present. Evaluate length of vent pipe against dead leg freeze criteria. Main steam piping will be hot.
39	PTN	4	089	5614-M-3089 SH 2	1	Strainers	Wye strainers (x8)	Yes	Maintain steam pressure boundary.	Normal Steam flow adequate to prevent freezing.	None	None	Inspect during walkdown, insulation likely already be present. Steam piping will be hot.
40	PTN	4	089	5614-M-3089 SH 2	1	Vents / Drains / Misc. Connections	1 1/2" drains (x2) and 2" drains (x6) from Wye strainers	No	Maintain steam pressure boundary.	Dead leg	None	None	Inspect during walkdown, insulation may already be present. Short drain connected to hot steam pipe. Steam piping and strainer will be hot.
41	PTN	4	089	5614-M-3089 SH 2	1	Relief Valves	relief valve (25 psig) and rupture disc (100 psig)	Standby	Provide over-pressure protection for gland seal steam piping.	Normal Steam flow adequate to prevent freezing.	None	None	Inspect during walkdown, insulation may already be present. Relief valve and rupture disc likely installed in close proximity to main 10" pipe. Therefore, hot process flow in main pipe will keep relief valve and rupture disc from freezing. Steam piping will be hot.
42	PTN	4	089	5614-M-3089 SH 2	2	Piping	", 8", 10" piping, reducers, and one air operated control valve (6") These segments are misc condensate drain lines from turbine gland seal supply lines to the South and North condensers.	Yes	Maintain turbine gland seal pressure boundary.	Normal Steam flow adequate to prevent freezing.	None	None	Inspect during walkdown, insulation likely already be present. Steam piping will be hot.
43	PTN	4	089	5614-M-3089 SH 2	3	Piping	2 1/2", 4", 5", 8", 10" piping, reducers Turbine gland seal exhaust piping to Gland Steam Condenser	Yes	Maintain turbine gland seal pressure boundary.	Normal Steam flow adequate to prevent freezing.	None	None	Inspect during walkdown, insulation likely already be present. Steam piping will be hot.
44	PTN	4	089	5614-M-3089 SH 2	4	Piping	1 1/4", 1 1/2", 3" piping and reducers, one air operated control valve on each main 3" line.	Yes	Maintain turbine gland seal pressure boundary.	Normal Steam flow adequate to prevent freezing.	None	None	Inspect during walkdown, insulation likely already be present. Steam piping will be hot.
45	PTN	4	089	5614-M-3089 SH 2	4	Relief Valves	3" relief valve teed off the 4" main line (x2)	Standby	Provide over-pressure protection for cylinder heating piping	Normal Steam flow adequate to prevent freezing.	None	None	Inspect during walkdown, insulation may already be present. Relief valve is likely installed in close proximity to main 4" pipe. Therefore, hot process flow in main pipe will keep relief valve from freezing. Steam piping will be hot.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 330 of 488

R21002, Rev 0 Attachment L Page 197 of 198

														Pa
46	PTN	4	089	5614-M-3089 SH 2	4	Strainers	Wye strainers (x2)	Yes	Maintain steam pressure boundary.	Normal Steam flow adequate to prevent freezing.	None	None	Inspect during walkdown, insulation likely already be present. Steam piping will be hot.	
47	PTN	4	089	5614-M-3089 SH 2	4	Vents / Drains / Misc. Connections	3/4" drains (x2) from Wye strainers	No	Maintain steam pressure boundary.	Dead leg	None	None	Inspect during walkdown, insulation may already be present. Short drain connected to hot steam pipe.	
48	PTN	4	089	5614-M-3089 SH 2	5	Vents / Drains / Misc. Connections	Pipe size not shown. LP turbine water trough drain to "Waste Drain Near Bowser Filter"	Yes	None	Dead leg	None	None	Steam piping and strainer will be hot. Inspect during walkdown, may actually be internal to condenser. Turbine and condenser will be hot and preclude freezing.	
49	PTN	4	089	5614-M-3089 SH 2	6	Vents / Drains / Misc. Connections	1" loop seal drains from LP Turbine gland seal exhaust to equipment drain.	Yes	None	Dead leg	None	None	Inspect during walkdown, may actually be internal to condenser. Turbine and condenser will be hot and preclude freezing.	
50	PTN	4	089	5614-M-3089 SH 2	7	Piping	6", 1" piping Turbine valves steam leakoffs to gland steam condenser	Yes	None	Normal Steam flow adequate to prevent freezing.	None	None	Inspect during walkdown, insulation may already be present. Steam piping will be hot.	
51	PTN	4	089	5614-M-3089 SH 2	7	Vents / Drains / Misc. Connections	Capped pipe on 6" line	No	None	Dead leg	None	None	Inspect during walkdown, insulation may already be present. Steam piping will be hot.	
52	PTN	4	089	5614-M-3089 SH 2	8	Piping	3" piping, loop seal Gland steam condenser drain to condensate recovery reciever	Yes	None	Normal process flow is warm. Gland steam condenser and Cond. Recovery Receiver are located on TB ground floor and partially enclosed.	None	None	Inspect during walkdown, insulation may already be present. Process piping will be hot.	5614-M-3080 SH 1
53	PTN	4	089	5614-M-3089 SH 2	8	Vents / Drains / Misc. Connections	vent and overflow pipe	Yes	None	Normal process flow is warm. Gland steam condenser and Cond. Recovery Receiver are located on TB ground floor and partially enclosed.	None	None	Inspect during walkdown, insulation may already be present. Process piping will be hot.	
54	PTN	4	089	5614-M-3089 SH 2	8	Instr. Local	Temporary Instrument port:	No	None	Dead leg	None	None	Inspect during walkdown. Expected to be short run of pipe and potentially insulated already. Process piping will be warm. Location is ground floor of TB (partially enclosed between condensers and Rx bldg). Location	
55	PTN	4	089	5614-M-3089 SH 2	9	Piping	6" piping disch to atmos, 1 1/2" drain piping, exhaust blower (x2) Air exhaust from Gland Steam Condenser	Yes	None	Normal process flow is warm. Gland steam condenser is located on TB ground floor and partially enclosed.	None	None	Inspect during walkdown, insulation may already be present. Process piping will be warm. Location is ground floor of TB (partially enclosed between condensers and Rx bldg). Location may preclude freezing.	
62	PTN	4	089	5614-M-3089 SH 2	Gland Steam Condense r	Heat Exchangers	Gland Steam Condenser	Yes	Condenses gland steam exhaust from turbines.	Normal Steam flow adequate to prevent freezing.	None	None	Inspect during walkdown, insulation may already be present. Gland Steam Condenser will be hot/warm. Location is ground floor of TB (partially enclosed between condensers and Rx bldg). Location may also preclude freezing. A global strategy with enclosing the area and space heating may	
63	PTN	4	089	5614-M-3089 SH 2	Gland Steam Condense r	Instr. Local	PI (pressure indicator) local indication of gland steam cond shell pressure	Yes	None	Dead leg	None	None	be applied. Inspect during walkdown, insulation may already be present. Evaluate length of vent pipe against dead leg freeze criteria. Gland Steam Condenser will be hot/warm. Location is ground floor of TB (partially enclosed between condensers and Rx bldg). Location may also preclude freezing. A global strategy with enclosing the area and space heating may be applied.	
56	PTN	4	089	5614-M-3089 SH 2	HP Turbine	Instr. Local	Temperature Element (TE x5), Pressure indication (PI x4), 1/2" tubing and open root valve.	Yes	Requied for Power Generation; Main steam pressure boundary	Dead leg	None	None	Inspect during walkdown, insulation may already be present. Proximity of instruments to HP Turbine. HP turbine will be hot. Temp Element and pressure indicators unlikely to freeze.	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request

Request No. 2 Attachment 4 of 24 Page 331 of 488 Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 332 of 488

> R21002, Rev 0 Attachment L Page 198 of 198

57	PTN	4	089	5614-M-3089 SH 2	HP Turbine	Vents / Drains / Misc. Connections	1/2" drains (closed) on PI insturment lines. (x4)	No	Requied for Power Generation; Main steam pressure boundary	Dead leg	None	None	Inspect during walkdown, insulation may already be present. Proximity of instruments to HP Turbine. HP turbine will be hot. Temp Element and pressure indicators unlikely to freeze.	
58	PTN	4	089	5614-M-3089 SH 2	HP Turbine	Instr. Control / Protection	DP controler (x2)	Yes	Requied for Power Generation; Main steam pressure boundary; Regulates incoming cylinder heating steam flow.	Dead leg	Protect	Ensure instrument and instrument lines are well insulated.	Inspect during walkdown, insulation may already be present. Proximity of instruments to HP Turbine. HP turbine will be hot. Connected instruments unlikely to freeze if	
59	PTN	4	089	5614-M-3089 SH 2	LP Turbine North & South	Instr. Local	Temperature Element (1 per turbine), Temperature indicator (1 per turbine),	Yes	Maintain turbine pressure boundary	Dead leg	None	None	insulated. Inspect during walkdown, insulation may already be present. Proximity of instruments to HP Turbine. LP turbine will be hot. Temp Element and indicator unlikely to freeze.	
60	PTN	4	089	5614-M-3089 SH 2	LP Turbine North & South	Instr. Local	Temporary Instrument ports: PX (x4 on each turbine) with closed root valve	No	Maintain turbine pressure boundary	Dead leg	None	None	Inspect during walkdown, insulation may already be present. Proximity of instruments to HP Turbine. LP turbine will be hot. Temp Element and indicator unlikely to freeze.	
61	PTN	4	089	5614-M-3089 SH 2	LP Turbine North & South	Instr. Control / Protection	TC (Temperature controller) one on each LP Turbine, actuates Exhaust hood sprays to regulate LP turbine exhaust temp.	Standby	Maintain turbine pressure boundary	Dead leg	Protect	Ensure capillary instrument tubing is insulated.	Inspect during walkdown, insulation may already be present. Proximity of instruments to HP Turbine. HP turbine will be hot. Temp Element and pressure indicators unlikely to freeze.	
1	PTN	4	090	5614-M-3090, Sh. 1 Generator System Hydrogen & CO2 Supply	N/A	Piping	Small bore piping, gas dryer, reactivating blower, Equipment located on Ground Floor EL 18' - 0" Turbine Building	Yes	Required to maintain 100% power generation.	N/A	None	No Protection Required - Gas system	Based on "Turkey Point Extreme Temperature Reassessment, March 2021", No effect on system is expected for 10F below all time record low of 27F. Note: Hydrogen gas leak rate changes with temperature and pressure.	FSAR 10.1.1, 10.2.2 (p. 10.2-3). Nothing in Cold Weather Procedure 0-ONOP-103.2, See Turkey Point Extreme Temperature Reassessment, Mar 2021, p.14
1	PTN	4	EDG HVAC / 108	5614-M-3108	1	Ducting	Supply and exhaust ductwork	Standby	None	Not affected by cold temperatures	None	None	Ducting is not susceptible to freezing	N/A
2	PTN	4	EDG HVAC / 108	5614-M-3108	1	Instruments - General	Temperature switches for EDG bldg. room fans	Yes	Sense high temperatures in EDG Bldg rooms to turn on ventilation fans	Not affected by cold temperatures	None	None	No instruments contain water that are susceptible to freezing	N/A
3	PTN	4	EDG HVAC / 108	5614-M-3108	1	Filter	Control panel and switchgear room fan supply filters	Standby	None	Filters are not affected by cold weather	None	None		N/A
4	PTN	4	EDG HVAC / 108	5614-M-3108	1	Fan	EDG bldg. supply and exhaust fans	Standby	Automatically turn on for high temperatures in EDG Bldg rooms	Cold weather has little to no affect on a fan or its motor.	None	None		N/A
5	PTN	4	EDG HVAC / 108	5614-M-3108	1	Air Handling Unit	EDG bldg. air conditioners for switchgear and control rooms	Yes	Maintain acceptable temperatures for safety-related equipment in the control and switchgear rooms	Motors and condensers are generally unaffected by cold weather. Likely neither will be required to operate.	None	No Action required. Cold weather should not have an adverse affect on this equipment.		N/A

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 333 of 488

R21002, Rev 0 Attachment M Page 1 of 33

Attachment M PTN Phase 1 System Walkdown Evaluation Summary

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 334 of 488

> R21002, Rev 0 Attachment M Page 2 of 33

Acronym /	System Name	Overall Strategy
/ 015	Amertap / Tube Cleaning	Zachry proposes isolating and draining (blowing down) the Condenser Tube Cleaning and Debris Filter Systems at the start of the cold weather period and reinstating them following temperature increase.
		FPL Recommendations:
		PSL Ops: Cannot drain the debris filter system. Not convinced that this is doable. This is always flowing so is this really a concern. We DO need an insulated enclosure for the instrumentation though. CER: Would like to see a Plan B on this. This could be a difficult evolution. Not often drained and the configuration may not be amenable to this. BD: Could do HT&I MC: These systems will be in service so freezing shouldn't be a concern. MC to review for portions of this system that may be stagnant. KC: All piping flow through condenser and would pick up additional heat
/ 060	Aux Bldg. Ventilation	In accordance with Procedure 0-ONOP-103.2, "Cold/Hot Weather Conditions – Turkey Point Plant," STOP all Auxiliary Building supply fans. STOP all but one Auxiliary Building exhaust fan. MONITOR Auxiliary Building air temperature at least once every 2 hours.
		FPL Recommendations:
		CER: Agree, no issues with approach.
		In accordance with Procedure 0-ONOP-103.2, "Cold/Hot Weather Conditions – Turkey Point Plant," add electric heaters to the following rooms to maintain ambient temperature ≥ 72°F. 1. Unit 3 Charging Pump Room (15 kW) 2. Unit 4 Charging Pump Room (15 kW) 3. BAST Room (30 kW)
		FPL Recommendations:
		CER: Agree, no issues with approach. • AB Ventilation (Electrical Equipment Room) – Non-Safety-Related Chilled Water System (V78) with chiller packages E233 & E234. No winterization action required.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 335 of 488

> R21002, Rev 0 Attachment M Page 3 of 33

Acronym / #	System Name	Overall Strategy
T .		 Redundant AB Ventilation (Electrical Equipment Room) HVAC is cooled by split DX air conditioning (AC) units (V76 & V77) with condensing packages E231 & E232. Direct Expansion systems not subject to freezing. No winterization action required. AC units only active on demand.
		FPL Recommendations:
		MC: Supp heaters are typically staged however they are not historically used. Need to consider installing permanent power in the applicable areas to preclude the use of continuous fire watch.
AFWS / 075	Aux Feedwater	Tarp the grating on the AFW pump missile shield enclosure and install space heaters to maintain area temperature above freezing. This will protect the AFW pumps and associated equipment.
		FPL Recommendations:
		CER: Is this practical? AK: This room is very tight. Will need to design and premanufacture tarping and support structure? What in this room are we concerned about? BD: Need more clarification regarding what we are protecting. Main steam line break and harsh environment concerns. PB: Potentially need a permanent ladder. TEAM: Yes, tarp.
		Tarping of the grating on the CST missile shield enclosures and heating of the spaces will maintain temperatures of the AFW lines to the FW lines.
		FPL Recommendations:
		CER: Is this practical? HT&I would be the better option here. \$\$ BD: What about doing a permanent modification to create a permanent enclosure. Could be done with readily accessible materials to minimize cost. Any downside? AK: Can we tarped from the top but there is no way of getting up there. Would need a restraint systemcomplicated. TEAM: HT&I Tarping of the TB exterior sides and heating of the spaces will maintain temperatures of the AFW piping above freezing.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 336 of 488

> R21002, Rev 0 Attachment M Page 4 of 33

Acronym / #	System Name	Overall Strategy			
		FPL Recommendations:			
		CER: Assess for use of Heat Trace and Insulation as TB will NOT be enclosed.			
		In accordance with Procedure 0-ONOP-103.2, "Cold/Hot Weather Conditions – Turkey Point Plant," An immersion heater is installed in the AFW pump oil reservoir and will maintain oil temperature at approximately 110°F.			
		FPL Recommendations:			
		CER: Accept – no comments.			
		Per Procedure 0-ONOP-103.2, check A/B/C AFW Lube Oil Reservoir piping to Turbine is warm to the touch. If not, obtain, install space heaters no closer than 3 feet from the AFW pumps.			
		FPL Recommendations:			
		CER: Accept – no comments? Have we ever had to do this? Per MC – never needed perform. See General Note pertaining to vents, drains and instrumentation dead legs (end of table)			
/ 084	Auxiliary Steam	Tarp the TB exterior sides and add space heaters strategically located to maintain area temperatures above freezing.			
		FPL Recommendations:			
		CER: Assess for use of Heat Trace and Insulation as TB will NOT be enclosed.			
BAS / 101	Breathing Air	Breathing Air is abandoned in place. There is also a self-contained apparatus fill station. Regardless, gas does not require freeze protection			
CVCS / 046	Chemical & Volume Control (Boric Acid/Boron/Gas Stripper)	Abandoned in place and all located within the AB. FPL Recommendations:			

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 337 of 488

> R21002, Rev 0 Attachment M Page 5 of 33

Acronym / #	System Name	Overall Strategy			
		MC: Boric acid storage tanks have activity per the cold weather proc to use supp heat. Is this broken out in the component evaluation?			
CVCS / 047	Chemical & Volume Control (Charging/Letdown/Seal Water)	Nearly all is located within the Auxiliary Building and Containment Aux Bldg – Utilize global strategy for protection of all systems/components in the building to maintain temperature above 39°F. Existing Building Temperature maintained due to thermal mass of concrete floors & walls along with closed doors. Current Cold Weather Procedure 0-ONOP-103.2 actions for HVAC operation and existing space heater deployment. Implement supplemental heating (space heaters) as needed.			
		FPL Recommendations:			
		CER: Accept – no comments. Have we ever had to do this before?			
		 Containment assumed to be acceptable with no additional heating due to reactor operation. No protection needed for resin fill lines on the AB roof (5 for U3 and 5 for U4) Most piping that is identified as located on the AB Roof is actually inside the VCT Bioshield enclosure and can be protected via a space heater, as needed. Exceptions: U3 gas piping off the top of the VCT (Segments 6,7,8,9) is outside, but since gas, not susceptible to freezing. Did not see on U4, assume inside Bioshield LT tubing comes outside grating door and will require protection (heat trace/insulate) 			
		FPL Recommendations:			
		CER: Agree, HT&I. No Comments. Are we saying piping inside the Bioshield is protected by supp heating? PB&MC: Insulation or heater near transmitters. TEAM: Cover grating door and add supp heat AND verify what line we are considering is vulnerable. HT&I otherwise.			
CWS / 010	Circulating Water	Large bore CW piping is normally flowing at approximately 50°F (minimum). No additional action required as long as flow is maintained.			

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 338 of 488

> R21002, Rev 0 Attachment M Page 6 of 33

Acronym / #	System Name	Overall Strategy		
		 Since CW demand is reduced during colder UHS periods, cycle CW pumps periodically to ensure motor lubrication. Area including the West side of all eight (8) traveling water screen and their associated instrumentation shall be tented with supplemental heat added. 		
		FPL Recommendations:		
		AK: What are we protecting? Tarping this is not practical. MC: Need to ensure that there is a commodity to protect. No water captured in basic operation. Instrumentation for DP BD: turn on screens and let them runintermittent use could alleviate wear and tear concerns. Need to protect the circ water DP – does it drain back to canal OR we run intermittentlywe don't see that there is anything else to protect. TEAM: Zachry to take another look at this.		
		 Normally flowing CWP lube water piping will not freeze. Area including the eight (8) CW pump lube water gage panels and their associated instrumentation shall be tented with supplemental heat added (as necessary). Note – Pump motor cooling exhaust may provide sufficient heating. 		
		FPL Recommendations:		
		CER: What are we protecting? Tenting is not practical given the configuration of the plant. TEAM: Zachry to review again.		
		The below grade CW pump seal flow control and instrumentation in the ICW Valve Pits shall be tented with supplemental heat added.		
		FPL Recommendations:		
		CER: Confirm that this is backup?if so, open a drain and trickle flow. What instrumentation specifically? TEAM: Yes to trickle flow.		
		General Comment - Cellular Poly foam insulation should be inspected and replaced (in- kind) to repair existing damage.		
		FPL Recommendations:		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 339 of 488

> R21002, Rev 0 Attachment M Page 7 of 33

Acronym / #	System Name	Overall Strategy
		CER: Please be sure that this is clear on the component evaluation so that the EPC knows they need to address.
		Provide MOV hoods for the CW pump Motor Operated Valves.
		FPL Recommendations:
		CER: MOVs are not at risk in the postulated cold weather scenario.
		Vacuum priming piping from the water boxes to the TB Operating Deck mounted vacuum tanks is protected by heat contained within the tented TB.
		FPL Recommendations:
		CER: Assess for use of Heat Trace and Insulation as TB will NOT be enclosed. AK: Why does this need to be protected? Always in service, always has flow. Don't think this is at risk.
		See General Note pertaining to vents, drains and instrumentation dead legs (end of table).
CCW / 030	Component Cooling Water	Tarp the overhead grating and access doorways of the CCW Rooms to minimize air infiltration to grade level piping and components. Add supplemental heating to address dead legs as appropriate. Note – ICW strainers (BS-3-1400/1401, BS-4-1402/1403, 3F228A/B and 4F228A/B/C) are protected by the tenting of the CCW Rooms.
		FPL Recommendations:
		CER: Agree to tarp. AK: Practical to perform. Need prefab tarps and anchorage points.
		As an extra precaution, start and run alternate CCW pumps periodically). Most of the remaining system piping and components are located within the either the Auxiliary Building or Containment. No additional Winterization protection is warranted. Supplemental Cooling System (SCS) piping, chiller skids, pumps and tanks are located on the Auxiliary Building roofs. To avoid concern with the exposed piping and components, Zachry recommends isolating the CCW system from the SCS and draining the piping and

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 340 of 488

> R21002, Rev 0 Attachment M Page 8 of 33

Acronym / #	System Name	Overall Strategy		
т		components located on the Auxiliary Building roofs. Note – Unit 3 rooftop piping is not insulated while the Unit 4 rooftop piping is insulated.		
		FPL Recommendations:		
		MC: Isolate and open a vent.		
		Consistent with Procedure 0-ONOP-103.2, "Cold/Hot Weather Conditions – Turkey Point Plant," Stagnant sections of system piping should also be considered for flushing to avoid freezing, such as piping between the CCW Surge Tank and Head Tank.		
		FPL Recommendations:		
		CER: OPS – have we ever done this? Would it be better to HT&I?		
		FPL Recommendations:		
		Insulate and heat trace the level instrument branch piping off the CCW Head Tank.		
		FPL Recommendations:		
		CER: Agree to HT&I AK: and piping to the head tank which is outside of containment		
		See General Note pertaining to vents, drains and instrumentation dead legs (end of table).		
COND / 073	Condensate	Tarp the TB exterior sides and add space heaters strategically located to maintain area temperatures above freezing.		
		FPL Recommendations:		
		CER: Assess for use of Heat Trace and Insulation as TB will NOT be enclosed.		
		Tarp the grating on the CST missile shield enclosures and add space heaters to maintain temperatures of the Condensate lines above freezing.		
		FPL Recommendations:		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 341 of 488

> R21002, Rev 0 Attachment M Page 9 of 33

System Name	Overall Strategy			
	CER: Is this practical? HT&I would be the better option here. \$\$ BD: What about doing a permanent modification to create a permanent enclosure. Could be done with readily accessible materials to minimize cost. Any downside? AK: Can we tarped from the top but there is no way of getting up there. Would need a restraint systemcomplicated			
Condensate Polishing	Do nothing. The system has been voided and no actions to mitigate the freezing effects will be taken.			
Condensate Recover	Do nothing. The system is not required for power operation hence, no actions to mitigate the freezing effects will be taken.			
Condensate Storage	Tarp the grating on the CST missile shield enclosures and add space heaters to maintain temperatures of the associated Condensate, Condensate Transfer (Unit 4), and Feedwater lines above freezing. FPL Recommendations:			
	CER: Cut and paste comments down			
	Heat trace and insulate CST level transmitter piping.			
	FPL Recommendations:			
	CER: Agree to HT&I Zachry please validate that aux feedwater supply is called out for HT&I			
Condenser	Do nothing. Condenser (within Turbine Building) assumed to be acceptable with no additional heating due to steam and Circulating Water system operation			
	FPL Recommendations:			
	MC: Hotwell sample lines? Have these been evaluated for freezing as they traverse to the chemistry control lab. Zachry to respond TEAM: Engage with Tramanh Michalak			
	Condensate Polishing Condensate Recover Condensate Storage			

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 342 of 488

> R21002, Rev 0 Attachment M Page 10 of 33

Acronym / #	System Name	Overall Strategy			
/ 056	Containment Emergency Filter	The Emergency Containment Filter Units (3V3A, 3V3B, 3V3C, 4V3A, 4V3B, and 4V3C) are abandoned in place without the applicable demister HEPA / charcoal filters that were removed.			
/ 057	Containment Normal & Emergency Cooler	All associated equipment is located within Containment – No Winterization precautions are required.			
/ 094	Containment Post Accident Eval	Containment Post Accident Evaluation System is in Containment and in the Auxiliary Building. No Winterization precautions are required.			
/ 053	Containment Purge & Penetration Cooling	 Per Technical Specification Section 3.6.1.7, each containment purge supply and exhaust isolation valve shall be administratively sealed closed and deactivated or the associated penetration(s) shall be isolated by blind flange in Modes 1 through 4. This air system is not in operation at power and no Winterization precautions are required. There are no Winterization precautions required for the air-based Penetration Cooling system. 			
CS / 068	Containment Spray	One pipe runs across the AB roof and connects to Segment 7 on 5613(4)-M-3062 Sh. 1. This pipe is isolated and only used for CSP full flow recirculation test and not needed during normal power operation. No protection required; recommend draining the pipe via valve 3(4)-1351.			
		FPL Recommendations:			
		MC: We do NOT want to drain this leg. CER: Is there an alternative option for this leg? Please check against screening criteria and HT&I if necessary. TEAM: Apply asset protection screening criteria and HT&I as applicable.			
		Rest of system piping located in the AB, and protected via global strategy for the building itself to maintain >39°F.			
/ 025	Control Bldg. Ventilation	 Safety-Related Control Building HVAC is cooled by split Direct Expansion (DX) air conditioning (AC) units. DX systems not subject to freezing. No winterization action required. AC units only active on demand. Cycle supply and return flow paths and supply fans to maintain Control Building ventilation temperature. 			

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 343 of 488

> R21002, Rev 0 Attachment M Page 11 of 33

Acronym / #	System Name	Overall Strategy			
		Add temporary heaters as necessary to support Operator comfort.			
EGD / 022	Emergency Diesel Generator & Oil	 Electric water heater and lube oil Soak Down Pump normally operating to maintain EDG temperature. In accordance with Procedure 0-ONOP-103.2, "Cold/Hot Weather Conditions – Turkey Point Plant," "Space heater placement is intended to raise the EDG Room temperature." and "Every 4 hours, CHECK EDG Lube Oil Temperature is greater than 100°F." Per Procedure 0-ONOP-103.2, "Obtain 15 KW space heaters from Tool Room, and install in EDG Rooms for EDGs with EDG Lube Oil temperature less than or equal to 100°F." Per Procedure 0-ONOP-103.2, "Blow Down of Instrument and EDG Starting Air Lines to Remove any Trapped Water". FPL Recommendations: BD: What is the real (vendor defined) gel T of the fuel oil? Is this really a concern? 			
		Note - Diesel fuel oil gel temperature is approximately 15°F but can be as high as 20°F.			
/ 069	Equipment Area Drain System	Retention Pit and OWS located in PTF fencing (near NW corner of PTN). No protection required since it will not have an impact on Unit operation or TS action; however, recommend immediate inspection during freezing conditions to ensure venting devices are functioning to prevent a potential safety hazard.			
/ 085	Extraction Steam	Tarp the TB exterior sides and add space heaters strategically located to maintain area temperatures above freezing.			
		FPL Recommendations:			
		CER: Assess for use of Heat Trace and Insulation as TB will NOT be enclosed.			
FWS / 074	Feedwater	Tarp the TB exterior sides and add space heaters strategically located to maintain area temperatures above freezing.			
		FPL Recommendations:			
		CER: Assess for use of Heat Trace and Insulation as TB will NOT be enclosed.			

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 344 of 488

> R21002, Rev 0 Attachment M Page 12 of 33

Acronym / #	System Name Overall Strategy			
		Tarp the grating on the CST missile shield enclosures and add space heaters to maintain temperatures of the Feedwater lines and LEFMs above freezing.		
		FPL Recommendations:		
		CER: Is this practical? HT&I would be the better option here. \$\$ BD: What about doing a permanent modification to create a permanent enclosure. Could be done with readily accessible materials to minimize cost. Any downside? AK: Can we tarped from the top but there is no way of getting up there. Would need a restraint systemcomplicated?		
		Tarp the grating on the Feedwater platform missile shield enclosures and add space heaters to maintain temperatures of the Feedwater lines above freezing.		
		FPL Recommendations:		
		AK: Not practical. CER: Need to assess ability to HT&I whatever requires protection		
		 DWST and associated piping, including Standby Steam Generator Feedwater System: DWST is located outside, no protection required for the tank itself (not susceptible to freezing over 4 days with the current temperature profile) Pipes that can be normally kept flowing (WTP to DWST and DWST to U3/U4 Condensers don't require protection; however, piping that is not normally flowing/in standby will require protection via heat trace and/or insulation. Skid area by DWST (Degasifier Skid, Booster Pump, Storage Tank, and Instrument Panel) can be tented and use space heater(s) (north side of DWST) 		
		FPL Recommendations:		
		AK: Not practical. MC: Skid not in service only level transmitter is of concern. CER: Need plan B for anything susceptible in this area.		
		o Tent over the Standby Steam Generator Feedwater Pumps		
		FPL Recommendations:		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 345 of 488

> R21002, Rev 0 Attachment M Page 13 of 33

Acronym / #	System Name	Overall Strategy				
		TEAM: Review vulnera	ermanent insulated enclosure be more prability. Recommend HT&I	ictical?		
		 Dead Legs (Vents, Drains, Instruments, cross-ties, etc.) options: Meets Temp, Length, & Orientation criteria for not freezing, or Open isolation valves for controlled trickle flow to prevent freezing as able, of Heat Trace & Insulate 				
		FPL Recommendations:				
		CER: HT&I per screeni	ng criteria.			
		No protection for the N2 su	pply to the DWST and CSTs			
		FPL Recommendations:				
		AK: Tenting of the entrances of the SGFP room CER: Please ensure that this room is evaluated somewhere. TEAM: Zachry to email Mike Coen.				
		See General Note pertaining to	vents, drains and instrumentation dead le	gs (end of table).		
/ 081	Feedwater Heater Drains & Vents	Tarp the TB exterior sides and add space heaters strategically located to maintain area temperatures above freezing.				
		FPL Recommendations:				
		CER: Assess for use of Heat T	race and Insulation as TB will NOT be enc	losed.		
P / 016	Fire Protection	System/Portion	Local Strategy	Drawing		
		Diesel Fire Pump	Provide building heat with portable heater.	5610-M-3016 SH3		
		Diesel Fire Pump Fuel Oil Tank	Add fuel stabilizer.	5610-M-3016 SH3		
		Diesel Fire Pump Recirc line	Insulate and heat trace outside pump house. CER: Agree to HT&I	5610-M-3016 SH3		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 346 of 488

PTN Phase 1 System Walkdown Evaluation Summary

R21002, Rev 0 Attachment M Page 14 of 33

Acronym / #	System Name	Overall Strategy			
<i>"</i>		Diesel Fire Pump Large bore suction, discharge, and test line	Run pump and provide flow through all above ground piping out hydrant 10-HY-1. AK: Does pump have sufficient recirc capability	5610-M-3016 SH3	
		Electric Fire Pump	Tent and provide portable heaters. CER: Would a permanent enclosure be better? Does this go back to the code violation discussed in reference to PSL?	5610-M-3016 SH3	
		Electric Pump Large bore suction, discharge, and test line	Run pump and provide flow through all above ground piping out hydrant 10-HY-1. CER: Any issues with this? AK: Does pump have sufficient recirc capability? Not sure with all of the fire pumps running at one time there is sufficient RWT capability	5610-M-3016 SH3	
		Jockey Fire Pumps	Dedicate one pump to provide continuous flow through test line. Run second pump continuously to maintain header pressure and provide flow to rose reel and wet system drain flow. CER: Any issues with this?	5610-M-3016 SH3	
		DG, Electric, Jockey above ground vents and drains	Insulate and heat trace. CER: Agree to HT&I	5610-M-3016 SH3	
		Fire Header 10" Section above ground downstream of 10-PIV-54 to 10-604. Located over U3 EDG and NE corner J-line of TB	Provide protection by tenting between TB NE corner and U3 EDG. Tenting also covers other system piping and encloses TB. CER: Assess for use of Heat Trace and Insulation as TB will NOT be enclosed. AK: Suggest opening up a fire system a SMALL amount at farthest point to maintain continuous flow	5610-M-3016 SH5	
		Above ground 10" header Running East West on North end of TB. Crosstie from valve 10-610 to 10-680 and 10-604	Tent north end of TB which will enclose grated section where header is located. Tarping is intended to protect other system piping in TB also. Due to header	5610-M-3016 SH5	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 347 of 488

PTN Phase 1 System Walkdown Evaluation Summary

R21002, Rev 0 Attachment M Page 15 of 33

Acronym /	System Name	Overall Strategy		
T			loop design difficult to ensure flow through crosstie w/o closing header isolation valves. Hydraulic analysis may show adequate flow. CER: Assess for use of Heat Trace and Insulation as TB will NOT be enclosed. AK: Suggest opening up a fire system a SMALL amount at farthest point to maintain continuous flow	
		Header feed to Unit 1 & 2 from 10-PIV-3	OSY-V-10-30 over at U1 is above ground. Provide trickle drain flow from U1/2 Hose Reel "G" to protect header. The rest of U1/2 loads appear to be isolated. CER: Trickle flow acceptable? AK: good idea for all	5610-M-3016 SH4
		Header feed to Unit 1 & 2 from 10-PIV-6	For Unit 1 Deluge and Wet Systems, post fire watch and isolate feed to Unit 1 systems (except transformers). If transformer piping freezes/breaks above isolation valve, isolate portion of header at 10-PIV-8 and 10-PIV-12, as necessary. AK – need to check with Fire Protection on this.	5610-M-3016 SH4
		Header feed to Unit 1 & 2 Office from 10-PIV-7	Unit 1 and 2 Office Bldg Provide trickle drain flow from Hose Reel. CER: Trickle flow acceptable?	5610-M-3016 SH4
		Unit 3&4 Charging and CCW Deluge Zone 45, 47, 54, 55	Preserve header and hose reel HS-AB- 04 & 05 by providing trickle flow to drain. Isolate 10-677 and 10-678. CER: Trickle flow acceptable?	5610-M-3016 SH7
		Unit 3 & 4 Aux Bldg. N-S Breezeway FZ 79A Deluge	Insulate and heat trace 4" supply from TB from J line in breezeway. CER: Agree to HT&I AK: if in Aux Bldg (enclosed) why heat trace	5610-M-3016 SH7

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 348 of 488

PTN Phase 1 System Walkdown Evaluation Summary

R21002, Rev 0 Attachment M Page 16 of 33

Acronym / #	System Name	Overall Strategy		
11			Deluge valve - tent and heat. CER: Is this practical?	
		U3 EDG Deluge	Insulate and heat trace 3" supply from J-line header. Tent and heat deluge valve CER: Is this practical?	5610-M-3016 SH7
		U3 EDG Water Curtain	Protected by enclosing TB with tarps. CER: Assess for use of Heat Trace and Insulation as TB will NOT be enclosed.	
		U3 & 4 C-Bus Deluge	Preserve Header by providing trickle flow by opening drain valve. No PIV off header. CER: Trickle flow acceptable?	5610-M-3016 SH10, 11
		U3 & 4 Main and Aux XFMR	Protect asset by tenting and providing temporary heat. CER: More tentingNO	5610-M-3016 SH10, 11
		Unit 3 & 4 SU XFMR	Preserve header by closing 3/4-10-1610 and providing trickle flow by opening drain valve. CER: Trickle flow acceptable?	
		U3 & 4 L/O Deluge and TB Sprinklers	Preserve header by closing PIV and draining system. CER: Is this acceptable? AK: Check with fire protection but I don't think this will be acceptable	
		U3 & 4 East Side TB Sprinklers	Preserve J-line header by enclosing with TB tarp. Note - sprinkler system is entirely within TB and protected. CER: Assess for use of Heat Trace and Insulation as TB will NOT be enclosed.	
		U4 EDG Deluge	Preserve Risk Significant Asset by tenting and providing temporary heat. CER: More tenting	
		U4 EDG Wet pipe and hose reel HS-04-09	Preserve Risk Significant Asset by tenting and providing temporary heat. Also provide protection for hose reel by providing trickle flow by opening drain.	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 349 of 488

> R21002, Rev 0 Attachment M Page 17 of 33

Acronym / #	System Name	Overall Strategy	
			CER: More tenting CER: Trickle flow acceptable?
		TB Operating Floor Hose Reels	Preserve capability by providing trickle flow to drain. Protect risers by enclosing TB with tarps. CER: More tenting
		TB ground and Mezzanine level Hose Reels	Protected by enclosing TB with tarps. CER: Assess for use of Heat Trace and Insulation as TB will NOT be enclosed.
		Out Bldgs. with Exterior Risers RCA Access, EPU Warehouse, Central Storage Facility, Cafeteria, Simulator, Maintenance Facility B, Fitness Center	Preserve header by providing trickle flow within buildings by opening drain valves. CER: Trickle flow acceptable?
			required to address the above strategies. vents, drains and instrumentation dead legs (end of table).
/ 090	H ₂ & CO ₂ Supply	Gases do not require freeze	protection.
IAS / 013	AS / 013 Instrument Air The desiccant dryers are capable of lowering the dewpoint of the instrume Consistent with Procedure 0-ONOP-103.2, "Cold/Hot Weather Conditions Plant," (Attachment 1) "Blow Down of Instrument and EDG Starting Air Lin any Trapped Water," Blowdown designated valves and those additionally instrument and station air receivers and drain locations (listed in the detail spreadsheet and shown on the marked-up P&IDs) at least once every 24		O-ONOP-103.2, "Cold/Hot Weather Conditions – Turkey Point Down of Instrument and EDG Starting Air Lines to Remove own designated valves and those additionally identified activers and drain locations (listed in the detailed system
		FPL Recommendations: CER: Accept this approach.	
ICW / 019	Intake Cooling Water	action required as long as floSince one, two or three ICW	ormally flowing at approximately 50°F (minimum). No additional ow is maintained. I pumps can be normally operating, cycle ICW pumps lubrication and flow through the pump branch lines.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 350 of 488

> R21002, Rev 0 Attachment M Page 18 of 33

Acronym /	System Name	Overall Strategy
		FPL Recommendations: MC: Sounds reasonable CER: add to cold weather procedure.
		 ICW strainers Consistent with Procedure 0-ONOP-103.2, "Cold/Hot Weather Conditions – Turkey Point Plant," cycle POV-*-4882 and POV-*-4883 (ICW TO THE TPCW HEAT EXCHANGERS INLET ISOLATION VALVES) at least once per shift.
		FPL Recommendations:
		CER: Accept this approach.
		Non-Safety-Related Turbine Cooling Water branch piping is located just outside the Turbine Building and assumed to be tarped or tented to conserve area heat. Supplemental heating to be included as necessary at outlying area and at tarping gaps.
		FPL Recommendations:
		CER: Assess for use of Heat Trace and Insulation as TB will NOT be enclosed.
		The ICW strainers (BS-3-1400/1401 and BS-4-1402/1403) are located in the CCW Room, the overhead grating and access doorway shall be tented with supplemental head added (See CCW).
		FPL Recommendations:
		CER: Pull comments down.
		The ICW strainers (3F228A/B and 4F228A/B/C) are also located in the CCW Room, the overhead grating and access doorway shall be tented with supplemental head added (See CCW).
		FPL Recommendations:
		CER: Is this tarping practical?

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 351 of 488

> R21002, Rev 0 Attachment M Page 19 of 33

Acronym / #	System Name	Overall Strategy	
		ICW Supplemental Cooling is no longer installed. (Drawing 5610-M-3019 still reflects the installation of the chillers and associated piping.) See General Note pertaining to vents, drains and instrumentation dead legs (end of table).	
MSS / 072	Main Steam	Tarp the TB exterior sides and add space heaters strategically located to maintain area temperatures above freezing. CER: Assess for use of Heat Trace and Insulation as TB will NOT be enclosed. AK: what are we trying to protect? Most steam lines in service and all steam lines have steam traps.	
/ 065	N ₂ & H ₂	Gases do not require freeze protection	
PMUS / 020	Primary Water Makeup	 No protection for PWSTs required (not susceptible to freezing over 4 days with the current temperature profile). Continuously provide water from WTP to PWSTs to protect main piping as able. Otherwise, will need to provide protection via heat trace and/or insulation to maintain ability to fill the PWSTs from the WTP. FPL Recommendations:	
		CER: OPS – is this possible or do we need to HT&I? AK: Ops call but I think feasible	
		Continuously or periodically run Primary Water Pumps to prevent freezing of main piping. (swap pumps as needed)	
		FPL Recommendations:	
		CER: OPS – is this possible or do we need to HT&I? AK: yes run pumps	
		Tent over the Gas Transfer Membrane (GTM) Deaerator Skids and provide space heating. If not required for up to four days, can bypass skid.	
		FPL Recommendations:	
		CER: Is this practical? Is a permanent insulated enclosure more practical?	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 352 of 488

> R21002, Rev 0 Attachment M Page 20 of 33

Acronym / #	System Name	Overall Strategy
		AK: don't think we use anymore. Ops call Dead Legs (Vents, Drains, Instruments, cross-ties, etc.) options: Meets Temp, Length, & Orientation criteria for not freezing, or Open isolation valves for controlled trickle flow to prevent freezing as able, or Heat Trace & Insulate
		FPL Recommendations:
		CER: HT&I all dead legs per the screening criteria.
		Pipe Tunnel from Outside near PWSTs to CCW Pump Rooms se space heater & blower with hose to heat the Tunnel. Assume watertight seals from tunnel to pens to Aux Bldg. Cover access openings into tunnel Insulate and Heat Trace
		FPL Recommendations:
		CER: I think HT&I for this. We are confused what this is exactlyneed more clarity. Outside building? AK: these are cover trenches, outside building and yes HTI
		CCW Pump Room – Tarp the overhead grating and access doorways of the CCW Rooms to minimize air infiltration to grade level piping and components. Add supplemental heating to address dead legs as appropriate
		FPL Recommendations:
		CER: See comments above regarding CCW grating and doorways.
		 Aux Bldg – Utilize global strategy for protection of all systems/components in the building to maintain temperature above 39°F for other systems. Existing Building Temperature maintained due to thermal mass of concrete floors & walls along with closed doors. Current Cold Weather Procedure 0-ONOP-103.2 actions for HVAC operation and existing space heater deployment. Implement supplemental heating (space heaters) as needed.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 353 of 488

> R21002, Rev 0 Attachment M Page 21 of 33

Acronym /	System Name	Overall Strategy
		FPL Recommendations:
		CER: Accept – no comments. Have we ever had to do this before? Not that I am aware
		 Containment assumed to be acceptable with no additional heating due to reactor operation. Fuel Handling Building (FHB) & Cask Handling Facility - Utilize global strategy for protection of all systems/components in the building to maintain temperature. SFP should be sufficient to provide heating for building without any supplemental.
		FPL Recommendations:
		CER: Global strategy? Agree that we don't need to act in the spent fuel building. BD: Check the primary water to spent fuel pool lines – must stay operable.
		 Auxiliary Building Roof – no protection required, downstream of critical system needs and will not adversely affect the system. Radwaste Building – not critical to protect but can protect building via global strategy via space heaters.
		FPL Recommendations:
		CER: Accept – no comments. Have we ever had to do this before?
		See General Note pertaining to vents, drains and instrumentation dead legs (end of table).
/026	Radwaste Bldg. Ventilation/HVAC	 Non-Safety-Related Radwaste Building HVAC is cooled by split DX air conditioning (AC) units. AC units only active on demand. Cycle supply and return flow paths and supply fans to maintain Radwaste Building ventilation temperature.
RCS / 041	Reactor Coolant	Reactor Coolant System (RCS) fully installed within Containment and the Auxiliary Building: Aux Bldg – Utilize global strategy for protection of all systems/components in the building to maintain temperature above 39°F.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 354 of 488

> R21002, Rev 0 Attachment M Page 22 of 33

Acronym /	System Name	Overall Strategy
-		 Existing Building Temperature maintained due to thermal mass of concrete floors & walls along with closed doors. Current Cold Weather Procedure 0-ONOP-103.2 actions for HVAC operation and existing space heater deployment. Implement supplemental heating (space heaters) as needed.
		FPL Recommendations:
		CER: Accept – no comments. Have we ever had to do this before?
		 Containment assumed to be acceptable with no additional heating due to reactor operation.
RHR / 050	Residual Heat Removal	RHR fully installed within Containment and the Auxiliary Building: Aux Bldg – Utilize global strategy for protection of all systems/components in the building to maintain temperature above 39°F. Existing Building Temperature maintained due to thermal mass of concrete floors & walls along with closed doors. Current Cold Weather Procedure 0-ONOP-103.2 actions for HVAC operation and existing space heater deployment. Implement supplemental heating (space heaters) as needed.
		FPL Recommendations:
		CER: Accept – no comments. Have we ever had to do this before?
		 Containment assumed to be acceptable with no additional heating due to reactor operation.
SIS / 062	Safety Injection	RWSTs – Need to maintain temperature of >39°F of tanks 1. Zachry perform simple model to determine if any additional protection is necessary based on tank size, min starting temperature, and weather profile. PL investigate cost to insulate the tanks. If cost effective, Zachry can develop a simplistic model of tank to verify this strategy will maintain temperature without additional measures. Refueling Water Purification Pump and Spent Fuel Pool piping (not a current strategy, and unclear how much heat would be added via this path).

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 355 of 488

> R21002, Rev 0 Attachment M Page 23 of 33

Acronym / #	System Name	Overall Strategy
		 4. Temporary skid pump/heater between pump connections (available currently on U3 with the R.O. Silica Removal Skid connections, but not on U4). 5. Add immersion heater(s) to RWSTs. Critical Piping/Instrumentation Outside at RWST 1. Insulate and heat trace.
		FPL Recommendations:
		CER: Agree to HT&I
		2. Additional protection for MOVs may be required (input from FPL MOV engineer(s)).
		FPL Recommendations:
		CER: Protection for the MOVs not necessary under postulated conditions. AK: SR MOV's – has grease been evaluated for these cold weather conditions?
		Pipe Tunnels from Outside near RWSTs to CCW Pump Rooms and HHSI Pump Room 1. Use space heater & blower with hose to heat the Tunnels. - Assume watertight seals from tunnel to pens to Aux Bldg. - Cover access openings into tunnel 2. Insulate and Heat Trace
		FPL Recommendations:
		CER: I think HT&I for this. CER: We are confused what this is exactlyneed more clarity. Outside building? AK: covered above where you ask same questions. HTI
		CCW Pump Room – Tarp the overhead grating and access doorways of the CCW Rooms to minimize air infiltration to grade level piping and components. Add supplemental heating to address dead legs as appropriate
		FPL Recommendations:
		CER: What are we protecting? Do we fabricate a hard cover for the grating as opposed to tarps? This sounds difficult. Need a Plan B.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 356 of 488

> R21002, Rev 0 Attachment M Page 24 of 33

Acronym /	System Name	Overall Strategy
		 HHSI Pump Room – Cover the louvered doors to minimize air infiltration to grade level piping and components. Doors go to CCW Pump Rooms, which are planned to be globally heated, so supplemental heating should not be required, but if necessary, add supplemental heating. Aux Bldg – Utilize global strategy for protection of all systems/components in the building to maintain temperature above 39°F. Existing Building Temperature maintained due to thermal mass of concrete floors & walls along with closed doors. Current Cold Weather Procedure 0-ONOP-103.2 actions for HVAC operation and existing space heater deployment. Implement supplemental heating (space heaters) as needed.
		FPL Recommendations:
		CER: Accept – no comments. Have we ever had to do this before? • Containment assumed to be acceptable with no additional heating due to reactor operation.
		See General Note pertaining to vents, drains and instrumentation dead legs (end of table).
SIS / 064	Safety Injection	SI Accumulators and associated piping fully located inside of Containment and assumed to be acceptable with no additional heating due to reactor operation.
/ 036	Sample System - NSSS	Reactor Building - Typically, the Containment bulk ambient temperature during operation is between 50 and 120°F. No additional action required.
SSS / 032	Sample System - Secondary	Auxiliary Building - In accordance with Procedure 0-ONOP-103.2, "Cold/Hot Weather Conditions – Turkey Point Plant," secure AB Supply and Exhaust Fans and add electric heater to maintain ambient temperature 72°F. No additional action required.
		FPL Recommendations:
		CER: Accept – no comments. Have we ever had to do this before?
		Turbine Building - Tarp the exterior sides and add space heaters strategically located to maintain area temperatures above freezing. No additional action required.
		FPL Recommendations:

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 357 of 488

> R21002, Rev 0 Attachment M Page 25 of 33

Acronym / #	System Name	Overall Strategy	
		CER: Assess for use of Heat Trace and Insulation as TB will NOT be enclosed.	
/ 011	Screen Wash	Screen Wash pumps and pump discharge piping are located within the intake canals and require no additional Winterization precautions. The above grade piping and instrumentation will be tented on the West sides of the associated traveling water screen with supplemental heat added as necessary.	
		FPL Recommendations:	
		CER: Is this practical? AK: Not practical and existing screen wash pumps are now back-up fire pumps (no action). Actual screen wash pumps are part of traveling screen assembly TEAM: Screen wash will be run intermittently. Review instrumentation for vulnerability. No protection needed for abandoned screen wash pumps.	
SWLU / 082	Secondary Wet Layup	Not required for power operation or license condition; only used during Refueling Outages.	
SWS / 012	Service Water	Provide continuous or periodic flow from the Miami Dade Water and Sewer Authority to both Raw Water Tanks (RWT) to prevent main line freezing. FPL Recommendations:	
		CER: Any issues with this? Can water and sewer authority support? AK: we just overflow the tank into the canal	
		No protection for RWTs required. Tanks are sufficient size to prevent freezing for 4 days over the weather profile.	
		No protection required for the Raw Water Pumps and associated piping.	
		Maintain operation of at least one Service Water pump to allow for backup supply from the RWTs to the WTP. No protection required for the main piping between discharge from the RWTs, through the pumps and up to the branch connection to the WTP; however, protection for dead legs for this piping is required. Either can designate one Service Water pump and piping for protection of dead legs or protect dead legs on all four SW pump flow paths.	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 358 of 488

> R21002, Rev 0 Attachment M Page 26 of 33

Acronym / #	System Name	Overall Strategy
	System Name	 FPL Recommendations: CER: Preference? Protect standby flow path from the discharge branch for the SW pumps to the WTP. This piping will not be flowing since well water is used as the primary feed to the WTP. However, Raw Water from Miami Dade (via RWTs and SW Pumps) is the backup supply. No protection required for the piping from the SW pumps to the fire loops. This is a backup and is not utilized per the PTN FP Engineers. No protection for the Raw Water Supply Manifold No protection required for the SW piping supplied to the remainder of the site. This starts on 5610-M-3016 Sh. 2 at the 8" branch for Valve 10-1063 and continues on to 5610-M-3012 Sh. 1-4. The full system in NNS and doesn't serve any systems or buildings that are necessary to maintain power operation or cause a Tech Spec action. The majority of services are for building connections, systems that require manual action, and abandoned connections. Two items of note that utilize SW are: Backup lube water supply to the Circulating Water System Pumps. No protection required for the backup system. Supply to the Vacuum Pump Seals for the GTM Skid for PMUS. The GTM skid is not required and if it fails due to lack of SW, the GTM skid can be bypassed so the PMUS can still provide water to the site as required.
		Dead Legs (Vents, Drains, Instruments, cross-ties, etc.) – between Miami Dade and RWTs and from RWTs to the WTP connection only:
		FPL Recommendations:
		CER: Agree
		See General Note pertaining to applicable vents, drains and instrumentation dead legs (end of table).
/ 034	Spent Fuel Pool & New Fuel Storage Area Ventilation	Non-Safety-Related

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 359 of 488

> R21002, Rev 0 Attachment M Page 27 of 33

Acronym / #	System Name	Overall Strategy
		 Spent Fuel Pool & New Fuel Storage Area HVAC is normally not provided with supplied cooling flow. Temporary air conditioning is supplied to the Cask Handling Area during ISFSI campaigns only. The SFP is enclosed by Fuel Handling Building. Decay heat will maintain pool above freezing.
SFPC / 033	Spent Fuel Pool Cooling	 The SFP is enclosed by Fuel Handling Building. Decay heat will maintain pool above freezing. Protection required for the Refueling Water Purification Pump that is located outside near the RWSTs FPL Recommendations:
		CER: Recommend permanent insulated enclosure. AK: very limited space but needs to be of sufficient size for maintenance to access and replace components TEAM: Review if there exists a vulnerability. Talk to Mike Coen.
		There's one section of 10" pipe from the Supplemental Spent Fuel Pool Heat Exchanger to the SFP that is outside. As long as flow is maintained through this pipe, no protection is required. If the piping is not flowing, then protection will be required (heat trace/insulation) or the piping should be drained.
		FPL Recommendations:
		CER: OPS – can we ensure this is always flowing? If so, does it need to be written in cold weather protection procedure? AK: Ops will need to align to back up, supplemental HX
SGWLU / 078	Steam Generator Wet Layup	Not required for power operation or license condition. In addition, all of the piping is within the TB.
		FPL Recommendations:
		CER: What about asset protection? Assess for use of Heat Trace and Insulation as TB will NOT be enclosed.
/ 070	Turbine Building Ventilation	Non-Safety-Related

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 360 of 488

> R21002, Rev 0 Attachment M Page 28 of 33

Acronym / #	System Name	Overall Strategy
		 Turbine Building Load Centers and Switchgear Rooms are normally provided with chilled water supplied cooling flow. AC units only active on demand. Chiller packages are located on the Turbine Building operating deck – Drain chilled water loop in support of cold weather operations (below 32°F). FPL Recommendations: CER: Agree. Any issues with this?
/ 087	Turbine Lube Oil	Do nothing. The system is oil filled and is not subject to freezing. No additional actions to mitigate the freezing event will be taken.
/ 076	Turbine Plant Chemical Addition	 Chemicals: Ethanolamine (ETA) freezing point 10 - 11°C (50 - 52°F) – Zachry recommends temperature-controlled storage of sufficient quantity of ETA to last the 96-hour cold weather period. FPL Recommendations: CER: Do we have the storage capacity? Do we need to add to the cold weather procedure? AK: emersion heater?
TPCW / 008	Turbine Plant Cooling Water	 Large bore TBCW piping is normally flowing at approximately 60°F (minimum). No additional action required as long as flow is maintained. Turbine Building - Tarp the exterior sides and add space heaters strategically located to maintain area temperatures above freezing. While the major TPCW components (pumps and heat exchangers) are located outside the confines of the Turbine Building, Zachry considers it feasible to include the pumps and associated piping within the planned tarping. If this concept is not feasible, small bore vents, drains, and instrumentation dead legs shall be addressed consistent with the General Note at the end of this table. FPL Recommendations:

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 361 of 488

> R21002, Rev 0 Attachment M Page 29 of 33

Acronym / #	System Name	Overall Strategy
		CER: Assess for use of Heat Trace and Insulation as TB will NOT be enclosed. AK: Ops to run two pumps The Turbine Plant Cooling Water Heat Exchangers protrude too far from the confines of the Turbine Building to be included in the planned tarping of the Turbine Building. Therefore,
		small bore vents, drains, and instrumentation dead legs shall be addressed consistent with the General Note at the end of this table.
		FPL Recommendations:
		CER: Agree
		 The Turbine Plant Cooling Water Surge Tank and associated instrumentation are located in the Main Steam Platform area. This area is generally warm. Based on cooler temperature evaluation, the piping and level instruments should be heat traced and insulated. As an alternative, tarp can be placed on the inside of the missile barrier to keep cold wind off the tank and associated components.
		FPL Recommendations:
		CER: HT&I as opposed to tarping.
		 While the Turbine Lube Oil Coolers are located outside the confines of the Turbine Building (west), Zachry considers it feasible to include the heat exchangers and associated piping within the planned TB tarping.
		FPL Recommendations:
		 CER: Assess for use of Heat Trace and Insulation as TB will NOT be enclosed. The remainder of the TPCW piping and components are located within the confines of the Turbine Building and, as such, will be protected by the planned tarping and heat retention.
		FPL Recommendations:
		CER: Assess for use of Heat Trace and Insulation as TB will NOT be enclosed.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 362 of 488

> R21002, Rev 0 Attachment M Page 30 of 33

System Name	Overall Strategy
	In accordance with Procedure 0-ONOP-103.2, "Cold/Hot Weather Conditions – Turkey Point Plant," to maintain EHC temperature - use 3/4-NOP-086 to throttle TPCW and run a second High Pressure EHC Pump as needed.
	FPL Recommendations:
	CER: Agree.
	See General Note pertaining to vents, drains and instrumentation dead legs (end of table).
Turbine Systems - Steam	Tarp the TB exterior sides and add space heaters strategically located to maintain area temperatures above freezing.
	FPL Recommendations:
	CER: Assess for use of Heat Trace and Insulation as TB will NOT be enclosed. AK: not needed. System 89 is the turbine steam system. In operation and has steam traps.
U4 EDG Bldg. Vent	 Safety-Related ventilation fans (4V65A/B, 4V63A/B, and 3V65A/B) supply outside air to the Control Panel and Switchgear Rooms. Temperature Indicating Switches (TIS) control fan operation. Fans are normally OFF during cold weather operation. No action required. Non-Safety-Related direct expansion (DX) cooling units (supply) and room fans (exhaust) are provided. Control Panel and Switchgear Rooms ventilation is initiated by TIS. Air Handling Units (AHUs) are normally OFF during cold weather operation. No action required. Diesel Generator Rooms are normally exhausted @ 5000 cfm. Electric water heater and lube oil Soak Down Pump normally operating to maintain EDG temperature. In accordance with Procedure 0-ONOP-103.2, "Cold/Hot Weather Conditions – Turkey Point Plant," "Space heater placement is intended to raise the EDG Room temperature." and "Every 4 hours, CHECK EDG Lube Oil Temperature is greater than 100°F" FPL Recommendations: CER: Agree
	Turbine Systems - Steam

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 363 of 488

> R21002, Rev 0 Attachment M Page 31 of 33

Acronym / #	System Name	Overall Strategy
		Per Procedure 0-ONOP-103.2, "Blow Down of Instrument and EDG Starting Air Lines to Remove any Trapped Water". FPL Recommendations:
WDS / 061	Waste Disposal	CER: Agree All piping and components located in the Auxiliary Building, Radwaste Building, or associated tunnel between the two. • Aux Bldg – Utilize global strategy for protection of all systems/components in the building to maintain temperature above 39°F. 1. Existing Building Temperature maintained due to thermal mass of concrete floors & walls along with closed doors. 2. Current Cold Weather Procedure 0-ONOP-103.2 actions for HVAC operation and existing space heater deployment. 3. Implement supplemental heating (space heaters) as needed. • Radwaste Building – protect building via global strategy via space heaters.
		CER: I am fine with utilizing supp heat for the Aux and Radwaste Bldgs. Have we ever had to do this in the past? AK:we no longer use the waste disposal systems
WTP / 021	Water Treatment Plant	Provide continuous or periodic flow from the Miami Dade Water and Sewer Authority to both Raw Water Tanks to prevent main line freezing. FPL Recommendations:
		CER: Any issues with this? Will the water authority be able to support? • Evoqua Vendor Operated WTP Skid • Maintain flow through the main system. This will prevent concerns with the main loop piping.
		FPL Recommendations:
		CER: Agree, is this in the current cold weather procedure or do we need to add it?Good

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 364 of 488

> R21002, Rev 0 Attachment M Page 32 of 33

Acronym / #	System Name	Overall Strategy
		Work with Evoqua to drain dead headed/legged sections of pipe as necessary to prevent freezing.
		FPL Recommendations:
		CER: I thought we were HT&I these portions?
		Install space heaters in the SEAVANs where WTP equipment is installed as necessary if portions/trains/loops are not running.
		FPL Recommendations:
		CER: Agree with this approach.
		Work with Evoqua personnel for mitigation of the WTP as necessary.
		FPL Recommendations:
		CER: What portion of the piping/components do we need to coordinate on?
		Maintain flow out of the WTP.
		FPL Recommendations:
		CER: ? AK: I think piping to wtp is buried
		Dead Legs (Vents, Drains, Instruments, cross-ties, etc.) options:
		FPL Recommendations:
		CER: Agree.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 365 of 488

> R21002, Rev 0 Attachment M Page 33 of 33

PTN Phase 1 System Walkdown Evaluation Summary

Acronym / #	System Name	Overall Strategy
		Circulating Water Pump Lube Water Storage Tank – no protection for the tank is necessary to prevent freezing. Maintain flow as necessary to provide lube water to the CWPs to maintain operation. Protect dead legs for the piping and the tank.
		FPL Recommendations:
		CER: This needs to be more pointed.
		See General Note pertaining to vents, drains and instrumentation dead legs (end of table).

General Note - Heat trace and insulate all liquid filled vents, drains, dead legs, and instrument connections that do not meet the temperature, length, and orientation criteria to preclude freezing (0-2% freezing assumed for Safety-Related piping and roughly 25% for Non-Safety-Related piping) or are contained within some other remediation strategy.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 366 of 488

R21002, Rev 0 Attachment N Page 1 of 123

Attachment N PTN Phase 2 TB Component Freeze Protection Evaluation

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 367 of 488

> R21002, Rev 0 Attachment N Page 2 of 123

		Page 2 of 123 ant Unit PTN System P&ID Seg Component/Equipment Component Pipe / Length Oriental Already Protect Notes Process Temperature Notes Adjusted Orientation Adjustment Dia Used Rounded Max Branch Analysis Final Protection Change Action																			
ID	Plant Ur	nit PTN Syste	m P&ID	Seg	Component/Equipment	Component	Pipe / Tube Diameter (NPS)	Length (ft)	Orienta tion	Already Insul	Protect	Notes Process Temp (F)		Adjusted Orientation	Dia Used	Rounded Temp (F)	Max Allowed Length (feet)	Branch Line Protected	Analysis Results	Final Protection Change	Action Required
2053	PTN 4	4 089	5614-M-3089, SH 2	1	Pressure Transmitter (PT) teed off of 4" pipe near HP Turb gland seal inlet.	PT-4-3417	0.500	N/A	N/A	N/A	N/A	523		N/A	0.500	400		No	N/A		
					PT instrument has 1/2" tubing. PT has local/remote indication and control room alarm on low pressure.																
2054	PTN 4	4 089	5614-M-3089, SH 2	1	Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3708	0.500	N/A	N/A	N/A	N/A	523		N/A	0.500	400		No	N/A		
2054	PTN 4	4 089	5614-M-3089, SH 2	1	Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A	523		N/A	0.500	400		No	N/A		
2055	PTN 4	4 089	5614-M-3089, SH 2	1	Pressure Indicator (PI) w/ 3/8" and 1/2" instrument tubing.	PI-4-1120	0.375	N/A	N/A	N/A	N/A	523		N/A	0.375	400		No	N/A		
2059	PTN 4	4 089	5614-M-3089, SH 2	1		4-90-020	2.000	N/A	N/A	N/A	N/A	523		N/A	2.000	400		No	N/A		
2059	PTN 4	4 089	5614-M-3089, SH 2	1		4-90-021	2.000	N/A	N/A	N/A	N/A	523		N/A	2.000	400		No	N/A		
2059	PTN 4	4 089	5614-M-3089, SH 2	1		4-90-022	2.000	N/A	N/A	N/A	N/A	523		N/A	2.000	400		No	N/A		
2059	PTN 4	4 089	5614-M-3089, SH 2	1		4-90-023	2.000	N/A	N/A	N/A	N/A	523		N/A	2.000	400		No	N/A		
2059	PTN 4	4 089	5614-M-3089, SH 2	1		4-90-024	1.500	N/A	N/A	N/A	N/A	523		N/A	1.500	400		No	N/A		
2059	PTN 4	4 089	5614-M-3089, SH 2	1	1 1/2" drains (x2) and 2" drains (x6) from Wye strainers	4-90-025	2.000	N/A	N/A	N/A	N/A	523		N/A	2.000	400		No	N/A		
2059	PTN 4	4 089	5614-M-3089, SH 2	1	1 1/2" drains (x2) and 2" drains (x6) from Wye strainers	4-90-084	2.000	N/A	N/A	N/A	N/A	523		N/A	2.000	400		No	N/A		
2059	PTN 4	4 089	5614-M-3089, SH 2	1	1 1/2" drains (x2) and 2" drains (x6) from Wye strainers	4-90-085	1.500	N/A	N/A	N/A	N/A	523		N/A	1.500	400		No	N/A		
2057	PTN 4	4 089	5614-M-3089, SH 2	1	relief valve (25 psig) and rupture disc (100 psig)	RV-4-3438	6.000	N/A	N/A	N/A	N/A	523		N/A	Not Analyzed	400		No	N/A		
2057	PTN 4	4 089	5614-M-3089, SH 2	1	relief valve (25 psig) and rupture disc (100 psig)	RVD-4-3439	6.000	N/A	N/A	N/A	N/A	523		N/A	Not Analyzed	400		No	N/A		
2063	PTN 4	4 089	5614-M-3089, SH 2	4	3" relief valve teed off the 4" main line (x2)	RV-4-417	3.000	N/A	N/A	N/A	N/A	523		N/A	3.000	400		No	N/A		
2063	PTN 4	4 089	5614-M-3089, SH 2	4	3" relief valve teed off the 4"	RV-4-418	3.000	N/A	N/A	N/A	N/A	523		N/A	3.000	400		No	N/A		
2065	PTN 4	4 089	5614-M-3089, SH 2	4	main line (x2) 3/4" drains (x2) from Wye	4-90-049	0.750	N/A	N/A	N/A	N/A	523		N/A	0.750	400		No	N/A		
2066	PTN 4	4 089	5614-M-3089, SH 2	5	strainers Pipe size not shown.	NOT PROVIDED	NOT	N/A	N/A	N/A	N/A	400		N/A		400		No	N/A		
					LP turbine water trough drain to "Waste Drain Near Bowser Filter"		PROVIDED														
2067	PTN 4	4 089	5614-M-3089, SH 2	6	1" loop seal drains from LP Turbine gland seal exhaust to equipment drain.	NOT PROVIDED	1.000	N/A	N/A	N/A	N/A	400		N/A	1.000	400		No	N/A		
2069	PTN 4	4 089	5614-M-3089, SH 2	7	Capped pipe on 6" line	NOT PROVIDED	6.000	N/A	N/A	N/A	N/A	400		N/A	Not	400		No	N/A		
2070	PTN 4	4 089	5614-M-3089, SH 2	8	Temporary Instrument port:	N/A	N/A	N/A	N/A	N/A	N/A			N/A	Analyzed			No	N/A		
2075	PTN 4	4 089	5614-M-3089, SH 2		d Located on top of Gland	PI-4-3709	Not provided	N/A	N/A	N/A	N/A	600		N/A		400		No	N/A		
				m Cond	d condenser protected from er wind. Local heat loss from GS																
					will prevent freezing.																

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 368 of 488

> R21002, Rev 0 Attachment N Page 3 of 123

																		1 age 3 01 123
2054	PTN	4	089	5614-M-3089, SH 2	1 Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A	523	N/A	0.500	400	No	N/A	
2077	PTN	4	089	5614-M-3089, SH 2	HP Temperature Element (TE x5), Turbi Pressure indication (PI x4), ne 1/2" tubing and open root valve.	PI-4-3728A	0.500	N/A	N/A	N/A	N/A	440	N/A	0.500	400	No	N/A	
2077	PTN	4	089	5614-M-3089, SH 2	HP Temperature Element (TE x5), Turbi Pressure indication (PI x4), ne 1/2" tubing and open root valve.	PI-4-3728B	0.500	N/A	N/A	N/A	N/A	440	N/A	0.500	400	No	N/A	
2077	PTN	4	089	5614-M-3089, SH 2	HP Temperature Element (TE x5), Turbi Pressure indication (PI x4), ne 1/2" tubing and open root valve.	PI-4-3729A	0.500	N/A	N/A	N/A	N/A	440	N/A	0.500	400	No	N/A	
2077	PTN	4	089	5614-M-3089, SH 2	HP Temperature Element (TE x5), Turbi ne 1/2" tubing and open root valve.	PI-4-3729B	0.500	N/A	N/A	N/A	N/A	440	N/A	0.500	400	No	N/A	
2078	PTN	4	089	5614-M-3089, SH 2	HP 4-90-054 Turbi ne	4-90-054	0.750	N/A	N/A	N/A	N/A	440	N/A	0.750	400	No	N/A	
	PTN		089	5614-M-3089, SH 2	HP 1/2" drains (closed) on PI Turbi insturment lines. (x4) ne	4-90-090	0.500		N/A		N/A	440	N/A	0.500	400	No	N/A	
2078			089	5614-M-3089, SH 2	HP 1/2" drains (closed) on PI Turbi insturment lines. (x4) ne	4-90-091	0.500			N/A	N/A	440	N/A	0.500	400	No	N/A	
	PTN		089	5614-M-3089, SH 2	HP 1/2" drains (closed) on PI Turbi insturment lines. (x4) ne	4-90-092	0.500		N/A		N/A	440	N/A	0.500	400	No	N/A	
	PTN		089	5614-M-3089, SH 2	HP 1/2" drains (closed) on PI Turbi insturment lines. (x4) ne	4-90-093	0.500	N/A			N/A	440	N/A	0.500	400	No	N/A	
	PTN		089	5614-M-3089, SH 2	LP TC (Temperature controller) Turbii ne one on each LP Turbine, North actuates Exhaust hood sprays & to regulate LP turbine South exhaust temp.	TC-4-3401	0.500	N/A	N/A	N/A	N/A	366	N/A	0.500	360	No	N/A	
2079	PTN	4	089	5614-M-3089, SH 2	LP TC (Temperature controller) Turbii ne one on each LP Turbine, North actuates Exhaust hood sprays to regulate LP turbine South exhaust temp.	TC-4-3400	0.500	N/A	N/A	N/A	N/A	366	N/A	0.500	360	No	N/A	
2080	PTN	4	089	5614-M-3089, SH 2	LP Temperature Element (1 per turbine), ne Temperature indicator (1 per North turbine), & South	N/A	N/A	N/A	N/A	N/A	N/A		N/A			No	N/A	
2081	PTN	4	089	5614-M-3089, SH 2	LP Temporary Instrument ports: Turbi PX (x4 on each turbine) ne North with closed root valve & South	N/A	N/A	N/A	N/A	N/A	N/A		N/A			No	N/A	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 369 of 488

> R21002, Rev 0 Attachment N Page 4 of 123

																						Page 4 c	01 123
2054	PTN	4	089	5614-M-3089, SH 2	1	Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523	N/A		0.500	400		No	N/A		
2019	PTN	4	089	5614-M-3089, SH 1		1", 1 1/2" instrument line to Pressure Transmitter (x2) (for steam break protection and control; control of steam dump valves)	PT-4-446	0.500	22.0	H,D	N	НТ	Includes all vents, drains and local indicators in line.	523	BV	BV conservative due to downward portion	0.500	400	0.5	No	нт	Heat trace	N
2019	PTN	4	089	5614-M-3089, SH 1		1", 1 1/2" instrument line to Pressure Transmitter (x2) (for steam break protection and control; control of steam dump valves)	PT-4-447	0.500	22.0	H,D	N	нт	Includes all vents, drains and local indicators in line.	523	BV	BV conservative due to downward portion	0.500	400	0.5	No	нт	Heattrace	N
2020	PTN	4	089	5614-M-3089, SH 1		1", 1 1/2" instrument line to Pressure Indication & Transmitter (x4) (Pressure reading controls turbine control valve position based on turb inlet pressure; control room indication of HP turbine supply pressure)	PIT-4-1604A	1.000	28.0	H,D	N	нт	Includes all vents, drains and local indicators in line.	523	BV	BV conservative due to downward portion	1.000	400	0.5	No	нт	verify location; if in doghouse do not heat trace	Y
2020	PTN	4	089	5614-M-3089, SH 1		1", 1 1/2" instrument line to Pressure Indication & Transmitter (x4) (Pressure reading controls turbine control valve position based on turb inlet pressure; control room indication of HP turbine supply pressure)	PIT-4-1604B	1.000	32.0	H,D	N	нт	Includes all vents, drains and local indicators in line.	523	BV	BV conservative due to downward portion	1.000	400	0.5	No	нт	verify location; if in doghouse do not heat trace	Y
2020	PTN	4	089	5614-M-3089, SH 1		1", 1 1/2" instrument line to Pressure Indication & Transmitter (x4) (Pressure reading controls turbine control valve position based on turb inlet pressure; control room indication of HP turbine supply pressure)	PIT-4-1604C	1.000	32.0	H,D	N	нт	Includes all vents, drains and local indicators in line.	523	BV	BV conservative due to downward portion	1.000	400	0.5	No	нт	verify location; if in doghouse do not heat trace	Y
2020	PTN	4	089	5614-M-3089, SH 1		1", 1 1/2" instrument line to Pressure Indication & Transmitter (x4) (Pressure reading controls turbine control valve position based on turb inlet pressure; control room indication of HP turbine supply pressure)	PIT-4-1604D	1.000	30.0	H,D	N	нт	Includes all vents, drains and local indicators in line.	523	BV	BV conservative due to downward portion	1.000	400	0.5	No	нт	verify location; if in doghouse do not heat trace	Y
2026	PTN	4	089	5614-M-3089, SH 1		Temporary Instrument ports: PX (x2) SN (x1) with closed root valve	PX-4-1416 4-10-154	0.500	1.0	H,D	N	НТ		523	BV	BV conservative due to downward portion	0.500	400	0.5	No		short run; high process temp; no protection required	N
2026	PTN	4	089	5614-M-3089, SH 1		Temporary Instrument ports: PX (x2) SN (x1) with closed root valve	PX-4-1418 4-10-155	0.500	1.0	H,D	N	нт		523	BV	BV conservative due to downward portion	0.500	400	0.5	No		short run; high process temp; no protection required	N

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 370 of 488

> R21002, Rev 0 Attachment N Page 5 of 123

																						Page 5	01 123
2054	PTN	4	089	5614-M-3089, SH 2	1	Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523	N/A		0.500	400		No	N/A		
2026	PTN	4	089	5614-M-3089, SH 1	2	Temporary Instrument ports: PX (x2) SN (x1)	SN-4-1403 4-10-116	0.500	1.0	H,D	N	нт	DIA ASSUMED BASED ON SILILAR	523	BV	BV conservative due to downward portion	0.500	400	0.5	No	НТ	short run; high process temp; no protection required	N
						with closed root valve																	
2028	PTN	4	089	5614-M-3089, SH 1	2	1/2" instrument tubing w/ closed root valve (no instrument) (x2)	4-10-146	0.500	1.0	H,D	N	нт		523	BV	BV conservative due to downward portion	0.500	400	0.5	No	НТ	short run; high process temp; no protection required	N
2049	PTN	4	089	5614-M-3089, SH 1	2	TE (temperature element)	N/A	N/A	N/A	N/A	N/A	N/A	All are either in thermowell or direct	523	N/A			400		No	N/A		
						(x2 per MSR) MSR 3A, 3B, 3C, and 3D							emersion. No process fluid is exposed. Flow will prevent freezing										
2025	PTN	4	089	5614-M-3089, SH 1	2	PI and PT instruments 1/2" instrument tubing	PT-4-1605	0.375	30.0	H,D	N	НТ	On HP front stand, estimated length since inaccessable from below. Assumed dia based on visual. Includes all vents, drains and local indicators in line.	523	BV	BV conservative due to downward portion	0.375	400	Not Analyzed	No	НТ	нт	N
2050	PTN	4	089	5614-M-3089, SH 1	2	PI (pressure indicator) (x2 per MSR) 1" and 3/8" instrument tube MSR 3A, 3B, 3C, and 3D	PI-4-1410	0.375	12.0	H,D	N	нт	Includes all vents, drains and local indicators in line.	523	BV	BV conservative due to downward portion	0.375	400	Not Analyzed	No	НТ	нт	N
2050	PTN	1	089	5614-M-3089, SH 1	2	PI (pressure indicator)	PI-4-1411	0.375	12.0	H,D	N	НТ	Includes all vents, drains and local	523	BV	BV conservative due to	0.375	400	Not	No	HT	НТ	N
2030	r IIV		083	3014-101-3063, 311 1		(x2 per MSR) 1" and 3/8" instrument tube	L1-4-1411	0.373	12.0	11,0	N	""	indicators in line.	323	BV	downward portion	0.373	400	Analyzed	NO	""		
						MSR 3A, 3B, 3C, and 3D																	
2050	PTN	4		5614-M-3089, SH 1	2	PI (pressure indicator) (x2 per MSR) 1" and 3/8" instrument tube	PI-4-1412	0.375	12.0	H,D	N	нт	Includes all vents, drains and local indicators in line.	523	BV	BV conservative due to downward portion	0.375	400	Not Analyzed	No	НТ	нт	N
						MSR 3A, 3B, 3C, and 3D																	
2050	PTN	4	089	5614-M-3089, SH 1	2	PI (pressure indicator) (x2 per MSR) 1" and 3/8" instrument tube	PI-4-1413	0.375	12.0	H,D	N	HT	Includes all vents, drains and local indicators in line.	523	BV	BV conservative due to downward portion	0.375	400	Not Analyzed	No	НТ	нт	N
						MSR 3A, 3B, 3C, and 3D																	
2036	PTN	4	089	5614-M-3089, SH 1	3	1/2" vent (closed)(x8)	4-10-231	0.500	1.0	TV	N	НТ		523	TV		0.500	400	8.5	Yes	No		
						(from 4 MSRs to 2 LP Turbines)															Protection Required		
2036	PTN	4	089	5614-M-3089, SH 1	3	1/2" vent (closed)(x8)	4-10-232	0.500	1.0	TV	N	HT		523	TV		0.500	400	8.5	Yes	No Protection		
						(from 4 MSRs to 2 LP Turbines)															Required		
2036	PTN	4	089	5614-M-3089, SH 1	3	1/2" vent (closed)(x8)	4-10-233	0.500	1.0	TV	N	НТ		523	TV		0.500	400	8.5	Yes	No Protection		
						(from 4 MSRs to 2 LP Turbines)															Required		
2036	PTN	4	089	5614-M-3089, SH 1	3	1/2" vent (closed)(x8)	4-10-234	0.500	1.0	TV	N	НТ		523	TV		0.500	400	8.5	Yes	No Protection		
						(from 4 MSRs to 2 LP Turbines)															Required		
2036	PTN	4		5614-M-3089, SH 1	3	<u> </u>	4-10-235	0.500	1.0	TV	N	НТ		523	TV		0.500	400	8.5	Yes	No		
						(from 4 MSRs to 2 LP Turbines)															Protection Required		
2036	PTN	4	089	5614-M-3089, SH 1	3	1/2" vent (closed)(x8) (from 4 MSRs to 2 LP	4-10-236	0.500	1.0	TV	N	нт		523	TV		0.500	400	8.5	Yes	No Protection Required		
2036	PTN	4	089	5614-M-3089, SH 1	3	Turbines) 1/2" vent (closed)(x8)	4-10-237	0.500	1.0	TV	N	HT		523	TV		0.500	400	8.5	Yes	No Protection		
						(from 4 MSRs to 2 LP Turbines)															Protection Required		
2036	PTN	4	089	5614-M-3089, SH 1	3	<u> </u>	4-10-238	0.500	1.0	TV	N	НТ		523	TV		0.500	400	8.5	Yes	No		
						(from 4 MSRs to 2 LP Turbines)															Protection Required		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 371 of 488

> R21002, Rev 0 Attachment N Page 6 of 123

																				i age o c	1 120
2054 P	ΓN 4	089	5614-M-3089, SH 2	1 Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523	N/A		0.500	400		No	N/A		
2036 P	ΓN 4	089	5614-M-3089, SH 1	3 1/2" vent (closed)(x8) (from 4 MSRs to 2 LP	4-10-239	0.500	1.0	TV	N	НТ		523	TV		0.500	400	8.5	Yes	No Protection Required		
2036 P	ΓN 4	089	5614-M-3089, SH 1	Turbines) 3 1/2" vent (closed)(x8) (from 4 MSRs to 2 LP	4-10-245	0.500	1.0	TV	N	НТ		523	TV		0.500	400	8.5	Yes	No Protection Required		
2032 P	ΓN 4	089	5614-M-3089, SH 1	Turbines) 3 PIT (x3) (pressure indicator and transmitter) (input to Turbine Control System)	PIT-4-3639A	0.500	50.0	H,D	N	HT	Transitter in Turbine skirt but tubing outside. Includes all vents, drains and local indicators in line.	523	BV	BV conservative due to downward portion	0.500	400	0.5	No	НТ	нт	N
2032 P	ΓN 4	089	5614-M-3089, SH 1	3 PIT (x3) (pressure indicator and transmitter) (input to Turbine Control System)	PIT-4-3639B	0.500	50.0	H,D	N	НТ	Transitter in Turbine skirt but tubing outside. Includes all vents, drains and local indicators in line.	523	BV	BV conservative due to downward portion	0.500	400	0.5	No	НТ	нт	N
2032 P	ΓN 4	089	5614-M-3089, SH 1	3 PIT (x3) (pressure indicator and transmitter) (input to Turbine Control System)	PIT-4-3639C	0.500	50.0	H,D	N	НТ	Transitter in Turbine skirt but tubing outside. Includes all vents, drains and local indicators in line.	523	BV	BV conservative due to downward portion	0.500	400	0.5	No	нт	нт	N
2030 P	FN 4	089	5614-M-3089, SH 1	TE (temperature element) (x6) PI/PT (press indicator and transmitter)(x5)(3/4" tubing) (from 4 MSRs to 2 LP Turbines)	PI-4-3405	0.750	1.0	H,D	N	НТ	Includes all vents, drains and local indicators in line.	523	BV	BV conservative due to downward portion	0.750	400	0.5	No	нт	High process temp; short run; no protection required	N
2030 P	ΓN 4	089	5614-M-3089, SH 1	TE (temperature element) (x6) PI/PT (press indicator and transmitter)(x5)(3/4" tubing) (from 4 MSRs to 2 LP Turbines)	PI-4-3406	0.750	1.0	H,D	N	нт	Includes all vents, drains and local indicators in line.	523	BV	BV conservative due to downward portion	0.750	400	0.5	No	нт	High process temp; short run; no protection required	N
2030 P	ΓN 4	089	5614-M-3089, SH 1	3 TE (temperature element) (x6) PI/PT (press indicator and transmitter)(x5)(3/4" tubing) (from 4 MSRs to 2 LP Turbines)	PI-4-3639	0.750	1.0	H,D	N	нт	Includes all vents, drains and local indicators in line.	523	BV	BV conservative due to downward portion	0.750	400	0.5	No	нт	High process temp; short run; no protection required	N
2030 P	ΓN 4	089	5614-M-3089, SH 1	3 TE (temperature element) (x6) PI/PT (press indicator and transmitter)(x5)(3/4" tubing) (from 4 MSRs to 2 LP Turbines)	PT-4-1600	0.750	50.0	H,D	N	НТ	Includes all vents, drains and local indicators in line.	523	BV	BV conservative due to downward portion	0.750	400	0.5	No	нт	нт	N
2030 P	FN 4	089	5614-M-3089, SH 1	TE (temperature element) (x6) PI/PT (press indicator and transmitter)(x5)(3/4" tubing) (from 4 MSRs to 2 LP Turbines)	PT-4-1601	0.750	50.0	H,D	N	нт	Includes all vents, drains and local indicators in line.	523	BV	BV conservative due to downward portion	0.750	400	0.5	No	нт	НТ	N
2033 P	ΓN 4	089	5614-M-3089, SH 1	3 Temporary Instrument ports: TX (x4) and tubing (no root valve - thermowell?) downstream of reheat stop valves	N/A	N/A	N/A	N/A	N/A	N/A	All are either in thermowell or direct emersion. No process fluid is exposed. Flow will prevent freezing	523	N/A			400		No	N/A		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 372 of 488

> R21002, Rev 0 Attachment N Page 7 of 123

																						Page 7 o	01 123
2054	PTN	4	089	5614-M-3089, SH 2	1	Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523	N/A		0.500	400		No	N/A		
2030	PTN	4	089	5614-M-3089, SH 1	3	TE (temperature element) (x6) PI/PT (press indicator and transmitter)(x5)(3/4" tubing) (from 4 MSRs to 2 LP Turbines)	Pl-4-1511	0.375	40.0	H,D	N	НТ	Includes all vents, drains and local indicators in line.	523	BV	BV conservative due to downward portion	0.375	400	Not Analyzed	No	нт	нт	N
2030	PTN	4	089	5614-M-3089, SH 1	3	TE (temperature element) (x6) PI/PT (press indicator and transmitter)(x5)(3/4" tubing) (from 4 MSRs to 2 LP Turbines)	PI-4-1513	0.375	40.0	H,D	N	нт	Includes all vents, drains and local indicators in line.	523	BV	BV conservative due to downward portion	0.375	400	Not Analyzed	No	НТ	нт	N
2030	PTN	4	089	5614-M-3089, SH 1	3	TE (temperature element) (x6) PI/PT (press indicator and transmitter)(x5)(3/4" tubing) (from 4 MSRs to 2 LP Turbines)	Pl-4-1514	0.375	40.0	H,D	N	НТ	Includes all vents, drains and local indicators in line.	523	BV	BV conservative due to downward portion	0.375	400	Not Analyzed	No	нт	нт	N
2050	PTN	4	089	5614-M-3089, SH 1	3	PI (pressure indicator) (x2 per MSR) 1" and 3/8" instrument tube MSR 3A, 3B, 3C, and 3D	PI-4-1512	0.375	40.0	H,D	N	НТ	Includes all vents, drains and local indicators in line.	523	BV	BV conservative due to downward portion	0.375	400	Not Analyzed	No	НТ	нт	N
2038	PTN	4	089	5614-M-3089, SH 1	5	PI and PT instruments and instrument tubing	PI-4-3403	0.375	3.0	H,U	N	НТ	On HP front stand, estimated length since inaccessable from below. Assumed dia based on visual	523	Н	Upward bend not credited for conservatism	0.375	400	4.5	Yes	No Protection Required		
2038	PTN	4	089	5614-M-3089, SH 1	5	PI and PT instruments and instrument tubing	PT-4-1603	0.375	30.0	H,U	N	НТ	On HP front stand, estimated length since inaccessable from below. Assumed dia based on visual. Includes all vents, drains and local indicators in line.	523	Н	Upward bend not credited for conservatism	0.375	400	4.5	No	НТ	verify location; if in doghouse do not protect	Y
2039	PTN	4	089	5614-M-3089, SH 1	5	Temporary Instrument ports: PX (x3) (closed root valve)	PX-4-3400 4-90-027	0.500	1.0	H,D	N	нт		523	BV	BV conservative due to downward portion	0.500	400	0.5	No	HT	short run; high process temp-no protection required	N
2039	PTN	4	089	5614-M-3089, SH 1	5	Temporary Instrument ports: PX (x3) (closed root valve)	PX-4-3401 4-90-028	0.500	1.0	H,D	N	нт		523	BV	BV conservative due to downward portion	0.500	400	0.5	No	НТ	short run; high process temp-no protection required	N
2039	PTN	4	089	5614-M-3089, SH 1	5	Temporary Instrument ports: PX (x3) (closed root valve)	PX-4-3402 4-90-029	0.500	1.0	H,D	N	НТ		523	BV	BV conservative due to downward portion	0.500	400	0.5	No	HT	short run; high process temp-no protection required	N
1975	PTN	4	084	5614-M-3084, SH 1	2	Piping [4-6"-2-C] Valves [SLWU-4-001, SLWU-4 002 (check vlv)]	Pipe between SLWU-4- 002 and 4" AFW line	6.000	10.0	H-I	Y	I	Total length of line is 30ft. Assume this portion is 10ft	600	H-I		Not Analyzed	400	#N/A	No	Al		
1922	PTN	4	081	5614-M-3081, SH 7	1	1" Drains	4-30-1084	1.000	1.0	H-I	Y	НТ	MSR4D	267	H-I		1.000	260	19	Yes	No Protection Required		
1922	PTN	4	081	5614-M-3081, SH 7	1	1" Drains	4-30-1085	1.000	1.0	H-I	Y	HT	MSR4D	267	H-I		1.000	260	19	Yes	No Protection Required		
1922	PTN	4	081	5614-M-3081, SH 7	1	1" Drains	4-30-1086	1.000	1.0	H-I	Y	нт	MSR4D	267	H-I		1.000	260	19	Yes	No Protection		
1922	PTN	4	081	5614-M-3081, SH 7	1	1" Drains	4-30-1090	1.000	1.0	H-I	Y	НТ	MSR4C	267	H-I		1.000	260	19	Yes	No Protection		
1922	PTN	4	081	5614-M-3081, SH 7	1	1" Drains	4-30-1091	1.000	1.0	H-I	Y	НТ	MSR4C	267	H-I		1.000	260	19	Yes	No Protection		
1922	PTN	4	081	5614-M-3081, SH 7	1	1" Drains	4-30-1092	1.000	1.0	H-I	Y	НТ	MSR4C	267	H-I		1.000	260	19	Yes	No Protection Required		
1921	PTN	4	081	5614-M-3081, SH 7	1	1" Vents	4-30-1043	1.000	1.0	TV-I	Y	НТ	MSR4D	310	TV-I		1.000	310	19	Yes	No Protection Required		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 373 of 488

> R21002, Rev 0 Attachment N Page 8 of 123

																					Page 8	01 123
2054	PTN	4	089	5614-M-3089, SH 2	1 Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523	N/A		0.500	400		No	N/A		
1921	PTN	4	081	5614-M-3081, SH 7	1 1" Vents	4-30-1044	1.000	1.0	TV-I	Y	HT	MSR4D	310	TV-I		1.000	310	19	Yes	No Protection		
1921	PTN	4	081	5614-M-3081, SH 7	1 1" Vents	4-30-1046	1.000	1.0	TV-I	Y	НТ	MSR4D	310	TV-I		1.000	310	19	Yes	Required No Protection		
1921	PTN	4	081	5614-M-3081, SH 7	1 1" Vents	4-30-1050	1.000	1.0	TV-I	Y	НТ	MSR4C	310	TV-I		1.000	310	19	Yes	Required No Protection		
1921	PTN	4	081	5614-M-3081, SH 7	1 1" Vents	4-30-1051	1.000	1.0	TV-I	Y	НТ	MSR4C	310	TV-I		1.000	310	19	Yes	Required No Protection		+
1921	PTN	4	081	5614-M-3081, SH 7	1 1" Vents	4-30-1052	1.000	1.0	TV-I	Y	HT	MSR4C	310	TV-I		1.000	310	19	Yes	Required No Protection		
																				Required		
1920	PTN	4	081	5614-M-3081, SH 7	Level transmitters and associated 2" piping/valves	LIT-4-1504A	2.000	19.0	loop-I	Y	N/A	MSR4D	310	BV-I	BV conservative due to downward portion	2.000	310	15	No	N/A		
1920	PTN	4	081	5614-M-3081, SH 7	1 Level transmitters and associated 2" piping/valves	LIT-4-1504B	2.000	19.0	loop-I	Y	N/A	MSR4D	310	BV-I	BV conservative due to downward portion	2.000	310	15	No	N/A		
1920	PTN	4	081	5614-M-3081, SH 7	1 Level transmitters and associated 2" piping/valves	LIT-4-1504C	2.000	20.0	loop-l	Y	N/A	MSR4D	310	BV-I	BV conservative due to downward portion	2.000	310	15	No	N/A		
1920	PTN	4	081	5614-M-3081, SH 7	1 Level transmitters and associated 2" piping/valves	LIT-4-1525A	2.000	19.0	loop-I	Y	N/A	MSR4C	310	BV-I	BV conservative due to downward portion	2.000	310	15	No	N/A		
1920	PTN	4	081	5614-M-3081, SH 7	1 Level transmitters and associated 2" piping/valves	LIT-4-1525B	2.000	20.0	loop-I	Y	N/A	MSR4C	310	BV-I	BV conservative due to downward portion	2.000	310	15	No	N/A		
1920	PTN	4	081	5614-M-3081, SH 7	1 Level transmitters and associated 2" piping/valves	LIT-4-1525C	2.000	20.0	loop-I	Y	N/A	MSR4C	310	BV-I	BV conservative due to downward portion	2.000	310	15	No	N/A		
1965	PTN	4	081	5614-M-3081, SH 7	1 Shell Side Drain Tank	Shell Side Drain Tank	N/A	N/A	N/A	N/A	N/A		310	N/A			310		No	N/A		
1924		4	081	5614-M-3081, SH 7	2 3/4" Vent	4-30-780	0.750	0.5	Н	N	HT	MSR4C	513	Н		0.750	400	14	Yes	No Protection Required		
1924	PTN	4	081	5614-M-3081, SH 7	2 3/4" Vent	4-30-781	0.750	1.0	Н	N	НТ	MSR4D	513	Н		0.750	400	14	Yes	No Protection Required		
1925	PTN	4	081	5614-M-3081, SH 7	2 1" capped pipe	4-30-706	1.000	1.0	Н	N	HT	MSR4C	513	Н		1.000	400	18	Yes	No Protection		
1925	PTN	4	081	5614-M-3081, SH 7	2 1" capped pipe	4-30-707	1.000	1.0	Н	N	НТ	MSR4D	513	Н		1.000	400	18	Yes	No Protection		
1923	PTN	4	081	5614-M-3081, SH 7	2 4" Piping from MSR to RHTR Drain Tk (Vent)	4-30-706	4.000	60.0	H-I,D	Y	I		513	BV-I	BV conservative due to downward portion	4.000	400	15	No	Required Al		
1923		4	081	5614-M-3081, SH 7	2 4" Piping from MSR to RHTR Drain Tk (Vent)		4.000		H-I,D	У	I		513	BV-I	BV conservative due to downward portion	4.000	400	15	No	Al		
1927	PTN	4	081	5614-M-3081, SH 7	3 Vent	4-30-698	0.750	1.0	TV,H	N	HT	MSR4C - NO ACESS - ASSUME TYPICAL DIA	513	Н		Not Analyzed	400	#N/A	No	HT	short run; high process temp; no protecton required	N
1931	PTN	4	081	5614-M-3081, SH 7	5 3/4" Vent	4-2131	0.750	1.0	TV,H	N	HT	MSR4D	441	Н		0.750	400	14	Yes	No Protection Required		
1931	PTN	4	081	5614-M-3081, SH 7	5 3/4" Vent	4-2127	0.750	1.0	TV	N	НТ	MSR4C	441	TV		0.750	400	19	Yes	No Protection		
1929	PTN	4	081	5614-M-3081, SH 7	5 PI	PI-4-6688	0.750	2.0	H,U	N	HT	MSR4D	441	Н	Upward bend not credited for	0.750	400	14	Yes	No Protection		
1929	PTN	4	081	5614-M-3081, SH 7	5 PI	PI-4-6687	0.750	3.0	H,U	N	НТ	MSR4C	441	Н	Conservatism Upward bend not credited for	0.750	400	14	Yes	No Protection		
1933	PTN	4	081	5614-M-3081, SH 7	5 3" Capped Pipe	4-2082	3.000	1.0	Н	N	I		441	Н	conservatism	3.000	400	16	Yes	Required No Protection		
1933	PTN	4	081	5614-M-3081, SH 7	5 3" Capped Pipe	4-2086	3.000	1.0	Н	N	I		441	Н		3.000	400	16	Yes	Required No Protection		+
				1				L.	<u> </u>				<u> </u>							Required		
1932	PTN	4	081	5614-M-3081, SH 7	5 1" Drain	4-2109	1.000	1.0	BV	N	HT	MSR4C	441	BV		1.000	400	0.5	No	HT	short run; high process temp; no protection required	N
1932	PTN	4	081	5614-M-3081, SH 7	5 1" Drain	4-2110	1.000	1.0	BV	N	НТ	MSR4C	441	BV		1.000	400	0.5	No	HT	short run; high process temp; no protection required	N

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 374 of 488

> R21002, Rev 0 Attachment N Page 9 of 123

																					1 age 3	01 120
2054	PTN	4	089	5614-M-3089, SH 2	1 Pressure Control Instrumen (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523	N/A		0.500	400		No	N/A		
1932	PTN	4	081	5614-M-3081, SH 7	5 1" Drain	4-2113	1.000	1.0	BV	N	НТ	MSR4D	441	BV		1.000	400	0.5	No	НТ	short run; high process temp; no protection required	N
1937	PTN	4	081	5614-M-3081, SH 7	7 3/4" Vent	4-2128	0.750	0.5	Н	N	нт	MSR4C	441	Н		0.750	400	14	Yes	No Protection	required	
1937	PTN	4	081	5614-M-3081, SH 7	7 3/4" Vent	4-2132	0.750	0.5	Н	N	НТ	MSR4D	441	Н		0.750	400	14	Yes	Required No		+-+
																				Protection Required		
1936	PTN	4	081	5614-M-3081, SH 7	7 Flanges	Downstream of 4-30-113:	3.000	0.5	Н	N	'		441	Н		3.000	400	16	Yes	No Protection		
1936	PTN	4	081	5614-M-3081, SH 7	7 Flanges	Downstream of 4-30-113	3.000	0.5	Н	N	ı		441	Н		3.000	400	16	Yes	Required No		+
																				Protection Required		
1939	PTN	4	081	5614-M-3081, SH 7	7 3" Capped Pipe	Downstream of 4-30-113	3.000	0.5	H-I	Y	1	PX ON TOP OF LINE GOING INTO TOP OF HEATER	441	H-I		3.000	400	20	Yes	No Protection Required		
1939	PTN	4	081	5614-M-3081, SH 7	7 3" Capped Pipe	Downstream of 4-30-113.	3.000	0.5	H-I	Y	I	CV-4-2212 OPEN RECORD DATA FOR 4- 20-047	441	H-I		3.000	400	20	Yes	No Protection		
1938	PTN	4	081	5614-M-3081, SH 7	7 1" Drain	4-2111	1.000	1.0	BV,H	N	НТ	MSR4C	441	BV	BV conservative due to downward portion	1.000	400	0.5	No	Required HT	short run; high process temp; no protection required	N
1938	PTN	4	081	5614-M-3081, SH 7	7 1" Drain	4-2114	1.000	1.0	BV,H	N	НТ	MSR4D	441	BV	BV conservative due to downward portion	1.000	400	0.5	No	НТ	short run; high process temp; no protection required	N
1942	PTN	4	081	5614-M-3081, SH 7	8 3/4" Vent	4-2129	0.750	1.0	TV	N	НТ	MSR4C	441	TV		0.750	400	19	Yes	No Protection		
1941	PTN	4	081	5614-M-3081, SH 7	8 Flanges	Downstream of 4-30-113	4.000	0.5	H-I	Y	I		441	H-I		4.000	400	15	Yes	Required No Protection		
1941	PTN	4	081	5614-M-3081, SH 7	8 Flanges	Downstream of 4-30-113	4.000	0.5	H-I	Y	ı		441	H-I		4.000	400	15	Yes	Required No		
																				Protection Required		
1944			081	5614-M-3081, SH 7	9 Flange	Downstream of 4-30-113		0.5		Y	ı		441	H-I		Not Analyzed	400	#N/A	No	Al		
1946	PTN	4	081	5614-M-3081, SH 7	11 3/4" Vent	4-2130	0.750	1.0	TV,H	N	HT	MSR4C	108	Н		0.750	100	2	Yes	No Protection Required		
1946	PTN	4	081	5614-M-3081, SH 7	11 3/4" Vent	4-2133	0.750	1.0	TV,H	N	нт	MSR4D	108	Н		0.750	100	2	Yes	No Protection Required		
1948	PTN	4	081	5614-M-3081, SH 7	11 3" Flanges	Downstream of 4-2084	3.000	1.0	H-I	Y	ı	GUESS	108	H-I		3.000	100	20	Yes	No Protection		
1948	PTN	4	081	5614-M-3081, SH 7	11 3" Flanges	Downstream of 4-2088	3.000	1.0	H-I	Υ	I	GUESS	108	H-I		3.000	100	20	Yes	Required No Protection		
	PTN		081	5614-M-3081, SH 7	11 1" Drain	4-2112	1.000	1.0		N	HT	MSR4C	108	BV		1.000	100	0	No	Required HT	verify local ambient temperature is hot	Y
1947 1945	PTN		081 081	5614-M-3081, SH 7	11 1" Drain	4-2116	1.000 3.000	1.0		N N/A		MSR4D	108 108	BV N/A		1.000 3.000	100	0	No	HT N/A	verify local ambient temperature is hot	Y
1945	PIN	4	081	5614-M-3081, SH 7	11 3" Pipe	4-2085	3.000	N/A	N/A	N/A	N/A	'Any condensing steam condnsate will gravity flow to condenser and provide trickle flow to prevent freezing.	100	N/A		3.000	100		No	N/A		
1945	PTN	4	081	5614-M-3081, SH 7	11 3" Pipe	4-2089	3.000	N/A	N/A	N/A	N/A	'Any condensing steam condnsate will gravity flow to condenser and provide trickle flow to prevent freezing.	108	N/A		3.000	100		No	N/A		
1949	PTN	4	081	5614-M-3081, SH 7	12 1" Pipe	4-2095	1.000	4.0	H-I	Y	НТ	MSR4C	108	H-I		1.000	100	9	Yes	No Protection Required		
1949	PTN	4	081	5614-M-3081, SH 7	12 1" Pipe	4-2097	1.000	4.0	H-I	Y	НТ	MSR4D	108	H-I		1.000	100	9	Yes	No Protection		
1951	PTN	4	081	5614-M-3081, SH 7	13 1/2" piping	4-30-686	0.500	1.0	TV	Y	HT	MSR4C -	441	TV		0.500	400	8.5	Yes	Required No Protection		+
1051	DTN		091	5614-M-3081, SH 7	12 1/2" pining	4 20 507	0.500	1.5	T\/		шт	MCDAD	441	TV		0.500	400	0 =	Voc	Protection Required		1
1951	PIN	4	081	D014-IVI-3U81, SH /	13 1/2" piping	4-30-687	0.500	1.5	l v	"	Н н	MSR4D	441	TV		0.500	400	8.5	Yes	No Protection Required		
1950	PTN	4	081	5614-M-3081, SH 7	13 Test Connection (PX) and	PX-4-1412	Not provide	ed N/A	N/A	N/A	N/A	MSR4C, ISOLATED	441	N/A		Not Analyzed	400		No	N/A		
1950	PTN	4	081	5614-M-3081, SH 7	13 Test Connection (PX) and	PX-4-1413	Not provide	o N/A	N/A	N/A	N/A	MSR4D, ISOLATED	441	N/A		Not Analyzed	400		No	N/A		
		_																			1	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 375 of 488

> R21002, Rev 0 Attachment N Page 10 of 123

																						Page 10	of 123
2054	PTN	4	089	5614-M-3089, SH 2	1	Pressure Control Instrument (PC x2) plus 1/2" tubing	t PC-4-3709	0.500	N/A	N/A	N/A	N/A		523	N/A		0.500	400		No	N/A		
1953	PTN	4	081	5614-M-3081, SH 7	14	3/4" Connection	4-30-1119	0.750	0.5	BV	N	НТ	MSR4D	387	BV		0.750	380	0.5	Yes	No Protection		
1953	PTN	4	081	5614-M-3081, SH 7	14	3/4" Connection	4-30-1123	0.750	0.5	BV	N	НТ	MSR4C	387	BV		0.750	380	0.5	Yes	No Protection		
1954	PTN	4	081	5614-M-3081, SH 7	14	Flange	Upstream of 4-30-1032	8.000	1.0	H-I	Y	ı		387	H-I		Not	380	#N/A	No	Required AI		
1954	PTN	4	081	5614-M-3081, SH 7	14	Flange	Upstream of 4-30-1032	8.000	1.0	H-I	Y	ı		387	H-I		Analyzed Not	380	#N/A	No	Al		
1955	PTN	4	081	5614-M-3081, SH 7	15	Pressure Test Connection	PX-4-1451	0.375	3.0	H,U	N	НТ	MSR4C	387	Н	Upward bend not credited for	Analyzed 0.375	380	4.3	Yes	No Protection		
1955	PTN	4	081	5614-M-3081, SH 7	15	Pressure Test Connection	PX-4-1452	0.375	3.0	H,U	N	HT	MSR4D	387	Н	Upward bend not credited for	0.375	380	4.3	Yes	No Protection		
1958	PTN	4	081	5614-M-3081, SH 7	16	3/4" Connection	4-30-1127	0.750	1.0	BV	N	HT	MSR4C	387	BV	conservatism	0.750	380	0.5	No	Required HT	check ambient temp; if hot do not protect	Y
1958	PTN	4	081	5614-M-3081, SH 7		3/4" Connection	4-30-757	0.750	1.0	BV	N	HT		387	BV		0.750	380	0.5	No	HT	check ambient temp; if hot do not protect	Υ
1961	PTN	4	081	5614-M-3081, SH 7	18	Flange	ownstream of CV-4-1504	10.000	1.0	H-I	Υ	I		387	H-I		Not Analyzed	380	#N/A	No	Al		
1961	PTN	4	081	5614-M-3081, SH 7	18	Flange	ownstream of CV-4-1525	10.000	1.0	H-I	Υ	I		387	H-I		Not Analyzed	380	#N/A	No	Al		
1963	PTN	4	081	5614-M-3081, SH 7	19	3/4" Connection	4-30-1128	0.750	10.0	H-I,D	Y	НТ	MSR4C - 10 FEET TO SECOND VALVE	387	BV-I	BV conservative due to downward portion		380	2.5	No	HT	check ambient temp; if hot do not protect	Y
1963	PTN	4	081	5614-M-3081, SH 7	19	3/4" Connection	4-30-759	0.750	10.0	H-I,D	Y	НТ	MSR4D - 10 FEET TO SECOND VALVE	387	BV-I	BV conservative due to downward portion	0.750	380	2.5	No	HT	check ambient temp; if hot do not protect	Y
1962	PTN	4	081	5614-M-3081, SH 7	19	8" Pipe	4-30-1021 4-30-1023	8.000	16.0	H-I,D	Y	I	MSR4C - 16 FEET TO CLOSED VALVE	387	BV-I	BV conservative due to downward portion	Not Analyzed	380	#N/A	No	Al		
1962	PTN	4	081	5614-M-3081, SH 7	19	8" Pipe	4-30-758 4-30-760	8.000	16.0	H-I,D	Y	I	MSR4D - 16 FEET TO CLOSED VALVE	387	BV-I	BV conservative due to downward portion		380	#N/A	No	Al		
1867	PTN	4	081	5614-M-3081, SH 6	3	3" Pipe	FWHR-4-001	3.000	3.0	H-I	Y	I	DISCHARGE	205	H-1		3.000	200	20	Yes	No Protection Required		
1867	PTN	4	081	5614-M-3081, SH 6	3	3" Pipe	FWHR-4-011	3.000	3.0	H-I	У	I	DISCHARGE	205	H-I		3.000	200	20	Yes	No Protection		
1869	PTN	4	081	5614-M-3081, SH 6	5	1" Pipe	FWHR-4-010	1.000	3.0	H-I	Y	НТ	(BY-PASS) (P&ID zone B-3)	205	H-I		1.000	200	19	Yes	No Protection		
1869	PTN	4	081	5614-M-3081, SH 6	5	1" Pipe	FWHR-4-062	1.000	3.0	H-I	Y	НТ	(BY-PASS) (P&ID zone E-3)	205	H-I		1.000	200	19	Yes	No Protection		
1870	PTN	4	081	5614-M-3081, SH 6	6	10" Pipe	FWH2A	10.000	N/A	N/A	N/A	N/A	Close to condenser will prevent freezing	175	BV-I	BV conservative due to		170		No	Required N/A		
1870	PTN	4	081	5614-M-3081, SH 6	6	10" Pipe	FWH2B	10.000	N/A	N/A	N/A	N/A	Close to condenser will prevent freezing	175	BV-I	downward portion BV conservative due to downward portion	Analyzed Not Analyzed	170		No	N/A		
1871	PTN	4	081	5614-M-3081, SH 6	7	2" Pipe	FWH2A	2.000	N/A	N/A	N/A	N/A	piping close to condenser and Isolation valves in east condenser pit which will	175	BV-I	BV conservative due to downward portion		170		No	N/A		
1871	PTN	4	081	5614-M-3081, SH 6	7	2" Pipe	FWH2B	2.000	N/A	N/A	N/A	N/A	prevent freezing	175	BV-I	BV conservative due to	2.000	170		No	N/A		
													valves in east condenser pit which will prevent freezing			downward portion							
1874	PTN	4	081	5614-M-3081, SH 6	8	1" Connection	4-30-225	1.000	1.0	Н	N	HT	NO ACCESS - COPIED FROM TYPICAL DATA	175	н		1.000	170	8.2	Yes	No Protection Required		
1874	PTN	4	081	5614-M-3081, SH 6	8	1" Connection	4-30-226	1.000	1.0	Н	N	НТ	NO ACCESS - COPIED FROM TYPICAL DATA	175	н		1.000	170	8.2	Yes	No Protection Required		
1872			081	5614-M-3081, SH 6	8		PX-4-1453	0.500	1.0	TV	N	HT		175	TV		0.500	170	#N/A	No		hot line; short run; no heat trace required	N
1872			081	5614-M-3081, SH 6	8		PX-4-1459	0.500	1.0	TV	N	HT		175	TV		0.500	170	#N/A	No	HT	hot line; short run; no heat trace required	N
1876 1876			081	5614-M-3081, SH 6 5614-M-3081, SH 6		3/4" Connection 3/4" Connection	4-30-253	0.750	1.0	BV LI	N N	HT HT	+	175	BV	PV concorretive do-	0.750		0.4	No	HT	hot line; short run; no heat trace required	N N
			081	, , , , , ,		,	4-30-254	0.750	1.0	BV,H	N			175	BV	BV conservative due to downward portion		170	0.4	No		hot line; short run; no heat trace required	N
1878			081	5614-M-3081, SH 6		14" Flange	Upstream of 4-30-261	14.000	1.0	N/A	Y	N/A	INSULATED	175	N/A		Not Analyzed			No	N/A		
1878			081	5614-M-3081, SH 6		14" Flange	Upstream of 4-30-262	14.000	1.0	N/A	Y	N/A	INSULATED	175	N/A		Not Analyzed			No	N/A		
1879			081	5614-M-3081, SH 6		8" Pipe	4-30-258	8.000	5.0	H-I	Y		BY-PASS	175	H-1		Not Analyzed		#N/A	No	Al		
1879			081	5614-M-3081, SH 6		8" Pipe	4-30-259	8.000	5.0	H-I	Y	UT	BY-PASS	175	H-I	DV consequention de	Not Analyzed	170	#N/A	No	AI	aloss provimity to condenses with the	
1881			081	5614-M-3081, SH 6 5614-M-3081, SH 6		3/4" Connection	4-30-265	0.750	1.0	BV,H	N	HT HT		119	BV	BV conservative due to downward portion		110	0	No		close proximity to condensor; ambient temp high; no heat trace required. close proximity to condensor; ambient temp	N
1881	PIN	4	081	3014-IVI-3081, SH 0	12	3/4" Connection	4-30-266	0.750	1.0	BV,H	N	H 1		119	BV	BV conservative due to downward portion	0.750	110	0	No	HT	high; no heat trace required.	N

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 376 of 488

> R21002, Rev 0 Attachment N Page 11 of 123

																					Page 11	of 123
2054	PTN	4	089	5614-M-3089, SH 2	1 Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523	N/A		0.500	400		No	N/A		
1880	PTN	4	081	5614-M-3081, SH 6	12 10" Pipe	CV-4-1526	10.000	5.0	H-I	Y	I		119	H-I		Not Analyzed	110	#N/A	No	Al		
1880	PTN	4	081	5614-M-3081, SH 6	12 10" Pipe	CV-4-1543	10.000	5.0	H-I	Y	I		119	H-I		Not Analyzed	110	#N/A	No	Al		
1882	PTN	4	081	5614-M-3081, SH 6	13 12" Pipe	4-30-273	12.000	N/A	N/A	N/A	N/A	Steam traps and bypass are designed to drain condensate to condenser. Line will therefore have continuous flow. Bypass is horizontal. Draine is less than 4" long and will not freeze with process temperature at 212	119	N/A		Not Analyzed	110		No	N/A		
1882	PTN	4	081	5614-M-3081, SH 6	13 12" Pipe	4-30-274	12.000	N/A	N/A	N/A	N/A	Condensation will drain to condenser producing trickle flow tpo prevent freezing. Located on east side of condenser	119	N/A		Not Analyzed	110		No	N/A		
1883	PTN	4	081	5614-M-3081, SH 6	13 12" Flange	Upstream of 4-30-273	12.000	1.0	H-I	Y	I	condenser	119	H-I		Not Analyzed	110	#N/A	No	Al		
1883	PTN	4	081	5614-M-3081, SH 6	13 12" Flange	Upstream of 4-30-274	12.000	1.0	H-I	Y	I		119	H-I		Not Analyzed	110	#N/A	No	Al		
1885	PTN	4	081	5614-M-3081, SH 6	14 3/4" Connection	4-30-269	0.750	1.0	BV	N	HT	NO ACCESS, IN CONDENSER PIT. Right under pipe right beside rail, behind kickplate - WARM AREA	119	BV		0.750	110	0	No	нт	close proximity to condensor; ambient temp high; no heat trace required.	N
1884	PTN	4	081	5614-M-3081, SH 6	14 8" Pipe	4-30-271 4-30-267	8.000	5.0	H-I	Y	I		119	H-I		Not Analyzed	110	#N/A	No	Al		
1884	PTN	4	081	5614-M-3081, SH 6	14 8" Pipe	4-30-272 4-30-268	8.000	5.0	H-I	Y	I		119	H-I		Not Analyzed	110	#N/A	No	Al		
1887	PTN	4	081	5614-M-3081, SH 6	16 1.5" Pipe	FWHR-4-008	1.500	3.0	H-I	Y	I	4 EAST CONNECTIONS IN PIT - HOT. 4 WEST CONNECTIONS COULD NOT FIND. IF SLOPED TO CONDENSER, CONDENSATE WILL DRAIN TO CONDENSER AND NOT FREEZE.	205	H-1		1.500	200	20	Yes	No Protection Required		
1887	PTN	4	081	5614-M-3081, SH 6	16 1.5" Pipe	FWHR-4-016	1.500	3.0	H-I	Y	I	4 EAST CONNECTIONS IN PIT - HOT. 4 WEST CONNECTIONS COULD NOT FIND. IF SLOPED TO CONDENSER, CONDENSATE WILL DRAIN TO CONDENSER AND NOT FREEZE.	205	H-I		1.500	200	20	Yes	No Protection Required		
1889	PTN	4	081	5614-M-3081, SH 6	18 4" Pipe	FWHR-4-009	4.000	3.0	H-I	Y	ı		205	H-I		4.000	200	15	Yes	No Protection Required		
1889	PTN	4	081	5614-M-3081, SH 6	18 4" Pipe	FWHR-4-018	4.000	3.0	H-I	Y	I		205	H-I		4.000	200	15	Yes	No Protection		
1890	PTN	4	081	5614-M-3081, SH 6	19 PX	PX-4-1454	0.500	1.0	H,U	N	HT		119	Н	Upward bend not credited for	0.500	110	1.2	Yes	No Protection		
1890	PTN	4	081	5614-M-3081, SH 6	19 PX	PX-4-1460	0.500	1.0	H,U	N	HT		119	Н	Upward bend not credited for conservatism	0.500	110	1.2	Yes	No Protection Required		
1892	PTN	4	081	5614-M-3081, SH 6	19 3/4" & 1" Drains	4-30-153	0.750	0.5	BV	N	HT		119	BV		0.750	110	0	No	НТ	high temp; short run; no heat trace required	N
1892	PTN	4	081	5614-M-3081, SH 6	19 3/4" & 1" Drains	4-30-291	0.750	0.5	BV	N	HT		119	BV		0.750	110	0	No	НТ	high temp; short run; no heat trace required	N
1892	PTN	4	081	5614-M-3081, SH 6	19 3/4" & 1" Drains	4-30-125	1.000	1.0	BV	N	HT		119	BV		1.000	110	0	No	НТ	high temp; short run; no heat trace required	N
1892	PTN	4	081	5614-M-3081, SH 6	19 3/4" & 1" Drains	4-30-126	1.000	1.0	BV	N	HT		119	BV		1.000	110	0	No	НТ	high temp; short run; no heat trace required	N
1892		4	081	5614-M-3081, SH 6	19 3/4" & 1" Drains	4-30-275	1.000	1.0	BV,H	N	HT		119	BV	BV conservative due to downward portion	1.000	110	0	No	HT	high temp; short run; no heat trace required	N
1893		4	081	5614-M-3081, SH 6	19 12" Flange	Upstream of 4-30-162	12.000	1.0	H-I	Y	I	DEAD LEG + FLANGE (MOST OF THESE ARE INSULATED, 1')	119	H-I		Not Analyzed	110	#N/A	No	AI		
1894			081	5614-M-3081, SH 6	20 10" Pipe	4-30-159 4-30-157	10.000	5.0	H-I	Y	ı	BY-PASS - 20' FROM CONDENSER SHELL	119	H-I		Not Analyzed	110	#N/A	No	Al		
1894			081	5614-M-3081, SH 6	20 10" Pipe	4-30-160 4-30-158	10.000	5.0	H-I	Y		BY-PASS - 20' FROM CONDENSER SHELL	119	H-I		Not Analyzed	110	#N/A	No	Al		
1895			081	5614-M-3081, SH 6	21 12" Pipe	4-30-163 4-30-173	12.000	10.0		Y		20' FROM CONDENSER SHELL	119	H-I		Not Analyzed	110	#N/A	No	Al		
1895			081	5614-M-3081, SH 6	21 12" Pipe	4-30-164 4-30-174	12.000	8.0		У		20' FROM CONDENSER SHELL	119	H-I		Not Analyzed	110	#N/A	No	Al		
1897			081	5614-M-3081, SH 6	22 3/4" Connection	4-30-165	0.750	0.5	Н	N		JUST OUTSIDE GUARDRAIL	119	н		0.750	110	2.4	Yes	No Protection Required		
1897	PTN	4	081	5614-M-3081, SH 6	22 3/4" Connection	4-30-166	0.750	0.5	Н	N	НТ	NO ACCESS - COPIED FROM B	119	н		0.750	110	2.4	Yes	No Protection Required		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 377 of 488

> R21002, Rev 0 Attachment N Page 12 of 123

																						Page 12 of 123
2054	PTN	4	089	5614-M-3089, SH 2		Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523	N/A		0.500	400		No	N/A	
1896	PTN	4	081	5614-M-3081, SH 6	22	8" Pipe	CV-4-1544	8.000	3.0	H-I	У	I	20' FROM CONDENSER SHELL	119	H-I		Not Analyzed	110	#N/A	No	Al	
1896	PTN	4	081	5614-M-3081, SH 6	22	8" Pipe	CV-4-1545	8.000	3.0	H-I	У	ı	20' FROM CONDENSER SHELL	119	H-I		Not Analyzed	110	#N/A	No	Al	
1899	PTN	4	081	5614-M-3081, SH 6	23	3/4" Connection	4-30-169	0.750	0.5	Н	N	НТ		119	Н		0.750	110	2.4	Yes	No Protection	
1899	PTN	4	081	5614-M-3081, SH 6	23	3/4" Connection	4-30-170	0.750	0.5	Н	N	НТ		119	Н		0.750	110	2.4	Yes	Required No Protestion	
1898	PTN	4	081	5614-M-3081, SH 6	23	10" Pipe	4-30-171	10.000	10.0	H-I	у	ı	BY-PASS - 20' FROM CONDENSER SHELL	119	H-I		Not	110	#N/A	No	Protection Required AI	
1898	PTN	4	081	5614-M-3081, SH 6	23	10" Pipe	4-30-167 4-30-172	10.000	10.0	H-I	у	1		119	H-I		Analyzed Not	110	#N/A	No	Al	
							4-30-168										Analyzed		,			
1900	PTN	4	081	5614-M-3081, SH 6	24	12" Pipe	FWH1A	12.000	N/A	N/A	N/A	N/A	Located close to Condenser in East condenser pit which will prevent freezing	120	BV-I	BV conservative due to downward portion	Not Analyzed	120		No	N/A	
1900	PTN	4	081	5614-M-3081, SH 6	24	12" Pipe	FWH1B	12.000	N/A	N/A	N/A	N/A	Located close to Condenser in East condenser pit which will prevent	120	BV-I	BV conservative due to downward portion	Not Analyzed	120		No	N/A	
1901	PTN	4	081	5614-M-3081, SH 6	25	2" Pipe	FWH1A	2.000	N/A	N/A	N/A	N/A	piping close to condenser and Isolation valves in east condenser pit which will	120	BV-I	BV conservative due to downward portion	2.000	120		No	N/A	
1901	PTN	4	081	5614-M-3081, SH 6	25	2" Pipe	FWH1B	2.000	N/A	N/A	N/A	N/A	prevent freezing piping close to condenser and Isolation	120	BV-I	BV conservative due to	2.000	120		No	N/A	
1904	PTN	4	081	5614-M-3081, SH 6	26	LI, LGs	LG-4-3413	0.750	3.5	TV		нт	valves in east condenser pit which will prevent freezing FWH2B - hot area	211	TV	downward portion	0.750	210	7.6	Yes	No	
1504			001	3014 W 3001, 3110	20	1, 203	10 4 3413	0.750	5.5		n		TWIZE HOTAICE	211			0.730	210	7.0	163	Protection Required	
1904	PTN	4	081	5614-M-3081, SH 6	26	LI, LGs	LG-4-3423	0.750	3.5	TV	n	HT	FWH2A - hot area	211	TV		0.750	210	7.6	Yes	No Protection	
1906	PTN	4	081	5614-M-3081, SH 6	26	Vents	4-30-276	1.000	1.0	H-I	Y	НТ	FWH2B - HOT AREA	211	H-I		1.000	210	19	Yes	Required No Protection	
1906	PTN	4	081	5614-M-3081, SH 6	26	Vents	4-30-277	1.000	1.0	H-I	Y	HT	FWH2A - HOT AREA	211	H-I		1.000	210	19	Yes	Required No Protection	
																					Required	
1906	PTN	4	081	5614-M-3081, SH 6	26	Vents	4-30-280	1.000	1.0	H-I	Y	HT	FWH2B - HOT AREA	211	H-I		1.000	210	19	Yes	No Protection Required	
1906	PTN	4	081	5614-M-3081, SH 6	26	Vents	4-30-281	1.000	1.0	H-I	Y	HT	FWH2A - HOT AREA	211	H-I		1.000	210	19	Yes	No Protection	
1907	PTN	4	081	5614-M-3081, SH 6	26	Drains	4-30-278	1.000	1.0	H-I	Y	HT	FWH2B - hot area	211	H-I		1.000	210	19	Yes	Required No	
																					Protection Required	
1907	PTN	4	081	5614-M-3081, SH 6	26	Drains	4-30-279	1.000	1.0	H-I	Y	НТ	FWH2A - HOT AREA	211	H-1		1.000	210	19	Yes	No Protection Required	
1907	PTN	4	081	5614-M-3081, SH 6	26	Drains	4-30-282	1.000	1.0	H-I	Y	НТ	FWH2B - HOT AREA	211	H-I		1.000	210	19	Yes	No Protection	
1907	PTN	4	081	5614-M-3081, SH 6	26	Drains	4-30-283	1.000	1.0	H-I	Y	НТ	FWH2A - HOT AREA	211	H-I		1.000	210	19	Yes	Required No Protection	
1902	PTN	4	081	5614-M-3081, SH 6	26	LS	LS-4-1504	1.000	4.0	TV	n	HT	FWH2A - partly insulated - hot area	211	TV		1.000	210	20	Yes	Required No	
1902	PTN	4	081	5614-M-3081, SH 6	26	IS	LS-4-1526	1.000	4.0	TV	N	нт	FWH2B -partly insulated - hot area	211	TV		1.000	210	20	Yes	Protection Required No	
																					Protection Required	
1902	PTN	4	081	5614-M-3081, SH 6	26	LS	LS-4-1516	1.000	4.5	TV	N	НТ	FWH2A (40% insulated)	211	TV		1.000	210	20	Yes	No Protection Required	
1902	PTN	4	081	5614-M-3081, SH 6	26	LS	LS-4-1543	1.000	4.5	TV	n	НТ	FWH2B - partly insulated - hot area	211	TV		1.000	210	20	Yes	No Protection	
1904	PTN	4	081	5614-M-3081, SH 6	26	LI, LGs	LI-4-1546B	1.000	11.0	TV-I	Y	НТ	FWH2B - HOT AREA	211	TV-I		1.000	210	19	Yes	Required No Protection	
1004	PTN	1	001	5614-M-3081, SH 6	26	LI, LGs	LI-4-1546A	1.000	12.0	TV-I	V	шт	FWH2A - HOT AREA	211	777		1 000	210	10	Voc	Required	
1904	PIN	*	081	J014-IVI-3081, 5H 6	20	LI, LUS	LI-+-1J40A	1.000	12.0	1 V-I	Y	НТ	I WIIZA - NUI AREA	211	TV-I		1.000	210	19	Yes	No Protection Required	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 378 of 488

> R21002, Rev 0 Attachment N Page 13 of 123

																					Page 13 of	123
2054	PTN	4	089	5614-M-3089, SH 2	1 Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523	N/A		0.500	400		No	N/A		
1905	PTN	4	081	5614-M-3081, SH 6	26 1.5" Pipe	FWH2A	1.500	10.0	H-I	Y	I	GAS SERVICE VERTICAL PIPE	175	H-I		1.500	170	20	Yes	No Protection Required		
1908	PTN	4	081	5614-M-3081, SH 6	26 3/4" Connections	LG-4-1433	0.750	N/A	N/A	N/A	N/A	Condensing steam will cause trickle flow within glass and prevent freezing	211	N/A		0.750	210		No	N/A		
1908	PTN	4	081	5614-M-3081, SH 6	26 3/4" Connections	LG-4-1435	0.750	N/A	N/A	N/A	N/A	Condensing steam will cause trickle flow within glass and prevent freezing	211	N/A		0.750	210		No	N/A		
1908	PTN	4	081	5614-M-3081, SH 6	26 3/4" Connections	LG-4-3413	0.750	N/A	N/A	N/A	N/A	Condensing steam will cause trickle flow within glass and prevent freezing	211	N/A		0.750	210		No	N/A		
1908	PTN	4	081	5614-M-3081, SH 6	26 3/4" Connections	LG-4-3423	0.750	N/A	N/A	N/A	N/A	Condensing steam will cause trickle flow within glass and prevent freezing	211	N/A		0.750	210		No	N/A		
1905	PTN	4	081	5614-M-3081, SH 6	26 1.5" Pipe	FWH2B	1.500	10.0	H-I	Y	I		175	H-I		1.500	170	20	Yes	No Protection		
1903	PTN	4	081	5614-M-3081, SH 6	26 LC, LS	LC-4-1501	1.500	1.5	h	n	I		211	h		1.500	210	18	Yes	No Protection		
	PTN	4	081	5614-M-3081, SH 6	26 LI, LGs	LG-4-1433	0.750	3.0	H,D	N	НТ	FWH2B - HOT AREA	211	BV	BV conservative due to downward portion	0.750	210	0.5	No	Required HT	close to condenser; hot ambient temp; constant tricke flow	N
1904	PTN	4	081	5614-M-3081, SH 6	26 LI, LGs	LG-4-1435	0.750	3.0	H,D	n	HT	FWH2A - hot area - partly insulated	211	BV	BV conservative due to downward portion	0.750	210	0.5	No	HT	close to condenser; hot ambient temp; constant tricke flow	N
1903	PTN	4	081	5614-M-3081, SH 6	26 LC, LS	LC-4-1513	1.500	8.0	TV	n	I	.5 SLOPED TO VERTICAL MAIN PIPE	211	TV		1.500	210	18	Yes	No Protection Required		
1911	PTN	4	081	5614-M-3081, SH 6	27 LI, LGs	LG-4-3412	0.750	3.0	TV	N	НТ	FWH1B	172	TV		0.750	170	5.2	Yes	No Protection Required		
1911	PTN	4	081	5614-M-3081, SH 6	27 LI, LGs	LG-4-1432	0.750	3.5	TV	N	НТ	FWH1B	172	TV		0.750	170	5.2	Yes	No Protection Required		
1911	PTN	4	081	5614-M-3081, SH 6	27 LI, LGs	LG-4-1434	0.750	4.0	TV	N	НТ	FWH1A	172	TV		0.750	170	5.2	Yes	No Protection Required		
1915	PTN	4	081	5614-M-3081, SH 6	27 3/4" Connections	LG-4-1434	0.750	4.0	TV	N	HT	FWH1A	172	TV		0.750	170	5.2	Yes	No Protection Required		
1913	PTN	4	081	5614-M-3081, SH 6	27 Vents	4-30-180	1.000	1.0	H-I	Y	HT	FWH1B	172	H-I		1.000	170	19	Yes	No Protection Required		
1913	PTN	4	081	5614-M-3081, SH 6	27 Vents	4-30-181	1.000	1.0	H-I	Y	HT	FWH1A	172	H-1		1.000	170	19	Yes	No Protection		
1913	PTN	4	081	5614-M-3081, SH 6	27 Vents	4-30-192	1.000	1.0	H-I	Y	НТ	FWH1B	172	H-1		1.000	170	19	Yes	No Protection		
1913	PTN	4	081	5614-M-3081, SH 6	27 Vents	4-30-193	1.000	1.0	H-I	Y	HT	FWH1A	172	H-I		1.000	170	19	Yes	No Protection		
1914	PTN	4	081	5614-M-3081, SH 6	27 Drains	4-30-182	1.000	1.0	H-I	Y	HT	FWH1B	172	H-I		1.000	170	19	Yes	No Protection Required		
1914	PTN	4	081	5614-M-3081, SH 6	27 Drains	4-30-183	1.000	1.0	H-I	Y	HT	FWH1A	172	H-I		1.000	170	19	Yes	No Protection		
1914	PTN	4	081	5614-M-3081, SH 6	27 Drains	4-30-194	1.000	1.0	H-I	Y	НТ	FWH1B	172	H-I		1.000	170	19	Yes	No Protection		
1914	PTN	4	081	5614-M-3081, SH 6	27 Drains	4-30-195	1.000	1.0	H-I	Y	НТ	FWH1A	172	H-I		1.000	170	19	Yes	No Protection		
1909	PTN	4	081	5614-M-3081, SH 6	27 LS	LS-4-1545	1.000	4.0	TV	N	НТ	FWH1A - HOT AREA - PARTLY INSULATED	172	TV		1.000	170	14	Yes	No Protection		
1909	PTN	4	081	5614-M-3081, SH 6	27 LS	LS-4-1505	1.000	5.0	TV	N	НТ	FWH1B	172	TV		1.000	170	14	Yes	No Protection		
1909	PTN	4	081	5614-M-3081, SH 6	27 LS	LS-4-1544	1.000	5.0	TV	N	HT	FWH1B - HOT AREA - PARTLY INSULATED	172	TV		1.000	170	14	Yes	No Protection Required		
				1					1						-							$\overline{}$

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 379 of 488

> R21002, Rev 0 Attachment N Page 14 of 123

																						Page 14 d	01 123
2054 PTI	N 4	089	5614-M-3089, SH 2	1	Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523		N/A		0.500	400		No	N/A		
1912 PT	N 4	081	5614-M-3081, SH 6	27	1.5" Pipe	FWH1A	1.500	10.0	H-I	Y	1	58 Discharge 2A	120		H-I		1.500	120	20	Yes	No Protection		
1912 PT	N 4	081	5614-M-3081, SH 6	27	1.5" Pipe	FWH1B	1.500	10.0	H-I	Υ	I	61 2B	120		H-I		1.500	120	20	Yes	No Protection		
1910 PT	N 4	081	5614-M-3081, SH 6	27	LC, LS	LC-4-1502	1.500	0.5	H,D	N	1		172		BV	BV conservative due to downward portion	1.500	170	0.7	Yes	Required No Protection		
1910 PT	N 4	081	5614-M-3081, SH 6	27	LC, LS	LC-4-1514	1.500	2.0	TV	N	1		172		TV	·	1.500	170	18	Yes	Required No Protection		
1911 PTI	N 4	081	5614-M-3081, SH 6	27	LI, LGs	LG-4-3422	0.750	3.0	H,D	N	НТ	FWH1A	172		BV	BV conservative due to	0.750	170	0.4	No	Required	close to condenser; hot ambient temp; constant	N
1915 PT	N 4	081	5614-M-3081, SH 6	27	3/4" Connections	LG-4-1432	0.750	3.5	TV	N	HT	FWH1B	172		TV	downward portion	0.750	170	5.2	No	HT	tricke flow close to condenser; hot ambient temp; constant	N
1915 PT	N 4	081	5614-M-3081, SH 6	27	3/4" Connections	LG-4-3412	0.750	3.0	H,D	N	HT	FWH1B	172		BV	BV conservative due to	0.750	170	0.4	No	HT	close to condenser; hot ambient temp; constant	N
1915 PT	N 4	081	5614-M-3081, SH 6	27	3/4" Connections	LG-4-3422	0.750	3.0	H-I,D	Y	НТ	FWH1A	172		BV-I	downward portion BV conservative due to downward portion	0.750	170	1.95	No	HT	tricke flow close to condenser; hot ambient temp; constant tricke flow	N
1909 PT	N 4	081	5614-M-3081, SH 6	27	LS	LS-4-1517	1.000	4.5	TV	N	НТ	FWH1A - HOT AREA - PARTLY INSULATED	172		TV	downward portion	1.000	170	14	No	НТ	close to condensor; hot ambient temp; constant tricke flow	N
1911 PT	N 4	081	5614-M-3081, SH 6	27	LI, LGs	LI-4-1545A	1.000	11.0	H-I,D	Y	HT	FWH1A	172		BV-I	BV conservative due to downward portion	1.000	170	2.2	No	HT	close to condensor; hot ambient temp; constant tricke flow	N
1911 PT	N 4	081	5614-M-3081, SH 6	27	LI, LGs	LI-4-1545B	1.000	9.0	H-I,D	Y	НТ	FWH1B - MOSTLY INSULATED - HOT AREA	172		BV-I	BV conservative due to downward portion	1.000	170	2.2	No	HT	close to condensor; hot ambient temp; constant tricke flow	N
1918 PT	N 4	081	5614-M-3081, SH 6	-	1.5" Drains	4-30-227	1.500	1.5	BV,H	N	ı	Basement. Condensate Sump Area. Always Warm	172		BV	BV conservative due to downward portion	1.500	170	0.7	No	- 1	there now	
1918 PT	N 4	081	5614-M-3081, SH 6	-	1.5" Drains	4-30-228	1.500	1.5	BV,H	N	I		172		BV	BV conservative due to downward portion	1.500	170	0.7	No	I		
1918 PT	N 4	081	5614-M-3081, SH 6	-	1.5" Drains	4-30-237	1.500	1.5	BV,H	N	I		172		BV	BV conservative due to downward portion	1.500	170	0.7	No	I		
1918 PT	N 4	081	5614-M-3081, SH 6	-	1.5" Drains	4-30-238	1.500	1.5	BV,H	N	I	Line length estimated	172		BV	BV conservative due to downward portion	1.500	170	0.7	No	- I		
1919 PT	N 4	081	5614-M-3081, SH 6	-	1.5" Drain	4-30-127	1.500	1.5	BV,H	N	I		172		BV	BV conservative due to downward portion	1.500	170	0.7	No	T.		
1919 PT	N 4	081	5614-M-3081, SH 6	-	1.5" Drain	4-30-128	1.500	1.5	BV,H	N	I		172		BV	BV conservative due to downward portion	1.500	170	0.7	No	I		
1919 PTI	N 4	081	5614-M-3081, SH 6	-	1.5" Drain	4-30-137	1.500	1.5	BV,H	N	I		172		BV	BV conservative due to downward portion	1.500	170	0.7	No	I		
1919 PTI	N 4	081	5614-M-3081, SH 6	-	1.5" Drain	4-30-138	1.500	1.5	BV,H	N	I		172		BV	BV conservative due to downward portion	1.500	170	0.7	No	I		
1862 PTI	N 4	081	5614-M-3081, SH 5	1	RV (4" Inlet, 6" Outlet per NAMS)	RV-4-3420	4.000	1.0	TV	N	I	FWH3B	310		TV		4.000	310	#N/A	No	I		
1862 PTI	N 4	081	5614-M-3081, SH 5	1	RV (4" Inlet, 6" Outlet per NAMS)	RV-4-3421	4.000	1.0	TV	N	ı	FWH3A	310		TV		4.000	310	#N/A	No	1		
1813 PTI	N 4	081	5614-M-3081, SH 5	3	PX & FX	PX-4-1458	0.750	1.0	Н	N	НТ	FWH4B - mezz next to heater - hot area, ASSUME 3/4" DIA	267		Н		0.750	260	8.4	Yes	No Protection Required		
1863 PT	N 4	081	5614-M-3081, SH 5	3	1.5" Drains	FWHR-4-034	0.500	2.0	BV-I,H	Y	HT	FWH4B	267		BV-I	BV conservative due to downward portion	0.500	260	1.75	No	HT	short run; high process temp; no protection required	N
1813 PT	N 4	081	5614-M-3081, SH 5	3	PX & FX	PX-4-1457	0.375	1.0	Н	N	HT	Dia assumed based on similar. FWH4A	267	Pipe class is E, but D was chosen from spec.	Н		Not Analyzed	260	#N/A	No	HT	short run; high process temp; no protection required	N
1813 PT	N 4	081	5614-M-3081, SH 5	3	PX & FX	FX-4-1407	N/A	N/A	N/A	N/A	N/A	FWH4B - nothing sticks out of insulation - - mezz next to heater - hot area	267		N/A			260		No	N/A		
1815 PT	N 4	081	5614-M-3081, SH 5	3	1" Connection	4-30-425	1.000	1.0	BV	N	НТ	FWH4A	267		BV		1.000	260	0.5	No	HT	short run; high process temp; no protection required	N
1815 PT	N 4	081	5614-M-3081, SH 5	3	1" Connection	4-30-426	1.000	1.0	BV	N	НТ	FWH4B	267		BV		1.000	260	0.5	No	HT	short run; high process temp; no protection required	N
1816 PTI	N 4	081	5614-M-3081, SH 5	3	6" Connection	Upstream of 4-30-461	6.000	1.0	H-I	У	I	FWH4A	267		H-I		Not Analyzed	260	#N/A	No	Al		
1816 PTI	N 4	081	5614-M-3081, SH 5	3	6" Connection	Upstream of 4-30-462	6.000	1.0	H-I	Y	I	FWH4B	267		H-I		Not Analyzed	260	#N/A	No	Al		
1813 PT	N 4	081	5614-M-3081, SH 5	3	PX & FX	FX-4-1406	Not provided	N/A	N/A	N/A	N/A	No exterior lines, FX within pipe, FWH4A - nothing sticks out of insulation - mezz next to heater - hot area	267		N/A		Not Analyzed	260		No	N/A		
1863 PT	N 4	081	5614-M-3081, SH 5	3	1.5" Drains	4-30-427	1.500	2.0	BV-I,H	Y	I	MSR4D	267		BV-I	BV conservative due to downward portion	1.500	260	8.7	Yes	No Protection Required		
1863 PTf	N 4	081	5614-M-3081, SH 5	3	1.5" Drains	4-30-428	1.500	2.0	BV-I,H	Y	ı	MSR4D Likely no heat trace required.	267		BV-I	BV conservative due to downward portion	1.500	260	8.7	Yes	No Protection Required		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 380 of 488

> R21002, Rev 0 Attachment N Page 15 of 123

																						Page 15	01 123
2054	PTN	4	089	5614-M-3089, SH 2		Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523	N/A		0.500	400		No	N/A		
1819	PTN	4	081	5614-M-3081, SH 5	5	3/4" Connection	4-30-090	0.750	1.0	H,D	N	НТ	FWH4A (CAN'T LOCATE) TAKEN FROM	267	BV	BV conservative due to downward portion	0.750	260	0.5	No	нт	verify temp at indication and ambient; if hot do not heat trace	Y
1819	PTN	4	081	5614-M-3081, SH 5	5	3/4" Connection	4-30-091	0.750	1.0	H,D	N	НТ	FWH4B CAN'T LOCATE TAKEN FROM TYP	267	BV	BV conservative due to downward portion	0.750	260	0.5	No	HT	verify temp at indication and ambient; if hot do not heat trace	Y
1818	PTN	4	081	5614-M-3081, SH 5	5	4" Pipe	4-30-457 4-30-459	4.000	10.0	H-I	Y	ı		267	H-I		4.000	260	15	Yes	No Protection		
1818	PTN	4	081	5614-M-3081, SH 5	5	4" Pipe	4-30-458 4-30-460	4.000	10.0	H-I	Y	I		267	H-I		4.000	260	15	Yes	Required No Protection		
1820	PTN	4	081	5614-M-3081, SH 5	6	6" Pipe	4-30-474	6.000	40.0	H-I,D	Y	I	FWH4B - ESTIMATE / CAN'T FOLLOW -	119	BV-I	BV conservative due to	Not	110	#N/A	No	Required Al		-
1820	PTN	4	081	5614-M-3081, SH 5	6	6" Pipe	4-30-473	6.000	35.0	H-I,D	Y	I	HOT AREA FWH4A - CAN'T FOLLOW - HOT AREA -	119	BV-I	downward portion BV conservative due to	Analyzed Not	110	#N/A	No	Al		
1821	PTN	4	081	5614-M-3081, SH 5	6	6" Connection	Upstream of 4-30-473	6.000	1.0	H-I	Y	I	35' ESTIMATE	119	H-I	downward portion	Not Analyzed	110	#N/A	No	AI		
1821	PTN	4	081	5614-M-3081, SH 5	6	6" Connection	Upstream of 4-30-474	6.000	1.0	H-I	Y	ı		119	H-I		Not Analyzed	110	#N/A	No	Al		
1823	PTN	4	081	5614-M-3081, SH 5	7	3/4" Connection	4-30-465	0.750	1.0	TV	N	HT	FWH4A	119	TV		0.750	110	2.6	Yes	No Protection		
1823	PTN	4	081	5614-M-3081, SH 5	7	3/4" Connection	4-30-466	0.750	1.0	TV	N	HT	FWH4B	119	TV		0.750	110	2.6	Yes	No No		
1822	PTN	4	081	5614-M-3081, SH 5	7	3" Pipe	CV-4-1511B	3.000	10.0	H-I	Y	ı	DISCHARGE	119	H-1		3.000	110	20	Yes	Protection Required No		
																					Protection Required		
1822	PTN	4	081	5614-M-3081, SH 5	7	3" Pipe	CV-4-1512B	3.000	10.0	H-I	Y	1	DISCHARGE	119	H-I		3.000	110	20	Yes	No Protection Required		
1825	PTN	4	081	5614-M-3081, SH 5	8	3/4" Connection	4-30-469	0.750	1.0	H,D	N	HT	FWH4A	119	BV	BV conservative due to downward portion	0.750	110	0	No		both ends open to process temp; short run; no heat trace required	N
1825	PTN	4	081	5614-M-3081, SH 5	8	3/4" Connection	4-30-470	0.750	1.0	H,D	N	НТ	FWH4B	119	BV	BV conservative due to downward portion	0.750	110	0	No	НТ	both ends open to process temp; short run; no heat trace required	N
1824	PTN	4	081	5614-M-3081, SH 5	8	4" Pipe	4-30-471 4-30-467	4.000	10.0	H-I,D	Y	1		119	BV-I	BV conservative due to downward portion	4.000	110	15	Yes	No Protection		
1824	PTN	4	081	5614-M-3081, SH 5	8	4" Pipe	4-30-472 4-30-468	4.000	10.0	H-I,D	Y	I		119	BV-I	BV conservative due to downward portion	4.000	110	15	Yes	Required No Protection		
1826	PTN	4	081	5614-M-3081, SH 5	9	PX & FX	PX-4-1455	0.500	1.0	H-I,U	У	HT	FWH3A	267	H-I	Upward bend not credited for	0.500	260	13.8	Yes	Required No Protection		
1826	PTN	4	081	5614-M-3081, SH 5	9	PX & FX	PX-4-1456	0.500	1.0	H-I,U	Y	HT	FWH3B	267	H-I	conservatism Upward bend not	0.500	260	13.8	Yes	Required No		
																credited for conservatism					Protection Required		
1829			081	5614-M-3081, SH 5 5614-M-3081, SH 5		3/4" Connection 3/4" Connection	4-30-353 4-30-354	0.750	1.0	BV	N	HT	FWH3A FWH3B	267 267	BV BV		0.750	260	0.5	No No		short run; high process temp; no protection required	N N
1828		4	081	5614-M-3081, SH 5		1" Connection	4-30-334	1.000	1.0	BV	N N	нт	FWH3A (IN PIT)	267	BV		1.000	260	0.5	No	HT	short run; high process temp; no protection required short run; high process temp; no protection	N
1830	PTN	4	081	5614-M-3081, SH 5		8" Flange	Downstream of CV-	8.000	1.0	H-I	Y	I	FWH3A	267	H-I		Not	260	#N/A	No	Al	required	
1830	PTN	4	081	5614-M-3081, SH 5	9	8" Flange	1507A Downstream of CV-	8.000	1.0	H-I	Y	I	FWH3B	267	H-I		Analyzed Not	260	#N/A	No	Al		
1826	PTN	4	081	5614-M-3081, SH 5	9	PX & FX	1508A FX-4-1408	Not provide	c N/A	N/A	N/A	N/A	FWH4B - nothing sticks out of insulation - - mezz next to heater - hot area	267	N/A		Analyzed Not Analyzed	260		No	N/A		
1826	PTN	4	081	5614-M-3081, SH 5	9	PX & FX	FX-4-1409	Not provide	c N/A	N/A	N/A	N/A	-	267	N/A		Not	260		No	N/A		
1864	PTN	4	081	5614-M-3081, SH 5	9	1.5" Drains	4-30-327	1.500	2.0	BV-I,H	Y	ı	- mezz next to heater - hot area MSR4C	267	BV-I	BV conservative due to	Analyzed 1.500	260	8.7	Yes	No		-
													Likely no heat trace required.			downward portion					Protection Required		
1864	PIN	4	081	5614-M-3081, SH 5	9	1.5" Drains	4-30-328	1.500	2.0	BV-I,H	Y	'	MSR4D Likely no heat trace required.	267	BV-I	BV conservative due to downward portion	1.500	260	8.7	Yes	No Protection Required		
1864	PTN	4	081	5614-M-3081, SH 5	9	1.5" Drains	FWHR-4-030	1.500	2.0	BV-I,H	Y	ı	MSR4C Likely no heat trace required.	267	BV-I	BV conservative due to downward portion	1.500	260	8.7	Yes	No Protection		
1831	PTN	4	081	5614-M-3081, SH 5	10	6" Pipe	4-30-357 4-30-359	6.000	10.0	TV-I	Y	I	FWH3A (BY-PASS) - WITHIN 10' OF CONDENSER - WARM AREA	211	TV-I		Not Analyzed	210	#N/A	No	Required AI		
1831	PTN	4	081	5614-M-3081, SH 5	10	6" Pipe	4-30-358 4-30-360	6.000	10.0	TV-I	Y	ı	FWH3B (BY-PASS) - CLOSE TO CONDENSER - WARM AREA	211	TV-I		Not Analyzed	210	#N/A	No	Al		
-	_								1				1				,						

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 381 of 488

> R21002, Rev 0 Attachment N Page 16 of 123

																					Page 16 of	1123
2054	PTN	4	089	5614-M-3089, SH 2	1 Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523	N/A		0.500	400		No	N/A		
1832	PTN	4	081	5614-M-3081, SH 5	11 1.5" Pipe	Pipe	1.500	N/A	N/A	N/A	N/A	Due to location adjacent to # 3 HX and condenser, local temperature will prevent freezing	211	N/A		1.500	210		No	N/A		
1832	PTN	4	081	5614-M-3081, SH 5	11 1.5" Pipe	Pipe	1.500	N/A	N/A	N/A	N/A	Due to location adjacent to # 3 HX and condenser, local temperature will	211	N/A		1.500	210		No	N/A		
1834	PTN	4	081	5614-M-3081, SH 5	12 8" Connection	4-30-373	8.000	1.0	H-I	Υ	I	PWH3A - WARM AREA	119	H-I		Not	110	#N/A	No	AI		
1834	PTN	4	081	5614-M-3081, SH 5	12 8" Connection	4-30-374	8.000	1.0	H-I	Y	I	FWH3B - WARM AREA	119	H-I		Analyzed Not	110	#N/A	No	Al		
1833	PTN	4	081	5614-M-3081, SH 5	12 8" Pipe	4-30-373	8.000	N/A	N/A	N/A	N/A	'Any condensing steam will drain to condenser and produce needed trickle flow to prevent freezing FWH3A - WARM AREA - NO CLOSED VALVES	119	BV-I	BV conservative due to downward portion	Analyzed Not Analyzed	110		No	N/A		
1833	PTN	4	081	5614-M-3081, SH 5	12 8" Pipe	4-30-374	8.000	N/A	N/A	N/A	N/A	'Any condensing steam will drain to condenser and produce needed trickle flow to prevent freezing FWH3A - WARM AREA - NO CLOSED VALVES	119	BV-I	BV conservative due to downward portion	Not Analyzed	110		No	N/A		
1836	PTN	4	081	5614-M-3081, SH 5	13 3/4" Connection	4-30-365	0.750	1.0	bv,h	n	HT	FWH3A	119	BV	BV conservative due to downward portion	0.750	110	0	No	HT	verify temp at gage; ambient temp; if hot do not heat trace	Υ
1836	PTN	4	081	5614-M-3081, SH 5	13 3/4" Connection	4-30-366	0.750	1.0	BV,H	N	HT	FWH3B	119	BV	BV conservative due to downward portion	0.750	110	0	No	HT	verify temp at gage; ambient temp; if hot do not heat trace	Υ
1835	PTN	4	081	5614-M-3081, SH 5	13 6" Pipe	CV-4-1507B	6.000	3.0	H-I	Y	I	FWH3A	119	H-I		Not Analyzed	110	#N/A	No	Al	near trace	
1835	PTN	4	081	5614-M-3081, SH 5	13 6" Pipe	CV-4-1508B	6.000	3.0	H-I	Y	I	FWH3B	119	H-I		Not	110	#N/A	No	Al		
1838	PTN	4	081	5614-M-3081, SH 5	14 3/4" Connection	4-30-370	0.750	0.5	Н	N	HT	FWH3B (Behind pump room)	119	Н		0.750	110	2.4	Yes	No Protection		
1838	PTN	4	081	5614-M-3081, SH 5	14 3/4" Connection	4-30-369	0.750	1.0	Н	N	HT	FWH3A	119	Н		0.750	110	2.4	Yes	No Protection Required		
1837	PTN	4	081	5614-M-3081, SH 5	14 6" Pipe	4-30-371	6.000	10.0	H-I	Y	I	FWH3A - WITHIN 10 FEET OF CONDENSER - WARM AREA	119	H-I		Not	110	#N/A	No	Al		
1837	PTN	4	081	5614-M-3081, SH 5	14 6" Pipe	4-30-367 4-30-372	6.000	10.0	H-I	Y	I	FWH3B - WITHIN 10 FEET OF	119	H-I		Not .	110	#N/A	No	Al		
1840	PTN	4	081	5614-M-3081, SH 5	16 1.5" Pipe	4-30-368 FWHR-4-019	1.500	3.0	H-I,D	Y	I	CONDENSER - WARM AREA (BY-PASS) (P&ID zone A-3)	260	BV-I	BV conservative due to downward portion	Analyzed 1.500	260	8.7	Yes	No Protection		
1840	PTN	4	081	5614-M-3081, SH 5	16 1.5" Pipe	FWHR-4-021	1.500	3.0	H-I,D	Y	I	NO CLOSED VALVE - HOT AREA - OK AS IS	260	BV-I	BV conservative due to downward portion	1.500	260	8.7	Yes	No Protection Required		
1840	PTN	4	081	5614-M-3081, SH 5	16 1.5" Pipe	FWHR-4-027	1.500	3.0	H-I,D	Y	I	NO CLOSED VALVE - HOT AREA - OK AS IS	260	BV-I	BV conservative due to downward portion	1.500	260	8.7	Yes	No Protection Required		
1840	PTN	4	081	5614-M-3081, SH 5	16 1.5" Pipe	FWHR-4-028	1.500	3.0	H-I,D	Y	I	by-pass loop - WITHIN 6 FEET OF CONDENSER WILL NOT FREEZE	260	BV-I	BV conservative due to downward portion	1.500	260	8.7	Yes	No Protection Required		
1861	PTN	4	081	5614-M-3081, SH 5	18 RV (4" Inlet, 6" Outlet per NAMS)	RV-4-6301A	4.000	1.0	TV	N	ı	FWH3B	309	TV		4.000	300	#N/A	No	1		
1861	PTN	4	081	5614-M-3081, SH 5	18 RV (4" Inlet, 6" Outlet per NAMS)	RV-4-6301B	4.000	1.0	TV	N	I	FWH3A	309	TV		4.000	300	#N/A	No	I		
1843	PTN	4	081	5614-M-3081, SH 5	19 1" Pipe	FWHR-4-022	1.000	3.0	H-I,D	Y	HT	FWH3A (BY-PASS)	260	BV-I	BV conservative due to downward portion	1.000	260	2.55	No	HT	open to process to temp; saturated steam; no protection required	N
1843	PTN	4	081	5614-M-3081, SH 5	19 1" Pipe	FWHR-4-029	1.000	3.0	H-I,D	Y	НТ	FWH3B	260	BV-I	BV conservative due to	1.000	260	2.55	No	НТ	open to process to temp; saturated steam; no	N
1845	PTN	4	081	5614-M-3081, SH 5	21 LS	LS-4-1512	1.000	5.0	loop-I	У	НТ	FWH4A	279	BV-I	BV conservative due to downward portion	1.000	270	2.6	No	HT	protection required constant trickly flow; no protection required	N
1845	PTN	4	081	5614-M-3081, SH 5	21 LS	LS-4-1514	1.000	6.0	loop-I	Y	НТ	FWH4B	279	BV-I	BV conservative due to downward portion	1.000	270	2.6	No	нт	constant trickly flow; no protection required	N
	PTN		081	5614-M-3081, SH 5	21 LS & LC	LS-4-1513	1.000	5.0	loop-I	Y	НТ	FWH4A	279	 BV-I	BV conservative due to downward portion	1.000	270	2.6	No	НТ	constant trickly flow; no protection required	N
	PTN		081	5614-M-3081, SH 5	21 LS & LC	LS-4-1515	1.000		loop-I	Y	НТ	FWH4B	279	BV-I	BV conservative due to downward portion	1.000	270	2.6	No		constant trickly flow; no protection required	N
	PTN		081	5614-M-3081, SH 5	21 LG	LG-4-3416	1.500	2.0	loop	N	ı	by-pass loop - WITHIN 6 FEET OF CONDENSER WILL NOT FREEZE	279	BV	BV conservative due to downward portion	1.500	270	0.75	No	1		
1847	PTN	4	081	5614-M-3081, SH 5	21 LG	LG-4-3417	1.500	3.0	loop	N	ı	hot area - no closed valve	279	BV	BV conservative due to downward portion	1.500	270	0.75	No	_		
1851	PTN	4	081	5614-M-3081, SH 5	21 Connections	LG-4-3416	1.500	3.0	loop	N	I	FWH2A	279	BV	BV conservative due to downward portion	1.500	270	0.75	No	_		
1851	PTN	4	081	5614-M-3081, SH 5	21 1.5" Instrument Piping	LG-4-3417	1.500	70.0	H-I,D	Y	I	FWH2B	279	BV-I	BV conservative due to downward portion	1.500	270	8.9	No	Al		
												·										

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 382 of 488

> R21002, Rev 0 Attachment N Page 17 of 123

																						Page 17 of 123
2054	PTN	4	089	5614-M-3089, SH 2	1	Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523	N/A		0.500	400		No	N/A	
1848	PTN	4	081	5614-M-3081, SH 5	21	1.5" Instrument Piping	FWH4A	1.500	30.0	loop-I	У	ı	hot area - no closed valve	325	BV-I	BV conservative due to downward portion	1.500	320	9	No	Al	
1848	PTN	4	081	5614-M-3081, SH 5	21	1.5" Instrument Piping	FWH4B	1.500	30.0	loop-I	Y	I	FWH2B - hot area	325	BV-I	BV conservative due to downward portion	1.500	320	9	No	Al	
1851	PTN	4	081	5614-M-3081, SH 5	21	Connections	LG-4-3417	1.500	3.0	TV	N	I	FWH1A	279	TV		1.500	270	18	Yes	No Protection Required	
1846	PTN	4	081	5614-M-3081, SH 5	21	LS & LC	LC-4-1511	1.500	8.0	loop-I	Y	I	by-pass loop - WITHIN 6 FEET OF CONDENSER WILL NOT FREEZE	279		BV conservative due to downward portion	1.500	270	8.9	Yes	No Protection	
1846	PTN	4	081	5614-M-3081, SH 5	21	LS & LC	LC-4-1512	1.500	8.0	loop-I	Y	I	by-pass loop - WITHIN 6 FEET OF CONDENSER WILL NOT FREEZE	279		BV conservative due to downward portion	1.500	270	8.9	Yes	Required No Protection	
1849	PTN	4	081	5614-M-3081, SH 5	21	Vents	4-30-480	1.500	0.5	TV-I	Y	I	FWH2A	325	TV-I		1.500	320	20	Yes	Required No Protection	
1849	PTN	4	081	5614-M-3081, SH 5	21	Vents	4-30-481	1.500	0.5	TV-I	Y	I	FWH2A	325	TV-I		1.500	320	20	Yes	Required No Protection	
1849	PTN	4	081	5614-M-3081, SH 5	21	Vents	4-30-488	1.500	0.5	H-I	Y	I	FWH2B	325	H-I		1.500	320	20	Yes	Required No Protection	
1849	PTN	4	081	5614-M-3081, SH 5	21	Vents	4-30-489	1.500	0.5	H-I	Y	ı	FWH1B	325	H-I		1.500	320	20	Yes	Required No Protection	
1850	PTN	4	081	5614-M-3081, SH 5	21	Drains	4-30-482	1.500	0.5	H-I	Y	I	FWH1A	325	H-I		1.500	320	20	Yes	Required No Protection	
1850	PTN	4	081	5614-M-3081, SH 5	21	Drains	4-30-483	1.500	0.5	H-I	Y	I	FWH1B	325	H-I		1.500	320	20	Yes	Required No Protection	
1850	PTN	4	081	5614-M-3081, SH 5	21	Drains	4-30-149	1.500	1.0	BV-I	Y	I	FWH1A	325	BV-I		1.500	320	9	Yes	Required No	
1850	PTN	4	081	5614-M-3081, SH 5	21	Drains	4-30-490	1.500	1.0	H-I	Y	ı	FWH2A	325	H-I		1.500	320	20	Yes	Protection Required No	
1850	PTN	4	081	5614-M-3081, SH 5	21	Drains	4-30-491	1.500	1.0	H-I	Y	ı	FWH2B	325	H-I		1.500	320	20	Yes	Protection Required No	
1852	PTN	4	081	5614-M-3081, SH 5	22	LS	LS-4-1508	1.000	5.0	TV-I	Y	HT	FWH3A	225	TV-I		1.000	220	19	Yes	Protection Required No	
1952	PTN	4	091	5614-M-3081, SH 5	22	ls.	LS-4-1510	1.000	5.0	TV-I	Y	НТ	FWH3B	225	TV-I		1.000	220	19	Yes	Protection Required No	
			081																		Protection Required	
	PTN		081	5614-M-3081, SH 5		LS & LC	LS-4-1509	1.000	5.0	TV-I	Y	HT	FWH3A	225	TV-I		1.000	220	19	Yes	No Protection Required	
1853	PTN	4	081	5614-M-3081, SH 5	22	LS & LC	LS-4-1511	1.000	5.0	TV-I	Y	HT	FWH3B	225	TV-I		1.000	220	19	Yes	No Protection Required	
	PTN PTN		081	5614-M-3081, SH 5		LS & LC	LC-4-1507	1.500	10.0		Y	1	FWH1B	225		BV conservative due to downward portion	1.500	220	6.4	No	Al	
	PTN		081	5614-M-3081, SH 5 5614-M-3081, SH 5		LS & LC 1.5" Instrument Piping	LG-4-3416	1.500	70.0	H-I,D	Y	I	FWH1A MSR4C	225		BV conservative due to downward portion BV conservative due to	1.500	270	8.9	No No	AI AI	
	PTN		081	5614-M-3081, SH 5	22		LG-4-3414	1.500	3.0	TV	N	I	FWH1B	225	TV	downward portion	1.500	220	#N/A	No	I	
1855	PTN	4	081	5614-M-3081, SH 5		1.5" Instrument Piping	LG-4-3414	1.500	70.0	H-I,D	Y	ı	MSR4D can't follow - guess 50	225		BV conservative due to downward portion	1.500	220	6.4	No	Al	
1855	PTN	4	081	5614-M-3081, SH 5	22	1.5" Instrument Piping	LG-4-3415	1.500	30.0	H-I,D	Y	ı	MSR4C	225		BV conservative due to downward portion	1.500	220	6.4	No	Al	
1854	PTN	4	081	5614-M-3081, SH 5	22	LG	LG-4-3415	1.500	3.0	TV-I	Y	I	MSR4C - CAN'T FOLLOW - GUESS 60	225	TV-I	portion	1.500	220	20	Yes	No Protection Required	
1858	PTN	4	081	5614-M-3081, SH 5	22	Connections	LG-4-3414	1.500	3.0	TV	N	I	MSR4C	225	TV		1.500	220	18	Yes	No Protection	
1858	PTN	4	081	5614-M-3081, SH 5	22	Connections	LG-4-3415	1.500	3.0	TV-I	Y	I	MSR4D (NOT REQUIRED)	225	TV-I		1.500	220	20	Yes	No Protection	
1857	PTN	4	081	5614-M-3081, SH 5	22	Drains	4-30-383	1.500	0.5	Н	N	I	MSR4C	265	Н		1.500	260	18	Yes	Required No Protection Required	
				1				1					1								nequireu	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 383 of 488

> R21002, Rev 0 Attachment N Page 18 of 123

																					Page 18	of 123
2054	PTN	4	089	5614-M-3089, SH 2	1 Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523	N/A		0.500	400		No	N/A		
1856	PTN	4	081	5614-M-3081, SH 5	22 Vents	4-30-380	1.500	1.0	TV-I,H	Y	I	MSR4D	265	H-I		1.500	260	20	Yes	No Protection		
1856	PTN	4	081	5614-M-3081, SH 5	22 Vents	4-30-381	1.500	1.0	TV-I,H	Y	I	MSR4C	265	H-I		1.500	260	20	Yes	No Protection		
1856	PTN	4	081	5614-M-3081, SH 5	22 Vents	4-30-388	1.500	1.0	H-I	Y	I	MSR4D	265	H-I		1.500	260	20	Yes	Required No Protection		
1856	PTN	4	081	5614-M-3081, SH 5	22 Vents	4-30-389	1.500	1.0	H-I	Y	I	MSR4C	265	H-I		1.500	260	20	Yes	Required No Protection		
1857	PTN	4	081	5614-M-3081, SH 5	22 Drains	4-30-219	1.500	1.0	Н	N	I	MSR4D	265	Н		1.500	260	18	Yes	Required No Protection		
1857	PTN	4	081	5614-M-3081, SH 5	22 Drains	4-30-390	1.500	1.0	H-I	Y	I	MSR4D	265	H-I		1.500	260	20	Yes	Required No Protection		
1857	PTN	4	081	5614-M-3081, SH 5	22 Drains	4-30-391	1.500	1.0	H-I	Y	I	Likely no heat trace required.	265	H-I		1.500	260	20	Yes	Required No Protection		
1864	PTN	4	081	5614-M-3081, SH 5	- 1.5" Drains	FWHE-4-024	1.500	2.0	BV-I,H	Y	I		211	BV-I	BV conservative due to	1.500	210	5.7	Yes	Required No Protection		
1756	PTN	4	081	5614-M-3081, SH 4	5 Cap & 3/4" Drain	4-30-525	0.750	2.0	BV,H	N	нт		267	BV	BV conservative due to	0.750	260	0.5	No	Required	short run; high process temp; no protection	N
1757	PTN	4	081	5614-M-3081, SH 4	5 Welded pipe cap	Upstream of 4-30-553	6.000	1.0	Н	N	I	CAN'T LOCATE - TYP, assumed same as	267	Н	downward portion	Not	260	#N/A	No	1	required	+
1759	PTN	4	081	5614-M-3081, SH 4	6 Connection (size not marked)	4-30-593	0.750	1.0	Н	N	HT	pipe (PID zone A-2), assumed dia similar to others	387	Н		Not Analyzed	380	#N/A	No	НТ	short run; high process temp; no protection required	N
1761	PTN	4	081	5614-M-3081, SH 4	7 Connection (size not marked)	4-30-591	0.750	1.0	Н	N	HT	(PID zone A-6)	387	Н		Not Analyzed	380	#N/A	No	HT	short run; high process temp; no protection required	N
1764	PTN	4	081	5614-M-3081, SH 4	9 1" and 1/2" Vents and drains	4-30-449	0.500	1.0	TV-I	Y	HT		267	TV-I		0.500	260	12.2	Yes	No Protection Required		
1764	PTN	4	081	5614-M-3081, SH 4	9 1" and 1/2" Vents and drains	4-30-579	1.000	0.5	BV,H	N	НТ		267	BV	BV conservative due to downward portion	1.000	260	0.5	Yes	No Protection Required		
1764	PTN	4	081	5614-M-3081, SH 4	9 1" and 1/2" Vents and drains	4-30-588	1.000	0.5	BV-I	Y	HT		267	BV-I		1.000	260	2.55	Yes	No Protection		
1764	PTN	4	081	5614-M-3081, SH 4	9 1" and 1/2" Vents and drains	4-30-590	1.000	1.0	H-I	Y	HT		267	H-I		1.000	260	19	Yes	No Protection		
1763	PTN	4	081	5614-M-3081, SH 4	9 4A HDT Level transmitters and associated piping/valves	LIT-4-1510A	0.750	25.0	loop-I	У	N/A	MEZZ LEVEL - SW corner	267	BV-I	BV conservative due to downward portion	0.750	260	2.25	No	Required N/A		
1763	PTN	4	081	5614-M-3081, SH 4	9 4A HDT Level transmitters and associated piping/valves	LG-4-1510A	0.750	25.0	loop-I	У	HT	MEZZ LEVEL - SW corner	267	BV-I	BV conservative due to downward portion	0.750	260	2.25	No	НТ	steam condenses-constant trickle flow; no protection required	N
1765	PTN	4	081	5614-M-3081, SH 4	10 4B HDT Level transmitters and associated piping/valves	LIT-4-1510B	2.000	51.0	loop-I	Y	N/A	SMALL TANK NORTH WEST FOR THE FW PUMP ROOM ON GROUND LEVEL	267	BV-I	BV conservative due to downward portion	2.000	260	15	No	N/A		
1765	PTN	4	081	5614-M-3081, SH 4	10 4B HDT Level transmitters and associated piping/valves	LIT-4-1510C	2.000	51.0	loop-I	Y	N/A	SMALL TANK NORTH WEST FOR THE FW PUMP ROOM ON GROUND LEVEL	267	BV-I	BV conservative due to downward portion	2.000	260	15	No	N/A		
1765	PTN	4	081	5614-M-3081, SH 4	10 4B HDT Level transmitters and associated piping/valves	LG-4-1510B	0.750	26.0	loop-I	Y	HT	SMALL TANK NORTH WEST FOR THE FW PUMP ROOM ON GROUND LEVEL	267	BV-I	BV conservative due to downward portion	0.750	260	2.25	No		steam condenses-constant trickle flow; no protection required	N
1766	PTN	4	081	5614-M-3081, SH 4	10 1" and 1/2" Vents and drains, capped pipe section	, 4-30-395	1.500	1.0	BV,H	N	I	FWH3B	267	BV	BV conservative due to downward portion	1.500	260	0.75	No	I		
1766	PTN	4	081	5614-M-3081, SH 4	10 1" and 1/2" Vents and drains, capped pipe section	, LG-4-1510B	1.500	26.0	loop-I	Y	I	FWH3B	267	BV-I	BV conservative due to downward portion	1.500	260	8.7	No	Al		
1766	PTN	4	081	5614-M-3081, SH 4	10 1" and 1/2" Vents and drains, capped pipe section	, 4-30-393	1.500	1.5	Н	N	I	FWH3A	267	Н		1.500	260	18	Yes	No Protection		
1767	PTN	4	081	5614-M-3081, SH 4	11 4B HDT capped connections	HDT 4B	1.500	1.0	N/A	N/A	N/A	CAPPED CONNECTIONS ON TANK - HOT AREA UNDER STEEL - GORUND FLOOR, assumed dia, tank heat will prevent	267	N/A		Not Analyzed	260		No	Required N/A		
1773	PTN	4	081	5614-M-3081, SH 4	16 Cap & 3/4" Drain	4-30-526	0.750	2.0	BV,H	N	НТ	freezing	267	BV	BV conservative due to	0.750	260	0.5	No		short run; high process temp; no protection	N
ш								1						1	downward portion	\Box					required	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 384 of 488

> R21002, Rev 0 Attachment N Page 19 of 123

																						Page 19	01 123
2054	PTN	4	089	5614-M-3089, SH 2	1 Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523	N/	/A		0.500	400		No	N/A		
1774	PTN	4	081	5614-M-3081, SH 4	16 Welded pipe cap	4-30-554	6.000	1.0	h	n	ı	assumed based on pipe.dia (P&ID zone A- 6) - taken from typ	267	h	h		Not Analyzed	260	#N/A	No	T		
1775	PTN	4	081	5614-M-3081, SH 4	17 Local Pressure Indicator PI-4- 6695	PI-4-6695	0.500	1.5	Н	N	нт		267	F	Н		0.500	260	5.2	Yes	No Protection Required		
1778	PTN	4	081	5614-M-3081, SH 4	17 1" drains	4-30-595	1.000	N/A	N/A	N/A	N/A	'Due to local walls, pipe and pump heat loss, local temperatures will remain above freezing	267	N/	/A		1.000	260		No	N/A		
1778	PTN	4	081	5614-M-3081, SH 4	17 1" drains	4-30-596	1.000	N/A	N/A	N/A	N/A	'Due to local walls, pipe and pump heat loss, local temperatures will remain above freezing	267	N/	/A		1.000	260		No	N/A		
1777	PTN	4	081	5614-M-3081, SH 4	17 Various test connections	PX-4-3422	1.000	16.0	H,D	N	НТ		267	B		BV conservative due to downward portion	1.000	260	0.5	No	HT	verify 4-30-597 is close to main run	Y
1777	PTN	4	081	5614-M-3081, SH 4	17 Various test connections	PX-4-3423	1.000	9.0	H,D	N	НТ		267	B	BV B	BV conservative due to downward portion	1.000	260	0.5	No	НТ	verify 4-30-598 is close to main run	Y
1782		4	081	5614-M-3081, SH 4	18 1" Drain	4-30-566 4-30-492	1.000	1.5	H,D	N	НТ	GUESS - CAN'T LOCATE	119	B		BV conservative due to downward portion	1.000	110	0	No	HT	warm ambient no protection required	N
1780	PTN	4	081	5614-M-3081, SH 4	18 12" piping from HDT 4A/4B to 4B condenser [4-12"-5-D, 4-12"-5-CM]	CV-4-1510B	10.000	40.0	H-I,D	У	ı	GUESS - 40'	119	BV		BV conservative due to downward portion	Not Analyzed	110	#N/A	No	Al		
1784	PTN	4	081	5614-M-3081, SH 4	19 Connection (size not marked)	4-30-570	0.750	1.5	H,D	N	НТ	Length and Dia assumed based on similar	119	B		BV conservative due to downward portion	Not Analyzed	110	#N/A	No	НТ	warm ambient no protection required; usually isolated	N
1783	PTN	4	081	5614-M-3081, SH 4	19 10" piping from HDT 4A/4B to 4B condenser/ bypass control valve CN-4-1510B [4-10"-5-D]	4-30-568 4-30-572	10.000	5.0	Н	N	I		119	F	Н		Not Analyzed	110	#N/A	No	I		
1788	PTN	4	081	5614-M-3081, SH 4	20 3/4" drain/connection	4-30-565	0.750	1.5	BV,H	N	НТ	SEE PHOTO	373	B		BV conservative due to downward portion	0.750	370	0.5	No	HT	short run; high process temp; no protection required	N
1786	PTN	4	81	5614-M-3081, SH 4	20 4" piping from Main Condensate Header to HD Pump suction header [4-4"-3-D]	CV-4-1900	4.000	17.0	Н	N	ı		373	F	_	sommura portion	4.000	370	15	No	I	required	
1786	PTN	4	081	5614-M-3081, SH 4	20 4" piping from Main Condensate Header to HD Pump suction header [4-4"-3-D]	CV-4-1900	2.000	3.0	Н	N	I		373	ŀ	Н		2.000	370	18	Yes	No Protection Required		
1790	PTN	4	081	5614-M-3081, SH 4	21 3/4" drain	4-30-569	0.750	1.0	BV	N	НТ		119	B	BV		0.750	110	0	No	НТ	short run; high process temp; no protection required	N
1789	PTN	4	081	5614-M-3081, SH 4	3" piping from Condensate Header to HD pump suction header - Bypass control valve CV-4-1900 [4-3"-3-D]	4-30-567 4-30-571	3.000	5.0	Н	N	I	DISCHARGE	119	F	Н		3.000	110	16	Yes	No Protection Required		
1791	PTN	4	081	5614-M-3081, SH 4	22 3" piping to SWLU connection valve SWLU-4-053	Pipe	3.000	N/A	N/A	N/A	N/A	'Due to local walls, pipe and pump heat loss, local temperatures will remain above freezing	109	N/	/A		3.000	100		No	N/A		
1792	PTN	4	081	5614-M-3081, SH 4	23 1" piping; HD Pump vent to 4A HDT [4-1"-5-D]	4-30-821 4-30-822	1.000	25.0	H-I,D	Y	нт	NO CLOSED VALVE - NOT NEEDED	267	BV		BV conservative due to downward portion	1.000	260	2.55	No	НТ	constant trickle flow-no protection needed	N
1795	PTN	4	081	5614-M-3081, SH 4	24 Test connection [PX]	PX-4-3424	0.375	1.0	Н	N	НТ		267	F	Н		0.375	260	3.1	Yes	No Protection Required		
1793	PTN	4	081	5614-M-3081, SH 4	24 Local Pressure Indicator PI-4- 1437	PI-4-1437	0.375	1.5	TV	N	НТ	PI ON SAMPLE LINE	267	т	īV		0.375	260	3.1	Yes	No Protection Required	short run; high process temp; no protecton required	N
1794		4	081	5614-M-3081, SH 4	24 1/2" to 1/4" SS tubing from A HD Pump discharge to sample system	PX-4-3424	0.375	4.0	Н	N	нт		267	P	Н		0.375	260	3.1	No	НТ	verify with chemistry continous flow	Y
1796			081	5614-M-3081, SH 4	25 Local Pressure Indicator PI-4- 1438	PI-4-1438	0.375	3.0	H,U	N	НТ		267	H	c c	Upward bend not credited for conservatism	0.375	260	3.1	Yes	No Protection Required		
1798			081	5614-M-3081, SH 4	25 Test connection [PX]	PX-4-3425	0.375	1.5	H,D	N	НТ		267	B		BV conservative due to downward portion	0.375	260	Not Analyzed	No	HT	confrim with chemisty continuous flow; if so no heat trace required	Y
1797			081	5614-M-3081, SH 4	25 1/2" to 1/4" SS tubing from B HD Pump discharge to sample system	PX-4-3425	0.375	5.0	Н	N	НТ		267	H	Н		0.375	260	3.1	No	НТ	verify with chemistry continous flow	Y
1803	PTN	4	081	5614-M-3081, SH 4	27 Test connection [PX]	PX-4-1471	0.375	1.5	Н	N	НТ		267	H	Н		Not Analyzed	260	#N/A	No	нт	short run; high process temp; no protecton required	N
1804	PTN	4	081	5614-M-3081, SH 4	27 Vents and drains (2 of each)	4-30-863	0.750	1.5	BV,H	N	НТ	IN FW PUMP ROOM	267	В		BV conservative due to	Not Analyzed	260	#N/A	No	нт	short run; high process temp; no protecton required	N
-				-						-	-	+		· · · · · · · · · · · · · · · · · · ·	- 10		,					1 - 1	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 385 of 488

> R21002, Rev 0 Attachment N Page 20 of 123

																					Page 20	01 123
2054	PTN	4	089	5614-M-3089, SH 2	1 Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523	N/A		0.500	400		No	N/A		
1804	PTN	4	081	5614-M-3081, SH 4	27 Vents and drains (2 of each)	4-30-841	0.750	1.0	Н	N	HT	IN FW PUMP ROOM	267	Н		Not Analyzed	260	#N/A	No	НТ	short run; high process temp; no protecton required	N
1804	PTN	4	081	5614-M-3081, SH 4	27 Vents and drains (2 of each)	4-30-843	0.750	1.0	Н	N	HT	IN FW PUMP ROOM	267	н		Not Analyzed	260	#N/A	No	нт	short run; high process temp; no protecton required	N
1804	PTN	4	081	5614-M-3081, SH 4	27 Vents and drains (2 of each)	4-30-865	0.750	1.0	BV,H	N	НТ	IN FW PUMP ROOM	267	BV	BV conservative due to downward portion	Not Analyzed	260	#N/A	No	НТ	short run; high process temp; no protecton required	N
1805	PTN	4	081	5614-M-3081, SH 4	28 3/4" piping - bypass HD pump A/B discharge check valves	4-30-845 4-30-847	0.750	5.0	Н	N	HT	BY-PASS FOR CV	267	Н		0.750	260	8.4	Yes	No Protection Required		
1805	PTN	4	081	5614-M-3081, SH 4	28 3/4" piping - bypass HD pump A/B discharge check valves	4-30-846 4-30-848	0.750	5.0	Н	N	HT	BY-PASS FOR CV - SEE PHOTO	267	Н		0.750	260	8.4	Yes	No Protection Required		
1806	PTN	4	081	5614-M-3081, SH 4	29 Piping/ Tubing/ valves associated with FIT-3-1404	FIT-4-1404	0.375	30.0	loop	n	HT	Dia assumed based on simillar	267	BV	BV conservative due to downward portion	Not Analyzed	260	#N/A	No	НТ	verify line temp-if not high enough heat trace	Y
1809	PTN	4	081	5614-M-3081, SH 4	30 Connection (size not marked)	4-30-870	0.750	1.0	BV	N	HT	Dia assumed based on similar	267	BV		Not Analyzed	260	#N/A	No	НТ	short run; high process temp; no protecton required	N
1808	PTN	4	081	5614-M-3081, SH 4	30 12" piping from A/B HD Pumps to FW PP suction/ bypass control valve CN-4- 1510A [4-12"-3-D]	4-30-869 4-30-871	12.000	10.0	Н	N	Ι	IN FW PUMP ROOM - HOT AREA	267	н		Not Analyzed	260	#N/A	No	I		
1810	PTN	4	081	5614-M-3081, SH 4	31 Flex tubing installed to either side of CV-4-1510A; HD pump interlock	DPS-4-1401	0.375	4.0	loop	n	HT	Dia assumed based on simlilar	267	BV	BV conservative due to downward portion	Not Analyzed	260	#N/A	No	HT	short run; high process line; no protection required	N
1810	PTN	4	081	5614-M-3081, SH 4	31 Flex tubing installed to either side of CV-4-1510A; HD pump interlock	DPS-4-1402	0.375	4.0	loop	N	HT	Dia assumed based on similiar	267	BV	BV conservative due to downward portion	Not Analyzed	260	#N/A	No	нт	short run; high process line; no protection required	N
1686	PTN	4	081	5614-M-3081, SH 3	1 6A FW HTR Level transmitters and associated piping/valves	LIT-4-1517A	2.000	23.0	loop-l	У	N/A	JUST SOUTH OF FEEDWATER HEATER ON GROUND LEVEL	441	BV-I	BV conservative due to downward portion	2.000	400	15	No	N/A		
1686	PTN	4	081	5614-M-3081, SH 3	1 6A FW HTR Level transmitters and associated piping/valves	LIT-4-1517B	2.000	22.0	loop-l	У	N/A	JUST SOUTH OF FEEDWATER HEATER ON GROUND LEVEL	441	BV-I	BV conservative due to downward portion	2.000	400	15	No	N/A		
1686	PTN	4	081	5614-M-3081, SH 3	1 6A FW HTR Level transmitters and associated piping/valves	LIT-4-1517C	2.000	21.0	loop-I	У	N/A	JUST SOUTH OF FEEDWATER HEATER ON GROUND LEVEL	441	BV-I	BV conservative due to downward portion	2.000	400	15	No	N/A		
1687	PTN	4	081	5614-M-3081, SH 3	1 1" Drain	4-30-607	1.000	1.0	H-I	Y	HT		380	H-I		1.000	380	19	Yes	No Protection Required		
1687	PTN	4	081	5614-M-3081, SH 3	1 1" Drain	4-30-615	1.000	1.0	H-I	Y	НТ		380	H-I		1.000	380	19	Yes	No Protection Required		
1687	PTN	4	081	5614-M-3081, SH 3	1 1" Drain	4-30-721	1.000	1.0	H-I	Y	НТ		380	H-I		1.000	380	19	Yes	No Protection Required		
1687	PTN	4	081	5614-M-3081, SH 3	1 1" Vent	4-30-605	1.000	1.0	TV-I	Y	HT		441	TV-I		1.000	400	19	Yes	No Protection		
1687	PTN	4	081	5614-M-3081, SH 3	1 1" Vent	4-30-613	1.000	1.0	TV-I	Y	HT		441	TV-I		1.000	400	19	Yes	No Protection		
1687	PTN	4	081	5614-M-3081, SH 3	1 1" Vent	4-30-720	1.000	1.0	TV-I	Y	HT		441	TV-I		1.000	400	19	Yes	No Protection		
1690	PTN	4	081	5614-M-3081, SH 3	3 1" piping - bypass Orifice	FWHR-4-080	1.000	5.0	H-I	У	HT		441	H-1		1.000	400	19	Yes	No Protection		
1696	PTN	4	081	5614-M-3081, SH 3	5 Flange connection/ drains [4-1/2"-5-D]	4-30-014	0.500	0.5	BV	N	НТ		380	BV		0.500	380	0.5	Yes	No Protection		
1696	PTN	4	081	5614-M-3081, SH 3	5 Flange connection/ drains [4-1/2"-5-D]	4-30-498A	0.500	0.5	H-I	Y	HT		380	H-I		0.500	380	20	Yes	No Protection		
1696	PTN	4	081	5614-M-3081, SH 3	5 Flange connection/ drains [4-1/2"-5-D]	4-30-651	0.500	0.5	Н	N	НТ		380	Н		0.500	380	7.9	Yes	No Protection		
1695	PTN	4	081	5614-M-3081, SH 3	5 1/2" and 3/4" connections; Various test connections [PX, TX, FX]	PX-4-1463	0.750	0.5	TV	N	HT		380	TV		0.750	380	17.8	Yes	No Protection Required		
1696	PTN	4	081	5614-M-3081, SH 3	5 Flange connection/ drains [4-1/2"-5-D]	4-30-499A	0.750	0.5	TV	N	НТ	Location on P&ID is B-6)	380	TV		0.750	380	17.8	Yes	No Protection Required		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 386 of 488

> R21002, Rev 0 Attachment N Page 21 of 123

																					Page 21 o	71 120
PTN	4	089	5614-M-3089, SH 2	1	Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523	N/A		0.500	400		No	N/A		
PTN	4	081	5614-M-3081, SH 3		Various test connections	FX-4-1404	10.000	N/A	N/A	N/A	N/A	within pipe	380	N/A		Not Analyzed	380		No	N/A		
PTN	4	081	5614-M-3081, SH 3		8" piping/ bypass CV-4-1517A [4-8"-5-D]	4-30-657 4-30-659	8.000	3.0	H-I	Y	ı	BY-PASS - (Location on P&ID is B-5) - 3' TO CLOSED VALVE, 10' MORE BACK TO	380	H-1		Not Analyzed	380	#N/A	No	Al		
PTN	4	081	5614-M-3081, SH 3	7	3/4" drains	4-30-699	0.750	1.0	Н	N	НТ	(Location on P&ID is C-4) - TAKEN FROM TYP	119	Н		0.750	110	2.4	Yes	No Protection		
PTN	4	081	5614-M-3081, SH 3	7	Blind Flange/ connection	Upstream of 4-30-673	10.000	0.5	H-I	Y	ı	NOT ACCESSSIBLE - WARNING TAPE	119	H-I		Not Analyzed	110	#N/A	No	Required AI		
PTN	4	081	5614-M-3081, SH 3	8	3/4" Drain/connection	4-30-669	0.750	1.5	BV,H	N	HT		119	BV	BV conservative due to	0.750	110	0	No	HT	i.	Y
PTN	4	081	5614-M-3081, SH 3		8" piping/ bypass CV-4-1517B [4-8"-5-D, 4-8"-5-E]	4-30-667 4-30-671	8.000	12.0	H-I	Y	ı	BY-PASS - (Location on P&ID is D-3) - ASSUMED BASED ON OTHERS	119	H-I	downward portion	Not Analyzed	110	#N/A	No	AI	in ace	
PTN	4	081	5614-M-3081, SH 3			LIT-4-1520A	2.000	25.0	loop-I	У	N/A		375	BV-I	BV conservative due to downward portion	2.000	370	15	No	N/A		
PTN	4	081	5614-M-3081, SH 3			LIT-4-1520B	2.000	25.0	loop-I	У	N/A		375	BV-I	BV conservative due to downward portion	2.000	370	15	No	N/A		
PTN	4	081	5614-M-3081, SH 3			LIT-4-1520C	2.000	25.0	loop-I	У	N/A		375	BV-I	BV conservative due to downward portion	2.000	370	15	No	N/A		
PTN	4	081	5614-M-3081, SH 3	9	1" Vent	4-30-509	1.000	1.0	TV-I	Y	HT		387	TV-I		1.000	380	19	Yes	No Protection		
PTN	4	081	5614-M-3081, SH 3	9	1" Vent	4-30-513	1.000	1.0	TV-I	Y	НТ		387	TV-I		1.000	380	19	Yes	Required No Protection		
PTN	4	081	5614-M-3081, SH 3	9	1" Vent	4-30-531	1.000	1.0	TV-I	Y	НТ		387	TV-I		1.000	380	19	Yes	Required No Protection		
PTN	4	081	5614-M-3081, SH 3	9	1" Drain	4-30-511	1.000	1.0	H-I	Y	HT		387	H-I		1.000	380	19	Yes	Required No Protection		
PTN	4	081	5614-M-3081, SH 3	9	1" Drain	4-30-515	1.000	1.0	H-I	Y	HT		387	H-I		1.000	380	19	Yes	Required No Protection		
PTN	4	081	5614-M-3081, SH 3	9	1" Drain	4-30-533	1.000	1.0	H-I	Y	НТ		387	H-I		1.000	380	19	Yes	Required No		
_																				Required		\vdash
PTN	4	081	5614-M-3081, SH 3	11	1" pipe - Bypass flow orifice	FWHR-4-035	1.000	4.0	H-I	Y	HT	BY-PASS (P&ID ZONE A-6)	119	H-I		1.000	110	11	Yes	No Protection Required		
PTN	4	081	5614-M-3081, SH 3	13	Test connections [TX, PX]	PX-4-1461	0.500	1.0	Н	N	НТ		387	Н		0.500	380	7.9	Yes	No Protection Required		
PTN	4	081	5614-M-3081, SH 3	13	1" cap/drain	4-30-119	1.000	1.0	BV	N	HT		387	BV		1.000	380	0.5	No	HT	short run; high process temp; no protection	N
PTN	4	081	5614-M-3081, SH 3		connection to 5A FW HTR	None	3.000	35.0	H-I,D	Y	I	DISCHARGE	387	BV-I	BV conservative due to downward portion	3.000	380	15	No	Al	regunea	
PTN	4	081	5614-M-3081, SH 3		4-3"-5-D 6B FW HTR Level transmitters and associated piping/valves	LIT-4-1518A	2.000	25.0	loop-I	Y	N/A	TD - along east path	441	BV-I	BV conservative due to downward portion	2.000	400	15	No	N/A		
PTN	4	081	5614-M-3081, SH 3		6B FW HTR Level transmitters and associated piping/valves	LIT-4-1518B	2.000	25.0	loop-I	Y	N/A	TD - along east path	441	BV-I	BV conservative due to downward portion	2.000	400	15	No	N/A		
PTN	4	081	5614-M-3081, SH 3		6B FW HTR Level transmitters and associated piping/valves	LIT-4-1518C	2.000	25.0	loop-I	Y	N/A	TD - along east path	441	BV-I	BV conservative due to downward portion	2.000	400	15	No	N/A		
PTN	4	081	5614-M-3081, SH 3	15	1" Drain	4-30-606	1.000	1.0	H-I	Y	НТ		380	H-I		1.000	380	19	Yes	No Protection		
PTN	4	081	5614-M-3081, SH 3	15	1" Drain	4-30-614	1.000	1.0	H-I	Y	HT		380	H-I		1.000	380	19	Yes	No Protection		
PTN	4	081	5614-M-3081, SH 3	15	1" Drain	4-30-725	1.000	1.0	H-I	Y	НТ		380	H-I		1.000	380	19	Yes	No Protection Required		
	TN T	TN 4 TN 4	TN 4 081 TN 4 081	TN 4 081 5614-M-3081, SH 3 TN 4 081 5614-M-3081, SH 3	TN 4 081 5614-M-3081, SH 3 5 TN 4 081 5614-M-3081, SH 3 6 TN 4 081 5614-M-3081, SH 3 7 TN 4 081 5614-M-3081, SH 3 7 TN 4 081 5614-M-3081, SH 3 8 TN 4 081 5614-M-3081, SH 3 8 TN 4 081 5614-M-3081, SH 3 9 TN 4 081 5614-M-3081, SH 3 11 TN 4 081 5614-M-3081, SH 3 13 TN 4 081 5614-M-3081, SH 3 13 TN 4 081 5614-M-3081, SH 3 13 TN 4 081 5614-M-3081, SH 3 15 TN 4 081 5614-M-3081, SH 3 15												No. No. No. No.	Picture Pict	Process Proc			

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 387 of 488

> R21002, Rev 0 Attachment N Page 22 of 123

																					Page 22 c	of 123
2054	PTN	4	089	5614-M-3089, SH 2	1 Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523	N/A		0.500	400		No	N/A		
1715	PTN	4	081	5614-M-3081, SH 3	15 1" Vent	4-30-604	1.000	1.0	TV-I	Y	НТ		441	TV-I		1.000	400	19	Yes	No Protection		
1715	PTN	4	081	5614-M-3081, SH 3	15 1" Vent	4-30-612	1.000	1.0	TV-I	Y	НТ		441	TV-I		1.000	400	19	Yes	No Protection		
1715	PTN	4	081	5614-M-3081, SH 3	15 1" Vent	4-30-724	1.000	1.0	TV-I	Y	НТ		441	TV-I		1.000	400	19	Yes	Required No Protection		
1718	PTN	4	081	5614-M-3081, SH 3	17 1" piping - bypass Orifice	FWHR-4-082	1.000	4.0	H-I	Y	НТ	BY-PASS	441	H-I		1.000	400	19	Yes	Required No Protection		
1723	PTN	4	081	5614-M-3081, SH 3	18 Flange connection/ drain [4-1/2"-5-D]	4-30-647	0.500	0.5	TV	N	HT	CAN'T LOCATE- TAKEN FROM TRAIN A	380	TV		0.500	380	7.9	Yes	Required No Protection		
4722	DTAI		204	5544440004500	40 4/911 10/411 11	DV 4 4454	0.750	0.5	- TO /			SANIT LOCATE TAYEN FROM TRAIN A	200	77.		0.750	200	47.0	.,	Required		
1722	PTN	4	081	5614-M-3081, SH 3	18 1/2" and 3/4" connections; Various test connections [PX, TX, FX]	PX-4-1464	0.750	0.5	TV	N	НТ	CAN'T LOCATE- TAKEN FROM TRAIN A	380	TV		0.750	380	17.8	Yes	No Protection Required		
1723	PTN	4	081	5614-M-3081, SH 3	18 Flange connection/ drain [4-1/2"-5-D]	4-30-499B	0.750	0.5	tv	N	НТ	CAN'T LOCATE- TAKEN FROM TRAIN A	380	tv		0.750	380	17.8	Yes	No Protection Required		
1723			081	5614-M-3081, SH 3	18 Flange connection/ drain [4-1/2"-5-D]	4-30-626	1.000	1.0		N		CAN'T LOCATE- TAKEN FROM TRAIN A	380	BV		1.000	380	0.5	No	НТ	verify length of line; if short line (less than 2') do not heat trace	Y
1722	PTN	4	081	5614-M-3081, SH 3	18 1/2" and 3/4" connections; Various test connections [PX, TX, FX]	FX-4-1405	10.000	N/A	N/A	N/A	N/A	within pipe	380	N/A		Not Analyzed	380		No	N/A		ı
1724	PTN	4	081	5614-M-3081, SH 3	19 8" piping/ bypass CV-4-1518A [4-8"-5-D]	4-30-658 4-30-660	8.000	3.0	H-I	Y	I	BY-PASS - 3' TO CLOSED VALVE, 10 MORE FEET TO HEADER	380	H-I		Not Analyzed	380	#N/A	No	Al		
1728	PTN	4	081	5614-M-3081, SH 3	20 3/4" drains	4-30-666	0.750	1.5	BV,H	N	HT	LOCATION n. OF fw PUMP ROOM GROUND FLOOR (HOT AREA)	119	BV	BV conservative due to	0.750	110	0	No	HT	verify ambient temperature; if hot do not heat	Y
1729	PTN	4	081	5614-M-3081, SH 3	20 Blind Flange	Upstream of 4-30-674	10.000	0.5	H-I	Y	ı	GROUND FLOOR (HOT AREA)	119	H-I	downward portion	Not	110	#N/A	No	Al	trace	
1731	PTN	4	081	5614-M-3081, SH 3	21 3/4" Drain/connections	4-30-670	0.750	1.0	H,D	N	НТ	DRAIN - JUST NORTH OF FW PUMP ROOM	119	BV	BV conservative due to downward portion	0.750	110	0	No	НТ	verify ambient temperature; if hot do not heat trace	Y
1730	PTN	4	081	5614-M-3081, SH 3	21 8" piping/ bypass CV-4-1518B [4-8"-5-D, 4-8"-5-E]]	4-30-668 4-30-672	8.000	12.0	H-I,D	Y	I	BY-PASS	119	BV-I	BV conservative due to downward portion	Not Analyzed	110	#N/A	No	Al		
1732	PTN	4	081	5614-M-3081, SH 3	22 5B FW HTR Level transmitters and associated piping/valves	LIT-4-1521A	2.000	20.0	loop-I	Y	N/A	LOCATED TD SE SIDE RIGHT AT THE TOP OF STAIRS	375	BV-I	BV conservative due to downward portion	2.000	370	15	No	N/A		
1732	PTN	4	081	5614-M-3081, SH 3	22 5B FW HTR Level transmitters and associated piping/valves	LIT-4-1521B	2.000	20.0	loop-I	Y	N/A	LOCATED TD SE SIDE NEXT TO STAIRS	375	BV-I	BV conservative due to downward portion	2.000	370	15	No	N/A		
1732	PTN	4	081	5614-M-3081, SH 3	22 5B FW HTR Level transmitters and associated piping/valves	LIT-4-1521C	2.000	20.0	loop-I	Y	N/A	LOCATED TD SE SIDE NEXT TO STAIRS	375	BV-I	BV conservative due to downward portion	2.000	370	15	No	N/A		
1733	PTN	4	081	5614-M-3081, SH 3	22 1" Vent	4-30-508	1.000	1.0	TV-I	Y	HT	LOCATED TD SE SIDE NEXT TO STAIRS	309	TV-I		1.000	300	19	Yes	No Protection Required		
1733	PTN	4	081	5614-M-3081, SH 3	22 1" Vent	4-30-512	1.000	1.0	TV-I	Y	НТ	LOCATED TD SE SIDE NEXT TO STAIRS	309	TV-I		1.000	300	19	Yes	No Protection Required		
1733	PTN	4	081	5614-M-3081, SH 3	22 1" Vent	4-30-535	1.000	1.0	TV-I	Y	НТ	LOCATED TD SE SIDE NEXT TO STAIRS	309	TV-I		1.000	300	19	Yes	No Protection		
1733	PTN	4	081	5614-M-3081, SH 3	22 1" Drain	4-30-510	1.000	1.0	H-I	Y	НТ	LOCATED TD SE SIDE NEXT TO STAIRS	387	H-I		1.000	380	19	Yes	No Protection		
1733	PTN	4	081	5614-M-3081, SH 3	22 1" Drain	4-30-514	1.000	1.0	H-I	Y	НТ	LOCATED TD SE SIDE NEXT TO STAIRS	387	H-I		1.000	380	19	Yes	No Protection		
1733	PTN	4	081	5614-M-3081, SH 3	22 1" Drain	4-30-537	1.000	1.0	H-I	Y	HT	LOCATED TD SE SIDE NEXT TO STAIRS	387	H-I		1.000	380	19	Yes	No Protection		
1735	PTN	4	081	5614-M-3081, SH 3	24 1" pipe - Bypass flow orifice	FWHR-4-042	1.000	4.0	H-I	Y	HT	(P&ID D-6) (BY-PASS)	387	H-I		1.000	380	19	Yes	No Protection		
1738	PTN	4	081	5614-M-3081, SH 3	26 Test connections [TX, PX]	PX-4-1462	0.500	1.0	TV	N	НТ		387	TV		0.500	380	7.9	Yes	Required No Protection		
1739	PTN	4	081	5614-M-3081, SH 3	26 Cap/ 1" drain	4-30-120	1.000	1.0	BV	N	HT		387	BV		1.000	380	0.5	No	Required HT	short run; high process temp; no protection	N
																					required	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 388 of 488

> R21002, Rev 0 Attachment N Page 23 of 123

																					Page 23 of 123
2054	PTN	4	089	5614-M-3089, SH 2	1 Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523	N/A		0.500	400		No	N/A	
1740	PTN	4	081	5614-M-3081, SH 3	27 3" piping for SWLU connection to 5B FW HTR drain line [4-3"-5-D]	None	3.000	35.0	BV-I	Y	I	DISCHARGE	387	BV-I		3.000	380	15	No	Al	
1742	PTN	4	081	5614-M-3081, SH 3	5A 5A FWHTR Tank Relief Valve FW RV-4-3422 HTR	RV-4-3422	4.000	1.0	TV	N	I		387	TV		4.000	380	20	Yes	No Protection Required	
1744	PTN	4	081	5614-M-3081, SH 3	5B 5B FWHTR Tank Relief Valve FW RV-4-3423 HTR	RV-4-3423	4.000	1.0	TV	N	I		387	TV		4.000	380	20	Yes	No Protection	
1747	PTN	4	081	5614-M-3081, SH 3	6A 6A FWHTR 11/2" drains FW HTR	FWHR-4-038	1.500	2.0	BV-I,H	Y	I	FWH4A (INSULATION MAY CAUSE ACTUATOR ON RV TO NOT FUNCTION PROPERLY, MAY HINDER OPENING OR CAUSE TO BE STUCK OPEN. SEE RV PHOTOS)	380	BV-I	BV conservative due to downward portion	1.500	380	9	Yes	Required No Protection Required	
1747	PTN	4	081	5614-M-3081, SH 3	6A FWHTR 1 1/2" drains FW HTR	FWHR-4-627	1.500	2.0	BV-I,H	Y	I	FWH4B (INSULATION MAY CAUSE ACTUATOR ON RV TO NOT FUNCTION PROPERLY, MAY HINDER OPENING OR CAUSE TO BE STUCK OPEN. SEE RV PHOTOS)	380	BV-I	BV conservative due to downward portion	1.500	380	9	Yes	No Protection Required	
1746	PTN	4	081	5614-M-3081, SH 3	6A 6A FWHTR Tank Relief Valve FW RV-4-3424 HTR	RV-4-3424	4.000	1.0	TV	N	I	INLINE	380	TV		4.000	380	20	Yes	No Protection Required	
1750	PTN	4	081	5614-M-3081, SH 3	6B 6B FWHTR 1 1/2" tank drains FW HTR	FWHR-4-039	1.500	2.0	BV-I,H	Y	I	FWH4A	380	BV-I	BV conservative due to downward portion	1.500	380	9	Yes	No Protection Required	
1750	PTN	4	081	5614-M-3081, SH 3	6B 6B FWHTR 1 1/2" tank drains FW HTR	FWHR-4-628	1.500	2.0	BV-I,H	Y	I	FWH4B	380	BV-I	BV conservative due to downward portion	1.500	380	9	Yes	No Protection Required	
1749	PTN	4	081	5614-M-3081, SH 3	6B 6B FWHTR Tank Relief Valve FW RV-4-3425 HTR	RV-4-3425	4.000	1.0	TV	N	ı		380	TV		4.000	380	20	Yes	No Protection Required	
1643	PTN	4	081	5614-M-3081, SH 2	1 2" vent RHTR Drain Tank 4A to ES system/ FW HTR 6A [4-2"-2-C]	PIPE	2.000	150.0	H-I	Y	I	can't follow through mezz - estimate pipe length of 150 ft	513	H-I		2.000	400	20	No	Al	
1644	PTN	4	081	5614-M-3081, SH 2	2 8" & 4" Drains/Vents from MSRs A/B to RHTR Drain Tanl 4A [4-8"-2-C, 4-4"-2-C]	Vent Line k	4.000	75.0	BV-I	Y	I	can't follow through mezz - estimate pipe length of 75 ft	513	BV-I		4.000	400	15	No	Al	
1644	PTN	4	081	5614-M-3081, SH 2	2 8" & 4" Drains/Vents from MSRs A/B to RHTR Drain Tanl 4A [4-8"-2-C, 4-4"-2-C]	Vent Line k	4.000	75.0	BV-I	Y	I	can't follow through mezz - estimate pipe length of 75 ft	513	BV-I		4.000	400	15	No	Al	
1644	PTN	4	081	5614-M-3081, SH 2	2 8" & 4" Drains/Vents from MSRs A/B to RHTR Drain Tanl 4A [4-8"-2-C, 4-4"-2-C]	Drain Line k	8.000	75.0	BV-I	Y	I	can't follow through mezz - estimate pipe length of 75 ft	513	BV-I		Not Analyzed	400	#N/A	No	Al	
1644	PTN	4	081	5614-M-3081, SH 2	2 8" & 4" Drains/Vents from MSRs A/B to RHTR Drain Tank 4A	Drain Line k	8.000	75.0	BV-I	Y	I	can't follow through mezz - estimate pipe length of 75 ft	513	BV-I		Not Analyzed	400	#N/A	No	Al	
1645	PTN	4	081	5614-M-3081, SH 2	[4-8"-2-C, 4-4"-2-C] 3 RHTR Drain Tank 4A Level transmitters and associated	LIT-4-1505A	1.500	20.0	BV-I	Y	N/A	INSTRUMENTATION LOOP - TANK WEST OF fw PUMP ROOM, NORTH OF Heater	513	BV-I		1.500	400	9	No	N/A	
1645	PTN	4	081	5614-M-3081, SH 2	piping/valves 3 RHTR Drain Tank 4A Level transmitters and associated	LIT-4-1505B	1.500	22.0	BV-I	Y	N/A	pumps - near column B35 INSTRUMENTATION LOOP - TANK WEST OF fw PUMP ROOM, NORTH OF Heater pumps - near column B35	513	BV-I		1.500	400	9	No	N/A	
1645	PTN	4	081	5614-M-3081, SH 2	3 RHTR Drain Tank 4A Level transmitters and associated piping/valves	LIT-4-1505C	1.500	20.0	BV-I	Y		INSTRUMENTATION LOOP - TANK WEST OF fw PUMP ROOM, NORTH OF Heater pumps - near column B35	513	BV-I		1.500	400	9	No	N/A	
1646	PTN	4	081	5614-M-3081, SH 2	3 1" Vents and drains	Drain & Valve 4-30-765	1.000	0.5	BV-I	Y	НТ	Family Hear Committee	513	BV-I		1.000	400	3	Yes	No Protection Required	
1646	PTN	4	081	5614-M-3081, SH 2	3 1" Vents and drains	Drain & Valve 4-30-778	1.000	0.5	BV-I	Y	HT		513	BV-I		1.000	400	3	Yes	No Protection Required	
1646	PTN	4	081	5614-M-3081, SH 2	3 1" Vents and drains	Drain & Valve 4-30-828	1.000	0.5	BV-I	Y	НТ		513	BV-I		1.000	400	3	Yes	No Protection Required	
1646	PTN	4	081	5614-M-3081, SH 2	3 1" Vents and drains	Vent - Valve 4-30-764	1.000	1.0	TV	N	НТ	CONGESTED AREA ABOUT 9' ABOVE THE GROUND, WILL NEED SCAFFOLDING OR LADDER	513	TV		1.000	400	20	Yes	No Protection Required	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 389 of 488

> R21002, Rev 0 Attachment N Page 24 of 123

																					Page 24	of 123
2054	PTN	4	089	5614-M-3089, SH 2	1 Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523	N/A		0.500	400		No	N/A		
1646	PTN	4	081	5614-M-3081, SH 2	3 1" Vents and drains	Vent - Valve 4-30-779	1.000	1.0	TV	N	НТ	CONGESTED AREA ABOUT 9' ABOVE THE GROUND, WILL NEED SCAFFOLDING OR LADDER	513	TV		1.000	400	20	Yes	No Protection Required		
1646	PTN	4	081	5614-M-3081, SH 2	3 1" Vents and drains	Vent - Valve 4-30-826	1.000	1.0	TV	N	НТ	CONGESTED AREA ABOUT 9' ABOVE THE GROUND, WILL NEED SCAFFOLDING OR LADDER	513	TV		1.000	400	20	Yes	No Protection Required		
1651	PTN	4	081	5614-M-3081, SH 2	4 3/4" Drain/connection	Drain 4-30-809	0.750	0.5	BV	N	нт	VALVE HAS DRIP LEAK	513	BV		0.750	400	0.5	Yes	No Protection Required		
1652	PTN	4	081	5614-M-3081, SH 2	4 3/4" vent	Vent 4-30-143	0.750	1.5	TV	N	нт		513	TV		0.750	400	19	Yes	No Protection Required		
1647	PTN	4	081	5614-M-3081, SH 2	4 Flow indication and associated valves, 1/2" tubing. [FE/FI 4-5120] [4-1/2"-2-C]	FE/ FI-4-5120 & loop	0.500	12.0	BV,H,U	N	нт	P&ID is not acurate. The loop has a tubing bypass for the FI with a valve	513	BV	BV conservative due to downward portion	0.500	400	0.5	No	НТ	verify ambient temp; if hot no protection required	Y
1651	PTN	4	081	5614-M-3081, SH 2	4 3/4" Drain/connection	Drain 4-30-792	0.750	1.0	BV	N	HT		513	BV		0.750	400	0.5	No	HT	short line high process temp; no protection required	N
1653	PTN	4	081	5614-M-3081, SH 2	4 Blind Flange	dead leg w/ blind	10.000	1.0	H-I	Y	1	FWH3A	513	H-I		Not Analyzed	400	#N/A	No	Al	required	
1655	PTN	4	081	5614-M-3081, SH 2	5 3/4" Drain/connection	drain 4-30-790	0.750	0.5	BV	N	НТ		513	BV		0.750	400	0.5	Yes	No Protection Required		
1654	PTN	4	081	5614-M-3081, SH 2	5 10" piping/ bypass FE-4-5120 [4-10"-2-C]	by-pass loop 2 valves	10.000	20.0	BV-I,H,U	Y	I		513	BV-I	BV conservative due to downward portion	Not Analyzed	400	#N/A	No	Al		
1657	PTN	4	081	5614-M-3081, SH 2	6 3/4"drain/connection	drain 4-30-811	0.750	1.0	Н	N	нт		513	Н		0.750	400	14	Yes	No Protection Required		
1656	PTN	4	081	5614-M-3081, SH 2	6 8" piping/ bypass CV-4-1505 [4-8"-2-C, 4-8"-5-D]	by-pass	8.000	15.0	BV-I	Y	ı		513	BV-I		Not Analyzed	400	#N/A	No	Al		
1661	PTN	4	081	5614-M-3081, SH 2	7 3/4"drain/connection	drain 4-30-815	0.750	1.0	BV,H	N	НТ		513	BV	BV conservative due to downward portion	0.750	400	0.5	No	HT	check ambient temp; if hot no protection required	N
1662	PTN	4	081	5614-M-3081, SH 2	7 Blind Flange/ connection	Dead-leg & Blind	10.000	1.0	H-I	Y	1	FWH3A	513	H-I		Not Analyzed	400	#N/A	No	Al	- 4.	
1664	PTN	4	081	5614-M-3081, SH 2	8 3/4" Drain/connection	drain 4-30-817	0.750	1.0	BV	N	нт		513	BV		0.750	400	0.5	No	HT	check ambient temp; if hot no protection required	N
1663	PTN	4	081	5614-M-3081, SH 2	8 8" piping/ bypass CV-4-1515 [4-8"-2-C, 4-8"-5-E]	by-pass	8.000	10.0	H-I,D	Y	I		513	BV-I	BV conservative due to downward portion	Not Analyzed	400	#N/A	No	Al	required	
1665	PTN	4	081	5614-M-3081, SH 2	9 2" vent RHTR Drain Tank 4B to ES system/ FW HTR 6B [4-2"-2-C]	steam pipe	2.000	70.0	H-I	Y	ı	MAY NOT BE POSSIBLE TO INSULATE AND ALOW THE ACTUATOR TO OPERATE PROPERLY	513	H-I		2.000	400	20	No	AI		
1667	PTN	4	081	5614-M-3081, SH 2	11 RHTR Drain Tank 4B Level transmitters and associated piping/valves	LIT-4-1506A & LOOP	0.500	20.0	H-I,D	Y	N/A	DRAIN TANK RIGHT BEHIND (NORTH) OF fw PUMP ROOM ON GROUND LEVEL	513	BV-I	BV conservative due to downward portion	0.500	400	2	No	N/A		
1667	PTN	4	081	5614-M-3081, SH 2	11 RHTR Drain Tank 4B Level transmitters and associated piping/valves	LIT-4-1506B & LOOP	0.500	22.0	H-I,D	Y	N/A	DRAIN TANK RIGHT BEHIND (NORTH) OF fw PUMP ROOM ON GROUND LEVEL	513	BV-I	BV conservative due to downward portion	0.500	400	2	No	N/A		
1667	PTN	4	081	5614-M-3081, SH 2	11 RHTR Drain Tank 4B Level transmitters and associated piping/valves	LIT-4-1506C & LOOP	0.500	20.0	H-I,D	Y	N/A	DRAIN TANK RIGHT BEHIND (NORTH) OF fw PUMP ROOM ON GROUND LEVEL	513	BV-I	BV conservative due to downward portion	0.500	400	2	No	N/A		
1668	PTN	4	081	5614-M-3081, SH 2	11 1" Vents and drains	drain 4-30-768	1.000	0.5	BV	N	НТ		513	BV		1.000	400	0.5	Yes	No Protection Required		
1668	PTN	4	081	5614-M-3081, SH 2	11 1" Vents and drains	drain 4-30-834	1.000	0.5	BV	N	НТ		513	BV		1.000	400	0.5	Yes	No Protection Required		
1668	PTN	4	081	5614-M-3081, SH 2	11 1" Vents and drains	drain 4-30835	1.000	0.5	BV	N	нт		513	BV		1.000	400	0.5	Yes	No Protection Required		
1668	PTN	4	081	5614-M-3081, SH 2	11 1" Vents and drains	vent 4-30-769	1.000	1.0	TV	N	нт	CONGESTED AREA ABOUT 9' ABOVE THE GROUND, WILL NEED SCAFFOLDING OR LADDER	513	TV		1.000	400	20	Yes	No Protection Required		
1668	PTN	4	081	5614-M-3081, SH 2	11 1" Vents and drains	vent 4-30-832	1.000	1.0	TV	N	нт	CONGESTED AREA ABOUT 9' ABOVE THE GROUND, WILL NEED SCAFFOLDING OR LADDER	513	TV		1.000	400	20	Yes	No Protection Required		
1668	PTN	4	081	5614-M-3081, SH 2	11 1" Vents and drains	vent 4-30-833	1.000	1.0	TV	N	НТ	CONGESTED AREA ABOUT 9' ABOVE THE GROUND, WILL NEED SCAFFOLDING OR LADDER	513	TV		1.000	400	20	Yes	No Protection Required		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 390 of 488

> R21002, Rev 0 Attachment N Page 25 of 123

1.56 Fin. 4 0.81 5.6																						Page 25	01 123
No.	054 PTN	4	089	5614-M-3089, SH	2 1			0.500	N/A	N/A	N/A	N/A		523	N/A		0.500	400		No	N/A		
18	574 PTN	4	081	5614-M-3081, SH	2 12	3/4" vent	vent 4-30-477	0.750	1.5	TV	N	НТ		513	TV		0.750	400	19	Yes	Protection		
10 10 10 10 10 10 10 10	569 PTN	4	081	5614-M-3081, SH	2 12	associated valves, tubing.		0.500	18.0	H,D	N	НТ		513	BV		0.500	400	0.5	No			Y
The Image						[4-1/2"-2-C]																	
No No No No No No No No	573 PTN	4	081	5614-M-3081, SH	2 12	3/4" Drain/connec	tion drain 4-30-796	0.750	1.0	BV,H	N	HT		513	BV		0.750	400	0.5	No	нт		N
Part											Y		FWH3B			·	Analyzed			No	Al		
Part	577 PTN	4	081	5614-M-3081, SH	2 13	3/4" Drain/connec	tion drain 4-30-784	0.750	1.0	BV	N	HT		513	BV		0.750	400	0.5	No	HT		Y
Part	576 PTN	4	081	5614-M-3081, SH	2 13		FE-4-5121 by-pass loop	10.000	25.0	H-I,D	Y	I		513	BV-I		1		#N/A	No	Al		
1	579 PTN	4	081	5614-M-3081, SH	2 14	3/4"drain/connect	ion drain 4-30-798	0.750	1.0	BV	N	НТ		513	BV		0.750	400	0.5	No	НТ		Y
No. 1	578 PTN	4	081	5614-M-3081, SH	2 14			8.000	15.0	H-I	Y	I		513	H-I		1	400	#N/A	No	AI		
Math	583 PTN	4	081	5614-M-3081, SH	2 15	3/4"drain/connec	ion drain 4-30-802	0.750	1.0	BV	N	нт		513	BV		0.750	400	0.5	No	нт		Y
Part	584 PTN	4	081	5614-M-3081, SH	2 15	Blind Flange	dead leg w/ blind	10.000	1.0	H-I	Y	1	FWH4A, Length based on 3A	513	H-I		1	400	#N/A	No	Al		
No.	585 PTN	4	081	5614-M-3081, SH	2 16			8.000	10.0	H-I,D	Y	I		513	BV-I		Not		#N/A	No	Al		
Part	581 PTN	4	081	5614-M-3081, SH	1 1	1/2" Vent; capped	pipe 4-30-771	0.750	0.5	Н	N	нт		513	Н		0.750	400	14	Yes			
Fig.	583 PTN	4	081	5614-M-3081, SH	1 2		X) and 1/2 1/2 IN PIPING	0.500	0.5	Н	N	НТ	SIZE NOT GIVEN ON P&ID, ASSUMED	513	Н		0.500	400	8.5	Yes	No		
No.	583 PTN	4	081	5614-M-3081, SH	1 2	Test Connection (I	X) and 1/2 TEST CONNECTION B(PX) 0.500	0.5	Н	N	HT		513	Н		0.500	400	8.5	Yes	Required No		
Table Fig.																					Required		
1566 PTN	587 PTN	4	081	5614-M-3081, SH	1 3	3/4" Vents	VENT (4-2124)	0.750	0.5	TV,H	N	нт		441	Н		0.750	400	14	Yes	Protection		
1586 FFN 4 081 5614-M-3081, SH1 3 PA SASCALES A/A* ppe & PF-4-6868 0.750 3.0 N.U N HT 441 H Upward few find of crafted from conservation Co	587 PTN	4	081	5614-M-3081, SH	1 3	3/4" Vents	VENT (4-2125)	0.750	0.5	Н	N	нт		441	Н		0.750	400	14	Yes	Protection		
1586 FPN 4 081 5614-M-3081,541 3 1° Drains DRAIN (4-2106) 1.000 1.0 8V N HT 441 8V 1.000 400 0.5 No HT 441 441 8V 1.000 400 0.5 No HT 441	584 PTN	4	081	5614-M-3081, SH	1 3		" pipe & PI-4-6686	0.750	3.0	H,U	N	нт		441	Н	credited for	0.750	400	14	Yes	No Protection		
1586 PTN 4 081 5614-M-3081, SH 3 1° Drains DRAIN (4-2107) 1.000 1.0 BV N HT BV 1.000 400 0.5 No HT short line high process temp; no protection required require	86 PTN	4	081	5614-M-3081, SH	1 3	1" Drains	DRAIN (4-2106)	1.000	1.0	BV	N	HT		441	BV	conservatism	1.000	400	0.5	No		short line high process temp; no protection	N
1588 PN 4 081 0514-M-3081, SH1 3 05 Blind flanged or capped SECTIONS	586 PTN	4	081	5614-M-3081, SH	1 3	1" Drains	DRAIN (4-2107)	1.000	1.0	BV	N	HT		441	BV		1.000	400	0.5	No	HT	short line high process temp; no protection	N
1588 PTN 4 081 S614-M-3081,SH1 3 S618 Ind flanged or capped sections S614-M-3081,SH1 3 S614-M-3081,SH1 5 S614-M-3081,SH1 S61	588 PTN	4	081	5614-M-3081, SH	1 3		capped 1ST BLIND	3.000	0.5	H-I	Y	1		441	H-I		1	400	#N/A	No	Al	required	
158 PTN 4 081 5614-M-3081, SH1 3 (5) Blind flanged or capped 3RD BUND 3.000 0.5 H-1 Y 1 BLIND LODING TO BE SAME SIZE AS THE 441 H-1 Not Analyzed Anal	588 PTN	4	081	5614-M-3081, SH	1 3	(5) Blind flanged o	capped 2ND BLIND	3.000	0.5	H-I	Y	I	BLIND LOOKS TO BE SAME SIZE AS THE	441	H-I		Not	400	#N/A	No	Al		
1588 PTN 4 081 5614-M-3081, SH 1 3 (5) Blind flanged or capped sections	88 PTN	4	081	5614-M-3081, SH	1 3	(5) Blind flanged o	capped 3RD BLIND	3.000	0.5	H-I	Y	ı	BLIND LOOKS TO BE SAME SIZE AS THE	441	H-I		Not	400	#N/A	No	Al		
1588 PTN 4 081 S614-M-3081, SH 1 3 (5) Blind flanged or capped sections 3.000 0.5 H-I Y I FWH4B 441 H-I 3.000 400 20 Yes No Protection Required 1590 PTN 4 081 S614-M-3081, SH 1 5 3/4" Vent V (4-2126) 0.750 1.0 TV,H N HT TAKEN FROM TYP 108 BV BV conservative due to downward portion 1.000 100 0 No HT Short line high process temp; no protection required required 1.000 1.0	588 PTN	4	081	5614-M-3081, SH	1 3	(5) Blind flanged o	capped 1ST CAPPED 3"	3.000	0.5	H-I	Y	I		441	H-I			400	20	Yes	Protection		
1590 PTN 4 081 5614-M-3081, SH 1 5 3/4" Vent V (4-2126) 0.750 1.0 TV,H N HT 108 H 0.750 100 2 Yes No Protection Required 1589 PTN 4 081 5614-M-3081, SH 1 5 3" piping to 4B Condenser [3"-5CM] 1" orifice bypass line [1"-3CM] 1591 PTN 4 081 5614-M-3081, SH 1 5 1" Drain Valve (4-2108) 1.000 1.0 BV,H N HT TAKEN FROM TYP 108 BV BV conservative due to downward portion frequired	588 PTN	4	081	5614-M-3081, SH	1 3		capped 2ND CAPED 3"	3.000	0.5	H-I	Y	I	FWH4B	441	H-I		3.000	400	20	Yes	No Protection		
1589 PTN 4 081 5614-M-3081, SH 1 5 3" piping to 4B Condenser [3"-5CM] spring to 4B Condenser [590 PTN	4	081	5614-M-3081, SH	1 5	3/4" Vent	V (4-2126)	0.750	1.0	TV,H	N	HT		108	Н		0.750	100	2	Yes	No		
1" orifice bypass line 1" orifice bypass l	589 PTN	4	081	5614-M-3081, SH	1 5		idenser VALVE (4-2093) & AN	ID E 1.000	3.0	Н	N	HT	based on typ	108	H		1.000	100	3.5	Yes	No		
downward portion required						1" orifice bypass li [1"-3CM]															Required		
1593 PTN 4 081 15614-M-3081, SH 1 6 Blind flange/connection blind 8.000 0.5 H- Y BLIND LOOKS TO BE SAME SIZE AS THE 441 H- Not 400 #N/A No Al																							N
HEADER, assumed Analyzed	93 PTN	4	081	5614-M-3081, SH	1 6	Blind flange/ conn	ection blind	8.000	0.5	H-I	Y			441	H-I		Not Analyzed	400	#N/A	No	Al		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 391 of 488

> R21002, Rev 0 Attachment N Page 26 of 123

																					Page 26	01 123
2054	PTN	4	089	5614-M-3089, SH 2	1 Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523	N/A		0.500	400		No	N/A		
1597	PTN	4	081	5614-M-3081, SH 1	7 3/4" Drain/connection, Blind Flanged pipe section	.75 Drain (4-30-1093)	0.750	0.5	BV	N	HT		441	BV		0.750	400	0.5	Yes	No Protection		
1597	PTN	4	081	5614-M-3081, SH 1	7 3/4" Drain/connection, Blind Flanged pipe section	dead leg w/ blind	8.000	1.0	H-I	Y	I	FWH3A	441	H-I		Not Analyzed	400	#N/A	No	Required		
1597	PTN	4	081	5614-M-3081, SH 1	7 3/4" Drain/connection, Blind Flanged pipe section	TX-4-1463	Not provide	o N/A	N/A	N/A	N/A	Within pipe, NO TAG, JUST A CONNECTION STICKING OUT OF THE PIPE EVEN WITH THE INSULATION JACKET	441	N/A		Not Analyzed	400		No	N/A		
1599	PTN	4	081	5614-M-3081, SH 1	8 Test Connection (PX) and associated piping (3/8")	valve 4-30-937	0.375	1.0	Н	N	HT	NEXT TO THE WEST CATWALK ON THE MEZZ LEVEL. RIGHT BELOW THE TURBIND DECK EAST OF THE CATWALK	441	Н		0.375	400	4.5	Yes	No Protection Required		
1598	PTN	4	081	5614-M-3081, SH 1	8 1/2" pipe - 1/4 SS Tubing to Sample System	.25 SS tubing to panel	0.250	110.0	N/A	N/A	N/A	ABOUT 50' OF TUBING IS ALONG THE CATWALK (OVERHEAD ON WEST SIDE) IS SHARED WITH UNIT B. ABOUT 20' WILL REQUIRE SCAFFOLDING.	441	BV	BV conservative due to downward portion	Not Analyzed	400		No	N/A		
1603	PTN	4	081	5614-M-3081, SH 1	9 3/4" Drain/connection	valve 4-30-751	0.750	1.0	BV	N	HT	PARTLY INSULATED	119	BV		0.750	110	0	No	НТ	short line high process temp; no protection required	N
1605	PTN	4	081	5614-M-3081, SH 1	10 3/4" Drain/connection	valve 4-30-753	0.750	1.0	BV-I,H,C	У	НТ	Insulation broken around support - photo taken	119	BV-I	BV conservative due to downward portion	0.750	110	1.6	Yes	No Protection Required	regunes	
1604	PTN	4	081	5614-M-3081, SH 1	10 8" Pipe to 4B Condenser [4-8"-5-D] [Bypass CV-4-1503B]	8" pipe by-pass	8.000	38.0	H-I	Y	I	MEASURED FROM HEADER TO CLOSED VALVE	119	H-I		Not Analyzed	110	#N/A	No	Al		
1607	PTN	4	081	5614-M-3081, SH 1	12 Level transmitters and associated piping/valves	LIT-4-1503A & LOOP	2.000	18.0	H-I,D	Y	N/A	Location on TD	441	BV-I	BV conservative due to downward portion	2.000	400	15	No	N/A		
1607	PTN	4	081	5614-M-3081, SH 1	12 Level transmitters and associated piping/valves	LIT-4-1503B & LOOP	2.000	18.0	H-I,D	Y	N/A	Location on TD	441	BV-I	BV conservative due to downward portion	2.000	400	15	No	N/A		
1607	PTN	4	081	5614-M-3081, SH 1	12 Level transmitters and associated piping/valves	LIT-4-1503C & LOOP	2.000	18.0	H-I,D	Y	N/A	Location on TD	441	BV-I	BV conservative due to downward portion	2.000	400	15	No	N/A		
1608	PTN	4	081	5614-M-3081, SH 1	12 MSR 4B - 1" Vents	Vent & Valve 4-30-1040	1.000	1.0	TV-I	Y	HT	Location on TD	309	TV-I	downward portion	1.000	300	19	Yes	No Protection Required		
1608	PTN	4	081	5614-M-3081, SH 1	12 MSR 4B - 1" Vents	Vent & Valve 4-30-1041	1.000	1.0	TV-I	Y	НТ	Location on TD	309	TV-I		1.000	300	19	Yes	No Protection Required		
1608	PTN	4	081	5614-M-3081, SH 1	12 MSR 4B - 1" Vents	Vent & Valve 4-30-1042	1.000	1.0	TV-I	Y	НТ	Location on TD	309	TV-I		1.000	300	19	Yes	No Protection Required		
1609	PTN	4	081	5614-M-3081, SH 1	12 MSR 4B - 1" Drains	valve 4-30-1081	1.000	1.0	H-I	Y	HT	Location on WEST SIDE OF TD - INST DRAIN	387	H-I		1.000	380	19	Yes	No Protection Required		
1609	PTN	4	081	5614-M-3081, SH 1	12 MSR 4B - 1" Drains	valve 4-30-1082	1.000	1.0	H-I	Y	НТ	Location on WEST SIDE OF TD - INST DRAIN	387	H-I		1.000	380	19	Yes	No Protection Required		
1609	PTN	4	081	5614-M-3081, SH 1	12 MSR 4B - 1" Drains	valve 4-30-1083	1.000	1.0	H-I	Y	HT	Location on WEST SIDE OF TD - INST DRAIN	387	H-I		1.000	380	19	Yes	No Protection Required		
1611	PTN	4	081	5614-M-3081, SH 1	13 3/4" Vent; capped pipe	& valve 4-30-770 (not ca	0.750	0.5	Н	N	HT	TD	513	н		0.750	400	14	Yes	No Protection Required		
1613	PTN	4	081	5614-M-3081, SH 1	14 Test Connection (PX) and 1/2 piping	4-30-684	0.500	1.0	Н	N	HT	TD	513	Н		0.500	400	8.5	Yes	No Protection Required		
1616	PTN	4	081	5614-M-3081, SH 1	15 1" Drains	1st Drain 4-2102	0.750	1.0	TV	N	HT		441	TV		0.750	400	19	Yes	No Protection Required		
1617	PTN	4	081	5614-M-3081, SH 1	15 3/4" Vents	3rd Vent 4-2122	0.750	1.0	TV	N	HT	PARTIALY INSULATED -	441	TV		0.750	400	19	Yes	No Protection Required		
1614	PTN	4	081	5614-M-3081, SH 1	15 PI & associated 3/4" pipe & Valve	PI-4-6685	0.750	3.0	H,U	N	HT	TD	441	Н	Upward bend not credited for conservatism	0.750	400	14	Yes	No Protection Required		
1618	PTN	4	081	5614-M-3081, SH 1	15 (4) Blind flanged sections and (2) welded caps	1st Blind	3.000	1.0	H-I	Y	I	BLIND LOOKS TO BE SAME SIZE AS THE HEADER, assumed	441	H-I	CONSCIVATION	Not Analyzed	400	#N/A	No	Al		
1616	PTN	4	081	5614-M-3081, SH 1	15 1" Drains	2nd Drain 4-2104	1.000	1.0	BV,H	N	HT	nersen, assumed	441	BV	BV conservative due to downward portion	1.000	400	0.5	No	НТ	short line high process temp; no protection required	N
1616	PTN	4	081	5614-M-3081, SH 1	15 1" Drains	3rd drain 4-2103	1.000	1.0	BV,H	N	HT		441	BV	BV conservative due to downward portion	1.000	400	0.5	No	НТ	short line high process temp; no protection required	N
1617	PTN	4	081	5614-M-3081, SH 1	15 3/4" Vents	Drain 4-2120	1.000	1.0	BV	N	НТ	ON 18' EL FLOOR ON GRATING BUT BEHIND GAURDRAIL - 6" BROKEN AFTER TURN UP ON WWESST SIDE	441	BV	Processing	1.000	400	0.5	No	НТ	short line high process temp; no protection required	N

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 392 of 488

> R21002, Rev 0 Attachment N Page 27 of 123

																					Page 27 0	01 123
2054	PTN	4	089	5614-M-3089, SH 2	1 Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523	N/	A	0.500	400		No	N/A		
1618	PTN	4	081	5614-M-3081, SH 1	15 (4) Blind flanged sections and (2) welded caps	1 2nd Blind	3.000	1.0	H-I	Y	I	BLIND LOOKS TO BE SAME SIZE AS THE HEADER, assumed	441	H		Not Analyzed	400	#N/A	No	Al		
1618	PTN	4	081	5614-M-3081, SH 1	15 (4) Blind flanged sections and (2) welded caps	3rd Blind	3.000	1.0	H-I	Y	I	BLIND LOOKS TO BE SAME SIZE AS THE HEADER, assumed	441	H		Not Analyzed	400	#N/A	No	Al		
1618	PTN	4	081	5614-M-3081, SH 1	15 (4) Blind flanged sections and (2) welded caps	4th Blind	3.000	1.0	H-I	Y	I	BLIND LOOKS TO BE SAME SIZE AS THE HEADER, assumed	441	H-		Not Analyzed	400	#N/A	No	Al		
1617	PTN	4	081	5614-M-3081, SH 1	15 3/4" Vents	1ST VENT 4-2119	1.000	1.0	TV	N	HT	Turbine Deck - TD	441	П		1.000	400	20	Yes	No Protection		
1618	PTN	4	081	5614-M-3081, SH 1	15 (4) Blind flanged sections and (2) welded caps	1ST CAPED 3"	3.000	1.0	H-I	Y	I	FWH4A	441	H		3.000	400	20	Yes	Required No Protection		
1618	PTN	4	081	5614-M-3081, SH 1	15 (4) Blind flanged sections and (2) welded caps	2ND CAPED 3"	3.000	1.0	H-I	Y	I	FWH4B	441	H		3.000	400	20	Yes	No Protection		
1620	PTN	4	081	5614-M-3081, SH 1	17 3/4" Vent	Valve 4-2121 VENT	0.750	1.0	TV	N	HT	MEZZ LEVEL WEST SIDE (IN STEPDOWN OFF CATWALK)	108	T		0.750	100	1	Yes	No Protection Required		
1619	PTN	4	081	5614-M-3081, SH 1	17 3" piping to 4A Condenser [3"-5CM] 1" orifice bypass line [1"-3CM]	Valve 4-2091 & loop	1.000	6.0	TV-I,H	Y	HT	VALVE TAG BROKEN - INSULATED	108	н		1.000	100	9	Yes	No Protection Required		
1621	PTN	4	081	5614-M-3081, SH 1	17 1" Drain	Valve 4-2105	1.000	0.5	BV	N	НТ	PARTLY INSULATED WITH BLIND TEE	108	B		1.000	100	0	No	HT	short line high process temp; no protection required	N
1626	PTN	4	081	5614-M-3081, SH 1	18 3/4" Drain/connection	Valve 4-30-1121	0.750	0.5	BV	N	НТ		441	B		0.750	400	0.5	Yes	No Protection Required		
1627	PTN	4	081	5614-M-3081, SH 1	18 Blind flange/ connection	dead leg w/ blind	8.000	1.0	H-I	Y	I	FWH3B	441	H		Not Analyzed	400	#N/A	No	Al		
1628	PTN	4	081	5614-M-3081, SH 1	19 1/2" pipe - 1/4 SS Tubing to Sample System	375 pipe & valve 4-30-930	0.375	0.5	Н	N	НТ		441	Н		0.375	400	4.5	Yes	No Protection Required		
1628	PTN	4	081	5614-M-3081, SH 1	19 1/2" pipe - 1/4 SS Tubing to Sample System	.5375. pipe &SS tubing	0.375	150.0	Н	N	НТ	ALONG WEST CATWALK IN MEZZ LEVEL- START IS RIGHT BELOW tO EAST OF CATWALK 20' SCAFOLDING REQUIRED - 50' HAS SHARED SUPPORTS WITH B UNIT	441	Н		0.375	400	4.5	No	нт	verify with chemistry if in service; can isolate if need be	Y
1633	PTN	4	081	5614-M-3081, SH 1	20 3/4" Drain/connection	valve 4-30-1125 (DRAIN)	0.750	0.5	BV	N	HT	HANDLE REMOVED	119	B		0.750	110	0	No	HT	short line high process temp; no protection required	N
1634	PTN	4	081	5614-M-3081, SH 1	20 Blind flange/ connection	dead-leg & blind flange	10.000	1.0	H-I	Y	ı	FWH3B	119	H		Not Analyzed	110	#N/A	No	AI		
1636		4	081	5614-M-3081, SH 1	21 3/4" Drain/connection	valve 4-30-1126	0.750	1.0	BV	N	HT		119	B)		0.750	110	0	No	HT	short line high process temp; no protection required	N
1635	PTN	4	081	5614-M-3081, SH 1	21 8" Pipe to 4B Condenser [4-8"-5-D] [Bypass CV-4-1523B]	pipe bypass	8.000	38.0	H-I	Y	I	30' FROM HEADER TO FIRST CLOSED VALVE 8' TO SECOND CLOSED VALVE	119	н		Not Analyzed	110	#N/A	No	AI		
1637	PTN	4	081	5614-M-3081, SH 1	22 10" Piping from Drain Tks outlet control valve (CV-4- 1523B) to 4B Condenser	Pipe & valve 4-30-1017	10.000	60.0	BV-I	Y	I	NOT REQUIRED - COULD NOT FOLLOW TROUGH THE MEZZ LEVEL, 60' GUESS	119	BV	1	Not Analyzed	110	#N/A	No	AI		
1638	PTN	4	081	5614-M-3081, SH 1	23 Level transmitters and associated piping/valves	LIT-4-1523A & loop	2.000	18.0	H-I,D	Y	N/A	ALREADY INSULATED - TURBINE DECK (TD) - WEST OF TURBINE	441	BV	BV conservative due downward portion	2.000	400	15	No	N/A		
1638	PTN	4	081	5614-M-3081, SH 1	23 Level transmitters and associated piping/valves	LIT-4-1523B & loop	2.000	18.0	H-I,D	Y	N/A	ALREADY INSULATED - TURBINE DECK (TD) - WEST OF TURBINE	441	BV	I BV conservative due downward portion	0 2.000	400	15	No	N/A		
1638		4	081	5614-M-3081, SH 1	23 Level transmitters and associated piping/valves	LIT-4-1523C & loop	2.000	18.0		Y		ALREADY INSULATED - TURBINE DECK (TD) - WEST OF TURBINE	441	BV	downward portion		400	15	No	N/A		
1639	PTN	4	081	5614-M-3081, SH 1	23 MSR 4A - 1" Vents	4-30-1039	1.000	1.0	TV-I	Y	HT	ALREADY INSULATED - TURBINE DECK (TD) - WEST (INSTRUMENT VENT)	309	TV	1	1.000	300	19	Yes	No Protection Required		
1639	PTN	4	081	5614-M-3081, SH 1	23 MSR 4A - 1" Vents	4-30-1048	1.000	1.0	TV-I	Y	HT	ALREADY INSULATED - TURBINE DECK (TD) - WEST (INSTRUMENT VENT)	309	TV	1	1.000	300	19	Yes	No Protection Required		
1639	PTN	4	081	5614-M-3081, SH 1	23 MSR 4A - 1" Vents	4-30-1049	1.000	1.0	TV-I	Y	HT	ALREADY INSULATED - TURBINE DECK (TD) - WEST (INSTRUMENT VENT)	309	TV	ı	1.000	300	19	Yes	No Protection Required		
1640	PTN	4	081	5614-M-3081, SH 1	23 MSR 4A - 1" Drains	4-30-1087	1.000	1.0	H-I	Y	HT	ALREADY INSULATED - TURBINE DECK (TD) - WEST (INSTRUMENT DRAIN)	387	н		1.000	380	19	Yes	No Protection Required		
1640	PTN	4	081	5614-M-3081, SH 1	23 MSR 4A - 1" Drains	4-30-1088	1.000	1.0	H-I	Y	HT	ALREADY INSULATED - TURBINE DECK (TD) - WEST (INSTRUMENT DRAIN)	387	н		1.000	380	19	Yes	No Protection Required		
1640	PTN	4	081	5614-M-3081, SH 1	23 MSR 4A - 1" Drains	4-30-1089	1.000	1.0	H-I	Y	HT	ALREADY INSULATED - TURBINE DECK (TD) - WEST (INSTRUMENT DRAIN)	387	н		1.000	380	19	Yes	No Protection Required		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 393 of 488

> R21002, Rev 0 Attachment N Page 28 of 123

																						Page 28 of	123
2054	PTN	4	089	5614-M-3089, SH 2		Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523		N/A	0.500	400		No	N/A		
1571	PTN	4	080	5614-M-3080, SH 1		Level switches for Gland Steam Condenser Drain Pump Start/stop control of pump and control room annunciation (high level).	LS-4-1530	4.000	0.5	N/A	N	N/A	Fluid portion of Switch (float) is contained in Gland Steam Condenser Receiver tank and heated by tank fluid	350		N/A	4.000	350		No	N/A		
1571	PTN	4	080	5614-M-3080, SH 1		Level switches for Gland Steam Condenser Drain Pump Start/stop control of pump and control room annunciation (high level).	LS-4-1568	N/A	N/A	N/A	N/A	N/A	Fluid portion of Switch (float) is contained in Gland Steam Condenser Receiver tank and heated by tank fluid	350		N/A		350		No	N/A		
1574	PTN	4	080	5614-M-3080, SH 1		Level switch for condenser pit sump pump with control room annunciation and alarm (high)	LC-4-3512	N/A	N/A	N/A	N/A	N/A	EAST SIDE OF CONDENSOR IN PIT. CONFINED SPACE, EXTREMELY HOT, WILL NOT FREEZE.	90		N/A		90		No	N/A		
1576	PTN	4	080	5614-M-3080, SH 1	4	1" vent	Vent 4-50-032	1.000	N/A	N/A	N/A	N/A	EAST SIDE OF CONDENSOR IN PIT. CONFINED SPACE, EXTREMELY HOT, WILL NOT FREEZE.	90		N/A	1.000	90		No	N/A		
1576	PTN	4	080	5614-M-3080, SH 1	4	1" vent	Vent 4-70-069	1.000	N/A	N/A	N/A	N/A	EAST SIDE OF CONDENSOR IN PIT. CONFINED SPACE, EXTREMELY HOT, WILL NOT FREEZE.	90		N/A	1.000	90		No	N/A		
1574	PTN	4	080	5614-M-3080, SH 1		Level switch for condenser pit sump pump with control room annunciation and alarm (high)	LT-4-3512	6.000	N/A	N/A	N/A	N/A	EAST SIDE OF CONDENSOR IN PIT. CONFINED SPACE, EXTREMELY HOT, WILL NOT FREEZE.	90		N/A	Not Analyzed	90		No	N/A		
1575	PTN	4	080	5614-M-3080, SH 1		4", 6" piping Condenser Pit Sump	4" Pipe	4.000	N/A	N/A	N/A	N/A	EAST SIDE OF CONDENSOR IN PIT. CONFINED SPACE, EXTREMELY HOT, WILL NOT FREEZE.	90		N/A	4.000	90		No	N/A		
1575	PTN	4	080	5614-M-3080, SH 1		4", 6" piping Condenser Pit Sump	6" pipe	6.000	N/A	N/A	N/A	N/A	EAST SIDE OF CONDENSOR IN PIT. CONFINED SPACE, EXTREMELY HOT, WILL NOT FREEZE.	90		N/A	Not Analyzed	90		No	N/A		
2608	PTN	4	SGWLU / 078	5614-M-3078, SH 1		2" Pipe up to locked closed valves during normal operation SGWL-4-011, -031, - 049	SGWL-4-002	1.000	N/A	N/A	N/A	N/A	This line is isolated by closed valves from CST	518		N/A	1.000	400		No	N/A		
2608	PTN	4	SGWLU / 078	5614-M-3078, SH 1		2" Pipe up to locked closed valves during normal operation SGWL-4-011, -031, - 049	SGWL-4-011	2.000	40.0	H-I	Y	I	FWH4A	518		H-I	2.000	400	20	No	Al		
2608	PTN	4	SGWLU / 078	5614-M-3078, SH 1		2" Pipe up to locked closed valves during normal operation SGWL-4-011, -031, - 049	SGWL-4-031	2.000	40.0	H-I	Y	I	FWH4B	518		H-I	2.000	400	20	No	AI		
2608	PTN	4	SGWLU / 078	5614-M-3078, SH 1		2" Pipe up to locked closed valves during normal operation SGWL-4-011, -031, - 049	SGWL-4-049	2.000	40.0	H-I	Y	I	FWH4A - hot area	518		H-I	2.000	400	20	No	AI		
2610	PTN	4	SGWLU / 078	5614-M-3078, SH 1		2" Pipe up to locked closed valves during normal operation SGWL-4-007, -025, - 042	SGWL-4-007	2.000	1.0	H-I	Y	I	FWH4B - hot area	518		H-I	2.000	400	20	Yes	AI		
2610	PTN	4	SGWLU / 078	5614-M-3078, SH 1		2" Pipe up to locked closed valves during normal operation SGWL-4-007, -025, - 042	SGWL-4-025	2.000	1.0	H-I	Y	I	FWH4A - HOT area	518		H-I	2.000	400	20	Yes	Al		
2610	PTN	4	SGWLU / 078	5614-M-3078, SH 1	4	2" Pipe up to locked closed valves during normal operation SGWL-4-007, -025, - 042	SGWL-4-042	2.000	1.0	H-I	Y	I	FWH4B - HOT AREA	518		H-I	2.000	400	20	Yes	Al		
			078	5614-M-3078, SH 1		3/4" Pipe to SGWL-4-022, - 028, -046	SGWL-4-028	0.750	N/A	N/A	N/A	N/A	vent valve is maintained open betweem]n two closed valves for expansion of ice	150		N/A	0.750	150		No	N/A		
			SGWLU / 078	5614-M-3078, SH 1		3/4" Pipe to SGWL-4-022, - 028, -046	SGWL-4-046	0.750		N/A			vent valve is maintained open betweem]n two closed valves for expansion of ice	150		N/A	0.750			No	N/A		
2102	PTN	4	AFWS / 075	5614-M-3075 Sh 2	1	3/4" Vent & 1" Connection	4-20-190	0.750	1.0	Н	N	нт		40	SBFW pumps are in standby, therefore, temperature reflects ambient	Н	0.750	40	0	No	HT	нт	N

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 394 of 488

> R21002, Rev 0 Attachment N Page 29 of 123

																						Page 29 d	of 123
2054	TN	4	089	5614-M-3089, SH 2	1 Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523		N/A		0.500	400		No	N/A		
2102	PTN	4	AFWS / 075	5614-M-3075 Sh 2	1 3/4" Vent & 1" Connection	4-20-191	0.750	1.5	Н	N	НТ		40	SBFW pumps are in standby, therefore, temperature reflects ambient	Н		0.750	40	0	No	НТ	нт	N
2102	PTN	4	AFWS / 075	5614-M-3075 Sh 2	1 3/4" Vent & 1" Connection	4-20-192	0.750	1.0	Н	N	HT		40	SBFW pumps are in standby, therefore, temperature reflects ambient	Н		0.750	40	0	No	НТ	нт	N
2102	PTN	4	AFWS / 075	5614-M-3075 Sh 2	1 3/4" Vent & 1" Connection	4-20-281	0.750	1.0	TV	N	НТ	Could not locate. Assumed length based on others in system	40	SBFW pumps are in standby, therefore, temperature reflects ambient	TV		0.750	40	0	No	НТ	нт	N
2102	PTN	4	AFWS / 075	5614-M-3075 Sh 2	1 3/4" Vent & 1" Connection	4-20-276	0.750	1.0	TV	N	НТ	Could not locate. Assumed length based on others in system	40	SBFW pumps are in standby, therefore, temperature reflects ambient	TV		0.750	40	0	No	НТ	нт	N
2102	PTN	4	AFWS / 075	5614-M-3075 Sh 2	1 3/4" Vent & 1" Connection	4-20-275	0.750	1.0	TV	N	НТ	Could not locate. Assumed length based on others in system	40	SBFW pumps are in standby, therefore, temperature reflects ambient	TV		0.750	40	0	No	НТ	нт	N
2102	PTN	4	AFWS / 075	5614-M-3075 Sh 2	1 3/4" Vent & 1" Connection	4-20-362	0.750	1.0	TV	N	НТ	Could not locate. Assumed length based on others in system	40	SBFW pumps are in standby, therefore, temperature reflects ambient	TV		0.750	40	0	No	НТ	нт	N
2102	PTN	4	AFWS / 075	5614-M-3075 Sh 2	1 3/4" Vent & 1" Connection	4-20-282	0.750	1.0	TV	N	НТ		40	SBFW pumps are in standby, therefore, temperature reflects ambient	TV		0.750	40	0	No	НТ	нт	N
2102	PTN	4	AFWS / 075	5614-M-3075 Sh 2	1 3/4" Vent & 1" Connection	4-20-282A	0.750	1.0	TV	N	НТ	Could not locate. Assumed length based on others in system	40	SBFW pumps are in standby, therefore, temperature reflects ambient	TV		0.750	40	0	No	НТ	нт	N
2101	PTN	4	AFWS / 075	5614-M-3075 Sh 2	1 4" and 6" AFW piping, up to control valve	Pipe up to CV-4-2816	4.000	20.0	Н	N	М		40	SBFW pumps are in standby, therefore, temperature reflects ambient	Н		4.000	40	0	No	М		
2101	PTN	4	AFWS / 075	5614-M-3075 Sh 2	1 4" and 6" AFW piping, up to control valve	Pipe up to CV-4-2817	4.000	32.0	Н	N	М		40	SBFW pumps are in standby, therefore, temperature reflects ambient	Н		4.000	40	0	No	М		
2101	PTN	4	AFWS / 075	5614-M-3075 Sh 2	1 4" and 6" AFW piping, up to control valve	Pipe up to CV-4-2818	4.000	38.0	Н	N	М		40	SBFW pumps are in standby, therefore, temperature reflects ambient	Н		4.000	40	0	No	М		
2101	PTN	4	AFWS / 075	5614-M-3075 Sh 2	1 4" and 6" AFW piping, up to control valve	Pipe up to CV-4-2831	4.000	18.0	Н	N	М		40	SBFW pumps are in standby, therefore, temperature reflects ambient	Н		4.000	40	0	No	М		
2101	PTN	4	AFWS / 075	5614-M-3075 Sh 2	1 4" and 6" AFW piping, up to control valve	Pipe up to CV-4-2832	4.000	14.0	Н	N	М		40	SBFW pumps are in standby, therefore, temperature reflects ambient	Н		4.000	40	0	No	М		
2101	PTN	4	AFWS / 075	5614-M-3075 Sh 2	1 4" and 6" AFW piping, up to control valve	Pipe up to CV-4-2833	4.000	14.0	Н	N	М		40	SBFW pumps are in standby, therefore, temperature reflects ambient	Н		4.000	40	0	No	М		
2102	PTN	4	AFWS / 075	5614-M-3075 Sh 2	1 3/4" Vent & 1" Connection	4-20-399	1.000	1.0	BV	N	НТ	Could not locate. Assumed length based on others in system	40	SBFW pumps are in standby, therefore, temperature reflects ambient	BV		1.000	40	0	No	НТ	НТ	N
				5614-M-3075 Sh 2	1 3/4" Vent & 1" Connection	4-20-198	1.000	1.0	BV	N	НТ	Could not locate. Assumed length based on others in system	40	SBFW pumps are in standby, therefore, temperature reflects ambient	BV		1.000	40	0	No	НТ	НТ	N
2102	PTN	4	AFWS / 075	5614-M-3075 Sh 2	1 3/4" Vent & 1" Connection	4-20-398	1.000	1.0	BV	N	нт	Could not locate. Assumed length based on others in system	40	SBFW pumps are in standby, therefore, temperature reflects ambient	BV		1.000	40	0	No	НТ	НТ	N
				5614-M-3075 Sh 2	1 3/4" Vent & 1" Connection	4-20-363	1.000	1.5	BV	N	НТ		40	SBFW pumps are in standby, therefore, temperature reflects ambient	BV		1.000	40	0	No	НТ	НТ	N
				5614-M-3075 Sh 2	1 4" and 6" AFW piping, up to control valve	4-6"-1-A	6.000	383.0		N	М	Train 2 From AFPD-001,2,3 to AFPD-4-9,11,13	40	SBFW pumps are in standby, therefore, temperature reflects ambient	н	Upward bend not credited for conservatism	Not Analyzed	40	#N/A	No	М		
				5614-M-3075 Sh 2	1 4" and 6" AFW piping, up to control valve	4-6"-1-A	6.000	350.0	H,U	N	М	Train 1 From 4-20-142, 242,342, to 4-20- 141,241,341	40	SBFW pumps are in standby, therefore, temperature reflects ambient	Н	Upward bend not credited for conservatism	Not Analyzed	40	#N/A	No	М		
				5614-M-3075 Sh 2	2 4" AFW piping, downstream control valve	4-20-139	4.000	28.0		Y	М		40	SBFW pumps are in standby, therefore, temperature reflects ambient	H-I		4.000		Not Analyzed	No	М	system flow will provide protection; no heat trace required	
				5614-M-3075 Sh 2	2 4" AFW piping, downstream control valve	4-20-239	4.000	38.0	H-I	Y	М		40	SBFW pumps are in standby, therefore, temperature reflects ambient	H-I		4.000		Not Analyzed	No	М	system flow will provide protection; no heat trace required	
				5614-M-3075 Sh 2	2 4" AFW piping, downstream control valve	4-20-339	4.000	45.0		Y	М		40	SBFW pumps are in standby, therefore, temperature reflects ambient	H-I		4.000		Not Analyzed	No	М	system flow will provide protection; no heat trace required	
				5614-M-3075 Sh 2	4 1/2" tubing for AFW flow element / transmitter	FT-4-1458A	0.500	9.8	Н	N	HT	length is per side	40	SBFW pumps are in standby, therefore, temperature reflects ambient	н		0.500	40	0	No	HT	HT	N
2104	Y (N	4	AFWS / 075	5614-M-3075 Sh 2	4 1/2" tubing for AFW flow element / transmitter	FE-4-1458A	0.500	9.8	Н	N	нт		40	SBFW pumps are in standby, therefore, temperature reflects ambient	Н		0.500	40	0	No	НТ	НТ	N

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 395 of 488

> R21002, Rev 0 Attachment N Page 30 of 123

																						Page 30 of 12
2054	PTN	4	089	5614-M-3089, SH 2	1 Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523		N/A	0.500	400		No	N/A		
2104	PTN	4	AFWS / 075	5614-M-3075 Sh 2	4 1/2" tubing for AFW flow element / transmitter	FT-4-1458B	0.500	15.8	Н	N	НТ		40	SBFW pumps are in standby, therefore, temperature reflects ambient	Н	0.500	40	0	No	НТ	НТ	N
2104	PTN	4	AFWS / 075	5614-M-3075 Sh 2	4 1/2" tubing for AFW flow element / transmitter	FE-4-1458B	0.500	15.8	Н	N	нт		40	SBFW pumps are in standby, therefore, temperature reflects ambient	Н	0.500	40	0	No	HT	НТ	N
2104	PTN	4	AFWS / 075	5614-M-3075 Sh 2	4 1/2" tubing for AFW flow element / transmitter	FT-4-1457A	0.500	9.8	Н	N	нт		40	SBFW pumps are in standby, therefore, temperature reflects ambient	Н	0.500	40	0	No	НТ	нт	N
2104	PTN	4	AFWS / 075	5614-M-3075 Sh 2	4 1/2" tubing for AFW flow element / transmitter	FE-4-1457A	0.500	9.8	Н	N	нт		40	SBFW pumps are in standby, therefore, temperature reflects ambient	Н	0.500	40	0	No	НТ	нт	N
2104	PTN	4	AFWS / 075	5614-M-3075 Sh 2	4 1/2" tubing for AFW flow element / transmitter	FT-4-1457B	0.500	9.8	Н	N	НТ		40	SBFW pumps are in standby, therefore, temperature reflects ambient	Н	0.500	40	0	No	НТ	нт	N
				5614-M-3075 Sh 2	4 1/2" tubing for AFW flow element / transmitter	FE-4-1457B	0.500	9.8	Н	N	нт			SBFW pumps are in standby, therefore, temperature reflects ambient	Н	0.500	40	0	No	НТ	НТ	N
				5614-M-3075 Sh 2	4 1/2" tubing for AFW flow element / transmitter	FT-4-1401A	0.500	13.3	Н	N	нт			SBFW pumps are in standby, therefore, temperature reflects ambient	Н	0.500	40	0	No	HT	НТ	N
				5614-M-3075 Sh 2	4 1/2" tubing for AFW flow element / transmitter	FE-4-1401A	0.500	13.3		N	НТ			SBFW pumps are in standby, therefore, temperature reflects ambient	Н	0.500	40	0	No	HT	НТ	N
				5614-M-3075 Sh 2	4 1/2" tubing for AFW flow element / transmitter	FT-4-1401B	0.500	15.8		N	нт		40	SBFW pumps are in standby, therefore, temperature reflects ambient	Н	0.500	40	0	No	HT	нт	N
				5614-M-3075 Sh 2	4 1/2" tubing for AFW flow element / transmitter	FE-4-1401B	0.500	15.8		N	НТ			SBFW pumps are in standby, therefore, temperature reflects ambient	Н	0.500	40	0	No	HT	нт	N
2380				5614-M-3074, Sh. 4 5614-M-3074, Sh. 4	1 Flow transmitters 1 Flow transmitters	FE-4-6227A FE-4-6227B	0.750 0.750	44.0 40.0		N N	HT HT		450 450		H	0.750	400 400	14 14	No No	HT HT	HT HT	N N
2380		4		5614-M-3074, Sh. 4	1 Flow transmitters	FE-4-6227C	0.750	30.0	Н	N	HT		450		Н	0.750	400	14	No	HT	HT	N N
				5614-M-3074, Sh. 4	1 3/4" test connections	SGB-4-044	0.750	0.5		Y	НТ		450		TV-I	0.750	400	20	Yes	No Protection Required		
2384	PTN	4	FWS / 074	5614-M-3074, Sh. 4	1 3/4" test connections	SGB-4-045	0.750	0.5	VA	Y	НТ		450		TV-I	0.750	400	20	Yes	No Protection Required		
2384	PTN	4	FWS / 074	5614-M-3074, Sh. 4	1 3/4" test connections	SGB-4-046	0.750	0.5	VA	Y	НТ		450		TV-I	0.750	400	20	Yes	No Protection Required		
2384	PTN	4	FWS / 074	5614-M-3074, Sh. 4	1 3/4" test connections	SGB-4-047	0.750	0.5	VA	Y	НТ		450		TV-I	0.750	400	20	Yes	No Protection Required		
2381	PTN	4	FWS / 074	5614-M-3074, Sh. 4	1 Temperature indication	TI-4-6562A,B,C	N/A	N/A	N/A	N/A	N/A	Temperaure elements are either in thermal well or direct emerssion. Process fluid is not exposed and therefore no protection required	450		N/A		400		No	N/A		
2384	PTN	4	FWS / 074	5614-M-3074, Sh. 4	1 3/4" test connections	SGB-4-048	0.750	0.5	VA	Y	нт		450		TV-I	0.750	400	20	Yes	No Protection Required		
2384	PTN	4	FWS / 074	5614-M-3074, Sh. 4	1 3/4" test connections	SGB-4-049	0.750	0.5	VA	Y	нт		450		TV-I	0.750	400	20	Yes	No Protection Required		
2385	PTN	4	FWS / 074	5614-M-3074, Sh. 4	1 3/4" manual vents	SGB-4-052	0.750	0.5	VA	Y	НТ		450		TV-I	0.750	400	20	Yes	No Protection Required		
2385	PTN	4	FWS / 074	5614-M-3074, Sh. 4	1 3/4" manual vents	SGB-4-050	0.750	0.8	VA	Y	НТ		450		TV-I	0.750	400	20	Yes	No Protection Required		
2385	PTN	4	FWS / 074	5614-M-3074, Sh. 4	1 3/4" manual vents	SGB-4-051	0.750	1.0	TV	N	НТ	ASSUMED LENGTH	450		TV	0.750	400	19	Yes	No Protection Required		
2383	PTN	4	FWS / 074	5614-M-3074, Sh. 4	1 3/4" & 2" CV bypass line	SV-4-6275A-1 SGB-4-082A	0.750	12.0	VA	Y	НТ		450		TV-I	0.750	400	20	Yes	No Protection Required		
				5614-M-3074, Sh. 4	1 3/4" & 2" CV bypass line	SV-4-6275B-1 SGB-4-082B	0.750	12.0		Y	нт		450		TV-I	0.750	400	20	Yes	No Protection Required		
2383	PTN	4	FWS / 074	5614-M-3074, Sh. 4	1 3/4" & 2" CV bypass line	SV-4-6275C-1 SGB-4-082C	0.750	12.0	VA	Y	НТ		450		TV-I	0.750	400	20	Yes	No Protection Required		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 396 of 488

> R21002, Rev 0 Attachment N Page 31 of 123

| 4 | 089 | 5614-M-3089, SH 2 | 1 | Pressure Control Instrument | PC-4-3709

 | 0.500
 | N/A | NI/A | NI/A | | | | | | | 0.500
 | 400 | | |
 | | 1 7 |
|---|-------------------|---|--|--
--
--
--|---|--
--|--|---|--|--------------------------------|--|------|--
---|--|--|---
--|--|--|
| | | | | (PC x2) plus 1/2" tubing | 16 4 3763

 | 0.500
 | IN/A | N/A | N/A | N/A | | 523 | | N/A | | 0.500
 | 400 | | No | N/A
 | | |
| 4 | FWS / 074 | 5614-M-3074, Sh. 4 | 1 | 3/4" test connections | SGB-4-041

 | 1.000
 | 1.0 | BV-I | Y | НТ | | 450 | | BV-I | | 1.000
 | 400 | 3 | Yes | No
Protection
 | | |
| 4 | FWS / 074 | 5614-M-3074, Sh. 4 | 1 | 3/4" test connections | SGB-4-042

 | 1.000
 | 1.0 | BV-I | Y | НТ | | 450 | | BV-I | | 1.000
 | 400 | 3 | Yes | No
Protection
 | | |
| 4 | FWS / 074 | 5614-M-3074, Sh. 4 | 1 | 3/4" test connections | SGB-4-043

 | 1.000
 | 1.0 | BV-I | Y | НТ | | 450 | | BV-I | | 1.000
 | 400 | 3 | Yes | Required
No
Protection
 | | |
| 4 | FWS / 074 | 5614-M-3074, Sh. 4 | 2 | Blowdown Tank level instrumentation lines | HPS-4-6323

 | 0.750
 | 5.0 | TV-I | Y | НТ | | 366 | | TV-I | | 0.750
 | 360 | 20 | Yes | Required
No
Protection
 | | |
| 4 | FWS / 074 | 5614-M-3074, Sh. 4 | 2 | Blowdown Tank level | PIC-4-6269

 | 0.750
 | 5.0 | TV | N | НТ | | 366 | | TV | | 0.750
 | 360 | 16.6 | Yes | Required
No
 | | |
| 4 | FWS / 074 | 5614-M-3074, Sh. 4 | 2 | Blowdown Tank level | PS-4-6267

 | 0.750
 | 5.0 | TV | N | НТ | | 366 | | TV | | 0.750
 | 360 | 16.6 | Yes | Required
No
 | | |
| 4 | FWS / 074 | 5614-M-3074, Sh. 4 | 2 | Blowdown Tank level | PS-4-6267A

 | 0.750
 | 5.0 | TV | N | НТ | | 366 | | TV | | 0.750
 | 360 | 16.6 | Yes | Required
No
 | | |
| 4 | FWS / 074 | 5614-M-3074, Sh. 4 | 2 | instrumentation lines Blowdown Tank level | PI-4-6268

 | 0.750
 | 11.0 | VA | Y | нт | | 366 | | TV-I | | 0.750
 | 360 | 20 | Yes | Protection
Required
No
 | | |
| | | | 2 | instrumentation lines | PT-4-6268A

 | 0.750
 | 1.0 | BV | N | нт | COLLID NOT FIND, assumed length based | 366 | | RV | | 0.750
 | | | | Protection
Required
HT
 | verify length if less than 2' do not HT | Y |
| | | | 3 | instrumentation lines Manual drains | SGB-4-112

 | 0.500
 | 1.0 | BV | N | | on similar COULD NOT FIND, assumed length based | | | BV | | 0.500
 | 100 | 0.5 | No | нт
 | verify length; if short run no heat trace b/c high | Y |
| | | | 3 | Manual drains | SGB-4-066

 | 0.750
 | 1.0 | BV | N | | | 100 | | BV | | 0.750
 | 100 | 0 | No |
 | | Y |
| 4 | FWS / 074 | 5614-M-3074, Sh. 4 | 4 | 3/4" strainer bypass | SGB-4-079

 | 0.750
 | 5.0 | H-I | Y | НТ | | 140 | | H-I | | 0.750
 | 140 | 9.8 | Yes | No
Protection
Required
 | | |
| 4 | FWS / 074 | 5614-M-3074, Sh. 4 | 4 | 3/4" strainer bypass | SGB-4-078

 | 0.750
 | 7.0 | H-I | Υ | НТ | | 140 | | H-I | | 0.750
 | 140 | 9.8 | Yes | No
Protection
Required
 | | |
| | | | 4 | Manual drains | SGB-4-085

 | 0.500
 | | | Y | HT | | 140 | | BV-I | | 0.500
 | 140 | 1.4 | No | HT
 | constant trickly flow; no protection required | N |
| 4 | FWS / 074 | 5614-M-3074, Sh. 4 | _ | Traps ST-4-57
ST-4-58 | SGB-4-084
Traps ST-4-57
ST-4-58

 | N/A
 | 7.0
N/A | N/A | N/A | N/A | BY-PASS - SEE PHOTO OF CV-4-1900 | 140 | | N/A | | 2.000
 | 140 | 20 | No No | N/A
 | | |
| 4 | FWS / 074 | 5614-M-3074, Sh. 4 | 4 | Manual drains | SGB-4-116

 | 1.000
 | 0.5 | TV-I | Y | НТ | | 140 | | TV-I | | 1.000
 | 140 | 14 | Yes | No
Protection
Required
 | | |
| 4 | FWS / 074 | 5614-M-3074, Sh. 4 | 5 | Manual vents | SGB-4-060

 | 0.750
 | 0.5 | TV-I | Y | НТ | | 316 | | TV-I | | 0.750
 | 310 | 20 | Yes | No
Protection
Required
 | | |
| 4 | FWS / 074 | 5614-M-3074, Sh. 4 | 5 | Manual vents | SGB-4-061

 | 0.750
 | 0.5 | TV-I | Υ | НТ | | 316 | | TV-I | | 0.750
 | 310 | 20 | Yes | No
Protection
 | | |
| 4 | FWS / 074 | 5614-M-3074, Sh. 4 | 5 | Manual vents | SGB-4-062

 | 0.750
 | 0.5 | TV-I | Y | НТ | | 316 | | TV-I | | 0.750
 | 310 | 20 | Yes | No
Protection
 | | |
| 4 | FWS / 074 | 5614-M-3074, Sh. 4 | 5 | Manual vents | SGB-4-118

 | 0.750
 | 1.0 | BV | N | HT | | 316 | | BV | | 0.750
 | 310 | 0.5 | No | HT
 | | Y |
| 4 | FWS / 074 | 5614-M-3074, Sh. 4 | 7 | 2 1/2" waste holdup tank | SGB-4-069

 | 2.500
 | 0.5 | H-I | Y | I | FWH4B | 100 | | H-I | | 2.000
 | 100 | 20 | Yes | Al
 | process temp | |
| | | | 7 | Flow transmitters | FE-4-6563

 | N/A
 | N/A | N/A | N/A | | STRAP ON | 100 | | N/A | |
 | 100 | | No | N/A
 | | |
| | | | 7 | Manual drains | SGB-4-113

 | 1.000
 | 0.5 | VA | Y | НТ | | 100 | | TV-I | | 1.000
 | 100 | 9 | Yes | No
Protection
Required
 | | |
| 4 | FWS / 074 | 5614-M-3074, Sh. 4 | 8 | 2" wet layup line | Piping to Valves SGWL-4-
011,31,49

 | 2.000
 | 30.0 | TV-I,H | Y | I | Need to verify length of wet layup line
with Iso. Assume 30ft since tank is close
to BD lines | 450 | | H-I | | 2.000
 | 400 | 20 | No | Al
 | | |
| 4 | FWS / 074 | 5614-M-3074, Sh. 3 | 1 | Venturi flow transmitters | FT-4-476X

 | 0.375
 | 60.0 | BV,H,U | N | НТ | | 436 | | BV | BV conservative due to downward portion | 0.375
 | 400 | Not
Analyzed | No | НТ
 | нт | N |
| 4 | FWS / 074 | 5614-M-3074, Sh. 3 | 1 | Venturi flow transmitters | FT-4-486X

 | 0.375
 | 60.0 | BV,H,U | N | НТ | IN S.STEEL BOX MOUNTED TO SOUTH SIDE OF COULMN FACE (RESTRICED ACCESS ZONE SE - GROUND LVL) | 436 | | BV | BV conservative due to downward portion | 0.375
 | 400 | Not
Analyzed | No | нт
 | нт | N |
| | 4 4 4 4 4 4 4 4 4 | 4 FWS / 074 | 4 FWS / 074 5614-M-3074, Sh. 4 4 FWS / 074 5614-M-3074, Sh. 4 | 4 FWS / 074 5614-M-3074, Sh. 4 1 4 FWS / 074 5614-M-3074, Sh. 4 2 4 FWS / 074 5614-M-3074, Sh. 4 3 4 FWS / 074 5614-M-3074, Sh. 4 3 4 FWS / 074 5614-M-3074, Sh. 4 4 FWS / 074 5614-M-3074, Sh. 4 4 4 FWS / 074 5614-M-3074, Sh. 4 4 4 FWS / 074 5614-M-3074, Sh. 4 5 4 FWS / 074 5614-M-3074, Sh. 4 7 4 FWS / 074 5614-M-3074, Sh. 4 7 | 4 FWS / 074 5614-M-3074, Sh. 4 1 3/4" test connections 4 FWS / 074 5614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines 4 FWS / 074 5614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines 4 FWS / 074 5614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines 4 FWS / 074 5614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines 4 FWS / 074 5614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines 4 FWS / 074 5614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines 4 FWS / 074 5614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines 4 FWS / 074 5614-M-3074, Sh. 4 3 Manual drains 4 FWS / 074 5614-M-3074, Sh. 4 3 Manual drains 4 FWS / 074 5614-M-3074, Sh. 4 4 3/4" strainer bypass 4 FWS / 074 5614-M-3074, Sh. 4 4 Traps ST-4-57 ST-4-58 </td <td>4 FWS / 074 \$614-M-3074, Sh. 4 1 3/4" test connections \$68-4-043 4 FWS / 074 \$614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines 4 FWS / 074 \$614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines 4 FWS / 074 \$614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines 4 FWS / 074 \$614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines 4 FWS / 074 \$614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines 4 FWS / 074 \$614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines 4 FWS / 074 \$614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines 4 FWS / 074 \$614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines 4 FWS / 074 \$614-M-3074, Sh. 4 3 Manual drains \$68-4-112 4 FWS / 074 \$614-M-3074, Sh. 4 3 Manual drains \$68-4-078 4 FWS / 074 \$61</td> <td>4 FWS / 074 5614-M-3074, Sh. 4 1 3/4" test connections SGB-4-043 1.000 4 FWS / 074 5614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines HPS-4-6323 0.750 4 FWS / 074 5614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines PIC-4-6269 0.750 4 FWS / 074 5614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines PS-4-6267 0.750 4 FWS / 074 5614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines PS-4-6267A 0.750 4 FWS / 074 5614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines PS-4-6267A 0.750 4 FWS / 074 5614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines PS-4-6268 0.750 4 FWS / 074 5614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines PS-4-6268 0.750 4 FWS / 074 5614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines DS-4-6266 0.750</td> <td> 4 FWS 074 5614-M-3074, Sh. 4 1 3/4" test connections SGB-4-043 1.000 1.0 4 FWS 074 5614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines PIC-4-6269 0.750 5.0 4 FWS 074 5614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines PIC-4-6269 0.750 5.0 4 FWS 074 5614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines PS-4-6267 0.750 5.0 4 FWS 074 5614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines PS-4-6267A 0.750 5.0 4 FWS 074 5614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines PIC-4-6268 0.750 11.0 4 FWS 074 5614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines PIC-4-6268 0.750 11.0 4 FWS 074 5614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines PIC-4-6268A 0.750 1.0 4 FWS 074 5614-M-3074, Sh. 4 3 Manual drains SGB-4-066 0.750 1.0 4 FWS 074 5614-M-3074, Sh. 4 4 3/4" strainer bypass SGB-4-078 0.750 7.0 4 FWS 074 5614-M-3074, Sh. 4 4 3/4" strainer bypass SGB-4-078 0.750 7.0 4 FWS 074 5614-M-3074, Sh. 4 4 3/4" strainer bypass SGB-4-085 0.500 5.0 4 FWS 074 5614-M-3074, Sh. 4 4 3/4" strainer bypass SGB-4-086 0.750 7.0 4 FWS 074 5614-M-3074, Sh. 4 4 3/4" strainer bypass SGB-4-086 0.750 7.0 4 FWS 074 5614-M-3074, Sh. 4 4 3/4" strainer bypass SGB-4-086 0.750 0.5 4 FWS 074 5614-M-3074, Sh. 4 4 3/4" strainer bypass SGB-4-086 0.750 0.5 4 FWS 074 5614-M-3074, Sh. 4 4 3/4" strainer bypass SGB-4-086 0.750 0.5 4 FWS 074 5614-M-3074, Sh. 4 4 3/4" strainer bypass SGB-4-086 0.750 0.5 4 FWS 074 5614-M-3074, Sh. 4 5 Manual drains SGB-4-060 0.750 0.5 4 FWS 074 5614-M-3074, Sh. 4 5 Manual vents SGB-4-061 0.750 0.5 4 FWS 074 5614-M-3074, Sh. 4 7 Manual vents SGB-4-061 0</td> <td>4 FWS / 074 5614-M-3074, Sh. 4 1 3/4" test connections SGB-4-043 1.000 1.0 BV-1 4 FWS / 074 5614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines PIC-4-6269 0.750 5.0 TV-1 4 FWS / 074 5614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines PIC-4-6269 0.750 5.0 TV-1 4 FWS / 074 5614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines PS-4-6267 0.750 5.0 TV 4 FWS / 074 5614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines PS-4-6267 0.750 5.0 TV 4 FWS / 074 5614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines PS-4-6267 0.750 5.0 TV 4 FWS / 074 5614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines PS-4-6267 0.750 5.0 TV 4 FWS / 074 5614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines PS-4-6267 0.750 1.0 BV 4 FWS / 075 5614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines PT-4-6268 0.750 1.0 BV 5 FWS / 076 5614-M-3074, Sh. 4 3 Manual drains SGB-4-112 0.500 1.0 BV 6 FWS / 077 5614-M-3074, Sh. 4 3 Manual drains SGB-4-066 0.750 1.0 BV 6 FWS / 078 5614-M-3074, Sh. 4 4 3/4" strainer bypass SGB-4-079 0.750 5.0 H-1 6 FWS / 074 5614-M-3074, Sh. 4 4 3/4" strainer bypass SGB-4-079 0.750 5.0 BV-1 6 FWS / 074 5614-M-3074, Sh. 4 4 3/4" strainer bypass SGB-4-080 0.750 7.0 H-1 6 FWS / 074 5614-M-3074, Sh. 4 4 3/4" strainer bypass SGB-4-080 0.750 7.0 H-1 6 FWS / 074 5614-M-3074, Sh. 4 4 Manual drains SGB-4-060 0.750 0.5 TV-1 6 FWS / 074 5614-M-3074, Sh. 4 5 Manual drains SGB-4-060 0.750 0.5 TV-1 6 FWS / 074 5614-M-3074, Sh. 4 5 Manual vents SGB-4-060 0.750 0.5 TV-1 6 FWS / 074 5614-M-3074, Sh. 4 5 Manual vents SGB-4-060 0.750 0.5 TV-1 6 FWS / 074 5614-M-3074, Sh. 4 7 FWS / 074 561</td> <td> A FWS / 074 S614-M-3074, Sh. 4 1 3/4" test connections SG8-4-043 1.000 1.0 BV-1 Y </td> <td> A FWS/074 S614-M-3074, Sh. 4 1 3/4" test connections SG8-4-043 1.000 1.0 BV-1 Y HT </td> <td> PWS / DVS SG14-M-3074, Sh. 4</td> <td> PWS / 074 561.64-3074, Sh. 4 2 Blowdown Task level Instrumentation lines Instrum</td> <td> A</td> <td> PROS. PROS</td> <td> Poly Poly </td> <td> PROJ_PROS_ PROS_ PROS_ </td> <td> Medical Section Medical Se</td> <td> National National</td> <td> March Marc</td> <td> A STATE ST</td> <td> March Marc</td> | 4 FWS / 074 \$614-M-3074, Sh. 4 1 3/4" test connections \$68-4-043 4 FWS / 074 \$614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines 4 FWS / 074 \$614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines 4 FWS / 074 \$614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines 4 FWS / 074 \$614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines 4 FWS / 074 \$614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines 4 FWS / 074 \$614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines 4 FWS / 074 \$614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines 4 FWS / 074 \$614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines 4 FWS / 074 \$614-M-3074, Sh. 4 3 Manual drains \$68-4-112 4 FWS / 074 \$614-M-3074, Sh. 4 3 Manual drains \$68-4-078 4 FWS / 074 \$61 | 4 FWS / 074 5614-M-3074, Sh. 4 1 3/4" test connections SGB-4-043 1.000 4 FWS / 074 5614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines HPS-4-6323 0.750 4 FWS / 074 5614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines PIC-4-6269 0.750 4 FWS / 074 5614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines PS-4-6267 0.750 4 FWS / 074 5614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines PS-4-6267A 0.750 4 FWS / 074 5614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines PS-4-6267A 0.750 4 FWS / 074 5614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines PS-4-6268 0.750 4 FWS / 074 5614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines PS-4-6268 0.750 4 FWS / 074 5614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines DS-4-6266 0.750 | 4 FWS 074 5614-M-3074, Sh. 4 1 3/4" test connections SGB-4-043 1.000 1.0 4 FWS 074 5614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines PIC-4-6269 0.750 5.0 4 FWS 074 5614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines PIC-4-6269 0.750 5.0 4 FWS 074 5614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines PS-4-6267 0.750 5.0 4 FWS 074 5614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines PS-4-6267A 0.750 5.0 4 FWS 074 5614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines PIC-4-6268 0.750 11.0 4 FWS 074 5614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines PIC-4-6268 0.750 11.0 4 FWS 074 5614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines PIC-4-6268A 0.750 1.0 4 FWS 074 5614-M-3074, Sh. 4 3 Manual drains SGB-4-066 0.750 1.0 4 FWS 074 5614-M-3074, Sh. 4 4 3/4" strainer bypass SGB-4-078 0.750 7.0 4 FWS 074 5614-M-3074, Sh. 4 4 3/4" strainer bypass SGB-4-078 0.750 7.0 4 FWS 074 5614-M-3074, Sh. 4 4 3/4" strainer bypass SGB-4-085 0.500 5.0 4 FWS 074 5614-M-3074, Sh. 4 4 3/4" strainer bypass SGB-4-086 0.750 7.0 4 FWS 074 5614-M-3074, Sh. 4 4 3/4" strainer bypass SGB-4-086 0.750 7.0 4 FWS 074 5614-M-3074, Sh. 4 4 3/4" strainer bypass SGB-4-086 0.750 0.5 4 FWS 074 5614-M-3074, Sh. 4 4 3/4" strainer bypass SGB-4-086 0.750 0.5 4 FWS 074 5614-M-3074, Sh. 4 4 3/4" strainer bypass SGB-4-086 0.750 0.5 4 FWS 074 5614-M-3074, Sh. 4 4 3/4" strainer bypass SGB-4-086 0.750 0.5 4 FWS 074 5614-M-3074, Sh. 4 5 Manual drains SGB-4-060 0.750 0.5 4 FWS 074 5614-M-3074, Sh. 4 5 Manual vents SGB-4-061 0.750 0.5 4 FWS 074 5614-M-3074, Sh. 4 7 Manual vents SGB-4-061 0 | 4 FWS / 074 5614-M-3074, Sh. 4 1 3/4" test connections SGB-4-043 1.000 1.0 BV-1 4 FWS / 074 5614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines PIC-4-6269 0.750 5.0 TV-1 4 FWS / 074 5614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines PIC-4-6269 0.750 5.0 TV-1 4 FWS / 074 5614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines PS-4-6267 0.750 5.0 TV 4 FWS / 074 5614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines PS-4-6267 0.750 5.0 TV 4 FWS / 074 5614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines PS-4-6267 0.750 5.0 TV 4 FWS / 074 5614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines PS-4-6267 0.750 5.0 TV 4 FWS / 074 5614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines PS-4-6267 0.750 1.0 BV 4 FWS / 075 5614-M-3074, Sh. 4 2 Blowdown Tank level instrumentation lines PT-4-6268 0.750 1.0 BV 5 FWS / 076 5614-M-3074, Sh. 4 3 Manual drains SGB-4-112 0.500 1.0 BV 6 FWS / 077 5614-M-3074, Sh. 4 3 Manual drains SGB-4-066 0.750 1.0 BV 6 FWS / 078 5614-M-3074, Sh. 4 4 3/4" strainer bypass SGB-4-079 0.750 5.0 H-1 6 FWS / 074 5614-M-3074, Sh. 4 4 3/4" strainer bypass SGB-4-079 0.750 5.0 BV-1 6 FWS / 074 5614-M-3074, Sh. 4 4 3/4" strainer bypass SGB-4-080 0.750 7.0 H-1 6 FWS / 074 5614-M-3074, Sh. 4 4 3/4" strainer bypass SGB-4-080 0.750 7.0 H-1 6 FWS / 074 5614-M-3074, Sh. 4 4 Manual drains SGB-4-060 0.750 0.5 TV-1 6 FWS / 074 5614-M-3074, Sh. 4 5 Manual drains SGB-4-060 0.750 0.5 TV-1 6 FWS / 074 5614-M-3074, Sh. 4 5 Manual vents SGB-4-060 0.750 0.5 TV-1 6 FWS / 074 5614-M-3074, Sh. 4 5 Manual vents SGB-4-060 0.750 0.5 TV-1 6 FWS / 074 5614-M-3074, Sh. 4 7 FWS / 074 561 | A FWS / 074 S614-M-3074, Sh. 4 1 3/4" test connections SG8-4-043 1.000 1.0 BV-1 Y | A FWS/074 S614-M-3074, Sh. 4 1 3/4" test connections SG8-4-043 1.000 1.0 BV-1 Y HT | PWS / DVS SG14-M-3074, Sh. 4 | PWS / 074 561.64-3074, Sh. 4 2 Blowdown Task level Instrumentation lines Instrum | A | PROS. PROS | Poly Poly | PROJ_PROS_ PROS_ PROS_ | Medical Section Medical Se | National National | March Marc | A STATE ST | March Marc |

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 397 of 488

> R21002, Rev 0 Attachment N Page 32 of 123

																						Page 32 of	123
2054	PTN	4	089	5614-M-3089, SH 2	1	Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523	N/A		0.500	400		No	N/A		
2454	PTN	4	FWS / 074	5614-M-3074, Sh. 3	1	Venturi flow transmitters	FT-4-496X	0.375	60.0	BV,H,U	N	НТ	IN S.STEEL BOX MOUNTED TO SOUTH SIDE OF COULMN FACE (RESTRICED ACCESS ZONE SE - GROUND LVL)	436	BV	BV conservative due to downward portion	0.375	400	Not Analyzed	No	нт	нт	N
2453	PTN	4	FWS / 074	5614-M-3074, Sh. 3	1	DPIs	DPI-4-497	0.375	55.0	H,D	N	НТ	P&id IS WRONG , ONLY SHARES VALVE, 2 TUBING BRANCHES COME OUT (TOOK PHOTO JUNE 21 C2021)	436	BV	BV conservative due to downward portion	0.375	400	Not Analyzed	No	нт	нт	N
2453	PTN	4	FWS / 074	5614-M-3074, Sh. 3	1	DPIs	DPI-4-487	0.375	48.0	H,D	N	НТ	111010 30142 21 02021)	436	BV	BV conservative due to downward portion	0.375	400	Not Analyzed	No	НТ	нт	N
2452	PTN	4	FWS / 074	5614-M-3074, Sh. 3	1	DPS	DPS-4-2900	0.500	34.0	BV,H,D	N	НТ	EAST / REACTOR SIDE OF AREA	436	BV	BV conservative due to downward portion	0.500	400	0.5	No	HT	нт	N
2452	PTN	4	FWS / 074	5614-M-3074, Sh. 3	1	DPS	DPS-4-2901	0.500	34.0	BV,H,D		HT		436	BV	BV conservative due to downward portion	0.500	400	0.5	No	НТ	НТ	N
2452	PTN	4	FWS / 074	5614-M-3074, Sh. 3	1	DPS	DPS-4-2902	0.500	34.0	BV,H,D	N	НТ	9' inTD CAGE ~ 100' MEZ - WEST MOST DPS	436	BV	BV conservative due to downward portion	0.500	400	0.5	No	НТ	нт	N
2454	PTN	4	FWS / 074	5614-M-3074, Sh. 3	1	Venturi flow transmitters	FT-4-476	0.750	63.0	BV,H,U	N	НТ	YELLOW BOX IN GROUNDS CAGE	436	BV	BV conservative due to downward portion	0.750	400	0.5	No	HT	нт	N
2454	PTN	4	FWS / 074	5614-M-3074, Sh. 3	1	Venturi flow transmitters	FT-4-477	0.750	10.0	BV,H,U	N	НТ	GROUND C AGE	436	BV	BV conservative due to downward portion	0.750	400	0.5	No	HT	нт	N
2454	PTN	4	FWS / 074	5614-M-3074, Sh. 3	1	Venturi flow transmitters	FT-4-486	0.750	63.0	BV,H,U	N	HT	YELLOW BOX IN ra - GROUND LEVEL	436	BV	BV conservative due to downward portion	0.750	400	0.5	No	HT	нт	N
2454	PTN	4	FWS / 074	5614-M-3074, Sh. 3	1	Venturi flow transmitters	FT-4-487	0.750	10.0	BV,H,U	N	HT	GROUND CAGE - P&ID WRONG	436	BV	BV conservative due to downward portion	0.750	400	0.5	No	HT	нт	N
2454	PTN	4	FWS / 074	5614-M-3074, Sh. 3	1	Venturi flow transmitters	FT-4-496	0.750	71.0	H,D	N	HT	GROUND FLOOR WATER TRIP CAGE IN YELLOW BOX	436	BV	BV conservative due to downward portion	0.750	400	0.5	No	HT	нт	N
2454	PTN	4	FWS / 074	5614-M-3074, Sh. 3	1	Venturi flow transmitters	FT-4-497	0.750	10.0	BV,H,U	N	НТ	GROUND CAGE p&id WRONG; SHARES ROOT VALVE THAT HAS 2 TUBING LINES OUT OF EACH VALVE	436	BV	BV conservative due to downward portion	0.750	400	0.5	No	нт	нт	N
2453	PTN	4	FWS / 074	5614-M-3074, Sh. 3	1	DPIs	DPI-4-477	0.375	41.0	H,D	N	НТ		436	BV	BV conservative due to downward portion	0.375	400	Not Analyzed	No	НТ	нт	N
2459	PTN	4	FWS / 074	5614-M-3074, Sh. 3	4	4" AFW piping connected to main feed headers	4-20-339	4.000	10.0	H-I	Y	I		450	H-I		4.000	400	15	Yes	No Protection Required		
2459	PTN	4	FWS / 074	5614-M-3074, Sh. 3	4	4" AFW piping connected to main feed headers	4-20-239	4.000	10.0	H-I	Y	I		450	H-I		4.000	400	15	Yes	No Protection Required		
2459	PTN	4	FWS / 074	5614-M-3074, Sh. 3	4	4" AFW piping connected to main feed headers	4-20-139	4.000	10.0	H-I	Y	I		450	H-I		4.000	400	15	Yes	No Protection		
2461	PTN	4	FWS / 074	5614-M-3074, Sh. 3	6	2" line to/from wet layup	Downstream of 4-20- 132	2.000	6.0	Н	N	I		450	н		2.000	400	18	Yes	No Protection		
2461	PTN	4	FWS / 074	5614-M-3074, Sh. 3	6	2" line to/from wet layup	Downstream of 4-20- 232	2.000	6.0	Н	N	1		450	Н		2.000	400	18	Yes	No Protection		
2461	PTN	4	FWS / 074	5614-M-3074, Sh. 3	6	2" line to/from wet layup	Downstream of 4-20- 332	2.000	6.0	Н	N	ı	DIDN'T FIND	450	Н		2.000	400	18	Yes	No Protection		
2425	PTN	4	FWS / 074	5614-M-3074, Sh. 2	1	Manual vents & drains	4-20-676	0.750	1.5	Н	N	НТ	(P&ID A-4)	100	н		0.750	100	2	Yes	No Protection		
2423	PTN	4	FWS / 074	5614-M-3074, Sh. 2	1	Pressure & temperature	PT-4-1616X	0.375	37.0	loop	N	НТ	(P&ID ZONE A6) OUTSIDE FW PUMP	100	BV	BV conservative due to	0.375	100	Not	No	Required HT	нт	N
2423	PTN	4	FWS / 074	5614-M-3074, Sh. 2	1	indication Pressure & temperature	PI-4-1435	0.375	2.5	Н	N	НТ	ROOM / WEST WALL MEZZ LEVEL - LEFT OF EAST CATWALK,	100	Н	downward portion	0.375	100	Analyzed 0.5	No	HT	take ambient temp; if hot no protection required	Υ
2423	PTN	4	FWS / 074	5614-M-3074, Sh. 2	1	indication Pressure & temperature	PI-4-1436	0.375	2.5	Н	N	нт	ASSUME 3/8 MEZZ LEVEL - LEFT OF EAST CATWALK,	100	Н		0.375	100	0.5	No	HT	take ambient temp; if hot no protection required	Υ
2425	PTN	4	FWS / 074	5614-M-3074, Sh. 2	1	indication Manual vents & drains	4-30-2414-30-621	0.500	1.0	TV	N	нт	ASSUME 3/8 EQU VENT	100	TV		0.500	100	1	Yes	No Protection	short run; high process temp no protection required	N
2425	PTN	4	FWS / 074	5614-M-3074, Sh. 2	1	Manual vents & drains	4-30-6224-30-242	0.500	1.0	TV	N	HT		100	TV		0.500	100	1	Yes	Required No Protection	short run; high process temp no protection required	N
2423	PTN	4	FWS / 074	5614-M-3074, Sh. 2	1	Pressure & temperature indication	PX-4-1448	1.000	3.0	TV	N	НТ	20' HIGH ABOVE TD - ON TOP OF STRESS LOOP FEEDING INTO THE TOP	100	TV		1.000	100	1.5	No	Required HT	check distance to first isolation valve; if less than 2' no protection required.	Υ
2425	PTN	4	FWS / 074	5614-M-3074, Sh. 2	1	Manual vents & drains	4-20-650	1.000	1.5	BV	N	HT	P&ID B-4) East of mezz in steel	100	BV		1.000	100	0	No	HT	short run; high process temp no protection	N
2426	PTN	4	FWS / 074	5614-M-3074, Sh. 2	1	Bypass/warmup valves	4-20-122	1.000	10.0	Н	N	HT	1" BY-PASS	100	Н		1.000	100	3.5	No	HT	required take ambient and line temp; if hot do not protect	Υ
2426	PTN	4	FWS / 074	5614-M-3074, Sh. 2	1	around FWH 3-way valves Bypass/warmup valves	4-20-222	1.000	10.0	TV	N	НТ	1" BY-PASS	100	TV		1.000	100	1.5	No	HT	take ambient and line temp; if hot do not protect	Υ
2425	PTN	4	FWS / 074	5614-M-3074, Sh. 2	1	around FWH 3-way valves Manual vents & drains	4-30-557	1.000	2.0	Н	N	НТ	EQUIPMENT DRAIN	100	Н		1.000	100	3.5	Yes	No Protection		
																					Required		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 398 of 488

> R21002, Rev 0 Attachment N Page 33 of 123

																						rage 55 t	
2054	PTN	4	089	5614-M-3089, SH 2		Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523	N/A		0.500	400		No	N/A		
2425	PTN	4	FWS / 074	5614-M-3074, Sh. 2	1	Manual vents & drains	4-30-558	1.000	2.0	Н	N	НТ	EQUIPMENT DRAIN	100	Н		1.000	100	3.5	Yes	No Protection		
2423	PTN	4	FWS / 074	5614-M-3074, Sh. 2	1	Pressure & temperature indication	PX-4-1447	2.000	3.0	TV	N	ı	NO CLOSED VALVE - NOT NEEDED	100	TV		2.000	100	15	Yes	No Protection		
2430	PTN	4	FWS / 074	5614-M-3074, Sh. 2	4	Manual vents & drains	FDWR-007	0.750	1.5	TV	N	HT	VENT (P&ID @ B-6/7	100	TV		0.750	100	1	No	Required HT	short line; high process temp; no protection	N
2430	PTN	4	FWS / 074	5614-M-3074, Sh. 2	4	Manual vents & drains	FDWR-4-005	1.000	1.0	BV	N	НТ	DRAIN	100	BV		1.000	100	0	No	НТ	required short line; high process temp; no protection	N
2435	PTN	4	FWS / 074	5614-M-3074, Sh. 2	8	Manual vents & drains	FDWR-4-011	0.750	1.0	TV	N	нт	WEST OF STRUCTURE -(UNIT 3)	100	TV		0.750	100	1	Yes	No Protection	required	
2435	PTN	4	FWS / 074	5614-M-3074, Sh. 2	8	Manual vents & drains	FDWR-4-009	1.000	1.5	BV,H	N	НТ	IN CONDENSATE PIT	100	BV	BV conservative due to downward portion	1.000	100	0	No	Required HT	short line; high process temp; no protection required	N
2439	PTN	4	FWS / 074	5614-M-3074, Sh. 2	9	Manual vents	4-20-175	0.750	5.0	BV,H	N	НТ	IN PIT NORTH-WEST OF FEEDWATER PUMP ROOM (SMALL TANK DRAIN), ASSUME 3/4	100	BV	BV conservative due to downward portion	0.750	100	0	No	НТ	constant trickle flow; no protection required	N
2440	PTN	4	FWS / 074	5614-M-3074, Sh. 2	10	Pressure & diff. pressure indication	DPI-4-2006	0.500	N/A	N/A	N/A	N/A	ROOM ABOVE FREZING	100	N/A		0.500	100		No	N/A		
2440	PTN	4	FWS / 074	5614-M-3074, Sh. 2	10	Pressure & diff. pressure indication	DPI-4-2007	0.500	N/A	N/A	N/A	N/A	EQUIPMENT LOCATED IN FW PUMP ROOM. THE PUMP ROOM IS ENCLOSED ON ALL FOUR SIDES AND CIEUNG WITH DOOR OPENINGS AT 90 DEGREES TO BLOCK WIND. ROOM EXHAUST FANS CAN BE TURNED OFF OR CYCLED. PUMP AND PIPNING HEAT WILL MAINTAIN ROOM ABOVE FREEZING	100	N/A		0.500	100		No	N/A		
2440	PTN	4	FWS / 074	5614-M-3074, Sh. 2	10	Pressure & diff. pressure indication	DPI-4-2009	0.500	N/A	N/A	N/A	N/A	EQUIPMENT LOCATED IN FW PUMP ROOM. THE PUMP ROOM IS ENCLOSED ON ALL FOUR SIDES AND CIELING WITH DOOR OPENINGS AT 90 DEGREES TO BLOCK WIND. ROOM EXHAUST FANS CAN BET URNED OFF OR CYCLED. PUMP AND PIPING HEAT WILL MAINTAIN ROOM ABOVE FREEZING	100	N/A		0.500	100		No	N/A		
2440	PTN	4	FWS / 074	5614-M-3074, Sh. 2	10	Pressure & diff. pressure indication	DPI-4-2010	0.500	N/A	N/A	N/A	N/A	EQUIPMENT LOCATED IN FW PUMP ROOM. THE PUMP ROOM IS ENCLOSED ON ALL FOUR SIDES AND CIELING WITH DOOR OPENINGS AT 90 DEGREES TO BLOCK WIND. ROOM EXHAUST FANS CAN BE TURNED OFF OR CYCLED. PUMP AND PIPING HEAT WILL MAINTAIN ROOM ABOVE FREEZING	100	N/A		0.500	100		No	N/A		
2440	PTN	4	FWS / 074	5614-M-3074, Sh. 2	10	Pressure & diff. pressure indication	PI-4-1580	Not provided	N/A	N/A	N/A	N/A	EQUIPMENT LOCATED IN FW PUMP ROOM. THE PUMP ROOM IS ENCLOSED ON ALL FOUR SIDES AND CIEUNG WITH DOOR OPENINGS AT 90 DEGREES TO BLOCK WIND. ROOM EXHAUST FANS CAN BET URNED OFF OR CYCLED, PUMP AND PIPING HEAT WILL MAINTAIN ROOM ABOVE FREEZING	100	N/A			100		No	N/A		
2440	PTN	4	FWS / 074	5614-M-3074, Sh. 2	10	Pressure & diff. pressure indication	PI-4-1582	Not provided	N/A	N/A	N/A	N/A	EQUIPMENT LOCATED IN FW PUMP ROOM. THE PUMP ROOM IS ENCLOSED ON ALL FOUR SIDES AND CIELING WITH DOOR OPENINGS AT 90 DEGREES TO BLOCK WIND. ROOM EXHAUST FANS CAN BE TURNED OFF OR CYCLED. PUMP AND PIPING HEAT WILL MAINTAIN ROOM ABOVE FREEZING	100	N/A			100		No	N/A		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 399 of 488

> R21002, Rev 0 Attachment N Page 34 of 123

																		1 age 34 01 123
2054	PTN	4 089	5614-M-3089, SH 2	1 Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709 0	.500 N/	A N/	N/A	N/A		523	N/	A	0.500	400	No	N/A	
2440	PTN	4 FWS/0	74 5614-M-3074, Sh. 2	10 Pressure & diff. pressure indication		Not N/ ovided	'A N/	N/A	N/A	EQUIPMENT LOCATED IN FW PUMP ROOM. THE PUMP ROOM IS ENCLOSED ON ALL FOUR SIDES AND CIELING WITH DOOR OPENINGS AT 90 DEGREES TO BLOCK WIND. ROOM EXHAUST FANS CAN BE TURNED OFF OR CYCLED. PUMP AND PIPING HEAT WILL MAINTAIN ROOM ABOVE FREEZING	100	N/	A		100	No	N/A	
2442	PTN	4 FWS / 0	5614-M-3074, Sh. 2	10 Manual vents and drains	4-20-1006 0	.750 N/	A N/	A N/A	N/A	EQUIPMENT LOCATED IN FW PUMP ROOM. THE PUMP ROOM IS ENCLOSED ON ALL FOUR SIDES AND CIELING WITH DOOR OPENINGS AT 90 DEGREES TO BLOCK WIND. ROOM EXHAUST FANS CAN BE TURNED OFF OR CYCLED. PUMP AND PIPING HEAT WILL MAINTAIN ROOM ABOVE FREEZING	100	N/	A	0.750	100	No	N/A	
2442	PTN	4 FWS / 0	74 5614-M-3074, Sh. 2	10 Manual vents and drains	4-20-1007 0	.750 N/	A N/.	A N/A	N/A	EQUIPMENT LOCATED IN FW PUMP ROOM. THE PUMP ROOM IS ENCLOSED ON ALL FOUR SIDES AND CIELING WITH DOOR OPENINGS AT 90 DEGREES TO BLOCK WIND. ROOM EXHAUST FANS CAN BE TURNED OFF OR CYCLED. PUMP AND PIPING HEAT WILL MAINTAIN ROOM ABOVE FREEZING	100	N/	A	0.750	100	No	N/A	
2442	PTN	4 FWS/0	74 5614-M-3074, Sh. 2	10 Manual vents and drains	4-20-1008 0	1.750 N)	A N/	N/A	N/A	EQUIPMENT LOCATED IN FW PUMP ROOM. THE PUMP ROOM IS ENCLOSED ON ALL FOUR SIDES AND CIELING WITH DOOR OPENINGS AT 90 DEGREES TO BLOCK WIND. ROOM EXHAUST FANS CAN BE TURNED OFF OR CYCLED. PUMP AND PIPING HEAT WILL MAINTAIN ROOM ABOVE FREEZING	100	N/	A	0.750	100	No	N/A	
2442	PTN	4 FWS / 0	74 5614-M-3074, Sh. 2	10 Manual vents and drains	4-20-1009 0	.750 N/	'A N/	N/A	N/A	EQUIPMENT LOCATED IN FW PUMP ROOM. THE PUMP ROOM IS ENCLOSED ON ALL FOUR SIDES AND CIELING WITH DOOR OPENINGS AT 90 DEGREES TO BLOCK WIND. ROOM EXHAUST FANS CAN BE TURNED OFF OR CYCLED. PUMP AND PIPING HEAT WILL MAINTAIN ROOM ABOVE FREEZING	100	N/	A	0.750	100	No	N/A	
2442	PTN	4 FWS/0	74 5614-M-3074, Sh. 2	10 Manual vents and drains	4-20-1012 0	.500 N/	A N/	N/A	N/A	EQUIPMENT LOCATED IN FW PUMP ROOM. THE PUMP ROOM IS ENCLOSED ON ALL FOUR SIDES AND CIELING WITH DOOR OPENINGS AT 90 DEGREES TO BLOCK WIND. ROOM EXHAUST FANS CAN BE TURNED OFF OR CYCLED. PUMP AND PIPING HEAT WILL MAINTAIN ROOM ABOVE FREEZING	100	N/	A	0.500	100	No	N/A	
2442	PTN	4 FWS/0	74 5614-M-3074, Sh. 2	10 Manual vents and drains	4-20-1014 0	.500 N/	'A N/	N/A	N/A	EQUIPMENT LOCATED IN FW PUMP ROOM. THE PUMP ROOM IS ENCLOSED ON ALL FOUR SIDES AND CIELING WITH DOOR OPENINGS AT 90 DEGREES TO BLOCK WIND. ROOM EXHAUST FANS CAN BE TURNED OFF OR CYCLED. PUMP AND PIPING HEAT WILL MAINTAIN ROOM ABOVE FREEZING	100	N/	A	0.500	100	No	N/A	
2442	PTN	4 FWS/0	74 5614-M-3074, Sh. 2	10 Manual vents and drains		Not N/ ovided	'A N/	N/A	N/A	EQUIPMENT LOCATED IN FW PUMP ROOM. THE PUMP ROOM IS ENCLOSED ON ALL FOUR SIDES AND CIELING WITH DOOR OPENINGS AT 90 DEGREES TO BLOCK WIND. ROOM EXHAUST FANS CAN BE TURNED OFF OR CYCLED. PUMP AND PIPING HEAT WILL MAINTAIN ROOM ABOVE FREEZING	100	N/	A		100	No	N/A	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 400 of 488

> R21002, Rev 0 Attachment N Page 35 of 123

																					9	
2054	PTN	4	089	5614-M-3089, SH 2		Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523	N/A	0.500	400		No	N/A		
2442	PTN	4	FWS / 074	5614-M-3074, Sh. 2	10	Manual vents and drains	4-20-173	1.000	N/A	N/A	N/A	N/A	EQUIPMENT LOCATED IN FW PUMP ROOM. THE PUMP ROOM IS ENCLOSED ON ALL FOUR SIDES AND CIELING WITH DOOR OPENINGS AT 90 DEGREES TO BLOCK WIND. ROOM EXHAUST FANS CAN BE TURNED OFF OR CYCLED. PUMP AND PIPING HEAT WILL MAINTAIN ROOM ABOVE FREEZING	100	N/A	1.000	100		No	N/A		
2442	PTN	4	FWS / 074	5614-M-3074, Sh. 2	10	Manual vents and drains	4-20-174	1.000	N/A	N/A	N/A	N/A	EQUIPMENT LOCATED IN FW PUMP ROOM. THE PUMP ROOM IS ENCLOSED ON ALL FOUR SIDES AND CIELING WITH DOOR OPENINGS AT 90 DEGREES TO BLOCK WIND. ROOM EXHAUST FAMS CAN BE TURNED OFF OR CYCLED. PUMP AND PIPING HEAT WILL MAINTAIN ROOM ABOVE FREEZING	100	N/A	1.000	100		No	N/A		
2442	PTN	4	FWS / 074	5614-M-3074, Sh. 2	10	Manual vents and drains	4-20-996	1.000	N/A	N/A	N/A	N/A	EQUIPMENT LOCATED IN FW PUMP ROOM. THE PUMP ROOM IS ENCLOSED ON ALL FOUR SIDES AND CIELING WITH DOOR OPENINGS AT 90 DEGREES TO BLOCK WIND. ROOM EXHAUST FANS CAN BET UNRED OF FOR CYCLED. PUMP AND PIPING HEAT WILL MAINTAIN ROOM ABOVE FREEZING	100	N/A	1.000	100		No	N/A		
2442	PTN	4	FWS / 074	5614-M-3074, Sh. 2	10	Manual vents and drains	4-20-997	1.000	N/A	N/A	N/A	N/A	EQUIPMENT LOCATED IN FW PUMP ROOM. THE PUMP ROOM IS ENCLOSED ON ALL FOUR SIDES AND CIELING WITH DOOR OPENINGS AT 90 DEGREES TO BLOCK WIND. ROOM EXHAUST FANS CAN BE TURNED OFF OR CYCLED. PUMP AND PIPING HEAT WILL MAINTAIN ROOM ABOVE FREEZING	100	N/A	1.000	100		No	N/A		
2446	PTN	4	FWS / 074	5614-M-3074, Sh. 2	11	Manual vents & drains	4-20-1088	0.500	0.5	TV	N	НТ	COPY DATA TO TRAIN B	100	TV	0.500	100	1	Yes	No Protection Required		
2446	PTN	4	FWS / 074	5614-M-3074, Sh. 2	11	Manual vents & drains	4-20-1015	0.500	0.5	TV	N	HT	COPY DATA TO TRAIN B	100	TV	0.500	100	1	Yes	No Protection Required		
2446	PTN	4	FWS / 074	5614-M-3074, Sh. 2	11	Manual vents & drains	4-20-170	0.500	1.0	Н	N	НТ	COPY DATA TO TRAIN B	100	Н	0.500	100	1	Yes	No Protection Required		
2443	PTN	4	FWS / 074	5614-M-3074, Sh. 2	11	Pressure & temperature indication	PI-4-1581	0.500	1.0	TV	N	HT	COPY DATA TO TRAIN B	100	TV	0.500	100	1	Yes	No	short run; high process temp no protection required	N
2446	PTN	4	FWS / 074	5614-M-3074, Sh. 2	11	Manual vents & drains	4-20-1084	0.750	0.5	BV	N	HT	COPY DATA TO TRAIN B	100	BV	0.750	100	0	No		short run; high process temp no protection required	N
2446	PTN	4	FWS / 074	5614-M-3074, Sh. 2	11	Manual vents & drains	4-20-1083	0.750	1.0	BV	N	HT	*COPY DATA TO TRAIN B* GROUND FLOOR IN OVERHEAD - NEXT VTO U4 INSTRUMENT AIR TANK	100	BV	0.750	100	0	No	HT	short run; high process temp no protection required	N
2446	PTN	4	FWS / 074	5614-M-3074, Sh. 2	11	Manual vents & drains	4-20-1085	0.750	N/A	N/A	N/A	N/A	EQUIPMENT LOCATED IN FW PUMP ROOM. THE PUMP ROOM IS ENCLOSED ON ALL FOUR SIDES AND CIELING WITH DOOR OPENINGS AT 90 DEGREES TO BLOCK WIND. ROOM EXHAUST FANS CAN BE TURNED OFF OR CYCLED. PUMP AND PIPING HEAT WILL MAINTAIN ROOM ABOVE FREEZING	100	N/A	0.750	100		No	N/A		
2445	PTN	4	FWS / 074	5614-M-3074, Sh. 2	11	3" CV bypass line	4-20-047	3.000	18.0	H-I	Y	I	LAST 6' ON td - CAGE - VALVE 042 ON TD	100	H-I	3.000	100	20	Yes	No Protection Required		
2445	PTN	4	FWS / 074	5614-M-3074, Sh. 2	11	3" CV bypass line	CV-4-2211	3.000	16.0	H-I	Y	I		100	H-I	3.000	100	20	Yes	No Protection Required		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 401 of 488

> R21002, Rev 0 Attachment N Page 36 of 123

																						Page 36 0	01 123
2054	PTN	4	089	5614-M-3089, SH 2	1 Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523		N/A		0.500	400		No	N/A		
2447	PTN	4	FWS / 074	5614-M-3074, Sh. 2	12 3" FW pump seal water crosstie line	4-20-046	3.000	N/A	N/A	N/A	N/A	EQUIPMENT LOCATED IN FW PUMP ROOM. THE PUMP ROOM IS ENCLOSED ON ALL FOUR SIDES AND CIELING WITH DOOR OPENINGS AT 90 DEGREES TO BLOCK WIND. ROOM EXHAUST FANS CAN BE TURNED OFF OR CYCLED. PUMP AND PIPING HEAT WILL MAINTAIN ROOM ABOVE FREEZING	100		N/A		3.000	100		No	N/A		
2447	PTN	4	FWS / 074	5614-M-3074, Sh. 2	12 3" FW pump seal water crosstie line	4-20-045	3.000	N/A	N/A	N/A	N/A	EQUIPMENT LOCATED IN FW PUMP ROOM. THE PUMP ROOM IS ENCLOSED ON ALL FOUR SIDES AND CIELING WITH DOOR OPENINGS AT 90 DEGREES TO BLOCK WIND. ROOM EXHAUST FANS CAN BE TURNED OFF OR CYLED. PUMP AND PIPING HEAT WILL MAINTAIN ROOM ABOVE FREEZING	100		N/A		3.000	100		No	N/A		
				5614-M-3074, Sh. 2	13 LC	LC-4-2210	0.375		H,D	N	HT	IN PIT NORTH-WEST OF FEEDWATER PUMP ROOM, ASSUME 3/8	100		BV	BV conservative due to downward portion	0.375	100	Not Analyzed	No	НТ	verify ambient temp; if hot no protection required	Y
2449				5614-M-3074, Sh. 2	13 Manual vents & drains	4-20-178	1.500	5.0	H,D	N	1		100		BV	BV conservative due to downward portion	1.500	100	0.5	No	1		
2450				5614-M-3074, Sh. 2 5614-M-3074, Sh. 2	14 1/2" chemical injection lines 14 1/2" chemical injection lines	4-20-036 4-20-037	0.500	3.0	H,D	N N	HT	MEZZ LEVEL - EAST OF EAST CATWALK, ASSUMED HORRIZONTAL	100		BV	BV conservative due to downward portion	0.500	100	0	No No	HT HT	check ambient temp; if hot no protection required	Y
2420				5614-M-3074, Sh. 1	4 Manual drains	4-20-037	0.750	1.0	H,D BV	N	нт	MEZZ LEVEL - EAST OF EAST CATWALK, ASSUMED HORRIZONTAL IN PIT NEAR CNDSR 4E7A		This is a feedwater standby	BV	BV conservative due to downward portion	0.500	400	0.5	No	HT	check ambient temp; if hot no protection required	N N
2420			14437 074	3014 W 3074, 311. 1	4 Manda dans	4 20 200	0.730	1.0	, and	, ,		III II	Ambient	system when not in use, pipping is expected to be at ambient temperature. When operating its going to be at 436 F	54		0.730	400	0.5	No			, a
2420	PTN	4	FWS / 074	5614-M-3074, Sh. 1	4 Manual drains	4-20-345	0.750	1.0	BV	N	нт	IN PIT NEAR CNDSR 4E7B	Ambient	This is a feedwater standby system when not in use, pipping is expected to be at ambient temperature. When operating its going to be at 436 F	BV		0.750	400	0.5	No	нт	нт	N
2420	PTN	4	FWS / 074	5614-M-3074, Sh. 1	4 Manual drains	4-20-422	0.750	1.0	BV	N	нт	IN MEZZ - WEST CATWALK - JUST EAST OF 48" STEAM LINE *CAN'T SEE* CAN'T LOCATE* 4SSUME 1' long and 3/4 dia based on similar for the line	Ambient	This is a feedwater standby system when not in use, pipping is expected to be at ambient temperature. When operating its going to be at 436 F	BV		0.750	400	0.5	No	НТ	нт	N
2420	PTN	4	FWS / 074	5614-M-3074, Sh. 1	4 Manual drains	4-20-290	0.750	1.0	BV	N	нт	IN PIT NEAR CNDSR 4E7A	Ambient	This is a feedwater standby system when not in use, pipping is expected to be at ambient temperature. When operating its going to be at 436 F	BV		0.750	400	0.5	No	НТ	нт	N
2421	PTN	4	FWS / 074	5614-M-3074, Sh. 1	4 Manual vents	4-20-247	0.750	1.0	TV	N	нт	IN MEZZ LEVEL - WEST - NO ACCESS - ESTIMATED 1'	Ambient	This is a feedwater standby system when not in use, pipping is expected to be at ambient temperature. When operating its going to be at 436 F	TV		Not Analyzed	400	#N/A	No	нт	нт	N
2420	PTN	4	FWS / 074	5614-M-3074, Sh. 1	4 Manual drains	4-20-343	0.750	0.5	BV	N	НТ	IN PIT NEAR CNDSR 4E7A	Ambient	This is a feedwater standby system when not in use, pipping is expected to be at ambient temperature. When operating its going to be at 436 F	BV		0.750	400	0.5	Yes	No Protection Required		
2421	PTN	4	FWS / 074	5614-M-3074, Sh. 1	4 Manual vents	4-20-147	0.750	1.0	TV	N	нт	IN MEZZ - WEST CATWALK - JUST EAST OF 48" STEAM LINE *CAN'T SEE* CAN'T LOCATE* ASSUME 1'	Ambient	This is a feedwater standby system when not in use, pipping is expected to be at ambient temperature. When operating its going to be at 436 F	TV		0.750	400	19	Yes	No Protection Required		
2405	PTN	4	FWS / 074	5614-M-3074, SH 5	LEFM pressure, flow and temperature transmitters + Pressure test points and Vent	PT-478AX	0.375	40.0	H,D	N	НТ	Assumed dia based on similar. RA (restricted acess)	436		BV	BV conservative due to downward portion	Not Analyzed	400	#N/A	No	HT	нт	N

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 402 of 488

> R21002, Rev 0 Attachment N Page 37 of 123

																							1	age 37 of 123
2054	PTN 4	1 (089	5614-M-3089, SH 2	1	Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523	N/A	/A		0.500	400		No	N/A		
2405 I	PTN 4	1 FWS	VS / 074	5614-M-3074, SH 5	1	LEFM pressure, flow and temperature transmitters + Pressure test points and Vent	PT-4-478BX	0.375	40.0	H,D	N	HT	Assumed dia based on similar. RA (restricted acess)	436	BV		BV conservative due to downward portion	Not Analyzed	400	#N/A	No	НТ	НТ	N
2405 I	PTN 4	1 FWS	VS / 074	5614-M-3074, SH 5	1	LEFM pressure, flow and temperature transmitters + Pressure test points and Vent	PT-488AX	0.375	40.0	H,D	N	HT	Assumed dia based on similar. RA (restricted acess)	436	BV		BV conservative due to downward portion	Not Analyzed	400	#N/A	No	НТ	нт	N
2405 I	PTN 4	1 FWS	VS / 074	5614-M-3074, SH 5	1	LEFM pressure, flow and temperature transmitters + Pressure test points and Vent	PT-4-488BX	0.375	40.0	H,D	N	нт	Assumed dia based on similar. RA (restricted acess)	436	BV		BV conservative due to downward portion	Not Analyzed	400	#N/A	No	НТ	НТ	N
2405 I	PTN 4	1 FWS	VS / 074	5614-M-3074, SH 5	1	LEFM pressure, flow and temperature transmitters + Pressure test points and Vent	PT-4-498AX	0.375	40.0	H,D	N	нт	Assumed dia based on similar. RA (restricted acess)	436	BV		BV conservative due to downward portion	Not Analyzed	400	#N/A	No	НТ	НТ	N
2405 I	PTN 4	1 FWS	VS / 074	5614-M-3074, SH 5	1	LEFM pressure, flow and temperature transmitters + Pressure test points and Vent	PT-4-498BX	0.375	40.0	H,D	N	HT	Assumed dia based on similar. RA (restricted acess)	436	BV		BV conservative due to downward portion	Not Analyzed	400	#N/A	No	НТ	НТ	N
2405 I	PTN 4	1 FWS	VS / 074	5614-M-3074, SH 5	1	LEFM pressure, flow and temperature transmitters + Pressure test points and Vent	4-20-1367	0.375	2.0	Н	N	HT	Assumed dia based on similar. RA (restricted acess)	436	н	Н		Not Analyzed	400	#N/A	No	НТ	нт	N
2405 I	PTN 4	1 FWS	VS / 074	5614-M-3074, SH 5	1	LEFM pressure, flow and temperature transmitters + Pressure test points and Vent	4-20-1365	0.375	1.0	HD	N	нт	Assumed dia based on similar. RA (restricted acess)	436	НС	HD.		Not Analyzed	400	#N/A	No	НТ	нт	N
2405 I	PTN 4	1 FWS	VS / 074	5614-M-3074, SH 5	1	LEFM pressure, flow and temperature transmitters + Pressure test points and Vent	4-20-1366	0.375	1.0	HD	N	нт	Assumed dia based on similar. RA (restricted acess)	436	НС	ID		Not Analyzed	400	#N/A	No	НТ	НТ	N
2405 I	PTN 4	1 FWS	VS / 074	5614-M-3074, SH 5	1	LEFM pressure, flow and temperature transmitters + Pressure test points and Vent	PX-4-478AX	0.375	0.5	Н	N	HT	RA (restricted acess)	436	Н	Н		Not Analyzed	400	#N/A	No	НТ	нт	N
2405 I	PTN 4	1 FWS	VS / 074	5614-M-3074, SH 5	1	LEFM pressure, flow and temperature transmitters + Pressure test points and Vent	PX-4-478BX	0.375	0.5	Н	N	HT	RA (restricted acess)	436	Н	Н		Not Analyzed	400	#N/A	No	НТ	нт	N
2405 I	PTN 4	1 FWS	VS / 074	5614-M-3074, SH 5	1	LEFM pressure, flow and temperature transmitters + Pressure test points and Vent	PX-4-488AX	0.375	0.5	Н	N	HT	RA (restricted acess)	436	Н	Н		Not Analyzed	400	#N/A	No	НТ	нт	N
2405 I	PTN 4	4 FWS	VS / 074	5614-M-3074, SH 5	1	LEFM pressure, flow and temperature transmitters + Pressure test points and Vent	PX-4-488BX	0.375	0.5	Н	N	HT	RA (restricted acess)	436	Н	Н		Not Analyzed	400	#N/A	No	НТ	нт	N
2405 I	PTN 4	1 FWS	VS / 074	5614-M-3074, SH 5	1	LEFM pressure, flow and temperature transmitters + Pressure test points and Vent	PX-4-498AX	0.375	0.5	Н	N	HT	RA (restricted acess)	436	н	Н		Not Analyzed	400	#N/A	No	НТ	нт	N
2405 I	PTN 4	1 FWS	VS / 074	5614-M-3074, SH 5	1	LEFM pressure, flow and temperature transmitters + Pressure test points and Vent	PX-4-498BX	0.375	0.5	Н	N	нт	RA (restricted acess)	436	Н	Н		Not Analyzed	400	#N/A	No	нт	нт	N
2405 I	PTN 4	4 FWS	VS / 074	5614-M-3074, SH 5	1	LEFM pressure, flow and temperature transmitters + Pressure test points and Vent	FE-4-478	N/A	N/A	N/A	N/A	N/A	LEFM external to pipe	436	N/s	/A		Not Analyzed	400		No	N/A		
2405 I	PTN 4	4 FWS	VS / 074	5614-M-3074, SH 5	1	LEFM pressure, flow and temperature transmitters + Pressure test points and Vent	FE-4-488	N/A	N/A	N/A	N/A	N/A	LEFM external to pipe	436	N/s	/A		Not Analyzed	400		No	N/A		
2405 I	PTN 4	4 FWS	VS / 074	5614-M-3074, SH 5	1	LEFM pressure, flow and temperature transmitters + Pressure test points and Vent	FE-4-498	N/A	N/A	N/A	N/A	N/A	LEFM external to pipe	436	N/s	/A		Not Analyzed	400		No	N/A		
2260 I				5614-M-3073, Sh. 2	1		4-30-018	0.500		BV		HT		373	BV			0.500	370	0.5	Yes	No Protection Required		
2259 1	PTN 4	1 CON	ND / 073	5614-M-3073, Sh. 2	1	temperature & pressure gages	।-1427From Header To PI	0.500	1.0	Н	N	НТ		373	н	Н		0.500	370	7.6	Yes	No Protection Required		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 403 of 488

> R21002, Rev 0 Attachment N Page 38 of 123

																						rage 30 t	01 120
2054	PTN	4	089	5614-M-3089, SH 2	1	Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523	N/A		0.500	400		No	N/A		
2259	PTN	4	COND / 073	5614-M-3073, Sh. 2	1	temperature & pressure gages	1-1428 From Header to Pl	0.500	1.0	Н	N	НТ		373	н		0.500	370	7.6	Yes	No Protection		
2258	PTN	4	COND / 073	5614-M-3073, Sh. 2	1	Condensate line flow	FE-4-1400	0.375	30.0	Н	N	НТ		373	Н	+	0.375	370	4.2	No	Required HT	check ambient temp; if hot no protection	Y
2259	PTN	4	COND / 073	5614-M-3073, Sh. 2	1	transmitter / indication temperature & pressure	PI-1427 to PI-1428	0.375	11.0	Н	N	HT		373	Н	+	0.375	370	4.2	No	HT	required verify if root valve is within 2' of process line no	Y
2260	PTN	4	COND / 073	5614-M-3073, Sh. 2	1	gages manual vent, drain lines	SS Tubing 4-10-1661	0.375	5.5	Н	N	HT		373	Н		0.375	370	4.2	No	HT	heat trace required; Isolate valve verify valve is in east condeser pit-if so no heat	Y
2260	PTN	4	COND / 073	5614-M-3073, Sh. 2	1	manual vent, drain lines	To Valve 4-20-894	0.750	1.0	BV	N	HT		373	BV		0.750	370	0.5	No	HT	short run; high process temp-no protection	N
2260	PTN	4	COND / 073	5614-M-3073, Sh. 2	1	manual vent, drain lines	Not In Service 4-20-084 Condenser	0.750	1.0	BV	N	HT		373	BV		0.750	370	0.5	No	HT	required short run; high process temp-no protection	N
							Drain															required	-
2260			COND / 0/3	5614-M-3073, Sh. 2	1	4-24"-3-D TO 4-20-973A	4" pipe to 4-20-973A	4.000	25.0	H N/A	N	l NI/A	FWH3B	373	H		4.000	370	15	No	N1/A		+
2260	PTN	4		5614-M-3073, Sh. 2	1	PIPE TO 4-20-009	PIPE TO 4-20-009	18.000	12.0	N/A	N	N/A	FWH3A (INSULATION MAY CAUSE ACTUATOR ON RV TO NOT FUNCTION PROPERLY, MAY HINDER OPENING OR CAUSE TO BE STUCK OPEN. SEE RV PHOTOS)	373	N/A		Not Analyzed	370		No	N/A		
2260	PTN	4	COND / 073	5614-M-3073, Sh. 2	1	4-24"-3-D TO 4-20-973A	Dead Leg Through Turbine Bldg. Wall 4-20- 973A	24.000	6.0	Н	N	N/A	WILL NOT FREEZE 100%	373	н		Not Analyzed	370	#N/A	No	N/A		
2260	PTN	4	COND / 073	5614-M-3073, Sh. 2	1	manual vent, drain lines	Dead Leg Through Turbine Bldg. Wall 4-20-974A	24.000	75.0	N/A	N	N/A	FWH3B (INSULATION MAY CAUSE ACTUATOR ON RV TO NOT FUNCTION PROPERLY, MAY HINDER OPENING OR CAUSE TO BE STUCK OPEN. SEE RV PHOTOS)	373	N/A		Not Analyzed	370		No	N/A		
2260	PTN	4	COND / 073	5614-M-3073, Sh. 2	1	manual vent, drain lines	CDPL-4-063	1.000	0.5	TV	N	НТ		373	TV		1.000	370	20	Yes	No Protection Required		
2260	PTN	4	COND / 073	5614-M-3073, Sh. 2	1	manual vent, drain lines	To Valve 4-20-627 , 629 Not In Service	2.000	1.0	BV	N	I	MAY NOT BE POSSIBLE TO INSULATE AND ALOW THE ACTUATOR TO OPERATE PROPERLY	373	BV		2.000	370	1.1	Yes	No Protection Required		
2260	PTN	4	COND / 073	5614-M-3073, Sh. 2	1	manual vent, drain lines	To Valve 4-20-628 Not In Service	2.000	1.0	Н	N	I		373	н		2.000	370	18	Yes	No Protection Required		
2262	PTN	4	COND / 073	5614-M-3073, Sh. 2	3	14" condensate bypass line to LP heaters bypass and FW pump discharge	CV-4-2011	8.000	60.0	HD	N	I	Measured to where Insulation starts	373	HD		Not Analyzed	370	#N/A	No	I		
2263	PTN	4	COND / 073	5614-M-3073, Sh. 2	3	manual drain lines	4-20-302	0.750	0.5	BV	N	НТ		373	BV		0.750	370	0.5	Yes	No Protection Required		
2264	PTN	4	COND / 073	5614-M-3073, Sh. 2	4	1/2" condensate line to SJAE loop seal fill	4-20-621	0.500	N/A	N/A	N/A	N/A	Starts in Cond East pit and on first floor. Condenser heat will prevent freezing	373	N/A		0.500	370		No	N/A		
2266	PTN	4	COND / 073	5614-M-3073, Sh. 2	5	1" condensate line to desuperheater valve (abandoned) and chem.	4-20-069 4-20-941	1.000	150.0	BD	N	НТ	If this line is out-of-service it should be disconnected at the valve in the basement. Or where it attaches to the		BD		1.000		#N/A	No	НТ	check ambient temp; if high do not HT	Y
2266	PTN	4	COND / 073	5614-M-3073, Sh. 2	5	addition 1" condensate line to desuperheater valve (abandoned) and chem. addition	4-20-069 4-20-071	1.000	150.0	BD	N	НТ	other branch		BD		1.000		#N/A	No	НТ	check ambient temp; if high do not HT	Y
2265	PTN	4	COND / 073	5614-M-3073, Sh. 2	5	2" condensate line for surge tank makeup	4-20-070	2.000	300.0	HV	N	I		373	HV		2.000	370	#N/A	No	I		
2267	PTN	4	COND / 073	5614-M-3073, Sh. 2	6	1/2" & 4" abandoned line	4-20-622	0.500	1.0	Н	N	HT	In basement. Condensate Sump Area. Always Warm	373	н		0.500	370	7.6	Yes	No Protection Required		
2268	PTN	4	COND / 073	5614-M-3073, Sh. 2	7	6" wet layup line	N/A	N/A	N/A	N/A	N/A	N/A	COVERED BY SGWL PID		N/A					No	N/A		\vdash
				5614-M-3073, Sh. 2	8		4-20-973C	4.000	40.0	HD	N	I		373	HD		4.000	370	#N/A	No	I		
2270	PTN	4	COND / 073	5614-M-3073, Sh. 2	8	manual drain lines	4-20-973B	4.000	1.0	BD	N	- 1		373	BD		4.000	370	#N/A	No	1		\Box
				5614-M-3073, Sh. 2	9	4" condensate line to heater drain pump suction	4-4"-3-D	4.000	200.0	HD	N	I		373	HD		4.000	370	#N/A	No	T T		
2274	PTN	4	COND / 073	5614-M-3073, Sh. 2	10	manual drain lines	4-30-052	0.750	1.0	BV	N	НТ		373	BV		0.750	370	0.5	No	HT	high process temp; short run no protection required	N
2274	PTN	4	COND / 073	5614-M-3073, Sh. 2	10	manual drain lines	4-30-053	0.750	1.0	BV	N	НТ		373	BV		0.750	370	0.5	No	HT	high process temp; short run no protection required	N
2273	PTN	4	COND / 073	5614-M-3073, Sh. 2	10	3/4" Relief valve off a 1" line	RV-4-1404	0.750	0.5	Н	N	HT		373	н		0.750	370	14	Yes	No Protection Required		
2274	PTN	4		5614-M-3073, Sh. 2	10	manual VENT	4-30-051	0.750	1.0	TV	N	HT		373	TV		0.750	370	17.2	Yes	No Protection Required		
																				_			

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 404 of 488

> R21002, Rev 0 Attachment N Page 39 of 123

																			Page 39	of 123
2054 PT	4	089	5614-M-3089, SH 2	1	Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523	N/A	0.500	400		No N/A		
2274 PT	۱ 4	COND / 07	3 5614-M-3073, Sh. 2	10	pressure gage	PI-4-6680	0.750	2.0	TV	N	нт		373	TV	0.750	370	17.2	Yes No Protection Require		
2275 PT	4	COND / 07	3 5614-M-3073, Sh. 2	11	pressure gage	N/A	N/A	N/A	N/A	N/A	N/A	CAPPED FROM CONDENSATE. OTHER END COVERD BY PID 3018		N/A				No N/A		
2277 PT	4	COND / 07:	3 5614-M-3073, Sh. 2	11	manual drain lines	N/A	N/A	N/A	N/A	N/A	N/A	CAPPED FROM CONDENSATE. OTHER END COVERD BY PID 3018		N/A				No N/A		
2276 PT	4	COND / 073	3 5614-M-3073, Sh. 2	11	6" condensate line to DWST (capped)	N/A	N/A	N/A	N/A	N/A	N/A	CAPPED FROM CONDENSATE. OTHER END COVERD BY PID 3018		N/A				No N/A		
2281 PT	N 4	COND / 073	5614-M-3073, Sh. 2	13		8"	16.000	12.0	N/A	Υ	N/A	length estimated based on similar		N/A	Not			No N/A		
2280 PT	4	COND / 07	3 5614-M-3073, Sh. 2	13	18" condensate branch line to condenser (downstream of valve 4-20-009)	CV-4-1400	18.000	3.0	N/A	N	N/A		373	N/A	Not Analyzed	370		No N/A		
2282 PT	N 4	COND / 07	3 5614-M-3073, Sh. 2	14	1/2" chemical injection line	4-20-004 4-20-005	0.500	80.0	Н	N	НТ		373	Н	0.500	370	7.6	No HT	chemical feed doesn't freeze-no protection	N
2283 PT	4	COND / 07	3 5614-M-3073, Sh. 2	15	1/2" chemical injection line	4-20-003 4-20-003 4-20-002	0.500	80.0	Н	N	НТ		373	Н	0.500	370	7.6	No HT	chemical does not freeze-no protection required	N
2284 PT	4	COND / 07:	3 5614-M-3073, Sh. 2	16	18"SJAE condenser bypass	4-20-002	18.000	24.0	N/A	N	N/A		373	N/A	Not Analyzed	370		No N/A		
2235 PT	4	COND / 07:	3 5614-M-3073, Sh. 1	1	suction pressure gages	4-20-739 Pump A Feed	0.500	N/A	N/A	N/A	N/A		109	N/A	0.500	100		No N/A		
2235 PT	4	COND / 07	3 5614-M-3073, Sh. 1	1	suction pressure gages	PX-4-1407 Pump A Feed	0.375	N/A	N/A	N/A	N/A		109	N/A	0.375	100		No N/A		
2235 PT	4	COND / 07	3 5614-M-3073, Sh. 1	1	suction pressure gages	PI-4-1599 Pump C Feed	0.500	N/A	N/A	N/A	N/A		109	N/A	0.500	100		No N/A		
2235 PT	4	COND / 07	3 5614-M-3073, Sh. 1	1	suction pressure gages	4-20-745	0.500	N/A	N/A	N/A	N/A		109	N/A	0.500	100		No N/A		+
			3 5614-M-3073, Sh. 1	1		PX-4-1406 Pump A Feed	0.375	N/A	N/A	N/A	N/A		109	N/A	0.375	100		No N/A		
2236 PT	4	COND / 073	3 5614-M-3073, Sh. 1	1	relief valve	RV-4-1417 Pump B Feed	0.750	N/A	N/A	N/A	N/A		109	N/A	0.750	100		No N/A		
2236 PT	4	COND / 073	3 5614-M-3073, Sh. 1	1	relief valve	RV-4-1449 Pump C Feed	1.000	N/A	N/A	N/A	N/A		109	N/A	1.000	100		No N/A		
2236 PT	4	COND / 073	5614-M-3073, Sh. 1	1	relief valve	RV-4-1416 Pump A Feed	0.750	N/A	N/A	N/A	N/A		109	N/A	0.750	100		No N/A		
2237 PT	4	COND / 073	5614-M-3073, Sh. 1	1	manual vents & drains	4-20-199 Drain Pump A Feed	2.000	N/A	N/A	N/A	N/A		109	N/A	2.000	100		No N/A		
			3 5614-M-3073, Sh. 1	1	manual vents & drains	4-20-547 Drain Pump C Feed	2.000	N/A	N/A	N/A	N/A		109	N/A	2.000	100		No N/A		
2237 PT	4	COND / 073	3 5614-M-3073, Sh. 1	1	manual vents & drains	4-20-099 Drain Pump A Feed	2.000	N/A	N/A	N/A	N/A		109	N/A	2.000	100		No N/A		
2237 PT	N 4	COND / 07	3 5614-M-3073, Sh. 1	1	manual vents & drains	4-20-976B Pump 4P6B Seal Flush Vent	N/A	N/A	N/A	N/A	N/A		109	N/A		100		No N/A		
2237 PT	N 4	COND / 07	3 5614-M-3073, Sh. 1	1	manual vents & drains	4-20-976C Pump 4P6C Seal Flush Vent	N/A	N/A	N/A	N/A	N/A		109	N/A		100		No N/A		
2237 PT	4	COND / 07	3 5614-M-3073, Sh. 1	1	manual vents & drains	4-20-976A Pump 4P6A Seal Flush Vent	N/A	N/A	N/A	N/A	N/A		109	N/A		100		No N/A		
2237 PT	N 4	COND / 07	3 5614-M-3073, Sh. 1	1	manual vents & drains	4-20-580B Pump 4P6B	N/A	N/A	N/A	N/A	N/A		109	N/A		100		No N/A		
2237 PT	N 4	COND / 073	3 5614-M-3073, Sh. 1	1	manual vents & drains	Tank Vent 4-20-580C Pump 4P6C	N/A	N/A	N/A	N/A	N/A		109	N/A		100		No N/A		
2237 PT	N 4	COND / 07	3 5614-M-3073, Sh. 1	1	manual vents & drains	Tank Vent 4-20-598A Pump 4P6C	N/A	N/A	N/A	N/A	N/A		109	N/A		100		No N/A		
2237 PT	1 4	COND / 073	3 5614-M-3073, Sh. 1	1	manual vent, drain lines	Tank Vent Dead Leg	4.000	N/A	N/A	N/A	N/A		109	N/A	4.000	100		No N/A		+
2213 PT	N 4	COND / 072	2 5614-M-3073, Sh. 1	2	condensate pump seal supply flow indicator	4-20-974A condensate pump seal supply flow indicator	N/A	N/A	N/A	N/A	N/A			N/A				No N/A		+
2242 PT	N 4	COND / 073	3 5614-M-3073, Sh. 1	3	Condensate Pumps discharge line flow transmitter /	Pump Seal Flush FI-4-597B	TBD	N/A	N/A	N/A	N/A		373	N/A		370		No N/A		
2242 PT	N 4	COND / 073	3 5614-M-3073, Sh. 1	3	indication Condensate Pumps discharge line flow transmitter /	Pump Seal Flush FI-4-597C	TBD	N/A	N/A	N/A	N/A		373	N/A		370		No N/A		
2242 PT	N 4	COND / 073	3 5614-M-3073, Sh. 1	3	indication Condensate Pumps discharge line flow transmitter /	Pump Seal Flush FI-4-597A	TBD	N/A	N/A	N/A	N/A		373	N/A		370		No N/A		
					indication															

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 405 of 488

> R21002, Rev 0 Attachment N Page 40 of 123

																			Page 40 of 123
2054	PTN	4	089	5614-M-3089, SH 2		Control Instrument us 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A	523	N/A	0.500	400	No	N/A	
2243	PTN	4	COND / 073	5614-M-3073, Sh. 1	disc	ondensate pump harge pressure	PI-4-1426 Pump B	0.500	N/A	N/A	N/A	N/A	373	N/A	0.500	370	No	N/A	
2243	PTN	4	COND / 073	5614-M-3073, Sh. 1	3 Condensa	nstruments ate Pumps discharge ow transmitter /	Pump B FE-4-1420	N/A	N/A	N/A	N/A	N/A	373	N/A		370	No	N/A	
2243	PTN	4	COND / 073	5614-M-3073, Sh. 1		indication lanual drains	4-20-465F Pump B	N/A	N/A	N/A	N/A	N/A	373	N/A		370	No	N/A	
							From FE-4-1420 To 4-20-465F												
				5614-M-3073, Sh. 1		lanual drains	FE-4-1420	N/A	N/A		N/A	N/A	373	N/A		370	No	N/A	
				5614-M-3073, Sh. 1		lanual drains	FE-4-1421	N/A	N/A		N/A	N/A	373	N/A		370	No	N/A	
				5614-M-3073, Sh. 1		lanual drains	FE-4-1419	N/A	N/A		N/A	N/A	373	N/A		370	No	N/A	
2243	PTN	4	COND / 073	5614-M-3073, Sh. 1	disc	ondensate pump harge pressure nstruments	PI-4-3426 Pump B Discharge	0.500	N/A	N/A	N/A	N/A	373	N/A	0.500	370	No	N/A	
2243	PTN	4	COND / 073	5614-M-3073, Sh. 1		ondensate pump harge pressure	PX-4-3412 Pump B Discharge	0.375	N/A	N/A	N/A	N/A	373	N/A	0.375	370	No	N/A	
2243	PTN	4	COND / 073	5614-M-3073, Sh. 1		nstruments ondensate pump	PI-4-1422	0.500	N/A	N/A	N/A	N/A	373	N/A	0.500	370	No	N/A	
					i	harge pressure nstruments	Pump B Discharge												
2243	PTN	4	COND / 073	5614-M-3073, Sh. 1	disc	ondensate pump harge pressure	PX-4-3411 Pump B Discharge	0.375	N/A	N/A	N/A	N/A	373	N/A	0.375	370	No	N/A	
2246	PTN	4	COND / 073	5614-M-3073, Sh. 1		nstruments Ianual drains	4-20-079 Drain By Pump B Check Valve	0.750	N/A	N/A	N/A	N/A	373	N/A	0.750	370	No	N/A	
2246	PTN	4	COND / 073	5614-M-3073, Sh. 1	3 M	lanual drains	Discharge Line 4-20-747 Drain By	1.000	N/A	N/A	N/A	N/A	373	N/A	1.000	370	No	N/A	
2246	DTN	1	COND / 073	5614-M-3073, Sh. 1	3 M	lanual drains	Pump C Check Valve Discharge Line 4-20-103 Drain By	1.000	N/A	N/A	N/A	N/A	373	N/A	1.000	370	No	N/A	
2240	FIN	•	COND / 073	3014-101-3073, 311. 1	3 100	ianuai uranis	Pump A Check Valve Discharge Line	1.000	IN/A	IN/A	IN/A	N/A	373	N/A	1.000	370	No	IN/A	
2246	PTN	4	COND / 073	5614-M-3073, Sh. 1	3 N	lanual vents	4-20-203 By Pump B Check Valve	0.500	N/A	N/A	N/A	N/A	373	N/A	0.500	370	No	N/A	
2246	PTN	4	COND / 073	5614-M-3073, Sh. 1	3 N	Nanual vents	Discharge Line 4-20-249 Vent By Pump B Check Valve	TBD	N/A	N/A	N/A	N/A	373	N/A		370	No	N/A	
2247	PTN	4	COND / 073	5614-M-3073, Sh. 1		s/warmup valves	Discharge Line 4-20-205 Pump B	1.000	N/A	N/A	N/A	N/A	373	N/A	1.000	370	No	N/A	
2247	PTN	4	COND / 073	5614-M-3073, Sh. 1		main isolation gate valves s/warmup valves	Valve Bypass 4-20-255 Pump C	1.000	N/A	N/A	N/A	N/A	373	N/A	1.000	370	No	N/A	
					around	main isolation gate valves	Valve Bypass												
2247	PTN	4	COND / 073	5614-M-3073, Sh. 1		s/warmup valves main isolation gate valves	4-20-105 Pump A Valve Bypass	1.000	N/A	N/A	N/A	N/A	373	N/A	1.000	370	No	N/A	
2249	PTN	4	COND / 073	5614-M-3073, Sh. 1	line fl	sate Pumps recirc. ow transmitter /	FE-4-1420B	Tubing	N/A	N/A	N/A	N/A	115	N/A	0.375	110	No	N/A	
2249	PTN	4	COND / 073	5614-M-3073, Sh. 1	5 Conden	indication sate Pumps recirc. ow transmitter /	FE-4-1421B	Tubing	N/A	N/A	N/A	N/A	115	N/A	0.375	110	No	N/A	
2249	PTN	4	COND / 073	5614-M-3073, Sh. 1	5 Vents	indication Jorains / Misc. Connections	FE-4-1419B	Tubing	N/A	N/A	N/A	N/A	115	N/A	0.375	110	No	N/A	
2251	PTN	4	COND / 073	5614-M-3073, Sh. 1		lanual drains	N/A	N/A	N/A	N/A	N/A	N/A		N/A			No	N/A	
2252	PTN	4	COND / 073	5614-M-3073, Sh. 1		Nanual vents	N/A	N/A	N/A	N/A	N/A	N/A		N/A			No	N/A	
2250	PTN			5614-M-3073, Sh. 1	5 10" cond lines up:	lensate pump recirc stream of normally osed isolation		N/A	N/A	N/A	N/A	N/A		N/A			No	N/A	
2250	PTN	4	COND / 073	5614-M-3073, Sh. 1	5 10" cond lines up:	lensate pump recirc stream of normally osed isolation		N/A	N/A	N/A	N/A	N/A		N/A			No	N/A	
2250	PTN	4	COND / 073	5614-M-3073, Sh. 1	5 10" cond	lensate pump recirc stream of normally		N/A	N/A	N/A	N/A	N/A		N/A			No	N/A	
2254	PTN	4	COND / 073	5614-M-3073, Sh. 1	6 1/2", 3/8'	osed isolation ' & 1/4" condensate der sample lines	e 4-20-832 To Sample Panel	0.250	N/A	N/A	N/A	N/A	373	N/A	Not Analyze	370	No	N/A	
							Pump B												
2254	PTN	4	COND / 073	5614-M-3073, Sh. 1		* & 1/4" condensate der sample lines	e PX-4-3413 Pump C	0.250	N/A	N/A	N/A	N/A	373	N/A	Not Analyze	370	No	N/A	
							-		-	-		-	·						· · · · · · · · · · · · · · · · · · ·

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 406 of 488

> R21002, Rev 0 Attachment N Page 41 of 123

																			Page 41	of 123
2054	PTN 4	089	5614-M-3089, SH 2	1 Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523	N/A	0.500	400		No	N/A		
2254	PTN 4	COND / 07:	3 5614-M-3073, Sh. 1	6 1/2", 3/8" & 1/4" condensate header sample lines	Secondary Sample System Panel	0.250	N/A	N/A	N/A	N/A		373	N/A	Not Analyzed	370		No	N/A		
2254	PTN 4	COND / 07	3 5614-M-3073, Sh. 1	6 1/2", 3/8" & 1/4" condensate header sample lines	System Panel	0.250	N/A	N/A	N/A	N/A		373	N/A	Not Analyzed	370		No	N/A		
2254	PTN 4	COND / 073	3 5614-M-3073, Sh. 1	6 1/2", 3/8" & 1/4" condensate header sample lines	Pump C 4-20-746 Pump C	0.375	N/A	N/A	N/A	N/A		373	N/A	0.375	370		No	N/A		
2254	PTN 4	COND / 07	3 5614-M-3073, Sh. 1	6 1/2", 3/8" & 1/4" condensate header sample lines	Reducer by PX 1408 to Reducer to 0.25	0.375	N/A	N/A	N/A	N/A		373	N/A	0.375	370		No	N/A		
2254	PTN 4	COND / 07	3 5614-M-3073, Sh. 1	6 1/2", 3/8" & 1/4" condensate header sample lines	Pump A 4-20-831 Pump C	0.375	N/A	N/A	N/A	N/A		373	N/A	0.375	370		No	N/A		
2253	PTN 4	COND / 07	3 5614-M-3073, Sh. 1	6 local condensate discharge sample line pressure	N/A	N/A	N/A	N/A	N/A	N/A			N/A				No	N/A		
2253	PTN 4	COND / 07	3 5614-M-3073, Sh. 1	6 local condensate discharge sample line pressure	PX-4-1409 Pump B	0.500	N/A	N/A	N/A	N/A		373	N/A	0.500	370		No	N/A		
2253	PTN 4	COND / 073	3 5614-M-3073, Sh. 1	instruments 6 local condensate discharge sample line pressure	PI-4-1598 Pump C	0.500	N/A	N/A	N/A	N/A		373	N/A	0.500	370		No	N/A		
2253	PTN 4	COND / 073	3 5614-M-3073, Sh. 1	instruments 6 local condensate discharge sample line pressure	Reducer by PX 1408 Pump A	0.500	N/A	N/A	N/A	N/A		373	N/A	0.500	370		No	N/A		
2256	PTN 4	COND / 073	3 5614-M-3073, Sh. 1	instruments 8 1/4", 1/2", & 1" hotwell sample pumps seal supply	1/4", 1/2", & 1" hotwell sample pumps seal	N/A	N/A	N/A	N/A	N/A		50	N/A		50		No	N/A		
				from condensate storage & condensate header	supply from condensate storage & condensate header															
2257	PTN 4	COND / 07:	3 5614-M-3073, Sh. 1	9 2" LP turbine steam exhaust	2" LP turbine steam exhaust hood spray	N/A	N/A	N/A	N/A	N/A	No Items	50	N/A		50		No	N/A		
2221	PTN 4	COND / 07	3 5614-M-3073, SH 3	2 Pressure connections	PX-4-1442	0.500	0.5	TV	N	НТ	15 2A	169	TV	0.500	160	2.3	Yes	No Protection		
2221	PTN 4	COND / 07	3 5614-M-3073, SH 3	2 Pressure connections	PX-4-1432	0.500	0.5	Н	N	НТ	17 3A Out	200	н	0.500	200	3.5	Yes	No Protection		
2222	PTN 4	COND / 07	3 5614-M-3073, SH 3	Pressure instruments and temperature elements	PS-4-2054	0.500	1.0	TV	N	НТ	26 Pressure Switch Header	200	TV	0.500	200	3.5	Yes	No Protection		
2221	PTN 4	COND / 07:	3 5614-M-3073, SH 3	2 Pressure connections	PX-4-1439	0.500	2.0	Н	N	НТ	18	200	Н	0.500	200	3.5	Yes	No Protection		
2221	PTN 4	COND / 07:	3 5614-M-3073, SH 3	2 Pressure connections	PX-4-1438	0.500	0.5	Н	N	НТ	19 4 out	255	н	0.500	250	5	Yes	No Protection		
2221	PTN 4	COND / 07	3 5614-M-3073, SH 3	2 Pressure connections	PX-4-1444	0.500	0.5	Н	N	НТ	20 5A	255	н	0.500	250	5	Yes	No Protection		
2222	PTN 4	COND / 07	3 5614-M-3073, SH 3	Pressure instruments and temperature elements	PS-4-2027	0.500	1.0	TV	N	НТ	27 Pressure Switch Header	255	TV	0.500	250	5	Yes	No Protection		
2219	PTN 4	COND / 07	3 5614-M-3073, SH 3	2 Manual drains	4-20-093	0.500	0.5	TV	N	НТ	9	307	TV	0.500	300	6	Yes	No Protection		
2220	PTN 4	COND / 07	3 5614-M-3073, SH 3	2 Manual vents	4-30-521	0.500	0.5	TV	N	НТ	14 Vent	307	TV	0.500	300	6	Yes	No Protection		
2221	PTN 4	COND / 073	3 5614-M-3073, SH 3	2 Pressure connections	PX-4-1443	0.500	0.5	Н	N	НТ	21 5A out	307	Н	0.500	300	6	Yes	No Protection		
2221	PTN 4	COND / 07	3 5614-M-3073, SH 3	2 Pressure connections	PX-4-1512	0.375	3.0	HD	N	HT	must be on mezzanine. Assumed dia and length	307	HD	Not Analyzed	300	#N/A	No	Required HT	verify line to first isolation valve; if short run do not protect	Y
2221	PTN 4	COND / 07:	3 5614-M-3073, SH 3	2 Pressure connections	PX-4-1433	0.500	1.0	BV	N	НТ	COULD NOT FIND, assumed length based on similar	169	BV	0.500	160	0	No	HT	verify line to first isolation valve; if short run do not protect	Y
2219	TN 4	COND / 07	3 5614-M-3073, SH 3	2 Manual drains	4-20-635	0.500	0.5	BV	N	HT	10 Pressure Switch Header	110	BV	0.500	110	0	No	HT	short run; high process line do not protect	Υ
2222	TN 4	COND / 07	5614-M-3073, SH 3	2 Pressure instruments and	PI-4-1424	0.750	1.0	Н	N	HT	23 1A Feed Line	110	Н	0.750	110	2.4	Yes	No		
				temperature elements														Protection Required		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 407 of 488

> R21002, Rev 0 Attachment N Page 42 of 123

																					1 age 42 (31 120
2054	PTN	4	089	5614-M-3089, SH 2	1 Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523	N/A		0.500	400		No	N/A		
2222	PTN	4 (COND / 073	5614-M-3073, SH 3	2 Pressure instruments and temperature elements	PS-4-2011	0.500	20.0	Н	N	HT	25 Pressure Switch Header	169	Н		0.500	160	2.3	No	НТ	нт	N
2220	PTN	4 (COND / 073	5614-M-3073, SH 3	2 Manual vents	4-30-121	0.750	1.0	BV	N	HT	COULD NOT FIND, assumed length based on similar	110	BV		0.750	110	0	No	HT	verify line to first isolation valve; if short run do not protect	Y
2222	PTN	4 (COND / 073	5614-M-3073, SH 3	Pressure instruments and temperature elements	PI-4-1423	0.375	N/A	N/A	N/A	N/A	This has to be located very close to condenser on the east side close to 1A/2A HXs. As such, local temperature will be above freezing.	110	N/A		Not Analyzed	110		No	N/A	посроесс	
2218	PTN	4 (COND / 073	5614-M-3073, SH 3	LP heater condensate side relief valves	RV-4-3410	0.750	N/A	N/A	N/A	N/A	This has to be located very close to condenser on the east side close to 1A/2A HXs. As such, local temperature will be above freezing.	110	N/A		Not Analyzed	110		No	N/A		
2220	PTN	4 (COND / 073	5614-M-3073, SH 3	2 Manual vents	4-30-221	0.750	1.0	BV	N	НТ	COULD NOT FIND, assumed length based	169	BV		0.750	160	0.2	No	НТ	verify line to first isolation valve; if short run do	Y
2219	PTN	4 (COND / 073	5614-M-3073, SH 3	2 Manual drains	4-30-243 4-30-123	0.750	0.5	BV	N	HT	on similar 5 From Head 1A	110	BV		0.750	110	0	No	HT	not protect short run; high process temp; no protection	N
2219	PTN	4 (COND / 073	5614-M-3073, SH 3	2 Manual drains	FWHR-4-014	0.750	0.5	BV	N	НТ	6 2A	169	BV		0.750	160	0.2	No	НТ	short run; high process temp; no protection	N
2218	PTN	4 (COND / 073	5614-M-3073, SH 3	2 LP heater condensate side	RV-4-3412	0.750	0.5	Н	N	HT	Assumed dia 3/4". These are thermal	200	Н		Not	200	#N/A	No	HT	short run; high process temp; no protection	N
2218	PTN	4 (COND / 073	5614-M-3073, SH 3	relief valves 2 LP heater condensate side	RV-4-3414	0.750	0.5	H-I	Y	HT	reliefs Assumed dia 3/4". These are thermal reliefs	307	H-I		Not A reduced	300	#N/A	No	HT	short run; high process temp; no protection	N
2219	PTN	4 (COND / 073	5614-M-3073, SH 3	relief valves 2 Manual drains	4-30-527	0.750	0.5	BV	N	НТ	8 5A	255	BV		0.750	250	0.5	Yes	No Protection	required	
2220	PTN	4 (COND / 073	5614-M-3073, SH 3	2 Manual vents	4-20-417	0.750	1.0	Н	N	НТ	13 Line drain 4B	255	н		0.750	250	8	Yes	No Protection		
2218	PTN	4 (COND / 073	5614-M-3073, SH 3	2 LP heater condensate side relief valves	RV-4-1418	0.750	0.5	TV-I	У	НТ	4 Could not Find	307	TV-I		0.750	300	20	Yes	No Protection		
2219	PTN	4 (COND / 073	5614-M-3073, SH 3	2 Manual drains	4-30-429A	1.000	0.5	Н	N	нт	7 4A	200	Н		1.000	200	10	Yes	Required No Protection		
2225	PTN	4 (COND / 073	5614-M-3073, SH 3	3 Manual drains	4-30-0164-30-017	0.500	1.0	Н	N	НТ	38 Drain 4B	110	н		0.500	110	1.2	Yes	Required No Protection		
2220	DTN	4	COND / 073	5614-M-3073, SH 3	2 Procesure instruments and	PS-4-2014	0.500	1.0	TV	N	НТ	54 PS Header	169	TV		0.500	160	2.3	Vos	Required		
2220	FIIN	1	COND / 0/3	3014-W-3073, 3113	3 Pressure instruments and temperature elements	F3-4-2014	0.300	1.0	''	N	'''	34 F3 Headel	103			0.300	100	2.3	Yes	No Protection Required		
2228	PTN	4 (COND / 073	5614-M-3073, SH 3	3 Pressure instruments and temperature elements	PS-4-2055	0.500	1.0	TV	N	НТ	55 PS Header	200	TV		0.500	200	3.5	Yes	No Protection Required		
2227	PTN	4 (COND / 073	5614-M-3073, SH 3	3 Pressure test connections	PX-4-1441	0.500	2.0	Н	N	нт	48 Between 3B & 4B	200	Н		0.500	200	3.5	Yes	No Protection		
2227	PTN	4 (COND / 073	5614-M-3073, SH 3	3 Pressure test connections	PX-4-1446	0.500	0.5	BV,H	N	НТ	4-30-524, 49 Feed Line 5B	255	BV	BV conservative due to downward portion	0.500	250	0.5	Yes	No Protection		
2226	PTN	4 (COND / 073	5614-M-3073, SH 3	3 Manual vents	4-20-091	0.500	0.5	TV	N	НТ	44 Top Vent 5B	307	TV		0.500	300	6	Yes	No Protection		
2227	PTN	4 (COND / 073	5614-M-3073, SH 3	3 Pressure test connections	PX-4-1445	0.500	0.5	TV,H	N	НТ	50 Feed Line 5B	307	Н		0.500	300	6	Yes	No Protection		
2227	PTN	4 (COND / 073	5614-M-3073, SH 3	3 Pressure test connections	PX-4-1513	0.375	3.0	HD	N	HT	must be on mezzanine. Assumed dia and length	307	HD		Not Analyzed	300	#N/A	No	Required HT	verify line to first isolation valve; if short run do not protect	Y
2225	PTN	4 (COND / 073	5614-M-3073, SH 3	3 Manual drains	4-20-634	0.500	1.0	BV	N	НТ	COULD NOT FIND, assumed length based on similar	110	BV		0.500	110	0	No	НТ	verify line to first isolation valve; if short run do not protect	Y
				5614-M-3073, SH 3	3 Pressure test connections	PX-4-1435	0.500	1.0	BV	N	HT	COULD NOT FIND, assumed length based on similar	169	BV		0.500	160	0	No	НТ	verify line to first isolation valve; if short run do not protect	Y
				5614-M-3073, SH 3	3 Pressure instruments and temperature elements	PS-4-2032	0.500	17.0		N		56 PS Header	255	TV		0.500	250	5	No	НТ	нт	N
				5614-M-3073, SH 3	3 Pressure test connections	PX-4-1434	0.500	0.5		N		47 Between 3B & 4B	200	HD		0.500	200	#N/A	No	HT	short line; hight process; no protection	N
				5614-M-3073, SH 3 5614-M-3073, SH 3	3 Pressure test connections 3 Pressure instruments and	PX-4-1431 PI-4-1419	0.500	0.5	H TV	N N	HT HT	Assumed Dia based on similar Assumed Dia based on similar	169 110	H TV		Not Not	160 110	#N/A #N/A	No No	HT HT	short line; hight process; no protection short line; hight process; no protection	N N
				5614-M-3073, SH 3	temperature elements 3 Pressure instruments and	PI-4-1420	0.500	0.5	Н	N		Assumed Dia based on similar	110	Н		Analyzed Not	110	#N/A	No	нт	short line; hight process; no protection	N
2220			COND / 0/3	3017 101 30/3, 311 3	temperature elements	11 7-1420	0.500	0.5	"	14	'''	, SSGITTER DIR DRISCH OIL SHITHIRE	110			Analyzed	110	#14/PA	140	711	Short arie, night process, no protection	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 408 of 488

> R21002, Rev 0 Attachment N Page 43 of 123

																						_	of 123
2054 P	TN	4	089	5614-M-3089, SH 2		Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523	N/A		0.500	400		No	N/A		
2224 P	TN	4	COND / 073	5614-M-3073, SH 3		LP heater condensate side relief valves	RV-30-3411	0.750	N/A	N/A	N/A	N/A	This has to be located very close to condenser on the east side close to 1A/2A HXs. As such, local temperature will be above freezing.	110	N/A	,	Not Analyzed	110		No	N/A		
2224 P	TN	4	COND / 073	5614-M-3073, SH 3	- 1	LP heater condensate side	RV-4-1419	0.750	1.0	BV	N	HT	COULD NOT FIND, assumed length based	307	BV		0.750	300	0.5	No	HT	verify line to first isolation valve; if short run do	Y
2225 P	TN	4	COND / 073	5614-M-3073, SH 3		relief valves Manual drains	4-20-089	0.750	1.0	BV	N	НТ	on similar COULD NOT FIND, assumed length based	200	BV		0.750	200	0.5	No	НТ	not protect verify line to first isolation valve; if short run do	Y
2226 P	TN	4	COND / 073	5614-M-3073, SH 3	3	Manual vents	4-30-122	0.750	1.0	BV	N	HT	COULD NOT FIND, assumed length based	110	BV		0.750	110	0	No	HT	not protect verify line to first isolation valve; if short run do	Y
2226 P	TN	4	COND / 073	5614-M-3073, SH 3	3	Manual vents	4-30-222	0.750	1.0	BV	N	HT	on similar COULD NOT FIND, assumed length based	169	BV		0.750	160	0.2	No	HT	not protect verify line to first isolation valve; if short run do	Y
2225 P	TN	4	COND / 073	5614-M-3073, SH 3	3	Manual drains	4-30-124	0.750	0.5	BV,H	N	HT	on similar 32 Drain 1B	110	BV	BV conservative due to	0.750	110	0	No	HT	not protect short line; hight process; no protection	N
2225 P	TN	4	COND / 073	5614-M-3073, SH 3	3	Manual drains	4-30-224	0.750	0.5	BV	N	НТ	33 Drain 2B	169	BV	downward portion	0.750	160	0.2	No	HT	short line; hight process; no protection	N
				5614-M-3073, SH 3	3	LP heater condensate side	RV-4-3413	0.750	0.5	TV	N	HT	Assumed dia 3/4". These are thermal reliefs	200	TV		Not	200	#N/A	No	НТ	short line; hight process; no protection	N
2224 P	TN	4	COND / 073	5614-M-3073, SH 3	3	LP heater condensate side	RV-4-3415	0.750	0.5	TV-I	Y	НТ	Assumed dia 3/4". These are thermal	307	TV-I		Analyzed Not	300	#N/A	No	НТ	short line; hight process; no protection	N
2225 P	TN	4	COND / 073	5614-M-3073, SH 3	$\overline{}$	relief valves Manual drains	4-20-960	1.000	1.0	BV	N	HT	reliefs COULD NOT FIND, assumed length based	307	BV	,	Analyzed 1.000	300	0.5	No	HT	verify line to first isolation valve; if short run do	Y
2226 P	TN	4	COND / 073	5614-M-3073, SH 3	3	Manual vents	4-20-245	0.750	0.5	TV-I	Y	HT	on similar 42	200	TV-I		0.750	200	18	Yes	No Protection	not protect	
																					Required		ļ
2226 P	TN	4	COND / 073	5614-M-3073, SH 3	3	Manual vents	4-30-522	0.750	0.5	TV	N	HT	43 5B	255	TV		0.750	250	10	Yes	No Protection Required		
2225 P	TN	4	COND / 073	5614-M-3073, SH 3	3	Manual drains	4-30-528	0.750	0.5	BV	N	НТ	36 Drain 5B	255	BV		0.750	250	0.5	Yes	No Protection		
2225 P	TN	4	COND / 073	5614-M-3073, SH 3	3	Manual drains	4-30-429B	1.000	0.5	Н	N	HT	35 Drain 4B	255	н		1.000	250	16	Yes	Required No		
																					Protection Required		
2229 P	TN	4	COND / 073	5614-M-3073, SH 3	4	14" FWH 1A, 1B, 2A, 2B bypass	4-20-206 4-20-106	14.000	12.0	N/A	N	N/A	57 In-line Valve	110	N/A		Not Analyzed	110		No	N/A		
2230 P	TN	4	COND / 073	5614-M-3073, SH 3		2" and 3" connection to wet layup system (condensate side of isolation)	Upstream of 4-20-107	2.000	12.0	H-I	Y	ı		110	H-I		2.000	110	20	Yes	Al		
2230 P	TN	4	COND / 073	5614-M-3073, SH 3		2" and 3" connection to wet layup system (condensate side of isolation)	LP Heater 1A	2.000	COULD NOT FIND			I	COULD NOT FIND	169			2.000	160		No	I		
2230 P	TN	4	COND / 073	5614-M-3073, SH 3		2" and 3" connection to wet layup system (condensate side of isolation)	Upstream of 4-20-111	3.000	COULD NOT FIND			ı	COULD NOT FIND	169			3.000	160		No	ı		
2230 P	TN	4	COND / 073	5614-M-3073, SH 3		2" and 3" connection to wet layup system (condensate side of isolation)	Upstream of 4-20-211	3.000	COULD NOT FIND			ı	COULD NOT FIND, LAST 6' ON td - CAGE INSULATED 007 ON TD	255			3.000	250		No	I		
2230 P	TN	4	COND / 073	5614-M-3073, SH 3		2" and 3" connection to wet layup system (condensate side of isolation)	Upstream of 4-20-207	2.000	8.0	Н	N	I		255	Н		2.000	250	18	Yes	No Protection Required		
2233 P	TN	4	COND / 073	5614-M-3073, SH 3	6	Manual vents	4-30-524	0.500	0.5	H-I	Y	НТ	5B, confirm with Dennis	110	H-I		0.500	110	3.6	Yes	No Protection Required		
2232 P	TN	4	COND / 073	5614-M-3073, SH 3	6	Manual drains	4-20-088	0.750	1.0	BV	N	НТ	COULD NOT FIND, assumed length based	110	BV		0.750	110	0	No	HT	verify line to first isolation valve; if short run do	Y
2232 P	TN	4	COND / 073	5614-M-3073, SH 3	6	Manual drains	4-20-034	1.000	1.0	BV	N	HT	on similar COULD NOT FIND, assumed length based	110	BV		1.000	110	0	No	HT	not protect verify line to first isolation valve; if short run do	Y
2231 P	TN	4	COND / 073	5614-M-3073, SH 3		14" bypass lines around LP htrs 3A, 3B, 4A, 4B, 5A, and 5B	4-20-108 4-20-208 4-20-112 4-20-212	14.000	24.0	N/A	Y	N/A	on similar 63	110	N/A	,	Not Analyzed	110		No	N/A	not protect	
2518 P	TN	4	MSS / 072	5614-M-3072, SH 2	1	misc vent (assume	4-20-212	0.750	1.0	tv	n	HT	Assumed 3/4" dia based on similar. lost	523	tv		Not	400	#N/A	No	НТ	short run; high process temp; no protection	N
2520 P	TN	4	MSS / 072	5614-M-3072, SH 2		3/4")(closed root valve) Pressure Indicators (PI) (PX) 3/4" pipe, 3/8" tubing	PX-4-1522	0.375	0.5	Н	N	HT	in mezz - assumed typ TAG MISSING - VERIFIED BY SUPPLY VALVE 1065	513	Н		0.375	400	4.5	Yes	No Protection	required	
						MSR inlet pressure (x4)															Required		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 409 of 488

> R21002, Rev 0 Attachment N Page 44 of 123

																					Page 44 c	
2054 F	TN	4	089	5614-M-3089, SH 2	1 Pressure Control Inst (PC x2) plus 1/2" tub		0.500	N/A	N/A	N/A	N/A		523	N/A		0.500	400		No	N/A		
2520 F	TN	4	MSS / 072	5614-M-3072, SH 2	2 Pressure Indicators (3/4" pipe, 3/8" tubir		0.375	0.5	Н	N	НТ		513	н		0.375	400	4.5	Yes	No Protection Required		
					MSR inlet pressure (Required		
2520 F	TN	4	MSS / 072	5614-M-3072, SH 2	2 Pressure Indicators (3/4" pipe, 3/8" tubir		0.375	0.5	Н	N	НТ	STUB OFF PI TD SOUTHWEST	513	Н		0.375	400	4.5	Yes	No Protection Required		
					MSR inlet pressure (:				ļ.,		ļ.,											
2520 F	PTN	4	MSS / 072	5614-M-3072, SH 2	2 Pressure Indicators (3/4" pipe, 3/8" tubir MSR inlet pressure (g	0.375	0.5	h	N	HT	TD - SE OF TURBINE	513	h		0.375	400	4.5	Yes	No Protection Required		
2520 F	PTN	4	MSS / 072	5614-M-3072, SH 2	2 Pressure Indicators (0.375	51.0	H,D	N	HT	TD - SE CORNER - TD level next to steel	513	BV	BV conservative due to	0.375	400	Not	No	HT	нт	N
			,		3/4" pipe, 3/8" tubir	g			.,,_			platform			downward portion			Analyzed				
2520 F	TN	4	MSS / 072	5614-M-3072, SH 2	Pressure Indicators (0.375	45.0	H,D	N	HT	TUBING OFF LINE @ ~EL:20' IN AIR,	513	BV	BV conservative due to	0.375	400	Not	No	HT	нт	N
					3/4" pipe, 3/8" tubir	g			.,,_			GOES DOWN PLATFORM TO PI - SOUTHWEST CORNER ON TURBINE Deck			downward portion			Analyzed				
2520 F)TN	4	MSS / 072	5614-M-3072, SH 2	MSR inlet pressure (: 2 Pressure Indicators (0.375	29.0	H,D	N	HT	(TD) TD EAST SIDE - PI IS UNDER PLATFORM	513	BV	BV conservative due to	0.375	400	Not	No	HT	нт	N
2320			141337 072	3014 101 3072, 311 2	3/4" pipe, 3/8" tubir	g	0.575	25.0	1,,5		"	TO EAST SIDE THIS GINDERT BATTONIN	313		downward portion	0.373		Analyzed				N
2519 F	PTN	4	MSS / 072	5614-M-3072, SH 2	2 Flow Element (FE),	FI-4-6645A	0.375	62.0	TV,H	N	HT	GROUND LEVEL - BETWEEN	513	н		0.375	400	4.5	No	HT	нт	N
					Flow Indication (FI), Temporary flow inst (FX)	rument						TRANSFORMER AND PHASE A/B/C (Unit 4) REGULATOR										
					1/2", 3/8" tubing																	
2520 F	PTN	4	MSS / 072	5614-M-3072, SH 2	MSR inlet steam flow Pressure Indicators (PI) (PX) PI-4-1507	0.375	28.0	H,D	N	HT	WEST SIDE OF TD - PI UNDER PLATFORM	513	BV	BV conservative due to	0.375	400	Not	No	HT	НТ	N
					3/4" pipe, 3/8" tubir MSR inlet pressure (downward portion			Analyzed				
2519 F	PTN	4	MSS / 072	5614-M-3072, SH 2	2 Flow Element (FE), Flow Indication (FI),	FI-4-6645B	0.375	25.0	BV,H,D	N	НТ	Below TD(turbine deck) - NEAR ST-11	513	BV	BV conservative due to downward portion	0.375	400	Not Analyzed	No	HT	нт	N
					Temporary flow inst	rument									downward portion			Analyzeu				
					1/2", 3/8" tubing MSR inlet steam flow	((4)																
2519 F	TN	4	MSS / 072	5614-M-3072, SH 2	2 Flow Element (FE), Flow Indication (FI),	FX-4-1420	0.375	5.0	TV	N	HT	GROUND LEVEL - BETWEEN TRANSFORMER AND PHASE A/B/C (Unit	513	TV		0.375	400	4.5	No	нт	check temp and if isolated or hot no protection required	Y
					Temporary flow inst	rument						4) REGULATOR									required	
					1/2", 3/8" tubing MSR inlet steam flow																	
2519 F	TN	4	MSS / 072	5614-M-3072, SH 2	2 Flow Element (FE), Flow Indication (FI), Temporary flow inst	FI-4-6645D	0.375	14.0	BV,H,D	N	НТ	FI BROKEN (SEE PHOTO) - Below TD(turbine deck) -	513	BV	BV conservative due to downward portion	0.375	400	Not Analyzed	No	нт	нт	N
					(FX)																	
					MSR inlet steam flow	((x4)																
2519 F	PTN	4	MSS / 072	5614-M-3072, SH 2	2 Flow Element (FE), Flow Indication (FI), Temporary flow inst	FX-4-1423	0.375	5.0	BV	N	нт	Below TD(turbine deck) - MEZZ LEVEL - BEHIND BLOWERS	513	BV		0.375	400	Not Analyzed	No	НТ	нт	N
					(FX) 1/2", 3/8" tubing																	
					MSR inlet steam flow	/ (x4)																

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 410 of 488

> R21002, Rev 0 Attachment N Page 45 of 123

																						Page 45 C	1123
2054	PTN	4	089	5614-M-3089, SH 2	1	Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523	N/A		0.500	400		No	N/A		
2519	PTN	4	MSS / 072	5614-M-3072, SH 2	2	Flow Element (FE), Flow Indication (FI), Temporary flow instrument (FX) 1/2", 3/8" tubing	FE-4-6645C	1.250	5.0	H,D	N	НТ	Below TD(turbine deck) unable to locate, use typical lengths	513	BV	BV conservative due to downward portion	1.000	400	0.5	No	нт	нт	N
						MSR inlet steam flow (x4)																	
2519	PTN	4	MSS / 072	5614-M-3072, SH 2		Flow Element (FE), Flow Indication (FI), Temporary flow instrument (FX) 1/2", 3/8" tubing	FI-4-6645C	1.250	60.0	H,D	N	НТ	Below TD(turbine deck) unable to locate, use typical lengths	513	BV	BV conservative due to downward portion	1.000	400	0.5	No	нт	нт	N
					-	MSR inlet steam flow (x4)		0.750	1.0			.		F43									\vdash
2523	PTN	4	MSS / 072	5614-M-3072, SH 2	2	3/4" vent	4-10-1134	0.750	1.0	TV	N	нт	TD SE CORNER	513	TV		0.750	400	19	Yes	No Protection		
2523	PTN	4	MSS / 072	5614-M-3072, SH 2	2	one per MSR inlet 3/4" vent	4-10-149	0.750	1.0	TV	N	HT	TD WEST - OFF PLATFORM - EL~20' NEAR	513	TV		0.750	400	19	Yes	Required No		\vdash
-525	'''	·			1			1.750		"	"		LE LO NEAR								Protection		
2522	DTN	4	NACC / 072	FC44 N4 2072 CH 2	2	one per MSR inlet	4 40 470	0.750	1.0	T) /		UT	TO WEST OF DIATEODAA SIA22I NEAD	F42	T/		0.750	400	10	V	Required		\vdash
2523	PTN	4	MSS / U/2	5614-M-3072, SH 2	2	3/4" vent one per MSR inlet	4-10-170	0.750	1.0	TV	N	НТ	TD WEST - OFF PLATFORM - EL~22' NEAR / ABOVE PLATFORM	513	TV		0.750	400	19	Yes	No Protection		
2523	PTN	4	MSS / 072	5614-M-3072, SH 2	2	3/4" vent	4-10-1133	0.750	1.5	TV	N	HT	TD +15FT UP - SW CORNER, NO ACCESS -	513	TV		0.750	400	19	Yes	Required No		\vdash
		•				one per MSR inlet							VISUAL ESTIMATE								Protection Required		
2519	PTN	4	MSS / 072	5614-M-3072, SH 2	2	Flow Element (FE), Flow Indication (FI), Temporary flow instrument	FE-4-6645D	1.250	1.0	Н	N	НТ	Below TD(turbine deck) - MEZZ LEVEL - SOUTH STAIR - BEHIND BLOWERS	513	Н		1.000	400	18	Yes	No Protection Required		
						(FX) 1/2", 3/8" tubing MSR inlet steam flow (x4)																	
2519	PTN	4	MSS / 072	5614-M-3072, SH 2		Flow Element (FE), Flow Indication (FI), Temporary flow instrument (FX)	FE-4-6645B	1.250	1.5	Н	N	НТ	Below TD(turbine deck) unable to locate, use typical lengths from unit 3	513	Н		1.000	400	18	Yes	No Protection Required		
						1/2", 3/8" tubing MSR inlet steam flow (x4)																	
2519	PTN	4	MSS / 072	5614-M-3072, SH 2	2	Flow Element (FE), Flow Indication (FI), Temporary flow instrument	FE-4-6645A	1.250	2.0	Н	N	НТ	Below TD(turbine deck) - ~30 FT EL WEST SIDE - NEXT TO MEZZ STAIRS - CAN SEE FROM GROUND LEVEL, ABOVE H FILTER	513	Н		1.000	400	18	Yes	No Protection Required		
						(FX) 1/2", 3/8" tubing																	
2519	PTN	4	MSS / 072	5614-M-3072, SH 2		MSR inlet steam flow (x4) Flow Element (FE),	FX-4-1421	1.250	5.0	TV	N	HT	Below TD(turbine deck) - MEZZ LEVEL -	513	TV		1.000	400	20	Yes	No		\vdash
						Flow Indication (FI), Temporary flow instrument (FX)							NEAR ST-11 - RIGHT SIDE OF HANDRAIL								Protection Required		
						1/2", 3/8" tubing																	
2519	PTN	4	MSS / 072	5614-M-3072, SH 2	2	MSR inlet steam flow (x4) Flow Element (FE), Flow Indication (FI),	FX-4-1422	1.250	5.0	Н	N	нт	Below TD(turbine deck) unable to locate, use typical	513	Н		1.000	400	18	Yes	No Protection		\Box
						Temporary flow instrument (FX) 1/2", 3/8" tubing							act typical								Required		
2525	PTN	4	MSS / 072	5614-M-3072, SH 2		MSR inlet steam flow (x4) Drain (size unkown - estimate 3/4")	4-20-284	0.750	2.0	BV,H,D	N	НТ	Assumed 3/4" dia based on similar. TD SW CORNER - N SIDE OF PLATFORM	523	BV	BV conservative due to downward portion	Not Analyzed	400	#N/A	No		short run; high process temp; no protection required	N
						one per timing loop											,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					'	
				L	1	Touc her mining 100h		1		1			1			1							

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 411 of 488

> R21002, Rev 0 Attachment N Page 46 of 123

																						1 age 40 t	01 120
20	54 PTI	4	089	5614-M-3089, SH 2		Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523	N/A		0.500	400		No	N/A		
25	25 PTI	N 4	MSS / 072	5614-M-3072, SH 2		Drain (size unkown - estimate 3/4")	4-20-283	0.750	1.0	BV	N	НТ	Assumed 3/4" dia based on similar. TD WEST - ON PLATFORM	523	BV		Not Analyzed	400	#N/A	No	нт	short run; high process temp; no protection required	N
25	25 PTf	N 4	MSS / 072	5614-M-3072, SH 2	3	one per timing loop Drain (size unkown - estimate 3/4")	4-20-285	0.750	1.0	BV	N	HT	Assumed 3/4" dia based on similar. TD EAST- ON PLATFORM	523	BV		Not Analyzed	400	#N/A	No	нт	short run; high process temp; no protection required	N
25	25 PTI	ı 4	MSS / 072	5614-M-3072, SH 2		one per timing loop Drain (size unkown - estimate	4-20-286	0.750	1.0	BV	N	HT	Assumed 3/4" dia based on similar. TD	523	BV		Not	400	#N/A	No	HT	short run; high process temp; no protection	N
						3/4") one per timing loop							SE ON PLATFORM				Analyzed					required	
25	27 PTf	4	MSS / 072	5614-M-3072, SH 2	5	Flow Element (FE), Flow Indication (FI), Temporary flow instrument (FX) 1/2", 3/8" tubing	FI-4-6646A	0.500	24.0	BV,H,D	N	нт	CAN'T LOCATE - COPIED "B" DATA - P&ID zone D-5	523	BV	BV conservative due to downward portion	0.500	400	0.5	No	НТ	нт	N
					:	2 locations: 1) 4" supply crosstie MSR A/B 2) 4" supply crosstie MSR C/D																	
25	27 PTi	4 4	MSS / 072	5614-M-3072, SH 2	-	Flow Element (FE), Flow Indication (FI), Temporary flow instrument (FX) 1/2", 3/8" tubing	FI-4-6646B	0.500	24.0	BV,H,D	N	НТ	mezz level next to fire extinguisher - SEE PHOTO- ON LEFT BEFOR THE EAST CATWALK (P&ID zone F-5)	523	BV	BV conservative due to downward portion	0.500	400	0.5	No	нт	нт	N
						2 locations: 1) 4" supply crosstie MSR A/B 2) 4" supply crosstie MSR C/D																	
25	27 PTf	N 4	MSS / 072	5614-M-3072, SH 2	-	Flow Element (FE), Flow Indication (FI), Temporary flow instrument (FX) 1/2", 3/8" tubing	FX-4-1424	0.500	3.0	BV	N	НТ	CAN'T LOCATE - COPIED "B" DATA - P&ID zone D-5	523	BV		0.500	400	0.5	No	нт	check temp and if isolated or hot no protection required	Y
						2 locations: 1) 4" supply crosstie MSR A/B 2) 4" supply crosstie MSR C/D																	
25	27 PTř	4	MSS / 072	5614-M-3072, SH 2	-	Flow Element (FE), Flow Indication (FI), Temporary flow instrument (FX)	FX-4-1425	0.500	3.0	BV	N	НТ	mezz level next to fire extinguisher - SEE PHOTO- ON LEFT BEFOR THE EAST CATWALK (P&ID zone F-5)	523	BV		0.500	400	0.5	No	нт	check temp and if isolated or hot no protection required	Y
					:	1/2", 3/8" tubing 2 locations: 1) 4" supply crosstie MSR A/B 2) 4" supply crosstie MSR C/D																	
25	27 PTř	N 4	MSS / 072	5614-M-3072, SH 2	-	Flow Indication (FI), Temporary flow instrument (FX)	FE-4-6646A	0.500	1.5	H-I	Y	НТ	CAN'T LOCATE - COPIED "B" DATA - P&ID zone D-5	523	H-I		0.500	400	20	Yes	No Protection Required		
					:	1/2", 3/8" tubing 2 locations: 1) 4" supply crosstie MSR A/B 2) 4" supply crosstie MSR C/D																	
			I.							1		1	1			1							

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 412 of 488

> R21002, Rev 0 Attachment N Page 47 of 123

																		Fage 47 01 123
2054	PTN	4 089	5614-M-3089, SH 2	1 Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A	523	N/A	0.500	400		No	N/A	
2527	PTN	4 MSS /	072 5614-M-3072, SH 2	5 Flow Element (FE), Flow Indication (FI), Temporary flow instrument (FX) 1/2", 3/8" tubing 2 locations: 1) 4" supply crosstle MSR A/B 2) 4" supply crosstle MSR C/D		0.500	1.5	H-I	Y		mezz level next to fire extinguisher - SEE PHOTO- ON LEFT BEFOR THE EAST CATWALK (P&ID zone F-5)	H-I	0.500	400	20	Yes	No Protection Required	
2530	PTN	4 MSS /	072 5614-M-3072, SH 2	5 misc drains upstream of steam traps	ST-4-10	1.000	N/A	N/A	N/A		Steam traps and bypass are designed to drain condensate to condenser. Line will therefore have continuous flow. Bypass is horizontal. Draine is less than 4" long and will not freeze with process temperature at 212	BV-I	1.000			No	N/A	
2530	PTN	4 MSS /	072 5614-M-3072, SH 2	5 misc drains upstream of steam traps	ST-4-11	1.000	N/A	N/A	N/A		Steam traps and bypass are designed to drain condensate to condenser. Line will therefore have continuous flow. Bypass is horizontal. Draine is less than 4" long and will not freeze with process temperature at 212	BV-I	1.000			No	N/A	
2530	PTN	4 MSS /	072 5614-M-3072, SH 2	5 misc drains upstream of steam traps	ST-4-12	1.000	N/A	N/A	N/A		Steam traps and bypass are designed to drain condensate to condenser. Line will therefore have continuous flow. Bypass is horizontal. Draine is less than 4" long and will not freeze with process temperature at 212	BV-I	1.000			No	N/A	
2530	PTN	4 MSS /	072 5614-M-3072, SH 2	5 misc drains upstream of steam traps	ST-4-13	1.000	N/A	N/A	N/A		Steam traps and bypass are designed to drain condensate to condenser. Line will therefore have continuous flow. Bypass is horizontal. Draine is less than 4" long and will not freeze with process temperature at 212	BV-I	1.000			No	N/A	
2530	PTN	4 MSS /	072 5614-M-3072, SH 2	5 misc drains upstream of steam traps	ST-4-1405	1.000	N/A	N/A	N/A	N/A	Steam traps and bypass are designed to drain condensate to condenser. Line will therefore have continuous flow. Bypass is horizontal. Draine is less than 4" long and will not freeze with process temperature at 212	BV-I	1.000			No	N/A	
2530	PTN	4 MSS /	072 5614-M-3072, SH 2	5 misc drains upstream of steam traps	ST-4-1406	1.000	N/A	N/A	N/A		Steam traps and bypass are designed to drain condensate to condenser. Line will therefore have continuous flow. Bypass is horizontal. Draine is less than 4" long and will not freeze with process temperature at 212	BV-I	1.000			No	N/A	
2530	PTN	4 MSS /	072 5614-M-3072, SH 2	5 misc drains upstream of steam traps	ST-4-6	1.000	N/A	N/A	N/A		Steam traps and bypass are designed to drain condensate to condenser. Line will therefore have continuous flow. Bypass is horizontal. Draine is less than 4" long and will not freeze with process temperature at 212	BV-I	1.000			No	N/A	
2530	PTN	4 MSS /	072 5614-M-3072, SH 2	5 misc drains upstream of steam traps	ST-4-7	1.000	N/A	N/A	N/A		Steam traps and bypass are designed to drain condensate to condenser. Line will therefore have continuous flow. Bypass is horizontal. Draine is less than 4" long and will not freeze with process temperature at 212	BV-I	1.000			No	N/A	
2530	PTN	4 MSS /	072 5614-M-3072, SH 2	5 misc drains upstream of steam traps	ST-4-8	1.000	N/A	N/A	N/A		Steam traps and bypass are designed to drain condensate to condenser. Line will therefore have continuous flow. Bypass is horizontal. Draine is less than 4" long and will not freeze with process temperature at 212	BV-I	1.000			No	N/A	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 413 of 488

> R21002, Rev 0 Attachment N Page 48 of 123

																					Page 46 0	1123
205	4 PTN	4	089	5614-M-3089, SH 2	1 Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523		N/A	0.500	400		No	N/A		
253	O PTN	1 4	MSS / 072	5614-M-3072, SH 2	5 misc drains upstream of steam traps	ST-4-9	1.000	N/A	N/A	N/A	N/A	Steam traps and bypass are designed to drain condensate to condenser. Line will therefore have continuous flow. Bypass is horizontal. Draine is less than 4" long and will not freeze with process temperature at 212			BV-I	1.000			No	N/A		
253	O PTN	4	MSS / 072	5614-M-3072, SH 2	5 misc drains upstream of steam traps	NOT PROVIDED	N/A	N/A	N/A	N/A	N/A	Steam traps and bypass are designed to drain condensate to condenser. Line will therefore have continuous flow. Bypass is horizontal. Draine is less than 4" long and will not freeze with process temperature at 212	523		N/A		400		No	N/A		
253	2 PTN	1 4	MSS / 072	5614-M-3072, SH 2	6 3/4" Drain (upstream of CV-3-2827)	4-10-021	0.750	1.0	Н	N	нт	taken from typ	600	Assumption based on spec	Н	0.750	400	14	Yes	No Protection Required		
				5614-M-3072, SH 2	MSR A, B, temperature Element (TE), temperature measurement is C, used as input into temperature control valve on "timing loop" (MSR steam inlet)	N/A	N/A	N/A	N/A	N/A	N/A	TE are either in thermo well or direct emmersion. Both cases will not expose process fluid and the line flow will prevent freezing.			N/A				No	N/A		
249	3 PTN	4	MSS / 072	5614-M-3072, SH 1	Pressure Transmitter (PT) (x2, each steam line) 3/4", 1" piping to instrument Local pressure gauge (one per steam line) PT reading is input to Digital	PT-4-1608-7	0.375	1.0	BV	N	НТ	COULD NOT FIND, assumed length based on similar	523		BV	0.375	400	Not Analyzed	No	нт	ERROR LINE-DELETE-DOES NOT EXIST	N
					Data Processing System (DDPS), and Steam Gen Steam Dump to Atmos (SDTA). Control of atmospheric dump.																	
249	2 PIN	1 4	MSS / 072	5614-M-3072, SH 1	1 Pressure Transmitter (PT) (x3, each steam line) 3/4" piping to instrument Press. Input to Steam Break Protection, Safety Assessment System (SAS), and Safety Parameter Display	PT-4-494	0.375	50.0	TV	N	нт		523		TV	0.375	400	4.5	No	нт	нт	N
					System (SPDS)																	
249	2 PTN	1 4	MSS / 072	5614-M-3072, SH 1	1 Pressure Transmitter (PT) (x3, each steam line) 3/4" piping to instrument Press. Input to Steam Break Protection, Safety Assessment System (SAS), and Safety Parameter Display System (SPDS)	PT-4-495	0.375	50.0	TV	N	нт		523		TV	0.375	400	4.5	No	нт	нт	N
249	2 PTN	4	MSS / 072	5614-M-3072, SH 1	1 Pressure Transmitter (PT) (x3, each steam line) 3/4" piping to instrument Press. Input to Steam Break Protection, Safety Assessment System (SAS), and Safety Parameter Display System (SPDS)	PT-4-496	0.375	50.0	TV	N	нт	4-10-307 not shown on drawing	523		TV	0.375	400	4.5	No	нт	нт	N

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 414 of 488

> R21002, Rev 0 Attachment N Page 49 of 123

																				Г	age 49 of 123
2054	PTN	4	089	5614-M-3089, SH 2	1 Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523	N/A	0.500	400		No	N/A		
2492	PTN	4	MSS / 072	5614-M-3072, SH 1	1 Pressure Transmitter (PT) (x3, each steam line) 3/4" piping to instrument Press. Input to Steam Break Protection, Safety Assessment System (SAS),	PT-4-484	0.375	50.0	TV-I	Υ	НТ		523	TV-I	0.375	400	23.5	No	нт	нт	N
2492	PTN	4	MSS / 072	5614-M-3072, SH 1	and Safety Parameter Display System (SPDS) 1 Pressure Transmitter (PT) (x3, each steam line)	PT-4-485	0.375	50.0	TV	N	НТ		523	TV	0.375	400	4.5	No	НТ	нт	N
					3/4" piping to instrument Press. Input to Steam Break Protection, Safety Assessment System (SAS), and Safety Parameter Display System (SPDS)																
2492	PTN	4	MSS / 072	5614-M-3072, SH 1	1 Pressure Transmitter (PT) (x3, each steam line) 3/4" piping to instrument Press. Input to Steam Break Protection, Safety Assessment System (SAS), and Safety Parameter Display System (SPDS)	PT-4-486	0.375	50.0	TV	N	НТ	also has root valve not on drawing	523	TV	0.375	400	4.5	No	нт	нт	N
2492	PTN	4	MSS / 072	5614-M-3072, SH 1	1 Pressure Transmitter (PT) (x3, each steam line) 3/4" piping to instrument Press. Input to Steam Break Protection, Safety Assessment System (SAS), and Safety Parameter Display System (SPDS)	PT-4-474	0.375	50.0	TV	N	нт		523	TV	0.375	400	4.5	No	нт	нт	N
2492	PTN	4	MSS / 072	5614-M-3072, SH 1	1 Pressure Transmitter (PT) (x3, each steam line) 3/4" piping to instrument Press. Input to Steam Break Protection, Safety Assessment System (SAS), and Safety Parameter Display System (SPDS)	PT-4-475	0.375	50.0	TV	N	нт		523	TV	0.375	400	4.5	No	нт	нт	N
2492	PTN	4	MSS / 072	5614-M-3072, SH 1	1 Pressure Transmitter (PT) (x3, each steam line) 3/4" piping to instrument Press. Input to Steam Break Protection, Safety Assessment System (SAS), and Safety Parameter Display System (SPDS)	PT-4-476	0.375	50.0	TV	N	нт		523	TV	0.375	400	4.5	No	нт	нт	N
2493	PTN	4	MSS / 072	5614-M-3072, SH 1	1 Pressure Transmitter (PT) (x2, each steam line) 3/4", 1" piping to instrument Local pressure gauge (one per steam line) PT reading is input to Digital Data Processing System (DDPS), and Steam Gen Steam Dump to Atmos (SDTA). Control of atmospheric dump.	PT-4-1608-1 PT-4-1608-X	0.375	50.0	TV	N	нт		523	TV	0.375	400	4.5	No	нт	нт	N

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 415 of 488

> R21002, Rev 0 Attachment N Page 50 of 123

																				Page 50 c	1123
2054 PT	ΓN 4	1 089	5614-M-3089, SH 2	1	Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523	N/A	0.500	400		No	N/A		
2493 PT	rn 4	1 MSS / 07	2 5614-M-3072, SH 1		Pressure Transmitter (PT) (x2, each steam line) 3/4", 1" piping to instrument Local pressure gauge (one per steam line) PT reading is input to Digital Data Processing System (DDPS), and Steam Gen Steam Dump to Atmos (SDTA). Control of atmospheric dump.	PT-4-1607-1 PT-4-1607-X	0.375	50.0	TV	N	нт		523	TV	0.375	400	4.5	No	нт	нт	N
2493 PT	FN 4	MSS / 07	2 5614-M-3072, SH 1		Pressure Transmitter (PT) (x2, each steam line) 3/4", 1" piping to instrument Local pressure gauge (one per steam line) PT reading is input to Digital Data Processing System (DDPS), and Steam Gen Steam Dump to Atmos (SDTA). Control of atmospheric dump.	PT-4-1606-X PT-4-1606-1	0.375	50.0	TV	N	НТ	Note Dennis Line 16 Deleted	523	TV	0.375	400	4.5	No	НТ	нт	N
2494 PT	ΓN 4	MSS / 07	2 5614-M-3072, SH 1		Pressure Transmitter (PT) (x1, each steam line) 3/4" piping to instrument Press. Input to Steam Break Protection, Safety Assessment System (SAS), and Safety Parameter Display System (SPDS) Downstream of MSIV and check valve (MS header Pressure)	PT-4-468	0.375	25.0	TV	N	нт	A/8-7	523	TV	0.375	400	4.5	No	НТ	нт	N
2494 PT	ΓN ⁴	MSS / 07	2 5614-M-3072, SH 1		Pressure Transmitter (PT) (x1, each steam line) 3/4" piping to instrument Press. Input to Steam Break Protection, Safety Assessment System (SAS), and Safety Parameter Display System (SPDS) Downstream of MSIV and check valve (MS header Pressure)	PT-4-466	0.375	25.0	TV	N	нт	D-6.5	523	TV	0.375	400	4.5	No	нт	нт	N
2494 PT	FN 4	MSS / 07	2 5614-M-3072, SH 1		Pressure Transmitter (PT) (x1, each steam line) 3/4" piping to instrument Press. Input to Steam Break Protection, Safety Assessment System (SAS), and Safety Parameter Display System (SPDS) Downstream of MSIV and check valve (MS header Pressure)	PT-4-464	0.375	25.0	TV	N	нт	F-6.5	523	TV	0.375	400	4.5	No	НТ	нт	N

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 416 of 488

> R21002, Rev 0 Attachment N Page 51 of 123

																				Page 51 of 123
2054	PTN	4	089	5614-M-3089, SH 2		ressure Control Instrument PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523	N/A	0.500	400	No	N/A	
2493	PTN	4	MSS / 072	5614-M-3072, SH 1	(x 3, Lc st P' D ([St	ressure Transmitter (PT) x2, each steam line) /4", 1" piping to instrument ocal pressure gauge (one per team line) /T reading is input to Digital bata Processing System DDPS), and Steam Gen team Dump to Atmos SDTA). Control of tmospheric dump.	PT-4-1608-X	N/A	N/A	N/A	N/A	N/A	see PT-1608-1		N/A			No	N/A	
2493	PTN	4	MSS / 072	5614-M-3072, SH 1	(x 3, Lo st P' D (E S1	ressure Transmitter (PT) k2, each steam line) /4", 1" piping to instrument ocal pressure gauge (one per team line) IT reading is input to Digital bata Processing System DDPS), and Steam Gen team Dump to Atmos SDTA). Control of tmospheric dump.	PT-4-1607-X	N/A	N/A	N/A	N/A	N/A	see PT-1607-1		N/A			No	N/A	
2497	PTN	4	MSS / 072	5614-M-3072, SH 1		apped pipe (x2, each MS ne)	NOT PROVIDED	0.750	1.0	BV-I	Υ	НТ	ASSUMED LENGTH AND DIA	523	BV-I	0.750	400 2.	5 Yes	No Protection Required	
2501	PTN	4	MSS / 072	5614-M-3072, SH 1	N tr	/2" and 1 1/2" piping MSIV leakoff drain and steam rap x1 per MSIV)	ST-4-3	0.500	N/A	N/A	N/A	N/A	Dsteam traps and bypass are designed to drain condensate to condenser. Line will therefore have continuous flow. Bypass is horizontal. Draine is less than 4" long and will not freeze with process temperature at 212	523	N/A	0.500	400	No	N/A	
2501	PTN	4	MSS / 072	5614-M-3072, SH 1	N tr	/2" and 1 1/2" piping MSIV leakoff drain and steam rap x1 per MSIV)	ST-4-2	0.500	N/A	N/A	N/A	N/A	Dsteam traps and bypass are designed to drain condensate to condenser. Line will therefore have continuous flow. Bypass is horizontal. Draine is less than 4" long and will not freeze with process temperature at 212	523	N/A	0.500	400	No	N/A	
2501	PTN	4	MSS / 072	5614-M-3072, SH 1	N tr	/2" and 1 1/2" piping /SIV leakoff drain and steam rap x1 per MSIV)	ST-4-1	0.500	N/A	N/A	N/A	N/A	Dsteam traps and bypass are designed to drain condensate to condenser. Line will therefore have continuous flow. Bypass is horizontal. Draine is less than 4" long and will not freeze with process temperature at 212	523	N/A	0.500	400	No	N/A	
2502	PTN	4	MSS / 072	5614-M-3072, SH 1	4 S1	team trap bypass	NOT PROVIDED	0.500	N/A	N/A	N/A	N/A	Dsteam traps and bypass are designed to drain condensate to condenser. Line will therefore have continuous flow. Bypass is horizontal. Draine is less than 4" long and will not freeze with process temperature at 212	523	N/A	0.500	400	No	N/A	
2502	PTN	4	MSS / 072	5614-M-3072, SH 1	4 St	team trap bypass	NOT PROVIDED	0.500	N/A	N/A	N/A	N/A	Dsteam traps and bypass are designed to drain condensate to condenser. Line will therefore have continuous flow. Bypass is horizontal. Draine is less than 4" long and will not freeze with process temperature at 212	523	N/A	0.500	400	No	N/A	
2502	PTN	4	MSS / 072	5614-M-3072, SH 1	4 SI	team trap bypass	NOT PROVIDED	0.500	N/A	N/A	N/A	N/A	Dsteam traps and bypass are designed to drain condensate to condenser. Line will therefore have continuous flow. Bypass is horizontal. Draine is less than 4" long and will not freeze with process temperature at 212	523	N/A	0.500	400	No	N/A	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 417 of 488

> R21002, Rev 0 Attachment N Page 52 of 123

																				1 age 32 (00
2054	PTN	4	089	5614-M-3089, SH 2	Pressure Control Instrumer (PC x2) plus 1/2" tubing	pc-4-3709	0.500	N/A	N/A	N/A	N/A		523	N/A	0.500	400		No	N/A		
2503	PTN	4	MSS / 072	5614-M-3072, SH 1	4 1/2" steam trap (x1 per line	s) ST-4-1	0.500	N/A	N/A	N/A	N/A	Dsteam traps and bypass are designed to drain condensate to condenser. Line will therefore have continuous flow. Bypass is horizontal. Draine is less than 4" long and will not freeze with process temperature at 212	523	N/A	0.500	400		No	N/A		
2503	PTN	4	MSS / 072	5614-M-3072, SH 1	4 1/2" steam trap (x1 per line	e) ST-4-2	0.500	N/A	N/A	N/A	N/A	Dsteam traps and bypass are designed to drain condensate to condenser. Line will therefore have continuous flow. Bypass is horizontal. Draine is less than 4" long and will not freeze with process temperature at 212	523	N/A	0.500	400		No	N/A		
2503	PTN	4	MSS / 072	5614-M-3072, SH 1	4 1/2" steam trap (x1 per line	s) ST-4-3	0.500	N/A	N/A	N/A	N/A	Dsteam traps and bypass are designed to drain condensate to condenser. Line will therefore have continuous flow. Bypass is horizontal. Draine is less than 4" long and will not freeze with process temperature at 212	523	N/A	0.500	400		No	N/A		
2504	PTN	4	MSS / 072	5614-M-3072, SH 1	Drain from 1/2" line w/ 2 closed root valves. Strainer Drain w/ 1 closed root valve.	ST-4-1	0.500	N/A	N/A	N/A	N/A	Dsteam traps and bypass are designed to drain condensate to condenser. Line will therefore have continuous flow. Bypass is horizontal. Draine is less than 4" long and will not freeze with process temperature at 212	523	N/A	0.500	400		No	N/A		
2504	PTN	4	MSS / 072	5614-M-3072, SH 1	Drain from 1/2" line w/ 2 closed root valves. Strainer Drain w/ 1 closed root valve.	ST-4-2	0.500	N/A	N/A	N/A	N/A	Dsteam traps and bypass are designed to drain condensate to condenser. Line will therefore have continuous flow. Bypass is horizontal. Draine is less than 4" long and will not freeze with process temperature at 212	523	N/A	0.500	400		No	N/A		
2504	PTN	4	MSS / 072	5614-M-3072, SH 1	4 Drain from 1/2" line w/ 2 closed root valves. Strainer Drain w/ 1 closed root valve.	ST-4-3	0.500	N/A	N/A	N/A	N/A	Dsteam traps and bypass are designed to drain condensate to condenser. Line will therefore have continuous flow. Bypass is horizontal. Draine is less than 4" long and will not freeze with process temperature at 212	523	N/A	0.500	400		No	N/A		
2506	PTN	4	MSS / 072	5614-M-3072, SH 1	Pressure Indicators (PI) (x3) Pressure transmitter (PT) (x		0.375	4.0	Н	N	HT	0.375 ASSUMED	523	Н	0.375	400	4.5	Yes	No Protection Required		
2506	PTN	4	MSS / 072	5614-M-3072, SH 1	Pressure Indicators (PI) (x3) Pressure transmitter (PT) (x3)		0.375	6.0	Н	N	нт	Top floor SW end of HP Turbine. 0.375 ASSUMED	523	Н	0.375	400	4.5	No	HT	validate temp at end of line	Y
2506	PTN	4	MSS / 072	5614-M-3072, SH 1	Pressure Indicators (PI) (x3) Pressure transmitter (PT) (x		0.375	6.0	Н	N	нт	Top floor SE end of HP Turbine 0.375 ASSUMED	523	Н	0.375	400	4.5	No	НТ	validate temp at end of line	Y
2506	PTN	4	MSS / 072	5614-M-3072, SH 1	Pressure Indicators (PI) (x3) Pressure transmitter (PT) (x		0.375	1.0	BV	N	HT	COULD NOT FIND, assumed length based on similar	523	BV		400	#N/A	No	НТ	locate and validate temp at end of line	Y
2512	PTN	4	MSS / 072	5614-M-3072, SH 1	Drains from steam traps an active line closed root valves.	d ST-4-4	1.000	N/A	N/A	N/A	N/A	Dsteam traps and bypass are designed to drain condensate to condenser. Line will therefore have continuous flow. Bypass is horizontal. Draine is less than 4" long and will not freeze with process temperature at 212	523	N/A	1.000	400		No	N/A		
2512	PTN	4	MSS / 072	5614-M-3072, SH 1	8 Drains from steam traps an active line closed root valves.	d ST-4-5	1.000	N/A	N/A	N/A	N/A	Dsteam traps and bypass are designed to drain condensate to condenser. Line will therefore have continuous flow. Bypass is horizontal. Draine is less than 4" long and will not freeze with process temperature at 212	523	N/A	1.000	400		No	N/A		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 418 of 488

> R21002, Rev 0 Attachment N Page 53 of 123

																				Page 53 c	1123
2054	PTN	4	089	5614-M-3089, SH 2	1 Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523	N/A	0.50	0 400		No	N/A		
2515	PTN	4 MS	ISS / 072	5614-M-3072, SH 1	11 3/4" piping; 3/8" tubing Main steam to Secondary	To 4C SEC Sample System Valve 4-10-307	0.375	50.0	Н	N	нт	South 4C	523	Н	0.37	5 400	4.5	No	нт	confirm with chemistry constant flow-if so not needed	Y
2515	PTN	4 MS	ISS / 072	5614-M-3072, SH 1	sample coolers (x3) 11 3/4" piping; 3/8" tubing Main steam to Secondary	To 4B SEC Sample System 4-10-207	0.375	50.0	Н	N	НТ	Middle 4B	523	Н	0.37	5 400	4.5	No	нт	confirm with chemistry constant flow-if so not needed	Y
2515	PTN	4 MS	ISS / 072	5614-M-3072, SH 1	sample coolers (x3) 11 3/4" piping; 3/8" tubing Main steam to Secondary	To 4A SEC Sample System Valve 4-10-107	0.375	50.0	Н	N	нт	North 4A	523	Н	0.37	5 400	4.5	No	нт	confirm with chemistry constant flow-if so not needed	Y
2516	PTN	4 MS	ISS / 072	5614-M-3072, SH 1	sample coolers (x3) 12 3/4" piping (x3) Main steam to Wet Layup	TO SWGL PIC-4-6219C SWGL-4-047	0.375	0.5	TV-I	Y	нт	Root Valve locked closed. Line Disconnected and Capped to SGW. Tubing to PIC-4-6219	523	TV-I	0.37	5 400	23.5	Yes	No Protection Required	short run; high process temp-no proection required	N
2516	PTN	4 MS	ISS / 072	5614-M-3072, SH 1	System 12 3/4" piping (x3) Main steam to Wet Layup	TO SWGL PIC-4-6219B Valve 4-10-029	0.375	0.5	TV	N	НТ	Root Valve locked closed. Line Disconnected and Capped to SGW. Tubing to PIC-4-6219	523	TV	0.37	5 400	4.5	Yes	No Protection Required	short run; high process temp-no proection required	N
2516	PTN	4 MS	ISS / 072	5614-M-3072, SH 1	System 12 3/4" piping (x3) Main steam to Wet Layup	TO SWGL PIC-4-6219A Valve 4-1023	0.375	0.5	TV-I	Y	НТ	Root Valve locked closed. Line Disconnected and Capped to SGW. Tubing to PIC-4-6219	523	TV-I	0.37	5 400	23.5	Yes	No Protection Required	short run; high process temp-no proection required	N
2666	PTN	4 SS	SS / 032	5614-M-3032, SH 3	System 1 LS-4-6745, -6746, -6747, - 6748, PS-4-6745, -6746, - 6747, -6748,	N/A	N/A	N/A	N/A	N/A	N/A	All located within the East condenser pit which will prevent freezing due to local equipment/pipe heat loss		N/A				No	N/A		
2667	PTN	4 SS	SS / 032	5614-M-3032, SH 3	1 PI-4-6751, -6752, -6753, - 6754, PI-4-6745, -6746, - 6747, -6748, LG-4-3435, - 3436, -3437, -3438	N/A	N/A	N/A	N/A	N/A	N/A	All located within the East condenser pit which will prevent freezing due to local equipment/pipe heat loss		N/A				No	N/A		
2668	PTN	4 SS:	SS / 032	5614-M-3032, SH 3	1 Seal Buffer Tank (4 times)	N/A	N/A	N/A	N/A	N/A	N/A	All located within the East condenser pit which will prevent freezing due to local equipment/pipe heat loss		N/A				No	N/A		
2670	PTN	4 SS	SS / 032	5614-M-3032, SH 3	1 PCV-4-615, -616, -617, -618	N/A	N/A	N/A	N/A	N/A	N/A	All located within the East condenser pit which will prevent freezing due to local equipment/pipe heat loss		N/A				No	N/A		
2671	PTN	4 SS:	SS / 032	5614-M-3032, SH 3	1 Small Bore Vents and Drains	N/A	N/A	N/A	N/A	N/A	N/A	All located within the East condenser pit which will prevent freezing due to local equipment/pipe heat loss		N/A				No	N/A		
2665	PTN	4 SS:	SS / 032	5614-M-3032, SH 2	1 Small Bore Drains to Sample Sink	3/8 line to 4-10-1211 and sample valve 4-10- 1214	0.375	N/A	N/A	N/A	N/A	Located east side of mezzanine level. Local are temperatures will remain above freezing. Cover turbine deck grating wit tarp to provide margin		N/A	0.37	5		No	N/A		
2665	PTN	4 SS:	SS / 032	5614-M-3032, SH 2	1 Small Bore Drains to Sample Sink	4-10-1212 and sample valve 4-10-1215	0.375	N/A	N/A	N/A	N/A	Located east side of mezzanine level. Local are temperatures will remain above freezing. Cover turbine deck grating wit tarp to provide margin		N/A	0.37	5		No	N/A		
2665	PTN	4 SS:	SS / 032	5614-M-3032, SH 2	1 Small Bore Drains to Sample Sink	4-10-1213 and sample valve 4-10-1216	0.375	N/A	N/A	N/A	N/A	Located east side of mezzanine level. Local are temperatures will remain above freezing. Cover turbine deck grating wit tarp to provide margin		N/A	0.37	5		No	N/A		
				5614-M-3019, SH 2	1 dPI-4-1402, -1403, FI-4-1407, 1408, -1409, PI-4-1519, -1520, -1521	- Not in Turb Bldg	N/A	N/A	N/A	N/A		Not in Turb Bldg	96	N/A		90		No	N/A		
				5614-M-3019, SH 2 5614-M-3019, SH 1	1 Small Bore Vents & Drains 1 PI(X)-4-1450, -1451, -1452, PI 4-1488, -1489, -6901, -6902, FE(FI)-3-1430, dPI-4-1400, - 1401	Not in Turb Bldg - DPI-4-1400	N/A 0.500	N/A 22.0		N/A N	N/A HT	Not in Turb Bldg	96 96	N/A H	0.50	90	0.8	No No	N/A HT	short run worse case fish mouth break; mitigate if breaks; margin in TC flow-if heat trace in area add in	N
2473	PTN	4 ICV	W / 019	5614-M-3019, SH 1	1401 1 PI(X)-4-1450, -1451, -1452, PI 4-1488, -1489, -6901, -6902, FE(FI)-3-1430, dPI-4-1400, - 1401	- DPI-4-1401	0.500	13.0	Н	N	HT		96	Н	0.50	0 90	0.8	No	нт	short run worse case fish mouth break; mitigate if breaks; margin in TC flow-if heat trace in area add in	N
2473	PTN	4 ICV	W / 019	5614-M-3019, SH 1	1 PI(X)-4-1450, -1451, -1452, PI 4-1488, -1489, -6901, -6902, FE(FI)-3-1430, dPI-4-1400, - 1401	- FI-4-1430	0.750	14.0	Н	N	НТ		96	Н	0.75	0 90	1.4	No	нт	нт	N

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 419 of 488

> R21002, Rev 0 Attachment N Page 54 of 123

																					Page 54 of 123
2054	PTN	4	089	5614-M-3089, SH 2	1 Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523	N/A		0.500	400		No	N/A	
2484	PTN	4	ICW / 019	5614-M-3019, SH 1	1 Small Bore Vents & Drains	RV-4-128A	0.750	25.0	VA	N	НТ		96	TV		0.750	90	0.8	No	HT	no protection required N
2484				5614-M-3019, SH 1	1 Small Bore Vents & Drains	RV-4-128B	0.750	25.0		N	HT		96	TV		0.750	90	0.8	No	HT	no protection required N
2484	PTN			5614-M-3019, SH 1	1 Small Bore Vents & Drains	4-50-117A	1.000	25.0	VA	N	НТ		96	TV		1.000	90	1.1	No	НТ	short run worse case fish mouth break; mitigate if breaks; margin in TC flow-if heat trace in area add in
2484	PTN	4	ICW / 019	5614-M-3019, SH 1	1 Small Bore Vents & Drains	4-50-117A2	1.000	31.0	VA	N	нт		96	TV		1.000	90	1.1	No	НТ	short run worse case fish mouth break; mitigate if N breaks; margin in TC flow-if heat trace in area add in
2484	PTN	4	ICW / 019	5614-M-3019, SH 1	1 Small Bore Vents & Drains	4-50-117B	1.000	25.0	VA	N	НТ		96	TV		1.000	90	1.1	No	НТ	short run worse case fish mouth break; mitigate if N breaks; margin in TC flow-if heat trace in area add in
2484	PTN	4	ICW / 019	5614-M-3019, SH 1	1 Small Bore Vents & Drains	4-50-117B2	1.000	31.0	Н	N	НТ		96	Н		1.000	90	2.7	No	HT	short run worse case fish mouth break; mitigate if breaks; margin in TC flow-if heat trace in area add in
2484	PTN	4	ICW / 019	5614-M-3019, SH 1	1 Small Bore Vents & Drains	4-50-118A1	1.000	30.0	VA	N	нт		96	TV		1.000	90	1.1	No	НТ	short run worse case fish mouth break; mitigate if breaks; margin in TC flow-if heat trace in area add in
2484	PTN	4	ICW / 019	5614-M-3019, SH 1	1 Small Bore Vents & Drains	4-50-118A2	1.000	10.0	BV	N	нт	VALVE TO SOFT HOSE	96	BV		1.000	90	0	No	НТ	short run worse case fish mouth break; mitigate if breaks; margin in TC flow-if heat trace in area add in
2484	PTN	4	ICW / 019	5614-M-3019, SH 1	1 Small Bore Vents & Drains	4-50-118B1	1.000	25.0	VA	N	нт		96	TV		1.000	90	1.1	No	НТ	short run worse case fish mouth break; mitigate if N breaks; margin in TC flow-if heat trace in area add in
2484	PTN	4	ICW / 019	5614-M-3019, SH 1	1 Small Bore Vents & Drains	4-50-118B2	1.000	10.0	BV	N	нт	VALVE TO SOFT HOSE	96	BV		1.000	90	0	No	НТ	short run worse case fish mouth break; mitigate if N breaks; margin in TC flow-if heat trace in area add in
2484				5614-M-3019, SH 1	1 Small Bore Vents & Drains	4-50-118	2.000	1.0	BV	N	1	FWH4A - mezz next to heater - hot area	96	BV		2.000	90	0.3	No	1	
2479	PTN	4	ICW / 019	5614-M-3019, SH 1	1 ICW strainer backwash piping	3 Pipe 4-8"-13-L TO 4-50- 335	8.000	10.0	H,U	N	N/A		96	н	Upward bend not credited for conservatism	Not Analyzed	90	#N/A	No	N/A	
2479	PTN	4	ICW / 019	5614-M-3019, SH 1	1 ICW strainer backwash piping	Pipe 4-8"-13-L TO 4-50- 315	8.000	10.0	H,U	N	N/A		96	н	Upward bend not credited for conservatism	Not Analyzed	90	#N/A	No	N/A	
2479	PTN	4	ICW / 019	5614-M-3019, SH 1	1 Non-Safety Related Piping 4-2"-12-L	Not in TB	N/A	N/A	N/A	N/A	N/A	Not in TB	96	N/A			90		No	N/A	
2472	PTN	4	ICW / 019	5614-M-3019, SH 1	1 PS-4-1619, -1620, PI-4-1619, 1620, PT-4-1619, -1620	- Not in TB	N/A	N/A	N/A	N/A	N/A	Not in TB	96	N/A			90		No	N/A	
2473	PTN	4	ICW / 019	5614-M-3019, SH 1	1 PI(X)-4-1450, -1451, -1452, PI 4-1488, -1489, -6901, -6902, FE(FI)-3-1430, dPI-4-1400, - 1401	l- PI-4-6901	1.000	2.0	Н	N	HT		96	Н		1.000	90	2.7	Yes	No Protection Required	
2473	PTN	4	ICW / 019	5614-M-3019, SH 1	1 PI(X)-4-1450, -1451, -1452, PI 4-1488, -1489, -6901, -6902, FE(FI)-3-1430, dPI-4-1400, - 1401	I- PI-4-6902	1.000	2.0	Н	N	нт		96	н		1.000	90	2.7	Yes	No Protection Required	
2484	PTN	4	ICW / 019	5614-M-3019, SH 1	1 Small Bore Vents & Drains	4-50-404	2.000	1.6	VA	N	1	FWH4B - mezz next to heater - hot area	96	TV		2.000	90	2	Yes	No Protection Required	
2479	PTN	4	ICW / 019	5614-M-3019, SH 1	1 ICW strainer backwash piping	g 4-4"-13-L BS-4-1401	4.000	9.0	H,U	N	N/A		96	Н	Upward bend not credited for conservatism	4.000	90	15	Yes	No Protection Required	
2479	PTN	4	ICW / 019	5614-M-3019, SH 1	1 ICW strainer backwash piping	g 4-4"-13-L BS-4-1400	4.000	9.0	H,U	N	N/A		96	Н	Upward bend not credited for conservatism	4.000	90	15	Yes	No Protection Required	
2286	PTN	4	CS / 018	5614-M-3018, Sh. 1	1 8" & 10" AFW pumps supply	8" pipe from reducer through valve 4-20-401 outside CST cage north side	8.000	20.0	H,U	N	I		100	Н	Upward bend not credited for conservatism	Not Analyzed	100	#N/A	No	I	
2286			CS / 018	5614-M-3018, Sh. 1	1 8" & 10" AFW pumps supply		10.000	6.0	Н	N	I		100	н		Not Analyzed	100	#N/A	No	I	
2287				5614-M-3018, Sh. 1 5614-M-3018, Sh. 1	1 TWO 10" blind flange connections 1 manual vent	downstream of 4-20- 400 4-20-381	10.000 0.750	1.0	H TV	N N	HT		100	H TV		Not Analyzed 0.750	100	#N/A 1	No Yes	I No	
																				Protection Required	
2291				5614-M-3018, Sh. 1	2 Condensate Transfer pump vent		0.375	1.0	TV	N	НТ		255	TV		0.375	250	3	Yes	No Protection Required	repair/patch if damaged; no protection required N
2292	PTN	4	CS / 018	5614-M-3018, Sh. 1	2 manual drain	4-20-360	0.500	1.0	BV,H	N	HT		255	BV	BV conservative due to downward portion	0.500	250	0.5	No	HT	repair/patch if damaged; no protection required N

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 420 of 488

> R21002, Rev 0 Attachment N Page 55 of 123

Part																						Page 55 of 2	123
Part	2054	PTN	4	089	5614-M-3089, SH 2		PC-4-3709	0.500	N/A	N/A	N/A	N/A		523	N/A		0.500	400		No	N/A		
20	2289	PTN	4	CS / 018	5614-M-3018, Sh. 1			10.000	22.0	H,U	N	М		255	Н	credited for		250	#N/A	No	М		
Marcha M	2290	PTN	4	CS / 018	5614-M-3018, Sh. 1		4-20-405	1.000	3.0	TV	N	HT		255	TV	Conservatism	1.000	250	20	Yes	Protection		
No.	2289	PTN	4	CS / 018	5614-M-3018, Sh. 1		4-20-402	4.000	4.0	Н	N	ı		255	Н		4.000	250	15	Yes	No Protection		
No. Control	2293	PTN	4	CS / 018	5614-M-3018, Sh. 1		PI-4-1496	0.500	1.0	TV	N	HT		90	TV		0.500	90	0.8	No		repair/patch if damaged; no protection required	N
10 10 10 10 10 10 10 10	2289	PTN	4	CS / 018	5614-M-3018, Sh. 1		from U4 to U3 pump	6.000	435.0	H,U	N	М	Remainder covered by 5610-M-3018	90	Н	credited for		90	#N/A	No	М		
The column The	2289	PTN	4	CS / 018	5614-M-3018, Sh. 1	3 CWS 1 1/2" PIPE ABANDON	CWS-0018	1.500	1.0	Н	N	ı		90	н	conscivation	1.500	90	6.4	Yes	Protection		
1	2297	PTN	4	CS / 018	5614-M-3018, Sh. 1		DWST	10.000	N/A	N/A	N/A	N/A	SEE 5610-M-3074 SH2	90	N/A			90		No			
No.	2298	PTN	4	CS / 018	5614-M-3018, Sh. 1		4-3"-3-F	3.000	20.0	Н	N	I		109	Н		3.000	100	16	No	1		
100 100	2299	PTN	4	CS / 018	5614-M-3018, Sh. 1	7 6" condensate return	to valves 4-20-16 and 4-	6.000	184.0	H,U	N	ı		255	Н	credited for		250	#N/A	No	I		
2322 First 4	2300	PTN	4	CS / 018	5614-M-3018, Sh. 1	8 2" surge tank supply		2.000	6.0	Н	N	ı		109	Н		2.000	100	16	Yes	Protection		
10 10 10 10 10 10 10 10																							
Fig.			4	CS / U18		from Unit 3				HV	N	'			HV		2.000	100	#N/A	No	ı		
Fig.	2303	PTN	4	CS / 018	5614-M-3018, Sh. 1	feed and wet layup from primary water header and	Water to Cold Chem Lab 4	1.000	N/A	N/A	N/A	М		90	N/A		1.000	90		No	М		
Property	2303	PTN	4	CS / 018	5614-M-3018, Sh. 1	feed and wet layup from primary water header and	ed up to closed valve SGV	1.000	20.0	H,U	N	М		90	Н	credited for	1.000	90	2.7	No	М		
Second	2303	PTN	4	CS / 018	5614-M-3018, Sh. 1	feed and wet layup from primary water header and		6.000	10.0	H,U	N	М		90	Н	credited for		90	#N/A	No	М		
Supply to CST Supply to CS	2303	PTN	4	CS / 018	5614-M-3018, Sh. 1	feed and wet layup from primary water header and	stream of valve 4-20- 416 to 6" Primary ater	4.000	25.0	H,U	N	I		90	Н	credited for	4.000	90	15	No	I		
2306 PTN 4 CS/018 S614-M-3018, Sh.1 13 flow indicator Fi-4-1437 6.000 1.0 H,U N M 90 H Upward bend not credited for consensatism 2.000 100 N/A N/A N/A N/A Covered by DWST 5610-M-3074 sh2 100 N/A N/A N/A Covered by DWST 5610-M-3074 sh2 100 N/A N/A N/A N/A Covered by DWST 5610-M-3074 sh2 100 N/A	2306	PTN	4	CS / 018	5614-M-3018, Sh. 1		CV-4-1540	6.000	95.0	H,U	N	М		90	Н	credited for		90	#N/A	No	М		
Care	2306	PTN	4	CS / 018	5614-M-3018, Sh. 1		4-20-410	4.000	23.0	H,U	N	I		110	Н	credited for	4.000	110	15	No	I		
No.	2306	PTN	4	CS / 018	5614-M-3018, Sh. 1	13 flow indicator	FI-4-1437	6.000	1.0	H,U	N	М		90	Н	credited for		90	#N/A	No	М		
2310 PTN 4 CS / 018 S 614-M-3018, Sh. 1 16 4" CST drain 4-20-420 4.000 5.0 H,U N/A I 100 BV BV conservative due to downward portion makeup CV 15-4-1541 17 manual drain lines 4-20-439 1.000 1.0 BV N HT repair/patch if damaged; no protection required N 100 BV S 100 1.00 1.0 NO HT repair/patch if damaged; no protection required N 100 BV N HT repair/patch if damaged; no pro	2307	PTN	4	CS / 018	5614-M-3018, Sh. 1	14 2 1/2" AFW Pump recirc line	CST	2.500	N/A	N/A	N/A	N/A	covered by DWST 5610-M-3074 sh2	100	N/A		2.000	100		No	N/A		
2313 PTN 4 CS / 018 S 614-M-3018, Sh. 1 17 manual drial lines 4-20-438 0.750 2.0 BV, H N HT 100 BV BV conservative due to downward portion Quinty and protection required N HT repair/patch if damaged; no protection required N HT Repair/patch if															·	credited for			15		No Protection		
2311 PTN 4 CS / 018 5614-M-3018, Sh. 1 17 CST level switch for CST makeup CV LS-4-1501 LS-4-1502 LS-4-1503	2313	PTN	4	CS / 018	5614-M-3018, Sh. 1	17 manual drain lines		0.750	2.0	BV,H	N	HT		100	BV	BV conservative due to	0.750	100	0	No		repair/patch if damaged; no protection required	N
2311 PTN 4 CS / 018 5614-M-3018, Sh. 1 17 manual drain lines 4-20-439 1.000 1.0 BV N HT repair/patch if damaged; no protection required N 2311 PTN 4 CS / 018 5614-M-3018, Sh. 1 17 CST level switch for CST LS-4-1503 1.000 10.0 TV N HT repair/patch if damaged; no protection required N 1.000 100 1.5 No HT repair/patch if damaged; no protection required N	2311	PTN	4	CS / 018	5614-M-3018, Sh. 1		LS-4-1502	1.000	14.0	TV	N	НТ		100	TV	uownward portion	1.000	100	1.5	No	НТ	repair/patch if damaged; no protection required	N
	2311	PTN	4	CS / 018	5614-M-3018, Sh. 1			1.000	1.0	BV	N	НТ		100	BV		1.000	100	0	No	НТ	repair/patch if damaged; no protection required	N
	2311	PTN	4	CS / 018	5614-M-3018, Sh. 1		LS-4-1503	1.000	10.0	TV	N	НТ		100	TV		1.000	100	1.5	No	нт	repair/patch if damaged; no protection required	N

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 421 of 488

> R21002, Rev 0 Attachment N Page 56 of 123

																				Page 56	01 123
2054 PT	N 4	089	5614-M-3089, SH 2	1 Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523	N/A		0.500	400		No	N/A		
2314 PT	N 4	CS / 018	5614-M-3018, Sh. 1	18 CST level transmitter / indication	LT-4-6384A	0.375	4.0	H,D	N	НТ		50	BV	BV conservative due to downward portion	0.375	50	Not Analyzed	No	НТ	нт	N
2314 PT	N 4	CS / 018	5614-M-3018, Sh. 1	18 3/8", 1", & 3" level transmitter piping	LT-4-6584 LT-4-6384B LT-4-6384A	0.375	4.0	H,D	N	нт		50	BV	BV conservative due to downward portion	0.375	50	Not Analyzed	No	НТ	нт	N
2316 PT		CS / 018	5614-M-3018, Sh. 1	18 manual vents, drains and test connections		0.375	1.0	BV	N	HT		50	BV		0.375	50	Not Analyzed	No	HT	нт	N
2316 PT	N 4	CS / 018	5614-M-3018, Sh. 1	18 manual vents, drains and test connections	4-20-409A	0.375	2.0	TV	N	НТ		50	TV		0.375	50	0	No	HT	НТ	N
2316 PT		CS / 018	5614-M-3018, Sh. 1	18 manual vents, drains and test connections		0.375	2.0	TV	N	НТ		50	TV		0.375	50	0	No	НТ	нт	N
2316 PT	N 4	CS / 018	5614-M-3018, Sh. 1	18 manual vents, drains and test connections	4-20-444	3.000	5.0	Н	N	1	LAST 6' ON td - CAGE INSULATED 025 ON TD	50	Н		3.000	50	1	No	1		
2317 PT	N 4	CS / 018	5614-M-3018, Sh. 1	19 6" condensate supply to feedwater system	4-20-404	6.000	85.0	H,U	N	I	Length based on Elv change and FW platform	90	н	Upward bend not credited for conservatism	Not Analyzed	90	#N/A	No	I		
2191 PT	N 4	CNDSR / 014	\$ 5614-M-3014, SH 3	1 1/2" Drain (Piping & valve)(wye strainer drain)	4-30-175	0.500	1.0	TV-I	Y	НТ	Assumed length based on similar, could not locate	600	TV-I		0.500	400	20	Yes	No Protection Required		
2187 PT	N 4	CNDSR / 014	5614-M-3014, SH 3	Pressure Switch (PS) with control room annunciation. Local Pressure indication (PI) 1/2" tubing and open root valve.	PS-4-1622 PI-4-1569	0.500	6.0	Н	N	НТ		600	н		0.500	400	8.5	Yes	No Protection Required		
			5614-M-3014, SH 3	Local Pressure indication (PI) 1/2" tubing and open root valve.	PI-4-1568	0.500	6.0	TV-I	Υ	НТ		600	TV-I		0.500	400	20	Yes	No Protection Required		
2194 PT	N 4	CNDSR / 014	5614-M-3014, SH 3	2 1" Drain (Piping & valve)	4-30-039	1.000	1.0	H-I	Y	НТ	Assumed length based on similar, could not locate	600	H-I		1.000	400	19	Yes	No Protection Required		
2195 PT	N 4	CNDSR / 014	\$ 5614-M-3014, SH 3	3 Local Pressure indication (PI) 1/4" tubing and open root valve; branch from 8" vacuum breaker line	PI-4-1447	0.250	1.0	Н	N	нт		400	н		Not Analyzed	400	#N/A	No	НТ	verify line temp; ambient temp; if hot no protection required	Y
2198 PT	N 4	CNDSR / 014	1 5614-M-3014, SH 3	3 8" Vent/Vacuum breaker	4-30-001	8.000	COULD			ı	COULD NOT FIND	400			Not Analyzed	400		No	1	Verify already Insulated	Y
2196 PT	N 4	CNDSR / 014	5614-M-3014, SH 3	3 Local Pressure indication (PI) (x2) 1/2" tubing and open root valve; branch from 8" lines into SIAEs	PI-4-1434	0.500	0.5	TV	N	НТ		400	TV		0.500	400	8.5	Yes	No Protection Required		
2196 PT	N 4	CNDSR / 014	5614-M-3014, SH 3	3 Local Pressure indication (PI) (x2) 1/2" tubing and open root valve; branch from 8" lines into SJAEs	PI-4-1407	0.500	1.0	TV	N	НТ		400	TV		0.500	400	8.5	Yes	No Protection Required		
2203 PT	N 4	CNDSR / 014	\$ 5614-M-3014, SH 3	Local level gauge (x2) indicates liquid level in condenser drain line.	LG (not numered)	0.500	0.5	Н	N	НТ		90	Н		0.500	90	0.8	Yes	No Protection Required		
2203 PT	N 4	CNDSR / 014	1 5614-M-3014, SH 3	Local level gauge (x2) indicates liquid level in condenser drain line.	LG (not numered)	0.500	0.5	Н	N	нт		90	Н		0.500	90	0.8	Yes	No Protection Required		
2205 PT	N 4	CNDSR / 014	5614-M-3014, SH 3	8 Local level gauge and 1/2" tubing	LG-4-3411	0.500	0.5	Н	N	нт	BETWEEN 3A AND 3B HEATER. WILL STAY WARM.	350	Н		0.500	350	7	Yes	No Protection Required		
				indicates liquid level in condenser drain line.																	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 422 of 488

> R21002, Rev 0 Attachment N Page 57 of 123

																					Page 57 o	1 123
2054	PTN	4	089	5614-M-3089, SH 2	Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523		N/A	0.500	400		No	N/A		
2207	PTN	4	CNDSR / 014	5614-M-3014, SH 3	1/2" capped pipe (closed root valve)	LG-4-3412	0.500	N/A	N/A	N/A	N/A	FWIB 5614-M-3081 SH6 NOT IN THIS SYSTEM DELETE ENTRY	350		N/A	0.500	350		No	N/A		
					1/2" line (isolated) from Condensate Sys Loop Seal Fill																	
2209	PTN	4	CNDSR / 014	5614-M-3014, SH 3	Local gauges and 3/8" tubing press differential (dPI) Flow indication (FI) Flow element (FE)	FI-4-1416	0.375	2.0	Н	N	НТ		200		Н	0.375	200	2	Yes	No Protection Required		
2209	PTN	4	CNDSR / 014	5614-M-3014, SH 3	Local gauges and 3/8" tubing press differential (dPI) Flow indication (FI) Flow element (FE)	DPI-4-1406	0.375	12.0	Н	N	НТ		200		Н	0.375	200	2	No	НТ	non condensable gas; air; not protection required	N
2212	PTN	4	CNDSR / 014	5614-M-3014, SH 3	1/2" drain/vent, 1" isolated conn. for flex hose and chem testing (note 7) 1" line (isolated) from	4-30-223	0.375	0.5	BV	N	НТ		200		BV	0.375	200	Not Analyzed	No	нт	no protection required; air	N
					Condensate Sys Loop Seal Fill																	
2212	PTN	4	CNDSR / 014	5614-M-3014, SH 3	1/2" drain/vent, 1" isolated conn. for flex hose and chem testing (note 7)	4-30-220	0.375	0.5	BV	N	HT		200		BV	0.375	200	Not Analyzed	No	НТ	no protection required; air	N
					1" line (isolated) from Condensate Sys Loop Seal Fill																	
2212	PTN	4	CNDSR / 014	5614-M-3014, SH 3	1/2" drain/vent, 1" isolated conn. for flex hose and chem testing (note 7)	4-30-178	0.500	1.0	BV	N	HT	COULD NOT FIND, assumed length based on similar	200		BV	0.500	200	0	No	НТ	non condensable gas; air; not protection required	N
					1" line (isolated) from Condensate Sys Loop Seal Fill																	
2212	PTN	4	CNDSR / 014	5614-M-3014, SH 3	1/2" drain/vent, 1" isolated conn. for flex hose and chem testing (note 7)	4-30-015	0.500	0.5	BV	N	нт		200		BV	0.500	200	0	No	НТ	non condensable gas; air; not protection required	N
					1" line (isolated) from Condensate Sys Loop Seal Fill																	
2209	PTN	4	CNDSR / 014	5614-M-3014, SH 3	Local gauges and 3/8" tubing press differential (dPI) Flow indication (FI) Flow element (FE)	FE-4-3400	0.375	Not in TE	B N/A	N/A	НТ	IN PIPE NOT IN SCOPE	200		N/A	0.375	200		No	НТ	non condensable gas; air; not protection required	N
2212	PTN	4	CNDSR / 014	5614-M-3014, SH 3	1/2" drain/vent, 1" isolated conn. for flex hose and chem testing (note 7)	4-30-176	1.000	10.0	Н	N	НТ		200		Н	1.000	200	10	Yes	No Protection Required		
					1" line (isolated) from Condensate Sys Loop Seal Fill																	
2208	PTN	4	CNDSR / 014	5614-M-3014, SH 3	Radiation detector (RD) with control room alarm/annunciation	RD-4-15	4.000	0.5	TV	N	I		90		TV	4.000	90	20	Yes	No Protection Required		
2210	PTN	4	CNDSR / 014	5614-M-3014, SH 3	Local flow indicator (FI)	FI-4-1419	4.000	0.5	TV	N	I		90		TV	4.000	90	20	Yes	No Protection Required		
2176	PTN	4	CNDSR / 014	5614-M-3014, SH 2	10" header, and 2" piping and control valves (air operated)	4-20-051	2.000	N/A	N/A	N/A	N/A	NORMAL OPERATION OPEN AND FLOWING	200	Class E was used from Condensate section.	N/A	2.000	200		No	N/A		
					Condensate Makeup Spray (from Demineralized Water Storage Tank)																	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 423 of 488

> R21002, Rev 0 Attachment N Page 58 of 123

																						Page 58 0	01 123
2054	PTN	4	089	5614-M-3089, SH 2	1 Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523		N/A		0.500	400		No	N/A		
2176	PTN	4	CNDSR / 014	5614-M-3014, SH 2	3 10" header, and 2" piping and control valves (air operated) Condensate Makeup Spray (from Demineralized Water Storage Tank)	4-20-053	2.000	N/A	N/A	N/A	N/A	NORMAL OPERATION OPEN AND FLOWING	200	Class E was used from Condensate section.	N/A		2.000	200		No	N/A		
					Storage rank)																		
2176	DTN	4	CNIDSD / 01/	5614-M-3014, SH 2	3 10" header, and 2" piping and	CV-4-1519	10.000	N/A	N/A	N/A	N/A	NORMAL OPERATION OPEN AND	200	Class E was used from Condensate	N/A		Not	200		No	N/A		
2170	FIN	*	CNDSK / UI-	3014-101-3014, 311 2	Control valves (air operated) Condensate Makeup Spray (from Demineralized Water Storage Tank)	CV-4-1315	10.000	IN/A	N/A	N/A	N/A	FLOWING	200	section.	N/A	A	Analyzed	200		NO	IN/A		
							0.500			ļ			200										
21/9	PIN	4	CNDSR / 014	\$ 5614-M-3014, SH 2	5 3 Pressure Indicating Transmitter (PIT) PITs have CR alarm/annunciation and input to Turbine Control Sys, Turbine trip, etc.	PIT-4-1612A	0.500	1.0	н	N	нт	TUBING IN SERIES WITH B	200	Class E was used from Condensate section.	н		0.500	200	3.5	Yes	No Protection Required		
2179	PTN	4	CNDSR / 014	5614-M-3014, SH 2	5 3 Pressure Indicating Transmitter (PIT) PITs have CR alarm/annunciation and input to Turbine Control Sys,	PIT-4-1612B	0.500	1.0	Н	N	нт	TUBING IN SERIES WITH C	200	Class E was used from Condensate section.	Н		0.500	200	3.5	Yes	No Protection Required		
2179	PTN	4	CNDSR / 014	5614-M-3014, SH 2	Turbine trip, etc. 5 3 Pressure Indicating	PIT-4-1612C	0.500	5.0	Н	N	HT		200	Class E was used from Condensate	Н		0.500	200	3.5	No	HT	verify in east pit; if so no heat trace required	Y
					Transmitter (PIT) PITs have CR alarm/annunciation and input to Turbine Control Sys, Turbine trip, etc.									section.									
2183	PTN	4	CNDSR / 014	5614-M-3014, SH 2	North Temporary pressure Cond instrument (PX) (x6); enser Temporary temperature instrument (TX) (x1) 3/4" tubing/pipe	PX-4-1623	0.750	N/A	N/A	N/A	N/A	INSIDE TURBINE ENCLOSURE which will prevent freezing	200	Class E was used from Condensate section.	N/A		0.750	200		No	N/A		
2183	PTN	4	CNDSR / 014	5614-M-3014, SH 2	North Temporary pressure Cond instrument (PX) (x6); enser Temporary temperature 4A instrument (TX) (x1)	PX-4-1624	0.750	N/A	N/A	N/A	N/A	INSIDE TURBINE ENCLOSURE which will prevent freezing	200	Class E was used from Condensate section.	N/A		0.750	200		No	N/A		
2183	PTN	4	CNDSR / 014	5614-M-3014, SH 2	3/4" tubing/pipe North Temporary pressure Cond instrument (PX) (x6); enser Temporary temperature instrument (TX) (x1) 3/4" tubing/pipe	PX-4-1625	0.750	N/A	N/A	N/A	N/A	INSIDE TURBINE ENCLOSURE which will prevent freezing	200	Class E was used from Condensate section.	N/A		0.750	200		No	N/A		
2183	PTN	4	CNDSR / 014	5614-M-3014, SH 2	North Temporary pressure Cond instrument (PX) (x6); enser Temporary temperature 4A instrument (TX) (x1)	PX-4-1626	0.750	N/A	N/A	N/A	N/A	INSIDE TURBINE ENCLOSURE which will prevent freezing	200	Class E was used from Condensate section.	N/A		0.750	200		No	N/A		
2183	PTN	4	CNDSR / 014	5614-M-3014, SH 2	3/4" tubing/pipe North Temporary pressure Cond instrument (PX) (x6); enser Temporary temperature instrument (TX) (x1)	PX-4-1627	0.750	N/A	N/A	N/A	N/A	INSIDE TURBINE ENCLOSURE which will prevent freezing	200	Class E was used from Condensate section.	N/A		0.750	200		No	N/A		
2183	PTN	4	CNDSR / 014	5614-M-3014, SH 2	3/4" tubing/pipe North Temporary pressure Cond instrument (PX) (x6); enser Temporary temperature 4A instrument (TX) (x1)	PX-4-1628	0.750	N/A	N/A	N/A	N/A	INSIDE TURBINE ENCLOSURE which will prevent freezing	200	Class E was used from Condensate section.	N/A		0.750	200		No	N/A		
					3/4" tubing/pipe																		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 424 of 488

> R21002, Rev 0 Attachment N Page 59 of 123

																						Page 59 C	31 120
2054	PTN	4	089	5614-M-3089, SH 2	1	Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523		N/A	0.500	400		No	N/A		
2183	PTN	4	CNDSR / 014	5614-M-3014, SH 2	Cond enser	Temporary pressure instrument (PX) (x6); Temporary temperature instrument (TX) (x1)	TX-4-1557	NOT PROVIDED	N/A	N/A	N/A	N/A	Either direct immersion or in thermo well. Neither expose fluid. Process flow will prevent freeze	200	Class E was used from Condensate section.	N/A		200		No	N/A		
2184	PTN	4	CNDSR / 014	5614-M-3014, SH 2	Cond enser	3/4" tubing/pipe Local level guage (x3)	LG-4-3401	0.750	N/A	N/A	N/A	N/A	Condensing steam will provide flow through glass and prevent freezing	200	Class E was used from Condensate section.	N/A	0.750	200		No	N/A		
2184	PTN	4	CNDSR / 014	5614-M-3014, SH 2	Cond enser	Local level guage (x3)	LG-4-3401	0.750	N/A	N/A	N/A	N/A	Condensing steam will provide flow through glass and prevent freezing	200	Class E was used from Condensate section.	N/A	0.750	200		No	N/A		
2185	PTN	4	CNDSR / 014	5614-M-3014, SH 2	Cond	Vent (screened open flange) with Motor Op Valve MOV-4-VAB	MOV-4-VAB	NOT PROVIDED	N/A	N/A	N/A	N/A	WILL DRAIN TO CONDENSER	200	Class E was used from Condensate section.	N/A		200		No	N/A		
2182	PTN	4	CNDSR / 014	5614-M-3014, SH 2	North Cond enser 4A	Level Controler (LC) Condenser level control with signal input to condenser water makeup spray valves (suction from DWST)	LC-4-1519	1.000	5.0	HD	N	нт	COULD NOT SEE ORIENTATION	200	Class E was used from Condensate section.	HD	1.000	200	#N/A	No	нт	verify ambient temp; if hot no heat trace required	Y
2186	PTN	4	CNDSR / 014	5614-M-3014, SH 2	Cond	Capped piping 1 1/2" pipe (leak detect) (x8)	NOT PROVIDED	1.500	COULD NOT FIND			ı	COULD NOT FIND	200	Class E was used from Condensate section.		1.500	200		No	ı		
2184	PTN	4	CNDSR / 014	5614-M-3014, SH 2			LG-4-3401	0.750	N/A	N/A	N/A	N/A	Condensing steam will provide flow through glass and prevent freezing	200	Class E was used from Condensate section.	N/A	0.750	200		No	N/A		
2164	PTN	4	CNDSR / 014	5614-M-3014, SH 1		3 pipe studs with closed valves (30-1041, 4-30-984, 4- 30-981, and 4-30-981A)	4-30-1041	1.000	1.0	TV	N	HT	COULDT IDENTIFY ON HEADER BUT ALL VALVES COMING OFF WERE 1FT FROM HEADER.	200	Class E was used from Condensate section.	TV	1.000	200	20	Yes	No Protection Required		
2164	PTN	4	CNDSR / 014	5614-M-3014, SH 1	4	3 pipe studs with closed valves (30-1041, 4-30-984, 4- 30-981, and 4-30-981A)	4-30-984	1.000	1.0	TV	N	нт		200	Class E was used from Condensate section.	TV	1.000	200	20	Yes	No Protection Required		
2164	PTN	4	CNDSR / 014	5614-M-3014, SH 1	4	3 pipe studs with closed valves (30-1041, 4-30-984, 4- 30-981, and 4-30-981A)	4-30-981	1.000	1.0	TV	N	НТ		200	Class E was used from Condensate section.	TV	1.000	200	20	Yes	No Protection Required		
2165	PTN	4	CNDSR / 014	S614-M-3014, SH 1		2 Pressure Switches (PS); 3 Pressure Indicating Transmitter (PIT) PS input to Steam Dump system. PITs have CR alarm/annunciation and input to Turbine Control Sys, Turbine trip, etc.	PIT-4-2612B	0.500	1.0	Н	N	НТ	If sloped to condenser, condensate will flow and not freeze.	200	Class E was used from Condensate section.	Н	0.500	200	3.5	Yes	No Protection Required		
2165	PTN	4	CNDSR / 014	5614-M-3014, SH 1		2 Pressure Switches (PS); 3 Pressure Indicating Transmitter (PIT) PS input to Steam Dump system. PITs have CR alarm/annunciation and input to Turbine Control Sys, Turbine trip, etc.	PIT-4-2612C	0.500	1.0	Н	N	нт	If sloped to condenser, condensate will flow and not freeze.	200	Class E was used from Condensate section.	Н	0.500	200	3.5	Yes	No Protection Required		
2165	PTN	4	CNDSR / 014	S614-M-3014, SH 1		2 Pressure Switches (PS); 3 Pressure Indicating Transmitter (PIT) PS input to Steam Dump system. PITs have CR alarm/annunciation and input to Turbine Control Sys, Turbine trip, etc.	PIT-4-2612A	0.500	5.0	Н	N	нт	If sloped to condenser, condensate will flow and not freeze.	200	Class E was used from Condensate section.	Н	0.500	200	3.5	No	нт	verify in south pit; if so no heat trace required	Υ

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 425 of 488

> R21002, Rev 0 Attachment N Page 60 of 123

																					i age oo c	71 120
2054 P	N 4	089	5614-M-3089, SH 2	1 Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523		N/A		0.500	400		No	N/A		
2165 P	N 4	CNDSR / 0:	14 5614-M-3014, SH 1	5 2 Pressure Switches (PS); 3 Pressure Indicating Transmitter (PIT) PS input to Steam Dump system. PITS have CR alarm/annunciation and input	PS-4-1613A	0.500	40.0	H,D	N	НТ	IN CONTROL ROOM, LENGTH IN TB ESTIMATED. Diameter based on 1613A. If tubing is sloped to Condenser, condensate will flow and not freeze	200	Class E was used from Condensate section.	BV	BV conservative due to downward portion	0.500	200	0	No	НТ	verify in south pit; if so no heat trace required	Y
				to Turbine Control Sys, Turbine trip, etc.																		
2165 P	N 4	CNDSR / 0:	5614-M-3014, SH 1	5 2 Pressure Switches (PS); 3 Pressure Indicating Transmitter (PIT) PS input to Steam Dump system. PITS have CR alarm/annunciation and input to Turbine Control Sys, Turbine trip, etc.	P5-4-1613B	0.500	40.0	H,D	N	нт	IN CONTROL ROOM, LENGTH IN TB ESTIMATED. Diameter based on 1613A. If tubing is sloped to Condenser, condensate will flow and not freeze	200	Class E was used from Condensate section.	BV	BV conservative due to downward portion	0.500	200	0	No	нт	verify in south pit; if so no heat trace required	Y
2167 P	N 4	CNDSR / 0:	14 5614-M-3014, SH 1	5 One capped pipe with closed root valve (near PS 4-1613A)	4-20-614	Not provided	N/A	N/A	N/A	N/A	IN CONTROL ROOM	200	Class E was used from Condensate section.	N/A			200		No	N/A		
2170 P	N 4	CNDSR / 0:	14 5614-M-3014, SH 1	South Temporary pressure Cond instrument (PX) (x6); enser Temporary temperature instrument (TX) (x1) 3/4" tubing/pipe	PX-4-1629	0.750	N/A	N/A	N/A	N/A	INSIDE TURBINE ENCLOSURE which will prevent freezing	200	Class E was used from Condensate section.	N/A		0.750	200		No	N/A		
2170 P	N 4	CNDSR / 0:	14 5614-M-3014, SH 1	South Temporary pressure Cond instrument (PX) (x6); enser Temporary temperature instrument (TX) (x1) 3/4" tubing/pipe	PX-4-1643	0.750	N/A	N/A	N/A	N/A	INSIDE TURBINE ENCLOSURE which will prevent freezing	200	Class E was used from Condensate section.	N/A		0.750	200		No	N/A		
2170 P	N 4	CNDSR / 0:	14 5614-M-3014, SH 1	South Temporary pressure Cond instrument (PX) (x6); enser Temporary temperature instrument (TX) (x1) 3/4" tubing/pipe	PX-4-1644	0.750	N/A	N/A	N/A	N/A	INSIDE TURBINE ENCLOSURE which will prevent freezing	200	Class E was used from Condensate section.	N/A		0.750	200		No	N/A		
2170 P	N 4	CNDSR / 0:	14 5614-M-3014, SH 1	South Temporary pressure Cond instrument (PX) (x6); enser Temporary temperature 4B instrument (TX) (x1)	PX-4-1645	0.750	N/A	N/A	N/A	N/A	INSIDE TURBINE ENCLOSURE which will prevent freezing	200	Class E was used from Condensate section.	N/A		0.750	200		No	N/A		
2170 P	N 4	CNDSR / 0:	14 5614-M-3014, SH 1	3/4" tubing/pipe South Temporary pressure Cond instrument (PX) (x6); enser Temporary temperature instrument (TX) (x1) 3/4" tubing/pipe	PX-4-1646	0.750	N/A	N/A	N/A	N/A	INSIDE TURBINE ENCLOSURE which will prevent freezing	200	Class E was used from Condensate section.	N/A		0.750	200		No	N/A		
2170 P	N 4	CNDSR / 0:	14 5614-M-3014, SH 1	South Temporary pressure Cond instrument (PX) (x6); enser Temporary temperature instrument (TX) (x1) 3/4" tubing/pipe	PX-4-1647	0.750	N/A	N/A	N/A	N/A	INSIDE TURBINE ENCLOSURE which will prevent freezing	200	Class E was used from Condensate section.	N/A		0.750	200		No	N/A		
2170 P	N 4	CNDSR / 0:	14 5614-M-3014, SH 1	South Temporary pressure Cond instrument (PX) (x6); enser Temporary temperature instrument (TX) (x1) 3/4" tubing/pipe	TX-4-1556	NOT PROVIDED	N/A	N/A	N/A	N/A	Either direct imersion or thermal well. Therefore process fluid flow will prevent freezing	200	Class E was used from Condensate section.	N/A			200		No	N/A		
2171 P	N 4	CNDSR / 0:	14 5614-M-3014, SH 1	South Local level guage (x2) Cond enser 4B	LG-4-3400	0.750	N/A	N/A	N/A	N/A	Condensing steam will provide flow through glass and prevent freezing	200	Class E was used from Condensate section.	N/A		0.750	200		No	N/A		
2171 P	N 4	CNDSR / 0:	14 5614-M-3014, SH 1	South Local level guage (x2) Cond enser 4B	LG-4-3400	0.750	N/A	N/A	N/A	N/A	Condensing steam will provide flow through glass and prevent freezing	200	Class E was used from Condensate section.	N/A		0.750	200		No	N/A		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 426 of 488

> R21002, Rev 0 Attachment N Page 61 of 123

2054 PTN 2172 PTN	4	089	5614-M-3089, SH 2	1 Pressure Control Instrument	PC-4-3709	0.500	N/A	NI/A	NI/A					h				s. 1		
2172 PTN				(PC x2) plus 1/2" tubing			N/A	N/A	N/A	N/A		523		N/A	0.500	400		No	N/A	
	4	CNDSR / 014	5614-M-3014, SH 1	South Vent (screened open flange) Cond with Motor Op Valve enser MOV-4-VAB1 48	MOV-4-VAB1	NOT PROVIDED	N/A	N/A	N/A	N/A	WILL DRAIN TO CONDENSER	200	Class E was used from Condensate section.	N/A		200		No	N/A	
2173 PTN	4	CNDSR / 014	5614-M-3014, SH 1	South Capped piping Cond enser 1 1/2" pipe (leak detect) (x8)	NOT PROVIDED	1.000	1.0	BV	N		COULD NOT FIND, assumed length based on similar	200	Class E was used from Condensate section.	BV	1.000	200	0.5	No	I	
24.50 DTN		CNIDED / 04 4	5614-M-3014, SH 1	4B 1" pipe (4-1"-E) (x1)	LT 4 4544	2.000	10.0				AAAV NOT DE POSSIDIE TO INSIII ATE	200	Class Francisco de force Constante		2.000	200	10	V	No	
2169 PIN	4	CNDSR / 014	5614-W-3014, SH 1	South Level Transmitter (LT) Cond enser Condenser level with control 4B room annunciation (high/low)	LT-4-1541	2.000	10.0	Н	N		MAY NOT BE POSSIBLE TO INSULATE AND ALOW THE ACTUATOR TO OPERATE PROPERLY	200	Class E was used from Condensate section.	Н	2.000	200	18	Yes	Protection Required	
			5614-M-3010, SH 3	1 PS-4-2018	PS-4-2018	0.500	N/A	N/A	N/A	N/A	Not in TB	95		N/A	0.500	90		No	N/A	
2365 PTN	4	CWS / 010	5614-M-3010, SH 3	1 PC-4-1700, PS-4-2001, -2006, - 2012, -2019, -2044, -2045, - 2061	PC-4-1700	0.500	N/A	N/A	N/A	N/A	Not in TB	95		N/A	0.500	90		No	N/A	
2365 PTN	4	CWS / 010	5614-M-3010, SH 3	1 PC-4-1700, PS-4-2001, -2006, - 2012, -2019, -2044, -2045, - 2061	PC-4-2001	0.500	N/A	N/A	N/A	N/A	Not in TB	95		N/A	0.500	90		No	N/A	
2365 PTN	4	CWS / 010	5614-M-3010, SH 3	1 PC-4-1700, PS-4-2001, -2006, - 2012, -2019, -2044, -2045, - 2061	PC-4-2006	0.500	N/A	N/A	N/A	N/A	Not in TB	95		N/A	0.500	90		No	N/A	
2365 PTN	4	CWS / 010	5614-M-3010, SH 3	1 PC-4-1700, PS-4-2001, -2006, - 2012, -2019, -2044, -2045, - 2061	PC-4-2012	0.500	N/A	N/A	N/A	N/A	Not in TB	95		N/A	0.500	90		No	N/A	
2365 PTN	4	CWS/010	5614-M-3010, SH 3	1 PC-4-1700, PS-4-2001, -2006, - 2012, -2019, -2044, -2045, - 2061	PC-4-2019	0.500	N/A	N/A	N/A	N/A	Not in TB	95		N/A	0.500	90		No	N/A	
2365 PTN	4	CWS / 010	5614-M-3010, SH 3	1 PC-4-1700, PS-4-2001, -2006, - 2012, -2019, -2044, -2045, - 2061	PC-4-2044	0.500	N/A	N/A	N/A	N/A	Not in TB	95		N/A	0.500	90		No	N/A	
2365 PTN	4	CWS / 010	5614-M-3010, SH 3	1 PC-4-1700, PS-4-2001, -2006, - 2012, -2019, -2044, -2045, - 2061	PC-4-2045	0.500	N/A	N/A	N/A	N/A	Not in TB	95		N/A	0.500	90		No	N/A	
2365 PTN	4	CWS / 010	5614-M-3010, SH 3	1 PC-4-1700, PS-4-2001, -2006, - 2012, -2019, -2044, -2045, - 2061	PC-4-2061	0.500	N/A	N/A	N/A	N/A	Not in TB	95		N/A	0.500	90		No	N/A	
2366 PTN	4	CWS / 010	5614-M-3010, SH 3	1 Pl-4-1699, -1700, -1522, - 3661, -1495, -1523, -1524, - 1525, -1526, -1527, -1528, - 1529, -1530	PI-4-1699	0.500	N/A	N/A	N/A	N/A	Not in TB	95		N/A	0.500	90		No	N/A	
2366 PTN	4	CWS / 010	5614-M-3010, SH 3	1 PI-4-1699, -1700, -1522, - 3661, -1495, -1523, -1524, - 1525, -1526, -1527, -1528, - 1529, -1530	PI-4-1700	0.500	N/A	N/A	N/A	N/A	Not in TB	95		N/A	0.500	90		No	N/A	
2366 PTN	4	CWS / 010	5614-M-3010, SH 3	1 PI-4-1699, -1700, -1522, - 3661, -1495, -1523, -1524, - 1525, -1526, -1527, -1528, - 1529, -1530	PI-4-1523	0.500	N/A	N/A	N/A	N/A	Not in TB	95		N/A	0.500	90		No	N/A	
2366 PTN	4	CWS / 010	5614-M-3010, SH 3	1925, -1330 1 PI-4-1699, -1700, -1522, - 3661, -1495, -1523, -1524, - 1525, -1526, -1527, -1528, - 1529, -1530	PI-4-1524	0.500	N/A	N/A	N/A	N/A	Not in TB	95		N/A	0.500	90		No	N/A	
2366 PTN	4	CWS / 010	5614-M-3010, SH 3	1 PI-4-1699, -1700, -1522, - 3661, -1495, -1523, -1524, - 1525, -1526, -1527, -1528, - 1529, -1530	PI-4-1525	0.500	N/A	N/A	N/A	N/A	Not in TB	95		N/A	0.500	90		No	N/A	
2366 PTN	4	CWS / 010	5614-M-3010, SH 3	1 PI-4-1699, -1700, -1522, - 3661, -1495, -1523, -1524, - 1525, -1526, -1527, -1528, - 1529, -1530	PI-4-1526	0.500	N/A	N/A	N/A	N/A	Not in TB	95		N/A	0.500	90		No	N/A	
2366 PTN	4	CWS / 010	5614-M-3010, SH 3	1 PI-4-1699, -1700, -1522, - 3661, -1495, -1523, -1524, - 1525, -1526, -1527, -1528, - 1529, -1530	PI-4-1527	0.500	N/A	N/A	N/A	N/A	Not in TB	95		N/A	0.500	90		No	N/A	
2366 PTN	4	CWS / 010	5614-M-3010, SH 3	1 PI-4-1699, -1700, -1522, - 3661, -1495, -1523, -1524, - 1525, -1526, -1527, -1528, - 1529, -1530	PI-4-1528	0.500	N/A	N/A	N/A	N/A	Not in TB	95		N/A	0.500	90		No	N/A	
2366 PTN	4	CWS / 010	5614-M-3010, SH 3	1529, -1530 1 Pl-4-1699, -1700, -1522, - 3661, -1495, -1523, -1524, - 1525, -1526, -1527, -1528, - 1529, -1530	PI-4-1529	0.500	N/A	N/A	N/A	N/A	Not in TB	95		N/A	0.500	90		No	N/A	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 427 of 488

> R21002, Rev 0 Attachment N Page 62 of 123

																			1 age 02 01 125
2054	PTN 4	089	5614-M-3089, SH 2	1 Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523	N/A	0.500	400		No	N/A	
2366	PTN 4	CWS / 010	5614-M-3010, SH 3	1 PI-4-1699, -1700, -1522, - 3661, -1495, -1523, -1524, - 1525, -1526, -1527, -1528, - 1529, -1530	PI-4-1530	0.500	N/A	N/A	N/A	N/A	Not in TB	95	N/A	0.500	90		No	N/A	
2366	PTN 4	CWS / 010	5614-M-3010, SH 3	1 PI-4-1699, -1700, -1522, - 3661, -1495, -1523, -1524, - 1525, -1526, -1527, -1528, - 1529, -1530	PI-4-3661	0.500	N/A	N/A	N/A	N/A	Not in TB	95	N/A	0.500	90		No	N/A	
2366	PTN 4	CWS / 010	5614-M-3010, SH 3	1 PI-4-1699, -1700, -1522, - 3661, -1495, -1523, -1524, - 1525, -1526, -1527, -1528, -	PI-4-1495	0.500	N/A	N/A	N/A	N/A	Not in TB	95	N/A	0.500	90		No	N/A	
2367	PTN 4	CWS / 010	5614-M-3010, SH 3	1529, -1530 1 FI-4-1414, -1452, -1454, - 1403	FI-4-1414	0.500	N/A	N/A	N/A	N/A	Not in TB	95	N/A	0.500	90		No	N/A	
2367	PTN 4	CWS / 010	5614-M-3010, SH 3	1 FI-4-1414, -1452, -1454, -	FI-4-1452	0.500	N/A	N/A	N/A	N/A	Not in TB	95	N/A	0.500	90		No	N/A	
2367	PTN 4	CWS / 010	5614-M-3010, SH 3	1 FI-4-1414, -1452, -1454, -	FI-4-1454	0.500	N/A	N/A	N/A	N/A	Not in TB	95	N/A	0.500	90		No	N/A	
2367	PTN 4	CWS / 010	5614-M-3010, SH 3	1 FI-4-1414, -1452, -1454, -	FI-4-1403	0.500	N/A	N/A	N/A	N/A	Not in TB	95	N/A	0.500	90		No	N/A	
2358 F	TN 4	CWS / 010	5614-M-3010, SH 2	1 PS-4-2036, -2037, -2038, - 2039, -2040, -2041, -2042, - 2043	PI-4-1590	0.500	4.0	VA	N	HT		50	TV	0.500	50	0	No	HT	process is air; no protection required N
2359 F	TN 4	CWS / 010	5614-M-3010, SH 2	1 PS-3-2040, -2041, -2042, 2043	PI-4-1591	0.500	3.0	VA	N	HT		50	TV	0.500	50	0	No	НТ	process is air; no protection required N
2360 F	TN 4	CWS / 010	5614-M-3010, SH 2	1 PI-4-1536, -15371538, - 1539, -1590,	PS-4-2036	0.500	11.0	VA	N	HT		95	TV	0.500	90	0.8	No	НТ	alarm function; can be isolated;no protection N required
2360 F	TN 4	CWS / 010	5614-M-3010, SH 2	1 PI-4-1536, -15371538, - 1539, -1590,	PS-4-2037	0.500	8.0	TV	N	HT		95	TV	0.500	90	0.8	No	НТ	alarm function; can be isolated;no protection N required
2360 F	TN 4	CWS / 010	5614-M-3010, SH 2	1 PI-4-1536, -15371538, - 1539, -1590,	PS-4-2038	0.500	11.0	VA	N	HT		95	TV	0.500	90	0.8	No	HT	alarm function; can be isolated;no protection N required
2360 F	TN 4	CWS / 010	5614-M-3010, SH 2	1 PI-4-1536, -15371538, - 1539, -1590,	PS-4-2039	0.500	11.0	VA	N	нт		95	TV	0.500	90	0.8	No	HT	alarm function; can be isolated;no protection N required
2360 F	TN 4	CWS / 010	5614-M-3010, SH 2	1 PI-4-1536, -15371538, - 1539, -1590,	PS-4-2040 PI-4-1536	0.500	9.0	TV	N	HT	includes PI-4-1536	95	TV	0.500	90	0.8	No	НТ	air service; no protection required N
2360 F	TN 4	CWS / 010	5614-M-3010, SH 2	1 PI-4-1536, -15371538, - 1539, -1590,	PS-4-2041PI-4-1537	0.500	9.0	TV	N	HT	includes PI-4-1537	95	TV	0.500	90	0.8	No	HT	air service; no protection required N
2360 P	TN 4	CWS / 010	5614-M-3010, SH 2	1 PI-4-1536, -15371538, - 1539, -1590,	PS-4-2042PI-4-1538	0.500	8.0	TV	N	HT	includes PI-4-1538	95	TV	0.500	90	0.8	No	НТ	air service; no protection required N
2360 P	TN 4	CWS / 010	5614-M-3010, SH 2	1 PI-4-1536, -15371538, - 1539, -1590,	PS-4-2043PI-4-1539	0.500	10.0	TV	N	HT	includes PI-4-1539	95	TV	0.500	90	0.8	No	HT	air service; no protection required N
2346 F	TN 4	CWS/010	5614-M-3010, SH 1	1 PI-4-1006, -1007, -1008, - 1009, -1459, -1460, -1461, - 1462, PX-4-1504, -1505, - 1506, -1507, -1635, -1636, - 1637, -1638, -1639, -1640, - 1641, -1642	4-50-271	0.750	1.0	BV	N	НТ	COULD NOT FIND, assumed length based on similar	50	BV	0.750	50	0	No	НТ	repair/patch if damaged; no impact to plant; do N nothing
		CWS / 010	5614-M-3010, SH 1	1 PI-4-1006, -1007, -1008, - 1009, -1459, -1460, -1461, - 1462, PX-4-1504, -1505, - 1506, -1507, -1635, -1636, - 1637, -1638, -1639, -1640, - 1641, -1642	4-50-271	0.750	1.0	BV	N		COULD NOT FIND, assumed length based on similar		BV	0.750	50	0	No	НТ	duplicate N
2346 F	TN 4	CWS / 010	5614-M-3010, SH 1	1 PI-4-1006, -1007, -1008, - 1009, -1459, -1460, -1461, - 1462, PX-4-1504, -1505, - 1506, -1507, -1635, -1636, - 1637, -1638, -1639, -1640, - 1641, -1642	4-50-272	0.750	1.0	BV	N	НТ	COULD NOT FIND, assumed length based on similar	50	BV	0.750	50	0	No	НТ	repair/patch if damaged; no impact to plant; no N protection required
2353	PTN 4	CWS / 010	5614-M-3010, SH 1	1 Small Bore Vents & Drains	4-50-273	0.750	1.0	BV	N	HT	COULD NOT FIND, assumed length based on similar	50	BV	0.750	50	0	No	HT	repair/patch if damaged; no impact to plant; no N protection required
2346 F	TN 4	CWS / 010	5614-M-3010, SH 1	1 PI-4-1006, -1007, -1008, - 1009, -1459, -1460, -1461, - 1462, PX-4-1504, -1505, - 1506, -1507, -1635, -1636, - 1637, -1638, -1639, -1640, - 1641, -1642	LG-3-3403	0.750	3.0	Н	N	НТ	LEVEL GUAGE GLASS	50	н	0.750	50	0	No	нт	repair/patch if damaged; no impact to plant; do N nothing
2346 F	TN 4	CWS / 010	5614-M-3010, SH 1	1 PI-4-1006, -1007, -1008, - 1009, -1459, -1460, -1461, - 1462, PX-4-1504, -1505, - 1506, -1507, -1635, -1636, - 1637, -1638, -1639, -1640, - 1641, -1642	LG-4-3402	0.750	3.0	Н	N	НТ	LEVEL GUAGE GLASS	50	Н	0.750	50	0	No	нт	repair/patch if damaged; no impact to plant; do N nothing

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 428 of 488

> R21002, Rev 0 Attachment N Page 63 of 123

																					Page 63 (31 120
2054	PTN	4	089	5614-M-3089, SH 2		Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523	N/A	0.500	400		No	N/A		
2346	PTN	4	CWS / 010	5614-M-3010, SH 1		PI-4-1006, -1007, -1008, - 1009, -1459, -1460, -1461, - 1462, PX-4-1504, -1505, - 1506, -1507, -1635, -1636, - 1637, -1638, -1639, -1640, - 1641, -1642	LG-4-3404	0.750	3.0	Н	N	нт		50	Н	0.750	50	0	No	НТ	repair/patch if damaged; no impact to plant; do nothing	N
2346	PTN	4	CWS / 010	5614-M-3010, SH 1	1	71-12-13-13-13-13-13-13-13-13-13-13-13-13-13-	LG-4-3405	0.750	3.0	Н	N	нт	GLASS LEVEL GUAGE	50	н	0.750	50	0	No	НТ	repair/patch if damaged; no impact to plant; do nothing	N
2361	PTN	4	CWS / 010	5614-M-3010, SH 1	1	1043, 1042, 1046, -1007, -1008, - 1009, -1459, -1460, -1461, - 1462, PX-4-1504, -1505, - 1506, -1507, -1635, -1636, - 1637, -1638, -1639, -1640, - 1641, -1642	LG-4-3404	0.750	3.0	Н	N	нт	LEVEL GUAGE GLASS	50	н	0.750	50	0	No	НТ	duplicate	N
2353	PTN	4	CWS / 010	5614-M-3010, SH 1	1	Small Bore Vents & Drains	4-50-264	1.000	1.0	BV	N	HT	COULD NOT FIND, assumed length based on similar	50	BV	1.000	50	0	No	HT	repair/patch if damaged; no impact to plant; do nothing	N
2353	PTN	4	CWS / 010	5614-M-3010, SH 1	1	Small Bore Vents & Drains	4-50-265	1.000	1.0	BV	N	НТ	COULD NOT FIND, assumed length based on similar	50	BV	1.000	50	0	No	HT	repair/patch if damaged; no impact to plant; do nothing	N
				5614-M-3010, SH 1		PI-4-1006, -1007, -1008, - 1009, -1459, -1460, -1461, - 1462, PX-4-1504, -1505, - 1506, -1507, -1635, -1636, - 1637, -1638, -1639, -1640, - 1641, -1642	4-50-269	N/A	N/A	N/A	N/A	N/A		50	N/A		50		No	N/A	TOURING.	
				5614-M-3010, SH 1		PI-4-1006, -1007, -1008, - 1009, -1459, -1460, -1461, - 1462, PX-4-1504, -1505, - 1506, -1507, -1635, -1636, - 1637, -1638, -1639, -1640, - 1641, -1642	PI-4-1461	N/A	N/A	N/A	N/A	N/A	Within East Condenser Pit. Local temperture will remain above freezing due to covered ceiling except over Condensate pumps.	50	N/A		50		No	N/A		
2353	PTN	4	CWS / 010	5614-M-3010, SH 1	1	Small Bore Vents & Drains	4-50-262	N/A	N/A	N/A	N/A	N/A	Within East Condenser Pit. Local temperture will remain above freezing due to covered ceiling except over Condensate pumps.	50	N/A		50		No	N/A		
2353	PTN	4	CWS/010	5614-M-3010, SH 1	1	Small Bore Vents & Drains	4-50-263	N/A	N/A	N/A	N/A	N/A	Within East Condenser Pit. Local temperture will remain above freezing due to covered ceiling except over Condensate pumps.	50	N/A		50		No	N/A		
2346	PTN	4	CWS / 010	5614-M-3010, SH 1		PI-4-1006, -1007, -1008, - 1009, -1459, -1460, -1461, - 1462, PX-4-1504, -1505, - 1506, -1507, -1635, -1636, - 1637, -1638, -1639, -1640, - 1641, -1642	4-50-252	1.000	0.5	Н	N	НТ	DISCHARGE	50	н	1.000	50	0	No	НТ	repair/patch if damaged; no impact to plant; do nothing	N
2346	PTN	4	CWS / 010	5614-M-3010, SH 1		PI-4-1006, -1007, -1008, - 1009, -1459, -1460, -1461, - 1462, PX-4-1504, -1505, - 1506, -1507, -1635, -1636, - 1637, -1638, -1639, -1640, - 1641, -1642	4-50-253	1.000	0.5	Н	N	нт	DISCHARGE	50	Н	1.000	50	0	No	НТ	repair/patch if damaged; no impact to plant; do nothing	N
2346	PTN	4	CWS / 010	5614-M-3010, SH 1		PI-4-1006, -1007, -1008, - 1009, -1459, -1460, -1461, - 1462, PX-4-1504, -1505, - 1506, -1507, -1635, -1636, - 1637, -1638, -1639, -1640, - 1641, -1642	4-50-256	1.000	0.5	Н	N	НТ	DISCHARGE	50	н	1.000	50	0	No	нт	repair/patch if damaged; no impact to plant; do nothing	N
2346	PTN	4	CWS / 010	5614-M-3010, SH 1		1009, -1042, 1007, -1008, - 1009, -1459, -1460, -1461, - 1462, PX-4-1504, -1505, - 1506, -1507, -1638, -1636, - 1637, -1638, -1639, -1640, - 1641, -1642	4-50-257	1.000	0.5	н	N	нт	DISCHARGE	50	н	1.000	50	0	No	НТ	repair/patch if damaged; no impact to plant; do nothing	N
2346	PTN	4	CWS / 010	5614-M-3010, SH 1		PI-4-1006, -1007, -1008, - 1009, -1459, -1460, -1461, - 1462, PX-4-1504, -1505, - 1506, -1507, -1635, -1636, - 1637, -1638, -1639, -1640, - 1641, -1642	4-50-260	1.000	6.0	Н	N	нт	DISCHARGE	50	н	1.000	50	0	No	НТ	repair/patch if damaged; no impact to plant; do nothing	N

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 429 of 488

> R21002, Rev 0 Attachment N Page 64 of 123

																				1 age 04 01	
2054	PTN	4	089	5614-M-3089, SH 2	1 Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523	N/A	0.500	400		No	N/A		
2346	PTN	4	CWS / 010	5614-M-3010, SH 1	1 PI-4-1006, -1007, -1008, - 1009, -1459, -1460, -1461, - 1462, PX-4-1504, -1505, - 1506, -1507, -1635, -1636, - 1637, -1638, -1639, -1640, - 1641, -1642	4-50-261	1.000	6.0	Н	N	НТ	DISCHARGE	50	н	1.000	50	0	No	нт	repair/patch if damaged; no impact to plant; do nothing	N
2346	PTN	4	CWS / 010	5614-M-3010, SH 1	1 PI-4-1006, -1007, -1008, - 1009, -1459, -1460, -1461, - 1462, PX-4-1504, -1505, - 1506, -1507, -1635, -1636, - 1637, -1638, -1639, -1640, - 1641, -1642	4-50-1038	1.500	1.5	Н	N	I	Need to confirm how this vent tank works. Vent tank on top and could not access. Assume 10ft long	50	Н	1.500	50	0	No	I		
2346	PTN	4	CWS / 010	5614-M-3010, SH 1	1 PI-4-1006, -1007, -1008, - 1009, -1459, -1460, -1461, - 1462, PX-4-1504, -1505, - 1506, -1507, -1635, -1636, - 1637, -1638, -1639, -1640, - 1641, -1642	4-50-1041	1.500	0.5	Н	N	I		50	Н	1.500	50	0	No	ı		
2346	PTN	4	CWS / 010	5614-M-3010, SH 1	1 PI-4-1006, -1007, -1008, - 1009, -1459, -1460, -1461, - 1462, PX-4-1504, -1505, - 1506, -1507, -1635, -1636, - 1637, -1638, -1639, -1640, - 1641, -1642	4-50-1042	1.500	0.5	Н	N	1		50	н	1.500	50	0	No	I		
2346 F	PTN	4	CWS / 010	5614-M-3010, SH 1	1 Pl-4-1006, -1007, -1008, - 1009, -1459, -1460, -1461, - 1462, PX-4-1504, -1505, - 1506, -1507, -1635, -1636, - 1637, -1638, -1639, -1640, - 1641, -1642	4-50-1043	1.500	0.5	Н	N	I		50	н	1.500	50	0	No	ı		
2346	PTN	4	CWS / 010	5614-M-3010, SH 1	1 PI-4-1006, -1007, -1008, - 1009, -1459, -1460, -1461, - 1462, PX-4-1504, -1505, - 1506, -1507, -1635, -1636, - 1637, -1638, -1639, -1640, - 1641, -1642	4-50-1048	1.500	12.0	Н	N	I		50	Н	1.500	50	0	No	ı		
2346	PTN	4	CWS / 010	5614-M-3010, SH 1	1 Pl-4-1006, -1007, -1008, - 1009, -1459, -1460, -1461, - 1462, PX-4-1504, -1505, - 1506, -1507, -1635, -1636, - 1637, -1638, -1639, -1640, - 1641, -1642	4-50-1049	1.500	0.5	Н	N	I		50	н	1.500	50	0	No	I		
2346	PTN	4	CWS / 010	5614-M-3010, SH 1	1 Pl-4-1006, -1007, -1008, - 1009, -1459, -1460, -1461, - 1462, PX-4-1504, -1505, - 1506, -1507, -1635, -1636, - 1637, -1638, -1639, -1640, - 1641, -1642	4-50-1050	1.500	0.5	Н	N	I		50	н	1.500	50	0	No	I		
2346	PTN	4	CWS / 010	5614-M-3010, SH 1	1 PI-4-1006, -1007, -1008, - 1009, -1459, -1460, -1461, - 1462, PX-4-1504, -1505, - 1506, -1507, -1635, -1636, - 1637, -1638, -1639, -1640, - 1641, -1642	4-50-1051	1.500	0.5	Н	N	I		50	Н	1.500	50	0	No	I		
2346	PTN	4	CWS / 010	5614-M-3010, SH 1	1 PI-4-1006, -1007, -1008, - 1009, -1459, -1460, -1461, - 1462, PX-4-1504, -1505, - 1506, -1507, -1635, -1636, - 1637, -1638, -1639, -1640, - 1641, -1642	4-50-1052	1.500	0.5	Н	N	I	CAN'T FOLLOW THROUGH MEZZ - ESITIMATE 70 FT	50	н	1.500	50	0	No	I		
2346	PTN	4	CWS / 010	5614-M-3010, SH 1	1 PI-4-1006, -1007, -1008, - 1009, -1459, -1460, -1461, - 1462, PX-4-1504, -1505, - 1506, -1507, -1635, -1636, - 1637, -1638, -1639, -1640, - 1641, -1642	4-50-1037	1.500	COULD NOT FIND			I	COULD NOT FIND	50		1.500	50		No	I		
2346	PTN	4	CWS / 010	5614-M-3010, SH 1	1 PI-4-1006, -1007, -1008, - 1009, -1459, -1460, -1461, - 1462, PX-4-1504, -1505, - 1506, -1507, -1635, -1636, - 1637, -1638, -1639, -1640, - 1641, -1642	4-50-1044	1.500	COULD NOT FIND			I	COULD NOT FIND	50		1.500	50		No	I		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 430 of 488

> R21002, Rev 0 Attachment N Page 65 of 123

																				Page 65 of 123
2054 F	PTN	4	089	5614-M-3089, SH 2	1	Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523	N/A	0.500	400	No	N/A	
2346 P1	ΓN	4 CW	WS / 010	5614-M-3010, SH 1	1	PI-4-1006, -1007, -1008, - 1009, -1459, -1460, -1461, - 1462, PX-4-1504, -1505, - 1506, -1507, -1635, -1636, - 1637, -1638, -1640, - 1641, -1642	4-50-1045	1.500	COULD NOT FIND			I	COULD NOT FIND	50		1.500	50	No	1	
2346 PT	ĪN	4 CW	WS / 010	5614-M-3010, SH 1	1	PI-4-1006, -1007, -1008, - 1009, -1459, -1460, -1461, - 1462, PX-4-1504, -1505, - 1506, -1507, -1635, -1636, - 1637, -1638, -1639, -1640, - 1641, -1642	4-50-1053	1.500	COULD NOT FIND			I	COULD NOT FIND	50		1.500	50	No	ı	
2346 F	PTN	4 C	CWS / 010	5614-M-3010, SH 1	1	1009, -1057, -1008, - 1009, -1459, -1460, -1461, - 1462, PX-4-1504, -1505, - 1506, -1507, -1635, -1636, - 1637, -1638, -1639, -1640, - 1641, -1642	4-50-1057	1.500	COULD NOT FIND			I	COULD NOT FIND	50		1.500	50	No	I	
2346 F	PTN	4 C	CWS / 010	5614-M-3010, SH 1	1	PI-4-1006, -1007, -1008, - 1009, -1459, -1460, -1461, - 1462, PX-4-1504, -1505, - 1506, -1507, -1635, -1636, - 1637, -1638, -1639, -1640, - 1641, -1642	4-50-1058	1.500	COULD NOT FIND			I	COULD NOT FIND - looks like nothing sticks out of the insulation	50		1.500	50	No	I	
2346 F	PTN	4 C	CWS / 010	5614-M-3010, SH 1	1	PI-4-1006, -1007, -1008, - 1009, -1459, -1460, -1461, - 1462, PX-4-1504, -1505, - 1506, -1507, -1635, -1636, - 1637, -1638, -1639, -1640, - 1641, -1642	4-50-1059	1.500	COULD NOT FIND			ı	COULD NOT FIND	50		1.500	50	No	ı	
2346 F	PTN	4 C	CWS / 010	5614-M-3010, SH 1	1	PI-4-1006, -1007, -1008, - 1009, -1459, -1460, -1461, - 1462, PX-4-1504, -1505, - 1506, -1507, -1635, -1636, - 1637, -1638, -1639, -1640, - 1641, -1642	4-50-1060	1.500	COULD NOT FIND			ı	COULD NOT FIND	50		1.500	50	No	ı	
2346 F	PTN	4 C	CWS / 010	5614-M-3010, SH 1	1	PI-4-1006, -1007, -1008, - 1009, -1459, -1460, -1461, - 1462, PX-4-1504, -1505, - 1506, -1507, -1635, -1636, - 1637, -1638, -1639, -1640, - 1641, -1642	4-50-1061	1.500	COULD NOT FIND			I	COULD NOT FIND, DOESN'T STICK OUT FROM INSULATION	50		1.500	50	No	I	
2346 P1	ĪN	4 CW	WS / 010	5614-M-3010, SH 1	1	PI-4-1006, -1007, -1008, - 1009, -1459, -1460, -1461, - 1462, PX-4-1504, -1505, - 1506, -1507, -1635, -1636, - 1637, -1638, -1639, -1640, - 1641, -1642	4-50-1035	2.000	1.0	Н	N	I		50	н	2.000	50 0.	No	1	
2346 P1	ΓN	4 CW	WS / 010	5614-M-3010, SH 1	1	PI-4-1006, -1007, -1008, - 1009, -1459, -1460, -1461, - 1462, PX-4-1504, -1505, - 1506, -1507, -1635, -1636, - 1637, -1638, -1639, -1640, - 1641, -1642	4-50-1036	2.000	1.0	н	N	I	MAY NOT BE POSSIBLE TO INSULATE AND ALOW THE ACTUATOR TO OPERATE PROPERLY	50	н	2.000	50 0.9	No	ı	
2346 PT	ΓN	4 CW	WS / 010	5614-M-3010, SH 1	1	PI-4-1006, -1007, -1008, - 1009, -1459, -1460, -1461, - 1462, PX-4-1504, -1505, - 1506, -1507, -1635, -1636, - 1637, -1638, -1639, -1640, - 1641, -1642	4-50-1039	2.000	1.0	н	N	I		50	н	2.000	50 0.	No	1	
2346 PT	ΓN	4 CW	WS / 010	5614-M-3010, SH 1	1	PI-4-1006, -1007, -1008, - 1009, -1459, -1460, -1461, - 1462, PX-4-1504, -1505, - 1506, -1507, -1635, -1636, - 1637, -1638, -1639, -1640, - 1641, -1642	4-50-1040	2.000	2.0	н	N	ı		50	н	2.000	50 0.	No	I	
2346 PT	ΓN	4 CW	WS / 010	5614-M-3010, SH 1	1	PI-4-1006, -1007, -1008, - 1009, -1459, -1460, -1461, - 1462, PX-4-1504, -1505, - 1506, -1507, -1635, -1636, - 1637, -1638, -1639, -1640, - 1641, -1642	4-50-1046	2.000	2.0	Н	N	I		50	Н	2.000	50 0.	No	I	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 431 of 488

> R21002, Rev 0 Attachment N Page 66 of 123

on similar only; no protection required																					Page 66 C	1123
March Marc	2054	PTN	4	089	5614-M-3089, SH 2		PC-4-3709	0.500	N/A	N/A	N/A	N/A		523	N/A	0.500	400		No	N/A		
March Marc	2346 P	TN	4 (CWS / 010	5614-M-3010, SH 1	1009, -1459, -1460, -1461, - 1462, PX-4-1504, -1505, - 1506, -1507,-1635, -1636, - 1637, -1638, -1639, -1640, -	4-501047	2.000	2.0	Н	N	I		50	н	2.000	50	0.5	No	I		
Part	2346	PTN	4	CWS/010	5614-M-3010, SH 1	1009, -1459, -1460, -1461, - 1462, PX-4-1504, -1505, - 1506, -1507, -1635, -1636, - 1637, -1638, -1639, -1640, -	4-50-1054	2.000	NOT			I	COULD NOT FIND	50		2.000	50		No	I		
Property	2346	PTN	4	CWS / 010	5614-M-3010, SH 1	1 PI-4-1006, -1007, -1008, - 1009, -1459, -1460, -1461, - 1462, PX-4-1504, -1505, - 1506, -1507, -1635, -1636, - 1637, -1638, -1639, -1640, -	4-50-1055	2.000	NOT			I	COULD NOT FIND	50		2.000	50		No	1		
100 100	2346	PTN	4	CWS/010	5614-M-3010, SH 1	1 PI-4-1006, -1007, -1008, - 1009, -1459, -1460, -1461, - 1462, PX-4-1504, -1505, - 1506, -1507, -1635, -1636, - 1637, -1638, -1639, -1640, -	4-50-1056	2.000	NOT			I	COULD NOT FIND	50		2.000	50		No	I		
2356 PTN 4 CVS / OID SE44 M 2010, SH 2 P = 4400, A425 1.000 1.0 BV N H COLUMN PROLEUM Confirm Quarket (shart region only), no protection required 2362 PTN 4 CVS / OID SE44 M 2010, SH 2 P = 4400, A425 1.000 1.0 BV N H COLUMN PROLEUM CONFIRM QUARKET (shart region only), no protection required 2362 PTN 4 CVS / OID SE44 M 2010, SH 2 P = 4400, A425 1.000 1.0 BV N H COLUMN PROLEUM CONFIRM QUARKET (shart region only), no protection required 2362 PTN 4 CVS / OID SE44 M 2010, SH 2 P = 4400, A425 PTN A CVS / OID SE44 M 2010, SH A A A A A A A A A	2346 P	TN	4 (CWS / 010	5614-M-3010, SH 1	1009, -1459, -1460, -1461, - 1462, PX-4-1504, -1505, - 1506, -1507,-1635, -1636, - 1637, -1638, -1639, -1640, -	4-50-500B	4.000	1.0	Н	N	1	FWH3B	50	н	4.000	50	3.5	Yes	Protection		
2382 PTN	2356	PTN	4	CWS / 010	5614-M-3010, SH 1	3 PI-4-3420, -3425	PI-4-3420	0.500	1.0	BV	N	НТ		50	BV	0.500	50	0	No	нт	not normally connected to plant equipment; flex only; no protection required	N
1009, 1469	2356	PTN	4	CWS / 010	5614-M-3010, SH 1	3 PI-4-3420, -3425	PI-4-3425	1.000	1.0	BV	N	НТ		50	BV	1.000	50	0	No	нт	not normally connected to plant equipment; flex only; no protection required	N
2734 PFN 4 PCW / OS 5614-M-300S, 5914 1 E[F[H-4:141] P, H-1479 P, H-1679 0.500 1.0 H N HT 1.10 H 0.500 1.0 1.2 Ves No Protection Posterion Pos	2362 P	TN	4 (CWS / 010	5614-M-3010, SH 1	1009, -1459, -1460, -1461, - 1462, PX-4-1504, -1505, - 1506, -1507,-1635, -1636, - 1637, -1638, -1639, -1640, -	4-50-500A	4.000	0.5	Н	N	I	FWH3A	50	н	4.000	50	3.5	Yes	Protection		
PTM A TPCW/008 5614-M-3008, 5H4 1 Fit[H-4-141], PH-4-1479 FE(H)-4-1411 1.000 18.0 H N HT 11.0 H 1.000 11.0 4.1 No HT repair/patch fine-edeed PE PE PE PE PE PE PE P	2734	PTN	4	TPCW / 008	5614-M-3008, SH 4		PI-4-1479	0.500	1.0	Н	N	НТ		110	Н	0.500	110	1.2	Yes	Protection		
2737 PTN A	2734	PTN	4	TPCW / 008	5614-M-3008, SH 4	1 FE(FI)-4-1411, PI-4-1479	FE(FI)-4-1411	1.000	18.0	Н	N	HT		110	Н	1.000	110	4.1	No		repair/patch if needed	N
Process Proc	2737	PTN	4	TPCW / 008	5614-M-3008, SH 4	1 Small Bore Drains	4-60-214	1.000	0.6	BV	N	HT		110	BV	1.000	110	0	No	HT		N
Protection Protection Protection Required Protection Prote						1 Small Bore Drains	4-60-213	1.000	0.6	BV	N	HT		110	BV	1.000	110	0	No	HT	short run; high process temp	N
Production Pro	2737	PTN	4	TPCW / 008	5614-M-3008, SH 4	1 Small Bore Drains	4-60-327	3.000	1.0	BV	N	ı	FWH4A	110	BV	3.000	110	1	Yes	Protection		
2737 PTN 4 TPCW / 008 5614-M-3008, SH 4 1 Small Bore Drains 4-60-329 3.000 1.0 BV N I FWH4B 110 BV 3.000 110 1 Yes No Protection Required	2737	PTN	4	TPCW / 008	5614-M-3008, SH 4	1 Small Bore Drains	4-60-328	3.000	1.0	BV	N	1	FWH4B, Length based on 3A	110	BV	3.000	110	1	Yes	Protection		
PTN 4 TPCW 708 S614-M-3008, SH 4 2 PX-4-1467, -1469, PI-4-1570, PX-4-1467 0.500 1.0 H N HT 110 H 0.500 110 1.2 Yes No Protection Required PX-4-1467, -1469, PI-4-1570, PX-4-1467 0.500 1.0 H N HT 110 H 0.500 110 1.2 Yes No Protection Required PX-4-1467, -1469, PI-4-1570, PX-4-1469 0.500 1.0 H N HT 110 H 0.500 110 1.2 Yes No Protection Required PX-4-1467, -1469, PI-4-1570, PI-4-1570 0.500 1.0 H N HT 110 H 0.500 110 1.2 Yes No Protection Required PX-4-1467, -1469, PI-4-1570, PI-4-1570, PI-4-1570 0.500 1.0 H N HT 110 H 0.500 110 1.2 Yes No Protection Required PX-4-1467, -1469, PI-4-1570, PI-4-1571 0.500 1.0 H N HT 110 H 0.500 110 1.2 Yes No Protection Required PX-4-1467, -1469, PI-4-1570, PI-4-1571 0.500 1.0 H N HT 110 H 0.500 110 1.2 Yes No Protection Required PX-4-1467, -1469, PI-4-1570, PI-4-1571 0.500 1.0 H N HT 110 H 0.500 110 1.2 Yes No Protection Required PX-4-1467, -1469, PI-4-1570, PI-4-1571 0.500 1.0 H N HT 110 H 0.500 110 1.2 Yes No Protection Required PX-4-1467, -1469, PI-4-1570, PI-4-1571 0.500 1.0 H N HT 110 H 0.500 1.0 H N PX-4-1467, -1469, PI-4-1570, PI-4-1571 0.500 1.0 H N HT 110 H 0.500 1.0 H N HT 110 H 0.500 1.0 H N HT 1.0 H 0.500 1.0 H N H	2737	PTN	4	TPCW / 008	5614-M-3008, SH 4	1 Small Bore Drains	4-60-329	3.000	1.0	BV	N	I	FWH4B	110	BV	3.000	110	1	Yes	No Protection		
2738 PTN 4 TPCW/008 5614-M-3008, SH 4 2 PX-4-1467, -1469, PI-4-1570, PX-4-1469 0.500 1.0 H N HT 110 H 0.500 110 1.2 Yes No Protection Required PTN 4 TPCW/008 5614-M-3008, SH 4 2 PX-4-1467, -1469, PI-4-1570, PI-4-1570 0.500 1.0 H N HT 110 H 0.500 110 1.2 Yes No Protection Required PTN 4 TPCW/008 5614-M-3008, SH 4 2 PX-4-1467, -1469, PI-4-1570, PI-4-1570 0.500 1.0 H N HT 110 H 0.500 110 1.2 Yes No Protection Required PTN 4 TPCW/008 5614-M-3008, SH 4 2 PX-4-1467, -1469, PI-4-1570, PI-4-1571 0.500 1.0 H N HT 110 H 0.500 110 1.2 Yes No Protection Required PTN N HT 110 H 0.500 110 1.2 Yes No Protection Required PTN N HT 110 H 0.500 110 1.2 Yes No Protection Required PTN N HT 110 H 0.500 110 1.2 Yes No Protection Required PTN N HT 110 H 0.500 110 1.2 Yes No Protection Required PTN N HT 110 H 0.500 110 1.2 Yes No Protection Required PTN N HT 110 H	2738	PTN	4	TPCW / 008	5614-M-3008, SH 4		PX-4-1467	0.500	1.0	Н	N	нт		110	Н	0.500	110	1.2	Yes	No Protection		
2738 PTN 4 TPCW/008 5614-M-3008, SH 4 2 PX-4-1467, -1469, PI-4-1570, D.500 1.0 H N HT 110 H D.500 110 1.2 Yes No Protection Required PTN 4 TPCW/008 5614-M-3008, SH 4 2 PX-4-1467, -1469, PI-4-1570, PI-4-1571 D.500 1.0 H N HT 110 H D.500 110 1.2 Yes No Protection Required PTN No PTN No Protection Required PTN No	2738	PTN	4	TPCW / 008	5614-M-3008, SH 4		PX-4-1469	0.500	1.0	Н	N	нт		110	Н	0.500	110	1.2	Yes	No Protection		
2738 PTN 4 TPCW/008 5614-M-3008, SH 4 2 PX-4-1467, -1469, PI-4-1570, PI-4-1571 0.500 1.0 H N HT 110 H 0.500 110 1.2 Yes No Protection Required	2738	PTN	4	TPCW / 008	5614-M-3008, SH 4		PI-4-1570	0.500	1.0	Н	N	НТ		110	Н	0.500	110	1.2	Yes	No Protection		
	2738	PTN	4	TPCW / 008	5614-M-3008, SH 4		PI-4-1571	0.500	1.0	Н	N	НТ		110	Н	0.500	110	1.2	Yes	No Protection		
Protection Required	2749	PTN	4	TPCW / 008	5614-M-3008, SH 4	3 Small Bore Vents & Drains	4-60-219	0.375	0.5	TV	N	НТ		110	TV	0.375	110	0.6	Yes	No Protection	repair/patch if damaged	N

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 432 of 488

> R21002, Rev 0 Attachment N Page 67 of 123

																				Page 67 d	of 123
2054	PTN	4	089	5614-M-3089, SH 2	1 Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523	N/A	0.500	400		No	N/A		
2743	PTN	4	TPCW / 008	5614-M-3008, SH 4	3 PX-4-1477, -1482, -1515, - 1516, -1517, -1518 PI-4-1503, -1504, -1505, -1506, -1554, - 1579, FE(FI)-4-1455,	PI-4-1554	0.500	0.5	TV	N	нт		110	TV	0.500	110	1.2	Yes	No Protection Required		
2743	PTN	4	TPCW / 008	5614-M-3008, SH 4	3 PX-4-1477, -1482, -1515, - 1516, -1517, -1518 PI-4-1503, -1504, -1505, -1506, -1554, - 1579, FE(FI)-4-1455,	PX-4-1515	0.500	0.5	Н	N	нт		110	Н	0.500	110	1.2	Yes	No Protection Required		
2743	PTN	4	TPCW / 008	5614-M-3008, SH 4	3 PX-4-1477, -1482, -1515, - 1516, -1517, -1518 PI-4-1503, -1504, -1505, -1506, -1554, - 1579, FE(FI)-4-1455,	PX-4-1516	0.500	0.5	Н	N	нт		110	Н	0.500	110	1.2	Yes	No Protection Required		
2743	PTN	4	TPCW / 008	5614-M-3008, SH 4	3 PX-4-1477, -1482, -1515, - 1516, -1517, -1518 PI-4-1503, -1504, -1505, -1506, -1554, - 1579, FE(FI)-4-1455,	PX-4-1517	0.500	0.5	Н	N	нт		110	Н	0.500	110	1.2	Yes	No Protection Required		
2743	PTN	4	TPCW / 008	5614-M-3008, SH 4	3 PX-4-1477, -1482, -1515, - 1516, -1517, -1518 PI-4-1503, -1504, -1505, -1506, -1554, - 1579, FE(FI)-4-1455,	PX-4-1518	0.500	0.5	Н	N	НТ		110	Н	0.500	110	1.2	Yes	No Protection Required		
2749	PTN	4	TPCW / 008	5614-M-3008, SH 4	3 Small Bore Vents & Drains	4-60-223	0.250	1.0	BV	N	НТ	COULD NOT FIND, assumed length based on similar	110	BV	Not Analyzed	110	#N/A	No	HT	short run; high process temp; no protection required	N
2749	PTN	4	TPCW / 008	5614-M-3008, SH 4	3 Small Bore Vents & Drains	4-60-224	0.250	0.5	Н	N	НТ		110	Н	Not Analyzed	110	#N/A	No	НТ	short run; high process temp; no protection required	N
2749	PTN	4	TPCW / 008	5614-M-3008, SH 4	3 Small Bore Vents & Drains	4-60-218	0.375	1.0	Н	N	нт		110	Н	0.375	110	0.6	No	НТ	short run; high process temp; no protection required	N
2743	PTN	4	TPCW / 008	5614-M-3008, SH 4	3 PX-4-1477, -1482, -1515, - 1516, -1517, -1518 PI-4-1503, -1504, -1505, -1506, -1554, - 1579, FE(FI)-4-1455,	PX-4-1477	0.500	1.0	Н	N	нт		110	Н	0.500	110	1.2	Yes	No Protection Required	required	
2743	PTN	4	TPCW / 008	5614-M-3008, SH 4	3 PX-4-1477, -1482, -1515, - 1516, -1517, -1518 PI-4-1503, -1504, -1505, -1506, -1554, - 1579, FE(FI)-4-1455,	PX-4-1482	0.500	1.0	Н	N	НТ		110	Н	0.500	110	1.2	Yes	No Protection Required		
2743	PTN	4	TPCW / 008	5614-M-3008, SH 4	3 PX-4-1477, -1482, -1515, - 1516, -1517, -1518 PI-4-1503, -1504, -1505, -1506, -1554, - 1579, FE(FI)-4-1455,	PI-4-1503	0.500	7.0	Н	N	НТ		110	Н	0.500	110	1.2	No	нт	repair/patch if needed; no protection required	N
2743	PTN	4	TPCW / 008	5614-M-3008, SH 4	3 PX-4-1477, -1482, -1515, - 1516, -1517, -1518 PI-4-1503, -1504, -1505, -1506, -1554, - 1579, FE(FI)-4-1455,	PI-4-1504	0.500	7.0	Н	N	нт		110	Н	0.500	110	1.2	No	НТ	repair/patch if needed; no protection required	N
2743	PTN	4	TPCW / 008	5614-M-3008, SH 4	3 PX-4-1477, -1482, -1515, - 1516, -1517, -1518 PI-4-1503, -1504, -1505, -1506, -1554, - 1579, FE(FI)-4-1455,	PI-4-1505	0.500	7.0	Н	N	нт		110	Н	0.500	110	1.2	No	НТ	repair/patch if needed; no protection required	N
2743	PTN	4	TPCW / 008	5614-M-3008, SH 4	3 PX-4-1477, -1482, -1515, - 1516, -1517, -1518 PI-4-1503, -1504, -1505, -1506, -1554, - 1579, FE(FI)-4-1455,	PI-4-1506	0.500	7.0	Н	N	нт		110	Н	0.500	110	1.2	No	нт	repair/patch if needed; no protection required	N
2743	PTN	4	TPCW / 008	5614-M-3008, SH 4	3 PX-4-1477, -1482, -1515, - 1516, -1517, -1518 PI-4-1503, -1504, -1505, -1506, -1554, - 1579, FE(FI)-4-1455,	FE(FI)-4-1455	0.500	8.0	Н	N	НТ		110	Н	0.500	110	1.2	No	НТ	repair/patch if needed; no protection required	N
2749	PTN	4	TPCW / 008	5614-M-3008, SH 4	3 Small Bore Vents & Drains	4-60-222	0.500	3.0	Н	N	НТ		110	Н	0.500	110	1.2	No	HT	short run; high process temp; no protection required	N
2743	PTN	4	TPCW / 008	5614-M-3008, SH 4	3 PX-4-1477, -1482, -1515, - 1516, -1517, -1518 PI-4-1503, -1504, -1505, -1506, -1554, - 1579, FE(FI)-4-1455,	PI-4-1579	0.500	1.0	TV	N	НТ		110	TV	0.500	110	1.2	Yes	No Protection Required	required	
2749	PTN	4	TPCW / 008	5614-M-3008, SH 4	3 Small Bore Vents & Drains	4-60-245	1.000	0.5	BV	N	НТ		110	BV	1.000	110	0	No	НТ	repair/patch if needed; no protection required	N
2749	PTN	4	TPCW / 008	5614-M-3008, SH 4	3 Small Bore Vents & Drains	4-60-260	1.000	1.0	BV	N	нт		110	BV	1.000	110	0	No	HT	repair/patch if needed; no protection required	N
2749	PTN	4	TPCW / 008	5614-M-3008, SH 4	3 Small Bore Vents & Drains	4-60-337	4.000	COULD			ı	COULD NOT FIND	110		4.000	110		No	- 1		
2749	PTN	4	TPCW / 008	5614-M-3008, SH 4	3 Small Bore Vents & Drains	4-60-236	1.000	2.0	Н	N	НТ		110	Н	1.000	110	4.1	Yes	No Protection Required		
				5614-M-3008, SH 4	3 Small Bore Vents & Drains	4-60-243	1.000	2.0	Н	N	нт		110	Н	 1.000	110	4.1	Yes	No Protection Required		
2749	PTN	4	TPCW / 008	5614-M-3008, SH 4	3 Small Bore Vents & Drains	4-60-250	1.000	2.0	Н	N	нт		110	Н	1.000	110	4.1	Yes	No Protection Required		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 433 of 488

> R21002, Rev 0 Attachment N Page 68 of 123

																					Page 68	01 123
2054	PTN	4	089	5614-M-3089, SH 2		Pressure Control Instrument PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523	N/A	0.	500 400		No	N/A		
2749	PTN	4	TPCW / 008	5614-M-3008, SH 4	3 Si	small Bore Vents & Drains	4-60-255	1.000	2.0	Н	N	нт		110	Н	1.	000 110	4.1	Yes	No Protection		
2749	PTN	4	TPCW / 008	5614-M-3008, SH 4	3 Si	Small Bore Vents & Drains	4-60-226	1.500	4.0	Н	N	ı	NO CLOSED VALVE - NOT NEEDED	110	Н	1.	500 110	10.4	Yes	Required No Protection		
2751	PTN	4	TPCW / 008	5614-M-3008, SH 4		PX-4-14781479, -1480, - L481, PI-4-1481, -1482, -	PX-4-1478	0.500	1.0	Н	N	НТ		110	Н	0.	500 110	1.2	Yes	Required No Protection		
2751	PTN	4	TPCW / 008	5614-M-3008, SH 4	4 P.	1483, -1484 PX-4-14781479, -1480, - 1481, PI-4-1481, -1482, -	PX-4-1479	0.500	1.0	Н	N	НТ		110	Н	0.	500 110	1.2	Yes	Required No Protection		
2751	PTN	4	TPCW / 008	5614-M-3008, SH 4	4 P	1483, -1484 PX-4-14781479, -1480, -	PX-4-1480	0.500	1.0	Н	N	нт		110	Н	0.	500 110	1.2	Yes	Required No		
2751	PTN	4	TPCW / 008	5614-M-3008, SH 4	4 P	1481, PI-4-1481, -1482, - 1483, -1484 PX-4-14781479, -1480, -	PX-4-1481	0.500	1.0	Н	N	нт		110	u8 H	0.	500 110	1.2	Yes	Protection Required No		-
2751	PTN	4	TPCW / 008	5614-M-3008, SH 4	1	L481, PI-4-1481, -1482, - L483, -1484 PX-4-14781479, -1480, -	PI-4-1481	0.500	8.0	Н	N	нт		110	н	0.	500 110	1.2	No	Protection Required HT	repair/patch if damaged	N
					1	1481, PI-4-1481, -1482, - 1483, -1484																
				5614-M-3008, SH 4	1	PX-4-14781479, -1480, - 1481, PI-4-1481, -1482, - 1483, -1484	PI-4-1482	0.500	8.0	Н	N	НТ		110	Н		500 110		No	НТ	repair/patch if damaged	N
				5614-M-3008, SH 4		Small Bore Vents	4-60-199	0.500	8.0	_	N	HT		110	H		500 110			HT	repair/patch if damaged	N
				5614-M-3008, SH 3		small Bore Vents & Drains	4-60-669	0.750	0.5	TV	N	НТ		110	TV		750 110		Yes	No Protection Required		
				5614-M-3008, SH 3		imall Bore Vents & Drains	4-60-670	0.750	0.6	TV	N	нт		110	TV		750 110	2.6	Yes	No Protection Required		
				5614-M-3008, SH 2 5614-M-3008, SH 2	1	PI-4-1475, -1476, -1477, - 1478 PI-4-1475, -1476, -1477, -	PI-4-1476 PI-4-1477	0.500	N/A N/A	N/A N/A	N/A N/A		IN FEED PUMP ROOM IN FEED PUMP ROOM	110	N/A N/A		500 110		No No	N/A N/A		
				5614-M-3008, SH 2	2 P	1478 PI-4-1475, -1476, -1477, -	PI-4-1478	0.500	N/A	N/A	N/A		IN FEED PUMP ROOM	110	N/A		500 110	-	No	N/A		
2714	PTN	4	TPCW / 008	5614-M-3008, SH 2	-	1478 RV-4-6720	RV-4-6720	0.250	1.0	TV	N	НТ		110	TV		110	#N/A	No	НТ	short run; high process temp; no protection required	N
2713				5614-M-3008, SH 2	a	1-2"-8-F between 4-60-666 and 4-60-056	4-2"-8-F BETWEEN 4-60- 666 AND 4-60-056	2.000	30.0	HD	N	I	FWH4A	110	HD		000 110		No	I		
2713				5614-M-3008, SH 2		I-2 1/2"-8-F to 4-60-666	4-2 1/2"-8-F TO 4-60- 666	0.500	25.0	HD N/A	N N/A	I N/A	FWH4A	110	HD N/A		000 110		No	I N/A		
2715				5614-M-3008, SH 2 5614-M-3008, SH 2	1	PI-4-1471, -1472, -1473, - 1474, PI-4-1471, -1472, -1473, -	PI-4-1471 PI-4-1472	0.500	N/A N/A	N/A N/A	N/A N/A		IN FEED PUMP ROOM IN FEED PUMP ROOM	110	N/A N/A		500 110		No No	N/A N/A		
2715	PTN			5614-M-3008, SH 2	4 P	1474, PI-4-1471, -1472, -1473, -	PI-4-1473	0.500	N/A	N/A	N/A	N/A	IN FEED PUMP ROOM	110	N/A	0.	500 110		No	N/A		
2715	PTN	4	TPCW / 008	5614-M-3008, SH 2	4 P	1474, PI-4-1471, -1472, -1473, - 1474,	PI-4-1474	0.500	N/A	N/A	N/A	N/A	IN FEED PUMP ROOM	110	N/A	0.	500 110		No	N/A		
2718	_	$\overline{}$		5614-M-3008, SH 2		Small Bore Vents & Drains	4-60-117	1.000	N/A	N/A	N/A		IN FEED PUMP ROOM	110	N/A		000 110		No	N/A		\perp
				5614-M-3008, SH 2		Small Bore Vents & Drains	4-60-106	0.750	N/A		N/A		IN FEED PUMP ROOM	110	N/A		750 110		No	N/A		+
				5614-M-3008, SH 2		Small Bore Vents & Drains	4-60-105	0.750	N/A	_	N/A		IN FEED PUMP ROOM	110	N/A		750 110		No	N/A		+
				5614-M-3008, SH 2 5614-M-3008, SH 2		Small Bore Vents & Drains Small Bore Vents & Drains	4-60-112 4-60-111	0.750	N/A N/A		N/A N/A		IN FEED PUMP ROOM IN FEED PUMP ROOM	110 110	N/A N/A		750 110 750 110		No No	N/A N/A		+
				5614-M-3008, SH 2	5 F	E(FI-4-861, -862, PI-4-861, 862, 863, 864	FI-4-861	0.500	8.0	BV	N/A N	HT	INTELD FOINT ROOM	110	N/A BV		500 110		No	HT HT	repair/patch if damaged; can isolate; no protection required	N
				5614-M-3008, SH 2	8	E(FI-4-861, -862, PI-4-861, 862, 863, 864	FI-4-862	0.500	10.0		N	HT		110	BV		500 110	0	No	HT	repair/patch if damaged; can isolate; no protection required	N
				5614-M-3008, SH 2 5614-M-3008, SH 2		Small Bore Vents & Drains Small Bore Vents & Drains	4-60-865 4-60-862	1.000	1.0		N N	нт		110	BV BV		000 110		No No	нт	short run; high process temp; can isolate; no protection required short run; high process temp; can isolate; no	N N
				5614-M-3008, SH 2		imall Bore Vents & Drains	4-60-868	1.000	1.0		N	нт		110	BV		000 110		No	нт	protection required short run; high process temp; can isolate; no	N
2723	PTN	4	TPCW / 008	5614-M-3008, SH 2	5 Si	imall Bore Vents & Drains	4-60-867	1.000	1.0	BV	N	НТ		110	BV	1.	000 110	0	No	НТ	protection required short run; high process temp; can isolate; no protection required	N
2720	PTN	4	TPCW / 008	5614-M-3008, SH 2		E(FI-4-861, -862, PI-4-861, 362, 863, 864	PI-4-861	0.500	1.0	Н	N	НТ		110	Н	0.	500 110	1.2	Yes	No Protection Required		
2720	PTN	4	TPCW / 008	5614-M-3008, SH 2		E(FI-4-861, -862, PI-4-861, 862, 863, 864	PI-4-862	0.500	1.0	Н	N	НТ		110	Н	0.	500 110	1.2	Yes	No Protection Required		
									_	_				-								

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 434 of 488

> R21002, Rev 0 Attachment N Page 69 of 123

																				Page 69	of 123
2054 P	TN 4	1 089	5614-M-3089, SH 2	1	Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523	N/A	0.500	400		No	N/A		
2720 P	TN 4	1 TPCW / 00	8 5614-M-3008, SH 2	5	FE(FI-4-861, -862, PI-4-861, 862, 863, 864	PI-4-863	0.500	1.0	Н	N	НТ		110	Н	0.500	110	1.2	Yes	No Protection		
2720 P	TN 4	1 TPCW / 00	8 5614-M-3008, SH 2	5	FE(FI-4-861, -862, PI-4-861, 862, 863, 864	PI-4-864	0.500	1.0	Н	N	НТ		110	Н	0.500	110	1.2	Yes	No Protection		
2679 P	TN 4	1 TPCW / 00	8 5614-M-3008, SH 1	1	PT (PS)-4-1621	4-60-674	0.375	0.5	Н	N	нт		110	Н	0.375	110	0.6	Yes	Required No Protection		
2686 P	TN 4	1 TPCW / 00	8 5614-M-3008, SH 1	1	Small Bore Vents, Drains & Test Connections	4-60-677A	0.375	0.5	Н	N	НТ		110	Н	0.375	110	0.6	Yes	Required No Protection		
2686 P	TN 4	1 TPCW / 00	8 5614-M-3008, SH 1	1	Small Bore Vents, Drains &	4-60-677	0.375	0.5	Н	N	нт		110	Н	0.375	110	0.6	Yes	Required No		
2000 0	TALL	TDCM / 00	0 5044 M 2000 CU 4	1	Test Connections	4.50.570	0.275	0.5			UT		110		0.275	110	0.5	V	Protection Required		
2080 P	IN 4	I IPCW / OC	8 5614-M-3008, SH 1	1	Small Bore Vents, Drains & Test Connections	4-60-678	0.375	0.5	Н	N	НТ		110	Н	0.375	110	0.6	Yes	No Protection Required		
2686 P	TN 4	TPCW / 00	8 5614-M-3008, SH 1	1	Small Bore Vents, Drains & Test Connections	4-60-684	0.250	0.5	TV	N	HT		110	TV	Not Analyze	110 d	#N/A	No	HT	short run; high process temp; no protection required	N
2679 P	TN 4	TPCW / 00	8 5614-M-3008, SH 1	1	PT (PS)-4-1621	PT (PS)-4-1621	0.500	57.0	BV	N	HT		110	BV	0.500	110	0	No	HT	isolate at valve 673 or 736 if damaged; no protection required	N
2681 P	TN 4	TPCW / 00	8 5614-M-3008, SH 1	1	PI-4-1467, -1468, -1469, - 1470, -6900	PI-4-1467	0.500	5.0	Н	N	HT		110	Н	0.500	110	1.2	No	HT	repair if damaged; no protection required	N
2681 P	TN 4	1 TPCW / 00	8 5614-M-3008, SH 1	1	PI-4-1467, -1468, -1469, - 1470, -6900	PI-4-1468	0.500	1.5	TV	N	HT		110	TV	0.500	110	1.2	No	HT	short run; high process temp; no protection required	N
2681 P	TN 4	TPCW / 00	8 5614-M-3008, SH 1	1	PI-4-1467, -1468, -1469, - 1470, -6900	PI-4-1469	0.500	1.5	TV	N	HT		110	TV	0.500	110	1.2	No	HT	short run; high process temp; no protection required	N
2681 P	TN 4	TPCW / 00	8 5614-M-3008, SH 1	1	PI-4-1467, -1468, -1469, - 1470, -6900	PI-4-6900	0.500	1.0	BV	N	HT		110	BV	0.500	110	0	No	HT	short run; high process temp; no protection required	N
2686 P	TN 4	TPCW / 00	8 5614-M-3008, SH 1	1	Small Bore Vents, Drains & Test Connections	4-60-072	0.500	0.5	BV	N	HT		110	BV	0.500	110	0	No	HT	short run; high process temp; no protection required	N
2686 P	TN 4	TPCW / 00	8 5614-M-3008, SH 1	1	Small Bore Vents, Drains & Test Connections	4-60-038	0.500	0.5	BV	N	HT		110	BV	0.500	110	0	No	HT	short run; high process temp; no protection required	N
2686 P	TN 4	TPCW / 00	8 5614-M-3008, SH 1	1	Small Bore Vents, Drains & Test Connections	4-60-073	0.500	0.5	BV	N	НТ		110	BV	0.500	110	0	No	HT	short run; high process temp; no protection required	N
2680 P	TN 4	TPCW / 00	8 5614-M-3008, SH 1	1	FE (FT)-4-6900	FE (FT)-4-6900	0.375	0.5	BV	N	НТ	APPEARS TO BE 2"	110	BV	Not Analyze	110 d	#N/A	No	HT	short run; high process temp; no protection required	N
2686 P			8 5614-M-3008, SH 1	1	Small Bore Vents, Drains & Test Connections	4-60-732	1.000	1.0	BV	N	НТ	on similar	110	BV	1.000	110	0	No	HT	short run; high process temp; no protection required	N
2686 P	TN 4	1 TPCW / 00	8 5614-M-3008, SH 1		Small Bore Vents, Drains & Test Connections	4-60-033	1.000	0.5	BV	N	HT		110	BV	1.000	110	0	No	HT	short run; high process temp; no protection required	N
2686 P			8 5614-M-3008, SH 1	1	Small Bore Vents, Drains & Test Connections	4-60-042A	1.000	6.0	TV	N	HT		110	TV	1.000		3	No	HT	repair if damaged; no protection required	N
2686 P	TN 4	1 TPCW / 00	8 5614-M-3008, SH 1	1	Small Bore Vents, Drains & Test Connections	4-60-042B	1.000	6.0	TV	N	HT		110	TV	1.000	110	3	No	HT	repair if damaged; no protection required	N
2686 P	TN 4	1 TPCW / 00	8 5614-M-3008, SH 1	1	Test Connections	4-60-733	2.000	2.0	BV	N	ı		110	BV	2.000	110	0.5	No	I		
2686 P			8 5614-M-3008, SH 1	1	Small Bore Vents, Drains & Test Connections	4-60-177A1	2.000	7.5	BV	N	1		110	BV	2.000		0.5	No	I		
2686 P	TN 4	1 TPCW / 00	8 5614-M-3008, SH 1	1	Small Bore Vents, Drains & Test Connections	4-60-683	0.500	0.5	TV	N	НТ		110	TV	0.500	110	1.2	Yes	No Protection Required		
2681 P	TN 4	1 TPCW / 00	8 5614-M-3008, SH 1	1	PI-4-1467, -1468, -1469, - 1470, -6900	PI-4-1470	0.500	0.5	Н	N	нт		110	Н	0.500	110	1.2	Yes	No Protection		
2686 P	TN 4	1 TPCW / 00	8 5614-M-3008, SH 1	1	Small Bore Vents, Drains & Test Connections	4-60-023	0.500	0.5	Н	N	НТ		110	Н	0.500	110	1.2	Yes	No Protection		
2686 P	TN 4	1 TPCW / 00	8 5614-M-3008, SH 1	1		4-60-177B1	2.000	7.5	BV	N	ı	FWH3B (by-pass)	110	BV	2.000	110	0.5	No	Required		
2686 P	TN 4	1 TPCW / 00	8 5614-M-3008, SH 1	1	Test Connections Small Bore Vents, Drains & Test Connections	RV-4-171A	0.750	0.5	TV	N	НТ		110	TV	0.750	110	2.6	Yes	No Protection		
2686 P	TN 4	1 TPCW / 00	8 5614-M-3008, SH 1	1	Small Bore Vents, Drains &	RV-4-171B	0.750	0.5	TV	N	НТ		110	TV	0.750	110	2.6	Yes	Required No		
2686	TNI	TDCW / 22	0 E644 M 2000 CU 1		Test Connections	4.60.47644	2.000	7.5				FINILIZA (DV DASS)	110		2 222	110	10.0	V	Protection Required		
2686 P	IN 4	1 TPCW / 00	8 5614-M-3008, SH 1	1	Small Bore Vents, Drains & Test Connections	4-60-176A1	2.000	7.5	Н	N	'	FWH3A (BY-PASS)	110	Н	2.000	110	16.8	Yes	No Protection Required		
2686 P	TN 4	TPCW / 00	8 5614-M-3008, SH 1	1	Small Bore Vents, Drains & Test Connections	4-60-177A2	2.000	7.5	Н	N	I	FWH3B (BY-PASS)	110	Н	2.000	110	16.8	Yes	No Protection Required		
-					-																

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 435 of 488

> R21002, Rev 0 Attachment N Page 70 of 123

HT syst request reques	stem will be isolated when cold; no protection quired stem will be isolated when cold; no protection quired stem will be isolated when cold; no protection quired stem will be isolated when cold; no protection quired will be isolated will
Protection Required No Protection Required No Protection Required No Protection Required No Protection Required HT Syst req HT Syst req HT Syst req No	quired stem will be isolated when cold; no protection quired stem will be isolated when cold; no protection N quired stem will be isolated when cold; no protection N
No Protection Required No Protection Required No Protection Required No Protection Required HT Syst req HT Syst req HT Syst req No	quired stem will be isolated when cold; no protection quired stem will be isolated when cold; no protection N quired stem will be isolated when cold; no protection N
No Protection Required No Protection Required No Protection Required HT syst	quired stem will be isolated when cold; no protection quired stem will be isolated when cold; no protection N quired stem will be isolated when cold; no protection N
No Protection Required No Protection Required HT syst req HT syst req HT syst req No No	quired stem will be isolated when cold; no protection quired stem will be isolated when cold; no protection N quired stem will be isolated when cold; no protection N
No Protection Required HT syst required HT syst required HT syst required HT syst required No No	quired stem will be isolated when cold; no protection quired stem will be isolated when cold; no protection N quired stem will be isolated when cold; no protection N
HT syst required HT sys	quired stem will be isolated when cold; no protection quired stem will be isolated when cold; no protection N quired stem will be isolated when cold; no protection N
HT syst request of the system	stem will be isolated when cold; no protection quired stem will be isolated when cold; no protection quired stem will be isolated when cold; no protection N N
HT syst required in the syst required in the syst required in the syst required in the system of the	stem will be isolated when cold; no protection N quired stem will be isolated when cold; no protection N
HT syst	stem will be isolated when cold; no protection N
No	
Protection	quired
No Protection	
No Protection	
No Protection	
No Protection	
	pair if needed; no protection requred N
HT repa	pair if needed; no protection requred N
1	
N/A N/A	
N/A	
	as needed; repair if damaged; no protection N quired
HT fill a	l as needed; repair if damaged; no protection quired N
N/A	
Protection Required	
No Protection Required	
No Protection Required	
No Protection Required	
	ort run; high process temp; no protection N quired
Professional Profe	notection recequired No no notection recequired No notection recequired No no notection recequired No no notection recequired No no notection recequired No notection recequired No no notection reception

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 436 of 488

> R21002, Rev 0 Attachment N Page 71 of 123

																			Page 71 of 123
2054	PTN	4	089	5614-M-3089, SH 2	1	Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A	523	N/A	0.500	400	No	N/A	
				5613-M-3089, SH 2		Pressure Transmitter (PT)						HT				400	No	HT	
						teed off of 4" pipe near HP													
						Turb gland seal inlet.													
830	PTN	3	089		1	PT instrument has 1/2"							523						
***		1				tubing. PT has local/remote													
						indication and control room													
						alarm on low pressure.													
024	PTN		089	5613-M-3089, SH 2	1	Pressure Control Instrument						HT	522			400	No	HT	
831	PIN	3	089		1	(PC x2)						L	523				-		
832	PTN	3	089	5613-M-3089, SH 2	1	Pressure Indicator (PI) w/ 3/8" and 1/2" instrument						HT	523			400	No	HT	
052		١	005			tubing.							323						
834	PTN	3	089	5613-M-3089, SH 2	1	relief valve (25 psig) and						HT	523			400	No	HT	
	\vdash	\rightarrow		5613-M-3089, SH 2		rupture disc (100 psig) 1 1/2" drains (x2) and 2"						HT				400	No	HT	
836	PTN	3	089			drains (x4) from Wye						'''	523			"			
<u> </u>	\sqcup					strainers		1	\perp			\perp							
840	PTN	3	089	5613-M-3089, SH 2	4	relief valve teed off the 3" main line (x2)						HT	523			400	No	HT	
8/12	PTN	3	089	5613-M-3089, SH 2		3/4" drains (x2) from Wye						HT	523			400	No	HT	
042				5613-M-3089, SH 2		strainers Pipe size not shown.			+-			HT	323			400	No	HT	
				3013 IVI-3003, 311 Z		i ipe size not snown.						'''				400	ING.	- 111	
843	PTN	3	089			LP turbine water trough drain							523						
						to "Waste Drain Near Bowser Filter"													
	+			5613-M-3089, SH 2		1" loop seal drains from LP						HT				400	No	HT	
						Turbine gland seal exhaust to													
844	PTN	3	089			either an equipment drain or							523						
						gland steam condensate reciever.													
846	PTN	3	089	5613-M-3089, SH 2	8	Temporary Instrument port:						HT	523			400	No	HT	
			003										323						
				5613-M-3089, SH 2		PI (pressure indicator)						HT				400	No	HT	
851	PTN	3	089		Stea	local indication of gland							523						
					Cond	steam cond shell pressure													
053	PTN	3	089	5613-M-3089, SH 2		DP controler (x2)						HT	523			400	No	HT	
032	PIN	٠	069		Turbi ne								523						
				5613-M-3089, SH 2		Temperature Element (TE x5),						HT				400	No	HT	
					НР	Pressure indication (PI x4),													
853	PTN	3	089			1/2" tubing and open root							523						
					ne	valve.													
	+			5613-M-3089, SH 2	LP	TC (Temperature controller)						HT				400	No	HT	
					Turbi														
854	PTN	3	089		ne	one on each LP Turbine, actuates Exhaust hood sprays							523						
554		-			O	to regulate LP turbine							323						
					South	exhaust temp.													
		_		5613-M-3089, SH 2	LP	Temperature Element (1 per						HT	+			400	No	HT	
					Turbi	turbine),													
855	PTN	3	089			Temperature indicator (1 per turbine),							523						
					&	turonicj,													
<u> </u>	\sqcup				South														
				5613-M-3089, SH 2		Temporary Instrument ports: PX (x4 on each turbine)						HT				400	No	HT	
055	PTN	,	000		ne								523						
856	PIN	3	089		North	with closed root valve							523						
					& South														
					Journ			-											

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 437 of 488

> R21002, Rev 0 Attachment N Page 72 of 123

																			Page 72 of	123
2054	PTN	4	089	5614-M-3089, SH 2	1	Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A	523	N/A	0.500	400	No	N/A		
				5613-M-3089, SH 1		1", 1 1/2" instrument line to Pressure Indication &						HT				400	No	НТ		
	PTN	3	089		1	Transmitter (x4)							522							
800	PIN	3	089		1	(control room indication of							523							
				CC42 NA 2000 CU 4		HP turbine supply pressure)						UT				400	N-	UT		
				5613-M-3089, SH 1		1", 1 1/2" instrument line to Pressure Transmitter (x2)						HT				400	No	нт		
801	PTN	3	089		1	(for steam break protection							523							
						and control; control of steam dump valves)														
805	PTN	3	089	5613-M-3089, SH 1	1	1/2" drains (closed) off of PIT instrument lines						HT	523			400	No	нт		
806	PTN	3	089	5613-M-3089, SH 1	2	PI and PT instruments 1/2" instrument tubing						НТ	523			400	No	НТ		
				5613-M-3089, SH 1		Temporary Instrument ports: PX (x3)						HT				400	No	НТ		
807	PTN	3	089		2	SN (x2)							523							
						with closed root valve														
				5613-M-3089, SH 1		TE (temperature element) (x6)						НТ				400	No	НТ		
						PI/PT (press indicator and transmitter)(x5)(3/4" tubing)														
809	PTN	3	089		3	(from 4 MSRs to 2 LP							523							
						Turbines)														
				5613-M-3089, SH 1		PIT (x3) (pressure indicator						HT				400	No	HT		
810	PTN	3	089		3	and transmitter) (input to Turbine Control System)							523							
				5613-M-3089, SH 1		1/2" vent (closed)(x4)						HT				400	No	HT		
813	PTN	3	089		3	3/4" vent (closed)(x4) 3/4" capped end							523							
						(from 4 MSRs to 2 LP														
815	PTN	3	089	5613-M-3089, SH 1	5	PI and PT instruments						НТ	523			400	No	НТ		
				5613-M-3089, SH 1	1_	instrument tubing Temporary Instrument ports:						НТ				400	No	HT		
816	PTN	3	089		5	PX (x4) (closed root valve)							523							
				5613-M-3089, SH 1		TE (temperature element) (one per LP Turbine)						HT				400	No	НТ		
826	PTN	3	089			(LP Turbine 3B South & 3A							523							
				5540 14 00		North)										40-				
				5613-M-3089, SH 1		TE (temperature element) (x2 per MSR)						HT				400	No	нт		
825	PTN	3	089			(closed root valve)							523							
						MSR 3A, 3B, 3C, and 3D														
				5613-M-3089, SH 1		PI (pressure indicator) (x2 per MSR)						HT				400	No	НТ		
827	PTN	3	089			1" instrument tube							523							
	\dashv	+		5613-M-3089, SH 1		MSR 3A, 3B, 3C, and 3D Temporary Instrument ports:						HT				400	No	НТ		
828	PTN	3	089			PX (x2 per MSR) (closed root valve)							523							
520			555			MSR 3A, 3B, 3C, and 3D														
	+	-		5613-M-3089, SH 1		One relief valve per shell.						HT				400	No	НТ		
829	PTN	3	089			MSR 3A, 3B, 3C, and 3D							523							

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 438 of 488

> R21002, Rev 0 Attachment N Page 73 of 123

																							Page <i>i</i>	73 of 123
2054	PTN	4	089	5614-M-3089, SH 2	1	Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523		N/A		0.500	400		No	N/A		
751	PTN	3	084	5613-M-3084, SH 1		Piping [3-6"-2-C] Valves [SLWU-3-001, SLWU-1 002 (check vlv)]	3- Between valves SLWU-4- 001 and 4" line to 4-10- 080	6	30	н	Y	I	Condensate will drain down stream of SGWL valve and 4" AFW line. Portion between valve and 4" line is less than 30ft. Only measured entire 6" run.	406		H-I	Д	Not Analyzed	400	#N/A	No	AI		
700	PTN	3	081	5613-M-3081, SH 7	1	Level transmitters and associated piping/valves	LIT-3-1504A	2				НТ	MSR3D	260				2.000	260		No	HT		
700	PTN	3	081	5613-M-3081, SH 7	1 1	Level transmitters and associated piping/valves	LIT-3-1504B	2				НТ	MSR3D	260				2.000	260		No	НТ		
700	PTN	3	081	5613-M-3081, SH 7		Level transmitters and associated piping/valves	LIT-3-1504C	2				НТ	MSR3D	260				2.000	260		No	нт		
700	PTN	3	081	5613-M-3081, SH 7		Level transmitters and associated piping/valves	LIT-3-1525A	2				НТ	MSR3C	260				2.000	260		No	НТ		
700	PTN	3	081	5613-M-3081, SH 7	1	Level transmitters and associated piping/valves	LIT-3-1525B	2				НТ	MSR3C	260				2.000	260		No	НТ		
700	PTN	3	081	5613-M-3081, SH 7		Level transmitters and associated piping/valves	LIT-3-1525C	2				НТ	MSR3C	260				2.000	260		No	НТ		
702	PTN	3	081	5613-M-3081, SH 7	1	1" Drains	3-30-1084	1				HT	MSR3D	211				1.000	210		No	HT		
702		3	081	5613-M-3081, SH 7		1" Drains	3-30-1085	1				HT	MSR3D	211				1.000	210		No	HT		
702		3	081	5613-M-3081, SH 7		1" Drains	3-30-1086	1				HT	MSR3D	211				1.000	210		No	HT		
702		3	081	5613-M-3081, SH 7		1" Drains	3-30-1090	1	-			HT	MSR3C	211				1.000	210		No	HT		
702		3	081	5613-M-3081, SH 7		1" Drains	3-30-1091	1				HT	MSR3C	211				1.000	210		No	HT		
702		3	081	5613-M-3081, SH 7		1" Drains	3-30-1092	1				HT	MSR3C	211				1.000	210		No	HT		
701		3		5613-M-3081, SH 7		1" Vents	3-30-1043	1				HT		260				1.000	260		No	HT		
701		3		5613-M-3081, SH 7		1" Vents	3-30-1044	1				HT	MSR3D	260				1.000	260		No	HT		
701		3	081	5613-M-3081, SH 7		1" Vents	3-30-1046	1				HT	MSR3D	260				1.000	260		No	HT		
701				5613-M-3081, SH 7		1" Vents	3-30-1050	1				HT	MSR3C	260				1.000	260		No	HT		
701		-	081	5613-M-3081, SH 7		1" Vents	3-30-1051	1				HT	MSR3C	260				1.000	260		No	HT		
701	PIN	3	081	5613-M-3081, SH 7		1" Vents	3-30-1052	1				HT	MSR3C	260		-		1.000	260		No	HT		
704	PTN	3	081	5613-M-3081, SH 7	2	1/2" Vent	3-30-780	Not Provided				HT	MSR3C	513	Tube OD of 0.5 assumed			0.500	400		No	HT		
704	PTN	3	081	5613-M-3081, SH 7	2	1/2" Vent	3-30-781	Not Provided				НТ	MSR3D	513	Tube OD of 0.5 assumed			0.500	400		No	HT		
705		3	081	5613-M-3081, SH 7	2	capped pipe	Upstream of 3-30-707	Not Provided				НТ	MSR3D	513	Tube OD of 0.5 assumed			0.500	400		No	HT		
708		3	081	5613-M-3081, SH 7	5		PI-3-6687	0.75				HT		441				0.750	400		No	HT		
708		3	081	5613-M-3081, SH 7	5		PI-3-6688	0.75				HT	MSR3D	441				0.750	400		No	HT		
711		3	081	5613-M-3081, SH 7		1" Drain	3-2110	1				HT	MSR3C	441				1.000	400		No	HT		
711 710	_	-	081 081	5613-M-3081, SH 7 5613-M-3081, SH 7		1" Drain 3/4" Vent	3-2113 3-2127	0.75				HT HT	MSR3D MSR3C	441 260				1.000 0.750	400 260		No	HT HT		
710		_			_	3/4" Vent	3-2127					HT	MSR3D	260		_			260		No	HT		
710		3	081 081	5613-M-3081, SH 7 5613-M-3081, SH 7		1" Drain	3-2131	0.75				HT		441		_		0.750 1.000	400		No No	HT		
716		3	081	5613-M-3081, SH 7	_	1" Drain	3-2111	1				HT	MSR3D	441				1.000	400		No	HT		
715	_	3	081	5613-M-3081, SH 7		3/4" Vent	3-2128	0.75				HT	MSR3C	441				0.750	400		No	HT		
715		-	081	5613-M-3081, SH 7		3/4" Vent	3-2132	0.75				HT	MSR3D	441				0.750	400		No	HT		
714		3	081	5613-M-3081, SH 7	7	Flanges	Downstream of 3-30- 1131	Not Provided				нт	MSR3C	441	Tube OD of 0.5 assumed			0.500	400		No	НТ		
714	PTN	3	081	5613-M-3081, SH 7	7	Flanges	Downstream of 3-30-	Not				НТ	MSR3D	441	Tube OD of 0.5 assumed			0.500	400		No	НТ		
719	DTN	3	081	5613-M-3081, SH 7	8	3/4" Vent	1132 3-2129	Provided 0.75				HT	MSR3C	441				0.750	400		No	HT		
		3	081	5613-M-3081, SH 7		Flanges	None	Not				НТ	MSR3C/MSR3D	441	Tube OD of 0.5 assumed			0.500	400		No	НТ		
721	PTN	3	081	5613-M-3081, SH 7	9	Flange	None	Not Provided				НТ		441	Tube OD of 0.5 assumed			0.500	400		No	НТ		
722	PTN	3		5613-M-3081, SH 7	10	1" Pipe	3-2094	Provided 1				HT		108				1.000	100		No	HT		
722		3	081	5613-M-3081, SH 7	10	1" Pipe	3-2096	1				HT	MSR3D	108				1.000	100		No	HT		
723	-	3	081	5613-M-3081, SH 7	11	3" Pipe	3-2085	3				HT	MSR3C	108				3.000	100		No	HT		
723			081	5613-M-3081, SH 7		3" Pipe	3-2089	3				HT	MSR3D	108				3.000	100		No	HT		
725						1" Drain	3-2112	0.75				HT	MSR3C	108				0.750	100		No	HT		
725		3				1" Drain	3-2116	0.75				HT		108				0.750	100		No	HT		
724						3/4" Vent	3-2130	0.75				HT		108				0.750	100		No	HT		
724						3/4" Vent	3-2133	0.75			-	HT		108		1		0.750	100		No	HT		
726						1" Pipe	3-2095	1	-	-	-	HT		108				1.000	100		No	HT		
726						1" Pipe	3-2097	1	-		-	HT		108		1		1.000	100		No	HT		
728						1/2" piping	PX-3-1412	0.5	-	-	-		MSR3C	513		1		0.500	400		No	HT		
728						1/2" piping	PX-3-1413	0.5	-	<u> </u>	-	HT		513		1		0.500	400		No	HT		
727 727						Test Connection (PX) Test Connection (PX)	PX-3-1412	0.5	-	-	-	HT		513 513				0.500	400		No	HT HT		
				5613-M-3081, SH 7			PX-3-1413		-	-	-	HT	MSR3D MSR3D				-	0.500 Not	400 400		No No		Varify already Inculated	Y
731	PTN	3	081		14	Flange	Upstream of 3-30-1032	8					Likely will not require heat trace	441			Д	Analyzed					Verify already Insulated	
731		3	081	5613-M-3081, SH 7	14	Flange	Upstream of 3-30-1035	8				'	MSR3C Likely will not require heat trace	441				Not Analyzed	400		No	ı	Verify already Insulated	Y
730						3/4" Connection	3-30-1119	0.75	1	1	-		MSR3D	441				0.750	400		No	HT		
730	PIN	3	081	5613-M-3081, SH 7	14	3/4" Connection	3-30-1123	0.75				T HI	MSR3C	441				0.750	400		No	HT		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 439 of 488

> R21002, Rev 0 Attachment N Page 74 of 123

																					Page	
2054 PT	N 4	08	89 5	5614-M-3089, SH 2 1		essure Control Instrument C x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523		N/A	0.500	400	No	N/A		
733 PT	N 3	08	81 5	5613-M-3081, SH 7	5 1 '	4", 3/8", 1/2" to sample stem	3-30-690 3-30-919	0.25				НТ	MSR3C	441			Not Analyzed	400	No	HT		
733 PT	N 3	08	81 5	5613-M-3081, SH 7	5 1	4", 3/8", 1/2" to sample stem	3-30-691 3-30-920	0.25				НТ	MSR3D	441			Not Analyzed	400	No	HT		
732 PT	N 3	08	81 5	5613-M-3081. SH 7		essure Test Connection	PX-3-1451	0.375				HT	MSR3C	441			0.375	400	No	HT		
732 P1		_			_	essure Test Connection	PX-3-1452	0.375				HT	MSR3D	441			0.375	400	No	HT		
735 PT		_				4" Connection	3-30-1127	0.75				HT		211			0.750	210	No	HT		
735 P1	N 3	08			6 3/4	4" Connection	3-30-757	0.75				HT	MSR3D	211			0.750	210	No	HT		
738 P1	N 3	08	81 5	5613-M-3081, SH 7	g Fla	ange	Downstream of CV-3-	10				1	MSR3D	119			Not	110	No	- 1		
750 1.	"						1504B						Likely will not require heat trace	111			Analyzed					
738 PT	N 3	08	81	5613-M-3081, SH 7	8	ange	Downstream of CV-3- 1525B	10					MSR3C Likely will not require heat trace	119			Not Analyzed	110	No	1		
739 PT	N 3	08	81	5613-M-3081, SH 7	9 8"	Pipe	3-30-1021 3-30-1023	8				I	MSR3C	119			Not Analyzed	110	No	- I		
739 P1	N 3	08	81	5613-M-3081, SH 7	9 8"	Pipe	3-30-758 3-30-760	8				ı	MSR3D	119			Not Analyzed	110	No	T .		
740 PT		08				4" Connection	3-30-1128	0.75				HT	MSR3C	119			0.750	110	No	HT		
740 P1	N 3	08				4" Connection	3-30-759	0.75				HT	MSR3D	119			0.750	110	No	HT		
743 P1	N 3	08	81	5613-M-3081, SH 7	Dra	ain Tank Connections	MSR3C	Not Provided				HT	MSR3C	119	Tube OD of 0.5 assumed		0.500	110	No	HT		
743 PT	N 3	08	81	5613-M-3081, SH 7	Dra	ain Tank Connections	MSR3D	Not Provided				HT	MSR3D	119	Tube OD of 0.5 assumed		0.500	110	No	HT		
648 P1		08			3"		FWHR-3-011	3				HT		119			3.000	110	No	HT		
648 PT		08			3"		FWHR-3-001	3				HT	FWH2B	119			3.000	110	No	HT		
650 PT	_				1"		FWHR-3-010	1				HT		119			1.000	110	No	HT		
650 PT		_			1"		FWHR-3-062	1	+	-		HT		119			1.000	110	No	HT		
651 PT		08			10		FWH2A FWH2B	10 10					FWH2A FWH2B	175 175			Not Not	170 170	No No	<u> </u>	Verify already Insulated Verify already Insulated	Y
652 PT	_	_	_		7 2"		FWH2A	2				HT		175			2.000	170	No	HT	verify affeady filsulated	
652 PT		08			7 2"		FWH2B	2				HT	FWH2B	175			2.000	170	No	HT		
653 P1					B PX		PX-3-1459	0.5				HT		175			0.500	170	No	HT		
653 PT	N 3	08	81 5	5613-M-3081, SH 6 8	B PX	(PX-3-1453	0.5				HT	FWH2B	175			0.500	170	No	HT		
655 PT	N 3	08	81 5	5613-M-3081, SH 6 8	3 1"	Connection	3-30-225	1				HT	FWH2A	175			1.000	170	No	HT		
655 P1	_	08			3 1"	Connection	3-30-226	1				HT	FWH2B	175			1.000	170	No	HT		
657 P1						4" Connection	3-30-253	0.75				HT	FWH2A/FWH1A	211			0.750	210	No	HT		
657 PT	N 3	08	81 5		3/4	4" Connection	3-30-254	0.75				HT	FWH2B/FWH1B	211			0.750	210	No	HT		
					- 1																	
659 PT	N 3	08	_			l" Flange	Upstream of 3-30-261	10		_		+ +	FWH1A	211			Not	210	No		Verify already Insulated	Y
659 PT	N 3	08	81 5	5613-M-3081, SH 6 10	0 14	" Flange	Upstream of 3-30-262	10				i	FWH1A FWH1B	211			Not	210	No	- 1	Verify already Insulated	Y
659 PT	N 3	08	81 5		0 14																	
659 PT	N 3 N 3 N 3	08	81 5 81 5	5613-M-3081, SH 6 10	0 14 ¹	" Flange	Upstream of 3-30-262 3-30-257	10				i	FWH1B	211			Not Not	210	No	- 1	Verify already Insulated	Y
659 PT 659 PT 660 PT	N 3 N 3 N 3	08 08 08	81 5 81 5	5613-M-3081, SH 6 10 5613-M-3081, SH 6 11 5613-M-3081, SH 6 11	0 14 ¹	l" Flange Pipe Pipe	Upstream of 3-30-262 3-30-257 3-30-259 3-30-258	10 8				I	FWH1B FWH2A/FWH1A	211			Not Not Analyzed Not	210 210	No No	l I	Verify already Insulated Verify already Insulated	Y
659 P1 659 P1 660 P1 660 P1 661 P1 661 P1	N 3 N 3 N 3 N 3 N 3	08 08 08 08 08	81 5 81 5 81 5 81 5 81 5	5613-M-3081, SH 6 10 5613-M-3081, SH 6 11 5613-M-3081, SH 6 11 5613-M-3081, SH 6 12 5613-M-3081, SH 6 12	0 14' 1 8" 1 8" 2 10' 2 10'	" Flange Pipe Pipe " Pipe " Pipe	Upstream of 3-30-262 3-30-257 3-30-259 3-30-258 3-30-260 CV-3-1543 CV-3-1526	10 8 8				1	FWH1B FWH2A/FWH1A FWH2B/FWH1B FWH2B FWH2B	211 211 211 211 119 119			Not Not Analyzed Not Analyzed Not Not Not	210 210 210 210 110 110	No No		Verify already Insulated Verify already Insulated	Y
659 PT 659 PT 660 PT 660 PT 661 PT 661 PT 662 PT	N 3 N 3 N 3 N 3 N 3 N 3 N 3	08 08 08 08 08 08 08	81 5 81 5 81 5 81 5 81 5 81 5	5613-M-3081, SH 6 10 5613-M-3081, SH 6 11 5613-M-3081, SH 6 11 5613-M-3081, SH 6 11 5613-M-3081, SH 6 12 5613-M-3081, SH 6 12	0 14' 1 8" 1 8" 2 10' 2 10' 2 3/4	" Flange Pipe Pipe " Pipe " Pipe " Pipe " Pipe " Connection	Upstream of 3-30-262 3-30-257 3-30-259 3-30-258 3-30-260 CV-3-1543 CV-3-1526 3-30-265	8 8 10 10 0.75				I I I HT	FWH1B FWH2A/FWH1A FWH2B/FWH1B FWH2A FWH2B FWH2B	211 211 211 211 119 119 119			Not Not Analyzed Not Analyzed Not Not Not 0.750	210 210 210 210 110 110 110	No No No No No	I I I I HT	Verify already Insulated Verify already Insulated	Y
659 PT 659 PT 660 PT 660 PT 661 PT 661 PT 662 PT	N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3	08 08 08 08 08 08 08	81 5 81 5 81 5 81 5 81 5 81 5 81 5	5613-M-3081, SH 6 10 5613-M-3081, SH 6 11 5613-M-3081, SH 6 12 5613-M-3081, SH 6 12 5613-M-3081, SH 6 12 5613-M-3081, SH 6 12 5613-M-3081, SH 6 12	0 14' 1 8" 1 8" 2 10' 2 10' 2 3/4 2 3/4	" Flange Pipe Pipe " Pipe " Pipe " Pipe " Pipe " 4" Connection 4" Connection	Upstream of 3-30-262 3-30-257 3-30-259 3-30-258 3-30-260 CV-3-1543 CV-3-1526 3-30-265 3-30-266	8 8 10 10 0.75 0.75				I I I I HT	FWH1B FWH2A/FWH1A FWH2B/FWH1B FWH2A FWH2B FWH2B FWH2B FWH2B FWH2B	211 211 211 119 119 119 119			Not Not Analyzed Not Analyzed Not Not 0.750 0.750	210 210 210 210 110 110 110 110	No No No No No No	I I I I HT HT	Verify already Insulated Verify already Insulated	Y
659 P1 659 P1 660 P1 660 P1 661 P1 661 P1 662 P1 662 P1 663 P1	N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3	08 08 08 08 08 08 08 08	81 5 81 5 81 5 81 5 81 5 81 5 81 5	5613-M-3081, SH 6 10 5613-M-3081, SH 6 11 5613-M-3081, SH 6 11 5613-M-3081, SH 6 12 5613-M-3081, SH 6 12 5613-M-3081, SH 6 12 5613-M-3081, SH 6 12 5613-M-3081, SH 6 12	0 14' 1 8" 1 8" 2 10' 2 10' 2 3/4 2 3/4 3 12'	" Flange Pipe Pipe " Pipe	Upstream of 3-30-262 3-30-257 3-30-259 3-30-258 3-30-260 CV-3-1543 CV-3-1526 3-30-265 3-30-266 3-30-273	8 8 10 10 0.75 0.75				I I I HT HT I	FWH1B FWH2A/FWH1A FWH2B/FWH1B FWH2A FWH2A FWH2A FWH2A FWH2A FWH2B FWH2A	211 211 211 211 119 119 119 119 119			Not Not Analyzed Not Analyzed Not Not O.750 Not Not	210 210 210 210 110 110 110 110 110	No No No No No No No		Verify already Insulated Verify already Insulated	Y
659 P1 660 P1 660 P1 660 P1 661 P1 661 P1 662 P1 662 P1 663 P1	N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3	08 08 08 08 08 08 08 08 08 08	81 5 81 5 81 5 81 5 81 5 81 5 81 5 81 5	5613-M-3081, SH 6 10 5613-M-3081, SH 6 11 5613-M-3081, SH 6 11	0 14' 1 8" 1 8" 2 10' 2 10' 2 3/4' 3 12' 3 12'	"Flange Pipe Pipe "Pipe "Pipe "Pipe 4" Connection 4" Connection "Pipe "Pipe	Upstream of 3-30-262 3-30-257 3-30-259 3-30-258 3-30-260 CV-3-1543 CV-3-1526 3-30-265 3-30-266 3-30-273 3-30-274	10 8 8 10 10 0.75 0.75 12					FWH1B FWH2A/FWH1A FWH2B/FWH1B FWH2A FWH2A FWH2B FWH2A FWH2B FWH2A FWH2B FWH2A FWH2B FWH2A FWH2B	211 211 211 211 119 119 119 119 119			Not Not Analyzed Not Analyzed Not Not O.750 O.750 Not Not	210 210 210 210 110 110 110 110 110 110	No N	I I I I HT HT I I I	Verify already Insulated Verify already Insulated	Y
659 P1 659 P1 660 P1 660 P1 661 P1 661 P1 662 P1 662 P1 663 P1 663 P1 664 P1	N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3	08 08 08 08 08 08 08 08 08	81 5 81 5 81 5 81 5 81 5 81 5 81 5 81 5	5613-M-3081, SH 6 10 5613-M-3081, SH 6 11 5613-M-3081, SH 6 11 5613-M-3081, SH 6 12 5613-M-3081, SH 6 12	0 14' 1 8" 1 8" 2 10' 2 10' 2 3/2 2 3/2 3 12' 3 12' 3 12'	" Flange Pipe Pipe " Pipe " Pipe " Pipe 4" Connection 4" Connection " Pipe " Pipe " Pipe " Flange	Upstream of 3-30-262 3-30-257 3-30-259 3-30-258 3-30-260 CV-3-1543 CV-3-1526 3-30-266 3-30-266 3-30-273 3-30-274 Upstream of 3-30-273	10 8 8 10 10 0.75 0.75 12 12					FWH1B FWH2A/FWH1A FWH2B/FWH1B FWH2A FWH2B FWH2A FWH2B FWH2B FWH2B FWH2B FWH2A FWH2B FWH2A FWH2B FWH2A	211 211 211 211 119 119 119 119 119 119			Not Not Analyzed Not Analyzed Not Not O.750 O.750 Not	210 210 210 210 110 110 110 110 110 110	No N		Verify already Insulated Verify already Insulated	Y
659 P1 659 P1 660 P1 660 P1 661 P1 661 P1 662 P1 662 P1 663 P1 663 P1 664 P1	N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3	08 08 08 08 08 08 08 08 08 08	81 5 81 5 81 5 81 5 81 5 81 5 81 5 81 5	5613-M-3081, SH 6 10 5613-M-3081, SH 6 11 5613-M-3081, SH 6 11 5613-M-3081, SH 6 12 5613-M-3081, SH 6 13 5613-M-3081, SH 6 13 5613-M-3081, SH 6 13 5613-M-3081, SH 6 13 5613-M-3081, SH 6 13	0 14' 1 8" 1 8" 2 10' 2 10' 2 3/2 3 12' 3 12' 3 12' 3 12' 8 "	"Flange Pipe Pipe "Pipe "Pipe "Pipe 4" Connection 4" Connection "Pipe "Pipe	Upstream of 3-30-262 3-30-257 3-30-259 3-30-258 3-30-260 CV-3-1543 CV-3-1526 3-30-265 3-30-266 3-30-273 3-30-274	10 8 8 10 10 0.75 0.75 12 12 12 12					FWH1B FWH2A/FWH1A FWH2B/FWH1B FWH2A FWH2B FWH2A FWH2B FWH2A FWH2B FWH2A FWH2A FWH2B FWH2A FWH2B FWH2A FWH2B	211 211 211 211 119 119 119 119 119 119			Not Not Analyzed Not Analyzed Not Not O.750 O.750 Not Not	210 210 210 210 110 110 110 110 110 110	No N	I I I I HT HT I I I	Verify already Insulated Verify already Insulated	Y
659 P1 659 P1 660 P1 660 P1 661 P1 662 P1 662 P1 663 P1 663 P1 664 P1	N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3	08 08 08 08 08 08 08 08 08	81	5613-M-3081, SH 6 12 5613-M-3081, SH 6 13 5613-M-3081, SH 6 13	0 14' 1 8" 1 8" 2 10' 2 10' 2 3/2 2 3/2 3 12' 3 12' 3 12' 4 8"	"Flange Pipe Pipe "Pipe "Pipe "Pipe 4" Connection 4" Connection "Pipe "Pipe "Pipe "Flange "Flange	Upstream of 3-30-262 3-30-257 3-30-259 3-30-258 3-30-260 CV-3-1526 3-30-265 3-30-266 3-30-273 3-30-274 Upstream of 3-30-274 Upstream of 3-30-274 3-30-271 3-30-271	10 8 8 10 10 0.75 0.75 12 12					FWH1B FWH2A/FWH1A FWH2B/FWH1B FWH2A FWH2B FWH2A FWH2B FWH2B FWH2B FWH2B FWH2A FWH2B FWH2A FWH2B FWH2A	211 211 211 211 119 119 119 119 119 119			Not Not Analyzed Not Analyzed Not Not Not O.750 Not	210 210 210 210 110 110 110 110 110 110	NO N		Verify already Insulated Verify already Insulated	Y
659 P1 659 P1 660 P1 660 P1 661 P1 661 P1 662 P1 662 P1 663 P1 663 P1 664 P1	N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3	08 08 08 08 08 08 08 08 08 08	81 5 81 5 81 5 81 5 81 5 81 5 81 5 81 5	5613-M-3081, SH 6 10 5613-M-3081, SH 6 11 5613-M-3081, SH 6 11 5613-M-3081, SH 6 12 5613-M-3081, SH 6 13 5613-M-3081, SH 6 13 5613-M-3081, SH 6 13 5613-M-3081, SH 6 13 5613-M-3081, SH 6 13	0 14' 1 8" 1 8" 2 10' 2 10' 2 3/2 2 3/2 3 12' 3 12' 3 12' 4 8"	" Flange Pipe " Flange " Flange	Upstream of 3-30-262 3-30-257 3-30-259 3-30-260 CV-3-1526 3-30-266 3-30-266 3-30-273 Upstream of 3-30-274 Upstream of 3-30-274 3-30-271	10 8 8 10 10 0.75 0.75 12 12 12 12					FWH1B FWH2A/FWH1A FWH2B/FWH1B FWH2A FWH2B FWH2A FWH2B FWH2A FWH2B FWH2A FWH2A FWH2B FWH2A FWH2B FWH2A FWH2B	211 211 211 211 119 119 119 119 119 119			Not Not Not Analyzed Not Analyzed Not Not O.750 Not	210 210 210 210 110 110 110 110 110 110	No N		Verify already Insulated Verify already Insulated	Y
659 P1 660 P1 660 P1 660 P1 661 P1 662 P1 662 P1 663 P1 663 P1 664 P1 664 P1	N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3	08 08 08 08 08 08 08 08 08 08	81	5613-M-3081, SH 6 12	0 14' 1 8" 1 8" 2 10' 2 10' 2 3/2 3 12' 3 12' 3 12' 4 8" 4 8" 4 3/4	"Flange Pipe "Pipe "Pipe "Pipe "Pipe 4" Connection 4" Connection "Pipe "Pipe "Flange "Flange "Flange Pipe Pipe 4" Connection	Upstream of 3-30-262 3-30-257 3-30-259 3-30-260 CV-3-1543 CV-3-1526 3-30-265 3-30-266 3-30-273 3-30-274 Upstream of 3-30-274 3-30-271 3-30-277	10 8 8 10 10 0.75 0.75 12 12 12 12					FWH1B FWH2A/FWH1A FWH2B/FWH1B FWH2A FWH2B FWH2B FWH2B	211 211 211 211 119 119 119 119 119 119			Not Not Analyzed Not Analyzed Not O.750 Not	210 210 210 210 110 110 110 110 110 110	NO N		Verify already Insulated Verify already Insulated	Y
659 P1 659 P1 660 P1 660 P1 661 P1 661 P1 662 P1 663 P1 663 P1 664 P1 665 P1 665 P1 666 P1 666 P1	N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3	08 08 08 08 08 08 08 08 08 08 08 08	81	5613-M-3081, SH 6 12 5613-M-3081, SH 6 13 5613-M-3081, SH 6 13 5613-M-3081, SH 6 13 5613-M-3081, SH 6 14	0 14 8" 1 8" 2 100 2 2 100 2 3/4 2 3/4 3 12' 3 12' 4 8" 4 8" 4 3/4 4 3/4 4 3/4	"Flange Pipe Pipe "Pipe "Pipe "Pipe "Pipe "Pipe "Pipe "Pipe "Pipe "Pipe "Flange "Flange "Flange Pipe Pipe Pipe Pipe Pipe Pipe Picanection	Upstream of 3-30-262 3-30-257 3-30-259 3-30-260 CV-3-1543 CV-3-1526 3-30-266 3-30-273 3-30-274 Upstream of 3-30-273 Upstream of 3-30-274 3-30-271 3-30-267 3-30-268 3-30-268 3-30-269 3-30-269	10 8 8 10 10 0.75 0.75 12 12 12 12 8 8 0.75 0.75				1	FWH1B FWH2A/FWH1A FWH2B/FWH1B FWH2A FWH2A FWH2A FWH2A FWH2A FWH2B FWH2A	211 211 211 211 119 119 119 119 119 119			Not Not Not Analyzed Not Analyzed Not O.750 Not	210 210 210 210 110 110 110 110	NO N		Verify already Insulated Verify already Insulated	Y
659 P1 659 P1 660 P1 660 P1 661 P1 661 P1 662 P1 663 P1 663 P1 664 P1 665 P1 665 P1 666 P1 666 P1 666 P1	N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3	08 08 08 08 08 08 08 08 08 08 08 08 08	81	5613-M-3081, SH 6 12	0 14 8" 8" 1 8" 2 10' 2 10' 2 3/4 2 13 12' 2 3/4 3 12' 4 8" 8" 4 8" 4 3/4 4 3/4 6 1.5	"Flange Pipe "Pipe "Flange Pipe "Flange Pipe "Flange Pipe Pipe Pipe	Upstream of 3-30-262 3-30-257 3-30-259 3-30-260 CV-3-1543 CV-3-1526 3-30-266 3-30-273 3-30-274 Upstream of 3-30-273 Upstream of 3-30-274 3-30-267 3-30-272 3-30-268 3-30-276 3-30-276 3-30-276 3-30-276 5-30-276 5-30-276	10 8 8 10 0.75 0.75 12 12 12 12 12 8 8 0.75 0.75 1.5					FWH1B FWH2A/FWH1A FWH2B/FWH1B FWH2A FWH2A FWH2B FWH2A FWH2A FWH2B FWH2B FWH2A	211 211 211 211 211 211 119 119 119 119			Not Not Not Analyzed Not Analyzed Not O.750 0.750 Not	210 210 210 210 110 110 110 110	No N		Verify already Insulated Verify already Insulated	Y
659 P1 659 P1 660 P1 660 P1 661 P1 661 P1 662 P1 662 P1 663 P1 664 P1 665 P1 666 P1 666 P1 666 P1 666 P1 666 P1 668 P1	N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3	08 08 08 08 08 08 08 08 08 08 08 08 08 0	81	5613-M-3081, SH 6 12 5613-M-3081, SH 6 14	0 14 8" 8" 1 8" 2 10' 2 10' 2 3/4 2 13 12' 2 3/4 3 12' 3 12' 3 12' 4 8" 12' 4 8" 4 8" 4 8" 4 8" 14' 4 15' 6 6 1.55 6 1.55 6 1.55	"Flange Pipe Pipe "Pipe "Pipe "Pipe 4" Connection 4" Connection "Pipe "Flange "Flange Pipe 4" Connection "Flange Flange Pipe 5" Pipe 5" Pipe	Upstream of 3-30-262 3-30-257 3-30-259 3-30-258 3-30-260 CV-3-1526 3-30-265 3-30-265 3-30-273 3-30-274 Upstream of 3-30-274 Upstream of 3-30-274 3-30-271 3-30-267 3-30-272 3-30-269 3-30-270 FWHR-3-016 FWHR-3-016	10 8 8 10 10 0.75 0.75 12 12 12 8 8 0.75 0.75 1.5				1	FWH1B FWH2A/FWH1A FWH2B/FWH1B FWH2A FWH2B FWH1A	211 211 211 211 211 211 119 119 119 119			Not Not Not Analyzed Not Analyzed Not Not O.750 O.750 Not Not Not Not Not Not Analyzed O.750 Not Not Not Not Not Not Not Not Not Analyzed O.750 O.750 O.750 O.750 O.750 O.750	210 210 210 210 110 110 110 110	No		Verify already Insulated Verify already Insulated	Y
659 P1 659 P1 660 P1 660 P1 661 P1 661 P1 662 P1 663 P1 663 P1 664 P1 665 P1 665 P1 666 P1 666 P1 666 P1 668 P1 668 P1 668 P1 670 P1	N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3	08 08 08 08 08 08 08 08 08 08 08 08 08 0	81	5613-M-3081, SH 6 12 5613-M-3081, SH 6 13 5613-M-3081, SH 6 13 5613-M-3081, SH 6 14	0 14' 8" 8" 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	"Flange Pipe Pipe "Pipe "Pipe "Pipe "Pipe "Pipe "Pipe "Pipe "Pipe "Flange "Flange "Flange Pipe Pipe Pipe Pipe Pipe Pipe Pipe Pip	Upstream of 3-30-262 3-30-257 3-30-259 3-30-258 3-30-260 CV-3-1543 CV-3-1526 3-30-265 3-30-273 3-30-274 Upstream of 3-30-273 Upstream of 3-30-274 3-30-271 3-30-268 3-30-269 3-30-270 FWHR-3-016 FWHR-3-008	10 8 8 10 10 0.75 12 12 12 12 12 15 15 1.5 1.5				1	FWH1B FWH2A/FWH1A FWH2B/FWH1B FWH2A FWH2A FWH2A FWH2B FWH2A	211 211 211 211 211 119 119 119 119 119			Not Not Not Analyzed Not Not O.750 0.750 Not	210 210 210 210 210 110 110 110 110 110	No		Verify already Insulated Verify already Insulated	Y
659 P1 660 P1 660 P1 661 P1 661 P1 662 P1 663 P1 663 P1 664 P1 665 P1 666 P1 667 P1	N 3 N 3 N 3 N 3 N 3 N N 3 N N 3 N N N N	08 08 08 08 08 08 08 08 08 08 08 08 08 0	81	5613-M-3081, SH 6 12 5613-M-3081, SH 6 14 5613-M-3081, SH 6 14 5613-M-3081, SH 6 14	0 14 8" 1 8" 1 1 8" 2 100 101 11 11 11 11 11 11 11 11 11 11 1	"Flange Pipe "Pipe "Pipe "Pipe "Pipe "Pipe "Pipe "Pipe "Pipe "Fipe "Pipe "Pipe "Flange "Flange Pipe "Flange "Flange "Fipe "Fipe "Pipe "Pipe "Pipe "Pipe "Pipe "Pipe "Pipe "Pipe "Pipe	Upstream of 3-30-262 3-30-257 3-30-259 3-30-260 CV-3-1543 CV-3-1526 3-30-266 3-30-273 3-30-274 Upstream of 3-30-274 3-30-277 3-30-267 3-30-276 3-30-270 5-30-276 3-30-276 3-30-276 3-30-276 5-30-268 3-30-269 3-30-270 FWHR-3-016 FWHR-3-018 FWHR-3-018	10 8 8 10 10 0.75 0.75 12 12 12 12 8 8 0.75 0.75 1.5 1.5 4 4				1	FWH1B FWH2A/FWH1A FWH2B/FWH1B FWH2A FWH2B FWH2B FWH2A FWH2B FWH2B FWH2B FWH2A FWH2B FWH2A FWH2B FWH2A FWH2B FWH2A FWH2B FWH2A FWH2B FWH1A FWH1B FWH1A FWH1B	211 211 211 211 211 211 211 119 119 119			Not Not Analyzed Not	210 210 210 210 210 210 210 210 210 210	No		Verify already Insulated Verify already Insulated	Y
659 P1 659 P1 660 P1 660 P1 661 P1 661 P1 662 P1 662 P1 663 P1 664 P1 665 P1 666 P1 666 P1 666 P1 667 P1 670 P1	N 3 3 N 3 N 3 3 N 3 N 3 3 N 3 N 3 3 N 3 N 3 3 N 3 N 3 3 N 3 N 3 3 N N 3 N N N 3 N N N 3 N N N 3 N	08 08 08 08 08 08 08 08 08 08 08 08 08 0	81	5613-M-3081, SH 6 12 5613-M-3081, SH 6 14	0 14' 8" 8" 1 8" 1 8" 1 8" 1 8" 1 8" 1 8" 1	"Flange Pipe Pipe "Pipe "Pipe "Pipe "Pipe "Pipe "Pipe "Pipe "Pipe "Pipe "Flange "Flange Pipe Pipe Pipe "Flange Pipe Pipe "Flange Pipe "Flange Pipe Pipe "Flange Pipe "Pipe "Flange Pipe "Pipe "Pipe "Pipe "Pipe "Pipe "Pipe "Pipe "Pipe "Pipe	Upstream of 3-30-262 3-30-257 3-30-259 3-30-258 3-30-260 CV-3-1526 3-30-265 3-30-266 3-30-273 3-30-274 Upstream of 3-30-274 Upstream of 3-30-274 3-30-267 3-30-272 3-30-269 3-30-270 FWHR-3-016 FWHR-3-008 FWHR-3-009 PX-3-1460	10 8 8 10 10 0.75 0.75 12 12 12 12 8 8 0.75 0.75 1.5 1.5 4 0.5				1	FWH1B FWH2A/FWH1A FWH2B/FWH1B FWH2A FWH2B FWH1A FWH1B FWH1A	211 211 211 211 211 211 211 119 119 119			Not Not Analyzed Not	210 210 210 210 210 210 110 110 110 110	No		Verify already Insulated Verify already Insulated	Y
659 P1 659 P1 660 P1 660 P1 661 P1 661 P1 662 P1 663 P1 663 P1 664 P1 665 P1 666 P1 666 P1 666 P1 6670 P1 670 P1 671 P1	N 3 3 N 3 N 3 3 N 3 N 3 3 N 3 N 3 3 N 3 N 3 3 N 3 N 3 3 N 3 N 3 3 N 3 N 3 3 N 3 N 3 3 N 3 N 3 3 N 3 N 3 3 N 3 N 3 3 N 3 N 3 3 N	088 088 088 088 088 088 088 088 088 088	Section Sect	5613-M-3081, SH 6 12 5613-M-3081, SH 6 13 5613-M-3081, SH 6 13 5613-M-3081, SH 6 14	0 14' 8" 1 8" 1 8" 1 8" 1 8" 1 8" 1 8" 1 8"	"Flange Pipe Pipe "Pipe "Pipe "Pipe "Pipe "Pipe "Pipe "Pipe "Pipe "Pipe "Flange "Flange Pipe Pipe Pipe "Flange Pipe Pipe "Flange Pipe "Flange Pipe Pipe "Flange Pipe "Pipe "Flange Pipe "Pipe "Pipe "Pipe "Pipe "Pipe "Pipe "Pipe "Pipe "Pipe	Upstream of 3-30-262 3-30-257 3-30-259 3-30-258 3-30-260 CV-3-1543 CV-3-1526 3-30-265 3-30-273 3-30-274 Upstream of 3-30-273 Upstream of 3-30-274 3-30-271 3-30-268 3-30-272 3-30-268 3-30-270 FWHR-3-018 FWHR-3-008 FWHR-3-008 FWHR-3-018 FWHR-3-009 PX-3-1460 PX-3-1454	10 8 8 10 10 0.75 0.75 12 12 12 12 8 8 0.75 0.75 1.5 1.5 4 4					FWH1B FWH2A/FWH1A FWH2B/FWH1B FWH2A FWH2A FWH2A FWH2B FWH2A FWH2B FWH2A FWH2B FWH2A FWH2B FWH2A FWH2B FWH2A FWH1B FWH1A FWH1B FWH1A FWH1B FWH1A FWH1B FWH1A FWH1B	211 211 211 211 211 119 119 119 119 119			Not Not Analyzed Not	210 210 210 210 210 210 210 210 210 210	No		Verify already Insulated Verify already Insulated	Y
659 P1 659 P1 660 P1 660 P1 661 P1 661 P1 662 P1 662 P1 663 P1 664 P1 665 P1 666 P1 666 P1 666 P1 667 P1 670 P1	N 3 3 N 3 3 N 3 N 3 N 3 N 3 N N 3 N N 3 N	088 088 088 088 088 088 088 088 088 088	S	5613-M-3081, SH 6 12	0 14' 8" 1 8" 2 10' 2 10	"Flange Pipe Pipe "Pipe "Pipe "Pipe "Pipe "Pipe "Pipe "Pipe "Pipe "Flange "Flange "Flange Pipe "Flange "Flange Pipe Pipe Pipe "Fipe	Upstream of 3-30-262 3-30-257 3-30-259 3-30-258 3-30-260 CV-3-1526 3-30-265 3-30-266 3-30-273 3-30-274 Upstream of 3-30-274 Upstream of 3-30-274 3-30-267 3-30-272 3-30-269 3-30-270 FWHR-3-016 FWHR-3-008 FWHR-3-009 PX-3-1460	10 8 8 10 10 0.75 0.75 12 12 12 12 12 15 15 1.5 1.5 1.5 1.5 1.5 0.55				1	FWH1B FWH2A/FWH1A FWH2B/FWH1B FWH2A FWH2A FWH2B FWH2A FWH2B FWH2B FWH2A FWH2B FWH2A FWH2B FWH2A FWH2B FWH2A FWH2B FWH2A FWH2A FWH2B FWH2A FWH2B FWH2A FWH2B FWH2A FWH2B FWH2A FWH2B FWH3A FWH3B FWH1A FWH1B FWH1A FWH1B	211 211 211 211 211 211 211 119 119 119			Not Not Analyzed Not	210 210 210 210 210 210 110 110 110 110	No		Verify already Insulated Verify already Insulated	Y
659 P1 659 P1 660 P1 660 P1 661 P1 661 P1 662 P1 663 P1 663 P1 664 P1 665 P1 666 P1 666 P1 667 P1 670 P1 671 P1 671 P1 673 P1 673 P1 673 P1	N	088 088 088 088 088 088 088 088 088 088	81	5613-M-3081, SH 6 12 5613-M-3081, SH 6 13 5613-M-3081, SH 6 13 5613-M-3081, SH 6 14 5613-M-3081, SH 6 16 5613-M-3081, SH 6 18 5613-M-3081, SH 6 19	0 14' 1 8" 1 8" 2 10' 2 3/4 3 12' 3 12' 4 8" 4 3/4 4 3/4 4 3/4 6 1.5 6 1.5 6 1.5 8 4" 9 PX 9 9 3/4 9 9 3/4	"Flange Pipe "Pipe "Pipe "Pipe "Pipe "Pipe "Pipe "Pipe "Pipe "Fipe "Fipe "Pipe "Pipe "Flange "Flange Pipe Pipe Pipe Pipe Pipe "Fipe Fipe Fipe Fipe Fipe Fipe Fipe Fipe	Upstream of 3-30-262 3-30-257 3-30-259 3-30-260 CV-3-1543 CV-3-1526 3-30-266 3-30-273 3-30-274 Upstream of 3-30-273 Upstream of 3-30-274 3-30-277 3-30-268 3-30-269 3-30-270 FWHR-3-016 FWHR-3-016 FWHR-3-018 FWHR-3-018 FWHR-3-019 PX-3-1450 PX-3-1454 3-30-275	10 8 8 10 10 0.75 0.75 12 12 12 12 8 8 0.75 1.5 1.5 4 4 0.5 0.5 1				1	FWH1B FWH2A/FWH1A FWH2B/FWH1B FWH2A FWH2A FWH2B FWH2A FWH2A FWH2B FWH2A FWH2A FWH2A FWH2A FWH2B FWH2A FWH2B FWH2A FWH2B FWH2B FWH2A FWH3A FWH1B FWH1A FWH1B FWH1A	211 211 211 211 211 211 119 119 119 119			Not Not Analyzed Not	210 210 210 210 210 210 210 210 210 210	No		Verify already Insulated Verify already Insulated	Y
659 P1 659 P1 660 P1 660 P1 661 P1 661 P1 662 P1 663 P1 663 P1 664 P1 665 P1 666 P1 666 P1 667 P1 673 P1 673 P1 673 P1 673 P1	N 3 3 N 3 3 N 3 3 N 3 3 N 3 3 N 3 3 N 3 3 N 3 3 N 3 3 N 3 3 N 3 3 N 3 3 N 3 N 3 3 N 3	088 088 088 088 088 088 088 088 088 088	S	5613-M-3081, SH 6 12 5613-M-3081, SH 6 13 5613-M-3081, SH 6 14 5613-M-3081, SH 6 15 5613-M-3081, SH 6 16 5613-M-3081, SH 6 17 5613-M-3081, SH 6 18 5613-M-3081, SH 6 19 5613-M-3081, SH 6 10 5613-M-3081, SH 6 11 5613-M-3081, SH 6 11 5613-M-3081, SH 6 12 5613-M-3081, SH 6 13 5613-M-3081, SH 6 14 5613-M-3081, SH 6 16 5613-M-3081, SH 6 17 5613-M-3081, SH 6 18 5613-M-3081, SH 6 19 5613-M-3081, SH 6	0 14' 8" 1 8" 1 8" 1 8" 1 8" 1 8" 1 8" 1 8"	"Flange Pipe "Pipe "Flange "Flange Pipe Pipe Pipe 4" Connection 4" Connec	Upstream of 3-30-262 3-30-257 3-30-259 3-30-258 3-30-260 CV-3-1543 CV-3-1526 3-30-265 3-30-266 3-30-273 3-30-274 Upstream of 3-30-273 Upstream of 3-30-274 3-30-277 3-30-277 3-30-269 3-30-269 3-30-270 FWHR-3-016 FWHR-3-018 FWHR-3-018 FWHR-3-018 FWHR-3-018 FWHR-3-018 FWHR-3-018 FWHR-3-018 FWHR-3-019 PX-3-1450 PX-3-1450 PX-3-1451 3-30-275 3-30-291 3-30-153 3-30-153	10 8 8 10 10 0.75 0.75 12 12 12 12 12 8 8 0.75 0.75 1.5 1.5 1.5 1.5 1.0.5 0.5 1.0.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1				1	FWH1B FWH2A/FWH1A FWH2B/FWH1B FWH2A FWH2A FWH2A FWH2A FWH2B FWH2A FWH2B FWH2A FWH3A FWH1A FWH1B FWH1A	211 211 211 211 211 211 211 119 119 119			Not Not Analyzed Not	210 210 210 210 210 210 210 210 210 210	No		Verify already Insulated Verify already Insulated	Y
659 P1 659 P1 660 P1 660 P1 661 P1 661 P1 662 P1 663 P1 663 P1 664 P1 665 P1 666 P1 666 P1 667 P1 670 P1 671 P1 671 P1 673 P1 673 P1 673 P1	N 3 3 N 3 3 N 3 3 N 3 3 N 3 3 N 3 3 N 3 3 N 3 3 N 3 3 N 3 3 N 3 3 N 3 3 N 3 N 3 3 N 3	088 088 088 088 088 088 088 088 088 088	81	5613-M-3081, SH 6 12	0 14' 8" 1 8" 1 8" 1 8" 1 8" 1 8" 1 8" 1 8"	"Flange Pipe Pipe "Pipe Pipe Pipe Pipe Pipe "Connection "Pipe Pipe "A" Connection "Pipe Pipe Pipe "A" Connection "Pipe Pipe "A" Connection "Pipe Pipe "Pipe "Pipe Pipe "Pipe "	Upstream of 3-30-262 3-30-257 3-30-259 3-30-258 3-30-260 CV-3-1543 CV-3-1526 3-30-265 3-30-266 3-30-274 Upstream of 3-30-273 Upstream of 3-30-274 3-30-267 3-30-276 3-30-270 FWHR-3-016 FWHR-3-008 FWHR-3-018 FWHR-3-018 FWHR-3-018 FWHR-3-018 FWHR-3-018 FWHR-3-019 PX-3-1454 3-30-275 3-30-275 3-30-275 3-30-275 3-30-291 3-30-125 3-30-125	10 8 8 10 10 0.75 12 12 12 12 12 12 14 15 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5				1	FWH1B FWH2A/FWH1A FWH2B/FWH1B FWH2A FWH2A FWH2A FWH2A FWH2B FWH2A FWH2B FWH2A FWH3A FWH1A FWH1B FWH1A	211 211 211 211 211 119 119 119 119 119			Not Not Analyzed Not	210 210 210 210 210 210 210 210 210 210	No		Verify already Insulated Verify already Insulated	Y
659 P1 659 P1 660 P1 660 P1 661 P1 661 P1 662 P1 663 P1 663 P1 664 P1 665 P1 666 P1 666 P1 667 P1 673 P1 673 P1 673 P1 673 P1	N 3 3 N 3 N 3 3 N	088 088 088 088 088 088 088 088 088 088	S	5613-M-3081, SH 6 12 5613-M-3081, SH 6 13 5613-M-3081, SH 6 14 5613-M-3081, SH 6 15 5613-M-3081, SH 6 16 5613-M-3081, SH 6 17 5613-M-3081, SH 6 18 5613-M-3081, SH 6 19 5613-M-3081, SH 6 10 5613-M-3081, SH 6 11 5613-M-3081, SH 6 11 5613-M-3081, SH 6 12 5613-M-3081, SH 6 13 5613-M-3081, SH 6 14 5613-M-3081, SH 6 16 5613-M-3081, SH 6 17 5613-M-3081, SH 6 18 5613-M-3081, SH 6 19 5613-M-3081, SH 6	0 14' 8" 1 8" 1 8" 1 8" 1 8" 1 8" 1 8" 1 8"	"Flange Pipe "Pipe "Flange "Flange Pipe Pipe Pipe 4" Connection 4" Connec	Upstream of 3-30-262 3-30-257 3-30-259 3-30-258 3-30-260 CV-3-1543 CV-3-1526 3-30-265 3-30-273 3-30-274 Upstream of 3-30-273 Upstream of 3-30-274 3-30-271 3-30-268 3-30-270 FWHR-3-018 FWHR-3-018 FWHR-3-018 FWHR-3-018 FWHR-3-018 FWHR-3-018 FWHR-3-019 PX-3-1454 3-30-275 3-30-291 3-30-125 3-30-126	10 8 8 10 10 0.75 0.75 12 12 12 12 12 8 8 0.75 0.75 1.5 1.5 1.5 1.5 1.0.5 0.5 1.0.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1				1	FWH1B FWH2A/FWH1A FWH2B/FWH1B FWH2A FWH2A FWH2A FWH2A FWH2B FWH2A FWH2B FWH2A FWH2B FWH1A FWH1B FWH1A	211 211 211 211 211 211 211 119 119 119			Not Not Not Analyzed Not	210 210 210 210 210 210 210 210 210 210	No		Verify already Insulated Verify already Insulated	Y
659 P1 660 P1 660 P1 661 P1 661 P1 662 P1 663 P1 663 P1 664 P1 665 P1 666 P1 666 P1 666 P1 667 P1 670 P1 671 P1 673 P1 673 P1 673 P1 673 P1 673 P1	N	088 088 088 088 088 088 088 088 088 088	81	5613-M-3081, SH 6 125613-M-3081, SH 6	0 14' 8" 1 8" 1 8" 1 8" 1 8" 1 8" 1 8" 1 8"	"Flange Pipe Pipe "Pipe Pipe Pipe Pipe Pipe "Connection "Pipe Pipe "A" Connection "Pipe Pipe Pipe "A" Connection "Pipe Pipe "A" Connection "Pipe Pipe "Pipe "Pipe Pipe "Pipe "	Upstream of 3-30-262 3-30-257 3-30-259 3-30-258 3-30-260 CV-3-1543 CV-3-1526 3-30-266 3-30-273 3-30-274 Upstream of 3-30-273 Upstream of 3-30-274 3-30-277 3-30-268 3-30-269 3-30-279 3-30-279 FWHR-3-016 FWHR-3-016 FWHR-3-018 FWHR-3-018 FWHR-3-018 FWHR-3-019 PX-3-1450 PX-3-1450 PX-3-1450 PX-3-1450 PX-3-1450 PX-3-1450 PX-3-1450 3-30-275 3-30-291 3-30-153 3-30-126 3-30-157 3-30-157	10 8 8 10 10 0.75 0.75 12 12 12 12 12 8 8 0.75 1.5 1.5 1.5 1.5 1.0 0.5 0.5 1.1 1 1 1 1				1	FWH1B FWH2A/FWH1A FWH2B/FWH1B FWH2A FWH2A FWH2A FWH2B FWH1A FWH1B	211 211 211 211 211 211 211 119 119 119			Not Not Analyzed Not	210 210 210 210 210 210 210 210 210 210	No		Verify already Insulated Verify already Insulated	Y
659 P1 659 P1 660 P1 660 P1 661 P1 661 P1 662 P1 662 P1 663 P1 664 P1 665 P1 666 P1 666 P1 666 P1 6670 P1 673 P1 673 P1 673 P1 673 P1 673 P1 674 P1	N 3 3 N 3 3 N 3 3 N 3 3 N 3 3 N 3 3 N 3 3 N 3 3 N 3 3 N 3 3 N 3 3 N 3 N 3 3 N	088 088 088 088 088 088 088 088 088 088	81	5613-M-3081, SH 6 12 5613-M-3081, SH 6 13 5613-M-3081, SH 6 14 5613-M-3081, SH 6 15 5613-M-3081, SH 6 17 5613-M-3081, SH 6 18 5613-M-3081, SH 6 19 5613-M-3081, SH 6 10 5613-M-3081, SH 6 10 5613-M-3081, SH 6 11 5613-M-3081, SH 6 12 5613-M-3081, SH 6 12 5613-M-3081, SH 6 14 5613-M-3081, SH 6 16 5613-M-3081, SH 6 16 5613-M-3081, SH 6 17 5613-M-3081, SH 6 18 5613-M-3081, SH 6 19 5613-M-3081, SH 6 10 5613-M-3081, SH 6 11 5613-M-3081, SH 6 11 5613-M-3081, SH 6 12 5613-M-3081, SH 6 13 5613-M-3081, SH 6 15 5613-M-3081, SH 6 16 5613-M-3081, SH 6 17 5613-M-3081, SH 6 18 5613-M-3081, SH 6 19 5613-M-3081, SH 6 10 5613-M-3081, SH 6	0 14 8" 1 8" 1 8" 2 100 2 2 100 2 3/4 3 12 3 12 3 12 3 12 4 8" 4 3/4 4 3/4 4 4 3/4 4 4 3/4 6 1.5.5 6 1.5.9 9 3/4 9 9 7 9 3/4 9 9 3/4 9 9 3/4 9 9 3/4 0 100 0 100	"Flange Pipe "Pipe "Flange "Flange Pipe "Flange "Flange Pipe "Flange Pipe "Flange Pipe 4" Connection	Upstream of 3-30-262 3-30-257 3-30-259 3-30-258 3-30-260 CV-3-1543 CV-3-1526 3-30-265 3-30-266 3-30-273 3-30-274 Upstream of 3-30-273 Upstream of 3-30-273 Upstream of 3-30-274 3-30-277 3-30-267 3-30-279 3-30-269 3-30-269 3-30-269 3-30-270 FWHR-3-018 FWHR-3-018 FWHR-3-019 FWHR-3-015 FWHR-3-015 3-30-150 3-30-153 3-30-153 3-30-159 3-30-159 3-30-150 3-30-150 3-30-160 3-30-160	10 8 8 10 10 0.75 0.75 12 12 12 12 12 12 14 8 8 0.75 0.75 1.5 1.5 1.5 1.1 10 10				1	FWH1B FWH2A/FWH1A FWH2B/FWH1B FWH2A FWH2A FWH2A FWH2A FWH2B FWH2A FWH2B FWH2A FWH2B FWH2A FWH2B FWH2A FWH2B FWH1A FWH1B FWH1A	211 211 211 211 211 211 211 211 211 211			Not Not Not Not Analyzed Not	210 210 210 210 210 210 210 210 210 210	No		Verify already Insulated Verify already Insulated	Y
659 P1 659 P1 660 P1 660 P1 661 P1 661 P1 662 P1 662 P1 663 P1 664 P1 665 P1 666 P1 666 P1 667 P1 670 P1 671 P1 671 P1 673 P1	N	088 088 088 088 088 088 088 088 088 088	81	5613-M-3081, SH 6 12: 5613-M-3081, SH 6 13: 5613-M-3081, SH 6 14: 5613-M-3081, SH 6 15: 5613-M-3081, SH 6 16: 5613-M-3081, SH 6 17: 5613-M-3081, SH 6 18: 5613-M-3081, SH 6 19: 5613-M-3081, SH 6	0 14 8" 1 8" 1 8" 1 8" 2 100 2 100 2 100 2 130 3 122 3 3/4 8 8" 4 8" 4 8 3/4 4 3/4 4 3/4 6 1.5.5 6 1.5.5 6 1.5.5 6 1.5.5 0 100 1 100 1 112	"Flange Pipe Pipe "Pipe "Pipe "Pipe "Pipe "Pipe "Pipe "Pipe "Pipe "Pipe "Flange "Flang	Upstream of 3-30-262 3-30-257 3-30-259 3-30-258 3-30-260 CV-3-1543 CV-3-1543 CV-3-1526 3-30-265 3-30-266 3-30-273 3-30-271 Upstream of 3-30-273 Upstream of 3-30-274 3-30-271 3-30-268 3-30-270 FWHR-3-018 FWHR-3-018 FWHR-3-018 FWHR-3-018 FWHR-3-018 FWHR-3-018 FWHR-3-018 FWHR-3-018 FWHR-3-015 3-30-275 3-30-275 3-30-275 3-30-275 3-30-275 3-30-275 3-30-275 3-30-275 3-30-158 3-30-158 3-30-158	10 8 8 10 10 0.75 12 12 12 12 12 12 14 4 0.5 1.5 1.5 1.5 1.5 1.7 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5					FWH1B FWH2A/FWH1A FWH2B/FWH1B FWH2A FWH2A FWH2B FWH1A FWH1B FWH1A	211 211 211 211 211 211 119 119 119 119			Not Not Analyzed Not	210 210 210 210 210 210 210 210 210 210	No		Verify already Insulated Verify already Insulated	Y

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 440 of 488

> R21002, Rev 0 Attachment N Page 75 of 123

																			i age i	75 OT 123
2054 P	ΓN 4	089	5614-M-3089, SH 2 1	Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523	N/A		0.500	400	No	N/A		
676 0	TNI 2	001	5613-M-3081, SH 6 22	O" Dino	CV-3-1545						FW/H4 A	110			Not	110	No	1		
676 P				8" Pipe 8" Pipe	CV-3-1545 CV-3-1544	8	_			<u> </u>	FWH1A FWH1B	119 119			Not Not	110	No No	1		
677 P				3/4" Connection	3-30-165	0.75				HT	FWH1A	119			0.750	110	No	HT		
677 P				3/4" Connection	3-30-166	0.75				HT	FWH1B	119			0.750	110	No	HT		
678 P	TN 3	081	5613-M-3081, SH 6	10" Pipe	3-30-171	10				I	FWH1A	119			Not	110	No	1		
6/8 P	IN 3	081	23		3-30-167	10					FWHIA	119			Analyzed					
678 P	rn 3	081	5613-M-3081, SH 6	10" Pipe	3-30-172	10				- 1	FWH1B	119			Not	110	No	1		
				- (-)	3-30-168										Analyzed		-			
679 P		081		3/4" Connection 3/4" Connection	3-30-169 3-30-170	0.75 0.75				HT HT	FWH1A FWH1B	119 119			0.750 0.750	110 110	No No	HT HT		
680 P				12" Pipe	5-30-170 FWH1A	12					FWH1A	120			Not	120	No	I I		
680 P	_			12" Pipe	FWH1B	12				i i	FWH1B	120			Not	120	No	T I		_
681 P	TN 3	081		2" Pipe	FWH1A	2				HT	FWH1A	120			2.000	120	No	HT		
681 P		081	5613-M-3081, SH 6 25	2" Pipe	FWH1B	2				HT	FWH1B	120			2.000	120	No	HT		
685 P				1.5" Pipe	FWH2A	1.5				HT	FWH2A	175			1.500	170	No	HT		
685 P				1.5" Pipe	FWH2B	1.5				HT	FWH2B	175			1.500	170	No	HT HT		
682 P		081 081	5613-M-3081, SH 6 26 5613-M-3081, SH 6 26		LS-3-1516 LS-3-1504	1				HT HT	FWH2A FWH2B	175 175			1.000	170 170	No No	HT		
682 P				LS	LS-3-1543	1				HT	FWH2A	175			1.000	170	No	HT		
682 P			5613-M-3081, SH 6 26		LS-3-1526	1				HT	FWH2B	175			1.000	170	No	HT		
683 P		081	5613-M-3081, SH 6 26	LC	LC-3-1513	1.5				HT	FWH2A	175			1.500	170	No	HT		
683 P		081	5613-M-3081, SH 6 26		LC-3-1501	1.5				HT	FWH2B	175			1.500	170	No	HT		
684 P				LG	LG-3-3423	1.5				HT	FWH2A	175			1.500	170	No	HT		
684 P		081 081		LG LG	LG-3-3413 LG-3-1435	1.5				HT HT	FWH2B FWH2A	175 175			1.500 1.500	170 170	No No	HT HT		
684 P				LG	LG-3-1433	1.5				HT	FWH2B	175			1.500	170	No	HT		-
684 P			5613-M-3081, SH 6 26		LI-3-1446A	1				HT	FWH2A	175			1.000	170	No	HT		_
684 P	TN 3	081	5613-M-3081, SH 6 26	LI	LI-3-1446B	1				HT	FWH2B	175			1.000	170	No	HT		
688 P				3/4" Connections	LG-3-3423	0.75				HT	FWH2A	175			0.750	170	No	HT		
688 P				3/4" Connections	LG-3-3413	0.75				HT	FWH2B	175			0.750	170	No	HT		
688 P				3/4" Connections 3/4" Connections	LG-3-1435 LG-3-1433	0.75 0.75				HT HT	FWH2A FWH2B	175 175			0.750 0.750	170 170	No No	HT HT		
687 P	_			Drains Drains	3-30-283	1				HT	FWH2A	175			1.000	170	No	HT		
687 P				Drains	3-30-282	1				HT	FWH2B	175			1.000	170	No	HT		
687 P		081	5613-M-3081, SH 6 26	Drains	3-30-279	1				HT	FWH2A	175			1.000	170	No	HT		
687 P				Drains	3-30-278	1				HT	FWH2B	175			1.000	170	No	HT		
686 P				Vents Vents	3-30-281 3-30-280	1				HT HT	FWH2A FWH2B	175 175			1.000	170 170	No	HT HT		
686 P	_			Vents	3-30-280	1				HT	FWH2A	175			1.000	170	No No	HT		
686 P				Vents	3-30-276	1				HT	FWH2B	175			1.000	170	No	HT		_
692 P	TN 3	081	5613-M-3081, SH 6 27	1.5" Pipe	FWH1A	1.5				HT	FWH1A	120			1.500	120	No	HT		
692 P				1.5" Pipe	FWH1B	1.5				HT	FWH1B	120			1.500	120	No	HT		
689 P				LS	LS-3-1545	1				HT HT	FWH1A FWH1B	120 120			1.000	120	No	HT HT		
689 P	_			LS	LS-3-1544 LS-3-1517	1				HT	FWH1A	120			1.000	120 120	No No	HT		_
689 P	_	081	5613-M-3081, SH 6 27		LS-3-1505	1				HT	FWH1B	120			1.000	120	No	HT		$\overline{}$
690 P	TN 3	081	5613-M-3081, SH 6 27		LC-3-1514	1.5				HT	FWH1A	120			1.500	120	No	HT		
690 P	_			LC	LC-3-1502	1.5				HT	FWH1B	120			1.500	120	No	HT		
691 P		081	5613-M-3081, SH 6 27		LG-3-1434	1.5				HT	FWH1A	120			1.500	120	No	HT		
691 P		081 081		LG LG	LG-3-1432 LG-3-3422	1.5 1.5	-	-		HT HT	FWH1B FWH1A	120 120			1.500 1.500	120 120	No No	HT HT		
691 P			5613-M-3081, SH 6 27		LG-3-3422 LG-3-3412	1.5	+	 		HT	FWH1B	120			1.500	120	No No	HT		$\overline{}$
691 P		081	5613-M-3081, SH 6 27		LI-3-1545A	1.3		 		HT	FWH1A	120			1.000	120	No	HT		
691 P			5613-M-3081, SH 6 27		LI-3-1545B	1				HT	FWH1B	120			1.000	120	No	HT		
695 P				3/4" Connections	LG-3-1434	0.75				HT	FWH1A	120			0.750	120	No	HT		
695 P		081		3/4" Connections	LG-3-1432	0.75	_			HT	FWH1B	120			0.750	120	No	HT		
695 P	_			3/4" Connections 3/4" Connections	LG-3-3422	0.75	-			HT	FWH1A	120			0.750	120	No	HT		$\overline{}$
695 P			,	Drains	LG-3-3412 3-30-195	0.75	_	 	-	HT HT	FWH1B FWH1A	120 120			0.750 1.000	120 120	No No	HT HT		$\overline{}$
694 P				Drains	3-30-195	1	+			HT	FWH1B	120		+	1.000	120	No	HT		
694 P				Drains	3-30-183	1				HT	FWH1A	120			1.000	120	No	HT		
694 P	TN 3	081	5613-M-3081, SH 6 27	Drains	3-30-182	1				HT	FWH1B	120			1.000	120	No	HT		
693 P				Vents	3-30-193	1				HT	FWH1A	120			1.000	120	No	HT		
693 P				Vents	3-30-192	1				HT	FWH1B	120			1.000	120	No	HT		
693 P				Vents Vents	3-30-181 3-30-180	1	+			HT HT	FWH1A FWH1B	120 120			1.000	120 120	No No	HT HT		+
699 P	_			1.5" Drain	3-30-228	1.5				HT	FWH2B	120			1.500	120	No	HT		
699 P				1.5" Drain	3-30-237	1.5				HT	FWH2A	120			1.500	120	No	HT		
699 P				1.5" Drain	3-30-238	1.5				HT	FWH2B	120			1.500	120	No	HT		
699 P				1.5" Drain	3-30-127	1.5				HT	FWH1A	120			1.500	120	No	HT		
699 P 698 P				1.5" Drain 1.5" Drains	3-30-128 3-30-227	1.5	_	-	-	HT HT	FWH1B FWH2A	120 120			1.500 1.500	120 120	No No	HT HT		$\overline{}$
			5613-M-3081, SH 5	6" Plind Flange Connection						1					Not	260	No	1	Verify already Insulated	Y
598 P	TN 3	081	3	-	Upstream of 3-30-461	6					FWH4A	267			Analyzed					

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 441 of 488

> R21002, Rev 0 Attachment N Page 76 of 123

																				Page /	6 of 123
2054 PTN	4	089	5614-M-3089, SH 2	1	Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A	Α	523		N/A	0.500	400	No	N/A		
598 PTN	3	081	5613-M-3081, SH 5	3	6" Blind Flange Connection	Upstream of 3-30-462	6				1	FW	YH4B 267			Not Analyzed	260	No	T.	Verify already Insulated	Y
595 PTN	3	081	5613-M-3081, SH 5	3	FX	FX-3-1406	Not Provided				HT	FW	H4A 267	Tube OD of 0.5 assumed		0.500	260	No	НТ		
595 PTN	3	081	5613-M-3081, SH 5	3	FX	FX-3-1407	Not Provided				НТ	FW	H4B 267	Tube OD of 0.5 assumed		0.500	260	No	HT		
595 PTN	3	081	5613-M-3081, SH 5	3	PX	PX-3-1457	Not Provided				HT	FW	H4A 267	Tube OD of 0.5 assumed		0.500	260	No	HT		
595 PTN	3	081	5613-M-3081, SH 5	3	PX	PX-3-1458	Not Provided				HT	FW	H4B 267	Tube OD of 0.5 assumed		0.500	260	No	HT		
597 PTN		081	5613-M-3081, SH 5	_	1" Connection	3-30-425	1				HT					1.000	260	No	HT		
597 PTN	3	081	5613-M-3081, SH 5	3		3-30-426	1	-	-			FW	H4B 267			1.000	260	No	HT		
600 PTN	3	081	5613-M-3081, SH 5	5	4" Pipe	3-30-457 3-30-459	4				НТ	FVV	H3A 267			4.000	260	No	НТ		
600 PTN	3	081	5613-M-3081, SH 5	5	4" Pipe	3-30-458 3-30-460	4				HT	FW	H3B 267			4.000	260	No	HT		
602 PTN	3	081	5613-M-3081, SH 5	6	6" Blind Flange Connection	Upstream of 3-30-473	6				<u>'</u>	FW	H4A 119			Not Analyzed	110	No	-		
602 PTN	3	081	5613-M-3081, SH 5	6	6" Blind Flange Connection	Upstream of 3-30-474	6				<u>'</u>	FW	H4B 119			Not Analyzed	110	No	-		
601 PTN	3	081	5613-M-3081, SH 5	6	6" Pipe	3-30-463 3-30-473	6					FW	TH4A 119			Not Analyzed	110	No	I		
601 PTN	3	081	5613-M-3081, SH 5	6	6" Pipe	3-30-464	6				- 1	FW	'H4B 119			Not	110	No	T		
CO2 DTA	-	004	EC42 NA 2004 CUE	7	2ll Di	3-30-474	2				шт	- 514				Analyzed	110	N-	UT		
603 PTN 603 PTN		081 081	5613-M-3081, SH 5 5613-M-3081, SH 5		3" Pipe 3" Pipe	CV-3-1511B CV-3-1512B	3	+		_	HT	FW FW			+	3.000 3.000	110 110	No No	HT HT		+
604 PTN		081	5613-M-3081, SH 5		3/4" Connection	3-30-465	0.75	1			HT					0.750	110	No	HT		
604 PTN		081	5613-M-3081, SH 5		+	3-30-466	0.75				HT	_	H4B 119			0.750	110	No	HT		
			5613-M-3081, SH 5	Τ.	4" Pipe	3-30-471					НТ	-				3.000	110	No	HT		
605 PTN	+ +	081	5613-M-3081, SH 5	8	4" Pipe	3-30-467 3-30-472	3				HT	. FW	H4A 119			3.000	110	No	HT		
605 PTN	3	081		8	1	3-30-468	3					FW	'H4B 119					"			
606 PTN	3	081	5613-M-3081, SH 5	8	3/4" Connection	3-30-469	0.75				HT	- FW	H4A 119			0.750	110	No	HT		
606 PTN	3	081	5613-M-3081, SH 5	8	3/4" Connection	3-30-470	0.75				HT	FW	'H4B 119			0.750	110	No	HT		
611 PTN		081	5613-M-3081, SH 5	9		None	8				- 1		H3A 211			Not	210	No	1	Verify already Insulated	Y
611 PTN	3	081	5613-M-3081, SH 5	9	8" Flange	None	8				- 1	-	H3B 211			Not	210	No	- 1	Verify already Insulated	Y
607 PTN	3	081	5613-M-3081, SH 5	9	FX	FX-3-1408	Not Provided				НТ	FVV	'H3A 211	Tube OD of 0.5 assumed		0.500	210	No	НТ		
607 PTN	3	081	5613-M-3081, SH 5	9	FX	FX-3-1409	Not Provided				НТ	FVV	'H3B 211	Tube OD of 0.5 assumed		0.500	210	No	НТ		
607 PTN	3	081	5613-M-3081, SH 5	9	PX	PX-3-1455	Not Provided				HT	FW	TH3A 211	Tube OD of 0.5 assumed		0.500	210	No	HT		
607 PTN		081	5613-M-3081, SH 5	9	PX	PX-3-1456	Not Provided				НТ	FW	TH3B 211	Tube OD of 0.5 assumed		0.500	210	No	HT		
609 PTN		081	5613-M-3081, SH 5	_	1" Connection	3-30-325	1				_	· FW				1.000	210	No	HT		
610 PTN		081	5613-M-3081, SH 5			3-30-353	0.75	_	-		HT					0.750	210	No	HT		
610 PTN	3	081	5613-M-3081, SH 5	9		3-30-354	0.75		-	-	HT	FW	H3B 211			0.750	210	No	HT		
612 PTN	3	081	5613-M-3081, SH 5	10	6" Pipe	3-30-357 3-30-359	6				'	FW	'H3A 119			Not Analyzed	110	No			
612 PTN	3	081	5613-M-3081, SH 5	10	6" Pipe	3-30-358	6				1	FW	TH3B 119			Not	110	No	- 1		
613 PTN	3	081	5613-M-3081, SH 5	11	1.5" Pipe	3-30-360 None	1.5	+	+	_	нт	FW	/H3A 211		+	Analyzed 1.500	210	No	HT		+
613 PTN		081	5613-M-3081, SH 5		1.5" Pipe	None	1.5	1	1		HT				1	1.500	210	No	HT		_
614 PTN		081	5613-M-3081, SH 5	12	8" Pipe	Downstream of CV-3- 1507B	8				1		H3A 119			Not Analyzed	110	No	1		
614 PTN	3	081	5613-M-3081, SH 5	12	8" Pipe	Downstream of CV-3- 1508B	8				1	FW	'H3B 119			Not Analyzed	110	No	T		
615 PTN	3	081	5613-M-3081, SH 5	12	8" Blind Flange Connection	Downstream of CV-3-	8				1	FW	'H3A 119			Not	110	No	I		
615 PTN	3	081	5613-M-3081, SH 5	12	8" Blind Flange Connection	1507B Downstream of CV-3-	8				1		TH3B 119			Analyzed Not	110	No	- 1		
616 PTN		081	5613-M-3081, SH 5	13	6" Pipe	1508B CV-3-1507B	6	_		<u> </u>	-	FW			+	Analyzed Not		No	1		+
616 PTN		081	5613-M-3081, SH 5		6" Pipe	CV-3-1507B	6	1	1			FW				Not		No	1		_
617 PTN		081	5613-M-3081, SH 5		3/4" Connection	3-30-365	0.75					FW				0.750		No	HT		
617 PTN		081	5613-M-3081, SH 5		3/4" Connection	3-30-366	0.75					FW				0.750		No	HT		
618 PTN		081	5613-M-3081, SH 5	14	6" Dino	3-30-371 3-30-367	6				ı		TH3A 119			Not Analyzed	110	No	I		
618 PTN	3	081	5613-M-3081, SH 5	14	6" Pipe	3-30-372 3-30-368	6				1	FW	H3B 119			Not Analyzed	110	No	I		
619 PTN	3	081	5613-M-3081, SH 5	14	3/4" Connection	3-30-369	0.75	1	1		НТ	- FW	'H3A 119			0.750	110	No	HT		
619 PTN		081	5613-M-3081, SH 5		3/4" Connection	3-30-370	0.75		1			FW				0.750		No	HT		
621 PTN		081	5613-M-3081, SH 5		1.5" Pipe	FWHR-3-021	1.5					FW				1.500		No	HT		
621 PTN		081	5613-M-3081, SH 5		1.5" Pipe	FWHR-3-028	1.5					FW				1.500		No	HT		
621 PTN	3	081	5613-M-3081, SH 5		1.5" Pipe	FWHR-3-019	1.5				НТ	- FW				1.500		No	HT		
621 PTN	3	081	5613-M-3081, SH 5	16	1.5" Pipe	FWHR-3-027	1.5				HT	FW	H3B 260			1.500	260	No	HT		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 442 of 488

> R21002, Rev 0 Attachment N Page 77 of 123

																						Page 77	of 123
2054 P	「N 4		089	5614-M-3089, SH 2		Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523		N/A		0.500	400	No	N/A		
624 P	ΓN 3	+	081	5613-M-3081, SH 5	19	1" Pipe	FWHR-3-022	1				HT	FWH4A	260				1.000	260	No	HT		+ + +
624 P	_	_	081		19	1" Pipe	FWHR-3-029	1				HT	FWH4B	260				1.000	260	No	HT		
629 P		_	081			1.5" Instrument Piping	FWH4A	1.5				HT	FWH4A	279				1.500	270	No	HT		
629 P		_				1.5" Instrument Piping	FWH4A	1.5				HT	FWH4B	279				1.500	270	No	HT		+
626 P	-	+			21		LS-3-1512	1				HT	FWH4A	279				1.000	270	No	HT		+
626 P		+	081 081		21		LS-3-1514 LS-3-1513	1				HT HT	FWH4B FWH4A	279 279				1.000	270 270	No No	HT HT		+
626 P		_	081		21		LS-3-1515	1				HT	FWH4B	279				1.000	270	No	HT		+
627 P	-	+	081		21		LC-3-1511	1.5				HT	FWH4A	279				1.500	270	No	HT		_
627 P		\top	081		21		LC-3-1512	1.5				HT	FWH4B	279				1.500	270	No	HT		
628 P			081	5613-M-3081, SH 5	21		LG-3-3416	1.5				HT	FWH4A	279				1.500	270	No	HT		
628 P	ΓN 3		081	5613-M-3081, SH 5	21	LG	LG-3-3417	1.5				HT	FWH4B	279				1.500	270	No	HT		
632 P			081		21	Connections	LG-3-3416	1.5				HT	FWH4A	279				1.500	270	No	HT		
632 P	_	_	081			Connections	LG-3-3417	1.5				HT	FWH4B	279				1.500	270	No	HT		
631 P		_	081			Drains	3-30-483	1.5				HT	FWH4A	279				1.500	270	No	HT		
631 P		_	081			Drains	3-30-482	1.5	+			HT	FWH4B	279				1.500	270	No	HT		
631 P	_	_	081 081	5613-M-3081, SH 5		Drains	3-30-491	1.5				HT HT	FWH4A FWH4B	279				1.500 1.500	270	No	HT HT		
631 P		_	081			Drains Drains	3-30-490 3-30-149	1.5	-			HT	FWH4A	279 279				1.500	270 270	No No	HT		+
630 P		_	081	5613-M-3081, SH 5		Vents	3-30-481	1.5	+			HT	FWH4A	279				1.500	270	No	HT		+ -
630 P	_	_	081			Vents	3-30-480	1.5				HT	FWH4B	279				1.500	270	No	HT		+
630 P		_	081	5613-M-3081, SH 5		Vents	3-30-489	1.5				НТ	FWH4A	279				1.500	270	No	HT		
630 P	ΓN 3		081			Vents	3-30-488	1.5				HT	FWH4B	279				1.500	270	No	HT		
636 P	ſN 3		081	5613-M-3081, SH 5	22	1.5" Instrument Piping	FWH 3A	1.5				HT	FWH3A	225				1.500	220	No	HT		
636 P		_	081	5613-M-3081, SH 5		1.5" Instrument Piping	FWH 3B	1.5				HT	FWH3B	225				1.500	220	No	HT		
633 P		_	081		22		LS-3-1508	1				HT	FWH3A	225				1.000	220	No	HT		
633 P	_	_	081		22		LS-3-1510	1				HT	FWH3B	225				1.000	220	No	HT		
633 P		_	081	5613-M-3081, SH 5	22		LS-3-1509	1	-			HT	FWH3A	225				1.000	220	No	HT		+
633 P	_	_	081 081	5613-M-3081, SH 5 5613-M-3081, SH 5	22		LS-3-1511 LC-3-1507	1.5	+			HT HT	FWH3B FWH3A	225 225				1.000	220	No No	HT HT		+
634 P	_	_	081	5613-M-3081, SH 5	22		LC-3-1507	1.5	+			HT	FWH3B	225				1.500	220	No	HT		+
635 P		_	081	5613-M-3081, SH 5	22		LG-3-3414	1.5				HT	FWH3A	225				1.500	220	No	HT		_
635 P	_	_	081	5613-M-3081, SH 5	22		LG-3-3415	1.5				НТ	FWH3B	225				1.500	220	No	HT		
639 P	ΓN 3		081	5613-M-3081, SH 5	22	Connections	LG-3-3414	1.5				HT	FWH3A	225				1.500	220	No	HT		
639 P	ΓN 3		081	5613-M-3081, SH 5	22	Connections	LG-3-3415	1.5				HT	FWH3B	225				1.500	220	No	HT		
638 P	_		081		22	Drains	3-30-383	1.5				HT	FWH3A	225				1.500	220	No	HT		
638 P			081	5613-M-3081, SH 5	22	Drains	3-30-382	1.5				HT	FWH3B	225				1.500	220	No	HT		
638 P		_	081	5613-M-3081, SH 5		Drains	3-30-391	1.5				HT	FWH3A	225				1.500	220	No	HT		
638 P		_	081	5613-M-3081, SH 5		Drains	3-30-390	1.5				HT	FWH3B	225				1.500	220	No	HT		
637 P		-	081	5613-M-3081, SH 5		Vents	3-30-381	1.5				HT HT	FWH3A	225				1.500	220	No	HT		+
637 P		_	081	5613-M-3081, SH 5 5613-M-3081, SH 5		Vents Vents	3-30-380 3-30-389	1.5	+			HT	FWH3B FWH3A	225 225				1.500 1.500	220	No No	HT HT		+
637 P	_	_	081	5613-M-3081, SH 5		Vents	3-30-388	1.5				HT	FWH3B	225				1.500	220	No	HT		+
	TN 3		081	5613-M-3081, SH 5		FWH3A RV (4" Inlet, 6" Outlet per NAMS)	RV-3-6301A	4				НТ	FWH3A	174				4.000	170	No	HT		
642 P	ΓN 3		081	5613-M-3081, SH 5	-	FWH3B RV (4" Inlet, 6" Outlet per NAMS)	RV-3-6301B	4				НТ	FWH3B	174				4.000	170	No	HT		
642 P	ΓN 3		081	5613-M-3081, SH 5	-	FWH4A RV (4" Inlet, 6" Outlet per NAMS)	RV-3-3420	4				HT	FWH4A	231				4.000	230	No	HT		
642 P			081	5613-M-3081, SH 5		FWH4B RV (4" Inlet, 6" Outlet per NAMS)	RV-3-3421	4				HT	FWH4B	231				4.000	230	No	HT		
645 P		_		5613-M-3081, SH 5		FWH3A Drains	FWHR-3-024	1.5				HT	FWH3A	211				1.500	210	No	HT		
645 P	-	+	081	5613-M-3081, SH 5	$\overline{}$	FWH3A Drains	FWHR-3-327	1.5				HT	FWH3A	211			-	1.500	210	No	HT		+
645 P		+	081	5613-M-3081, SH 5		FWH3B Drains	FWHR-3-030	1.5	+	-		HT	FWH3B	211		-		1.500	210	No.	HT HT		+
645 P	_	_	081	5613-M-3081, SH 5 5613-M-3081, SH 5		FWH3B Drains FWH4A Drains	FWHR-3-328 FWHR-3-031	1.5	1	<u> </u>	 	HT HT	FWH3B FWH4A	211			 	1.500 1.500	210 260	No No	HT		+
644 P	_	+	081	5613-M-3081, SH 5	$\overline{}$	FWH4A Drains	FWHR-3-031 FWHR-3-427	1.5	1	!		HT	FWH4A	267		1		1.500	260	No	HT		+
644 P		+	081	5613-M-3081, SH 5		FWH4B Drains	FWHR-3-034	1.5	1			HT	FWH4B	267				1.500	260	No	HT		+
644 P		_	081	5613-M-3081, SH 5		FWH4B Drains	FWHR-3-428	1.5	1			HT	FWH4B	267				1.500	260	No	HT		+
538 P	$\overline{}$	\top		5613-M-3081, SH 4	$\overline{}$	3/4" Drain	3-30-525	0.75				HT		211				0.750	210	No	HT		
539 P	ΓN 3		081	5613-M-3081, SH 4	5	Welded pipe caps (2 of them)	None	Not provided				HT		211	Tube OD of 0.5 assumed			0.500	210	No	HT		
541 P	ΓN 3		081	5613-M-3081, SH 4	6	Connection (size not marked)	3-30-593	Not provided				НТ		387	Tube OD of 0.5 assumed			0.500	380	No	HT		
543 P	ΓN 3		081	5613-M-3081, SH 4	7	Connection (size not marked)	3-30-591	Not provided				HT		387	Tube OD of 0.5 assumed			0.500	380	No	HT		
545 P	ΓN 3		081	5613-M-3081, SH 4		3A HDT Level transmitters and associated piping/valves	LG-3-1510A	0.75	17	н	Y	HT	GUAGE NOT INSTALLED	211		H-I		0.750	210 18	4 Yes	No Protection Require		N
545 P		\perp	081	5613-M-3081, SH 4	9	3A HDT Level transmitters and associated piping/valves	LIT-3-1510A	1.5	17	BV,U	Υ	НТ		211		BV-I	Upward bend not credited for conservatism	1.500	210 5.		НТ	column will have trickle flow, no protection required	N
546 P				5613-M-3081, SH 4		1" drain	3-30-590	1				HT		211				1.000	210	No	HT		
546 P			081	5613-M-3081, SH 4		1" Vent	3-30-588	1				HT		211				1.000	210	No	HT		
546 P	TN 3		081	5613-M-3081, SH 4	9	1/2" drain	3-30-579	0.5	1			HT		211				0.500	210	No	HT		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 443 of 488

> R21002, Rev 0 Attachment N Page 78 of 123

																				Page 78	01 123
2054 P	TN 4	089	5614-M-3089, SH 2	1 Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A	523		N/A		0.500	400		No	N/A		
546 P	TN 3	081	5613-M-3081, SH 4	9 1/2" Vent	3-30-449	0.5				HT	211				0.500	210		No	HT		+
			5613-M-3081, SH 4	3B HDT Level transmitters						HT			BV-I	Upward bend not	0.750	210	2.05	No		column will have trickle flow, no protection	N
547 P	TN 3	081		10 and associated piping/valves	LG-3-1510B	0.75	17	BV,U	Y		211			credited for conservatism						required	
547 P	TN 3	081	5613-M-3081, SH 4	3B HDT Level transmitters 10 and associated piping/valves	PX-3-6683	0.5				HT	211				0.500	210		No	HT		
		_	F.C.4.2. 1.4. 2004. 511.4	20 1071											4 500	240	20				+
547 P	TN 3	081	5613-M-3081, SH 4	38 HDT Level transmitters 10 and associated piping/valves	LIT-3-1510B	1.5	14	н	Y	N/A	211		H-I		1.500	210	20	Yes	No Protection Required	column will have trickle flow, no protection required	N
			5613-M-3081, SH 4	3B HDT Level transmitters						N/A			H-I		1.500	210	20	Yes	No	column will have trickle flow, no protection	N
547 P	TN 3	081		10 and associated piping/valves	LIT-3-1510C	1.5	14	Н	Y		211								Protection Required	required	
548 P	TN 3	081	5613-M-3081, SH 4	1" and 1/2" Vents and drains, 10 test connection [PX]	3-30-395	0.5				HT	211				0.500	210		No	нт		
\vdash	_	+	5613-M-3081, SH 4	1" and 1/2" Vents and drains,						HT					1.000	210		No	HT		+
548 P	TN 3	081	3013-101-3061, 311 4	test connection [PX]	3-30-880	1				""	211				1.000	210		140			
			5613-M-3081, SH 4	1" and 1/2" Vents and drains,						HT					1.000	210		No	HT		
548 P	TN 3	081		10 test connection [PX]	3-30-881	1					211										
			5613-M-3081, SH 4	1" and 1/2" Vents and drains,						HT					1.000	210		No	HT		
548 P	IN 3	081		10 test connection [PX]	3-30-882	1					211										
			5613-M-3081, SH 4	1" and 1/2" Vents and drains,						HT					1.000	210		No	HT		+
548 P	TN 3	081		10 test connection [PX]	3-30-883	1					211										
549 P	TN 3	081	5613-M-3081, SH 4	3B HDT capped connections	HDT 3B	Not provided				HT	211	Tube OD of 0.5 assumed			0.500	210		No	HT		
549 P	TN 3	081	5613-M-3081, SH 4	11 3B HDT capped connections	3-30-559	0.5				HT	211				0.500	210		No	HT		
555 P	TN 3	081	5613-M-3081, SH 4	16 3/4" Drain	3-30-526	0.75				HT	211				0.750	210		No	HT		+
		081	5613-M-3081, SH 4	Welded pipe caps (2 of them)		Not				HT		Tube OD of 0.5 assumed			0.500	210		No	HT		1
556 P	TN 3	081			None	provided					211	Tube OD of 0.5 assumed									
557 P	TN 3	081	5613-M-3081, SH 4	Local Pressure Indicator PI-3- 6695	PI-3-6695 PX-3-1514	0.5				HT	211				0.500	210		No	HT		
560 P	TN 3	081	5613-M-3081, SH 4	17 drains	3-30-596 3-30-598	1				HT	211				1.000	210		No	HT		
560 P	TN 3	081	5613-M-3081, SH 4	1" drains	3-30-595 3-30-597	1				НТ	211				1.000	210		No	HT		
559 P	TN 3	081	5613-M-3081, SH 4	17 Various test connections	PX-3-3423	0.5				HT	211				0.500	210		No	HT		+
559 P		081	5613-M-3081, SH 4	17 Various test connections	PX-3-3422	0.5				HT	211				0.500	210		No	HT		
564 P	TN 3	081	5613-M-3081, SH 4	18 1" Drain	3-30-566	1				HT	119				1.000	110		No	HT		
			5613-M-3081, SH 4	10" piping from HDT 3A/3B to						I					Not	110		No	I I		
565 P	TN 3	081		3B condenser/ bypass control 19 valve CN-3-1510B	3-30-568	10					119				Analyzed						
505 .		001		[3-10"-5-D]	3-30-572	10					113										
			5540 14 0004 511 4												0.500	440					
566 P	TN 3	081	5613-M-3081, SH 4	19 Connection (size not marked)	3-30-570	Not Provided				HT	119	Tube OD of 0.5 assumed			0.500	110		No	HT		
568 P	TN 3	081	5613-M-3081, SH 4	4" piping from Main 20 Condensate Header to HD Pump suction header	CV-3-1900	2				HT	119				2.000	110		No	HT		
\vdash			5613-M-3081, SH 4	4" piping from Main						HT					4.000	110		No	HT		+
568 P	TN 3	081		20 Condensate Header to HD Pump suction header	3-30-563	4					119										
			5613-M-3081, SH 4	4" piping from Main						HT					4.000	110		No	HT		
568 P	TN 3	081		20 Condensate Header to HD	3-30-573	4					119										
570 P	TN 2	081	5613-M-3081, SH 4	Pump suction header 20 3/4" drain/connection	3-30-565	0.75			 	HT	119			+	0.750	110		No	HT		+
3,5 P	3	001	5613-M-3081, SH 4	3" piping from Condensate	3 30-303	0.73				HT	119				3.000	110		No	HT		+
				Header to HD pump suction	1																
571 P	TN 3	081		header - Bypass control valve		3					119										
" "		001		CN-3-1900	3-30-571	1					115										
				[3-3"-3-D]	1																
572 P	TN 3	081	5613-M-3081, SH 4	21 [3-3"-5-CM]	3-30-569	0.75				HT	119			+	0.750	110		No	HT		+
573 P			5613-M-3081, SH 4	22 3" piping to SWLU connection		3				HT	211				3.000	210		No	HT		
\vdash	+	+	5613-M-3081, SH 4	1" piping; HD Pump vent to	3-30-8223-30-821				\vdash	HT	-			+	1.000	210		No	HT		+
574 P	TN 3	081	3013 3001, 311 4	23 3A HDT [3-1"-5-D]	2 50 5225 50 621	1					211				1.000	-10					
													-								

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 444 of 488

> R21002, Rev 0 Attachment N Page 79 of 123

																						Page 79 o	of 123
2054	PTN	4	089	5614-M-3089, SH 2	1	Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A	523		N/A		0.500	400		No	N/A		
		\dashv		5613-M-3081, SH 4		1/2" to 1/4" SS tubing from A						HT					0.375	210		No	HT		
576	PTN	3	081			HD Pump discharge to sample system	3-30-820	0.375					211										.
		-		5613-M-3081, SH 4		1/2" to 1/4" SS tubing from A	3-30-837					HT					0.500	210		No	HT		
576	DTN	2	081	3013 111 3001, 311 1	24	HD Pump discharge to sample	3 30 037	0.5					211				0.500	210					.
370		٦	001		24	system		0.5					211										.
				5613-M-3081, SH 4		1/2" to 1/4" SS tubing from A						HT					Not	210		No	HT		
576	PTN	3	081		24	HD Pump discharge to sample system	None	0.25					211				Analyzed						.
						system																	
575	PTN	3	081	5613-M-3081, SH 4	24	Local Pressure Indicator PI-3- 1437	PI-3-1437	Not Provided				НТ	211	Tube OD of 0.5 assumed			0.500	210		No	HT		
577	PTN	3	081	5613-M-3081, SH 4	24	Test connection [PX]	PX-3-3424	Not Provided				HT	211	Tube OD of 0.5 assumed			0.500	210		No	HT		.
				5613-M-3081, SH 4		1/2" to 1/4" SS tubing from B		TTOVIACA				HT					0.375	210		No	HT		
579	PTN	3	081			HD Pump discharge to sample system	3-30-844	0.375					211										.
		-+		5613-M-3081, SH 4		1/2" to 1/4" SS tubing from B	3-30-838					HT					0.500	210		No	HT		
579	PTN	3	081		25	HD Pump discharge to sample		0.5					211										.
3,3		Ĭ	001		23	system		0.5															.
				5613-M-3081, SH 4		1/2" to 1/4" SS tubing from B						HT					Not	210		No	HT		
579	PTN	3	081		25	HD Pump discharge to sample system	None	0.25					211				Analyzed						.
578	PTN	3	081	5613-M-3081, SH 4	25	Local Pressure Indicator PI-3- 1438	PI-3-1438	Not Provided				HT	211	Tube OD of 0.5 assumed			0.500	210		No	HT		
580	PTN	3	081	5613-M-3081, SH 4	25	Test connection [PX]	PX-3-3425	Not Provided				HT	211	Tube OD of 0.5 assumed			0.500	210		No	HT		
586	PTN	3	081	5613-M-3081, SH 4	27	drain	3-30-863	Not Provided				HT	211	Tube OD of 0.5 assumed			0.500	210		No	HT		
586	PTN	3	081	5613-M-3081, SH 4	27	drain	3-30-865	Not Provided				HT	211	Tube OD of 0.5 assumed			0.500	210		No	HT		,
585	PTN	3	081	5613-M-3081, SH 4	27	Test connection [PX]	PX-3-1471	Not Provided				HT	211	Tube OD of 0.5 assumed			0.500	210		No	HT		
586	PTN	3	081	5613-M-3081, SH 4	27	Vent	3-30-841	Not Provided				НТ	211	Tube OD of 0.5 assumed			0.500	210		No	HT		
586	PTN	3	081	5613-M-3081, SH 4	27	Vent	3-30-843	Not Provided				НТ	211	Tube OD of 0.5 assumed			0.500	210		No	HT		
587	PTN	3	081	5613-M-3081, SH 4		3/4" piping - bypass HD pump A/B discharge check valves	3-30-8453-30-847	0.75				HT	211				0.750	210		No	НТ		
	-	+		5613-M-3081, SH 4		3/4" piping - bypass HD pump	3-30-8463-30-848		1	-		HT					0.750	210		No	HT		
587	PTN	3	081	3013 W 3001, 31. 4	28	A/B discharge check valves	3 30 0 103 30 0 10	0.75					211				0.750	220					.
589	PTN	3	081	5613-M-3081, SH 4	29	Test points associated with	PX-3-3426	0.25		1		HT	211				Not	210		No	HT		
	-			5613-M-3081, SH 4		FIT-3-1404 Test points associated with			1	-	-	HT					Analyzed Not	210		No	HT		
589	PTN	3	081		29	FIT-3-1404	PX-3-3427	0.25					211				Analyzed						
588	PTN	3	081	5613-M-3081, SH 4	29	Piping/ Tubing/ valves associated with FIT-3-1404	FIT-3-1404	0.375	40	H,D	N	HT	211		BV	BV conservative due to downward portion	0.375	210	Not Analyzed	Yes	No Protection	verify line temp-if not high enough heat trace	Y
		+		5613-M-3081, SH 4		Piping/ Tubing/ valves		Not		+		HT					0.500	210		No	Required HT		-
588	PTN	3	081			associated with FIT-3-1404	FE-3-1404	Not Provided					211	Tube OD of 0.5 assumed									,
591	PTN	3	081	5613-M-3081, SH 4	30	Connection (size not marked)	3-30-870	Not Provided				НТ	211	Tube OD of 0.5 assumed			0.500	210		No	HT		
		\top		5613-M-3081, SH 4		12" piping from A/B HD	·					I					Not	210		No	I	Verify already Insulated	Y
590	PTN	3	081			Pumps to FW PP suction/ bypass control valve CN-3-	3-30-869	12					211				Analyzed						,
						1510A [3-12"-3-D]	3-30-871																,
E03	DTN	,		5613-M-3081, SH 4		Flex tubing installed to either	DDC 3 4404	0.375	43			HT			Н		0.375	210	2.2	No	HT	verify line temp and ambient-if not high enough	Y
592	PTN	3	081			side of CV-3-1510A; HD pump interlock	DPS-3-1401	0.375	43	Н	N		211									heat trace	l
592	NTO	3		5613-M-3081, SH 4		Flex tubing installed to either	DDS 2 1402	0.275	1	ш	A.I	HT	244		Н		0.375	210	2.2	Yes	No	short run; high process line; no protection	N
392	riN	3	081			side of CV-3-1510A; HD pump interlock	DPS-3-1402	0.375	1	Н	N		211								Protection Required	required	
466	PTN	3	081	5613-M-3081, SH 3		6A FW HTR Level transmitters and associated piping/valves	LIT-3-1517A	2				HT	441				2.000	400		No	HT		,
	·					F.F0, 1203																	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 445 of 488

> R21002, Rev 0 Attachment N Page 80 of 123

																						Page 80 o	of 123
2054	PTN	4	089	5614-M-3089, SH 2	1	Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523		N/A	0.50	400	No	N,	I/A		
466	PTN	3	082	5613-M-3081, SH 3	1	6A FW HTR Level transmitters and associated piping/valves	LIT-3-1517B	2				нт		380			2.00	380	No	Н	НT		
466	PTN	3	083	5613-M-3081, SH 3	1	6A FW HTR Level transmitters and associated piping/valves	LIT-3-1517C	2				нт		380			2.00	380	No	Н	НТ		
467	PTN	3	081	5613-M-3081, SH 3	1	1" drain	3-30-607	1				HT		380			1.00	380	No	Н	HT.		\vdash
467			081	5613-M-3081, SH 3		1" drain	3-30-615	1				HT		380			1.00		No		HT.		
467			081	5613-M-3081, SH 3		1" drain	3-30-721	1				HT		380			1.00		No		HT.		
467			081	5613-M-3081, SH 3		1" Vent	3-30-605	1				HT		441			1.00		No		HT.		
467			081	5613-M-3081, SH 3		1" Vent	3-30-613	1				HT		441			1.00		No	_	HT.		1
467 470			081	5613-M-3081, SH 3		1" Vent	3-30-720	1				HT HT		441			1.00		No		HT HT		-
4/0	PIN	3	081	5613-M-3081, SH 3 5613-M-3081, SH 3	3	1" piping - bypass Orifice 1/2" and 1" connections;	FWHR-3-080	1				HT		119			1.00 0.75		No No	_	41 4T		\vdash
475	PTN	3	081		5	Various test connections [PX, TX, FX]	PX-3-1463	0.75						380									
475	PTN	3	081	5613-M-3081, SH 3	5	1/2" and 1" connections; Various test connections [PX, TX, FX]	3-30-651	0.5				нт		380			0.50		No		-IT		
475	PTN	3	081	5613-M-3081, SH 3	5	1/2" and 1" connections; Various test connections [PX, TX, FX]	3-30-625	1				НТ		380			1.00		No		-IT		
475	PTN	3	081	5613-M-3081, SH 3	5	1/2" and 1" connections; Various test connections [PX, TX, FX]	FX-3-1404	Not provided				HT		380	Tube OD of 0.5 assumed		0.50	380	No	Н	-IT		
476	PTN	3	081	5613-M-3081, SH 3	5	Blind Flange	Upstream of 3-30-661	10					This likely does not require heat trace.	380			Not Analys	ed	No			Verify already insulated	Y
477	PTN	3	081	5613-M-3081, SH 3	6	8" piping/ bypass CV-3-1517A [3-8"-2-D]	3-30-659 3-30-657	8				'		380			Not Analyz		No		1	Verify already Insulated	Y
478	PTN	3	081	5613-M-3081, SH 3	6	3/4" Drain/connection	3-30-499A	0.75				HT		380			0.75	380	No	Н	HT.		
483	PTN	3	081	5613-M-3081, SH 3	7	Blind Flange	Upstream of 3-30-673	10				- 1	This likely does not require heat trace.	119			Not		No		T.		
					Ļ.								This many does not require near adde.				Analyz						1
482 482		_	081 081	5613-M-3081, SH 3		3/4" drains	3-30-665 3-30-699	0.75				HT		119			0.75		No	_	HT HT		-
482	PIN	3	081	5613-M-3081, SH 3 5613-M-3081, SH 3	-	3/4" drains 8" piping/ bypass CV-3-1517B		0.75				HT I		119			0.75 Not		No No		11		$\overline{}$
484	PTN	3	081	3013-IVI-3001, 3FI 3	8	[3-8"-5-E]	3-30-667	8				'		119			Analya		l No		'		
"		·			-	[5 6 5 2]	3-30-671										/,.						
485	PTN	3	081	5613-M-3081, SH 3	8	3/4" Drain/connection	3-30-669	0.75				HT		119			0.75	110	No	Н	HT.		
486	PTN	3	081	5613-M-3081, SH 3	9	5A FW HTR Level transmitters and associated piping/valves	LIT-3-1520A	2				НТ		375			2.00	370	No	Н	HT.		
486	PTN	3	081	5613-M-3081, SH 3	9	5A FW HTR Level transmitters and associated piping/valves	LIT-3-1520B	2				НТ		375			2.00	370	No	Н	HT.		
486	PTN	3	081	5613-M-3081, SH 3	9	5A FW HTR Level transmitters and associated piping/valves	LIT-3-1520C	2				НТ		375			2.00	370	No	Н	НТ		
487	PTN	3	081	5613-M-3081, SH 3	9	1" drain	3-30-515	1				HT		387			1.00	380	No	Н	HT.		
	PTN			5613-M-3081, SH 3		1" drain	3-30-511	1				HT		387			1.00		No		HT.		
	PTN		081	5613-M-3081, SH 3		1" drain	3-30-533	1				HT		387			1.00		No		HT.		1
487			081	5613-M-3081, SH 3		1" Vent	3-30-513	1		-		HT		309			1.00		No		HT.		\vdash
487 487			081 081	5613-M-3081, SH 3 5613-M-3081, SH 3		1" Vent 1" Vent	3-30-509 3-30-531	1	-		-	HT HT		309 309		-	1.00 1.00		No No		1Т НТ		+
467	FIIN	3	001	5613-M-3081, SH 3	9	1" & 1 1/2" pipe - vent from	3-30-551	1			-	HT		309			1.00	_	No No		11 1T		+
488	PTN	3	081	3013 101 3001, 311 3	10	5A FW HTR shell to 3B condenser [3-1"-5-D, 3-1 1/2"-5-D]	FWHR-3-047	1						119			1.00	, 110					
488	PTN	3	081	5613-M-3081, SH 3	10	1" & 1 1/2" pipe - vent from 5A FW HTR shell to 3B	FWHR-3-037	1.5				нт		119			1.50	110	No	Н	НТ		
489			081	5613-M-3081, SH 3	11	1" pipe - Bypass flow orifice	FWHR-3-035	1				НТ		119			1.00	110	No	Н	НТ		
492	PTN	3		5613-M-3081, SH 3	13	Test connections [TX, PX]	PX-3-1461	0.5				HT		387			0.50		No		НТ		
493	PTN	3	081	5613-M-3081, SH 3	14	3" piping for SWLU connection to 5A FW HTR drain line 3-3"-5-D	None	3				нт		387			3.00	380	No	Н	НT		
494	PTN	3	081	5613-M-3081, SH 3	15	6B FW HTR Level transmitters and associated piping/valves	LIT-3-1518A	2				НТ		441			2.00	400	No	Н	нт		
494	PTN	3	081	5613-M-3081, SH 3	15	6B FW HTR Level transmitters and associated piping/valves	LIT-3-1518B	2				НТ		441			2.00	400	No	Н	нт		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 446 of 488

> R21002, Rev 0 Attachment N Page 81 of 123

																				Page 8	31 of 123
2054	PTN	4	089	5614-M-3089, SH 2	1 Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A N/A		523		N/A		0.500	400	No	N/A		
494	PTN	3	081	5613-M-3081, SH 3	6B FW HTR Level transmitters 15 and associated piping/valves		2			НТ		441				2.000	400	No	НТ		
495	DTN	3	081	5613-M-3081, SH 3	15 1" drain	3-30-606	1			HT		380				1.000	380	No	HT		
495		3	081	5613-M-3081, SH 3	15 1" drain	3-30-614	1			нт		380				1.000	380	No	HT		
495		3	081	5613-M-3081, SH 3	15 1" drain	3-30-725	1			HT		380				1.000	380	No	HT		
495	PTN	3	081	5613-M-3081, SH 3	15 1" Vent	3-30-604	1			HT		441				1.000	400	No	HT		
495		3	081	5613-M-3081, SH 3	15 1" Vent	3-30-612	1			HT		441				1.000	400	No	HT		
495		3	081	5613-M-3081, SH 3	15 1" Vent	3-30-724	1			НТ		441				1.000	400	No	HT		
498	PTN	3	081	5613-M-3081, SH 3	17 1" piping - bypass Orifice	FWHR-3-082	1			НТ		119				1.000	110	No	HT		
502	PTN	3	081	5613-M-3081, SH 3	1/2" and 1" connections; 18 Various test connections [PX, TX, FX]	PX-3-1464	0.75			НТ		380				0.750	380	No	НТ		
502	PTN	3	081	5613-M-3081, SH 3	1/2" and 1" connections; 18 Various test connections [PX, TX, FX]	FX-3-1405	Not provided			НТ		380	Tube OD of 0.5 assumed			0.500	380	No	НТ		
502	PTN	3	081	5613-M-3081, SH 3	1/2" and 1" connections; 18 Various test connections [PX, TX, FX]	3-30-647	0.5			НТ		380				0.500	380	No	НТ		
502	PTN	3	081	5613-M-3081, SH 3	1/2" and 1" connections; Various test connections [PX, TX, FX]	3-30-626	1			НТ		380				1.000	380	No	НТ		
503	PTN	3	081	5613-M-3081, SH 3	18 Blind Flange	Upstream of 3-30-662	10			1		380				Not	380	No	- 1	Verify already insulated	Υ
				5613-M-3081, SH 3	8" piping/ bypass CV-3-1518A					1						Not	380	No	T I	Verify already Insulated	Y
504		3	081	5613-M-3081, SH 3	19 [3-8"-5-D] 19 3/4" Drain/connection	3-30-660 3-30-499B	8			нт		380				Analyzed	200	N-	UT		
		_	081	5613-M-3081, SH 3	Dlind Flance		0.75	-		1		380				0.750 Not	380 110	No No	HT I		
510	PTN	3	081	3013 W 3001, 3113	20 Billio Flatige	Upstream of 3-30-674	10			'	This likely does not require heat trace.	119				Analyzed	110	140	'		
509	PTN	3	081	5613-M-3081, SH 3	20 3/4" drains	3-30-666	0.75			HT		119				0.750	110	No	HT		
				5613-M-3081, SH 3	8" piping/ bypass CV-3-1518B	3				1						Not	110	No	T.		
511	PTN	3	081	5542.44.2004.511.2	21 [3-8"-5-D]	3-30-668 3-30-672	8					119				Analyzed	440		1177		
512	PTN	3	081	5613-M-3081, SH 3	21 3/4" Drain/connections	3-30-698 3-30-476	0.75			HT		119				0.750	110	No	HT		
513	PTN	3	081	5613-M-3081, SH 3	5B FW HTR Level transmitters 22 and associated piping/valves	s	2			НТ		375				2.000	370	No	нт		
513	PTN	3	081	5613-M-3081, SH 3	5B FW HTR Level transmitters 22 and associated piping/valves		2			нт		375				2.000	370	No	НТ		
513	PTN	3	081	5613-M-3081, SH 3	5B FW HTR Level transmitters and associated piping/valves		2			HT		375				2.000	370	No	НТ		
514	PTN	3	081	5613-M-3081, SH 3	22 1" drain	3-30-514	1	1		HT		387				1.000	380	No	HT		
514		3	081	5613-M-3081, SH 3	22 1" drain	3-30-510	1			HT		387				1.000	380	No	HT		
514		3	081	5613-M-3081, SH 3	22 1" drain	3-30-537	1			HT		387				1.000	380	No	HT		
514		3	081	5613-M-3081, SH 3	22 1" Vent	3-30-512	1			HT		309				1.000	300	No	HT		
514		3	081	5613-M-3081, SH 3	22 1" Vent	3-30-508	1	-		HT		309				1.000	300	No	HT		
514		3	081	5613-M-3081, SH 3 5613-M-3081, SH 3	22 1" Vent	3-30-535	1	+	+	HT HT	+	309			-	1.000	300 110	 No No	HT HT		
516	PTN	3	081	3013 141 3001, 311 3	24 1" pipe - Bypass flow orifice	FWHR-3-042	1	1	1	"'		119				1.000	110	140	- 11		
519	PTN	3	081	5613-M-3081, SH 3	26 Drain	3-30120	1			нт		387				1.000	380	No	HT		
519		3	081	5613-M-3081, SH 3	26 Test connections [TX, PX]	PX-3-1462	0.5			HT		387				0.500	380	No	HT		
520	PTN	3	081	5613-M-3081, SH 3	3" piping for SWLU connection to 5B FW HTR drain line	None	3			НТ		387				3.000	380	No	нт		
522	PTN	3	081	5613-M-3081, SH 3	3-3"-5-D 5A 5A FWHTR Tank Relief Valve FW RV-3-3422	RV-3-3422	Not Provided			HT		387	Tube OD of 0.5 assumed			0.500	380	No	НТ		
524	PTN	3	081	5613-M-3081, SH 3	5B 5B FWHTR Tank Relief Valve FW RV-3-3423	RV-3-3423	Not Provided			НТ		387	Tube OD of 0.5 assumed			0.500	380	No	HT		
526	_	3	081	5613-M-3081, SH 3 5613-M-3081, SH 3	6A 6A FWHTR Tank Relief Valve FW RV-3-3424 6A 6A FWHTR 1 1/2" drains	RV-3-3424	Not Provided			НТ		380	Tube OD of 0.5 assumed			0.500 1.500	380	No No	нт		
527		3	081	5613-M-3081, SH 3	FW 6A 6A FWHTR 1 1/2" drains	FWHR-3-038	1.5			нт		380				1.500	380	No	нт		
527 528	_	3	081	5613-M-3081, SH 3	FW 6A Capped pipe stub on 6A FW	3-30-627 FWH 6A	1.5 Not	1		HT		380	Tube OD of 0.5 assumed			0.500	380	No	HT		
530	_	3	081	5613-M-3081, SH 3	FW HTR 6B 6B FWHTR Tank Relief Valve	RV-3-3425	Provided Not			HT		380	Tube OD of 0.5 assumed			0.500	380	No	НТ		
		-		5613-M-3081, SH 3	FW RV-3-3425 6B 6B FWHTR 1 1/2" tank drains		Provided	1		HT			. a.z. a.z. a.z. a.z. a.z.			1.500	380	 No	HT		
531	PTN	3	081	2223 3001, 3113	FW	FWHR-3-039	1.5					380				1.500	330	0	.11		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 447 of 488

> R21002, Rev 0 Attachment N Page 82 of 123

																				Page 82 o	f 123
2054	PTN	4	089	5614-M-3089, SH 2	1 Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A N/A	523		N/A		0.500	400		No	N/A		
531	PTN	3	081	5613-M-3081, SH 3	6B 6B FWHTR 1 1/2" tank drains FW	3-30-628	1.5			НТ	380				1.500	380		No	НТ		
532	PTN	3	081	5613-M-3081, SH 3	6B Capped pipe stub on 6B FW FW HTR	FWH 6B	Not Provided			HT	380	Tube OD of 0.5 assumed			0.500	380		No	HT		
422	PTN	3	081	5613-M-3081, SH 2	2" vent RHTR Drain Tank 3A to ES system/ FW HTR 6A [3-2"-2-C]					нт	513					400		No	НТ		
424	PTN	3	081	5613-M-3081, SH 2	RHTR Drain Tank 3A Level 3 transmitters and associated					HT	513					400		No	НТ		
425	PTN	3	081	5613-M-3081, SH 2	piping/valves 3 1" Vents and drains					HT	513					400		No	HT		
426	PTN	3	081	5613-M-3081, SH 2	Flow indication and associated valves, 1/2" tubing. [FE/FI 3-5120] [3-1/2"-2-C]	FI-3-5120	0.5	12	н	N HT	513		Н		0.500	400	8.5	No	НТ	verify ambient temp; if hot no protection required	Y
430		3	081	5613-M-3081, SH 2	4 3/4" Drain/connection					HT	513					400		No	HT		
431 432		3	081 081	5613-M-3081, SH 2 5613-M-3081, SH 2	4 3/4" vent 4 Blind Flange					HT HT	513 513					400 400		No No	HT HT		
434		3	081	5613-M-3081, SH 2	5 3/4" Drain/connection					нт	513					400		No	HT		
433	PTN	3	081	5613-M-3081, SH 2	10" piping/ bypass FE-3-5120 5 [3-10"-2-C]					I	513					400		No	I		
436	PTN	3	081	5613-M-3081, SH 2 5613-M-3081, SH 2	6 3/4"drain/connection					HT I	513					400		No	HT I		
435		3	081		8" piping/ bypass CV-3-1505 6 [3-8"-2-C, 3-8"-5-E]						513					400		No			
440 441		3	081 081	5613-M-3081, SH 2 5613-M-3081, SH 2	7 3/4"drain/connection 7 Blind Flange					HT HT	513 513					400 400		No No	HT HT		
443		3	081	5613-M-3081, SH 2	8 3/4" Drain/connection					HT	513					400		No	HT		
442	PTN	3	081	5613-M-3081, SH 2	8" piping/ bypass CV-3-1515 8 [3-8"-2-C, 3-8"-5-E]					I	513					400		No	I		
444	PTN	3	081	5613-M-3081, SH 2	9 2" vent RHTR Drain Tank 3B to ES system/ FW HTR 6B [3-2"-2-C]					НТ	513					400		No	НТ		
446	PTN	3	081	5613-M-3081, SH 2	RHTR Drain Tank 3B Level 11 transmitters and associated piping/valves	LIT-3-1506A	0.375	12	TV,D	Y N/A	513		BV-I	BV conservative due to downward portion	0.375		Not alyzed	No	N/A	Rosemount accoustic level. Will have trickle flow in column	N
446	PTN	3	081	5613-M-3081, SH 2	RHTR Drain Tank 3B Level 11 transmitters and associated piping/valves	LIT-3-1506B	0.375	12	TV,D	Y N/A	513		BV-I	BV conservative due to downward portion	0.375		Not alyzed	No	N/A	Rosemount accoustic level. Will have trickle flow in column	N
446	PTN	3	081	5613-M-3081, SH 2	RHTR Drain Tank 3B Level 11 transmitters and associated piping/valves	LIT-3-1506C	0.375	12	TV,D	Y N/A	513		BV-I	BV conservative due to downward portion	0.375		Not alyzed	No	N/A	Rosemount accoustic level. Will have trickle flow in column	N
446	PTN	3	081	5613-M-3081, SH 2	RHTR Drain Tank 3B Level 11 transmitters and associated piping/valves	LIT-3-1505A	0.375	12	TV,D	Y N/A	513		BV-I	BV conservative due to downward portion	0.375		Not alyzed	No	N/A	Rosemount accoustic level. Will have trickle flow in column	N
446	PTN	3	081	5613-M-3081, SH 2	RHTR Drain Tank 3B Level 11 transmitters and associated piping/valves	LIT-3-1506B	0.375	12	TV,D	Y N/A	513		BV-I	BV conservative due to downward portion	0.375		Not alyzed	No	N/A	Rosemount accoustic level. Will have trickle flow in column	N
446	PTN	3	081	5613-M-3081, SH 2	RHTR Drain Tank 3B Level 11 transmitters and associated piping/valves	LIT-3-1505C	0.375	12	TV,D	Y N/A	513		BV-I	BV conservative due to downward portion	0.375		Not alyzed	No	N/A	Rosemount accoustic level. Will have trickle flow in column	N
447	PTN	3	081	5613-M-3081, SH 2	11 1" Vents and drains					HT	513					400		No	HT		
448	PTN	3	081	5613-M-3081, SH 2	Flow indication and associated valves, 1/2" tubing. [FE/FI 3-5121] [3-1/2"-2-c]	FI-3-5121	0.5	8	н	N HT	513		Н		0.500	400	8.5	Yes	No Protection Required	verify ambient temp; if hot no protection required	Y
452	PTN	3	081	5613-M-3081, SH 2	12 3/4" Drain/connection					НТ	513					400		No	HT		$\overline{}$
453	PTN	3	081	5613-M-3081, SH 2	12 3/4" vent					HT	513					400		No	HT		
454 456			081 081	5613-M-3081, SH 2 5613-M-3081, SH 2	12 Blind Flange 13 3/4" Drain/connection		1	-		HT HT	513 513					400	-	No No	HT HT		
455		3	081	5613-M-3081, SH 2	13 3/4 Drain/connection 10" piping/ bypass FE-3-5121 13 [3-10"-2-C]					HT	513					400	\top	No	HT		
458	PTN	3	081	5613-M-3081, SH 2	14 3/4"drain/connection		+		<u> </u>	HT	513			+		400	-	No	HT		
457		3	081	5613-M-3081, SH 2	8" piping/ bypass CV-3-1505 14 [3-8"-2-C, 3-8"-5-D]					I	513					400		No	I		
462 463			081 081	5613-M-3081, SH 2 5613-M-3081, SH 2	15 3/4"drain/connection 15 Blind Flange					HT HT	513 513					400 400		No No	HT HT		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 448 of 488

> R21002, Rev 0 Attachment N Page 83 of 123

																				Page 83 01 123
2054 P	TN 4	4 0)89	5614-M-3089, SH 2	1 Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A N/	523		N/A		0.500	400		No	N/A	
465 P	TN 3	3 0	081	5613-M-3081, SH 2	16 3/4" Drain/connection					H1	513					400		No	HT	
				5613-M-3081, SH 2	8" piping/ bypass CV-3-1516					- 1						400		No	- 1	
464 P	TN 3	3 0	081		16 [3-8"-2-C, 3-8"-5-E]						513									
363 P	TN 2	2 0	081	5613-M-3081, SH 1	1 1/2" Vent; capped pipe	3-30-771	0.5	_		H1	513				0.500	400		No	HT	
				5613-M-3081, SH 1	1/2" Vent; capped pipe	3-30-705	Not	1		'''					0.500	400		No	0	
363 P	TN 3	3 0	081		1		provided				513	Tube OD of 0.5 assumed								
365 P	TN 3	3 0	081	5613-M-3081, SH 1	Test Connection (PX) and 1/2 piping	PX-3-1411	0.5			Н	513				0.500	400		No	НТ	
366 P	TN 3	3 0	081	5613-M-3081, SH 1	PI & associated 3/4" pipe & Valve	PI-3-6686	0.75			Н	441				0.750	400		No	HT	
370 P	TN 3	3 0	081	5613-M-3081, SH 1	3 (4) Blind flanged sections	None	Not provided			Н	441	Tube OD of 0.5 assumed			0.500	400		No	НТ	
370 P	TN 3	3 0	081	5613-M-3081, SH 1	3 (4) Blind flanged sections	None	Not provided				441	Tube OD of 0.5 assumed			0.500	400		No	0	
370 P	TN 3	3 0	081	5613-M-3081, SH 1	3 (4) Blind flanged sections	None	Not provided				441	Tube OD of 0.5 assumed			0.500	400		No	0	
370 P		3 0	081	5613-M-3081, SH 1	3 (4) Blind flanged sections	None	Not provided				441	Tube OD of 0.5 assumed			0.500	400		No	0	
368 P				5613-M-3081, SH 1	3 1" Drains	3-2106	1	_		HT					1.000	400		No	HT	
368 P			081	5613-M-3081, SH 1	3 1" Drains 3 3/4" Vents	3-2107 3-2124	0.75	-		H1	441				1.000	400 400		No No	0 HT	
369 P		_)81)81	5613-M-3081, SH 1 5613-M-3081, SH 1	3 3/4" Vents 3 3/4" Vents	3-2124	0.75			H H	441		+	+	0.750 0.750	400		No No	0	
371 P			081	5613-M-3081, SH 1	4 1" piping/ reducers - bypass Valve 3-30-1130	3-2092	1			н	441				1.000	400		No	НТ	
	-			5613-M-3081, SH 1	3" piping to 3B Condenser										1.000	100		No	0	
372 P	TN 3	3 0	081		5 [3"-5CM] 1" orifice bypass line	3-2093	1				108									
				5613-M-3081, SH 1	[1"-3CM] 3" piping to 3B Condenser					н					3.000	100		No	НТ	
372 P	TN 3	3 0	081		5 [3"-5CM] 1" orifice bypass line [1"-3CM]	RO-3-6686B	3				108									
374 P	TN 3	3 0	081	5613-M-3081, SH 1	5 1" Drain	3-2108	0.75	-		H1	108				0.750	100		No	HT	
373 P				5613-M-3081, SH 1	5 3/4" Vent	3-2126	0.75			H1					0.750	100		No	HT	
376 P	TN 3		081	5613-M-3081, SH 1	6 3/4" Vent	3-2122	0.75			HT	441				0.750	400		No	HT	
380 P	TN 3	3 0	081	5613-M-3081, SH 1	7 3/4" Drain/connection	3-30-1093	0.75	_		H1	387				0.750	380		No	HT	
381 P	TN 3	3 0	081	5613-M-3081, SH 1	8 1/2" pipe - 1/4 SS Tubing to Sample System	3-30-689	0.5			н	387				0.500	380		No	НТ	
	TN 3		081	5613-M-3081, SH 1	8 Test Connection (PX) and associated piping (3/8")	PX-3-1450	0.375			н	387				0.375	380		No	НТ	
386 P	TN 3	3 0	081	5613-M-3081, SH 1	9 3/4" Drain/connection	3-30-751	0.75	-		Hī	387		-	-	0.750	380		No	HT	
387 P	TN 3	3 0	081	5613-M-3081, SH 1	8" Pipe to 3B Condenser 10 [3-8"-5-D] [Bypass CV-3-1503B]	3-30-754	8				387				Not Analyzed	380		No	ı	Verify already Insulated Y
388 P	TN 3	3 0	081	5613-M-3081, SH 1	10 3/4" Drain/connection	3-30-753	0.75			HI	119				0.750	110		No	HT	
390 P	TN 3	3 0	081	5613-M-3081, SH 1	Level transmitters and	LIT-3-1503A	2			H1	441				2.000	400		No	HT	
390 P	_		081	5613-M-3081, SH 1	associated piping/valves Level transmitters and	LIT-3-1503B	2				441				2.000	400		No	0	
390 P			081	5613-M-3081, SH 1	associated piping/vaives Level transmitters and	LIT-3-1503C	2				441				2.000	400		No	0	
392 P				5613-M-3081, SH 1	associated piping/valves 12 1" Drains	3-30-1081	1			H1			+	+	1.000	380		No	HT	
392 P		_	081	5613-M-3081, SH 1	12 1" Drains	3-30-1081	1	1		- '''	387		1	1	1.000	380		No	0	
392 P	TN 3			5613-M-3081, SH 1	12 1" Drains	3-30-1083	1				387				1.000	380		No	0	
391 P		_	081	5613-M-3081, SH 1	12 1" Vents	3-30-1040	1			H1					1.000	300		No	HT	
391 P				5613-M-3081, SH 1	12 1" Vents	3-30-1041	1	+	-		309		-	-	1.000	300		No	0	
391 P)81)81	5613-M-3081, SH 1 5613-M-3081, SH 1	12 1" Vents 13 1/2" Vent; capped pipe	3-30-1042 3-30-770	0.75	+	+	H1	309 513		+	+	1.000 0.750	300 400		No No	0 HT	
	TN 3	3 0:	181	5613-M-3081, SH 1	Test Connection (PX) and 1/2	PX-3-1410	0.5			H1	513				0.500	400		No	нт	
397 P	-	_	081	5613-M-3081, SH 1	piping PI & associated 3/4" pipe &	PI-3-6685	0.75			H1	441				0.750	400		No	HT	
401 P	_	_	081	5613-M-3081, SH 1	Valve (4) Blind flanged sections	None	Not			н		Tube OD of 0.5 assumed			0.500	400		No	НТ	
399 P				5613-M-3081, SH 1	15 1" Drains	3-2102	provided 1			H1			+	+	1.000	400	_	No	HT	
399 P				5613-M-3081, SH 1	15 1" Drains	3-2102	1	+		- "	441		+	1	1.000	400		No	0	
399 P	TN 3		081	5613-M-3081, SH 1	15 1" Drains	3-2104	1				441				1.000	400		No	0	
400 P	TN 3	3 0		5613-M-3081, SH 1	15 3/4" Vents	3-2120	0.75			HT					0.750	400		No	HT	
400 P	TN 3	3 0	081	5613-M-3081, SH 1	15 3/4" Vents	3-2119	0.75	+			441			1	0.750	400		No	0	
402 P	TN 3	3 0	081	5613-M-3081, SH 1	1" piping/ reducers - bypass Valve 3-30-1130	3-2090	1			Н	441				1.000	400		No	НТ	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 449 of 488

> R21002, Rev 0 Attachment N Page 84 of 123

																				Page 84 o	of 123
2054 P	ΓN 4	089	5614-M-3089, SH 2	1	Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A	523		N/A	0.500	400		No	N/A		
			5613-M-3081, SH 1	+	3" piping to 3B Condenser										3.000	400		No	0		\vdash
403 P	ΓN 3	081	,	17	[3"-5CM]	3-2090	3					441									
403	3	081		1/	1" orifice bypass line	3-2030	,					441									
\vdash			5613-M-3081, SH 1	+	[1"-3CM] 3" piping to 3B Condenser	RO-3-6685B					HT				3.000	100		No	HT		-
			3013-101-3081, 311 1		[3"-5CM]	KO-3-0083B					'''				3.000	100		INO	- ""		
403 P	ΓN 3	081		17	1" orifice bypass line		3					108									
					[1"-3CM]																
405 P		081	5613-M-3081, SH 1 5613-M-3081, SH 1		1" Drain 3/4" Vent	3-2105	0.75				HT HT	108 108			1.000 0.750	100 100		No No	HT HT		
404 P		081 081	5613-M-3081, SH 1		3/4" Drain/connection	3-2121 3-30-1121	0.75				HT	387			0.750			No	HT		
			5613-M-3081, SH 1	19	1/2" pipe - 1/4 SS Tubing to						HT				0.500	380		No	HT		
410 P	IN 3	081		19	Sample System	3-30-688	0.5					387									
411 P	ΓN 3	081	5613-M-3081, SH 1	19	Test Connection (PX) and	PX-3-1449	0.375				HT	387			0.375	380		No	HT		
415 P	IN 3	081	5613-M-3081, SH 1	20	associated piping (3/8") 3/4" Drain/connection	3-30-1125	0.75				HT	387			0.750	380		No	HT		_
125		001	5613-M-3081, SH 1	120	8" Pipe to 3B Condenser	3-30-1020	0.75				1	307			Not	380		No	- 1	Verify already Insulated	Y
416 P	ΓN 3	081		21	[3-8"-5-D]		8					387			Analyze	d l					
L				-	[Bypass CV-3-1523B]																
417 P	TN 3	081	5613-M-3081, SH 1 5613-M-3081, SH 1	21	3/4" Drain/connection 10" Piping from Drain Tks	3-30-1126	0.75				HT	387			0.750 Not	380 110		No No	HT		-
418 P	ΓN 3	081	3013-IVI-3001, 3H 1	22	outlet control valve [CV-3-	3-30-1017	10				'	119			Analyze			No			
					1523B) to 3B Condenser			<u></u>	<u></u>						, aldyzes	<u></u>					
419 P	TN 3	081	5613-M-3081, SH 1	23	Level transmitters and	LIT-3-1523A	2				HT	441			2.000	400		No	HT		
H-1			EC42 NA 2004 CUL4	+	associated piping/valves		_								2.000	400		NI-			-
419 P	ΓN 3	081	5613-M-3081, SH 1	23	Level transmitters and associated piping/valves	LIT-3-1523B	2					441			2.000	400		No	0		
440 0	FAL 2	004	5613-M-3081, SH 1	22	Level transmitters and	LIT 2 4522C	2					444			2.000	400		No	0		
419 P		081		23	associated piping/valves	LIT-3-1523C	2					441									
421 P		081	5613-M-3081, SH 1		1" Drains	3-30-1087	1				HT	387			1.000			No	HT		
421 P		081 081	5613-M-3081, SH 1 5613-M-3081, SH 1		1" Drains 1" Drains	3-30-1088 3-30-1089	1					387 387			1.000 1.000	380 380		No	0		-
421 P		081	5613-M-3081, SH 1		1" Vents	3-30-1089	1				HT	387			1.000	300		No No	HT		
420 P	ΓN 3	081	5613-M-3081, SH 1		1" Vents	3-30-1048	1					309			1.000	300		No	0		
420 P	ΓN 3	081	5613-M-3081, SH 1	23	1" Vents	3-30-1049	1					309			1.000	300		No	0		
			5613-M-3080, SH 1		Level switches for Gland						HT					350		No	HT		
					Steam Condenser Drain Pump																
353 P	ΓN 3	080		3	Start/stop control of pump							350									
					and control room																
					annunciation (high level).																
			F.C.4.2. 8.4. 20202. CU. 4	_												250					
			5613-M-3080, SH 1		Level switch for condenser pit sump pump with control						HT					350		No	HT		
356 P	ΓN 3	080		5	room annunciation and alarm							350									
					(high)																
\vdash																					
358 P	TN 3	080	5613-M-3080, SH 1 5613-M-3080, SH 1	5	1" vent 4", 6" piping						HT	350				350 350	-	No No	HT I		
357 P	ΓN 3	080	3013-W-3000, 3H I	5	4,0 piping						'	350				330		INU			
					Condenser Pit Sump			<u></u>	<u></u>												
			5613-M-3078, SH 1		2" Pipe up to locked closed											400		No	- 1		
1393 P	ΓN 3	SGWLU /		2	valves during normal						1	518									
		078			operation SGWL-3-011, -031, - 049																
			5613-M-3078, SH 1	+	2" Pipe up to locked closed											400		No	1		
1395 P	ΓN 3	SGWLU /			valves during normal						.	518									
1333 P	3	078		4	operation SGWL-3-007, -025, -						'	518									
			5613-M-3078, SH 1	+	042 3/4" piping (x3)			0.5	TV I	Y	HT			TV-I	0.500	400	20	Voc	No		-
			1		3/4 hihilik (x2)			0.5	TV-I	'	"'			I V-I	0.500	400	20	Yes	Protection		
1295 P	N 3	MSS / 072		5	Main steam to Wet Layup	SGWL-3-022	0.75					523	Tube OD of 0.5 assumed						Required		
					System																
			5613-M-3078, SH 1		3/4" piping (x3)			0.5	TV-I	Y	HT			TV-I	0.500	400	20	Yes	No		
1295 P	TN 3	MSS / 072		5	Main steam to Wet Layup	SGWL-3-028	0.75					523	Tube OD of 0.5 assumed						Protection Required		
					System System														Required		
			5613-M-3078, SH 1	1	3/4" piping (x3)			0.5	TV-I	Y	НТ			TV-I	0.500	400	20	Yes	No		
1295 P	ΓN 3	MSS / 072		5		SGWL-3-046	0.75					523	Tube OD of 0.5 assumed						Protection		
		' -			Main steam to Wet Layup														Required		
		SGWLU /	5613-M-3078, SH 1	+	System 3/4" Pipe to SGWL-3-022, -									N/A		400		No	N/A		+
1396 P	TN 3	078		5	028, -046	N/A	N/A	N/A	N/A	N/A	N/A	518									

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 450 of 488

> R21002, Rev 0 Attachment N Page 85 of 123

																				Page 85 of 123
2054	PTN 4	4	089	5614-M-3089, SH 2	1	Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A	523		N/A	0.500	400	No	N/A	
1153	PTN 3	3 FW	WS / 074	5613-M-3074, SH 5	1	LEFM pressure, flow and temperature transmitters + Pressure test points and Vent	FE-3-478	Not provided				НТ	436	Tube OD of 0.5 assumed		0.500	400	No	НТ	
1153	PTN 3	3 FW	WS / 074	5613-M-3074, SH 5	1	LEFM pressure, flow and temperature transmitters + Pressure test points and Vent	PX-3-478AX	Not provided				нт	436	Tube OD of 0.5 assumed		0.500	400	No	НТ	
1153	PTN 3	3 FW	WS / 074	5613-M-3074, SH 5	1	LEFM pressure, flow and temperature transmitters + Pressure test points and Vent	PX-3-478BX	Not provided				нт	436	Tube OD of 0.5 assumed		0.500	400	No	нт	
1153	PTN 3	3 FW	WS / 074	5613-M-3074, SH 5	1	LEFM pressure, flow and temperature transmitters + Pressure test points and Vent	PT-478AX	Not provided				НТ	436	Tube OD of 0.5 assumed		0.500	400	No	НТ	
1153	PTN 3	3 FW	WS / 074	5613-M-3074, SH 5	1	LEFM pressure, flow and temperature transmitters + Pressure test points and Vent	PT-3-478BX	Not provided				НТ	436	Tube OD of 0.5 assumed		0.500	400	No	НТ	
1153	PTN 3	3 FW	WS / 074	5613-M-3074, SH 5	1	LEFM pressure, flow and temperature transmitters + Pressure test points and Vent	3-20-1365	Not provided				НТ	436	Tube OD of 0.5 assumed		0.500	400	No	НТ	
1153	PTN 3	3 FW	WS / 074	5613-M-3074, SH 5	1	LEFM pressure, flow and temperature transmitters + Pressure test points and Vent	FE-3-488	Not provided				НТ	436	Tube OD of 0.5 assumed		0.500	400	No	НТ	
1153	PTN 3	3 FW	WS / 074	5613-M-3074, SH 5	1	LEFM pressure, flow and temperature transmitters + Pressure test points and Vent	PX-3-488AX	Not provided				НТ	436	Tube OD of 0.5 assumed		0.500	400	No	НТ	
1153	PTN 3	3 FW	WS / 074	5613-M-3074, SH 5	1	LEFM pressure, flow and temperature transmitters + Pressure test points and Vent	PX-3-488BX	Not provided				НТ	436	Tube OD of 0.5 assumed		0.500	400	No	НТ	
1153	PTN 3	3 FW	WS / 074	5613-M-3074, SH 5	1	LEFM pressure, flow and temperature transmitters + Pressure test points and Vent	PT-488AX	Not provided				НТ	436	Tube OD of 0.5 assumed		0.500	400	No	HT	
1153	PTN 3	3 FW	WS / 074	5613-M-3074, SH 5	1	LEFM pressure, flow and temperature transmitters + Pressure test points and Vent	PT-3-488BX	Not provided				НТ	436	Tube OD of 0.5 assumed		0.500	400	No	НТ	
1153	PTN 3	3 FW	WS / 074	5613-M-3074, SH 5	1	LEFM pressure, flow and temperature transmitters + Pressure test points and Vent	3-20-1366	Not provided				нт	436	Tube OD of 0.5 assumed		0.500	400	No	НТ	
1153	PTN 3	3 FW	WS / 074	5613-M-3074, SH 5	1	LEFM pressure, flow and temperature transmitters + Pressure test points and Vent	FE-3-498	Not provided				нт	436	Tube OD of 0.5 assumed		0.500	400	No	НТ	
1153	PTN 3	3 FW	WS / 074	5613-M-3074, SH 5	1	LEFM pressure, flow and temperature transmitters + Pressure test points and Vent	PX-3-498AX	Not provided				нт	436	Tube OD of 0.5 assumed		0.500	400	No	НТ	
1153	PTN 3	3 FW	WS / 074	5613-M-3074, SH 5	1	LEFM pressure, flow and temperature transmitters + Pressure test points and Vent	PX-3-498BX	Not provided				нт	436	Tube OD of 0.5 assumed		0.500	400	No	НТ	
1153	PTN 3	3 FW		5613-M-3074, SH 5	1	LEFM pressure, flow and temperature transmitters + Pressure test points and Vent	PT-498AX	Not provided				НТ	436	Tube OD of 0.5 assumed		0.500	400	No	НТ	
1153	PTN 3	3 FW	WS / 074	5613-M-3074, SH 5	1	LEFM pressure, flow and temperature transmitters + Pressure test points and Vent	PT-3-498BX	Not provided				НТ	436	Tube OD of 0.5 assumed		0.500	400	No	НТ	
1153	PTN 3	3 FW		5613-M-3074, SH 5	1	LEFM pressure, flow and temperature transmitters + Pressure test points and Vent	3-20-1367	Not provided				НТ	436	Tube OD of 0.5 assumed		0.500	400	No	НТ	
				5613-M-3074, Sh 4	1		SGB-3-082C	0.75		L		HT	450			0.750	400	 No	HT	
				5613-M-3074, Sh 4	1		SGB-3-082B	0.75				HT	450	<u> </u>			400	No	HT	
1211	PTN 3	3 FW	WS / 074	5613-M-3074, Sh 4	1	3/4" & 2" CV bypass line	SGB-3-082A	0.75				HT	450		1	0.750	400	No	HT	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 451 of 488

> R21002, Rev 0 Attachment N Page 86 of 123

																							Page 86	of 123
2054	PTN 4	1 08	089 56	514-M-3089, SH 2	1	Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523		N/A		0.500	400	N	0	N/A		
1208	PTN 3	FWS	5/074	513-M-3074, Sh 4	1	Flow transmitters	FT-3-6277C	0.75	40	H,D	N	НТ		450		BV	BV conservative due to downward portion	0.750	400 ().5 N	0	НТ	нт	N
1208	TN 3	FWS	S / 074 56	513-M-3074, Sh 4	1	Flow transmitters	FT-3-6277B	0.75	40	H,D	N	HT		450		BV	BV conservative due to downward portion	0.750	400 (0.5 N	0	HT	HT	N
1208 I	PTN 3	FWS	56 5 / 074	513-M-3074, Sh 4	1	Flow transmitters	FT-3-6277A	0.75	40	H,D	N	HT		450		BV	BV conservative due to downward portion	0.750	400 (0.5 N	0	HT	нт	N
1209 I	TN 3	FWS	S / 074 56	513-M-3074, Sh 4	1	Temperature indication	N/A	N/A				HT	No heat trace required for TIs.	450					400	N	0	HT		
1213 I	TN 3			513-M-3074, Sh 4	1	3/4" manual vents	SGB-3-052	0.75				HT		450				0.750	400	N	0	HT		
1213 I				513-M-3074, Sh 4	1	3/4" manual vents	SGB-3-051	0.75				HT		450				0.750	400	N	0	HT		
1213 I	TN 3	FWS	S / 074 56	513-M-3074, Sh 4	1	3/4" manual vents	SGB-3-050	0.75				HT		450				0.750	400	N-	0	HT		
1212 I	TN 3	FWS	S / 074 56	513-M-3074, Sh 4	1	3/4" test connections	SGB-3-044	0.75				HT		450				0.750	400	N	0	HT		
1212 I	TN 3	FWS	S / 074 56	513-M-3074, Sh 4	1	3/4" test connections	SGB-3-045	0.75				HT		450				0.750	400	N	0	HT		
1212	TN 3	FWS	S / 074 56	513-M-3074, Sh 4	1	3/4" test connections	SGB-3-046	0.75				HT		450				0.750	400	N	0	HT		\top
1212	TN 3			513-M-3074, Sh 4	1	3/4" test connections	SGB-3-047	0.75				HT		450				0.750	400	N		HT		
1212 I	TN 3	FWS	S / 074 56	513-M-3074. Sh 4	1	3/4" test connections	SGB-3-048	0.75				нт		450				0.750	400	N	0	HT		
1212				513-M-3074, Sh 4	1	3/4" test connections	SGB-3-049	0.75				нт		450				0.750	400	N		HT		_
1214			56	513-M-3074, Sh 4	2	Blowdown Tank level	LC-3-6265B	0.375	60	H,D	N	N/A		365		BV	BV conservative due to downward portion	0.375	360 N	lot N	_	N/A		
			56	513-M-3074, Sh 4								НТ				H-I	dominara portion	0.375		0.7 Ye	25	No		+
1214 I	PTN 3	FWS	S / 074	,	2	Blowdown Tank level instrumentation lines	LT-6265	0.375	14	Н	Υ			365								Protection		
		_	56	513-M-3074, Sh 4		Blowdown Tank level							condensation will maintain flow through			N/A		0.500	360	N-	_	Required N/A		+
1214 I	PTN 3	FWS.	5 / 0 / 4		2	instrumentation lines	LSH-3-6266	0.5	N/A	N/A	N/A	N/A	switch	365		N/A		0.500	300			19/4		
1214 I	PTN 3	FWS.	S / 074 56	513-M-3074, Sh 4	2	Blowdown Tank level instrumentation lines	LSL-3-6266	1	N/A	N/A	N/A	N/A	condensation will maintain flow through switch	365		N/A		1.000	360	N/	0	N/A		
1214 I	PTN 3	FWS	S / 074 56	513-M-3074, Sh 4	2	Blowdown Tank level instrumentation lines	LG-3-6290	0.75				HT		365				0.750	360	N	0	HT		
1214 I	TN 3	FWS	S / 074 56	513-M-3074, Sh 4	2	Blowdown Tank level instrumentation lines	SGB-3-087	0.5				HT		365				0.500	360	N	0	HT		
1214 I	PTN 3	FWS	S / 074 56	513-M-3074, Sh 4	2	Blowdown Tank level instrumentation lines	SGB-3-088	0.5				HT		365				0.500	360	N	0	HT		
1214 I	TN 3	FWS	S / 074 56	613-M-3074, Sh 4	2	Blowdown Tank level instrumentation lines	SGB-3-093	0.5				НТ		365				0.500	360	N	0	HT		
1214 I	TN 3	FWS.	S / 074 56	513-M-3074, Sh 4	2	Blowdown Tank level	SGB-3-094	0.5				НТ		365				0.500	360	N	0	HT		
1214 I	TN 3	FWS.	S / 074 56	513-M-3074, Sh 4	2	Blowdown Tank level instrumentation lines	SGB-3-107	0.5				НТ		365				0.500	360	N	0	HT		
1214 I	TN 3	FWS	S / 074 56	613-M-3074, Sh 4	2	Blowdown Tank level instrumentation lines	SGB-3-106	0.5				НТ		365				0.500	360	N	0	HT		
1214 I	TN 3	FWS	5/ 074	613-M-3074, Sh 4	2	Blowdown Tank level instrumentation lines	SGB-3-097	0.5				НТ		365				0.500	360	N	0	HT		
1214 I	TN 3	FWS	S / 074 56	513-M-3074, Sh 4	2	Blowdown Tank level instrumentation lines	SGB-3-100	0.5				НТ		365				0.500	360	N	0	HT		
1214 I	PTN 3	FWS	S / 074 56	613-M-3074, Sh 4	2	Blowdown Tank level instrumentation lines	SGB-3-101	0.5				НТ		365				0.500	360	N	0	HT		
1214 I	PTN 3	FWS	5/ 074	513-M-3074, Sh 4	2	Blowdown Tank level instrumentation lines	SGB-3-102	1.5				HT		365				1.500	360	N	0	HT		
1214	TN 3	FWS	S / 074 56	513-M-3074, Sh 4	2	Blowdown Tank level instrumentation lines	SGB-3-103	1.5				НТ		365				1.500	360	N	0	HT		
1225 I	TN 3	FWS	S / 074 56	513-M-3074, Sh 4	4	3/4" strainer bypass	SGB-3-078	0.75				HT		380				0.750	380	N	0	HT		
1224	PTN 3	B FWS		513-M-3074, Sh 4	4	1 1/2" & 2" blowdown tank steam discharge to the condenser	ST-3-59	1.5	N/A	N/A	N/A	N/A	Steam traps and bypass are designed to drain condensate to condenser. Line will therefore have continuous flow. Bypass is horizontal. Draine is less than 4" long and will not freeze with process	380		N/A		1.500	380	N	0	N/A		
												1	temperature at 212							1				
1226 I	TN :	FWS	S / 074 56	513-M-3074, Sh 4	4	Manual drains	SGB-3-058	1		1		HT		380				1.000	380	N	0	HT		
				513-M-3074, Sh 4	4	Manual drains	SGB-3-079	0.75				HT		380				0.750	380	N	_	HT		$\overline{}$
				513-M-3074, Sh 4	5	Manual vents	SGB-3-062	0.5				HT		365				0.500	360	N	_	HT		+
				513-M-3074, Sh 4	5	Manual vents	SGB-3-063	0.75				HT		365				0.750	360	N	_	HT		+
			56	513-M-3074, Sh 4		12", 16", & 20" blowdown						1						Not	360	N			Verify already Insulated	Y
1227			5 / 074	512 M 2074 Ch 4	5	tank steam discharge to extraction steam 2 1/2" waste holdup tank	CV-3-6267B	10				HT		365				Analyzed	380			UT		
1230 I		FWS	5/0/4	513-M-3074, Sh 4	7	connection	SGB-3-069	2.5						380				2.000		N N		HT		\perp
1231 I	PTN 3	FWS	5 / 074	513-M-3074, Sh 4	8	2" wet layup line	Downstream of SGB-3- 009	Not provided				HT		450	Tube OD of 0.5 assumed			0.500	400	N		HT		\perp
1231	PTN 3	FWS.	5/0/4	513-M-3074, Sh 4	8	2" wet layup line	Downstream of SGB-3- 008	Not provided				HT		450	Tube OD of 0.5 assumed			0.500	400	N-		HT		\perp
1231			5/0/4	513-M-3074, Sh 4	8	2" wet layup line	Downstream of SGB-3- 007	Not provided				HT		450	Tube OD of 0.5 assumed			0.500	400	N		HT		
				513-M-3074, Sh 3	1	DPIs	DPI-3-497	0.375				HT		436				0.375	400	N-	-	HT		+
				513-M-3074, Sh 3	1	DPIs	DPI-3-487	0.375	-	-	-	HT		436				0.375	400	N ₁		HT		+
1199	TN 3	FWS	5 / 074 56	513-M-3074, Sh 3	1	DPIs	DPI-3-477	0.375				HT		436				0.375	400	N	0	HT		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 452 of 488

> R21002, Rev 0 Attachment N Page 87 of 123

																		Page 87	of 123
2054 PTN	1 089	5614-M-3089, SH 2	1	Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A	523		N/A	0.500	400	No	N/A		
1198 PTN :	B FWS / 07	4 5613-M-3074, Sh 3	1	DPS	DPS-3-2902	0.5	+			HT	436		+	0.500	400	No	HT		
1198 PTN 3		4 5613-M-3074, Sh 3	1		DPS-3-2901	0.5				HT	436			0.500	400	No	HT		
1198 PTN :			1		DPS-3-2900	0.5				HT	436			0.500	400	No	HT		
1200 PTN 3		4 5613-M-3074, Sh 3	1		FT-3-496X	0.375	-			HT	436			0.375	400	No	HT		
1200 PTN 3	B FWS / 07	4 5613-M-3074, Sh 3	1		FT-3-496 FT-3-497	0.75	_			HT HT	436 436			0.750 0.750	400	No No	HT HT		
1200 PTN 3	FWS/07		1		FT-3-486X	0.75	-			HT	436			0.750	400 400	No No	HT		+
1200 PTN		4 5613-M-3074, Sh 3	1		FT-3-486	0.75				HT	436			0.750	400	No	HT		1
1200 PTN :	FWS / 07		1	Venturi flow transmitters	FT-3-487	0.75				HT	436			0.750	400	No	HT		
1200 PTN :	FWS / 07		1		FT-3-476X	0.375				HT	436			0.375	400	No	HT		
1200 PTN :		4 5613-M-3074, Sh 3	1		FT-3-476	0.75				HT	436			0.750	400	No	HT		
1200 PTN :	B FWS / 07		1		FT-3-477	0.75	-			HT I	436			0.750	400	No No	HT	Varify already legulated	- v
1203 PTN 3	FWS / 07	4 5613-M-3074, Sh 3 5613-M-3074, Sh 3	2	6" line from condensate transfer pumps 6" FW motor-operated FRV	3-20-040	6				'	436			Not Analyzed 4.000	400	No No	'	Verify already Insulated	
1204 PTN 3	3 FWS / 07	4	3	bypass	FCV-3-499	4					450						'		
1204 PTN 3	FWS / 07		3	6" FW motor-operated FRV bypass	FCV-3-489	4				<u> </u>	450			4.000	400	No	'		
1204 PTN :	B FWS / 07		3	6" FW motor-operated FRV bypass	FCV-3-479	4				1	450			4.000	400	No	1		
1205 PTN :	B FWS / 07		4	4" AFW piping connected to main feed headers	3-20-339	4				HT	450			4.000	400	No	HT		
1205 PTN :	3 FWS / 07		4	4" AFW piping connected to main feed headers	3-20-239	4				HT	450			4.000	400	No	HT		
1205 PTN :	3 FWS / 07		4	4" AFW piping connected to main feed headers	3-20-139	4				HT	450			4.000	400	No	HT		
1207 PTN :	3 FWS / 07		6	2" line to/from wet layup	Downstream of 3-20- 332	2				НТ	450			2.000	400	No	HT		
1207 PTN 3	FWS / 07		6	2" line to/from wet layup	Downstream of 3-20- 232	2				HT	450			2.000	400	No	HT		
1207 PTN 3	FWS / 07	4 5613-M-3074, Sh 3	6	2" line to/from wet layup	Downstream of 3-20- 132	2				HT	450			2.000	400	No	HT		
1171 PTN 3	FWS / 07	4 5613-M-3074, Sh 2	1	Pressure & temperature indication	PI-3-1435	Not provided				HT	436	Tube OD of 0.5 assumed		0.500	400	No	HT		
1171 PTN 3	FWS / 07	4 5613-M-3074, Sh 2	1	Pressure & temperature indication	PI-3-1436	Not provided				НТ	436	Tube OD of 0.5 assumed		0.500	400	No	HT		
1171 PTN :	FWS / 07	4 5613-M-3074, Sh 2	1	Pressure & temperature indication	PT-3-1616X PI-3-1616X	0.375				НТ	436			0.375	400	No	HT		
1174 PTN 3	FWS / 07	4 5613-M-3074, Sh 2	1	Bypass/warmup valves around FWH 3-way valves	3-20-122	1				НТ	436			1.000	400	No	HT		
1174 PTN	FWS / 07	4 5613-M-3074, Sh 2	1	Bypass/warmup valves around FWH 3-way valves	3-20-222	1				HT	436			1.000	400	No	HT		
1173 PTN :	FWS / 07	4 5613-M-3074, Sh 2	1	Manual vents & drains	3-20-557	1				HT	436			1.000	400	No	HT		
1173 PTN 3	FWS / 07	4 5613-M-3074, Sh 2	1	Manual vents & drains	3-30-621 3-30-242	0.5				HT	436			0.500	400	No	HT		
1173 PTN 3	FWS / 07		1	Manual vents & drains	SWLU-3-071	1				HT	436			1.000	400	No	HT		
1173 PTN 3	FWS / 07		1	Manual vents & drains	3-30-558	1	-			HT	436			1.000	400	No	HT		
1173 PTN 3	FWS / 07	5613-M-3074, Sh 2	1	Manual vents & drains	3-30-622	0.5				HT	436			0.500	400	No	HT		
1173 PTN :	B FWS / 07		1		3-30-241 SWLU-3-072	1	+			HT	436		+	1.000	400	No	HT		+
1173 PTN 3	FWS / 07		1		3-20-676	0.75				HT	436			0.750	400	No	HT		+
1173 PTN			1		3-20-303	0.375				HT	436			0.375	400	No	HT		
1175 PTN 3	B FWS / 07	5613-M-3074, Sh 2	2	18" & 24" feedwater bypass around HP heaters 6A/6B	3-20-122 3-20-222	16				ı	436			Not Analyzed	400	No	I	Verify already Insulated	Y
1179 DTN -	EVA16 / 0-	4 5613-M-3074, Sh 2	4			1				шт	425		-	1 000	400	No.	HT		+
1178 PTN :	FWS / 07		4		FDWR-3-005 FDWR-3-014	1	+		-	HT HT	436 436		+	1.000 1.000	400 400	No No	HT HT		+
1178 PTN :	FWS/07		4		FDWR-3-014 FDWR-3-007	0.75	+		-	HT	436		+	0.750	400	No No	HT		+
1177 PTN 3	FWS / 07	5613-M-3074 Sh 2	4	12" branch line off main FW		12				1	436			Not	400	No	1	Verify already Insulated	Y
		4 5613-M-3074, Sh 2	5	header 10" line to the condenser	FDWR-3-013	10				1	373		+	Analyzed Not	370	No	1	Verify already Insulated	Y
1180 PTN		4 5613-M-3074, Sh 2	6		FDWR-3-012	10				i	373			Not	370	No	i	Verify already insulated	Y
		4 5613-M-3074, Sh 2	7		FDWR-3-008	6				ı	100			Not	100	No	- 1		
1182 PTN 3	FWS / 07	4 5613-M-3074, Sh 2	8	10" line to circ water and the discharge canal	FDWR-3-010	10				I	100			Not Analyzed	100	No	I		
1183 PTN 3		4 5613-M-3074, Sh 2	8		FDWR-3-009	1				HT	100			1.000	100	No	HT		
1183 PTN :	FWS / 07	4 5613-M-3074, Sh 2	8		FDWR-3-011	0.75	1	-		HT	100		1	0.750	100	No No	HT		+
1184 PTN 3	3 FWS / 07		9	Temperature indication and LC	LC-3-2210	1.5				HT	No heat trace required on TIs. 200			1.500	200	No	HT		
1187 PTN 3	3 FWS / 07		9		3-20-175	Not provided				HT	200	Tube OD of 0.5 assumed		0.500	200	No	HT		
1188 PTN 3	FWS / 07		10	indication	PI-3-1580	Not provided				HT	373	Tube OD of 0.5 assumed		0.500	370	No	HT		
1188 PTN 3	FWS / 07	4 5613-M-3074, Sh 2	10	Pressure & diff. pressure indication	PI-3-1582	Not provided				HT	373	Tube OD of 0.5 assumed		0.500	370	No	HT		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 453 of 488

> R21002, Rev 0 Attachment N Page 88 of 123

																		raye o	8 OT 123
2054 PTN 4	089	5614-M-3089, SH 2	1	Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A	523		N/A	0.500	400	No	N/A		
1188 PTN 3	FWS / 074	5613-M-3074, Sh 2	10	Pressure & diff. pressure indication	DPI-3-2010	0.5				НТ	373			0.500	370	No	НТ		
1188 PTN 3	FWS / 074	5613-M-3074, Sh 2	10	Pressure & diff. pressure indication	DPI-3-2009	0.5				HT	373			0.500	370	No	HT		
1188 PTN 3	FWS / 074	5613-M-3074, Sh 2	10	Pressure & diff. pressure indication	DPI-3-2007	0.5				НТ	373			0.500	370	No	HT		
1188 PTN 3	FWS / 074	5613-M-3074, Sh 2	10	Pressure & diff. pressure indication	DPI-3-2006	0.5				НТ	373			0.500	370	No	HT		
1188 PTN 3	FWS / 074	5613-M-3074, Sh 2	10	Pressure & diff. pressure indication	PI-3-1584	Not provided				НТ	373	Tube OD of 0.5 assumed		0.500	370	No	НТ		
1190 PTN 3	FWS / 074	5613-M-3074, Sh 2	10	Manual drains	3-20-1087	0.75				HT	373			0.750	370	No	HT		
1190 PTN 3	FWS / 074	5613-M-3074, Sh 2	10	Manual drains	3-20-1086	0.75				HT	373			0.750	370	No	HT		
1190 PTN 3	FWS / 074	5613-M-3074, Sh 2	10	Manual drains	3-20-1013	0.5				HT	373			0.500	370	No	HT		
1190 PTN 3		5613-M-3074, Sh 2	10	Manual drains	3-20-1014	0.5				HT	373			0.500	370	No	HT		
1190 PTN 3		5613-M-3074, Sh 2	10	Manual drains	3-20-1009	0.75				HT	373			0.750	370	No	HT		
1190 PTN 3		5613-M-3074, Sh 2	10	Manual drains	3-20-1008	0.75				HT	373			0.750	370	No	HT		
1190 PTN 3	FWS / 074	5613-M-3074, Sh 2	10	Manual drains	3-20-1007	0.75				HT	373			0.750	370	No	HT		
1190 PTN 3		5613-M-3074, Sh 2	10	Manual drains	3-20-1006	0.75				HT	373			0.750	370	No	HT		
1190 PTN 3		5613-M-3074, Sh 2	10	Manual drains	3-20-174	1				HT	373		1	1.000	370	No	HT		
1190 PTN 3		5613-M-3074, Sh 2	10	Manual drains	3-20-173	1	-	-		HT	373		+	1.000	370	No No	HT		
1190 PTN 3 1190 PTN 3		5613-M-3074, Sh 2 5613-M-3074, Sh 2	10	Manual drains Manual drains	3-20-997 3-20-998	1	-	1	-	HT HT	373 373		+	1.000 1.000	370 370	No No	HT HT		_
1190 PTN 3	FWS / 074	5613-M-3074, Sh 2	10	Manual drains Manual drains	3-20-998	0.5	<u> </u>	1		HT	373		+	0.500	370	No No	HT		
1190 PTN 3		5613-M-3074, Sh 2	10	Manual drains	3-20-1002	0.5	—	1		HT	373		+	0.500	370	No	HT		_
1190 PTN 3		5613-M-3074, Sh 2	10	Manual drains	3-20-1004	0.5		1		HT	373		+	0.500	370	No No	HT		
1190 PTN 3	FWS / 074	5613-M-3074, Sh 2	10	Manual drains	3-20-998	0.5	1	1		HT	373		†	0.500	370	No	HT		_
1190 PTN 3	FWS / 074	5613-M-3074, Sh 2	10	Manual drains	3-20-1012	0.5				HT	373			0.500	370	No	HT		
1193 PTN 3		5613-M-3074, Sh 2	11	3" CV bypass line	3-20-047	3				HT	373			3.000	370	No	HT		
1193 PTN 3	FWS / 074	5613-M-3074, Sh 2	11	3" CV bypass line	3-20-048	3				HT	373			3.000	370	No	HT		
1191 PTN 3	FWS / 074	5613-M-3074, Sh 2	11	Pressure & temperature indication	PI-3-1581	Not provided				HT	373	Tube OD of 0.5 assumed		0.500	370	No	HT		
1191 PTN 3	FWS / 074	5613-M-3074, Sh 2	11	Pressure & temperature indication	PI-3-1583	Not provided				НТ	373	Tube OD of 0.5 assumed		0.500	370	No	HT		
1194 PTN 3	FWS / 074	5613-M-3074, Sh 2	11	Manual vents & drains	3-20-170	Not provided				НТ	373	Tube OD of 0.5 assumed		0.500	370	No	НТ		
1194 PTN 3	FWS / 074	5613-M-3074, Sh 2	11	Manual vents & drains	3-20-172	Not provided				HT	373	Tube OD of 0.5 assumed		0.500	370	No	HT		
1194 PTN 3 1194 PTN 3	FWS / 074	5613-M-3074, Sh 2 5613-M-3074, Sh 2	11	Manual vents & drains Manual vents & drains	2-20-1088 3-20-1082	Not provided 0.75				HT	373 373	Tube OD of 0.5 assumed		0.500	370 370	No No	нт		
1194 PTN 3		5613-M-3074, Sh 2	11	Manual vents & drains	3-20-1082	0.75				HT	373			0.750	370	No No	HT		
1194 PTN 3		5613-M-3074, Sh 2	11	Manual vents & drains	3-20-1081	0.75				HT	373			0.750	370	No No	HT		
1194 PTN 3		5613-M-3074, Sh 2	11	Manual vents & drains	3-20-1010	0.75				HT	373			0.750	370	No	HT		
1194 PTN 3		5613-M-3074, Sh 2	11	Manual vents & drains	3-20-1083	0.75				нт	373			0.750	370	No	HT		
1194 PTN 3	FWS / 074	5613-M-3074, Sh 2	11	Manual vents & drains	3-20-1015	0.5				HT	373			0.500	370	No	HT		
1194 PTN 3	FWS / 074	5613-M-3074, Sh 2	11	Manual vents & drains	3-20-1089	0.5				HT	373			0.500	370	No	HT		
1194 PTN 3	FWS / 074	5613-M-3074, Sh 2	11	Manual vents & drains	3-20-1085	0.75				HT	373			0.750	370	No	HT		
1194 PTN 3	FWS / 074	5613-M-3074, Sh 2	11	Manual vents & drains	3-20-1016	0.75				HT	373			0.750	370	No	HT		
1194 PTN 3		5613-M-3074, Sh 2	11	Manual vents & drains	3-20-1011	0.5		1		HT	373			0.500	370	No	HT		
1194 PTN 3	FWS / 074	5613-M-3074, Sh 2	11	Manual vents & drains	3-20-1090	0.5		1		HT	373		1	0.500	370	No	HT		
1195 PTN 3	FWS / 074	5613-M-3074, Sh 2	12	3" FW pump seal water crosstie line	3-20-046	3				HT	373			3.000	370	No	HT		
1195 PTN 3	FWS / 074	5613-M-3074, Sh 2	12	3" FW pump seal water crosstie line	3-20-045	3				HT	373			3.000	370	No	HT		
1197 PTN 3	FWS / 074	5613-M-3074, Sh 2	13		CV-3-2210	4				HT	200			4.000	200	No	HT		
1164 PTN 3	FWS / 074	5613-M-3074, SH 1	3	8" FW recirc line back to FW	CV-3-1413	6				1	450			Not	400	No	1	Verify already Insulated	Y
1164 PTN 3	FWS / 074	5613-M-3074, SH 1	3	pump suction 8" FW recirc line back to FW	CV-3-1414	6				1	450			Analyzed Not	400	No	- 1	Verify already Insulated	Y
1167 PTN 3	FWS / 074	5613-M-3074, SH 1	4	pump suction 6" & 8" FW recirc line back to condenser	CV-3-1415 CV-3-1416	6				I	380			Analyzed Not Analyzed	380	No	- 1	Verify already Insulated	Y
1467 0771	FIANS / 0= :	5613-M-3074, SH 1	١.	6" & 8" FW recirc line back to		+ _				1	†		1	Not	380	No	- 1	Verify already Insulated	Y
1167 PTN 3	FWS / 074	1	4	condenser	CV-3-1418	6					380		1	Analyzed					
		5613-M-3074, SH 1	4	Manual drains	3-20-277	0.75				HT	450			0.750	400	No	HT		
		5613-M-3074, SH 1	4	Manual drains	3-20-146	0.75				HT	450			0.750	400	No	HT		
		5613-M-3074, SH 1	4		3-20-349	0.75				HT	450			0.750	400	No	HT		
		5613-M-3074, SH 1	4		3-20-290	0.75		1		HT	450			0.750	400	No	HT		
		5613-M-3074, SH 1	4		3-20-147	0.75		1		HT	450		1	0.750	400	No	HT		
1169 PTN 3	FWS / 074	5613-M-3074, SH 1	4		3-20-247	0.75	-	-	-	HT	450		-	0.750	400	No	HT		
1170 PTN 3	FWS / 074	5613-M-3074, SH 1	5	14" line from heater drain system	FWHR-3-001	14				'	373			Not Analyzed	370	No	I	Verify already Insulated	Y
1051 PTN 3	COND / 073	5613-M-3073, SH 3	2	Pressure connections	PS-3-2011	0.5	24	Н	N	HT	307		Н	0.500	300	6 No	HT	HT	N
		5613-M-3073, SH 3		Pressure connections						HT			Н	0.500	300	6 Yes	No		
1051 PTN 3	COND / 073		2		PS-3-2027	0.5	4	Н	N		307						Protection Required		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 454 of 488

> R21002, Rev 0 Attachment N Page 89 of 123

																			Page 89 of 123
2054 PTN	4	089	5614-M-3089, SH 2	1 Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	/A	523		N/A	0.500	400		No	N/A	
1051 PTN	3 (COND / 073	5613-M-3073, SH 3	Pressure connections	PS-3-2054	0.5	0.5	Н	N	т	307		Н	0.500	300	6	Yes	No Protection Required	
1048 PTN	3 (COND / 073	5613-M-3073, SH 3	2 LP heater condensate side relief valves	RV-3-1418	0.75				Т	307			0.750	300		No	нт	
1048 PTN	3 (COND / 073	5613-M-3073, SH 3	2 LP heater condensate side relief valves	RV-3-3410	Not provided				Т	110	Tube OD of 0.5 assumed		0.500	110		No	НТ	
1048 PTN	3 (COND / 073	5613-M-3073, SH 3	2 LP heater condensate side relief valves	RV-3-3412	Not provided				Т	200	Tube OD of 0.5 assumed		0.500	200		No	HT	
1048 PTN		COND / 073	5613-M-3073, SH 3	2 LP heater condensate side relief valves	RV-3-3414	Not provided				Т	307	Tube OD of 0.5 assumed		0.500	300		No	НТ	
1049 PTN 1049 PTN			5613-M-3073, SH 3 5613-M-3073, SH 3	2 Manual drains 2 Manual drains	3-20-145 3-20-635	0.5				т	307 307			0.500	300		No No	HT HT	
			5613-M-3073, SH 3	2 Manual drains	3-30-123	0.75				Т	110			0.750	110		No	HT	
	_	,	5613-M-3073, SH 3	2 Manual drains	3-30-429A	1				т	255			1.000	250		No	HT	
1049 PTN			5613-M-3073, SH 3	2 Manual drains	3-30-527	0.75				Т	307			0.750	300		No	HT	
1049 PTN	3 (COND / 073	5613-M-3073, SH 3	2 Manual drains	FWHR-3-014	0.75				Т	169			0.750	160		No	HT	
2000 1			5613-M-3073, SH 3	2 Manual vents	3-20-093	2				Т	307			2.000	300		No	HT	
2000 1			5613-M-3073, SH 3	2 Manual vents	3-20-417	0.75				Т	255			0.750	250		No	HT	
	-		5613-M-3073, SH 3	2 Manual vents	3-30-121	0.75	-	1		T	110			0.750	110		No	HT	
2000			5613-M-3073, SH 3	2 Manual vents	3-30-221	0.75	-	+		T	200			0.750	200		No	HT	
2000 1111			5613-M-3073, SH 3 5613-M-3073, SH 3	2 Manual vents 2 Pressure connections	3-30-521 PI-3-1423	0.75		+		т	307 110			0.750 0.500	300 110	-	No No	HT HT	
1051 PTN			5613-M-3073, SH 3	2 Pressure connections 2 Pressure connections	PI-3-1423 PI-3-1424	0.5	+	+		T	110			0.500	110	-	No No	HT	
1051 PTN			5613-M-3073, SH 3	2 Pressure connections 2 Pressure connections	PI-3-1424 PI-3-1426	0.5	1	+		Т	200			0.500	200	-+	No	HT	
			5613-M-3073, SH 3	2 Pressure connections	PX-3-1432	0.375				т	200			0.375	200		No	HT	
			5613-M-3073, SH 3	2 Pressure connections	PX-3-1433	0.5				Т	169			0.500	160		No	HT	
1051 PTN	3 (COND / 073	5613-M-3073, SH 3	2 Pressure connections	PX-3-1438	0.5				Т	255			0.500	250		No	HT	
1051 PTN			5613-M-3073, SH 3	2 Pressure connections	PX-3-1439	0.5				Т	200			0.500	200		No	HT	
			5613-M-3073, SH 3	2 Pressure connections	PX-3-1442	0.5				Т	169			0.500	160		No	HT	
			5613-M-3073, SH 3	2 Pressure connections	PX-3-1443	0.5				T	307			0.500	300		No	HT	
1051 PTN	3 (COND / 073	5613-M-3073, SH 3	2 Pressure connections	PX-3-1444	0.5				T	255			0.500	250	-	No	HT N-	
1056 PTN	3 (COND / 073	5613-M-3073, SH 3	Pressure connections 3	PS-3-2014	0.5	1	н	N	т	307		Н	0.500	300	6	Yes	No Protection Required	
1056 PTN	3 0	COND / 073	5613-M-3073, SH 3	3 Pressure connections	PS-3-2032	0.5	26	H	N	т	207		1	0.500	200	6	No	HT	HT N
-	_				13 3 2032	0.5	20				307		Н	0.500	300	_			
		COND / 073	5613-M-3073, SH 3	Pressure connections 3	PS-3-2055	0.5	1	Н		т	307		Н	0.500	300	6	Yes	No Protection Required	
1056 PTN	3 (Pressure connections 3 LP heater condensate side relief valves					N							_		Protection	
1056 PTN 1053 PTN	3 (COND / 073	5613-M-3073, SH 3	Pressure connections 3 LP heater condensate side	PS-3-2055	0.5			N	Т	307	Tube OD of 0.5 assumed		0.500	300	_	Yes	Protection Required	
1056 PTN 1053 PTN	3 (COND / 073	5613-M-3073, SH 3 5613-M-3073, SH 3 5613-M-3073, SH 3	Pressure connections LP heater condensate side relief valves LP heater condensate side relief valves LP heater condensate side relief valves	PS-3-2055 RV-3-1419	0.5 0.75 Not provided Not provided			N	т т т	307 307	Tube OD of 0.5 assumed Tube OD of 0.5 assumed		0.500 0.750 0.500 0.500	300 300 110 200	_	Yes No No	Protection Required HT HT	
1056 PTN 1053 PTN 1053 PTN 1053 PTN 1053 PTN	3 (C 3 (C 3 (C 3 (C	COND / 073 COND / 073 COND / 073 COND / 073	5613-M-3073, SH 3 5613-M-3073, SH 3 5613-M-3073, SH 3 5613-M-3073, SH 3	Pressure connections 3 LP heater condensate side relief valves 4 LP heater condensate side relief valves 5 LP heater condensate side relief valves 6 LP heater condensate side relief valves 6 LP heater condensate side relief valves	PS-3-2055 RV-3-1419 RV-3-3411 RV-3-3413 RV-3-3415	0.5 0.75 Not provided Not			N	т т т	307 307 110			0.500 0.750 0.500	300 300 110	_	Yes No No	Protection Required HT	
1056 PTN 1053 PTN 1053 PTN 1053 PTN 1053 PTN	3 (C 3 (C 3 (C 3 (C 3 (C	COND / 073 COND / 073 COND / 073 COND / 073 COND / 073 COND / 073	5613-M-3073, SH 3 5613-M-3073, SH 3 5613-M-3073, SH 3	Pressure connections IP heater condensate side relief valves LP heater condensate side relief valves LP heater condensate side relief valves LP heater condensate side relief valves	PS-3-2055 RV-3-1419 RV-3-3411 RV-3-3413	0.5 0.75 Not provided Not provided Not provided			N	т т т	307 307 110 200	Tube OD of 0.5 assumed		0.500 0.750 0.500 0.500	300 300 110 200	_	Yes No No	Protection Required HT HT	
1056 PTN 1053 PTN 1053 PTN 1053 PTN 1053 PTN 1054 PTN 1054 PTN 1054 PTN 1054 PTN	3 (C 3 (C 3 (C 3 (C 3 (C 3 (C 3 (C) 3 (C)	COND / 073	5613-M-3073, SH 3	Pressure connections LP heater condensate side relief valves Amanual drains Manual drains Manual drains Manual drains	PS-3-2055 RV-3-1419 RV-3-3411 RV-3-3413 RV-3-3415 3-30-4298 3-20-089 3-20-634	0.5 0.75 Not provided Not provided Not provided 1			N	т т т т	307 307 110 200 307 255	Tube OD of 0.5 assumed		0.500 0.750 0.500 0.500 0.500 1.000 0.750 0.500	300 300 110 200 300 250 160 300	_	Yes No No No No No	Protection Required HT HT HT HT	
1056 PTN 1053 PTN 1053 PTN 1053 PTN 1053 PTN 1054 PTN 1054 PTN 1054 PTN 1054 PTN 1054 PTN	3 (C 3 (C 3 (C 3 (C 3 (C 3 (C 3 (C) 3 (C) 3 (C)	COND / 073	5613-M-3073, SH 3	Pressure connections 3 LP heater condensate side relief valves Manual drains Manual drains Manual drains Manual drains	PS-3-2055 RV-3-1419 RV-3-3411 RV-3-3415 3-30-4298 3-20-689 3-20-634 3-20-732	0.5 0.75 Not provided Not provided Not provided 1 0.75 0.5 2			N	т т т т	307 307 110 200 307 255 169 307 307	Tube OD of 0.5 assumed		0.500 0.750 0.500 0.500 0.500 1.000 0.750 0.500 2.000	300 300 110 200 300 250 160 300 300	_	No N	Protection Required HT HT HT HT HT HT HT HT	
1056 PTN 1053 PTN 1053 PTN 1053 PTN 1053 PTN 1054 PTN 1054 PTN 1054 PTN 1054 PTN 1054 PTN 1054 PTN	3 (C 3 (C 3 (C 3 (C 3 (C 3 (C 3 (C 3 (C) 3	COND / 073	5613-M-3073, SH 3	Pressure connections LP heater condensate side relief valves Manual drains	PS-3-2055 RV-3-1419 RV-3-3411 RV-3-3413 RV-3-3415 3-30-4298 3-20-634 3-20-732 3-20-960	0.5 0.75 Not provided Not provided 1 0.75 0.5 2 0.75			N	T T T T T T T T T T T T T T T T T T T	307 307 110 200 307 255 169 307 255	Tube OD of 0.5 assumed		0.500 0.750 0.500 0.500 1.000 0.750 2.000 0.750	300 300 110 200 300 250 160 300 300 250	_	No N	Protection Required HT HT HT HT HT HT HT HT HT	
1056 PTN 1053 PTN 1053 PTN 1053 PTN 1053 PTN 1054 PTN 1054 PTN 1054 PTN 1054 PTN 1054 PTN	3 (C 3 (C 3 (C 3 (C 3 (C 3 (C 3 (C 3 (C	COND / 073	5613-M-3073, SH 3	Pressure connections LP heater condensate side relief valves Manual drains	PS-3-2055 RV-3-3411 RV-3-3411 RV-3-3413 RV-3-3415 3-30-4298 3-20-089 3-20-634 3-20-732 3-20-960 3-30-124	0.5 Not provided Not provided Not provided 1 0.75 0.5 2 0.75 0.75			N	т т т т т т т т	307 307 110 200 307 255 169 307 307 255 110	Tube OD of 0.5 assumed		0.500 0.750 0.500 0.500 1.000 0.750 0.500 2.000 0.750 0.750	300 300 110 200 300 250 160 300 300 300 310 310 310 310 31	_	No N	Protection Required HT	
1056 PTN 1053 PTN 1053 PTN 1053 PTN 1053 PTN 1054 PTN	3 (C 3 (C 3 (C 3 (C 3 (C 3 (C 3 (C 3 (C	COND / 073	5613-M-3073, SH 3	Pressure connections 3	PS-3-2055 RV-3-1419 RV-3-3411 RV-3-3413 RV-3-3415 3-30-4298 3-20-634 3-20-732 3-20-960 3-30-124 3-30-224	0.5 0.75 Not provided Not provided 1 0.75 0.5 2 0.75 0.75 0.75			N	T T T T T T T T T T T T T T T T T T T	307 307 110 200 307 255 169 307 307 255 110	Tube OD of 0.5 assumed		0.500 0.750 0.500 0.500 0.500 1.000 0.750 0.500 2.000 0.750 0.750 0.750	300 300 110 200 300 250 160 300 300 250 1110 160	_	No N	Protection Required HT	
1056 PTN 1053 PTN 1053 PTN 1053 PTN 1053 PTN 1054 PTN	3 (C 3 (C 3 (C 3 (C 3 (C 3 (C 3 (C 3 (C	COND / 073	5613-M-3073, SH 3	Pressure connections LP heater condensate side relief valves Manual drains	PS-3-2055 RV-3-1419 RV-3-3411 RV-3-3413 RV-3-3415 3-30-4298 3-20-089 3-20-634 3-20-732 3-20-960 3-30-124 3-30-528	0.5 0.75 Not provided Not provided 1 0.75 0.75 0.5 2 0.75 0.75 0.75 0.75 0.75			N	T T T T T T T T T T T T T T T T T T T	307 307 110 200 307 255 169 307 255 110 169 307	Tube OD of 0.5 assumed		0.500 0.750 0.500 0.500 0.500 1.000 0.750 0.500 2.000 0.750 0.750 0.750 0.750	300 300 110 200 300 250 160 300 300 250 110 160 300	_	No N	Protection Required HT	
1056 PTN 1053 PTN 1053 PTN 1053 PTN 1053 PTN 1054 PTN 1055 PTN	3 (C	COND / 073	5613-M-3073, SH 3	Pressure connections 3	PS-3-2055 RV-3-1419 RV-3-3411 RV-3-3413 RV-3-3415 3-30-4298 3-20-634 3-20-732 3-20-960 3-30-124 3-30-224	0.5 0.75 Not provided Not provided 1 0.75 0.5 2 0.75 0.75 0.75			N	T T T T T T T T T T T T T T T T T T T	307 307 110 200 307 255 169 307 307 255 110	Tube OD of 0.5 assumed		0.500 0.750 0.500 0.500 0.500 1.000 0.750 0.500 2.000 0.750 0.750 0.750	300 300 110 200 300 250 160 300 300 250 1110 160	_	No N	Protection Required HT	
1056 PTN 1053 PTN 1053 PTN 1053 PTN 1054 PTN 1055 PTN 1055 PTN	3 (C	COND / 073	5613-M-3073, SH 3	Pressure connections LP heater condensate side relief valves Manual drains	PS-3-2055 RV-3-3411 RV-3-3411 RV-3-3413 RV-3-3415 3-30-4298 3-20-089 3-20-634 3-20-732 3-20-960 3-30-124 3-30-224 3-30-528 3-20-245	0.5 0.75 Not provided Not provided Not provided 1 0.75 0.5 2 0.75 0.75 0.75 0.75 0.75 0.75			N	T T T T T T T T T T T T T T T T T T T	307 307 110 200 307 255 169 307 307 255 110 169 307 255	Tube OD of 0.5 assumed		0.500 0.750 0.500 0.500 0.500 1.000 0.750 0.500 0.750 0.750 0.750 0.750 0.750 0.750	300 300 110 200 300 250 160 300 250 110 160 300 250 250 250	_	No N	Protection Required HT	
1056 PTN 1053 PTN 1053 PTN 1053 PTN 1054 PTN 1055 PTN 1055 PTN	3 C 3 C 3 C 3 C 3 C 3 C 3 C 3 C 3 C 3 C	COND / 073	5613-M-3073, SH 3	Pressure connections LP heater condensate side relief valves Amanual drains Manual drains	PS-3-2055 RV-3-1419 RV-3-3411 RV-3-3411 RV-3-3415 3-30-4298 3-20-634 3-20-732 3-20-960 3-30-124 3-30-528 3-20-245 3-30-122	0.5 0.75 Not provided Not provided 1 1 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75			N	T T T T T T T T T T T T T T T T T T T	307 307 110 200 307 255 169 307 307 255 110 169 307 255 110	Tube OD of 0.5 assumed		0.500 0.750 0.500 0.500 1.000 0.750 0.500 2.000 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750	300 300 110 200 300 250 160 300 250 110 160 300 250 110	_	No N	Protection Required HT	
1056 PTN 1053 PTN 1053 PTN 1053 PTN 1053 PTN 1054 PTN 1055 PTN 1055 PTN 1055 PTN	3 C 3 C 3 C 3 C 3 C 3 C 3 C 3 C 3 C 3 C	COND / 073	5613-M-3073, SH 3	Pressure connections LP heater condensate side relief valves Manual drains Manual vents Manual vents Manual vents	RV-3-3411 RV-3-3411 RV-3-3411 RV-3-3413 RV-3-3415 3-30-4298 3-20-089 3-20-634 3-20-732 3-20-960 3-30-124 3-30-224 3-30-528 3-20-245 3-30-122 3-30-222 3-30-220	0.5 0.75 Not provided Not provided 1 1 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75			N	T T T T T T T T T T T T T T T T T T T	307 307 110 200 307 255 169 307 307 255 110 169 307 255 110 169 307	Tube OD of 0.5 assumed		0.500 0.500 0.500 0.500 0.500 0.500 0.750 0.500 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750	300 300 110 200 300 250 160 300 300 250 110 160 300 250 110 160 160 160 160 160 160 16	_	No N	Protection Required HT	
1056 PTN 1053 PTN 1053 PTN 1053 PTN 1053 PTN 1054 PTN 1055 PTN 1055 PTN 1055 PTN 1055 PTN 1055 PTN 1055 PTN	3 C 3 C 3 C 3 C 3 C 3 C 3 C 3 C 3 C 3 C	COND / 073	5613-M-3073, SH 3	Pressure connections LP heater condensate side relief valves Amanual drains Amanual vents	PS-3-2055 RV-3-1419 RV-3-3411 RV-3-3413 RV-3-3415 3-30-4298 3-20-089 3-20-634 3-20-732 3-20-960 3-30-124 3-30-224 3-30-522 3-30-222 3-30-222 PI-3-1419 PI-3-1420	0.5 0.75 Not provided Not provided 1 1 0.75 0.75			N	T T T T T T T T T T T T T T T T T T T	307 307 110 200 307 255 169 307 307 255 110 169 307 255 110 169 307	Tube OD of 0.5 assumed Tube OD of 0.5 assumed		0.500 0.750 0.500 0.500 1.000 0.750 0.500 2.000 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750	300 300 110 200 300 250 160 300 250 110 160 300 110 110 110	_	No N	Protection Required HT	
1056 PTN 1053 PTN 1053 PTN 1053 PTN 1054 PTN 1055 PTN 1055 PTN 1055 PTN 1055 PTN 1055 PTN 1055 PTN	3 C 3 C 3 C 3 C 3 C 3 C 3 C 3 C 3 C 3 C	COND / 073	5613-M-3073, SH 3	Pressure connections I Pheater condensate side relief valves LP heater condensate side relief valves Manual drains Manual val relief Manual vents Manual vents Manual vents Manual vents Manual vents Manual vents	RV-3-3411 RV-3-3411 RV-3-3411 RV-3-3413 RV-3-3415 3-30-4298 3-20-089 3-20-634 3-20-732 3-20-960 3-30-124 3-30-528 3-20-245 3-30-122 3-30-222 3-30-222 3-30-522 PI-3-1419	0.5 0.75 Not provided Not provided 1 0.75			N	T T T T T T T T T T T T T T T T T T T	307 307 110 200 307 255 169 307 255 110 169 307 255 110 169 307	Tube OD of 0.5 assumed Tube OD of 0.5 assumed		0.500 0.500 0.500 0.500 0.500 0.500 0.750 0.500 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750	300 110 200 300 250 160 300 250 110 110 160 300 110 110 110 11	_	No N	Protection Required HT	
1056 PTN 1053 PTN 1053 PTN 1053 PTN 1054 PTN 1055 PTN 1055 PTN 1055 PTN 1055 PTN 1055 PTN 1056 PTN	3 C 3 C 3 C 3 C 3 C 3 C 3 C 3 C 3 C 3 C	COND / 073	5613-M-3073, SH 3	Pressure connections LP heater condensate side relief valves Analysis relief valves A	PS-3-2055 RV-3-1419 RV-3-3411 RV-3-3413 RV-3-3415 3-30-4298 3-20-089 3-20-634 3-20-732 3-20-960 3-30-124 3-30-224 3-30-522 3-30-222 3-30-222 PI-3-1419 PI-3-1420	0.5 0.75 Not provided Not provided 1 1 0.75 0.75			N	T T T T T T T T T T T T T T T T T T T	307 307 110 200 307 255 169 307 307 255 110 169 307 255 110 169 307	Tube OD of 0.5 assumed Tube OD of 0.5 assumed		0.500 0.500 0.500 0.500 1.000 0.750 0.500 2.000 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750	300 300 110 200 300 250 160 300 250 110 160 300 250 110 110 110 110 110 110	_	No N	Protection Required HT	
1056 PTN 1053 PTN 1053 PTN 1053 PTN 1053 PTN 1054 PTN 1055 PTN 1055 PTN 1055 PTN 1055 PTN 1056 PTN 1056 PTN 1056 PTN	3 C 3 C 3 C 3 C 3 C 3 C 3 C 3 C 3 C 3 C	COND / 073	5613-M-3073, SH 3	Pressure connections I Pheater condensate side relief valves L Pheater condensate side relief valves A Manual drains Manual vants Manual vents Manual vents Manual vents Manual vents Manual vents Pressure connections Pressure connections Pressure connections Pressure connections	PS-3-2055 RV-3-1419 RV-3-3411 RV-3-3411 RV-3-3413 RV-3-3415 3-30-4298 3-20-089 3-20-960 3-30-124 3-30-528 3-20-245 3-30-122 3-30-522 PI-3-1419 PI-3-1696 PX-3-1431 PX-3-1434	0.5 0.75 Not provided Not provided Not provided Not provided Not provided Not provided Not Not Not Not Not Not Not Not provided			N	T T T T T T T T T T T T T T T T T T T	307 307 110 200 307 255 169 307 255 110 169 307 110 110 307 169 200	Tube OD of 0.5 assumed Tube OD of 0.5 assumed Tube OD of 0.5 assumed		0.500 0.500 0.500 0.500 0.500 0.500 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.500	300 300 110 200 300 250 160 300 2550 110 160 300 250 110 110 110 110 200	_	No N	Protection Required HT	
1056 PTN 1053 PTN 1053 PTN 1053 PTN 1053 PTN 1054 PTN 1054 PTN 1054 PTN 1054 PTN 1054 PTN 1054 PTN 1055 PTN 1055 PTN 1055 PTN 1055 PTN 1056 PTN 1056 PTN 1056 PTN 1056 PTN 1056 PTN 1056 PTN	3 C 3 C 3 C 3 C 3 C 3 C 3 C 3 C 3 C 3 C	COND / 073	5613-M-3073, SH 3	Pressure connections 1	PS-3-2055 RV-3-1419 RV-3-3411 RV-3-3411 RV-3-3413 RV-3-3415 3-30-4298 3-20-089 3-20-634 3-20-732 3-20-960 3-30-124 3-30-224 3-30-224 3-30-222 3-30-222 PI-3-1419 PI-3-1420 PI-3-6696 PX-3-1431 PX-3-1434	0.5 0.75 Not provided Not provided 1 0.75 0.5 2 0.75			N	T T T T T T T T T T T T T T T T T T T	307 307 110 200 307 255 169 307 255 110 169 307 110 110 307 169 200	Tube OD of 0.5 assumed Tube OD of 0.5 assumed Tube OD of 0.5 assumed Tube OD of 0.5 assumed		0.500 0.500 0.500 1.000 0.500 1.000 0.750 0.500 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.500	300 300 110 200 300 250 160 300 250 110 160 300 250 110 160 300 110 110 110 110 200	_	No N	Protection Required HT	
1056 PTN 1053 PTN 1053 PTN 1053 PTN 1053 PTN 1054 PTN 1054 PTN 1054 PTN 1054 PTN 1054 PTN 1054 PTN 1055 PTN 1055 PTN 1055 PTN 1055 PTN 1056 PTN	3 C 3 C 3 C 3 C 3 C 3 C 3 C 3 C 3 C 3 C	COND / 073	5613-M-3073, SH 3	Pressure connections I Pheater condensate side relief valves Manual drains Manual vents Manual vents Manual vents Manual vents Pressure connections	PS-3-2055 RV-3-1419 RV-3-3411 RV-3-3411 RV-3-3415 3-30-4298 3-20-634 3-20-732 3-20-960 3-30-124 3-30-528 3-20-245 3-30-122 3-30-222 3-30-222 PI-3-1419 PI-3-1420 PI-3-6696 PX-3-1431 PX-3-1434 PX-3-1435 PX-3-1440	0.5 0.75 Not provided Not provided Not provided 1 0.75			N	T T T T T T T T T T T T T T T T T T T	307 307 110 200 307 255 169 307 255 110 169 307 255 110 169 307 255 110 169 200 169 255	Tube OD of 0.5 assumed Tube OD of 0.5 assumed Tube OD of 0.5 assumed Tube OD of 0.5 assumed		0.500 0.500 0.500 0.500 0.500 0.500 0.750 0.500 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.500 0.500	300 110 200 300 250 160 300 250 110 110 160 300 110 110 110 11	_	No N	Protection Required HT	
1056 PTN 1053 PTN 1053 PTN 1053 PTN 1053 PTN 1054 PTN 1054 PTN 1054 PTN 1054 PTN 1054 PTN 1054 PTN 1055 PTN 1055 PTN 1055 PTN 1055 PTN 1056 PTN	3 C C 3 C C 3 C C 3 C C 3 C C 3 C C 3 C C 3 C C 3 C C 3 C C 3 C C C 3 C	COND / 073	5613-M-3073, SH 3	Pressure connections I Pheater condensate side relief valves L Pheater condensate side relief valves A Manual drains Pressure connections	PS-3-2055 RV-3-1419 RV-3-3411 RV-3-3411 RV-3-3413 RV-3-3415 3-30-4298 3-20-089 3-20-634 3-20-732 3-20-960 3-30-124 3-30-528 3-20-245 3-30-122 3-30-522 PI-3-1419 PI-3-1420 PI-3-6966 PX-3-1431 PX-3-1434 PX-3-1435 PX-3-14419 PX-3-1441	0.5 0.75 Not provided Not Not Not Not Not provided Not provided Not provided Not provided Not provided Not			N	T T T T T T T T T T T T T T T T T T T	307 307 110 200 307 255 169 307 255 110 169 307 255 110 169 307 255 255 110 169 307 255 255 200	Tube OD of 0.5 assumed Tube OD of 0.5 assumed Tube OD of 0.5 assumed Tube OD of 0.5 assumed		0.500 0.500 0.500 0.500 0.500 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.500	300 300 110 200 300 250 160 300 250 110 160 300 250 110 110 110 200 160 200	_	No N	Protection Required HT	
1056 PTN 1053 PTN 1053 PTN 1053 PTN 1053 PTN 1054 PTN 1054 PTN 1054 PTN 1054 PTN 1054 PTN 1055 PTN 1055 PTN 1055 PTN 1056 PTN	3 C C 3 C C 3 C C 3 C C 3 C C 3 C C 3 C C 3 C C 3 C C 3 C C 3 C C C 3 C C C 3 C	COND / 073 COND / 073	5613-M-3073, SH 3	Pressure connections LP heater condensate side relief valves Amount of valves Amoun	PS-3-2055 RV-3-1419 RV-3-3411 RV-3-3411 RV-3-3413 RV-3-3415 3-30-4298 3-20-089 3-20-634 3-20-960 3-30-124 3-30-224 3-30-528 3-20-245 3-30-122 3-30-222 3-30-222 PI-3-1419 PI-3-1420 PI-3-696 PX-3-1431 PX-3-1445 PX-3-1445 PX-3-14441 PX-3-14445	0.5 0.75 Not provided Not provided 1 0.75 0.5 2 0.75			N	T T T T T T T T T T T T T T T T T T T	307 110 200 307 255 169 307 255 110 169 307 215 110 169 200 169 255 200 307	Tube OD of 0.5 assumed Tube OD of 0.5 assumed Tube OD of 0.5 assumed Tube OD of 0.5 assumed		0.500 0.500 0.500 1.000 0.500 1.000 0.750 0.500 0.750 0.500	300 300 110 200 300 160 300 110 160 300 110 110 110 110 110 200 160 250 100 300 300 300 300 300 300	_	No N	Protection Required HT HT HT HT HT HT HT H	
1056 PTN 1053 PTN 1053 PTN 1053 PTN 1053 PTN 1054 PTN 1054 PTN 1054 PTN 1054 PTN 1054 PTN 1055 PTN 1055 PTN 1055 PTN 1056 PTN	3 C C 3 C C 3 C C 3 C C 3 C C 3 C C 3 C C 3 C C 3 C C C 3 C	COND / 073	5613-M-3073, SH 3	Pressure connections I Pheater condensate side relief valves L Pheater condensate side relief valves A Manual drains Pressure connections	PS-3-2055 RV-3-1419 RV-3-3411 RV-3-3411 RV-3-3413 RV-3-3415 3-30-4298 3-20-089 3-20-634 3-20-732 3-20-960 3-30-124 3-30-528 3-20-245 3-30-122 3-30-522 PI-3-1419 PI-3-1420 PI-3-6966 PX-3-1431 PX-3-1434 PX-3-1435 PX-3-14419 PX-3-1441	0.5 0.75 Not provided Not Not Not Not Not provided Not provided Not provided Not provided Not provided Not			N	T T T T T T T T T T T T T T T T T T T	307 307 110 200 307 255 169 307 255 110 169 307 255 110 169 307 255 255 110 169 307 255 255 200	Tube OD of 0.5 assumed Tube OD of 0.5 assumed Tube OD of 0.5 assumed Tube OD of 0.5 assumed		0.500 0.500 0.500 0.500 0.500 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.500	300 300 110 200 300 250 160 300 250 110 160 300 250 110 110 110 200 160 200	_	No N	Protection Required HT	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 455 of 488

> R21002, Rev 0 Attachment N Page 90 of 123

																					Page 90 o	01 123
2054 P	ΓN 4	4	089	5614-M-3089, SH 2	1	Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A	523		N/A	0.500	400		No	N/A		
		_		5613-M-3073, SH 3	1	2" and 3" connection to wet						HT				2.000	110		No	HT		
1058 P	ΓN 3	3 C0	OND / 073	7,	5	layup system (condensate side of isolation)	LP heater 1A	2					110									
	_	_		5613-M-3073, SH 3	+	2" and 3" connection to wet						HT				2.000	110		No	HT		
1058 P	īN 3	3 C0	OND / 073	3013 111 3073, 3113	5	layup system (condensate side of isolation)	Upstream of 3-20-107	2					110			2.000						
\vdash	_	-		F.C.4.2. N.A. 2072. CU. 2	+-	211 4 211										2.00	100		N-	UT		
1058 P	ΓN 3	3 C0	OND / 073	5613-M-3073, SH 3	5	2" and 3" connection to wet layup system (condensate side of isolation)	Upstream of 3-20-207	2				НТ	169			2.000	160		No	НТ		
		_		5613-M-3073, SH 3	-	2" and 3" connection to wet						HT				3.000	250		No	HT		
1058 P	ſN 3	3 CC	OND / 073	2012-IVI-2073, 3FI 3	5	layup system (condensate side of isolation)	Upstream of 3-20-111	3				n'	255			3.000	230		NO	nı		
				5613-M-3073, SH 3		2" and 3" connection to wet						HT				3.000	250		No	HT		
1058 P	īN 3	3 CC	OND / 073		5	layup system (condensate side of isolation)	Upstream of 3-20-211	3					255									
1060 P	ΓN 3	3 CC	OND / 073	5613-M-3073, SH 3	6	Manual drains	3-20-034	1				HT	110			1.000	110		No	HT		
1060 P				5613-M-3073, SH 3	6		3-20-088	0.75				HT	110			0.750		1	No	HT		
1061 P	TN 3	3 CC	OND / 073	5613-M-3073, SH 3 5613-M-3073, SH 3	6	Manual vents	3-20-094	0.75				HT	110			0.750	110 110	+	No No	HT		
				2012-IVI-2U/3, SH 3		14" bypass lines around LP htrs 3A, 3B, 4A, 4B, 5A, and	3-20-108 3-20-089									Not Analyz	- 1		No			
1059 P	ſN 3	3 CC	OND / 073		6	5B	3-20-112 3-20-212	14					110			7.11.23,7.2						
1020 P	ΓN 3	3 CC	OND / 073	5613-M-3073, SH 2	1	Condensate line flow transmitter / indication	FT-3-1400	Not provided	27	н	N	HT	each leg 27/2 115	Tube OD of 0.5 assumed	Н	0.500	110	1.2	No	HT	check ambient temp; if hot no protection required	Y
1021 P	TN 3	3 CC	OND / 073	5613-M-3073, SH 2	1	temperature & pressure gages	PI-3-1427	Not provided				НТ	115	Tube OD of 0.5 assumed		0.500	110		No	НТ		
1021 P	ſN 3	3 CC	OND / 073	5613-M-3073, SH 2	1	temperature & pressure gages	PI-3-1428	Not provided					115	Tube OD of 0.5 assumed		0.500	110		No	0		
1021 P	ΓN 3	3 CC	OND / 073	5613-M-3073, SH 2	1	temperature & pressure gages	PX-3-1436	Not provided					115	Tube OD of 0.5 assumed		0.500	110		No	0		
1023 P	ΓN 3	3 CC	OND / 073	5613-M-3073, SH 2	1	manual vent, drain lines	CDPL-3-063	1				HT	115			1.000	110		No	HT		
1023 P				5613-M-3073, SH 2	1		3-20-894	0.75					115			0.750			No	0		
1023 P	_			5613-M-3073, SH 2	_	manual vent, drain lines	3-20-974A	4					115			4.000			No	0		
	\neg	3 CC	OND / 073	5613-M-3073, SH 2 5613-M-3073, SH 2	1	manual vent, drain lines manual drain lines	3-20-084	1 Not				HT	115			1.000			No No	0 HT		
1026 P	TN 3	3 CC	OND / 073		3		3-20-302	provided				'''	110	Tube OD of 0.5 assumed						- '''		
1025 P	ΓN 3	3 CC	OND / 073	5613-M-3073, SH 2	3	14" condensate bypass line to LP heaters bypass and FW pump discharge	CV-3-2011	14				'	110			Not Analyz	110		No	'		
1027 P	ΓN 3	2 ((OND / 073	5613-M-3073, SH 2	1	2" condensate line for surge	3-20-070	2				HT	115			2.000	110		No	HT		
1027 F	3	3 CC	01407 073	5613-M-3073, SH 2	-	tank makeup 2" condensate line to	3-20-070					НТ				2.000	110		No	HT		
1028 P	ſN 3	3 CC	OND / 073		5	desuperheater valve (abandoned) and chem. Addition	3-20-069	2					115									
1029 P	ΓN 3	3 CC	OND / 073	5613-M-3073, SH 2	6	1/2" condensate line from CST	3-20-942	0.5				HT	115			0.500	110		No	HT		
1030 P	ΓN 3	3 CC	OND / 073	5613-M-3073, SH 2	7		3-6"-3-D	6				ı	115	_		Not	110		No	- 1		
1031 P	TN 3	3 (0	OND / 073	5613-M-3073, SH 2	8	4" condensate line to	3-20-973A	4				HT	115			4.000	110		No	HT		
				E612 M 2072 CU 2	1	discharge canal						D.T.				1 22	110	1	N-	LIT		
1032 P	$\overline{}$	-		5613-M-3073, SH 2 5613-M-3073, SH 2	8		3-20-973B 3-20-973C	4				HT	115 115			4.000		-	No No	HT 0		
1032 P	3	- (0.40 / 0/3	5613-M-3073, SH 2	T °	4" condensate line to heater	3 20 3/30	-				HT	115			4.000			No	HT		
			OND / 073		9	drain pump suction	3-4"-3-D	4					115									
				5613-M-3073, SH 2		manual drain lines	3-30-051	0.75				HT	115			0.750			No	HT		
				5613-M-3073, SH 2		manual drain lines	3-30-052	0.75					115			0.750		1	No	0		
				5613-M-3073, SH 2 5613-M-3073, SH 2		manual drain lines manual drain lines	3-30-053 3-30-244	0.75 0.75					115 115			0.750		1	No No	0	+	
	\neg			5613-M-3073, SH 2	11	6" 9, 19" condensate line to	CV-3-1500	6				I	115			Not Analyz	110		No	I		
1036 P	ΓN 3	3 CC	OND / 073	5613-M-3073, SH 2	11	nressure gage	PI-3-3633	Not provided				HT	115	Tube OD of 0.5 assumed		0.500			No	HT		
1038 P	ΓN 3	3 CC	OND / 073	5613-M-3073, SH 2	11	manual drain lines	3-20-015	0.75				HT	115			0.750	110		No	HT		
				5613-M-3073, SH 2		8" control valve bypass	3-20-063	8				1	115			Not			No	1		
1043 P	ΓN 3	3 CC	OND / 073	5613-M-3073, SH 2	14	1/2" chemical injection line	3-20-004	0.5				НТ	115			0.500			No	НТ		
1044 P	TN 3	3 CC	OND / 073	5613-M-3073, SH 2	15	1/2" chemical injection line	3-20-002	0.5				НТ	115			0.500	110		No	HT		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 456 of 488

> R21002, Rev 0 Attachment N Page 91 of 123

																					Page 91 of 123
2054	PTN	4	089	5614-M-3089, SH 2	1	Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A	523		N/A		0.500	400	No	N/A	
1045	PTN	3	COND / 073	5613-M-3073, SH 2	16	18"SJAE condenser bypass	3-20-049	18				I	115				Not Analyzed	110	No	T	
995	PTN	3	COND / 073	5613-M-3073, SH 1	1	suction pressure gages	PX-3-1407	0.375				HT	109			+	0.375	100	No	HT	
995				5613-M-3073, SH 1		suction pressure gages	PI-3-1599	2					109				2.000	100	No	0	
995				5613-M-3073, SH 1		suction pressure gages	PX-3-1406	0.375					109				0.375	100	No	0	
997				5613-M-3073, SH 1		relief valve	RV-3-1417	0.75				HT	109				0.750	100	No	HT	
997				5613-M-3073, SH 1		relief valve	RV-3-1449	1					109				1.000	100	No	0	
997				5613-M-3073, SH 1		relief valve	RV-3-1416	0.75					109				0.750	100	No	0	
998				5613-M-3073, SH 1		manual vent, drain lines	3-20-199	2				HT	109				2.000	100	No	HT	
998	PTN	3	COND / 073	5613-M-3073, SH 1	1	manual vent, drain lines	3-20-739	0.5					109				0.500	100	No	0	
998	PTN			5613-M-3073, SH 1		manual vent, drain lines	3-20-547	2					109				2.000	100	No	0	
998		3	COND / 073	5613-M-3073, SH 1	1	manual vent, drain lines	3-20-099	2					109				2.000	100	No	0	
998	PTN	3	COND / 073	5613-M-3073, SH 1	1	manual vent, drain lines	3-20-745	0.5					109				0.500	100	No	0	
999	PTN	3	COND / 073	5613-M-3073, SH 1	,	condensate pump seal supply	PI-3-3634	0.5				HT	109				0.500	100	No	HT	
					-	pressure gages															
1002		3	COND / 073	5613-M-3073, SH 1 5613-M-3073, SH 1	2	manual drains manual drains	3-20-028	0.5 Not				HT	109				0.500	100	No No	HT 0	
1002	PTN	3	COND / 073		2		3-20-596B	provided					109	Tube OD of 0.5 assumed							
1002	PTN	3	COND / 073	5613-M-3073, SH 1	2	manual drains	3-20-543	Not provided					109	Tube OD of 0.5 assumed			0.500	100	No	0	
1002	PTN	3	COND / 073	5613-M-3073, SH 1	2	manual drains	3-20-596C	Not provided					109	Tube OD of 0.5 assumed			0.500	100	No	0	
1002	PTN	3	COND / 073	5613-M-3073, SH 1	2	manual drains	3-20-025	0.5					109		1		0.500	100	No	0	
1002		3	COND / 073	5613-M-3073, SH 1	2	manual drains	3-20-596A	Not provided					109	Tube OD of 0.5 assumed			0.500	100	No	0	
4551			00NB /	5613-M-3073, SH 1		local condensate pump	DI 0.4:								1		Not	370	No	0	
1004	PTN	3	COND / 073		3	discharge pressure instruments	PI-3-1422	0.25					373				Analyzed				
1004	DTA:	,]	COND / 072	5613-M-3073, SH 1		local condensate pump	DV 2 2444	0.35					272				Not	370	No	0	
1004	PIN	3	COND / 073		3	discharge pressure instruments	PX-3-3411	0.25					373				Analyzed				
				5613-M-3073, SH 1		Condensate Pumps discharge		Not				HT					0.500	370	No	HT	
1003	PTN	3	COND / 073		3	line flow transmitter /	FE-3-1419	Not provided				1	373	Tube OD of 0.5 assumed							
						indication		provided													
				5613-M-3073, SH 1		Condensate Pumps discharge		Not									0.500	370	No	0	
1003	PTN	3	COND / 073		3	line flow transmitter /	FE-3-1420	provided					373	Tube OD of 0.5 assumed							
						indication		provided													
				5613-M-3073, SH 1		Condensate Pumps discharge		Not									0.500	370	No	0	
1003	PTN	3	COND / 073		3	line flow transmitter /	FE-3-1421	provided					373	Tube OD of 0.5 assumed							
						indication		provided													
				5613-M-3073, SH 1		Condensate Pumps discharge		Not									0.500	370	No	0	
1003	PTN	3	COND / 073		3	line flow transmitter /	FIT-3-1419A	provided					373	Tube OD of 0.5 assumed							
						indication		provided													
				5613-M-3073, SH 1		Condensate Pumps discharge		Not									0.500	370	No	0	
1003	PTN	3	COND / 073		3	line flow transmitter /	FIT-3-1420A	provided					373	Tube OD of 0.5 assumed							
\vdash	\rightarrow				\vdash	indication		, , , , , ,	-			-			1		0.55-	270	—		
1000	DTA:	۱ ۱	COND / CTT	5613-M-3073, SH 1		Condensate Pumps discharge	FIT 2 44244	Not						Tub- 00 -60 5			0.500	370	No	0	
1003	PIN	3	COND / 073		3	line flow transmitter /	FIT-3-1421A	provided				1	373	Tube OD of 0.5 assumed							
\vdash	-	\dashv		5613-M-3073, SH 1	\vdash	Indication			_			_				+	0.500	270	No	^	
1003	DTN	3	COND / 073	2012-IVI-20/3, SH 1	3	Condensate Pumps discharge line flow transmitter /	FIT-3-1419C	Not					373	Tube OD of 0.5 assumed			0.500	370	No	0	
1003		١	COND / 0/3		'	indication	111-2-14130	provided					3/3	Tube Ob of 0.5 assumed							
\vdash	-+	\dashv		5613-M-3073, SH 1	\vdash	Condensate Pumps discharge		1	+			—			1	+	0.500	370	No	0	+
1003	PTN	3	COND / 073		3	line flow transmitter /	FIT-3-1420C	Not					373	Tube OD of 0.5 assumed			5.550			Ü	
"	.	1	, , , , ,			indication		provided					3.3								
				5613-M-3073, SH 1		Condensate Pumps discharge									1		0.500	370	No	0	
1003	PTN	3	COND / 073		3	line flow transmitter /	FIT-3-1421C	Not				1	373	Tube OD of 0.5 assumed							
						indication		provided													
		\neg		5613-M-3073, SH 1		local condensate pump						HT					0.500	370	No	HT	
1004	PTN	3	COND / 073		3	discharge pressure	PX-3-1409	0.5				1	373								
						instruments															
				5613-M-3073, SH 1		bypass/warmup valves						HT					1.000	370	No	HT	
1008	PTN	3	COND / 073		1 1	around main isolation gate	3-20-105	1					373								
\perp	\perp					valves (x3)		1													
1 1		I		5613-M-3073, SH 1		bypass/warmup valves											1.000	370	No	0	
1008	PTN	3	COND / 073			around main isolation gate	3-20-205	1					373								
\vdash	\rightarrow					valves (x3)		1	-			-			1				1		
		_	COND 1	5613-M-3073, SH 1		bypass/warmup valves	2 22 5										1.000	370	No	0	
1008	PTN	3	COND / 073			around main isolation gate valves (x3)	3-20-555	1					373								
1006	PTN	3	COND / 072	5613-M-3073, SH 1		Manual drains	3-20-203	1	+			HT	373		1	+	1.000	370	No	HT	
				5613-M-3073, SH 1		Manual drains	3-20-203	1	+			131	373		1		1.000	370	No	0	
				5613-M-3073, SH 1		Manual drains	3-20-896	0.5	t				373		1		0.500	370	No	0	+
				5613-M-3073, SH 1		Manual drains	3-20-747	1					373		1		1.000	370	No	0	+
				5613-M-3073, SH 1		Manual drains	3-20-747	1	_				373		1		1.000	370	No	0	+
2000		-	20.10/0/3	1 111 557 5, 511 1			0 20 101		-	-			1 3/3				1.000	2.0	1 .40		·

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 457 of 488

> R21002, Rev 0 Attachment N Page 92 of 123

																				Page 92 of 123
2054 F	TN 4	4	089	5614-M-3089, SH 2	1 Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A N/A	523		N/A		0.500	400		No	N/A	
1007 F	TN 3	3 C	OND / 073	5613-M-3073, SH 1	3 Manual vents	3-20-580A	0.5			HT	373		+		0.500	370		No	HT	
1007 F	-			5613-M-3073, SH 1	3 Manual vents	3-20-580B	0.5				373				0.500	370		No	0	
1007 F				5613-M-3073, SH 1	3 Manual vents	3-20-580C	0.5				373				0.500	370		No	0	
				5613-M-3073, SH 1	Condensate Pumps recirc.	FE-3-1420B	Not			HT					0.500	110		No	HT	
1010 F	TN 3	3 C	OND / 073		5 line flow transmitter /	FIT-3-1420B	provided				115	Tube OD of 0.5 assumed								
					indication	111 3 14200	provided													
				5613-M-3073, SH 1	Condensate Pumps recirc.	FE-3-1421B	Not								0.500	110		No	0	
1010 F	TN 3	3 C	OND / 073		5 line flow transmitter /	FIT-3-1421B	provided				115	Tube OD of 0.5 assumed								
4040			0110 / 070	5540 44 0070 5114	indication		1	-			445				4.000	440				
1012 F				5613-M-3073, SH 1 5613-M-3073, SH 1	5 Manual drains 5 Manual drains	3-20-472 3-20-471	1 1			HT	115 115				1.000	110 110		No No	HT 0	
1012 F				5613-M-3073, SH 1	5 Manual drains	3-20-471	1	1			115		+		1.000	110		No	0	
1012 F				5613-M-3073, SH 1	5 Manual drains	3-20-572	1				115				1.000	110		No	0	+
				5613-M-3073, SH 1	5 Manual drains	3-20-271	1				115				1.000	110		No	0	
1012 F				5613-M-3073, SH 1	5 Manual drains	3-20-272	1				115				1.000	110		No	0	
1013 F	TN 3			5613-M-3073, SH 1	5 Manual vents	3-20-162A	0.5			HT	115				0.500	110		No	HT	
1013 F				5613-M-3073, SH 1	5 Manual vents	3-20-162B	0.5				115				0.500	110		No	0	
1013 F	TN 3	3 C	OND / 073	5613-M-3073, SH 1	5 Manual vents	3-20-162C	0.5				115				0.500	110		No	0	
				5613-M-3073, SH 1	10" condensate pump recirc					1					Not	110		No	1	
1011 F	TN 3	3 C	OND / 073		5 lines upstream of normally	CV-3-1419	10				115				Analyzed					
\vdash	\perp	+		5540.44.00==	closed isolation								1							
1011	_ _	3 C	OND / 072	5613-M-3073, SH 1	10" condensate pump recirc 5 lines upstream of normally	CV 2 4420	40			1					Not	110		No	1	
1011 F	IIN 3	3 10	OND / 073		5 lines upstream of normally closed isolation	CV-3-1420	10				115				Analyzed					
+	+	+		5613-M-3073, SH 1	10" condensate pump recirc		1	1					+		Not	110		No	0	+
1011 F	TN 3	3 C	OND / 073	JULD IVI JU/J, JII 1	5 lines upstream of normally	CV-3-1421	10				115				Analyzed	110		140	"	
	1 1	. ,	, 0.3		closed isolation		"								,200					
		\neg		5613-M-3073, SH 1	local condensate discharge					HT					Not	110		No	HT	
1014 F	TN 3	3 C	OND / 073		6 sample line pressure	PI-3-1426	0.25				115				Analyzed					
					instruments															
				5613-M-3073, SH 1	local condensate discharge										Not	110		No	0	
1014 F	TN 3	3 C	OND / 073		6 sample line pressure	PX-3-3412	0.25				115				Analyzed					
	_	_			instruments								-						_	
1014 F	TAI 3	3 C	OND / 073	5613-M-3073, SH 1	local condensate discharge 6 sample line pressure	PI-3-1598	0.25				115				Not	110		No	0	
1014 F	IN 3	3 "	UND / U/3		6 sample line pressure instruments	PI-3-1390	0.25				115				Analyzed					
				5613-M-3073, SH 1	local condensate discharge										Not	110		No	0	+
1014 F	TN 3	3 C	OND / 073		6 sample line pressure	PX-3-3413	0.25				115				Analyzed					
					instruments										·					
				5613-M-3073, SH 1	local condensate discharge										Not	110		No	0	
1014 F	TN 3	3 C	OND / 073		6 sample line pressure	PX-3-1408	0.25				115				Analyzed					
		_			instruments															
1015 F	TN 3	3 C	OND / 073	5613-M-3073, SH 1	6 1/2" & 1/4" condensate	3-20-830	0.5			нт	115				0.500	110		No	HT	
	_	_		F.C.4.2. B.4. 2072. CU. 4	header sample lines								+		0.500	110		N-		
1015 F	TN 3	3 C	OND / 073	5613-M-3073, SH 1	6 1/2" & 1/4" condensate header sample lines	3-20-831	0.5				115				0.500	110		No	0	
		\neg		5613-M-3073, SH 1	1/2" & 1/4" condensate										0.500	110		No	0	
1015 F	TN 3	3 C	OND / 073		6 header sample lines	3-20-832	0.5				115									
				5613-M-3073, SH 1	1/4", 1/2", & 1" hotwell								N/A		Not	110		No	N/A	
					sample pumps seal supply										Analyzed					
1017 F	TN 3	3 C	OND / 073		8 from condensate storage &	None	0.25	N/A	N/A	N/A N/A	115									
					condensate header															
\vdash	-	+		EC42 NA 2072 CU 4	4/4 4/2 0 4 1 1		1	+					+		0.500	110		N		+
				5613-M-3073, SH 1	1/4", 1/2", & 1" hotwell										0.500	110		No	0	
1017	_{TN} -	, ,	OND / 073		sample pumps seal supply 8 from condensate storage &	3-20-841	0.5				115									
101/	IIV 3	3 10	OND / U/3		condensate header	3-20-841	0.5				115									
					Condensate Header															
	\top	\top		5613-M-3073, SH 1	1/4", 1/2", & 1" hotwell	3-20-018				HT					1.000	110		No	HT	
				-,-	sample pumps seal supply										.					
1017 F	TN 3	3 C	OND / 073		8 from condensate storage &		1				115									
					condensate header															
\vdash	\perp	\perp					1	-								\rightarrow				
1018 F	TN 3	3 C	OND / 073	5613-M-3073, SH 1	9 2" LP turbine steam exhaust	None	Not			нт	115	Tube OD of 0.5 assumed			0.500	110		No	HT	
	-	+		5613-M-3073, SH 1	hood spray 3/8" & 1/2" loop seal fill line		provided	+		HT			+	+	0.375	110		No	HT	
1019 F	TN 3	3 C	OND / 073	JU13-WI-JU/3, 3∏ 1	10 3/8 & 1/2 loop seal fill line	None	0.375			"'	115				0.373	110		INU	171	
	\top	\top		5613-M-3072, SH 2	Flow Element (FE),					HT			Н		0.375	400	4.5	No	HT	HT N
				•	Flow Indication (FI),															
					Temporary flow instrument															
1297	_{TN} 3	3 1	VISS / 072		2 (FX)	FI-3-6645A	0.375	80	н	N	523									
'	1 1	· "	, 0.2			30.13/1		50	"											
					1/2", 3/8" tubing															
					MSR inlet steam flow (x4)															
\Box					JIVISK INIET STEAM TIOW (X4)						1	l .								

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 458 of 488

> R21002, Rev 0 Attachment N Page 93 of 123

2054 PTN 4			4-M-3089, SH 2 3-M-3072, SH 2	(PC x	ssure Control Instrument x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A	1 :	523	N/A	0.500	400	1	No	N/A		
1297 PTN 3		5613	3-M-3072, SH 2																		
1297 PTN 3				Flow	w Element (FE), w Indication (FI), nporary flow instrument						нт			н	0.375	400	4.5	No	нт	нт	N
	3 MSS	S / 072		2 (FX)		FI-3-6645B	0.375	24	н	N			523								
				MSR	R inlet steam flow (x4)																
		5613	3-M-3072, SH 2	Flow	w Element (FE), w Indication (FI), nporary flow instrument						НТ			н	0.375	400	1.5	No	НТ	нт	N
1297 PTN 3	3 MSS	S / 072		2 (FX)		FI-3-6645C	0.375	12	н	N		2	523								
				MSR	R inlet steam flow (x4)																
		5613	3-M-3072, SH 2	Flow Flow	v Element (FE), v Indication (FI), porary flow instrument						НТ				0.500	400	1	No	НТ		
1297 PTN 3	3 MSS	S / 072		2 (FX)		FE-3-6645A	0.5						523								
					", 3/8" tubing R inlet steam flow (x4)																
		5613	3-M-3072, SH 2	Flow Flow	v Element (FE), v Indication (FI),										0.375	400	1	No	0		
1297 PTN 3	3 MSS	S / 072		2 (FX)		FX-3-1426	0.375					2	523								
					", 3/8" tubing R inlet steam flow (x4)																
		5613	3-M-3072, SH 2	Flow Flow	v Element (FE), v Indication (FI),										0.500	400	1	No	0		
1297 PTN 3	3 MSS	S / 072		2 (FX)		FE-3-6645B	0.5						523								
					", 3/8" tubing R inlet steam flow (x4)																
		5613	3-M-3072, SH 2	Flow Flow	v Element (FE), v Indication (FI), porary flow instrument										0.375	400	1	No	0		
1297 PTN 3	3 MSS	S / 072		2 (FX)		FX-3-1427	0.375						523								
					", 3/8" tubing R inlet steam flow (x4)																
		5613	3-M-3072, SH 2	Flow Flow	v Element (FE), v Indication (FI),										0.500	400	1	No	0		
1297 PTN 3	3 MSS	S / 072		2 (FX)		FE-3-6645C	0.5						523								
	\perp				", 3/8" tubing R inlet steam flow (x4)																
		5613	3-M-3072, SH 2	Flow Flow	v Element (FE), v Indication (FI), poorary flow instrument										0.375	400	1	No	0		
1297 PTN 3	3 MSS	S / 072		2 (FX)		FX-3-1428	0.375						523								
				MSR	", 3/8" tubing R inlet steam flow (x4)																
		5613	3-M-3072, SH 2	Flow	v Element (FE), v Indication (FI), nporary flow instrument										0.500	400	1	No	0		
1297 PTN 3	3 MSS	S / 072		2 (FX)		FE-3-6645D	0.5						523								
					R inlet steam flow (x4)																

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 459 of 488

> R21002, Rev 0 Attachment N Page 94 of 123

Secondary Seco																			Page 94 of 123
Part	2054	PTN	089	5614-M-3089, SH 2		PC-4-3709	0.500	N/A	N/A	N/A N/	52:	N/A	<i>I</i>	0.500	400		No	N/A	
Part	1297	PTN :	MSS / 07		Flow Indication (FI), Temporary flow instrument (FX) 1/2", 3/8" tubing	FX-3-1429	0.375				523			0.375	400		No	0	
Part	1297	PTN :	MSS / 07		Flow Element (FE), Flow Indication (FI), Temporary flow instrument (FX) 1/2", 3/8" tubing	FI-3-6645D	0.375	12	н					0.375	400	4.5	No	нт	HT N
1	1298	PTN :	MSS / 07		Pressure Indicators (PI) (PX) 3/4" pipe, 3/8" tubing 2	PI-3-1522	0.375			н	523			0.375	400		No	нт	
Property Property	1298	PTN :	MSS / 07		3/4" pipe, 3/8" tubing 2	PI-3-1507	0.375				523			0.375	400		No	0	
12	1298	PTN :	MSS / 07		3/4" pipe, 3/8" tubing 2	PI-3-1523	0.375				52:			0.375	400		No	0	
1	1298	PTN :	MSS / 07		3/4" pipe, 3/8" tubing 2	PI-3-1508	0.375				52:			0.375	400		No	0	
1.0 1.0	1298	PTN :	MSS / 07		3/4" pipe, 3/8" tubing 2	PI-3-1524	0.375				52:			0.375	400		No	0	
1298 PTN 3 MSS/072	1298	PTN :	MSS / 07		3/4" pipe, 3/8" tubing 2	PI-3-1509	0.375				52:			0.375	400		No	0	
1298 PTN 3 MSS / 072	1298	PTN :	MSS / 07		3/4" pipe, 3/8" tubing	PI-3-1525	0.375				52:			0.375	400		No	0	
1301 PTN 3 MSS / O72 S613-M-3072, SH 2 2 0 one per MSR inlet 3 4" vent 2 0 one per MSR inlet 3 4" vent 0 0 0 0 0 0 0 0 0	1298	PTN :	MSS / 07		3/4" pipe, 3/8" tubing 2	PI-3-1510	0.375				52:			0.375	400		No	0	
1301 PTN 3 MSS / 072 2 3 / 4" vent 3 - 10 - 170 0.75 0 0.75 0 0.75 0 0.75 0 0 0 0 0 0 0 0 0	1301	PTN	MSS / 07		2	3-10-149	0.75			H	52:			0.750	400		No	НТ	
Second Part	1301	PTN	MSS / 07		3/4" vent 2	3-10-170	0.75				52:			0.750	400		No	0	
1301 PTN 3 MSS / 072 5613-M-3072, SH 2 2 3/4" vent 3-10-1133 0.75 Dispersion of the per timing loop 1303 PTN 3 MSS / 072 S613-M-3072, SH 2 3/4" Drain 3-20-284 0.75 Dispersion of the per timing loop 3-20-284 0.75 Dispersion of the per timing loop 1303 PTN 3 MSS / 072 MSS / 072	1301	PTN :	MSS / 07	5613-M-3072, SH 2	3/4" vent 2	3-10-1134	0.75				523			0.750	400		No	0	
1303 PTN 3 MSS / 072 5613-M-3072, SH 2 3 3/4" Drain 3-20-283 0.75 HT 523 0.75 0.750 400 No HT 1303 PTN 3 MSS / 072 5613-M-3072, SH 2 3 3/4" Drain 3-20-284 0.75 0.750 400 No 0 0.750 400 No 0 0.750 400 No 0 0.750 400 No 0 0.750 400 0.750 400 No 0 0.750 400 No 0 0.750 400 No 0.750 40	1301	PTN :	MSS / 07		3/4" vent 2	3-10-1133	0.75				523			0.750	400		No	0	
1303 PTN 3 MSS / 072 S613-M-3072, SH 2 3/4" Drain 0.750 400 No 0 No 0 1 1 1 1 1 1 1 1 1	1303	PTN	MSS / 07		3/4" Drain	3-20-283	0.75			H	52:			0.750	400		No	HT	
	1303	PTN	MSS / 07		3/4" Drain	3-20-284	0.75				52:			0.750	400		No	0	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 460 of 488

> R21002, Rev 0 Attachment N Page 95 of 123

																				Page 95 of	123
2054	PTN	4	089	5614-M-3089, SH 2		Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A	523	N/A	0.500	400		No	N/A		
1303	PTN	3	MSS / 072	5613-M-3072, SH 2	3	3/4" Drain one per timing loop	3-20-285	0.75					523		0.750	400		No	0		
1303	PTN	3	MSS / 072	5613-M-3072, SH 2	3	3/4" Drain	3-20-286	0.75					523		0.750	400		No	0		
				5613-M-3072, SH 2		one per timing loop Flow Element (FE), Flow Indication (FI), Temporary flow instrument (FX)						НТ		Н	0.375	400	4.5	No	нт	нт	N
1305	PTN	3	MSS / 072		5	1/2", 3/8" tubing 2 locations: 1) 4" supply crosstie MSR A/B 2) 4" supply crosstie MSR C/D	FI-3-6646A	0.375	28	н	N		523								
				5613-M-3072, SH 2		Flow Element (FE), Flow Indication (FI), Temporary flow instrument (FX)						нт		Н	0.375	400	4.5	No	НТ	нт	N
1305	PTN	3	MSS / 072		5	1/2", 3/8" tubing 2 locations: 1) 4" supply crosstie MSR A/B 2) 4" supply crosstie MSR C/D	FI-3-6646B	0.375	32	н	N		523								
				5613-M-3072, SH 2		Flow Element (FE), Flow Indication (FI), Temporary flow instrument (FX)						НТ			0.500	400		No	нт		
1305	PTN	3	MSS / 072		3	1/2", 3/8" tubing 2 locations: 1) 4" supply crosstie MSR A/B 2) 4" supply crosstie MSR C/D	FE-3-6646A	0.5					523								
				5613-M-3072, SH 2		Flow Element (FE), Flow Indication (FI), Temporary flow instrument (FX)									0.375	400		No	0		
1305	PTN	3	MSS / 072		3	1/2", 3/8" tubing 2 locations: 1) 4" supply crosstie MSR A/B 2) 4" supply crosstie MSR C/D	FX-3-1430	0.375					523								
				5613-M-3072, SH 2		Flow Element (FE), Flow Indication (FI), Temporary flow instrument (FX)									0.500	400		No	0		
1305	PTN	3	MSS / 072		5	1/2", 3/8" tubing 2 locations: 1) 4" supply crosstie MSR A/B 2) 4" supply crosstie MSR C/D	FE-3-6646B	0.5					523								

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 461 of 488

> R21002, Rev 0 Attachment N Page 96 of 123

																		Page 96 of 123
205	4 PTN	4	089	5614-M-3089, SH 2	1 Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A	523	N/A	0.500	400	No	N/A	
130	5 PTN	3		5613-M-3072, SH 2	Flow Element (FE), Flow Indication (FI), Temporary flow instrument (FX) 1/2", 3/8" tubing 2 locations: 1) 4" supply crosstie MSR A/B 2) 4" supply crosstie MSR C/D	FX-3-1431	0.375					523		0.375	400	No	0	
130	5 PTN	3		5613-M-3072, SH 2	Flow Element (FE), Flow Indication (FI), Temporary flow instrument (FX) 1/2", 3/8" tubing 2 locations: 1) 4" supply crosstie MSR A/B 2) 4" supply crosstie MSR C/D		0.5					523		0.500	400	No	0	
130	5 PTN	3		5613-M-3072, SH 2	Flow Element (FE), Flow Indication (FI), Temporary flow instrument (FX) 1/2", 3/8" tubing 2 locations: 1) 4" supply crosstie MSR A/B 2) 4" supply crosstie MSR C/D		0.375					523		0.375	400	No	0	
130	5 PTN	3	MSS / 072	5613-M-3072, SH 2	Flow Element (FE), Flow Indication (FI), Temporary flow instrument (FX) 1/2", 3/8" tubing 2 locations: 1) 4" supply crosstie MSR A/B 2) 4" supply crosstie MSR C/D	FX-3-1432	0.375					523		0.375	400	No	0	
130	5 PTN	3	MSS / 072	5613-M-3072, SH 2	Flow Element (FE), Flow Indication (FI), Temporary flow instrument (FX) 1/2", 3/8" tubing 2 locations: 1) 4" supply crosstie MSR A/B 2) 4" supply crosstie MSR C/D	FE-3-6646D	0.5					523		0.500	400	No	0	
130	5 PTN	3	MSS / 072	5613-M-3072, SH 2	Flow Element (FE), Flow Indication (FI), Temporary flow instrument (FX) 1/2", 3/8" tubing 2 locations: 1) 4" supply crosstie MSR A/B 2) 4" supply crosstie MSR C/D		0.375					523		0.375	400	No	0	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 462 of 488

> R21002, Rev 0 Attachment N Page 97 of 123

																						Page 97 of 123
205	4 PTN	4	089	5614-M-3089, SH 2		Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523		N/A	0.500	400	No	N	I/A	
130	5 PTN	3	MSS / 072	5613-M-3072, SH 2	5	Flow Element (FE), Flow Indication (FI), Temporary flow instrument (FX) 1/2", 3/8" tubing 2 locations: 1) 4" supply crosstie MSR A/B 2) 4" supply crosstie MSR C/D	FX-3-1433	0.375						523			0.375	400	No		0	
130	8 PTN	3	MSS / 072	5613-M-3072, SH 2		misc drains upstream of steam traps	ST-3-1405	Not provided				HT	Osteam traps and bypass are designed to drain condensate to condenser. Line will therefore have continuous flow. Bypass is horizontal. Draine is less than 4" long and will not freeze with process temperature at 212	523	Tube OD of 0.5 assumed		0.500	400	No	ŀ	НΤ	
130	8 PTN	3	MSS / 072	5613-M-3072, SH 2		misc drains upstream of steam traps	ST-3-1406	Not provided					Dsteam traps and bypass are designed to drain condensate to condenser. Line will therefore have continuous flow. Bypass is horizontal. Draine is less than 4" long and will not freeze with process temperature at 212	523	Tube OD of 0.5 assumed		0.500	400	No		0	
130	8 PTN	3	MSS / 072	5613-M-3072, SH 2		misc drains upstream of steam traps	ST-3-6	Not provided					Dsteam traps and bypass are designed to drain condensate to condenser. Line will therefore have continuous flow. Bypass is horizontal. Draine is less than 4" long and will not freeze with process temperature at 212	523	Tube OD of 0.5 assumed		0.500	400	No		0	
130	8 PTN	3	MSS / 072	5613-M-3072, SH 2		misc drains upstream of steam traps	ST-3-7	Not provided					Dsteam traps and bypass are designed to drain condensate to condenser. Line will therefore have continuous flow. Bypass is horizontal. Draine is less than 4" long and will not freeze with process temperature at 212	523	Tube OD of 0.5 assumed		0.500	400	No		0	
130	8 PTN	3	MSS / 072	5613-M-3072, SH 2		misc drains upstream of steam traps	ST-3-8	Not provided					Dsteam traps and bypass are designed to drain condensate to condenser. Line will therefore have continuous flow. Bypass is horizontal. Draine is less than 4" long and will not freeze with process temperature at 212	523	Tube OD of 0.5 assumed		0.500	400	No		0	
130	8 PTN	3	MSS / 072	5613-M-3072, SH 2		misc drains upstream of steam traps	ST-3-9	Not provided					Dsteam traps and bypass are designed to drain condensate to condenser. Line will therefore have continuous flow. Bypass is horizontal. Draine is less than 4" long and will not freeze with process temperature at 212	523	Tube OD of 0.5 assumed		0.500	400	No		0	
130	8 PTN	3	MSS / 072	5613-M-3072, SH 2		misc drains upstream of steam traps	ST-3-10	Not provided					Dsteam traps and bypass are designed to drain condensate to condenser. Line will therefore have continuous flow. Bypass is horizontal. Draine is less than 4" long and will not freeze with process temperature at 212	523	Tube OD of 0.5 assumed		0.500	400	No		0	
130	8 PTN	3	MSS / 072	5613-M-3072, SH 2		misc drains upstream of steam traps	ST-3-11	Not provided					Dsteam traps and bypass are designed to drain condensate to condenser. Line will therefore have continuous flow. Bypass is horizontal. Draine is less than 4" long and will not freeze with process temperature at 212	523	Tube OD of 0.5 assumed		0.500	400	No		0	
130	8 PTN	3	MSS / 072	5613-M-3072, SH 2		misc drains upstream of steam traps	ST-3-12	Not provided					Dsteam traps and bypass are designed to drain condensate to condenser. Line will therefore have continuous flow. Bypass is horizontal. Draine is less than 4" long and will not freeze with process temperature at 212	523	Tube OD of 0.5 assumed		0.500	400	No		0	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 463 of 488

> R21002, Rev 0 Attachment N Page 98 of 123

																				raye	98 01 123
20	54 PT	N 4	089	5614-M-3089, SH 2	1 Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A N,	A	523		N/A	0.500	400		No	N/A		
13	08 PT	N 3	MSS / 072	5613-M-3072, SH 2	misc drains upstream of steam traps	ST-3-13	Not provided				Dsteam traps and bypass are designed to drain condensate to condenser. Line will therefore have continuous flow. Bypass is horizontal. Draine is less than 4" long and will not freeze with process temperature at 212	E22	Tube OD of 0.5 assumed		0.500	400		No	0		
13	.0 PT	N 3	MSS / 072	5613-M-3072, SH 2	6 3/4" Drain (upstream of CV-3-2827)	3-10-021	0.75			Н		523			0.750	400		No	НТ		
13	.4 PT	N 3	MSS / 072	5613-M-3072, SH 2	Temperature Element (TE), temperature measurement is A, B, used as input into temperature control valve on and D "timing loop" (MSR steam inlet)	N/A	N/A			Н		523				400		No	нт		
12	72 PT	N 3	MSS / 072		Pressure Transmitter (PT) (x1, each steam line) 3/4" piping to instrument Press. Input to Steam Break Protection, Safety Assessment System (SAS), and Safety Parameter Display System (SPDS) Downstream of MSIV and check valve (MS header Pressure)	PT-3-464	0.5	25	н	N	Tag Melted	523		Н	0.500	400	8.5	No		нт	N
12	72 PT	N 3	MSS / 072	5613-M-3072, SH 1	Pressure Transmitter (PT) (x1, each steam line) 3/4" piping to instrument Press. Input to Steam Break Protection, Safety Assessment System (SAS), and Safety Parameter Display System (SPDS) Downstream of MSIV and check valve (MS header Pressure)	PT-3-466	0.75	25	н	N H	No Tag	523		н	0.750	400	14	No	нт	нт	N
12	72 PT	N 3	MSS / 072	5613-M-3072, SH 1	Pressure Transmitter (PT) (x1, each steam line) 3/4" piping to instrument Press. Input to Steam Break Protection, Safety Assessment System (SAS), and Safety Parameter Display System (SPDS) Downstream of MSIV and check valve (MS header Pressure)	PT-3-468 3-10-308	0.375	25	н	N	added , 0.375 OD assumed	523		н	0.375	400	4.5	No	нт	нт	N
12	72 PT	N 3	MSS / 072	5613-M-3072, SH 1	Pressure Transmitter (PT) (x1, each steam line) 3/4" piping to instrument Press. Input to Steam Break Protection, Safety Assessment System (SAS), and Safety Parameter Display System (SPDS) Downstream of MSIV and check valve (MS header Pressure)	PT-3-474	0.375	50	н	N	added , 0.375 OD assumed	523		Н	0.375	400	4.5	No	нт	нт	N

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 464 of 488

> R21002, Rev 0 Attachment N Page 99 of 123

																				Page 9	9 of 123
20!	54 P	N 4	089	5614-M-3089, SH 2	1 Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523	N/A	0.500	400		No	N/A		
12	72 P1	'N 3	MSS / 072	5613-M-3072, SH 1	Pressure Transmitter (PT) (x1, each steam line) 3/4" piping to instrument Press. Input to Steam Break Protection, Safety Assessment System (SAS), and Safety Parameter Display System (SPDS) Downstream of MSIV and check valve (MS header Pressure)	PT-3-475	0.375	50	н	N	НТ	added , 0.375 OD assumed	523	Н	0.375	400	4.5	No	нт	нт	N
12	72 P	'N 3	MSS / 072	5613-M-3072, SH 1	Pressure Transmitter (PT) (K1, each steam line) 3/4" piping to instrument Press. Input to Steam Break Protection, Safety Assessment System (SAS), and Safety Parameter Display System (SPDS) Downstream of MSIV and check valve (MS header Pressure)	PT-3-476	0.375	50	н	N	НТ	added , 0.375 OD assumed	523	Н	0.375	400	4.5	No	нт	нт	N
12	72 P	TN 3	MSS / 072	5613-M-3072, SH 1	Pressure Transmitter (PT) (x1, each steam line) 3/4" piping to instrument Press. Input to Steam Break Protection, Safety Assessment System (SAS), and Safety Parameter Display System (SPDS) Downstream of MSIV and check valve (MS header Pressure)	PT-3-1608-1 and 1608-X	0.375	50	н	N	НТ	added , 0.375 OD assumed	523	Н	0.375	400	4.5	No	нт	нт	N
12	72 P	TN 3	MSS / 072	5613-M-3072, SH 1	Pressure Transmitter (PT) (x1, each steam line) 3/4" piping to instrument Press. Input to Steam Break Protection, Safety Assessment System (SAS), and Safety Parameter Display System (SPDS) Downstream of MSIV and check valve (MS header Pressure)	PT-3-1602 and PI-3- 3402	0.375	25	н	N	нт	added , 0.375 OD assumed	523	Н	0.375	400	4.5	No	нт	нт	N
12	71 P	N 3	MSS / 072	5613-M-3072, SH 1	Pressure Transmitter (PT) (x2, each steam line) 3/4", "1" piping to instrument Local pressure gauge (one per steam line) 1 PT reading is input to Digital Data Processing System (DDPS), and Steam Gen Steam Dump to Atmos (SDTA). Control of atmospheric dump.		0.5	50	н	N	НТ		523	Н	0.500	400	8.5	No	нт	нт	N

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 465 of 488

> R21002, Rev 0 Attachment N Page 100 of 123

																				rage 100 0	
2054	PTN	4	089	5614-M-3089, SH 2	Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A	5	523	N/A	0.500	400		No	N/A		
1271	PTN	3	MSS / 072	5613-M-3072, SH 1	Pressure Transmitter (PT) (x2, each steam line) 3/4", 1" piping to instrument Local pressure gauge (one per steam line) 1 PT reading is input to Digital Data Processing System (DDPS), and Steam Gen Steam Dump to Atmos (SDTA). Control of atmospheric dump.	PT-3-1607X	0.5	50	н	N	нт	5	523	Н	0.500	400	8.5	No	нт	нт	N
1271	PTN	3	MSS / 072	5613-M-3072, SH 1	Pressure Transmitter (PT) (x2, each steam line) 3/4", 1" piping to instrument Local pressure gauge (one per steam line) 1 PT reading is input to Digital Data Processing System (DDPS), and Steam Gen Steam Dump to Atmos (SDTA). Control of atmospheric dump.	PT-3-1606-1	0.5	50	н	N	нт	5	523	Н	0.500	400	8.5	No	нт	нт	N
1271	PTN	3	MSS / 072	5613-M-3072, SH 1	Pressure Transmitter (PT) (x2, each steam line) 3/4", 1" piping to instrument Local pressure gauge (one per steam line) 1 PT reading is input to Digital Data Processing System (DDPS), and Steam Gen Steam Dump to Atmos (SDTA). Control of atmospheric dump.	PT-3-160GX	0.5	50	н	N	НТ	5	523	Н	0.500	400	8.5	No	НТ	нт	N
1270	PTN	3	MSS / 072	5613-M-3072, SH 1	Pressure Transmitter (PT) (x3, each steam line) 3/4" piping to instrument Press. Input to Steam Break Protection, Safety Assessment System (SAS), and Safety Parameter Display System (SPDS)	PT-3- 494 Valve 3-10-302 Steam Generation 3C	0.375	50	н	N	нт	0.375 OD asumed 5	523	Н	0.375	400	4.5	No	нт	нт	N
1270	PTN	3	MSS / 072	5613-M-3072, SH 1	Pressure Transmitter (PT) (x3, each steam line) 3/4" piping to instrument Press. Input to Steam Break Protection, Safety Assessment System (SAS), and Safety Parameter Display System (SPDS)	PT-3-495	0.5	50	н	N	нт	5	523	Н	0.500	400	8.5	No	нт	нт	N
1270	PTN	3	MSS / 072	5613-M-3072, SH 1	Pressure Transmitter (PT) (x3, each steam line) 3/4" piping to instrument Press. Input to Steam Break Protection, Safety Assessment System (SAS), and Safety Parameter Display System (SPDS)	PT-3-496	0.5	50	н	N	нт	5	523	Н	0.500	400	8.5	No	нт	нт	N

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 466 of 488

> R21002, Rev 0 Attachment N Page 101 of 123

																						Page 101 of 123
2054	PTN	4	089	5614-M-3089, SH 2		Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523		N/A	0.500	400		No	N/A	
				5613-M-3072, SH 1	(Pressure Transmitter (PT) (x3, each steam line) 3/4" piping to instrument						HT				Н	0.375	400	4.5	No	НТ	HT N
1270	PTN	3	MSS / 072			Press. Input to Steam Break Protection, Safety Assessment System (SAS), and Safety Parameter Display System (SPDS)	PT-3-484 Valve 3-10-202 Steam Generation 3B	0.375	50	н	N		0.375 OD assumed	523								
				5613-M-3072, SH 1	(Pressure Transmitter (PT) (x3, each steam line) 3/4" piping to instrument						нт				Н	0.375	400	4.5	No	НТ	HT N
1270	PTN	3	MSS / 072		1	Press. Input to Steam Break Protection, Safety Assessment System (SAS), and Safety Parameter Display System (SPDS)	PT-3-485 Valve 3-10-203 Steam Generation 3B	0.375	50	н	N		0.375 OD assumed	523								
				5613-M-3072, SH 1	(Pressure Transmitter (PT) (x3, each steam line) 3/4" piping to instrument						НТ				Н	0.750	400	14	No	НТ	HT N
1270	PTN	3	MSS / 072		1	Press. Input to Steam Break Protection, Safety Assessment System (SAS), and Safety Parameter Display System (SPDS)	PT-3-486	0.75	50	н	N			523								
1275	PTN	3	MSS / 072	5613-M-3072, SH 1		capped pipe (x2, each MS	3-26"-2-B	1				нт		523			1.000	400		No	HT	
				5613-M-3072, SH 1	$\overline{}$	1/2" and 1 1/2" piping						N/A	Steam traps and bypass are designed to				0.500	400		No	N/A	
1279	PTN	3	MSS / 072		4 1	MSIV leakoff drain and steam trap (x1 per MSIV)	ST-3-3	0.5					drain condensate to condenser. Line will therefore have continuous flow. Bypass is horizontal. Draine is less than 4" long and will not freeze with process temperature at 212	523								
1279	PTN	3	MSS / 072	5613-M-3072, SH 1	4 1	1/2" and 1 1/2" piping MSIV leakoff drain and steam trap (x1 per MSIV)	ST-3-2	0.5				N/A	Steam traps and bypass are designed to drain condensate to condenser. Line will therefore have continuous flow. Bypass is horizontal. Draine is less than 4" long and will not freeze with process temperature at 212	523			0.500	400		No	N/A	
1281	PTN	3	MSS / 072	5613-M-3072, SH 1	4	1/2" steam trap (x1 per line)	ST-3-3	0.5				N/A	Steam traps and bypass are designed to drain condensate to condenser. Line will therefore have continuous flow. Bypass is horizontal. Draine is less than 4" long and will not freeze with process temperature at 212	523			0.500	400		No	N/A	
1281	PTN	3	MSS / 072	5613-M-3072, SH 1	4	1/2" steam trap (x1 per line)	ST-3-2	0.5				N/A	Steam traps and bypass are designed to drain condensate to condenser. Line will therefore have continuous flow. Bypass is horizontal. Draine is less than 4" long and will not freeze with process temperature at 212	523			0.500	400		No	N/A	
1282	PTN	3	MSS / 072	5613-M-3072, SH 1	4 2	Drain from 1/2" line (x1 per MSIV drain) 2 closed root valves.	ST-3-3	Not provided				N/A	Steam traps and bypass are designed to drain condensate to condenser. Line will therefore have continuous flow. Bypass is horizontal. Draine is less than 4" long and will not freeze with process temperature at 212	523	Tube OD of 0.5 assumed		0.500			No	N/A	
1282	PTN	3	MSS / 072	5613-M-3072, SH 1		Drain from 1/2" line (x1 per MSIV drain) 2 closed root valves.	ST-3-2	Not provided				N/A	Steam traps and bypass are designed to drain condensate to condenser. Line will therefore have continuous flow. Bypass is horizontal. Draine is less than 4" long and will not freeze with process temperature at 212	523	Tube OD of 0.5 assumed		0.500	400		No	N/A	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 467 of 488

> R21002, Rev 0 Attachment N Page 102 of 123

																				1 age 102 01 123
2054	PTN	4	089	5614-M-3089, SH 2	1 Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523		N/A	0.500	400	No	N/A	
1280	PTN	3	MSS / 072	5613-M-3072, SH 1	Steam trap bypass	ST-3-3	Not provided				N/A	Steam traps and bypass are designed to drain condensate to condenser. Line will therefore have continuous flow. Bypass is horizontal. Draine is less than 4" long and will not freeze with process temperature at 212	523	Tube OD of 0.5 assumed		0.500	400	No	N/A	
1280	PTN	3	MSS / 072	5613-M-3072, SH 1	Steam trap bypass	ST-3-2	Not provided					Steam traps and bypass are designed to drain condensate to condenser. Line will therefore have continuous flow. Bypass is horizontal. Draine is less than 4" long and will not freeze with process temperature at 212	523	Tube OD of 0.5 assumed		0.500	400	No	N/A	
1284	PTN	3	MSS / 072	5613-M-3072, SH 1	Pressure Indicators (PI) (x3) Pressure transmitter (PT) (x1)	PI-3-1415	Not provided				НТ		523	Tube OD of 0.5 assumed		0.500	400	No	нт	
1284	PTN	3	MSS / 072	5613-M-3072, SH 1	Pressure Indicators (PI) (x3) Pressure transmitter (PT) (x1)	PI-3-1414	Not provided						523	Tube OD of 0.5 assumed		0.500	400	No	0	
1284	PTN	3	MSS / 072	5613-M-3072, SH 1	Pressure Indicators (PI) (x3) Pressure transmitter (PT) (x1)	PI-3-3402	Not provided						523	Tube OD of 0.5 assumed		0.500	400	No	0	
1284	PTN	3	MSS / 072	5613-M-3072, SH 1	Pressure Indicators (PI) (x3) Pressure transmitter (PT) (x1)	PT-3-1502	Not provided						523	Tube OD of 0.5 assumed		0.500	400	No	0	
1290	PTN	3	MSS / 072	5613-M-3072, SH 1	Drains from steam traps and active line 8 closed root valves.	ST-3-4	Not provided				N/A	Steam traps and bypass are designed to drain condensate to condenser. Line will therefore have continuous flow. Bypass is horizontal. Draine is less than 4" long and will not freeze with process temperature at 212	600	Tube OD of 0.5 assumed		0.500	400	No	N/A	
1290	PTN	3	MSS / 072	5613-M-3072, SH 1	Drains from steam traps and active line 8 closed root valves.	ST-3-4	Not provided				N/A	Steam traps and bypass are designed to drain condensate to condenser. Line will therefore have continuous flow. Bypass is horizontal. Draine is less than 4" long and will not freeze with process temperature at 212	600	Tube OD of 0.5 assumed		0.500	400	No	N/A	
1290	PTN	3	MSS / 072	5613-M-3072, SH 1	Drains from steam traps and active line 8 closed root valves.	ST-3-5	Not provided				N/A	Steam traps and bypass are designed to drain condensate to condenser. Line will therefore have continuous flow. Bypass is horizontal. Draine is less than 4" long and will not freeze with process temperature at 212	600	Tube OD of 0.5 assumed		0.500	400	No	N/A	
1290	PTN	3	MSS / 072	5613-M-3072, SH 1	Drains from steam traps and active line 8 closed root valves.	ST-3-5	Not provided				N/A	Steam traps and bypass are designed to drain condensate to condenser. Line will therefore have continuous flow. Bypass is horizontal. Draine is less than 4" long and will not freeze with process temperature at 212	600	Tube OD of 0.5 assumed		0.500	400	No	N/A	
1294	PTN	3	MSS / 072	5613-M-3072, SH 1	3/4" piping; 3/8" tubing 11 Main steam to Secondary sample coolers (x3)	3-10-107	0.375				HT		523			0.375	400	No	нт	
1294	PTN	3	MSS / 072	5613-M-3072, SH 1	3/4" piping; 3/8" tubing 11 Main steam to Secondary sample coolers (x3)	3-10-207	0.375				НТ		523			0.375	400	No	нт	
1294	PTN	3	MSS / 072	5613-M-3072, SH 1	3/4" piping; 3/8" tubing 11 Main steam to Secondary sample coolers (x3)	3-10-307	0.375				НТ		523			0.375	400	No	НТ	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 468 of 488

> R21002, Rev 0 Attachment N Page 103 of 123

																				Page 103 of 123
2054	PTN	4	089	5614-M-3089, SH 2	1	Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A	523		N/A	0.500	400	No	N/A	
				5613-M-3072, SH 1		Temporary Instrument Port Pressure (PX) (1 per MS line)						HT				0.375	400	No	НТ	
						Closed root valve; 3/8" tubing														
1293	PTN	3	MSS / 072		11	Main steam to Secondary	PX-3-1605	0.375					523							
						sample coolers (x3)														
				5613-M-3072, SH 1		Temporary Instrument Port						HT				0.375	400	No	HT	
						Pressure (PX) (1 per MS line)														
						Closed root valve; 3/8" tubing														
1293	PTN	3	MSS / 072		11	Main steam to Secondary	PX-3-1604	0.375					523							
						sample coolers (x3)														
1459	PTN	3	SSS / 032	5613-M-3032, SH 5	1	SC-3-1430, -1431	SC-3-1430, -1431	N/A	N/A	N/A	N/A	N/A	40	FP system in standby, therefore reflects ambient	N/A		40	No	N/A	
1453	PTN	3	SSS / 032	5613-M-3032, SH 3		LS-3-6745, -6746, -6747, - 6748, PS-3-6745, -6746, -						HT	109	Condensate pump suction class F			100	No	HT	
				5613-M-3032, SH 3		6747, -6748, PI-3-6751, -6752, -6753, -						HT					100	No	HT	
1454	PTN	3	SSS / 032	3013-W-3032, 3Fl 3	1	6754, PI-3-6745, -6746, -						"'	109	Condensate pump suction class F			100	INO	п	
						6747, -6748, LG-3433, -3434, - 3435, -3436														
1455	PTN	3	SSS / 032	5613-M-3032, SH 3	1	Seal Buffer Tank (4 times)						HT	109	Condensate pump suction class F			100	No	HT	
				5613-M-3032, SH 3		PCV-3-615, -616, -617, -618, only up to valve. Downstream						HT					100	No	HT	
1457	PTN	3	SSS / 032			condensate is vacuum dragged to condenser							109	Condensate pump suction class F						
												ļ.,_								
1458	PTN	3	SSS / 032	5613-M-3032, SH 3	1	Small Bore Vents and Drains						НТ	109	Condensate pump suction class F			100	No	HT	
1452	PTN	3	SSS / 032	5613-M-3032, SH 2		Small Bore Drains to Sample Sink						HT	523				400	No	НТ	
1262	PTN	3	ICW / 019	5613-M-3019, SH 2		dPI-3-1402, -1403, FI-1407, - 1408, -1409, PI-3-1519, -1520						HT	96				90	No	HT	
1267	PTN	3	ICW / 019	5613-M-3019, SH 2	1	Small Bore Vents & Drains						HT	96				90	No	HT	
1207			1011 / 013	5613-M-3019, SH 1		Non-Safety Related Piping						HT	30			2.000	90	No	HT	
1255	PTN	3	ICW / 019		1	3-2"-13-L	3-2"-13-L	2					96							
		\dashv		5613-M-3019, SH 1		PS-3-1619, -1620, PI-3-1619, -						HT				0.375	90	No	HT	
1248	PTN	3	ICW / 019		1	1620, PT-3-1619, -1620	PI-3-1619	0.375					96							
1248	PTN	3	ICW / 019	5613-M-3019, SH 1		PS-3-1619, -1620, PI-3-1619, - 1620, PT-3-1619, -1620	PI-3-1620	0.375					96			0.375	90	No	0	
12.10			.5., 015	E612 M 2010 CU 4				0.575					30			0.275	00	N-		
1248	PTN	3	ICW / 019	5613-M-3019, SH 1		PS-3-1619, -1620, PI-3-1619, - 1620, PT-3-1619, -1620	PT-3-1619	0.375					96			0.375	90	No	0	
				5613-M-3019, SH 1		PS-3-1619, -1620, PI-3-1619, -										0.375	90	No	0	
1248	PTN	3	ICW / 019		1	1620, PT-3-1619, -1620	PT-3-1620	0.375					96							
				5613-M-3019, SH 1		PI(X)-3-1450, -1451, -1452, PI- 3-1488, -1489, -6901, -6902,						НТ				0.500	90	No	HT	
1249	PTN	3	ICW / 019		1	dPI-3-1400, -1401, FE(FI)-3-	PI-3-1450	0.5					96							
				5613-M-3019, SH 1		1430 PI(X)-3-1450, -1451, -1452, PI-										0.500	90	No	0	
1249	PTN	3	ICW / 019		1	3-1488, -1489, -6901, -6902, dPI-3-1400, -1401, FE(FI)-3-	PI-3-1451	0.5					96							
				5613-M-3019, SH 1		1430 PI(X)-3-1450, -1451, -1452, PI-										0.500	90	No	0	
1249	PTN	3	ICW / 019	12012-INI-2013' 2U I	1	3-1488, -1489, -6901, -6902,	PI-3-1452	0.5					96			0.500	30	INU		
						dPI-3-1400, -1401, FE(FI)-3- 1430														
																				· · · · · · · · · · · · · · · · · · ·

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 469 of 488

> R21002, Rev 0 Attachment N Page 104 of 123

																Page 104 of 12
2054	PTN 4	1 089	5614-M-3089, SH 2	1 Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A N/A	523	N/A	0.	500 400	N	0	N/A
1249	PTN 3	ICW / 019	5613-M-3019, SH 1	PI(X)-3-1450, -1451, -1452, PI- 3-1488, -1489, -6901, -6902, dPI-3-1400, -1401, FE(FI)-3-	PI-3-1488	0.375				96		0.	.375 90	N	0	0
			5613-M-3019, SH 1	1430 PI(X)-3-1450, -1451, -1452, PI-								0.	.375 90	N	0	0
1249	PTN 3	ICW / 019		3-1488, -1489, -6901, -6902, dPI-3-1400, -1401, FE(FI)-3- 1430	PI-3-1489	0.375				96						
1249	PTN 3	ICW / 019	5613-M-3019, SH 1	PI(X)-3-1450, -1451, -1452, PI- 3-1488, -1489, -6901, -6902, dPI-3-1400, -1401, FE(FI)-3- 1430	PI-3-6901	1				96		1.	.000 90	N	0	0
1249	PTN 3	3 ICW / 019	5613-M-3019, SH 1	PI(X)-3-1450, -1451, -1452, PI- 3-1488, -1489, -6901, -6902, dPI-3-1400, -1401, FE(FI)-3-	PI-3-6902	1				96		1.	.000 90	N	0	0
			5613-M-3019, SH 1	1430 PI(X)-3-1450, -1451, -1452, PI- 3-1488, -1489, -6901, -6902,								0.	.500 90	N	0	0
1249	PTN 3	ICW / 019		dPI-3-1400, -1401, FE(FI)-3- 1430	DPI-3-1400	0.5				96						
1249	PTN 3	ICW / 019	5613-M-3019, SH 1	PI(X)-3-1450, -1451, -1452, PI- 3-1488, -1489, -6901, -6902, dPI-3-1400, -1401, FE(FI)-3- 1430	DPI-3-1401	0.5				96		0.	.500 90	N	0	0
1249	PTN 3	ICW / 019	5613-M-3019, SH 1	PI(X)-3-1450, -1451, -1452, PI- 3-1488, -1489, -6901, -6902, dPI-3-1400, -1401, FE(FI)-3- 1430	FE (FI)-3-1430	0.5				96		0.	.500 90	N	0	0
1256	PTN 3	ICW / 019	5613-M-3019, SH 1	1 RV-3-128A, -128B	RV-3-128A				HT	96			90	N	0	нт
1256	PTN 3	ICW / 019	5613-M-3019, SH 1	1 RV-3-128A, -128B	RV-3-128B				HT	96			90	N		HT
1260		1011, 121	E612 M 2010 SH 1	1 Small Bore Vents & Drains Small Bore Vents & Drains	3-50-117A 3-50-117C 3-50-117B	1			HT	96			.000 90	N		0
1260		1011, 020	'	1	3-50-117D	1				96						
1260	PTN 3	ICW / 019	5613-M-3019, SH 1 5613-M-3019, SH 1	1 Small Bore Vents & Drains	3-50-118	2	-		M	96		2.	90 90	N N		0 M
1254	PTN 3	ICW / 019		Non-Safety Related Piping 1 3-8"-13-L, 3-4"-13-L	3-4"-13-L				I IVI	96			90	N		IVI
1254	PTN 3	ICW / 019	5613-M-3019, SH 1	Non-Safety Related Piping 1 3-8"-13-L, 3-4"-13-L	3-8"-13-L				М	96			90	N	0	М
1065	PTN 3	CS / 018	5613-M-3018, Sh. 1	1 manual vent					нт	100			100	N	0	HT
1064	PTN 3	CS / 018	5613-M-3018, Sh. 1	1 8" & 10" AFW pumps supply					НТ	100			100	N	0	НТ
1067 1068	PTN 3		5613-M-3018 Sh 1	2 chemical addition tank Condensate Transfer pump					HT HT	100			100	N N		HT HT
1066	PTN 3	CS / 018	5613-M-3018, Sh. 1	2 4" & 10" condensate transfer pump suction					HT	100			100	N	0	нт
1069	PTN 3	CS / 018	5613-M-3018, Sh. 1	3 Condensate Transfer pump discharge pressure PI					нт	100			100	N	0	нт
	PTN 3	CS / 018	5613-M-3018, Sh. 1	3 6" condensate transfer pump discharge piping					HT	100			100	N		нт
1071	PTN 3	CS / 018	5613-M-3018, Sh. 1 5613-M-3018, Sh. 1	3 6" crosstie with Unit 4 condensate transfer 10" condensate reject to					HT HT	100			100	N		нт
1074	PTN 3		E612 M 2019 Sh 1	5 DWST 3" condensate recovery					HT	100			100	N		нт
	PTN 3	,		return		1				100						
1075 1077	PTN 3	CS / 018 CS / 018	5613-M-3018, Sh. 1 5613-M-3018, Sh. 1	7 6" condensate return 8 Manual drains		+	+		HT HT	100 100			100 100	N N		HT HT
1076	PTN 3		5613-M-3018, Sh. 1	8 2" surge tank supply and EDG cooling water makeup					нт	100			100	N		нт
	PTN 3	CS / 018		9 1/2"condensate system supply					HT	100			100	N		нт
	PTN 3	CS / 018		2" alternate surge tank supply and EDG cooling water makeup from Unit 4					нт	100			100	N		HT
1080	PTN 3	CS / 018	5613-M-3018, Sh. 1	4" & 6" supply to chemical feed and wet layup					HT	100			100	N	0	нт
1081	PTN 3	CS / 018	5613-M-3018, Sh. 1	12 flow indicator					HT	100			100	N	0	HT

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 470 of 488

> R21002, Rev 0 Attachment N Page 105 of 123

																							Fage 103 0	1 120
2054	PTN	4	089	5614-M-3089, SH 2	1	Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523		N/A		0.500	400		No	N/A		
1082	PTN	3	CS / 018	5613-M-3018, Sh. 1	12	6" primary water makeup supply to CST						НТ		100					100		No	HT		
1083	PTN	3	CS / 018	5613-M-3018, Sh. 1	13	4" flow indicator and control valve bypass line						НТ		100					100		No	HT		
1084	PTN	3	CS / 018	5613-M-3018, Sh. 1	14	2 1/2" AFW Pump recirc line						НТ		100					100		No	HT		
	PTN			5613-M-3018, Sh. 1	16	1/2" Flex connection						HT		100					100		No	HT		
1086 1088	PTN	3		5613-M-3018, Sh. 1 5613-M-3018, Sh. 1	16	4" CST drain CST level switch for CST	LS-3-1502					HT		100		T)/		1.000	100 100	1.5	No	HT	renair/antsh if damaged, no protestion required	NI.
1000	PTN	3	CS / 018	3613-101-3016, 311. 1	17	makeup CV	LS-4-1541	1	14	TV	N	НТ	Includes all connected tubing/piping	100		TV		1.000	100	1.5	No	НТ	repair/patch if damaged; no protection required	N
1088	PTN	3	CS / 018	5613-M-3018, Sh. 1	17	CST level switch for CST makeup CV	LS-3-1503	1	10	TV	N	HT		100		TV		1.000	100	1.5	No	HT	repair/patch if damaged; no protection required	N
1090 1089				5613-M-3018, Sh. 1	17							HT		100					100		No	HT		
NEW		3		5613-M-3018, Sh. 1 5613-M-3018, Sh. 1	17	1" level switch piping CST level transmitter /	17.0 C0040	0.075	١.			HT HT		100		BV	BV conservative due to	0.375	100 50	Not	No No	HT HT	HT	N
4004	PTN	3	CS / 018	5542.44.2040.51.4	18	indication	LT-3-6384B	0.375	5	H,D	N			50		814	downward portion	0.075		nalyzed			107	
1091	PTN	3	CS / 018	5613-M-3018, Sh. 1	18	CST level transmitter / indication	LT-3-6384A	0.375	5	H,D	N	НТ		50		BV	BV conservative due to downward portion	0.375	А	Not nalyzed	No	НТ	НТ	N
1093	PTN	3	CS / 018	5613-M-3018, Sh. 1	18	manual vents, drains and test connections						HT		100					100		No	HT		
1092	PTN	3	CS / 018	5613-M-3018, Sh. 1	18	3/8", 1", & 3" level transmitter piping						HT		100					100		No	HT		
1094	PTN	3	CS / 018	5613-M-3018, Sh. 1	19	6" condensate supply to feedwater system						НТ		100					100		No	HT		
				5613-M-3014, SH 3		Pressure Switch (PS) with						HT						0.500	400		No	HT		
						control room annunciation. Local Pressure indication (PI)																		
071	DTN	,	CNDSR / 014		1		PS-3-1622	0.5						600	Class E was used from Condensate									
"		١	CNDSN/ 014		1	1/2" tubing and open root valve.	PI-3-1569	0.5						000	section.									
						l l																		
				5613-M-3014, SH 3		Local Pressure indication (PI)						НТ						0.500	400		No	HT		
972	PTN	3	CNDSR / 014		1	1/2" tubing and open root	PI-3-1568	0.5						600										
"			,			valve.																		
976	PTN	3	CNDSR / 014	5613-M-3014, SH 3	2	1" Drain (Piping & valve)	3-30-039	1				НТ		600				1.000	400		No	НТ		
				5613-M-3014, SH 3		Local Pressure indication (PI)						НТ						0.500	400		No	HT		
978	PTN	3	CNDSR / 014		3	1/2" tubing and open root	PI-3-1434	0.5						400										
						valve; branch from 8" lines into SJAEs																		
	\dashv	\dashv		5613-M-3014, SH 3		Local Pressure indication (PI)						HT						0.500	400		No	HT		
				, ,		, ,																		
978	PTN	3	CNDSR / 014		3	1/2" tubing and open root	PI-3-1407	0.5						400										
						valve; branch from 8" lines																		
	\perp					into SJAEs																		
980	PTN	3		5613-M-3014, SH 3	3	8" Vent/Vacuum breaker	3-30-001	8				1		400				Not Analyzed	400		No		Verify already Insulated	Υ
				5613-M-3014, SH 3		Local Pressure indication (PI)						HT						Not Analyzed	400		No	HT		
977	PTN	,	CNDSR / 014		2	1/4" tubing and open root	PI-3-1447	0.25						400				Allalyzed						
3//	- 11N	٦	CND3N / U14		3	valve; branch from 8" vacuum breaker line	F1-3-144/	0.23						400										
				5613-M-3014, SH 3		Local level gauge						HT						0.500	90	Ţ	No	HT]
985	PTN	3	CNDSR / 014		7	indicates liquid level in	LG (not numbered)	0.5						90										
	_	\dashv		5613-M-3014, SH 3		condenser drain line. Local level gauge			+	+	-	HT						0.500	90		No	HT	+	
985	PTN	3	CNDSR / 014		7		LG (not numbered)	0.5						90										
			,			indicates liquid level in condenser drain line.	,																	
				5613-M-3014, SH 3		Local level gauge and 1/2"						HT						0.500	350		No	HT		
987	PTN	3	CNDSR / 014		8	tubing	LG-3-3411	0.5						350										
			•			indicates liquid level in																		
						condenser drain line.			1				1											

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 471 of 488

> R21002, Rev 0 Attachment N Page 106 of 123

																		Page 106 of 123
2054	PTN	4	089	5614-M-3089, SH 2	1 Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A	523	N/A	0.500	400	No	N/A	
989	PTN	3 (CNDSR / 014	5613-M-3014, SH 3	1/2" capped pipe (closed root valve) 8 1/2" line (isolated) from Condensate Sys Loop Seal Fill	3-30-080	0.5				НТ	350		0.500	350	No	нт	
990	PTN	3 (CNDSR / 014	5613-M-3014, SH 3	Radiation detector (RD) with 9 control room alarm/annunciation	RD-3-15					НТ	200			200	No	НТ	
992	PTN	3 (CNDSR / 014	5613-M-3014, SH 3	9 Local flow indicator (FI)	FI-3-1416	0.375				HT	200		0.375	200	No	НТ	
991	PTN	3 (CNDSR / 014	5613-M-3014, SH 3	Local gauges and 3/8" tubing press differential (dPI) Flow indication (FI) Flow element (FE)	FE-3-3400	0.5				НТ	200		0.500	200	No	нт	
991	PTN	3 (CNDSR / 014	5613-M-3014, SH 3	Local gauges and 3/8" tubing press differential (dPI) 9 Flow indication (FI) Flow element (FE)	DPI-3-1406	0.375				НТ	200		0.375	200	No	нт	
994	PTN	3 (CNDSR / 014	5613-M-3014, SH 3	1/2" drain/vent, 1" isolated conn. for flex hose and chem testing (note 6), 1" drain (x2) 9 1/2" line (isolated) from Condensate Sys Loop Seal Fill	3-30-223	0.375				НТ	200		0.375	200	No	нт	
994	PTN	3 (CNDSR / 014	5613-M-3014, SH 3	1/2" drain/vent, 1" isolated conn. for flex hose and chem testing (note 6), 1" drain (x2) 9 1/2" line (isolated) from Condensate Sys Loop Seal Fill	3-30-220	0.375				НТ	200		0.375	200	No	нт	
994	PTN	3 (CNDSR / 014	5613-M-3014, SH 3	1/2" drain/vent, 1" isolated conn. for flex hose and chem testing (note 6), 1" drain (x2) 9 1/2" line (isolated) from Condensate Sys Loop Seal Fill	3-30-178	0.375				НТ	200		0.375	200	No	НТ	
994	PTN	3 (CNDSR / 014	5613-M-3014, SH 3	1/2" drain/vent, 1" isolated conn. for flex hose and chem testing (note 6), 1" drain (x2) 9 1/2" line (isolated) from Condensate Sys Loop Seal Fill	3-30-015	0.5				НТ	200		0.500	200	No	нт	
994	PTN	3 (CNDSR / 014	5613-M-3014, SH 3	1/2" drain/vent, 1" isolated conn. for flex hose and chem testing (note 6), 1" drain (x2) 9 1/2" line (isolated) from Condensate Sys Loop Seal Fill	None	1				НТ	200		1.000	200	No	нт	
960	PTN	3 (CNDSR / 014	5613-M-3014, SH 2	10" header, and 2" piping and control valves (air operated)	3-20-051	2				I	200		2.000	200	No	I	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 472 of 488

> R21002, Rev 0 Attachment N Page 107 of 123

																				Page 107 of 123
2054	PTN	4	089	5614-M-3089, SH 2	1 Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A N	A	523		N/A	0.500	400		No	N/A	
960	PTN	3	CNDSR / 014	5613-M-3014, SH 2	10" header, and 2" piping and control valves (air operated)	3-20-053	2					200			2.000	200		No	0	
960	PTN	3	CNDSR / 014	5613-M-3014, SH 2	10" header, and 2" piping and control valves (air operated)	CV-3-1519	10					200			Not Analyzed	200		No	0	
964	PTN	3	CNDSR / 014	5613-M-3014, SH 2	5 3/4" and 1/2" instrument line piping	3-20-817	0.5			ŀ	Г	200			0.500	200		No	HT	
				5613-M-3014, SH 2	3 Pressure Indicating Transmitter (PIT)					ŀ	Г				0.500	200		No	HT	
963	PTN	3	CNDSR / 014		5 PITs have CR alarm/annunciation and input to Turbine Control Sys, Turbine trip, etc.	PIT-3-1612A	0.5					200								
				5613-M-3014, SH 2	3 Pressure Indicating Transmitter (PIT)										0.500	200		No	0	
963	PTN	3	CNDSR / 014		5 PITs have CR alarm/annunciation and input to Turbine Control Sys, Turbine trip, etc.	PIT-3-1612B	0.5					200								
				5613-M-3014, SH 2	3 Pressure Indicating Transmitter (PIT)										0.500	200		No	0	
963	PTN	3	CNDSR / 014		5 PITs have CR alarm/annunciation and input to Turbine Control Sys, Turbine trip, etc.	PIT-3-1612C	0.5					200								
				5613-M-3014, SH 2	Level Controler (LC)					ŀ	Г				0.500	200		No	HT	
966	PTN	3	CNDSR / 014		North Cond signal input to condenser water makeup spray valves (suction from DWST)	LC-3-1519	Not provided					200	Tube OD of 0.5 assumed							
968	PTN	3	CNDSR / 014	5613-M-3014, SH 2	North Cond enser	LG-3-3401	0.75			ŀ	Т	200			0.750	200		No	нт	
		-		5613-M-3014, SH 2	North Local level guage (x3)										0.750	200		No	0	
968	PTN	3	CNDSR / 014		Cond enser 3A	LG-3-3401	0.75					200								
968	PTN	3	CNDSR / 014	5613-M-3014, SH 2	North Local level guage (x3) Cond enser	LG-3-3401	0.75					200			0.750	200		No	0	
				5613-M-3014, SH 2	3A Temporary pressure					l l	Г				0.750	200		No	HT	
967	PTN	3	CNDSR / 014		North instrument (PX) (x6); Cond Temporary temperature enser instrument (TX) (x1) 3A	PX-3-1623	0.75					200								
		\dashv		5613-M-3014, SH 2	3/4" tubing/pipe Temporary pressure										0.750	200		No	0	
967	PTN	3	CNDSR / 014		North instrument (PX) (x6); Cond Temporary temperature enser instrument (TX) (x1) 3A	PX-3-1624	0.75					200								
-				5613-M-3014, SH 2	3/4" tubing/pipe Temporary pressure									+	0.750	200	_	No	0	
967	PTN	3	CNDSR / 014		North instrument (PX) (x6); Cond Temporary temperature enser instrument (TX) (x1) 3A	PX-3-1625	0.75					200								
\vdash	\dashv			5613-M-3014, SH 2	3/4" tubing/pipe Temporary pressure									+	0.750	200	_	No	0	
967	PTN	3	CNDSR / 014		North instrument (PX) (x6); Cond Temporary temperature enser instrument (TX) (x1) 3A	PX-3-1626	0.75					200								
					3/4" tubing/pipe															

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 473 of 488

> R21002, Rev 0 Attachment N Page 108 of 123

																			Page 108 of 123
2054	PTN	4	089	5614-M-3089, SH 2	1 Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A	523		N/A	0.500	400	No	N/A	
967	PTN	3	CNDSR / 014	5613-M-3014, SH 2	Temporary pressure North instrument (PX) (x6); Cond Temporary temperature enser instrument (TX) (x1) 3A	PX-3-1627	0.75					200			0.750	200	No	0	
967	PTN	3	CNDSR / 014	5613-M-3014, SH 2	3/4" tubing/pipe Temporary pressure North instrument (PX) (x6); Cond Temporary temperature enser instrument (TX) (x1) 3A 3/4" tubing/pipe	PX-3-1628	0.75					200			0.750	200	No	0	
969	PTN	3	CNDSR / 014	5613-M-3014, SH 2	North Vent (screened open flange) Cond with Motor Op Valve enser MOV-3-VAB 3A	MOV-3-VAB	Not provided				НТ	200	Tube OD of 0.5 assumed		0.500	200	No	НТ	
970	PTN	3	CNDSR / 014	5613-M-3014, SH 2	North Capped piping Cond enser 1 1/2" pipe (leak detect) (x8)	3E7A	1.5				нт	200			1.500	200	No	НТ	
970	PTN	3	CNDSR / 014	5613-M-3014, SH 2	North Capped piping Cond enser 1 1/2" pipe (leak detect) (x8)	3E7A	1.5					200			1.500	200	No	0	
970	PTN	3	CNDSR / 014		North Copped piping Cond enser 1 1/2" pipe (leak detect) (x8)	3E7A	1.5					200			1.500	200	No	0	
970	PTN	3	CNDSR / 014		North Capped piping Cond enser 1 1/2" pipe (leak detect) (x8) 3A	3E7A	1.5					200			1.500	200	No	0	
970	PTN	3	CNDSR / 014		North Capped piping Cond enser 1 1/2" pipe (leak detect) (x8)	3E7A	1.5					200			1.500	200	No	0	
970	PTN	3	CNDSR / 014		North Capped piping Cond enser 1 1/2" pipe (leak detect) (x8) 3A	3E7A	1.5					200			1.500	200	No	0	
970	PTN	3	CNDSR / 014		North Capped piping Cond enser 1 1/2" pipe (leak detect) (x8)	3E7A	1.5					200			1.500	200	No	0	
970	PTN	3	CNDSR / 014		North Capped piping Cond enser 1 1/2" pipe (leak detect) (x8) 3A	3E7A	1.5					200			1.500	200	No	0	
948	PTN	3	CNDSR / 014		Isolated lines and drains upstream of 3-30-999 (line 3-1 1/2"-2-CM common header)	30-1024	0.5				НТ	200	Class E was used from Condensate section.		0.500	200	No	НТ	
948	PTN	3	CNDSR / 014		Isolated lines and drains upstream of 3-30-999 (line 3-1 1/2"-2-CM common header)	30-1046	0.5					200	Class E was used from Condensate section.		0.500	200	No	0	
948	PTN	3	CNDSR / 014		Isolated lines and drains upstream of 3-30-999 (line 3- 1 1/2"-2-CM common header)	30-1038	0.5					200	Class E was used from Condensate section.		0.500	200	No	0	
948	PTN	3	CNDSR / 014	5613-M-3014, SH 1	Isolated lines and drains upstream of 3-30-999 (line 3- 1 1/2"-2-CM common header)	30-1020 30-1037	1					200	Class E was used from Condensate section.		1.000		No	0	
948	PTN	3	CNDSR / 014		Isolated lines and drains upstream of 3-30-999 (line 3- 1 1/2"-2-CM common header)	50-1037	1					200	Class E was used from Condensate section.			200	No	0	
948	PTN	3	CNDSR / 014		Isolated lines and drains upstream of 3-30-999 (line 3-1 1/2"-2-CM common header)	30-1030	1.5					200	Class E was used from Condensate section.		1.500	200	No	0	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 474 of 488

> R21002, Rev 0 Attachment N Page 109 of 123

																					Page 109 of 123
2054	PTN	4	089	5614-M-3089, SH 2		Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A	52	23		N/A	0.500	400	No	N/A	
949	PTN	3	CNDSR / 014	5613-M-3014, SH 1		4 capped pipe ends & 3 pipe studs with closed valves (3-30- 991, 3-30-992, and 3-30-993)	3-30-991	Not provided				НТ	20		Class E was used from Condensate section. Tube OD of 0.5 assumed		0.500	200	No	НТ	
949	PTN	3	CNDSR / 014	5613-M-3014, SH 1	,	4 capped pipe ends & 3 pipe studs with closed valves (3-30- 991, 3-30-992, and 3-30-993)	3-30-992	Not provided					20		Class E was used from Condensate section. Tube OD of 0.5 assumed		0.500	200	No	0	
949	PTN	3	CNDSR / 014	5613-M-3014, SH 1	,	4 capped pipe ends & 3 pipe studs with closed valves (3-30- 991, 3-30-992, and 3-30-993)	3-30-993	Not provided					20	00	Class E was used from Condensate section. Tube OD of 0.5 assumed		0.500	200	No	0	
949	PTN	3	CNDSR / 014	5613-M-3014, SH 1	,	4 capped pipe ends & 3 pipe studs with closed valves (3-30- 991, 3-30-992, and 3-30-993)	ownstream of 3-30- 991	Not provided					20		Class E was used from Condensate section. Tube OD of 0.5 assumed		0.500	200	No	0	
949	PTN	3	CNDSR / 014	5613-M-3014, SH 1		4 capped pipe ends & 3 pipe studs with closed valves (3-30- 991, 3-30-992, and 3-30-993)	ownstream of 3-30- 992	Not provided					20		Class E was used from Condensate section. Tube OD of 0.5 assumed		0.500	200	No	0	
949	PTN	3	CNDSR / 014	5613-M-3014, SH 1		4 capped pipe ends & 3 pipe studs with closed valves (3-30- 991, 3-30-992, and 3-30-993)	ownstream of 3-30- 993	Not provided					20	00	Class E was used from Condensate section. Tube OD of 0.5 assumed		0.500	200	No	0	
949	PTN		CNDSR / 014		4	4 capped pipe ends & 3 pipe studs with closed valves (3-30- 991, 3-30-992, and 3-30-993)	ownstream of 3-30- 994	Not provided					20	00	Class E was used from Condensate section. Tube OD of 0.5 assumed		0.500	200	No	0	
951	PTN	3	CNDSR / 014	5613-M-3014, SH 1	5	3/4" and 1/2" instrument line piping	3-20-600	0.5				НТ	20	00			0.500	200	No	HT	
				5613-M-3014, SH 1		2 Pressure Switches (PS); 3 Pressure Indicating Transmitter (PIT)						НТ					0.500	200	No	НТ	
950	PTN	3	CNDSR / 014		5	PS input to Steam Dump system. PITs have CR alarm/annunciation and input to Turbine Control Sys, Turbine trip, etc.	PS-3-1613A	0.5					20	00							
				5613-M-3014, SH 1		2 Pressure Switches (PS); 3 Pressure Indicating Transmitter (PIT)											0.500	200	No	0	
950	PTN	3	CNDSR / 014		5	PS input to Steam Dump system. PITs have CR alarm/annunciation and input to Turbine Control Sys, Turbine trip, etc.	PS-3-1613B	0.5					20	00							
				5613-M-3014, SH 1		2 Pressure Switches (PS); 3 Pressure Indicating Transmitter (PIT)											0.500	200	No	0	
950	PTN	3	CNDSR / 014		5	PS input to Steam Dump system. PITS have CR alarm/annunciation and input to Turbine Control Sys, Turbine trip, etc.	PIT-3-2612A	0.5					20	00							
				5613-M-3014, SH 1		2 Pressure Switches (PS); 3 Pressure Indicating Transmitter (PIT)											0.500	200	No	0	
950	PTN	3	CNDSR / 014		5	PS input to Steam Dump system. PITS have CR alarm/annunciation and input to Turbine Control Sys, Turbine trip, etc.	PIT-3-2612B	0.5					20	00							

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 475 of 488

> R21002, Rev 0 Attachment N Page 110 of 123

																				Page 110 of	123
2054	PTN	4	089	5614-M-3089, SH 2		re Control Instrument) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A	523		N/A	0.500	400	No	N/A		
				5613-M-3014, SH 1	3 Press	sure Switches (PS); sure Indicating mitter (PIT)										0.500	200	No	0		
950	PTN	3	CNDSR / 014		system PITs ha alarm/ to Turk	ave CR /annunciation and input bine Control Sys,	PIT-3-2612C	0.5					200								
				5613-M-3014, SH 1		ne trip, etc. Fransmitter (LT)						НТ				0.500	200	No	HT		
953	PTN	3	CNDSR / 014		Cond enser	enser level with control annunciation low)	LT-3-1541	Not provided					200	Tube OD of 0.5 assumed							
955	PTN	3	CNDSR / 014	5613-M-3014, SH 1	South Local le Cond enser 3B	evel guage (x2)	LG-3-3400	0.75				НТ	200			0.750	200	No	нт		
955	PTN	3	CNDSR / 014	5613-M-3014, SH 1	South Local le Cond enser 3B	evel guage (x2)	LG-3-3400	0.75					200			0.750	200	No	0		
954	PTN	3	CNDSR / 014	5613-M-3014, SH 1	South instrur Cond Tempo enser instrur 3B	orary pressure ment (PX) (x6); orary temperature ment (TX) (x1)	PX-3-1629	0.75				нт	200			0.750	200	No	нт		
				5613-M-3014, SH 1	South instrur	prary pressure ment (PX) (x6);										0.750	200	No	0		
954	PTN	3	CNDSR / 014		enser instrur 3B	orary temperature ment (TX) (x1) ubing/pipe	PX-3-1630	0.75					200								
954	PTN	3	CNDSR / 014	5613-M-3014, SH 1	South instrur Cond Tempo enser instrur 3B	orary pressure ment (PX) (x6); orary temperature ment (TX) (x1) ubing/pipe	PX-3-1631	0.75					200			0.750	200	No	0		
954	PTN	3	CNDSR / 014	5613-M-3014, SH 1	South instrur Cond Tempo enser instrur 3B	orary pressure ment (PX) (x6); orary temperature ment (TX) (x1) ubing/pipe	PX-3-1632	0.75					200			0.750	200	No	0		
954	PTN	3	CNDSR / 014	5613-M-3014, SH 1	South instrur Cond Tempo enser instrur 3B	orary pressure ment (PX) (x6); orary temperature ment (TX) (x1) ubing/pipe	PX-3-1633	0.75					200			0.750	200	No	0		
954	PTN	3	CNDSR / 014	5613-M-3014, SH 1	South instrur Cond Tempo enser instrur 3B	orary pressure ment (PX) (x6); orary temperature ment (TX) (x1) ubing/pipe	PX-3-1634	0.75					200			0.750	200	No	0		
956	PTN	3	CNDSR / 014	5613-M-3014, SH 1	South Vent (s	screened open flange) Notor Op Valve	MOV-3-VAB1	Not provided				нт	200	Tube OD of 0.5 assumed		0.500	200	No	НТ		
957	PTN	3	CNDSR / 014	5613-M-3014, SH 1	Cond	d piping pipe (leak detect) (x8) e (x1)	3E7B	1.5				НТ	200			1.500	200	No	нт		
957	PTN	3	CNDSR / 014	5613-M-3014, SH 1	Cond	d piping pipe (leak detect) (x8) e (x1)	3E7B	1.5					200			1.500	200	No	0		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 476 of 488

> R21002, Rev 0 Attachment N Page 111 of 123

																				Page 111 of 123
2054	PTN	4	089	5614-M-3089, SH 2	1 Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A N/A	52	3	N/A		0.500	400		No	N/A	
		\neg		5613-M-3014, SH 1	Capped piping										1.500	200		No	0	
					Cond															
957	PTN	3 CN	NDSR / 014		enser 1 1/2 pipe (leak detect) (xo)	3E7B	1.5				20)								
					3B 1" pipe (x1)															
				5613-M-3014, SH 1	Capped piping										1.500	200		No	0	
					Cond															
957	PTN	3 CN	NDSR / 014		enser 1 1/2 pipe (leak detect) (x8)	3E7B	1.5				20)								
					3B 1" pipe (x1)															
		\neg		5613-M-3014, SH 1	Capped piping										1.500	200		No	0	
					Cond															
957	PTN	3 CN	NDSR / 014		enser 1 1/2" pipe (leak detect) (x8)	3E7B	1.5				20)								
					3B 1" pipe (x1)															
				5613-M-3014, SH 1	Capped piping										1.500	200		No	0	
					Cond															
957	PTN	3 CN	NDSR / 014		enser 1 1/2 pipe (leak detect) (xo)	3E7B	1.5				20)								
					3B 1" pipe (x1)															
		\top		5613-M-3014, SH 1	South Capped piping										1.500	200		No	0	
057	PTN	,	unen /oc		Cond	2570	1.5				20									
957	PIN	3 Cr	NDSR / 014		enser 1" pipe (x1)	3E7B	1.5				20	,								
					3B 1 pipe (x1)															
				5613-M-3014, SH 1	South Capped piping										1.500	200		No	0	
057	DTN	, ,	NDSR / 014		Cond 1 1/2" pipe (leak detect) (x8)	3E7B	1.5				20									
957	FIN	3 Ci	ND3K / 014		enser 1" pino (v1)	3276	1.5					,								
					38															
				5613-M-3014, SH 1	South Capped piping										1.000	200		No	0	
957	PTN	3 CN	NDSR / 014		Cond 1 1/2" pipe (leak detect) (x8)	3E7B	1				20									
***		-	,		enser 1" pipe (x1)		_													
1143	PTN	3 0	WS / 010	5613-M-3010, SH 3	PC-3-1700, PS-3-2001, -2006, - 1 2012, -2019, -2044, -2045, -	PS-3-2001	0.25				99				Not Analyzed	90		No	0	
11.5		Ĭ `	5, 010		2061	1332001	0.23								/ III III I					
				5613-M-3010, SH 3	PC-3-1700, PS-3-2001, -2006, -										Not	90		No	0	
1143	PTN	3 0	WS / 010		1 2012, -2019, -2044, -2045, - 2061	PS-3-2006	0.25				9:				Analyzed					
				5613-M-3010, SH 3	PC-3-1700, PS-3-2001, -2006, -										Not	90		No	0	
1143	PTN	3 0	WS / 010		1 2012, -2019, -2044, -2045, -	PS-3-2012	0.25				9:				Analyzed					
		+		5613-M-3010, SH 3	2061 PC-3-1700, PS-3-2001, -2006, -										Not	90		No	0	
1143	PTN	3 0	WS / 010	3013-W-3010, 3FI 3	1 2012, -2019, -2044, -2045, -	PS-3-2019	0.25				99				Analyzed	90		INO	0	
					2061										,					
1142	PTN	3 C	WS / 010	5613-M-3010, SH 3	1 PS-3-2018	Not in TB	-	Not in		N/A	Not in TB 9			-	0.500	90		No	N/A	
1143	PTN	3 0	WS / 010	5613-M-3010, SH 3	PC-3-1700, PS-3-2001, -2006, - 1 2012, -2019, -2044, -2045, -	PC-3-1700	0.5			HT	9.				0.500	90		No	HT	
			-,		2061															
				5613-M-3010, SH 3	PC-3-1700, PS-3-2001, -2006, -										0.500	90		No	0	
1143	PTN	3 0	CWS / 010		1 2012, -2019, -2044, -2045, - 2061	PS-3-2044	0.5				9:									
		+		5613-M-3010, SH 3	PC-3-1700, PS-3-2001, -2006, -										0.500	90		No	0	
1143	PTN	3 0	WS / 010		1 2012, -2019, -2044, -2045, -	PS-3-2045	0.5				99									
-	\vdash	+		5613-M-3010, SH 3	2061 PC-3-1700, PS-3-2001, -2006, -		-	-						-	0.500	90		No	0	
1143	PTN	3 0	WS / 010	DOTO-INI-DOTA' 2H 3	1 2012, -2019, -2044, -2045, -	PS-3-2061	0.5				99				0.500	90		No	0	
					2061															
1145	PTN	3 0	WS / 010	5613-M-3010, SH 3	FI-3-1414, -1452, -1454, -	FI-3-1414	0.75			нт	9.				0.750	90	Т	No	HT	
-	_	-		5613-M-3010, SH 3	1403 FI-3-1414, -1452, -1454, -			_						+	0.750	90		No	0	
1145	PTN	3 (W2 / 010		1403	FI-3-1452	0.75				9:									
1145	PTN	3 (WS / 010	5613-M-3010, SH 3	FI-3-1414, -1452, -1454, -	FI-3-1454	0.75				9.				0.750	90		No	0	
\vdash		_		5613-M-3010, SH 3	1403 FI-3-1414, -1452, -1454, -										0.750	90		No	0	
1145	PTN	3 C	W2/010		1403	FI-3-1403	0.75				9.									
				5613-M-3010, SH 3	PI-3-1697, -1696, -1522, -					НТ					0.500	90	T	No	HT	
1144	PTN	3 0	WS / 010		1 3661, -1495, -1523, -1524, - 1525, -1526, -1527, -1528, -	PI-3-1697	0.5				9:									
					1529, 1530, PX-3-3403															

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 477 of 488

> R21002, Rev 0 Attachment N Page 112 of 123

																		Page 112	01 123
2054	PTN 4	089	5614-M-3089, SH 2	1 Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A N/A		523	N/A	0.500	400		No	N/A		
1144	PTN 3	CWS / 010	5613-M-3010, SH 3	PI-3-1697, -1696, -1522, - 3661, -1495, -1523, -1524, - 1525, -1526, -1527, -1528, -	PI-3-1696	0.5					95		0.500	90		No	0		
	+		5613-M-3010, SH 3	1529, 1530, PX-3-3403 PI-3-1697, -1696, -1522, -									0.500	90		No	0		
1144	PTN 3	CWS / 010)	1 3661, -1495, -1523, -1524, - 1525, -1526, -1527, -1528, - 1529, 1530, PX-3-3403	PI-3-1522	0.5					95								
			5613-M-3010, SH 3	PI-3-1697, -1696, -1522, - 3661, -1495, -1523, -1524, -									0.500	90		No	0		
1144	PTN 3	CWS / 010		1525, -1526, -1527, -1528, - 1529, 1530, PX-3-3403	PI-3-3661	0.5					95								
1144	PTN 3	CWS / 010	5613-M-3010, SH 3	PI-3-1697, -1696, -1522, - 3661, -1495, -1523, -1524, - 1525, -1526, -1527, -1528, - 1529, 1530, PX-3-3403	PI-3-1495	0.5					95		0.500	90		No	0		
			5613-M-3010, SH 3	PI-3-1697, -1696, -1522, -									0.500	90		No	0		
1144	PTN 3	CWS / 010		1 3661, -1495, -1523, -1524, - 1525, -1526, -1527, -1528, - 1529, 1530, PX-3-3403	PI-3-1523	0.5					95								
1144	PTN 3	CWS / 010	5613-M-3010, SH 3	PI-3-1697, -1696, -1522, - 3661, -1495, -1523, -1524, - 1525, -1526, -1527, -1528, - 1529, 1530, PX-3-3403	PI-3-1524	0.5					95		0.500	90		No	0		
			5613-M-3010, SH 3	PI-3-1697, -1696, -1522, - 3661, -1495, -1523, -1524, -									0.500	90		No	0		
1144	PTN 3	CWS / 010		1525, -1526, -1527, -1528, - 1529, 1530, PX-3-3403	PI-3-1525	0.5					95						_		
1144	PTN 3	CWS / 010	5613-M-3010, SH 3	PI-3-1697, -1696, -1522, - 3661, -1495, -1523, -1524, - 1525, -1526, -1527, -1528, - 1529, 1530, PX-3-3403	PI-3-1526	0.5					95		0.500	90		No	0		
1144	PTN 3	CWS / 010	5613-M-3010, SH 3	PI-3-1697, -1696, -1522, - 3661, -1495, -1523, -1524, - 1525, -1526, -1527, -1528, -	PI-3-1527	0.5					95		0.500	90		No	0		
	+		5613-M-3010, SH 3	1529, 1530, PX-3-3403 PI-3-1697, -1696, -1522, -									0.500	90		No	0		
1144	PTN 3	CWS / 010)	1 3661, -1495, -1523, -1524, - 1525, -1526, -1527, -1528, - 1529, 1530, PX-3-3403	PI-3-1528	0.5					95								
1144	PTN 3	CWS / 010	5613-M-3010, SH 3	PI-3-1697, -1696, -1522, - 3661, -1495, -1523, -1524, - 1525, -1526, -1527, -1528, - 1529, 1530, PX-3-3403	PI-3-1529	0.5					95		0.500	90		No	0		
1144	PTN 3	CWS / 010	5613-M-3010, SH 3	PI-3-1697, -1696, -1522, - 3661, -1495, -1523, -1524, - 1525, -1526, -1527, -1528, - 1529, 1530, PX-3-3403	PI-3-1530	0.5					95		0.500	90		No	0		
1137	PTN 3	CWS / 010	5613-M-3010, SH 2	1 PS-3-2040, -2041, -2042, 2043	PS-3-2040	0.5	See PI-3 1536	-	N/A	See PI-3-1536	50		0.500	50		No	N/A	air service; no protection required	N
1137	PTN 3	CWS / 010	5613-M-3010, SH 2	1 PS-3-2040, -2041, -2042, 2043	PS-3-2041	0.5	See PI-3 1537	-	N/A	See PI-3-1537	50		0.500	50		No	N/A	air service; no protection required	N
1137	PTN 3	CWS / 010		1 PS-3-2040, -2041, -2042, 2043	PS-3-2042	0.5	See PI-3 1538		N/A	See PI-3-1538	50		0.500	50		No	N/A	air service; no protection required	N
1137	PTN 3	CWS / 010		1 PS-3-2040, -2041, -2042, 2043	PS-3-2043	0.5	See PI-3 1539	-	N/A	See PI-3-1539	50		0.500	50		No	N/A	air service; no protection required	N
1136	PTN 3	CWS / 010	5613-M-3010, SH 2	1 PS-3-2036, -2037, -2038, - 2039	PS-3-2036	0.5			НТ	alarm only	50		0.500	50		No	HT		
1136	PTN 3	CWS / 010	5613-M-3010, SH 2	1 PS-3-2036, -2037, -2038, - 2039	PS-3-2037	0.5				alarm only	50		0.500	50		No	0		
1136	PTN 3	CWS / 010		1 PS-3-2036, -2037, -2038, - 2039	PS-3-2038	0.5				alarm only	50		0.500	50		No	0		
1136	PTN 3	CWS / 010		1 PS-3-2036, -2037, -2038, - 2039	PS-3-2039	0.5				alarm only	50		0.500	50		No	0		
1138	PTN 3	CWS / 010		1 PI-3-1536, -1537, -1538, - 1539, -1590,	PI-3-1538	0.5	8	TV	N HT	INCLUDES PS-3-2042	50	TV	0.500	50	0	No	HT	air service; no protection required	N
1138	PTN 3	CWS / 010		1 PI-3-1536, -1537, -1538, - 1539, -1590,	PI-3-1537	0.5	9	TV	N HT	INCLUDES PS-3-2041	50	TV	0.500	50	0	No	HT	air service; no protection required	N
1138	PTN 3	CWS / 010		1 PI-3-1536, -1537, -1538, - 1539, -1590,	PI-3-1539	0.5	10	TV	N HT	INCLUDES PS-3-2043	50	TV	0.500	50	0	No	HT	air service; no protection required	N
1138	PTN 3	CWS / 010		1 PI-3-1536, -1537, -1538, - 1539, -1590,	PI-3-1536	0.5	11	TV	N HT	INCLUDES PS-3-2040	50	TV	0.500	50	0	No	HT	air service; no protection required	N
1138	PTN 3	CWS / 010	5613-M-3010, SH 2	1 PI-3-1536, -1537, -1538, - 1539, -1590,	PI-3-1591	0.5					50		0.500	50		No	0		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 478 of 488

> R21002, Rev 0 Attachment N Page 113 of 123

																	Page 113 of 123
2054	PTN	4 089	5614-M-3089, SH 2	1 Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A	523	N/A	0.500	400	No	N/A	
			5613-M-3010, SH 1	PI-3-1006, -1007, -1008, - 1009, -1459, -1462 PX-3-						НТ			0.500	50	No	HT	
1126	PTN	3 CWS/	110	1 1504, -1505, -1506, -1507, - 1635, -1636, -1637, -1638, - 1639, -1640, -1641, -1642	PI-3-1006	0.5					50						
			5613-M-3010, SH 1	PI-3-1006, -1007, -1008, - 1009, -1459, -1462 PX-3-									0.500	50	No	0	
1126	PTN	3 CWS/	110	1 1504, -1505, -1506, -1507, - 1635, -1636, -1637, -1638, - 1639, -1640, -1641, -1642	PI-3-1007	0.5					50						
			5613-M-3010, SH 1	PI-3-1006, -1007, -1008, - 1009, -1459, -1462 PX-3-									0.500	50	No	0	
1126	PTN	3 CWS/	110	1 1504, -1505, -1506, -1507, - 1635, -1636, -1637, -1638, - 1639, -1640, -1641, -1642	PI-3-1008	0.5					50						
			5613-M-3010, SH 1	PI-3-1006, -1007, -1008, - 1009, -1459, -1462 PX-3-									0.500	50	No	0	
1126	PTN	3 CWS/	110	1 1504, -1505, -1506, -1507, - 1635, -1636, -1637, -1638, - 1639, -1640, -1641, -1642	PI-3-1009	0.5					50						
4405			5613-M-3010, SH 1	PI-3-1006, -1007, -1008, - 1009, -1459, -1462 PX-3-	B) 0.4450	0.5							0.500	50	No	0	
1126	PIN	B CWS/	710	1 1504, -1505, -1506, -1507, - 1635, -1636, -1637, -1638, - 1639, -1640, -1641, -1642	PI-3-1459	0.5					50						
1126	PTN	3 CWS/	5613-M-3010, SH 1	PI-3-1006, -1007, -1008, - 1009, -1459, -1462 PX-3- 1 1504, -1505, -1506, -1507, -	PI-3-1462	0.5					50		0.500	50	No	0	
1120	PIN	S CW3/		1635, -1636, -1637, -1638, - 1639, -1640, -1641, -1642	P1-3-1402	0.5					30						
1126	PTN	3 CWS/	5613-M-3010, SH 1	PI-3-1006, -1007, -1008, - 1009, -1459, -1462 PX-3- 1 1504, -1505, -1506, -1507, -	PX-3-1504	0.75					50		0.750	50	No	0	
		, cus,		1635, -1636, -1637, -1638, - 1639, -1640, -1641, -1642		0.75											
1126	PTN	3 CWS/	5613-M-3010, SH 1	PI-3-1006, -1007, -1008, - 1009, -1459, -1462 PX-3- 1 1504, -1505, -1506, -1507, -	PX-3-1505	0.75					50		0.750	50	No	0	
				1635, -1636, -1637, -1638, - 1639, -1640, -1641, -1642													
1126	PTN	3 CWS/	5613-M-3010, SH 1	PI-3-1006, -1007, -1008, - 1009, -1459, -1462 PX-3- 1 1504, -1505, -1506, -1507, -	PX-3-1506	0.75					50		0.750	50	No	0	
			5613-M-3010, SH 1	1635, -1636, -1637, -1638, - 1639, -1640, -1641, -1642						_			0.750	50	N-		
1126	PTN	3 CWS/		PI-3-1006, -1007, -1008, - 1009, -1459, -1462 PX-3- 1 1504, -1505, -1506, -1507, -	PX-3-1507	0.75					50		0.750	50	No	0	
			5613-M-3010, SH 1	1635, -1636, -1637, -1638, - 1639, -1640, -1641, -1642 PI-3-1006, -1007, -1008, -									0.750	50	No	0	
1126	PTN	3 CWS/		1009, -1459, -1462 PX-3- 1 1504, -1505, -1506, -1507, -	PX-3-1635	0.75					50		0.750	50	140	Ů	
			5613-M-3010, SH 1	1635, -1636, -1637, -1638, - 1639, -1640, -1641, -1642 PI-3-1006, -1007, -1008, -						_			0.750	50	No	0	
1126	PTN	3 CWS/		1009, -1459, -1462 PX-3- 1 1504, -1505, -1506, -1507, -	PX-3-1636	0.75					50						
			5613-M-3010, SH 1	1635, -1636, -1637, -1638, - 1639, -1640, -1641, -1642 PI-3-1006, -1007, -1008, -						\dashv			0.750	50	No	0	
1126	PTN	3 CWS/		1009, -1459, -1462 PX-3- 1 1504, -1505, -1506, -1507, -	PX-3-1637	0.75					50				-		
			5613-M-3010, SH 1	1635, -1636, -1637, -1638, - 1639, -1640, -1641, -1642 PI-3-1006, -1007, -1008, -						\perp			0.750	50	No	0	
1126	PTN	3 CWS/		1009, -1459, -1462 PX-3- 1 1504, -1505, -1506, -1507, -	PX-3-1638	0.75					50						
			5613-M-3010, SH 1	1635, -1636, -1637, -1638, - 1639, -1640, -1641, -1642 PI-3-1006, -1007, -1008, -						\dashv			0.750	50	No	0	
1126	PTN	cws/	010	1009, -1459, -1462 PX-3- 1 1504, -1505, -1506, -1507, - 1635, -1636, -1637, -1638, -	PX-3-1639	0.75					50						
				1639, -1640, -1641, -1642													

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 479 of 488

> R21002, Rev 0 Attachment N Page 114 of 123

2006 FTN 4 989	
1313 PPN 3 CWS/100 5613-M-3010, 941 1 Plot Tube Connections 3-50-021 2	
1313 PPN 3 CWS/100 5613-M-3010, 941 1 Plot Tube Connections 3-50-021 2	
13132 PTN 3 CWS/010 5613-M-3010, SH1 1 Post Tube Connections 3-90-012 2	
1112 PTN 3 CMS/OID 5613-M-3010, 9H 1 50 1.000 50 No 0 1.000 50	
1132 PN 3 ONS / 2010 5031-M-301.0.51 1 1 5mall fore Vents & Drains 3-50-255 1 1 1 5mall fore Vents & Drains 3-50-255 1 1 1 5mall fore Vents & Drains 3-50-255 1 1 1 5mall fore Vents & Drains 3-50-255 1 1 1 5mall fore Vents & Drains 3-50-255 1 1 1 5mall fore Vents & Drains 3-50-255 1 1 1 5mall fore Vents & Drains 3-50-255 1 1 1 5mall fore Vents & Drains 3-50-255 1 1 1 5mall fore Vents & Drains 3-50-255 1 1 1 1 1 1 1 1 1	
1132 PN 3 CWS/DID 5613-M-3010, 911 1 5 mall Bore Vertis & Drains 3-50-252 1	
1132 PTN 3 CWS / 2010 56133 M-3010, SH 1 1 Small Bore Vertis & Drains 3-50-253 1	
1132 PTN 3 CWS / 101 5613 + 3010, 941 1 Small Bore Vertis & Drains 3-50-256 1	
1132 PTN 3 CWS/010 5613-M-3010, SH1 1 Small Bore Vertis & Drains 3-50-255 1	
1132 PTN 3 CWS / O10 5613-M-3010, SH 1 1 Small Bore Vents & Drains 3-50-256 1	
1132 PTN 3 CWS / 0.01 5613.4M-3010, SH 1 1 Small Bore Vents & Drains 3.50-258 1 1.000 50 No 0 0 1.000 50 No 0 0 0 0 0 0 0 0 0	
1132 PTN 3 CWS/010 5613-M-3010, SH 1 1 Small Bore Vents & Drains 3-50-258 1	
1132 PTN 3 CWS/010 5613-M-3010, SH 1 1 Small Bore Vents & Drains 3-50-260 1	
132 PTN 3 CWS/010 5613-M-3010, SH 1 1 Small Bore Vents & Drains 3-50-260 1 1 1 Small Bore Vents & Drains 3-50-261 1 1 1 Small Bore Vents & Drains 3-50-261 1 1 1 1 1 1 1 1 1	
132 PTN 3 CWS/010 5613-M-3010, SH 1 1 Small Bore Vents & Drains 3-50-262 1 1 1 1 1 1 1 1 1	
132 PTN 3 CWS / 010 5613-M-3010, SH 1 1 Small Bore Vents & Drains 3-50-262 1 1 1 Small Bore Vents & Drains 3-50-263 1 1 1 Small Bore Vents & Drains 3-50-263 1 1 1 1 1 1 1 1 1	
132 PTN 3 CWS / O10 5613-M-3010, SH 1 5 5613-M-3010, SH 1 5 5613-M-3010, SH 1 5 50 5613-M-3010, SH 1 5 50 50 50 50 50 50	
132 PTN 3 CWS / 010 5613-M-3010, SH 1 1 Small Bore Vents & Drains 3-50-264 1 1 Small Bore Vents & Drains 3-50-265 1 1 Small Bore Vents & Drains 3-50-265 1 1 Small Bore Vents & Drains 3-50-265 1 1 1 1 1 1 1 1 1	
1135 PTN 3 CWS / 010 5613-M-3010, SH 1 2 SRHS-3-001 Connection SRHS-3-001 1.5 N HT S SRHS-3-001 1.50 50 No HT S SRHS-3-001 1.50 SRHS-3-0	
1523 PTN 3 TPCW / 008 5613-M-3008, SH 4 1 FE(FI)-3-1411, PI-3-1479 FE(FI)-3-1411 1 16 H,D N HT local no control functions 110 BV BV conservative due to downward portion 0.500 110 0 No HT local no control functions 110 BV BV conservative due to downward portion 0.500 110 0 No 0 110 No 0	
1523 PTN 3 TPCW/008 5613-M-3008, SH 4 1 FE(FI)-3-1411, PI-3-1479 PI-3-1479 D.5 110 downward portion 1526 PTN 3 TPCW/008 5613-M-3008, SH 4 1 Small Bore Drains 3-60-327 1 HT 110 10 10 10 No 0 110 No 0 11526 PTN 3 TPCW/008 5613-M-3008, SH 4 1 Small Bore Drains 3-60-328 3 1 10 10 10 No 0 110 No 0 No	
1523 PTN 3 TPCW / 008 5613-M-3008, SH 4 1 FE(Fi)-3-1411, Pi-3-1479 Pi-3-1479 D.5 D	repair/patch if needed N
1526 PTN 3 TPCW/008 5613-M-3008, SH 4 1 Small Bore Drains 3-60-328 3 110 No 0 1527 PTN 3 TPCW/008 5613-M-3008, SH 4 2 PX-3-1467, -1469, PI-3-1570, -1571 PX-3-1467 0.5 HT 110 0.500 110 No HT 1527 PTN 3 TPCW/008 5613-M-3008, SH 4 2 PX-3-1467, -1469, PI-3-1570, -1571 PX-3-1469 0.5 110 0.500 110 No 0 1527 PTN 3 TPCW/008 5613-M-3008, SH 4 2 PX-3-1467, -1469, PI-3-1570, -1571 PX-3-1469, PI-3-1570, -1571 PX-3-1467, -1469, PI-3-1570, -1571	
1527 PTN 3 TPCW/008 5613-M-3008, SH 4 2 PX-3-1467, -1469, PI-3-1570, 1571 PTN 3 TPCW/008 5613-M-3008, SH 4 2 PX-3-1467, -1469, PI-3-1570, 1571 PX-3-1469 D.5 110 100 110 No 0 110 No 0 1557 PTN 3 TPCW/008 5613-M-3008, SH 4 2 PX-3-1467, -1469, PI-3-1570, 1571 PX-3-1469 D.5 110 No 0 1557 PTN 3 TPCW/008 5613-M-3008, SH 4 2 PX-3-1467, -1469, PI-3-1570, 1571 PX-3-1469 D.5 110 No 0 No	
1527 PTN 3 TPCW/008 2 1571 PX-3-1467 0.5 110 100 100 100 100 100 100 100 100 10	
1527 PTN 3 TPCW/008 5613-M-3008, SH 4 2 PX-3-1467, -1469, PI-3-1570, - PX-3-1469 0.5 110 No 0 1527 PTN 3 TPCW/008 5613-M-3008, SH 4 2 PX-3-1467, -1469, PI-3-1570, - PX-3-1469 0.5 110 No 0	
1527 PTN 3 TPCW/0/8 5613-M-3008, SH 4 2 PX-3-1467, -1469, PI-3-1570, PI-3-1570 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.	
1527 PTN 3 TPCW/08 5613-M-3008, SH 4 2 PX-3-1467, -1469, PI-3-1570, -	
1571 110	repair/patch if needed; no protection required N
1532 PTN 3 TPCW / 008 5 TPCW /	
1532 PTN 3 TPCW/008 5613-M-3008, SH 4 PX-3-1477, -1482, -1515, - 1516, -1517, -1518 Pi-3-1503, -1504, -1505, -1506, -1554, - PX-3-1477 0.5 HT	
1579, FE(FI)-3-1455,	
1532 PTN 3 TPCW/008 3 1516,-1517,-1518 Pi-3-1503, PX-3-1482 0.5 110	
-1504,-1505,-1505,-1504,-1	
1579, FE(FI)-3-1455, 5613-M-3008, SH 4 PX-3-1477, -1482, -1515, - 0.500 110 No 0	
1532 PTN 3 TPCW / 008 3 1516, -1517, -1518 PI-3-1503, -1504, -1505, -1506, -1554, - PX-3-1515 0.5 110	
1579, FE(FI)-3-1455, 5613-M-3008, SH 4 PX-3-1477, -1482, -1515, - 0.500 110 No 0	
1532 PTN 3 TPCW/008 3 1516,-1517,-1518 Pi-3-1503, PX-3-1516 0.5 110	
-1504, -1505, -1506, -1554, -	
1579, FE(FI)-3-1455,	
1532 PTN 3 TPCW / 008 TPC	
-1504, -1505, -1506, -1554, - 1579, FE(FI)-3-1455,	
1532 PTN 3 TPCW / 008 TPC	
-1504, -1505, -1506, -1554, - 1579, FE(FI)-3-1455,	
S613-M-3008, SH 4 PX-3-1477, -1482, -1515, - 0.500 110 No 0	
1532 PTN 3 TPCW/008 3 1516, -1517, -1518 Pi-3-1503, -1504, -1505, -1506, -1554, - Pi-3-1503 0.5 110	
1579, FE(FI)-3-1455, 5613-M-3008, SH 4 PX-3-1477, -1482, -1515, - 0.500 110 No 0	
1532 PTN 3 TPCW / 008 3 TPCW / 008 3 1516, -1517, -1518 Pi-3-1504, -1504, -1505, -1506, -1554, - 1579, FF(F)-3-1554, - 1579, FF(F)-3-1455, - 1579, FF(F)-3-1455, - 1579, FF(F)-3-1455, - 1579, FF(F)-3-1455, - 1579, FF(F)-3-1504, - 1579,	
1532 PTN 3 TPCW / 108 3 -1504, -1505, -1506, -1554, - P1-3-1504 0.5 1579, FE(FI)-3-1455, - 1579, FE(FI)-3-1579, - 1579,	
1532 PIN 3 IPCW / 108 3 -1504, -1505, -1506, -1504, -1505, -1506, -1504, -1505, -1504 0.5 110 0.5 110 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 480 of 488

> R21002, Rev 0 Attachment N Page 115 of 123

																						Page 115 d	01 123
2054	PTN	4	089	5614-M-3089, SH 2	1	Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A	52:	23	N/A		0.500	400	No	N/A	١		
1532	PTN	3	TPCW / 008	5613-M-3008, SH 4	3	PX-3-1477, -1482, -1515, - 1516, -1517, -1518 PI-3-1503, -1504, -1505, -1506, -1554, -	PI-3-1506	0.5					110	10			0.500	110	No	0			
1532	PTN	3	TPCW / 008	5613-M-3008, SH 4	3	1579, FE(FI)-3-1455, PX-3-1477, -1482, -1515, - 1516, -1517, -1518 PI-3-1503, -1504, -1505, -1506, -1554, -	PI-3-1554	0.5					11(10			0.500	110	No	0			
				5613-M-3008, SH 4		1579, FE(FI)-3-1455, PX-3-1477, -1482, -1515, -											0.500	110	No	0			+
			TPCW / 008		3	1516, -1517, -1518 PI-3-1503, -1504, -1505, -1506, -1554, - 1579, FE(FI)-3-1455,	PI-3-1579	0.5					110										
				5613-M-3008, SH 4		Small Bore Vents & Drains	3-60-223	0.375				HT	110	-			0.375	110	No	HT			
				5613-M-3008, SH 4 5613-M-3008, SH 4		Small Bore Vents & Drains	3-60-224	0.375	-			-	110				0.375	110	No	0	_		+
				5613-M-3008, SH 4		Small Bore Vents & Drains Small Bore Vents & Drains	3-60-218 3-60-219	0.375					110				0.375 0.375	110 110	No No	0	_		+
		_	-	5613-M-3008, SH 4	_	Small Bore Vents & Drains	3-60-285	0.373					110	-			0.373	110	No	0	_		+
				5613-M-3008, SH 4	_	Small Bore Vents & Drains	3-60-337	4					110				4.000	110	No	0	-		+
				5613-M-3008, SH 4		Small Bore Vents & Drains	3-60-294	0.5					110				0.500	110	No	0	_		+
				5613-M-3008, SH 4	_	Small Bore Vents & Drains	3-60-295	0.5					110	10			0.500	110	No	0		-	
1538	PTN	3	TPCW / 008	5613-M-3008, SH 4	3	Small Bore Vents & Drains	3-60-296	0.5					110	10			0.500	110	No	0			
-	-	_	-	5613-M-3008, SH 4	_	Small Bore Vents & Drains	3-60-297	0.5					110	_			0.500	110	No	0			
				5613-M-3008, SH 4		Small Bore Vents & Drains	3-60-298	0.5					110				0.500	110	No	0	-		\perp
				5613-M-3008, SH 4		Small Bore Vents & Drains	3-60-299	0.5	-				110				0.500	110	No	0	-		
-	-	_	<u> </u>	5613-M-3008, SH 4	_	Small Bore Vents & Drains	3-60-300	0.5	1			1	110	_			0.500	110	No	0	_		+
				5613-M-3008, SH 4 5613-M-3008, SH 4		Small Bore Vents & Drains Small Bore Vents & Drains	3-60-255	1					110				1.000	110 110	No	0	-		+
	_	_	· ·	5613-M-3008, SH 4		Small Bore Vents & Drains	3-60-245 3-60-286	0.75	_				110				0.750	110	No No	0	_		+
1538	_		TPCW / 008	5613-M-3008, SH 4	_	Small Bore Vents & Drains	3-60-255	1					110	_			1.000	110	No	0			+
				5613-M-3008, SH 4		Small Bore Vents & Drains	3-60-250	1					110				1.000	110	No	0			1
				5613-M-3008, SH 4	3	Small Bore Vents & Drains	3-60-243	1					110	10			1.000	110	No	0			
1538	PTN	3	TPCW / 008	5613-M-3008, SH 4	3	Small Bore Vents & Drains	3-60-236	1					110	10			1.000	110	No	0			
				5613-M-3008, SH 4		Small Bore Vents & Drains	3-60-222	1					110				1.000	110	No	0	-		
1538	PTN	3	TPCW / 008	5613-M-3008, SH 4		Small Bore Vents & Drains	3-60-226	1					110	10			1.000	110	No	0			
15/10	PTN	2	TPCW / 008	5613-M-3008, SH 4		PX-3-14781479, -1480, - 1481, PI-3-1481, -1482, -	PX-3-1478	0.5				HT	110	10			0.500	110	No	HT		,	
1540			11 000 7 000	5613-M-3008, SH 4		1483, -1484 PX-3-14781479, -1480, -	1 / 3 14/6	0.5						10			0.500	110	No	0			
1540	PTN	3	TPCW / 008	5613-M-3008, SH 4	4	1481, PI-3-1481, -1482, - 1483, -1484 PX-3-14781479, -1480, -	PX-3-1479	0.5					110	10			0.500	110	No	0			
1540	PTN	3	TPCW / 008	·		1481, PI-3-1481, -1482, - 1483, -1484	PX-3-1480	0.5					110	10									
1540	PTN	3	TPCW / 008	5613-M-3008, SH 4		PX-3-14781479, -1480, - 1481, PI-3-1481, -1482, - 1483, -1484	PX-3-1481	0.5					110	10			0.500	110	No	0			
1540	PTN	3	TPCW / 008	5613-M-3008, SH 4		PX-3-14781479, -1480, - 1481, PI-3-1481, -1482, - 1483, -1484	PI-3-1481	0.5					110	10			0.500	110	No	0			
1540	PTN	3	TPCW / 008	5613-M-3008, SH 4		PX-3-14781479, -1480, - 1481, PI-3-1481, -1482, - 1483, -1484	PI-3-1482	0.5					110	10			0.500	110	No	0			
1540	PTN	3	TPCW / 008	5613-M-3008, SH 4		PX-3-14781479, -1480, - 1481, PI-3-1481, -1482, - 1483, -1484	PI-3-1483	0.5					110	10			0.500	110	No	0			
1540	PTN	3	TPCW / 008	5613-M-3008, SH 4		PX-3-14781479, -1480, - 1481, PI-3-1481, -1482, - 1483, -1484	PI-3-1484	0.5					110	10			0.500	110	No	0			
1544	PTN	3	TPCW / 008	5613-M-3008, SH 4	4	Small Bore Vents	3-60-186	0.5	_			нт	110	10			0.500	110	No	HT			+
				5613-M-3008, SH 4		Small Bore Vents	3-60-193	0.5				T	110	_			0.500	110	No	0		-	
				5613-M-3008, SH 4		Small Bore Vents	3-60-189	2					110				2.000	110	No	0			
				5613-M-3008, SH 4		Small Bore Vents	3-60-195	2					110	10			2.000	110	No	0	-		
				5613-M-3008, SH 4		Small Bore Vents	3-60-203	2					110				2.000	110	No	0	_		
				5613-M-3008, SH 4		Small Bore Vents	3-60-207	0.5	1				110				0.500	110	No	0	_		
1544	PTN	3	TPCW / 008	5613-M-3008, SH 4	4	Small Bore Vents	3-60-210	2	+			UT	110	10	D\/	DV concentition du - +-	2.000	110	No	0 UT		repair/patch if damaged; can isolate; no	N
				5613-M-3008, SH 3 5613-M-3008, SH 3	2	FE(FI-3-861, -862, PI-3-861, 862, 863, 864 FE(FI-3-861, -862, PI-3-861,	FE(FI-3-862)	0.5	4	H,D	N	нт	local no control functions 110	_		BV conservative due to downward portion BV conservative due to	0.500	110 0 110 0	No No	HT	F	repair/patch it damaged; can isolate; no protection required repair/patch if damaged; can isolate; no	N
			TPCW / 008	5613-M-3008 SH 3	2	862, 863, 864 FE(FI-3-861, -862, PI-3-861,	FE(FI-3-861) PI-3-861	0.5	4	H,D	N	нт	local no control functions 110	_		downward portion	0.500	110	No	0	F	protection required	+
	PTN			5613-M-3008, SH 3	2	862, 863, 864 FE(FI-3-861, -862, PI-3-861,	PI-3-862	0.5					110	_			0.500	110	No	0	\dashv		+
	-+		TPCW / 008	5613-M-3008, SH 3	2	862, 863, 864 FE(FI-3-861, -862, PI-3-861, 862, 863, 864	PI-3-863	0.5					110				0.500	110	No	0	\dashv	-	
				I.		302, 303, 004																	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 481 of 488

> R21002, Rev 0 Attachment N Page 116 of 123

																						Page 116 c	01 120
2054 P	ГN	4	089	5614-M-3089, SH 2		Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523		N/A		0.500	400	No	N/A		
1511 P	ГΝ	3 1	PCW / 008	5613-M-3008, SH 3		FE(FI-3-861, -862, PI-3-861, 862, 863, 864	PI-3-864	0.5						110				0.500	110	No	0		
1513 P	ΓN	3 1	PCW / 008	5613-M-3008, SH 3	_	Small Bore Vents & Drains	3-60-865	1				HT		110				1.000	110	No	HT		
1513 P	ΓN	3 1	PCW / 008	5613-M-3008, SH 3	2	Small Bore Vents & Drains	3-60-862	1						110				1.000	110	No	0		
1513 P				5613-M-3008, SH 3		Small Bore Vents & Drains	3-60-868	1						110				1.000	110	No	0		
1513 P	_	-		5613-M-3008, SH 3		Small Bore Vents & Drains	3-60-867	1 0.75						110				1.000	110	No	0		
1515 P				5613-M-3008, SH 3 5613-M-3008, SH 3		PI-3-2016 PI-3-5023	PI-3-2016 PI-3-5023	0.75				HT HT		110 110				0.750 0.750	110 110	No No	HT HT		+
1522 P				5613-M-3008, SH 3		Small Bore Vents & Drains	3-60-712	4				HT		110				4.000	110	No	HT		
				5613-M-3008, SH 3		Small Bore Vents & Drains		Not							Tube OD of 0.5 assumed			0.500	110	No	0		
1522 P			PCW / 008		4		3-60-569	Provided						110	Tube OD of 0.5 assumed								
1522 P	ΓN	3 1		5613-M-3008, SH 3		Small Bore Vents & Drains	3-60-670	0.75						110				0.750	110	No	0		
1486 P	ГΝ	3 1	PCW / 008	5613-M-3008, SH 2	1	FE(FI)-3-1410	FE(FI)-3-1410	1	8	H,D	N	HT	local no control functions	110		BV	BV conservative due to	1.000	110 0	No	HT	repair/patch if needed	N
1491 P	ΓNI	3 7	DCW//008	5613-M-3008, SH 2	1	Small Bore Drains	3-60-104	1				НТ		110			downward portion	1.000	110	No	HT		
				5613-M-3008, SH 2		PI-3-1475, -1476, -1477, -						HT						0.500	110	No	HT		
1493 P	ΓN	3 1	PCW / 008			1478	PI-3-1475	0.5						110									
1493 P	ΓN	3 1	PCW / 008	5613-M-3008, SH 2		PI-3-1475, -1476, -1477, - 1478	PI-3-1476	0.5						110				0.500	110	No	0		
1493 P	ΓN	3 1	TPCW / 008	5613-M-3008, SH 2		PI-3-1475, -1476, -1477, - 1478	PI-3-1477	0.5						110				0.500	110	No	0		
1493 P	ΓN	3 1	TPCW / 008	5613-M-3008, SH 2		PI-3-1475, -1476, -1477, -	PI-3-1478	0.5						110				0.500	110	No	0		
1500 P	ΓN	3 1	TPCW / 008	5613-M-3008, SH 2		1478 PI-3-1471, -1472, -1473, -	PI-3-1471	0.5				НТ		110				0.500	110	No	HT		
1500 P	+	\dashv		5613-M-3008, SH 2	1	1474, PI-3-1471, -1472, -1473, -	PI-3-1472	0.5						110				0.500	110	No	0		
1500 P	+	\rightarrow		5613-M-3008, SH 2	1	1474, PI-3-1471, -1472, -1473, -	PI-3-1473	0.5			_			110				0.500	110	No	0		
1500 P	+			5613-M-3008, SH 2		1474, PI-3-1471, -1472, -1473, -	PI-3-1473 PI-3-1474	0.5						110				0.500	110	No	0		
1500 P				5613-M-3008, SH 2	4	1474, Small Bore Vents & Drains	3-60-741A	0.5				НТ		110				0.750	110	No	HT		
1504 P				5613-M-3008, SH 2		Small Bore Vents & Drains	3-60-742A	0.75						110				0.750	110	No	0		
1504 P	ΓN	3 1	PCW / 008	5613-M-3008, SH 2	4	Small Bore Vents & Drains	3-60-742B	0.75						110				0.750	110	No	0		
1504 P	ΓN	3 1		5613-M-3008, SH 2		Small Bore Vents & Drains	3-60-741B	0.75						110				0.750	110	No	0		
1466 P	ΓN	3 1	PCW / 008	5613-M-3008, SH 1	1	PS-3-1621, TS-3-4102, -4103, -	PT-3-1621	0.5	50	H,D	N	HT		110		BV	BV conservative due to	0.500	110 0	No	HT	isolate at root valve if damaged; no protection	N
1467 P	+	+		5613-M-3008, SH 1	1	4104, -4105 FE (FT)-3-6900	FE (FT)-3-6900	Not				нт		110	Tube OD of 0.5 assumed		downward portion	0.500	110	No	HT	required	
1468 P	_	+		5613-M-3008, SH 1		PI-3-1468, -1469, -1470, -	PI-3-1468	Provided 0.5				НТ		110				0.500	110	No	HT		
1468 P	+	-+		5613-M-3008, SH 1	1	6900 PI-3-1468, -1469, -1470, -	PI-3-1469	0.5				НТ		110				0.500	110	No	HT		
1468 P	-	+		5613-M-3008, SH 1	1	6900 PI-3-1468, -1469, -1470, -	PI-3-1470	0.5				НТ		110				0.500	110	No	HT		
1468 P	-	\dashv		5613-M-3008, SH 1		6900 PI-3-1468, -1469, -1470, -	PI-3-1470	0.5				нт		110				0.500	110	No	HT		
	_	_	TPCW / 008	5613-M-3008, SH 1		6900 Small Bore Vents, Drains &						НТ						1.000	110	No	HT		
1473 P	+	\dashv	PCW / 008	5613-M-3008, SH 1	1	Test Connections Small Bore Vents, Drains &	3-60-110	1						110				0.500	110	No	0		
1473 P	ΓN	3 1	PCW / 008	5613-M-3008, SH 1	1	Test Connections	3-60-074	0.5						110				1.000	110	No	0		
1473 P	_	3 1	PCW / 008	5613-M-3008, SH 1	1	Small Bore Vents, Drains & Test Connections	3-60-033	1						110						No			
1473 P	ΓN	3 1	PCW / 008		1	Small Bore Vents, Drains & Test Connections	3-60-038	0.5						110				0.500	110		0		
1473 P	ΓN	3 1	PCW / 008	5613-M-3008, SH 1	1	Small Bore Vents, Drains & Test Connections	3-60-072	0.5						110				0.500	110	No	0		
1473 P		- 1	PCW / 008	5613-M-3008, SH 1	1	Small Bore Vents, Drains & Test Connections	3-60-073	0.5						110				0.500	110	No	0		
1473 P	ΓN	3 1	PCW / 008	5613-M-3008, SH 1		Small Bore Vents, Drains & Test Connections	3-60-042A	1						110				1.000	110	No	0		
	- 1		PCW / 008	5613-M-3008, SH 1		Small Bore Vents, Drains & Test Connections	3-60-042B	1						110				1.000	110	No	0		
1473 P	ΓN	3 1	PCW / 008	5613-M-3008, SH 1	1	Small Bore Vents, Drains & Test Connections	3-60-176	1						110				1.000	110	No	0		
				5613-M-3008, SH 1	2	Small Bore Vents & Drains	3-60-800	0.75				HT		100				0.750	100	No	HT		
				5613-M-3008, SH 1		Small Bore Vents & Drains	3-60-894	0.75						100				0.750	100	No	0		
				5613-M-3008, SH 1		Small Bore Vents & Drains	3-60-892	0.75		-	-	-		100				0.750	100	No	0		\perp
				5613-M-3008, SH 1		Small Bore Vents & Drains	3-60-898	0.75				-		100				0.750	100	No No	0		+
				5613-M-3008, SH 1 5613-M-3008, SH 1		Small Bore Vents & Drains Small Bore Vents & Drains	3-60-896 3-60-893	0.75			-			100 100				0.750 0.750	100	No No	0		+
				5613-M-3008, SH 1		Small Bore Vents & Drains	3-60-891	0.75		_				100				0.750	100	No	0		
				5613-M-3008, SH 1		Small Bore Vents & Drains	3-60-895	0.75		†		1		100				0.750	100	No	0		
				5613-M-3008, SH 1		Small Bore Vents & Drains	3-60-897	0.75						100				0.750	100	No	0		
		2 7	DCW//OOS	5613-M-3008, SH 1	2	Small Bore Vents & Drains	3-60-899	0.75						100				0.750	100	No	0		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 482 of 488

> R21002, Rev 0 Attachment N Page 117 of 123

																						Page 117	01 123
2054	PTN	4	089	5614-M-3089, SH 2	1 Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523		N/A		0.500	400		No	N/A		
1475	PTN	3	TPCW / 008	5613-M-3008, SH 1	2 Small Bore Vents & Drains	3-60-901	0.75	1					100				0.750	100		No	0		+ -
	PTN			5613-M-3008, SH 1	2 Small Bore Vents & Drains	3-60-902	1						100				1.000	100		No	0		
1475				5613-M-3008, SH 1	2 Small Bore Vents & Drains	3-60-903	0.75						100					100		No	0		
1480			TPCW / 008	5613-M-3008, SH 1	4 LS-3-1527, -1528	LS-3-1527	1	4	H,D	N	HT		110		BV	BV conservative due to downward portion		_	0	No	HT	fill as needed; repair if damaged; no protection required	N
1480	PTN	3	TPCW / 008	5613-M-3008, SH 1	4 LS-3-1527, -1528	LS-3-1528	1	4	H,D	N	НТ		110		BV	BV conservative due to downward portion	1.000	110	0	No	HT	fill as needed; repair if damaged; no protection required	N
1481	PTN	3	TPCW / 008	5613-M-3008, SH 1	4 LC-3-1530	LC-3-1530	0.75	6	H,D	N	HT		110		BV	BV conservative due to downward portion	0.750	110	0	No	HT	fill as needed; repair if damaged; no protection required	N
1482	PTN	3	TPCW / 008	5613-M-3008, SH 1	FM-3-0540, LG-3-1422, - 1423, -1424	FM-3-0540	2				HT		110			downward portion	2.000	110		No	HT	required	
1482	PTN	3	TPCW / 008	5613-M-3008, SH 1	4 FM-3-0540, LG-3-1422, - 1423, -1424	LG-3-1422	0.75						110				0.750	110		No	0		
1482	PTN	3	TPCW / 008	5613-M-3008, SH 1	4 FM-3-0540, LG-3-1422, - 1423, -1424	LG-3-1423	0.75						110				0.750	110		No	0		
1482	PTN	3	TPCW / 008	5613-M-3008, SH 1	4 FM-3-0540, LG-3-1422, - 1423, -1424	LG-3-1424	0.75						110				0.750	110		No	0		
1485	PTN	3	TPCW / 008	5613-M-3008, SH 1	4 Small Bore Vents & Drains	3-60-020A	0.5				НТ		110				0.500	110		No	HT		
				5613-M-3008, SH 1	4 Small Bore Vents & Drains	3-60-019	0.5						110					110		No	0		
1485	PTN	3	TPCW / 008	5613-M-3008, SH 1	4 Small Bore Vents & Drains	3-60-020B	0.5						110				0.500	110		No	0		
1485				5613-M-3008, SH 1	4 Small Bore Vents & Drains	3-60-018	0.5						110					110		No	0		
1485	PTN			5613-M-3008, SH 1	4 Small Bore Vents & Drains	3-60-679	0.5						110					110	1	No	0		
1485				5613-M-3008, SH 1	4 Small Bore Vents & Drains	3-60-680	0.5						110					110		No	0		
1485	PTN	3	TPCW / 008	5613-M-3008, SH 1	4 Small Bore Vents & Drains	3-60-017	0.5						110				0.500	110		No	0		
96	PTN	0	076	5610-M-3076	 Tank level sight glasses; 	Tank level sight glasses;	N/A	N/A	N/A	N/A	N/A	only a concern if PAA is used. PAA tank is			N/A					No	N/A		
					Chemical feed pump	Chemical feed pump						in warm area.											
					discharge pressure gages	discharge pressure																	
						gages																	
97	PTN	0	076	5610-M-3076	1 Chemical feed tanks	Chemical feed tanks	N/A	N/A	N/A	N/A	N/A	Storage Tanks for ETA , DMA, and			N/A					No	N/A		
					Chemical addition tanks	Chemical addition tanks						Hydrazine located adjacent to old											
												Polisher Bldg exposed on all sides. ETA											1 1
												data from SUEZ STEAMATE PWS1440.											
												None of the chemical are affected until											
												beow zero degrees F. PAA is an aquious											
												solution and can freeze. PAA is stored											
												within Turb bldg east of the HD pump area in Chemical pump area. Chemical											
												feed tanks are located east of the HD											
												pumps and eclosed on other three sides											
												and ceiling. Local temeprature will											
												remain above freezing.											
												Terriain above recezing.											
99	PTN	0	076	5610-M-3076	1 Chemical addition pump	Chemical addition pump	N/A	N/A	N/A	N/A	N/A	PAA not used in relief lines.			N/A					No	N/A		
					discharge relief valves	discharge relief valves																	
100	PTN	0	076	5610-M-3076	Various vents, drains, flexible hose connections	Various vents, drains, flexible hose	N/A	N/A	N/A	N/A	N/A	Tanks are located adjacent to old Polisher Bldg exposed on all sides. 1/2"			N/A					No	N/A		
					1.030 000013	connections						tubing runs from tanks in trench under											
						Connections						west access road to TB west edge near											
												U3 HD pumps. ETA/PAA are continuous											
												feed process and flow will prevent											
												freezing. PAA lines are all within the											
									1			chemical pump feed area which will											
												prevent freezing due to local equipment											
												piping heat. Contiuous flow will also											
												prevent freezing.											
	<u> </u>					<u> </u>						<u> </u>				<u> </u>							
98	PTN	0	076	5610-M-3076	1 1" NPS to 3/8" tubing	1" NPS to 3/8" tubing	N/A	N/A	N/A	N/A	N/A	Tanks are located adjacent to old			N/A					No	N/A		
												Polisher Bldg exposed on all sides. 1/2"											
												tubing runs from tanks in trench under											
												west access road to TB west edge near											
												U3 HD pumps. ETA/PAA are continuous											
												feed process and flow will prevent											
									1			freezing. PAA lines are all within the											
												chemical pump feed area which will											
												prevent freezing due to local equipment											
												piping heat. Contiuous flow will also											
												prevent freezing.											
410	DT	_	A E \ A (C \ / C = -	EC40 M4 2075 CU 2	4 2/4/13/2045	4.20.202	0.750	1.0	17.11	h	1	Assumed leastly and the second second	40	CDENT		Harrison I beauty	0.750	40		- N		Heat Torre	—
118	PIN	۰	AFW5 / U/5	5610-M-3075, SH 2	1 3/4" Vents	4-20-382	0.750	1.0	H,U	N	HT	Assumed length, requires Iso verification		SBFW pumps are in standby,	Н	Upward bend not	0.750	40	0	No	HT	Heat Trace	N
														therefore, temperature reflects		credited for							
	$\overline{}$				1 1					-		1	- 1	ambient		conservatism							

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 483 of 488

> R21002, Rev 0 Attachment N Page 118 of 123

																							Page 118	01 123
2054	PTN	4	089	5614-M-3089, SH 2	1	Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523		N/A		0.500	400		No	N/A		
117	PTN	0 A	FWS / 075	5610-M-3075, SH 2	1	8" Inlet Pipe	3-8"-3-T	8.000	380.0	H,U	N	М	length estimated by GA drawing, requires Iso verification	40	SBFW pumps are in standby, therefore, temperature reflects ambient	Н	Upward bend not credited for conservatism	Not Analyzed	40	#N/A	No	М		
119	PTN	0 A	FWS / 075	5610-M-3075, SH 2	2	PIT	PIT-3675, 76, 77 length per loop	0.375	10.0	H,U	N	HT	Assumed length, requires Iso verification	40	SBFW pumps are in standby, therefore, temperature reflects ambient	Н	Upward bend not credited for conservatism	0.375	40	0	No	нт	нт	N
121	PTN	0 A	FWS / 075	5610-M-3075, SH 2	2	1/2" Connections	20-345, 346, 347 length per loop	0.500	2.0	H,U	N	НТ	Assumed length, requires Iso verification	40	SBFW pumps are in standby, therefore, temperature reflects ambient	Н	Upward bend not credited for conservatism	0.500	40	0	No	нт	Heat Trace	N
122	PTN	0 A	FWS / 075	5610-M-3075, SH 2	2	Flange Connection	On pump Suction, 3 places, length per pump	4.000	4.0	H,U	N	I		40	SBFW pumps are in standby, therefore, temperature reflects	Н	Upward bend not credited for	4.000	40	0	No	I		
120	PTN	0 A	FWS / 075	5610-M-3075, SH 2	2	6" Inlet Pipe	6"-3-T	6.000	380.0	H,U	N	М	length estimated by GA drawing, requires Iso verification	40	ambient SBFW pumps are in standby, therefore, temperature reflects	Н	Conservatism Upward bend not credited for	Not Analyzed	40	#N/A	No	M		
123	PTN	0 A	FWS / 075	5610-M-3075, SH 2	3	AFW Pump PIT	PIT-6735A,B,C length per loop	0.375	10.0	H,U	N	HT	Assumed length, requires Iso verification	40	ambient SBFW pumps are in standby, therefore, temperature reflects	Н	Upward bend not credited for	0.375	40	0	No	НТ	нт	N
124	PTN	0 A	FWS / 075	5610-M-3075, SH 2	3	4" Pipe	4"-3-T length per pump	4.000	8.0	H,U	N	I	Assumed length, requires Iso verification	40	ambient SBFW pumps are in standby, therefore, temperature reflects	Н	Upward bend not credited for	4.000	40	0	No	I		
125	PTN	0 A	FWS / 075	5610-M-3075, SH 2	4	2.5" Pipe	2 1/2"-1-A Pump Discharge, length per	2.500	8.0	H,U	N	I	Assumed length, requires Iso verification	40	ambient SBFW pumps are in standby, therefore, temperature reflects	Н	Upward bend not credited for	2.000	40	0	No	I		
126	PTN	0 A	FWS / 075	5610-M-3075, SH 2	5	PIT	pump PIT-1429, 30, 31 length per loop	0.375	10.0	H,U	N	НТ	Assumed length, requires Iso verification	40	SBFW pumps are in standby, therefore, temperature reflects	Н	Conservatism Upward bend not credited for	0.375	40	0	No	HT	нт	N
129	PTN	0 A	FWS / 075	5610-M-3075, SH 2	5	1/2" Connection	20-311, 313, 315 Length per Valve	0.500	1.0	H,U	N	НТ	Assumed length, requires Iso verification	40	SBFW pumps are in standby, therefore, temperature reflects	Н	Upward bend not credited for	0.500	40	0	No	НТ	Heat Trace	N
128	PTN	0 A	FWS / 075	5610-M-3075, SH 2	5	1" Connection off reducer	20-179, 279, 379 Length per Valve	1.000	1.0	H,U	N	HT	Assumed length, requires Iso verification	40	ambient SBFW pumps are in standby, therefore, temperature reflects	Н	conservatism Upward bend not credited for	1.000	40	0	No	HT	нт	N
130	PTN	0 A	FWS / 075	5610-M-3075, SH 2	5	4" BDB/FLEX Connection	AFPD-004, 005 length per valve	4.000	4.0	H,U	N	I	Assumed length, requires Iso verification	40	ambient SBFW pumps are in standby, therefore, temperature reflects	Н	conservatism Upward bend not credited for	4.000	40	0	No	I		
127	PTN	0 A	FWS / 075	5610-M-3075, SH 2	5	6" Pipe	6"-1-A	6.000	380.0	H,U	N	М	length estimated by GA drawing, requires Iso verification	40	ambient SBFW pumps are in standby, therefore, temperature reflects	Н	conservatism Upward bend not credited for	Not Analyzed	40	#N/A	No	M		+
134	PTN	0 A	FWS / 075	5610-M-3075, SH 2	6	3/4" Connection	Vents / Drains / Misc. Connections	0.750	1.0	H,U	N	HT	Assumed length, requires Iso verification	40	ambient SBFW pumps are in standby, therefore, temperature reflects	Н	conservatism Upward bend not credited for	0.750	40	0	No	HT	Heat Trace	N
132	PTN	0 A	FWS / 075	5610-M-3075, SH 2	6	3/4", 1", 1.5" Pipe	All Oil Piping-1-SX	0.750	10.0	H,U	N	M	Assumed length, requires Iso verification	40	ambient SBFW pumps are in standby, therefore, temperature reflects	Н	Conservatism Upward bend not credited for	0.750	40	0	No	M	нт	N
133	PTN	0 A	FWS / 075	5610-M-3075, SH 2	6	150 PSIG	RF-6401A,B,C	1.000	1.0	H,U	N	N/A	Assumed length, requires Iso verification	40	ambient SBFW pumps are in standby, therefore, temperature reflects	Н	Conservatism Upward bend not credited for	1.000	40	0	No	N/A	No HT required	N
135	PTN	0 A	FWS / 075	5610-M-3075, SH 2	6	1" Connection	AFWU-026, 027, 028	1.000	1.0	H,U	N	НТ	Assumed length, requires Iso verification	40	ambient SBFW pumps are in standby, therefore, temperature reflects	Н	Upward bend not credited for	1.000	40	0	No	НТ	нт	N
131	PTN	0 A	FWS / 075	5610-M-3075, SH 2	6	Lube Oil Cooler	L/O Cooler Water side	8.000	5.0	H,U	N	M	Assumed length, requires Iso verification	40	ambient SBFW pumps are in standby, therefore, temperature reflects	Н	Conservatism Upward bend not credited for	Not Analyzed	40	#N/A	No	M		
141	PTN	0 A	FWS / 075	5610-M-3075, SH 2	7	FE-3-1418 taps	3-20-450, 451	0.500	1.0	BV	N	НТ	Assumed length, requires Iso verification	40	SBFW pumps are in standby, therefore, temperature reflects	Н	Conservatism Upward bend not credited for	0.500	40	0	No	НТ	Heat Trace	N
137	PTN	0 A	FWS / 075	5610-M-3075, SH 2	7	2" Flange Connection	Down Stream valve 3-20- 456 and 4-20-458	2.000	2.0	H,U	N	I	Assumed length, requires Iso verification	40	ambient SBFW pumps are in standby, therefore, temperature reflects	Н	Conservatism Upward bend not credited for	2.000	40	0	No	I	Heat Trace	N
136	PTN	0 A	FWS / 075	5610-M-3075, SH 2	7	2" Pipe	2"-1-C	2.000	10.0	H,U	N	I	Assumed length, requires Iso verification	40	ambient SBFW pumps are in standby, therefore, temperature reflects	Н	Conservatism Upward bend not credited for	2.000	40	0	No	I	insulate only	N
138	PTN	0 A	FWS / 075	5610-M-3075, SH 2	8	1" Pipe	pipe to valve AFWU- 023, 24, 25	1.000	N/A	H,U	N	N/A	Assumed length, requires Iso verification	40	ambient SBFW pumps are in standby, therefore, temperature reflects	Н	conservatism Upward bend not credited for	1.000	40		No	N/A	not connected; no protection required	N
139	PTN	0 A	FWS / 075	5610-M-3075, SH 2	9	AFW Pump/Turbine Lube Oil Cooler Loop (Includes the lube oil reservoir, relief valve local instruments, main oil pump, and connections).		N/A	N/A	N/A	N/A	N/A		40	ambient SBFW pumps are in standby, therefore, temperature reflects ambient	N/A	conservatism N/A		40	N/A	No	N/A		
140	PTN	0 A	FWS / 075	5610-M-3075, SH 2	10	1" Pipe	1"-1-C	1.000	20.0	H,U	N	нт	Assumed length, requires Iso verification	40	SBFW pumps are in standby, therefore, temperature reflects ambient	Н	Upward bend not credited for conservatism	1.000	40	0	No	НТ	нт	N

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 484 of 488

> R21002, Rev 0 Attachment N Page 119 of 123

																					rage 119	
20	4 PTN	4	089	5614-M-3089, SH 2	1 Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523	N/A		0.500	400		No	N/A		
10	DTN	1	EW/S / 07/1	5610-M-3074, SH 2	1 1/2" Pipe for PC	not in TB	N/A	N/A	N/A	N/A	N/A	Not in TB	50	N/A	+	+ +	50		No	N/A	+	
_	_			5610-M-3074, SH 2	1 PI	not in TB	N/A	N/A			N/A	Not in TB	50	N/A	+					N/A		
	PTN									N/A					+		50		No			
	PTN			5610-M-3074, SH 2	1 3/4" Vents	not in TB	N/A	N/A	N/A	N/A	N/A	Not in TB	50	N/A			50		No	N/A		
_ 10	PTN	0	FWS / 074	5610-M-3074, SH 2	1 1" Drains	not in TB	N/A	N/A	N/A	N/A	N/A	Not in TB	50	N/A			50		No	N/A		
10	PTN	0	FWS / 074	5610-M-3074, SH 2	1 6" Connection	not in TB	N/A	N/A	N/A	N/A	N/A	Not in TB	50	N/A			50		No	N/A		
10	PTN	0	FWS / 074	5610-M-3074, SH 2	2 Tank level instrumentation	LSHH-6210	0.375	4.0	Н	N	HT		90	Н		0.375	90	0.4	No	HT	нт	N
10	PTN	0	FWS / 074	5610-M-3074, SH 2	2 Tank level instrumentation	LT-6211	0.375	4.0	Н	N	HT		90	Н		0.375	90	0.4	No	HT	нт	N
10	PTN	0	FWS / 074	5610-M-3074, SH 2	2 Tank level instrumentation	LSL-6210	0.375	4.0	Н	N	НТ		90	Н		0.375	90	0.4	No	HT	НТ	N
10	PTN	0	FWS / 074	5610-M-3074, SH 2	2 Tank level instrumentation	LSLI-6210	0.375	4.0	Н	N	HT		90	Н		0.375	90	0.4	No	HT	нт	N
10	PTN	0	FWS / 074	5610-M-3074, SH 2	2 Tank level instrumentation	LI-6210	0.375	4.0	Н	N	HT		90	Н		0.375	90	0.4	No	HT	нт	N
1	PTN	0	FWS / 074	5610-M-3074, SH 2	4 2" piping to Vent tank	2"-9-SL	0.750	55.0	TV,H	N	HT	This is overflow line and does not	Ambient	Н		0.750	400	14	No	HT	repair if damaged ; no protection required	N
1	PTN	0	FWS / 074	5610-M-3074, SH 2	4 1" piping to Vent tank	1"-9-SL BETWEEN	1.000	50.0	TV,H	N	HT	contain stagnant water	50	#N/A H		1.000	50	0	No	HT	repair if damaged	N
1	PTN		EVA/S / 07/	5610-M-3074, SH 2	4 10" piping to Vent tank	DWDS-168 AND TANK 10" Vent Tank vent line	10.000	10.0	H,U	N	1	FWH3A	50	Н	Upward bend not	Not	50	#N/A	No	1		-
	FIN				4 To piping to vent tank	10 Vent fank vent inie	10.000	10.0	11,0	IV	'	TWISA	30	"	credited for conservatism	Analyzed	30	#19/74	NO	'		
1	PTN	0	FWS / 074	5610-M-3074, SH 2	8 3" Drain Line	DWDS-019	3.000	3.0	Н	N	I		50	Н		3.000	50	1	No	1		
_	PTN			5610-M-3074, SH 2	9 1/4" to 1.5" pipe	DWDS-015	1.500	1.0		N			50	Н		1.500	50	0	No	1		
	PTN			5610-M-3074, SH 2	10 Connections	DWDS-015	10.000	11.0		N			50	Н Н	+	Not	50	#N/A	No	<u> </u>		_
															+							+
	PTN			5610-M-3074, SH 2	12 6"-10" pipe	DWDS-020	10.000	7.0		N	1	+	50	H	+	Not	50	#N/A	No			+
	PTN			5610-M-3074, SH 2	13 3/4" Vents	DWDS-4-115	0.750	1.0		N	HT		50	TV		0.750	50	0	No	HT	repair if damaged	N
_18	PTN	0	FWS / 074	5610-M-3074, SH 2	13 3/4" Vents	DWDS-3-114	0.750	1.0	TV	N	HT		50	TV		0.750	50	0	No	HT	repair if damaged	N
18	PTN	0	FWS / 074	5610-M-3074, SH 2	13 3/4" Vents	DWDS-3-115	0.750	1.0	TV	N	HT		50	TV		0.750	50	0	No	HT	repair if damaged	N
	PTN			5610-M-3074, SH 2	13 1" Drains	DWDS-4-112	0.750	2.0		N	HT		50	BV		0.750	50	0	No	HT	repair if damaged	N
	PTN			5610-M-3074, SH 2	13 1" Drains	DWDS-3-109	0.750	2.0		N	HT		50	BV		0.750	50	0	No	HT	repair if damaged	N
	PTN			5610-M-3074, SH 2																		
					13 1" Drains	DWDS-3-110	0.750	2.0		N	HT		50	BV		0.750	50	0	No	HT	repair if damaged	N
	PTN			5610-M-3074, SH 2	13 1" Drains	DWDS-3-111	0.750	2.0		N	HT		50	BV		0.750	50	0	No	HT	repair if damaged	N
18	PTN	0	FWS / 074	5610-M-3074, SH 2	13 1" Drains	DWDS-4-113	0.750	1.0	VD	N	HT	Drain missing or buried, assumed length based on similar	50	VD		0.750	50	#N/A	No	HT	repair if damaged	N
1	PTN	0	FWS / 074	5610-M-3074, SH 2	8" Pipe TO SWLU Pump valve SWLU-3-059 (CLOSED)	SWLU-3-059	8.000	110.0	H,U	N	ı	See 5613-M-3082 SH1. 50% of pipe run located in west condenser pit fully exposed. No insulation with constant 10 mph wind achieves 50% freeze in 37 hrs. Most likely would freeze 100% in 96 hrs	50	Н	Upward bend not credited for conservatism	Not Analyzed	50	#N/A	No	1		
11	DTN	_	EVA/S / 07/	5610-M-3074, SH 2	13 8" Pipe TO SWLU Pump valve	SWLU-4-059	8.000	110.0	H,U	N		See 5614-M-3082 SH1. 50% of pipe run	50	Н	Upward bend not	Not	50	#N/A	No	1		
1	PIN		rws/0/4	3010-W-3074, 3H 2	SWLU-4-059 (CLOSED)	SWLU-4-U59	8.000	110.0	n,u	IN .	'	See 30.44-W-3062 391. 30% of pipe full located in west condenser pit fully exposed. No insulation with constant 10 mph wind achieves 50% freeze in 37 hrs. Most likely would freeze 100% in 96 hrs	50		credited for conservatism	Analyzed	50	#N/A	No	'		
12	PTN	0	FWS / 074	5610-M-3074, SH 2	14 10" Pipe to Cond XFR pump at	REDUCER PRIOR TO 4-	10.000	351.0	H,U	N	М	See 5613-M-3018 SH1. Entire pipe run is	50	Н	Upward bend not	Not	50	#N/A	No	М		1
				300 m 307 y 31 L	CST	20-402	15.000	332.0	.,,0			on east side of Condenser and runs under/beside FW lines. The end near CST is exposed to wind as well as breezeway portions. Estimate 75% of run would not need insulation due to location equipment heat. Alternatively, perform transfer from DWST to CST every 12 hrs to replenish CST due to AFW water usage	30		credited for conservatism	Analyzed	30	,.				
18	PTN	0	FWS / 074	5610-M-3074, SH 2	14 10" Pipe to Tee located above Cond pump piit going to Cond XFR pump		10.000	160.0	н,и	N	М	See 5613-M-3018 SH1. Entire pipe run is on east side of Condenser and runs under/beside FW lines. The end near CST is exposed to wind as well as breezeway portions. Estimate 75% of run would not need insulation due to location equipment heat. Alternatively, perform transfer from DWST to CST every 12 hrs to replenish CST due to AFW water usage	50	н	Upward bend not credited for conservatism	Not Analyzed	50	#N/A	No	М		
1	PTN	0	FWS / 074	5610-M-3074, SH 1	1 PI's & 3/4" Vents	DWDS-176	0.750	1.0	TV	N	НТ	Protect DWST and CST	50	TV		0.750	50	0	No	нт	repair/patch if broken; no heat trace required. Procedure already calls out to run system during event	N

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 485 of 488

> R21002, Rev 0 Attachment N Page 120 of 123

18																						Page 120 d	JI 123
Note	2054	PTN	4	089	5614-M-3089, SH 2		PC-4-3709	0.500	N/A	N/A	N/A	N/A		523		N/A	0.500	400		No	N/A		
No.	154	PTN	0		5610-M-3074, SH 1	1 PI's & 3/4" Vents	DWDS-175	0.750	1.5	TV	N	HT	Protect DWST and CST	40	therefore, temperature reflects	TV	0.750	40	0	No	HT		N
1	154	PTN	0		5610-M-3074, SH 1	1 PI's & 3/4" Vents	PI-6697A	0.750	1.5	TV	N	HT		40	therefore, temperature reflects	TV	0.750	40	0	No	НТ		N
Part	154	PTN	0		5610-M-3074, SH 1	1 PI's & 3/4" Vents	PI-6511A	0.750	1.0	Н	N	HT		40	SBFW pumps are in standby, therefore, temperature reflects	Н	0.750	40	0	No	HT		N
	154	PTN	0		5610-M-3074, SH 1	1 PI's & 3/4" Vents	PI-6697B	0.750	2.0	TV	N	HT		40	SBFW pumps are in standby, therefore, temperature reflects	TV	0.750	40	0	No	НТ		N
Section Sect	154	PTN	0		5610-M-3074, SH 1	1 PI's & 3/4" Vents	PI-6511B	0.750	1.0	Н	N	HT		40	SBFW pumps are in standby, therefore, temperature reflects	Н	0.750	40	0	No	НТ		N
1	154	PTN	0		5610-M-3074, SH 1	1 PI's & 3/4" Vents	DWDS-143	0.750	0.5	Н	N	HT	Protect DWST and CST	40	SBFW pumps are in standby, therefore, temperature reflects	Н	0.750	40	0	No	НТ	Procedure already calls out to run system during	N
10 10 10 10 10 10 10 10	153	PTN	0	FWS / 074	5610-M-3074, SH 1	1 3" RV-6726	RV-6726	3.000	1.0	TV	N	I	Protect DWST and CST	50		TV	3.000	50	1	Yes	Protection		
No.	155	PTN	0	FWS / 074	5610-M-3074, SH 1	2 Local Flow Indicator	FI-6657A	0.500	9.0	Н	N	HT	Protect DWST and CST	450		Н	0.500	400	8.5	No		Procedure already calls out to run system during	N
No.	155	PTN	0	FWS / 074	5610-M-3074, SH 1	2 Local Flow Indicator	FI-6657B	0.500	9.0	Н	N	HT	Protect DWST and CST	450		Н	0.500	400	8.5	No	НТ		N
No.	158	PTN	0	FWS / 074	5610-M-3074, SH 1	4 Fl's	FI-6656A	0.500	9.0	Н	N	HT	Protect DWST and CST	436		Н	0.500	400	8.5	No	НТ		N
No.	158	PTN	0	FWS / 074	5610-M-3074, SH 1	4 FI's	FI-6656B	0.500	9.0	Н	N	HT	Protect DWST and CST	436		Н	0.500	400	8.5	No	НТ		N
No.	160	PTN	0	FWS / 074	5610-M-3074, SH 1	4 3/4" Vents	DWDS-148	0.750	1.0	BV	N	HT	Protect DWST and CST	436		BV	0.750	400	0.5	No	НТ	Procedure already calls out to run system during	N
13. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	160	PTN	0	FWS / 074	5610-M-3074, SH 1	4 3/4" Vents	DWDS-150	0.750	1.0	BV	N	HT	DATA ESTIMATED FROM OTHER SYSTEM	436		BV	0.750	400	0.5	No	НТ	Procedure already calls out to run system during	N
No.	161	PTN	0	FWS / 074	5610-M-3074, SH 1	4 1" Drains	DWDS-3-154	1.000	1.0	BV	N	HT		436		BV	1.000	400	0.5	No	НТ	Procedure already calls out to run system during	N
No.	161	PTN	0	FWS / 074	5610-M-3074, SH 1	4 1" Drains	DWDS-151	1.000	1.0	BV	N	HT	Protect DWST and CST	436		BV	1.000	400	0.5	No	НТ	Procedure already calls out to run system during	N
159 PN 0 PN	159	PTN	0	FWS / 074	5610-M-3074, SH 1	4 6", 8" Pipe	6"PIPE	6.000	250.0	H-I	Y	I	required for pressure boundary of DWST and FW header. Let freeze up to 75%. Could exclude portion off piping above	436		H-I		- 1	#N/A	No	Al		
No.	159	PTN	0	FWS / 074	5610-M-3074, SH 1	4 6", 8" Pipe	8" PIPE	8.000	914.0	Н	N	-	Protect DWST and CST, System only required for pressure boundary of DWST	436		Н		- 1	#N/A	No	I		
State Stat	160	PTN	0	FWS / 074	5610-M-3074, SH 1	4 3/4" Vents	DWDS-4-150	0.750	1.0	TV	N	НТ	Protect DWST and CST	436		TV	0.750	400	19	Yes	Protection		
Second Figure F	161	PTN	0	FWS / 074	5610-M-3074, SH 1	4 1" Drains	DWDS-3-149	1.000	0.5	Н	N	НТ	Protect DWST and CST	436		Н	1.000	400	18	Yes	No Protection		
FWS VI VI VI VI VI VI VI V	161	PTN	0	FWS / 074	5610-M-3074, SH 1	4 1" Drains	DWDS-153	1.000	0.5	BV	N	HT	Protect DWST and CST	436		BV	1.000	400	0.5	Yes	No Protection		
161 PTN 0 PT	161	PTN	0	FWS / 074	5610-M-3074, SH 1	4 1" Drains	DWDS-4-154	1.000	0.5	BV	N	HT	Protect DWST and CST	436		BV	1.000	400	0.5	Yes	No Protection		
161 PTN 0 FWS / 074 S610-M-3074, SH 1 4 1" Drains DWDS-152 1.000 1.00 Protection Required PTN 0 ICW / 019 S610-M-3019, SH 1 1 8", 10" & 12" Pipe & Isolation Valve Not in TB N/A	161	PTN	0	FWS / 074	5610-M-3074, SH 1	4 1" Drains	DWDS-4-149	1.000	0.5	Н	N	НТ	Protect DWST and CST	436		Н	1.000	400	18	Yes	No Protection		
192 PTN 0 10 CW/019 5610-M-3019, SH1 1 1 8", 10" & 12" Main Piping Not in TB N/A	161	PTN	0	FWS / 074	5610-M-3074, SH 1	4 1" Drains	DWDS-152	1.000	1.0	TV	N	НТ		436		TV	1.000	400	20	Yes	No Protection		
197 PTN 0 1 CW/019 5610-M-3019, SH1 2 12" Pipe & Isolation Value Not in TB N/A	192	PTN	0	ICW / 019	5610-M-3019, SH 1	1 8", 10" & 12" Main Piping	Not in TB	N/A	N/A	N/A	N/A	N/A	Not in TB			N/A				No	N/A		
198 PTN 0 CW / 019 5610-M-3019, SH 1 3 Pipe & Isolation Valve Not in TB N/A N/A N/A N/A N/A N/A Not in TB N/A N/A Not in TB N/A N/A N/A Not in TB N/A N/A N/A Not in TB N/A Not in TB N/A Not in TB N/A Not in TB N/A N/A Not in TB N/A N/A N/A N/A N/A N/A Not in TB N/A Not in TB N/A	197	PTN	0	ICW / 019	5610-M-3019, SH 1				N/A	N/A	N/A	N/A								No			
	198	PTN	0	ICW / 019	5610-M-3019, SH 1	3 Pipe & Isolation Valve	Not in TB	N/A	N/A	N/A	N/A	N/A	Not in TB			N/A				No	N/A		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 486 of 488

> R21002, Rev 0 Attachment N Page 121 of 123

																						Page 121 of 1	23
2054 P	N 4	089	5614-M-3089, SH 2	1	Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523		N/A		0.500	400		No	N/A		
New P	N O	FP / 016	5610-M-3016, SH 8	1	EDG 4A & 4B Sprinkler Supply Piping	PI-136-2	0.375	1	H,U	N	нт	Includes all connect tubing/piping. No flow	40	FP system in standby, therefore reflects ambient	Н	Upward bend not credited for conservatism	0.375	40	0	No	НТ		
New P	N 0	FP / 016	5610-M-3016, SH 8	1	EDG 4A & 4B Sprinkler Supply Piping	PI-136-1	0.375	1	H,U	N	нт	Includes all connect tubing/piping. No flow	40	FP system in standby, therefore reflects ambient	Н	Upward bend not credited for conservatism	0.375	40	0	No	НТ		
New P	N 0	FP / 016	5610-M-3016, SH 8	1	EDG 4A Deluge Pressure Indicator	PI-138-1	0.375	0.5	H,U	N	нт	Includes all connect tubing/piping. No flow	40	FP system in standby, therefore reflects ambient	Н	Upward bend not credited for conservatism	0.375	40	0	No	НТ		
New P	N 0	FP / 016	5610-M-3016, SH 8	1	EDG 4A Deluge Pressure Indicator	PI-138-2	0.375	0.5	H,U	N	нт	Includes all connect tubing/piping. No flow	40	FP system in standby, therefore reflects ambient	Н	Upward bend not credited for conservatism	0.375	40	0	No	НТ		
New P	N 0	FP / 016	5610-M-3016, SH 8	1	EDG 4A Deluge Pressure Indicator	PI-138-3	0.375	0.5	H,U	N	нт	Includes all connect tubing/piping. No flow	40	FP system in standby, therefore reflects ambient	Н	Upward bend not credited for conservatism	0.375	40	0	No	HT		
New P	N 0	FP / 016	5610-M-3016, SH 8	1	EDG 4B Deluge Pressure Indicator	PI-133-1	0.375	0.5	H,U	N	нт	Includes all connect tubing/piping. No flow	40	FP system in standby, therefore reflects ambient	Н	Upward bend not credited for conservatism	0.375	40	0	No	НТ		
New P	N 0	FP / 016	5610-M-3016, SH 8	1	EDG 4B Deluge Pressure Indicator	PI-133-2	0.375	0.5	H,U	N	нт	Includes all connect tubing/piping. No flow	40	FP system in standby, therefore reflects ambient	Н	Upward bend not credited for conservatism	0.375	40	0	No	НТ		
New P	N 0	FP / 016	5610-M-3016, SH 8	1	EDG 4B Deluge Pressure Indicator	PI-133-3	0.375	0.5	H,U	N	нт	Includes all connect tubing/piping. No flow	40	FP system in standby, therefore reflects ambient	Н	Upward bend not credited for conservatism	0.375	40	0	No	НТ		
New P	N 0	FP / 016	5610-M-3016, SH 8	1	EDG 4B Deluge Pressure Indicator	4-10-1514B	0.375	1	H,U	N	нт	Includes all connect tubing/piping. No flow	40	FP system in standby, therefore reflects ambient	H,U	CONSCIVATISM	0.375	40	#N/A	No	HT		
New P	N 0	FP / 016	5610-M-3016, SH 8	1	EDG 4A Deluge Control	SV-4-2827A, 4F48A,	0.5	4	H,U	N	нт	Includes all connect tubing/piping. No flow	40	FP system in standby, therefore reflects ambient	Н	Upward bend not credited for conservatism	0.500	40	0	No	НТ		
New P	N 0	FP / 016	5610-M-3016, SH 8	1	EDG 4A Deluge Control	PS-4-6705A, PS-4-6706A	0.5	2	H,U	N	нт	Includes all connect tubing/piping. No flow	40	FP system in standby, therefore reflects ambient	Н	Upward bend not credited for conservatism	0.500	40	0	No	НТ		
New P	N 0	FP / 016	5610-M-3016, SH 8	1	EDG 4B Deluge Control	SV-4-2827B, 4F48B	0.5	4	H,U	N	нт	Includes all connect tubing/piping. No flow	40	FP system in standby, therefore reflects ambient	Н	Upward bend not credited for conservatism	0.500	40	0	No	НТ		
New P	N 0	FP / 016	5610-M-3016, SH 8	1	EDG 4B Deluge Control	PS-4-6705B, PS-4-6706B	0.5	2	H,U	N	нт	Includes all connect tubing/piping. No flow	40	FP system in standby, therefore reflects ambient	Н	Upward bend not credited for conservatism	0.500	40	0	No	НТ		
New P	N 0	FP / 016	5610-M-3016, SH 8	1	EDG 4A AND 4B Sprinkler Control	PS-4-6707	0.5	1	H,U	N	НТ	Includes all connect tubing/piping. No flow	40	FP system in standby, therefore reflects ambient	Н	Upward bend not credited for conservatism		40	#N/A	No	НТ		
New P	N 0	FP / 016	5610-M-3016, SH 8	1	EDG 4A & 4B Supply Piping	4-10-1107	2.5	1	HD	N	ı	Includes all connect tubing/piping. No flow	40	FP system in standby, therefore reflects ambient	HD		2.000	40	#N/A	No	T.		
New P	N 0	FP / 016	5610-M-3016, SH 8	1	EDG 4A Piping	4" 4-10-1112	4	6	HV	N	I	No flow	40	FP system in standby, therefore reflects ambient	HV		4.000	40	#N/A	No	I		
New P	N 0	FP / 016	5610-M-3016, SH 8	1	EDG 4B Piping	4" 4-10-1113	4	6	HV	N	I	No flow	40	FP system in standby, therefore reflects ambient	HV		4.000	40	#N/A	No	1		
New P	N 0	FP / 016	5610-M-3016, SH 8	1	EDG 4A Piping	4" 4-10-1108	4	3	HV	N	ı	No flow	40	FP system in standby, therefore reflects ambient	HV		4.000	40	#N/A	No	I		
New P	N O	FP / 016	5610-M-3016, SH 8	1	EDG 4B Piping	4" 4-10-1109	4	3	HV	N	ı	No flow	40	FP system in standby, therefore reflects ambient	HV		4.000	40	#N/A	No	1		
New P	N 0	FP / 016	5610-M-3016, SH 8	1	EDG 4A Piping	4" 4-10-1110	4	1	HV	N		No flow	40	FP system in standby, therefore reflects ambient	HV		4.000	40	#N/A	No	I		
New P	N 0	FP / 016	5610-M-3016, SH 8	1	EDG 4B Piping	4" 4-10-1111	4	1	HV	N		No flow	40	FP system in standby, therefore reflects ambient	HV		4.000	40	#N/A	No	I		
New P	N 0	FP / 016	5610-M-3016, SH 8	1	EDG 4A & 4B DELUGE Supply Piping	6" 4-10-1106	6	4	HV	N		No flow	40	FP system in standby, therefore reflects ambient	HV		Not Analyzed	40	#N/A	No	I		
New P	N O	FP / 016	5610-M-3016, SH 8	2	1 0	PI-136-1	0.375	0.5	H,U	N	нт	Includes all connect tubing/piping. No flow	40	FP system in standby, therefore reflects ambient	Н	Upward bend not credited for conservatism	0.375	40	0	No	нт		
New P	'N 0	FP / 016	5610-M-3016, SH 8	2	EDG 4A & 4B Sprinkler Supply Piping	PI-136-2	0.375	0.5	H,U	N	нт	Includes all connect tubing/piping. No flow	40	FP system in standby, therefore reflects ambient	Н	Upward bend not credited for conservatism	0.375	40	0	No	НТ		
New P	N 0	FP / 016	5610-M-3016, SH 8	2	EDG 4A & 4B Sprinkler Supply Piping	4-10-1522	0.75	2	HD	N	HT	Includes all connect tubing/piping. No flow	40	FP system in standby, therefore reflects ambient	HD			40	#N/A	No	НТ		
New P	N 0	FP / 016	5610-M-3016, SH 8	2	EDG 4A & 4B Sprinkler Supply Piping	4-10-1525	2.000	1.5	HD	N	HT	Includes all connect tubing/piping. No flow	40	FP system in standby, therefore reflects ambient	HD		2.000	40	#N/A	No	НТ		
New P	N 0	FP / 016	5610-M-3016, SH 8	2	EDG 4A & 4B HS -04-09 Piping	2.5" 4-10-1172, 1171	2.5	35	HV	N	I	Includes all connect tubing/piping. No flow	40	FP system in standby, therefore reflects ambient	HV		2.000	40	#N/A	No	1		
New P	N 0	FP / 016	5610-M-3016, SH 8	2	EDG 4A & 4B Sprinkler Supply Piping	2.5" 4-10-1120	2.5	2	HD	N	ı	Includes all connect tubing/piping. No flow	40	FP system in standby, therefore reflects ambient	HD		2.000	40	#N/A	No	1		
New P	N 0	FP / 016	5610-M-3016, SH 8	2	EDG 4A & 4B Sprinkler Supply Piping	2" 4-10-1122	4	2	HV	N	I	No flow	40	FP system in standby, therefore reflects ambient	HV		4.000	40	#N/A	No	I		
New P	N 0	FP / 016	5610-M-3016, SH 8	2	EDG 4A & 4B Sprinkler Supply Piping	6" BS-4-1420	6	6	HV	N	I	No flow	40	FP system in standby, therefore reflects ambient	HV		Not Analyzed	40	#N/A	No	T .		
				_																			

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 487 of 488

> R21002, Rev 0 Attachment N Page 122 of 123

																							Page 122 of 123
2054	PTN	4	089	5614-M-3089, SH 2	1	Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523		N/A		0.500	400		No	N/A	
New	PTN	0	FP / 016	5610-M-3016, SH 7	1	U3 A EDG Deluge Pressure Indicator	PI-3-73F-1, PI-3-73-1,2,3	0.25	2.5	H,U	N	нт	Includes all connect tubing/piping. No flow	40	FP system in standby, therefore reflects ambient	H,U		Not Analyzed	40	#N/A	No	НТ	
New	PTN	0	FP / 016	5610-M-3016, SH 7	1	U3 A EDG Deluge Pressure Switch	PS-3-73F-1	0.25	0.5	H,U	N	НТ	Includes all connect tubing/piping. No	40	FP system in standby, therefore reflects ambient	H,U		Not Analyzed	40	#N/A	No	НТ	
New	PTN	0	FP / 016	5610-M-3016, SH 7	1	U3 B EDG Deluge Pressure	PI-3-72F-1, PI-3-72-1,2,3	0.25	0.5	H,U	N	НТ	Includes all connect tubing/piping. No	40	FP system in standby, therefore	H,U		Not	40	#N/A	No	HT	
New	PTN	0	FP / 016	5610-M-3016, SH 7	1	Indicator Breezway deluge Piping to filter F47 and PS	PS-79AF-1	0.5	3	H,U	N	нт	Includes all connect tubing/piping. No	40	reflects ambient FP system in standby, therefore reflects ambient	Н	Upward bend not credited for	0.500	40	0	No	нт	
New	PTN	0	FP / 016	5610-M-3016, SH 7	1	Breezway deluge Piping to filter F47, remote actuation soledoid, and PS 79AF-1	SV-79AS-1	0.5	8	H,U	N	нт	Includes all connect tubing/piping. No	40	FP system in standby, therefore reflects ambient	Н	conservatism Upward bend not credited for conservatism	0.500	40	0	No	нт	
				5540 14 2045 5117									now		reneets ambient			0.500	40				
New	PTN	0	FP / 016	5610-M-3016, SH 7	1	Breezway deluge Piping to filter F47, remote actuation soledoid, and PS 79AF-1	SV-73S-1	0.5	8	H,U	N	нт	Includes all connect tubing/piping. No flow	40	FP system in standby, therefore reflects ambient	Н	Upward bend not credited for conservatism	0.500	40	0	No	нт	
New	PTN	0	FP / 016	5610-M-3016, SH 7	1	U3A deluge Piping to filter 3F46A and PS 72F-1	PS-72F-1	0.5	3	H,U	N	нт	Includes all connect tubing/piping. No flow	40	FP system in standby, therefore reflects ambient	Н	Upward bend not credited for conservatism	0.500	40	0	No	нт	
New	PTN	0	FP / 016	5610-M-3016, SH 7	1	U3B EDG deluge Piping to filter 3F27B and PS 79AF-1	SV-72S-1	0.5	8	H,U	N	нт	Includes all connect tubing/piping. No flow	40	FP system in standby, therefore reflects ambient	Н	Upward bend not credited for conservatism	0.500	40	0	No	нт	
New	PTN	0	FP / 016	5610-M-3016, SH 7	1	Breezway Deluge Piping to PI 79F-1 and 79F-2	PI-79F-1 PI-79F-2	0.5	5	H,U	N	нт	Includes all connect tubing/piping. No flow	40	FP system in standby, therefore reflects ambient	Н	Upward bend not credited for conservatism	0.500	40	0	No	нт	
New	PTN	0	FP / 016	5610-M-3016, SH 7	1	U3 B EDG Deluge	10-845	2.5	13	HV	N	I	labeled 844 on dwg.Includes all connect tubing/piping. No flow	40	FP system in standby, therefore reflects ambient	HV		2.000	40	#N/A	No	I	
New	PTN	0	FP / 016	5610-M-3016, SH 7	1	Pipe from valve 10-849 to Breezeway deluge valve 10- 850	10-850	2.5	1	H,U	N	I	Includes all connect tubing/piping. No flow	40	FP system in standby, therefore reflects ambient	Н	Upward bend not credited for conservatism	2.000	40	0	No	I	
New	PTN	0	FP / 016	5610-M-3016, SH 7	1	U3 A EDG Deluge	10-846	2.5	2	HV	N	ı	Includes all connect tubing/piping. No	40	FP system in standby, therefore	HV	Conscivatism	2.000	40	#N/A	No	- I	
New	PTN	0	FP / 016	5610-M-3016, SH 7	1	U3 B EDG Deluge	10-843	2.5	2	HV	N	ı	Includes all connect tubing/piping. No	40	reflects ambient FP system in standby, therefore	HV		2.000	40	#N/A	No	- I	
New	PTN	0	FP / 016	5610-M-3016, SH 7	1	Pipe to U3 EDG deluge	3X2.5"	2.5	3	HV	N	I	Includes all connect tubing/piping. No flow	40	reflects ambient FP system in standby, therefore reflects ambient	Н	Upward bend not credited for	2.000	40	0	No	I	
New	PTN	0	FP / 016	5610-M-3016, SH 7	1	Pipe to U3 EDG deluge	10-680	3	33	HV	N	1	Includes all connect tubing/piping. No	40	FP system in standby, therefore	HV	conservatism	3.000	40	#N/A	No	I	
New	PTN	0	FP / 016	5610-M-3016, SH 5	1	Pipe 4"-11-F from J-line Header to Aux bldg wall	10-1321	4	90	HV	N	I	No flow	40	reflects ambient FP system in standby, therefore reflects ambient	Н	Upward bend not credited for	4.000	40	0	No	I	
New	PTN	0	FP / 016	5610-M-3016, SH 5	1	Pipe to HS-03-01	10-616	6	15	HV	N	ı	No flow	40	FP system in standby, therefore reflects ambient	Н	Upward bend not credited for conservatism	Not Analyzed	40	#N/A	No	- I	
New	PTN	0	FP / 016	5610-M-3016, SH 5	1	Pipe to 10-HY-26	10-798	6	5	HV	N	ı	No flow	40	FP system in standby, therefore reflects ambient	HV		Not Analyzed	40	#N/A	No	- I	
New	PTN	0	FP / 016	5610-M-3016, SH 5	1	East West Header crosstie to valve 10-610		10	120	HV	N	I	No flow	40	FP system in standby, therefore reflects ambient	Н	Upward bend not credited for conservatism	Not Analyzed	40	#N/A	No	I	
New	PTN	0	FP / 016	5610-M-3016, SH 4	1	Pipe from 4" supply line tee to Breezway deluge valve 10- 849	10-679	3	15	HV	N	I	Includes all connect tubing/piping. No flow	40	FP system in standby, therefore reflects ambient	Н	Upward bend not credited for conservatism	3.000	40	0	No	I	
150	PTN	0	FP / 016	5610-M-3016, SH 2	6	6" Pipe to FP Loop, backup	Not in TB	N/A	N/A	N/A	N/A	N/A	Not in TB			N/A					No	N/A	
151	PTN	0	FP / 016	5610-M-3016, SH 2	7	Loop piping, including FI	Not in TB	N/A	N/A	N/A	N/A	N/A			ED custom in standburth and	N/A		0.375	40	451/A	No	N/A	
New	PTN	0	FP / 016	5610-M-3016, SH 11	1	Pressure Indicator	PI-4-7037	0.375	1	H,U	N	НТ	Includes all connect tubing/piping. No flow	40	FP system in standby, therefore reflects ambient	H,U		0.375	40	#N/A	No	HT	
New	PTN	0	FP / 016	5610-M-3016, SH 11	1	Pressure Indicator	PI-4-7046	0.5	1.5	H,U	N	НТ	Includes all connect tubing/piping. No flow	40	FP system in standby, therefore reflects ambient	H,U		0.500	40	#N/A	No	НТ	
New	PTN	0	FP / 016	5610-M-3016, SH 11	1	Pressure Indicator	PI-4-7045	0.5	1.5	H,U	N	нт	Includes all connect tubing/piping. No flow	40	FP system in standby, therefore reflects ambient	H,U		0.500	40	#N/A	No	HT	
New	PTN	0	FP / 016	5610-M-3016, SH 11	1	Aux XFMR Deluge Pressure Switch	PS-4-6710	0.5	1	H,U	N	НТ	Includes all connect tubing/piping. No flow	40	FP system in standby, therefore reflects ambient	H,U		0.500	40	#N/A	No	HT	
New	PTN	0	FP / 016	5610-M-3016, SH 11	1	Main XFMR Deluge Pressure Switch	PS-4-6709	0.5	1	H,U	N	НТ	Includes all connect tubing/piping. No flow	40	FP system in standby, therefore reflects ambient	H,U		0.500	40	#N/A	No	НТ	
New	PTN	0	FP / 016	5610-M-3016, SH 11	1	S/U XFMR Deluge Pressure Switch	PS-4-7607	0.5	1	H,U	N	нт	Includes all connect tubing/piping. No flow	40	FP system in standby, therefore reflects ambient	H,U		0.500	40	#N/A	No	HT	
New	PTN	0	FP / 016	5610-M-3016, SH 11	1	Pressure Indicator	PI-4-7036	0.5	1	H,U	N	НТ	Includes all connect tubing/piping. No flow	40	FP system in standby, therefore reflects ambient	H,U		0.500	40	#N/A	No	HT	
New	PTN	0	FP / 016	5610-M-3016, SH 11	1	Drain	SV-4-6699	1	1	HD	N	НТ	Includes all connect tubing/piping. No flow	40	FP system in standby, therefore reflects ambient	HD		1.000	40	#N/A	No	НТ	
New	PTN	0	FP / 016	5610-M-3016, SH 11	1	Drain	4-10-1612	2.000	1	HD	N	HT	Includes all connect tubing/piping. No flow	40	FP system in standby, therefore reflects ambient	HD		2.000	40	#N/A	No	НТ	
					_																		4

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 4 of 24 Page 488 of 488

> R21002, Rev 0 Attachment N Page 123 of 123

																						Page 123 01 123
2054	PTN	4	089	5614-M-3089, SH 2	1 Pressure Control Instrument (PC x2) plus 1/2" tubing	PC-4-3709	0.500	N/A	N/A	N/A	N/A		523		N/A		0.500	400		No	N/A	
New	PTN	0	FP / 016	5610-M-3016, SH 11	1 Pressure Indicator	PI-4-103-1	2.000	0.5	H,U	N	НТ	Includes all connect tubing/piping. No flow	40	FP system in standby, therefore reflects ambient	H,U		2.000	40	#N/A	No	HT	
New	PTN	0	FP / 016	5610-M-3016, SH 11	1 Pressure Indicator	PI-4-101-1	2.000	0.5	H,U	N	HT	Includes all connect tubing/piping. No flow	40	FP system in standby, therefore reflects ambient	H,U		2.000	40	#N/A	No	HT	
New	PTN	0	FP / 016	5610-M-3016, SH 11	1 Drain	4-10-1619	2.5	1	HD	N	ı	Includes all connect tubing/piping. No flow	40	FP system in standby, therefore reflects ambient	HD		2.000	40	#N/A	No	T.	
New	PTN	0	FP / 016	5610-M-3016, SH 11	1 U4 S/U XFMR Deluge Supply	4-10-1611	4	6	HV	N	ı	No flow	40	FP system in standby, therefore reflects ambient	HV		4.000	40	#N/A	No	I	
New	PTN	0	FP / 016	5610-M-3016, SH 11	1 U4 S/U XFMR Deluge Supply	BS-4-1424	6	8	HV	N	ı	No flow	40	FP system in standby, therefore reflects ambient	HV		Not Analyzed	40	#N/A	No	- 1	
New	PTN	0	FP / 016	5610-M-3016, SH 11	1 U4 Aux XFMR Deluge Supply	4-10-634	6	1	HV	N	I	No flow	40	FP system in standby, therefore reflects ambient	HV		Not Analyzed	40	#N/A	No	- 1	
New	PTN	0	FP / 016	5610-M-3016, SH 11	1 U4 Main XFMR Deluge Supply	4-10-1575	6	1	HV	N	I	No flow	40	FP system in standby, therefore reflects ambient	HV		Not Analyzed	40	#N/A	No	- I	
New	PTN	0	FP / 016	5610-M-3016, SH 11	1 U4 Aux and Main XFMR Deluge Supply	4-10-616	8	10	HV	N	I	No flow	40	FP system in standby, therefore reflects ambient	HV		Not Analyzed	40	#N/A	No	- I	
New	PTN	0	FP / 016	5610-M-3016, SH 10	Main XFMR Deluge Pressure 1 Indicator	PI-3-7047	0.375	1	H,U	N	нт	Includes all connect tubing/piping. No flow	40	FP system in standby, therefore reflects ambient	Н	Upward bend not credited for	0.375	40	0	No	HT	
				5610-M-3016, SH 10	Main XFMR Deluge Pressure			1	H,U	N		Includes all connect tubing/piping. No		FP system in standby, therefore	Н	conservatism Upward bend not	0.375	40	0	No	HT	
New	PTN	0	FP / 016		1 Indicator	PI-3-101-1	0.375				НТ	flow	40	reflects ambient		credited for conservatism						
New	PTN	0	FP / 016	5610-M-3016, SH 10	S/U XFMR Deluge Pressure 1 Indicator	PI-3-7036	0.375	1	H,U	N	нт	Includes all connect tubing/piping. No flow	40	FP system in standby, therefore reflects ambient	Н	Upward bend not credited for conservatism	0.375	40	0	No	HT	
New	PTN	0	FP / 016	5610-M-3016, SH 10	S/U XFMR Deluge Pressure 1 Indicator	PI-3-7037	0.375	1	H,U	N	нт	Includes all connect tubing/piping. No flow	40	FP system in standby, therefore reflects ambient	Н	Upward bend not credited for conservatism	0.375	40	0	No	HT	
New	PTN	0	FP / 016	5610-M-3016, SH 10	Aux XFMR Deluge Pressure 1 Switch	PS-3-6710	0.5	1	H,U	N	нт	Includes all connect tubing/piping. No flow	40	FP system in standby, therefore reflects ambient	Н	Upward bend not credited for	0.500	40	0	No	HT	
New	PTN	0	FP / 016	5610-M-3016, SH 10	Main XFMR Deluge Pressure 1 Switch	PS-3-6709	0.5	1	H,U	N	нт	Includes all connect tubing/piping. No	40	FP system in standby, therefore reflects ambient	Н	Conservatism Upward bend not credited for	0.500	40	0	No	HT	
New	PTN	0	FP / 016	5610-M-3016, SH 10	Remote Actuation Solinoid to 1 Aux XFMR deluge	SV-3-48	0.5	1.5	H,U	N	нт	Includes all connect tubing/piping. No	40	FP system in standby, therefore	Н	Conservatism Upward bend not credited for	0.500	40	0	No	HT	
				5610-M-3016, SH 10	Remote Actuation Solinoid to			1.5	H,U	N		flow		reflects ambient	Н	conservatism Upward bend not	0.500	40	0	No	HT	
New	PTN	0	FP / 016		1 Main XFMR deluge	SV-3-47	0.5				НТ	Includes all connect tubing/piping. No flow	40	FP system in standby, therefore reflects ambient		credited for conservatism						
New	PTN	0	FP / 016	5610-M-3016, SH 10	S/U XFMR Deluge Pressure 1 Switch	PS-3-7607	0.5	1	H,U	N	нт	Includes all connect tubing/piping. No flow	40	FP system in standby, therefore reflects ambient	Н	Upward bend not credited for conservatism	0.500	40	0	No	нт	
New	PTN	0	FP / 016	5610-M-3016, SH 10	Aux XFMR deluge Pressure 1 Indicator	PI-3-7048	0.5	1.5	H,U	N	нт	Includes all connect tubing/piping. No flow	40	FP system in standby, therefore reflects ambient	Н	Upward bend not credited for conservatism	0.500	40	0	No	HT	
New	PTN	0	FP / 016	5610-M-3016, SH 10	Remote Actuation Solinoid to 1 S/U XFMR deluge	SV-3-6699	1	0.5	H,U	N	нт	Includes all connect tubing/piping. No flow	40	FP system in standby, therefore reflects ambient	Н	Upward bend not credited for	1.000	40	0	No	HT	
New	PTN	0	FP / 016	5610-M-3016, SH 10	Aux XFMR deluge Pressure 1 Indicator	PI-3-103-1	2.000	0.5	H,U	N	НТ	Includes all connect tubing/piping. No flow	40	FP system in standby, therefore reflects ambient	Н	conservatism Upward bend not credited for	2.000	40	0	No	нт	
New	PTN	0	FP / 016	5610-M-3016, SH 10	Piping to S/U XFMR Deluge	3-10-1611	4	1	HV	N	ı	No flow	40	FP system in standby, therefore reflects ambient	Н	conservatism Upward bend not credited for	4.000	40	0	No	T	
-				5610-M-3016, SH 10	Piping to Aux XFMR Deluge			3	HV		I	No flow		FP system in standby, therefore	Н	conservatism Upward bend not	Not	40	#N/A	No	T I	
New	PTN	0	FP / 016		1	3-10-1581	6			N			40	reflects ambient		credited for conservatism	Analyzed					
	PTN	0	FP / 016	5610-M-3016, SH 10	Piping to S/U XFMR Deluge	BS-3-1424	6	2	HV	N	'	No flow	40	FP system in standby, therefore reflects ambient	Н	Upward bend not credited for conservatism	Not Analyzed	40	#N/A	No	I I	
New	PTN	0	FP / 016	5610-M-3016, SH 10	Piping to Main XFMR Deluge	3-10-1575	6	1	HV	N	I	No flow	40	FP system in standby, therefore reflects ambient	Н	Upward bend not credited for	Not Analyzed	40	#N/A	No	I	
New	PTN	0	FP / 016	5610-M-3016, SH 10	FP header piping to Main and 1 Aux deluge	3-10-620	8	5	HV	N	1	No flow	40	FP system in standby, therefore reflects ambient	Н	Upward bend not credited for	Not Analyzed	40	#N/A	No	1	
144	PTN	0	FP / 016	5610-M-3016, SH 1	- LT, PI, LC, LT, LS	Not in TB	N/A	N/A	N/A	N/A	N/A	Not in TB			N/A	conservatism	+ +			No	N/A	
	PTN			5610-M-3016, SH 1	- 3" Drain	Not in TB	N/A	N/A	N/A	N/A	N/A	Not in TB			N/A	1				No	N/A	
	PTN			5610-M-3016, SH 1	- Flanged Connection	Not in TB	N/A	N/A		N/A	N/A	Not in TB			N/A					No	N/A	

Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 5 of 24 Page 1 of 22

Extreme Temperature Reassessment PSL

March 2021

Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 5 of 24 Page 2 of 22

Executive Summary

In February 2021, a low temperature event resulted in a widespread loss of electricity production over region operated by the Electric Reliability Council of Texas, Inc. (ERCOT). This was due to poor extreme weather preparation by utilities. NEE reviewed the PSL design for potential temperature related challenges to availability due to equipment and license issues. The original design in the UFSAR identified sustained local temperature periods between 29 (27 for U2) and 101 °F. The original intake temperature evaluation is 40 to 95 °F. This evaluation covers a 7-day sustained temperature at 4 °F (extreme low) and 121 °F (extreme high). These extreme values are based on the West Palm Beach, Fl location record high, 101 °F, +20 °F, and low, 24 °F, -20 °F, provided by the corporate meteorologist.

Immediate actions are recommended for the current winter:

- Continue to implement Cold Weather procedure
- Evaluate exterior lines to determine lowest operating temperature.
 - Insulate/provide temp heating to SPV lines that would not be operational below 4F
- Evaluate need to 'tent" MS/AFW area and allow heat losses from Feedwater/Main Steam piping to maintain area temp if extreme temperature conditions are predicted.

Upcoming summer readiness actions

- Continue with current upcoming summer readiness actions
- Ensure sufficient tenting is available to provide additional shading
- Ensure sufficient air horns are available to provide increased air flow to identified components
- Have WO's planned for installation of tenting and air horns at locations requested by Operations/Engineering
- Evaluate the possibility of connecting Chilled Water to replace one train of CFC's for cooling containment

Longer term corrective actions

- Continue walkdowns to identify extreme temperature sensitive equipment
- Seismically Qualify the RWT recirc line to allow recirc during extreme cold weather
- Perform additional evaluations/mitigating actions for temp sensitive equipment
- Install heat blankets around susceptible equipment to remove space heaters
- Convene a multi-discipline team to evaluate extreme temp conditions and mitigating actions. This
 team should consist of, at a minimum, Operations, Engineering, Maintenance (MM, EM, & I&C),
 Chemistry, Licensing, and Environmental.

Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 5 of 24 Page 3 of 22

Table of Contents

1.	Temperature Vulnerable Locations	4
2.	Exposed Instrumentation	6
3.	Air handling / Heating	7
4.	BOP / Support Systems	9
5.	Electrical Systems	13
6.	NSSS systems	14
7.	Diesel Generator	15
8.	Biological / Chemistry	16
9.	Programs	17
10.	Material / fluids	18
11.	Licensing / Environmental	19
12.	Operations	20
13.	PSL trip and down power review	21
14.	Summary	22

Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 5 of 24 Page 4 of 22

1. Temperature Vulnerable Locations

Review history of outdoor weather and determine several extreme weather events. Evaluate impact on of temperature transient and estimate area temperatures for various plant locations:

<u>Table 1</u>
<u>Plant Location Maximum and Minimum Assumed Temperatures</u>

Location	Basis	High	Low
Outdoors	This report evaluates sustained temperatures 20 °F more and less than those expected in the plant's design. The original design in the UFSAR identified sustained local temperature periods between 29 °F and 101 °F (27 °F and 101 °F).	121°F	4°F
Emergency Diesel Generators	The system maintains the rooms at 104°F based on 93°F ambient air temperature during normal conditions.	Room 115°F	Room 33°F
	During periods of diesel generator standby the engine preheat system maintains temperature above 85°F and the cooling water system between 125°F and 155°F.	Oil 143°F	Oil 62.5°F
	Max/Min EDG room temp recorded 95°F/53°F Max/Min EDG oil temp recorded 123°F/82.5°F		
Reactor Auxiliary Building	Ventilation rate is sized to limit the temperature to the design ambient maximum temperature of 104°F in the equipment areas (excluding ECCS areas during accident conditions) assuming an outside air temperature of 93°F.	112°F	37°F
	Minimum temperature of 55°F to ensure boric acid in primary systems remains in solution.		
	Max recorded RAB temp 92°F Min recorded RAB temp 57°F		
Battery Rooms/Electrical Equipment Rooms	Battery Rooms are designed to have temperature maintained less than 104°F with an outside air temperature of 93°F.	124F	30F
	Analysis has demonstrated that temporary (and infrequent) temperature excursions up to 120°F will neither affect the operability of safety related		

Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 5 of 24 Page 5 of 22

	equipment in these rooms nor reduce their service life Max air temperature is 104F per the DBD Minimum air temperature is 50°F per the DBD and Cold Weather Procedure		
Containment	The limitation on containment air temperature of 120°F ensures that the peak containment vessel temperature does not exceed the containment vessel design temperature of 264°F. Highest peak containment temperature for the last 10 years is 112°F which did not coincide with the highest ambient temperature recorded. Lowest temperature seen was 83°F (while operating). Containment temperature is more driven by Atlantic Ocean intake temperature. 112°F and 83°F will be used conservatively to coincide with peak ambient temperature.	132°F	63°F
Refueling Water Tank	TS max temperature of 100°F and minimum 55°F Max recorded temp 94°F Min recorded temp 61°F	114°F	41°F
Intake Cooling Water	DBD Limits of 95°F and minimum 40°F	115F	28°F (Freezing temp for salt water)

Docket No. 20220000-OT Ten-Year Site Plan
Staff's Third Data Request
Request No. 2
Attachment 5 of 24
Page 6 of 22

2. Exposed Instrumentation

Site PSL System/	Historical High / Low (Deg F)	Heat Sink and / or Ambient Limit (Deg F / Max and Min	Operability or Functional Limit based on additional analysis/calculation (Deg F / Describe)	Effect + 10F	Effect +20F	Effect – 10F	Effect – 20F	Comments
Component Instrument Lines outdoors	High 101F Low 27F	Ambient losses	High 101F Low 27F	Negligible impact	Negligible impact	Possible freeze concern	Possible freeze concern	Due to PSL's unique design, there are various systems and instrument lines exposed to outdoor ambient conditions. Due to this nature, more evaluations need to be performed to determine the effect on the plant.
Current degraded equipment	High 101F Low 27F	Ambient	High 101F Low 27F	Negligible impact	Negligible impact	Addressed in Cold Weather procedure	Addressed in Cold Weather procedure	Current degraded or known temperature effected equipment is addressed in the Cold Weather procedure.
Ovation Turbine Control System	Ambient temp High 99F Low 38F	Ambient via exhaust fans	Most ovation components designed for OC (32F) to 50C (122F)	Negligible – within design criteria	Negligible – within design criteria	Outside design criteria and will require further evaluation	Outside design criteria and will require further evaluation	
Instrument Air Control Cabinet	Ambient temp High 99F Low 38F	Ambient via exhaust fans	Most ovation components designed for OC (32F) to 50C (122F)	Negligible – within design criteria	Negligible – within design criteria	Outside design criteria and will require further evaluation	Outside design criteria and will require further evaluation	If cold air temp are sustained for 7 days then vendor input is required to support operation and determine potential risk

Scope
Walked down exterior of buildings

Reviewed MET tower instrument basis temperatures

Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 5 of 24 Page 7 of 22

3. Air handling / Heating

Site PSL System/ Component	Historical High / Low (Deg F)	Heat Sink and / or Ambient Limit (Deg F / Max and Min	Operability or Functional Limit based on additional analysis/calculation (Deg F / Describe)	Effect + 10F	Effect of + 20F	Effect – 10F	Effect – 20F	Comments
Containment TS limit	High 112°F Low 83°F	Ambient & Containment Fan Coolers via Component Cooling Water & Intake Cooling Water	120°F is the TS Operability limit	Containment declared Inoperable – 8 hrs to restore or Mode 3 w/in 6hrs and Mode 4 w/in following 6 hrs	Containment declared Inoperable – 8 hrs to restore or Mode 3 w/in 6hrs and Mode 4 w/in following 6 hrs	No operability limit. May require opening vacuum breakers depending on containment pressure	No operability limit. May require opening vacuum breakers depending on containment pressure	
Control Room cooling	High 101F Low 27F	93 F Max, No low limit	120 F Max per UFSAR, No TS Limit	See comments	See comments	Negligible	Negligible	High ambient will cause higher operating temperatures but should not impact ability to sustain CR temperature below limit. The limit is based on a loss of all cooling.
Fan motor design limit	High 101F Low 27F	Motors have 40 C temperature rise	Various based on design and manufacturer.	Possible effect on insulation lifetime. Shorter motor life.	Possible effect on insulation lifetime. Shorter motor life.	Negligible since most industrial motors are rated to -20C	Negligible since most industrial motors are rated to -20C	Further evaluation will be required for each motor based on design and manufacturer
Reactor Auxiliary Building	High 101F Low 27F	93 F Max, No low limit	104 F Max per UFSAR at 93 F ambient with up to 120 F for short durations, No TS Limit	See comments	See comments	Negligible	Negligible	High ambient will challenge ability to meet 104 F limit and could exceed 120 F max. because RAB ventilation utilizes 100% outside air for cooling.
Essential Switchgear Area Temperature	High 101F Low 27F	93 F Max, No low limit	104 F Max per UFSAR at 93 F ambient with up to 120 F for short durations, No TS Limit	See comments	See comments	Negligible	Negligible	High ambient will challenge ability to meet 104 F limit and could exceed 120 F max. because EER ventilation utilizes 100% outside air for cooling.
Battery Room Temperature	High 101F Low 27F	93 F Max, No low limit	104 F Max per UFSAR at 93 F ambient with up to 120 F for short durations, No TS Limit	See comments	See comments	Negligible	Negligible	High ambient will challenge ability to meet 104 F limit and could exceed 120 F max. because EER ventilation utilizes 100% outside air for cooling.

Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 5 of 24 Page 8 of 22

1		
S		
	7	

Site	Historical	Heat Sink and / or	Operability or Functional	Effect + 10F	Effect of + 20F	Effect – 10F	Effect – 20F	Comments
DC 1	High /	Ambient Limit	Limit based on					
PSL	Low	(D /	additional					
	(Deg F)	(Deg F /	analysis/calculation					
			(Deg F / Describe)					
System/		Max and Min						
Component								
Cable Spreading	High 101F Low 27F	93 F Max, No low limit	104 F Max per UFSAR at 93 F ambient with up to	See comments	See comments	Negligible	Negligible	High ambient will challenge ability to meet 104 F limit and could exceed 120 F
Room			120 F for short durations,					max. because EER ventilation utilizes
			No TS Limit					100% outside air for cooling.
Current	None	N/A	N/A	N/A	N/A	N/A	N/A	
degraded								
equipment								

<u>Scope</u>

Reviewed winter / summer readiness lists

Reviewed design basis temperature for fan motors

Reviewed / walked down louver and damper material conditions

Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 5 of 24 Page 9 of 22

EDI

4. BOP / Support Systems

Site PSL	Historical High / Low (Deg F)	Heat Sink and / or Ambient Limit (Deg F /	Operability or Functional Limit based on additional analysis/calculation	Effect + 10F	Effect of + 20F	Effect – 10F	Effect – 20F	Comments
System / Component		Max and Min	(Deg F / Describe)					
Condenser Performance / Back pressure	N/A	Circ Water System	N/A	N/A	N/A	N/A	N/A	Since condenser backpressure is driven by turbine load and intake temp, extreme ambient temperatures will have an unperceived effect with a relatively constant intake temperature.
Condenser Vacuum Sensing Lines	Ambient temp High 101F Low 27F	N/A	N/A	Negligible	Negligible	Possible freeze concern but will require further evaluation	Possible freeze concern but will require further evaluation	Lines partially filled with Condensate. Freeze concern may impact feedback loop to ovation system.
Instrument air/ dewpoint	High 101F Low 27F	TCW	TCW High 100F TCW Low 80F	N/A	N/A	N/A	N/A	Dewpoint is independent of ambient temperature. Air compressors cooled by TCW
Instrument air/ compressors	High 101F Low 27F	TCW	TCW High 100F TCW Low 80F	Possible high temp alarms/trips – more evaluation required	Possible high temp alarms/trips – more evaluation required	Possible TCW freezing in STBY compressor – no flow	Possible TCW freezing in STBY compressor – no flow	Temp air movers can be installed for high temps and temporary heaters/tenting for low temps
Reheat & Stop Valve DEH Lines	Ambient temp High 101F Low 27F	Lines are exposed. Reservoir temp controlled by TCW	Per MSDS – Recommended storage temp range 40-149F	Negligible – within design temp range	Negligible – within design temp range	Increased DEH pump work and possible sluggish valve movement	Increased DEH pump work and possible sluggish valve movement	Requires additional evaluation
1 st & 2 nd Stage Pressure Sensing Lines	Ambient temp High 101F Low 27F	Ambient via natural losses	Will require further evaluation	Negligible due to relatively high operating temperature	Negligible due to relatively high operating temperature	Possible freeze concern but will require further evaluation	Possible freeze concern but will require further evaluation	
Main Feed Water Pump Yokogawas	Ambient temp High 99F Low 38F	Ambient	Design criteria of OC (32F) to 50C (122F)	Negligible – within design criteria	Negligible – within design criteria	Outside design criteria and will require further evaluation	Outside design criteria and will require further evaluation	
BOP motor performance at elevated temperature	High 101F Low 27F	Ambient losses	Various based on motor design	Possible effect on insulation lifetime. Shorter motor life.	Possible effect on insulation lifetime. Shorter motor life.	Negligible since most industrial motors are rated to -20C	Negligible since most industrial motors are rated to -20C	Further evaluation will be required for each motor based on design and manufacturer

Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 5 of 24 Page 10 of 22

			Page 10 of 22					FPL
Site PSL	Historical High / Low	Heat Sink and / or Ambient Limit	Operability or Functional Limit based on	Effect + 10F	Effect of + 20F	Effect – 10F	Effect – 20F	Comments
	(Deg F)	(Deg F /	additional analysis/calculation					
System / Component		Max and Min	(Deg F / Describe)					
Condensate pump bearings	High 150F Low 110F	Cooled by TCW	Maintained 110-150F per plant design	Negligible effect from ambient temp	Negligible effect from ambient temp	Negligible effect from ambient temp	Negligible effect from ambient temp	Temperature maintained by TCW system which is negligibly effected by ambient temperature. The driving factor is intake temp which is considered within its normal operating range.
CW pump bearings	High in excess of 185F Low – not a concern with motor constantly running	Ambient losses. >210F is limit per Control Room ARP	Motor winding and insulation degradation	Possible high temp alarm	Possible temp rise above 210F resulting in effected CW Pump being S/D and Turbine Load reduced	N/A	N/A	Current practice when approaching high temp alarm (185F) is to establish tenting for shade and an air horn for increased air flow.
FW pump bearings / LO coolers	High 112F Low 85F	Cooled by TCW	Maintained 85-112F per plant design	Negligible effect from ambient temp	Negligible effect from ambient temp	Negligible effect from ambient temp	Negligible effect from ambient temp	Temperature maintained by TCW system which is negligibly effected by ambient temperature. The driving factor is intake temp which is considered within its normal operating range.
HD pump bearings	High 110F Low 85F	Cooled by TCW	Maintained 85-110F per plant design	Negligible effect from ambient temp	Negligible effect from ambient temp	Negligible effect from ambient temp	Negligible effect from ambient temp	Temperature maintained by TCW system which is negligibly effected by ambient temperature. The driving factor is intake temp which is considered within its normal operating range.
Generator Hydrogen coolers	High 125F Low 90F	Cooled by TCW	Maintained 90-125F per plant design	Negligible effect from ambient temp	Negligible effect from ambient temp	Negligible effect from ambient temp	Negligible effect from ambient temp	Temperature maintained by TCW system which is negligibly effected by ambient temperature. The driving factor is intake temp which is considered within its normal operating range.
								For extreme temperature conditions, Increased TCW temperatures will increase generator cold gas temperatures requiring a load reduction if cold gas temperatures reach 50°C. Trip at 56°C

Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 5 of 24 Page 11 of 22

6 *•	T		Page 11 of 22	-cc	=55 . 5 . 5 . 5	-ss : 10-	T = 55	Ta .
Site PSL	Historical High / Low	Heat Sink and / or Ambient Limit	Operability or Functional Limit based on	Effect + 10F	Effect of + 20F	Effect – 10F	Effect – 20F	Comments
. 52	(Deg F)	(Deg F /	additional analysis/calculation					
System / Component		Max and Min	(Deg F / Describe)					
Generator Seal Oil Coolers	High 150F Low 100F	Cooled by TCW	Maintained 100-150F per plant design	Negligible effect from ambient temp	Negligible effect from ambient temp	Negligible effect from ambient temp	Negligible effect from ambient temp	Temperature maintained by TCW system which is negligibly effected by ambient temperature. The driving factor is intake temp which is considered within its normal operating range.
EHC coolers	High 130F Low 110F	Cooled by TCW	Maintained 110-130F per plant design	Negligible effect from ambient temp	Negligible effect from ambient temp	Negligible effect from ambient temp	Negligible effect from ambient temp	Temperature maintained by TCW system which is negligibly effected by ambient temperature. The driving factor is intake temp which is considered within its normal operating range.
ISO phase bus cooling	High 90C Low 45C	Cooled by TCW	Maintained 45-90C per plant design	Negligible effect from ambient temp	Negligible effect from ambient temp	Negligible effect from ambient temp	Negligible effect from ambient temp	Temperature maintained by TCW system which is negligibly effected by ambient temperature. The driving factor is intake temp which is considered within its normal operating range. Downpower if conductor > 105°C. Ambient > 40°C will reduce cooling efficiency and increase conductor temperature.
Turbine lube oil cooling	High 120F Low 110F	Cooled by TCW	Maintained 110-120F per plant design	Negligible effect from ambient temp	Negligible effect from ambient temp	Negligible effect from ambient temp	Negligible effect from ambient temp	Temperature maintained by TCW system which is negligibly effected by ambient temperature. The driving factor is intake temp which is considered within its normal operating range.
Exciter cooling	High 115F Low 90F	Cooled by TCW	Maintained 90-115F per plant design	Negligible effect from ambient temp	Negligible effect from ambient temp	Negligible effect from ambient temp	Negligible effect from ambient temp	Temperature maintained by TCW system which is negligibly effected by ambient temperature. The driving factor is intake temp which is considered within its normal operating range.
Voltage Regulator		Voltage Regulator switchgear is rated for 40°C (104°F). Switchgear is installed in an air conditioner room with redundant AC to maintain VR	104C	Voltage regulator housing temp alarm is at 37.7°C (100°F). Downpower if VR housing temp > 104°C. Ambient > 40°C will	Downpower if VR housing > 104°C. Ambient > 40°C will reduce cooling efficiency of air conditioner.	Negligible effect from ambient temp	Negligible effect from ambient temp	

Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 5 of 24 Page 12 of 22

	1		rage 12 01 22	1			1	1
Site	Historical	Heat Sink and / or	Operability or Functional	Effect + 10F	Effect of + 20F	Effect – 10F	Effect – 20F	Comments
DC!	High / Low	Ambient Limit	Limit based on					
PSL	(Deg F)	(Deg F /	additional analysis/calculation					
			(Deg F / Describe)					
System /		Max and Min						
•								
Component								
		housing temp at 20°C		reduce cooling				
		(68°F).		efficiency of air				
				conditioner.				
Potable water	High 101F	Ambient losses	Maintaining water temp	N/A	N/A	Possible freeze	Possible freeze concern	Per Cold Weather procedure, drains are
lines freezing	Low 27F		above freezing			concern		throttled to allow water to flow to
								prevent stagnant water from freezing.

Scope
Walked down system; reviewed design bases...

Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 5 of 24 Page 13 of 22

5. Electrical Systems

Site PSL System /	Historical High / Low (Deg F)	Heat Sink and / or Ambient Limit (Deg F / Max and Min	Operability or Functional Limit based on additional analysis/calculation (Deg F / Describe)	Effect + 10F	Effect of + 20F	Effect – 10F	Effect – 20F	Comments
Component								
SF6 MV Components	High 101F Low 27F	Ambient	Operating range of -13F to 104F	Breaker operation not guaranteed. Further evaluation is required.	Breaker operation not guaranteed. Further evaluation is required.	Negligible – within operating range	Negligible – within operating range	Increased temporary ventilation can be supplied to maintain room temp below 104F
MV Switchgear Ratings	High 101F Low 27F	Ambient	Per vendor tech manual, operating range -22F to 104F	Breaker operation not guaranteed. Further evaluation is required.	Breaker operation not guaranteed. Further evaluation is required.	Negligible – within operating range	Negligible – within operating range	Increased temporary ventilation can be supplied to maintain room temp below 104F
Transformer cooling	High 101F Low 27F	Ambient	Various based on Xfmr design	If AOP limits are reached, possible load reduction/plant trip	If AOP limits are reached, possible load reduction/plant trip	Negligible	Negligible	Load reduction/isolation may be required to stay within design criteria.
Dissolved gas monitoring equipment	High 101F Low 27F	Ambient	Per vendor tech manual, operating range -58F to 131F	Negligible – within design criteria	Negligible – within design criteria	Negligible – within design criteria	Negligible – within design criteria	
Station Batteries	High 101F Low 27F	Ambient/EER Ventiltion	Max 104F (DBD) Min 50F (DBD)	See comments	See comments	Negligible	Negligible	Operating with the battery temperature above 77F will result in improved discharge rate but reduced battery life.

<u>Scope</u>

Walked down system; reviewed design bases...

Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 5 of 24 Page 14 of 22

6. NSSS systems

Site PSL System / Component	Historical High / Low (Deg F)	Heat Sink and / or Ambient Limit (Deg F / Max and Min	Operability or Functional Limit based on additional analysis/calculation (Deg F / Describe)	Effect + 10F	Effect of + 20F	Effect – 10F	Effect – 20F	Comments
RWT temperature	High 94F Low 61F	Ambient	High 100F (TS) Low 55F (TS)	Declare RWT Inoperable – 1 hr to restore or 6 hrs to Mode 3 & 30 hrs to Mode 5	Declare RWT Inoperable – 1 hr to restore or 6 hrs to Mode 3 & 30 hrs to Mode 5	Declare RWT Inoperable – 1 hr to restore or 6 hrs to Mode 3 & 30 hrs to Mode 5 Per Cold Weather Procedure, when RWT <60F, either: 1) Place RWT on recirc (this makes the RWT Inoperable due to non- seismic lines) or Have Chemistry sample to determine temperature every 2 hours	Declare RWT Inoperable – 1 hr to restore or 6 hrs to Mode 3 & 30 hrs to Mode 5 Per Cold Weather Procedure, when RWT <60F, either: 1) Place RWT on recirc (this makes the RWT Inoperable due to non-seismic lines) or Have Chemistry sample to determine temperature every 2 hours	
Ocean temperature intake limit	High 101F Low 27F	High 95F Low 40F	High 95F Low 40F	Outside design criteria and will require further evaluation	Outside design criteria and will require further evaluation	Outside design criteria and will require further evaluation	Outside design criteria and will require further evaluation	

<u>Scope</u>

Walked down system; reviewed design bases...

Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 5 of 24 Page 15 of 22

7. Diesel Generator

Site PSL System /	Historical High / Low (Deg F)	Heat Sink and / or Ambient Limit (Deg F / Max and Min	Operability or Functional Limit based on additional analysis/calculation (Deg F / Describe)	Effect + 10F	Effect of + 20F	Effect – 10F	Effect – 20F	Comments
Component								
EDG fuel oil coagulation / viscosity	High 101F Low 27F	High 101F Low 27F	HIGH: No operability HIGH DESIGN: 104 °F LOW: No operability LOW DESIGN: none. ULSD Cloud point: ~14°F	111°F: fuel will function. May challenge consumption rate.	121°F: fuel will function. May challenge consumption rate / viscosity.	17 °F: above cloud point. No impact.	07°F: below cloud point. Filter clog & gelling starts. EDG function will be challenged.	Used industry data for cloud point.
EDG lube oil coagulation / viscosity	High 101F Low 27F	High 101F Low 27F	HIGH: No operability, 104°F design prior to de- rate LOW: 85deg F	111°F: lube oil cooled by Cooling water. No functional impact.	121°F: lube oil cooled by Cooling water. No functional impact	17 °F: engine running, no impact. Standby must keep warm.	07°F: engine running, no impact. Standby must keep warm.	Room heating and air flow isolation will be required to maintain lube oil above min required in standby.
EDG instrument cabinet ratings	High 101F Low 27F	High 101F Low 27F	HIGH: No operability, 104°F design	111°F: reduced life on elect components.	121°F: reduced life on elect components. Relays may fail.	17 °F: no impact.	07°F: Pneumatic relays may be impacted. Red rubber diaphragms.	Based upon experience.
EDG cooling water	High 101F Low 27F	High 101F Low 27F	HIGH: No operability, 190°F design	111°F: No impact on cooling water.	121°F: air flow thru radiator may be challenged for heat capacity.	17 °F: engine running, no impact. Standby must keep warm	07°F: engine running, no impact. Standby must keep warm	Room heating and air flow isolation will be required to maintain lube oil above min required in standby.
EDG Intake Air	High 101F Low 27F	High 101F Low 27F	HIGH: No operability, 104°F design prior to de- rate.	111°F: will de-rate engine output.	121°F: further de-rate of engine output.	17 °F: engine running, no impact. Higher boost pressures.	07°F: engine running, no impact. Higher boost pressures. May not have load control that is adequate for this corresponding fuel position.	May required boost limitations / load limits at very cold temperatures.

Scope

Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 5 of 24 Page 16 of 22

8. Biological / Chemistry

Summary

Biological Intake (Seaweed, mussels, warm weather fish...): Subsequent to intake blockage events that occurred after Unit 1 startup in 1976 and Unit 2 in 1983, St. Lucie Plant has employed a multi-layered monitoring program, operational strategies, and component design enhancements to mitigate the effects of intake blockages with regard to historical intrusions. The two prominent types of marine life intrusion into St. Lucie's intake structures are sea plants and jellyfish. The combination of elevated nutrient levels in the water column, water clarity, and ideal ocean temperatures contributed to the several new algae events experienced at St. Lucie.

St. Lucie has experienced negligible to severe sea grass and jellyfish marine life at the intake structure in the 35 years of operation. There is currently no guaranteed forecasting method to determine sea grass or jellyfish intrusion events. The best method in preparing for these events is based on site operational experience of certain months of the year when these are most likely to occur. Additionally, daily monitoring is performed gathering debris tow samples and evaluating surrounding area reports for algal and jellyfish blooms.

Daily measurements/samplings recorded at the intake canal by biologists for predictive purposes and modeling. This information is continually incorporated into procedures 1[2]-NOP-21.15, *Intake Intrusion Monitoring and mitigation*, to provide proactive preparation and response to potential intake fouling issues.

Site PSL System /	Historical High / Low (Deg F)	Heat Sink and / or Ambient Limit (Deg F / Max and Min	Operability or Functional Limit based on additional analysis/calculation (Deg F / Describe)	Effect + 10F	Effect of + 20F	Effect – 10F	Effect – 20F	Comments
Biological intake (seaweed, mussels, warm weather fish)	101 F 27 F	95F 40F	95F 40F	Outside design criteria and will require further evaluation	Outside design criteria and will require further evaluation	Outside design criteria and will require further evaluation	Outside design criteria and will require further evaluation	See "Summary" above
Water Treatment Plant	High 99F Low 38F	Ambient	High 105F Low 32F	Recycle loop will cause a S/D resulting in the inability to make water	Recycle loop will cause a S/D resulting in the inability to make water	N/A Water would freeze if stagnant. Maintain 200gpm outflow to prevent.	N/A Water would freeze if stagnant. Maintain 200gpm outflow to prevent.	Plan in place to combat extreme high and low temps
Chemistry sample lines	High 101F Low 27F	Ambient	High N/A Low 32F	Negligible	Negligible	Possible freeze concern.	Possible freeze concern	Freeze concern mitigated by constant sample flow – short term. Evaluate sample lines needed to be insulated – long term.
Chemistry – various chemicals	High 101F Low 27F	Ambient	Various – 3 Chemicals (Sulfuric Acid, PAA, & Chlorine Dioxide) have freezing points at 30-32F	Negligible	Negligible	Possible freeze concern	Possible freeze concern	Freeze concern mitigated by bring chemicals indoors or tenting and providing temporary heat source.

Scope

Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 5 of 24 Page 17 of 22

9. Programs

Site	Historical	Heat Sink and / or	Operability or Functional	Effect + 10F	Effect of + 20F	Effect – 10F	Effect – 20F	Comments
PSL	High / Low	Ambient Limit (Deg F /	Limit based on additional analysis/calculation (Deg F / Describe)					
System / Component	(Deg F)	Max and Min	(beg r / bescribe)					
Turbine vibrations	High 101F Low 27F	Multiple variables – Lube Oil, Turbine Cooling Water, Ambient Temp	#9 Bearing < 7 mils – Alert <14 mils - Trip	Negligible effect	Negligible effect	Negligible effect	Negligible effect	OE has shown that seasonal changes have minimal effect on turbine vibration.
Main Feedwater Isolation Valves	>60F	60F is the TS low value No upper value identified	>60F	Negligible effect	Negligible effect	Possible operability issue (72 hr S/D requirement)	Possible operability issue (72 hr S/D requirement)	MFIV declared Inoperable with temp <60F. Cold Weather procedure installs temporary heaters and tenting to maintain temperature >60F

<u>Scope</u>

Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 5 of 24 Page 18 of 22

10. Material / fluids

Site	Historical	Heat Sink and / or	Operability or Functional	Effect + 10F	Effect of + 20F	Effect – 10F	Effect – 20F	Comments
PSL	High /	Ambient Limit	Limit based on additional					
	Low	(Deg F /	analysis/calculation					
	(Deg F)		(Deg F / Describe)					
		Max and Min						
System /		l max and min						
Component								
Transformer	High 101F	Xfmr fans and oil pumps	Top Oil Temp < 110C	If AOP limits are	If AOP limits are	Negligible	Negligible	For High Temp:
oils	Low 27F	dissipate heat to ambient	HotSpot Winding Temp <	reached, possible load	reached, possible load			Top Oil nearing 110C or HotSpot >140C
			120C	reduction/plant trip	reduction/plant trip			requires reduction in Xfmr loading. If
								140C for HotSpot or 110C for Top Oil is
								reached, isolation of the Xfmr would be required.
								required.

Scope

Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 5 of 24 Page 19 of 22

11. Licensing / Environmental

Site PSL	Historical High / Low (Deg F)	Heat Sink and / or Ambient Limit (Deg F /	Operability or Functional Limit based on additional analysis/calculation	Effect + 10F	Effect of + 20F	Effect – 10F	Effect – 20F	Comments
System / Component		Max and Min	(Deg F / Describe)					
EOF Emergency Diesel	New Equip to site	High 158F Low -4F Low Battery 32F	High 104F Low -4 Low Battery 32F	Negligible Generator capacity reduced 10% for every 18F above 104F	Negligible Generator capacity reduced 10% for every 18F above 104F	Battery capacity for starting may be reduced below 32F	Battery capacity for starting may be reduced below 32F	Further evaluation/communication with Cummins is required to determine any detrimental effects below 32F. Interim option is to start EDG prior to extreme temps to mitigate this.
SSB/OSC Emergency Diesel	New Equip to site	High 158F Low -4F Low Battery 32F	High 104F Low -4 Low Battery 32F	Negligible Generator capacity reduced 10% for every 18F above 104F	Negligible Generator capacity reduced 10% for every 18F above 104F	Battery capacity for starting may be reduced below 32F	Battery capacity for starting may be reduced below 32F	Further evaluation/communication with Cummins is required to determine any detrimental effects below 32F. Interim option is to start EDG prior to extreme temps to mitigate this.
Independent Spent Fuel Storage Installation	High 99F Low 38F	Ambient	High 115F Low (-20F)	Negligible – within design criteria	Possible reduced heat transfer. Will require further evaluation	Negligible – within design criteria	Negligible – within design criteria	
EQ life impact	High 101F Low 27F	Various	TS, DBD, and UFSAR	See comments	See comments	See comments	See comments	Although the UFSAR states that the plant is designed for 27 to 101F ambient, the various components and structures may be rated to values outside this range. This will require extensive evaluations to assess the impact.
Design Basis requirements	High 101F Low 27F	Per UFSAR High 101F Low 27F	Per UFSAR High 101F Low 27F	See comments	See comments	See comments	See comments	Going above and below the UFSAR may place various components outside the DBD and render them Inoperable or Non-functional. Evaluations will need to be performed to confirm or rebuke this.
Discharge Canal Temp Criteria	High 101F Low 27F	 Discharge canal temperature is greater than 115F Delta T between the intake and disch. temperature is greater than 30F 	 Discharge canal temperature is greater than 115F Delta T between the intake and disch. temperature is greater than 30F 	See comments	See comments	See comments	See comments	Exceeding this state of FL permit requirement may result in a downpower to the units as governed by existing AOPs for CW.

Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 5 of 24 Page 20 of 22

12. Operations

Site	Historical	Heat Sink and / or	Operability or	Effect + 10F	Effect of + 20F	Effect – 10F	Effect – 20F	Comments
PSL	High / Low (Deg F)	Ambient Limit (Deg F /	Functional Limit based on additional					
System / Component		Max and Min	analysis/calculation (Deg F / Describe)					
EDG's	123F/82.5F (Lube Oil) 93F/53F (Room)	Ambient 104F via radiator. Low Limit based on LO Temp	LO Temp < 85F renders EDG Inoperable.	Still below 104F limit.	Based on ventilation, may exceed 104F limit	<90F idle start to 450 rpm to raise temp <85F fast start not allowed	<65F EDG should be disabled from auto start until temp is raised above 65F.	
CTMT PIG Rad Monitors	High – N/A Low <50F	Sample CTMT air. At lower temperatures, condensation builds up in the lines resulting in erratic pump operation.	When pumps are stopped due to erratic operation, the CTMT Rad Monitors are declared inoperable. Increased RCS leakrate calc and possible S/D based on other equip availability.	Minimal	Minimal	Condensation buildup in the lines leading to erratic pump operation	Condensation buildup in the lines leading to erratic pump operation	
Containment Air Temperature	High 112°F Low 83°F	Ambient & Containment Fan Coolers via Component Cooling Water & Intake Cooling Water	120°F is the TS Operability limit	Containment declared Inoperable – 8 hrs to restore or Mode 3 w/in 6hrs and Mode 4 w/in following 6 hrs	Containment declared Inoperable – 8 hrs to restore or Mode 3 w/in 6hrs and Mode 4 w/in following 6 hrs	No operability limit. May require opening vacuum breakers depending on containment pressure	No operability limit. May require opening vacuum breakers depending on containment pressure	
Refueling Water Tank	High 94°F Low 61°F	Ambient	High 100F (TS) Low 55F (TS)	Declare RWT Inoperable – 1 hr to restore or 6 hrs to Mode 3 & 30 hrs to Mode 5	Declare RWT Inoperable – 1 hr to restore or 6 hrs to Mode 3 & 30 hrs to Mode 5	Declare RWT Inoperable – 1 hr to restore or 6 hrs to Mode 3 & 30 hrs to Mode 5	Declare RWT Inoperable – 1 hr to restore or 6 hrs to Mode 3 & 30 hrs to Mode 5	
						Per Cold Weather Procedure, when RWT <60F, either: 2) Place RWT on recirc (this makes the RWT Inoperable due to non-seismic lines) or	Per Cold Weather Procedure, when RWT <60F, either: 1) Place RWT on recirc (this makes the RWT Inoperable due to non-seismic lines) or	

Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 5 of 24 Page 21 of 22

Site	Historical	Heat Sink and / or	Operability or	Effect + 10F	Effect of + 20F	Effect – 10F	Effect – 20F	Comments
PSL	High / Low	Ambient Limit	Functional Limit based					
	(Dog E) (Dog E /		on additional analysis/calculation					
			(Deg F / Describe)					
System /		Max and Min						
Component								
						3) Have Chemistry sample to determine temperature every 2 hours	Have Chemistry sample to determine temperature every 2 hours	

<u>Scope</u>

Walked down system; reviewed design bases...

13. PSL trip and down power review

Reactor trip logs were reviewed and no instances of plant trips occurring from either a high or low temperature condition could be found

Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 5 of 24 Page 22 of 22

EPL

14. Summary

+10F which is a temperature of 111F, limitations are:

- Refueling Water Tank exceeding the TS limit of 100F. This is a 1-hour shutdown action.
- Possibly exceeding Containment TS limit of 120F. As this temperature is more driven by intake temperature than ambient air, this is unlikely but possible.
- Sustained durations at 111F could have adverse effects on various electrical switchgear throughout the plant and additional evaluations would be required to determine effects.

+20F which is a temperature of 121F, limitations are:

- Refueling Water Tank exceeding the TS limit of 100F. This is a 1-hour shutdown action.
- Possibly exceeding Containment TS limit of 120F. As this temperature is more driven by intake temperature than ambient air, this is unlikely but possible.
- Sustained durations at 111F could have adverse effects on various electrical switchgear throughout the plant and additional evaluations would be required to determine effects.
- Discharge Canal Temperature >115F would require a down power to restore this value to less than 115F

-10F which is a temperature of 14F, limitations are:

- Refueling Water Tank exceeding the TS limit of 55F. This is a 1-hour shutdown action.
- Main Feed Isolation Valves ambient temperature going below 60F. This is a 72-hour shutdown action.

-20F which is a temperature of 4F, limitations are:

- Refueling Water Tank exceeding the TS limit of 55F. This is a 1-hour shutdown action.
- Main Feed Isolation Valves ambient temperature going below 60F. This is a 72-hour shutdown action.

Since PSL was designed with a low of 27F as the criteria, there are numerous areas that would require further evaluation, however, there are mitigating actions in place currently for areas that have been concerns in the past (EDG's, MFIV's, RWT). These actions have proven successful at the current low temperatures St. Lucie has experienced, but may not be adequate at -10F or -20F below these temps. EDG's not listed as a concern because during periods of cold weather, temperatures are monitored every 2 hours and prior to becoming Inoperable (if the mitigating strategy was unsuccessful), the EDG would be started to raise temperature.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 6 of 24 Page 1 of 5

Nuclear Extreme Weather Assessment

Bob Coffey
JW VP
March 9th, 2021

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 6 of 24 Page 2 of 5

Nuclear Units Cold Weather Design Data

Location	Design Low Temperature	Record Low (Night)	2010 Florida Low	Analyzed At - 10 F	Analyzed At - 20 F
PTN - Miami	30 F	27 F	35 F	17 F	7 F
PSL – West Palm Beach (represents barrier Island temperatures)	27 F	24 F	24 F Daytona Beach	14 F	4 F

Notes

- Ambient Temperatures (Record Lows From T. Drum NEE Meteorologist)
- Seasonal readiness process is procedurally driven, executed preseason, ensures sites are ready for reliable generation
- Each site certifies readiness for seasonal weather to the CNO.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 6 of 24 Page 3 of 5

Nuclear Cold Weather Vulnerabilities

- Turkey Point (17/7°F) and St. Lucie (14/4°F)
 - Critical equipment to operation is outdoors, no installed heating or protection from elements.
 - Stagnate piping, instruments, valves, and tanks will experience freezing.
 - Unable to meet NRC requirements for temperature on some equipment.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 6 of 24 Page 4 of 5

Nuclear Cold Weather Mitigation Strategies

Cold Weather Reports

- Nuclear has developed detailed site-specific reports of the potential vulnerabilities.
- Full scope to address all issues is still being developed.

Potential Mitigation Strategies

- Equipment modifications, adding heating to rooms, tanks, instrument lines, diesel fuel oil, improving insulation, etc.
- Revise equipment temperature limits to accommodate lower temperatures, some will require NRC approval if the evaluations will support.
- Smaller scope analysis and modifications can be performed to improve margin

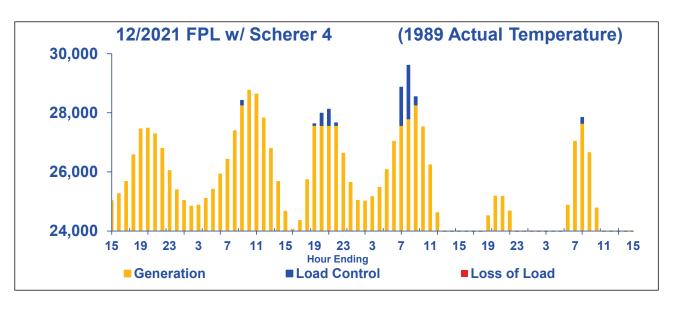
Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 6 of 24 Page 5 of 5

Nuclear Cold Weather Actions

Cold Weather Future Actions

- Based on the studies performed, determine additional heating requirements for the impacted equipment rooms, tanks, instrument lines, and diesel fuel oil
- Develop level 1 cost estimates to install the additional heating and present to PRB for funding
- Based on funding, complete cold weather modifications
- Determine the required NRC approvals for cold weather operation
- Submit necessary LARs for cold weather operations

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 7 of 24 Page 1 of 5

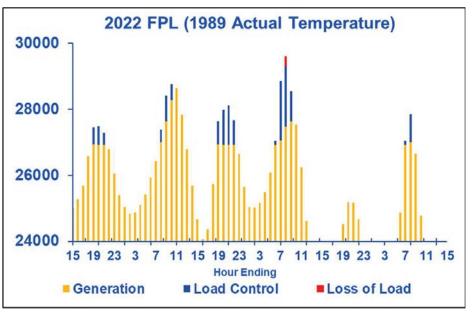

Bar Graphs – Loss of Load

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 7 of 24 Page 2 of 5

Using a forecast based on actual 1989 temperatures, December 2021 was examined assuming continuing operation of Scherer 4

December 2021 FPL Only w/ Scherer 4 (w/ "1989 Actual" Temperatures Winter Forecast)

-includes 150 MW Oleander PPA, and 291 MW of peak winter upgrades


Assuming Scherer 4 is in-service, no loss of load is projected in December 2021

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 7 of 24 Page 3 of 5

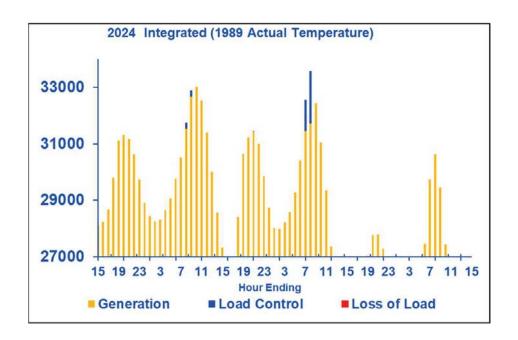
For 2022: FPL is projected to have some loss-of-load using the 1989 Actual Temperatures forecast

2022: FPL only w/ "1989 Actual" Temperatures Winter Forecast

The projected maximum loss of load is 320 MW

Scherer 4 is assumed to be retired

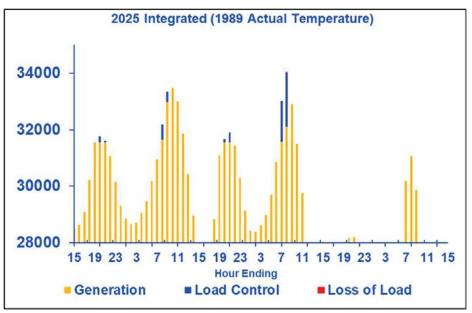
- In the graph above there is a projected loss-of-load of 320 MWh in 1 hour only
- The graph above represents ~106K customer outages lasting 30 minutes


There is only one (1) projected hour with loss of load (320 MWh)

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 7 of 24 Page 4 of 5

For 2023 and 2024: There is no projected loss of load when using the "1989 Actual" Temperatures forecast in 2023 or 2024

2024: Integrated system w/ "1989 Actual" Temperatures Winter Forecast*

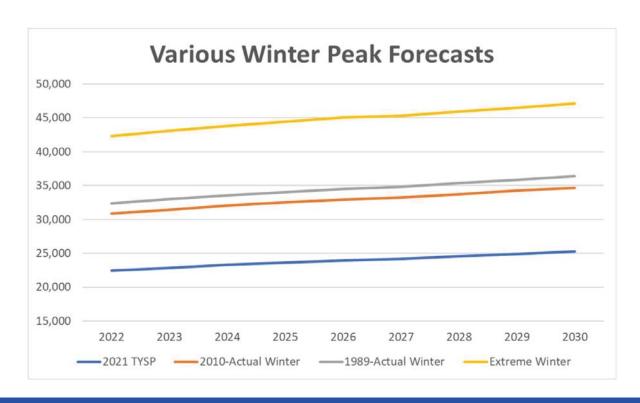

^{*} The projection for the Winter of 2023 is similar to that shown above for 2024

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 7 of 24 Page 5 of 5

For 2025: Only minor loss of load is projected for 2025 when using the "1989 Actual" Temperatures forecast

2025: Integrated system w/ "1989 Actual" Temperatures Winter Forecast

The projected maximum loss of load is 52 MW


- In the graph above there is a projected loss-of-load of 52 MWh in 1 hour only
- The graph above represents ~17K customer outages lasting 30 minutes

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 8 of 24 Page 1 of 6

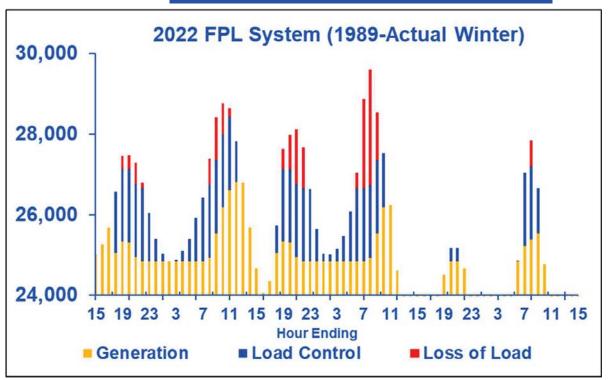
Three new high Winter load forecasts were examined

Three New Winter Forecasts vs 2021 TYSP Forecast

About 88% higher than 2021 TYSP

About 40-44% higher than 2021 TYSP

2021 TYSP P50 forecast

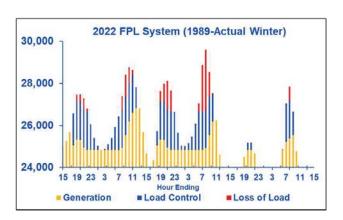

The 1989 actual temperature forecasted load is the focus for winter planning; the Extreme Winter forecasted load (~ 10 degrees colder than in 1989) was deemed too high to reasonably plan for (see Appendix)

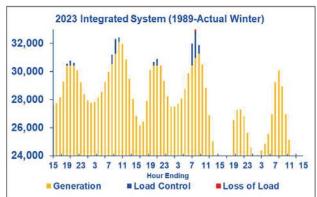
Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 8 of 24 Page 2 of 6

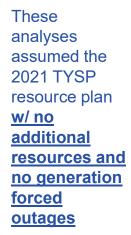
Without near-term capacity increases, a 1989-like event was projected to be a problem for this coming Winter

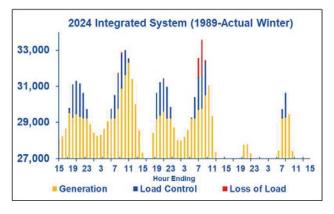
Projected Loss of Load Based on 1989 Actual Forecast for the Year 2022 (FPL Only)

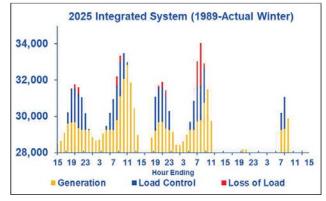
These preliminary analyses assumed the 2021 TYSP resource plan w/no additional resources and no generation forced outages

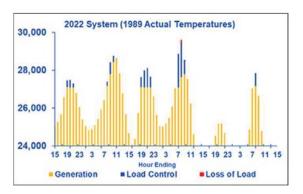

The loss of load projected for 2022 was ~2,400 MW at the worst hour and 15,000 MWh of unserved energy over the 3 days

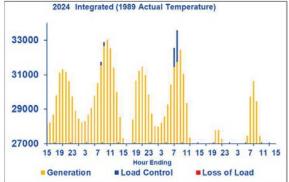


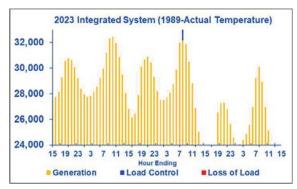

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 8 of 24 Page 3 of 6

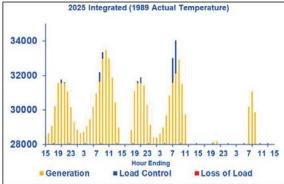

Expanding the view thru 2025 showed problems in each year without additional resources


Projected loss of load based on 1989 Actual Forecast 2022-2025 (without near-term capacity increases)






Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 8 of 24 Page 4 of 6


However, with the near-term capacity increases, the projected problems are almost eliminated

Projected loss of load based on 1989 Actual Forecast 2022-2025 (with near-term capacity increases)

These preliminary analyses assumed the 2021 TYSP resource plan w/ the near-term capacity increases (Manatee 1 & 2 plus Winter upgrades) and no generation forced outages

The previously projected inability to meet load is now addressed for 2023 & 2024 (w/ small amount of projected loss of load for one hour in 2022 and 2025)

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 8 of 24 Page 5 of 6

Using another perspective – customer outages – also showed large problems without additional resources with a 1989-like load

Projected Customer Outages: 2022-2025

(assumes no additional resources & 3 levels of generation forced outages)

Number of Rotation Eligible Customers* = 3,500,000

2022 0 3,005,400	2023 0	2024	2025
	0	0	0
3,005,400		_	/ 0
	33,600	676,400	1,259,000
0.86	0.01	0.19	0.36
1,000	1,000	1,000	1,000
7,480,120	281,573	3,485,036	4,805,329
2.14	0.08	1.00	1.37
2,000	2,000	2,000	2,000
14,447,062	1,187,254	7,645,237	9,350,204
4.13	0.34	2.18	2.67
)	1,000 7,480,120 2.14 2,000 14,447,062	1,000 1,000 7,480,120 281,573 2.14 0.08 2,000 2,000 14,447,062 1,187,254	1,000 1,000 7,480,120 281,573 3,485,036 2.14 0.08 2,000 2,000 14,447,062 1,187,254 7,645,237

The projected number of outages increases significantly if generation forced outages are assumed

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 8 of 24

The near-term capacity increases are also projected to significantly improve FPL's position from the "customer outage" perspective

Projected Customer Outages: 2022-2025

(assumes near-term capacity increases & 3 levels of generation forced outages)

Number of Rotation Eligible Customers* =	3,500,000				
	2022	2023	2024	2025	
Assumed Generation Forced Outages (MW)	0	0	0	0	
# of Customer Outages (30 minutes each)	30,869	0	0	10,320	
# of Outages per Rotation Eligible Customer	0.01	0.00	0.00	0.00	
Assumed Generation Forced Outages (MW)	1,000	1,000	1,000	1,000	<u> </u>
# of Customer Outages (30 minutes each)	328,745	0	123,577	210,320	
# of Outages per Rotation Eligible Customer	0.09	0.00	0.04	0.06	
Assumed Generation Forced Outages (MW)	2,000	2,000	2,000	2,000	
# of Customer Outages (30 minutes each)	2,056,570	8,496	458,939	629,124	
# of Outages per Rotation Eligible Customer	0.59	0.00	0.13	0.18	

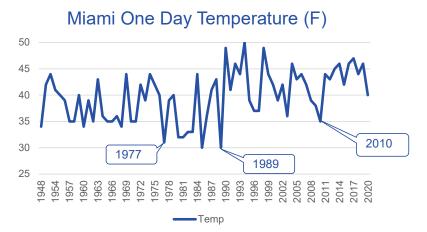
The near-term additions are projected to significantly reduce the number of customer outages (for example, from ~4.8 million to ~210,000 in 2025 assuming 1,000 MW of generation forced outages)

However, the trend from 2023 thru 2025 shows that additional resources will be needed as load continues to grow beyond 2025

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 9 of 24 Page 1 of 14

The cold weather of February 2021 was record setting for Texas 2021 Texas Record Cold

- Record-setting, multiple day sub-freezing temperatures across Texas
 - Similar event occurred in 2011 due to cold weather, but not as severe
 - -- Not as many units unavailable due to temperatures
- Approximately 48.6% of generation (52,300 MW) was unavailable
 - Majority of unit issues associated to fossil generation and fuel supply
 - "Winterization" of plants a central issue
- Controlled outages were implemented to prevent statewide blackout
 - Maximum at one time of approximately 20,000 MW (4 4.5 MM customers) load unserved with approx. 10,000 to 12,000 MW shed on average
 - Outages lasted for three days
- Price of power and natural gas spiked during the three day period
- ERCOT communications with stakeholders also a central issue
- ERCOT region is not part of the "interconnected" system with limited import capabilities through DC ties
 - Ability to import power (if interconnected) not likely since entities in the Midwest and Southeast were also experiencing low reserves
- Lack of capacity market in ERCOT further impacts long term reserves



Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 9 of 24 Page 2 of 14

Impacts from extreme cold fronts in Florida vary depending on location of cold weather and duration

Florida Cold Fronts

- Cold fronts impacting Florida typically stall in the northern and central parts of the state
 - These weather conditions feature lower temperatures and higher loads in these areas, and mild weather in the tri-county area, resulting in mild system wide loads (16,000 MW – 19,000 MW for FPL)
- Another major factor with cold fronts impacting Florida is the duration of the colder temperatures
 - By the second day of cold temperatures homes get cold, heaters are turned on and loads increase. Highest peak loads achieved on three and four day events
- A good "bell weather" of peak winter loads (e.g., 1977, 1989, 2010) for FPL is the temperature in Miami and the duration of the cold temperatures
 - In the past 45 years there have been three "significant" cold weather events which have "stretched" the system (1977, 1989 and 2010)

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 9 of 24 Page 3 of 14

Impacts from extreme cold fronts in Florida vary depending on location of cold weather and duration (Cont'd) Florida Cold Fronts

- January, 2010 event characterized by a cold front the week before, temperatures staying cool for the next several days, and then a deep arctic front on January 9th
 - Peak demand of 24,486 MW served, outages limited to minor equipment issues only
 - Skies overcast during arctic front
 - Temperatures throughout the state very cold. Miami was 35 degrees
 - Event affected all entities in Florida and in the SE US, limited purchases or imports
- December, 1989 event was during the Christmas holiday
 - Temperatures in Miami appear to be approximately 5 degrees colder than in 2010, also with overcast skies
 - This event involved shedding approximately 20% of FPL's customers through the morning and evening peaks of December 24th and 25th
 - Cold temperatures and unplanned generation outages contributed to shortfall
 - The Southeast US also experienced very high loads limiting Florida imports
- January, 1977 - "the day it snowed in Miami"
 - Similar to 1989 event in terms of temperatures
 - Appears that some load was shed, very limited records

Significant cold fronts resulting in peak loads do occur in Florida from time-to-time

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 9 of 24 Page 4 of 14

This past storm had many record cold temperatures shattered across the Central US

Florida Record Cold Temperatures can be shattered too

- More narrow set of circumstances to drive cold air into the southern Florida peninsula than into Texas
 - Air trajectory must be down the spine of the peninsula to drive record cold air into southern Florida (blue arrows in below right graphic)
- Given the many records shattered in Texas (below left), it is plausible that these record cold temperatures in Florida (below right) and even more extreme temperatures could occur in the future

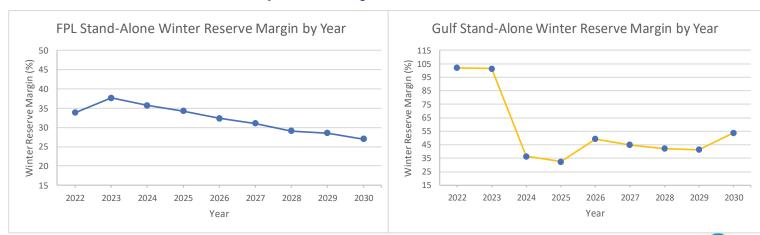
Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 9 of 24 Page 5 of 14

The analysis of potential for extreme winter conditions identified opportunities in the longer term planning process

Executive Summary

- The FPL and Regional planning process use P50 loads for winter peak scenarios
 - Extreme weather like 1989 / 2010 fall outside normal planning process
- Projections for a January 2010-like event were performed for FPL, Gulf and combined system
 - Combined dispatch mitigates shortfalls through 2023 (slide 13)
 - Capacity shortfalls exist and grow from 2024 through 2030 (timeframe of analysis) (slide 13)
 - Hourly analysis establishes extent of DSM use as well as shortfall (slides 15 & 16)
- Incremental Winterization options to ensure reliability of current fleet (nuclear / fossil / solar) available in short term
- Assessment of Natural Gas / Fuel availability, and Capacity Emergency Plans performed and all are adequate
- Projected need for additional Winter peaking resources vs. risk analyses to be performed

Risk analysis to be performed to identify and drive commercial options

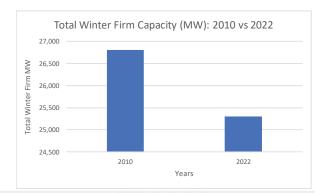


Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 9 of 24 Page 6 of 14

Winter reserves for 2022 through 2030 using a P50 load forecast for FPL and Gulf are adequate

Reserve Margins

- Winter reserves used for TYSP are based on a "P50" winter load
 - Based on average winter temps in FPL service territory which are not extreme
 - P50 winter loads projections are 20,309 MW and 2,419 MW for 2022 and 23,031 MW and 2,552 MW for 2030, for FPL and Gulf, respectively
- Graphs below show winter reserve margins based on P50 loads
- Operational planning provides for all resources being available for a winter peak event
- Since there is insufficient data for "one off" events like Jan, 2010, it is difficult to establish a probability for these extreme events



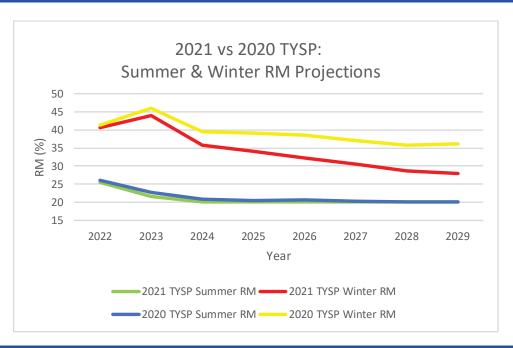
Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 9 of 24 Page 7 of 14

To get another perspective, a comparison was made of total Winter firm capacity (FPL units + purchases) for 2010 vs 2022

Total Winter Firm Capacity (MW): 2010 vs 2022

 In 2010, the total Winter firm capacity (w/o outages) was 26,809 MW; the projection for 2022 is 25,298 MW (and FPL area generation is not projected to return to the 2010 level until 2029)

 During winter periods there is very limited output from the solar plants during the early morning or evening lighting peaks


Since 2010, the FPL area total Winter firm capacity has decreased by ~ 1,500 MW or ~ 5.6% (total Summer MW have increased since 2010 by ~ 800 MW or 3.3%)

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 9 of 24 Page 8 of 14

The 2021 TYSP will show Winter RM values (see red line below) steadily declining over this same time period

2021 vs 2020 TYSPs: Summer & Winter RMs (w/ P50 Load)

The lower Winter RM is due to 3 factors: (i) forecasted load is ~ 650 MW higher by 2029, (ii) CT upgrades have been revised and provide ~ 600 MW less Winter capacity, and (iii) ~ 400 MW of batteries were pushed back in the resource plan to allow more solar in 2026 thru 2030

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 9 of 24 Page 9 of 14

Projections for a January 2010-like Winter load were developed in order to perform sensitivity analysis for extreme weather event

Approaches for Developing Jan 2010-Like Winter Peaks

- Two approaches were used to project a January 2010 load for each year from 2022 thru 2030 for the FPL only area (see slide 43)
- Approach 1 ("Customer Growth")
 - Starting point is the actual Jan 2010 load of 24,846 MW (including DSM)
 - Growth in customer load in the FPL only area since 2010 was then estimated
 - -- In 2010, the actual average no. of customers was ~ 4.52 million
 - -- For 2021, the forecasted avg. no. of customers is ~ 5.17 million
 - The Jan 2010 P50 load of 24,846 MW was scaled to reflect the approx. 14.5% growth in customers and develop a Jan 2010-like load for the year 2022
 - -- Applied annual growth rates to the current P50 load forecast through 2030
- Approach 2 ("From Scratch" new load forecast)
 - The January 2010 hourly weather was used as a starting point for each year
 - -- Typically, 2010 type winter peaks last 3 4 days with the last two days having the very high loads
 - Heating accounts for the vast majority of the winter peak load increasing proportionally to the number of customers with little efficiency gains since 2010

Both approaches yield load forecasts that are within 100 MWs of each other

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 9 of 24 Page 10 of 14

Next, the FPL/Gulf integrated system was examined from the same peak hour only perspective using Approach # 2

Peak Hour Reserves for the Integrated System

	FPL/Gulf Integ	rated Syster	n Winter Rese	rves - w/ Jar	2021-Like I	oad Foreca	st - w/ A	pproach #	2
				Load					
	Total Winter	Outages:	Adjusted Total	Forecasting's				Load	
	Firm	(Planned &	Winter Firm	Jan 2010-Like		Load After		Control	Reserves
	Generation in	Unplanned)	Generation in	Forecast	Conservation	Conservation	Reserves	Available	With LC
Year	Gulf Area (MW)	(MW)	Gulf Area (MW)	(MW)	(MW)	(MW)	(MW)	(MW) *	(MW)
2022	29,629	0	29,629	30,909	29	30,880	(1,251)	1,816	564
2023	30,857	0	30,857	31,475	52	31,423	(567)	1,836	1,270
2024	29,603	0	29,603	32,047	77	31,970	(2,367)	1,862	(505)
2025	29,701	0	29,701	32,507	97	32,410	(2,709)	1,894	(816)
2026	29,613	0	29,613	32,961	97	32,864	(3,251)	1,929	(1,322)
2027	29,531	0	29,531	33,285	97	33,188	(3,657)	1,964	(1,693)
2028	29,491	0	29,491	33,758	97	33,661	(4,170)	1,999	(2,171)
2029	29,791	0	29,791	34,246	97	34,149	(4,358)	2,035	(2,323)
2030	30,299	0	30,299	34,739	97	34,642	(4,343)	2,071	(2,272)

 Reserve capacity margin in Gulf during 2022 – 2023 period may be utilized to augment FPL area reserves in combined dispatch

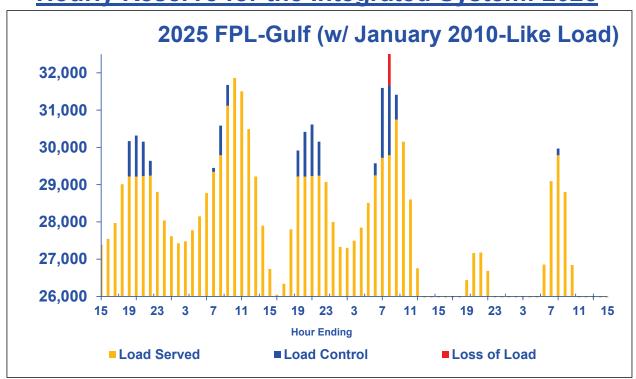
The peak hour projection for the integrated system is a bit better than for the FPL area only, but problems are projected

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 9 of 24 Page 11 of 14

Using this information, an hourly look at reserves over a four day event was taken for the FPL/Gulf integrated system

The Approach Taken When Examining Reserves

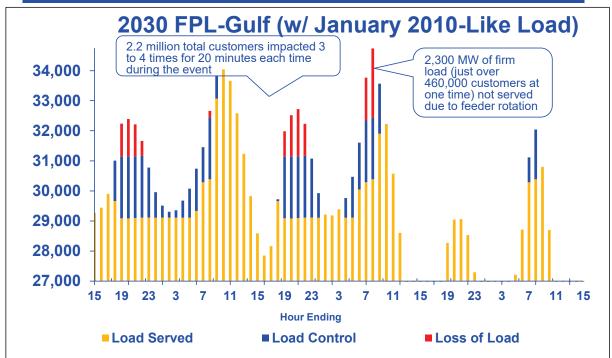
- The analysis focused on two years: 2025 and 2030
- A starting point assumption was that there were no unplanned outages or de-rating of generation
- The approach was to start with the projected hourly load, then subtract all resources (dispatched up to their maximum as needed) except for Load Control (LC)
- If there was load remaining to be served in a particular hour, then LC was dispatched (to meet that hour's load, minimize the total MWh of load not met during the 24 hours, and/or to minimize the no. of hours load was not met)


Results for the year 2025 and 2030 are presented on the next slides

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 9 of 24 Page 12 of 14

Over a 4 day period in 2025, only one hour is still projected to lose firm load, but load control is dispatched daily

Hourly Reserve for the Integrated System: 2025


These results assume all generators are operational; in a scenario with 1,000 MW out, 7 additional hours are projected to lose load

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 9 of 24 Page 13 of 14

By 2030, 11 hours are projected to lose firm load over the same 4 day period

Hourly Reserve for the Integrated System: 2030

• LC deployed for long stretches on an emergency basis, as allowed per tariff, but which could lead to many customers exiting the program

In 2030, the loss of 1,000 MW of generation would result in loss of load for 9 additional hours; and up to 6 hours consecutively

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 9 of 24 Page 14 of 14

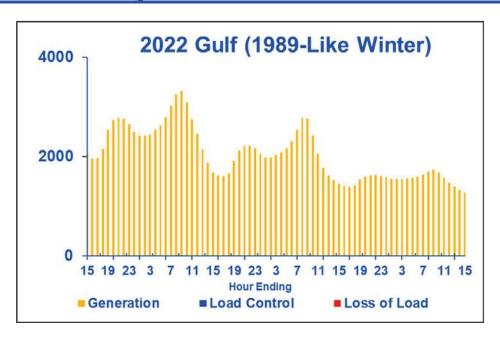
Based on the projections for FPL and Gulf several conclusions and recommendations are drawn for 2022 through 2030

Conclusions and Recommendations

- For a January, 2010 event, Gulf area resources and non-coincidence of peak load between FPL and the Gulf area would need to be leveraged to serve the FPL load in 2022 and combined load in 2023
 - From 2024 forward commercial options need to be developed
 - Conditions made worse due to lack of additional winter peak resources until 2029 (when batteries begin to be added)
- A winter event with temperatures 10 degrees colder, in line with the 1977 and 1989 events, could theoretically add 10,000 to 12,000 MW of load shed pending analysis for saturation (constant heating demand)
- Recommended actions to be weighed for cost vs. risk mitigation
 - Additional Generation Winterization
 - 2022/2023 transmission service requests
 - Accelerate battery projects
 - Determine PPA options for purchased power
 - Evaluate alternative resource plans in later years (batteries, PPAs, CTs, LC, etc.)

Next steps: (i) deploy options to serve FPL load in 2022 and 2023; and (ii) develop options for 2024 forward

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 10 of 24 Page 1 of 10

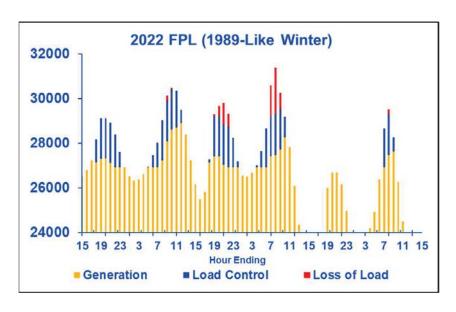

New analyses were performed assuming ~ 790 Winter-only MW of CT upgrades by 2025 and a 150 MW purchase from Oleander

Assumptions for the New Analyses

- All resource additions in the 2021 TYSP resource plan were locked in, except for Manatee 1&2 remaining for Winter use in all years
- The current "1989-Like" Winter forecast is unchanged (temperature for the system on the coldest hour is ~ 3.8 degrees lower than actual 1989 temperature of 30.8 degrees) a new "1989 Actual (Temp)" forecast is also analyzed
- Daniel 1 & 2 are assumed in-service for Jan 2022 thru Dec 2023
- For 2022 it was assumed that 3 million customers are eligible for rotation; this number grows to 5.5 million by 2025.
- (new assumption) New CT Winter upgrades are assumed on the following schedule (cumulative MW):
 - 291 MW by Jan 2022 and 484 MW by Jan 2023
 - 711 MW by Jan 2024 and 790 MW by Jan 2025
- (new assumption) A Winter-only 150 MW purchase from Oleander is assumed for 2022 to 2025.

For 2022: Gulf is not projected to have a loss-of-load problem

2022: Gulf only w/ "1989-Like" Winter Forecast


With the 4 new CTs, the stand-alone Gulf system is not projected to have any loss of load hours in 2022

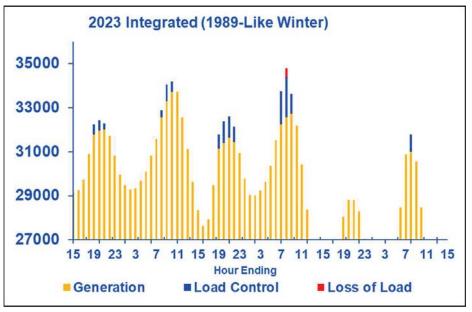
Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 10 of 24 Page 3 of 10

For 2022: However, FPL is projected to have significant loss-of-

2022: FPL only w/ "1989-Like" Winter Forecast

The projected maximum loss of load is 2,099 MW

- In the graph above FPL has a total loss of load of ~6,800 MWh and is projected to have some loss of load in 10 hours
- For every 1 MWh of loss of load, 330 (=165 per MW for ½ hour x 2) customers are projected to have an interruption lasting 30 minutes (~9,100 MWh loss of load = every eligible customer interrupted once for 30 minutes), among 3 million customers eligible for rotation


FPL's projections are: the average interruption time for rotation-eligible customers is 30 minutes and about 2.3 million of these customers would be interrupted

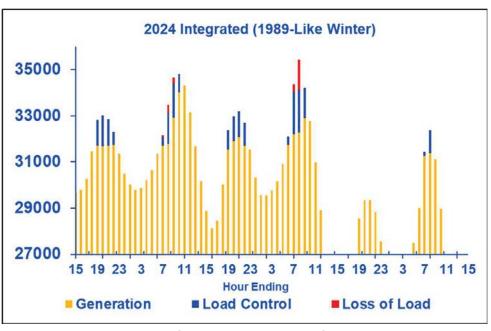
Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 10 of 24 Page 4 of 10

For 2023: Minor loss of load is projected for the integrated system (w/ Dania Beach CC, 484 MW of Winter upgrades, and integrated dispatch)

2023: Integrated system w/ "1989-Like" Winter Forecast

The projected maximum loss of load is 399 MW

- -In the graph above FPL has a total loss of load of ~400 MWh and is projected to have loss of load in only one hour
- The graph above represents ~132K customer outages lasting 30 minutes


The analyses for 2023-on assumed, as part of integrated system operation, that generation in the Gulf area could be delivered to the FPL area during very high load Winter hours up to 850 MW

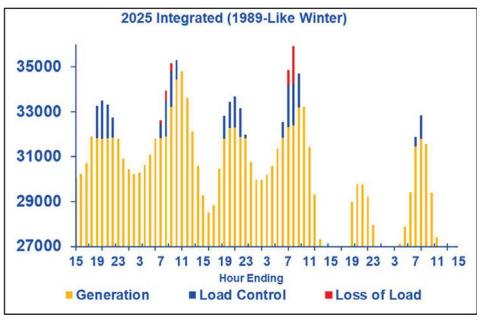
Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 10 of 24 Page 5 of 10

<u>For 2024:</u> Loss-of-load is again projected as Winter load increases more than CT upgrade MW

2024: Integrated system w/ "1989-Like" Winter Forecast

The projected maximum loss of load is 1,302 MW

- In the graph above there is loss-load of 2,314 MWH and 5 loss-of-load hours
- The graph above represents ~764K customer outages lasting 30 minutes.


The peak load increased 628 MW while CT upgrades increased by 227 MW

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 10 of 24 Page 6 of 10

For 2025: There is a small increase is projected for loss-of-load when compared to 2024

For 2025: Integrated system w/ "1989-Like" Winter Forecast

The projected maximum loss of load is 1,650 MW

- In the graph above there is loss-load of 3,245 MWH and 5 loss-of-load hours
- The graph above represents ~1.1 million customer outages lasting 30 minutes

For 2025, the peak load is projected to increase by 505 MW while the CT upgrades increase by 79 MW

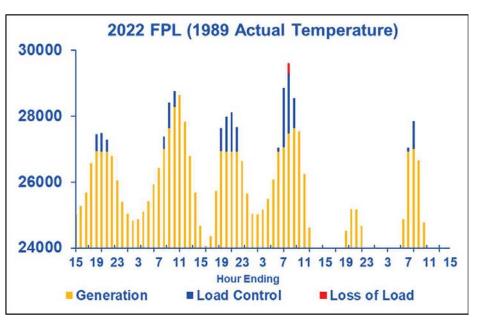
Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 10 of 24 Page 7 of 10

A new "1989 Actual" forecast was developed using the actual temperatures from 1989

Comparison of the Two 1989-Based Winter Forecasts

FPL Peak (MW)

Year	1989-Like Winter	1989 Actual Temperature	Diff
2022	31,386	29,607	1,779
2023	31,991	30,177	1,814
2024	32,600	30,754	1,846
2025	33,087	31,214	1,873


At time of peak, the 1989-Like Forecast assumes 27 degrees in Miami, while the 1989 Actual forecast assumes 30.8 degrees – the forecast difference is ~ 1,800 MW of load

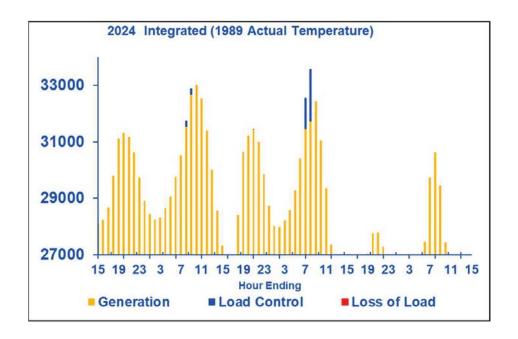
Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 10 of 24 Page 8 of 10

For 2022: FPL is projected to have some loss-of-load using the 1989 Actual Temperatures forecast

2022: FPL only w/ "1989 Actual" Temperatures Winter Forecast

The projected maximum loss of load is 320 MW

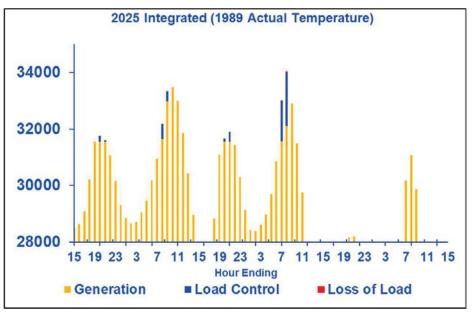
- In the graph above there is loss-load of 320 MWH and 1 loss-of-load hour
- The graph above represents ~106K customer outages lasting 30 minutes


The highest loss of load is reduced by 1,779 MW if the 1989-Actual Temperatures forecast is used

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 10 of 24 Page 9 of 10

<u>For 2024:</u> There is no loss of load when using the1989 Actual Temperatures forecast in 2023 or 2024

2024: Integrated system w/ "1989 Actual" Temperatures Winter Forecast

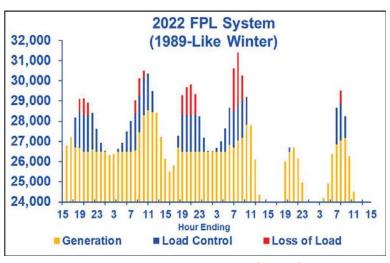


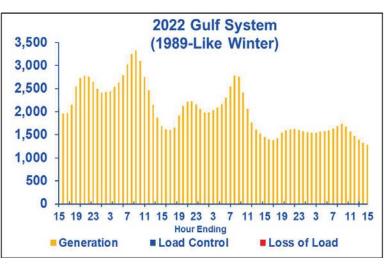
Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 10 of 24 Page 10 of 10

For 2025: There is only minor loss of load when using the 1989 Actual Temperatures forecast

2025: Integrated system w/ "1989 Actual" Temperatures Winter Forecast

The projected maximum loss of load is 52 MW


- In the graph above there is loss-load of 52 MWH and 1 loss-of-load hour
- The graph above represents ~17K customer outages lasting 30 minutes



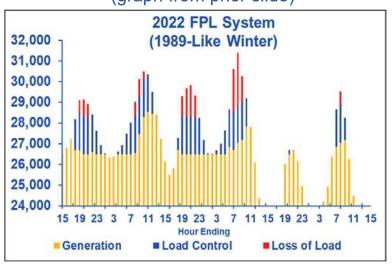
Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 11 of 24 Page 1 of 4

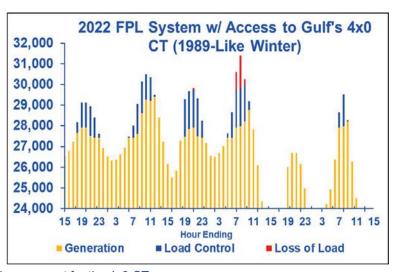
In 2022 w/ a 1989-like Winter load, FPL has significant problems, but Gulf has none

For 2022: FPL and Gulf with a 1989-Like Winter Load

- In the graph above FPL has a total loss of load of ~15,400 MWh and is projected to have some loss of load in 14 hours
- For every 1 MWh of loss of load, 330 (=165 per MW for ½ hour x 2) customers are projected to have an interruption lasting 30 minutes (~9,100 MWh loss of load = every eligible customer interrupted once for 30 minutes), among 3 million customers eligible for rotation
- The above assumes the 2021 TYSP resource plan, except for Manatee 1&2 remaining for Winter use

FPL's projections are: an average interruption time for rotation-eligible customers is 51 minutes and all 3 million of these customers are interrupted




Florida Power & Light Company Docket No. 20220000-OT **Ten-Year Site Plan Staff's Third Data Request** Request No. 2 Attachment 11 of 24 Page 2 of 4

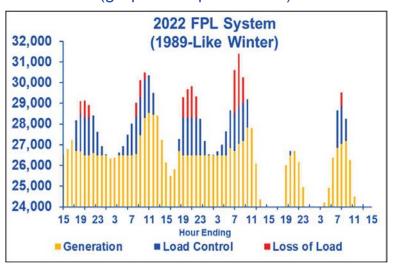
If able to utilize the Crist 4x0 CTs to assist with the FPL load, the projected loss of load is greatly reduced

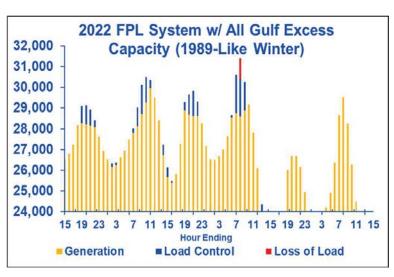
For 2022: FPL w/ Access to Gulf's 4x0 CTs

(graph from prior slide)

- The same assumptions on the previous slide apply to the graphs above except for the 4x0 CT
- Using a 1989-like forecast, Gulf has at least enough capacity in every hour to hold the Crist 4x0 CTs (949 MW) for use by FPL
- FPL's loss of load is reduced from ~15,400 MWh to ~2,800 MWh with 4 hours projected to have some loss of load

In this scenario, FPL's average interruption time for rotation-eligible customers is reduced to 30 minutes and less than 1 million customers are interrupted



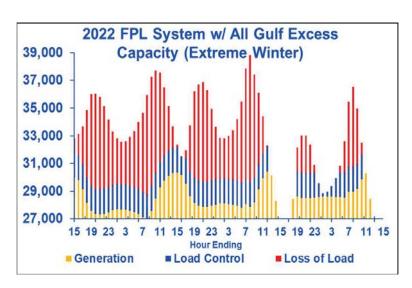

Florida Power & Light Company Docket No. 20220000-OT **Ten-Year Site Plan** Staff's Third Data Request Request No. 2 Attachment 11 of 24 Page 3 of 4

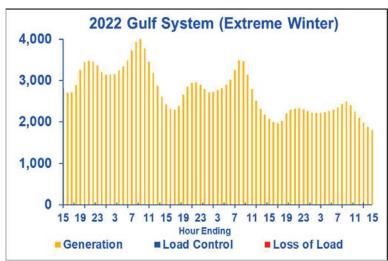
Access to all of Gulf's excess capacity further decreases FPL's projected loss of load

For 2022: FPL w/ Access to All of Gulf's Excess Capacity

(graph from prior slides)

- The same assumptions on the previous slide apply to the graphs above except for Gulf's excess capacity
- Gulf's excess capacity was determined by calculating the resource capacity that Gulf has over and above the load forecast in each hour
- FPL's loss of load is reduced from ~15,400 MWh to ~1,000 MWh with 2 hours projected to have some loss of load


In this scenario, FPL's average interruption time for rotation-eligible customers remains at 30 minutes, but only 330K customers are interrupted



Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 11 of 24 Page 4 of 4

With an extreme Winter forecast, Gulf is still OK in 2022 (but has less excess capacity); FPL is unable to meet load in many hours

For 2022: FPL and Gulf With an Extreme Winter Forecast

With an extreme Winter forecast, FPL's average interruption time is 13 hours even assuming access to all of Gulf's excess capacity

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 12 of 24 Page 1 of 26

FPL has projected declining Winter total reserve margins in both its 2020 and 2021 TYSP resource plans

Projected Winter Total Reserve Margins (%) (using a P50 forecast for Winter Peaks)

	2020 TYSP	2021 TYSP
2022	41.3%	40.7%
2023	46.0%	44.0%
2024	39.5%	35.8%
2025	39.1%	34.0%
2026	38.5%	32.2%
2027	37.0%	30.6%
2028	35.9%	28.6%
2029	36.1%	28.0%
2030		27.8%

The primary changes in the 2021 TYSP vs the 2020 TYSP are: (i) forecasted higher Winter load, and (ii) reduced unit upgrades

These projected Winter reserve margin values all exceed the minimum 20% total reserve margin criterion, but show a trend of declining Winter reserves over the 10-year periods

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 12 of 24 Page 2 of 26

In February 2021, Texas experienced a Winter storm of unprecedent severity

2021 Texas Record Cold

- Record-setting, multiple day sub-freezing temperatures across Texas
 - A similar cold weather event occurred in Texas in 2011
- Approximately 48.6% of generation (52,300 MW) was unavailable
 - Majority of unit issues associated with fossil generation and fuel supply
 - "Winterization" of plants a central issue
- Customer outages were implemented to prevent statewide blackouts
 - Maximum at one time of ~ 20,000 MW (4 to 4.5 MM customers) load unserved with ~ 10,000 to 12,000 MW shed on average
 - Outages lasted for three days
- In addition, a number of customer outages were "non-surgical"
 - Critical accounts, including natural gas pumping stations, were among those experiencing outages

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 12 of 24 Page 3 of 26

As a result of this event, FERC issued a report with a series of recommendations for improving reliability under severe weather events (one of which, # 9, addressed resource planning)

FERC Recommendation #9

"Planning Coordinators <u>should reconsider some of the inputs</u> to their publicly-reported winter season anticipated reserve margin calculations for their respective BA footprints <u>so that</u> the reported reserve margins will better predict the reserve levels that the BAs could experience during winter peak conditions" (emphasis added)

BA= Balancing Authority

NERC: February 2021 Cold Weather Grid Operations: Preliminary Findings and Recommendations, September 23, 2021

FPL is planning changes such as this in its IRP work regarding being able to meet very cold Winter loads

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 12 of 24 Page 4 of 26

In the past 45 years there have been three major cold weather events in Florida (1977, 1989, and 2010)

Florida Cold Fronts

- January 2010 event characterized by a cold front the week before, temperatures staying cool for the next several days, and then a deep arctic front on January 9th
 - Peak demand of 24,486 MW (FPL's 2009 TYSP P50 forecasted Winter load for 2010 was ~ 18,800)
 - Very cold temperatures throughout the state (Miami was 35 degrees),
 Skies overcast, event affected all entities in Florida and in the SE US,
 limiting purchases or imports
- December 1989 event was during the Christmas holiday
 - Temperatures in Miami appear to be approximately 5 degrees colder than in 2010, also with overcast skies: Southeast US also experienced very high loads limiting Florida imports
- January 1977 event - "the day it snowed in Miami"
 - Similar to the 1989 event in terms of temperatures

Of these three events, 1989 had the most severe impact on FPL's customers who experienced rotating outages over a two-day period

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 12 of 24 Page 5 of 26

In order to analyze the impact of a future very cold Winter event, 3 new forecasts were developed largely based on these historical Winter events

3 New Winter Peak Forecasts

- A P50 Winter forecast has typically been used in FPL's IRP work (which is based on a system average temperature of ~ 39 degrees F)
- Three new Winter peak forecasts were developed for these analyses:
 - 1) A "2010 Actual temperature" forecast (w/ a system average temperature of ~ 33 degrees F.)
 - 2) A "1989 Actual temperature" forecast (w/ a system average temperature of ~ 29 degrees F.)
 - 3) An "Extreme" forecast (w/ a system average temperature of ~ 19 degrees F.)

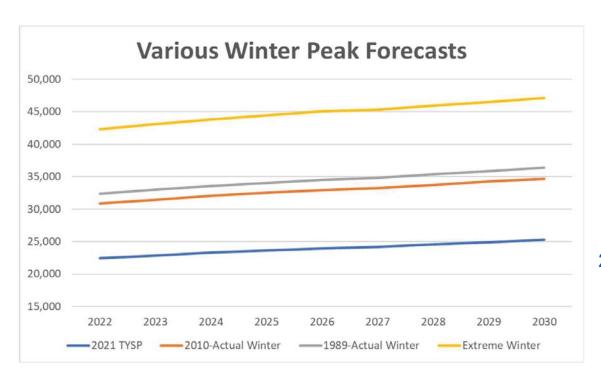
The intent was to develop forecasts for Winter conditions that FPL had already experienced, plus a "Texas-like" extreme cold weather event

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 12 of 24 Page 6 of 26

All three of the new load forecasts were developed using a similar methodology

How the New Winter Peak Forecasts Were Developed

- The first two forecasts were based on the actual temperatures experienced during the 2010 and 1989 cold fronts
- The third forecast used temperatures that were 10 degrees colder than experienced during the 1989 event
- The hourly daily pattern for the three forecasts were based on the 2010 event (accurate hourly loads for the 1989 event were not available due to the rotating outages)
- All load forecasting parameters (such as number of customers, etc.), other than temperatures, were unchanged from the P50 Winter forecast developed for the 2021 TYSP


All three new forecasts resulted in peak loads that were significantly higher than with the current P50 forecast (see next slide)

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 12 of 24 Page 7 of 26

Each of the 3 new Winter forecasts have peaks that are at least 40% higher than the P50 2021 TYSP forecast

New Winter Forecasts vs 2021 TYSP Forecast

About 88% higher than 2021 TYSP

About 40-44% higher than 2021 TYSP

2021 TYSP

See Appendix for table showing annual MW values for each forecast

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 12 of 24 Page 8 of 26

FPL selected the 1989 Actual (temperature) forecast as the focus of its preliminary analyses

Why the 1989 Actual Forecast Was the Focus of FPL's Analyses

- Comparing the 2010 Actual forecast vs the 1989-Actual forecast showed that the 1989 Actual forecast's peak load was ~ 1,600 MW higher than the 2010 Actual forecast (and FPL had already experienced the colder temperatures associated with the 1989-Actual forecast)
- Preliminary analyses using the Extreme forecast resulted in projections of massive problems in meeting customer load (see the Appendix for the results for the years 2025 & 2030)
 - However, this extreme load in Florida was viewed as very unlikely
 - In addition, the projected amount of load unable to be served in those years exceeds 12,000 MW, thus making it very expensive to attempt to prepare for such a load

For these reasons, FPL's focus in its preliminary analyses was the 1989 Actual forecast

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 12 of 24 Page 9 of 26

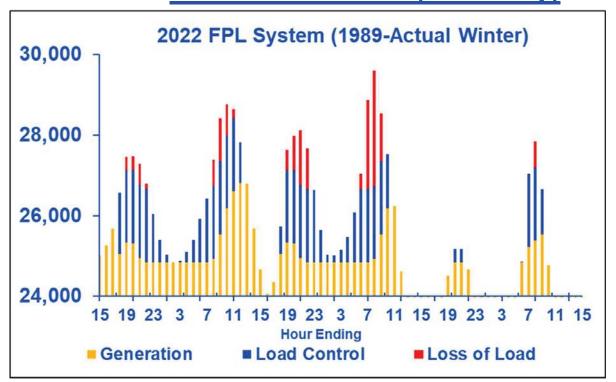
Approach # 1 first examined the projected LOLP values for each year using the TIGER model

<u>Annual LOLP Results with the TIGER Model</u> 1989 Actual Winter Forecast: 2022-2025

Assumptions	Case 1: w/ 1989-Actual Forecast & Revised LC
2021 TYSP resource plan with 1989-Actual Load Forecast	Х
LC - Use Summer MW values as a proxy for LC capabilities w/ very cold temps	Х
Projected Annual LOLP	
2022	5.486
2023	4.092
2024	5.871
2025	6.537

LOLP criterion is a maximum of 0.1 day per year

This analysis assumed the 2021 TYSP resource plan w/ no additional generation resources


The LOLP criterion is projected to be violated in each year of the 2022-2025 period w/ the 1989 Actual forecast

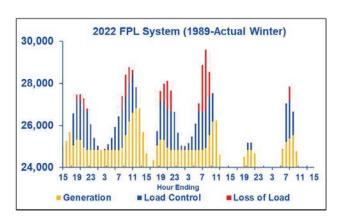
Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 12 of 24 Page 10 of 26

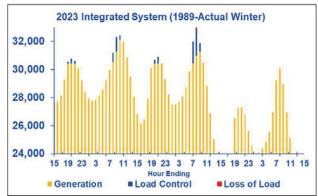
Approach # 2 examined hourly loads and capabilities & confirmed the projected inability to serve all load in 2022

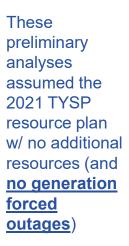
Projected Loss of Load Based on 1989 Actual Forecast For the Year 2022 (FPL Only)

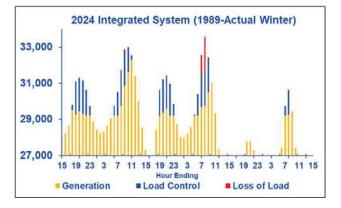
These
preliminary
analyses
assumed the
2021 TYSP
resource plan w/
no additional
resources

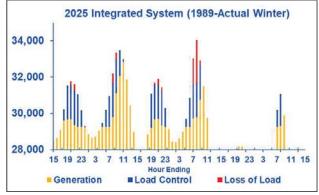
Note: At this point in the analyses using Approach # 2, <u>no</u> <u>generation forced</u> <u>outages</u> are assumed

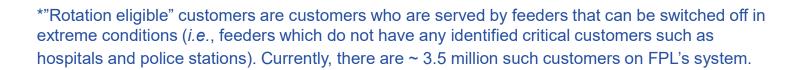

The loss of load projected for 2022 is ~ 2,400 MW at the worst hour and 15,000 MWh of unserved energy over the 3 days




Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 12 of 24


Projections improve for 2023 (due to the integration of FPL® Gulf and Dania Beach), but problems are again projected for 2024 & 2025


Projected Loss of Load based on 1989 Actual Forecast For the Years 2022-2025


Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 12 of 24 Page 12 of 26

The projected unserved energy values were converted to outage times for the subset of customers whose feeders can be rotated

<u>Projected Customer Outages Over the 3-Day Period</u> (assuming no addl. resources & no generation forced outages)

Number of Rotation Eligible Customers* = 3,500,000

	2022	2023	2024	2025
Assumed Generation Forced Outages (MW)	0	0	0	0
Shortage in Peak Hour (MW)	2,402	168	1,971	2,484
Total Loss of Load over the cold-front period (MWh)	15,027	168	3,382	6,295
# of Customer Outages (30 minutes each)	6,010,800	67,200	1,352,800	2,518,000
# of Outages per Rotation Eligible Customer	1.72	0.02	0.39	0.72

The next slide shows how these outage projections change if 1,000 MW or 2,000 MW of generation forced outages are assumed

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 12 of 24

The condensed table below shows how projected outage times increase if generation forced outages are assumed

Projected Customer Outages: 2022-2025 (assumes no addl. resource & 3 levels of generation forced outages)

Number of Rotation Eligible Customers* = 3,500,000

			_		
	2022	2023	2024	2025	
Assumed Generation Forced Outages (MW)	0	0	0	0	
# of Customer Outages (30 minutes each)	3,005,400	33,600	676,400	1,259,000	
# of Outages per Rotation Eligible Customer	0.86	0.01	0.19	0.36	
Assumed Generation Forced Outages (MW)	1,000	1,000	1,000	1,000	
# of Customer Outages (30 minutes each)	-	281,573	3,485,036	4,805,329	
# of Outages per Rotation Eligible Customer	2.14	0.08	1.00	1.37	
Assumed Generation Forced Outages (MW)	2,000	2,000	2,000	2,000	
# of Customer Outages (30 minutes each)	14,447,062	1,187,254	7,645,237	9,350,204	
# of Outages per Rotation Eligible Customer	4.13	0.34	2.18	2.67	
			_		

Note: the derivation of the 1,000 MW and 2,000 MW forced outage assumptions is discussed in the Appendix

The projected number of outages increases significantly if nonzero generation forced outages are assumed

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 12 of 24 Page 14 of 26

In addition, several near-term generation enhancements are underway

Near-Term Capacity Increases That Can Help Address Projected Loss-of-Load Thru 2025

- 1) Short-term capacity purchases for the 2021 2022 Winter months only totaling ~ 315 MW
- 2) Winter upgrades to CC units over several years (no Summer MW increases):
 - Adds up to ~ 790 MW of Winter (only) capacity (MW value subject to change)
- 3) Retaining the Manatee 1 & 2 units for limited operation only during high Winter load periods (see next slide)
 - Retain ~ 1,600 MW of Winter (only) capacity

In the analyses that followed, FPL assumed that each of these near-term resources were added

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 12 of 24 Page 15 of 26

The Manatee 1 and 2 units will be available for use only during forecasted very cold Winter events

Manatee 1 and 2 units in Inactive Reserve-Winter Capable" Status

- System operators typically plan for high Winter peak loads several days before occurrence, thus allowing advance warning regarding the need for the Manatee units to be operational
- When a very cold front is forecast, personnel will be transferred from other plants to Manatee for the duration of the high load period (the Manatee units will be unmanned by operators at all other times)
- Retaining the capability to utilize Manatee in this way will add about 1,600 MW of Winter peak capability that can run on oil (thus preserving the ability of the rest of the fossil generation system to utilize all available natural gas)

FPL currently plans to maintain the Inactive Reserve-Winter Capable status for Manatee 1 & 2 through 2030

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 12 of 24 Page 16 of 26

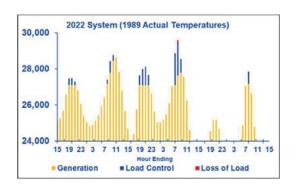
With Approach # 1, the LOLP criterion is still not projected to be met even after these near-term resources are added

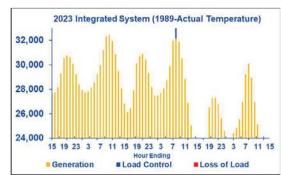
Annual LOLP Results with the TIGER Model1989 Actual Winter Forecast: 2022-2025

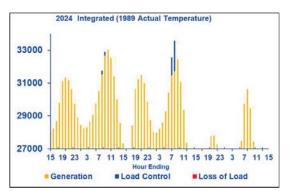
Assumptions	Case 1: w/ 1989-Actual Forecast & Revised LC	Case 2: Case 1 plus near-term resource additions
2021 TYSP resource plan with 1989-Actual Load Forecast	Х	х
LC - Use Summer MW values as a proxy for LC capabilities w/ very cold temps	Х	Х
Short Term Winter 2022 PPAs (315 MW)		X
Winter Upgrades (794 MW)		Х
Manatee 1 & 2 Retained - Winter Capacity Only (1,600 MW)		Х
Projected Annual LOLP		
2022	5.486	2.416
2023	4.092	1.690
2024	5.871	2.493
2025	6.537	3.939

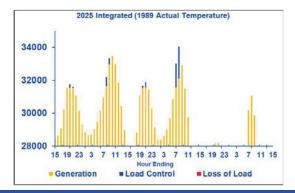
LOLP criterion is a maximum of 0.1 day per year

This analysis assumed the 2021 TYSP resource plan w/ no additional resources except for the near-term resources


Additional resources would be needed to meet the LOLP criterion in the near-term with Approach # 1




Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 12 of 24 Page 17 of 26


With Approach # 2, most of the problems are addressed by the near-term additions (assuming no forced outages)

Projected loss of load based on 1989 Actual Forecast 2022- 2025 (with near-term resource additions)

These preliminary analyses assumed the 2021 TYSP resource plan w/ the near-term additional resources (and no generation forced outages)

The previously projected inability to meet load is now addressed for 2023 & 2024 (w/ small amount of projected loss of load for one hour in 2022 and 2025)

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 12 of 24

The table below shows revised customer outage projections assuming the near-term additions are in place

<u>Projected Customer Outages: 2022-2025</u>
(assumes near-term additions & 3 levels of generation forced outages)

Number of Rotation Eligible Customers* =	3,500,000			
	2022	2023	2024	2025
Assumed Generation Forced Outages (MW)	0	0	0	0
# of Customer Outages (30 minutes each)	30,869	0	0	10,320
# of Outages per Rotation Eligible Customer	0.01	0.00	0.00	0.00
Assumed Generation Forced Outages (MW)	1,000	1,000	1,000	1,000
# of Customer Outages (30 minutes each)	328,745	0	123,577	210,320
# of Outages per Rotation Eligible Customer	0.09	0.00	0.04	0.06
Assumed Generation Forced Outages (MW)	2,000	2,000	2,000	2,000
# of Customer Outages (30 minutes each)	2,056,570	8,496	458,939	629,124
# of Outages per Rotation Eligible Customer	0.59	0.00	0.13	0.18

The near-term additions are projected to significantly reduce the number of customer outages (for example, from ~ 9.43 million to ~ 630,000 in 2025 assuming 2,000 MW of generation forced outages)

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 12 of 24 Page 19 of 26

With a 1989 Actual Winter occurrence , FPL projects p่ัร๊อไฮโตms in being able to meet load in 2022 through 2025

Summary of Results from Near-Term Analyses: 2022-2025

- Using a 1989 Actual temperature forecast for Winter peak load, and assuming no changes to FPL's 2021 TYSP resource plan, FPL is projected to not be able to meet customer load under either an LOLP perspective or an hourly perspective in any of these 4 years
- Assuming the winterization efforts for generation and fuel supply, plus the addition of the previously described 3 types of near-term resource additions (310 MW of PPAs for 2021/2022, ~ 790 MW of Winter upgrades, and retaining Manatee 1 & 2's 1,600 MW for use in very cold Winter conditions only), the results improve, but the projected problems are not eliminated:
 - Projected LOLP values are reduced by (roughly) a factor of 2
 - The hourly analysis shows customer outages are projected to still occur, but to a lesser degree

FPL's analyses then expanded to examine the years 2026 through 2030

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 12 of 24 Page 20 of 26

With a 1989 Actual Winter occurrence, FPL projects problems in being able to meet load in 2022 through 2025

Summary of Results from Near-Term Analyses: 2022-2025

- Using a 1989 Actual temperature forecast for Winter peak load, and assuming no changes to FPL's 2021 TYSP resource plan, FPL is projected to not be able to meet customer load under either an LOLP perspective or an hourly perspective in any of these 4 years
- Assuming the winterization efforts for generation and fuel supply, plus the addition of the previously described 3 types of near-term resource additions (310 MW of PPAs for 2021/2022, ~ 790 MW of Winter upgrades, and retaining Manatee 1 & 2's 1,600 MW for use in very cold Winter conditions only), the results improve, but the projected problems are not eliminated:
 - Projected LOLP values are reduced by (roughly) a factor of 2
 - The hourly analysis shows customer outages are projected to still occur, but to a lesser degree

FPL's analyses then expanded to examine the years 2026 through 2030

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 12 of 24 Page 21 of 26

Contents

- Executive Summary
- Background
- High Winter Load Forecasts
- The Preliminary Winter Analyses
 - Analysis Process
 - Near-Term (2022 2025) Analyses

- Longer-Term (2022 2030) Analyses
- TYSP Filing: Changes FPL is Making / Considering
- Appendix

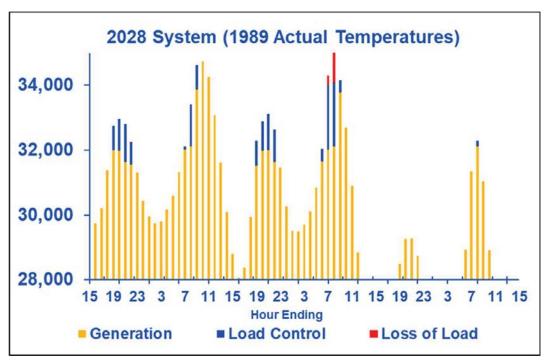
Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 12 of 24 Page 22 of 26

With Approach # 1, the projected LOLP values get worse as the years 2026 thru 2030 are accounted for

Annual LOLP Results with the TIGER Model 1989 Actual Winter Forecast: 2022-2030

Assumptions	<u>Case 1:</u> w/ 1989-Actual	Case 2: Case 1 plus near-term		
Assumptions	Forecast &	resource		
	Revised LC	additions		
2021 TYSP resource plan with 1989-Actual	×	×		
Load Forecast		^		
LC - Use Summer MW values as a proxy for LC	×	×		
capabilities w/ very cold temps	^	^		
Short Term Winter 2022 PPAs (315 MW)		Х		
Winter Upgrades (794 MW)		Х		
Manatee 1 & 2 Retained - Winter Capacity		x		
Only (1,600 MW)		^		
Projected Annual LOLP				
2022	5.486	2.416		
2023	4.092	1.690		
2024	5.871	2.493		
2025	6.537	3.939		
2026	6.529	3.915		
2027	7.032	4.862		
2028	7.293	5.428		
2029	7.204	5.257		
2030	7.090	5.155		

LOLP criterion is a maximum of 0.10 day per year


Includes the nearterm resource additions previously discussed

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 12 of 24 Page 23 of 26

Approach # 2 again projects an inability to meet all load in the 2026-2030 period (the graph below shows the results for 2028 only)

Projected Loss of Load based on 1989 Actual Forecast For the Year 2028

These preliminary analyses assumed the 2021 TYSP resource plan w/ near-term resource additions and no generation forced outages

The next slide examines projected customer outages with the same 3 generation forced outage levels used earlier

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 12 of 24 Page 24 of 26

Approach # 2 again quantified the amount of expected this erved energy and resulting customer impacts

Projected Customer Outages: 2026-2030 (includes the near-term resources & 3 levels of generation forced outages)

Number of Rotation Eligible Customers* = 3,500,000

					$\overline{}$	
	2026	2027	2028	2029	2030	1
Assumed Generation Forced Outages (MW)	0	0	0	0	0	1
# of Customer Outages (30 minutes each)	78,092	153,304	309,295	374,445	402,861	
# of Outages per Rotation Eligible Customer	0.02	0.04	0.09	0.11	0.12	
						1
Assumed Generation Forced Outages (MW)	1,000	1,000	1,000	1,000	1,000	1
# of Customer Outages (30 minutes each)	363,871	513,441	802,024	1,090,181	1,967,514	
# of Outages per Rotation Eligible Customer	0.10	0.15	0.23	0.31	0.56	
Assumed Generation Forced Outages (MW)	2,000	2,000	2,000	2,000	2,000	/
# of Customer Outages (30 minutes each)	1,109,847	2,043,446	3,645,483	4,660,002	5,522,585	
# of Outages per Rotation Eligible Customer	0.32	0.58	1.04	1.33	1.58	
# of Outages per Rotation Eligible Customer	0.32	0.58	1.04	1.33	1.58	

Even with the near-term additions, significant numbers of customer outages are still projected in the 2026 thru 2030 time period – additional resources will be needed to address this

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 12 of 24 Page 25 of 26

The next step was to determine how many MW of new resources are needed to meet the LOLP criterion each year

Approach # 1: Resource MW Needed Thru 2030

- Although the TIGER model is often used to project LOLP values for a given resource plan, it can also be used to determine how many MW of new resources would need to be added to a resource plan to allow that plan to meet the LOLP criterion
- Assuming no new resources can be added until 2023, the TIGER results call for 6,000 MW of additional resources (beyond the 2021 TYSP plan plus near-term resources) thru 2030 as follows:

Year	Addl. MW Needed	Resulting LOLP
2023	2,200	0.098
2024	1,200	0.090
2025	1,300	0.098
2026	100	0.087
2027	700	0.091
2028	500	0.097
2029	0	0.082
2030	0	0.076

Total = 6,000

LOLP values are lower in 2029 & 2030 due to the addition of batteries (300 MW in 2029 and another 400 MW in 2030) in the 2021 TYSP resource plan

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 12 of 24 Page 26 of 26

Also with Approach # 2, the next step was to determine how many MW of new resources are needed

Approach # 2: Resource MW Needed thru 2030

Using the previously introduced forced outage values (1,000 MW & 2,000 MW) for each year, the projected amounts of incremental MW (beyond the near-term additions) that were projected to allow FPL to serve the previously determined unserved load are shown in the tables below:

1,000 MW out									
Year	Addl. MW Needed								
2024	1,400								
2025	0								
2026	100								
2027	300								
2028	500								
2029	200								
2030	100								
Total =	2,600								

2,000 MW out								
Year	Addl. MW							
	Needed							
2024	2,400							
2025	0							
2026	0							
2027	400							
2028	500							
2029	300							
2030	500							
Total =	4,100							

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 13 of 24 Page 1 of 8

Hourly projections of system performance during winter high load days is being analyzed for 3 load forecasts

High Winter Load Forecasts

- "January 2010-like" forecast (presented at March OpComm results are shown in the appendix)
 - Miami low temperature assumed to be ~35 degrees F.
 - 2025 load can be met in all hours with Manatee (1 hour loss of ~800 MW of load without Manatee)
- "1989-like" forecast
 - New forecast completed and results are shown here
 - Miami low temperature assumed to be ~27 degrees F. (coldest ever Miami temperature was ~27 degrees F. in 1917)
- Extreme Winter forecast
 - New forecast completed and results are shown here
 - Miami low temperature assumed to be ~20 degrees F.

The 1989-like forecast is the primary focus for the April OpComm discussion

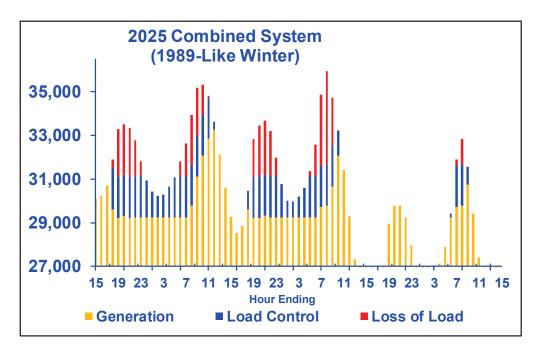
Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 13 of 24 Page 2 of 8

The January 2010 hourly load shape profile was scaled to develop the 1989-like load forecast

Process to Develop the 1989-Like Load Forecast

- The actual hourly load profile for January 2010 was used as a "seed" for developing the 1989-like forecast
- This seed hourly profile was then "scaled" as needed to reflect the higher MW and MWh values associated with the colder temperatures, and associated higher load, experienced in 1989
- The assumed system average temperature was 25 degrees F which corresponds to a Miami temperature of 27 degrees F
- These temperatures increase the Winter peak by ~54% compared to the current P50 Winter peak forecast

We assumed the temperature in Miami was 27 degrees F (the coldest temperature ever recorded) to ensure we were not underestimating load



Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 13 of 24 Page 3 of 8

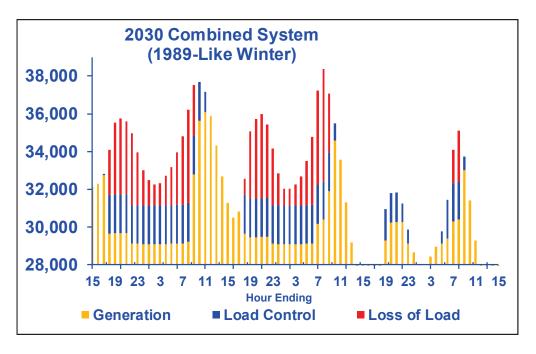
Forecasted hourly system performance for 2025 with 2021 TYSP resource plan is shown below

2025 Performance with 1989-like Load Forecast

(assumes no loss of generation)

Max. load not served is ~4,300 MW (~12% of the peak hour load)

Forecasting that Load Control is used for 40 hours and load is not served in 24 hours



Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 13 of 24 Page 4 of 8

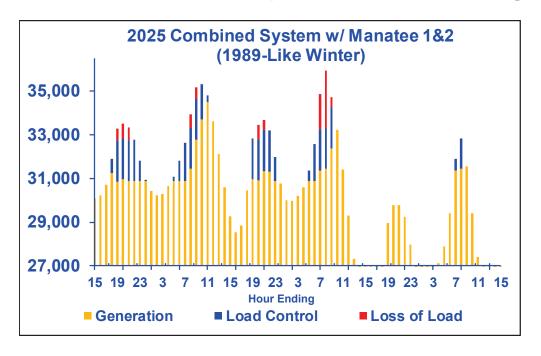
Forecasted hourly system performance for 2030 with 2021 TYSP resource plan is shown below

2030 Performance with 1989-like Load Forecast

(assumes no loss of generation)

Max load not served is ~5,900 MW (~15% of the peak hour load)

Forecasting that Load Control is used for 46 hours and load is not served in 34 hours



Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 13 of 24

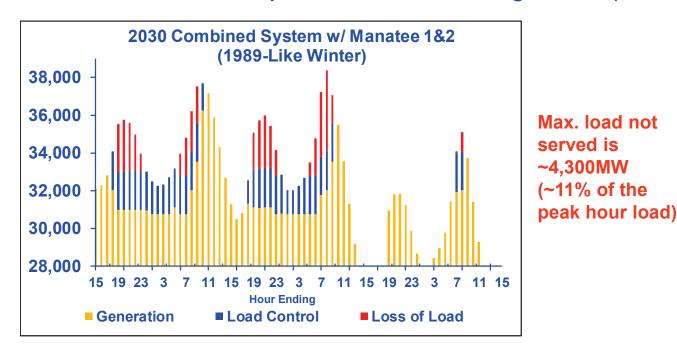
Forecasted hourly system performance for 2025 with 2021 TYSP resource plan, plus Manatee 1&2, is shown below

2025 Performance with 1989-like Load Forecast

(assumes Manatee 1&2 remain operational and no loss of generation)

Max. load not served is ~2,600 MW (~7% of the peak hour load)

Forecasting that Load Control is used for 26 hours (vs. 40 hours w/o Manatee) and load is not served for 10 hours (vs. 24 hours w/o Manatee)



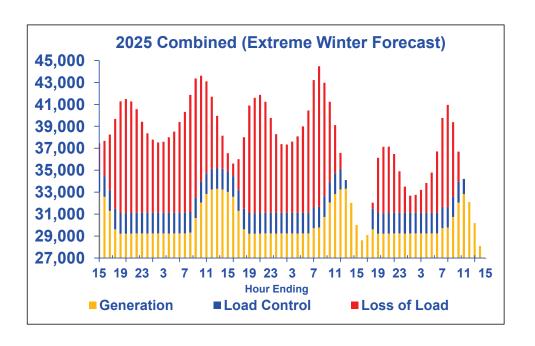
Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 13 of 24

Forecasted hourly system performance for 2030 with 2021 TYSP resource plan, plus Manatee 1&2, is shown below

2030 Performance with 1989-like Load Forecast

(assumes Manatee 1&2 remain operational and no loss of generation)

Forecasting that Load Control is used for 35 hours (vs. 46 hours w/o Manatee) and load is not served for 21 hours (vs. 34 hours w/o Manatee)



Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 13 of 24 Page 7 of 8

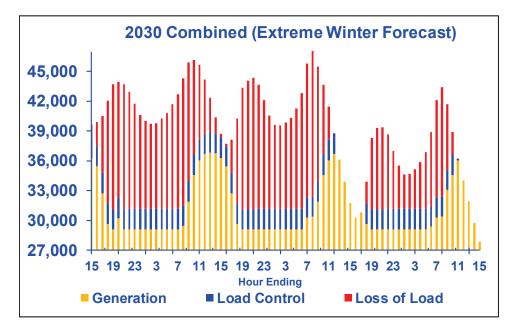
Forecasted hourly system performance w/ the Extreme Winter forecast for 2025 and the 2021 TYSP resource plan is shown below

2025 Performance with w/ Extreme Winter Load Forecast

(assumes no loss of generation)

Max load not served is ~12,800 MW (~29% of the peak hour load)

Forecasting that Load Control is used for 78 hours and load is not served in 74 hours



Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 13 of 24

Forecasted hourly system performance w/ the Extreme Winter forecast for 2030 and the 2021 TYSP resource plan is shown below

2030 Performance with w/ Extreme Winter Load Forecast

(assumes no loss of generation)

Max load not served is ~14,700 MW (~31% of the peak hour load)

Forecasting that Load Control is used for 78 hours and load is not served in 74 hours

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 14 of 24 Page 1 of 17

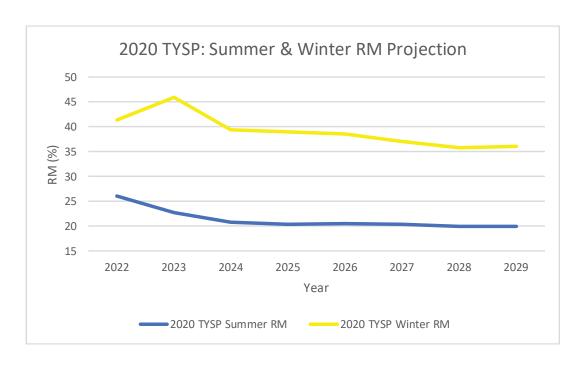
Winter Reserves Projections – Results To-Date

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 14 of 24 Page 2 of 17

The objective is to project reserves assuming an extreme Winter load forecast

Background & Key Assumptions

- The annual TYSP filing uses a P50 load forecast and provides projections of Summer and Winter RMs for the FPL/Gulf integrated system for a 10-year period (2021 thru 2030 in the April 2021 filing)
- Projections for the integrated system from the 2020 TYSP and the 2021 TYSP are shown first in this presentation (because the Winter RM projection has noticeably changed in the 2021 TYSP)
- The Load Forecasting group provided the following Winter load scenarios based on 2021 TYSP assumptions:
 - P50 load for the FPL only area, Gulf only area, and the integrated system
 - January 2010-like load for these same three areas
- Key assumptions include:
 - DSM: all planned incremental conservation and load control (LC) is achieved and 100% of load control capability is implemented at the Winter peak hour
 - Available generation: 100% of generation is available at the Winter peak hour (in Jan 2010, there were ~ 2,000 MW of unplanned outages)

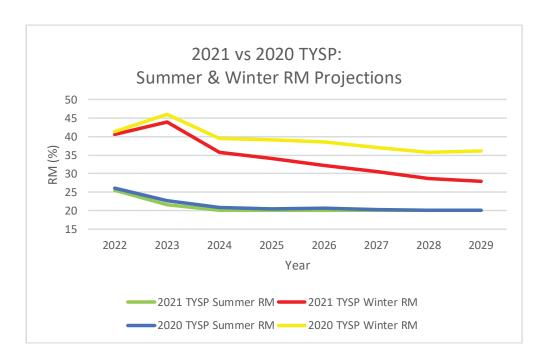

A comparison of the 2020 and 2021 Winter RM projections for the FPL/Gulf integrated system is presented first

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 14 of 24 Page 3 of 17

The 2020 TYSP* showed a consistently higher Winter reserve margins (RM) than Summer RM thru 2029 for the integrated system

2020 TYSP: Summer & Winter RMs (w/ P50 Load)

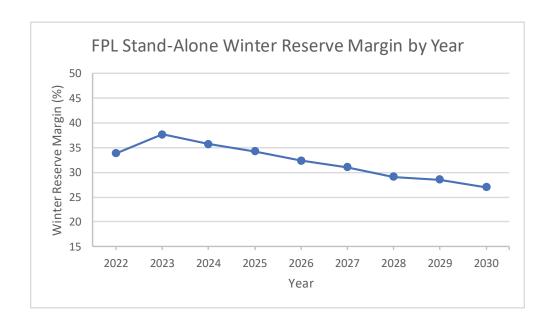
^{*} The 2020 TYSP covered the years 2020 thru 2029. The chart starts at 2022 when FPL/Gulf become an integrated utility


In the 2020 TYSP, Winter RMs were projected to be above 35% every year based on a P50 load forecast

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 14 of 24 Page 4 of 17

However, the 2021 TYSP will show Winter RM values (see red line below) steadily declining over this same time period

2021 vs 2020 TYSPs: Summer & Winter RMs (w/ P50 Load)


The lower Winter RM is due to 3 factors: (i) forecasted load is ~ 650 MW higher by 2029, (ii) CT upgrades have been revised and provide ~ 600 MW less Winter capacity, and (iii) ~ 400 MW of batteries were pushed back in the resource plan to allow more solar in 2026 thru 2030

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 14 of 24 Page 5 of 17

The current Winter RM projection for the FPL only area using the P50 load forecast is shown below

Projected Winter RM: FPL Only Area - P50 Load*

^{*} For purposes of this analyses, the MW transfer from Gulf to FPL over the NFRC from Gulf to FPL on a Winter peak day is assumed to be zero

With a P50 load forecast, the Winter RMs for FPL only are similar in shape to, and ~ 1% lower than, for the FPL/Gulf integrated system

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 14 of 24 Page 6 of 17

The current Winter RM projection for the Gulf only area using the P50 load forecast is shown below

Projected Winter RM: Gulf Only Area – P50 Load*

^{*} For purposes of this analysis, the MW transfer from FPL to Gulf over the NFRC on a Winter peak day is assumed to be 0 MW thru 2025, and 400 MW thereafter

The 100% RM in 2022 is largely due to Crist CTs; the drop in 2024 is due to the loss of the Shell PPA (885 MW) and Daniel retirement (502 MW)

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 14 of 24 Page 7 of 17

Next, projections for a January 2010-like Winter load were developed Approaches for Developing Jan 2010-Like Winter Peaks

- Three approaches were used to project a January 2010 load for each year from 2022 thru 2030
- The 1st and 2nd approaches addressed the FPL only area and were developed by Operations/IRP using the actual Jan 2010 peak as the starting point:
 - The actual Jan 2010 peak was 24,846 MW
 - This load was 20.9% higher than the 20,550 MW peak that was forecasted only months before
- The 3rd approach is a "from scratch" projection by the Load Forecasting group and it addresses the FPL only, Gulf only, and FPL/Gulf integrated system
- For each of these 3 approaches, once the Jan 2010-like loads for 2022 thru 2029 were developed, a projection of Winter reserves was made

At the time these slides are being prepared (3/5/21), the 3rd approach (the "Load forecasting" approach) is being revised – therefore, no results using this approach are available at this time

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 14 of 24 Page 8 of 17

Approach # 1 is a "load growth" approach

Approach # 1: - FPL Area Only

- The starting point is the actual Jan 2010 load of 24,846 MW (including accounting for ~ 500 MW of LC implemented to assist DEF)
- Growth in customer load in the FPL only area since 2010 was then estimated:
 - In 2010, the actual average no. of customers was ~ 4.52 million
 - For 2021, the forecasted avg. no. of customers is ~ 5.17 million
 - This equates to an ~ 14.5% growth in the number of customers in the FPL only area
- The Jan 2010 load of 24,846 MW was multiplied by 1.145 to develop a Jan 2010-like load for the year 2022
 - 24,846 MW x 1.145 = 28,449 MW (for 2022)
- That 2022 value was then escalated annually by the annual growth rates in the current P50 load forecast

The projected annual reserves for the FPL area are presented on the next slide

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 14 of 24 Page 9 of 17

Even assuming no generation outages, and all LC MW are implemented, problems are projected in all years

Results Using Approach # 1

	FPL Stan	d-Alone W	inter Reserv	es - w/ Jan	2021-Like L	oad Forecast	t - w/ Ap	proach #	1
		Assumed	Adjusted						
	Total Winter	Generation	Total Winter						
	Firm	Outages:	Firm	Proxy for Jan				Load	
	Generation	Planned &	Generation	2010 Load		Load After		Control	
	in FPL Area	Unplanned	in FPL Area	Forecast	Conservation	Conservation	Reserves	Available	Reserves With
Year	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW) *	LC (MW)
2022	25,298	0	25,298	28,449	26	28,423	(3,125)	1,812	(1,313)
2023	26,526	0	26,526	29,003	46	28,958	(2,432)	1,829	(603)
2024	26,659	0	26,659	29,570	67	29,503	(2,844)	1,851	(993)
2025	26,752	0	26,752	30,024	87	29,937	(3,185)	1,882	(1,303)
2026	26,762	0	26,762	30,472	87	30,385	(3,623)	1,916	(1,707)
2027	26,758	0	26,758	30,793	87	30,706	(3,948)	1,950	(1,998)
2028	26,758	0	26,758	31,268	87	31,181	(4,422)	1,984	(2,439)
2029	27,058	0	27,058	31,758	87	31,671	(4,613)	2,018	(2,595)
2030	27,158	0	27,158	32,262	87	32,175	(5,017)	2,052	(2,965)

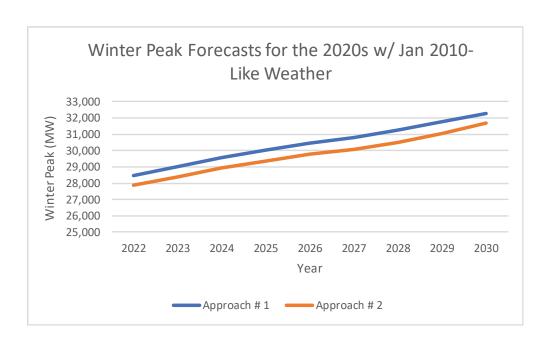
A key outcome is that the picture is projected to worsen thru the 2020s because Winter generation grows only slightly

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 14 of 24 Page 10 of 17

Approach # 2 is a "Winter 2010-to-P50 Summer" approach

Approach # 2: - FPL Area Only

- The starting point is again the actual Jan 2010 load of 24,846 MW
- The ratio of the actual Winter 2010 and Summer 2010 loads was calculated:
 - In 2010, the actual Summer peak load was 22,256 MW
 - The Winter 2010 peak was ~ 11.64% higher than the Summer 2010 peak
- The current P50 forecasted values for Summer peak for 2022 thru 2029 were multiplied by 1.116 to estimate Jan 2010-like loads for those years
 - For example, the P50 forecasted Summer peak for 2022 is 24,967 MW
 - 24,967 MW x 1.1164 = 7,873 MW (for 2022)


The projections for Jan 2010-like load using Approaches # 1 and # 2 were then compared

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 14 of 24 Page 11 of 17

Approach # 2 projects loads that are about ~ 2% (or ~ 660 MW) on average lower than with Approach # 1

Comparison of Projected Jan 2010-like Peaks Using Approaches # 1 and # 2

The projection of Winter reserves using Approach # 2 is shown on the next slide

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 14 of 24 Page 12 of 17

Even with \sim 660 MW (on average) less load, the projection is much the same as with Approach # 1

Results Using Approach # 2

F	PL Stand-A	lone Winte	r Reserves	- w/ Jan	2021-Like L	oad Forecas	t - w/ Ap	proach #	2
		Assumed	Adjusted						
	Total	Generation	Total Winter	Proxy for					
	Winter Firm	Outages:	Firm	Jan 2010				Load	
	Generation	Planned &	Generation	Load		Load After		Control	Reserves
	in FPL Area	Unplanned	in FPL Area	Forecast	Conservation	Conservation	Reserves	Available	With LC
Year	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW) *	(MW)
2022	25,298	0	25,298	27,872	26	27,847	(2,549)	1,812	(737)
2023	26,526	0	26,526	28,402	46	28,356	(1,830)	1,829	(1)
2024	26,659	0	26,659	28,943	67	28,876	(2,218)	1,851	(366)
2025	26,752	0	26,752	29,368	87	29,281	(2,530)	1,882	(648)
2026	26,762	0	26,762	29,773	87	29,686	(2,924)	1,916	(1,008)
2027	26,758	0	26,758	30,080	87	29,993	(3,234)	1,950	(1,284)
2028	26,758	0	26,758	30,491	87	30,405	(3,646)	1,984	(1,662)
2029	27,058	0	27,058	31,037	87	30,950	(3,892)	2,018	(1,874)
2030	27,158	0	27,158	31,678	87	31,591	(4,433)	2,052	(2,381)

Problems are again projected for all years

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 14 of 24 Page 13 of 17

To get another perspective, a comparison was made of total Winter firm capacity (FPL units + purchases) for 2010 vs 2022

Total Winter Firm Capacity (MW): 2010 vs 2022

In 2010, the total Winter firm capacity (w/o outages) was 26,809 MW;
 the projection for 2022 is 25,298 MW (and FPL area generation is not projected to return to the 2010 level until 2029)

Since 2010, the FPL area total Winter firm capacity has decreased by ~ 1,500 MW or ~ 5.6% (in comparison, the total Summer MW have increased since 2010 by ~ 800 MW or 3.3%)

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 14 of 24 Page 14 of 17

Based on the projections using Approaches # 1 and # 2, several preliminary conclusions are drawn

Conclusions To-Date

- Both of these approaches to estimating what Jan 2010-like loads might be thru the 2020s result in a similar projection: FPL area loads similar to Jan 2010 weather would not be able to be met
- Assuming these loads, the actual situation would likely be worse than in these projections because it is probable that <u>some</u> unplanned generation outages will occur (recall that on Jan 2010 there were ~ 2,000 MW of unplanned outages)
- In addition, the situation is projected to worsen from 2022 thru 2029 given the current resource plan which adds little/no Winter MW until 2029 (when batteries begin to be added)
- Therefore, there is little value to be gained from spending further time/effort trying to determine what the load might be if 10-to-20 degrees colder weather were experienced
- More productive efforts would be to: (i) see how we can best prepare/winterize the generation/transmission/fuel systems we have, and (ii) examine how likely such loads are and if/when/how more Winter resources should begin to be added

These conclusions will be revisited once the results from Approach # 3 (the load forecasting approach) are available

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 14 of 24 Page 15 of 17

Appendix

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 14 of 24 Page 16 of 17

Winter firm capacity projections from the 2021 TYSP are presented below

Projected Winter Firm Capacity: 2022 thru 2030

						FPL Only Area	1				
		Combined		Steam	Solar (Nameplate		Battery	Battery	Battery	Purchased	
	Nuclear	Cycle	CT/GT	Turbine)	Solar(Firm)	(2.2hr)	(3hr)	(4hr)	Power	Total (Firm)
	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)
2022	3,590	18,979	2,146	0	3,388	0	469	0	0	114	25,298
2023	3,590	20,207	2,146	0	3,760	0	469	0	0	114	26,526
2024	3,590	20,340	2,146	0	4,282	0	469	0	0	114	26,659
2025	3,590	20,433	2,146	0	4,803	0	469	0	0	114	26,752
2026	3,590	20,443	2,146	0	5,623	0	469	0	0	114	26,762
2027	3,590	20,443	2,146	0	6,666	0	469	0	0	110	26,758
2028	3,590	20,443	2,146	0	7,858	0	469	0	0	110	26,758
2029	3,590	20,443	2,146	0	8,901	0	469	300	0	110	27,058
2030	3,590	20,443	2,146	0	9,869	0	469	300	100	110	27,158

					0	iulf Only Area	9				
		Combined		Steam	Solar		Battery	Battery	Battery	Purchased	
	Nuclear	Cycle	CT/GT	Turbine	(Nameplate	Solar(Firm)	(2.2hr)	(3hr)	(4hr)	Power	Total (Firm)
	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)
2022	0	646	1,007	1,684	224	0	0	0	0	994	4,331
2023	0	646	1,007	1,684	596	0	0	0	0	994	4,331
2024	0	646	1,007	1,182	969	0	0	0	0	109	2,944
2025	0	646	1,007	1,104	1,341	0	0	0	0	109	2,866
2026	0	646	992	1,104	1,416	0	0	0	0	109	2,851
2027	0	646	992	1,026	1,416	0	0	0	0	109	2,773
2028	0	646	952	1,026	1,416	0	0	0	0	109	2,733
2029	0	646	952	1,026	1,565	0	0	0	0	109	2,733
2030	0	646	949	1,026	1,788	0	0	0	300	109	3,030

					FPL/Gu	If Integrated	System				
		Combined		Steam	Solar		Battery	Battery	Battery	Purchased	
	Nuclear	Cycle	CT/GT	Turbine	(Nameplate	Solar(Firm)	(2.2hr)	(3hr)	(4hr)	Power	Total (Firm)
	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)
2022	3,590	19,625	3,153	1,684	3,611	0	469	0	0	1,108	29,629
2023	3,590	20,853	3,153	1,684	4,356	0	469	0	0	1,108	30,857
2024	3,590	20,986	3,153	1,182	5,250	0	469	0	0	223	29,603
2025	3,590	21,079	3,153	1,104	6,144	0	469	0	0	223	29,618
2026	3,590	21,089	3,138	1,104	7,038	0	469	0	0	223	29,613
2027	3,590	21,089	3,138	1,026	8,081	0	469	0	0	219	29,531
2028	3,590	21,089	3,098	1,026	9,273	0	469	0	0	219	29,491
2029	3,590	21,089	3,098	1,026	10,465	0	469	300	0	219	29,791
2030	3,590	21,089	3,095	1,026	11,657	0	469	300	400	219	30,188

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 14 of 24 Page 17 of 17

Summer firm capacity projections from the 2021 TYSP are presented below

Projected Summer Firm Capacity: 2022 thru 2030

					FPL	Only Area					
		Combined		Steam	Solar		Battery	Battery	Battery	Purchased	
	Nuclear	Cycle	CT/GT	Turbine	(Nameplate)	Solar(Firm)	(2.2hr)	(3hr)	(4hr)	Power	Total (Firm)
	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)
2022	3,499	19,427	2,184	0	3,388	1,700	469	0	0	114	27,392
2023	3,499	19,519	2,184	0	3,760	1,845	469	0	0	114	27,629
2024	3,499	19,732	2,184	0	4,282	2,101	469	0	0	114	28,098
2025	3,499	19,836	2,184	0	4,803	2,357	469	0	0	114	28,458
2026	3,499	19,840	2,184	0	5,474	2,717	469	0	0	114	28,822
2027	3,499	19,840	2,184	0	6,517	3,102	469	0	0	110	29,204
2028	3,499	19,840	2,184	0	7,709	3,564	469	0	0	110	29,666
2029	3,499	19,840	2,184	0	8,826	3,775	469	300	0	110	30,177
2030	3,499	19,840	2,184	0	10,018	3,961	469	300	100	110	30,462

					Gul	f Only Area					
		Combined		Steam	Solar		Battery	Battery	Battery	Purchased	
	Nuclear	Cycle	CT/GT	Turbine	(Nameplate)	Solar(Firm)	(2.2hr)	(3hr)	(4hr)	Power	Total (Firm)
	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)
2022	0	660	985	1,684	344	133	0	0	0	1,015	4,477
2023	0	660	985	1,684	716	319	0	0	0	130	3,778
2024	0	660	985	1,182	1,089	488	0	0	0	130	3,445
2025	0	660	985	1,104	1,461	657	0	0	0	130	3,536
2026	0	660	973	1,104	1,685	689	0	0	0	130	3,555
2027	0	660	973	1,026	1,685	686	0	0	0	130	3,475
2028	0	660	941	1,026	1,685	684	0	0	0	129	3,441
2029	0	660	941	1,026	1,759	742	0	0	0	129	3,498
2030	0	660	941	1,026	1,759	829	0	0	300	129	3,885

[FPL/Gulf I	ntegrated Syst	em				
	Combined Steam		Solar	Solar		Battery	Battery	Purchased			
	Nuclear	Cycle	CT/GT	Turbine	(Nameplate)	Solar(Firm)	(2.2hr)	(3hr)	(4hr)	Power	Total (Firm)
	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)
2022	3,499	20,087	3,169	1,684	3,731	1,833	469	0	0	1,129	31,870
2023	3,499	20,179	3,169	1,684	4,476	2,164	469	0	0	244	31,407
2024	3,499	20,392	3,169	1,182	5,370	2,589	469	0	0	244	31,543
2025	3,499	20,496	3,169	1,104	6,264	3,013	469	0	0	243	31,993
2026	3,499	20,500	3,157	1,104	7,158	3,406	469	0	0	243	32,377
2027	3,499	20,500	3,157	1,026	8,201	3,789	469	0	0	240	32,679
2028	3,499	20,500	3,125	1,026	9,393	4,248	469	0	0	239	33,106
2029	3,499	20,500	3,125	1,026	10,585	4,517	469	300	0	239	33,675
2030	3,499	20,500	3,125	1,026	11,777	4,789	469	300	400	239	34,347

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 15 of 24 Page 1 of 2

The "Less-Extreme" Winter forecast significantly lowered the projected number of customer outages vs the "Extreme" forecast

Projected Customer Outages: w/ Extreme vs Less-Extreme

Assumptions:

- 3.5 million rotation-eligible customers
- 1,000 MW of generation forced outages
- 2021 TYSP resource plan is the basis for the projections (<u>without</u> any CT Winter upgrades, Winter-only units, etc.)

With Original Extreme Winter Forecast:

Year:	2023	2024	2025	2026	2027	2028	2029	2030
# of Customer Outages (30 minutes each)	423,067	5,375,031	7,549,264	10,304,868	13,547,592	17,438,134	20,794,957	23,809,483
# of Outages per Rotation Eligible Customer	0.12	1.54	2.16	2.94	3.87	4.98	5.94	6.80

With "Less-Extreme" Winter Forecast:

Year:	2023	2024	2025	2026	2027	2028	2029	2030
# of Customer Outages (30 minutes each)	0	7,782	161,749	288,264	554,538	911,203	1,017,723	1,027,485
# of Outages per Rotation Eligible Customer	0.00	0.00	0.05	0.08	0.16	0.26	0.29	0.29

A potential switch to using the "Less-Extreme" Winter forecast reduces the projected number of customer outages by a factor of ~ 20 at least. (Manatee/Crist/L. Smith, upgrades would eliminate all outages thru 2030)

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 15 of 24 Page 2 of 2

The "Mid-Extreme" Winter forecast lowers the projected number of customer outages, but by a reduced amount

Projected Customer Outages: w/ Extreme vs Mid-Extreme

Assumptions:

- 3.5 million rotation-eligible customers
- 1,000 MW of generation forced outages
- 2021 TYSP resource plan is the basis for the projections (without any CT Winter upgrades, Winter-only units, etc.)

With Original Extreme Winter Forecast:

Year:	2023	2024	2025	2026	2027	2028	2029	2030
# of Customer Outages (30 minutes each)	423,067	5,375,031	7,549,264	10,304,868	13,547,592	17,438,134	20,794,957	23,809,483
# of Outages per Rotation Eligible Customer	0.12	1.54	2.16	2.94	3.87	4.98	5.94	6.80

With "Mid-Extreme" Winter Forecast:

Year:	2023	2024	2025	2026	2027	2028	2029	2030
# of Customer Outages (30 minutes each)	0	338,982	603,425	902,254	1,332,216	2,858,049	4,833,716	6,177,077
# of Outages per Rotation Eligible Customer	0.00	0.10	0.17	0.26	0.38	0.82	1.38	1.76

A potential switch to using the "Mid-Extreme" Winter forecast reduces the projected number of customer outages by a factor ranging from 4 to 15. (Manatee/Crist/L. Smith, upgrades would again eliminate all outages thru 2030)

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 16 of 24 Page 1 of 2

The projected numbers of customer outages, both with and without the "near-term" Winter capacity additions are shown below

Projected Customer Outages (w/o BBB)

Assumptions:

- 5.5 million rotation-eligible customers starting in 2025
- No generation forced outages
- 2022 TYSP Alternate plan (w/o BBB, P50) is the basis for the projections
- "Near-Term Additions" include: Winter CC upgrades, plus retaining Manatee 1&2, Crist 4&5, and Lansing Smith A as Winter-only capacity

Without Near-Term Additions:

	2023	2024	2025	2026	2027	2028	2029	2030	2031
# of Customer Outages (30 minutes each)	0	1,097,322	3,605,376	5,979,664	8,845,401	12,207,715	15,951,503	15,736,480	16,043,446
# of Outages per Rotation Eligible Customer	0	0.20	0.66	1.09	1.61	2.22	2.90	2.86	2.92

With Near-Term Additions:

	2023	2024	2025	2026	2027	2028	2029	2030	2031
# of Customer Outages (30 minutes each)	0	0	119,085	193,538	350,488	694,333	825,234	604,294	526,343
# of Outages per Rotation Eligible Customer	0	0	0.02	0.04	0.06	0.13	0.15	0.11	0.10

The 2,700 MW of incremental 4-hour equivalent storage is projected to eliminate all remaining outages in 2025 thru 2031

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 16 of 24 Page 2 of 2

The projected numbers of customer outages, both with and without the "near-term" Winter capacity additions are shown below

Projected Customer Outages (w/ BBB)

Assumptions:

- 5.5 million rotation-eligible customers
- No generation forced outages
- 2022 TYSP FYI-only plan #2 (w/ BBB, P50) is the basis for the projections
- "Near-Term Additions" include: Winter CC upgrades, plus retaining Manatee 1&2, Crist 4&5, and Lansing Smith A as Winter-only capacity

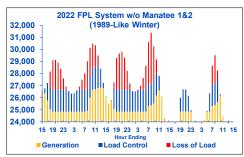
Without Near-Term Additions:

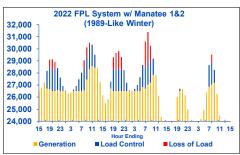
	2023	2024	2025	2026	2027	2028	2029	2030	2031
# of Customer Outages (30 minutes each)	0	1,097,335	3,230,473	5,503,641	7,986,766	10,994,878	16,078,356	18,663,365	14,027,549
# of Outages per Rotation Eligible Customer	0	0.20	0.59	1.00	1.45	2.00	2.92	3.39	2.55

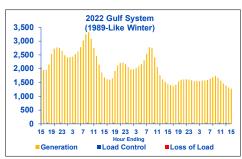
With Near-Term Additions:

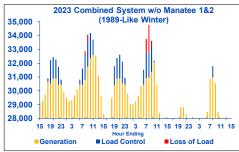
	2023	2024	2025	2026	2027	2028	2029	2030	2031
# of Customer Outages (30 minutes each)	0	0	119,085	144,414	255,798	543,665	1,038,498	1,137,360	13,335
# of Outages per Rotation Eligible Customer	0	0	0.02	0.03	0.05	0.10	0.19	0.21	0.00

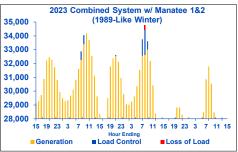
The 1,200 MW of incremental 4-hour equivalent storage is projected to eliminate all remaining outages in 2025 thru 2031


Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 17 of 24 Tab 1 of 8


20220000 - Staff's 3rd DR No Page 1 of 8


	Load Control & Loss of Load Summary ("1989-Like Winter" - w/ and w/o Manatee 1&2)												
Year	Scenario	Load Control # of Hours	Load Control (MWh)	Loss of Load # of Hours	Loss of Load (MWh)	Maximum Loss of Load (MW)	% of Load Unserved	Loss of Load # of Hours w/ 1,000 MW Out					
	FPL - w/o Manatee 1&2	53	82,567	33	56,948	4,182	2.4%	47					
2022	FPL - w/ Manatee 1&2	38	47,398	14	15,425	2,540	0.6%	27					
2022	Difference	(15)	(35,169)	(19)	(41,522)	(1,642)	-1.7%	(20)					
	Gulf Stand-Alone	0	0	0	0	0	0.0%	0					
	Combined - w/o Manatee 1&2	23	28,822	5	4,116	1,982	0.2%	17					
2023	Combined - w/ Manatee 1&2	6	4,973	1	340	340	0.0%	2					
	Difference	(17)	(23,849)	(4)	(3,776)	(1,642)	-0.1%	(15)					


Note: Manatee 1&2 provide 1,642 MW of peak winter capacity


20220000 - Staff's 3rd DR No Page 2 of 8

20220000 - Staff's 3rd DR No Page 3 of 8

No. Part										1989	9-Like Wi	nter						P	age 3 of 8
Part			W/c				Manatee 1	&2		2022 Gul	If System			W/c				Manatee 1	&2
			Load	, ividilatee .	10.2	Load	ivialiatee 1	.00.2						Load) Ividilatee	102	Load	Widilatee 1	.00.2
	Hour																		
			Load	Control	Load	Load	Control	Load		Load	Control	Load		Load	Control	Load	Load	Control	Load
1	1	14,659		0	0		0	0	1,585		0	0	16,538		0	0		0	0
		-																	
1													-						
1		15,036	15,036			15,036			1,750	1,750			17,089	17,089			17,089		
					-		-				-	-	-						
10																			
1.																			
1.																			
15							-				-				-				-
1.																			
1.																			
19																			
1.								-			-	-							
1.																			
1											-								
1																			
2																			
4.6 2.6 3.48.88 1.18.70 70 4.66 4.88 0 2.25.83 2.26.93 0 0 3.01.55 0 0 2.66.83 1.00 0 3.01.55 0 0 3.01.55 0 0 3.01.55 0 0 3.01.55 0 0 3.01.55 0 0 3.01.55 0 0 3.01.55 0 0 3.02.75 0 0 3.02.75 0 0 3.02.75 0	2	26,330	24,848	1,482	0	26,330			2,421	2,421			29,276	29,276			29,276		
Fig. 1,000																			
9 9 0.129																			
10 30,065 26,658 1,812 2,075 2,380 1,812 30,87 30,88 30,88 30 0 34,193 32,865 3,879 0 34,193 0 0 12,290 12,2900 2,8686 1,812 880 2,8450 1,059 0 0 2,446 2,464 0 0 0 32,551 3,2616 1,000 0 32,551 0 0 32,551 0 0 32,551 0 0 32,551 0 0 32,551 0 0 32,551 0 0 32,551 0 0 0 32,551 0 0 32,551 0 0 32,551 0 0 32,551 0 0 0 0 32,551 0																			
12 25,000 26,000 26,000 26,000 26,000 26,000 25,00									3,088										
14																			
1.6																			
16																			
18 27,282 25,061 1,812 499 26,703 579 0 1,659 1,659 0 0 22,479 0,0 0 29,479 0 0 0 29,479 0 0 0 29,479 0 0 0 29,479 0 0 0 29,479 0 0 0 29,479 0 0 0 29,479 0 0 0 29,479 0 0 0 29,479 0 0 0 29,479 0 0 0 29,479 0 0 0 29,479 0 0 0 29,479 0 0 0 29,479 0 0 29,479 0 0 0 29,479 0 0 0 29,479 0 0																			
19 29,290 24,855 3,812 2,623 36,897 1,812 381 1,917 1,917 0 0 31,785 30,415 1,370 0 31,785 0 0 0																			
22							1,812		1,917				31,785	30,415					
22 28,323 28,848 1,812 2,669 2,6490 1,746 0 2,165 2,165 0 0 0 32,059 3,0368 1,592 0 32,156 0 0 0 2,762 2											-								
24 27,185																			
1 26,543 24,988 16,695 0 26,690 25 0 1,980 0 0 29,046 0 0 29,041 29,021 0 0 29,021 0 0 29,021 0 0 29,021 0 0 29,021 0 0 29,021 0 0 29,022 0 0 29,022 0 0 29,022 0 0 29,022 0 0 29,022 0 0 29,022 0 0 29,022 0 0 29,022 0 0 29,022 0 0 29,022 0 0 0 29,022 29,622 0 0 29,022 29,622 0																			
3 26,679 24,848 18.12 19 0.0 2,034 0 0 29,242 29,242 0 0 29,242 0 0 29,242 0 0 29,242 0 0 29,242 0 0 20,358 0 0 20,358 0 0 20,358 0 0 20,358 0 0 20,358 0 0 20,358 0 0 20,358 0 0 20,358 0 0 20,358 0 0 20,358 0 0 20,358 0 0 20,358 0 0 20,358 0 0 20,358 0 0 20,358 1,182 2,161 0 20,358 1,182 2,182 0 0 2,548 2,243 0 0 2,4354 2,038 0 20,318 1,899 0 2,242 0 0 2,648 0 30,318 1,899 0 2,242 0 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>53</td> <td></td> <td>1,976</td> <td></td> <td></td> <td>0</td> <td>29,046</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							53		1,976			0	29,046						
4 2,7006 24,848 1.812 946 26,909 1.16 0 2,087 0 0 296,29 9 0 0 296,29 0 0 29,629 0 0 29,629 0 0 20,368 0 0 0.358 0 0 0.358 0 0 0.358 0 0 0.3758 0 0 0 31,530 30 0 31,530 30 0 31,530 30,016 1.829 1,082 2,058 1,815 0 2,082 2,581 1,812 2,781 1,812 2,781 0 0 34,792 30,981 1,829 1,982 32,633 1,829 90 10 29,184 26,189 1,812 1,182 2,781 1,126 2,755 2,755 0 0 34,782 31,789 412 31,318 0 0 2,648 0 0 2,048 0 0 3,248 0 0											-								
6 28,657 24,888 18.12 1.997 66,989 1.812 0.00 2,333 2,300 0 0 31,530 30,466 1.084 0 31,530 30,466 1.084 0 31,530 30,466 1.082 1.083 35,558 1.195 0 8 31,386 25,382 1.812 2,923 1.812 2,932 1.812 2,932 1.812 2,933 1.932 0 0 34,792 30,0981 1.829 1.93 30,098 1.829 1.93 30,098 0 0 0 0 34,792 0 0 2,416 0 0 32,180 30,098 1.829 1.12 0 0 2,416 0 0 32,180 0 0 2,488 0 0 2,2878 0 0 0 2,416 0 0 2,3878 0 0 2,348 0 0 1,142 1,142 0 0 2,348 0	4														0				0
8 31,060 25,317 1,812 3,472 26,698 1,812 2,943 0 0 33,753 30,916 1,829 1,902 32,923 1,812 1,929 340,93 32,938 1,939 340 9 30,259 25,545 1,812 1,929 340 9 30,259 1,525 1,812 1,262 2,755 0 0 33,671 1,3176 1,829 4412 33,018 599 0 11 27,814 26,518 1,201 0 0 2,608 0 0 33,617 1,3136 1,829 412 33,018 599 0 12 26,907 0 0 2,648 0 0 1,613 1,613 0 0 2,648 0 0 2,2564 0 0 1,613 1,613 0 0 2,438 0 0 2,248 0 0 1,522 1,522 1,522 0 0 2,438 2,488																			
9 30,259 25,545 1,812 2,903 27,187 1,812 1,261 2,755 2,755 0 0 32,180 32,180 32,080 0 0 0 0 0 0 0 0 0	7	30,601	25,317	1,812	3,472	26,698	1,812	2,092	2,543	2,543	0	0	33,753	30,916	1,829	1,008	32,558	1,195	0
199184 26,189 1,812 1,182 27,811 1,352 0 2,416 0 0 32,180 32,094 86 0 32,180 0 0 11 17,814 26,613 1,1201 0 22,814 0 0 2,097 0 0 0 2,097 0 0 1,764 1,764 0 0 2,8378 2,3378 0 0 23,378 0 0 1,764 1,764 0 0 2,8378 2,3378 0 0 2,3378 0 0 1,764 1,764 0 0 2,8378 2,3378 0 0 2,3378 0 0 1,432 1,332 0 0 1,432 1,332 0 0 2,648 2,648 2,648 0 0 2,648 2,648 0 0 2,648 2,648 0 0 2,648 2,648 0 0 2,648 2,648 2,648 2,648 0 0 2,648 2,648 2,648 2,648 2,648 2,648 2,648											-	-							
12 26,097 26,097 0 0 26,097 0 0 1,764 1,764 0 0 23,378 28,378 0 0 28,378 0 0 13 24,354 24,354 0 0 24,354 0 0 24,354 0 0 24,354 0 0 24,354 0 0 24,354 0 0 24,354 0 0 1,631 1,613 0 0 0 26,448 0 0 24,488 0 0 0 1,613 1,613 0 0 0 24,488 0 0 24,488 0 0 0 1,613 1,613 0 0 0 22,273 0 0 0 24,855 0 0 22,273 0 0 0 0 0 0 0 0 0	10	29,184	26,189	1,812	1,182	27,831	1,352	0	2,416	2,416		0	32,180	32,094	86	0	32,180	0	0
13											-								
15		24,354	24,354			24,354			1,613	1,613			26,448	26,448			26,448		
16 20,384 00 0 20,384 0 0 1,403 1,403 0 0 22,190 0 0 22,190 0 0 22,190 0 0 22,190 0 0 22,190 0 0 22,183 0 0 22,583 0 0 22,583 0 0 22,583 0 0 22,583 0 0 22,583 0 0 22,583 0 0 22,583 0 0 22,583 0 0 22,583 0 0 22,583 0 0 22,583 0 0 22,583 0 0 22,583 0 0 22,4865 0 0 1,581 1,581 0 0 2,8814 2,8824 2,8824 0 0 2,8814 2,8834 2,8834 0 0 2,8824 0 0 2,2868 2,4848 1,21 0 2,4969 0 0 1,560 0				-			-	-			-	-			-	-			
18	16	20,384	20,384		0	20,384		0	1,403	1,403		0	22,190	22,190	0	0	22,190	0	0
19																			
21 26,684 24,873 1,812 0 26,684 0 0 1,613 1,613 0 0 28,824 0 0 28,800 0 0 28,800 0 0 28,300 0 0 28,300 0 0 28,300 0 0 28,300 0 0 28,300 0 0 28,300 0 0 28,300 0 0 28,300 0 0 28,300 0 0 22,088 0 0 27,068 0 0 22,088 0 0 22,708 0 0 23,927 0 0 23,336 0 0 23,336 0 0 23,337 0 0 23,337 0 0 23,337 0 0 23,742 0 0 23,742 0 0 23,742 0 0 23,742 0 0 24,923 0 0 1,554 1,548 1,548 0 0 26,248 0 0 25,407 0 0 26,248 0 0 26,248	19	25,992	24,855		0	25,992	0		1,541	1,541	0		28,045	28,045	0		28,045	0	0
22 26,162 24,848 1,314 0 26,162 0 0 1,621 0 0 28,300 0 0 28,300 0 0 28,300 0 0 27,068 0 0 27,068 0 0 27,068 0 0 27,068 0 0 27,068 0 0 27,068 0 0 27,068 0 0 27,068 0 0 27,068 0 0 27,068 0 0 27,068 0 0 22,978 0 0 25,978 0 0 25,978 0 0 25,978 0 0 25,978 0 0 25,407 0 0 25,407 0 0 25,407 0 0 25,407 0 0 25,407 0 0 25,407 0 0 25,407 0 0 25,407 0 0 25,407 0 0 25,407 0 0													-						
24 23,927 23,927 0 0 23,927 0 0 1,578 1,578 0 0 25,978 25,978 0 0 25,488 0 0 25,488 0 0 25,488 0 0 25,488 0 0 25,488 0 0 25,407 0 0 25,407 0 0 25,407 0 0 25,407 0 0 25,407 0 0 25,407 0 0 25,407 0 0 25,407 0 0 25,407 0 0 25,407 0 0 25,759 0 0 25,759 0 0 25,759 0 0 25,759 0 0 25,759 0 0 25,759 0 0 25,759 0 0 25,759 0 0 25,759 0 0 25,788 0 0 25,788 0 0 26,248 0 0 26,648		26,162	24,848	1,314		26,162			1,621	1,621			28,300	28,300			28,300		
1 23,336 0 0 23,336 0 0 23,337 0 0 23,397 0 0 23,397 0 0 23,472 0 0 23,472 0 0 23,472 0 0 25,407 0 0 25,407 0 0 25,407 0 0 25,407 0 0 25,759 0 0 25,759 0 0 25,759 0 0 25,759 0 0 25,759 0 0 25,759 0 0 25,759 0 0 25,759 0 0 26,248 0 0 26,248 0 0 26,248 0 0 26,248 0 0 26,248 0 0 26,988 0 0 26,988 0 0 26,988 0 0 26,988 0 0 26,988 0 0 26,988 0 0 26,988 0 0 26,988 0 0 26,988 0 0 28,481 0 0 28,481 0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																			
3 23,742 23,742 0 0 23,742 0 0 1,548 1,548 0 0 25,759 25,759 0 0 25,759 0 0 25,759 0 0 25,759 0 0 25,759 0 0 25,759 0 0 25,759 0 0 25,759 0 0 25,759 0 0 25,759 0 0 26,248 0 0 26,248 0 0 26,365 0 0 1,565 0 0 26,365 0 0 1,597 1,597 0 0 28,481 0 0 28,481 0 0 28,481 0 0 28,481 0 0 28,481 0 0 28,481 0 0 28,481 0 0 28,481 0 0 28,481 0 0 30,865 30,865 30,865 30,865 30,865 30,861 30,861 30,861 <td></td>																			
5 24,923 24,848 75 0 24,923 0 0 1,573 1,573 0 0 26,988 26,988 0 0 26,988 0 0 26,988 0 0 26,988 0 0 26,988 0 0 26,988 0 0 26,988 0 0 26,988 0 0 26,988 0 0 26,988 0 0 26,988 0 0 28,481 0 0 28,481 0 0 28,481 1,11																			
6 26,365 24,848 1,517 0 26,365 0 1,597 1,597 0 0 28,481 0 0 28,481 0 0 28,481 0 0 28,481 0 0 28,481 0 0 28,481 0 0 28,481 0 0 28,481 0 0 28,685 0 0 30,865 30,865 0 0 30,865 0 0 30,865 0 0 30,865 0 0 30,865 0 0 30,865 0 0 30,865 0 0 30,865 0 0 30,865 0 0 30,865 0 0 30,865 0 0 30,865 0 0 30,865 0 0 30,865 0 0 0 24,848 0 0 30,865 0 0 0 24,848 0 0 24,848 0 0 24,848 0 0																			
8 29,516 25,392 1,812 2,312 27,034 1,812 670 1,688 1,688 0 0 31,785 30,981 805 0 31,785 0 0 9 28,255 25,639 1,812 804 27,187 1,068 0 1,740 0 0 30,552 0 0 30,552 0 0 30,552 0 0 30,552 0 0 30,552 0 0 30,552 0 0 30,552 0 0 30,552 0 0 30,552 0 0 30,552 0 0 30,552 0 0 30,552 0 0 28,459 0 0 28,459 0 0 28,459 0 0 26,537 0 0 26,537 0 0 26,537 0 0 26,537 0 0 26,537 0 0 26,537 0 0 26,537 0 0																			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												-							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	22,989	22,989	0	0	22,989	0	0	1,468	1,468	0	0	24,911	24,911	0	0	24,911	0	0
15 18,754 18,754 0 0 18,754 0 0 18,754 0 0 1,278 0 0 20,403 0 0 20,403 0 0 20,403 0 0 20,403 0 0 20,403 0 0 20,403 0 0 20,403 0 0 20,403 0 0 20,403 0 0 19,679 0 0 19,679 0 0 19,679 0 0 19,679 0 0 19,679 0 0 20,061 0 0 20,061 0 0 20,061 0 0 20,061 0 0 20,061 0 0 20,061 0 0 22,164 0 0 22,164 22,164 0 0 22,164 0 0 22,164 0 0 22,164 0 0 22,164 0 0 22,3820 0 0 23,820 0																			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								0	1,278		0	0	20,403	20,403		0	20,403	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					-						-								
20 23,820 23,820 0 0 23,820 0 0 1,391 1,391 0 0 25,679 25,679 0 0 25,679 0 0 25,679 0 0 25,679 0 0 25,679 0 0 25,679 0 0 25,679 0 0 25,679 0 0 25,679 0 0 25,735 0 0 25,735 0 0 25,735 0 0 25,257 0 0 25,257 0 0 25,257 0 0 25,257 0 0 25,257 0 0 24,350 0 0 24,350 0 0 24,350 0 0 24,350 0 0 24,350 0 0 24,350 0 0 24,350 0 0 24,350 0 0 24,350 0 0 24,350 0 0 24,350 0 0 24,350 0 0 24,350 0 0 24,350 0 0 24,350 0 0 24,350 0 0 24,350 0 0 24,350 0 0 24,350 0 0 24,35									1,273				22,164				22,164		0
21 23,882 23,882 0 0 23,882 0 0 1,382 0 0 25,735 0 0 25,735 0 0 25,735 0 0 25,735 0 0 25,257 0 0 25,257 0 0 25,257 0 0 25,257 0 0 25,257 0 0 25,257 0 0 24,350 0 0 24,350 0 0 24,350 0 0 0 0 0					-			-				-							
23 22,570 22,570 0 0 22,570 0 0 1,335 1,335 0 0 24,350 0 0 24,350 0 0 24,350 0	21	23,882	23,882	0	0	23,882	0	0	1,382	1,382	0	0	25,735	25,735	0	0	25,735	0	0

= Must Run = Dispatchable = Load Control/Loss of Load 20220000 - Staff's 3rd DR No Page 4 of 8

"What If" Gen MW Unavailable 1,000 47

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

2022 FPL System Winter Peak Day	Without Manatee 182 -	(1989-Like Winter)

			2	022 FPL Sy	stem Win	ter Peak I	Day With	out Manat	tee 1&2 -	1989-Lik	e Winter)			
Day	Hour Ending	Load (MWh)	Nuclear (MWh)	Solar (MWh)	Conservation (MWh)	Purchases (MWh)	Combined Cycle (MWh)	CT/GT (MWh)	Steam Turbine (MWh)	Storage (MWh)	Loss of Load w/o LC (MWh)	Load Control (MWh)	Loss of Load w/ LC (MWh)	Loss of Load w/ LC and with 1,000 MW of gen out (MWh)*
9	1	14,659	3,590	0	20	114	10,936	0	0	0	0	0	0	0
9	2	14,232	3,590	0	20	114	10,508	0	0	0	0	0	0	0
9	3	14,187	3,590	0	20	114	10,464	0	0	0	0	0	0	0
9	4	14,455	3,590	0	20	114	10,732	0	0	0	0	0	0	0
9	5	15,036	3,590	0	20	114	11,313	0	0	0	0	0	0	0
9	6	16,121	3,590	0	20	114	12,398	0	0	0	0	0	0	0
9	7	17,782	3,590	0	20	114	14,059	0	0	0	0	0	0	0
9	8	20,025	3,590	75	20	114	16,227	0	0	0	0	0	0	0
9	9	22,536	3,590	697	20	114	18,116	0	0	0	0	0	0	0
9	10	24,267	3,590	1,341	20	114	18,979	223 977	0	0	0	0	0	0
9	11 12	25,444 25,901	3,590 3,590	1,765 1,960	20 20	114 114	18,979 18,979	1,239	0	0	0	0	0	0
9	13	26,214	3,590	1,989	20	114	18,979	1,523	0	0	0	0	0	0
9	14	26,353	3,590	1,938	20	114	18,979	1,713	0	0	0	0	0	0
9	15	26,530	3,590	1,803	20	114	18,979	2,025	Ö	0	0	0	0	0
9	16	26,785	3,590	1,535	20	114	18,979	2,146	0	0	402	402	0	0
9	17	27,221	3,590	925	20	114	18,979	2,146	0	0	1,448	1,448	0	637
9	18	28,175	3,590	213	20	114	18,979	2,146	0	0	3,114	1,812	1,302	2,302
9	19	29,110	3,590	7	20	114	18,979	2,146	0	0	4,255	1,812	2,443	3,443
9	20	29,130	3,590	0	20	114	18,979	2,146	0	0	4,282	1,812	2,471	3,471
9	21	28,927	3,590	0	20	114	18,979	2,146	0	0	4,079	1,812	2,267	3,267
9	22 23	28,404	3,590	0	20 20	114 114	18,979 18,979	2,146	0	0	3,556	1,812	1,745 952	2,745
9	23	27,612 26,921	3,590 3,590	0	20	114	18,979	2,146 2,146	0	0	2,764 2,073	1,812 1,812	952 261	1,952 1,261
10	1	26,534	3,590	0	20	114	18,979	2,146	0	0	1,686	1,686	0	875
10	2	26,330	3,590	0	20	114	18,979	2,146	0	0	1,482	1,482	0	670
10	3	26,371	3,590	0	20	114	18,979	2,146	0	0	1,523	1,523	0	711
10	4	26,615	3,590	0	20	114	18,979	2,146	0	0	1,767	1,767	0	955
10	5	26,938	3,590	0	20	114	18,979	2,146	0	0	2,090	1,812	278	1,278
10	6	27,483	3,590	0	20	114	18,979	2,146	0	0	2,635	1,812	823	1,823
10	7	28,016	3,590	0 75	20	114 114	18,979	2,146	0	0	3,168	1,812	1,356	2,356
10 10	8	29,040 30,129	3,590 3,590	75 697	20 20	114 114	18,979 18,979	2,146 2,146	0	0 469	4,117 4,115	1,812 1,812	2,305 2,303	3,305 3,303
10	10	30,129	3,590	1,341	20	114	18,979	2,146	0	469	3,836	1,812	2,025	3,025
10	11	30,359	3,590	1,765	20	114	18,979	2,146	ō	94	3,653	1,812	1,841	2,841
10	12	29,500	3,590	1,960	20	114	18,979	2,146	0	0	2,692	1,812	880	1,880
10	13	28,400	3,590	1,989	20	114	18,979	2,146	0	0	1,563	1,563	0	751
10	14	27,220	3,590	1,938	20	114	18,979	2,146	0	0	434	434	0	0
10 10	15 16	26,150 25,500	3,590 3,590	1,803 1,535	20 20	114 114	18,979 18,979	2,114 1,732	0	(469) (469)	0	0	0	0
10	17	25,823	3,590	925	20	114	18,979	2,146	0	0	50	50	0	0
10	18	27,282	3,590	213	20	114	18,979	2,146	0	0	2,221	1,812	409	1,409
10	19	29,290	3,590	7	20	114	18,979	2,146	0	0	4,434	1,812	2,623	3,623
10	20	29,670	3,590	0	20	114	18,979	2,146	0	0	4,822	1,812	3,010	4,010
10	21	29,811	3,590	0	20	114	18,979	2,146	0	0	4,963	1,812	3,151	4,151
10 10	22 23	29,323 28,236	3,590 3,590	0	20 20	114 114	18,979 18,979	2,146 2,146	0	0	4,475 3,388	1,812 1,812	2,663 1,577	3,663 2,577
10	24	27,185	3,590	0	20	114	18,979	2,146	0	0	2,337	1,812	526	1,526
11	1	26,543	3,590	0	20	114	18,979	2,146	0	0	1,695	1,695	0	883
11	2	26,515	3,590	0	20	114	18,979	2,146	0	0	1,667	1,667	0	856
11	3	26,679	3,590	0	20	114	18,979	2,146	0	0	1,831	1,812	19	1,019
11 11	4 5	27,006 27,644	3,590 3,590	0	20 20	114 114	18,979 18,979	2,146 2,146	0	0	2,158 2,796	1,812 1,812	346 984	1,346 1,984
11	6	28,657	3,590	0	20	114	18,979	2,146	0	0	3,809	1,812	1,997	2,997
11	7	30,601	3,590	0	20	114	18,979	2,146	Ō	469	5,284	1,812	3,472	4,472
11	8	31,386	3,590	75	20	114	18,979	2,146	0	469	5,993	1,812	4,182	5,182
11	9	30,259	3,590	697	20	114	18,979	2,146	0	0	4,714	1,812	2,903	3,903
11	10	29,184	3,590	1,341	20	114	18,979	2,146	0	0	2,994	1,812	1,182	2,182
11 11	11	27,814	3,590	1,765	20	114 114	18,979	2,146	0	0	1,201 0	1,201	0	390
11	12 13	26,097 24,354	3,590 3,590	1,960 1,989	20 20	114	18,979 18,642	1,435 469	0	(469)	0	0	0	0
11	14	22,864	3,590	1,938	20	114	17,203	469	0	(469)	0	0	0	0
11	15	21,398	3,590	1,803	20	114	15,871	94	0	(94)	0	0	0	0
11	16	20,384	3,590	1,535	20	114	15,126	0	0	0	0	0	0	0
11	17	20,791	3,590	925	20	114	16,143	0	0	0	0	0	0	0
11	18	22,989	3,590	213	20	114	18,979	74	0	0	1 127	1 127	0	0
11 11	19 20	25,992 26,691	3,590 3,590	7	20 20	114 114	18,979 18,979	2,146 2,146	0	0 31	1,137 1,812	1,137 1,812	0	325 1,000
11	20	26,684	3,590	0	20	114	18,979	2,146	0	24	1,812	1,812	0	1,000
11	22	26,162	3,590	0	20	114	18,979	2,146	0	0	1,314	1,314	0	502
11	23	24,969	3,590	0	20	114	18,979	2,146	0	0	121	121	0	0
11	24	23,927	3,590	0	20	114	18,979	1,225	0	0	0	0	0	0
12	1	23,336	3,590	0	20	114	18,979	665	0	(31)	0	0	0	0
12 12	2	23,397 23,742	3,590 3,590	0	20 20	114 114	18,979	719 1,040	0	(24) 0	0	0	0	0
12	4	24,205	3,590	0	20	114	18,979 18,979	1,503	0	0	0	0	0	0
12	5	24,923	3,590	0	20	114	18,979	2,146	0	0	75	75	0	0
12	6	26,365	3,590	0	20	114	18,979	2,146	0	0	1,517	1,517	0	705
12	7	28,661	3,590	0	20	114	18,979	2,146	0	469	3,344	1,812	1,532	2,532
12	8	29,516	3,590	75	20	114	18,979	2,146	0	469	4,124	1,812	2,312	3,312
12 12	9	28,255	3,590	697	20	114 114	18,979	2,146	0	94 0	2,616	1,812	804	1,804
12	10 11	26,267 24,486	3,590 3,590	1,341 1,765	20 20	114 114	18,979 18,979	2,146 20	0	0	77 0	77 0	0	0
12	12	22,989	3,590	1,960	20	114	17,306	0	0	0	0	0	0	0
12	13	21,601	3,590	1,989	20	114	15,889	0	0	0	0	0	0	0
12	14	20,088	3,590	1,938	20	114	14,427	0	0	0	0	0	0	0
12	15	18,754	3,590	1,803	20	114	13,228	0	0	0	0	0	0	0
12 12	16 17	18,064 18,444	3,590	1,535	20	114 114	12,806	0	0	0	0	0	0	0
12	17	18,444 20,487	3,590 3,590	925 213	20 20	114 114	13,796 16,551	0	0	0	0	0	0	0
12	19	23,155	3,590	7	20	114	18,979	446	0	0	0	0	0	0
12	20	23,820	3,590	ó	20	114	18,979	1,118	0	0	ō	ō	0	0
12	21	23,882	3,590	0	20	114	18,979	1,180	0	0	0	0	0	0
12	22	23,432	3,590	0	20	114	18,979	730	0	0	0	0	0	0
12	23	22,570	3,590	0	20	114	18,847	0	0	0	0	0	0	0
12	24	21,243 2,414,998	3,590	0	20	114	17,520	0	0	0	0	0 82,567	0 56,948	100,208
		-,-17,770										UL,U01	JU,J40	AUU,4UO

= Must Run = Dispatchable = Load Control/Loss of Load

20220000 - Staff's 3rd DR No Page 5 of 8

Operating Hours (Hrs.) 38 14 Maximum Output (MWh) 1,812 2,540 Generation (MWh) Load Control Loss of Load 47,398 15,425

"What If" Gen MW Unavailable 1,000

(7) (9) (3) (4) (5) (6) (8) (10) (11) (12) (13) (14) (15)

Description Company		1	1		2022 FPL	System Wi	nter Peal	k Day Wit	h Manate	e 1&2 - (1	989-Like	Winter)			
0 2 3.4322 3.800 0	Day		Load (MWh)		Solar (MWh)			Cycle		Turbine		w/o LC	Control	w/ LC	MW of gen out
9														_	
9	9	3	14,187	3,590	0	20	114	10,464	0	0	0	0	0	0	0
0 6 15,127	_					7								_	
0	9		16,121		0	7				0		0		_	
0 0 0 22.55						7								_	
9 11 52444						7								_	
1.21 2.50, 2.50, 2.50, 2.50, 2.50, 2.50, 2.50 2.50 2.50, 2						7								_	
0 14 26,535 1,596 1,598 1,598 20 114 1,679 1,733 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						7								_	
0 15 0 26,500 1,50						7								_	
1						7								_	
9 18 28, 175 1550 233 20 114 18,979 3,788 0 0 0 1,772 1,722 0 660 9 120 2,1010 1550 7 0 20 114 18,979 3,788 0 0 0 1,772 1,722 0 660 9 121 29,977 13,980 0 0 20 114 18,979 3,788 0 0 0 24,971 14,112 655 1,1615 9 121 29,977 13,980 0 0 20 114 18,979 3,788 0 0 0 24,971 14,112 655 1,1615 9 121 29,977 13,980 0 0 20 114 18,979 3,788 0 0 0 1,122 1,121 0 0 130 9 123 29,111 15,980 0 0 20 114 18,979 3,788 0 0 0 1,122 1,121 0 0 130 9 123 29,111 15,980 0 0 20 114 18,979 3,788 0 0 0 1,122 1,121 0 0 130 10 21 29,111 15,980 0 0 20 114 18,979 3,788 0 0 0 0 1,122 1,121 0 0 130 10 21 29,111 15,980 0 0 20 114 18,979 3,788 0 0 0 0 1,122 1,121 0 0 130 10 3 2 29,111 15,980 0 0 20 114 18,979 3,788 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			26,785	3,590	1,535	7		18,979	2,548					_	
9 19 20, 110 25,000 7 20 114 18,979 3,788 0 277 2,486 1,121 624 1,122 624 1,122 625 1,226 627						7					-			_	
9			29,110			7		18,979	3,788			2,436	1,812		
9 22 22 24,006 1950 0 20 114 18,979 3,788 0 10 123 1,812 1,522 0 10.00 0 114 18,979 1,788 0 0 10 1,122 1,122 0 110 110 11 15,7514 1,552 0 1 10 10 10 1 15,7514 1,550 0 1 20 114 18,779 1,788 0 0 0 1,140 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						7									
9	9		28,404	3,590	0	7		18,979	3,788	0		1,812	1,812	0	1,000
10						7									
10	10	1	26,534	3,590	0	20	114	18,979	3,788	0	0	44	44	0	0
10	_					7								_	
10	10	4	26,615	3,590	0	20	114	18,979	3,788	0	0	125	125	0	0
10	_					7					-				
10	10	7	28,016	3,590	0	20	114	18,979	3,788	0	0	1,526	1,526	0	714
10	_					7									
10	10		30,495	3,590	1,341	20	114	18,979	3,788	0	469	2,194	1,812	383	1,383
13	_					7								_	
10 15	10	13	28,400	3,590	1,989	20	114	18,979	3,709	0	0	0	0	0	0
10	_					7								_	
10	10	16	25,500		1,535	20	114	18,979	1,357	0		0		0	0
10 29 29,290 3,590 7 20 114 18,979 3,788 0 0 2,792 1,112 981 1,981 1,981 1,081 1,112 1,568 2,568 1,0 21 29,811 3,590 0 20 114 18,979 3,788 0 0 3,321 1,112 1,599 2,509 1,0 22 29,811 3,590 0 20 114 18,979 3,788 0 0 3,321 1,112 1,599 2,509 1,10 23 23,233 3,580 0 0 0 0 1,14 18,779 3,788 0 0 0 1,746 1,746 0 935 1,111 1 2 2,515 3,590 0 20 114 18,779 3,788 0 0 0 1,746 1,746 0 935 1,111 1 2 2,515 3,590 0 20 114 18,779 3,788 0 0 0 2,52 25 0 0 0 1 1 1 1 1 2 2,515 3,590 0 20 114 18,779 3,788 0 0 25 25 0 0 0 1 1 1 1 1 1 1	_					7								_	
10	_	19			7	7				0	-				
10 22 29,323 3,590 0 20 114 19,99 3,788 0 0 2,833 1,812 1,021 2,021 10 24 27,185 3,590 0 20 114 18,979 3,788 0 0 0 695 695 0 0 0 111 1 2 25,513 3,590 0 20 114 18,979 3,788 0 0 0 53 53 0 0 0 111 1 2 25,513 3,590 0 20 114 18,979 3,788 0 0 25 25 0 0 0 111 3 27,614 3,590 0 20 114 18,979 3,788 0 0 25 25 0 0 0 111 3 27,648 3,550 0 0 20 114 18,979 3,788 0 0 185 185 0 0 0 111 3 27,648 3,550 0 0 20 114 18,979 3,788 0 0 1,154 1,154 0 342 115	_					7								,	
10	_	22	29,323		0	7	114			0					
11						7									
11	11	1	26,543		0	20	114	18,979	3,788	0	0	53		0	0
11						7						-		_	
111 6 28,677 3,590 0 20 114 18,979 3,788 0 208 3,903 1,812 0,902 3,902 11 8 8 31,386 3,590 75 20 114 18,979 3,788 0 208 3,903 1,812 2,902 3,902 11 9 30,259 3,590 697 20 114 18,979 3,788 0 0 6 3,072 1,812 1,1261 2,261 11 10 29,184 3,590 1,765 20 114 18,979 3,788 0 0 0 3,072 1,812 1,1261 2,261 11 11 2,7814 3,590 1,765 20 114 18,979 3,788 0 0 0 1,352 1,352 0 540 11 11 12 2,810 3,590 1,565 20 114 18,979 3,788 0 0 0 1,352 1,352 0 540 11 11 12 2,810 3,590 1,580 20 114 18,979 3,788 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 12 2,6097 3,590 1,590 20 114 18,979 3,470 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		4			0	7				0				0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						7									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	7	30,601		0	20	114	18,979	3,788	0	208	3,903	1,812	2,092	3,092
111 11						7									
$\begin{array}{c} 11 \\ 12 \\ 26, 697 \\ 3,590 \\ 1,980 \\ 20 \\ 114 \\ 13,99 \\ 20 \\ 114 \\ 14,22,854 \\ 3,590 \\ 1,983 \\ 20 \\ 114 \\ 15,871 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	11	10	29,184		1,341	20	114	18,979		0				0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						7								_	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	13	24,354	3,590	1,989	20	114	18,642	469	0	(469)	0	0	0	0
111 16 20,384 3,590 1,535 20 114 15,126 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td>7</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td>						7								_	
11 18 22,989 3,590 7 20 114 18,979 74 0	11	16	20,384	3,590	1,535	20	114	15,126	0	0	0	0	0	0	0
11 19 25,992 3,590 7 20 114 18,979 3,283 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td>7</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td>_</td> <td></td>						7					-	-		_	
11 21 25,684 3,590 0 20 114 18,979 3,788 0 194 0 </td <td>11</td> <td>19</td> <td>25,992</td> <td>3,590</td> <td>7</td> <td>20</td> <td>114</td> <td>18,979</td> <td>3,283</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	11	19	25,992	3,590	7	20	114	18,979	3,283	0	0	0	0	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$															
11 24 23,927 3,590 0 20 114 18,979 1,225 0 <td>11</td> <td>22</td> <td>26,162</td> <td>3,590</td> <td>0</td> <td>20</td> <td>114</td> <td>18,979</td> <td>3,460</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	11	22	26,162	3,590	0	20	114	18,979	3,460	0	0	0	0	0	0
12 1 23,336 3,590 0 20 114 18,979 634 0						7					-			_	
12 3 23,742 3,590 0 20 114 18,979 1,040 0	12	1	23,336	3,590	0	20	114	18,979	634	0	0	0	0	0	0
12 4 24,205 3,590 0 20 114 18,979 1,503 0											-				
12 6 26,365 3,590 0 20 114 18,979 3,663 0 1,670 1,670 1,670 12 29 28,255 3,590 697 20 114 18,979 3,788 0 0 1,068 1,068 0 2256 12 10 26,267 3,590 1,765 20 114 18,979 2,223 0	12	4	24,205	3,590	0	20	114	18,979	1,503	0	0	0	0	0	0
12 7 28,661 3,590 0 20 114 18,979 3,788 0 359 1,812 1,000 1,000 12 8 29,516 3,590 75 20 114 18,979 3,788 0 469 2,482 1,812 670 1,670 12 9 28,255 3,590 1,341 20 114 18,979 2,223 0 </td <td></td> <td>-</td> <td></td> <td></td> <td></td>												-			
12 9 28,255 3,590 697 20 114 18,979 3,788 0 0 1,068 1,068 0 256 12 10 26,267 3,590 1,765 20 114 18,979 2,223 0 <td>12</td> <td>7</td> <td>28,661</td> <td>3,590</td> <td>0</td> <td>20</td> <td>114</td> <td>18,979</td> <td>3,788</td> <td>0</td> <td>359</td> <td>1,812</td> <td>1,812</td> <td>0</td> <td>1,000</td>	12	7	28,661	3,590	0	20	114	18,979	3,788	0	359	1,812	1,812	0	1,000
12 10 26,267 3,590 1,341 20 114 18,979 2,223 0															
12 12 22,989 3,590 1,960 20 114 17,306 0 <td>12</td> <td>10</td> <td>26,267</td> <td>3,590</td> <td>1,341</td> <td>20</td> <td>114</td> <td>18,979</td> <td>2,223</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	12	10	26,267	3,590	1,341	20	114	18,979	2,223	0	0	0	0	0	0
12 13 21,601 3,590 1,989 20 114 15,889 0 <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td>											-				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	13	21,601	3,590	1,989	20	114	15,889	0	0	0	0	0	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											-	-			
12 18 20,487 3,590 213 20 114 16,551 0 0 0 0 0 0 0 0 12 19 23,155 3,590 7 20 114 18,979 1,118 0 0 0 0 0 0 12 20 23,820 3,590 0 20 114 18,979 1,180 0 0 0 0 0 0 12 21 23,832 3,590 0 20 114 18,979 1,180 0 0 0 0 0 0 12 22 23,432 3,590 0 20 114 18,979 730 0 0 0 0 0 0 12 23 22,570 3,590 0 20 114 18,847 0 0 0 0 0 0 0 12 24 21,243 3,590 0 20 114 17,520 0 0 0 0 0 0 0	12	16	18,064	3,590	1,535	20	114	12,806	0	0	0	0	0	0	0
12 19 23,155 3,590 7 20 114 18,979 446 0											-	-			
12 21 23,882 3,590 0 20 114 18,979 1,180 0 0 0 0 0 0 0 12 22 22,432 3,590 0 20 114 18,979 730 0 0 0 0 0 0 0 12 23 22,570 3,590 0 20 114 18,847 0 0 0 0 0 0 12 24 21,243 3,590 0 20 114 17,520 0 0 0 0 0 0	12	19	23,155	3,590	7	20	114	18,979	446	0	0	0	0	0	0
12 22 23,432 3,590 0 20 114 18,979 730 0 0 0 0 0 0 0 0 1 1 1 2 23 22,570 3,590 0 20 114 18,847 0 0 0 0 0 0 0 0 0 1 1 1 1 1,750 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0											-	-			
12 24 21,243 3,590 0 20 114 17,520 0 0 0 0 0 0 0	12	22	23,432	3,590	0	20	114	18,979	730	0	0	0	0	0	0
				3,330		20	214	17,320	3	3	. J	, ,			

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 17 of 24 Tab 6 of 8

(2)

(3)

(4)

(5)

20220000 - Staff's 3rd DR No Page 6 of 8

(16)

"What If" Gen MW Unavailable 1,000

(15)

Operating Hours (Hrs.) Maximum Output (MWh) Generation (MWh) = Must Run = Dispatchable = Load Control/Loss of Load Load Control Loss of Load 0 (6)

(7)

(9)

(10)

(11)

(12)

(13)

(14)

(8)

	ı				2022 Gulf	System W	/inter Pea	ak Day - (1	989-Like \	Vinter)					
Day	Hour Ending	Load (MWh)	Nuclear (MWh)	Solar (MWh)	Conservation (MWh)	Purchases (MWh)	Combined Cycle (MWh)	CT/GT (MWh)	Steam Turbine (MWh)	Storage (MWh)	Loss of Load w/o LC (MWh)	Load Control (MWh)	Loss of Load w/ LC (MWh)	Loss of Load w/ LC and with 1,000 MW of gen out (MWh)*	Excess Capacity
9	1 2	1,585 1,590	0	0	6 6	112 112	1,467 1,472	0	0	0	0	0	0	0	2,755 2,750
9	3	1,622	0	0	6	113	1,502	0	0	0	0	0	0	0	2,720
9	4 5	1,662 1,750	0	0	6 6	109 115	1,531 1,531	15 98	0	0	0	0	0	0	2,676 2,593
9	6	1,958	0	0	6	121	1,531	300	0	0	0	0	0	0	2,391
9	7 8	2,250 2,548	0	0	6 6	122 109	1,531 1,531	590 901	0	0	0	0	0	0	2,101 1,790
9	9	2,743	0	31	6	113	1,531	1,007	54	0	0	0	0	0	1,630
9	10 11	2,768 2,693	0	85 107	6 6	120 126	1,531 1,531	1,007 922	18 0	0	0	0	0	0	1,666 1,769
9	12	2,563	0	122	6	137	1,531	767	0	0	0	0	0	0	1,924
9	13 14	2,387 2,208	0	127 128	6 6	143 143	1,531 1,531	580 401	0	0	0	0	0	0	2,111 2,290
9	15	2,079	0	124	6	133	1,531	285	0	0	0	0	0	0	2,406
9	16 17	1,956 1,968	0	115 87	6 6	123 106	1,531 1,531	181 238	0	0	0	0	0	0	2,510 2,453
9	18	2,154	0	22	6	84	1,531	510	0	0	0	0	0	0	2,181
9	19 20	2,541 2,732	0	0	6 6	83 87	1,531 1,531	920 1,007	0 100	0	0	0	0	0	1,771 1,584
9 9	21	2,776 2,755	0	0	6	101 115	1,531	1,007	130	0	0	0	0	0	1,554
9	22 23	2,755	0	0	6 6	118	1,531 1,531	1,007 993	96 0	0	0	0	0	0	1,588 1,698
9 10	24 1	2,490 2,416	0	0	6	110 112	1,531 1,531	843 766	0	0	0	0	0	0	1,848 1,925
10	2	2,410	0	0	6	112	1,531	772	0	0	0	0	0	0	1,919
10 10	3 4	2,436 2,535	0	0	6 6	113 109	1,531 1,531	786 888	0	0	0	0	0	0	1,905 1,803
10	5	2,629	0	0	6	115	1,531	976	0	0	0	0	0	0	1,715
10 10	6 7	2,787 3,024	0	0	6 6	121 122	1,531 1,531	1,007 1,007	122 357	0	0	0	0	0	1,562 1,327
10	8	3,249	0	0	6	109	1,531	1,007	596	0	0	0	0	0	1,088
10 10	9 10	3,323 3,088	0	31 85	6 6	113 120	1,531 1,531	1,007 1,007	635 338	0	0	0	0	0	1,049 1,346
10	11	2,750	0	107	6	126	1,531	979	0	0	0	0	0	0	1,712
10 10	12 13	2,464 2,147	0	122 127	6 6	137 143	1,531 1,531	668 340	0	0	0	0	0	0	2,023 2,351
10	14	1,863	0	128	6	143	1,531	56	0	0	0	0	0	0	2,635
10 10	15 16	1,680 1,617	0	124 115	6 6	133 123	1,417 1,373	0	0	0	0	0	0	0	2,805 2,849
10	17	1,601	0	87	6	106	1,402	0	0	0	0	0	0	0	2,820
10 10	18 19	1,659 1,917	0	22 0	6 6	84 83	1,531 1,531	15 296	0	0	0	0	0	0	2,676 2,395
10	20	2,121	0	0	6	87	1,531	497	0	0	0	0	0	0	2,194
10 10	21 22	2,209 2,222	0	0	6 6	101 115	1,531 1,531	570 569	0	0	0	0	0	0	2,121 2,122
10	23	2,163	0	0	6	118	1,531	507	0	0	0	0	0	0	2,184
10 11	24	2,058 1,976	0	0	6	110 112	1,531 1,531	410 327	0	0	0	0	0	0	2,281 2,364
11 11	2	1,980 2,034	0	0	6 6	112 113	1,531 1,531	331 383	0	0	0	0	0	0	2,360 2,308
11	4	2,087	0	0	6	109	1,531	440	0	0	0	0	0	0	2,251
11 11	5 6	2,165 2,303	0	0	6 6	115 121	1,531 1,531	513 645	0	0	0	0	0	0	2,178 2,046
11	7	2,543	0	0	6	122	1,531	884	0	0	0	0	0	0	1,807
11 11	8	2,781 2,755	0	0 31	6 6	109 113	1,531 1,531	1,007 1,007	128 66	0	0	0	0	0	1,556 1,618
11	10	2,416	0	85	6	120	1,531	673	0	0	0	0	0	0	2,018
11 11	11 12	2,060 1,764	0	107 122	6 6	126 137	1,531 1,499	289 0	0	0	0	0	0	0	2,402 2,723
11 11	13	1,613	0	127 128	6	143 143	1,337	0	0	0	0	0	0	0	2,885
11	14 15	1,522 1,452	0	128	6 6	133	1,245 1,189	0	0	0	0	0	0	0	2,977 3,033
11 11	16 17	1,403 1,381	0	115 87	6 6	123 106	1,158 1,182	0	0	0	0	0	0	0	3,064 3,040
11	18	1,422	0	22	6	84	1,309	0	0	0	0	0	0	0	2,913
11 11	19 20	1,541 1,597	0	0	6 6	83 87	1,451 1,504	0	0	0	0	0	0	0	2,771 2,718
11	21	1,613	0	0	6	101	1,506	0	0	0	0	0	0	0	2,716
11 11	22 23	1,621 1,606	0	0	6 6	115 118	1,500 1,481	0	0	0	0	0	0	0	2,722 2,741
11	24	1,578	0	0	6	110	1,462	0	0	0	0	0	0	0	2,760
12 12	1 2	1,550 1,547	0	0	6 6	112 112	1,432 1,429	0	0	0	0	0	0	0	2,790 2,793
12	3	1,548	0	0	6	113	1,429	0	0	0	0	0	0	0	2,793
12 12	4 5	1,565 1,573	0	0	6 6	109 115	1,449 1,452	0	0	0	0	0	0	0	2,773 2,770
12	6	1,597	0	0	6	121	1,469	0	0	0	0	0	0	0	2,753
12 12	7	1,639 1,688	0	0	6 6	122 109	1,511 1,531	0 41	0	0	0	0	0	0	2,711 2,650
12	9	1,740	0	31	6	113	1,531	59	0	0	0	0	0	0	2,632
12 12	10 11	1,673 1,567	0	85 107	6 6	120 126	1,462 1,327	0	0	0	0	0	0	0	2,760 2,895
12	12	1,468	0	122 127	6	137	1,203	0	0	0	0	0	0	0	3,019
12 12	13 14	1,393 1,324	0	127	6 6	143 143	1,116 1,048	0	0	0	0	0	0	0	3,106 3,174
12	15	1,278	0	124	6	133	1,015	0	0	0	0	0	0	0	3,207
12 12	16 17	1,257 1,252	0	115 87	6 6	123 106	1,013 1,053	0	0	0	0	0	0	0	3,209 3,169
12	18	1,273	0	22	6	84	1,160	0	0	0	0	0	0	0	3,062
12 12	19 20	1,357 1,391	0	0	6 6	83 87	1,267 1,297	0	0	0	0	0	0	0	2,955 2,925
12	21	1,382	0	0	6	101	1,275	0	0	0	0	0	0	0	2,947
12 12	22 23	1,363 1,335	0	0	6 6	115 118	1,242 1,211	0	0	0	0	0	0	0	2,980 3,011
12	24	1,308	0	0	6	110	1,192	0	0	0	0	0	0	0	3,030
		191,083										0	0	0	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 17 of 24 Tab 7 of 8

= Must Run = Dispatchable = Load Control/Loss of Load

20220000 - Staff's 3rd DR No Page 7 of 8

Operating Hours (Hrs.) 23 5 Maximum Output (MWh) 1,829 1,982 Generation (MWh) Load Control Loss of Load 28,822 4,116

"What If" Gen MW Unavailable 1,000

(2) (3) (5) (7) (9) (15) (1) (4) (6) (8) (10) (11) (14) (12) (13)

2023 Combined System Winter Peak Da	Without Manaton 18.2	(1989-Like Winter)

			2023	Combine	d System \	Ninter Pe	ak Day W	ithout Ma	natee 1&	<mark>2</mark> - (1989-	Like Wint	er)		
Day	Hour Ending	Load (MWh)	Nuclear (MWh)	Solar (MWh)	Conservation (MWh)	Purchases (MWh)	Combined Cycle (MWh)	CT/GT (MWh)	Steam Turbine (MWh)	Storage (MWh)	Loss of Load w/o LC (MWh)	Load Control (MWh)	Loss of Load w/ LC (MWh)	Loss of Load w/ LC and with 1,000 MW of gen out (MWh)*
9	1	16,538	3,590	0	46	226	12,677	0	0	0	0	0	0	0
9	2	16,108 16,094	3,590 3,590	0	46 46	226 227	12,246 12,231	0	0	0	0	0	0	0
9	4	16,408	3,590	0	46	223	12,549	0	0	0	0	0	0	0
9	5	17,089	3,590	0	46	229	13,225	0	0	0	0	0	0	0
9	6	18,404	3,590	0	46	235	14,534	0	0	0	0	0	0	0
9	7 8	20,391 22,977	3,590 3,590	0 78	46 46	236 223	16,519 19.041	0	0	0	0	0	0	0
9	9	25,733	3,590	845	46	226	21,026	0	0	0	0	0	0	0
9	10	27,522	3,590	1,649	46	233	21,738	266	0	0	0	0	0	0
9	11 12	28,647 28,982	3,590 3,590	2,165 2,397	46 46	240 250	21,738 21,738	869 960	0	0	0	0	0	0
9	13	28,982	3,590	2,397	46	250	21,738	1,060	0	0	0	0	0	0
9	14	29,085	3,590	2,381	46	256	21,738	1,075	0	0	0	0	0	0
9	15	29,136	3,590	2,222	46	246	21,738	1,293	0	0	0	0	0	0
9	16 17	29,272 29,728	3,590 3,590	1,900 1,145	46 46	236 219	21,738 21,738	1,762 2,990	0	0	0	0	0	0
9	18	30,888	3,590	253	46	198	21,738	3,153	1,684	0	226	226	0	ō
9	19	32,231	3,590	7	46	197	21,738	3,153	1,684	94	1,722	1,722	0	893
9	20 21	32,444 32,280	3,590 3,590	0	46 46	201 215	21,738 21,738	3,153 3,153	1,684 1,684	469 469	1,563 1,385	1,563 1,385	0	734 557
9	22	31,727	3,590	0	46	229	21,738	3,153	1,684	0	1,287	1,287	0	458
9	23	30,812	3,590	0	46	232	21,738	3,153	1,684	0	370	370	0	0
9	24	29,949	3,590	0	46	224	21,738	3,153	1,198	0	0	0	0	0
10 10	1 2	29,479 29,276	3,590 3,590	0	46 46	226 226	21,738 21.738	3,153 3,153	820 992	(94) (469)	0	0	0	0
10	3	29,333	3,590	0	46	227	21,738	3,153	1,048	(469)	0	0	0	0
10	4	29,681	3,590	0	46	223	21,738	3,153	932	0	0	0	0	0
10 10	5 6	30,105 30,820	3,590 3,590	0	46 46	229 235	21,738 21,738	3,153 3,153	1,349 1,684	0	0 374	0 374	0	0
10	7	31,601	3,590	0	46	235	21,738	3,153	1,684	0	1,155	1,155	0	326
10	8	32,873	3,590	78	46	223	21,738	3,153	1,684	293	2,068	1,829	238	1,239
10	9	34,057	3,590	845	46	226	21,738	3,153	1,684	469	2,305	1,829	476	1,477
10 10	10 11	34,193 33,715	3,590 3,590	1,649 2,165	46 46	233 240	21,738 21,738	3,153 3,153	1,684 1,684	270 0	1,829 1,099	1,829 1,099	0	1,000 270
10	12	32,551	3,590	2,397	46	250	21,738	3,153	1,376	0	0	0	0	0
10	13	31,110	3,590	2,434	46	256	21,738	3,046	0	0	0	0	0	0
10 10	14 15	29,622 28,347	3,590 3,590	2,381 2.222	46 46	256 246	21,738 21.738	1,706 973	0	(94) (469)	0	0	0	0
10	16	28,347	3,590	1,900	46	236	21,738	580	0	(469)	0	0	0	0
10	17	27,934	3,590	1,145	46	219	21,738	1,195	0	0	0	0	0	0
10	18	29,479	3,590	253	46	198	21,738	3,153	501	0	0	0	0	0
10 10	19 20	31,785 32,378	3,590 3,590	7 0	46 46	197 201	21,738 21.738	3,153 3,153	1,684 1.684	0 469	1,370 1,497	1,370 1.497	0	541 669
10	21	32,611	3,590	0	46	215	21,738	3,153	1,684	469	1,716	1,716	0	887
10	22	32,126	3,590	0	46	229	21,738	3,153	1,684	94	1,592	1,592	0	764
10	23	30,959	3,590	0	46	232	21,738	3,153	1,684	0	516	516	0	0
10 11	24	29,782 29,046	3,590 3,590	0	46 46	224 226	21,738 21,738	3,153 3,153	1,031 387	0 (94)	0	0	0	0
11	2	29,021	3,590	0	46	226	21,738	3,153	737	(469)	0	0	0	0
11	3	29,242	3,590	0	46	227	21,738	3,153	957	(469)	0	0	0	0
11 11	4 5	29,629 30,358	3,590 3,590	0	46 46	223 229	21,738 21,738	3,153 3,153	879 1,602	0	0	0	0	0
11	6	31,530	3,590	0	46	235	21,738	3,153	1,684	0	1,084	1,084	0	255
11	7	33,753	3,590	0	46	236	21,738	3,153	1,684	469	2,837	1,829	1,008	2,008
11 11	8	34,792 33.617	3,590 3.590	78 845	46 46	223 226	21,738 21.738	3,153 3,153	1,684 1.684	469 94	3,811 2,241	1,829 1,829	1,982 412	2,982 1,412
11	10	32,180	3,590	1,649	46	233	21,738	3,153	1,684	0	86	86	0	0
11	11	30,425	3,590	2,165	46	240	21,738	2,646	0	0	0	0	0	0
11 11	12 13	28,378 26,448	3,590 3,590	2,397 2,434	46 46	250 256	21,738 20,122	450 469	0	(94) (469)	0	0	0	0
11	14	24,838	3,590	2,434	46	256	18,565	469	0	(469)	0	0	0	0
11	15	23,273	3,590	2,222	46	246	17,168	0	0	0	0	0	0	0
11	16	22,190	3,590	1,900	46	236	16,417	0	0	0	0	0	0	0
11 11	17 18	22,583 24,865	3,590 3,590	1,145 253	46 46	219 198	17,583 20,779	0	0	0	0	0	0	0
11	19	28,045	3,590	7	46	197	21,738	2,467	0	0	0	0	0	0
11	20	28,814	3,590	0	46	201	21,738	3,153	86	0	0	0	0	0
11 11	21 22	28,824 28,300	3,590 3.590	0	46 46	215 229	21,738 21.738	3,153 2,697	82 0	0	0	0	0	0
11	23	27,068	3,590	0	46	232	21,738	1,463	0	0	0	0	0	0
11	24	25,978	3,590	0	46	224	21,738	380	0	0	0	0	0	0
12 12	1 2	25,348 25,407	3,590 3,590	0	46 46	226 226	21,486 21,545	0	0	0	0	0	0	0
12	3	25,759	3,590	0	46	226	21,738	159	0	0	0	0	0	0
12	4	26,248	3,590	0	46	223	21,738	651	0	0	0	0	0	0
12	5	26,988	3,590	0	46	229	21,738	1,386	0	0	0	0	0	0
12 12	6 7	28,481 30,865	3,590 3,590	0	46 46	235 236	21,738 21,738	2,873 3,153	0 1,684	0 418	0	0	0	0
12	8	31,785	3,590	78	46	223	21,738	3,153	1,684	469	805	805	0	0
12	9	30,552	3,590	845	46	226	21,738	3,153	954	0	0	0	0	0
12 12	10 11	28,459 26,537	3,590 3,590	1,649 2,165	46 46	233 240	21,738 20,496	1,203 0	0	0	0	0	0	0
12	12	24,911	3,590	2,165	46	250	18,628	0	0	0	0	0	0	0
12	13	23,421	3,590	2,434	46	256	17,095	0	0	0	0	0	0	0
12	14	21,810	3,590	2,381	46	256	15,537	0	0	0	0	0	0	0
12 12	15 16	20,403 19,679	3,590 3,590	2,222 1.900	46 46	246 236	14,298 13,907	0	0	0	0	0	0	0
12	17	20,061	3,590	1,145	46	219	15,060	0	0	0	0	0	0	0
12	18	22,164	3,590	253	46	198	18,078	0	0	0	0	0	0	0
12 12	19 20	24,968	3,590	7 0	46 46	197 201	21,128	0 105	0	0	0	0	0	0
12	20	25,679 25,735	3,590 3,590	0	46 46	201	21,738 21,738	146	0	0	0	0	0	0
12	22	25,257	3,590	0	46	229	21,392	0	0	0	0	0	0	0
12	23	24,350	3,590	0	46	232	20,483	0	0	0	0	0	0	0
12	24	22,970 2,654,040	3,590	0	46	224	19,110	0	0	0	0	28,822	0 4,116	0 16,471
Notes:		,,										.,	,	.,

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 17 of 24 Tab 8 of 8

= Must Run = Dispatchable = Load Control/Loss of Load

20220000 - Staff's 3rd DR No Page 8 of 8

Maximum Output (MWh) 1,829 340 Operating Hours (Hrs.) Generation (MWh) Load Control Loss of Load 4,973 340

"What If" Gen MW Unavailable 1,000

(2) (3) (5) (7) (9) (15) (1) (4) (6) (8) (10) (11) (14) (12) (13)

2023 Combined System Winter Peak Day With Manatee 18) _ (1989_Like Winter)

	r		20	23 Combir	ed System	Winter I	Peak Day	With Man	atee 1&2	- (1989-Li	ke Winte	r)		
Day	Hour Ending	Load (MWh)	Nuclear (MWh)	Solar (MWh)	Conservation (MWh)	Purchases (MWh)	Combined Cycle (MWh)	CT/GT (MWh)	Steam Turbine (MWh)	Storage (MWh)	Loss of Load w/o LC (MWh)	Load Control (MWh)	Loss of Load w/ LC (MWh)	Loss of Load w/ LC and with 1,000 MW of gen out (MWh)*
9	1	16,538	3,590	0	46	226	12,677	0	0	0	0	0	0	0
9	2	16,108 16,094	3,590 3,590	0	46 46	226 227	12,246 12,231	0	0	0	0	0	0	0
9	4	16,408	3,590	0	46	223	12,549	0	0	0	0	0	0	0
9	5	17,089	3,590	0	46	229	13,225	0	0	0	0	0	0	0
9	6 7	18,404 20,391	3,590 3,590	0	46 46	235 236	14,534 16,519	0	0	0	0	0	0	0
9	8	22,977	3,590	78	46	223	19,041	0	0	0	0	0	0	0
9	9	25,733	3,590	845	46	226	21,026	0	0	0	0	0	0	0
9	10 11	27,522 28,647	3,590 3,590	1,649 2,165	46 46	233 240	21,738 21,738	266 869	0	0	0	0	0	0
9	12	28,982	3,590	2,397	46	250	21,738	960	0	0	0	0	0	0
9	13	29,124	3,590	2,434	46	256	21,738	1,060	0	0	0	0	0	0
9	14 15	29,085 29,136	3,590 3,590	2,381 2,222	46 46	256 246	21,738 21,738	1,075 1,293	0	0	0	0	0	0
9	16	29,272	3,590	1,900	46	236	21,738	1,762	0	0	0	0	0	0
9	17	29,728	3,590	1,145	46	219	21,738	2,990	0	0	0	0	0	0
9	18 19	30,888 32,231	3,590 3,590	253 7	46 46	198 197	21,738 21.738	3,153 3,153	1,910 3.326	174	0	0	0	0
9	20	32,444	3,590	0	46	201	21,738	3,153	3,326	390	0	0	0	0
9	21	32,280	3,590	0	46	215	21,738	3,153	3,326	212	0	0	0	0
9	22 23	31,727 30,812	3,590 3,590	0	46 46	229 232	21,738 21,738	3,153 3,153	2,971 2,054	0	0	0	0	0
9	24	29,949	3,590	0	46	224	21,738	3,153	1,198	0	0	0	0	0
10 10	1 2	29,479 29,276	3,590	0	46 46	226 226	21,738 21,738	3,153	820 992	(94) (469)	0	0	0	0
10 10	3	29,276 29,333	3,590 3,590	0	46 46	226 227	21,738 21,738	3,153 3,153	992 1,048	(469) (469)	0	0	0	0
10	4	29,681	3,590	0	46	223	21,738	3,153	932	0	0	0	0	0
10 10	5 6	30,105 30,820	3,590 3,590	0	46 46	229 235	21,738 21,738	3,153 3,153	1,349 2,058	0	0	0	0	0
10	7	30,820	3,590	0	46 46	235	21,738	3,153	2,058	0	0	0	0	0
10	8	32,873	3,590	78	46	223	21,738	3,153	3,326	106	613	613	0	0
10 10	9	34,057 34,193	3,590 3,590	845 1,649	46 46	226 233	21,738 21,738	3,153 3,153	3,326 3,326	469 457	663 0	663 0	0	0
10	11	33,715	3,590	2,165	46	240	21,738	3,153	2,783	0	0	0	0	0
10	12	32,551	3,590	2,397	46	250	21,738	3,153	1,376	0	0	0	0	0
10 10	13 14	31,110 29.622	3,590 3,590	2,434 2.381	46 46	256 256	21,738 21.738	3,046 1.706	0	0 (94)	0	0	0	0
10	15	28,347	3,590	2,222	46	246	21,738	973	0	(469)	0	0	0	0
10	16	27,621	3,590	1,900	46	236	21,738	580	0	(469)	0	0	0	0
10 10	17 18	27,934 29,479	3,590 3,590	1,145 253	46 46	219 198	21,738 21,738	1,195 3,153	0 501	0	0	0	0	0
10	19	31,785	3,590	7	46	197	21,738	3,153	3,054	0	0	0	0	0
10	20	32,378	3,590	0	46	201	21,738	3,153	3,326	324	0	0	0	0
10 10	21 22	32,611 32,126	3,590 3,590	0	46 46	215 229	21,738 21,738	3,153 3,153	3,326 3,326	469 44	74 0	74 0	0	0
10	23	30,959	3,590	0	46	232	21,738	3,153	2,200	0	0	0	0	0
10	24	29,782	3,590	0	46	224	21,738	3,153	1,031	0	0	0	0	0
11 11	1 2	29,046 29.021	3,590 3,590	0	46 46	226 226	21,738 21.738	3,153 3,153	762 737	(469) (469)	0	0	0	0
11	3	29,242	3,590	0	46	227	21,738	3,153	582	(94)	0	0	0	0
11	4	29,629	3,590	0	46	223	21,738	3,153	879	0	0	0	0	0
11 11	5 6	30,358 31,530	3,590 3,590	0	46 46	229 235	21,738 21,738	3,153 3,153	1,602 2,768	0	0	0	0	0
11	7	33,753	3,590	0	46	236	21,738	3,153	3,326	469	1,195	1,195	0	366
11 11	8	34,792 33.617	3,590 3,590	78 845	46 46	223 226	21,738 21.738	3,153 3,153	3,326 3.326	469 94	2,169 599	1,829 599	340 0	1,340 0
11	10	32,180	3,590	1,649	46	233	21,738	3,153	1,770	0	0	0	0	0
11	11	30,425	3,590	2,165	46	240	21,738	2,646	0	0	0	0	0	0
11 11	12 13	28,378	3,590 3,590	2,397 2,434	46 46	250 256	21,738 20,122	356 0	0	0	0	0	0	0
11	14	26,448 24,838	3,590	2,434	46	256	18,565	0	0	0	0	0	0	0
11	15	23,273	3,590	2,222	46	246	17,168	0	0	0	0	0	0	0
11 11	16 17	22,190 22,583	3,590 3,590	1,900 1,145	46 46	236 219	16,417 17,583	0	0	0	0	0	0	0
11	18	24,865	3,590	253	46	198	20,779	0	0	0	0	0	0	0
11	19	28,045	3,590	7	46	197	21,738	2,467	0	0	0	0	0	0
11 11	20 21	28,814 28,824	3,590 3,590	0	46 46	201 215	21,738 21,738	3,153 3,153	86 82	0	0	0	0	0
11	22	28,300	3,590	0	46	229	21,738	2,697	0	0	0	0	0	0
11	23	27,068 25,978	3,590	0	46	232	21,738 21,738	1,463	0	0	0	0	0	0
11	24	25,978	3,590 3,590	0	46 46	224 226	21,738	380	0	0	0	0	0	0
12	2	25,407	3,590	0	46	226	21,545	0	0	0	0	0	0	0
12 12	3 4	25,759 26,248	3,590 3,590	0	46 46	227 223	21,738 21,738	159 651	0	0	0	0	0	0
12	5	26,248	3,590	0	46 46	223	21,738	1,386	0	0	0	0	0	0
12	6	28,481	3,590	0	46	235	21,738	2,873	0	0	0	0	0	0
12 12	7	30,865	3,590	0 78	46 46	236 223	21,738	3,153 3,153	2,102 2,958	0	0	0	0	0
12	9	31,785 30,552	3,590 3,590	845	46 46	226	21,738 21,738	3,153	954	0	0	0	0	0
12	10	28,459	3,590	1,649	46	233	21,738	1,203	0	0	0	0	0	0
12 12	11 12	26,537 24,911	3,590 3,590	2,165 2,397	46 46	240 250	20,496 18,628	0	0	0	0	0	0	0
12	13	23,421	3,590	2,397	46	256	17,095	0	0	0	0	0	0	0
12	14	21,810	3,590	2,381	46	256	15,537	0	0	0	0	0	0	0
12 12	15 16	20,403 19,679	3,590 3,590	2,222 1.900	46 46	246 236	14,298 13,907	0	0	0	0	0	0	0
12	17	20,061	3,590	1,900	46	219	15,060	0	0	0	0	0	0	0
12	18	22,164	3,590	253	46	198	18,078	0	0	0	0	0	0	0
12 12	19 20	24,968	3,590 3,590	7 0	46 46	197 201	21,128	0 105	0	0	0	0	0	0
12	21	25,679 25,735	3,590 3,590	0	46	215	21,738 21,738	146	0	0	0	0	0	0
12	22	25,257	3,590	0	46	229	21,392	0	0	0	0	0	0	0
12 12	23 24	24,350 22,970	3,590 3,590	0	46 46	232 224	20,483 19,110	0	0	0	0	0	0	0
12		2,654,040	3,330		-,0	224	13,110	3	,			4,973	340	1,706

Notes:

Combined Cycle Maximum Output: 21,079 MWh

CT/GT Maximum Output: 3,153 MWh

Steam Turbine Maximum Output: 1,104 MWh

Load Control Maximum Output: 1,882 MWh

Batteries can dispatch at maximum 469 MWh in one hour and 1,032 MWh total (Assumed to start fully charged)

Nuclear, Solar, DSM, and Purchases are dispatched at full, then CC's, then CTs, then STs, then Batteries, then Load Control cover remaining load

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 18 of 24 Tab 1 of 5

> 20220000 - Staff's 3rd DR No Page 1 of 5

Impact of 4-Hour Storage Additions to the 2021 TYSP (1989-Like Load Forecast, Manatee 1&2 Remain Until 2030): Summary of Analysis Approach

Initial Analysis (results have been presented previously):

- The starting point assumptions were that: (i) all of the resource additions through 2030 in the 2021 TYSP will be made, plus (ii) Manatee 1& 2 would remain available in the Winter through 2030.
- An Aurora Optimization was run using a 1989-Like winter forecast for each winter 2025-on
- The Aurora optimization only allowed solar and 4-Hour duration storage to be selected as new resources
- The model selected ~1,700 MW of additional solar and 4,800 MW of 4-hour storage

New Analysis:

- The hourly output of this resource plan was then examined using the 'bar chart' EXCEL file that looked at the 4 highest load days in Winter. This showed tht the battery additions were not sufficient enough to completely eliminate loss of load (it was more than 3,000 MWh short in 2030)
- Using the resource plan selected by AURORA, additional 4-hour storage batteries were then manually added each year until there was was 0 MWh of loss of load in each year. (Shown in the first unshaded row in **Tables 1 & 2**)
- The results showed that we needed a total of 5,800 MW of 4-hour storage by 2030 in order to meet Winter load (i.e., 1,000 MW more thru 2030 than the 4,800 MW that AURORA selected).
- Then, 300 MW of batteries were removed from the amount above in the year 2025 only and the loss of load was again examined (Shown in the 2nd unshaded row in **Tables 1 & 2**)
- Using 300 MW increments, the total amount of storage was decreased from 5,800 MW to 3,100 MW and the loss of load for each year for 2025 thru 2030 was determined for the different amounts of storage.
- Then the annual capital spend was calculated for each of the resource plans in Table 1 (shown in Table 3)
- Next the annual revenue requirements for each plan from Table 1 were calculated (shown in Table 4).
- Lastly the customer bill impact was determined based on a 1,000 kWh bill using the annual NEL and the annual revenue revenue requirements (shown in **Table 5**).

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 18 of 24 Tab 2 of 5

Page 2 of 5

Annual Incremental Storage Additions and Loss of Load

Table 1: A	nnual Sto	rage Addit	ions Incre	mental to	the 2021 T	YSP (MW)	*
Scenario	2025	2026	2027	2028	2029	2030	Total
Base Case (2021 TYSP)	0	0	0	0	300	400	700
5,800 MW Storage	2,700	400	400	700	800	800	5,800
5,500 MW Storage	2,400	400	400	700	800	800	5,500
5,200 MW Storage	2,100	400	400	700	800	800	5,200
4,900 MW Storage	1,800	400	400	700	800	800	4,900
4,600 MW Storage	1,500	400	400	700	800	800	4,600
4,300 MW Storage	1,200	400	400	700	800	800	4,300
4,000 MW Storage	900	400	400	700	800	800	4,000
3,700 MW Storage	600	400	400	700	800	800	3,700
3,400 MW Storage	300	400	400	700	800	800	3,400
3,100 MW Storage	0	400	400	700	800	800	3,100

	Table 2	2: Annual L	oss of Loa	d (MWh)		
Scenario	2025	2026	2027	2028	2029	2030
Base Case (2021 TYSP)	7,763	13,980	20,674	29,117	35,663	41,697
5,800 MW Storage	0	0	0	0	0	0
5,500 MW Storage	214	278	272	1,189	1,181	752
5,200 MW Storage	514	578	876	2,389	2,381	1,952
4,900 MW Storage	814	878	2,076	3,589	3,581	3,152
4,600 MW Storage	1,228	1,348	3,276	4,789	4,781	4,352
4,300 MW Storage	1,828	2,301	4,476	6,714	6,659	6,174
4,000 MW Storage	2,428	3,501	6,752	9,114	9,059	8,574
3,700 MW Storage	3,047	5,816	9,152	11,514	11,459	10,974
3,400 MW Storage	4,321	8,216	11,552	13,914	13,859	13,374
3,100 MW Storage	7,763	10,616	13,952	16,314	16,259	15,774

^{* -} The "Base Case (2021 TYSP)" storage additions are included in each scenario, however the MW values shown in the 2029 and 2030 columns do not include the TYSP storage for ease of calculating incremental costs

20220000 - Staff's 3rd DR No

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 18 of 24 Tab 3 of 5

> 20220000 - Staff's 3rd DR No Page 3 of 5

Installed	Installed Cost of 100 MW 4-Hour Storage* (\$/kW)											
	2025	2026	2027	2028	2029	2030						
Installed Cost (\$/kW)	739	680	656	632	611	595						

* _	Does not include	AFUDC or	transmission	integration co	osts

Table 3: I	ncrement	al Annua	l Capital	Spend (\$	M)**	
Scenario	2025	2026	2027	2028	2029	2030
5,800 MW Storage	1,996	272	262	443	489	476
5,500 MW Storage	1,774	272	262	443	489	476
5,200 MW Storage	1,553	272	262	443	489	476
4,900 MW Storage	1,331	272	262	443	489	476
4,600 MW Storage	1,109	272	262	443	489	476
4,300 MW Storage	887	272	262	443	489	476
4,000 MW Storage	665	272	262	443	489	476
3,700 MW Storage	444	272	262	443	489	476
3,400 MW Storage	222	272	262	443	489	476
3,100 MW Storage	0	272	262	443	489	476

^{** -} The capital costs were calculated by multiplying the \$/kW value above with the incremental MW of storage in Table 1

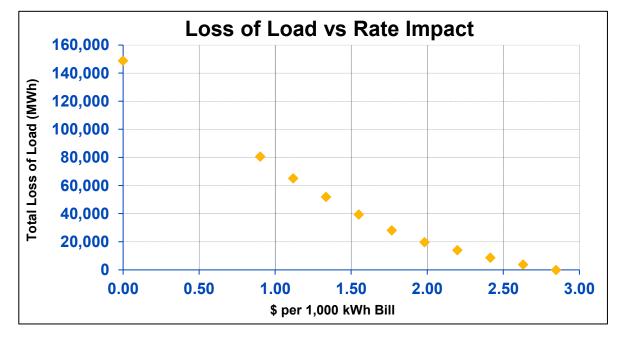
Revenue	Revenue Requirements as a Percentage of Installed Cost												
Year	Year 1 Year 2 Year 3 Year 4 Year 5 Year 6												
% of Installed Cost													

Table 4: Inc	remental	Annual	Revenue	Requirer	nents (\$N	/ 1)
Scenario	2025	2026	2027	2028	2029	2030
5,800 MW Storage	336	359	377	428	484	535
5,500 MW Storage	299	324	345	398	456	508
5,200 MW Storage	262	289	313	367	427	481
4,900 MW Storage	224	255	280	337	398	454
4,600 MW Storage	187	220	248	307	370	427
4,300 MW Storage	149	185	216	276	341	400
4,000 MW Storage	112	150	184	246	313	373
3,700 MW Storage	75	115	151	216	284	346
3,400 MW Storage	37	81	119	186	256	319
3,100 MW Storage	0	46	87	155	227	292

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 18 of 24 Tab 4 of 5

> 20220000 - Staff's 3rd DR No Page 4 of 5

		Annual N	EL (MWh)		
2025	2026	2027	2028	2029	2030
143,722,933	144,861,079	145,843,132	147,589,598	149,316,838	151,265,837


Table 5: Ir	crement	al Rate Ir	mpact (\$	Increase	on a 1,00	0 kWh Bi	ill)
Scenario	2025	2026	2027	2028	2029	2030	Average
5,800 MW Storage	2.34	2.48	2.59	2.90	3.24	3.54	2.85
5,500 MW Storage	2.08	2.24	2.36	2.69	3.05	3.36	2.63
5,200 MW Storage	1.82	2.00	2.14	2.49	2.86	3.18	2.41
4,900 MW Storage	1.56	1.76	1.92	2.28	2.67	3.00	2.20
4,600 MW Storage	1.30	1.52	1.70	2.08	2.48	2.82	1.98
4,300 MW Storage	1.04	1.28	1.48	1.87	2.29	2.64	1.77
4,000 MW Storage	0.78	1.04	1.26	1.67	2.09	2.47	1.55
3,700 MW Storage	0.52	0.80	1.04	1.46	1.90	2.29	1.33
3,400 MW Storage	0.26	0.56	0.82	1.26	1.71	2.11	1.12
3,100 MW Storage	0.00	0.32	0.60	1.05	1.52	1.93	0.90

⁻ Calculated as ((annual revenue requirement(\$M) * 1,000,000) / (NEL(MWh) * 1,000)) * 1,000

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 18 of 24 Tab 5 of 5

> 20220000 - Staff's 3rd DR No Page 5 of 5

Loss of Lo	ad per Rate	Impact		
Scenario	Total Loss of Load (2025-2030)	Average Rate Impact on a 1,000 kWh bill (\$)		
2021 TYSP	148,894	0.00		
3,100 MW Storage	80,678	0.90		
3,400 MW Storage	65,236	1.12		
3,700 MW Storage	51,962	1.33		
4,000 MW Storage	39,428	1.55		
4,300 MW Storage	28,152	1.77		
4,600 MW Storage	19,775	1.98		
4,900 MW Storage	14,091	2.20		
5,200 MW Storage	8,691	2.41		
5,500 MW Storage	3,887	2.63		
5,800 MW Storage	0	2.85		

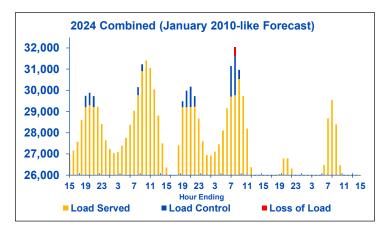
Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 19 of 24 Tab 1 of 1

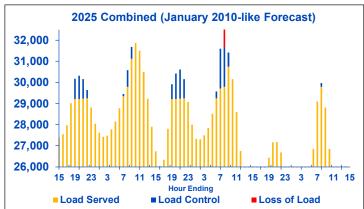
> 20220000 - Staff's 3rd DR No Page 1 of 1

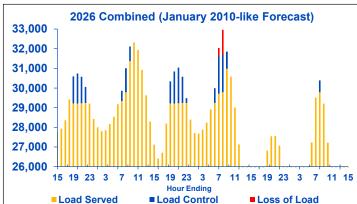
	ITC for Storage	ITC for Storage ITC for Solar		Difference from Revised TYSP Case	Avg. Monthly Bill Increase from TYSP:
	(2026-on)	(2026-on)	(\$M)	(\$M)	(\$/1,000kWh, 2025-2030)
2021 TYSP (Revised)*			84,774		
Zero Loss of Load w/ CTs	0%	10%	85,209	435	0.46
Zero Loss of Load w/ Storage (4 Hr Battery)			85,283	509	0.63
Zero Loss of Load w/ Storage (2.5 Hr Battery)			85,197	423	0.45
2021 TYSP (Revised)*			84,757		
Zero Loss of Load w/ CTs	10%		85,192	435	0.46
Zero Loss of Load w/ Storage (4 Hr Battery)			85,224	467	0.58
Zero Loss of Load w/ Storage (2.5 Hr Battery)			85,154	397	0.41
2021 TYSP (Revised)*			84,354		
Zero Loss of Load w/ CTs	20%	20%	84,807	453	0.45
Zero Loss of Load w/ Storage (4 Hr Battery)	30%	30%	84,754	400	0.53
Zero Loss of Load w/ Storage (2.5 Hr Battery)			84,665	311	0.37

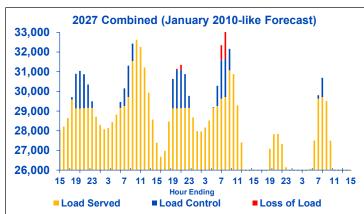
Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 20 of 24 Tab 1 of 10

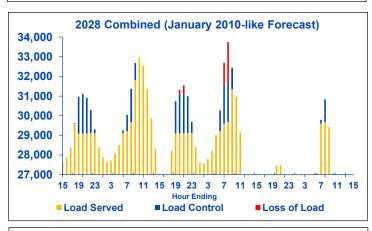
> 20220000 - Staff's 3rd DR No Page 1 of 10

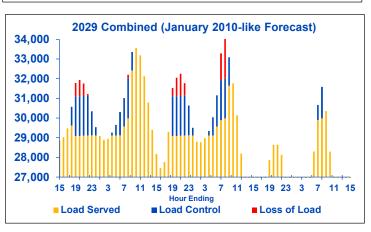

Load Control & Loss of Load Summary (2010-like Load Forecast - 4 Day Period)

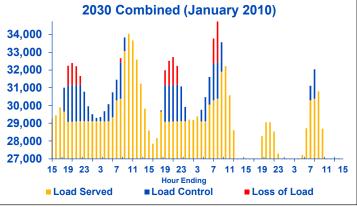

					Loss of
				_	Load # of
	Load	Load	Loss of	Loss of	Hours w/
	Control #	Control	Load # of	Load	1,000 MW
Year	of Hours	(MWh)	Hours	(MWh)	Out
2024	12	6,956	1	423	3
2025	78	111,654	74	345,437	75
2026	17	14,694	2	1,667	10
2027	22	18,592	4	2,713	14
2028	21	19,022	5	3,906	14
2029	27	26,846	11	6,962	18
2030	78	121,808	74	431,379	76


20220000 - Staff's 3rd DR No Page 2 of 10


	C	ombined 20	24	C	ombined 20	25	C	ombined 20	26	C	ombined 20	27	C	ombined 20	28	C	ombined 20	20	C	ombined 20:	age 2 of 10
	Load Served	Jilibilleu 20	24	Load Served	ombineu 20	23	Load Served	Jilibilleu 20	20	Load Served	Jilibilieu 20.	21	Load Served	Jilibilleu 20	20	Load Served	Jilibilleu 20	25	Load Served	illibilled 20.	30
Hour	Before	Load Control	Loss of Load	Before Load	Load Control	Loss of Load	Before	Load Control	Loss of Load												
	Load Control			Control			Load Control														
1 2	15,426 15,029	0	0	15,644 15,241	0	0	15,859 15,450	0	0	16,013 15,600	0	0	16,718 16,412	0	0	16,469 16,043	0	0	16,702 16,270	0	0
3 4	15,020	0	0	15,232	0	0	15,440	0	0	15,590	0	0	16,414	0	0	16,032	0	0	16,259	0	0
5	15,316 15,942	0	0	15,532 16,166	0	0	15,744 16,387	0	0	15,897 16,547	0	0	16,654 17,158	0	0	16,348 17,016	0	0	16,578 17,256	0	0
6 7	17,105	0	0	17,346	0	0	17,583	0	0	17,753	0	0	18,094	0	0	18,256	0	0	18,514	0	0
8	18,867 21,182	0	0	19,133 21,481	0	0	19,394 21,775	0	0	19,582 21,987	0	0	19,508 21,352	0	0	20,137 22,611	0	0	20,421 22,930	0	0
9 10	23,681 25,328	0	0	24,016 25,688	0	0	24,346 26,042	0	0	24,583 26,296	0	0	23,505 25,522	0	0	25,283 27,048	0	0	25,641 27,432	0	0
11	26,388	0	0	26,764	0	0	27,134	0	0	27,399	0	0	26,831	0	0	28,185	0	0	28,587	0	0
12 13	26,730 26,906	0	0	27,112 27,292	0	0	27,488 27,672	0	0	27,757 27,943	0	0	27,269 27,509	0	0	28,555 28,748	0	0	28,963 29,161	0	0
14	26,917	0	0	27,303	0	0	27,684	o	0	27,956	0	0	27,545	0	0	28,764	0	0	29,178	0	0
15 16	26,997 27,153	0	0	27,385 27,545	0	0	27,768 27,931	0	0	28,041 28,206	0	0	27,661 27,870	0	0	28,853 29,024	0	0	29,269 29,443	0	0
17	27,572	0	0	27,970	0	0	28,363	0	0	28,642	0	0	28,382	0	0	29,473	0	0	29,899	0	0
18 19	28,597 29,203	0 537	0	29,009 29,217	0 950	0	29,415 29,211	0 1,377	0	29,584 29,132	121 1,756	0	29,575 29,091	38 1,871	0	29,616 29,091	949 2,018	0 672	29,658 29,087	1,349 2,052	0 1,099
20	29,293	595	0	29,214	1,102	0	29,208	1,531	0	29,129	1,911	0	29,088	1,984	46	29,088	2,018	829	29,084	2,052	1,257
21 22	29,214 29,219	512 0	0	29,228 29,242	923 396	0	29,222 29,236	1,349 814	0	29,143 29,157	1,727 1,187	0	29,102 29,116	1,810 1,179	0	29,102 29,116	2,018 2,018	640 84	29,098 29,112	2,052 2,052	1,065 501
23	28,401	0	0	28,807	0	0	29,208	0	0	29,160	334	0	29,119	186	0	29,119	1,224	0	29,115	1,663	0
24 1	27,643 27,228	0	0	28,039 27,618	0	0	28,429 28,002	0	0	28,708 28,277	0	0	28,397 27,899	0	0	29,111 29,092	424 0	0	29,107 29,109	851 401	0
2	27,039	0	0	27,426	0	0	27,808	0	0	28,080	0	0	27,666	0	0	28,889	0	0	29,109	195	0
3 4	27,088 27,384	0	0	27,476 27,776	0	0	27,858 28,162	0	0	28,131 28,438	0	0	27,724 28,075	0	0	28,941 29,110	0 147	0	29,110 29,106	246 570	0
5 6	27,752 28,372	0	0	28,149 28,778	0	0	28,540 29,177	0	0	28,820	0 299	0	28,513 29,122	0 130	0	29,116 29,122	533 1,187	0	29,112 29,334	961 1,408	0
7	29,035	0	0	29,343	106	0	29,177	520	0	29,163 29,258	890	0	29,122	815	0	29,122	1,167	0	30,288	1,167	0
8 9	29,773 30,908	380 321	0	29,788 31,117	794 557	0	29,786 31,360	1,219 752	0	29,713 31,542	1,595 884	0	29,679 31,816	1,693 865	0	29,985 32,415	2,018 940	202 0	30,386 33,071	2,052 760	226 0
10	31,414	0	0	31,863	0	0	32,306	0	0	32,622	0	0	32,941	0	0	33,561	0	0	34,041	0	0
11 12	31,058 30,055	0	0	31,504 30,487	0	0	31,943 30,914	0	0	32,257 31,217	0	0	32,550 31,359	0	0	33,188 32,120	0	0	33,665 32,583	0	0
13	28,804	0	0	29,220	0	0	29,629	0	0	29,921	0	0	29,868	0	0	30,788	0	0	31,233	0	0
14 15	27,501 26,357	0	0	27,898 26,738	0	0	28,290 27,114	0	0	28,569 27,382	0	0	28,309 26,933	0	0	29,399 28,178	0	0	29,824 28,587	0	0
16	25,677	0	0	26,049	0	0	26,416	0	0	26,676	0	0	26,113	0	0	27,452	0	0	27,850	0	0
17 18	25,964 27,401	0	0	26,340 27,798	0	0	26,711 28,190	0	0	26,975 28,468	0	0	26,468 28,217	0	0	27,760 29,297	0	0	28,163 29,658	0 65	0
19	29,203	284	0	29,217	697	0	29,211	1,124	0	29,132	1,502	0	29,091	1,645	0	29,091	2,018	417	29,087	2,052	844
20 21	29,200 29,214	784 962	0	29,214 29,228	1,203 1,383	0	29,208 29,222	1,636 1,819	0	29,129 29,143	1,950 1,950	69 254	29,088 29,102	1,984 1,984	245 455	29,088 29,102	2,018 2,018	947 1,137	29,084 29,098	2,052 2,052	1,380 1,573
22	29,228	497	0	29,242	911	0	29,236	1,340	0	29,157	1,720	0	29,116	1,870	0	29,116	2,018	639	29,112	2,052	1,067
23 24	28,661 27,599	0	0	29,074 27,997	0	0	29,239 28,389	242 0	0	29,160 28,669	611 0	0	29,119 28,403	571 0	0	29,119 29,111	1,515 389	0	29,115 29,107	1,961 818	0
1	26,939	0	0	27,327	0	0	27,710	0	0	27,983	0	0	27,604	0	0	28,794	0	0	29,210	0	0
2 3	26,916 27,106	0	0	27,303 27,496	0	0	27,686 27,881	0	0	27,959 28,156	0	0	27,575 27,801	0	0	28,769 28,971	0	0	29,184 29,389	0	0
4	27,450	0	0	27,845	0	0	28,235	0	0	28,513	0	0	28,215	0	0	29,110	229	0	29,106	655	0
5 6	28,104 29,152	0	0	28,509 29,248	0 324	0	28,908 29,242	0 744	0	29,157 29,257	35 1,024	0	29,007 29,216	0 1,057	0	29,116 29,565	922 1,591	0	29,112 30,050	1,358 1,556	0
7 8	29,704	1,443	0 423	29,718	1,877	0 838	29,712	1,916 1,916	409 1,259	29,633	1,950 1,950	768 1,622	29,592 29,679	1,984	1,110 2,095	29,892 29,985	2,018	1,378 2,243	30,288	2,052 2,052	1,427 2,301
9	29,773 30,533	1,851 434	0	29,788 30,742	1,882 669	0	29,786 30,985	864	0	29,713 31,073	1,089	0	31,347	1,984 1,091	0	31,646	2,018 1,444	0	30,386 31,902	1,663	0
10 11	29,725 28,193	0	0	30,152 28,600	0	0	30,574 29,000	0	0	30,874 29,286	0	0	30,960 29,130	0	0	31,767 30,135	0	0	32,225 30,571	0	0
12	26,375	0	0	26,756	0	0	27,132	0	0	27,400	0	0	26,942	0	0	28,195	0	0	28,603	0	0
13 14	24,592 23,091	0	0	24,947 23,424	0	0	25,298 23,753	0	0	25,547 23,988	0	0	24,783 22,961	0	0	26,289 24,684	0	0	26,670 25,042	0	0
15	21,634	0	0	21,947	0	0	22,255	0	0	22,474	0	0	21,490	0	0	23,127	0	0	23,461	0	0
16 17	20,626 20,986	0	0	20,924 21,290	0	0	21,217 21,589	0	0	21,426 21,801	0	0	20,695 20,969	0	0	22,048 22,435	0	0	22,367 22,760	0	0
18	23,102	0	0	23,437	0	0	23,767	0	0	24,001	0	0	22,997	0	0	24,700	0	0	25,059	0	0
19 20	26,058 26,777	0	0	26,437 27,165	0	0	26,810 27,548	0	0	27,074 27,821	0	0	26,597 27,466	0	0	27,864 28,632	0	0	28,269 29,048	0	0
21	26,789	0	0	27,177	0	0	27,560	0	0	27,832	0	0	27,476	0	0	28,643	0	0	29,059	0	0
22 23	26,305 25,165	0	0	26,686 25,529	0	0	27,062 25,888	0	0	27,329 26,143	0	0	26,882 25,487	0	0	28,125 26,903	0	0	28,533 27,293	0	0
24	24,152	0	0	24,502	0	0	24,846	0	0	25,091	0	0	24,251	0	0	25,820	0	0	26,194	0	0
1 2	23,566 23,620	0	0	23,907 23,962	0	0	24,242 24,298	0	0	24,481 24,538	0	0	23,538 23,605	0	0	25,193 25,251	0	0	25,557 25,616	0	0
3	23,946	0	0	24,292	0	0	24,634	0	0	24,877	0	0	24,005	0	0	25,600	0	0	25,971	0	0
4 5	24,400 25,086	0	0	24,753 25,449	0	0	25,101 25,807	0	0	25,349 26,062	0	0	24,558 25,397	0	0	26,086 26,820	0	0	26,464 27,209	0	0
6 7	26,470 28,680	0	0	26,853 29,096	0	0	27,232 29,507	0	0	27,501 29,633	0 166	0	27,089 29,592	0 197	0	28,302 29,892	0 777	0	28,713 30,288	0 827	0
8	29,537	0	0	29,096	178	0	29,307	603	0	29,033	977	0	29,592	1,152	0	29,892	1,601	0	30,386	1,659	0
9 10	28,392	0	0	28,804	0	0	29,209	0	0	29,498	0	0	29,418	0	0	30,357	0	0	30,798	0	0
10 11	26,460 24,667	0	0	26,842 25,024	0	0	27,220 25,376	0	0	27,489 25,627	0	0	27,060 24,885	0	0	28,288 26,372	0	0	28,699 26,755	0	0
12	23,151	0	0	23,486	0	0	23,816	0	0	24,051	0	0	23,047	0	0	24,751	0	0	25,110	0	0
13 14	21,762 20,263	0	0	22,077 20,556	0	0	22,388 20,845	0	0	22,608 21,051	0	0	21,573 20,394	0	0	23,266 21,663	0	0	23,603 21,976	0	0
15	18,957	0	0	19,231	0	0	19,501	0	0	19,692	0	0	19,369	0	0	20,264	0	0	20,557	0	0
16 17	18,284 18,636	0	0	18,548 18,905	0	0	18,808 19,171	0	0	18,993 19,359	0	0	18,843 19,114	0	0	19,544 19,922	0	0	19,827 20,210	0 0	0
18	20,584	0	0	20,882	0	0	21,176	0	0	21,385	0	0	20,628	0	0	22,008	0	0	22,327	0	0
19 20	23,188 23,850	0	0	23,525 24,197	0	0	23,857 24,538	0	0	24,092 24,781	0	0	23,116 23,921	0	0	24,795 25,504	0	0	25,156 25,875	0 0	0
21	23,900	0	0	24,247	0	0	24,590	0	0	24,833	0	0	23,984	0	0	25,557	0	0	25,929	0	0
22 23	23,456 22,614	0	0	23,796 22,942	0	0	24,132 23,266	0	0	24,371 23,495	0	0	23,443 22,417	0	0	25,082 24,181	0	0	25,447 24,532	0	0
24	21,334	0	0	21,643	0	0	21,948	0	0	22,164	0	0	21,218	0	0	22,810	0	0	23,141	0	0


20220000 - Staff's 3rd DR No Page 3 of 10





Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staf's Third Data Request Request No. 2 Attachment 20 of 20 Tab 4 of 10

(2)

(3)

(4)

(1)

20220000 - Staff's 3rd DR No Page 4 of 10

1,000

(15)

"What If" Gen MW Unavailable

(14)

Operating Hours (Hrs.) 12 1 Maximum Output (MWh) 1,851 423 Generation (MWh) = Must Run = Dispatchable = Load Control/Loss of Load 6,956 423 Load Control Loss of Load

(7)

(5)

(6)

(8)

(9)

(11)

(12)

(13)

(10)

2024 Combined System Winter Peak Day - ("2010-like" Winter Scenario)														
Day	Hour Ending	Load (MWh)	Nuclear (MWh)	Solar (MWh)	Conservation (MWh)	Purchases (MWh)	Combined Cycle (MWh)	CT/GT (MWh)	Steam Turbine (MWh)	Storage (MWh)	Loss of Load w/o LC (MWh)	Load Control (MWh)	Loss of Load w/ LC (MWh)	Loss of Load w/ LC and with 1,000 MW of gen out (MWh)*
9	1 2	21,430 20,881	3,590 3,590	0	87 87	226 226	17,527 16,978	0	0	0	0	0	0	0
9	3	20,881	3,590	0	87	227	16,967	0	0	0	0	0	0	0
9	4	21,283	3,590	0	87	223	17,382	0	0	0	0	0	0	0
9	5 6	22,153 23,770	3,590 3,590	0	87 87	229 235	18,247 19,858	0	0	0	0	0	0	0
9	7	26,219	3,590	0	87	236	20,986	1,320	0	0	0	0	0	0
9	8	29,433	3,590	82	87	223	20,986	3,153	1,182	0	130	0	130	0
9	9 10	32,896 35,177	3,590 3,590	1,213 2,410	87 87	227 234	20,986 20,986	3,153 3,153	1,182 1,182	0	2,458 3,534	0	2,458 3,534	1,607 2,683
9	11	36,639	3,590	3,101	87	240	20,986	3,153	1,182	0	4,299	0	4,299	3,449
9	12	37,108	3,590	3,433	87	251	20,986	3,153	1,182	0	4,426	0	4,426	3,575
9	13 14	37,345 37.352	3,590	3,483 3,425	87 87	256 256	20,986 20,986	3,153 0	1,182 1.182	0	4,606 7.825	0	4,606 7.825	3,756 3.821
9	15	37,352	3,590 3,590	3,425	87	247	20,986	0	1,182	0	8,138	0	8,138	4,134
9	16	37,670	3,590	2,825	87	237	20,986	0	1,182	0	8,763	0	8,763	4,759
9	17	38,250	3,590	1,744	87	220 198	20,986	3,153	1,182	0	7,288	0	7,288	6,437
9	18 19	39,674 41,270	3,590 3,590	350 7	87 87	198	20,986 20,986	3,153 3,153	1,182 1.182	0	10,127 12.067	0 537	10,127 11.530	9,277 11,217
9	20	41,482	3,590	0	87	201	20,986	3,153	1,182	94	12,189	595	11,594	11,338
9	21	41,259	3,590	0	87	215	20,986	3,153	1,182	0	12,046	512	11,534	11,195
9	22 23	40,558 39,422	3,590 3,590	0	87 87	229 232	20,986 20,986	3,153 3,153	1,182 1,182	0	11,331 10,192	0	11,331 10,192	10,480 9,341
9	24	38,367	3,590	0	87	224	20,986	3,153	1,182	0	9,144	0	9,144	8,294
10	1	27,228	3,590	0	87	226	20,986	2,339	0	0	0	0	0	0
10 10	2	27,039 27,088	3,590 3,590	0	87 87	226 227	20,986 20,986	2,149 2,197	0	0	0	0	0	0
10	4	27,384	3,590	0	87	223	20,986	2,498	0	0	0	0	0	0
10	5	27,752	3,590	0	87	229	20,986	2,860	0	0	0	0	0	0
10 10	6 7	28,372 29,035	3,590 3,590	0	87 87	235 236	20,986 20,986	3,153 3,153	321 982	0	0	0	0	0
10	8	30,152	3,590	82	87	223	20,986	3,153	1,182	469	380	380	0	0
10	9	31,228	3,590	1,213	87	227	20,986	3,153	1,182	469	321	321	0	0
10 10	10 11	31,414 31,058	3,590 3,590	2,410 3,101	87 87	234 240	20,986 20,986	3,153 3,054	953 0	0	0	0	0	0
10	12	30,055	3,590	3,433	87	251	20,986	1,709	0	0	0	0	0	0
10	13	28,804	3,590	3,483	87	256	20,986	401	0	0	0	0	0	0
10 10	14 15	27,501 26.357	3,590 3,590	3,425 3,227	87 87	256 247	20,142 19,300	0	0	0 (94)	0	0	0	0
10	16	25,677	3,590	2,825	87	237	19,407	0	0	(469)	0	0	0	0
10	17	25,964	3,590	1,744	87	220	20,792	0	0	(469)	0	0	0	0
10 10	18 19	27,401 29,487	3,590 3,590	350 7	87 87	198 197	20,986 20,986	2,189 3,153	0 1,182	0	0 284	0 284	0	0
10	20	29,983	3,590	0	87	201	20,986	3,153	1,182	0	784	784	0	0
10	21	30,176	3,590	0	87	215	20,986	3,153	1,182	0	962	962	0	112
10 10	22 23	29,724 28,661	3,590 3,590	0	87 87	229 232	20,986 20,986	3,153 3,153	1,182 612	0	497 0	497 0	0	0
10	24	27,599	3,590	0	87	224	20,986	2,712	0	0	0	0	0	0
11	1	26,939	3,590	0	87	226	20,986	2,050	0	0	0	0	0	0
11 11	2	26,916 27,106	3,590 3,590	0	87 87	226 227	20,986 20,986	2,026 2,216	0	0	0	0	0	0
11	4	27,450	3,590	0	87	223	20,986	2,564	0	0	0	0	0	0
11	5	28,104	3,590	0	87	229	20,986	3,153	58	0	0	0	0	0
11 11	6 7	29,152 31,146	3,590 3,590	0	87 87	235 236	20,986 20,986	3,153 3,153	1,100 1,182	0 469	0 1,443	0 1,443	0	0 592
11	8	32,047	3,590	82	87	223	20,986	3,153	1,182	469	2,274	1,851	423	1,423
11	9	30,967	3,590	1,213	87	227	20,986	3,153	1,182	94	434	434	0	0
11 11	10 11	29,725 28,193	3,590 3,590	2,410 3,101	87 87	234 240	20,986 20,986	2,417 189	0	0	0	0	0	0
11	12	26,375	3,590	3,433	87	251	19,015	0	0	0	0	0	0	0
11	13	24,592	3,590	3,483	87	256	17,175	0	0	0	0	0	0	0
11 11	14 15	23,091 21,634	3,590 3,590	3,425 3,227	87 87	256 247	16,201 14,952	0	0	(469) (469)	0	0	0	0
11	16	20,626	3,590	2,825	87	237	13,981	0	0	(94)	0	0	0	0
11	17	20,986	3,590	1,744	87	220	15,345	0	0	0	0	0	0	0
11 11	18 19	23,102 26,058	3,590 3,590	350 7	87 87	198 197	18,877 20,986	0 1,191	0	0	0	0	0	0
11	20	26,777	3,590	0	87	201	20,986	1,913	0	0	0	0	0	0
11 11	21 22	26,789 26,305	3,590 3,590	0	87 87	215 229	20,986 20,986	1,910 1.413	0	0	0	0	0	0
11	22	26,305 25,165	3,590 3,590	0	87 87	229 232	20,986	1,413 269	0	0	0	0	0	0
11	24	24,152	3,590	0	87	224	20,251	0	0	0	0	0	0	0
12 12	1 2	23,566	3,590	0	87	226	19,663	0	0	0	0	0	0	0
12 12	3	23,620 23,946	3,590 3,590	0	87 87	226 227	19,717 20,042	0	0	0	0	0	0	0
12	4	24,400	3,590	0	87	223	20,500	0	0	0	0	0	0	0
12	5	25,086	3,590	0	87	229	20,986	194	0	0	0	0	0	0
12 12	6 7	26,470 28,680	3,590 3,590	0	87 87	235 236	20,986 20,986	1,571 3,153	0 627	0	0	0	0	0
12	8	29,537	3,590	82	87	223	20,986	3,153	1,182	233	0	0	0	0
12	9	28,392	3,590	1,213	87	227	20,986	2,289	0	0	0	0	0	0
12 12	10 11	26,460 24,667	3,590 3.590	2,410 3,101	87 87	234 240	20,138 17.649	0	0	0	0	0	0	0
12	12	23,151	3,590	3,433	87	251	15,790	0	0	0	0	0	0	0
12	13	21,762	3,590	3,483	87	256	14,345	0	0	0	0	0	0	0
12 12	14 15	20,263 18,957	3,590 3,590	3,425 3,227	87 87	256 247	12,904 11,805	0	0	0	0	0	0	0
12	16	18,284	3,590	2,825	87	237	11,545	0	0	0	0	0	0	0
12	17	18,636	3,590	1,744	87	220	12,995	0	0	0	0	0	0	0
12 12	18 19	20,584 23,188	3,590 3,590	350 7	87 87	198 197	16,358 19,306	0	0	0	0	0	0	0
12	20	23,188	3,590	0	87 87	201	19,306	0	0	0	0	0	0	0
12	21	23,900	3,590	0	87	215	20,008	0	0	0	0	0	0	0
12 12	22 23	23,456	3,590 3,590	0	87 87	229 232	19,549 18.704	0	0	0	0	0	0	0
12	23	22,614 21,334	3,590 3,590	0	87 87	232	18,704	0	0	0	0	0	0	0
	•	I									7,379	6,956	423	2,127
Notes:														

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staf's Third Data Request Request No. 2 Attachment 20 of 20 Tab 5 of 10

20220000 - Staff's 3rd DR No Page 5 of 10

Operating Hours (Hrs.) 78 74 Maximum Output (MWh) 1,882 "What If" Gen MW Unavailable Generation (MWh) = Must Run = Dispatchable = Load Control/Loss of Load 111,654 345,437 Load Control Loss of Load 1,000 (3) (6) (7) (1) (2) (4) (5) (8) (9) (11) (15) (10) (12) (13) (14) 1.881.604

2025 Combined System Winter Peak Day - ("2010-like" Winter Scenario)														
Day	Hour Ending	Load (MWh)	Nuclear (MWh)	Solar (MWh)	Conservation (MWh)	Purchases (MWh)	Combined Cycle (MWh)	CT/GT (MWh)	Steam Turbine (MWh)	Storage (MWh)	Loss of Load w/o LC (MWh)	Load Control (MWh)	Loss of Load w/ LC (MWh)	Loss of Load w/ LC and with 1,000 MW of gen out (MWh)*
9	1 2	21,430 20,881	3,590 3,590	0	87 87	226 226	17,528 16,979	0	0	0	0	0	0	0
9	3	20,871	3,590	0	87	227	16,968	0	0	0	0	0	0	0
9	4	21,283	3,590	0	87	223 229	17,383	0	0	0	0	0	0	0
9	5 6	22,153 23,770	3,590 3,590	0	87 87	235	18,248 19,858	0	0	0	0	0	0	0
9	7	26,219	3,590	0	87	236	21,079	1,227	0	0	0	0	0	0
9	8	29,433 32,896	3,590 3,590	83 1,408	87 87	223 226	21,079 21,079	3,153 3,153	1,104 1,104	0	114 2,248	114 1,882	0 367	0 1,367
9	10	35,177	3,590	2,810	87	233	21,079	3,153	1,104	0	3,120	1,882	1,238	2,238
9	11	36,639	3,590	3,589	87	240	21,079	3,153	1,104	0	3,796	1,882	1,915	2,915
9	12 13	37,108 37,345	3,590 3,590	3,980 4,040	87 87	250 256	21,079 21,079	3,153 3,153	1,104 1.104	0	3,865 4.036	1,882 1.882	1,983 2.154	2,983 3,154
9	14	37,352	3,590	3,980	87	256	21,079	3,153	1,104	0	4,103	1,882	2,221	3,221
9	15	37,458	3,590	3,765	87	246	21,079	3,153	1,104	0	4,433	1,882	2,551	3,551
9	16 17	37,670 38,250	3,590 3,590	3,329 2,070	87 87	236 219	21,079 21,079	3,153 3,153	1,104 1,104	0	5,091 6,948	1,882 1,882	3,209 5,066	4,209 6,066
9	18	39,674	3,590	402	87	198	21,079	3,153	1,104	0	10,061	1,882	8,180	9,180
9	19 20	41,270 41.482	3,590 3.590	7	87 87	197 201	21,079 21.079	3,153 3.153	1,104 1.104	0	12,053 12,268	1,882 1.882	10,171 10,387	11,171 11,387
9	21	41,462	3,590	0	87	215	21,079	3,153	1,104	0	12,200	1,882	10,387	11,150
9	22	40,558	3,590	0	87	229	21,079	3,153	1,104	0	11,317	1,882	9,435	10,435
9	23 24	39,422 38,367	3,590 3,590	0	87 87	232 224	21,079 21,079	3,153 3,153	1,104 1,104	0	10,177 9,130	1,882 1,882	8,296 7,249	9,296 8,249
10	1	37,790	3,590	0	87	226	21,079	3,153	1,104	0	8,551	1,882	6,670	7,670
10 10	2	37,529 37,597	3,590 3,590	0	87 87	226 227	21,079 21,079	3,153 3,153	1,104 1,104	0	8,290 8,357	1,882 1,882	6,408 6,476	7,408 7,476
10	4	37,597	3,590	0	87	227	21,079	3,153	1,104	0	8,357 8,776	1,882	6,894	7,476
10	5	38,524	3,590	0	87	229	21,079	3,153	1,104	0	9,282	1,882	7,400	8,400
10 10	6 7	39,388 40,313	3,590 3,590	0	87 87	235 236	21,079 21,079	3,153 3,153	1,104 1.104	0	10,140 11,064	1,882 1,882	8,258 9,183	9,258 10,183
10	8	41,868	3,590	83	87	223	21,079	3,153	1,104	0	12,549	1,882	10,668	11,668
10	9	43,359	3,590	1,408	87	226	21,079	3,153	1,104	0	12,711	1,882	10,829	11,829
10 10	10 11	43,607 43,102	3,590 3,590	2,810 3,589	87 87	233 240	21,079 21,079	3,153 3,153	1,104 1,104	0	11,551 10,259	1,882 1,882	9,669 8,378	10,669 9,378
10	12	41,703	3,590	3,980	87	250	21,079	3,153	1,104	0	8,460	1,882	6,579	7,579
10 10	13 14	39,961 38,147	3,590 3,590	4,040 3,980	87 87	256 256	21,079 21,079	3,153 3,153	1,104 1.104	0	6,652 4,898	1,882 1.882	4,770 3,016	5,770 4,016
10	15	36,557	3,590	3,765	87	246	21,079	3,153	1,104	0	3,532	1,882	1,650	2,650
10	16	35,613	3,590	3,329	87	236	21,079	3,153	1,104	0	3,034	1,882	1,152	2,152
10 10	17 18	36,008 37,999	3,590 3,590	2,070 402	87 87	219 198	21,079 21,079	3,153 3,153	1,104 1,104	0	4,706 8,386	1,882 1,882	2,824 6,505	3,824 7,505
10	19	40,896	3,590	7	87	197	21,079	3,153	1,104	0	11,679	1,882	9,798	10,798
10	20	41,591	3,590	0	87	201	21,079	3,153	1,104	0	12,377	1,882	10,495	11,495
10 10	21 22	41,860 41,236	3,590 3,590	0	87 87	215 229	21,079 21,079	3,153 3,153	1,104 1,104	0	12,632 11,994	1,882 1,882	10,751 10,113	11,751 11,113
10	23	39,763	3,590	0	87	232	21,079	3,153	1,104	0	10,518	1,882	8,636	9,636
10 11	24	38,290 37,374	3,590 3,590	0	87 87	224 226	21,079 21,079	3,153 3,153	1,104 1,104	0	9,054 8,135	1,882	7,172 6,253	8,172 7,253
11	2	37,374	3,590	0	87	226	21,079	3,153	1,104	0	8,103	1,882	6,221	7,233
11	3	37,607	3,590	0	87	227	21,079	3,153	1,104	0	8,367	1,882	6,485	7,485
11 11	4 5	38,085 38,993	3,590 3,590	0	87 87	223 229	21,079 21,079	3,153 3,153	1,104 1,104	0	8,849 9,751	1,882 1,882	6,967 7,869	7,967 8,869
11	6	40,448	3,590	0	87	235	21,079	3,153	1,104	0	11,200	1,882	9,318	10,318
11	7	43,216	3,590	0	87	236	21,079	3,153	1,104	469	13,498	1,882	11,616	12,616
11 11	8	44,470 42,976	3,590 3.590	83 1,408	87 87	223 226	21,079 21.079	3,153 3,153	1,104 1.104	469 94	14,682 12,234	1,882 1.882	12,801 10,352	13,801 11.352
11	10	41,244	3,590	2,810	87	233	21,079	3,153	1,104	0	9,188	1,882	7,306	8,306
11 11	11 12	39,112 36,586	3,590 3,590	3,589 3,980	87 87	240 250	21,079 21,079	3,153 3,153	1,104 1,104	0	6,269 3,343	1,882 1,882	4,388 1,462	5,388 2,462
11	13	34,111	3,590	4,040	87	256	21,079	3,153	1,104	0	802	802	0	0
11	14	32,029	3,590	3,980	87	256	21,079	3,037	0	0	0	0	0	0
11 11	15 16	30,010 28,612	3,590 3,590	3,765 3,329	87 87	246 236	21,079 21,079	1,243 290	0	0	0	0	0	0
11	17	29,109	3,590	2,070	87	219	21,079	2,064	0	0	0	0	0	0
11 11	18 19	32,038 36,135	3,590 3,590	402 7	87 87	198 197	21,079 21,079	3,153 3,153	1,104 1,104	0	2,425 6,918	1,882 1,882	544 5,037	1,544 6,037
11	20	37,133	3,590	0	87	201	21,079	3,153	1,104	0	7,919	1,882	6,037	7,037
11	21	37,150	3,590	0	87	215	21,079	3,153	1,104	0	7,922	1,882	6,040	7,040
11 11	22 23	36,481 34,903	3,590 3,590	0	87 87	229 232	21,079 21,079	3,153 3,153	1,104 1,104	0	7,239 5,658	1,882 1,882	5,358 3,776	6,358 4,776
11	24	33,501	3,590	0	87	224	21,079	3,153	1,104	0	4,264	1,882	2,382	3,382
12 12	1 2	32,688 32,763	3,590 3,590	0	87 87	226 226	21,079	3,153	1,104	0	3,449	1,882	1,567	2,567
12	3	32,763 33,213	3,590 3,590	0	87	226	21,079 21,079	3,153 3,153	1,104 1,104	0	3,524 3,973	1,882 1,882	1,642 2,092	2,642 3,092
12	4	33,843	3,590	0	87	223	21,079	3,153	1,104	0	4,607	1,882	2,725	3,725
12 12	5 6	34,792 36,707	3,590 3,590	0	87 87	229 235	21,079 21,079	3,153 3,153	1,104 1,104	0	5,550 7,459	1,882 1,882	3,668 5,578	4,668 6,578
12	7	39,767	3,590	0	87	236	21,079	3,153	1,104	469	10,049	1,882	8,168	9,168
12	8	40,956	3,590	83	87	223	21,079	3,153	1,104	469	11,168	1,882	9,287	10,287
12 12	9 10	39,375 36,698	3,590 3,590	1,408 2,810	87 87	226 233	21,079 21,079	3,153 3,153	1,104 1,104	94 0	8,633 4,642	1,882 1,882	6,751 2,760	7,751 3,760
12	11	34,213	3,590	3,589	87	240	21,079	3,153	1,104	0	1,370	1,370	0	489
12	12	32,109	3,590	3,980	87	250	21,079	3,123	0	0	0	0	0	0
12 12	13 14	30,183 28,105	3,590 3,590	4,040 3,980	87 87	256 256	21,079 20,193	1,132 0	0	0	0	0	0	0
12	15	26,295	3,590	3,765	87	246	18,607	0	0	0	0	0	0	0
12 12	16 17	25,364 25,850	3,590 3,590	3,329 2,070	87 87	236 219	18,121 19,884	0	0	0	0	0	0	0
12	18	28,546	3,590	402	87	198	21,079	3,153	37	0	0	0	0	0
12	19	32,153	3,590	7	87	197	21,079	3,153	1,104	0	2,936	1,882	1,054	2,054
12 12	20 21	33,072 33,140	3,590 3,590	0	87 87	201 215	21,079 21,079	3,153 3,153	1,104 1,104	0	3,858 3,912	1,882 1,882	1,976 2,030	2,976 3,030
12	22	32,524	3,590	0	87	229	21,079	3,153	1,104	0	3,282	1,882	1,400	2,400
12	23 24	31,358	3,590	0	87	232	21,079	3,153	1,104	0	2,113	1,882	231	1,231
12	24	29,585	3,590	0	87	224	21,079	3,153	1,104	0	348 457,091	348 111,654	0 345,437	0 403,926
Notes:														

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staf's Third Data Request Request No. 2 Attachment 20 of 20 Tab 6 of 10

= Must Run = Dispatchable = Load Control/Loss of Load

20220000 - Staff's 3rd DR No Page 6 of 10

Operating Hours (Hrs.) 17 2 Maximum Output (MWh) 1,916 1,259 Generation (MWh) Load Control Loss of Load 14,694 1,667

"What If" Gen MW Unavailable 1,000

(3) (6) (7) (9) (15) (1) (2) (4) (5) (8) (11) (14) (10) (12) (13)

				2026 Co	mbined Sys	stem Win	ter Peak I	Day - ("20	10-like" W	inter Sce	nario)			
Day	Hour Ending	Load (MWh)	Nuclear (MWh)	Solar (MWh)	Conservation (MWh)	Purchases (MWh)	Combined Cycle (MWh)	CT/GT (MWh)	Steam Turbine (MWh)	Storage (MWh)	Loss of Load w/o LC (MWh)	Load Control (MWh)	Loss of Load w/ LC (MWh)	Loss of Load w/ LC and with 1,000 MW of gen out (MWh)*
9	1 2	15,859 15,450	3,590 3,590	0	87 87	225 225	11,957 11,548	0	0	0	0	0	0	0
9	3	15,440	3,590	0	87	226	11,537	0	0	0	0	0	0	0
9	4 5	15,744 16,387	3,590 3,590	0	87 87	222 228	11,845 12,483	0	0	0	0	0	0	0
9	6	17,583	3,590	0	87	234	13,672	0	0	0	0	0	0	0
9	7 8	19,394 21.775	3,590 3,590	0 87	87 87	235 222	15,482	0	0	0	0	0	0	0
9	9	24,346	3,590	1,658	87	226	17,789 18,785	0	0	0	0	0	0	0
9	10	26,042	3,590	3,287	87	233	18,845	0	0	0	0	0	0	0
9	11 12	27,134 27,488	3,590 3,590	4,185 4,620	87 87	239 249	19,034 18,942	0	0	0	0	0	0	0
9	13	27,672	3,590	4,687	87	255	19,053	0	0	0	0	0	0	0
9	14 15	27,684 27,768	3,590 3,590	4,624 4,374	87 87	255 245	19,129 19,472	0	0	0	0	0	0	0
9	16	27,931	3,590	3,865	87	235	20,155	0	0	0	0	0	0	0
9	17 18	28,363 29,415	3,590 3,590	2,360 433	87 87	218 197	21,089 21,089	1,019 3,138	0 882	0	0	0	0	0
9	19	30,588	3,590	7	87	196	21,089	3,138	1,104	0	1,377	1,377	0	461
9	20	30,738	3,590	0	87	200	21,089	3,138	1,104	0	1,531	1,531	0	615
9	21 22	30,571 30,050	3,590 3,590	0	87 87	214 228	21,089 21,089	3,138 3,138	1,104 1,104	0	1,349 814	1,349 814	0	433 0
9	23	29,208	3,590	0	87	231	21,089	3,138	1,073	0	0	0	0	0
9 10	24	28,429 28,002	3,590 3,590	0	87 87	223	21,089 21,089	3,138 3,012	302 0	0	0	0	0	0
10	2	27,808	3,590	0	87	225	21,089	2,817	0	0	0	0	0	0
10	3 4	27,858	3,590	0	87	226	21,089	2,866	0	0	0	0	0	0
10 10	5	28,162 28,540	3,590 3,590	0	87 87	222 228	21,089 21,089	3,138 3,138	36 408	0	0	0	0	0
10	6	29,177	3,590	0	87	234	21,089	3,138	1,039	0	0	0	0	0
10 10	7 8	29,856 31,005	3,590 3,590	0 87	87 87	235 222	21,089 21.089	3,138 3.138	1,104 1.104	94 469	520 1,219	520 1,219	0	0 303
10	9	32,112	3,590	1,658	87	226	21,089	3,138	1,104	469	752	752	0	0
10 10	10 11	32,306 31,943	3,590 3,590	3,287 4,185	87 87	233 239	21,089 21,089	3,138 2,754	882 0	0	0	0	0	0
10	12	30,914	3,590	4,620	87	249	21,089	1,279	0	0	0	0	0	0
10 10	13 14	29,629	3,590 3,590	4,687 4.624	87 87	255 255	21,011	0	0	0	0	0	0	0
10	15	28,290 27,114	3,590	4,624	87	255	19,735 18,912	0	0	(94)	0	0	0	0
10	16	26,416	3,590	3,865	87	235	19,108	0	0	(469)	0	0	0	0
10 10	17 18	26,711 28,190	3,590 3,590	2,360 433	87 87	218 197	20,925 21,089	0 2,794	0	(469) 0	0	0	0	0
10	19	30,335	3,590	7	87	196	21,089	3,138	1,104	0	1,124	1,124	0	208
10 10	20 21	30,844 31.041	3,590 3,590	0	87 87	200 214	21,089 21.089	3,138 3.138	1,104 1.104	0	1,636 1.819	1,636 1.819	0	720 903
10	22	30,576	3,590	0	87	228	21,089	3,138	1,104	0	1,340	1,340	0	424
10	23	29,481	3,590	0	87	231	21,089	3,138	1,104	0	242	242	0	0
10 11	24	28,389 27,710	3,590 3,590	0	87 87	223 225	21,089 21,089	3,138 2,719	262 0	0	0	0	0	0
11	2	27,686	3,590	0	87	225	21,089	2,695	0	0	0	0	0	0
11 11	3 4	27,881 28,235	3,590 3,590	0	87 87	226 222	21,089 21,089	2,889 3,138	0 109	0	0	0	0	0
11	5	28,908	3,590	0	87	228	21,089	3,138	776	0	0	0	0	0
11 11	6 7	29,985 32,037	3,590 3,590	0	87 87	234 235	21,089 21,089	3,138 3,138	1,104 1,104	0 469	744 2,325	744 1,916	0 409	0 1,409
11	8	32,961	3,590	87	87	222	21,089	3,138	1,104	469	3,175	1,916	1,259	2,259
11 11	9 10	31,849 30,574	3,590 3,590	1,658 3,287	87 87	226 233	21,089 21.089	3,138 2,288	1,104	94 0	864 0	864 0	0	0
11	11	29,000	3,590	4,185	87	239	20,900	0	0	0	0	0	0	0
11	12	27,132	3,590	4,620	87	249	18,586	0	0	0	0	0	0	0
11 11	13 14	25,298 23,753	3,590 3,590	4,687 4,624	87 87	255 255	16,773 15,667	0	0	-94 (469)	0	0	0	0
11	15	22,255	3,590	4,374	87	245	14,428	0	0	(469)	0	0	0	0
11 11	16 17	21,217 21,589	3,590 3,590	3,865 2,360	87 87	235 218	13,441 15,334	0	0	0	0	0	0	0
11	18	23,767	3,590	433	87	197	19,460	0	0	0	0	0	0	0
11 11	19 20	26,810 27,548	3,590 3,590	7	87 87	196 200	21,089 21,089	1,841 2,583	0	0	0	0	0	0
11	21	27,560	3,590	0	87	214	21,089	2,580	0	0	0	0	0	0
11 11	22 23	27,062 25,888	3,590 3,590	0	87 87	228 231	21,089 21,089	2,068 891	0	0	0	0	0	0
11	24	25,888	3,590	0	87	223	20,946	891 0	0	0	0	0	0	0
12	1	24,242	3,590	0	87	225	20,341	0	0	0	0	0	0	0
12 12	2	24,298 24,634	3,590 3,590	0	87 87	225 226	20,397 20,731	0	0	0	0	0	0	0
12	4	25,101	3,590	0	87	222	21,089	114	0	0	0	0	0	0
12 12	5 6	25,807 27,232	3,590 3,590	0	87 87	228 234	21,089 21,089	813 2,232	0	0	0	0	0	0
12	7	29,507	3,590	0	87	235	21,089	3,138	1,104	264	0	0	0	0
12	8	30,389	3,590	87	87	222	21,089	3,138	1,104	469	603	603	0	0
12 12	9 10	29,209 27,220	3,590 3,590	1,658 3,287	87 87	226 233	21,089 20,023	2,560 0	0	0	0	0	0	0
12	11	25,376	3,590	4,185	87	239	17,276	0	0	0	0	0	0	0
12 12	12 13	23,816 22,388	3,590 3,590	4,620 4,687	87 87	249 255	15,271 13,769	0	0	0	0	0	0	0
12	14	20,845	3,590	4,624	87	255	12,290	0	0	0	0	0	0	0
12 12	15	19,501	3,590	4,374	87 87	245 235	11,205	0	0	0	0	0	0	0
12	16 17	18,808 19,171	3,590 3,590	3,865 2,360	87	235	11,032 12,916	0	0	0	0	0	0	0
12	18	21,176	3,590	433	87	197	16,870	0	0	0	0	0	0	0
12 12	19 20	23,857 24,538	3,590 3,590	7	87 87	196 200	19,977 20,662	0	0	0	0	0	0	0
12	21	24,590	3,590	0	87	214	20,699	0	0	0	0	0	0	0
12 12	22 23	24,132 23,266	3,590 3,590	0	87 87	228 231	20,228 19,358	0	0	0	0	0	0	0
12	24	21,948	3,590	0	87	223	18,048	0	0	0	0	0	0	0
												14,694	1,667	6,225

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staf's Third Data Request Request No. 2 Attachment 20 of 20 Tab 7 of 10

= Must Run = Dispatchable = Load Control/Loss of Load

20220000 - Staff's 3rd DR No Page 7 of 10

Operating Hours (Hrs.) 22 4 Maximum Output (MWh) 1,950 1,622 Generation (MWh) 18,592 2,713 Load Control Loss of Load

"What If" Gen MW Unavailable 1,000

(3) (6) (7) (9) (15) (1) (2) (4) (5) (8) (11) (10) (12) (13) (14)

2027 Combined System Winter Peak Day -	("2010-like" Winter Scenario)

				2027 Co	mbined Sys	stem Win	ter Peak	Day - ("20	10-like" W	inter Sce	nario)			
Day	Hour Ending	Load (MWh)	Nuclear (MWh)	Solar (MWh)	Conservation (MWh)	Purchases (MWh)	Combined Cycle (MWh)	CT/GT (MWh)	Steam Turbine (MWh)	Storage (MWh)	Loss of Load w/o LC (MWh)	Load Control (MWh)	Loss of Load w/ LC (MWh)	Loss of Load w/ LC and with 1,000 MW of gen out (MWh)*
9	1	16,013	3,590	0	87	224	12,112	0	0	0	0	0	0	0
9	2	15,600 15,590	3,590 3,590	0	87 87	224 225	11,699 11,688	0	0	0	0	0	0	0
9	4	15,897	3,590	0	87	221	11,999	0	0	0	0	0	0	0
9	5	16,547	3,590	0	87	227	12,643	0	0	0	0	0	0	0
9	6	17,753	3,590	0	87	233	13,843	0	0	0	0	0	0	0
9	7	19,582 21.987	3,590 3.590	0 93	87 87	234 221	15,671 17,996	0	0	0	0	0	0	0
9	9	21,987	3,590	1,918	87	221	18,763	0	0	0	0	0	0	0
9	10	26,296	3,590	3,777	87	232	18,610	0	0	0	0	0	0	0
9	11	27,399	3,590	4,790	87	238	18,694	0	0	0	0	0	0	0
9	12	27,757	3,590	5,264	87	248	18,568	0	0	0	0	0	0	0
9	13 14	27,943 27.956	3,590 3.590	5,336 5,270	87 87	254 254	18,676 18,756	0	0	0	0	0	0	0
9	15	28,041	3,590	4,983	87	244	19,137	0	0	0	0	0	0	0
9	16	28,206	3,590	4,397	87	234	19,898	0	0	0	0	0	0	0
9	17	28,642	3,590	2,642	87	217	21,089	1,017	0	0	0	0	0	0
9	18 19	29,705 30,888	3,590 3,590	458 7	87 87	196 195	21,089 21,089	3,138 3.138	1,026 1.026	0	121 1,756	121 1,756	0	0 806
9	20	31.040	3,590	o o	87	199	21,089	3,138	1,026	0	1,911	1,911	0	961
9	21	30,870	3,590	0	87	213	21,089	3,138	1,026	0	1,727	1,727	0	777
9	22	30,344	3,590	0	87	227	21,089	3,138	1,026	0	1,187	1,187	0	237
9	23	29,494	3,590	0	87	230	21,089	3,138	1,026	0	334	334	0	0
10	24	28,708 28,277	3,590 3,590	0	87 87	222 224	21,089 21,089	3,138 3,138	582 149	0	0	0	0	0
10	2	28,080	3,590	0	87	224	21,089	3,090	0	0	0	0	0	0
10	3	28,131	3,590	0	87	225	21,089	3,138	2	0	0	0	0	0
10	4	28,438	3,590	0	87	221	21,089	3,138	313	0	0	0	0	0
10 10	5	28,820 29,462	3,590 3,590	0	87 87	227 233	21,089 21,089	3,138 3,138	688 1.026	0	0 299	0 299	0	0
10	6 7	30,148	3,590	0	87 87	233	21,089	3,138	1,026 1,026	94	299 890	299 890	0	0
10	8	31,308	3,590	93	87	221	21,089	3,138	1,026	469	1,595	1,595	0	645
10	9	32,426	3,590	1,918	87	225	21,089	3,138	1,026	469	884	884	0	0
10	10	32,622	3,590	3,777	87	232	21,089	3,138	709	0	0	0	0	0
10 10	11 12	32,257 31,217	3,590 3,590	4,790 5,264	87 87	238 248	21,089 21,089	2,463 939	0	0	0	0	0	0
10	13	29,921	3,590	5,336	87	254	20,654	0	0	0	0	0	0	0
10	14	28,569	3,590	5,270	87	254	19,463	0	0	(94)	0	0	0	0
10	15	27,382	3,590	4,983	87	244	18,947	0	0	(469)	0	0	0	0
10	16	26,676	3,590	4,397	87	234	18,837	0	0	(469)	0	0	0	0
10 10	17 18	26,975 28,468	3,590 3,590	2,642 458	87 87	217 196	20,439 21,089	3,048	0	0	0	0	0	0
10	19	30,634	3,590	7	87	195	21,089	3,138	1,026	0	1,502	1,502	0	552
10	20	31,148	3,590	0	87	199	21,089	3,138	1,026	0	2,019	1,950	69	1,069
10	21	31,347	3,590	0	87	213	21,089	3,138	1,026	0	2,204	1,950	254	1,254
10 10	22 23	30,877 29,771	3,590 3,590	0	87 87	227 230	21,089 21,089	3,138 3,138	1,026 1,026	0	1,720 611	1,720 611	0	770 0
10	24	28,669	3,590	0	87	222	21,089	3,138	543	0	0	0	0	0
11	1	27,983	3,590	0	87	224	21,089	2,993	0	0	0	0	0	0
11 11	2	27,959	3,590	0	87 87	224 225	21,089 21.089	2,969 3.138	0 27	0	0	0	0	0
11	3 4	28,156 28,513	3,590 3,590	0	87	225	21,089	3,138	388	0	0	0	0	0
11	5	29,192	3,590	0	87	227	21,089	3,138	1,026	0	35	35	0	0
11	6	30,280	3,590	0	87	233	21,089	3,138	1,026	94	1,024	1,024	0	74
11	7	32,352	3,590	0	87	234	21,089	3,138	1,026	469	2,718	1,950	768	1,768
11 11	8	33,285 32,162	3,590 3.590	93 1,918	87 87	221 225	21,089 21,089	3,138 3.138	1,026 1,026	469 0	3,572 1,089	1,950 1,089	1,622 0	2,622 139
11	10	30,874	3,590	3,777	87	232	21,089	2,099	0	0	0	0	0	0
11	11	29,286	3,590	4,790	87	238	20,581	0	0	0	0	0	0	0
11	12	27,400	3,590	5,264	87	248	18,211	0	0	0	0	0	0	0
11 11	13 14	25,547 23,988	3,590 3,590	5,336 5,270	87 87	254 254	16,374 15,256	0	0	-94 (469)	0	0	0	0
11	15	23,988	3,590	4,983	87	244	14,039	0	0	(469)	0	0	0	0
11	16	21,426	3,590	4,397	87	234	13,118	0	0	0	0	0	0	0
11	17	21,801	3,590	2,642	87	217	15,266	0	0	0	0	0	0	0
11	18	24,001	3,590	458	87	196	19,670	0	0	0	0	0	0	0
11 11	19 20	27,074 27,821	3,590 3,590	7	87 87	195 199	21,089 21,089	2,106 2,856	0	0	0	0	0	0
11	21	27,832	3,590	0	87	213	21,089	2,853	0	0	0	0	0	0
11	22	27,329	3,590	0	87	227	21,089	2,336	0	0	0	0	0	0
11	23 24	26,143 25.091	3,590 3.590	0	87 87	230 222	21,089 21.089	1,147 103	0	0	0	0	0	0
11	1	25,091 24,481	3,590	0	87 87	222	21,089	0	0	0	0	0	0	0
12	2	24,538	3,590	0	87	224	20,580	0	0	0	0	0	0	0
12	3	24,877	3,590	0	87	225	20,975	0	0	0	0	0	0	0
12	4	25,349	3,590	0	87	221	21,089	362	0	0	0	0	0	0
12 12	5	26,062 27,501	3,590	0	87 97	227	21,089 21,089	1,069	0	0	0	0	0	0
12	6 7	27,501	3,590 3,590	0	87 87	233 234	21,089	2,502 3,138	1,026	469	166	166	0	0
12	8	30,690	3,590	93	87	221	21,089	3,138	1,026	469	977	977	0	27
12	9	29,498	3,590	1,918	87	225	21,089	2,589	0	0	0	0	0	0
12	10	27,489	3,590	3,777	87	232	19,803	0	0	0	0	0	0	0
12 12	11 12	25,627 24,051	3,590 3,590	4,790 5,264	87 87	238 248	16,922 14,862	0	0	0	0	0	0	0
12	13	22,608	3,590	5,336	87	254	13,341	0	0	0	0	0	0	0
12	14	21,051	3,590	5,270	87	254	11,850	0	0	0	0	0	0	0
12	15	19,692	3,590	4,983	87	244	10,788	0	0	0	0	0	0	0
12 12	16 17	18,993 19.359	3,590 3.590	4,397 2.642	87 87	234 217	10,685 12,824	0	0	0	0	0	0	0
12 12	17 18	19,359 21,385	3,590 3,590	2,642 458	87 87	217 196	12,824 17,054	0	0	0	0	0	0	0
12	19	24,092	3,590	7	87	195	20,213	0	0	0	0	0	0	0
12	20	24,781	3,590	0	87	199	20,905	0	0	0	0	0	0	0
12	21	24,833	3,590	0	87	213	20,943	0	0	0	0	0	0	0
12 12	22	24,371 23,495	3,590 3.590	0	87 87	227 230	20,466 19.588	0	0	0	0	0	0	0
12	24	22,164	3,590	0	87	222	18,265	0	0	0	0	0	0	0
	•											18,592	2,713	8,920
Notes:														

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staf's Third Data Request Request No. 2 Attachment 20 of 20 Tab 8 of 10

(2)

(3)

(4)

(1)

20220000 - Staff's 3rd DR No Page 8 of 10

1,000

(15)

"What If" Gen MW Unavailable

(14)

Operating Hours (Hrs.) 21 5 Maximum Output (MWh) 1,984 2,095 Generation (MWh) = Must Run = Dispatchable = Load Control/Loss of Load 19,022 3,906 Load Control Loss of Load

(7)

(5)

(6)

(8)

(9)

(11)

(12)

(13)

(10)

2028 Combined System Winter Peak Day - ("2010-like" Winter Scenario)														
Day	Hour Ending	Load (MWh)	Nuclear (MWh)	Solar (MWh)	Conservation (MWh)	Purchases (MWh)	Combined Cycle (MWh)	CT/GT (MWh)	Steam Turbine (MWh)	Storage (MWh)	Loss of Load w/o LC (MWh)	Load Control (MWh)	Loss of Load w/ LC (MWh)	Loss of Load w/ LC and with 1,000 MW of gen out (MWh)*
9	1 2	16,718 16,412	3,590 3,590	0	87 87	223 223	12,818 12,512	0	0	0	0	0	0	0
9	3	16,414	3,590	0	87	224	12,512	0	0	0	0	0	0	0
9	4	16,654	3,590	0	87	220	12,756	0	0	0	0	0	0	0
9	5	17,158	3,590	0	87	226	13,255	0	0	0	0	0	0	0
9	6 7	18,094 19,508	3,590 3,590	0	87 87	232 233	14,185 15,598	0	0	0	0	0	0	0
9	8	21,352	3,590	100	87	220	17,355	0	0	0	0	0	0	0
9	9	23,505	3,590	2,233	87	224	17,371	0	0	0	0	0	0	0
9	10	25,522	3,590	4,375	87	231	17,240	0	0	0	0	0	0	0
9	11 12	26,831 27,269	3,590 3,590	5,543 6,068	87 87	237 247	17,374 17,276	0	0	0	0	0	0	0
9	13	27,509	3,590	6,149	87	253	17,430	0	0	0	0	0	0	0
9	14	27,545	3,590	6,077	87	253	17,539	0	0	0	0	0	0	0
9	15	27,661	3,590	5,742	87	243	17,999	0	0	0	0	0	0	0
9	16 17	27,870 28,382	3,590 3,590	5,051 2,975	87 87	233 216	18,909 21,089	0 424	0	0	0	0	0	0
9	18	29,613	3,590	490	87	195	21,089	3,098	1,026	0	38	38	0	0
9	19	30,962	3,590	7	87	194	21,089	3,098	1,026	0	1,871	1,871	0	887
9	20 21	31,118 30,913	3,590 3,590	0	87 87	198 212	21,089 21,089	3,098 3,098	1,026 1,026	0	2,030 1,810	1,984 1,810	46 0	1,046 826
9	22	30,295	3,590	0	87	226	21,089	3,098	1,026	0	1,179	1,179	0	195
9	23	29,306	3,590	0	87	229	21,089	3,098	1,026	0	186	186	0	0
9	24	28,397	3,590	0	87 87	221 223	21,089	3,098 2,909	312 0	0	0	0	0	0
10	1 2	27,899 27,666	3,590 3,590	0	87	223	21,089 21,089	2,909	0	0	0	0	0	0
10	3	27,724	3,590	0	87	224	21,089	2,734	0	0	0	0	0	0
10	4	28,075	3,590	0	87	220	21,089	3,088	0	0	0	0	0	0
10 10	5 6	28,513 29,252	3,590 3,590	0	87 87	226 232	21,089 21,089	3,098 3,098	423 1,026	0	0 130	0 130	0	0
10	7	30,032	3,590	0	87	233	21,089	3,098	1,026	94	815	815	0	0
10	8	31,372	3,590	100	87	220	21,089	3,098	1,026	469	1,693	1,693	0	709
10 10	9	32,681 32,941	3,590 3,590	2,233 4,375	87 87	224 231	21,089 21,089	3,098 3,098	1,026 472	469 0	865 0	865 0	0	0
10	11	32,550	3,590	5,543	87	237	21,089	2,005	0	0	0	0	0	0
10	12	31,359	3,590	6,068	87	247	21,089	278	0	0	0	0	0	0
10	13 14	29,868	3,590	6,149	87 87	253 253	19,790	0	0	0 (94)	0	0	0	0
10 10	15	28,309 26.933	3,590 3,590	6,077 5,742	87	253	18,396 17.740	0	0	(469)	0	0	0	0
10	16	26,113	3,590	5,051	87	233	17,621	0	0	(469)	0	0	0	0
10	17	26,468	3,590	2,975	87	216	19,599	0	0	0	0	0	0	0
10 10	18 19	28,217 30,737	3,590 3,590	490 7	87 87	195 194	21,089 21,089	2,766 3,098	0 1,026	0	0 1,645	0 1,645	0	0 661
10	20	31,318	3,590	0	87	198	21,089	3,098	1,026	0	2,229	1,984	245	1,245
10	21	31,542	3,590	0	87	212	21,089	3,098	1,026	0	2,439	1,984	455	1,455
10	22	30,986	3,590	0	87	226	21,089	3,098	1,026	0	1,870	1,870	0	886
10 10	23 24	29,690 28,403	3,590 3,590	0	87 87	229 221	21,089 21,089	3,098 3,098	1,026 317	0	571 0	571 0	0	0
11	1	27,604	3,590	0	87	223	21,089	2,615	0	0	0	0	0	0
11	2	27,575	3,590	0	87	223	21,089	2,586	0	0	0	0	0	0
11 11	3 4	27,801 28,215	3,590 3,590	0	87 87	224 220	21,089 21,089	2,811 3,098	0 131	0	0	0	0	0
11	5	29,007	3,590	0	87	226	21,089	3,098	917	0	0	0	0	0
11	6	30,274	3,590	0	87	232	21,089	3,098	1,026	94	1,057	1,057	0	73
11 11	7	32,686 33,758	3,590 3,590	0 100	87 87	233 220	21,089 21,089	3,098 3,098	1,026 1,026	469 469	3,094 4,079	1,984 1,984	1,110 2,095	2,110 3,095
11	9	32,438	3,590	2,233	87	224	21,089	3,098	1,026	0	1,091	1,091	0	107
11	10	30,960	3,590	4,375	87	231	21,089	1,589	0	0	0	0	0	0
11 11	11 12	29,130 26,942	3,590 3,590	5,543 6,068	87 87	237 247	19,674 16,949	0	0	0	0	0	0	0
11	13	24,783	3,590	6,149	87	253	14,705	0	0	0	0	0	0	0
11	14	22,961	3,590	6,077	87	253	13,049	0	0	(94)	0	0	0	0
11	15	21,490	3,590	5,742	87	243	12,297	0	0	(469)	0	0	0	0
11 11	16 17	20,695 20,969	3,590 3,590	5,051 2,975	87 87	233 216	12,203 14,100	0	0	(469) 0	0	0	0	0
11	18	22,997	3,590	490	87	195	18,634	0	0	0	0	0	0	0
11	19	26,597	3,590	7	87	194	21,089	1,629	0	0	0	0	0	0
11 11	20 21	27,466 27,476	3,590 3,590	0	87 87	198 212	21,089 21,089	2,501 2,498	0	0	0	0	0	0
11	22	26,882	3,590	0	87	226	21,089	1,889	0	0	0	0	0	0
11	23	25,487	3,590	0	87	229	21,089	491	0	0	0	0	0	0
11 12	24	24,251 23,538	3,590 3,590	0	87 87	221 223	20,353 19,638	0	0	0	0	0	0	0
12	2	23,605	3,590	0	87	223	19,705	0	0	0	0	0	0	0
12	3	24,005	3,590	0	87	224	20,103	0	0	0	0	0	0	0
12 12	4 5	24,558 25,397	3,590 3,590	0	87 87	220 226	20,661 21,089	0 405	0	0	0	0	0	0
12	6	27,089	3,590	0	87	232	21,089	2,090	0	0	0	0	0	0
12	7	29,790	3,590	0	87	233	21,089	3,098	1,026	469	197	197	0	0
12	8	30,831	3,590	100	87	220	21,089	3,098	1,026 0	469 0	1,152	1,152	0	168
12 12	10	29,418 27,060	3,590 3,590	2,233 4,375	87 87	224 231	21,089 18,778	2,195 0	0	0	0	0	0	0
12	11	24,885	3,590	5,543	87	237	15,429	0	0	0	0	0	0	0
12	12	23,047	3,590	6,068	87	247	13,054	0	0	0	0	0	0	0
12 12	13 14	21,573 20,394	3,590 3,590	6,149 6,077	87 87	253 253	11,494 10,387	0	0	0	0	0	0	0
12	15	19,369	3,590	5,742	87	243	9,707	0	0	0	0	0	0	0
12	16	18,843	3,590	5,051	87	233	9,882	0	0	0	0	0	0	0
12	17	19,114	3,590	2,975	87	216	12,245	0	0	0	0	0	0	0
12 12	18 19	20,628 23,116	3,590 3,590	490 7	87 87	195 194	16,266 19,238	0	0	0	0	0	0	0
12	20	23,921	3,590	0	87	198	20,046	0	0	0	0	0	0	0
12	21	23,984	3,590	0	87	212	20,095	0	0	0	0	0	0	0
12 12	22 23	23,443 22,417	3,590 3,590	0	87 87	226 229	19,540 18.510	0	0	0	0	0	0	0
12	24	21,218	3,590	0	87	221	17,320	0	0	0	0	0	0	0
		i i										19,022	3,906	10,510
Notes:														

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staf's Third Data Request Request No. 2 Attachment 20 of 20 Tab 9 of 10

= Must Run = Dispatchable = Load Control/Loss of Load

20220000 - Staff's 3rd DR No Page 9 of 10

Operating Hours (Hrs.) 27 11 Maximum Output (MWh) 2,018 2,243 Generation (MWh) Load Control Loss of Load 26,846 6,962

"What If" Gen MW Unavailable 1,000

(3) (6) (7) (9) (15) (1) (2) (4) (5) (8) (11) (14) (10) (12) (13) 1.982 769

2029 Combined Sys	tem Winter Peak F)av - ("2010-like"	Winter Scenario)

				2029 Coi	mbined Sys	stem win	ter Peak I	Day - ("20:	10-like" W	inter Sce	nario)			
Day	Hour Ending	Load (MWh)	Nuclear (MWh)	Solar (MWh)	Conservation (MWh)	Purchases (MWh)	Combined Cycle (MWh)	CT/GT (MWh)	Steam Turbine (MWh)	Storage (MWh)	Loss of Load w/o LC (MWh)	Load Control (MWh)	Loss of Load w/ LC (MWh)	Loss of Load w/ LC and with 1,000 MW of gen out (MWh)*
9	1	16,469	3,590	0	87	223	12,569	0	0	0	0	0	0	0
9	2	16,043	3,590	0	87	223	12,143	0	0	0	0	0	0	0
9	3	16,032	3,590	0	87	224	12,132	0	0	0	0	0	0	0
9	4	16,348	3,590	0	87	220	12,451	0	0	0	0	0	0	0
9	5	17,016 18,256	3,590 3.590	0	87 87	226 232	13,113 14.348	0	0	0	0	0	0	0
9	6 7	20,137	3,590	0	87 87	232	16,228	0	0	0	0	0	0	0
9	8	22,611	3,590	106	87	220	18,608	0	0	0	0	0	0	0
9	9	25,283	3,590	2,533	87	223	18,849	0	0	0	0	0	0	0
9	10	27,048	3,590	4,963	87	230	18,178	0	0	0	0	0	0	0
9	11	28,185	3,590	6,290	87	236	17,981	0	0	0	0	0	0	0
9	12	28,555	3,590	6,869	87	246	17,763	0	0	0	0	0	0	0
9	13	28,748	3,590	6,958	87	252	17,862	0	0	0	0	0	0	0
9	14	28,764	3,590	6,880	87	252	17,955	0	0	0	0	0	0	0
9	15	28,853	3,590	6,497	87	242	18,436	0	0	0	0	0	0	0
9	16 17	29,024	3,590	5,702	87	232 215	19,413	0 1.170	0	0	0	0	0	0
9	18	29,473 30,566	3,590 3.590	3,321 532	87 87	195	21,089 21.089	3,098	0 1,026	0	0 949	0 949	0	0
9	19	31,781	3,590	7	87	194	21,089	3,098	1,026	0	2,690	2,018	672	1,672
9	20	31,934	3,590	0	87	198	21,089	3,098	1,026	0	2,847	2,018	829	1,829
9	21	31,759	3,590	0	87	212	21,089	3,098	1,026	0	2,658	2,018	640	1,640
9	22	31,217	3,590	0	87	226	21,089	3,098	1,026	0	2,102	2,018	84	1,084
9	23	30,343	3,590	0	87	229	21,089	3,098	1,026	0	1,224	1,224	0	206
9	24	29,535	3,590	0	87	221	21,089	3,098	1,026	0	424	424	0	0
10	1	29,092	3,590	0	87	223	21,089	3,098	1,005	0	0	0	0	0
10 10	2	28,889 28,941	3,590 3,590	0	87 87	223 224	21,089 21,089	3,098 3,098	803 854	0	0	0	0	0
10	4	28,941 29,257	3,590	0	87	224	21,089	3,098	1,026	0	147	147	0	0
10	5	29,257	3,590	0	87	226	21,089	3,098	1,026	0	533	533	0	0
10	6	30,309	3,590	0	87	232	21,089	3,098	1,026	0	1,187	1,187	0	169
10	7	31,013	3,590	0	87	233	21,089	3,098	1,026	444	1,446	1,446	0	428
10	8	32,205	3,590	106	87	220	21,089	3,098	1,026	769	2,220	2,018	202	1,202
10	9	33,356	3,590	2,533	87	223	21,089	3,098	1,026	769	940	940	0	0
10 10	10 11	33,561	3,590	4,963	87 87	230 236	21,089	3,098	504 0	0	0	0	0	0
10	12	33,188 32.120	3,590 3,590	6,290 6,869	87	246	21,089 21.089	1,895 239	0	0	0	0	0	0
10	13	30,788	3,590	6,958	87	252	19,901	0	0	0	0	0	0	0
10	14	29,399	3,590	6,880	87	252	19,034	0	0	(444)	0	0	0	0
10	15	28,178	3,590	6,497	87	242	18,531	0	0	(769)	0	0	0	0
10	16	27,452	3,590	5,702	87	232	18,610	0	0	(769)	0	0	0	0
10	17	27,760	3,590	3,321	87	215	20,546	0	0	0	0	0	0	0
10 10	18 19	29,297 31,526	3,590 3.590	532 7	87 87	195 194	21,089 21.089	3,098 3.098	707 1.026	0	0 2.435	0 2.018	0 417	0 1.417
10	20	32,052	3,590	0	87	198	21,089	3,098	1.026	0	2,965	2,018	947	1,947
10	21	32,256	3,590	0	87	212	21,089	3,098	1,026	0	3,155	2,018	1,137	2,137
10	22	31,772	3,590	0	87	226	21,089	3,098	1,026	0	2,657	2,018	639	1,639
10	23	30,634	3,590	0	87	229	21,089	3,098	1,026	0	1,515	1,515	0	497
10 11	24	29,499 28,794	3,590	0	87 87	221 223	21,089 21.089	3,098 3,098	1,026 707	0	389	389 0	0	0
11	2	28,794	3,590 3.590	0	87	223	21,089	3,098	682	0	0	0	0	0
11	3	28,971	3,590	0	87	224	21,089	3,098	883	0	0	0	0	0
11	4	29,338	3,590	0	87	220	21,089	3,098	1,026	0	229	229	0	0
11	5	30,037	3,590	0	87	226	21,089	3,098	1,026	0	922	922	0	0
11	6	31,157	3,590	0	87	232	21,089	3,098	1,026	444	1,591	1,591	0	573
11 11	7	33,288 34,246	3,590 3.590	0 106	87 87	233 220	21,089 21.089	3,098 3,098	1,026 1.026	769 769	3,396 4,261	2,018 2,018	1,378 2,243	2,378
11	9	34,246	3,590	2,533	87	223	21,089	3,098	1,026	0	1,444	1,444	0	3,243 426
11	10	31,767	3,590	4,963	87	230	21,089	1,808	0	0	0	0	0	0
11	11	30,135	3,590	6,290	87	236	19,932	0	0	0	0	0	0	0
11	12	28,195	3,590	6,869	87	246	17,403	0	0	0	0	0	0	0
11	13	26,289	3,590	6,958	87	252	15,403	0	0	0	0	0	0	0
11	14	24,684	3,590	6,880	87	252	14,319	0	0	(444)	0	0	0	0
11	15	23,127	3,590	6,497	87	242	13,479	0	0	(769)	0	0	0	0
11 11	16 17	22,048 22,435	3,590 3,590	5,702 3,321	87 87	232 215	13,206 15,221	0	0	(769) 0	0	0	0	0
11	18	24,700	3,590	532	87	195	20,297	0	0	0	0	0	0	0
11	19	27,864	3,590	7	87	194	21,089	2,897	0	0	0	0	0	0
11	20	28,632	3,590	0	87	198	21,089	3,098	570	0	0	0	0	0
11	21	28,643	3,590	0	87	212	21,089	3,098	568	0	0	0	0	0
11	22	28,125	3,590	0	87	226	21,089	3,098	35	0	0	0	0	0
11 11	23 24	26,903 25,820	3,590 3,590	0	87 87	229 221	21,089 21,089	1,909 833	0	0	0	0	0	0
12	1	25,820	3,590	0	87	223	21,089	204	0	0	0	0	0	0
12	2	25,251	3,590	ō	87	223	21,089	262	0	0	ő	0	0	0
12	3	25,600	3,590	0	87	224	21,089	610	0	0	0	0	0	0
12	4	26,086	3,590	0	87	220	21,089	1,100	0	0	0	0	0	0
12	5	26,820	3,590	0	87	226	21,089	1,829	0	0	0	0	0	0
12 12	6 7	28,302	3,590 3,590	0	87 87	232 233	21,089 21,089	3,098 3,098	206 1.026	0 769	0 777	0 777	0	0
12	8	30,669 31,585	3,590	106	87	233	21,089	3,098	1,026	769	1,601	1,601	0	583
12	9	30,357	3,590	2,533	87	223	21,089	2,835	0	0	0	0	0	0
12	10	28,288	3,590	4,963	87	230	19,418	0	0	0	0	0	0	0
12	11	26,372	3,590	6,290	87	236	16,169	0	0	0	0	0	0	0
12	12	24,751	3,590	6,869	87	246	13,959	0	0	0	0	0	0	0
12 12	13	23,266	3,590	6,958	87 87	252	12,379 10,853	0	0	0	0	0	0	0
12	14 15	21,663 20,264	3,590 3,590	6,880 6,497	87 87	252 242	9,848	0	0	0	0	0	0	0
12	16	19,544	3,590	5,702	87	232	9,933	0	0	0	0	0	0	0
12	17	19,922	3,590	3,321	87	215	12,708	0	0	0	0	0	0	0
12	18	22,008	3,590	532	87	195	17,605	0	0	0	0	0	0	0
12	19	24,795	3,590	7	87	194	20,917	0	0	0	0	0	0	0
12 12	20 21	25,504 25,557	3,590 3,590	0	87 87	198 212	21,089 21.089	540 580	0	0	0	0	0	0
12	22	25,082	3,590	0	87	212	21,089	90	0	0	0	0	0	0
12	23	24,181	3,590	0	87	229	20,275	0	0	0	0	0	0	0
12	24	22,810	3,590	0	87	221	18,913	0	0	0	0	0	0	0
Notes:												26,846	6,962	16,639

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staf's Third Data Request Request No. 2 Attachment 20 of 20 Tab 10 of 10

(2)

(1)

= Must Run = Dispatchable = Load Control/Loss of Load

(3)

(4)

(5)

20220000 - Staff's 3rd DR No Page 10 of 10

(13)

(14)

Operating Hours (Hrs.) 78 74 Maximum Output (MWh) 2,052 14,663 Generation (MWh) Load Control Loss of Load 121,808 431,379

(12)

(11)

(10)

(15)

(8)

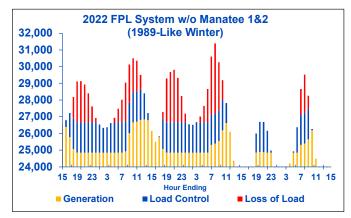
(9)

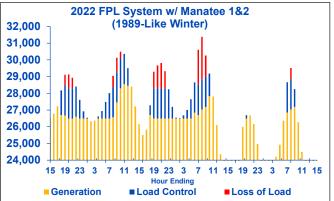
(7)

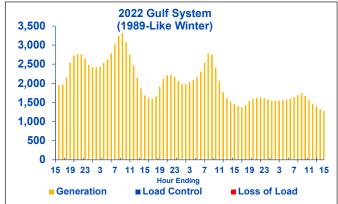
(6)

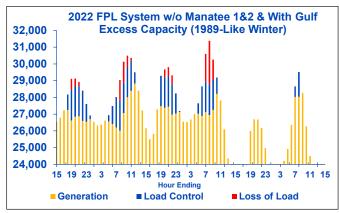
	2030 Combined System Winter Peak Day - ("2010-like" Winter Scenario)													
Day	Hour Ending	Load (MWh)	Nuclear (MWh)	Solar (MWh)	Conservation (MWh)	Purchases (MWh)	Combined Cycle (MWh)	CT/GT (MWh)	Steam Turbine (MWh)	Storage (MWh)	Loss of Load w/o LC (MWh)	Load Control (MWh)	Loss of Load w/ LC (MWh)	Loss of Load w/ LC and with 1,000 MW of gen out (MWh)*
9	1 2	22,681 22,098	3,590 3,590	0	87 87	222 222	18,782 18,199	0	0	0	0	0	0	0
9	3	22,086	3,590	0	87	223	18,186	0	0	0	0	0	0	0
9	4 5	22,521 23,442	3,590 3,590	0	87 87	219 225	18,625 19,540	0	0	0	0	0	0	0
9	6	25,152	3,590	0	87	231	21,089	155	0	0	0	0	0	0
9	7	27,743	3,590	0	87	232	21,089	2,745	0	0	0	0	0	0
9	8	31,147 34,817	3,590 3,590	111 2,792	87 87	219 223	21,089 21,089	3,095 3,095	1,026 1,026	0	1,930 2,915	1,930 2,052	0 863	752 1,737
9	10	37,237	3,590	5,480	87	229	21,089	3,095	1,026	0	2,640	2,052	588	1,462
9	11 12	38,791 39,292	3,590 3,590	6,953 7,597	87 87	235 245	21,089 21,089	3,095 3,095	1,026 1,026	0	2,715 2,562	2,052 2,052	663 510	1,537 1,384
9	13	39,549	3,590	7,698	87	251	21,089	3,095	1,026	0	2,713	2,052	661	1,535
9	14 15	39,561 39,677	3,590 3,590	7,616 7,194	87 87	251 242	21,089 21,089	3,095 3,095	1,026 1,026	0	2,807 3,354	2,052 2,052	755 1,302	1,630 2,177
9	16	39,906	3,590	6,315	87	232	21,089	3,095	1,026	0	4,471	2,052	2,419	3,294
9	17 18	40,521 42,028	3,590 3,590	3,656 577	87 87	215 194	21,089 21,089	3,095 3,095	1,026 1,026	0	7,762 12,369	2,052 2,052	5,710 10,317	6,585 11,192
9	19	43,711	3,590	7	87	193	21,089	3,095	1,026	0	14,624	2,052	12,572	13,446
9	20 21	43,931	3,590 3,590	0	87 87	197 211	21,089 21,089	3,095 3,095	1,026 1,026	1,169 0	13,678	2,052 2,052	11,626	12,500
9	22	43,693 42,950	3,590	0	87	225	21,089	3,095	1,026	0	14,595 13,837	2,052	12,543 11,785	13,417 12,660
9	23	41,747	3,590	0	87	228	21,089	3,095	1,026	0	12,631	2,052	10,579	11,454
9	24	40,631 40,021	3,590 3,590	0	87 87	220 222	21,089 21,089	3,095 3,095	1,026 1,026	0	11,524 10,912	2,052 2,052	9,472 8,860	10,346 9,734
10	2	39,743	3,590	0	87	222	21,089	3,095	1,026	0	10,634	2,052	8,582	9,456
10 10	3 4	39,815 40,252	3,590 3,590	0	87 87	223 219	21,089 21,089	3,095 3,095	1,026 1,026	0	10,705 11,146	2,052 2,052	8,653 9,094	9,527 9,968
10	5	40,794	3,590	0	87	225	21,089	3,095	1,026	0	11,681	2,052	9,629	10,504
10 10	6 7	41,706 42,682	3,590 3,590	0	87 87	231 232	21,089 21,089	3,095 3,095	1,026 1,026	0	12,588 13,563	2,052 2,052	10,536 11,511	11,410 12,385
10	8	44,326	3,590	111	87	219	21,089	3,095	1,026	269	14,840	2,052	12,788	13,663
10	9	45,907	3,590	2,792	87	223	21,089	3,095	1,026	0	14,005	2,052	11,953	12,827
10 10	10 11	46,177 45,649	3,590 3,590	5,480 6,953	87 87	229 235	21,089 21,089	3,095 3,095	1,026 1,026	0	11,580 9,573	2,052 2,052	9,528 7,521	10,402 8,395
10	12	44,173	3,590	7,597	87	245	21,089	3,095	1,026	0	7,443	2,052	5,391	6,265
10 10	13 14	42,332 40,415	3,590 3,590	7,698 7,616	87 87	251 251	21,089 21,089	3,095 3,095	1,026 1,026	0	5,496 3,661	2,052 2,052	3,444 1,609	4,318 2,483
10	15	38,733	3,590	7,194	87	242	21,089	3,095	1,026	0	2,410	2,052	358	1,232
10 10	16 17	37,733 38,153	3,590 3,590	6,315 3,656	87 87	232 215	21,089 21,089	3,095 3,095	1,026 1,026	0	2,299 5,395	2,052 2,052	247 3,343	1,121 4,217
10	18	40,264	3,590	577	87	194	21,089	3,095	1,026	0	10,606	2,052	8,554	9,428
10	19	43,332	3,590	7	87	193	21,089	3,095	1,026	0	14,244	2,052	12,192	13,066
10 10	20 21	44,063 44,347	3,590 3,590	0	87 87	197 211	21,089 21,089	3,095 3,095	1,026 1,026	0	14,979 15,248	2,052 2,052	12,927 13,196	13,801 14,071
10	22	43,684	3,590	0	87	225	21,089	3,095	1,026	0	14,572	2,052	12,520	13,394
10 10	23 24	42,121 40,562	3,590 3,590	0	87 87	228 220	21,089 21,089	3,095 3,095	1,026 1,026	0	13,006 11.454	2,052 2.052	10,954 9,402	11,829 10,277
11	1	39,591	3,590	0	87	222	21,089	3,095	1,026	0	10,482	2,052	8,430	9,304
11 11	2	39,557 39,837	3,590 3,590	0	87 87	222 223	21,089 21,089	3,095 3,095	1,026 1,026	0	10,447 10,726	2,052 2,052	8,395 8,674	9,270 9,549
11	4	40,342	3,590	0	87	219	21,089	3,095	1,026	0	11,236	2,052	9,184	10,058
11	5	41,304 42.845	3,590 3,590	0	87 87	225 231	21,089	3,095 3.095	1,026	0	12,192	2,052 2,052	10,140	11,014 12,549
11 11	6 7	45,776	3,590	0	87	231	21,089 21,089	3,095	1,026 1,026	1,169	13,726 15,488	2,052	11,674 13,436	14,310
11	8	47,101	3,590	111	87	219	21,089	3,095	1,026	1,169	16,715	2,052	14,663	15,537
11 11	9 10	45,516 43,687	3,590 3,590	2,792 5,480	87 87	223 229	21,089 21,089	3,095 3,095	1,026 1,026	0	13,613 9,090	2,052 2,052	11,561 7,038	12,436 7,912
11	11	41,433	3,590	6,953	87	235	21,089	3,095	1,026	0	5,357	2,052	3,305	4,179
11 11	12 13	38,761 36,139	3,590 3,590	7,597 7,698	87 87	245 251	21,089 21,089	3,095 3,095	1,026 329	0	2,031 0	2,031 0	0	853 0
11	14	33,933	3,590	7,616	87	251	21,089	1,301	216	(216)	0	0	0	0
11	15 16	31,794	3,590	7,194	87	242	20,681	143	1,026	(1,169)	0	0	0	0
11 11	16 17	30,312 30,840	3,590 3,590	6,315 3,656	87 87	232 215	20,088 21,089	143 2,346	1,026 1,026	(1,169) (1,169)	0	0	0	0
11	18	33,948	3,590	577	87	194	21,089	3,095	1,026	0	4,289	2,052	2,237	3,112
11 11	19 20	38,291 39,347	3,590 3,590	7	87 87	193 197	21,089 21,089	3,095 3,095	1,026 1,026	0	9,204 10,263	2,052 2,052	7,152 8,211	8,026 9,085
11	21	39,365	3,590	0	87	211	21,089	3,095	1,026	0	10,266	2,052	8,214	9,089
11 11	22 23	38,655 36,980	3,590 3,590	0	87 87	225 228	21,089 21,089	3,095 3,095	1,026 1,026	0	9,542 7,865	2,052 2,052	7,490 5,813	8,365 6,687
11	24	35,493	3,590	0	87	220	21,089	3,095	1,026	0	6,386	2,052	4,334	5,208
12 12	1 2	34,632 34,711	3,590 3,590	0	87 87	222 222	21,089 21,089	3,095 3,095	1,026 1,026	0	5,522 5,602	2,052 2,052	3,470 3,550	4,345 4,424
12	3	35,190	3,590	0	87	223	21,089	3,095	1,026	0	6,079	2,052	4,027	4,902
12	4	35,857	3,590	0	87	219	21,089	3,095	1,026	0	6,751	2,052	4,699	5,573
12 12	5 6	36,864 38,896	3,590 3,590	0	87 87	225 231	21,089 21,089	3,095 3,095	1,026 1,026	0	7,751 9,778	2,052 2,052	5,699 7,726	6,574 8,600
12	7	42,142	3,590	0	87	232	21,089	3,095	1,026	0	13,022	2,052	10,970	11,845
12 12	8	43,402 41,721	3,590 3,590	111 2,792	87 87	219 223	21,089 21,089	3,095 3,095	1,026 1,026	0	14,185 9,819	2,052 2,052	12,133 7,767	13,007 8,642
12	10	38,883	3,590	5,480	87	229	21,089	3,095	1,026	0	4,286	2,052	2,234	3,108
12 12	11 12	36,249 34,020	3,590 3,590	6,953 7,597	87 87	235 245	21,089 21,089	3,095 1,412	1,026 0	0	173 0	173 0	0	0
12	13	31,980	3,590	7,698	87	251	20,354	0	0	0	0	0	0	0
12	14	29,778	3,590	7,616	87	251	18,234	0	0	0	0	0	0	0
12 12	15 16	27,858 26,870	3,590 3,590	7,194 6,315	87 87	242 232	16,746 16,646	0	0	0	0	0	0	0
12	17	27,387	3,590	3,656	87	215	19,839	0	0	0	0	0	0	0
12 12	18 19	30,247 34,072	3,590 3,590	577 7	87 87	194 193	21,089 21,089	3,095 3,095	1,026 1,026	0	589 4,985	589 2,052	0 2,933	0 3,807
12	20	35,046	3,590	0	87	197	21,089	3,095	1,026	0	5,962	2,052	3,910	4,784
12 12	21 22	35,119 34,466	3,590 3,590	0	87 87	211 225	21,089 21,089	3,095 3,095	1,026 1,026	0	6,021 5,353	2,052 2,052	3,969 3,301	4,843 4,176
12	23	33,229	3,590	0	87	228	21,089	3,095	1,026	0	4,114	2,052	2,062	2,936
12	24	31,349	3,590	0	87	220	21,089	3,095	1,026	0	2,242	2,052 121,808	190 431 379	1,064 482,947
Notes:												121,000	431,379	702,747

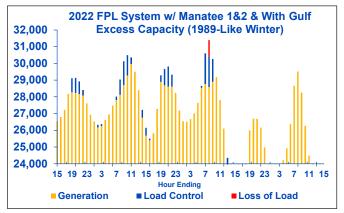
Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 21 of 24 Tab 1 of 8


> 20220000 - Staff's 3rd DR No Page 1 of 8


Load Control 8	& Loss o	f Load S	Summary	
"1989-Like Winter	" - w/ ar	nd w/o	Manatee	1&2)


								Loss of
		Load Control #	Load Control	Loss of Load # of	Loss of Load	Maximum Loss of Load	% of Load	Load # of Hours w/ 1,000
Year	Scenario	of Hours	(MWh)	Hours	(MWh)	(MW)	Unserved	MW Out
	FPL - w/o Manatee 1&2	53	82,567	33	56,948	4,182	2.4%	47
2022	FPL - w/ Manatee 1&2	38	47,398	14	15,425	2,540	0.6%	27
2022	Difference	(15)	(35,169)	(19)	(41,522)	(1,642)	-1.7%	(20)
	Gulf Stand-Alone	0	0	0	0	0	0.0%	0
	FPL - w/o Manatee 1&2 & w/ Gulf Excess Capacity*	29	47,398	13	11,772	2,625	0.5%	23
2022	Difference From w/o Excess Capacity	(24)	(35,169)	(20)	(45,175)	(1,556)	-1.9%	(24)
2022	FPL - w/ Manatee 1&2 & w/ Gulf Excess Capacity*	25	17,727	2	1,007	983	0.0%	10
	Difference From w/o Excess Capacity	(13)	(29,670)	(12)	(14,419)	(1,556)	(0)	(17)


Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 21 of 24 Tab 2 of 8


> 20220000 - Staff's 3rd DR No Page 2 of 8

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 21 of 24 Tab 3 of 8

	Tab 3 of 8		2022 EDI Surtom						1989-Like Winter										
			W/				Manatee 1	1&2	W/					1&2		2022 Gu	If System		
			Load			Load			Load			Load							
	Hour			Load	Loss of		Load	Loss of		Load	Loss of		Load	Loss of			Load	Loss of	
1	Hour	Torccust		Control	Load		Control	Load		Control	Load		Control	Load	1 Or coust		Control	Load	
1								_			_			_					
1																		0	
1.	3		14,187		0	14,187	0	0		0	0	14,187	0	0			0	0	
1																		0	
7 1792 1792 1792 1792 0 0 1792 0 0 1792 0 0 0 1792 0 0 0 1792 0 0 0 0 1792 0 0 0 0 0 0 0 0 0 0	-																	0	
1.	7	17,782	17,782	0	0	17,782	0	0	17,782	0	0	17,782	0	0	2,250	2,250	0	0	
10																		0	
11																		0	
13	11	25,444	25,444	0	0	25,444	0	0	25,444	0	0	25,444	0	0	2,693	2,693	0	0	
14 5,633 2,633 0																		0	
15 26,530 26,530 0																		0	
17 17 17 17 17 18 18 18																		0	
18																		0	
20																		0	
12	19										673			0		2,541	0	0	
22 28,049 24,848 1312 1,745 26,593 1,812 0 26,592 1,812 0 2,8078 376 0 2,755 2,755 0 0 2,755 0 2,755 0 0 2,755 2,755 0 0 2,755 2,755 0 0 2,755 2,755 0 0 2,755 2,755 0 0 2,755 2,755 0 0 2,755 2,755 0 0 2,755 2,755 0 0 2,755 2,755 0 0 2,755 2,755 0 0 2,755 2,755 0 0 2,755 2,755 0 0 2,755 2,755 0 0 2,755 2,755 0 0 2,755 2,755 0 0 2,755 2,755 0 0 2,755 2,755 0 0 2,755 2,755 0 0 2,755 0 0 2,755 2,755 0 0																		0	
23 27.512 24.848 13.12 921 25.400 1,122 0 26.546 1,066 0 27.612 0 0 2,409 2,640 0 0 1																		0	
1 25.534	23	27,612	24,848	1,812	952	26,490	1,122	0	26,546	1,066	0	27,612	0	0	2,649	2,649	0	0	
2																		0	
3 26,371 24,848 1,573 0 26,971 0 0 26,371 0 0 26,371 0 0 2,485 2,485 0 0 0 2,585 0																		0	
5	3	26,371	24,848	1,523	0	26,371	0	0	26,371	0	0	26,252	119	0	2,436	2,436	0	0	
6 7,2483 24,848 1,812 223 25,660 99 93 0 26,411 1,072 0 27,837 1,99 0 30,3034 0 0 7,78 7 2,8015 1,90 1,90 1,90 1,90 1,90 1,90 1,90 1,90																		0	
8																		0	
9 30.129	7	28,016	24,848	1,812	1,356	26,490			26,204	1,812	0	27,817		0	3,024	3,024	0	0	
10 30,495 26,568 1812 2,025 28,300 1812 383 28,005 1812 579 29,006 393 0 2,750 2,750 0 0 12 29,500 26,808 1,812 880 2,8450 1,050 0 0 2,8400 0 0 2,9500 0 0 2,464 2,464 0 0 1,475 1,475 2,477 0 0 0 0 0 0 0 0 0																		0	
12 25,000 26,806 1,812 880 28,450 1,050 0 28,840 0 0 29,500 0 0 2,464 2,464 0 0 1,461																		0	
14	11	30,359								1,812	159		393		2,750	2,750		0	
14 27,220 26,786 348 0 27,220 0 0 27,220 0 0 26,751 469 0 1,863 1,863 0 0 16 15 26,550 25,500 0 0 25,500 0 0 25,500 0 0 25,500 0 0 25,500 0 0 25,500 0 0 25,500 0 0 25,500 0 25,500 0 0 25,500 0 27,200 0 27,200 27,2																		0	
15																		0	
17		26,150	26,150	0	0	26,150		0	26,150	0	0	25,681		0	1,680	1,680		0	
18 27,282 25,061 1,812 409 26,703 579 0 27,282 0 0 27,282 0 0 1,975 1,975 0 0 20 29,670 24,884 1,812 3,010 26,490 1,812 1,388 27,478 1,812 0 28,892 398 0 0 1,917 1,917 0 0 0 2,9570 24,884 1,812 3,010 26,490 1,812 1,388 27,478 1,812 526 28,611 1,200 2,209 2,209 0 0 2,209																		0	
19 29,290																		0	
21 2 29,811 24,848 1,812 2,653 2,649 1,812 1,599 7,748 1,812 562 28,611 1,200 0 2,209 2,009 0 0 2,008 2,008 2,008 0 0 2,008 2,008 2,008 0 0 2,008 2,009 2,			24,855	1,812		26,497	1,812	981						0				0	
22 29,323 24,848 1812 2,653 26,490 1.746 0 77,032 1.005 0 28,236 0 0 2,163 2,163 0 0 2,163 2,163 0 0 2,163 2,163 0 0 2,163 2,163 0 0 2,163 2,163 0 0 2,163 2,163 0 0 2,163 2,163 0 0 2,163 2,163 0 0 2,163 2,163 0 0 2,163 2,163 0 0 2,163 2,163 0 0 2,163 2,163 0 0 2,163 2,163 0 0 2,163 2,163 0 0 2,163 2,163 0 0 2,163 2,163 0 0 2,165 2,165 0 0 2,165 2,196 0 0 2,165 2,196 0 0 2,165 2,196 0 0 2,165 2,196 0 0 2,165 2,196 0 0 2,165 2,196 0 0 2,165 2,196 0 0 2,165 2,196 0 0 2,165 0 0 0 2,165 0 0 0 2,165 0 0 0 2,165 0 0 0 2,165																		0	
23 28.236																		0	
1 26,543 24,848 1,665 0 26,490 25 0 26,590 25 0 26,515 0 0 0 1,976 1,976 0 0 2 2 26,515 12,48,48 1,812 19 26,490 189 0 26,679 0 0 0 26,679 0 0 0 2,034 2,034 0 0 6 3 26,679 24,848 1,812 346 26,490 516 0 27,006 0 0 0 72,006 0 0 0 2,097 2,087 0 0 0 5 27,644 24,848 1,812 199 26,490 1,154 0 27,007 0 0 0 2,034 1,000 2,165 1,000 0 0 0 2,097 2,087 0 0 0 0 2,097 2,087 0 0 0 0 0 2,097 2,087 0 0 0 0 0 0,007 2,087 0 0 0 0 0 0,007 2,087 0 0 0 0 0 0,007 2,097 2,087 0 0 0 0 0 0,007 2,087 0 0 0 0 0 0,007 2,087 0 0 0 0 0 0,007 2,087 0 0 0 0 0 0,007 2,087 0 0 0 0 0 0,007 2,087 0 0 0 0 0,007 2,087 0 0 0 0 0 0,007 2,087 0 0 0 0 0 0,007 2,087 0 0 0 0 0,007 2,087 0 0 0 0 0 0,007 2,087 0 0 0 0 0,007 2,087 0 0 0 0 0,007 2,087 0 0 0 0 0,007 2,087 0 0 0 0 0,007 2,007 0 0 0 0,007 2,007 0 0 0 0,007 2,007 0 0 0 0,007 2,007 0 0 0,007 2,007 0 0 0,007 0 0,007 0 0 0,007 0 0 0,007 0 0 0,007 0 0 0,007 0 0 0,007 0 0 0,007 0 0 0,007 0 0 0,007 0 0 0,007 0 0 0,007 0 0 0,007 0 0 0,007 0 0,007 0 0 0,007 0 0 0,007 0 0 0,007 0 0 0,007 0 0 0,007 0 0 0,007 0 0 0,007 0 0 0,007 0 0 0,007 0 0 0,007 0 0 0,007 0 0 0,007 0 0,007 0 0 0,007 0 0 0,007 0 0 0,007 0 0 0,007 0 0 0,007 0 0 0,007 0 0 0,007 0 0 0,007 0 0 0,007 0 0 0,007 0 0 0,007 0 0 0,007 0 0,007 0 0 0,007 0 0 0,007 0 0 0,007 0 0 0,007 0 0 0,007 0 0 0,007 0 0 0,007 0 0 0,007 0 0 0,007 0 0 0,007 0 0 0,007 0 0 0,007 0 0,007 0 0	23													0			0	0	
2 26,515 24,848 1,667 0 26,490 189 0 26,515 0 0 0 2,515 0 0 1,980 1,980 1 0 0 4 2,034 2,034 0 0 0 4 2,7005 24,848 1,812 19 26,690 189 0 26,679 0 0 0 2,067 0 0 0 2,087 2,087 0 0 6 5 27,644 0 0 0 2,165 2,165 2,165 2,165 0 0 0 2,087 2,087 0 0 6 6 2,8657 24,848 1,812 984 26,690 1,154 0 27,007 617 0 0 7,7644 0 0 0 2,165 2,165 2,165 0 0 0 2,087 2,087 0 0 6 6 2,8657 24,848 1,812 1,997 26,845 1,812 0 26,894 1,763 0 28,866 1,21 0 2,303 0 0 0 2,303 0 0 0 2,303 1,812 3,472 2,698 1,812 2,092 27,144 1,812 1,665 28,766 1,812 2,3 2 3,243 2,543 2,543 1,812 2,930 2,718 7 1,812 1,261 27,265 1,812 1,112 2,889 1,812 993 2,781 2,781 0 0 2,918																		0	
4 27,006 24,848 1,812 346 26,490 1,154 0 27,007 617 0 0 27,006 0 0 0 2,087 2,087 0 0 6 5 27,644 0 0 0 2,165 2,165 2,165 0 0 6 6 28,657 24,848 1,812 1940 26,649 1,154 0 27,007 617 0 0 2,036 1,151 0 0 2,303 1,318 1,318 1,318 3,472 26,698 1,812 0 26,894 1,763 0 28,556 1,121 0 0 2,303 2,303 0 0 0 1,317 1,151																		0	
5 27,564 24,848 1,812 .994 26,894 1,154 0 27,027 61,70 0 27,644 0 0 2,165 0 2,165 0 2,268 1,812 0 2,6894 1,812 0 2,6894 1,812 0 2,6894 1,812 1,872 2,6984 1,812 2,922 2,243 0 0 2,6894 1,812 2,323 2,543 0 0 2,7124 1,812 1,872 2,543 0 0 2,7124 1,812 1,865 2,8766 1,812 2,931 2,781 0 0 2,7127 1,812 1,812 0 0 2,7127 1,812 1,812 0 0 2,600 0	3			1,812	19		189	0		0	0		0	0	2,034	2,034	0	0	
6 28,657 24,848 1,812 1,997 26,845 1,812 0 26,894 1,763 0 28,536 121 0 2,303 2,303 0 0 7 3 0,000 12,317 1,812 3,472 26,698 1,812 2,092 27,124 1,812 1,612 2,625 28,576 1,812 23 2,543 2,543 0 0 0 1,00																		0	
7 30,001 25,317 1,812 3,472 26,698 1,812 2,992 27,124 1,812 1,665 28,766 1,812 293 2,783 2,543 0 0 6 8 31,386 2,392 1,812 4,182 2,704 1,812 2,540 2,540 9 30,259 25,545 1,812 2,930 27,187 1,812 1,261 27,256 1,812 1,191 1,888 1,361 0 0 2,755 2,755 0 0 0 1 0 29,184 26,189 1,812 1,182																		0	
9 30,259 25,545 1,812 1,930 27,187 1,812 1,261 27,256 1,812 1,191 28,888 1,361 0 2,755 2,755 0 0 0 24,000 1 0 2,181 1,812 1,182 1,721 1,72																		0	
10 29,184 26,189 1,812 1,182 27,831 1,352 0 28,207 976 0 29,184 0 0 2,416 2,416 0 0 1,1764 1,764 0 0 1,206 2,660 0 0 0 0 0 0 0 0 0																		0	
12 26,997 26,907 0																		ō	
13 24,354 24,354 0 0 0 24,354 0 0 0 24,354 0 0 0 22,864 0 0 0 22,875 469 0 1,1613 1,1613 0 0 1 14 22,864 22,864 0 0 0 22,864 0 0 0 22,884 0 0 0 1,385 469 0 1,1652 1,552 1,552 0 0 0 15 21,398 21,398 0 0 0 21,398 0 0 0 21,398 0 0 0 21,398 0 0 0 1,384 0 0 0 1,465 1,1652 0 0 0 17 20,791 20,791 0 0 0 20,791 0 0 0 20,791 0 0 0 20,791 0 0 0 1,381 1,381 0 0 0 18 22,399 0 0 0 22,999 0 0 0 22,999 0 0 0 22,999 0 0 0 1,381 1,381 0 0 0 19 25,992 44,875 1,187 0 25,992 0 0 0 25,992 0 0 0 1,5691 0 0 0 1,571 1,541 1,541 0 0 0 20 26,691 44,879 1,812 0 26,684 0 0 0 26,684 0 0 0 1,661 0 0 1,671 1,541 1,541 0 0 0 21 26,684 24,873 1,812 0 26,684 0 0 0 26,684 0 0 0 1,661 0 0 1,597 1,597 0 0 0 22 26,162 44,888 121 0 24,969 0 0 0 24,969 0 0 0 1,461 1,613 1,613 0 0 0 24 23,932 23,937 0 0 23,937 0 0 23,937 0 0 23,937 0 0 1,541 1,550 1,566 1 0 0 1,597 1,597 0 0 0 24 23,336 23,336 0 0 23,336 0 0 23,336 0 0 0 23,336 0 0 0 1,586 1 0 0 1,597 1,597 0 0 0 2 2 23,436 24,248 121 0 24,969 0 0 0 24,969 0 0 0 24,969 0 0 0 1,661 0 0 1,661 1,665 1,666 0 0 1,661 1,665 1,666 0 0 1,661 1,665 1,666 0 0 1,661 1,665 1,666 0 0 1,661 1,666 1,666 1 0 0 1,661 1,666 1,666 1 0 0 1,661 1,666 1,666 1 0 0 1,661 1,666 1,666 1 0 0 1,661 1,666 1,666 1 0 0 1,661 1,666 1,666 1 0 0 1,661 1,666 1,666 1 0 0 1,661 1,666 1,666 1 0 0 1,661 1,666 1 1,666 1 0 0 1,661 1,666 1 1,666																		0	
14 22,864 0 0 22,864 0 0 22,864 0 0 22,864 0 0 22,864 0 0 1,522 1,522 0 1,522 0 0 15 21,398 21,338 0 0 21,338 0 0 21,338 0 0 21,338 0 0 20,344 0 0 20,791 0 0 0 0 0 0 1,403 1 0 0 1,403 1 0 0 0 20,791 0 0 0 0 0 1,403 1 0 0 0 0 1,422 0 0 1,422 0 0 1,428 1,412 0 0 2,5992 0 0 2,5992 0 0 1,5991 1,5997 1,5997 0 0 2,6691 0 0 1,5891 1,5997 0 0 2,6684 0 0																		0	
16 20,384 20,384 0 0 0 20,384 0 0 0 20,384 0 0 0 20,384 0 0 0 1,403 1,403 0 0 1 1 7 20,791 20,791 20,791 0 0 0 20,791 0 0 0 20,791 0 0 0 1,381 1,381 0 0 0 1 1,402 1,402 0 0 1 1,597 1,597 0 0 0 1,591 1,541 1,541 0 0 0 1,591 1,592 0 0 0 1,592 1,592 0 0 0 1,599 0 0 0 1,422 1,422 0 0 0 1,591 1,591 1,591 1,591 0 0 0 1,591 1,591 1,591 0 0 0 1,591 1,591 1,591 0 0 0 1,591 1,591 1,591 0 0 0 1,591 1,591 1,591 0 0 0 1,591 1,591 1,591 0 0 0 1,591 1,591 1,591 0 0 0 1,591 1,591 1,591 0 0 0 1,591 1,591 1,591 0 0 0 1,591 1,591 1,591 0 0 0 1,591 1,591 1,591 0 0 0 1,591 1,591 1,591 0 0 0 1,591 1,591 1,591 0 0 0 1,591 1,591 1,591 0 0 0 1,591 1,591 1,591 0 0 0 1,591 1,591 1,591 0 0 0 1,591 1,591 1,591 1,591 0 0 0 1,591		22,864	22,864			22,864		0	22,864			22,395			1,522	1,522		0	
17 20,791 20,791 0 0 0 20,791 0 0 0 20,791 0 0 0 20,791 0 0 0 1,381 1,381 0 0 18 22,989 22,899 0 0 22,899 0 0 0 22,989 0 0 0 1,542 1,422 0 0 19 25,992 24,855 1,137 0 25,992 0 0 0 25,992 0 0 0 1,591 1,597 0 0 19 24,879 1,812 0 26,684 0 0 0 26,691 0 0 0 2,592 0 0 0 1,541 1,541 0 0 21 26,684 24,873 1,812 0 26,684 0 0 0 26,691 0 0 0 2,6691 0 0 0 1,691 1,613 0 22 26,162 24,848 1,314 0 26,684 0 0 0 26,684 0 0 0 1,613 1,613 0 23 24,969 24,848 121 0 24,969 0 0 24,969 0 0 0 24,969 0 0 0 1,605 1,606 0 23 24,969 24,848 121 0 24,969 0 0 24,969 0 0 0 23,977 0 0 23,977 0 0 23,977 0 0 23,977 0 0 23,977 0 0 23,977 0 0 23,977 0 0 1,578 1,578 1,578 0 0 1																		0	
18 22,989 22,989 0 0 22,989 0 0 22,989 0 0 22,989 0 0 22,989 0 0 1,422 0 0 1,422 0 0 1,511 1,612 0 0 2,5992 0 0 2,5992 0 0 2,5992 0 0 2,5992 0 0 2,5992 0 0 2,5992 0 0 2,5992 0 0 2,5992 0 0 2,5992 0 0 2,6616 0 0 2,6684 0 0 2,6684 0 0 2,6684 0 0 2,6684 0 0 2,6684 0 0 2,6684 0 0 2,6684 0 0 2,6684 0 0 2,6684 0 0 2,6684 0 0 2,4699 0 0 2,4699 0 0 2,4699 0 0 2,4699 0																		0	
20 26,691 24,879 1,812 0 26,694 200 0 26,691 0 0 26,691 0 0 1,597 1,597 0 21 26,684 24,873 1,812 0 26,684 0 0 2,6684 0 0 1,6162 0 0 1,6162 0 0 1,6161 0 0 1,6161 0 0 1,6162 0 0 1,6162 0 0 1,6162 0 0 1,6162 0 0 1,6162 0 0 1,6162 0 0 1,6162 0 0 1,6162 0 0 1,6162 0 0 1,578 0 0 2,3497 0 0 23,336 0 0 23,336 0 0 23,337 0 0 23,336 0 0 23,337 0 0 23,337 0 0 23,337 0 0 23,3422 0	18	22,989	22,989	0	0	22,989	0	0	22,989	0	0	22,989	0	0	1,422	1,422	0	0	
21 26,684 24,873 1,812 0 26,684 0 0 26,684 0 0 1,613 1,613 0 1,613 0 26,684 0 0 2,6162 0 0 2,6162 0 0 2,6162 0 0 2,6162 0 0 2,6162 0 0 1,6162 0 0 1,606 1,606 0 0 2,4969 0 0 2,4969 0 0 1,606 1,606 0 0 2,4969 0 0 23,977 0 0 23,937 0 0 23,336 0 0 23,337 0 0 23,337 0 0 23,337 0 0 23,397 0 0 23,397 0 0 23,397 0 0 23,397 0 0 23,397 0 0 23,422 0 0 1,548 1,548 1,548 1,548 1,548 1,548 1,548																		0	
22 2,6162 24,848 1,314 0 26,162 0 0 26,162 0 0 26,162 0 0 26,162 0 0 26,162 0 0 24,969 0 0 24,969 0 0 24,969 0 0 24,969 0 0 24,969 0 0 24,969 0 0 24,969 0 0 23,377 0 0 23,927 0 0 23,336 0 0 23,336 0 0 23,336 0 0 23,337 0 0 23,337 0 0 23,336 0 0 23,379 0 0 23,372 0 0 23,742 0 0 23,742 0 0 23,742 0 0 23,377 0 0 1,547 1,547 1,547 1,547 1,547 1,547 1,547 1,547 1,547 1,547 1,547 0 26,365 0 <td></td> <td>0</td>																		0	
24 23 927 23 927 0 0 23,927 0 0 23,927 0 0 23,927 0 0 1,578 0 1,578 0 1,578 0 0 1,578 0 0 1,578 0 0 1,578 0 0 23,336 0 0 23,336 0 0 23,336 0 0 23,337 0 0 23,347 0 0 1,547 1,547 0 0 23,347 0 0 23,342 0 0 1,547 1,547 0 0 23,442 0 0 23,442 0 0 23,442 0 0 23,442 0 0 23,442 0 0 24,493 0 0 24,203 0 0 24,203 0 0 24,203 0 0 24,203 0 0 24,203 0 0 1,553 1,515 1,515 0 26,365 0	22	26,162	24,848	1,314	0	26,162	0	0	26,162	0	0	26,162	0	0	1,621	1,621	0	0	
1 23,336 23,336 0 0 23,336 0 0 23,336 0 0 1,550 0 0 1,550 0 0 1,550 0 0 1,550 0 0 1,550 0 0 1,550 0 0 1,550 0 0 1,550 0 0 23,742 0 0 23,742 0 0 1,548 1,548 0 0 24,205 0 0 24,205 0 0 24,205 0 0 24,205 0 0 24,205 0 0 24,205 0 0 24,205 0 0 24,205 0 0 24,205 0 0 1,573 1,573 0 0 6 26,365 0 0 26,365 0 0 26,365 0 0 26,365 0 0 26,365 0 0 26,365 0 0 26,365 0 0 26,																		0	
2 23,397																		0	
4 24,205 24,626 0 0 24,205 0 0 0 24,205 0 0 0 24,205 0 0 0 24,205 0 0 0 1,565 1,565 0 0 0 0 1,565 1,565 0 0 0 24,203 0 0 0 24,203 0 0 0 1,737 1,573 1,573 0 0 0 0 0,532 1,532 1,532 1,532 0 0 0 0 1,532 1,532 1,532 0 0 0 0 1,532 1,532 1,532 0 0 0 0 1,532 1,532 1,532 0 0 0 0 1,532 1,533 1,535 1,53	2	23,397	23,397	0	0	23,397	0	0	23,397	0	0	23,397	0	0	1,547	1,547	0	0	
5 24,923 24,848 75 0 24,923 0 0 24,923 0 0 24,923 0 0 24,923 0 0 1,573 1,573 0 0 6 26,365 0 0 26,365 0 0 26,365 0 0 26,365 0 0 26,365 0 0 26,365 0 0 26,365 0 0 26,365 0 0 26,365 0 0 26,866 0 0 1,639 0 0 28,255 0 0 28,255 0 0 28,255 0 0 28,255 0 0 1,688 1,688 0 0 28,255 0 0 26,257 0 0 26,257 0 0 26,267 0 0 26,267 0 0 26,267 0 0 24,486 0 0 1,567 1,567 1,567 1,567 1,567 1,56																		0	
6																		0	
8 23,516 25,392 1,812 23,12 27,034 1,812 670 28,042 1,474 0 29,516 0 0 1,688 1,688 0 10 26,267 22,639 1,812 804 27,187 1,068 0 28,255 0 0 1,740 0 0 10 26,267 26,189 77 0 26,267 0 0 26,267 0 0 1,673 1,573 0 0 11 24,486 0 0 24,486 0 0 24,486 0 0 1,567 0 1,567 0 0 1,567 0 0 1,567 0 0 1,567 0 0 1,567 0 0 1,567 0 0 1,567 0 0 1,567 0 0 1,561 0 0 1,561 0 0 1,561 0 0 1,261 0 0												26,365			1,597			0	
9 28.255																		0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																		0	
12 2,989 2,289 0 0 2,289 0 0 0 22,989 0 0 0 22,989 0 0 0 22,880 0 0 1,468 1,468 0 0 1 1 2,1601 0 0 1,1601 0 0		26,267	26,189	77		26,267	0		26,267	0		26,267			1,673	1,673		0	
13 21,601 21,601 0 21,601 0 0 21,601 0 0 13,93 1,393 0 0 14 20,988 20,088 0 0 20,088 0 0 20,088 0 0 20,088 0 0 20,088 0 0 20,088 0 0 20,088 0 0 20,088 0 0 20,088 0 0 20,088 0 0 20,088 0 0 12,78 0 0 12,78 0 0 12,78 0 0 12,78 0 0 12,78 0 0 12,78 0 0 12,78 0 0 12,78 0 0 12,78 0 0 12,78 0 0 12,78 0 0 12,78 0 0 12,78 0 0 12,78 12,77 0 0 12,84 0 0 12,84 0 0 </td <td></td> <td>0</td>																		0	
14 2,0088 20,088 0 20,088 0 0 20,088 0 0 18,754 0 0 18,754 0 0 18,754 0 0 18,754 0 0 12,757 1,257 0 0 16 18,064 18,064 0 0 18,064 0 0 18,064 0 0 12,577 1,257 0 0 1,257 1,257 0 0 1,277 1,278 1,275 0 0 1,277 1,278 1,273 0 0 1,278 1,273 0 0 1,273 1,273 0 0 1,273 1,273 0 0 20,487 0 0 20,487 0 0 23,155 0 0 23,155 0 0 23,352 0 0 1,387 1,357 0 0 21,238 0 0 23,820 0 0 23,822 0 0 23,832																		0	
16 18,064 18,064 0 0 18,064 0 0 18,064 0 0 1,257 1,257 0 0 17 18,444 18,444 0 0 18,444 0 0 18,444 0 0 1,252 1,252 0 0 18 20,487 0 0 20,487 0 0 20,487 0 0 1,252 1,273	14	20,088	20,088		0	20,088		0	20,088		0	20,088	0	0	1,324	1,324	0	0	
17 18,444 18,444 0 0 18,444 0 0 18,444 0 0 12,52 1,252 0 0 18 20,487 0 20,487 0 0 0,0487 0 0 0,0487 0 0 0,0487 0 0 0,0487 0 0 1,252 1,252 0 0 19 23,155 23,155 0 0 23,155 0 0 23,155 0 0 1,357 1,557 0 0 20 23,820 0 0 23,820 0 0 23,820 0 0 1,391 1,391 1,391 1,391 1,391 0 0 21 23,882 23,882 0 23,822 0 0 23,882 0 0 1,382 1,382 1,382 1,382 1,382 1,363 1,363 1,363 0 0 22 23,432 23,432 0 0 22,432 0 0 22,432 0 0 1,363 1,363 1,363 0 0 23 22,570 0 0 22,570 0 0 22,570 0																		0	
18 20,487 20,487 0 0 20,487 0 0 20,487 0 0 1,273 1,273 0 0 19 23,155 23,155 0 0 23,155 0 0 23,155 0 0 1,357 1 1,577 0 0 20 23,820 0 0 23,820 0 0 23,820 0 0 23,820 0 0 1,391 1,391 1,391 1,391 1,391 1,392 0 0 21 23,832 23,832 0 0 23,832 0 0 23,832 0 0 1,382 1,382 0 0 22 23,432 23,432 0 0 23,432 0 0 23,432 0 0 1,363 0 0 23 22,570 0 0 22,570 0 0 22,570 0 0 1,335 1,335 1,335 0 0																		0	
20 23,820 23,820 0 0 23,820 0 0 23,820 0 0 1,391 1,391 0 0 21 23,882 23,882 0 0 23,882 0 0 23,882 0 0 1,382 1,382 0 22 23,432 23,432 0 0 23,432 0 0 23,432 0 0 1,363 1,363 0 23 22,570 0 22,570 0 0 22,570 0 0 1,335 1,335 1,335 0 0	18	20,487	20,487	0	0	20,487			20,487		0	20,487	0	0	1,273	1,273		0	
21 23,882 0.3882 0.0 23,882 0.0 0.23,882 0.0 0.23,882 0.0 0.23,882 0.0 0.23,882 0.0 0.23,882 0.0 0.23,832 0.0 0.03,832																		0	
22 23,432 23,432 0 0 23,432 0 0 23,432 0 0 23,432 0 0 23,432 0 0 1,363 1,363 0 (23 22,570 22,570 0 0 22,570 0 0 22,570 0 0 22,570 0 0 1,335 1,335 0 (3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2																		0	
	22	23,432	23,432	0	0	23,432	0	0	23,432	0	0	23,432	0	0	1,363	1,363	0	0	
	23 24	22,570 21,243	22,570 21,243	0	0	22,570 21,243	0	0	22,570 21,243	0	0	22,570 21,243	0	0	1,335 1,308	1,335 1,308	0	0	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 21 of 24 Tab 4 of 8

20220000 - Staff's 3rd DR No Page 4 of 8

= Must Run = Dispatchable = Load Control/Loss of Load

"What If" Gen MW Unavailable 1,000

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

Day								(9)	(10)		(12)	(13)	(14)	,
Day			20	22 FDL 6.	stem Wint	or Dook I	Davi Milah		102	/1000 1:1		,		
Day				ZZ FFL JY			Combined		Steam	(1363-LIN	Loss of Load	Load	Loss of Load	Loss of Load w/ LC
	Hour Ending	Load (MWh)	Nuclear (MWh)	Solar (MWh)	Conservation (MWh)	Purchases (MWh)	Cycle (MWh)	CT/GT (MWh)	Turbine (MWh)	Storage (MWh)	w/o LC (MWh)	Control (MWh)	w/ LC (MWh)	and with 1,000 MW of gen out (MWh)*
9	1	14,659	3,590	0	20	114	10,936 10.508	0	0	0	0	0	0	0
9	2 3	14,232 14,187	3,590 3,590	0	20 20	114 114	10,508	0	0	0	0	0	0	0
9	4	14,455	3,590	0	20	114	10,732	0	0	0	0	0	0	0
9	5 6	15,036 16,121	3,590 3,590	0	20 20	114 114	11,313 12,398	0	0	0	0	0	0	0
9	7	17,782	3,590	0	20	114	14,059	0	0	0	0	0	0	0
9	8	20,025	3,590 3,590	75 697	20 20	114	16,227 18 116	0	0	0	0	0	0	0
9	10	24,267	3,590	1,341	20	114	18,979	223	0	0	0	0	0	0
9	11 12	25,444 25,901	3,590 3,590	1,765 1,960	20 20	114 114	18,979 18,979	977 1,239	0	0	0	0	0	0
9	13	26,214	3,590	1,989	20	114	18,979	1,523	0	0	0	0	0	0
9	14 15	26,353 26,530	3,590 3,590	1,938 1,803	20 20	114 114	18,979 18,979	1,713 2,025	0	0	0	0	0	0
9	16	26,785	3,590	1,535	20	114	18,979	2,146	0	0	402	402	0	0
9	17 18	27,221 28.175	3,590 3,590	925 213	20 20	114 114	18,979 18.979	2,146 2.146	0	0	1,448 3.114	1,448 1.812	0 1.302	637 2.302
9	19	29,110	3,590	7	20	114	18,979	2,146	0	0	4,255	1,812	2,443	3,443
9	20 21	29,130 28,927	3,590 3,590	0	20 20	114 114	18,979 18,979	2,146 2,146	0	0	4,282 4,079	1,812 1,812	2,471 2,267	3,471 3,267
9	22	28,404	3,590	0	20	114	18,979	2,146	0	0	3,556	1,812	1,745	2,745
9	23 24	27,612 26.921	3,590 3,590	0	20 20	114 114	18,979 18.979	2,146 2.146	0	0	2,764 2.073	1,812 1.812	952 261	1,952 1.261
10	1	26,534	3,590	0	20	114	18,979	2,146	0	0	1,686	1,686	0	875
10 10	2	26,330 26,371	3,590 3,590	0	20 20	114 114	18,979 18,979	2,146 2,146	0	0	1,482 1,523	1,482 1,523	0	670 711
10	4	26,615	3,590	0	20	114	18,979	2,146	0	0	1,767	1,767	0	955
10 10	5 6	26,938 27,483	3,590 3,590	0	20 20	114 114	18,979 18,979	2,146 2,146	0	0	2,090 2,635	1,812 1,812	278 823	1,278 1,823
10	7	28,016	3,590	0	20	114	18,979	2,146	0	0	3,168	1,812	1,356	2,356
10 10	8	29,040 30,129	3,590 3,590	75 697	20 20	114 114	18,979 18,979	2,146 2,146	0	0 469	4,117 4.115	1,812	2,305	3,305
10	10	30,495	3,590	1,341	20	114	18,979	2,146	0	469	3,836	1,812	2,025	3,025
10 10	11 12	30,359 29.500	3,590 3.590	1,765 1,960	20 20	114 114	18,979 18.979	2,146 2.146	0	94	3,653 2,692	1,812 1,812	1,841 880	2,841 1,880
10	13	28,400	3,590	1,989	20	114	18,979	2,146	0	0	1,563	1,563	0	751
10 10	14 15	27,220 26.150	3,590 3,590	1,938 1.803	20 20	114 114	18,979 18.979	2,146 2.114	0	0 (469)	434 0	434 0	0	0
10	16	25,500	3,590	1,535	20	114	18,979	1,732	0	(469)	0	0	0	0
10	17	25,823	3,590	925	20	114	18,979	2,146	0	0	50	50	0	0
10 10	18 19	27,282 29,290	3,590 3,590	213 7	20 20	114 114	18,979 18,979	2,146 2,146	0	0	2,221 4,434	1,812 1,812	409 2,623	1,409 3,623
10	20	29,670	3,590	0	20	114	18,979	2,146	0	0	4,822	1,812	3,010	4,010
10 10	21 22	29,811 29,323	3,590 3,590	0	20 20	114 114	18,979 18,979	2,146 2,146	0	0	4,963 4,475	1,812 1,812	3,151 2,663	4,151 3,663
10	23	28,236	3,590	0	20	114	18,979	2,146	0	0	3,388	1,812	1,577	2,577
10 11	24	27,185 26.543	3,590 3,590	0	20 20	114 114	18,979 18.979	2,146 2.146	0	0	2,337 1.695	1,812	526 0	1,526 883
11	2	26,515	3,590	0	20	114	18,979	2,146	0	0	1,667	1,667	0	856
11 11	3 4	26,679 27,006	3,590 3,590	0	20 20	114 114	18,979 18,979	2,146 2,146	0	0	1,831 2,158	1,812 1,812	19 346	1,019 1,346
11	5	27,644	3,590	0	20	114	18,979	2,146	0	0	2,796	1,812	984	1,984
11 11	6 7	28,657 30,601	3,590 3,590	0	20 20	114 114	18,979 18,979	2,146 2,146	0	0 469	3,809 5,284	1,812 1,812	1,997 3,472	2,997 4,472
11	8	31,386	3,590	75	20	114	18,979	2,146	0	469	5,993	1,812	4,182	5,182
11 11	9 10	30,259 29,184	3,590 3,590	697 1,341	20 20	114 114	18,979 18,979	2,146 2,146	0	0	4,714 2,994	1,812 1,812	2,903 1,182	3,903 2,182
11	11	27,814	3,590	1,765	20	114	18,979	2,146	0	0	1,201	1,201	0	390
11 11	12 13	26,097 24,354	3,590 3.590	1,960 1,989	20 20	114 114	18,979 18.642	1,435 469	0	(469)	0	0	0	0
11	14	22,864	3,590	1,938	20	114	17,203	469	0	(469)	0	0	0	0
11 11	15 16	21,398 20,384	3,590 3,590	1,803 1,535	20 20	114 114	15,871 15,126	94 0	0	(94) 0	0	0	0	0
11	17	20,791	3,590	925	20	114	16,143	0	0	0	0	0	0	0
11 11	18 19	22,989 25,992	3,590 3,590	213 7	20 20	114 114	18,979 18,979	74 2,146	0	0	0 1,137	0 1,137	0	0 325
11	20	26,691	3,590	0	20	114	18,979	2,146	0	31	1,812	1,812	0	1,000
11 11	21 22	26,684 26,162	3,590 3,590	0	20 20	114 114	18,979 18,979	2,146 2,146	0	24 0	1,812 1,314	1,812 1,314	0	1,000 502
11	23	24,969	3,590	0	20	114	18,979	2,146	0	0	121	121	0	0
11	24	23,927 23.336	3,590 3,590	0	20 20	114 114	18,979 18.979	1,225 665	0	(31)	0	0	0	0
12	2	23,397	3,590	0	20	114	18,979	719	0	(24)	0	0	0	0
12 12	3 4	23,742 24,205	3,590 3,590	0	20 20	114 114	18,979 18,979	1,040 1,503	0	0	0	0	0	0
12	5	24,923	3,590	0	20	114	18,979	2,146	0	0	75	75	0	0
12 12	6 7	26,365 28,661	3,590 3,590	0	20 20	114 114	18,979 18,979	2,146 2,146	0	0 469	1,517 3,344	1,517 1,812	0 1,532	705 2,532
12	8	29,516	3,590	75	20	114	18,979	2,146	0	469	4,124	1,812	2,312	3,312
	9 10	28,255 26,267	3,590 3,590	697 1,341	20 20	114 114	18,979 18,979	2,146 2,146	0	94	2,616 77	1,812 77	804 0	1,804 0
12	11	24,486	3,590	1,765	20	114	18,979	20	0	0	0	0	0	0
12 12 12	12	22,989 21,601	3,590 3,590	1,960 1,989	20 20	114 114	17,306 15,889	0	0	0	0	0	0	0
12 12 12 12	13	20.088	3,590	1,938	20	114	14,427	0	0	0	0	0	0	0
12 12 12 12 12 12	13 14			1,803	20 20	114 114	13,228 12,806	0	0	0	0	0	0	0
12 12 12 12 12 12 12 12	14 15	18,754	3,590			114	13,796	0	0	0	0	0	0	0
12 12 12 12 12 12 12 12 12 12	14 15 16 17	18,754 18,064 18,444	3,590 3,590	1,535 925	20									
12 12 12 12 12 12 12 12 12 12 12	14 15 16 17 18	18,754 18,064 18,444 20,487	3,590 3,590 3,590	925 213	20	114	16,551	0	0	0	0	0	0	0
12 12 12 12 12 12 12 12 12 12 12 12 12 1	14 15 16 17 18 19 20	18,754 18,064 18,444 20,487 23,155 23,820	3,590 3,590 3,590 3,590 3,590	925 213 7 0	20 20 20	114 114	18,979 18,979	446 1,118	0	0	0	0	0	0
12 12 12 12 12 12 12 12 12 12 12 12 12 1	14 15 16 17 18 19 20 21	18,754 18,064 18,444 20,487 23,155 23,820 23,882	3,590 3,590 3,590 3,590 3,590 3,590	925 213 7 0	20 20 20 20 20	114 114 114	18,979 18,979 18,979	446 1,118 1,180	0 0	0	0 0	0 0	0 0	0 0 0
12 12 12 12 12 12 12 12 12 12 12 12 12 1	14 15 16 17 18 19 20 21 22 23	18,754 18,064 18,444 20,487 23,155 23,820 23,882 23,432 22,570	3,590 3,590 3,590 3,590 3,590 3,590 3,590 3,590	925 213 7 0	20 20 20 20 20 20 20	114 114 114 114 114	18,979 18,979 18,979 18,979 18,847	446 1,118 1,180 730 0	0 0 0 0	0 0 0	0	0 0 0 0	0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 12 12 12 12 12 12 12 12 12 12 12 12 1	14 15 16 17 18 19 20 21 22	18,754 18,064 18,444 20,487 23,155 23,820 23,882 23,432	3,590 3,590 3,590 3,590 3,590 3,590 3,590	925 213 7 0 0	20 20 20 20 20 20	114 114 114 114	18,979 18,979 18,979 18,979	446 1,118 1,180 730	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 21 of 24 Tab 5 of 8

= Must Run = Dispatchable = Load Control/Loss of Load 20220000 - Staff's 3rd DR No Page 5 of 8

Operating Maximum

| Generation (MWh) | Operating Maximum (MWh) | Hours (Mrs.) (Mrs.) (MWh) | Company (Mrs.) (MWh) | Company (Mrs.) (MWh) | Company (Mrs.) (MWh) | Company (Mrs.) (Mrs.) (Mrs.) | Company (Mrs.) (

"What If" Gen MW Unavailable 1,000

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
				2022 EDI 9	System Wi	ntor Doal	Day Wit	h Manate	o 182 - (1	989-1169	Winter)			
					ystem wi		Combined		Steam		Loss of Load	Load	Loss of Load	Loss of Load w/ LC
Day	Hour Ending	Load (MWh)	Nuclear (MWh)	Solar (MWh)	Conservation (MWh)	Purchases (MWh)	Cycle	CT/GT (MWh)	Turbine	Storage (MWh)	w/o LC	Control	w/ LC	and with 1,000 MW of gen out
	_						(MWh)		(MWh)		(MWh)	(MWh)	(MWh)	(MWh)*
9	2	14,659 14,232	3,590 3,590	0	20 20	114 114	10,936 10,508	0	0	0	0	0	0	0
9	3 4	14,187 14,455	3,590 3,590	0	20 20	114 114	10,464 10,732	0	0	0	0	0	0	0
9	5	15,036	3,590	0	20	114	11,313	0	0	0	0	0	0	0
9	6 7	16,121 17,782	3,590 3,590	0	20 20	114 114	12,398 14,059	0	0	0	0	0	0	0
9	8 9	20,025 22,536	3,590 3,590	75 697	20 20	114 114	16,227 18,116	0	0	0	0	0	0	0
9	10	24,267	3,590	1,341	20	114	18,979	223	0	0	0	0	0	0
9	11 12	25,444 25,901	3,590 3,590	1,765 1,960	20 20	114 114	18,979 18,979	977 1,239	0	0	0	0	0	0
9	13	26,214	3,590	1,989	20	114	18,979	1,523	0	0	0	0	0	0
9	14 15	26,353 26,530	3,590 3,590	1,803	20 20	114	18,979 18,979	1,713 2,025	0	0	0	0	0	0
9	16 17	26,785 27.221	3,590 3,590	1,535 925	20 20	114 114	18,979 18.979	2,548 3.594	0	0	0	0	0	0
9	18	28,175	3,590	213	20	114	18,979	3,788	0	0	1,472	1,472	0	660
9	19 20	29,110 29,130	3,590 3,590	0	20 20	114 114	18,979 18,979	3,788 3,788	0	177 0	2,436 2,640	1,812 1,812	624 829	1,624 1,829
9	21 22	28,927 28.404	3,590 3,590	0	20 20	114 114	18,979 18.979	3,788 3.788	0	0 103	2,437 1.812	1,812 1.812	625 0	1,625 1.000
9	23	27,612	3,590	0	20	114	18,979	3,788	0	0	1,122	1,122	0	310
10	24 1	26,921 26,534	3,590 3,590	0	20 20	114 114	18,979 18,979	3,788 3,788	0	0	431 44	431 44	0	0
10 10	2	26,330 26,371	3,590 3,590	0	20 20	114 114	18,979 18,979	3,788 3,788	0	(160) (119)	0	0	0	0
10	4	26,615	3,590	0	20	114	18,979	3,788	0	0	125	125	0	0
10 10	5 6	26,938 27,483	3,590 3,590	0	20 20	114 114	18,979 18,979	3,788 3,788	0	0	448 993	448 993	0	0 181
10 10	7 8	28,016 29.040	3,590 3,590	0 75	20 20	114 114	18,979 18.979	3,788 3,788	0	0	1,526 2.475	1,526 1.812	0 663	714 1.663
10	9	30,129	3,590	697	20	114	18,979	3,788	0	270	2,672	1,812	860	1,860
10 10	10 11	30,495 30,359	3,590 3,590	1,341 1,765	20 20	114 114	18,979 18,979	3,788 3,788	0	469 293	2,194 1,812	1,812 1,812	383 0	1,383 1,000
10 10	12 13	29,500 28.400	3,590 3,590	1,960 1,989	20 20	114 114	18,979 18.979	3,788 3,709	0	0	1,050	1,050	0	238 0
10	14	27,220	3,590	1,938	20	114	18,979	3,049	0	(469)	0	0	0	0
10 10	15 16	26,150 25,500	3,590 3,590	1,803 1,535	20 20	114 114	18,979 18,979	2,114 1,357	0	(469) (94)	0	0	0	0
10 10	17 18	25,823 27.282	3,590 3,590	925 213	20 20	114 114	18,979 18.979	2,196 3,788	0	0	0 579	0 579	0	0
10	19	29,290	3,590	7	20	114	18,979	3,788	0	0	2,792	1,812	981	1,981
10 10	20 21	29,670 29,811	3,590 3,590	0	20 20	114 114	18,979 18,979	3,788 3,788	0	0	3,180 3,321	1,812 1,812	1,368 1.509	2,368 2,509
10 10	22 23	29,323 28.236	3,590 3,590	0	20 20	114 114	18,979 18.979	3,788 3.788	0	0	2,833 1.746	1,812	1,021	2,021 935
10	24	27,185	3,590	0	20	114	18,979	3,788	0	0	695	695	0	0
11 11	2	26,543 26,515	3,590 3,590	0	20 20	114 114	18,979 18,979	3,788 3,788	0	0	53 25	53 25	0	0
11 11	3 4	26,679 27.006	3,590 3,590	0	20 20	114 114	18,979 18.979	3,788 3.788	0	0	189 516	189 516	0	0
11	5	27,644	3,590	0	20	114	18,979	3,788	0	0	1,154	1,154	0	342
11 11	6 7	28,657 30,601	3,590 3,590	0	20 20	114 114	18,979 18,979	3,788 3,788	0	355 208	1,812 3,903	1,812 1,812	0 2,092	1,000 3,092
11 11	8	31,386 30,259	3,590 3,590	75 697	20 20	114 114	18,979 18.979	3,788 3,788	0	469 0	4,351 3.072	1,812 1.812	2,540 1,261	3,540 2.261
11	10	29,184	3,590	1,341	20	114	18,979	3,788	0	0	1,352	1,352	0	540
11 11	11 12	27,814 26,097	3,590 3,590	1,765 1,960	20 20	114 114	18,979 18,979	3,347 1,904	0	0 (469)	0	0	0	0
11	13	24,354	3,590 3,590	1,989	20	114	18,642	469 94	0	(469)	0	0	0	0
11	15	21,398	3,590	1,803	20	114	17,203 15,871	0	0	0	0	0	0	0
11 11	16 17	20,384 20,791	3,590 3,590	1,535 925	20 20	114 114	15,126 16,143	0	0	0	0	0	0	0
11 11	18 19	22,989 25.992	3,590 3,590	213 7	20 20	114 114	18,979 18.979	74 3.283	0	0	0	0	0	0
11	20	26,691	3,590	0	20	114	18,979	3,788	0	0	200	200	0	0
11 11	21 22	26,684 26,162	3,590 3,590	0	20 20	114 114	18,979 18,979	3,788 3,460	0	194 0	0	0	0	0
11 11	23 24	24,969 23.927	3,590 3,590	0	20 20	114 114	18,979 18.979	2,267 1.225	0	0	0	0	0	0
12	1	23,336	3,590	0	20	114	18,979	634	0	0	0	0	0	0
12 12	2	23,397 23,742	3,590 3,590	0	20 20	114 114	18,979 18,979	695 1,040	0	0	0	0	0	0
12	4 5	24,205 24,923	3,590 3,590	0	20 20	114	18,979 18,979	1,503	0	0	0	0	0	0
12	6	26,365	3,590	0	20	114	18,979	3,663	ō	0	0	0	0	0
12 12	7	28,661 29,516	3,590 3,590	0 75	20 20	114 114	18,979 18,979	3,788 3,788	0	359 469	1,812 2,482	1,812 1,812	0 670	1,000 1,670
12	9	28,255	3,590 3,590	697 1.341	20 20	114	18,979 18,979	3,788	0	0	1,068	1,068	0	256 0
12	11	24,486	3,590	1,765	20	114	18,979	20	0	0	0	0	0	0
12 12	12 13	22,989 21,601	3,590 3,590	1,960 1,989	20 20	114 114	17,306 15,889	0	0	0	0	0	0	0
12	14 15	20,088 18,754	3,590 3,590	1,938	20	114 114	14,427	0	0	0	0	0	0	0
12	16	18,064	3,590	1,535	20	114	13,228 12,806	0	0	0	0	0	0	0
12 12	17 18	18,444 20,487	3,590 3,590	925 213	20 20	114 114	13,796 16,551	0	0	0	0	0	0	0
12	19	23,155	3,590	7	20	114	18,979	446	0	0	0	0	0	0
12 12	20 21	23,820 23,882	3,590 3,590	0	20 20	114 114	18,979 18,979	1,118 1,180	0	0	0	0	0	0
12 12	22 23	23,432 22,570	3,590 3,590	0	20 20	114 114	18,979 18,847	730 0	0	0	0	0	0	0
12	24	21,243	3,590	0	20	114	17,520	ō	ō	0	0	0 47,398	15,425	0 37,603
		2,414,998										47,396	15,425	37,003

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 21 of 24 Tab 6 of 8

20220000 - Staff's 3rd DR No Page 6 of 8

= Must Run = Dispatchable = Load Control/Loss of Load
 Operating Hours
 Maximum Output (MWh)

 29
 1,812

 13
 2,625
 Generation (MWh) 40,052 11,772 "What If" Gen MW Unavailable Load Control Loss of Load

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (11) (12) (13) (14) (15)

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(11)	(12)	(13)	(14)	(15)
		202	22 EDI C.	rtom Win	ter Peak D	av Mithe	ust Mana	too 19.7 9	With Gu	lf Evenes C	anacitu	(1989-Lil	o Minto	-1	
		202	ZZ FPL SY	Stem win	ler Peak D	VILITO		166 107 0		II EXCESS C	apacity -				Loss of Load w/ LC
Day	Hour Ending	Load (MWh)	Nuclear (MWh)	Solar (MWh)	Conservation (MWh)	Purchases (MWh)	Combined Cycle	CT/GT (MWh)	Steam Turbine	Gulf Excess Capacity	Storage (MWh)	Loss of Load w/o LC	Load Control	Loss of Load w/ LC	and with 1,000 MW of gen out
	Linuing		(1111111)		(1411411)	(,	(MWh)	(1111111)	(MWh)	cupacity	(1011011)	(MWh)	(MWh)	(MWh)	(MWh)*
9 9	1 2	14,659 14,232	3,590 3,590	0	20 20	114 114	10,936 10.508	0	0	0	0	0	0	0	0
9	3	14,187	3,590	0	20	114	10,464	0	0	0	0	0	0	0	0
9	4 5	14,455 15,036	3,590 3,590	0	20 20	114 114	10,732 11.313	0	0	0	0	0	0	0	0
9	6	16,121	3,590	0	20	114	12,398	0	0	0	0	0	0	0	0
9	7 8	17,782 20,025	3,590 3,590	0 75	20 20	114 114	14,059 16,227	0	0	0	0	0	0	0	0
9	9	22,536	3,590	697	20	114	18,116	0	0	0	0	0	0	0	0
9	10 11	24,267 25.444	3,590 3,590	1,341 1.765	20 20	114 114	18,979 18,979	223 977	0	0	0	0	0	0	0
9	12	25,901	3,590	1,960	20	114	18,979	1,239	0	0	0	0	0	0	0
9	13 14	26,214 26,353	3,590 3,590	1,989 1,938	20 20	114 114	18,979 18,979	1,523 1,713	0	0	0	0	0	0	0
9	15	26,530	3,590	1,803	20	114	18,979	2,025	0	0	0	0	0	0	0
9	16 17	26,785 27,221	3,590 3.590	1,535 925	20 20	114 114	18,979 18,979	2,146 2.146	0	402 1.448	0	0	0	0	0
9	18	28,175	3,590	213	20	114	18,979	2,146	0	2,181	0	933	933	0	122
9	19 20	29,110 29,130	3,590 3,590	7	20 20	114 114	18,979 18,979	2,146 2.146	0	1,771 1.584	0 407	2,484 2.292	1,812 1,812	673 480	1,673 1.480
9	21	28,927	3,590	0	20	114	18,979	2,146	0	1,554	469	2,056	1,812	244	1,244
9	22 23	28,404 27,612	3,590 3,590	0	20 20	114 114	18,979 18,979	2,146 2,146	0	1,588 1,698	156 0	1,812 1,066	1,812 1,066	0	1,000 255
9	24	26,921	3,590	0	20	114	18,979	2,146	0	1,848	0	225	225	0	0
10 10	1 2	26,534 26,330	3,590 3,590	0	20 20	114 114	18,979 18,979	2,146 2,146	0	1,925 1,919	(238) (437)	0	0	0	0
10	3	26,371	3,590	0	20	114	18,979	2,146	0	1,879	(356)	0	0	0	0
10 10	4 5	26,615 26,938	3,590 3,590	0	20 20	114 114	18,979 18,979	2,146 2.146	0	1,767 1.715	0	0 375	0 375	0	0
10	6	27,483	3,590	0	20	114	18,979	2,146	0	1,562	0	1,072	1,072	0	260
10 10	7 8	28,016 29,040	3,590 3,590	0 75	20 20	114 114	18,979 18,979	2,146 2,146	0	1,327 1,088	29 0	1,812 3,029	1,812 1,812	0 1,217	1,000 2,217
10	9	30,129	3,590	697	20	114	18,979	2,146	0	1,049	469	3,066	1,812	1,254	2,254
10 10	10 11	30,495 30,359	3,590 3,590	1,341 1,765	20 20	114 114	18,979 18,979	2,146 2,146	0	1,346 1,712	469 64	2,490 1,971	1,812 1,812	679 159	1,679 1,159
10	12	29,500	3,590	1,960	20	114	18,979	2,146	0	2,023	0	669	669	0	0
10 10	13 14	28,400 27,220	3,590 3,590	1,989 1,938	20 20	114 114	18,979 18,979	2,146 2,146	0	1,563 434	0	0	0	0	0
10	15 16	26,150 25,500	3,590 3,590	1,803 1,535	20 20	114 114	18,979 18,979	2,114 1,732	0	0	(469) (469)	0	0	0	0
10 10	16	25,823	3,590	925	20	114	18,979	2,146	0	144	(94)	0	0	0	0
10	18	27,282	3,590 3,590	213	20	114	18,979	2,146 2,146	0	2,221	0	0	0	0	0
10 10	19 20	29,290 29,670	3,590	0	20 20	114 114	18,979 18,979	2,146	0	2,395 2,194	228 335	1,812 2,292	1,812 1,812	0 481	1,000 1,481
10	21 22	29,811	3,590 3,590	0	20 20	114 114	18,979 18,979	2,146 2,146	0	2,121	469 0	2,373	1,812	562 541	1,562 1,541
10	23	28,236	3,590	0	20	114	18,979	2,146	0	2,122	0	1,205	1,812	0	393
10 11	24 1	27,185 26,543	3,590 3,590	0	20 20	114 114	18,979 18,979	2,146 2.146	0	2,281 2,164	0 (469)	57 0	57 0	0	0
11	2	26,515	3,590	0	20	114	18,979	2,146	0	2,136	(469)	0	0	0	0
11 11	3	26,679 27.006	3,590 3,590	0	20 20	114 114	18,979 18,979	2,146 2.146	0	1,925 2.158	(94) 0	0	0	0	0
11	5	27,644	3,590	0	20	114	18,979	2,146	0	2,178	0	617	617	0	0
11 11	6 7	28,657 30,601	3,590 3,590	0	20 20	114 114	18,979 18,979	2,146 2,146	0	2,046 1,807	0 469	1,763 3,477	1,763 1,812	0 1,665	951 2,665
11	8	31,386	3,590	75	20	114	18,979	2,146	0	1,556	469	4,437	1,812	2,625	3,625
11 11	9 10	30,259 29,184	3,590 3,590	697 1,341	20 20	114 114	18,979 18,979	2,146 2,146	0	1,618 2,018	94 0	3,003 976	1,812 976	1,191 0	2,191 165
11	11	27,814	3,590	1,765	20	114	18,979	2,146	0	1,201	0	0	0	0	0
11 11	12 13	26,097 24,354	3,590 3,590	1,960 1,989	20 20	114 114	18,979 18,642	1,435 469	0	0	0 (469)	0	0	0	0
11	14	22,864	3,590	1,938	20	114	17,203	469	0	0	(469)	0	0	0	0
11 11	15 16	21,398 20,384	3,590 3,590	1,803 1,535	20 20	114 114	15,871 15,126	94 0	0	0	(94) 0	0	0	0	0
11	17 18	20,791	3,590 3,590	925 213	20 20	114	16,143 18,979	0 74	0	0	0	0	0	0	0
11	18	25,989	3,590	7	20	114	18,979	2.146	0	1,137	0	0	0	0	0
11	20	26,691 26,684	3,590 3,590	0	20	114 114	18,979 18,979	2,146 2,146	0	1,842 1,836	0	0	0	0	0
11 11	21 22	26,162	3,590	0	20 20	114	18,979	2,146	0	1,314	0	0	0	0	0
11 11	23 24	24,969 23.927	3,590 3,590	0	20 20	114 114	18,979 18,979	2,146 1.225	0	121 0	0	0	0	0	0
12	1	23,336	3,590	0	20	114	18,979	634	0	0	0	0	0	0	0
12 12	2	23,397 23,742	3,590 3,590	0	20 20	114 114	18,979 18,979	695 1.040	0	0	0	0	0	0	0
12	4	24,205	3,590	0	20	114	18,979	1,503	0	0	0	0	0	0	0
12 12	5	24,923 26.365	3,590 3,590	0	20 20	114 114	18,979 18,979	2,146 2.146	0	75 1.517	0	0	0	0	0
12	7	28,661	3,590	0	20	114	18,979	2,146	0	2,711	469	633	633	0	0
12 12	8	29,516 28,255	3,590 3,590	75 697	20 20	114 114	18,979 18,979	2,146 2,146	0	2,650 2,616	469 94	1,474 0	1,474	0	662 0
12	10	26,267	3,590	1,341	20	114	18,979	2,146	0	77	0	0	0	0	0
12 12	11 12	24,486 22,989	3,590 3,590	1,765 1,960	20 20	114 114	18,979 17,306	20 0	0	0	0	0	0	0	0
12	13	21,601	3,590	1,989	20	114	15,889	0	0	0	0	0	0	0	0
12 12	14 15	20,088 18,754	3,590 3,590	1,938 1,803	20 20	114 114	14,427 13,228	0	0	0	0	0	0	0	0
12	16	18,064	3,590	1,535	20	114	12,806	0	0	0	0	0	0	0	0
12 12	17 18	18,444 20,487	3,590 3,590	925 213	20 20	114 114	13,796 16,551	0	0	0	0	0	0	0	0
12	19	23,155	3,590	7	20	114	18,979	446	0	0	0	0	0	0	0
12 12	20 21	23,820	3,590 3,590	0	20 20	114 114	18,979 18,979	1,118 1.180	0	0	0	0	0	0	0
12	22	23,432	3,590	0	20	114	18,979	730	0	0	0	0	0	0	0
12 12	23 24	22,570 21,243	3,590 3,590	0	20 20	114 114	18,847 17,520	0	0	0	0	0	0	0	0
		2,414,998											40,052	11,772	30,580

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 21 of 24 Tab 7 of 8

20220000 - Staff's 3rd DR No Page 7 of 8

= Must Run = Dispatchable = Load Control/Loss of Load

 Operating Hours
 Maximum Output (MWh)

 25
 1,812

 2
 983
 Generation (MWh) 17,727 1,007 Load Control Loss of Load

"What If" Gen MW Unavailable

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
			2022 FPI	L System \	Winter Pea	k Day W	ith Mana	tee 1&2 a	nd Gulf Ex	cess Capa	icity - (19	189-Like V	Vinter)		Loss of Load w/ LC
Day	Hour	Load (MWh)	Nuclear	Solar (MWh)	Conservation	Purchases	Combined Cycle	CT/GT	Steam Turbine	Gulf Excess	Storage	Loss of Load w/o LC	Load Control	Loss of Load w/ LC	and with 1,000
Day	Ending	Load (WWn)	(MWh)	Solar (WWII)	(MWh)	(MWh)	(MWh)	(MWh)	(MWh)	Capacity	(MWh)	(MWh)	(MWh)	(MWh)	MW of gen out (MWh)*
9	1	14,659	3,590	0	20	114	10,936	0	0	0	0	0	0	0	0
9	2	14,232	3,590	0	20	114	10,508	0	0	0	0	0	0	0	ō
9	3	14,187 14.455	3,590 3,590	0	20 20	114 114	10,464 10.732	0	0	0	0	0	0	0	0
9	5	15,036	3,590	0	20	114	11,313	0	0	0	0	0	0	0	0
9	6	16,121 17,782	3,590 3,590	0	20 20	114 114	12,398 14,059	0	0	0	0	0	0	0	0
9	8	20,025	3,590	75	20	114	16,227	0	0	0	0	0	0	0	0
9	9 10	22,536 24.267	3,590 3,590	697 1.341	20 20	114 114	18,116 18.979	0 223	0	0	0	0	0	0	0
9	11	25,444	3,590	1,765	20	114	18,979	977	0	0	0	0	0	0	0
9	12	25,901 26,214	3,590 3,590	1,960	20 20	114	18,979 18,979	1,239	0	0	0	0	0	0	0
9	13 14	26,353	3,590	1,989	20	114	18,979	1,713	0	0	0	0	0	0	0
9	15	26,530	3,590	1,803	20	114	18,979	2,025 2.548	0	0	0	0	0	0	0
9	16 17	26,785 27,221	3,590 3,590	1,535 925	20 20	114 114	18,979 18,979	2,548 3,594	0	0	0	0	0	0	0
9	18	28,175	3,590	213	20	114	18,979	3,788	0	1,472	0	0	0	0	0
9	19 20	29,110 29,130	3,590 3,590	7	20 20	114 114	18,979 18,979	3,788 3,788	0	1,771 1,584	0 160	842 896	842 896	0	31 85
9	21	28,927	3,590	0	20	114	18,979	3,788	0	1,554	119	764	764	0	0
9	22 23	28,404 27,612	3,590 3,590	0	20 20	114 114	18,979 18.979	3,788 3,788	0	1,588 1.122	0	326 0	326 0	0	0
9	24	26,921	3,590	0	20	114	18,979	3,788	0	431	0	0	0	0	0
10 10	1 2	26,534 26,330	3,590 3,590	0	20 20	114 114	18,979 18,979	3,788 3,628	0	44 0	0 (160)	0 160	0 160	0	0
10	3	26,371	3,590	0	20	114	18,979	3,669	0	0	(119)	119	119	0	0
10 10	4	26,615 26,938	3,590 3,590	0	20 20	114 114	18,979 18.979	3,788 3,788	0	125 448	0	0	0	0	0
10	6	27,483	3,590	0	20	114	18,979	3,788	0	993	0	0	0	0	0
10 10	7 8	28,016 29,040	3,590 3,590	0 75	20 20	114 114	18,979 18,979	3,788 3,788	0	1,327 1,088	0 469	199 918	199 918	0	0 106
10	9	30,129	3,590	697	20	114	18,979	3,788	0	1,049	469	1,424	1,424	0	612
10 10	10 11	30,495 30.359	3,590 3,590	1,341	20 20	114 114	18,979 18.979	3,788 3.788	0	1,346 1.712	94 0	1,223 393	1,223 393	0	412 0
10	12	29,500	3,590	1,960	20	114	18,979	3,788	0	1,050	0	0	0	0	0
10 10	13 14	28,400 27,220	3,590 3,590	1,989	20 20	114	18,979 18,979	3,709 2 580	0	0	(469)	0 469	0 469	0	0
10	15	26,150	3,590	1,803	20	114	18,979	1,645	0	0	(469)	469	469	0	0
10 10	16 17	25,500 25,823	3,590 3,590	1,535 925	20 20	114 114	18,979 18,979	1,263 2,196	0	0	(94) 0	94 0	94 0	0	0
10	18	25,823	3,590	925 213	20	114	18,979	2,196 3,788	0	579	0	0	0	0	0
10 10	19 20	29,290 29.670	3,590 3,590	7	20 20	114 114	18,979 18.979	3,788 3.788	0	2,395 2.194	0	398 985	398 985	0	0 174
10	21	29,670	3,590	0	20	114	18,979	3,788	0	2,194	0	1,200	1,200	0	1/4 389
10	22	29,323	3,590	0	20	114	18,979	3,788	0	2,122	0	711	711	0	0
10 10	23 24	28,236 27,185	3,590 3,590	0	20 20	114 114	18,979 18.979	3,788 3,788	0	1,746 695	0	0	0	0	0
11	1	26,543	3,590	0	20	114	18,979	3,788	0	53	0	0	0	0	0
11 11	2	26,515 26,679	3,590 3,590	0	20 20	114 114	18,979 18,979	3,788 3,788	0	25 189	0	0	0	0	0
11	4	27,006	3,590	0	20	114	18,979	3,788	0	516	0	0	0	0	0
11 11	5	27,644 28.657	3,590 3,590	0	20 20	114 114	18,979 18.979	3,788 3.788	0	1,154 2.046	0	0 121	0 121	0	0
11	7	30,601	3,590	0	20	114	18,979	3,788	0	1,807	469	1,835	1,812	23	1,023
11 11	8	31,386 30,259	3,590 3,590	75 697	20 20	114 114	18,979 18,979	3,788 3,788	0	1,556 1,618	469 94	2,795 1,361	1,812 1,361	983 0	1,983 549
11	10	29,184	3,590	1,341	20	114	18,979	3,788	0	1,352	0	0	0	0	0
11 11	11 12	27,814 26,097	3,590 3,590	1,765 1,960	20 20	114 114	18,979 18,979	3,347 1,435	0	0	0	0	0	0	0
11	13	24,354	3,590	1,989	20	114	18,642	0	0	0	(469)	469	469	0	0
11 11	14 15	22,864	3,590 3,590	1,938	20 20	114	17,203 15,871	0	0	0	(469) (94)	469 94	469 94	0	0
11	16	20,384	3,590	1,535	20	114	15,126	0	0	0	0	0	0	0	0
11 11	17 18	20,791 22,989	3,590 3,590	925 213	20 20	114 114	16,143 18,979	0 74	0	0	0	0	0	0	0
11	19	25,992	3,590	7	20	114	18,979	3,283	0	0	0	0	0	0	0
11 11	20 21	26,691 26.684	3,590 3,590	0	20 20	114 114	18,979 18.979	3,788 3,788	0	200 194	0	0	0	0	0
11	22	26,162	3,590	0	20	114	18,979	3,460	0	0	0	0	0	0	0
11 11	23 24	24,969 23,927	3,590 3,590	0	20 20	114 114	18,979 18.979	2,267 1,225	0	0	0	0	0	0	0
12	1	23,336	3,590	0	20	114	18,979	634	0	0	0	0	0	0	0
12 12	2	23,397 23,742	3,590 3,590	0	20	114 114	18,979 18,979	695 1,040	0	0	0	0	0	0	0
12	3 4	24,205	3,590	0	20 20	114	18,979	1,503	0	0	0	0	0	0	0
12	5	24,923	3,590	0	20	114	18,979	2,221	0	0	0	0	0	0	0
12 12	6 7	26,365 28,661	3,590 3,590	0	20 20	114 114	18,979 18,979	3,663 3,788	0	0 2,171	0	0	0	0	0
12	8	29,516	3,590	75	20	114	18,979	3,788	0	2,650	301	0	0	0	0
12 12	9 10	28,255 26,267	3,590 3,590	697 1,341	20 20	114 114	18,979 18,979	3,788 2,223	0	1,068 0	0	0	0	0	0
12	11	24,486	3,590	1,765	20	114	18,979	20	0	0	0	0	0	0	0
12 12	12 13	22,989 21,601	3,590 3,590	1,960 1,989	20 20	114 114	17,306 15,889	0	0	0	0	0	0	0	0
12	14	20,088	3,590	1,938	20	114	14,427	0	0	0	0	0	0	0	0
12 12	15 16	18,754 18,064	3,590 3,590	1,803	20 20	114	13,228 12,806	0	0	0	0	0	0	0	0
12	17	18,444	3,590	925	20	114	13,796	0	0	0	0	0	0	0	0
12 12	18 19	20,487 23,155	3,590 3,590	213 7	20 20	114 114	16,551 18,979	0 446	0	0	0	0	0	0	0
	20	23,820	3,590	0	20	114	18,979	1.118	0	0	0	0	0	0	0
12		23,882	3,590	ō	20	114	18,979	1,180	0	0	0	0	0	0	ō
12	21				20										
	21 22 23 24	23,432 22,570 21,243	3,590 3,590 3,590	0	20 20 20	114 114 114	18,979 18,847 17,520	730 0 0	0	0	0	0	0	0	0 0

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 21 of 24 Tab 8 of 8

20220000 - Staff's 3rd DR No Page 8 of 8

= Must Run = Dispatchable = Load Control/Loss of Load

Load Control Loss of Load

"What If" Gen MW Unavailable 1,000

(7) (11) (12) (13) (14) (15) (5) (6) (16)

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
					2022	Gulf Sys	tem Wint	er Peak D	ay - (1989	-Like Wii	nter)				
Day	Hour Ending	Load (MWh)	Nuclear (MWh)	Solar (MWh)	Conservation (MWh)	Purchases (MWh)	Combined Cycle (MWh)	CT/GT (MWh)	Steam Turbine (MWh)	Storage (MWh)	Loss of Load w/o LC (MWh)	Load Control (MWh)	Loss of Load w/ LC (MWh)	Loss of Load w/ LC and with 1,000 MW of gen out (MWh)*	Excess Capacity
9	1 2	1,585 1,590	0	0	6	112 112	1,467 1.472	0	0	0	0	0	0	0	2,755 2,750
9	3 4	1,622	0	0	6	113	1,502 1,531	0	0	0	0	0	0	0	2,720 2,676
9	5	1,750	0	0	6	109 115	1,531	15 98	0	0	0	0	0	0	2,593
9	6 7	1,958 2.250	0	0	6	121 122	1,531 1.531	300 590	0	0	0	0	0	0	2,391 2.101
9	8	2,548	0	0	6	109	1,531	901	0	0	0	0	0	0	1,790
9	9 10	2,743 2,768	0	31 85	6	113 120	1,531 1,531	1,007 1,007	54 18	0	0	0	0	0	1,630 1,666
9	11 12	2,693 2.563	0	107 122	6	126 137	1,531 1.531	922 767	0	0	0	0	0	0	1,769 1.924
9	13	2,387	0	127	6	143	1,531	580	0	0	0	0	0	0	2,111
9	14 15	2,208 2,079	0	128 124	6 6	143 133	1,531 1,531	401 285	0	0	0	0	0	0	2,290 2,406
9	16 17	1,956 1.968	0	115 87	6	123 106	1,531 1.531	181 238	0	0	0	0	0	0	2,510 2.453
9	18 19	2,154 2,541	0	22	6	84 83	1,531 1,531	510 920	0	0	0	0	0	0	2,181 1,771
9	20	2,732	0	0	6	87	1,531	1,007	100	0	0	0	0	0	1,584
9	21 22	2,776 2,755	0	0	6	101 115	1,531 1,531	1,007 1,007	130 96	0	0	0	0	0	1,554 1,588
9	23 24	2,649 2,490	0	0	6	118 110	1,531 1,531	993 843	0	0	0	0	0	0	1,698 1,848
10 10	1 2	2,416 2.421	0	0	6	112 112	1,531	766 772	0	0	0	0	0	0	1,925 1.919
10	3	2,436	0	0	6	113	1,531	786	0	0	0	0	0	0	1,905
10 10	4 5	2,535 2,629	0	0	6	109 115	1,531 1,531	888 976	0	0	0	0	0	0	1,803 1,715
10 10	6 7	2,787 3.024	0	0	6	121 122	1,531 1.531	1,007	122 357	0	0	0	0	0	1,562 1.327
10	8	3,249	0	0	6	109	1,531	1,007	596	0	0	0	0	0	1,088
10 10	9 10	3,323 3,088	0	31 85	6 6	113 120	1,531 1,531	1,007 1,007	635 338	0	0	0	0	0	1,049 1,346
10 10	11 12	2,750 2.464	0	107 122	6	126 137	1,531 1.531	979 668	0	0	0	0	0	0	1,712 2.023
10 10	13 14	2,147 1,863	0	127 128	6	143 143	1,531 1,531	340 56	0	0	0	0	0	0	2,351 2,635
10	15	1,680	0	124	6	133	1,417	0	0	0	0	0	0	0	2,805
10 10	16 17	1,617 1,601	0	115 87	6	123 106	1,373 1,402	0	0	0	0	0	0	0	2,849 2,820
10 10	18 19	1,659 1,917	0	22 0	6	84 83	1,531 1,531	15 296	0	0	0	0	0	0	2,676 2,395
10	20	2,121	0	0	6	87 101	1,531	497 570	0	0	0	0	0	0	2,194 2.121
10	22	2,222	0	0	6	115	1,531	569	0	0	0	0	0	0	2,122
10 10	23 24	2,163 2,058	0	0	6	118 110	1,531 1,531	507 410	0	0	0	0	0	0	2,184 2,281
11 11	1 2	1,976 1.980	0	0	6	112 112	1,531 1.531	327 331	0	0	0	0	0	0	2,364 2.360
11 11	3 4	2,034 2,087	0	0	6	113 109	1,531 1,531	383 440	0	0	0	0	0	0	2,308 2,251
11	5	2,165	0	0	6	115	1,531	513	0	0	0	0	0	0	2,178
11 11	6 7	2,303 2,543	0	0	6	121 122	1,531 1,531	645 884	0	0	0	0	0	0	2,046 1,807
11 11	8 9	2,781 2,755	0	0 31	6	109 113	1,531 1,531	1,007 1,007	128 66	0	0	0	0	0	1,556 1,618
11	10 11	2,416	0	85 107	6	120 126	1,531	673 289	0	0	0	0	0	0	2,018 2,402
11	12	1,764	0	122	6	137	1,499	0	0	0	0	0	0	0	2,723
11 11	13 14	1,613 1,522	0	127 128	6	143 143	1,337 1,245	0	0	0	0	0	0	0	2,885 2,977
11 11	15 16	1,452 1.403	0	124 115	6	133 123	1,189 1.158	0	0	0	0	0	0	0	3,033 3.064
11	17	1,381	0	87	6	106	1,182	0	0	0	0	0	0	0	3,040
11 11	18 19	1,422 1,541	0	22 0	6	84 83	1,309 1,451	0	0	0	0	0	0	0	2,913 2,771
11 11	20 21	1,597 1,613	0	0	6	87 101	1,504 1,506	0	0	0	0	0	0	0	2,718 2,716
11 11	22 23	1,621 1,606	0	0	6	115 118	1,500 1,481	0	0	0	0	0	0	0	2,722 2,741
11	24	1,578 1,550	0	0	6	110 112	1,462 1,432	0	0	0	0	0	0	0	2,760 2,790
12	2	1,547	0	0	6	112	1,429	0	0	0	0	0	0	0	2,793
12 12	3 4	1,548 1,565	0	0	6 6	113 109	1,429 1,449	0	0	0	0	0	0	0	2,793 2,773
12 12	5 6	1,573 1,597	0	0	6	115 121	1,452 1,469	0	0	0	0	0	0	0	2,770 2,753
12 12	7 8	1,639	0	0	6	122 109	1,511 1.531	0 41	0	0	0	0	0	0	2,711 2.650
12	9	1,740	0	31	6	113	1,531	59	0	0	0	0	0	0	2,632
12 12	10 11	1,673 1,567	0	85 107	6 6	120 126	1,462 1,327	0	0	0	0	0	0	0	2,760 2,895
12 12	12 13	1,468 1,393	0	122 127	6	137 143	1,203 1,116	0	0	0	0	0	0	0	3,019 3,106
12	14 15	1,324	0	128 124	6	143 133	1,048	0	0	0	0	0	0	0	3,174 3,207
12	16	1,257	0	115	6	123	1,013	0	0	0	0	0	0	0	3,209
12 12	17 18	1,252 1,273	0	87 22	6 6	106 84	1,053 1,160	0	0	0	0	0	0	0	3,169 3,062
12 12	19 20	1,357 1,391	0	0	6	83 87	1,267 1,297	0	0	0	0	0	0	0	2,955 2,925
12	21	1,382	0	0	6	101	1,275	0	0	0	0	0	0	0	2,947
12 12	22 23	1,363 1,335	0	0	6 6	115 118	1,242 1,211	0	0	0	0	0	0	0	2,980 3,011
12	24	1,308 191,083	0	0	6	110	1,192	0	0	0	0	0	0	0	3,030

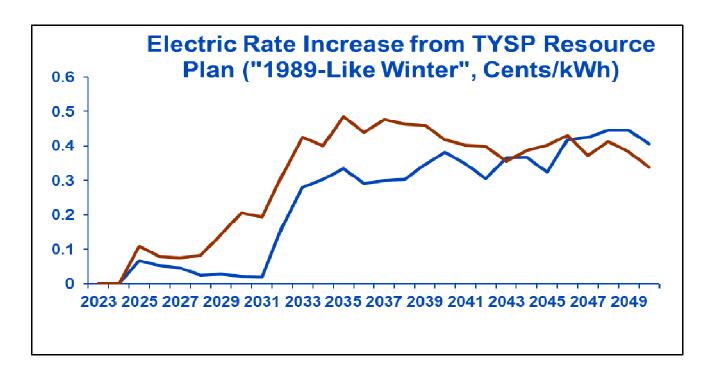
Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 22 of 24 Tab 1 of 4

2021 IRP Winter Load Forecast Sensitivity - Optimization 5 7 2021

Page 1 of 4

Summary: "1989-Like" Winter Load Forecast Sensitivity

	2021 TYSP	1989-Like Winter (Solar+Storage)*	1989-Like Winter w/ 3,700 MW Addl. Storage Locked in**
Total Cumulative Nameplate Solar (MW):	11,657	8,677	9,720
Total Storage Additions (MW, 2023-2030):	700	2,550	4,400
Total CT Additions (MW, 2023-2030):	0	0	0
Total CC Additions (MW, 2023-2030):	0	0	0
Total Filler Additions (MW, 2031-on):	22,440	22,440	23,100
CPVRR (\$M, 7.52%, 2020-2068):	81,942	87,811	88,807
CPVRR Difference From TYSP (\$M)		5,869	6,865


Notes:

- * This scenario locked in the 2021 TYSP additions thru 2025, with the exception of Manatee 1&2 continuing until 2030 for winter capacity only, a 1989-Like Winter forecast was used 2025-on, the only new resources that could be added were a solar+storage option that has to be 1 MW of solar for every 1 MW of storage, no winter reserve requirement was used and a 20% summer reserve requirement was used
- ** Using the 1989-like Winter forecast, and the 2021 TYSP resource additions locked in thru 2025 with the exception of Manatee 1&2 continuing until 2030, 3,700 MW of additional storage (on top of the 300 and 400 MW of storage in 2029 and 2030 from the TYSP) were locked in, and only solar was allowed to be selected before 2030, no winter reserve requirement was used

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 22 of 24 Tab 2 of 4

2021 IRP Winter Load Forecast Sensitivity - Optimization 5 7 2021

Page 2 of 4

1) Electric rates are calculated by annual rev reqs divided by NEL. The rev reqs include all incremental fixed and variable costs for new generation and associated transmission, plus system fuel and carbon compliance costs. Not included are rev reqs not impacted by the new resource options (such as existing generation, transmission, and distribution; buildings & staff, etc.)

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 22 of 24 Tab 3 of 4

> 2021 IRP Winter Load Forecast Sensitivity - Optimization 5 7 2021 Page 3 of 4

CPVRR Summary (7.52%, 2020-2068)

Scenario	Generation Capital (\$M)	FOM & Capital Replacement (\$M)	Transmission Capital (\$M)	Total Fixed Costs (\$M)	Fuel (\$M)	Start-up (\$M)	VOM (\$M)	Emissions (\$M)	Total Variable Costs (\$M)	Total System Costs (\$M)
2021 TYSP ¹	\$12,277	\$2,088	\$1,566	\$15,931	\$42,925	\$1,964	\$5,430	\$15,692	\$66,011	\$81,942
1989-Like Winter ² (Solar+Storage)	\$13,130	\$2,686	\$1,039	\$16,855	\$46,451	\$1,739	\$5,762	\$17,005	\$70,956	\$87,811
1989-Like Winter ³ (3,700 MW Storage)	\$14,785	\$3,001	\$1,193	\$18,980	\$45,906	\$1,485	\$5,655	\$16,782	\$69,828	\$88,807
Difference ²⁻¹	\$853	\$598	(\$527)	\$924	\$3,526	(\$226)	\$332	\$1,312	\$4,945	\$5,869
Difference 3-1	\$2,508	\$913	(\$373)	\$3,049	\$2,981	(\$480)	\$226	\$1,089	\$3,816	\$6,865

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 22 of 24 Tab 4 of 4

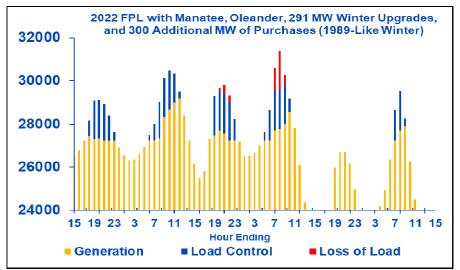
2021 IRP Winter Load Forecast Sensitivity - Optimization 5 7 2021 Page 4 of 4

		2021 TYSI	Sensitivit	y: 1989-Like Winter Load For	ecast						1
	2021 TYSP	Reserve I	Margin (%)	1989-l ike Winter	Reserve Margin (%)			1989-I ike Winter	Reserve Margin (%)		Ī
Year	(Base Case)	Summer	Winter	(Solar + Storage)	Summer Winter			(3,700 MW Storage)	Summer	Winter	1
2021	Manatee 1&2 (1,642 MW)	24.2	46.1		24.2	46.1	- -		24.2	46.1	
2022		25.5	40.7		25.5	48.5		-	25.5	48.5	
2023		21.6	44.0		21.6	51.6	-		21.6	51.6	
2024		20.0	35.8		20.0	43.2	-		24.6	43.2	
2025		20.1	34.0		20.1	-9.2		6 x 100 MW Battery	22.3	-7.5	
2026	969 MW Solar	20.0	32.2	6 x 75 MW Solar 6 x 75 MW Battery	20.2	-9.1	-	4 x 100 MW Battery 373 MW Solar	23.0	-7.5	
2027	969 MW Solar	20.0	30.6	5 x 75 MW Solar 5 x 75 MW Battery	20.1	-9.1	-	4 x 100 MW Battery 373 MW Solar	23.6	-7.4	
2028	1,192 MW Solar	20.0	28.6	6 x 75 MW Solar 6 x 75 MW Battery	20.1	-9.2	-	7 x 100 MW Battery 447 MW Solar	25.2	-6.9	
2029	1,192 MW Solar 3 x 100 MW Battery	20.0	28.0	8 x 75 MW Solar 8 x 75 MW Battery	20.1	-8.8		11 x 100 MW Battery 1,192 MW Solar	28.7	-5.1	
2030	1,192 MW Solar 4 x 100 MW Battery	20.0	27.8	9 x 75 MW Solar 9 x 75 MW Battery	20.1	-7.0	Difference	12 x 100 MW Battery 1,192 MW Solar	31.6	-1.9	D
(MW):				8,677			(2,980)	9,720			(
	700			2,550			1,850	•			
,							·				-
,	· ·			<u> </u>			_	<u>-</u>			+
,	•			•			·	•			
֡	2022 2023 2024 2025 2026 2027 2028 2029	2021 Manatee 1&2 (1,642 MW) 2022 2023 2024 2025 2026 969 MW Solar 2027 969 MW Solar 2028 1,192 MW Solar 2029 1,192 MW Solar 2029 3 x 100 MW Battery 2030 1,192 MW Solar 4 x 100 MW Battery (MW): 11,657 2030): 700 2030): 0 11-on): 22,4440	Year 2021 TYSP (Base Case) Reserve I Summer 2021 Manatee 182 (1,642 MW) 24.2 2022 25.5 2023 21.6 2024 20.0 2025 20.1 2026 969 MW Solar 20.0 2027 969 MW Solar 20.0 2028 1,192 MW Solar 20.0 2029 1,192 MW Solar 3 x 100 MW Battery 20.0 2030 1,192 MW Solar 4 x 100 MW Battery 20.0 (MW): 11,657 2030): 700 2030): 0 2030): 0 2030): 0 2030): 0 2030): 0 2030): 0 2030): 0 20400: 0	Year 2021 TYSP (Base Case) Reserve Margin (%) 2021 Manatee 182 (1,642 MW) 24.2 46.1 2022 25.5 40.7 2023 21.6 44.0 2024 20.0 35.8 2025 20.1 34.0 2026 969 MW Solar 20.0 32.2 2027 969 MW Solar 20.0 30.6 2028 1,192 MW Solar 20.0 28.6 2029 1,192 MW Solar 20.0 28.0 2030 1,192 MW Solar 20.0 27.8 (MW): 11,657 2030): 700 2030): 0 2030): 0 2030): 0 21-on): 22,440	Year 2021 TYSP (Base Case) Reserve Margin (%) 1989-Like Winter (Solar + Storage) 2021 Manatee 182 (1,642 MW) 24.2 46.1 2022 25.5 40.7 2023 21.6 44.0 2024 20.0 35.8 2025 20.1 34.0 2026 969 MW Solar 20.0 32.2 6 x 75 MW Solar 6 x 75 MW Solar 6 x 75 MW Solar 5 x 75 MW Solar 5 x 75 MW Battery 2027 969 MW Solar 20.0 28.6 6 x 75 MW Solar 6 x 75 MW Solar 6 x 75 MW Battery 2028 1,192 MW Solar 3 x 100 MW Battery 20.0 28.0 8 x 75 MW Solar 8 x 75 MW Solar 8 x 75 MW Solar 9 x 75 MW Solar 9 x 75 MW Solar 9 x 75 MW Battery 2030 1,192 MW Solar 4 x 100 MW Battery 20.0 27.8 9 x 75 MW Solar 9 x 75 MW Battery 2030): 700 2,550 2030): 0 0 2030): 0 0 2030): 0 0 2030): 0 0 </td <td>Year 2021 TYSP (Base Case) Summer Winter (Solar + Storage) Summer 2021 Manatee 1&2 (1,642 MW) 24.2 46.1 24.2 2022 25.5 40.7 25.5 2023 21.6 44.0 21.6 2024 20.0 35.8 20.0 2025 20.1 34.0 20.1 2026 969 MW Solar 20.0 32.2 6 x 75 MW Solar 6 x 75 MW Battery 20.2 2027 969 MW Solar 20.0 30.6 5 x 75 MW Solar 6 x 75 MW Battery 20.1 2028 1,192 MW Solar 3 x 100 MW Battery 20.0 28.6 6 x 75 MW Solar 6 x 75 MW Battery 20.1 2030 1,192 MW Solar 4 x 100 MW Battery 20.0 27.8 9 x 75 MW Solar 9 x 75 MW Battery 20.1 2030): 0 0 2,550 2030): 0 0 0 2030): 0 0 0</td> <td>Year 2021 TYSP (Base Case) Reserve Margin (%) Summer 1989-Like Winter (Solar + Storage) Reserve Margin (%) Summer Winter 2021 Manatee 182 (1,642 MW) 24.2 46.1 — 24.2 46.1 2022 — 25.5 40.7 — 21.6 51.6 2023 — 21.6 44.0 — 21.6 51.6 2024 — 20.0 35.8 — 20.0 43.2 2025 — 20.1 34.0 — 20.1 -9.2 2026 969 MW Solar 20.0 32.2 6 x 75 MW Solar 6 x 75 MW Solar 5 x 75 MW Solar 5 x 75 MW Solar 6 x 75 MW Solar 6 x 75 MW Solar 9 x 75 MW Solar 8 x 75 MW Solar 9 x 75 MW So</td> <td>Year 2021 TYSP (Base Case) Reserve Margin (%) Summer Winter (Solar + Storage) Reserve Margin (%) Summer Winter 2021 Manatee 1&2 (1,642 MW) 24.2 46.1 24.2 46.1 2022 25.5 40.7 25.5 48.5 2023 21.6 44.0 21.6 51.6 2024 20.0 35.8 20.0 43.2 2025 20.1 34.0 20.1 -9.2 2026 969 MW Solar 20.0 32.2 6 x 75 MW Solar 6 x 75 MW Solar 5 x 75 MW Solar 5 x 75 MW Solar 5 x 75 MW Battery 20.1 -9.1 2028 1,192 MW Solar 20.0 28.6 6 x 75 MW Solar 6 x 75 MW Solar 5 x 75 MW Battery 20.1 -9.2 2029 3,192 MW Solar 3 x 100 MW Battery 20.0 28.0 8 x 75 MW Solar 8 x 75 MW Solar 9 x 75 MW Solar 9</td> <td> Year 2021 TYSP (Base Case) Summer Winter (Solar + Storage) 1989-Like Winter (Solar + Storage) Summer Winter Winter (3,700 MW Storage) </td> <td> Year 2021 TYSP (Base Case) Reserve Margin (%) Summer Winter (Solar + Storage) Summer Winter (Solar + Storage) Summer Winter Winter (3,700 MW Storage) Summer </td> <td>Year (Base Case) Reserve → responsible (%) Summer (Solar + Storage) Reserve → responsible (%) Summer (Solar + Storage) Reserve → responsible (%) Summer (Minter (Solar + Storage)) Winter (Solar + Storage) Winter (Sol</td>	Year 2021 TYSP (Base Case) Summer Winter (Solar + Storage) Summer 2021 Manatee 1&2 (1,642 MW) 24.2 46.1 24.2 2022 25.5 40.7 25.5 2023 21.6 44.0 21.6 2024 20.0 35.8 20.0 2025 20.1 34.0 20.1 2026 969 MW Solar 20.0 32.2 6 x 75 MW Solar 6 x 75 MW Battery 20.2 2027 969 MW Solar 20.0 30.6 5 x 75 MW Solar 6 x 75 MW Battery 20.1 2028 1,192 MW Solar 3 x 100 MW Battery 20.0 28.6 6 x 75 MW Solar 6 x 75 MW Battery 20.1 2030 1,192 MW Solar 4 x 100 MW Battery 20.0 27.8 9 x 75 MW Solar 9 x 75 MW Battery 20.1 2030): 0 0 2,550 2030): 0 0 0 2030): 0 0 0	Year 2021 TYSP (Base Case) Reserve Margin (%) Summer 1989-Like Winter (Solar + Storage) Reserve Margin (%) Summer Winter 2021 Manatee 182 (1,642 MW) 24.2 46.1 — 24.2 46.1 2022 — 25.5 40.7 — 21.6 51.6 2023 — 21.6 44.0 — 21.6 51.6 2024 — 20.0 35.8 — 20.0 43.2 2025 — 20.1 34.0 — 20.1 -9.2 2026 969 MW Solar 20.0 32.2 6 x 75 MW Solar 6 x 75 MW Solar 5 x 75 MW Solar 5 x 75 MW Solar 6 x 75 MW Solar 6 x 75 MW Solar 9 x 75 MW Solar 8 x 75 MW Solar 9 x 75 MW So	Year 2021 TYSP (Base Case) Reserve Margin (%) Summer Winter (Solar + Storage) Reserve Margin (%) Summer Winter 2021 Manatee 1&2 (1,642 MW) 24.2 46.1 24.2 46.1 2022 25.5 40.7 25.5 48.5 2023 21.6 44.0 21.6 51.6 2024 20.0 35.8 20.0 43.2 2025 20.1 34.0 20.1 -9.2 2026 969 MW Solar 20.0 32.2 6 x 75 MW Solar 6 x 75 MW Solar 5 x 75 MW Solar 5 x 75 MW Solar 5 x 75 MW Battery 20.1 -9.1 2028 1,192 MW Solar 20.0 28.6 6 x 75 MW Solar 6 x 75 MW Solar 5 x 75 MW Battery 20.1 -9.2 2029 3,192 MW Solar 3 x 100 MW Battery 20.0 28.0 8 x 75 MW Solar 8 x 75 MW Solar 9	Year 2021 TYSP (Base Case) Summer Winter (Solar + Storage) 1989-Like Winter (Solar + Storage) Summer Winter Winter (3,700 MW Storage)	Year 2021 TYSP (Base Case) Reserve Margin (%) Summer Winter (Solar + Storage) Summer Winter (Solar + Storage) Summer Winter Winter (3,700 MW Storage) Summer	Year (Base Case) Reserve → responsible (%) Summer (Solar + Storage) Reserve → responsible (%) Summer (Solar + Storage) Reserve → responsible (%) Summer (Minter (Solar + Storage)) Winter (Solar + Storage) Winter (Sol

WACC = 7.52% (FPL 2020 WACC)

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 23 of 24 Tab 1 of 7

2021 Winter Analysis Info for June OpComm 6 10 2021


Winter Pe	eak Unit Upgra	de Schedule
Year	Incremental (MW)	Cumulative (MW)
2022	291	291
2023	193	484
2024	227	711
2025	79	790

Note: No costs were provided for the upgrades, therefore no costs were included in any of the CPVRRs

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 23 of 24 Tab 2 of 7

	Annual Peak De	emand for 1989-	Like Winters
Year	FPL Peak (MW)	Gulf Peak (MW)	Combined Peak (MW)
2022	31,386	3,323	34,167
2023	31,991	3,347	34,792
2024	32,600	3,370	35,420
2025	33,087	3,392	35,926
2026	33,567	3,413	36,423
2027	33,903	3,434	36,776
2028	34,401	3,458	37,295
2029	34,912	3,483	37,827
2030	35,431	3,504	38,364

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 23 of 24 Tab 3 of 7

	PFPL with Manatee, Oleander, 291 MW Winter Upgrades, 300 ditional MW of Purchases, and Scherer 4 (1989-Like Winter)
30000 -	
28000 -	
26000 -	
24000 15 19 23	3
13 13 23	Hour Ending
Genera	tion Load Control Loss of Load

Loss of Load	Loss of Load	Maximum Loss of Load
# of Hours	(MWh)	(MW)
6	4,197	1,799

		Maximum
Loss of Load	Loss of Load	Loss of Load
# of Hours	(MWh)	(MW)
	((,

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 23 of 24 Tab 4 of 7

				2022 FPL with Manatee, 291 2022 FPL with N				th Manatan 201					
					2022 FPL wi	th Mana	tee. 291	2022 FPL wi MW Win			2022 FPL wi MW Win		
		2022 FPL w			MW Winte				er, and 3		Oleander,		
		291 MW W	/inter Up	grades	OI	eander		Additio	onal MW rchases	of	MW of P	urchases herer 4	, and
Date	Hour	Generation	Load Control	Loss of Load	Generation	Load Control	Loss of Load	Generation	Load Control	Loss of Load	Generation	Load Control	Loss of Load
1/9/2022	1 2	14,659 14,232	0	0	14,659 14,232	0	0	14,659 14,232	0	0	14,659 14,232	0	0
1/9/2022	3	14,232	0	0	14,232	0	0	14,232	0	0	14,232	0	0
1/9/2022	4	14,455	0	0	14,455	0	0	14,455	0	0	14,455	0	0
1/9/2022	5	15,036	0	0	15,036	0	0	15,036	0	0	15,036	0	0
1/9/2022	7	16,121 17.782	0	0	16,121 17.782	0	0	16,121 17.782	0	0	16,121 17.782	0	0
1/9/2022	8	20,025	0	0	20,025	0	0	20,025	0	0	20,025	0	0
1/9/2022	9	22,536	0	0	22,536	0	0	22,536	0	0	22,536	0	0
1/9/2022	10	24,267	0	0	24,267	0	0	24,267	0	0	24,267	0	0
1/9/2022	11 12	25,444 25,901	0	0	25,444 25,901	0	0	25,444 25,901	0	0	25,444 25,901	0	0
1/9/2022	13	26,214	0	0	26,214	0	0	26,214	0	0	26,214	0	0
1/9/2022	14	26,353	0	0	26,353	0	0	26,353	0	0	26,353	0	0
1/9/2022	15	26,530	0	0	26,530	0	0	26,530	0	0	26,530	0	0
1/9/2022	16 17	26,785 27.221	0	0	26,785 27,221	0	0	26,785 27,221	0	0	26,785 27,221	0	0
1/9/2022	18	26,994	1,181	0	27,144	1,031	0	27,444	731	0	28,080	95	0
1/9/2022	19	27,257	1,812	41	27,299	1,812	0	27,299	1,812	0	27,874	1,236	0
1/9/2022	20	27,250	1,812	69 240	27,319	1,812	0	27,319	1,812	0	27,867 27,867	1,263	0
1/9/2022	21	26,875 26,781	1,812	0	27,115 26,931	1,812	0	27,231 27,231	1,696	0	27,867	1,060 537	0
1/9/2022	23	26,781	831	0	26,931	681	0	27,231	381	0	27,612	0	0
1/9/2022	24	26,781	140	0	26,921	0	0	26,921	0	0	26,921	0	0
1/10/2022	2	26,534 26,330	0	0	26,534 26,330	0	0	26,534 26,330	0	0	26,534 26,330	0	0
1/10/2022	3	26,371	0	0	26,330	0	0	26,330	0	0	26,330	0	0
1/10/2022	4	26,615	0	0	26,615	0	0	26,615	0	0	26,615	0	0
1/10/2022	5	26,781	157	0	26,931	7	0	26,938	0	0	26,938	0	0
1/10/2022	7	26,781 26,781	702 1,235	0	26,931 26,931	552 1,085	0	27,231 27,231	252 785	0	27,483 27,867	149	0
1/10/2022	8	27,229	1,812	0	27,229	1,812	0	27,306	1,734	0	27,942	1,098	0
1/10/2022	9	27,947	1,812	370	28,097	1,812	220	28,317	1,812	0	28,564	1,565	0
1/10/2022	10 11	28,313 28,546	1,812 1,812	370	28,613 28,696	1,812 1,663	70 0	28,683 28,996	1,812 1,363	0	29,208 29,632	1,286 727	0
1/10/2022	12	28,741	759	0	28,891	609	0	29,191	309	0	29,632	0	0
1/10/2022	13	28,400	0	0	28,400	0	0	28,400	0	0	28,400	0	0
1/10/2022	14	27,220	0	0	27,220	0	0	27,220	0	0	27,220	0	0
1/10/2022 1/10/2022	15 16	26,150 25,500	0	0	26,150 25,500	0	0	26,150 25,500	0	0	26,150 25,500	0	0
1/10/2022	17	25,823	0	0	25,823	0	0	25,823	0	0	25,823	0	0
1/10/2022	18	26,994	288	0	27,144	138	0	27,282	0	0	27,282	0	0
1/10/2022	19	27,257	1,812	221	27,407	1,812	71	27,478	1,812	0	27,874	1,415	0
1/10/2022	20	27,250	1,812	1 124	27,400	1,812	458 974	27,700	1,812	158 445	27,867	1,803	0
1/10/2022	22	26,781	1,812	730	26,931	1,812	580	27,231	1,812	280	27,867	1,456	0
1/10/2022	23	26,781	1,455	0	26,931	1,305	0	27,231	1,005	0	27,867	369	0
1/10/2022	24	26,781	404	0	26,931 26,543	254	0	27,185 26,543	0	0	27,185 26,543	0	0
1/11/2022	2	26,543	0	0	26,543	0	0	26,543	0	0	26,543	0	0
1/11/2022	3	26,679	0	0	26,679	0	0	26,679	0	0	26,679	0	0
1/11/2022	4	26,781	225	0	26,931	75	0	27,006	0	0	27,006	0	0
1/11/2022	5 6	26,781 26,845	863 1.812	0	26,931 26.931	713 1.726	0	27,231 27,231	413 1.426	0	27,644 27.867	0 790	0
1/11/2022	7	27,250	1,812	1,539	27,400	1,812	1,389	27,700	1,812	1,089	28,336	1,812	453
1/11/2022	8	26,929	1,812	2,645	27,475	1,812	2,099	27,775	1,812	1,799	28,411	1,812	1,163
1/11/2022	9	27,478	1,812	970	27,722	1,812	726	28,022	1,812	426	28,564	1,695	0
1/11/2022	10 11	28,122 27.814	1,061	0	28,272 27.814	911	0	28,572 27.814	611	0	29,184 27.814	0	0
1/11/2022	12	26,097	0	0	26,097	0	0	26,097	0	0	26,097	0	0
1/11/2022	13	24,354	0	0	24,354	0	0	24,354	0	0	24,354	0	0
1/11/2022	14 15	22,864 21.398	0	0	22,864 21.398	0	0	22,864 21.398	0	0	22,864 21.398	0	0
1/11/2022	15	21,398	0	0	21,398	0	0	21,398	0	0	21,398	0	0
1/11/2022	17	20,791	0	0	20,791	0	0	20,791	0	0	20,791	0	0
1/11/2022	18	22,989	0	0	22,989	0	0	22,989	0	0	22,989	0	0
1/11/2022	19 20	25,992 26,691	0	0	25,992 26,691	0	0	25,992 26,691	0	0	25,992 26,691	0	0
1/11/2022	21	26,684	0	0	26,684	0	0	26,684	0	0	26,684	0	0
1/11/2022	22	26,162	0	0	26,162	0	0	26,162	0	0	26,162	0	0
1/11/2022	23	24,969	0	0	24,969	0	0	24,969	0	0	24,969	0	0
1/11/2022	24	23,927 23,336	0	0	23,927 23,336	0	0	23,927 23,336	0	0	23,927 23,336	0	0
1/12/2022	2	23,330	0	0	23,330	0	0	23,330	0	0	23,330	0	0
1/12/2022	3	23,742	0	0	23,742	0	0	23,742	0	0	23,742	0	0
1/12/2022 1/12/2022	4 5	24,205 24,923	0	0	24,205 24,923	0	0	24,205 24,923	0	0	24,205 24,923	0	0
1/12/2022	6	26,365	0	0	26,365	0	0	26,365	0	0	26,365	0	0
1/12/2022	7	26,850	1,812	0	26,931	1,730	0	27,231	1,430	0	27,867	794	0
1/12/2022	8	27,325	1,812 777	379	27,475	1,812	229	27,704	1,812	0	27,942	1,574	0
1/12/2022	10	27,478 26,267	777	0	27,628 26,267	627	0	27,928 26,267	327 0	0	28,255 26,267	0	0
1/12/2022	11	24,486	0	0	24,486	0	0	24,486	0	0	24,486	0	0
		22,989	0	0	22,989	0	0	22,989	0	0	22,989	0	0
1/12/2022 1/12/2022 1/12/2022	12			0	21,601	0	0	21,601	0	0	21,601	0	0
1/12/2022 1/12/2022 1/12/2022	13	21,601	0			0	0	20,088	0	0	20,088	0	0
1/12/2022 1/12/2022 1/12/2022 1/12/2022	13 14	21,601 20,088	0	0	20,088		0	18 754	0	0	18 754		0
1/12/2022 1/12/2022 1/12/2022	13	21,601			20,088 18,754 18,064	0	0	18,754 18,064	0	0	18,754 18,064	0	0
1/12/2022 1/12/2022 1/12/2022 1/12/2022 1/12/2022 1/12/2022 1/12/2022	13 14 15 16 17	21,601 20,088 18,754 18,064 18,444	0 0 0	0 0 0	18,754 18,064 18,444	0 0	0	18,064 18,444	0	0	18,754 18,064 18,444	0 0	0
1/12/2022 1/12/2022 1/12/2022 1/12/2022 1/12/2022 1/12/2022 1/12/2022 1/12/2022	13 14 15 16 17 18	21,601 20,088 18,754 18,064 18,444 20,487	0 0 0 0 0	0 0 0 0 0	18,754 18,064 18,444 20,487	0 0 0	0 0	18,064 18,444 20,487	0 0	0 0	18,754 18,064 18,444 20,487	0 0 0	0 0
1/12/2022 1/12/2022 1/12/2022 1/12/2022 1/12/2022 1/12/2022 1/12/2022 1/12/2022 1/12/2022 1/12/2022	13 14 15 16 17 18 19	21,601 20,088 18,754 18,064 18,444 20,487 23,155	0 0 0 0 0	0 0 0 0 0 0	18,754 18,064 18,444 20,487 23,155	0 0 0 0	0 0 0	18,064 18,444 20,487 23,155	0 0 0	0 0 0	18,754 18,064 18,444 20,487 23,155	0 0 0 0 0	0 0 0
1/12/2022 1/12/2022 1/12/2022 1/12/2022 1/12/2022 1/12/2022 1/12/2022 1/12/2022	13 14 15 16 17 18	21,601 20,088 18,754 18,064 18,444 20,487	0 0 0 0 0	0 0 0 0 0	18,754 18,064 18,444 20,487	0 0 0	0 0	18,064 18,444 20,487	0 0	0 0	18,754 18,064 18,444 20,487	0 0 0	0 0
1/12/2022 1/12/2022 1/12/2022 1/12/2022 1/12/2022 1/12/2022 1/12/2022 1/12/2022 1/12/2022 1/12/2022 1/12/2022 1/12/2022 1/12/2022 1/12/2022 1/12/2022	13 14 15 16 17 18 19 20 21 22	21,601 20,088 18,754 18,064 18,444 20,487 23,155 23,820 23,882 23,432	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	18,754 18,064 18,444 20,487 23,155 23,820 23,882 23,432	0 0 0 0 0 0	0 0 0 0 0	18,064 18,444 20,487 23,155 23,820 23,882 23,432	0 0 0 0 0	0 0 0 0 0 0	18,754 18,064 18,444 20,487 23,155 23,820 23,882 23,432	0 0 0 0 0 0	0 0 0 0 0
1/12/2022 1/12/2022 1/12/2022 1/12/2022 1/12/2022 1/12/2022 1/12/2022 1/12/2022 1/12/2022 1/12/2022 1/12/2022 1/12/2022 1/12/2022 1/12/2022	13 14 15 16 17 18 19 20 21	21,601 20,088 18,754 18,064 18,444 20,487 23,155 23,820 23,882	0 0 0 0 0 0 0	0 0 0 0 0 0	18,754 18,064 18,444 20,487 23,155 23,820 23,882	0 0 0 0 0	0 0 0 0 0	18,064 18,444 20,487 23,155 23,820 23,882	0 0 0 0 0	0 0 0 0 0	18,754 18,064 18,444 20,487 23,155 23,820 23,882	0 0 0 0 0	0 0 0 0 0

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 23 of 24 Tab 5 of 7

2021 Winter Analysis Info for June OpComm 6 10 2021

Combined System Summer Reserve Margin w/ and w/o Daniel 2

	Summer	Firm DSM	Firm Summer		n Capacity W)		Margin %)	MWs <mark>(Above)</mark> /Below 20% RM		
Year	Peak Load (MW)	(MW)	Peak Load (MW)	w/ Daniel 2	w/o Daniel 2	w/ Daniel 2	w/o Daniel 2	w/ Daniel 2	w/o Daniel 2	
2022	27,277	1,886	25,392	31,870	31,619	25.5%	24.5%	(1,400)	(1,149)	
2023	27,771	1,943	25,828	31,407	31,156	21.6%	20.6%	(413)	(162)	
2024	28,278	2,006	26,272		31,543		20.1%		(17)	
2025	28,675	2,050	26,625		31,993		20.2%		(43)	
2026	29,051	2,084	26,967		32,378		20.1%		(18)	
2027	29,340	2,118	27,221		32,679		20.1%		(14)	
2028	29,721	2,152	27,568		33,107		20.1%		(25)	
2029	30,233	2,186	28,047		33,676		20.1%		(19)	
2030	30,832	2,221	28,612		34,348		20.0%		(14)	

⁻ Above assumes all of the 2021 TYSP resource additions thru 2030

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 23 of 24 Tab 6 of 7

2021 TYSP (Revised) (Production Cost w/ 1989-Like Winter Forecast)	2025	2026	2027	2028	2029	2030	Total/ Avg*
Storage Additions (MW):	0	0	0	0	300	400	700
CT Additions (MW):	0	0	0	0	0	0	0
Capital (Solar, Storage, & CTs) (\$Millions):	837	909	911	1,125	1,311	1,369	6,462
Avg. Interruption Time (Hours/Eligible Customer):	0.50	0.50	0.50	0.52	0.73	0.89	0.61*
Monthly Bill Impact (\$/1,000kWh):	0.65	1.35	2.01	2.77	3.69	4.59	2.51*

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 23 of 24 Tab 7 of 7

2021 Winter Analysis Info for June OpComm 6 10 2021

		2021 T	YSP Sensit	ivity: 1989-	Like Winter Load Forecast					
Common to all Plans		2021 TYSP (Revised)	Reserve N	Margin (%)		Reserve N	/largin (%)		Reserve Margin (
Retirements / Additions	Year	(Production Cost w/ 1989- Like Winter Forecast)	Summer	Winter	Zero Loss of Load w/ CTs	Summer	Winter	Zero Loss of Load w/ Storage	Summer	Winter
OUC PPA (100 MW), 1,043 MW Solar Indiantown PPA (330 MW)	2021	Daniel 2 (251 MW)	23.2	49.1	Daniel 2 (251 MW)	23.2	49.1	Daniel 2 (251 MW)	23.2	49.1
Manatee Battery (469 MW) +54 MW GE Upgrades, Scherer 4 (634 MW), 850 MW NFRC Line, Crist 4x0 CT (938 MW) , 149 MW Solar	2022	+291 MW Winter Upgrades 447 MW Solar	24.5	51.8	+291 MW Winter Upgrades 447 MW Solar	24.5	51.8	+291 MW Winter Upgrades 447 MW Solar	24.5	51.8
Shell PPA (885 MW), +92 MW GE Upgrades	2023	+193 MW Winter Upgrades 745 MW Solar	20.6	55.8	+193 MW Winter Upgrades 745 MW Solar	20.6	55.8	+193 MW Winter Upgrades 745 MW Solar	20.6	55.8
Daniel 1 (251 MW), +196 MW GE Upgrades	2024	+227 MW Winter Upgrades 894 MW Solar	20.0	49.4	+227 MW Winter Upgrades 894 MW Solar	20.0	49.4	+227 MW Winter Upgrades 894 MW Solar	20.0	49.4
+77 MW GE Upgrades Crist 4 (75 MW) , Pea Ridge (12 MW)	2025	+79 MW Winter Upgrades 894 MW Solar	20.2	-5.7	+79 MW Winter Upgrades 894 MW Solar 3 x 3x0 CT (2,112 MW)	28.0	0.5	+79 MW Winter Upgrades 894 MW Solar 21 x 100 MW Battery	28.0	0.4
+6 MW GE Upgrades	2026	969 MW Solar	20.1	-6.9	1 x 3x0 CT (704 MW)	29.0	1.4	75 MW Solar 3 x 100 MW Battery	27.6	0.1
Crist 5 (75 MW)	2027	969 MW Solar	20.1	-8.0		27.4	0.2	373 MW Solar 6 x 100 MW Battery	29.0	0.6
Lansing Smith A (32 MW)	2028	1,192 MW Solar	20.1	-9.4	373 MW Solar 1 x 3x0 CT (704 MW)	28.9	0.7	373 MW Solar 6 x 100 MW Battery	30.0	0.8
-	2029	1,192 MW Solar 3 x 100 MW Battery	20.1	-9.8	373 MW Solar 1 x 3x0 CT (704 MW)	29.9	1.3	1,192 MW Solar 3 x 100 MW Battery	30.5	0.3
Perdido 1&2 (3 MW)	2030	1,192 MW Solar 4 x 100 MW Battery	20.0	-10.0	745 MW Solar 3x1 Martin CC (1,991 MW)	35.3	5.4	1,192 MW Solar 6 x 100 MW Battery	31.6	0.5
Total Cumulative Nameplate Solar		11,657			7,634			9,348		
Total Storage Additions (MW, 2023-2	,	700			0			4,500		
Total CT Additions (MW, 2023- Total CC Additions (MW, 2023-	,	0			4,224 1,991			0		
Total Filler Additions (MW, 2025-		22,440			21,120			23,760		
CPVRR (\$M, 7.52%, 2020-	-	85,911			21,120 86,956			23,760 88,216		
CPVRR Difference					1,045			2,305		

WACC = 7.52% (FPL 2020 WACC)

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 24 of 24 Tab 1 of 2

2022 IRP Extreme Winter Outage Projections 42 Pecent Higher Winter 2 25 2022
Page 1 of 2

Extreme Winter Load Forecast (Updated 2/21/2022, 42% Higher): Customer Outage Projections

of Customer Outages (30 minutes each) No Forced Outages

No BBB	2023	2024	2025	2026	2027	2028	2029	2030	2031
P50 Resource Plan No near-term additions	0	597,399	1,311,537	2,328,121	4,692,701	7,654,727	10,506,524	11,242,813	13,609,494
P50 Resource Plan w/ near-term additions	0	0	0	0	83,529	245,656	311,220	177,332	126,882
Extreme Winter Resource Plan	0	0	0	0	0	0	0	0	0

of Customer Outages (30 minutes each) 1,000 MW Forced Outages

No BBB	2023	2024	2025	2026	2027	2028	2029	2030	2031
P50 Resource Plan No near-term additions	100,349	2,240,496	6,931,369	9,008,281	12,058,759	15,886,237	20,452,246	22,424,013	25,970,741
P50 Resource Plan w/ near-term additions	0	0	276,604	370,319	651,656	988,219	1,111,220	1,029,646	1,826,224
Extreme Winter Resource Plan	0	0	276,604	370,319	411,656	428,219	259,395	177,332	165,124
Extreme Winter Resource Plan w/ Additional Batteries	0	0	0	0	0	0	0	0	0

Note: - No near-term additions includes: No Oleander or Hillabee PPAs, winter upgrades, or Manatee 1&2, Smith 3A, GCEC 4&5 continuing for winter only

⁻ Extreme winter resource plan is w/ near term additions

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 2 Attachment 24 of 24 Tab 2 of 2

2022 IRP Extreme Winter Outage Projections 42 Pecent Higher Winter 2 25 2022

Page 2 of 2

Extreme Winter Load Forecast (<u>Updated 2/21/2022, 42% Higher</u>): Customer Outage Projections

of Customer Outages (30 minutes each) No Forced Outages

w/ BBB	2023	2024	2025	2026	2027	2028	2029	2030	2031
P50 Resource Plan No near-term additions	0	597,399	1,276,373	2,230,820	4,362,169	7,002,490	11,175,609	13,004,341	7,725,813
P50 Resource Plan w/ near-term additions	0	0	0	0	0	94,988	508,258	547,779	0
Extreme Winter Resource Plan	0	0	0	0	0	0	0	0	0

of Customer Outages (30 minutes each) 1,000 MW Forced Outages

w/ BBB	2023	2024	2025	2026	2027	2028	2029	2030	2031
P50 Resource Plan No near-term additions	100,349	2,240,496	6,486,878	8,301,881	10,865,981	14,213,016	20,196,544	23,438,426	18,678,224
P50 Resource Plan w/ near-term additions	0	0	276,604	321,195	556,966	837,551	1,960,682	2,877,449	249,775
Extreme Winter Resource Plan	0	0	276,604	321,195	501,581	542,092	532,725	492,173	0
Extreme Winter Resource Plan w/ Additional Batteries	0	0	0	0	0	0	0	0	0

Note: - No near-term additions includes: No Oleander or Hillabee PPAs, winter upgrades, or Manatee 1&2, Smith 3A, GCEC 4&5 continuing for winter only

⁻ Extreme winter resource plan is w/ near term additions

FPL (including Gulf) Private Solar Forecast, 2021	37% 32%		New Systems				
	37% 32%		11.0 50.0				
Florida Cumulative Installations (MW ds)	Growth by Year FPL Share of FL Total	FPL/Gulf Service Area Installations (MW _{ds}) FPL/Gulf Private Solar Customers	Avg. System Size FPL New Installations (MW _{de})	FPL New Solar Customers FPL Annual Solar Energy (MW	r) FPL Summer Peak Solar Capacity (MW)	FPL Winter Peak Solar Capacity (MW)	EIA End-Use Cons. EIA End-Use Cons. EIA Growth EIA Growth
Residential Commercial Total	Residential Commercial Total Residential Commercial Total	Residential Commercial Total Residential Commercial Total	Avg. System Size FPL New Installations (MW _{th}) Residential Commercial Residential Commercial Total	Residential Commercial Total Residential Commercial To	Peak Month Peak Hour Residential Commercial Total	Peak Month Peak Hour Residential Commercial Total	Residential Commercial Residential Commercial
2010A 19	· · · · · · · · · · · · · · · · · · ·				8 17	1 8	
2011A	7% 43% 30%				8 17	1 8	
2012A 44	73% 82% 80%				8 17	1 8	
2013A 69	57% 61% 60%				8 17	1 8	
2014A 91	48% 24% 31% 58% 31% 40	2% 17 19 37 2,797 804 3,601	6.3 23.8 17 19 37		(928 8 17 4 5 9	1 8 0 0 0	
2015A 125	62% 26% 38% 53% 31% 40	2% 26 24 50 3,828 890 4,718	8.1 26.6 8 5 13		451 8 17 9 8 17	1 8 1 1 2	
2016A 160	53% 12% 28% 47% 30% 38	9% 34 26 61 5,002 915 5,917	7.3 28.7 9 3 11		474 8 17 12 10 22	1 8 1 1 2	
2017A 228	78% 12% 42% 41% 33% 38°	9% 54 32 86 7,442 957 8,399	8.0 33.3 20 6 25		515 8 17 18 11 29	1 8 2 1 3	
2018A 341	79% 10% 50% 38% 33% 36	5% 80 35 124 11,354 1,018 12,372	9.1 34.4 36 3 39		.335 8 17 30 13 42	1 8 3 1 4	
2012A 540 2020A 853	78% 15% 58% 37% 33% 36°	5% 15G 40 195 18,070 1,104 19,174	9.8 35.8 66 5 71		440 8 17 51 14 65	1 8 4 2 6	
2020A 853	67% 25% 56% 36% 31% 36 52% 25% 47% 35% 30% 30% 36	5% 254 45 302 27,574 1,167 28,761 5% 416 56 474 42,766 1,255 44,063	10.3 98.3 98 8 106	9,504 83 9,587 314,232 65,968 38	220 8 17 84 17 101	1 8 7 2 9	0.224748 0.16556 0.25953 0.19446 15.5% 17.5%
20217 1,255				15,303 189 15,322 513,576 78,186 59		1 8 12 2 14	
20229 1,753	43% 21% 40% 40% 32% 39 38% 19% 36% 40% 32% 39	9% 607 73 680 60,030 1,629 61,668 9% 841 85 928 81,005 1,004 83,409	11.0 50.0 189 17 205 11.0 50.0 234 14 248	17,251 334 17,585 779,606 97,353 87 21,466 275 21,741 1,099,473 120,030 1,21	(959 8 17 211 25 236 1503 8 17 293 31 324	1 8 21 2 23	0.28951 0.213751 11.6% 9.9% 0.315226 0.222128 8.9% 3.9%
2,364			11.0 50.0 234 14 246	17.172 308 17.481 1,000,473 120,030 1,21 17.172 308 17.481 1,410,325 141,855 1,58		1 0 29 3 32	0.315226 0.22728 8.5% 3.5% 0.341958 0.23104 8.5% 4.0%
2,502	22% 18% 22% 40% 32% 39		11.0 50.0 107 15 202	17,172 308 17,461 1,410,325 141,805 1,58 18,890 294 19,184 1,701,826 164,180 1,86		1 0 40 4 43	0.34100 0.23104 0.5% 4.0% 0.364055 0.245749 0.6% 6.4%
20257	20% 14% 19% 40% 32% 39 19% 13% 18% 40% 32% 39		11.0 50.0 206 15 220	21,499 302 21,801 2,028,087 186,189 2,21		0 40 4 53	0.389788 0.258031 6.9% 5.0%
20207 2027F 4,102	19% 13% 18% 40% 32% 39 18% 14% 16% 40% 32% 39		11.0 50.0 234 15 249	21,000 302 21,001 2,026,067 100,169 2,21 21,321 376 21,897 2,372,951 211,386 2,58		0 00 00	0.209700 0.20031 0.9% 5.0% 0.417903 0.277772 7.2% 7.7%
20277	10% 14% 16% 40% 32% 39 15% 30% 16% 40% 32% 39	75 1,702 150 1,855 160,567 3,165 163,772 75 1,954 195 2,149 183,667 4,074 187,741	11.0 50.0 251 44 296	23,079 889 23,968 2,730,019 260,065 2,99		0 0 14	0.417903 0.27772 7.2% 7.7% 0.446817 0.289913 6.9% 4.4%
20207 5,519			11.0 50.0 274 46 320	25,174 923 26,098 3,115,756 328,185 3,44		1 0 /9 / 00	0.47486 0.304318 6.3% 5.0%
20307 7,379	14% 24% 15% 40% 32% 39 14% 25% 16% 40% 32% 39		11.0 50.0 274 46 320	29,600 1,400 31,000 3,974,709 416,699 3,97	407 8 17 929 107 1,037	1 0 91 0 99	0.507024 0.31455 6.8% 3.4%
20317 8,199	10% 17% 11% 40% 32% 39		11.0 50.0 261 53 314	23,981 1,052 25,033 3,975,862 507,540 4,46		117 17 17	0.537506 0.329593 6.0% 4.8%
20327 8,658	8% 9% 8% 40% 32% 39		11.0 50.0 221 34 254	20,271 670 20,941 4,319,043 569,907 4,88		170 151	0.566874 0.334585 5.5% 1.5%
0,000	um um 6% 40% 32% 29	202,002 0,110 230,012	11.0 30.0 221 34 234	20,271 UTO 20,041 4,319,043 509,907 4,60	1,122 144 1,260	129 10 140	U.AMATE U.AMAMO 3.579 1.579

Florida Power & Light Company PFLA CELF BIRDS
Docker No. 20220000-OT Confidential SEEDING OF TEN-Year Site Plan
Staff's Third Data Research

Tab 2 of 19 GULF Private Solar Forecast, beginning:

GULF Private Solar Forecast, beginning: 2021		New Systems											
	8% 2%	10.5											
Florida Cumulative Installations (MW)	Growth by Year Quif Share of Ft. Total Quif Service Area Installations (WWGC)	Gulf Private Solar Customers Avg. System Size Go	Gulf New Installations (MWdc) Gulf New Solar Customers	Gulf Annual Solar Energy (MWh) Gulf Summer Peak Solar Capacity (MW)	Gulf Winter Peak Solar Capacity (MW) E/A End-Use Core.	EIA End-Use Cons. EIA Growth EIA Growth							
Residential Commercial Total	Residential Commercial Total Residential Commercial Total Residential Commercial Total		ential Commercial Total Residential Commercial Total	Bushfordial Commercial Total Peak Month Peak Hour Residential Commercial Total		Commercial Residential Commercial							
RESIDENDE COMMERCIAL TOTAL	Residential Commercial Total Residential Commercial Total	Residential Commercial Total Residential Commercial Resident	Iroa Commercia Ista Residenda Commercia Ista			Commercial Residential Commercial							
2010A 19	75 425 305			7 16									
2011A				7 10 1	1 8								
2012A 44	73% 82% 80%			7 16	1 8								
2013A 69	57% 61% 60%			7 16	1 8								
2014A 91	48% 24% 31% 5% 0% 2% 2 0 2	267 100 367 5.8 2.5	2 0 2 267 100 367	1,204 191 1,396 7 16 0 0 0	1 8 0 0 0								
2015A 125	62% 26% 38% 5% 0% 2% 2 0 3	362 106 468 7.0 3.6	1 0 1 95 6 101	2,750 455 3,205 7 16 1 0 1	1 8 0 0 0								
2016A 160	53% 12% 28% 3% 1% 2% 3 1 3	396 110 506 9.6 4.8	0 0 0 34 4 38	3,432 657 4,069 7 16 1 0 1	1 8 0 0 0								
2017A 228	78% 12% 42% 4% 1% 3% 5 1 6	771 113 884 7.7 6.1	3 0 3 375 3 378	5,873 879 6,752 7 16 2 0 2	1 8 0 0 0								
2018A 341	79% 10% 50% 3% 1% 3% 0 1 9	1,000 117 1,167 9.6 6.7	3 0 3 279 4 283	9.854 1.053 10.908 7 16 3 0 3	1 8 0 0 0								
20194	28% 15% 58% 4% 1% 3% 18 1 49	2.052 128 2.210 94 8.9	10 0 10 1032 11 1.043	19,144 1,185 20,330 7 16 6 0 6	1 8 1 0 1								
2020A 853	67% 25% 58% 6% 2% 6% 45 2 47	4.030 133 4.000 9.7 318.1	27 2 26 2.754 5 2.759	46.174 2.476 46.650 7 16 14 1 15	1 8 1 0 1 0.22474	48 0.16006							
20210 1255	57% 77% AT% 10% 7% 9% 111 3 914	11 218 164 11 382 10 4 12 3	66 0 67 6.382 31 6.413	114 147 3 816 118 923 7 16 36 1 37	1 8 3 0 3 0.296	13 0 10465 15 55 17 55							
20227	425 215 405 25 25 25 25 128 4 132	12,827 180 13,007 10.5 50.0	17 1 18 1,009 16 1,625	171,916 4,660 176,381 7 16 52 1 53	1 8 7 0 7 0.200	11 0.213751 11.6% 9.9%							
2023/	38% 10% 36% 8% 2% 8% 177 4 581	17.514 194 17.708 10.5 50.0	49 1 50 4,687 14 4,701	220.421 5.705 226.126 7 16 67 2 69	1 8 8 0 8 0.31522								
2024	220 100 220 10 20 20 20 20 20 20 20 20 20 20 20 20 20	21.284 209 21.473 10.5 50.0	20 1 40 2700 14 2700	202,584 6,736 209,320 7 16 85 2 87	1 8 11 0 11 0.34195								
2,702	227 107 227 27 27 27	25.389 224 25.612 10.5 50.0	43 1 44 4.125 15 4.139	340,933 7,789 348,722 7 16 103 2 105	1 8 14 0 14 0.39405								
20257 3,466 4,102	20% 14% 19% 6% 2% 6% 260 6 266	25,369 224 25,812 10.5 50.0 30.083 239 30.322 10.5 50.0		406,246 8,828 415,074 7 16 122 3 125	1 8 16 0 17 0.38978								
20277 4,750	19% 13% 18% 8% 2% 8% 309 7 316	34,782 258 35,940 10.5 50.0	49 1 50 4,665 15 4,710 49 1 50 4,699 19 4,718	400,240 0,020 415,074 2 16 122 3 125 475,257 10,018 485,275 7 16 143 3 146	1 8 19 0 20 0.41790								
	10% 14% 16% 6% 2% 6% 300 6 386												
2028# 5,519	15% 30% 16% 6% 2% 8% 411 10 421	39,822 302 40,124 10.5 50.0	53 2 55 5,040 45 5,084	546,725 12,322 559,047 7 16 164 4 168	1 8 22 0 23 0.44681	17 0.289913 6.9% 4.4%							
2029/	14% 24% 15% 5% 2% 8% 469 12 481	45,319 349 45,668 10.5 50.0	58 2 60 5,497 46 5,543	623,935 15,538 639,473 7 16 188 5 192	1 8 25 1 26 0.4748	86 0.304318 6.3% 5.0%							
2030/	14% 29% 16% 8% 2% 7% 537 16 553	51,782 419 52,201 10.5 50.0	65 4 71 6,463 70 6,534	711,817 19,721 731,539 7 16 214 6 220	1 8 29 1 30 0.50702								
2031F 8,199	10% 17% 11% 8% 2% 7% 502 18 610	57,019 472 57,490 10.5 50.0	55 3 58 5,236 53 5,289	796,040 24,005 820,045 7 16 239 7 246	1 8 23 1 24 0.53750								
20329 8,858	8% 9% 8% 8% 2% 7% 638 20 658	61,445 505 61,350 10.5 50.0	45 2 48 4,400 34 4,460	864,678 26,943 891,622 7 16 259 8 267	1 8 36 1 37 0.56687	74 0.334586 5.5% 1.5%							

Florida Power & Light Company PR. A GLU BIND Docket No. 2022/000-07 Confidential SECTION OF THE PROPERTY SITE Plant Staff's Third Data Research

Tab 3 of 19 FPL Private Solar Forecast, beginning:

FPL Private Sour Porecast, beginning:	31% 31%	New Systems								
	31% 31%	11.0 50.0								
Florida Cumulative Installations (MW)	Growth by Year FPL Share of FL Total FPL Service Area Installations (MW.	FPL Private Solar Customers Avg. System Size	FPL New Installations (MW) FPL New Solar C	ustomers FPL Annual Solar Energy (MWh)	FPL Summer Peak Solar Capacity (MW)	FPL Winter Peak Solar Capacity (MW)	EIA End-Use Cons. EIA End-Use Cons. EIA Growth EIA Growth			
Residential Commercial Total	Residential Commercial Total Residential Commercial Total Residential Commercial Total	Residential Commercial Total Residential Commercial	Residential Commercial Total Residential Commercial	Desidential Commercial Total	Peak Month Peak Hour Residential Commercial Total	Peak Month Peak Hour Residential Commercial Total	Residential Commercial Residential Commercial			
TOTAL AND	resource formation formation formation formation formation formation formation formation formation for the formation formation for the formation formation for the formation f	Total Committee Total Committee	ACTION OF THE PARTY OF THE PART		PER SOLD PER SOLD COMMENTS TO SOLD COMMENTS	1 1	Resource Committee			
20104	7% 43% 30%									
20104	72% 82% 80%									
20120										
2013A		5 2.530 704 3.234 6.3 26.8	16 19 35 2,530 1	04 3234 13.062 15.470 28.532	<u> </u>					
2014A			10 19 35 2,530 7		0 1/ 4 5 y	1 0 0 0				
2015A 125	62% 28% 38% 49% 30% 37% 24 23	7 3,466 784 4,250 8.3 29.7	8 4 12 936	50 1,016 30,728 32,518 63,246	8 17 8 8 16	1 8 1 1 2				
2016A 160	53% 12% 28% 43% 30% 36% 32 26	8 4,606 805 5,411 7.3 31.9	8 2 11 1,140	21 1,161 42,881 37,504 80,385	8 17 11 9 20	1 8 1 1 2				
2017A 228	78% 12% 42% 37% 32% 35% 49 31	6,671 844 7,515 8.0 37.0	17 6 22 2,065	29 2,104 62,197 43,567 105,763	8 17 16 11 27	1 8 1 1 3				
2018A 341	79% 10% 50% 35% 32% 34% 81 34	6 10,304 901 11,205 9.0 38.0	33 3 36 3,633	57 3,690 100,679 49,749 150,428	8 17 27 12 39	1 8 2 1 3				
2019A 540	78% 15% 58% 33% 32% 33% 138 39	6 15.988 976 16.964 9.9 39.6	56 4 61 5.684	75 5,759 169,857 55,254 225,111	8 17 45 14 59	1 8 4 1 5				
2020A 853	67% 25% 58% 30% 30% 30% 209 45	5 22,738 1,054 23,792 10.6 84.2	72 7 78 6,750	78 6,828 268,057 63,513 331,570	8 17 70 16 86	1 8 6 2 8	0.224748 0.16556			
20215 1,255	52% 22% 47% 31% 31% 29% 307 53	1 31,570 1,131 32,701 11.0 50.0	98 8 106 8.921 1	58 8,909 398,419 74,370 472,790	8 17 103 19 122	1 8 9 2 11	0.29953 0.19446 15.5% 17.5%			
20229 1.753	43% 21% 40% 31% 31% 31% 460 69	9 47.212 1.449 48.661 11.0 50.0	172 16 188 15.642 3	15 15 960 607 690 92 689 700 378	8 17 140 24 183	1 8 14 2 16	0.28951 0.213751 11.6% 9.9%			
20238	38% 10% 38% 31% 31% 31% 684 82	6 63.991 1.711 65.701 11.0 50.0	185 13 198 16.778	17,040 879,052 114,324 993,377	8 17 227 29 245	1 8 21 3 24	0.315226 0.222128 8.9% 3.9%			
20248	22% 18% 22% 31% 31% 31% 812 97	6 77.413 2.004 79.417 11.0 50.0	148 15 162 13.423 1	13.716 1.127.741 135.119 1.262.860	8 17 286 34 320	1 8 29 3 32	0.341958 0.23104 8.5% 4.0%			
2000	20% 14% 19% 31% 31% 31% 974 111 11	5 92.178 2.283 94.462 11.0 50.0	102 14 170	15 045 1 350 803 155 300 1 517 284	1 11 14 20 114	34 4 30	0.384655 0.245749 6.6% 6.4%			
2026F 4,102	19% 13% 18% 31% 31% 31% 1.159 125 1.1	4 106.963 2.570 111.553 11.0 50.0	102 14 170 14,100 2	57 17.091 1.621.841 177.361 1.799.203	17 400 44 444		0.289788 0.258031 6.9% 5.0%			
20279 4,750	10% 14% 16% 31% 31% 34% 1344 143 143	7 125.805 2.927 128.732 11.0 50.0	185 18 203 16.822 3	57 17,179 1,897,694 201,368 2,099,062	17 479 41 470	40 4 40	0.417903 0.277772 7.2% 7.7%			
20207	1996 1996 1896 3196 3196 3296 1.863 1995 41	B 143,845 3,771 147,616 11.0 50.0	100 10 200 10,022	44 18.884 2.183.294 247.743 2.431.036	5 17 549 63 613		0.446817 0.289913 6.9% 4.4%			
			195 42 241 15,040 6		8 17 549 63 613	1 0 0 00				
2029# 6,352	14% 24% 15% 31% 31% 31% 1,759 229 1;	8 163,522 4,648 168,170 11.0 50.0	216 44 260 19,677 8	77 20,554 2,491,821 312,648 2,804,469	8 17 627 79 706	1 8 65 8 73	0.47486 0.304318 6.3% 5.0%			
20309 7,379	14% 29% 16% 31% 31% 31% 2,013 295 2,	9 186,658 5,978 192,637 11.0 50.0		30 24,466 2,842,892 396,977 3,239,869	8 17 715 101 817	1 8 74 10 84	0.507024 0.31456 6.8% 3.4%			
2031F 8,199	10% 17% 11% 31% 31% 31% 2,220 345 2,	5 205,403 6,978 212,380 11.0 50.0	206 50 256 18,744 9	3,179,822 463,535 3,663,357	8 17 795 122 918	1 8 85 12 97	0.537506 0.329593 6.0% 4.8%			
20329 8,858	8% 9% 8% 31% 31% 31% 2,394 377 2;	1 221,247 7,614 228,861 11.0 50.0	174 32 205 15,844 6	37 16,481 3,454,365 542,963 3,997,329	8 17 862 136 998	1 8 93 14 107	0.566874 0.334586 5.5% 1.5%			

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 12

7/31/2020

8/31/2020

2020

2020

(0.1)

(0.1)

(0.1)

275

263

35.097

34,212

33,75

FPL & GULF 00000

Attachment 1 of 1 Tab 4 of 19 Ann. Degrade Capacity Hourly Ho New Cumulative after Energy per Monthly Gen. Monthly Monthly MWdc Ending Capacity Capacity Degradation Generation Generation Date (MWdc) (MWh) 4:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 19:00 (check) 1/31/2013 2013 2013 2/28/2013 28 3/31/2013 2013 4/30/2013 2013 30 2013 5/31/2013 6/30/2013 2013 30 7/31/2013 2013 8/31/2013 2013 31 9/30/2013 2013 30 10/31/2013 11/30/2013 2013 30 12/31/2013 2013 1/31/2014 2014 338 (0.0) 2/28/2014 2014 28 673 673 3/31/2014 (0.0)4/30/2014 2014 30 (0.0) 12 1.778 1 778 5/31/2014 2014 2,270 2,270 6/30/2014 2014 18 21 (0.0) 18 21 24 27 2.369 2 369 2,956 7/31/2014 2,956 8/31/2014 2014 24 27 3,167 3,167 9/30/2014 2014 30 (0.0)3.410 12 3 410 10/31/2014 31 (0.0) 30 3,892 3,892 11/30/2014 2014 30 (0.0)3.829 10 3 829 37 38 39 2014 10 37 18 12/31/2014 31 (0.0)3.907 19 19 3.907 1/31/2015 2015 38 (0.0) 4,159 4,159 2015 39 22 25 26 27 2/28/2015 28 4.261 15 19 21 22 14 4.261 (0.0) 22 3/31/2015 5,820 41 41 4/30/2015 2015 30 (0.0) 5 943 20 22 21 17 17 11 5 943 2015 42 5/31/2015 31 6,233 6,233 43 44 45 6/30/2015 2015 30 (0.0) 43 44 5,558 19 22 23 25 25 23 25 25 25 28 26 24 21 24 19 21 5.558 6.092 7/31/2015 2015 31 (0.0) 6.092 22 24 25 8/31/2015 2015 (0.0) 45 5,851 5,851 23 24 25 21 20 46 47 (0.0) 25 21 22 9/30/2015 2015 30 46 5.733 21 5.733 10/31/2015 6,025 11/30/2015 2015 30 48 (0.0) 48 5 509 n 13 24 27 26 15 13 5 509 2015 31 50 49 22 12/31/2015 5,267 26 5,267 5,549 16 18 5,549 26 27 2/29/2016 2016 29 51 52 (0.0) 51 52 5.630 10 11 5 630 23 32 32 27 31 28 30 31 29 28 27 3/31/2016 2016 7,618 7,618 4/30/2016 2016 2016 (0.0)53 54 55 56 57 57 58 7.709 27 26 32 30 34 33 22 22 7 709 53 54 55 56 57 5/31/2016 8,016 8,016 (0.0)29 32 31 31 6/30/2016 2016 (0.0) 7,088 10 20 22 7,088 25 27 26 26 27 2016 7.708 32 7 708 7/31/2016 (0.0)24 29 28 15 7,346 9/30/2016 2016 30 58 59 (0.0) 7.146 26 30 20 12 7 146 10/31/2016 2016 7,457 7,457 2016 2016 59 60 34 32 32 29 11/30/2016 30 60 61 (0.0)6.773 16 14 24 22 30 27 32 31 25 24 18 16 6.773 12/31/2016 31 (0.0)6,434 6,434 2017 63 (0.0) 6,882 1/31/2017 36 42 2/28/2017 2017 28 65 67 (0.0) 64 66 7.083 13 8 25 31 35 38 36 24 37 15 28 7 083 2017 3/31/2017 9,720 9,720 43 45 39 43 4/30/2017 2017 2017 30 31 69 71 (0.0) 68 71 9,970 11 14 34 34 41 40 36 33 36 35 35 37 29 28 18 19 9.970 10.505 5/31/2017 10,505 43 13 13 12 6/30/2017 2017 73 9,403 32 32 27 30 9,403 39 20 7/31/2017 2017 31 75 77 (0.0) 75 77 10.337 43 10.337 2017 8/31/2017 9,970 9/30/2017 2017 30 80 (0.0) 79 9 798 13 12 36 36 41 42 43 43 48 41 43 28 27 9 798 2017 82 81 12 10/31/2017 10,331 10.331 2017 2017 23 20 17 44 41 43 11/30/2017 30 84 (0.0) 83 9,457 0 10 41 47 45 45 35 25 12 9,457 12/31/2017 31 86 85 9.059 38 44 22 28 11 9.059 1/31/2018 2018 89 88 9,728 45 45 17 9,728 2/28/2018 2018 2018 28 92 96 (0.0)10.036 18 11 44 43 33 52 52 51 21 40 10 036 91 95 98 101 104 107 3/31/2018 (0.0)13,819 26 13,819 58 60 51 4/30/2018 2018 99 102 14,219 58 57 62 62 64 56 61 61 41 40 26 27 14,219 2018 20 19 62 5/31/2018 (0.0)15.028 11 15 028 6/30/2018 105 (0.0) 13,480 13,480 7/31/2018 2018 108 112 (0.0) 14.843 18 17 46 55 54 62 59 56 43 29 28 13 14 843 8/31/2018 2018 110 14,348 14,348 9/30/2018 2018 2018 115 14,123 14,916 40 39 17 30 (0.0) 114 117 18 17 52 52 60 62 51 49 51 53 36 32 41 23 18 14 123 14,916 121 124 130 33 29 25 11/30/2018 2018 120 13,675 14 64 13,675 2018 123 129 65 12/31/2018 31 (0.0)13.121 13 121 1/31/2019 2019 (0.1) 14,218 24 14,218 136 142 148 154 64 90 87 2/28/2019 2019 28 (0.1) 135 141 14,790 26 16 52 65 66 74 80 76 89 75 89 49 78 31 60 10 38 14 790 3/31/2019 2019 31 (0.1) 20.532 20.532 4/30/2019 2019 30 (0.1) 146 152 21,290 24 31 73 73 87 93 93 61 21,290 77 77 71 78 78 31 55 96 91 77 61 40 5/31/2019 2019 22,678 86 93 22.678 84 94 93 158 29 6/30/2019 20,476 7/31/2019 2019 31 166 172 (0.1) 164 170 22 663 28 27 70 85 94 65 64 44 43 20 22 663 83 93 8/31/2019 2019 31 22,053 22,053 28 27 51 45 92 96 80 9/30/2019 2019 30 31 177 183 (0.1) 175 181 21.813 80 80 91 95 95 95 107 78 82 61 60 35 28 10 21.813 10/31/2019 2019 (0.1) 23,158 23.158 11/30/2019 189 187 21,280 0 23 93 87 21,280 12/31/2019 2019 31 195 (0.1) (0.1) 193 20,489 13 102 99 93 97 76 50 25 20.489 202 39 64 73 1/31/2020 2020 22,167 213 40 95 2/29/2020 2020 29 (0.1)210 22 983 n 12 98 111 114 112 45 14 22 983 2020 222 125 3/31/2020 219 31.897 139 139 120 92 94 59 31 897 (0.1)26 103 139 38 49 45 231 5/31/2020 2020 31 239 248 257 266 (0.1) 237 35.290 14 113 134 150 141 119 110 26 27 35 290 58 67 66 53 127 131 130 6/30/2020 2020 246 254 31,831 110 142 131 31,831

12 45 43 80 78 109 109 145 144 145 145 139 133 121 120 101 98

147 143 31 27 15

94

35 097

34,212

33,758

12/31/2038 20		31		3,429 (1.3)	3,228	338,015				- 226	
2/28/2039 20		31 28	- :	3,429 (1.3) 3,429 (1.3)	3,227 3,226	350,858 347,658	1 1	1 1	1 1	- 150 0 197	97 655 1,234 1,549 1,740 1,788 1,747 1,487 1,127 691 201 347,658 -
	039 4	31 30	- :	3,429 (1.3) 3,429 (1.3)	3,224 3,223	465,170 465,341	1 1	1 1	1 1	- 30 2 126	26 551 1,198 1,615 1,909 2,034 2,020 1,910 1,672 1,308 825 324 17 465,341 -
	039 5 039 6	31 30		3,429 (1.3) 3,429 (1.3)	3,222 3,220	480,228 417,550	: :	: :	: :	12 206 13 202	
7/31/2039 20 8/31/2039 20	039 7 039 8	31 31		3,429 (1.3) 3,429 (1.3)	3,219 3,218	442,988 418,510	1 1	1 1	1 1	9 162 2 113	
	039 9	30 31	- :	3,429 (1.3) 3,429 (1.3)	3,216 3,215	398,967 410,219				- 98 - 51	98 551 1,068 1,469 1,671 1,734 1,733 1,682 1,408 1,097 617 170 0 398,967 -
11/30/2039 20	039 11	30	- :	3,429 (1.3)	3,214	361,518	1 1			13 403	03 901 1,320 1,596 1,797 1,697 1,657 1,343 915 409 361,518 -
12/31/2039 20 1/31/2040 20	039 12 040 1	31 31		3,429 (1.3) 3,429 (1.3)	3,212 3,211	336,332 349,112			: :	- 225 - 149	
2/29/2040 20 3/31/2040 20	040 2 040 3	29 31		3,429 (1.3) 3,429 (1.3)	3,210 3,208	345,928 462,854	: :	1 1	1 1	0 189	
4/30/2040 20 5/31/2040 20		30 31		3,429 (1.3) 3,429 (1.3)	3,207 3,206	463,025 477,838	: :	1 1	1 1	2 125 12 205	
	040 6	30 31	- :	3,429 (1.3) 3,429 (1.3)	3,204 3,203	415,472 440,784	1 1	1 1	1 1	13 201 9 161	01 602 1,050 1,445 1,661 1,845 1,714 1,566 1,427 1,164 747 347 66 415,472 -
8/31/2040 20 9/30/2040 20	040 8	31 30	- :	3,429 (1.3)	3,202 3,200	416,427 396,982	1 1	1 1	1 1	2 112	12 528 964 1,334 1,582 1,744 1,764 1,618 1,457 1,181 791 323 33 416,427 -
10/31/2040 20	040 10	31	- :	3,429 (1.3)	3,199	408,177	1 1			- 51	51 493 1,038 1,425 1,685 1,930 1,880 1,682 1,428 1,027 467 61 408,177 -
	040 12	30 31	- :	3,429 (1.3) 3,429 (1.3)	3,198 3,196	359,718 334,658	: :	: :	1 1	13 401 - 224	24 746 1,175 1,432 1,652 1,611 1,525 1,245 806 379 334,658 -
1/31/2041 20 2/28/2041 20	041 1 041 2	31 28		3,429 (1.3) 3,429 (1.3)	3,195 3,194	347,374 344,206	1 1	1 1	: :	- 149 0 195	
3/31/2041 20 4/30/2041 20		31 30		3,429 (1.3) 3,429 (1.3)	3,192 3,191	460,551 460,721	1 1	1 1	1 1	- 29 2 125	
	041 5 041 6	31 30	- :	3,429 (1.3) 3,429 (1.3)	3,190 3,188	475,460 413,404	: :	1 1	1 1	12 204 13 200	04 680 1,181 1,539 1,805 1,958 2,011 1,885 1,597 1,253 823 342 47 475,460 -
7/31/2041 20	041 7	31	- :	3,429 (1.3)	3,187 3.186	438,590 414,354				9 160	60 571 1,009 1,364 1,640 1,814 1,815 1,728 1,509 1,247 823 378 78 438,590 -
9/30/2041 20	041 9	31 30	- :	3,429 (1.3) 3,429 (1.3)	3,184	395,006	1 1	1 1	1 1	- 97	97 545 1,058 1,455 1,654 1,716 1,716 1,665 1,394 1,086 611 169 0 395,006 -
10/31/2041 20 11/30/2041 20	041 11	31 30	- :	3,429 (1.3) 3,429 (1.3)	3,183 3,182	406,146 357,928	1 1	1 1	1 1	- 50 13 399	99 892 1,307 1,580 1,779 1,681 1,640 1,330 906 405 357,928 -
12/31/2041 20 1/31/2042 20	041 12 042 1	31 31		3,429 (1.3) 3,429 (1.3)	3,180 3,179	332,993 345,645	: :	: :	: :	- 223 - 148	
2/28/2042 20 3/31/2042 20		28 31		3,429 (1.3) 3,429 (1.3)	3,178 3,176	342,493 458,258	: :	1 1	1 1	0 194	
4/30/2042 20 5/31/2042 20	042 4	30 31	- :	3,429 (1.3) 3,429 (1.3)	3,175 3,174	458,428 473,093	1 1	1 1	1 1	2 124 12 203	24 543 1,180 1,591 1,881 2,003 1,990 1,881 1,647 1,289 813 319 17 458,428 -
6/30/2042 20 7/31/2042 20	042 6	30 31	- :	3,429 (1.3) 3,429 (1.3)	3,173 3,171	411,346 436,407	1 1	1 1	1 1	13 199 9 159	99 596 1,040 1,430 1,645 1,826 1,697 1,551 1,413 1,153 740 343 66 411,346 -
8/31/2042 20	042 8	31	- :	3,429 (1.3)	3,170	412,292	1 1	1 1	1 1	2 111	11 523 955 1,320 1,566 1,727 1,746 1,602 1,442 1,169 783 320 33 412,292 -
10/31/2042 20	042 9 042 10	30 31	- :	3,429 (1.3) 3,429 (1.3)	3,169 3,167	393,040 404,124	: :	: :	: :	- 96 - 50	50 488 1,028 1,410 1,669 1,910 1,862 1,665 1,413 1,017 463 61 404,124 -
11/30/2042 20 12/31/2042 20		30 31		3,429 (1.3) 3,429 (1.3)	3,166 3,165	356,146 331,335	1 1	1 1	1 1	13 397 - 222	
	043 1 043 2	31 28		3,429 (1.3) 3,429 (1.3)	3,163 3,162	343,925 340,788	: :	: :	1 1	- 147 0 193	
3/31/2043 20	043 3 043 4	31 30	- :	3,429 (1.3) 3,429 (1.3)	3,161 3,159	455,978 456,146	: :	1 1	1 1	- 29 2 123	29 393 933 1,480 1,788 1,994 1,995 1,977 1,704 1,303 821 291 455,978 -
5/31/2043 20		31 30	- :	3,429 (1.3) 3,429 (1.3)	3,158 3.157	470,739 409,299				12 202 13 198	02 673 1,169 1,524 1,787 1,939 1,991 1,866 1,581 1,240 815 339 47 470,739 -
	043 7	31 31	- :	3,429 (1.3) 3,429 (1.3)	3,155 3,155 3,154	434,235 410,240	1 1	1 1	1 1	9 158	58 566 999 1,351 1,624 1,796 1,797 1,711 1,494 1,235 815 375 77 434,235 -
9/30/2043 20	043 9	30	-	3,429 (1.3)	3,153	391,084	: :	1 1	1 1	- 96	96 540 1,047 1,440 1,638 1,699 1,699 1,648 1,380 1,076 605 167 0 391,084 -
11/30/2043 20		31 30	- :	3,429 (1.3) 3,429 (1.3)	3,151 3,150	402,113 354,374	1 1	1 1	1 1	- 50 13 395	95 884 1,294 1,564 1,761 1,664 1,624 1,317 897 401 354,374 -
1/31/2044 20		31 31	- :	3,429 (1.3) 3,429 (1.3)	3,149 3,148	329,686 342,213	1 1	1 1	1 1	- 221 - 146	46 622 1,103 1,449 1,598 1,597 1,502 1,407 970 554 91 342,213 -
2/29/2044 20 3/31/2044 20	044 2 044 3	29 31		3,429 (1.3) 3,429 (1.3)	3,146 3,145	339,092 453,708	: :	1 1	1 1	0 185	
4/30/2044 20 5/31/2044 20		30 31		3,429 (1.3) 3,429 (1.3)	3,144 3.142	453,876 468,396	: :	1 1	1 1	2 123 12 201	
6/30/2044 20 7/31/2044 20		30 31		3,429 (1.3) 3,429 (1.3)	3,141 3.140	407,262 432,073	: :	1 1	1 1	13 197 9 158	
8/31/2044 20 9/30/2044 20	044 8	31 30	- :	3,429 (1.3) 3,429 (1.3)	3,138 3,137	408,198 389,137				2 110	10 518 945 1,307 1,551 1,710 1,729 1,586 1,428 1,158 775 316 33 408,198 -
10/31/2044 20	044 10	31	- :	3,429 (1.3)	3,136	400,111	1 1	1 1	1 1	- 50	50 483 1,018 1,396 1,652 1,891 1,843 1,648 1,399 1,007 458 60 400,111 -
11/30/2044 20 12/31/2044 20	044 12	30 31	- :	3,429 (1.3) 3,429 (1.3)	3,134 3,133	352,610 328,045	1 1	1 1	1 1	13 393 - 220	20 731 1,152 1,403 1,619 1,579 1,495 1,220 791 372 328,045 -
1/31/2045 20 2/28/2045 20	045 2	31 28	- :	3,429 (1.3) 3,429 (1.3)	3,132 3,131	340,510 337,404	: :	1 1	1 1	- 146 0 191	
	045 3 045 4	31 30		3,429 (1.3) 3,429 (1.3)	3,129 3,128	451,450 451,616	: :	: :	: :	- 29 2 122	
	045 5 045 6	31 30		3,429 (1.3) 3,429 (1.3)	3,127 3,125	466,064 405,235	1 1	1 1	1 1	11 200 13 196	
7/31/2045 20	045 7 045 8	31 31	- :	3,429 (1.3) 3,429 (1.3)	3,124 3,123	429,923 406,166	: :	1 1	1 1	9 157 2 110	57 560 989 1,337 1,608 1,778 1,779 1,694 1,480 1,223 807 371 76 429,923 -
9/30/2045 20 10/31/2045 20	045 9	30 31	- :	3,429 (1.3) 3,429 (1.3)	3,121 3,120	387,200 398,120	: :	1 1	1 1	- 95 - 49	95 535 1,037 1,426 1,621 1,683 1,682 1,632 1,367 1,065 599 165 0 387,200 -
11/30/2045 20	1.1	30 31	- :	3,429 (1.3) 3,429 (1.3)	3,119 3,118	350,855 326,413				13 391 - 218	91 875 1,281 1,549 1,744 1,647 1,608 1,304 888 397 350,855 -
1/31/2046 20	046 1	31 28	- :	3,429 (1.3)	3,116	338,815 335,725	1 1	1 1	1 1	- 145	45 616 1,092 1,435 1,583 1,581 1,487 1,393 960 548 90 338,815 -
3/31/2046 20	046 3	31	- :	3,429 (1.3) 3,429 (1.3)	3,115 3,114	449,203	1 1	1 1	1 1	0 190 - 29	29 387 919 1,458 1,762 1,964 1,965 1,947 1,679 1,284 809 287 449,203 -
5/31/2046 20	046 4 046 5	30 31	- :	3,429 (1.3) 3,429 (1.3)	3,112 3,111	449,369 463,745	1 1	1 1	1 1	2 122 11 199	99 663 1,152 1,501 1,761 1,910 1,961 1,839 1,558 1,222 803 334 46 463,745 -
6/30/2046 20 7/31/2046 20	046 6 046 7	30 31		3,429 (1.3) 3,429 (1.3)	3,110 3,109	403,218 427,783	: :	: :	: :	12 195 9 156	
8/31/2046 20 9/30/2046 20	046 8 046 9	31 30		3,429 (1.3) 3,429 (1.3)	3,107 3,106	404,144 385,273	: :	1 1	1 1	2 109	09 512 936 1,294 1,535 1,693 1,712 1,571 1,414 1,146 767 313 32 404,144 - 94 532 1,032 1,419 1,613 1,674 1,674 1,624 1,360 1,060 596 164 0 385,273 -
10/31/2046 20		31 30	- :	3,429 (1.3) 3,429 (1.3)	3,105 3,103	396,139 349,109			: :	- 49 12 389	49 479 1,008 1,383 1,636 1,873 1,825 1,632 1,386 997 453 60 396,139 -
	046 12	31 31	- :	3,429 (1.3) 3,429 (1.3)	3,102 3.101	324,788 337,129	: :	: :	: :	- 217	17 724 1,140 1,389 1,603 1,564 1,480 1,208 783 368 324,788 -
2/28/2047 20 3/31/2047 20	047 2	28 31	- :	3,429 (1.3) 3,429 (1.3)	3,099 3,098	334,054 446,967				0 189	89 629 1,186 1,489 1,672 1,718 1,678 1,429 1,083 664 193 334,054 -
4/30/2047 20	047 4	30	- :	3,429 (1.3)	3,097	447,132	1 1	1 1	1 1	2 121	21 530 1,151 1,551 1,834 1,954 1,941 1,835 1,607 1,257 793 311 16 447,132 -
	047 6	31 30	- :	3,429 (1.3) 3,429 (1.3)	3,096 3,094	461,436 401,211	1 1	1 1	: :		94 581 1,014 1,395 1,604 1,781 1,655 1,513 1,378 1,124 721 335 64 401,211 -
	047 8	31 31	- :	3,429 (1.3) 3,429 (1.3)	3,093 3,092	425,654 402,133	: :	1 1	1 1	9 155 2 108	08 510 931 1,288 1,528 1,684 1,703 1,563 1,407 1,141 763 312 32 402,133 -
	047 10	30 31	- :	3,429 (1.3) 3,429 (1.3)	3,090 3,089	383,356 394,167	1 1	1 1	1 1		49 476 1,003 1,376 1,627 1,863 1,816 1,624 1,379 992 451 59 394,167 -
11/30/2047 20 12/31/2047 20	047 11 047 12	30 31		3,429 (1.3) 3,429 (1.3)	3,088 3,087	347,371 323,171	: :	: :	: :		87 866 1,268 1,533 1,726 1,631 1,592 1,291 879 393 347,371 - 16 720 1,135 1,382 1,595 1,556 1,473 1,202 779 366 323,171 -

1/31/2048	2048	1	31		3 429	(1.3)	3.085		335.451						143	609 1.	000 440	4 4 507	4 505 4	472 1.37	9 951	543 89						335.451	
	2010			-							-	-		-								0.10	, -	-					-
2/29/2048	2048	2	29		3,429	(1.3)	3,084		332,391		-			0	182					612 1,37		638 185	•	-	-		-	332,391	-
3/31/2048	2048	3	31	-	3,429	(1.3)	3,083	4	144,743		-	-		-	28	383	910 1,44	3 1,744	1,945 1	946 1,92	8 1,662 1,	271 801	284	-	-			444,743	-
4/30/2048	2048	4	30		3.429	(1.3)	3.081	4	144.907					2	120	527 1.	145 1.54	4 1.825	1.944 1	931 1.82	6 1.599 1.	251 789	310	16	-		-	444.907	-
5/31/2048	2048	5	31		3.429	(1.3)	3.080	4	159,140					11	197	657 1.	140 148	6 17/3	1 801 1	942 1.82	0 1.542 1	210 795	331	46	_		_	459,140	_
6/30/2048	2048	6			3.429		3.079		399.214						193					647 1.50								399.214	
			30			(1.3)								12										64	-		-		-
7/31/2048	2048	7	31	-	3,429	(1.3)	3,078		123,535		-	-		9	155	552	975 1,31			753 1,66	9 1,458 1,	205 795	365	75	-		-	423,535	-
8/31/2048	2048	8	31		3,429	(1.3)	3,076	4	100,131		-	-		2	108	507	927 1,28	2 1,520	1,676 1	695 1,55	5 1,400 1.	135 760	310	32	-			400,131	-
9/30/2048	2048	9	30		3.429	(1.3)	3.075	3	81,447						94	527 1.	021 140	5 1 597	1 658 1	657 1.60	8 1.346 1	049 590	163	0				381.447	
10/31/2048	2048				3,429		3.074		392,205						49		998 1.36			807 1.61		987 449		٠				392,205	
		10	31			(1.3)								-									9 59		-		-		-
11/30/2048	2048	11	30	-	3,429	(1.3)	3,073		345,642		-	-		12	385					584 1,28		391 -	-	-	-		-	345,642	-
12/31/2048	2048	12	31		3,429	(1.3)	3,071	3	321,563		-	-		-	215	717 1,	129 1,37	6 1,587	1,548 1	465 1,19	6 775	365 -	-	-	-			321,563	-
1/31/2049	2049	1	31		3,429	(1.3)	3,070	3	333,781						143	606 1.	076 141	4 1 559	1 558 1	465 1,37	2 946	540 89						333,781	
2/28/2049	2049	2	28	-	3,429	(1.3)	3,069		330,737		-	-		0	187					662 1,41		657 191		-				330,737	-
3/31/2049	2049	3	31	-	3,429	(1.3)	3,067	4	142,529		-	-		-	28	382	906 1,43	6 1,735	1,935 1	936 1,91	8 1,654 1,	265 797	283	-	-		-	442,529	-
4/30/2049	2049	4	30		3,429	(1.3)	3,066	4	142,692		-	-		2	120	525 1,	140 1,53	6 1,816	1,935 1	922 1,81	7 1,591 1.	245 785	308	16	-		-	442,692	-
5/31/2049	2049	5	31		3,429	(1.3)	3,065	4	156,855					11	196	653 1.	134 147	9 1 734	1 882 1	932 1,81	1 1 535 1	204 791	329	46				456,855	
		6							397,227							,								62				397,227	
6/30/2049	2049		30		3,429	(1.3)	3,064				-	-		12	192					639 1,49				63					-
7/31/2049	2049	7	31		3,429	(1.3)	3,062		121,427		-			9	154					744 1,66		199 791		75	-		-	421,427	-
8/31/2049	2049	8	31		3,429	(1.3)	3,061	3	398,140		-	-		2	107	505	922 1,27	5 1,513	1,667 1	687 1,54	7 1,393 1.	129 756	309	32	-		-	398,140	-
9/30/2049	2049	9	30		3,429	(1.3)	3,060	3	379,549		-			_	93	524 1,	016 1,39	8 1.589	1.649 1	649 1,60	0 1,340 1	044 587	162	0				379,549	-
10/31/2049	2049	10	31		3,429	(1.3)	3,059		390,253						48					798 1,60		982 447		•				390,253	
				•							-	-		7.2									33	-	-		-		-
11/30/2049	2049	11	30	-	3,429	(1.3)	3,057		343,922		-	-		12	383					576 1,27		389 -	-	-	-		-	343,922	-
12/31/2049	2049	12	31		3,429	(1.3)	3,056	3	319,962		-			-	214	713 1,	123 1,36	9 1,579	1,540 1	458 1,19	0 771	363 -	-	-	-		-	319,962	-
1/31/2050	2050	1	31	_	3,429	(1.3)	3,055	3	332,120		-	-		-	142	603 1,	071 1.40	7 1.551	1.550 1	457 1,36	5 941	537 88	3 -	-				332,120	-
2/28/2050	2050	2	28		3,429	(1.3)	3,053		329,091					0	186					653 1,40		654 190						329,091	
				•							-	-		U										-	-		-		-
3/31/2050	2050	3	31		3,429	(1.3)	3,052		140,326		-			-	28					927 1,90		258 793		-	-		-	440,326	-
4/30/2050	2050	4	30	-	3,429	(1.3)	3,051	4	140,489		-	-		2	119	522 1,	134 1,52	8 1,807	1,925 1	912 1,80	8 1,583 1,	238 781	307	16	-			440,489	-
5/31/2050	2050	5	31		3,429	(1.3)	3,050	4	154,581					11	195	650 1,	129 1.47	1 1.726	1.872 1	922 1,80	2 1.527 1.	198 787	327	45	-		-	454,581	-
6/30/2050	2050	6	30		3.429	(1.3)	3.048		395,250					12	191					631 1.49		108 711		63				395.250	
				-							-	-																	-
7/31/2050	2050	7	31	-	3,429	(1.3)	3,047		119,330		-	-		9	153						2 1,443 1,			74	-		-	419,330	-
8/31/2050	2050	8	31		3,429	(1.3)	3,046	3	396,158		-	-		2	107	502	917 1,26	9 1,505	1,659 1	678 1,53	9 1,386 1,	124 752	2 307	32				396,158	-
9/30/2050	2050	9	30	-	3.429	(1.3)	3.045	3	377.660		-	-		-	93	521 1.	011 1.39	1 1.582	1.641 1	641 1.59	2 1.333 1.	.039 584	161	0	-		-	377.660	-
10/31/2050	2050	10	31		3.429	(1.3)	3.043	3	388,311						48	469	988 1.35	5 1 603	1.836 1	789 1.60	0 1.358	977 444	1 58					388.311	
11/30/2050	2050	11	30		3,429	(1.3)	3.042		342.210					12	381					568 1.27		387 -						342.210	
														12									-		-		-		-
12/31/2050	2050	12	31	-	3,429	(1.3)	3,041	3	318,370		-	-		-	213	710 1,	118 1,36	2 1,571	1,533 1	451 1,18	4 767	361 -	-	-	-		-	318,370	-
1/31/2051	2051	1	31	-	3.429	(1.3)	3.040	3	330.467		-	-		-	141	600 1.	066 1.40	0 1.544	1.542 1	450 1.35	8 937	535 88	3 -	-	-		-	330.467	-
2/28/2051	2051	2	28		3.429	(1.3)	3.038	3	327,453					0	185	617 1.	163 145	9 1 639	1 684 1	645 1.40	1 1.062	651 189						327.453	
														•	28														
3/31/2051	2051	3	31	-	3,429	(1.3)	3,037		138,135		-	-		-						917 1,89		252 789		-	-		-	438,135	-
4/30/2051	2051	4	30		3,429	(1.3)	3,036	4	138,297		-			2	119	519 1,	128 1,52	1 1,798	1,915 1	903 1,79	9 1,575 1,	232 777	7 305	16	-		-	438,297	-
5/31/2051	2051	5	31	_	3,429	(1.3)	3,034	4	152,318		-	-		11	194	647 1.	123 1.46	4 1.717	1.863 1	913 1,79	3 1.519 1.	192 783	3 326	45				452,318	-
6/30/2051	2051	6	30		3,429	(1.3)	3,033		393,283					12	190					623 1,48		102 707	328	63				393,283	
		-		-						-	_	-	-			0.0								-	_	-	_		-
7/31/2051	2051	7	31	-	3,429	(1.3)	3,032		117,243		-	-		9	152					727 1,64		187 783		74	-		-	417,243	-
8/31/2051	2051	8	31		3,429	(1.3)	3,031	3	394,187		-	-		2	106	500	913 1,26	3 1,498	1,651 1	670 1,53	2 1,379 1,	118 748	306	31				394,187	-
9/30/2051	2051	9	30	-	3,429	(1.3)	3,029	3	375,780		-	-		-	92	519 1.	006 1.38	4 1.574	1.633 1	632 1,58	4 1.326 1.	034 581	160	0	-		-	375,780	-
10/31/2051	2051	10	31		3,429	(1.3)	3,028	3	386,378						48	467	983 134	9 1 595	1 827 1	780 1,59	2 1 351	972 442	2 58					386,378	
11/30/2051	2051	11	30		3,429	(1.3)	3,027		340,507					12	379		243 1,50			560 1.26		385 -	- 00					340,507	
											-	-		12									-	-					-
12/31/2051	2051	12	31		3,429	(1.3)	3,026		316,785		-			-	212					444 1,17		359 -	-	-	-		-	316,785	-
1/31/2052	2052	1	31		3,429	(1.3)	3,024	3	328,822		-			-	141	597 1,	060 1,39	3 1,536	1,535 1	443 1,35	2 932	532 87	7 -	-	-		-	328,822	-
2/29/2052	2052	2	29		3,429	(1.3)	3,023	3	325,823					0	178	593 1.	117 1.40	2 1.574	1.618 1	581 1,34	6 1.020	625 182	2 -	-	-		-	325,823	-
3/31/2052	2052	3	31		3.429	(1.3)	3.022		135,954						28					907 1.89		246 785	270					435.954	
	2052	4		-	3,429				136,115		-	-	-	2	118					.893 1.79		226 773		40		-	-	436,115	-
4/30/2052			30	-		(1.3)	3,021				-	-												10	-				-
5/31/2052	2052	5	31	-	3,429	(1.3)	3,019		150,067		-	-		11	193						4 1,512 1,			45	-		-	450,067	-
6/30/2052	2052	6	30	-	3,429	(1.3)	3,018	3	391,326			-		12	189	567	989 1,36	1 1,565	1,737 1	615 1,47	5 1,344 1,	097 704	326	62				391,326	-
7/31/2052	2052	7	31		3,429	(1.3)	3,017	4	15,166					9	151	541	956 129	1 1 553	1 717 1	718 1,63	6 1429 1	181 779	358	73				415.166	
8/31/2052	2052	8	31		3,429	(1.3)	3,016		392,225					,	106						4 1.372 1			24				392,225	
				•							-	-		- 4										31	-		-		-
9/30/2052	2052	9	30		3,429	(1.3)	3,014		373,910		-	-		-	92					624 1,57		028 578		0	-			373,910	-
10/31/2052	2052	10	31	-	3,429	(1.3)	3,013	3	384,455		-	-		-	48	464	978 1,34	2 1,587	1,817 1	771 1,58	4 1,345	968 440	58	-	-			384,455	-
11/30/2052	2052	11	30		3,429	(1.3)	3,012	3	338.812					12	377	845 1.	237 1.49	6 1.684	1.591 1	553 1,25	9 857	383 -	-	-	-		-	338,812	-
12/31/2052	2052	12	31		3,429	(1.3)	3,011		315,209						211					436 1,17		357 -	_	_				315,209	
1/31/2053	2052	1	31	-	3,429	(1.3)	3,009		327,186	-		-		-	140					436 1,17		529 87	, -	-		-	-	327,186	-
				-							-	-		-										-					-
2/28/2053	2053	2	28	-	3,429	(1.3)	3,008		324,201		-	-		0	183					629 1,38		644 187			-		-	324,201	-
3/31/2053	2053	3	31		3,429	(1.3)	3,007	4	133,784		-	-		-	28	374	888 1,40	8 1,701	1,897 1	898 1,88	0 1,621 1.	240 781	277		-		-	433,784	-
4/30/2053	2053	4	30		3.429	(1.2)	3.006		133,944					2	117					884 1.78		220 770	302	16				433.944	
5/31/2053	2053			-	3,429		3,004		147.827	-		-		_	192					894 1.77				45		-	-	447.827	-
		5	31	-		(1.2)					-	-		11										40	-				-
6/30/2053	2053	6	30	-	3,429	(1.2)	3,003		389,378		-	-		12	188					606 1,46		,091 700		62	-		-	389,378	-
7/31/2053	2053	7	31	-	3,429	(1.2)	3,002	4	113,100		-	-		9	151	538	951 1,28	5 1,545	1,709 1	710 1,62	8 1,422 1,	175 776	356	73	-		-	413,100	-
8/31/2053	2053	8	31	_	3.429	(1.2)	3,001	3	390,272		_	_		2	105	495	904 1,25	0 1.483	1.634 1	653 1.51	7 1.365 1	107 741	303	31				390,272	
9/30/2053	2053	9	30		3.429	(1.2)	2.999		372.049						91					616 1.56		023 576	159	n				372.049	
10/31/2053	2053	10		-	3,429		2,998		372,049 382.541	-		-		-	47					762 1,57		963 438		٠		-	-	382,541	-
			31	-		(1.2)					-	-		-										-	-		-		-
11/30/2053	2053	11	30	-	3,429	(1.2)	2,997		337,126			-		12	376					545 1,25		381 -	-	-	-		-	337,126	-
12/31/2053	2053	12	31	-	3,429	(1.2)	2,996	3	313,640		-	-		-	210	699 1,	101 1,34	2 1,548	1,510 1	429 1,16	7 756	356 -	-		-		-	313,640	-

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 12 Attachment 1 of 1 Tab 5 of 19

FPL & GULF 000006 20220000-OT

> Ann. Degrade 0.50% 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

						0.50%	6 Cumulative			1	2	3	4	5	6	7	8	9	10	11 1	12 1	3 14	1 15	16	17	18	19	20	21	22	23	24		
				New	Cumulative		Capacity after	Energy per	Monthly	Gen.	Gen.	Gen.	Gen.	Gen.	Gen.	Gen.	Gen. G	en. G	Gen. G	Gen. Ge	en. Ge	n. Ger	rly Hourly n. Gen.	Gen.	Gen.	Gen.	Gen.	Gen.	Gen.	Gen. (Gen. G	Gen.	Monthly	
Date	Year	Month Nu	m Davs	Capacity (MWdc)	Capacity (MWdc)	Monthly Degradation	Degradation (MWdc)	MWdc (MWh-ac)	Generation (MWh)	Ending 1:00	Ending 2:00												ing Ending 00 15:00										Generation (check) cl	heck
1/31/2013	2013	1	31	-	, , , ,		, , , ,	111.3		-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-
2/28/2013 3/31/2013	2013 2013	2	28 31	-	-			111.1 147.4	-			- 1		- 5	-	-	1	1	1				- 1	- 5	- 1	1					-	1		-
4/30/2013		4	30	- 1	-	-	-	146.3	-	- 1		- 1	- 1			1	1	1	1	1			- 1	- 1	- 1						1	1	-	-
5/31/2013		5	31	-	-	-	-	149.0	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-
6/30/2013 7/31/2013		6 7	30 31	- 1		- :	- :	129.5 138.9		- 1		- 1		- 1	- 1	- 1	1		1	1 1] [- 1	- 1	- 1							1	1		
8/31/2013	2013	8	31	-	-	-	-	129.9	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-
9/30/2013 10/31/2013	2013 2013	9 10	30 31		-	-	-	124.6 127.9	-	- 1		- 1		- 1	- 1	- 1	1		1	1 1	: :	- 1	- 1	- 1							1		-	-
11/30/2013	2013	11	30	-	-	-	-	115.0	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-		-	-	-	-
12/31/2013 1/31/2014		12	31 31	- 1	- 1		- 1	107.8 111.3	- 148			- 1		- 5	-	-	- 0	- 0	- 0	- 1		1 -	1 1	- 0	- 0	- 0					-	1	- 148	-
2/28/2014	2014	2	28	1	3	(0.0		111.1	295	-	- 1	- 1	- 1			-	0	1	1	i	1	2	i i	1	1	ō	-	-	1	1	1	-	295	-
3/31/2014 4/30/2014		3 4	31 30	1	4 5	(0.0)		147.4 146.3	587 776			- 1		- 5	-	-	0	0	1	2	2	3	3 3	2	2	1	0	- 0			-	1	587 776	-
5/31/2014		5	31	i	7	(0.0		149.0	988	- 1		- 1	- 1			1	0	i	2	3	4	4	4 4	3	3	2	1	ō			1	1	988	-
6/30/2014 7/31/2014		6	30 31	1	8	(0.0) (0.0)		129.5 138.9	1,031 1,290	-	-	-	-	-	-	-	0	1	3	4	4	5	4 4	4	3	2	1	0	-	-	-	-	1,031 1,290	-
8/31/2014	2014	8	31	1	11	(0.0		129.9	1,378	- 1	- 1	- 1	- 1	- 1			0	2	3	4	5	6	6 5	5	4	3	1	0	1	1	1	1	1,378	-
9/30/2014	2014 2014	9 10	30	1	12 13	(0.0)		124.6 127.9	1,486 1.695	-	-	-	-	-	-	-	0	2	4	5	6	6	6 6	5	4	2	1	0	-	-	-	-	1,486 1.695	-
10/31/2014 11/30/2014		11	31 30	1	15	(0.0		115.0	1,676	- 1	- 1	- 1	- 1	- 1			2	4	6	7	8	8	8 6	4	2	- 2	-	1				1	1,676	-
12/31/2014		12	31	1	16	(0.0		107.8	1,713	-	-	-	-	-	-	-	1	4	6	7	9	8	8 6	4	2		-	-	-	-	-	-	1,713	-
1/31/2015 2/28/2015		1 2	31 28	1	17 17	(0.0) (0.0)		111.3 111.1	1,841 1,908	- 1		- 1		- 1	- 1	- 1	1	3	6 7	8	9	9 10 1	88 108	5 6	3 4	1					1		1,841 1,908	-
3/31/2015	2015	3	31	1	18	(0.0)) 18	147.4	2,624	-	-	-	-	-	-	-	Ó	2	5	_			11 12	10	8	5	2	-	-	-	-	-	2,624	-
4/30/2015 5/31/2015		4 5	30 31	1	19 19	(0.0)		146.3 149.0	2,697 2,842	- 1	- 1	- 1	- 1	- 1	- 1	1	0	3 4	7				12 11 12 11	10 10	8 8	5 5	2	0	1	1	1	1	2,697 2,842	1
6/30/2015	2015	6	30	1	20	(0.0)) 20	129.5	2,554	-	-	-	-	-	-	-	1	3	6	9	10	11 1	11 10	9	7	5	2	Ö				-	2,554	-
7/31/2015 8/31/2015		7	31 31	1	20 21	(0.0) (0.0)		138.9 129.9	2,828 2,727	- 1	- 1	- 1	- 1	- 1	1	1	1	3	6				12 11 12 11	10 10	8	6	3	1	1	1	1	1	2,828 2,727	-
9/30/2015	2015	9	30	1	22	(0.0)) 22	124.6	2,693	-	-	-	-	-	-	-	Ö	3	7	10	11	12 1	12 11	10	8	4	1	Ö				-	2,693	-
10/31/2015 11/30/2015	2015 2015	10 11	31 30	1	22 23	(0.0)		127.9 115.0	2,847 2.632			- 1		- 5	-	-	0	3	7				13 12 12 10	10	7	4	1				-	1	2,847 2,632	-
12/31/2015	2015	12	31	1	24	(0.0		107.8	2,535	-	- 1	- 1	- 1			-	2	5	9	11	13	12 1	12 9	6	3		-	-	1	1	1	-	2,535	-
1/31/2016 2/29/2016	2016 2016	1 2	31 29	1	24 25	(0.0 (0.0		111.3 111.1	2,695 2,766	-	-	-	-	-	-	-	1	5	8				12 11 13 12	8	5	1	-	-	-	-	-	-	2,695 2,766	-
3/31/2016	2016	3	31	i	26	(0.0		147.4	3,767			- 1	- 1			1	ò	3	7				16 17	14	11	7	3		1		1	1	3,767	-
4/30/2016 5/31/2016	2016 2016	4 5	30 31	1	26 27	(0.0)		146.3 149.0	3,838 4,010	-	-	-	-	-	-	-	1	4	10 10				17 16 17 16	14 14	11	7	3	0	-	-	-	-	3,838 4,010	-
6/30/2016	2016	6	30	1	28	(0.0) 28	129.5	3,574	-	- 1	- 1	- 1			-	i	5	9	12	14	16 1	15 13	12	10	7	3	1	1	1	1	-	3,574	-
7/31/2016 8/31/2016		7 8	31 31	1	28 29	(0.0) (0.0)		138.9 129.9	3,928 3,762	- 1	- 1	- 1	- 1	- 1	- 1	-	1	5	9				16 16 16 15	14 13	11	8	4	1	1	1		1	3,928 3,762	-
9/30/2016	2016	9	30	1	30	(0.0))) 30	124.6	3,691	-	-	-	-	-	-	-	1	5	10	13	15	16 1	16 16	13	11	6	2	Ö				-	3,691	-
10/31/2016 11/30/2016	2016 2016	10 11	31 30	1	31 31	(0.0)		127.9 115.0	3,876 3,563	- 1	- 1	- 1	- 1	- 1	1	1	0 4	4 8	9 13				18 16 17 13	14 10	10	- 5	_ 1	1	1	1	1	1	3,876 3,563	-
12/31/2016	2016	12	31	1	32	(0.0))) 32	107.8	3,412	-	-	-	-	-	-	-	2	7	12	14	17		16 13	8	4	-	-	-	-		-	-	3,412	-
1/31/2017 2/28/2017	2017 2017	1 2	31 28	1	33 35	(0.0)		111.3 111.1	3,677 3,823	- 1	- 1	- 1	- 1	- 1	- 1	-	1	6	12 13				16 15 19 17	11 13	7	1	-	-	1	1		1	3,677 3,823	-
3/31/2017	2017	3	31	i	36	(0.0)) 36	147.4	5,272	-	-	-	-	-	-	-	0	4	10	17	21	23 2	23 23	20	15	10	4	-	-		-	-	5,272	-
4/30/2017 5/31/2017	2017 2017	4 5	30 31	1	37 39	(0.0) (0.0)		146.3 149.0	5,432 5,736	- 1	- 1	- 1	- 1	- 1	1	1	1 2	6 7	14 14				24 22 24 23		16 16	10 10	4	0	1	1	1	1	5,432 5.736	-
6/30/2017	2017	6	30	1	40	(0.0)) 40	129.5	5,164	-	-	-	-	-	-	-	2	7	13	18	21	23 2	21 19	18	15	10	5	1				-	5,164	-
7/31/2017 8/31/2017	2017 2017	7 8	31 31	1	42 43	(0.0)		138.9 129.9	5,730 5.536	- 1							2	7	13 12				24 23 23 21	20 20	17 16	11 11	5 5	1			1	1	5,730 5.536	-
9/30/2017	2017	9	30	1	44	(0.0)) 44	124.6	5,478	-	-	-	-	-	-	-	1	7	14	20	23	24 2	24 23	20	16	9	3	Ö	-	-	-	-	5,478	-
10/31/2017 11/30/2017	2017 2017	10 11	31 30	1	46 47	(0.0) (0.0)		127.9 115.0	5,799 5,370	- 1		- 1		- 1	- 1	- 1	0 5	6 13	14 19				27 24 25 20		15 7	- '	. 1				1		5,799 5,370	-
12/31/2017	2017	12	31	1	49	(0.0)) 48	107.8	5,180	-	-	-	-	-	-	-	3	11	18	22	26	25 2	24 19	13	. 7		-	-	-	-	-	-	5,180	-
1/31/2018 2/28/2018	2018 2018	1 2	31 28	3	51 54	(0.0)		111.3 111.1	5,653 5,946								2	10 10	18 21				25 24 30 26	16 20	10 13	4						-	5,653 5,946	-
3/31/2018	2018	3	31	3	57	(0.0		147.4	8,285	-	-	-	-	-	-	-	0	6	16	27	32	36 3	36 37		24	16	6		-	-	-	-	8,285	-
4/30/2018 5/31/2018	2018 2018	4 5	30 31	3	59 62	(0.0) (0.0)		146.3 149.0	8,618 9,181	- 1	- 1	- 1	- 1	- 1			3	9 12	22 22				38 35 39 37	31 31	25 25	16 17	7	1	1			1	8,618 9.181	-
6/30/2018	2018	6	30	3	65	(0.0)) 64	129.5	8,334	-	-	-	-	-	-	-	3	11	21	29	33	37 3	34 31		24	16	8	2	-	-	-	-	8,334	-
7/31/2018 8/31/2018	2018 2018	8	31 31	3	68 70	(0.0)		138.9 129.9	9,316 9,064	- 1							2	11 11	21 20				39 37 38 35	32 32	27 27	18	8	1				1	9,316 9,064	-
9/30/2018	2018	9	30	3	73	0.0)	ý 72	124.6	9,027	-	-	-	-	-	-	-	1	11	23	33	38	39 3	39 38		26	15	4	0	-	-	-	-	9,027	-
10/31/2018 11/30/2018	2018 2018	10 11	31 30	3	76 79	(0.0) (0.0)		127.9 115.0	9,615 8,955	- 1	- 1	- 1	- 1	- 1			9	11 21	23 32				44 40 42 34	35 24	25 12	12	- 2	1	1			1	9,615 8.955	-
12/31/2018	2018	12	31	3	81	(0.0)) 81	107.8	8,684	-	-	-	-	-	-	-	5	19	30	37	43	42 4	40 32	21	11	1	-	-	-	-	-	-	8,684	-
1/31/2019 2/28/2019	2019 2019	2	31 28	5	86 91	(0.0) (0.0)		111.3 111.1	9,490 9,992					- 1			5	16 17	30 35				42 40 50 43	28 34	21	7							9,490 9,992	-
3/31/2019	2019	3	31	5	95	(0.0)	95	147.4	13,937	-	-	-	-	-	-	-	0	10	27	45	54	61 E	60 61	53	41	26	10		-	-	-	-	13,937	-
4/30/2019 5/31/2019		4 5	30 31	5	100 105	(0.0)		146.3 149.0	14,511 15,473	- 1		- 1		- 1	- 1	- 1	5	15 20	36 37				63 60 66 62		42 42	27 28	11 12	2			1		14,511 15,473	-
6/30/2019	2019	6	30	5	110	(0.0) 109	129.5	14,056	-	-	-	-	-	-	-	6	19	35	48	56	63 5	58 53	49	40	26	13	3	-	-	-	-	14,056	-
7/31/2019 8/31/2019		8	31 31	5	114 119	(0.0) (0.0)		138.9 129.9	15,724 15,309	- 1	- 1	- 1	- 1	- 1			3	19 18	35 34				65 63 65 59		46 45	31 31	15 13	2	1			1	15,724 15,309	-
9/30/2019	2019	9	30	5	124	(0.0)) 122	124.6	15,256	-	-	-	-	-	-	-	2	19	39	56	64	66 E	66 65	55	44	25	8	0	-	-	-	-	15,256	-
10/31/2019 11/30/2019		10 11	31 30	5 5	128 133	(0.1		127.9 115.0	16,259 15,150	- 1		- 1		- 1	- 1	- 1	1 15	18 35	40 53		66 75	76 7 72 7	75 68 71 57	59 40	43 19	20	3				1		16,259 15,150	-
12/31/2019	2019	12	31	5	138	(0.1) 136	107.8	14,699	-	-	-	-	-	-	-	9	31	51	62	73	72 E	67 54	36	19		-	-	-	-	-	-	14,699	-
1/31/2020 2/29/2020		1 2	31 29	6	144 150			111.3 111.1	15,843 16,474			- 1	- 1	- 1	- 1	1		27 27	50 55				70 67 80 69		28 34	5 11	-	-	1	1	1	1	15,843 16,474	-
3/31/2020	2020	3	31	6	156	(0.1) 154	147.4	22,717	-	-	-	-	-	-	-	0	17	44	73	88	99 9	99 100	87	67	43	16		-	-	-	-	22,717	-
4/30/2020 5/31/2020		4 5	30 31	6 6	162 168			146.3 149.0	23,407 24,719				- 1	- 1			4 8	24 32	58 59	80 78			02 96 05 100		68 67	43 45	18 19	1 3	1			1	23,407 24,719	-
6/30/2020	2020	6	30	6	174	(0.1) 172	129.5	22,258	-	-	-	-	-	-	-	9	30	56	76	89 1	00 9	92 84	77	63	42 49	20	4	-	-	-	-	22,258	-
7/31/2020 8/31/2020	2020	8	31 31	6 6	185	(0.1) 184	138.9 129.9	24,695 23,860	- 1	- 1	- 1	- 1	- 1	- 1	-	4	29 28	53	74	90 1	01 10	02 98 01 92	85	72 70	48	23 20	5 2				1	24,695 23,860	-
9/30/2020		9	30	6	191	(0.1		124.6	23,610	-	-	-	-	-	-	-		29	61				02 100		67	39	12	0	-	-	-	-	23,610	-

11/30/2020 2020 11 30 12/31/2021 2021 1 31 1 2/28/2021 2021 1 31 2/28/2021 2021 1 31 2/28/2021 2021 3 31 31 4/30/2021 2021 4 30 5/31/2021 2021 5 31 6/30/2021 2021 5 31 6/30/2021 2021 6 30 7/31/2021 2021 7 31 8/31/2021 2021 7 31 8/31/2021 2021 9 30 10/31/2021 2021 9 30 10/31/2021 2021 9 30 10/31/2021 2021 10 31 11/30/2021 2021 11 30 12/31/2021 2021 11 30 12/31/2021 2022 1 11 30 12/31/2022 2022 1 31 11/30/2021 2022 1 31 11/30/2021 2022 1 31 11/30/2021 2022 1 31 11/30/2021 2022 5 31 6/30/2022 2022 5 31 6/30/2022 2022 5 31 6/30/2022 2022 5 31 6/30/2022 2022 5 31 6/30/2022 2022 7 31 8/30/2022 2022 7 31 8/30/2022 2022 7 31 8/30/2022 2022 7 31 8/30/2022 2022 7 31 8/30/2022 2022 7 31 8/30/2022 2022 9 30 10/31/2022 2022 10 31 1/30/2022 2022 11 30 12/31/2022 2022 10 31 1/30/2022 2022 11 30 12/31/2022 2022 11 30 12/31/2022 2022 12 31 1/30/2022 2022 11 30 12/31/2022 2022 12 31 1/30/2022 2022 12 31 1/30/2022 2022 12 31 1/30/2022 2022 12 31 1/30/2022 2022 12 31 1/30/2022 2022 12 31 1/30/2022 2022 12 31 1/30/2022 2022 12 31 1/30/2022 2022 3 31 1/30/2022 2022 3 31 1/30/2022 2022 3 31 1/30/2022 2022 3 31 1/30/2022 2022 3 31 1/30/2022 2022 3 31 1/30/2022 2022 3 31 1/30/2022 2022 3 31 1/30/2022 2022 3 31 1/30/2022 2022 3 31 1/30/2022 2022 3 31 1/30/2022 2022 3 31 1/30/2022 2022 3 31 1/30/2022 2022 3 3 31 1/30/2022 2022 3 3 3 3 3 1/30/2022 2023 3 3 3 3 1/30/2022 2023 3 3 3 3 1/30/2022 2023 3 3 3 3 1/30/2022 2023 3 3 3 3 1/30/2022 2023 3 3 3 3 1/30/2022 2023 3 3 3 1/30/2022 2023 3 3 3 1 1/30/2022 2023 3 3 3 1 1/30/2022 2023 3 3 3 1 1/30/2022 2023 3 3 3 1 1/30/2022 2023 3 3 3 1 1/30/2022 2023 3 3 1 1/30/2022 2023 3 1 1 3 1 1/30/2022 2023 3 1 1 3 1 1/30/2023 2023 3 6 3 1 1/30/2023 2023 3 6 3 1 1/30/2023 2023 3 6 3 1 1/30/2023 2023 3 6 3 1 1/30/2023 2023 3 6 3 1 1/30/2023 2023 3 6 3 1 1/30/2023 2023 3 6 3 1 1/30/2023 2023 3 6 3 1 1/30/2023 2023 3 6 3 1 1/30/2023 2023 3 6 3 1 1/30/2023 2023 3 1 1 3 1 1/30/2023 2023 3 1 1 3 1 1 1/30/2023 2023 3 1 1 3 1 1 1/30/2024 2024 4 2 2 3 1 1 1/30/2024 2024 5 3 3 1 1 1/30/2024 2024 6 3 3 1 1 1/30/2	6	107.8 103,252 111.1 109,818 111.1 109,818 1147.4 147,843 1446.3 148,904 149.0 153,884	1	24,996 - 23,149 - 22,310 - 24,826 - 34,115 - 36,886 - 33,118 - 36,886 - 33,118 - 36,887 - 36,881 - 34,038 - 37,899 - 52,782 - 50,617 - 56,052 - 56,417 - 56,052 - 56,417 - 56,052 - 56,417 - 56,052 - 56,417 - 56,052 - 56,417 - 36,052 - 56,079 - 76,056 - 57,035 - 51,106 - 54,483 - 56,079 - 76,060 - 76,260 - 76,
2/29/2028 2028 2 29 3/31/2028 2028 3 31 1 3/31/2028 2028 4 30 1 5/31/2028 2028 5 31 1 6/30/2028 2028 6 30 1 1 8/31/2028 2028 6 30 1 1 31 1 8 31 1 1 31/2028 2028 8 31 1 1 30 1 1 10/31/2028 2028 9 30 1 11/30/2028 2028 10 31 1 30 1 1/2/31/2028 2028 11 30 1 1 1/2/31/2028 2028 12 31 1 1 2/2/31/2029 2 28 1 31 1 1 2/2/31/2029 2 28 1 31 1 1 2/2/31/2029 2 28 1 3/2 1 1 3/2 <t< td=""><td>17 1,377 (0.6) 1,349 17 1,394 (0.6) 1,365 17 1,410 (0.6) 1,381 17 1,427 (0.6) 1,397 17 1,443 (0.6) 1,413 17 1,460 (0.6) 1,429 17 1,476 (0.6) 1,444 17 1,493 (0.6) 1,460 17 1,509 (0.6) 1,460 17 1,509 (0.6) 1,476</td><td>111.1 149,891</td><td>70 249 501 634 719 741 731 627 489 308 99</td><td>149,891 - 201,131 - 201,927 - 208,033 - 182,955 - 198,471 - 187,673 - 181,916 - 188,824 -</td></t<>	17 1,377 (0.6) 1,349 17 1,394 (0.6) 1,365 17 1,410 (0.6) 1,381 17 1,427 (0.6) 1,397 17 1,443 (0.6) 1,413 17 1,460 (0.6) 1,429 17 1,476 (0.6) 1,444 17 1,493 (0.6) 1,460 17 1,509 (0.6) 1,460 17 1,509 (0.6) 1,476	111.1 149,891	70 249 501 634 719 741 731 627 489 308 99	149,891 - 201,131 - 201,927 - 208,033 - 182,955 - 198,471 - 187,673 - 181,916 - 188,824 -

195,390 184,991 193,378 195,378 195,338 195,338
81
1,137 1,155 1,001 769 1,148 1,081 961 760 1,156 1,091 928 736 1,156 1,091 928 766 1,070 1,028 899 753 1,070 1,028 879 753 1,027 1,004 857 676 1,033 945 873 715 1,046 842 597 287 963 783 522 269 971 926 642 390 1,129 961 750 472 1,284 1,218 1,032 856 1,294 1,218 1,033 855 1,294 1,218 1,031 856 1,294 1,218 1,031 856 1,294 1,418 1,031 857 1,109 1,051 972 759 1,109 1,051 972 759
657 903 1,076 1,156 642 880 1,027 1,118 588 819 950 1,067 571 794 966 1,074 542 758 922 1,036 613 865 899 1,028 610 847 998 1,154 788 892 1,038 613 865 899 1,028 680 947 998 1,154 787 971 1,108 1,054 787 971 1,101 1,135 752 951 1,101 1,135 752 951 1,155 1,267 752 951 1,155 1,267 752 951 1,155 1,267 752 951 1,155 1,267 752 951 1,155 1,267 752 951 1,155 1,267 753 883 1,024 1,155 754 1,047 1,154 1,265 755 917 1,054 1,155 756 1,081 1,154 1,265 757 1,066 1,081 1,164 758 1,027 1,154 1,265 758 1,027 1,154 1,265 758 1,038 1,107 1,243 757 1,066 1,133 1,165 758 1,057 1,157 1,269 758 1,057 1,157 1,269 758 1,057 1,157 1,263 758 1,057 1,157 1,263 758 1,057 1,157 1,263 758 1,057 1,157 1,263 758 1,057 1,157 1,253 758 1,057 1,157 1,253 758 1,057 1,157 1,253 758 1,057 1,157 1,253 758 1,057 1,157 1,253 759 1,057 1,158 1,253 750 1,057 1,158 1,253 750 1,057 1,158 1,253 750 1,057 1,158 1,253 750 1,057 1,158 1,253 750 1,057 1,158 1,253 750 1,057 1,158 1,253 757 1,057 1,158 1,253 757 1,057 1,158 1,253 757 1,057 1,158 1,254 758 1,057 1,157 1,253 757 1,057 1,158 1,254 758 1,057 1,157 1,253 757 1,057 1,157 1,253 757 1,057 1,157 1,253 757 1,057 1,157 1,253 757 1,057 1,158 1,254 758 1,057 1,157 1,253 757 1,057 1,157 1,254 758 1,057 1,157 1,254 759 1,057 1,157 1,254 750 1,057 1,157 1,254 757 1,057 1,157 1,254 758 1,057 1,157 1,258 758 1,057 1,157 1,258 758 1,057 1,157 1,258 758 1,057 1,157 1,258 759 1,150 1,151 1,151 757 1,151 1,152 1,254 758 1,151 1,137 1,476 758 1,151 1,137 1,476 758 1,
- 144 31 - 266 60 - 147 52 - 97 42 - 122 44 - 6 25 - 61 34 - 111 34 - 115 33 - 115 33 - 53 34 - 43 34 - 14 31
115.0 195.390 107.8 184.991 111.3 193.378 111.1 195.334 147.4 282.057 140.3 263.046 140.0 270.950 140.0 270.950 120.5 238.244 130.9 264.070 120.5 238.244 130.9 264.070 120.9 244.304 120.9 244.304 120.9 244.304 120.9 244.304 121.1 221.687 147.4 296.397 147.4 296.397 148.0 304.427 129.5 266.822 139.9 271.900 124.6 262.714 127.9 271.834 115.0 246.254 107.8 232.556 111.3 220.234 111.1 242.856 147.4 324.066 148.0 331.576 149.0 331.576 159.5 290.073 111.1 255.686 146.3 333.906 147.4 341.662 148.0 345.02 129.5 299.375 150.2 265.327 111.1 255.464 111.1 255.464 111.1 255.746 111.1 255.464 111.1 255.464 111.1 255.464 111.1 255.444 111.1 255.464 111.1 255.443 111.1 255.443 111.1 255.443 111.1 255.443 111.1 255.443 111.1 255.443 111.1 255.443 111.1 255.443 111.1 255.377 111.1 255.386 146.3 333.576 149.0 333.576 149.0 333.576 149.0 343.302 129.5 298.383 138.9 319.942 129.9 299.713 147.4 338.269 148.0 339.961 147.4 339.961 147.4 339.961 147.4 339.961 147.4 339.961 147.4 339.961 147.4 339.961 147.4 339.961 147.4 339.961 147.4 339.961 147.4 339.961 147.4 339.961 147.4 339.961 147.4 339.961 147.4 339.961 147.4 339.961 147.4 339.961 147.4 339.961 148.9 31.542 149.0 345.02 149.0 345
1,717 1,737 1,737 1,737 1,738 1,758 1,778 1,778 1,778 1,778 1,778 1,778 1,819 1,839 1,860 1,901 1,819 1,860 1,901 1,901 1,901 1,901 1,901 1,901 1,901 1,902 1,903 1,800 1,901 1,902 1,903
1,741 (0.1,759 (0.1) 1,769 (0.1) 1,769 (0.1) 1,801 (0.1) 1,803 (0.1) 1,803 (0.1) 1,804 (0.1) 1,806 (0.1) 1,807 (0.1) 1,808 (0.1) 1,809 (0.
18
11
11/30/2029 2029 12/31/2029 2029 13/31/2030 2030 33/31/2030 2030 33/31/2030 2030 33/31/2030 2030 33/31/2030 2030 33/31/2030 2030 33/31/2030 2030 33/31/2030 2030 33/31/2030 2030 33/31/2030 2030 33/31/2030 2030 33/31/2031 2030 33/31/2031 2031 33/31/2031 2031 33/31/2031 2031 33/31/2031 2031 33/31/2031 2031 33/31/2031 2031 33/31/2031 2031 33/31/2031 2031 33/31/2031 2031 33/31/2031 2031 33/31/2031 2031 33/31/2031 2031 33/31/2031 2031 33/31/2031 2031 33/31/2031 2031 33/31/2031 2031 33/31/2031 2031 33/31/2031 2031 33/31/2032 2032 33/31/2032 2032 33/31/2032 2032 33/31/2032 2032 33/31/2032 2032 33/31/2032 2032 33/31/2032 2032 33/31/2032 2032 33/31/2032 2032 33/31/2032 2032 33/31/2032 2032 33/31/2032 2032 33/31/2032 2032 33/31/2032 2032 33/31/2033 2033 33/31/2033 2033 33/31/2033 2033 33/31/2033 2033 33/31/2033 2033 33/31/2033 2033 33/31/2033 2033 33/31/2033 2033 33/31/2033 2033 33/31/2033 2033 33/31/2033 2033 33/31/2033 2033 33/31/2033 2033 33/31/2033 2033 33/31/2033 2033 33/31/2034 2034 43/31/2034 2037 43/31/2034 2037 43/31/2034 2037 43/31/2034 2037 43/31/2034 2037 43/31/2034 2037 43/31/2034 2038 63/31/2038 2038 63/31/2038 2038 63/31/2038 2038 63/31/2038 2038 63/31/2038 2038 63/31/2038 2038 63/31/2038 2038 63/31/2038 2038 63/31/2038 2038 63/31/2038 2038 63/31/2038 2038 63/31/2038 2038 63/31/2038 2038 63/31/2038 2038 63/31/2038 2038 63/31/2038 2038 63/31/2038 2038 63/31/2038 203

1/31/2048	2048	1	31		2.394	(0.9)	2.153	111.3	239.655		_				92	407	750	007 110	3 1 116	1.056 1.0	08 699	424	77						239 655	
	2048			-							-	-	-	-										-	-	_	-	-	239 158	-
2/29/2048		2	29	-	2,394	(0.9)	2,152	111.1	239,158		-		-		112	397		1,011 1,14				491	158			-	-	-		-
3/31/2048	2048	3	31	-	2,394	(0.9)	2,151	147.4	317,024	-			-		5	239	612	1,017 1,23	5 1,377	1,376 1,3	97 1,210	930	599	228 -		-	-	-	317,024	-
4/30/2048	2048	4	30		2,394	(0.9)	2,150	146.3	314 467		_				58	329	786	1.079 1.28	6 1 381	1.372 1.2	92 1 148	908	584 1	244	14 -				314.467	_
	2048	5	31				2,149	149.0	320.140						106	415				1,366 1.2		869			39				320.140	
5/31/2048				-	2,394	(0.9)					-		-			-110		.,				000		LUL	00	-	-	-		-
6/30/2048	2048	6	30		2,394	(0.9)	2,148	129.5	278,251		-				109	380	698	956 1,11	0 1,247	1,147 1,0	48 966	792	521	251	51 -	-			278,251	-
7/31/2048	2048	7	31		2,394	(0.9)	2,147	138.9	298,355				-		84	355	659	917 1.11	5 1 240	1,235 1,1	87 1,038	870	588 3	276	61 -	_	-		298,355	-
8/31/2048	2048	8	31		2.394		2.147	129.9	278.893						50	329	618	865 1.05		1.179 1.0		816	562	238	27 -				278.893	
				-		(0.9)					-		-					,							21 -	-	-			-
9/30/2048	2048	9	30	-	2,394	(0.9)	2,146	124.6	267,276	-	-		-		40	329	692	977 1,11	7 1,160	1,160 1,1	34 967	763	438	132	0 -	-	-	-	267,276	-
10/31/2048	2048	10	31		2,394	(0.9)	2,145	127.9	274,318				-		13	300	669	946 1.11	4 1 289	1.267 1.1	52 987	721	341	51 -		_	-		274.318	-
11/30/2048	2048	11	30		2,394	(0.9)	2,144	115.0	246,511						251	576	869	1,073 1,22	4 1,164	1,155 9	29 659	317							246,511	
				-							-		-										-	-				-		-
12/31/2048	2048	12	31	-	2,394	(0.9)	2,143	107.8	230,939	-	-		-		139	495	795	975 1,14		1,051 8		294	-		-	-	-		230,939	-
1/31/2049	2049	1	31	-	2,394	(0.9)	2,142	111.3	238,463	-			-		92	405	746	992 1,09	8 1,111	1,051 1,0	03 695	422	77			-	-	-	238,463	-
2/28/2049	2049	2	28		2.394	(0.9)	2.141	111.1	237.967						116	409	823	1.042 1.18				507	162						237.967	
				-						-	-		-									307	103					-		-
3/31/2049	2049	3	31	-	2,394	(0.9)	2,140	147.4	315,446	-	-		-		5	238	609	1,012 1,22	9 1,370	1,369 1,3	90 1,204	926	596	227 -		-	-	-	315,446	-
4/30/2049	2049	4	30	-	2,394	(0.9)	2,139	146.3	312,902	-			-		58	327	782	1,074 1,28	0 1,375	1,366 1,2	86 1,143	904	581	242	14 -	-	-	-	312,902	-
5/31/2049	2049	5	31		2.394	(0.9)	2.139	149.0	318.546						105	413	755	1.011 1.20	8 1314	1350 12	83 1 091	865	581 1	251	39 .				318.546	
				-							-	-	-	-									518		00	_	-	-		-
6/30/2049	2049	6	30	-	2,394	(0.9)	2,138	129.5	276,866		-		-		108	378	695			1,142 1,0		, 00	0.0	249	51 -	-	-	-	276,866	-
7/31/2049	2049	7	31	-	2,394	(0.9)	2,137	138.9	296,870	-	-		-		84	353	656	912 1,10	9 1,234	1,229 1,1	81 1,033	865	585	275	60 -	-	-	-	296,870	-
8/31/2049	2049	8	31		2,394	(0.9)	2,136	129.9	277,505						50	327	615	861 1 04	7 1 177	1.173 1.0	73 992	812	560 2	237	27 -				277.505	
9/30/2049	2049	9			2.394		2.135	124.6	265.946						40	327	689			1.154 1.1		760		131					265,946	
			30	-		(0.9)					-		-												0 -	-	-			-
10/31/2049	2049	10	31		2,394	(0.9)	2,134	127.9	272,953		-				13	298	666	941 1,10	8 1,282	1,260 1,1	46 982	717	339	51 -		-			272,953	-
11/30/2049	2049	11	30		2,394	(0.9)	2.133	115.0	245,284				-		250	573	865	1.067 1.21	8 1 158	1 149 9	25 655	316	-			_	-		245,284	-
12/31/2049	2049	12	31		2,394	(0.9)	2,132	107.8	229,789						138	492	791	970 1,14			51 567	293							229.789	
				-						-	-		-										-					-		-
1/31/2050	2050	1	31	-	2,394	(0.9)	2,131	111.3	237,276	-	-		-		91	403	743	987 1,09	2 1,105	1,046 9	98 692	420	76			-	-	-	237,276	-
2/28/2050	2050	2	28		2,394	(0.9)	2,131	111.1	236,783				-		115	407	819	1,037 1,17	6 1 212	1 197 1 0	27 801	504	162			_	-		236,783	-
3/31/2050	2050	3	31		2.394	(0.9)	2.130	147.4	313.876						5	236				1.362 1.3		921	593	200					313.876	
				-							-		-											220 -		-	-			-
4/30/2050	2050	4	30	-	2,394	(0.9)	2,129	146.3	311,345	-	-		-		57	326	778	1,068 1,27	3 1,368	1,359 1,2	79 1,137	899	578	241	14 -	-	-	-	311,345	-
5/31/2050	2050	5	31		2.394	(0.9)	2.128	149.0	316.961				-		105	411	751	1.006 1.20	2 1.308	1.352 1.2	77 1.086	861	579	250	39 -	-			316.961	-
6/30/2050	2050	6	30		2,394	(0.9)	2,127	129.5	275,488						108	376	692			1,136 1,0		784	515	248	50 -				275,488	
				-							-		-															-		-
7/31/2050	2050	7	31	-	2,394	(0.9)	2,126	138.9	295,392	-	-		-		83	351	653			1,223 1,1		861			60 -	-	-		295,392	-
8/31/2050	2050	8	31	-	2,394	(0.9)	2,125	129.9	276,124	-			-		50	326	612	856 1,04	2 1,171	1,167 1,0	68 987	808	557	236	27 -	-	-	-	276,124	-
9/30/2050	2050	9	30		2,394	(0.9)	2,124	124.6	264,622		_				40	326	685	967 1.10	6 1 1/0	1,148 1,1	23 958	756	434	130	ο -				264,622	_
																									0 -					
10/31/2050	2050	10	31	-	2,394	(0.9)	2,123	127.9	271,594	-	-		-		13	297	663			1,254 1,1			337	50 -		-	-	-	271,594	-
11/30/2050	2050	11	30	-	2,394	(0.9)	2,123	115.0	244,064	-	-		-		249	570	860	1,062 1,21	2 1,152	1,144 9:	20 652	314	-			-	-	-	244,064	-
12/31/2050	2050	12	31		2.394	(0.9)	2.122	107.8	228.646						137	490	787	965 1.13	8 1 115	1 041 8	47 564	291							228.646	
1/31/2051	2051	1	31		2.394	(0.9)	2.121	111.3	236.095						91	401	739		7 1.100		93 689	418	76						236.095	
				-						-	-		-													-	-	-		-
2/28/2051	2051	2	28	-	2,394	(0.9)	2,120	111.1	235,604	-	-		-		115	405	815	1,032 1,17	0 1,206	1,191 1,0	21 797	501	162			-	-		235,604	-
3/31/2051	2051	3	31		2,394	(0.9)	2,119	147.4	312,313						5	235	603	1.002 1.21	7 1356	1356 13	77 1 192	917	590 1	225 -					312,313	
	2051	4	30		2,394			146.3							57										14 -				309 795	
4/30/2051				-		(0.9)	2,118		309,795	-	-		-			324		1,063 1,26								-	-	-		-
5/31/2051	2051	5	31	-	2,394	(0.9)	2,117	149.0	315,383	-	-		-		104	409	748	1,001 1,19	6 1,301	1,346 1,2	70 1,080	856	576	249	39 -	-	-		315,383	-
6/30/2051	2051	6	30		2,394	(0.9)	2,116	129.5	274,117				-		107	374	688	942 1 09	3 1 228	1,130 1,0	33 952	780	513 3	247	50 -	_	-		274.117	-
7/31/2051	2051	7	31		2,394	(0.9)	2,116	138.9	293,922						83	350	649			1,217 1,1		857	579	272	60 -				293,922	
				-						-	-		-												00			-		-
8/31/2051	2051	8	31	-	2,394	(0.9)	2,115	129.9	274,750	-	-		-		49	324	609	852 1,03	7 1,165	1,162 1,0	62 982		554	235	27 -	-	-	-	274,750	-
9/30/2051	2051	9	30	-	2,394	(0.9)	2,114	124.6	263,305		-		-		40	324	682	962 1.10	0 1.143	1,143 1,1	17 953	752	431	130	0 -	-	-	-	263,305	-
10/31/2051	2051	10	31		2,394	(0.9)	2,113	127.9	270,242						13	295	659	932 1 09	7 1 270	1,248 1,1	35 973	710	336	50 -					270,242	
																							550	50 -						
11/30/2051	2051	11	30	-	2,394	(0.9)	2,112	115.0	242,849	-	-		-		248	567		1,057 1,20			15 649	313	-			-	-	-	242,849	-
12/31/2051	2051	12	31	-	2,394	(0.9)	2,111	107.8	227,508	-	-		-		137	488	783	960 1,13	2 1,110	1,036 8	43 561	290	-			-	-		227,508	-
1/31/2052	2052	1	31		2.394	(0.9)	2.110	111.3	234.920				-		90	399	735	978 1.08	2 1 094	1.035 9	88 685	416	75			_	-		234.920	-
2/29/2052	2052	2	29		2,394	(0.9)	2,109	111.1	234,432						110	389	783	991 1,12				482	155						234 432	
				-							-		-										100	-				-		-
3/31/2052	2052	3	31	-	2,394	(0.9)	2,109	147.4	310,759	-	-		-		5	234	600			1,349 1,3				224 -		-	-	-	310,759	-
4/30/2052	2052	4	30	-	2,394	(0.9)	2,108	146.3	308.253	-			-		57	323	770	1.058 1.26	1 1.354	1.345 1.2	67 1.126	890	573	239	14 -	-	-	-	308.253	-
5/31/2052	2052	5	31		2,394	(0.9)	2,107	149.0	313.813		_				104	407	744	006 110	0 1 205	1,339 1,2	64 1 075	852	573	247	38 -				313,813	_
6/30/2052	2052	6	30	-	2,394	(0.9)	2,106	129.5	272,753		-		-		107	372	685			1,125 1,0					50 -	-	-	-	272,753	-
7/31/2052	2052	7	31	-	2,394	(0.9)	2,105	138.9	292,459	-	-		-		83	348	646	899 1,09	3 1,216	1,211 1,1	63 1,018	852	576	271	59 -	-	-		292,459	-
8/31/2052	2052	8	31		2,394	(0.9)	2,104	129.9	273,382						49	322	606	848 1 03	2 1 159	1.156 1.0	57 977	800	551 2	233	27 -				273,382	
9/30/2052	2052	9	30		2,394	(0.9)	2,103	124.6	261,995						40	322	678			1.137 1.1				129					261 995	
				-							-		-									7.40			0 -	-	-			-
10/31/2052	2052	10	31	-	2,394	(0.9)	2,102	127.9	268,897	-	-		-		13	294	656			1,242 1,1			334	50 -		-	-	-	268,897	-
11/30/2052	2052	11	30	-	2,394	(0.9)	2,102	115.0	241,640	-			-		246	564	852	1,051 1,20	0 1.141	1.132 9	11 646	311	-			-	-	-	241.640	-
12/31/2052	2052	12	31		2,394	(0.9)	2,101	107.8	226,375					_	136	485	779	956 1,12			38 559	288							226.375	
				-						-	-	-	-	-									7-				-	-		-
1/31/2053	2053	1	31	-	2,394	(0.9)	2,100	111.3	233,750	-	-		-		90	397	732	973 1,07			83 682	414	75			-	-	-	233,750	-
2/28/2053	2053	2	28	-	2,394	(0.9)	2,099	111.1	233,265	-	-		-		114	401	807	1,022 1,15	8 1,194	1,179 1,0	11 789	496	160			-	-	-	233,265	-
3/31/2053	2053	3	31	_	2,394	(0.9)	2,098	147.4	309,212		_		-		5	233	597	992 1,20	5 1,343	1,342 1,3	63 1,181	908	584 2	223 -			_	-	309,212	-
		4						146.3	306.719						56	321				1,339 1,2		886		238	44				306.719	
4/30/2053	2053		30	-	2,394	(0.9)	2,097			-	-		-												14 -	-	-	-		-
5/31/2053	2053	5	31	-	2,394	(0.9)	2,096	149.0	312,251	-	-		-		103	405	740	991 1,18	4 1,288	1,332 1,2	58 1,070	848	570	246	38 -	-	-	-	312,251	-
6/30/2053	2053	6	30		2,394	(0.9)	2,095	129.5	271,395	_					106	370	681	933 1,08		1,119 1,0		772	508	244	50 -			_	271,395	
7/31/2053	2053	7	31		2.394	(0.9)	2.095	138.9	291.004						82	346	643			1,205 1,1		848			59 -				291.004	
				-						-	-		-													-	-	-		-
8/31/2053	2053	8	31	-	2,394	(0.9)	2,094	129.9	272,021	-	-		-		49	321	603			1,150 1,0		796			27 -	-	-	-	272,021	-
9/30/2053	2053	9	30	-	2,394	(0.9)	2,093	124.6	260,691	-			-		39	321	675	952 1,08	9 1,132	1,131 1,1	06 944	745	427	129	0 -	-	-	-	260,691	-
10/31/2053	2053	10	31		2.394	(0.9)	2.092	127.9	267.559						13	292	653			1.235 1.1				50 -		_			267.559	
11/30/2053	2053	11	30	-	2,394	(0.9)	2,092	115.0	240.437	-	-	-	-	-	245	562		1.046 1.19			06 643			-			-	-	240.437	-
				-						-	-		-										-			-	-	-		-
							2.090	107.8							135	483		951 1,12	1 1 1 1 1 1 1 1 1	1 00 0	34 556	287								
12/31/2053	2053	12	31	-	2,394	(0.9)	2,090	107.6	225,248		-		-		135	403	115	901 1,12	1,000	1,020 0	34 330	201	-				-	-	225,248	-

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 12 Attachment 1 of 1

7/31/2020

8/31/2020

2020

2020

42 43 44

(0.0)

(0.0)

42

42

43

138.9

129.9

124.6

5 779

5,473

FPL & GULF 00000

Tab 6 of 19 Ann. Degrade Capacity Hourly Ho New Cumulative after Energy per Monthly Gen. Monthly Capacity Monthly MWdc Ending Capacity Degradation Generation Generation Date (MWdc) (MWh) 4:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 18:00 19:00 (check) 1/31/2013 2013 2013 111.1 2/28/2013 28 3/31/2013 2013 147.4 4/30/2013 2013 30 146.3 2013 149.0 5/31/2013 6/30/2013 2013 30 129 5 7/31/2013 2013 138.9 8/31/2013 2013 31 129.9 9/30/2013 2013 30 124.6 10/31/2013 2013 127.9 11/30/2013 2013 30 115.0 107.8 12/31/2013 2013 31 1/31/2014 2014 111.3 175 175 2014 (0.0) 111.1 2/28/2014 28 349 3/31/2014 (0.0) 147.4 4/30/2014 2014 30 (0.0) 146.3 919 919 5/31/2014 2014 149.0 1,170 6/30/2014 2014 30 (0.0) 129.5 1 221 1,221 1,527 7/31/2014 138.9 8/31/2014 2014 13 14 129.9 1,632 1,632 9/30/2014 2014 30 (0.0)124 6 1.760 1 760 10/31/2014 16 17 (0.0) 16 17 127.9 2,007 2,007 11/30/2014 2014 30 (0.0)115.0 1.985 1.985 2014 19 19 107.8 12/31/2014 31 (0.0)2.029 2.029 1/31/2015 2015 19 (0.0) 19 111.3 2,136 2,136 2015 (0.0) 20 111.1 2.173 2/28/2015 28 20 20 2.173 20 20 20 21 3/31/2015 (0.0) 147.4 2,934 2,934 12 12 4/30/2015 2015 30 20 21 (0.0) 146.3 2 964 13 2 964 2015 31 5/31/2015 149.0 3,073 3,073 6/30/2015 2015 30 31 21 21 (0.0) 21 21 129.5 2.719 2.719 7/31/2015 2015 (0.0) 138.9 2.966 2.966 22 22 23 22 22 22 8/31/2015 2015 (0.0) 129.9 2,821 2,821 (0.0) 12 13 9/30/2015 2015 30 124.6 2.749 12 2.749 10/31/2015 127.9 2,869 11/30/2015 2015 30 31 23 23 (0.0) 23 23 115.0 2 620 12 11 2 620 2015 12/31/2015 107.8 2,495 2,495 1/31/2016 2016 23 2,598 2,598 23 24 24 24 24 24 25 25 25 25 25 2/29/2016 2016 29 (0.0) 111.1 2 615 13 2 615 24 24 24 25 25 25 25 3/31/2016 2016 147.4 3,496 3,496 4/30/2016 2016 2016 (0.0)146.3 3 498 14 14 13 12 3 498 5/31/2016 149.0 3,591 3,591 (0.0)6/30/2016 2016 (0.0) 129.5 3,147 3,147 2016 3 402 12 7/31/2016 (0.0)138.9 3 402 3,207 9/30/2016 2016 30 25 25 (0.0) 124 6 3 098 13 15 13 13 3 098 10/31/2016 2016 127.9 3,206 3,206 2016 2016 2,904 2,742 11/30/2016 30 26 26 (0.0)115.0 14 12 2 904 107.8 12/31/2016 31 (0.0)13 2,742 26 27 27 26 26 27 1/31/2017 2017 111.3 (0.0) 2,883 2/28/2017 2017 28 (0.0) 111.1 2 928 13 15 17 13 17 10 15 2 928 2017 147.4 3/31/2017 3,949 3,949 4/30/2017 2017 2017 30 31 28 28 (0.0) 27 28 146.3 3,984 4,124 15 14 3.984 4,124 5/31/2017 149.0 6/30/2017 2017 28 129.5 3,644 3,644 28 29 29 29 30 29 29 16 12 7/31/2017 2017 31 (0.0) 138.9 3.971 3.971 8/31/2017 2017 129.9 3,772 3,772 9/30/2017 2017 30 30 30 (0.0) 124 6 3 672 15 16 18 16 16 13 14 3 672 2017 10/31/2017 127.9 3,827 3,827 2017 2017 30 31 31 3,492 3,321 11/30/2017 30 31 31 31 (0.0) 115.0 3,492 16 15 13 12/31/2017 107.8 3.321 12 1/31/2018 2018 31 111.3 3,457 15 15 3,457 2/28/2018 2018 2018 28 32 32 (0.0)31 32 111.1 3,478 4,647 18 20 12 18 17 16 3 478 15 20 19 19 16 147.4 4,647 3/31/2018 (0.0)4/30/2018 2018 32 32 32 32 32 32 33 146.3 4,646 4,646 2018 149 0 4 767 20 20 17 4 767 5/31/2018 (0.0)6/30/2018 (0.0) 4,175 7/31/2018 2018 33 33 (0.0) 138.9 4 512 4 512 8/31/2018 2018 129.9 4,250 4,250 9/30/2018 2018 2018 18 20 18 17 17 15 15 10 30 33 34 34 34 35 (0.0) 33 33 34 34 124 6 4 104 4 104 127.9 4,244 4,244 20 11/30/2018 2018 115.0 3,843 3,843 2018 107.8 13 16 12/31/2018 31 (0.0)3 627 3 627 1/31/2019 2019 (0.0) 111.3 3,786 3,786 2/28/2019 2019 2019 28 35 35 (0.0) 34 35 35 36 36 36 111.1 3.819 19 20 22 19 22 17 23 13 20 19 18 16 17 3.819 147.4 3/31/2019 31 (0.0) 5.116 20 5.116 4/30/2019 2019 36 36 (0.0) 146.3 5,128 23 22 5,128 22 23 19 21 20 31 (0.0) 5/31/2019 2019 149.0 5.276 20 10 5.276 36 37 37 2019 (0.0) 4,633 6/30/2019 7/31/2019 2019 31 (0.0) 138 9 5.019 21 20 18 5.019 2019 4,739 8/31/2019 31 129.9 4,739 19 20 16 9/30/2019 2019 30 31 38 38 (0.0) 37 37 124.6 4.587 19 20 22 20 22 4.587 4.755 10/31/2019 2019 (0.0) 127.9 19 4.755 38 38 38 11/30/2019 38 39 115.0 4,315 10 20 19 4,315 12/31/2019 2019 31 (0.0) 107.8 4.082 20 20 15 10 12 4.082 1/31/2020 2020 (0.0) 4,276 2/29/2020 2020 29 40 (0.0)39 111.1 4 328 21 21 18 14 4 328 2020 147 4 5.818 3/31/2020 39 40 22 21 5.818 40 (0.0)23 25 5/31/2020 2020 31 (0.0) 41 149 0 6.038 23 25 26 22 24 23 11 6.038 24 20 23 21 23 24 24 23 6/30/2020 2020 129.5 5,319 15 17 5,319

22 21

22

23

20 20 19

11

5 779

5,473

##
--

1231/2029 2 2282/2030 2 2282/2030 2 3/31/2030 2 3/31/2030 2 4/30/2030 2 4/30/2030 2 4/30/2030 2 4/30/2030 2 4/30/2030 2 4/30/2030 2 4/30/2030 2 4/30/2030 2 4/30/2030 2 4/30/2030 2 4/30/2030 2 4/30/2030 2 4/30/2031 2 4/30/2032 2	2030 20	2 2 31 1 1 31 1 2 2 28 3 3 3 31 1 1 30 2 2 31 1 1 2 3 1 2 2 28 3 3 3 3 1 1 1 3 3 1 2 2 2 8 3 3 3 3 1 1 1 3 3 1 2 2 2 8 3 3 3 3 1 1 1 3 3 1 2 2 2 8 3 1 3 1 1 1 3 1 1 2 3 3 3 3 3 1 1 1 1 1	4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4 4 4 4	225 229 234 240 246 246 251 257 262 268 279 290 295 300 301 308 316 320 325 329 333 337 341 346 369 369 369 375	(0.1) (0.1)	220 223 224 240 244 240 245 256 261 267 277 278 283 288 289 290 290 301 301 301 317 321 325 329 333 337 339 344 347 349 3554 349 3554	115.0 107.8 111.3 111.1 147.4 146.3 149.0 129.5 129.9 127.9 107.0 107.8 115.0 107.8 111.3 111.1 147.4 146.3 129.9	25,250 24,049 25,450 35,299 35,299 31,296 33,397 34,650 33,897 32,538 31,089 32,556 32,256 32,256 44,293 46			26 14 14 13 17 12 13 13 10 6 5 2 23 13 19 19 22 24 14 18 11 9 9 17 18 14 4 8 8 7 2 43 44 14 15 16 16 17 18 18 18 19 19 17 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	52 8 43 8 45 9 6 6 37 6 6 11 6 7 6 7 10 6 7	122 135 144 155 142 161 153 199 146 102 139 107 129 107 129	125 119 127 117 119 138 153 138 153 141 154 147 157 141 154 136 151 131 144 162 147 157 159 159 150 152 150 15	109 112 131 153 156 159 137 150 146 147 164 152 141 143 167 192 194 196 167 176 192 176 188 185 220 221 188 189 194 194 196 185 185 186 185 220 194 196 194 194 196 194 194 196 194 196 194 196 194 196 194 196	95 6 89 57 78 78 78 78 78 78 78 78 78 78 78 78 78	9 31 4 4 55 5 104 4 101 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 8 18 67 67 67 68 62 72 70 56 44 10 23 84 84 86 65 2 - 12 25 96 94 95 85 97 47 33 57 -	25 28 29 30 17 7 7 32 2 8 36 36 36 41 41 46 40 22 9			2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	25,250 - 24,049 - 25,450 - 3,55,250 - 3,55,255 - 3,77,256 - 3,58,255 - 3,77,256 - 3,58,255 - 3,77,256 - 3,58,255 - 3,77,256 - 3,58,255 - 3,77,256 - 3,58,255 - 3,58,2
9/30/2032 9/30/2032 1/30/2032 2/31/2033 2/31/2033 2/31/2033 2/31/2033 2/31/2033 2/31/2033 2/31/2033 2/31/2033 2/31/2033 2/31/2033 2/31/2033 2/31/2033 2/31/2033 2/31/2033 2/31/2033 2/31/2033 2/31/2033 2/31/2034 2/31/2034 2/31/2034 2/31/2034 2/31/2034 2/31/2034 2/31/2034 2/31/2034 2/31/2034 2/31/2034 2/31/2034 2/31/2034 2/31/2034 2/31/2034 2/31/2034 2/31/2034 2/31/2034 2/31/2034 2/31/2034 2/31/2035 2/31/2036 2/31/2036 2/31/2036 2/31/2036 2/31/2036 2/31/2036 2/31/2036 2/31/2036 2/31/2036 2/31/2036 2/31/2036 2/31/2036 2/31/2036 2/31/2036 2/31/2037 2/22/2037 3/31/2037 2/22/2037 3/31/2037 2/22/2037 3/31/2	2032	9	3	369 372	(0.1) (0.1)	359 362	124.6 127.9	44,768 46,287			7	55 11 98 14 85 13 69 12 70 14 41 10 56 13 71 12 65 11 56 10 56 11 56 10 56 13 70 14 40 10 56 13 70 14 40 10 56 13 70 14 40 10 56 13 70 14 84 13 69 12 69 12 64 11 56 10 55 11 56 11 57 11 58 11 59 14 80 11 50	164 164 164 164 164 164 164 164 164 164	187 194 188 217	194 194 196 180 180 206 234 233 195 210 198 217 199 179 179 179 205 233 233 233 232 194 299 200 197 215 178 204 178 205 178 207 191 179 179 179 179 179 179 179 179 17	190 160 194 160	2 128 54 64 134			2		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	44,768 - 46,287 -
12/31/2037 2 1/31/2038 2 2/28/2038 2 3/31/2038 2 4/30/2038 2 5/31/2038 2 6/30/2038 2 7/31/2038 2 8/31/2038 2 9/30/2038 2 10/31/2038 2	2037 1 2038 2038 2038 2038 2038 2038 2038 2038			377 377 377 377 377 377 377 377 377 377	(0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1)	358 358 358 358 357 357 357 357 357 357 357 356 356	115.0 107.8 111.3 111.1 147.4 146.3 149.0 129.5 138.9 129.9 124.6 127.9 115.0	41,165 38,564 39,821 39,738 52,676 52,252 53,194 46,234 49,574 46,341 44,410 45,580 40,960			42 23 15 19 1 10 18 18 14 8 7 2 42		33 163 25 166 37 174 02 169 31 179 26 169 16 159 10 152 03 144	204 194 192 188 183 185 197 203 205 229 214 230 202 219 184 207 185 206 175 196 186 193 185 214 203 193	176 175 201 229 228 227 191 205 196 193 210	155 111 143 99 168 111 172 134 232 20 215 19 214 18: 174 16 197 17: 179 166 191 164 191 164 191 164	5 49 6 70 4 85 1 155 1 151 2 144 1 132 3 144 6 136 1 127 4 120	13 27 100 97 97 87 98 93 73 57	38 40 42 42 46 40 22 8		-	3 3 5 5 5 4 4 4 4 4	41,165 - 383,564 - 39,821 - 39,738 - 52,676 - 552,252 - 551,194 - 46,234 - 49,574 - 46,341 - 44,410 - 45,580 - 40,960

1/31/2048	2048	1	31		377	(0.1)	340	111.3	37.883						15	64	119	158 1	74 176	167	159 110	67	12						37.883	
				-						-	-		-			-		100				•				-	-	-		
2/29/2048	2048	2	29	-	377	(0.1)	340	111.1	37,804	-	-		-		18	63	126		81 187		158 123	78	25			-	-	-	37,804	-
3/31/2048	2048	3	31		377	(0.1)	340	147.4	50.112	-	-		-		- 1	38	97	161 1	95 218	218	221 191	147	95	36		-	-	-	50.112	-
4/30/2048	2048	4	30		377	(0.1)	340	146.3	49.708						o.	52	124	171 2	03 218	217	204 182	144	92	39	2 -				49.708	
5/31/2048	2048	5	31		377	(0.1)	340	149.0	50.605						17	66	120		92 209		204 173		92	40	-				50.605	
				-						-	-		-												ь -	-	-	-		
6/30/2048	2048	6	30		377	(0.1)	340	129.5	43,984	-	-		-		17	60	110	151 1	75 197	181	166 153	125	82	40	8 -	-	-	-	43,984	-
7/31/2048	2048	7	31		377	(0.1)	339	138.9	47.161	-	_		_		13	56	104	145 1	76 196	195	188 164	137	93	44	10 -	-			47.161	-
8/31/2048	2048	8	31		377	(0.1)	339	129.9	44.085						8	52	98		66 187		170 158	129	89	38	4				44.085	
											-		-		_										7 -		-	-		-
9/30/2048	2048	9	30	-	377	(0.1)	339	124.6	42,249	-	-		-		6	52	109		77 183		179 153	121	69	21	0 -	-	-	-	42,249	-
10/31/2048	2048	10	31		377	(0.1)	339	127.9	43.362	-	-		-		2	47	106	150 1	76 204	200	182 156	114	54	8		-	-	-	43.362	-
11/30/2048	2048	11	30		377	(0.1)	339	115.0	38,966		_		_		40	91	137	170 1	93 184		147 104	50	-		_				38.966	_
	2048				377			107.8								78	126					47							36,505	
12/31/2048		12	31			(0.1)	339		36,505	-	-		-		22								-	-		-	-	-		-
1/31/2049	2049	1	31		377	(0.1)	339	111.3	37,694	-	-		-		14	64	118	157 1	74 176	166	159 110	67	12	-		-	-	-	37,694	-
2/28/2049	2049	2	28		377	(0.1)	338	111.1	37,616						18	65	130	165 1	87 193	190	163 127	80	26						37,616	
		3			377			147.4							1	38	96					146	94	36						
3/31/2049	2049	-	31			(0.1)	338		49,863	-	-		-															-	49,863	-
4/30/2049	2049	4	30		377	(0.1)	338	146.3	49,461				-		9	52	124	170 2	202 217	216	203 181	143	92	38	2 -		-		49,461	-
5/31/2049	2049	5	31		377	(0.1)	338	149.0	50,353	-	_		_		17	65	119	160 1	91 208	215	203 172	137	92	40	6 -	-			50,353	-
6/30/2049	2049	6	30		377	(0.1)	338	129.5	43,765						17	60	110		75 196		165 152	125	82	39					43,765	
											-		-														-	-		-
7/31/2049	2049	7	31		377	(0.1)	338	138.9	46,927	-	-		-		13	56	104		75 195		187 163	137	92	43	10 -	-	-	-	46,927	-
8/31/2049	2049	8	31		377	(0.1)	338	129.9	43,866	-	-		-		8	52	97	136 1	66 186	185	170 157	128	88	37	4 -	-	-	-	43,866	-
9/30/2049	2049	9	30		377	(0.1)	337	124.6	42,039		_		_		6	52	109		76 182		178 152	120	69	21	0 -				42,039	_
															-	47							54	-1	-					
10/31/2049	2049	10	31		377	(0.1)	337	127.9	43,146	-	-		-		2		105		75 203		181 155	113	54	8		-	-	-	43,146	-
11/30/2049	2049	11	30		377	(0.1)	337	115.0	38,773	-	-		-		40	91	137	169 1	93 183	182	146 104	50	-	-		-	-	-	38,773	-
12/31/2049	2049	12	31		377	(0.1)	337	107.8	36,323	-	_		_		22	78	125	153 1	81 177	165	135 90	46	-	-		-			36,323	-
1/31/2050	2050	1	31		377	(0.1)	337	111.3	37,507						14	64	117		73 175		158 109	66	12						37,507	
										-	-		-											-		-				-
2/28/2050	2050	2	28		377	(0.1)	337	111.1	37,429	-	-		-		18	64	129	164 1	86 192	189	162 127	80	26	-		-	-	-	37,429	-
3/31/2050	2050	3	31		377	(0.1)	337	147.4	49,615						- 1	37	96	159 1	93 215	215	219 189	146	94	36					49,615	
4/30/2050	2050	4	30		377	(0.1)	337	146.3	49,215						9	51	123		201 216		202 180	142	91	38					49,215	
										-	-		-												2 -	-				-
5/31/2050	2050	5	31		377	(0.1)	336	149.0	50,103	-	-		-		17	65	119	159 1	90 207	214	202 172	136	91	39	6 -	-	-	-	50,103	-
6/30/2050	2050	6	30		377	(0.1)	336	129.5	43.547	-	-		-		17	59	109	150 1	74 195	180	164 151	124	81	39	8 -	-	-	-	43.547	-
7/31/2050	2050	7	31		377	(0.1)	336	138.9	46.693						13	56	103	143 1	74 194	193	186 163	136	92	43	<u> </u>				46.693	
8/31/2050	2050	8	31		377	(0.1)	336	129.9	43,647	-	-		-		8	51	97		65 185		169 156	128	88	37	4 -	-	-	-	43,647	-
9/30/2050	2050	9	30		377	(0.1)	336	124.6	41,829	-	-		-		6	51	108	153 1	75 182	182	177 151	119	69	21	0 -	-	-	-	41,829	-
10/31/2050	2050	10	31		377	(0.1)	336	127.9	42.931	-	_		_		2	47	105	148 1	74 202	198	180 155	113	53	8		-			42.931	-
11/30/2050	2050	11	30		377	(0.1)	336	115.0	38.580						39	90	136		92 182		145 103	50		-					38.580	
										-	-		-										-	-		-				-
12/31/2050	2050	12	31		377	(0.1)	335	107.8	36,142	-	-		-		22	77	124	153 1	80 176	165	134 89	46	-	-		-	-	-	36,142	-
1/31/2051	2051	1	31		377	(0.1)	335	111.3	37.320	-	-		-		14	63	117	155 1	72 174	164	157 109	66	12	-		-	-	-	37.320	-
2/28/2051	2051	2	28		377	(0.1)	335	111.1	37.242						18	64	129	163 1	85 191	188	161 126	79	26						37.242	
				-						-	-	-	-												-		-	-		-
3/31/2051	2051	3	31		377	(0.1)	335	147.4	49,368	-	-		-		1	37	95		92 214		218 188	145	93	36		-	-	-	49,368	-
4/30/2051	2051	4	30		377	(0.1)	335	146.3	48,970	-	-		-		9	51	122	168 2	200 215	214	201 179	141	91	38	2 -	-	-	-	48.970	-
5/31/2051	2051	5	31		377	(0.1)	335	149.0	49,853						16	65	118	158 1	89 206	213	201 171	135	91	39	6 -				49,853	
				-			000			-	-	-	-											39			-	-		-
6/30/2051	2051	6	30		377	(0.1)	335	129.5	43,330	-	-		-		17	59	109		73 194		163 150	123	81		8 -	-	-	-	43,330	-
7/31/2051	2051	7	31		377	(0.1)	334	138.9	46,461	-	-		-		13	55	103	143 1	74 193	192	185 162	135	92	43	9 -	-	-	-	46,461	-
8/31/2051	2051	8	31		377	(0.1)	334	129.9	43,430	-	_		_		8	51	96	135 1	64 184	184	168 155	127	88	37	4 -	-			43,430	-
9/30/2051	2051	9	30		377	(0.1)	334	124.6	41,621						6	51	108		74 181		177 151	119	68	21					41,621	
							334				-		-												0 -		-	-		-
10/31/2051	2051	10	31	-	377	(0.1)	334	127.9	42,718	-	-		-		2	47	104		73 201		179 154	112	53	8		-	-	-	42,718	-
11/30/2051	2051	11	30		377	(0.1)	334	115.0	38,388	-	-		-		39	90	135	167 1	91 181	180	145 103	49	-	-		-	-	-	38,388	-
12/31/2051	2051	12	31		377	(0.1)	334	107.8	35,963						22	77	124	152 1	79 175	164	133 89	46							35,963	
			31		377		334		37.134						14		116		71 173		156 108	66	40						37.134	
1/31/2052	2052	1				(0.1)		111.3		-	-		-										12	-		-	-	-		-
2/29/2052	2052	2	29		377	(0.1)	333	111.1	37,057	-	-		-		17	62	124	157 1	78 183	181	155 121	76	25	-		-	-	-	37,057	-
3/31/2052	2052	3	31		377	(0.1)	333	147.4	49.122	-	_		_		- 1	37	95	158 1	91 213	213	217 188	144	93	35		-			49.122	-
4/30/2052	2052	4	30		377	(0.1)	333	146.3	48.726					_	9	51	122		99 214		200 178	141	91	38	2				48.726	
		5		-						-	-		-										91				-	-		-
5/31/2052	2052		31		377	(0.1)	333	149.0	49,605	-	-		-		16		118		88 205		200 170			39	ь -	-	-	-	49,605	-
6/30/2052	2052	6	30		377	(0.1)	333	129.5	43,114	-	-		-		17	59	108	148 1	72 193	178	162 150	123	81	39	8 -	-	-	-	43,114	-
7/31/2052	2052	7	31		377	(0.1)	333	138.9	46,230	-	_		_		13	55	102	142 1	73 192	191	184 161	135	91	43	9 -	-			46.230	-
8/31/2052	2052	8	31		377	(0.1)	333	129.9	43,214						8	51	96		63 183		167 155	127	87	37	4				43,214	
											-		-												7 -		-	-		-
9/30/2052	2052	9	30		377	(0.1)	332	124.6	41,414	-	-		-		6		107		73 180		176 150	118	68	20	0 -	-	-	-	41,414	-
10/31/2052	2052	10	31		377	(0.1)	332	127.9	42,505	-	-		-		2	46	104	147 1	73 200	196	178 153	112	53	8		-	-	-	42,505	-
11/30/2052	2052	11	30		377	(0.1)	332	115.0	38,196						39	89	135	166 1	90 180	179	144 102	49							38 196	
12/31/2052	2052	12	31		377	(0.1)	332	107.8	35,784						22	77	123		78 175		133 88	46							35,784	
				-						-	-												7.2	-				-		-
1/31/2053	2053	1	31	-	377	(0.1)	332	111.3	36,949	-	-		-		14	63	116		70 172		155 108	65	12	-		-	-	-	36,949	-
2/28/2053	2053	2	28	-	377	(0.1)	332	111.1	36,873	-	-		-		18	63	128	161 1	83 189	186	160 125	78	25	-			-	-	36,873	-
3/31/2053	2053	3	31		377	(0.1)	332	147.4	48,878	_	-				- 1	37	94		90 212		215 187	143	92	35				-	48,878	
4/30/2053	2053	4			377			146.3	48.484					_	9	51	121		98 213		199 177	140	90	38					48.484	
			30	-		(0.1)	332			-	-		-												2 -		-	-		-
5/31/2053	2053	5	31	-	377	(0.1)	331	149.0	49,358	-	-		-		16	64	117		87 204		199 169	134	90	39	6 -		-	-	49,358	-
6/30/2053	2053	6	30	-	377	(0.1)	331	129.5	42.900		_				17	59	108	147 1	71 192	177	162 149	122	80	39	8 -			-	42.900	
7/31/2053	2053	7	31		377	(0.1)	331	138.9	45,999						13	55	102		72 191		183 160	134	91	43	ā				45,999	
				-						-	-	-	-												-	- 1		-		-
8/31/2053	2053	8	31	-	377	(0.1)	331	129.9	42,999	-	-				8	51	95		62 182		166 154	126	87	37	4 -			-	42,999	-
9/30/2053	2053	9	30	-	377	(0.1)	331	124.6	41,208	-	-		-		6	51	107		72 179		175 149	118	68	20	0 -	-	-	-	41,208	-
10/31/2053	2053	10	31	-	377	(0.1)	331	127.9	42,294	-	-		-		2	46	103	146 1	72 199	195	178 152	111	53	8			-	-	42,294	-
		11	30		377	(0.1)	331	115.0	38,006						39	89	134		89 179		143 102								38.006	
	2053																													
11/30/2053	2053		24												0.4														25 605	
12/31/2053	2053 2053	12	31	-	377	(0.1)	330	107.8	35,605	-	-		-		21	76	123	150 1	77 174	162	132 88	45	-	-		-	-	-	35,605	-

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 12 Attachment 1 of 1 Tab 7 of 19

Hour Ending

Hour Ending FPL & GULF 000008 20220000-OT

7 of 19

Location: 700 universe blvd, juno beach florida
Output: 1,539 kWh/kWdc
PVWatts NCF: 17.6% 21%

onth 1 2 3 4 5 6 7 8 9 10 11 7 Days 31 28 31 30 31 30 31 31 30 31 30 3

	1	2	3	4	5	6	7	8	9	10	11	12	Total
1	-	-	-	-	-	-	-	-	-	-	-	-	-
2	-	-	-	-	-	-	-	-	-	-	-	-	-
3	-	-	-	-	-	-	-	-	-	-	-	-	-
4	-	-	-	-	-	-	-	-	-	-	-	-	-
5	-	-	-	-	-	-	-	-	-	-	-	-	-
6	-	-	-	-	-	-	-	-	-	-	-	-	-
7	-	-	-	-	-	-	-	-	-	-	-	-	-
8	4.3%	5.4%	0.3%	2.7%	4.9%	5.1%	3.9%	2.3%	1.9%	0.6%	11.7%	6.5%	4.1%
9	18.9%	19.1%	11.1%	15.3%	19.3%	17.7%	16.5%	15.3%	15.3%	14.0%	26.9%	23.1%	17.7%
10	34.8%	38.4%	28.4%	36.6%	35.3%	32.5%	30.7%	28.8%	32.3%	31.2%	40.5%	37.1%	33.8%
11	46.3%	48.7%	47.3%	50.2%	47.3%	44.5%	42.7%	40.3%	45.5%	44.1%	50.0%	45.5%	46.0%
12	51.2%	55.2%	57.4%	59.8%	56.5%	51.6%	51.9%	49.0%	52.1%	51.9%	57.1%	53.6%	53.9%
13	51.9%	56.9%	64.0%	64.2%	61.4%	58.0%	57.7%	55.1%	54.1%	60.1%	54.3%	52.6%	57.5%
14	49.1%	56.2%	64.0%	63.8%	63.6%	53.4%	57.5%	54.9%	54.1%	59.1%	53.9%	49.1%	56.5%
15	46.8%	48.2%	65.0%	60.1%	60.0%	48.8%	55.3%	50.2%	52.8%	53.7%	43.3%	39.9%	52.1%
16	32.5%	37.6%	56.3%	53.4%	51.0%	45.0%	48.4%	46.5%	45.1%	46.0%	30.7%	26.6%	43.3%
17	19.7%	23.7%	43.3%	42.2%	40.4%	36.8%	40.5%	38.0%	35.6%	33.6%	14.8%	13.7%	31.9%
18	3.6%	7.6%	27.9%	27.2%	27.2%	24.2%	27.4%	26.2%	20.4%	15.9%	-	-	17.4%
19	-	-	10.6%	11.3%	11.7%	11.7%	12.9%	11.1%	6.1%	2.4%	-	-	6.5%
20	-	-	-	0.6%	1.8%	2.4%	2.8%	1.3%	0.0%	-	-	-	0.8%
21	-	-	-	-	-	-	-	-	-	-	-	-	-
22	-	-	-	-	-	-	-	-	-	-	-	-	-
23	-	-	-	-	-	-	-	-	-	-	-	-	-
24	-	-	-	-	-	-	-	-	-	-	-	-	-
	15.0%	16.5%	19.8%	20.3%	20.0%	18.0%	18.7%	17.5%	17.3%	17.2%	16.0%	14.5%	17.6%

	1	2	3	4	5	6	7	8	9	10	11	12	Total
1	-	-	-	-	-	-	-	-	-	-	-		-
2	-	-	-	-	-	-	-	-	-	-	-	-	-
3	-	-	-	-	-	-	-	-	-	-	-	-	-
4	-	-	-	-	-	-	-	-	-	-	-	-	-
5	-	-	-	-	-	-	-	-	-	-	-	-	-
6	-	-	-	-	-	-	-	-	-	-	-	-	-
7	-	-	-	-	-	-	-	-	-	-	-		-
8	1.3	1.5	0.1	0.8	1.5	1.5	1.2	0.7	0.6	0.2	3.5	2.0	15
9	5.9	5.3	3.4	4.6	6.0	5.3	5.1	4.7	4.6	4.3	8.1	7.2	65
10	10.8	10.8	8.8	11.0	10.9	9.8	9.5	8.9	9.7	9.7	12.2	11.5	124
11	14.4	13.6	14.7	15.1	14.6	13.4	13.2	12.5	13.7	13.7	15.0	14.1	168
12	15.9	15.4	17.8	17.9	17.5	15.5	16.1	15.2	15.6	16.1	17.1	16.6	197
13	16.1	15.9	19.8	19.3	19.0	17.4	17.9	17.1	16.2	18.6	16.3	16.3	210
14	15.2	15.7	19.8	19.1	19.7	16.0	17.8	17.0	16.2	18.3	16.2	15.2	206
15	14.5	13.5	20.1	18.0	18.6	14.6	17.1	15.6	15.9	16.6	13.0	12.4	190
16	10.1	10.5	17.4	16.0	15.8	13.5	15.0	14.4	13.5	14.3	9.2	8.2	158
17	6.1	6.6	13.4	12.7	12.5	11.1	12.6	11.8	10.7	10.4	4.4	4.3	117
18	1.1	2.1	8.6	8.2	8.4	7.3	8.5	8.1	6.1	4.9	-		63
19	-	-	3.3	3.4	3.6	3.5	4.0	3.4	1.8	0.7	-		24
20	-	-	-	0.2	0.6	0.7	0.9	0.4	0.0	-	-		3
21	-	-	-	-	-	-	-	-	-	-	-		-
22	-	-	-	-	-	-	-	-	-	-	-		-
23	-	-			-		-	-	-		-		-
24	-	-			-		-	-	-		-		-
	111	111	147	146	149	130	139	130	125	128	115	108	1,539

	1	2	3	4	5	6	7	8	9	10	11	12	Total
1	-	-	-	-	-	-	-	-	-	-	-	-	-
2	-	-	-	-	-	-	-	-	-	-	-	-	-
3	-	-	-	-	-	-	-	-	-	-	-	-	-
4	-	-	-	-	-	-	-	-	-	-	-	-	-
5	-	-	-	-	-	-	-	-	-	-	-	-	-
6	-	-	-	-	-	-	-	-	-	-	-	-	-
7	-	-	0	1	2	2	1	1	1	0	-	-	7
8	1	2	3	5	6	5	5	5	5	4	4	2	46
9	6	5	9	11	11	10	10	9	10	10	8	7	105
10	11	11	15	15	15	13	13	12	14	14	12	12	156
11	14	14	18	18	18	15	16	15	16	16	15	14	189
12	16	15	20	19	19	17	18	17	16	19	17	17	210
13	16	16	20	19	20	16	18	17	16	18	16	16	209
14	15	16	20	18	19	15	17	16	16	17	16	15	199
15	15	13	17	16	16	13	15	14	14	14	13	12	173
16	10	11	13	13	13	11	13	12	11	10	9	8	133
17	6	7	9	8	8	7	8	8	6	5	4	4	82
18	1	2	3	3	4	3	4	3	2	1			27
19	-	-	-	0	1	1	1	0	0	-			3
20	-	-	-	-		-	-	-	-	-	-	- [-
21	-	-	-	-		-	-	-	-	-	-	- [-
22	-	-	-	-		-	-	-	-	-	-	- [-
23	-	-	-	-		-	-	-	-	-	-	- [-
24	-	-	-	-		-	-	-	-	-	-	- [-
	111	111	147	146	149	130	139	130	125	128	115	108	1,539

17.56%

Florida Power & Light Company FPL & GULF 000009 Docket No. 20220000-OT 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 12 Attachment 1 of 1 Tab 8 of 19 PVWatts: Hourly PV Performance Data Requested Location: 700 universe blvd, juno beach florida Location: Lat, Lon: 26.85, -80.06 Lat (deg N): 26.85 80.06 Long (deg W): Elev (m):

3.458333

Standard Fixed (roof mount)

20 180 14.925 96 1.2

0.104

DC to AC Size Ratio: Average Cost of Electricity Purchased from Utility (\$/kWh): 17.6

Capacity Factor (%)

Month

Invert Efficiency:

DC System Size (kW): Module Type:

Array Azimuth (deg): System Losses:

Array Type: Array Tilt (deg):

	Day		Hour	Beam Irradiano	Diffuse Irradiance (W/m^2)	Ambient Temperature (C)	Wind Speed (m/s)	Plane of Array Irradiance (W/m^2)	Cell Temperature (C)	DC Array Output (W)	AC System Output (W)
1.0		1.0	-	-	-	20.0	3.0	-	20.0	-	-
1.0 1.0		1.0 1.0	1.0 2.0	-	-	20.0 20.0	3.0 3.0	-	20.0 20.0	-	-
1.0		1.0	3.0			20.0	3.0		20.0		
1.0		1.0	4.0			20.0	3.0		20.0		
1.0		1.0	5.0	_	_	20.0	3.0	_	20.0	_	_
1.0		1.0	6.0	_	_	20.0	3.0	_	20.0	_	_
1.0		1.0	7.0	159.0	24.0	21.0	3.0	74.5	21.2	56.2	50.0
1.0		1.0	8.0	586.0	65.0	22.0	4.0	339.4	29.1	265.8	254.6
1.0		1.0	9.0	758.0	83.0	22.0	4.0	575.1	35.7	455.5	438.3
1.0		1.0	10.0	837.0	94.0	23.0	4.0	755.8	41.7	588.8	566.7
1.0		1.0	11.0	870.0	101.0	23.0	4.0	864.4	44.7	665.5	640.2
1.0		1.0	12.0	189.0	310.0	24.0	4.0	504.1	37.4	403.6	388.2
1.0		1.0	13.0	33.0	250.0	24.0	4.0	288.2	31.1	238.1	227.7
1.0		1.0	14.0	461.0	191.0	24.0	4.0	565.4	37.3	450.6	433.6
1.0		1.0	15.0	194.0	164.0	23.0	3.0	292.9	31.3	239.0	228.5
1.0		1.0	16.0	531.0	60.0	22.0	3.0	287.4	29.2	221.5	211.5
1.0		1.0	17.0	-	-	21.0	3.0	-	21.0	-	-
1.0		1.0	18.0	-	-	21.0	3.0	-	21.0	-	-
1.0		1.0	19.0	-	-	20.0	3.0	-	20.0	-	-
1.0		1.0	20.0	-	-	20.0	2.0	-	20.0	-	-
1.0		1.0	21.0	-	-	20.0	2.0	-	20.0	-	-
1.0		1.0	22.0	-	-	20.0	2.0	-	20.0	-	-
1.0		1.0	23.0	-	-	20.0 19.0	2.0	-	20.0	-	-
1.0 1.0		2.0	- 10	-	-		2.0 2.0		19.0	-	-
1.0		2.0	1.0 2.0	-	-	19.0 19.0	2.0	-	19.0 19.0	-	
1.0		2.0	3.0			19.0	2.0		19.0		
1.0		2.0	4.0			19.0	2.0		19.0		
1.0		2.0	5.0	_	_	18.0	2.0	_	18.0	_	_
1.0		2.0	6.0	_	_	18.0	1.0	<u>-</u>	18.0	_	_
1.0		2.0	7.0	218.0	22.0	19.0	1.0	87.9	19.6	65.2	58.9
1.0		2.0	8.0	626.0	59.0	20.0	1.0	349.3	30.8	270.6	259.3
1.0		2.0	9.0	785.0	76.0	22.0	1.0	583.4	42.3	446.8	429.9
1.0		2.0	10.0	854.0	87.0	23.0	2.0	760.4	46.2	578.8	557.1
1.0		2.0	11.0	885.0	95.0	24.0	2.0	864.2	50.7	644.8	620.4
1.0		2.0	12.0	444.0	260.0	24.0	2.0	692.0	46.3	529.2	509.3
1.0		2.0	13.0	590.0	190.0	25.0	2.0	719.3	47.4	546.4	525.9
1.0		2.0	14.0	361.0	215.0	25.0	1.0	509.5	44.8	391.1	376.1
1.0		2.0	15.0	682.0	93.0	24.0	1.0	519.5	43.0	395.0	379.9
1.0		2.0	16.0	467.0	68.0	23.0	-	271.6	38.1	201.6	192.1
1.0		2.0	17.0	35.0	10.0	23.0	-	20.0	25.0	15.1	9.8
1.0		2.0	18.0	-	-	23.0	-	-	23.0	-	
1.0		2.0	19.0	-	-	23.0	-		23.0	-	-
1.0		2.0	20.0	-	-	22.0		-	22.0	-	-
1.0		2.0	21.0	-	-	22.0	1.0	-	22.0	-	-
1.0		2.0	22.0	-	-	21.0	1.0	-	21.0	•	-
1.0		2.0	23.0	-	-	20.0 20.0	2.0 2.0	-	20.0	-	-
1.0 1.0		3.0	1.0	-	-		2.0	-	20.0 20.0	-	-
1.0		3.0	2.0	-	-	20.0 19.0	2.0	-	19.0	-	-
1.0		3.0	3.0	-	-	19.0	2.0	-	19.0	-	-
1.0		3.0	4.0			19.0	2.0		19.0	-	
1.0		3.0	5.0	-	_	19.0	2.0		19.0	-	
1.0		0.0	5.0	-		19.0	2.0	· · · · · · · · · · · · · · · · · · ·	19.0	-	

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	3.0 6.0 3.0 7.0 3.0 8.0 3.0 9.0 3.0 10.0 3.0 11.0 3.0 12.0 3.0 13.0 3.0 15.0 3.0 16.0 3.0 17.0 3.0 18.0 3.0 20.0 3.0 22.0 3.0 22.0 4.0 - 4.0 4.0 4.0 4.0	151.0 554.0 723.0 800.0 842.0 855.0 831.0 777.0 680.0 478.0 - - - - -	22.0 68.0 89.0 103.0 107.0 108.0 109.0 104.0 91.0 66.0 11.0 - - - -	19.0 20.0 21.0 23.0 24.0 25.0 25.0 25.0 25.0 23.0 23.0 23.0 22.0 22.0 21.0 21.0 21.0	1.0 1.0 2.0 3.0 3.0 3.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0	69.4 327.4 561.4 737.4 848.0 882.7 832.2 705.1 517.4 274.9 10.4	19.0 20.1 30.9 39.4 43.9 47.3 49.5 51.2 47.5 45.0 34.9 22.8 23.0 23.0 22.0 22.0 22.0 21.0 21.0 21.0 21.0	52.5 254.4 436.5 568.0 644.2 663.4 619.0 532.3 389.5 207.3 9.0	46.4 243.5 420.1 546.6 619.8 638.2 595.6 512.4 374.5 197.6 3.7
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	4.0 5.0 4.0 6.0 4.0 7.0 4.0 8.0 4.0 9.0 4.0 10.0 4.0 12.0 4.0 15.0 4.0 15.0 4.0 17.0 4.0 17.0 4.0 18.0 4.0 17.0 4.0 20.0 4.0 21.0 4.0 22.0 4.0 23.0 5.0 - 5.0 1.0 5.0 2.0	180.0 583.0 748.0 235.0 242.0 173.0 791.0 740.0 641.0 423.0 30.0	21.0 59.0 75.0 246.0 288.0 313.0 116.0 110.0 96.0 71.0 10.0	20.0 20.0 21.0 22.0 23.0 24.0 24.0 24.0 24.0 22.0 22.0 21.0 21.0 21.0 21.0 20.0 20.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	77.0 329.4 558.4 446.8 519.4 493.7 807.7 688.7 501.2 257.8 18.9	20.0 20.0 21.3 32.0 42.3 40.0 42.7 42.2 52.1 50.0 43.4 33.2 22.0 22.0 21.0 21.0 21.0 21.0 21.0 20.0 20	57.2 253.7 427.5 352.3 404.7 385.7 597.9 513.2 380.7 196.9 14.7	51.0 242.8 411.3 338.6 389.3 370.9 575.4 494.0 366.1 187.5 9.4
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	5.0 3.0 5.0 4.0 5.0 5.0 5.0 6.0 5.0 7.0 5.0 8.0 5.0 9.0 5.0 11.0 5.0 12.0 5.0 15.0 5.0 15.0 5.0 16.0 5.0 17.0 5.0 17.0 5.0 20.0 5.0 22.0 5.0 23.0	153.0 2.0 2.0 33.0 48.0 4.0 571.0	21.0 89.0 124.0 221.0 270.0 195.0 122.0 63.0 162.0 53.0 15.0	20.0 20.0 20.0 21.0 22.0 23.0 24.0 24.0 24.0 24.0 22.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 21.0	1.0 2.0 2.0 2.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2		20.0 20.0 20.0 20.0 21.1 22.9 24.9 28.7 32.0 28.8 26.2 24.3 26.9 31.1 21.8 22.0 22.0 22.0 22.0 21.0 21.0	51.0 76.8 103.0 213.1 265.9 162.5 99.1 51.1 165.0 229.2 12.3	44.9 70.2 95.8 203.3 254.7 154.0 92.0 45.0 156.5 219.0 6.9
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	6.0 1.0 6.0 2.0 6.0 3.0 6.0 4.0 6.0 5.0 6.0 6.0 6.0 6.0 9.0 6.0 10.0 6.0 11.0 6.0 12.0 6.0 13.0 6.0 14.0	- - - - - 172.0 812.0 869.0 890.0 881.0 764.0 681.0	- - - - 10.0 98.0 61.0 73.0 82.0 92.0 134.0 137.0	21.0 21.0 21.0 21.0 21.0 21.0 22.0 23.0 24.0 25.0 25.0 25.0 25.0	2.0 2.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 3.0 3.0 4.0	- - - - - - 9.5 187.4 577.0 750.1 854.9 883.0 811.2 677.7	21.0 21.0 21.0 21.0 21.0 21.0 21.0 19.8 26.8 40.3 47.8 51.4 49.5 47.8	8.2 152.8 445.8 566.0 635.6 663.5 614.7 525.9	3.0 144.5 429.0 544.8 611.6 638.3 591.5

1.0	6.0 15.0	570.0	120.0	24.0	4.0	487.3	36.5	384.3	369.5
1.0 1.0	6.0 16.0 6.0 17.0	346.0 17.0	86.0 10.0	23.0 23.0	3.0 3.0	245.3 14.3	29.7 22.5	192.7 11.4	183.4 6.1
1.0 1.0	6.0 18.0 6.0 19.0	-	-	23.0 23.0	3.0 3.0	-	23.0 23.0	-	-
1.0	6.0 20.0	-	-	22.0	2.0	-	22.0	-	-
1.0 1.0	6.0 21.0 6.0 22.0	-	-	22.0 22.0	2.0 2.0	-	22.0 22.0	-	
1.0 1.0	6.0 23.0 7.0 -	-	-	22.0 22.0	2.0 2.0	-	22.0 22.0	-	-
1.0	7.0 1.0	-	-	22.0	1.0	-	22.0	-	-
1.0 1.0	7.0 2.0 7.0 3.0		-	21.0 21.0	1.0 1.0	-	21.0 21.0	-	-
1.0 1.0	7.0 4.0 7.0 5.0	-	-	21.0 21.0	1.0 1.0	-	21.0 21.0	-	Ī
1.0	7.0 6.0	-	-	21.0	2.0	-	21.0	-	-
1.0 1.0	7.0 7.0 7.0 8.0	62.0 17.0	21.0 93.0	21.0 22.0	2.0 3.0	41.5 100.3	20.2 23.1	32.8 85.5	27.1 78.8
1.0 1.0	7.0 9.0 7.0 10.0	564.0 713.0	126.0 125.0	22.0 23.0	3.0 3.0	499.1 699.1	34.2 41.8	399.3 544.7	384.0 524.3
1.0	7.0 11.0	290.0	287.0	23.0	3.0	570.3	39.1	452.5	435.5
1.0 1.0	7.0 12.0 7.0 13.0	109.0 33.0	312.0 255.0	24.0 24.0	4.0 4.0	425.0 293.5	34.7 31.0	345.0 242.5	331.5 232.0
1.0 1.0	7.0 14.0 7.0 15.0	209.0 161.0	245.0 174.0	23.0 23.0	4.0 5.0	423.2 286.2	32.8 29.0	345.7 236.6	332.1 226.2
1.0	7.0 16.0	290.0	86.0	23.0	4.0	223.3	27.9	177.9	169.0
1.0 1.0	7.0 17.0 7.0 18.0	-	13.0	22.0 22.0	4.0 4.0	12.3	21.3 22.0	10.7 -	5.4
1.0 1.0	7.0 19.0 7.0 20.0	-	-	22.0 22.0	3.0 3.0	-	22.0 22.0	-	-
1.0	7.0 21.0	-	-	22.0	3.0	-	22.0	-	-
1.0 1.0	7.0 22.0 7.0 23.0	-		22.0 22.0	3.0 3.0	-	22.0 22.0	-	-
1.0 1.0	8.0 - 8.0 1.0	-	-	21.0 21.0	3.0 3.0	-	21.0 21.0	-	-
1.0	8.0 2.0	-	-	21.0	3.0	-	21.0	-	-
1.0 1.0	8.0 3.0 8.0 4.0	-	-	21.0 21.0	3.0 3.0	-	21.0 21.0	-	-
1.0	8.0 5.0	-	-	21.0	3.0	-	21.0	-	-
1.0 1.0	8.0 6.0 8.0 7.0	210.0	- 19.0	21.0 22.0	2.0 2.0	80.6	21.0 22.5	- 58.4	52.2
1.0 1.0	8.0 8.0 8.0 9.0	-	17.0 54.0	23.0 24.0	3.0 3.0	16.1 51.3	21.9 23.7	13.9 43.9	8.5 37.9
1.0	8.0 10.0	-	64.0	24.0	3.0	60.8	24.1	51.9	45.9
1.0 1.0	8.0 11.0 8.0 12.0	12.0 99.0	221.0 310.0	25.0 25.0	3.0 3.0	228.5 413.9	29.8 35.4	190.0 334.9	180.8 321.6
1.0 1.0	8.0 13.0 8.0 14.0	268.0 773.0	289.0 102.0	25.0 25.0	3.0 3.0	552.3 706.8	39.6 44.1	437.1 543.6	420.5 523.2
1.0	8.0 15.0	702.0	85.0	25.0	3.0	530.5	40.0	410.2	394.5
1.0 1.0	8.0 16.0 8.0 17.0	537.0 101.0	60.0 15.0	24.0 23.0	3.0 3.0	297.8 45.0	32.3 23.5	227.4 33.2	217.2 27.5
1.0 1.0	8.0 18.0 8.0 19.0	-		23.0 23.0	3.0 3.0	-	23.0 23.0	-	-
1.0	8.0 20.0	-	-	23.0	3.0	-	23.0	-	-
1.0 1.0	8.0 21.0 8.0 22.0	-		23.0 23.0	4.0 4.0		23.0 23.0	-	-
1.0 1.0	8.0 23.0 9.0 -	-		23.0 23.0	3.0 3.0	-	23.0 23.0	-	-
1.0	9.0 1.0	-	-	23.0	3.0	-	23.0	-	-
1.0 1.0	9.0 2.0 9.0 3.0	-	•	23.0 23.0	3.0 4.0	•	23.0 23.0	-	-
1.0 1.0	9.0 4.0 9.0 5.0	-	-	23.0 23.0	4.0 4.0	-	23.0 23.0	-	-
1.0	9.0 6.0	-	-	23.0 23.0	4.0	-	23.0	-	-
1.0 1.0	9.0 7.0 9.0 8.0	200.0 617.0	21.0 57.0	23.0 24.0	5.0 5.0	80.5 338.8	23.5 30.4	58.5 262.1	52.3 251.0
1.0 1.0	9.0 9.0 9.0 10.0	775.0 835.0	76.0 92.0	25.0 25.0	5.0 5.0	574.4 751.6	37.3 41.8	450.8 585.2	251.0 433.8 563.2
1.0	9.0 11.0	875.0	98.0	26.0	5.0	868.4	45.8	665.1	639.8
1.0 1.0	9.0 12.0 9.0 13.0	888.0 871.0	98.0 98.0	26.0 26.0	5.0 4.0	898.9 860.6	46.7 48.0	685.7 651.5	659.5 626.8 547.2
1.0 1.0	9.0 14.0 9.0 15.0	829.0 737.0	92.0 82.0	25.0 25.0	4.0 4.0	739.0 549.5	44.0 39.2	568.5 426.7	547.2 410.5
1.0	9.0 16.0	575.0	59.0	24.0	4.0	313.4	31.9	239.6	229.1 34.8
1.0 1.0	9.0 17.0 9.0 18.0	131.0 -	16.0 -	23.0 23.0	4.0 4.0	55.6 -	23.7 23.0	40.7	34.8
1.0 1.0	9.0 19.0 9.0 20.0	-	-	23.0 23.0	4.0 4.0	-	23.0 23.0	-	-
1.0	9.0 21.0	-	-	23.0	4.0	-	23.0	-	-
1.0 1.0	9.0 22.0 9.0 23.0	-	-	23.0 22.0	4.0 4.0	-	23.0 22.0	-	-

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	10.0	252.0 664.0 803.0 134.0 92.0 884.0 863.0 821.0 737.0 - - - - - - - - - - - - - - - - - - -		22.0 22.0 22.0 21.0 21.0 21.0 21.0 21.0	4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	91.2 352.0 586.9 379.8 388.8 912.2 865.5 743.6 556.8 55.6 50.5 	22.0 22.0 22.0 21.0 21.0 21.0 21.0 22.8 30.5 36.6 32.5 33.3 44.9 47.1 44.1 38.3 24.5 22.0 22.0 22.0 22.0 21.0 21.0 21.0 21.0		58.8 260.2 444.7 298.5 305.0 675.4 633.2 550.4 417.9 41.4 32.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	11.0 20.0 11.0 21.0 11.0 22.0 11.0 22.0 11.0 23.0 12.0 - 12.0 1.0 12.0 2.0 12.0 3.0 12.0 5.0 12.0 6.0 12.0 8.0 12.0 9.0 12.0 10.0 12.0 11.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 13.0 12.0 14.0 12.0 15.0 12.0 15.0 12.0 12.0 16.0 12.0 17.0 12.0 18.0 12.0 12.0 12.0 13.0 12.0 12.0 13.0 12.0 12.0 13.0 12.0 12.0 13.0 10.0 13.0 10.0 13.0 1.0	237.0 132.0 207.0 830.0 879.0 893.0 893.0 859.0 782.0 623.0 180.0	20.0 100.0 100.0 181.0 99.0 102.0 103.0 96.0 89.0 77.0 58.0 19.0	22.0 22.0 22.0 22.0 21.0 21.0 21.0 21.0	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	87.1 166.2 324.2 756.5 878.5 912.3 875.1 763.0 573.9 335.8 71.2	22.0 22.0 22.0 22.0 21.0 21.0 21.0 21.0	62.5 136.5 136.5 264.5 583.5 661.2 682.7 657.2 582.4 443.1 254.5 51.5	56.2 128.6 253.3 561.5 636.0 656.7 632.2 560.5 426.4 243.6 45.4

1.0 1.0 1.0 1.0	13.0 9.0 13.0 10.0 13.0 11.0 13.0 12.0	0 867.0 0 891.0	76.0 89.0 99.0 105.0	24.0 24.0 25.0 25.0	4.0 3.0 2.0 2.0	590.4 773.6 879.8 913.1	38.1 44.9 52.1 53.4	461.6 592.7 651.6 672.0	444.2 570.4 626.9 646.4
1.0	13.0 13.0 13.0 14.0	322.0	134.0 237.0	25.0 25.0	2.0 2.0	851.2 511.0	51.9 42.1	631.3 398.3	607.4 383.1
1.0 1.0 1.0	13.0 15.0 13.0 16.0 13.0 17.0	0 502.0	153.0 77.0 26.0	24.0 23.0 22.0	2.0 3.0 3.0	158.2 306.7 25.7	29.3 30.2 22.0	131.7 238.9 22.2	123.9 228.4 16.7
1.0 1.0	13.0 18.0 13.0 19.0	0 -	-	22.0 22.0 22.0	3.0 4.0		22.0 22.0 22.0	-	-
1.0	13.0 20.0	0 -	-	21.0	4.0	-	21.0	-	-
1.0 1.0	13.0 21.0 13.0 22.0	0 -	-	21.0 21.0	3.0 3.0	-	21.0 21.0	-	-
1.0 1.0	13.0 23.0 14.0 -	-	-	21.0 21.0	3.0 3.0	-	21.0 21.0		-
1.0 1.0	14.0 1.0 14.0 2.0	0 -	-	21.0 21.0	3.0 2.0	-	21.0 21.0		-
1.0	14.0 3.0 14.0 4.0	0 -	- -	21.0 20.0	2.0	-	21.0 20.0	-	-
1.0	14.0 5.0 14.0 6.0	0 -	-	20.0 20.0	2.0 3.0		20.0 20.0	-	-
1.0	14.0 7.0 14.0 8.0	0 164.0	21.0 99.0	22.0 23.0	3.0 3.0	78.6 178.2	22.5 26.4	57.3 145.5	51.1 137.4
1.0	14.0 9.0 14.0 10.0	0 230.0	172.0 254.0	23.0 24.0	3.0 3.0	203.5 451.4	27.5 35.3	170.6 364.5	161.9 350.3
1.0	14.0 11.0 14.0 12.0	350.0	248.0 297.0	24.0 25.0	3.0 3.0	691.7 644.5	42.4 42.9	539.5 501.7	519.3 482.9
1.0 1.0	14.0 13.0 14.0 14.0	358.0	66.0 231.0	25.0 24.0	3.0 3.0	62.7 532.1	27.3 36.9	52.8 425.6	46.7 409.5
1.0 1.0	14.0 15.0 14.0 16.0	0 13.0	86.0 92.0	24.0 23.0	3.0 3.0	563.0 97.2	39.3 25.9	437.6 81.9	421.1 75.2
1.0 1.0	14.0 17.0 14.0 18.0	0 -	20.0	22.0 22.0	3.0 3.0	70.2 -	22.5 22.0	51.6 -	45.5 -
1.0 1.0	14.0 19.0 14.0 20.0	0 -	-	22.0 21.0	2.0 2.0	-	22.0 21.0	-	-
1.0 1.0	14.0 21.0 14.0 22.0	0 -	-	21.0 21.0	2.0 2.0	- -	21.0 21.0	-	-
1.0 1.0	14.0 23.0 15.0 -	-	-	21.0 21.0	2.0 2.0	- -	21.0 21.0	-	-
1.0 1.0	15.0 1.0 15.0 2.0	0 -	- -	20.0 20.0	3.0 3.0	- -	20.0 20.0	-	-
1.0 1.0	15.0 3.0 15.0 4.0		-	20.0 20.0	3.0 2.0	- -	20.0 20.0	-	-
1.0 1.0	15.0 5.0 15.0 6.0		-	20.0 20.0	2.0 3.0	-	20.0 20.0	-	-
1.0 1.0	15.0 7.0 15.0 8.0		19.0 50.0	22.0 23.0	3.0 4.0	91.6 351.1	23.0 30.5	64.7 270.3	58.4 259.0
1.0 1.0	15.0 9.0 15.0 10.0		66.0 249.0	23.0 24.0	4.0 4.0	587.0 479.9	37.0 36.0	461.1 385.9	443.8 371.1
1.0 1.0	15.0 11.0 15.0 12.0		303.0 86.0	24.0 24.0	4.0 3.0	538.6 919.6	37.2 48.5	431.6 694.9	415.3 668.4
1.0 1.0	15.0 13.0 15.0 14.0	540.0	221.0 87.0	24.0 24.0	3.0 3.0	722.3 761.2	44.7 45.0	556.8 582.9	535.9 561.0
1.0 1.0	15.0 15.0 15.0 16.0	776.0	77.0 61.0	24.0 23.0	3.0 3.0	575.2 336.3	40.4 32.5	444.5 257.6	427.7 246.6
1.0 1.0	15.0 17.0 15.0 18.0	0 189.0	21.0	22.0 22.0	3.0 3.0	76.5	23.5 22.0	55.6	49.5
1.0 1.0	15.0 19.0 15.0 20.0	0 -	- -	22.0 21.0	3.0 3.0	-	22.0 21.0	- -	-
1.0 1.0	15.0 21.0 15.0 22.0	0 -	-	21.0 21.0	3.0 3.0	-	21.0 21.0	-	-
1.0 1.0	15.0 23.0 16.0 -	_	-	21.0 21.0	3.0 2.0	-	21.0 21.0	-	-
1.0 1.0	16.0 1.0 16.0 2.0		-	21.0 21.0	2.0 2.0	-	21.0 21.0	-	-
1.0	16.0 3.0 16.0 4.0	0 -	-	21.0 20.0	2.0	-	21.0 20.0	-	-
1.0 1.0	16.0 5.0 16.0 6.0	0 -	-	20.0 20.0	2.0 2.0	-	20.0 20.0	-	-
1.0	16.0 7.0 16.0 8.0	0 -	8.0 49.0	22.0 23.0	2.0	7.6 356.1	20.5 32.0	6.6 272.0	1.4 260.7
1.0 1.0	16.0 9.0 16.0 10.0	0 826.0	65.0 81.0	24.0 24.0	3.0 3.0	592.6 765.3	39.5 44.7	459.7 586.9	442.4 564.8
1.0 1.0	16.0 11.0 16.0 12.0	0 894.0	91.0 100.0	25.0 25.0	3.0 3.0	875.9 908.5	49.1 50.2	659.4 680.3	634.4 654.4
1.0 1.0	16.0 13.0 16.0 14.0	0 847.0	109.0 110.0	25.0 25.0	3.0 3.0	862.9 737.6	49.2 45.9	649.3 562.6	624.7 541.5
1.0 1.0	16.0 15.0 16.0 16.0	0 690.0	100.0 79.0	25.0 24.0	3.0 3.0	551.7 307.8	40.7 32.6	426.5 237.7	410.4 227.2
1.0	16.0 17.0		23.0	23.0	3.0	57.2	23.9	43.6	37.6

1.0	16.0	18.0	-	-	23.0	3.0	-	23.0	-	-
1.0	16.0	19.0	-	-	23.0	3.0	-	23.0	-	-
1.0	16.0	20.0	-	-	22.0	3.0	-	22.0	-	-
1.0	16.0	21.0	-	-	22.0	3.0	-	22.0	-	-
1.0	16.0	22.0	-	-	22.0	3.0	-	22.0	-	-
1.0	16.0	23.0	-	-	22.0	3.0	-	22.0	-	-
1.0	17.0	-	-	-	21.0	3.0	-	21.0	-	-
1.0	17.0	1.0	-	-	21.0	2.0	-	21.0	-	-
1.0	17.0	2.0	-	-	21.0	2.0	-	21.0	-	-
1.0	17.0	3.0	-	-	21.0	2.0	-	21.0	-	-
1.0	17.0	4.0	-	-	20.0	2.0	-	20.0	-	-
1.0	17.0	5.0	_	_	20.0	2.0	-	20.0	-	_
1.0	17.0	6.0	_	-	20.0	2.0	-	20.0	_	_
1.0	17.0	7.0	262.0	19.0	22.0	3.0	90.4	22.9	63.8	57.5
1.0	17.0	8.0	649.0	53.0	23.0	3.0	343.4	31.0	264.0	252.9
1.0	17.0	9.0	793.0	71.0	24.0	4.0	579.4	37.8	453.6	436.5
1.0	17.0	10.0	864.0	80.0	25.0	5.0	757.9	41.9	589.7	567.5
1.0	17.0	11.0	898.0	85.0	25.0	5.0	873.5	44.9	672.2	646.6
1.0	17.0	12.0	82.0	317.0	25.0	5.0	406.2	34.8	329.6	316.5
1.0	17.0	13.0	136.0	312.0	26.0	4.0	456.5	37.0	366.3	352.1
1.0	17.0	14.0	279.0	252.0	26.0	4.0	496.9	38.1	395.5	380.4
1.0	17.0	15.0	718.0	92.0	25.0	4.0	561.5	38.8	438.1	421.6
1.0	17.0	16.0	-	57.0	24.0	3.0	54.2	25.8	46.0	40.0
1.0	17.0	17.0	151.0	24.0	23.0	3.0	69.9	23.3	52.0	46.0
1.0	17.0	18.0	-	-	22.0	5.0	-	22.0	-	-
1.0	17.0	19.0	-	-	20.0	6.0	-	20.0	-	-
1.0	17.0	20.0	-	-	18.0	7.0	-	18.0	-	-
1.0	17.0	21.0	-	-	17.0	6.0	-	17.0	-	-
1.0	17.0	22.0	-	-	17.0	6.0		17.0	-	-
1.0	17.0	23.0	-	-	16.0	6.0	-	16.0	-	-
1.0	18.0	-	-	-	16.0	6.0	-	16.0	-	-
1.0	18.0	1.0	-	-	15.0	7.0	-	15.0	-	-
1.0	18.0	2.0	-	-	15.0	6.0	-	15.0	-	-
1.0	18.0	3.0	-	-	14.0	6.0	-	14.0	-	-
1.0	18.0	4.0	-	-	13.0	6.0	-	13.0	-	-
1.0	18.0	5.0	-	-	13.0	5.0	-	13.0	-	-
1.0	18.0	6.0	-	-	13.0	5.0	-	13.0	-	-
1.0	18.0	7.0	169.0	24.0	14.0	5.0	73.2	14.2	56.2	50.0
1.0	18.0	8.0	533.0	80.0	16.0	5.0	324.9	22.0	263.3	252.2
1.0	18.0	9.0	665.0	119.0	17.0	5.0	556.2	28.8	456.2	439.0
1.0	18.0	10.0	827.0	108.0	18.0	5.0	767.0	35.0	618.0	594.7
1.0	18.0	11.0	848.0	123.0	19.0	5.0	880.9	39.0	698.6	671.8
1.0	18.0	12.0	849.0	130.0	20.0	5.0	917.8	41.1	720.8	693.1
1.0	18.0	13.0	854.0	119.0	20.0	5.0	883.3	40.4	695.6	669.0
1.0	18.0	14.0	806.0	115.0	21.0	5.0	761.7	38.7	602.9	580.2
1.0	18.0	15.0	720.0	101.0	20.0	5.0	574.4	33.2	461.0	443.6
1.0	18.0	16.0	430.0	80.0	20.0	5.0	282.4	26.3	225.7	215.6
1.0	18.0	17.0	133.0	27.0	20.0	5.0	69.9	20.8	53.6	47.4
		18.0		27.0	20.0	5.0	-	20.0		47.4
1.0 1.0	18.0 18.0	19.0	-	·	20.0	5.0	· ·	20.0	-	-
		20.0	-	· •	20.0	5.0	•	20.0		-
1.0	18.0		-	·			· ·			-
1.0	18.0	21.0	-	-	20.0	5.0	-	20.0	-	-
1.0	18.0	22.0	-	·	20.0	5.0	· ·	20.0		-
1.0	18.0	23.0	-	-	20.0	4.0	-	20.0	-	-
1.0	19.0	-	-	-	20.0	4.0	-	20.0	-	-
1.0	19.0	1.0	-	-	20.0	3.0	-	20.0	-	-
1.0	19.0	2.0	-	-	20.0	3.0	-	20.0	-	-
1.0	19.0	3.0	-	-	20.0	3.0	-	20.0	-	-
1.0	19.0	4.0	-	-	20.0	3.0	-	20.0	-	-
1.0	19.0	5.0	-	-	20.0	3.0	-	20.0	-	-
1.0	19.0	6.0	-	-	20.0	3.0	- -	20.0	-	-
1.0	19.0	7.0		10.0	20.0	3.0	9.5	18.6	8.3	3.0
1.0	19.0	8.0	204.0	99.0	21.0	3.0	199.6	24.7	163.6	155.1
1.0	19.0	9.0	-	117.0	22.0	4.0	113.4	23.8	97.0	90.0
1.0	19.0	10.0	-	144.0	22.0	4.0	139.4	24.2	119.0	111.5
1.0	19.0	11.0	91.0	305.0	22.0	4.0	398.5	30.8	329.6	316.6
1.0	19.0	12.0	4.0	193.0	23.0	4.0	191.9	27.4	161.4	152.9
1.0	19.0	13.0	62.0	294.0	22.0	4.0	361.1	30.0	299.9	287.7
1.0	19.0	14.0	-	122.0	22.0	4.0	117.2	24.4	100.0	92.9
1.0	19.0	15.0	-	108.0	22.0	4.0	104.1	23.3	89.2	82.4
1.0	19.0	16.0	-	43.0	21.0	4.0	40.8	20.7	35.4	29.6
1.0	19.0	17.0	120.0	27.0	21.0	3.0	66.8	21.2	51.5	45.4
1.0	19.0	18.0	-	-	21.0	3.0	-	21.0	-	-
1.0	19.0	19.0	-	-	21.0	3.0	-	21.0	-	-
1.0	19.0	20.0	-	-	21.0	2.0	-	21.0	-	-
1.0	19.0	21.0	-	-	21.0	2.0	-	21.0	-	-
1.0	19.0	22.0	-	-	20.0	1.0	-	20.0	-	-
1.0	19.0	23.0	-	-	20.0	1.0	-	20.0	-	-
1.0	20.0	-	-	-	20.0	1.0	-	20.0	-	_
1.0	20.0	1.0	-	-	20.0	-	-	20.0	-	_
1.0	20.0	2.0	-	-	20.0	-	-	20.0	-	-

1.0 23.0 2.0 - - 18.0 4.0 - 18.0 - - 1.0 23.0 3.0 - - 18.0 4.0 - 18.0 - - - 1.0 23.0 4.0 - - 18.0 - <td< th=""></td<>

1.0	23.0	12.0	917.0	104.0	22.0	3.0	950.0	48.0	720.1	692.4
1.0 1.0	23.0 23.0	13.0 14.0	196.0 357.0	322.0 246.0	22.0 21.0	3.0 3.0	520.2 553.3	37.6 36.0	416.1 444.9	400.3 428.1
1.0	23.0	15.0	-	113.0	21.0	3.0	109.0	24.2	93.1	86.1
1.0	23.0	16.0	640.0	67.0	20.0	3.0	367.1	28.6	288.3	276.5
1.0 1.0	23.0 23.0	17.0 18.0	261.0	28.0	19.0 18.0	3.0 3.0	101.6	21.3 18.0	74.2	67.7
1.0	23.0	19.0	-	-	18.0	3.0	-	18.0	-	-
1.0	23.0	20.0	-		18.0	2.0	-	18.0	-	-
1.0 1.0	23.0 23.0	21.0 22.0	-	- -	17.0 17.0	2.0 2.0	- -	17.0 17.0	-	
1.0	23.0	23.0	-	-	17.0	2.0	-	17.0	-	-
1.0 1.0	24.0 24.0	1.0	-	- -	17.0 17.0	2.0 2.0	-	17.0 17.0	-	
1.0	24.0	2.0	_	- -	17.0	2.0	-	17.0	-	-
1.0	24.0	3.0	-	-	17.0	2.0	-	17.0	-	-
1.0 1.0	24.0 24.0	4.0 5.0	-	- -	16.0 16.0	2.0 2.0	-	16.0 16.0	-	-
1.0	24.0	6.0	-	-	16.0	2.0	-	16.0	-	-
1.0 1.0	24.0 24.0	7.0 8.0	283.0 677.0	22.0 59.0	18.0 19.0	3.0 3.0	97.1 363.1	19.2 27.5	69.6 284.2	63.2 272.5
1.0	24.0	9.0	828.0	78.0	20.0	3.0	611.3	36.1	483.0	464.8
1.0	24.0	10.0	903.0	89.0	21.0	3.0	803.5	42.9	622.5	599.0
1.0 1.0	24.0 24.0	11.0 12.0	935.0 943.0	96.0 100.0	21.0 21.0	3.0 4.0	926.3 970.5	46.6 45.8	706.6 744.3	679.5 715.5
1.0	24.0	13.0	929.0	100.0	21.0	4.0	930.7	44.9	716.4	688.8
1.0	24.0	14.0	888.0	96.0 87.0	21.0	4.0 3.0	814.6	42.1	634.0 487.3	610.1 469.0
1.0 1.0	24.0 24.0	15.0 16.0	807.0 645.0	69.0	20.0 19.0	3.0	620.6 372.7	37.8 29.6	487.3 291.7	279.8
1.0	24.0	17.0	267.0	29.0	18.0	3.0	104.0	20.4	76.3	69.7
1.0 1.0	24.0 24.0	18.0 19.0	-	- -	18.0 18.0	2.0 2.0	-	18.0 18.0	•	-
1.0	24.0	20.0	-	-	18.0	2.0	-	18.0	-	-
1.0 1.0	24.0 24.0	21.0 22.0	-	-	18.0 18.0	2.0 2.0	-	18.0 18.0	-	-
1.0	24.0	23.0	-	-	18.0	2.0	- -	18.0		
1.0	25.0	-	-	-	18.0	2.0	-	18.0	-	-
1.0 1.0	25.0 25.0	1.0 2.0	-	-	17.0 17.0	2.0 3.0	-	17.0 17.0	-	
1.0	25.0	3.0	-	-	17.0	3.0	-	17.0	-	-
1.0 1.0	25.0 25.0	4.0 5.0	-	- -	17.0 17.0	3.0 3.0	-	17.0 17.0	-	
1.0	25.0	6.0	-	- -	17.0	2.0	- -	17.0	-	
1.0	25.0	7.0	177.0	24.0	19.0	2.0	73.9	19.6	54.9	48.7
1.0 1.0	25.0 25.0	8.0 9.0	582.0 764.0	73.0 92.0	20.0 21.0	2.0 2.0	338.3 589.7	28.7 38.3	264.8 461.2	253.6 443.8
1.0	25.0	10.0	844.0	105.0	22.0	2.0	782.1	45.8	596.8	574.4
1.0 1.0	25.0 25.0	11.0 12.0	880.0 883.0	113.0 119.0	22.0 23.0	2.0 2.0	905.3 946.2	50.0 52.5	678.5 700.0	652.6 673.2
1.0	25.0	13.0	837.0	134.0	23.0	2.0	896.4	51.3	667.1	641.7
1.0	25.0	14.0	794.0	127.0	23.0	2.0	780.5	47.9	589.5	567.4
1.0 1.0	25.0 25.0	15.0 16.0	716.0 556.0	111.0 84.0	22.0 21.0	1.0 1.0	593.2 350.4	45.0 35.0	449.7 268.7	432.8 257.4
1.0	25.0	17.0	191.0	33.0	21.0	1.0	89.8	24.2	66.7	60.3
1.0 1.0	25.0 25.0	18.0 19.0	-	- -	21.0 20.0	1.0 1.0	-	21.0 20.0	-	-
1.0	25.0	20.0	_	- -	20.0	1.0	-	20.0	-	-
1.0	25.0	21.0	-	-	20.0	1.0	-	20.0	-	
1.0 1.0	25.0 25.0	22.0 23.0		- -	20.0 20.0	1.0 1.0	- -	20.0 20.0	-	
1.0	26.0	5.2	-	-	20.0	1.0	-	20.0	-	-
1.0 1.0	26.0 26.0	1.0 2.0	-	- -	19.0 18.0	1.0 1.0	- -	19.0 18.0	-	-
1.0	26.0	3.0	-	-	18.0	1.0	-	18.0	-	-
1.0 1.0	26.0 26.0	4.0 5.0	-	-	17.0 17.0	2.0 2.0	-	17.0 17.0	-	-
1.0	26.0	6.0	-	- -	17.0	2.0	-	17.0	-	
1.0	26.0	7.0	226.0	24.0	18.0	2.0	86.3	18.9	63.3	56.9
1.0 1.0	26.0 26.0	8.0 9.0	617.0 778.0	69.0 90.0	19.0 20.0	3.0 2.0	348.9 594.6	27.1 37.5	274.8 466.7	263.3 449.2
1.0	26.0	10.0	857.0	102.0	21.0	2.0	789.7	45.1	605.0	582.2
1.0 1.0	26.0 26.0	11.0 12.0	893.0 901.0	110.0 114.0	22.0 23.0	2.0 2.0	914.6 958.4	50.3 52.9	684.4 707.7	658.2 680.5
1.0	26.0	13.0	906.0	105.0	23.0	2.0	919.8	52.0	682.0	656.0
1.0 1.0	26.0 26.0	14.0 15.0	869.0 794.0	100.0 89.0	23.0 22.0	2.0 2.0	807.8 617.8	48.8 42.1	607.3 475.1	584.5 457.2
1.0	26.0	16.0	643.0	70.0	21.0	1.0	375.3	36.0	285.2	273.4
1.0	26.0	17.0	288.0	30.0	20.0	1.0	109.8	24.1	78.8	72.2
1.0 1.0	26.0 26.0	18.0 19.0	-	-	20.0 19.0	2.0 2.0	-	20.0 19.0	-	-
1.0	26.0	20.0	-	-	19.0	2.0	-	19.0	-	-

1.0	26.0	21.0	-		19.0	2.0	-	19.0	-	-
1.0	26.0	22.0	-	-	19.0	2.0	-	19.0	-	-
1.0	26.0	23.0	-	-	19.0	1.0	-	19.0	_	_
1.0	27.0	_	_	_	19.0	1.0	<u>-</u>	19.0	_	_
1.0	27.0	1.0	_	_	19.0	1.0	_	19.0	_	_
1.0	27.0	2.0	_		19.0	1.0	_	19.0	_	
1.0	27.0	3.0			19.0	1.0		19.0		
1.0	27.0	4.0			19.0	1.0	-	19.0	-	
			-				· ·			-
1.0	27.0	5.0	-	-	18.0	1.0	-	18.0	-	-
1.0	27.0	6.0		<u></u>	18.0	2.0	5.2	18.0	<u> </u>	
1.0	27.0	7.0	252.0	24.0	20.0	2.0	91.7	21.3	65.9	59.5
1.0	27.0	8.0	631.0	65.0	21.0	2.0	350.7	30.2	271.8	260.4
1.0	27.0	9.0	780.0	86.0	22.0	3.0	592.1	37.5	464.8	447.4
1.0	27.0	10.0	860.0	96.0	23.0	3.0	786.3	44.3	604.8	582.1
1.0	27.0	11.0	892.0	104.0	23.0	3.0	901.9	47.9	683.7	657.6
1.0	27.0	12.0	899.0	107.0	23.0	4.0	943.4	47.0	719.0	691.4
1.0	27.0	13.0	896.0	102.0	24.0	4.0	909.4	47.3	691.6	665.2
1.0	27.0	14.0	857.0	97.0	23.0	4.0	796.7	43.5	615.7	592.5
1.0	27.0	15.0	782.0	87.0	23.0	4.0	609.5	38.8	476.7	458.8
1.0	27.0	16.0	633.0	69.0	22.0	3.0	370.9	32.5	286.9	275.1
1.0	27.0	17.0	288.0	30.0	21.0	3.0	109.8	23.6	79.0	72.3
1.0	27.0	18.0	-	-	20.0	3.0	-	20.0	-	-
1.0	27.0	19.0	-	-	20.0	4.0		20.0	-	-
1.0	27.0	20.0	-	-	20.0	4.0	-	20.0	-	-
1.0	27.0	21.0	-	-	20.0	4.0	-	20.0	-	-
1.0	27.0	22.0	-		20.0	4.0		20.0	-	-
1.0	27.0	23.0	-	-	20.0	4.0	_	20.0	_	_
1.0	28.0	-	_	<u>-</u>	20.0	4.0	-	20.0	_	_
1.0	28.0	1.0	_		20.0	5.0	_	20.0	_	_
1.0	28.0	2.0			20.0	5.0		20.0		
			-				· ·			-
1.0	28.0	3.0	-	-	20.0	5.0	-	20.0	-	-
1.0	28.0	4.0	-	-	20.0	5.0	-	20.0	-	-
1.0	28.0	5.0	-	-	20.0	5.0		20.0	-	-
1.0	28.0	6.0	-	-	20.0	5.0	-	20.0	-	-
1.0	28.0	7.0	210.0	25.0	21.0	5.0	83.3	21.7	60.7	54.5
1.0	28.0	8.0	605.0	66.0	22.0	5.0	340.9	28.5	266.7	255.5
1.0	28.0	9.0	762.0	85.0	23.0	5.0	580.4	35.4	460.4	443.1
1.0	28.0	10.0	831.0	99.0	24.0	5.0	768.2	41.2	600.6	578.0
1.0	28.0	11.0	864.0	106.0	24.0	5.0	887.4	44.2	685.7	659.5
1.0	28.0	12.0	870.0	111.0	24.0	5.0	923.1	45.2	710.0	682.7
1.0	28.0	13.0	854.0		24.0	4.0		46.7	678.5	652.6
				110.0			889.6			
1.0	28.0	14.0	813.0	106.0	24.0	4.0	773.8	43.9	597.0	574.5
1.0	28.0	15.0	735.0	95.0	23.0	4.0	591.8	38.3	464.3	446.8
1.0	28.0	16.0	580.0	75.0	22.0	4.0	354.8	31.0	277.2	265.7
1.0	28.0	17.0	229.0	33.0	22.0	3.0	98.1	24.2	71.9	65.4
1.0	28.0	18.0	-		22.0	3.0		22.0	-	-
1.0	28.0	19.0	-	-	21.0	3.0	-	21.0	-	-
1.0	28.0	20.0	_	_	21.0	4.0	<u>-</u>	21.0	_	_
1.0	28.0	21.0	_	_	21.0	4.0	_	21.0	_	_
1.0	28.0	22.0	_		21.0	3.0	_	21.0	_	_
1.0	28.0	23.0	_		21.0	3.0	_	21.0	_	_
1.0	29.0	-			21.0	3.0		21.0		
1.0	29.0	1.0			21.0	3.0		21.0		
										-
1.0	29.0	2.0	-	-	21.0	3.0	-	21.0	-	-
1.0	29.0	3.0	-	-	21.0	3.0	-	21.0	-	-
1.0	29.0	4.0	-	-	21.0	3.0	-	21.0	-	-
1.0	29.0	5.0	-	-	21.0	3.0	-	21.0	-	-
1.0	29.0	6.0	-	-	21.0	3.0	-	21.0	-	-
1.0	29.0	7.0	-	13.0	22.0	3.0	12.3	20.9	10.7	5.4
1.0	29.0	8.0	60.0	108.0	23.0	4.0	137.4	24.9	115.1	107.7
1.0	29.0	9.0	6.0	159.0	24.0	4.0	160.1	26.9	134.9	127.1
1.0	29.0	10.0	187.0	277.0	24.0	4.0	444.0	34.0	361.1	347.0
1.0	29.0	11.0	8.0	215.0	25.0	4.0	217.5	30.2	180.5	171.6
1.0	29.0	12.0	-	122.0	25.0	4.0	116.9	27.0	98.5	91.4
1.0	29.0	13.0	3.0	189.0	25.0	4.0	186.6	28.5	156.1	147.7
1.0	29.0	14.0	791.0	116.0	24.0	4.0	769.1	41.9	599.6	577.0
1.0	29.0	15.0	39.0	192.0	24.0	4.0	223.3	30.3	184.8	175.7
1.0	29.0	16.0	586.0	75.0	23.0	4.0	358.5	31.0	280.2	268.6
									76.0	200.0
1.0	29.0	17.0	253.0	34.0	22.0	3.0	104.7	24.4	76.2	69.6
1.0	29.0	18.0	-	-	22.0	3.0	-	22.0	-	-
1.0	29.0	19.0	-	-	22.0	3.0	-	22.0	-	-
1.0	29.0	20.0	-	-	22.0	4.0	-	22.0	•	-
1.0	29.0	21.0	-	-	21.0	4.0	-	21.0	-	-
1.0	29.0	22.0	-	-	21.0	4.0	-	21.0	-	-
1.0	29.0	23.0	-	-	21.0	4.0	-	21.0	-	-
1.0	30.0	-	-	-	21.0	4.0	-	21.0	-	-
1.0	30.0	1.0	-	-	21.0	4.0	-	21.0	-	-
1.0	30.0	2.0	-	-	21.0	4.0	-	21.0	-	-
1.0	30.0	3.0	_	<u>-</u>	21.0	4.0	-	21.0	_	_
1.0	30.0	4.0	-	•	21.0	4.0	•	21.0	<u>-</u>	-
1.0 1.0	30.0 30.0	4.0 5.0			21.0 21.0	4.0 4.0	- -	21.0 21.0	-	-
1.0 1.0	30.0 30.0	5.0	-	-	21.0	4.0	-	21.0	-	-

2.0	2.0	15.0	685.0	115.0	21.0	3.0	588.3	37.8	463.6	446.1
2.0	2.0	16.0	-	69.0	20.0	3.0	65.8	22.1	56.8	50.6
2.0	2.0	17.0	_	21.0	20.0	3.0	19.9	18.9	17.4	12.0
2.0	2.0	18.0		-	19.0	3.0	-	19.0	- 17.4	-
				-		3.0	-	19.0	-	-
2.0	2.0	19.0	-	-	19.0					-
2.0	2.0	20.0	-	-	19.0	3.0	-	19.0	-	-
2.0	2.0	21.0	-	-	19.0	3.0	-	19.0	-	-
2.0	2.0	22.0	-	-	19.0	2.0	-	19.0	-	-
2.0	2.0	23.0	-	-	19.0	2.0	-	19.0	-	-
2.0	3.0	-	-	-	19.0	2.0	-	19.0	-	-
2.0	3.0	1.0	-	-	19.0	2.0	-	19.0	-	-
2.0	3.0	2.0	-	-	19.0	1.0	-	19.0	_	-
2.0	3.0	3.0	-	-	19.0	1.0	-	19.0	_	_
2.0	3.0	4.0	_	_	19.0	1.0	_	19.0	_	_
2.0	3.0	5.0	_	_	19.0	1.0	<u>-</u>	19.0	_	_
2.0	3.0	6.0	_	_	19.0	1.0	_	19.0	_	_
2.0	3.0	7.0	_	14.0	19.0	1.0	13.3	16.9	11.7	6.4
2.0	3.0	8.0	_	76.0	20.0	2.0	73.2	20.2	63.7	57.4
2.0	3.0	9.0	14.0	171.0	21.0	1.0	177.2	25.5	150.2	142.0
2.0										
	3.0	10.0	72.0	273.0	22.0	1.0	339.7	33.0	277.9	266.3
2.0	3.0	11.0	498.0	261.0	22.0	-	741.6	52.7	548.2	527.7
2.0	3.0	12.0	481.0	284.0	22.0	-	770.6	56.5	558.3	537.4
2.0	3.0	13.0	36.0	295.0	22.0	-	337.2	41.8	264.2	253.0
2.0	3.0	14.0	-	132.0	22.0	-	126.9	29.5	105.7	98.4
2.0	3.0	15.0	-	74.0	22.0	-	70.3	24.1	60.1	53.8
2.0	3.0	16.0	291.0	117.0	22.0	-	264.4	32.2	209.6	199.9
2.0	3.0	17.0	144.0	44.0	21.0	-	86.4	25.7	65.8	59.4
2.0	3.0	18.0	-	-	21.0	1.0	-	21.0	_	-
2.0	3.0	19.0	-	-	20.0	1.0	-	20.0	_	_
2.0	3.0	20.0	_	_	20.0	2.0	<u>-</u>	20.0	_	_
2.0	3.0	21.0	_	_	20.0	3.0	_	20.0	_	_
2.0	3.0	22.0			19.0	3.0		19.0		
2.0	3.0	23.0			19.0	4.0		19.0		
2.0	4.0	-			19.0	4.0	-	19.0	-	
			-	-						-
2.0	4.0	1.0	-	-	19.0	4.0	-	19.0	-	-
2.0	4.0	2.0	-	-	18.0	5.0	-	18.0	-	-
2.0	4.0	3.0	-	-	18.0	5.0	-	18.0	-	-
2.0	4.0	4.0	-	-	18.0	5.0	-	18.0	-	-
2.0	4.0	5.0	-	-	18.0	5.0	-	18.0	-	-
2.0	4.0	6.0	-	-	17.0	6.0	-	17.0	-	-
2.0	4.0	7.0	-	10.0	17.0	6.0	9.5	16.0	8.4	3.1
2.0	4.0	8.0	-	56.0	17.0	6.0	53.2	16.7	47.0	41.0
2.0	4.0	9.0	-	41.0	17.0	6.0	38.9	16.5	34.4	28.7
2.0	4.0	10.0	-	155.0	18.0	6.0	149.9	19.8	130.7	122.9
2.0	4.0	11.0	38.0	295.0	18.0	6.0	338.6	23.8	289.6	277.8
2.0	4.0	12.0	107.0	357.0	18.0	6.0	472.0	26.9	397.9	382.7
2.0	4.0	13.0	193.0	352.0	18.0	6.0	552.5	28.8	461.4	444.1
2.0	4.0	14.0	120.0	302.0	18.0	6.0	411.4	26.1	347.9	334.3
2.0	4.0	15.0	85.0	216.0	18.0	6.0	279.2	23.1	238.7	228.3
2.0	4.0	16.0	32.0	122.0	17.0	6.0	140.0	19.0	121.5	114.0
2.0	4.0	17.0	252.0	45.0	17.0	6.0	116.1	18.3	88.4	81.6
				43.0						-
2.0	4.0	18.0	-		17.0	6.0	-	17.0	-	
2.0	4.0	19.0	-	-	17.0	6.0	-	17.0	-	-
2.0	4.0	20.0	-	-	17.0	6.0	-	17.0	-	-
2.0	4.0	21.0	-	-	17.0	7.0	-	17.0	-	-
2.0	4.0	22.0	-	-	17.0	7.0	-	17.0	-	-
2.0	4.0	23.0	-	-	17.0	6.0		17.0	-	-
2.0	5.0	-	-	-	17.0	6.0		17.0	-	-
2.0	5.0	1.0	-	-	17.0	6.0		17.0	-	-
2.0	5.0	2.0	-	-	17.0	6.0	-	17.0	-	-
2.0	5.0	3.0	-	-	17.0	6.0	-	17.0	-	-
2.0	5.0	4.0	-	-	16.0	6.0	-	16.0	-	-
2.0	5.0	5.0	-	-	16.0	6.0	-	16.0	-	-
2.0	5.0	6.0	-	-	16.0	6.0	-	16.0	_	-
2.0	5.0	7.0	24.0	31.0	17.0	6.0	36.8	16.4	31.3	25.6
2.0	5.0	8.0	266.0	109.0	18.0	6.0	236.2	21.5	196.0	186.6
2.0	5.0	9.0	-	150.0	18.0	6.0	146.3	20.1	127.4	186.6 119.7
2.0	5.0	10.0	64.0	272.0	19.0	6.0	332.0	24.7	282.6	270.9
2.0	5.0	11.0	16.0	252.0	19.0	6.0	262.3	23.6	224.5	214.5
2.0	5.0	12.0	-	165.0	19.0	6.0	159.4	21.4	137.9	129.9
2.0	5.0	13.0	118.0	346.0	20.0	6.0	467.2	28.5	390.8	375.8
			-	132.0	20.0					102.1
2.0	5.0	14.0	-			6.0	126.8	22.1	109.3	70.0
2.0	5.0	15.0	-	100.0	20.0	6.0	95.6	20.9	82.9	76.2 28.3
2.0	5.0	16.0	-	41.0	19.0	6.0	38.9	18.6	34.1	28.3
2.0	5.0	17.0	-	10.0	19.0	5.0	9.5	17.8	8.3	3.1
2.0	5.0	18.0	-		19.0	5.0	-	19.0	-	-
2.0	5.0	19.0	-	-	19.0	6.0		19.0	-	-
2.0	5.0	20.0	-	-	19.0	6.0		19.0	-	-
2.0	5.0	21.0	-	-	19.0	6.0		19.0	-	-
2.0	5.0	22.0	-	-	19.0	6.0	-	19.0	-	-
2.0	5.0	23.0	-	-	19.0	5.0	-	19.0	-	-

2.0	6.0 -	_	_	19.0	5.0	_	19.0	_	_
2.0	6.0 1.0	-	-	19.0	5.0	-	19.0	-	-
2.0 2.0	6.0 2.0 6.0 3.0	-	- -	19.0 19.0	5.0 4.0	-	19.0 19.0	-	
2.0	6.0 4.0	-	-	19.0	4.0	-	19.0	-	-
2.0 2.0	6.0 5.0 6.0 6.0	-	- -	19.0 19.0	4.0 4.0		19.0 19.0	-	-
2.0	6.0 7.0		27.0	20.0	5.0	25.9	19.1	22.6	17.1
2.0	6.0 8.0	-	66.0	21.0	5.0	63.0	21.0	54.6	48.4
2.0 2.0	6.0 9.0 6.0 10.0	750.0 819.0	102.0 120.0	21.0 22.0	6.0 6.0	600.7 792.4	32.1 37.9	485.5 630.2	467.3 606.4
2.0	6.0 11.0	220.0	343.0	22.0	6.0	564.7	33.7	460.6	443.2
2.0 2.0	6.0 12.0 6.0 13.0	24.0 469.0	287.0 282.0	22.0 22.0	6.0 6.0	306.1 745.5	28.0 36.4	256.7 599.7	245.7 577.1
2.0	6.0 14.0	188.0	301.0	22.0	6.0	474.8	31.8	390.5	375.6
2.0	6.0 15.0	764.0	92.0	21.0	6.0	617.6	33.2	497.9	479.3
2.0 2.0	6.0 16.0 6.0 17.0	640.0 5.0	81.0 40.0	20.0 20.0	5.0 5.0	397.3 40.6	28.9 20.4	314.9 35.1	302.3 29.3
2.0	6.0 18.0	-	-	20.0	5.0	-	20.0	-	-
2.0 2.0	6.0 19.0 6.0 20.0	-	-	20.0 20.0	5.0 5.0	-	20.0 20.0	-	
2.0	6.0 20.0 6.0 21.0		- -	20.0	6.0	- -	20.0	-	
2.0	6.0 22.0	-	-	20.0	6.0	-	20.0	-	-
2.0 2.0	6.0 23.0 7.0 -		- -	20.0 20.0	5.0 5.0		20.0 20.0	-	_
2.0	7.0 1.0	1	- -	20.0	5.0	-	20.0	-	-
2.0	7.0 2.0	-	-	19.0	5.0	-	19.0	-	-
2.0 2.0	7.0 3.0 7.0 4.0		-	19.0 19.0	5.0 5.0	-	19.0 19.0	-	
2.0	7.0 5.0	-	-	19.0	5.0	-	19.0	-	_
2.0	7.0 6.0	1.5		19.0	5.0		19.0	<u>.</u>	
2.0 2.0	7.0 7.0 7.0 8.0	203.0 125.0	36.0 120.0	20.0 20.0	5.0 5.0	90.1 182.5	20.5 22.9	67.3 153.0	60.9 144.7
2.0	7.0 9.0	747.0	107.0	21.0	5.0	605.3	33.6	485.7	467.5
2.0	7.0 10.0	839.0	115.0	21.0	5.0	804.1	39.0	636.2	612.1
2.0 2.0	7.0 11.0 7.0 12.0	881.0 895.0	120.0 121.0	22.0 22.0	5.0 5.0	933.0 973.7	43.3 44.5	724.7 752.2	696.8 723.1
2.0	7.0 13.0	897.0	113.0	22.0	5.0	941.9	43.8	729.6	701.5
2.0	7.0 14.0	448.0	250.0	22.0	4.0	648.9	39.1	514.1	494.8
2.0 2.0	7.0 15.0 7.0 16.0	179.0 652.0	226.0 77.0	21.0 21.0	4.0 4.0	359.8 399.5	30.3 30.4	296.8 314.2	284.7 301.7
2.0	7.0 17.0	326.0	42.0	20.0	4.0	130.9	22.8	95.5	88.5
2.0	7.0 18.0	-	-	20.0	4.0		20.0	-	-
2.0 2.0	7.0 19.0 7.0 20.0	-	- -	20.0 20.0	4.0 3.0		20.0 20.0	-	-
2.0	7.0 21.0	-	-	20.0	3.0	-	20.0	-	-
2.0	7.0 22.0	-	-	20.0	3.0 3.0	-	20.0	-	-
2.0 2.0	7.0 23.0 8.0 -		- -	20.0 20.0	3.0	- -	20.0 20.0	-	
2.0	8.0 1.0	-	-	19.0	3.0	-	19.0	-	-
2.0 2.0	8.0 2.0 8.0 3.0	-	-	19.0 19.0	3.0 3.0	-	19.0 19.0	-	-
2.0	8.0 4.0	_	-	19.0	3.0	-	19.0	-	_
2.0	8.0 5.0	-	-	19.0	3.0	-	19.0	-	-
2.0 2.0	8.0 6.0 8.0 7.0	364.0	28.0	19.0 20.0	3.0 3.0	116.3	19.0 21.4	- 81.0	74.3
2.0	8.0 8.0	-	42.0	21.0	4.0	39.8	20.7	34.6	28.8
2.0	8.0 9.0	836.0	75.0	22.0	4.0	625.5	36.1	495.3	476.7
2.0 2.0	8.0 10.0 8.0 11.0	17.0 161.0	230.0 351.0	22.0 22.0	4.0 4.0	239.8 521.0	28.3 34.1	200.8 424.2	191.4 408.1
2.0	8.0 12.0	164.0	369.0	22.0	4.0	549.8	35.6	444.4	427.6
2.0	8.0 13.0	893.0	112.0 103.0	22.0	3.0	938.9 833.4	47.1 45.6	715.1	687.7
2.0 2.0	8.0 14.0 8.0 15.0	868.0 810.0	103.0 89.0	22.0 21.0	3.0 3.0	832.4 647.4	45.6 39.5	637.2 505.7	613.1 486.8
2.0	8.0 16.0	688.0	71.0	21.0	3.0	410.5	32.7	319.1	306.4
2.0 2.0	8.0 17.0 8.0 18.0	394.0	38.0	20.0 19.0	3.0 3.0	143.6	23.6 19.0	102.5	95.4
2.0	8.0 19.0	-	-	19.0	3.0	-	19.0	-	-
2.0	8.0 20.0	-	-	19.0	3.0	-	19.0	-	-
2.0 2.0	8.0 21.0 8.0 22.0	-	- -	19.0 18.0	2.0 2.0	- -	19.0 18.0	-	-
2.0	8.0 23.0	-	-	18.0	2.0	-	18.0	-	-
2.0	9.0 -	-	-	18.0	2.0	-	18.0	-	-
2.0 2.0	9.0 1.0 9.0 2.0		- -	18.0 18.0	2.0 2.0	- -	18.0 18.0	-	-
2.0	9.0 3.0	-	-	18.0	2.0	-	18.0	-	-
2.0 2.0	9.0 4.0 9.0 5.0	-	-	18.0 18.0	2.0 2.0		18.0 18.0	-	-
2.0	9.0 6.0			18.0	2.0	-	18.0	-	
2.0	9.0 7.0	36.0	33.0	20.0	2.0	43.8	19.2	36.3	30.6
2.0	9.0 8.0	165.0	122.0	21.0	2.0	202.0	25.4	166.6	157.9

2.0	9.0	9.0	816.0	84.0	21.0	2.0	624.0	38.7	487.8	469.5
2.0	9.0	10.0	886.0	94.0	22.0	3.0	815.8	44.2	628.5	604.8
2.0	9.0	11.0	919.0	99.0	23.0	3.0	940.4	48.9	709.2	682.0
2.0 2.0	9.0 9.0	12.0 13.0	492.0 901.0	290.0 108.0	23.0 23.0	3.0 2.0	791.9 943.5	45.6 52.0	608.4 699.9	585.5 673.1
2.0	9.0	14.0	854.0	107.0	23.0	2.0	827.1	49.4	620.6	597.2
2.0	9.0	15.0	772.0	100.0	22.0	2.0	635.4	42.6	488.9	470.6
2.0	9.0	16.0	620.0	83.0	21.0	2.0	392.6	33.8	304.5	292.2
2.0	9.0	17.0	307.0	44.0	21.0	2.0	128.6	24.8	93.7	86.7
2.0	9.0	18.0	-	<u>-</u>	20.0	2.0	-	20.0	-	-
2.0	9.0	19.0	-	-	20.0	2.0	-	20.0	-	-
2.0	9.0	20.0	-	-	19.0	3.0	-	19.0	-	-
2.0	9.0	21.0	-	-	19.0	3.0	-	19.0	-	-
2.0	9.0	22.0	-	-	19.0	3.0	-	19.0		-
2.0	9.0	23.0	-	-	18.0	3.0	-	18.0	-	-
2.0	10.0	-	-	-	18.0	3.0	<u> </u>	18.0	-	_
2.0 2.0	10.0 10.0	1.0 2.0	-		17.0 17.0	4.0 4.0	· •	17.0 17.0		-
2.0	10.0	3.0			17.0	4.0		17.0		1
2.0	10.0	4.0	_	_	16.0	4.0	_	16.0	<u>-</u>	_
2.0	10.0	5.0	_	<u>-</u>	16.0	4.0	_	16.0	-	_
2.0	10.0	6.0	-	-	16.0	4.0	-	16.0	_	_
2.0	10.0	7.0	307.0	32.0	18.0	4.0	107.7	19.0	77.4	70.8
2.0	10.0	8.0	647.0	67.0	20.0	4.0	365.9	27.9	288.0	276.2
2.0	10.0	9.0	786.0	85.0	22.0	4.0	607.1	36.5	480.0	462.0
2.0	10.0	10.0	852.0	96.0	23.0	4.0	797.4	42.8	619.0	595.6
2.0	10.0	11.0	360.0	313.0	24.0	4.0	668.9	41.2	525.4	505.7
2.0	10.0	12.0	30.0	307.0	24.0	4.0	344.1	33.0	281.8	270.2
2.0	10.0	13.0	2.7.	65.0	25.0	4.0	61.8	26.0	52.4	46.3
2.0	10.0	14.0	734.0	153.0	25.0	5.0	784.3	41.4	614.0	590.8
2.0	10.0	15.0	671.0	132.0	24.0	5.0	606.2	38.0	478.1	460.2
2.0 2.0	10.0 10.0	16.0 17.0	567.0	96.0 48.0	24.0 23.0	5.0 6.0	382.1 74.9	32.6 24.0	299.1	286.9 53.0
2.0	10.0	18.0	93.0	40.0	21.0	6.0	-	21.0	59.2	-
2.0	10.0	19.0		_	19.0	7.0	_	19.0	_	_
2.0	10.0	20.0	_	_	17.0	7.0	_	17.0	<u>-</u>	_
2.0	10.0	21.0	_	<u>-</u>	16.0	7.0	_	16.0	-	_
2.0	10.0	22.0	-	-	15.0	7.0	-	15.0	_	_
2.0	10.0	23.0	-	-	15.0	7.0	-	15.0	-	-
2.0	11.0	-	-	-	14.0	8.0	-	14.0	-	-
2.0	11.0	1.0	-	-	13.0	8.0	-	13.0	-	-
2.0	11.0	2.0	-	-	13.0	8.0	-	13.0	-	-
2.0	11.0	3.0	-	-	12.0	8.0	-	12.0	-	-
2.0	11.0	4.0	-	-	12.0	8.0	-	12.0	-	-
2.0	11.0	5.0	-	-	12.0	7.0	-	12.0	-	-
2.0	11.0	6.0	-	-	12.0	7.0	-	12.0	-	-
2.0 2.0	11.0 11.0	7.0 8.0	366.0 706.0	34.0 70.0	12.0 13.0	7.0 7.0	121.9 395.7	13.0 19.3	89.0 324.1	82.2 311.3
2.0	11.0	9.0	834.0	92.0	13.0	6.0	646.7	25.5	539.5	519.3
2.0	11.0	10.0	889.0	110.0	14.0	6.0	844.1	31.0	694.9	668.3
2.0	11.0	11.0	924.0	117.0	15.0	6.0	968.2	34.9	784.6	754.0
2.0	11.0	12.0	939.0	118.0	16.0	5.0	1,018.5	39.5	807.0	775.3
2.0	11.0	13.0	951.0	107.0	16.0	5.0	991.3	39.0	787.0	756.2
2.0	11.0	14.0	928.0	98.0	16.0	5.0	875.3	36.4	702.2	675.3
2.0	11.0	15.0	876.0	86.0	16.0	4.0	692.1	34.1	555.6	534.7
2.0	11.0	16.0	764.0	69.0	15.0	4.0	445.5	26.6	356.5	342.6
2.0	11.0	17.0	479.0	39.0	14.0	4.0	166.2	17.8	120.8	113.2
2.0	11.0	18.0	-	-	14.0	4.0	-	14.0	-	-
2.0 2.0	11.0	19.0 20.0	-	-	14.0 13.0	5.0 5.0	-	14.0 13.0		-
2.0	11.0 11.0	20.0	-	-	13.0	5.0 6.0		13.0 13.0	-	
2.0	11.0	22.0	-		12.0	6.0	- -	12.0	-	
2.0	11.0	23.0		_	12.0	6.0	_	12.0	_	_
2.0	12.0	-	_	<u>-</u>	12.0	6.0	_	12.0	-	_
2.0	12.0	1.0	-	-	12.0	6.0	-	12.0	-	-
2.0	12.0	2.0	-	<u>-</u>	12.0	6.0	-	12.0	-	-
2.0	12.0	3.0	-	-	12.0	5.0	-	12.0	-	-
2.0	12.0	4.0	-	-	12.0	5.0	-	12.0	-	-
2.0	12.0	5.0	-	-	12.0	5.0	-	12.0		-
2.0	12.0	6.0	-	-	13.0	5.0	-	13.0	- 07.0	-
2.0	12.0	7.0	366.0	34.0	14.0	5.0	121.6	15.2	87.9	81.0
2.0	12.0	8.0	712.0	69.0 87.0	16.0	5.0	398.1 652.1	23.7	319.5 525.4	306.7
2.0 2.0	12.0 12.0	9.0 10.0	849.0 916.0	87.0 98.0	17.0 18.0	4.0 4.0	652.1 848.8	32.8 39.2	525.4 670.9	505.7 645.4
2.0	12.0	11.0	949.0	104.0	18.0	3.0	978.1	45.2	752.3	723.2
2.0	12.0	12.0	577.0	264.0	19.0	2.0	846.3	46.3	647.7	623.1
2.0	12.0	13.0	951.0	104.0	19.0	2.0	989.7	49.7	743.4	714.7
2.0	12.0	14.0	923.0	98.0	19.0	2.0	872.8	47.1	663.2	637.9
2.0	12.0	15.0	314.0	218.0	19.0	2.0	449.4	34.6	362.4	348.3
2.0	12.0	16.0	743.0	70.0	18.0	1.0	437.6	34.1	337.9	324.6
2.0	12.0	17.0	453.0	40.0	17.0	1.0	161.2	23.4	114.8	107.4

2.0	12.0	18.0	-	-	17.0	1.0	-	17.0	-	-
2.0	12.0	19.0	-	-	16.0	1.0	-	16.0	-	-
2.0	12.0	20.0	_	_	16.0	1.0	<u>-</u>	16.0	_	_
2.0	12.0	21.0	_		16.0	2.0	_	16.0	_	_
2.0	12.0	22.0			15.0	2.0		15.0		
2.0	12.0	23.0			15.0	1.0		15.0		
			-				-		-	
2.0	13.0	-	-	-	15.0	1.0		15.0	-	-
2.0	13.0	1.0	-	-	14.0	1.0	-	14.0	-	-
2.0	13.0	2.0	-	-	14.0	1.0	-	14.0	-	-
2.0	13.0	3.0	-		14.0	1.0		14.0		-
2.0	13.0	4.0	-	-	15.0	1.0	-	15.0	-	-
2.0	13.0	5.0	-	-	15.0	1.0	-	15.0	-	-
2.0	13.0	6.0	-		15.0	1.0		15.0	-	-
2.0	13.0	7.0	41.0	36.0	17.0	1.0	47.8	16.0	40.1	34.2
2.0	13.0	8.0	388.0	105.0	18.0	2.0	292.2	25.1	237.0	226.6
2.0	13.0	9.0	831.0	88.0	19.0	2.0	642.9	37.7	505.6	486.7
2.0	13.0	10.0	893.0	101.0	20.0	3.0	840.3	42.9	651.9	627.1
2.0	13.0	11.0	921.0	109.0	21.0	3.0	960.1	47.6	729.4	701.2
2.0	13.0	12.0	924.0	114.0	22.0	4.0	1,003.5	47.6	762.8	733.2
2.0	13.0	13.0	910.0	113.0	22.0	4.0	963.9	46.8	735.5	707.1
2.0	13.0	14.0	873.0	108.0	21.0	4.0	849.6	43.0	659.5	634.4
2.0	13.0	15.0	804.0	98.0	21.0	4.0	659.4	38.2	519.3	499.8
2.0	13.0	16.0	675.0	80.0	20.0	3.0	418.3	32.0	327.4	314.5
2.0	13.0	17.0	388.0	44.0	19.0	3.0	149.7	22.8	108.6	101.4
2.0	13.0	18.0	-	-	18.0	3.0	-	18.0	-	-
2.0	13.0	19.0	-	-	18.0	3.0	-	18.0	-	-
2.0	13.0	20.0	-		17.0	3.0		17.0	-	-
2.0	13.0	21.0	-	-	17.0	3.0	-	17.0	-	-
2.0	13.0	22.0	_	_	17.0	3.0	-	17.0	_	_
2.0	13.0	23.0	_		17.0	3.0	_	17.0	_	_
2.0	14.0	-			17.0	3.0		17.0		
2.0	14.0	1.0			17.0	3.0		17.0		
			-				-		-	
2.0	14.0	2.0	-	-	17.0	4.0		17.0	-	-
2.0	14.0	3.0	-	-	17.0	4.0	-	17.0	-	-
2.0	14.0	4.0	-	-	18.0	4.0	-	18.0	-	-
2.0	14.0	5.0	-	-	18.0	4.0		18.0	-	-
2.0	14.0	6.0	-	-	18.0	4.0		18.0	-	-
2.0	14.0	7.0	279.0	39.0	20.0	4.0	107.3	21.0	77.9	71.3
2.0	14.0	8.0	613.0	83.0	21.0	5.0	371.1	28.2	293.3	281.4
2.0	14.0	9.0	276.0	214.0	21.0	5.0	412.2	29.7	339.9	326.6
2.0	14.0	10.0	833.0	120.0	22.0	5.0	814.5	39.8	642.3	617.9
2.0	14.0	11.0	873.0	126.0	23.0	5.0	943.6	44.5	728.4	700.3
2.0	14.0	12.0	889.0	128.0	23.0	4.0	994.8	48.3	753.4	724.2
2.0	14.0	13.0	876.0	127.0	24.0	4.0	956.5	48.5	723.3	695.5
2.0	14.0	14.0	843.0	120.0	24.0	4.0	839.5	45.7	642.8	618.5
2.0	14.0	15.0	772.0	109.0	23.0	3.0	652.9	41.7	505.4	486.5
2.0	14.0	16.0	636.0	88.0	22.0	3.0	409.0	33.7	318.2	305.5
2.0	14.0	17.0	337.0	49.0	21.0	3.0	141.9	24.6	103.7	96.6
2.0	14.0	18.0	-	-	20.0	3.0	-	20.0	-	-
2.0	14.0	19.0	-	-	20.0	3.0	-	20.0	-	-
2.0	14.0	20.0	-	-	20.0	3.0		20.0	-	-
2.0	14.0	21.0	-		19.0	3.0		19.0	-	-
2.0	14.0	22.0	-	-	19.0	2.0		19.0	-	-
2.0	14.0	23.0	-	-	19.0	2.0	-	19.0	-	-
2.0	15.0	-	-	-	19.0	2.0	-	19.0	-	-
2.0	15.0	1.0	-		19.0	2.0		19.0	-	-
2.0	15.0	2.0	-	-	19.0	2.0	-	19.0	-	-
2.0	15.0	3.0	-	-	19.0	2.0	-	19.0	-	-
2.0	15.0	4.0	-	-	19.0	2.0	<u>-</u>	19.0	-	_
2.0	15.0	5.0	-	_	19.0	1.0	_	19.0	_	_
2.0	15.0	6.0		<u>-</u>	19.0	1.0	<u>-</u>	19.0	_	_
2.0			280.0	39.0	20.0	1.0	107.2	21.4	77.6	71.0
	15.0			00.0	22.0	2.0			287.7	
	15.0 15.0	7.0 8.0	617.0	80 N			370.5	31.8	476.8	275.9 458.9
2.0	15.0	8.0	617.0	80.0	22.0		616.4			
2.0 2.0	15.0 15.0	8.0 9.0	766.0	100.0	23.0	2.0	616.4	41.2		200.0
2.0 2.0 2.0	15.0 15.0 15.0	8.0 9.0 10.0	766.0 229.0	100.0 305.0	23.0 23.0	2.0	509.0	39.1	403.6	388.2
2.0 2.0 2.0 2.0	15.0 15.0 15.0 15.0	8.0 9.0 10.0 11.0	766.0 229.0 829.0	100.0 305.0 143.0	23.0 23.0 24.0	2.0 2.0	509.0 923.8	39.1 51.4	403.6 687.8	388.2 661.6
2.0 2.0 2.0 2.0 2.0	15.0 15.0 15.0 15.0 15.0	8.0 9.0 10.0 11.0 12.0	766.0 229.0 829.0 847.0	100.0 305.0 143.0 144.0	23.0 23.0 24.0 24.0	2.0 2.0 2.0	509.0 923.8 974.2	39.1 51.4 54.3	403.6 687.8 714.3	388.2 661.6
2.0 2.0 2.0 2.0 2.0 2.0	15.0 15.0 15.0 15.0 15.0 15.0	8.0 9.0 10.0 11.0 12.0 13.0	766.0 229.0 829.0 847.0 799.0	100.0 305.0 143.0 144.0 162.0	23.0 23.0 24.0 24.0 24.0	2.0 2.0 2.0 2.0	509.0 923.8 974.2 925.0	39.1 51.4 54.3 53.2	403.6 687.8 714.3 682.3	388.2 661.6 686.9 656.3
2.0 2.0 2.0 2.0 2.0 2.0 2.0	15.0 15.0 15.0 15.0 15.0 15.0 15.0	8.0 9.0 10.0 11.0 12.0 13.0 14.0	766.0 229.0 829.0 847.0 799.0 762.0	100.0 305.0 143.0 144.0 162.0 153.0	23.0 23.0 24.0 24.0 24.0 24.0	2.0 2.0 2.0 2.0 2.0	509.0 923.8 974.2 925.0 813.2	39.1 51.4 54.3 53.2 49.9	403.6 687.8 714.3 682.3 609.0	388.2 661.6 686.9 656.3 586.1
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0	8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0	766.0 229.0 829.0 847.0 799.0 762.0 688.0	100.0 305.0 143.0 144.0 162.0 153.0 136.0	23.0 23.0 24.0 24.0 24.0 24.0 23.0	2.0 2.0 2.0 2.0 2.0 2.0	509.0 923.8 974.2 925.0 813.2 626.5	39.1 51.4 54.3 53.2 49.9 43.3	403.6 687.8 714.3 682.3 609.0 481.4	388.2 661.6 686.9 656.3 586.1 463.4
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0	8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0	766.0 229.0 829.0 847.0 799.0 762.0 688.0 559.0	100.0 305.0 143.0 144.0 162.0 153.0 136.0 105.0	23.0 23.0 24.0 24.0 24.0 23.0 22.0	2.0 2.0 2.0 2.0 2.0 2.0 2.0	509.0 923.8 974.2 925.0 813.2 626.5 390.5	39.1 51.4 54.3 53.2 49.9 43.3 34.7	403.6 687.8 714.3 682.3 609.0 481.4 303.5	388.2 661.6 686.9 656.3 586.1 463.4 291.2
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0	8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0	766.0 229.0 829.0 847.0 799.0 762.0 688.0	100.0 305.0 143.0 144.0 162.0 153.0 136.0	23.0 23.0 24.0 24.0 24.0 24.0 23.0 22.0 21.0	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	509.0 923.8 974.2 925.0 813.2 626.5	39.1 51.4 54.3 53.2 49.9 43.3 34.7 24.9	403.6 687.8 714.3 682.3 609.0 481.4	388.2 661.6 686.9 656.3 586.1 463.4
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0	8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0	766.0 229.0 829.0 847.0 799.0 762.0 688.0 559.0	100.0 305.0 143.0 144.0 162.0 153.0 136.0 105.0	23.0 23.0 24.0 24.0 24.0 23.0 22.0	2.0 2.0 2.0 2.0 2.0 2.0 2.0	509.0 923.8 974.2 925.0 813.2 626.5 390.5	39.1 51.4 54.3 53.2 49.9 43.3 34.7	403.6 687.8 714.3 682.3 609.0 481.4 303.5	388.2 661.6 686.9 656.3 586.1 463.4 291.2
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0	8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0	766.0 229.0 829.0 847.0 799.0 762.0 688.0 559.0 289.0	100.0 305.0 143.0 144.0 162.0 153.0 136.0 105.0 53.0	23.0 23.0 24.0 24.0 24.0 24.0 23.0 22.0 21.0 21.0 20.0	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	509.0 923.8 974.2 925.0 813.2 626.5 390.5 134.5	39.1 51.4 54.3 53.2 49.9 43.3 34.7 24.9	403.6 687.8 714.3 682.3 609.0 481.4 303.5 99.8	388.2 661.6 686.9 656.3 586.1 463.4 291.2 92.7
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0	8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0	766.0 229.0 829.0 847.0 799.0 762.0 688.0 559.0 289.0	100.0 305.0 143.0 144.0 162.0 153.0 136.0 105.0 53.0	23.0 24.0 24.0 24.0 24.0 24.0 23.0 22.0 21.0	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	509.0 923.8 974.2 925.0 813.2 626.5 390.5 134.5	39.1 51.4 54.3 53.2 49.9 43.3 34.7 24.9 21.0	403.6 687.8 714.3 682.3 609.0 481.4 303.5 99.8	388.2 661.6 686.9 656.3 586.1 463.4 291.2
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0	8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0	766.0 229.0 829.0 847.0 799.0 762.0 688.0 559.0 289.0	100.0 305.0 143.0 144.0 162.0 153.0 136.0 105.0 53.0	23.0 23.0 24.0 24.0 24.0 24.0 23.0 22.0 21.0 21.0 20.0	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	509.0 923.8 974.2 925.0 813.2 626.5 390.5 134.5	39.1 51.4 54.3 53.2 49.9 43.3 34.7 24.9 21.0 20.0	403.6 687.8 714.3 682.3 609.0 481.4 303.5 99.8	388.2 661.6 686.9 656.3 586.1 463.4 291.2
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0	8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0	766.0 229.0 829.0 847.0 799.0 762.0 688.0 559.0 289.0	100.0 305.0 143.0 144.0 162.0 153.0 136.0 105.0 53.0	23.0 23.0 24.0 24.0 24.0 24.0 23.0 22.0 21.0 21.0 20.0 20.0	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	509.0 923.8 974.2 925.0 813.2 626.5 390.5 134.5	39.1 51.4 54.3 53.2 49.9 43.3 34.7 24.9 21.0 20.0 20.0	403.6 687.8 714.3 682.3 609.0 481.4 303.5 99.8	388.2 661.6 686.9 656.3 586.1 463.4 291.2
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0	8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0	766.0 229.0 829.0 847.0 799.0 762.0 688.0 559.0 289.0	100.0 305.0 143.0 144.0 162.0 153.0 136.0 105.0 53.0	23.0 23.0 24.0 24.0 24.0 24.0 23.0 22.0 21.0 21.0 20.0 20.0 20.0	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	509.0 923.8 974.2 925.0 813.2 626.5 390.5 134.5	39.1 51.4 54.3 53.2 49.9 43.3 34.7 24.9 21.0 20.0 20.0 20.0	403.6 687.8 714.3 682.3 609.0 481.4 303.5 99.8	388.2 661.6 686.9 656.3 586.1 463.4 291.2
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0	8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0	766.0 229.0 829.0 847.0 799.0 762.0 688.0 559.0 289.0	100.0 305.0 143.0 144.0 162.0 153.0 136.0 105.0 53.0	23.0 23.0 24.0 24.0 24.0 23.0 22.0 21.0 20.0 20.0 20.0 20.0	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	509.0 923.8 974.2 925.0 813.2 626.5 390.5 134.5	39.1 51.4 54.3 53.2 49.9 43.3 34.7 24.9 21.0 20.0 20.0 20.0 20.0 20.0	403.6 687.8 714.3 682.3 609.0 481.4 303.5 99.8	388.2 661.6 686.9 656.3 586.1 463.4 291.2
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0	8.0 9.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 20.0 21.0 22.0	766.0 229.0 829.0 847.0 799.0 762.0 688.0 559.0 289.0	100.0 305.0 143.0 144.0 162.0 153.0 136.0 105.0 53.0	23.0 23.0 24.0 24.0 24.0 23.0 22.0 21.0 20.0 20.0 20.0 20.0 19.0	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	509.0 923.8 974.2 925.0 813.2 626.5 390.5 134.5	39.1 51.4 54.3 53.2 49.9 43.3 34.7 24.9 21.0 20.0 20.0 20.0 20.0 19.0	403.6 687.8 714.3 682.3 609.0 481.4 303.5 99.8	388.2 661.6 686.9 656.3 586.1 463.4 291.2 92.7
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0	8.0 9.0 10.0 11.0 12.0 13.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0	766.0 229.0 829.0 847.0 799.0 762.0 688.0 559.0 289.0	100.0 305.0 143.0 144.0 162.0 153.0 136.0 105.0 53.0	23.0 23.0 24.0 24.0 24.0 24.0 23.0 22.0 21.0 20.0 20.0 20.0 20.0 19.0 19.0	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	509.0 923.8 974.2 925.0 813.2 626.5 390.5 134.5	39.1 51.4 54.3 53.2 49.9 43.3 34.7 24.9 21.0 20.0 20.0 20.0 20.0 19.0 19.0	403.6 687.8 714.3 682.3 609.0 481.4 303.5 99.8	388.2 661.6 686.9 656.3 586.1 463.4 291.2 92.7
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0	8.0 9.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 20.0 21.0 22.0	766.0 229.0 829.0 847.0 799.0 762.0 688.0 559.0 289.0	100.0 305.0 143.0 144.0 162.0 153.0 136.0 105.0 53.0	23.0 23.0 24.0 24.0 24.0 23.0 22.0 21.0 20.0 20.0 20.0 20.0 19.0	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	509.0 923.8 974.2 925.0 813.2 626.5 390.5 134.5	39.1 51.4 54.3 53.2 49.9 43.3 34.7 24.9 21.0 20.0 20.0 20.0 20.0 19.0	403.6 687.8 714.3 682.3 609.0 481.4 303.5 99.8	388.2 661.6 686.9 656.3 586.1 463.4 291.2 92.7

2.0 10 10 10 10 10 10 10 10 10 10 10 10 10	6.0 3.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	300.0 622.0 760.0 822.0 858.0 868.0 858.0 833.0 772.0 86.0 348.0 	39.0 79.0 100.0 117.0 125.0 129.0 127.0 117.0 103.0 147.0 48.0 48.0	18.0 18.0 18.0 18.0 18.0 20.0 21.0 22.0 23.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 21.0 20.0 21.0 20.0 21.0 20.0 21.0 20.0 21.0 20.0 21.0 20.0 21.0 20.0 21.0 20.0 21.0 20.0 21.0 20.0 22.0 22	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	111.5 372.5 613.7 805.3 932.0 979.2 943.0 830.6 646.3 191.2 144.4	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	80.2 288.0 469.5 596.8 671.3 697.8 675.0 604.9 482.1 155.4 104.6 	73.5 276.2 451.9 574.3 645.8 671.1 649.3 582.1 464.0 147.0 97.4
2.0 18 2.	8.0 23.0 9.0 - 9.0 1.0 9.0 2.0 9.0 3.0	- - - - - - - 333.0 650.0 787.0 855.0 889.0	- - - - - - - - - 43.0 82.0 103.0 115.0 123.0	17.0 17.0 17.0 17.0 17.0	4.0 4.0 4.0 4.0 4.0	- - - - - - 123.4 390.8 638.4 834.4 956.2	17.0 17.0 17.0 17.0 17.0	- - - - - - - - - - - - - - - - - - -	82.8 299.1 493.6 633.3 715.9

2.0	19.0	12.0	902.0	125.0	21.0	5.0	1,004.6	44.2	777.4	747.1
2.0	19.0	13.0	883.0	129.0	21.0	5.0	972.6	43.6	754.7	725.4
2.0 2.0	19.0 19.0	14.0 15.0	854.0 55.0	120.0 231.0	21.0 20.0	5.0 4.0	855.0 273.1	40.9 27.7	671.0 228.9	645.4
2.0	19.0	16.0	259.0	143.0	19.0	4.0	280.1	25.2	231.6	218.7 221.3
2.0	19.0	17.0	393.0	50.0	18.0	3.0	158.0	21.5	116.4	109.0
2.0	19.0	18.0	-	-	18.0	3.0	-	18.0	-	-
2.0	19.0	19.0	_	_	18.0	3.0	-	18.0	_	_
2.0	19.0	20.0	-	-	17.0	3.0	-	17.0	_	-
2.0	19.0	21.0	-	<u>-</u>	17.0	3.0	-	17.0	_	-
2.0	19.0	22.0	-		17.0	3.0	-	17.0	-	-
2.0	19.0	23.0	-	-	17.0	4.0	-	17.0	-	-
2.0	20.0	-	-	-	17.0	4.0	-	17.0	-	-
2.0	20.0	1.0	-		17.0	4.0	-	17.0	-	-
2.0	20.0	2.0	-	-	17.0	4.0	-	17.0	-	-
2.0	20.0	3.0	-	-	17.0	4.0	-	17.0	-	-
2.0 2.0	20.0 20.0	4.0 5.0	-	-	17.0 17.0	4.0 4.0	-	17.0 17.0		-
2.0	20.0	6.0	_		18.0	4.0		18.0		
2.0	20.0	7.0	361.0	42.0	19.0	4.0	128.9	20.6	92.4	85.5
2.0	20.0	8.0	675.0	78.0	20.0	5.0	398.8	27.8	315.9	303.3
2.0	20.0	9.0	809.0	96.0	21.0	5.0	646.7	35.0	516.4	497.0
2.0	20.0	10.0	277.0	308.0	21.0	5.0	561.4	33.7	457.3	440.1
2.0	20.0	11.0	900.0	117.0	22.0	5.0	961.4	43.4	746.8	717.9
2.0	20.0	12.0	911.0	119.0	22.0	4.0	1,008.3	47.7	766.1	736.3
2.0	20.0	13.0	894.0	121.0	23.0	4.0	968.6	47.9	735.0	706.7
2.0	20.0	14.0	860.0	116.0	22.0	4.0	856.8	44.2	661.4	636.3
2.0	20.0	15.0	796.0	104.0	22.0	4.0	667.4	39.3	523.0	503.4
2.0	20.0	16.0	670.0	85.0	21.0	3.0	425.4	33.2	331.9	318.8
2.0	20.0	17.0	392.0	51.0	20.0	3.0	158.9	24.1	115.8	108.4
2.0	20.0	18.0	-	-	20.0	3.0	-	20.0	-	-
2.0	20.0	19.0	-	-	20.0	3.0	-	20.0	-	-
2.0	20.0	20.0		-	20.0	3.0 3.0	-	20.0 20.0	-	-
2.0 2.0	20.0 20.0	21.0 22.0	-		20.0 20.0	3.0		20.0		-
2.0	20.0	23.0	_		20.0	3.0		20.0		
2.0	21.0	-	_		20.0	3.0		20.0		
2.0	21.0	1.0	_		20.0	3.0	_	20.0	_	_
2.0	21.0	2.0	_	_	19.0	3.0	_	19.0	<u>-</u>	_
2.0	21.0	3.0	_	<u>-</u>	19.0	3.0	<u>-</u>	19.0	_	_
2.0	21.0	4.0	_	-	19.0	3.0	_	19.0	_	-
2.0	21.0	5.0	-	<u>-</u>	19.0	3.0	-	19.0	_	-
2.0	21.0	6.0	-		19.0	3.0	-	19.0	-	-
2.0	21.0	7.0	381.0	41.0	21.0	3.0	132.7	22.8	93.7	86.7
2.0	21.0	8.0	681.0	75.0	22.0	4.0	399.3	30.8	311.9	299.3
2.0	21.0	9.0	808.0	94.0	23.0	4.0	645.3	38.5	506.4	487.4
2.0	21.0	10.0	869.0	106.0	23.0	4.0	839.0	43.8	648.3	623.7
2.0	21.0	11.0	896.0	115.0	24.0	4.0	957.2	48.1	725.3	697.4
2.0	21.0	12.0	905.0	118.0	24.0	4.0	1,003.0	49.5	754.9	725.6
2.0	21.0	13.0	893.0	118.0 114.0	25.0 24.0	4.0 3.0	965.8 854.9	49.7	725.8 646.2	697.8 621.7
2.0 2.0	21.0 21.0	14.0 15.0	859.0 792.0	104.0	24.0	3.0	665.5	48.2 43.0	511.9	492.8
2.0	21.0	16.0	664.0	86.0	23.0	3.0	424.0	35.1	327.9	314.9
2.0	21.0	17.0	202.0	59.0	22.0	3.0	115.9	24.9	88.4	81.5
2.0	21.0	18.0	-	-	21.0	3.0	-	21.0	-	-
2.0	21.0	19.0	_	<u>-</u>	21.0	4.0	_	21.0	<u>-</u>	_
2.0	21.0	20.0	_	<u>-</u>	20.0	4.0	<u>-</u>	20.0	_	_
2.0	21.0	21.0	-	-	20.0	3.0	-	20.0	-	-
2.0	21.0	22.0	-		20.0	3.0	-	20.0	-	-
2.0	21.0	23.0	-	-	19.0	3.0	-	19.0	-	-
2.0	22.0	-	-	-	19.0	2.0	-	19.0	-	-
2.0	22.0	1.0	-		19.0	2.0	-	19.0	-	-
2.0	22.0	2.0	-		19.0	2.0	-	19.0		-
2.0	22.0	3.0	-	-	19.0	2.0	-	19.0	-	-
2.0	22.0	4.0	-	-	18.0	2.0	-	18.0	-	-
2.0 2.0	22.0 22.0	5.0	-	- -	18.0 18.0	1.0	- -	18.0 18.0	-	-
2.0	22.0	6.0 7.0	286.0	47.0	20.0	1.0 1.0	- 117.9	21.8	86.5	79.7
2.0	22.0	8.0	585.0	92.0	21.0	1.0	374.7	32.9	291.3	279.4
2.0	22.0	9.0	722.0	117.0	22.0	1.0	616.6	43.5	472.3	454.6
2.0	22.0	10.0	730.0	164.0	23.0	-	792.6	57.3	570.3	548.9
2.0	22.0	11.0	779.0	170.0	24.0	_	921.5	63.5	641.8	617.5
2.0	22.0	12.0	799.0	170.0	25.0	_	966.2	66.5	661.4	636.2
2.0	22.0	13.0	235.0	382.0	25.0	_	624.8	55.9	454.1	437.0
2.0	22.0	14.0	568.0	228.0	25.0	-	734.0	57.3	528.7	508.9
2.0	22.0	15.0	408.0	215.0	25.0	-	519.6	50.8	385.4	370.6
2.0	22.0	16.0	547.0	102.0	24.0	1.0	384.5	38.6	293.5	281.5
2.0	22.0	17.0	-	49.0	23.0	1.0	47.3	25.0	40.3	34.4
2.0	22.0	18.0	-	-	22.0	2.0		22.0	-	-
2.0	22.0	19.0	-	-	21.0	2.0	-	21.0	-	-
2.0	22.0	20.0	-	-	21.0	2.0	-	21.0	-	-

2.0	22.0	21.0	_	_	21.0	2.0	<u>-</u>	21.0	_	_
2.0	22.0	22.0	_	<u>-</u>	20.0	2.0	<u>-</u>	20.0	_	_
2.0	22.0	23.0	_	_	20.0	2.0		20.0	_	_
2.0	23.0	-			20.0	2.0		20.0		
2.0	23.0	1.0			19.0	2.0		19.0		
			-	-		2.0			-	
2.0	23.0	2.0	-		19.0			19.0		-
2.0	23.0	3.0	-	-	19.0	2.0	-	19.0	-	-
2.0	23.0	4.0	-	-	19.0	1.0	•	19.0	-	-
2.0	23.0	5.0	-	-	19.0	1.0		19.0	-	-
2.0	23.0	6.0	-	-	19.0	-	-	19.0	-	-
2.0	23.0	7.0	215.0	54.0	21.0	-	110.0	22.8	83.1	76.4
2.0	23.0	8.0	206.0	142.0	22.0	-	247.5	31.9	198.2	188.8
2.0	23.0	9.0	573.0	159.0	23.0	1.0	560.0	41.9	433.4	417.0
2.0	23.0	10.0	548.0	229.0	24.0	2.0	709.4	45.6	543.8	523.4
2.0	23.0	11.0	766.0	176.0	24.0	2.0	917.4	52.0	681.1	655.2
2.0	23.0	12.0	769.0	187.0	24.0	3.0	962.2	50.7	719.4	691.8
2.0	23.0	13.0	771.0	176.0	24.0	3.0	928.8	50.0	696.8	670.2
2.0	23.0	14.0	467.0	269.0	24.0	4.0	693.2	42.1	541.3	521.0
2.0	23.0	15.0	671.0	145.0	23.0	4.0	630.0	39.0	495.4	476.8
2.0	23.0	16.0	564.0	109.0	23.0	4.0	400.2	33.2	314.0	301.4
2.0	23.0	17.0	199.0	62.0	22.0	4.0	118.2	24.5	90.7	83.8
2.0	23.0	18.0	-	-	21.0	4.0	-	21.0	-	-
2.0	23.0	19.0	-	<u>-</u>	21.0	3.0		21.0	-	_
2.0	23.0	20.0	_	_	21.0	3.0	-	21.0	_	_
2.0	23.0	21.0	_	<u>-</u>	21.0	3.0	-	21.0	_	_
2.0	23.0	22.0	_	_	20.0	3.0		20.0	_	_
2.0	23.0	23.0	_	_	20.0	4.0		20.0	_	_
2.0	24.0	-			20.0	4.0		20.0		
				-					-	-
2.0	24.0	1.0	-	-	20.0	4.0	-	20.0	-	-
2.0	24.0	2.0	-	-	20.0	4.0	•	20.0	-	-
2.0	24.0	3.0	-	-	20.0	4.0	-	20.0	-	-
2.0	24.0	4.0	-	-	20.0	4.0	-	20.0	-	-
2.0	24.0	5.0	-		20.0	4.0		20.0	-	-
2.0	24.0	6.0	-	<u>-</u>	20.0	4.0		20.0	-	_
2.0	24.0	7.0	_	26.0	22.0	4.0	24.6	21.0	21.4	15.9
2.0	24.0	8.0	_	71.0	23.0	5.0	67.5	23.2	57.9	51.7
2.0	24.0	9.0	221.0	242.0	24.0	5.0	400.7	31.8	327.9	314.9
2.0	24.0	10.0	831.0	122.0	24.0	5.0	829.9	42.1	647.2	622.7
2.0	24.0	11.0	185.0	387.0	24.0	4.0	581.9	39.2	462.0	444.6
2.0	24.0	12.0	346.0	378.0	25.0	4.0	746.1	43.4	579.7	557.9
2.0	24.0	13.0	299.0	374.0	25.0	4.0	686.8	42.5	536.2	516.1
2.0	24.0	14.0	97.0	330.0	25.0	4.0	420.3	35.9	339.1	325.7
2.0	24.0	15.0	178.0	256.0	24.0	3.0	391.0	34.4	316.5	303.9
2.0	24.0	16.0	293.0	147.0	24.0	3.0	300.8	31.9	240.7	230.1
2.0	24.0	17.0	274.0	65.0	23.0	3.0	143.2	26.3	107.3	100.1
2.0	24.0	18.0	-	_	22.0	3.0	-	22.0	_	_
2.0	24.0	19.0	_	_	21.0	2.0	-	21.0	_	_
2.0	24.0	20.0	_	<u>-</u>	21.0	2.0	-	21.0	_	_
2.0	24.0	21.0	_	_	21.0	2.0	_	21.0	_	_
2.0	24.0	22.0	_	_	20.0	2.0		20.0	_	_
2.0	24.0	23.0			20.0	2.0		20.0		
2.0	25.0	-			20.0	2.0		20.0		
			-	-					-	
2.0	25.0	1.0	-		20.0	1.0		20.0		-
2.0	25.0	2.0	-	-	20.0	1.0	-	20.0	-	-
2.0	25.0	3.0	-	-	20.0	2.0		20.0	-	-
2.0	25.0	4.0	-	-	20.0	2.0		20.0	-	-
2.0	25.0	5.0	-	-	20.0	2.0	-	20.0	-	-
2.0	25.0	6.0	-	-	20.0	2.0	-	20.0	-	-
2.0	25.0	7.0	-	6.0	21.0	3.0	5.7	19.3	5.0	-
2.0	25.0	8.0	-	12.0	22.0	3.0	11.4	20.5	9.9	4.6
2.0	25.0	9.0	-	90.0	22.0	3.0	85.6	22.6	73.7	67.1
2.0	25.0	10.0	114.0	329.0	23.0	4.0	431.9	32.5	354.2	340.4
2.0	25.0	11.0	-	126.0	24.0	4.0	120.6	26.7	101.8	94.7
2.0	25.0	12.0	56.0	373.0	24.0	4.0	437.7	33.7	357.1	343.2
2.0	25.0	13.0	128.0	391.0	24.0	3.0	534.3	38.2	426.2	410.1
2.0	25.0	14.0	17.0	254.0	23.0	3.0	262.9	30.3	218.0	208.1
2.0	25.0	15.0	125.0	258.0	23.0	3.0	356.5	31.9	292.4	280.5
2.0	25.0	16.0	-	117.0	22.0	3.0	113.1	24.6	96.4	89.4
			-	43.0	21.0	3.0	41.0	20.7	35.6	29.8
2.0	25.0	17.0	-							
2.0	25.0	18.0	-	-	21.0	3.0	-	21.0	-	-
2.0	25.0	19.0	-	-	21.0	3.0	-	21.0	-	-
2.0	25.0	20.0	-	-	20.0	3.0	-	20.0	•	-
2.0	25.0	21.0	-	-	20.0	3.0	-	20.0	-	-
2.0	25.0	22.0	-	-	20.0	3.0	-	20.0	-	-
2.0	25.0	23.0	-	-	20.0	4.0	-	20.0	-	-
2.0	26.0	-	-	-	19.0	4.0	-	19.0	-	-
2.0	26.0	1.0	-	-	19.0	3.0	-	19.0	-	-
2.0	26.0	2.0	-	-	19.0	3.0	-	19.0	-	-
2.0	26.0	3.0	-	-	19.0	3.0	-	19.0	_	-
2.0	26.0	4.0	-	-	19.0	3.0	-	19.0	_	-
2.0	26.0	5.0	_	_	19.0	3.0	<u>-</u>	19.0	_	_
2.0	25.0	3.0				5.0		.0.0		

2.0 26.0 2.0 27.0 2.0 27.0	6.0	46.0 82.0 100.0 333.0 359.0 332.0 177.0 341.0 202.0 133.0 55.0 	19.0 20.0 21.0 22.0 23.0 23.0 23.0 23.0 23.0 23.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21	3.0 3.0 4.0 4.0 3.0 3.0 3.0 3.0 3.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4	137.3 396.0 635.5 456.0 424.3 368.1 173.6 472.3 206.0 130.8 53.2	19.0 21.9 29.7 37.3 35.8 34.4 32.8 27.3 34.7 27.6 24.3 21.1 21.0 21.0 21.0 21.0 21.0 21.0 21.0	98.9 312.3 502.4 367.8 345.0 301.7 146.0 383.2 173.0 111.6 46.1	91.8 299.8 483.6 353.6 331.4 289.5 137.9 368.5 164.2 104.2 40.1
2.0	12.0 70.0 13.0 242.0 14.0 45.0 15.0 14.0 16.0 - 17.0 241.0 18.0 - 20.0 - 21.0 - 22.0 - 23.0 - 1.0 - 2.0 - 3.0 - 4.0 - 5.0 - 6.0 - 7.0 - 8.0 - 11.0 309.0 10.0 142.0 11.0 309.0 12.0 305.0 14.0 375.0 15.0 329.0 16.0 553.0 17.0 122.0 18.0 - 10.0 - 21.0 - 22.0 - 23.0 - 10.0 - 21.0 - 21.0 - 21.0 - 22.0 - 23.0 - 10.0 - 21.0 - 22.0 - 23.0 - 10.0 - 21.0 - 22.0 - 23.0 - 10.0 - 21.0 - 22.0 - 23.0 - 10.0 - 21.0 - 22.0 - 23.0 - 10.0 - 21.0 - 22.0 - 23.0 - 21.0 - 22.0 - 23.0 - 21.0 - 22.0 - 23.0 - 21.0 - 22.0 - 23.0 - 21.0 - 22.0 - 23.0 - 21.0 - 22.0 - 23.0 - 21.0 - 22.0 - 23.0 - 21.0 - 22.0 - 23.0 - 21.0 - 22.0 - 23.0 - 21.0 - 22.0 - 23.0 - 20.0 - 21.0 - 22.0 - 23.0 - 20.0 - 21.0 - 22.0 - 23.0 - 20.0 - 21.0 - 20.0 - 20.0 - 21.0 - 20.	389.0 393.0 396.0 203.0 14.0 69.0	24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0	7.0 7.0 8.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 6.0 6.0 6.0 6.0 6.0 5.0 5.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4	468.2 643.2 349.8 207.6 13.3 135.8	31.7 35.6 29.8 27.3 23.4 25.4 23.0 23.0 23.0 23.0 22.0 22.0 22.0 22.0	385.8 519.9 290.8 174.6 11.4 103.2	371.0 500.4 278.8 165.8 6.1 96.0

3.0	1.0	15.0	205.0	262.0	25.0	5.0	415.1	34.8	335.3	322.0
3.0	1.0	16.0	226.0	160.0	24.0	5.0	281.3	29.9	228.4	218.2
3.0	1.0	17.0	122.0	73.0	24.0	5.0	106.8	25.7	84.5	77.7
3.0	1.0	18.0	-	-	23.0	4.0	-	23.0	-	-
3.0	1.0	19.0	-	<u>-</u>	23.0	4.0	_	23.0	_	_
3.0	1.0	20.0	_		23.0	4.0	_	23.0	_	_
3.0	1.0	21.0	-	-	23.0	4.0		23.0	-	-
3.0	1.0	22.0	-	-	23.0	5.0		23.0	-	-
3.0	1.0	23.0	_	<u>-</u>	23.0	5.0	-	23.0	_	_
3.0	2.0	-			23.0	5.0		23.0		
			-	•					-	-
3.0	2.0	1.0	-		23.0	5.0		23.0	-	-
3.0	2.0	2.0	-	<u>-</u>	22.0	5.0	-	22.0	-	-
3.0	2.0	3.0	_		22.0	5.0	_	22.0	_	_
3.0	2.0	4.0	-	-	22.0	5.0	-	22.0	-	-
3.0	2.0	5.0	-	-	22.0	4.0	-	22.0	-	-
3.0	2.0	6.0	_	<u>-</u>	22.0	4.0	-	22.0	_	_
3.0	2.0	7.0	108.0	68.0	24.0	5.0	96.1	24.8	76.2	69.6
3.0	2.0	8.0	305.0	144.0	25.0	5.0	297.4	30.6	238.7	228.2
3.0	2.0	9.0	213.0	264.0	26.0	5.0	419.7	34.8	338.8	325.4
3.0	2.0	10.0	201.0	352.0	26.0	5.0	537.8	37.7	429.8	413.5
3.0	2.0	11.0	430.0	338.0	27.0	5.0	778.9	44.3	602.3	579.6
3.0	2.0	12.0	149.0	421.0	28.0	5.0	590.3	41.7	462.7	445.3
3.0	2.0	13.0	696.0	225.0	28.0	5.0	917.4	48.5	694.1	667.5
3.0	2.0	14.0	460.0	282.0	28.0	5.0	702.9	44.5	542.3	522.0
3.0	2.0	15.0	573.0	174.0	27.0	5.0	591.9	40.6	462.4	445.0
3.0	2.0	16.0	305.0	152.0	27.0	4.0	311.3	35.0	245.4	234.8
3.0	2.0	17.0	-	34.0	26.0	4.0	32.2	26.2	27.3	21.7
3.0	2.0	18.0	_	<u>-</u>	25.0	4.0	_	25.0	_	_
3.0	2.0	19.0			24.0	4.0		24.0	_	
			-						-	-
3.0	2.0	20.0	-		24.0	3.0		24.0	-	-
3.0	2.0	21.0	-	<u>-</u>	23.0	3.0	-	23.0	-	-
3.0	2.0	22.0	_		23.0	3.0	_	23.0	_	
3.0	2.0	23.0	-	-	23.0	3.0	-	23.0	-	-
3.0	3.0	-	-		23.0	3.0		23.0	-	-
3.0	3.0	1.0	-	_	23.0	3.0	_	23.0	_	-
3.0	3.0	2.0			22.0	4.0		22.0		
										_
3.0	3.0	3.0	-	-	22.0	4.0		22.0	-	-
3.0	3.0	4.0	-	-	22.0	3.0		22.0	-	-
3.0	3.0	5.0	_	_	22.0	3.0		22.0	_	
3.0	3.0	6.0			23.0	3.0		23.0		
3.0	3.0	7.0	246.0	56.0	24.0	3.0	120.9	25.6	89.9	83.0
3.0	3.0	8.0	46.0	152.0	25.0	3.0	174.1	28.5	144.5	136.4
3.0	3.0	9.0	332.0	242.0	26.0	3.0	484.4	38.0	384.1	369.4
3.0	3.0	10.0	343.0	318.0	27.0	3.0	629.9	43.9	487.7	469.4
3.0	3.0	11.0	313.0	381.0	28.0	3.0	706.2	47.3	537.8	517.6
3.0	3.0	12.0	160.0	424.0	28.0	2.0	604.1	47.1	460.6	443.2
3.0	3.0	13.0	300.0	387.0	28.0	2.0	701.9	49.4	528.4	508.7
3.0	3.0	14.0	392.0	309.0	28.0	1.0	665.2	52.6	491.9	473.5
3.0	3.0	15.0	298.0	252.0	28.0	-	475.9	51.6	352.2	338.5
3.0	3.0	16.0	237.0	162.0	27.0	-	288.4	42.3	220.2	210.2
3.0	3.0	17.0	205.0	71.0	26.0	1.0	127.9	30.3	96.0	89.0
3.0	3.0	18.0	-		24.0	3.0		24.0	-	-
3.0	3.0	19.0	-	-	23.0	4.0	•	23.0	-	-
3.0	3.0	20.0	-	-	21.0	5.0	-	21.0	-	-
3.0	3.0	21.0	-	-	20.0	6.0	-	20.0	_	-
3.0	3.0	22.0	_	<u>-</u>	20.0	5.0	_	20.0	_	_
3.0	3.0	23.0			19.0	4.0		19.0		
			-	-			-		-	-
3.0	4.0	5.2	-		19.0	4.0	•	19.0	-	-
3.0	4.0	1.0	-	-	19.0	4.0	-	19.0	-	-
3.0	4.0	2.0	-	-	19.0	4.0	-	19.0	_	-
3.0	4.0	3.0	_	_	19.0	4.0	_	19.0	_	_
			-						-	
3.0	4.0	4.0	-	-	19.0	4.0	-	19.0	-	-
3.0	4.0	5.0	-	-	19.0	4.0	-	19.0	-	-
3.0	4.0	6.0	-	-	19.0	4.0	-	19.0	_	-
3.0	4.0	7.0	243.0	69.0	19.0	4.0	131.5	20.6	101.3	94.2
										E7 0
3.0	4.0	8.0	-	77.0	20.0	4.0	73.2	20.6	63.6	57.3 52.2
3.0	4.0	9.0	-	71.0	21.0	4.0	67.5	21.3	58.4	52.2
3.0	4.0	10.0	-	160.0	22.0	4.0	153.9	24.5	131.2	123.4
3.0	4.0	11.0	48.0	357.0	23.0	4.0	409.3	32.1	336.6	323.3
3.0	4.0	12.0	143.0	424.0	23.0	4.0	587.3	37.2	471.1	453.4
										400.4
3.0	4.0	13.0	24.0	313.0	23.0	4.0	329.7	31.4	272.1	260.7
3.0	4.0	14.0	11.0	233.0	23.0	4.0	235.8	28.3	197.5	188.1
3.0	4.0	15.0	_	35.0	22.0	4.0	33.2	21.9	28.7	23.0
3.0	4.0	16.0	8.0	142.0	22.0	4.0	141.7	24.0	120.9	113.3
			0.0							110.0
3.0	4.0	17.0	-	5.0	21.0	4.0	4.7	19.9	4.1	-
3.0	4.0	18.0	-	-	20.0	3.0	-	20.0	-	-
3.0	4.0	19.0	-	-	20.0	3.0	-	20.0	_	-
3.0	4.0	20.0	_	<u>-</u>	19.0	3.0	_	19.0	_	
						3.0				
3.0	4.0	21.0	-		19.0		-	19.0	-	-
3.0	4.0	22.0	-		19.0	3.0	-	19.0	-	-
3.0	4.0	23.0	-	-	19.0	4.0	-	19.0	-	-

30 50 230 - - - 160 30 - 160 - - - - 30 80 10 - - - - 160 30 - 160 - - - - 30 80 10 - - - 160 30 - 160 - - - - 30 80 10 - - - 160 30 - 160 - - - - 30 80 80 10 - - 160 80 - 160 - - - 160 80 - 160 - - - 160 - - 160 - - 160 - - 160 - - 160 - - 160 - - 160 - - 160 - - 160 - - 160 - - 160 - - 160 - - 160 - - 160 - -	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	5.0 - 5.0 2.0 5.0 3.0 5.0 4.0 5.0 5.0 5.0 6.0 5.0 7.0 5.0 5.0 5.0 10.0 5.0 11.0 5.0 12.0 5.0 13.0 5.0 14.0 5.0 15.0 5.0 20.0 5.0 22.0			18.0 17.0 17.0 16.0 16.0 17.0 17.0 19.0 20.0 21.0 21.0 21.0 21.0 20.0 20.0 19.0 18.0 17.0 17.0	5.0 6.0 6.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	- - - - - - 111.8 118.7 689.6 880.0 1,004.3 1,050.1 1,012.6 892.9 705.1 460.8 188.8 - - -	18.0 17.0 17.0 16.0 17.0 17.0 17.0 18.0 20.4 34.3 39.8 44.0 45.3 44.6 40.9 36.4 30.9 22.5 17.0 17.0 17.0	88.1 103.1 554.1 694.7 777.8 808.1 782.0 701.4 561.3 364.0 137.3	81.2 96.0 533.3 668.1 747.5 776.3 751.4 674.6 540.2 349.9 129.4
3.0 6.0 23.0 - - 18.0 4.0 - 18.0 -	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	6.0 - 6.0 1.0 6.0 2.0 6.0 3.0 6.0 4.0 6.0 5.0 6.0 6.0 6.0 7.0 6.0 8.0 6.0 10.0 6.0 11.0 6.0 12.0 6.0 13.0 6.0 14.0 6.0 15.0 6.0 15.0 6.0 15.0 6.0 17.0 6.0 18.0 6.0 17.0 6.0 18.0 6.0 19.0 6.0 20.0	516.0 761.0 867.0 925.0 951.0 958.0 949.0 920.0 865.0 237.0 536.0	49.0 77.0 93.0 102.0 108.0 111.0 109.0 104.0 94.0 165.0 50.0	16.0 16.0 16.0 16.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 22.0 22.0 21.0 21.0 20.0	3.0 3.0 3.0 3.0 3.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4	181.1 455.2 705.0 898.7 1,022.8 1,066.6 1,025.1 902.4 712.6 290.9 193.7	16.0 16.0 16.0 16.0 16.0 17.0 20.9 29.3 37.2 43.5 47.9 49.2 48.4 45.4 39.6 28.8 24.6 19.0 19.0	130.1 360.7 558.5 696.4 776.3 804.0 776.1 692.6 558.3 237.5 138.1	122.3 346.7 537.6 669.8 746.1 772.5 745.8 666.1 537.3 227.1
	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	6.0 22.0 6.0 23.0 7.0 - 7.0 1.0 7.0 2.0 7.0 3.0 7.0 4.0 7.0 5.0 7.0 6.0 7.0 7.0 7.0 8.0 7.0 9.0 7.0 10.0 7.0 12.0 7.0 12.0 7.0 13.0 7.0 14.0 7.0 15.0 7.0 15.0 7.0 16.0 7.0 17.0 7.0 18.0	159.0 361.0 424.0 555.0 887.0 894.0 894.0 787.0 594.0 702.0 474.0	144.0 223.0 247.0 136.0 140.0 132.0 156.0 172.0 90.0 56.0	18.0 18.0 18.0 19.0 19.0 19.0 19.0 20.0 21.0 22.0 22.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 21.0	4.0 4.0 4.0 3.0 3.0 3.0 3.0 3.0 4.0 4.0 4.0 4.0 4.0 2.0 2.0 2.0 2.0	108.6 331.5 536.2 744.8 993.2 1,035.5 998.1 850.0 608.1 449.2 183.9	18.0 18.0 18.0 19.0 19.0 19.0 19.0 21.1 28.0 34.7 40.3 46.8 51.8 51.0 50.3 42.9 36.4 26.7 20.0	269.1 432.0 586.9 758.2 769.7 744.9 635.9 469.4 345.8 131.5	257.8 415.6 564.9 728.8 739.8 716.1 611.9 451.8 332.2 123.7

0.0	0.0	0.0	055.0	00.0	00.0	0.0	222.2	44.0	540.4	500.0
3.0 3.0	8.0 8.0	9.0 10.0	855.0 901.0	93.0 108.0	23.0 24.0	3.0 3.0	699.8 887.8	41.6 48.2	542.4 671.3	522.0 645.8
3.0	8.0	11.0	927.0	115.0	24.0	3.0	1,010.3	51.9	750.8	721.7
3.0	8.0	12.0	934.0	118.0	25.0	3.0	1,052.7	54.2	772.5	742.4
3.0	8.0	13.0	921.0	118.0	25.0	3.0	1,009.8	53.3	744.6	715.8
3.0 3.0	8.0 8.0	14.0 15.0	886.0 823.0	114.0 105.0	24.0 24.0	3.0 4.0	885.2 695.6	49.1 42.1	666.3 538.3	640.9 518.1
3.0	8.0	16.0	711.0	87.0	23.0	4.0	450.3	34.6	349.4	335.8
3.0	8.0	17.0	480.0	55.0	22.0	3.0	184.2	26.9	131.3	123.5
3.0	8.0	18.0	-	-	21.0	3.0	-	21.0	-	-
3.0	8.0	19.0	-	-	21.0	3.0	-	21.0	-	-
3.0 3.0	8.0 8.0	20.0 21.0			21.0 20.0	3.0 3.0		21.0 20.0		
3.0	8.0	22.0	_	_	20.0	3.0	-	20.0	_	_
3.0	8.0	23.0	-	-	20.0	3.0	-	20.0	-	-
3.0	9.0	-	-	-	20.0	3.0	-	20.0	-	-
3.0 3.0	9.0 9.0	1.0 2.0	-	-	19.0 19.0	2.0 2.0	-	19.0 19.0	-	-
3.0	9.0	3.0	_		19.0	2.0	- -	19.0	_	_
3.0	9.0	4.0	_	-	19.0	2.0		19.0	-	_
3.0	9.0	5.0	-	-	19.0	2.0	-	19.0	-	-
3.0	9.0	6.0	93.0	- 74.0	20.0	3.0 3.0	-	20.0	-	- 74.0
3.0 3.0	9.0 9.0	7.0 8.0	470.0	71.0 129.0	21.0 22.0	4.0	95.4 370.0	21.8 29.9	77.6 296.2	71.0 284.2
3.0	9.0	9.0	723.0	129.0	23.0	4.0	649.9	38.6	512.1	492.9
3.0	9.0	10.0	672.0	207.0	24.0	4.0	807.4	44.1	624.1	600.5
3.0	9.0	11.0	593.0	288.0	24.0	4.0	884.8	46.3	677.1	651.3
3.0 3.0	9.0 9.0	12.0 13.0	586.0 871.0	311.0 138.0	24.0 25.0	3.0 3.0	924.2 991.1	49.7 52.4	695.0 734.2	668.4 705.8
3.0	9.0	14.0	841.0	130.0	24.0	3.0	869.5	48.6	656.1	631.2
3.0	9.0	15.0	779.0	117.0	24.0	3.0	677.7	43.4	521.1	501.6
3.0	9.0	16.0	659.0	98.0	23.0	3.0	436.2	35.5	337.8	324.5
3.0 3.0	9.0 9.0	17.0 18.0	420.0	61.0	22.0 21.0	3.0 3.0	174.8	26.6 21.0	126.6	118.9
3.0	9.0	19.0	-	- -	21.0	3.0	- -	21.0	-	-
3.0	9.0	20.0	_	-	21.0	3.0		21.0	-	_
3.0	9.0	21.0	-	-	21.0	3.0	-	21.0	-	-
3.0 3.0	9.0 9.0	22.0 23.0	-	-	21.0 20.0	3.0 3.0	-	21.0 20.0	-	-
3.0	10.0	-	_	- -	20.0	2.0	- -	20.0	-	_
3.0	10.0	1.0	-	-	20.0	2.0	-	20.0	-	-
3.0	10.0	2.0	-	-	20.0	2.0	-	20.0	-	-
3.0 3.0	10.0 10.0	3.0 4.0	-	-	20.0 20.0	2.0 2.0	-	20.0 20.0	-	-
3.0	10.0	5.0	_		20.0	2.0	- -	20.0	_	_
3.0	10.0	6.0	-	-	20.0	2.0	-	20.0	-	-
3.0	10.0	7.0	82.0	73.0	21.0	2.0	94.7	21.8	77.6	71.0
3.0 3.0	10.0 10.0	8.0 9.0	318.0 345.0	157.0 249.0	22.0 23.0	3.0 3.0	320.4 503.3	29.3 36.0	259.4 403.3	248.4 387.9
3.0	10.0	10.0	511.0	269.0	24.0	3.0	732.3	43.6	567.6	546.3
3.0	10.0	11.0	396.0	368.0	25.0	4.0	772.2	44.5	596.8	574.4
3.0	10.0	12.0	859.0	152.0	25.0	4.0	1,024.4	50.5	767.1	737.3
3.0 3.0	10.0 10.0	13.0 14.0	821.0 775.0	166.0 162.0	25.0 25.0	4.0 4.0	973.7 850.4	49.9 46.9	731.0 647.6	702.8 623.1
3.0	10.0	15.0	710.0	145.0	24.0	4.0	661.0	41.1	514.5	495.2
3.0	10.0	16.0	592.0	117.0	23.0	4.0	422.6	33.9	330.9	317.9
3.0	10.0	17.0	356.0	70.0	22.0	4.0	166.2	25.8	123.0	115.4
3.0 3.0	10.0 10.0	18.0 19.0	-		22.0 21.0	4.0 4.0	- -	22.0 21.0	-	-
3.0	10.0	20.0		- -	21.0	4.0	-	21.0		
3.0	10.0	21.0	_	-	21.0	4.0		21.0	-	_
3.0	10.0	22.0	-	-	21.0	4.0	-	21.0	-	-
3.0 3.0	10.0 11.0	23.0	-	-	20.0 20.0	4.0 3.0	-	20.0 20.0	-	-
3.0	11.0	1.0		- -	20.0	3.0	-	20.0		
3.0	11.0	2.0	_	-	20.0	3.0		20.0	-	-
3.0	11.0	3.0	-	-	20.0	3.0	-	20.0	-	-
3.0 3.0	11.0 11.0	4.0 5.0	-	-	20.0 20.0	3.0 3.0	-	20.0 20.0	-	-
3.0	11.0	6.0		-	20.0	3.0	-	20.0	-	-
3.0	11.0	7.0	458.0	59.0	22.0	4.0	181.2	24.9	131.0	123.3
3.0	11.0	8.0	706.0	89.0	23.0	5.0	448.5	32.1	352.3	338.6
3.0 3.0	11.0 11.0	9.0 10.0	824.0 879.0	105.0 118.0	24.0 24.0	5.0 5.0	695.7 883.9	39.3 44.0	546.1 683.5	525.6 657.4
3.0	11.0	11.0	910.0	123.0	24.0 25.0	5.0	1,006.3	44.0 48.1	763.1	657.4 733.5
3.0	11.0	12.0	636.0	290.0	25.0	5.0	953.8	47.2	726.8	698.8
3.0	11.0	13.0	562.0	305.0	25.0	4.0	874.3	47.4	665.2	639.9
3.0 3.0	11.0 11.0	14.0 15.0	823.0 461.0	144.0 223.0	24.0 24.0	4.0 4.0	869.6 564.7	46.1 38.9	664.9 445.7	639.6 428.9
3.0	11.0	16.0	417.0	143.0	23.0	4.0	360.5	32.1	286.8	275.0
3.0	11.0	17.0	277.0	72.0	22.0	3.0	148.0	25.6	111.6	104.3

3.0	11.0	18.0	_	_	21.0	3.0	<u>-</u>	21.0	-	_
3.0	11.0	19.0	_	_	21.0	3.0	_	21.0	_	_
3.0	11.0	20.0			21.0	3.0		21.0		
3.0	11.0	21.0	-	_				21.0	_	-
			-		21.0	3.0				-
3.0	11.0	22.0	-	-	21.0	3.0	-	21.0	-	-
3.0	11.0	23.0	-	-	21.0	3.0		21.0	-	-
3.0	12.0	-	-		20.0	3.0		20.0	-	-
3.0	12.0	1.0	_	-	20.0	3.0	-	20.0	-	_
3.0	12.0	2.0	_	_	20.0	3.0		20.0	_	_
3.0	12.0	3.0			20.0	3.0		20.0		
			-							-
3.0	12.0	4.0	-	-	20.0	3.0	-	20.0	-	-
3.0	12.0	5.0	-	-	20.0	3.0	-	20.0	-	-
3.0	12.0	6.0	-		20.0	3.0		20.0	-	_
3.0	12.0	7.0	500.0	56.0	22.0	4.0	189.6	25.2	136.0	128.2
3.0	12.0	8.0	474.0	133.0	23.0	4.0	378.4	31.4	301.2	289.0
					23.0	4.0				
3.0	12.0	9.0	575.0	182.0			602.0	37.4	478.0	460.0
3.0	12.0	10.0	599.0	241.0	23.0	4.0	779.7	42.3	608.3	585.4
3.0	12.0	11.0	332.0	394.0	24.0	4.0	739.0	42.8	576.0	554.4
3.0	12.0	12.0	525.0	337.0	24.0	4.0	892.0	46.3	682.8	656.7
3.0	12.0	13.0	931.0	107.0	24.0	4.0	1,010.4	49.5	760.4	730.9
3.0	12.0	14.0	734.0	184.0	24.0	4.0	839.0	45.8	642.8	618.5
3.0	12.0	15.0	850.0	93.0	23.0	4.0	701.8	41.1	545.7	525.2
3.0	12.0	16.0	750.0	78.0	23.0	4.0	458.7	34.9	355.0	341.2
3.0	12.0	17.0	382.0	61.0	22.0	3.0	162.9	26.4	118.6	111.1
3.0	12.0	18.0	-		21.0	3.0		21.0	-	_
3.0	12.0	19.0	_	_	21.0	3.0	-	21.0	-	_
3.0	12.0	20.0			21.0	3.0		21.0		
			-						-	-
3.0	12.0	21.0	-	-	20.0	3.0	-	20.0	-	-
3.0	12.0	22.0	-	-	20.0	3.0	-	20.0	-	-
3.0	12.0	23.0	-	<u>-</u>	20.0	3.0		20.0	-	_
3.0	13.0	_	_	_	20.0	3.0		20.0	_	_
3.0	13.0	1.0			20.0	3.0		20.0		
			_	_					_	-
3.0	13.0	2.0	-	-	19.0	3.0	-	19.0	-	-
3.0	13.0	3.0	-	-	19.0	3.0	-	19.0	-	-
3.0	13.0	4.0	-	-	19.0	3.0	-	19.0	-	-
3.0	13.0	5.0	_	-	19.0	3.0	-	19.0	-	-
3.0	13.0	6.0	_	_	20.0	3.0		20.0	_	_
3.0	13.0	7.0	479.0	61.0	21.0	4.0	190.2	24.2	138.3	130.4
3.0	13.0	8.0	705.0	94.0	22.0	4.0	455.8	32.3	358.3	344.3
3.0	13.0	9.0	810.0	114.0	23.0	4.0	698.2	40.0	546.4	525.9
3.0	13.0	10.0	863.0	129.0	24.0	4.0	889.9	46.2	680.3	654.4
3.0	13.0	11.0	888.0	139.0	24.0	4.0	1,004.3	49.3	756.4	727.1
3.0	13.0	12.0	896.0	142.0	25.0	4.0	1,045.0	51.5	778.1	747.7
3.0	13.0	13.0	878.0	146.0	25.0	4.0	1,008.5	50.8	753.7	724.5
3.0	13.0	14.0	847.0	138.0	24.0	4.0	884.2	46.8	673.6	648.0
3.0	13.0	15.0	783.0	126.0	24.0	4.0	691.6	42.0	535.8	515.7
3.0	13.0	16.0	656.0	107.0	23.0	3.0	443.2	35.7	343.1	329.6
3.0	13.0	17.0	415.0	69.0	22.0	3.0	179.2	26.7	130.4	122.6
3.0	13.0	18.0	-	-	21.0	3.0	-	21.0	-	-
3.0	13.0	19.0	-		21.0	3.0		21.0	-	
					21.0		•		-	-
3.0					04.0					
	13.0	20.0	-	-	21.0	3.0	-	21.0		
3.0	13.0	20.0 21.0	-	-	21.0	3.0	-	21.0	-	-
3.0 3.0		20.0	-	- - -			- - -		-	-
	13.0 13.0	20.0 21.0 22.0		:	21.0 21.0	3.0 3.0	- - - -	21.0	-	-
3.0 3.0	13.0 13.0 13.0	20.0 21.0 22.0 23.0			21.0 21.0 21.0	3.0 3.0 4.0		21.0 21.0 21.0		- - -
3.0 3.0 3.0	13.0 13.0 13.0 14.0	20.0 21.0 22.0 23.0			21.0 21.0 21.0 21.0	3.0 3.0 4.0 4.0	: : :	21.0 21.0 21.0 21.0		
3.0 3.0 3.0 3.0	13.0 13.0 13.0 14.0 14.0	20.0 21.0 22.0 23.0 -	- - - - -		21.0 21.0 21.0 21.0 21.0	3.0 3.0 4.0 4.0 4.0	- - - - -	21.0 21.0 21.0 21.0 21.0		- - - -
3.0 3.0 3.0 3.0 3.0	13.0 13.0 13.0 14.0 14.0 14.0	20.0 21.0 22.0 23.0 - 1.0 2.0	- - - - -		21.0 21.0 21.0 21.0 21.0 21.0	3.0 3.0 4.0 4.0 4.0 5.0	- - - - - - -	21.0 21.0 21.0 21.0 21.0 21.0		- - - -
3.0 3.0 3.0 3.0 3.0 3.0	13.0 13.0 13.0 14.0 14.0 14.0	20.0 21.0 22.0 23.0 - 1.0 2.0 3.0	- - - - - - -		21.0 21.0 21.0 21.0 21.0 21.0 21.0	3.0 3.0 4.0 4.0 4.0 5.0 5.0	- - - - - - - -	21.0 21.0 21.0 21.0 21.0 21.0 21.0		- - - - -
3.0 3.0 3.0 3.0 3.0 3.0 3.0	13.0 13.0 13.0 14.0 14.0 14.0 14.0	20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0	-		21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	3.0 3.0 4.0 4.0 4.0 5.0 5.0	- - - - - - - -	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0		- - - - - - -
3.0 3.0 3.0 3.0 3.0 3.0	13.0 13.0 13.0 14.0 14.0 14.0	20.0 21.0 22.0 23.0 - 1.0 2.0 3.0	- - - - - - - -		21.0 21.0 21.0 21.0 21.0 21.0 21.0	3.0 3.0 4.0 4.0 4.0 5.0 5.0	- - - - - - - - -	21.0 21.0 21.0 21.0 21.0 21.0 21.0		- - - - - - - -
3.0 3.0 3.0 3.0 3.0 3.0 3.0	13.0 13.0 13.0 14.0 14.0 14.0 14.0	20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0	-		21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	3.0 3.0 4.0 4.0 4.0 5.0 5.0	- - - - - - - - - -	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0		-
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	13.0 13.0 13.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0	20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0	- - - - - - - - -	- - - - - - - - - - - - - - - - - - -	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	3.0 3.0 4.0 4.0 4.0 5.0 5.0 5.0 4.0	- - - - - - - - - - - - - - - - - - -	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	13.0 13.0 13.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0	20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0	- - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	3.0 3.0 4.0 4.0 4.0 5.0 5.0 5.0 4.0 4.0	- - - - - - - - - - - - - - - - - - -	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	- - - - - - - - - - - - - - - - - - -	
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	13.0 13.0 13.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14	20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0	- - - - - - - - - - - - - - - - - - -	151.0	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	3.0 3.0 4.0 4.0 4.0 5.0 5.0 4.0 4.0 4.0 5.0	360.6	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	290.7	278.8
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	13.0 13.0 13.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14	20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0	- - - - - - - - - - - - - - - - - - -	151.0 199.0	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	3.0 3.0 4.0 4.0 4.0 5.0 5.0 5.0 4.0 4.0 5.0 5.0	360.6 594.7	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	290.7 474.0	278.8 456.2
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	13.0 13.0 13.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14	20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0	- - - - - - - - - - - - - - - - - - -	151.0 199.0 281.0	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	3.0 3.0 4.0 4.0 4.0 5.0 5.0 5.0 4.0 5.0 5.0 5.0 5.0	360.6 594.7 733.3	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	290.7 474.0 577.8	278.8 456.2 556.1
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	13.0 13.0 13.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14	20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0	- - - - - - - - - - 398.0 537.0 495.0 698.0	151.0 199.0 281.0 246.0	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	3.0 3.0 4.0 4.0 5.0 5.0 5.0 4.0 4.0 5.0 5.0 5.0 5.0 5.0	360.6 594.7 733.3 947.2	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	290.7 474.0 577.8 728.3	278.8 456.2 556.1 700.2
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	13.0 13.0 13.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14	20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0	- - - - - - - - - - 398.0 537.0 495.0 698.0 516.0	151.0 199.0 281.0 246.0 344.0	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	3.0 3.0 4.0 4.0 4.0 5.0 5.0 5.0 4.0 4.0 5.0 5.0 5.0 5.0 5.0	360.6 594.7 733.3 947.2 890.7	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	290.7 474.0 577.8 728.3 687.7	278.8 456.2 556.1 700.2
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	13.0 13.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14	20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 9.0 10.0 11.0 12.0	- - - - - - - - - - 398.0 537.0 495.0 698.0 516.0	151.0 199.0 281.0 246.0 344.0	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	3.0 3.0 4.0 4.0 4.0 5.0 5.0 5.0 4.0 4.0 5.0 5.0 5.0 5.0 5.0	360.6 594.7 733.3 947.2 890.7	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	290.7 474.0 577.8 728.3 687.7	278.8 456.2 556.1 700.2 661.5 646.2
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	13.0 13.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14	20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0	- - - - - - - - - - - - - - - - - - -	151.0 199.0 281.0 246.0 344.0 319.0	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	3.0 3.0 4.0 4.0 4.0 5.0 5.0 5.0 4.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0	360.6 594.7 733.3 947.2 890.7 862.3	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	290.7 474.0 577.8 728.3 687.7 671.7	278.8 456.2 556.1 700.2 661.5 646.2
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	13.0 13.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14	20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 9.0 10.0 11.0 12.0 13.0 14.0	- - - - - - - - 398.0 537.0 495.0 698.0 516.0 534.0 755.0	151.0 199.0 281.0 246.0 344.0 319.0 177.0	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	3.0 3.0 4.0 4.0 4.0 5.0 5.0 5.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	360.6 594.7 733.3 947.2 890.7 862.3 849.7	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	290.7 474.0 577.8 728.3 687.7 671.7 654.8	278.8 456.2 556.1 700.2 661.5 646.2 630.0
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	13.0 13.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14	20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 11.0 12.0 13.0 14.0		151.0 199.0 281.0 246.0 344.0 319.0 177.0 212.0	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	3.0 3.0 4.0 4.0 4.0 5.0 5.0 5.0 4.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	360.6 594.7 733.3 947.2 890.7 862.3 849.7 213.7	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	290.7 474.0 577.8 728.3 687.7 671.7 654.8 178.1	278.8 456.2 556.1 700.2 661.5 646.2 630.0 169.2
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	13.0 13.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14	20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0		151.0 199.0 281.0 246.0 344.0 319.0 177.0 212.0	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	3.0 3.0 4.0 4.0 4.0 5.0 5.0 5.0 4.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	360.6 594.7 733.3 947.2 890.7 862.3 849.7 213.7 254.2	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	290.7 474.0 577.8 728.3 687.7 671.7 654.8 178.1 209.4	278.8 456.2 556.1 700.2 661.5 646.2 630.0 169.2 199.7
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	13.0 13.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14	20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 9.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0		151.0 199.0 281.0 246.0 344.0 319.0 177.0 212.0	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	3.0 3.0 4.0 4.0 4.0 5.0 5.0 5.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	360.6 594.7 733.3 947.2 890.7 862.3 849.7 213.7	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	290.7 474.0 577.8 728.3 687.7 671.7 654.8 178.1	278.8 456.2 556.1 700.2 661.5 646.2 630.0 169.2
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	13.0 13.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14	20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0		151.0 199.0 281.0 246.0 344.0 319.0 177.0 212.0	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	3.0 3.0 4.0 4.0 4.0 5.0 5.0 5.0 4.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	360.6 594.7 733.3 947.2 890.7 862.3 849.7 213.7 254.2	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	290.7 474.0 577.8 728.3 687.7 671.7 654.8 178.1 209.4	278.8 456.2 556.1 700.2 661.5 646.2 630.0 169.2 199.7
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	13.0 13.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14	20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0		151.0 199.0 281.0 246.0 344.0 319.0 177.0 212.0 181.0 3.0	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	3.0 3.0 4.0 4.0 4.0 5.0 5.0 5.0 4.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 4.0 4.0 4.0 3.0 3.0	360.6 594.7 733.3 947.2 890.7 862.3 849.7 213.7 254.2 2.8	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	290.7 474.0 577.8 728.3 687.7 671.7 654.8 178.1 209.4 2.5	278.8 456.2 556.1 700.2 661.5 646.2 630.0 169.2 199.7
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	13.0 13.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14	20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0		151.0 199.0 281.0 246.0 344.0 319.0 177.0 212.0 181.0 3.0	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	3.0 3.0 4.0 4.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	360.6 594.7 733.3 947.2 890.7 862.3 849.7 213.7 254.2 2.8	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	290.7 474.0 577.8 728.3 687.7 671.7 654.8 178.1 209.4 2.5	278.8 456.2 556.1 700.2 661.5 646.2 630.0 169.2 199.7
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	13.0 13.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14	20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 9.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19		151.0 199.0 281.0 246.0 344.0 319.0 177.0 212.0 181.0 3.0	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	3.0 3.0 4.0 4.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	360.6 594.7 733.3 947.2 890.7 862.3 849.7 213.7 254.2 2.8	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	290.7 474.0 577.8 728.3 687.7 671.7 654.8 178.1 209.4 2.5	278.8 456.2 556.1 700.2 661.5 646.2 630.0 169.2 199.7
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	13.0 13.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14	20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 19.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 2		151.0 199.0 281.0 246.0 344.0 319.0 177.0 212.0 181.0 3.0	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	3.0 3.0 4.0 4.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 4.0 4.0 4.0 4.0 3.0 3.0 3.0 3.0 4.0 4.0	360.6 594.7 733.3 947.2 890.7 862.3 849.7 213.7 254.2 2.8	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	290.7 474.0 577.8 728.3 687.7 671.7 654.8 178.1 209.4 2.5	278.8 456.2 556.1 700.2 661.5 646.2 630.0 169.2 199.7
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	13.0 13.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14	20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 2		151.0 199.0 281.0 246.0 344.0 319.0 177.0 212.0 181.0 3.0	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 22.0 23.0 24.0 24.0 24.0 24.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 25.0 26.0 27.0	3.0 3.0 4.0 4.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	360.6 594.7 733.3 947.2 890.7 862.3 849.7 213.7 254.2 2.8	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	290.7 474.0 577.8 728.3 687.7 671.7 654.8 178.1 209.4 2.5	278.8 456.2 556.1 700.2 661.5 646.2 630.0 169.2 199.7
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	13.0 13.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14	20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 2		151.0 199.0 281.0 246.0 344.0 319.0 177.0 212.0 181.0 3.0	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	3.0 3.0 4.0 4.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	360.6 594.7 733.3 947.2 890.7 862.3 849.7 213.7 254.2 2.8	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	290.7 474.0 577.8 728.3 687.7 671.7 654.8 178.1 209.4 2.5	278.8 456.2 556.1 700.2 661.5 646.2 630.0 169.2 199.7
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	13.0 13.0 13.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14	20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 2		151.0 199.0 281.0 246.0 344.0 319.0 177.0 212.0 181.0 3.0	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	3.0 3.0 4.0 4.0 4.0 5.0 5.0 5.0 4.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	360.6 594.7 733.3 947.2 890.7 862.3 849.7 213.7 254.2 2.8	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.3 29.8 36.8 40.4 45.4 44.7 42.9 44.7 29.3 28.4 21.2 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0	290.7 474.0 577.8 728.3 687.7 671.7 654.8 178.1 209.4 2.5	278.8 456.2 556.1 700.2 661.5 646.2 630.0 169.2 199.7
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	13.0 13.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14	20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 2		151.0 199.0 281.0 246.0 344.0 319.0 177.0 212.0 181.0 3.0	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	3.0 3.0 4.0 4.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	360.6 594.7 733.3 947.2 890.7 862.3 849.7 213.7 254.2 2.8	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	290.7 474.0 577.8 728.3 687.7 671.7 654.8 178.1 209.4 2.5	278.8 456.2 556.1 700.2 661.5 646.2 630.0 169.2 199.7
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	13.0 13.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14	20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 2		151.0 199.0 281.0 246.0 344.0 319.0 177.0 212.0 181.0 3.0	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	3.0 3.0 4.0 4.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	360.6 594.7 733.3 947.2 890.7 862.3 849.7 213.7 254.2 2.8	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	290.7 474.0 577.8 728.3 687.7 671.7 654.8 178.1 209.4 2.5	278.8 456.2 556.1 700.2 661.5 646.2 630.0 169.2 199.7
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	13.0 13.0 13.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14	20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 2		151.0 199.0 281.0 246.0 344.0 319.0 177.0 212.0 181.0 3.0	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	3.0 3.0 4.0 4.0 4.0 5.0 5.0 5.0 4.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	360.6 594.7 733.3 947.2 890.7 862.3 849.7 213.7 254.2 2.8	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.3 29.8 36.8 40.4 45.4 44.7 42.9 44.7 29.3 28.4 21.2 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0	290.7 474.0 577.8 728.3 687.7 671.7 654.8 178.1 209.4 2.5	278.8 456.2 556.1 700.2 661.5 646.2 630.0 169.2 199.7

3.0 17.0 14.0 943.0 112.0 21.0 5.0 934.4 42.9 726.6 698.6 3.0 17.0 15.0 888.0 101.0 21.0 4.0 736.4 40.2 575.2 553.6 3.0 17.0 16.0 787.0 84.0 20.0 4.0 481.8 32.5 377.1 362.5 3.0 17.0 17.0 564.0 57.0 19.0 4.0 204.5 23.9 146.2 138.0 3.0 17.0 18.0 - - 17.0 4.0 - 17.0 - - 3.0 17.0 18.0 - - 17.0 4.0 - 17.0 -	3.0	.00 834.0 158.0 166.0 160.0 832.0 1666.0 165.0 818.0 165.0 166.0 160.0 1	22.0 4 22.0 4 23.0 5 24.0 5 24.0 5 25.0 4 25.0 4 25.0 4 25.0 4 25.0 4 25.0 4 25.0 4 25.0 4 25.0 4 25.0 4 25.0 4 25.0 4 26.0 5 27.0 6 28	00	22.0	331.0 513.9 635.5 709.5 730.0 701.8 620.4 489.6 2 306.5 112.9 - - - - - - - - - - - - -
3.0 17.0 15.0 888.0 101.0 21.0 4.0 736.4 40.2 575.2 553.6 3.0 17.0 16.0 787.0 84.0 20.0 4.0 481.8 32.5 377.1 362.5 3.0 17.0 17.0 564.0 57.0 19.0 4.0 204.5 23.9 146.2 138.0 3.0 17.0 18.0 - - 17.0 4.0 - 17.0 -	3.0 16.0 23. 3.0 17.0 - 3.0 17.0 - 3.0 17.0 3. 3.0 17.0 3. 3.0 17.0 5. 3.0 17.0 6. 3.0 17.0 7. 3.0 17.0 7. 3.0 17.0 9. 3.0 17.0 10. 3.0 17.0 11. 3.0 17.0 11. 3.0 17.0 11.	.00	20.0 5 19.0 5 19.0 5 19.0 5 19.0 6 19.0 6 19.0 6 18.0 7 18.0 7 18.0 6 18.0 6 18.0 6 20.0 5 21.0 5 22.0 5	.0	20.0 - 19.0 - 19.0 - 19.0 - 19.0 - 19.0 - 19.0 - 19.0 - 18.0 - 18.0 - 20.9 153.2 26.9 390.6 33.6 595.8 41.2 734.3 45.4 817.9 46.7 846.3	
	3.0 17.0 15. 3.0 17.0 16. 3.0 17.0 16. 3.0 17.0 18. 3.0 17.0 19. 3.0 17.0 20. 3.0 17.0 21. 3.0 17.0 22. 3.0 17.0 23. 3.0 17.0 23. 3.0 18.0 2. 3.0 18.0 2. 3.0 18.0 3. 3.0 18.0 3. 3.0 18.0 3. 3.0 18.0 4. 3.0 18.0 5.	5.0 888.0 101.0 5.0 787.0 84.0 5.0 564.0 57.0 6.0 - - 6.0 - - 7.0 - - 8.0 -	21.0 4 20.0 4 19.0 4 17.0 4 17.0 4 17.0 3 16.0 3 16.0 3 16.0 3 16.0 3 16.0 3 16.0 3 16.0 3 16.0 4 15.0 3	.0 736.4 .0 481.8 .0 204.5 .00000000 -	40.2 575.2 32.5 377.4 23.9 146.2 17.0 - 17.0 - 17.0 - 16.0 - 16.0 - 16.0 - 16.0 - 16.0 - 15.0 - 15.0 - 15.0 -	553.6 362.5

3.0	18.0 12.0		133.0	22.0	4.0	1,063.0	49.1	801.7	770.2
3.0	18.0 13.0		133.0	22.0	5.0	1,016.5	45.7	780.6	750.1
3.0	18.0 14.0		129.0	21.0	5.0	896.5	41.9	700.5	673.7
3.0	18.0 15.0		117.0	21.0	5.0	700.7	37.3	555.5	534.7
3.0	18.0 16.0		93.0	20.0	5.0	458.8	30.5	363.3	349.2
3.0	18.0 17.0		62.0	18.0	5.0	192.6	21.9	140.6	132.6
3.0	18.0 18.0		-	18.0	5.0	-	18.0	-	-
3.0	18.0 19.0			18.0	5.0	-	18.0		-
3.0	18.0 20.0			17.0	5.0	-	17.0		-
3.0	18.0 21.0		-	17.0	5.0	-	17.0	-	-
3.0	18.0 22.0		-	17.0	5.0	-	17.0	-	-
3.0	18.0 23.0	-	-	17.0	5.0	-	17.0	-	-
3.0	19.0 -	-	-	17.0	4.0	-	17.0	-	-
3.0	19.0 1.0	-	-	17.0	4.0	-	17.0	-	-
3.0	19.0 2.0) -	-	18.0	4.0	-	18.0	-	-
3.0	19.0 3.0) -		17.0	4.0	-	17.0		-
3.0	19.0 4.0) -	-	17.0	4.0	-	17.0	-	-
3.0	19.0 5.0	-	-	17.0	4.0	-	17.0	-	-
3.0	19.0 6.0	-	-	19.0	4.0	-	19.0	-	-
3.0	19.0 7.0	78.0	91.0	20.0	5.0	112.1	21.0	93.2	86.3
3.0	19.0 8.0	741.0	90.0	21.0	5.0	477.2	30.6	379.1	364.5
3.0	19.0 9.0	843.0	105.0	22.0	5.0	720.0	37.8	569.9	548.5
3.0	19.0 10.0	829.0	151.0	22.0	5.0	890.5	42.1	695.3	668.7
3.0	19.0 11.0	845.0	167.0	23.0	5.0	1,005.0	46.0	770.3	740.3
3.0	19.0 12.0		118.0	23.0	5.0	112.9	26.5	95.4	88.4
3.0	19.0 13.0		144.0	22.0	5.0	1,001.2	43.2	778.6	748.2
3.0	19.0 14.0		136.0	22.0	5.0	882.3	42.6	687.2	660.9
3.0	19.0 15.0		127.0	22.0	5.0	687.0	38.0	543.0	522.6
3.0	19.0 16.0		100.0	21.0	4.0	448.0	32.6	351.6	337.9
3.0	19.0 17.0		67.0	21.0	4.0	186.4	25.4	135.3	127.4
3.0	19.0 18.0		-	20.0	4.0	-	20.0	-	-
3.0	19.0 19.0			20.0	4.0		20.0	_	
3.0	19.0 20.0		-	20.0	4.0	-	20.0	-	-
3.0	19.0 21.0			20.0	4.0	-	20.0	-	-
3.0	19.0 22.0		-	20.0	4.0	-	20.0	-	-
3.0	19.0 23.0		-	20.0	4.0	-	20.0	-	-
3.0		-		20.0	4.0	-	20.0	-	-
						·			-
3.0	20.0 1.0			20.0	4.0		20.0	-	-
3.0	20.0 2.0		-	20.0	4.0	-	20.0	-	-
3.0	20.0 3.0		-	20.0	3.0	-	20.0	-	-
3.0	20.0 4.0		-	19.0	3.0	-	19.0	-	-
3.0	20.0 5.0		-	19.0	3.0	-	19.0	-	-
3.0	20.0 6.0			20.0	4.0		20.0	-	-
3.0	20.0 7.0		40.0	21.0	4.0	37.9	20.3	33.0	27.3
3.0	20.0 8.0		64.0	22.0	5.0	60.8	22.0	52.4	46.3
3.0	20.0 9.0		123.0	23.0	6.0	697.4	36.0	557.3	536.4
3.0	20.0 10.0		378.0	23.0	6.0	586.3	35.0	475.1	457.3
3.0	20.0 11.0		432.0	23.0	6.0	560.4	34.2	456.0	438.9
3.0	20.0 12.0		326.0	22.0	6.0	338.0	28.7	282.6	270.9
3.0	20.0 13.0		330.0	22.0	6.0	868.4	39.0	690.1	663.7
3.0	20.0 14.0		334.0	22.0	6.0	683.5	36.2	550.1	529.5
3.0	20.0 15.0	67.0	274.0		6.0	320.1		0.07	
3.0				22.0			28.5	267.3	256.1
3.0	20.0 16.0		184.0	21.0	6.0	224.1	24.9	188.7	179.5
	20.0 17.0	76.0	184.0 83.0	21.0 21.0	6.0 6.0	224.1 101.8	24.9 22.2	188.7 83.9	179.5 77.1
3.0	20.0 17.0 20.0 18.0	76.0 76.0	184.0 83.0 -	21.0 21.0 21.0	6.0 6.0 6.0	224.1 101.8 -	24.9 22.2 21.0	188.7 83.9 -	179.5 77.1 -
3.0 3.0	20.0 17.0 20.0 18.0 20.0 19.0	76.0 76.0 76.0 76.0	184.0 83.0	21.0 21.0 21.0 20.0	6.0 6.0 6.0 6.0	224.1 101.8	24.9 22.2 21.0 20.0	188.7 83.9	179.5 77.1
3.0 3.0 3.0	20.0 17.0 20.0 18.0 20.0 19.0 20.0 20.0	76.0 76.0 76.0 76.0 76.0 76.0	184.0 83.0 -	21.0 21.0 21.0 20.0 20.0	6.0 6.0 6.0 6.0 5.0	224.1 101.8 -	24.9 22.2 21.0 20.0 20.0	188.7 83.9 -	179.5 77.1 -
3.0 3.0 3.0 3.0	20.0 17.0 20.0 18.0 20.0 19.0 20.0 20.0 20.0 21.0	76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0	184.0 83.0 -	21.0 21.0 21.0 20.0 20.0 20.0	6.0 6.0 6.0 6.0 5.0	224.1 101.8 -	24.9 22.2 21.0 20.0 20.0 20.0	188.7 83.9 -	179.5 77.1 -
3.0 3.0 3.0 3.0 3.0	20.0 17.0 20.0 18.0 20.0 19.0 20.0 20.0 20.0 21.0 20.0 22.0	76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0	184.0 83.0 -	21.0 21.0 21.0 20.0 20.0 20.0 20.0 20.0	6.0 6.0 6.0 5.0 5.0 5.0	224.1 101.8 -	24.9 22.2 21.0 20.0 20.0 20.0 20.0	188.7 83.9 -	179.5 77.1 -
3.0 3.0 3.0 3.0 3.0 3.0	20.0 17.0 20.0 18.0 20.0 19.0 20.0 20.0 20.0 21.0 20.0 22.0 20.0 23.0	76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0	184.0 83.0 -	21.0 21.0 21.0 20.0 20.0 20.0 20.0 20.0	6.0 6.0 6.0 5.0 5.0 5.0 5.0	224.1 101.8 -	24.9 22.2 21.0 20.0 20.0 20.0 20.0 20.0	188.7 83.9 -	179.5 77.1 -
3.0 3.0 3.0 3.0 3.0 3.0 3.0	20.0 17.0 20.0 18.0 20.0 19.0 20.0 20.0 20.0 21.0 20.0 22.0 20.0 23.0 21.0 -	76.0 - 0 - 0 - 0 - 0 - 0 - 0 - - 0 -	184.0 83.0 -	21.0 21.0 21.0 20.0 20.0 20.0 20.0 20.0	6.0 6.0 6.0 5.0 5.0 5.0 5.0	224.1 101.8 -	24.9 22.2 21.0 20.0 20.0 20.0 20.0 20.0 19.0	188.7 83.9 -	179.5 77.1 -
3.0 3.0 3.0 3.0 3.0 3.0 3.0	20.0 17.0 20.0 18.0 20.0 19.0 20.0 20.0 20.0 21.0 20.0 22.0 20.0 23.0 21.0 - 21.0 1.0	76.0 - 0 - 0 - 0 - 0 - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - 0	184.0 83.0 -	21.0 21.0 21.0 20.0 20.0 20.0 20.0 20.0	6.0 6.0 6.0 5.0 5.0 5.0 4.0	224.1 101.8 -	24.9 22.2 21.0 20.0 20.0 20.0 20.0 20.0 19.0	188.7 83.9 -	179.5 77.1 -
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	20.0 17.0 20.0 18.0 20.0 19.0 20.0 20.0 20.0 22.0 20.0 21.0 21.0 - 21.0 1.0 21.0 2.0	76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0	184.0 83.0 -	21.0 21.0 21.0 20.0 20.0 20.0 20.0 20.0	6.0 6.0 6.0 5.0 5.0 5.0 4.0 4.0	224.1 101.8 -	24.9 22.2 21.0 20.0 20.0 20.0 20.0 20.0 19.0 19.0	188.7 83.9 -	179.5 77.1 -
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	20.0 17.0 20.0 18.0 20.0 19.0 20.0 20.0 20.0 21.0 20.0 22.0 21.0 - 21.0 1.0 21.0 3.0	76.0	184.0 83.0 -	21.0 21.0 21.0 20.0 20.0 20.0 20.0 20.0	6.0 6.0 6.0 5.0 5.0 5.0 4.0 4.0 4.0	224.1 101.8 -	24.9 22.2 21.0 20.0 20.0 20.0 20.0 20.0 19.0 19.0 19.0	188.7 83.9 -	179.5 77.1 -
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	20.0 17.0 20.0 18.0 20.0 19.0 20.0 20.0 20.0 22.0 20.0 21.0 21.0 - 21.0 1.0 21.0 2.0	76.0	184.0 83.0 -	21.0 21.0 21.0 20.0 20.0 20.0 20.0 20.0	6.0 6.0 6.0 5.0 5.0 5.0 4.0 4.0 5.0 5.0	224.1 101.8 - - - - - - - -	24.9 22.2 21.0 20.0 20.0 20.0 20.0 20.0 19.0 19.0 19.0 19.0	188.7 83.9 -	179.5 77.1 -
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	20.0 17.0 20.0 18.0 20.0 19.0 20.0 20.0 20.0 21.0 20.0 22.0 21.0 - 21.0 1.0 21.0 2.0 21.0 4.0 21.0 5.0	76.0	184.0 83.0 -	21.0 21.0 21.0 20.0 20.0 20.0 20.0 20.0	6.0 6.0 6.0 5.0 5.0 5.0 4.0 4.0 5.0 5.0 5.0	224.1 101.8	24.9 22.2 21.0 20.0 20.0 20.0 20.0 20.0 19.0 19.0 19.0 19.0	188.7 83.9 -	179.5 77.1 - - - - - - - - - - - - - - - - - - -
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	20.0 17.0 20.0 18.0 20.0 19.0 20.0 20.0 20.0 21.0 20.0 22.0 21.0 - 21.0 1.0 21.0 3.0 21.0 4.0 21.0 4.0 21.0 6.0	76.0	184.0 83.0 - - - - - - - - - - - -	21.0 21.0 21.0 20.0 20.0 20.0 20.0 20.0	6.0 6.0 6.0 5.0 5.0 5.0 4.0 4.0 5.0 5.0 5.0	224.1 101.8	24.9 22.2 21.0 20.0 20.0 20.0 20.0 19.0 19.0 19.0 19.0 19.0 19.0	188.7 83.9 - - - - - - - - - - - - -	179.5 77.1 - - - - - - - - - - - - - - - - - - -
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	20.0 17.0 20.0 18.0 20.0 19.0 20.0 20.0 20.0 21.0 20.0 22.0 21.0 - 21.0 1.0 21.0 2.0 21.0 4.0 21.0 5.0	76.0	184.0 83.0 - - - - - - - - - - - - - - - -	21.0 21.0 21.0 20.0 20.0 20.0 20.0 20.0	6.0 6.0 6.0 5.0 5.0 5.0 4.0 4.0 5.0 5.0 5.0	224.1 101.8	24.9 22.2 21.0 20.0 20.0 20.0 20.0 20.0 19.0 19.0 19.0 19.0 19.0 20.0 24.1	188.7 83.9 - - - - - - - - - - - - - - - - -	179.5 77.1 - - - - - - - - - - - - - - - - - - -
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	20.0 17.0 20.0 18.0 20.0 19.0 20.0 20.0 20.0 21.0 20.0 23.0 21.0 - 21.0 2.0 21.0 2.0 21.0 3.0 21.0 4.0 21.0 5.0 21.0 6.0 21.0 6.0 21.0 8.0	76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0	184.0 83.0 - - - - - - - - - - - - - - - - - - -	21.0 21.0 21.0 20.0 20.0 20.0 20.0 20.0	6.0 6.0 6.0 5.0 5.0 5.0 4.0 4.0 5.0 5.0 5.0 6.0	224.1 101.8	24.9 22.2 21.0 20.0 20.0 20.0 20.0 20.0 19.0 19.0 19.0 19.0 20.0 20.0 24.1 30.0	188.7 83.9 - - - - - - - - - - - - - - - - - - -	179.5 77.1 - - - - - - - - - - - - - - - - - - -
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	20.0 17.0 20.0 18.0 20.0 20.0 20.0 20.0 20.0 21.0 20.0 22.0 21.0 - 21.0 1.0 21.0 3.0 21.0 4.0 21.0 4.0 21.0 6.0 21.0 7.0 21.0 6.0 21.0 7.0 21.0 7.0 21.0 9.0	76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0	184.0 83.0 - - - - - - - - - - - - - - - - - - -	21.0 21.0 21.0 20.0 20.0 20.0 20.0 20.0	6.0 6.0 6.0 5.0 5.0 5.0 4.0 4.0 5.0 5.0 5.0 6.0 6.0	224.1 101.8	24.9 22.2 21.0 20.0 20.0 20.0 20.0 19.0 19.0 19.0 19.0 19.0 20.0 24.1 30.0 35.1	188.7 83.9 - - - - - - - - - - - - - - - - - - -	179.5 77.1 - - - - - - - - - - - - - - - - - - -
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	20.0 17.0 20.0 18.0 20.0 19.0 20.0 20.0 20.0 21.0 20.0 23.0 21.0 - 21.0 2.0 21.0 2.0 21.0 3.0 21.0 4.0 21.0 5.0 21.0 6.0 21.0 6.0 21.0 8.0	76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0	184.0 83.0 - - - - - - - - - - - - - - - - - - -	21.0 21.0 21.0 20.0 20.0 20.0 20.0 19.0 19.0 19.0 19.0 19.0 20.0 21.0 21.0 22.0 23.0	6.0 6.0 6.0 5.0 5.0 5.0 4.0 4.0 5.0 5.0 6.0 6.0 6.0 7.0	224.1 101.8	24.9 22.2 21.0 20.0 20.0 20.0 20.0 19.0 19.0 19.0 19.0 19.0 20.0 24.1 30.0 35.1 27.6	188.7 83.9 - - - - - - - - - - - - - - - - - - -	179.5 77.1 - - - - - - - - - - - - - - - - - - -
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	20.0 17.0 20.0 18.0 20.0 20.0 20.0 20.0 20.0 21.0 20.0 22.0 21.0 - 21.0 1.0 21.0 3.0 21.0 4.0 21.0 4.0 21.0 6.0 21.0 7.0 21.0 6.0 21.0 7.0 21.0 7.0 21.0 9.0	76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0	184.0 83.0 - - - - - - - - - - - - - - - - - - -	21.0 21.0 21.0 20.0 20.0 20.0 20.0 20.0	6.0 6.0 6.0 5.0 5.0 5.0 4.0 4.0 5.0 5.0 5.0 6.0 6.0	224.1 101.8	24.9 22.2 21.0 20.0 20.0 20.0 20.0 20.0 19.0 19.0 19.0 19.0 20.0 24.1 30.0 35.1 27.6 36.9	188.7 83.9 - - - - - - - - - - - - - - - - - - -	179.5 77.1 - - - - - - - - - - - - - - - - - - -
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	20.0 17.0 20.0 18.0 20.0 19.0 20.0 20.0 20.0 21.0 20.0 23.0 21.0 - 21.0 1.0 21.0 3.0 21.0 4.0 21.0 4.0 21.0 5.0 21.0 7.0 21.0 8.0 21.0 9.0 21.0 9.0 21.0 10.0	76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0	184.0 83.0 - - - - - - - - - - - - - - - - - - -	21.0 21.0 21.0 20.0 20.0 20.0 20.0 19.0 19.0 19.0 19.0 19.0 20.0 21.0 21.0 22.0 23.0	6.0 6.0 6.0 5.0 5.0 5.0 4.0 4.0 5.0 5.0 6.0 6.0 6.0 7.0	224.1 101.8	24.9 22.2 21.0 20.0 20.0 20.0 20.0 20.0 19.0 19.0 19.0 19.0 20.0 24.1 30.0 35.1 27.6 36.9 38.3	188.7 83.9 - - - - - - - - - - - - - - - - - - -	179.5 77.1 - - - - - - - - - - - - - - - - - - -
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	20.0 17.0 20.0 18.0 20.0 19.0 20.0 20.0 20.0 21.0 20.0 23.0 21.0 - 21.0 2.0 21.0 3.0 21.0 5.0 21.0 5.0 21.0 5.0 21.0 5.0 21.0 6.0 21.0 7.0 21.0 8.0 21.0 9.0 21.0 10.0 21.0 10.0 21.0 10.0 21.0 10.0 21.0 10.0 21.0 10.0	76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0	184.0 83.0 - - - - - - - - - - - - - - - - - - -	21.0 21.0 21.0 20.0 20.0 20.0 20.0 20.0 19.0 19.0 19.0 19.0 20.0 21.0 21.0 22.0 23.0	6.0 6.0 6.0 5.0 5.0 5.0 4.0 4.0 5.0 5.0 5.0 6.0 6.0 7.0	224.1 101.8	24.9 22.2 21.0 20.0 20.0 20.0 20.0 20.0 19.0 19.0 19.0 19.0 20.0 24.1 30.0 35.1 27.6 36.9	188.7 83.9 - - - - - - - - - - - - - - - - - - -	179.5 77.1 - - - - - - - - - - - - - - - - - - -
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	20.0 17.0 20.0 18.0 20.0 20.0 20.0 20.0 20.0 21.0 20.0 22.0 21.0 1.0 21.0 2.0 21.0 3.0 21.0 4.0 21.0 6.0 21.0 6.0 21.0 6.0 21.0 1.0 21.0 1.0 21.0 1.0 21.0 1.0 21.0 1.0 21.0 1.0 21.0 1.0 21.0 1.0 21.0 2.0 21.0 1.0 21.0 2.0 21.0 1.0 21.0 2.0 21.0 2.0 21.0 2.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	76.0 76.0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	184.0 83.0 - - - - - - - - - - - - - - - - - - -	21.0 21.0 21.0 20.0 20.0 20.0 20.0 20.0	6.0 6.0 6.0 5.0 5.0 5.0 4.0 4.0 5.0 5.0 5.0 6.0 6.0 7.0 7.0 7.0 6.0	224.1 101.8	24.9 22.2 21.0 20.0 20.0 20.0 20.0 20.0 19.0 19.0 19.0 19.0 20.0 24.1 30.0 35.1 27.6 36.9 38.3	188.7 83.9 - - - - - - - - - - - - - - - - - - -	179.5 77.1 - - - - - - - - - - - - - - - - - - -
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	20.0 17.0 20.0 18.0 20.0 19.0 20.0 20.0 20.0 21.0 20.0 22.0 21.0 - 21.0 1.0 21.0 3.0 21.0 4.0 21.0 5.0 21.0 6.0 21.0 7.0 21.0 10.0 21.0 10.0 21.0 10.0 21.0 10.0 21.0 10.0 21.0 10.0 21.0 10.0 21.0 10.0 21.0 10.0 21.0 10.0 21.0 11.0 21.0 11.0 21.0 11.0 21.0 11.0 21.0 11.0 21.0 11.0 21.0 11.0 21.0 11.0 21.0 13.0	76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0	184.0 83.0 - - - - - - - - - - - - - - - - - - -	21.0 21.0 21.0 20.0 20.0 20.0 20.0 20.0 19.0 19.0 19.0 19.0 21.0 21.0 21.0 22.0 23.0 24.0	6.0 6.0 6.0 5.0 5.0 5.0 5.0 4.0 4.0 5.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	224.1 101.8	24.9 22.2 21.0 20.0 20.0 20.0 20.0 19.0 19.0 19.0 19.0 19.0 20.0 24.1 30.0 35.1 27.6 36.9 38.3 44.6	188.7 83.9 - - - - - - - - - - - - - - - - - - -	179.5 77.1 - - - - - - - - - - - - - - - - - - -
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	20.0 17.0 20.0 18.0 20.0 19.0 20.0 20.0 20.0 21.0 20.0 23.0 21.0 - 21.0 3.0 21.0 5.0 21.0 5.0 21.0 5.0 21.0 1.0 21.0 5.0 21.0 1.0 21.0 1.0 21.0 1.0 21.0 1.0 21.0 1.0 21.0 1.0 21.0 1.0 21.0 1.0 21.0 1.0 21.0 1.0 21.0 1.0 21.0 1.0 21.0 1.0 21.0 1.0 21.0 1.0 21.0 1.0 21.0 1.0 21.0 12.0 21.0 12.0 21.0 12.0 21.0 12.0 21.0 14.0	76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0	184.0 83.0 - - - - - - - - - - - - - - - - - - -	21.0 21.0 21.0 20.0 20.0 20.0 20.0 20.0 19.0 19.0 19.0 19.0 20.0 21.0 21.0 22.0 23.0 24.0 24.0 23.0	6.0 6.0 6.0 5.0 5.0 5.0 5.0 4.0 4.0 5.0 5.0 6.0 6.0 7.0 7.0 6.0 6.0 6.0	224.1 101.8	24.9 22.2 21.0 20.0 20.0 20.0 20.0 19.0 19.0 19.0 19.0 19.0 20.0 24.1 30.0 35.1 27.6 36.9 38.3 44.6 41.8 37.6	188.7 83.9 - - - - - - - - - - - - - - - - - - -	179.5 77.1 - - - - - - - - - - - - - - - - - - -
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	20.0 17.0 20.0 18.0 20.0 20.0 20.0 20.0 20.0 21.0 20.0 22.0 21.0 1.0 21.0 2.0 21.0 3.0 21.0 4.0 21.0 5.0 21.0 6.0 21.0 5.0 21.0 10.0 21.0 13.0 21.0 14.0 21.0 15.0	76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0	184.0 83.0 - - - - - - - - - - - - - - - - - - -	21.0 21.0 21.0 20.0 20.0 20.0 20.0 20.0 19.0 19.0 19.0 19.0 20.0 21.0 22.0 23.0 24.0 24.0 23.0 23.0	6.0 6.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	224.1 101.8	24.9 22.2 21.0 20.0 20.0 20.0 20.0 20.0 19.0 19.0 19.0 19.0 19.0 20.0 24.1 30.0 35.1 27.6 36.9 38.3 44.6 41.8	188.7 83.9 - - - - - - - - - - - - - - - - - - -	179.5 77.1 - - - - - - - - - - - - - - - - - - -
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	20.0 17.0 20.0 18.0 20.0 20.0 20.0 20.0 20.0 21.0 20.0 23.0 21.0 - 21.0 1.0 21.0 3.0 21.0 4.0 21.0 4.0 21.0 4.0 21.0 10.0 21.0 10.0 21.0 10.0 21.0 10.0 21.0 10.0 21.0 10.0 21.0 10.0 21.0 10.0 21.0 10.0 21.0 10.0 21.0 10.0 21.0 10.0 21.0 11.0 21.0 11.0 21.0 11.0 21.0 12.0 21.0 13.0 21.0 14.0 21.0 15.0 21.0 15.0 21.0 15.0 21.0 15.0 21.0 16.0	76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0	184.0 83.0 - - - - - - - - - - - - - - - - - - -	21.0 21.0 21.0 20.0 20.0 20.0 20.0 20.0 19.0 19.0 19.0 19.0 21.0 21.0 21.0 22.0 23.0 24.0 24.0 23.0 23.0 23.0 23.0 22.0	6.0 6.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	224.1 101.8	24.9 22.2 21.0 20.0 20.0 20.0 20.0 19.0 19.0 19.0 19.0 19.0 24.1 30.0 35.1 27.6 36.9 38.3 44.6 41.8 37.6 31.3	188.7 83.9 - - - - - - - - - - - - - - - - - - -	179.5 77.1 - - - - - - - - - - - - - - - - - - -
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	20.0 17.0 20.0 18.0 20.0 20.0 20.0 20.0 20.0 21.0 20.0 22.0 21.0 - 21.0 1.0 21.0 3.0 21.0 4.0 21.0 4.0 21.0 4.0 21.0 10.0	76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0	184.0 83.0 - - - - - - - - - - - - - - - - - - -	21.0 21.0 21.0 21.0 20.0 20.0 20.0 20.0	6.0 6.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	224.1 101.8	24.9 22.2 21.0 20.0 20.0 20.0 20.0 19.0 19.0 19.0 19.0 19.0 24.1 30.0 35.1 27.6 36.9 38.3 44.6 41.8 37.6 31.3 26.0 22.0 21.0	188.7 83.9 - - - - - - - - - - - - - - - - - - -	179.5 77.1 - - - - - - - - - - - - - - - - - - -
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	20.0 17.0 20.0 18.0 20.0 20.0 20.0 20.0 20.0 21.0 20.0 22.0 21.0 1.0 21.0 2.0 21.0 3.0 21.0 4.0 21.0 5.0 21.0 6.0 21.0 1.0	76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0	184.0 83.0 	21.0 21.0 21.0 20.0 20.0 20.0 20.0 20.0	6.0 6.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 6.0 6.0 7.0 7.0 7.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	224.1 101.8	24.9 22.2 21.0 20.0 20.0 20.0 20.0 19.0 19.0 19.0 19.0 20.0 24.1 30.0 35.1 27.6 36.9 38.3 44.6 41.8 37.6 31.3 26.0 22.0	188.7 83.9 - - - - - - - - - - - - - - - - - - -	179.5 77.1 - - - - - - - - - - - - - - - - - - -

3.0	21.0	21.0	_		20.0	5.0		20.0	_	_
3.0	21.0	22.0	_		20.0	5.0		20.0		
			-				· · · · · · · · · · · · · · · · · · ·		-	-
3.0	21.0	23.0	-	-	20.0	5.0	-	20.0	-	-
3.0	22.0	-	-	-	20.0	5.0	-	20.0	-	-
3.0	22.0	1.0	-	-	20.0	5.0	-	20.0	_	-
3.0	22.0	2.0	_		21.0	5.0		21.0	_	_
3.0	22.0	3.0	-	-	21.0	5.0	-	21.0	-	-
3.0	22.0	4.0	-	-	21.0	5.0	-	21.0	-	-
3.0	22.0	5.0	_	<u>-</u>	21.0	6.0	_	21.0	_	_
3.0	22.0	6.0	_		21.0	6.0		21.0	_	
3.0	22.0	7.0	99.0	94.0	22.0	6.0	120.8	23.2	98.8	91.8
3.0	22.0	8.0	141.0	198.0	23.0	7.0	272.2	27.1	226.2	216.1
3.0	22.0	9.0	100.0	296.0	23.0	7.0	367.3	29.1	305.7	293.4
3.0	22.0	10.0	769.0	174.0	24.0	7.0	868.1	39.6	686.9	660.6
3.0	22.0	11.0	798.0	185.0	24.0	7.0	980.0	42.4	765.4	735.6
3.0	22.0	12.0	806.0	188.0	24.0	7.0	1,016.0	43.2	790.2	759.3
3.0	22.0	13.0	102.0	428.0	24.0	7.0	531.5	34.3	432.3	416.0
3.0	22.0	14.0	814.0	144.0	24.0	7.0	861.9	39.7	681.2	655.2
3.0	22.0	15.0	744.0	134.0	23.0	7.0	670.3	35.7	536.1	516.0
3.0	22.0	16.0	613.0	116.0	23.0	8.0	427.7	30.2	340.5	327.1
3.0	22.0	17.0	351.0	81.0	22.0	7.0	171.9	24.7	128.6	120.9
3.0	22.0	18.0	-	_	22.0	7.0	_	22.0	_	_
3.0	22.0	19.0	_		22.0	7.0		22.0		
									-	
3.0	22.0	20.0	-	-	22.0	7.0	•	22.0	-	-
3.0	22.0	21.0	-	-	22.0	7.0	-	22.0	-	-
3.0	22.0	22.0	_		22.0	6.0	_	22.0	_	
3.0	22.0	23.0	-	-	22.0	6.0	•	22.0	-	-
3.0	23.0	-	-	-	22.0	5.0	-	22.0	-	-
3.0	23.0	1.0	_		22.0	5.0	_	22.0	_	
3.0	23.0	2.0	-	-	22.0	5.0	-	22.0	-	-
3.0	23.0	3.0	-	-	22.0	5.0	-	22.0	-	-
3.0	23.0	4.0	_		22.0	5.0	_	22.0	_	
3.0	23.0	5.0	-	1.	22.0	5.0	1	22.0	5.2	-
3.0	23.0	6.0	-	6.0	22.0	5.0	5.7	20.7	4.9	-
3.0	23.0	7.0	434.0	79.0	23.0	6.0	202.9	25.9	151.0	142.8
3.0	23.0	8.0	630.0	120.0	24.0	6.0	456.2	32.4	361.3	347.3
3.0	23.0	9.0	729.0	147.0	24.0	6.0	688.6	37.6	546.4	525.9
3.0	23.0	10.0	830.0	139.0	25.0	6.0	882.6	42.9	686.4	660.2
3.0	23.0	11.0	853.0	149.0	25.0	6.0	996.5	45.6	765.7	735.9
3.0	23.0	12.0	859.0	153.0	25.0	6.0	1,032.9	46.5	789.9	759.0
3.0	23.0	13.0	856.0	146.0	25.0	6.0	989.6	45.7	759.8	730.3
3.0	23.0	14.0	828.0	137.0	25.0	6.0	866.4	43.2	672.8	647.2
3.0	23.0	15.0	773.0	122.0	24.0	6.0	676.2	38.1	534.1	514.1
3.0	23.0	16.0	708.0	89.0	23.0	6.0	445.8	32.1	350.0	336.4
3.0	23.0	17.0	493.0	62.0	23.0	6.0	189.2	26.4	135.0	127.1
	23.0		-	-	22.0	6.0	-		-	-
3.0		18.0	-					22.0	-	
3.0	23.0	19.0	-	-	22.0	5.0	-	22.0	-	-
3.0	23.0	20.0	-	_	22.0	5.0	_	22.0	_	_
3.0	23.0	21.0			22.0	5.0		22.0	_	
3.0	23.0	22.0	-	-	21.0	4.0	-	21.0	-	-
3.0	23.0	23.0	-	-	21.0	4.0	-	21.0	-	-
3.0	24.0	-	_	<u>-</u>	21.0	4.0	_	21.0	_	_
3.0	24.0	1.0			21.0	4.0		21.0		
			-	· · · · · · · · · · · · · · · · · · ·			•		-	-
3.0	24.0	2.0	-		21.0	4.0		21.0	-	-
3.0	24.0	3.0	-		21.0	4.0		21.0	-	-
3.0	24.0	4.0	_	<u>-</u>	21.0	4.0	<u>-</u>	21.0	_	
					21.0	4.0				
3.0	24.0	5.0						21.0		
3.0	24.0	6.0	92.0	12.0	21.0	5.0	18.5	19.9	12.4	7.0
3.0	24.0	7.0	612.0	57.0	22.0	5.0	232.5	25.9	167.7	159.1
3.0	24.0	8.0	793.0	79.0	23.0	6.0	498.5	32.3	393.0	378.0
3.0	24.0	9.0	881.0	92.0	24.0	6.0	736.9	38.7	581.1	559.3
3.0	24.0	10.0	932.0	97.0	24.0	6.0	923.5	42.8	718.6	691.0
3.0	24.0	11.0	13.0	271.0	24.0	6.0	275.3	30.1	228.6	218.4
3.0	24.0	12.0	32.0	373.0	25.0	6.0	407.5	32.6	334.3	321.1
										540.3
3.0	24.0	13.0	256.0	432.0	24.0	6.0	702.1	37.8	561.4	540.3
3.0	24.0	14.0	351.0	350.0	24.0	6.0	668.4	37.6	534.3	514.3 345.8
3.0	24.0	15.0	207.0	292.0	24.0	6.0	441.3	33.0	359.7	345.8
3.0	24.0	16.0	170.0	190.0	23.0	6.0	274.1	28.2	225.7	215.6
										400.0
3.0	24.0	17.0	490.0	65.0	22.0	6.0	191.0	25.1	137.5	129.6
3.0	24.0	18.0	-	-	22.0	6.0	-	22.0	-	-
3.0	24.0	19.0	_	<u>-</u>	22.0	6.0	<u>-</u>	22.0	_	_
					22.0	5.0		22.0		
3.0	24.0	20.0	-				-		-	-
3.0	24.0	21.0	-		22.0	5.0	-	22.0	-	-
3.0	24.0	22.0	-	-	21.0	5.0	-	21.0	_	-
3.0	24.0	23.0	_		21.0	4.0		21.0	_	_
					21.0					
3.0	25.0	-	-	-		4.0	-	21.0	-	-
3.0	25.0	1.0	-	-	21.0	4.0	-	21.0	-	-
3.0	25.0	2.0	-	-	21.0	4.0	-	21.0	_	-
3.0	25.0	3.0	_	_	20.0	4.0	_	20.0	_	_
3.0	25.0	4.0	-	-	20.0	4.0	-	20.0	-	-
3.0	25.0	5.0	-	-	20.0	4.0	-	20.0	-	-

3.0 3.0	25.0 25.0	6.0 7.0	62.0 555.0	13.0 68.0	21.0 22.0	4.0 5.0	17.3 228.8	19.8 25.8	12.6 167.5	7.2 158.9
3.0 3.0	25.0 25.0	8.0 9.0	316.0 383.0	186.0 270.0	23.0 23.0	5.0 5.0	355.0 557.0	30.1 34.9	288.1 449.3	276.3 432.4
3.0	25.0 25.0	10.0 11.0	896.0 922.0	120.0 125.0	24.0 24.0	6.0 6.0	917.1 1,032.8	42.4 45.4	715.3 794.5	687.8 763.3
3.0	25.0 25.0	12.0 13.0	929.0 326.0	127.0 416.0	25.0 24.0	6.0 6.0	1,068.9 752.4	47.3 40.0	814.1 594.9	782.0 572.5
3.0 3.0 3.0	25.0 25.0 25.0	14.0 15.0 16.0	280.0 837.0 730.0	370.0 107.0 91.0	24.0 24.0 23.0	6.0 6.0 6.0	627.7 704.4 457.6	36.9 38.2 32.4	503.6 555.7 358.6	484.7 534.9 344.7
3.0 3.0	25.0 25.0 25.0	17.0 18.0	510.0	64.0	22.0 22.0 22.0	6.0 5.0	194.5	25.5 22.0	139.2	131.2
3.0 3.0	25.0 25.0	19.0 20.0	-	<u>-</u>	22.0 22.0	5.0 5.0	-	22.0 22.0 22.0	<u>-</u> -	-
3.0 3.0	25.0 25.0	21.0 22.0	-	-	21.0 21.0	5.0 5.0	-	21.0 21.0	-	-
3.0 3.0	25.0 26.0	23.0	-	-	21.0 21.0	5.0 5.0	-	21.0 21.0	-	-
3.0 3.0	26.0 26.0	1.0 2.0	-	- -	21.0 21.0	5.0 5.0	-	21.0 21.0	- -	-
3.0 3.0	26.0 26.0	3.0 4.0	-	-	21.0 21.0	5.0 5.0	-	21.0 21.0	-	-
3.0	26.0 26.0	5.0 6.0	60.0	14.0	21.0 21.0	5.0 5.0	18.1	21.0 19.9	13.4	8.0
3.0	26.0 26.0	7.0 8.0	516.0 709.0	75.0 106.0	22.0 23.0	6.0 6.0	225.8 485.8	25.4 32.1	167.2 385.0	158.6 370.3
3.0	26.0 26.0	9.0	807.0 859.0	124.0 136.0	24.0 25.0 25.0	6.0 7.0	722.3 907.4	38.3 41.9	571.0 709.7	549.6 682.4 755.7
3.0 3.0 3.0	26.0 26.0 26.0	11.0 12.0 13.0	883.0 887.0 876.0	145.0 149.0 147.0	25.0 25.0 25.0	7.0 6.0 6.0	1,015.9 1,049.5 1,002.7	44.1 46.9 46.0	786.4 801.1 768.7	769.7 738.8
3.0 3.0	26.0 26.0	14.0 15.0	838.0 770.0	147.0 143.0 133.0	25.0 25.0 25.0	6.0 5.0	880.4 685.5	43.5 41.0	682.6 533.6	656.5 513.6
3.0 3.0	26.0 26.0	16.0 17.0	648.0 429.0	115.0 76.0	24.0 23.0	5.0 5.0	441.7 184.5	34.1 26.8	344.5 134.0	331.0 126.2
3.0 3.0	26.0 26.0	18.0 19.0	-	- - -	23.0 22.0	5.0 5.0	- -	23.0 22.0	- -	-
3.0 3.0	26.0 26.0	20.0 21.0	-	-	22.0 22.0	5.0 5.0	-	22.0 22.0	-	-
3.0	26.0 26.0	22.0 23.0		-	22.0 22.0	5.0 5.0	-	22.0 22.0	-	-
3.0	27.0 27.0	1.0	-	-	22.0 22.0	5.0 5.0	:	22.0 22.0	-	-
3.0	27.0 27.0	2.0 3.0	-	- -	22.0 22.0	5.0 5.0	:	22.0 22.0	-	-
3.0 3.0 3.0	27.0 27.0 27.0	4.0 5.0 6.0		- - 11.0	21.0 21.0 21.0	5.0 5.0 5.0	- - 10.4	21.0 21.0 19.8	- - 9.1	- - 3.8
3.0 3.0	27.0 27.0 27.0	7.0 8.0	120.0 174.0	103.0 208.0	22.0 23.0	5.0 5.0 5.0	136.0 299.6	23.7 28.7	110.7 246.9	103.4 236.2
3.0 3.0	27.0 27.0	9.0 10.0	417.0 385.0	264.0 355.0	24.0 25.0	4.0 4.0	582.1 709.7	37.7 42.6	463.0 553.5	445.6 532.7
3.0 3.0	27.0 27.0	11.0 12.0	473.0 461.0	361.0 381.0	25.0 25.0	4.0 4.0	849.5 873.1	46.2 47.1	650.6 665.5	625.9 640.2
3.0 3.0	27.0 27.0	13.0 14.0	504.0 384.0	348.0 347.0	25.0 24.0	4.0 4.0	860.7 692.3	46.9 41.9	656.7 541.5	631.8 521.2
3.0	27.0 27.0	15.0 16.0	176.0 235.0	298.0 187.0	24.0 23.0	4.0 4.0	424.6 305.7	35.0 30.3	342.9 247.9	329.5 237.2
3.0 3.0 3.0	27.0 27.0 27.0	17.0 18.0 19.0	159.0 - -	88.0 - -	22.0 22.0 22.0	4.0 4.0 4.0	127.6 - -	24.5 22.0 22.0	100.7 - -	93.6 - -
3.0 3.0	27.0 27.0 27.0	20.0 21.0			22.0 22.0 22.0	4.0 4.0 4.0	-	22.0 22.0 22.0		Ē
3.0 3.0	27.0 27.0	22.0 23.0	-	<u>-</u>	22.0 21.0	4.0 4.0	-	22.0 21.0	<u>-</u> -	-
3.0 3.0	28.0 28.0	1.0	-	- -	21.0 21.0	3.0 3.0	-	21.0 21.0	- -	-
3.0 3.0	28.0 28.0	2.0 3.0	-	- -	21.0 21.0	3.0 3.0	-	21.0 21.0	- -	-
3.0	28.0 28.0	4.0 5.0	-	- - 	21.0 21.0	3.0 3.0	- 	21.0 21.0	- 	- -
3.0 3.0	28.0 28.0	6.0 7.0	69.0 91.0	17.0 105.0	21.0 22.0 23.0	3.0 4.0	21.4 129.8 498.0	19.7 23.7 34.2	15.9 106.8	10.5 99.6 375.5
3.0 3.0 3.0	28.0 28.0 28.0	8.0 9.0 10.0	744.0 842.0 877.0	98.0 112.0 130.0	24.0 25.0	4.0 4.0 4.0	737.3 913.2	42.0 47.8	390.4 572.1 692.6	550.6 666.2
3.0 3.0	28.0 28.0	11.0 12.0	911.0 923.0	130.0 128.0	25.0 26.0	4.0 4.0	1,028.8 1,064.5	50.9 53.0	768.5 786.4	738.6 755.6
3.0 3.0	28.0 28.0	13.0 14.0	912.0 884.0	127.0 120.0	26.0 26.0	4.0 4.0	1,016.7 890.3	52.0 49.0	755.0 670.7	725.7 645.2

3.0	28.0	15.0	827.0	110.0	25.0	4.0	699.0	43.1	537.9	517.8
3.0	28.0	16.0	719.0	95.0	24.0	4.0	454.6	35.7	350.5	336.8
3.0	28.0	17.0	186.0	87.0	23.0	3.0	132.9	26.5	102.9	95.7
3.0		18.0	-	-	23.0				-	
	28.0		-	-		3.0	-	23.0		-
3.0	28.0	19.0	-	-	22.0	3.0	-	22.0		-
3.0	28.0	20.0	-	-	22.0	3.0	-	22.0	-	-
3.0	28.0	21.0	-	-	22.0	4.0		22.0	-	-
3.0	28.0	22.0	-	_	22.0	3.0	-	22.0	_	_
3.0	28.0	23.0	_	_	22.0	3.0		22.0	_	_
3.0	29.0	-			22.0	3.0		22.0		
							· · · · · · · · · · · · · · · · · · ·			
3.0	29.0	1.0	-	-	21.0	3.0	-	21.0	-	
3.0	29.0	2.0	-	-	21.0	3.0		21.0		-
3.0	29.0	3.0	-	-	21.0	3.0	-	21.0	-	-
3.0	29.0	4.0	-	_	20.0	3.0	-	20.0	_	-
3.0	29.0	5.0	_	_	20.0	3.0		20.0	_	_
3.0	29.0	6.0	126.0	18.0	21.0	3.0	26.6	19.9	18.1	12.6
										168.2
3.0	29.0	7.0	601.0	65.0	22.0	4.0	242.9	26.6	177.1	
3.0	29.0	8.0	779.0	88.0	23.0	4.0	506.9	34.7	396.1	381.0
3.0	29.0	9.0	866.0	102.0	24.0	4.0	742.3	42.2	575.5	553.9
3.0	29.0	10.0	912.0	112.0	25.0	4.0	926.3	48.1	701.4	674.5
3.0	29.0	11.0	933.0	118.0	25.0	3.0	1,038.4	53.6	764.5	734.7
3.0	29.0	12.0	937.0	120.0	25.0	3.0	1,070.5	54.8	783.3	752.7
3.0	29.0	13.0	932.0	115.0	25.0	4.0	1,023.5	51.2	763.2	733.6
3.0	29.0	14.0	901.0	112.0	25.0	4.0	896.2	48.1	678.1	652.3
3.0	29.0	15.0	842.0	105.0	24.0	4.0	703.6	42.3	543.8	523.4
3.0	29.0	16.0	734.0	92.0	24.0	4.0	458.2	35.8	352.8	339.0
3.0	29.0	17.0	509.0	67.0	23.0	4.0	195.3	27.7	138.4	130.5
3.0	29.0	18.0	_	_	22.0	4.0	-	22.0	_	_
3.0	29.0	19.0	_		22.0	4.0		22.0	<u>-</u>	
			-						-	
3.0	29.0	20.0	•	-	22.0	4.0	-	22.0	-	-
3.0	29.0	21.0	-	-	22.0	4.0		22.0		-
3.0	29.0	22.0	-	-	22.0	4.0	-	22.0	-	-
3.0	29.0	23.0	-	_	22.0	4.0	-	22.0	_	-
3.0	30.0	_	_	_	22.0	4.0	-	22.0	_	_
3.0	30.0	1.0			22.0	3.0		22.0	_	
	30.0							22.0		
3.0		2.0	-	-	22.0	3.0			-	-
3.0	30.0	3.0	-	-	22.0	3.0	•	22.0	-	-
3.0	30.0	4.0	-	-	21.0	4.0	-	21.0	-	-
3.0	30.0	5.0	-	_	21.0	4.0	-	21.0	_	-
3.0	30.0	6.0	83.0	19.0	22.0	4.0	24.5	21.0	17.9	12.5
3.0	30.0	7.0	484.0	85.0	23.0	4.0	228.3	27.2	169.8	161.1
3.0	30.0	8.0	706.0	107.0	24.0	5.0		34.2	384.6	369.8
							489.5			
3.0	30.0	9.0	808.0	121.0	24.0	5.0	723.8	40.0	567.7	546.4
3.0	30.0	10.0	770.0	183.0	25.0	5.0	883.5	45.0	680.0	654.1
3.0	30.0	11.0	812.0	183.0	25.0	5.0	994.7	47.8	755.5	726.2
3.0	30.0	12.0	142.0	472.0	25.0	5.0	629.2	40.0	497.5	478.8
3.0	30.0	13.0	6.0	185.0	25.0	5.0	183.6	29.2	153.1	144.8
3.0	30.0	14.0	2.0	164.0	25.0	5.0	158.9	27.7	133.5	125.7
3.0	30.0	15.0	187.0	300.0	24.0	5.0	433.1	32.7	353.6	339.8
3.0	30.0	16.0	273.0	185.0	24.0	6.0	320.9	30.1	259.8	248.8
3.0	30.0	17.0	419.0	77.0	23.0	6.0	181.3	26.0	132.2	124.4
3.0	30.0	18.0	-	-	22.0	6.0	-	22.0	-	-
3.0	30.0	19.0	-	-	22.0	6.0	-	22.0	<u>-</u>	_
3.0	30.0	20.0	_	_	22.0	6.0	-	22.0	_	_
3.0	30.0	21.0	_	_	22.0	6.0		22.0	_	_
3.0	30.0	22.0			22.0	6.0		22.0		
			-							-
3.0	30.0	23.0	-	-	21.0	5.0	-	21.0	-	-
3.0	31.0		-	-	21.0	5.0	-	21.0	-	-
3.0	31.0	1.0	-	-	21.0	5.0	-	21.0		-
3.0	31.0	2.0	-	-	21.0	4.0	-	21.0	-	-
3.0	31.0	3.0	-	-	20.0	4.0	-	20.0	-	-
3.0	31.0	4.0	-	-	20.0	4.0	-	20.0	_	_
3.0	31.0	5.0	_	_		4.0	_	20.0	_	_
3.0	31.0	6.0	92.0	23.0	20.0 20.0	4.0	28.6	19.0	21.3	15.8
										470.0
3.0	31.0	7.0	547.0	79.0	21.0	5.0	243.2	25.1	181.3	172.3
3.0		8.0	738.0	105.0	22.0	5.0	505.3	32.5	400.2	384.9
	31.0			320.0	23.0	5.0	440.5	32.7	360.3	346.3
3.0	31.0	9.0	160.0			5.0	922.6	43.2	716.6	689.0
			884.0	131.0	23.0					
3.0	31.0	9.0			23.0 24.0	5.0	798.0	42.6	622.8	599.3
3.0 3.0 3.0	31.0 31.0 31.0	9.0 10.0 11.0	884.0 378.0	131.0 409.0	24.0	5.0	798.0		622.8	599.3
3.0 3.0 3.0 3.0	31.0 31.0 31.0 31.0	9.0 10.0 11.0 12.0	884.0 378.0 917.0	131.0 409.0 137.0	24.0 24.0	5.0 5.0	798.0 1,067.9	48.2	622.8 809.4	599.3
3.0 3.0 3.0 3.0 3.0	31.0 31.0 31.0 31.0 31.0	9.0 10.0 11.0 12.0 13.0	884.0 378.0 917.0 584.0	131.0 409.0 137.0 324.0	24.0 24.0 24.0	5.0 5.0 5.0	798.0 1,067.9 911.6	48.2 45.4	622.8 809.4 701.1	599.3 777.6 674.2
3.0 3.0 3.0 3.0 3.0 3.0	31.0 31.0 31.0 31.0 31.0 31.0	9.0 10.0 11.0 12.0 13.0 14.0	884.0 378.0 917.0 584.0 319.0	131.0 409.0 137.0 324.0 367.0	24.0 24.0 24.0 23.0	5.0 5.0 5.0 5.0	798.0 1,067.9 911.6 654.9	48.2 45.4 38.4	622.8 809.4 701.1 521.6	599.3 777.6 674.2 502.1
3.0 3.0 3.0 3.0 3.0 3.0 3.0	31.0 31.0 31.0 31.0 31.0 31.0 31.0	9.0 10.0 11.0 12.0 13.0 14.0 15.0	884.0 378.0 917.0 584.0 319.0 818.0	131.0 409.0 137.0 324.0 367.0 118.0	24.0 24.0 24.0 23.0 23.0	5.0 5.0 5.0 5.0 5.0	798.0 1,067.9 911.6 654.9 699.2	48.2 45.4 38.4 38.8	622.8 809.4 701.1 521.6 550.2	599.3 777.6 674.2 502.1 529.5
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	31.0 31.0 31.0 31.0 31.0 31.0 31.0 31.0	9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0	884.0 378.0 917.0 584.0 319.0 818.0 193.0	131.0 409.0 137.0 324.0 367.0 118.0 195.0	24.0 24.0 24.0 23.0 23.0 23.0	5.0 5.0 5.0 5.0 5.0 4.0	798.0 1,067.9 911.6 654.9 699.2 288.0	48.2 45.4 38.4 38.8 30.7	622.8 809.4 701.1 521.6 550.2 233.9	599.3 777.6 674.2 502.1 529.5
3.0 3.0 3.0 3.0 3.0 3.0 3.0	31.0 31.0 31.0 31.0 31.0 31.0 31.0	9.0 10.0 11.0 12.0 13.0 14.0 15.0	884.0 378.0 917.0 584.0 319.0 818.0	131.0 409.0 137.0 324.0 367.0 118.0	24.0 24.0 24.0 23.0 23.0 23.0 22.0	5.0 5.0 5.0 5.0 5.0	798.0 1,067.9 911.6 654.9 699.2	48.2 45.4 38.4 38.8	622.8 809.4 701.1 521.6 550.2	599.3 777.6 674.2 502.1 529.5
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	31.0 31.0 31.0 31.0 31.0 31.0 31.0 31.0	9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0	884.0 378.0 917.0 584.0 319.0 818.0 193.0	131.0 409.0 137.0 324.0 367.0 118.0 195.0	24.0 24.0 24.0 23.0 23.0 23.0	5.0 5.0 5.0 5.0 5.0 4.0	798.0 1,067.9 911.6 654.9 699.2 288.0	48.2 45.4 38.4 38.8 30.7	622.8 809.4 701.1 521.6 550.2 233.9	599.3 777.6 674.2 502.1
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	31.0 31.0 31.0 31.0 31.0 31.0 31.0 31.0	9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0	884.0 378.0 917.0 584.0 319.0 818.0 193.0 504.0	131.0 409.0 137.0 324.0 367.0 118.0 195.0 69.0	24.0 24.0 24.0 23.0 23.0 23.0 22.0 21.0	5.0 5.0 5.0 5.0 5.0 4.0 4.0	798.0 1,067.9 911.6 654.9 699.2 288.0 195.1	48.2 45.4 38.4 38.8 30.7 26.1 21.0	622.8 809.4 701.1 521.6 550.2 233.9 139.4	599.3 777.6 674.2 502.1 529.5 223.5 131.5
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	31.0 31.0 31.0 31.0 31.0 31.0 31.0 31.0	9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0	884.0 378.0 917.0 584.0 319.0 818.0 193.0 504.0	131.0 409.0 137.0 324.0 367.0 118.0 195.0 69.0	24.0 24.0 24.0 23.0 23.0 23.0 22.0 21.0 22.0	5.0 5.0 5.0 5.0 5.0 4.0 4.0 4.0 6.0	798.0 1,067.9 911.6 654.9 699.2 288.0 195.1	48.2 45.4 38.4 30.7 26.1 21.0 22.0	622.8 809.4 701.1 521.6 550.2 233.9 139.4	599.3 777.6 674.2 502.1 529.5 223.5 131.5
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	31.0 31.0 31.0 31.0 31.0 31.0 31.0 31.0	9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0	884.0 378.0 917.0 584.0 319.0 818.0 193.0 504.0	131.0 409.0 137.0 324.0 367.0 118.0 195.0 69.0	24.0 24.0 24.0 23.0 23.0 23.0 22.0 21.0 22.0 21.0	5.0 5.0 5.0 5.0 4.0 4.0 4.0 6.0 5.0	798.0 1,067.9 911.6 654.9 699.2 288.0 195.1	48.2 45.4 38.4 38.8 30.7 26.1 21.0 22.0 21.0	622.8 809.4 701.1 521.6 550.2 233.9 139.4	599.3 777.6 674.2 502.1 529.5 223.5 131.5
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	31.0 31.0 31.0 31.0 31.0 31.0 31.0 31.0	9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0	884.0 378.0 917.0 584.0 319.0 818.0 193.0 504.0	131.0 409.0 137.0 324.0 367.0 118.0 195.0 69.0	24.0 24.0 24.0 23.0 23.0 22.0 21.0 22.0 21.0 20.0	5.0 5.0 5.0 5.0 4.0 4.0 4.0 6.0 5.0	798.0 1,067.9 911.6 654.9 699.2 288.0 195.1	48.2 45.4 38.4 38.8 30.7 26.1 21.0 22.0 21.0 20.0	622.8 809.4 701.1 521.6 550.2 233.9 139.4	599.3 777.6 674.2 502.1 529.5 223.5 131.5
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	31.0 31.0 31.0 31.0 31.0 31.0 31.0 31.0	9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0	884.0 378.0 917.0 584.0 319.0 818.0 193.0 504.0	131.0 409.0 137.0 324.0 367.0 118.0 195.0 69.0	24.0 24.0 24.0 23.0 23.0 23.0 22.0 21.0 22.0 21.0 20.0	5.0 5.0 5.0 5.0 4.0 4.0 4.0 6.0 5.0 5.0	798.0 1,067.9 911.6 654.9 699.2 288.0 195.1	48.2 45.4 38.4 38.8 30.7 26.1 21.0 22.0 21.0 20.0 20.0	622.8 809.4 701.1 521.6 550.2 233.9 139.4	599.3 777.6 674.2 502.1 529.5 223.5 131.5
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	31.0 31.0 31.0 31.0 31.0 31.0 31.0 31.0	9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0	884.0 378.0 917.0 584.0 319.0 818.0 193.0 504.0	131.0 409.0 137.0 324.0 367.0 118.0 195.0 69.0	24.0 24.0 24.0 23.0 23.0 22.0 21.0 22.0 21.0 20.0	5.0 5.0 5.0 5.0 4.0 4.0 4.0 6.0 5.0	798.0 1,067.9 911.6 654.9 699.2 288.0 195.1	48.2 45.4 38.4 38.8 30.7 26.1 21.0 22.0 21.0 20.0	622.8 809.4 701.1 521.6 550.2 233.9 139.4	599.3 777.6 674.2 502.1 529.5 223.5 131.5

4.0 4.0 4.0	1.0 - 1.0 1.0 1.0 2.0	- - -	:	19.0 19.0 19.0	5.0 5.0 5.0	:	19.0 19.0 19.0	- - -	-
4.0 4.0	1.0 3.0 1.0 4.0	-	-	19.0 18.0	5.0 4.0	-	19.0 18.0	-	-
4.0 4.0	1.0 5.0 1.0 6.0	-	- 14.0	18.0 19.0	4.0 4.0	13.3	18.0 17.6	- 11.7	6.4
4.0 4.0	1.0 7.0 1.0 8.0	258.0 701.0	105.0 120.0	20.0 21.0	5.0 5.0	180.9 502.1	22.6 31.3	143.5 400.7	135.5 385.4
4.0 4.0	1.0 9.0 1.0 10.0	317.0 877.0	302.0 141.0	21.0 22.0	6.0 6.0	543.0 932.6	31.7 40.6	445.5 734.1	428.7 705.7
4.0 4.0	1.0 11.0 1.0 12.0	913.0 934.0	144.0 139.0	22.0 23.0	6.0 6.0	1,046.5 1,087.0	43.6 45.7	812.2 835.0	780.3 801.9
4.0 4.0	1.0 13.0 1.0 14.0	937.0 912.0	130.0 123.0	23.0 24.0	5.0 5.0	1,043.0 915.6	47.3 45.4	794.1 702.7	763.0 675.8
4.0 4.0	1.0 15.0 1.0 16.0	860.0 759.0	112.0 95.0	24.0 23.0	5.0 4.0	721.6 471.5	40.9 35.2	561.6 363.9	540.6 349.8
4.0 4.0	1.0 17.0 1.0 18.0	552.0	67.0 -	22.0 20.0	4.0 4.0	204.3	26.9 20.0	144.2 -	136.1
4.0 4.0	1.0 19.0 1.0 20.0	-	- -	19.0 18.0	5.0 6.0	-	19.0 18.0	- -	-
4.0 4.0	1.0 21.0 1.0 22.0	-	-	17.0 16.0	6.0 6.0	-	17.0 16.0	- -	-
4.0 4.0	1.0 23.0 2.0 -	-	- -	16.0 15.0	6.0 5.0	-	16.0 15.0	- -	-
4.0 4.0	2.0 1.0 2.0 2.0	-	- -	15.0 15.0	5.0 5.0	-	15.0 15.0	- -	-
4.0 4.0	2.0 3.0 2.0 4.0	-	- -	15.0 14.0	5.0 5.0	-	15.0 14.0	- -	-
4.0 4.0	2.0 5.0 2.0 6.0	- 173.0	- 25.0	14.0 16.0	5.0 5.0	- 36.0	14.0 15.2	- 25.0	- 19.4
4.0	2.0 7.0 2.0 8.0	593.0 764.0	78.0 105.0	17.0 18.0	5.0 6.0	257.6 521.1	21.4 27.8	195.0 422.4	185.7 406.4
4.0 4.0	2.0 9.0 2.0 10.0	851.0 893.0	123.0 137.0	19.0 20.0	5.0 5.0	760.0 937.9	35.8 41.3	608.8 735.8	585.9 707.4
4.0	2.0 11.0 2.0 12.0	913.0 916.0	146.0 149.0	21.0 22.0	4.0 4.0	1,048.8 1,078.9	47.6 49.6	797.3 811.9	766.1 780.0
4.0 4.0	2.0 13.0 2.0 14.0	899.0 860.0	150.0 146.0	23.0 23.0	4.0 4.0	1,026.3 899.0	49.4 46.3	772.9 686.9	742.8 660.7
4.0 4.0	2.0 15.0 2.0 16.0	797.0 693.0	135.0 112.0	24.0 23.0	4.0 4.0 4.0	700.7 456.2	42.2 34.8	541.9 353.8	521.6 340.0
4.0 4.0 4.0	2.0 10.0 2.0 17.0 2.0 18.0	490.0	76.0 -	22.0 21.0	5.0 5.0	197.6	26.1 21.0	142.2	134.2
4.0 4.0	2.0 19.0 2.0 20.0	-	-	20.0 19.0	6.0 6.0	-	20.0 19.0	-	-
4.0 4.0 4.0	2.0 20.0 2.0 21.0 2.0 22.0		-	18.0 18.0	5.0 5.0	-	18.0 18.0	-	
4.0 4.0 4.0	2.0 22.0 2.0 23.0 3.0 -		-	17.0 17.0	5.0 5.0 5.0	-	17.0 17.0	-	
4.0 4.0 4.0	3.0 1.0 3.0 2.0	-	- -	16.0 16.0	5.0 5.0 5.0	-	16.0 16.0	- -	-
4.0 4.0 4.0	3.0 2.0 3.0 3.0 3.0 4.0		- -	16.0 16.0	5.0 5.0 5.0		16.0 16.0 16.0	-	
4.0 4.0 4.0	3.0 5.0 3.0 6.0	- - 190.0	- - 26.0	16.0 17.0	5.0 5.0 5.0	- - 37.9	16.0 16.3	- - 25.9	20.3
4.0	3.0 7.0	607.0	77.0	18.0	5.0	261.7	22.5	197.0	187.6
4.0 4.0 4.0	3.0 8.0 3.0 9.0 3.0 10.0	785.0 878.0 927.0	101.0 114.0 123.0	20.0 21.0 22.0	5.0 5.0 4.0	529.1 771.4 954.3	31.1 38.1 45.9	422.1 610.9 731.0	406.1 587.9 702.8
4.0 4.0 4.0	3.0 11.0	949.0	130.0	23.0	4.0	1,068.0	50.0	801.7	702.8 770.2 788.1
4.0	3.0 13.0	951.0 935.0	134.0 136.0	23.0 24.0	4.0 3.0	1,098.8 1,046.4	51.0 53.4	820.4 771.3	741.3
4.0	3.0 14.0 3.0 15.0	906.0 846.0	129.0 120.0	25.0 25.0	3.0 2.0	915.5 718.7	50.9 48.2	682.5 538.6	656.4 518.4
4.0 4.0	3.0 16.0 3.0 17.0	737.0 525.0	103.0 73.0	24.0 23.0	1.0 1.0	467.6 202.6	42.5 31.1	348.2 141.3	334.6 133.3 3.1
4.0 4.0	3.0 18.0 3.0 19.0	40.0	10.0 -	22.0 21.0	2.0 4.0	10.9 -	21.2 21.0	8.4 -	-
4.0 4.0	3.0 20.0 3.0 21.0	-	-	20.0 19.0	5.0 5.0	-	20.0 19.0	- -	-
4.0 4.0	3.0 22.0 3.0 23.0	-	-	18.0 17.0	5.0 5.0	-	18.0 17.0	- -	-
4.0	4.0 - 4.0 1.0	-	- -	16.0 16.0	5.0 4.0		16.0 16.0	-	-
4.0 4.0	4.0 2.0 4.0 3.0	-	-	16.0 16.0	4.0 5.0	-	16.0 16.0	-	-
4.0 4.0	4.0 4.0 4.0 5.0	-	-	16.0 16.0	4.0 4.0	-	16.0 16.0	-	-
4.0 4.0	4.0 6.0 4.0 7.0	36.0 591.0	26.0 79.0	17.0 19.0	5.0 5.0	27.2 259.9	16.1 23.4	22.7 195.4	17.2 186.1
4.0	4.0 8.0	768.0	102.0	20.0	5.0	522.0	30.9	417.0	401.2

4.0	4.0	0.0	050.0	447.0	24.0	5.0	750.0	27.7	000.0	577.4
4.0 4.0	4.0 4.0	9.0 10.0	852.0 886.0	117.0 134.0	21.0 22.0	5.0 5.0	756.2 929.7	37.7 43.1	600.0 722.7	577.4 694.9
4.0	4.0	11.0	907.0	142.0	23.0	5.0	1,039.3	46.9	793.1	762.1
4.0	4.0	12.0	912.0	144.0	24.0	5.0	1,069.6	48.8	808.2	776.5
4.0 4.0	4.0 4.0	13.0 14.0	905.0 876.0	141.0 135.0	25.0 26.0	5.0 5.0	1,022.2 900.1	48.8 47.1	772.1 684.9	742.0 658.8
4.0	4.0	15.0	819.0	124.0	26.0	5.0	703.4	42.5	543.2	522.8
4.0	4.0	16.0	310.0	184.0	25.0	5.0	335.5	32.8	267.5	256.2
4.0	4.0	17.0	501.0	75.0	24.0	5.0	198.3	27.9	141.0	133.0
4.0 4.0	4.0 4.0	18.0 19.0	42.0	10.0	23.0 21.0	5.0 5.0	10.9	22.3 21.0	8.3	3.0
4.0	4.0	20.0	-	-	20.0	6.0	-	20.0	-	_
4.0	4.0	21.0	-	-	19.0	5.0	-	19.0	-	-
4.0	4.0	22.0	-	-	19.0	5.0	-	19.0	-	-
4.0 4.0	4.0 5.0	23.0	-	-	18.0 17.0	5.0 5.0	-	18.0 17.0	-	-
4.0	5.0	1.0		- -	17.0	4.0	- -	17.0	-	
4.0	5.0	2.0	-	<u>-</u>	16.0	4.0	-	16.0	-	-
4.0	5.0	3.0	-		16.0	4.0	-	16.0	-	-
4.0 4.0	5.0 5.0	4.0 5.0	-	-	15.0 15.0	4.0 3.0		15.0 15.0	-	
4.0	5.0	6.0	179.0	29.0	17.0	3.0	39.6	16.2	27.9	22.3
4.0	5.0	7.0	581.0	82.0	18.0	3.0	260.8	23.5	196.7	187.4
4.0	5.0	8.0	756.0	109.0	20.0	2.0	523.9	35.1	410.4	394.8
4.0 4.0	5.0 5.0	9.0 10.0	848.0 900.0	124.0 133.0	22.0 23.0	2.0 2.0	761.3 941.6	45.0 51.9	582.3 698.9	560.4 672.2
4.0	5.0	11.0	928.0	136.0	24.0	2.0	1,053.9	56.5	763.6	734.0
4.0	5.0	12.0	938.0	136.0	24.0	2.0	1,087.4	57.8	782.4	751.8
4.0	5.0	13.0	931.0	133.0	25.0	2.0	1,038.7	57.6	748.1	719.2
4.0 4.0	5.0 5.0	14.0 15.0	374.0 862.0	359.0 110.0	25.0 25.0	2.0 2.0	691.0 718.0	47.9 47.3	523.9 540.4	504.3 520.2
4.0	5.0	16.0	766.0	93.0	24.0	2.0	470.1	39.4	354.9	341.1
4.0	5.0	17.0	568.0	66.0	23.0	3.0	205.1	28.6	142.8	134.8
4.0	5.0	18.0	64.0	11.0	21.0	3.0	12.1	20.2	8.8	3.6
4.0 4.0	5.0 5.0	19.0 20.0	-	- -	20.0 19.0	3.0 3.0		20.0 19.0	-	
4.0	5.0	21.0	_	- -	19.0	2.0	- -	19.0	-	-
4.0	5.0	22.0	-	<u>-</u>	19.0	2.0	-	19.0	-	-
4.0	5.0	23.0	-		19.0	2.0	-	19.0	-	-
4.0 4.0	6.0 6.0	- 1.0	-	-	19.0 19.0	2.0 2.0		19.0 19.0	-	-
4.0	6.0	2.0	_	-	18.0	2.0	<u> -</u>	18.0	-	
4.0	6.0	3.0	-	<u>-</u>	18.0	2.0	-	18.0	-	-
4.0	6.0	4.0	-		18.0	3.0	-	18.0	-	-
4.0 4.0	6.0 6.0	5.0 6.0	- 181.0	- 31.0	18.0 20.0	3.0 3.0	41.4	18.0 19.3	29.0	23.4
4.0	6.0	7.0	270.0	112.0	21.0	3.0	193.0	24.7	152.2	143.9
4.0	6.0	8.0	730.0	113.0	22.0	3.0	514.9	34.9	404.0	388.6
4.0 4.0	6.0	9.0	809.0	134.0	22.0	3.0	743.5	42.0	577.6	555.9
4.0	6.0 6.0	10.0 11.0	857.0 889.0	145.0 145.0	23.0 24.0	3.0 3.0	921.4 1,024.8	48.2 52.3	697.4 759.8	670.7 730.3
4.0	6.0	12.0	894.0	146.0	24.0	2.0	1,053.0	56.8	761.9	732.3
4.0	6.0	13.0	867.0	152.0	24.0	2.0	995.7	55.4	725.9	698.0
4.0 4.0	6.0 6.0	14.0 15.0	834.0 767.0	145.0 135.0	24.0 24.0	2.0 2.0	873.1 678.2	51.8 46.0	647.7 514.4	623.2 495.1
4.0	6.0	16.0	321.0	192.0	23.0	3.0	347.8	33.1	276.9	265.4
4.0	6.0	17.0	219.0	92.0	22.0	3.0	143.2	25.4	110.3	103.0
4.0	6.0	18.0	-	8.0	21.0	3.0	7.6	19.9	6.6	1.4
4.0 4.0	6.0 6.0	19.0 20.0	-		21.0 21.0	3.0 3.0		21.0 21.0	- -	-
4.0	6.0	21.0	_	- -	21.0	3.0	- -	21.0	-	-
4.0	6.0	22.0	-	<u>-</u>	21.0	3.0	-	21.0	-	-
4.0	6.0	23.0	-		20.0	2.0	-	20.0	-	-
4.0 4.0	7.0 7.0	1.0		-	20.0 20.0	2.0 2.0		20.0 20.0	1	
4.0	7.0	2.0	-	- -	20.0	2.0	- -	20.0	-	-
4.0	7.0	3.0	-	-	20.0	2.0	-	20.0	-	-
4.0	7.0	4.0	-	-	20.0	2.0	-	20.0	-	-
4.0 4.0	7.0 7.0	5.0 6.0	147.0	33.0	20.0 21.0	2.0 2.0	40.8	20.0 20.2	29.7	24.1
4.0	7.0	7.0	504.0	93.0	22.0	2.0	248.2	27.8	185.8	176.7
4.0	7.0	8.0	672.0	127.0	23.0	2.0	498.6	37.3	387.5	372.6
4.0	7.0	9.0	762.0	147.0	24.0	2.0	724.0	45.8	551.8	531.1
4.0 4.0	7.0 7.0	10.0 11.0	819.0 851.0	158.0 161.0	25.0 25.0	2.0 3.0	901.2 1,011.1	52.5 52.9	666.7 747.4	641.3 718.5
4.0	7.0	12.0	860.0	161.0	26.0	3.0	1,041.6	54.9	761.6	732.0
4.0	7.0	13.0	829.0	170.0	26.0	3.0	984.0	53.6	724.5	696.6
4.0 4.0	7.0 7.0	14.0 15.0	779.0 701.0	169.0 160.0	26.0 25.0	3.0 3.0	849.7 657.4	50.0 43.8	636.5 504.6	612.4 485.7
4.0	7.0 7.0	15.0 16.0	701.0 169.0	203.0	25.0 25.0	3.0	281.9	33.3	226.4	216.3
4.0	7.0	17.0	199.0	94.0	24.0	4.0	140.0	26.8	107.9	100.7

4.0	7.0	18.0	_	8.0	23.0	4.0	7.6	22.0	6.5	1.3
4.0	7.0	19.0		-	22.0	5.0	1.0	22.0	-	-
			-	-			-		-	-
4.0	7.0	20.0	-	-	22.0	4.0	-	22.0	-	-
4.0	7.0	21.0	-	-	22.0	4.0	-	22.0	<u>-</u>	-
4.0	7.0	22.0	_	_	22.0	4.0		22.0	_	_
4.0	7.0	23.0			22.0	3.0		22.0		
			-				-			-
4.0	8.0	-	-	-	21.0	3.0	-	21.0	-	-
4.0	8.0	1.0	-		21.0	3.0		21.0		-
4.0	8.0	2.0	_		21.0	3.0		21.0		
4.0	8.0	3.0			21.0	3.0		21.0		
			-				-			-
4.0	8.0	4.0	-	-	21.0	3.0	-	21.0	-	-
4.0	8.0	5.0	-		21.0	3.0		21.0		-
4.0	8.0	6.0	213.0	31.0	21.0	4.0	43.2	20.4	29.2	23.6
4.0	8.0	7.0	573.0	79.0	23.0	4.0	257.9	28.0	190.8	181.6
										101.0
4.0	8.0	8.0	730.0	106.0	24.0	5.0	509.3	34.7	400.2	384.9
4.0	8.0	9.0	804.0	126.0	25.0	4.0	732.8	42.9	566.7	545.4
4.0	8.0	10.0	838.0	144.0	26.0	4.0	904.0	48.5	683.2	657.1
4.0	8.0	11.0	844.0	162.0	27.0	3.0	1,005.2	54.6	735.9	707.5
4.0	8.0	12.0	834.0	173.0	27.0	3.0	1,027.5	55.5	748.8	719.8
4.0	8.0	13.0	769.0	204.0	28.0	4.0	964.6	52.6	713.8	686.4
4.0	8.0	14.0	687.0	220.0	28.0	4.0	825.1	49.2	620.8	597.4
4.0	8.0	15.0	200.0	308.0	27.0	4.0	446.2	38.9	353.3	339.5
4.0	8.0	16.0	337.0	207.0	27.0	4.0	369.4	36.0	290.0	278.1
4.0	8.0	17.0	300.0	87.0	26.0	3.0	158.5	30.0	116.6	109.2
4.0	8.0	18.0	-	5.0	25.0	3.0	4.7	24.0	4.0	-
4.0	8.0	19.0	_		24.0	3.0		24.0	<u>-</u>	
4.0	8.0	20.0	-	-	24.0	3.0	-	24.0	-	-
4.0	8.0	21.0	-	-	23.0	4.0	-	23.0	-	-
4.0	8.0	22.0	_	-	23.0	4.0	-	23.0	_	_
4.0	8.0	23.0			22.0	4.0		22.0		
			-				•			-
4.0	9.0	-	-		22.0	4.0	•	22.0	-	-
4.0	9.0	1.0	-		22.0	4.0		22.0		-
4.0	9.0	2.0	_	<u>-</u>	22.0	3.0	-	22.0	-	_
4.0	9.0	3.0			21.0	3.0		21.0		
									_	
4.0	9.0	4.0	-		21.0	2.0		21.0		-
4.0	9.0	5.0	-	-	21.0	2.0	-	21.0	-	-
4.0	9.0	6.0	133.0	36.0	22.0	2.0	42.4	21.3	31.5	25.9
4.0	9.0	7.0	474.0	100.0	23.0	3.0	247.2	28.2	186.1	177.1
4.0	9.0	8.0	642.0	136.0	24.0	2.0	492.8	38.1	381.9	367.2
4.0	9.0	9.0	97.0	330.0	25.0	2.0	397.3	37.3	317.9	305.2
4.0	9.0	10.0	60.0	385.0	26.0	1.0	435.8	41.6	341.8	328.4
4.0	9.0	11.0	12.0	257.0	26.0	1.0	259.8	35.9	209.7	200.0
4.0	9.0		-		27.0	-				
		12.0		132.0		-	126.5	33.5	103.3	96.1
4.0	9.0	13.0	291.0	444.0	27.0	-	739.5	55.9	537.8	517.7
4.0	9.0	14.0	676.0	222.0	27.0	-	817.0	62.6	571.3	549.9
4.0	9.0	15.0	26.0	257.0	26.0	_	265.3	43.4	206.0	196.4
4.0	9.0					1.0				
		16.0	8.0	162.0	26.0	1.0	158.7	31.3	130.8	123.0
4.0	9.0	17.0	52.0	106.0	25.0	2.0	113.6	27.3	92.9	86.0
4.0	9.0	18.0	4.0	7.0	24.0	2.0	6.8	22.7	5.8	0.6
4.0	9.0	19.0	_	-	24.0	3.0	-	24.0	_	_
4.0	9.0	20.0	_		24.0	3.0		24.0		
4.0	9.0	21.0	-	-	24.0	3.0	-	24.0	-	-
4.0	9.0	22.0	-	-	23.0	3.0	-	23.0	-	-
4.0	9.0	23.0	-	<u>-</u>	23.0	2.0	-	23.0	-	-
4.0	10.0	-	_	_	23.0	2.0	_	23.0	=	_
4.0	10.0	1.0	-		23.0	2.0	-	23.0		-
4.0	10.0	2.0	-	-	23.0	2.0	-	23.0		-
4.0	10.0	3.0	-	-	23.0	1.0	-	23.0	-	-
4.0	10.0	4.0	-	-	22.0	1.0	-	22.0	-	-
4.0	10.0	5.0	_	_	22.0		_	22.0	=	_
4.0	10.0	6.0		30.0	23.0		28.3	20.5	24.6	19.1
			-			-				
4.0	10.0	7.0	153.0	132.0	24.0	1.0	175.7	28.2	140.5	132.5
4.0	10.0	8.0	695.0	118.0	25.0	1.0	504.1	41.6	383.2	368.5
4.0	10.0	9.0	266.0	328.0	26.0	1.0	531.4	45.3	407.5	392.0
4.0	10.0	10.0	228.0	418.0	27.0	1.0	626.0	49.5	471.0	453.3
4.0			32.0		27.0	-	412.6		313.0	300.4
	10.0	11.0		383.0				48.1		300.4
4.0	10.0	12.0	817.0	187.0	28.0	-	1,023.8	68.1	694.6	668.0
4.0	10.0	13.0	806.0	183.0	28.0	-	973.1	70.0	652.5	627.8
4.0	10.0	14.0	766.0	177.0	28.0	1.0	847.3	59.5	602.8	580.1
4.0	10.0	15.0	686.0	168.0	27.0	2.0	652.8	48.0	490.1	471.7
										200.7
4.0	10.0	16.0	540.0	151.0	26.0	2.0	413.8	39.5	315.3	302.7
4.0	10.0	17.0	309.0	104.0	25.0	3.0	174.9	29.6	130.0	122.2
4.0	10.0	18.0	14.0	10.0	24.0	4.0	10.0	23.2	8.3	3.0
4.0	10.0	19.0	-	-	24.0	3.0	-	24.0	-	-
4.0	10.0	20.0		-	24.0	3.0	-	24.0		_
			-	-			-		-	-
4.0	10.0	21.0	-	-	23.0	3.0	-	23.0	-	-
4.0	10.0	22.0	-	-	23.0	2.0	-	23.0	-	-
4.0	10.0	23.0	-	_	23.0	2.0	-	23.0	-	_
4.0	11.0	-	_	_	23.0	2.0	_	23.0	=	_
4.0	11.0	1.0			23.0	2.0		23.0		
			-	-			-		-	-
4.0	11.0	2.0	-	-	22.0	2.0	-	22.0	-	-

4.0 4.0 4.0 4.0	11.0 3.0 11.0 4.0 11.0 5.0 11.0 6.0 11.0 7.0	- - - 147.0 480.0 648.0	- - - 39.0 104.0	22.0 22.0 22.0 23.0 24.0 25.0	1.0 1.0 1.0 1.0	- - - 45.7 254.1 502.2	22.0 22.0 22.0 22.2 31.2 42.0	- - - 33.8 189.2	- - 28.1 180.0 367.2
4.0 4.0 4.0 4.0 4.0	11.0 8.0 11.0 9.0 11.0 10.0 11.0 11.0 11.0 12.0 11.0 13.0	736.0 784.0 804.0 807.0 479.0	141.0 166.0 183.0 196.0 200.0 374.0	26.0 27.0 27.0 27.0 27.0	1.0 1.0 2.0 2.0 3.0 3.0	726.0 896.0 1,000.0 1,026.3 854.2	51.5 54.3 57.7 55.5 51.3	381.9 537.0 656.5 719.7 748.1 636.9	516.9 631.6 692.1 719.2 612.8
4.0 4.0 4.0 4.0 4.0 4.0	11.0 14.0 11.0 15.0 11.0 16.0 11.0 17.0 11.0 18.0 11.0 19.0	487.0 532.0 172.0 139.0	311.0 219.0 206.0 100.0 7.0	27.0 26.0 26.0 25.0 24.0 24.0	3.0 4.0 4.0 3.0 3.0 3.0	741.3 594.5 284.9 129.3 6.6	47.9 41.2 33.3 27.9 22.9 24.0	562.0 463.0 228.7 101.4 5.7	540.9 445.6 218.5 94.3 0.5
4.0 4.0 4.0 4.0 4.0 4.0	11.0 20.0 11.0 21.0 11.0 22.0 11.0 23.0 12.0 - 12.0 1.0		: : :	24.0 24.0 24.0 24.0 24.0 24.0	4.0 4.0 5.0 5.0 5.0 5.0		24.0 24.0 24.0 24.0 24.0 24.0	- - - - -	- - - - -
4.0 4.0 4.0 4.0 4.0 4.0	12.0 2.0 12.0 3.0 12.0 4.0 12.0 5.0 12.0 6.0 12.0 7.0	-	- - - - 6.0 15.0	24.0 24.0 24.0 24.0 24.0 24.0	5.0 6.0 6.0 6.0 6.0	- - - 5.7 14.2	24.0 24.0 24.0 24.0 22.9 23.0	- - - 4.9 12.2	- - - - - 6.9
4.0 4.0 4.0 4.0 4.0 4.0	12.0 8.0 12.0 9.0 12.0 10.0 12.0 11.0 12.0 12.0 12.0 13.0	206.0 8.0 8.0 22.0 21.0	22.0 340.0 212.0 194.0 353.0 331.0	25.0 25.0 25.0 26.0 26.0 27.0	6.0 6.0 5.0 5.0 5.0 5.0	20.9 493.2 210.8 194.3 364.6 340.6	24.2 33.9 29.5 29.5 33.3 34.2	17.8 401.0 175.5 161.8 298.0 277.2	12.4 385.7 166.6 153.3 285.9 265.7
4.0 4.0 4.0 4.0 4.0 4.0	12.0 14.0 12.0 15.0 12.0 16.0 12.0 17.0 12.0 18.0 12.0 19.0	4.0 - - 3.0 -	177.0 140.0 140.0 91.0 5.0	26.0 26.0 26.0 25.0 24.0 24.0	4.0 4.0 3.0 2.0 2.0 2.0	173.0 133.6 133.5 86.9 4.7	29.8 28.4 28.5 26.4 22.5 24.0	143.8 111.9 111.7 73.3 4.1	135.7 104.5 104.4 66.8
4.0 4.0 4.0 4.0 4.0 4.0	12.0 20.0 12.0 21.0 12.0 22.0 12.0 23.0 13.0 - 13.0 1.0	- - - - -	: : :	24.0 24.0 23.0 23.0 23.0 24.0	3.0 3.0 4.0 5.0 6.0 5.0	: : : :	24.0 24.0 23.0 23.0 23.0 24.0	-	- - - - -
4.0 4.0 4.0 4.0 4.0 4.0	13.0 2.0 13.0 3.0 13.0 4.0 13.0 5.0 13.0 6.0 13.0 7.0	- - - - - -	- - - 12.0 52.0	24.0 24.0 24.0 24.0 24.0 24.0	5.0 6.0 6.0 6.0 5.0	- - - 11.4 49.3	24.0 24.0 24.0 24.0 22.9 23.7	- - - 9.8 42.2	- - - - 4.5 36.3
4.0 4.0 4.0 4.0 4.0 4.0	13.0 8.0 13.0 9.0 13.0 10.0 13.0 11.0 13.0 12.0 13.0 13.0	282.0 680.0 648.0 38.0 9.0	228.0 188.0 257.0 401.0 200.0 38.0	25.0 26.0 26.0 26.0 26.0 26.0	6.0 6.0 7.0 6.0 6.0	382.8 707.2 852.6 436.2 201.4 36.2	31.7 39.9 41.8 35.3 29.7 25.9	310.3 556.0 667.2 353.1 167.5 30.7	297.9 535.1 641.9 339.4 158.9 25.0
4.0 4.0 4.0 4.0 4.0 4.0	13.0 14.0 13.0 15.0 13.0 16.0 13.0 17.0 13.0 18.0 13.0 19.0	2.0 2.0 146.0 - -	157.0 172.0 208.0 19.0 14.0	25.0 24.0 23.0 21.0 21.0 21.0	5.0 5.0 5.0 6.0 5.0 5.0	151.9 165.9 273.8 18.0 13.3	27.1 26.7 28.2 20.6 19.9 21.0	127.9 139.9 225.8 15.6 11.6	120.2 132.0 215.7 10.2 6.2
4.0 4.0 4.0 4.0 4.0	13.0 20.0 13.0 21.0 13.0 22.0 13.0 23.0 14.0 -	-		20.0 20.0 19.0 18.0 17.0	6.0 7.0 7.0 7.0 7.0 8.0	- - - - - -	20.0 20.0 19.0 18.0 17.0	-	- - - -
4.0 4.0 4.0 4.0 4.0 4.0 4.0	14.0 2.0 14.0 3.0 14.0 4.0 14.0 5.0 14.0 6.0 14.0 7.0 14.0 8.0	272.0 644.0 798.0	- - - 41.0 83.0 106.0	16.0 16.0 16.0 15.0 15.0 15.0	7.0 7.0 7.0 7.0 7.0 7.0 7.0	- - - 54.9 288.8 550.9	16.0 16.0 16.0 15.0 14.8 19.2 25.5	38.3 223.2 452.8	32.5 213.2 435.8
4.0 4.0 4.0 4.0	14.0 9.0 14.0 10.0 14.0 11.0	871.0 907.0 923.0	124.0 138.0 146.0	17.0 18.0 19.0	7.0 7.0 7.0 7.0	783.5 955.3 1,058.2	25.5 31.2 35.7 38.9	642.4 770.7 841.3	618.1 740.7 807.9

4.0	14.0	12.0	927.0	147.0	20.0	7.0	1,083.8	40.6	854.6	820.6
4.0	14.0	13.0	464.0	378.0	21.0	7.0	841.6	37.1	675.0	649.3
4.0	14.0	14.0	688.0	232.0	22.0	7.0	833.1	37.6	665.4	640.1
4.0	14.0	15.0	826.0	128.0	21.0	7.0	704.4	34.2	566.5	545.3
4.0	14.0	16.0	734.0	107.0	20.0	7.0	462.3	28.5	368.2	354.0
4.0	14.0	17.0	551.0	74.0	19.0	6.0	204.4	22.7	146.9	138.7
4.0	14.0	18.0	85.0	17.0	18.0	6.0	16.3	17.3	12.8	7.5
4.0	14.0	19.0	-	-	17.0	6.0	10.3	17.0	-	7.5
							· · · · · · · · · · · · · · · · · · ·			
4.0	14.0	20.0	-	-	17.0	6.0	-	17.0	-	-
4.0	14.0	21.0	-	-	16.0	6.0	-	16.0	-	-
4.0	14.0	22.0	-		16.0	6.0		16.0	-	-
4.0	14.0	23.0	-	-	16.0	5.0	-	16.0	-	-
4.0	15.0	-	-	-	15.0	5.0	-	15.0	-	-
4.0	15.0	1.0	-	-	15.0	5.0		15.0	-	-
4.0	15.0	2.0	-	-	15.0	5.0	-	15.0	-	-
4.0	15.0	3.0	_	_	15.0	5.0	<u>-</u>	15.0	_	_
4.0	15.0	4.0	_	_	15.0	5.0	-	15.0	_	_
4.0	15.0	5.0	_	_	15.0	5.0	<u>-</u>	15.0	_	_
4.0	15.0	6.0	285.0	41.0	17.0	5.0	56.0	16.7	38.3	32.5
4.0	15.0	7.0	628.0	86.0	18.0	5.0	287.4	23.1	218.9	208.9
						5.0		30.5	438.5	
4.0	15.0	8.0	775.0	113.0	19.0		546.0			421.9
4.0	15.0	9.0	850.0	130.0	20.0	5.0	774.4	37.2	616.6	593.4
4.0	15.0	10.0	896.0	139.0	21.0	5.0	946.5	42.5	738.1	709.6
4.0	15.0	11.0	914.0	146.0	22.0	5.0	1,049.1	46.1	803.8	772.2
4.0	15.0	12.0	913.0	150.0	22.0	5.0	1,072.1	46.9	818.4	786.1
4.0	15.0	13.0	903.0	146.0	22.0	5.0	1,018.5	45.7	781.8	751.3
4.0	15.0	14.0	871.0	140.0	22.0	5.0	892.5	42.9	693.9	667.4
4.0	15.0	15.0	814.0	129.0	21.0	5.0	696.4	37.2	551.7	531.0
4.0	15.0	16.0	714.0	110.0	21.0	5.0	455.1	31.4	357.6	343.7
4.0	15.0	17.0	517.0	79.0	20.0	4.0	200.8	24.8	144.2	136.1
4.0	15.0	18.0	66.0	17.0	19.0	4.0	16.6	18.3	13.4	8.1
4.0	15.0	19.0	-	-	18.0	4.0	-	18.0	-	-
			-	-					-	
4.0	15.0	20.0	-	-	18.0	4.0	-	18.0	-	-
4.0	15.0	21.0	-	-	18.0	4.0	-	18.0	-	-
4.0	15.0	22.0	-	-	18.0	4.0	-	18.0	-	-
4.0	15.0	23.0	-		18.0	4.0		18.0	-	-
4.0	16.0	-	-	-	18.0	4.0	-	18.0	-	-
4.0	16.0	1.0	-	-	18.0	4.0	-	18.0	-	-
4.0	16.0	2.0	_	-	18.0	4.0	-	18.0	-	-
4.0	16.0	3.0	_	_	19.0	4.0	-	19.0	_	_
4.0	16.0	4.0	_	_	19.0	4.0	<u>-</u>	19.0	_	_
4.0	16.0	5.0	_	_	19.0	4.0	<u>-</u>	19.0	_	_
4.0	16.0	6.0	_	12.0	20.0	4.0	11.4	18.6	10.0	4.7
4.0	16.0	7.0	_	52.0	21.0	5.0	49.3	20.7	42.8	36.9
4.0	16.0	8.0	62.0	232.0	21.0	5.0	259.2	25.5	218.8	208.9
4.0	16.0	9.0	176.0	347.0	22.0	5.0	477.1	31.9	391.8	376.8
4.0	16.0	10.0	24.0	326.0	23.0	5.0	336.3	30.3	279.0	267.4
4.0	16.0	11.0	223.0	476.0	23.0	5.0	701.0	38.1	559.6	538.6
4.0	16.0	12.0	115.0	486.0	24.0	5.0	608.8	37.9	486.6	468.3
4.0	16.0	13.0	844.0	179.0	24.0	5.0	1,001.1	46.3	766.1	736.3
4.0	16.0	14.0	823.0	162.0	23.0	5.0	873.1	43.4	677.0	651.2
4.0	16.0	15.0	333.0	289.0	23.0	5.0	519.3	35.3	417.7	401.8
4.0	16.0	16.0	665.0	122.0	22.0	5.0	443.0	31.8	348.3	334.7
4.0	16.0	17.0	465.0	86.0	21.0	4.0	193.4	25.6	140.1	132.1
4.0	16.0	18.0	44.0	18.0	21.0	4.0	16.9	20.3	14.0	8.6
4.0	16.0	19.0	_	_	21.0	4.0	<u>-</u>	21.0	_	_
4.0	16.0	20.0	_	_	21.0	4.0	<u>-</u>	21.0	_	_
4.0	16.0	21.0	_	<u>-</u>	21.0	4.0	<u>-</u>	21.0	_	_
4.0	16.0	22.0	_	<u>-</u>	21.0	4.0	<u>-</u>	21.0	_	_
4.0	16.0	23.0	_	_	20.0	4.0		20.0	_	_
4.0	17.0	-			20.0	4.0	- -	20.0	-	
4.0	17.0	1.0		_	20.0	5.0		20.0	_	_
			-				-		-	-
4.0	17.0	2.0	-	-	20.0	5.0	-	20.0	-	-
4.0	17.0	3.0	-	-	20.0	5.0	-	20.0	-	-
4.0	17.0	4.0	-	-	20.0	5.0	-	20.0	-	-
4.0	17.0	5.0		-	20.0	5.0	<u> </u>	20.0		-
4.0	17.0	6.0	179.0	50.0	20.0	5.0	57.8	19.8	43.3	37.4
4.0	17.0	7.0	60.0	136.0	21.0	6.0	149.1	22.8	125.5	117.8
4.0	17.0	8.0	554.0	162.0	22.0	6.0	471.8	30.6	380.9	366.2
4.0	17.0	9.0	-	156.0	22.0	6.0	149.0	24.6	127.0	119.3
4.0	17.0	10.0	870.0	145.0	23.0	6.0	934.4	41.0	734.3	706.0
4.0	17.0	11.0	889.0	153.0	23.0	6.0	1,030.8	44.3	797.2	765.9
4.0	17.0	12.0	893.0	156.0	24.0	6.0	1,056.7	46.0	810.1	778.3
4.0	17.0	13.0	548.0	354.0	24.0	6.0	895.9	42.9	698.0	671.3
4.0	17.0	14.0	863.0	139.0	23.0	6.0	882.9	41.3	691.9	671.3 665.5
4.0	17.0	15.0	813.0	124.0	23.0	6.0	689.0	37.4	545.4	524.9
4.0	17.0	16.0	103.0	208.0	22.0	6.0	249.6	27.1	207.6	197.9
	17.0	17.0	526.0	76.0	22.0	6.0	199.1	25.2		133.9
4.0									141.9	9.3
4.0	17.0	18.0	71.0	19.0	21.0	5.0	18.2	20.4	14.7	
4.0	17.0	19.0	-	-	21.0	5.0	-	21.0	-	-
4.0	17.0	20.0	-	-	21.0	6.0	-	21.0	-	-

4.0	17.0	21.0	-	-	21.0	6.0	-	21.0	-	-
4.0	17.0	22.0	-	-	21.0	6.0	-	21.0	-	-
4.0	17.0	23.0	-	-	20.0	5.0	-	20.0	-	-
4.0	18.0	-	-	-	20.0	5.0	-	20.0	-	-
4.0	18.0	1.0	-	-	20.0	5.0	-	20.0	-	-
4.0 4.0	18.0 18.0	2.0 3.0	-		20.0 20.0	5.0 5.0		20.0 20.0	-	-
4.0	18.0	4.0			20.0	5.0		20.0		
4.0	18.0	5.0	_	_	20.0	5.0	_	20.0	<u> -</u>	_
4.0	18.0	6.0	_	18.0	20.0	5.0	17.0	18.9	14.9	9.5
4.0	18.0	7.0	_	70.0	21.0	5.0	66.5	21.1	57.6	51.4
4.0	18.0	8.0	733.0	124.0	22.0	6.0	535.5	31.8	428.2	411.9
4.0	18.0	9.0	820.0	140.0	23.0	6.0	762.9	38.2	604.5	581.7
4.0	18.0	10.0	849.0	161.0	23.0	6.0	931.8	42.0	728.3	700.3
4.0	18.0	11.0	131.0	478.0	24.0	6.0	612.0	36.9	491.4	473.0
4.0	18.0	12.0	325.0	464.0	24.0	6.0	803.4	40.2	634.7	610.6
4.0	18.0	13.0	31.0	376.0	24.0	6.0	401.6	32.4	329.7	316.6
4.0	18.0	14.0	852.0	147.0	24.0	6.0	880.8	41.4	690.0	663.7
4.0	18.0	15.0	790.0	136.0	23.0	6.0	684.5	37.3	542.2	521.9
4.0	18.0	16.0	680.0	119.0	22.0	6.0	445.8	31.1	351.3	337.6
4.0 4.0	18.0 18.0	17.0 18.0	468.0 38.0	87.0 20.0	22.0 21.0	6.0 5.0	194.3 19.1	25.5 20.4	140.7 16.1	132.7 10.7
4.0	18.0	19.0	-	20.0	21.0	5.0	-	21.0	-	-
4.0	18.0	20.0			21.0	5.0		21.0		
4.0	18.0	21.0	_	_	21.0	4.0	_	21.0	<u> -</u>	_
4.0	18.0	22.0	_	_	21.0	4.0	_	21.0	<u> -</u>	_
4.0	18.0	23.0	_	-	21.0	4.0	_	21.0	_	-
4.0	19.0	-	-	-	21.0	4.0	-	21.0	-	-
4.0	19.0	1.0	-	-	21.0	5.0	-	21.0	-	-
4.0	19.0	2.0	-	-	21.0	5.0	-	21.0	-	-
4.0	19.0	3.0	-	-	21.0	5.0	-	21.0	-	-
4.0	19.0	4.0	-	-	21.0	5.0	-	21.0	-	-
4.0	19.0	5.0	-	25.2	21.0	5.0	.5.2	21.0		.5
4.0	19.0	6.0	-	29.0	21.0	5.0	27.5	20.1	23.9	18.4
4.0	19.0	7.0		79.0	22.0	6.0	75.0	22.3	64.6	58.3
4.0	19.0	8.0	719.0	129.0	23.0	5.0	533.2	33.8	422.4	406.4
4.0	19.0	9.0	805.0	145.0	23.0	5.0	756.9	39.8	595.1	572.7
4.0 4.0	19.0 19.0	10.0 11.0	869.0 892.0	146.0 151.0	24.0 24.0	5.0 5.0	934.3 1,030.9	45.2 47.7	718.5 783.4	690.9 752.8
4.0	19.0	12.0	899.0	152.0	25.0	5.0	1,050.9	49.5	796.0	764.8
4.0	19.0	13.0	852.0	175.0	24.0	5.0	1,002.2	47.4	762.8	733.2
4.0	19.0	14.0	820.0	166.0	24.0	5.0	871.9	44.4	672.6	647.0
4.0	19.0	15.0	437.0	260.0	24.0	5.0	564.2	37.3	448.6	431.7
4.0	19.0	16.0	658.0	126.0	23.0	5.0	441.7	32.8	345.4	331.8
4.0	19.0	17.0	459.0	89.0	22.0	4.0	193.7	26.6	139.9	131.9
4.0	19.0	18.0	45.0	20.0	22.0	4.0	18.3	21.4	15.2	9.8
4.0	19.0	19.0	-	-	21.0	4.0	-	21.0	-	-
4.0	19.0	20.0	-	-	21.0	4.0	-	21.0	-	-
4.0	19.0	21.0	-	-	21.0	4.0	-	21.0	-	-
4.0	19.0	22.0	-	-	21.0	4.0	-	21.0		-
4.0	19.0	23.0	-	-	21.0	4.0	-	21.0	-	-
4.0	20.0	-	-	-	21.0	3.0	-	21.0	-	-
4.0	20.0 20.0	1.0 2.0	-		21.0 20.0	3.0 3.0		21.0 20.0		-
4.0 4.0	20.0	3.0			20.0	3.0		20.0		-
4.0	20.0	4.0			20.0	2.0		20.0		
4.0	20.0	5.0			20.0	2.0		20.0		_
4.0	20.0	6.0	275.0	48.0	21.0	2.0	63.6	20.9	43.9	37.9
4.0	20.0	7.0	599.0	93.0	22.0	2.0	288.2	29.1	215.0	205.2
4.0	20.0	8.0	751.0	117.0	23.0	3.0	539.3	36.9	420.3	404.4
4.0	20.0	9.0	835.0	131.0	24.0	3.0	765.4	44.6	587.1	565.1
4.0	20.0	10.0	850.0	159.0	24.0	3.0	930.3	49.5	699.6	672.8
4.0	20.0	11.0	876.0	163.0	25.0	4.0	1,033.8	51.1	771.6	741.5
4.0	20.0	12.0	883.0	163.0	25.0	4.0	1,051.4	51.8	781.9	751.4
4.0	20.0	13.0	884.0	151.0	25.0	4.0	1,001.2	50.7	748.9	719.9
4.0	20.0	14.0	855.0	143.0	25.0	4.0	877.5	47.6	665.4 524.5	640.1 504.8 328.5 91.6
4.0 4.0	20.0 20.0	15.0 16.0	800.0 700.0	130.0 112.0	24.0 24.0	3.0 3.0	683.7 447.0	43.6 36.8	342.0	304.8 328.5
4.0	20.0	17.0	86.0	107.0	23.0	3.0	121.9	26.2	98.6	91.6
4.0	20.0	18.0	-	15.0	22.0	2.0	14.2	20.9	12.3	7.0
4.0	20.0	19.0	_	-	22.0	2.0	-	22.0	-	-
4.0	20.0	20.0	_	<u>-</u>	22.0	2.0	-	22.0	_	_
4.0	20.0	21.0	_	-	21.0	2.0	-	21.0	_	_
4.0	20.0	22.0	-	-	21.0	2.0	-	21.0	-	-
4.0	20.0	23.0	-	-	21.0	3.0	-	21.0	-	-
4.0	21.0	-	-	-	21.0	3.0	-	21.0	-	-
4.0	21.0	1.0	-	-	21.0	4.0	-	21.0	-	-
4.0	21.0	2.0	-	-	21.0	3.0	-	21.0	-	-
4.0	21.0	3.0	-	-	21.0	3.0		21.0	-	-
4.0	21.0	4.0	-	-	21.0	3.0	-	21.0	-	-
4.0	21.0	5.0	-	-	21.0	2.0	-	21.0	-	-

4.0	21.0	6.0	-	44.0	22.0	2.0	41.2	21.2	35.7	29.9
4.0 4.0	21.0 21.0	7.0 8.0	47.0 734.0	139.0 122.0	23.0 23.0	2.0 2.0	147.7 535.3	25.7 37.9	123.2 415.3	115.6 399.5
4.0 4.0	21.0 21.0	9.0 10.0	822.0 616.0	134.0 282.0	24.0 24.0	3.0 3.0	758.8 846.4	44.4 47.3	582.7 643.9	560.8 619.5
4.0	21.0	11.0	527.0	384.0	25.0	3.0	916.8	50.3	687.0	660.8
4.0 4.0	21.0 21.0	12.0 13.0	19.0 441.0	337.0 388.0	25.0 25.0	4.0 4.0	345.0 824.0	34.7 44.6	280.1 636.1	268.5 612.1
4.0	21.0	14.0	41.0	353.0 270.0	25.0 25.0	4.0 4.0	381.3 556.3	35.3 38.3	308.6 440.1	296.1 423.5
4.0 4.0	21.0 21.0	15.0 16.0	413.0 679.0	117.0	24.0	4.0	441.4	35.0	340.9	327.5
4.0 4.0	21.0 21.0	17.0 18.0	490.0 78.0	84.0 22.0	24.0 23.0	3.0 3.0	196.9 20.2	29.2 22.5	139.2 16.5	131.2 11.1
4.0	21.0	19.0	-	-	23.0	4.0	-	23.0	-	-
4.0 4.0	21.0 21.0	20.0 21.0	-	-	23.0 23.0	4.0 4.0	-	23.0 23.0	-	-
4.0 4.0	21.0 21.0	22.0 23.0	-	-	23.0 23.0	4.0 4.0	-	23.0 23.0	-	-
4.0	22.0	-	-	-	22.0	4.0	-	22.0	-	-
4.0 4.0	22.0 22.0	1.0 2.0	-	•	22.0 21.0	4.0 3.0	-	22.0 21.0	-	-
4.0 4.0	22.0 22.0	3.0 4.0	-	•	21.0 21.0	3.0 3.0	-	21.0 21.0	-	-
4.0	22.0	5.0	-	-	21.0	3.0	-	21.0		-
4.0 4.0	22.0 22.0	6.0 7.0	284.0 604.0	50.0 93.0	22.0 23.0	3.0 3.0	66.8 290.9	22.0 29.5	45.8 216.9	39.8 207.0
4.0	22.0	8.0	754.0	116.0	24.0	2.0	540.7	39.7	415.7	399.9
4.0 4.0	22.0 22.0	9.0 10.0	837.0 861.0	128.0 149.0	25.0 26.0	2.0 2.0	764.1 929.5	48.0 54.4	575.6 680.7	554.0 654.7
4.0 4.0	22.0 22.0	11.0 12.0	880.0 881.0	156.0 160.0	27.0 27.0	2.0 2.0	1,022.5 1,045.0	58.5 59.4	733.0 745.3	704.7 716.4
4.0	22.0	13.0	860.0	162.0	27.0	2.0	994.0	58.1	713.8	686.4
4.0 4.0	22.0 22.0	14.0 15.0	823.0 759.0	156.0 145.0	27.0 26.0	2.0 3.0	861.7 669.8	54.4 45.1	630.4 509.8	606.6 490.7
4.0 4.0	22.0 22.0	16.0 17.0	648.0 451.0	126.0 90.0	26.0 25.0	3.0 4.0	435.1 191.7	38.4 29.5	330.9 136.7	317.8 128.8
4.0	22.0	18.0	66.0	22.0	24.0	4.0	19.9	23.5	16.4	11.0
4.0 4.0	22.0 22.0	19.0 20.0	-	-	23.0 23.0	3.0 3.0	-	23.0 23.0	-	-
4.0 4.0	22.0 22.0	21.0 22.0	-	-	22.0 22.0	3.0 3.0	-	22.0 22.0	-	-
4.0	22.0	23.0	-	-	22.0	3.0	-	22.0	1	
4.0 4.0	23.0 23.0	- 1.0	-		22.0 22.0	3.0 3.0	-	22.0 22.0	-	-
4.0	23.0	2.0	-	-	21.0	3.0	-	21.0	-	-
4.0 4.0	23.0 23.0	3.0 4.0	-	• •	21.0 21.0	3.0 3.0	-	21.0 21.0		-
4.0 4.0	23.0 23.0	5.0 6.0	- 270.0	- 51.0	21.0 23.0	3.0 3.0	- 67.0	21.0 23.1	- 46.1	- 40.2
4.0	23.0	7.0	587.0	95.0	24.0	3.0	287.8	30.4	214.1	204.3
4.0 4.0	23.0 23.0	8.0 9.0	737.0 821.0	118.0 130.0	25.0 25.0	3.0 3.0	533.6 754.2	38.7 45.2	412.3 576.5	396.6 554.9
4.0 4.0	23.0 23.0	10.0 11.0	869.0 892.0	136.0 140.0	26.0 26.0	3.0 3.0	918.4 1,018.1	51.1 54.1	684.8 747.8	658.6 718.8
4.0	23.0	12.0	896.0	142.0	27.0	3.0	1,041.7	55.9	757.5	728.1
4.0 4.0	23.0 23.0	13.0 14.0	887.0 858.0	138.0 132.0	26.0 26.0	3.0 4.0	988.7 862.2	53.7 48.2	727.5 651.8	699.5 627.0
4.0 4.0	23.0 23.0	15.0 16.0	806.0 716.0	120.0 101.0	25.0 25.0	4.0 4.0	675.3 441.6	42.5 36.4	520.6 337.8	501.1 324.5
4.0	23.0	17.0	540.0	73.0	24.0	4.0	197.1	28.7	137.1	129.2
4.0 4.0	23.0 23.0	18.0 19.0	122.0	22.0	23.0 23.0	3.0 3.0	19.1 -	22.5 23.0	15.3 -	9.9
4.0 4.0	23.0 23.0	20.0 21.0	-	•	22.0 22.0	3.0 3.0	-	22.0 22.0	-	-
4.0	23.0	22.0	-		22.0	3.0	-	22.0	-	Ī.,
4.0 4.0	23.0 24.0	23.0	-	-	22.0 21.0	3.0 3.0	-	22.0 21.0	-	-
4.0 4.0	24.0 24.0	1.0 2.0	-	•	21.0 21.0	3.0 2.0	-	21.0 21.0	-	-
4.0	24.0	3.0	-		21.0	2.0	-	21.0	-	Ī.,
4.0 4.0	24.0 24.0	4.0 5.0	-		21.0 21.0	2.0 2.0	-	21.0 21.0	-	-
4.0	24.0	6.0	358.0	45.0	22.0	2.0	69.7	22.1	44.8	38.9
4.0 4.0	24.0 24.0	7.0 8.0	649.0 779.0	80.0 101.0	23.0 24.0	2.0 1.0	293.8 540.4	30.4 42.5	216.7 409.2	206.8 393.6
4.0 4.0	24.0 24.0	9.0 10.0	849.0 845.0	116.0 152.0	25.0 26.0	1.0 1.0	758.5 917.6	51.8 58.7	560.0 656.4	539.0 631.4
4.0	24.0	11.0	869.0	156.0	27.0	2.0	1,010.6	58.1	725.9	697.9
4.0 4.0	24.0 24.0	12.0 13.0	874.0 832.0	157.0 173.0	27.0 27.0	2.0 2.0	1,033.5 976.6	59.1 57.6	738.5 703.3	710.0 676.3
4.0	24.0	14.0	798.0	165.0	26.0	3.0	847.8	50.0	635.1	611.0

4.0	24.0	15.0	738.0	151.0	26.0	3.0	660.0	44.8	503.1	484.3
4.0	24.0	16.0	642.0	125.0	25.0	4.0	430.1	36.0	330.8	317.7
4.0	24.0	17.0	466.0	87.0	24.0	4.0	191.7	28.5	136.6	128.7
4.0	24.0	18.0	91.0	23.0	23.0	4.0	20.8	22.5	17.1	11.7
4.0	24.0	19.0	-	-	23.0	4.0	-	23.0	_	_
4.0	24.0	20.0	_	_	23.0	4.0		23.0	_	_
4.0	24.0	21.0	-	-	23.0	4.0	-	23.0	-	-
4.0	24.0	22.0	-	-	23.0	4.0	-	23.0	-	-
4.0	24.0	23.0	_	<u>-</u>	22.0	4.0	-	22.0	_	_
4.0	25.0	-			22.0	4.0		22.0		
			-	•			•			-
4.0	25.0	1.0	-		22.0	3.0	-	22.0	-	-
4.0	25.0	2.0	-	<u>-</u>	22.0	3.0		22.0	-	-
4.0	25.0	3.0			22.0	3.0		22.0	_	
4.0	25.0	4.0	-	-	22.0	3.0	-	22.0	-	-
4.0	25.0	5.0	-	-	22.0	3.0	-	22.0	-	-
4.0	25.0	6.0	337.0	47.0	22.0	3.0	70.3	22.1	46.1	40.1
4.0	25.0	7.0	-	104.0	23.0	4.0	98.6	24.1	84.2	77.5
4.0	25.0	8.0	775.0	100.0	24.0	3.0	537.5	37.2	418.0	402.2
4.0	25.0	9.0	850.0	111.0	25.0	3.0	754.2	45.3	576.4	554.8
4.0	25.0	10.0	886.0	121.0	26.0	3.0	918.2	51.1	684.6	658.5
4.0	25.0	11.0	903.0	126.0	26.0	3.0	1,013.8	53.9	745.1	716.3
4.0	25.0	12.0	908.0	127.0	27.0	3.0	1,037.3	55.8	754.9	725.6
4.0	25.0	13.0	879.0	136.0	27.0	3.0	977.4	54.4	716.5	689.0
4.0	25.0	14.0	857.0	126.0	27.0	3.0	853.6	51.1	635.5	611.5
4.0	25.0	15.0	810.0	113.0	26.0	3.0	669.3	45.1	509.1	490.0
4.0	25.0	16.0	726.0	95.0	26.0	3.0	439.1	38.5	331.9	318.8
4.0	25.0	17.0	558.0	69.0	25.0	4.0	196.7	29.7	135.2	127.3
4.0	25.0	18.0	153.0	22.0	24.0	3.0	18.9	23.5	15.0	9.7
4.0	25.0	19.0	-		24.0	3.0		24.0		-
4.0	25.0	20.0	-	<u>.</u>	23.0	3.0	-	23.0	-	-
4.0	25.0	21.0	_	-	23.0	3.0	-	23.0	_	_
4.0	25.0	22.0			23.0	3.0		23.0		
			-							-
4.0	25.0	23.0	-		23.0	3.0	-	23.0	-	-
4.0	26.0	-	-		23.0	3.0		23.0	<u>-</u>	-
4.0	26.0	1.0	_		22.0	3.0		22.0	_	
4.0	26.0	2.0	-	-	22.0	3.0	-	22.0	-	-
4.0	26.0	3.0	-	-	22.0	3.0	-	22.0	-	-
4.0	26.0	4.0	_	-	22.0	3.0	-	22.0	_	_
4.0	26.0	5.0	_		22.0	3.0		22.0	_	
4.0	26.0	6.0	365.0	46.0	23.0	3.0	71.9	23.2	45.9	40.0
4.0	26.0	7.0	646.0	81.0	24.0	4.0	294.8	30.0	218.1	208.2
4.0	26.0	8.0	773.0	102.0	25.0	3.0	538.7	38.9	415.5	399.7
4.0	26.0	9.0	842.0	116.0	26.0	3.0	753.2	46.2	572.8	551.3
4.0	26.0	10.0	883.0	123.0	27.0	3.0	917.2	52.0	680.4	654.4
4.0	26.0	11.0	900.0	129.0	28.0	3.0	1,013.3	55.8	737.0	708.5
4.0	26.0	12.0	900.0	133.0	28.0	3.0	1,034.4	56.7	749.1	720.1
4.0	26.0	13.0	858.0	150.0	28.0	3.0	970.2	55.1	708.3	681.1
4.0	26.0	14.0	827.0	142.0	28.0	3.0	847.4	51.9	628.2	604.5
4.0	26.0	15.0	769.0	130.0	28.0	3.0	657.9	46.7	496.3	477.7
4.0	26.0	16.0	668.0	112.0	27.0	3.0	428.3	39.2	323.5	310.7
		17.0	485.0	81.0	26.0	3.0	191.1	31.1	133.4	125.6
4.0	26.0									
4.0	26.0	18.0	102.0	24.0	25.0	4.0	19.9	24.5	16.9	11.5
4.0	26.0	19.0	-	<u>-</u>	25.0	4.0		25.0	-	-
4.0	26.0	20.0	_		24.0	4.0		24.0	_	_
4.0	26.0	21.0	-	-	24.0	4.0	-	24.0	-	-
4.0	26.0	22.0	-	-	24.0	3.0	-	24.0	-	-
4.0	26.0	23.0	-		24.0	3.0	-	24.0	<u>-</u>	-
4.0	27.0		_	<u>-</u>	23.0	3.0	<u>-</u>	23.0	_	
4.0	27.0	1.0	_		23.0	3.0	_	23.0	_	_
			-				·			-
4.0	27.0	2.0	-		23.0	3.0	-	23.0	-	-
4.0	27.0	3.0	-	-	23.0	3.0	-	23.0	-	-
4.0	27.0	4.0	_	-	22.0	2.0	_	22.0	_	_
4.0	27.0	5.0	_	_	22.0	2.0	_	22.0	_	_
			200.0	50.0	23.0		74.0			40.0
4.0	27.0	6.0	296.0	52.0	23.0	3.0	71.2	23.2	48.2	42.2
4.0	27.0	7.0	580.0	93.0	24.0	3.0	285.1	30.3	212.5	202.8
4.0	27.0	8.0	709.0	120.0	25.0	3.0	520.8	38.4	403.4	388.1
4.0	27.0	9.0	788.0	134.0	26.0	3.0	733.2	45.6	559.4	538.4
									465.6	448.0
4.0	27.0	10.0	189.0	441.0	27.0	2.0	608.5	46.4		448.0
4.0	27.0	11.0	309.0	465.0	28.0	2.0	775.2	51.5	577.3	555.6
4.0	27.0	12.0	191.0	502.0	28.0	2.0	695.4	49.9	522.3	502.7
4.0	27.0	13.0	39.0	401.0	27.0	2.0	432.1	41.2	339.6	326.3
4.0	27.0	14.0		139.0	27.0	1.0	132.7	32.4	109.0	101.7
4.0	27.0	15.0	10.0	219.0	26.0	1.0	216.0	32.4	177.3	168.4
4.0	27.0	16.0	-	147.0	25.0	2.0	139.7	28.4	117.0	109.5 85.5 6.1
4.0	27.0	17.0	44.0	108.0	24.0	3.0	111.8	25.8	92.4	85.5
			77.0							00.0
4.0	27.0	18.0	-	14.0	23.0	4.0	13.3	22.1	11.4	
4.0	27.0	19.0	-	-	22.0	4.0	-	22.0	-	-
4.0	27.0	20.0	-	-	22.0	4.0	-	22.0	-	-
4.0	27.0	21.0	_	_	22.0	4.0	_	22.0	_	_
			•				-			_
4.0	27.0	22.0	-	-	22.0	4.0	-	22.0	-	-
4.0	27.0	23.0	-	-	22.0	4.0	-	22.0	-	-

4.0	28.0	_	-	-	22.0	4.0	-	22.0	_	-
4.0 4.0	28.0 28.0	1.0 2.0	-	•	22.0 22.0	4.0 4.0	-	22.0 22.0	-	-
4.0	28.0	3.0	-	<u> </u>	22.0	5.0	-	22.0	-	-
4.0	28.0	4.0	-	-	22.0 22.0	5.0 5.0	-	22.0 22.0	-	-
4.0 4.0	28.0 28.0	5.0 6.0	234.0	61.0	22.0	6.0	74.3	22.2	53.8	47.6
4.0	28.0	7.0	524.0	114.0	23.0	6.0	285.6	27.7	218.0	208.1
4.0 4.0	28.0 28.0	8.0 9.0	677.0 763.0	141.0 157.0	24.0 25.0	6.0 6.0	524.0 737.2	34.0 39.7	415.5 580.0	399.7 558.2
4.0	28.0	10.0	839.0	150.0	25.0	6.0	908.6	43.6	704.8	677.7
4.0 4.0	28.0 28.0	11.0 12.0	858.0 40.0	157.0 424.0	26.0 26.0	6.0 6.0	998.2 458.9	46.7 36.0	762.7 370.2	733.0 355.9
4.0	28.0	13.0	7.0	191.0	26.0	5.0	189.8	30.0	157.6	149.2
4.0 4.0	28.0 28.0	14.0 15.0	2.0 5.0	158.0 196.0	26.0 25.0	5.0 5.0	152.7 190.5	28.5 28.3	127.7 159.5	120.0 151.1
4.0	28.0	16.0	-	119.0	25.0	5.0	113.1	26.6	95.5	88.5
4.0 4.0	28.0 28.0	17.0 18.0	- 54.0	69.0 25.0	24.0 24.0	5.0 5.0	65.4 22.8	24.3 23.3	55.8 19.5	49.6 14.1
4.0	28.0	19.0	-	-	23.0	5.0		23.0	-	-
4.0 4.0	28.0 28.0	20.0 21.0	-		23.0 23.0	5.0 5.0		23.0 23.0	-	-
4.0	28.0	22.0	-	-	23.0	6.0	-	23.0	-	-
4.0 4.0	28.0 29.0	23.0	-	<u> </u>	23.0 23.0	6.0 5.0	Ī	23.0 23.0	-	-
4.0	29.0	1.0	-	-	23.0	5.0	-	23.0	-	-
4.0 4.0	29.0 29.0	2.0 3.0	-	Ī	23.0 23.0	5.0 5.0	-	23.0 23.0	-	-
4.0	29.0	4.0	-	-	23.0	5.0		23.0	-	
4.0 4.0	29.0 29.0	5.0 6.0	223.0	- 61.0	23.0 23.0	5.0 6.0	- 74.0	23.0 23.2	53.7	- 47.6
4.0	29.0	7.0	133.0	155.0	24.0	6.0	192.1	26.8	156.5	148.1
4.0 4.0	29.0 29.0	8.0 9.0	32.0 8.0	228.0 213.0	25.0 26.0	6.0 6.0	237.3 209.7	29.0 29.5	197.6 174.5	188.2 165.7
4.0	29.0	10.0	5.0	174.0	26.0	6.0	171.0	28.7	142.9	134.9
4.0	29.0	11.0	290.0	471.0	27.0	5.0 5.0	761.4 989.0	43.1	592.5	570.3
4.0 4.0	29.0 29.0	12.0 13.0	791.0 400.0	192.0 407.0	27.0 26.0	5.0	792.3	49.4 44.6	744.8 611.8	716.0 588.7
4.0	29.0	14.0	247.0	404.0	26.0	5.0	612.9	40.2	483.6	465.5
4.0 4.0	29.0 29.0	15.0 16.0	51.0 101.0	293.0 216.0	25.0 25.0	5.0 5.0	318.2 253.8	32.2 30.1	261.1 208.1	250.0 198.5
4.0	29.0	17.0	289.0	101.0	24.0	5.0	162.2	26.9	121.8	114.3
4.0 4.0	29.0 29.0	18.0 19.0	3.0	23.0	24.0 24.0	5.0 5.0	21.8	23.5 24.0	18.7	13.3
4.0	29.0	20.0	-	-	24.0	5.0	-	24.0	-	-
4.0 4.0	29.0 29.0	21.0 22.0	-	-	24.0 24.0	5.0 5.0		24.0 24.0	-	-
4.0	29.0	23.0	-	-	24.0	5.0	-	24.0	-	-
4.0 4.0	30.0 30.0	- 1.0	-	-	24.0 23.0	4.0 4.0	-	24.0 23.0	-	-
4.0	30.0	2.0	-	-	23.0	4.0	-	23.0	-	-
4.0 4.0	30.0 30.0	3.0 4.0	-		23.0 23.0	4.0 4.0		23.0 23.0	-	-
4.0	30.0	5.0	-	-	23.0	4.0	-	23.0	-	-
4.0 4.0	30.0 30.0	6.0 7.0	- 578.0	49.0 94.0	24.0 25.0	4.0 4.0	46.0 286.3	23.6 30.8	39.4 213.3	33.5 203.5
4.0	30.0	8.0	724.0	113.0	26.0	4.0	522.5	38.2	404.8	389.4
4.0 4.0	30.0 30.0	9.0 10.0	802.0 844.0	124.0 132.0	26.0 27.0	4.0 4.0	733.2 889.6	43.9 49.2	564.2 670.0	543.1 644.5
4.0	30.0	11.0	863.0	138.0	27.0	4.0	983.3	51.8	731.2	703.0
4.0 4.0	30.0 30.0	12.0 13.0	865.0 221.0	140.0 472.0	27.0 27.0	4.0 4.0	1,003.0 681.0	52.5 45.0	743.1 524.9	714.4 505.2
4.0	30.0	14.0	313.0	389.0	27.0	4.0	652.9	43.5	506.6	487.6
4.0 4.0	30.0 30.0	15.0 16.0	762.0 351.0	125.0 192.0	26.0 26.0	4.0 4.0	645.2 351.3	42.2 35.1	498.0 275.8	479.4 264.3
4.0	30.0	17.0	365.0	93.0	25.0	4.0	172.6	28.8	125.5	117.8 12.8
4.0 4.0	30.0 30.0	18.0 19.0	78.0 -	25.0	25.0 26.0	4.0 3.0	21.4	24.5 26.0	18.3	12.8
4.0	30.0	20.0		<u> </u>	25.0	3.0	Ī.	25.0	-	
4.0	30.0	21.0	-	-	25.0	3.0 3.0	-	25.0	-	-
4.0 4.0	30.0 30.0	22.0 23.0	-		25.0 25.0	3.0	- -	25.0 25.0	-	-
5.0	1.0	-	-	•	25.0	3.0 3.0	-	25.0	-	-
5.0 5.0	1.0 1.0	1.0 2.0	-	-	24.0 24.0	3.0	-	24.0 24.0	-	-
5.0 5.0	1.0	3.0	-	-	24.0 24.0	3.0 3.0	-	24.0 24.0	-	-
5.0	1.0 1.0	4.0 5.0	-	-	24.0	3.0	-	24.0	-	-
5.0	1.0	6.0	346.0	51.0	25.0	4.0	75.8	25.4 32.0	49.1	43.0 206.0
5.0 5.0	1.0 1.0	7.0 8.0	621.0 746.0	86.0 107.0	26.0 27.0	4.0 4.0	293.2 529.3	32.0 39.4	215.9 407.5	392.0

	4.0	0.050	400.0	00.0	4.0	707.0	40.0	504.0	540.0
5.0 5.0	1.0 9. 1.0 10.		126.0 338.0	28.0 28.0	4.0 4.0	737.2 820.3	46.0 48.5	561.2 620.1	540.2 596.7
5.0	1.0 11.		390.0	28.0	3.0	918.5	53.2	677.8	652.0
5.0	1.0 12.		168.0	28.0	3.0	999.1	55.5	728.1	700.1
5.0	1.0 13.		205.0	28.0	3.0	930.5	54.0	683.3	657.3
5.0	1.0 14.		311.0	28.0	3.0	317.1	38.2	253.0	242.2
5.0	1.0 15. 1.0 16.		174.0	28.0	3.0 3.0	167.3	32.1	137.6 19.2	129.6
5.0 5.0	1.0 16. 1.0 17.		24.0 108.0	27.0 27.0	3.0	22.8 108.5	26.6 28.4	89.3	13.8 82.4
5.0	1.0 18.		17.0	26.0	3.0	16.1	25.2	13.7	8.3
5.0	1.0 19.		-	26.0	4.0	-	26.0	-	-
5.0	1.0 20.	0 -	-	25.0	4.0	-	25.0	-	-
5.0	1.0 21.		-	25.0	3.0	-	25.0	-	-
5.0	1.0 22.		-	25.0	3.0	-	25.0	-	-
5.0 5.0	1.0 23. 2.0 -	.0 -	-	25.0 25.0	3.0 3.0	-	25.0 25.0	-	-
5.0	2.0 1.	0 -		25.0	3.0		25.0		
5.0	2.0 2.		-	25.0	3.0	-	25.0	-	_
5.0	2.0 3.	.0 -	-	25.0	3.0	-	25.0	-	-
5.0	2.0 4.		-	25.0	3.0	-	25.0	-	-
5.0	2.0 5.			25.0	4.0		25.0		
5.0 5.0	2.0 6. 2.0 7.		61.0 152.0	25.0 26.0	4.0 4.0	76.2 223.1	25.4 30.3	53.8 175.6	47.6 166.8
5.0	2.0 8.		265.0	26.0	5.0	345.1	33.0	280.0	268.4
5.0	2.0 9.		325.0	27.0	5.0	603.0	40.0	474.9	457.1
5.0	2.0 10.		417.0	27.0	5.0	704.8	42.8	549.0	528.4
5.0	2.0 11.		411.0	28.0	4.0	875.9	49.8	658.4	633.4
5.0	2.0 12.		418.0	28.0	4.0	923.4	51.3	688.4	662.1
5.0	2.0 13.		468.0	28.0	3.0	707.1	48.2	535.9	515.8
5.0 5.0	2.0 14. 2.0 15.		367.0 210.0	28.0 28.0	2.0 2.0	686.8 607.4	49.4 47.1	516.4 458.2	497.1 440.9
5.0	2.0 16.		184.0	27.0	1.0	366.2	41.5	277.6	266.1
5.0	2.0 17.		104.0	27.0	1.0	161.8	33.0	118.5	111.0
5.0	2.0 18.		26.0	26.0	1.0	23.2	25.6	19.7	14.2
5.0	2.0 19.		-	26.0	1.0	-	26.0	-	-
5.0	2.0 20.			26.0	1.0		26.0	-	-
5.0 5.0	2.0 21. 2.0 22.		-	25.0 25.0	1.0 1.0		25.0 25.0	-	-
5.0	2.0 23.		1	25.0	1.0		25.0		
5.0	3.0 -	-	<u>-</u>	24.0	2.0	-	24.0	_	_
5.0	3.0 1.	.0 -	-	24.0	2.0	-	24.0	-	-
5.0	3.0 2.		-	24.0	2.0	-	24.0	-	-
5.0	3.0 3.		-	24.0	2.0	-	24.0	-	-
5.0 5.0	3.0 4. 3.0 5.		-	24.0 24.0	2.0 2.0		24.0 24.0	-	-
5.0	3.0 6.		60.0	24.0	3.0	61.7	23.9	49.2	43.2
5.0	3.0 7.		98.0	25.0	3.0	284.5	31.3	212.2	202.4
5.0	3.0 8.		194.0	26.0	3.0	189.7	30.5	157.0	148.7
5.0	3.0 9.		89.0	27.0	3.0	84.8	28.4	71.0	64.5
5.0	3.0 10.		103.0	27.0	2.0	98.3	28.6	82.2 294.1	75.5 282.1
5.0 5.0	3.0 11. 3.0 12.		357.0 461.0	27.0 27.0	2.0 2.0	365.8 516.5	36.7 42.2	403.8	388.4
5.0	3.0 13.		256.0	26.0	2.0	257.2	34.3	209.3	199.6
5.0	3.0 14.		165.0	26.0	2.0	160.2	30.2	132.9	125.1
5.0	3.0 15.		277.0	26.0	2.0	290.5	33.7	236.7	226.3
5.0	3.0 16.		97.0	26.0	2.0	92.2	28.3	77.2	70.6
5.0 5.0	3.0 17. 3.0 18.		111.0	25.0	2.0	112.8	27.0	93.1	86.1 10.1
5.0	3.0 19.		19.0 -	24.0 24.0	2.0 2.0	18.0	23.1 24.0	15.5	-
5.0	3.0 20.		<u>-</u>	24.0	2.0	<u>-</u>	24.0	_	_
5.0	3.0 21.		-	23.0	2.0	-	23.0	-	-
5.0	3.0 22.	.0 -	-	23.0	2.0	-	23.0	-	-
5.0	3.0 23.		-	23.0	2.0	-	23.0	-	-
5.0	4.0 -		-	23.0 23.0	2.0	-	23.0	-	-
5.0 5.0	4.0 1. 4.0 2.		1	22.0	2.0 3.0		23.0 22.0		
5.0	4.0 3.		<u>-</u>	22.0	4.0	<u>-</u>	22.0	_	_
5.0	4.0 4.		-	21.0	5.0	-	21.0	-	-
5.0	4.0 5.		-	21.0	5.0	-	21.0	-	-
5.0	4.0 6.		67.0	21.0	5.0	79.9	21.3	59.1	52.9
5.0 5.0	4.0 7.		123.0 145.0	22.0 23.0	6.0 5.0	286.2 523.9	26.7	220.9 415.5	211.0 399.7
5.0	4.0 8. 4.0 9.		145.0 152.0	24.0	5.0 5.0	742.0	34.0 40.4	581.5	559.7
5.0	4.0 10.		138.0	25.0	5.0	914.8	45.7	701.4	674.6
5.0	4.0 11.	.0 891.0	144.0	25.0	5.0	1,013.3	48.3	767.6	737.7
5.0	4.0 12.		146.0	26.0	5.0	1,037.9	50.0	779.0	748.6
5.0	4.0 13.		137.0	26.0	5.0	990.0	49.0	746.7	717.8
5.0 5.0	4.0 14. 4.0 15.		130.0 119.0	26.0 25.0	5.0 5.0	864.2 679.5	46.2 40.8	660.0 527.9	635.0 508.1
5.0	4.0 16.		101.0	25.0	4.0	447.9	36.5	341.5	328.1
5.0	4.0 17.		74.0	24.0	3.0	204.3	29.5	140.5	132.5

5.0	4.0	18.0	201.0	27.0	23.0	3.0	20.8	22.5	17.9	12.5
5.0	4.0	19.0	-	27.0	23.0	3.0	-	23.0	-	-
										-
5.0	4.0	20.0	-	-	22.0	3.0	-	22.0	-	-
5.0	4.0	21.0	-	-	22.0	3.0		22.0	-	-
5.0	4.0	22.0	-	-	22.0	2.0	-	22.0	-	-
5.0	4.0	23.0	-	_	22.0	2.0	-	22.0	_	_
5.0	5.0	_	_		22.0	2.0		22.0	_	_
5.0	5.0	1.0			22.0	2.0		22.0		
			-							-
5.0	5.0	2.0	-	-	21.0	2.0	-	21.0	-	-
5.0	5.0	3.0	-	-	21.0	2.0	-	21.0	-	-
5.0	5.0	4.0	-	-	21.0	2.0	-	21.0	_	_
5.0	5.0	5.0	_	_	21.0	2.0		21.0	_	_
5.0	5.0	6.0	440.0	49.0	23.0	2.0	84.2	23.6	52.1	46.0
5.0	5.0	7.0	690.0	80.0	24.0	3.0	311.3	31.1	229.3	219.1
5.0	5.0	8.0	808.0	99.0	25.0	3.0	556.1	39.4	427.8	411.6
5.0	5.0	9.0	872.0	111.0	26.0	3.0	769.1	46.7	583.4	561.5
5.0	5.0	10.0	908.0	119.0	27.0	3.0	931.1	52.4	689.2	662.9
5.0	5.0	11.0	925.0	123.0	27.0	3.0	1,025.1	55.2	748.1	719.1
5.0	5.0	12.0	929.0	124.0	27.0	3.0	1,046.3	56.0	760.3	730.8
			919.0	122.0	27.0	3.0	992.3		725.8	697.9
5.0	5.0	13.0						54.8		
5.0	5.0	14.0	894.0	115.0	27.0	3.0	865.3	51.4	642.8	618.4
5.0	5.0	15.0	849.0	105.0	27.0	3.0	679.0	46.3	512.5	493.3
5.0	5.0	16.0	768.0	90.0	26.0	3.0	449.5	38.8	338.2	324.9
5.0	5.0	17.0	612.0	67.0	25.0	2.0	204.8	31.4	138.0	130.0
5.0	5.0	18.0	238.0	26.0	24.0	2.0	19.8	23.6	16.9	11.5
					23.0	2.0		23.0		
5.0	5.0	19.0	-	-			-		-	-
5.0	5.0	20.0	-	-	23.0	2.0	-	23.0	-	-
5.0	5.0	21.0	-	-	23.0	2.0	-	23.0	-	-
5.0	5.0	22.0	-	_	22.0	2.0	-	22.0	_	_
5.0	5.0	23.0			22.0	2.0		22.0		
			- -						_	
5.0	6.0	7.2	-	-	22.0	2.0	-	22.0	-	-
5.0	6.0	1.0	-	-	22.0	2.0		22.0	-	-
5.0	6.0	2.0	-	-	22.0	2.0	-	22.0	-	-
5.0	6.0	3.0	-	-	22.0	2.0	-	22.0	_	_
5.0	6.0	4.0	_	_	22.0	1.0		22.0	_	_
5.0	6.0	5.0			22.0	1.0		22.0		
			440.0	-			-		50.4	47.0
5.0	6.0	6.0	416.0	51.0	23.0	-	84.1	23.4	53.1	47.0
5.0	6.0	7.0	670.0	84.0	24.0	-	308.7	36.2	222.2	212.2
5.0	6.0	8.0	791.0	103.0	25.0	-	550.4	48.6	404.0	388.6
5.0	6.0	9.0	859.0	115.0	26.0	_	762.9	58.6	542.5	522.2
5.0	6.0	10.0	896.0	122.0	27.0	1.0	922.8	59.8	655.8	630.9
5.0	6.0	11.0	909.0	130.0	27.0	2.0		58.3	728.8	700.7
							1,015.6			
5.0	6.0	12.0	906.0	135.0	28.0	2.0	1,033.3	60.0	734.4	706.1
5.0	6.0	13.0	901.0	129.0	28.0	2.0	981.3	58.7	702.4	675.5
5.0	6.0	14.0	868.0	126.0	27.0	3.0	853.6	51.1	635.2	611.2
5.0	6.0	15.0	817.0	116.0	27.0	3.0	669.2	46.0	506.0	487.1
5.0	6.0	16.0	733.0	99.0	26.0	3.0	440.9	38.5	332.7	319.5
					25.0	3.0		30.4		130.2
5.0	6.0	17.0	575.0	73.0			201.9		138.2	
5.0	6.0	18.0	209.0	27.0	24.0	3.0	20.7	23.6	17.8	12.3
5.0	6.0	19.0	-	-	24.0	3.0	-	24.0	-	-
5.0	6.0	20.0	-	<u>-</u>	23.0	3.0		23.0	-	_
5.0	6.0	21.0	-	_	23.0	3.0	-	23.0	_	_
5.0	6.0	22.0	_	_	23.0	3.0		23.0	_	_
5.0	6.0	23.0			23.0	3.0		23.0		
				· ·						
5.0	7.0	5.2	-	-	23.0	3.0	-	23.0	-	-
5.0	7.0	1.0	-	-	23.0	3.0		23.0	-	-
5.0	7.0	2.0	-	-	23.0	3.0	-	23.0	-	-
5.0	7.0	3.0	-		23.0	2.0	-	23.0	-	-
5.0	7.0	4.0	-	-	23.0	2.0	-	23.0	-	-
5.0	7.0	5.0	_	<u>-</u>	23.0	2.0	<u>-</u>	23.0	_	_
5.0	7.0	6.0	387.0	54.0	25.0	2.0	84.5	25.7	54.1	48.0
5.0	7.0	7.0	641.0	90.0	26.0	3.0	304.9	32.9	223.9	213.9
5.0	7.0	8.0	764.0	111.0	27.0	3.0	543.1	41.0	414.9	399.1
5.0	7.0	9.0	834.0	124.0	27.0	3.0	754.9	47.3	571.0	549.6
5.0	7.0	10.0	876.0	131.0	28.0	3.0	913.2	52.9	674.2	648.5
5.0	7.0	11.0	895.0	136.0	28.0	4.0	1,007.0	53.3	742.4	713.7
		12.0	898.0	138.0	29.0	4.0	1,027.3	55.0	750.7	721.6
5.0				139.0	28.0	4.0	972.2	52.8	718.6	691.0
5.0 5.0	7.0			100.0	28.0				634.9	610.9
5.0	7.0 7.0	13.0	882.0 853.0	122.0	ZO.U	4.0	847.2	49.8		9.019
5.0 5.0	7.0 7.0 7.0	13.0 14.0	853.0	133.0			664.9			400 1
5.0 5.0 5.0	7.0 7.0 7.0 7.0	13.0 14.0 15.0	853.0 804.0	121.0	28.0	4.0		45.2	505.1	486.1
5.0 5.0 5.0 5.0	7.0 7.0 7.0 7.0 7.0	13.0 14.0 15.0 16.0	853.0 804.0 721.0	121.0 103.0	28.0 27.0	4.0	438.9	38.3	331.8	318.7
5.0 5.0 5.0	7.0 7.0 7.0 7.0	13.0 14.0 15.0	853.0 804.0	121.0	28.0					318.7 130.5
5.0 5.0 5.0 5.0 5.0	7.0 7.0 7.0 7.0 7.0 7.0	13.0 14.0 15.0 16.0 17.0	853.0 804.0 721.0 557.0	121.0 103.0 77.0	28.0 27.0 26.0	4.0 4.0	438.9 201.5	38.3 30.8	331.8 138.5	318.7 130.5
5.0 5.0 5.0 5.0 5.0 5.0	7.0 7.0 7.0 7.0 7.0 7.0 7.0	13.0 14.0 15.0 16.0 17.0 18.0	853.0 804.0 721.0 557.0 186.0	121.0 103.0 77.0 30.0	28.0 27.0 26.0 25.0	4.0 4.0 4.0	438.9 201.5 23.1	38.3 30.8 24.6	331.8 138.5 19.7	318.7 130.5 14.3
5.0 5.0 5.0 5.0 5.0 5.0 5.0	7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	13.0 14.0 15.0 16.0 17.0 18.0 19.0	853.0 804.0 721.0 557.0	121.0 103.0 77.0	28.0 27.0 26.0 25.0 25.0	4.0 4.0 4.0 4.0	438.9 201.5	38.3 30.8 24.6 25.0	331.8 138.5	318.7 130.5
5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0	853.0 804.0 721.0 557.0 186.0	121.0 103.0 77.0 30.0	28.0 27.0 26.0 25.0 25.0 25.0	4.0 4.0 4.0 4.0 4.0	438.9 201.5 23.1	38.3 30.8 24.6 25.0 25.0	331.8 138.5 19.7	318.7 130.5 14.3
5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0	853.0 804.0 721.0 557.0 186.0	121.0 103.0 77.0 30.0	28.0 27.0 26.0 25.0 25.0 25.0 25.0	4.0 4.0 4.0 4.0 4.0 4.0	438.9 201.5 23.1	38.3 30.8 24.6 25.0 25.0 25.0	331.8 138.5 19.7	318.7 130.5 14.3
5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0	853.0 804.0 721.0 557.0 186.0	121.0 103.0 77.0 30.0	28.0 27.0 26.0 25.0 25.0 25.0 25.0 24.0	4.0 4.0 4.0 4.0 4.0 4.0	438.9 201.5 23.1	38.3 30.8 24.6 25.0 25.0 25.0 24.0	331.8 138.5 19.7	318.7 130.5 14.3
5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0	853.0 804.0 721.0 557.0 186.0	121.0 103.0 77.0 30.0	28.0 27.0 26.0 25.0 25.0 25.0 24.0 24.0	4.0 4.0 4.0 4.0 4.0 4.0 4.0	438.9 201.5 23.1	38.3 30.8 24.6 25.0 25.0 25.0 24.0 24.0	331.8 138.5 19.7	318.7 130.5 14.3
5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0	853.0 804.0 721.0 557.0 186.0	121.0 103.0 77.0 30.0	28.0 27.0 26.0 25.0 25.0 25.0 24.0 24.0 24.0	4.0 4.0 4.0 4.0 4.0 4.0	438.9 201.5 23.1	38.3 30.8 24.6 25.0 25.0 25.0 24.0 24.0 24.0	331.8 138.5 19.7	318.7 130.5 14.3
5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0	853.0 804.0 721.0 557.0 186.0	121.0 103.0 77.0 30.0	28.0 27.0 26.0 25.0 25.0 25.0 24.0 24.0	4.0 4.0 4.0 4.0 4.0 4.0 4.0	438.9 201.5 23.1	38.3 30.8 24.6 25.0 25.0 25.0 24.0 24.0	331.8 138.5 19.7	318.7 130.5 14.3
5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0	853.0 804.0 721.0 557.0 186.0	121.0 103.0 77.0 30.0	28.0 27.0 26.0 25.0 25.0 25.0 24.0 24.0 24.0	4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	438.9 201.5 23.1	38.3 30.8 24.6 25.0 25.0 25.0 24.0 24.0 24.0	331.8 138.5 19.7	318.7 130.5 14.3
5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0	853.0 804.0 721.0 557.0 186.0	121.0 103.0 77.0 30.0	28.0 27.0 26.0 25.0 25.0 25.0 24.0 24.0 24.0	4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	438.9 201.5 23.1	38.3 30.8 24.6 25.0 25.0 25.0 24.0 24.0 24.0	331.8 138.5 19.7	318.7 130.5 14.3

5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	8.0 3.0 8.0 4.0 8.0 6.0 8.0 6.0 8.0 7.0 8.0 8.0 8.0 9.0 8.0 11.0 8.0 12.0 8.0 15.0 8.0 15.0 8.0 16.0 8.0 17.0 8.0 15.0 8.0 16.0 9.0 17.0 9.0 2.0 9.0 2.0 9.0 2.0 9.0 3.0 9.0 4.0 9.0 5.0 9.0 9.0 9.0 9.0 9.0 10.0 9.0 9.0 9.0 12.0 9.0 2.0 9.0 2.0	387.0 358.0 7770.0 840.0 878.0 899.0 884.0 855.0 803.0 713.0 89.0 176.0 	56.0 139.0 131.0 124.0 132.0 136.0 137.0 137.0 131.0 121.0 105.0 118.0 31.0	23.0 23.0 23.0 25.0 26.0 27.0 27.0 28.0 29.0 29.0 29.0 29.0 25.0 25.0 25.0 25.0 25.0 26.0 27.0 28.0 28.0 27.0 28.0 28.0 27.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28	4.0 3.0 3.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4	74.9 305.6 542.1 754.5 910.2 1,002.2 1,002.2 1,002.0 970.2 844.5 6659.8 435.3 201.8 25.5	23.0 23.0 23.0 25.6 31.1 39.7 45.6 50.8 54.3 55.0 53.8 50.7 45.1 38.2 29.0 24.4 25.0 25.0 24.0 24.0 24.0 24.0 23.0 25.3 31.7 37.5 43.8 49.7 45.0 38.2 50.8 49.7 45.0 38.2 50.8 49.7 45.0 25.0 26.0 27.0 28.0 29.0	55.8 196.0 420.0 579.0 683.3 739.2 750.1 714.2 630.9 504.2 330.4 104.5 20.4 	49.7 186.6 404.1 557.3 657.2 771.0 686.8 607.1 485.3 317.4 97.3 14.9
5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	9.0 16.0 9.0 17.0 9.0 18.0 9.0 19.0 9.0 20.0 9.0 21.0 9.0 22.0 9.0 23.0 10.0 -	683.0 513.0 148.0 - -	118.0 88.0 33.0	27.0 26.0 25.0 25.0 25.0 25.0 25.0 24.0 24.0	4.0 4.0 4.0 4.0 4.0 4.0 5.0 5.0	435.3 201.8 25.5	38.2 30.8 24.7 25.0 25.0 25.0 24.0 24.0 24.0	330.1 140.9 21.7	317.0 132.9 16.2 - - -

5.0	11.0	12.0	455.0	428.0	28.0	3.0	883.9	52.4	655.1	630.2
5.0	11.0	13.0	614.0	328.0	28.0	3.0	910.7	53.2	671.9	646.3
5.0	11.0	14.0	184.0	417.0	28.0	3.0	562.6	44.5	434.4	417.9
5.0	11.0	15.0	270.0	316.0	27.0	4.0	490.5	39.2	387.0	372.1
5.0	11.0	16.0	185.0	223.0	27.0	4.0	299.0	34.4	238.4	227.9
5.0	11.0	17.0	427.0	91.0	26.0	4.0	183.5	30.0	130.7	122.9
5.0	11.0	18.0	115.0	34.0	25.0	3.0	28.1	24.7	23.9	18.4
5.0	11.0	19.0	-	-	25.0	3.0	-	25.0		-
5.0	11.0	20.0	-	-	25.0	4.0	-	25.0	-	-
5.0	11.0	21.0	-		25.0	4.0		25.0		-
5.0	11.0	22.0	-	-	24.0	4.0	_	24.0	_	_
5.0	11.0	23.0	_	<u>-</u>	24.0	4.0	<u>-</u>	24.0	<u>-</u>	_
5.0	12.0	_	_		24.0	4.0	_	24.0	_	_
5.0	12.0	1.0			24.0	4.0	_	24.0		
			-							
5.0	12.0	2.0	-	-	24.0	4.0	-	24.0	-	-
5.0	12.0	3.0	-	-	24.0	3.0	-	24.0	-	-
5.0	12.0	4.0	-		24.0	3.0		24.0		-
5.0	12.0	5.0	-	-	24.0	3.0	-	24.0	-	-
5.0	12.0	6.0	-	9.0	25.0	3.0	8.5	23.5	7.3	2.1
5.0	12.0	7.0	_	122.0	26.0	4.0	115.3	27.4	97.0	89.9
5.0	12.0	8.0	729.0	123.0	26.0	5.0	533.7	36.9	416.5	400.7
5.0	12.0	9.0	801.0	137.0	27.0	5.0	740.8	43.5	571.4	550.0
5.0	12.0	10.0	841.0	147.0	27.0	5.0	894.2	47.3	680.0	654.1
5.0	12.0	11.0	856.0	157.0	27.0	4.0	985.0	51.8	732.2	704.0
5.0	12.0	12.0	856.0	161.0	28.0	4.0	1,003.2	53.4	739.3	710.8
5.0	12.0	13.0	827.0	171.0	28.0	4.0	953.2	52.3	706.4	679.3
5.0	12.0	14.0	804.0	158.0	27.0	4.0	831.0	48.4	627.4	603.7
5.0	12.0	15.0	758.0	140.0	27.0	4.0	650.2	43.8	497.6	478.9
5.0	12.0	16.0	671.0	118.0	27.0	5.0	428.9	36.8	327.4	314.4
5.0	12.0	17.0	122.0	121.0	26.0	5.0	140.7	28.8	111.3	104.0
5.0	12.0	18.0	143.0	35.0	25.0	5.0	27.1	24.6	23.1	17.6
5.0	12.0	19.0	-		25.0	5.0		25.0		_
5.0	12.0	20.0	_	_	25.0	5.0	<u>-</u>	25.0	_	_
5.0	12.0	21.0	_	<u>-</u>	25.0	5.0	<u>-</u>	25.0	-	_
5.0	12.0	22.0	_		25.0	5.0	_	25.0	_	_
5.0	12.0	23.0	-		25.0	5.0		25.0		-
5.0	13.0	-	-	-	25.0	5.0	-	25.0	-	-
5.0	13.0	1.0	-	-	25.0	5.0		25.0	-	-
5.0	13.0	2.0	-		25.0	5.0		25.0		-
5.0	13.0	3.0	-	-	25.0	5.0	-	25.0	_	_
5.0	13.0	4.0	_	<u>-</u>	25.0	5.0	<u>-</u>	25.0	-	_
5.0	13.0	5.0	_		25.0	5.0	_	25.0	_	_
			290.0	70.0		5.0	90 E		60 5	56.0
5.0	13.0	6.0		70.0	25.0		89.5	25.7	62.5	56.2
5.0	13.0	7.0	540.0	116.0	26.0	5.0	295.8	31.5	222.2	212.1
5.0	13.0	8.0	275.0	260.0	27.0	5.0	406.8	35.5	324.3	311.4
5.0	13.0	9.0	736.0	167.0	28.0	5.0	722.1	43.8	556.3	535.5
5.0	13.0	10.0	820.0	151.0	28.0	5.0	883.3	48.0	669.2	643.7
5.0	13.0	11.0	408.0	422.0	28.0	5.0	822.0	47.0	626.8	603.1
5.0	13.0	12.0	805.0	183.0	28.0	5.0	981.0	50.4	734.9	706.6
5.0	13.0	13.0	473.0	394.0	28.0	5.0	842.3	47.7	639.9	615.7
5.0	13.0		106.0	410.0	28.0	5.0		39.6	385.1	370.3
		14.0					486.2			
5.0	13.0	15.0	75.0	315.0	27.0	5.0	353.0	34.8	285.8	274.1
5.0	13.0	16.0	240.0	219.0	27.0	5.0	321.9	33.8	256.3	245.4
5.0	13.0	17.0	342.0	103.0	26.0	5.0	175.0	29.4	128.3	120.6
5.0	13.0	18.0	98.0	33.0	26.0	5.0	27.3	25.7	23.1	17.6
5.0	13.0	19.0	_	_	26.0	5.0	<u>-</u>	26.0	_	_
5.0	13.0	20.0	_		26.0	5.0		26.0		_
5.0	13.0	21.0			26.0	4.0		26.0		
5.0	13.0	22.0			25.0	4.0		25.0		
			-	· · · · · · · · · · · · · · · · · · ·						
5.0	13.0	23.0	-	-	25.0	4.0	-	25.0	-	-
5.0	14.0	-	-	-	25.0	4.0	-	25.0		-
5.0	14.0	1.0	-	-	25.0	4.0	-	25.0	-	-
5.0	14.0	2.0	-	<u>-</u>	25.0	3.0	-	25.0		-
5.0	14.0	3.0	_	<u>-</u>	25.0	3.0	<u>-</u>	25.0	-	_
5.0	14.0	4.0	_	-	25.0	4.0	_	25.0	<u> -</u>	_
5.0			=		25.0	4.0	-			
	14.0	5.0	94.0	-				25.0	- FC 1	40.0
5.0	14.0	6.0	84.0	69.0	25.0	4.0	70.6	25.2	56.1	49.9
5.0	14.0	7.0	110.0	168.0	26.0	4.0	195.7	29.6	158.4	150.0
5.0	14.0	8.0	733.0	113.0	26.0	5.0	526.1	36.9	410.2	394.6
5.0	14.0	9.0	805.0	125.0	27.0	5.0	730.7	43.2	564.3	543.1
5.0	14.0	10.0	847.0	132.0	27.0	5.0	883.6	47.1	672.8	647.2
5.0	14.0	11.0	868.0	135.0	28.0	5.0	973.8	50.4	729.6	701.4
5.0	14.0	12.0	874.0	134.0	28.0	5.0	993.4	51.0	741.8	713.1
5.0	14.0	13.0	857.0	135.0	28.0	5.0	938.9	49.8	741.0	670.1
										678.1 597.5
5.0	14.0	14.0	827.0	129.0	28.0	5.0	816.8	47.1	620.9	597.5
5.0	14.0	15.0	599.0	207.0	27.0	5.0	608.7	41.2	473.0	455.3
5.0	14.0	16.0	691.0	103.0	27.0	5.0	423.1	36.6	322.5	309.7
5.0	14.0	17.0	56.0	120.0	26.0	4.0	124.6	28.9	101.2	94.1
5.0	14.0	18.0	94.0	33.0	26.0	4.0	27.3	25.5	23.2	17.6
5.0	14.0	19.0	-	-	25.0	4.0	-	25.0	-	-
5.0	14.0	20.0	_	-	25.0	4.0	<u>-</u>	25.0	_	_

5.0	14.0	21.0	-	-	25.0	4.0	-	25.0	-	-
5.0	14.0	22.0	-	-	25.0	4.0	-	25.0	-	-
5.0 5.0	14.0 15.0	23.0	-		25.0 25.0	4.0 4.0		25.0 25.0	-	-
5.0	15.0	1.0	-		25.0	4.0		25.0		-
5.0	15.0	2.0			25.0	4.0		25.0		1
5.0	15.0	3.0		_	24.0	4.0	_	24.0	_	
5.0	15.0	4.0	_	-	24.0	4.0	<u>-</u>	24.0	-	_
5.0	15.0	5.0	-	-	25.0	4.0	-	25.0	-	-
5.0	15.0	6.0	131.0	72.0	25.0	4.0	77.7	25.4	59.9	53.7
5.0	15.0	7.0	471.0	123.0	25.0	4.0	277.3	30.6	210.6	200.9
5.0	15.0	8.0	636.0	152.0	26.0	5.0	509.0	36.7	398.5	383.3
5.0	15.0	9.0	232.0	366.0	26.0	5.0	529.8	37.7	422.5	406.5
5.0	15.0	10.0	386.0	392.0	26.0	5.0	731.6	42.3	571.5	550.0
5.0	15.0	11.0	12.0	254.0	26.0	5.0	255.3	32.1	210.0	200.3
5.0	15.0	12.0	4.0	159.0	26.0	5.0	156.3	28.8	130.6	122.8
5.0	15.0	13.0	8.0	196.0	26.0	5.0	195.1	29.4	162.5	154.0
5.0	15.0	14.0	20.0	304.0	26.0	5.0	307.6	32.0	252.9	242.1
5.0	15.0	15.0	40.0	289.0 209.0	26.0 26.0	5.0 5.0	304.4 219.2	32.2	249.8 180.6	239.0 171.7
5.0 5.0	15.0 15.0	16.0 17.0	45.0	10.0	25.0	5.0	9.5	30.3 24.4	8.1	2.8
5.0	15.0	18.0	-	26.0	25.0	5.0		24.4	21.1	15.6
5.0	15.0	19.0	-	20.0	25.0	5.0	24.7	25.0	-	15.0
5.0	15.0	20.0			25.0	4.0		25.0		-
5.0	15.0	21.0			24.0	4.0		24.0		1
5.0	15.0	22.0	_	_	24.0	4.0	_	24.0	_	_
5.0	15.0	23.0	_	-	24.0	3.0	-	24.0	-	_
5.0	16.0	-	_	<u>-</u>	24.0	3.0	<u>-</u>	24.0	<u>-</u>	_
5.0	16.0	1.0	_	<u>-</u>	24.0	3.0	<u>-</u>	24.0	-	_
5.0	16.0	2.0	-	-	23.0	3.0	_	23.0	_	-
5.0	16.0	3.0	-	-	23.0	3.0	-	23.0	-	-
5.0	16.0	4.0	-	-	23.0	3.0	-	23.0	-	-
5.0	16.0	5.0	-	<u>-</u>	23.0	3.0	-	23.0	-	-
5.0	16.0	6.0	-	48.0	23.0	4.0	45.4	22.5	39.1	33.2
5.0	16.0	7.0	48.0	160.0	23.0	5.0	166.7	25.5	139.5	131.6
5.0	16.0	8.0	-	133.0	23.0	5.0	126.4	24.8	107.7	100.4
5.0	16.0	9.0	25.0	293.0	24.0	5.0	298.4	29.6	248.2	237.5
5.0	16.0	10.0	44.0	391.0	24.0	5.0	419.2	32.8	343.6	330.1
5.0	16.0	11.0	45.0	430.0	24.0	5.0	464.1	34.0	378.0	363.5
5.0	16.0	12.0	99.0	494.0	24.0	5.0	581.9	36.8	467.7	450.1
5.0	16.0	13.0	50.0	426.0	24.0	5.0	462.7	34.4	376.2	361.7
5.0	16.0	14.0	56.0	380.0	23.0	5.0	414.8	32.0	341.1	327.7
5.0	16.0	15.0	92.0	322.0	23.0	5.0	370.6	30.9	305.6	293.3
5.0	16.0	16.0	197.0	225.0	23.0	5.0	305.7	29.4	249.5	238.8
5.0	16.0	17.0	60.0	122.0	22.0	5.0	127.3	24.2	105.6	98.4
5.0	16.0	18.0	12.0	33.0	22.0	5.0	30.0	21.5	26.0	20.4
5.0 5.0	16.0 16.0	19.0 20.0	-	-	22.0 22.0	5.0 5.0		22.0 22.0	-	-
5.0	16.0	21.0			22.0	5.0		22.0		
5.0	16.0	22.0			21.0	5.0		21.0		1
5.0	16.0	23.0	_	_	21.0	5.0	_	21.0	_	_
5.0	17.0	-	_	-	21.0	5.0	<u>-</u>	21.0	-	_
5.0	17.0	1.0	-	-	21.0	5.0	_	21.0	_	-
5.0	17.0	2.0	-	-	21.0	5.0	-	21.0	-	-
5.0	17.0	3.0	-	-	22.0	5.0	-	22.0	-	-
5.0	17.0	4.0	-		22.0	5.0		22.0	-	-
5.0	17.0	5.0	-	-	22.0	5.0	-	22.0	-	-
5.0	17.0	6.0	372.0	67.0	23.0	5.0	95.0	23.7	63.8	57.5
5.0	17.0	7.0	620.0	106.0	24.0	6.0	312.7	29.3	235.4	225.0
5.0	17.0	8.0	742.0	130.0	25.0	6.0	546.1	35.5	429.2	412.9
5.0	17.0	9.0	809.0	148.0	25.0	6.0	754.7	40.1	592.2	569.9
5.0	17.0	10.0	859.0	152.0	26.0	6.0	915.6	44.7	705.6	678.6
5.0	17.0	11.0	517.0	399.0	26.0	6.0	901.9	44.8	695.9	669.3
5.0	17.0	12.0	656.0	326.0 375.0	26.0 26.0	6.0	975.1 935.7	46.2 45.5	746.9	718.0
5.0 5.0	17.0 17.0	13.0 14.0	700.0 813.0	275.0 166.0	26.0	6.0 6.0	935.7 843.0	45.5 43.6	718.9 652.4	691.2 627.7
5.0	17.0	15.0	756.0	153.0	25.0	6.0	659.6	38.7	517.9	627.7 498.5
5.0	17.0	16.0	656.0	134.0	25.0	6.0	436.5	33.9	338.7	325.4
5.0	17.0	17.0	480.0	101.0	24.0	5.0	205.0	28.3	147.1	138.9
5.0	17.0	18.0	139.0	41.0	24.0	5.0	33.4	23.8	28.6	23.0
5.0	17.0	19.0	-	-	24.0	5.0	-	24.0	-	-
5.0	17.0	20.0	-	-	23.0	5.0	-	23.0	-	_
5.0	17.0	21.0	-	-	23.0	5.0	-	23.0	-	-
5.0	17.0	22.0	-	<u>-</u>	23.0	5.0		23.0	-	-
5.0	17.0	23.0	-	-	22.0	4.0	-	22.0	-	-
5.0	18.0	-	-	-	22.0	4.0	-	22.0	-	-
5.0	18.0	1.0	-	-	22.0	4.0	-	22.0	-	-
5.0	18.0	2.0	-	-	22.0	4.0	-	22.0	-	-
5.0	18.0	3.0	-		21.0	4.0		21.0	-	-
5.0	18.0	4.0	-	-	21.0	4.0	-	21.0	-	-
5.0	18.0	5.0	-	-	22.0	4.0	-	22.0	-	-

5.0	18.0	6.0		35.0	23.0	5.0	33.2	22.3	28.6	23.0
5.0	18.0	7.0	620.0	104.0	24.0	5.0	310.6	29.7	233.2	222.9
5.0 5.0	18.0 18.0	8.0 9.0	742.0 810.0	127.0 143.0	25.0 25.0	6.0 6.0	542.7 749.9	35.4 40.0	426.6 588.6	410.4 566.5
5.0	18.0	10.0	307.0	426.0	26.0	6.0	693.5	40.3	547.2	526.7
5.0	18.0	11.0	882.0	151.0	26.0	6.0	999.1	46.3	764.7	735.0
5.0	18.0	12.0	884.0	154.0	26.0	6.0	1,018.6	47.2	775.9	745.7
5.0	18.0	13.0	875.0	150.0	26.0	6.0	967.0	46.2	740.1	711.5
5.0	18.0	14.0	850.0	142.0	26.0	6.0	849.3	43.8	656.6	631.7
5.0	18.0	15.0	227.0	326.0	26.0	6.0	466.6	35.9	374.5	360.1
5.0	18.0	16.0	713.0	112.0	25.0	6.0	441.5	33.6	341.7	328.3
5.0	18.0	17.0	544.0	87.0	24.0	5.0	208.0	28.3	146.3	138.2
5.0	18.0	18.0	184.0	39.0	24.0	5.0	30.3	23.8	25.9	20.3
5.0	18.0	19.0	-	-	23.0	4.0	-	23.0	-	-
5.0	18.0	20.0	-	-	23.0	4.0	-	23.0	-	-
5.0	18.0	21.0	-	-	23.0	4.0	-	23.0	-	-
5.0	18.0	22.0	-	-	23.0	4.0	-	23.0	-	-
5.0 5.0	18.0 19.0	23.0	•	-	23.0 23.0	4.0 4.0	•	23.0	•	-
5.0	19.0	1.0	-	-	22.0	4.0		23.0 22.0		
5.0	19.0	2.0			22.0	4.0		22.0		
5.0	19.0	3.0			22.0	4.0		22.0		_
5.0	19.0	4.0	_	-	22.0	4.0	=	22.0	_	_
5.0	19.0	5.0	-	-	22.0	4.0	-	22.0	<u>-</u>	_
5.0	19.0	6.0	360.0	68.0	23.0	4.0	94.7	23.8	64.1	57.8
5.0	19.0	7.0	617.0	104.0	24.0	5.0	309.4	29.8	232.2	221.9
5.0	19.0	8.0	745.0	125.0	25.0	5.0	541.9	36.5	423.5	407.4
5.0	19.0	9.0	814.0	139.0	26.0	5.0	748.2	42.6	579.5	557.7
5.0	19.0	10.0	857.0	146.0	26.0	5.0	902.0	46.5	688.8	662.5
5.0	19.0	11.0	876.0	151.0	27.0	5.0	992.5	49.8	745.7	716.8
5.0	19.0	12.0	879.0	153.0	27.0	6.0	1,011.9	48.1	767.3	737.5
5.0	19.0	13.0	869.0	150.0	27.0	6.0	960.7	47.1	731.9	703.7
5.0	19.0	14.0	841.0	143.0	26.0	6.0	842.3	43.6	651.7	627.0
5.0	19.0	15.0	791.0	131.0	26.0	6.0	660.5	39.8	515.7	496.4
5.0	19.0	16.0	704.0	113.0	26.0	5.0	438.2	36.0	335.3	322.1
5.0	19.0	17.0	544.0	86.0	25.0	5.0	207.2	29.3	144.9	136.8
5.0	19.0	18.0	206.0	38.0	24.0	4.0	29.5	23.8	25.2	19.6
5.0	19.0	19.0	-	-	24.0	4.0	-	24.0	-	-
5.0	19.0	20.0	-	-	23.0	4.0	-	23.0	-	-
5.0	19.0	21.0	-	-	23.0	3.0	-	23.0	-	-
5.0	19.0	22.0	-	-	23.0	3.0	-	23.0	-	-
5.0	19.0	23.0	-	-	23.0	3.0	-	23.0	-	-
5.0	20.0	-	-	-	23.0	3.0	-	23.0	-	-
5.0	20.0	1.0	-	-	22.0	2.0	-	22.0	-	-
5.0	20.0	2.0	-	-	22.0	2.0	-	22.0	-	-
5.0	20.0	3.0	-	-	22.0	2.0	-	22.0	-	-
5.0	20.0	4.0	-	-	22.0	2.0	-	22.0	-	-
5.0 5.0	20.0 20.0	5.0 6.0	368.0	65.0	23.0 24.0	2.0 2.0	92.8	23.0 24.9	61.8	- 55.5
5.0	20.0	7.0	607.0	102.0	25.0	3.0	303.9	31.9	225.6	215.5
5.0	20.0	8.0	734.0	122.0	26.0	4.0	532.4	38.5	411.8	396.2
5.0	20.0	9.0	808.0	133.0	26.0	4.0	737.2	44.1	566.7	545.4
5.0	20.0	10.0	832.0	153.0	27.0	5.0	890.3	47.2	677.3	651.5
5.0	20.0	11.0	854.0	157.0	27.0	5.0	976.1	49.4	734.9	706.6
5.0	20.0	12.0	861.0	157.0	27.0	5.0	997.2	50.1	748.3	719.3
5.0	20.0	13.0	851.0	153.0	27.0	5.0	946.0	49.0	713.6	686.2
5.0	20.0	14.0	505.0	319.0	26.0	5.0	736.6	43.3	571.5	550.1
5.0	20.0	15.0	786.0	127.0	26.0	5.0	653.0	41.0	506.6	487.6
5.0	20.0	16.0	708.0	108.0	26.0	5.0	435.1	36.0	332.8	319.7
5.0	20.0	17.0	560.0	81.0	25.0	4.0	206.3	29.9	143.0	134.9
5.0	20.0	18.0	228.0	37.0	24.0	4.0	28.6	23.8	24.5	18.9
5.0	20.0	19.0	-	-	24.0	4.0	-	24.0	-	-
5.0	20.0	20.0	-	-	23.0	3.0	-	23.0	-	-
5.0	20.0	21.0	-	-	23.0	3.0	-	23.0	-	-
5.0	20.0	22.0	-	-	23.0	3.0	-	23.0	-	-
5.0	20.0	23.0	-	-	23.0	3.0	-	23.0	-	-
5.0	21.0	-	-	-	22.0	3.0	-	22.0	-	-
5.0	21.0	1.0	-	-	22.0	3.0	-	22.0	-	-
5.0 5.0	21.0 21.0	2.0 3.0	-	-	22.0 22.0	3.0 3.0		22.0 22.0		•
5.0	21.0	4.0		-	22.0	3.0		22.0		•
5.0	21.0	5.0			22.0	3.0	-	22.0		
5.0	21.0	6.0	387.0	62.0	23.0	3.0	92.0	23.8	60.5	54.3
5.0	21.0	7.0	622.0	97.0	24.0	3.0	303.9	30.9	226.2	216.0
5.0	21.0	8.0	743.0	119.0	25.0	4.0	534.7	37.6	415.4	399.7
5.0	21.0	9.0	810.0	133.0	26.0	4.0	738.0	44.1	567.2	545.9
5.0	21.0	10.0	846.0	143.0	26.0	4.0	887.9	48.2	672.1	646.5
5.0	21.0	11.0	860.0	151.0	27.0	4.0	975.4	51.6	726.0	698.0
5.0	21.0	12.0	857.0	156.0	27.0	4.0	991.5	52.2	735.7	707.3
5.0										
3.0	21.0	13.0	850.0	150.0	27.0	4.0	941.6	51.1	702.5	675.6
5.0	21.0 21.0	13.0 14.0	850.0 817.0	150.0 146.0	27.0 27.0	4.0 4.0	941.6 824.4	51.1 48.2	702.5 622.9	675.6 599.4

5.0	21.0 15.		134.0	26.0	4.0	646.3	42.7	497.2	478.5
5.0	21.0 16.		114.0	26.0	4.0	430.3	37.0	327.8	314.8
5.0	21.0 17.		85.0	25.0	3.0	203.9	30.4	142.1	134.0
5.0	21.0 18.		38.0	24.0	2.0	29.4	23.9	25.2	19.6
5.0	21.0 19.	.0 -	-	23.0	2.0	-	23.0	-	-
5.0	21.0 20.	.0 -	-	23.0	2.0	-	23.0	-	-
5.0	21.0 21.	.0 -	-	23.0	2.0	-	23.0	-	-
5.0	21.0 22.	.0 -		22.0	2.0		22.0		-
5.0	21.0 23.	.0 -		22.0	2.0		22.0		-
5.0	22.0 -	-	-	22.0	2.0	-	22.0	<u>-</u>	-
5.0	22.0 1.	.0 -		22.0	1.0		22.0	-	-
5.0	22.0 2.	.0 -	-	22.0	1.0	_	22.0	_	-
5.0	22.0 3.	.0 -	-	22.0	1.0	-	22.0	_	_
5.0	22.0 4.		<u>-</u>	22.0	1.0	_	22.0	_	_
5.0	22.0 5.		<u>-</u>	22.0	1.0	_	22.0	_	_
5.0	22.0 6.		61.0	23.0	1.0	95.3	24.0	61.7	55.4
5.0	22.0 7.		93.0	24.0	1.0	311.2	33.5	227.9	217.8
5.0	22.0 8.		113.0	25.0	1.0	545.6	43.7	410.6	395.0
5.0	22.0 9.		126.0	26.0	1.0	752.6	52.6	553.0	532.3
5.0	22.0 10.		133.0	27.0	1.0	906.5	59.2	646.1	621.6
5.0	22.0 11.		138.0	28.0	1.0	996.7	63.6	694.1	667.6
5.0	22.0 12.		141.0	28.0	2.0	1,014.6	59.4	723.4	695.5
5.0	22.0 13.		141.0	28.0	2.0	960.3	58.1	689.6	663.3
5.0	22.0 14.		136.0	28.0	2.0	838.2	54.6	612.0	589.0
5.0	22.0 15.		126.0	28.0	2.0	659.5	49.2	490.3	471.9
5.0	22.0 16.		109.0	27.0	2.0	438.8	41.2	327.0	314.0
5.0	22.0 10.		83.0	26.0	2.0	209.2	32.5	143.5	135.4
5.0	22.0 17.		37.0	25.0	2.0	28.6	24.9	24.3	18.8
			-				24.9	24.3	
5.0	22.0 19.			24.0 23.0	2.0	-			-
5.0	22.0 20.		-		1.0	-	23.0	-	-
5.0	22.0 21.		-	23.0	1.0	-	23.0	-	-
5.0	22.0 22.			23.0	2.0		23.0	-	-
5.0	22.0 23.	.0 -	-	23.0	2.0	-	23.0	-	-
5.0	23.0 -	-		23.0	2.0		23.0	-	-
5.0	23.0 1.		-	23.0	2.0	-	23.0	-	-
5.0	23.0 2.		-	23.0	2.0	-	23.0	-	-
5.0	23.0 3.		-	22.0	2.0	-	22.0	-	-
5.0	23.0 4.		-	22.0	2.0	-	22.0	-	-
5.0	23.0 5.			23.0	2.0		23.0		
5.0	23.0 6.		69.0	24.0	2.0	91.9	24.9	63.1	56.8
5.0	23.0 7.		114.0	26.0	2.0	296.3	33.6	219.8	209.8
5.0	23.0 8.		142.0	27.0	1.0	518.7	44.7	389.3	374.3
5.0	23.0 9.		162.0	28.0	1.0	718.3	53.3	526.1	506.4
5.0	23.0 10.		180.0	29.0	-	869.6	65.9	596.6	574.1
5.0	23.0 11.		186.0	30.0	-	960.3	70.6	641.8	617.5
5.0	23.0 12.		186.0	30.0	-	981.1	71.7	651.3	626.6
5.0	23.0 13.	.0 777.0	199.0	31.0	1.0	925.4	64.6	640.4	616.2
5.0	23.0 14.		189.0	30.0	2.0	809.5	55.6	588.0	565.9
5.0	23.0 15.	.0 693.0	171.0	30.0	2.0	633.4	50.3	468.8	451.2
5.0	23.0 16.	.0 593.0	148.0	29.0	2.0	420.4	42.6	313.3	300.8
5.0	23.0 17.	.0 429.0	108.0	28.0	3.0	200.2	33.3	142.2	134.2
5.0	23.0 18.	.0 145.0	41.0	27.0	3.0	33.5	27.0	28.2	22.6
5.0	23.0 19.	.0 -	-	26.0	4.0	-	26.0	-	-
5.0	23.0 20.	.0 -	-	26.0	3.0	-	26.0	-	-
5.0	23.0 21.	.0 -	-	26.0	3.0	-	26.0	-	-
5.0	23.0 22.	.0 -	-	25.0	3.0	-	25.0	-	-
5.0	23.0 23.	.0 -	-	25.0	3.0	-	25.0	-	-
5.0	24.0 -	-	-	25.0	3.0	-	25.0	-	-
5.0	24.0 1.		-	25.0	3.0	-	25.0	-	-
5.0	24.0 2.	.0 -	-	24.0	3.0	-	24.0	-	-
5.0	24.0 3.	.0 -	-	24.0	3.0	-	24.0	-	-
5.0	24.0 4.	.0 -	-	24.0	3.0	-	24.0	-	-
5.0	24.0 5.	.0 -	-	24.0	3.0	-	24.0	-	-
5.0		0 000 0	75.0	25.0	3.0	93.6	25.9	65.9	59.5
	24.0 6.	.0 289.0			3.0	294.0	32.7	219.9	210.0
5.0	24.0 6. 24.0 7.		123.0	26.0	0.0			210.0	210.0
5.0	24.0 7.	.0 526.0		26.0 28.0			43.0		376.7
		0 526.0 0 659.0	123.0		2.0 1.0	516.9 717.5	43.0 54.2	391.7 522.9	376.7 503.3
5.0 5.0	24.0 7. 24.0 8.	0 526.0 0 659.0 0 734.0	123.0 151.0	28.0	2.0	516.9	43.0	391.7	376.7 503.3 565.9
5.0 5.0 5.0	24.0 7. 24.0 8. 24.0 9.	0 526.0 0 659.0 0 734.0 0 735.0 0 756.0	123.0 151.0 171.0 210.0 220.0	28.0 29.0 30.0 30.0	2.0 1.0	516.9 717.5 860.2 950.6	43.0 54.2 66.6 70.2	391.7 522.9 588.0 636.7	376.7 503.3 565.9 612.6
5.0 5.0 5.0 5.0	24.0 7.7 24.0 8.2 24.0 9.2 24.0 10.1	0 526.0 0 659.0 0 734.0 0 735.0 0 756.0	123.0 151.0 171.0 210.0	28.0 29.0 30.0	2.0 1.0	516.9 717.5 860.2	43.0 54.2 66.6	391.7 522.9 588.0	376.7 503.3 565.9 612.6 586.2
5.0 5.0 5.0 5.0 5.0	24.0 7. 24.0 8. 24.0 9. 24.0 10. 24.0 11.	0 526.0 0 659.0 0 734.0 0 735.0 0 756.0 0 501.0	123.0 151.0 171.0 210.0 220.0	28.0 29.0 30.0 30.0	2.0 1.0	516.9 717.5 860.2 950.6	43.0 54.2 66.6 70.2 70.4 57.7	391.7 522.9 588.0 636.7	376.7 503.3 565.9 612.6 586.2 510.6
5.0 5.0 5.0 5.0 5.0 5.0	24.0 7. 24.0 8. 24.0 9. 24.0 10. 24.0 11. 24.0 12.	0 526.0 0 659.0 0 734.0 0 735.0 0 756.0 0 501.0 0 306.0	123.0 151.0 171.0 210.0 220.0 419.0	28.0 29.0 30.0 30.0 31.0	2.0 1.0 - -	516.9 717.5 860.2 950.6 910.4	43.0 54.2 66.6 70.2 70.4 57.7 52.7	391.7 522.9 588.0 636.7 609.2	376.7 503.3 565.9 612.6 586.2 510.6 520.4
5.0 5.0 5.0 5.0 5.0 5.0 5.0	24.0 7. 24.0 8. 24.0 9. 24.0 10. 24.0 11. 24.0 12. 24.0 13.	0 526.0 0 659.0 0 734.0 0 735.0 0 756.0 0 501.0 0 306.0 0 502.0	123.0 151.0 171.0 210.0 220.0 419.0 456.0	28.0 29.0 30.0 30.0 31.0 30.0	2.0 1.0 - - - 1.0	516.9 717.5 860.2 950.6 910.4 737.0	43.0 54.2 66.6 70.2 70.4 57.7 52.7	391.7 522.9 588.0 636.7 609.2 530.4	376.7 503.3 565.9 612.6 586.2 510.6 520.4 407.1
5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	24.0 7. 24.0 8. 24.0 9. 24.0 10. 24.0 11. 24.0 12. 24.0 13. 24.0 14.	0 526.0 0 659.0 0 734.0 0 735.0 0 756.0 0 501.0 0 306.0 0 502.0 0 443.0	123.0 151.0 171.0 210.0 220.0 419.0 456.0 319.0	28.0 29.0 30.0 30.0 31.0 30.0 30.0	2.0 1.0 - - - 1.0 2.0	516.9 717.5 860.2 950.6 910.4 737.0 732.4	43.0 54.2 66.6 70.2 70.4 57.7 52.7 46.9	391.7 522.9 588.0 636.7 609.2 530.4 540.6	376.7 503.3 565.9 612.6 586.2 510.6 520.4 407.1 291.0
5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	24.0 7. 24.0 8. 24.0 9. 24.0 10. 24.0 11. 24.0 12. 24.0 13. 24.0 14. 24.0 15.	0 526.0 0 659.0 0 734.0 0 735.0 0 501.0 0 306.0 0 502.0 0 443.0 0 419.0	123.0 151.0 171.0 210.0 220.0 419.0 456.0 319.0 269.0	28.0 29.0 30.0 30.0 31.0 30.0 30.0 29.0	2.0 1.0 - - - 1.0 2.0 2.0	516.9 717.5 860.2 950.6 910.4 737.0 732.4 559.6	43.0 54.2 66.6 70.2 70.4 57.7 52.7	391.7 522.9 588.0 636.7 609.2 530.4 540.6 423.1	376.7 503.3 565.9 612.6 586.2 510.6 520.4 407.1 291.0 137.3
5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	24.0 7. 24.0 8. 24.0 10. 24.0 11. 24.0 12. 24.0 13. 24.0 15. 24.0 15.	0 526.0 0 659.0 0 734.0 0 735.0 0 756.0 0 501.0 0 306.0 0 502.0 0 443.0 0 419.0 0 272.0	123.0 151.0 171.0 210.0 220.0 419.0 456.0 319.0 269.0 214.0	28.0 29.0 30.0 30.0 31.0 30.0 30.0 29.0 29.0	2.0 1.0 - - - 1.0 2.0 2.0 2.0	516.9 717.5 860.2 950.6 910.4 737.0 732.4 559.6 400.2	43.0 54.2 66.6 70.2 70.4 57.7 52.7 46.9 41.7	391.7 522.9 588.0 636.7 609.2 530.4 540.6 423.1 303.3	376.7 503.3 565.9 612.6 586.2 510.6 520.4 407.1 291.0 137.3
5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	24.0 7. 24.0 9. 24.0 10. 24.0 11. 24.0 12. 24.0 13. 24.0 14. 24.0 15. 24.0 16. 24.0 17.	0 526.0 0 659.0 0 734.0 0 735.0 0 756.0 0 501.0 0 502.0 0 443.0 0 419.0 0 272.0 0 73.0	123.0 151.0 171.0 210.0 220.0 419.0 456.0 319.0 269.0 214.0	28.0 29.0 30.0 30.0 31.0 30.0 29.0 29.0 28.0	2.0 1.0 - - 1.0 2.0 2.0 2.0 3.0	516.9 717.5 860.2 950.6 910.4 737.0 732.4 559.6 400.2 194.3	43.0 54.2 66.6 70.2 70.4 57.7 52.7 46.9 41.7 33.1	391.7 522.9 588.0 636.7 609.2 530.4 540.6 423.1 303.3 145.4	376.7 503.3 565.9 612.6 586.2 510.6 520.4 407.1 291.0
5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	24.0 7. 24.0 8. 24.0 10. 24.0 11. 24.0 12. 24.0 13. 24.0 14. 24.0 15. 24.0 16. 24.0 17. 24.0 18.	0 526.0 0 659.0 0 734.0 0 735.0 0 756.0 0 501.0 0 502.0 0 443.0 0 419.0 0 73.0 0 73.0	123.0 151.0 171.0 210.0 220.0 419.0 456.0 319.0 269.0 214.0 142.0 40.0	28.0 29.0 30.0 30.0 31.0 30.0 29.0 29.0 28.0 27.0	2.0 1.0 - - 1.0 2.0 2.0 2.0 2.0 3.0 3.0	516.9 717.5 860.2 950.6 910.4 737.0 732.4 559.6 400.2 194.3 34.4	43.0 54.2 66.6 70.2 70.4 57.7 52.7 46.9 41.7 33.1 27.0	391.7 522.9 588.0 636.7 609.2 530.4 540.6 423.1 303.3 145.4 29.0	376.7 503.3 565.9 612.6 586.2 510.6 520.4 407.1 291.0 137.3 23.3
5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	24.0 7. 24.0 9. 24.0 10. 24.0 11. 24.0 12. 24.0 13. 24.0 14. 24.0 15. 24.0 16. 24.0 17. 24.0 17. 24.0 18. 24.0 19.	0 526.0 0 659.0 0 734.0 0 735.0 0 756.0 0 501.0 0 502.0 0 443.0 0 449.0 0 73.0 0	123.0 151.0 171.0 210.0 220.0 419.0 456.0 319.0 269.0 214.0 142.0 40.0	28.0 29.0 30.0 30.0 31.0 30.0 29.0 29.0 28.0 27.0 26.0	2.0 1.0 - - 1.0 2.0 2.0 2.0 3.0 3.0 3.0	516.9 717.5 860.2 950.6 910.4 737.0 732.4 559.6 400.2 194.3 34.4	43.0 54.2 66.6 70.2 70.4 57.7 52.7 46.9 41.7 33.1 27.0 26.0 26.0 26.0	391.7 522.9 588.0 636.7 609.2 530.4 540.6 423.1 303.3 145.4 29.0	376.7 503.3 565.9 612.6 586.2 510.6 520.4 407.1 291.0 137.3 23.3
5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	24.0 7. 24.0 9. 24.0 10. 24.0 11. 24.0 12. 24.0 13. 24.0 14. 24.0 15. 24.0 16. 24.0 17. 24.0 18. 24.0 20. 24.0 20. 24.0 20.	0 526.0 0 659.0 0 734.0 0 735.0 0 756.0 0 501.0 0 502.0 0 443.0 0 419.0 0 73.0 0 73.0	123.0 151.0 171.0 210.0 220.0 419.0 456.0 319.0 269.0 214.0 142.0 40.0	28.0 29.0 30.0 30.0 31.0 30.0 29.0 29.0 28.0 27.0 26.0 26.0 25.0	2.0 1.0 - - 1.0 2.0 2.0 2.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0	516.9 717.5 860.2 950.6 910.4 737.0 732.4 559.6 400.2 194.3 34.4	43.0 54.2 66.6 70.2 70.4 57.7 52.7 46.9 41.7 33.1 27.0 26.0 26.0 25.0	391.7 522.9 588.0 636.7 609.2 530.4 540.6 423.1 303.3 145.4 29.0	376.7 503.3 565.9 612.6 586.2 510.6 520.4 407.1 291.0 137.3 23.3
5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	24.0 7. 24.0 9. 24.0 10. 24.0 11. 24.0 13. 24.0 13. 24.0 15. 24.0 16. 24.0 17. 24.0 18. 24.0 18. 24.0 20. 24.0 20.	0 526.0 0 659.0 0 734.0 0 735.0 0 756.0 0 501.0 0 502.0 0 443.0 0 419.0 0 73.0 0 73.0	123.0 151.0 171.0 210.0 220.0 419.0 456.0 319.0 269.0 214.0 142.0 40.0	28.0 29.0 30.0 30.0 31.0 30.0 29.0 29.0 28.0 27.0 26.0 26.0	2.0 1.0 - - 1.0 2.0 2.0 2.0 3.0 3.0 3.0 3.0 3.0	516.9 717.5 860.2 950.6 910.4 737.0 732.4 559.6 400.2 194.3 34.4	43.0 54.2 66.6 70.2 70.4 57.7 52.7 46.9 41.7 33.1 27.0 26.0 26.0 26.0	391.7 522.9 588.0 636.7 609.2 530.4 540.6 423.1 303.3 145.4 29.0	376.7 503.3 565.9 612.6 586.2 510.6 520.4 407.1 291.0 137.3 23.3

Sept											
SOC 200 - - - 201 200 - - 201 - - - - - - - - -	5.0	25.0		-	-	25.0	2.0	-	25.0	-	-
20.0 20.0 20.0 1.0 1.0 20				-	-			-		-	-
Section Sect				-							-
Section Sect								1		1	
Section Sect				_				_		_	_
Section Sect				121.0	75.0			79.3		61.6	55.3
Sect											
Sel	5.0	25.0	8.0	352.0	247.0	27.0	1.0	433.7	41.3	334.8	
Sect 10 Sect	5.0	25.0	9.0	480.0	285.0	28.0	-	637.9	55.5	462.5	
Section Sect			10.0				-				
Section Sect											
Sol											
Section Sect											
Society Soci											
Section Sect											
Section Sect											
Section Sect											
Section Sect											
Sol					<u>-</u>					-	
So				-	-			_		_	-
Section Sect				-	-			-		-	-
50	5.0	25.0	23.0	-		24.0	1.0	<u>-</u>	24.0	-	-
50	5.0	26.0		-	-	24.0	1.0	-	24.0	-	-
50				-	-			-		-	-
50 200 40 - - 240 20 - 240 - - 240 20 - 240 20 - - 240 20 - - 240 20 - - 240 20 - - 240 20 - - 240 20 - - 240 20 - - 240 20 - - 240 20 - - 240 20 - - 240 20 - - 240 20 - - 240 20 - - - 240 20 - - 240 20 - - 240 - - - 240 - - - 240 - - - 240 - - - 240 - - - 240 - - - 240 - - - 240 - - - 240 - - - 240 - - - 240 - - - - 240 - - - - 240 - - - - 240 - - - - 240 - - - - 240 - - - - - - 240 - - - - - - - - -				-	-			-		-	-
50 200 50 240 20 240 240 - 240 - - - 240 - - - 240 - - - 240 - - - - 240 - - - - 240 - - - - 240 - - - 240 - - - 240 - - - 240 - - - 240 - - - 240 - - - 240 - - - 240 - - - 240 - - - 240 - - - 240 - - - 240 - - - 240 - - - 240 - - - 240 - - - - 240 - - - - 240 - - - - 240 - - - - 240 - - - - 240 - - - - 240 - - - - 240 - - - - - 240 - - - - - 240 - - - - - - 240 - - - - - - - - -					-			-		-	
50 200 60 3380 700 250 20 59.8 259 63.7 57.4				-				-		-	-
50 250 70 560 1120 260 20 2278 33.6 2204 2104				-				-			
Section Sect											
50 260 90 7620 1530 270 10 7186 523 5289 5990 500 500 600 100 8190 15300 280 10 7741 590 6236 6001 600 200 110 8390 15800 280 220 220 968.8 87.9 600.8 604.4 600.2 6											
50 260 100 8190 1530 280 10 8741 590 6236 6001											
50 260 110 8990 1590 280 20 9587 57.5 699.8 694.4											
50 280 120 8430 1590 280 20 9768 58.3 700 8 6740 50 280 130 77970 1810 290 20 9248 57.9 6647 6934 50 280 15.0 4500 15.0 4500 1770 280 30 5675 54.0 40 4779 4117 50 280 15.0 4880 118.0 270 30 5675 40 4779 4117 50 280 110 8880 118.0 270 30 4343 29 230 1234 50 280 190 - - 280 30 - 280 317 1312 2124 50 280 190 - - 280 30 - 280 317 1312 2124 50 280 210 - - 250 30 - <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
50 280 13.0 797.0 181.0 290 20 924.8 57.9 664.7 698.4 50 280 14.0 477.0 171.0 280 3.0 681.5 50.8 602.4 579.7 50 26.0 16.0 692.0 122.0 280 3.0 557.5 44.0 447.9 411.7 50 26.0 16.0 692.0 122.0 280 3.0 557.5 44.0 447.9 411.7 50 26.0 16.0 692.0 118.0 270.0 3.0 434.3 25.9 280 131.2 123.4 50 26.0 210.0 - - 250.0 3.0 - 250.0 - - 250.0 -											
50 280 140 7700 1710 280 3.0 888.1 50.8 802.4 579.7 50 280 150 430.0 272.0 28.0 3.0 557.5 44.0 427.9 411.7 50 280 110.0 632.0 118.0 270 3.0 178.8 31.7 319.2 233.4 60 280 110.0 680.0 18.0 42.0 280.0 3.0 178.8 31.7 139.2 233.4 60 280 110.0 42.0 42.0 30.0 34.3 28.0 20.0 23.4 50 280 290 - - 250 3.0 - 250 3.0 - 250 3.0 - 250 2.0 - - - 5.0 260 220 - - - - - - - - - - - - - - -											
50 280 15.0 480 272.0 28.0 3.0 557.5 44.0 427.9 411.7 50 280 110.0 280.0 112.0 28.0 30.0 428.2 39.7 319.2 20.5 50 280 110.0 280.0 118.0 27.0 30.0 176.8 317.7 131.2 123.4 50 280 180.0 94.0 42.0 280.0 30.0 176.8 317.7 131.2 123.4 50 280 210.0 - - 250.0 30.0 - 250.0 - </td <td></td>											
50 280 17.0 288.0 118.0 27.0 30 176.8 31.7 131.2 123.4 50 26.0 180.0 94.0 42.0 26.0 30.0 - 26.0 -											
50 280 180 940 420 280 30 343 259 280 234 50 280 290 - - 250 30 - 250 - <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
50 280 190 - - 280 30 - 280 - <th< td=""><td>5.0</td><td>26.0</td><td>17.0</td><td>288.0</td><td>118.0</td><td>27.0</td><td></td><td>176.8</td><td>31.7</td><td>131.2</td><td></td></th<>	5.0	26.0	17.0	288.0	118.0	27.0		176.8	31.7	131.2	
50 260 200 - - 250 30 - 250 - <th< td=""><td></td><td></td><td></td><td>94.0</td><td>42.0</td><td></td><td></td><td>34.3</td><td></td><td>29.0</td><td>23.4</td></th<>				94.0	42.0			34.3		29.0	23.4
50 260 210 - - 250 30 - 250 - <th< td=""><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td>-</td><td></td><td>-</td><td></td></th<>				-	-			-		-	
5.0 26.0 22.0 - - 25.0 3.0 - 25.0 -				-				-		-	-
5.0 28.0 23.0 - - 24.0 3.0 - 24.0 - - - 25.0 27.0 1.0 - - - 24.0 -				-						-	-
5.0 27.0 - - - 24.0 3.0 - 24.0 -				-	-			-		-	-
5.0 27.0 1.0 - - 24.0 - <td< td=""><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td>-</td><td></td><td>-</td><td>-</td></td<>				-	-			-		-	-
50 270 20 - - 240 20 - 240 -										Ī	-
50 270 3.0 - - 240 2.0 - 240 - <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>_</td></t<>										1	_
50 270 40 - - 240 20 - 240 - - - 250 20 - 240 -				_				_		_	_
5.0 27.0 5.0 - 24.0 2.0 - 24.0 -				_	<u>-</u>			-		<u>-</u>	_
5.0 27.0 6.0 354.0 67.0 25.0 20 29.6 25.9 62.0 55.7 5.0 27.0 7.0 584.0 105.0 26.0 2.0 296.8 33.6 218.8 208.9 5.0 27.0 8.0 707.0 127.0 27.0 2.0 518.6 42.0 394.0 378.9 5.0 27.0 9.0 778.0 141.0 28.0 2.0 88.9 24.5 635.9 611.9 5.0 27.0 11.0 820.0 148.0 28.0 2.0 889.2 54.5 635.9 611.9 5.0 27.0 11.0 837.0 155.0 29.0 3.0 952.3 55.2 695.1 668.5 5.0 27.0 11.0 837.0 386.0 29.0 3.0 892.3 55.2 695.1 668.5 5.0 27.0 13.0 551.0 380.0 29.0 3.0 879.1 53.5 <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td>_</td> <td></td> <td>_</td> <td>_</td>				-	-			_		_	_
5.0 27.0 8.0 707.0 127.0 20 518.6 42.0 394.0 378.9 5.0 27.0 9.0 778.0 141.0 28.0 2.0 718.0 42.6 536.2 516.1 5.0 27.0 11.0 837.0 155.0 28.0 2.0 869.2 54.5 635.9 611.9 5.0 27.0 11.0 837.0 155.0 29.0 3.0 952.3 55.2 695.1 668.5 5.0 27.0 13.0 551.0 390.0 29.0 3.0 879.1 55.5 695.1 686.5 5.0 27.0 13.0 551.0 366.0 29.0 3.0 879.1 55.5 647.4 622.9 5.0 27.0 13.0 551.0 386.0 29.0 3.0 879.1 55.5 647.4 622.9 5.0 27.0 15.0 387.0 292.0 28.0 3.0 541.2 43.4 4				354.0	67.0	25.0		92.6		62.0	55.7
50 27.0 9.0 778.0 141.0 28.0 20 718.0 49.6 536.2 516.1 5.0 27.0 10.0 820.0 148.0 28.0 20 869.2 54.5 635.9 611.9 5.0 27.0 11.0 837.0 155.0 29.0 3.0 952.3 55.2 695.1 668.5 5.0 27.0 12.0 540.0 399.0 29.0 3.0 879.1 53.5 647.4 622.9 5.0 27.0 14.0 511.0 320.0 28.0 3.0 879.1 53.5 647.4 622.9 5.0 27.0 14.0 511.0 320.0 28.0 3.0 739.7 48.9 557.4 536.5 5.0 27.0 15.0 387.0 292.0 28.0 3.0 511.2 43.4 417.2 401.3 5.0 27.0 16.0 333.0 210.0 27.0 3.0 152.0 26	5.0	27.0	7.0	584.0	105.0	26.0	2.0	296.8	33.6	218.8	208.9
5.0 27.0 10.0 820.0 148.0 28.0 2.0 869.2 54.5 635.9 611.9 5.0 27.0 11.0 837.0 155.0 29.0 3.0 952.3 55.2 695.1 668.5 5.0 27.0 12.0 540.0 399.0 29.0 3.0 927.2 54.8 678.3 652.4 5.0 27.0 13.0 551.0 366.0 29.0 3.0 879.1 53.5 647.4 622.9 5.0 27.0 14.0 511.0 320.0 28.0 3.0 799.7 48.9 557.4 536.5 5.0 27.0 15.0 387.0 292.0 28.0 3.0 355.2 38.9 276.8 265.3 5.0 27.0 16.0 333.0 210.0 27.0 3.0 355.2 38.9 276.8 265.3 5.0 27.0 18.0 141.0 43.0 26.0 2.0 35.1	5.0	27.0	8.0	707.0	127.0	27.0	2.0	518.6	42.0	394.0	
5.0 27.0 11.0 837.0 155.0 29.0 3.0 952.3 55.2 695.1 668.5 5.0 27.0 12.0 540.0 399.0 29.0 3.0 927.2 54.8 678.3 652.4 5.0 27.0 13.0 551.0 390.0 28.0 3.0 879.1 53.5 647.4 622.9 5.0 27.0 14.0 511.0 320.0 28.0 3.0 739.7 48.9 557.4 536.5 5.0 27.0 15.0 387.0 292.0 28.0 3.0 541.2 43.4 417.2 401.3 5.0 27.0 16.0 333.0 210.0 27.0 3.0 355.2 36.9 276.8 265.3 5.0 27.0 17.0 248.0 123.0 27.0 3.0 355.2 36.9 276.8 265.3 5.0 27.0 17.0 248.0 123.0 27.0 3.0 172.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
5.0 27.0 12.0 540.0 399.0 29.0 3.0 927.2 54.8 678.3 652.4 5.0 27.0 13.0 551.0 386.0 29.0 3.0 879.1 53.5 647.4 622.9 5.0 27.0 14.0 511.0 320.0 28.0 3.0 739.7 48.9 557.4 536.5 5.0 27.0 15.0 387.0 292.0 28.0 3.0 541.2 43.4 417.2 401.3 5.0 27.0 16.0 333.0 210.0 27.0 3.0 355.2 36.9 276.8 265.3 5.0 27.0 17.0 248.0 123.0 27.0 3.0 152.0 36.9 276.8 265.3 5.0 27.0 18.0 141.0 43.0 26.0 2.0 35.1 26.0 29.7 24.0 5.0 27.0 18.0 141.0 43.0 26.0 2.0 - 26.0 <td></td>											
5.0 27.0 13.0 551.0 366.0 29.0 3.0 879.1 53.5 647.4 622.9 5.0 27.0 14.0 511.0 320.0 28.0 3.0 739.7 48.9 557.4 536.5 5.0 27.0 15.0 387.0 292.0 28.0 3.0 541.2 43.4 417.2 413.3 5.0 27.0 16.0 333.0 210.0 27.0 3.0 355.2 36.9 276.8 265.3 5.0 27.0 17.0 248.0 123.0 27.0 3.0 172.0 31.3 129.5 121.8 5.0 27.0 17.0 248.0 123.0 27.0 3.0 172.0 31.3 129.5 121.8 5.0 27.0 19.0 - - 26.0 2.0 35.1 26.0 29.7 24.0 5.0 27.0 20.0 - - 25.0 2.0 - 25.0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>											
5.0 27.0 14.0 511.0 320.0 28.0 3.0 739.7 48.9 557.4 536.5 5.0 27.0 15.0 387.0 292.0 28.0 3.0 541.2 43.4 417.2 401.3 5.0 27.0 16.0 333.0 210.0 27.0 3.0 355.2 36.9 276.8 266.3 5.0 27.0 17.0 248.0 123.0 27.0 3.0 172.0 31.3 129.5 121.8 5.0 27.0 18.0 141.0 43.0 26.0 2.0 35.1 26.0 29.7 24.0 5.0 27.0 18.0 141.0 43.0 26.0 2.0 35.1 26.0 29.7 24.0 5.0 27.0 19.0 - - 26.0 2.0 - 26.0 - - - 5.0 27.0 22.0 - 25.0 - - - 5.0 25.0 <											
5.0 27.0 15.0 387.0 292.0 28.0 3.0 541.2 43.4 417.2 401.3 5.0 27.0 16.0 333.0 210.0 27.0 3.0 355.2 36.9 276.8 265.3 5.0 27.0 17.0 248.0 123.0 27.0 3.0 172.0 31.3 129.5 128.6 5.0 27.0 18.0 141.0 43.0 26.0 2.0 35.1 26.0 29.7 24.0 5.0 27.0 19.0 - - 26.0 2.0 - 26.0 29.7 24.0 5.0 27.0 19.0 - - 25.0 2.0 - 26.0 - - - 26.0 2.0 - 26.0 -											
5.0 27.0 16.0 333.0 210.0 27.0 3.0 355.2 36.9 276.8 265.3 5.0 27.0 17.0 248.0 123.0 27.0 3.0 172.0 31.3 129.5 121.8 5.0 27.0 18.0 141.0 43.0 26.0 2.0 35.1 26.0 29.7 24.0 5.0 27.0 20.0 - - 25.0 2.0 - 25.0 - - 5.0 27.0 20.0 - - 25.0 2.0 - 25.0 -											230.5 401.2
5.0 27.0 17.0 248.0 123.0 27.0 3.0 172.0 31.3 129.5 121.8 5.0 27.0 18.0 141.0 43.0 26.0 2.0 35.1 26.0 29.7 24.0 5.0 27.0 19.0 - - 26.0 2.0 - 26.0 - - 5.0 27.0 20.0 - - 25.0 2.0 - 25.0 - - 5.0 27.0 21.0 - - 25.0 2.0 - 25.0 - - 5.0 27.0 22.0 - - 25.0 2.0 - 25.0 -								341.2 355.2			265.3
5.0 27.0 18.0 141.0 43.0 26.0 2.0 35.1 26.0 29.7 24.0 5.0 27.0 19.0 - - 26.0 2.0 - 26.0 - - 5.0 27.0 20.0 - - 25.0 2.0 - 25.0 - - 5.0 27.0 22.0 - - 25.0 2.0 - 25.0 - - - 5.0 27.0 23.0 - - 25.0 2.0 - 25.0 -								172 O		129.5	121.8
5.0 27.0 19.0 - - 26.0 2.0 - 26.0 -										29.7	24.0
5.0 27.0 20.0 - - 25.0 2.0 - 25.0 -											
5.0 27.0 21.0 - - 25.0 2.0 - 25.0 -				-	-			-	25.0	-	-
5.0 27.0 22.0 - - 25.0 2.0 - 25.0 - - 5.0 27.0 23.0 - - 25.0 2.0 - 25.0 - - 5.0 28.0 - - - 25.0 1.0 - 25.0 - - 5.0 28.0 1.0 - - 24.0 1.0 - 24.0 - - 5.0 28.0 3.0 - - 24.0 1.0 - 24.0 - - 5.0 28.0 4.0 - - 24.0 1.0 - 24.0 - - 5.0 28.0 5.0 - - 24.0 1.0 - 24.0 - - 5.0 28.0 5.0 - - 24.0 1.0 - 24.0 - - 5.0 28.0 5.0 - - 24.0 1.0 - 24.0 - - 5.0 28.0 5.0 - - 24.0 1.0 - 24.0 - - 5.0 28.0 5.0 - - <	5.0	27.0	21.0	-	-	25.0	2.0	-	25.0	-	-
5.0 27.0 23.0 - - 25.0 2.0 - 25.0 - - 5.0 28.0 - - - 25.0 1.0 - 25.0 - - 5.0 28.0 1.0 - - 25.0 1.0 - 25.0 - - 5.0 28.0 2.0 - - 24.0 1.0 - 24.0 - - 5.0 28.0 3.0 - - - 24.0 1.0 - 24.0 - - 5.0 28.0 4.0 - - 24.0 1.0 - 24.0 - - 5.0 28.0 5.0 - - 24.0 1.0 - 24.0 - - 5.0 28.0 5.0 - - - 24.0 1.0 - 24.0 - - 5.0 28.0 5.0 - - - 24.0 1.0 - 24.0 - - 5.0 28.0 5.0 40.4 57.0 25.0 1.0 89.0 25.9 56.7 50.5 5.0 28.	5.0			-	-	25.0	2.0	-	25.0	-	-
5.0 28.0 1.0 - 25.0 1.0 - 25.0 - - 5.0 28.0 2.0 - - 24.0 1.0 - 24.0 - - 5.0 28.0 3.0 - - 24.0 1.0 - 24.0 - - 5.0 28.0 4.0 - - 24.0 1.0 - 24.0 - - 5.0 28.0 5.0 - - 24.0 1.0 - 24.0 - - 5.0 28.0 6.0 404.0 57.0 25.0 1.0 89.0 25.9 56.7 50.5 5.0 28.0 7.0 609.0 96.0 26.0 2.0 296.2 33.6 217.4 207.5			23.0	-	-			-	25.0	-	-
5.0 28.0 2.0 - - 24.0 1.0 - 24.0 - - 5.0 28.0 3.0 - - 24.0 1.0 - 24.0 - - 5.0 28.0 4.0 - - 24.0 1.0 - 24.0 - - 5.0 28.0 5.0 - - 24.0 1.0 - 24.0 - - 5.0 28.0 6.0 404.0 57.0 25.0 1.0 89.0 25.9 56.7 50.5 5.0 28.0 7.0 609.0 96.0 26.0 2.0 296.2 33.6 217.4 207.5				-	-			-	25.0	-	-
5.0 28.0 3.0 - - 24.0 1.0 - 24.0 - - 5.0 28.0 4.0 - - 24.0 1.0 - 24.0 - - 5.0 28.0 5.0 - - 24.0 1.0 - 24.0 - - 5.0 28.0 6.0 404.0 57.0 25.0 1.0 89.0 25.9 56.7 50.5 5.0 28.0 7.0 609.0 96.0 26.0 2.0 296.2 33.6 217.4 207.5				-	-			-		-	-
5.0 28.0 4.0 - - 24.0 1.0 - 24.0 - - 5.0 28.0 5.0 - - 24.0 1.0 - 24.0 - - 5.0 28.0 6.0 404.0 57.0 25.0 1.0 89.0 25.9 56.7 50.5 5.0 28.0 7.0 609.0 96.0 26.0 2.0 296.2 33.6 217.4 207.5				-	-			-		-	-
5.0 28.0 5.0 - - 24.0 1.0 - 24.0 - - 5.0 28.0 6.0 404.0 57.0 25.0 1.0 89.0 25.9 56.7 50.5 5.0 28.0 7.0 609.0 96.0 26.0 2.0 296.2 33.6 217.4 207.5				-	-			-		-	-
5.0 28.0 6.0 404.0 57.0 25.0 1.0 89.0 25.9 56.7 50.5 5.0 28.0 7.0 609.0 96.0 26.0 2.0 296.2 33.6 217.4 207.5					-			-		- -	-
5.0 28.0 7.0 609.0 96.0 26.0 2.0 296.2 33.6 217.4 207.5											
5.0 28.0 8.0 726.0 117.0 27.0 2.0 519.6 42.0 394.4 379.3											207.5
											379.3

5.0	28.0	9.0	792.0	130.0	27.0	2.0	716.8	48.6	538.0	517.9
5.0	28.0	10.0	459.0	363.0	28.0	2.0	763.5	51.6	567.7	546.4
5.0	28.0	11.0	394.0	428.0	28.0	2.0	801.3	52.8	592.5	570.2
5.0	28.0	12.0	451.0	433.0	28.0	2.0	872.6	54.9	638.0	613.8
5.0	28.0	13.0	441.0	400.0	29.0	2.0	809.3	54.4	593.1	570.8
5.0	28.0	14.0	578.0	295.0	28.0	3.0	770.5	49.5	578.7	557.0
5.0	28.0	15.0	756.0	132.0	28.0	3.0	636.6	45.9	481.6	463.5
5.0	28.0	16.0	667.0	116.0	27.0	3.0	424.3	39.0	320.3	307.6
5.0	28.0	17.0	517.0	89.0	27.0	3.0	205.4	32.5	142.8	134.8
5.0	28.0	18.0	157.0	42.0	26.0	3.0	34.3	26.0	29.1	23.4
5.0	28.0	19.0	-	-	26.0	3.0	-	26.0	-	-
5.0	28.0	20.0	-		25.0	2.0		25.0	-	-
5.0	28.0	21.0	-		25.0	2.0		25.0 25.0	-	
5.0	28.0	22.0	-	· •	25.0 25.0	2.0				-
5.0 5.0	28.0 29.0	23.0	-	· •	25.0	2.0 2.0		25.0 25.0		-
5.0	29.0	1.0	1		25.0	2.0		25.0		
5.0	29.0	2.0	_	_	25.0	2.0		25.0		_
5.0	29.0	3.0		_	25.0	2.0		25.0	_	_
5.0	29.0	4.0	_	_	25.0	2.0		25.0	_	_
5.0	29.0	5.0	_	_	25.0	2.0	_	25.0	_	_
5.0	29.0	6.0	216.0	72.0	25.0	2.0	84.5	25.7	61.7	55.4
5.0	29.0	7.0		91.0	26.0	2.0	86.3	27.1	72.7	66.2
5.0	29.0	8.0	554.0	181.0	26.0	3.0	483.3	37.7	377.0	362.5
5.0	29.0	9.0	423.0	310.0	27.0	3.0	617.5	43.5	477.2	459.3
5.0	29.0	10.0	492.0	357.0	27.0	3.0	785.9	48.3	594.8	572.4
5.0	29.0	11.0	42.0	426.0	27.0	3.0	454.8	40.3	359.1	345.2
5.0	29.0	12.0	17.0	316.0	27.0	3.0	320.0	35.6	258.6	247.6
5.0	29.0	13.0	430.0	402.0	27.0	4.0	800.6	46.0	613.6	590.5
5.0	29.0	14.0	234.0	416.0	27.0	3.0	597.4	44.0	462.2	444.8
5.0	29.0	15.0	55.0	309.0	27.0	3.0	332.1	36.4	266.8	255.6
5.0	29.0	16.0	206.0	232.0	26.0	3.0	315.7	34.1	251.8	240.9
5.0	29.0	17.0	248.0	124.0	26.0	2.0	173.1	30.9	130.8	123.0
5.0	29.0	18.0	236.0	40.0	25.0	2.0	30.7	24.8	26.1	20.6
5.0	29.0	19.0	-	-	25.0	2.0	-	25.0	-	-
5.0	29.0	20.0	-	-	25.0	2.0	-	25.0	-	-
5.0	29.0	21.0	-	-	25.0	2.0	-	25.0	-	-
5.0	29.0	22.0	-	-	25.0	2.0	-	25.0	-	-
5.0	29.0	23.0	-	-	24.0	2.0	-	24.0	-	-
5.0	30.0	-	-	-	24.0	2.0		24.0	-	-
5.0	30.0	1.0	-	-	24.0	2.0		24.0	-	-
5.0	30.0	2.0	-	-	24.0	2.0	-	24.0	-	-
5.0	30.0	3.0	-	-	24.0	2.0	-	24.0	-	-
5.0	30.0	4.0	-	-	24.0	2.0	-	24.0	-	-
5.0	30.0	5.0	-	-	24.0	2.0	-	24.0	-	-
5.0	30.0	6.0	413.0	58.0	24.0	2.0	90.4	24.8	57.8	51.6
5.0	30.0	7.0	632.0	88.0	25.0 25.0	2.0 2.0	295.5	32.5	216.8	206.9
5.0 5.0	30.0 30.0	8.0 9.0	366.0	244.0 196.0	26.0	2.0	436.8 191.1	37.6 32.0	343.2 157.3	329.7 148.9
5.0	30.0	10.0	6.0 34.0	372.0	26.0	2.0	389.7	36.8	313.1	300.5
5.0	30.0	11.0	160.0	497.0	27.0	2.0	641.0	45.9	491.7	473.2
5.0	30.0	12.0	410.0	433.0	27.0	2.0	828.9	52.1	615.1	591.9
5.0	30.0	13.0	477.0	397.0	27.0	2.0	838.9	53.1	619.1	595.7
5.0	30.0	14.0	268.0	409.0	27.0	2.0	621.6	47.1	473.1	455.4
5.0	30.0	15.0	73.0	320.0	26.0	2.0	354.4	37.6	283.0	271.3
5.0	30.0	16.0	171.0	235.0	26.0	2.0	302.2	34.9	240.7	230.2
5.0	30.0	17.0	53.0	129.0	26.0	1.0	132.1	30.5	106.8	99.6
5.0	30.0	18.0	105.0	42.0	25.0	1.0	34.3	24.8	29.2	23.6
5.0	30.0	19.0	-	-	25.0	2.0		25.0	-	-
5.0	30.0	20.0	-	-	25.0	2.0	-	25.0	-	-
5.0	30.0	21.0	-	-	25.0	2.0	-	25.0	-	-
5.0	30.0	22.0	-	-	25.0	2.0	-	25.0	-	-
5.0	30.0	23.0	-	-	25.0	2.0	-	25.0	-	-
5.0	31.0	-	-	-	25.0	2.0	-	25.0	-	-
5.0	31.0	1.0	-	-	24.0	1.0		24.0	-	-
5.0	31.0	2.0	-	-	24.0	1.0	-	24.0	-	-
5.0	31.0	3.0	-	-	24.0	1.0	-	24.0	-	-
5.0	31.0	4.0	-		24.0	1.0		24.0	-	-
5.0	31.0 31.0	5.0 6.0	143.0	- 76.0	24.0 25.0	1.0 1.0	80.6	24.0 25.6	61.9	- 55.5
5.0 5.0	31.0	7.0	526.0	115.0	26.0	1.0	285.4	34.5	61.8 210.8	201.0
5.0	31.0	8.0	567.0	176.0	26.0	1.0	486.3	42.6	369.8	355.5
5.0	31.0	9.0	815.0	112.0	27.0	1.0	712.4	52.0	524.9	505.5 505.2
5.0	31.0	10.0	507.0	352.0	27.0	1.0	793.0	55.6	576.9	505.2 555.2
5.0	31.0	11.0	463.0	418.0	28.0	2.0	858.7	54.5	629.1	605.4
5.0	31.0	12.0	433.0	431.0	28.0	2.0	851.6	54.5	623.8	600.3
5.0	31.0	13.0	76.0	456.0	27.0	3.0	513.5	42.0	401.8	386.5
5.0	31.0	14.0	23.0	320.0	27.0	3.0	324.6	36.0	261.9	250.8
5.0	31.0	15.0	172.0	337.0	27.0	3.0	438.5	38.3	348.1	334.5
5.0	31.0	16.0	168.0	236.0	26.0	3.0	301.7	34.1	241.4	230.9
5.0	31.0	17.0	449.0	98.0	26.0	3.0	197.4	30.8	140.8	132.8

5.0	31.0	18.0	189.0	42.0	25.0	3.0	32.2	24.9	27.4	21.8
				42.0					27.4	21.0
5.0	31.0	19.0	-	-	25.0	2.0	-	25.0	-	-
5.0	31.0	20.0	-		25.0	2.0		25.0	-	-
5.0	31.0	21.0	-	-	25.0	2.0	-	25.0	-	-
5.0	31.0	22.0	_	_	25.0	2.0	_	25.0	_	_
5.0	31.0	23.0	_		25.0	2.0	_	25.0		_
6.0		-				2.0		25.0		
	1.0		-		25.0					-
6.0	1.0	1.0	-	-	25.0	2.0	-	25.0	-	-
6.0	1.0	2.0	-	-	25.0	1.0	-	25.0	-	-
6.0	1.0	3.0	-	-	25.0	1.0	-	25.0	-	_
6.0	1.0	4.0	_		25.0	1.0	_	25.0	_	_
6.0	1.0	5.0			25.0	-		25.0	_	
			-	-		-				
6.0	1.0	6.0	372.0	65.0	25.0	-	91.7	26.1	60.5	54.2
6.0	1.0	7.0	594.0	100.0	26.0	-	293.4	37.7	211.1	201.4
6.0	1.0	8.0	711.0	122.0	27.0	_	512.9	49.1	375.4	360.9
6.0	1.0	9.0	778.0	136.0	28.0	_	709.5	58.5	504.6	485.7
6.0	1.0	10.0	831.0	136.0	28.0	1.0	859.7	58.6	614.9	591.7
6.0	1.0	11.0	849.0	142.0	28.0	1.0	947.9	61.9	666.3	641.0
6.0	1.0	12.0	851.0	145.0	28.0	2.0	967.6	58.0	695.3	668.7
6.0	1.0	13.0	876.0	118.0	28.0	2.0	929.2	57.0	671.0	645.5
6.0	1.0	14.0	849.0	114.0	28.0	2.0	813.1	53.8	596.2	573.7
6.0	1.0	15.0	803.0	106.0	28.0	2.0	642.2	48.6	478.7	460.7
6.0		16.0	726.0		28.0	2.0	432.3		320.6	307.8
	1.0			94.0				41.9		
6.0	1.0	17.0	593.0	73.0	27.0	2.0	209.6	33.5	141.9	133.8
6.0	1.0	18.0	311.0	37.0	26.0	2.0	28.4	25.9	24.0	18.5
6.0	1.0	19.0	-		26.0	2.0		26.0		-
6.0	1.0	20.0	_	<u>-</u>	26.0	2.0	<u>-</u>	26.0	<u>-</u>	_
6.0	1.0	21.0	_		26.0	2.0		26.0	_	_
			-	· · · · · · · · · · · · · · · · · · ·						
6.0	1.0	22.0	-	-	25.0	2.0	-	25.0	-	-
6.0	1.0	23.0	-	-	25.0	2.0	-	25.0	-	-
6.0	2.0	-	-	-	25.0	2.0	-	25.0	-	_
6.0	2.0	1.0	_		25.0	2.0	_	25.0		_
6.0	2.0	2.0			25.0	2.0		25.0		
			-	· · · · · · · · · · · · · · · · · · ·						-
6.0	2.0	3.0	-	-	25.0	1.0	-	25.0	-	-
6.0	2.0	4.0	-	-	25.0	1.0	-	25.0	-	-
6.0	2.0	5.0	-		25.0	1.0		25.0		-
6.0	2.0	6.0	446.0	54.0	26.0	1.0	89.1	26.9	54.8	48.6
6.0	2.0	7.0	655.0	81.0	27.0	1.0	295.1	36.0	211.8	202.1
6.0	2.0	8.0	757.0	100.0	27.0	1.0	517.0	44.7	386.3	371.5
6.0	2.0	9.0	812.0	114.0	28.0	1.0	710.7	53.0	520.6	501.1
6.0	2.0	10.0	844.0	125.0	28.0	2.0	859.7	54.2	629.8	606.0
6.0	2.0	11.0	859.0	131.0	29.0	2.0	946.3	58.1	679.7	653.8
6.0	2.0	12.0	861.0	134.0	29.0	2.0	966.4	58.9	690.9	664.5
6.0	2.0	13.0	846.0	135.0	29.0	2.0	917.4	57.7	660.2	635.1
6.0	2.0	14.0	816.0	132.0	29.0	2.0	803.2	54.4	586.9	564.9
6.0	2.0	15.0	1.0	157.0	28.0	3.0	150.0	33.3	122.7	115.1
6.0	2.0	16.0	43.0	216.0	28.0	3.0	224.0	33.0	182.3	173.3
6.0	2.0	17.0	546.0	83.0	27.0	3.0	208.2	31.8	144.2	136.1
									27.3	21.6
6.0	2.0	18.0	263.0	42.0	26.0	3.0	32.2	26.0		
6.0	2.0	19.0	-		26.0	3.0	-	26.0		-
6.0	2.0	20.0	-	-	26.0	3.0		26.0	-	-
6.0	2.0	21.0	-	-	26.0	3.0	-	26.0	-	-
6.0	2.0	22.0	_	_	26.0	3.0	_	26.0	_	_
6.0	2.0	23.0	_		26.0	3.0	_	26.0	_	_
6.0		-				2.0				
	3.0		-		26.0			26.0		-
6.0	3.0	1.0	-	-	25.0	2.0	-	25.0	-	-
6.0	3.0	2.0	-	-	25.0	2.0	-	25.0	-	-
6.0	3.0	3.0	-		25.0	1.0	-	25.0	-	-
6.0	3.0	4.0	-	-	25.0	1.0	-	25.0	-	-
6.0	3.0	5.0	_	<u>-</u>	25.0	1.0	<u>-</u>	25.0	<u>-</u>	_
6.0	3.0	6.0	430.0	57.0	26.0	1.0	90.1	27.0	56.4	50.2
6.0	3.0	7.0		85.0	27.0	2.0	296.1	34.6	214.3	204.5
			648.0							
6.0	3.0	8.0	757.0	102.0	28.0	2.0	518.3	43.0	390.7	375.7
6.0	3.0	9.0	816.0	115.0	28.0	2.0	713.9	49.4	533.1	513.1
6.0	3.0	10.0	866.0	113.0	28.0	2.0	866.5	54.4	634.1	610.1
6.0	3.0	11.0	882.0	118.0	29.0	2.0	955.1	58.3	685.0	658.9 681.3 652.0
6.0	3.0	12.0	884.0	120.0	29.0	3.0	974.8	56.0	708.5	681 3
	3.0	13.0	878.0		29.0	3.0	927.5	54.9	677.8	652.0
6.0				115.0					011.0	500.0
6.0	3.0	14.0	852.0	112.0	28.0	3.0	813.4	50.9	605.6	582.8
6.0	3.0	15.0	807.0	104.0	28.0	3.0	642.6	46.2	485.0	582.8 466.8
6.0	3.0	16.0	172.0	237.0	28.0	3.0	304.6	36.9	240.3	229.8
6.0	3.0	17.0	109.0	135.0	27.0	3.0	150.7	30.6	119.4	111.9
6.0	3.0	18.0	37.0	44.0	27.0	3.0	39.4	27.0	33.2	27.5
6.0	3.0	19.0	-		27.0	3.0	-	27.0	-	-
6.0	3.0	20.0	-		26.0	3.0	-	26.0		-
6.0	3.0	21.0	-	-	26.0	3.0	-	26.0	-	-
6.0	3.0	22.0	-	-	26.0	3.0	-	26.0	_	-
6.0	3.0	23.0	_	_	26.0	3.0	<u>-</u>	26.0	_	_
6.0	4.0	-			26.0	3.0		26.0		
			-							-
6.0	4.0	1.0	-	-	26.0	2.0	-	26.0	-	-
6.0	4.0	2.0	-	-	26.0	2.0	-	26.0		-

6.0		3.0 -	-	25.0	2.0	-	25.0	-	-
6.0 6.0		4.0 - 5.0 -	- -	25.0 25.0	2.0 1.0	-	25.0 25.0	-	-
6.0 6.0	4.0	6.0 410.0 7.0 631.0	60.0 89.0	26.0 27.0	1.0 2.0	90.8 293.8	27.0 34.5	57.9 213.2	51.7 203.4
6.0	4.0	8.0 745.0	106.0	27.0	2.0	515.0	41.9	390.5	375.5
6.0 6.0		9.0 426.0 0.0 846.0	307.0 125.0	28.0 28.0	2.0 2.0	613.8 860.0	46.6 53.9	466.7 631.2	449.2 607.4
6.0	4.0 11	1.0 865.0	129.0	28.0	3.0	948.8	54.1	696.6	670.0
6.0 6.0		2.0 869.0 3.0 865.0	130.0 124.0	29.0 29.0	3.0 3.0	969.3 923.8	55.8 54.7	705.0 675.6	678.0 649.8
6.0	4.0 14	4.0 839.0	120.0	29.0	4.0	810.4	49.8	607.0	584.2
6.0 6.0		5.0 532.0 6.0 214.0	237.0 234.0	28.0 28.0	4.0 4.0	587.5 321.5	43.2 36.2	452.2 253.7	435.1 242.8
6.0 6.0		7.0 572.0 8.0 287.0	79.0 41.0	27.0 27.0	4.0 3.0	211.4	31.7	145.7	137.6 21.3
6.0		8.0 287.0 9.0 -	41.0	26.0	3.0	31.9	27.0 26.0	26.9 -	-
6.0 6.0		0.0 - 1.0 -	Ī	26.0 26.0	3.0 3.0	- -	26.0 26.0	-	
6.0	4.0 22	2.0 -	-	26.0	3.0	-	26.0	-	-
6.0 6.0	4.0 23 5.0 -	3.0 -	- -	26.0 26.0	3.0 3.0	-	26.0 26.0	-	-
6.0	5.0 1	1.0 -	-	26.0	3.0	-	26.0	-	-
6.0 6.0		2.0 - 3.0 -	- -	26.0 26.0	3.0 3.0	- -	26.0 26.0	-	-
6.0		4.0 - 5.0 -	- -	26.0	2.0	-	26.0	-	-
6.0 6.0		5.0 - 6.0 374.0	64.0	26.0 27.0	2.0 2.0	90.1	26.0 27.9	58.7	52.5
6.0 6.0		7.0 570.0 8.0 654.0	105.0 143.0	27.0 28.0	3.0 3.0	288.4 499.6	33.5 40.8	212.2 382.0	202.5 367.3
6.0	5.0	9.0 686.0	183.0	28.0	3.0	685.7	46.3	521.0	501.5
6.0 6.0		0.0 692.0 1.0 439.0	222.0 419.0	28.0 29.0	3.0 3.0	825.7 834.3	50.5 52.1	617.4 619.3	594.1 595.9
6.0	5.0 12	2.0 430.0	433.0	29.0	3.0	848.4	52.5	628.5	604.8
6.0 6.0		3.0 243.0 4.0 55.0	475.0 385.0	29.0 29.0	3.0 3.0	689.7 416.3	48.5 41.0	521.8 327.5	502.2 314.5
6.0	5.0 15	5.0 2.0	163.0	28.0	3.0	156.4	32.1	128.6	120.9
6.0 6.0		6.0 - 7.0 -	29.0 50.0	28.0 27.0	3.0 3.0	27.5 47.4	27.7 26.8	23.1 40.0	17.6 34.2
6.0	5.0 18	8.0 -	12.0	27.0	3.0	11.4	25.8	9.6	4.3
6.0 6.0		9.0 - 0.0 -	÷ .	27.0 27.0	3.0 3.0	-	27.0 27.0	-	-
6.0 6.0		1.0 - 2.0 -	-	27.0 27.0	3.0 4.0	-	27.0 27.0	-	-
6.0		3.0 -	-	27.0	4.0	-	27.0	-	-
6.0 6.0	6.0 - 6.0 1	 1.0 -	Ī	27.0 27.0	4.0 4.0		27.0 27.0		Ī
6.0	6.0	2.0 -	-	27.0	4.0	-	27.0	-	-
6.0 6.0		3.0 - 4.0 -	-	27.0 27.0	4.0 4.0	- -	27.0 27.0	-	-
6.0	6.0	5.0 -	-	27.0	4.0	-	27.0	-	-
6.0 6.0		6.0 23.0 7.0 43.0	78.0 163.0	27.0 27.0	4.0 4.0	72.9 166.4	27.3 29.9	60.3 136.5	54.0 128.6
6.0		8.0 50.0	254.0 340.0	27.0 28.0	4.0 5.0	268.2	32.7	219.0	209.1
6.0 6.0		9.0 55.0 0.0 142.0	449.0	28.0	5.0	366.1 560.6	35.6 40.1	295.6 442.8	283.6 426.1
6.0 6.0		1.0 224.0 2.0 149.0	492.0 508.0	29.0 29.0	5.0 5.0	694.8 643.4	44.6 43.7	536.7 499.2	516.6 480.5
6.0	6.0 13	3.0 45.0	420.0	29.0	5.0	449.0	39.3	356.3	342.4
6.0 6.0		4.0 50.0 5.0 157.0	379.0 341.0	29.0 29.0	6.0 5.0	406.3 432.1	37.0 38.4	326.1 343.0	313.2 329.6
6.0	6.0 16	6.0 -	66.0	28.0	5.0	62.7	29.1	52.3	46.2
6.0 6.0		7.0 - 8.0 -	48.0 13.0	28.0 27.0	5.0 5.0	45.5 12.3	27.9 26.1	38.2 10.4	32.4 5.1
6.0	6.0 19	9.0 -	-	27.0	5.0	-	27.0	-	-
6.0 6.0		0.0 - 1.0 -	1	27.0 27.0	5.0 5.0	-	27.0 27.0	-	-
6.0 6.0		2.0 - 3.0 -	<u> </u>	27.0 27.0	5.0 5.0	-	27.0 27.0	-	-
6.0	7.0 -	-	<u> </u>	27.0	6.0	-	27.0	-	1
6.0 6.0		1.0 - 2.0 -	-	27.0 26.0	6.0 6.0	-	27.0 26.0	-	-
6.0	7.0	3.0 -	-	26.0	6.0	-	26.0	-	-
6.0 6.0		4.0 - 5.0 -	- -	26.0 26.0	6.0 6.0	-	26.0 26.0	-	
6.0	7.0	6.0 246.0	81.0	27.0	6.0	93.6	27.7	67.5	61.1
6.0 6.0	7.0	7.0 183.0 8.0 368.0	172.0 243.0	27.0 28.0	6.0 6.0	220.5 433.9	30.5 36.1	175.1 343.3	166.3 329.8
6.0 6.0		9.0 451.0 0.0 403.0	296.0 382.0	28.0 29.0	6.0 6.0	620.2 727.6	40.3 43.8	487.2 563.8	468.9 542.7
6.0		1.0 81.0	473.0	30.0	6.0	536.5	41.1	421.8	405.8

6.0	7.0	12.0	749.0	209.0	30.0	5.0	933.8	50.8	698.2	671.4
6.0	7.0	13.0	286.0	465.0	30.0	5.0	722.8	47.0	551.2	530.5
6.0	7.0	14.0	218.0	422.0	30.0	4.0	588.9	45.0	453.3	436.2
6.0	7.0	15.0	287.0	324.0	29.0	4.0	504.7	41.7	393.2	378.1
6.0	7.0	16.0	289.0	225.0	29.0	4.0	349.5	37.7	272.4	261.0
6.0	7.0	17.0	316.0	131.0	28.0	4.0	197.4	32.5	146.4	138.2
6.0	7.0	18.0	107.0	55.0	27.0	4.0	46.6	27.3	39.2	33.4
6.0	7.0	19.0	_	-	27.0	4.0	<u>-</u>	27.0	-	-
6.0	7.0	20.0	_	_	27.0	4.0	_	27.0	<u>-</u>	_
6.0	7.0	21.0	_	_	27.0	4.0	_	27.0	_	_
6.0	7.0	22.0	_		26.0	4.0	_	26.0	_	_
6.0	7.0	23.0			26.0	4.0		26.0	_	
6.0	8.0	-	-		26.0	4.0		26.0		-
			-				· •			-
6.0	8.0	1.0	-	-	26.0	4.0	-	26.0	-	-
6.0	8.0	2.0	-	-	26.0	4.0	-	26.0	-	-
6.0	8.0	3.0	-	-	26.0	4.0	-	26.0	-	-
6.0	8.0	4.0	-	-	26.0	4.0	-	26.0	-	-
6.0	8.0	5.0	-	-	26.0	4.0	-	26.0	-	-
6.0	8.0	6.0	226.0	83.0	26.0	4.0	93.2	26.8	68.4	62.0
6.0	8.0	7.0	-	76.0	26.0	4.0	72.2	26.6	61.0	54.7
6.0	8.0	8.0	141.0	277.0	27.0	4.0	340.3	34.2	274.4	263.0
6.0	8.0	9.0	120.0	370.0	27.0	5.0	444.3	36.5	356.9	343.0
6.0	8.0	10.0	394.0	386.0	27.0	5.0	720.5	42.8	561.0	539.9
6.0	8.0	11.0	45.0	430.0	27.0	5.0	460.3	37.7	368.2	354.0
6.0	8.0	12.0	9.0	195.0	27.0	5.0	195.5	31.2	161.5	153.0
6.0	8.0	13.0	_	92.0	28.0	5.0	87.8	29.2	73.3	66.8
6.0	8.0	14.0	_	124.0	27.0	5.0	118.2	28.6	98.9	91.8
6.0	8.0	15.0		29.0	27.0	5.0	27.6	26.6	23.3	17.7
6.0	8.0	16.0	8.0	179.0	27.0	5.0	172.9	29.7	143.7	135.6
6.0	8.0	17.0	0.0	24.0	27.0	5.0	22.7	26.6	19.2	13.7
			-							
6.0	8.0	18.0	-	6.0	26.0	5.0	5.7	24.8	4.8	-
6.0	8.0	19.0	-	-	26.0	5.0	-	26.0	-	-
6.0	8.0	20.0	-	-	26.0	5.0	-	26.0	-	-
6.0	8.0	21.0	-	-	26.0	5.0	-	26.0	-	-
6.0	8.0	22.0	-	-	26.0	6.0	-	26.0	-	-
6.0	8.0	23.0	-	-	25.0	6.0	-	25.0	-	-
6.0	9.0	-	-	-	25.0	6.0	-	25.0	-	-
6.0	9.0	1.0	-	-	25.0	5.0	-	25.0	-	-
6.0	9.0	2.0	_	_	25.0	4.0	_	25.0	_	_
6.0	9.0	3.0	_	_	25.0	3.0	_	25.0	<u>-</u>	_
6.0	9.0	4.0	_	_	25.0	3.0	_	25.0	_	_
6.0	9.0	5.0	_		25.0	3.0	_	25.0	_	
6.0	9.0	6.0	163.0	75.0	25.0	3.0	80.5	25.5	61.0	54.7
6.0	9.0	7.0	310.0	156.0	26.0	3.0	247.2	31.4	191.1	181.9
				276.0	27.0	2.0	331.6	36.3	264.8	253.6
6.0	9.0	8.0	127.0							
6.0	9.0	9.0	202.0	371.0	27.0	2.0	504.7	41.8	394.3	379.2
6.0	9.0	10.0	10.0	228.0	27.0	2.0	226.4	34.3	184.2	175.1
6.0	9.0	11.0	291.0	475.0	28.0	1.0	744.3	52.6	551.0	530.3
6.0	9.0	12.0	32.0	406.0	28.0	1.0	425.9	45.2	327.9	315.0
6.0	9.0	13.0	-	100.0	27.0	1.0	95.5	31.1	78.9	72.3
6.0	9.0	14.0	-	107.0	27.0	2.0	102.0	28.7	85.3	78.5
6.0	9.0	15.0	-	108.0	27.0	3.0	102.8	28.5	86.0	79.2
6.0	9.0	16.0	-	64.0	26.0	4.0	60.8	26.3	51.4	45.3
6.0	9.0	17.0	-	60.0	26.0	4.0	57.0	26.1	48.2	42.2
6.0	9.0	18.0	-	17.0	25.0	5.0	16.1	24.1	13.8	8.4
6.0	9.0	19.0	-	-	25.0	5.0	-	25.0		_
6.0								23.0	-	
	9.0	20.0	-	-	25.0	5.0	-	25.0	-	-
6.0	9.0 9.0	20.0 21.0	-	-			- - -		- - -	
6.0 6.0			-	- - -	25.0	5.0	- - -	25.0	- - -	
	9.0 9.0	21.0 22.0	- - -	- - - -	25.0 25.0 25.0	5.0 5.0 5.0		25.0 25.0 25.0	-	
6.0	9.0	21.0	- - - -	- - - -	25.0 25.0	5.0 5.0		25.0 25.0	-	
6.0 6.0	9.0 9.0 9.0	21.0 22.0 23.0	- - - -	- - - - -	25.0 25.0 25.0 26.0	5.0 5.0 5.0 5.0		25.0 25.0 25.0 26.0		
6.0 6.0 6.0	9.0 9.0 9.0 10.0	21.0 22.0 23.0 - 1.0	-	- - - - - -	25.0 25.0 25.0 26.0 26.0 26.0	5.0 5.0 5.0 5.0 4.0 4.0		25.0 25.0 25.0 26.0 26.0 26.0		
6.0 6.0 6.0 6.0	9.0 9.0 9.0 10.0 10.0	21.0 22.0 23.0 - 1.0 2.0	- - - - - -	- - - - - -	25.0 25.0 25.0 26.0 26.0 26.0 26.0	5.0 5.0 5.0 5.0 4.0 4.0		25.0 25.0 25.0 26.0 26.0 26.0 26.0		
6.0 6.0 6.0 6.0 6.0	9.0 9.0 9.0 10.0 10.0 10.0	21.0 22.0 23.0 - 1.0 2.0 3.0		- - - - - - - -	25.0 25.0 25.0 26.0 26.0 26.0 26.0 26.0	5.0 5.0 5.0 5.0 4.0 4.0 4.0	- - - - - - - -	25.0 25.0 25.0 26.0 26.0 26.0 26.0 26.0		-
6.0 6.0 6.0 6.0 6.0 6.0	9.0 9.0 9.0 10.0 10.0 10.0 10.0	21.0 22.0 23.0 - 1.0 2.0 3.0 4.0		- - - - - - - - -	25.0 25.0 25.0 26.0 26.0 26.0 26.0 26.0 25.0	5.0 5.0 5.0 5.0 4.0 4.0 4.0 4.0 3.0	: : : : :	25.0 25.0 25.0 26.0 26.0 26.0 26.0 26.0 25.0		
6.0 6.0 6.0 6.0 6.0 6.0 6.0	9.0 9.0 9.0 10.0 10.0 10.0 10.0 10.0	21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0	-	-	25.0 25.0 25.0 26.0 26.0 26.0 26.0 25.0 25.0	5.0 5.0 5.0 5.0 4.0 4.0 4.0 3.0	- - - - - - - - - -	25.0 25.0 25.0 26.0 26.0 26.0 26.0 25.0 25.0		- - - - - - -
6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	9.0 9.0 9.0 10.0 10.0 10.0 10.0 10.0	21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0	- - 319.0	- 70.0	25.0 25.0 26.0 26.0 26.0 26.0 26.0 25.0 25.0 25.0	5.0 5.0 5.0 5.0 4.0 4.0 4.0 3.0 3.0	- - - - - - - - - - 88.8	25.0 25.0 25.0 26.0 26.0 26.0 26.0 26.0 25.0 25.0 26.7	- - - - - - - - - - - - - - - - - - -	- - - - - - - - 54.5
6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	9.0 9.0 9.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0	- 319.0 420.0	- 70.0 136.0	25.0 25.0 25.0 26.0 26.0 26.0 26.0 25.0 25.0 26.0	5.0 5.0 5.0 5.0 4.0 4.0 4.0 3.0 3.0 4.0	- - - - - - - - - 88.8 264.7	25.0 25.0 25.0 26.0 26.0 26.0 26.0 25.0 25.0 25.7 31.4	- - - - - - - - - - - - - - - - - - -	- - - - - - - - 54.5 191.5
6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	9.0 9.0 9.0 10.0 10.0 10.0 10.0 10.0 10.	21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0	- 319.0 420.0 669.0	70.0 136.0 133.0	25.0 25.0 26.0 26.0 26.0 26.0 26.0 25.0 25.0 26.0 26.0 27.0	5.0 5.0 5.0 5.0 4.0 4.0 4.0 3.0 3.0 4.0 4.0	- - - - - - - 88.8 264.7 495.1	25.0 25.0 25.0 26.0 26.0 26.0 26.0 25.0 25.0 25.7 31.4 38.5	- - - - - - - - 60.7 200.9 382.4	- - - - - - - 54.5 191.5
6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	9.0 9.0 9.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0	319.0 420.0 669.0 745.0	70.0 136.0 133.0 146.0	25.0 25.0 25.0 26.0 26.0 26.0 26.0 25.0 25.0 26.0 27.0 27.0	5.0 5.0 5.0 4.0 4.0 4.0 3.0 3.0 4.0 4.0 4.0	- - - - - - - - - - - 88.8 264.7 495.1 689.2	25.0 25.0 25.0 26.0 26.0 26.0 26.0 25.0 25.0 25.7 31.4 38.5 43.8	- - - - - - - - - - - - 200.9 382.4 530.0	- - - - - - - - 54.5 191.5 367.7 510.2
6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	9.0 9.0 10.0 10.0 10.0 10.0 10.0 10.0 10	21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0	319.0 420.0 669.0 745.0 790.0	70.0 136.0 133.0 146.0 153.0	25.0 25.0 26.0 26.0 26.0 26.0 26.0 25.0 25.0 26.0 27.0 27.0 28.0	5.0 5.0 5.0 5.0 4.0 4.0 4.0 3.0 3.0 4.0 4.0 4.0 4.0	- - - - - - - - - - - - - - - - - - -	25.0 25.0 25.0 26.0 26.0 26.0 26.0 25.0 25.0 25.7 31.4 38.5 43.8	- - - - - - - - - - - - - 200.9 382.4 530.0 632.1	- - - - - - - - - - - - - - - - - - -
6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	9.0 9.0 10.0 10.0 10.0 10.0 10.0 10.0 10	21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0	319.0 420.0 669.0 745.0 790.0 296.0	70.0 136.0 133.0 146.0 153.0 473.0	25.0 25.0 26.0 26.0 26.0 26.0 26.0 25.0 25.0 26.0 27.0 27.0 28.0 28.0	5.0 5.0 5.0 5.0 4.0 4.0 4.0 3.0 3.0 4.0 4.0 4.0 4.0 4.0 4.0	- - - - - - - - - - - - - - - - - - -	25.0 25.0 25.0 26.0 26.0 26.0 26.0 25.0 25.0 25.7 31.4 38.5 43.8 48.8	- - - - - - - - - - - - - - 200.9 382.4 530.0 632.1 563.7	54.5 191.5 367.7 510.2 608.2 542.6
6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	9.0 9.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 11.0 12.0	319.0 420.0 669.0 745.0 790.0 296.0 80.0	70.0 136.0 133.0 146.0 153.0 473.0 483.0	25.0 25.0 26.0 26.0 26.0 26.0 26.0 25.0 25.0 26.0 27.0 27.0 28.0 28.0	5.0 5.0 5.0 4.0 4.0 4.0 3.0 3.0 4.0 4.0 4.0 4.0 4.0 3.0 3.0 3.0 3.0 3.0 3.0		25.0 25.0 25.0 26.0 26.0 26.0 26.0 25.0 25.0 25.7 31.4 38.5 43.8 48.8 48.9 43.6	- - - - - - - - - - - - - - - - - - -	54.5 191.5 367.7 510.2 608.2 542.6
6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	9.0 9.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0	319.0 420.0 669.0 745.0 790.0 296.0 80.0 11.0	70.0 136.0 133.0 146.0 153.0 473.0 483.0 225.0	25.0 25.0 26.0 26.0 26.0 26.0 26.0 25.0 25.0 26.0 27.0 27.0 27.0 28.0 28.0 28.0	5.0 5.0 5.0 4.0 4.0 4.0 4.0 3.0 3.0 4.0 4.0 4.0 4.0 4.0 3.0 3.0 3.0 3.0	88.8 264.7 495.1 689.2 838.3 746.8 547.5	25.0 25.0 25.0 26.0 26.0 26.0 26.0 25.0 25.0 26.7 31.4 38.5 43.8 48.9 43.6 34.4	- - - - - - - - - - - - - - - - - - -	54.5 191.5 367.7 510.2 608.2 542.6 409.1
6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	9.0 9.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0	319.0 420.0 669.0 745.0 790.0 296.0 80.0 11.0 3.0	70.0 136.0 133.0 146.0 153.0 473.0 483.0 225.0 161.0	25.0 25.0 26.0 26.0 26.0 26.0 26.0 25.0 25.0 26.0 27.0 27.0 27.0 28.0 28.0 28.0 28.0	5.0 5.0 5.0 5.0 4.0 4.0 4.0 3.0 3.0 4.0 4.0 4.0 4.0 4.0 3.0 3.0 3.0 3.0 3.0	88.8 264.7 495.1 689.2 838.3 746.8 547.5 225.4	25.0 25.0 25.0 26.0 26.0 26.0 26.0 25.0 25.0 26.7 31.4 38.5 43.8 48.9 43.6 34.4 31.5		54.5 191.5 367.7 510.2 608.2 542.6 409.1 174.2 121.0
6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	9.0 9.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 9.0 10.0 11.0 12.0 13.0 14.0	319.0 420.0 669.0 745.0 790.0 296.0 80.0 11.0 3.0 8.0	70.0 136.0 133.0 146.0 153.0 473.0 483.0 225.0 161.0 214.0	25.0 25.0 26.0 26.0 26.0 26.0 26.0 25.0 25.0 26.0 27.0 27.0 28.0 28.0 28.0 28.0	5.0 5.0 5.0 4.0 4.0 4.0 4.0 3.0 3.0 4.0 4.0 4.0 4.0 4.0 3.0 3.0 3.0 3.0 4.0 4.0	88.8 204.7 495.1 689.2 838.3 746.8 547.5 225.4 156.0 208.8	25.0 25.0 25.0 26.0 26.0 26.0 26.0 25.0 25.0 25.7 31.4 38.5 43.8 48.8 48.9 43.6 34.4 31.5 33.3		
6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	9.0 9.0 9.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0	319.0 420.0 669.0 745.0 790.0 296.0 80.0 11.0 3.0 8.0 28.0	70.0 136.0 133.0 146.0 153.0 473.0 483.0 225.0 161.0 214.0 208.0	25.0 25.0 26.0 26.0 26.0 26.0 26.0 25.0 25.0 27.0 27.0 27.0 28.0 28.0 28.0 28.0 28.0	5.0 5.0 5.0 4.0 4.0 4.0 3.0 3.0 4.0 4.0 4.0 4.0 3.0 3.0 3.0 3.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	88.8 264.7 495.1 689.2 838.3 746.8 547.5 225.4 156.0 208.8 209.6	25.0 25.0 26.0 26.0 26.0 26.0 26.0 25.0 25.0 26.7 31.4 38.5 48.8 48.9 43.6 34.4 31.5 33.3		54.5 191.5 367.7 510.2 608.2 542.6 409.1 174.2 121.0 161.9
6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	9.0 9.0 10	21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 11.0 12.0 14.0 15.0 14.0 15.0 16.0 17.0	319.0 420.0 669.0 745.0 790.0 296.0 80.0 11.0 3.0 8.0 28.0	70.0 136.0 133.0 146.0 153.0 473.0 483.0 225.0 161.0 214.0 208.0 109.0	25.0 25.0 26.0 26.0 26.0 26.0 26.0 25.0 25.0 25.0 26.0 27.0 27.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0	5.0 5.0 5.0 4.0 4.0 4.0 4.0 3.0 3.0 4.0 4.0 4.0 4.0 4.0 3.0 3.0 3.0 2.0 2.0	88.8 264.7 495.1 689.2 838.3 746.8 547.5 225.4 156.0 208.8 209.6 102.3	25.0 25.0 25.0 26.0 26.0 26.0 26.0 25.0 25.0 25.7 31.4 38.5 43.8 48.9 43.6 34.4 31.5 33.3 33.5 29.3		54.5 191.5 367.7 510.2 608.2 542.6 409.1 174.2 121.0 161.9 161.8 78.5
6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	9.0 9.0 10	21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0	319.0 420.0 669.0 745.0 790.0 296.0 80.0 11.0 3.0 8.0 28.0	70.0 136.0 133.0 146.0 153.0 473.0 483.0 225.0 161.0 214.0 208.0 109.0 32.0	25.0 25.0 26.0 26.0 26.0 26.0 26.0 25.0 25.0 26.0 27.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0	5.0 5.0 5.0 4.0 4.0 4.0 3.0 3.0 4.0 4.0 4.0 4.0 4.0 2.0 2.0 2.0 1.0		25.0 25.0 25.0 26.0 26.0 26.0 26.0 25.0 25.0 25.7 31.4 38.5 43.8 48.9 43.6 34.4 31.5 33.3 33.5 29.3 25.5		54.5 191.5 367.7 510.2 608.2 542.6 409.1 174.2 121.0 161.9 161.8 78.5 20.2
6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	9.0 9.0 9.0 10.	21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 7.0 8.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0	319.0 420.0 669.0 745.0 790.0 296.0 80.0 11.0 3.0 8.0 28.0	70.0 136.0 133.0 146.0 153.0 473.0 483.0 225.0 161.0 214.0 208.0 109.0	25.0 25.0 26.0 26.0 26.0 26.0 26.0 25.0 25.0 26.0 27.0 27.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0	5.0 5.0 5.0 4.0 4.0 4.0 4.0 3.0 3.0 4.0 4.0 4.0 4.0 4.0 3.0 3.0 3.0 2.0 2.0	88.8 264.7 495.1 689.2 838.3 746.8 547.5 225.4 156.0 208.8 209.6 102.3	25.0 25.0 25.0 26.0 26.0 26.0 26.0 25.0 25.0 25.7 31.4 38.5 43.8 48.9 43.6 34.4 31.5 33.3 33.5 29.3 25.5 26.0		54.5 191.5 367.7 510.2 608.2 542.6 409.1 174.2 121.0 161.9 161.8 78.5
6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	9.0 9.0 10	21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0	319.0 420.0 669.0 745.0 790.0 296.0 80.0 11.0 3.0 8.0 28.0	70.0 136.0 133.0 146.0 153.0 473.0 483.0 225.0 161.0 214.0 208.0 109.0 32.0	25.0 25.0 26.0 26.0 26.0 26.0 26.0 25.0 25.0 26.0 27.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0	5.0 5.0 5.0 4.0 4.0 4.0 3.0 3.0 4.0 4.0 4.0 4.0 4.0 2.0 2.0 2.0 1.0		25.0 25.0 25.0 26.0 26.0 26.0 26.0 25.0 25.0 25.7 31.4 38.5 43.8 48.9 43.6 34.4 31.5 33.3 33.5 29.3 25.5		54.5 191.5 367.7 510.2 608.2 542.6 409.1 174.2 121.0 161.9 161.8 78.5 20.2

6.0	10.0	21.0	-	<u>-</u>	26.0	-	-	26.0		-
6.0	10.0	22.0	-		26.0	-	-	26.0	-	-
6.0	10.0	23.0	-	<u>-</u>	26.0	-	-	26.0		-
6.0	11.0		-	<u>-</u>	26.0	-	-	26.0		-
6.0	11.0	1.0	-		25.0	1.0	-	25.0	-	-
6.0	11.0	2.0	-	-	25.0	1.0	-	25.0	-	_
6.0	11.0	3.0	_	<u>-</u>	25.0	1.0	<u>-</u>	25.0	-	
6.0	11.0	4.0	_	_	25.0	1.0	_	25.0	_	_
6.0	11.0	5.0	_		25.0	1.0		25.0	_	
6.0	11.0	6.0	93.0	79.0	26.0	1.0	78.6	26.5	62.3	56.0
6.0	11.0	7.0	19.0	151.0	26.0	1.0	147.8	29.6	122.2	114.6
6.0	11.0	8.0	99.0	272.0	27.0	1.0	311.1	36.9	248.1	237.4
6.0	11.0	9.0	327.0	343.0	27.0	1.0	570.6	46.5	434.4	418.0
6.0	11.0	10.0	775.0	163.0	28.0	1.0	834.6	57.1	601.7	579.0
6.0	11.0	11.0	789.0	174.0	28.0	2.0	921.9	56.4	668.4	643.0
6.0	11.0	12.0	34.0	413.0	28.0	3.0	434.6	41.2	341.6	328.1
6.0	11.0	13.0	13.0	259.0	28.0	4.0	259.8	34.3	211.4	201.7
6.0	11.0	14.0	_	70.0	27.0	5.0	66.7	27.8	56.0	49.8
6.0	11.0	15.0	210.0	338.0	27.0	5.0	464.7	36.3	372.4	358.0
6.0	11.0	16.0	21.0	201.0	26.0	5.0	199.6	30.2	165.1	156.5
6.0	11.0	17.0	18.0	127.0	26.0	4.0	123.0	28.2	102.2	95.0
6.0	11.0	18.0	-	39.0	26.0	3.0	36.5	25.8	30.9	25.3
6.0	11.0	19.0	-	-	26.0	2.0	-	26.0	-	-
6.0	11.0	20.0	-	-	25.0	2.0	-	25.0		-
6.0	11.0	21.0	-		25.0	2.0		25.0		-
6.0	11.0	22.0	-	-	25.0	2.0	-	25.0	-	-
6.0	11.0	23.0	-	-	25.0	2.0	-	25.0	-	-
6.0	12.0	-	-	-	25.0	2.0	-	25.0	-	-
6.0	12.0	1.0	_	<u>-</u>	25.0	2.0	_	25.0	_	_
6.0	12.0	2.0	_		25.0	2.0	_	25.0		_
6.0	12.0	3.0			25.0	2.0		25.0		
6.0	12.0	4.0	_		25.0	2.0		25.0	_	
			-							-
6.0	12.0	5.0	-	-	25.0	2.0	-	25.0	-	-
6.0	12.0	6.0	279.0	70.0	26.0	2.0	84.7	26.7	59.1	52.9
6.0	12.0	7.0	430.0	134.0	27.0	2.0	265.3	33.6	198.8	189.3
6.0	12.0	8.0	405.0	231.0	27.0	2.0	442.4	39.7	343.1	329.7
6.0	12.0	9.0	566.0	253.0	28.0	2.0	660.5	47.6	498.7	480.0
6.0	12.0	10.0	830.0	134.0	28.0	2.0	849.9	53.8	624.0	600.5
6.0	12.0	11.0	847.0	141.0	28.0	2.0	939.1	56.9	678.9	653.0
6.0	12.0	12.0	853.0	142.0	28.0	2.0	962.1	57.8	692.1	665.6
6.0	12.0	13.0	854.0	133.0	28.0	2.0	920.9	56.8	665.9	640.6
6.0	12.0	14.0	833.0	126.0	28.0	2.0	811.6	53.7	595.4	573.0
6.0	12.0	15.0	788.0	118.0	28.0	2.0	646.4	48.7	481.9	463.8
6.0	12.0	16.0	279.0	228.0	27.0	1.0	348.3	41.1	267.1	255.9
6.0	12.0	17.0	114.0	141.0	27.0	1.0	158.0	32.8	123.9	116.3
6.0	12.0	18.0	290.0	46.0	26.0	1.0	38.5	26.2	30.4	24.8
6.0	12.0	19.0	-	-	26.0	1.0	-	26.0	-	-
6.0	12.0	20.0	-		26.0	1.0	-	26.0	-	-
6.0	12.0	21.0	-		26.0	1.0	-	26.0	-	-
6.0	12.0	22.0	-	-	25.0	1.0	_	25.0	-	_
6.0	12.0	23.0	_	<u>-</u>	25.0	1.0	_	25.0	_	_
6.0	13.0		_	<u>-</u>	25.0	1.0	<u>-</u>	25.0	-	
6.0	13.0	1.0	_	_	25.0	1.0	_	25.0		_
6.0	13.0	2.0			25.0	1.0		25.0		
6.0	13.0	3.0			25.0	1.0		25.0	_	
							-		-	-
6.0	13.0	4.0	-		25.0	2.0	-	25.0	-	-
6.0	13.0	5.0	-	70.0	25.0	2.0	- 20.5	25.0	-	
6.0	13.0	6.0	325.0	70.0	26.0	2.0	88.5	26.8	60.3	54.1
6.0	13.0	7.0	531.0	117.0	26.0	2.0	283.2	33.2	209.6	199.9
6.0	13.0	8.0	647.0	148.0	27.0	1.0	495.9	43.9	372.9	358.5
6.0	13.0	9.0	718.0	168.0	28.0	1.0	689.5	52.3	507.2	488.2
6.0	13.0	10.0	225.0	443.0	28.0	1.0	624.9	51.2	465.7	448.2
6.0	13.0	11.0	837.0	148.0	29.0	-	935.8	67.5	636.9	612.8
6.0	13.0	12.0	841.0	150.0	29.0	-	957.7	70.0	642.5	618.1
6.0	13.0	13.0	803.0	167.0	29.0	_	911.3	68.7	615.8	592.6
6.0	13.0	14.0	775.0	161.0	29.0	1.0	800.9	58.7	571.6	550.1
6.0	13.0	15.0	725.0	149.0	29.0	1.0	634.6	53.1	462.6	445.2
6.0	13.0	16.0	634.0	132.0	29.0	1.0	428.9	45.7	314.5	301.9
6.0	13.0	17.0	490.0	102.0	28.0	1.0	215.6	36.3	150.0	141.8
6.0	13.0	18.0	224.0	51.0	27.0	2.0	42.2	27.4	33.7	28.0
6.0	13.0	19.0	-	-	27.0	2.0	-	27.0	-	-
6.0	13.0	20.0	-	-	27.0	2.0	-	27.0	-	-
6.0	13.0	21.0	-		27.0	3.0	-	27.0		-
6.0	13.0	22.0	-		26.0	3.0	-	26.0	-	-
6.0	13.0	23.0	-	-	26.0	3.0	-	26.0	-	-
6.0	14.0	-	-	-	26.0	3.0	-	26.0	-	-
6.0	14.0	1.0	-	-	26.0	3.0	-	26.0	-	-
6.0	14.0	2.0	-	-	26.0	3.0	-	26.0	-	-
6.0	14.0	3.0	-	-	26.0	2.0	-	26.0	-	-
6.0	14.0	4.0	-	-	26.0	2.0	-	26.0	-	-
6.0	14.0	5.0	_	_	26.0	2.0	-	26.0	-	_
***					***	-				

6.0	14.0	6.0	319.0	72.0	26.0	2.0	89.4	26.8	61.4	55.1
6.0	14.0	7.0	540.0	115.0	27.0	1.0	283.7	35.6	207.2	197.5
6.0	14.0	8.0	664.0	142.0	28.0	1.0	498.8	45.0	372.7	358.3
6.0	14.0	9.0	396.0	319.0	29.0	_	596.7	55.5	432.7	416.3
6.0	14.0	10.0	242.0	439.0	29.0	_	638.6	57.6	459.6	442.3
6.0	14.0	11.0	829.0	156.0	30.0	_	935.4	68.5	632.9	609.0
6.0	14.0	12.0	827.0	162.0	30.0	1.0	961.9	64.5	666.2	640.9
6.0	14.0	13.0	788.0	179.0	30.0	1.0	909.1	63.1	634.5	610.5
										558.6
6.0	14.0	14.0	753.0	176.0	30.0	2.0	797.5	55.2	580.4	
6.0	14.0	15.0	703.0	161.0	30.0	2.0	631.9	50.2	468.0	450.4
6.0	14.0	16.0	621.0	138.0	29.0	3.0	428.9	41.1	322.3	309.5
6.0	14.0	17.0	479.0	105.0	28.0	3.0	216.0	33.8	152.8	144.6
6.0	14.0	18.0	215.0	52.0	28.0	4.0	43.2	28.3	34.3	28.6
6.0	14.0	19.0	_	_	27.0	4.0	_	27.0	_	_
6.0	14.0	20.0	_	_	27.0	4.0	<u>-</u>	27.0	-	_
6.0	14.0	21.0	_	_	27.0	4.0	_	27.0	_	_
6.0	14.0	22.0			27.0	4.0		27.0		
					27.0	4.0		27.0	_	_
6.0	14.0	23.0	-	-						-
6.0	15.0	- 5.2	-	-	27.0	4.0	-	27.0	-	-
6.0	15.0	1.0	-	-	26.0	3.0	-	26.0	-	-
6.0	15.0	2.0	-	-	26.0	3.0		26.0	-	-
6.0	15.0	3.0	-	-	26.0	3.0	-	26.0	-	-
6.0	15.0	4.0	_	-	26.0	3.0		26.0	-	-
6.0	15.0	5.0	_	_	26.0	3.0		26.0	_	_
6.0	15.0	6.0	381.0	64.0	27.0	3.0	87.6	27.8	57.0	50.8
6.0	15.0	7.0	606.0	97.0	27.0	2.0	287.5	34.3	208.7	199.0
6.0	15.0	8.0	723.0	119.0	28.0	2.0	507.8	42.7	383.2	368.4
6.0	15.0	9.0	793.0	132.0	29.0	2.0	707.3	50.2	525.8	506.1
6.0	15.0	10.0	221.0	443.0	29.0	1.0	621.1	52.2	460.6	443.2
6.0	15.0	11.0	859.0	140.0	30.0	1.0	948.3	62.7	663.6	638.4
6.0	15.0	12.0	863.0	140.0	30.0	1.0	969.3	64.8	670.2	644.7
6.0	15.0	13.0	849.0	141.0	31.0	1.0	923.9	64.5	639.7	615.5
6.0	15.0	14.0	818.0	138.0	30.0	1.0	814.2	60.1	576.5	554.8
					30.0					
6.0	15.0	15.0	763.0	131.0		2.0	643.5	50.6	475.2	457.3
6.0	15.0	16.0	671.0	119.0	30.0	2.0	434.8	44.0	321.0	308.2
6.0	15.0	17.0	523.0	95.0	29.0	3.0	219.2	34.9	152.5	144.2
6.0	15.0	18.0	248.0	50.0	28.0	3.0	42.2	28.3	33.0	27.3
6.0	15.0	19.0	_	_	28.0	3.0	_	28.0	_	_
6.0	15.0	20.0	_	_	27.0	4.0	_	27.0	_	_
6.0	15.0	21.0	_		27.0	4.0	_	27.0		_
6.0	15.0	22.0	-	-	27.0	4.0		27.0		-
6.0	15.0	23.0	-	-	27.0	4.0	-	27.0	-	-
6.0	16.0	-	-	-	26.0	4.0		26.0	-	-
6.0	16.0	1.0	-	-	26.0	4.0	-	26.0	-	-
6.0	16.0	2.0	_	-	26.0	4.0		26.0	-	-
6.0	16.0	3.0	_	_	26.0	3.0		26.0	_	_
6.0	16.0	4.0	_	_	26.0	3.0		26.0	_	
6.0	16.0	5.0	_		26.0	3.0		26.0		
							-		-	40.0
6.0	16.0	6.0	370.0	63.0	26.0	3.0	85.5	26.7	56.0	49.9
6.0	16.0	7.0	590.0	98.0	27.0	3.0	282.7	33.4	206.4	196.8
6.0	16.0	8.0	700.0	122.0	27.0	4.0	497.7	38.6	383.4	368.7
6.0	16.0	9.0	305.0	348.0	28.0	4.0	558.0	41.7	435.6	419.1
6.0	16.0	10.0	211.0	444.0	28.0	4.0	613.3	43.2	476.9	458.9
6.0	16.0	11.0	106.0	485.0	29.0	4.0	570.9	43.3	443.9	427.1
6.0	16.0	12.0	23.0	367.0	29.0	4.0	374.6	38.5	298.5	286.4
6.0	16.0	13.0	158.0	484.0	29.0	4.0	618.9	43.8	479.9	461.9
6.0	16.0	14.0	12.0	251.0	29.0	3.0	249.4	36.3	200.8	191.4
6.0	16.0	15.0	113.0	340.0	29.0	3.0	402.0	39.1	318.3	305.6
6.0	16.0	16.0	435.0	195.0	29.0	3.0	393.6	39.4	301.7	289.5
6.0	16.0	17.0	482.0	102.0	28.0	3.0	214.8	33.6	151.9	143.7
6.0	16.0	18.0	231.0	51.0	27.0	3.0	43.0	27.3	33.9	28.2
6.0	16.0	19.0	-	-	27.0	3.0	-	27.0	-	-
6.0	16.0	20.0	-	-	27.0	3.0	-	27.0	-	-
6.0	16.0	21.0	_	<u>-</u>	27.0	3.0	<u>-</u>	27.0	-	_
6.0	16.0	22.0	_	_	26.0	3.0	_	26.0	_	_
6.0	16.0	23.0	-	-	26.0	3.0	-	26.0		=
			-						-	-
6.0	17.0	-	-	-	26.0	4.0	-	26.0	-	-
6.0	17.0	1.0	-	-	26.0	4.0	-	26.0	-	-
6.0	17.0	2.0	-	-	26.0	4.0	-	26.0	-	-
6.0	17.0	3.0	-	-	26.0	4.0	-	26.0	-	-
6.0	17.0	4.0	-		26.0	4.0	-	26.0	-	_
6.0	17.0	5.0	_	-	26.0	4.0	-	26.0	_	_
6.0	17.0	6.0	399.0	59.0	26.0	4.0	84.7	26.6	54.2	48.1
6.0	17.0	7.0	49.0	163.0	27.0	4.0	167.6	30.0	137.2	129.3
6.0	17.0	8.0	725.0	110.0	27.0	4.0	499.9	38.4	385.2	370.4
6.0	17.0	9.0	784.0	126.0	28.0	5.0	693.8	43.4	534.4	514.4
6.0	17.0	10.0	814.0	140.0	28.0	5.0	839.4	47.0	638.9	614.7
6.0	17.0	11.0	830.0	147.0	28.0	5.0	927.0	49.2	698.5	671.7
6.0	17.0	12.0	54.0	456.0	29.0	5.0	495.7	41.0	390.0	375.1
6.0	17.0	13.0	-	130.0	29.0	5.0	124.2	31.7	102.3	95.2
6.0	17.0	14.0	5.0	172.0	28.0	4.0	168.2	31.1	138.9	131.0

6.0	17.0	15.0	-	108.0	28.0	4.0	102.8	29.6	85.6	78.8
6.0	17.0	16.0	2.0	167.0	28.0	4.0	158.9	30.8	131.5	123.7
6.0	17.0	17.0	52.0	138.0	27.0	4.0	140.8	29.5	114.7	107.3
6.0	17.0	18.0	257.0	50.0	27.0	4.0	42.9	27.0	33.4	27.7
6.0	17.0	19.0	-	-	26.0	4.0	-	26.0	-	-
6.0	17.0	20.0	-	-	26.0	4.0	-	26.0	-	-
6.0	17.0	21.0	_	_	26.0	5.0	<u>-</u>	26.0	_	_
6.0	17.0	22.0	_	_	26.0	5.0	-	26.0	_	_
6.0	17.0	23.0	_		26.0	5.0		26.0	_	_
6.0	18.0	-			26.0	5.0		26.0	_	
6.0	18.0	1.0			26.0	5.0		26.0		
			-	-						-
6.0	18.0	2.0	-	-	25.0	4.0		25.0	-	-
6.0	18.0	3.0	-	-	25.0	4.0	-	25.0	-	-
6.0	18.0	4.0	-	-	25.0	3.0		25.0	-	-
6.0	18.0	5.0	-	-	25.0	3.0		25.0		-
6.0	18.0	6.0	392.0	60.0	26.0	3.0	84.7	26.7	54.6	48.4
6.0	18.0	7.0	603.0	93.0	26.0	2.0	281.1	33.1	204.7	195.2
6.0	18.0	8.0	709.0	116.0	26.0	2.0	495.6	40.3	378.3	363.7
6.0	18.0	9.0	348.0	335.0	27.0	2.0	576.1	44.5	443.1	426.4
6.0	18.0	10.0	49.0	396.0	27.0	3.0	424.2	38.8	337.4	324.1
6.0	18.0	11.0	62.0	454.0	28.0	3.0	499.1	41.3	392.1	377.1
6.0	18.0	12.0	19.0	341.0	28.0	3.0	345.6	37.5	276.8	265.3
6.0	18.0	13.0	90.0	468.0	28.0	3.0	536.9	42.0	420.2	404.3
6.0	18.0	14.0	760.0	165.0	28.0	2.0	793.6	51.7	588.5	566.3
6.0	18.0	15.0	706.0	155.0	28.0	2.0	629.6	48.2	471.4	453.7
6.0	18.0	16.0	290.0	229.0	27.0	1.0	355.7	41.3	272.6	261.2
6.0	18.0	17.0	-	57.0	27.0	1.0	54.1	29.1	45.1	39.2
6.0	18.0	18.0	-	17.0	26.0	-	16.1	23.9	13.8	8.4
6.0	18.0	19.0	-	-	25.0	-	-	25.0	-	-
6.0	18.0	20.0	-	-	25.0	-	-	25.0	-	-
6.0	18.0	21.0	-	-	24.0	-		24.0	<u>-</u>	-
6.0	18.0	22.0	-	-	24.0	-	-	24.0	-	-
6.0	18.0	23.0	_	_	24.0	_	<u>-</u>	24.0	_	_
6.0	19.0		_	_	24.0	_	<u>-</u>	24.0	_	_
6.0	19.0	1.0	_		24.0	_		24.0	_	_
6.0	19.0	2.0			24.0	1.0		24.0	_	
6.0	19.0	3.0			24.0	2.0		24.0		
							•		-	
6.0	19.0	4.0	-	-	24.0	2.0	-	24.0	-	-
6.0	19.0	5.0		<u> </u>	24.0	3.0		24.0		
6.0	19.0	6.0	144.0	77.0	25.0	3.0	78.9	25.5	60.8	54.5
6.0	19.0	7.0	51.0	162.0	25.0	4.0	167.2	27.9	138.1	130.2
6.0	19.0	8.0	613.0	158.0	26.0	4.0	484.0	37.0	377.1	362.6
6.0	19.0	9.0	673.0	188.0	27.0	5.0	673.3	41.9	523.2	503.6
6.0	19.0	10.0	742.0	187.0	27.0	6.0	825.8	43.8	639.2	615.0
6.0	19.0	11.0	208.0	492.0	28.0	6.0	677.4	42.1	529.9	510.0
6.0	19.0	12.0	14.0	279.0	28.0	7.0	281.0	33.2	229.8	219.6
6.0	19.0	13.0	403.0	412.0	28.0	7.0	781.6	41.9	611.8	588.8
6.0	19.0	14.0	755.0	177.0	28.0	7.0	801.4	43.0	622.0	598.6
6.0	19.0	15.0	724.0	155.0	27.0	6.0	642.1	40.3	500.5	481.8
6.0	19.0	16.0	309.0	225.0	27.0	6.0	361.3	34.4	286.2	274.4
6.0	19.0	17.0	559.0	91.0	26.0	6.0	226.4	30.1	160.5	152.0
6.0	19.0	18.0	297.0	49.0	25.0	5.0	43.2	25.1	33.2	27.5
6.0	19.0	19.0	297.0	49.0	25.0	5.0	43.2	25.0	-	-
				-						
6.0	19.0	20.0	-	-	25.0	5.0	-	25.0	-	-
6.0	19.0	21.0	-	-	25.0	5.0	-	25.0	-	-
6.0	19.0	22.0	-	-	25.0	5.0	-	25.0	-	-
6.0	19.0	23.0	-	-	25.0	5.0		25.0	-	-
6.0	20.0		-	-	24.0	5.0	-	24.0	-	-
6.0	20.0	1.0	-	-	24.0	4.0	-	24.0	-	-
6.0	20.0	2.0	-	-	24.0	4.0	-	24.0	-	-
6.0	20.0	3.0	-	-	24.0	4.0	-	24.0	-	-
6.0	20.0	4.0	-	-	24.0	4.0	-	24.0	-	-
6.0	20.0	5.0	-	-	24.0	4.0	-	24.0	-	-
6.0	20.0	6.0	380.0	64.0	25.0	5.0	85.8	25.6	56.5	50.3
6.0	20.0	7.0	604.0	100.0	26.0	5.0	287.0	31.3	211.2	201.5
6.0	20.0	8.0	472.0	207.0	27.0	6.0	452.9	35.6	357.2	343.3
6.0	20.0	9.0	552.0	255.0	27.0	6.0	648.9	39.8	510.0	343.3 490.9
6.0	20.0	10.0	10.0	228.0	27.0	6.0	226.3	31.7	186.5	177.4
6.0	20.0	11.0	343.0	452.0	27.0	6.0	769.0	41.8	602.3	579.6
				164.0	27.0	6.0	977.8	47.0	745.6	716.8
6.0	20.0	12.0	842.0							/ 10.6 670 /
6.0	20.0	13.0	834.0	160.0	27.0	5.0	933.8	48.7	705.5	678.4
6.0	20.0	14.0	814.0	151.0	27.0	5.0	825.2	46.2	630.0	606.2
6.0	20.0	15.0	773.0	136.0	27.0	5.0	657.3	42.3	507.1	488.1
6.0	20.0	16.0	693.0	120.0	26.0	5.0	448.8	36.3	344.8	331.3
6.0	20.0	17.0	547.0	96.0	26.0	4.0	228.5	31.5	161.8	153.3 30.9
6.0	20.0	18.0	255.0	54.0	25.0	4.0	47.0	25.3	36.7	30.9
6.0	20.0	19.0	-	-	25.0	4.0	-	25.0	-	-
6.0	20.0	20.0	-	-	24.0	4.0	-	24.0	-	-
6.0	20.0	21.0	-	-	24.0	4.0	-	24.0	-	-
6.0	20.0	22.0	-	-	24.0	3.0	-	24.0	-	-
6.0	20.0	23.0	-	-	24.0	3.0	-	24.0	-	-

6.0		-	-	-	24.0	3.0	-	24.0	-	-
6.0		1.0	-	-	24.0	3.0	-	24.0	-	-
6.0 6.0	21.0 21.0	2.0 3.0	-		24.0 24.0	3.0 3.0		24.0 24.0	-	-
6.0	21.0	4.0			24.0	3.0		24.0		1
6.0	21.0	5.0	-		24.0	3.0		24.0		
6.0	21.0	6.0	394.0	60.0	25.0	4.0	83.8	25.6	54.3	48.1
6.0	21.0	7.0	613.0	93.0	26.0	4.0	282.7	31.8	206.7	197.1
6.0		8.0	719.0	117.0	26.0	5.0	500.3	36.6	388.9	374.0
6.0	21.0	9.0	415.0	308.0	27.0	5.0	600.3	40.3	471.3	453.6
6.0	21.0	10.0	808.0	151.0	27.0	5.0	846.9	46.0	648.2	623.6
6.0	21.0	11.0	828.0	157.0	27.0	5.0	933.7	48.4	706.6	679.5
6.0	21.0	12.0	834.0	157.0	28.0	5.0	956.8	50.1	717.8	690.2
6.0	21.0	13.0	827.0	152.0	27.0	5.0	914.8	48.2	692.8	666.3
6.0	21.0	14.0	803.0	144.0	27.0	5.0	809.6	45.8	619.4	596.0
6.0		15.0	603.0	216.0	27.0	5.0	620.3	41.4	481.7	463.6
6.0		16.0	637.0	131.0	27.0	5.0	433.1	36.9	332.6	319.5
6.0		17.0	298.0	131.0	26.0	4.0	196.7	30.7	148.3	140.1
6.0		18.0	134.0	54.0	26.0	4.0	47.0	26.2	38.0	32.2
6.0		19.0	-	-	26.0	3.0	-	26.0	-	-
6.0		20.0	-	-	26.0	3.0	-	26.0	-	-
6.0		21.0	-	-	26.0	3.0	-	26.0	-	-
6.0		22.0	-	-	25.0	3.0	-	25.0	-	-
6.0 6.0		23.0	-		25.0 25.0	3.0 2.0	-	25.0 25.0	-	-
6.0	22.0	1.0			25.0	2.0		25.0	-	
6.0	22.0	2.0			25.0	2.0		25.0		1
6.0	22.0	3.0	_	_	25.0	2.0	_	25.0	_	_
6.0	22.0	4.0	_	_	25.0	2.0	_	25.0	_	_
6.0	22.0	5.0	_	_	25.0	2.0	_	25.0	_	_
6.0	22.0	6.0	341.0	66.0	26.0	2.0	83.6	26.7	56.2	50.0
6.0	22.0	7.0	579.0	100.0	27.0	3.0	278.1	33.2	202.9	193.4
6.0	22.0	8.0	706.0	119.0	27.0	3.0	494.7	39.7	378.7	364.1
6.0		9.0	782.0	128.0	28.0	3.0	691.9	46.5	524.4	504.7
6.0	22.0	10.0	774.0	167.0	28.0	2.0	833.1	53.4	612.8	589.7
6.0	22.0	11.0	802.0	169.0	29.0	2.0	926.4	57.4	667.7	642.3
6.0		12.0	813.0	167.0	29.0	2.0	952.9	58.5	682.9	656.9
6.0		13.0	837.0	141.0	29.0	2.0	914.0	57.5	658.2	633.2
6.0		14.0	818.0	132.0	29.0	2.0	808.0	54.5	590.1	567.9
6.0		15.0	778.0	120.0	29.0	2.0	646.1	49.6	479.5	461.5
6.0		16.0	665.0	121.0	28.0	2.0	437.5	42.1	326.7	313.7
6.0		17.0	529.0	94.0	28.0	2.0	223.0	34.9	155.5	147.2
6.0		18.0	267.0	51.0	27.0	2.0	45.2	27.6	34.4	28.6
6.0		19.0	-	-	27.0	2.0		27.0	-	-
6.0 6.0		20.0 21.0	-		26.0 26.0	3.0 3.0		26.0 26.0	-	-
6.0		22.0	-		26.0	3.0	· ·	26.0	-	-
6.0		23.0			26.0	3.0		26.0	-	
6.0		-			26.0	2.0		26.0		1
6.0		1.0	_	_	26.0	2.0	_	26.0	_	_
6.0	23.0	2.0	-	_	26.0	2.0	-	26.0	_	_
6.0	23.0	3.0	-	-	26.0	2.0	-	26.0	_	-
6.0	23.0	4.0	-		26.0	1.0	-	26.0	-	-
6.0	23.0	5.0	-	-	26.0	1.0	-	26.0	-	-
6.0	23.0	6.0	446.0	52.0	27.0	1.0	79.7	27.6	48.4	42.4
6.0		7.0	662.0	77.0	27.0	1.0	282.0	35.4	200.3	190.9
6.0		8.0	766.0	93.0	28.0	-	501.9	49.5	364.2	350.0
6.0		9.0	824.0	104.0	29.0	-	697.1	58.9	493.6	475.1
6.0		10.0	864.0	107.0	29.0	-	848.6	65.1	584.4	562.4
6.0		11.0	285.0	474.0	30.0	-	735.6	63.4	512.8	493.6
6.0		12.0	412.0	431.0	30.0	1.0	826.4	59.6	588.7	566.6
6.0		13.0 14.0	241.0 785.0	476.0 150.0	30.0	1.0	688.3 801.5	55.8 53.5	500.6 588.7	481.8 566.6
6.0 6.0		14.0 15.0	785.0 738.0	150.0 139.0	29.0 29.0	2.0 2.0	801.5 638.2	53.5 49.4	588.7 474.6	566.6 456.8
6.0		16.0	657.0	122.0	28.0	2.0	435.1	42.0	325.3	312.3
6.0		17.0	516.0	97.0	28.0	2.0	223.0	34.9	156.2	147.8
6.0		18.0	247.0	52.0	27.0	2.0	45.9	27.6	35.1	147.8 29.3
6.0		19.0	- '- '- '- '- '- '- '- '- '- '- '- '- '-	-	27.0	2.0		27.0	-	-
6.0		20.0	-	-	27.0	3.0	-	27.0	_	-
6.0	23.0	21.0	-	-	27.0	3.0	-	27.0	-	-
6.0		22.0	-	-	27.0	3.0	-	27.0	-	-
6.0	23.0	23.0	-	-	27.0	3.0	-	27.0	-	-
6.0		-	-	-	27.0	3.0	-	27.0	-	-
6.0		1.0	-	-	26.0	2.0	-	26.0	-	-
6.0	24.0	2.0	-		26.0	2.0	-	26.0	-	-
6.0	24.0	3.0	-	-	26.0	2.0	-	26.0	-	-
6.0	24.0	4.0	-	-	26.0	2.0	-	26.0	-	-
6.0	24.0	5.0	- 221.0	- 67.0	26.0 27.0	2.0 2.0	- 92.2	26.0 27.7	- 55.7	49.6
6.0 6.0	24.0 24.0	6.0 7.0	321.0 559.0	67.0 104.0	28.0	1.0	82.2 274.6	36.2	55.7 197.9	188.5
6.0	24.0	8.0	-	155.0	28.0	1.0	147.0	32.9	120.4	112.9
		-							***	

6.0	24.0	9.0	-	77.0	29.0	1.0	73.3	30.5	60.8	54.5
6.0	24.0	10.0	845.0	120.0	29.0	1.0	844.6	55.9	612.8	589.7
6.0	24.0	11.0	865.0	124.0	29.0	1.0	937.2	62.4	656.7	631.7
6.0	24.0	12.0	870.0	126.0	29.0	1.0	962.9	63.6	670.3	644.8
6.0	24.0	13.0	350.0	407.0	29.0	1.0	725.8	56.7	525.3	505.6
6.0	24.0	14.0	501.0	330.0	29.0	2.0	741.4	52.0	549.6	529.0
6.0	24.0	15.0	533.0	241.0	29.0	2.0	596.9	48.0	448.5	431.6
6.0	24.0	16.0	707.0	105.0	29.0	3.0	443.3	41.4	331.7	318.6
6.0	24.0	17.0	572.0	84.0	28.0	3.0	225.6	34.1	156.3	147.9
6.0	24.0	18.0	298.0	48.0	27.0	3.0	43.9	27.4	32.6	26.8
6.0	24.0	19.0	-	-	27.0	3.0	-	27.0	-	-
6.0	24.0	20.0	-	-	27.0	3.0	-	27.0	-	-
6.0	24.0	21.0	-	-	27.0	3.0	-	27.0	-	-
6.0	24.0	22.0	-	-	27.0	3.0	-	27.0	-	-
6.0	24.0	23.0	-	-	27.0	3.0	-	27.0	-	-
6.0	25.0	-	-	-	27.0	3.0	-	27.0	-	-
6.0	25.0	1.0	-	-	27.0	3.0	-	27.0	-	-
6.0	25.0	2.0	-	-	27.0	3.0	-	27.0	-	-
6.0	25.0	3.0	-	-	26.0	3.0	-	26.0	-	-
6.0	25.0	4.0	-	-	26.0	2.0	-	26.0	-	-
6.0	25.0	5.0	-	-	26.0	2.0	-	26.0	-	-
6.0	25.0	6.0	316.0	67.0	27.0	2.0	81.5	27.6	55.4	49.3
6.0	25.0	7.0	552.0	106.0	28.0	2.0	273.8	34.9	198.8	189.4
6.0	25.0	8.0	291.0	254.0	28.0	1.0	397.4	41.6	306.3	294.0
6.0	25.0	9.0	247.0	358.0	29.0	1.0	524.1	47.4	397.3	382.1
6.0	25.0	10.0	791.0	154.0	29.0	1.0	834.3	57.8	599.0	576.4
6.0	25.0	11.0	813.0	159.0	30.0	1.0	926.9	63.0	647.3	622.8
6.0	25.0	12.0	817.0	161.0	30.0	1.0	951.3	64.2	660.2	635.1
6.0	25.0	13.0	794.0	168.0	30.0	1.0	906.0	62.9	632.9	608.9
6.0	25.0	14.0	767.0	162.0	30.0	2.0	799.2	55.2	581.6	559.8
6.0	25.0	15.0	718.0	149.0	29.0	2.0	635.3	49.3	472.8	455.1
6.0	25.0	16.0	643.0	128.0	29.0	2.0	435.2	43.0	324.1	311.2
6.0	25.0	17.0	509.0	99.0	28.0	3.0	224.0	34.0	158.1	149.7
6.0	25.0	18.0	247.0	53.0	27.0	3.0	47.2	27.5	36.0	30.2
6.0	25.0	19.0	-	-	27.0	3.0	-	27.0	-	-
6.0	25.0	20.0	_	_	27.0	3.0	-	27.0	_	_
6.0	25.0	21.0	_	_	27.0	3.0	-	27.0	_	_
6.0	25.0	22.0	_	_	27.0	3.0	_	27.0	_	_
6.0	25.0	23.0	_	<u>-</u>	27.0	3.0	_	27.0	_	_
6.0	26.0		_	<u>-</u>	27.0	3.0	_	27.0	_	_
6.0	26.0	1.0	_	<u>-</u>	26.0	2.0	_	26.0	_	_
6.0	26.0	2.0	_	<u>-</u>	26.0	2.0	_	26.0	_	_
6.0	26.0	3.0	_	<u>-</u>	26.0	2.0	_	26.0	_	_
6.0	26.0	4.0	_	_	26.0	1.0	_	26.0	_	_
6.0	26.0	5.0	_	<u>-</u>	27.0	1.0	_	27.0	_	_
6.0	26.0	6.0	327.0	66.0	27.0		81.2	27.7	54.8	48.6
6.0	26.0	7.0	551.0	106.0	28.0	_	273.1	38.8	194.4	185.1
6.0	26.0	8.0	204.0	267.0	28.0	_	361.9	44.2	276.3	264.8
6.0	26.0	9.0	482.0	261.0	29.0	_	602.7	54.7	438.2	421.7
6.0	26.0	10.0	395.0	358.0	29.0	1.0	693.2	53.9	509.0	489.9
6.0	26.0	11.0	453.0	413.0	29.0	1.0	837.3	58.8	599.2	576.6
6.0	26.0	12.0	793.0	180.0	29.0	1.0	946.7	62.7	662.6	637.4
6.0	26.0	13.0	435.0	404.0	29.0	2.0	804.9	54.6	589.4	567.2
6.0	26.0	14.0	786.0	151.0	28.0	2.0	804.7	53.1	592.5	570.2
6.0	26.0	15.0	740.0	140.0	28.0	2.0	642.1	48.6	479.8	461.8
6.0	26.0	16.0	307.0	228.0	27.0	2.0	365.0	39.0	282.9	271.2
6.0	26.0	17.0	139.0	146.0	27.0	1.0	170.7	33.3	132.8	125.0
6.0	26.0	18.0	60.0	54.0	26.0	1.0	48.0	26.6	39.5	33.7
6.0	26.0	19.0	-	-	26.0	1.0	-	26.0	-	-
6.0	26.0	20.0	_	_	26.0	1.0	-	26.0	_	_
6.0	26.0	21.0	_	<u>-</u>	26.0	1.0	_	26.0	_	_
6.0	26.0	22.0	-	-	26.0	1.0	-	26.0	-	_
6.0	26.0	23.0	_	_	26.0	1.0	<u>-</u>	26.0	_	_
6.0	27.0	-	-	-	26.0	1.0	-	26.0	-	_
6.0	27.0	1.0	_	_	26.0	1.0	<u>-</u>	26.0	_	_
6.0	27.0	2.0	_	<u>-</u>	26.0	1.0	_	26.0	_	_
6.0	27.0	3.0	_	_	26.0	1.0	_	26.0	_	_
6.0	27.0	4.0	_	_	26.0	1.0	-	26.0	_	_
6.0	27.0	5.0	_	<u>-</u>	26.0		_	26.0	_	_
6.0	27.0	6.0	-	52.0	27.0	-	49.0	25.8	41.5	35.6
6.0	27.0	7.0	30.0	153.0	27.0	1.0	152.1	30.6	124.7	117.1
6.0	27.0	8.0	50.0	248.0	28.0	1.0	261.3	36.2	209.6	199.9
6.0	27.0	9.0	782.0	126.0	28.0	1.0	688.0	51.0	509.0	489.9
6.0	27.0	10.0	818.0	136.0	29.0	1.0	836.3	58.7	597.5	575.0
6.0	27.0	11.0	403.0	419.0	29.0	1.0	796.1	58.2	571.4	550.0
6.0	27.0	12.0	439.0	432.0	29.0	1.0	854.0	59.7	607.8	584.9
6.0	27.0	13.0	438.0	404.0	29.0	1.0	807.9	58.6	578.4	556.7
6.0	27.0	14.0	768.0	162.0	29.0	1.0	801.0	58.2	573.4	551.9
6.0	27.0	15.0	720.0	150.0	29.0	2.0	638.7	49.4	475.2	457.4
6.0	27.0	16.0	641.0	130.0	28.0	2.0	437.3	42.1	327.4	314.4
6.0	27.0	17.0	505.0	101.0	28.0	2.0	225.7	35.0	159.0	150.5

6.0	27.0	18.0	247.0	53.0	27.0	2.0	47.7	27.6	36.1	30.3
				33.0						
6.0	27.0	19.0	-	-	26.0	2.0		26.0		-
6.0	27.0	20.0	-	-	26.0	2.0	-	26.0	-	-
6.0	27.0	21.0	_	-	26.0	2.0	_	26.0	_	_
6.0	27.0	22.0			26.0	2.0		26.0		
			-							-
6.0	27.0	23.0	-	-	26.0	2.0		26.0	-	-
6.0	28.0	-	-	-	26.0	2.0		26.0	-	-
6.0	28.0	1.0	_	_	25.0	2.0	_	25.0	_	_
					25.0	2.0		25.0		
6.0	28.0	2.0	-	-					-	-
6.0	28.0	3.0	-	-	25.0	2.0		25.0	-	-
6.0	28.0	4.0	-		25.0	2.0	-	25.0	<u>-</u>	-
6.0	28.0	5.0	_	_	25.0	2.0	_	25.0	_	_
			007.0	07.0			70.4		54.5	40.4
6.0	28.0	6.0	287.0	67.0	26.0	2.0	78.4	26.5	54.5	48.4
6.0	28.0	7.0	561.0	103.0	27.0	2.0	272.5	33.8	198.2	188.8
6.0	28.0	8.0	683.0	127.0	28.0	1.0	487.5	44.6	364.0	349.8
6.0	28.0	9.0	756.0	142.0	28.0	1.0	684.8	52.1	503.8	484.9
6.0	28.0	10.0	247.0	434.0	29.0	1.0	636.6	52.5	471.1	453.4
6.0	28.0	11.0	820.0	157.0	29.0	1.0	931.6	61.3	657.0	632.1
6.0	28.0	12.0	829.0	156.0	30.0	1.0	952.2	64.2	660.6	635.5
6.0	28.0	13.0	843.0	136.0	30.0	2.0	916.9	58.6	656.6	631.6
6.0	28.0	14.0	817.0	132.0	30.0	2.0	810.1	55.5	588.4	566.3
6.0	28.0	15.0	769.0	124.0	29.0	2.0	647.3	49.7	480.6	462.6
6.0	28.0	16.0	692.0	110.0	29.0	3.0	443.3	41.5	331.9	318.8
6.0	28.0	17.0	557.0	88.0	28.0	3.0	227.4	34.1	158.6	150.2
6.0	28.0	18.0	297.0	49.0	27.0	3.0	45.8	27.4	33.6	27.8
6.0	28.0	19.0	-	-	27.0	3.0	-	27.0	-	-
6.0	28.0	20.0	_	<u>-</u>	27.0	3.0	-	27.0	_	_
6.0	28.0	21.0	_		27.0	3.0		27.0		
			-	-			-		-	•
6.0	28.0	22.0	-	-	26.0	3.0	-	26.0	-	-
6.0	28.0	23.0	-	_	26.0	3.0		26.0	_	_
6.0	29.0	-			26.0	3.0		26.0		
									_	
6.0	29.0	1.0	-	-	26.0	2.0	-	26.0	-	-
6.0	29.0	2.0	-	-	26.0	2.0		26.0		-
6.0	29.0	3.0	_	-	26.0	2.0	_	26.0	_	_
6.0	29.0	4.0			26.0	2.0		26.0	_	
			-							-
6.0	29.0	5.0	-	-	26.0	2.0		26.0	-	-
6.0	29.0	6.0	368.0	59.0	26.0	2.0	77.3	26.5	50.4	44.4
6.0	29.0	7.0	366.0	140.0	27.0	2.0	244.5	33.0	184.5	175.4
						2.0			368.6	354.3
6.0	29.0	8.0	702.0	117.0	28.0		487.5	41.9		
6.0	29.0	9.0	767.0	133.0	28.0	2.0	683.6	48.5	512.6	493.4
6.0	29.0	10.0	199.0	442.0	28.0	2.0	600.2	46.9	457.7	440.5
6.0	29.0	11.0	847.0	133.0	29.0	2.0	929.0	56.7	672.5	646.9
						2.0				
6.0	29.0	12.0	851.0	136.0	29.0		955.1	58.6	684.3	658.2
6.0	29.0	13.0	839.0	136.0	29.0	2.0	913.6	57.5	658.0	633.0
6.0	29.0	14.0	812.0	132.0	29.0	2.0	806.5	54.5	589.3	567.1
6.0	29.0	15.0	768.0	122.0	29.0	2.0	645.3	49.6	479.3	461.3
6.0	29.0	16.0	694.0	108.0	29.0	2.0	442.9	43.3	328.7	315.7
6.0	29.0	17.0	562.0	86.0	28.0	2.0	227.3	35.1	157.6	149.2
6.0	29.0	18.0	306.0	48.0	27.0	2.0	45.4	27.6	33.0	27.2
6.0	29.0	19.0	-		27.0	2.0		27.0	-	_
		20.0			27.0	3.0		27.0		
6.0	29.0		-	-					-	-
6.0	29.0	21.0	-	-	27.0	3.0		27.0	-	-
6.0	29.0	22.0	-	-	27.0	3.0		27.0		-
6.0	29.0	23.0	_	_	27.0	3.0	_	27.0	_	
6.0	30.0	-			26.0	3.0		26.0		
			-	-					-	-
6.0	30.0	1.0	-	-	26.0	3.0		26.0	-	-
6.0	30.0	2.0	-	-	26.0	3.0		26.0		-
6.0	30.0	3.0	_	<u>-</u>	26.0	3.0	-	26.0	_	_
6.0	30.0	4.0	_	_	26.0	2.0	_	26.0	_	_
6.0	30.0	5.0	-	<u> </u>	26.0	2.0		26.0	, <u> </u>	
6.0	30.0	6.0	379.0	56.0	27.0	2.0	75.7	27.5	48.5	42.5
6.0	30.0	7.0	601.0	89.0	27.0	2.0	270.8	33.8	195.1	185.8
6.0	30.0	8.0	713.0	111.0	28.0	2.0	488.2	42.0	368.6	354.3
6.0	30.0		775.0	126.0	28.0	2.0	682.2	48.4	511.6	492.4
		9.0								492.4
6.0	30.0	10.0	811.0	138.0	28.0	2.0	831.9	53.3	612.1	589.0
		11.0	829.0	145.0	29.0	2.0	923.5	57.4	665.9	640.6
6.0	30.0			295.0	29.0	2.0	297.5	40.2	235.0	224.7
			15.0		29.0	2.0	253.3	36.3	204.1	194.5
6.0	30.0	12.0	15.0 12.0					43.5	394.5	104.0
6.0 6.0	30.0 30.0	12.0 13.0	12.0	253.0		0.0				
6.0 6.0 6.0	30.0 30.0 30.0	12.0 13.0 14.0	12.0 115.0	253.0 425.0	29.0	2.0	508.3			379.4
6.0 6.0	30.0 30.0	12.0 13.0	12.0	253.0		2.0 3.0	532.6	43.4	411.2	379.4 395.6
6.0 6.0 6.0 6.0	30.0 30.0 30.0 30.0	12.0 13.0 14.0 15.0	12.0 115.0 329.0	253.0 425.0 319.0	29.0 29.0	3.0	532.6	43.4	411.2	395.6
6.0 6.0 6.0 6.0	30.0 30.0 30.0 30.0 30.0	12.0 13.0 14.0 15.0 16.0	12.0 115.0 329.0 175.0	253.0 425.0 319.0 247.0	29.0 29.0 28.0	3.0 3.0	532.6 318.8	43.4 36.9	411.2 252.0	395.6 241.1
6.0 6.0 6.0 6.0 6.0	30.0 30.0 30.0 30.0 30.0 30.0	12.0 13.0 14.0 15.0 16.0 17.0	12.0 115.0 329.0 175.0 14.0	253.0 425.0 319.0 247.0 130.0	29.0 29.0 28.0 28.0	3.0 3.0 2.0	532.6 318.8 125.2	43.4 36.9 31.5	411.2 252.0 102.6	395.6 241.1 95.5
6.0 6.0 6.0 6.0 6.0 6.0	30.0 30.0 30.0 30.0 30.0 30.0 30.0	12.0 13.0 14.0 15.0 16.0 17.0 18.0	12.0 115.0 329.0 175.0	253.0 425.0 319.0 247.0 130.0 42.0	29.0 29.0 28.0 28.0 27.0	3.0 3.0 2.0 2.0	532.6 318.8 125.2 39.4	43.4 36.9 31.5 26.9	411.2 252.0 102.6 33.2	395.6 241.1 95.5 27.5
6.0 6.0 6.0 6.0 6.0	30.0 30.0 30.0 30.0 30.0 30.0	12.0 13.0 14.0 15.0 16.0 17.0	12.0 115.0 329.0 175.0 14.0	253.0 425.0 319.0 247.0 130.0	29.0 29.0 28.0 28.0 27.0 26.0	3.0 3.0 2.0	532.6 318.8 125.2	43.4 36.9 31.5 26.9 26.0	411.2 252.0 102.6	395.6 241.1 95.5
6.0 6.0 6.0 6.0 6.0 6.0 6.0	30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0	12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0	12.0 115.0 329.0 175.0 14.0	253.0 425.0 319.0 247.0 130.0 42.0	29.0 29.0 28.0 28.0 27.0 26.0	3.0 3.0 2.0 2.0 2.0	532.6 318.8 125.2 39.4	43.4 36.9 31.5 26.9 26.0	411.2 252.0 102.6 33.2	395.6 241.1 95.5 27.5
6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0	12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0	12.0 115.0 329.0 175.0 14.0	253.0 425.0 319.0 247.0 130.0 42.0	29.0 29.0 28.0 28.0 27.0 26.0 25.0	3.0 3.0 2.0 2.0 2.0 2.0	532.6 318.8 125.2 39.4	43.4 36.9 31.5 26.9 26.0 25.0	411.2 252.0 102.6 33.2	395.6 241.1 95.5 27.5
6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0	12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0	12.0 115.0 329.0 175.0 14.0	253.0 425.0 319.0 247.0 130.0 42.0	29.0 29.0 28.0 28.0 27.0 26.0 25.0	3.0 3.0 2.0 2.0 2.0 2.0 1.0	532.6 318.8 125.2 39.4	43.4 36.9 31.5 26.9 26.0 25.0 25.0	411.2 252.0 102.6 33.2	395.6 241.1 95.5 27.5
6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0	12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0	12.0 115.0 329.0 175.0 14.0	253.0 425.0 319.0 247.0 130.0 42.0	29.0 29.0 28.0 28.0 27.0 26.0 25.0 25.0	3.0 3.0 2.0 2.0 2.0 2.0 1.0	532.6 318.8 125.2 39.4	43.4 36.9 31.5 26.9 26.0 25.0 25.0	411.2 252.0 102.6 33.2	395.6 241.1 95.5 27.5
6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0	12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0	12.0 115.0 329.0 175.0 14.0	253.0 425.0 319.0 247.0 130.0 42.0	29.0 29.0 28.0 28.0 27.0 26.0 25.0 25.0 25.0 25.0	3.0 3.0 2.0 2.0 2.0 2.0 1.0 1.0	532.6 318.8 125.2 39.4	43.4 36.9 31.5 26.9 26.0 25.0 25.0 25.0 25.0	411.2 252.0 102.6 33.2	395.6 241.1 95.5 27.5
6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0	12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0	12.0 115.0 329.0 175.0 14.0	253.0 425.0 319.0 247.0 130.0 42.0	29.0 29.0 28.0 28.0 27.0 26.0 25.0 25.0 25.0 25.0	3.0 3.0 2.0 2.0 2.0 2.0 1.0 1.0	532.6 318.8 125.2 39.4	43.4 36.9 31.5 26.9 26.0 25.0 25.0 25.0 25.0	411.2 252.0 102.6 33.2	395.6 241.1 95.5 27.5
6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0	12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0	12.0 115.0 329.0 175.0 14.0	253.0 425.0 319.0 247.0 130.0 42.0	29.0 29.0 28.0 28.0 27.0 25.0 25.0 25.0 25.0 25.0	3.0 3.0 2.0 2.0 2.0 2.0 1.0 1.0	532.6 318.8 125.2 39.4	43.4 36.9 31.5 26.9 26.0 25.0 25.0 25.0 25.0 25.0	411.2 252.0 102.6 33.2	395.6 241.1 95.5 27.5
6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0	12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0	12.0 115.0 329.0 175.0 14.0	253.0 425.0 319.0 247.0 130.0 42.0	29.0 29.0 28.0 28.0 27.0 26.0 25.0 25.0 25.0 25.0 25.0 25.0	3.0 3.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0	532.6 318.8 125.2 39.4	43.4 36.9 31.5 26.9 26.0 25.0 25.0 25.0 25.0 25.0 25.0	411.2 252.0 102.6 33.2	395.6 241.1 95.5 27.5
6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0	12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0	12.0 115.0 329.0 175.0 14.0	253.0 425.0 319.0 247.0 130.0 42.0	29.0 29.0 28.0 28.0 27.0 25.0 25.0 25.0 25.0 25.0	3.0 3.0 2.0 2.0 2.0 2.0 1.0 1.0	532.6 318.8 125.2 39.4	43.4 36.9 31.5 26.9 26.0 25.0 25.0 25.0 25.0 25.0	411.2 252.0 102.6 33.2	395.6 241.1 95.5 27.5

7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	3.0 4.0 5.0 6.0 7.0 8.0 9.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 21.0 22.0 23.0 - 1.0 22.0 3.0 4.0 15.0 16.0 17.0 18.0 19.0 21.0 22.0 23.0 - 1.0 22.0 23.0 - 1.0 20.0 21.0 20.0 21.0 20.0 20.0 20.0	266.0 89.0 210.0 161.0 171.0 273.0 59.0 - - 3.0 71.0 30.0 - - - - - - - - - - - - - - - - - -	63.0 169.0 269.0 365.0 443.0 476.0 461.0 98.0 120.0 170.0 238.0 135.0 37.0 - - - - - - - - - - - - -	25.0 25.0 26.0 27.0 28.0 29.0 29.0 29.0 29.0 29.0 29.0 28.0 28.0 26.0 26.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 26.0 26.0 26.0 26.0 27.0 27.0 27.0 26.0 27.0 26.0	1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	72.5 184.6 366.4 466.6 577.3 726.8 505.9 93.6 114.4 183.8 259.1 133.3 35.1	25.0 25.0 26.3 31.1 39.0 44.4 49.5 54.8 48.6 33.6 30.1 31.7 33.8 29.4 25.8 25.0 25.0 25.0 25.0 25.0 25.0 25.0 24.0 24.0 23.2 29.7 33.4 49.4 49.9 52.2 53.3 42.4 49.9 52.2 53.3 42.4 49.5 50.0	50.7 148.6 287.2 359.7 434.2 531.6 382.5 76.4 95.0 134.9 209.6 109.6 29.7 	44.7 140.4 275.4 345.8 417.8 511.7 367.8 69.8 88.0 127.0 199.9 102.3 24.1
			-	-					- -	-
7.0	2.0	6.0	2.0	65.0	24.0		60.2	23.2	51.6	45.5
7.0	2.0	9.0	344.0	332.0	26.0	-	568.3	49.4	425.9	409.8
						- 10				
7.0	2.0	12.0	229.0	501.0	27.0	1.0	713.6	53.3	526.2	506.5
7.0	2.0	15.0	93.0	339.0	27.0	1.0	387.2	40.7	304.4	292.1
										116.8
							50.8			
7.0	2.0	20.0			26.0	1.0		26.0		
			-	-			- -		-	-
7.0	2.0	23.0	-	-	25.0	2.0	-	25.0	-	-
			-	- -			-		-	
			-	-			-		-	-
7.0	3.0	4.0	-	-	25.0	1.0		25.0		
				- 68.0			- 70 9		53.3	- 47 2
7.0	3.0	7.0	488.0	115.0	26.0	1.0	258.1	33.5	189.7	180.5
7.0 7.0	3.0	8.0 9.0	426.0 715.0	218.0 166.0	27.0 27.0	1.0 1.0	435.3 678.0	41.8 50.6	333.0 502.9	319.9 484.0
7.0	3.0	10.0	804.0	149.0	28.0	2.0	840.0	53.6	617.4	594.1
7.0 7.0	3.0 3.0	11.0 12.0	825.0 502.0	155.0 418.0	28.0 28.0	2.0 2.0	929.8 903.2	56.6 56.2	673.2 655.6	647.6 630.8
7.0 7.0	3.0 3.0	13.0 14.0	809.0 784.0	163.0 155.0	28.0 28.0	2.0 2.0	918.6 810.9	56.5 53.7	665.3 595.2	640.0 572.8
7.0	3.0	15.0	161.0	348.0	28.0	2.0	444.4	43.0	344.8	331.3
7.0 7.0	3.0 3.0	16.0 17.0	39.0 33.0	223.0 136.0	28.0 27.0	3.0 2.0	229.8 135.1	34.2 30.3	186.1 110.5	177.0 103.1
7.0	3.0	18.0	-	46.0	26.0	2.0	42.8	26.0	36.2	103.1 30.4
7.0 7.0	3.0 3.0	19.0 20.0	-	- -	26.0 26.0	2.0 2.0	-	26.0 26.0	-	-
7.0	3.0	21.0	-	-	26.0	2.0	-	26.0	-	-
7.0 7.0	3.0 3.0	22.0 23.0	-	- -	26.0 26.0	2.0 2.0	-	26.0 26.0	-	
7.0 7.0	4.0 4.0	- 1.0	-	-	26.0 26.0	2.0 2.0	- -	26.0 26.0	-	-
7.0	4.0	2.0	-	-	26.0	2.0	-	26.0	-	_
7.0 7.0	4.0 4.0	3.0 4.0	-	-	26.0 26.0	2.0 2.0	- -	26.0 26.0	-	
7.0	4.0	5.0	-	-	26.0	2.0	-	26.0	-	-
7.0 7.0	4.0 4.0	6.0 7.0	343.0 576.0	60.0 97.0	26.0 27.0	2.0 2.0	74.7 269.1	26.4 33.7	49.7 194.6	43.7 185.3
7.0 7.0	4.0 4.0	8.0 9.0	68.0 81.0	254.0 350.0	27.0 28.0	3.0 3.0	276.2 392.9	33.8 38.0	223.9 313.3	213.8 300.8
7.0	4.0	10.0	131.0	440.0	28.0	3.0	540.5	42.2	422.3	406.3
7.0	4.0	11.0	263.0	478.0	28.0	3.0	719.9	47.3	548.1	527.5

7.0	4.0 12.0	431.0	431.0	29.0	2.0	847.3	54.9	619.6	596.2
7.0	4.0 13.0	341.0	446.0	29.0	2.0	757.9	52.9	560.1	539.1
7.0	4.0 14.0	372.0	381.0	29.0	2.0	683.9	50.5	511.3	492.1
7.0 7.0	4.0 15.0 4.0 16.0	302.0 559.0	327.0 162.0	29.0 28.0	2.0 2.0	523.1 430.1	45.7 41.4	399.3 325.1	384.1 312.2
7.0	4.0 17.0	352.0	124.0	28.0	2.0	208.0	34.5	152.5	144.2
7.0	4.0 18.0	104.0	58.0	27.0	2.0	52.7	27.7	42.3	36.5
7.0	4.0 19.0	-	-	27.0	2.0	-	27.0	-	-
7.0	4.0 20.0	-	-	27.0	2.0	-	27.0	-	-
7.0	4.0 21.0	-	<u>-</u>	27.0	2.0		27.0	-	-
7.0	4.0 22.0	-	-	26.0	2.0		26.0	-	-
7.0	4.0 23.0	-	-	26.0	3.0	-	26.0	-	-
7.0	5.0 -	-	-	26.0	3.0	-	26.0	-	-
7.0	5.0 1.0	-	-	26.0	3.0		26.0	-	-
7.0	5.0 2.0	-	-	26.0	3.0		26.0	-	-
7.0	5.0 3.0	-	-	26.0	3.0	-	26.0	-	-
7.0 7.0	5.0 4.0 5.0 5.0	-	-	26.0 26.0	3.0 3.0		26.0 26.0	-	-
7.0	5.0 6.0	297.0	66.0	27.0	3.0	76.3	27.5	52.7	46.6
7.0	5.0 7.0	560.0	102.0	27.0	3.0	268.5	33.0	195.6	186.2
7.0	5.0 8.0	680.0	128.0	28.0	3.0	484.7	40.4	369.5	355.2
7.0	5.0 9.0	749.0	146.0	28.0	3.0	682.5	46.2	517.9	498.5
7.0	5.0 10.0	577.0	313.0	29.0	3.0	806.2	50.9	601.3	578.7
7.0	5.0 11.0	816.0	162.0	29.0	3.0	934.2	54.5	684.2	658.1
7.0	5.0 12.0	523.0	406.0	29.0	3.0	912.9	54.4	669.4	643.9
7.0	5.0 13.0	545.0	373.0	29.0	3.0	880.9	53.5	648.7	624.1
7.0	5.0 14.0	476.0	338.0	29.0	4.0	732.9	47.8	555.5	534.7
7.0	5.0 15.0	392.0	302.0	28.0	4.0	561.2	42.4	435.2	418.8
7.0	5.0 16.0	538.0	168.0	28.0	4.0	426.0	38.7	326.8	313.9
7.0	5.0 17.0	38.0	138.0	28.0	4.0	138.3	31.2	112.4	105.0
7.0	5.0 18.0	52.0	56.0	27.0	4.0	49.9	27.2	41.0	35.1
7.0	5.0 19.0	-	-	27.0	4.0	-	27.0	-	-
7.0	5.0 20.0	-	-	27.0	4.0		27.0	-	-
7.0	5.0 21.0	-	-	27.0	4.0	-	27.0	-	-
7.0	5.0 22.0	-	-	27.0	4.0	-	27.0	-	-
7.0	5.0 23.0	-	-	27.0	3.0	-	27.0	-	-
7.0	6.0 -	-	-	27.0	3.0	-	27.0	-	-
7.0	6.0 1.0	-		26.0	2.0 2.0	-	26.0 26.0	-	-
7.0 7.0	6.0 2.0 6.0 3.0	-		26.0 26.0	2.0		26.0		-
7.0	6.0 4.0	-		26.0	2.0		26.0		-
7.0	6.0 5.0			26.0	2.0		26.0		
7.0	6.0 6.0	156.0	68.0	27.0	2.0	69.5	27.3	52.5	46.4
7.0	6.0 7.0	542.0	103.0	28.0	3.0	263.7	33.8	191.5	182.3
7.0	6.0 8.0	605.0	155.0	28.0	3.0	471.0	40.0	360.8	346.7
7.0	6.0 9.0	771.0	127.0	28.0	3.0	679.5	46.1	515.8	496.5
7.0	6.0 10.0	482.0	349.0	29.0	3.0	759.6	49.8	570.2	548.8
7.0	6.0 11.0	291.0	470.0	29.0	2.0	739.0	52.0	548.7	528.1
7.0	6.0 12.0	418.0	431.0	28.0	2.0	835.5	53.7	615.0	591.8
7.0	6.0 13.0	194.0	485.0	28.0	2.0	656.0	49.1	494.9	476.3
7.0	6.0 14.0	72.0	406.0	28.0	1.0	451.9	45.5	347.2	333.6
7.0	6.0 15.0	48.0	312.0	28.0	1.0	331.3	40.4	261.0	250.0
7.0	6.0 16.0	138.0	249.0	28.0	1.0	303.7	38.8	238.5	228.1
7.0	6.0 17.0	20.0	131.0	27.0	1.0	127.8	31.4	104.5	97.3
7.0	6.0 18.0	-	44.0	27.0	1.0	41.1	27.1	34.6	28.9
7.0	6.0 19.0	-	-	27.0	-	-	27.0	-	-
7.0 7.0	6.0 20.0 6.0 21.0	-		27.0 27.0	-		27.0 27.0	-	-
7.0	6.0 22.0	- 1		27.0			27.0		
7.0	6.0 23.0	-	- -	26.0	_	- -	26.0	- -	-
7.0	7.0 -	_	-	26.0	_	<u>-</u>	26.0	_	_
7.0	7.0 1.0	_	<u>-</u>	26.0	1.0	_	26.0	_	-
7.0	7.0 2.0	_	-	26.0	1.0	-	26.0	-	_
7.0	7.0 3.0	-	-	26.0	1.0	-	26.0	-	-
7.0	7.0 4.0	-	-	26.0	2.0	-	26.0	-	-
7.0	7.0 5.0	-	-	26.0	2.0	-	26.0	-	-
7.0	7.0 6.0	335.0	56.0	26.0	2.0	69.8	26.2	46.3	40.3
7.0	7.0 7.0	515.0	108.0	26.0	3.0	259.9	31.7	191.5	182.3
7.0	7.0 8.0	37.0	234.0	26.0	2.0	241.3	32.7	197.1	187.8
7.0	7.0 9.0	57.0	333.0	26.0	2.0	359.7	36.1	289.6	277.7
7.0	7.0 10.0	189.0	441.0	27.0	2.0	591.4	44.4	457.0	439.8
7.0	7.0 11.0	45.0	427.0	27.0	2.0	457.4	41.5	359.0	345.1
7.0	7.0 12.0	16.0	303.0	27.0	1.0	306.3	38.6	244.0	233.4
7.0 7.0	7.0 13.0 7.0 14.0	17.0 24.0	312.0 328.0	27.0 26.0	1.0 1.0	314.8 333.5	38.0 37.7	251.5 266.8	240.7 255.5
7.0		104.0	342.0	26.0	2.0	398.3	37.7	317.8	305.1
	/() 15.0	104.0		26.0	4.0	355.6	34.5		074.0
	7.0 15.0 7.0 16.0	262 0	238.0						2/13
7.0	7.0 16.0	262.0 165.0	238.0 145.0					283.0 140.5	271.3 132.5
7.0 7.0	7.0 16.0 7.0 17.0	262.0 165.0	145.0	26.0	5.0	178.3	29.5	140.5	132.5
7.0	7.0 16.0	165.0					29.5 26.0		132.5 29.0
7.0 7.0 7.0	7.0 16.0 7.0 17.0 7.0 18.0	165.0 -	145.0 44.0	26.0 26.0	5.0 6.0	178.3 41.1	29.5	140.5 34.8	132.5 29.0

7.0	7.0	21.0	_	_	25.0	5.0	_	25.0	_	_
7.0	7.0	22.0	-		25.0	5.0		25.0	-	_
7.0	7.0	23.0	-	-	25.0	4.0	-	25.0	-	-
7.0 7.0	8.0 8.0	- 1.0	-	Ī	25.0 25.0	4.0 4.0	1	25.0 25.0		
7.0	8.0	2.0	-	-	25.0	4.0	-	25.0	-	-
7.0	8.0	3.0	-	-	25.0	4.0	-	25.0	-	-
7.0 7.0	8.0 8.0	4.0 5.0	-	-	26.0 26.0	4.0 4.0	-	26.0 26.0	-	
7.0	8.0	6.0	135.0	68.0	26.0	4.0	67.8	26.2	52.2	46.1
7.0	8.0	7.0	154.0	161.0	27.0	4.0	196.8	30.6	156.2	147.8
7.0	8.0 8.0	8.0 9.0	314.0 235.0	243.0 355.0	27.0 28.0	4.0 4.0	397.7 510.2	36.0 40.3	314.7 401.3	302.1 386.0
7.0 7.0	8.0	10.0	328.0	410.0	28.0	4.0	683.9	44.7	527.3	507.5
7.0	8.0	11.0	480.0	408.0	28.0	4.0	860.6	49.3	648.2	623.6
7.0	8.0	12.0	448.0	433.0	28.0	4.0	867.4	50.0	651.3	626.6
7.0 7.0	8.0 8.0	13.0 14.0	260.0 330.0	473.0 399.0	28.0 28.0	4.0 4.0	710.1 667.8	46.3 44.9	543.6 514.4	523.2 495.1
7.0	8.0	15.0	46.0	310.0	28.0	4.0	328.2	36.6	263.6	252.5
7.0	8.0	16.0	184.0	247.0	28.0	4.0	324.8	35.6	258.4	247.4
7.0 7.0	8.0 8.0	17.0 18.0	60.0 13.0	142.0 52.0	27.0 27.0	4.0 4.0	147.9 48.1	30.2 27.2	119.9 40.2	112.4 34.4
7.0	8.0	19.0	-	-	26.0	4.0	-	26.0	-	-
7.0	8.0	20.0	-	-	26.0	4.0	-	26.0	-	-
7.0 7.0	8.0 8.0	21.0 22.0	-	-	26.0 26.0	3.0 3.0	-	26.0 26.0	-	-
7.0	8.0	23.0	-	-	26.0	3.0	- -	26.0		
7.0	9.0	-	-	-	26.0	3.0	-	26.0	-	-
7.0	9.0	1.0	-	-	26.0 26.0	2.0 2.0	-	26.0	-	-
7.0 7.0	9.0 9.0	2.0 3.0	-	-	26.0	2.0	- -	26.0 26.0	-	-
7.0	9.0	4.0	-	-	26.0	2.0	-	26.0	-	-
7.0	9.0	5.0	-	-	26.0	1.0	- 20.4	26.0	-	-
7.0 7.0	9.0 9.0	6.0 7.0	106.0	31.0 161.0	26.0 27.0	1.0 1.0	29.4 182.1	24.7 31.6	25.0 145.5	19.5 137.4
7.0	9.0	8.0	125.0	264.0	27.0	1.0	316.8	37.3	251.5	240.7
7.0	9.0	9.0	18.0	265.0	27.0	1.0	265.1	36.3	213.4	203.6
7.0 7.0	9.0 9.0	10.0 11.0	11.0 100.0	243.0 479.0	28.0 28.0	1.0 1.0	241.6 560.4	36.2 46.8	194.7 427.9	185.4 411.7
7.0	9.0	12.0	398.0	434.0	29.0	1.0	817.6	57.5	589.3	567.1
7.0	9.0	13.0	503.0	393.0	29.0	1.0	863.0	60.1	612.8	589.7
7.0 7.0	9.0 9.0	14.0 15.0	460.0 664.0	342.0 179.0	29.0 29.0	1.0 1.0	725.4 635.9	56.2 52.7	525.7 465.5	506.0 448.0
7.0	9.0	16.0	589.0	151.0	29.0	1.0	438.3	46.0	323.3	310.5
7.0	9.0	17.0	444.0	116.0	28.0	1.0	226.7	36.8	161.6	153.1
7.0	9.0 9.0	18.0	73.0	57.0	28.0	1.0	51.4	29.2	41.4	35.5
7.0 7.0	9.0	19.0 20.0	-	-	27.0 27.0	2.0 2.0	- -	27.0 27.0		
7.0	9.0	21.0	-	-	27.0	3.0	-	27.0	-	-
7.0	9.0	22.0	-	-	27.0	3.0	-	27.0	-	-
7.0 7.0	9.0 10.0	23.0	-	-	27.0 27.0	3.0 3.0	- -	27.0 27.0	-	-
7.0	10.0	1.0	-	-	26.0	3.0	-	26.0	-	-
7.0	10.0	2.0	-	-	26.0	3.0	-	26.0	-	-
7.0 7.0	10.0 10.0	3.0 4.0			26.0 26.0	3.0 2.0	- -	26.0 26.0		
7.0	10.0	5.0	-	-	26.0	2.0	-	26.0	-	-
7.0	10.0	6.0	141.0	65.0	27.0	2.0	65.5	27.1	49.9	43.8
7.0 7.0	10.0 10.0	7.0 8.0	302.0 578.0	145.0 162.0	27.0 28.0	2.0 2.0	227.1 463.0	32.4 41.1	173.2 352.9	164.5 339.1
7.0	10.0	9.0	282.0	345.0	28.0	2.0	536.8	44.2	413.6	397.9
7.0	10.0	10.0	332.0	407.0	29.0	2.0	684.8	49.7	514.5	495.2
7.0 7.0	10.0 10.0	11.0 12.0	469.0 484.0	409.0 424.0	29.0 29.0	1.0 1.0	852.0 894.8	59.2 61.2	608.3 631.5	585.4 607.7
7.0	10.0	13.0	428.0	405.0	29.0	1.0	805.0	58.7	576.0	554.4
7.0	10.0	14.0	487.0	336.0	29.0	1.0	742.8	56.4	537.6	517.5 434.3
7.0 7.0	10.0 10.0	15.0 16.0	553.0 452.0	236.0 195.0	29.0 29.0	1.0 1.0	613.6 411.3	52.1 45.0	451.4 307.2	434.3 294.8
7.0	10.0	17.0	463.0	111.0	28.0	1.0	227.5	36.6	161.5	153.0
7.0	10.0	18.0	199.0	57.0	28.0	1.0	53.5	29.3	40.6	34.8
7.0 7.0	10.0 10.0	19.0 20.0	-		27.0 27.0	1.0 1.0	- -	27.0 27.0	-	
7.0	10.0	21.0	-	-	27.0	2.0	-	27.0	-	-
7.0	10.0	22.0	-	-	27.0	2.0	-	27.0	-	-
7.0 7.0	10.0 11.0	23.0	-		27.0 27.0	2.0 2.0		27.0 27.0		
7.0	11.0	1.0	-	- -	26.0	2.0	- -	26.0	-	
7.0	11.0	2.0	-	-	26.0	2.0	-	26.0	-	-
7.0 7.0	11.0 11.0	3.0 4.0	-		26.0 26.0	2.0 2.0	- -	26.0 26.0	- -	- -
7.0	11.0	5.0	-	-	26.0	2.0	- -	26.0	-	-

7.0	232.0 69.0 474.0 122.0 610.0 154.0 691.0 175.0 772.0 166.0 794.0 173.0 788.0 177.0 575.0 228.0 331.0 224.0 449.0 115.0 181.0 59.0	27.0 2.0 28.0 2.0 28.0 2.0 29.0 1.0 29.0 1.0 30.0 1.0 30.0 1.0 30.0 1.0 30.0 2.0 29.0 2.0 29.0 2.0 27.0 2.0 26.0 2.0 26.0 2.0 26.0 2.0 26.0 2.0 26.0 2.0 26.0 2.0 26.0 2.0 26.0 2.0 26.0 2.0 27.0 2.0 27.0 2.0 26.0 2.0 26.0 2.0 26.0 2.0 26.0 2.0 26.0 2.0 26.0 2.0 26.0 2.0	258.2 472.0 669.7 830.7 926.7 955.3 914.2 807.3 621.6 377.7 227.7 54.6	27.4 54 34.4 188 41.5 358 52.5 499 58.4 599 63.0 647 64.3 666 63.2 637 59.8 572 53.7 455 28.9 42 28.0 - 27.	.3 180.2 .6 344.7 .8 473.4 .4 572.1 .3 622.8 .6 637.4 .7 613.6 .9 551.4 .4 486.3 .4 277.5 .0 154.4 .0 36.1
7.0 12.0 7.0 7.0 12.0 8.0 7.0 12.0 9.0 7.0 12.0 11.0 7.0 12.0 11.0 7.0 12.0 12.0 7.0 12.0 13.0 7.0 12.0 15.0 7.0 12.0 15.0 7.0 12.0 15.0 7.0 12.0 16.0 7.0 12.0 18.0 7.0 12.0 19.0 7.0 12.0 20.0 7.0 12.0 20.0 7.0 12.0 20.0 7.0 12.0 20.0 7.0 12.0 20.0 7.0 12.0 20.0 7.0 12.0 20.0 7.0 12.0 20.0 7.0 12.0 20.0 7.0 13.0 - 7.0 13.0 1.0 7.0 13.0 2.0 7.0 13.0 3.0 7.0 13.0 5.0 7.0 13.0 5.0	474.0 121.0 603.0 155.0 673.0 182.0 758.0 172.0 774.0 185.0 781.0 186.0 433.0 405.0 94.0 418.0 271.0 104.0 246.0 439.0 117.0 183.0 58.0	27.0 2.0 28.0 2.0 29.0 2.0 29.0 1.0 29.0 1.0 30.0 1.0 30.0 2.0 29.0 2.0 29.0 2.0 29.0 2.0 27.0 2.0 27.0 2.0 27.0 2.0 27.0 2.0 27.0 2.0 27.0 2.0 26.0 2.0	469.2 663.8 824.9 920.0 948.2 810.8 482.9 573.1 284.0 227.1 53.9 - - - - - - - - - - - -	33.3 188 41.4 356 48.8 497 58.2 591 61.8 644 63.1 666 60.1 575 46.1 377 46.3 435 38.3 222 34.4 166 28.9 41 27.0 -	.7 342.8 .2 478.6 .0 568.7 .9 622.4 .0 636.9 .7 554.1 .0 355.7 .3 418.8 .1 214.1 .1 155.6 .3 35.5
7.0 13.0 7.0 7.0 13.0 8.0 7.0 13.0 9.0 7.0 13.0 10.0 7.0 13.0 11.0 7.0 13.0 12.0 7.0 13.0 12.0 7.0 13.0 14.0 7.0 13.0 15.0 7.0 13.0 15.0 7.0 13.0 15.0 7.0 13.0 16.0 7.0 13.0 16.0 7.0 13.0 19.0 7.0 13.0 20.0 7.0 13.0 22.0 7.0 13.0 22.0 7.0 13.0 22.0 7.0 13.0 23.0 7.0 14.0 1.0 7.0 14.0 1.0 7.0 14.0 5.0 7.0 14.0 7.0 7.0 14.0 7.0 7.0 14.0 8.0 7.0 14.0 9.0 7.0 14.0 9.0 7.0 14.0 10.0 7.0 14.0 9.0 7.0 14.0 10.0 7.0 14.0 10.0 7.0 14.0 10.0 7.0 14.0 9.0 7.0 14.0 10.0 7.0 14.0 10.0 7.0 14.0 10.0 7.0 14.0 10.0 7.0 14.0 10.0 7.0 14.0 10.0 7.0 14.0 10.0 7.0 14.0 10.0 7.0 14.0 10.0 7.0 14.0 10.0 7.0 14.0 10.0 7.0 14.0 11.0 7.0 14.0 13.0 7.0 14.0 13.0 7.0 14.0 13.0 7.0 14.0 13.0 7.0 14.0 13.0 7.0 14.0 13.0 7.0 14.0 13.0 7.0 14.0 13.0 7.0 14.0 13.0 7.0 14.0 13.0 7.0 14.0 13.0 7.0 14.0 13.0 7.0 14.0 13.0 7.0 14.0 13.0 7.0 14.0 13.0 7.0 14.0 13.0 7.0 14.0 13.0	502.0 112.0 630.0 143.0 700.0 143.0 143.0 7700.0 167.0 150.0 814.0 156.0 821.0 158.0 804.0 161.0 513.0 329.0 348.0 314.0 424.0 201.0 - 98.0 - 5.0	27.0 1.0 28.0 1.0 28.0 1.0 28.0 1.0 29.0 1.0 29.0 1.0 30.0 1.0 30.0 1.0 30.0 1.0 30.0 29.0 2.0 29.0 2.0 27.0 2.0 28.0 2.0 26.0 2.0 26.0 2.0 26.0 2.0 26.0 2.0 27.0 2.0 27.0 2.0 28.0 2.0 29.0 2.0 29.0 1.0 29.0 1.0 29.0 1.0	471.8 668.6 832.0 930.0 960.5 918.5 759.6 545.7 404.3 92.5 4.7	34.5 188 44.0 355 51.5 499 58.5 599 62.2 665 63.4 646 63.4 54 58.4 544 51.0 400 44.4 303 31.9 76 26.7 4 27.0 - 27.0 - 27.0 - 27.0 - 27.0 - 27.0 - 27.0 - 27.0 - 27.0 - 27.0 - 27.0 - 27.0 - 27.0 - 27.0 - 27.0 - 27.0 - 27.0 - 32.0 - 33.2 - 33.2 - 33.2 - 33.3 - 33.3 - 34.6 - 34.6 - 35.	.6 339.8 .6 475.1 .2 572.8 .7 627.9 .5 640.2 .2 616.0 .7 523.3 .8 389.4 .4 291.2 .1 69.5 .0 -

7.0	14.0	15.0	606.0	211.0	29.0	1.0	629.8	52.9	461.1	443.8
7.0	14.0	16.0	468.0	201.0	29.0	1.0	426.4	45.6	317.7	305.0
7.0 7.0	14.0 14.0	17.0 18.0	320.0 110.0	147.0 61.0	28.0 28.0	1.0 1.0	222.7 55.6	36.6 29.3	164.4 44.1	155.8 38.1
7.0	14.0	19.0	-	-	28.0	2.0	-	28.0	-	-
7.0 7.0	14.0 14.0	20.0 21.0	-		27.0 27.0	2.0 3.0		27.0 27.0	-	-
7.0	14.0	22.0	-	-	27.0	3.0	-	27.0	-	-
7.0 7.0	14.0 15.0	23.0	-		27.0 27.0	3.0 3.0		27.0 27.0	-	-
7.0	15.0	1.0	-	-	27.0	2.0	-	27.0	-	-
7.0 7.0	15.0 15.0	2.0 3.0	-	<u> </u>	26.0 26.0	2.0 2.0	<u> </u>	26.0 26.0	-	
7.0	15.0	4.0	-	-	26.0	2.0	-	26.0	-	-
7.0 7.0	15.0 15.0	5.0 6.0	- 161.0	- 72.0	26.0 26.0	2.0 2.0	- 71.8	26.0 26.3	- 54.9	48.8
7.0	15.0	7.0	226.0	152.0	27.0	1.0	210.1	32.8	162.2	153.7
7.0 7.0	15.0 15.0	8.0 9.0	484.0 451.0	193.0 284.0	27.0 28.0	1.0 2.0	441.5 602.7	41.7 46.0	336.8 459.2	323.5 441.9
7.0	15.0	10.0	465.0	350.0	28.0	2.0	748.6	50.7	559.1	538.1
7.0 7.0	15.0 15.0	11.0 12.0	459.0 439.0	411.0 432.0	29.0 29.0	2.0 1.0	846.8 861.6	55.0 60.2	618.8 611.6	595.5 588.6
7.0	15.0	13.0	516.0	387.0	29.0	1.0	873.2	60.6	618.2	594.9
7.0	15.0	14.0	491.0	336.0	28.0	2.0	749.0	51.8	556.0	535.2
7.0 7.0	15.0 15.0	15.0 16.0	487.0 246.0	262.0 239.0	28.0 28.0	2.0 1.0	595.6 350.8	47.0 41.9	450.6 269.4	433.6 258.1
7.0	15.0	17.0	88.0	144.0	27.0	1.0	157.7	32.8	125.1	117.4
7.0 7.0	15.0 15.0	18.0 19.0	42.0	55.0	27.0 27.0	1.0 1.0	50.3	27.6 27.0	41.4	35.5
7.0	15.0	20.0	-	-	27.0	1.0	-	27.0	-	-
7.0 7.0	15.0 15.0	21.0 22.0	-	-	27.0 27.0	1.0 2.0	-	27.0 27.0	-	-
7.0	15.0	23.0		-	26.0	1.0		26.0	-	
7.0	16.0	-	-	-	26.0	1.0	-	26.0	-	-
7.0 7.0	16.0 16.0	1.0 2.0	-		26.0 26.0	1.0 1.0		26.0 26.0	-	-
7.0	16.0	3.0	-	-	26.0	1.0	-	26.0	-	-
7.0 7.0	16.0 16.0	4.0 5.0	-		26.0 26.0	1.0 1.0		26.0 26.0	-	-
7.0	16.0	6.0	225.0	66.0	26.0	1.0	70.7	26.2	51.8	45.7
7.0 7.0	16.0 16.0	7.0 8.0	495.0 633.0	113.0 142.0	26.0 27.0	2.0 1.0	255.4 472.5	32.3 43.0	188.0 355.8	178.9 341.9
7.0	16.0	9.0	713.0	161.0	27.0	1.0	672.6	50.7	498.8	480.1
7.0	16.0	10.0 11.0	781.0 802.0	158.0	28.0 29.0	1.0 1.0	832.5 931.3	57.6 62.2	598.6 653.4	576.1 628.7
7.0 7.0	16.0 16.0	12.0	806.0	167.0 171.0	29.0	-	960.8	70.0	644.3	619.9
7.0	16.0	13.0	808.0	160.0	29.0	-	923.6	69.1	622.7	599.2
7.0 7.0	16.0 16.0	14.0 15.0	447.0 660.0	346.0 194.0	30.0 30.0	-	722.1 651.9	63.4 59.9	502.6 459.1	483.7 441.9
7.0	16.0	16.0	662.0	121.0	29.0	1.0	448.8	46.4	329.3	316.2
7.0 7.0	16.0 16.0	17.0 18.0	529.0 266.0	93.0 49.0	28.0 28.0	1.0 1.0	231.3 47.6	37.0 29.1	161.3 34.3	152.8 28.5
7.0	16.0	19.0	-	-	27.0	1.0	-	27.0	-	-
7.0 7.0	16.0 16.0	20.0 21.0	-	-	27.0 27.0	-	-	27.0 27.0	-	-
7.0	16.0	22.0		-	27.0			27.0	-	
7.0	16.0	23.0	-	-	27.0	-	-	27.0	-	-
7.0 7.0	17.0 17.0	1.0			27.0 27.0	1		27.0 27.0	-	
7.0	17.0	2.0	-	-	27.0	-	-	27.0	-	-
7.0 7.0	17.0 17.0	3.0 4.0	-	-	27.0 26.0	1.0	-	27.0 26.0	-	
7.0	17.0	5.0	-	-	26.0 27.0	1.0	ž.	26.0		-
7.0 7.0	17.0 17.0	6.0 7.0	164.0 588.0	60.0 88.0	27.0 27.0	1.0 1.0	61.9 260.9	27.0 34.6	46.4 186.2	40.4 177.1
7.0	17.0	8.0	702.0	112.0	28.0	2.0	479.5	41.7	362.2	348.2
7.0 7.0	17.0 17.0	9.0 10.0	767.0 783.0	129.0 155.0	28.0 28.0	2.0 1.0	679.8 831.8	48.3 57.6	510.0 598.1	490.9 575.6
7.0	17.0	11.0	454.0	409.0	28.0	1.0	841.3	58.6	602.6	579.9
7.0 7.0	17.0 17.0	12.0 13.0	154.0 481.0	506.0 400.0	28.0 28.0	1.0 2.0	650.1 854.1	52.8 53.8	480.8 627.9	462.7 604.2
7.0	17.0	14.0	428.0	353.0	28.0	2.0	713.3	50.7	532.7	512.7
7.0	17.0 17.0	15.0	621.0	210.0	28.0	2.0	640.9	48.2	481.3	463.2
7.0 7.0	17.0 17.0	16.0 17.0	386.0	210.0 83.0	28.0 27.0	3.0 3.0	393.6 78.6	39.2 28.9	304.0 65.6	291.7 59.3 33.0
7.0	17.0	18.0	81.0	52.0	26.0	2.0	47.8	25.9	38.8	
7.0 7.0	17.0 17.0	19.0 20.0	-	- -	26.0 26.0	2.0 2.0	-	26.0 26.0	-	-
7.0	17.0	21.0	-	-	26.0	2.0	-	26.0	-	-
7.0 7.0	17.0 17.0	22.0 23.0	-	-	26.0 26.0	2.0 2.0	-	26.0 26.0	-	-

7.0	18.0	_			26.0	2.0		26.0		
7.0	18.0	1.0		-	26.0	2.0	-	26.0	-	
7.0	18.0	2.0	-	-	26.0	3.0	-	26.0	-	-
7.0 7.0	18.0 18.0	3.0 4.0		Ī	25.0 25.0	3.0 3.0		25.0 25.0	-	
7.0	18.0	5.0	-	-	25.0	3.0	-	25.0	-	-
7.0	18.0	6.0	60.0	61.0	26.0	3.0	57.7	25.9	46.8	40.8
7.0 7.0	18.0 18.0	7.0 8.0	599.0 164.0	84.0 259.0	27.0 27.0	4.0 4.0	260.2 333.1	32.2 34.6	187.4 267.3	178.2 256.1
7.0	18.0	9.0	367.0	318.0	28.0	3.0	573.1	42.9	444.2	427.4
7.0	18.0	10.0	390.0	377.0	28.0	3.0	708.0	47.1	539.0	518.8
7.0 7.0	18.0 18.0	11.0 12.0	413.0 96.0	413.0 491.0	29.0 29.0	3.0 4.0	806.8 574.2	51.0 43.9	602.3 445.1	579.6 428.3
7.0	18.0	13.0	267.0	491.0	28.0	4.0	719.2	45.9 45.7	552.2	531.5
7.0	18.0	14.0	331.0	398.0	28.0	4.0	672.2	45.0	517.5	498.1
7.0	18.0	15.0	440.0	279.0	28.0	4.0	580.8	42.7	449.6	432.7
7.0 7.0	18.0 18.0	16.0 17.0	329.0	95.0 125.0	28.0 27.0	4.0 4.0	90.3 205.9	30.5 30.9	74.9 154.6	68.3 146.3
7.0	18.0	18.0	181.0	52.0	27.0	4.0	49.3	27.4	37.7	31.9
7.0	18.0	19.0	-	-	27.0	4.0	-	27.0	-	-
7.0 7.0	18.0 18.0	20.0 21.0	-	Ī	27.0 26.0	4.0 3.0	-	27.0 26.0	·	
7.0	18.0	22.0	_		26.0	3.0	-	26.0	-	_
7.0	18.0	23.0	-	-	26.0	3.0	-	26.0	-	-
7.0	19.0 19.0	1.0	-	-	26.0 26.0	3.0 2.0	-	26.0	-	-
7.0 7.0	19.0	2.0	-	-	26.0	2.0		26.0 26.0	-	
7.0	19.0	3.0	-	-	26.0	2.0	-	26.0	-	-
7.0	19.0	4.0	-	-	25.0	2.0	-	25.0	•	-
7.0 7.0	19.0 19.0	5.0 6.0	347.0	52.0	25.0 26.0	2.0 2.0	64.3	25.0 26.1	42.3	36.4
7.0	19.0	7.0	631.0	77.0	27.0	2.0	263.0	33.5	187.0	177.9
7.0	19.0	8.0	749.0	95.0	28.0	2.0	488.4	42.0	367.8	353.6
7.0 7.0	19.0 19.0	9.0 10.0	811.0 837.0	108.0 124.0	28.0 29.0	2.0 2.0	689.8 845.3	48.7 54.7	516.4 617.5	497.1 594.2
7.0	19.0	11.0	852.0	134.0	30.0	2.0	943.1	58.9	674.4	648.7
7.0	19.0	12.0	852.0	141.0	30.0	2.0	972.4	60.0	691.1	664.6
7.0	19.0	13.0	443.0	404.0	30.0	1.0	823.5	60.6	583.2	561.3
7.0 7.0	19.0 19.0	14.0 15.0	417.0 462.0	358.0 269.0	30.0 30.0	1.0 1.0	710.0 586.9	56.5 52.1	513.9 432.5	494.6 416.1
7.0	19.0	16.0	399.0	207.0	30.0	1.0	399.5	45.4	298.8	286.6
7.0	19.0	17.0	501.0	96.0	29.0	1.0	227.1	37.6	158.8	150.4
7.0 7.0	19.0 19.0	18.0 19.0	125.0	53.0	28.0 27.0	1.0 1.0	48.4	29.1 27.0	37.8	32.0
7.0	19.0	20.0	_		27.0	1.0	-	27.0	-	
7.0	19.0	21.0	-	-	27.0	1.0	-	27.0	-	-
7.0 7.0	19.0 19.0	22.0 23.0	-	-	26.0 26.0	1.0 1.0	-	26.0 26.0	-	-
7.0	20.0	-	_	- -	26.0	1.0	-	26.0	-	
7.0	20.0	1.0	-	-	26.0	1.0	-	26.0	-	-
7.0	20.0	2.0	-	-	26.0	1.0	-	26.0	-	-
7.0 7.0	20.0 20.0	3.0 4.0	-	- -	26.0 26.0	1.0 1.0		26.0 26.0	-	-
7.0	20.0	5.0	-	-	26.0		-	26.0	-	-
7.0	20.0	6.0	309.0	55.0	28.0	-	64.4	27.7	43.5	37.5
7.0 7.0	20.0 20.0	7.0 8.0	606.0 726.0	83.0 104.0	29.0 30.0	-	261.2 485.4	39.1 50.7	181.5 349.6	172.5 335.9
7.0	20.0	9.0	790.0	120.0	30.0	-	688.2	59.5	485.9	467.7
7.0	20.0	10.0	833.0	126.0	31.0	-	844.4	66.8	576.0	554.4
7.0 7.0	20.0 20.0	11.0 12.0	422.0 851.0	411.0 138.0	31.0 31.0		814.6 969.4	66.8 71.5	556.7 644.6	535.9 620.2
7.0	20.0	13.0	796.0	168.0	32.0	1.0	923.3	65.4	636.1	612.0
7.0	20.0	14.0	753.0	171.0	31.0	1.0	812.1	61.0	572.7	551.2
7.0 7.0	20.0 20.0	15.0 16.0	696.0 629.0	162.0 134.0	31.0 30.0	1.0 1.0	648.0 446.5	55.5 47.3	467.5 326.9	449.9 313.9
7.0	20.0	17.0	474.0	106.0	30.0	2.0	228.1	37.2	161.2	152.7
7.0	20.0	18.0	207.0	53.0	29.0	2.0	49.3	29.8	36.8	152.7 31.0
7.0	20.0	19.0	-	-	28.0	2.0	-	28.0	-	-
7.0 7.0	20.0 20.0	20.0 21.0	-	- -	28.0 28.0	2.0 2.0		28.0 28.0	-	
7.0	20.0	22.0	-	-	28.0	2.0	-	28.0	-	-
7.0	20.0	23.0	-	-	28.0	2.0	-	28.0	-	-
7.0 7.0	21.0 21.0	1.0	-	-	27.0 27.0	2.0 2.0	-	27.0 27.0	-	-
7.0	21.0	2.0	-	-	27.0	1.0	-	27.0	-	-
7.0	21.0	3.0	-	-	27.0	1.0	-	27.0	-	-
7.0 7.0	21.0 21.0	4.0 5.0	-	-	27.0 27.0	1.0 1.0	-	27.0 27.0	-	-
7.0	21.0	6.0	298.0	- 55.0	28.0	1.0	63.7	28.1	43.2	37.3
7.0	21.0	7.0	591.0	85.0	28.0	1.0	258.5	35.5	183.2	174.2
7.0	21.0	8.0	715.0	105.0	29.0	1.0	480.7	45.3	356.4	342.6

7.0	21.0	9.0	782.0	120.0	29.0	1.0	682.9	52.9	499.8	481.1
7.0	21.0	10.0	794.0	148.0	30.0	1.0	836.5	59.6	594.6	572.3
7.0	21.0	11.0	815.0	154.0	30.0	1.0	928.4	63.1	648.3	623.7
7.0	21.0	12.0	822.0	155.0	30.0	2.0	957.9	59.6	682.4	656.4
7.0	21.0	13.0	771.0	184.0	30.0	2.0	916.2	58.6	656.2	631.3
7.0	21.0	14.0	753.0	170.0	30.0	2.0	811.9	55.6	590.0	567.8
7.0	21.0	15.0	713.0	152.0	29.0	2.0	650.5	49.8	483.8	465.6
7.0	21.0	16.0	665.0	119.0	29.0	2.0	450.3	43.5	335.5	322.3
7.0	21.0	17.0	534.0	91.0	29.0	2.0	231.6	36.3	161.9	153.4
7.0	21.0	18.0	270.0	47.0	28.0	2.0	46.0	28.7	33.0	27.3
7.0	21.0	19.0	-	-	28.0	2.0	-	28.0	-	-
7.0	21.0	20.0	-	-	28.0	2.0	-	28.0	-	-
7.0	21.0	21.0	-	-	28.0	2.0	-	28.0	-	-
7.0	21.0	22.0	-	-	28.0	2.0	-	28.0	-	-
7.0	21.0	23.0	-	-	27.0	2.0	-	27.0	-	-
7.0	22.0	-	-	-	27.0	2.0	-	27.0	-	-
7.0	22.0	1.0	-	-	27.0	2.0	-	27.0	-	-
7.0	22.0	2.0	-	-	27.0	2.0	-	27.0		-
7.0	22.0	3.0	-	-	27.0	2.0	-	27.0	-	-
7.0	22.0	4.0	-	-	27.0	2.0	-	27.0		-
7.0	22.0	5.0	-	-	27.0	1.0	-	27.0		-
7.0	22.0	6.0	371.0	47.0	27.0	1.0	61.3	26.9	38.9	33.1
7.0	22.0	7.0	620.0	77.0	28.0	2.0	259.5	34.4	183.8	174.8
7.0	22.0	8.0	740.0	95.0	29.0	2.0	484.1	42.9	363.0	349.0
7.0	22.0	9.0	805.0	108.0	29.0	2.0	686.5	49.5	511.7	492.5
7.0	22.0	10.0	856.0	108.0	29.0	2.0	847.7	54.8	619.0	595.7
7.0	22.0	11.0	872.0	115.0	29.0	2.0	946.0	58.0	679.7	653.8
7.0	22.0	12.0	872.0	120.0	30.0	2.0	974.4	60.1	692.2	665.8
7.0	22.0	13.0	810.0	157.0	30.0	2.0	927.3	58.9	662.8	637.6
7.0	22.0	14.0	782.0	153.0	30.0	2.0	820.4	55.9	595.3	572.9
7.0	22.0	15.0	735.0	141.0	29.0	2.0	655.3	50.0	486.9	468.6
7.0	22.0	16.0	702.0	105.0	29.0	2.0	455.4	43.7	338.4	325.1
7.0	22.0	17.0	573.0	82.0	28.0	2.0	233.7	35.3	162.6	154.1
7.0	22.0	18.0	297.0	44.0	28.0	1.0	44.3	29.0	31.0	25.3
7.0	22.0	19.0	-	-	28.0	1.0	-	28.0	-	-
7.0	22.0	20.0	-	-	27.0	1.0	-	27.0	-	-
7.0	22.0	21.0	-	-	27.0	1.0	-	27.0	-	-
7.0	22.0	22.0	-	-	27.0	2.0	-	27.0	-	-
7.0	22.0	23.0	-	-	27.0	2.0	-	27.0	-	-
7.0	23.0	-	-	-	27.0	2.0	-	27.0	-	-
7.0	23.0	1.0	-	-	27.0	2.0	-	27.0	-	-
7.0	23.0	2.0	-	-	27.0	2.0	-	27.0	-	-
7.0	23.0	3.0	-	-	27.0	3.0	-	27.0	-	-
7.0	23.0	4.0	-	-	27.0	3.0	-	27.0	-	-
7.0	23.0	5.0	-	-	27.0	3.0	-	27.0	-	-
7.0	23.0	6.0	291.0	54.0	28.0	3.0	62.2	28.1	42.3	36.4
7.0	23.0	7.0	253.0	144.0	28.0	3.0	210.9	32.4	162.0	153.5
7.0	23.0	8.0	37.0	228.0	29.0	3.0	236.4	34.6	191.3	182.1
7.0	23.0	9.0	20.0	271.0	30.0	2.0	272.7	37.6	218.2	208.3
7.0	23.0	10.0	521.0	332.0	30.0	2.0	783.4	52.4	579.8	558.1
7.0	23.0	11.0	809.0	159.0	30.0	2.0	935.0	58.4	670.2	644.7
7.0	23.0	12.0	810.0	165.0	30.0	2.0	964.5	59.8	686.4	660.2
7.0	23.0	13.0	803.0	162.0	30.0	2.0	926.4	58.9	662.5	637.3
7.0	23.0	14.0	773.0	158.0	30.0	2.0	818.4	55.8	594.1	571.7
7.0	23.0	15.0	721.0	148.0	30.0	2.0	653.2	50.9	483.0	464.9
7.0	23.0	16.0	324.0	222.0	30.0	2.0	375.6	42.3	286.5	274.7
7.0	23.0	17.0	69.0	139.0	29.0	2.0	148.4	33.5	118.0	110.5
7.0	23.0	18.0	100.0	50.0	28.0	2.0	46.6	28.3	37.0	31.2
7.0	23.0	19.0	-	-	28.0	2.0	-	28.0	-	-
7.0	23.0	20.0	-	-	28.0	3.0	-	28.0	-	-
7.0	23.0	21.0	-	-	28.0	3.0	-	28.0	-	-
7.0	23.0	22.0	-	-	28.0	3.0	-	28.0	-	-
7.0	23.0	23.0	-	-	27.0	3.0	-	27.0	-	-
7.0	24.0	-	-	-	27.0	3.0	-	27.0	-	-
7.0	24.0	1.0	-	-	27.0	3.0	-	27.0	-	-
7.0	24.0	2.0	-	-	27.0	3.0	-	27.0	-	-
7.0	24.0	3.0	-	-	27.0	3.0	-	27.0	-	-
7.0	24.0	4.0	-	-	27.0	2.0	-	27.0	-	-
7.0	24.0	5.0	-	-	27.0	2.0	-	27.0	-	-
7.0	24.0	6.0	295.0	54.0	28.0	2.0	62.3	28.1	42.3	36.4
7.0	24.0	7.0	572.0	90.0	29.0	3.0	257.6	34.7	184.1	175.0
7.0	24.0	8.0	701.0	113.0	29.0	3.0	481.0	41.2	364.4	350.2
7.0	24.0	9.0	778.0	125.0	29.0	2.0	686.3	49.5	511.8	492.6
7.0	24.0	10.0	831.0	128.0	30.0	2.0	847.0	55.7	615.4	592.1 651.4
7.0	24.0	11.0	857.0 861.0	130.0	30.0	2.0	947.8	59.0	677.2	001.4
7.0	24.0	12.0	861.0	133.0	30.0	2.0	977.8	60.2	694.3	667.7
7.0	24.0	13.0	861.0	126.0	30.0	3.0	941.6	56.2 53.4	683.4	657.3
7.0	24.0	14.0	831.0	126.0 131.0	30.0	3.0	833.4 667.0	53.4	612.9	589.8 480.1
7.0	24.0	15.0	780.0	121.0	30.0 29.0	3.0 3.0	667.9	48.9	498.8 343.1	480.1 329.6
7.0 7.0	24.0 24.0	16.0 17.0	697.0 559.0	109.0 86.0	28.0	3.0	457.4 233.9	42.0 34.4	164.2	329.6 155.6
7.0	24.0	17.0	558.0	OO.U	20.0	3.0	233.8	34.4	104.2	100.0

7.0	24.0	18.0	274.0	46.0	28.0	3.0	45.1	28.5	32.4	26.7
		19.0		10.0	28.0		-			-
7.0	24.0		-	-		3.0	-	28.0	-	-
7.0	24.0	20.0	-	-	28.0	3.0	-	28.0	-	-
7.0	24.0	21.0	_	-	27.0	3.0	-	27.0	_	_
7.0		22.0			27.0	3.0		27.0		
	24.0		-	-					-	•
7.0	24.0	23.0	-	-	27.0	3.0	-	27.0	-	-
7.0	25.0	_	_	-	27.0	2.0	_	27.0	_	_
7.0	25.0	1.0			27.0	2.0		27.0		
			-				-		-	-
7.0	25.0	2.0	-	-	27.0	2.0	-	27.0	-	-
7.0	25.0	3.0			27.0	2.0	_	27.0	_	_
7.0	25.0	4.0	•	-	27.0	2.0	-	27.0	-	-
7.0	25.0	5.0	-	-	27.0	2.0	-	27.0	-	-
7.0	25.0	6.0	330.0	50.0	27.0	2.0	60.7	27.0	40.1	34.2
7.0	25.0	7.0	4.0	126.0	28.0	2.0	119.8	30.1	99.3	92.2
7.0	25.0	8.0	15.0	200.0	29.0	2.0	197.5	33.8	160.8	152.3
7.0	25.0	9.0	362.0	317.0	29.0	1.0	570.8	47.9	431.2	414.9
7.0	25.0	10.0	285.0	417.0	30.0	1.0	659.7	53.6	485.2	467.0
7.0	25.0	11.0	487.0	401.0	30.0	1.0	870.2	60.5	616.6	593.3
7.0	25.0	12.0	454.0	429.0	30.0	1.0	880.3	61.8	619.3	595.9
7.0	25.0	13.0	498.0	393.0	31.0	1.0	869.0	62.5	609.0	586.0
7.0	25.0	14.0	791.0	150.0	31.0	1.0	827.1	61.2	582.7	560.8
7.0	25.0	15.0	742.0	140.0	30.0	1.0	660.7	55.0	477.8	459.8
7.0	25.0	16.0	405.0	203.0	30.0	2.0	400.4	43.1	303.0	290.8
7.0	25.0	17.0	-	106.0	29.0	2.0	99.9	32.1	82.1	75.4
7.0	25.0	18.0	_	38.0	28.0	3.0	35.6	27.7	29.9	24.3
7.0	25.0	19.0	-		28.0	3.0		28.0	-	-
7.0	25.0	20.0	-		28.0	4.0		28.0	-	_
7.0	25.0	21.0			28.0	4.0		28.0	_	
			-	•			· ·			-
7.0	25.0	22.0	-	-	28.0	3.0	-	28.0	-	-
7.0	25.0	23.0	_	-	27.0	3.0	_	27.0	_	_
7.0	26.0				27.0	3.0		27.0		
		-	-	-					-	-
7.0	26.0	1.0	-	-	27.0	3.0	-	27.0	-	-
7.0	26.0	2.0			27.0	3.0	_	27.0	_	_
7.0	26.0				27.0	3.0		27.0		
		3.0	-	-					-	-
7.0	26.0	4.0	-	-	27.0	3.0	-	27.0	-	-
7.0	26.0	5.0	_		27.0	2.0		27.0	_	
			225.0	50.0			CO F		45.4	20.0
7.0	26.0	6.0	225.0	59.0	27.0	2.0	62.5	27.1	45.1	39.2
7.0	26.0	7.0	525.0	100.0	28.0	3.0	253.2	33.5	183.6	174.6
7.0	26.0	8.0	665.0	125.0	28.0	3.0	474.4	40.1	362.1	348.1
7.0	26.0	9.0	132.0	354.0	29.0	3.0	438.9	40.9	344.7	331.2
7.0	26.0	10.0	241.0	428.0	29.0	3.0	632.9	45.8	485.5	467.3
7.0	26.0	11.0	29.0	382.0	30.0	3.0	400.8	41.4	314.7	302.1
7.0	26.0	12.0	12.0	245.0	30.0	3.0	247.1	36.6	198.8	189.4
7.0	26.0	13.0	136.0	482.0	30.0	3.0	605.6	45.5	465.7	448.1
7.0	26.0		11.0	239.0	30.0	3.0	237.9	37.0	191.0	181.8
		14.0								
7.0	26.0	15.0	705.0	158.0	29.0	3.0	653.4	45.7	496.8	478.2
7.0	26.0	16.0	73.0	235.0	29.0	2.0	259.9	38.0	206.0	196.4
7.0		17.0	15.0		28.0	2.0		31.1	98.9	91.8
	26.0			124.0			120.5			
7.0	26.0	18.0	-	32.0	28.0	2.0	30.4	27.7	25.5	19.9
7.0	26.0	19.0	_	-	28.0	2.0	_	28.0	-	-
7.0	26.0	20.0			27.0	2.0		27.0		
			-	-					-	-
7.0	26.0	21.0	-	-	27.0	3.0	-	27.0	-	-
7.0	26.0	22.0	-	_	27.0	3.0	_	27.0	_	-
7.0	26.0	23.0			27.0	3.0		27.0		
			-						=	-
7.0	27.0	-	-		27.0	3.0		27.0	-	-
7.0	27.0	1.0	-	_	27.0	3.0	_	27.0	-	_
7.0	27.0	2.0	_	_	27.0	3.0	_	27.0	_	_
			-	-					•	-
7.0	27.0	3.0	-	-	27.0	3.0	-	27.0	-	-
7.0	27.0	4.0	-	-	27.0	3.0	-	27.0	-	-
7.0	27.0	5.0	_	_	27.0	3.0	_	27.0	_	_
							18.0	25.8	15.2	9.9
7 0		6.0	_	10 0	27 N			20.0		
7.0	27.0	6.0	-	19.0	27.0	3.0				
7.0 7.0		6.0 7.0	39.0	19.0 142.0	27.0 28.0	3.0 3.0	144.9	30.4	118.3	110.9
7.0	27.0 27.0	7.0		142.0	28.0	3.0	144.9	30.4		
7.0 7.0	27.0 27.0 27.0	7.0 8.0	544.0	142.0 167.0	28.0 28.0	3.0 3.0	144.9 450.2	30.4 39.1	347.1	333.5
7.0 7.0 7.0	27.0 27.0 27.0 27.0	7.0 8.0 9.0	544.0 115.0	142.0 167.0 351.0	28.0 28.0 29.0	3.0 3.0 3.0	144.9 450.2 424.1	30.4 39.1 40.4	347.1 334.0	333.5 320.8
7.0 7.0 7.0 7.0	27.0 27.0 27.0 27.0 27.0	7.0 8.0	544.0 115.0 83.0	142.0 167.0 351.0 417.0	28.0 28.0 29.0 29.0	3.0 3.0 3.0 4.0	144.9 450.2 424.1 477.4	30.4 39.1 40.4 40.5	347.1 334.0 376.4	333.5 320.8
7.0 7.0 7.0 7.0	27.0 27.0 27.0 27.0 27.0	7.0 8.0 9.0 10.0	544.0 115.0 83.0	142.0 167.0 351.0 417.0	28.0 28.0 29.0 29.0	3.0 3.0 3.0 4.0	144.9 450.2 424.1 477.4	30.4 39.1 40.4 40.5	347.1 334.0 376.4	333.5 320.8
7.0 7.0 7.0 7.0 7.0	27.0 27.0 27.0 27.0 27.0 27.0	7.0 8.0 9.0 10.0 11.0	544.0 115.0 83.0 168.0	142.0 167.0 351.0 417.0 488.0	28.0 28.0 29.0 29.0 29.0	3.0 3.0 3.0 4.0 3.0	144.9 450.2 424.1 477.4 643.8	30.4 39.1 40.4 40.5 46.2	347.1 334.0 376.4 493.2	333.5 320.8
7.0 7.0 7.0 7.0 7.0 7.0	27.0 27.0 27.0 27.0 27.0 27.0 27.0	7.0 8.0 9.0 10.0 11.0 12.0	544.0 115.0 83.0 168.0 76.0	142.0 167.0 351.0 417.0 488.0 476.0	28.0 28.0 29.0 29.0 29.0 30.0	3.0 3.0 3.0 4.0 3.0 3.0	144.9 450.2 424.1 477.4 643.8 542.1	30.4 39.1 40.4 40.5 46.2 45.1	347.1 334.0 376.4 493.2 417.7	333.5 320.8 361.8 474.7 401.8
7.0 7.0 7.0 7.0 7.0 7.0 7.0	27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0	7.0 8.0 9.0 10.0 11.0 12.0 13.0	544.0 115.0 83.0 168.0 76.0 110.0	142.0 167.0 351.0 417.0 488.0 476.0	28.0 28.0 29.0 29.0 29.0 30.0 30.0	3.0 3.0 3.0 4.0 3.0 3.0 3.0	144.9 450.2 424.1 477.4 643.8 542.1 569.3	30.4 39.1 40.4 40.5 46.2 45.1 45.5	347.1 334.0 376.4 493.2 417.7 437.7	333.5 320.8 361.8 474.7 401.8 421.2
7.0 7.0 7.0 7.0 7.0 7.0 7.0	27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0	7.0 8.0 9.0 10.0 11.0 12.0 13.0	544.0 115.0 83.0 168.0 76.0 110.0	142.0 167.0 351.0 417.0 488.0 476.0	28.0 28.0 29.0 29.0 29.0 30.0 30.0	3.0 3.0 3.0 4.0 3.0 3.0 3.0	144.9 450.2 424.1 477.4 643.8 542.1 569.3	30.4 39.1 40.4 40.5 46.2 45.1 45.5	347.1 334.0 376.4 493.2 417.7 437.7	333.5 320.8 361.8 474.7 401.8 421.2
7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0	7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0	544.0 115.0 83.0 168.0 76.0 110.0 322.0	142.0 167.0 351.0 417.0 488.0 476.0 475.0 399.0	28.0 28.0 29.0 29.0 29.0 30.0 30.0 30.0	3.0 3.0 3.0 4.0 3.0 3.0 3.0	144.9 450.2 424.1 477.4 643.8 542.1 569.3 670.0	30.4 39.1 40.4 40.5 46.2 45.1 45.5 48.1	347.1 334.0 376.4 493.2 417.7 437.7 507.5	333.5 320.8 361.8 474.7 401.8 421.2 488.5
7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0	7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0	544.0 115.0 83.0 168.0 76.0 110.0 322.0 61.0	142.0 167.0 351.0 417.0 488.0 476.0 475.0 399.0 319.0	28.0 28.0 29.0 29.0 30.0 30.0 30.0 29.0	3.0 3.0 3.0 4.0 3.0 3.0 3.0 3.0	144.9 450.2 424.1 477.4 643.8 542.1 569.3 670.0 349.7	30.4 39.1 40.4 40.5 46.2 45.1 45.5 48.1 40.7	347.1 334.0 376.4 493.2 417.7 437.7 507.5 275.2	333.5 320.8 361.8 474.7 401.8 421.2 488.5 263.7
7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0	7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0	544.0 115.0 83.0 168.0 76.0 110.0 322.0	142.0 167.0 351.0 417.0 488.0 476.0 475.0 399.0	28.0 28.0 29.0 29.0 29.0 30.0 30.0 30.0	3.0 3.0 3.0 4.0 3.0 3.0 3.0	144.9 450.2 424.1 477.4 643.8 542.1 569.3 670.0	30.4 39.1 40.4 40.5 46.2 45.1 45.5 48.1	347.1 334.0 376.4 493.2 417.7 437.7 507.5	333.5 320.8 361.8 474.7 401.8 421.2 488.5 263.7 220.6
7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0	7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0	544.0 115.0 83.0 168.0 76.0 110.0 322.0 61.0 120.0	142.0 167.0 351.0 417.0 488.0 476.0 475.0 399.0 319.0 242.0	28.0 29.0 29.0 29.0 30.0 30.0 30.0 29.0	3.0 3.0 3.0 4.0 3.0 3.0 3.0 2.0	144.9 450.2 424.1 477.4 643.8 542.1 569.3 670.0 349.7 291.7	30.4 39.1 40.4 40.5 46.2 45.1 45.5 48.1 40.7 37.6	347.1 334.0 376.4 493.2 417.7 437.7 507.5 275.2 230.8	333.5 320.8 361.8 474.7 401.8 421.2 488.5 263.7 220.6
7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0	7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0	544.0 115.0 83.0 168.0 76.0 110.0 322.0 61.0 120.0 48.0	142.0 167.0 351.0 417.0 488.0 476.0 475.0 399.0 319.0 242.0 134.0	28.0 28.0 29.0 29.0 29.0 30.0 30.0 30.0 29.0 29.0 28.0	3.0 3.0 3.0 4.0 3.0 3.0 3.0 2.0 2.0	144.9 450.2 424.1 477.4 643.8 542.1 569.3 670.0 349.7 291.7 138.3	30.4 39.1 40.4 40.5 46.2 45.1 45.5 48.1 40.7 37.6 32.8	347.1 334.0 376.4 493.2 417.7 437.7 507.5 275.2 230.8 111.1	333.5 320.8 361.8 474.7 401.8 421.2 488.5 263.7 220.6 103.8
7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0	7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0	544.0 115.0 83.0 168.0 76.0 110.0 322.0 61.0 120.0	142.0 167.0 351.0 417.0 488.0 476.0 475.0 399.0 319.0 242.0 134.0 3.0	28.0 28.0 29.0 29.0 29.0 30.0 30.0 30.0 29.0 28.0 28.0	3.0 3.0 3.0 4.0 3.0 3.0 3.0 2.0 2.0 1.0	144.9 450.2 424.1 477.4 643.8 542.1 569.3 670.0 349.7 291.7 138.3 2.8	30.4 39.1 40.4 40.5 46.2 45.1 45.5 48.1 40.7 37.6 32.8 26.8	347.1 334.0 376.4 493.2 417.7 437.7 507.5 275.2 230.8 111.1 2.4	333.5 320.8 361.8 474.7 401.8 421.2 488.5 263.7 220.6
7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0	7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0	544.0 115.0 83.0 168.0 76.0 110.0 322.0 61.0 120.0 48.0	142.0 167.0 351.0 417.0 488.0 476.0 475.0 399.0 319.0 242.0 134.0	28.0 29.0 29.0 29.0 30.0 30.0 30.0 29.0 28.0 28.0 28.0	3.0 3.0 3.0 4.0 3.0 3.0 3.0 2.0 2.0	144.9 450.2 424.1 477.4 643.8 542.1 569.3 670.0 349.7 291.7 138.3	30.4 39.1 40.4 40.5 46.2 45.1 45.5 48.1 40.7 37.6 32.8	347.1 334.0 376.4 493.2 417.7 437.7 507.5 275.2 230.8 111.1	333.5 320.8 361.8 474.7 401.8 421.2 488.5 263.7 220.6 103.8
7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0	7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0	544.0 115.0 83.0 168.0 76.0 110.0 322.0 61.0 120.0 48.0	142.0 167.0 351.0 417.0 488.0 476.0 475.0 399.0 319.0 242.0 134.0 3.0	28.0 29.0 29.0 29.0 30.0 30.0 30.0 29.0 28.0 28.0 28.0	3.0 3.0 3.0 4.0 3.0 3.0 3.0 2.0 2.0 1.0 1.0	144.9 450.2 424.1 477.4 643.8 542.1 569.3 670.0 349.7 291.7 138.3 2.8	30.4 39.1 40.4 40.5 46.2 45.1 45.5 48.1 40.7 37.6 32.8 26.8 28.0	347.1 334.0 376.4 493.2 417.7 437.7 507.5 275.2 230.8 111.1 2.4	333.5 320.8 361.8 474.7 401.8 421.2 488.5 263.7 220.6 103.8
7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0	7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0	544.0 115.0 83.0 168.0 76.0 110.0 322.0 61.0 120.0 48.0	142.0 167.0 351.0 417.0 488.0 476.0 475.0 399.0 319.0 242.0 134.0 3.0	28.0 28.0 29.0 29.0 29.0 30.0 30.0 29.0 29.0 28.0 28.0 28.0 28.0	3.0 3.0 3.0 4.0 3.0 3.0 3.0 2.0 2.0 1.0 1.0 2.0 2.0	144.9 450.2 424.1 477.4 643.8 542.1 569.3 670.0 349.7 291.7 138.3 2.8	30.4 39.1 40.4 40.5 46.2 45.1 45.5 48.1 40.7 37.6 32.8 26.8 28.0 28.0	347.1 334.0 376.4 493.2 417.7 437.7 507.5 275.2 230.8 111.1 2.4	333.5 320.8 361.8 474.7 401.8 421.2 488.5 263.7 220.6 103.8
7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0	7.0 8.0 9.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0	544.0 115.0 83.0 168.0 76.0 110.0 322.0 61.0 120.0 48.0	142.0 167.0 351.0 417.0 488.0 476.0 475.0 399.0 319.0 242.0 134.0 3.0	28.0 28.0 29.0 29.0 29.0 30.0 30.0 30.0 29.0 28.0 28.0 28.0 28.0 27.0	3.0 3.0 3.0 4.0 3.0 3.0 3.0 2.0 2.0 1.0 1.0 2.0 2.0 3.0	144.9 450.2 424.1 477.4 643.8 542.1 569.3 670.0 349.7 291.7 138.3 2.8	30.4 39.1 40.4 40.5 46.2 45.1 45.5 48.1 40.7 37.6 32.8 26.8 28.0 27.0	347.1 334.0 376.4 493.2 417.7 437.7 507.5 275.2 230.8 111.1 2.4	333.5 320.8 361.8 474.7 401.8 421.2 488.5 263.7 220.6 103.8
7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0	7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 17.0 18.0 19.0 20.0 21.0	544.0 115.0 83.0 168.0 76.0 110.0 322.0 61.0 120.0 48.0	142.0 167.0 351.0 417.0 488.0 476.0 475.0 399.0 319.0 242.0 134.0 3.0	28.0 29.0 29.0 29.0 30.0 30.0 30.0 29.0 28.0 28.0 28.0 28.0 27.0 27.0	3.0 3.0 3.0 4.0 3.0 3.0 3.0 2.0 2.0 1.0 1.0 2.0 2.0 3.0	144.9 450.2 424.1 477.4 643.8 542.1 569.3 670.0 349.7 291.7 138.3 2.8	30.4 39.1 40.4 40.5 46.2 45.1 45.5 48.1 40.7 37.6 32.8 28.0 28.0 27.0 27.0	347.1 334.0 376.4 493.2 417.7 437.7 507.5 275.2 230.8 111.1 2.4	333.5 320.8 361.8 474.7 401.8 421.2 488.5 263.7 220.6 103.8
7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0	7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 17.0 18.0 19.0 20.0 21.0	544.0 115.0 83.0 168.0 76.0 110.0 322.0 61.0 120.0 48.0	142.0 167.0 351.0 417.0 488.0 476.0 475.0 399.0 319.0 242.0 134.0 3.0	28.0 29.0 29.0 29.0 30.0 30.0 30.0 29.0 28.0 28.0 28.0 28.0 27.0 27.0	3.0 3.0 3.0 4.0 3.0 3.0 3.0 2.0 2.0 1.0 1.0 2.0 2.0 3.0	144.9 450.2 424.1 477.4 643.8 542.1 569.3 670.0 349.7 291.7 138.3 2.8	30.4 39.1 40.4 40.5 46.2 45.1 45.5 48.1 40.7 37.6 32.8 28.0 28.0 27.0 27.0	347.1 334.0 376.4 493.2 417.7 437.7 507.5 275.2 230.8 111.1 2.4	333.5 320.8 361.8 474.7 401.8 421.2 488.5 263.7 220.6 103.8
7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0	7.0 8.0 9.0 10.0 11.0 12.0 13.0 15.0 16.0 17.0 20.0 21.0 22.0 23.0	544.0 115.0 83.0 168.0 76.0 110.0 322.0 61.0 120.0 48.0	142.0 167.0 351.0 417.0 488.0 476.0 475.0 399.0 319.0 242.0 134.0 3.0	28.0 29.0 29.0 29.0 30.0 30.0 30.0 29.0 28.0 28.0 28.0 27.0 27.0	3.0 3.0 3.0 4.0 3.0 3.0 3.0 2.0 2.0 1.0 1.0 2.0 2.0 3.0 3.0	144.9 450.2 424.1 477.4 643.8 542.1 569.3 670.0 349.7 291.7 138.3 2.8	30.4 39.1 40.4 40.5 46.2 45.1 45.5 48.1 40.7 37.6 32.8 26.8 28.0 27.0 27.0 27.0	347.1 334.0 376.4 493.2 417.7 437.7 507.5 275.2 230.8 111.1 2.4	333.5 320.8 361.8 474.7 401.8 421.2 488.5 263.7 220.6 103.8
7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0	7.0 8.0 9.0 10.0 11.0 12.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0	544.0 115.0 83.0 168.0 76.0 110.0 322.0 61.0 120.0 48.0	142.0 167.0 351.0 417.0 488.0 476.0 475.0 399.0 319.0 242.0 134.0 3.0	28.0 28.0 29.0 29.0 29.0 30.0 30.0 30.0 29.0 28.0 28.0 28.0 28.0 27.0 27.0	3.0 3.0 3.0 4.0 3.0 3.0 3.0 2.0 2.0 1.0 1.0 2.0 2.0 3.0 3.0 3.0	144.9 450.2 424.1 477.4 643.8 542.1 569.3 670.0 349.7 291.7 138.3 2.8	30.4 39.1 40.4 40.5 46.2 45.1 45.5 48.1 40.7 37.6 32.8 26.8 28.0 27.0 27.0 27.0 27.0	347.1 334.0 376.4 493.2 417.7 437.7 507.5 275.2 230.8 111.1 2.4	333.5 320.8 361.8 474.7 401.8 421.2 488.5 263.7 220.6 103.8
7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0	7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0	544.0 115.0 83.0 168.0 76.0 110.0 322.0 61.0 120.0 48.0	142.0 167.0 351.0 417.0 488.0 476.0 475.0 399.0 319.0 242.0 134.0 3.0	28.0 28.0 29.0 29.0 30.0 30.0 30.0 29.0 28.0 28.0 28.0 27.0 27.0 27.0 27.0	3.0 3.0 3.0 4.0 3.0 3.0 3.0 2.0 2.0 1.0 1.0 2.0 2.0 3.0 3.0 3.0	144.9 450.2 424.1 477.4 643.8 542.1 569.3 670.0 349.7 291.7 138.3 2.8	30.4 39.1 40.4 40.5 46.2 45.1 45.5 48.1 40.7 37.6 32.8 28.0 28.0 27.0 27.0 27.0 27.0 27.0	347.1 334.0 376.4 493.2 417.7 437.7 507.5 275.2 230.8 111.1 2.4	333.5 320.8 361.8 474.7 401.8 421.2 488.5 263.7 220.6 103.8
7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0	7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0	544.0 115.0 83.0 168.0 76.0 110.0 322.0 61.0 120.0 48.0	142.0 167.0 351.0 417.0 488.0 476.0 475.0 399.0 319.0 242.0 134.0 3.0	28.0 28.0 29.0 29.0 30.0 30.0 30.0 29.0 28.0 28.0 28.0 27.0 27.0 27.0 27.0	3.0 3.0 3.0 4.0 3.0 3.0 3.0 2.0 2.0 1.0 1.0 2.0 2.0 3.0 3.0 3.0	144.9 450.2 424.1 477.4 643.8 542.1 569.3 670.0 349.7 291.7 138.3 2.8	30.4 39.1 40.4 40.5 46.2 45.1 45.5 48.1 40.7 37.6 32.8 28.0 28.0 27.0 27.0 27.0 27.0 27.0	347.1 334.0 376.4 493.2 417.7 437.7 507.5 275.2 230.8 111.1 2.4	333.5 320.8 361.8 474.7 401.8 421.2 488.5 263.7 220.6 103.8
7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0	7.0 8.0 9.0 10.0 11.0 12.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0	544.0 115.0 83.0 168.0 76.0 110.0 322.0 61.0 120.0 48.0	142.0 167.0 351.0 417.0 488.0 476.0 475.0 399.0 319.0 242.0 134.0 3.0	28.0 28.0 29.0 29.0 29.0 30.0 30.0 30.0 29.0 28.0 28.0 28.0 28.0 27.0 27.0	3.0 3.0 3.0 4.0 3.0 3.0 3.0 2.0 2.0 1.0 1.0 2.0 2.0 3.0 3.0 3.0	144.9 450.2 424.1 477.4 643.8 542.1 569.3 670.0 349.7 291.7 138.3 2.8	30.4 39.1 40.4 40.5 46.2 45.1 45.5 48.1 40.7 37.6 32.8 26.8 28.0 27.0 27.0 27.0 27.0	347.1 334.0 376.4 493.2 417.7 437.7 507.5 275.2 230.8 111.1 2.4	333.5 320.8 361.8 474.7 401.8 421.2 488.5 263.7 220.6 103.8

7.0	28.0	3.0			27.0	3.0		27.0		
7.0	28.0	4.0	-	-	27.0	3.0	<u>-</u>	27.0	-	_
7.0	28.0	5.0	- 341.0	- 46.0	27.0	3.0 4.0	-	27.0	- 27.5	- 24.7
7.0 7.0	28.0 28.0	6.0 7.0	625.0	46.0 75.0	28.0 28.0	4.0	58.2 259.3	28.0 33.2	37.5 184.4	31.7 175.4
7.0	28.0	8.0	746.0	94.0	29.0	4.0	487.8	40.3	370.6	356.3
7.0 7.0	28.0 28.0	9.0 10.0	809.0 847.0	110.0 120.0	30.0 30.0	4.0 4.0	694.1 855.8	46.9 51.2	524.8 637.0	505.1 612.9
7.0	28.0	11.0	859.0	130.0	31.0	3.0	953.0	57.1	688.3	662.0
7.0	28.0	12.0	854.0	140.0	31.0	3.0	981.1	58.0	705.0	678.0
7.0 7.0	28.0 28.0	13.0 14.0	824.0 795.0	153.0 149.0	31.0 31.0	3.0 3.0	935.6 831.5	57.0 54.3	676.0 608.6	650.3 585.7
7.0	28.0	15.0	748.0	137.0	30.0	3.0	663.3	48.8	496.0	477.4
7.0	28.0	16.0	692.0	110.0	30.0	3.0	456.8	42.9	341.1	327.7
7.0 7.0	28.0 28.0	17.0 18.0	557.0 267.0	84.0 43.0	29.0 29.0	3.0 3.0	231.5 42.0	35.3 29.4	161.5 30.1	153.0 24.4
7.0	28.0	19.0	-	-	28.0	3.0	-	28.0	-	-
7.0	28.0	20.0	-	-	28.0	3.0	-	28.0	-	-
7.0 7.0	28.0 28.0	21.0 22.0		-	28.0 28.0	3.0 3.0	- -	28.0 28.0	-	-
7.0	28.0	23.0	-	-	28.0	3.0	-	28.0	-	-
7.0	29.0	-	-	-	27.0	3.0	-	27.0	-	-
7.0 7.0	29.0 29.0	1.0 2.0	-	- -	27.0 27.0	3.0 3.0	- -	27.0 27.0	-	-
7.0	29.0	3.0	-	-	27.0	3.0	-	27.0	-	-
7.0	29.0	4.0	-	-	27.0	2.0	-	27.0	-	-
7.0 7.0	29.0 29.0	5.0 6.0	332.0	48.0	27.0 28.0	2.0 3.0	58.8	27.0 28.0	38.4	32.6
7.0	29.0	7.0	604.0	81.0	29.0	3.0	258.9	34.7	183.7	174.7
7.0	29.0	8.0	724.0	104.0	30.0	3.0	486.5	42.4	366.2	352.0
7.0 7.0	29.0 29.0	9.0 10.0	798.0 479.0	116.0 341.0	30.0 31.0	3.0 3.0	694.3 759.6	48.5 51.8	520.6 564.2	501.1 543.1
7.0	29.0	11.0	477.0	402.0	31.0	3.0	864.7	54.6	633.2	609.3
7.0 7.0	29.0 29.0	12.0 13.0	877.0 868.0	124.0 124.0	31.0 31.0	3.0 3.0	989.3 950.3	58.0 57.4	711.1 685.1	683.8 659.0
7.0	29.0	14.0	851.0	116.0	31.0	3.0	843.8	54.6	616.4	593.1
7.0	29.0	15.0	813.0	105.0	31.0	3.0	675.9	50.1	501.5	482.7
7.0 7.0	29.0 29.0	16.0 17.0	742.0 605.0	92.0 74.0	30.0 29.0	3.0 3.0	465.0 234.8	43.2 35.4	346.0 161.8	332.4 153.3
7.0	29.0	18.0	305.0	40.0	28.0	3.0	40.9	28.4	28.7	23.1
7.0	29.0	19.0	-	-	28.0	3.0	-	28.0	-	-
7.0 7.0	29.0 29.0	20.0 21.0	-	Ī	28.0 27.0	3.0 3.0	Ī	28.0 27.0		1
7.0	29.0	22.0	-	-	27.0	2.0	-	27.0	-	-
7.0	29.0	23.0	-	-	27.0	2.0	-	27.0	-	-
7.0 7.0	30.0 30.0	- 1.0	-	Ī.	27.0 27.0	2.0 2.0	Ī	27.0 27.0	-	1
7.0	30.0	2.0	-	-	27.0	1.0	-	27.0	-	-
7.0	30.0	3.0	-	-	27.0	1.0	-	27.0	-	-
7.0 7.0	30.0 30.0	4.0 5.0		- -	27.0 27.0	1.0 1.0	- -	27.0 27.0		
7.0	30.0	6.0	338.0	46.0	28.0	1.0	58.0	27.9	37.6	31.8
7.0	30.0	7.0	603.0	80.0	29.0	1.0	257.8	36.5	181.2	172.2
7.0 7.0	30.0 30.0	8.0 9.0	728.0 796.0	101.0 115.0	30.0 30.0	1.0 2.0	486.0 692.5	46.4 50.7	358.2 513.2	344.3 494.0
7.0	30.0	10.0	561.0	313.0	31.0	2.0	804.1	55.5	585.2	563.2
7.0 7.0	30.0 30.0	11.0 12.0	509.0 843.0	391.0 144.0	31.0 31.0	2.0 3.0	885.5 975.9	58.1 57.7	635.9 702.5	611.8 675.6
7.0	30.0	13.0	798.0	168.0	31.0	3.0	933.3	56.9	674.6	648.9
7.0	30.0	14.0	780.0	156.0	30.0	3.0	827.0	53.2	608.9	586.0
7.0 7.0	30.0 30.0	15.0 16.0	743.0 688.0	138.0 109.0	30.0 30.0	2.0 2.0	661.5 454.1	51.1 44.6	488.5 336.1	470.2 322.9
7.0	30.0	17.0	556.0	82.0	29.0	2.0	229.1	36.2	158.9	
7.0	30.0	18.0	271.0	41.0	28.0	2.0	40.1	28.5	28.8	150.5 23.1
7.0 7.0	30.0 30.0	19.0 20.0	-	- -	28.0 28.0	2.0 2.0		28.0 28.0	-	
7.0	30.0	21.0	-	-	28.0	2.0	-	28.0	-	-
7.0 7.0	30.0 30.0	22.0 23.0	-	-	28.0 28.0	2.0 2.0	-	28.0 28.0	-	-
7.0	31.0	-		- -	27.0	2.0		27.0	-	
7.0	31.0	1.0	-	-	27.0	2.0	-	27.0	-	-
7.0 7.0	31.0 31.0	2.0 3.0	-	- -	27.0 27.0	2.0 1.0		27.0 27.0	-	<u>-</u> -
7.0	31.0	4.0		-	27.0	1.0	<u> </u>	27.0	-	1
7.0	31.0	5.0	-	-	27.0	1.0	-	27.0	-	-
7.0 7.0	31.0 31.0	6.0 7.0	287.0 564.0	49.0 88.0	28.0 29.0	1.0 1.0	57.1 254.0	27.8 36.4	38.6 180.0	32.7 171.0
7.0	31.0	8.0	693.0	113.0	30.0	1.0	479.1	46.2	354.1	340.3
7.0	31.0	9.0	766.0 832.0	130.0	30.0 31.0	1.0	686.5 850.9	54.0 56.8	499.9	481.1 591.5
7.0 7.0	31.0 31.0	10.0 11.0	858.0	126.0 128.0	31.0	2.0 2.0	952.7	60.1	614.6 676.5	650.8

7.0	31.0	12.0	867.0	129.0	32.0	2.0	986.1	62.3	691.7	665.3
7.0	31.0	13.0	850.0	134.0	32.0	2.0	944.4	61.3	666.1	640.7
7.0 7.0	31.0 31.0	14.0 15.0	829.0 785.0	127.0 117.0	31.0 31.0	2.0 2.0	837.0 670.4	57.3 52.4	602.5 491.5	579.8 473.1
7.0	31.0	16.0	714.0	100.0	30.0	3.0	459.2	43.0	342.3	328.9
7.0	31.0	17.0	575.0	78.0	30.0	3.0	230.3	36.3	158.9	150.5
7.0	31.0	18.0	280.0	40.0	29.0	3.0	39.3	29.3	27.9	22.3
7.0	31.0	19.0	-	-	28.0	2.0	-	28.0	-	- 1
7.0	31.0	20.0	-	-	28.0	2.0	-	28.0	-	-
7.0	31.0	21.0	-	-	28.0	2.0	-	28.0	-	-
7.0	31.0	22.0	-	-	28.0	2.0	-	28.0	-	-
7.0	31.0	23.0	-	-	28.0	2.0	-	28.0	-	-
8.0	1.0	-	-	-	27.0	2.0	-	27.0	-	-
8.0 8.0	1.0	1.0	-	-	27.0 27.0	2.0 2.0	-	27.0	-	-
8.0	1.0 1.0	2.0 3.0	-		27.0	2.0		27.0 27.0		-
8.0	1.0	4.0			27.0	2.0	<u>-</u>	27.0	-	
8.0	1.0	5.0	_	-	27.0	2.0	-	27.0	_	_
8.0	1.0	6.0	192.0	56.0	28.0	2.0	59.1	28.0	43.3	37.4
8.0	1.0	7.0	156.0	149.0	28.0	2.0	186.9	32.2	146.7	138.6
8.0	1.0	8.0	620.0	140.0	29.0	2.0	467.7	42.1	354.1	340.3
8.0	1.0	9.0	714.0	155.0	29.0	2.0	675.0	49.1	504.8	485.9
8.0	1.0	10.0	229.0	428.0	30.0	1.0	621.0	53.0	458.6	441.3
8.0	1.0	11.0	93.0	471.0	30.0	1.0	551.6	50.5	413.0	397.3
8.0 8.0	1.0 1.0	12.0 13.0	450.0 784.0	427.0 174.0	30.0 31.0	1.0 1.0	880.0 927.5	60.3 64.2	624.4 643.5	600.8 619.1
8.0	1.0	14.0	753.0	168.0	31.0	1.0	817.0	61.1	575.7	554.1
8.0	1.0	15.0	700.0	156.0	30.0	1.0	650.4	54.6	471.6	453.8
8.0	1.0	16.0	596.0	142.0	30.0	1.0	440.6	47.1	323.4	310.6
8.0	1.0	17.0	380.0	110.0	29.0	1.0	206.7	37.1	148.3	140.1
8.0	1.0	18.0	135.0	45.0	29.0	1.0	41.2	29.7	32.1	26.4
8.0	1.0	19.0	-	-	28.0	1.0	-	28.0	-	-
8.0	1.0	20.0	-	-	28.0	2.0	-	28.0	-	-
8.0	1.0	21.0	-	-	28.0	2.0	-	28.0	-	-
8.0	1.0	22.0	-	-	28.0	2.0	-	28.0	-	-
8.0 8.0	1.0 2.0	23.0	-		27.0 27.0	2.0 2.0	-	27.0 27.0	-	-
8.0	2.0	1.0			27.0	1.0		27.0		1
8.0	2.0	2.0			27.0	1.0		27.0	_	
8.0	2.0	3.0	_	_	27.0	1.0	<u>-</u>	27.0	_	_
8.0	2.0	4.0	-	-	27.0	1.0	-	27.0	-	-
8.0	2.0	5.0	-	-	27.0	1.0	-	27.0	-	-
8.0	2.0	6.0	240.0	51.0	27.0	1.0	56.3	26.8	39.7	33.8
8.0	2.0	7.0	280.0	134.0	28.0	1.0	210.8	33.8	159.6	151.1
8.0	2.0	8.0	485.0	186.0	29.0	-	439.6	47.6	325.3	312.4
8.0	2.0	9.0	258.0	341.0	30.0		522.7	53.4	383.7	369.0
8.0 8.0	2.0 2.0	10.0 11.0	476.0 364.0	341.0 433.0	30.0 30.0	-	759.8 785.6	62.1 64.4	533.0 544.4	513.1 524.0
8.0	2.0	12.0	434.0	424.0	31.0		862.1	68.0	585.3	563.3
8.0	2.0	13.0	59.0	439.0	31.0	_	486.8	56.2	353.3	339.6
8.0	2.0	14.0	463.0	336.0	31.0	-	735.8	62.0	516.3	496.9
8.0	2.0	15.0	409.0	288.0	30.0	1.0	573.9	51.8	423.9	407.8
8.0	2.0	16.0	424.0	193.0	30.0	1.0	401.9	45.4	300.1	288.0
8.0	2.0	17.0	504.0	92.0	30.0	1.0	224.4	38.5	155.6	147.3
8.0	2.0	18.0	86.0	43.0	29.0	1.0	39.7	29.8	31.6	25.9
8.0	2.0 2.0	19.0		-	28.0 28.0	1.0	-	28.0 28.0	-	-
8.0 8.0	2.0	20.0 21.0		- -	28.0	1.0 1.0	- -	28.0	-	
8.0	2.0	22.0		- -	28.0	1.0		28.0		
8.0	2.0	23.0	_	-	27.0	1.0	-	27.0	_	_
8.0	3.0	-	-	-	27.0	1.0	-	27.0	-	-
8.0	3.0	1.0	-	-	27.0	1.0	-	27.0	-	-
8.0	3.0	2.0	-	-	27.0 27.0	1.0	-	27.0 27.0	-	-
8.0	3.0	3.0	-	-	27.0	-	-	27.0	-	-
8.0	3.0	4.0	-	-	27.0	-	-	27.0	-	-
8.0 8.0	3.0 3.0	5.0 6.0	267.0	49.0	27.0 28.0		- 56.1	27.0 27.3	38.5	32.7
8.0	3.0	7.0	544.0	92.0	29.0	_	252.5	38.7	177.6	168.7
8.0	3.0	8.0	677.0	119.0	29.0	1.0	478.0	45.1	355.5	341.7
8.0	3.0	9.0	753.0	136.0	30.0	2.0	685.1	50.4	508.7	489.6
8.0	3.0	10.0	836.0	122.0	30.0	2.0	852.9	55.9	619.2	595.9
8.0	3.0	11.0	852.0	131.0	30.0	2.0	952.5	59.2	680.1	654.1
8.0	3.0	12.0	852.0	136.0	30.0	3.0	980.7	57.1	708.5	681.3
8.0	3.0	13.0	815.0	154.0	30.0	3.0	938.6	56.1	681.5	655.5
8.0 8.0	3.0 3.0	14.0 15.0	785.0 738.0	150.0 138.0	30.0 29.0	3.0 3.0	827.5 659.3	53.2 47.7	609.3 496.0	586.3 477.4
8.0	3.0	15.0 16.0	693.0	138.0 105.0	29.0	2.0	452.9	43.6	336.8	323.6
8.0	3.0	17.0	252.0	125.0	28.0	2.0	185.6	33.9	139.5	131.5
8.0	3.0	18.0	261.0	38.0	28.0	2.0	36.5	28.2	26.5	20.9
8.0	3.0	19.0	-	=	28.0	2.0	-	28.0	-	-
8.0	3.0	20.0	-	-	27.0	2.0	-	27.0	-	-

8.0	3.0	21.0	_	_	27.0	2.0	-	27.0	_	_
8.0	3.0	22.0	_	_	27.0	2.0	<u>-</u>	27.0	-	
8.0	3.0	23.0	_	_	27.0	2.0	_	27.0	_	_
8.0	4.0	-			27.0	2.0		27.0		
8.0	4.0	1.0			27.0	2.0		27.0		
			-		27.0	2.0	-	27.0	-	
8.0	4.0	2.0	-				-			-
8.0	4.0	3.0	-	-	27.0	2.0	-	27.0	-	-
8.0	4.0	4.0	-	-	27.0	2.0	-	27.0	-	-
8.0	4.0	5.0	-	-	27.0	2.0		27.0		-
8.0	4.0	6.0	-	3.0	27.0	2.0	2.8	25.2	2.4	-
8.0	4.0	7.0	337.0	126.0	28.0	2.0	221.6	33.0	166.5	157.9
8.0	4.0	8.0	-	67.0	28.0	2.0	63.7	29.2	53.1	47.0
8.0	4.0	9.0	_	44.0	29.0	2.0	41.8	28.8	35.0	29.2
8.0	4.0	10.0	9.0	214.0	30.0	2.0	212.7	34.9	172.5	163.7
8.0	4.0	11.0	80.0	461.0	30.0	2.0	530.2	45.0	408.6	393.1
8.0	4.0	12.0	431.0	424.0	30.0	3.0		52.8	636.5	612.4
							860.7			
8.0	4.0	13.0	64.0	443.0	29.0	3.0	496.1	43.6	385.1	370.4
8.0	4.0	14.0	735.0	178.0	29.0	3.0	813.0	50.5	607.4	584.5
8.0	4.0	15.0	672.0	169.0	28.0	4.0	644.6	44.6	493.1	474.6
8.0	4.0	16.0	227.0	231.0	28.0	4.0	335.8	36.7	264.9	253.7
8.0	4.0	17.0	395.0	115.0	28.0	4.0	215.1	32.9	157.5	149.2
8.0	4.0	18.0	120.0	45.0	27.0	3.0	40.4	27.2	32.2	26.5
8.0	4.0	19.0	_	_	27.0	3.0	_	27.0	-	_
8.0	4.0	20.0	_		27.0	3.0		27.0	_	_
8.0	4.0	21.0			27.0	2.0		27.0		
8.0	4.0	22.0			27.0	2.0		27.0		
			-							-
8.0	4.0	23.0	-	-	27.0	2.0	-	27.0	-	-
8.0	5.0	-	-	-	27.0	2.0	-	27.0	-	-
8.0	5.0	1.0	-	-	26.0	2.0	-	26.0	-	-
8.0	5.0	2.0	-	-	26.0	2.0	-	26.0	-	-
8.0	5.0	3.0	-	-	26.0	2.0	-	26.0	-	-
8.0	5.0	4.0	_	_	26.0	2.0	_	26.0	_	_
8.0	5.0	5.0	_	_	26.0	2.0	_	26.0	_	_
8.0	5.0	6.0	352.0	41.0	27.0	2.0	54.2	26.8	34.2	28.5
8.0	5.0	7.0	180.0	143.0	28.0	3.0	189.1	31.8	147.8	139.6
8.0	5.0	8.0	751.0	90.0	29.0	3.0	489.9	41.3	370.7	356.4
8.0	5.0	9.0	820.0	102.0	29.0	3.0	699.2	47.6	526.7	507.0
8.0	5.0	10.0	861.0	108.0	30.0	3.0	862.5	53.4	634.7	610.7
8.0	5.0	11.0	877.0	115.0	30.0	3.0	962.7	56.4	698.1	671.4
8.0	5.0	12.0	878.0	119.0	30.0	3.0	991.7	57.4	715.3	687.8
8.0	5.0	13.0	862.0	123.0	30.0	3.0	948.8	56.4	687.8	661.6
8.0	5.0	14.0	835.0	120.0	30.0	3.0	837.8	53.5	615.8	592.6
8.0	5.0	15.0	790.0	112.0	30.0	3.0	670.2	49.0	500.4	481.7
8.0	5.0	16.0	723.0	94.0	30.0	3.0	457.7	43.0	340.9	327.6
8.0	5.0	17.0	583.0	73.0	29.0	2.0	226.6	36.2	155.5	147.2
8.0	5.0	18.0	279.0	35.0	28.0	2.0	34.3	28.3	24.7	19.1
8.0	5.0	19.0	-		28.0	2.0	-	28.0		-
8.0	5.0	20.0	-	-	28.0	2.0	-	28.0	-	-
8.0	5.0	21.0	-	-	27.0	2.0	-	27.0		-
8.0	5.0	22.0	-	-	27.0	2.0	-	27.0		-
8.0	5.0	23.0	-	-	27.0	2.0	-	27.0	_	_
8.0	6.0	_	_	_	27.0	2.0	_	27.0	-	_
8.0	6.0	1.0	_	_	27.0	2.0	_	27.0	_	_
8.0	6.0	2.0	_		27.0	2.0	_	27.0	_	_
8.0	6.0	3.0	- -	_	26.0	2.0		26.0		-
			-							-
8.0	6.0	4.0	-	-	26.0	2.0	-	26.0	-	-
8.0	6.0	5.0	-	ā.	26.0	2.0		26.0	-	-
8.0	6.0	6.0	309.0	44.0	27.0	2.0	54.1	26.8	35.6	29.8
8.0	6.0	7.0	592.0	80.0	28.0	2.0	256.1	34.3	182.4	173.4
8.0	6.0	8.0	722.0	101.0	28.0	2.0	486.1	41.9	367.1	352.9
8.0	6.0	9.0	793.0	116.0	29.0	2.0	696.2	49.8	518.6	499.2
8.0	6.0	10.0	840.0	121.0	30.0	3.0	857.9	53.3	631.8	607.9
8.0	6.0	11.0	855.0	130.0	30.0	2.0	957.1	59.3	682.8	656.8
8.0	6.0	12.0	855.0	135.0	30.0	2.0	985.3	60.4	698.7	672.0
8.0	6.0	13.0	844.0	135.0	31.0	2.0	944.0	60.4	669.5	644.0
8.0	6.0	14.0	810.0	134.0	31.0	2.0	830.6	57.2	598.5	576.0
8.0	6.0	15.0	758.0	126.0	30.0	2.0	662.1	51.2	488.8	470.4
								44.5	332.7	319.5
8.0	6.0	16.0	682.0	107.0	30.0	2.0	449.3 185.4		127.0	318.3
8.0	6.0	17.0	266.0	121.0	29.0	2.0	185.4	34.9	137.9	130.0
8.0	6.0	18.0	-	2.0	28.0	2.0	1.9	27.1	1.6	-
8.0	6.0	19.0	-	-	28.0	2.0	-	28.0	-	-
8.0	6.0	20.0	-	-	28.0	2.0	-	28.0	-	-
8.0	6.0	21.0	-	-	28.0	2.0	-	28.0	-	-
8.0	6.0	22.0	-	-	27.0	2.0	<u>-</u>	27.0	-	-
8.0	6.0	23.0	-	-	27.0	2.0	<u>-</u>	27.0	-	-
8.0	7.0	-	-	-	27.0	2.0	-	27.0	-	-
8.0	7.0	1.0	_	<u>-</u>	27.0	2.0	-	27.0	_	_
8.0	7.0	2.0	_	_	27.0	2.0	_	27.0		_
8.0	7.0	3.0		-	27.0	2.0		27.0		-
	7.0		-		27.0	2.0		27.0	-	-
8.0		4.0	-	-	27.0	2.0	-			
0.0									-	
8.0	7.0	5.0	-	-	27.0	2.0	-	27.0	1	-

8.0 8.0 8.0	7.0 7.0 7.0 7.0	6.0 7.0 8.0 9.0	237.0 499.0 397.0 498.0	48.0 99.0 209.0 258.0	27.0 28.0 29.0 29.0	2.0 2.0 2.0 2.0	53.8 246.9 417.4 622.2	26.8 34.0 40.9 47.5	37.7 179.3 321.1 470.5	31.9 170.3 308.3 452.8
8.0	7.0	10.0	341.0	397.0	29.0	2.0	696.2	50.3	521.3	501.8
8.0	7.0	11.0	91.0	467.0	29.0	2.0	547.7	46.4	419.0	403.1
8.0	7.0	12.0	22.0	360.0	29.0	2.0	369.4	40.7	291.0	279.1
8.0	7.0	13.0	4.0	158.0	30.0	2.0	155.1	34.7	126.0	118.3
8.0	7.0	14.0	14.0	271.0	30.0	2.0	271.8	37.2	218.0	208.1
8.0	7.0	15.0	573.0	221.0	30.0	2.0	625.1	48.0	470.5	452.8
8.0 8.0	7.0 7.0	16.0 17.0	517.0 20.0	162.0 118.0	29.0 29.0	2.0 1.0	418.8 116.3	42.5 33.8	315.9 93.9	303.3 87.0 19.6
8.0	7.0	18.0	-	32.0	28.0	1.0	30.0	27.6	25.2	19.6
8.0	7.0	19.0		-	28.0	1.0	-	28.0	-	-
8.0	7.0	20.0		-	28.0	1.0	-	28.0	-	-
8.0 8.0	7.0 7.0	21.0 22.0	- -	- -	27.0 27.0	1.0 1.0	-	27.0 27.0	-	-
8.0 8.0 8.0	7.0 8.0 8.0	23.0 - 1.0	-	- - -	27.0 27.0 27.0	2.0 2.0 2.0	- - -	27.0 27.0 27.0	-	-
8.0 8.0	8.0 8.0	2.0 3.0	-	- -	27.0 27.0	2.0 2.0	- -	27.0 27.0	-	-
8.0	8.0	4.0	-	-	26.0	2.0	-	26.0	-	-
8.0	8.0	5.0		-	26.0	2.0	-	26.0	-	-
8.0	8.0	6.0		33.0	27.0	2.0	31.3	26.1	26.5	20.9
8.0	8.0	7.0	98.0	143.0	27.0	2.0	165.0	30.4	132.4	124.6
8.0	8.0	8.0	14.0	195.0	27.0	2.0	192.9	31.8	158.6	150.1
8.0	8.0	9.0	46.0	311.0	27.0	2.0	334.8	36.2	269.6	258.3
8.0	8.0	10.0	314.0	405.0	27.0	2.0	681.2	46.8	519.6	500.2
8.0	8.0	11.0	359.0	435.0	27.0	3.0	787.0	48.5	595.6	573.1
8.0	8.0	12.0	254.0	489.0	27.0	3.0	748.3	47.8	568.2	546.9
8.0	8.0	13.0	13.0	263.0	27.0	3.0	265.2	35.2	214.8	205.0
8.0	8.0	14.0	-	94.0	27.0	3.0	89.6	28.8	74.9	68.4
8.0	8.0	15.0	-	99.0	27.0	3.0	94.3	28.3	79.0	72.3
8.0	8.0	16.0	1.0	159.0	26.0	4.0	151.6	28.6	126.8	119.1
8.0	8.0	17.0	36.0	122.0	26.0	3.0	124.4	28.3	102.4	95.3
8.0	8.0	18.0		27.0	26.0	3.0	25.6	25.5	21.7	16.2
8.0 8.0 8.0	8.0 8.0 8.0	19.0 20.0 21.0	- - -	- -	26.0 26.0 26.0	3.0 3.0 3.0	- -	26.0 26.0 26.0	-	
8.0 8.0	8.0 8.0	22.0 23.0	-	- - -	25.0 25.0	3.0 3.0	-	25.0 25.0	- - -	-
8.0 8.0 8.0	9.0 9.0 9.0	- 1.0 2.0	-	- - -	25.0 25.0 25.0	2.0 2.0 2.0		25.0 25.0 25.0	-	
8.0 8.0	9.0 9.0	3.0 4.0	-	-	25.0 25.0	2.0 3.0	:	25.0 25.0	-	-
8.0 8.0 8.0	9.0 9.0 9.0	5.0 6.0 7.0	- - 552.0	- 3.0 86.0	25.0 25.0 26.0	3.0 3.0 4.0	- 2.8 250.9	25.0 23.4 30.8	2.4 183.1	- - 174.1
8.0	9.0	8.0	104.0	33.0	26.0	4.0	31.3	26.0	26.5	20.9
8.0	9.0	9.0		343.0	26.0	4.0	408.5	34.8	330.9	317.8
8.0	9.0	10.0	524.0	326.0	27.0	4.0	792.5	46.0	606.9	584.0
8.0	9.0	11.0	510.0	388.0	27.0	4.0	892.1	49.4	671.9	646.3
8.0	9.0	12.0	855.0	131.0	27.0	4.0	984.0	51.8	731.7	703.5
8.0	9.0	13.0	877.0	109.0	28.0	4.0	951.9	52.2	705.9	678.9
8.0	9.0	14.0	844.0	112.0	28.0	4.0	839.1	49.5	630.1	606.3
8.0	9.0	15.0	788.0	109.0	28.0	5.0	666.3	43.5	511.8	492.6
8.0	9.0	16.0	694.0	101.0	28.0	5.0	448.9	38.3	342.6	329.2
8.0	9.0	17.0	541.0	78.0	27.0	5.0	219.0	31.7	154.6	146.2
8.0 8.0	9.0 9.0	18.0 19.0	218.0	35.0	27.0 27.0	5.0 5.0	32.8	26.9 27.0	24.5	18.9
8.0 8.0 8.0	9.0 9.0 9.0	20.0 21.0 22.0	-	-	27.0 26.0 26.0	5.0 5.0 4.0	<u>.</u>	27.0 26.0 26.0	-	-
8.0 8.0	9.0 10.0	23.0	-	-	26.0 26.0	4.0 4.0	-	26.0 26.0	-	-
8.0 8.0 8.0	10.0 10.0 10.0	1.0 2.0 3.0	-	- - -	26.0 26.0 26.0	4.0 4.0 4.0	-	26.0 26.0 26.0	-	-
8.0 8.0	10.0 10.0	4.0 5.0	-	- 	26.0 26.0	4.0 4.0	- -	26.0 26.0	- -	-
8.0	10.0	6.0	53.0	47.0	27.0	4.0	45.2	26.7	36.4	30.7
8.0	10.0	7.0	218.0	137.0	27.0	5.0	196.6	30.2	153.4	145.1
8.0	10.0	8.0	-	110.0	28.0	5.0	104.6	29.5	87.1	80.3
8.0	10.0	9.0	91.0	339.0	28.0	6.0	395.4	35.1	319.9	307.1
8.0	10.0	10.0	335.0	398.0	28.0	6.0	693.9	41.7	543.7	523.3
8.0	10.0	11.0	456.0	400.0	28.0	6.0	852.5	45.4	655.7	630.8
8.0	10.0	12.0	75.0	470.0	28.0	6.0	539.3	39.4	427.8	411.6
8.0	10.0	13.0	24.0	357.0	27.0	5.0	367.3	35.2	297.5	285.4
8.0	10.0	14.0	88.0	405.0	27.0	5.0	471.8	37.1	378.3	363.8

8.0	10.0	15.0	8.0	208.0	27.0	5.0	204.2	31.4	168.5	159.8
8.0	10.0	16.0		101.0	27.0	4.0	96.0	28.5	80.3	73.7
8.0	10.0	17.0		25.0	26.0	4.0	23.7	25.4	20.1	14.6
8.0		18.0	- -		26.0	4.0		24.9		7.6
	10.0		-	16.0			15.2		12.9	
8.0	10.0	19.0	-	-	26.0	4.0		26.0	-	-
8.0	10.0	20.0	-	-	26.0	4.0	-	26.0	-	-
8.0	10.0	21.0	-	-	26.0	4.0	-	26.0	-	-
8.0	10.0	22.0	-	-	26.0	3.0	_	26.0	-	_
8.0	10.0	23.0	_	_	26.0	3.0		26.0	_	_
8.0	11.0	-			26.0	3.0		26.0		
			-							-
8.0	11.0	1.0	-	-	26.0	3.0	-	26.0	-	-
8.0	11.0	2.0	-	-	26.0	3.0		26.0		-
8.0	11.0	3.0	-	-	26.0	3.0	-	26.0	-	-
8.0	11.0	4.0	-	-	26.0	3.0	_	26.0	-	_
8.0	11.0	5.0	_	_	26.0	2.0	_	26.0	<u>-</u>	_
8.0	11.0	6.0	130.0	46.0	27.0	2.0	47.7	26.6	36.0	30.2
8.0	11.0	7.0	443.0	112.0	28.0	3.0	242.3	33.2	178.7	169.8
8.0	11.0	8.0	601.0	146.0	28.0	3.0	468.9	39.9	359.7	345.7
8.0	11.0	9.0	692.0	166.0	29.0	3.0	677.6	47.0	512.8	493.6
8.0	11.0	10.0	811.0	137.0	29.0	3.0	857.0	52.2	634.8	610.8
8.0	11.0	11.0	832.0	144.0	30.0	3.0	953.1	56.1	692.2	665.7
8.0	11.0	12.0	835.0	148.0	30.0	3.0	982.2	57.1	709.5	682.3
8.0	11.0	13.0	768.0	186.0	30.0	3.0	931.2	55.9	676.9	651.1
8.0	11.0	14.0	740.0	177.0	30.0	3.0	819.4	53.0	604.1	581.4
8.0	11.0	15.0	688.0	161.0	30.0	3.0	649.2	48.4	486.8	468.5
8.0	11.0	16.0	615.0	130.0	29.0	2.0	438.0	43.1	327.5	314.5
8.0	11.0	17.0	455.0	96.0	29.0	2.0	211.7	35.6	149.6	141.4
8.0	11.0	18.0	135.0	37.0	28.0	2.0	34.4	28.2	26.8	21.2
8.0	11.0	19.0	-	-	28.0	2.0	-	28.0	-	-
8.0	11.0	20.0	-	-	27.0	2.0	-	27.0	-	-
8.0	11.0	21.0	-	<u>-</u>	27.0	2.0		27.0		_
8.0	11.0	22.0	-	_	27.0	2.0	_	27.0	_	_
8.0	11.0	23.0	_		27.0	2.0	_	27.0		
8.0	12.0	-			27.0	2.0		27.0		
			-							-
8.0	12.0	1.0	-	-	26.0	1.0	-	26.0	-	-
8.0	12.0	2.0	-	-	26.0	1.0	-	26.0	-	-
8.0	12.0	3.0	-	-	26.0	1.0	-	26.0	-	-
8.0	12.0	4.0	-	_	26.0	_	_	26.0	_	_
8.0	12.0	5.0	_	_	26.0	_	_	26.0	_	_
8.0	12.0	6.0	211.0	48.0	27.0		52.9	26.0	37.9	32.1
						-				
8.0	12.0	7.0	541.0	90.0	28.0	-	252.6	37.6	179.0	170.0
8.0	12.0	8.0	683.0	116.0	29.0	-	483.5	49.6	351.6	337.9
8.0	12.0	9.0	758.0	135.0	29.0	-	694.7	58.7	493.2	474.7
8.0	12.0	10.0	808.0	143.0	30.0	_	861.4	66.5	589.1	566.9
8.0	12.0	11.0	832.0	148.0	30.0	_	957.9	70.5	640.7	616.5
	12.0	12.0		148.0					652.2	627.4
8.0			841.0		31.0	-	989.0	72.8		
8.0	12.0	13.0	814.0	158.0	31.0	-	947.9	71.8	629.0	605.2
8.0	12.0	14.0	786.0	151.0	31.0	-	833.3	68.0	564.4	543.3
8.0	12.0	15.0	732.0	139.0	31.0	-	657.4	61.7	458.0	440.8
8.0	12.0	16.0	667.0	111.0	31.0	1.0	444.8	48.3	322.9	310.1
8.0	12.0	17.0	501.0	85.0	30.0	1.0	214.2	38.4	147.4	139.2
8.0	12.0	18.0	162.0	34.0	29.0	1.0	31.3	29.4	23.6	18.1
				-			-		-	-
8.0	12.0	19.0	-	-	28.0	2.0		28.0		-
8.0	12.0	20.0	-	-	28.0	2.0	-	28.0		-
8.0	12.0	21.0	-	-	28.0	2.0	-	28.0	-	-
8.0	12.0	22.0	-	-	28.0	2.0	-	28.0	-	-
8.0	12.0	23.0	-	-	27.0	3.0	<u>-</u>	27.0	-	-
8.0	13.0	_	_	_	27.0	3.0		27.0	_	_
8.0	13.0	1.0	_	_	27.0	3.0	<u>-</u>	27.0	<u>-</u>	_
8.0	13.0	2.0			27.0	2.0		27.0		
			-						=	-
8.0	13.0	3.0	-	-	27.0	2.0	-	27.0	-	-
8.0	13.0	4.0	-	-	27.0	2.0	-	27.0	-	-
8.0	13.0	5.0	-	-	27.0	2.0	-	27.0	-	-
8.0	13.0	6.0	224.0	45.0	27.0 27.0	2.0	51.1	26.7	35.8	30.0
8.0	13.0	7.0	505.0	96.0	28.0	2.0	248.0	34.0	180.0	171.1
8.0	13.0	8.0	646.0	127.0	29.0	1.0	475.4	45.0	354.6	340.8
				149.0	30.0		684.8	53.9	499.4	490.0
8.0	13.0	9.0	723.0			1.0				480.6
8.0	13.0	10.0	777.0	158.0	30.0	1.0	850.2	60.0	603.3	580.5
8.0	13.0	11.0	800.0	165.0	31.0	-	951.3	71.1	633.9	609.9
8.0	13.0	12.0	808.0	167.0	31.0	-	983.2	72.6	649.2	624.5
8.0	13.0	13.0	781.0	177.0	32.0	-	935.9	72.3	619.2	595.8
8.0	13.0	14.0	213.0	414.0	32.0	_	594.0	61.2	419.0	403.1
8.0	13.0	15.0	693.0	157.0	32.0	_	648.8	60.8	454.5	437.4
						-				437.4
8.0	13.0	16.0	592.0	137.0	31.0	-	433.0	52.8	307.9	295.5 134.4 19.6
8.0	13.0	17.0	414.0	102.0	30.0		206.0	41.7	142.5	134.4
		18.0	102.0	35.0	30.0	1.0	32.2	30.4	25.1	19.6
8.0	13.0		-	-	29.0	1.0		29.0	_	_
8.0 8.0	13.0 13.0	19.0								
8.0	13.0		_	_	29.0	2.0	-		_	_
8.0 8.0	13.0 13.0	20.0		- -	29.0 28.0	2.0 2.0	-	29.0	-	-
8.0 8.0 8.0	13.0 13.0 13.0	20.0 21.0		-	28.0	2.0	- - -	29.0 28.0	-	-
8.0 8.0 8.0 8.0	13.0 13.0 13.0 13.0	20.0 21.0 22.0		- - -	28.0 28.0	2.0 2.0	- - -	29.0 28.0 28.0	:	-
8.0 8.0 8.0	13.0 13.0 13.0	20.0 21.0		- - -	28.0	2.0		29.0 28.0		- - -

8.0 8.0	14.0 14.0	- 1.0	-	1	28.0 28.0	2.0 2.0	Ī	28.0 28.0	-	-
8.0 8.0	14.0 14.0	2.0		-	28.0 28.0	2.0 2.0	-	28.0 28.0	-	
8.0 8.0	14.0 14.0	4.0 5.0	-	-	28.0 28.0	2.0 1.0	-	28.0 28.0	-	-
8.0	14.0	6.0	6.0 416.0	42.0	28.0	1.0	39.5	27.2 34.7	33.0	27.3
8.0 8.0	14.0 14.0	7.0 8.0	564.0	117.0 159.0	28.0 29.0	1.0 1.0	240.0 463.7	44.6	176.7 347.9	167.9 334.3
8.0 8.0	14.0 14.0	9.0 10.0	648.0 342.0	188.0 394.0	30.0 30.0	1.0 1.0	669.9 698.9	53.4 55.4	490.3 509.3	471.9 490.2
8.0 8.0	14.0 14.0	11.0 12.0	499.0 414.0	389.0 420.0	30.0 30.0	1.0 1.0	886.8 847.8	61.2 60.9	626.0 599.4	602.4 576.9
8.0 8.0	14.0 14.0	13.0 14.0	488.0 575.0	385.0 291.0	30.0 30.0	1.0 1.0	865.8 793.1	61.3 59.2	610.9 565.4	587.9 544.2
8.0 8.0	14.0 14.0	15.0 16.0	66.0	139.0 219.0	30.0 29.0	1.0 1.0	132.5 242.8	37.7 36.5	106.0 194.0	98.8 184.7
8.0	14.0	17.0	-	101.0	29.0	1.0	95.3	31.9	78.5	71.8
8.0 8.0	14.0 14.0	18.0 19.0	25.0 -	31.0 -	28.0 28.0	1.0 1.0	29.2	27.5 28.0	24.2 -	18.6 -
8.0 8.0	14.0 14.0	20.0 21.0	-	-	28.0 28.0	1.0 2.0	- -	28.0 28.0	-	-
8.0 8.0	14.0 14.0	22.0 23.0	-	-	28.0 28.0	2.0 2.0	-	28.0 28.0	-	-
8.0 8.0	15.0 15.0	1.0	-	<u>-</u>	27.0 27.0	2.0 1.0	<u>.</u>	27.0 27.0	-	-
8.0	15.0	2.0	-	-	27.0	1.0	-	27.0	-	-
8.0 8.0	15.0 15.0	3.0 4.0	-	-	27.0 27.0	1.0 1.0	-	27.0 27.0	-	-
8.0 8.0	15.0 15.0	5.0 6.0	167.0	- 48.0	27.0 28.0	1.0 1.0	- 51.7	27.0 27.6	- 37.9	32.1
8.0 8.0	15.0 15.0	7.0 8.0	469.0 582.0	104.0 149.0	28.0 29.0	1.0 1.0	244.1 464.3	35.0 44.6	177.6 348.0	168.7 334.4
8.0 8.0	15.0 15.0	9.0 10.0	382.0 309.0	303.0 403.0	30.0 30.0	1.0 1.0	582.8 679.5	50.7 54.3	433.9 498.1	417.5 479.4
8.0	15.0	11.0	8.0	199.0	30.0	1.0	198.8	39.3	157.8	149.4
8.0 8.0	15.0 15.0	12.0 13.0	14.0 22.0	280.0 343.0	30.0 30.0	1.0 1.0	283.9 352.2	39.3 42.1	225.3 275.5	215.2 264.0
8.0 8.0	15.0 15.0	14.0 15.0	22.0	309.0 113.0	30.0 30.0	1.0 1.0	316.1 107.6	41.3 33.9	248.2 87.8	237.5 80.9
8.0 8.0	15.0 15.0	16.0 17.0	-	120.0 90.0	29.0 29.0	1.0 1.0	114.1 85.1	31.7 30.7	94.0 70.5	87.1 64.0
8.0 8.0	15.0 15.0	18.0 19.0	-	17.0	28.0 28.0	1.0	16.1 -	26.9 28.0	13.6	8.2
8.0 8.0	15.0 15.0	20.0 21.0	-	-	28.0 27.0	-	-	28.0 27.0	-	1
8.0	15.0	22.0	-	-	27.0	1.0	-	27.0	-	-
8.0 8.0	15.0 16.0	23.0	-	-	27.0 27.0	1.0 1.0	-	27.0 27.0	-	-
8.0 8.0	16.0 16.0	1.0 2.0	-	-	27.0 26.0	1.0 2.0	- -	27.0 26.0	-	-
8.0 8.0	16.0 16.0	3.0 4.0	-	-	26.0 26.0	2.0 2.0	-	26.0 26.0	-	-
8.0 8.0	16.0 16.0	5.0 6.0	239.0	- 42.0	26.0 27.0	2.0 2.0	- 49.8	26.0 26.7	- 34.1	28.3
8.0	16.0	7.0	506.0	95.0	27.0	1.0	248.6	34.1	180.5	171.6
8.0 8.0	16.0 16.0	8.0 9.0	651.0 731.0	124.0 144.0	28.0 29.0	1.0 1.0	477.2 687.4	44.1 53.1	357.8 503.7	343.8 484.8
8.0 8.0	16.0 16.0	10.0 11.0	799.0 818.0	142.0 151.0	29.0 30.0	-	856.2 950.8	65.3 70.2	589.5 636.9	567.3 612.8
8.0 8.0	16.0 16.0	12.0 13.0	820.0 805.0	155.0 157.0	30.0 30.0	-	977.9 940.5	71.6 70.6	649.9 628.6	625.2 604.8
8.0 8.0	16.0 16.0	14.0 15.0	776.0 721.0	151.0 139.0	30.0 30.0	-	825.7 650.1	66.8 60.5	563.3 456.0	542.1 438.9
8.0 8.0	16.0 16.0	16.0 17.0	631.0 455.0	119.0 89.0	29.0 29.0	1.0 1.0	433.7 203.1	45.9 36.9	319.0 141.6	306.3 133.5
8.0 8.0	16.0 16.0	18.0 19.0	77.0	29.0	28.0 28.0	1.0 1.0	26.9	28.1 28.0	21.3	15.8
8.0	16.0	20.0	-	-	27.0	1.0	- -	27.0	-	-
8.0 8.0	16.0 16.0	21.0 22.0	-	-	27.0 27.0	1.0 1.0	- -	27.0 27.0	-	-
8.0 8.0	16.0 17.0	23.0	-	-	27.0 27.0	2.0 2.0	-	27.0 27.0	-	-
8.0 8.0	17.0 17.0	1.0 2.0	-	- -	27.0 27.0	2.0 2.0	-	27.0 27.0	-	-
8.0 8.0	17.0 17.0	3.0 4.0	-	-	27.0 27.0	2.0 2.0	-	27.0 27.0	-	
8.0	17.0	5.0	-	-	27.0	2.0	-	27.0	- - 21.7	-
8.0 8.0	17.0 17.0	6.0 7.0	312.0 117.0	37.0 138.0	28.0 29.0	2.0	50.0 167.6	27.7 32.6	31.7 132.4	26.0 124.6
8.0	17.0	8.0	751.0	86.0	29.0	1.0	493.7	45.2	366.7	352.5

8.0 8.0	17.0 17.0	9.0 10.0	16.0 862.0	251.0 104.0	30.0 30.0	1.0 1.0	252.2 870.1	40.0 58.6	199.4 622.5	190.0 599.0
8.0	17.0	11.0	881.0	108.0	31.0	1.0	970.3	65.4	668.7	643.2
8.0	17.0	12.0	886.0	110.0	31.0	2.0	1,000.3	61.8	703.8	676.8
8.0	17.0	13.0	840.0	134.0	31.0	2.0	945.5	60.4	670.2	644.7
8.0	17.0	14.0	812.0	130.0	31.0	2.0	831.4	57.2	599.0	576.5
8.0	17.0	15.0	761.0	120.0	31.0	3.0	658.1	49.6	489.7	471.4
8.0 8.0	17.0 17.0	16.0 17.0	707.0 362.0	92.0 97.0	30.0 29.0	3.0 3.0	444.3 186.5	42.6 34.1	331.1 134.5	318.0 126.6
8.0	17.0	18.0	118.0	27.0	28.0	3.0	25.0	27.7	19.1	13.6
8.0	17.0	19.0	-	-	28.0	3.0	-	28.0	-	-
8.0	17.0	20.0	-	-	28.0	3.0	-	28.0	-	-
8.0	17.0	21.0	-	-	28.0	3.0	-	28.0	-	-
8.0	17.0	22.0	-	-	28.0	2.0	-	28.0	-	-
8.0 8.0	17.0 18.0	23.0	-	-	27.0 27.0	2.0 2.0	-	27.0 27.0	-	-
8.0	18.0	1.0	-	-	27.0	2.0	-	27.0	-	
8.0	18.0	2.0	-	-	27.0	2.0	-	27.0	-	-
8.0	18.0	3.0	-	-	27.0	1.0	-	27.0	-	-
8.0	18.0	4.0	-	-	27.0	1.0	-	27.0	-	-
8.0	18.0	5.0	-	-	27.0	1.0	- 40.7	27.0	-	-
8.0 8.0	18.0 18.0	6.0 7.0	320.0 624.0	36.0 68.0	28.0 29.0	1.0 2.0	49.7 259.1	27.6 35.3	31.2 182.9	25.5 173.8
8.0	18.0	8.0	752.0	87.0	29.0	2.0	496.0	43.2	372.3	357.9
8.0	18.0	9.0	816.0	101.0	30.0	2.0	705.8	51.1	522.5	502.9
8.0	18.0	10.0	840.0	118.0	30.0	2.0	865.7	56.3	627.3	603.6
8.0	18.0	11.0	856.0	127.0	31.0	2.0	965.8	60.5	684.4	658.3
8.0	18.0	12.0	857.0	131.0	31.0	2.0	992.9	61.6	699.4	672.6
8.0 8.0	18.0 18.0	13.0 14.0	851.0 822.0	127.0 123.0	31.0 31.0	2.0 2.0	949.5 833.1	60.5 57.2	672.7 600.0	647.1 577.5
8.0	18.0	15.0	774.0	113.0	30.0	2.0	659.9	51.1	487.1	468.8
8.0	18.0	16.0	710.0	90.0	30.0	2.0	443.2	44.3	327.2	314.2
8.0	18.0	17.0	547.0	69.0	29.0	2.0	207.5	35.5	141.6	133.6
8.0	18.0	18.0	186.0	26.0	29.0	2.0	25.9	29.0	18.5	13.1
8.0	18.0	19.0	-		28.0	2.0	-	28.0	-	-
8.0 8.0	18.0 18.0	20.0 21.0		- -	28.0 28.0	2.0 2.0	-	28.0 28.0	-	
8.0	18.0	22.0	-		28.0	2.0		28.0	-	_
8.0	18.0	23.0	_	-	28.0	2.0	-	28.0	_	_
8.0	19.0	-	-	-	28.0	2.0	-	28.0	-	-
8.0	19.0	1.0	-	-	28.0	1.0	-	28.0	-	-
8.0	19.0	2.0	-	-	27.0	1.0	-	27.0	-	-
8.0 8.0	19.0 19.0	3.0 4.0		- -	27.0 27.0	1.0 1.0		27.0 27.0	-	
8.0	19.0	5.0	_	- -	27.0	1.0	- -	27.0	_	_
8.0	19.0	6.0	291.0	37.0	28.0	1.0	49.3	27.6	31.8	26.1
8.0	19.0	7.0	597.0	73.0	29.0	2.0	256.4	35.3	181.9	172.9
8.0	19.0	8.0	732.0	94.0	29.0	2.0	493.1	43.1	370.6	356.3
8.0 8.0	19.0 19.0	9.0 10.0	802.0 839.0	109.0 120.0	30.0 30.0	2.0 2.0	706.7 867.7	51.1 56.3	523.2 628.6	503.6 604.8
8.0	19.0	11.0	859.0	126.0	30.0	2.0	968.6	59.6	689.8	663.4
8.0	19.0	12.0	864.0	128.0	31.0	2.0	997.6	61.7	702.2	675.3
8.0	19.0	13.0	815.0	153.0	31.0	2.0	947.4	60.5	671.4	645.8
8.0	19.0	14.0	785.0	147.0	31.0	1.0	829.8	61.6	583.3	561.4
8.0	19.0	15.0	731.0	135.0	30.0	1.0	651.9	54.7	472.1	454.4
8.0 8.0	19.0 19.0	16.0 17.0	663.0 482.0	107.0 82.0	30.0 30.0	1.0 1.0	436.2 203.2	47.0 38.0	318.3 139.5	305.6 131.5
8.0	19.0	18.0	123.0	27.0	29.0	1.0	25.4	29.1	19.1	13.6
8.0	19.0	19.0	-	-	29.0	1.0		29.0	-	
8.0	19.0	20.0	-	-	28.0	1.0	-	28.0	-	-
8.0	19.0	21.0	-	-	28.0	1.0		28.0	-	-
8.0	19.0	22.0	-	-	28.0	1.0	-	28.0	-	-
8.0 8.0	19.0 20.0	23.0			28.0 27.0	1.0 1.0		28.0 27.0		
8.0	20.0	1.0	_	_	27.0	1.0	<u>-</u>	27.0	_	_
8.0	20.0	2.0	-	-	27.0	1.0	-	27.0	-	-
8.0	20.0	3.0	-	-	27.0	1.0	-	27.0	-	-
8.0	20.0	4.0	-	-	27.0	1.0	-	27.0 27.0	-	-
8.0 8.0	20.0 20.0	5.0 6.0	251.0	39.0	27.0 27.0	1.0 1.0	48.5	26.5	32.5	26.8
8.0	20.0	7.0	564.0	80.0	28.0	2.0	253.7	34.2	182.2	173.2
8.0	20.0	8.0	702.0	105.0	29.0	2.0	488.5	43.0	367.9	353.7
8.0	20.0	9.0	775.0	122.0	29.0	1.0	701.0	53.6	512.3	493.1
8.0	20.0	10.0	831.0	124.0	30.0	1.0	865.6	60.6	612.3	589.3
8.0 8.0	20.0 20.0	11.0 12.0	852.0 856.0	130.0 133.0	30.0 30.0	1.0	966.6 995.1	64.3 72.2	670.2 658.9	644.7 633.9
8.0	20.0	13.0	841.0	134.0	30.0	-	947.6	70.9	632.1	608.2
8.0	20.0	14.0	812.0	130.0	31.0	-	835.7	68.1	565.8	544.6
8.0	20.0	15.0	758.0	121.0	30.0	-	656.4	60.8	459.5	442.2
8.0	20.0	16.0	654.0	109.0	30.0	-	433.3	51.9	308.0	295.6
8.0	20.0	17.0	482.0	80.0	29.0	-	200.7	40.5	135.7	127.8

8.0	20.0	18.0	130.0	25.0	29.0	_	23.9	30.3	17.7	12.2
8.0	20.0	19.0	-		29.0	_		29.0	_	_
8.0	20.0	20.0	_		28.0			28.0	_	
			- -			1.0			_	
8.0	20.0	21.0	-	-	28.0	1.0	-	28.0	-	-
8.0	20.0	22.0	-		28.0	1.0		28.0		-
8.0	20.0	23.0	-	-	28.0	1.0	-	28.0	-	-
8.0	21.0	-	-		27.0	1.0	-	27.0	-	-
8.0	21.0	1.0	_	<u>-</u>	27.0	1.0	-	27.0	_	_
8.0	21.0	2.0	_		27.0	1.0		27.0		_
8.0	21.0	3.0			27.0	1.0		27.0		
			-							-
8.0	21.0	4.0	-	-	27.0	1.0	-	27.0	-	-
8.0	21.0	5.0	-		27.0	1.0		27.0		-
8.0	21.0	6.0	261.0	38.0	27.0	1.0	48.4	26.5	32.0	26.3
8.0	21.0	7.0	313.0	120.0	28.0	1.0	212.8	33.8	160.0	151.5
8.0	21.0	8.0	714.0	99.0	28.0	1.0	490.0	44.3	366.4	352.2
8.0	21.0	9.0	594.0	219.0	29.0	1.0	666.7	52.5	490.8	472.4
8.0	21.0	10.0	511.0	324.0	29.0	1.0	789.4	57.2	569.5	548.1
						1.0				
8.0	21.0	11.0	439.0	394.0	29.0	-	839.2	65.4	578.4	556.6
8.0	21.0	12.0	128.0	488.0	30.0	-	622.2	59.6	443.1	426.4
8.0	21.0	13.0	370.0	416.0	30.0	-	781.7	63.5	544.7	524.3
8.0	21.0	14.0	772.0	152.0	30.0	-	823.9	65.8	565.3	544.1
8.0	21.0	15.0	722.0	137.0	30.0	_	647.8	60.4	454.6	437.5
8.0	21.0	16.0	663.0	104.0	29.0	_	432.2	50.9	308.7	296.2
8.0	21.0	17.0	368.0	92.0	28.0	1.0	181.8	35.2	129.5	121.7
8.0	21.0	18.0	96.0	23.0	28.0	1.0	21.5	27.8	16.4	11.0
8.0	21.0	19.0	-		28.0	1.0	-	28.0	-	-
8.0	21.0	20.0	-	-	27.0	1.0	-	27.0	-	-
8.0	21.0	21.0	-	-	27.0	2.0	-	27.0	-	-
8.0	21.0	22.0	_	-	27.0	2.0	-	27.0	_	_
8.0	21.0	23.0	_	_	27.0	2.0		27.0	_	_
8.0	22.0				26.0	2.0		26.0		
		-	-							-
8.0	22.0	1.0	-	-	26.0	1.0	-	26.0	-	-
8.0	22.0	2.0	-		26.0	1.0		26.0		-
8.0	22.0	3.0	-	-	26.0	1.0	-	26.0	-	-
8.0	22.0	4.0	-		26.0	1.0	-	26.0	-	_
8.0	22.0	5.0	_	_	26.0	1.0	-	26.0	_	_
8.0	22.0	6.0	_	9.0	26.0	1.0	8.5	23.9	7.3	2.0
8.0	22.0	7.0		57.0	27.0	1.0	54.1	26.7	45.7	39.7
			-							
8.0	22.0	8.0		147.0	27.0	1.0	140.1	30.2	116.3	108.8
8.0	22.0	9.0	269.0	329.0	28.0	1.0	530.0	45.2	406.6	391.1
8.0	22.0	10.0	9.0	220.0	29.0	2.0	219.1	36.2	176.6	167.7
8.0	22.0	11.0	170.0	476.0	29.0	2.0	647.1	47.4	492.6	474.1
8.0	22.0	12.0	38.0	410.0	29.0	2.0	445.2	43.3	346.1	332.6
8.0	22.0	13.0	65.0	432.0	29.0	2.0	490.9	43.8	380.7	366.0
8.0				340.0	29.0	3.0	709.4		537.8	517.7
	22.0	14.0	418.0					47.9		
8.0	22.0	15.0	282.0	305.0	29.0	3.0	502.3	43.3	388.5	373.6
8.0	22.0	16.0	220.0	211.0	29.0	3.0	313.2	37.6	245.5	234.9
8.0	22.0	17.0	58.0	109.0	28.0	2.0	117.8	31.2	94.4	87.4
8.0	22.0	18.0	-	18.0	28.0	2.0	17.1	27.2	14.4	9.0
8.0	22.0	19.0	-	-	27.0	2.0	-	27.0	-	_
8.0	22.0	20.0	_	<u>-</u>	27.0	2.0	-	27.0	_	_
8.0	22.0	21.0	_		27.0	2.0		27.0	_	_
8.0	22.0	22.0			27.0	2.0		27.0		
			-						-	-
8.0	22.0	23.0	-	-	26.0	2.0	-	26.0	-	-
8.0	23.0	-	-	-	26.0	2.0	•	26.0	-	-
8.0	23.0	1.0	-	-	26.0	3.0	-	26.0	-	-
8.0	23.0	2.0	-	-	26.0	3.0	-	26.0	-	-
8.0	23.0	3.0	-		26.0	3.0		26.0	-	-
8.0	23.0	4.0	-	<u>-</u>	26.0	3.0		26.0	-	-
8.0	23.0	5.0	_	-	26.0	3.0	-	26.0	_	-
8.0	23.0	6.0	331.0	32.0	27.0	3.0	47.9	26.7	29.1	23.4
8.0	23.0	7.0	622.0	66.0	28.0	4.0	259.4	33.2	185.4	176.3
8.0	23.0	8.0	750.0	86.0	28.0	4.0	497.8	39.6	381.0	366.3
8.0	23.0	9.0	812.0	102.0	29.0	4.0	708.2	46.3	538.0	517.8
8.0	23.0	10.0	849.0	112.0	29.0	5.0	872.1	48.8	658.1	633.1
8.0	23.0	11.0	44.0	387.0	29.0	5.0	426.5	39.3	338.4	325.1
8.0	23.0	12.0	154.0	490.0	30.0	5.0	651.2	44.3	503.8	325.1 484.9 94.9
8.0	23.0	13.0	-	130.0	29.0	4.0	124.4	32.6	102.1	94.9
8.0	23.0	14.0	8.0	213.0	29.0	4.0	211.2	33.2	172.7	163.9
8.0	23.0	15.0	344.0	289.0	29.0	4.0	529.5	41.2	413.5	397.8
8.0	23.0	16.0	155.0	214.0	28.0	4.0	284.5	35.1	226.8	216.7
8.0	23.0	17.0	489.0	75.0	28.0	3.0	195.8	32.7	136.5	128.6
8.0	23.0	18.0	111.0	22.0	27.0	3.0	21.2	26.6	15.9	10.6
	23.0	19.0	-	-	27.0	2.0	-	27.0	-	-
8.0		20.0	-	-	27.0	2.0	-	27.0	-	-
8.0 8.0	23.0		_	<u>-</u>	27.0	2.0		27.0	-	-
		21.0				2.0				
8.0 8.0	23.0 23.0		_	-	27.0	2.0	_	27.0	_	_
8.0 8.0 8.0	23.0 23.0 23.0	22.0	-	-	27.0 27.0			27.0 27.0	-	-
8.0 8.0 8.0 8.0	23.0 23.0 23.0 23.0	22.0 23.0	-	- - -	27.0	3.0	-	27.0	-	-
8.0 8.0 8.0 8.0	23.0 23.0 23.0 23.0 24.0	22.0 23.0 -	-	- - -	27.0 27.0	3.0 3.0	- - - -	27.0 27.0	- - - -	- - -
8.0 8.0 8.0 8.0 8.0	23.0 23.0 23.0 23.0 24.0 24.0	22.0 23.0 - 1.0	-	: :	27.0 27.0 27.0	3.0 3.0 3.0	- - - -	27.0 27.0 27.0	- - -	- - -
8.0 8.0 8.0 8.0	23.0 23.0 23.0 23.0 24.0	22.0 23.0 -	- - - -		27.0 27.0	3.0 3.0		27.0 27.0	- - - -	- - - -

8.0	24.0	3.0	_	_	27.0	3.0	_	27.0	_	_
8.0	24.0	4.0	_	_	27.0	3.0	_	27.0	_	_
8.0	24.0	5.0		_	27.0	3.0		27.0	_	
		6.0	22.0				27.0			24.7
8.0	24.0		32.0	38.0	27.0	3.0	37.2	26.5	30.3	24.7
8.0	24.0	7.0	303.0	119.0	27.0	3.0	209.9	31.2	160.1	151.7
8.0	24.0	8.0	155.0	240.0	28.0	3.0	319.7	35.8	255.3	244.4
8.0	24.0	9.0	8.0	210.0	28.0	3.0	207.1	33.2	169.4	160.7
8.0	24.0	10.0	_	130.0	28.0	2.0	124.2	30.9	102.7	95.6
8.0	24.0	11.0	21.0	336.0	29.0	2.0	345.6	38.2	275.7	264.3
8.0	24.0	12.0	27.0	375.0	29.0	2.0	399.2	40.8	314.5	301.9
8.0	24.0	13.0	330.0	433.0	29.0	2.0	761.9	51.3	568.0	546.6
8.0	24.0	14.0	49.0	361.0	30.0	2.0	397.6	43.4	308.9	296.5
8.0	24.0	15.0	223.0	312.0	30.0	2.0	464.0	43.9	358.1	344.2
8.0	24.0	16.0	102.0	211.0	29.0	1.0	253.2	38.8	199.0	189.6
8.0	24.0	17.0	15.0	99.0	28.0	1.0	97.3	31.0	79.7	73.0
8.0	24.0	18.0	-	12.0	28.0	1.0	11.4	26.8	9.6	4.3
			-							4.3
8.0	24.0	19.0	-	-	28.0	1.0	-	28.0	-	•
8.0	24.0	20.0	-	-	27.0	1.0	-	27.0	-	-
8.0	24.0	21.0	-	-	27.0	1.0	-	27.0	-	-
8.0	24.0	22.0	-	-	27.0	1.0	-	27.0	-	-
8.0	24.0	23.0	_	<u>-</u>	27.0	2.0	-	27.0	_	_
8.0	25.0		_		27.0	2.0		27.0		
8.0	25.0	1.0	-	-	27.0	2.0	-	27.0	-	•
8.0	25.0	2.0	-	-	27.0	2.0	-	27.0	-	-
8.0	25.0	3.0	-	-	27.0	2.0	-	27.0	-	-
8.0	25.0	4.0	-	-	27.0	2.0	-	27.0	-	-
8.0	25.0	5.0	-	-	27.0	2.0	-	27.0	-	-
8.0	25.0	6.0	_	2.0	27.0	2.0	1.9	25.2	1.6	_
8.0		7.0						27.5		E7 E
	25.0			80.0	27.0	2.0	76.0		63.9	57.5
8.0	25.0	8.0	14.0	190.0	28.0	3.0	189.1	31.8	155.5	147.1
8.0	25.0	9.0	-	115.0	28.0	3.0	109.6	30.1	91.0	84.1
8.0	25.0	10.0	1.0	149.0	29.0	3.0	143.4	31.7	118.1	110.7
8.0	25.0	11.0	29.0	371.0	29.0	3.0	396.1	38.6	315.4	302.8
8.0	25.0	12.0	8.0	195.0	30.0	3.0	195.5	35.2	158.4	149.9
8.0	25.0	13.0	8.0	200.0	30.0	3.0	199.8	34.6	162.3	153.8
8.0	25.0	14.0	9.0	217.0	30.0	3.0	215.9	35.0	175.0	166.2
8.0	25.0	15.0	26.0	258.0	30.0	2.0	265.8	37.3	212.8	203.1
8.0	25.0	16.0	145.0	211.0	29.0	2.0	276.7	36.8	218.9	209.0
8.0	25.0	17.0	_	87.0	28.0	2.0	82.4	30.0	68.4	62.0
8.0	25.0	18.0	_	10.0	28.0	2.0	9.5	26.8	8.0	2.7
8.0	25.0	19.0		-	27.0	1.0	-	27.0	-	2.7
			-							-
8.0	25.0	20.0	-	-	27.0	1.0	-	27.0	-	•
8.0	25.0	21.0	-	-	27.0	1.0		27.0	-	-
8.0	25.0	22.0	-	-	27.0	1.0	-	27.0	-	-
8.0	25.0	23.0	_	_	27.0	1.0	_	27.0	_	_
8.0	26.0	_	_	_	26.0	1.0		26.0	_	_
8.0	26.0	1.0			26.0	1.0		26.0		
									_	-
8.0	26.0	2.0	-	-	26.0	1.0	-	26.0	-	•
8.0	26.0	3.0	-	-	26.0	1.0		26.0	-	-
8.0	26.0	4.0	-	-	26.0	1.0	-	26.0	-	-
8.0	26.0	5.0	-	-	26.0	1.0		26.0	-	-
8.0	26.0	6.0	231.0	35.0	26.0	1.0	45.7	25.4	30.5	24.9
8.0	26.0	7.0	144.0	132.0	27.0	1.0	172.3	31.3	136.0	128.1
8.0	26.0	8.0	384.0	203.0	28.0	2.0	411.8	39.4	319.8	307.1
8.0	26.0	9.0	456.0	268.0	29.0	2.0	615.4	47.2	466.4	448.9
8.0	26.0	10.0	212.0	419.0	29.0	2.0	610.5	47.9	463.3	445.8
8.0	26.0	11.0	267.0	459.0	29.0	3.0	734.4	48.9	554.6	533.8
8.0	26.0	12.0	381.0	427.0	29.0	2.0	824.0	54.3	604.5	581.8
8.0	26.0	13.0	548.0	349.0	30.0	2.0	893.9	57.5	644.3	619.9
8.0	26.0	14.0	298.0	382.0	30.0	2.0	644.4	50.9	481.0	462.9
8.0	26.0	15.0	409.0	268.0	29.0	1.0	558.1	49.9	416.3	400.5
8.0	26.0	16.0	186.0	208.0	29.0	1.0	293.5	40.8	226.9	216.7
			100.0			1.0				
8.0	26.0	17.0	-	78.0	29.0	-	73.9 7.6	33.7	60.3	54.1
8.0	26.0	18.0	-	8.0	28.0	-	7.6	26.0	6.4	1.2
8.0	26.0	19.0	-	-	28.0	-	-	28.0	-	-
8.0	26.0	20.0	-	-	28.0	-	-	28.0	-	-
8.0	26.0	21.0	_	_	28.0	_	_	28.0	_	_
8.0	26.0	22.0	_	<u>-</u>	28.0	_	<u>-</u>	28.0	_	_
8.0	26.0	23.0	_		28.0	_	_	28.0		_
	27.0		-	-	27.0				-	
8.0		-	-	-		-	-	27.0	-	-
8.0	27.0	1.0	-	-	27.0	-	-	27.0	-	-
8.0	27.0	2.0	-	-	27.0	1.0	-	27.0	-	-
8.0	27.0	3.0	-	-	27.0	1.0		27.0	-	-
8.0	27.0	4.0	_	<u>-</u>	27.0	1.0	<u>-</u>	27.0	_	_
8.0	27.0	5.0	_	<u>-</u>	27.0	1.0	<u>-</u>	27.0	_	_
8.0	27.0	6.0	_	24.0	27.0	1.0	22.8	25.6	19.3	13.9
8.0			533.0							
	27.0	7.0		85.0	28.0	2.0	253.1	34.0	183.4	174.4
8.0	27.0	8.0	683.0	110.0	28.0	2.0	488.9	42.0	370.8	356.5
8.0	27.0	9.0	762.0	128.0	29.0	2.0	703.8	50.0	524.5	504.8
8.0	27.0	10.0	849.0	113.0	29.0	3.0	876.4	52.8	647.4	622.9
8.0	27.0	11.0	868.0	118.0	29.0	3.0	975.4	55.7	709.8	682.6

8.0	27.0	12.0	873.0	120.0	30.0	3.0	1,002.9	57.7	722.2	694.4
8.0	27.0	13.0	848.0	129.0	30.0	3.0	950.9	56.5	689.1	662.8
										588.2
8.0	27.0	14.0	819.0	124.0	30.0	3.0	830.7	53.3	611.2	
8.0	27.0	15.0	766.0	114.0	29.0	3.0	651.8	47.5	490.2	471.8
8.0	27.0	16.0	690.0	91.0	29.0	2.0	428.1	42.9	317.7	305.0
8.0	27.0	17.0	515.0	66.0	28.0	2.0	190.5	33.9	129.9	122.1
8.0	27.0	18.0	104.0	17.0	28.0	2.0	17.0	27.6	12.4	7.1
8.0	27.0	19.0		_	28.0	2.0	-	28.0	-	_
8.0	27.0	20.0	_	<u>-</u>	28.0	2.0		28.0	<u>-</u>	_
					28.0	2.0		28.0		
8.0	27.0	21.0	-							-
8.0	27.0	22.0	-	-	28.0	2.0	-	28.0	-	-
8.0	27.0	23.0	-	-	27.0	2.0	-	27.0	-	-
8.0	28.0	-	-	-	27.0	2.0		27.0		-
8.0	28.0	1.0	_	_	27.0	2.0	-	27.0	_	_
8.0	28.0	2.0	_		27.0	2.0		27.0	_	
8.0	28.0	3.0			27.0	2.0		27.0		
				•			•			
8.0	28.0	4.0	-	-	27.0	2.0	-	27.0	-	-
8.0	28.0	5.0	-	-	27.0	2.0	-	27.0	-	-
8.0	28.0	6.0	236.0	35.0	27.0	2.0	47.1	26.7	31.0	25.4
8.0	28.0	7.0	572.0	75.0	28.0	2.0	256.0	34.2	184.0	174.9
8.0	28.0	8.0	657.0	122.0	28.0	3.0	487.8	40.4	373.4	359.0
8.0	28.0	9.0	780.0	118.0	29.0	3.0	707.8	47.8	533.5	513.6
8.0	28.0	10.0	826.0	126.0	29.0	3.0	869.9	52.6	643.2	618.8
8.0	28.0	11.0	842.0	135.0	29.0	4.0	967.7	53.3	713.7	686.3
8.0	28.0	12.0	842.0	141.0	29.0	4.0	993.2	54.1	729.3	701.2
8.0	28.0	13.0	838.0	134.0	29.0	4.0	946.4	53.1	698.6	671.8
8.0	28.0	14.0	804.0	131.0	29.0	4.0	829.0	50.3	620.1	596.7
8.0	28.0	15.0	451.0	247.0	29.0	4.0	566.2	43.8	435.7	419.2
8.0	28.0	16.0	659.0	100.0	28.0	4.0	421.6	38.6	320.1	307.4
8.0	28.0	17.0	466.0	73.0	28.0	4.0	184.9	32.4	128.6	120.9
8.0	28.0	18.0	55.0	16.0	28.0	4.0	15.8	27.5	12.3	6.9
8.0	28.0	19.0	-	-	28.0	4.0	-	28.0	-	-
8.0	28.0	20.0	-	-	28.0	4.0		28.0		-
8.0	28.0	21.0	-	-	28.0	3.0	-	28.0	-	-
8.0	28.0	22.0	-	-	28.0	3.0		28.0		-
8.0	28.0	23.0	-	-	28.0	3.0	-	28.0	_	_
8.0	29.0	-	_	_	27.0	3.0	<u>-</u>	27.0	-	_
8.0	29.0	1.0			27.0	3.0		27.0		
						3.0		27.0		_
8.0	29.0	2.0	-		27.0					-
8.0	29.0	3.0	-	-	27.0	4.0	-	27.0	-	-
8.0	29.0	4.0	-	-	27.0	4.0		27.0		-
8.0	29.0	5.0	-	-	27.0	4.0	-	27.0	-	-
8.0	29.0	6.0	146.0	35.0	27.0	4.0	41.7	26.6	29.7	24.1
8.0	29.0	7.0	337.0	112.0	28.0	4.0	217.7	32.1	164.5	156.0
8.0	29.0	8.0	316.0	216.0	28.0	4.0	389.4	36.8	307.2	294.8
8.0	29.0	9.0	124.0	336.0	28.0	4.0	428.1	38.3	340.9	327.5
8.0	29.0	10.0	148.0	419.0	28.0	5.0	555.1	40.1	438.5	421.9
8.0	29.0	11.0	185.0	470.0	28.0	5.0	659.4	42.7	514.2	494.9
8.0	29.0	12.0	49.0	426.0	28.0	5.0	474.4	38.9	377.3	362.7
8.0	29.0	13.0	14.0	273.0	28.0	4.0	276.9	34.8	224.7	214.6
8.0	29.0	14.0	14.0	265.0	28.0	4.0	267.2	34.0	217.7	207.8
8.0	29.0	15.0	_	137.0	28.0	4.0	130.7	30.6	108.3	101.0
8.0	29.0	16.0	40.0	188.0	28.0	4.0	201.1	32.0	164.5	156.0
8.0	29.0	17.0	-	77.0	27.0	3.0	73.0	28.1	61.2	54.9
8.0	29.0	18.0		6.0	27.0	3.0	5.7	25.8	4.8	-
8.0	29.0	19.0	-	-	27.0	3.0	-	27.0	-	-
8.0	29.0	20.0	-	-	26.0	3.0		26.0		-
8.0	29.0	21.0	-	-	26.0	3.0	-	26.0	-	-
8.0	29.0	22.0	-	-	26.0	3.0	-	26.0	-	-
8.0	29.0	23.0	-		26.0	3.0	-	26.0	-	-
8.0	30.0	-	-	-	26.0	3.0	_	26.0	_	_
8.0	30.0	1.0	_	_	26.0	3.0	_	26.0	<u>-</u>	_
8.0	30.0		_			3.0	_		_	_
		2.0	-		26.0 26.0			26.0		-
8.0	30.0	3.0	-	-		3.0	-	26.0	-	-
8.0	30.0	4.0	-	-	26.0	3.0	-	26.0	-	-
8.0	30.0	5.0	-	5.2	27.0	4.0	1	27.0		-
8.0	30.0	6.0	-	6.0	27.0	4.0	5.7	25.7	4.8	-
8.0	30.0	7.0	289.0	118.0	27.0	5.0	207.0	30.4	159.1	150.7
8.0	30.0	8.0	170.0	235.0	28.0	5.0	325.3	34.5	261.3	250.2
8.0	30.0	9.0	100.0	331.0	28.0	5.0	400.3	36.5	321.7	308.9
8.0	30.0	10.0	348.0	383.0	29.0	5.0	704.5	44.4	544.3	308.9 523.9
8.0	30.0	11.0	457.0	383.0	29.0	5.0	852.7	48.3	645.8	621.4
										406.0
8.0	30.0	12.0	174.0	483.0	29.0	5.0	667.4	44.6	515.5	496.2
8.0	30.0	13.0	425.0	381.0	30.0	5.0	809.1	48.3	612.8	589.7
8.0	30.0	14.0	350.0	361.0	30.0	5.0	668.4	45.5	513.1	493.9
8.0	30.0	15.0	419.0	257.0	29.0	5.0	553.7	41.7	430.8	414.5
8.0	30.0	16.0	646.0	104.0	29.0	4.0	417.9	39.5	315.9	303.3
8.0	30.0	17.0	288.0	88.0	28.0	4.0	154.8	31.6	113.1	105.8
8.0	30.0	18.0	-	12.0	27.0	4.0	11.4	26.3	9.6	4.3
8.0	30.0	19.0	_	-	27.0	4.0	-	27.0	-	-
8.0	30.0	20.0	_	<u>-</u>	27.0	4.0	_	27.0	_	_
3.0	00.0	20.0	=	- -	21.0	4.0	-	21.0		=

8.0 8.0	30.0 30.0	21.0 22.0	-	-	27.0 27.0	4.0 4.0	-	27.0 27.0		-
8.0	30.0	23.0	-	-	27.0	4.0	-	27.0	-	
8.0	31.0	-	_	<u>-</u>	27.0	5.0	<u>-</u>	27.0	-	_
8.0	31.0	1.0	-	-	27.0	5.0	-	27.0	-	-
8.0	31.0	2.0	-	-	26.0	4.0		26.0	-	-
8.0 8.0	31.0 31.0	3.0 4.0	-	-	26.0 26.0	4.0 4.0		26.0 26.0	-	-
8.0	31.0	5.0	-	-	26.0	4.0	-	26.0	-	
8.0	31.0	6.0	182.0	39.0	27.0	5.0	48.6	26.8	34.0	28.3
8.0	31.0	7.0	546.0	86.0	28.0	5.0	260.7	32.7	190.5	181.3
8.0	31.0	8.0	694.0	115.0	28.0	5.0	503.4	38.6	388.7	373.8
8.0	31.0	9.0	765.0	138.0	29.0	6.0	719.7	43.4	555.5	534.6
8.0 8.0	31.0 31.0	10.0 11.0	31.0 831.0	339.0 156.0	29.0 29.0	6.0 6.0	363.1 986.9	36.6 48.5	292.1 746.8	280.1 717.9
8.0	31.0	12.0	835.0	158.0	30.0	6.0	1,012.1	51.1	755.3	726.0
8.0	31.0	13.0	832.0	150.0	29.0	6.0	963.3	49.2	726.2	698.2
8.0	31.0	14.0	805.0	139.0	29.0	6.0	837.2	46.6	638.5	614.4
8.0	31.0	15.0	751.0	125.0	29.0	6.0	650.3	42.6	501.5	482.7
8.0 8.0	31.0 31.0	16.0 17.0	634.0 435.0	111.0 77.0	28.0 28.0	6.0 5.0	418.5 178.0	36.6 31.7	321.1 124.8	308.4 117.1
8.0	31.0	18.0	21.0	12.0	27.0	5.0	11.9	26.4	9.7	4.4
8.0	31.0	19.0	-	-	27.0	2.0	-	27.0	-	-
8.0	31.0	20.0	-	-	27.0	2.0	-	27.0	-	-
8.0	31.0	21.0	-	-	27.0	2.0		27.0	-	-
8.0 8.0	31.0 31.0	22.0 23.0	-	-	26.0 26.0	2.0 2.0	-	26.0 26.0	-	-
9.0	1.0	23.0			26.0	2.0		26.0		
9.0	1.0	1.0	_	<u>-</u>	26.0	2.0	-	26.0	_	_
9.0	1.0	2.0	-	-	26.0	2.0	-	26.0	-	_
9.0	1.0	3.0	-	-	26.0	2.0	-	26.0	-	-
9.0	1.0	4.0	-		26.0	2.0	-	26.0	-	-
9.0 9.0	1.0 1.0	5.0 6.0	- 216.0	34.0	26.0 26.0	2.0 3.0	46.9	26.0 25.7	31.3	- 25.6
9.0	1.0	7.0	545.0	82.0	27.0	3.0	257.0	32.5	187.7	178.6
9.0	1.0	8.0	695.0	110.0	28.0	4.0	499.6	39.6	383.8	369.1
9.0	1.0	9.0	778.0	127.0	28.0	4.0	719.1	45.5	548.8	528.2
9.0	1.0	10.0	769.0	173.0	29.0	4.0	875.0	50.8	653.6	628.8
9.0 9.0	1.0 1.0	11.0 12.0	807.0 825.0	174.0 169.0	29.0 29.0	4.0 4.0	982.4 1,013.7	53.6 54.6	723.2 742.3	695.4 713.6
9.0	1.0	13.0	807.0	172.0	29.0	4.0	961.9	53.5	742.5	681.3
9.0	1.0	14.0	787.0	156.0	29.0	4.0	838.9	50.5	626.6	603.0
9.0	1.0	15.0	742.0	135.0	28.0	4.0	654.5	44.9	498.9	480.2
9.0	1.0	16.0	652.0	109.0	28.0	4.0	424.2	38.9	321.4	308.6
9.0 9.0	1.0 1.0	17.0 18.0	464.0 38.0	73.0 9.0	27.0 26.0	3.0 3.0	181.5 9.2	31.8 25.2	126.1 7.1	118.4 1.9
9.0	1.0	19.0	-	-	26.0	3.0	9.2 -	26.0	7.1	-
9.0	1.0	20.0	-	-	26.0	3.0	-	26.0	-	_
9.0	1.0	21.0	-	-	26.0	3.0	-	26.0	-	-
9.0	1.0	22.0	-	-	26.0	2.0	-	26.0	-	-
9.0 9.0	1.0 2.0	23.0	-	-	26.0 25.0	2.0 2.0	-	26.0 25.0	•	-
9.0	2.0	1.0	-	<u>-</u>	25.0	2.0	-	25.0	-	_
9.0	2.0	2.0	-	-	25.0	2.0	-	25.0	-	_
9.0	2.0	3.0	-	-	25.0	2.0	-	25.0	-	-
9.0	2.0	4.0	-	-	25.0	2.0	-	25.0	-	-
9.0 9.0	2.0 2.0	5.0 6.0	- 263.0	31.0	25.0 26.0	2.0 2.0	48.5	25.0 25.6	30.7	25.0
9.0	2.0	7.0	605.0	71.0	27.0	3.0	265.6	32.8	192.0	182.8
9.0	2.0	8.0	749.0	93.0	27.0	3.0	512.7	40.1	392.3	377.3
9.0	2.0	9.0	823.0	107.0	28.0	3.0	732.8	47.6	553.2	532.5
9.0	2.0	10.0	593.0	284.0	28.0	3.0	832.2	50.8	621.7	598.2
9.0 9.0	2.0 2.0	11.0 12.0	877.0 882.0	126.0 128.0	28.0 29.0	3.0 3.0	995.8 1,022.0	55.2 57.2	727.0 737.6	699.0 709.2
9.0	2.0	13.0	821.0	159.0	29.0	3.0	962.0	55.8	699.6	672.8
9.0	2.0	14.0	787.0	152.0	28.0	3.0	834.5	51.5	620.0	596.6
9.0	2.0	15.0	725.0	139.0	28.0	3.0	646.3	46.4	488.9	470.6
9.0	2.0	16.0	616.0	116.0	28.0	3.0	413.4	39.7 32.3	312.3	299.8 113.0
9.0 9.0	2.0 2.0	17.0 18.0	416.0 24.0	77.0 8.0	27.0 26.0	2.0 2.0	172.2 8.0	25.1	120.5 6.3	1.1
9.0	2.0	19.0	-	-	26.0	2.0	-	26.0	-	
9.0	2.0	20.0	-	-	26.0	2.0	-	26.0	-	-
9.0	2.0	21.0	-	-	26.0	2.0	-	26.0	-	-
9.0	2.0	22.0	-	-	26.0	1.0	-	26.0	-	-
9.0 9.0	2.0 3.0	23.0		- -	26.0 25.0	1.0 1.0	- -	26.0 25.0		
9.0	3.0	1.0	-	-	25.0	1.0	-	25.0	-	-
9.0	3.0	2.0	-	-	25.0	1.0	-	25.0	-	-
9.0	3.0	3.0	-	-	25.0	1.0	-	25.0	-	-
9.0 9.0	3.0 3.0	4.0 5.0	-	- -	25.0 25.0	1.0 1.0	- -	25.0 25.0	- -	-
3.0	0.0	5.0	-	-	20.0	1.0	-	20.0	- -	-

9.0 9.0	3.0 6.0 3.0 7.0		33.0 83.0	26.0 27.0	1.0 1.0	46.3 258.7	25.4 34.4	31.0 187.5	25.3 178.4
9.0 9.0	3.0 8.0 3.0 9.0	698.0	111.0 128.0	28.0 28.0	1.0 1.0 2.0	504.0 721.8	45.0 49.6	376.7 539.2	362.2 519.0
9.0 9.0	3.0 10.0 3.0 11.0	812.0	146.0 153.0	29.0 29.0	2.0 2.0 2.0	887.5 986.5	56.0 59.2	644.4 704.2	620.0 677.2
9.0	3.0 12.0	831.0	158.0	29.0	2.0	1,009.0	60.2	716.4	688.9
9.0 9.0	3.0 13.0 3.0 14.0	786.0	150.0 146.0	29.0 29.0	2.0	956.4 827.0	58.9 55.2	684.0 602.4	657.9 579.7
9.0 9.0	3.0 15.0 3.0 16.0	610.0	134.0 113.0	28.0 28.0	2.0 2.0	637.1 406.7	48.5 41.2	476.5 304.8	458.6 292.5
9.0 9.0	3.0 17.0 3.0 18.0		76.0 -	27.0 26.0	2.0 2.0	166.7	32.1 26.0	116.9 -	109.5
9.0 9.0	3.0 19.0 3.0 20.0		-	26.0 26.0	2.0 2.0	-	26.0 26.0	-	-
9.0 9.0	3.0 21.0 3.0 22.0	-	-	26.0 26.0	2.0 2.0	-	26.0 26.0	-	-
9.0	3.0 23.0		-	26.0 25.0	2.0	-	26.0	-	-
9.0 9.0	4.0 - 4.0 1.0		- -	25.0	2.0	- -	25.0 25.0	-	-
9.0 9.0	4.0 2.0 4.0 3.0	-	-	25.0 25.0	3.0 3.0	-	25.0 25.0	-	-
9.0 9.0	4.0 4.0 4.0 5.0		- -	25.0 25.0	2.0 2.0	• •	25.0 25.0	-	-
9.0 9.0	4.0 6.0 4.0 7.0		35.0 134.0	26.0 26.0	2.0 2.0	38.6 225.7	25.3 31.2	29.8 174.0	24.1 165.2
9.0 9.0	4.0 8.0 4.0 9.0	408.0	193.0 323.0	26.0 26.0	2.0	424.7 523.0	38.0 41.7	332.2 408.7	319.1 393.2
9.0	4.0 10.0	39.0	353.0	26.0	3.0	385.5	36.6	310.1	297.6
9.0 9.0	4.0 11.0 4.0 12.0	327.0	347.0 446.0	26.0 26.0	3.0 3.0	360.6 793.8	35.5 46.7	291.7 606.5	279.8 583.6
9.0 9.0	4.0 13.0 4.0 14.0	18.0	420.0 278.0	26.0 26.0	3.0 2.0	486.0 283.7	40.1 34.9	384.1 230.1	369.3 219.8
9.0 9.0	4.0 15.0 4.0 16.0		224.0 185.0	26.0 26.0	2.0 2.0	587.9 303.6	43.0 36.0	453.6 238.6	436.6 228.2
9.0 9.0	4.0 17.0 4.0 18.0		63.0	26.0 26.0	2.0 2.0	59.8	27.3 26.0	50.3	44.3
9.0 9.0	4.0 19.0 4.0 20.0	-	<u> </u>	26.0 26.0	3.0 3.0	- -	26.0 26.0	-	
9.0 9.0	4.0 21.0 4.0 22.0	-	-	26.0 26.0	3.0 3.0	-	26.0 26.0	-	-
9.0	4.0 23.0		-	25.0	3.0	-	25.0	-	-
9.0 9.0	5.0 - 5.0 1.0		-	25.0 25.0	3.0 3.0	-	25.0 25.0	-	-
9.0 9.0	5.0 2.0 5.0 3.0		- -	25.0 25.0	3.0 4.0	- -	25.0 25.0	-	-
9.0 9.0	5.0 4.0 5.0 5.0		-	25.0 25.0	3.0 3.0	-	25.0 25.0	-	
9.0 9.0	5.0 6.0 5.0 7.0		18.0 104.0	25.0 26.0	3.0 3.0	17.1 224.8	23.7 30.5	14.6 170.4	9.2 161.7
9.0 9.0	5.0 8.0 5.0 9.0	183.0	231.0 122.0	26.0 27.0	4.0 4.0	330.9 713.5	33.4 44.0	267.2 549.1	255.9 528.5
9.0	5.0 10.0	820.0	132.0	27.0	4.0	881.5	48.9	664.8	639.5
9.0 9.0	5.0 11.0 5.0 12.0	847.0	137.0 139.0	28.0 28.0	3.0 3.0	974.9 998.4	54.8 55.6	713.2 727.0	685.8 699.0
9.0 9.0	5.0 13.0 5.0 14.0		149.0 147.0	28.0 28.0	3.0 3.0	946.5 817.8	54.4 51.1	693.6 609.0	667.1 586.1
9.0 9.0	5.0 15.0 5.0 16.0		136.0 118.0	28.0 27.0	3.0 3.0	628.1 112.5	45.9 30.7	476.3 93.2	458.4 86.2
9.0 9.0	5.0 17.0 5.0 18.0		3.0	26.0 26.0	3.0 3.0	2.8	24.8 26.0	2.4	-
9.0 9.0	5.0 19.0 5.0 20.0	-	<u>.</u>	26.0 26.0	3.0 3.0		26.0 26.0	-	
9.0	5.0 21.0	-	-	26.0 25.0	2.0	-	26.0	-	-
9.0 9.0	5.0 22.0 5.0 23.0		- -	25.0	2.0 2.0	- -	25.0 25.0	-	-
9.0 9.0	6.0 - 6.0 1.0		-	25.0 25.0	2.0 1.0	-	25.0 25.0	-	-
9.0 9.0	6.0 2.0 6.0 3.0		- -	25.0 25.0	1.0 1.0	-	25.0 25.0	-	-
9.0 9.0	6.0 4.0 6.0 5.0		-	25.0 25.0	1.0 1.0	-	25.0 25.0	-	-
9.0 9.0	6.0 6.0 6.0 7.0	-	28.0 85.0	25.0 26.0	1.0 1.0	26.5 246.3	23.5 32.8	22.7 181.2	17.2 172.2
9.0 9.0	6.0 8.0 6.0 9.0	708.0	100.0 117.0	26.0 27.0	2.0 2.0	500.6 717.3	40.3 48.5	383.3 539.1	172.2 368.5 518.9
9.0	6.0 10.0	824.0	129.0	28.0	2.0	877.5	54.7	641.5	617.2
9.0 9.0	6.0 11.0 6.0 12.0	80.0	219.0 451.0	28.0 28.0	2.0 2.0	220.8 533.7	36.8 43.1	177.5 415.3	168.6 399.5
9.0 9.0	6.0 13.0 6.0 14.0		368.0 317.0	28.0 28.0	2.0 2.0	408.2 341.1	40.8 38.3	321.5 272.0	308.7 260.6

9.0	6.0	15.0	574.0	189.0	28.0	2.0	589.0	45.2	448.7	431.8
9.0	6.0	16.0	588.0	114.0	27.0	2.0	394.9	39.6	298.1	286.0
9.0	6.0	17.0	201.0	83.0	27.0	1.0	126.3	32.0	93.7	86.7
9.0	6.0	18.0	201.0	-	26.0					
			-	-		1.0	-	26.0	-	-
9.0	6.0	19.0	-	-	26.0	2.0	-	26.0	-	-
9.0	6.0	20.0	-	-	26.0	2.0	-	26.0	-	-
9.0	6.0	21.0	-		26.0	2.0		26.0	-	-
9.0	6.0	22.0	-	-	26.0	2.0	-	26.0	_	_
9.0	6.0	23.0	_		26.0	2.0		26.0	_	_
9.0	7.0	-			25.0	2.0		25.0		
			-						-	
9.0	7.0	1.0	-	-	25.0	2.0	-	25.0	-	-
9.0	7.0	2.0	-		25.0	1.0		25.0	-	-
9.0	7.0	3.0	-	-	25.0	1.0	-	25.0	-	-
9.0	7.0	4.0	-	-	25.0	1.0	-	25.0	_	_
9.0	7.0	5.0	_		25.0	1.0		25.0	_	_
9.0	7.0	6.0	161.0	33.0	26.0	1.0	44.7	25.3	31.2	25.5
9.0	7.0	7.0	504.0	86.0	27.0	1.0	251.8	34.2	184.0	174.9
9.0	7.0	8.0	668.0	114.0	27.0	2.0	493.7	41.1	377.0	362.5
9.0	7.0	9.0	754.0	131.0	28.0	2.0	710.0	49.2	531.6	511.7
9.0	7.0	10.0	805.0	140.0	28.0	2.0	877.7	54.7	641.7	617.4
9.0	7.0	11.0	138.0	435.0	29.0	1.0	581.5	51.8	432.3	416.0
9.0	7.0	12.0	13.0	259.0	29.0	1.0		39.9	208.4	198.8
							263.4			
9.0	7.0	13.0	811.0	151.0	29.0	1.0	943.3	59.9	670.7	645.2
9.0	7.0	14.0	765.0	150.0	29.0	1.0	811.3	59.2	578.0	556.3
9.0	7.0	15.0	665.0	156.0	29.0	1.0	619.4	52.7	453.2	436.1
9.0	7.0	16.0	565.0	120.0	28.0	1.0	389.4	43.3	288.7	276.9
9.0	7.0	17.0	337.0	78.0	28.0	1.0	152.4	33.9	107.2	99.9
9.0	7.0	18.0	-	-	27.0	1.0	-	27.0	-	-
										-
9.0	7.0	19.0	-	-	27.0	1.0	-	27.0	-	-
9.0	7.0	20.0	-	-	26.0	2.0	-	26.0	-	-
9.0	7.0	21.0	-	-	26.0	2.0	-	26.0	_	_
9.0	7.0	22.0	_		26.0	2.0		26.0	_	_
9.0	7.0	23.0			26.0	3.0		26.0		
			-	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		-	-
9.0	8.0	-	-	-	26.0	3.0		26.0	-	-
9.0	8.0	1.0	-	-	26.0	3.0	-	26.0	-	-
9.0	8.0	2.0	-	-	26.0	3.0	-	26.0	-	-
9.0	8.0	3.0	-	-	25.0	3.0	-	25.0	_	_
9.0	8.0	4.0	_		25.0	3.0		25.0	_	_
9.0	8.0	5.0	_		25.0	2.0		25.0	_	
				22.0			40.4			04.0
9.0	8.0	6.0	127.0	33.0	26.0	2.0	42.1	25.4	30.3	24.6
9.0	8.0	7.0	461.0	95.0	27.0	3.0	245.7	32.2	182.6	173.6
9.0	8.0	8.0	633.0	126.0	27.0	3.0	487.4	39.4	376.0	361.5
9.0	8.0	9.0	729.0	143.0	28.0	3.0	705.8	46.8	535.4	515.4
9.0	8.0	10.0	841.0	118.0	29.0	3.0	882.6	52.9	651.6	626.8
9.0	8.0	11.0	866.0	121.0	29.0	2.0	982.3	59.1	701.7	674.8
9.0	8.0	12.0	874.0	120.0	30.0	2.0	1,006.3	61.1	711.1	683.8
9.0	8.0	13.0	872.0	112.0	30.0	2.0	954.7	59.8	679.3	653.4
9.0	8.0	14.0	843.0	106.0	30.0	2.0	826.6	56.1	598.7	576.2
9.0	8.0	15.0	787.0	98.0	30.0	2.0	640.1	50.5	472.9	455.1
9.0	8.0	16.0	676.0	85.0	30.0	2.0	404.1	43.1	297.6	285.5
9.0	8.0	17.0	457.0	59.0	29.0	2.0	160.5	33.9	107.6	100.4
9.0	8.0	18.0	-	-	28.0	2.0	-	28.0	-	-
9.0	8.0	19.0	-	-	27.0	3.0	-	27.0	-	-
9.0	8.0	20.0	-		27.0	3.0		27.0	-	-
9.0	8.0	21.0	-	-	27.0	3.0	-	27.0	-	-
9.0	8.0	22.0	-	-	27.0	4.0	-	27.0	_	-
9.0	8.0	23.0	_	<u>-</u>	26.0	4.0	-	26.0	_	_
9.0	9.0	-	_	_	26.0	4.0	_	26.0	_	_
9.0	9.0	1.0			26.0	4.0	- -	26.0	- -	=
			-							-
9.0	9.0	2.0	-	-	26.0	4.0	-	26.0	-	-
9.0	9.0	3.0	-		25.0	4.0		25.0	-	-
9.0	9.0	4.0	-	-	25.0	4.0	-	25.0	-	-
9.0	9.0	5.0	-	-	25.0	4.0	-	25.0	-	-
9.0	9.0	6.0	252.0	28.0	25.0 26.0	4.0	49.0	25.7	30.7	25.0
9.0	9.0	7.0	609.0	65.0	27.0	4.0	265.6	32.3	192.7	183.5
					28.0				306.0	200.0
9.0	9.0	8.0	756.0	85.0		5.0	513.9	38.9	396.0	380.8
9.0	9.0	9.0	829.0	99.0	28.0	5.0	731.5	44.2	562.0	540.9
9.0	9.0	10.0	864.0	111.0	29.0	5.0	896.6	49.4	674.7	649.0
9.0	9.0	11.0	879.0	119.0	30.0	4.0	993.3	54.9	726.2	540.9 649.0 698.2
9.0	9.0	12.0	875.0	124.0	30.0	4.0	1,011.4	55.6	736.8	708.3
9.0	9.0	13.0	815.0	152.0	31.0	3.0	947.6	57.4	683.2	657.2
					31.0	3.0	813.2	53.9	596.5	
9.0	9.0	14.0	770.0	149.0				47.0	J90.3	574.1
9.0	9.0	15.0	622.0	169.0	30.0	3.0	602.1	47.2	453.7	436.6
9.0	9.0	16.0	558.0	120.0	30.0	2.0	384.4	42.4	286.2	274.4 96.1
9.0	9.0	17.0	318.0	77.0	29.0	2.0	146.2	33.4	103.2	96.1
9.0	9.0	18.0	-	-	28.0	2.0	-	28.0	-	-
9.0	9.0	19.0	_	<u>-</u>	27.0	3.0	<u>-</u>	27.0	_	_
9.0	9.0	20.0			27.0	3.0		27.0		
			-							-
9.0	9.0	21.0	-	-	27.0	3.0	-	27.0	-	-
9.0	9.0	22.0	-	-	26.0	3.0	-	26.0	-	-
9.0	9.0	23.0	-	-	26.0	3.0	-	26.0	-	-

9.0 9.0 9.0	10.0 10.0 10.0	- 1.0 2.0	-	-	26.0 26.0 26.0	3.0 3.0 3.0	:	26.0 26.0 26.0	:	-
9.0 9.0	10.0 10.0 10.0	3.0 4.0	-	-	26.0 26.0	4.0 4.0	-	26.0 26.0 26.0	-	-
9.0 9.0	10.0 10.0 10.0	5.0	122.0	33.0	26.0 26.0	4.0 4.0	42.3	26.0 25.5	30.6	24.9
9.0	10.0	7.0	471.0	91.0	26.0 27.0	4.0	246.2	30.8 38.3	183.9 379.7	174.9 365.1
9.0 9.0	10.0 10.0	9.0	642.0 735.0	122.0 139.0	28.0	4.0	489.8 707.6	45.2	541.2	520.9
9.0 9.0	10.0	11.0	559.0 334.0	293.0 426.0	28.0 29.0	4.0 3.0	816.4 775.2	48.4 50.6	617.7 580.2	594.4 558.5
9.0 9.0	10.0	13.0	276.0 10.0	454.0 226.0	29.0 29.0	3.0 2.0	753.4 227.4	49.9 37.4	566.0 182.2	544.7 173.2
9.0 9.0		14.0 15.0	22.0 128.0	288.0 286.0	29.0 28.0	2.0 2.0	297.4 374.2	37.3 38.8	238.4 296.5	227.9 284.4
9.0 9.0		16.0 17.0	306.0	165.0 2.0	28.0 27.0	2.0 2.0	307.3 1.9	37.2 26.6	238.5 1.6	228.0
9.0 9.0	10.0	18.0 19.0	-	-	27.0 27.0	2.0 2.0	-	27.0 27.0	-	-
9.0 9.0	10.0	20.0 21.0	-	-	26.0 26.0	3.0 3.0	-	26.0 26.0	-	-
9.0	10.0	22.0	-	-	26.0	3.0	-	26.0	-	-
9.0 9.0	11.0	23.0	-	-	26.0 26.0	3.0 3.0		26.0 26.0		-
9.0 9.0	11.0 11.0	1.0 2.0	-	-	26.0 26.0	3.0 3.0	-	26.0 26.0	-	-
9.0 9.0	11.0 11.0	3.0 4.0	-	-	25.0 25.0	3.0 3.0	-	25.0 25.0	-	-
9.0 9.0	11.0 11.0	5.0 6.0	123.0	32.0	25.0 26.0	3.0 4.0	- 41.8	25.0 25.5	30.0	24.4
9.0 9.0	11.0 11.0		479.0 647.0	89.0 120.0	27.0 27.0	4.0 4.0	247.3 491.3	31.8 38.4	183.6 380.8	174.6 366.1
9.0 9.0	11.0	9.0	179.0 217.0	327.0 404.0	28.0 28.0	5.0 5.0	466.1 608.1	38.3 41.4	370.8 477.2	356.5 459.3
9.0 9.0	11.0		474.0 16.0	366.0 301.0	28.0 28.0	5.0 5.0	859.3 308.2	47.3 35.6	654.5 249.1	629.7 238.3
9.0 9.0	11.0	13.0 14.0	18.0 2.0	302.0 164.0	28.0 28.0	5.0 5.0	310.1 158.9	34.4 31.0	252.1 131.3	241.3 123.5
9.0	11.0	15.0	59.0	266.0	27.0	5.0	302.3	32.9	247.2	236.5
9.0 9.0	11.0	17.0	111.0 42.0	179.0 76.0	27.0 27.0	5.0 5.0	228.9 82.0	31.6 28.1	185.7 66.6	176.6 60.2
9.0 9.0	11.0	18.0 19.0	-	-	26.0 26.0	5.0 5.0	-	26.0 26.0	-	-
9.0 9.0		20.0 21.0	-	-	26.0 26.0	5.0 5.0	-	26.0 26.0	-	-
9.0 9.0		22.0 23.0	-	-	26.0 26.0	5.0 4.0	- -	26.0 26.0	-	-
9.0 9.0	12.0 12.0	1.0	-	-	26.0 26.0	4.0 4.0	-	26.0 26.0	-	-
9.0 9.0	12.0 12.0	2.0	-	-	26.0 26.0	4.0 4.0	-	26.0 26.0	-	-
9.0 9.0	12.0 12.0	4.0 5.0	-	-	26.0 26.0	4.0 4.0	-	26.0 26.0	-	-
9.0	12.0	6.0	134.0	31.0	26.0	4.0	42.6	25.6	30.2	24.5
9.0 9.0	12.0 12.0	8.0	514.0 690.0	82.0 105.0	27.0 27.0	5.0 5.0	254.1 500.4	31.5 37.5	188.1 389.1	179.0 374.2
9.0 9.0		10.0	782.0 834.0	118.0 124.0	28.0 28.0	6.0 6.0	721.1 884.4	42.4 46.1	559.5 677.1	538.5 651.3
9.0 9.0	12.0	12.0	852.0 473.0	132.0 376.0	28.0 29.0	6.0 6.0	980.7 878.7	48.3 47.4	742.9 668.7	714.2 643.3
9.0 9.0		14.0	795.0 526.0	161.0 270.0	29.0 28.0	6.0 6.0	936.7 730.5	48.4 43.4	708.9 566.6	681.8 545.4
9.0 9.0			622.0 412.0	164.0 143.0	28.0 28.0	6.0 5.0	594.8 336.3	40.3 35.7	464.1 260.8	446.6 249.7
9.0 9.0	12.0		317.0	72.0 -	27.0 27.0	5.0 5.0	139.4	29.6 27.0	99.5	92.4
9.0 9.0	12.0	19.0 20.0	-	-	26.0 26.0	5.0 6.0	-	26.0 26.0	-	-
9.0 9.0	12.0	21.0 22.0	-	-	26.0 26.0	6.0 5.0	-	26.0 26.0	-	
9.0 9.0		23.0	-	-	26.0 26.0	5.0 5.0	-	26.0 26.0	-	-
9.0	13.0	1.0	-	-	26.0	5.0	-	26.0		-
9.0 9.0	13.0 13.0	2.0 3.0	-	-	26.0 26.0	5.0 4.0	-	26.0 26.0	-	-
9.0 9.0	13.0 13.0	4.0 5.0	-		26.0 26.0	4.0 4.0		26.0 26.0	- 	3.2
9.0 9.0	13.0 13.0	6.0 7.0	-	20.0 76.0	26.0 27.0	4.0 5.0	19.0 72 .3	25.0 27.4	16.1 60.8	10.7 54.6
9.0	13.0	8.0	633.0	124.0	27.0	5.0	489.0	36.9	382.2	367.5

9.0	13.0	9.0	308.0	305.0	28.0	5.0	548.2	40.1	431.7	415.4
9.0	13.0	10.0	142.0	405.0	28.0	5.0	542.6	40.1	428.6	412.4
9.0	13.0	11.0	114.0	447.0	29.0	5.0	572.9	41.8	448.8	431.9
9.0	13.0	12.0	275.0	449.0	28.0	5.0	748.4	44.7	577.6	555.9
9.0	13.0	13.0	474.0	345.0	28.0	4.0	822.0	48.6	621.6	598.1
9.0	13.0	14.0	246.0	363.0	28.0	4.0	583.8	43.2	453.7	436.6
9.0	13.0	15.0	298.0	263.0	28.0	4.0	469.8	39.8	369.2	354.9
9.0	13.0	16.0	252.0	167.0	27.0	3.0	283.8	34.7	223.6	213.6
9.0	13.0	17.0	210.0	74.0	27.0	3.0	117.2	29.6	86.6	79.8
9.0	13.0	18.0	-	-	26.0	3.0		26.0	-	-
9.0	13.0	19.0	-	-	26.0	4.0		26.0	-	-
9.0	13.0	20.0	-	_	26.0	4.0	-	26.0	_	_
9.0	13.0	21.0	-	_	26.0	4.0	-	26.0	_	_
9.0	13.0	22.0	_	_	26.0	4.0	<u>-</u>	26.0	_	_
9.0	13.0	23.0	_	_	26.0	4.0	<u>-</u>	26.0	_	_
9.0	14.0		_	<u>-</u>	26.0	3.0	<u>-</u>	26.0	_	_
9.0	14.0	1.0	_	<u>-</u>	26.0	3.0	<u>-</u>	26.0	_	_
9.0	14.0	2.0	_	<u>-</u>	26.0	3.0	<u>-</u>	26.0	_	_
9.0	14.0	3.0	_	_	26.0	3.0	_	26.0	<u>-</u>	_
9.0	14.0	4.0	_	_	26.0	3.0	_	26.0	_	_
9.0	14.0	5.0	_		26.0	3.0		26.0		_
9.0	14.0	6.0	109.0	31.0	26.0	3.0	40.5	25.4	29.5	23.8
9.0	14.0	7.0	485.0	86.0	27.0	3.0	249.9	32.3	185.2	176.1
9.0	14.0	8.0	660.0	114.0	27.0	4.0	494.5	38.5	383.1	368.4
9.0	14.0	9.0	750.0	131.0	28.0	4.0	711.7	45.3	544.1	523.7
9.0		10.0	809.0	136.0	28.0	4.0	880.7	49.9	660.9	635.8
	14.0									
9.0	14.0	11.0	826.0	145.0	28.0	4.0	975.9	52.5	722.7	694.9
9.0	14.0	12.0	213.0	460.0	28.0	3.0	688.6	47.9	522.8	503.2
9.0	14.0	13.0	808.0	148.0	28.0	3.0	934.5	53.2	689.4	663.1
9.0	14.0	14.0	775.0	138.0	28.0	3.0	802.3	50.6	598.7	576.1
9.0	14.0	15.0	557.0	183.0	27.0	3.0	566.2	43.2	435.4	419.0
9.0	14.0	16.0	114.0	174.0	27.0	3.0	225.1	33.5	180.8	171.8
9.0	14.0	17.0	-	63.0	26.0	3.0	60.0	26.8	50.6	44.6
9.0	14.0	18.0	-	-	26.0	3.0	-	26.0	-	-
9.0	14.0	19.0	-	-	26.0	3.0	-	26.0	-	-
9.0	14.0	20.0	-	-	26.0	3.0	-	26.0	-	-
9.0	14.0	21.0	-	-	26.0	3.0	-	26.0	-	-
9.0	14.0	22.0	-	-	26.0	4.0		26.0	-	-
9.0	14.0	23.0	-	-	26.0	4.0		26.0	-	-
9.0	15.0	-	-	-	26.0	4.0		26.0	-	-
9.0	15.0	1.0	-	_	26.0	4.0	-	26.0	_	_
9.0	15.0	2.0	-	-	26.0	3.0	-	26.0	-	-
9.0	15.0	3.0	-	_	26.0	3.0	-	26.0	_	_
9.0	15.0	4.0	_	_	26.0	3.0	<u>-</u>	26.0	-	_
9.0	15.0	5.0	_	<u>-</u>	26.0	3.0	<u>-</u>	26.0	_	_
9.0	15.0	6.0	_	17.0	26.0	3.0	16.1	24.8	13.7	8.4
9.0	15.0	7.0	51.0	117.0	26.0	3.0	130.6	28.0	107.4	100.1
9.0	15.0	8.0	120.0	224.0	27.0	3.0	292.6	33.8	236.6	226.2
9.0	15.0	9.0	612.0	199.0	27.0	3.0	679.8	44.5	522.4	502.8
9.0	15.0	10.0	10.0	234.0	27.0	3.0	234.9	34.1	191.2	182.0
9.0	15.0	11.0	4.0	168.0	27.0	3.0	165.3	30.7	136.9	129.0
9.0	15.0	12.0	1.0	147.0	28.0	3.0	142.0	30.9	117.5	110.0
9.0	15.0	13.0	15.0	280.0	27.0	3.0	285.7	33.6	233.2	222.9
9.0	15.0	14.0	36.0	312.0	27.0	3.0	341.0	35.6	275.5	264.0
9.0	15.0	15.0	-	69.0	27.0	3.0	65.6	28.4	54.9	48.8
9.0	15.0	16.0	20.0	151.0	27.0	3.0	154.1	29.8	127.5	119.8
			88.0			3.0			69.1	
9.0 9.0	15.0 15.0	17.0 18.0	- 88.0	71.0	26.0 26.0	3.0	87.7	27.3 26.0	9.1	62.7
9.0	15.0	19.0	-		26.0	3.0		26.0	-	-
9.0		20.0		-	26.0	3.0	-	26.0	-	
	15.0		-	-			-		•	-
9.0	15.0	21.0	-	-	26.0	3.0	-	26.0	•	-
9.0	15.0	22.0	-	-	26.0	3.0	-	26.0	•	-
9.0	15.0	23.0	-	-	26.0	3.0	-	26.0	-	-
9.0	16.0	-	-	-	26.0	2.0	-	26.0	•	-
9.0	16.0	1.0	-	-	26.0	2.0	-	26.0	-	-
9.0	16.0	2.0	-	-	26.0	2.0	-	26.0	-	-
9.0	16.0	3.0	-	-	26.0	2.0	-	26.0	-	-
9.0	16.0	4.0	-	-	25.0	2.0	-	25.0	-	-
9.0	16.0	5.0	-	-	25.0	2.0		25.0	-	-
9.0	16.0	6.0	146.0	28.0	25.0	2.0	42.5	24.3	29.5	23.8
9.0	16.0	7.0	526.0	76.0	26.0	2.0	254.4	32.1	187.5	178.4
9.0	16.0	8.0	199.0	221.0	27.0	2.0	334.1	36.4	265.7	254.5
9.0	16.0	9.0	316.0	301.0	27.0	2.0	551.7	43.1	427.9	411.7
9.0	16.0	10.0	41.0	346.0	27.0	2.0	383.3	39.2	304.4	292.1
9.0	16.0	11.0	198.0	449.0	27.0	2.0	658.8	46.4	504.1	485.2
9.0	16.0	12.0	245.0	452.0	27.0	2.0	712.8	49.0	538.0	517.9
9.0	16.0	13.0	175.0	431.0	27.0	1.0	610.5	50.0	458.4	441.1
9.0	16.0	14.0	350.0	333.0	27.0	1.0	639.6	50.3	478.6	460.6
9.0	16.0	15.0	423.0	227.0	27.0	1.0	520.8	46.7	394.1	379.0
9.0	16.0	16.0	591.0	99.0	27.0	2.0	371.4	38.7	279.6	268.0
9.0	16.0	17.0	307.0	63.0	26.0	2.0	126.3	29.7	89.0	82.1

9.0	16.0	18.0	-	-	26.0	2.0	-	26.0	-	-
9.0	16.0	19.0	-	-	26.0	2.0		26.0	-	-
9.0	16.0	20.0	-	<u>-</u>	26.0	2.0		26.0	<u>-</u>	_
9.0	16.0	21.0	-	-	26.0	2.0	-	26.0	-	-
9.0	16.0	22.0	-	-	26.0	2.0	-	26.0	-	-
9.0	16.0	23.0	-	-	26.0	2.0	-	26.0	_	_
9.0	17.0	-	_	-	25.0	2.0	-	25.0	_	_
9.0	17.0	1.0	_	-	25.0	2.0	-	25.0	_	_
9.0	17.0	2.0	_	_	25.0	2.0	_	25.0	_	_
9.0	17.0	3.0		<u>-</u>	25.0	2.0	_	25.0	<u>-</u>	_
9.0	17.0	4.0		<u>-</u>	25.0	2.0	_	25.0	<u>-</u>	_
9.0	17.0	5.0	_	<u>-</u>	25.0	2.0	<u>-</u>	25.0	<u> -</u>	_
9.0	17.0	6.0	94.0	26.0	25.0	2.0	35.1	24.1	25.6	20.0
9.0	17.0	7.0	543.0	74.0	26.0	2.0	258.6	32.2	190.1	181.0
9.0	17.0	8.0	707.0	97.0	27.0	3.0	505.0	39.9	388.0	373.2
9.0	17.0	9.0	204.0	311.0	27.0	3.0	471.1	39.8	372.0	357.6
9.0	17.0	10.0	321.0	375.0	28.0	3.0	682.6	46.2	522.7	503.1
9.0	17.0	11.0	872.0	115.0	28.0	4.0	983.0	52.2	729.3	701.2
9.0	17.0	12.0	875.0	116.0	28.0	4.0	1,001.2	53.4	738.1	709.6
9.0	17.0	13.0	862.0	114.0	28.0	4.0	942.0	52.1	699.2	672.4
9.0	17.0	14.0	668.0	208.0	28.0	4.0	785.8	48.3	594.0	571.6
9.0	17.0	15.0	375.0	238.0	28.0	3.0	494.1	42.3	382.7	368.0
9.0	17.0	16.0	477.0	120.0	27.0	3.0	338.7	36.3	259.7	248.6
9.0										
9.0	17.0 17.0	17.0 18.0	377.0	54.0	26.0 26.0	3.0 3.0	131.8	29.2 26.0	90.1	83.2
				-	26.0		-			-
9.0	17.0	19.0	-	-		3.0		26.0	-	
9.0 9.0	17.0	20.0 21.0	-	-	26.0	3.0	-	26.0		-
	17.0		-	-	26.0	3.0	-	26.0	-	-
9.0	17.0	22.0	-	-	26.0	3.0	-	26.0	-	-
9.0	17.0	23.0	-	-	26.0	3.0	-	26.0	-	-
9.0	18.0	-	-	-	26.0	4.0	-	26.0	-	-
9.0	18.0	1.0	-	-	26.0	3.0	-	26.0	-	-
9.0	18.0	2.0	-	-	26.0	3.0	-	26.0	-	-
9.0	18.0	3.0	-	-	26.0	3.0	-	26.0	-	-
9.0	18.0	4.0	-	-	26.0	3.0	-	26.0	-	-
9.0	18.0	5.0			26.0	3.0		26.0		
9.0	18.0	6.0	171.0	26.0	26.0	3.0	43.8	25.5	29.2	23.5
9.0	18.0	7.0	554.0	70.0	27.0	4.0	258.7	32.1	189.9	180.7
9.0	18.0	8.0	718.0	92.0	27.0	4.0	506.2	38.8	391.0	376.0
9.0	18.0	9.0	0.008	106.0	28.0	4.0	725.3	45.7	553.4	532.6
9.0	18.0	10.0	852.0	111.0	28.0	4.0	888.9	50.1	666.2	640.9
9.0	18.0	11.0	870.0	117.0	29.0	3.0	983.0	56.0	714.5	687.0
9.0	18.0	12.0	866.0	122.0	29.0	3.0	998.0	56.6	722.8	695.0
9.0	18.0	13.0	789.0	158.0	29.0	3.0	924.5	54.9	675.9	650.2
9.0	18.0	14.0	710.0	171.0	29.0	2.0	781.7	53.8	573.4	551.8
9.0	18.0	15.0	106.0	267.0	29.0	2.0	335.3	40.7	263.2	252.0
9.0	18.0	16.0	114.0	166.0	28.0	2.0	217.0	34.3	173.3	164.5
9.0	18.0	17.0	-	33.0	27.0	2.0	31.3	27.1	26.4	20.8
9.0	18.0	18.0	-	-	26.0	2.0	-	26.0	-	-
9.0	18.0	19.0	-	-	26.0	2.0	-	26.0	-	-
9.0	18.0	20.0	-	-	26.0	2.0	-	26.0	-	-
9.0	18.0	21.0	-	-	26.0	2.0	-	26.0	-	-
9.0	18.0	22.0	-	-	25.0	2.0	-	25.0	-	-
9.0	18.0	23.0	-	-	25.0	2.0	-	25.0	-	-
9.0	19.0	-	-	-	25.0	2.0	-	25.0	-	-
9.0	19.0	1.0	-	-	25.0	2.0	-	25.0	-	-
9.0	19.0	2.0	-	-	25.0	2.0	-	25.0	-	-
9.0	19.0	3.0	-	-	25.0	2.0	-	25.0	-	-
9.0	19.0	4.0	-	-	25.0	2.0	-	25.0	-	-
9.0	19.0	5.0	-	-	25.0	2.0	-	25.0	-	-
9.0	19.0	6.0	165.0	24.0	25.0	2.0	41.6	24.3	27.7	22.1
9.0	19.0	7.0	483.0	81.0	26.0	3.0	247.1	31.2	184.1	175.0
9.0	19.0	8.0	568.0	136.0	26.0	3.0	468.6	37.9	365.2	351.1
9.0	19.0	9.0	208.0	318.0	27.0	2.0	482.2	41.7	377.1	362.6
9.0		10.0	136.0	397.0	27.0	2.0	531.5	43.2	413.4	397.7
	19.0		218.0	442.0	28.0	2.0	672.2	48.3	509.2	490.1
9.0	19.0 19.0	11.0	210.0		28.0	1.0	659.8	52.2	489.4	471.1
9.0 9.0		11.0 12.0	189.0	454.0	20.0		758.5	56.2		
	19.0		189.0 381.0	377.0	29.0	1.0			550.6	529.9
9.0 9.0 9.0	19.0 19.0	12.0	189.0 381.0 224.0	377.0 355.0	29.0 28.0	1.0	549.9	49.2	414.0	398.3
9.0 9.0	19.0 19.0 19.0	12.0 13.0	189.0 381.0	377.0	29.0					398.3 419.7
9.0 9.0 9.0	19.0 19.0 19.0 19.0	12.0 13.0 14.0	189.0 381.0 224.0	377.0 355.0	29.0 28.0	1.0	549.9	49.2	414.0	398.3 419.7 248.6
9.0 9.0 9.0 9.0	19.0 19.0 19.0 19.0 19.0	12.0 13.0 14.0 15.0	189.0 381.0 224.0 652.0	377.0 355.0 143.0	29.0 28.0 28.0	1.0 1.0	549.9 586.8	49.2 49.3	414.0 436.2	398.3 419.7 248.6
9.0 9.0 9.0 9.0	19.0 19.0 19.0 19.0 19.0 19.0	12.0 13.0 14.0 15.0 16.0	189.0 381.0 224.0 652.0 497.0	377.0 355.0 143.0 121.0	29.0 28.0 28.0 27.0	1.0 1.0 1.0	549.9 586.8 346.9	49.2 49.3 40.7	414.0 436.2 259.6	398.3 419.7
9.0 9.0 9.0 9.0 9.0	19.0 19.0 19.0 19.0 19.0 19.0	12.0 13.0 14.0 15.0 16.0 17.0	189.0 381.0 224.0 652.0 497.0 235.0	377.0 355.0 143.0 121.0 67.0	29.0 28.0 28.0 27.0 26.0 26.0 26.0	1.0 1.0 1.0 1.0	549.9 586.8 346.9 113.1	49.2 49.3 40.7 30.2 26.0 26.0	414.0 436.2 259.6 81.5	398.3 419.7 248.6 74.9
9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	19.0 19.0 19.0 19.0 19.0 19.0 19.0	12.0 13.0 14.0 15.0 16.0 17.0 18.0	189.0 381.0 224.0 652.0 497.0 235.0	377.0 355.0 143.0 121.0 67.0	29.0 28.0 28.0 27.0 26.0 26.0 25.0	1.0 1.0 1.0 1.0 1.0 1.0	549.9 586.8 346.9 113.1	49.2 49.3 40.7 30.2 26.0 26.0 25.0	414.0 436.2 259.6 81.5	398.3 419.7 248.6 74.9
9.0 9.0 9.0 9.0 9.0 9.0 9.0	19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0	12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0	189.0 381.0 224.0 652.0 497.0 235.0	377.0 355.0 143.0 121.0 67.0	29.0 28.0 28.0 27.0 26.0 26.0 25.0 25.0	1.0 1.0 1.0 1.0 1.0 1.0	549.9 586.8 346.9 113.1	49.2 49.3 40.7 30.2 26.0 26.0 25.0 25.0	414.0 436.2 259.6 81.5	398.3 419.7 248.6 74.9
9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0	12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0	189.0 381.0 224.0 652.0 497.0 235.0	377.0 355.0 143.0 121.0 67.0	29.0 28.0 28.0 27.0 26.0 26.0 25.0 25.0 25.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	549.9 586.8 346.9 113.1	49.2 49.3 40.7 30.2 26.0 25.0 25.0 25.0	414.0 436.2 259.6 81.5	398.3 419.7 248.6 74.9
9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0	12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0	189.0 381.0 224.0 652.0 497.0 235.0	377.0 355.0 143.0 121.0 67.0	29.0 28.0 28.0 27.0 26.0 26.0 25.0 25.0 25.0 25.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	549.9 586.8 346.9 113.1	49.2 49.3 40.7 30.2 26.0 25.0 25.0 25.0 25.0	414.0 436.2 259.6 81.5	398.3 419.7 248.6 74.9
9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0	12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0	189.0 381.0 224.0 652.0 497.0 235.0	377.0 355.0 143.0 121.0 67.0	29.0 28.0 28.0 27.0 26.0 26.0 25.0 25.0 25.0 25.0 25.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	549.9 586.8 346.9 113.1	49.2 49.3 40.7 30.2 26.0 25.0 25.0 25.0 25.0 25.0 25.0	414.0 436.2 259.6 81.5	398.3 419.7 248.6 74.9
9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0	12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0	189.0 381.0 224.0 652.0 497.0 235.0	377.0 355.0 143.0 121.0 67.0	29.0 28.0 28.0 27.0 26.0 26.0 25.0 25.0 25.0 25.0 25.0 25.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	549.9 586.8 346.9 113.1	49.2 49.3 40.7 30.2 26.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	414.0 436.2 259.6 81.5	398.3 419.7 248.6 74.9
9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0	12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0	189.0 381.0 224.0 652.0 497.0 235.0	377.0 355.0 143.0 121.0 67.0	29.0 28.0 28.0 27.0 26.0 26.0 25.0 25.0 25.0 25.0 25.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	549.9 586.8 346.9 113.1	49.2 49.3 40.7 30.2 26.0 25.0 25.0 25.0 25.0 25.0 25.0	414.0 436.2 259.6 81.5	398.3 419.7 248.6 74.9

9.0 9.0 9.0 9.0	20.0 20.0 20.0 20.0	3.0 4.0 5.0 6.0	- - - 161.0	- - - 25.0	25.0 26.0 26.0 26.0	- - - -	- - - 42.7	25.0 26.0 26.0 24.4	- - - - 28.7	- - - 23.1
9.0 9.0 9.0 9.0	20.0 20.0 20.0 20.0	7.0 8.0 9.0 10.0	529.0 480.0 430.0 533.0	75.0 165.0 266.0 291.0	26.0 27.0 28.0 28.0	- 1.0 1.0 1.0	256.7 446.5 610.4 795.7	35.6 42.1 49.5 56.1	186.2 341.6 457.6 577.5	177.1 328.1 440.3 555.8
9.0 9.0 9.0	20.0 20.0 20.0	11.0 12.0 13.0	833.0 565.0 849.0	139.0 334.0 119.0	29.0 28.0 28.0	1.0 1.0 1.0	969.2 928.3 932.4	63.2 61.8 61.8	676.6 653.0 655.9	650.8 628.2 631.0
9.0 9.0 9.0 9.0	20.0 20.0 20.0 20.0	14.0 15.0 16.0 17.0	302.0 519.0 613.0 354.0	338.0 188.0 88.0 52.0	28.0 28.0 27.0 27.0	1.0 1.0 1.0 1.0	604.5 541.9 365.4 122.0	51.9 48.2 41.1 31.6	448.6 405.9 270.3 82.1	431.7 390.5 259.0 75.4
9.0 9.0 9.0 9.0	20.0 20.0 20.0 20.0	18.0 19.0 20.0 21.0	-	1	26.0 26.0 26.0 26.0	1.0 1.0 1.0 1.0	:	26.0 26.0 26.0 26.0	- - -	- - -
9.0 9.0 9.0	20.0 20.0 21.0	22.0 23.0 -	- - -	- - -	26.0 26.0 26.0	1.0 1.0 1.0	:	26.0 26.0 26.0	- - -	- - -
9.0 9.0 9.0 9.0	21.0 21.0 21.0 21.0	1.0 2.0 3.0 4.0	- - -		26.0 26.0 26.0 26.0	1.0 1.0 1.0 1.0	- - - -	26.0 26.0 26.0 26.0	- - -	- - -
9.0 9.0 9.0 9.0	21.0 21.0 21.0 21.0	5.0 6.0 7.0 8.0	- - - 66.0	11.0 33.0 210.0	26.0 26.0 26.0 26.0	1.0 1.0 1.0 1.0	- 10.4 31.3 245.2	26.0 24.0 24.8 32.8	- 8.9 26.6 199.8	3.6 21.0 190.4
9.0 9.0 9.0	21.0 21.0 21.0	9.0 10.0 11.0	- 57.0 178.0	161.0 362.0 443.0	27.0 27.0 27.0	2.0 2.0 1.0	154.5 415.7 634.7	31.0 38.4 49.1	127.7 331.3 478.7	120.0 318.2 460.7
9.0 9.0 9.0 9.0	21.0 21.0 21.0 21.0	12.0 13.0 14.0 15.0	16.0 63.0 832.0 389.0	295.0 389.0 104.0 227.0	28.0 28.0 28.0 27.0	1.0 1.0 1.0 1.0	302.9 452.3 802.3 490.2	40.5 43.6 55.6 46.6	238.9 351.2 582.6 370.9	228.4 337.4 560.8 356.6
9.0 9.0 9.0 9.0	21.0 21.0 21.0 21.0	16.0 17.0 18.0 19.0	- - -	125.0 21.0 - -	26.0 26.0 25.0 25.0	1.0 1.0 1.0 2.0	120.0 19.9 - -	31.4 25.2 25.0 25.0	99.1 16.9 -	92.0 11.5 -
9.0 9.0 9.0 9.0	21.0 21.0 21.0 21.0	20.0 21.0 22.0 23.0	-	: : :	25.0 25.0 25.0 25.0	2.0 3.0 3.0 3.0		25.0 25.0 25.0 25.0	- - -	- - -
9.0 9.0 9.0 9.0	22.0 22.0 22.0	1.0 2.0	- - -	- -	25.0 25.0 25.0 25.0 25.0	2.0 2.0 2.0 2.0	- -	25.0 25.0 25.0 25.0 25.0	- - -	- - -
9.0 9.0 9.0	22.0 22.0 22.0 22.0	3.0 4.0 5.0 6.0	30.0	- - - 23.0	25.0 25.0 25.0	2.0 2.0 1.0	- - - 25.9	25.0 25.0 23.5	- - - 20.7	- - - 15.3
9.0 9.0 9.0 9.0	22.0 22.0 22.0 22.0	7.0 8.0 9.0 10.0	113.0 - - -	115.0 94.0 132.0 73.0	26.0 26.0 26.0 26.0	1.0 1.0 - -	152.9 89.5 126.2 69.5	29.4 28.0 30.3 28.1	122.6 75.1 104.7 58.3	115.1 68.5 97.5 52.1
9.0 9.0 9.0 9.0	22.0 22.0 22.0 22.0	11.0 12.0 13.0 14.0	3.0 67.0 13.0	137.0 163.0 390.0 241.0	25.0 25.0 25.0 25.0	1.0 1.0 1.0 1.0	131.3 159.6 457.3 244.0	27.9 29.4 39.9 34.5	110.2 133.0 361.7 198.4	102.9 125.2 347.7 189.0
9.0 9.0 9.0 9.0	22.0 22.0 22.0 22.0	15.0 16.0 17.0 18.0	176.0 - -	261.0 44.0 41.0	25.0 25.0 25.0 25.0	- - -	380.5 41.7 39.0	41.7 29.4 23.9 25.0	296.6 34.8 33.3	284.5 29.0 27.6
9.0 9.0 9.0 9.0	22.0 22.0 22.0 22.0 22.0	19.0 20.0 21.0 22.0	-		25.0 25.0 25.0 25.0 25.0	- - - 1.0	:	25.0 25.0 25.0 25.0 25.0	-	-
9.0 9.0 9.0	22.0 23.0 23.0	23.0 - 1.0	- - -	- - - -	25.0 24.0 24.0	1.0 1.0 1.0	- - - -	25.0 24.0 24.0	- - -	- - -
9.0 9.0 9.0 9.0	23.0 23.0 23.0 23.0	2.0 3.0 4.0 5.0			24.0 24.0 24.0 24.0	1.0 1.0 1.0 1.0		24.0 24.0 24.0 24.0		- - - -
9.0 9.0 9.0	23.0 23.0 23.0 23.0	6.0 7.0 8.0 9.0	128.0 491.0 661.0 756.0	23.0 80.0 109.0 124.0	24.0 25.0 25.0 26.0	1.0 2.0 2.0 2.0	38.4 250.8 495.2 713.0	22.9 30.9 39.2 47.4	26.7 187.2 382.6 539.4	21.1 178.1 367.9 519.1
9.0 9.0	23.0 23.0	10.0 11.0	816.0 481.0	127.0 347.0	26.0 27.0	3.0 3.0	879.4 850.3	50.0 50.7	659.7 636.0	634.6 611.9

9.0	23.0	12.0	503.0	350.0	27.0	3.0	882.8	51.4	657.7	632.7
9.0	23.0	13.0	305.0	395.0	28.0	4.0	705.6	46.2	540.3	520.1
9.0	23.0	14.0	234.0	345.0	28.0	4.0	547.6	42.0	428.1	411.9
9.0	23.0	15.0	582.0	162.0	27.0	4.0	556.6	40.8	432.5	416.2
9.0	23.0	16.0	509.0	106.0	27.0	3.0	333.1	36.3	253.5	242.6
9.0	23.0	17.0	289.0	51.0	26.0	3.0	107.2	28.5	74.3	67.8
9.0	23.0	18.0	-	-	26.0	3.0	-	26.0	-	-
9.0	23.0	19.0	-	-	26.0	3.0		26.0	<u>-</u>	-
			-				-			
9.0	23.0	20.0	-	-	26.0	2.0	-	26.0	-	-
9.0	23.0	21.0	-		26.0	2.0	-	26.0	-	-
9.0	23.0	22.0	-		25.0	2.0	-	25.0	-	-
9.0	23.0	23.0	-	-	25.0	2.0	-	25.0	-	-
9.0	24.0	-	-		25.0	2.0	-	25.0	-	-
9.0	24.0	1.0	-	-	25.0	2.0	-	25.0	_	_
9.0	24.0	2.0	_	<u>-</u>	25.0	2.0	_	25.0	_	_
9.0	24.0	3.0	_		25.0	2.0	_	25.0	_	_
9.0	24.0	4.0	_		25.0	2.0	_	25.0	_	_
9.0	24.0	5.0	_		25.0	2.0	_	25.0	_	_
9.0	24.0	6.0	69.0	23.0	25.0	2.0	31.2	24.0	23.3	17.7
			368.0	102.0	26.0		230.8		176.0	167.1
9.0	24.0	7.0				3.0		30.8		
9.0	24.0	8.0	499.0	165.0	26.0	3.0	459.1	37.6	359.4	345.5
9.0	24.0	9.0	597.0	197.0	27.0	4.0	670.8	43.3	518.9	499.4
9.0	24.0	10.0	653.0	221.0	27.0	4.0	835.3	47.7	634.1	610.1
9.0	24.0	11.0	190.0	421.0	27.0	4.0	624.2	43.2	485.6	467.4
9.0	24.0	12.0	192.0	428.0	27.0	4.0	636.5	42.9	495.9	477.3
9.0	24.0	13.0	185.0	402.0	27.0	3.0	590.9	43.3	459.3	442.0
9.0	24.0	14.0	179.0	344.0	27.0	3.0	501.4	40.9	394.3	379.2
9.0	24.0	15.0	167.0	259.0	27.0	3.0	372.5	37.2	297.1	285.0
9.0	24.0	16.0	143.0	157.0	26.0	3.0	220.0	31.7	177.0	168.2
						3.0				48.2
9.0	24.0	17.0	63.0	57.0	26.0		68.5	27.0	54.4	
9.0	24.0	18.0	-		25.0	3.0	-	25.0	-	-
9.0	24.0	19.0	-		25.0	3.0	-	25.0	-	-
9.0	24.0	20.0	-		25.0	3.0	-	25.0	-	-
9.0	24.0	21.0	-		25.0	3.0	-	25.0	-	-
9.0	24.0	22.0	-	-	25.0	3.0	-	25.0	_	_
9.0	24.0	23.0	_	<u>-</u>	25.0	2.0	_	25.0	_	
9.0	25.0	-	_		25.0	2.0		25.0	_	
9.0	25.0	1.0			25.0	2.0		25.0		
			-						-	
9.0	25.0	2.0	-	-	25.0	2.0	-	25.0	-	•
9.0	25.0	3.0	-		25.0	1.0	-	25.0	-	-
9.0	25.0	4.0	-		25.0	1.0	-	25.0	-	-
9.0	25.0	5.0	-	-	25.0	1.0	-	25.0	-	-
9.0	25.0	6.0	-	20.0	25.0	1.0	19.0	23.3	16.3	10.9
9.0	25.0	7.0	105.0	113.0	26.0	1.0	148.9	29.3	119.8	112.3
9.0	25.0	8.0	287.0	202.0	27.0	2.0	372.6	37.1	294.2	282.2
9.0	25.0	9.0	611.0	192.0	28.0	2.0	676.6	47.8	511.1	492.0
9.0	25.0	10.0	335.0	361.0	28.0	2.0	683.8	49.2	515.2	495.9
9.0	25.0	11.0	84.0	417.0	28.0	2.0	506.1	44.2	391.7	376.7
9.0	25.0			320.0	28.0	2.0	922.8	55.2		648.1
		12.0	575.0						673.7	
9.0	25.0	13.0	440.0	337.0	28.0	2.0	779.7	52.8	576.4	554.8
9.0	25.0	14.0	200.0	345.0	28.0	2.0	519.7	45.0	400.0	384.8
9.0	25.0	15.0	43.0	231.0	27.0	2.0	257.8	35.3	208.2	198.6
9.0	25.0	16.0	19.0	136.0	27.0	2.0	139.4	30.6	114.9	107.5
9.0	25.0	17.0	-	33.0	26.0	2.0	31.3	25.7	26.5	21.0
9.0	25.0	18.0	-		26.0	2.0		26.0	-	-
9.0	25.0	19.0	-	-	26.0	2.0	-	26.0	_	_
9.0	25.0	20.0	-	-	26.0	2.0	-	26.0	_	-
9.0	25.0	21.0	_	<u>-</u>	25.0	2.0	-	25.0	_	_
9.0	25.0	22.0	_	<u>-</u>	25.0	2.0	-	25.0	_	_
9.0	25.0	23.0	_	<u>-</u>	25.0	2.0	_	25.0	_	_
9.0	26.0	-	_	_	25.0	2.0	_	25.0	_	_
9.0	26.0	1.0	-	-	25.0	2.0		25.0		-
			-	-			-		-	-
9.0	26.0	2.0	-	-	26.0	2.0	-	26.0	-	-
9.0	26.0	3.0	-	-	25.0	2.0	-	25.0	-	-
9.0	26.0	4.0	-		25.0	2.0		25.0	-	-
9.0	26.0	5.0	-	-	25.0	2.0	-	25.0	-	-
9.0	26.0	6.0	-	18.0	26.0	1.0	17.1	24.2	14.6	9.2
9.0	26.0	7.0	22.0	104.0	26.0	1.0	109.6	27.8	91.1	84.2
9.0	26.0	8.0	-	132.0	27.0	1.0	126.6	30.1	105.1	97.9
9.0	26.0	9.0	72.0	297.0	27.0	1.0	352.8	38.2	281.2	269.5
9.0	26.0	10.0	131.0	387.0	28.0	1.0	519.2	46.1	397.8	382.6
9.0	26.0	11.0	122.0	430.0	28.0	1.0	567.8	48.5	429.6	413.3
9.0	26.0	12.0	155.0	442.0	28.0	1.0	615.1			443.7
								50.3	461.1	443.7
9.0	26.0	13.0	103.0	401.0	28.0	2.0	503.6	43.9	390.4	375.4
9.0	26.0	14.0	178.0	344.0	28.0	2.0	500.7	43.3	388.7	373.8
9.0	26.0	15.0	142.0	253.0	27.0	2.0	350.2	38.0	278.2	266.7
9.0	26.0	16.0	101.0	149.0	27.0	1.0	193.9	34.1	154.9	146.5
9.0	26.0	17.0	109.0	52.0	26.0	1.0	73.1	27.7	55.6	49.4
9.0	26.0	18.0	-	-	26.0	1.0	-	26.0	-	-
9.0	26.0	19.0	-		26.0	2.0		26.0	-	-
9.0	26.0	20.0	-	<u>-</u>	26.0	2.0	<u>-</u>	26.0	-	-

9.0	26.0	21.0	_	-	26.0	2.0	-	26.0	_	_
9.0	26.0	22.0	_	_	26.0	2.0	<u>-</u>	26.0	<u>-</u>	_
9.0	26.0	23.0	_	_	26.0	2.0	_	26.0	_	_
9.0	27.0	-			26.0	2.0		26.0		
9.0	27.0	1.0			26.0	1.0		26.0		
9.0	27.0	2.0			26.0	1.0		26.0		
			-				-		-	
9.0	27.0	3.0	-		26.0	1.0	<u>-</u>	26.0		-
9.0	27.0	4.0	-	-	26.0	1.0	-	26.0	-	-
9.0	27.0	5.0	-		25.0	1.0		25.0	1.0	5.2
9.0	27.0	6.0	-	11.0	25.0	1.0	10.4	22.9	8.9	3.7
9.0	27.0	7.0	73.0	110.0	26.0	1.0	132.9	28.6	108.1	100.9
9.0	27.0	8.0	317.0	195.0	27.0	2.0	383.0	37.4	301.8	289.6
9.0	27.0	9.0	784.0	113.0	27.0	2.0	723.5	48.2	544.9	524.4
9.0	27.0	10.0	828.0	124.0	28.0	2.0	886.9	55.0	647.4	622.8
9.0	27.0	11.0	478.0	341.0	28.0	2.0	841.5	54.4	617.0	593.7
9.0	27.0	12.0	714.0	212.0	28.0	2.0	949.6	57.1	685.8	659.6
9.0	27.0	13.0	669.0	218.0	28.0	2.0	872.4	55.4	635.7	611.7
9.0	27.0	14.0	643.0	203.0	28.0	2.0	751.8	51.9	557.2	536.3
9.0	27.0	15.0	-	160.0	28.0	2.0	154.0	34.3	125.3	117.6
9.0	27.0	16.0	_	80.0	27.0	2.0	76.2	28.2	63.8	57.5
				4.0		2.0			3.2	
9.0	27.0	17.0	-		26.0		3.8	24.5		-
9.0	27.0	18.0	-	-	26.0	2.0	-	26.0	-	-
9.0	27.0	19.0	-	-	26.0	2.0	-	26.0	-	-
9.0	27.0	20.0	-	-	26.0	2.0	-	26.0		-
9.0	27.0	21.0	-	-	26.0	2.0		26.0		-
9.0	27.0	22.0	-	-	26.0	2.0	-	26.0		-
9.0	27.0	23.0	-	-	26.0	2.0	-	26.0	-	-
9.0	28.0	-	-	-	26.0	1.0	-	26.0	-	-
9.0	28.0	1.0	-	-	26.0	1.0	-	26.0		-
9.0	28.0	2.0	_	_	26.0	1.0	_	26.0	_	_
9.0	28.0	3.0	_	_	26.0	1.0	_	26.0	_	_
9.0	28.0	4.0	_	_	26.0	1.0	_	26.0	_	_
9.0	28.0	5.0	_	_	25.0	1.0	_	25.0	_	_
9.0	28.0	6.0	145.0	20.0	25.0	1.0	39.1	24.0	26.1	20.5
9.0	28.0	7.0	547.0	67.0	26.0	1.0	258.5	33.3	189.3	180.1
9.0	28.0	8.0	716.0	90.0	27.0	2.0	507.6	41.5	386.9	372.1
9.0	28.0	9.0	801.0	103.0	27.0	2.0	725.8	48.8	544.9	524.5
9.0	28.0	10.0	841.0	114.0	28.0	2.0	882.1	54.9	644.3	619.9
9.0	28.0	11.0	863.0	118.0	28.0	2.0	973.9	57.9	700.2	673.4
9.0	28.0	12.0	640.0	247.0	28.0	2.0	912.5	56.6	660.9	635.8
9.0	28.0	13.0	463.0	323.0	28.0	2.0	785.8	52.9	580.5	558.7
9.0	28.0	14.0	613.0	213.0	28.0	2.0	736.6	51.1	548.1	527.6
9.0	28.0	15.0	728.0	103.0	28.0	2.0	582.1	46.6	437.4	420.9
9.0	28.0	16.0	607.0	79.0	27.0	2.0	344.0	38.1	256.3	245.4
9.0	28.0	17.0	336.0	41.0	26.0	2.0	103.6	28.9	68.7	62.3
9.0	28.0	18.0	-		26.0	2.0	-	26.0	-	-
9.0	28.0	19.0	_	_	26.0	2.0	_	26.0	_	_
9.0	28.0	20.0	-		26.0	2.0	_	26.0	_	
9.0	28.0	21.0	-		26.0	2.0	-	26.0	-	
9.0	28.0	22.0	-		26.0	2.0		26.0		-
9.0			-		26.0	2.0	-			
	28.0	23.0	-					26.0		-
9.0	29.0	-	-		26.0	1.0	<u>-</u>	26.0		-
9.0	29.0	1.0	-	-	26.0	1.0	-	26.0	-	-
9.0	29.0	2.0	-	-	26.0	1.0	-	26.0	-	-
9.0	29.0	3.0	-	-	25.0	1.0	-	25.0	-	-
9.0	29.0	4.0	-	-	25.0	1.0	-	25.0		-
9.0	29.0	5.0	-	-	25.0	2.0	-	25.0		-
9.0	29.0	6.0	34.0	19.0	25.0	2.0	23.0	23.7	18.0	12.6
9.0	29.0	7.0	226.0	104.0	26.0	2.0	184.1	29.9	143.8	135.7
9.0	29.0	8.0	745.0	80.0	27.0	2.0	513.6	41.4	391.5	376.5
9.0	29.0	9.0	827.0	92.0	27.0	2.0	730.1	48.9	547.6	527.1
9.0	29.0	10.0	870.0	99.0	28.0	2.0	891.9	55.2	650.4	625.7
9.0	29.0	11.0	890.0	102.0	28.0	2.0	982.6	58.2	705.4	678.4
9.0	29.0	12.0	891.0	104.0	29.0	2.0	996.1	59.8	708.6	681.4
9.0	29.0	13.0	857.0	113.0	29.0	2.0	924.3	58.0	664.1	638.8
9.0	29.0	14.0	519.0	245.0	29.0	2.0	689.8	51.3	512.9	493.7
9.0	29.0	15.0	146.0	246.0	29.0	2.0	345.4	40.6	270.7	259.4
9.0	29.0	16.0	22.0	131.0	28.0	2.0	135.9	31.9	111.2	103.9
9.0	29.0	17.0	185.0	46.0	27.0	2.0	81.5	28.3	58.5	52.2
9.0	29.0	18.0	-	-	27.0	2.0	-	27.0	-	-
9.0	29.0	19.0	-		26.0	2.0	-	26.0		-
			-				-			-
9.0	29.0	20.0	-	-	26.0	2.0	-	26.0	-	-
9.0	29.0	21.0	-	-	26.0	2.0	-	26.0	-	-
9.0	29.0	22.0	-	-	26.0	2.0	-	26.0		-
9.0	29.0	23.0	-	-	26.0	2.0	-	26.0	-	-
9.0	30.0	-	-	-	25.0	2.0	-	25.0	-	-
9.0	30.0	1.0	-	-	25.0	2.0	-	25.0		-
9.0	30.0	2.0	-	-	25.0	2.0	-	25.0	-	-
9.0	30.0	3.0	-	-	25.0	2.0	-	25.0	-	-
9.0	30.0	4.0	-	-	25.0	2.0	-	25.0	-	-
9.0	30.0	5.0	-	-	25.0	2.0	-	25.0	-	-

9.0	30.0	6.0	141.0	19.0	25.0	2.0	38.3	24.2	25.6	20.0
9.0	30.0	7.0	557.0	65.0	26.0	2.0	260.6	32.3	191.6	182.4
9.0	30.0	8.0	733.0	84.0	27.0	3.0	511.4	40.0	392.7	377.6
9.0	30.0	9.0	819.0	95.0	28.0	3.0	727.2	47.4	549.7	529.1
9.0	30.0	10.0	868.0	99.0	28.0	3.0	889.7	52.2	659.4	634.3
9.0	30.0	11.0	889.0	103.0	29.0	2.0	982.1	59.1	701.4	674.5
9.0	30.0	12.0	892.0	103.0	29.0	2.0	995.0	59.8	708.0	680.8
9.0	30.0	13.0	858.0	111.0	29.0	3.0	921.8	54.8	674.1	648.4
9.0	30.0	14.0	617.0	208.0	29.0	3.0	732.9	49.8	549.1	528.5
9.0 9.0 9.0	30.0 30.0 30.0	15.0 16.0 17.0	631.0 614.0	137.0 76.0 40.0	29.0 28.0 27.0	3.0 3.0 3.0	555.1 341.3	44.7 37.5 29.2	421.7 254.5	405.7 243.6 58.2
9.0 9.0 9.0	30.0 30.0	18.0 19.0	311.0 -	40.0 - -	27.0 27.0 26.0	3.0 3.0	97.2 - -	29.2 27.0 26.0	64.6 - -	
9.0 9.0 9.0	30.0 30.0 30.0	20.0 21.0	-	- -	26.0 26.0 26.0	3.0 3.0 3.0	-	26.0 26.0 26.0	-	-
9.0 9.0	30.0 30.0	22.0 23.0		-	26.0 26.0 26.0	3.0 3.0 3.0	-	26.0 26.0	-	
10.0 10.0	1.0 1.0	1.0	-	<u>.</u>	25.0 25.0	3.0 3.0	-	25.0 25.0	<u>-</u> -	-
10.0 10.0	1.0 1.0	2.0	-	<u>-</u>	25.0 25.0	3.0 2.0	-	25.0 25.0	-	-
10.0 10.0	1.0 1.0	4.0 5.0	-	<u>-</u>	25.0 25.0	2.0	-	25.0 25.0	-	-
10.0	1.0	6.0	168.0	19.0	25.0	2.0	42.9	24.4	28.1	22.5
10.0	1.0	7.0	599.0	60.0	26.0	2.0	269.8	32.6	197.2	187.9
10.0	1.0	8.0	766.0	79.0	27.0	2.0	525.0	42.1	398.7	383.4
10.0	1.0	9.0	849.0	90.0	28.0	3.0	744.5	47.9	561.3	540.3
10.0	1.0	10.0	893.0	96.0	28.0	3.0	908.6	52.7	671.4	645.8
10.0	1.0	11.0	914.0	98.0	28.0	3.0	1,000.3	55.5	728.9	700.8
10.0	1.0	12.0	917.0	98.0	29.0	3.0	1,013.2	57.0	732.1	703.8
10.0	1.0	13.0	901.0	96.0	29.0	3.0	944.4	55.4	688.2	661.9
10.0	1.0	14.0	867.0	90.0	28.0	3.0	802.1	50.7	597.6	575.1
10.0	1.0	15.0	798.0	81.0	28.0	3.0	598.6	45.1	452.6	435.5
10.0 10.0	1.0	16.0 17.0	80.0	24.0 43.0	27.0 26.0	3.0	22.7 57.0	28.1 26.0	19.1 44.0	13.6 38.1
10.0 10.0	1.0	18.0 19.0	-	-	26.0 26.0	3.0 3.0	-	26.0 26.0	-	-
10.0 10.0	1.0	20.0	-	-	26.0 26.0	3.0 3.0	:	26.0 26.0	-	-
10.0 10.0 10.0	1.0 1.0 2.0	22.0 23.0	-	- -	26.0 25.0 25.0	3.0 3.0 3.0	-	26.0 25.0 25.0	-	-
10.0 10.0 10.0	2.0 2.0 2.0	1.0 2.0	-	-	25.0 25.0 25.0	3.0 3.0 3.0	-	25.0 25.0 25.0	-	
10.0 10.0 10.0	2.0 2.0 2.0	3.0 4.0	Ē	-	25.0 25.0 25.0	3.0 2.0	-	25.0 25.0 25.0		
10.0	2.0	5.0	-	-	25.0	2.0	-	25.0	-	-
10.0	2.0	6.0	158.0	19.0	25.0		42.1	24.3	27.9	22.2
10.0	2.0	7.0	607.0	59.0	26.0	2.0	271.8	32.6	198.5	189.1
10.0	2.0	8.0	773.0	77.0	27.0		527.0	40.5	403.4	388.0
10.0	2.0	9.0	850.0	88.0	27.0	4.0	743.0	45.2	568.2	546.9
10.0	2.0	10.0	885.0	97.0	28.0	4.0	902.0	50.5	674.7	649.0
10.0	2.0	11.0	227.0	419.0	28.0	4.0	660.1	45.2	508.2	489.2
10.0	2.0	12.0	892.0	107.0	28.0	4.0	997.2	52.5	738.8	710.2
10.0	2.0	13.0	847.0	121.0	28.0	4.0	919.8	51.5	684.5	658.3
10.0	2.0	14.0	149.0	331.0	28.0	4.0	463.8	40.6	365.2	351.1
10.0	2.0	15.0	744.0	97.0	28.0	4.0	580.3	42.1	445.7	428.8
10.0	2.0	16.0	601.0	78.0	27.0	3.0	335.7	36.5	251.4	240.6
10.0	2.0	17.0	295.0	38.0	26.0	3.0	91.4	28.0	61.0	54.7
10.0	2.0	18.0	-	-	26.0	3.0	-	26.0	-	
10.0 10.0	2.0	19.0 20.0	-	-	26.0 25.0	3.0 3.0	-	26.0 25.0	-	-
10.0 10.0	2.0	21.0 22.0	-	-	25.0 25.0	3.0 3.0	:	25.0 25.0	-	-
10.0 10.0	2.0 3.0	23.0	-	- -	25.0 25.0	3.0 3.0	-	25.0 25.0 25.0	-	-
10.0 10.0 10.0	3.0 3.0 3.0	1.0 2.0 3.0	-	- -	25.0 24.0 24.0	3.0 3.0 3.0		24.0 24.0	-	-
10.0 10.0 10.0	3.0 3.0	4.0 5.0	Ē	-	24.0 24.0 24.0	3.0 2.0	-	24.0 24.0 24.0		
10.0	3.0	6.0	173.0	18.0	25.0	2.0	43.2	24.4	28.0	22.4
10.0	3.0	7.0	611.0	57.0	26.0	3.0	271.4	31.9	198.7	189.3
10.0	3.0	8.0	771.0	76.0	27.0	3.0	524.9	40.4	401.9	386.6
10.0	3.0	9.0	848.0	87.0	27.0	3.0	740.3	46.8	561.3	540.2
10.0	3.0	10.0	889.0	94.0	28.0	3.0	901.9	52.5	667.1	641.7
10.0	3.0	11.0	908.0	97.0	28.0	3.0	991.8	55.3	723.6	695.8
10.0	3.0	12.0	910.0	97.0	28.0	3.0	1,003.0	55.8	729.7	701.5
10.0	3.0	13.0	872.0	107.0	28.0	3.0	926.6	54.0	680.6	654.6
10.0	3.0	14.0	842.0	97.0	28.0	3.0	786.5	50.2	587.3	565.2

10.0	3.0	15.0	782.0	84.0	27.0	3.0	588.7	43.8	447.9	431.0
10.0	3.0	16.0	661.0	65.0	27.0	3.0	345.1	36.8	256.6	245.7
10.0	3.0	17.0	360.0	33.0	26.0	3.0	96.3	28.2	61.6	55.4
10.0	3.0	18.0	-	=	26.0	3.0	-	26.0	=	-
10.0	3.0	19.0	_	_	25.0	3.0	_	25.0	_	_
10.0	3.0	20.0	_	_	25.0	3.0	_	25.0	_	_
10.0	3.0	21.0			25.0	3.0		25.0		
10.0	3.0	22.0	-		25.0	3.0		25.0		
			-				· •			-
10.0	3.0	23.0	-	-	25.0	2.0	-	25.0	-	-
10.0	4.0		-		25.0	2.0	-	25.0	-	-
10.0	4.0	1.0	-		25.0	2.0		25.0		-
10.0	4.0	2.0	-	-	25.0	1.0	-	25.0	-	-
10.0	4.0	3.0	-	-	25.0	1.0	-	25.0	-	-
10.0	4.0	4.0	-		25.0	1.0	-	25.0	-	-
10.0	4.0	5.0	-	-	25.0	1.0	-	25.0	-	-
10.0	4.0	6.0	223.0	16.0	25.0	1.0	47.5	24.3	29.1	23.4
10.0	4.0	7.0	651.0	49.0	26.0	2.0	276.4	32.8	200.4	191.0
10.0	4.0	8.0	804.0	64.0	27.0	2.0	528.5	42.2	400.6	385.3
10.0	4.0	9.0	877.0	73.0	27.0	2.0	746.7	49.4	558.3	537.4
10.0	4.0	10.0	915.0	80.0	28.0	2.0	909.3	55.7	661.1	636.0
				84.0	28.0	2.0				687.7
10.0	4.0	11.0	931.0				999.1	58.7	715.2	
10.0	4.0	12.0	931.0	86.0	28.0	2.0	1,010.4	59.3	720.8	693.1
10.0	4.0	13.0	0.888	101.0	28.0	3.0	933.6	54.2	684.9	658.8
10.0	4.0	14.0	850.0	96.0	28.0	3.0	790.3	50.3	589.7	567.5
10.0	4.0	15.0	783.0	85.0	28.0	3.0	588.9	44.8	445.6	428.8
10.0	4.0	16.0	651.0	67.0	27.0	3.0	341.9	36.7	254.3	243.4
10.0	4.0	17.0	334.0	33.0	26.0	3.0	92.2	28.1	59.6	53.4
10.0	4.0	18.0	-		26.0	3.0	-	26.0	-	-
10.0	4.0	19.0	-	-	26.0	3.0	-	26.0	-	-
10.0	4.0	20.0	_		25.0	3.0	_	25.0	_	_
10.0	4.0	21.0	_	_	25.0	3.0	_	25.0	_	_
10.0	4.0	22.0			25.0	3.0		25.0		
			-							
10.0	4.0	23.0	-		25.0	3.0	-	25.0	-	-
10.0	5.0	-	-	-	25.0	3.0	-	25.0	-	-
10.0	5.0	1.0	-		25.0	3.0	-	25.0	-	-
10.0	5.0	2.0	-		25.0	2.0		25.0		-
10.0	5.0	3.0	-	-	25.0	2.0	-	25.0	-	-
10.0	5.0	4.0	-	-	25.0	2.0	-	25.0	-	-
10.0	5.0	5.0	-		25.0	2.0	-	25.0	-	_
10.0	5.0	6.0	122.0	17.0	25.0	2.0	35.2	24.6	23.7	18.2
10.0	5.0	7.0	560.0	64.0	26.0	2.0	262.3	32.3	193.0	183.7
10.0	5.0	8.0	735.0	85.0	27.0	3.0	514.5	40.1	394.9	379.8
10.0	5.0	9.0	442.0	247.0	27.0	3.0	604.8	43.3	468.2	450.6
10.0	5.0	10.0	544.0	267.0	28.0	3.0	782.6	49.1	589.7	567.5
10.0	5.0	11.0	540.0	280.0	28.0	3.0	836.8	51.0	624.7	601.1
10.0	5.0	12.0	883.0	114.0	28.0	3.0	992.5	55.1	724.9	697.0
10.0	5.0	13.0	775.0	163.0	28.0	3.0	900.7	53.3	663.9	638.7
10.0	5.0	14.0	727.0	153.0	28.0	3.0	758.6	49.4	569.0	547.6
10.0	5.0	15.0	641.0	134.0	27.0	3.0	552.4	42.7	423.4	407.3
10.0	5.0	16.0	485.0	101.0	27.0	3.0	307.0	35.6	232.5	222.3
10.0	5.0	17.0	97.0	40.0	26.0	3.0	58.6	27.0	44.2	38.3
10.0	5.0	18.0	-		26.0	3.0	-	26.0		-
10.0	5.0	19.0	-		26.0	3.0	-	26.0	-	_
10.0	5.0	20.0	-	-	26.0	3.0	-	26.0	_	_
10.0	5.0	21.0	-	-	25.0	4.0	-	25.0	_	_
10.0	5.0	22.0	_		25.0	4.0	_	25.0	_	_
10.0	5.0	23.0	_	<u> -</u>	25.0	4.0	_	25.0	_	_
10.0	6.0	-	_	_	25.0	3.0	_	25.0		_
10.0	6.0	1.0	-	-	25.0	3.0		25.0	<u>.</u>	-
10.0	6.0	2.0		- -	25.0	3.0		25.0		-
10.0	6.0	3.0	-		25.0	3.0	-	25.0	-	-
			-						-	-
10.0	6.0	4.0	-	-	25.0	3.0	-	25.0	-	-
10.0	6.0	5.0	-		25.0 25.0	3.0	-	25.0	-	
10.0	6.0	6.0		13.0	25.0	3.0	12.3	23.8	10.5	5.2
10.0	6.0	7.0	65.0	102.0	26.0	3.0	123.5	27.8	101.0	93.9
10.0	6.0	8.0	253.0	195.0	26.0	4.0	349.6	33.6	281.3	269.7
10.0	6.0	9.0	341.0	272.0	27.0	4.0	547.5	40.0	431.2	414.9
10.0	6.0	10.0	27.0	300.0	27.0	4.0	327.3	35.2	265.1	253.9
10.0	6.0	11.0	132.0	398.0	27.0	4.0	546.2	39.9	432.0	415.7
10.0	6.0	12.0	62.0	388.0	27.0	4.0	457.3	38.4	364.6	350.4
10.0	6.0	13.0	38.0	331.0	27.0	4.0	370.9	36.0	299.2	350.4 287.0
10.0	6.0	14.0	9.0	218.0	27.0	4.0	218.7	32.1	179.9	171.0
10.0	6.0	15.0	18.0	191.0	27.0	4.0	196.9	31.1	162.5	154.0
10.0	6.0	16.0	-	11.0	26.0	4.0	10.4	25.3	8.8	3.6
10.0	6.0	17.0	-	22.0	26.0	4.0	20.9	25.3 25.0	17.7	3.6 12.3
10.0	6.0	18.0	-	-	26.0	4.0	-	26.0	-	-
		19.0	-		26.0	5.0	-	26.0	-	_
10.0	6.0		-						-	-
10.0 10.0	6.0	20.0	-	-	26.0	5.0	-	26.0	•	-
		21.0	-	•	25.0	6.0		25.0	_	-
	6.0							05.0		
10.0	6.0	22.0	-	-	25.0	6.0	-	25.0	-	-
			-	-			- -	25.0 25.0	-	-

10.0	7.0	-	-	-	25.0	5.0	-	25.0	-	-
10.0	7.0	1.0	_	_	25.0	5.0	_	25.0	-	-
10.0	7.0	2.0		<u>-</u>	25.0	5.0	_	25.0	_	_
10.0	7.0	3.0	_	_	25.0	5.0		25.0		_
10.0	7.0	4.0			25.0	5.0		25.0		
			-	· •			-			-
10.0	7.0	5.0	-	-	25.0	5.0	-	25.0	-	-
10.0	7.0	6.0	-	-	25.0	5.0	-	25.0	-	-
10.0	7.0	7.0	-	7.0	25.0	6.0	6.6	23.9	5.7	0.5
10.0	7.0	8.0	634.0	113.0	26.0	6.0	488.4	34.8	386.1	371.3
10.0	7.0	9.0	740.0	129.0	26.0	6.0	709.1	40.1	556.9	536.0
10.0	7.0	10.0	45.0	328.0	27.0	7.0	373.3	34.0	304.1	291.8
10.0	7.0	11.0	89.0	387.0	27.0	7.0	482.0	35.5	389.9	374.9
10.0	7.0	12.0	46.0	356.0	27.0	7.0	407.7	34.3	331.7	318.6
10.0	7.0	13.0	45.0	339.0	26.0	7.0	386.1	32.7	316.5	303.8
10.0	7.0	14.0	10.0	221.0	26.0	7.0	222.6	29.7	185.2	176.1
10.0	7.0	15.0	2.0	164.0	26.0	7.0	159.9	28.2	133.9	126.1
10.0	7.0	16.0	-	65.0	25.0	6.0	61.7	25.3	52.4	46.4
10.0	7.0	17.0	124.0	40.0	25.0	6.0	63.4	25.2	47.3	41.3
10.0	7.0	18.0	-	<u>-</u>	24.0	6.0	<u>-</u>	24.0		-
10.0	7.0	19.0	_	_	24.0	6.0	_	24.0	_	_
10.0	7.0	20.0	_		24.0	6.0	<u>-</u>	24.0		
							•			
10.0	7.0	21.0	-	-	24.0	5.0	-	24.0	-	-
10.0	7.0	22.0	-	-	24.0	5.0	-	24.0	-	-
10.0	7.0	23.0	-	<u>-</u>	24.0	5.0	<u>-</u>	24.0		-
10.0	8.0	_	-	_	24.0	5.0	_	24.0	_	_
10.0	8.0	1.0	_	_	24.0	5.0	_	24.0		_
10.0	8.0	2.0			24.0	5.0		24.0		
			-	-			-			-
10.0	8.0	3.0	-	-	24.0	5.0	-	24.0	-	-
10.0	8.0	4.0	-	-	24.0	4.0	-	24.0	-	-
10.0	8.0	5.0	-	_	24.0	4.0	_	24.0	_	_
10.0	8.0	6.0	_	18.0	24.0	4.0	17.1	23.0	14.6	9.3
			492.0		25.0	5.0	252.5	29.4		
10.0	8.0	7.0		76.0					190.3	181.1
10.0	8.0	8.0	690.0	103.0	26.0	5.0	509.5	36.7	398.4	383.2
10.0	8.0	9.0	778.0	123.0	27.0	5.0	729.0	43.2	563.6	542.4
10.0	8.0	10.0	830.0	133.0	27.0	5.0	894.4	47.3	680.4	654.4
10.0	8.0	11.0	855.0	137.0	27.0	4.0	986.3	51.8	733.1	704.8
	8.0	12.0		333.0		4.0			622.6	599.1
10.0			463.0		27.0		821.6	48.2		
10.0	8.0	13.0	577.0	265.0	27.0	4.0	824.7	47.9	625.7	602.1
10.0	8.0	14.0	788.0	128.0	27.0	4.0	773.8	46.7	588.5	566.4
10.0	8.0	15.0	704.0	113.0	27.0	4.0	565.4	41.6	435.0	418.6
10.0	8.0	16.0	35.0	120.0	26.0	4.0	133.7	29.5	110.2	102.9
10.0	8.0	17.0	-	27.0	25.0	4.0	25.6	24.5	21.9	16.4
10.0	8.0	18.0	-	-	25.0	4.0	-	25.0	-	-
10.0	8.0	19.0	-	-	25.0	4.0	-	25.0	-	-
10.0	8.0	20.0	-	_	24.0	4.0	-	24.0	-	-
10.0	8.0	21.0	_	_	24.0	4.0	_	24.0		_
10.0	8.0	22.0			24.0	4.0		24.0		
							•			-
10.0	8.0	23.0	-	-	24.0	4.0	-	24.0	-	-
10.0	9.0	-	-	-	24.0	4.0	-	24.0	-	-
10.0	9.0	1.0	-	<u>-</u>	23.0	3.0	<u>-</u>	23.0		-
10.0	9.0	2.0	_	_	23.0	3.0	_	23.0	_	_
10.0	9.0	3.0			23.0	3.0		23.0		
10.0				_	23.0	3.0	_	23.0		
	9.0	4.0	-							-
10.0	9.0	5.0	-	-	23.0	3.0	-	23.0		-
10.0	9.0	6.0	-	19.0	24.0	3.0	18.0	22.8	15.5	10.1
10.0	9.0	7.0	581.0	60.0	25.0	3.0	266.1	30.7	196.8	187.5
10.0	9.0	8.0	754.0	83.0	26.0	4.0	523.2	38.2	405.3	389.8
10.0	9.0	9.0	834.0	98.0	26.0	4.0	743.9	44.2	571.8	550.3
		10.0						49.5		652.2
10.0	9.0		876.0	108.0	27.0	4.0	901.8		678.0	
10.0	9.0	11.0	894.0	112.0	27.0	4.0	988.9	51.9	734.7	706.3
10.0	9.0	12.0	894.0	112.0	27.0	4.0	996.2	52.3	738.6	710.1
10.0	9.0	13.0	545.0	274.0	27.0	4.0	804.2	47.9	610.3	587.3
10.0	9.0	14.0	321.0	293.0	27.0	3.0	568.2	43.3	440.7	424.1
10.0	9.0	15.0	-	150.0	27.0	3.0	144.8	31.3	119.5	112.0
10.0	9.0	16.0	612.0	68.0	26.0	3.0	321.4	33.6	241.9	231.4
10.0	9.0	17.0	235.0	31.0	25.0	3.0	74.3	26.5	50.2	44.2
10.0	9.0	18.0	-	-	25.0	3.0	-	25.0	-	-
10.0	9.0	19.0	-	-	25.0	3.0	-	25.0	-	-
10.0	9.0	20.0	_	_	24.0	4.0	<u>-</u>	24.0	<u>-</u>	_
10.0					24.0	4.0		24.0		
	9.0	21.0	-	-			-		-	-
10.0	9.0	22.0	-	-	24.0	4.0	-	24.0	-	-
10.0	9.0	23.0	-	-	24.0	4.0	-	24.0	-	-
10.0	10.0	-	-	-	24.0	3.0		24.0	-	-
10.0	10.0	1.0	_	_	24.0	3.0	<u>-</u>	24.0	-	_
10.0	10.0	2.0	_	_	24.0	3.0	_	24.0	_	_
10.0	10.0	3.0			24.0	3.0		24.0		
			-	-			-		-	-
10.0	10.0	4.0	-	-	24.0	3.0	-	24.0	-	-
10.0	10.0	5.0	-	-	24.0	3.0	-	24.0	-	-
10.0	10.0	6.0	-	13.0	24.0	3.0	12.3	22.9	10.6	5.3
10.0	10.0	7.0	507.0	69.0	25.0	3.0	250.8	30.2	187.5	178.4
10.0	10.0	8.0	693.0	96.0	26.0	3.0	503.7	38.8	389.5	374.6
10.0	10.0	3.0	333.0	30.0	20.0	0.0	500.7	55.0	555.5	377.0

10.0	10.0	9.0	779.0	113.0	26.0	3.0	718.5	45.2	549.5	528.9
10.0	10.0	10.0	551.0	259.0	27.0	3.0	779.4	48.4	589.5	567.3
10.0	10.0	11.0	539.0	302.0	27.0	3.0	857.3	50.6	641.6	617.3
10.0	10.0	12.0	861.0	122.0	28.0	3.0	973.6	54.7	712.6	685.2
10.0	10.0	13.0	832.0	125.0	28.0	3.0	905.8	53.3	667.3	642.0
10.0	10.0	14.0	794.0	114.0	27.0	3.0	760.6	48.5	572.8	551.3
				185.0		2.0			349.3	
10.0	10.0	15.0	406.0		27.0		452.7	42.0		335.7
10.0	10.0	16.0	-	49.0	26.0	2.0	46.5	27.6	39.1	33.2
10.0	10.0	17.0	41.0	30.0	25.0	2.0	37.8	24.4	30.0	24.4
10.0	10.0	18.0	-	-	25.0	2.0		25.0	-	-
10.0	10.0	19.0	-	-	25.0	2.0	-	25.0	-	-
10.0	10.0	20.0	-	-	25.0	2.0		25.0	_	-
10.0	10.0	21.0	_	<u>-</u>	25.0	2.0	_	25.0	_	_
10.0	10.0	22.0	_		25.0	2.0	_	25.0	_	_
10.0	10.0	23.0			25.0	2.0		25.0		
10.0		-	-		25.0	2.0	-	25.0	-	
	11.0		-				-			-
10.0	11.0	1.0	-		25.0	2.0	-	25.0	-	-
10.0	11.0	2.0	-	-	24.0	2.0	-	24.0	-	-
10.0	11.0	3.0	-	-	24.0	2.0	-	24.0	-	-
10.0	11.0	4.0	-		24.0	2.0		24.0	-	-
10.0	11.0	5.0	-	-	24.0	2.0	_	24.0	_	_
10.0	11.0	6.0	_	2.0	24.0	2.0	1.9	22.2	1.6	
10.0	11.0	7.0	111.0	99.0	25.0	2.0	139.9	27.4	113.1	105.7
10.0	11.0	8.0	150.0	198.0	26.0	3.0	290.1	32.7	235.4	225.0
10.0	11.0	9.0	104.0	288.0	26.0	3.0	371.2	35.4	299.8	287.7
10.0	11.0	10.0	189.0	365.0	26.0	4.0	551.7	39.2	437.9	421.3
10.0	11.0	11.0	13.0	259.0	26.0	3.0	265.0	33.5	216.4	206.6
10.0	11.0	12.0	27.0	323.0	26.0	3.0	354.8	34.9	287.8	276.0
10.0	11.0	13.0	16.0	268.0	26.0	3.0	276.4	33.1	226.1	216.0
10.0	11.0	14.0	24.0	250.0	26.0	2.0	263.4	33.4	215.1	205.3
10.0	11.0	15.0	185.0	219.0	25.0	2.0	340.6	34.7	274.2	262.8
10.0	11.0	16.0	-	34.0	25.0	2.0	32.2	25.6	27.3	21.7
10.0	11.0	17.0	_	2.0	24.0	2.0	1.9	22.2	1.6	-
						2.0				
10.0	11.0	18.0	-	-	24.0		-	24.0	-	-
10.0	11.0	19.0	-	-	24.0	2.0	-	24.0	-	-
10.0	11.0	20.0	-		24.0	3.0		24.0	-	-
10.0	11.0	21.0	-	-	25.0	3.0	-	25.0	-	-
10.0	11.0	22.0	-		25.0	2.0		25.0	-	-
10.0	11.0	23.0	-	-	24.0	2.0	_	24.0	_	_
10.0	12.0		_	<u>-</u>	24.0	2.0	<u>-</u>	24.0	_	_
10.0	12.0	1.0	_	_	24.0	3.0	_	24.0	_	_
10.0	12.0	2.0			24.0	3.0		24.0		
			-				-		-	-
10.0	12.0	3.0	-		24.0	3.0	-	24.0	-	-
10.0	12.0	4.0	-	-	24.0	3.0	-	24.0	-	-
10.0	12.0	5.0	-	-	24.0	3.0		24.0	-	-
10.0	12.0	6.0	-	2.0	24.0	3.0	1.9	22.3	1.6	-
10.0	12.0	7.0	-	33.0	24.0	3.0	31.3	23.1	26.8	21.3
10.0	12.0	8.0	_	27.0	25.0	4.0	25.6	24.2	21.9	16.4
10.0	12.0	9.0	3.0	180.0	26.0	4.0	176.4	29.0	147.2	139.1
10.0	12.0	10.0	2.0	173.0	26.0	4.0	168.5	29.2	140.5	132.5
10.0	12.0	11.0	-	110.0	27.0	4.0	105.1	28.6	87.9	81.1
10.0	12.0	12.0	46.0	359.0	27.0	4.0	411.9	36.1	332.2	319.1
10.0	12.0	13.0	98.0	366.0	27.0	4.0	464.4	38.2	370.5	356.2
10.0	12.0	14.0	753.0	129.0	27.0	4.0	741.5	45.0	568.9	547.5
10.0	12.0	15.0	664.0	114.0	26.0	4.0	536.9	39.8	416.4	400.6
10.0	12.0	16.0	482.0	88.0	26.0	4.0	286.2	33.2	217.6	207.7
10.0	12.0	17.0	120.0	30.0	25.0	4.0	52.8	25.6	38.3	32.5
10.0	12.0	18.0	-	-	25.0	4.0	-	25.0	-	-
10.0	12.0	19.0	-	-	25.0	4.0	-	25.0	_	-
10.0	12.0	20.0	_	-	25.0	4.0	-	25.0	_	_
10.0	12.0	21.0	_	_	25.0	3.0	_	25.0	_	_
10.0	12.0	22.0	_		25.0	3.0		25.0	_	_
			-				· ·		-	-
10.0	12.0	23.0	-		25.0	3.0	-	25.0	-	-
10.0	13.0	-	-	-	25.0	3.0	-	25.0	-	-
10.0	13.0	1.0	-	-	24.0	2.0	-	24.0	-	-
10.0	13.0	2.0	-	-	24.0	2.0	-	24.0	-	-
10.0	13.0	3.0	-	-	24.0	2.0	-	24.0	-	-
10.0	13.0	4.0	-	-	24.0	2.0	-	24.0	-	-
10.0	13.0	5.0	-		23.0	2.0	-	23.0	-	-
10.0	13.0	6.0	107.0	13.0	23.0	2.0	31.5	22.2	21.5	16.0
10.0	13.0	7.0	592.0	57.0	24.0	3.0	267.2	29.7	198.1	188.7
10.0	13.0	8.0	774.0	77.0	25.0	3.0	527.3	38.5	407.6	392.1
10.0	13.0	9.0	859.0	88.0	26.0	3.0	745.9	46.0	567.8	546.5
10.0		10.0	901.0	96.0	26.0	3.0	907.6			651.8
	13.0							50.8	677.6	001.8
10.0	13.0	11.0	919.0	100.0	27.0	3.0	995.3	54.4	729.5	701.4
10.0	13.0	12.0	917.0	102.0	28.0	3.0	1,002.0	55.8	728.9	700.8
10.0	13.0	13.0	889.0	105.0	28.0	3.0	925.1	53.9	679.4	653.5
10.0	13.0	14.0	839.0	102.0	28.0	3.0	778.2	50.0	581.2	559.4
10.0	13.0	15.0	751.0	93.0	28.0	3.0	564.4	44.1	427.6	411.4
10.0	13.0	16.0	582.0	73.0	27.0	3.0	310.6	35.8	231.1	220.9
10.0	13.0	17.0	203.0	27.0	26.0	3.0	65.7	27.2	44.5	38.6

10.0	13.0	18.0	-	-	25.0	3.0	-	25.0		-
10.0	13.0	19.0	-	-	25.0	3.0	-	25.0	-	-
10.0	13.0	20.0	-	-	24.0	3.0	-	24.0	-	-
10.0 10.0	13.0 13.0	21.0 22.0	-		24.0 23.0	3.0 3.0		24.0 23.0	-	-
10.0	13.0	23.0			23.0	4.0		23.0		1
10.0	14.0	-	_	_	23.0	4.0	_	23.0	_	
10.0	14.0	1.0	_	_	22.0	4.0	<u>-</u>	22.0		_
10.0	14.0	2.0	-	-	22.0	3.0	-	22.0	-	-
10.0	14.0	3.0	-	<u>-</u>	22.0	3.0	<u>-</u>	22.0	-	-
10.0	14.0	4.0	-	-	22.0	3.0	-	22.0	-	-
10.0	14.0	5.0	-	-	22.0	3.0	-	22.0	-	-
10.0	14.0	6.0	59.0	12.0	22.0	3.0	22.7	21.0	16.5	11.1
10.0	14.0	7.0	530.0	67.0	23.0	3.0	256.9	28.4	193.4	184.1
10.0	14.0	8.0	726.0	91.0	23.0	3.0	516.3	36.2	404.2	388.8
10.0	14.0	9.0	821.0	105.0	24.0	3.0	739.5	43.8	569.4	548.0
10.0 10.0	14.0 14.0	10.0 11.0	867.0	114.0	25.0	3.0	896.2	49.5	673.6	648.0 685.0
10.0	14.0	12.0	885.0 881.0	119.0 120.0	26.0 26.0	2.0 2.0	982.1 985.3	56.3 56.7	712.4 713.1	685.8
10.0	14.0	13.0	841.0	127.0	27.0	2.0	910.3	55.7	662.2	637.0
10.0	14.0	14.0	789.0	121.0	27.0	2.0	758.2	51.2	562.7	541.6
10.0	14.0	15.0	696.0	107.0	27.0	1.0	546.3	48.2	405.4	390.0
10.0	14.0	16.0	516.0	82.0	27.0	1.0	293.6	38.7	216.3	206.4
10.0	14.0	17.0	136.0	27.0	26.0	1.0	55.1	27.7	39.0	33.2
10.0	14.0	18.0	-	<u>-</u>	26.0	1.0	<u>-</u>	26.0	-	-
10.0	14.0	19.0	-	-	26.0	1.0	-	26.0	-	-
10.0	14.0	20.0	-	-	25.0	1.0	-	25.0	-	-
10.0	14.0	21.0	-	-	25.0	2.0	-	25.0	-	-
10.0	14.0	22.0	-	-	25.0	2.0	-	25.0	-	-
10.0	14.0	23.0	-	-	25.0	2.0	-	25.0	-	-
10.0	15.0	-	-	-	25.0	2.0	-	25.0	-	-
10.0	15.0	1.0	-	-	24.0	2.0	-	24.0	-	-
10.0	15.0	2.0	-	-	24.0	2.0 2.0	-	24.0	-	-
10.0 10.0	15.0 15.0	3.0 4.0	-	· •	24.0 24.0	2.0		24.0 24.0		-
10.0	15.0	5.0	-		24.0	2.0		24.0		
10.0	15.0	6.0	_	5.0	24.0	2.0	4.7	22.4	4.1	1
10.0	15.0	7.0	57.0	94.0	24.0	2.0	113.8	25.6	94.2	87.2
10.0	15.0	8.0	43.0	179.0	24.0	3.0	204.8	28.3	170.8	162.1
10.0	15.0	9.0	349.0	259.0	25.0	4.0	540.4	37.5	431.0	414.7
10.0	15.0	10.0	8.0	218.0	26.0	5.0	218.8	30.9	181.0	172.1
10.0	15.0	11.0	801.0	146.0	27.0	6.0	937.2	45.2	721.4	693.6
10.0	15.0	12.0	139.0	402.0	28.0	6.0	560.1	40.0	443.0	426.3
10.0	15.0	13.0	22.0	282.0	28.0	5.0	296.4	34.7	240.7	230.2
10.0	15.0	14.0	706.0	146.0	28.0	5.0	721.8	43.5	557.8	536.9
10.0	15.0	15.0	652.0	114.0	27.0	5.0	526.1	39.2	409.1	393.6
10.0	15.0	16.0	526.0	76.0	26.0	5.0	290.3	32.4	220.0	210.0
10.0	15.0	17.0	168.0	25.0	25.0	5.0	58.3	25.6	40.4	34.6
10.0 10.0	15.0	18.0	-	-	23.0 22.0	5.0	-	23.0 22.0	-	-
10.0	15.0 15.0	19.0 20.0	-	· •	22.0	5.0 5.0		22.0		-
10.0	15.0	21.0	-		21.0	5.0		21.0		
10.0	15.0	22.0	_	_	20.0	5.0	_	20.0	_	
10.0	15.0	23.0	_	_	19.0	5.0	_	19.0	<u> -</u>	_
10.0	16.0	-	_	_	19.0	4.0	<u>-</u>	19.0	<u>-</u>	_
10.0	16.0	1.0	-	-	18.0	4.0	-	18.0	-	-
10.0	16.0	2.0	-	<u>-</u>	18.0	4.0	<u>-</u>	18.0	-	-
10.0	16.0	3.0	-	-	18.0	4.0	-	18.0	-	-
10.0	16.0	4.0	-	-	18.0	4.0	-	18.0		-
10.0	16.0	5.0	-	5.2	18.0	3.0		18.0		-
10.0	16.0	6.0	-	14.0	18.0	3.0	13.3	16.6	11.7	6.4
10.0	16.0	7.0	643.0	53.0	20.0	4.0	279.4	25.4	210.4	200.7
10.0	16.0	8.0	818.0	72.0	21.0	4.0	545.7	33.8	431.3	415.0
10.0 10.0	16.0	9.0	900.0 525.0	84.0 258.0	22.0 23.0	3.0	770.1	42.8 44.0	595.9 582.9	573.5 561.0
10.0	16.0 16.0	10.0 11.0	962.0	94.0	24.0	3.0 3.0	753.3 1,025.8	51.8	762.4	732.8
10.0	16.0	12.0	550.0	290.0	24.0	3.0	855.7	48.4	647.8	623.3
10.0	16.0	13.0	513.0	271.0	24.0	3.0	766.7	45.6	588.6	566.5
10.0	16.0	14.0	669.0	164.0	24.0	2.0	711.0	46.5	541.3	521.0
10.0	16.0	15.0	830.0	77.0	24.0	2.0	590.1	42.8	449.0	432.1
10.0	16.0	16.0	676.0	59.0	23.0	2.0	327.6	33.7	243.7	233.1
10.0	16.0	17.0	259.0	23.0	22.0	2.0	72.6	23.7	48.1	42.1
10.0	16.0	18.0	-	-	22.0	2.0	-	22.0	-	-
10.0	16.0	19.0	-	-	21.0	2.0	-	21.0	-	-
10.0	16.0	20.0	-	-	21.0	2.0		21.0	-	-
10.0	16.0	21.0	-	-	21.0	2.0	-	21.0	-	-
10.0	16.0	22.0	-	-	21.0	2.0	-	21.0	-	-
10.0 10.0	16.0 17.0	23.0	-	-	21.0 21.0	2.0 2.0	-	21.0 21.0	-	-
10.0	17.0	1.0			21.0	2.0		21.0		
10.0	17.0	2.0	-	- -	21.0	2.0	- -	21.0		-
					•			••		

10.0 17.0 10.0 18.0 10.0 18.0 10.0 18.0 10.0 18.0	8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0	92.0 11.0 55.0 787.0 89.0 992.0 100.0 930.0 101.0 930.0 101.0 94.0 89.0 96.0 877.0 89.0 96.0 877.0 89.0 100.0 930.1 78.0 644.0 60.0 22.0	21.0 21.0 21.0 22.0 23.0 24.0 25.0 26.0 26.0 26.0 25.0 25.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23	2.0 2.0 2.0 2.0 2.0 3.0 3.0 4.0 4.0 4.0 4.0 4.0 4.0 3.0 3.0 3.0 3.0 3.0 3.0 2.0 2.0	27.7 271.5 532.3 750.2 911.4 999.5 1,007.2 932.1 782.5 572.3 316.2 64.7	21.0 21.0 21.1 29.5 37.6 45.1 50.9 51.2 51.6 49.9 46.2 39.8 33.0 25.2 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23	19.0 201.1 413.0 573.5 680.0 745.3 749.4 699.3 595.9 442.1 236.1 43.4	13.6 191.6 397.3 551.9 654.1 716.5 720.4 672.5 573.5 425.5 225.7 37.4
10.0 18.0 10.0 19.0 10.0 19.0 10.0 19.0 10.0 19.0 10.0 19.0 10.0 19.0	8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	511.0 64.0 702.0 90.0 794.0 106.0 860.0 105.0 879.0 109.0 875.0 111.0 118.0 350.0 102.0 372.0 177.0 422.0 82.0 81.0 21.0	23.0 23.0 25.0 26.0 26.0 27.0 27.0 28.0 28.0 28.0 26.0 26.0 26.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25	2.0 3.0 3.0 4.0 4.0 4.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3	247.4 500.6 717.8 876.2 960.5 963.9 476.2 745.5 412.5 252.6 37.3	23.0 23.0 30.1 37.6 43.5 48.8 53.5 54.8 42.4 47.8 39.0 32.7 26.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25	184.6 389.1 553.5 660.9 707.6 705.2 371.9 563.1 322.7 192.1 27.2	175.6 374.1 532.7 635.8 680.4 678.2 357.5 542.0 309.8 182.9 21.6
10.0 19.0 19.0 10.0 19.0 10.0 19.0 10.0 19.0 10.0 19.0 10.0 19.0 10.0 19.0 10.0 19.0 10.0 19.0 10.0 19.0 10.0 19.0 10.0 19.0 10.0 19.0 10.0 19.0 10.0 19.0 10.0 19.0 10.0 19.0 10.0 19.0 10.0 19.0 10.0 10	10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0	26.0 87.0 104.0 150.0 279.0 367.0 315.0 370.0 384.0 351.0 489.0 276.0 87.0 200.0 - 10.0 - 10.0	25.0 25.0 26.0 27.0 27.0 27.0 27.0 27.0 27.0 26.0 26.0 26.0 26.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 26.0	2.0 2.0 3.0 3.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2	96.4 99.7 405.5 664.8 692.6 750.2 748.2 599.6 255.1 9.5 0.9 - - - - - - - - - - - - - - - - - - -	25.0 26.0 27.4 36.7 46.6 48.4 50.2 50.3 46.2 35.6 25.6 24.1 26.0 26.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25	80.6 83.8 325.2 507.6 524.2 562.6 560.3 457.6 205.0 8.0 0.8 - - - - - - - - - - - - - - - - - - -	73.9 77.1 312.3 488.5 504.6 541.5 539.2 440.4 195.4 2.8

10.0	20.0	12.0	9.0	227.0	27.0	-	229.4	42.1	179.5	170.5
10.0	20.0	13.0	-	18.0	28.0	-	17.1	29.4	14.3	8.9
10.0	20.0	14.0	338.0	266.0	28.0	-	548.5	49.1	412.4	396.7
10.0 10.0	20.0 20.0	15.0 16.0	-	35.0 9.0	27.0 27.0	- 1.0	33.2 8.5	33.0 25.2	27.2 7.2	21.6 2.0
10.0	20.0	17.0	-	-	26.0	1.0	-	26.0	-	-
10.0	20.0	18.0	_	_	25.0	1.0	_	25.0		_
10.0	20.0	19.0	_	-	25.0	2.0	-	25.0	_	_
10.0	20.0	20.0	-	-	25.0	2.0	-	25.0	-	-
10.0	20.0	21.0	-	-	25.0	2.0	-	25.0	-	-
10.0	20.0	22.0	-	-	25.0	2.0	-	25.0	-	-
10.0	20.0	23.0	-	-	24.0	1.0	-	24.0		-
10.0	21.0		-	-	24.0	1.0		24.0	-	-
10.0	21.0	1.0	-	-	24.0	1.0	-	24.0	-	-
10.0 10.0	21.0 21.0	2.0 3.0	-	-	24.0 24.0	1.0 1.0	-	24.0 24.0		-
10.0	21.0	4.0			23.0	1.0		23.0		
10.0	21.0	5.0	_	_	23.0	2.0	<u>-</u>	23.0	<u>-</u>	_
10.0	21.0	6.0	-	-	23.0	2.0	-	23.0	_	-
10.0	21.0	7.0	438.0	70.0	24.0	2.0	227.2	29.0	171.6	162.9
10.0	21.0	8.0	654.0	99.0	25.0	2.0	482.5	38.7	373.2	358.8
10.0	21.0	9.0	763.0	113.0	25.0	2.0	700.1	46.0	532.9	512.9
10.0	21.0	10.0	820.0	121.0	26.0	2.0	861.4	52.3	637.7	613.6
10.0	21.0	11.0	845.0	124.0	27.0	2.0	947.6	56.2	687.7	661.4
10.0 10.0	21.0 21.0	12.0 13.0	847.0 750.0	123.0 160.0	27.0 27.0	2.0 3.0	945.8 858.3	56.5 51.1	685.4 639.8	659.2 615.6
10.0	21.0	14.0	701.0	146.0	27.0	3.0	710.3	47.1	538.6	518.4
10.0	21.0	15.0	612.0	121.0	27.0	4.0	503.0	39.9	389.3	374.3
10.0	21.0	16.0	444.0	82.0	26.0	3.0	259.1	33.2	195.9	186.6
10.0	21.0	17.0	67.0	18.0	25.0	3.0	31.6	25.1	23.3	17.7
10.0	21.0	18.0	-	-	25.0	3.0	-	25.0	-	-
10.0	21.0	19.0	-	-	25.0	3.0	-	25.0	-	-
10.0	21.0	20.0	-	-	24.0	3.0	-	24.0	-	-
10.0	21.0	21.0	-	-	24.0	3.0		24.0	-	-
10.0	21.0	22.0	-	-	24.0	3.0	-	24.0	-	-
10.0 10.0	21.0 22.0	23.0	-	-	24.0 24.0	3.0 2.0		24.0 24.0		-
10.0	22.0	- 1.0		- -	24.0	2.0		24.0		-
10.0	22.0	2.0			24.0	2.0		24.0		_
10.0	22.0	3.0	_	_	24.0	2.0	<u>-</u>	24.0	<u>-</u>	_
10.0	22.0	4.0	-	-	23.0	2.0	-	23.0	_	-
10.0	22.0	5.0	-	-	23.0	3.0		23.0	-	-
10.0	22.0	6.0	-	-	23.0	3.0	-	23.0	-	-
10.0	22.0	7.0	521.0	58.0	24.0	3.0	244.1	29.0	182.3	173.3
10.0	22.0	8.0	719.0	82.0	25.0	4.0	498.4	36.5	388.8	373.9
10.0	22.0	9.0	-	120.0	25.0	5.0	114.9	27.4	96.7	89.6
10.0 10.0	22.0 22.0	10.0 11.0	297.0 890.0	328.0 105.0	26.0 26.0	5.0 5.0	617.2 960.8	38.8 47.5	490.7 730.7	472.3 702.5
10.0	22.0	12.0	893.0	105.0	26.0	5.0	968.2	48.4	732.8	704.6
10.0	22.0	13.0	841.0	118.0	26.0	5.0	888.1	46.7	677.7	651.8
10.0	22.0	14.0	799.0	108.0	26.0	5.0	740.0	43.2	572.1	550.6
10.0	22.0	15.0	712.0	93.0	25.0	5.0	530.5	37.3	415.0	399.3
10.0	22.0	16.0	534.0	68.0	24.0	5.0	279.0	30.1	211.9	202.2
10.0	22.0	17.0	92.0	18.0	24.0	4.0	38.4	24.2	27.8	22.2
10.0	22.0	18.0	-	-	24.0	4.0	-	24.0	-	-
10.0	22.0 22.0	19.0	-	-	23.0 23.0	4.0 4.0	-	23.0 23.0	-	-
10.0 10.0	22.0	20.0 21.0	-	- -	23.0	4.0	- -	23.0	-	-
10.0	22.0	22.0	_	_	23.0	4.0	<u>-</u>	23.0	<u>-</u>	_
10.0	22.0	23.0	-	-	23.0	3.0	-	23.0	_	-
10.0	23.0	-	-	-	23.0	3.0		23.0	-	-
10.0	23.0	1.0	-	-	23.0	3.0	-	23.0	-	-
10.0	23.0	2.0	-	-	23.0	3.0	-	23.0	-	-
10.0	23.0	3.0	-	-	23.0	3.0		23.0	-	-
10.0	23.0	4.0	-	-	23.0	3.0	-	23.0	-	-
10.0 10.0	23.0 23.0	5.0 6.0	-	- -	23.0 23.0	3.0 3.0	-	23.0 23.0	-	
10.0	23.0	7.0	_	5.0	24.0	4.0	4.7	22.5	4.1	_
10.0	23.0	8.0	22.0	160.0	24.0	4.0	169.1	26.7	142.3	134.3
10.0	23.0	9.0	793.0	101.0	25.0	5.0	707.6	39.9	555.5	534.7
10.0	23.0	10.0	43.0	302.0	25.0	5.0	347.1	33.1	284.0	272.3
10.0	23.0	11.0	853.0	119.0	26.0	5.0	939.9	46.4	718.7	691.1
10.0	23.0	12.0	8.0	216.0	26.0	5.0	217.6	31.7	179.2	170.3
10.0	23.0	13.0	555.0	244.0	26.0	5.0	769.4	42.4	600.4	577.8 80.6
10.0	23.0	14.0	-	109.0	25.0 25.0	5.0 5.0	104.1	27.8	87.4 69.6	80.6 62.2
10.0 10.0	23.0 23.0	15.0 16.0	464.0	85.0 77.0	24.0	4.0	80.9 261.8	25.7 29.2	68.6 201.0	191.5
10.0	23.0	17.0	50.0	17.0	23.0	4.0	27.7	22.9	21.1	15.6
10.0	23.0	18.0	-	-	23.0	3.0	-	23.0	-	-
10.0	23.0	19.0	-	-	23.0	3.0	-	23.0	-	-
10.0	23.0	20.0	-	-	23.0	3.0	-	23.0	-	-

10.0	23.0	21.0	_		23.0	3.0		23.0		_
10.0	23.0	22.0			22.0	3.0		22.0		_
			-	· · · · · · · · · · · · · · · · · · ·						-
10.0	23.0	23.0	-	-	22.0	3.0		22.0	-	-
10.0	24.0	-	-	-	22.0	2.0	-	22.0	-	-
10.0	24.0	1.0	_	_	22.0	2.0	-	22.0	_	_
10.0	24.0	2.0			22.0	2.0		22.0		
			-	· ·			•			-
10.0	24.0	3.0	-		22.0	2.0	-	22.0	-	-
10.0	24.0	4.0	-		22.0	1.0	-	22.0	-	-
10.0	24.0	5.0	_		22.0	1.0	_	22.0	_	_
10.0	24.0	6.0	-	-	22.0	1.0		22.0		-
10.0	24.0	7.0	568.0	53.0	23.0	2.0	253.9	28.8	188.6	179.4
10.0	24.0	8.0	761.0	75.0	24.0	3.0	512.9	37.1	398.6	383.4
10.0	24.0	9.0	853.0	87.0	25.0	3.0	731.1	44.6	560.2	539.2
10.0	24.0	10.0	899.0	95.0	25.0	3.0	892.0	49.4	670.7	645.1
10.0	24.0	11.0	918.0	100.0	26.0	4.0	978.6	50.7	731.7	703.5
							982.4			
10.0	24.0	12.0	915.0	102.0	26.0	4.0		51.0	733.3	705.1
10.0	24.0	13.0	883.0	104.0	26.0	4.0	900.5	49.1	678.3	652.4
10.0	24.0	14.0	829.0	99.0	26.0	4.0	749.9	45.4	573.3	551.7
10.0	24.0	15.0	730.0	88.0	25.0	4.0	533.1	38.8	413.5	397.7
10.0	24.0	16.0	536.0	66.0	24.0	3.0	276.1	31.7	207.7	198.0
10.0	24.0	17.0	93.0	15.0	23.0	3.0	34.9	23.2	24.9	19.3
10.0	24.0	18.0	-	-	23.0	2.0	-	23.0	-	
							-			-
10.0	24.0	19.0	-	-	23.0	2.0	-	23.0	-	-
10.0	24.0	20.0	-	-	23.0	2.0	_	23.0	_	_
10.0	24.0	21.0			23.0	2.0		23.0		
			<u>-</u>							
10.0	24.0	22.0	-	•	23.0	2.0	-	23.0	-	-
10.0	24.0	23.0	-	-	23.0	2.0	_	23.0	_	_
10.0	25.0				22.0	2.0		22.0		
			-	· ·			•			-
10.0	25.0	1.0	-	-	22.0	2.0		22.0		
10.0	25.0	2.0	-	-	22.0	2.0	_	22.0	_	_
10.0	25.0	3.0			22.0	2.0		22.0		
			-	· ·			•			-
10.0	25.0	4.0	-	-	22.0	2.0		22.0		
10.0	25.0	5.0	-		22.0	3.0	-	22.0	-	-
10.0	25.0	6.0	_		22.0	2.0	_	22.0	_	_
			440.0	04.0			100 5		404.0	07.4
10.0	25.0	7.0	119.0	84.0	23.0	2.0	128.5	25.0	104.3	97.1
10.0	25.0	8.0	369.0	153.0	24.0	3.0	377.4	33.0	302.5	290.3
10.0	25.0	9.0	805.0	106.0	25.0	3.0	720.0	43.9	553.8	533.1
10.0	25.0	10.0	856.0	115.0	26.0	3.0	881.3	50.0	660.3	635.3
10.0	25.0	11.0	878.0	119.0	26.0	3.0	960.4	52.5	711.1	683.8
10.0	25.0	12.0	878.0	120.0	27.0	3.0	965.6	53.8	709.9	682.6
				252.0	27.0					544.6
10.0	25.0	13.0	523.0			3.0	748.0	48.4	565.8	
10.0	25.0	14.0	791.0	116.0	27.0	3.0	738.2	47.5	558.2	537.2
10.0	25.0	15.0	698.0	99.0	26.0	3.0	525.4	41.0	403.3	387.9
10.0	25.0	16.0	482.0	75.0	25.0	3.0	265.0	32.4	199.7	190.3
10.0	25.0	17.0	55.0	14.0	24.0	3.0	25.1	23.9	18.5	13.1
10.0	25.0	18.0	-		24.0	3.0	_	24.0	_	_
10.0	25.0	19.0	_		24.0	3.0		24.0		_
10.0	25.0	20.0	-	•	23.0	3.0	-	23.0	-	-
10.0	25.0	21.0	-		23.0	3.0		23.0		-
10.0	25.0	22.0		_	23.0	3.0		23.0		_
10.0	25.0	23.0			23.0	3.0		23.0		
			-				-			-
10.0	26.0	-	-	-	23.0	3.0	-	23.0	-	-
10.0	26.0	1.0	_	_	23.0	3.0	_	23.0	_	-
10.0	26.0	2.0			23.0	3.0		23.0		
			-				·			-
10.0	26.0	3.0	-		22.0	3.0		22.0		-
10.0	26.0	4.0	-	•	22.0	3.0	-	22.0	-	-
10.0	26.0	5.0	_	_	22.0	3.0		22.0	-	_
10.0	26.0	6.0			22.0	3.0		22.0		
			FCO 0	54.0			054.5		180.0	477.4
10.0	26.0	7.0	569.0	51.0	24.0	3.0	251.5	29.2	186.2	177.1
10.0	26.0	8.0	755.0	74.0	25.0	3.0	507.1	37.9	392.3	377.3
10.0	26.0	9.0	385.0	232.0	25.0	3.0	536.2	39.5	422.9	406.9
				314.0						
10.0	26.0	10.0	323.0		26.0	3.0	623.9	42.9	485.7	467.4
10.0	26.0	11.0	348.0	345.0	27.0	3.0	705.1	46.2	539.8	519.6
10.0	26.0	12.0	848.0	135.0	27.0	3.0	959.5	52.9	708.9	681.7
10.0	26.0	13.0	511.0	255.0	27.0	4.0	739.9	46.3	565.9	544.7
				200.0						
10.0	26.0	14.0	445.0	226.0	26.0	4.0	592.4	41.2	463.5	446.1
10.0	26.0	15.0	622.0	122.0	26.0	3.0	504.8	40.0	390.1	375.1
10.0	26.0	16.0	186.0	93.0	25.0	3.0	170.1	29.8	134.5	126.6
				10.0			9.5		8.1	2.9
10.0	26.0	17.0	-	10.0	24.0	3.0		23.1	8.1	
10.0	26.0	18.0	-	-	24.0	3.0	-	24.0	-	-
10.0	26.0	19.0	_	<u>-</u>	24.0	4.0		24.0	_	_
10.0	26.0	20.0			24.0	4.0		24.0		
			-	-			-		-	-
10.0	26.0	21.0	-	-	23.0	4.0	-	23.0	-	-
10.0	26.0	22.0	-	-	23.0	4.0	_	23.0	_	_
10.0	26.0	23.0	_	_	23.0	4.0	_	23.0		_
							-			-
10.0	27.0	5.2	-	-	23.0	4.0	-	23.0	-	-
10.0	27.0	1.0	-	-	23.0	4.0	-	23.0	-	-
10.0	27.0	2.0	_	<u>-</u>	23.0	4.0	_	23.0	<u>-</u>	_
10.0					23.0	4.0		23.0		
	27.0	3.0	-	-			-	20.0	-	-
10.0	27.0	4.0	-	-	22.0	4.0	-	22.0	-	-
10.0	27.0	5.0	-	-	22.0	4.0	-	22.0	-	-
	-				•	•		-		

10.0	27.0	6.0	-		23.0	4.0		23.0	-	-
10.0	27.0	7.0	507.0	60.0	24.0	4.0	240.4	28.5	180.0	171.0
10.0	27.0	8.0	284.0	164.0	25.0	4.0	335.6	32.5	270.4	259.1
10.0	27.0	9.0	125.0	264.0	25.0	4.0	371.9	33.7	302.7	290.4
10.0	27.0	10.0	847.0	120.0	25.0	4.0	876.4	46.0	670.9	645.3
10.0	27.0	11.0	871.0	123.0	26.0	4.0	962.3	50.3	721.0	693.3
10.0	27.0	12.0	879.0	119.0	26.0	4.0	962.2	50.5	720.2	692.5
10.0	27.0	13.0	834.0	128.0	26.0	4.0	885.2	48.7	668.1	642.7
10.0	27.0	14.0	332.0	253.0	26.0	4.0	527.2	40.0	415.3	399.5
10.0	27.0	15.0	698.0	98.0	25.0	4.0	522.2	37.9	406.8	391.3
10.0	27.0	16.0	512.0	69.0	24.0	4.0	268.4	30.7	202.9	193.4
10.0	27.0	17.0	59.0	12.0	24.0	4.0	25.6	23.9	18.7	13.3
10.0	27.0	18.0	_	_	23.0	4.0	<u>-</u>	23.0	_	_
10.0	27.0	19.0	_	<u>-</u>	23.0	4.0	<u>-</u>	23.0	_	_
10.0	27.0	20.0	_	_	23.0	4.0	_	23.0	_	_
10.0	27.0	21.0			23.0	4.0		23.0		_
10.0	27.0	22.0	-	-	23.0	4.0	-	23.0	-	
			-							-
10.0	27.0	23.0	-		23.0	3.0	-	23.0		
10.0	28.0	5.2	-	-	23.0	3.0	-	23.0	-	-
10.0	28.0	1.0	-		22.0	3.0		22.0	-	-
10.0	28.0	2.0	-	-	22.0	3.0	-	22.0	-	-
10.0	28.0	3.0	-		22.0	3.0		22.0	-	-
10.0	28.0	4.0	-		22.0	3.0		22.0	-	-
10.0	28.0	5.0	_	_	22.0	3.0	<u>-</u>	22.0	_	_
10.0	28.0	6.0	_	<u>-</u>	22.0	3.0	<u>-</u>	22.0	_	_
10.0	28.0	7.0	_	24.0	23.0	3.0	22.7	21.8	19.6	14.2
10.0	28.0	8.0		114.0	24.0	4.0	110.1	25.3	93.6	86.6
			6.0	186.0	25.0	4.0		28.4		147.1
10.0	28.0	9.0					185.8		155.5	
10.0	28.0	10.0	-	158.0	25.0	4.0	152.4	27.8	127.9	120.2
10.0	28.0	11.0	221.0	368.0	26.0	4.0	600.0	39.8	474.9	457.1
10.0	28.0	12.0	804.0	148.0	26.0	4.0	929.3	48.8	701.9	675.0
10.0	28.0	13.0	729.0	169.0	26.0	4.0	840.5	47.6	638.3	614.1
10.0	28.0	14.0	59.0	256.0	26.0	4.0	307.3	34.6	249.4	238.7
10.0	28.0	15.0	577.0	126.0	25.0	4.0	481.1	36.3	378.7	364.2
10.0	28.0	16.0	391.0	83.0	24.0	3.0	237.4	30.5	182.0	173.0
10.0	28.0	17.0	-	10.0	24.0	3.0	9.5	23.4	8.1	2.9
10.0	28.0	18.0		-	23.0	3.0	-	23.0	0.1	-
			-							-
10.0	28.0	19.0	•	-	23.0	3.0	-	23.0	-	-
10.0	28.0	20.0	-	-	23.0	3.0	-	23.0	-	-
10.0	28.0	21.0	-	-	23.0	3.0	-	23.0	-	-
10.0	28.0	22.0	-	-	23.0	3.0		23.0	-	-
10.0	28.0	23.0	-		23.0	3.0		23.0	-	-
10.0	29.0	-	-	-	23.0	3.0	-	23.0	_	-
10.0	29.0	1.0	_	<u>-</u>	23.0	3.0	<u>-</u>	23.0	_	_
10.0	29.0	2.0	_		23.0	3.0		23.0	_	_
10.0	29.0	3.0			23.0	3.0	_	23.0		
			-							
10.0	29.0	4.0	-	-	23.0	3.0	-	23.0	-	-
10.0	29.0	5.0	-		23.0	3.0	-	23.0	-	-
10.0	29.0	6.0	-		23.0	3.0		23.0	-	-
10.0	29.0	7.0	487.0	56.0	24.0	3.0	229.0	28.6	171.1	162.4
10.0	29.0	8.0	699.0	81.0	25.0	3.0	482.9	37.2	375.1	360.6
10.0	29.0	9.0	8.0	191.0	25.0	3.0	192.5	30.3	159.6	151.2
10.0	29.0	10.0	804.0	126.0	26.0	3.0	843.3	47.4	640.5	616.3
10.0	29.0	11.0	836.0	127.0	26.0	3.0	931.1	51.7	692.4	666.0
10.0	29.0	12.0	839.0	126.0	26.0	3.0	936.4	52.1	695.0	668.4
10.0	29.0	13.0	801.0	131.0	26.0	3.0	856.5	50.1	641.8	617.5
10.0	29.0	14.0	761.0	116.0	26.0	3.0	710.1	46.1	540.5	520.3
10.0	29.0	15.0	686.0	92.0	25.0	3.0	506.6	39.4	391.4	376.4
10.0	29.0	16.0		62.0	25.0	2.0	261.3	33.4	194.2	184.9
			516.0							
10.0	29.0	17.0	61.0	10.0	24.0	2.0	23.5	24.0	16.8	11.4
10.0	29.0	18.0	-	-	24.0	2.0	-	24.0	-	-
10.0	29.0	19.0	-	-	23.0	2.0	-	23.0	-	-
10.0	29.0	20.0	-	-	23.0	2.0	-	23.0	-	-
10.0	29.0	21.0	-	-	23.0	3.0	-	23.0	-	-
10.0	29.0	22.0	-	-	23.0	3.0	-	23.0	-	-
10.0	29.0	23.0	_	-	23.0	3.0	-	23.0	_	_
10.0	30.0	-	_	-	23.0	2.0	-	23.0	_	_
10.0	30.0	1.0	_	_	22.0	2.0	_	22.0	_	_
10.0	30.0	2.0	_	_	22.0	2.0		22.0		_
10.0	30.0	3.0		- -	22.0	2.0	-	22.0	Ī	=
			-				· •		-	-
10.0	30.0	4.0	-	-	22.0	2.0	-	22.0	-	-
10.0	30.0	5.0	-	-	22.0	2.0	-	22.0	-	-
		6.0	-	-	22.0	2.0	-	22.0	-	-
10.0	30.0			52.0	24.0	2.0	235.1	29.3	174.2	165.4
10.0	30.0 30.0	7.0	520.0			2.0	489.0	27.4		
10.0 10.0	30.0 30.0 30.0	7.0 8.0	728.0	74.0	25.0	3.0		37.4	379.0	364.4
10.0	30.0 30.0	7.0			25.0 25.0	3.0	707.2	43.9	379.0 543.4	364.4 523.1
10.0 10.0 10.0	30.0 30.0 30.0 30.0	7.0 8.0 9.0	728.0 827.0	74.0 85.0	25.0	3.0	707.2	43.9	543.4	523.1
10.0 10.0 10.0 10.0	30.0 30.0 30.0 30.0 30.0	7.0 8.0 9.0 10.0	728.0 827.0 878.0	74.0 85.0 91.0	25.0 25.0	3.0 3.0	707.2 860.7	43.9 48.5	543.4 649.9	523.1 625.3
10.0 10.0 10.0 10.0 10.0	30.0 30.0 30.0 30.0 30.0 30.0	7.0 8.0 9.0 10.0 11.0	728.0 827.0 878.0 903.0	74.0 85.0 91.0 93.0	25.0 25.0 26.0	3.0 3.0 3.0	707.2 860.7 947.0	43.9 48.5 52.1	543.4 649.9 702.5	523.1 625.3 675.6
10.0 10.0 10.0 10.0 10.0 10.0	30.0 30.0 30.0 30.0 30.0 30.0 30.0	7.0 8.0 9.0 10.0 11.0 12.0	728.0 827.0 878.0 903.0 908.0	74.0 85.0 91.0 93.0 92.0	25.0 25.0 26.0 26.0	3.0 3.0 3.0 3.0	707.2 860.7 947.0 954.4	43.9 48.5 52.1 52.6	543.4 649.9 702.5 706.4	523.1 625.3 675.6 679.3
10.0 10.0 10.0 10.0 10.0 10.0 10.0	30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0	7.0 8.0 9.0 10.0 11.0 12.0 13.0	728.0 827.0 878.0 903.0 908.0 870.0	74.0 85.0 91.0 93.0 92.0 100.0	25.0 25.0 26.0 26.0 26.0	3.0 3.0 3.0 3.0 3.0	707.2 860.7 947.0 954.4 874.8	43.9 48.5 52.1 52.6 50.6	543.4 649.9 702.5 706.4 653.6	523.1 625.3 675.6 679.3 628.8
10.0 10.0 10.0 10.0 10.0 10.0	30.0 30.0 30.0 30.0 30.0 30.0 30.0	7.0 8.0 9.0 10.0 11.0 12.0	728.0 827.0 878.0 903.0 908.0	74.0 85.0 91.0 93.0 92.0	25.0 25.0 26.0 26.0	3.0 3.0 3.0 3.0	707.2 860.7 947.0 954.4	43.9 48.5 52.1 52.6	543.4 649.9 702.5 706.4	523.1 625.3 675.6 679.3

10.0	30.0	15.0	747.0	77.0	25.0	3.0	522.5	39.9	402.0	386.6
10.0	30.0	16.0	572.0	55.0	24.0	2.0	273.2	32.8	202.3	192.8
10.0	30.0	17.0	-	-	24.0	2.0	-	24.0	-	-
10.0	30.0	18.0	-	-	23.0	2.0	-	23.0	-	-
10.0	30.0	19.0	-	-	23.0	2.0	-	23.0	-	-
10.0	30.0	20.0	-	-	23.0	2.0	-	23.0	-	-
10.0	30.0	21.0	-	-	23.0	2.0	-	23.0	-	-
10.0	30.0	22.0	-	-	23.0	3.0	-	23.0	<u>-</u>	-
10.0	30.0	23.0	_	-	23.0	3.0	<u>-</u>	23.0	_	_
10.0	31.0		_		23.0	3.0		23.0	_	_
10.0	31.0	1.0			22.0	3.0		22.0		
			-							-
10.0	31.0	2.0	-	-	22.0	2.0	-	22.0	-	-
10.0	31.0	3.0	-		22.0	2.0		22.0		-
10.0	31.0	4.0	-	-	22.0	2.0	-	22.0	-	-
10.0	31.0	5.0	-	-	22.0	2.0	-	22.0	<u>-</u>	-
10.0	31.0	6.0	_	-	23.0	2.0	-	23.0	_	_
10.0	31.0	7.0	567.0	45.0	24.0	2.0	242.4	29.5	178.0	169.1
10.0	31.0	8.0	759.0	65.0	25.0	3.0	495.0	37.6	382.9	368.1
10.0		9.0	846.0	77.0		3.0				519.8
	31.0				26.0		706.5	44.9	540.0	
10.0	31.0	10.0	876.0	91.0	26.0	3.0	857.5	49.4	644.4	620.0
10.0	31.0	11.0	897.0	94.0	27.0	3.0	940.9	52.9	695.0	668.4
10.0	31.0	12.0	895.0	95.0	27.0	4.0	943.9	51.0	704.6	677.6
10.0	31.0	13.0	859.0	100.0	27.0	4.0	863.7	49.1	650.3	625.6
10.0	31.0	14.0	823.0	89.0	26.0	4.0	724.0	44.6	555.0	534.2
10.0	31.0	15.0	748.0	73.0	26.0	4.0	517.6	39.3	399.1	383.8
10.0	31.0	16.0	575.0	51.0	25.0	3.0	269.2	32.5	199.1	189.7
10.0				-		3.0	-			
	31.0	17.0	-		24.0			24.0	-	-
10.0	31.0	18.0	-		24.0	3.0	-	24.0	-	-
10.0	31.0	19.0	-	-	25.0	4.0	-	25.0	-	-
10.0	31.0	20.0	-		25.0	4.0		25.0	-	-
10.0	31.0	21.0	-	-	25.0	4.0	-	25.0	_	_
10.0	31.0	22.0	_		25.0	4.0		25.0	_	_
10.0	31.0	23.0			25.0	4.0		25.0		_
11.0	1.0				25.0	3.0		25.0		_
		-	-							-
11.0	1.0	1.0	-	-	25.0	3.0	-	25.0	-	-
11.0	1.0	2.0	-	-	25.0	3.0	-	25.0	-	-
11.0	1.0	3.0	-	-	25.0	3.0	-	25.0	-	-
11.0	1.0	4.0	-	-	25.0	3.0	-	25.0	<u>-</u>	-
11.0	1.0	5.0	_	-	25.0	3.0	-	25.0	_	_
11.0	1.0	6.0	_		25.0	3.0		25.0	_	_
11.0	1.0	7.0	378.0	61.0	25.0	3.0	196.0	28.7	147.9	139.7
										129.0
11.0	1.0	8.0	26.0	153.0	26.0	3.0	165.0	29.6	136.9	
11.0	1.0	9.0	12.0	198.0	27.0	3.0	202.9	31.5	167.2	158.6
11.0	1.0	10.0	132.0	324.0	27.0	3.0	459.7	38.5	366.1	351.9
11.0	1.0	11.0	72.0	343.0	27.0	3.0	422.7	38.4	337.0	323.7
11.0	1.0	12.0	_	54.0	27.0	3.0	51.4	28.3	43.0	37.1
11.0	1.0	13.0	730.0	154.0	27.0	3.0	819.7	47.4	623.0	599.5
11.0	1.0	14.0	-	95.0	26.0	4.0	90.5	29.2	75.5	68.9
11.0	1.0	15.0	-	67.0	26.0	4.0	63.6	26.4	53.8	47.7
11.0	1.0	16.0	353.0	81.0	25.0	4.0	220.5	29.2	170.2	161.5
11.0	1.0	17.0	-		24.0	4.0		24.0		-
11.0	1.0	18.0	-	-	24.0	4.0	-	24.0	-	-
11.0	1.0	19.0	-	-	24.0	3.0	-	24.0	-	-
11.0	1.0	20.0	-	-	24.0	3.0	-	24.0	_	-
11.0	1.0	21.0	_	-	24.0	3.0	<u>-</u>	24.0	_	_
11.0	1.0	22.0	_		24.0	3.0		24.0	_	_
11.0	1.0	23.0	_		24.0	3.0	_	24.0	_	_
									-	-
11.0	2.0	-	-	-	24.0	3.0	-	24.0	-	-
11.0	2.0	1.0	-	-	24.0	3.0	-	24.0	-	-
11.0	2.0	2.0	-		24.0	3.0	-	24.0		-
11.0	2.0	3.0	-	-	24.0	4.0	-	24.0	-	-
11.0	2.0	4.0	-	-	23.0	4.0	-	23.0	-	-
11.0	2.0	5.0	-	_	23.0	4.0	-	23.0	-	-
11.0	2.0	6.0	-	<u>-</u>	23.0	4.0	-	23.0	_	-
11.0	2.0	7.0	488.0	54.0	24.0	4.0	225.6	28.1	168.4	159.8
		8.0	708.0	78.0	25.0	4.0	481.2	36.1	375.2	200.0
11.0	2.0							30.1		360.8 520.3
11.0	2.0	9.0	807.0	92.0	25.0	4.0	696.8	42.0	540.6	020.3
11.0	2.0	10.0	832.0	112.0	26.0	4.0	846.2	47.1	643.7	619.3
11.0	2.0	11.0	864.0	112.0	26.0	4.0	927.1	49.4	697.9	671.2
11.0	2.0	12.0	185.0	364.0	27.0	4.0	562.7	42.0	440.4	423.8
11.0	2.0	13.0	856.0	104.0	27.0	3.0	862.4	50.0	646.1	621.6
11.0	2.0	14.0	815.0	94.0	26.0	3.0	721.1	46.4	547.5	527.0
11.0	2.0	15.0	591.0	109.0	26.0	3.0	467.3	39.4	361.4	347.3
11.0	2.0	16.0	533.0	57.0	25.0	3.0	259.8	32.0	193.3	184.0
11.0	2.0	17.0	-	- -	24.0	3.0	-	24.0	-	104.0
							•			-
11.0	2.0	18.0	-	-	24.0	3.0	-	24.0	-	-
11.0	2.0	19.0	-	-	23.0	3.0	-	23.0	-	-
11.0	2.0	20.0	-	-	23.0	2.0	-	23.0	-	-
11.0	2.0	21.0	-	-	23.0	2.0	-	23.0	-	-
11.0	2.0	22.0	-	-	23.0	2.0	-	23.0	-	-
11.0	2.0	23.0	-	-	23.0	2.0	-	23.0	-	-

11.0	3.0	-	-	-	22.0	2.0	-	22.0 22.0	-	-
11.0 11.0	3.0 3.0	1.0 2.0			22.0 22.0	2.0 2.0	- -	22.0		
11.0	3.0	3.0			22.0	2.0		22.0		
11.0	3.0	4.0			22.0	3.0		22.0		
11.0	3.0	5.0	_	<u> -</u>	22.0	2.0	<u>-</u>	22.0	<u> -</u>	_
11.0	3.0	6.0	_	-	22.0	2.0	-	22.0	-	_
11.0	3.0	7.0	489.0	52.0	23.0	2.0	223.4	27.9	166.6	158.0
11.0	3.0	8.0	702.0	77.0	24.0	2.0	475.9	37.5	368.4	354.2
11.0	3.0	9.0	305.0	237.0	25.0	2.0	481.2	39.7	379.2	364.6
11.0	3.0	10.0	666.0	182.0	26.0	2.0	783.9	49.3	589.5	567.3
11.0	3.0	11.0	527.0	262.0	26.0	2.0	786.7	50.6	588.5	566.4
11.0	3.0	12.0	878.0	104.0	26.0	2.0	933.2	54.6	683.0	657.0
11.0	3.0	13.0	839.0	110.0	26.0	2.0	858.9	53.1	632.9	609.0
11.0	3.0	14.0	793.0	101.0	26.0	2.0	711.3	48.8	533.5	513.5
11.0 11.0	3.0 3.0	15.0 16.0	704.0 511.0	85.0 59.0	26.0 25.0	2.0 2.0	504.4 253.7	42.3 33.1	383.2 188.1	368.5 178.9
11.0	3.0	17.0	-	-	24.0	2.0	255.7	24.0	-	-
11.0	3.0	18.0	_	<u> -</u>	24.0	2.0	_	24.0	<u>-</u>	_
11.0	3.0	19.0	_	<u> -</u>	24.0	2.0	<u>-</u>	24.0	<u> -</u>	_
11.0	3.0	20.0	_	<u>-</u>	24.0	2.0	<u>-</u>	24.0	<u>-</u>	_
11.0	3.0	21.0	_	-	23.0	2.0	-	23.0	_	_
11.0	3.0	22.0	-	-	23.0	2.0	-	23.0	_	-
11.0	3.0	23.0	-		23.0	1.0	<u>-</u>	23.0		-
11.0	4.0	-	-		24.0	1.0		24.0	-	-
11.0	4.0	1.0	-	-	24.0	1.0	-	24.0	-	-
11.0	4.0	2.0	-	-	24.0	-	-	24.0	-	-
11.0	4.0	3.0	-	-	24.0	-	-	24.0	-	-
11.0	4.0	4.0	-		24.0	-		24.0		-
11.0	4.0	5.0	-		23.0	1.0		23.0		-
11.0	4.0	6.0		-	23.0	1.0	-	23.0	-	-
11.0	4.0	7.0	511.0	49.0	24.0	1.0	226.8	29.9	166.8	158.2
11.0	4.0 4.0	8.0 9.0	724.0 824.0	72.0 83.0	25.0 26.0	1.0 1.0	480.0 696.2	41.1 50.5	364.5 516.5	350.4 497.2
11.0 11.0	4.0	10.0	551.0	222.0	27.0	1.0	724.3	53.4	532.9	512.9
11.0	4.0	11.0	885.0	99.0	27.0	1.0	928.7	59.8	660.4	635.3
11.0	4.0	12.0	885.0	100.0	27.0	1.0	933.5	60.9	659.8	634.7
11.0	4.0	13.0	868.0	95.0	28.0	2.0	859.7	55.0	626.8	603.1
11.0	4.0	14.0	821.0	88.0	28.0	2.0	716.2	50.8	531.1	511.2
11.0	4.0	15.0	728.0	77.0	27.0	1.0	506.7	46.7	376.0	361.5
11.0	4.0	16.0	535.0	54.0	26.0	1.0	256.4	36.2	186.4	177.3
11.0	4.0	17.0	-		25.0	1.0	<u>-</u>	25.0		-
11.0	4.0	18.0	-		25.0	2.0		25.0	-	-
11.0	4.0	19.0	-	-	24.0	2.0	-	24.0	-	-
11.0	4.0	20.0	-	-	24.0	2.0	-	24.0	-	-
11.0	4.0	21.0	-	-	24.0	2.0	-	24.0	-	-
11.0	4.0	22.0	-		24.0	3.0		24.0		-
11.0	4.0	23.0	-		23.0	3.0		23.0		-
11.0	5.0	-	-	-	23.0	2.0	-	23.0	-	-
11.0	5.0	1.0	-	-	23.0	2.0	-	23.0	-	-
11.0	5.0 5.0	2.0 3.0	-		23.0 23.0	2.0 2.0		23.0 23.0		-
11.0 11.0	5.0	4.0	-		23.0	2.0		23.0		-
11.0	5.0	5.0		-	23.0	2.0	-	23.0	_	
11.0	5.0	6.0	-		23.0	2.0		23.0	-	
11.0	5.0	7.0	535.0	46.0	25.0	2.0	230.7	30.2	168.7	160.1
11.0	5.0	8.0	744.0	68.0	26.0	3.0	485.2	38.3	373.5	359.1
11.0	5.0	9.0	835.0	80.0	26.0	4.0	699.3	43.0	539.3	519.0
11.0	5.0	10.0	877.0	89.0	27.0	4.0	848.2	48.1	641.5	617.2
11.0	5.0	11.0	890.0	95.0	28.0	5.0	927.1	49.3	698.1	671.4
11.0	5.0	12.0	882.0	99.0	28.0	5.0	928.0	49.5	698.2	671.5
11.0	5.0	13.0	840.0	104.0	28.0	5.0	850.1	47.8	644.5	620.1
11.0	5.0	14.0	778.0	101.0	28.0	4.0	697.8	46.0	531.0	511.1
11.0	5.0	15.0	670.0	89.0	27.0	4.0	488.0	39.5	376.0	361.5
11.0	5.0	16.0	458.0	62.0	27.0	4.0	237.5	32.9	176.9	168.0
11.0	5.0	17.0	-		26.0	4.0		26.0		-
11.0	5.0	18.0	-	-	26.0	4.0	-	26.0	-	-
11.0	5.0	19.0	-	-	26.0	4.0	-	26.0	-	-
11.0	5.0 5.0	20.0	-	-	25.0 25.0	4.0 4.0	-	25.0 25.0		-
11.0 11.0	5.0 5.0	21.0 22.0	-		25.0 25.0	4.0	- -	25.0 25.0		-
11.0	5.0	23.0		-	25.0	4.0	- -	25.0		
11.0	6.0	-	-	- -	25.0	4.0	- -	25.0	- -	-
11.0	6.0	1.0	_	<u>-</u>	24.0	4.0	<u>-</u>	24.0	<u>-</u>	_
11.0	6.0	2.0	-	-	24.0	4.0	-	24.0	-	-
11.0	6.0	3.0	-	<u>-</u>	24.0	4.0	<u>-</u>	24.0	<u>-</u>	-
11.0	6.0	4.0	-	-	24.0	4.0	-	24.0	-	-
11.0	6.0	5.0	-	-	24.0	4.0	-	24.0	-	-
11.0	6.0	6.0	-	-	24.0	5.0	-	24.0	-	-
11.0	6.0	7.0	463.0	51.0	25.0	5.0	212.5	28.4	158.0	149.6
11.0	6.0	8.0	471.0	120.0	26.0	6.0	392.9	33.2	312.5	299.9

11.0	6.0	9.0	135.0	248.0	27.0	6.0	362.3	33.9	294.4	282.4
11.0	6.0	10.0	819.0	110.0	28.0	6.0	826.9	44.3	638.2	614.0
11.0	6.0	11.0	437.0	296.0	29.0	6.0	738.3	44.4	570.7	549.2
11.0	6.0	12.0	842.0	116.0	29.0	6.0	915.5	47.7	695.1	668.5
11.0	6.0	13.0	794.0	125.0	29.0	6.0	832.7	46.4	635.8	611.8
11.0	6.0	14.0	723.0	121.0	29.0	5.0	680.9	44.9	521.3	501.8
11.0	6.0	15.0	622.0	101.0	28.0	5.0	473.4	38.9	366.4	352.2
11.0	6.0	16.0	-	5.0	27.0	5.0	4.7	26.9	4.0	-
	6.0	17.0	-	-		5.0	4.7		4.0	-
11.0			-		26.0			26.0		-
11.0	6.0	18.0	-	-	24.0	6.0	-	24.0	-	-
11.0	6.0	19.0	-		22.0	6.0		22.0	-	-
11.0	6.0	20.0	-	-	22.0	6.0	-	22.0	-	-
11.0	6.0	21.0	-	-	21.0	6.0	-	21.0	-	-
11.0	6.0	22.0	-		21.0	6.0		21.0	-	-
11.0	6.0	23.0	-		20.0	6.0	-	20.0	-	_
11.0	7.0	_	_	<u>-</u>	20.0	6.0	<u>-</u>	20.0	_	_
11.0	7.0	1.0	_	<u>-</u>	19.0	6.0	<u>-</u>	19.0	_	_
11.0	7.0	2.0		<u>-</u>	19.0	6.0	<u>-</u>	19.0	_	_
11.0	7.0	3.0	_	_	19.0	5.0		19.0	_	_
11.0	7.0	4.0			19.0	5.0		19.0		
	7.0	5.0	-			5.0			_	_
11.0			-		19.0		-	19.0	-	-
11.0	7.0	6.0		-	19.0	5.0	-	19.0	-	-
11.0	7.0	7.0	421.0	63.0	19.0	5.0	210.2	22.3	162.4	153.9
11.0	7.0	8.0	674.0	95.0	20.0	5.0	476.9	29.8	383.6	368.9
11.0	7.0	9.0	795.0	110.0	21.0	4.0	701.2	38.1	554.5	533.7
11.0	7.0	10.0	885.0	105.0	22.0	4.0	875.4	43.9	676.9	651.1
11.0	7.0	11.0	909.0	108.0	22.0	4.0	955.5	46.2	731.1	702.9
11.0	7.0	12.0	909.0	109.0	23.0	4.0	960.6	47.5	730.1	702.0
11.0	7.0	13.0	854.0	120.0	23.0	4.0	877.2	45.6	672.6	647.0
11.0	7.0	14.0	797.0	113.0	23.0	4.0	722.6	41.7	562.0	541.0
11.0	7.0	15.0	688.0	97.0	22.0	4.0	505.5	35.1	398.3	383.1
				68.0				27.0		178.5
11.0	7.0	16.0	463.0		21.0	4.0	244.6		187.6	
11.0	7.0	17.0	-	-	21.0	4.0	-	21.0	-	-
11.0	7.0	18.0	-	-	21.0	4.0	-	21.0	-	-
11.0	7.0	19.0	-		21.0	3.0		21.0	-	-
11.0	7.0	20.0	-	-	21.0	3.0	-	21.0	-	-
11.0	7.0	21.0	-		21.0	3.0	-	21.0	-	-
11.0	7.0	22.0	-		21.0	3.0		21.0	-	-
11.0	7.0	23.0	_	-	21.0	3.0	-	21.0	_	_
11.0	8.0	_	_	<u>-</u>	21.0	3.0	<u>-</u>	21.0	_	_
11.0	8.0	1.0	_		21.0	3.0		21.0	_	_
11.0	8.0	2.0	_		21.0	3.0		21.0	_	_
11.0	8.0	3.0			21.0	3.0	_	21.0		
11.0	8.0	4.0			21.0	3.0		21.0		
						3.0			-	-
11.0	8.0	5.0	-		21.0			21.0	-	-
11.0	8.0	6.0			21.0	3.0	2.5	21.0		
11.0	8.0	7.0	465.0	54.0	23.0	3.0	215.2	27.2	161.0	152.5
11.0	8.0	8.0	713.0	79.0	24.0	4.0	479.1	35.0	374.8	360.4
11.0	8.0	9.0	819.0	93.0	24.0	4.0	698.3	41.0	543.9	523.5
11.0	8.0	10.0	36.0	269.0	25.0	4.0	307.9	33.2	251.8	241.0
11.0	8.0	11.0	904.0	101.0	25.0	4.0	941.4	47.3	716.2	688.7
11.0	8.0	12.0	909.0	99.0	26.0	3.0	947.7	52.4	702.0	675.1
11.0	8.0	13.0	867.0	105.0	26.0	3.0	870.1	50.4	650.2	625.5
11.0	8.0	14.0	823.0	95.0	25.0	3.0	720.8	45.5	549.7	529.1
11.0	8.0	15.0	734.0	79.0	25.0	3.0	508.9	39.5	391.4	376.4
11.0	8.0	16.0	534.0	55.0	24.0	3.0	255.6	31.1	190.3	181.1
11.0	8.0	17.0	-	-	23.0	3.0	255.0	23.0	-	-
									-	-
11.0	8.0	18.0	-		23.0	3.0 3.0	-	23.0	-	-
11.0	8.0	19.0	-	-	23.0		-	23.0	•	-
11.0	8.0	20.0	-	-	22.0	3.0	-	22.0	-	-
11.0	8.0	21.0	-		22.0	3.0	-	22.0	-	-
11.0	8.0	22.0	-		22.0	3.0	-	22.0	-	-
11.0	8.0	23.0	-	-	22.0	3.0	-	22.0	-	-
11.0	9.0	-	-	-	22.0	2.0	-	22.0	-	-
11.0	9.0	1.0	-		22.0	2.0	-	22.0	-	-
11.0	9.0	2.0	-	-	22.0	2.0	-	22.0	-	-
11.0	9.0	3.0	_	-	23.0	2.0	-	23.0	_	_
11.0	9.0	4.0	_	-	23.0	1.0	-	23.0	_	-
11.0	9.0	5.0	_	_	23.0	1.0	<u>-</u>	23.0	_	_
11.0	9.0	6.0			23.0	1.0	_	23.0	_	_
11.0	9.0	7.0	546.0	44.0	24.0	1.0	229.5	30.0	167.1	158.5
	9.0	8.0	765.0	64.0	25.0	1.0	487.4	41.3	368.5	354.3
11.0										304.3
11.0	9.0	9.0	860.0	76.0	26.0	2.0	702.4	47.1	530.1	510.2
11.0	9.0	10.0	890.0	91.0	27.0	2.0	854.7	53.1	629.4	605.6 656.0
11.0	9.0	11.0	912.0	94.0	27.0	2.0	939.0	55.9	682.0	656.0
11.0	9.0	12.0	909.0	95.0	27.0	2.0	941.6	56.3	682.5	656.4
11.0	9.0	13.0	866.0	102.0	27.0	2.0	864.4	54.2	632.8	608.9
11.0	9.0	14.0	814.0	96.0	27.0	2.0	714.2	49.8	532.2	512.3
11.0	9.0	15.0	714.0	82.0	27.0	2.0	502.0	43.3	378.9	364.3
11.0	9.0	16.0	501.0	57.0	26.0	2.0	246.0	33.9	181.1	172.2
11.0	9.0	17.0	-	-	24.0	2.0	-	24.0	-	-

11.0	9.0	18.0 -		24.0	2.0	-	24.0	-	-
11.0	9.0	19.0 -		24.0	2.0	-	24.0	-	-
11.0	9.0	20.0 -	_	24.0	3.0	_	24.0	_	_
11.0		21.0 -	<u>-</u>	24.0	3.0	_	24.0	_	_
11.0		22.0 -	_	23.0	3.0	_	23.0	_	_
11.0		23.0 -	_	23.0	3.0	_	23.0	_	_
			-	23.0	3.0		23.0	-	-
11.0						-			-
11.0		1.0 -	-	23.0	3.0	-	23.0	-	-
11.0		2.0 -	-	23.0	2.0	-	23.0	-	-
11.0		3.0 -		23.0	2.0	-	23.0		
11.0		4.0 -	-	23.0	2.0	-	23.0	-	-
11.0	10.0	5.0 -	-	23.0	2.0	-	23.0	-	-
11.0	10.0	6.0 -		23.0	2.0	-	23.0	-	-
11.0	10.0	7.0 425.	51.0	24.0	2.0	198.4	28.2	147.7	139.6
11.0	10.0	8.0 661.	0.08	25.0	2.0	450.4	37.6	347.8	334.2
11.0		9.0 771.		26.0	2.0	663.6	45.8	504.2	485.3
11.0		10.0 829.		27.0	2.0	820.1	52.0	607.5	584.6
11.0		11.0 856.		27.0	2.0	899.0	54.7	657.2	632.3
11.0		12.0 859.		28.0	2.0	905.7	56.2	657.1	632.1
11.0		13.0 831.		28.0	2.0	836.7	54.3	612.3	589.2
11.0		14.0 783.		28.0	2.0	691.6	50.1	514.8	495.5
11.0		15.0 687.		27.0	2.0	486.3	42.7	368.1	353.9
11.0		16.0 483.	55.0	26.0	2.0	237.4	33.6	175.1	166.2
11.0		17.0 -	-	25.0	2.0	-	25.0	-	-
11.0	10.0	18.0 -	-	25.0	2.0	-	25.0	-	-
11.0	10.0	19.0 -		25.0	2.0	-	25.0	-	-
11.0	10.0	20.0 -	_	24.0	2.0	-	24.0	_	-
11.0		21.0 -	_	24.0	2.0	-	24.0	_	_
11.0		22.0 -	_	24.0	3.0	_	24.0	_	_
11.0		23.0 -		24.0	3.0		24.0		
11.0				24.0	3.0		24.0		
						-			-
11.0		1.0 -	-	24.0	3.0	-	24.0	-	-
11.0		2.0 -	-	24.0	3.0	-	24.0	-	-
11.0		3.0 -		24.0	3.0	-	24.0		-
11.0		4.0 -		24.0	3.0	-	24.0	-	-
11.0		5.0 -	-	24.0	3.0	-	24.0	-	-
11.0	11.0	6.0 -		24.0	2.0	-	24.0	-	-
11.0	11.0	7.0 433.	51.0	25.0	2.0	200.3	29.2	148.1	140.0
11.0		8.0 674.		26.0	2.0	454.0	38.7	348.4	334.7
11.0		9.0 788.		27.0	2.0	669.7	47.0	505.6	486.7
11.0		10.0 860.		27.0	1.0	827.3	56.4	598.0	575.5
11.0		11.0 883.		28.0	-	910.5	67.0	621.2	597.7
11.0		12.0 883.		28.0	_	914.7	67.6	621.8	598.3
11.0		13.0 851.		28.0	-	837.4	65.2	576.4	554.7
11.0		14.0 799.		28.0	1.0	695.5	54.2	506.2	487.2
11.0		15.0 696.		28.0	1.0	487.3	46.9	360.8	346.7
11.0		16.0 482.	55.0	27.0	2.0	236.9	34.6	173.8	165.0
11.0	11.0 1	17.0 -	-	26.0	2.0	-	26.0	-	-
11.0	11.0	18.0 -		26.0	2.0	-	26.0	-	<u>-</u>
11.0	11.0	19.0 -		25.0	2.0	-	25.0	-	-
11.0	11.0	20.0 -	-	25.0	3.0	-	25.0	-	-
11.0	11.0	21.0 -	_	25.0	2.0	_	25.0	_	_
11.0		22.0 -	<u>-</u>	25.0	2.0	_	25.0	_	_
11.0		23.0 -	_	25.0	2.0	_	25.0	_	_
11.0			-	25.0	2.0	_	25.0	_	_
11.0		1.0 -		24.0	2.0		24.0		
11.0		2.0	-	24.0	2.0		24.0	-	-
			-			-		-	
11.0		3.0 -	-	24.0	2.0	-	24.0	-	•
11.0		4.0	-	24.0	2.0	-	24.0	-	•
11.0	12.0	5.0 -	-	24.0	2.0	-	24.0	-	-
11.0		6.0 -		24.0	3.0	-	24.0	-	
11.0	12.0	7.0 499.	0 42.0	25.0	3.0	210.6	29.1	153.9	145.6
			0 64.0	26.0	3.0	462.5	37.6	356.1	342.2
11.0	12.0	8.0 725.		07.0	3.0	676.2	45.0	515.6	496.3
11.0	12.0 12.0	9.0 822.		27.0					
	12.0 12.0 12.0	9.0 822. 10.0 866.	0 87.0	27.0	3.0	825.0	49.4	619.3	595.9
11.0	12.0 12.0 12.0	9.0 822. 10.0 866.	0 87.0		3.0	825.0 569.0	49.4	619.3	
11.0 11.0	12.0 12.0 12.0 12.0	9.0 822. 10.0 866.	0 87.0	27.0			49.4 42.8 31.7		595.9 426.6 91.7
11.0 11.0 11.0	12.0 12.0 12.0 12.0	9.0 822. 10.0 866. 11.0 227.	0 87.0 0 337.0 125.0	27.0 28.0	3.0 4.0	569.0	49.4 42.8 31.7 49.0	619.3 443.3	426.6
11.0 11.0 11.0 11.0 11.0	12.0 12.0 12.0 12.0 12.0	9.0 822. 10.0 866. 11.0 227. 12.0 - 13.0 855.	0 87.0 0 337.0 125.0 0 95.0	27.0 28.0 28.0 28.0	3.0 4.0 3.0 3.0	569.0 119.8 837.2	49.4 42.8 31.7 49.0	619.3 443.3 98.7 630.3	426.6 91.7 606.5
11.0 11.0 11.0 11.0 11.0 11.0	12.0 12.0 12.0 12.0 12.0 12.0 12.0	9.0 822. 10.0 866. 11.0 227. 12.0 - 13.0 855. 14.0 803.	0 87.0 0 337.0 125.0 0 95.0 0 89.0	27.0 28.0 28.0 28.0 28.0 28.0	3.0 4.0 3.0 3.0 3.0	569.0 119.8 837.2 695.2	49.4 42.8 31.7 49.0 47.6	619.3 443.3 98.7 630.3 524.0	426.6 91.7 606.5 504.3
11.0 11.0 11.0 11.0 11.0 11.0	12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	9.0 822. 10.0 866. 11.0 227. 12.0 - 13.0 855. 14.0 803. 15.0 709.	0 87.0 0 337.0 125.0 0 95.0 0 89.0 0 75.0	27.0 28.0 28.0 28.0 28.0 28.0	3.0 4.0 3.0 3.0 3.0 2.0	569.0 119.8 837.2 695.2 487.9	49.4 42.8 31.7 49.0 47.6 43.8	619.3 443.3 98.7 630.3 524.0 366.9	426.6 91.7 606.5 504.3 352.7
11.0 11.0 11.0 11.0 11.0 11.0 11.0	12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	9.0 822. 10.0 866. 11.0 227. 12.0 - 13.0 855. 14.0 803. 15.0 709. 16.0 183.	0 87.0 337.0 125.0 0 95.0 0 89.0 0 75.0 0 74.0	27.0 28.0 28.0 28.0 28.0 28.0 27.0	3.0 4.0 3.0 3.0 3.0 2.0 2.0	569.0 119.8 837.2 695.2 487.9 148.0	49.4 42.8 31.7 49.0 47.6 43.8 31.9	619.3 443.3 98.7 630.3 524.0 366.9 114.7	426.6 91.7 606.5 504.3 352.7 107.3
11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0	12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	9.0 822. 10.0 866. 11.0 227. 12.0 - 13.0 855. 14.0 803. 15.0 709. 16.0 183. 17.0 -	0 87.0 0 337.0 125.0 0 95.0 0 89.0 0 75.0	27.0 28.0 28.0 28.0 28.0 28.0 27.0 26.0	3.0 4.0 3.0 3.0 3.0 2.0 2.0 2.0	569.0 119.8 837.2 695.2 487.9	49.4 42.8 31.7 49.0 47.6 43.8 31.9 26.0	619.3 443.3 98.7 630.3 524.0 366.9	426.6 91.7 606.5 504.3 352.7
11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0	12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	9.0 822. 10.0 866. 11.0 227. 12.0 - 13.0 855. 14.0 803. 15.0 709. 16.0 183. 17.0 - 18.0 -	0 87.0 337.0 125.0 0 95.0 0 89.0 0 75.0 0 74.0	27.0 28.0 28.0 28.0 28.0 28.0 27.0 26.0 26.0	3.0 4.0 3.0 3.0 2.0 2.0 2.0 2.0	569.0 119.8 837.2 695.2 487.9 148.0	49.4 42.8 31.7 49.0 47.6 43.8 31.9 26.0	619.3 443.3 98.7 630.3 524.0 366.9 114.7	426.6 91.7 606.5 504.3 352.7 107.3
11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0	12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	9.0 822. 10.0 866. 11.0 227. 12.0 - 13.0 855. 14.0 803. 15.0 709. 16.0 183. 17.0 - 18.0 - 19.0 -	0 87.0 337.0 125.0 0 95.0 0 89.0 0 75.0 0 74.0	27.0 28.0 28.0 28.0 28.0 27.0 26.0 26.0 25.0	3.0 4.0 3.0 3.0 2.0 2.0 2.0 2.0 2.0	569.0 119.8 837.2 695.2 487.9 148.0	49.4 42.8 31.7 49.0 47.6 43.8 31.9 26.0	619.3 443.3 98.7 630.3 524.0 366.9 114.7	426.6 91.7 606.5 504.3 352.7 107.3
11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0	12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	9.0 822. 10.0 866. 11.0 227. 12.0 - 13.0 855. 14.0 803. 15.0 709. 16.0 183. 17.0 - 18.0 - 19.0 - 20.0 -	0 87.0 337.0 125.0 0 95.0 0 89.0 0 75.0 0 74.0	27.0 28.0 28.0 28.0 28.0 28.0 27.0 26.0 26.0 25.0	3.0 4.0 3.0 3.0 2.0 2.0 2.0 2.0 2.0	569.0 119.8 837.2 695.2 487.9 148.0	49.4 42.8 31.7 49.0 47.6 43.8 31.9 26.0 26.0 25.0	619.3 443.3 98.7 630.3 524.0 366.9 114.7	426.6 91.7 606.5 504.3 352.7 107.3
11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0	12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	9.0 822. 10.0 866. 11.0 227. 12.0 - 13.0 855. 14.0 803. 15.0 709. 16.0 183. 17.0 - 18.0 - 19.0 - 20.0 - 21.0 -	0 87.0 337.0 125.0 0 95.0 0 89.0 0 75.0 0 74.0	27.0 28.0 28.0 28.0 28.0 28.0 27.0 26.0 25.0 25.0 24.0	3.0 4.0 3.0 3.0 2.0 2.0 2.0 2.0 2.0 2.0	569.0 119.8 837.2 695.2 487.9 148.0	49.4 42.8 31.7 49.0 47.6 43.8 31.9 26.0 26.0 25.0 25.0 24.0	619.3 443.3 98.7 630.3 524.0 366.9 114.7	426.6 91.7 606.5 504.3 352.7 107.3
11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0	12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	9.0 822. 10.0 866. 11.0 227. 12.0 - 13.0 855. 14.0 803. 15.0 709. 16.0 183. 17.0 - 18.0 - 19.0 - 20.0 - 22.0 -	0 87.0 337.0 125.0 0 95.0 0 89.0 0 75.0 0 74.0	27.0 28.0 28.0 28.0 28.0 27.0 26.0 25.0 25.0 24.0	3.0 4.0 3.0 3.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	569.0 119.8 837.2 695.2 487.9 148.0	49.4 42.8 31.7 49.0 47.6 43.8 31.9 26.0 26.0 25.0 25.0 24.0	619.3 443.3 98.7 630.3 524.0 366.9 114.7	426.6 91.7 606.5 504.3 352.7 107.3
11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0	12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	9.0 822. 10.0 866. 11.0 227. 12.0 - 13.0 855. 14.0 803. 15.0 709. 16.0 183. 17.0 - 18.0 - 19.0 - 20.0 - 21.0 - 22.0 - 23.0 -	0 87.0 337.0 125.0 0 95.0 0 89.0 0 75.0 0 74.0	27.0 28.0 28.0 28.0 28.0 27.0 26.0 25.0 25.0 24.0 24.0	3.0 4.0 3.0 3.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	569.0 119.8 837.2 695.2 487.9 148.0	49.4 42.8 31.7 49.0 47.6 43.8 31.9 26.0 26.0 25.0 24.0 24.0	619.3 443.3 98.7 630.3 524.0 366.9 114.7	426.6 91.7 606.5 504.3 352.7 107.3
11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0	12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	9.0 822. 10.0 866. 11.0 227. 12.0 - 13.0 855. 14.0 803. 15.0 709. 16.0 183. 17.0 - 18.0 - 20.0 - 21.0 - 22.0 - 23.0 -	0 87.0 337.0 125.0 0 95.0 0 89.0 0 75.0 0 74.0	27.0 28.0 28.0 28.0 28.0 28.0 27.0 26.0 25.0 25.0 24.0 24.0 24.0 23.0	3.0 4.0 3.0 3.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	569.0 119.8 837.2 695.2 487.9 148.0	49.4 42.8 31.7 49.0 47.6 43.8 31.9 26.0 25.0 25.0 24.0 24.0 24.0 23.0	619.3 443.3 98.7 630.3 524.0 366.9 114.7	426.6 91.7 606.5 504.3 352.7 107.3
11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0	12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	9.0 822. 10.0 866. 11.0 227. 12.0 - 13.0 855. 15.0 709. 16.0 183. 17.0 - 18.0 - 19.0 - 20.0 - 22.0 - 23.0 1.0 -	0 87.0 337.0 125.0 0 95.0 0 89.0 0 75.0 0 74.0	27.0 28.0 28.0 28.0 28.0 28.0 27.0 26.0 25.0 25.0 24.0 24.0 24.0 23.0	3.0 4.0 3.0 3.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2	569.0 119.8 837.2 695.2 487.9 148.0	49.4 42.8 31.7 49.0 47.6 43.8 31.9 26.0 25.0 25.0 24.0 24.0 23.0	619.3 443.3 98.7 630.3 524.0 366.9 114.7	426.6 91.7 606.5 504.3 352.7 107.3
11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0	12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	9.0 822. 10.0 866. 11.0 227. 12.0 - 13.0 855. 14.0 803. 15.0 709. 16.0 183. 17.0 - 18.0 - 20.0 - 21.0 - 22.0 - 23.0 -	0 87.0 337.0 125.0 0 95.0 0 89.0 0 75.0 0 74.0	27.0 28.0 28.0 28.0 28.0 28.0 27.0 26.0 25.0 25.0 24.0 24.0 24.0 23.0	3.0 4.0 3.0 3.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	569.0 119.8 837.2 695.2 487.9 148.0	49.4 42.8 31.7 49.0 47.6 43.8 31.9 26.0 25.0 25.0 24.0 24.0 24.0 23.0	619.3 443.3 98.7 630.3 524.0 366.9 114.7	426.6 91.7 606.5 504.3 352.7 107.3
11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0	12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	9.0 822. 10.0 866. 11.0 227. 12.0 - 13.0 855. 15.0 709. 16.0 183. 17.0 - 18.0 - 19.0 - 20.0 - 22.0 - 23.0 1.0 -	0 87.0 337.0 125.0 0 95.0 0 89.0 0 75.0 0 74.0	27.0 28.0 28.0 28.0 28.0 28.0 27.0 26.0 25.0 25.0 24.0 24.0 24.0 23.0	3.0 4.0 3.0 3.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2	569.0 119.8 837.2 695.2 487.9 148.0	49.4 42.8 31.7 49.0 47.6 43.8 31.9 26.0 25.0 25.0 24.0 24.0 23.0	619.3 443.3 98.7 630.3 524.0 366.9 114.7	426.6 91.7 606.5 504.3 352.7 107.3

11.0	13.0	3.0	-	-	23.0	3.0	-	23.0	-	-
11.0	13.0	4.0	-	-	23.0	3.0	-	23.0	-	-
11.0	13.0	5.0	-	-	22.0	5.0	-	22.0		-
11.0 11.0	13.0 13.0	6.0 7.0	- 256.0	65.0	21.0 19.0	7.0 8.0	158.9	21.0 20.6	126.2	- 118.6
11.0	13.0	8.0	68.0	148.0	19.0	8.0	188.9	21.3	162.1	153.6
11.0	13.0	9.0	-	44.0	19.0	7.0	41.8	18.8	36.6	30.8
11.0	13.0	10.0	7.0	204.0	19.0	6.0	205.6	21.9	177.4	168.6
11.0	13.0	11.0	403.0	296.0	20.0	6.0	692.7	33.2	566.3	545.1
11.0	13.0	12.0	896.0	100.0	21.0	6.0	929.0	39.8	734.4	706.1
11.0	13.0	13.0	897.0	94.0	22.0	6.0	870.3	40.1	686.1	659.9
11.0	13.0	14.0	864.0	86.0	22.0	6.0	735.2	37.3	584.1	562.1
11.0	13.0	15.0	776.0	74.0	22.0	6.0	523.4	32.8	415.6	399.8
11.0	13.0	16.0	562.0	52.0	21.0	6.0	260.9	26.0	198.1	188.7
11.0	13.0	17.0	-	-	21.0	6.0	-	21.0	-	-
11.0	13.0	18.0	-	-	21.0	6.0	-	21.0	-	-
11.0	13.0	19.0	-		21.0	6.0	-	21.0	-	-
11.0	13.0	20.0	-	-	21.0	6.0	-	21.0	-	-
11.0	13.0	21.0	-	-	21.0	6.0	-	21.0	-	-
11.0	13.0	22.0	-	-	20.0	5.0	-	20.0	-	-
11.0	13.0	23.0	-	-	20.0	5.0	-	20.0	-	-
11.0	14.0	-	-	-	20.0	4.0	-	20.0	-	-
11.0	14.0	1.0	-		20.0	4.0	-	20.0		-
11.0	14.0	2.0	-		20.0	4.0	-	20.0		-
11.0	14.0	3.0	-	-	20.0	4.0	-	20.0	-	-
11.0	14.0	4.0	-	-	20.0	3.0	-	20.0	-	-
11.0	14.0	5.0	-	-	20.0	3.0	-	20.0	-	-
11.0	14.0	6.0	-	-	20.0	3.0	-	20.0	-	-
11.0	14.0	7.0	398.0	56.0	21.0	3.0	192.5	24.5	146.2	138.0
11.0	14.0	8.0	660.0	89.0	22.0	3.0	455.4	33.3	359.0	345.0
11.0	14.0	9.0	136.0	234.0	22.0	4.0	347.4	30.4	287.0	275.2
11.0	14.0	10.0 11.0	827.0	122.0 127.0	23.0	4.0	834.3	42.9	648.0	623.4
11.0 11.0	14.0 14.0	12.0	853.0 859.0	127.0	23.0 23.0	4.0 4.0	921.2 930.1	46.3 46.7	704.5 709.7	677.5 682.5
11.0	14.0	13.0	836.0	122.0	24.0	4.0	854.9	46.0	654.0	629.2
11.0	14.0	14.0	802.0	105.0	24.0	4.0	710.5	42.3	550.4	529.8
11.0	14.0	15.0	3.0	134.0	23.0	4.0	133.5	26.9	112.5	105.1
11.0	14.0	16.0	495.0	57.0	22.0	3.0	243.0	27.4	184.4	175.4
11.0	14.0	17.0	-	-	22.0	3.0	-	22.0	-	-
11.0	14.0	18.0		_	22.0	3.0	_	22.0		_
11.0	14.0	19.0	_	_	22.0	3.0	_	22.0	<u>-</u>	_
11.0	14.0	20.0	_	-	22.0	3.0	_	22.0	_	-
11.0	14.0	21.0	_	-	22.0	3.0	_	22.0	_	-
11.0	14.0	22.0	-	-	22.0	3.0	-	22.0	_	_
11.0	14.0	23.0	-	-	22.0	3.0	-	22.0	-	-
11.0	15.0	-	-		21.0	2.0	-	21.0		-
11.0	15.0	1.0	-		21.0	2.0	-	21.0		-
11.0	15.0	2.0	-		22.0	2.0	-	22.0	-	-
11.0	15.0	3.0	-	-	22.0	2.0	-	22.0	-	-
11.0	15.0	4.0	-	-	22.0	2.0	-	22.0	-	-
11.0	15.0	5.0	-	-	22.0	2.0	-	22.0	-	-
11.0	15.0	6.0	-		22.0	2.0	-	22.0		-
11.0	15.0	7.0	65.0	60.0	22.0	2.0	86.2	22.6	71.2	64.7
11.0	15.0	8.0	144.0	148.0	23.0	2.0	234.8	28.6	193.3	184.0
11.0	15.0	9.0	343.0	209.0	24.0	2.0	472.5	37.4	375.9	361.5
11.0	15.0	10.0	211.0	296.0	24.0	3.0	494.3	37.3	395.7	380.5
11.0	15.0	11.0	172.0	336.0	25.0	3.0	518.2	39.0	411.7	396.0
11.0	15.0	12.0 13.0	71.0 194.0	320.0 306.0	25.0 25.0	3.0 2.0	398.4 494.4	35.9 39.8	321.5 391.0	308.7 376.1
11.0 11.0	15.0 15.0	14.0	259.0	236.0	25.0 25.0	2.0	494.4 450.6	38.9	356.8	342.9
11.0	15.0	15.0	332.0	144.0	24.0	2.0	344.9	34.6	274.4	263.0
11.0	15.0	16.0	147.0	73.0	24.0	2.0	134.9	27.8	107.3	100.1
11.0	15.0	17.0	147.0	75.0	23.0	2.0	104.0	23.0	107.5	100.1
11.0	15.0	18.0	_	_	23.0	2.0	_	23.0	_	_
11.0	15.0	19.0	_	<u> -</u>	23.0	2.0	_	23.0	<u>-</u>	_
11.0	15.0	20.0	_	<u> -</u>	23.0	2.0	_	23.0	<u>-</u>	_
11.0	15.0	21.0	_	<u>-</u>	23.0	2.0	<u>-</u>	23.0	<u>-</u>	_
11.0	15.0	22.0	_	-	23.0	2.0	_	23.0	_	-
11.0	15.0	23.0	-	-	23.0	2.0	-	23.0	-	-
11.0	16.0	-	-	-	23.0	2.0		23.0	-	-
11.0	16.0	1.0	-		23.0	3.0	-	23.0	-	-
11.0	16.0	2.0	-		23.0	3.0	-	23.0	-	-
11.0	16.0	3.0	-	-	23.0	3.0	-	23.0	-	-
11.0	16.0	4.0	-	-	23.0	3.0	-	23.0	-	-
11.0	16.0	5.0	-	-	23.0	3.0	-	23.0	-	-
11.0	16.0	6.0	-	.5.1	23.0	3.0		23.0		
11.0	16.0	7.0	1.0	20.0	24.0	4.0	18.9	22.9	16.3	10.9
11.0	16.0	8.0	3.0	123.0	24.0	5.0	122.7	25.4	104.1	97.0
11.0	16.0	9.0	81.0	225.0	25.0	5.0	290.6	30.5	240.2	229.7
11.0	16.0	10.0	11.0	214.0	25.0	5.0	219.5	29.3	183.0	173.9
11.0	16.0	11.0	129.0	333.0	26.0	6.0	476.3	34.9	386.2	371.4

11.0	16.0	12.0	63.0	314.0	25.0	6.0	384.6	32.5	315.6	303.0
11.0	16.0	13.0	44.0	272.0	25.0	6.0	319.4	31.0	264.0	252.8
11.0 11.0	16.0 16.0	14.0 15.0	5.0	177.0 80.0	25.0 24.0	5.0 4.0	177.2 76.3	28.4 24.9	148.3 65.0	140.1 58.6
11.0	16.0	16.0	-	54.0	24.0	4.0	52.3	24.0	44.7	38.7
11.0 11.0	16.0 16.0	17.0 18.0		-	24.0 24.0	4.0 4.0		24.0 24.0	-	-
11.0	16.0	19.0	-	-	24.0	5.0	-	24.0	-	-
11.0 11.0	16.0 16.0	20.0 21.0	Ī	-	24.0 24.0	5.0 5.0	-	24.0 24.0		
11.0	16.0	22.0	-	-	24.0	6.0	-	24.0	-	-
11.0	16.0	23.0	-	-	24.0	6.0	-	24.0	-	-
11.0 11.0	17.0 17.0	- 1.0	-	- -	24.0 23.0	7.0 6.0	- -	24.0 23.0	-	
11.0	17.0	2.0	-	-	22.0	6.0	-	22.0	-	-
11.0 11.0	17.0 17.0	3.0 4.0	-	- -	21.0 19.0	6.0 6.0	- -	21.0 19.0	-	-
11.0	17.0	5.0	-	-	18.0	6.0	-	18.0	-	-
11.0 11.0	17.0 17.0	6.0 7.0	367.0	49.0	18.0 18.0	6.0 6.0	- 174.4	18.0 20.2	134.6	- 126.7
11.0	17.0	8.0	-	63.0	18.0	6.0	59.8	18.2	52.5	46.4
11.0 11.0	17.0 17.0	9.0 10.0	9.0 30.0	177.0 249.0	19.0 19.0	6.0 7.0	180.4 282.1	21.5 23.3	156.0 241.8	147.6 231.3
11.0	17.0	11.0	51.0	301.0	19.0	7.0	359.2	24.9	305.7	293.3
11.0 11.0	17.0 17.0	12.0 13.0	62.0 13.0	312.0 224.0	19.0 19.0	8.0 8.0	381.6 231.6	24.9 22.4	324.7 199.4	311.8 190.0
11.0	17.0	14.0	-	122.0	19.0	8.0	117.4	20.2	102.1	95.0
11.0	17.0	15.0	223.0	155.0	19.0	7.0	297.1	23.5	250.4	239.7
11.0 11.0	17.0 17.0	16.0 17.0	486.0	60.0	18.0 17.0	6.0 6.0	242.7	22.2 17.0	189.1 -	179.9 -
11.0	17.0	18.0	-	-	17.0	6.0	-	17.0	-	-
11.0 11.0	17.0 17.0	19.0 20.0	-	-	16.0 16.0	6.0 6.0	- -	16.0 16.0	-	-
11.0	17.0	21.0	-	-	15.0	6.0	-	15.0	-	-
11.0 11.0	17.0 17.0	22.0 23.0	Ī	-	15.0 14.0	6.0 6.0	-	15.0 14.0		-
11.0	18.0	-	-	-	14.0	7.0	-	14.0	-	
11.0	18.0	1.0	-		14.0	7.0	-	14.0 13.0	-	-
11.0 11.0	18.0 18.0	2.0 3.0	-	- -	13.0 13.0	7.0 7.0	- -	13.0	-	
11.0	18.0	4.0	-	-	13.0	6.0	-	13.0	-	-
11.0 11.0	18.0 18.0	5.0 6.0	-	- -	13.0 14.0	6.0 6.0	- -	13.0 14.0	-	-
11.0	18.0	7.0	553.0	41.0	15.0	6.0	221.2	18.1	168.2	159.5
11.0 11.0	18.0 18.0	8.0 9.0	787.0 881.0	65.0 80.0	16.0 17.0	6.0 6.0	487.6 710.9	25.0 31.0	397.7 580.7	382.5 558.8
11.0	18.0	10.0	916.0	94.0	18.0	5.0	863.7	37.5	689.1	662.8
11.0 11.0	18.0 18.0	11.0 12.0	930.0 924.0	101.0 104.0	19.0 20.0	5.0 5.0	947.4 951.1	40.7 42.0	745.5 743.6	716.6 714.9
11.0	18.0	13.0	888.0	106.0	20.0	5.0	876.1	40.3	689.6	663.3
11.0	18.0	14.0 15.0	835.0	97.0	21.0	5.0 4.0	722.3 507.6	37.8 33.1	572.3 402.5	550.8 387.1
11.0 11.0	18.0 18.0	16.0	730.0 500.0	83.0 56.0	20.0 19.0	4.0	243.5	25.0	402.5 186.7	177.6
11.0	18.0	17.0	-	-	18.0	4.0	-	18.0	-	-
11.0 11.0	18.0 18.0	18.0 19.0	-	- -	18.0 18.0	4.0 4.0	- -	18.0 18.0	-	-
11.0	18.0	20.0	-	-	18.0	4.0	-	18.0	-	-
11.0 11.0	18.0 18.0	21.0 22.0	-	- -	18.0 18.0	3.0 3.0	- -	18.0 18.0	-	-
11.0	18.0	23.0	-	-	19.0	3.0	-	19.0	-	-
11.0 11.0	19.0 19.0	- 1.0	Ī	-	19.0 19.0	3.0 3.0	-	19.0 19.0		
11.0	19.0	2.0	-	-	19.0	3.0	-	19.0	-	-
11.0 11.0	19.0 19.0	3.0 4.0	-	-	19.0 19.0	3.0 3.0	-	19.0 19.0	-	-
11.0	19.0	5.0	-	-	19.0	3.0	-	19.0	-	-
11.0 11.0	19.0 19.0	6.0 7.0	422.0	- 48.0	19.0 20.0	3.0 3.0	- 188.5	19.0 23.4	- 142.0	134.0
11.0	19.0	8.0	60.0	138.0	21.0	3.0	174.1	24.7	147.0	138.9
11.0	19.0	9.0	821.0	90.0	22.0	4.0	679.1	37.7	536.7	516.6
11.0 11.0	19.0 19.0	10.0 11.0	884.0 168.0	96.0 329.0	22.0 23.0	4.0 4.0	843.6 506.5	43.1 36.4	654.4 407.6	629.6 392.0
11.0	19.0	12.0	919.0	97.0	23.0	4.0	937.2	45.8	718.5	690.9
11.0 11.0	19.0 19.0	13.0 14.0	873.0 313.0	105.0 222.0	23.0 23.0	4.0 4.0	861.3 473.5	45.1 35.7	661.5 380.6	636.3 366.0
11.0	19.0	15.0	727.0	79.0	23.0	4.0	501.1	35.3	393.1	378.0
11.0 11.0	19.0 19.0	16.0 17.0	509.0	53.0 -	22.0 21.0	4.0 4.0	243.5	28.0 21.0	183.7	174.7 -
11.0	19.0	18.0	-	-	21.0	4.0	-	21.0	-	-
11.0 11.0	19.0 19.0	19.0 20.0	-	-	21.0 21.0	4.0 4.0		21.0 21.0	-	-
***						-		· ·		

11.0	19.0	21.0	-	-	21.0	4.0	-	21.0	-	-
11.0 11.0	19.0 19.0	22.0 23.0	-	-	21.0 21.0	4.0	-	21.0 21.0	-	-
11.0 11.0	20.0 20.0	1.0	-	-	21.0 21.0	4.0 4.0	-	21.0 21.0	-	-
11.0 11.0	20.0 20.0	2.0 3.0	-	-	21.0 21.0	3.0 3.0	-	21.0 21.0	-	-
11.0 11.0	20.0 20.0	4.0 5.0	-	-	21.0 22.0	4.0 4.0	-	21.0 22.0	-	-
11.0 11.0	20.0 20.0	6.0 7.0	-	- 25.0	22.0 22.0	4.0 4.0	23.7	22.0 21.0	20.5	- 15.1
11.0 11.0	20.0 20.0	8.0 9.0	218.0 84.0	136.0 219.0	23.0 24.0	4.0 4.0	264.9 286.2	28.1 30.4	217.3 236.6	207.4 226.2
11.0 11.0	20.0 20.0	10.0 11.0	739.0 771.0	132.0 138.0	24.0 25.0	5.0 5.0	767.5 851.2	40.5 44.4	603.4 657.2	580.7 632.3
11.0	20.0	12.0	775.0	137.0	25.0	5.0	858.9	44.8	662.0	636.9
11.0 11.0	20.0	13.0 14.0	736.0 51.0	138.0 221.0	25.0 25.0	5.0 4.0	786.4 266.2	43.2 32.4	610.2 218.3	587.2 208.4
11.0 11.0	20.0 20.0	15.0 16.0	537.0 290.0	110.0 70.0	24.0 24.0	4.0 4.0	427.1 185.9	33.9 28.4	338.8 143.9	325.4 135.9
11.0 11.0	20.0 20.0	17.0 18.0	-	-	24.0 24.0	4.0 5.0	-	24.0 24.0	-	-
11.0 11.0	20.0 20.0	19.0 20.0	-	-	24.0 24.0	4.0 4.0	-	24.0 24.0	-	-
11.0 11.0	20.0 20.0	21.0 22.0	-	-	24.0 23.0	3.0 3.0	-	24.0 23.0	-	-
11.0 11.0	20.0 21.0	23.0	-	-	23.0 23.0	2.0	-	23.0 23.0	-	-
11.0	21.0	1.0	-	-	23.0	2.0	-	23.0	-	-
11.0 11.0	21.0 21.0	2.0 3.0		-	23.0 22.0	2.0	- -	23.0 22.0	-	-
11.0 11.0	21.0 21.0	4.0 5.0	-	-	22.0 22.0	2.0 2.0	-	22.0 22.0	-	-
11.0 11.0	21.0 21.0	6.0 7.0	225.0	50.0	22.0 23.0	2.0 2.0	130.7	22.0 25.0	100.8	93.7
11.0 11.0	21.0 21.0	8.0 9.0	456.0 768.0	105.0 84.0	24.0 24.0	2.0 2.0	357.7 632.7	33.6 42.6	282.2 487.7	270.6 469.4
11.0 11.0	21.0 21.0	10.0 11.0	414.0 228.0	246.0 322.0	24.0 25.0	2.0 2.0	612.4 551.4	43.1 42.3	475.5 430.7	457.6 414.4
11.0 11.0	21.0 21.0	12.0 13.0	26.0 130.0	267.0 298.0	25.0 25.0	2.0 2.0	288.4 431.9	34.4 37.5	234.5 345.6	224.2 332.1
11.0 11.0	21.0 21.0	14.0 15.0	261.0 251.0	229.0 150.0	25.0 25.0	2.0 2.0	444.0 307.1	38.4 34.4	352.2 245.3	338.5 234.6
11.0 11.0	21.0 21.0	16.0 17.0	113.0	70.0	24.0 23.0	2.0 2.0	116.1	27.0 23.0	93.3	86.3
11.0	21.0	18.0 19.0	Ī.,	-	23.0 23.0 23.0	2.0 2.0 1.0	-	23.0 23.0 23.0	-	
11.0 11.0	21.0 21.0	20.0		-	23.0	1.0	-	23.0	-	-
11.0 11.0	21.0 21.0	21.0 22.0	Ī	-	22.0 22.0	1.0 2.0	-	22.0 22.0	-	-
11.0 11.0	21.0 22.0	23.0	-	-	22.0 22.0	2.0 2.0	-	22.0 22.0	-	-
11.0 11.0	22.0 22.0	1.0 2.0	-	-	22.0 21.0	2.0 3.0	-	22.0 21.0	-	-
11.0 11.0	22.0 22.0	3.0 4.0	-	-	21.0 21.0	3.0 3.0	-	21.0 21.0	-	-
11.0 11.0	22.0 22.0	5.0 6.0	-	-	21.0 21.0	3.0 3.0	- -	21.0 21.0	-	-
11.0 11.0	22.0 22.0	7.0 8.0	- 204.0	9.0 135.0	21.0 21.0	3.0 4.0	8.5 256.2	19.4 25.8	7.4 212.5	2.2 202.7
11.0 11.0	22.0 22.0	9.0 10.0	352.0 145.0	197.0 287.0	22.0 22.0	4.0 5.0	461.5 429.3	32.7 31.3	375.5 354.0	361.1 340.2
11.0 11.0	22.0 22.0	11.0 12.0	840.0 840.0	111.0 114.0	23.0 23.0	5.0 4.0	879.3 888.8	42.3 45.6	686.4 681.9	660.2 655.9
11.0 11.0	22.0 22.0	13.0 14.0	167.0 779.0	297.0 98.0	23.0 23.0	4.0 4.0	461.7 680.7	35.5 39.6	373.1 534.4	358.7
11.0 11.0	22.0 22.0	15.0 16.0	95.0 491.0	155.0 51.0	22.0 21.0	4.0	213.9 235.5	27.8 25.9	177.8 179.5	514.4 169.0 170.6
11.0	22.0	17.0	-	-	20.0	4.0	-	20.0	-	-
11.0 11.0	22.0 22.0	18.0 19.0	-	- -	20.0 19.0	4.0 5.0	-	20.0 19.0	-	-
11.0 11.0	22.0 22.0	20.0 21.0	-	-	19.0 18.0	5.0 5.0	-	19.0 18.0	-	-
11.0 11.0	22.0 22.0	22.0 23.0	-	-	18.0 17.0	6.0 6.0	-	18.0 17.0	-	-
11.0 11.0	23.0 23.0	1.0	-	-	17.0 16.0	6.0 6.0	-	17.0 16.0	-	-
11.0 11.0	23.0 23.0	2.0 3.0	-	-	16.0 15.0	5.0 5.0	-	16.0 15.0	-	-
11.0 11.0	23.0 23.0	4.0 5.0	-	-	15.0 15.0	5.0 4.0	-	15.0 15.0	- -	-

11.0 11.0 11.0	23.0 23.0 23.0	6.0 7.0 8.0	- 503.0 755.0	- 40.0 67.0	15.0 16.0 17.0	4.0 5.0 5.0	- 200.8 465.9	15.0 19.0 26.5	- 151.5 376.6	- 143.3 362.1
11.0 11.0	23.0 23.0	9.0 10.0	859.0 911.0	83.0 93.0	18.0 19.0	5.0 5.0	690.5 849.6	33.1 38.2	557.7 675.4	536.8 649.6
11.0 11.0	23.0 23.0	11.0 12.0	934.0 934.0	97.0 98.0	19.0 20.0	4.0 4.0	938.1 946.2	42.9 44.2	730.0 731.1	701.9 702.9
11.0 11.0	23.0 23.0	13.0 14.0	904.0 853.0	98.0 91.0	20.0 20.0 20.0	4.0 3.0 3.0	869.2 725.3	42.4 40.7	676.8 566.0	651.0 544.8 386.0
11.0 11.0 11.0	23.0 23.0 23.0	15.0 16.0 17.0	757.0 541.0 -	75.0 50.0	19.0 18.0	3.0 3.0 3.0	510.5 251.8	34.6 25.9 18.0	401.3 191.2 -	182.0
11.0 11.0	23.0 23.0	18.0 19.0	-	-	18.0 18.0	3.0 3.0	-	18.0 18.0	-	-
11.0 11.0	23.0 23.0	20.0 21.0	-	-	18.0 18.0	2.0 2.0	- -	18.0 18.0	- -	-
11.0 11.0	23.0 23.0	22.0 23.0	-	-	18.0 18.0	2.0 2.0	- -	18.0 18.0	- -	-
11.0 11.0	24.0 24.0	1.0	-	-	18.0 18.0	2.0	-	18.0 18.0	-	-
11.0 11.0	24.0 24.0	2.0 3.0	-	-	18.0 18.0	2.0	-	18.0 18.0	-	-
11.0 11.0 11.0	24.0 24.0 24.0	4.0 5.0 6.0	Ē	Ē	19.0 19.0 19.0	2.0 2.0 2.0	- - -	19.0 19.0 19.0	- - -	-
11.0 11.0	24.0 24.0	7.0 8.0	442.0 112.0	41.0 135.0	20.0 21.0	2.0 2.0 2.0	183.3 203.3	23.6 26.1	136.1 169.5	128.2 160.8
11.0 11.0	24.0 24.0	9.0 10.0	251.0 895.0	210.0 90.0	22.0 22.0	2.0	406.5 831.5	33.3 46.5	330.1 633.4	317.1 609.4
11.0 11.0	24.0 24.0	11.0 12.0	919.0 921.0	94.0 94.0	23.0 23.0	2.0 2.0	920.0 928.8	51.5 52.1	683.9 688.4	657.8 662.1
11.0 11.0	24.0 24.0	13.0 14.0	895.0 843.0	93.0 87.0	23.0 23.0	2.0 2.0	855.2 713.2	50.1 45.9	639.6 541.8	615.4 521.5
11.0 11.0	24.0 24.0	15.0 16.0	741.0 522.0	74.0 50.0	23.0 22.0	2.0	500.5 245.5	39.3 29.8	384.5 183.2	369.7 174.2
11.0 11.0 11.0	24.0 24.0 24.0	17.0 18.0 19.0	-	-	21.0 21.0 21.0	2.0 2.0 2.0	<u> </u>	21.0 21.0 21.0	-	-
11.0 11.0 11.0	24.0 24.0 24.0	20.0 21.0			21.0 21.0 21.0	2.0 2.0 2.0	-	21.0 21.0 21.0	-	-
11.0 11.0	24.0 24.0	22.0 23.0	-	-	21.0 21.0 21.0	2.0 2.0	-	21.0 21.0 21.0	<u>-</u> -	-
11.0 11.0	25.0 25.0	- 1.0	-	:	21.0 21.0	2.0 2.0	-	21.0 21.0	-	-
11.0 11.0	25.0 25.0	2.0 3.0	-	-	21.0 21.0	1.0 1.0	- -	21.0 21.0	- -	-
11.0 11.0	25.0 25.0	4.0 5.0	-	-	21.0 21.0	1.0 1.0	-	21.0 21.0	-	-
11.0 11.0 11.0	25.0 25.0 25.0	6.0 7.0 8.0	288.0 252.0	43.0 126.0	21.0 22.0 23.0	1.0 1.0 1.0	- 139.5 269.1	21.0 24.6 31.3	105.3 216.5	98.1 206.7
11.0 11.0 11.0	25.0 25.0 25.0	9.0 10.0	476.0 867.0	166.0 90.0	24.0 24.0	1.0 1.0 1.0	518.2 807.2	41.6 52.2	402.4 596.4	387.1 573.9
11.0 11.0	25.0 25.0	11.0 12.0	890.0 887.0	95.0 98.0	25.0 25.0	1.0 1.0	894.1 902.1	57.3 57.9	644.3 647.7	619.9 623.2
11.0 11.0	25.0 25.0	13.0 14.0	261.0 790.0	284.0 95.0	25.0 25.0	1.0 1.0	535.7 683.9	46.7 49.4	408.7 510.1	393.1 491.0
11.0 11.0	25.0 25.0	15.0 16.0	679.0 452.0	81.0 53.0	25.0 24.0	1.0 1.0	476.3 224.8	43.6 32.9	358.4 166.4	344.4 157.8
11.0 11.0	25.0 25.0	17.0 18.0	-	-	23.0 23.0	1.0 1.0	-	23.0 23.0	-	-
11.0 11.0 11.0	25.0 25.0 25.0	19.0 20.0 21.0	-	-	23.0 23.0 23.0	1.0 1.0 1.0	- -	23.0 23.0 23.0	- -	-
11.0 11.0 11.0	25.0 25.0 25.0	22.0 23.0		-	22.0 22.0 22.0	1.0 1.0 1.0	-	22.0 22.0 22.0	-	
11.0 11.0	26.0 26.0	1.0	-	-	22.0 22.0	1.0 1.0	- -	22.0 22.0	- -	-
11.0 11.0	26.0 26.0	2.0 3.0	-	-	21.0 21.0	2.0 2.0	- -	21.0 21.0	- -	-
11.0 11.0	26.0 26.0	4.0 5.0	-	-	21.0 21.0	2.0 3.0	-	21.0 21.0	-	-
11.0 11.0 11.0	26.0 26.0 26.0	6.0 7.0 8.0	Ē	- 2.0 50.0	21.0 21.0 22.0	3.0 3.0 3.0	- 1.9 47.4	21.0 19.2 21.5	- 1.7 41.0	- - 35.2
11.0 11.0 11.0	26.0 26.0	9.0 10.0	575.0 2.0	139.0 180.0	23.0 23.0	3.0 4.0	557.8 177.6	36.6 27.5	443.8 149.3	427.1 141.1
11.0 11.0	26.0 26.0	11.0 12.0	132.0 71.0	316.0 305.0	24.0 24.0	4.0 3.0	459.8 382.8	34.4 34.3	373.7 311.3	359.2 298.8
11.0 11.0	26.0 26.0	13.0 14.0	106.0 119.0	288.0 232.0	24.0 24.0	3.0 3.0	390.5 337.0	34.2 32.8	317.5 275.3	304.8 263.9

11.0	26.0	15.0	166.0	153.0	23.0	3.0	257.6	29.5	211.5	201.8
11.0	26.0	16.0	65.0	70.0	23.0	3.0	100.4	24.9	82.8	76.1
11.0	26.0	17.0	-	_	22.0	3.0	-	22.0	_	_
11.0	26.0	18.0	_	_	22.0	3.0	-	22.0	_	_
11.0	26.0	19.0	_	_	22.0	3.0	<u>-</u>	22.0	_	_
11.0	26.0	20.0	_	_	21.0	3.0		21.0	_	_
11.0	26.0	21.0			21.0	3.0		21.0		
11.0	26.0	22.0	-	-	21.0	3.0		21.0	-	-
			-							-
11.0	26.0	23.0	•	-	20.0	3.0	-	20.0	-	-
11.0	27.0	5.2	-	-	20.0	3.0	-	20.0	-	-
11.0	27.0	1.0	-		19.0	3.0		19.0		-
11.0	27.0	2.0	-	-	19.0	3.0	-	19.0	-	-
11.0	27.0	3.0	-	-	19.0	3.0	-	19.0	-	-
11.0	27.0	4.0	-	-	19.0	3.0		19.0	-	-
11.0	27.0	5.0	-	-	19.0	3.0	-	19.0	-	-
11.0	27.0	6.0	_	_	19.0	3.0	<u>-</u>	19.0	_	_
11.0	27.0	7.0	441.0	36.0	20.0	3.0	175.4	23.0	129.4	121.7
11.0	27.0	8.0	706.0	64.0	21.0	3.0	432.2	31.6	340.0	326.7
11.0	27.0	9.0	816.0	79.0	22.0	4.0	650.0	37.8	512.7	493.5
11.0	27.0	10.0	600.0	175.0	23.0	4.0	693.2	40.4	545.2	524.8
						4.0	883.3	46.0		650.3
11.0	27.0	11.0	873.0	101.0	24.0				676.1	
11.0	27.0	12.0	312.0	302.0	24.0	4.0	615.2	40.1	485.7	467.5
11.0	27.0	13.0	502.0	221.0	24.0	4.0	675.0	40.8	530.3	510.4
11.0	27.0	14.0	476.0	180.0	23.0	4.0	551.9	37.0	439.8	423.2
11.0	27.0	15.0	672.0	82.0	23.0	3.0	473.8	36.0	370.3	356.0
11.0	27.0	16.0	450.0	53.0	22.0	3.0	224.7	28.1	170.3	161.6
11.0	27.0	17.0	-	-	21.0	3.0		21.0	-	-
11.0	27.0	18.0	-	-	21.0	3.0	-	21.0	-	-
11.0	27.0	19.0	_	_	21.0	3.0	_	21.0	_	_
11.0	27.0	20.0	_	_	21.0	3.0		21.0	_	_
11.0	27.0	21.0	_	_	20.0	3.0	_	20.0	_	_
11.0	27.0	22.0			20.0	3.0		20.0		
			-	-					-	-
11.0	27.0	23.0	-	-	20.0	3.0	-	20.0	-	-
11.0	28.0	-	•	-	20.0	3.0	-	20.0	-	-
11.0	28.0	1.0	-	-	20.0	3.0	-	20.0	-	-
11.0	28.0	2.0	-		20.0	3.0		20.0		-
11.0	28.0	3.0	-	-	19.0	3.0	-	19.0	-	-
11.0	28.0	4.0	-	-	19.0	3.0	-	19.0	-	-
11.0	28.0	5.0	-	-	19.0	3.0	-	19.0	-	-
11.0	28.0	6.0	-	_	19.0	3.0	-	19.0	-	_
11.0	28.0	7.0	296.0	44.0	20.0	3.0	141.8	22.1	108.0	100.7
11.0	28.0	8.0	591.0	82.0	21.0	3.0	395.9	30.5	314.3	301.7
11.0	28.0	9.0	507.0	155.0	22.0	3.0	524.1	35.8	418.6	402.7
11.0	28.0	10.0	424.0	232.0	22.0	3.0	610.1	38.5	484.6	466.5
11.0	28.0	11.0	541.0	223.0	23.0	3.0	734.5	43.0	571.2	549.7
11.0	28.0	12.0	368.0	287.0	23.0	3.0	647.3	41.2	508.3	489.3
11.0	28.0	13.0	331.0	268.0	23.0	4.0	575.2	37.5	459.7	442.4
11.0	28.0	14.0	305.0	216.0	23.0	4.0	460.8	34.6	372.4	358.0
11.0	28.0	15.0	264.0	144.0	22.0	3.0	308.2	30.3	250.9	240.1
11.0	28.0	16.0	66.0	69.0	21.0	3.0	99.8	23.1	83.0	76.3
11.0	28.0	17.0	-	-	20.0	3.0	-	20.0	-	-
11.0	28.0	18.0	-	-	20.0	4.0		20.0	-	-
11.0	28.0	19.0	-	-	19.0	4.0	-	19.0	-	-
11.0	28.0	20.0	-	_	19.0	5.0	-	19.0	_	_
11.0	28.0	21.0	_	_	18.0	6.0	-	18.0	_	_
11.0	28.0	22.0	_	_	17.0	6.0		17.0	_	_
11.0	28.0	23.0	_	_	16.0	6.0	<u> -</u>	16.0	_	_
11.0	29.0	-	_	_	16.0	6.0	_	16.0	_	_
11.0	29.0	1.0		-	15.0	6.0	-	15.0		-
11.0	29.0	2.0		- -	15.0	5.0	- -	15.0		
11.0	29.0	3.0	-	-	15.0	5.0	-	15.0	-	-
			-	-					-	-
11.0	29.0	4.0	-	-	15.0	5.0	-	15.0	-	-
11.0	29.0	5.0	-	-	15.0	5.0		15.0	-	-
11.0	29.0	6.0		<u>.</u>	15.0	5.0		15.0		-
11.0	29.0	7.0	465.0	37.0	15.0	5.0	181.4	17.5	136.6	128.7
11.0	29.0	8.0	753.0	64.0	16.0	5.0	452.3	25.1	366.6	352.4 530.4
11.0	29.0	9.0	864.0	79.0	17.0	5.0	678.8	31.8	551.0	530.4
11.0	29.0	10.0	915.0	88.0	18.0	4.0	836.8	39.0	662.1	636.9
11.0	29.0	11.0	935.0	94.0	19.0	4.0	926.5	42.5	721.9	694.1
11.0	29.0	12.0	931.0	96.0	20.0	3.0	934.1	46.2	714.2	686.8
11.0	29.0	13.0	904.0	96.0	20.0	3.0	862.2	44.4	664.4	639.1
11.0	29.0	14.0	857.0	87.0	20.0	2.0	721.5	43.3	555.5	534.7
11.0	29.0	15.0	758.0	74.0	19.0	2.0	510.2	35.7	398.9	383.7
11.0	29.0	16.0	529.0	50.0	18.0	1.0	249.4	28.0	188.0	178.9
11.0	29.0	17.0	529.0	-	17.0	1.0	249.4	17.0	100.0	-
11.0	29.0	18.0		-	17.0	1.0	-	17.0	-	-
				-	17.0		-	17.0		-
11.0 11.0	29.0	19.0	-	-		1.0			-	-
	29.0	20.0	-	-	17.0	1.0	-	17.0	-	-
	20.0									
11.0	29.0	21.0	-	-	16.0	1.0		16.0	•	-
11.0 11.0	29.0	22.0	-	- -	16.0	1.0	- -	16.0	-	-
11.0			-	-			- - -		- - -	- - -

11.0	30.0	-	-	-	15.0	1.0		15.0	-	-
11.0	30.0	1.0	-	-	15.0	2.0		15.0	-	-
11.0	30.0	2.0	_	_	14.0	3.0	-	14.0	_	-
11.0	30.0	3.0	_	_	14.0	2.0	<u>-</u>	14.0	_	_
11.0	30.0	4.0	_	_	14.0	2.0	_	14.0	_	_
11.0	30.0	5.0			14.0	2.0		14.0		
11.0	30.0				14.0	2.0		14.0		
		6.0	417.0	27.0			167.0		126.2	440.5
11.0	30.0	7.0	417.0	37.0	15.0	2.0	167.2	18.0	126.2	118.5
11.0	30.0	8.0	707.0	67.0	16.0	3.0	433.5	26.7	348.9	335.3
11.0	30.0	9.0	826.0	83.0	17.0	4.0	656.3	33.0	529.8	509.9
11.0	30.0	10.0	877.0	93.0	18.0	4.0	816.2	38.5	647.5	623.0
11.0	30.0	11.0	895.0	98.0	19.0	4.0	894.9	41.7	700.1	673.3
11.0	30.0	12.0	886.0	100.0	19.0	4.0	898.1	42.0	701.8	674.9
11.0	30.0	13.0	850.0	100.0	20.0	4.0	827.5	41.3	647.9	623.3
11.0	30.0	14.0	781.0	97.0	19.0	3.0	678.4	38.4	535.7	515.6
11.0	30.0	15.0	664.0	83.0	19.0	3.0	471.0	32.4	374.9	360.4
11.0	30.0	16.0	447.0	53.0	18.0	3.0	224.6	24.1	173.8	165.0
			447.0							
11.0	30.0	17.0	-	-	17.0	3.0	-	17.0	-	-
11.0	30.0	18.0	-	-	17.0	3.0		17.0	-	-
11.0	30.0	19.0	-		20.0	2.0	-	20.0	-	-
11.0	30.0	20.0	-	-	20.0	2.0	-	20.0	-	-
11.0	30.0	21.0	-		19.0	2.0	-	19.0	-	-
11.0	30.0	22.0	_	_	19.0	2.0	_	19.0	_	_
11.0	30.0	23.0	_	_	18.0	3.0	_	18.0	_	_
12.0	1.0	-	_	_	18.0	3.0		18.0	_	_
12.0	1.0	1.0			17.0	3.0		17.0		
12.0	1.0	2.0			17.0	3.0		17.0		
			-							-
12.0	1.0	3.0	-	-	16.0	3.0	-	16.0	-	-
12.0	1.0	4.0	-		16.0	3.0	-	16.0	-	-
12.0	1.0	5.0	-	-	15.0	3.0	-	15.0	-	-
12.0	1.0	6.0	-	-	15.0	3.0		15.0	-	-
12.0	1.0	7.0	400.0	37.0	16.0	4.0	161.6	18.3	121.9	114.3
12.0	1.0	8.0	714.0	65.0	16.0	5.0	431.3	24.6	350.1	336.5
12.0	1.0	9.0	854.0	77.0	17.0	5.0	666.5	31.5	541.6	521.3
12.0	1.0	10.0	929.0	81.0	18.0	5.0	836.6	36.8	669.0	643.5
12.0				83.0		5.0	933.5	40.3		
	1.0	11.0	961.0		19.0				735.5	707.1
12.0	1.0	12.0	968.0	83.0	19.0	5.0	949.5	40.9	746.1	717.2
12.0	1.0	13.0	949.0	81.0	19.0	4.0	880.9	41.8	688.0	661.7
12.0	1.0	14.0	903.0	75.0	19.0	4.0	735.6	38.1	581.2	559.4
12.0	1.0	15.0	810.0	64.0	19.0	3.0	528.1	34.1	415.6	399.9
12.0	1.0	16.0	600.0	44.0	18.0	3.0	266.2	25.4	201.8	192.3
12.0	1.0	17.0	-	=	16.0	3.0	-	16.0	-	-
12.0	1.0	18.0	_	_	16.0	3.0	_	16.0	_	_
12.0	1.0	19.0			16.0	3.0		16.0		
			-							-
12.0	1.0	20.0	-	-	16.0	3.0	-	16.0	-	-
12.0	1.0	21.0	-		15.0	3.0		15.0	-	-
12.0	1.0	22.0	-	-	15.0	3.0	-	15.0	-	-
12.0	1.0	23.0	-	-	15.0	3.0	-	15.0	-	-
12.0	2.0	-	_	_	15.0	3.0	-	15.0	_	_
12.0	2.0	1.0	_	_	14.0	3.0	_	14.0	_	_
12.0	2.0	2.0	_	_	14.0	3.0	_	14.0	_	_
12.0	2.0	3.0	_	_	14.0	4.0		14.0	_	_
12.0	2.0	4.0			14.0	4.0		14.0		
			-	-					-	
12.0	2.0	5.0	-	-	14.0	4.0	-	14.0	-	-
12.0	2.0	6.0			15.0	4.0		15.0		
12.0	2.0	7.0	426.0	35.0	16.0	4.0	165.9	18.4	124.2	116.5
12.0	2.0	8.0	716.0	65.0	18.0	4.0	430.8	27.6	344.5	331.0
12.0	2.0	9.0	838.0	80.0	19.0	5.0	657.6	33.3	529.6	509.8
12.0	2.0	10.0	882.0	95.0	20.0	5.0	819.4	38.4	650.0	625.4
12.0	2.0	11.0	912.0	99.0	20.0	5.0	908.2	40.8	714.0	686.6
12.0	2.0	12.0	918.0	99.0	20.0	5.0	923.1	41.3	724.0	696.2
12.0	2.0	13.0	894.0	99.0	20.0	5.0	861.6	40.0	679.2	653.3
12.0	2.0	14.0	854.0	88.0	20.0	4.0	720.2	38.7	567.7	546.4
12.0	2.0		766.0		19.0	4.0		32.3	408.9	393.3
		15.0		73.0			514.3 250.7			
12.0	2.0	16.0	561.0	48.0	18.0	3.0	259.7	25.2	198.2	188.8
12.0	2.0	17.0	-	-	17.0	3.0	-	17.0	-	-
12.0	2.0	18.0	-	-	16.0	3.0		16.0	-	-
12.0	2.0	19.0	-	-	16.0	3.0	-	16.0	-	-
12.0	2.0	20.0	-	-	16.0	2.0	-	16.0	-	-
12.0	2.0	21.0	-	-	16.0	2.0		16.0	-	-
12.0	2.0	22.0	-	-	16.0	2.0	-	16.0	-	-
		23.0	_	_	16.0	2.0	_	16.0	_	_
12 ()				_	16.0	2.0	_	16.0	_	_
12.0 12.0	2.0			-	16.0	2.0		16.0	-	-
12.0	2.0 3.0	-					-	10.0		
12.0 12.0	2.0 3.0 3.0	1.0	-	-		3.0		16.0		-
12.0 12.0 12.0	2.0 3.0 3.0 3.0	1.0 2.0	-	-	16.0	3.0		16.0	-	-
12.0 12.0 12.0 12.0	2.0 3.0 3.0 3.0 3.0	1.0 2.0 3.0	:		16.0 16.0	3.0	-	16.0	-	-
12.0 12.0 12.0 12.0 12.0	2.0 3.0 3.0 3.0 3.0 3.0	1.0 2.0 3.0 4.0	-	:	16.0 16.0 16.0	3.0 2.0	-	16.0 16.0	- - -	1
12.0 12.0 12.0 12.0 12.0 12.0	2.0 3.0 3.0 3.0 3.0 3.0 3.0	1.0 2.0 3.0 4.0 5.0	-		16.0 16.0 16.0 16.0	3.0 2.0 2.0	- - -	16.0 16.0 16.0	- - -	- - -
12.0 12.0 12.0 12.0 12.0 12.0 12.0	2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	1.0 2.0 3.0 4.0 5.0 6.0		: : : :	16.0 16.0 16.0 16.0 16.0	3.0 2.0 2.0 2.0	: : : :	16.0 16.0 16.0 16.0	- - - - -	-
12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	1.0 2.0 3.0 4.0 5.0 6.0 7.0	- - - - - - - 390.0	35.0	16.0 16.0 16.0 16.0 16.0 18.0	3.0 2.0 2.0 2.0 2.0	155.3	16.0 16.0 16.0 16.0 20.7	115.4	108.0
12.0 12.0 12.0 12.0 12.0 12.0 12.0	2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	1.0 2.0 3.0 4.0 5.0 6.0	- - - - - - 390.0 689.0		16.0 16.0 16.0 16.0 16.0	3.0 2.0 2.0 2.0		16.0 16.0 16.0 16.0		

12.0 12.0	3.0 3.0	9.0 10.0	810.0 878.0	83.0 90.0	20.0 21.0	2.0 2.0	640.9 808.9	39.2 45.8	501.3 617.8	482.5 594.5
12.0	3.0	11.0	903.0	95.0	22.0	2.0	894.6	49.8	670.9	645.4
12.0	3.0	12.0	906.0	96.0	22.0	2.0	908.3	50.5	678.9	653.0
12.0	3.0	13.0	873.0	98.0	22.0	2.0	842.8	48.8	634.8	610.7
12.0	3.0	14.0	824.0	89.0	22.0	2.0	700.0	44.5	535.5	515.4
12.0 12.0	3.0 3.0	15.0 16.0	724.0 507.0	75.0 49.0	21.0 20.0	2.0 2.0	495.8 242.6	37.1 27.7	385.2 183.6	370.4 174.5
12.0	3.0	17.0	-	-	20.0	2.0	-	20.0	-	174.5
12.0	3.0	18.0	-	-	20.0	2.0	-	20.0	-	-
12.0	3.0	19.0	-	-	19.0	2.0	-	19.0	-	-
12.0	3.0	20.0	-	-	19.0	2.0		19.0	-	-
12.0 12.0	3.0 3.0	21.0 22.0	1	<u> </u>	19.0 19.0	2.0 2.0	-	19.0 19.0	-	-
12.0	3.0	23.0	-	-	19.0	2.0	-	19.0	-	
12.0	4.0	-	-	-	19.0	2.0	-	19.0	-	-
12.0	4.0	1.0	-	-	19.0	2.0	-	19.0	-	-
12.0 12.0	4.0 4.0	2.0 3.0	-	-	19.0 19.0	2.0 2.0	-	19.0 19.0	-	-
12.0	4.0	4.0			19.0	2.0	- -	19.0	-	
12.0	4.0	5.0	_	-	19.0	2.0	-	19.0	-	
12.0	4.0	6.0	-	-	19.0	2.0	-	19.0	-	-
12.0	4.0	7.0	415.0	32.0	20.0	2.0	158.1	22.8	115.4	108.0
12.0 12.0	4.0 4.0	8.0 9.0	716.0 836.0	60.0 75.0	21.0 22.0	2.0 2.0	422.4 647.3	32.6 41.3	329.1 500.6	316.1 481.8
12.0	4.0	10.0	894.0	83.0	23.0	2.0	806.5	47.7	609.9	586.9
12.0	4.0	11.0	915.0	89.0	23.0	2.0	896.8	50.8	669.0	643.5
12.0	4.0	12.0	912.0	91.0	23.0	1.0	907.0	56.2	657.2	632.3
12.0	4.0	13.0	875.0	95.0	24.0	1.0	840.6	55.2	611.5	588.5
12.0 12.0	4.0 4.0	14.0 15.0	814.0 706.0	91.0 78.0	23.0 23.0	1.0 1.0	695.1 489.7	49.5 42.1	518.2 371.1	498.8 356.8
12.0	4.0	16.0	474.0	52.0	22.0	2.0	234.7	29.5	176.9	168.0
12.0	4.0	17.0	-	-	21.0	2.0	- -	21.0	-	-
12.0	4.0	18.0	-	-	21.0	2.0	-	21.0	-	-
12.0	4.0	19.0	-	-	21.0	2.0	-	21.0	-	-
12.0 12.0	4.0 4.0	20.0 21.0			20.0 20.0	2.0 2.0	- -	20.0 20.0	-	
12.0	4.0	22.0	_	-	20.0	3.0	-	20.0	-	_
12.0	4.0	23.0	-	-	20.0	3.0	-	20.0	-	-
12.0	5.0	-	-	-	20.0	3.0	-	20.0	-	-
12.0 12.0	5.0 5.0	1.0 2.0		1	20.0 19.0	3.0 3.0	- -	20.0 19.0	-	
12.0	5.0	3.0	-	-	19.0	3.0	-	19.0	-	-
12.0	5.0	4.0	-	-	19.0	3.0	-	19.0	-	-
12.0	5.0	5.0	-	-	19.0	3.0	-	19.0	-	-
12.0 12.0	5.0 5.0	6.0 7.0	365.0	33.0	19.0 21.0	3.0 3.0	145.0	19.0 23.2	106.3	99.1
12.0	5.0	8.0	657.0	65.0	22.0	3.0	400.1	31.7	313.6	301.0
12.0	5.0	9.0	772.0	85.0	23.0	4.0	615.1	37.8	484.3	466.1
12.0 12.0	5.0 5.0	10.0 11.0	819.0 830.0	99.0 112.0	24.0 24.0	4.0 5.0	769.9 855.2	43.1 43.5	596.3 663.0	573.9 637.8
12.0	5.0	12.0	817.0	119.0	25.0	5.0	861.8	44.8	663.7	638.5
12.0	5.0	13.0	568.0	192.0	25.0	5.0	695.3	41.2	545.1	524.7
12.0	5.0	14.0	-	112.0	25.0	4.0	107.7	28.2	90.2	83.3
12.0	5.0	15.0	-	37.0	24.0	4.0	35.1 45.2	23.6	30.0	24.4
12.0 12.0	5.0 5.0	16.0 17.0		47.0	23.0 23.0	3.0 3.0	45.2	22.6 23.0	38.9	33.1
12.0	5.0	18.0	_	<u>-</u>	22.0	3.0	-	22.0	_	-
12.0	5.0	19.0	-	-	22.0	3.0	-	22.0	-	-
12.0	5.0	20.0	-		22.0	3.0	-	22.0	•	-
12.0 12.0	5.0 5.0	21.0 22.0	-	-	21.0 21.0	3.0 3.0	-	21.0 21.0	-	-
12.0	5.0	23.0	-	-	21.0	3.0	-	21.0	-	
12.0	6.0	-	-	-	21.0	3.0	-	21.0	-	-
12.0	6.0	1.0	-	-	20.0	3.0	-	20.0	-	-
12.0	6.0	2.0	-	-	20.0	3.0	-	20.0	-	-
12.0 12.0	6.0 6.0	3.0 4.0			20.0 20.0	3.0 3.0	-	20.0 20.0		
12.0	6.0	5.0	_	-	20.0	2.0	-	20.0	-	
12.0	6.0	6.0	-	-	20.0	2.0	-	20.0	-	-
12.0	6.0	7.0	292.0	34.0	21.0	2.0	126.3	22.8	94.0	87.1
12.0 12.0	6.0 6.0	8.0 9.0	608.0 745.0	67.0 83.0	22.0 22.0	3.0 3.0	377.7 593.7	31.0 37.6	297.2 467.8	285.1 450.2
12.0	6.0	10.0	46.0	241.0	23.0	3.0	287.9	31.2	237.6	227.2
12.0	6.0	11.0	23.0	247.0	23.0	3.0	265.4	29.6	221.0	227.2 211.0
12.0	6.0	12.0	5.0	200.0	23.0	3.0	200.5	27.7	168.4	159.7
12.0 12.0	6.0 6.0	13.0	44.0	255.0 145.0	23.0 22.0	4.0 5.0	302.7 141.3	29.6 24.5	251.8 120.5	241.0 113.0
12.0	6.0 6.0	14.0 15.0	-	11.0	22.0	6.0	10.4	21.2	9.0	3.8
12.0	6.0	16.0	-	42.0	21.0	6.0	39.9	20.5	34.7	29.0
12.0	6.0	17.0	-	-	21.0	6.0	-	21.0	-	-

12.0		18.0	-	-		6.0	-	21.0	-	-
12.0 12.0	6.0	19.0 20.0	-	-	21.0	6.0 6.0	-	21.0 21.0	-	-
12.0 12.0		21.0 22.0	-	-		6.0 6.0	-	21.0 21.0	-	-
12.0 12.0	6.0 7.0	23.0	-	-		5.0 5.0	-	21.0 21.0	-	-
12.0 12.0	7.0 7.0	1.0 2.0	-	-	21.0	5.0 5.0	-	21.0 21.0	-	-
12.0	7.0	3.0	-	-	21.0	5.0	1	21.0	-	
12.0 12.0	7.0 7.0	4.0 5.0	-	-	21.0 21.0	5.0 5.0	-	21.0 21.0	-	-
12.0 12.0	7.0 7.0	6.0 7.0	_ 122.0	42.0		6.0 6.0	- 86.1	21.0 21.4	- 68.4	- 61.9
12.0	7.0	8.0	-	65.0	22.0	6.0	62.0	22.1	53.5	47.4
12.0 12.0		10.0	240.0	197.0 258.0	23.0	7.0 7.0	270.3 469.5	27.0 31.0	226.8 387.2	216.6 372.4
12.0 12.0				154.0 297.0		7.0 7.0	807.5 379.8	37.6 30.2	645.1 315.1	620.6 302.5
12.0 12.0	7.0	13.0 14.0	-	133.0 125.0	23.0	7.0 7.0	128.2 120.8	24.8 24.3	109.1 103.1	101.9 96.0
12.0	7.0	15.0	-	52.0	22.0	7.0	49.3	21.9	42.6	36.7
12.0 12.0		16.0 17.0	16.0	66.0		7.0 7.0	72.0 -	22.2 22.0	61.4	55.1 -
12.0 12.0		18.0 19.0	-	-		7.0 7.0	-	22.0 22.0	-	-
12.0	7.0	20.0	-	-	22.0	7.0	-	22.0	-	-
12.0 12.0	7.0	21.0 22.0	-	-	22.0	8.0 8.0	-	22.0 22.0	-	-
12.0 12.0	7.0 8.0	23.0	-	-		8.0 8.0	-	22.0 22.0	-	-
12.0 12.0	8.0 8.0	1.0 2.0	-	-	22.0	7.0 7.0	-	22.0 22.0	-	-
12.0	8.0	3.0	-	1	22.0	7.0	1	22.0	-	
12.0 12.0	8.0 8.0	4.0 5.0	-	-		6.0 6.0	-	22.0 22.0	-	
12.0 12.0	8.0 8.0	6.0 7.0	- 151.0	40.0		6.0 6.0	- 91.1	22.0 22.6	- 70.9	- 64.4
12.0	8.0	8.0	500.0	87.0	23.0	6.0	345.8	29.0	275.9	264.5
12.0 12.0		10.0	-	167.0 153.0	24.0	6.0 6.0	175.6 148.8	26.0 26.1	148.5 125.9	140.3 118.2
12.0 12.0				299.0 286.0		6.0 6.0	518.0 614.2	33.6 36.2	422.5 494.5	406.5 475.9
12.0 12.0			368.0	253.0 178.0	24.0	5.0 4.0	588.1 541.8	37.2 37.6	470.6 430.7	452.9 414.4
12.0	8.0	15.0	-	115.0	24.0	4.0	112.9	26.9	95.2	88.2
12.0 12.0		16.0 3 17.0	358.0	61.0		3.0 3.0	204.5	27.3 23.0	158.1	149.7
12.0 12.0		18.0 19.0	-	-		3.0 4.0	-	23.0 23.0	-	-
12.0 12.0	8.0	20.0 21.0	-	-	23.0	4.0 4.0	-	23.0 23.0	-	-
12.0	8.0	22.0	-	-	23.0	4.0	1	23.0	-	
12.0 12.0	8.0 9.0	23.0	-	-		4.0 4.0	-	22.0 22.0	-	-
12.0 12.0	9.0 9.0	1.0 2.0	-	1		3.0 3.0	1	22.0 22.0	-	-
12.0	9.0 9.0	3.0	-	-	22.0	3.0 3.0	-	22.0 22.0	-	-
12.0 12.0	9.0	4.0 5.0	-	-	22.0	3.0	1	22.0	-	
12.0 12.0	9.0 9.0	6.0 7.0	79.0	34.0		3.0 3.0	64.2	22.0 22.0	51.4	- 45.4
12.0 12.0	9.0 9.0		589.0 730.0	71.0 89.0	23.0	4.0 4.0	369.6 588.8	30.9 38.1	290.8 462.7	278.9 445.3
12.0	9.0	10.0	798.0	100.0	25.0	4.0	749.5	43.5	579.1	557.3
12.0 12.0	9.0	12.0	476.0	106.0 246.0	26.0	3.0 3.0	842.8 703.5	49.2 45.9	634.2 539.1	610.2 518.9
12.0 12.0		13.0 7 14.0		119.0 193.0		2.0 2.0	782.0 207.6	50.1 34.0	584.8 169.0	562.9 160.4
12.0 12.0	9.0	15.0 16.0	-	11.0 4.0	25.0	1.0 1.0	10.4 3.8	24.4 21.7	8.9 3.3	3.6
12.0	9.0	17.0	-	-	24.0	1.0	-	24.0	-	
12.0 12.0	9.0	18.0 19.0	-	-	23.0	1.0 1.0	-	23.0 23.0	-	-
12.0 12.0	9.0	20.0 21.0	-	-	22.0	1.0 1.0	-	22.0 22.0	-	-
12.0	9.0	22.0	-	-	22.0	2.0 2.0	-	22.0 22.0	-	-
12.0 12.0	10.0	23.0	- -	- -	22.0	2.0	-	22.0	-	-
12.0 12.0	10.0 10.0	1.0 2.0	-	-		3.0 3.0	-	22.0 22.0	-	-

12.0 12.0	10.0 10.0	3.0 4.0	<u>-</u> -	<u>.</u>	21.0 21.0	3.0 3.0	<u>:</u>	21.0 21.0	-	- - -
12.0 12.0 12.0	10.0 10.0 10.0	5.0 6.0 7.0	- - 172.0	- - 36.0	21.0 21.0 22.0	2.0 2.0 2.0	- - 96.1	21.0 21.0 22.9	- - 73.9	- 67.4
12.0 12.0	10.0 10.0	8.0 9.0	489.0 477.0	87.0 148.0	23.0 23.0	2.0 1.0	336.4 485.8	31.8 39.9	264.6 379.4	253.4 364.8
12.0 12.0	10.0 10.0	10.0 11.0	537.0 774.0	186.0 128.0	24.0 25.0	1.0 1.0	639.7 824.3	46.8 54.3	486.5 603.4	468.2 580.6
12.0 12.0	10.0 10.0	12.0 13.0	775.0 718.0	132.0 142.0	25.0 25.0	1.0 1.0	841.0 767.4	55.7 53.6	611.1 563.4	588.0 542.3
12.0 12.0	10.0 10.0	14.0 15.0	639.0 499.0	136.0 118.0	25.0 25.0	1.0 1.0	624.8 419.4	48.8 41.4	468.1 321.0	450.5 308.2
12.0 12.0	10.0 10.0	16.0 17.0	257.0	72.0 -	24.0 23.0	1.0 1.0	177.3 -	30.9 23.0	136.8 -	128.9 -
12.0 12.0	10.0 10.0	18.0 19.0	-	-	23.0 23.0	1.0 1.0	-	23.0 23.0	-	-
12.0 12.0	10.0 10.0	20.0	-	-	22.0 22.0	1.0 1.0	-	22.0 22.0	-	-
12.0 12.0	10.0 10.0	22.0 23.0	-	:	22.0 22.0	1.0 -	:	22.0 22.0	-	-
12.0 12.0	11.0 11.0	1.0	-	-	22.0 21.0	-	-	22.0 21.0	-	-
12.0 12.0	11.0 11.0	3.0	-	-	21.0 20.0 20.0	1.0 1.0	-	21.0 20.0 20.0	-	-
12.0 12.0 12.0	11.0 11.0 11.0	4.0 5.0 6.0	-		20.0 20.0 20.0	2.0 2.0		20.0 20.0 20.0	- - -	-
12.0 12.0 12.0	11.0 11.0 11.0	7.0 8.0	151.0 467.0	36.0 91.0	20.0 20.0 20.0	3.0 4.0	90.6 329.8	20.6 26.9	71.0 265.7	64.5 254.5
12.0 12.0 12.0	11.0 11.0 11.0	9.0 10.0	624.0 38.0	120.0 231.0	20.0 20.0 20.0	4.0 4.0 4.0	552.5 270.6	33.1 26.8	445.5 228.1	428.7 217.9
12.0 12.0	11.0 11.0	11.0 12.0	698.0 724.0	165.0 158.0	21.0 21.0	4.0 4.0	800.4 825.9	39.9 42.0	631.8 645.4	607.9 621.0
12.0 12.0	11.0 11.0	13.0 14.0	495.0 343.0	217.0 205.0	21.0 21.0	4.0 4.0	662.8 477.0	38.2 33.2	527.7 387.8	507.9 373.0
12.0 12.0	11.0 11.0	15.0 16.0	-	119.0 44.0	20.0 20.0	3.0 2.0	117.1 42.0	23.1 19.7	100.5 36.6	93.4 30.8
12.0 12.0	11.0 11.0	17.0 18.0	-	-	19.0 19.0	2.0 2.0	-	19.0 19.0	- -	-
12.0 12.0	11.0 11.0	19.0 20.0	-	:	19.0 19.0	2.0 3.0	:	19.0 19.0	-	-
12.0 12.0	11.0 11.0	21.0 22.0	-	-	18.0 18.0	4.0 4.0	-	18.0 18.0	- -	-
12.0 12.0	11.0 12.0	23.0	-	-	17.0 17.0	5.0 5.0	-	17.0 17.0	-	-
12.0 12.0	12.0 12.0	1.0 2.0	-	-	16.0 15.0	5.0 5.0	-	16.0 15.0	-	-
12.0 12.0	12.0 12.0	3.0 4.0	-	:	15.0 14.0	5.0 5.0	:	15.0 14.0	-	-
12.0 12.0	12.0 12.0	5.0 6.0	-	-	14.0 14.0	4.0 4.0	- -	14.0 14.0	-	-
12.0 12.0	12.0 12.0	7.0 8.0	450.0 777.0	27.0 52.0 65.0	14.0 15.0	4.0 4.0 5.0	156.4 430.2	16.2 24.6	115.3 345.8	107.9 332.2
12.0 12.0 12.0	12.0 12.0 12.0	9.0 10.0 11.0	899.0 951.0 972.0	75.0 81.0	16.0 17.0 17.0	5.0 5.0 4.0	660.0 830.7 927.9	30.3 35.7 40.6	537.7 667.4 729.7	517.5 642.0 701.6
12.0 12.0 12.0	12.0 12.0 12.0	12.0 13.0	972.0 972.0 956.0	83.0 80.0	17.0 18.0 18.0	4.0 4.0 3.0	944.9 882.7	42.3 43.1	737.3 684.7	701.6 708.8 658.6
12.0 12.0	12.0 12.0	14.0 15.0	909.0 389.0	74.0 126.0	18.0 17.0	3.0 3.0	741.0 368.2	39.2 27.9	582.3 302.1	560.4 289.8
12.0 12.0	12.0 12.0	16.0 17.0	611.0	44.0	16.0 15.0	3.0 2.0	277.8	23.1 15.0	214.3	204.5
12.0 12.0	12.0 12.0	18.0 19.0	-	-	15.0 15.0	2.0 2.0	-	15.0 15.0	- -	-
12.0 12.0	12.0 12.0	20.0 21.0	-	:	15.0 14.0	2.0 3.0	:	15.0 14.0	-	-
12.0 12.0	12.0 12.0	22.0 23.0	-	-	14.0 14.0	3.0 4.0	-	14.0 14.0	<u>-</u> -	-
12.0 12.0	13.0 13.0	1.0	-	-	14.0 14.0	4.0 4.0	-	14.0 14.0	-	-
12.0 12.0	13.0 13.0	2.0 3.0	-	-	14.0 14.0	4.0 4.0	-	14.0 14.0	-	-
12.0 12.0	13.0 13.0	4.0 5.0	-	:	14.0 14.0	5.0 5.0	- -	14.0 14.0	-	-
12.0 12.0	13.0 13.0	6.0 7.0	372.0 709.0	- 27.0	14.0 16.0	5.0 5.0	138.3	14.0 17.6	- 102.6	95.5
12.0 12.0 12.0	13.0 13.0 13.0	8.0 9.0 10.0	708.0 842.0 907.0	56.0 70.0 77.0	17.0 18.0 19.0	5.0 5.0 5.0	401.3 631.8 797.6	24.9 31.7 36.9	322.4 511.5 637.0	309.6 492.3 612.9
12.0	13.0	11.0	936.0	82.0	20.0	4.0	897.6	42.7	698.3	671.6

12.0	13.0	12.0	940.0	83.0	20.0	4.0	916.8	43.4	711.0	683.7
12.0	13.0	13.0	919.0	83.0	20.0	4.0	855.9	42.1	667.5	642.1
12.0 12.0	13.0 13.0	14.0 15.0	873.0 780.0	77.0 66.0	20.0 19.0	4.0 4.0	719.3 520.9	38.6 32.5	567.1 414.3	545.8 398.5
12.0	13.0	16.0	575.0	46.0	18.0	4.0	270.1	24.7	207.7	198.1
12.0	13.0	17.0	-	-	16.0	4.0	-	16.0	-	-
12.0	13.0	18.0	_	<u>-</u>	16.0	4.0	-	16.0	_	_
12.0	13.0	19.0	-	-	16.0	4.0	-	16.0	-	-
12.0	13.0	20.0	-	<u>-</u>	15.0	4.0		15.0	-	-
12.0	13.0	21.0	-	-	15.0	3.0	-	15.0	-	-
12.0	13.0	22.0	-	-	15.0	3.0	-	15.0	-	-
12.0	13.0	23.0	-	-	15.0	3.0		15.0	•	-
12.0	14.0	-	-	-	15.0	3.0	-	15.0	-	-
12.0	14.0	1.0	-	-	15.0	3.0	-	15.0	-	-
12.0 12.0	14.0 14.0	2.0 3.0	-		16.0 16.0	3.0 3.0		16.0 16.0	-	-
12.0	14.0	4.0	_		16.0	3.0		16.0		1
12.0	14.0	5.0	_	<u>-</u>	16.0	3.0	-	16.0	_	_
12.0	14.0	6.0	-	-	16.0	3.0	-	16.0	-	-
12.0	14.0	7.0	304.0	30.0	18.0	3.0	123.6	19.5	92.3	85.4
12.0	14.0	8.0	651.0	63.0	19.0	3.0	383.4	28.1	303.9	291.6
12.0	14.0	9.0	790.0	80.0	20.0	3.0	608.6	36.1	482.3	464.2
12.0	14.0	10.0	849.0	93.0	21.0	3.0	775.5	42.1	603.2	580.5
12.0	14.0	11.0	871.0	102.0	21.0	3.0	870.9	45.1	669.3	643.8
12.0 12.0	14.0 14.0	12.0 13.0	869.0 842.0	106.0 105.0	21.0 21.0	3.0 2.0	887.9 824.1	45.8 47.2	680.1 625.8	654.2 602.1
12.0	14.0	14.0	798.0	95.0	21.0	2.0	691.5	43.3	532.8	512.8
12.0	14.0	15.0	703.0	78.0	20.0	2.0	494.4	36.1	386.9	372.1
12.0	14.0	16.0	485.0	53.0	19.0	2.0	246.1	26.8	189.0	179.8
12.0	14.0	17.0	-	-	19.0	3.0	-	19.0	-	-
12.0	14.0	18.0	-	-	19.0	3.0	-	19.0	-	-
12.0	14.0	19.0	-	-	19.0	4.0	-	19.0	-	-
12.0	14.0	20.0	-	-	20.0	4.0	-	20.0	-	-
12.0	14.0	21.0	-	-	20.0	4.0	-	20.0	-	-
12.0 12.0	14.0 14.0	22.0	-		20.0 20.0	4.0 4.0		20.0 20.0	•	-
12.0	15.0	23.0	-		20.0	4.0		20.0	-	
12.0	15.0	1.0	_		20.0	4.0		20.0		
12.0	15.0	2.0	_	_	20.0	3.0	_	20.0	_	_
12.0	15.0	3.0	_	<u>-</u>	20.0	3.0	-	20.0	_	_
12.0	15.0	4.0	-	-	20.0	3.0	-	20.0	-	-
12.0	15.0	5.0	-	-	20.0	3.0	-	20.0	-	-
12.0	15.0	6.0	-	-	20.0	3.0	-	20.0	-	-
12.0	15.0	7.0	2.5.2	26.0	21.0	4.0	25.0	20.0	21.8	16.3
12.0	15.0	8.0	240.0	104.0	22.0	4.0	230.5	26.3	188.4	179.3
12.0 12.0	15.0 15.0	9.0 10.0	112.0	190.0 126.0	23.0 23.0	5.0 6.0	279.4 121.4	28.4 24.7	232.6 103.4	222.3 96.3
12.0	15.0	11.0	6.0	201.0	23.0	6.0	202.7	26.1	171.6	162.8
12.0	15.0	12.0	255.0	299.0	24.0	6.0	559.8	34.5	454.5	437.4
12.0	15.0	13.0	27.0	237.0	23.0	6.0	258.4	28.1	216.6	206.7
12.0	15.0	14.0	-	26.0	23.0	6.0	24.7	22.7	21.2	15.7
12.0	15.0	15.0	643.0	84.0	23.0	5.0	468.5	32.2	374.1	359.7
12.0	15.0	16.0	157.0	70.0	22.0	5.0	140.3	24.8	113.4	106.0
12.0	15.0	17.0	-	-	22.0	5.0		22.0	-	-
12.0	15.0	18.0	-	-	22.0	4.0	-	22.0	-	-
12.0	15.0	19.0 20.0	-		22.0 21.0	4.0 4.0	-	22.0 21.0	-	-
12.0 12.0	15.0 15.0	21.0			21.0	4.0		21.0	-	
12.0	15.0	22.0	-	- -	21.0	4.0	- -	21.0	-	_
12.0	15.0	23.0	-	-	21.0	4.0	-	21.0	-	-
12.0	16.0	-	-	-	21.0	4.0	-	21.0	-	-
12.0	16.0	1.0	-	-	21.0	4.0	-	21.0	-	-
12.0	16.0	2.0	-	-	21.0	4.0	-	21.0	-	-
12.0	16.0	3.0	-	-	21.0	3.0	-	21.0	-	-
12.0 12.0	16.0	4.0 5.0	-	-	21.0 20.0	3.0 3.0	-	21.0 20.0	-	-
12.0	16.0 16.0	6.0			20.0	3.0	- -	20.0	-	
12.0	16.0	7.0	_	3.0	20.0	3.0	2.8	18.2	2.5	_
12.0	16.0	8.0	-	16.0	20.0	4.0	15.1	18.7	13.3	7.9
12.0	16.0	9.0	678.0	100.0	20.0	3.0	559.7	33.5	449.6	432.7 393.4
12.0	16.0	10.0	296.0	245.0	21.0	3.0	505.8	34.9	409.0	393.4
12.0	16.0	11.0	710.0	154.0	22.0	3.0	795.5	43.3	617.3	594.0
12.0	16.0	12.0	418.0	262.0	23.0	3.0	658.9	41.7	516.0	496.7
12.0	16.0	13.0	648.0	172.0	23.0	3.0	743.5	43.4	576.1	554.5 457.3
12.0 12.0	16.0 16.0	14.0 15.0	570.0 450.0	162.0 132.0	22.0 22.0	3.0 4.0	602.6 410.9	39.1 32.4	475.1 329.8	457.3 316.8
12.0	16.0	16.0	232.0	78.0	21.0	4.0	177.6	25.1	142.2	134.1
12.0	16.0	17.0	-	-	21.0	5.0	-	21.0	-	-
12.0	16.0	18.0	-	-	20.0	5.0	-	20.0	-	-
12.0	16.0	19.0	-	-	20.0	4.0	-	20.0	-	-
12.0	16.0	20.0	-	-	21.0	4.0	-	21.0	-	-

40.0	40.0	04.0			24.2	4.0		04.0		
12.0 12.0	16.0 16.0	21.0 22.0	-	- -	21.0 21.0	4.0 4.0		21.0 21.0	-	-
12.0	16.0	23.0	-	-	21.0	4.0	-	21.0	-	-
12.0	17.0	-	-	-	21.0	4.0	-	21.0	-	-
12.0 12.0	17.0 17.0	1.0 2.0	-	- -	21.0 21.0	3.0 3.0	- -	21.0 21.0	-	-
12.0	17.0	3.0	-	-	21.0	3.0	-	21.0	-	-
12.0	17.0	4.0	-	-	21.0	3.0	-	21.0	-	-
12.0 12.0	17.0 17.0	5.0 6.0	-	-	21.0 22.0	3.0 3.0		21.0 22.0		
12.0	17.0	7.0	180.0	29.0	22.0	3.0	88.9	22.6	67.4	61.0
12.0	17.0	8.0	525.0	74.0	23.0	3.0	334.6	30.7	262.7	251.6
12.0 12.0	17.0 17.0	9.0 10.0	240.0 136.0	183.0 255.0	24.0 25.0	3.0 3.0	360.7 383.7	33.3 35.0	292.2 310.5	280.3 298.0
12.0	17.0	11.0	566.0	202.0	25.0	3.0	721.2	43.9	558.0	537.0
12.0	17.0	12.0	284.0	293.0	25.0	3.0	578.1	41.3	453.7	436.6
12.0 12.0	17.0 17.0	13.0 14.0	361.0 384.0	253.0 198.0	25.0 25.0	3.0 3.0	583.2 500.1	41.0 38.8	458.0 395.3	440.7 380.2
12.0	17.0	15.0	136.0	154.0	24.0	3.0	245.4	30.8	200.8	191.4
12.0	17.0	16.0	373.0	59.0	23.0	2.0	212.4	28.7	163.5	155.0
12.0 12.0	17.0 17.0	17.0 18.0	-	-	23.0 23.0	2.0 2.0	-	23.0 23.0	-	-
12.0	17.0	19.0	_	- -	22.0	2.0	- -	22.0	_	_
12.0	17.0	20.0	-	-	22.0	3.0	-	22.0	-	-
12.0 12.0	17.0 17.0	21.0 22.0	-	-	22.0 22.0	3.0 3.0	-	22.0 22.0	-	-
12.0	17.0	23.0		- -	22.0	3.0	- -	22.0		
12.0	18.0	-	-	-	22.0	3.0	-	22.0	-	-
12.0	18.0	1.0	-	-	22.0	3.0	-	22.0	-	-
12.0 12.0	18.0 18.0	2.0 3.0	-		22.0 22.0	3.0 3.0		22.0 22.0		
12.0	18.0	4.0	-	-	22.0	3.0	-	22.0	-	-
12.0	18.0	5.0	-	-	22.0	3.0	-	22.0	-	-
12.0 12.0	18.0 18.0	6.0 7.0	207.0	- 27.0	22.0 22.0	3.0 3.0	93.1	22.0 22.8	69.5	- 63.1
12.0	18.0	8.0	393.0	86.0	23.0	3.0	284.7	29.4	226.4	216.3
12.0	18.0	9.0	225.0	183.0	24.0	3.0	342.7	32.6	278.5	267.0
12.0 12.0	18.0 18.0	10.0 11.0	250.0 59.0	248.0 275.0	24.0 25.0	3.0 2.0	473.3 339.0	36.3 35.5	380.1 274.0	365.5 262.6
12.0	18.0	12.0	297.0	291.0	25.0	2.0	587.1	42.2	458.7	441.4
12.0	18.0	13.0	280.0	270.0	25.0	1.0	536.1	45.0	412.6	396.9
12.0 12.0	18.0 18.0	14.0 15.0	53.0 58.0	214.0 149.0	25.0 24.0	1.0 1.0	262.2 188.8	35.6 30.3	211.6 155.7	201.9 147.3
12.0	18.0	16.0	163.0	71.0	23.0	1.0	144.3	27.2	115.4	108.0
12.0	18.0	17.0	-	-	23.0	2.0	-	23.0	-	-
12.0 12.0	18.0 18.0	18.0 19.0	-	-	22.0 22.0	3.0 4.0	<u> </u>	22.0 22.0	-	
12.0	18.0	20.0	-	- -	21.0	4.0	<u> -</u>	21.0	-	_
12.0	18.0	21.0	-	-	21.0	3.0	-	21.0	-	-
12.0 12.0	18.0 18.0	22.0 23.0	- -	- -	21.0 21.0	3.0 2.0	<u> </u>	21.0 21.0	-	-
12.0	19.0	-	-	-	21.0	2.0	-	21.0	-	-
12.0	19.0	1.0	-	-	21.0	2.0	-	21.0	-	-
12.0 12.0	19.0 19.0	2.0 3.0	-	- -	21.0 21.0	1.0 1.0	<u> </u>	21.0 21.0	-	-
12.0	19.0	4.0	-	- -	21.0	2.0	<u> -</u>	21.0	-	_
12.0	19.0	5.0	-	-	21.0	2.0	-	21.0	-	-
12.0 12.0	19.0 19.0	6.0 7.0	1	2.0	21.0 21.0	3.0 3.0	- 1.9	21.0 19.2	1.7	1
12.0	19.0	8.0	-	30.0	21.0	3.0	28.4	19.9	24.8	19.2
12.0	19.0	9.0	-	51.0	21.0	4.0	48.4	20.6	42.0	36.1
12.0 12.0	19.0 19.0	10.0 11.0	4.0	98.0 194.0	22.0 22.0	4.0 4.0	93.5 193.8	22.9 25.5	80.3 164.4	73.7 155.9
12.0	19.0	12.0	-	129.0	22.0	4.0	124.1	24.1	106.0	98.8
12.0	19.0	13.0	-	45.0	22.0	4.0	42.7	21.8	36.9	31.1
12.0 12.0	19.0 19.0	14.0 15.0	24.0	142.0 141.0	21.0 21.0	4.0 4.0	138.3 154.3	23.0 23.7	118.7 131.7	111.2 123.9
12.0	19.0	16.0	-	67.0	21.0	5.0	66.9	21.4	57.9	51.7
12.0	19.0	17.0	-	-	21.0	5.0	-	21.0	-	-
12.0 12.0	19.0 19.0	18.0 19.0	- -	-	21.0 21.0	5.0 5.0		21.0 21.0	-	
12.0	19.0	20.0	-	- -	21.0	5.0	-	21.0		
12.0	19.0	21.0	-	-	21.0	5.0	-	21.0	-	-
12.0 12.0	19.0 19.0	22.0 23.0	-	<u>-</u> -	21.0 20.0	5.0 4.0		21.0 20.0	-	-
12.0	20.0	-	-	• •	20.0	4.0		20.0	-	-
12.0	20.0	1.0	-	-	20.0	4.0	-	20.0	-	-
12.0	20.0	2.0	-	-	20.0	4.0	-	20.0	-	-
12.0 12.0	20.0 20.0	3.0 4.0	-	-	20.0 20.0	4.0 4.0	-	20.0 20.0	-	-
12.0	20.0	5.0	-	-	20.0	4.0	-	20.0	-	-

12.0	20.0	6.0	_	_	20.0	4.0	_	20.0	_	_
12.0	20.0	7.0	-	1.0	20.0	4.0	0.9	18.3	0.8	-
12.0 12.0	20.0 20.0	8.0 9.0	-	53.0 86.0	21.0 21.0	4.0 5.0	50.3 82.1	20.6 21.5	43.7 71.0	37.8 64.5
12.0	20.0	10.0	6.0	184.0	22.0	5.0	185.9	25.0	158.1	149.7
12.0 12.0	20.0 20.0	11.0 12.0	-	120.0 152.0	22.0 22.0	4.0 4.0	115.1 147.2	23.8 24.4	98.5 125.5	91.4 117.9
12.0	20.0	13.0	-	139.0	21.0	4.0	134.3	23.2	115.2	107.8
12.0 12.0	20.0 20.0	14.0 15.0	97.0	150.0 155.0	21.0 21.0	4.0 4.0	146.5 218.0	23.5 25.3	125.6 183.5	117.9 174.5
12.0	20.0	16.0	-	57.0	20.0	4.0	55.7	20.4	48.4	42.4
12.0 12.0	20.0 20.0	17.0 18.0	-	-	20.0 20.0	4.0 4.0		20.0 20.0	-	-
12.0	20.0	19.0		<u>-</u>	20.0	3.0		20.0	-	
12.0 12.0	20.0 20.0	20.0 21.0	-	-	20.0 20.0	3.0 3.0	-	20.0 20.0	-	-
12.0	20.0	22.0	1	<u> </u>	20.0	2.0	<u> </u>	20.0	-	1
12.0 12.0	20.0 21.0	23.0	-	-	19.0 19.0	2.0 2.0	-	19.0 19.0	-	-
12.0	21.0	1.0		<u> </u>	19.0	2.0	<u> </u>	19.0	-	
12.0 12.0	21.0 21.0	2.0 3.0	-	-	19.0 18.0	2.0 3.0	-	19.0 18.0	-	-
12.0	21.0	4.0	-	-	18.0	4.0		18.0	-	-
12.0	21.0	5.0	-	-	17.0	5.0	-	17.0	-	-
12.0 12.0	21.0 21.0	6.0 7.0	-	10.0	17.0 17.0	5.0 5.0	9.5	17.0 15.7	8.4	3.1
12.0	21.0	8.0	-	49.0	17.0	5.0	46.5	16.5	41.1	35.3
12.0 12.0	21.0 21.0	9.0 10.0	-	55.0 165.0	17.0 17.0	6.0 6.0	52.2 161.4	16.8 19.0	46.1 141.2	40.2 133.2
12.0	21.0	11.0	324.0	275.0	18.0	6.0	585.9	28.9	488.7	470.3
12.0 12.0	21.0 21.0	12.0 13.0	657.0 694.0	178.0 149.0	18.0 18.0	6.0 6.0	788.5 758.0	33.8 33.5	642.1 617.2	617.8 593.9
12.0	21.0	14.0	514.0	169.0	18.0	6.0	572.9	29.7	473.2	455.4
12.0 12.0	21.0 21.0	15.0 16.0	67.0 373.0	152.0 59.0	17.0 16.0	5.0 5.0	197.5 214.8	21.3 19.8	169.8 173.0	161.1 164.2
12.0	21.0	17.0	-	-	15.0	5.0	-	15.0	-	-
12.0 12.0	21.0 21.0	18.0 19.0	-	Ī	15.0 15.0	5.0 5.0		15.0 15.0	-	-
12.0	21.0	20.0	-	-	15.0	5.0	-	15.0	-	-
12.0 12.0	21.0 21.0	21.0 22.0	-		15.0 15.0	5.0 5.0		15.0 15.0	-	
12.0	21.0	23.0			15.0	5.0	<u> </u>	15.0	-	
12.0 12.0	22.0 22.0	- 1.0	-	-	15.0 14.0	5.0 5.0	-	15.0 14.0	-	-
12.0	22.0	2.0		<u> </u>	14.0	5.0	<u> </u>	14.0	-	1
12.0 12.0	22.0 22.0	3.0 4.0	-	-	14.0 14.0	5.0 5.0	-	14.0 14.0	-	-
12.0	22.0	5.0	-	-	14.0	5.0		14.0	-	-
12.0 12.0	22.0 22.0	6.0 7.0	226.0	- 27.0	14.0 15.0	5.0 5.0	98.7	14.0 15.6	- 75.8	69.2
12.0	22.0	8.0	613.0	67.0	15.0	5.0	361.6	21.8	294.3	282.3
12.0	22.0	9.0	766.0	88.0	16.0	5.0	595.5	28.7	488.6	470.2
12.0 12.0	22.0 22.0	10.0 11.0	836.0 868.0	100.0 107.0	17.0 18.0	5.0 5.0	766.3 870.0	34.1 37.8	620.3 694.0	596.9 667.4
12.0	22.0	12.0	69.0	289.0	19.0	5.0	364.2	27.8	305.7	293.3
12.0 12.0	22.0 22.0	13.0 14.0	860.0 677.0	104.0 121.0	19.0 19.0	4.0 4.0	840.9 642.4	39.2 35.8	665.5 514.7	640.2 495.4
12.0	22.0	15.0	542.0	104.0	19.0	4.0	439.3	30.2	355.7	341.8
12.0 12.0	22.0 22.0	16.0 17.0	144.0 -	73.0	18.0 17.0	4.0 4.0	140.5	21.2 17.0	116.2 -	108.8
12.0	22.0	18.0	-	-	17.0	4.0	-	17.0	-	-
12.0 12.0	22.0 22.0	19.0 20.0	-	-	17.0 17.0	4.0 4.0	-	17.0 17.0	-	-
12.0	22.0	21.0	-	-	17.0	4.0	-	17.0	-	-
12.0 12.0	22.0 22.0	22.0 23.0	-	-	17.0 17.0	4.0 4.0		17.0 17.0	-	-
12.0	23.0	-	-	-	17.0	4.0	-	17.0	-	-
12.0 12.0	23.0 23.0	1.0 2.0	-	-	17.0 17.0	4.0 3.0		17.0 17.0	-	-
12.0	23.0	3.0	-	-	17.0	3.0	-	17.0	-	-
12.0 12.0	23.0 23.0	4.0 5.0	-	-	17.0 17.0	3.0 3.0	-	17.0 17.0	-	-
12.0	23.0	6.0	-	-	17.0	3.0	-	17.0	-	-
12.0 12.0	23.0 23.0	7.0 8.0	217.0 614.0	27.0 66.0	17.0 19.0	3.0 3.0	96.3 360.0	17.7 27.4	73.4 285.2	66.8 273.4
12.0	23.0	9.0	773.0	85.0	20.0	4.0	593.1	34.2	473.7	456.0
12.0 12.0	23.0 23.0	10.0 11.0	848.0 887.0	95.0 99.0	21.0 21.0	4.0 3.0	769.1 876.6	40.1 45.2	604.2 673.2	581.4 647.5
12.0	23.0	12.0	895.0	100.0	22.0	3.0	896.8	47.1	682.6	656.6
12.0 12.0	23.0 23.0	13.0 14.0	655.0 807.0	162.0 99.0	22.0 21.0	3.0 3.0	741.1 709.5	43.1 40.9	575.1 553.8	553.5 533.0
.2.0	25.0	. 1.0	551.0	30.0	27.0	5.0	700.0	.0.0	250.0	000.0

12.0	23.0	15.0	272.0	148.0	21.0	2.0	324.3	32.1	262.3	251.2
12.0	23.0	16.0	195.0	72.0	20.0	2.0	158.6	24.4	128.1	120.4
12.0	23.0	17.0	-	-	19.0	3.0	-	19.0	-	-
			-	_						
12.0	23.0	18.0	-	-	19.0	3.0	-	19.0	-	-
12.0	23.0	19.0	-	-	19.0	3.0	-	19.0	-	-
12.0	23.0	20.0	-	-	18.0	3.0	-	18.0	-	-
12.0	23.0	21.0	-	-	18.0	3.0	-	18.0	-	-
12.0	23.0	22.0	-		18.0	3.0	-	18.0		-
12.0	23.0	23.0	_	_	18.0	2.0	_	18.0	_	_
12.0	24.0		_		18.0	2.0	_	18.0	_	
12.0	24.0	1.0			18.0	2.0		18.0		
			-				· •			-
12.0	24.0	2.0	-	-	18.0	2.0	-	18.0	-	-
12.0	24.0	3.0	-		18.0	2.0	-	18.0		-
12.0	24.0	4.0	-	-	18.0	2.0	-	18.0	-	-
12.0	24.0	5.0	-	-	18.0	2.0	_	18.0	-	-
12.0	24.0	6.0	_		18.0	2.0	_	18.0	_	_
12.0	24.0	7.0	18.0	24.0	19.0	2.0	28.8	17.7	24.4	18.9
12.0	24.0	8.0	160.0	102.0	20.0	2.0	183.8	23.7	152.6	144.3
12.0	24.0	9.0	463.0			3.0		32.4		358.0
				142.0	21.0		460.3		372.4	
12.0	24.0	10.0	605.0	157.0	22.0	3.0	655.1	39.5	516.6	497.3
12.0	24.0	11.0	512.0	221.0	23.0	3.0	694.9	42.2	542.5	522.2
12.0	24.0	12.0	687.0	168.0	23.0	3.0	804.1	45.1	618.5	595.1
12.0	24.0	13.0	470.0	229.0	23.0	3.0	658.4	41.7	515.0	495.7
12.0	24.0	14.0	371.0	204.0	23.0	3.0	500.3	37.1	399.2	383.9
12.0	24.0	15.0	635.0	98.0	22.0	3.0	487.9	35.2	385.1	370.3
12.0	24.0	16.0	92.0	76.0	21.0	3.0	119.8	24.3	98.9	91.8
12.0	24.0	17.0	-	-	21.0	3.0	-	21.0	-	-
12.0	24.0	18.0	-	-	20.0	3.0		20.0	-	-
12.0	24.0	19.0	-	-	20.0	3.0	-	20.0	-	-
12.0	24.0	20.0	-	-	19.0	3.0		19.0	-	-
12.0	24.0	21.0	_	_	19.0	3.0	_	19.0	_	_
12.0	24.0	22.0	_		18.0	4.0	_	18.0	_	_
12.0	24.0	23.0			18.0	3.0		18.0		
			-			3.0				
12.0	25.0	-	-		18.0		· •	18.0		-
12.0	25.0	1.0	-	-	18.0	3.0	-	18.0	-	-
12.0	25.0	2.0	-	-	18.0	3.0	-	18.0	-	-
12.0	25.0	3.0	-	-	18.0	3.0	-	18.0	-	-
12.0	25.0	4.0	-	-	17.0	3.0	_	17.0	-	-
12.0	25.0	5.0	_	<u>-</u>	17.0	3.0	_	17.0	_	_
12.0	25.0	6.0	_		17.0	4.0		17.0	_	
12.0	25.0	7.0	256.0	23.0	19.0	4.0	101.0	19.8	74.7	68.1
12.0	25.0	8.0	629.0	59.0	20.0	5.0	356.8	26.8	282.7	271.0
12.0	25.0	9.0	466.0	142.0	22.0	5.0	461.6	31.8	374.6	360.1
12.0			810.0	99.0	23.0	6.0	743.4	37.7	591.0	568.8
12.0	25.0	10.0	010.0		20.0					
12.0	25.0 25.0	10.0	691.0	159.0	24.0	7.0	782.1	38.6	621.6	598.1
12.0	25.0	11.0	691.0	159.0	24.0		782.1	38.6	621.6	598.1
12.0 12.0	25.0 25.0	11.0 12.0	691.0 812.0	159.0 125.0	24.0 24.0	7.0	782.1 860.2	38.6 40.1	621.6 678.8	598.1 652.9
12.0 12.0 12.0	25.0 25.0 25.0	11.0 12.0 13.0	691.0 812.0 775.0	159.0 125.0 129.0	24.0 24.0 24.0	7.0 7.0	782.1 860.2 804.6	38.6 40.1 39.2	621.6 678.8 637.0	598.1 652.9 612.9
12.0 12.0 12.0 12.0	25.0 25.0 25.0 25.0	11.0 12.0 13.0 14.0	691.0 812.0 775.0 719.0	159.0 125.0 129.0 121.0	24.0 24.0 24.0 24.0	7.0 7.0 7.0	782.1 860.2 804.6 675.5	38.6 40.1 39.2 36.7	621.6 678.8 637.0 538.8	598.1 652.9 612.9 518.6
12.0 12.0 12.0 12.0 12.0	25.0 25.0 25.0 25.0 25.0	11.0 12.0 13.0 14.0 15.0	691.0 812.0 775.0 719.0 622.0	159.0 125.0 129.0 121.0 100.0	24.0 24.0 24.0 24.0 23.0	7.0 7.0 7.0 7.0	782.1 860.2 804.6 675.5 483.7	38.6 40.1 39.2 36.7 31.9	621.6 678.8 637.0 538.8 388.3	598.1 652.9 612.9 518.6 373.4
12.0 12.0 12.0 12.0 12.0 12.0	25.0 25.0 25.0 25.0 25.0 25.0	11.0 12.0 13.0 14.0 15.0 16.0	691.0 812.0 775.0 719.0 622.0 426.0	159.0 125.0 129.0 121.0 100.0 65.0	24.0 24.0 24.0 24.0 23.0 22.0	7.0 7.0 7.0 7.0 6.0	782.1 860.2 804.6 675.5 483.7 244.6	38.6 40.1 39.2 36.7 31.9 26.6	621.6 678.8 637.0 538.8 388.3 191.1	598.1 652.9 612.9 518.6 373.4 181.9
12.0 12.0 12.0 12.0 12.0 12.0 12.0	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	11.0 12.0 13.0 14.0 15.0 16.0 17.0	691.0 812.0 775.0 719.0 622.0 426.0	159.0 125.0 129.0 121.0 100.0	24.0 24.0 24.0 24.0 23.0 22.0 21.0	7.0 7.0 7.0 7.0 6.0 6.0	782.1 860.2 804.6 675.5 483.7	38.6 40.1 39.2 36.7 31.9 26.6 21.0	621.6 678.8 637.0 538.8 388.3	598.1 652.9 612.9 518.6 373.4 181.9
12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0	691.0 812.0 775.0 719.0 622.0 426.0	159.0 125.0 129.0 121.0 100.0 65.0	24.0 24.0 24.0 24.0 23.0 22.0 21.0 20.0	7.0 7.0 7.0 7.0 6.0 6.0 5.0	782.1 860.2 804.6 675.5 483.7 244.6	38.6 40.1 39.2 36.7 31.9 26.6 21.0 20.0	621.6 678.8 637.0 538.8 388.3 191.1	598.1 652.9 612.9 518.6 373.4 181.9
12.0 12.0 12.0 12.0 12.0 12.0 12.0	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	11.0 12.0 13.0 14.0 15.0 16.0 17.0	691.0 812.0 775.0 719.0 622.0 426.0	159.0 125.0 129.0 121.0 100.0 65.0	24.0 24.0 24.0 24.0 23.0 22.0 21.0	7.0 7.0 7.0 7.0 6.0 6.0 5.0 5.0	782.1 860.2 804.6 675.5 483.7 244.6	38.6 40.1 39.2 36.7 31.9 26.6 21.0	621.6 678.8 637.0 538.8 388.3 191.1	598.1 652.9 612.9 518.6 373.4 181.9
12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0	691.0 812.0 775.0 719.0 622.0 426.0	159.0 125.0 129.0 121.0 100.0 65.0	24.0 24.0 24.0 24.0 23.0 22.0 21.0 20.0	7.0 7.0 7.0 7.0 6.0 6.0 5.0	782.1 860.2 804.6 675.5 483.7 244.6	38.6 40.1 39.2 36.7 31.9 26.6 21.0 20.0	621.6 678.8 637.0 538.8 388.3 191.1	598.1 652.9 612.9 518.6 373.4 181.9
12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0	691.0 812.0 775.0 719.0 622.0 426.0	159.0 125.0 129.0 121.0 100.0 65.0	24.0 24.0 24.0 24.0 23.0 22.0 21.0 20.0 19.0	7.0 7.0 7.0 7.0 6.0 6.0 5.0 5.0	782.1 860.2 804.6 675.5 483.7 244.6	38.6 40.1 39.2 36.7 31.9 26.6 21.0 20.0 19.0	621.6 678.8 637.0 538.8 388.3 191.1	598.1 652.9 612.9 518.6 373.4 181.9
12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0	691.0 812.0 775.0 719.0 622.0 426.0	159.0 125.0 129.0 121.0 100.0 65.0	24.0 24.0 24.0 24.0 23.0 22.0 21.0 20.0 19.0 18.0	7.0 7.0 7.0 7.0 6.0 6.0 5.0 5.0 5.0	782.1 860.2 804.6 675.5 483.7 244.6	38.6 40.1 39.2 36.7 31.9 26.6 21.0 20.0 19.0 18.0	621.6 678.8 637.0 538.8 388.3 191.1	598.1 652.9 612.9 518.6 373.4 181.9
12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0	691.0 812.0 775.0 719.0 622.0 426.0	159.0 125.0 129.0 121.0 100.0 65.0	24.0 24.0 24.0 24.0 23.0 22.0 21.0 20.0 19.0 18.0 18.0	7.0 7.0 7.0 7.0 6.0 6.0 5.0 5.0 5.0 5.0	782.1 860.2 804.6 675.5 483.7 244.6	38.6 40.1 39.2 36.7 31.9 26.6 21.0 20.0 19.0 18.0 18.0	621.6 678.8 637.0 538.8 388.3 191.1	598.1 652.9 612.9 518.6 373.4 181.9
12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0	691.0 812.0 775.0 719.0 622.0 426.0	159.0 125.0 129.0 121.0 100.0 65.0	24.0 24.0 24.0 23.0 22.0 21.0 20.0 19.0 18.0 18.0 18.0 17.0	7.0 7.0 7.0 7.0 6.0 6.0 5.0 5.0 5.0 5.0 5.0	782.1 860.2 804.6 675.5 483.7 244.6	38.6 40.1 39.2 36.7 31.9 26.6 21.0 20.0 19.0 18.0 18.0 18.0	621.6 678.8 637.0 538.8 388.3 191.1	598.1 652.9 612.9 518.6 373.4 181.9
12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0	691.0 812.0 775.0 719.0 622.0 426.0	159.0 125.0 129.0 121.0 100.0 65.0	24.0 24.0 24.0 24.0 23.0 22.0 21.0 20.0 19.0 18.0 18.0 17.0	7.0 7.0 7.0 7.0 6.0 6.0 5.0 5.0 5.0 5.0 6.0	782.1 860.2 804.6 675.5 483.7 244.6	38.6 40.1 39.2 36.7 31.9 26.6 21.0 20.0 19.0 18.0 18.0 17.0	621.6 678.8 637.0 538.8 388.3 191.1	598.1 652.9 612.9 518.6 373.4 181.9
12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0	691.0 812.0 775.0 719.0 622.0 426.0	159.0 125.0 129.0 121.0 100.0 65.0	24.0 24.0 24.0 24.0 23.0 22.0 21.0 20.0 19.0 18.0 18.0 17.0	7.0 7.0 7.0 7.0 6.0 6.0 5.0 5.0 5.0 5.0 6.0 6.0	782.1 860.2 804.6 675.5 483.7 244.6	38.6 40.1 39.2 36.7 31.9 26.6 21.0 20.0 19.0 18.0 18.0 18.0 17.0 17.0	621.6 678.8 637.0 538.8 388.3 191.1	598.1 652.9 612.9 518.6 373.4 181.9
12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0	691.0 812.0 775.0 719.0 622.0 426.0	159.0 125.0 129.0 121.0 100.0 65.0	24.0 24.0 24.0 23.0 22.0 21.0 20.0 19.0 18.0 18.0 18.0 17.0 17.0	7.0 7.0 7.0 7.0 6.0 6.0 5.0 5.0 5.0 5.0 6.0 6.0 6.0	782.1 860.2 804.6 675.5 483.7 244.6	38.6 40.1 39.2 36.7 31.9 26.6 21.0 20.0 19.0 18.0 18.0 17.0 17.0 17.0	621.6 678.8 637.0 538.8 388.3 191.1	598.1 652.9 612.9 518.6 373.4 181.9
12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	11.0 12.0 13.0 14.0 15.0 16.0 17.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0	691.0 812.0 775.0 719.0 622.0 426.0	159.0 125.0 129.0 121.0 100.0 65.0	24.0 24.0 24.0 24.0 23.0 22.0 21.0 20.0 19.0 18.0 17.0 17.0 17.0 16.0	7.0 7.0 7.0 6.0 6.0 5.0 5.0 5.0 5.0 6.0 6.0 6.0	782.1 860.2 804.6 675.5 483.7 244.6	38.6 40.1 39.2 36.7 31.9 26.6 21.0 20.0 19.0 18.0 18.0 17.0 17.0 17.0 16.0	621.6 678.8 637.0 538.8 388.3 191.1	598.1 652.9 612.9 518.6 373.4 181.9
12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0	691.0 812.0 775.0 719.0 622.0 426.0	159.0 125.0 129.0 121.0 100.0 65.0	24.0 24.0 24.0 23.0 22.0 21.0 20.0 19.0 18.0 18.0 18.0 17.0 17.0	7.0 7.0 7.0 7.0 6.0 6.0 5.0 5.0 5.0 5.0 6.0 6.0 6.0	782.1 860.2 804.6 675.5 483.7 244.6	38.6 40.1 39.2 36.7 31.9 26.6 21.0 20.0 19.0 18.0 18.0 17.0 17.0 17.0	621.6 678.8 637.0 538.8 388.3 191.1	598.1 652.9 612.9 518.6 373.4 181.9
12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	11.0 12.0 13.0 14.0 15.0 16.0 17.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0	691.0 812.0 775.0 719.0 622.0 426.0	159.0 125.0 129.0 121.0 100.0 65.0	24.0 24.0 24.0 24.0 23.0 22.0 21.0 20.0 19.0 18.0 17.0 17.0 17.0 16.0	7.0 7.0 7.0 6.0 6.0 5.0 5.0 5.0 5.0 6.0 6.0 6.0	782.1 860.2 804.6 675.5 483.7 244.6	38.6 40.1 39.2 36.7 31.9 26.6 21.0 20.0 19.0 18.0 18.0 17.0 17.0 17.0 16.0 16.0	621.6 678.8 637.0 538.8 388.3 191.1	598.1 652.9 612.9 518.6 373.4 181.9
12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0	691.0 812.0 775.0 779.0 622.0 426.0	159.0 125.0 129.0 121.0 100.0 65.0	24.0 24.0 24.0 24.0 23.0 22.0 21.0 20.0 19.0 18.0 18.0 17.0 17.0 17.0 17.0 16.0 16.0	7.0 7.0 7.0 7.0 6.0 6.0 5.0 5.0 5.0 5.0 6.0 6.0 6.0 6.0 6.0 5.0	782.1 860.2 804.6 675.5 483.7 244.6 	38.6 40.1 39.2 36.7 31.9 26.6 21.0 20.0 19.0 18.0 18.0 17.0 17.0 17.0 16.0 16.0	621.6 678.8 637.0 538.8 388.3 191.1 - - - - - - - - - -	598.1 652.9 612.9 518.6 373.4 181.9 - - - - - - - - -
12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 3.0 - 1.0 2.0 3.0 4.0 6.0	691.0 812.0 775.0 719.0 622.0 426.0 	159.0 125.0 129.0 121.0 100.0 65.0 - - - - - - - - - - - -	24.0 24.0 24.0 24.0 23.0 22.0 21.0 20.0 19.0 18.0 18.0 17.0 17.0 17.0 16.0 15.0	7.0 7.0 7.0 6.0 6.0 5.0 5.0 5.0 5.0 6.0 6.0 6.0 6.0 6.0 5.0	782.1 860.2 804.6 675.5 483.7 244.6 	38.6 40.1 39.2 36.7 31.9 26.6 21.0 20.0 19.0 18.0 18.0 17.0 17.0 17.0 15.0	621.6 678.8 637.0 538.8 388.3 191.1 - - - - - - - - - - - - -	598.1 652.9 612.9 518.6 373.4 181.9 - - - - - - - - - - - - -
12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 22.0 22.0 23.0 - 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2	691.0 812.0 775.0 779.0 622.0 426.0 	159.0 125.0 129.0 121.0 100.0 65.0 - - - - - - - - - - - - - - - - - - -	24.0 24.0 24.0 24.0 23.0 23.0 22.0 21.0 20.0 19.0 18.0 17.0 17.0 17.0 16.0 15.0 15.0 15.0	7.0 7.0 7.0 6.0 6.0 5.0 5.0 5.0 5.0 6.0 6.0 6.0 6.0 6.0 5.0 5.0	782.1 860.2 804.6 675.5 483.7 244.6 	38.6 40.1 39.2 36.7 31.9 26.6 21.0 20.0 18.0 18.0 17.0 17.0 17.0 17.0 15.0 15.0	621.6 678.8 637.0 538.8 388.3 191.1 - - - - - - - - - - - - - - - - - -	598.1 652.9 612.9 518.6 373.4 181.9 - - - - - - - - - - - - - - - - - - -
12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0	691.0 812.0 775.0 719.0 622.0 426.0 	159.0 125.0 129.0 121.0 100.0 65.0 - - - - - - - - - - - - - - - - - - -	24.0 24.0 24.0 24.0 23.0 22.0 21.0 20.0 19.0 18.0 18.0 17.0 17.0 17.0 17.0 16.0 15.0 15.0 15.0 15.0 16.0	7.0 7.0 7.0 7.0 6.0 6.0 5.0 5.0 5.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	782.1 860.2 804.6 675.5 483.7 244.6 	38.6 40.1 39.2 36.7 31.9 26.6 21.0 20.0 19.0 18.0 18.0 17.0 17.0 17.0 16.0 15.0 15.0 15.0	621.6 678.8 637.0 538.8 388.3 191.1 - - - - - - - - - - - - - - - - - -	598.1 652.9 612.9 518.6 373.4 181.9 - - - - - - - - - - - - - - - - - - -
12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 3.0 - 1.0 2.0 3.0 4.0 6.0 7.0 8.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9	691.0 812.0 775.0 779.0 622.0 426.0 	159.0 125.0 129.0 121.0 100.0 65.0 - - - - - - - - - - - - - - - - - - -	24.0 24.0 24.0 24.0 23.0 22.0 21.0 20.0 19.0 18.0 18.0 17.0 17.0 17.0 15.0 15.0 15.0 16.0 16.0 16.0	7.0 7.0 7.0 6.0 6.0 5.0 5.0 5.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	782.1 860.2 804.6 675.5 483.7 244.6 	38.6 40.1 39.2 36.7 31.9 26.6 21.0 20.0 19.0 18.0 18.0 17.0 17.0 17.0 15.0 15.0 15.0 15.7 22.5 29.2	621.6 678.8 637.0 538.8 388.3 191.1 - - - - - - - - - - - - - - - - - -	598.1 652.9 612.9 518.6 373.4 181.9 - - - - - - - - - - - - - - - - - - -
12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 22.0 22.0 23.0 - 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2	691.0 812.0 775.0 779.0 622.0 426.0 	159.0 125.0 129.0 121.0 100.0 65.0	24.0 24.0 24.0 24.0 23.0 23.0 22.0 21.0 20.0 18.0 18.0 17.0 17.0 17.0 15.0 15.0 15.0 16.0 16.0 16.0 17.0 17.0	7.0 7.0 7.0 6.0 6.0 5.0 5.0 5.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 5.0 5.0	782.1 860.2 804.6 675.5 483.7 244.6 	38.6 40.1 39.2 36.7 31.9 26.6 21.0 20.0 19.0 18.0 18.0 17.0 17.0 17.0 16.0 16.0 15.0 15.0 15.7 22.5 29.2 34.8	621.6 678.8 637.0 538.8 388.3 191.1 - - - - - - - - - - - - - - - - - -	598.1 652.9 612.9 518.6 373.4 181.9 - - - - - - - - - - - - - - - - - - -
12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 6.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9	691.0 812.0 775.0 719.0 622.0 426.0 	159.0 125.0 129.0 121.0 100.0 65.0	24.0 24.0 24.0 24.0 23.0 22.0 21.0 20.0 19.0 18.0 18.0 17.0 17.0 16.0 15.0 15.0 15.0 16.0 16.0 17.0 17.0 18.0	7.0 7.0 7.0 6.0 6.0 5.0 5.0 5.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 5.0 5.0 5.0	782.1 860.2 804.6 675.5 483.7 244.6 	38.6 40.1 39.2 36.7 31.9 26.6 21.0 20.0 19.0 18.0 18.0 17.0 17.0 17.0 16.0 15.0 15.0 15.0 22.5 29.2 34.8 38.4	621.6 678.8 637.0 538.8 388.3 191.1 - - - - - - - - - - - - - - - - - -	598.1 652.9 612.9 518.6 373.4 181.9 - - - - - - - - - - - - - - - - - - -
12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 3.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 19.0 19.0 19.0 19.0 19.0 19.0 19.	691.0 812.0 775.0 779.0 622.0 426.0 	159.0 125.0 129.0 121.0 100.0 65.0	24.0 24.0 24.0 24.0 24.0 23.0 22.0 21.0 20.0 19.0 18.0 18.0 17.0 17.0 17.0 15.0 16.0 15.0 15.0 15.0 16.0 16.0 17.0 18.0 18.0	7.0 7.0 7.0 6.0 6.0 5.0 5.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	782.1 860.2 804.6 675.5 483.7 244.6 	38.6 40.1 39.2 36.7 31.9 26.6 21.0 20.0 19.0 18.0 18.0 17.0 17.0 17.0 16.0 15.0 15.0 15.0 15.7 22.5 29.2 34.8 38.4 39.2	621.6 678.8 637.0 538.8 388.3 191.1 - - - - - - - - - - - - - - - - - -	598.1 652.9 612.9 518.6 373.4 181.9
12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 22.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 10.0 10.0 10.0 10.0 10.0 10.	691.0 812.0 775.0 779.0 622.0 426.0 	159.0 125.0 129.0 121.0 100.0 65.0 - - - - - - - - - - - - - - - - - - -	24.0 24.0 24.0 24.0 24.0 23.0 22.0 21.0 20.0 18.0 18.0 17.0 17.0 17.0 15.0 15.0 15.0 16.0 16.0 17.0 18.0 18.0	7.0 7.0 7.0 7.0 6.0 6.0 5.0 5.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	782.1 860.2 804.6 675.5 483.7 244.6 	38.6 40.1 39.2 36.7 31.9 26.6 21.0 20.0 19.0 18.0 18.0 17.0 17.0 17.0 15.0 15.0 15.0 15.0 15.7 22.5 29.2 34.8 38.4 39.2 39.1	621.6 678.8 637.0 538.8 388.3 191.1 - - - - - - - - - - - - - - - - - -	598.1 652.9 612.9 518.6 373.4 181.9 - - - - - - - - - - - - - - - - - - -
12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 3.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 19.0 19.0 19.0 19.0 19.0 19.0 19.	691.0 812.0 775.0 779.0 622.0 426.0 	159.0 125.0 129.0 121.0 100.0 65.0	24.0 24.0 24.0 24.0 24.0 23.0 22.0 21.0 20.0 19.0 18.0 18.0 17.0 17.0 17.0 15.0 16.0 15.0 15.0 15.0 16.0 16.0 17.0 18.0 18.0	7.0 7.0 7.0 6.0 6.0 5.0 5.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	782.1 860.2 804.6 675.5 483.7 244.6 	38.6 40.1 39.2 36.7 31.9 26.6 21.0 20.0 19.0 18.0 18.0 17.0 17.0 17.0 16.0 15.0 15.0 15.0 15.7 22.5 29.2 34.8 38.4 39.2	621.6 678.8 637.0 538.8 388.3 191.1 - - - - - - - - - - - - - - - - - -	598.1 652.9 612.9 518.6 373.4 181.9
12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 22.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 10.0 10.0 10.0 10.0 10.0 10.	691.0 812.0 775.0 779.0 622.0 426.0 	159.0 125.0 129.0 121.0 100.0 65.0 - - - - - - - - - - - - - - - - - - -	24.0 24.0 24.0 24.0 24.0 23.0 22.0 21.0 20.0 18.0 18.0 17.0 17.0 17.0 15.0 15.0 15.0 16.0 16.0 17.0 18.0 18.0	7.0 7.0 7.0 7.0 6.0 6.0 5.0 5.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	782.1 860.2 804.6 675.5 483.7 244.6 	38.6 40.1 39.2 36.7 31.9 26.6 21.0 20.0 18.0 18.0 17.0 17.0 17.0 15.0 15.0 15.0 15.7 22.5 29.2 34.8 38.4 39.2 39.1 36.0	621.6 678.8 637.0 538.8 388.3 191.1 - - - - - - - - - - - - - - - - - -	598.1 652.9 612.9 518.6 373.4 181.9
12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 3.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 11.0 12.0 12.0 12.0 12.0 12.0 13.0 14.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15	691.0 812.0 775.0 719.0 622.0 426.0 	159.0 125.0 129.0 121.0 100.0 65.0	24.0 24.0 24.0 24.0 24.0 23.0 22.0 21.0 20.0 19.0 18.0 18.0 17.0 17.0 17.0 15.0 16.0 16.0 16.0 16.0 17.0 18.0 18.0 19.0 19.0 19.0 19.0	7.0 7.0 7.0 7.0 6.0 6.0 5.0 5.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	782.1 860.2 804.6 675.5 483.7 244.6 	38.6 40.1 39.2 36.7 31.9 26.6 21.0 20.0 19.0 18.0 18.0 17.0 17.0 17.0 16.0 15.0 15.0 15.0 15.7 22.5 29.2 34.8 38.4 39.2 39.1 36.0 31.2	621.6 678.8 637.0 538.8 388.3 191.1 - - - - - - - - - - - - - - - - - -	598.1 652.9 612.9 518.6 373.4 181.9
12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 22.0 23.0 - 1.0 22.0 23.0 - 1.0 6.0 7.0 8.0 9.0 10.0 10.0 10.0 10.0 10.0 10.0 10.	691.0 812.0 775.0 779.0 622.0 426.0 	159.0 125.0 129.0 121.0 100.0 65.0	24.0 24.0 24.0 24.0 24.0 23.0 22.0 21.0 20.0 19.0 18.0 17.0 17.0 17.0 15.0 15.0 15.0 16.0 17.0 18.0 18.0 19.0 18.0	7.0 7.0 7.0 7.0 6.0 6.0 5.0 5.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	782.1 860.2 804.6 675.5 483.7 244.6 	38.6 40.1 39.2 36.7 31.9 26.6 21.0 20.0 19.0 18.0 18.0 17.0 17.0 17.0 15.0 15.0 15.0 15.7 22.5 29.2 34.8 38.4 39.2 39.1 36.0 31.2 25.2	621.6 678.8 637.0 538.8 388.3 191.1 - - - - - - - - - - - - - - - - - -	598.1 652.9 612.9 518.6 373.4 181.9
12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 22.0 22.0 23.0 2.1 20.0 23.0 4.0 5.0 6.0 7.0 8.0 9.0 11.0 12.0 12.0 13.0 14.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15	691.0 812.0 775.0 779.0 622.0 426.0 	159.0 125.0 129.0 121.0 100.0 65.0	24.0 24.0 24.0 24.0 24.0 23.0 22.0 21.0 20.0 19.0 18.0 18.0 17.0 17.0 17.0 15.0 15.0 15.0 16.0 16.0 16.0 17.0 18.0 18.0 18.0 19.0 18.0 19.0 19.0 19.0 19.0 18.0	7.0 7.0 7.0 7.0 6.0 6.0 5.0 5.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 4.0 4.0	782.1 860.2 804.6 675.5 483.7 244.6 	38.6 40.1 39.2 36.7 31.9 26.6 21.0 20.0 19.0 18.0 18.0 17.0 17.0 17.0 15.0 15.0 15.0 15.7 22.5 29.2 34.8 38.4 39.2 39.1 36.0 31.2 25.2 17.0	621.6 678.8 637.0 538.8 388.3 191.1 - - - - - - - - - - - - - - - - - -	598.1 652.9 612.9 518.6 373.4 181.9
12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 3.0 - 1.0 22.0 3.0 4.0 9.0 10.0 10.0 10.0 10.0 10.0 10.0 10.	691.0 812.0 775.0 779.0 622.0 426.0 	159.0 125.0 129.0 121.0 100.0 65.0	24.0 24.0 24.0 24.0 24.0 23.0 22.0 21.0 20.0 19.0 18.0 18.0 17.0 17.0 17.0 15.0 16.0 16.0 16.0 16.0 17.0 17.0 18.0 18.0 18.0 19.0 19.0 19.0 19.0 19.0 18.0	7.0 7.0 7.0 6.0 6.0 5.0 5.0 5.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 5.0 5.0 5.0 5.0 5.0 4.0 4.0 4.0	782.1 860.2 804.6 675.5 483.7 244.6 	38.6 40.1 39.2 36.7 31.9 26.6 21.0 20.0 19.0 18.0 18.0 17.0 17.0 17.0 15.0 15.0 15.0 15.7 22.5 29.2 34.8 38.4 39.2 39.1 36.0 31.2 25.2 17.0 16.0	621.6 678.8 637.0 538.8 388.3 191.1 - - - - - - - - - - - - - - - - - -	598.1 652.9 612.9 518.6 373.4 181.9
12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 22.0 23.0 - 1.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 10.0 11.0 12.0 12.0 12.0 13.0 14.0 15.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16	691.0 812.0 775.0 779.0 622.0 426.0 	159.0 125.0 129.0 121.0 100.0 65.0	24.0 24.0 24.0 24.0 24.0 23.0 22.0 21.0 20.0 19.0 18.0 17.0 17.0 16.0 15.0 15.0 15.0 16.0 17.0 18.0 19.0 18.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19	7.0 7.0 7.0 7.0 6.0 6.0 5.0 5.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 4.0 4.0 4.0 4.0	782.1 860.2 804.6 675.5 483.7 244.6 	38.6 40.1 39.2 36.7 31.9 26.6 21.0 20.0 19.0 18.0 18.0 17.0 17.0 17.0 15.0 15.0 15.7 22.5 29.2 34.8 38.4 39.2 39.1 36.0 31.2 25.2 17.0 16.0 16.0	621.6 678.8 637.0 538.8 388.3 191.1 - - - - - - - - - - - - - - - - - -	598.1 652.9 612.9 518.6 373.4 181.9
12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 26.0	11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 22.0 23.0 21.0 22.0 23.0 4.0 5.0 6.0 7.0 8.0 9.0 11.0 12.0 12.0 13.0 14.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15	691.0 812.0 775.0 779.0 622.0 426.0 	159.0 125.0 129.0 121.0 100.0 65.0	24.0 24.0 24.0 24.0 24.0 23.0 22.0 21.0 20.0 18.0 18.0 17.0 17.0 17.0 16.0 15.0 15.0 16.0 16.0 16.0 17.0 18.0 18.0 18.0 17.0 18.0 18.0 15.0 15.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16	7.0 7.0 7.0 7.0 6.0 6.0 6.0 5.0 5.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 4.0 4.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	782.1 860.2 804.6 675.5 483.7 244.6 	38.6 40.1 39.2 36.7 31.9 26.6 21.0 20.0 19.0 18.0 18.0 17.0 17.0 17.0 15.0 15.0 15.0 15.7 22.5 29.2 34.8 38.4 39.2 39.1 36.0 31.2 25.2 17.0 16.0 16.0 16.0 16.0	621.6 678.8 637.0 538.8 388.3 191.1 - - - - - - - - - - - - - - - - - -	598.1 652.9 612.9 518.6 373.4 181.9
12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 10.0 10.0 10.0 10.0 10.0 10.0 10	691.0 812.0 775.0 779.0 622.0 426.0 	159.0 125.0 129.0 121.0 100.0 65.0	24.0 24.0 24.0 24.0 24.0 23.0 22.0 21.0 20.0 19.0 18.0 18.0 17.0 17.0 17.0 15.0 15.0 15.0 16.0 16.0 16.0 16.0 17.0 17.0 17.0 17.0 17.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15	7.0 7.0 7.0 7.0 6.0 6.0 5.0 5.0 5.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 5.0 5.0 5.0 5.0 5.0 4.0 4.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	782.1 860.2 804.6 675.5 483.7 244.6 	38.6 40.1 39.2 36.7 31.9 26.6 21.0 20.0 19.0 18.0 18.0 17.0 17.0 17.0 16.0 16.0 15.0 15.7 22.5 29.2 34.8 38.4 39.2 39.1 36.0 31.2 25.2 17.0 16.0 16.0 16.0 16.0 11.0	621.6 678.8 637.0 538.8 388.3 191.1 - - - - - - - - - - - - - - - - - -	598.1 652.9 612.9 518.6 373.4 181.9
12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 22.0 23.0 21.0 22.0 3.0 4.0 6.0 7.0 8.0 9.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19	691.0 812.0 775.0 779.0 622.0 426.0 	159.0 125.0 129.0 121.0 100.0 65.0	24.0 24.0 24.0 24.0 24.0 23.0 22.0 21.0 20.0 19.0 18.0 17.0 17.0 16.0 15.0 15.0 15.0 16.0 17.0 18.0 19.0 18.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19	7.0 7.0 7.0 7.0 6.0 6.0 6.0 5.0 5.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	782.1 860.2 804.6 675.5 483.7 244.6 	38.6 40.1 39.2 36.7 31.9 26.6 21.0 20.0 19.0 18.0 18.0 17.0 17.0 17.0 15.0 15.0 15.7 22.5 29.2 34.8 38.4 39.2 39.1 36.0 31.2 25.2 17.0 16.0 16.0 16.0 15.0 11.0 11.0 11.0 11.0 11.0 11.0 11	621.6 678.8 637.0 538.8 388.3 191.1 - - - - - - - - - - - - - - - - - -	598.1 652.9 612.9 518.6 373.4 181.9
12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 10.0 10.0 10.0 10.0 10.0 10.0 10	691.0 812.0 775.0 779.0 622.0 426.0 	159.0 125.0 129.0 121.0 100.0 65.0	24.0 24.0 24.0 24.0 24.0 23.0 22.0 21.0 20.0 19.0 18.0 18.0 17.0 17.0 17.0 15.0 15.0 15.0 16.0 16.0 16.0 16.0 17.0 17.0 17.0 17.0 17.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15	7.0 7.0 7.0 7.0 6.0 6.0 5.0 5.0 5.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 5.0 5.0 5.0 5.0 5.0 4.0 4.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	782.1 860.2 804.6 675.5 483.7 244.6 	38.6 40.1 39.2 36.7 31.9 26.6 21.0 20.0 19.0 18.0 18.0 17.0 17.0 17.0 16.0 16.0 15.0 15.7 22.5 29.2 34.8 38.4 39.2 39.1 36.0 31.2 25.2 17.0 16.0 16.0 16.0 16.0 11.0	621.6 678.8 637.0 538.8 388.3 191.1 - - - - - - - - - - - - - - - - - -	598.1 652.9 612.9 518.6 373.4 181.9

12.0 12.0	27.0 27.0	- 1.0	-	Ī	12.0 12.0	4.0 3.0		12.0 12.0	- -	-
12.0 12.0	27.0 27.0	2.0 3.0	-	• •	12.0 12.0	3.0 3.0	•	12.0 12.0	-	-
12.0	27.0	4.0	-	-	12.0	3.0	-	12.0	-	-
12.0 12.0	27.0 27.0	5.0 6.0	-	- -	12.0 12.0	3.0 3.0	-	12.0 12.0	-	
12.0 12.0	27.0 27.0	7.0 8.0	354.0 735.0	21.0 50.0	13.0 14.0	3.0 4.0	120.2 389.5	14.3 22.5	88.5 313.3	81.6 300.7
12.0	27.0	9.0	875.0	63.0	16.0	3.0	624.2	32.6	501.6	482.8
12.0 12.0	27.0 27.0	10.0 11.0	938.0 965.0	71.0 77.0	17.0 17.0	3.0 3.0	802.4 910.3	39.0 42.4	633.4 709.4	609.5 682.2
12.0 12.0	27.0 27.0	12.0 13.0	969.0 947.0	79.0 81.0	18.0 18.0	3.0 3.0	938.1 884.2	44.4 43.1	724.0 686.0	696.2 659.8
12.0	27.0	14.0	904.0	76.0	18.0	2.0	753.5	42.4	583.5	561.6
12.0 12.0	27.0 27.0	15.0 16.0	819.0 637.0	67.0 48.0	18.0 17.0	2.0 1.0	560.5 308.2	36.3 29.4	439.0 234.3	422.5 223.9
12.0	27.0	17.0 18.0	-	-	16.0	1.0	-	16.0	-	-
12.0 12.0	27.0 27.0	19.0			16.0 17.0	1.0 -	-	16.0 17.0	-	-
12.0 12.0	27.0 27.0	20.0 21.0	-	-	16.0 16.0	-	-	16.0 16.0	-	-
12.0	27.0	22.0	-	-	16.0	-	-	16.0	-	-
12.0 12.0	27.0 28.0	23.0	1		16.0 16.0	-		16.0 16.0	-	-
12.0 12.0	28.0 28.0	1.0 2.0	-	-	16.0 16.0	-	-	16.0 16.0	-	
12.0	28.0	3.0	-	- -	16.0	-	-	16.0	-	-
12.0 12.0	28.0 28.0	4.0 5.0	-	-	16.0 16.0	-	-	16.0 16.0	-	-
12.0 12.0	28.0 28.0	6.0 7.0	298.0	- 22.0	16.0 16.0	- 1.0	- 109.0	16.0 17.3	- 80.3	- 73.7
12.0	28.0	8.0	96.0	101.0	17.0	1.0	153.9	20.8	130.6	122.8
12.0 12.0	28.0 28.0	9.0 10.0	817.0 870.0	75.0 90.0	18.0 19.0	2.0 2.0	605.0 777.4	35.0 42.9	480.6 601.9	462.6 579.3
12.0	28.0	11.0	894.0	99.0	20.0	3.0	882.0	44.4	680.1	654.1
12.0 12.0	28.0 28.0	12.0 13.0	893.0 880.0	104.0 100.0	21.0 21.0	3.0 3.0	908.0 857.5	46.4 45.2	693.6 658.2	667.0 633.2
12.0 12.0	28.0 28.0	14.0 15.0	827.0 722.0	96.0 85.0	21.0 21.0	3.0 3.0	726.3 528.2	41.7 36.1	564.8 415.1	543.6 399.3
12.0	28.0	16.0	521.0	59.0	20.0	3.0	278.9	27.7	215.8	206.0
12.0 12.0	28.0 28.0	17.0 18.0	-		18.0 17.0	3.0 3.0	-	18.0 17.0	-	-
12.0 12.0	28.0 28.0	19.0 20.0	-	- -	17.0 16.0	3.0 4.0	-	17.0 16.0	-	-
12.0	28.0	21.0	-	- -	16.0	4.0	-	16.0	-	-
12.0 12.0	28.0 28.0	22.0 23.0	-	-	15.0 15.0	4.0 4.0	-	15.0 15.0	-	-
12.0 12.0	29.0 29.0	- 1.0	-	-	15.0 15.0	5.0 5.0	-	15.0 15.0	-	-
12.0	29.0	2.0	-	-	15.0	5.0		15.0	-	
12.0 12.0	29.0 29.0	3.0 4.0	-	• •	16.0 16.0	5.0 6.0		16.0 16.0	-	-
12.0	29.0	5.0	-	-	17.0	6.0	-	17.0	-	-
12.0 12.0	29.0 29.0	6.0 7.0	224.0	22.0	17.0 18.0	6.0 6.0	90.4	17.0 18.5	- 67.5	- 61.1
12.0 12.0	29.0 29.0	8.0 9.0	624.0 95.0	57.0 181.0	19.0 21.0	6.0 7.0	348.7 249.3	24.9 25.0	278.0 210.9	266.5 201.2
12.0	29.0	10.0	856.0	80.0	22.0	7.0	749.6	35.2	603.2	580.5
12.0 12.0	29.0 29.0	11.0 12.0	38.0	260.0 52.0	23.0 23.0	7.0 7.0	303.9 49.4	28.7 23.2	254.0 42.4	243.1 36.5
12.0 12.0	29.0 29.0	13.0 14.0	- 801.0	58.0 94.0	24.0 23.0	6.0 6.0	55.1 706.2	24.0 36.2	47.1 564.5	41.1 543.4
12.0	29.0	15.0	710.0	81.0	23.0	5.0	706.2 518.0	34.9	409.6	394.0
12.0 12.0	29.0 29.0	16.0 17.0	532.0	56.0	22.0 20.0	4.0 4.0	281.0	29.0 20.0	216.1	206.2
12.0 12.0	29.0 29.0	18.0 19.0	-	- -	19.0 18.0	4.0 4.0	-	19.0 18.0	-	-
12.0	29.0	20.0	-	•	17.0	3.0	-	17.0	-	-
12.0 12.0	29.0 29.0	21.0 22.0	-		17.0 16.0	3.0 3.0	-	17.0 16.0	-	-
12.0 12.0	29.0 30.0	23.0	-	- -	16.0 15.0	3.0 3.0	- -	16.0 15.0	-	-
12.0	30.0	1.0	-	-	15.0	3.0	-	15.0	-	-
12.0 12.0	30.0 30.0	2.0 3.0	-	• •	14.0 14.0	3.0 3.0	- -	14.0 14.0	- -	-
12.0 12.0	30.0 30.0	4.0 5.0	-	- -	14.0 14.0	3.0 3.0	- -	14.0 14.0	-	-
12.0	30.0	6.0		-	14.0	2.0	-	14.0		-
12.0 12.0	30.0 30.0	7.0 8.0	317.0 701.0	20.0 51.0	15.0 16.0	2.0 2.0	108.8 372.8	16.1 25.9	79.5 294.8	72.9 282.8
•	-	- -	-			-				

12.0	30.0	9.0	838.0	67.0	17.0	2.0	607.3	35.1	482.0	464.0
12.0	30.0	10.0	900.0	77.0	18.0	2.0	779.2	42.0	606.0	583.1
12.0	30.0	11.0	923.0	85.0	19.0	2.0	884.4	46.6	674.3	648.6
12.0	30.0	12.0	920.0	90.0	20.0	3.0	910.0	45.5	698.3	671.6
12.0	30.0	13.0	896.0	92.0	20.0	3.0	857.5	44.2	661.5	636.4
12.0	30.0	14.0	843.0	89.0	21.0	3.0	732.6	41.8	569.3	547.9
12.0	30.0	15.0	746.0	79.0	20.0	2.0	535.8	37.5	418.2	402.3
12.0	30.0	16.0	551.0	57.0	19.0	2.0	290.6	28.4	224.2	214.1
12.0	30.0	17.0	-	-	18.0	1.0	_	18.0		214.1
12.0	30.0	18.0		_	18.0	1.0	_	18.0	_	
12.0	30.0	19.0			19.0	-	_	19.0		
12.0	30.0	20.0			19.0		_	19.0	_	
12.0	30.0	21.0	-	-	18.0		-	18.0	-	· ·
12.0	30.0	22.0	-	-	18.0	1.0	-	18.0	-	
	30.0	23.0	-		18.0	1.0		18.0	-	-
12.0			-						-	-
12.0	31.0	-	•	-	17.0	2.0	-	17.0	-	•
12.0	31.0	1.0	-		17.0	2.0	-	17.0	-	-
12.0	31.0	2.0	-	-	17.0	2.0	-	17.0	-	-
12.0	31.0	3.0	-	-	17.0	3.0	-	17.0	-	-
12.0	31.0	4.0	-		17.0	2.0	-	17.0	-	-
12.0	31.0	5.0	-		17.0	2.0	-	17.0	-	•
12.0	31.0	6.0	-	-	17.0	2.0	-	17.0	-	-
12.0	31.0	7.0	184.0	23.0	18.0	2.0	81.2	18.3	61.6	55.3
12.0	31.0	8.0	582.0	67.0	20.0	2.0	340.0	28.8	266.8	255.6
12.0	31.0	9.0	752.0	87.0	21.0	2.0	578.3	38.0	452.9	435.8
12.0	31.0	10.0	826.0	100.0	22.0	2.0	754.3	45.0	577.7	556.0
12.0	31.0	11.0	868.0	104.0	23.0	2.0	866.1	49.8	649.4	624.8
12.0	31.0	12.0	876.0	106.0	23.0	1.0	897.2	55.8	651.7	627.0
12.0	31.0	13.0	858.0	103.0	24.0	1.0	845.5	55.3	615.1	591.9
12.0	31.0	14.0	804.0	99.0	24.0	1.0	716.5	51.1	530.6	510.7
12.0	31.0	15.0	326.0	148.0	24.0	-	359.2	44.0	273.7	262.2
12.0	31.0	16.0	501.0	61.0	23.0	-	276.5	36.8	205.5	196.0
12.0	31.0	17.0	_	_	22.0	1.0	_	22.0	_	_
12.0	31.0	18.0	_	_	22.0	1.0	-	22.0	_	-
12.0	31.0	19.0	_	_	19.0	3.0	_	19.0	_	_
12.0	31.0	20.0	_	<u>-</u>	19.0	3.0	<u>-</u>	19.0	_	_
12.0	31.0	21.0	_	_	19.0	3.0	<u>-</u>	19.0	_	_
12.0	31.0	22.0	_	_	19.0	3.0	_	19.0	_	_
12.0	31.0	23.0	_	_	20.0	3.0	_	20.0	_	_
	00	20.0	2,043,811.0	648,052.0	209,007.0	26,954.0	2,113,842.4	266,361.2	1,605,011.2	1,538,637.1
			_, _ , , , , , , , , ,	0.0,002.0	200,001.0	20,00	2,110,012.7	200,001.2	1,000,011.2	1,000,007.1

Totals

Florida Power & Light Company FPL & GULF 000010 Docket No. 20220000-OT 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 12 Attachment 1 of 1 Tab 9 of 19 PVWatts: Monthly PV Performance Data Requested Location: 700 universe blvd, juno beach florida Location: Lat, Lon: 26.85, -80.06 Lat (deg N): 26.85 Long (deg W): 80.06 3.458333254 Elev (m): DC System Size (kW): Module Type: Standard Array Type: Fixed (roof mount) Array Tilt (deg): Array Azimuth (deg): System Losses: 14.925 Invert Efficiency: DC to AC Size Ratio: 1.2 Average Cost of Electricity Purchased from Utility (\$/kWh): 0.104 17.6 Capacity Factor (%) Month AC System Output(kWh) Solar Radiation (kWh/m^2/day) Plane of Array Irradiance (W/m^2) DC array Output (kWh) Value (\$)

1,539

2,114

1,605

Total

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 12

7/31/2020

8/31/2020

2020

2020

FPL & GULF 000011

Attachment 1 of 1 Tab 10 of 19 Ann. Degrade Capacity Hourly Ho New Cumulative after Energy per Monthly Monthly Capacity Capacity Monthly MWdc Degradation Generation Generation Date (MWdc) (MWh-ac (MWh) 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 18:00 19:00 20:00 (check) 1/31/2013 2013 2013 97.8 2/28/2013 28 93.6 3/31/2013 2013 131.2 4/30/2013 2013 30 136.5 5/31/2013 2013 149.5 6/30/2013 2013 30 130.3 2013 7/31/2013 132.1 8/31/2013 2013 31 130.7 9/30/2013 2013 30 121.9 10/31/2013 2013 126.3 11/30/2013 2013 30 102.0 12/31/2013 2013 91.8 1/31/2014 2014 97.8 (0.0) 2014 28 2/28/2014 93.6 3/31/2014 (0.0) 131.2 4/30/2014 2014 2014 30 (0.0) 136.5 71 5/31/2014 149.5 6/30/2014 2014 (0.0) (0.0) (0.0) 130.3 132.1 101 120 101 120 135 142 7/31/2014 8/31/2014 2014 130.7 135 (0.0) (0.0) (0.0) 2014 121.9 9/30/2014 30 10/31/2014 126.3 163 145 11/30/2014 2014 30 102.0 145 2014 142 142 12/31/2014 31 (0.0)91.8 (0.0) (0.0) (0.0) 1/31/2015 2015 97.8 157 156 157 156 2015 2/28/2015 28 93.6 3/31/2015 131.2 225 242 273 4/30/2015 2015 30 31 (0.0) 136.5 242 2015 149.5 273 5/31/2015 2015 2015 6/30/2015 30 31 (0.0) 130.3 245 256 245 256 7/31/2015 132.1 (0.0) (0.0) (0.0) 8/31/2015 2015 130.7 260 260 2015 121.9 249 249 9/30/2015 30 10/31/2015 126.3 11/30/2015 2015 30 31 (0.0) 102.0 220 220 2015 91.8 203 12/31/2015 203 2016 (0.0) 97.8 219 2/29/2016 2016 29 (0.0) 93.6 212 212 300 316 350 3/31/2016 2016 131.2 300 4/30/2016 2016 2016 (0.0)136.5 316 350 149.5 5/31/2016 (0.0)(0.0) (0.0) (0.0) 6/30/2016 2016 2016 130.3 308 316 308 316 132.1 7/31/2016 130.7 9/30/2016 2016 30 31 (0.0) 121.9 298 312 298 10/31/2016 2016 126.3 312 11/30/2016 12/31/2016 2016 2016 102.0 30 31 (0.0) 255 232 255 232 1/31/2017 2017 (0.0) 97.8 270 270 2017 2017 (0.0) 281 2/28/2017 28 93.6 281 3/31/2017 425 131.2 425 (0.0) (0.0) (0.0) 4/30/2017 2017 2017 30 31 136.5 475 557 475 557 149.5 5/31/2017 6/30/2017 2017 130.3 516 516 2017 31 (0.0) (0.0) (0.0) (0.0) 555 7/31/2017 132.1 555 8/31/2017 2017 130.7 580 580 9/30/2017 2017 30 121 9 570 570 2017 621 621 10/31/2017 126.3 2017 2017 11/30/2017 30 31 (0.0) 102.0 526 496 526 496 12/31/2017 91.8 1/31/2018 2018 (0.0) 97.8 550 550 2/28/2018 2018 2018 28 (0.0) 93.6 131.2 547 795 547 795 3/31/2018 4/30/2018 2018 (0.0)136.5 858 858 2018 (0.0) 149.5 973 5/31/2018 973 6/30/2018 130.3 876 7/31/2018 2018 (0.0) 132.1 918 918 8/31/2018 2018 130.7 937 9/30/2018 2018 2018 121.9 126.3 30 (0.0) 901 962 901 962 11/30/2018 2018 102.0 2018 739 739 12/31/2018 31 (0.0) 91.8 1/31/2019 2019 97.8 867 867 2/28/2019 2019 2019 28 10 (0.0) 93.6 906 906 3/31/2019 31 (0.0) 131.2 1.375 1.375 11 12 13 4/30/2019 2019 30 31 (0.0) 11 12 136.5 1,541 1,541 2019 1.808 5/31/2019 149.5 1.808 13 14 15 6/30/2019 2019 (0.0) 130.3 1,681 7/31/2019 2019 31 14 15 (0.0) 132.1 1 811 1.811 2019 130.7 8/31/2019 31 1,897 1,897 9/30/2019 2019 2019 30 31 15 16 (0.0) 15 16 121.9 1.867 1.867 10/31/2019 (0.0) 126.3 2.037 2.037 (0.0) (0.0) (0.0) 11/30/2019 2019 30 31 17 18 102.0 1,727 1,727 12/31/2019 2019 18 91.8 1.628 1.628 1/31/2020 2020 20 22 1,951 2020 2020 22 2/29/2020 29 (0.0)93.6 2 075 11 2 075 24 27 131.2 3 197 3 197 3/31/2020 25 27 (0.0)5/31/2020 2020 2020 31 29 31 (0.0) 149.5 4 305 16 15 17 18 4 305 29 31 33 35 38 13 13 14 15 14 6/30/2020 130.3 4,038 4,038

18 20

18

4 386

4,628

132.1 130.7

121.9

33 36 38

(0.0)

(0.0)

4,386 4,628

10/31/2020 11/30/2020 12/31/2020 12/31/2020 12/31/2020 12/31/2020 12/31/2020 13/31/2021 4/30/2021 4/30/2021 16/31/2021 16/31/2021 11/31/2021 11/31/2021 11/31/2021 11/31/2022 3/31/2022 3/31/2022 3/31/2022 11/30/2022 11/30/2022 11/30/2022 11/30/2022 11/30/2022 11/30/2023 13/31/2023 13/31/2023 13/31/2023 13/31/2023 13/31/2023 13/31/2023 13/31/2023 13/31/2023 13/31/2023 11/30/2023	2020 2020 2020 2021 2021 2021 2021 2021	10 11 12 1 2 3 4 5 6 6 7 7 8 8 9 9 10 11 12 1 2 3 3 4 4 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 12 13 13 14 14 15 16 16 16 16 16 17 16 16 16 16 16 16 16 16 16 16 16 16 16	31 30 31 31 31 31 30 31 30 31 31 30 31 31 30 31 31 30 31 31 30 31 31 30 31 31 30 31 31 30 31 31 30 31 31 30 31 31 30 31 31 31 30 31 31 31 31 31 31 31 31 31 31 31 31 31	2 2 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	40 42 45 50 56 61 67 72 78 83 89 94 100 1005 1111 1112 1144 1157 117 118 119 121 122 124 125 126 128 139 140 141 144 148 152 157 161 161 161 161 161 161 161 161 161 16	(0.0) (0.0)	40 42 44 50 55 61 66 72 77 83 88 94 99 105 110 112 113 114 116 117 118 121 121 123 124 125 127 131 135 135 147 155 159 163 167 171 175 178 188	126.3 102.0 91.8 97.8 93.6 131.2 136.5 149.5 130.3 132.1 130.7 121.9 126.3 102.0 91.8 93.6 131.2 136.5 149.5 130.3 132.1 130.7 121.9 126.3 102.0 91.8 93.6 131.2 136.5 149.5 130.3 132.1 130.7 121.9 126.3 102.0 91.8 93.6 131.2 121.9 126.3 102.0 91.8 93.6 131.2 121.9 126.3 130.7 121.9 126.3 130.3 130.7 121.9 126.3 130.3 130.7 121.9 126.3 130.3	5.031 4.288 4.061 4.886 5.176 7.176 7.1060 10.737 10.072 10.939 11.541 11.434 10.922 10.885 15.005 15.005 11.634 15.836 14.934 15.836 14.934 15.836 14.934 15.655 12.779 19.655 12.779 19.655 12.779 19.655 10.771 19.683 21.957 19.655 10.771 19.683 21.957 19.655 10.771 19.683 21.957 10.771 19.683 21.957 10.771 19.683 21.957 10.771 19.683 21.957 10.771 19.683 21.957 10.771 19.683 21.957 10.771 19.683 21.957 10.771 19.683 21.957 10.771 19.683 21.957 10.771 19.683 21.957 10.771 19.683 21.957 10.771 1					2 2 3 3 3 2 2 2 17 10 17 1 16 16 16 17 17 17 17 1 1 17 17 1 1 16 17 17 1 1 1 1	9 14 11 12 12 14 11 18 20 19 23 21 35 27 26 30 29 21 35 28 29 26 30 30 34 42 43 35 44 44 33 46	15 18 28 18 18 18 20 16 19 18 22 21 25 21 27 26 33 32 38 38 38 37 5 18 18 20 1	21 19 24 27 32 38 41 411 45 56 53 48 55 55 55 61 60 67 62 63 69 64 55 64 65 74 81 84 87 77 77 81 84 83 87 77 81 81 81 81 81 81 81 81 81 81 81 81 81	2 2 2 2 1.1 18 1 1 2 2 2 2 2 7 2 3 2 2 2 2 7 2 3 3 2 2 2 7 2 3 3 2 2 2 7 2 2 3 3 2 2 2 7 2 2 3 3 2 2 2 7 2 2 3 3 2 2 2 7 2 2 3 3 2 9 3 3 4 3 4 4 3 4 4 4 4 6 6 5 5 6 6 6 6 6 6 6 6 6 6 6 6	3 15 5 21 1 18 3 39 15 5 21 1 18 3 39 15 5 21 1 18 3 39 1 15 1 18 3 39 1 1 1 18 3 39 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	38 20 22 27 27 50 53 54 51 52 50 47 48 24 25 31 32 61 65 68 64 67	26 1 28 1 28 1 28 1 28 1 26 1 26 1 26 1		0 1 1 1 0 0			4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	5.031 - 4.288 - 4.061 - 4.886 - 5.176 - 7.973 - 9.050 - 0.072
6/30/2022 7/31/2022 8/31/2022 9/30/2022 10/31/2022 11/30/2022 12/31/2022 1/31/2023 2/28/2023 3/31/2023	2022 2022 2022 2022 2022 2022 2022 202	6 7 8 9 10 11 12 1 2 3	30 31 31 30 31 30 31 31 28 31	1 1 1 1 1 1 4 4 4	119 121 122 124 125 126 128 132 136 140	(0.0) (0.0) (0.0) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1)	118 120 121 123 124 125 127 131 135 139	130.3 132.1 130.7 121.9 126.3 102.0 91.8 97.8 93.6 131.2	15,434 15,828 15,836 14,934 15,652 12,780 11,625 12,779 12,615 18,200			-		2 13 2 12 0 10 10 7 3 20 12 8 0 12 5	28 29 26 30 27 41 31 30 34 25	40 56 43 52 43 57 46 57 47 57 54 60 45 53 47 59 51 61 47 62	62 59 62 63 69 64 55 64 66 74	66 64 66 65 66 76 7 58 5.52 5.60 5 66 6.82 8	4 58 5 60 8 63 5 61 1 59 2 44 3 44 5 47 2 50 3 73	51 52 50 47 48 24 25 31 32 61	41 2 40 2 39 2 34 1 32 1 5 - 5 - 11 - 16 45 2	9 9 7 7 7 2 1 - - - 5 5	1 1 0		-	15 15 15 14 15 12 11 12 12	5,434 - 5,828 - 5,836 - 4,934 - 5,652 - 2,780 - 1,625 - 2,779 - 2,615 - 8,200 -
5/31/2023 6/30/2023 7/31/2023 8/31/2023 9/30/2023 10/31/2023 11/30/2023 1/31/2023 1/31/2024 2/29/2024	2023 2023 2023 2023 2023 2023 2023 2023	5 6 7 8 9 10 11 12 1	31 30 31 31 30 31 30 31 31 31 29	4 4 4 4 4 4 4 3 3	148 152 157 161 165 169 173 177 180	(0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1)	147 151 155 159 163 167 171 175 178	149.5 130.3 132.1 130.7 121.9 126.3 102.0 91.8 97.8 93.6	21,957 19,655 20,462 20,771 19,863 21,099 17,452 16,075 17,437 16,997			-		3 19 3 17 2 15 1 13 13 10 4 27 16	44 35 37 34 40 36 57 43 42 44	65 77 51 72 55 67 57 75 61 76 63 77 74 82 62 73 64 80 66 79	84 79 77 81 84 93 87 76 87	90 8 84 8 83 8 87 8 102 9 80 7 72 7 82 7 86 8	99 81 11 74 44 77 99 82 77 81 66 80 11 60 14 61 55 64 00 65	68 64 67 66 62 65 32 34 43	50 2 52 2 52 3 51 2 46 2 43 1 7 - 7 - 15 - 21	99 10 99 11 10 12 19 9 13 3 5 - - - 1 -	0 1 1 0 -		-	21 19 20 20 19 21 17 16 17	1,957 - 9,655 - 0,462 - 0,771 - 9,863 - 1,099 - 7,452 - 6,075 - 7,437 - 5,997 -
4/30/2024 5/31/2024 6/30/2024 7/31/2024 8/31/2024 9/30/2024 10/31/2024 11/30/2024 12/31/2024 1/31/2025	2024 2024 2024 2024 2024 2024 2024 2024	4 5 6 7 8 9 10 11 12	30 31 30 31 31 30 31 30 31 30 31		190 193 197 200 203 207 210 213 216 220	(0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1)	188 191 194 198 201 204 207 210 214 217	136.5 149.5 130.3 132.1 130.7 121.9 126.3 102.0 91.8 97.8	25,650 28,576 25,313 26,088 26,227 24,849 26,163 21,456 19,601 21,224					1 24 1 22 3 19 1 17 16 12 1 33 20	46 57 46 47 43 50 44 70 52 51	75 93 84 100 66 92 71 86 72 95 76 95 78 96 91 101 75 89 78 97	107 109 102 98 102 105 116 107 93	109 10 117 11 108 10 106 10 104 11 109 10 127 11 98 8 88 9 100 9	9 105 6 106 5 96 8 99 2 104 8 102 9 99 3 74 0 75 1 77	85 88 83 85 83 78 80 40 42 52	63 3 66 3 66 3 66 3 64 3 57 2	16 9 18 12 18 14 18 15 17 12	0 2 2 0 -		-	25 28 25 26 26 24 26 21 19 21	5,650 - 8,576 - 5,313 - 6,088 - 6,227 - 4,849 - 6,163 - 1,456 - 9,601 - 1,224 -
2/28/2025 3/31/2025 4/30/2025 5/31/2025 6/30/2025 7/31/2025 8/31/2025 9/30/2025 11/30/2025 12/31/2025	2025 2025 2025 2025 2025 2025 2025 2025	2 3 4 5 6 7 8 9 10 11	28 31 30 31 30 31 31 30 31 30 31	4 4 4 4 4 4 4	224 227 231 235 238 242 245 249 253 256 260	(0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1)	221 224 228 231 235 238 242 245 249 252 256	93.6 131.2 136.5 149.5 130.3 132.1 130.7 121.9 126.3 102.0 91.8	20,652 29,388 31,063 34,552 30,560 31,449 31,572 29,871 31,408 25,724 23,471					0 20 8 1 21 4 29 5 27 4 23 1 20 19 14 5 40	56 40 56 69 55 57 52 61 53 83 62	83 100 76 100 91 113 102 121 80 112 85 103 86 114 91 114 94 115 109 121 90 107	119 129 132 124 118 123 126 139 128	109 10 133 13 133 13 141 14 131 12 127 13 130 13 152 14 118 10 106 10	3 117 2 127 1 128 6 116 0 119 5 125 0 122 3 119 5 89	53 99 103 106 100 103 100 94 96 48 50	80 4 80 4 77 4	13 11 16 15 16 17 16 18 14 14	- - 0 2 2 0		-	29 31 34 30 31 31 29 31	0.652 - 9.388 - 1.063 - 4.552 - 0.560 - 1.449 - 1.572 - 9.871 - 1.408 - 5.724 - 3.471 -
1/31/2026 2/28/2026 3/31/2026 4/30/2026 5/31/2026 6/30/2026 7/31/2026 9/30/2026 10/31/2026 11/30/2026	2026 2026 2026 2026 2026 2026 2026 2026	1 2 3 4 5 6 7 8 9 10	31 28 31 30 31 30 31 30 31 31 30 31	4 4 4 4 4 4 4 4	264 268 272 276 280 284 289 293 297 301 305	(0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1)	260 264 268 272 276 280 284 288 292 296 300	97.8 93.6 131.2 136.5 149.5 130.3 132.1 130.7 121.9 126.3 102.0	25,392 24,688 35,105 37,079 41,213 36,425 37,460 37,581 35,534 37,338 30,562					16 24 10 1 25 5 35 6 32 4 27 1 24 23 17 6 48	60 67 48 67 82 66 68 62 72 63	93 117 99 120 91 120 108 135 122 145 95 133 102 123 103 136 109 135 111 137 130 144	127 128 142 154 157 147 141 147 150 165	120 10 130 12 159 15 158 15 169 16 156 15 152 15 149 16 155 15 181 17 140 12	9 93 0 98 9 140 7 151 8 152 1 138 5 142 1 149 5 146 0 141	123 127 119 122	91 5 95 5 96 5 95 5	i4 20 i5 22 i3 17 i1 5	- - - 0 2 2 0		-	25 24 35 37 41 36 37 37 35	5,392 - 4,688 - 5,105 - 7,079 - 1,213 - 6,425 - 7,581 - 5,534 - 7,7388 - 0,552 -
12/31/2026 1/31/2027 2/28/2027 3/31/2027 4/30/2027 5/31/2027 6/30/2027 7/31/2027 8/31/2027 9/30/2027	2026 2027 2027 2027 2027 2027 2027 2027	12 1 2 3 4 5 6 7 8	31 28 31 30 31 30 31 30 31 31 31	4 4 4 4 4 4 4 4 4	309 313 317 321 326 330 334 338 342	(0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1)	304 308 312 316 320 323 327 331 335 339	91.8 97.8 93.6 131.2 136.5 149.5 130.3 132.1 130.7 121.9	27,869 30,076 29,171 41,382 43,609 48,364 42,653 43,773 43,824 41,354					28 19 28 12 1 29 6 41 7 37 5 32 1 28 27	74 72 79 57 79 96 77 79 72 84	107 127 111 138 117 141 108 141 127 159 143 170 111 156 119 144 120 159 127 157	132 150 152 167 181 185 172 164 171	126 12 142 12 153 14 187 18 186 18 198 19 182 17 177 18 174 18 181 18	8 106 9 110 2 116 8 165 5 178 7 179 6 161 1 165 7 174 1 170	59 73 74 139 145 149 140 143 139	12 - 27 - 37 103 5 108 6 111 6 112 6 111 6 108 6 95 4	i1 15 i5 21 i4 24 i4 26 i2 19 i8 6	- - - 0 3 3 0		-	27 30 29 41 43 48 42 43 43	7,869 - 0,076 - 1,382 - 3,609 - 8,364 - 2,653 - 3,873 - 3,824 - 1,354 -
10/31/2027 11/30/2027 11/31/2027 1/31/2028 2/29/2028 3/31/2028 4/30/2028 6/30/2028 7/31/2028 8/31/2028 8/31/2028	2027 2027 2027 2028 2028 2028 2028 2028	10 11 12 1 2 3 4 5 6 7	31 30 31 31 29 31 30 31 30 31	4 4 4 4 4 4 4 4	350 354 358 363 367 372 376 380 385 389	(0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.2) (0.2) (0.2) (0.2) (0.2)	343 347 351 356 360 364 368 373 377 381 385	126.3 102.0 91.8 97.8 93.6 131.2 136.5 149.5 130.3 132.1 130.7	43,370 35,432 32,250 34,769 33,691 47,750 50,274 55,706 49,086 50,331 50,349				-	20 7 55 32 22 0 31 14 1 33 7 47 3 43 6 37 1 33	115 86 83 88 66 91 111 88 91	129 159 151 167 124 147 128 160 130 158 124 163 147 183 147 183 165 195 128 179 136 165 137 183	177 153 174 169 193 209 213 198 189	210 19 162 14 145 14 164 14 171 15 216 21 215 21 228 22 220 204 20 200 21	5 123 8 123 9 127 9 130 7 191 3 205 7 206 3 186 8 190	83 160 167 172 161 164	14 - 14 - 31 - 42 119 6 124 7 128 7 129 7	12 - - - 1 - 16 12 10 17 15 24 13 27 14 29 11 22	- - - - - 0 3 3			35 32 34 33 47 50 55 49 50	3,370 - 5,432 - 2,250 - 4,769 - 3,691 - 7,750 - 0,274 - 5,706 - 9,086 - 0,331 - 0,349 -
9/30/2028 10/31/2028 11/30/2028 11/30/2028 12/31/2028 1/31/2029 2/28/2029 3/31/2029 5/31/2029 6/30/2029 7/31/2029	2028 2028 2028 2028 2029 2029 2029 2029	9 10 11 12 1 2 3 4 5	30 31 30 31 31 28 31 30 31 30 31	4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	398 403 407 411 416 421 426 431 435 440	(0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2)	390 394 398 402 407 412 416 421 426 430 435	121.9 126.3 102.0 91.8 97.8 93.6 131.2 136.5 149.5 130.3	47,473 49,748 40,611 36,936 39,798 38,542 54,594 57,448 63,621 56,031 57,423			-		31 22 3 63 37 25 0 37 16 2 38 3 54	96 84 132 98 95 104 75 104 127	145 181 149 182 173 191 142 168 146 183 154 187 142 187 142 187 167 209 188 223 146 205 156 188	201 220 203 175 199 201 221 239 243 227	207 20 241 22 186 16 166 16 187 17 203 18 247 24 245 24 260 25 239 23 232 23	7 195 7 188 6 141 9 140 1 145 8 154 8 218 3 234 9 235 2 212	149 152 75 78 97 98 183 191 196 184	109 5 102 3 16 - 16 - 35 - 49 136 7 142 8 146 8	i5 7 i6 -			-	47 49 40 36 39 38 54 57 63	7,473 - 9,748 - 0,611 - 6,936 - 9,798 - 8,542 - 4,594 - 7,448 - 3,621 - 6,031 - 7,423 -
8/31/2029 9/30/2029 10/31/2029	2029 2029 2029	8 9 10	31 30 31	5 5 5	450 455 459	(0.2) (0.2) (0.2)	439 444 449	130.7 121.9 126.3	57,414 54,108 56,673	- - -		:			94 110	157 208 166 206 169 208	224 229	228 24 236 23	5 228 6 222	182 170	141 8 124 6	11 26 12 8 11 -	0 - -	-		57 54	7,414 - 4,108 - 6,673 -

12/31/2029 1/31/2030 2/28/2030 3/31/2030 3/31/2030 4/30/2030 6/30/2030 6/30/2030 6/30/2030 6/31/2030 6/31/2030 1/31/2030 1/31/2030 1/31/2030 1/31/2031 1/31/2031 1/31/2031 1/31/2031 1/31/2031 1/31/2031 1/31/2031 1/31/2031 1/31/2031 1/31/2031 1/31/2031 1/31/2031 1/31/2031 1/31/2031 1/31/2031 1/31/2032 1/31/2032 1/31/2032 1/31/2032 1/31/2032 1/31/2032 1/31/2032 1/31/2033 1/31/2034 1/31/2035 1/31/2035 1/31/2035 1/31/2035 1/31/2035 1/31/2035 1/31/2035 1/31/2036 1/31/2036 1/31/2036 1/31/2036 1/31/2036 1/31/2036 1/31/2036 1/31/2037 1/31/2037 1/31/2038
2029 11 2 2030 1 2 2 2030 1 2 2 2030 1 2 2 2 3 2 2 2 2 3 2 2 2 2 2 3 2 2 2 2
300 311 328 331 330 331 331 330 331 331 330 331 331
556666666666555555555555555555555555555
464 469 475 480 475 480 486 492 477 503 509 514 520 526 531 537 541 546 551 555 560 564 578 583 583 683 683 638 638 638 638 638 638 638 6
(0.2) (0.3) (0.3)
453 458 468 463 469 474 480 485 491 485 507 512 518 523 526 531 555 550 551 555 550 561 677 677 678 688 612 618 618 618 618 618 618 618 618 618 618
102.0 91.8 97.8 93.6 131.2 136.5 149.5 130.2 121.9 126.3 102.0 91.8 97.8 93.6 131.2 136.7 121.9 126.3 130.1 130.7 121.9 126.3 130.1 130.7 121.9 126.3 130.1 130.7 121.9 126.3 130.1 130.7 121.9 126.3 130.1 130.7 121.9 126.3 130.1 130.7 121.9 126.3 130.1 130.7 121.9 126.3 130.1 130.7 121.9 126.3 130.1 130.7 121.9 126.3 130.1 130.7 121.9 126.3 130.3 132.1 130.7 121.9 126.3 126.3 126.3 126.3 127.3 128.3
46,243 42,039 45,314 43,301 43,314 44
9
42 1 1 42 1 1 42 1 1 43 1 1 65 1 1 48 1 1 3 48 1 1 3 48 1 1 3 4 1 1 65 1 1 65 1 1 65 1 1 65 1 1 65 1 1 65 1 65 1 1 65 1 6
130 228 200 262 147 213 141 217 153 226 109 206 149 240 180 266
282 31 281 33 292 30 254 22 272 28 277 28 277 28 277 301 34 388 31 288 31 280 33 262 30 263 26 287 30 253 26 271 280 300 33 316 34 280 30 253 26 271 280 300 33 263 26 271 280 300 33 306 34 279 33
189
1915
45 198 83 198 83 192 883 192 88 126 699 127 81 127 127 127 127 127 128 129 127 128 129 129 129 129 129 129 129 129 129 129
187 188 185 185 185 185 185 185 185 185 185
91 97 97 98 99 99 99 99 99 99 99 99 99 99 99 99
- - 20 - 28 - 39 0 44 5 47 5 35 0
46 243 42,039 445,314 43,901 445,314 43,901 45,314 43,901 65,483 615,226 65,524 65,525 61,526 61,781

Section Sect
Section Sect

1/31/2048	2048	1	31	-	638	(0.2)	574	97.8	56,153	-		-		-		134 206		80 264		205 137	50		-	-	-		56,153	-
2/29/2048	2048	2	29	-	638	(0.2)	574	93.6	53,745	-		-		0	50	140 208	251 2	70 273	253 2	207 132	66	2 -	-	-	-		53,745	-
3/31/2048	2048	3	31	-	638	(0.2)	574	131.2	75,249	_		-		-	22	104 196	257 3	04 340	342 3	300 253	188 1	104 19	9 -	-	-		75,249	
4/30/2048	2048	4	30		638	(0.2)	574	136.5	78,278					2		142 228		26 334		319 261	193	109 27	7 -				78,278	
5/31/2048	2048	5	31		638	(0.2)	573	149.5	85,710					11		171 253		27 351		317 264		115 37	7 0				85,710	
		6	30	-						-	-	-	-	12				02 319				111 42		_	-	-		-
6/30/2048	2048	ь		-	638	(0.2)	573	130.3	74,641	-		-				135 194				282 245			_	-	-		74,641	-
7/31/2048	2048	7	31	-	638	(0.2)	573	132.1	75,649	-		-		9		136 205		84 306		286 247		111 44		-	-		75,649	-
8/31/2048	2048	8	31	-	638	(0.2)	573	130.7	74,809	-		-		2	48	123 204	271 2	92 297	320 2	297 237	184	105 33	3 0	-	-		74,809	-
9/30/2048	2048	9	30	_	638	(0.2)	572	121.9	69.737					-	45	141 213	266 2	95 305	304 2	286 219	160	80 10) -	_	-		69.737	-
10/31/2048	2048	10	31		638	(0.2)	572	126.3	72,261							123 216		20 351		273 221	148	53 -		_	_		72.261	_
	2048	11	30	-	638				58.337	-	-	-	-	12		189 248		91 266		202 108	23	-	_	_	-	-	58.337	-
11/30/2048				-		(0.2)	572	102.0		-		-		12								-	-	-	-			-
12/31/2048	2048	12	31	-	638	(0.2)	572	91.8	52,475	-		-		-		139 202		49 236		200 111	23		-	-	-		52,475	-
1/31/2049	2049	1	31	-	638	(0.2)	571	97.8	55,874	-		-		-	36	133 205	256 2	79 263	240 2	204 137	49		-	-	-		55,874	-
2/28/2049	2049	2	28		638	(0.2)	571	93.6	53.478					0	51	145 214	259 2	78 281	261 2	213 136	68	2 .					53,478	
3/31/2049	2049	3	31		638	(0.2)	571	131.2	74.874					•		103 195		03 338		299 252		103 19					74.874	
																							-		-	-		
4/30/2049	2049	4	30	-	638	(0.2)	571	136.5	77,889			-		2		141 227		24 332		318 259		108 27		-	-		77,889	-
5/31/2049	2049	5	31	-	638	(0.2)	570	149.5	85,283	-		-		11	72	170 252	299 3	26 349	347 3	316 263	196	114 37	7 0	-	-		85,283	-
6/30/2049	2049	6	30	-	638	(0.2)	570	130.3	74,269	-		-		12	64	134 193	271 3	00 317	307 2	281 244	195	111 41	1 5	-	-		74,269	
7/31/2049	2049	7	31		638	(0.2)	570	132.1	75,272					9		136 204		83 305		284 246		110 44	1 5				75,272	
8/31/2049	2049	8	31		638	(0.2)	570	130.7	74,437					2		122 203		90 296		295 236		104 33					74,437	
														2											-	-		
9/30/2049	2049	9	30	-	638	(0.2)	569	121.9	69,390			-		-		141 212		93 303		284 218	159	80 10) -	-	-		69,390	-
10/31/2049	2049	10	31	-	638	(0.2)	569	126.3	71,901	-		-		-		122 215		18 349		272 220	147	52 -	-	-	-		71,901	-
11/30/2049	2049	11	30	-	638	(0.2)	569	102.0	58,046	-		-		12	91	188 247	274 2	90 265	238 2	201 108	23		-	-	-		58,046	
12/31/2049	2049	12	31		638	(0.2)	569	91.8	52,214							139 201		48 235		199 111	23						52,214	
1/31/2050	2050	1	31		638	(0.2)	569	97.8	55,596							132 204		78 262		203 136	40						55,596	
														-							49		-		-	-		
2/28/2050	2050	2	28	-	638	(0.2)	568	93.6	53,212	-		-		0		144 213		77 280		212 135	68	2 -	-	-	-		53,212	-
3/31/2050	2050	3	31	-	638	(0.2)	568	131.2	74,502	-		-		-	21	103 194	255 3	01 336	338 2	297 250	186 1	103 19	9 -	-	-		74,502	-
4/30/2050	2050	4	30		638	(0.2)	568	136.5	77.501					2	51	140 226	282 3	22 331	328 3	316 258	191 '	108 27	7 -	-	-		77.501	
5/31/2050	2050	5	31		638	(0.2)	568	149.5	84.859					11		169 251		24 347		314 261		114 37	7 0				84.859	
6/30/2050	2050	6	30		638	(0.2)	567	130.3	73.899					12		133 192		99 316		279 242		110 41					73.899	
				-								-											. 5	-	-	-		-
7/31/2050	2050	7	31	-	638	(0.2)	567	132.1	74,898	-		-		9		135 203		81 303		283 245		110 44	1 5	-	-		74,898	-
8/31/2050	2050	8	31	-	638	(0.2)	567	130.7	74,066	-		-		2	48	121 202	269 2	89 294	316 2	294 235	182	104 33	3 0	-	-		74,066	-
9/30/2050	2050	9	30	-	638	(0.2)	567	121.9	69.045	_		-		-	45	140 211	263 2	92 301	301 2	283 217	158	80 10) -	-	-		69.045	-
10/31/2050	2050	10	31		638	(0.2)	566	126.3	71.543						32	121 214	262 3	17 347	326 2	271 219	146	52 -					71.543	
11/30/2050	2050	11	30		638	(0.2)	566	102.0	57.757					12		187 246		88 264		200 107	22	02					57.757	
				-						-				12									-	-	-			-
12/31/2050	2050	12	31	-	638	(0.2)	566	91.8	51,954	-		-		-		138 200		46 234		198 110	23		-	-	-	-	51,954	-
1/31/2051	2051	1	31	-	638	(0.2)	566	97.8	55,319	-		-		-	35	132 203	254 2	76 260	238 2	202 135	49		-	-	-		55,319	-
2/28/2051	2051	2	28	-	638	(0.2)	565	93.6	52.947	-		-		0	51	143 212	256 2	76 279	258 2	211 135	68	2 -	-	-	-		52.947	
3/31/2051	2051	3	31		638	(0.2)	565	131.2	74,131						21	102 193	253 3	00 335	337 2	296 249	185	102 10		_	_		74 131	_
4/30/2051	2051	4	30	-	638		565	136.5	77,115	-	-	-	-			140 225		21 329		315 257	.00	107 26		_	-	-	77.115	-
						(0.2)				-		-		2										-	-			-
5/31/2051	2051	5	31	-	638	(0.2)	565	149.5	84,436	-		-		11		168 249		22 345		312 260		113 37		-	-		84,436	-
6/30/2051	2051	6	30	-	638	(0.2)	565	130.3	73,532	-		-		12	64	133 191	268 2	97 314	304 2	278 241	193	110 41	1 5	-	-		73,532	-
7/31/2051	2051	7	31	-	638	(0.2)	564	132.1	74.525	_		-		9	54	134 202	244 2	80 302	307 2	282 244	189 1	109 44	4 5	-	-		74.525	-
8/31/2051	2051	8	31		638	(0.2)	564	130.7	73.698					2		121 201		88 293		292 234	181	103 33	3 0	_	_		73,698	_
9/30/2051	2051	9	30		638	(0.2)	564	121.9	68.701					-		139 210		90 300		282 216		79 10					68.701	
														-									-		-	-		
10/31/2051	2051	10	31	-	638	(0.2)	564	126.3	71,187			-		-		121 213		15 345		269 218	145	52 -	-	-	-		71,187	-
11/30/2051	2051	11	30	-	638	(0.2)	563	102.0	57,470	-		-		12		186 244		87 263		199 107	22		-	-	-		57,470	-
12/31/2051	2051	12	31	-	638	(0.2)	563	91.8	51,696			-		-	52	137 199	236 2	45 233	237 1	197 110	23		-	-	-		51,696	-
1/31/2052	2052	1	31	_	638	(0.2)	563	97.8	55.044			_		-	35	131 202	253 2	75 259	236 2	201 135	49		-	_	-		55.044	-
2/29/2052	2052	2	29		638	(0.2)	563	93.6	52.683					0		138 204		65 268		203 129	65	2 -					52,683	
				-						-	-	-	-											-	-	-		-
3/31/2052	2052	3	31	-	638	(0.2)	562	131.2	73,762	-		-		7.2		102 192		98 333		294 248		102 19	•	-	-		73,762	-
4/30/2052	2052	4	30	-	638	(0.2)	562	136.5	76,731	-		-		2		139 224		19 327		313 256		107 26	-	-	-		76,731	-
5/31/2052	2052	5	31	-	638	(0.2)	562	149.5	84,016	-				11	71	167 248	295 3	21 344	342 3	311 259	193	112 36	6 0	-	-		84,016	-
6/30/2052	2052	6	30	-	638	(0.2)	562	130.3	73,166	-		-		12	64	132 190	267 2	96 313	303 2	277 240	192	109 41	1 5	-			73,166	-
7/31/2052	2052	7	31		638	(0.2)	561	132.1	74 154					8	54	134 201	243 2	78 300	306 2	280 242	188	109 43	3 5				74 154	
8/31/2052	2052	8	31		638	(0.2)	561	130.7	73,331					2		120 200		86 291		291 233		103 33					73,331	
		q	30	-						-		-		2								79 10		-	-			-
9/30/2052	2052			-	638	(0.2)	561	121.9	68,359	-		-		-		139 209		89 298		280 215				-	-		68,359	-
10/31/2052	2052	10	31	-	638	(0.2)	561	126.3	70,833	-		-		-		120 211		13 344		268 217	145	52 -	-	-	-		70,833	
11/30/2052	2052	11	30	-	638	(0.2)	561	102.0	57,184			-		12	89	185 243	269 2	85 261	234 1	198 106	22		-	-	-		57,184	-
12/31/2052	2052	12	31	_	638	(0.2)	560	91.8	51.438			_		-	52	137 198	235 2	44 232	235 1	196 109	23		_	_	-		51.438	-
1/31/2053	2053	1	31		638	(0.2)	560	97.8	54,770							130 201		73 258		200 134	49						54.770	
			0.	-						-		-		- 0							67		-	-	-			-
2/28/2053	2053	2	28	-	638	(0.2)	560	93.6	52,421	-		-		U		142 210		73 276		209 133	0.			-	-		52,421	-
3/31/2053	2053	3	31	-	638	(0.2)	560	131.2	73,395	-		-		-		101 191		97 331		293 247	100	101 19		-	-		73,395	-
4/30/2053	2053	4	30	-	638	(0.2)	559	136.5	76,350	-		-		2	50	138 223	278 3	18 326	324 3	311 254	188	106 26	3 -	-	-		76,350	-
5/31/2053	2053	5	31	_	638	(0.2)	559	149.5	83,598			_		11		167 247	293 3	19 342	340 3	309 258	192	112 36	s n		_		83.598	
6/30/2053	2053	6	30		638	(0.2)	559	130.3	72,802			_		12		131 189		94 311		275 239		109 40					72,802	
		7	31	-			559			-	-	-	-	8				77 299				108 43		-	-	-		-
7/31/2053	2053	,		-	638	(0.2)		132.1	73,785	-		-		0											-		73,785	-
8/31/2053	2053	8	31	-	638	(0.2)	558	130.7	72,966	-		-		2		120 199		85 290		289 232		102 32		-	-		72,966	-
9/30/2053	2053	9	30	-	638	(0.2)	558	121.9	68,019	-		-		-		138 208		87 297		279 214		78 10) -	-	-		68,019	-
10/31/2053	2053	10	31	-	638	(0.2)	558	126.3	70,480	-		-		-		120 210	258 3	12 342	321 2	267 216		51 -	-	-	-		70,480	-
11/30/2053	2053	11	30	-	638	(0.2)	558	102.0	56,899	-		-		12	89	184 242	268 2	84 260	233 1	197 106	22			-			56,899	-
12/31/2053	2053	12	31	_	638	(0.2)	558	91.8	51,182			_		_		136 197				195 109	22						51.182	
	2000		٠.		000	(0.2)	000	00	01,102				-		٠.		200 2	201	20.			_				-	01,102	

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 12 Attachment 1 of 1 Tab 11 of 19

FPL & GULF 000012 20220000-OT

> Ann. Degrade 0.50% 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

-						0.509	Cumulative			1	2	3	4	5 6	5 7	8	9	10	11	12	13	14	15	16 1	17	18 1	9	20	21	22	23 2	24	
							Capacity					Hourly H	Hourly Ho	urly Hou	urly Hourly	/ Hourly	Hourly	Hourly	Hourly	Hourly	Hourly F	Hourly H	lourly H	ourly Ho	urly H	ourly Ho	urly Ho	ourly H	lourly H				
				New Capacity	Cumulative Capacity	Monthly	after Degradation	Energy per MWdc	Monthly Generation	Gen. Ending	Gen. Ending				en. Gen. ling Ending															Gen. C			Monthly Generation
Date	Year	Month Nu	n Days	(MWdc)	(MWdc)	Degradation	(MWdc)	(MWh-ac)	(MWh)	1:00	2:00	3:00	4:00 5:	00 6:0	00 7:00	8:00	9:00	10:00	11:00	12:00	13:00	14:00 1	15:00 1	6:00 17	:00 18	3:00 19	:00 20	0:00 2	21:00 2:	2:00 2	3:00 0:	:00	(check) check
1/31/2013	2013	1	31	-				97.8	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-			-		-	-	
2/28/2013 3/31/2013		2	28 31	1				93.6 131.2		- 1	- 1	1	1	: :		- 1	1.0	- 1	- 1	1.0	1	1	1	1		1		1	1	1	1	1	1 1
4/30/2013		4	30		-	-	-	136.5	-	- 1	- 1	- 1	1				- 1			- 1	- 1	1	-	2		-		1	1	1	1		
5/31/2013	2013	5	31	-	-	-	-	149.5	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	
6/30/2013	2013	6	30	-	-	-	-	130.3	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	
7/31/2013 8/31/2013		8	31 31		-	-		132.1 130.7		- 1	- 1	- 1	1	: :		- 1	- 1	- 1	- 1	- 1	- 1	1	1	1		1				1			
9/30/2013	2013	9	30		-	-	-	121.9	-	-	-	-	-			-	-	-	-	-	-	-	-	-		-		-	-	-	-	-	
10/31/2013		10	31	-	-	-	-	126.3	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	
11/30/2013 12/31/2013		11 12	30 31		-	-	-	102.0 91.8	-		- 1	- 1	1			- 1	- 1	- 5	- 5	- 5	- 5	- 1	2	2		1			1	1	1	1	
1/31/2014	2013	1	31	- 0	- 0	-	- 0	97.8	- 2	- 1	- 1	- 1	-			- 0	- 0	- 0	- 0	- 0	- 0	- 0	- 0	- 0	0	1			1	1	1		2 -
2/28/2014	2014	2	28	0	0	(0.0		93.6	4	-	-	-	-		. 0	0	0	0	0	0	0	0	0	0	0	0			-	-	-	-	4 -
3/31/2014		3 4	31	0	0	(0.0		131.2	8	-	-	-	-		,	. 0	0	0	0	0	0	0	0	0	0	0	0	-	-	-	-	-	8 -
4/30/2014 5/31/2014		5	30 31	0	0	(0.0)		136.5 149.5	11 15	- 1	- 1	- 1	1	: :	. 0	. 0	0	0	0	0	0	0	0	0	0	0	0	- 0		1			15 -
6/30/2014	2014	6	30	Ō	ō	(0.0		130.3	16	-	-	-	-		· ö	Ō	0	ō	ō	ō	ō	ō	ō	ō	ō	ō	ō	ō	-	-	-	-	16 -
7/31/2014		7	31	0	0	(0.0		132.1	19	-	-	-	-		. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	-	-	-	19 -
8/31/2014 9/30/2014	2014 2014	8 9	31 30	0	0	(0.0)		130.7 121.9	21 23		- 1	- 1	1		. 0	0	0	0	0	0	0	0	0	0	0	0	0	- 0	1	1	1	1	21 - 23 -
10/31/2014		10	31	0	0	(0.0		126.3	26			-	-			0	0	Ö	ő	ō	ő	ő	ő	ō	Ö	Ö			1		1		26 -
11/30/2014	2014	11	30	0	0	(0.0	0)	102.0	23	-	-	-	-		. 0	0	0	0	0	0	0	0	0	0	0	-		-	-	-	-	-	23 -
12/31/2014		12	31	0	0	(0.0		91.8	23	-	-	-	-		-	0	0	0	0	0	0	0	0	0	0	-		-	-	-	-	-	23 -
1/31/2015 2/28/2015	2015 2015	2	31 28	0	0	(0.0 (0.0		97.8 93.6	25 25	- 1	- 1	- 1	1	: :		. 0	0	0	0	0	0	0	0	0	0	- 0		1	1	1	1	1	25 - 25 -
3/31/2015		3	31	ō	ő	(0.0		131.2	37	-	-	-	-			Ö	ő	ő	ő	ő	ő	ő	ő	ő	Ō	ő	0		-	-	-		37 -
4/30/2015	2015	4	30	0	0	(0.0		136.5	39	-	-	-	-		. 0	0	0	0	0	0	0	0	0	0	0	0	0	-	-	-	-	-	39 -
5/31/2015 6/30/2015	2015	5 6	31	0	0	(0.0		149.5 130.3	45 40	-	-	-	-		. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	-	-	-	45 - 40 -
7/31/2015		7	30 31	0	0	(0.0 (0.0		132.1	42	- 1	- 1	- 1	1	: :	. 0	. 0	0	0	0	0	0	0	0	0	0	0	0	0		1			40 -
8/31/2015		8	31	Ō	ō	(0.0		130.7	43	-	-	-	-		· ö	Ō	0	ō	ō	ō	ō	ō	ō	ō	ō	ō	ō	ō	-	-	-		43 -
9/30/2015	2015	9	30	0	0	(0.0		121.9	42	-	-	-	-		-	0	0	0	0	0	0	0	0	0	0	0	0	-	-	-	-	-	42 -
10/31/2015 11/30/2015		10 11	31 30	0	0	(0.0)		126.3 102.0	45 37		- 1	- 1	1			0	0	0	0	0	0	0	0	0	0	0		1	1	1	1	1	45 - 37 -
12/31/2015		12	31	ō	ő	(0.0		91.8	34	-	-	-	-			Ö	ő	ő	ő	ő	ő	ő	ő	ő	Ō	-			-	-	-		34 -
1/31/2016	2016	1	31	0	0	(0.0	0)	97.8	38	-	-	-	-		-	0	0	0	0	0	0	0	0	0	0	-		-	-	-	-	-	38 -
2/29/2016		2	29	0	0	(0.0		93.6	37 54	-	-	-	-		. 0	0	0	0	0	0	0	0	0	0	0	0		-	-	-	-	-	37 - 54 -
3/31/2016 4/30/2016		3 4	31 30	0	0	(0.0)		131.2 136.5	58	- 1	- 1	- 1	1	: :		. 0	0	0	0	0	0	0	0	0	0	0	0			1			58 -
5/31/2016	2016	5	31	Ō	ō	(0.0		149.5	65	-	-	-	-		· ö	Ō	0	ō	ō	ō	ō	ō	ō	ō	ō	ō	ō	0	-	-	-		65 -
6/30/2016		6	30	0	0	(0.0		130.3	59	-	-	-	-		. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	-	-	-	59 -
7/31/2016 8/31/2016		8	31 31	0	0	(0.0)		132.1 130.7	61 62		- 1	- 1	1		. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	61 - 62 -
9/30/2016		9	30	0	0	(0.0		121.9	59	- 1	- 1	- 1	1			0	0	ő	0	0	Ö	0	Ö	Ö	0	Ö	0	-	1		1	-	59 -
10/31/2016	2016	10	31	0	1	(0.0) 1	126.3	63	-	-	-	-		-	0	0	0	0	0	0	0	0	0	0	0		-	-	-	-	-	63 -
11/30/2016		11	30	0	1	(0.0		102.0	52	-	-	-	-		. 0	0	0	0	0	0	0	0	0	0	0	-		-	-	-	-	-	52 -
12/31/2016 1/31/2017		12	31 31	0	1	(0.0 (0.0		91.8 97.8	48 53		- 1	- 5				0	0	0	0	0	0	0	0	0	O O	1			-		1		48 - 53 -
2/28/2017		2	28	0	1	(0.0		93.6	52	- 1	- 1	- 1	1			. 0	0	0	0	0	Ö	0	Ö	Ö	0	0			1		1	-	52 -
3/31/2017	2017	3	31	0	1	(0.0		131.2	74	-	-	-	-			0	0	0	0	0	0	0	0	0	0	0	0	-	-	-	-	-	74 -
4/30/2017 5/31/2017		4 5	30 31	0	1	(0.0		136.5 149.5	79 88	-	-	-	-		. 0	0	0	0	0	0	0	0	0	0	0	0	0	-	-	-	-	-	79 - 88 -
6/30/2017		6	30	0	i	(0.0 (0.0		130.3	79	- 1	- 1	- 1	1		. 0	0	0	0	0	0	0	0	Ö	0	0	0	0	0	1		1	1	- 79 -
7/31/2017	2017	7	31	0	1	(0.0		132.1	81	-	-	-	-		. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	-	-	-	81 -
8/31/2017		8	31	0	1	(0.0		130.7	82	-	-	-	-		. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	-	-	-	82 -
9/30/2017 10/31/2017		9 10	30 31	0	1	(0.0)		121.9 126.3	78 83	- 1	- 1	- 1	1	: :		0	0	0	0	0	0	0	0	0	0	0				1			78 - 83 -
11/30/2017		11	30	0	i	(0.0		102.0	68	-	-	-			. 0	0	Ö	ő	ő	Ö	Ö	Ö	ő	Ö	Ö	-		-	-		-	-	68 -
12/31/2017		12	31	0	1	(0.0		91.8	63	-	-	-	-		-	0	0	0	0	0	0	0	0	0	0	-		-	-	-	-	-	63 -
1/31/2018 2/28/2018		1 2	31 28	0	1	(0.0 (0.0		97.8 93.6	67 65	-	-	-	-			. 0	0	0	0	0	0	0	0	0	0	- 0			-	-	-	•	67 - 65 -
3/31/2018		3	31	0	1	(0.0		131.2	92	- 1	- 1	- 1	1			0	0	0	0	0	0	0	Ö	0	0	Ö	0		1	1	1		92 -
4/30/2018	2018	4	30	0	1	(0.0		136.5	97	-	-	-	-		. 0	0	0	0	0	0	0	0	0	0	0	0	0	-	-	-	-	-	97 -
5/31/2018		5 6	31	0	1	(0.0		149.5	107	-	-	-	-		. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	-	-	-	107 -
6/30/2018 7/31/2018		7	30 31	0	1	(0.0)		130.3 132.1	95 97	- 1	- 1	- 1	1	: :	. 0	. 0	0	0	0	0	0	0	0	0	0	0	0	0		1			95 - 97 -
8/31/2018	2018	8	31	Ō	1	(0.0		130.7	97	-	-	-	-		· ö	Ō	0	ō	ō	ō	ō	ō	ō	ō	ō	ō	ō	ō	-	-	-	-	97 -
9/30/2018		9	30	0	1	(0.0		121.9	91	-	-	-	-		-	0	0	0	0	0	0	0	0	0	0	0	0	-	-	-	-	-	91 -
10/31/2018 11/30/2018		10 11	31 30	0	1	(0.0)		126.3 102.0	96 78		- 1	- 1	1			. 0	0	0	0	0	0	0	0	0	0	0		1	1	1	1	1	96 - 78 -
12/31/2018		12	31	0	1	(0.0		91.8	71	- 1		-	-			0	0	Ö	ő	ō	ő	ő	ő	ō	Ö	-			1		1		71 -
1/31/2019	2019	1	31	0	1	(0.0) 1	97.8	76	-	-	-	-			0	0	0	0	0	0	0	0	0	0	-		-	-	-	-	-	76 -
2/28/2019		2	28	0	1	(0.0		93.6	74	-	-	-	-		. 0	0	0	0	0	0	0	0	0	0	0	0	٠	-	-	-	-	-	74 -
3/31/2019 4/30/2019	2019 2019	3	31 30	0	1	(0.0 (0.0		131.2 136.5	104 110		- 1	- 1	1			. 0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	104 - 110 -
5/31/2019		5	31	Ö	1	(0.0		149.5	121	- 1	- 1		-		. 0	0	Ö	ő	Ö	Ö	Ö	Ö	ő	Ö	Ö	0	Ö	0	1	1	1		121 -
6/30/2019	2019	6	30	0	1	(0.0		130.3	107	-	-	-	-		. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	-	-	-	107 -
7/31/2019		7	31	0	1	(0.0		132.1	109	-	-	-	-		. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	-	-	-	109 -
8/31/2019 9/30/2019	2019 2019	9	31 30	0	1	(0.0 (0.0		130.7 121.9	109 102		- 1		-		. 0	0	0	0	0	0	0	0	0	0	0	0	0	- 0	1	1	1	1	109 - 102 -
10/31/2019		10	31	ő	1	(0.0		126.3	107	- 1		-	-			0		ő	ő	ō	1	ő	ő	ō	Ö	Ö			1		1		107 -
11/30/2019	2019	11	30	0	1	(0.0) 1	102.0	87	-	-	-	-		- 0	0	0	Ō	ō	ō	Ö	0	0	ō	0	-		-	-	-	-	-	87 -
12/31/2019		12	31	0	1	(0.0		91.8	79 07	-	-	-	-			0		0	0	0	0	0	0	0	0	-		-	-	-	-	-	79 -
1/31/2020 2/29/2020	2020 2020	1 2	31 29	0	1	(0.0 (0.0		97.8 93.6	97 106	- 1	- 1	- 1	1	: :		0		0	0	0 1	0 1	0	0	0	0	- 0		1		1	1	-	97 - 106 -
3/31/2020	2020	3	31	0		(0.0) 1	131.2	165	-	-	-	-			0		ō	1	1	1	1	1	1	0	0	0					-	165 -
4/30/2020	2020	4	30	0	1	(0.0)) 1	136.5	190	-	-	-	-	-	- 0	0		1	1	1	1	1	1	1	0	0	0		-	-		-	190 -
5/31/2020 6/30/2020	2020 2020	5 6	31 30	0	2	(0.0 (0.0)) 2)) 2	149.5 130.3	228 216	-	-	- 1	1		. 0	0		1	1	1	1	1	1	1	1	0	0	0	1	-	1	-	228 - 216 -
7/31/2020		6 7	30	0		(0.0		130.3	216			- 1			. 0	_		1	1	1	1	1	1	1	1	0	0	0			1	-	236 -
8/31/2020	2020	8	31	0	2	(0.0	0) 2	130.7	251	-	-	-	-		. 0	0	0	1	- 1	- 1	1	1	1	1	1	0	Ö	Ö		-		-	251 -
9/30/2020	2020	9	30	0	2	(0.0	0) 2	121.9	250	-	-	-	-		-	0	1	1	1	1	1	1	1	1	1	0	0	-	-	-	-	-	250 -

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
111111111111111111111111111111111111111
3 3 5 5 5 5 5 5 5 5 4 4 4 5 6 6 6 6 6 6 6
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
111111111111111111111111111111111111111
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
276 236 236 237 242 245 242 235 333 351 389 343 351 352 3348 244 258 281 276 394 419 469 417 432 521 578 526 528 499 422 588 491 423 411 584 664 664 660 496 677 77 576 676 789 789 789 781 794 800 788 812 811 794 800 788 812 811 794 800 788 812 811 794 800 788 812 811 794 800 788 812 811 794 800 788 818 818 819 741 794 800 788 788 819 717 775 768 768 769 769 769 769 775 775 775 775 775 775 776 776 776 777 777
126.3 102.0 91.8 97.8 93.6 131.2 136.5 149.5 130.3 132.1 130.7 121.9 126.3 102.0 91.8 97.8 93.6 131.2 136.5 149.5 130.3 132.1 130.7 121.9 97.8 93.6 131.2 136.5 149.5 130.3 132.1 130.7 121.9 97.8 93.6 131.2 136.5 149.5 130.3 132.1 130.7 121.9 97.8 93.6 131.2 136.5 149.5 130.3 132.1 130.7 121.9 97.8 93.6 131.2 136.5 149.5 130.3 132.1 130.7 121.9 97.8 93.6 131.2 136.5 149.5 130.3 132.1 130.7 121.9 97.8 93.6 131.2 136.5 149.5 130.3 132.1 130.7 121.9 97.8 93.6 131.2 136.5 149.5 130.3 132.1 130.7 121.9 136.5 149.5 130.3 132.1 130.7 121.9 136.5 149.5 130.3 132.1 130.7 121.9 136.5 149.5 130.3 132.1 130.7 121.9 136.5 149.5 130.3 132.1 130.7 121.9 136.5 149.5 130.3 132.1 130.7 121.9 136.5 149.5 130.3 132.1 130.7 121.9 136.5 149.5 130.3 132.1 130.7 121.9 126.3 102.0 97.8 97.8 97.8 97.8 93.6 131.2 136.5 149.5 130.3 132.1 130.7 121.9 126.3 102.0 97.8 97.8 97.8 97.8 97.8 97.8 97.8 97.8
2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
(00) (00) (00) (00) (00) (00) (00) (00)
2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
31 31 31 32 31 31 32 31 33 31 33 31 33 31 33 31 33 31 31 33 31 31
1011121234567891011212345678901112123456789011121234567890111212345678910112123345678910112122345678910112122345678910112122345678910112122345678910112122345678910112122345678910112122345678910112212234567891011212234567891011212234567891011212234567891011212234567891011212234567891011212234567891011212234567891011212234567891011212234567891011212234567891011212234567891011212234567891011221234567891011212234567891011212234567891011212234567891011212234567891011212234567891011212234567891011212234567891011212234567891011212234567891011212234567891011212234567891011212234567891011212234567891011212234567891011212234567891011212234567891011212123456789101121223456789101121223456789101121223456789101122122345678910112212234567891011221223456789101122122234567891011221222345678910112212223456789101122122011220112201120112011201120112
2020 2020 2020 2020 2020 2020 2020 202
10/31/2020 11/30/2020 12/31/2020 12/31/2020 12/31/2020 13/31/2021 4/30/2021 4/30/2021 4/30/2021 4/30/2021 4/30/2021 13/31/2021 13/31/2021 13/31/2022 13/31/2022 13/31/2022 13/31/2022 13/31/2022 13/31/2022 13/31/2022 13/31/2023 13/31/2024 13/31/2024 13/31/2024 13/31/2024 13/31/2024 13/31/2024 13/31/2024 13/31/2024 13/31/2024 13/31/2024 13/31/2024 13/31/2025 13/31/2025 13/31/2025 13/31/2025 13/31/2025 13/31/2025 13/31/2025 13/31/2025 13/31/2025 13/31/2025 13/31/2025 13/31/2025 13/31/2025 13/31/2025 13/31/2025 13/31/2026 13/31/2026 13/31/2027 2/28/2027 2/3/31/2028 13/31/2029 13/31/2029 13/31/2029 13/31/2029 13/31/2029 13/31/2029 13/31/2029 13/31/2029 13/31/2029 13/31/2029 13/31/2029 13/31/2029

6/30/2088 2088 6 30 - 20 (0.0) 19 130.3 2,458 0 2 4 6 9 10 11 10 9 8 6 4 1 0 2,458 2/31/2088 2088 7 31 - 20 (0.0) 19 132.1 2,492 0 2 4 7 8 9 10 10 9 8 6 4 1 0 2,492
--

7/31/2045 2045 7 31 - 20 (0.0) 18 132.1 2,406 0 2 4 7 8 9 10 10 9 8 6 4 1 0 2,406 8/31/2045 2045 8 31 - 20 (0.0) 18 130.7 2,379 0 2 4 6 9 9 9 10 10 9 8 6 3 1 0 2,379 9/30/2045 2045 9 30 - 20 (0.0) 18 12/9 2,218 1 4 7 8 9 10 10 9 7 5 3 0 2,218 10/31/2045 2045 10 31 - 20 (0.0) 18 12/9 2,218 1 4 7 8 9 10 10 9 7 5 3 0 2,218 11/30/2045 2045 11 30 - 20 (0.0) 18 12/9 2,238 1 4 7 8 10 11 10 9 7 5 2 2,228 11/30/2045 2045 11 30 - 20 (0.0) 18 10/20 1,855 0 3 6 8 9 9 8 8 6 3 1 1,855 12/31/2045 2045 12 31 - 20 (0.0) 18 9/.8 9/.8 9/.8 9/.8 9/.8 9/.8 8 6 4 1 1,855 12/31/2045 2045 12 31 - 20 (0.0) 18 9/.8 9/.8 9/.8 9/.8 9/.8 9/.8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1/31/2039 2039 2039 3/31/2039 2049 3/31/2039 2049 3	12	200 (0.0) 19 201 (0.0) 19 202 (0.0) 19 203 (0.0) 19 204 (0.0) 19 205 (0.0) 19 206 (0.0) 19 207 (0.0) 19 208 (0.0) 19 209 (0.0) 18 209 (91.8 1,728 97.8 1,840 93.6 1,761 131.2 2,466 136.5 2,565 149.5 2,869 130.3 2,446 132.1 2,479 130.7 2,452 121.9 2,285 126.3 2,368 132.1 3,38 131.2 2,454 136.5 2,553 149.5 2,753 130.3 2,434 131.2 2,454 136.5 2,553 149.5 2,795 130.3 2,434 132.1 2,467 130.7 2,440 121.9 2,274 126.3 2,366 137.3 2,452 138.8 1,771 139.8 1,781 130.7 2,440 141.1 2,452 152.1 2,452 152.1 2,454 153.3 2,454 153.3 2,452 153.3 3,452 153.3 2,452 153.3 3,452 153.3 2,452 153.3 2,453 153.3 2,453 153.3 2,453 153.3 2,453 153.3 2,453 153.3 2,455 153.7 2,467 153.3 2,455 153.7 2,467 153.3 2,455 153.7 2,45	0 2 4 6 7 7 1 3 6 8 8 1 7 7 1 3 6 8 8 2 2 5 7 7 1 4 7 7 0 2 2 5 7 7 1 4 7 7 0 3 6 8 8 2 2 4 7 7 1 1 5 7 7 1 1 1 5 7 7 1 1 1 5 7 7 1 1 1 5 7 7 1 1 1 5 7 7 1 1 1 5 7 7 1 1 1 5 7 7 1 1 1 5 7 7 1 1 1 1	8 8 8 8 7 7 9 9 9 9 9 7 7 8 8 10 11 11 10 10 9 9 10 10 10 10 9 9 10 10 10 10 10 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10	4 1	1,728 1,840 1,761 2,466 2,565 2,809 2,446 2,2479 2,445 2,248 2,248 2,248 1,912 1,720 1,831 1,753 2,446 2,553 2,795 2,434 2,467 2,440 2,274 2,356 1,902 1,711 1,822 1,744 2,246 2,246 2,274 2,356 1,902 1,711 1,822 1,744 2,246 2,274 2,356 1,902 1,711 1,822 1,744 2,440 2,278 1,843 1,733 1,813 1,733 1,813 1,733 1,813 1,735 2,429 2,245 2,245 2,245 2,245 2,245 2,245 2,245 2,245 2,245 2,245 2,245 2,245 2,245 2,245 2,245 2,245 2,245 2,245 2,254 2,246 2,247 2,263 2,345 1,893 1,703 1,813 1,735 2,429 2,527 2,767 2,410 2,442 2,441 2,445 2,252 2,333 1,883 1,694 1,727 2,417 2,417 2,417 2,2515 2,252 2,333 1,883 1,694 1,727 2,417 2,241
1/31/2046 2046 1 31 - 20 (0.0) 18 97.8 1,777 1 4 7 8 9 8 8 6 4 2 1,777	6/50/2044 2044 7/51/2044 2044 8/51/2044 2044 9/50/2044 2044 9/50/2044 2044 10/51/2044 2044 11/50/2044 2044 11/50/2044 2044 11/51/2045 2045 20/51/2045 2045 4/50/2045 2045 4/50/2045 2045 6/50/2045 2045 6/50/2045 2045 8/51/2045 2045 8/51/2045 2045 10/51/2045 2045 8/51/2045 2045 10/51/2045 2045 10/51/2045 2045 10/51/2045 2045 10/51/2045 2045 11/50/2045 2045 11/50/2045 2045 11/50/2045 2045 11/50/2045 2045 11/50/2045 2045 12/51/2045 2045 12/51/2045 2045 12/51/2045 2045	6 30 - 7 31 - 8 31 - 9 30 - 100 31 - 111 30 - 12 31 - 2 2 28 - 3 31 - 4 30 - 5 31 - 6 30 - 7 31 - 8 31 - 9 30 - 10 31 - 11 30 - 11 30 - 11 30 - 12 31 -	20 (0.0) 18 20 (0.0) 18	130.3 2.386 132.1 2.418 130.7 2.391 121.9 2.229 126.3 2.310 102.0 1.885 1.677 97.8 1.769 93.6 1.709 131.2 2.393 136.5 2.490 149.5 2.726 130.3 2.374 132.1 2.406 130.7 2.379 121.9 2.218 126.3 2.298 140.5 1.218	0 2 4 6 7 7 2 4 7 7 2 4 7 7 2 4 7 7 2 4 7 7 2 4 6 7 7 2 4 6 7 7 2 4 6 7 7 7 2 7 7 2 5 7 7 7 2 5 5 7 7 7 2 5 5 8 7 7 7 2 2 4 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	9 10 10 10 9 9 9 9 10 10 9 8 9 10 10 9 8 9 10 10 9 8 10 10 9 8 10 11 11 9 9 9 9 8 6 8 8 8 8 6 8 9 8 8 7 8 10 11 11 10 10 10 11 11 10 10 10 11 11 10 9 10 10 10 9 9 9 9 10 9 9 9 9 10 9	8 6 4 1 0	- 2,386 - 2,418 - 2,391 - 2,229 - 2,310 - 1,865 - 1,677 - 1,786 - 1,709 - 2,393 - 2,490 - 2,726 - 2,374 - 2,406 - 2,379 - 2,218 - 2,218 - 2,298 - 1,855

1/31/2048	2048	1	24		20	(0.0)	18	97.8	1.759							1 4	4 6	8		8	8 6		2							1.759	
			31	-		(0.0)				-	-		-	-	-				9	•		4					-	-	•		-
2/29/2048	2048	2	29	-	20	(0.0)	18	93.6	1,684	-	-		-	-	0	2 4		8	8	9		4	2	0 -		-	-	-	-	1,684	-
3/31/2048	2048	3	31		20	(0.0)	18	131.2	2,358	-	-		-	-	-	1 3	3 6	8	10	11 1	1 9	8	6	3	1 -		-	-	-	2,358	-
4/30/2048	2048	4	30		20	(0.0)	18	136.5	2.453						0	2 4	4 7	9	10	10 1) 10	8	6	3	1 -					2.453	
5/31/2048	2048	5	31		20	(0.0)	18	149.5	2.686						0	2 !	5 8	9	10	11 1		8	6	4	1 0					2,686	
				-							-		-	-	0			9	10				_	7		-	-	-	•		
6/30/2048	2048	6	30	-	20	(0.0)	18	130.3	2,339	-	-	-	-	-	U	2 4			9	10 1		8	6	3	1 0	-	-	-	•	2,339	-
7/31/2048	2048	7	31	-	20	(0.0)	18	132.1	2,370		-		-	-	0	2 4	46	8	9	10 1) 9	8	6	3	1 0	-	-	-		2,370	-
8/31/2048	2048	8	31	-	20	(0.0)	18	130.7	2,344	-	-		_	-	0	2 4	4 6	8	9	9 1) 9	7	6	3	1 0		-	-	-	2,344	-
9/30/2048	2048	9	30		20	(0.0)	18	121.9	2,185							1 /	4 7	8	0	10 1) 9	7	5	3	0 -					2,185	
				-						-	-		-	-	-	1 1			40		, ,	- 4	5	3	0 -		-	-	•		-
10/31/2048	2048	10	31	-	20	(0.0)	18	126.3	2,264	-	-	-	-	-	-	1 4	4 /	8	10	11 1) 9	/	5	2 -		-	-	-	•	2,264	-
11/30/2048	2048	11	30	-	20	(0.0)	18	102.0	1,828	-	-		-	-	0	3 6	68	9	9	8	76	3	1				-	-	-	1,828	-
12/31/2048	2048	12	31	-	20	(0.0)	18	91.8	1,644	-	-		_	-	-	2 4	4 6	7	8	7	3 6	3	1				-	-	-	1,644	-
1/31/2049	2049	1	31		20	(0.0)	18	97.8	1,751							1 /	4 6	8	0	8		4	2							1,751	
				-						-	-	-		-	7.2	1 1	· ·		-			7.	- 1	1		-	-	-	-		-
2/28/2049	2049	2	28	-	20	(0.0)	18	93.6	1,676	-	-		-	-	0	2 :	5 /	8	9	9	3 7	4	2	0 -		-	-	-		1,676	-
3/31/2049	2049	3	31	-	20	(0.0)	18	131.2	2,346	-	-		-	-	-	1 3	36	8	9	11 1	1 9	8	6	3	1 -	-	-	-	-	2,346	-
4/30/2049	2049	4	30		20	(0.0)	18	136.5	2,441		-		-	-	0	2 4	4 7	9	10	10 1) 10	8	6	3	1 -	-	_	-		2,441	
5/31/2049	2049	5	31		20		18	149.5	2,672						ō	2 1		9	10	11 1	10	ō	-	4	1 0					2,672	
		-				(0.0)					-		-	-	U	- :		9	10			0		4	! 0	-	-	-	•		-
6/30/2049	2049	6	30	-	20	(0.0)	18	130.3	2,327	-	-		-	-	0	2 4	46	8	9	10 1	, ,	8	6	3	1 0	-	-	-		2,327	-
7/31/2049	2049	7	31	-	20	(0.0)	18	132.1	2,359	-	-		-	-	0	2 4	4 6	8	9	10 1	9	8	6	3	1 0	-	-	-	-	2,359	-
8/31/2049	2049	8	31		20	(0.0)	18	130.7	2,332						0	2 4	4 6	8	Q	9 1) 9	7	6	3	1 0					2,332	
															U	5						- 4	2								
9/30/2049	2049	9	30	-	20	(0.0)	18	121.9	2,174	-	-		-	-	-	1 4	4 /	8	9	9	, 9	- /	5	3	0 -	-	-	-	-	2,174	-
10/31/2049	2049	10	31	-	20	(0.0)	18	126.3	2,253	-	-		-	-	-	1 4	4 7	8	10	11 1	9	7	5	2 -		-	-	-	-	2,253	-
11/30/2049	2049	11	30	_	20	(0.0)	18	102.0	1,819	_	-			-	0	3 6	6 8	9	9	8	7 6	3	1				_		-	1,819	-
12/31/2049	2049	12	31		20	(0.0)	18	91.8	1,636						-	,	1 6	7	8	7	7 6	3	4							1,636	
				-						-	-		-	-	-	- 1	- 0	,	0	,					-		-	-	-		-
1/31/2050	2050	1	31	-	20	(0.0)	18	97.8	1,742	-	-		-	-	-	1 4	46	8	9	8	r 6	4	2		-		-		-	1,742	-
2/28/2050	2050	2	28	_	20	(0.0)	18	93.6	1,667	_	-			-	0	2 5	5 7	8	9	9	3 7	4	2	0 -			_		-	1,667	-
3/31/2050	2050	3	31	_	20	(0.0)	18	131.2	2,334		_	_		_		4	3 6	8	ā	11 1			6	3	4 .		_		_	2,334	_
				-							-		-	-	7.2	1 1				- 12 - 1				3	1 7		-	-	•		-
4/30/2050	2050	4	30	-	20	(0.0)	18	136.5	2,428	-	-		-	-	0	2 4	4 /	9	10	10 1) 10	8	6	3	1 -	-	-	-		2,428	-
5/31/2050	2050	5	31	-	20	(0.0)	18	149.5	2,659	-	-		-	-	0	2 5	58	9	10	11 1	1 10	8	6	4	1 0	-	-	-	-	2,659	-
6/30/2050	2050	6	30		20	(0.0)	18	130.3	2.316						0	2 4	4 6	8	Q	10 1) 9	8	6	3	1 0					2.316	
7/31/2050	2050	7	31		20	(0.0)	18	132.1	2.347							2		ŏ		9 1				2						2.347	
				-						-	-		-	-	U	2 '	4 6	•	9	9 1	, 9	۰	0	3	1 0	-	-	-			-
8/31/2050	2050	8	31	-	20	(0.0)	18	130.7	2,321	-	-		-	-	0	2 4	46	8	9	9 1	9	7	6	3	1 0	-	-	-		2,321	-
9/30/2050	2050	9	30		20	(0.0)	18	121.9	2.163		-		-	-	_	1 4	4 7	8	9	9	9	7	5	2	0 -	-	_	-		2.163	-
10/31/2050	2050	10	31		20	(0.0)	18	126.3	2.242							4 .	4 7	-	10	44 4		7	Ē	-	-					2.242	
				-							-		-	-	7.2	1 1	• '		10	- 12	, ,		3				-	-	•		-
11/30/2050	2050	11	30	-	20	(0.0)	18	102.0	1,810	-	-		-	-	0	3 6	68	9	9	8	76	3	1		-	-	-	-	-	1,810	-
12/31/2050	2050	12	31	-	20	(0.0)	18	91.8	1.628	-	-		-	-	-	2 4	4 6	7	8	7	7 6	3	1			-	-	-	-	1.628	-
1/31/2051	2051	1	31		20	(0.0)	18	97.8	1.733						_	1 /	4 6	8	0	8	7 6	4	2	_			_	_	_	1.733	_
				-						-	-	-		-	-							- 7	-			-	-	-	-		-
2/28/2051	2051	2	28	-	20	(0.0)	18	93.6	1,659	-	-	-	-	-	U	2 4	4 /	8	9	9	5 /	4	2	0 -		-	-	-	•	1,659	-
3/31/2051	2051	3	31	-	20	(0.0)	18	131.2	2,323	-	-		-	-	-	1 3	36	8	9	10 1	1 9	8	6	3	1 -	-	-	-	-	2,323	-
4/30/2051	2051	4	30		20	(0.0)	18	136.5	2,416						0	2	4 7		10	10 1	10	8	6	3	4 -		_	_	_	2.416	_
			31	-						-	-	-		-	0	2			10	11 1				ž	1 .		-	-	-	2.646	-
5/31/2051	2051	5		-	20	(0.0)	18	149.5	2,646	-	-		-	-	U	2 :	5 8	9	10		I 10	8	ь	4	1 0	-	-	-	•		-
6/30/2051	2051	6	30	-	20	(0.0)	18	130.3	2,304	-	-		-	-	0	2 4	4 6	8	9	10 1	9	8	6	3	1 0	-	-	-	-	2,304	-
7/31/2051	2051	7	31		20	(0.0)	18	132.1	2,335						0	2 4	4 6	8	Q	9 1	1 9	8	6	3	1 0					2,335	
8/31/2051	2051	8	31		20	(0.0)	18	130.7	2,309						ō	4 .		-	ō	9 1			-	-	1 0					2,309	
				-						-	-		-	-	U		4 6	•	9		, ,	- /	0	3	1 0	-	-	-			-
9/30/2051	2051	9	30	-	20	(0.0)	18	121.9	2,153	-	-		-	-	-	1 4	47	8	9	9	9	7	5	2	0 -	-	-	-	-	2,153	-
10/31/2051	2051	10	31	-	20	(0.0)	18	126.3	2,231	-	-		-	-	-	1 4	4 7	8	10	11 1	8 (7	5	2 -		-	-	-	-	2,231	-
11/30/2051	2051	11	30		20	(0.0)	18	102.0	1,801						0	3 6	6 8	8	Q	8	7 6	3	1							1,801	
12/31/2051	2051	12	31		20		18	91.8	1,620						•		4 6		ŏ	7	, ,	2	- 1							1,620	
				-		(0.0)				-	-		-	-	-	2 4	4 6	- /	۰	/		3				-	-	-			-
1/31/2052	2052	1	31	-	20	(0.0)	18	97.8	1,725	-	-		-	-	-	1 4	46	8	9	8	r 6	4	2		-	-	-	-	-	1,725	-
2/29/2052	2052	2	29	-	20	(0.0)	18	93.6	1,651	-	-		-	-	0	2 4	4 6	8	8	8	3 6	4	2	0 -		-	-	-	-	1,651	-
3/31/2052	2052	3	31		20	(0.0)	18	131.2	2,311		_	_		_		4 4	3 6		0	10 1) 9		6	3	4 .		_		_	2,311	_
				-						-	-	-	-	-			4 7		40					3			-				-
4/30/2052	2052	4	30	-	20	(0.0)	18	136.5	2,404	-	-		-	-	U	2 4	4 /	9	10	10 1		8	ь	3	1 -	-	-	-	-	2,404	-
5/31/2052	2052	5	31	-	20	(0.0)	18	149.5	2,633	-	-		-	-	0	2 5	58	9	10	11 1	l 10	8	6	4	1 0	-	-	-	-	2,633	-
6/30/2052	2052	6	30	_	20	(0.0)	18	130.3	2,293	_	-			-	0	2 4	4 6	8	9	10	9 9	8	6	3	1 0	-	_		-	2,293	-
7/31/2052	2052	7	31		20	(0.0)	18	132.1	2,324						ō	2	4 E	8	ā	9 1	9	8	6	3	1 0					2,324	
				-						-	-		-	-	0	- 1	- 0	0	9			0	0	3		-	-	-	-		-
8/31/2052	2052	8	31	-	20	(0.0)	18	130.7	2,298	-	-		-	-	0	1 4	46	8	9	9 1		7	6	3	1 0	-	-	-		2,298	-
9/30/2052	2052	9	30	-	20	(0.0)	18	121.9	2,142	-	-		-	-	-	1 4	4 7	8	9	9	9	7	5	2	0 -	-	-	-	-	2,142	-
10/31/2052	2052	10	31		20	(0.0)	18	126.3	2,219							1 4	4 7	8	10	11 1		7	5	2.						2,219	
															-		,		10	''		,	ž.	-							
11/30/2052	2052	11	30	-	20	(0.0)	18	102.0	1,792	-	-		-	-	U	3 (0 0	•	9	•		3				-	-	-		1,792	-
12/31/2052	2052	12	31	-	20	(0.0)	18	91.8	1,612	-	-		-	-	-	2 4	46	7	8	7	76	3	1			-	-	-		1,612	-
1/31/2053	2053	1	31		20	(0.0)	18	97.8	1,716		-		-	-	_	1 4	4 6	8	9	8	7 6	4	2			-	_	-		1,716	-
2/28/2053	2053	2	28		20	(0.0)	18	93.6	1,643						0	2	1 7	8	ā	0	3 7	1	2	0						1,643	
				-						-	-		-	-	U	4	• /	0	9	9	, /	4	-				-		-		-
3/31/2053	2053	3	31	-	20	(0.0)	18	131.2	2,300	-	-		-	-	-	1 3	3 6	8	9	10 1		8	6	3	1 -	-	-	-	-	2,300	-
4/30/2053	2053	4	30	_	20	(0.0)	18	136.5	2.392	_	-			-	0	2 4	4 7	9	10	10 1) 10	8	6	3	1 -		_		-	2.392	-
		5	31	_	20	(0.0)	18	149.5	2.619						0	2	5 9	9	10	11 1		8	6	4	1 0					2,619	
				-						-	-	-	-	-	-	4 :	. 0	-	10			0		*	. 0	-	-		-		-
5/31/2053	2053		30	-	20	(0.0)	18	130.3	2,281	-	-		-	-	0	2 4	46	8	9	10		7	6	3	1 0	-	-		-	2,281	-
6/30/2053	2053	6		-	20	(0.0)	18	132.1	2,312	-	-		-	-	0	2 4	4 6	8	9	9 1	9	8	6	3	1 0	-	-	-		2,312	
		7	31																												
6/30/2053 7/31/2053	2053 2053				20	(0.0)	17	130.7	2 286		-				0	1 4	46	8	9	9 1) 9	7	6	3	1 0	-		-	_	2 286	-
6/30/2053 7/31/2053 8/31/2053	2053 2053 2053	7	31	-	20	(0.0)	17	130.7	2,286	-	-		-	-	0	1 4		_	9	-		7	_	3	1 0	-	-	-	-	2,286	-
6/30/2053 7/31/2053 8/31/2053 9/30/2053	2053 2053 2053 2053	7 8 9	31 30	-	20	(0.0)	17	121.9	2,131	- 1	1	1 1	- 1	1	-	1 4	4 7	8	9	9	9	7	5	2	1 0		1	-	-	2,131	-
6/30/2053 7/31/2053 8/31/2053 9/30/2053 10/31/2053	2053 2053 2053 2053 2053	7 8 9 10	31 30 31	-	20 20	(0.0)	17 17	121.9 126.3	2,131 2,208						1	1 4	4 7 4 7	8	10	9	9 9	7 7 7	_	3 2 2	1 0 0 -	-		-		2,131 2,208	-
6/30/2053 7/31/2053 8/31/2053 9/30/2053	2053 2053 2053 2053	7 8 9	31 30		20	(0.0)	17	121.9	2,131	-			-		1		4 7 4 7	8		9	9 9	7 7 7 3	5	_	1 0 0 - 	-	-		-	2,131	:
6/30/2053 7/31/2053 8/31/2053 9/30/2053 10/31/2053 11/30/2053	2053 2053 2053 2053 2053 2053	7 8 9 10 11	31 30 31 30	-	20 20 20	(0.0) (0.0) (0.0)	17 17 17	121.9 126.3 102.0	2,131 2,208 1,783	-	-				1	1 4	4 7 4 7 6 8	8	10	9	9 9 8 7 6		5	_	1 0 0 - 	-	-	-	-	2,131 2,208 1,783	-
6/30/2053 7/31/2053 8/31/2053 9/30/2053 10/31/2053	2053 2053 2053 2053 2053	7 8 9 10	31 30 31	:	20 20	(0.0)	17 17	121.9 126.3	2,131 2,208	-					1	1 4	4 7 4 7 6 8	8 8 8	10	9 11 1 8	9 9 8 7 6	3	5	_	1 0 0 - 		-	-	-	2,131 2,208	-

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 12 Attachment 1 of 1 Tab 12 of 19

FPL & GULF 000013 20220000-OT

Hour Ending

1 Energy PI, Pensacola, FL 32520 1,444 kWh/kWdc 16.5%

Location: Output: PVWatts NCF:

12 31 Month

		1	2	3	4	5	6	7	8	9	10	11	12	Total
	1	- '	-	- '	-	- '	-	-		- '	-	- '	-	-
q	2	-	-	_	-	_	_	-	-	_	-	-	-	-
	3	-	-	_	-	_	_	-	-	_	-	-	-	-
	4	-	-	_	-	_	_	-	-	_	-	-	-	-
	5	-	-	_	-	_	_	-	-	_	-	-	-	-
	6	-	-	_	-	_	_	-	-	_	-	-	-	-
	7	-	0.1%	_	0.4%	1.9%	2.1%	1.5%	0.4%	_	-	2.1%	-	0.7%
	8	6.2%	9.0%	3.8%	9.0%	12.6%	11.3%	9.6%	8.5%	7.9%	5.7%	15.9%	9.2%	9.0%
	9	23.3%	25.3%	18.1%	24.7%	29.8%	23.5%	23.8%	21.4%	24.7%	21.4%	33.1%	24.4%	24.4%
	10	35.9%	37.5%	34.1%	39.8%	44.2%	33.9%	35.8%	35.7%	37.3%	37.7%	43.4%	35.3%	37.5%
	11	44.9%	45.4%	44.8%	49.7%	52.4%	47.6%	43.3%	47.4%	46.4%	46.3%	48.1%	41.9%	46.5%
	12	48.8%	48.7%	53.0%	56.8%	57.1%	52.7%	49.6%	51.0%	51.5%	55.9%	50.9%	43.5%	51.6%
	13	46.0%	49.3%	59.2%	58.2%	61.1%	55.7%	53.5%	51.9%	53.2%	61.3%	46.6%	41.4%	53.1%
	14	42.0%	45.7%	59.5%	57.8%	60.8%	53.9%	54.5%	55.8%	53.2%	57.6%	41.8%	42.0%	52.1%
	15	35.7%	37.3%	52.3%	55.7%	55.3%	49.3%	49.9%	51.8%	49.9%	47.8%	35.3%	34.9%	46.3%
	16	23.9%	23.8%	44.1%	45.5%	46.1%	42.7%	43.2%	41.5%	38.3%	38.7%	18.9%	19.5%	35.6%
	17	8.7%	12.0%	32.7%	33.7%	34.4%	34.2%	33.4%	32.1%	28.0%	25.8%	4.0%	4.0%	23.6%
	18	-	0.3%	18.1%	19.0%	20.0%	19.4%	19.4%	18.3%	14.1%	9.2%	-	-	11.6%
	19	-	-	3.3%	4.7%	6.5%	7.2%	7.7%	5.8%	1.7%	-	-	-	3.1%
	20	-	-	-	-	0.1%	0.8%	0.8%	0.0%	-	-	-	-	0.1%
	21	-	-	-	-	-	-	-	-	-	-	-	-	-
	22	-	-	-	-	-	-	-	-	-	-	-	-	-

	1	2	3	4	5	6	7	8	9	10	11	12	Total
1	-	-	-	-	-	-	-	-	-	-	-	-	-
2	-	-	-	-	-	-	-	-	-	-	-	-	-
3	-	-	-	-	-	-	-	-	-	-	-	-	-
4	-	-	-	-	-	-	-	-	-	-	-	-	-
5	-	-	-	-	-	-	-	-	-	-	-		-
6	-	-	-	-	-	-	-	-	-	-	-		-
7	-	0.0	-	0.1	0.6	0.6	0.5	0.1	-	-	0.6	-	3
8	1.9	2.5	1.2	2.7	3.9	3.4	3.0	2.6	2.4	1.8	4.8	2.9	33
9	7.2	7.1	5.6	7.4	9.2	7.0	7.4	6.6	7.4	6.6	9.9	7.6	89
10	11.1	10.5	10.6	11.9	13.7	10.2	11.1	11.1	11.2	11.7	13.0	10.9	137
11	13.9	12.7	13.9	14.9	16.3	14.3	13.4	14.7	13.9	14.4	14.4	13.0	170
12	15.1	13.6	16.4	17.0	17.7	15.8	15.4	15.8	15.4	17.3	15.3	13.5	188
13	14.3	13.8	18.4	17.5	19.0	16.7	16.6	16.1	16.0	19.0	14.0	12.8	194
14	13.0	12.8	18.5	17.4	18.9	16.2	16.9	17.3	16.0	17.9	12.5	13.0	190
15	11.1	10.5	16.2	16.7	17.1	14.8	15.5	16.1	15.0	14.8	10.6	10.8	169
16	7.4	6.7	13.7	13.6	14.3	12.8	13.4	12.9	11.5	12.0	5.7	6.0	130
17	2.7	3.4	10.1	10.1	10.7	10.3	10.4	9.9	8.4	8.0	1.2	1.3	86
18	-	0.1	5.6	5.7	6.2	5.8	6.0	5.7	4.2	2.9	-	-	42
19	-	-	1.0	1.4	2.0	2.2	2.4	1.8	0.5	-	-	-	11
20	-	-	-	-	0.0	0.2	0.2	0.0	-	-	-	-	1
21	-	-	-	-	-	-	-	-	-	-	-	-	-
22	-		-	-			-	-		-			-
23	-		-	-			-	-		-			-
24	-	-	-	-		-	-	-	-	-	-	-	-
	98	94	131	136	150	130	132	131	122	126	102	92	1,444

16.48%

	1	2	3	4	5	6	7	8	9	10	11	12	Total
1	-	-	-	-	-	-	-	-	-	-	-		
2	-	-	-	-	-	-	-	-	-	-	-	-	
3	-	-	-	-	-	-	-	-	-	-	-	-	
4	-	-	-	-	-	-	-	-	-	-	-	-	
5	-	-	-	-	-	-	-	-	-	-	-	-	
6	-	-	-	0	1	1	0	0	-	-	-	-	2
7	-	0	1	3	4	3	3	3	2	2	1	-	22
8	2	3	6	7	9	7	7	7	7	7	5	3	69
9	7	7	11	12	14	10	11	11	11	12	10	8	123
10	11	11	14	15	16	14	13	15	14	14	13	11	161
11	14	13	16	17	18	16	15	16	15	17	14	13	185
12	15	14	18	17	19	17	17	16	16	19	15	13	197
13	14	14	18	17	19	16	17	17	16	18	14	13	194
14	13	13	16	17	17	15	15	16	15	15	13	13	178
15	11	10	14	14	14	13	13	13	11	12	11	11	147
16	7	7	10	10	11	10	10	10	8	8	6	6	104
17	3	3	6	6	6	6	6	6	4	3	1	1	51
18	-	0	1	1	2	2	2	2	1	-	-	-	11
19	-	-	-	-	0	0	0	0	-	-	-	-	1
20	-	-	-	-	-	-	-	-	-	-	-	-	-
21	-	-	-	-	-	-	-	-	-	-	-	-	-
22	-	-	-	-	-	-	-	-	-	-	-	-	-
23	-	-	-	-	-	-	-	-	-	-	-	-	-
24	-	-	-	-	-	-	-	-	-	-	-	-	-
	98	94	131	136	150	130	132	131	122	126	102	92	1,444

16.48%

```
Florida Power & Light Company
                                                                                FPL & GULF 000014
Docket No. 20220000-OT
                                                                                20220000-OT
Ten-Year Site Plan
Staff's Third Data Request
Request No. 12
Attachment 1 of 1
Tab 13 of 19
PVWatts: Hourly PV Performance Data
                                                          1 Energy PI, Pensacola, FL 32520
Lat, Lon: 30.41, -87.22
Requested Location:
Location:
Lat (deg N):
                                                               30.41
                                                               87.22
Long (deg W):
Elev (m):
                                                            12.66667
DC System Size (kW):
Module Type:
                                                           Standard
Array Type:
                                                          Fixed (roof mount)
Array Tilt (deg):
                                                                  20
Array Azimuth (deg):
                                                                 180
                                                                15.5
96
1.2
```

0.121 16.5

System Losses: Invert Efficiency:

Month

	Day		Hour	Beam Irradianc I	Diffuse Irradiance (W/m^2)	Ambient Temperature (C)	Wind Speed (m/s)	Plane of Array Irradiance (W/m^2)	Cell Temperature (C)	DC Array Output (W)	AC System Output (W)
1.0		.0	-	-	-	16.0	1.0	-	16.0	-	-
1.0		.0	1.0	-	-	15.0	1.0		15.0	-	-
1.0		.0	2.0	-	-	15.0	1.0	-	15.0		-
1.0		.0	3.0	-	-	16.0	1.0	-	16.0	-	-
1.0 1.0		.0	4.0 5.0		-	16.0 16.0	1.0 1.0		16.0 16.0	-	-
1.0		.0	6.0		-	17.0	1.0		17.0	-	-
1.0		.0	7.0	97.0	48.0	19.0	1.0	85.2	19.5	69.4	63.0
1.0		.0	8.0	6.0	110.0	20.0	1.0	112.7	22.2	96.4	89.4
1.0		.0	9.0	240.0	191.0	21.0	1.0	379.3	33.0	306.3	294.0
1.0		.0	10.0	696.0	132.0	21.0	1.0	710.9	45.6	540.0	519.7
1.0		.0	11.0	157.0	282.0	22.0	2.0	442.5	36.6	353.2	339.4
1.0		.0	12.0	83.0	267.0	22.0	2.0	351.8	32.8	286.2	274.4
1.0		.0	13.0	-	123.0	22.0	2.0	118.7	25.3	100.2	93.1
1.0		.0	14.0	_	72.0	21.0	2.0	68.4	21.6	58.7	52.5
1.0		.0	15.0	_	79.0	20.0	2.0	77.3	20.6	66.7	60.3
1.0	1	.0	16.0	-	17.0	20.0	2.0	16.1	18.7	14.0	8.7
1.0	1	.0	17.0	-	-	20.0	2.0	-	20.0	-	-
1.0	1	.0	18.0	-	-	20.0	2.0	-	20.0	-	-
1.0	1	.0	19.0	-	-	20.0	2.0		20.0	-	-
1.0	1	.0	20.0	-	-	20.0	2.0		20.0	-	-
1.0	1	.0	21.0	-	-	20.0	2.0	-	20.0	-	-
1.0	1	.0	22.0	-	-	20.0	3.0	-	20.0	-	-
1.0	1	.0	23.0	-	-	20.0	3.0	-	20.0	-	-
1.0	2	2.0	-	-	-	20.0	2.0	-	20.0	-	-
1.0	2	2.0	1.0	-	-	20.0	2.0	-	20.0	-	-
1.0		2.0	2.0	-	-	20.0	2.0	-	20.0	-	-
1.0		2.0	3.0	-	-	20.0	2.0	-	20.0	-	-
1.0		2.0	4.0	-	-	20.0	3.0	-	20.0	-	-
1.0		2.0	5.0	-	-	20.0	3.0	-	20.0	-	-
1.0		2.0	6.0	-	-	20.0	3.0	-	20.0	-	
1.0		2.0	7.0	-	20.0	20.0	3.0	18.9	18.6	16.5	11.1
1.0		2.0	8.0	36.0	119.0	21.0	3.0	143.4	23.2	121.4	113.8
1.0		2.0	9.0	3.0	153.0	21.0	3.0	153.3	23.9	130.2	122.4
1.0		2.0	10.0	702.0	134.0	22.0	3.0	717.9	40.1	560.8	539.8
1.0		2.0	11.0	739.0	138.0	22.0	4.0	792.9	42.0	615.0	591.8
1.0		2.0	12.0	30.0	236.0	22.0	3.0	272.1	30.5	223.9	213.9
1.0		2.0	13.0	697.0	136.0	21.0	3.0	701.2	39.1	550.1	529.4
1.0 1.0		2.0	14.0 15.0	641.0 520.0	116.0 84.0	21.0 20.0	3.0 2.0	553.3 347.2	36.7 31.1	434.9 271.3	418.4 260.0
1.0		2.0	16.0	205.0	34.0	19.0	2.0	103.3	21.7	78.4	71.8
1.0		2.0	17.0	205.0	34.0	18.0	2.0	103.3	18.0	70.4	71.0
1.0		2.0	18.0	-		18.0	2.0	-	18.0	-	
1.0		2.0	19.0	-	-	17.0	2.0	-	17.0	-	
1.0		2.0	20.0	-		17.0	2.0		17.0		
1.0		2.0	21.0			16.0	2.0		16.0		
1.0		2.0	22.0	_	_	16.0	2.0	_	16.0	_	_
1.0		2.0	23.0	_	_	15.0	2.0	_	15.0	_	_
1.0		3.0	-	_	_	15.0	2.0	_	15.0	_	_
1.0		3.0	1.0	_	_	14.0	2.0	_	14.0	_	_
1.0		3.0	2.0	_	_	13.0	2.0	<u>-</u>	13.0	_	_
1.0		3.0	3.0	_	_	13.0	2.0	<u>-</u>	13.0	_	_
1.0		3.0	4.0	_	-	12.0	2.0	-	12.0	-	_
1.0		3.0	5.0	-		12.0	1.0	-	12.0	-	-

1.0	6.0 6.0 7.0 6.0 8.0 10.0 11.0 10.0 12.0 10.0 12.0 10.0 10	512.0 764.0 870.0 920.0 939.0 939.0 910.0 848.0 720.0 402.0	35.0 58.0 70.0 77.0 80.0 79.0 76.0 68.0 55.0 27.0 - - - - - - - - - - - - -	12.0 13.0 15.0 16.0 16.0 16.0 17.0 18.0 18.0 18.0 17.0 15.0 14.0 14.0 13.0 12.0 12.0 12.0 11.0 11.0 11.0 11.0 11	1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	203.7 462.5 673.0 813.8 883.7 876.3 787.2 629.6 407.6 148.2 - - - - - - - - - - - - - - - - - - -	12.0 17.1 28.1 36.4 41.3 44.8 45.8 47.8 42.4 33.2 20.7 14.0 13.0 12.0 12.0 12.0 12.0 11.0 11.0 11.0 11	154.6 368.2 530.3 631.4 675.2 665.9 589.9 479.5 312.6 107.6	146.3 354.0 510.5 607.6 649.5 640.6 6567.7 461.5 300.0 100.3
1.0 6 1.0 6	5.0 - 5.0 1.0 5.0 2.0 5.0 3.0 5.0 4.0 5.0 5.0	- - - - - - 130.0 739.0 827.0 290.0 25.0	46.0 65.0 86.0 241.0 234.0 163.0 143.0	8.0 8.0 7.0 6.0 6.0 5.0	2.0 2.0 3.0 3.0 2.0 2.0	96.3 456.1 662.2 501.8 254.6 159.0 139.1 98.3	8.0 8.0 7.0 6.0 6.0 5.0	- - - - - - - - - - - - - - - - - - -	75.4 366.0 528.5 411.8 214.1 134.3 117.5 82.4

1.0 1.0 1.0	6.0 15.0 6.0 16.0 6.0 17.0	-	55.0 14.0	7.0 6.0 5.0	3.0 3.0 3.0	52.2 13.3	6.7 4.4 5.0	47.9 12.3	41.9 7.0
1.0 1.0	6.0 18.0 6.0 19.0	-	- -	5.0 4.0	2.0 2.0	- -	5.0 4.0	-	-
1.0 1.0 1.0	6.0 20.0 6.0 21.0 6.0 22.0	-	- - -	3.0 3.0 3.0	2.0 2.0 2.0	-	3.0 3.0 3.0	- - -	-
1.0 1.0 1.0	6.0 23.0 7.0 - 7.0 1.0	-	- -	2.0 2.0 2.0	2.0 1.0 1.0	:	2.0 2.0 2.0	-	-
1.0 1.0 1.0	7.0 1.0 7.0 2.0 7.0 3.0	-	- - -	2.0 2.0 1.0	1.0 1.0 1.0	- - -	2.0 2.0 1.0	- - -	-
1.0 1.0 1.0	7.0 4.0 7.0 5.0 7.0 6.0	-	- -	1.0 1.0 1.0	1.0 1.0 1.0	-	1.0 1.0 1.0	-	-
1.0 1.0	7.0 7.0 7.0 8.0	68.0 700.0	46.0 73.0	3.0 5.0	1.0	73.3 447.4	2.6 23.1	65.0 365.4	58.7 351.3
1.0 1.0 1.0	7.0 9.0 7.0 10.0 7.0 11.0	573.0 895.0 926.0	129.0 91.0 91.0	6.0 7.0 8.0	- - 1.0	543.3 817.4 888.8	31.5 42.9 41.5	439.8 629.2 690.9	423.2 605.4 664.5
1.0 1.0 1.0	7.0 12.0 7.0 13.0	934.0 912.0	86.0 80.0	9.0 10.0	1.0 1.0	885.3 799.6	42.7 40.9	683.8 621.3	657.7 597.9
1.0 1.0 1.0	7.0 14.0 7.0 15.0 7.0 16.0	511.0 717.0 119.0	135.0 59.0 35.0	10.0 9.0 8.0	1.0 1.0 1.0	493.3 416.9 76.8	30.5 25.0 11.2	400.6 333.8 62.9	385.3 320.6 56.6
1.0 1.0	7.0 17.0 7.0 18.0	-	- -	8.0 8.0	1.0 1.0 1.0		8.0 8.0	-	-
1.0 1.0 1.0	7.0 19.0 7.0 20.0 7.0 21.0	-	- - -	8.0 8.0 8.0	1.0 1.0 1.0	- -	8.0 8.0 8.0	-	-
1.0 1.0	7.0 22.0 7.0 23.0	-	- - -	9.0 9.0	2.0 2.0	-	9.0 9.0	- - -	- -
1.0 1.0 1.0	8.0 - 8.0 1.0 8.0 2.0	-	=	9.0 9.0 10.0	2.0 2.0 2.0	Ē	9.0 9.0 10.0	-	-
1.0 1.0	8.0 3.0 8.0 4.0	-	- -	10.0 10.0	2.0 2.0	- -	10.0 10.0	-	-
1.0 1.0 1.0	8.0 5.0 8.0 6.0 8.0 7.0	- - 123.0	- - 46.0	11.0 12.0 14.0	2.0 2.0 2.0	- - 93.9	11.0 12.0 14.6	- - 77.4	- - 70.8
1.0 1.0	8.0 8.0 8.0 9.0	742.0 849.0	60.0 73.0	16.0 17.0	2.0 2.0	451.4 661.9	28.2 37.0	359.0 520.1	345.0 500.6
1.0 1.0 1.0	8.0 10.0 8.0 11.0 8.0 12.0	900.0 920.0 918.0	80.0 84.0 83.0	18.0 19.0 19.0	3.0 3.0 3.0	803.4 876.5 869.7	40.1 43.4 43.5	627.3 674.7 669.1	603.6 649.0 643.6
1.0 1.0	8.0 13.0 8.0 14.0	886.0 816.0	82.0 76.0	19.0 18.0	3.0 2.0	783.6 626.7	41.3 38.4	607.9 488.1	585.0 469.8
1.0 1.0 1.0	8.0 15.0 8.0 16.0 8.0 17.0	674.0 344.0	64.0 34.0 -	17.0 16.0 16.0	2.0 2.0 2.0	405.7 141.4 -	30.2 20.2 16.0	317.6 105.1	304.9 97.9
1.0	8.0 18.0 8.0 19.0	-	- -	16.0 16.0	2.0 2.0	- -	16.0 16.0	-	-
1.0 1.0 1.0	8.0 20.0 8.0 21.0 8.0 22.0	- - -	- - -	17.0 17.0 17.0	2.0 2.0 2.0	- - -	17.0 17.0 17.0	- - -	- -
1.0 1.0 1.0	8.0 23.0 9.0 - 9.0 1.0	-	- - -	16.0 16.0 16.0	2.0 1.0 1.0	-	16.0 16.0 16.0	-	-
1.0 1.0	9.0 2.0 9.0 3.0	-	- -	16.0 16.0	1.0 1.0	-	16.0 16.0	-	-
1.0 1.0 1.0	9.0 4.0 9.0 5.0 9.0 6.0	-	- - -	16.0 16.0 16.0	1.0 1.0 1.0	- - -	16.0 16.0 16.0	- - -	-
1.0 1.0	9.0 7.0 9.0 8.0	109.0 663.0	46.0 71.0	17.0 18.0	1.0 1.0	89.6 425.9	17.6 31.5	73.2 334.3	66.7
1.0 1.0 1.0	9.0 9.0 9.0 10.0 9.0 11.0	267.0 848.0 875.0	190.0 93.0 96.0	19.0 20.0 20.0	1.0 1.0 1.0	395.2 783.9 859.9	33.5 47.1 51.5	318.1 590.6 634.5	321.1 305.4 568.4 610.5
1.0 1.0	9.0 12.0 9.0 13.0	874.0 115.0	95.0 250.0	20.0 20.0	1.0 1.0	854.4 353.7	51.7 35.7	629.7 283.4	605.9 271.7 454.7
1.0 1.0 1.0	9.0 14.0 9.0 15.0 9.0 16.0	781.0 40.0 321.0	82.0 111.0 35.0	19.0 18.0 17.0	1.0 1.0 1.0	612.6 135.7 137.0	40.4 24.7 20.4	472.5 113.9 102.4	106.5 95.2
1.0 1.0 1.0	9.0 17.0 9.0 18.0 9.0 19.0	-	- - -	17.0 16.0 16.0	1.0 1.0 1.0	- - -	17.0 16.0 16.0	- -	- -
1.0 1.0	9.0 20.0 9.0 21.0	- - -	- - -	16.0 16.0	1.0 1.0	- - -	16.0 16.0	- - -	- -
1.0 1.0	9.0 22.0 9.0 23.0	-	-	15.0 15.0	1.0 1.0	1	15.0 15.0	-	-

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	10.0			15.0 15.0 15.0 14.0 14.0 14.0 14.0 14.0 14.0 16.0 17.0 18.0 19.0 19.0 19.0 19.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	176.6 428.9 492.9 696.3 679.6 559.9 424.5 292.4 100.3 32.5	15.0 15.0 14.0 14.0 14.0 14.0 14.0 14.0 19.8 31.1 32.9 40.1 40.5 37.0 32.5 27.9 20.4 16.2 17.0 17.0 17.0 17.0 17.0 17.0 17.0 16.0 15.0		126.1 323.9 381.6 523.8 511.6 429.1 331.8 221.8 79.8 22.9
1.0 1.0 1.0 1.0 1.0	12.0 22.0 12.0 23.0 13.0 - 13.0 1.0 13.0 2.0	-	- - - - - - - - - 24.0 75.0	15.0 15.0 15.0 16.0 17.0	1.0 1.0 1.0 1.0 2.0	- - - - - - - - - 22.7 72.1	15.0 15.0 15.0 16.0 17.0	- - - - - - - - 20.0 62.6	- - - - - - - - - - - - - - - - - - -

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	13.0 10 13.0 11 13.0 12 13.0 13 13.0 14 13.0 15 13.0 16 13.0 15 13.0 20 13.0 22 13.0 23 14.0 11 14.0 21 14.0 24 14.0 25 14.0 14 14.0 15 14.0 14 14.0 15 14.0 11 14.0 15 14.0 11 14.0 15 14.0 11 14.0 22 15.0 21 16.0 21 17 18 18 18 18 18 18 18 18 18 18 18 18 18	1.0	57.0 11.0 289.0 271.0 101.0 79.0 59.0 32.0	19.0 20.0 19.0 19.0 18.0 17.0 15.0 14.0 12.0 11.0 11.0 11.0 11.0 10.0 9.0 8.0 7.0 6.0 6.0 6.0 6.0 11.0 12.0 12.0 12.0 11.0 10.0 9.0 8.0 7.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	54.1 10.4 406.4 336.4 775.0 646.9 441.3 179.7	18.9 18.7 28.6 27.0 36.6 33.7 26.3 18.1 12.0 12.0 11.0 11.0 11.0 11.0 11.0 11	47.0 9.1 337.4 281.5 616.0 516.2 352.5 133.0	41.1 3.8 324.1 269.9 592.8 496.8 338.8 125.2
1.0	14.0 18	3.0 -		8.0	2.0		8.0		-
1.0	14.0 20	0.0 -	- -	7.0	2.0	-	7.0	-	-
1.0	14.0 22	2.0 -	-	6.0	2.0	-	6.0	-	
1.0	15.0 -	-	- -	6.0	2.0	-	6.0	-	-
1.0	15.0 2	2.0 -	-	5.0	2.0	-	5.0	-	-
1.0	15.0 4	4.0 -	-	5.0	1.0	-	5.0	-	-
1.0	15.0	6.0 -	-	5.0	1.0	-	5.0	-	-
1.0	15.0	3.0 779.0	56.0	8.0	1.0	464.3	23.2	377.6	363.1
1.0	15.0 10	0.0 198.0	261.0	11.0		442.5	34.4	356.6	342.7
1.0 1.0	15.0 12	2.0 106.0 3.0 161.0	288.0 260.0	12.0 13.0		394.9 411.5	34.5 32.7	318.6 334.6	305.8 321.4
1.0 1.0	15.0 14	4.0 11.0 5.0 123.0	164.0 124.0	13.0 12.0	1.0 1.0	169.9 197.0	19.6 17.8	147.1 169.1	139.0 160.4
1.0 1.0	15.0 16	6.0 - 7.0 -	26.0	11.0 11.0	1.0 1.0	24.7	10.5 11.0	22.3	16.7
1.0 1.0	15.0 19	3.0 - 9.0 -	-	11.0 11.0	1.0 1.0	-	11.0 11.0	-	-
1.0 1.0	15.0 21	0.0 - 1.0 -	-	12.0 12.0	1.0 1.0	-	12.0 12.0	-	-
1.0 1.0	15.0 23	2.0 - 3.0 -	- -	12.0 12.0	2.0 2.0	- -	12.0 12.0	-	-
1.0		1.0 -	-	13.0 13.0	2.0	-	13.0 13.0	-	-
1.0 1.0 1.0	16.0	2.0 - 3.0 - 4.0 -	- -	13.0 13.0 13.0	2.0 1.0 1.0	- -	13.0 13.0 13.0	- -	-
1.0 1.0 1.0	16.0 5	5.0 - 5.0 -	-	14.0 15.0	1.0 1.0 1.0	-	14.0 15.0		Ē
1.0 1.0	16.0 7	7.0 210.0 3.0 68.0	45.0 127.0	16.0 17.0	1.0 1.0	122.0 167.6	17.8 21.4	96.6 142.4	89.5 134.4
1.0 1.0	16.0	9.0 72.0 0.0 20.0	202.0 215.0	18.0 19.0	2.0 2.0	261.0 229.7	24.8 25.2	220.1 193.8	210.1
1.0 1.0	16.0 11 16.0 12	1.0 102.0 2.0 289.0	290.0 281.0	19.0 20.0	2.0 2.0	393.8 565.0	30.1 36.9	324.6 450.2	184.5 311.7 433.3
1.0 1.0	16.0 14	3.0 - 4.0 68.0	164.0 195.0	20.0 19.0	2.0 2.0	160.3 250.0	25.5 25.4	135.1 210.2	127.2 200.5
1.0 1.0	16.0 16	5.0 337.0 6.0 35.0	109.0 44.0	18.0 18.0	2.0 2.0	298.7 56.6	26.3 19.0	243.0 47.4	232.4 41.4
1.0	16.0 17	7.0 -	-	18.0	2.0	-	18.0	-	-

1.0	16.0	18.0	_	<u>-</u>	18.0	2.0	<u>-</u>	18.0	-	_
1.0	16.0	19.0	_		18.0	3.0	_	18.0	_	_
1.0	16.0	20.0			18.0	3.0		18.0	_	
									_	
1.0	16.0	21.0	•	-	18.0	3.0	-	18.0	-	-
1.0	16.0	22.0	-		18.0	3.0	-	18.0		-
1.0	16.0	23.0	-	-	18.0	3.0	-	18.0	-	-
1.0	17.0	-	-	_	18.0	4.0	_	18.0	_	_
1.0	17.0	1.0	_		18.0	4.0	_	18.0	_	_
1.0	17.0	2.0			18.0	4.0		18.0		
			-				· ·			
1.0	17.0	3.0	-	-	19.0	4.0	-	19.0	-	-
1.0	17.0	4.0	-	-	19.0	4.0	-	19.0	-	-
1.0	17.0	5.0	-		19.0	4.0	-	19.0	-	-
1.0	17.0	6.0	_	-	19.0	4.0	_	19.0	_	_
1.0	17.0	7.0	_	36.0	19.0	4.0	34.7	18.2	30.3	24.6
1.0	17.0	8.0	•	11.0	20.0	5.0	10.4	18.8	9.1	3.8
1.0	17.0	9.0	-	57.0	20.0	5.0	54.1	19.8	46.9	40.9
1.0	17.0	10.0	-	41.0	21.0	6.0	38.9	20.6	33.6	27.9
1.0	17.0	11.0	-	119.0	20.0	5.0	114.2	21.2	98.2	91.1
1.0	17.0	12.0	_	91.0	18.0	5.0	86.6	18.7	75.3	68.8
1.0	17.0	13.0		64.0	16.0	5.0	60.8	16.0	53.6	47.4
			-							
1.0	17.0	14.0	-	7.0	14.0	4.0	6.6	12.5	5.9	0.7
1.0	17.0	15.0	-	43.0	14.0	3.0	40.8	13.1	36.4	30.6
1.0	17.0	16.0	-	4.0	13.0	3.0	3.8	11.2	3.4	-
1.0	17.0	17.0	-	_	13.0	3.0	_	13.0	_	_
1.0	17.0	18.0	_		12.0	4.0	_	12.0	-	_
1.0	17.0	19.0			11.0	4.0		11.0		
			-						-	-
1.0	17.0	20.0	-	-	10.0	4.0	-	10.0	-	-
1.0	17.0	21.0	-	-	8.0	4.0	-	8.0	-	-
1.0	17.0	22.0	-	-	8.0	4.0	-	8.0	-	-
1.0	17.0	23.0	_		7.0	4.0	_	7.0	_	_
1.0	18.0	-			7.0	3.0		7.0		
			-				· ·			
1.0	18.0	1.0	-	-	6.0	3.0	-	6.0	-	-
1.0	18.0	2.0	-	-	6.0	2.0	-	6.0	-	-
1.0	18.0	3.0	-	-	6.0	2.0	-	6.0	-	-
1.0	18.0	4.0	-	_	5.0	2.0	_	5.0	_	_
1.0	18.0	5.0	_		5.0	2.0		5.0	-	_
			_		5.0	1.0		5.0		
1.0	18.0	6.0								-
1.0	18.0	7.0	239.0	45.0	7.0	1.0	130.1	8.9	106.4	99.2
1.0	18.0	8.0	831.0	55.0	9.0	1.0	489.5	25.1	394.5	379.4
1.0	18.0	9.0	932.0	65.0	10.0	1.0	707.2	35.7	559.4	538.4
1.0	18.0	10.0	978.0	72.0	11.0	1.0	863.6	42.9	665.2	639.9
						1.0		42.1	606.8	583.9
	18.0	11 0	677 N							
1.0	18.0	11.0	677.0	164.0	12.0		782.2			
1.0 1.0	18.0	12.0	991.0	76.0	12.0	1.0	939.5	46.5	711.8	684.5
1.0 1.0 1.0	18.0 18.0		991.0 965.0	76.0 73.0	12.0 13.0	1.0 1.0	939.5 853.3	46.5 45.6	711.8 647.9	684.5 623.3
1.0 1.0	18.0	12.0	991.0	76.0	12.0	1.0	939.5	46.5	711.8	684.5
1.0 1.0 1.0 1.0	18.0 18.0 18.0	12.0 13.0 14.0	991.0 965.0 911.0	76.0 73.0 67.0	12.0 13.0 13.0	1.0 1.0 1.0	939.5 853.3 693.6	46.5 45.6 40.1	711.8 647.9 536.4	684.5 623.3 516.3
1.0 1.0 1.0 1.0	18.0 18.0 18.0 18.0	12.0 13.0 14.0 15.0	991.0 965.0 911.0 802.0	76.0 73.0 67.0 56.0	12.0 13.0 13.0 12.0	1.0 1.0 1.0 1.0	939.5 853.3 693.6 473.9	46.5 45.6 40.1 31.1	711.8 647.9 536.4 371.0	684.5 623.3 516.3 356.7
1.0 1.0 1.0 1.0 1.0	18.0 18.0 18.0 18.0 18.0	12.0 13.0 14.0 15.0 16.0	991.0 965.0 911.0 802.0 546.0	76.0 73.0 67.0 56.0 34.0	12.0 13.0 13.0 12.0 10.0	1.0 1.0 1.0 1.0 1.0	939.5 853.3 693.6 473.9 205.3	46.5 45.6 40.1 31.1 18.3	711.8 647.9 536.4 371.0 152.8	684.5 623.3 516.3 356.7 144.5
1.0 1.0 1.0 1.0 1.0 1.0	18.0 18.0 18.0 18.0 18.0 18.0	12.0 13.0 14.0 15.0 16.0 17.0	991.0 965.0 911.0 802.0 546.0	76.0 73.0 67.0 56.0	12.0 13.0 13.0 12.0 10.0	1.0 1.0 1.0 1.0 1.0 1.0	939.5 853.3 693.6 473.9	46.5 45.6 40.1 31.1 18.3 10.0	711.8 647.9 536.4 371.0 152.8	684.5 623.3 516.3 356.7 144.5
1.0 1.0 1.0 1.0 1.0 1.0 1.0	18.0 18.0 18.0 18.0 18.0 18.0	12.0 13.0 14.0 15.0 16.0 17.0	991.0 965.0 911.0 802.0 546.0	76.0 73.0 67.0 56.0 34.0	12.0 13.0 13.0 12.0 10.0 10.0	1.0 1.0 1.0 1.0 1.0 1.0	939.5 853.3 693.6 473.9 205.3	46.5 45.6 40.1 31.1 18.3 10.0 10.0	711.8 647.9 536.4 371.0 152.8	684.5 623.3 516.3 356.7 144.5
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	18.0 18.0 18.0 18.0 18.0 18.0 18.0	12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0	991.0 965.0 911.0 802.0 546.0	76.0 73.0 67.0 56.0 34.0	12.0 13.0 13.0 12.0 10.0 10.0 10.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0	939.5 853.3 693.6 473.9 205.3	46.5 45.6 40.1 31.1 18.3 10.0 10.0	711.8 647.9 536.4 371.0 152.8	684.5 623.3 516.3 356.7 144.5
1.0 1.0 1.0 1.0 1.0 1.0 1.0	18.0 18.0 18.0 18.0 18.0 18.0	12.0 13.0 14.0 15.0 16.0 17.0	991.0 965.0 911.0 802.0 546.0	76.0 73.0 67.0 56.0 34.0	12.0 13.0 13.0 12.0 10.0 10.0	1.0 1.0 1.0 1.0 1.0 1.0	939.5 853.3 693.6 473.9 205.3	46.5 45.6 40.1 31.1 18.3 10.0 10.0	711.8 647.9 536.4 371.0 152.8	684.5 623.3 516.3 356.7 144.5
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0	991.0 965.0 911.0 802.0 546.0	76.0 73.0 67.0 56.0 34.0	12.0 13.0 13.0 12.0 10.0 10.0 10.0 10.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0	939.5 853.3 693.6 473.9 205.3	46.5 45.6 40.1 31.1 18.3 10.0 10.0 10.0	711.8 647.9 536.4 371.0 152.8	684.5 623.3 516.3 356.7 144.5
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0	991.0 965.0 911.0 802.0 546.0	76.0 73.0 67.0 56.0 34.0	12.0 13.0 13.0 12.0 10.0 10.0 10.0 10.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	939.5 853.3 693.6 473.9 205.3	46.5 45.6 40.1 31.1 18.3 10.0 10.0 10.0 10.0	711.8 647.9 536.4 371.0 152.8	684.5 623.3 516.3 356.7 144.5
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0	991.0 965.0 911.0 802.0 546.0	76.0 73.0 67.0 56.0 34.0	12.0 13.0 13.0 12.0 10.0 10.0 10.0 10.0 10.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	939.5 853.3 693.6 473.9 205.3	46.5 45.6 40.1 31.1 18.3 10.0 10.0 10.0 10.0 10.0	711.8 647.9 536.4 371.0 152.8	684.5 623.3 516.3 356.7 144.5
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0	991.0 965.0 911.0 802.0 546.0	76.0 73.0 67.0 56.0 34.0	12.0 13.0 13.0 12.0 10.0 10.0 10.0 10.0 10.0 10.0 10	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	939.5 853.3 693.6 473.9 205.3	46.5 45.6 40.1 31.1 18.3 10.0 10.0 10.0 10.0 10.0 10.0	711.8 647.9 536.4 371.0 152.8	684.5 623.3 516.3 356.7 144.5
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0	991.0 965.0 911.0 802.0 546.0	76.0 73.0 67.0 56.0 34.0	12.0 13.0 13.0 12.0 10.0 10.0 10.0 10.0 10.0 10.0 10	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	939.5 853.3 693.6 473.9 205.3	46.5 45.6 40.1 31.1 18.3 10.0 10.0 10.0 10.0 10.0 10.0 10.0	711.8 647.9 536.4 371.0 152.8	684.5 623.3 516.3 356.7 144.5
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0	991.0 965.0 911.0 802.0 546.0	76.0 73.0 67.0 56.0 34.0	12.0 13.0 13.0 12.0 10.0 10.0 10.0 10.0 10.0 10.0 10	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	939.5 853.3 693.6 473.9 205.3	46.5 45.6 40.1 31.1 18.3 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	711.8 647.9 536.4 371.0 152.8	684.5 623.3 516.3 356.7 144.5
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 -	991.0 965.0 911.0 802.0 546.0	76.0 73.0 67.0 56.0 34.0	12.0 13.0 13.0 12.0 10.0 10.0 10.0 10.0 10.0 10.0 10	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	939.5 853.3 693.6 473.9 205.3	46.5 45.6 40.1 31.1 18.3 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	711.8 647.9 536.4 371.0 152.8	684.5 623.3 516.3 356.7 144.5
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0	991.0 965.0 911.0 802.0 546.0	76.0 73.0 67.0 56.0 34.0	12.0 13.0 13.0 12.0 10.0 10.0 10.0 10.0 10.0 10.0 10	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	939.5 853.3 693.6 473.9 205.3	46.5 45.6 40.1 31.1 18.3 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	711.8 647.9 536.4 371.0 152.8	684.5 623.3 516.3 356.7 144.5
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 -	991.0 965.0 911.0 802.0 546.0	76.0 73.0 67.0 56.0 34.0	12.0 13.0 13.0 12.0 10.0 10.0 10.0 10.0 10.0 10.0 10	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	939.5 853.3 693.6 473.9 205.3	46.5 45.6 40.1 31.1 18.3 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	711.8 647.9 536.4 371.0 152.8	684.5 623.3 516.3 356.7 144.5
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	12.0 13.0 14.0 15.0 16.0 17.0 18.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0	991.0 965.0 911.0 802.0 546.0	76.0 73.0 67.0 56.0 34.0	12.0 13.0 13.0 12.0 10.0 10.0 10.0 10.0 10.0 10.0 10	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	939.5 853.3 693.6 473.9 205.3	46.5 45.6 40.1 31.1 18.3 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	711.8 647.9 536.4 371.0 152.8	684.5 623.3 516.3 356.7 144.5
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0	991.0 965.0 911.0 802.0 546.0	76.0 73.0 67.0 56.0 34.0	12.0 13.0 13.0 12.0 10.0 10.0 10.0 10.0 10.0 10.0 10	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	939.5 853.3 693.6 473.9 205.3	46.5 45.6 40.1 31.1 18.3 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	711.8 647.9 536.4 371.0 152.8	684.5 623.3 516.3 356.7 144.5
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0	991.0 965.0 911.0 802.0 546.0 - - - - - - - - - - - - - - -	76.0 73.0 67.0 56.0 34.0	12.0 13.0 13.0 12.0 10.0 10.0 10.0 10.0 10.0 10.0 10	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	939.5 853.3 693.6 473.9 205.3 	46.5 45.6 40.1 31.1 18.3 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	711.8 647.9 536.4 371.0 152.8 - - - - - - - - - - - - - - - -	684.5 623.3 516.3 356.7 144.5 - - - - - - - - - - - - - - - -
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2	991.0 965.0 911.0 802.0 546.0 - - - - - - - - - - - - - - - - - - -	76.0 73.0 67.0 56.0 34.0	12.0 13.0 13.0 12.0 10.0 10.0 10.0 10.0 10.0 10.0 10	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	939.5 853.3 693.6 473.9 205.3 	46.5 45.6 40.1 31.1 18.3 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	711.8 647.9 536.4 371.0 152.8 - - - - - - - - - - - - - - - - - - -	684.5 623.3 516.3 356.7 144.5 - - - - - - - - - - - - - - - - - - -
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0	991.0 965.0 911.0 802.0 546.0 - - - - - - - - - - - - - - - - - - -	76.0 73.0 67.0 66.0 34.0	12.0 13.0 13.0 12.0 10.0 10.0 10.0 10.0 10.0 10.0 10	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	939.5 853.3 693.6 473.9 205.3 - - - - - - - - - - - - - - - - - - -	46.5 45.6 40.1 31.1 18.3 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	711.8 647.9 536.4 371.0 152.8 - - - - - - - - - - - - - - - - - - -	684.5 623.3 516.3 356.7 144.5 - - - - - - - - - - - - - - - - - - -
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 22.0 22.0 23.0 - 1.0 22.0 23.0 4.0 5.0 6.0 7.0 8.0 9.0	991.0 965.0 911.0 802.0 546.0 - - - - - - - - - - - - - - - - - - -	76.0 73.0 67.0 67.0 56.0 34.0	12.0 13.0 13.0 12.0 10.0 10.0 10.0 10.0 10.0 10.0 10	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	939.5 853.3 693.6 473.9 205.3 	46.5 45.6 40.1 31.1 18.3 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	711.8 647.9 536.4 371.0 152.8 - - - - - - - - - - - - - - - - - - -	684.5 623.3 516.3 356.7 144.5 - - - - - - - - - - - - - - - - - - -
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0	991.0 965.0 911.0 802.0 546.0 - - - - - - - - - - - - - - - - - - -	76.0 73.0 67.0 66.0 34.0	12.0 13.0 13.0 12.0 10.0 10.0 10.0 10.0 10.0 10.0 10	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	939.5 853.3 693.6 473.9 205.3 - - - - - - - - - - - - - - - - - - -	46.5 45.6 40.1 31.1 18.3 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	711.8 647.9 536.4 371.0 152.8 - - - - - - - - - - - - - - - - - - -	684.5 623.3 516.3 356.7 144.5 - - - - - - - - - - - - - - - - - - -
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2	991.0 965.0 911.0 802.0 546.0 - - - - - - - - - - - - - - - - - - -	76.0 73.0 67.0 56.0 34.0	12.0 13.0 13.0 12.0 10.0 10.0 10.0 10.0 10.0 10.0 10	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	939.5 853.3 693.6 473.9 205.3 	46.5 45.6 40.1 31.1 18.3 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	711.8 647.9 536.4 371.0 152.8 - - - - - - - - - - - - - - - - - - -	684.5 623.3 516.3 356.7 144.5 - - - - - - - - - - - - - - - - - - -
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 5.0 6.0 7.0 8.0 9.0 10.0 10.0 10.0 10.0 10.0 10.0 10.	991.0 965.0 911.0 802.0 546.0 - - - - - - - - - - - - - - - - - - -	76.0 73.0 67.0 56.0 34.0	12.0 13.0 13.0 12.0 10.0 10.0 10.0 10.0 10.0 10.0 10	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	939.5 853.3 693.6 473.9 205.3 - - - - - - - - - - - - - - - - - - -	46.5 45.6 40.1 31.1 18.3 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	711.8 647.9 536.4 371.0 152.8	684.5 623.3 516.3 356.7 144.5 - - - - - - - - - - - - - - - - - - -
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 22.0 23.0 - 1.0 22.0 23.0 - 1.0 20.0 21.0 20.0 21.0 20.0 21.0 20.0 20	991.0 965.0 911.0 802.0 546.0 - - - - - - - - - - - - - - - - - - -	76.0 73.0 67.0 56.0 34.0	12.0 13.0 13.0 12.0 10.0 10.0 10.0 10.0 10.0 10.0 10	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	939.5 853.3 693.6 473.9 205.3 	46.5 45.6 40.1 31.1 18.3 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	711.8 647.9 536.4 371.0 152.8 - - - - - - - - - - - - - - - - - - -	684.5 623.3 516.3 356.7 144.5 - - - - - - - - - - - - - - - - - - -
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 19.0 19.0 19.0 19.0 19.0 19.0 19.	991.0 965.0 911.0 802.0 546.0 	76.0 73.0 67.0 56.0 34.0	12.0 13.0 13.0 12.0 10.0 10.0 10.0 10.0 10.0 10.0 10	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	939.5 853.3 693.6 473.9 205.3 	46.5 45.6 40.1 31.1 18.3 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	711.8 647.9 536.4 371.0 152.8 - - - - - - - - - - - - - - - - - - -	684.5 623.3 516.3 356.7 144.5
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 9.0 11.0 11.0 11.0 11.0 11.0 11.0 11.	991.0 965.0 911.0 802.0 546.0 	76.0 73.0 67.0 67.0 56.0 34.0	12.0 13.0 13.0 12.0 10.0 10.0 10.0 10.0 10.0 10.0 10	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	939.5 853.3 693.6 473.9 205.3 	46.5 45.6 40.1 31.1 18.3 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	711.8 647.9 536.4 371.0 152.8 - - - - - - - - - - - - - - - - - - -	684.5 623.3 516.3 356.7 144.5 - - - - - - - - - - - - - - - - - - -
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 22.0 23.0 - 1.0 22.0 23.0 - 1.0 20.0 21.0 20.0 21.0 20.0 21.0 20.0 21.0 20.0 21.0 20.0 21.0 20.0 21.0 20.0 20	991.0 965.0 911.0 802.0 546.0 - - - - - - - - - - - - - - - - - - -	76.0 73.0 67.0 56.0 34.0	12.0 13.0 13.0 12.0 10.0 10.0 10.0 10.0 10.0 10.0 10	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	939.5 853.3 693.6 473.9 205.3 	46.5 45.6 40.1 31.1 18.3 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	711.8 647.9 536.4 371.0 152.8 - - - - - - - - - - - - - - - - - - -	684.5 623.3 516.3 356.7 144.5 - - - - - - - - - - - - - - - - - - -
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 9.0 11.0 11.0 11.0 11.0 11.0 11.0 11.	991.0 965.0 911.0 802.0 546.0 	76.0 73.0 67.0 67.0 56.0 34.0	12.0 13.0 13.0 12.0 10.0 10.0 10.0 10.0 10.0 10.0 10	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	939.5 853.3 693.6 473.9 205.3 	46.5 45.6 40.1 31.1 18.3 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	711.8 647.9 536.4 371.0 152.8 - - - - - - - - - - - - - - - - - - -	684.5 623.3 516.3 356.7 144.5 - - - - - - - - - - - - - - - - - - -
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 10.0 10.0 10.0 10.0 10	991.0 965.0 911.0 802.0 546.0 	76.0 73.0 67.0 56.0 34.0	12.0 13.0 13.0 12.0 10.0 10.0 10.0 10.0 10.0 10.0 10	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	939.5 853.3 693.6 473.9 205.3 	46.5 45.6 40.1 31.1 18.3 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	711.8 647.9 536.4 371.0 152.8 - - - - - - - - - - - - - - - - - - -	684.5 623.3 516.3 356.7 144.5
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 9.0 11.0 11.0 12.0 10.0 11.0 10.0 10.0 10	991.0 965.0 911.0 802.0 546.0 	76.0 73.0 67.0 67.0 56.0 34.0	12.0 13.0 13.0 12.0 10.0 10.0 10.0 10.0 10.0 10.0 10	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	939.5 853.3 693.6 473.9 205.3 	46.5 45.6 40.1 31.1 18.3 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	711.8 647.9 536.4 371.0 152.8 - - - - - - - - - - - - - - - - - - -	684.5 623.3 516.3 356.7 144.5 - - - - - - - - - - - - - - - - - - -
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 19.0	12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 22.0 23.0 - 1.0 22.0 3.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 16.0 17.0 16.0 17.0 16.0 17.0 16.0 17.0 16.0 17.0 16.0 17.0 16.0 16.0 17.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16	991.0 965.0 911.0 802.0 546.0 	76.0 73.0 67.0 67.0 56.0 34.0	12.0 13.0 13.0 12.0 10.0 10.0 10.0 10.0 10.0 10.0 10	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	939.5 853.3 693.6 473.9 205.3 	46.5 45.6 40.1 31.1 18.3 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	711.8 647.9 536.4 371.0 152.8 - - - - - - - - - - - - - - - - - - -	684.5 623.3 516.3 356.7 144.5
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 19.0	12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 22.0 23.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 10.0 10.0 10.0 10.0 10.0 10.0 10	991.0 965.0 911.0 802.0 546.0 	76.0 73.0 67.0 67.0 56.0 34.0	12.0 13.0 13.0 12.0 10.0 10.0 10.0 10.0 10.0 10.0 10	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	939.5 853.3 693.6 473.9 205.3 	46.5 45.6 40.1 31.1 18.3 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	711.8 647.9 536.4 371.0 152.8 - - - - - - - - - - - - - - - - - - -	684.5 623.3 516.3 356.7 144.5
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 19.0	12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 10.0 11.0 12.0 8.0 9.0 11.0 12.0 10.0 11.0 10.0 10.0 10.0 10	991.0 965.0 911.0 802.0 546.0 	76.0 73.0 67.0 67.0 56.0 34.0	12.0 13.0 13.0 12.0 10.0 10.0 10.0 10.0 10.0 10.0 10	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	939.5 853.3 693.6 473.9 205.3 	46.5 45.6 40.1 31.1 18.3 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	711.8 647.9 536.4 371.0 152.8 - - - - - - - - - - - - - - - - - - -	684.5 623.3 516.3 356.7 144.5
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 19.0	12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 22.0 23.0 - 1.0 22.0 23.0 - 1.0 2.0 3.0 - 1.0 2.0 3.0 - 1.0 2.0 3.0 1.0 2.0 1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	991.0 965.0 911.0 802.0 546.0 	76.0 73.0 67.0 67.0 56.0 34.0	12.0 13.0 13.0 12.0 10.0 10.0 10.0 10.0 10.0 10.0 10	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	939.5 853.3 693.6 473.9 205.3 	46.5 45.6 40.1 31.1 18.3 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	711.8 647.9 536.4 371.0 152.8 - - - - - - - - - - - - - - - - - - -	684.5 623.3 516.3 356.7 144.5
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 19.0	12.0 13.0 14.0 15.0 16.0 17.0 20.0 22.0 23.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 2	991.0 965.0 911.0 802.0 546.0 	76.0 73.0 67.0 67.0 56.0 34.0	12.0 13.0 13.0 12.0 10.0 10.0 10.0 10.0 10.0 10.0 10	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	939.5 853.3 693.6 473.9 205.3 	46.5 45.6 40.1 31.1 18.3 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	711.8 647.9 536.4 371.0 152.8 - - - - - - - - - - - - - - - - - - -	684.5 623.3 516.3 356.7 144.5
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 19.0	12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 22.0 23.0 - 1.0 22.0 23.0 - 1.0 2.0 3.0 - 1.0 2.0 3.0 - 1.0 2.0 3.0 1.0 2.0 1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	991.0 965.0 911.0 802.0 546.0 	76.0 73.0 67.0 67.0 56.0 34.0	12.0 13.0 13.0 12.0 10.0 10.0 10.0 10.0 10.0 10.0 10	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	939.5 853.3 693.6 473.9 205.3 	46.5 45.6 40.1 31.1 18.3 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	711.8 647.9 536.4 371.0 152.8 - - - - - - - - - - - - - - - - - - -	684.5 623.3 516.3 356.7 144.5
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 19.0	12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 17.0 18.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19	991.0 965.0 911.0 802.0 546.0 	76.0 73.0 67.0 67.0 56.0 34.0	12.0 13.0 13.0 12.0 10.0 10.0 10.0 10.0 10.0 10.0 10	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	939.5 853.3 693.6 473.9 205.3 	46.5 45.6 40.1 31.1 18.3 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	711.8 647.9 536.4 371.0 152.8 - - - - - - - - - - - - - - - - - - -	684.5 623.3 516.3 356.7 144.5
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 19.0	12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 9.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 2	991.0 965.0 911.0 802.0 546.0 	76.0 73.0 67.0 67.0 56.0 34.0	12.0 13.0 13.0 12.0 10.0 10.0 10.0 10.0 10.0 10.0 10	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	939.5 853.3 693.6 473.9 205.3 	46.5 45.6 40.1 31.1 18.3 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	711.8 647.9 536.4 371.0 152.8 - - - - - - - - - - - - - - - - - - -	684.5 623.3 516.3 356.7 144.5
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 19.0 20.0	12.0 13.0 14.0 15.0 16.0 17.0 20.0 21.0 22.0 23.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 2	991.0 965.0 911.0 802.0 546.0 	76.0 73.0 67.0 67.0 56.0 34.0	12.0 13.0 13.0 12.0 10.0 10.0 10.0 10.0 10.0 10.0 10	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	939.5 853.3 693.6 473.9 205.3 	46.5 45.6 40.1 31.1 18.3 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	711.8 647.9 536.4 371.0 152.8 - - - - - - - - - - - - - - - - - - -	684.5 623.3 516.3 356.7 144.5
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 19.0	12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 9.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 2	991.0 965.0 911.0 802.0 546.0 	76.0 73.0 67.0 67.0 56.0 34.0	12.0 13.0 13.0 12.0 10.0 10.0 10.0 10.0 10.0 10.0 10	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	939.5 853.3 693.6 473.9 205.3 	46.5 45.6 40.1 31.1 18.3 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	711.8 647.9 536.4 371.0 152.8 - - - - - - - - - - - - - - - - - - -	684.5 623.3 516.3 356.7 144.5

1.0	3.0		12.0 12.0 12.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 18.0 18.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17	1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2	5.7 21.8 73.2 109.3 154.3 137.1 366.9 427.1 66.8 6.8 6.9 427.1 66.8 6.9 427.1 66.8 6.9 427.1 66.8 6.9 427.1 66.8 6.9 427.1 66.8 6.9 427.1 66.8 6.9 66.8 6.9 66.8 66.8 66.8 66.8 6	12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	52.5 139.4 372.2 279.2 142.2 91.0 82.8 194.3 101.4 43.9 	46.4 131.4 357.8 267.6 134.1 185.0 94.3 37.9
1.0 23.0 1.0 23.0 1.0 23.0 1.0 23.0 1.0 23.0	1.0 - 2.0 - 3.0 - 4.0 -	- - - - - - 41.0 94.0 164.0 273.0 304.0	18.0 18.0 18.0 19.0 18.0	2.0 3.0 3.0 2.0 2.0	- - - - - - - - 39.9 365.5 513.9 412.5 438.0	18.0 18.0 18.0 19.0 18.0	34.9 292.9 409.3 333.6 353.9	29.1 280.9 393.7 320.4 340.1

1.0 1.0		12.0 13.0	- 108.0	171.0 271.0	21.0 21.0	2.0 2.0	166.4 372.2	26.1 31.1	139.9 305.1	131.9 292.8
1.0 1.0 1.0	23.0	14.0 15.0	285.0 300.0	202.0 124.0	20.0 20.0	1.0 1.0	422.5 294.3	35.1 35.1 31.0	337.7 235.2	324.4 224.9
1.0 1.0	23.0	16.0 17.0	145.0	55.0	19.0 18.0	1.0 1.0	109.7	22.6 18.0	87.2	80.3
1.0 1.0	23.0	18.0 19.0	-	-	18.0 18.0	1.0 1.0	-	18.0 18.0	-	-
1.0	23.0	20.0 21.0	-	-	17.0 17.0	1.0 1.0	-	17.0 17.0	-	-
1.0 1.0	23.0	22.0 23.0	-	<u>-</u>	16.0 15.0	1.0 2.0	-	16.0 15.0	-	-
1.0 1.0	24.0 24.0	1.0	-	-	14.0 14.0	2.0 2.0	-	14.0 14.0	1	-
1.0 1.0	24.0 24.0	2.0	-	-	13.0 13.0	2.0 2.0	-	13.0 13.0	-	-
1.0 1.0	24.0 24.0 24.0	4.0 5.0		-	13.0 13.0	2.0 2.0	-	13.0 13.0		-
1.0 1.0	24.0 24.0	6.0 7.0	-	- 34.0	13.0 13.0	2.0 2.0	- 32.3	13.0 11.6	- 29.0	23.4
1.0 1.0	24.0 24.0	8.0 9.0	- 86.0	61.0 209.0	13.0 14.0	2.0 2.0	57.9 277.4	12.6 20.7	51.8 238.3	45.7 227.9
1.0 1.0	24.0	10.0 11.0	354.0 601.0	248.0 198.0	15.0 16.0	2.0 2.0 2.0	563.4 756.0	31.4 39.2	460.6 595.2	443.3 572.8
1.0 1.0	24.0	12.0 13.0	926.0 910.0	96.0 91.0	17.0 17.0	2.0 2.0	918.4 842.8	45.5 44.1	699.8 645.6	673.0 621.1
1.0 1.0	24.0	14.0 15.0	866.0 769.0	82.0 66.0	16.0 15.0	2.0 2.0 2.0	697.1 479.2	38.7 30.8	544.1 377.6	523.8 363.1
1.0 1.0 1.0	24.0	16.0 17.0	540.0	41.0	14.0 12.0	2.0 2.0 2.0	220.0	21.0 12.0	164.6	156.1
1.0 1.0 1.0	24.0	18.0 19.0	-	-	12.0 12.0 11.0	2.0 2.0 2.0	-	12.0 12.0 11.0	-	-
1.0 1.0 1.0	24.0	20.0 21.0	-	-	11.0 11.0 10.0	2.0 2.0 2.0	-	11.0 11.0 10.0	-	
1.0 1.0 1.0	24.0	22.0 23.0	-	-	10.0 10.0 10.0	2.0 2.0 2.0	-	10.0 10.0 10.0	-	-
1.0 1.0 1.0	25.0 25.0	- 1.0	-	-	9.0 9.0	2.0 2.0 2.0	-	9.0 9.0	-	-
1.0	25.0	2.0	-	-	9.0	2.0 2.0 2.0	-	9.0	-	-
1.0 1.0 1.0	25.0 25.0 25.0	3.0 4.0 5.0	-	-	9.0 8.0 8.0	2.0 2.0 2.0	- - -	9.0 8.0 8.0	-	-
1.0 1.0 1.0	25.0	6.0 7.0	- - 193.0	- - 50.0	8.0 10.0	2.0 2.0 2.0	-	8.0 11.4	- - 99.8	- - 92.7
1.0	25.0 25.0	8.0	821.0	55.0	12.0	2.0	121.5 487.3	25.5	392.5	377.4
1.0		9.0	925.0 977.0	66.0 71.0	13.0 14.0	3.0 3.0	709.9 871.1	32.2 38.2	571.5 687.4	550.1 661.2
1.0 1.0	25.0	11.0 12.0	688.0 998.0	169.0 75.0	15.0 15.0	3.0 3.0	805.3 958.6	38.0 41.7	638.0 745.0	613.8 716.2
1.0 1.0	25.0	13.0 14.0	977.0 930.0 832.0	73.0 67.0 57.0	15.0 15.0	3.0 3.0 3.0	878.0 721.3	40.1 35.8 28.5	686.3 571.1 400.5	660.1 549.6 385.3
1.0	25.0	15.0 16.0	606.0	37.0	14.0 12.0	2.0	503.2 235.0	19.6	175.8	167.0
1.0	25.0	17.0 18.0	-	-	10.0 10.0	2.0 2.0	-	10.0 10.0	-	-
1.0	25.0	19.0 20.0	-	-	9.0 8.0	2.0 2.0	-	9.0 8.0	-	-
1.0 1.0	25.0	21.0 22.0 23.0	-	-	8.0 7.0 7.0	2.0 2.0 2.0	-	8.0 7.0	-	-
1.0 1.0 1.0	26.0 26.0	- 1.0	-	-	7.0 7.0 6.0	2.0 2.0 2.0	-	7.0 7.0 6.0	-	-
1.0	26.0	2.0	-	-	6.0	2.0	-	6.0	-	-
1.0	26.0 26.0	3.0 4.0	-	-	5.0 5.0	2.0 2.0	-	5.0 5.0	-	-
1.0 1.0	26.0 26.0	5.0 6.0	-		5.0 5.0	2.0 2.0 2.0	- - 114.9	5.0 5.0 8.2	- - 05.3	-
1.0 1.0	26.0 26.0 26.0	7.0 8.0	181.0 810.0 907.0	51.0 61.0	7.0 9.0	2.0 2.0 2.0	114.3 489.2	22.5	95.3 399.8	88.3 384.6 551.0
1.0 1.0	26.0	9.0	646.0	75.0 160.0	10.0 11.0	2.0	709.2 716.2	31.8 33.9	572.4 577.8	556.1 611.6
1.0	26.0	11.0 12.0	665.0 936.0	181.0 102.0	12.0 13.0	2.0 2.0	799.6 937.9	37.3 42.5	635.7 726.0	698.1
1.0 1.0	26.0	13.0 14.0	456.0 771.0	227.0 88.0	13.0 13.0	2.0 2.0	635.3 642.4	34.5 33.4	511.6 515.4	492.5 496.0
1.0 1.0	26.0	15.0 16.0	723.0 463.0	79.0 50.0	12.0 11.0	1.0 1.0	475.2 207.7	30.8 19.4	375.6 159.0	361.1 150.5
1.0 1.0	26.0	17.0 18.0	-		11.0 11.0	1.0 2.0 2.0	-	11.0 11.0	-	-
1.0 1.0		19.0 20.0	-	-	11.0 11.0	2.0	-	11.0 11.0	-	-

1.0 1.0	26.0 26.0	21.0 22.0	-	: :	10.0 10.0	1.0 1.0	- -	10.0 10.0	<u>-</u> -	-
1.0 1.0	26.0 27.0	23.0	-	-	10.0 10.0	1.0 1.0	-	10.0 10.0	-	-
1.0 1.0	27.0 27.0	1.0 2.0	-	-	9.0 9.0	1.0 2.0	-	9.0 9.0	-	-
1.0 1.0	27.0 27.0	3.0 4.0	-	-	9.0 9.0	2.0 2.0	-	9.0 9.0	-	-
1.0 1.0	27.0 27.0	5.0 6.0	-	-	9.0 9.0	2.0 2.0	-	9.0 9.0	<u>-</u>	-
1.0	27.0	7.0	286.0	48.0	11.0	2.0	146.5	13.3	116.8	109.3
1.0 1.0	27.0 27.0	8.0 9.0	746.0 551.0	69.0 148.0	13.0 14.0	3.0 3.0	466.2 551.8	24.5 28.9	378.2 452.9	363.7 435.9
1.0 1.0	27.0 27.0	10.0 11.0	875.0 884.0	102.0 112.0	15.0 16.0	3.0 3.0	833.5 910.6	37.6 41.5	659.8 708.5	634.7 681.3
1.0 1.0	27.0 27.0	12.0 13.0	321.0 661.0	293.0 158.0	16.0 16.0	2.0 2.0	610.8 731.2	36.5 38.7	487.8 576.2	469.5 554.6
1.0 1.0	27.0 27.0	14.0 15.0	488.0 321.0	168.0 127.0	16.0 15.0	2.0 2.0	535.8 310.5	33.6 25.0	430.7 255.6	414.4 244.7
1.0 1.0	27.0 27.0	16.0 17.0	429.0	51.0	14.0 13.0	2.0	199.1	19.5 13.0	153.1	144.8
1.0	27.0	18.0	-	-	13.0	2.0	-	13.0	-	
1.0 1.0	27.0 27.0	19.0 20.0	-	-	13.0 13.0	2.0 2.0	-	13.0 13.0	-	
1.0 1.0	27.0 27.0	21.0 22.0	-	-	13.0 13.0	2.0 2.0	-	13.0 13.0	-	-
1.0 1.0	27.0 28.0	23.0	-	-	13.0 13.0	2.0 2.0	-	13.0 13.0	-	-
1.0 1.0	28.0 28.0	1.0 2.0	-	-	12.0 12.0	2.0	<u>-</u>	12.0 12.0	-	-
1.0	28.0	3.0	-	-	12.0	2.0	-	12.0	-	-
1.0 1.0	28.0 28.0	4.0 5.0		-	12.0 12.0	2.0 2.0	-	12.0 12.0	-	-
1.0 1.0	28.0 28.0	6.0 7.0	54.0	- 54.0	12.0 14.0	2.0 3.0	76.2	12.0 14.1	65.0	58.7
1.0 1.0	28.0 28.0	8.0 9.0	- 29.0	112.0 193.0	15.0 16.0	3.0 3.0	110.1 219.7	16.4 20.6	96.8 189.3	89.8 180.1
1.0 1.0	28.0 28.0	10.0 11.0	96.0 237.0	275.0 310.0	17.0 18.0	3.0 3.0	366.4 545.0	26.0 32.3	307.8 444.3	295.4 427.5
1.0 1.0	28.0 28.0	12.0 13.0	240.0 458.0	311.0 230.0	18.0 18.0	3.0 3.0	549.3 642.1	33.1 35.5	446.2 514.4	429.4 495.2
1.0	28.0	14.0	301.0	209.0	17.0	3.0	443.8	29.6	364.5	350.4 258.7
1.0	28.0 28.0	15.0 16.0	351.0 317.0	125.0 61.0	17.0 16.0	2.0	331.5 175.2	27.2 20.9	270.0 136.7	128.8
1.0 1.0	28.0 28.0	17.0 18.0	-	-	16.0 17.0	3.0 3.0	-	16.0 17.0	-	-
1.0 1.0	28.0 28.0	19.0 20.0	-	-	17.0 17.0	3.0 3.0	-	17.0 17.0	- -	-
1.0 1.0	28.0 28.0	21.0 22.0	-	-	17.0 17.0	3.0 4.0	-	17.0 17.0	-	-
1.0 1.0	28.0 29.0	23.0	-	-	17.0 18.0	4.0 4.0	-	17.0 18.0	-	-
1.0	29.0	1.0	-	-	18.0	4.0	-	18.0	-	-
1.0 1.0	29.0 29.0	2.0 3.0	-	-	18.0 18.0	4.0 4.0	-	18.0 18.0	-	-
1.0 1.0	29.0 29.0	4.0 5.0	-	-	18.0 18.0	4.0 3.0	-	18.0 18.0	-	-
1.0 1.0	29.0 29.0	6.0 7.0	-	- 2.0	18.0 18.0	3.0 2.0	- 1.9	18.0 15.8	1.7	-
1.0 1.0	29.0 29.0	8.0 9.0	-	49.0 146.0	18.0 18.0	2.0 1.0	46.5 142.4	17.2 21.0	40.7 122.6	34.9 115.0
1.0 1.0	29.0 29.0	10.0 11.0	43.0	254.0 159.0	19.0 19.0	1.0 1.0	299.5 154.0	28.4 24.2	249.0 130.6	238.2 122.9
1.0 1.0	29.0 29.0	12.0 13.0	-	127.0 165.0	19.0 19.0	-	121.9 160.5	23.8 25.2	103.6 135.5	96.5 127.6
1.0	29.0	14.0	-	121.0	19.0	2	116.7	23.7	99.2	92.2 83.7
1.0	29.0 29.0	15.0 16.0	-	108.0 37.0	18.0 17.0	-	105.5 35.1	21.5 16.4	90.6 30.9	25.2
1.0 1.0	29.0 29.0	17.0 18.0	-	-	16.0 16.0	-	-	16.0 16.0	-	-
1.0 1.0	29.0 29.0	19.0 20.0	-	-	15.0 15.0	-	-	15.0 15.0	- -	-
1.0 1.0	29.0 29.0	21.0 22.0	-	-	14.0 14.0	- 1.0	-	14.0 14.0	-	-
1.0 1.0	29.0 30.0	23.0	-	-	13.0 13.0	1.0 1.0	-	13.0 13.0	-	-
1.0	30.0	1.0 2.0	-	-	13.0 12.0	1.0	-	13.0 12.0	-	-
1.0 1.0	30.0 30.0	3.0	-	-	12.0	1.0 1.0	-	12.0	- -	-
1.0 1.0	30.0 30.0	4.0 5.0	-	-	13.0 12.0	1.0 1.0	-	13.0 12.0	-	-

1.0	0.0 8.0 9.0 10.0 9.0 10.0 9.0 11.0 12.0 13.0 14.0 15.0 19.0 10.0 22.0 10.0 12.0 10.0 10.0 10.0 10	140.0 31.0 519.0 854.0 866.0 456.0 14.0 748.0 653.0 349.0	56.0 132.0 161.0 102.0 1112.0 264.0 218.0 98.0 87.0 60.0	13.0 15.0 16.0 17.0 18.0 18.0 19.0 19.0 18.0 18.0 17.0 16.0 15.0 13.0 12.0 11.0 10.0 9.0 8.0 8.0 8.0 7.0 7.0 9.0 11.0 13.0 14.0 14.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	107.8 152.5 546.2 820.9 900.1 709.3 226.7 673.1 453.3 185.1	13.0 16.2 19.7 35.0 47.2 51.0 46.5 29.5 37.3 32.8 22.8 16.0 15.0 13.0 12.0 11.0 10.0 9.0 8.0 8.0 8.0 7.0 7.0 7.0 7.0 7.0 10.2 27.3 39.1 41.1 48.9 51.2 48.7 43.4 34.6 23.1 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12	88.2 131.3 435.7 619.1 666.5 538.3 187.5 530.0 356.1 142.7 - - - - - - - - - - - - -	81.3 123.6 4419.2 595.7 641.1 518.1 178.4 510.1 342.2 134.6
2.0 2 2.0 2 2.0 2 2.0 2 2.0 2 2.0 2 2.0 2 2.0 2 2.0 2 2.0 2 2.0 2 2.0 2 2.0 2 2.0 2 2.0 2 2.0 2 2.0 2 2.0 2 2.0 2	2.0 2.0 2.0 3.0 2.0 4.0 2.0 5.0 2.0 6.0 2.0 7.0	97.0	- 59.0	10.0 10.0 10.0 10.0 11.0 12.0	1.0 1.0 1.0 1.0 1.0 1.0	- 94.2	10.0 10.0 10.0 10.0 11.0 12.6	- 79.5	72.9

2.0	2.0	15.0	768.0	72.0	15.0	1.0	500.1	34.9	388.3	373.4
2.0	2.0	16.0	559.0	47.0	14.0	1.0	241.5	23.7	181.1	172.1
				47.0			241.5			
2.0	2.0	17.0	-	-	13.0	1.0	-	13.0	-	-
2.0	2.0	18.0	-		13.0	1.0		13.0		-
2.0	2.0	19.0	-	-	13.0	2.0	-	13.0	-	-
2.0	2.0	20.0	-	-	13.0	2.0	<u>-</u>	13.0	-	-
2.0	2.0	21.0	_	_	12.0	2.0		12.0	_	_
2.0	2.0	22.0	_		12.0	2.0		12.0		
			-				-		-	-
2.0	2.0	23.0	-	-	12.0	2.0	-	12.0	-	•
2.0	3.0	-	-		12.0	2.0		12.0		-
2.0	3.0	1.0	-	-	12.0	2.0	-	12.0	-	-
2.0	3.0	2.0	-	-	13.0	2.0	_	13.0	_	_
2.0	3.0	3.0	_	_	13.0	2.0		13.0	_	_
2.0	3.0	4.0	_		13.0	2.0		13.0		
							-		-	
2.0	3.0	5.0	-	-	14.0	1.0	-	14.0	-	•
2.0	3.0	6.0	-		14.0	1.0		14.0		-
2.0	3.0	7.0	294.0	53.0	15.0	1.0	154.9	18.0	121.4	113.8
2.0	3.0	8.0	69.0	144.0	16.0	2.0	185.0	20.3	158.3	149.8
2.0	3.0	9.0	135.0	228.0	17.0	2.0	339.9	26.2	284.4	272.7
2.0	3.0	10.0	402.0	253.0	17.0	1.0	612.5	38.3	484.0	465.9
2.0	3.0	11.0	345.0	301.0	18.0	1.0	643.4	41.9	500.2	481.4
2.0	3.0	12.0	11.0	227.0	18.0	1.0	233.1	28.3	193.8	184.6
2.0	3.0	13.0	75.0	284.0	17.0	1.0	359.0	29.1	297.4	285.3
2.0	3.0	14.0	-	98.0	17.0	1.0	93.6	20.4	80.8	74.1
2.0	3.0	15.0	-	80.0	17.0	1.0	76.4	17.8	66.8	60.4
2.0	3.0	16.0	396.0	58.0	16.0	1.0	201.1	21.3	155.6	147.3
2.0	3.0	17.0	-	-	16.0	1.0	-	16.0	-	-
2.0	3.0	18.0	-	-	17.0	2.0	-	17.0	-	-
2.0	3.0	19.0	-	-	17.0	2.0	-	17.0	-	-
2.0	3.0	20.0	-		17.0	3.0		17.0	<u>-</u>	-
2.0	3.0	21.0	_	_	17.0	3.0	<u>-</u>	17.0	_	
2.0	3.0	22.0	_	_	17.0	3.0	_	17.0	_	
			_					17.0		
2.0	3.0	23.0			17.0	3.0				-
2.0	4.0	-	-	-	17.0	3.0	-	17.0	-	-
2.0	4.0	1.0	-	-	17.0	3.0	-	17.0	-	-
2.0	4.0	2.0	-	-	17.0	3.0	-	17.0	-	-
2.0	4.0	3.0	-	_	16.0	3.0	_	16.0	_	_
2.0	4.0	4.0	_	_	14.0	4.0	_	14.0	_	_
2.0	4.0	5.0	_		12.0	3.0		12.0	_	
							-			-
2.0	4.0	6.0	-	-	10.0	3.0	-	10.0	-	-
2.0	4.0	7.0	-	48.0	10.0	4.0	46.6	9.3	42.3	36.4
2.0	4.0	8.0	477.0	109.0	10.0	3.0	376.1	18.6	316.8	304.1
2.0	4.0	9.0	870.0	91.0	10.0	3.0	717.9	29.1	587.9	565.8
2.0	4.0	10.0	940.0	94.0	11.0	3.0	884.7	35.7	707.6	680.4
2.0	4.0	11.0	970.0	94.0	12.0	3.0	974.5	39.5	766.2	736.4
2.0	4.0	12.0	969.0	94.0	13.0	3.0	976.9	40.8	763.1	733.4
2.0	4.0	13.0	953.0	89.0	14.0	2.0	899.0	43.1	693.0	666.5
2.0	4.0	14.0	908.0	82.0	13.0	2.0	744.0	37.4	585.8	563.8
2.0	4.0	15.0	815.0	69.0	12.0	2.0	525.1	29.4	419.0	403.1
2.0	4.0	16.0	605.0	47.0	11.0	2.0	258.3	19.4	197.6	188.2
2.0	4.0	17.0	-		10.0	2.0	-	10.0	<u>-</u>	-
2.0	4.0	18.0	_		9.0	2.0		9.0	_	_
							-			
2.0	4.0	19.0	-	-	8.0	2.0	-	8.0	-	-
2.0	4.0	20.0	-	-	8.0	2.0	-	8.0	-	-
2.0	4.0	21.0	-	-	7.0	2.0	-	7.0	-	-
2.0	4.0	22.0	-	-	7.0	2.0	<u>-</u>	7.0	-	-
2.0	4.0	23.0	_	_	6.0	2.0	<u>-</u>	6.0	_	_
2.0	5.0	-	_	_	6.0	2.0	_	6.0	_	_
2.0	5.0	1.0	_		5.0	2.0		5.0		
2.0	J.U		-		5.0				-	-
	E 0	2.0			5.0	2.0	-	5.0	-	-
	5.0	2.0	-			0.0		E 0	-	-
2.0	5.0	3.0	-	- -	5.0	2.0	-	5.0		
			-	- - -		2.0 2.0	-	5.0 4.0	-	-
2.0	5.0 5.0	3.0 4.0		- - -	5.0 4.0	2.0	- - -	4.0	- -	-
2.0 2.0 2.0	5.0 5.0 5.0	3.0 4.0 5.0			5.0 4.0 4.0	2.0 2.0	- - - -	4.0 4.0		-
2.0 2.0 2.0 2.0	5.0 5.0 5.0 5.0	3.0 4.0 5.0 6.0	-	-	5.0 4.0 4.0 4.0	2.0 2.0 2.0	- - - - 154.5	4.0 4.0 4.0	-	- - - 120.0
2.0 2.0 2.0 2.0 2.0	5.0 5.0 5.0 5.0 5.0	3.0 4.0 5.0 6.0 7.0	- 281.0	- 56.0	5.0 4.0 4.0 4.0 5.0	2.0 2.0 2.0 2.0	154.5	4.0 4.0 4.0 7.4	- 127.7	120.0
2.0 2.0 2.0 2.0 2.0 2.0	5.0 5.0 5.0 5.0 5.0 5.0	3.0 4.0 5.0 6.0 7.0 8.0	281.0 568.0	- 56.0 94.0	5.0 4.0 4.0 4.0 5.0 7.0	2.0 2.0 2.0 2.0 3.0	154.5 410.6	4.0 4.0 4.0 7.4 17.0	127.7 347.5	120.0 333.9
2.0 2.0 2.0 2.0 2.0 2.0 2.0	5.0 5.0 5.0 5.0 5.0 5.0 5.0	3.0 4.0 5.0 6.0 7.0 8.0 9.0	281.0 568.0 717.0	- 56.0 94.0 109.0	5.0 4.0 4.0 4.0 5.0 7.0 8.0	2.0 2.0 2.0 2.0 3.0 2.0	154.5 410.6 635.3	4.0 4.0 4.0 7.4 17.0 27.3	- 127.7 347.5 525.3	120.0 333.9 505.6
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	3.0 4.0 5.0 6.0 7.0 8.0 9.0	281.0 568.0 717.0 618.0	- 56.0 94.0 109.0 182.0	5.0 4.0 4.0 4.0 5.0 7.0 8.0 10.0	2.0 2.0 2.0 2.0 3.0 2.0 2.0	154.5 410.6 635.3 727.9	4.0 4.0 4.0 7.4 17.0 27.3 33.0	127.7 347.5 525.3 590.4	120.0 333.9 505.6 568.2
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0	281.0 568.0 717.0 618.0 880.0	56.0 94.0 109.0 182.0 110.0	5.0 4.0 4.0 5.0 7.0 8.0 10.0	2.0 2.0 2.0 2.0 3.0 2.0 2.0 2.0	154.5 410.6 635.3 727.9 921.2	4.0 4.0 4.0 7.4 17.0 27.3 33.0 39.9	127.7 347.5 525.3 590.4 723.1	120.0 333.9 505.6 568.2 695.3
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0	281.0 568.0 717.0 618.0 880.0 687.0	- 56.0 94.0 109.0 182.0 110.0 186.0	5.0 4.0 4.0 4.0 5.0 7.0 8.0 10.0 11.0	2.0 2.0 2.0 2.0 3.0 2.0 2.0 2.0	154.5 410.6 635.3 727.9 921.2 840.4	4.0 4.0 4.0 7.4 17.0 27.3 33.0 39.9 39.3	127.7 347.5 525.3 590.4 723.1 661.7	120.0 333.9 505.6 568.2 695.3 636.6
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0	281.0 568.0 717.0 618.0 880.0 687.0	- 56.0 94.0 109.0 182.0 110.0 186.0	5.0 4.0 4.0 4.0 5.0 7.0 8.0 10.0 11.0	2.0 2.0 2.0 2.0 3.0 2.0 2.0 2.0	154.5 410.6 635.3 727.9 921.2 840.4	4.0 4.0 4.0 7.4 17.0 27.3 33.0 39.9 39.3	127.7 347.5 525.3 590.4 723.1 661.7	120.0 333.9 505.6 568.2 695.3 636.6
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0	281.0 568.0 717.0 618.0 880.0 687.0 573.0	56.0 94.0 109.0 182.0 110.0 186.0 202.0	5.0 4.0 4.0 5.0 7.0 8.0 10.0 11.0 12.0	2.0 2.0 2.0 3.0 3.0 2.0 2.0 2.0 2.0 2.0	154.5 410.6 635.3 727.9 921.2 840.4 714.7	4.0 4.0 4.0 7.4 17.0 27.3 33.0 39.9 39.3 35.4	127.7 347.5 525.3 590.4 723.1 661.7 573.2	120.0 333.9 505.6 568.2 695.3 636.6 551.6
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0	281.0 568.0 717.0 618.0 880.0 687.0 573.0 721.0	56.0 94.0 109.0 182.0 110.0 186.0 202.0	5.0 4.0 4.0 5.0 7.0 8.0 10.0 11.0 12.0 13.0	2.0 2.0 2.0 3.0 2.0 2.0 2.0 2.0 2.0 2.0	154.5 410.6 635.3 727.9 921.2 840.4 714.7 653.2	4.0 4.0 7.4 17.0 27.3 33.0 39.9 39.3 35.4 34.0	127.7 347.5 525.3 590.4 723.1 661.7 573.2 523.7	120.0 333.9 505.6 568.2 695.3 636.6 551.6 504.1
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0	281.0 568.0 717.0 618.0 880.0 687.0 573.0 721.0 570.0	- 56.0 94.0 109.0 182.0 110.0 186.0 202.0 112.0 100.0	5.0 4.0 4.0 4.0 5.0 7.0 8.0 10.0 11.0 12.0 13.0	2.0 2.0 2.0 2.0 3.0 2.0 2.0 2.0 2.0 2.0 2.0	154.5 410.6 635.3 727.9 921.2 840.4 714.7 653.2 430.4	4.0 4.0 4.0 7.4 17.0 27.3 33.0 39.9 39.3 35.4 34.0 26.2	127.7 347.5 525.3 590.4 723.1 661.7 573.2 523.7 350.7	120.0 333.9 505.6 568.2 695.3 636.6 551.6 504.1 337.0
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0	281.0 568.0 717.0 618.0 880.0 687.0 573.0 721.0 570.0 379.0	56.0 94.0 109.0 182.0 110.0 186.0 202.0 112.0 100.0 61.0	5.0 4.0 4.0 4.0 5.0 7.0 8.0 10.0 11.0 12.0 12.0 13.0 12.0 11.0	2.0 2.0 2.0 3.0 3.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	154.5 410.6 635.3 727.9 921.2 840.4 714.7 653.2 430.4 198.8	4.0 4.0 7.4 17.0 27.3 33.0 39.9 39.3 35.4 34.0 26.2 17.1	127.7 347.5 525.3 590.4 723.1 661.7 573.2 523.7 350.7 157.6	120.0 333.9 505.6 568.2 695.3 636.6 551.6 504.1 337.0 149.2
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0	281.0 568.0 717.0 618.0 880.0 687.0 573.0 721.0 570.0	56.0 94.0 109.0 182.0 110.0 186.0 202.0 112.0 100.0 61.0	5.0 4.0 4.0 5.0 7.0 8.0 10.0 11.0 12.0 13.0 12.0 11.0	2.0 2.0 2.0 3.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	154.5 410.6 635.3 727.9 921.2 840.4 714.7 653.2 430.4	4.0 4.0 7.4 17.0 27.3 33.0 39.9 39.3 35.4 34.0 26.2 17.1 10.0	127.7 347.5 525.3 590.4 723.1 661.7 573.2 523.7 350.7 157.6	120.0 333.9 505.6 568.2 695.3 636.6 551.6 504.1 337.0 149.2
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0	281.0 568.0 717.0 618.0 880.0 687.0 573.0 721.0 570.0 379.0	56.0 94.0 109.0 182.0 110.0 186.0 202.0 112.0 100.0 61.0	5.0 4.0 4.0 4.0 5.0 7.0 8.0 11.0 12.0 12.0 12.0 11.0 10.0 11.0	2.0 2.0 2.0 3.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.0	154.5 410.6 635.3 727.9 921.2 840.4 714.7 653.2 430.4 198.8	4.0 4.0 7.4 17.0 27.3 33.0 39.9 39.3 35.4 34.0 26.2 17.1 10.0 11.0	127.7 347.5 525.3 590.4 723.1 661.7 573.2 523.7 350.7 157.6	120.0 333.9 505.6 568.2 695.3 636.6 551.6 504.1 337.0 149.2
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0	281.0 568.0 717.0 618.0 880.0 687.0 573.0 721.0 570.0	56.0 94.0 109.0 182.0 110.0 186.0 202.0 112.0 100.0 61.0	5.0 4.0 4.0 4.0 5.0 7.0 8.0 10.0 11.0 12.0 13.0 12.0 11.0 11.0 11.0	2.0 2.0 2.0 3.0 3.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.0	154.5 410.6 635.3 727.9 921.2 840.4 714.7 653.2 430.4 198.8	4.0 4.0 7.4 17.0 27.3 33.0 39.9 39.3 35.4 34.0 26.2 17.1 10.0 11.0	127.7 347.5 525.3 590.4 723.1 661.7 573.2 523.7 350.7 157.6	120.0 333.9 505.6 568.2 695.3 636.6 551.6 504.1 337.0 149.2
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0	281.0 568.0 717.0 618.0 880.0 687.0 573.0 721.0 570.0	56.0 94.0 109.0 182.0 110.0 186.0 202.0 112.0 100.0 61.0	5.0 4.0 4.0 4.0 5.0 7.0 8.0 10.0 11.0 12.0 13.0 12.0 11.0 11.0 11.0	2.0 2.0 2.0 3.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.0	154.5 410.6 635.3 727.9 921.2 840.4 714.7 653.2 430.4 198.8	4.0 4.0 7.4 17.0 27.3 33.0 39.9 39.3 35.4 34.0 26.2 17.1 10.0 11.0	127.7 347.5 525.3 590.4 723.1 661.7 573.2 523.7 350.7 157.6	120.0 333.9 505.6 568.2 695.3 636.6 551.6 504.1 337.0 149.2
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 17.0 18.0 19.0 20.0	281.0 568.0 717.0 618.0 880.0 687.0 573.0 721.0 570.0	56.0 94.0 109.0 182.0 110.0 186.0 202.0 112.0 100.0 61.0	5.0 4.0 4.0 5.0 7.0 8.0 10.0 11.0 12.0 13.0 12.0 11.0 10.0 11.0	2.0 2.0 2.0 3.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.0 1.0	154.5 410.6 635.3 727.9 921.2 840.4 714.7 653.2 430.4 198.8	4.0 4.0 7.4 17.0 27.3 33.0 39.9 39.3 35.4 34.0 26.2 17.1 10.0 11.0	127.7 347.5 525.3 590.4 723.1 661.7 573.2 523.7 350.7 157.6	120.0 333.9 505.6 568.2 695.3 636.6 551.6 504.1 337.0 149.2
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0	281.0 568.0 717.0 618.0 880.0 687.0 573.0 721.0 570.0	56.0 94.0 109.0 182.0 110.0 186.0 202.0 112.0 100.0 61.0	5.0 4.0 4.0 4.0 5.0 7.0 8.0 10.0 11.0 12.0 12.0 13.0 12.0 11.0 10.0 11.0	2.0 2.0 2.0 3.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.0 1.0	154.5 410.6 635.3 727.9 921.2 840.4 714.7 653.2 430.4 198.8	4.0 4.0 7.4 17.0 27.3 33.0 39.9 39.3 35.4 34.0 26.2 17.1 10.0 11.0 11.0	127.7 347.5 525.3 590.4 723.1 661.7 573.2 523.7 350.7 157.6	120.0 333.9 505.6 568.2 695.3 636.6 551.6 504.1 337.0 149.2
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0	281.0 568.0 717.0 618.0 880.0 687.0 573.0 721.0 570.0	56.0 94.0 109.0 182.0 110.0 186.0 202.0 112.0 100.0 61.0	5.0 4.0 4.0 4.0 5.0 7.0 8.0 10.0 11.0 12.0 12.0 13.0 11.0 11.0 11.0 11.0	2.0 2.0 2.0 3.0 3.0 2.0 2.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0 2.0 2.0	154.5 410.6 635.3 727.9 921.2 840.4 714.7 653.2 430.4 198.8	4.0 4.0 4.0 7.4 17.0 27.3 33.0 39.9 39.3 35.4 34.0 26.2 17.1 10.0 11.0 10.0	127.7 347.5 525.3 590.4 723.1 661.7 573.2 523.7 350.7 157.6	120.0 333.9 505.6 568.2 695.3 636.6 551.6 504.1 337.0 149.2
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0	281.0 568.0 717.0 618.0 880.0 687.0 573.0 721.0 570.0	56.0 94.0 109.0 182.0 110.0 186.0 202.0 112.0 100.0 61.0	5.0 4.0 4.0 4.0 5.0 7.0 8.0 10.0 11.0 12.0 12.0 13.0 12.0 11.0 10.0 11.0	2.0 2.0 2.0 3.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.0 1.0	154.5 410.6 635.3 727.9 921.2 840.4 714.7 653.2 430.4 198.8	4.0 4.0 7.4 17.0 27.3 33.0 39.9 39.3 35.4 34.0 26.2 17.1 10.0 11.0 11.0	127.7 347.5 525.3 590.4 723.1 661.7 573.2 523.7 350.7 157.6	120.0 333.9 505.6 568.2 695.3 636.6 551.6 504.1 337.0 149.2

2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	6.0			10.0 9.0 9.0 9.0 9.0 9.0 10.0 11.0 11.0	2.0 2.0 2.0 2.0 2.0 2.0 2.0 3.0 3.0 3.0 3.0 3.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3	58.3 26.5 161.0 184.0 157.7 326.2 136.9 65.6 11.4 40.8 - - - - - - - - - - - - -	10.0 9.0 9.0 9.0 9.0 9.0 10.0 9.5 9.8 13.6 16.7 17.1 21.7 18.6 15.4 13.3 14.0 15.0 16.0 16.0 15.0 14.0 15.0 14.0 10.0 9.0 9.0 8.0 8.0 6.9 7.8 9.8 12.6 11.1 13.6 8.9 9.8 12.6 11.1 13.6 8.9 12.0 13.0 14.0 15.0	52.9 24.0 143.4 161.5 138.2 279.9 119.1 57.9 10.1 36.3	46.8 18.5 135.3 153.0 130.3 268.3 111.6 51.7 4.8 30.5
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	8.0 10.0 8.0 11.0 8.0 12.0 8.0 13.0 8.0 14.0 8.0 15.0 8.0 16.0 8.0 17.0	573.0 619.0 904.0 884.0 250.0 468.0	202.0 214.0 106.0 104.0 238.0 123.0 61.0	8.0 9.0 9.0 10.0 10.0 10.0 9.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0	711.9 811.0 940.6 872.4 444.3 399.5	34.0 39.4 44.0 43.5 29.3 25.0 11.4 9.0	574.7 638.4 723.1 671.3 366.2 328.8 53.4	553.2 614.2 695.3 645.8 352.0 315.8 47.3

2.0 2.0	9.0 9.0	9.0 10.0	223.0 358.0	235.0 275.0	9.0 10.0	2.0 2.0	409.4 604.0	21.1 28.3	350.6 501.5	336.9 482.7
2.0	9.0	11.0	14.0	243.0	10.0	2.0	251.8	18.6	219.2	209.3
2.0 2.0	9.0 9.0	12.0 13.0	3.0 4.0	187.0 192.0	10.0 11.0	2.0 2.0	184.5 190.7	14.7 15.6	163.4 168.2	154.9 159.6
2.0	9.0	14.0	-	70.0	11.0	2.0	66.5	11.7	59.7	53.5
2.0 2.0	9.0 9.0	15.0 16.0	-	58.0 43.0	11.0 11.0	3.0 3.0	55.1 40.8	10.7 10.2	49.7 36.9	43.6 31.1
2.0 2.0	9.0 9.0	17.0 18.0	-	-	11.0 12.0	3.0 3.0	-	11.0 12.0	-	-
2.0	9.0	19.0	-	- -	12.0	3.0	-	12.0	-	-
2.0 2.0	9.0 9.0	20.0 21.0	-	- -	13.0 14.0	3.0 3.0		13.0 14.0	-	-
2.0	9.0	22.0	-	<u>-</u>	14.0	3.0	-	14.0	-	-
2.0 2.0	9.0 10.0	23.0	-	- -	15.0 16.0	3.0 2.0	-	15.0 16.0	-	-
2.0	10.0	1.0	-	-	16.0	2.0	-	16.0	-	-
2.0 2.0	10.0 10.0	2.0 3.0	-	- -	16.0 16.0	3.0 3.0	- -	16.0 16.0		-
2.0 2.0	10.0 10.0	4.0 5.0	-	- -	15.0 13.0	3.0 3.0	-	15.0 13.0	-	-
2.0	10.0	6.0	-	-	12.0	3.0	-	12.0	-	-
2.0 2.0	10.0 10.0	7.0 8.0	530.0 768.0	53.0 76.0	12.0 12.0	3.0 2.0	230.8 498.6	16.4 26.3	178.4 403.2	169.5 387.8
2.0	10.0	9.0	871.0	89.0	13.0	2.0	725.7	35.2	577.7	556.0
2.0 2.0	10.0 10.0	10.0 11.0	922.0 946.0	96.0 99.0	14.0 15.0	2.0 2.0	883.5 971.3	41.6 45.6	686.2 740.4	660.0 711.8
2.0	10.0	12.0	947.0	99.0	16.0	2.0	975.7	47.0	738.3	709.8
2.0 2.0	10.0 10.0	13.0 14.0	924.0 878.0	97.0 90.0	16.0 15.0	2.0 2.0	896.2 747.1	44.9 39.4	684.9 583.2	658.7 561.3
2.0	10.0	15.0	788.0	76.0	14.0	2.0	527.1	31.4	417.9	402.0
2.0 2.0	10.0 10.0	16.0 17.0	593.0 -	53.0 -	13.0 11.0	2.0 2.0	266.2	21.6 11.0	203.5	194.0
2.0 2.0	10.0 10.0	18.0 19.0	-	- -	10.0 9.0	2.0 2.0	-	10.0 9.0	-	-
2.0	10.0	20.0	-		8.0	2.0	-	8.0	-	-
2.0 2.0	10.0 10.0	21.0 22.0	-	- -	8.0 7.0	1.0 1.0	-	8.0 7.0	-	-
2.0	10.0	23.0	-	-	6.0	1.0	-	6.0	-	-
2.0 2.0	11.0 11.0	1.0	-	- -	6.0 6.0	1.0 1.0	-	6.0 6.0	-	-
2.0	11.0	2.0	-	-	6.0	1.0	-	6.0	-	-
2.0 2.0	11.0 11.0	3.0 4.0	-	- -	6.0 5.0	1.0 1.0	-	6.0 5.0	-	-
2.0 2.0	11.0 11.0	5.0 6.0	-	-	5.0 5.0	1.0 1.0	-	5.0 5.0	-	-
2.0	11.0	7.0	125.0	70.0	7.0	2.0	114.6	8.2	98.5	91.4
2.0 2.0	11.0 11.0	8.0 9.0	804.0 912.0	72.0 81.0	9.0 10.0	1.0 1.0	514.6 743.2	25.9 37.0	416.9 586.3	401.0 564.3
2.0	11.0	10.0	672.0	173.0	11.0	-	770.8	46.4	584.3	562.3
2.0 2.0	11.0 11.0	11.0 12.0	977.0 978.0	90.0 89.0	12.0 13.0	-	991.3 994.7	54.8 57.2	719.7 712.8	692.0 685.4
2.0	11.0	13.0	956.0	87.0	13.0	-	914.0	54.6	663.0	637.8
2.0 2.0	11.0 11.0	14.0 15.0	907.0 813.0	81.0 71.0	13.0 12.0	1.0 1.0	755.3 536.8	42.4 33.5	580.5 421.1	558.7 405.2
2.0 2.0	11.0 11.0	16.0 17.0	617.0	50.0	11.0 10.0	1.0 1.0	271.8	22.1 10.0	206.9	197.3
2.0	11.0	18.0	-	<u>-</u>	10.0	1.0	-	10.0	-	-
2.0 2.0	11.0 11.0	19.0 20.0	-	- -	10.0 10.0	1.0 1.0	-	10.0 10.0	-	-
2.0	11.0	21.0	-	-	9.0	1.0	-	9.0	-	-
2.0 2.0	11.0 11.0	22.0 23.0	-	- -	9.0 9.0	1.0 1.0	-	9.0 9.0	-	-
2.0 2.0	12.0	-	-	-	9.0 9.0	1.0	-	9.0 9.0	-	-
2.0	12.0 12.0	1.0 2.0	-	- -	9.0	1.0 1.0	-	9.0		-
2.0 2.0	12.0 12.0	3.0 4.0	-	- -	9.0 8.0	1.0 1.0	-	9.0 8.0	-	
2.0	12.0	5.0	-	-	8.0	1.0	-	8.0	-	-
2.0 2.0	12.0 12.0	6.0 7.0	- 127.0	- 71.0	9.0 11.0	1.0 1.0	- 116.3	9.0 12.4	98.1	- 91.1
2.0	12.0	8.0	740.0	80.0	13.0	1.0	492.3	29.0	393.6	378.5
2.0 2.0	12.0 12.0	9.0 10.0	847.0 903.0	94.0 102.0	15.0 16.0	1.0 1.0	717.7 878.2	40.7 48.0	555.9 660.1	535.1 635.0
2.0 2.0	12.0 12.0	11.0 12.0	928.0 934.0	105.0 103.0	17.0 17.0	-	966.0 972.6	59.1 59.9	684.8 686.6	658.6 660.4
2.0	12.0	13.0	911.0	100.0	17.0	-	892.5	57.4	637.8	613.7
2.0 2.0	12.0 12.0	14.0 15.0	862.0 755.0	93.0 83.0	17.0 16.0	-	742.2 520.8	52.0 42.5	542.8 391.4	522.5 376.4
2.0	12.0	16.0	542.0	59.0	15.0	1.0	256.8	25.4	194.4	185.1
2.0	12.0	17.0	-	-	13.0	1.0	-	13.0	-	-

2.0	12.0	18.0	_		13.0	1.0	_	13.0	_	_
2.0	12.0	19.0			12.0	1.0		12.0	_	
							•		-	
2.0	12.0	20.0	-	-	12.0	1.0	-	12.0	-	-
2.0	12.0	21.0	-		11.0	1.0		11.0	-	-
2.0	12.0	22.0	-	-	11.0	1.0	-	11.0	-	-
2.0	12.0	23.0	-	-	10.0	1.0	-	10.0	-	-
2.0	13.0	_	_		9.0	1.0		9.0	_	_
2.0	13.0	1.0			9.0	1.0		9.0		
							•		-	-
2.0	13.0	2.0	-	-	8.0	1.0	-	8.0	-	-
2.0	13.0	3.0	-		8.0	2.0		8.0	-	-
2.0	13.0	4.0	-	-	8.0	2.0	-	8.0	-	-
2.0	13.0	5.0	-	-	8.0	2.0	-	8.0	-	-
2.0	13.0	6.0	_	-	8.0	2.0	-	8.0	_	_
2.0	13.0	7.0	554.0	51.0	10.0	2.0	238.4	15.2	185.3	176.2
			763.0			2.0		26.4		388.4
2.0	13.0	8.0		75.0	12.0		498.8		403.8	
2.0	13.0	9.0	852.0	92.0	14.0	2.0	720.7	36.0	571.7	550.3
2.0	13.0	10.0	899.0	100.0	15.0	2.0	874.5	42.3	677.1	651.3
2.0	13.0	11.0	919.0	103.0	16.0	2.0	957.6	46.2	728.0	700.0
2.0	13.0	12.0	619.0	225.0	16.0	1.0	831.5	47.8	627.0	603.3
2.0	13.0	13.0	872.0	110.0	16.0	1.0	878.4	48.6	658.4	633.4
2.0	13.0	14.0	720.0	121.0	16.0	1.0	673.8	42.4	518.6	499.1
2.0	13.0	15.0	693.0	95.0	15.0	1.0	500.9	34.7	392.1	377.1
2.0	13.0	16.0	177.0	80.0	14.0	1.0	149.9	20.5	121.9	114.4
2.0	13.0	17.0	-	-	13.0	1.0	-	13.0	-	-
2.0	13.0	18.0	-		13.0	1.0		13.0	-	-
2.0	13.0	19.0	_	<u>-</u>	12.0	1.0	<u>-</u>	12.0	_	_
2.0	13.0	20.0	_		12.0	1.0		12.0	_	_
			•				-		•	
2.0	13.0	21.0	-	-	13.0	1.0	-	13.0	-	-
2.0	13.0	22.0	-		13.0	1.0		13.0	-	-
2.0	13.0	23.0	-	-	13.0	1.0	-	13.0	-	-
2.0	14.0	-	-	-	13.0	1.0	-	13.0	_	_
2.0	14.0	1.0	_		13.0	1.0		13.0	_	_
2.0	14.0	2.0			13.0	1.0		13.0		
							•		-	
2.0	14.0	3.0	-		13.0	1.0		13.0	-	-
2.0	14.0	4.0	-	-	13.0	1.0	-	13.0	-	-
2.0	14.0	5.0	-	-	13.0	1.0	-	13.0	-	-
2.0	14.0	6.0	-		14.0	1.0		14.0	-	-
2.0	14.0	7.0	61.0	74.0	15.0	1.0	95.3	15.7	81.2	74.5
2.0	14.0	8.0	451.0	127.0	16.0	1.0	388.2	28.2	314.4	301.8
2.0	14.0	9.0	654.0					39.3	495.4	476.8
				138.0	17.0	1.0	634.0			
2.0	14.0	10.0	521.0	232.0	18.0	2.0	707.4	40.0	554.4	533.6
2.0	14.0	11.0	507.0	266.0	18.0	2.0	769.5	42.1	597.6	575.1
2.0	14.0	12.0	379.0	317.0	18.0	2.0	699.3	40.4	548.0	527.4
2.0	14.0	13.0	321.0	300.0	18.0	2.0	606.6	37.4	482.1	464.0
2.0	14.0	14.0	342.0	234.0	18.0	1.0	508.5	37.4	402.6	387.2
2.0	14.0	15.0	10.0	147.0	17.0	1.0	149.9	23.5	127.4	119.7
2.0	14.0	16.0	177.0	82.0	16.0	1.0	152.1	20.0	124.2	116.5
2.0	14.0	17.0	-		16.0	1.0		16.0	-	-
2.0	14.0	18.0	-	-	16.0	2.0	-	16.0	-	-
2.0	14.0	19.0	-	-	16.0	2.0	-	16.0	-	-
2.0	14.0	20.0	-	-	17.0	2.0	-	17.0	-	-
2.0	14.0	21.0	_	<u>-</u>	17.0	2.0	<u>-</u>	17.0	_	_
2.0	14.0	22.0	_		17.0	2.0		17.0	_	_
2.0	14.0	23.0			17.0	2.0		17.0		
									_	
2.0	15.0	5.2	-	-	17.0	2.0	-	17.0	-	-
2.0	15.0	1.0	-	-	17.0	2.0	-	17.0	-	-
2.0	15.0	2.0	-	-	17.0	2.0	-	17.0	-	-
2.0	15.0	3.0	-	-	17.0	2.0	-	17.0	-	-
2.0	15.0	4.0	-		17.0	1.0	<u>-</u>	17.0	-	-
2.0	15.0	5.0	-	-	17.0	1.0	-	17.0	_	_
2.0	15.0	6.0	_	<u>-</u>	17.0	1.0	<u>-</u>	17.0	_	_
2.0	15.0	7.0		58.0	18.0	2.0	56.1	17.5	49.1	43.0
			62F 0							
2.0	15.0	8.0	635.0	99.0	19.0	2.0	460.7	31.3	365.7	351.5 453.2
2.0	15.0	9.0	551.0	173.0	19.0	2.0	595.2	37.0	470.9	453.2
2.0	15.0	10.0	807.0	129.0	20.0	2.0	838.6	45.5	638.7	614.6
2.0	15.0	11.0	397.0	313.0	20.0	2.0	710.5	42.9	549.6	529.0 487.6 621.3 506.3 249.7
2.0	15.0	12.0	290.0	343.0	20.0	2.0	647.0	40.6	506.6	487.6
2.0	15.0	13.0	810.0	129.0	20.0	2.0	849.8	46.0	645.8	621.3
2.0		14.0	754.0	119.0	20.0	1.0	699.1	46.8	526.0	506.3
2.0	15.0		250.0	169.0	19.0	1.0	325.6	32.8	260.8	249 7
	15.0 15.0	15.0		49.0					40.5	34.6
	15.0	15.0 16.0		49.0	18.0	2.0	46.5	18.8		
2.0	15.0 15.0	16.0	-			2.0	-	18.0	-	-
2.0	15.0 15.0 15.0	16.0 17.0		-	18.0					
2.0 2.0	15.0 15.0 15.0 15.0	16.0 17.0 18.0	-		18.0	2.0		18.0	-	-
2.0	15.0 15.0 15.0	16.0 17.0	-				-	18.0 18.0	- -	-
2.0 2.0	15.0 15.0 15.0 15.0 15.0	16.0 17.0 18.0 19.0	-		18.0	2.0 2.0	- - -		- - -	-
2.0 2.0 2.0 2.0	15.0 15.0 15.0 15.0 15.0 15.0	16.0 17.0 18.0 19.0 20.0	-		18.0 18.0 18.0	2.0 2.0 2.0		18.0 18.0	- - -	- - -
2.0 2.0 2.0 2.0 2.0	15.0 15.0 15.0 15.0 15.0 15.0 15.0	16.0 17.0 18.0 19.0 20.0 21.0	-		18.0 18.0 18.0 18.0	2.0 2.0 2.0 2.0		18.0 18.0 18.0	- - - -	
2.0 2.0 2.0 2.0 2.0 2.0	15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0	16.0 17.0 18.0 19.0 20.0 21.0 22.0	-		18.0 18.0 18.0 18.0 18.0	2.0 2.0 2.0 2.0 2.0	: : : :	18.0 18.0 18.0 18.0	- - - -	- - - -
2.0 2.0 2.0 2.0 2.0 2.0 2.0	15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0	16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0	-		18.0 18.0 18.0 18.0 18.0 18.0	2.0 2.0 2.0 2.0 2.0 2.0	- - - - -	18.0 18.0 18.0 18.0 18.0	- - - - -	- - - - -
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0	16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0	-		18.0 18.0 18.0 18.0 18.0 18.0	2.0 2.0 2.0 2.0 2.0 2.0 2.0	- - - - - -	18.0 18.0 18.0 18.0 18.0 18.0	- - - - - -	- - - - - -
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0	16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0	-		18.0 18.0 18.0 18.0 18.0 18.0 18.0	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	: - - - - - - -	18.0 18.0 18.0 18.0 18.0 18.0	- - - - - -	- - - - - - -
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0	16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0	-		18.0 18.0 18.0 18.0 18.0 18.0	2.0 2.0 2.0 2.0 2.0 2.0 2.0	- - - - - - - -	18.0 18.0 18.0 18.0 18.0 18.0	: - - - - - - -	- - - - - - - -
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0	16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0	-		18.0 18.0 18.0 18.0 18.0 18.0 18.0	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	- - - - - - - - -	18.0 18.0 18.0 18.0 18.0 18.0		-

2.0	16.0	3.0	-		18.0	2.0	<u>-</u>	18.0	-	-
2.0	16.0	4.0	-		18.0	2.0		18.0	-	-
2.0	16.0	5.0	-		18.0	2.0		18.0	-	-
2.0	16.0	6.0	-		17.0	2.0		17.0	-	-
2.0	16.0	7.0	-	53.0	17.0	2.0	50.8	16.3	44.7	38.8
2.0	16.0	8.0	112.0	168.0	17.0	1.0	239.0	23.5	201.1	191.7
2.0	16.0	9.0	18.0	206.0	17.0	1.0	215.6	24.0	182.9	173.9
2.0	16.0	10.0	11.0	225.0	18.0	1.0	229.9	25.4	193.9	184.6
2.0	16.0	11.0	9.0	226.0	18.0	1.0	229.2	25.4	193.3	184.0
2.0	16.0	12.0	116.0	356.0	18.0	1.0	478.5	34.2	386.9	372.0
2.0	16.0	13.0	315.0	307.0	18.0	2.0	610.0	36.6	486.8	468.6
2.0	16.0	14.0	209.0	260.0	18.0	2.0	431.4	31.9	351.5	337.7
2.0	16.0	15.0	472.0	134.0	17.0	2.0	418.9	29.8	338.0	324.7
2.0	16.0	16.0	196.0	84.0	16.0	1.0	160.9	22.3	129.7	121.9
2.0	16.0	17.0	-	-	15.0	1.0	-	15.0	-	-
2.0	16.0	18.0	_	_	14.0	2.0	<u>-</u>	14.0	_	_
2.0	16.0	19.0	_		13.0	3.0		13.0	_	_
2.0	16.0	20.0	_		12.0	3.0		12.0	_	_
2.0	16.0	21.0	_		11.0	3.0		11.0		_
2.0	16.0	22.0			10.0	3.0		10.0		
2.0	16.0	23.0			9.0	3.0		9.0	_	
2.0	17.0	-	-		9.0	3.0		9.0	-	-
2.0	17.0	1.0	-		8.0	3.0		8.0	-	-
2.0	17.0	2.0	-		8.0	3.0		8.0	-	-
2.0	17.0	3.0	-		7.0	3.0		7.0		-
2.0	17.0	4.0	-		7.0	3.0		7.0	-	-
				-		3.0			-	-
2.0	17.0	5.0	-		6.0	3.0		6.0		-
2.0	17.0	6.0	-	-	6.0	3.0	36.0	6.0	- 22.2	27.6
2.0	17.0	7.0	45.0	38.0	6.0			4.8	33.3	
2.0	17.0	8.0	15.0	147.0	7.0	2.0	152.5	9.6	137.9	130.0
2.0	17.0	9.0	56.0	239.0	8.0	2.0	286.3	15.4	252.4	241.6
2.0	17.0	10.0	193.0	322.0	9.0	2.0	509.4	24.0	432.2	415.8
2.0	17.0	11.0	277.0	358.0	9.0	2.0	651.3	29.2	539.2	519.0
2.0	17.0	12.0	241.0	356.0	10.0	2.0	605.3	29.5	500.6	481.8
2.0	17.0	13.0	120.0	326.0	10.0	2.0	452.9	24.7	383.0	368.3
2.0	17.0	14.0	29.0	227.0	10.0	2.0	253.7	17.9	221.4	211.4
2.0	17.0	15.0	32.0	164.0	10.0	2.0	185.3	14.8	163.5	155.0
2.0	17.0	16.0	81.0	88.0	9.0	1.0	121.7	12.1	105.6	98.4
2.0	17.0	17.0	-		8.0	1.0		8.0	-	-
2.0	17.0	18.0	-	-	7.0	1.0		7.0	-	-
2.0	17.0	19.0	-		7.0	1.0	-	7.0	-	-
2.0	17.0	20.0	-	-	6.0	1.0		6.0	-	-
2.0	17.0	21.0	-		5.0	1.0	-	5.0	-	-
2.0	17.0	22.0	-		5.0	1.0		5.0	-	-
2.0	17.0	23.0	-		5.0	1.0		5.0	-	-
2.0	18.0	-	-	-	5.0	1.0	-	5.0	-	-
2.0	18.0	1.0	-	-	4.0	1.0	-	4.0	-	-
2.0	18.0	2.0	-	-	4.0	1.0	-	4.0	-	-
2.0	18.0	3.0	-	-	4.0	1.0	-	4.0	-	-
2.0	18.0	4.0	-	-	4.0	1.0	-	4.0	-	-
2.0	18.0	5.0	-	-	4.0	1.0	-	4.0	-	-
2.0	18.0	6.0	-	-	4.0	1.0	-	4.0	-	-
2.0	18.0	7.0	-	42.0	5.0	1.0	39.8	3.3	37.1	31.3
2.0	18.0	8.0	202.0	169.0	6.0	1.0	288.8	14.2	252.3	241.5
2.0	18.0	9.0	861.0	99.0	7.0	1.0	743.8	32.8	599.9	577.3
2.0	18.0	10.0	639.0	196.0	9.0	-	776.9	44.8	594.2	571.8
2.0	18.0	11.0	674.0	211.0	10.0	-	871.7	49.1	652.6	627.9
2.0	18.0	12.0	944.0	103.0	11.0	-	994.0	54.6	722.5	694.7
2.0	18.0	13.0	923.0	99.0	11.0	-	912.8	52.8	669.1	643.6
2.0	18.0	14.0	874.0	93.0	12.0	-	760.4	48.2	567.9	546.6
2.0	18.0	15.0	784.0	80.0	11.0	-	539.2	38.7	413.7	398.0
2.0	18.0	16.0	600.0	58.0	10.0	-	279.5	26.2	210.9	201.2
2.0	18.0	17.0	108.0	11.0	9.0	1.0	32.3	9.4	23.1	17.6
2.0	18.0	18.0	-	-	9.0	1.0	-	9.0	-	-
2.0	18.0	19.0	-		9.0	1.0		9.0	-	-
2.0	18.0	20.0	-	-	8.0	1.0	-	8.0	-	-
2.0	18.0	21.0	-		8.0	1.0		8.0	-	-
2.0	18.0	22.0	-		8.0	1.0	-	8.0	-	-
2.0	18.0	23.0	-		8.0	1.0	-	8.0	-	-
2.0	19.0	-	-	-	8.0	1.0	-	8.0	-	-
2.0	19.0	1.0	-	-	8.0	1.0	-	8.0	-	-
2.0	19.0	2.0	-	-	8.0	1.0	-	8.0	-	-
2.0	19.0	3.0	_	-	8.0	1.0	-	8.0	_	_
2.0	19.0	4.0	_	-	9.0	1.0	-	9.0	_	_
2.0	19.0	5.0	-	-	9.0	1.0	-	9.0	-	-
2.0	19.0	6.0	-	-	10.0	1.0	-	10.0	-	-
2.0	19.0	7.0	416.0	62.0	12.0	1.0	210.2	17.0	165.9	157.3
2.0	19.0	8.0	-	30.0	14.0	1.0	28.4	13.8	25.3	19.7
2.0	19.0	9.0	497.0	198.0	15.0	1.0	587.2	33.7	472.9	455.1
2.0	19.0	10.0	668.0	191.0	16.0	1.0	797.8	44.8	610.4	587.4
2.0	19.0	11.0	889.0	121.0	16.0	1.0	969.0	51.2	717.6	690.0

2.0 2.0	19.0 19.0	12.0 13.0	617.0 213.0	238.0 330.0	17.0 16.0	1.0 1.0	850.8 537.5	49.4 37.9	636.3 426.3	612.2 410.2
2.0 2.0	19.0 19.0	14.0 15.0	594.0 159.0	170.0 183.0	16.0 15.0	1.0 1.0	640.4 283.7	39.5 27.1	501.2 234.6	482.4 224.3
2.0 2.0	19.0 19.0	16.0 17.0	-	72.0 5.0	14.0 13.0	1.0 1.0	69.8 4.7	15.9 10.7	61.5 4.3	55.2 -
2.0 2.0	19.0 19.0	18.0 19.0	-	-	13.0 13.0	1.0 1.0	-	13.0 13.0	-	-
2.0 2.0	19.0 19.0	20.0 21.0	-	-	13.0 12.0	1.0 1.0	-	13.0 12.0	-	-
2.0 2.0	19.0 19.0	22.0 23.0	-	-	12.0 12.0	1.0 1.0	-	12.0 12.0	-	-
2.0 2.0	20.0 20.0	- 1.0	-	-	12.0 12.0	1.0 1.0	-	12.0 12.0	- -	-
2.0 2.0	20.0 20.0	2.0 3.0	-	- -	12.0 12.0	1.0 1.0	-	12.0 12.0	- -	-
2.0 2.0	20.0 20.0	4.0 5.0	-	- -	12.0 12.0	1.0 1.0	- -	12.0 12.0	- -	-
2.0 2.0	20.0 20.0	6.0 7.0	- 488.0	- 57.0	12.0 13.0	1.0 1.0	- 229.2	12.0 18.8	- 178.1	- 169.2
2.0 2.0	20.0 20.0	8.0 9.0	500.0 348.0	127.0 237.0	14.0 15.0	1.0 1.0	419.5 513.1	28.2 33.6	340.0 414.0	326.6 398.3
2.0 2.0	20.0 20.0	10.0 11.0	517.0 365.0	244.0 333.0	16.0 17.0	1.0 1.0	722.9 706.0	42.0 43.5	561.2 544.4	540.2 524.0
2.0	20.0	12.0 13.0	650.0 455.0	226.0 274.0	17.0 17.0	1.0	870.3 706.3	48.6 44.4	653.5 541.8	628.7 521.5
2.0	20.0	14.0 15.0	815.0	109.0 91.0	17.0 16.0	1.0	737.1 86.9	44.4 21.8	561.8 74.5	540.7 68.0
2.0	20.0	16.0 17.0	534.0	66.0 14.0	15.0 14.0	1.0 1.0	266.0 13.3	22.8 13.6	205.6 11.8	196.0 6.5
2.0 2.0	20.0 20.0	18.0 19.0	-	-	14.0 14.0	1.0 1.0	-	14.0 14.0	-	-
2.0 2.0	20.0 20.0	20.0 21.0	-		14.0 14.0	1.0 1.0	-	14.0 14.0	-	-
2.0 2.0	20.0 20.0	22.0 23.0	-		13.0 13.0	1.0 1.0	-	13.0 13.0	-	-
2.0 2.0	21.0 21.0	- 1.0			13.0 13.0	1.0 1.0 1.0		13.0 13.0		-
2.0 2.0 2.0	21.0 21.0 21.0	2.0 3.0	-	-	14.0 14.0	1.0 1.0 1.0	-	14.0 14.0	-	-
2.0 2.0 2.0	21.0 21.0 21.0	4.0 5.0	-	-	14.0 14.0 14.0	1.0 1.0 1.0	-	14.0 14.0 14.0	-	-
2.0 2.0 2.0	21.0 21.0 21.0	6.0 7.0	-	- - 39.0	14.0 14.0 15.0	1.0 1.0 2.0	- - 37.0	14.0 14.0 13.8	- - 32.9	- - 27.2
2.0	21.0	8.0	-	70.0	16.0	2.0	66.5	16.0	58.6	52.3
2.0	21.0 21.0	9.0	-	117.0 121.0	16.0 16.0	2.0	112.1 115.8	17.6 17.9	98.0 101.1	90.9 94.0
2.0	21.0 21.0	11.0 12.0	8.0	137.0 221.0	17.0 17.0	2.0 2.0	131.5 222.9	19.5 22.4	114.0 190.7	106.6 181.5
2.0	21.0 21.0	13.0 14.0	9.0 26.0	220.0 228.0	18.0 18.0	2.0	222.6 243.9	23.8 24.5	189.2 206.4	180.0 196.8
2.0	21.0 21.0	15.0 16.0	-	27.0 67.0	17.0 17.0	2.0	25.6 64.5	16.7 16.9	22.5 56.6	17.0 50.4
2.0	21.0 21.0	17.0 18.0	-	4.0	17.0 17.0	2.0	3.8	15.2 17.0	3.3 -	-
2.0	21.0 21.0	19.0 20.0	-	-	17.0 17.0	2.0	-	17.0 17.0	-	-
2.0	21.0 21.0	21.0 22.0	-	-	17.0 18.0	3.0 3.0	-	17.0 18.0	-	-
2.0	21.0 22.0	23.0	-	-	18.0 18.0	3.0 3.0	-	18.0 18.0	-	-
2.0 2.0	22.0 22.0	1.0 2.0	-	-	19.0 19.0	3.0 3.0	-	19.0 19.0	-	-
2.0 2.0	22.0 22.0	3.0 4.0	-	-	19.0 19.0	3.0 4.0	-	19.0 19.0	-	-
2.0	22.0 22.0	5.0 6.0			18.0 18.0	4.0	- 5.1	18.0 18.0	- -	
2.0	22.0 22.0	7.0 8.0	22.0 105.0	83.0 180.0	17.0 17.0	4.0	91.3 247.9	17.6 21.8	78.9 210.7	72.3 201.0
2.0	22.0 22.0	9.0	80.0 199.0	260.0 336.0	17.0 18.0	4.0 5.0	326.1 530.5	24.3 29.2	276.0 439.0	264.5 422.5
2.0 2.0	22.0 22.0	11.0 12.0	114.0 35.0	369.0 315.0	17.0 17.0	5.0 5.0	490.1 357.0	27.8 24.7	408.6 302.1	393.1 289.9
2.0	22.0 22.0	13.0 14.0	13.0 -	239.0 117.0	16.0 16.0	5.0 5.0	245.5 112.0	20.8 17.6	211.5 98.0	201.7 90.9
2.0	22.0 22.0	15.0 16.0	-	65.0 81.0	15.0 15.0	5.0 4.0	61.7 78.9	15.1 15.4	54.6 69.6	48.5 63.2
2.0	22.0 22.0	17.0 18.0	-	6.0 -	14.0 13.0	4.0 4.0	5.7 -	12.5 13.0	5.1 -	-
2.0 2.0	22.0 22.0	19.0 20.0	-	-	12.0 10.0	4.0 4.0	-	12.0 10.0	-	-

200 200 200 - - - - 68											
220 220 220 -				-	-			-		-	-
200				-	-			-		-	-
20				-	-			-		-	-
200 200 30				-	-			-		-	-
200 201 30				-	-			-		-	-
220 20.0 40				-	-			-		-	-
26 20 50 00 10 00				-	-			-		-	-
200 60				-	-			-			-
200 70					-			-			-
20					-						-
280 280 00 9100 880 110 - 7702 4 645 5828 5738 5738 5738 5738 5738 5738 5738 573											
230 100 7770 1510 120 - 8844 504 8546 8148 1018 20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2											
200 200 100 6783 102 130 - 13017 575 7883 78888 7888 7888 7888 7888 78888 7888 7888 7888 7888 7888 7888 7888 7888							-				
238 120 8808 1910 440 - 1905 686 722 7808 7809 7							-				
200							-				
230							-				
200 230 150 8070 780 130 100 5722 589 4468 4288 2207 2204 220 180							-				
200 230 160 860 860 860 120 10 305.2 22.5 220.7 220.4							-				
200 230 770 1860 150 110 100 455 121 314 228											
20											
20											
200 230 200 0 -					-			-		-	-
200 230 220 - - - 110 20 - - 110 - - - - -				-	-			-		-	-
20				-				-		-	-
20				-				•			-
200				-				•			-
20				-				•			-
20				-				•			-
20				-				•			-
20				-				· ·			-
20				-						-	
20				-						-	
20				77.0	11.0			24.5		17.7	12.3
20											
20							_				
20							_				
20							_				
20							_				
20							_				
20							_				
20							1.0				
20											
20											
20											
20											
20				_	<u>-</u>			_		_	_
200 240 210 -				_	_			-		_	_
20 240 230 - - 140 -<	2.0		21.0	-	-	14.0	1.0	-	14.0	_	-
20 250 - - 1330 - - 1330 - - - 1330 - <	2.0	24.0	22.0	-	<u>-</u>	14.0	-	-	14.0	<u>-</u>	-
20 250 10 - - 130 1.0 - 130 - <td< td=""><td>2.0</td><td>24.0</td><td>23.0</td><td>-</td><td><u>-</u></td><td>14.0</td><td>-</td><td>-</td><td>14.0</td><td><u>-</u></td><td>-</td></td<>	2.0	24.0	23.0	-	<u>-</u>	14.0	-	-	14.0	<u>-</u>	-
20 250 20 - - 120 10 - 120 -	2.0	25.0	-	-	-	13.0	-	-	13.0	-	-
20 250 30 - - 120 10 - 120 -	2.0	25.0	1.0	-	-	13.0	1.0	-	13.0	-	-
20 250 40 - - 120 10 - 120 -				-	-			-		-	-
20 250 50 - 80 120 10 - 120 - - 16 95 6.9 1.6 2.0 250 6.0 - 1.6 92.0 120 20 144.5 14.2 122.1 114.6 2.0 25.0 8.0 228.0 181.0 13.0 2.0 323.6 216 273.8 262.4 2.0 25.0 8.0 228.0 181.0 13.0 2.0 323.6 216 273.8 262.4 2.0 25.0 10.0 10 114.0 2.0 323.6 216 273.8 262.4 2.0 25.0 10.0 10 114.0 120 144.0 13.0 120 148.0 135.0 10 166.1 19.5 144.0 135.9 20 25.0 110 166.1 19.5 144.0 135.9 20 25.0 120 148.0 381.0 160 150 10 166.1 19.5 144.0 136.2				-	-			-		-	-
20 25.0 6.0 - 8.0 12.0 1.0 7.6 9.5 6.9 1.6 2.0 25.0 7.0 142.0 92.0 12.0 2.0 144.5 14.2 122.1 114.6 2.0 25.0 8.0 228.0 181.0 13.0 2.0 323.6 21.6 273.8 262.4 2.0 25.0 9.0 - 152.0 14.0 2.0 146.7 17.9 128.1 120.4 2.0 25.0 10.0 1.0 171.0 15.0 1.0 166.1 19.5 144.0 135.9 2.0 25.0 11.0 20.0 284.0 16.0 1.0 298.2 25.5 251.5 240.7 2.0 25.0 11.0 20.0 284.0 181.0 16.0 - 546.6 39.7 429.9 413.6 2.0 25.0 13.0 842.0 131.0 17.0 - 894.8 54.7 </td <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td>-</td>				-	-			-		-	-
2.0 25.0 7.0 142.0 92.0 12.0 2.0 144.5 14.2 122.1 114.6 2.0 25.0 8.0 228.0 181.0 13.0 2.0 323.6 21.6 273.8 262.4 2.0 25.0 10.0 1.0 140.0 2.0 146.7 17.9 128.1 120.4 2.0 25.0 10.0 1.0 15.0 1.0 166.1 19.5 144.0 135.9 2.0 25.0 11.0 20.0 284.0 16.0 1.0 186.1 19.5 144.0 135.9 2.0 25.0 12.0 148.0 381.0 16.0 - 546.6 39.7 429.9 413.6 2.0 25.0 13.0 842.0 131.0 17.0 - 743.5 52.1 544.7 524.3 2.0 25.0 13.0 842.0 131.0 17.0 - 743.5 52.1 544.7 524.3				-	-			-			-
20 250 80 228.0 181.0 13.0 2.0 323.6 21.6 273.8 262.4 2.0 25.0 9.0 - 152.0 14.0 2.0 146.7 17.9 128.1 120.4 2.0 25.0 10.0 1.0 150.0 1.0 166.1 19.5 144.0 135.9 2.0 25.0 11.0 20.0 284.0 16.0 1.0 298.2 25.5 251.5 240.7 2.0 25.0 11.0 20.0 284.0 16.0 1.0 298.2 25.5 251.5 240.7 2.0 25.0 13.0 842.0 131.0 17.0 - 894.8 54.7 649.7 625.0 2.0 25.0 14.0 804.0 117.0 17.0 - 743.5 52.1 544.7 524.3 2.0 25.0 14.0 804.0 117.0 17.0 - 743.5 52.1 544.7											1.6
2.0 25.0 9.0 - 152.0 14.0 2.0 146.7 17.9 128.1 120.4 2.0 25.0 10.0 1.0 171.0 15.0 1.0 166.1 19.5 144.0 135.9 2.0 25.0 11.0 20.0 284.0 16.0 1.0 298.2 25.5 251.5 240.7 2.0 25.0 12.0 148.0 381.0 16.0 - 546.6 39.7 429.9 413.6 2.0 25.0 13.0 842.0 131.0 17.0 - 894.8 54.7 649.7 625.0 2.0 25.0 14.0 804.0 117.0 17.0 - 743.5 52.1 544.7 524.3 2.0 25.0 15.0 724.0 97.0 17.0 - 531.3 43.8 398.5 383.3 2.0 25.0 15.0 750.0 69.0 16.0 - 276.8 31.7											
2.0 25.0 10.0 1.0 171.0 15.0 1.0 166.1 19.5 144.0 135.9 2.0 25.0 11.0 20.0 284.0 16.0 1.0 298.2 25.5 251.5 240.7 2.0 25.0 112.0 148.0 381.0 16.0 - 546.6 39.7 429.9 413.6 2.0 25.0 13.0 842.0 131.0 17.0 - 894.8 54.7 649.7 625.0 2.0 25.0 14.0 804.0 117.0 17.0 - 531.3 43.8 39.5 383.3 2.0 25.0 15.0 724.0 97.0 17.0 - 531.3 43.8 39.5 383.3 2.0 25.0 15.0 750.0 69.0 16.0 - 276.8 31.7 205.6 196.0 2.0 25.0 17.0 115.0 17.0 14.0 - 13.0 1.0 <											
2.0 25.0 11.0 20.0 284.0 16.0 1.0 298.2 25.5 251.5 240.7 2.0 25.0 12.0 148.0 381.0 16.0 - 546.6 39.7 429.9 413.6 2.0 25.0 13.0 842.0 131.0 17.0 - 884.8 54.7 649.7 625.0 2.0 25.0 14.0 804.0 117.0 17.0 - 743.5 52.1 544.7 524.3 2.0 25.0 15.0 724.0 97.0 17.0 - 531.3 43.8 398.5 383.3 2.0 25.0 15.0 724.0 97.0 17.0 - 531.3 43.8 398.5 383.3 2.0 25.0 15.0 15.0 17.0 14.0 - 38.5 16.8 27.5 21.9 2.0 25.0 18.0 - - 13.0 1.0 - 14.0 -											
2.0 25.0 12.0 148.0 381.0 16.0 - 546.6 39.7 429.9 413.6 2.0 25.0 13.0 842.0 131.0 17.0 - 894.8 54.7 649.7 625.0 2.0 25.0 14.0 804.0 117.0 - 743.5 52.1 544.7 524.3 2.0 25.0 15.0 724.0 97.0 17.0 - 531.3 43.8 398.5 383.3 2.0 25.0 16.0 550.0 69.0 16.0 - 276.8 31.7 205.6 196.0 2.0 25.0 17.0 115.0 17.0 14.0 - 38.5 16.8 27.5 21.9 2.0 25.0 18.0 - - 14.0 1.0 - 14.0 - - 21.9 - 2.0 25.0 19.0 - - 13.0 1.0 - 13.0 - -											
2.0 25.0 13.0 842.0 131.0 17.0 - 894.8 54.7 649.7 625.0 2.0 25.0 14.0 804.0 117.0 - 743.5 52.1 544.7 524.3 2.0 25.0 15.0 724.0 97.0 17.0 - 531.3 48.8 398.5 383.3 2.0 25.0 16.0 550.0 69.0 16.0 - 276.8 31.7 205.6 196.0 2.0 25.0 17.0 115.0 17.0 14.0 - 385.5 16.8 27.5 21.9 2.0 25.0 18.0 - - 14.0 1.0 - 14.0 2.0 25.0 18.0 - - - 21.9 - - 14.0 1.0 - 13.0 - - - - - - - - - - - - - - - -<							1.0				240.7
2.0 25.0 14.0 894.0 117.0 - 743.5 52.1 544.7 524.3 2.0 25.0 15.0 724.0 97.0 17.0 - 531.3 43.8 398.5 383.3 2.0 25.0 16.0 550.0 69.0 16.0 - 276.8 31.7 205.6 196.6 196.0 2.0 25.0 17.0 115.0 17.0 14.0 - 38.5 16.8 27.5 21.9 2.0 25.0 18.0 - - 14.0 1.0 - 14.0 - - 2.0 25.0 19.0 - - 13.0 1.0 - 13.0 - - 2.0 25.0 19.0 - - 13.0 1.0 - 13.0 - - 2.0 25.0 21.0 - - 12.0 1.0 - 12.0 - - 2.0 25.0 22.0 - - 11.0 1.0 - 11.0 - </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>413.0</td>							-				413.0
2.0 25.0 16.0 550.0 69.0 16.0 - 276.8 31.7 205.6 196.0 2.0 25.0 17.0 115.0 17.0 14.0 - 38.5 16.8 27.5 21.9 2.0 25.0 18.0 - - 14.0 1.0 - 14.0 - - 2.0 25.0 19.0 - - 13.0 1.0 - 13.0 - - 2.0 25.0 20.0 - - 12.0 1.0 - 13.0 - - 2.0 25.0 22.0 - - 12.0 1.0 - 12.0 - - 2.0 25.0 22.0 - - 12.0 1.0 - 12.0 - - 2.0 25.0 22.0 - - 11.0 1.0 - 11.0 - - 2.0 26.0 1.0 - - 11.0 1.0 - 11.0 - - <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>649.7</td><td>625.0</td></t<>							-			649.7	625.0
2.0 25.0 16.0 550.0 69.0 16.0 - 276.8 31.7 205.6 196.0 2.0 25.0 17.0 115.0 17.0 14.0 - 38.5 16.8 27.5 21.9 2.0 25.0 18.0 - - 14.0 1.0 - 14.0 - - 2.0 25.0 19.0 - - 13.0 1.0 - 13.0 - - 2.0 25.0 20.0 - - 12.0 1.0 - 13.0 - - 2.0 25.0 22.0 - - 12.0 1.0 - 12.0 - - 2.0 25.0 22.0 - - 12.0 1.0 - 12.0 - - 2.0 25.0 22.0 - - 11.0 1.0 - 11.0 - - 2.0 26.0 1.0 - - 11.0 1.0 - 11.0 - - <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>324.3</td></t<>							-				324.3
2.0 25.0 18.0 - - 14.0 1.0 - 14.0 -							-				303.3 106.0
2.0 25.0 18.0 - - 14.0 1.0 - 14.0 -							-			203.0	21.0
2.0 25.0 19.0 - - 13.0 1.0 - 13.0 -					17.0		1.0				
2.0 25.0 20.0 - - 13.0 1.0 - 13.0 -											
2.0 25.0 21.0 - 12.0 1.0 - 12.0 - - 2.0 25.0 22.0 - - 12.0 1.0 - 12.0 - - 2.0 25.0 23.0 - - 11.0 1.0 - 11.0 - - 2.0 26.0 - - - 11.0 1.0 - 11.0 - - 2.0 26.0 2.0 - - 11.0 1.0 - 11.0 - - 2.0 26.0 3.0 - - 11.0 1.0 - 11.0 - - 2.0 26.0 4.0 - - 11.0 1.0 - 11.0 - - 2.0 26.0 4.0 - - 11.0 1.0 - 11.0 - -				-	-					-	-
2.0 25.0 22.0 - - 12.0 1.0 - 12.0 - - 2.0 25.0 23.0 - - 11.0 1.0 - 11.0 - - 2.0 26.0 - - - 11.0 1.0 - 11.0 - - 2.0 26.0 2.0 - - 11.0 1.0 - 11.0 - - 2.0 26.0 3.0 - - 11.0 1.0 - 11.0 - - 2.0 26.0 4.0 - - 11.0 1.0 - 11.0 - -				-	-					-	-
2.0 25.0 23.0 - - 11.0 1.0 - 11.0 - </td <td></td> <td></td> <td></td> <td>_</td> <td>_</td> <td></td> <td></td> <td>_</td> <td></td> <td>_</td> <td>-</td>				_	_			_		_	-
2.0 26.0 - - - 11.0 1.0 - 11.0 - - 2.0 26.0 1.0 - - 11.0 1.0 - 11.0 - - 2.0 26.0 2.0 - - 11.0 1.0 - 11.0 - - 2.0 26.0 4.0 - - 11.0 1.0 - 11.0 - - 2.0 26.0 4.0 - - 11.0 1.0 - 11.0 - -				_	<u>-</u>			<u>-</u>		_	_
2.0 26.0 1.0 - - 11.0 1.0 - 11.0 - <td></td> <td></td> <td></td> <td>_</td> <td><u>-</u></td> <td></td> <td></td> <td>-</td> <td></td> <td>_</td> <td>_</td>				_	<u>-</u>			-		_	_
2.0 26.0 2.0 - - 11.0 1.0 - 11.0 - <td></td> <td></td> <td></td> <td>_</td> <td><u>-</u></td> <td></td> <td></td> <td>-</td> <td></td> <td>_</td> <td>_</td>				_	<u>-</u>			-		_	_
2.0 26.0 3.0 - - 11.0 1.0 - 11.0 - <td></td> <td></td> <td></td> <td>_</td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td>_</td> <td>_</td>				_	-			-		_	_
2.0 26.0 4.0 11.0 1.0 - 11.0 - 11.0				_	-			-		_	_
				-	-			-		-	-
				-	-			-		-	-

2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	26.0	171.0 107.0 46.0 3.0 5.0 19.0 6.0 - - - - - - - - - - - - -	10.0 92.0 188.0 251.0 186.0 195.0 280.0 202.0 82.0 75.0 68.0 6.0	12.0 13.0 14.0 14.0 14.0 15.0 16.0 17.0 17.0 16.0 16.0 16.0 16.0 17.0 17.0 17.0 18.0 18.0 18.0 18.0 18.0 18.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	9.5 158.1 257.5 290.4 182.8 193.7 293.1 201.5 78.0 71.3 65.2 5.7	9.6 16.1 21.9 23.8 21.2 21.8 26.5 23.9 18.2 16.3 16.1 14.2 16.0 16.0 17.0 17.0 17.0 17.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18	8.6 131.8 218.8 246.5 157.2 166.1 246.0 171.1 68.0 62.7 57.4 5.0	3.3 124.0 208.9 235.9 148.8 157.5 235.3 162.4 61.6 56.4 51.2
3.0	1.0 8.0	691.0	106.0	15.0		519.1	37.4	402.2	386.9
3.0	1.0 9.0	788.0	124.0	17.0		738.5	49.2	549.3	528.7

3.0	1.0	15.0	679.0	115.0	19.0	-	527.7	45.5	393.1	378.1
3.0	1.0	16.0	497.0	84.0	18.0	-	274.5	33.5	204.1	194.6
3.0 3.0	1.0 1.0	17.0 18.0	102.0	22.0	17.0 16.0	-	41.7	19.9 16.0	30.6	24.9
3.0	1.0	19.0	- 1		15.0	1.0		15.0	-	
3.0	1.0	20.0	_	_	15.0	1.0		15.0	_	_
3.0	1.0	21.0	_	_	14.0	1.0	-	14.0	_	_
3.0	1.0	22.0	-	-	14.0	1.0	-	14.0	-	-
3.0	1.0	23.0	-	-	13.0	1.0	-	13.0	-	-
3.0	2.0	-	-	-	13.0	1.0	-	13.0	-	-
3.0	2.0	1.0	-	-	13.0	1.0	-	13.0	-	-
3.0	2.0	2.0	-	-	13.0	-	-	13.0	•	-
3.0	2.0	3.0	-	-	13.0	-	-	13.0	-	-
3.0	2.0	4.0	-	-	13.0	-	-	13.0	-	-
3.0 3.0	2.0 2.0	5.0 6.0	132.0	20.0	13.0 14.0	- 1.0	42.6	13.0 13.0	30.7	25.1
3.0	2.0	7.0	577.0	71.0	15.0	1.0	285.3	23.1	220.1	210.1
3.0	2.0	8.0	765.0	95.0	17.0	1.0	551.0	36.0	429.7	413.4
3.0	2.0	9.0	859.0	107.0	18.0	2.0	775.5	41.6	600.0	577.4
3.0	2.0	10.0	912.0	112.0	19.0	2.0	934.5	48.0	703.4	676.5
3.0	2.0	11.0	425.0	335.0	19.0	2.0	780.1	44.3	599.3	576.8
3.0	2.0	12.0	938.0	113.0	20.0	2.0	1,022.9	51.3	757.1	727.7
3.0	2.0	13.0	919.0	109.0	19.0	2.0	940.5	49.1	703.8	676.9
3.0	2.0 2.0	14.0 15.0	875.0	101.0	19.0	2.0	785.8	44.5	599.4	576.8
3.0 3.0	2.0	16.0	790.0 618.0	88.0 66.0	18.0 17.0	1.0 1.0	562.2 299.6	40.2 29.1	429.5 224.8	413.2 214.7
3.0	2.0	17.0	181.0	22.0	16.0	1.0	54.3	17.5	37.6	31.8
3.0	2.0	18.0	-	-	15.0	2.0	-	15.0	-	-
3.0	2.0	19.0	_	_	15.0	2.0	-	15.0	_	_
3.0	2.0	20.0	-	-	15.0	2.0	-	15.0	-	-
3.0	2.0	21.0	-	-	15.0	2.0	-	15.0	-	-
3.0	2.0	22.0	-	-	15.0	2.0	-	15.0	-	-
3.0	2.0	23.0	-	-	15.0	2.0	-	15.0	-	-
3.0	3.0	-	-	-	15.0	2.0	-	15.0	-	-
3.0	3.0 3.0	1.0 2.0	-	-	15.0	2.0	-	15.0	•	-
3.0 3.0	3.0	3.0		-	15.0 15.0	2.0 2.0	- -	15.0 15.0		
3.0	3.0	4.0			15.0	2.0		15.0		
3.0	3.0	5.0	_	_	15.0	2.0	_	15.0	_	_
3.0	3.0	6.0	110.0	22.0	16.0	2.0	41.8	15.3	30.9	25.2
3.0	3.0	7.0	66.0	104.0	18.0	2.0	127.8	20.0	107.8	100.6
3.0	3.0	8.0	201.0	205.0	19.0	2.0	329.6	27.7	271.8	260.4
3.0	3.0	9.0	209.0	293.0	19.0	3.0	466.3	31.1	381.7	367.0
3.0	3.0	10.0	210.0	357.0	20.0	3.0	563.9	35.2	453.5	436.4
3.0	3.0	11.0	762.0	187.0	20.0	3.0	948.1	45.4	723.9	696.1
3.0 3.0	3.0 3.0	12.0 13.0	740.0 299.0	199.0 344.0	20.0 19.0	3.0 3.0	940.8 639.6	46.5 37.8	714.5 507.8	687.1 488.7
3.0	3.0	14.0	262.0	284.0	19.0	3.0	506.1	33.2	409.9	394.3
3.0	3.0	15.0	-	131.0	19.0	3.0	126.3	22.5	108.0	100.7
3.0	3.0	16.0	319.0	112.0	18.0	3.0	234.6	23.1	187.6	178.5
3.0	3.0	17.0	16.0	20.0	18.0	3.0	21.6	17.5	18.0	12.6
3.0	3.0	18.0	-	-	18.0	4.0	-	18.0	-	-
3.0	3.0	19.0	-	-	19.0	4.0	-	19.0	•	-
3.0	3.0	20.0	-	-	19.0	4.0	-	19.0	-	-
3.0	3.0	21.0 22.0	-	-	19.0	4.0 5.0	-	19.0	•	-
3.0 3.0	3.0 3.0	23.0		-	19.0 19.0	5.0	- -	19.0 19.0		-
3.0	4.0	23.0	-	- -	19.0	5.0	- -	19.0	-	-
3.0	4.0	1.0	-	-	19.0	5.0	-	19.0	-	-
3.0	4.0	2.0	-	-	20.0	4.0	-	20.0	-	-
3.0	4.0	3.0	-	-	19.0	4.0	-	19.0	-	-
3.0	4.0	4.0	-	-	19.0	3.0	-	19.0	-	-
3.0	4.0	5.0	-	-	18.0	3.0	-	18.0	-	-
3.0	4.0	6.0	13.0	17.0	16.0	3.0	18.1	14.6	15.3	10.0
3.0 3.0	4.0 4.0	7.0 8.0	- 58.0	60.0 194.0	15.0 15.0	3.0 3.0	57.1 229.5	14.6 19.6	50.6 197.9	44.5 188.5
3.0	4.0	9.0	151.0	294.0	15.0	3.0	423.5	25.6	356.1	342.2
3.0	4.0	10.0	80.0	349.0	15.0	4.0	429.6	25.4	362.3	342.2 348.2
3.0	4.0	11.0	840.0	161.0	15.0	4.0	990.9	39.1	781.6	751.1
3.0	4.0	12.0	866.0	152.0	14.0	4.0	1,006.7	40.1	790.3	759.3
3.0	4.0	13.0	610.0	237.0	14.0	4.0	814.4	35.5	653.5	628.7
3.0	4.0	14.0	869.0	112.0	14.0	4.0	795.0	34.5	637.8	613.7
3.0	4.0	15.0	802.0	92.0	13.0	3.0	574.6	29.7	462.5	445.1 232.0 36.0
3.0 3.0	4.0 4.0	16.0 17.0	642.0 223.0	68.0 23.0	12.0 11.0	3.0 2.0	310.8 60.6	20.8 12.1	242.5 41.9	232.0
3.0	4.0	18.0	-	23.0	11.0	2.0	-	11.0	41.9	-
3.0	4.0	19.0	_	<u>-</u>	10.0	2.0	<u>-</u>	10.0	_	_
3.0	4.0	20.0	-	-	9.0	2.0	-	9.0	-	-
3.0	4.0	21.0	-	-	8.0	2.0	-	8.0	-	-
3.0	4.0	22.0	-	-	7.0	2.0	-	7.0	-	-
3.0	4.0	23.0	-	-	7.0	2.0	-	7.0	-	-

3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	5.0	18.0 195.0 383.0 582.0 995.0 995.0 661.0 662.0 267.0 	15.0 101.0 204.0 281.0 245.0 100.0 99.0 222.0 158.0 64.0 62.0 23.0	6.0 6.0 5.0 5.0 5.0 5.0 5.0 6.0 8.0 9.0 11.0 12.0 13.0 13.0 14.0 10.0 10.0 10.0 10.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 11.0 13.0 14.0 15.0 16.0 17.0 17.0 17.0 16.0 15.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 15.0 16.0 17.0 17.0 17.0 18.0 18.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	14.2 104.7 325.3 573.0 795.1 1,067.4 1,066.7 836.3 707.3 576.4 322.6 66.4 	6.0 6.0 5.0 5.0 5.0 5.0 3.2 7.0 18.1 34.3 46.0 57.3 52.8 45.8 41.4 35.5 25.2 13.1 10.0 10.0 10.0 10.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0		7.9 88.2 269.1 443.9 582.0 734.9 753.0 612.9 528.0 433.3 235.1 38.5
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	7.0 10.0 7.0 11.0 7.0 12.0 7.0 13.0 7.0 14.0 7.0 15.0 7.0 16.0 7.0 17.0	373.0 835.0 510.0 329.0 268.0 730.0 63.0 153.0	329.0 153.0 310.0 346.0 291.0 105.0 111.0 28.0	20.0 20.0 19.0 19.0 18.0 17.0 16.0	1.0 2.0 3.0 3.0 3.0 3.0 4.0	690.0 981.9 838.3 668.7 517.9 549.1 133.7 53.7	45.1 49.9 43.0 38.2 32.7 32.0 19.3 14.0	527.6 732.6 648.2 529.8 420.7 437.8 113.5 39.4	507.9 704.3 623.7 509.9 404.7 421.3 106.1 33.5

3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	8.0 9.0 8.0 11.0 8.0 12.0 8.0 12.0 8.0 13.0 8.0 14.0 8.0 15.0 8.0 16.0 8.0 17.0 8.0 18.0 8.0 20.0 8.0 21.0 8.0 22.0 9.0 1.0 9.0 1.0 9.0 1.0 9.0 1.0 9.0 12.0 9.0 12.0 9.0 12.0 9.0 15.0	886.0 929.0 947.0 951.0 933.0 892.0 810.0 646.0 237.0 	116.0 124.0 128.0 125.0 120.0 110.0 96.0 72.0 27.0	7.0 8.0 9.0 10.0 11.0 10.0 11.0 10.0 9.0 8.0 8.0 8.0 8.0 8.0 7.0 7.0 6.0 6.0 6.0 5.0 5.0 7.0 9.0 11.0 12.0 13.0 14.0 14.0 15.0 11.0 11.0 11.0 11.0 11.0 11.0 11	3.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	817.2 973.7 1,056.8 1,057.0 971.8 813.5 585.3 316.9 64.9 - - - - - - - - - - - - -	29.6 38.9 42.8 44.1 41.7 37.8 29.6 19.5 9.2 8.0 8.0 8.0 8.0 8.0 7.0 7.0 6.0 6.0 6.0 5.0 5.0 7.2 14.8 31.2 37.9 48.0 52.8 53.2 47.3 44.6 31.5 19.0 10.1 11.0 11.0 11.0 11.0 11.0 11.0	671.5 768.1 818.1 813.0 755.9 642.1 471.6 249.3 45.6	645.9 738.2 785.9 781.0 726.6 617.8 453.9 238.5 39.6
3.0 3.0	9.0 13.0 9.0 14.0	623.0 894.0	238.0 104.0	15.0 14.0	1.0 1.0	830.0 809.1	47.3 44.6	627.1 617.0	603.5 593.8
3.0 3.0	9.0 16.0 9.0 17.0	103.0 4.0	115.0 25.0	13.0 11.0	1.0 1.0	155.4 24.3	19.0 10.1	130.9 21.7	123.2 16.2
3.0 3.0	9.0 19.0 9.0 20.0		- - -	11.0 11.0	1.0 1.0		11.0 11.0	- - -	
3.0 3.0	9.0 22.0 9.0 23.0	-	- - -	10.0 10.0	1.0 1.0	- - -	10.0 10.0	- - -	
3.0 3.0	10.0 1.0 10.0 2.0	-	-	9.0 9.0	1.0 1.0	- - -	9.0 9.0	- - -	
3.0 3.0	10.0 4.0 10.0 5.0	-		9.0 9.0	1.0 1.0		9.0 9.0	- - - 35.7	- - - 29.9
3.0 3.0	10.0 7.0 10.0 8.0	642.0 797.0	72.0 93.0	12.0 14.0	1.0 1.0	320.4 580.2	21.4 34.3	250.8 457.6	240.0 440.4
3.0 3.0	10.0 10.0 10.0 11.0	509.0 46.0	281.0 360.0	16.0 17.0	1.0 1.0	772.3 412.5	44.3 34.3	593.0 333.4	570.7 320.2
3.0	10.0 13.0	271.0	362.0	18.0	1.0	633.8	40.4	496.5	477.9
3.0 3.0 3.0	10.0 16.0 10.0 17.0 10.0 18.0	546.0 158.0	85.0 30.0	16.0 15.0 14.0	-	294.1 55.4	30.3 18.8 14.0	221.9 39.7	211.9 33.9
3.0 3.0 3.0	10.0 19.0 10.0 20.0 10.0 21.0	-	- - -	14.0 13.0 13.0	1.0 1.0 1.0	- - -	14.0 13.0 13.0	- - -	
3.0 3.0 3.0	10.0 22.0 10.0 23.0 11.0 -	-	- - -	13.0 13.0 13.0	1.0 1.0 1.0	- - -	13.0 13.0 13.0	- - -	
3.0 3.0 3.0	11.0 1.0 11.0 2.0 11.0 3.0	-	-	13.0 12.0 12.0	1.0 1.0 1.0	-	13.0 12.0 12.0	- - -	-
3.0 3.0 3.0	11.0 4.0 11.0 5.0 11.0 6.0	-	- - 13.0	12.0 12.0 12.0	- - 1.0	- - 12.3	12.0 12.0 9.9	- - 11.1	- - 5.8
3.0 3.0 3.0	11.0 7.0 11.0 8.0 11.0 9.0	-	59.0 93.0 49.0	13.0 13.0 14.0	2.0 2.0 2.0 2.0	56.0 88.6 46.6	12.4 13.7 13.6	50.1 78.8 41.5	44.1 72.2 35.6
3.0 3.0 3.0	11.0 9.0 11.0 10.0 11.0 11.0 11.0 12.0	2.0 - 128.0	172.0 102.0 412.0	15.0 15.0 15.0	2.0 2.0 2.0 2.0	167.5 97.4 558.8	18.2 16.6 30.5	146.0 85.5 460.0	137.9 78.8 442.7
3.0 3.0 3.0	11.0 13.0 11.0 14.0 11.0 15.0	123.0 178.0 2.0	376.0 308.0 159.0	15.0 15.0 15.0	2.0 2.0 2.0 2.0	505.7 458.1 155.0	30.9 29.3 19.8	415.3 378.5 134.1	399.5 363.9 126.2
3.0	11.0 10.0								

3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	11.0 18.0 11.0 19.0 11.0 20.0 11.1.0 22.0 11.1.0 23.0 12.0 - 12.0 1.0 12.0 2.0 12.0 4.0 12.0 5.0 12.0 6.0 12.0 7.0 12.0 10.0 12.0 10.0 13.0 10.0 13.0 10.0 13.0 10.0 13.0 10.0	233.0 596.0 758.0 871.0 931.0 932.0 915.0 874.0 803.0 653.0 265.0		13.0 12.0 12.0 11.0 11.0 10.0 10.0 10.0 10	2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	71.3 318.4 578.6 806.4 960.0 1,041.0 1,040.4 956.2 799.8 578.1 317.5 68.7	13.0 12.0 12.0 11.0 11.0 10.0 10.0 10.0 10.0 9.0 9.0 9.0 9.0 10.1 21.5 34.2 44.1 50.9 55.1 56.3 53.8 48.7 39.9 28.9 16.1 13.0 12.0 12.0 12.0 11.0	51.4 251.1 457.3 617.0 711.5 755.2 749.5 697.7 597.2 443.0 238.9 46.2	45.3 240.3 240.3 340.1 593.8 684.2 725.9 720.5 671.0 574.7 426.3 228.4 40.2
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	13.0 15.0 13.0 16.0 13.0 17.0 13.0 18.0 13.0 20.0 13.0 21.0 13.0 22.0 13.0 23.0 14.0 - 14.0 1.0 14.0 3.0 14.0 4.0 14.0 5.0 14.0 7.0 14.0 8.0 14.0 10.0 14.0 20.0 14.0 20.0 14.0 21.0 14.0 22.0 14.0 23.0 15.0 - 15.0 1.0	549.0 234.0 44.0	148.0 114.0 30.0	17.0 16.0 15.0 15.0 14.0 14.0 14.0 14.0 15.0 15.0 16.0 16.0 16.0 16.0 17.0 17.0 18.0 19.0 20.0 21.0 21.0 21.0 21.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 1	2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	485.8 204.6 36.1	32.8 24.3 15.1 15.0 14.0 14.0 14.0 15.0 15.0 16.0 16.0 16.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15	387.4 164.5 29.6	372.5 155.9 23.9 - - - - - - - - - - - - - - - - - - -

3.0	15.0 3.0 15.0 4.0 15.0 5.0 15.0 6.0 15.0 7.0 15.0 8.0 15.0 9.0 15.0 10.0 15.0 11.0 15.0 12.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 12.0 15.0 16.0 1.0 16.0 15.0 16.0 10.0 16.0 16.0 16.0 16.0 16.0 16.0	230.0 553.0 22.0 49.0 168.0 303.0 5.0 274.0 30.0 25.0 274.0 30.0 	39.0 92.0 159.0 255.0 347.0 4421.0 405.0 188.0 183.0 191.0 143.0 35.0	18.0 18.0 18.0 19.0 20.0 20.0 21.0 22.0 22.0 22.0 22.0 21.0 20.0 21.0 20.0 19.0 19.0 19.0 19.0 18.0 18.0 17.0 16.0 15.0 14.0 13.0 13.0 13.0 13.0 14.0 16.0 17.0 16.0 15.0 14.0 14.0 14.0 14.0 14.0 15.0 15.0 14.0 15.0 15.0 16.0 17.0 18.0 19.0 19.0 17.0 16.0 15.0 16.0 16.0 17.0 18.0 19.0 17.0 18.0 18.0 17.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18	2.0 2.0 3.0 3.0 3.0 3.0 3.0 4.0 4.0 4.0 4.0 4.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2	74.3 314.1 153.4 266.0 397.3 606.9 731.3 185.9 178.9 200.3 249.0 38.1	18.0 18.0 18.0 18.0 18.0 19.3 27.1 23.5 27.1 31.1 36.6 40.2 27.2 25.8 25.4 25.8 20.2 19.0 19.0 19.0 18.0 17.0 16.0 15.0 14.0 13.0 13.0 13.0 13.0 13.7 22.2 34.3 42.6 48.6 57.6 58.7 56.1 50.7 42.8 36.6 21.9 16.0 15.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14	52.1 243.1 130.5 222.5 326.1 484.8 573.8 155.4 150.6 168.6 199.2 31.3 - - - - - - - - - - - - - - - - - - -	46.0 232.5 122.8 212.5 313.1 466.6 552.2 147.1 142.3 159.9 189.8 25.7
3.0 1 3.0 1	17.0 14.0 17.0 15.0 17.0 16.0 17.0 17.0 17.0 18.0 17.0 19.0 17.0 20.0 17.0 21.0	8.0	213.0 100.0 55.0	20.0 19.0 18.0 18.0 17.0 17.0 18.0	3.0 3.0 3.0 3.0 3.0 2.0 2.0 3.0	212.5 95.3 52.2 10.4	24.8 20.5 17.9 16.5 17.0 17.0 18.0	179.7 82.2 45.6	170.7 75.5 39.6

3.0	18.0	12.0	250.0	420.0	21.0	4.0	695.3	38.6	549.9	529.3
3.0 3.0	18.0 18.0	13.0 14.0	290.0 130.0	379.0 318.0	21.0 20.0	4.0 4.0	667.8 429.8	37.9 31.1	529.7 352.2	509.9 338.5
3.0 3.0	18.0 18.0	15.0 16.0	11.0 375.0	178.0 126.0	20.0 19.0	4.0 4.0	178.7 270.6	24.1 24.7	151.5 214.7	143.2 204.9
3.0	18.0	17.0	68.0	42.0	19.0	4.0	50.6	19.4	40.3	34.5
3.0 3.0	18.0 18.0	18.0 19.0	-	-	19.0 19.0	4.0 4.0	- -	19.0 19.0	-	-
3.0	18.0	20.0	-	-	19.0	4.0	-	19.0	-	-
3.0 3.0	18.0 18.0	21.0 22.0	-	-	19.0 19.0	4.0 4.0	- -	19.0 19.0	-	
3.0 3.0	18.0 19.0	23.0	-	-	19.0 20.0	4.0 4.0	-	19.0 20.0	-	-
3.0	19.0	1.0	-	-	20.0	4.0	<u> </u>	20.0	-	1
3.0 3.0	19.0 19.0	2.0 3.0	-		20.0 20.0	4.0 4.0	Ī	20.0 20.0	-	Ī
3.0	19.0	4.0	-	-	20.0	4.0	-	20.0	-	-
3.0 3.0	19.0 19.0	5.0 6.0	20.0	- 42.0	20.0 20.0	4.0 4.0	43.8	20.0 19.4	36.9	- 31.1
3.0	19.0	7.0	-	30.0	20.0	4.0	28.4	19.2	24.7	19.1
3.0 3.0	19.0 19.0	8.0 9.0	-	64.0 15.0	21.0 21.0	4.0 4.0	60.8 14.2	21.0 19.9	52.4 12.3	46.3 7.0
3.0 3.0	19.0 19.0	10.0 11.0	-	35.0 59.0	21.0 20.0	4.0 4.0	33.3 56.2	20.2 19.8	28.8 48.6	23.1 42.6
3.0	19.0	12.0	23.0	323.0	20.0	4.0	338.6	27.0	283.4	271.7
3.0 3.0	19.0 19.0	13.0 14.0	481.0	306.0 105.0	20.0 19.0	4.0 4.0	772.5 100.1	38.5 22.2	611.0 85.7	588.0 78.9
3.0	19.0	15.0	248.0	220.0	19.0	3.0	376.6	27.9	310.3	297.8
3.0 3.0	19.0 19.0	16.0 17.0	304.0 105.0	124.0 38.0	18.0 17.0	3.0 2.0	239.3 51.9	24.1 17.6	191.4 39.9	182.2 34.1
3.0	19.0	18.0	-	-	17.0	2.0	-	17.0	-	-
3.0 3.0	19.0 19.0	19.0 20.0	-	-	16.0 14.0	3.0 4.0	- -	16.0 14.0	-	-
3.0 3.0	19.0 19.0	21.0 22.0	-		12.0 11.0	4.0 4.0	Ī	12.0 11.0	-	Ī
3.0	19.0	23.0	-	-	10.0	4.0	-	10.0	-	-
3.0 3.0	20.0 20.0	- 1.0	-	-	10.0 10.0	4.0 3.0	-	10.0 10.0	-	-
3.0	20.0	2.0	-	-	9.0	3.0	-	9.0	-	-
3.0 3.0	20.0 20.0	3.0 4.0	-	-	9.0 9.0	3.0 3.0	- -	9.0 9.0	-	
3.0 3.0	20.0 20.0	5.0 6.0	- 372.0	- 44.0	9.0 9.0	3.0 3.0	- 102.2	9.0 9.7	- 71.5	- 65.0
3.0	20.0	7.0	710.0	81.0	10.0	3.0	370.9	18.7	297.4	285.3
3.0 3.0	20.0 20.0	8.0 9.0	852.0 926.0	99.0 110.0	11.0 13.0	3.0 3.0	637.6 859.3	28.0 36.7	520.3 683.1	500.8 657.1
3.0	20.0	10.0	963.0	116.0	14.0	2.0	1,015.9	45.8	773.7	743.6
3.0 3.0	20.0 20.0	11.0 12.0	977.0 973.0	119.0 119.0	16.0 17.0	2.0 2.0	1,093.1 1,085.0	50.4 51.4	813.2 802.9	781.2 771.3
3.0	20.0	13.0	951.0	116.0	17.0	2.0	992.9	48.9	744.1 628.9	715.3 605.2
3.0 3.0	20.0 20.0	14.0 15.0	909.0 833.0	108.0 95.0	18.0 17.0	2.0 2.0	825.5 599.7	44.8 36.8	466.9	449.3
3.0 3.0	20.0 20.0	16.0 17.0	684.0 318.0	74.0 35.0	16.0 14.0	2.0 2.0	332.1 76.7	26.9 15.8	252.3 50.9	241.5 44.8
3.0	20.0	18.0	-	-	13.0	2.0	-	13.0	-	-
3.0 3.0	20.0 20.0	19.0 20.0	-	-	13.0 12.0	2.0 2.0		13.0 12.0	-	-
3.0	20.0	21.0	-	-	11.0	2.0	-	11.0	-	-
3.0 3.0	20.0 20.0	22.0 23.0		-	11.0 10.0	2.0 2.0	<u> </u>	11.0 10.0	-	-
3.0 3.0	21.0 21.0	- 1.0	-	-	10.0 10.0	2.0 2.0	<u> </u>	10.0 10.0	-	
3.0	21.0	2.0	-	-	10.0	2.0	<u> </u>	10.0	-	_
3.0 3.0	21.0 21.0	3.0 4.0	-	-	9.0 9.0	2.0 2.0	-	9.0 9.0	- -	-
3.0	21.0	5.0	-	-	9.0	2.0	-	9.0	-	-
3.0 3.0	21.0 21.0	6.0 7.0	154.0 708.0	45.0 81.0	11.0 13.0	2.0 2.0	69.0 371.7	10.8 22.7	53.5 292.9	47.4 281.0
3.0 3.0	21.0 21.0	8.0 9.0	847.0 916.0	98.0 109.0	15.0 16.0	2.0 2.0	635.2 851.9	33.9 42.2	503.8 658.6	484.9 633.5
3.0	21.0	10.0	949.0	117.0	17.0	2.0	1,005.5	48.3	755.9	726.6
3.0 3.0	21.0 21.0	11.0 12.0	959.0 952.0	122.0 124.0	18.0 18.0	1.0 1.0	1,079.6 1,070.5	57.3 57.4	773.6 766.7	743.5 736.9
3.0	21.0	13.0	931.0	121.0	18.0	1.0	980.5	54.7	712.2	684.8 585.2
3.0 3.0	21.0 21.0	14.0 15.0	883.0 797.0	115.0 104.0	18.0 17.0	1.0 1.0	817.0 587.8	49.3 40.3	608.1 449.9	432.9
3.0 3.0	21.0 21.0	16.0 17.0	634.0 269.0	83.0 38.0	16.0 15.0	1.0 1.0	323.0 72.4	29.1 17.3	243.9 49.3	233.3 43.3
3.0	21.0	18.0	-	-	14.0	1.0	-	14.0	-	-
3.0 3.0	21.0 21.0	19.0 20.0	-	-	14.0 14.0	1.0 1.0	-	14.0 14.0	-	-
		***				-				

3.0	21.0	21.0	-	-	14.0	1.0	-	14.0	-	-
3.0	21.0	22.0	-	-	14.0	1.0	-	14.0	-	-
3.0	21.0	23.0	-	-	14.0	1.0	-	14.0	-	-
3.0	22.0	-	-	-	14.0	1.0	-	14.0	-	-
3.0	22.0	1.0	-	-	13.0	1.0	-	13.0	-	-
3.0	22.0	2.0	-	-	13.0	1.0	-	13.0	-	-
3.0	22.0	3.0	-	-	13.0	1.0	-	13.0	-	-
3.0	22.0	4.0	-	-	13.0	1.0	-	13.0	-	-
3.0	22.0	5.0	-		13.0	1.0		13.0	-	-
3.0	22.0	6.0	343.0	40.0	15.0	1.0	95.6	15.7	65.2	58.9
3.0	22.0	7.0	582.0	101.0	16.0	1.0	343.2	26.6	268.2	256.9
3.0	22.0	8.0	730.0	128.0	18.0	1.0	597.0	38.8	463.0	445.6
3.0	22.0	9.0	463.0	268.0	19.0	1.0	661.1	43.3	509.1	490.0
3.0	22.0	10.0	254.0	396.0	20.0	1.0	656.2	44.5	503.7	484.8
3.0	22.0	11.0	186.0	440.0	20.0	1.0	643.6	44.0	495.2	476.7
3.0	22.0	12.0	485.0	336.0	21.0		845.5	57.3	605.8	583.0
3.0	22.0	13.0	582.0	273.0	21.0	_	829.9	58.2	591.5	569.3
3.0	22.0	14.0	798.0	137.0	21.0	_	774.3	56.3	555.2	534.4
3.0	22.0	15.0	348.0	206.0	21.0	_	420.3	43.9	318.9	306.2
3.0	22.0	16.0	184.0	128.0	20.0	_	195.9	31.3	153.8	145.5
3.0	22.0	17.0	48.0	38.0	18.0	_	43.3	19.8	35.0	29.3
3.0	22.0	18.0	-	-	17.0	- -		17.0	-	-
3.0	22.0	19.0		_	16.0	1.0		16.0	<u>-</u>	_
3.0	22.0	20.0	-	-			-		-	
3.0	22.0	21.0	-		16.0 15.0	1.0 1.0		16.0 15.0		-
3.0	22.0	22.0	-	-	14.0	2.0	-	14.0	-	
			-							-
3.0	22.0	23.0	-	-	13.0	2.0	-	13.0	-	-
3.0	23.0	-	-	-	13.0	2.0	-	13.0	-	-
3.0	23.0	1.0	-	-	12.0	3.0	-	12.0	-	-
3.0	23.0	2.0	-	-	12.0	3.0	-	12.0	-	-
3.0	23.0	3.0	-	-	11.0	3.0	-	11.0	-	-
3.0	23.0	4.0	-	-	11.0	3.0		11.0		-
3.0	23.0	5.0	-	-	10.0	3.0	-	10.0	-	-
3.0	23.0	6.0	178.0	48.0	10.0	3.0	76.3	10.0	58.8	52.6
3.0	23.0	7.0	577.0	88.0	11.0	4.0	329.3	17.8	267.6	256.3
3.0	23.0	8.0	764.0	125.0	13.0	3.0	616.4	29.2	501.2	482.4
3.0	23.0	9.0	639.0	204.0	15.0	3.0	739.6	35.4	592.3	570.0
3.0	23.0	10.0	615.0	275.0	16.0	3.0	872.2	40.2	683.9	657.8
3.0	23.0	11.0	915.0	145.0	17.0	3.0	1,062.3	46.4	807.1	775.3
3.0	23.0	12.0	608.0	302.0	18.0	3.0	930.8	44.7	713.8	686.3
3.0	23.0	13.0	889.0	139.0	18.0	3.0	968.1	45.2	739.7	711.1
3.0	23.0	14.0	836.0	132.0	18.0	3.0	798.6	41.0	620.8	597.4
3.0	23.0	15.0	742.0	119.0	17.0	3.0	571.8	33.5	453.1	436.0
3.0	23.0	16.0	580.0	92.0	16.0	3.0	311.9	24.8	241.7	231.1
3.0	23.0	17.0	239.0	40.0	14.0	2.0	69.6	15.4	49.0	43.0
3.0	23.0	18.0		=	13.0	2.0	-	13.0	-	-
3.0	23.0	19.0	_	_	12.0	2.0		12.0	_	_
3.0	23.0	20.0	_	_	11.0	3.0		11.0	_	_
3.0	23.0	21.0	_	_	11.0	3.0	_	11.0	_	_
3.0	23.0	22.0	_	_	10.0	2.0		10.0	_	_
3.0	23.0	23.0	_	_	9.0	2.0	_	9.0	_	_
3.0	24.0	-			9.0	2.0		9.0		
3.0	24.0	1.0			8.0	2.0		8.0		
3.0	24.0	2.0			8.0	2.0		8.0		
3.0	24.0	3.0		_	8.0	2.0		8.0	<u>-</u>	_
3.0	24.0	4.0	-	-	7.0	3.0	-	7.0	-	
				-		3.0				
3.0 3.0	24.0 24.0	5.0 6.0	357.0	52.0	7.0 8.0	3.0	110.2	7.0 9.0		73.0
3.0	24.0	7.0	668.0	93.0	10.0	3.0	110.2 372.4	9.0 18.8	79.7 300.9	288.7
3.0	24.0	8.0	813.0	115.0	11.0	3.0	636.8	27.9	520.7	501.2
3.0	24.0	9.0	711.0	175.0	12.0	3.0	768.4	33.3	621.6	598.2
3.0	24.0	10.0	621.0	272.0	12.0	3.0	877.0	36.6	700.3	673.5
3.0	24.0	11.0	947.0	137.0	13.0	3.0	1,086.5	43.3	839.1	805.8
3.0	24.0	12.0	945.0	135.0	14.0	3.0	1,077.1	44.7	825.9	793.3
3.0	24.0	13.0	925.0	131.0	14.0	3.0	986.5	42.3	765.0	735.2
3.0	24.0	14.0	883.0	122.0	14.0	3.0	824.6	37.9	651.1	626.4
3.0	24.0	15.0	799.0	109.0	13.0	3.0	593.8	30.3	477.5	459.6 246.5
3.0	24.0	16.0	643.0	86.0	12.0	3.0	328.6	21.4	257.5	246.5
3.0	24.0	17.0	286.0	41.0	10.0	2.0	75.6	11.7	52.7	46.6
3.0	24.0	18.0	-	-	9.0	2.0	-	9.0	-	-
3.0	24.0	19.0	-	-	9.0	2.0	-	9.0	-	-
3.0	24.0	20.0	-	-	8.0	2.0	-	8.0	-	-
3.0	24.0	21.0	-	-	7.0	2.0	-	7.0	-	-
3.0	24.0	22.0	-	-	7.0	2.0	-	7.0	-	-
3.0	24.0	23.0	-	-	7.0	2.0	-	7.0	-	-
3.0	25.0	-	-	-	6.0	2.0	-	6.0	-	-
3.0	25.0	1.0	-	-	6.0	2.0	-	6.0	-	-
3.0	25.0	2.0	-	-	6.0	2.0	-	6.0	-	-
3.0	25.0	3.0	-	-	5.0	2.0	-	5.0	-	-
3.0	25.0	4.0	-	-	5.0	2.0	-	5.0	-	-
3.0	25.0	5.0	-	-	6.0	2.0	-	6.0	-	-

3.0	660.0 792.0 792.0 12 856.0 14 897.0 14 917.0 15 917.0 14 906.0 13 869.0 12 796.0 10 648.0 8 299.0 4	1.0	2.0 80.3 2.0 373.3 2.0 633.0 2.0 846.6 1.0 1.001.4 1.0 1.071.1 1.0 1.064.1 1.0 984.1 1.0 329.3 1.0 76.4 1.0 -1 1.0	6	3.3 494.1 3.3 642.8 7.6 718.7 7.6 718.7 1.0 753.4 3.6 700.6 3.6 700.6 3.6 597.2 1.4 444.1 2.8 242.0 2.5 46.4
3.0 27.0 5.0 3.0 27.0 6.0 3.0 27.0 7.0 3.0 27.0 8.0 3.0 27.0 9.0 3.0 27.0 10.0 3.0 27.0 11.0 3.0 27.0 11.0 3.0 27.0 15.0 3.0 27.0 15.0 3.0 27.0 15.0 3.0 27.0 15.0 3.0 27.0 16.0 3.0 27.0 16.0 3.0 27.0 16.0 3.0 27.0 20.0 3.0 27.0 20.0 3.0 27.0 20.0 3.0 27.0 20.0 3.0 27.0 20.0 3.0 27.0 20.0 3.0 27.0 20.0 3.0 28.0 1.0 3.0 28.0 1.0 3.0 28.0 4.0 3.0 28.0 5.0 3.0 28.0 6.0 3.0 28.0 6.0 3.0 28.0 6.0 3.0 28.0 6.0 3.0 28.0 9.0 3.0 28.0 9.0 3.0 28.0 11.0 3.0 28.0 11.0 3.0 28.0 11.0 3.0 28.0 11.0 3.0 28.0 11.0 3.0 28.0 11.0 3.0 28.0 11.0 3.0 28.0 11.0 3.0 28.0 11.0 3.0 28.0 11.0 3.0 28.0 11.0 3.0 28.0 11.0 3.0 28.0 11.0 3.0 28.0 11.0 3.0 28.0 11.0 3.0 28.0 11.0 3.0 28.0 11.0	416.0 12 494.0 20 577.0 23 600.0 28 593.0 31 859.0 16 828.0 16 828.0 16 775.0 15 684.0 13 525.0 10 199.0 4	- 14,0 90 16,0 3.0 18,0 1.0 19,0 3.0 19,0 4.0 20,0 4.0 20,0 6.0 20,0 5.0 20,0 6.0 19,0 8.0 19,0 8.0 19,0 7.0 17,0 - 17,0 - 17,0 - 16,0 - 16,0	1.0 1.0 1.0 1.0 1.0 1.13. 2.0 301. 2.0 2.0 526. 2.0 719.3 2.0 933. 2.0 1,034. 2.0 2.0 556. 2.0 301. 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1 25.7 244 7 34.4 419 9 40.9 566 0 46.9 658 3 49.2 699 0 52.2 766 4 50.1 700 3 44.3 599 2 7.8 237 3 19.1 55 17.0 16.0	9.8 403.9 1.1 540.1 2 634.2 3.8 672.1 3.9 732.3 3.5 673.7 5.2 572.8 3.2 416.9 2.0 221.7 9.9 44.8

3.0	28.0	15.0	650.0	144.0	20.0	1.0	541.9	40.6	415.4	399.6
3.0	28.0	16.0	519.0	103.0	19.0	1.0	297.4	30.9	225.1	215.0
3.0	28.0	17.0	217.0	46.0	18.0	1.0	71.1	20.1	50.5	44.4
3.0	28.0	18.0	-	-	17.0	1.0	-	17.0	-	-
3.0	28.0	19.0	-		17.0	1.0		17.0	-	-
3.0	28.0	20.0	-	-	17.0	1.0	-	17.0	-	-
3.0	28.0	21.0	-	-	17.0	1.0	-	17.0	-	-
3.0	28.0	22.0	_	_	17.0	1.0	-	17.0	_	_
3.0	28.0	23.0	_	_	17.0	1.0		17.0		_
3.0	29.0	-			17.0	1.0		17.0		
			-							-
3.0	29.0	1.0	-	-	17.0	1.0	-	17.0	-	-
3.0	29.0	2.0	-	-	16.0	1.0		16.0		-
3.0	29.0	3.0	-	-	16.0	1.0	-	16.0	-	-
3.0	29.0	4.0	-	<u>-</u>	16.0	1.0		16.0	<u>-</u>	-
3.0	29.0	5.0	_	_	16.0	_	-	16.0	_	_
3.0	29.0	6.0	260.0	66.0	18.0	_	111.2	19.7	82.0	75.3
3.0	29.0	7.0	83.0	157.0	19.0	1.0	188.4	24.1	157.2	148.8
3.0	29.0	8.0	48.0	239.0	19.0	1.0	267.3	27.5	222.6	212.6
3.0	29.0	9.0	128.0	350.0	20.0	1.0	462.8	35.8	370.8	356.5
3.0	29.0	10.0	325.0	393.0	21.0	1.0	718.9	46.3	546.5	526.0
3.0	29.0	11.0	351.0	421.0	21.0	1.0	796.0	50.1	593.3	571.0
3.0	29.0	12.0	268.0	437.0	20.0	1.0	728.1	47.5	550.3	529.7
3.0	29.0	13.0	52.0	366.0	20.0	1.0	415.9	37.0	331.6	318.4
3.0	29.0	14.0	18.0	251.0	20.0	1.0	257.1	29.7	212.4	202.7
3.0	29.0	15.0	273.0	228.0	20.0	1.0	396.5	33.5	317.7	305.1
3.0	29.0	16.0	480.0	97.0	19.0	1.0	276.9	29.2	211.3	201.6
3.0		17.0								
	29.0		-	36.0	18.0	1.0	34.1	18.6	29.7	24.1
3.0	29.0	18.0	-	-	17.0	-	-	17.0	-	-
3.0	29.0	19.0	-	-	17.0	-		17.0	-	-
3.0	29.0	20.0	-	-	17.0	-	-	17.0	-	-
3.0	29.0	21.0	-	_	17.0	-	-	17.0	-	-
3.0	29.0	22.0	_	<u>-</u>	17.0	_	-	17.0	_	_
3.0	29.0	23.0	_	_	17.0	1.0		17.0	_	_
3.0	30.0	-			16.0	1.0		16.0		
3.0	30.0	1.0			16.0	1.0		16.0		
			-	-						-
3.0	30.0	2.0	-	-	16.0	1.0	-	16.0	-	-
3.0	30.0	3.0	-	-	15.0	1.0	-	15.0	-	-
3.0	30.0	4.0	-	-	15.0	1.0	-	15.0	-	-
3.0	30.0	5.0	-	_	15.0	2.0	-	15.0	-	_
3.0	30.0	6.0	298.0	64.0	16.0	2.0	116.3	17.4	85.2	78.4
3.0	30.0	7.0	561.0	114.0	18.0	2.0	357.1	27.5	280.5	268.9
3.0	30.0	8.0	689.0	145.0	19.0	1.0	598.9	39.9	463.2	445.8
3.0	30.0	9.0	784.0	150.0	20.0	1.0	805.0	48.8	602.0	579.3
3.0	30.0	10.0	814.0	164.0	21.0	1.0	945.5	55.1	685.6	659.4
3.0	30.0	11.0	823.0	173.0	21.0	1.0	1,013.0	57.8	724.0	696.2
3.0	30.0	12.0	439.0	372.0	22.0	2.0	836.6	49.0	627.2	603.5
3.0	30.0	13.0	788.0	171.0	22.0	2.0	910.1	50.4	676.8	651.0
3.0	30.0	14.0	391.0	293.0	21.0	2.0	609.9	41.3	474.4	456.6
3.0	30.0	15.0	632.0	146.0	21.0	2.0	532.7	37.8	414.1	398.3
3.0	30.0	16.0	338.0	129.0	20.0	1.0	253.9	30.3	196.6	187.3
3.0	30.0	17.0	127.0	48.0	18.0	1.0	61.6	19.5	46.9	41.0
3.0	30.0	18.0	-	-	18.0	1.0	-	18.0	-	-
							•			
3.0	30.0	19.0	-	-	18.0	1.0	-	18.0	-	-
3.0	30.0	20.0	-	-	18.0	1.0	•	18.0	-	-
3.0	30.0	21.0	-	-	17.0	1.0	-	17.0	-	-
3.0	30.0	22.0	-	-	17.0	2.0	-	17.0	-	-
3.0	30.0	23.0	-	-	17.0	2.0		17.0	-	-
3.0	31.0	_	-	-	16.0	3.0	-	16.0	-	-
3.0	31.0	1.0	_	_	16.0	3.0	-	16.0	_	-
3.0	31.0	2.0	_	_	15.0	3.0	<u>-</u>	15.0	_	_
3.0	31.0	3.0			15.0	3.0	_	15.0	_	_
3.0	31.0		-	-	15.0	3.0		15.0	=	-
		4.0	-	-			-		-	-
3.0	31.0	5.0	-		15.0	3.0	1.	15.0	<u>.</u>	-
3.0	31.0	6.0	-	4.0	15.0	3.0	3.8	13.1	3.4	-
3.0	31.0	7.0	-	63.0	16.0	3.0	59.8	15.7	52.8	46.7
3.0	31.0	8.0	-	136.0	17.0	3.0	130.1	18.9	113.1	105.7
3.0	31.0	9.0	-	49.0	17.0	3.0	46.6	16.8	40.9	35.0
3.0	31.0	10.0	1.0	153.0	18.0	2.0	147.7	20.7	127.3	119.6
3.0	31.0	11.0	10.0	234.0	19.0	2.0	236.2	24.9	199.7	190.3
3.0	31.0	12.0	-	105.0	19.0	2.0	100.4	21.1	86.4	79.6
	31.0	13.0		127.0	19.0	2.0	121.5	21.1	104.5	79.6 97.3
			-						FC 0	51.3 E0.7
3.0			-	69.0	19.0	2.0	65.6	19.5	56.9	50.7
3.0	31.0	14.0		155.0	19.0	2.0	148.6	21.8	127.5	119.8
3.0 3.0	31.0 31.0	15.0	-		10.0	2.0	86.7	19.2	75.0	
3.0 3.0 3.0	31.0 31.0 31.0	15.0 16.0	-	91.0	18.0				75.3	68.7
3.0 3.0 3.0 3.0	31.0 31.0 31.0 31.0	15.0 16.0 17.0	-	91.0 24.0	17.0	2.0	22.7	15.9	20.0	68.7 14.6
3.0 3.0 3.0 3.0 3.0	31.0 31.0 31.0	15.0 16.0	- - -		17.0 20.0	2.0 2.0	22.7	15.9 20.0		68.7 14.6 -
3.0 3.0 3.0 3.0	31.0 31.0 31.0 31.0	15.0 16.0 17.0	-	24.0	17.0	2.0		15.9	20.0	
3.0 3.0 3.0 3.0 3.0	31.0 31.0 31.0 31.0 31.0	15.0 16.0 17.0 18.0	-	24.0	17.0 20.0	2.0 2.0		15.9 20.0	20.0	
3.0 3.0 3.0 3.0 3.0 3.0 3.0	31.0 31.0 31.0 31.0 31.0 31.0 31.0	15.0 16.0 17.0 18.0 19.0 20.0	-	24.0	17.0 20.0 20.0 20.0	2.0 2.0 2.0 1.0		15.9 20.0 20.0 20.0	20.0	
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	31.0 31.0 31.0 31.0 31.0 31.0 31.0	15.0 16.0 17.0 18.0 19.0 20.0 21.0	-	24.0	17.0 20.0 20.0 20.0 20.0	2.0 2.0 2.0 1.0 1.0		15.9 20.0 20.0 20.0 20.0	20.0	
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	31.0 31.0 31.0 31.0 31.0 31.0 31.0 31.0	15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0		24.0	17.0 20.0 20.0 20.0 20.0 19.0	2.0 2.0 2.0 1.0 1.0		15.9 20.0 20.0 20.0 20.0 19.0	20.0	
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	31.0 31.0 31.0 31.0 31.0 31.0 31.0	15.0 16.0 17.0 18.0 19.0 20.0 21.0	-	24.0	17.0 20.0 20.0 20.0 20.0	2.0 2.0 2.0 1.0 1.0		15.9 20.0 20.0 20.0 20.0	20.0	

4.0	1.0				10.0	1.0		10.0		
4.0 4.0	1.0 1.0	1.0		- -	19.0 19.0	1.0 1.0	-	19.0 19.0	-	
4.0	1.0	2.0	-	-	19.0	-	-	19.0	-	-
4.0 4.0	1.0 1.0	3.0 4.0	-	-	19.0 18.0	- 1.0	-	19.0 18.0	-	-
4.0	1.0	5.0		- -	17.0	2.0	- -	17.0		_
4.0	1.0	6.0	14.0	63.0	16.0	3.0	62.4	15.7	54.2	48.1
4.0 4.0	1.0 1.0	7.0 8.0	3.0	114.0 176.0	16.0 16.0	3.0 3.0	108.9 171.0	17.3 19.2	95.4 148.4	88.4 140.2
4.0	1.0	9.0	393.0	315.0	16.0	3.0	649.9	32.5	528.8	509.0
4.0	1.0	10.0	294.0	406.0	17.0	3.0	703.4	36.5	562.1	541.0
4.0	1.0	11.0	11.0	236.0	18.0	2.0	239.2	26.6	200.6	191.1
4.0 4.0	1.0 1.0	12.0 13.0	7.0 7.0	189.0 200.0	18.0 19.0	2.0 2.0	188.9 199.0	22.9 24.0	161.2 169.0	152.7 160.3
4.0	1.0	14.0	4.0	187.0	19.0	1.0	182.9	24.5	154.8	146.5
4.0	1.0	15.0	-	127.0	19.0	1.0	121.3	22.2	103.9	96.7
4.0 4.0	1.0 1.0	16.0 17.0	-	43.0 29.0	19.0 18.0	1.0 1.0	40.8 27.5	18.7 16.6	35.5 24.2	29.7 18.6
4.0	1.0	18.0	-	=	18.0	1.0	-	18.0	-	-
4.0	1.0	19.0	-	-	18.0	1.0	-	18.0	-	-
4.0 4.0	1.0 1.0	20.0 21.0		-	18.0 19.0	1.0 1.0		18.0 19.0		-
4.0	1.0	22.0	-	-	19.0	1.0	-	19.0	-	-
4.0	1.0	23.0	-	-	19.0	1.0	-	19.0	-	-
4.0 4.0	2.0 2.0	1.0		Ī.	20.0 20.0	1.0 2.0	Ī.	20.0 20.0	1	
4.0	2.0	2.0	-	-	21.0	2.0	-	21.0	-	-
4.0	2.0	3.0	-	-	21.0	1.0	-	21.0	-	-
4.0 4.0	2.0 2.0	4.0 5.0	-	Ī	20.0 20.0	1.0 1.0	<u>-</u>	20.0 20.0	-	-
4.0	2.0	6.0		3.0	21.0	2.0	2.8	18.9	2.5	_
4.0	2.0	7.0	-	15.0	21.0	2.0	14.2	19.3	12.3	7.0
4.0 4.0	2.0 2.0	8.0 9.0	-	41.0 44.0	21.0 21.0	3.0 2.0	38.9 41.8	20.3 20.4	33.6 36.1	27.9 30.4
4.0	2.0	10.0	15.0	275.0	22.0	2.0	280.7	28.8	232.9	222.6
4.0	2.0	11.0	18.0	308.0	21.0	2.0	317.5	30.0	262.0	250.9
4.0	2.0	12.0	-	34.0	21.0	2.0	32.4	21.4	27.8	22.2
4.0 4.0	2.0 2.0	13.0 14.0	11.0	242.0 67.0	21.0 21.0	2.0 3.0	243.9 63.7	26.6 21.8	204.5 54.7	195.0 48.5
4.0	2.0	15.0	-	108.0	22.0	4.0	102.9	23.2	87.7	80.9
4.0	2.0	16.0	-	78.0	21.0	4.0	74.2	21.5	63.7	57.4
4.0 4.0	2.0 2.0	17.0 18.0	73.0	54.0 -	21.0 21.0	4.0 4.0	60.1	21.1 21.0	48.1	42.0
4.0	2.0	19.0	-	-	20.0	4.0	-	20.0	-	_
4.0	2.0	20.0	-	-	20.0	3.0	-	20.0	-	-
4.0 4.0	2.0 2.0	21.0 22.0		Ī	19.0 18.0	3.0 3.0	Ī	19.0 18.0		
4.0	2.0	23.0	-	-	17.0	2.0	-	17.0	-	-
4.0	3.0	5.2	-	-	16.0	2.0	-	16.0	-	-
4.0 4.0	3.0 3.0	1.0 2.0		Ī	15.0 15.0	2.0 2.0	Ī	15.0 15.0		-
4.0	3.0	3.0	-	-	15.0	2.0	-	15.0	-	-
4.0	3.0	4.0	-	-	14.0	2.0	-	14.0	-	-
4.0 4.0	3.0 3.0	5.0 6.0	395.0	- 63.0	14.0 15.0	2.0 2.0	135.3	14.0 17.0	96.6	89.6
4.0	3.0	7.0	663.0	99.0	16.0	2.0	389.8	26.5	306.6	294.3
4.0	3.0	8.0	798.0	117.0	17.0	2.0	643.5	36.2	506.8	487.8
4.0 4.0	3.0 3.0	9.0 10.0	873.0 915.0	126.0 130.0	18.0 19.0	2.0 1.0	856.9 1,001.3	44.3 55.2	656.0 725.7	631.1 697.8
4.0	3.0	11.0	933.0	132.0	20.0	1.0	1,073.9	58.9	762.7	733.0
4.0	3.0	12.0	937.0	127.0	20.0	2.0	1,064.3	53.6	778.5	748.2
4.0 4.0	3.0 3.0	13.0 14.0	914.0 869.0	124.0 118.0	20.0 20.0	1.0 1.0	970.0 807.9	56.2 50.8	698.9 596.6	672.2 574.1
4.0	3.0	15.0	789.0	106.0	20.0	1.0	582.2	42.9	439.7	574.1 423.1
4.0	3.0	16.0	647.0	84.0	19.0	1.0	325.0	32.1	241.5	231.0
4.0 4.0	3.0 3.0	17.0 18.0	340.0	44.0	18.0 17.0	1.0 1.0	82.9	20.8 17.0	54.4 -	48.2
4.0	3.0	19.0	-		16.0	1.0	-	16.0	-	-
4.0	3.0	20.0	-	-	16.0	1.0	-	16.0	-	-
4.0 4.0	3.0 3.0	21.0 22.0			15.0 14.0	1.0 1.0		15.0 14.0	-	-
4.0	3.0	23.0	-	- -	14.0	1.0	•	14.0	-	
4.0	4.0	-	-	-	13.0	1.0	-	13.0	-	-
4.0 4.0	4.0 4.0	1.0 2.0	-	-	13.0 13.0	1.0 1.0	-	13.0 13.0	-	-
4.0	4.0	3.0	-	-	13.0	1.0	-	13.0	-	-
4.0	4.0	4.0	-	-	13.0	1.0	-	13.0	-	-
4.0 4.0	4.0 4.0	5.0 6.0	408.0	63.0	13.0 15.0	1.0 2.0	138.5	13.0 17.1	- 98.7	- 91.6
4.0	4.0	7.0	648.0	102.0	17.0	2.0	387.6	27.5	304.0	291.7
4.0	4.0	8.0	763.0	128.0	18.0	3.0	634.4	34.8	503.4	484.6

4.0	4.0	0.0	540.0	257.0	40.0	2.0	705.0	44.5	504.4	542.0
4.0 4.0	4.0 4.0	9.0 10.0	548.0 498.0	257.0 334.0	19.0 20.0	2.0 2.0	725.6 828.3	41.5 45.8	564.1 631.5	543.0 607.6
4.0	4.0	11.0	432.0	386.0	21.0	2.0	847.3	47.6	639.8	615.6
4.0	4.0	12.0	508.0	361.0	21.0	2.0	892.4	49.0	669.1	643.7
4.0	4.0	13.0	839.0	156.0 143.0	21.0 20.0	2.0 2.0	940.5	50.5	699.1 590.1	672.3 567.9
4.0 4.0	4.0 4.0	14.0 15.0	794.0 711.0	126.0	20.0	2.0	775.3 557.0	45.1 38.2	431.3	415.0
4.0	4.0	16.0	198.0	140.0	19.0	1.0	210.2	27.9	167.6	159.0
4.0	4.0	17.0	246.0	49.0	18.0	1.0	75.9	19.7	53.3	47.2
4.0	4.0	18.0	-	-	17.0	1.0	-	17.0	-	-
4.0 4.0	4.0 4.0	19.0 20.0			17.0 17.0	1.0 1.0	-	17.0 17.0	-	
4.0	4.0	21.0	-	-	17.0	1.0	-	17.0	-	-
4.0	4.0	22.0	-	-	17.0	1.0	-	17.0	-	-
4.0	4.0	23.0	-	-	17.0	1.0	-	17.0	-	-
4.0 4.0	5.0 5.0	- 1.0	1		18.0 18.0	2.0 1.0	- -	18.0 18.0	-	
4.0	5.0	2.0	-	-	18.0	1.0	-	18.0	-	-
4.0	5.0	3.0	-	-	19.0	1.0	-	19.0	-	-
4.0	5.0	4.0	-	-	19.0	1.0	-	19.0	-	-
4.0 4.0	5.0 5.0	5.0 6.0	Ī	11.0	19.0 20.0	1.0 1.0	10.4	19.0 17.7	9.1	3.8
4.0	5.0	7.0	-	89.0	21.0	2.0	84.7	21.6	72.7	66.2
4.0	5.0	8.0	106.0	272.0	22.0	2.0	337.6	30.7	276.4	264.9
4.0	5.0	9.0	22.0	281.0	23.0	2.0	290.3	31.5	237.8	227.4
4.0 4.0	5.0 5.0	10.0 11.0	27.0 204.0	339.0 448.0	23.0 23.0	3.0 3.0	364.4 666.6	32.2 40.5	297.4 522.3	285.3 502.7
4.0	5.0	12.0	19.0	316.0	23.0	3.0	326.0	32.5	265.8	254.6
4.0	5.0	13.0	101.0	408.0	23.0	3.0	502.3	36.0	402.4	387.0
4.0	5.0	14.0	29.0	282.0	23.0	3.0	301.9	31.3	247.5	236.8
4.0 4.0	5.0	15.0	175.0	247.0 126.0	22.0 22.0	2.0 2.0	350.8	32.1 25.5	284.0 104.5	272.3 97.3
4.0	5.0 5.0	16.0 17.0	11.0 95.0	56.0	21.0	2.0	124.4 64.1	21.5	50.3	44.3
4.0	5.0	18.0	-	-	21.0	2.0	-	21.0	-	-
4.0	5.0	19.0	-	-	21.0	2.0	-	21.0	-	-
4.0 4.0	5.0 5.0	20.0 21.0	-	-	20.0 20.0	2.0 2.0	-	20.0 20.0	-	-
4.0	5.0	22.0			20.0	2.0		20.0	-	_
4.0	5.0	23.0	-	-	19.0	2.0	-	19.0	-	-
4.0	6.0	-	-	-	18.0	3.0	-	18.0	-	-
4.0	6.0	1.0	-	-	16.0	4.0	-	16.0	-	-
4.0 4.0	6.0 6.0	2.0 3.0			15.0 13.0	4.0 4.0		15.0 13.0	-	
4.0	6.0	4.0	-	-	12.0	4.0	-	12.0	-	_
4.0	6.0	5.0	-	-	11.0	4.0	-	11.0	-	-
4.0	6.0	6.0	481.0	59.0	11.0	4.0	151.2	13.0	107.7	100.5
4.0 4.0	6.0 6.0	7.0 8.0	722.0 838.0	89.0 106.0	11.0 12.0	4.0 4.0	408.7 661.7	20.0 28.1	331.0 542.1	317.9 521.8
4.0	6.0	9.0	897.0	117.0	13.0	4.0	865.9	34.8	695.6	669.0
4.0	6.0	10.0	935.0	121.0	13.0	4.0	1,013.0	38.9	799.7	768.3
4.0	6.0	11.0	952.0	121.0	14.0	4.0	1,082.7	41.9	842.1	808.7
4.0 4.0	6.0 6.0	12.0 13.0	952.0 932.0	120.0 117.0	15.0 15.0	4.0 4.0	1,072.2 978.7	42.8 40.6	830.1 765.8	797.3 736.0
4.0	6.0	14.0	892.0	110.0	15.0	4.0	812.9	36.4	646.6	622.1
4.0	6.0	15.0	822.0	98.0	14.0	4.0	592.2	29.6	477.6	459.6
4.0	6.0	16.0	689.0	79.0	13.0	3.0	334.1	22.5	258.9	247.9
4.0 4.0	6.0 6.0	17.0 18.0	394.0	44.0	12.0 11.0	3.0 3.0	88.5	13.7 11.0	58.3	52.1 -
4.0	6.0	19.0	-	-	11.0	3.0	-	11.0	-	-
4.0	6.0	20.0	-	-	10.0	3.0	-	10.0	-	-
4.0	6.0	21.0	-	-	10.0	3.0	-	10.0	-	-
4.0 4.0	6.0 6.0	22.0 23.0	-	Ī	9.0 9.0	3.0 3.0	-	9.0 9.0	-	
4.0	7.0	-	-	-	8.0	3.0	-	8.0	-	-
4.0	7.0	1.0	-	-	8.0	3.0	-	8.0	-	-
4.0	7.0	2.0	-	-	7.0	3.0		7.0	-	-
4.0 4.0	7.0 7.0	3.0 4.0	-	- -	7.0 7.0	3.0 3.0	- -	7.0 7.0	-	
4.0	7.0	5.0	-	-	7.0	3.0	-	7.0	_	_
4.0	7.0	6.0	208.0	73.0	7.0	3.0	111.2	8.0	89.5	82.6
4.0	7.0	7.0	755.0	88.0	8.0	4.0	423.3	17.3	347.1	333.6
4.0 4.0	7.0 7.0	8.0 9.0	864.0 919.0	106.0 120.0	9.0 10.0	3.0 3.0	679.8 888.1	27.3 34.7	559.1 713.9	538.1 686.5
4.0	7.0	10.0	941.0	132.0	10.0	3.0	1,030.5	39.1	812.9	780.9
4.0	7.0	11.0	946.0	139.0	11.0	3.0	1,095.4	42.1	851.1	780.9 817.2
4.0	7.0	12.0	938.0	140.0	12.0	3.0	1,078.8	42.9	835.0	801.9
4.0 4.0	7.0 7.0	13.0 14.0	914.0 873.0	137.0 126.0	13.0 13.0	3.0 3.0	982.6 818.0	41.3 36.7	766.0 649.5	736.2 624.9
4.0	7.0	15.0	815.0	105.0	13.0	3.0	594.9	30.3	478.1	460.1
4.0	7.0	16.0	682.0	83.0	12.0	2.0	335.3	23.1	259.5	248.4
4.0	7.0	17.0	383.0	45.0	11.0	2.0	88.0	13.1	58.6	52.4

4.0	7.0	18.0			10.0	2.0		10.0		
4.0	7.0	19.0	-	-	10.0	2.0		10.0	-	_
4.0 4.0	7.0 7.0	20.0 21.0	-	-	9.0 9.0	2.0 2.0	-	9.0 9.0	-	-
4.0	7.0	22.0		-	8.0	2.0		8.0	-	-
4.0	7.0	23.0	-	-	8.0	1.0	-	8.0	-	-
4.0 4.0	8.0 8.0	1.0	-	- -	8.0 8.0	1.0 1.0	-	8.0 8.0	-	
4.0	8.0	2.0	-	-	8.0	1.0	-	8.0	-	-
4.0 4.0	8.0	3.0	-	-	8.0	1.0	-	8.0	-	-
4.0	8.0 8.0	4.0 5.0	-	- -	8.0 9.0	1.0 -	- -	8.0 9.0	-	
4.0	8.0	6.0	539.0	58.0	11.0	-	163.3	15.2	114.2	106.8
4.0 4.0	8.0 8.0	7.0 8.0	760.0 854.0	86.0 106.0	13.0 14.0	- 1.0	424.9 674.5	30.9 38.0	327.1 526.6	314.1 506.9
4.0	8.0	9.0	898.0	123.0	15.0	2.0	874.7	42.1	677.6	651.7
4.0	8.0	10.0	913.0	138.0	16.0	2.0	1,010.8	47.6	762.9	733.3
4.0 4.0	8.0 8.0	11.0 12.0	914.0 939.0	148.0 130.0	17.0 17.0	2.0 3.0	1,072.7 1,069.5	50.8 47.3	796.6 809.1	765.4 777.3
4.0	8.0	13.0	915.0	128.0	17.0	3.0	974.0	44.8	745.7	716.8
4.0 4.0	8.0 8.0	14.0 15.0	880.0 820.0	118.0 101.0	17.0 17.0	3.0 3.0	814.7 593.3	40.5 34.2	634.8 467.8	610.8 450.3
4.0	8.0	16.0	691.0	80.0	16.0	2.0	335.2	27.0	254.2	243.4
4.0	8.0	17.0	386.0	45.0	15.0	2.0	88.2	17.2	57.5	51.3
4.0 4.0	8.0 8.0	18.0 19.0	-		14.0 14.0	2.0 3.0		14.0 14.0	-	-
4.0	8.0	20.0	-	-	15.0	3.0	-	15.0	-	-
4.0 4.0	8.0 8.0	21.0 22.0	-	-	15.0 15.0	3.0 3.0	-	15.0 15.0	-	-
4.0	8.0	23.0	-	- -	14.0	2.0	- -	14.0		-
4.0	9.0	5.2	-	-	14.0	2.0	-	14.0	-	-
4.0 4.0	9.0 9.0	1.0 2.0	-	-	14.0 14.0	2.0 2.0		14.0 14.0	-	-
4.0	9.0	3.0	-	-	14.0	2.0	-	14.0	-	-
4.0 4.0	9.0 9.0	4.0 5.0	-	-	14.0 15.0	2.0 1.0	-	14.0 15.0	-	-
4.0	9.0	6.0	262.0	72.0	17.0	1.0	122.6	18.8	92.2	85.3
4.0	9.0	7.0	660.0	108.0	18.0	2.0	404.4	28.9	316.2	303.6
4.0 4.0	9.0 9.0	8.0 9.0	786.0 877.0	126.0 124.0	19.0 20.0	2.0 2.0	651.6 859.2	38.4 46.3	508.2 651.2	489.1 626.5
4.0	9.0	10.0	418.0	366.0	20.0	2.0	785.3	45.1	600.8	578.2
4.0 4.0	9.0 9.0	11.0 12.0	426.0 499.0	385.0 371.0	21.0 21.0	2.0 3.0	839.2 891.9	47.2 45.8	635.0 679.8	611.0 653.9
4.0	9.0	13.0	640.0	270.0	20.0	3.0	877.1	44.7	672.2	646.6
4.0	9.0	14.0	578.0	231.0	20.0	3.0	694.6	39.9	543.4	523.0
4.0 4.0	9.0 9.0	15.0 16.0	471.0 250.0	195.0 149.0	19.0 19.0	3.0 2.0	480.5 239.0	32.7 26.5	384.4 190.9	369.6 181.7
4.0	9.0	17.0	235.0	56.0	18.0	2.0	80.3	19.5	57.8	51.6
4.0 4.0	9.0 9.0	18.0 19.0	-	-	18.0 18.0	2.0 2.0	<u> </u>	18.0 18.0	-	-
4.0	9.0	20.0	-	-	18.0	3.0	-	18.0	-	-
4.0	9.0	21.0	-	-	18.0	3.0	-	18.0	-	-
4.0 4.0	9.0 9.0	22.0 23.0	-	-	18.0 18.0	3.0 3.0		18.0 18.0	-	_
4.0	10.0	-	-	-	18.0	2.0	-	18.0	-	-
4.0 4.0	10.0 10.0	1.0 2.0	-	-	19.0 18.0	2.0 2.0	-	19.0 18.0	-	-
4.0	10.0	3.0		-	18.0	2.0		18.0	-	
4.0	10.0	4.0	-	-	18.0	2.0	-	18.0	-	-
4.0 4.0	10.0 10.0	5.0 6.0	- 249.0	90.0	18.0 19.0	2.0 2.0	136.6	18.0 21.1	104.0	96.9
4.0	10.0	7.0	483.0	150.0	20.0	2.0	367.0	29.9	289.1	277.3
4.0 4.0	10.0 10.0	8.0 9.0	614.0 127.0	186.0 373.0	21.0 22.0	3.0 3.0	601.4 483.6	36.8 35.5	474.0 388.3	456.2 373.4
4.0	10.0	10.0	42.0	379.0	22.0	3.0	418.7	33.3	339.9	326.5
4.0	10.0	11.0	27.0	362.0 455.0	22.0 22.0	3.0 3.0	389.3 559.3	32.3 36.8	317.6 446.5	304.9 429.7
4.0 4.0	10.0 10.0	12.0 13.0	102.0 27.0	333.0	22.0	3.0	356.0	31.9	291.0	279.1
4.0	10.0	14.0	297.0	339.0	22.0	3.0	579.3	37.2	460.3	443.0
4.0 4.0	10.0 10.0	15.0 16.0	579.0 282.0	158.0 136.0	21.0 21.0	2.0 2.0	509.1 237.5	37.0 28.6	397.6 186.6	382.4 177.5
4.0	10.0	17.0	79.0	59.0	20.0	2.0	64.6	21.0	51.6	45.6
4.0 4.0	10.0 10.0	18.0 19.0	-	-	20.0 20.0	2.0 2.0	Ī	20.0 20.0	-	
4.0	10.0	20.0		- -	20.0	2.0	- -	20.0		-
4.0 4.0	10.0	21.0 22.0	-	•	20.0 20.0	2.0 2.0	-	20.0	-	-
4.0	10.0 10.0	23.0		-	20.0	2.0	<u> </u>	20.0 20.0	-	-
4.0	11.0	-	-	-	19.0	1.0	-	19.0	-	-
4.0 4.0	11.0 11.0	1.0 2.0	-	- -	18.0 18.0	1.0 1.0		18.0 18.0	-	-
***						-				

4.0 4.0 4.0	11.0 11.0 11.0	3.0 4.0 5.0	- - -	: : :	17.0 16.0 16.0	1.0 1.0 2.0	: : :	17.0 16.0 16.0	- - -	- - -
4.0 4.0	11.0 11.0	6.0 7.0	326.0	60.0 164.0	16.0 17.0	2.0	56.9 308.8	15.5 24.7	50.2 251.8	44.2 240.9
4.0 4.0	11.0 11.0	8.0 9.0	714.0 805.0	143.0 147.0	18.0 19.0	2.0 1.0	624.6 829.1	36.3 48.8	492.9 620.5	474.4 597.1
4.0	11.0 11.0	10.0 11.0	849.0 867.0	151.0 153.0	20.0 21.0	1.0 1.0	971.3 1,031.0	55.1 58.4	704.5 734.2	677.5 705.9
4.0 4.0	11.0 11.0	12.0 13.0	873.0 855.0	147.0 140.0	21.0 22.0	1.0 1.0	1,021.0 936.2	58.4 56.8	727.1 672.3	699.1 646.7
4.0 4.0	11.0 11.0	14.0 15.0	815.0 736.0	130.0 117.0	22.0 21.0	1.0 -	775.3 559.4	51.5 48.7	570.5 410.1	549.0 394.5
4.0 4.0	11.0 11.0	16.0 17.0	584.0 292.0	96.0 52.0	20.0 19.0	-	311.5 82.7	37.1 24.3	227.0 55.7	216.8 49.5
4.0 4.0	11.0 11.0	18.0 19.0		-	18.0 18.0	- 1.0	-	18.0 18.0	-	
4.0 4.0	11.0 11.0	20.0 21.0	-	- -	17.0 17.0	1.0 1.0	-	17.0 17.0	- -	
4.0 4.0	11.0 11.0	22.0 23.0	-	-	16.0 16.0	1.0 2.0	-	16.0 16.0	-	-
4.0 4.0	12.0 12.0	1.0		-	16.0 15.0	2.0	-	16.0 15.0	-	1
4.0 4.0	12.0 12.0	2.0 3.0	-	-	15.0 15.0	2.0 2.0	-	15.0 15.0	-	-
4.0 4.0	12.0	4.0	-	-	14.0	2.0	-	14.0	-	-
4.0	12.0 12.0	5.0 6.0	277.0	87.0	14.0 15.0	2.0	140.3	14.0 17.1	107.6	100.3
4.0 4.0	12.0 12.0	7.0 8.0	244.0 569.0	178.0 204.0	17.0 18.0	3.0 2.0	286.6 588.7	23.5 35.1	236.7 468.2	226.3 450.6
4.0 4.0	12.0 12.0	9.0 10.0	539.0 392.0	272.0 388.0	19.0 20.0	2.0 3.0	736.0 775.7	41.6 41.6	572.1 604.3	550.6 581.5
4.0 4.0	12.0 12.0	11.0 12.0	270.0 689.0	462.0 258.0	20.0 21.0	3.0 2.0	754.0 965.2	41.1 50.6	588.8 717.4	566.6 689.8
4.0 4.0	12.0 12.0	13.0 14.0	545.0 -	314.0 21.0	21.0 20.0	2.0 3.0	832.1 20.0	47.7 21.8	627.6 17.1	603.9 11.7
4.0 4.0	12.0 12.0	15.0 16.0	264.0 188.0	243.0 148.0	20.0 19.0	3.0 3.0	401.1 212.6	29.3 24.5	328.2 172.8	315.2 164.1
4.0 4.0	12.0 12.0	17.0 18.0	4.0	51.0	19.0 19.0	2.0 2.0	48.4	19.4 19.0	41.8	35.9
4.0 4.0	12.0 12.0	19.0 20.0	-	-	19.0 19.0	2.0 2.0	:	19.0 19.0	-	-
4.0	12.0	21.0	-	-	20.0	2.0 2.0 3.0	-	20.0	-	-
4.0 4.0	12.0 12.0	22.0 23.0	-	- -	20.0	3.0	- -	20.0 20.0	- -	-
4.0 4.0	13.0 13.0	1.0	-	- -	20.0 20.0	3.0 3.0	-	20.0 20.0	-	
4.0 4.0	13.0 13.0	2.0 3.0	-	-	20.0 20.0	3.0 3.0	-	20.0 20.0	-	-
4.0 4.0	13.0 13.0	4.0 5.0	-	-	20.0 20.0	3.0 3.0	-	20.0 20.0	-	-
4.0 4.0	13.0 13.0	6.0 7.0	-	48.0 7.0	21.0 21.0	3.0 2.0	45.6 6.6	20.4 19.3	39.3 5.8	33.5 0.5
4.0 4.0	13.0 13.0	8.0 9.0	-	14.0 35.0	21.0 21.0	2.0 2.0	13.3 33.3	19.3 20.0	11.5 28.8	6.2 23.2
4.0 4.0	13.0 13.0	10.0 11.0		54.0 54.0	21.0 21.0	1.0 1.0	51.5 51.5	20.5 20.7	44.4 44.4	38.5 38.5
4.0 4.0	13.0 13.0	12.0 13.0	38.0	394.0 88.0	21.0 21.0 21.0	1.0 1.0	431.9 83.9	34.4 24.6	348.8 71.0	335.2 64.6
4.0 4.0	13.0 13.0	14.0 15.0	-	40.0 35.0	21.0 21.0 21.0	1.0 2.0	38.0 33.2	20.4 20.1	32.8 28.7	27.1 23.1
4.0	13.0	16.0	-	52.0	21.0	2.0	49.4	20.6	42.6	36.7
4.0	13.0 13.0	17.0 18.0	-	14.0 -	20.0	2.0 1.0	13.3	18.5 20.0	11.5	6.2
4.0 4.0	13.0 13.0	19.0 20.0	-	- -	20.0 20.0	2.0 3.0	-	20.0 20.0	-	-
4.0 4.0	13.0 13.0	21.0 22.0	-	-	20.0 20.0	2.0 2.0	-	20.0 20.0	-	
4.0 4.0	13.0 14.0	23.0	-	-	19.0 19.0	2.0 2.0	-	19.0 19.0	-	-
4.0 4.0	14.0 14.0	1.0 2.0	-	- -	19.0 18.0	1.0 1.0	-	19.0 18.0	- -	-
4.0 4.0	14.0 14.0	3.0 4.0	-	-	17.0 16.0	2.0 2.0	-	17.0 16.0	-	-
4.0 4.0	14.0 14.0	5.0 6.0	- 443.0	- 74.0	16.0 16.0	3.0 3.0	- 163.9	16.0 18.6	- 118.4	- 111.0
4.0 4.0	14.0 14.0	7.0 8.0	685.0 810.0	103.0 119.0	16.0 16.0	3.0 3.0	415.5 664.9	26.1 33.7	329.7 531.1	316.6 511.2
4.0 4.0	14.0 14.0	9.0 10.0	880.0 917.0	128.0 133.0	17.0 18.0	3.0 3.0	869.3 1,011.8	40.9 46.1	677.7 769.8	651.9 739.9
4.0	14.0	11.0	930.0	136.0	19.0	3.0	1,076.9	49.1	806.7	775.0

4.0	14.0	12.0	020.0	133.0	19.0	2.0	1.061.5	40.0	705.0	764.7
4.0 4.0	14.0	12.0 13.0	929.0 909.0	127.0	19.0	3.0 3.0	1,061.5 965.4	49.0 46.5	795.9 732.7	764.7 704.4
4.0	14.0	14.0	867.0	119.0	19.0	3.0	802.8	42.1	620.5	597.1
4.0	14.0	15.0	789.0	107.0	19.0	2.0	578.6	38.0	447.7	430.8
4.0 4.0	14.0 14.0	16.0 17.0	644.0 352.0	88.0 50.0	18.0 17.0	2.0 2.0	324.1 87.1	28.6 19.1	244.8 57.9	234.2 51.7
4.0	14.0	18.0	-	-	15.0	2.0	-	15.0	- -	-
4.0	14.0	19.0	-	-	15.0	2.0	-	15.0	-	-
4.0	14.0	20.0	-	-	14.0	2.0	-	14.0	-	-
4.0	14.0	21.0 22.0	-	-	13.0 13.0	1.0 1.0	-	13.0 13.0	-	-
4.0 4.0	14.0 14.0	23.0			12.0	1.0		13.0		
4.0	15.0	-	_	-	12.0	1.0	-	12.0	-	_
4.0	15.0	1.0	-	-	11.0	1.0	-	11.0	-	-
4.0	15.0	2.0	-	-	11.0	1.0	-	11.0	-	-
4.0 4.0	15.0 15.0	3.0 4.0	-		11.0 10.0	1.0 1.0		11.0 10.0		
4.0	15.0	5.0	_	-	11.0	1.0	-	11.0	-	_
4.0	15.0	6.0	465.0	76.0	12.0	2.0	171.2	15.1	125.6	117.9
4.0	15.0	7.0	688.0	110.0	13.0	2.0	424.8	24.8	339.7	326.3
4.0 4.0	15.0 15.0	8.0 9.0	810.0 877.0	125.0 134.0	14.0 15.0	2.0 2.0	671.8 877.8	34.3 42.2	535.3 679.9	515.2 653.9
4.0	15.0	10.0	912.0	137.0	17.0	1.0	1,011.3	53.8	738.8	710.2
4.0	15.0	11.0	928.0	137.0	18.0	1.0	1,075.9	57.2	771.3	741.3
4.0	15.0	12.0	930.0	131.0	18.0	1.0	1,060.2	57.1	760.7	731.2
4.0 4.0	15.0 15.0	13.0 14.0	536.0 866.0	314.0 120.0	19.0 20.0	1.0 1.0	822.3 802.5	50.8 49.9	610.2 595.4	587.2 573.0
4.0	15.0	15.0	792.0	108.0	19.0	1.0	580.9	41.9	440.8	424.1
4.0	15.0	16.0	669.0	85.0	18.0	1.0	329.8	31.3	245.4	234.8
4.0	15.0	17.0	403.0	49.0	17.0	1.0	92.8	20.2	59.9	53.7
4.0	15.0	18.0	-	-	16.0	1.0	-	16.0	-	-
4.0 4.0	15.0 15.0	19.0 20.0	-	<u> </u>	15.0 15.0	1.0 2.0		15.0 15.0		1
4.0	15.0	21.0	-	-	14.0	2.0	-	14.0	-	-
4.0	15.0	22.0	-	-	14.0	1.0	-	14.0	-	-
4.0	15.0	23.0	-	-	13.0	1.0	-	13.0	-	-
4.0 4.0	16.0 16.0	- 1.0	_		13.0 12.0	1.0 1.0		13.0 12.0	-	
4.0	16.0	2.0	_	- -	12.0	1.0		12.0	<u>-</u>	_
4.0	16.0	3.0	-	-	12.0	2.0	-	12.0	-	-
4.0	16.0	4.0	-	-	12.0	2.0	12	12.0	1.	-
4.0 4.0	16.0 16.0	5.0 6.0	- 135.0	6.0 91.0	12.0 14.0	2.0 2.0	5.7 115.3	9.7 15.3	5.1 94.4	- 87.4
4.0	16.0	7.0	367.0	165.0	15.0	2.0	330.0	23.6	270.2	258.9
4.0	16.0	8.0	772.0	136.0	16.0	2.0	659.4	35.4	522.6	503.0
4.0	16.0	9.0	562.0	269.0	18.0	1.0	752.8	45.6	573.2	551.7
4.0	16.0	10.0	572.0	326.0	19.0	1.0	890.1	51.3	658.9	633.9
4.0 4.0	16.0 16.0	11.0 12.0	535.0 443.0	374.0 389.0	20.0 20.0	1.0 1.0	935.0 851.3	54.3 52.0	681.4 628.2	655.4 604.4
4.0	16.0	13.0	563.0	311.0	21.0	-	843.3	58.6	599.6	577.0
4.0	16.0	14.0	469.0	276.0	21.0	-	651.8	52.3	478.2	460.3
4.0	16.0	15.0	445.0	206.0	20.0	1.0	473.1	38.5	368.0	353.8
4.0 4.0	16.0 16.0	16.0 17.0	553.0 273.0	112.0 60.0	19.0 18.0	1.0	314.3 87.2	31.0 23.4	237.3 60.7	226.9 54.5
4.0	16.0	18.0	-	-	18.0	-	-	18.0	-	-
4.0	16.0	19.0	-	-	17.0	-	-	17.0	-	-
4.0	16.0	20.0	-	-	17.0	1.0	-	17.0	-	-
4.0 4.0	16.0 16.0	21.0 22.0			17.0 17.0	1.0 1.0		17.0 17.0		
4.0	16.0	23.0	_	-	17.0	2.0	-	17.0	-	_
4.0	17.0	-	-	-	16.0	2.0	-	16.0	-	-
4.0	17.0	1.0	-	-	16.0	2.0	-	16.0	-	-
4.0 4.0	17.0 17.0	2.0 3.0	_		16.0 16.0	2.0 2.0		16.0 16.0	-	1
4.0	17.0	4.0	_	- -	16.0	3.0		16.0	<u>-</u>	_
4.0	17.0	5.0	-	-	16.0	3.0	-	16.0	-	-
4.0	17.0	6.0	207.0	89.0	16.0	4.0	129.6	17.5	102.0	94.9
4.0 4.0	17.0 17.0	7.0 8.0	150.0 139.0	194.0 296.0	17.0 18.0	4.0 4.0	258.0 387.3	22.2 26.8	216.6 323.1	206.8 310.3
4.0	17.0	9.0	68.0	361.0	19.0	4.0	414.2	28.9	343.5	330.0
4.0	17.0	10.0	169.0	450.0	20.0	3.0	618.6	36.4	494.6	476.1
4.0	17.0	11.0	181.0	469.0	20.0	3.0	661.2	38.2	524.0	504.4
4.0 4.0	17.0 17.0	12.0	292.0 755.0	454.0 199.0	21.0 21.0	3.0	761.0 906.2	41.9	591.9 678.8	569.6 652.9
4.0	17.0	13.0 14.0	695.0	199.0	21.0	2.0 2.0	742.3	49.0 45.0	678.8 565.5	544.3
4.0	17.0	15.0	399.0	218.0	20.0	1.0	457.5	38.5	356.3	342.5
4.0	17.0	16.0	237.0	161.0	19.0	1.0	243.7	28.5	193.6	184.3
4.0 4.0	17.0 17.0	17.0 18.0	103.0	65.0 -	19.0 18.0	2.0 2.0	72.2 -	20.3 18.0	57.2	51.0 -
4.0	17.0	19.0		-	18.0	2.0	- -	18.0	-	-
4.0	17.0	20.0	-	-	17.0	1.0	-	17.0	-	-

4.0 4.0	17.0 17.0	21.0 22.0	į	-	17.0 17.0	1.0 1.0	<u>.</u>	17.0 17.0	-	-
4.0 4.0	17.0 18.0	23.0	-	-	17.0 17.0	1.0 2.0	:	17.0 17.0	-	-
4.0	18.0 18.0	1.0 2.0	-	- -	16.0 16.0	2.0 2.0	-	16.0 16.0	-	-
4.0	18.0 18.0	3.0 4.0	-	-	16.0 16.0	2.0 2.0	-	16.0 16.0	-	-
4.0 4.0 4.0	18.0 18.0 18.0	5.0 6.0 7.0	- 66.0 295.0	7.0 99.0 180.0	16.0 17.0 18.0	3.0 3.0 3.0	6.6 107.8 312.8	14.2 18.1	5.9 90.4 255.9	0.7 83.5 245.0
4.0 4.0 4.0	18.0 18.0	8.0 9.0	349.0 70.0	277.0 364.0	19.0 20.0	3.0 3.0	512.7 418.7	25.1 32.3 31.5	415.1 342.9	399.4 329.5
4.0 4.0	18.0 18.0	10.0 11.0	28.0 185.0	354.0 482.0	21.0 21.0	3.0 3.0	378.2 678.2	31.0 38.9	310.5 535.8	298.0 515.7
4.0 4.0	18.0 18.0	12.0 13.0	211.0 255.0	472.0 421.0	21.0 21.0	3.0 2.0	690.6 666.3	40.2 42.0	541.9 517.9	521.6 498.5
4.0 4.0	18.0 18.0	14.0 15.0	361.0 328.0	320.0 236.0	20.0 20.0	2.0 2.0	605.7 429.3	39.2 33.8	476.2 342.9	458.3 329.4
4.0 4.0	18.0 18.0	16.0 17.0	173.0 -	154.0 47.0	19.0 19.0	2.0 2.0	211.8 44.3	25.5 19.2	171.9 38.5	163.1 32.7
4.0 4.0	18.0 18.0	18.0 19.0	-	-	18.0 18.0	2.0 1.0	-	18.0 18.0	-	-
4.0 4.0	18.0 18.0	20.0	-	-	18.0 18.0	1.0 1.0	-	18.0 18.0	-	-
4.0	18.0 18.0	22.0 23.0	-	-	18.0 17.0	2.0 1.0	-	18.0 17.0	-	-
4.0	19.0 19.0	1.0	-	- -	17.0 17.0	1.0 1.0	-	17.0 17.0	-	-
4.0 4.0 4.0	19.0 19.0 19.0	2.0 3.0 4.0	-	-	17.0 17.0 18.0	1.0 1.0 1.0		17.0 17.0 18.0	-	-
4.0 4.0 4.0	19.0 19.0 19.0	5.0 6.0		1.0 27.0	18.0 18.0 18.0	2.0 2.0	0.9 25.6	15.8 16.6	0.8 22.5	- - 17.0
4.0	19.0 19.0	7.0 8.0	- 48.0	135.0 272.0	19.0 20.0	2.0 2.0	128.6 298.0	21.0 27.7	110.7 248.1	103.4 237.4
4.0 4.0	19.0 19.0	9.0 10.0	20.0 17.0	289.0 303.0	21.0 21.0	2.0 3.0	295.5 309.2	29.4 28.7	244.5 256.7	233.9 245.7
4.0 4.0	19.0 19.0	11.0 12.0	56.0 45.0	436.0 414.0	21.0 21.0	3.0 3.0	492.3 457.8	33.7 33.4	399.0 371.5	383.8 357.2
4.0	19.0 19.0	13.0 14.0	15.0 21.0	284.0 273.0	22.0 21.0	3.0 3.0	287.8 279.2	29.7 27.9	237.8 232.6	227.3 222.3
4.0	19.0 19.0	15.0 16.0	57.0 160.0	243.0 155.0	21.0 21.0	3.0 3.0	269.9 207.9	27.6 25.9	224.4 168.8	214.3 160.1
4.0 4.0 4.0	19.0 19.0 19.0	17.0 18.0 19.0	56.0 -	64.0 - -	20.0 20.0 20.0	3.0 3.0 3.0	65.9 - -	20.7 20.0 20.0	54.0 -	47.9 - -
4.0 4.0 4.0	19.0 19.0 19.0	20.0 21.0			20.0 20.0 20.0	3.0 2.0	-	20.0 20.0 20.0		
4.0	19.0 19.0	22.0 23.0	-	-	20.0 19.0	2.0 2.0	-	20.0 19.0	-	-
4.0 4.0	20.0 20.0	1.0	-	- -	19.0 18.0	2.0 2.0	-	19.0 18.0	- -	-
4.0 4.0	20.0 20.0	2.0 3.0	-	-	17.0 16.0	2.0 2.0	-	17.0 16.0	-	-
4.0 4.0	20.0 20.0	4.0 5.0	79.0	- 15.0	16.0 16.0	2.0 2.0	- 12.2	16.0 14.1	10.9	- 5.6
4.0	20.0	6.0 7.0	526.0 721.0	69.0 96.0	17.0 18.0	2.0 2.0	182.6 430.0	20.6 30.0	129.2 335.4	121.5 322.1
4.0 4.0 4.0	20.0 20.0 20.0	8.0 9.0 10.0	818.0 881.0 908.0	113.0 119.0 127.0	18.0 19.0 20.0	2.0 2.0 2.0	668.5 863.8 998.0	38.1 45.6 51.0	522.8 657.5 740.1	503.2 632.5 711.5
4.0 4.0 4.0	20.0 20.0 20.0	11.0 12.0	276.0 173.0	470.0 468.0	21.0 21.0	2.0 2.0 2.0	764.6 648.0	46.0 41.8	582.3 504.4	560.4 485.5
4.0 4.0	20.0 20.0	13.0 14.0	857.0 801.0	149.0 147.0	21.0 21.0	2.0 2.0	942.9 777.2	49.6 46.1	704.1 588.3	677.1 566.1
4.0 4.0	20.0 20.0	15.0 16.0	10.0 206.0	193.0 153.0	21.0 20.0	2.0 2.0	190.5 224.1	28.4 25.7	158.2 180.8	149.8 171.8
4.0 4.0	20.0 20.0	17.0 18.0	299.0	61.0 -	19.0 18.0	2.0 2.0	90.6	20.7 18.0	63.1 -	56.8 -
4.0 4.0	20.0	19.0 20.0	-	-	17.0 16.0	2.0 2.0	-	17.0 16.0	-	-
4.0 4.0 4.0	20.0 20.0 20.0	21.0 22.0 23.0	-	- -	15.0 15.0 14.0	2.0 2.0 2.0	-	15.0 15.0 14.0	- -	-
4.0 4.0	21.0 21.0	1.0	-	-	14.0 14.0 13.0	2.0 1.0	- -	14.0 13.0	-	-
4.0	21.0 21.0	2.0 3.0	-	-	13.0 13.0	1.0 1.0	- -	13.0 13.0	- -	-
4.0 4.0	21.0 21.0	4.0 5.0	- 95.0	- 16.0	13.0 14.0	1.0 1.0	13.1	13.0 11.5	- 11.8	- 6.4

40	4.0 4.0 4.0 4.0 4.0 4.0	21.0 6.0 21.0 7.0 21.0 8.0 21.0 9.0 21.0 10.0 21.0 11.0	522.0 706.0 803.0 855.0 872.0 871.0	71.0 102.0 120.0 133.0 147.0 156.0	16.0 18.0 20.0 21.0 22.0 22.0	1.0 1.0 2.0 2.0 3.0 3.0	184.4 429.9 666.2 860.6 983.8 1,036.3	20.2 32.2 39.9 47.4 49.2 50.9	131.3 332.2 516.2 649.0 736.5 769.2	123.5 319.1 496.9 624.4 708.1 739.2
40 210 190 180 10 180 10 180 1 180 1	4.0 4.0 4.0 4.0 4.0	21.0 13.0 21.0 14.0 21.0 15.0 21.0 16.0 21.0 17.0	846.0 783.0 293.0 531.0	147.0 148.0 246.0 104.0 4.0	22.0 22.0 21.0 20.0 19.0	3.0 3.0 3.0 2.0 2.0	930.3 763.7 417.6 297.1 3.8	48.4 43.8 33.3 29.0 18.4	699.2 585.0 334.7 226.1 3.3	
40	4.0 4.0 4.0 4.0 4.0 4.0	21.0 19.0 21.0 20.0 21.0 21.0 21.0 22.0 21.0 23.0 22.0 -			18.0 17.0 17.0 16.0 16.0	1.0 1.0 1.0 1.0	- - -	18.0 17.0 17.0 16.0 16.0		-
40 220 80 7920 1220 200 - 6613 487 4800 47174 40 220 80 8640 1200 210 - 8618 677 0775 844 40 220 100 8710 1200 210 - 8618 6777 0775 844 40 220 100 8710 1200 220 10 10 8710 8614 40 220 120 9010 1300 230 10 10 10 10 10 10 10 10 10 10 10 10 10	4.0 4.0 4.0 4.0 4.0	22.0 2.0 22.0 3.0 22.0 4.0 22.0 5.0 22.0 6.0	85.0 501.0	74.0	15.0 15.0 15.0 16.0 17.0	1.0 1.0 1.0	- 13.8 183.4	15.0 15.0 15.0 12.2 22.6	130.2	7.0 122.4
40	4.0 4.0 4.0 4.0 4.0 4.0	22.0 8.0 22.0 9.0 22.0 10.0 22.0 11.0 22.0 12.0 22.0 13.0	792.0 854.0 879.0 884.0 901.0 877.0	122.0 129.0 139.0 145.0 130.0 129.0	20.0 21.0 22.0 23.0 23.0 23.0	1.0 1.0	661.3 851.8 982.4 1,038.2 1,027.6 934.3	48.7 57.7 63.9 60.5 60.5 57.7	490.0 607.5 678.0 730.7 723.5 667.6	471.6 584.6 652.1 702.5 695.6 642.2
40 220 220 230 -	4.0 4.0 4.0 4.0 4.0 4.0	22.0 15.0 22.0 16.0 22.0 17.0 22.0 18.0 22.0 19.0 22.0 20.0	755.0 619.0 351.0	112.0 92.0 55.0	22.0 21.0 20.0 19.0 19.0	2.0 2.0 1.0 1.0 2.0 2.0	560.2 316.7 90.8	40.3 31.2 23.0 19.0 19.0	428.5 236.4 60.0	412.3 226.0 53.7 - -
40 23.0 40 - - 18.0 1.0 - 18.0 1.5 4.0 23.0 50 104.0 19.0 19.0 1.0 188.9 24.5 132.3 124.6 40.2 23.0 70 719.0 99.0 21.0 1.0 434.3 35.4 303.5 317.4 40.23.0 8.0 820.0 113.0 22.0 1.0 67.14 45.6 505.4 486.6 40.23.0 10.0 99.0 21.0 1.0 67.14 45.6 505.4 486.6 40.23.0 10.0 907.0 125.0 24.0 1.0 686.8 53.8 629.3 665.5 40.0 23.0 110.0 994.9 59.6 703.6 676.7 40.0 23.0 110.0 194.9 59.6 703.6 676.7 40.0 23.0 110.0 194.9 59.6 703.6 676.7 40.0 23.0 13.0 10.0 145.2 40.0 23.0 13.0 24.0 13.0	4.0 4.0 4.0 4.0 4.0	22.0 22.0 22.0 23.0 23.0 - 23.0 1.0 23.0 2.0		- - - - - -	19.0 18.0 18.0 18.0 18.0	2.0 2.0 2.0 1.0 1.0	- - -	19.0 18.0 18.0 18.0 18.0		- - - -
40 230 11.0 917.0 128.0 24.0 1.0 1,053.9 62.0 755.8 707.4 40 23.0 12.0 454.0 333.0 24.0 1.0 862.2 56.6 620.4 597.4 4.0 23.0 13.0 884.0 124.0 24.0 1.0 944.1 58.1 673.0 647.4 4.0 23.0 15.0 794.0 102.0 23.0 1.0 783.3 52.7 572.3 550.8 4.0 23.0 15.0 794.0 102.0 23.0 1.0 572.4 45.3 426.4 410.2 4.0 23.0 16.0 676.0 83.0 22.0 1.0 328.0 35.1 239.0 228.6 4.0 23.0 18.0 - - 19.0 - - 18.0 60.7 54.4 40.2 23.0 18.0 - - - - 40.2 23.0 18.0 - <td>4.0 4.0 4.0 4.0 4.0 4.0</td> <td>23.0 4.0 23.0 5.0 23.0 6.0 23.0 7.0 23.0 8.0 23.0 9.0</td> <td>527.0 719.0 820.0 880.0</td> <td>73.0 99.0 113.0 119.0</td> <td>18.0 19.0 20.0 21.0 22.0 23.0</td> <td>1.0 1.0 1.0 1.0 1.0 1.0</td> <td>188.9 434.3 671.4 863.8</td> <td>18.0 16.8 24.5 35.4 45.6 53.8</td> <td>132.3 330.5 505.4 629.3</td> <td>8.2 124.5 317.4 486.5 605.5</td>	4.0 4.0 4.0 4.0 4.0 4.0	23.0 4.0 23.0 5.0 23.0 6.0 23.0 7.0 23.0 8.0 23.0 9.0	527.0 719.0 820.0 880.0	73.0 99.0 113.0 119.0	18.0 19.0 20.0 21.0 22.0 23.0	1.0 1.0 1.0 1.0 1.0 1.0	188.9 434.3 671.4 863.8	18.0 16.8 24.5 35.4 45.6 53.8	132.3 330.5 505.4 629.3	8.2 124.5 317.4 486.5 605.5
4.0 23.0 18.0 - - 19.0 1.0 - 19.0 -	4.0 4.0 4.0 4.0 4.0 4.0	23.0 11.0 23.0 12.0 23.0 13.0 23.0 14.0 23.0 15.0 23.0 16.0	917.0 454.0 894.0 856.0 794.0 676.0	128.0 393.0 124.0 116.0 102.0 83.0	24.0 24.0 24.0 23.0 23.0 22.0	1.0 1.0 1.0 1.0 1.0 1.0	1,053.9 862.2 944.1 783.3 572.4 328.0	62.0 56.6 58.1 52.7 45.3 35.1	735.8 620.4 673.0 572.3 426.4 239.0	707.4 597.0 647.4 550.8 410.2 228.6
4.0 24.0 1.0 - - 18.0 1.0 - 18.0 -	4.0 4.0 4.0 4.0 4.0	23.0 18.0 23.0 19.0 23.0 20.0 23.0 21.0 23.0 22.0	-	-	19.0 18.0 18.0 18.0 18.0	1.0 1.0 1.0 1.0 1.0		19.0 18.0 18.0 18.0 18.0	-	-
4.0 24.0 7.0 706.0 104.0 21.0 1.0 434.0 35.4 330.7 317.6 4.0 24.0 8.0 790.0 127.0 22.0 1.0 666.0 45.4 502.0 483.2 4.0 24.0 9.0 831.0 146.0 23.0 1.0 854.3 53.5 623.6 600.2 4.0 24.0 10.0 849.0 161.0 24.0 1.0 982.2 59.2 696.3 669.7 4.0 24.0 11.0 464.0 374.0 24.0 2.0 860.2 51.4 636.5 612.5 4.0 24.0 12.0 468.0 391.0 24.0 1.0 873.4 56.0 630.6 606.7	4.0 4.0 4.0 4.0 4.0	24.0 1.0 24.0 2.0 24.0 3.0 24.0 4.0 24.0 5.0	- 126.0	- 20.0	18.0 18.0 17.0 17.0 18.0	1.0 1.0 1.0 1.0 1.0	- 16.3	18.0 18.0 17.0 17.0 15.8	- 14.4	9.0
4.0 24.0 13.0 835.0 155.0 24.0 1.0 926.6 57.6 662.3 637.1	4.0 4.0 4.0 4.0 4.0 4.0 4.0	24.0 7.0 24.0 8.0 24.0 9.0 24.0 10.0 24.0 11.0 24.0 12.0 24.0 13.0	706.0 790.0 831.0 849.0 464.0 468.0 835.0	104.0 127.0 146.0 161.0 374.0 391.0 155.0	21.0 22.0 23.0 24.0 24.0 24.0 24.0	1.0 1.0 1.0 1.0 2.0 1.0	434.0 666.0 854.3 982.2 860.2 873.4 926.6	35.4 45.4 53.5 59.2 51.4 56.0 57.6	330.7 502.0 623.6 696.3 636.5 630.6 662.3	317.6 483.2 600.0 669.7 612.5 606.7 637.1 539.6

4.0	24.0	15.0	718.0	128.0	23.0	1.0	553.9	44.6	414.8	399.0
4.0	24.0	16.0	592.0	102.0	22.0	1.0	316.3	34.6	233.3	223.0
4.0	24.0	17.0	346.0	58.0	21.0	1.0	92.9	24.1	61.7	55.4
4.0	24.0	18.0	-	-	20.0	1.0	-	20.0	-	-
4.0	24.0	19.0	-	-	19.0	1.0	_	19.0	_	-
4.0	24.0	20.0			19.0	1.0	_	19.0	_	_
4.0	24.0	21.0	-	-	19.0	1.0		19.0	-	-
4.0	24.0	22.0	-	-	19.0	1.0		19.0	-	-
4.0	24.0	23.0	_	<u>-</u>	19.0	1.0	-	19.0	_	_
4.0	25.0	-			19.0	1.0		19.0		
			-	•					-	-
4.0	25.0	1.0	-		19.0	1.0		19.0	-	-
4.0	25.0	2.0	-		18.0	1.0	-	18.0	_	-
4.0	25.0	3.0	_		18.0	1.0	_	18.0	_	_
4.0	25.0	4.0	-	-	18.0	1.0	-	18.0	-	-
4.0	25.0	5.0	-	19.0	19.0	1.0	18.0	16.9	15.8	10.4
4.0	25.0	6.0	211.0	100.0	20.0	1.0	142.8	22.8	110.8	103.5
4.0	25.0	7.0	503.0	147.0	21.0	1.0	381.1	33.2	296.5	284.4
4.0		8.0			22.0					
	25.0		488.0	231.0		1.0	565.4	41.9	435.7	419.2
4.0	25.0	9.0	559.0	280.0	23.0	1.0	761.3	50.1	566.2	545.0
4.0	25.0	10.0	574.0	319.0	24.0	1.0	882.6	55.8	637.8	613.7
4.0	25.0	11.0	855.0	168.0	25.0	1.0	1,038.8	61.9	725.5	697.5
4.0	25.0	12.0	856.0	164.0	25.0	1.0	1,022.9	62.2	713.3	685.9
4.0	25.0	13.0	837.0	157.0	24.0	1.0	929.9	58.4	661.6	636.5
4.0	25.0	14.0	798.0	146.0	24.0	1.0	771.0	53.2	562.0	540.9
4.0	25.0	15.0	725.0	129.0	23.0	1.0	558.6	44.8	417.8	402.0
4.0	25.0	16.0	602.0	103.0	22.0	1.0	320.7	34.7	236.2	225.8
4.0	25.0	17.0	356.0	60.0	21.0	1.0	95.8	24.3	63.6	57.3
4.0	25.0	18.0	_	<u>-</u>	20.0	1.0	_	20.0	_	_
4.0	25.0	19.0	_		20.0	1.0		20.0	_	
			-						-	-
4.0	25.0	20.0	-		19.0	1.0		19.0	-	-
4.0	25.0	21.0	-		19.0	1.0	-	19.0	_	_
4.0	25.0	22.0	_		19.0	1.0	_	19.0	_	_
4.0	25.0	23.0	-	-	19.0	1.0		19.0	-	-
4.0	26.0	-	-	-	19.0	1.0	-	19.0	-	-
4.0	26.0	1.0	-	_	19.0	1.0	_	19.0	_	_
4.0	26.0	2.0			18.0	1.0		18.0	_	
									-	
4.0	26.0	3.0	-	•	18.0	1.0		18.0	-	-
4.0	26.0	4.0	-		18.0	1.0		18.0	-	-
4.0	26.0	5.0	105.0	23.0	19.0	2.0	18.5	17.4	16.2	10.8
		6.0				2.0				
4.0	26.0		490.0	82.0	20.0		191.2	23.9	136.8	128.9
4.0	26.0	7.0	102.0	206.0	22.0	2.0	245.4	28.4	201.3	191.8
4.0	26.0	8.0	72.0	294.0	23.0	3.0	335.0	31.3	274.1	262.7
4.0	26.0	9.0	93.0	386.0	23.0	3.0	458.6	34.9	369.3	355.0
4.0	26.0	10.0	228.0	455.0	24.0	3.0	676.7	42.0	526.0	506.3
4.0	26.0	11.0	206.0	475.0	24.0	3.0	688.8	43.0	532.6	512.7
4.0	26.0	12.0	150.0	480.0	24.0	3.0	634.8	41.7	494.3	475.8
4.0	26.0	13.0	801.0	180.0	24.0	3.0	919.7	48.8	689.6	663.2
4.0	26.0	14.0	758.0	167.0	23.0	3.0	762.3	44.7	581.3	559.5
4.0	26.0	15.0	683.0	147.0	23.0	3.0	551.7	38.8	426.0	409.8
4.0	26.0	16.0	561.0	114.0	22.0	2.0	316.4	32.2	237.3	226.9
4.0	26.0	17.0	313.0	66.0	21.0	2.0	96.3	23.4	66.4	60.1
4.0	26.0	18.0	-		20.0	2.0	•	20.0	-	-
4.0	26.0	19.0	-	-	20.0	2.0	-	20.0	-	-
4.0	26.0	20.0	-	_	19.0	2.0	_	19.0	_	-
4.0	26.0	21.0	_	_	19.0	1.0	_	19.0	_	_
			-						· ·	-
4.0	26.0	22.0	-	-	19.0	1.0	-	19.0	-	
4.0	26.0	23.0	-	-	19.0	1.0	-	19.0	-	-
4.0	27.0	-	-	-	19.0	1.0	-	19.0	_	-
4.0	27.0	1.0	_	-	19.0	1.0	-	19.0	_	_
4.0	27.0	2.0	_	_	19.0	2.0		19.0	_	_
			-				•		-	-
4.0	27.0	3.0	-	-	19.0	2.0	-	19.0	-	-
4.0	27.0	4.0	-	-	19.0	2.0	-	19.0	-	-
4.0	27.0	5.0	75.0	25.0	19.0	2.0	21.4	17.5	18.8	13.3
4.0	27.0	6.0	441.0	91.0	21.0	2.0	187.8	24.8	135.9	128.0
									220.0	240.0
4.0	27.0	7.0	629.0	129.0	22.0	3.0	424.7	32.5	330.0	316.9
4.0	27.0	8.0	80.0	303.0	23.0	3.0	349.2	32.3	284.2	272.5
4.0	27.0	9.0	793.0	165.0	23.0	3.0	841.7	44.9	642.9	618.6
4.0	27.0	10.0	825.0	173.0	24.0	3.0	970.8	50.7	720.9	693.2
										540.0
4.0	27.0	11.0	208.0	488.0	24.0	2.0	703.6	47.1	532.9	512.9
		12.0	844.0	169.0	24.0	2.0	1,015.0	54.6	738.2	709.7
4.0	27.0		825.0	162.0	24.0	2.0	922.8	53.3	675.5	649.8
		13.0		153.0	23.0	2.0	763.8	47.6	573.7	649.8 552.2
4.0	27.0		781 N	100.0					400.4	352.2
4.0 4.0	27.0 27.0	14.0	781.0	404.0		2.0	555.2	41.1		
4.0 4.0 4.0	27.0 27.0 27.0	14.0 15.0	712.0	134.0	23.0				423.4	407.3
4.0 4.0 4.0 4.0	27.0 27.0 27.0 27.0	14.0 15.0 16.0	712.0 600.0	104.0	22.0	2.0	320.5	32.3	239.0	407.3 228.5
4.0 4.0 4.0	27.0 27.0 27.0	14.0 15.0	712.0				320.5 97.5		239.0	407.3 228.5 59.3
4.0 4.0 4.0 4.0 4.0	27.0 27.0 27.0 27.0 27.0	14.0 15.0 16.0 17.0	712.0 600.0 348.0	104.0 63.0	22.0 21.0	2.0 2.0	97.5	32.3 23.5	239.0 65.7	228.5 59.3
4.0 4.0 4.0 4.0 4.0 4.0	27.0 27.0 27.0 27.0 27.0 27.0	14.0 15.0 16.0 17.0 18.0	712.0 600.0	104.0	22.0 21.0 20.0	2.0 2.0 2.0		32.3 23.5 20.0	239.0	407.3 228.5 59.3
4.0 4.0 4.0 4.0 4.0 4.0	27.0 27.0 27.0 27.0 27.0 27.0 27.0	14.0 15.0 16.0 17.0 18.0 19.0	712.0 600.0 348.0	104.0 63.0	22.0 21.0 20.0 20.0	2.0 2.0 2.0 2.0	97.5	32.3 23.5 20.0 20.0	239.0 65.7	228.5 59.3
4.0 4.0 4.0 4.0 4.0 4.0 4.0	27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0	14.0 15.0 16.0 17.0 18.0 19.0 20.0	712.0 600.0 348.0	104.0 63.0	22.0 21.0 20.0 20.0 19.0	2.0 2.0 2.0 2.0 1.0	97.5	32.3 23.5 20.0 20.0 19.0	239.0 65.7	228.5 59.3
4.0 4.0 4.0 4.0 4.0 4.0	27.0 27.0 27.0 27.0 27.0 27.0 27.0	14.0 15.0 16.0 17.0 18.0 19.0	712.0 600.0 348.0	104.0 63.0	22.0 21.0 20.0 20.0	2.0 2.0 2.0 2.0	97.5	32.3 23.5 20.0 20.0	239.0 65.7	228.5 59.3
4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0	14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0	712.0 600.0 348.0	104.0 63.0	22.0 21.0 20.0 20.0 19.0 19.0	2.0 2.0 2.0 2.0 1.0 1.0	97.5	32.3 23.5 20.0 20.0 19.0 19.0	239.0 65.7	228.5 59.3
4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0	14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0	712.0 600.0 348.0	104.0 63.0	22.0 21.0 20.0 20.0 19.0 19.0	2.0 2.0 2.0 2.0 1.0 1.0	97.5	32.3 23.5 20.0 20.0 19.0 19.0	239.0 65.7	228.5 59.3
4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0	14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0	712.0 600.0 348.0	104.0 63.0	22.0 21.0 20.0 20.0 19.0 19.0	2.0 2.0 2.0 2.0 1.0 1.0	97.5	32.3 23.5 20.0 20.0 19.0 19.0	239.0 65.7	228.5 59.3

4.0 4.0 4.0 4.0	28.0 28.0 28.0 28.0	1.0 2.0 3.0	- - -	- - - -	19.0 19.0 18.0 18.0	1.0 1.0 1.0 1.0	- - - -	19.0 19.0 18.0 18.0	- - - -	- - - -
4.0 4.0 4.0 4.0	28.0 28.0 28.0 28.0	4.0 5.0 6.0 7.0	97.0 7.0 80.0	- 25.0 97.0 205.0	18.0 19.0 21.0 22.0	1.0 1.0 1.0 2.0	21.5 93.0 234.1	18.0 17.1 22.0 27.6	- 18.8 79.3 193.3	13.4 72.7 184.0
4.0 4.0 4.0	28.0 28.0 28.0	8.0 9.0 10.0	53.0 101.0 234.0	286.0 389.0 456.0	23.0 23.0 24.0	2.0 2.0 2.0	314.1 467.9 682.7	31.7 36.6 44.5	256.5 373.5 524.0	245.6 359.1 504.4
4.0 4.0 4.0 4.0	28.0 28.0 28.0 28.0	11.0 12.0 13.0 14.0	392.0 190.0 353.0 419.0	426.0 482.0 400.0 305.0	24.0 24.0 24.0 24.0	2.0 2.0 1.0 1.0	831.8 675.3 728.5 635.3	49.5 45.7 50.6 48.0	621.9 515.1 541.3 477.2	598.4 495.8 521.0 459.3
4.0 4.0 4.0	28.0 28.0 28.0	15.0 16.0 17.0	333.0 524.0 61.0	242.0 109.0 71.0	23.0 22.0 21.0	1.0 1.0 1.0	434.4 297.9 72.6	40.0 33.2 23.2	336.4 222.4 58.8	323.1 212.4 52.6
4.0 4.0 4.0 4.0	28.0 28.0 28.0 28.0	18.0 19.0 20.0 21.0	-	- - -	21.0 20.0 20.0 20.0	1.0 1.0 1.0 1.0	- - -	21.0 20.0 20.0 20.0	- - -	- - -
4.0 4.0 4.0	28.0 28.0 29.0	22.0 23.0	- - -	: :	20.0 20.0 20.0	- ' 	- - -	20.0 20.0 20.0	- - -	- - -
4.0 4.0 4.0 4.0	29.0 29.0 29.0 29.0	1.0 2.0 3.0 4.0	- - -	- - -	20.0 20.0 19.0 19.0	- - - 1.0	- - -	20.0 20.0 19.0 19.0	- - -	- - -
4.0 4.0 4.0 4.0	29.0 29.0 29.0 29.0	5.0 6.0 7.0 8.0	115.0 480.0 662.0 758.0	26.0 84.0 115.0 135.0	19.0 20.0 22.0 23.0	1.0 2.0 2.0 2.0	20.7 192.5 427.2 654.0	17.0 24.0 33.9 42.5	18.1 138.4 329.0 500.7	12.7 130.5 315.9 482.0
4.0 4.0 4.0	29.0 29.0 29.0	9.0 10.0 11.0	811.0 839.0 848.0	149.0 157.0 162.0	23.0 24.0 24.0	2.0 2.0 2.0	840.7 967.2 1,023.6	48.7 53.8 55.8	629.6 706.4 739.7	605.8 679.3 711.1
4.0 4.0 4.0 4.0	29.0 29.0 29.0 29.0	12.0 13.0 14.0 15.0	836.0 812.0 774.0 221.0	167.0 163.0 150.0 263.0	24.0 24.0 23.0 23.0	2.0 2.0 2.0 2.0	1,003.8 910.7 754.3 386.2	55.5 52.9 47.3 36.1	726.6 668.0 567.5 306.0	698.6 642.6 546.2 293.6
4.0 4.0 4.0 4.0	29.0 29.0 29.0 29.0	16.0 17.0 18.0 19.0	609.0 376.0	97.0 58.0 -	22.0 21.0 20.0 20.0	2.0 1.0 1.0 1.0	316.5 96.2	31.5 24.2 20.0	236.3 62.9	226.0 56.6 -
4.0 4.0 4.0	29.0 29.0 29.0	20.0 21.0 22.0	- - -	- - - -	20.0 19.0 19.0	1.0 1.0 1.0	- - -	20.0 20.0 19.0 19.0	- - -	- - -
4.0 4.0 4.0 4.0	29.0 30.0 30.0 30.0	23.0 - 1.0 2.0	-	- - -	19.0 19.0 19.0 19.0	1.0 1.0 1.0 1.0	- - - -	19.0 19.0 19.0 19.0	- - -	- - -
4.0 4.0 4.0	30.0 30.0 30.0	3.0 4.0 5.0	137.0	- - 27.0	19.0 19.0 20.0	2.0 2.0 2.0	21.5	19.0 19.0 18.5	18.7	- - 13.2
4.0 4.0 4.0 4.0	30.0 30.0 30.0 30.0	6.0 7.0 8.0 9.0	517.0 694.0 786.0 449.0	78.0 105.0 122.0 323.0	21.0 22.0 23.0 23.0	2.0 2.0 2.0 2.0	195.7 432.6 660.0 710.5	25.1 34.1 42.7 45.1	138.5 332.3 504.7 542.8	130.6 319.2 485.8 522.5
4.0 4.0 4.0 4.0	30.0 30.0 30.0 30.0	10.0 11.0 12.0 13.0	861.0 523.0 523.0 448.0	142.0 349.0 340.0 338.0	24.0 24.0 24.0 24.0	2.0 2.0 2.0 2.0	966.6 890.8 872.8 757.2	53.3 52.2 51.4 48.2	707.8 656.5 645.9 569.8	680.6 631.5 621.4 548.4
4.0 4.0 4.0	30.0 30.0 30.0	14.0 15.0 16.0	139.0 323.0 497.0	363.0 252.0 127.0	23.0 23.0 22.0	2.0 2.0 2.0	467.1 437.7 303.4	38.5 36.4 31.3	369.1 345.2 230.1	354.8 331.7 219.8
4.0 4.0 4.0 4.0	30.0 30.0 30.0 30.0	17.0 18.0 19.0 20.0	133.0 - - -	74.0 - - -	21.0 21.0 21.0 21.0	1.0 3.0 3.0 3.0	83.2 - - -	23.7 21.0 21.0 21.0	64.1 - - -	57.8 - - -
4.0 4.0 4.0 5.0	30.0 30.0 30.0 1.0	21.0 22.0 23.0	-	- - - -	21.0 20.0 20.0 20.0	2.0 2.0 2.0 1.0	- - -	21.0 20.0 20.0 20.0	- - -	-
5.0 5.0 5.0 5.0	1.0 1.0 1.0	1.0 2.0 3.0	-	- - -	20.0 20.0 20.0 20.0 20.0	1.0 1.0 1.0	-	20.0 20.0 20.0	-	-
5.0 5.0 5.0	1.0 1.0 1.0 1.0	4.0 5.0 6.0 7.0	43.0 - 541.0	29.0 69.0 158.0	20.0 20.0 21.0	1.0 2.0 2.0 2.0	25.7 65.4 411.3	20.0 18.6 20.0 31.9	22.3 56.6 322.5	16.8 50.4 309.7
5.0	1.0	8.0	648.0	190.0	21.0	2.0	635.4	40.0	493.6	475.1

5.0	1.0 9.0	731.0	199.0	22.0	2.0	825.8	47.2	623.4	599.8
5.0	1.0 10.0		209.0 209.0	23.0	2.0	955.3	52.5	702.7	675.8 703.6
5.0 5.0	1.0 11.0 1.0 12.0		201.0	24.0 24.0	2.0 2.0	1,010.5 995.1	55.4 55.2	731.8 721.4	693.7
5.0	1.0 13.0		191.0	24.0	2.0	904.7	52.7	664.4	639.1
5.0 5.0	1.0 14.0 1.0 15.0		171.0 157.0	24.0 23.0	2.0 2.0	752.0 542.7	48.1 40.7	563.2 415.3	542.1 399.5
5.0	1.0 16.0	531.0	122.0	23.0	2.0	310.7	33.0	232.8	222.5
5.0 5.0	1.0 17.0 1.0 18.0		71.0 -	22.0 20.0	2.0 1.0	98.3	24.5 20.0	68.8	62.3
5.0	1.0 19.0		-	20.0	1.0	-	20.0	-	-
5.0 5.0	1.0 20.0 1.0 21.0		- -	19.0 19.0	1.0 1.0	- -	19.0 19.0	-	
5.0	1.0 22.0	-	-	19.0	1.0	-	19.0	-	-
5.0 5.0	1.0 23.0 2.0 -	-		19.0 19.0	1.0 1.0	- -	19.0 19.0	-	-
5.0	2.0 1.0		-	19.0	1.0	-	19.0	-	-
5.0 5.0	2.0 2.0 2.0 3.0		- -	19.0 19.0	1.0 1.0	- -	19.0 19.0	-	-
5.0	2.0 4.0	-	<u>.</u>	19.0	1.0	<u></u>	19.0	<u>.</u>	.5.2
5.0 5.0	2.0 5.0 2.0 6.0		30.0 90.0	20.0 21.0	1.0 1.0	25.3 195.6	18.2 25.8	22.0 140.5	16.5 132.5
5.0	2.0 7.0	647.0	123.0	22.0	1.0	429.1	36.2	327.3	314.3
5.0 5.0	2.0 8.0 2.0 9.0		146.0 162.0	23.0 24.0	1.0 1.0	655.2 839.0	46.0 53.9	492.8 611.1	474.3 588.0
5.0	2.0 10.0	475.0	349.0	25.0	1.0	815.5	55.0	591.6	569.4
5.0 5.0	2.0 11.0 2.0 12.0		367.0 363.0	25.0 26.0	1.0 1.0	863.7 845.3	56.4 57.0	622.1 606.8	598.6 583.9
5.0	2.0 13.0		178.0	25.0	2.0	907.5	53.2	664.7	639.4
5.0 5.0	2.0 14.0 2.0 15.0		164.0 142.0	25.0 24.0	2.0 2.0	753.5 546.1	49.2 41.7	561.3 415.2	540.3 399.4
5.0	2.0 16.0		112.0	23.0	2.0	314.8	33.1	234.7	224.4
5.0 5.0	2.0 17.0 2.0 18.0		67.0	22.0 21.0	1.0 1.0	99.0	25.4 21.0	67.2	60.8
5.0	2.0 19.0		-	20.0	1.0	-	20.0	-	-
5.0	2.0 20.0		-	20.0 20.0	1.0		20.0	-	-
5.0 5.0	2.0 21.0 2.0 22.0		- -	19.0	1.0 1.0	- -	20.0 19.0	-	
5.0	2.0 23.0	-	-	19.0	1.0	-	19.0	-	-
5.0 5.0	3.0 - 3.0 1.0	-	- -	19.0 19.0	1.0 1.0	- -	19.0 19.0	-	-
5.0	3.0 2.0	-	-	19.0	1.0	-	19.0	-	-
5.0 5.0	3.0 3.0 3.0 4.0		- -	19.0 19.0	1.0 1.0	- -	19.0 19.0	-	
5.0	3.0 5.0		30.0	20.0	-	23.6	17.0	20.7	15.2
5.0 5.0	3.0 6.0 3.0 7.0		81.0 108.0	22.0 23.0	-	202.1 439.9	28.8 41.6	141.1 325.7	133.1 312.8
5.0	3.0 8.0	794.0	124.0	24.0	-	667.8	52.8	484.3	466.2
5.0 5.0	3.0 9.0 3.0 10.0		134.0 140.0	25.0 26.0	-	856.8 978.7	61.5 67.4	598.0 661.8	575.5 636.6
5.0	3.0 11.0	889.0	143.0	27.0	1.0	1,035.9	64.1	714.4	687.0
5.0 5.0	3.0 12.0 3.0 13.0		142.0 137.0	27.0 27.0	1.0 1.0	1,018.3 926.6	63.9 61.1	703.3 649.5	676.3 624.9
5.0	3.0 14.0	827.0	129.0	26.0	2.0	771.8	50.7	570.0	548.6
5.0 5.0	3.0 15.0 3.0 16.0		117.0 96.0	25.0 24.0	2.0 2.0	562.2 323.9	43.2 34.5	423.4 238.0	407.3 227.5
5.0	3.0 17.0	393.0	61.0	23.0	1.0	101.0	26.5	65.4	59.0
5.0 5.0	3.0 18.0 3.0 19.0		Ī	22.0 21.0	1.0 1.0	- -	22.0 21.0	-	-
5.0	3.0 20.0	-	-	21.0	1.0	-	21.0	-	-
5.0 5.0	3.0 21.0 3.0 22.0			20.0 20.0	1.0 1.0	<u>-</u>	20.0 20.0	-	
5.0	3.0 23.0		<u>-</u>	20.0	1.0	-	20.0	-	
5.0 5.0	4.0 - 4.0 1.0	-	-	20.0 20.0	1.0 1.0	-	20.0 20.0	-	-
5.0	4.0 2.0	-	<u> </u>	20.0	1.0	-	20.0	-	1
5.0 5.0	4.0 3.0 4.0 4.0		-	20.0 20.0	1.0 1.0	-	20.0 20.0	-	-
5.0	4.0 5.0	156.0	30.0	21.0	1.0	23.5	19.2	20.4	14.9
5.0 5.0	4.0 6.0 4.0 7.0		81.0 201.0	22.0 24.0	1.0 1.0	199.9 336.6	27.0 35.1	141.1 263.5	133.1 252.4
5.0	4.0 7.0 4.0 8.0		298.0	25.0	-	505.1	47.2	379.9	365.2
5.0	4.0 9.0	64.0	376.0	26.0	-	422.5	46.5	320.8	308.0
5.0 5.0	4.0 10.0 4.0 11.0		401.0 440.0	26.0 27.0	1.0	788.2 769.8	58.6 55.3	560.7 557.9	539.6 537.0
5.0	4.0 12.0	844.0	159.0 158.0	27.0 27.0	1.0	1,000.1 907.9	62.1	697.7	671.0 614.5
5.0 5.0	4.0 13.0 4.0 14.0		152.0	26.0	1.0 2.0	748.4	60.5 50.0	638.7 555.0	534.1
5.0	4.0 15.0	458.0	214.0	26.0	2.0	481.3	41.8	367.9	353.6 190.3
5.0 5.0	4.0 16.0 4.0 17.0		149.0 72.0	25.0 24.0	2.0 2.0	260.9 98.8	33.2 26.3	199.7 68.7	190.3 62.3

5.0	4.0	18.0	_	-	23.0	2.0	-	23.0	-	_
5.0 5.0	4.0 4.0	19.0 20.0	- -	-	22.0 22.0	2.0 2.0	- -	22.0 22.0	-	-
5.0	4.0	21.0	-	-	22.0	2.0	-	22.0	-	-
5.0 5.0	4.0 4.0	22.0 23.0	-	-	22.0 22.0	2.0 2.0	- -	22.0 22.0	-	-
5.0	5.0	-	-	-	22.0	2.0	-	22.0	-	-
5.0 5.0	5.0 5.0	1.0 2.0	-	-	22.0 22.0	2.0 2.0	- -	22.0 22.0	-	
5.0 5.0	5.0 5.0	3.0 4.0	-	•	22.0 22.0	1.0 1.0	•	22.0 22.0	-	-
5.0	5.0	5.0		17.0	22.0	2.0	16.1	20.4	13.9	8.5
5.0 5.0	5.0 5.0	6.0 7.0	283.0 539.0	105.0 154.0	23.0 23.0	2.0 1.0	166.2 407.2	26.2 36.3	125.2 312.5	117.5 300.0
5.0	5.0	8.0	646.0	181.0	24.0	1.0	625.1	45.9	471.0	453.3
5.0 5.0	5.0 5.0	9.0 10.0	642.0 34.0	239.0 371.0	24.0 25.0	2.0 2.0	789.6 397.9	48.1 38.6	593.5 314.7	571.1 302.1
5.0 5.0	5.0 5.0	11.0 12.0	606.0 2.0	324.0 149.0	25.0 25.0	1.0 1.0	944.8 144.7	56.8 34.1	679.0 117.1	653.1 109.6
5.0	5.0	13.0	516.0	342.0	26.0	2.0	819.6	49.0	614.0	590.8
5.0 5.0	5.0 5.0	14.0 15.0	8.0	218.0 67.0	26.0 26.0	2.0 2.0	214.8 63.7	34.3 27.1	173.5 53.3	164.7 47.2
5.0	5.0	16.0	498.0	126.0	25.0	2.0	302.2	32.6	227.5	217.4
5.0 5.0	5.0 5.0	17.0 18.0	267.0 -	74.0 -	24.0 23.0	2.0 2.0	98.1	26.5 23.0	69.2	62.7
5.0	5.0	19.0	-	-	23.0	2.0	-	23.0	-	-
5.0 5.0	5.0 5.0	20.0 21.0	-	- -	23.0 22.0	2.0 1.0		23.0 22.0	-	
5.0 5.0	5.0 5.0	22.0 23.0	-	-	22.0 22.0	1.0 1.0	-	22.0 22.0	-	_
5.0	6.0	-	-	-	21.0	1.0	-	21.0	-	-
5.0 5.0	6.0 6.0	1.0 2.0	-	-	21.0 20.0	1.0 1.0	- -	21.0 20.0	-	-
5.0	6.0	3.0	-	-	20.0	1.0	-	20.0	-	-
5.0 5.0	6.0 6.0	4.0 5.0	39.0	31.0	20.0 20.0	1.0 2.0	- 27.2	20.0 18.7	23.7	- 18.1
5.0 5.0	6.0 6.0	6.0 7.0	387.0 568.0	107.0 148.0	21.0 23.0	2.0 1.0	193.4 415.2	25.0 36.7	143.5 317.5	135.4 304.8
5.0	6.0	8.0	666.0	176.0	24.0	1.0	633.6	46.2	476.6	458.7
5.0 5.0	6.0 6.0	9.0 10.0	467.0 437.0	320.0 387.0	25.0 26.0	1.0 1.0	720.7 814.8	51.1 55.4	533.4 590.1	513.4 567.9
5.0	6.0	11.0	618.0	309.0	26.0	1.0	941.6	59.7	666.0	640.7
5.0 5.0	6.0 6.0	12.0 13.0	499.0 431.0	341.0 366.0	26.0 26.0	1.0 1.0	846.3 765.8	57.4 54.5	606.2 557.0	583.3 536.1
5.0	6.0	14.0	535.0 330.0	263.0 249.0	25.0 25.0	1.0 2.0	679.1 437.1	50.5	502.9 339.7	484.1 326.3
5.0 5.0	6.0 6.0	15.0 16.0	97.0	169.0	24.0	2.0	195.0	39.3 30.0	157.2	148.8
5.0 5.0	6.0 6.0	17.0 18.0	-	57.0	23.0 23.0	1.0 1.0	53.6	23.9 23.0	45.5 -	39.6
5.0	6.0	19.0	-	-	23.0	1.0	-	23.0	-	-
5.0 5.0	6.0 6.0	20.0 21.0	-	-	23.0 22.0	1.0 1.0	-	23.0 22.0	-	
5.0 5.0	6.0 6.0	22.0 23.0	-	-	22.0 22.0	1.0 1.0	-	22.0 22.0	-	-
5.0	7.0	-	-	-	22.0	1.0	- -	22.0	-	
5.0 5.0	7.0 7.0	1.0 2.0	-	-	22.0 22.0	1.0 1.0	-	22.0 22.0	-	
5.0	7.0	3.0	-	-	22.0	1.0	-	22.0	-	-
5.0 5.0	7.0 7.0	4.0 5.0	122.0	34.0	22.0 22.0	1.0 1.0	28.1	22.0 20.5	24.2	18.7
5.0 5.0	7.0 7.0	6.0 7.0	445.0 86.0	95.0 216.0	23.0 24.0	2.0 2.0	196.2 247.0	27.2 30.5	141.5 201.1	133.5 191.6
5.0	7.0	8.0	15.0	237.0	25.0	2.0	236.7	31.5	193.8	184.5
5.0 5.0	7.0 7.0	9.0 10.0	85.0 178.0	392.0 470.0	25.0 26.0	2.0 2.0	455.5 640.1	37.9 45.2	361.3 489.6	347.3 471.2
5.0	7.0	11.0	386.0	406.0	26.0	2.0	800.6	50.4	595.8	573.3 495.6
5.0 5.0	7.0 7.0	12.0 13.0	195.0 530.0	488.0 339.0	26.0 25.0	2.0 2.0	682.1 828.0	47.7 50.4	514.8 615.9	592.6
5.0 5.0	7.0 7.0	14.0 15.0	559.0 453.0	261.0 236.0	25.0 24.0	2.0 2.0	695.0 498.6	47.2 40.1	523.6 384.7	504.0 369.9
5.0	7.0	16.0	230.0	164.0	24.0	1.0	240.2	33.6	186.2	177.1
5.0 5.0	7.0 7.0	17.0 18.0	175.0 -	72.0 -	23.0 23.0	-	86.1 -	27.5 23.0	63.3	56.9 -
5.0	7.0	19.0	-	-	23.0	1.0	-	23.0	-	-
5.0 5.0	7.0 7.0	20.0 21.0	-	-	23.0 22.0	1.0 1.0	- -	23.0 22.0	-	-
5.0 5.0	7.0 7.0	22.0 23.0	-	-	22.0 22.0	1.0 1.0	-	22.0 22.0	-	-
5.0	8.0	-	-	-	22.0	1.0	-	22.0	-	-
5.0 5.0	8.0 8.0	1.0 2.0	-	-	22.0 22.0	1.0 1.0	-	22.0 22.0	-	-

5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	8.0	58.0 27.0 387.0 387.0 451.0 429.0 381.0 390.0 3415.0 448.0 195.0 140.0 	31.0 112.0 199.0 280.0 328.0 365.0 436.0 424.0 411.0 356.0 239.0 168.0 74.0	21.0 21.0 21.0 22.0 23.0 24.0 26.0 26.0 26.0 26.0 26.0 25.0 25.0 24.0 24.0 23.0 23.0 23.0 23.0 23.0 22.0 22.0 22		27.2 2111.5 207.7 540.2 714.3 784.6 825.3 815.1 722.3 596.7 498.3 230.2 83.7	21.0 21.0 19.3 25.4 32.2 47.4 56.9 60.4 56.0 55.9 53.0 47.7 43.8 33.2 26.3 23.0 23.0 23.0 23.0 22.0 22.0 22.0 22	23.6 92.7 168.6 405.3 512.1 552.4 595.7 588.7 529.7 449.2 377.4 179.7 63.4 	18.1 85.7 159.9 389.8 482.9 531.7 573.3 566.5 509.9 432.3 362.8 170.8 57.0
5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	10.0 18.0 10.0 19.0 10.0 20.0 10.0 21.0 10.0 22.0 10.0 23.0		91.0 - - - - - - - - - - - 2.0 108.0 166.0 163.0 146.0 139.0 137.0	24.0 24.0 24.0 24.0 24.0 24.0	2.0 2.0 3.0 3.0 3.0 3.0	97.2	24.0 24.0 24.0 24.0 24.0 24.0	75.7 - - - - - - - - - - - 1.6 89.0 315.7 513.0 657.8 745.9 785.7	69.1

5.0	11.0	12.0	931.0	131.0	23.0	3.0	1,046.2	52.3	770.4	740.4
5.0 5.0	11.0 11.0	13.0 14.0	911.0 873.0	129.0 122.0	23.0 23.0	3.0 2.0	953.6 793.6	50.0 48.5	710.5 592.7	683.2 570.4
5.0	11.0	15.0	810.0	109.0	23.0	2.0	583.0	42.0	441.5	424.8
5.0 5.0	11.0 11.0	16.0 17.0	699.0 476.0	90.0 60.0	22.0 21.0	2.0 2.0	341.1 111.8	33.1 24.0	251.3 70.9	240.5 64.4
5.0	11.0	18.0	-	-	19.0	2.0	-	19.0	-	-
5.0 5.0	11.0 11.0	19.0 20.0	-	<u>-</u> -	18.0 18.0	2.0 2.0	-	18.0 18.0	-	-
5.0	11.0	21.0	-	-	18.0	2.0	-	18.0	-	
5.0 5.0	11.0 11.0	22.0 23.0	-	-	17.0 17.0	2.0 2.0	-	17.0 17.0	-	-
5.0	12.0	-		-	17.0	2.0	-	17.0	-	
5.0	12.0	1.0	-	-	17.0	2.0	-	17.0	-	-
5.0 5.0	12.0 12.0	2.0 3.0	-	- -	16.0 16.0	2.0 2.0	- -	16.0 16.0	-	-
5.0	12.0	4.0	-	-	16.0	2.0	-	16.0	-	-
5.0 5.0	12.0 12.0	5.0 6.0	252.0 603.0	36.0 76.0	16.0 18.0	2.0 1.0	27.9 218.6	14.6 23.6	24.7 154.9	19.2 146.6
5.0	12.0	7.0	760.0	98.0	20.0	1.0	460.2	35.4	351.1	337.4
5.0 5.0	12.0 12.0	8.0 9.0	839.0 891.0	115.0 122.0	21.0 21.0	1.0 1.0	688.6 873.6	45.3 52.3	519.4 641.5	499.9 617.3
5.0	12.0	10.0	914.0	129.0	22.0	1.0	998.3	57.9	712.7	685.4
5.0 5.0	12.0 12.0	11.0 12.0	926.0 929.0	129.0 124.0	23.0 23.0	2.0 2.0	1,053.1 1,036.7	55.8 55.5	761.1 750.1	731.5 721.1
5.0	12.0	13.0	910.0	120.0	23.0	2.0	943.3	53.0	691.5	665.1
5.0 5.0	12.0 12.0	14.0 15.0	870.0 800.0	115.0 106.0	23.0 23.0	2.0 2.0	784.1 574.0	48.2 41.7	586.5 435.3	564.4 418.8
5.0	12.0	16.0	681.0	90.0	22.0	2.0	334.7	32.8	247.0	236.3
5.0 5.0	12.0 12.0	17.0 18.0	450.0	61.0	21.0 20.0	1.0 1.0	109.8	24.9 20.0	70.2	63.8
5.0	12.0	19.0	-	-	19.0	1.0	-	19.0	-	-
5.0 5.0	12.0 12.0	20.0 21.0		-	19.0 18.0	1.0 1.0	- -	19.0 18.0	-	
5.0	12.0	22.0	-	-	18.0	1.0	-	18.0	-	-
5.0 5.0	12.0 13.0	23.0		-	18.0 17.0	1.0 1.0	-	18.0 17.0		Ī
5.0	13.0	1.0	-	-	17.0	1.0	-	17.0	-	
5.0 5.0	13.0 13.0	2.0 3.0	-	-	17.0 17.0	1.0 1.0	-	17.0 17.0	-	-
5.0	13.0	4.0	-	- -	17.0	1.0	- -	17.0	-	
5.0 5.0	13.0 13.0	5.0 6.0	241.0 579.0	36.0 78.0	19.0 21.0	1.0 1.0	27.8 214.9	17.3 26.6	24.4 151.0	18.8
5.0	13.0	7.0	736.0	101.0	23.0	1.0	451.0	38.1	339.8	142.7 326.5
5.0	13.0	8.0	822.0	115.0	24.0	1.0	676.9	47.8	504.0	485.2
5.0 5.0	13.0 13.0	9.0 10.0	874.0 905.0	123.0 127.0	25.0 25.0	1.0 1.0	859.9 987.2	55.6 60.3	620.4 695.5	597.0 668.9
5.0	13.0	11.0	916.0	129.0	26.0	1.0	1,042.5	63.4	721.8	694.1
5.0 5.0	13.0 13.0	12.0 13.0	913.0 892.0	127.0 125.0	26.0 26.0	2.0 2.0	1,023.3 931.5	58.0 55.4	730.7 673.8	702.5 648.1
5.0	13.0	14.0	853.0	119.0	25.0	2.0	774.7	49.8	574.6	553.0
5.0 5.0	13.0 13.0	15.0 16.0	790.0 680.0	107.0 89.0	24.0 23.0	2.0 2.0	569.1 333.5	42.5 33.8	429.9 244.9	413.6 234.3
5.0	13.0	17.0	460.0	60.0	22.0	2.0	110.3	24.9	70.0	63.6
5.0 5.0	13.0 13.0	18.0 19.0	-		21.0 20.0	2.0 2.0	- -	21.0 20.0	-	-
5.0	13.0	20.0	-	-	20.0	2.0	-	20.0	-	-
5.0 5.0	13.0 13.0	21.0 22.0	-	-	21.0 21.0	2.0 2.0	- -	21.0 21.0	-	-
5.0	13.0	23.0	-	-	20.0	2.0	-	20.0	-	-
5.0 5.0	14.0 14.0	- 1.0		-	20.0 20.0	2.0 2.0	-	20.0 20.0		
5.0	14.0	2.0	-	-	20.0	2.0	-	20.0	-	-
5.0 5.0	14.0 14.0	3.0 4.0	-	-	20.0 20.0	2.0 2.0	-	20.0 20.0	-	-
5.0	14.0	5.0	-	23.0	21.0	2.0	21.8	19.5	18.9	13.4
5.0 5.0	14.0 14.0	6.0 7.0	5.0 252.0	109.0 217.0	22.0 23.0	2.0 2.0	103.6 329.5	23.3 31.6	88.0 263.5	81.1 252.4
5.0	14.0	8.0	416.0	275.0	24.0	3.0	557.1	38.5	437.4	420.8
5.0 5.0	14.0 14.0	9.0 10.0	511.0 299.0	312.0 451.0	25.0 26.0	2.0 2.0	746.4 738.6	47.6 49.1	562.7 553.3	541.6 532.6
5.0	14.0	11.0	350.0	456.0	26.0	2.0	811.2	51.1	601.5	578.8
5.0 5.0	14.0 14.0	12.0 13.0	149.0 69.0	491.0 418.0	26.0 26.0	2.0 2.0	637.2 471.9	46.5 41.1	484.0 368.5	465.8
5.0	14.0	14.0	105.0	367.0	25.0	2.0	436.8	38.4	345.4	354.3 331.9
5.0 5.0	14.0 14.0	15.0 16.0	373.0 46.0	243.0 166.0	25.0 24.0	2.0 2.0	454.5 173.4	38.8 29.5	353.7 141.7	339.9 133.7
5.0	14.0	17.0	233.0	74.0	23.0	2.0	95.3	24.8	68.9	62.5
5.0 5.0	14.0 14.0	18.0 19.0	-	-	23.0 23.0	2.0 2.0	-	23.0 23.0	-	-
5.0	14.0	20.0		-	22.0	1.0	-	22.0	-	-

5.0	14.0	21.0			22.0	1.0		22.0		
5.0	14.0	22.0	-	- -	22.0	1.0 1.0	- -	22.0	-	-
5.0	14.0	23.0	-	-	22.0	1.0	-	22.0	-	-
5.0 5.0	15.0 15.0	- 1.0	- -	-	21.0 21.0	1.0 1.0		21.0 21.0	- -	-
5.0	15.0	2.0	-	-	20.0	1.0	<u>-</u>	20.0	-	_
5.0	15.0	3.0	-	-	20.0	2.0	-	20.0	-	-
5.0 5.0	15.0 15.0	4.0 5.0	1	22.0	19.0 19.0	2.0 2.0	20.9	19.0 17.4	- 18.2	- 12.8
5.0	15.0	6.0	-	95.0	19.0	2.0	89.5	19.7	77.5	70.9
5.0	15.0	7.0	639.0	131.0	21.0	2.0	434.3	32.7	337.9	324.6
5.0 5.0	15.0 15.0	8.0 9.0	768.0 845.0	135.0 134.0	22.0 23.0	1.0 1.0	659.8 845.5	45.2 53.2	498.2 618.1	479.5 594.7
5.0	15.0	10.0	887.0	132.0	24.0	1.0	973.9	58.9	691.5	665.1
5.0	15.0	11.0	908.0	129.0	25.0	2.0	1,033.2	57.0	741.6	712.9
5.0 5.0	15.0 15.0	12.0 13.0	900.0 538.0	134.0 339.0	25.0 25.0	2.0 3.0	1,016.2 830.7	56.8 48.7	730.3 623.2	702.1 599.7
5.0	15.0	14.0	865.0	114.0	24.0	3.0	778.3	45.8	589.5	567.3
5.0	15.0	15.0	792.0	109.0	24.0	3.0	572.0	40.3	436.8	420.3
5.0 5.0	15.0 15.0	16.0 17.0	451.0 480.0	142.0 60.0	23.0 21.0	2.0 2.0	300.1 113.1	32.8 23.9	227.5 71.8	217.4 65.3
5.0	15.0	18.0	-	-	20.0	2.0	-	20.0	-	-
5.0	15.0	19.0	-	-	19.0	2.0	-	19.0	-	-
5.0 5.0	15.0 15.0	20.0 21.0	1	-	18.0 17.0	2.0 2.0	Ī	18.0 17.0	- -	Ī.
5.0	15.0	22.0	-	-	17.0	2.0	-	17.0	-	-
5.0	15.0	23.0	-	-	16.0	2.0	-	16.0	-	-
5.0 5.0	16.0 16.0	- 1.0		1	16.0 16.0	1.0 1.0	1	16.0 16.0	-	
5.0	16.0	2.0	-	-	15.0	1.0	-	15.0	-	-
5.0	16.0	3.0	-	-	15.0	1.0	-	15.0	-	-
5.0 5.0	16.0 16.0	4.0 5.0	- 159.0	36.0	15.0 15.0	1.0 1.0	27.8	15.0 13.1	24.8	- 19.3
5.0	16.0	6.0	622.0	74.0	17.0	1.0	222.0	22.7	157.6	149.2
5.0	16.0	7.0	770.0	94.0	19.0	1.0	460.9	34.5	353.1	339.3
5.0 5.0	16.0 16.0	8.0 9.0	846.0 887.0	109.0 121.0	20.0 21.0	1.0 1.0	686.2 867.4	44.3 52.1	520.2 637.7	500.7 613.5
5.0	16.0	10.0	470.0	388.0	21.0	1.0	841.3	52.3	619.7	596.3
5.0	16.0	11.0	106.0	490.0	22.0	1.0	589.4	45.2	450.8	433.8
5.0 5.0	16.0 16.0	12.0 13.0	528.0 114.0	390.0 442.0	23.0 23.0	1.0 1.0	916.7 541.1	55.0 45.0	665.3 414.1	640.0 398.3
5.0	16.0	14.0	523.0	271.0	23.0	1.0	673.7	47.2	507.6	488.5
5.0	16.0	15.0	481.0	211.0	23.0	1.0	488.9	42.0	373.1	358.7
5.0 5.0	16.0 16.0	16.0 17.0	310.0 444.0	160.0 64.0	22.0 21.0	1.0 1.0	264.9 112.8	32.4 24.5	204.5 73.0	194.9 66.5
5.0	16.0	18.0	-	-	20.0	1.0	-	20.0	-	-
5.0	16.0	19.0	-	-	19.0	1.0	-	19.0	-	-
5.0 5.0	16.0 16.0	20.0 21.0	-	-	19.0 18.0	2.0 2.0		19.0 18.0	-	-
5.0	16.0	22.0	-	-	17.0	2.0	-	17.0	-	-
5.0	16.0	23.0	-		17.0	1.0	-	17.0	-	-
5.0 5.0	17.0 17.0	- 1.0	-	- -	17.0 16.0	1.0 1.0	- -	17.0 16.0	-	-
5.0	17.0	2.0	-	-	16.0	1.0	-	16.0	-	-
5.0	17.0	3.0	-	-	16.0	2.0 2.0	-	16.0	-	-
5.0 5.0	17.0 17.0	4.0 5.0	256.0	38.0	16.0 17.0	2.0	29.8	16.0 15.7	26.3	20.7
5.0	17.0	6.0	570.0	81.0	19.0	2.0	216.1	23.7	154.5	146.2
5.0 5.0	17.0 17.0	7.0 8.0	720.0 805.0	106.0 121.0	20.0 21.0	2.0 2.0	448.0 670.2	32.6 41.1	347.1 516.7	333.5 497.3
5.0	17.0	9.0	863.0	126.0	22.0	2.0	851.7	48.1	639.8	615.6
5.0	17.0	10.0	896.0	128.0	23.0	2.0	977.2	53.2	716.0	688.5
5.0 5.0	17.0 17.0	11.0 12.0	911.0 280.0	127.0 476.0	23.0 24.0	2.0 3.0	1,032.8 754.7	55.2 45.9	749.0 575.1	720.0 553.5
5.0	17.0	13.0	214.0	433.0	24.0	3.0	621.6	41.6	484.2	466.0
5.0	17.0	14.0	14.0	252.0	25.0	2.0	251.6	33.6	204.0	194.5
5.0 5.0	17.0 17.0	15.0 16.0	764.0 651.0	116.0 96.0	24.0 24.0	2.0 2.0	562.6 330.3	40.1 34.6	430.3 242.5	414.0 231.9
5.0	17.0	17.0	444.0	64.0	23.0	2.0	113.0	26.0	72.6	66.1
5.0	17.0	18.0	-	-	21.0	2.0	-	21.0	-	-
5.0 5.0	17.0 17.0	19.0 20.0	-	-	20.0 19.0	2.0 2.0		20.0 19.0	-	-
5.0	17.0	21.0	-	-	19.0	1.0	-	19.0	-	-
5.0	17.0	22.0	-	-	18.0	1.0	-	18.0	-	-
5.0 5.0	17.0 18.0	23.0	-	- -	18.0 18.0	1.0 1.0	- -	18.0 18.0	-	-
5.0	18.0	1.0	-	-	18.0	1.0	-	18.0	-	-
5.0	18.0	2.0	-	-	18.0	1.0	-	18.0	-	-
5.0 5.0	18.0 18.0	3.0 4.0	-	- -	18.0 18.0	1.0 1.0	- -	18.0 18.0	-	
5.0	18.0	5.0	298.0	36.0	19.0	1.0	28.8	17.3	25.2	19.7

5.0	18.0	6.0	611.0	73.0	21.0	2.0	218.5	25.8	153.0	144.7
5.0 5.0	18.0 18.0	7.0 8.0	754.0 831.0	94.0 108.0	23.0 24.0	2.0 2.0	453.1 674.4	35.8 44.2	345.0 511.6	331.4 492.4
5.0 5.0	18.0 18.0	9.0 10.0	875.0 897.0	118.0 126.0	25.0 26.0	2.0 2.0	853.4 975.6	51.0 56.0	631.1 704.0	607.2 677.0
5.0	18.0	11.0	901.0	133.0 133.0	26.0 27.0	3.0 3.0	1,028.1	54.5	748.3 730.9	719.4
5.0 5.0	18.0 18.0	12.0 13.0	894.0 873.0	131.0	27.0	3.0	1,007.4 917.8	55.1 52.8	673.5	702.7 647.8
5.0 5.0	18.0 18.0	14.0 15.0	837.0 775.0	123.0 111.0	27.0 26.0	3.0 3.0	767.3 564.0	48.7 42.1	572.4 427.0	550.9 410.8
5.0	18.0	16.0	667.0	92.0	25.0	3.0 3.0	332.3	34.3	244.0	233.4 66.1
5.0 5.0	18.0 18.0	17.0 18.0	458.0 -	63.0	24.0 22.0	3.0	114.0 -	26.6 22.0	72.6 -	-
5.0 5.0	18.0 18.0	19.0 20.0	-	-	22.0 21.0	2.0 2.0	-	22.0 21.0	-	-
5.0	18.0	21.0	-	-	21.0	2.0	-	21.0	-	-
5.0 5.0	18.0 18.0	22.0 23.0		-	21.0 20.0	2.0 2.0	-	21.0 20.0	-	-
5.0 5.0	19.0 19.0	- 1.0	-	-	20.0 20.0	2.0 2.0	- -	20.0 20.0	- -	-
5.0	19.0	2.0	-	-	20.0	2.0	-	20.0	-	-
5.0 5.0	19.0 19.0	3.0 4.0		-	20.0 20.0	2.0 2.0	-	20.0 20.0	-	-
5.0 5.0	19.0 19.0	5.0 6.0	200.0 504.0	42.0 93.0	21.0 22.0	2.0 2.0	33.1 211.5	19.9 26.7	28.7 151.9	23.0 143.6
5.0	19.0	7.0	660.0	122.0	24.0	2.0	435.0	36.2	332.0	318.9
5.0 5.0	19.0 19.0	8.0 9.0	748.0 800.0	141.0 154.0	25.0 26.0	1.0 1.0	650.8 829.3	47.8 55.5	484.8 598.8	466.6 576.2
5.0 5.0	19.0 19.0	10.0 11.0	833.0 848.0	159.0 159.0	27.0 28.0	1.0 1.0	952.6 999.9	61.0 63.9	668.6 690.6	643.1 664.2
5.0	19.0	12.0	837.0	163.0	29.0	1.0	987.2	64.6	678.7	652.9
5.0 5.0	19.0 19.0	13.0 14.0	815.0 770.0	159.0 152.0	28.0 28.0	2.0 2.0	897.7 744.8	56.3 51.8	646.3 546.9	621.8 526.4
5.0 5.0	19.0 19.0	15.0 16.0	693.0 570.0	139.0 116.0	27.0 26.0	3.0 3.0	543.6 320.5	42.5 34.9	411.5 237.3	395.9 226.9
5.0	19.0	17.0	357.0	75.0	25.0	2.0	111.6	28.0	75.1	68.5
5.0 5.0	19.0 19.0	18.0 19.0	-	-	23.0 23.0	2.0 2.0	-	23.0 23.0	-	-
5.0 5.0	19.0 19.0	20.0 21.0	-		22.0 22.0	2.0 2.0	-	22.0 22.0	-	
5.0	19.0	22.0	-	•	22.0	2.0	- -	22.0	- -	-
5.0 5.0	19.0 20.0	23.0	-	•	22.0 22.0	2.0 2.0	-	22.0 22.0	-	-
5.0 5.0	20.0 20.0	1.0 2.0	-	•	22.0 21.0	2.0 2.0	- -	22.0 21.0	-	-
5.0	20.0	3.0	-		21.0	2.0	-	21.0	-	-
5.0 5.0	20.0 20.0	4.0 5.0	200.0	43.0	21.0 22.0	2.0 2.0	34.0	21.0 21.0	29.3	23.7
5.0 5.0	20.0 20.0	6.0 7.0	522.0 689.0	91.0 115.0	23.0 24.0	2.0 2.0	214.0 441.6	27.8 36.4	152.3 336.3	144.0 323.0
5.0	20.0	8.0	784.0	129.0	25.0	1.0	662.9	48.2	492.5	474.0
5.0 5.0	20.0 20.0	9.0 10.0	842.0 874.0	136.0 140.0	26.0 27.0	1.0 1.0	842.4 966.2	55.9 61.4	606.6 676.3	583.7 650.6
5.0 5.0	20.0 20.0	11.0 12.0	888.0 892.0	141.0 135.0	28.0 28.0	1.0 2.0	1,021.6 1,006.2	64.5 59.3	702.7 713.1	675.8 685.7
5.0	20.0	13.0	875.0	130.0	28.0	2.0	917.8	56.9	658.5	633.5
5.0 5.0	20.0 20.0	14.0 15.0	841.0 782.0	122.0 110.0	27.0 26.0	2.0 2.0	766.6 567.0	51.5 44.3	563.5 424.3	542.4 408.2
5.0 5.0	20.0 20.0	16.0 17.0	678.0 475.0	91.0 62.0	25.0 24.0	2.0 2.0	335.8 115.8	35.8 27.2	244.6 72.9	234.0 66.4
5.0	20.0	18.0	27.0	9.0	23.0	2.0	7.8	21.7	6.7	1.5
5.0 5.0	20.0 20.0	19.0 20.0	-	-	22.0 22.0	2.0 2.0	- -	22.0 22.0	- -	-
5.0	20.0	21.0	-	-	21.0	2.0	-	21.0	-	-
5.0 5.0	20.0 20.0	22.0 23.0		-	21.0 21.0	2.0 2.0	-	21.0 21.0	-	-
5.0 5.0	21.0 21.0	- 1.0	-	-	20.0 20.0	2.0 1.0	- -	20.0 20.0	- -	-
5.0 5.0	21.0 21.0	2.0 3.0	-	-	20.0 20.0	1.0 1.0	-	20.0 20.0	-	-
5.0	21.0	4.0	-		20.0	1.0	-	20.0	-	-
5.0 5.0	21.0 21.0	5.0 6.0	306.0 628.0	39.0 75.0	21.0 23.0	1.0 1.0	32.0 224.6	19.5 29.0	27.7 154.9	22.1 146.6
5.0	21.0	7.0	777.0	94.0	24.0	1.0	463.4	39.5	346.1	332.6 486.5
5.0 5.0	21.0 21.0	8.0 9.0	857.0 905.0	106.0 112.0	26.0 27.0	1.0 1.0	687.6 870.8	50.1 57.9	505.5 620.4	596.9
5.0 5.0	21.0 21.0	10.0 11.0	457.0 941.0	390.0 118.0	27.0 28.0	1.0 1.0	828.1 1,050.9	57.5 64.8	592.8 722.0	570.5 694.2
5.0	21.0	12.0	939.0	117.0	28.0 28.0	1.0	1,033.8 943.7	65.3	708.1	680.9 648.5
5.0 5.0	21.0 21.0	13.0 14.0	922.0 888.0	114.0 108.0	27.0	2.0 2.0	788.4	57.7 52.2	674.1 577.3	555.6

5.0 5.0	21.0 21.0	15.0 16.0	828.0 402.0	99.0 147.0	26.0 25.0	2.0 2.0	582.8 287.4	44.9 34.5	434.6 217.3	418.2 207.5
5.0 5.0	21.0 21.0	17.0 18.0	520.0 48.0	59.0 10.0	24.0 22.0	1.0 1.0	119.0 7.6	27.9 20.6	73.0 6.5	66.5 1.3
5.0 5.0	21.0 21.0	19.0 20.0	-	-	22.0 21.0	1.0 1.0	-	22.0 21.0	-	-
5.0 5.0	21.0 21.0	21.0 22.0	-	-	21.0 21.0	1.0 1.0	-	21.0 21.0	-	-
5.0 5.0	21.0 22.0	23.0	-	- -	20.0 20.0	1.0 1.0	-	20.0 20.0	-	-
5.0 5.0	22.0 22.0	1.0 2.0	-	<u>-</u>	20.0 20.0	1.0		20.0 20.0	-	-
5.0 5.0	22.0 22.0	3.0 4.0	-	- -	20.0 20.0	1.0 1.0	-	20.0 20.0	-	-
5.0	22.0	5.0	128.0	40.0	22.0	1.0	33.5	20.6	28.9	23.2
5.0 5.0	22.0 22.0	6.0 7.0	568.0 627.0	82.0 125.0	24.0 25.0	1.0 1.0	216.5 421.6	29.7 39.1	150.7 317.5	142.5 304.8
5.0 5.0	22.0 22.0	8.0 9.0	521.0 430.0	233.0 340.0	26.0 27.0	-	584.8 702.0	51.6 57.8	428.0 500.9	411.8 482.1
5.0 5.0	22.0 22.0	10.0 11.0	410.0 417.0	401.0 425.0	28.0 29.0	1	793.9 846.7	62.5 65.7	552.5 578.7	531.8 556.9
5.0 5.0	22.0 22.0	12.0 13.0	441.0 438.0	413.0 368.0	29.0 29.0	1.0 1.0	850.9 766.0	59.9 57.4	601.0 548.4	578.4 527.9
5.0 5.0	22.0 22.0	14.0 15.0	354.0 604.0	341.0 169.0	28.0 27.0	2.0 2.0	607.4 521.1	47.4 43.4	457.6 393.6	440.4 378.5
5.0 5.0	22.0 22.0	16.0 17.0	626.0 183.0	95.0 83.0	26.0 25.0	2.0 2.0	321.2 98.0	36.2 27.6	234.4 72.6	224.1 66.0
5.0 5.0	22.0 22.0	18.0 19.0	24.0	9.0	24.0 23.0	2.0 1.0	7.8 -	22.7 23.0	6.7	1.4
5.0 5.0	22.0 22.0	20.0 21.0	-	<u>-</u> -	23.0 23.0	1.0		23.0 23.0	-	-
5.0 5.0	22.0 22.0	22.0 23.0	-	-	23.0 22.0	1.0 1.0	-	23.0 22.0	-	-
5.0 5.0	23.0 23.0	- 1.0	-	-	22.0 22.0 22.0	1.0 1.0 1.0	-	22.0 22.0 22.0	-	-
5.0	23.0	2.0	-	- -	22.0	1.0	-	22.0	-	-
5.0 5.0	23.0 23.0	3.0 4.0	-	- - 	22.0 22.0	1.0 1.0	Ē.	22.0 22.0	-	-
5.0 5.0	23.0 23.0	5.0 6.0	218.0 510.0	44.0 93.0	22.0 24.0	1.0 1.0	35.1 212.8	20.7 29.6	30.3 150.5	24.6 142.3
5.0 5.0	23.0 23.0	7.0 8.0	662.0 745.0	121.0 141.0	26.0 27.0	1.0	434.0 647.1	40.5 54.9	324.1 464.1	311.2 446.7
5.0 5.0	23.0 23.0	9.0 10.0	779.0 802.0	164.0 175.0	29.0 30.0	1	819.4 936.7	63.9 69.6	564.2 625.5	543.1 601.8
5.0 5.0	23.0 23.0	11.0 12.0	803.0 743.0	186.0 224.0	30.0 30.0	-	986.8 958.1	71.8 71.2	650.6 633.8	625.9 609.9
5.0 5.0	23.0 23.0	13.0 14.0	559.0 345.0	302.0 344.0	29.0 29.0	1.0 1.0	809.6 603.2	59.2 52.1	573.6 443.2	552.1 426.5
5.0 5.0	23.0 23.0	15.0 16.0	104.0 300.0	280.0 177.0	28.0 27.0	1.0 2.0	328.2 277.4	41.2 35.1	254.7 212.4	243.8 202.6
5.0 5.0	23.0 23.0	17.0 18.0	313.0	74.0 7.0	26.0 25.0	2.0	106.0 6.6	28.6 23.7	72.3 5.6	65.8 0.4
5.0 5.0	23.0 23.0	19.0 20.0	-	-	24.0 24.0	1.0 1.0	- -	24.0 24.0	-	-
5.0	23.0	21.0	-	- -	24.0	1.0	-	24.0	-	
5.0 5.0	23.0 23.0	22.0 23.0	-	- -	23.0 23.0	1.0 1.0	-	23.0 23.0	- -	-
5.0 5.0	24.0 24.0	1.0	-	- -	23.0 23.0	1.0 1.0		23.0 23.0	-	-
5.0 5.0	24.0 24.0	2.0 3.0	-	-	23.0 22.0	1.0 1.0		23.0 22.0	-	-
5.0 5.0	24.0 24.0	4.0 5.0	185.0	46.0	22.0 23.0	1.0 1.0	36.6	22.0 21.8	31.4	25.7
5.0 5.0	24.0 24.0	6.0 7.0	465.0 622.0	102.0 134.0	25.0 27.0	1.0 -	208.8 427.3	30.5 45.1	148.9 312.3	140.7 299.8
5.0 5.0	24.0 24.0	8.0 9.0	714.0 707.0	155.0 208.0	28.0 29.0	1	639.7 804.2	55.5 63.4	457.3 555.6	440.1 534.7
5.0 5.0	24.0 24.0	10.0 11.0	749.0 771.0	213.0 212.0	30.0 31.0	-	927.3 979.9	69.2 72.4	620.6 643.5	597.2 619.1
5.0 5.0	24.0 24.0	12.0 13.0	719.0 695.0	246.0 237.0	31.0 30.0	1.0 1.0	956.1 868.1	65.5 61.9	654.1 605.8	629.3 583.0
5.0 5.0	24.0 24.0	14.0 15.0	642.0 283.0	225.0 269.0	30.0 29.0	1.0 2.0	719.0 426.1	57.0 43.1	513.6 325.4	494.4 312.4
5.0 5.0	24.0 24.0	16.0 17.0	386.0 263.0	152.0 79.0	28.0 26.0	2.0 2.0	286.6 104.2	36.8 28.6	214.9 73.3	205.0 66.8 1.2
5.0 5.0	24.0 24.0	18.0 19.0	17.0	8.0	25.0 24.0	2.0	7.6	23.8 24.0	6.5	1.2
5.0 5.0	24.0 24.0	20.0 21.0	-	- -	24.0 24.0	1.0 1.0	-	24.0 24.0	-	-
5.0 5.0	24.0 24.0	22.0 23.0	-	<u>-</u>	23.0 23.0	1.0 1.0	<u>-</u> -	23.0 23.0	-	-
5.0	24.0	20.0		- -	20.0	1.0	-	20.0	-	-

5.0	25.0	5.2	-	-	23.0	1.0	-	23.0		-
5.0	25.0	1.0	-		23.0	1.0	-	23.0		-
5.0	25.0	2.0	-		23.0	1.0	-	23.0		-
5.0	25.0	3.0	-	-	22.0	1.0	-	22.0	-	-
5.0	25.0	4.0	-	-	22.0	1.0	-	22.0	-	-
5.0	25.0	5.0	175.0	47.0	24.0	1.0	39.2	23.0	33.5	27.7
5.0	25.0	6.0	454.0	105.0	25.0	1.0	208.7	30.5	149.3	141.1
5.0	25.0	7.0	617.0	137.0	27.0	1.0	427.6	41.2	318.9	306.2
5.0	25.0	8.0	715.0	155.0	28.0		639.9	55.5	457.5	440.2
5.0	25.0	9.0	774.0	166.0	29.0	_	816.0	63.7	562.4	541.3
5.0	25.0	10.0	810.0	170.0	29.0	_	937.9	68.7	629.6	605.8
5.0	25.0	11.0	828.0	169.0	30.0	1.0	993.4	65.4	679.8	653.9
5.0	25.0	12.0	839.0	158.0	30.0	1.0	974.0	65.1	667.7	642.3
5.0	25.0	13.0	825.0	149.0	29.0	2.0	894.3	57.1	640.9	616.7
5.0	25.0	14.0	792.0	138.0	29.0	2.0	746.6	52.8	545.2	524.8
5.0	25.0	15.0	735.0	121.0	28.0	2.0	550.9	45.8	409.7	394.1
5.0	25.0	16.0	637.0	98.0	27.0	2.0	328.9	37.6	238.7	228.2
5.0	25.0	17.0	448.0	66.0	26.0	2.0	117.7	29.2	74.9	68.4
5.0	25.0	18.0	51.0	11.0	25.0	2.0	8.3	23.8	7.1	1.8
5.0	25.0	19.0	-	-	24.0	2.0	-	24.0	-	-
5.0	25.0	20.0	_	_	24.0	2.0	_	24.0	_	_
5.0	25.0	21.0	_		24.0	2.0	_	24.0		_
5.0	25.0	22.0	_		23.0	2.0	_	23.0		
5.0	25.0	23.0			23.0	1.0		23.0		
5.0	26.0	-			23.0	1.0		23.0	_	
					23.0			23.0	_	
5.0	26.0	1.0	-			1.0	-			-
5.0	26.0	2.0	-		23.0	1.0	-	23.0	-	-
5.0	26.0	3.0	-	-	23.0	1.0	-	23.0	-	-
5.0	26.0	4.0	-		23.0	1.0	-	23.0		-
5.0	26.0	5.0	293.0	39.0	24.0	1.0	31.9	22.7	27.3	21.7
5.0	26.0	6.0	584.0	75.0	25.0	1.0	213.3	30.6	146.6	138.5
5.0	26.0	7.0	729.0	95.0	26.0	1.0	440.3	40.7	327.0	314.1
5.0	26.0	8.0	813.0	105.0	27.0	1.0	655.6	49.9	482.3	464.2
5.0	26.0	9.0	869.0	107.0	28.0	1.0	832.9	57.5	594.5	572.1
5.0	26.0	10.0	894.0	112.0	29.0	1.0	953.7	62.9	662.1	636.9
5.0	26.0	11.0	904.0	115.0	29.0	2.0	1,008.2	60.1	711.5	684.2
5.0	26.0	12.0	881.0	129.0	29.0	2.0	986.5	59.7	697.6	670.9
5.0	26.0	13.0	863.0	127.0	29.0	2.0	901.9	57.3	645.5	621.1
5.0	26.0	14.0	829.0	120.0	29.0	2.0	754.7	53.0	550.2	529.6
5.0	26.0	15.0	770.0	108.0	28.0	2.0	558.6	46.0	414.5	398.7
5.0	26.0	16.0	671.0	90.0	27.0	2.0	333.9	37.7	241.3	230.8
5.0	26.0	17.0	481.0	62.0	26.0	2.0	118.6	29.3	74.0	67.4
5.0	26.0	18.0	64.0	12.0	25.0	1.0	9.1	23.7	7.7	2.5
5.0	26.0	19.0	-		24.0	1.0	-	24.0	-	-
5.0	26.0	20.0	-	-	24.0	1.0	-	24.0	-	-
5.0	26.0	21.0	_	<u>-</u>	24.0	2.0	_	24.0	_	_
5.0	26.0	22.0	_	<u>-</u>	24.0	2.0	_	24.0	-	_
5.0	26.0	23.0	_		23.0	1.0	_	23.0		
5.0	27.0	-			23.0	1.0		23.0		
5.0	27.0	1.0	-	-	23.0	1.0		23.0	-	-
			-	-	23.0	1.0		23.0	-	-
5.0	27.0	2.0	-							-
5.0	27.0	3.0	-		23.0	1.0	-	23.0	-	-
5.0	27.0	4.0	1.1		23.0	1.0		23.0		
5.0	27.0	5.0	297.0	41.0	24.0	1.0	33.1	22.7	28.3	22.7
5.0	27.0	6.0	592.0	78.0	26.0	1.0	218.0	31.8	149.1	140.9
5.0	27.0	7.0	736.0	98.0	27.0	1.0	446.1	41.9	329.4	316.3
5.0	27.0	8.0	816.0	110.0	28.0	-	662.1	56.4	470.4	452.7
5.0	27.0	9.0	863.0	117.0	29.0	-	837.2	64.6	574.1	552.5
5.0	27.0	10.0	454.0	392.0	30.0	1.0	823.8	60.0	581.5	559.7
5.0	27.0	11.0	899.0	123.0	30.0	1.0	1,010.5	65.4	691.5	665.1
5.0	27.0	12.0	887.0	128.0	31.0	1.0	990.8	66.6	673.4	647.7
5.0	27.0	13.0	868.0	125.0	31.0	1.0	904.2	64.0	623.2	599.6
5.0	27.0	14.0	831.0	119.0	30.0	2.0	755.1	54.0	547.6	527.1
5.0	27.0	15.0	767.0	109.0	29.0	2.0	558.0	47.0	412.0	396.3
5.0	27.0	16.0	661.0	93.0	28.0	2.0	333.5	38.7	240.2	229.7
5.0	27.0	17.0	464.0	65.0	27.0	2.0	119.6	30.3	75.2	229.7 68.6
5.0	27.0	18.0	59.0	13.0	26.0	1.0	9.9	24.8	8.4	3.1
					25.0					
5.0	27.0	19.0	-	-		1.0	-	25.0	-	-
5.0	27.0	20.0	-	-	25.0	1.0	-	25.0		-
5.0	27.0	21.0	-	-	25.0	1.0	-	25.0	-	-
5.0	27.0	22.0	-	-	24.0	1.0	-	24.0		-
5.0	27.0	23.0	-	-	24.0	1.0	-	24.0	-	-
5.0	28.0	-	-	-	24.0	1.0	-	24.0	-	-
5.0	28.0	1.0	-	-	24.0	1.0	-	24.0	-	-
5.0	28.0	2.0	-	-	24.0	-	-	24.0	-	-
5.0	28.0	3.0	-	-	24.0	-	-	24.0	-	-
5.0	28.0	4.0	-		24.0	-	-	24.0	-	-
5.0	28.0	5.0	313.0	39.0	24.0	-	32.0	21.7	27.4	21.8
5.0	28.0	6.0	604.0	73.0	26.0	-	215.9	33.7	145.6	137.5
5.0	28.0	7.0	745.0	91.0	27.0	-	443.1	45.8	320.2	307.5
5.0	28.0	8.0	822.0	102.0	29.0	_	656.7	57.2	464.5	447.0
5.0	_5.0	5.5		.02.0	_5.0		555		.50	

5.0	28.0	9.0	848.0	120.0	30.0	-	827.0	65.1	565.3	544.0
5.0	28.0	10.0	412.0	400.0	31.0	-	791.7	66.0	540.0	519.7
5.0	28.0	11.0	417.0	425.0	31.0	-	843.5	67.4	570.7	549.3
5.0	28.0	12.0	870.0	134.0	31.0	1.0	979.7	65.6	669.9	644.4
5.0 5.0	28.0 28.0	13.0 14.0	290.0 66.0	432.0 355.0	31.0 31.0	1.0 1.0	690.2 393.4	57.6 46.8	493.7 298.1	475.2 286.0
5.0	28.0	15.0	424.0	236.0	30.0	1.0	479.0	46.9	357.0	343.1
5.0	28.0	16.0	649.0	95.0	29.0	1.0	331.3	41.6	235.5	225.2
5.0	28.0	17.0	459.0	66.0	28.0	1.0	120.2	32.4	75.2	68.6
5.0	28.0	18.0	65.0	13.0	27.0	1.0	9.9	25.9	8.3	3.1
5.0	28.0	19.0	-	-	26.0	1.0	-	26.0	-	-
5.0	28.0	20.0	-		25.0	1.0	<u>-</u>	25.0	_	-
5.0	28.0	21.0	-	-	25.0	1.0	-	25.0	-	-
5.0	28.0	22.0	-	-	25.0	1.0	-	25.0	-	-
5.0	28.0	23.0	-	-	24.0	1.0	-	24.0	-	-
5.0	29.0		-		24.0	1.0		24.0		-
5.0	29.0	1.0	-	-	24.0 23.0	1.0	-	24.0	-	-
5.0 5.0	29.0 29.0	2.0 3.0	-	- -	23.0	1.0 1.0	-	23.0 23.0		_
5.0	29.0	4.0			23.0	1.0		23.0		
5.0	29.0	5.0	222.0	46.0	24.0	1.0	36.8	22.9	31.4	25.7
5.0	29.0	6.0	503.0	94.0	26.0	1.0	211.0	31.6	148.0	139.8
5.0	29.0	7.0	649.0	124.0	28.0	1.0	428.6	42.3	317.2	304.5
5.0	29.0	8.0	730.0	145.0	29.0	1.0	638.0	51.3	466.5	449.0
5.0	29.0	9.0	772.0	163.0	30.0	1.0	809.0	58.6	574.0	552.5
5.0	29.0	10.0	406.0	403.0	31.0	1.0	788.4	59.7	557.3	536.4
5.0	29.0	11.0	409.0	427.0	31.0	1.0	837.1	61.1	587.3	565.3
5.0	29.0	12.0	398.0	397.0	31.0	1.0	790.5	59.9	558.3	537.3
5.0	29.0	13.0	535.0	344.0	31.0	1.0	827.2	60.8	580.9	559.0
5.0	29.0	14.0	11.0	236.0	30.0	1.0	233.7	41.3	182.3	173.3
5.0	29.0	15.0	34.0	249.0	29.0	1.0	257.7	37.6	204.4	194.8
5.0 5.0	29.0 29.0	16.0	43.0 183.0	174.0 88.0	28.0 27.0	1.0 1.0	179.5 103.4	34.0 29.7	143.7 76.2	135.6 69.6
5.0	29.0	17.0 18.0	103.0	9.0	26.0	1.0	8.5	24.7	7.2	2.0
5.0	29.0	19.0		-	26.0	1.0	-	26.0	-	-
5.0	29.0	20.0	_	_	25.0	-	_	25.0	<u>-</u>	_
5.0	29.0	21.0	_	<u>-</u>	25.0	_	<u>-</u>	25.0	_	_
5.0	29.0	22.0	_	-	25.0	_	-	25.0	_	_
5.0	29.0	23.0	-	-	25.0	-	-	25.0	_	-
5.0	30.0	-	-	-	24.0	-	-	24.0	-	-
5.0	30.0	1.0	-	-	24.0	-	-	24.0	-	-
5.0	30.0	2.0	-	-	23.0	-	-	23.0	-	-
5.0	30.0	3.0	-	-	23.0	1.0	-	23.0	-	-
5.0	30.0	4.0			23.0	1.0		23.0		
5.0	30.0	5.0	190.0	49.0	24.0	1.0	40.9	23.0	34.9	29.1
5.0	30.0	6.0	475.0	103.0	26.0	2.0	211.2	30.8	150.1	141.8
5.0 5.0	30.0 30.0	7.0 8.0	636.0 726.0	133.0 155.0	28.0 29.0	1.0 1.0	430.8 644.6	42.3 51.5	319.1 470.9	306.3 453.2
5.0	30.0	9.0	685.0	227.0	30.0	1.0	800.9	58.4	569.1	547.8
5.0	30.0	10.0	714.0	243.0	31.0	1.0	920.3	63.6	636.2	612.2
5.0	30.0	11.0	727.0	248.0	31.0	1.0	973.6	65.7	665.2	639.9
5.0	30.0	12.0	614.0	328.0	31.0	1.0	930.6	64.7	639.5	615.3
5.0	30.0	13.0	587.0	317.0	31.0	1.0	847.1	62.0	590.6	568.4
5.0	30.0	14.0	539.0	292.0	31.0	2.0	703.2	53.3	512.8	493.6
5.0	30.0	15.0	465.0	252.0	30.0	2.0	518.1	46.6	386.7	371.9
5.0	30.0	16.0	355.0	193.0	29.0	2.0	313.2	39.0	234.8	224.4
5.0	30.0	17.0	195.0	109.0	28.0	1.0	123.1	32.3	90.7	83.8
5.0	30.0	18.0	-	9.0	26.0	1.0	8.5	24.8	7.2	2.0
5.0 5.0	30.0 30.0	19.0 20.0		- -	25.0 25.0	1.0 1.0	-	25.0 25.0	-	-
5.0	30.0	21.0	-		25.0	1.0		25.0		-
5.0	30.0	22.0	-	- -	25.0	-	-	25.0	-	-
5.0	30.0	23.0	-	- -	25.0	_	- -	25.0	-	_
5.0	31.0	-	_	<u>-</u>	24.0	-	-	24.0	_	_
5.0	31.0	1.0	-	-	24.0	1.0	-	24.0	-	-
5.0	31.0	2.0	-		23.0	1.0	<u>-</u>	23.0	_	-
5.0	31.0	3.0	-	-	23.0	1.0	-	23.0	-	-
5.0	31.0	4.0	-	-	23.0	1.0	-	23.0	-	-
5.0	31.0	5.0	164.0	50.0	24.0	1.0	41.5	23.0	35.4	29.6
5.0	31.0	6.0	435.0	113.0	26.0	1.0	210.4	31.6	150.8	142.5
5.0	31.0	7.0	599.0	147.0	29.0	1.0	426.5	43.2	315.2	302.6
5.0	31.0	8.0	696.0 753.0	167.0 181.0	30.0	1.0	635.8	52.2 50.5	462.9 571.4	445.5
5.0 5.0	31.0 31.0	9.0 10.0	753.0 785.0	181.0 189.0	31.0 31.0	1.0 1.0	809.6 929.3	59.5 63.9	571.4 641.3	550.0 617.0
5.0 5.0	31.0	11.0	785.0 799.0	191.0	32.0	1.0	929.3 982.9	63.9 67.0	666.7	641.4
5.0	31.0	12.0	520.0	396.0	32.0	1.0	907.0	65.0	622.3	598.8
5.0	31.0	13.0	469.0	338.0	31.0	1.0	761.9	59.4	539.3	519.1
5.0	31.0	14.0	379.0	337.0	31.0	1.0	621.2	54.4	450.8	433.8
5.0	31.0	15.0	299.0	270.0	30.0	1.0	436.2	46.8	326.6	313.7
5.0	31.0	16.0	271.0	186.0	29.0	1.0	275.9	39.4	207.8	198.1
5.0	31.0	17.0	213.0	87.0	28.0	1.0	107.0	31.5	76.9	70.3

E 0	24.0	18.0		8.0	24.0	2.0	7.6	22.7	6.5	1.2
5.0 5.0	31.0 31.0	19.0		8.0 -	24.0	2.0 2.0	7.0	24.0	-	1.2
5.0	31.0	20.0	-	-	24.0	2.0	-	24.0	-	-
5.0	31.0	21.0	-	-	24.0	2.0	-	24.0	-	-
5.0 5.0	31.0 31.0	22.0 23.0	-	-	24.0 23.0	2.0 2.0	-	24.0 23.0	-	-
6.0	1.0	-		- -	23.0	2.0	- -	23.0		
6.0	1.0	1.0	-	-	23.0	2.0	-	23.0	-	-
6.0	1.0	2.0	-	-	23.0	2.0	-	23.0	-	-
6.0 6.0	1.0 1.0	3.0 4.0	-	-	23.0 23.0	2.0 2.0	-	23.0 23.0	-	-
6.0	1.0	5.0	-	37.0	24.0	2.0	34.6	23.1	29.5	23.9
6.0	1.0	6.0	107.0	133.0	24.0	2.0	149.0	26.8	119.4	111.9
6.0	1.0	7.0	58.0	222.0	24.0	2.0	237.4	30.0	194.4	185.1
6.0 6.0	1.0 1.0	8.0 9.0	205.0 452.0	330.0 333.0	25.0 26.0	2.0 2.0	456.5 708.6	38.0 47.1	360.4 535.5	346.4 515.5
6.0	1.0	10.0	84.0	457.0	26.0	2.0	525.4	42.9	406.6	391.1
6.0	1.0	11.0	852.0	140.0	27.0	2.0	977.8	55.8	706.6	679.5
6.0	1.0	12.0	859.0	132.0	27.0	2.0	965.5	57.1	692.6	666.1
6.0 6.0	1.0 1.0	13.0 14.0	844.0 808.0	128.0 122.0	27.0 26.0	2.0 2.0	884.6 742.7	54.9 49.7	641.7 551.1	617.4 530.5
6.0	1.0	15.0	743.0	114.0	26.0	2.0	550.0	43.8	413.3	397.5
6.0	1.0	16.0	632.0	99.0	25.0	2.0	330.4	35.6	242.7	232.2
6.0	1.0	17.0	430.0	71.0	24.0	1.0	121.7	28.3	79.2	72.6
6.0 6.0	1.0 1.0	18.0 19.0	52.0	15.0	23.0 23.0	1.0 1.0	12.8	21.8 23.0	11.0	5.7
6.0	1.0	20.0	-	- -	23.0	1.0		23.0	-	1
6.0	1.0	21.0	-	-	23.0	1.0	-	23.0	-	_
6.0	1.0	22.0	-	-	23.0	1.0	-	23.0	-	-
6.0	1.0	23.0	-	-	23.0	1.0	-	23.0	-	-
6.0 6.0	2.0 2.0	- 1.0	1	-	23.0 23.0	1.0 1.0		23.0 23.0		1
6.0	2.0	2.0	_	-	23.0	1.0	-	23.0	_	_
6.0	2.0	3.0	-	-	23.0	1.0	-	23.0	-	-
6.0	2.0	4.0	-	- 54.0	23.0	1.0	-	23.0	-	-
6.0 6.0	2.0 2.0	5.0 6.0	129.0 343.0	51.0 114.0	24.0 24.0	1.0 1.0	42.0 188.5	23.1 28.8	35.8 139.3	30.0 131.3
6.0	2.0	7.0	155.0	233.0	25.0	1.0	294.1	34.5	233.5	223.2
6.0	2.0	8.0	-	93.0	26.0	1.0	88.5	28.9	73.4	66.9
6.0	2.0	9.0	262.0	405.0	26.0	1.0	617.3	45.8	470.0	452.3
6.0 6.0	2.0 2.0	10.0 11.0	66.0 85.0	442.0 483.0	26.0 27.0	1.0 1.0	493.6 557.9	44.7 47.1	378.4 422.4	363.8 406.4
6.0	2.0	12.0	38.0	415.0	27.0	2.0	443.2	40.9	346.5	332.9
6.0	2.0	13.0	46.0	377.0	27.0	2.0	408.1	39.4	321.4	308.6
6.0	2.0	14.0	766.0	145.0	27.0	2.0	733.6	48.6	547.8	527.3
6.0 6.0	2.0 2.0	15.0 16.0	717.0 78.0	125.0 185.0	27.0 26.0	2.0 2.0	545.3 202.6	44.6 32.8	408.3 162.1	392.8 153.6
6.0	2.0	17.0	120.0	94.0	25.0	1.0	101.6	27.8	78.5	71.9
6.0	2.0	18.0	-	13.0	24.0	1.0	12.3	22.7	10.5	5.2
6.0	2.0	19.0	-	-	24.0 24.0	1.0	-	24.0	-	-
6.0 6.0	2.0 2.0	20.0 21.0		- -	24.0	1.0 1.0	- -	24.0 24.0		
6.0	2.0	22.0	-	-	24.0	1.0	-	24.0	-	-
6.0	2.0	23.0	-	-	23.0	1.0	-	23.0	-	-
6.0	3.0	- 1.0	-	-	23.0 23.0	1.0 1.0	-	23.0 23.0	-	-
6.0 6.0	3.0 3.0	1.0 2.0	-	- -	23.0	1.0	- -	23.0	-	-
6.0	3.0	3.0	-	-	23.0	-	-	23.0	-	-
6.0	3.0	4.0	-	5.2	23.0	-		23.0	-	-
6.0 6.0	3.0 3.0	5.0 6.0	287.0 573.0	41.0 78.0	24.0 25.0	-	32.7 211.5	21.7 32.5	28.0 144.3	22.4 136.2
6.0	3.0	7.0	714.0	99.0	26.0	_	433.7	44.4	315.9	303.2
6.0	3.0	8.0	792.0	113.0	27.0	1.0	645.0	49.6	475.3	457.5
6.0	3.0	9.0	484.0	296.0	28.0	1.0	698.4	53.3	510.5	491.4
6.0 6.0	3.0 3.0	10.0 11.0	856.0 865.0	134.0 137.0	28.0 28.0	1.0 1.0	934.7 986.7	60.8 63.4	656.7 683.3	631.8 657.2
6.0	3.0	12.0	851.0	145.0	28.0	1.0	969.5	63.1	672.3	646.7
6.0	3.0	13.0	834.0	140.0	28.0	1.0	887.0	60.6	623.3	599.7
6.0	3.0	14.0	800.0	131.0	28.0	1.0	745.7	56.0	535.1	515.0
6.0 6.0	3.0 3.0	15.0 16.0	744.0 647.0	117.0 97.0	27.0 26.0	1.0 1.0	554.1 334.9	48.3 39.1	406.6 241.6	391.1 231.0
6.0	3.0	17.0	461.0	68.0	25.0	1.0	124.8	29.5	79.7	73.0
6.0	3.0	18.0	71.0	17.0	25.0	1.0	14.5	24.0	12.3	7.0
6.0	3.0	19.0	-	-	24.0	1.0	-	24.0	-	-
6.0 6.0	3.0 3.0	20.0 21.0	-	-	24.0 24.0	1.0 1.0		24.0 24.0	-	
6.0	3.0	22.0	-	- -	24.0	1.0	- -	24.0	-	-
6.0	3.0	23.0	-	-	24.0	1.0	-	24.0	-	-
6.0	4.0	- 10	-	-	24.0	1.0	-	24.0	-	-
6.0 6.0	4.0 4.0	1.0 2.0	-	- -	24.0 24.0	1.0 1.0	- -	24.0 24.0	-	-
***					-	-				

6.0	4.0	2.0			24.0	1.0		24.0		
6.0 6.0	4.0 4.0	3.0 4.0	-	- -	24.0 24.0	1.0 1.0	- -	24.0	-	-
6.0	4.0	5.0	242.0	45.0	25.0	-	35.6	22.9	30.4	24.7
6.0	4.0	6.0	53.0	129.0	26.0	-	132.5	29.8	106.7	99.5
6.0 6.0	4.0 4.0	7.0 8.0	-	20.0 80.0	27.0 27.0	1.0 1.0	19.0 76.1	26.3 27.6	15.9 63.5	10.5 57.2
6.0	4.0	9.0	286.0	398.0	27.0	1.0	629.7	47.1	476.0	458.1
6.0		10.0	465.0	392.0	28.0	1.0	830.1	57.3	594.8	572.4
6.0		11.0	557.0	326.0 397.0	28.0 28.0	1.0 1.0	881.2	59.8	622.8 637.7	599.3 613.6
6.0 6.0		12.0 13.0	521.0 468.0	366.0	27.0	1.0	907.5 787.3	60.8 56.4	566.6	545.4
6.0		14.0	802.0	125.0	27.0	1.0	741.4	54.4	536.5	516.4
6.0		15.0	749.0	110.0	27.0	1.0	550.5	48.2	404.1	388.7
6.0		16.0	655.0	92.0	26.0	1.0	333.5	39.1	240.3	229.8
6.0 6.0		17.0 18.0	476.0 92.0	65.0 17.0	25.0 25.0	1.0 1.0	124.5 13.0	29.5 23.9	78.6 11.0	72.0 5.7
6.0		19.0	-	=	25.0	1.0	-	25.0	-	-
6.0		20.0	-	-	24.0	1.0	-	24.0	-	-
6.0 6.0		21.0 22.0	-		24.0 24.0	1.0 1.0	-	24.0 24.0	•	-
6.0		23.0	_	- -	24.0	1.0	- -	24.0	-	_
6.0	5.0	-	-	-	24.0	1.0	-	24.0	-	-
6.0	5.0	1.0	-	-	24.0	1.0	-	24.0	-	-
6.0 6.0	5.0 5.0	2.0 3.0		-	24.0 24.0	1.0 1.0	-	24.0 24.0	-	
6.0	5.0	4.0	-	-	24.0	1.0	-	24.0	-	-
6.0	5.0	5.0	266.0	43.0	24.0	1.0	34.0	22.8	29.0	23.4
6.0	5.0	6.0	555.0	81.0	25.0	1.0	209.3	30.5	144.7	136.6
6.0 6.0	5.0 5.0	7.0 8.0	700.0 780.0	102.0 116.0	26.0 27.0	1.0 1.0	428.0 638.8	40.2 49.3	318.5 471.3	305.8 453.6
6.0	5.0	9.0	810.0	135.0	27.0	1.0	808.4	55.7	582.6	560.7
6.0		10.0	831.0	145.0	28.0	1.0	920.8	60.9	646.6	622.1
6.0		11.0	838.0	151.0	28.0	1.0	972.6	62.9 62.7	675.3 666.4	649.6 641.1
6.0 6.0		12.0 13.0	814.0 796.0	165.0 159.0	28.0 28.0	1.0 1.0	958.9 876.0	60.2	616.9	593.6
6.0		14.0	765.0	147.0	28.0	1.0	735.1	55.6	528.6	508.8
6.0		15.0	708.0	130.0	27.0	1.0	545.8	48.0	401.6	386.2
6.0 6.0		16.0 17.0	608.0 422.0	107.0 74.0	27.0 26.0	1.0 1.0	330.8 124.9	39.9 30.5	238.8 81.3	228.4 74.6
6.0		18.0	62.0	18.0	25.0	1.0	15.3	24.0	13.0	74.6
6.0		19.0	-	-	25.0	1.0	-	25.0	-	-
6.0		20.0	-	-	25.0	1.0	-	25.0	-	-
6.0 6.0		21.0 22.0		-	25.0 25.0	1.0 1.0	-	25.0 25.0	•	
6.0		23.0	_	- -	25.0	1.0	- -	25.0	-	_
6.0	6.0	-	-	-	25.0	1.0	-	25.0	-	-
6.0	6.0	1.0	-	-	25.0	-	-	25.0	-	-
6.0 6.0	6.0 6.0	2.0 3.0	-	-	25.0 25.0	-	-	25.0 25.0	•	-
6.0	6.0	4.0	-	-	25.0	1.0	-	25.0	-	-
6.0	6.0	5.0	263.0	43.0	25.0	1.0	33.8	23.8	28.7	23.1
6.0 6.0	6.0 6.0	6.0 7.0	549.0 693.0	81.0 102.0	25.0 26.0	1.0	207.5	30.4 44.0	143.5 309.6	135.5 297.1
6.0	6.0	8.0	247.0	322.0	27.0	-	424.2 478.1	48.8	356.6	342.7
6.0	6.0	9.0	184.0	395.0	27.0	-	538.3	51.4	398.0	382.8
6.0		10.0	314.0	448.0	28.0	-	739.6	59.7	523.0	503.4
6.0 6.0		11.0 12.0	830.0 286.0	152.0 476.0	28.0 28.0	•	965.3 753.2	68.2 62.8	650.1 523.2	625.5 503.6
6.0		13.0	484.0	363.0	28.0	-	798.4	63.0	553.8	533.1
6.0		14.0	278.0	368.0	28.0	-	573.9	55.9	413.4	397.7
6.0 6.0		15.0 16.0	226.0 445.0	286.0 147.0	27.0 27.0	-	407.0 306.6	47.5 42.3	304.5 222.8	292.2 212.8
6.0		17.0	338.0	80.0	26.0	-	118.7	42.3 32.8	79.6	72.9
6.0		18.0	-	19.0	25.0	-	18.0	24.3	15.3	9.9
6.0		19.0	-	-	25.0	-	-	25.0	-	-
6.0 6.0		20.0 21.0		Ī	24.0 24.0	•		24.0 24.0	-	
6.0		22.0	_	- -	24.0	-	- -	24.0	-	_
6.0	6.0	23.0	-	-	24.0	-	-	24.0	•	-
6.0	7.0	-	-	-	23.0	1.0	-	23.0	-	-
6.0 6.0	7.0 7.0	1.0 2.0	-	- -	23.0 23.0	1.0	-	23.0 23.0	-	-
6.0	7.0	3.0	-	-	23.0	-	-	23.0	-	-
6.0	7.0	4.0	-		24.0	-	-	24.0	-	-
6.0 6.0	7.0 7.0	5.0 6.0	211.0 249.0	47.0 125.0	25.0 26.0	-	36.8 174.9	23.0 31.9	31.3 130.7	25.7 122.9
6.0	7.0	7.0	628.0	127.0	27.0	- -	417.6	44.5	305.3	293.0
6.0	7.0	8.0	713.0	146.0	28.0	-	622.5	54.9	446.2	429.4
6.0	7.0	9.0	767.0	157.0 164.0	28.0	-	793.5	62.0	552.2 616.1	531.5
6.0 6.0		10.0 11.0	798.0 812.0	164.0 165.0	29.0 29.0	-	913.0 966.8	67.8 70.1	616.1 643.7	592.8 619.3
			•					•	•	

Col.											
Color 170 140 1740											
10											
10											
Color 17.0											
Color Transfer T											
Color											
Column C				_							
60				-	-			-		-	-
Section Color	6.0	7.0	21.0	-	<u>-</u>	25.0	1.0	<u>-</u>	25.0	_	-
Color	6.0	7.0	22.0	-		25.0	1.0		25.0	-	-
Col	6.0	7.0	23.0	-	-	25.0	1.0	-	25.0	-	-
Color				-	-			-		-	-
Column C				-	-			-		-	-
SOC				-	-			-		-	-
80				-	-			-		-	-
BO					- 42.0		-			-	- 22.0
Column C											
Column C											
6.0 8.0 9.0 9.0 226.0 413.0 230 -							_				
60 80 100 3980 4670 300 - 7780 629 5379 5178 80							_				
60 80 110 4380 4280 300 -							_				
60 80 130 2780 4390 290 100 6845 523 5039 4850 60 60 80 140 140 140 3940 200 100 4416 416 416 416 616 416 616 416 616 416 616 6							-				
60	6.0						-				
60 80 150 2860 2770 280 100 4459 44.1 3313 3852 282 2780 0 80 100 4410 1890 270 100 3076 385 282 2780 160 4410 1890 270 100 3076 385 282 2780 160 4410 1890 270 100 3076 385 282 2780 160 4410 1890 270 100 1772 351 817 750 460 80 100 100 100 100 100 100 100 100 100	6.0	8.0	13.0	278.0	439.0	29.0	1.0		52.3	503.9	
60 80 150 4410 1440 270 10 307.6 38.6 228.2 2180 60 80 170 2202 850 250 10 10 1772 301 1817 750 60 80 100 180 180 180 80 200 - 1772 251 145 92 60 80 100 180 180 180 200 - 250 - 250 - 250 1 60 80 210 - 250 - 250 - 250 - 250 - 250 - 250 - 250 1 60 80 220 - 2	6.0	8.0	14.0	141.0	384.0	29.0	1.0	481.5	47.6	363.0	348.9
60 80 170 2920 880 250 10 1172 391 817 750 60 80 180 180 180 10 0 250 - 172 251 145 92 60 80 180 180 1 - 1 250 250 - 1 250 1 45 92 60 80 100 - 1 2 250 - 1 250 - 1 250 1 4 5 92 60 80 100 - 1 2 250 - 1 250 - 1 250 1 4 5 92 60 80 210 - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6.0	8.0	15.0	286.0	277.0	28.0	1.0	435.9	44.1	331.3	318.2
60 80 180 180 180 180 180 200 - 17.2 251 145 92 60 80 180 180 250	6.0	8.0	16.0	441.0	149.0	27.0	1.0	307.6	38.5	228.2	
60	6.0	8.0	17.0	292.0	85.0	26.0	1.0	117.2	30.1	81.7	
60 80 210 220 220 250 250 260 260				18.0	18.0		-	17.2		14.5	9.2
60 80 210 250 250 250 250 250				-	-		-	-		-	-
60 80 720					-		-	-		-	-
60 80 720				-	-		-	-		-	-
60 90				-	-		-	-		-	-
60 90 10 10 240 240 240				-	-		-	-		-	-
60 90 20 0				-	-		•	-		-	-
60 90 330 240 10 240 10 240 10 240 60 90 40 240 10 240 10 240 10 240 10 240 10 240 10 240 10 10 10 334 227 285 229 60 90 60 50 850 830 250 10 0 270 10 4238 441 315 1334 60 10 870 10 10 10 270 10 4238 441 315 1334 60 10 10 10 10 10 10 10 10 10 10 10 10 10				-	-		-	-		-	-
60 90 40 40 240 10 240 10 240 10 240 10 240 10 60 90 50 60 8460 830 250 10 0 207.3 304 143.5 135.4 60 90 70 8850 1070 250 10 42.8 401 315.5 305.0 60 90 80 80 767.0 1210 270 10 632.8 491 467.3 549.7 549				-			1.0	-		-	-
60 90 50 50 272.0 43.0 24.0 1.0 33.4 22.7 22.5 22.9 60 90 60 90 60 545.0 83.0 25.0 1.0 207.3 30.4 143.5 135.4 60 90 7.0 885.0 107.0 26.0 1.0 423.8 40.1 315.6 303.0 60 90 8.0 767.0 121.0 27.0 1.0 682.8 40.1 467.3 449.7 60 90 90 816.0 130.0 28.0 1.0 803.1 55.5 576.3 554.6 60 90 90 816.0 130.0 28.0 1.0 803.1 55.5 576.3 554.6 60 90 110.0 813.1 55.5 576.3 554.6 60 90 110.0 813.1 55.5 576.3 554.6 60 90 110.0 813.0 134.0 28.0 1.0 977.4 64.0 674.5 648.8 60 90 110.0 813.1 60 50 576.3 648.8 60 90 110.0 813.0 134.0 28.0 1.0 977.4 64.0 674.5 648.8 60 90 110.0 813.0 134.0 28.0 1.0 977.4 64.0 674.5 648.8 60 90 110.0 813.0 134.0 28.0 1.0 977.4 64.0 674.5 648.8 60 90 110.0 813.0 134.0 28.0 1.0 977.4 64.0 674.5 648.8 60 90 110.0 813.0 134.0 28.0 1.0 977.4 64.0 674.5 648.8 60 90 110.0 813.0 134.0 28.0 1.0 977.4 64.0 674.5 648.8 60 90 110.0 813.0 134.0 28.0 1.0 977.4 64.0 10.0 674.5 648.8 60 90 110.0 803.1 85.0 10.0 10.0 893.0 85.7 685.4 653				-				-		-	-
60 90 60 5450 830 250 10 2073 30.4 143.5 135.6 303.0 60 90 76 685.0 1070 260 10 622.8 40.1 315.6 303.0 60 90 80 767.0 121.0 27.0 10 632.8 40.1 467.3 449.7 60 90 90 90 80 816.0 130.0 28.0 10 803.1 55.5 576.3 554.6 60 90 10.0 846.0 134.0 28.0 1.0 922.2 60.9 647.4 622.9 60 90 11.0 861.0 134.0 29.0 1.0 922.2 60.9 647.4 622.9 60 90 11.0 861.0 134.0 29.0 1.0 99.3 63.7 663.0 637.8 60 90.0 12.0 840.0 147.0 29.0 1.0 999.3 63.7 663.0 637.8 60 90.0 12.0 840.0 147.0 29.0 1.0 999.3 63.7 663.0 637.8 60 90.0 12.0 840.0 147.0 29.0 1.0 999.3 63.7 663.0 637.8 60 90.0 13.0 822.0 143.0 29.0 1.0 999.3 63.7 663.0 637.8 60.0 90.0 14.0 783.0 138.0 28.0 10.0 740.7 55.8 532.1 512.2 60 90.0 15.0 716.0 122.0 29.0 1.0 334.3 40.1 242.2 231.6 60 90.0 150.0 716.0 122.0 28.0 1.0 740.7 55.8 532.1 512.2 60.0 90.0 150.0 716.0 122.0 28.0 1.0 334.3 40.1 242.2 231.6 60 90.0 150.0 716.0 122.0 28.0 1.0 334.3 40.1 242.2 231.6 60 90.0 18.0 77.0 7.0 18.0 28.0 1.0 18.0 18.0 18.0 18.0 18.0 18.0 18				272 N	- 43.0			33.4		28.5	22.0
60 90 7.0 685.0 107.0 28.0 1.0 423.8 40.1 315.6 303.0 6.0 9.0 816.0 130.0 28.0 1.0 803.1 56.5 576.3 554.6 6.0 9.0 10.0 861.0 130.0 28.0 1.0 803.1 56.5 576.3 554.6 6.0 9.0 110.0 861.0 134.0 22.0 1.0 977.4 64.0 677.4 68.0 6.0 9.0 110.0 861.0 134.0 22.0 1.0 977.4 64.0 677.5 683.0 578.8 6.0 9.0 120.0 861.0 147.0 22.0 1.0 977.4 64.0 677.4 683.0 683.											
60 90 8.0 767.0 121.0 27.0 1.0 692.8 49.1 467.3 449.7 60 90 90 90 816.0 130.0 28.0 1.0 922.2 60.9 647.4 622.9 6.0 90 11.0 861.0 134.0 29.0 1.0 992.2 60.9 647.4 622.9 6.0 9.0 11.0 864.0 147.0 29.0 1.0 959.3 63.7 663.0 637.8 6.0 9.0 11.0 783.0 813.0 29.0 1.0 789.0 613.3 615.4 592.2 6.0 9.0 14.0 788.0 138.0 28.0 1.0 740.7 58.8 532.1 512.2 6.0 9.0 16.0 644.0 111.0 27.0 1.0 334.9 40.1 242.2 231.6 6.0 9.0 17.0 412.0 79.0 28.0 1.0 16.1											
60 90 90 816.0 130.0 28.0 1.0 803.1 55.5 576.3 554.6 6.0 90 110 841.0 134.0 220 1.0 977.4 64.0 674.5 648.8 6.0 90 120 840.0 147.0 220 1.0 959.3 63.7 663.0 674.5 648.8 6.0 90 13.0 822.0 143.0 220 1.0 879.0 61.3 615.4 552.2 6.0 90 140.7 783.0 138.0 220 1.0 740.7 55.8 532.1 512.2 6.0 90 150.7 716.0 128.0 220 1.0 550.0 49.2 402.3 386.9 6.0 90 150.7 604.0 1111.0 27.0 1.0 133.49 40.1 242.2 231.6 60.0 90.1 120.0 49.2 402.3 386.9 60.0 90.1 120.0											
6.0 9.0 10.0 86.0 134.0 22.0 10 922.2 60.9 647.4 622.9 6.0 9.0 11.0 861.0 134.0 220 10 977.4 64.0 674.5 68.8 6.0 9.0 12.0 840.0 147.0 220 10 879.0 61.3 61.5 65.0 677.8 6.0 9.0 14.0 783.0 138.0 220 10 740.7 55.8 532.1 512.2 6.0 9.0 15.0 746.0 128.0 220 10 750.7 55.8 532.1 512.2 6.0 9.0 15.0 640.0 111.0 270 10 334.9 40.1 242.2 231.6 6.0 9.0 15.0 640.0 11.0 129.0 26.0 10 129.5 30.7 85.4 78.6 6.0 9.0 15.0 42.0 20 10 12.2 20.0 <td></td>											
6.0 9.0 11.0 861.0 134.0 29.0 10 977.4 64.0 674.5 648.8											
6.0 9.0 13.0 822.0 143.0 29.0 1.0 879.0 61.3 615.4 592.2 60.0 90.1 14.0 783.0 138.0 28.0 1.0 740.7 55.8 532.1 512.2 60.0 9.0 16.0 60.0 19.0 150.0 716.0 128.0 28.0 1.0 550.0 49.2 402.3 386.9 66.0 90.0 160.0 60.0 19.0 27.0 1.0 129.5 30.7 85.4 78.6 60.0 90.0 180.0 770.0 190.0 260.0 1.0 129.5 30.7 85.4 78.6 60.0 90.0 180.0 770.0 190.0 260.0 1.0 16.1 25.1 13.6 8.3 60.0 90.0 190.0 - - - 260.0 1.0 - - 260.0 - - - - - - - - - - - - - -	6.0	9.0	11.0	861.0	134.0	29.0	1.0	977.4	64.0	674.5	648.8
60 9.0 14.0 783.0 138.0 28.0 1.0 740.7 55.8 532.1 512.2 6.0 9.0 15.0 716.0 128.0 28.0 1.0 550.0 49.2 40.23 38.69 6.0 9.0 117.0 412.0 79.0 26.0 1.0 129.5 30.7 85.4 78.6 6.0 9.0 117.0 412.0 79.0 26.0 1.0 16.1 25.1 13.6 8.3 6.0 9.0 18.0 77.0 19.0 26.0 1.0 16.1 25.1 13.6 8.3 6.0 9.0 18.0 - - 25.0 1.0 - 25.0 - </td <td>6.0</td> <td>9.0</td> <td>12.0</td> <td></td> <td>147.0</td> <td>29.0</td> <td>1.0</td> <td>959.3</td> <td>63.7</td> <td>663.0</td> <td></td>	6.0	9.0	12.0		147.0	29.0	1.0	959.3	63.7	663.0	
60 9.0 15.0 716.0 128.0 28.0 1.0 550.0 49.2 40.3 386.9 60 9.0 15.0 60.0 111.0 27.0 1.0 334.9 40.1 242.2 231.6 6.0 9.0 18.0 77.0 19.0 26.0 1.0 129.5 30.7 85.4 78.6 6.0 9.0 18.0 77.0 19.0 26.0 1.0 - 26.0 - - 26.0 - - 26.0 - - 26.0 -			13.0								
60 9.0 16.0 60.40 111.0 27.0 1.0 334.9 40.1 24.22 23.16 6.0 9.0 17.0 412.0 79.0 26.0 1.0 129.5 30.7 85.4 78.6 6.0 9.0 18.0 77.0 19.0 26.0 1.0 16.1 25.1 13.6 8.3 6.0 9.0 19.0 - - 26.0 1.0 - 25.0 - - - - 26.0 1.0 - 25.0 - - - - - - 26.0 1.0 - 25.0 - - - - 25.0 -											
60 90 17.0 412.0 79.0 26.0 1.0 129.5 30.7 85.4 78.6 60 90 18.0 77.0 19.0 26.0 1.0 16.1 25.1 13.6 8.3 60 90 19.0 - - 26.0 1.0 - 26.0 - - 60 90 20.0 - - 25.0 11.0 - 25.0 - - 60 90 22.0 - - 25.0 11.0 - 25.0 - - 6.0 90 23.0 - - 25.0 1.0 - 25.0 - - 6.0 10.0 - - - 25.0 1.0 - 25.0 - - 6.0 10.0 1.0 - - 25.0 1.0 - 25.0 - - - 6.0 10.0 <											
60 90 18.0 77.0 19.0 28.0 1.0 16.1 25.1 13.6 8.3 6.0 9.0 19.0 - - 25.0 1.0 - 25.0 - <td></td>											
60 90 190 - - 250 10 - 250 -											
60 9.0 20.0 - - 25.0 1.0 - 25.0 -											
60 9.0 21.0 - - 25.0 1.0 - 25.0 -					-			-		-	-
6.0 9.0 22.0 - - 25.0 1.0 - 25.0 -				-						-	-
6.0 9.0 23.0 - - 25.0 1.0 - 25.0 -											1
6.0 10.0 - - 25.0 1.0 - 25.0 - - 6.0 10.0 1.0 - 25.0 1.0 - 25.0 - - 6.0 10.0 2.0 - - 25.0 1.0 - 25.0 - - 6.0 10.0 3.0 - - 25.0 1.0 - 25.0 - - 6.0 10.0 3.0 - - - 25.0 2.0 - 25.0 - - 6.0 10.0 5.0 - 311.0 25.0 2.0 10.4 23.3 8.9 3.6 6.0 10.0 6.0 - 51.0 25.0 2.0 11.7 27.9 98.0 91.0 6.0 10.0 7.0 - 124.0 26.0 2.0 117.7 27.9 98.0 91.0 6.0 10.0 8.0 <td< td=""><td></td><td></td><td></td><td></td><td><u>-</u></td><td></td><td></td><td><u>-</u></td><td></td><td>_</td><td>_</td></td<>					<u>-</u>			<u>-</u>		_	_
6.0 10.0 1.0 - - 25.0 1.0 - 25.0 -				_	<u>-</u>			<u>-</u>		_	_
6.0 10.0 2.0 - - 25.0 1.0 - 25.0 -				_	-			-		_	_
6.0 10.0 3.0 - - 25.0 1.0 - 25.0 -				_	-	25.0		-		_	_
6.0 10.0 4.0 - - 25.0 2.0 - 25.0 -				-	-	25.0		-	25.0	_	_
6.0 10.0 5.0 - 11.0 25.0 2.0 10.4 23.3 8.9 3.6 6.0 10.0 6.0 - 51.0 25.0 2.0 11.7 27.9 98.0 91.0 6.0 10.0 8.0 13.0 232.0 26.0 3.0 229.4 31.0 188.2 179.1 6.0 10.0 9.0 41.0 357.0 26.0 3.0 379.2 35.4 304.6 292.3 6.0 10.0 10.0 55.0 428.0 26.0 3.0 379.2 35.4 304.6 292.3 6.0 10.0 11.0 - 133.0 26.0 3.0 379.2 35.4 304.6 292.3 6.0 10.0 11.0 - 133.0 26.0 3.0 468.6 38.3 371.2 356.8 6.0 10.0 11.0 - 133.0 26.0 3.0 127.3 29.5 105.3 98.1 6.0 10.0 12.0 109.0 488.0 26.0				_	-	25.0	2.0		25.0	-	
6.0 10.0 6.0 - 51.0 25.0 2.0 48.4 24.6 41.0 35.1 6.0 10.0 7.0 - 124.0 26.0 2.0 117.7 27.9 98.0 91.0 6.0 10.0 8.0 13.0 232.0 26.0 3.0 229.4 31.0 188.2 179.1 6.0 10.0 9.0 41.0 357.0 26.0 3.0 379.2 35.4 304.6 292.3 6.0 10.0 10.0 55.0 428.0 26.0 3.0 468.6 38.3 371.2 356.8 6.0 10.0 11.0 - 133.0 26.0 3.0 127.3 29.5 105.3 98.1 6.0 10.0 12.0 109.0 488.0 26.0 3.0 583.4 40.5 457.1 439.8 6.0 10.0 13.0 371.0 403.0 26.0 3.0 583.4 40.5 457.1 439.8 6.0 10.0 13.0 371.0 403.0 26.0	6.0	10.0	5.0	-		25.0	2.0		23.3		3.6
6.0 10.0 8.0 13.0 232.0 26.0 3.0 229.4 31.0 188.2 179.1 6.0 10.0 9.0 41.0 357.0 26.0 3.0 379.2 35.4 304.6 292.3 6.0 10.0 10.0 55.0 428.0 26.0 3.0 468.6 38.3 371.2 356.8 6.0 10.0 11.0 - 133.0 26.0 3.0 127.3 29.5 105.3 98.1 6.0 10.0 12.0 109.0 488.0 26.0 3.0 583.4 40.5 457.1 439.8 6.0 10.0 13.0 371.0 403.0 26.0 3.0 732.3 45.8 557.9 536.9 6.0 10.0 14.0 285.0 368.0 26.0 3.0 732.3 45.8 557.9 536.9 6.0 10.0 15.0 339.0 266.0 26.0 3.0 579.3 42.4 448.4 431.5 6.0 10.0 15.0 339.0 266.0 <td>6.0</td> <td>10.0</td> <td>6.0</td> <td>-</td> <td></td> <td>25.0</td> <td>2.0</td> <td></td> <td>24.6</td> <td>41.0</td> <td>35.1</td>	6.0	10.0	6.0	-		25.0	2.0		24.6	41.0	35.1
6.0 10.0 9.0 41.0 357.0 26.0 3.0 379.2 35.4 304.6 292.3 6.0 10.0 10.0 55.0 428.0 26.0 3.0 468.6 38.3 371.2 356.8 6.0 10.0 11.0 - 133.0 26.0 3.0 127.3 29.5 105.3 98.1 6.0 10.0 12.0 109.0 488.0 26.0 3.0 583.4 40.5 457.1 439.8 6.0 10.0 13.0 371.0 403.0 26.0 3.0 583.4 40.5 457.1 439.8 6.0 10.0 14.0 285.0 368.0 26.0 3.0 573.3 45.8 557.9 536.9 50.0 10.0 15.0 339.0 266.0 26.0 3.0 579.3 42.4 448.4 431.5 6.0 10.0 15.0 339.0 266.0 26.0 3.0 456.9 38.7 356.4 342.6 6.0 10.0 16.0 362.0 166.0<											91.0
6.0 10.0 11.0 - 133.0 26.0 3.0 127.3 29.5 105.3 98.1 6.0 10.0 12.0 109.0 488.0 26.0 3.0 583.4 40.5 457.1 439.8 6.0 10.0 13.0 371.0 403.0 26.0 3.0 732.3 45.8 557.9 536.9 6.0 10.0 14.0 285.0 368.0 26.0 3.0 579.3 42.4 448.4 431.5 6.0 10.0 15.0 339.0 266.0 26.0 3.0 456.9 38.7 356.4 342.6 6.0 10.0 16.0 362.0 166.0 25.0 3.0 293.5 32.9 226.0 215.9 6.0 10.0 17.0 - 30.0 25.0 3.0 28.4 25.1 24.0 18.5 6.0 10.0 18.0 - 4.0 25.0 3.0 3.8 23.5 3.2 - 6.0 10.0 19.0 - - 24.0											179.1
6.0 10.0 11.0 - 133.0 26.0 3.0 127.3 29.5 105.3 98.1 6.0 10.0 12.0 109.0 488.0 26.0 3.0 583.4 40.5 457.1 439.8 6.0 10.0 13.0 371.0 403.0 26.0 3.0 732.3 45.8 557.9 536.9 6.0 10.0 14.0 285.0 368.0 26.0 3.0 579.3 42.4 448.4 431.5 6.0 10.0 15.0 339.0 266.0 26.0 3.0 456.9 38.7 356.4 342.6 6.0 10.0 16.0 362.0 166.0 25.0 3.0 293.5 32.9 226.0 215.9 6.0 10.0 17.0 - 30.0 25.0 3.0 28.4 25.1 24.0 18.5 6.0 10.0 18.0 - 4.0 25.0 3.0 3.8 23.5 3.2 - 6.0 10.0 19.0 - - 24.0											292.3
6.0 10.0 12.0 109.0 488.0 26.0 3.0 583.4 40.5 457.1 439.8 6.0 10.0 13.0 371.0 403.0 26.0 3.0 732.3 45.8 557.9 536.9 6.0 10.0 14.0 285.0 368.0 26.0 3.0 579.3 42.4 448.4 431.5 6.0 10.0 15.0 339.0 266.0 26.0 3.0 456.9 38.7 356.4 342.6 6.0 10.0 16.0 362.0 166.0 25.0 3.0 293.5 32.9 226.0 215.9 6.0 10.0 17.0 - 30.0 25.0 3.0 28.4 25.1 24.0 18.5 6.0 10.0 18.0 - 4.0 25.0 3.0 3.8 23.5 3.2 - 6.0 10.0 19.0 - - 24.0 - 24.0 - - -											356.8
6.0 10.0 13.0 371.0 403.0 26.0 3.0 732.3 45.8 557.9 536.9 6.0 10.0 14.0 285.0 368.0 26.0 3.0 579.3 42.4 448.4 431.5 6.0 10.0 15.0 339.0 266.0 26.0 3.0 456.9 38.7 356.4 342.6 6.0 10.0 16.0 362.0 166.0 25.0 3.0 293.5 32.9 226.0 215.9 6.0 10.0 17.0 - 30.0 25.0 3.0 28.4 25.1 24.0 18.5 6.0 10.0 18.0 - 4.0 25.0 3.0 3.8 23.5 3.2 - 6.0 10.0 19.0 - - 24.0 3.0 - 24.0 - - -											
6.0 10.0 15.0 339.0 266.0 26.0 3.0 456.9 38.7 356.4 342.6 6.0 10.0 16.0 362.0 166.0 25.0 3.0 293.5 32.9 226.0 215.9 6.0 10.0 17.0 - 30.0 25.0 3.0 28.4 25.1 24.0 18.5 6.0 10.0 18.0 - 4.0 25.0 3.0 3.8 23.5 3.2 - 6.0 10.0 19.0 - - 24.0 3.0 - 24.0 - -											439.8
6.0 10.0 15.0 339.0 266.0 26.0 3.0 456.9 38.7 356.4 342.6 6.0 10.0 16.0 362.0 166.0 25.0 3.0 293.5 32.9 226.0 215.9 6.0 10.0 17.0 - 30.0 25.0 3.0 28.4 25.1 24.0 18.5 6.0 10.0 18.0 - 4.0 25.0 3.0 3.8 23.5 3.2 - 6.0 10.0 19.0 - - 24.0 3.0 - 24.0 - -											030.9 424 F
6.0 10.0 16.0 362.0 166.0 25.0 3.0 293.5 32.9 226.0 215.9 6.0 10.0 17.0 - 30.0 25.0 3.0 28.4 25.1 24.0 18.5 6.0 10.0 18.0 - 4.0 25.0 3.0 3.8 23.5 3.2 - 6.0 10.0 19.0 - - 24.0 3.0 - 24.0 - -											342 E
6.0 10.0 17.0 - 30.0 25.0 3.0 28.4 25.1 24.0 18.5 6.0 10.0 18.0 - 4.0 25.0 3.0 3.8 23.5 3.2 - 6.0 10.0 19.0 - - 24.0 3.0 - 24.0 - -											215 0
6.0 10.0 18.0 - 4.0 25.0 3.0 3.8 23.5 3.2 - 6.0 10.0 19.0 24.0 3.0 - 24.0											
6.0 10.0 19.0 24.0 3.0 - 24.0											
				-							
				-							

6.0 6.0 6.0	10.0	21.0 - 22.0 - 23.0 -	-	24.0 24.0 23.0	3.0 3.0 3.0	- - -	24.0 24.0 23.0	- - -	- - -
6.0 6.0	11.0	1.0 -	-	23.0 23.0	3.0 4.0	- -	23.0 23.0	-	-
6.0 6.0	11.0	2.0 -	-	23.0 23.0	4.0 5.0	-	23.0 23.0	-	-
6.0 6.0	11.0	4.0 - 5.0 -	2.0	23.0 24.0	5.0 5.0	1.9	23.0 22.6	1.6	-
6.0 6.0	11.0	6.0 - 7.0 - 8.0 -	9.0 22.0 77.0	24.0 25.0 25.0	5.0 5.0 4.0	8.5 20.9	22.8 24.1	7.3 17.7	2.0 12.3 55.5
6.0 6.0 6.0	11.0	9.0 13 10.0 4	.0 260.0	26.0 26.0 26.0	4.0 4.0 3.0	73.3 259.2 155.8	25.4 31.2 29.5	61.8 212.6 128.8	202.8 121.1
6.0 6.0	11.0	11.0 9 12.0 39	0 196.0	26.0 26.0 26.0	3.0 2.0	196.7 447.4	30.3 38.5	162.1 354.0	153.6 340.2
6.0 6.0	11.0	13.0 16 14.0 8	0 293.0	26.0 26.0 26.0	-	295.0 203.6	41.2 36.2	230.3 162.9	220.0 154.4
6.0 6.0	11.0	15.0 87 16.0 -		26.0 26.0	1.0 2.0	324.7 127.5	36.7 29.5	258.1 105.5	247.1 98.3
6.0 6.0	11.0	17.0 - 18.0 -	20.0 2.0	25.0 25.0	3.0 3.0	18.9 1.9	24.3 23.4	16.1 1.6	10.7
6.0 6.0	11.0	19.0 - 20.0 -	-	24.0 24.0	3.0 3.0		24.0 24.0	-	-
6.0 6.0	11.0	21.0 - 22.0 -	-	24.0 24.0	3.0 2.0	-	24.0 24.0		-
6.0 6.0		23.0 -	-	24.0 24.0	2.0 2.0	-	24.0 24.0	-	-
6.0 6.0		1.0 - 2.0 -	-	24.0 24.0	2.0 1.0	-	24.0 24.0	-	-
6.0 6.0	12.0	3.0 - 4.0 -	-	24.0 24.0	1.0 1.0	- -	24.0 24.0	-	-
6.0 6.0	12.0	5.0 327 6.0 -	93.0	24.0 25.0	1.0 1.0	29.8 87.6	22.6 26.0	25.5 73.7	19.9 67.1
6.0 6.0	12.0	7.0 125 8.0 818	0 96.0	26.0 27.0	2.0 1.0	277.6 639.3	33.0 48.6	222.5 473.1	212.5 455.4
6.0 6.0	12.0	9.0 834 10.0 863	0 123.0	27.0 28.0	1.0 1.0	805.5 926.0	55.6 61.0	580.6 649.6	558.8 625.0
6.0 6.0	12.0	11.0 875 12.0 848	.0 142.0	28.0 28.0	1.0 1.0	980.6 961.9	63.2 62.9	679.8 668.0	653.9 642.6
6.0 6.0	12.0	13.0 830 14.0 795	.0 131.0	28.0 28.0	1.0 1.0	881.5 743.7	60.4 55.9	620.1 534.0	596.7 514.0
6.0 6.0 6.0	12.0	15.0 737 16.0 642 17.0 470	.0 100.0	28.0 27.0 26.0	1.0 1.0 1.0	555.4 340.1 132.8	49.3 40.3 30.8	405.7 245.0 85.0	390.3 234.3 78.2
6.0 6.0	12.0	17.0 470 18.0 114 19.0 -		25.0 25.0 25.0	1.0 1.0 1.0	16.1	24.1 25.0	13.7	8.3
6.0 6.0	12.0	20.0 -	-	25.0 25.0 24.0	1.0	-	25.0 24.0	Ē	-
6.0 6.0	12.0	22.0 - 23.0 -	-	24.0 24.0 24.0	-	- -	24.0 24.0	-	-
6.0 6.0	13.0	1.0	-	24.0 24.0	-	- -	24.0 24.0	-	-
6.0 6.0		2.0 - 3.0 -	-	24.0 24.0	-	-	24.0 24.0		-
6.0 6.0		4.0 - 5.0 295	0 42.0	24.0 25.0	1.0 1.0	32.0	24.0 23.7	- 27.2	- 21.6
6.0 6.0	13.0	6.0 578 7.0 720	0 94.0	26.0 27.0	1.0 1.0	206.8 426.3	31.4 41.2	140.6 314.7	132.6 302.1
6.0 6.0	13.0	8.0 794 9.0 836	.0 118.0	28.0 29.0	-	635.4 805.7	55.3 63.4	453.4 556.0	436.3 535.1
6.0 6.0	13.0	10.0 861 11.0 872	0 127.0	29.0 29.0	-	925.6 980.2	68.2 70.6	622.9 650.7	599.3 626.0
6.0 6.0	13.0	12.0 850 13.0 836	.0 135.0	29.0 29.0	1.0	961.8 884.1	70.3 61.4	639.4 618.4	615.2 595.1
6.0 6.0	13.0	14.0 805 15.0 748	.0 115.0	29.0 28.0	1.0 1.0	746.7 558.4	56.9 49.5	533.0 407.6	513.1 392.1 234.4
6.0 6.0 6.0	13.0	16.0 654 17.0 482 18.0 125	.0 69.0	28.0 27.0 26.0	1.0 1.0 1.0	342.3 133.1 16.1	41.4 31.9 25.2	245.0 84.2 13.6	77.5 8.3
6.0 6.0	13.0	19.0 - 20.0 -		26.0 25.0	1.0 1.0	-	26.0 25.0		-
6.0 6.0	13.0	21.0 - 22.0 -	-	25.0 25.0	1.0 1.0	-	25.0 25.0	-	-
6.0 6.0	13.0	23.0 -	-	25.0 25.0	1.0 1.0	- -	25.0 25.0	-	-
6.0 6.0	14.0	1.0 - 2.0 -	-	25.0 24.0	1.0 1.0	-	25.0 24.0	-	-
6.0 6.0	14.0 14.0	3.0 - 4.0 -	-	24.0 24.0	1.0 1.0	- -	24.0 24.0	-	- -
6.0	14.0	5.0 303	0 41.0	25.0	1.0	31.7	23.7	27.0	21.4

6.0	14.0	6.0	578.0	76.0	26.0	1.0	206.4	31.4	140.2	132.3
6.0	14.0	7.0	715.0	97.0	27.0	1.0	426.3	41.2	314.8	302.2
6.0	14.0	8.0	790.0	111.0	28.0	-	635.1	55.3	453.3	436.2
6.0	14.0	9.0	852.0	111.0	29.0	_	811.4	63.6	559.3	538.3
6.0	14.0	10.0	876.0	117.0	30.0	_	931.4	69.3	622.6	599.1
6.0	14.0	11.0	540.0	339.0	31.0	_	874.4	69.2	585.4	563.4
6.0	14.0	12.0	529.0	335.0	31.0		853.1	68.2	574.4	552.9
6.0	14.0	13.0	820.0	148.0	31.0	-		69.1	593.3	
						-	886.9			571.0
6.0	14.0	14.0	775.0	145.0	30.0	1.0	742.9	57.8	527.9	508.1
6.0	14.0	15.0	698.0	139.0	29.0	1.0	552.2	50.2	402.1	386.8
6.0	14.0	16.0	586.0	119.0	29.0	2.0	338.0	39.8	245.9	235.3
6.0	14.0	17.0	398.0	84.0	28.0	1.0	133.9	32.9	88.7	81.8
6.0	14.0	18.0	73.0	22.0	27.0	1.0	18.5	26.3	15.6	10.2
6.0	14.0	19.0	-	<u>-</u>	26.0	1.0	<u>-</u>	26.0	-	-
6.0	14.0	20.0	_	_	26.0	1.0	_	26.0		_
6.0	14.0	21.0	-		26.0	1.0	-	26.0		-
6.0	14.0	22.0	-	-	26.0	1.0	-	26.0	-	•
6.0	14.0	23.0	-		26.0	1.0		26.0		-
6.0	15.0	-	-	-	26.0	1.0	-	26.0	-	-
6.0	15.0	1.0	-		26.0	1.0		26.0		-
6.0	15.0	2.0	_	_	25.0	1.0	-	25.0	_	_
6.0	15.0	3.0	_		25.0	1.0		25.0	_	_
6.0	15.0	4.0	_		25.0	1.0	_	25.0		_
6.0	15.0	5.0	200.0	48.0	26.0	1.0	36.9	25.0	31.1	
										25.5
6.0	15.0	6.0	475.0	99.0	27.0	1.0	202.3	32.3	141.4	133.4
6.0	15.0	7.0	628.0	129.0	28.0	1.0	415.5	41.8	307.6	295.2
6.0	15.0	8.0	715.0	149.0	29.0	1.0	622.3	50.7	455.9	438.8
6.0	15.0	9.0	715.0	194.0	30.0	-	784.5	63.5	541.1	520.8
6.0	15.0	10.0	368.0	395.0	31.0	_	735.3	63.9	507.5	488.5
6.0	15.0	11.0	216.0	466.0	31.0	_	673.1	61.6	471.0	453.3
6.0	15.0	12.0	753.0	208.0	31.0	_	940.3	69.7	627.4	603.7
6.0	15.0	13.0	735.0	200.0	31.0	1.0	864.7	62.6	600.8	578.2
6.0	15.0	14.0	363.0	347.0	31.0	1.0	619.3	54.8	448.5	431.5
6.0	15.0	15.0	361.0	262.0	30.0	1.0	467.1	47.8	347.6	334.0
6.0	15.0	16.0	-	9.0	29.0	1.0	8.5	30.3	7.0	1.8
6.0	15.0	17.0	56.0	98.0	28.0	1.0	98.1	29.4	78.3	71.7
6.0	15.0	18.0	_	15.0	27.0	1.0	14.2	25.9	12.0	6.6
6.0	15.0	19.0	_	-	27.0	1.0	<u>-</u>	27.0	<u>-</u>	
6.0	15.0	20.0			27.0	1.0	_	27.0		
									-	
6.0	15.0	21.0	-		27.0	1.0	-	27.0	-	-
6.0	15.0	22.0	-	-	26.0	1.0		26.0	-	-
6.0	15.0	23.0	-	-	26.0	1.0	-	26.0	-	-
6.0	16.0	-	-	-	26.0	1.0	-	26.0	-	-
6.0	16.0	1.0	-	-	26.0	1.0	-	26.0	-	-
6.0	16.0	2.0	-		25.0	1.0	-	25.0	-	-
6.0	16.0	3.0	_	_	25.0	1.0	<u>-</u>	25.0	_	_
6.0	16.0	4.0	_		25.0	1.0		25.0	_	_
6.0	16.0	5.0	193.0	48.0	25.0	1.0	36.9	23.9	31.3	25.6
6.0	16.0	6.0	490.0	96.0	26.0	1.0		31.3		133.6
			669.0		27.0		202.6		141.6	298.4
6.0	16.0	7.0		114.0		1.0	419.3	40.9	310.9	
6.0	16.0	8.0	775.0	121.0	28.0	1.0	634.0	50.1	465.5	448.0
6.0	16.0	9.0	839.0	123.0	29.0	1.0	811.4	57.7	578.3	556.6
6.0	16.0	10.0	874.0	123.0	30.0	1.0	934.6	63.1	647.7	623.2
6.0	16.0	11.0	890.0	123.0	30.0	1.0	993.4	65.4	679.8	653.9
6.0	16.0	12.0	860.0	143.0	31.0	1.0	974.3	66.1	664.2	639.0
6.0	16.0	13.0	851.0	135.0	31.0	1.0	898.1	63.8	619.9	596.5
6.0	16.0	14.0	825.0	124.0	31.0	1.0	759.1	59.3	534.9	514.8
6.0	16.0	15.0	777.0	110.0	30.0	1.0	572.1	51.9	412.2	396.6
										238.2
6.0	16.0	16.0	692.0	91.0	30.0	1.0	352.7	43.8	248.9	
6.0	16.0	17.0	529.0	66.0	29.0	1.0	138.8	34.2	85.4	78.6
6.0	16.0	18.0	165.0	22.0	27.0	1.0	16.9	26.3	14.2	8.9
6.0	16.0	19.0	-	-	26.0	1.0	-	26.0	-	-
6.0	16.0	20.0	-		26.0	1.0	-	26.0	-	-
6.0	16.0	21.0	_	-	25.0	1.0	-	25.0	_	_
6.0	16.0	22.0	_	<u>-</u>	24.0	1.0	_	24.0	-	_
6.0	16.0	23.0		_	24.0	1.0	_	24.0	_	_
6.0	17.0	-			23.0	1.0	- -	23.0		
			-				· ·			-
6.0	17.0	1.0	-	-	23.0	1.0	-	23.0	-	-
6.0	17.0	2.0	-	-	22.0	1.0	-	22.0	-	-
6.0	17.0	3.0	-		22.0	1.0	-	22.0	-	-
6.0	17.0	4.0	-	-	22.0	1.0	-	22.0	-	-
6.0	17.0	5.0	112.0	44.0	23.0	1.0	35.9	21.8	30.8	25.1
6.0	17.0	6.0	497.0	94.0	24.0	1.0	203.0	29.3	143.0	134.9
6.0	17.0	7.0	618.0	131.0	25.0	-	411.8	42.5	303.7	291.4
6.0	17.0	8.0	694.0	158.0	27.0	_	616.2	53.6	444.5	427.7
6.0	17.0	9.0	705.0	198.0	28.0	_	779.4	61.5	543.9	523.5
						-				525.5
6.0	17.0	10.0	426.0	395.0	29.0	-	792.4	63.9	547.1	526.6
6.0	17.0	11.0	503.0	336.0	30.0	-	834.8	66.2	568.7	547.4
6.0	17.0	12.0	54.0	446.0	30.0	-	488.4	55.2	354.2	340.4
6.0	17.0	13.0	-	123.0	30.0	-	117.4	38.7	92.8	85.9
6.0	17.0	14.0	-	84.0	30.0	1.0	80.0	31.6	65.5	59.2

6.0	17.0	15.0	_	85.0	29.0	1.0	80.9	30.3	66.6	60.2
6.0	17.0	16.0	1.0	146.0	28.0	1.0	138.1	31.4	113.2	105.8
6.0	17.0	17.0	-	3.0	27.0		2.8	25.8	2.4	-
6.0		18.0	_	-	27.0	-			-	_
	17.0		-			-	-	27.0	-	-
6.0	17.0	19.0	-	-	26.0	-	-	26.0	-	-
6.0	17.0	20.0	-		26.0	-		26.0	-	-
6.0	17.0	21.0	-		25.0	-		25.0		-
6.0	17.0	22.0	-	<u>-</u>	25.0	-	_	25.0	_	_
6.0	17.0	23.0	_		24.0	_		24.0		_
6.0	18.0	-			24.0			24.0		
			-			- 4.0				
6.0	18.0	1.0	-	-	23.0	1.0	-	23.0	-	-
6.0	18.0	2.0	-		23.0	1.0		23.0		-
6.0	18.0	3.0	-	-	23.0	1.0	-	23.0	-	-
6.0	18.0	4.0	-	<u>-</u>	23.0	1.0	<u>-</u>	23.0	<u>-</u>	-
6.0	18.0	5.0	_	5.0	23.0	1.0	4.7	20.6	4.1	_
6.0	18.0	6.0	20.0	120.0	23.0	1.0	116.6	24.9	97.6	90.5
6.0	18.0	7.0	-	84.0	24.0	1.0	79.9	25.3	67.4	61.0
6.0	18.0	8.0	-	120.0	24.0	1.0	114.2	26.3	95.9	88.9
6.0	18.0	9.0	24.0	318.0	24.0	1.0	323.7	34.1	261.8	250.7
6.0	18.0	10.0	452.0	392.0	24.0	1.0	813.4	51.4	601.7	579.1
6.0	18.0	11.0	398.0	431.0	24.0	2.0	820.8	49.7	613.0	589.9
6.0	18.0	12.0	161.0	498.0	25.0	2.0	648.3	45.9	494.1	475.5
6.0	18.0	13.0	53.0	411.0	26.0	2.0	447.1	40.4	350.4	336.7
6.0	18.0	14.0	498.0	291.0	27.0	2.0	673.0	47.0	507.7	488.6
6.0	18.0	15.0	475.0	224.0	27.0	2.0	501.7	43.1	381.5	366.8
6.0	18.0	16.0	618.0	116.0	27.0	1.0	349.4	40.3	253.4	242.5
6.0	18.0	17.0	471.0	77.0	26.0	1.0	141.3	31.2	91.6	84.7
6.0	18.0	18.0	130.0	23.0	24.0	1.0	17.7	23.2	15.1	9.7
6.0	18.0	19.0	-	=	24.0	1.0	-	24.0	-	-
									_	_
6.0	18.0	20.0	-	-	23.0	1.0	-	23.0	-	-
6.0	18.0	21.0	-		22.0	1.0		22.0		-
6.0	18.0	22.0	-	-	22.0	1.0	-	22.0	-	-
6.0	18.0	23.0	-	<u>-</u>	21.0	1.0	<u>-</u>	21.0	<u>-</u>	-
6.0	19.0	-	_	<u>-</u>	21.0	1.0	<u>-</u>	21.0	-	_
6.0	19.0	1.0			21.0	1.0		21.0		
6.0								20.0		
	19.0	2.0	-	-	20.0	1.0			-	-
6.0	19.0	3.0	-	-	20.0	1.0	-	20.0	-	-
6.0	19.0	4.0	-	-	20.0	1.0	-	20.0	-	-
6.0	19.0	5.0	291.0	44.0	21.0	1.0	33.7	19.6	29.2	23.6
6.0	19.0	6.0	578.0	84.0	23.0	1.0	211.4	28.5	146.3	138.1
6.0	19.0	7.0	723.0	106.0	24.0	1.0	434.6	38.5	325.2	312.3
6.0	19.0	8.0	804.0	121.0	26.0	1.0	651.3	48.8	481.4	463.3
										403.3
6.0	19.0	9.0	835.0	141.0	27.0	1.0	827.2	56.4	593.9	571.5
6.0	19.0	10.0	860.0	148.0	28.0	1.0	944.7	61.7	660.3	635.2
6.0	19.0	11.0	869.0	152.0	28.0	1.0	1,000.0	63.8	690.7	664.4
6.0	19.0	12.0	849.0	162.0	29.0	1.0	988.4	64.7	679.4	653.5
6.0	19.0	13.0	826.0	160.0	29.0	1.0	905.2	62.2	630.5	606.7
6.0	19.0	14.0	781.0	155.0	29.0	1.0	759.1	63.6	522.2	502.7
						-				
6.0	19.0	15.0	705.0	146.0	29.0	-	565.5	56.3	398.7	383.5
6.0	19.0	16.0	-	52.0	28.0	-	49.4	34.8	39.8	33.9
6.0	19.0	17.0	391.0	91.0	27.0		141.0	31.6	95.3	88.3
6.0	19.0	18.0	76.0	23.0	26.0	-	19.3	26.1	16.3	10.9
6.0	19.0	19.0	-		25.0	-		25.0		_
6.0	19.0	20.0	_	<u>-</u>	24.0	_	<u>-</u>	24.0	-	_
6.0	19.0	21.0	_	_	24.0	1.0	_	24.0		_
6.0	19.0	22.0	=	-	23.0	1.0	-	23.0		=
			-							
6.0	19.0	23.0	-	-	23.0	1.0	-	23.0	-	-
6.0	20.0	5.2	-	-	22.0	1.0	-	22.0		-
6.0	20.0	1.0	-	-	22.0	1.0	-	22.0	-	-
6.0	20.0	2.0	-	-	22.0	1.0	-	22.0	-	-
6.0	20.0	3.0	-	-	22.0	2.0	-	22.0	-	-
6.0	20.0	4.0	_	_	22.0	2.0	_	22.0	<u>-</u>	_
			179 A	50.0			40.4		34.0	20.0
6.0	20.0	5.0	178.0	50.0	22.0	2.0	40.4	21.2	34.8	29.0
6.0	20.0	6.0	452.0	109.0	24.0	2.0	203.9	28.5	146.5	138.3
6.0	20.0	7.0	615.0	140.0	25.0	2.0	417.5	36.7	317.3	304.6
6.0	20.0	8.0	709.0	160.0	26.0	2.0	626.5	44.6	473.9	456.1
6.0	20.0	9.0	766.0	171.0	27.0	2.0	800.0	51.3	590.4	568.2
6.0	20.0	10.0	804.0	173.0	27.0	2.0	922.3	55.3	668.0	642.5
6.0	20.0	11.0	823.0	171.0	28.0	2.0	980.4	58.3	698.8	672.1
6.0	20.0	12.0	457.0	367.0	28.0	2.0	814.8	54.0	594.6	572.3
										312.3
6.0	20.0	13.0	52.0	409.0	28.0	2.0	444.3	43.0	343.6	330.2
6.0	20.0	14.0	711.0	187.0	28.0	2.0	738.0	49.8	547.9	527.4
6.0	20.0	15.0	589.0	195.0	28.0	1.0	544.2	48.9	400.4	385.1
6.0	20.0	16.0	176.0	206.0	27.0	1.0	261.1	37.6	201.7	192.2 76.0 8.3
6.0	20.0	17.0	82.0	102.0	26.0	1.0	105.1	29.3	82.7	76.0
6.0	20.0	18.0	-	17.0	25.0	1.0	16.1	23.9	13.7	8.3
6.0	20.0	19.0	_	-	25.0	1.0	-	25.0	-	-
			-				•			-
6.0	20.0	20.0	-	-	24.0	1.0	-	24.0	-	-
6.0	20.0	21.0	-	-	24.0	1.0	-	24.0		-
6.0	20.0	22.0	-	-	24.0	1.0	-	24.0	-	-
6.0	20.0	23.0	-	-	24.0	1.0	-	24.0	-	-

6.0	21.0 21.0	1.0	-	Ī	23.0 23.0	1.0	Ī	23.0 23.0	- -	-
6.0 6.0	21.0 21.0	2.0 3.0	-	-	22.0 22.0	1.0 1.0	-	22.0 22.0	-	-
6.0 6.0	21.0 21.0	4.0 5.0	206.0	47.0	22.0 23.0	1.0 1.0	36.2	22.0 21.8	31.0	25.3
6.0 6.0	21.0 21.0	6.0 7.0	491.0 650.0	96.0 122.0	24.0 25.0	2.0 2.0	200.7 415.6	28.4 36.6	141.8 314.9	133.8 302.3
6.0 6.0	21.0 21.0	8.0 9.0	739.0 741.0	139.0 181.0	26.0 27.0	1.0 1.0	625.3 790.4	47.9 55.1	464.7 571.5	447.2 550.1
6.0 6.0	21.0 21.0	10.0 11.0	771.0 783.0	191.0 197.0	28.0 28.0	1.0 1.0	909.1 966.6	60.4 62.7	639.9 672.0	615.7 646.4
6.0 6.0	21.0 21.0	12.0 13.0	208.0 235.0	494.0 431.0	28.0 28.0	1.0 1.0	689.9 638.5	54.7 51.7	501.7 471.7	482.9 454.0
6.0	21.0	14.0	708.0	189.0	28.0	1.0	738.1	54.5	534.4	514.4
6.0 6.0	21.0 21.0	15.0 16.0	645.0 277.0	169.0 194.0	28.0 27.0	1.0 1.0	553.1 289.8	49.2 38.6	405.8 220.0	390.3 210.0
6.0 6.0	21.0 21.0	17.0 18.0	214.0 8.0	97.0 22.0	26.0 25.0	1.0 1.0	120.4 20.7	30.1 24.2	88.2 17.5	81.4 12.1
6.0 6.0	21.0 21.0	19.0 20.0	-	• •	25.0 25.0	1.0 1.0	- -	25.0 25.0	-	-
6.0 6.0	21.0 21.0	21.0 22.0	-	-	25.0 25.0	-	-	25.0 25.0	-	-
6.0 6.0	21.0 22.0	23.0	-	-	24.0 24.0	-	-	24.0 24.0	-	-
6.0	22.0	1.0	-	-	24.0		-	24.0	-	-
6.0 6.0	22.0 22.0	2.0 3.0	-	-	23.0 22.0	1.0	-	23.0 22.0	-	-
6.0 6.0	22.0 22.0	4.0 5.0	186.0	48.0	22.0 23.0	1.0 1.0	38.9	22.0 21.9	33.4	27.6
6.0 6.0	22.0 22.0	6.0 7.0	455.0 612.0	106.0 139.0	24.0 26.0	1.0 1.0	201.1 414.2	29.2 39.7	143.4 309.8	135.3 297.4
6.0 6.0	22.0 22.0	8.0 9.0	708.0 741.0	158.0 186.0	27.0 28.0	1.0 1.0	623.0 795.0	48.8 56.2	461.0 571.4	443.7 550.0
6.0 6.0	22.0 22.0	10.0 11.0	771.0 788.0	196.0 198.0	29.0 29.0	1.0 1.0	913.7 972.4	61.5 63.8	639.2 671.8	615.0 646.2
6.0	22.0	12.0	704.0	257.0	30.0 30.0	-	946.0	70.7	627.5	603.8
6.0 6.0	22.0 22.0	13.0 14.0	687.0 646.0	245.0 229.0	30.0	-	867.5 729.5	68.1 63.3	583.8 503.0	561.9 484.2
6.0 6.0	22.0 22.0	15.0 16.0	638.0 520.0	173.0 147.0	30.0 29.0	-	553.2 341.4	56.6 46.9	390.1 242.2	375.2 231.7
6.0 6.0	22.0 22.0	17.0 18.0	329.0 55.0	101.0 23.0	28.0 27.0	-	141.3 19.3	36.2 27.1	96.5 16.2	89.5 10.8
6.0 6.0	22.0 22.0	19.0 20.0	-	-	27.0 26.0	1.0 1.0	-	27.0 26.0	-	
6.0 6.0	22.0 22.0	21.0 22.0	-	1	25.0 25.0	1.0 1.0	- -	25.0 25.0	-	
6.0 6.0	22.0 23.0	23.0	-	-	24.0	1.0 1.0	-	24.0 24.0	-	-
6.0	23.0	1.0	-	-	24.0 23.0	1.0	-	23.0	-	-
6.0 6.0	23.0 23.0	2.0 3.0	-		23.0 23.0	1.0 1.0	-	23.0 23.0	-	-
6.0 6.0	23.0 23.0	4.0 5.0	118.0	50.0	23.0 23.0	1.0 1.0	40.4	23.0 22.0	34.6	28.8
6.0 6.0	23.0 23.0	6.0 7.0	352.0 515.0	128.0 175.0	25.0 27.0	1.0 1.0	197.4 402.2	30.1 40.3	144.9 302.0	136.8 289.8
6.0 6.0	23.0 23.0	8.0 9.0	620.0 673.0	202.0 227.0	28.0 29.0	1.0 1.0	607.5 779.4	49.2 56.6	449.2 559.1	432.3 538.1
6.0 6.0	23.0 23.0	10.0 11.0	708.0 731.0	239.0 238.0	30.0 30.0	1.0	900.9 960.6	62.0 70.8	628.5 637.1	604.7 613.0
6.0 6.0	23.0 23.0	12.0 13.0	685.0 669.0	269.0 255.0	30.0 30.0	-	939.5 861.3	70.4 67.9	624.2 580.5	600.6 558.6
6.0	23.0	14.0	629.0	237.0	30.0	-	724.5	63.1	500.2	481.4
6.0 6.0	23.0 23.0	15.0 16.0	561.0 456.0	209.0 168.0	30.0 29.0	1.0	540.6 336.6	56.1 42.1	383.0 246.6	368.3 236.0
6.0 6.0	23.0 23.0	17.0 18.0	289.0 54.0	108.0 22.0	28.0 27.0	1.0 1.0	142.1 18.5	33.2 26.4	100.7 15.6	93.6 10.2
6.0 6.0	23.0 23.0	19.0 20.0	-	• •	26.0 25.0	1.0 1.0	- -	26.0 25.0	-	-
6.0 6.0	23.0 23.0	21.0 22.0	-	-	25.0 25.0	1.0 1.0	-	25.0 25.0	-	-
6.0 6.0	23.0 24.0	23.0	-	- -	25.0 24.0	1.0 1.0	- -	25.0 24.0	-	-
6.0 6.0	24.0 24.0	1.0 2.0	-	-	24.0 24.0	1.0 1.0	-	24.0 24.0	-	-
6.0 6.0	24.0 24.0 24.0	3.0	-		23.0 23.0	1.0 1.0 1.0	-	23.0 23.0	-	-
6.0	24.0	4.0 5.0	113.0	49.0	24.0	1.0	39.6	23.0	33.8	28.1
6.0 6.0	24.0 24.0	6.0 7.0	332.0 480.0	132.0 188.0	25.0 27.0	1.0 1.0	196.0 398.1	30.1 40.1	144.8 299.9	136.7 287.7
6.0	24.0	8.0	569.0	228.0	28.0	1.0	597.3	48.8	442.8	426.1

6.0	24.0	9.0	566.0	294.0	29.0	1.0	755.8	55.8	544.8	524.3
6.0	24.0	10.0	597.0	316.0	29.0	1.0	872.2	60.1	615.1	591.9
6.0	24.0	11.0	613.0	324.0	30.0	1.0	928.6	63.3	643.5	619.1
6.0 6.0	24.0 24.0	12.0 13.0	226.0 57.0	491.0 416.0	30.0 29.0	1.0 2.0	704.6 455.8	56.8 43.9	506.3 350.9	487.3 337.2
6.0	24.0	14.0	9.0	219.0	29.0	1.0	215.9	37.5	171.7	162.9
6.0	24.0	15.0	307.0	278.0	28.0	1.0	452.4	43.1	345.7	332.2
6.0	24.0	16.0	519.0	135.0	28.0	1.0	330.7	40.4	242.2	231.6
6.0	24.0	17.0	292.0	109.0	27.0	-	143.7	35.1	100.8	93.7
6.0	24.0	18.0	51.0	23.0	26.0	-	19.3	26.1	16.2	10.8
6.0	24.0	19.0	-		26.0	-	-	26.0	-	-
6.0	24.0	20.0	-	-	26.0	-	-	26.0	-	-
6.0	24.0	21.0	-	-	25.0	-	-	25.0	-	-
6.0	24.0	22.0	-		24.0	1.0	-	24.0		-
6.0	24.0	23.0	-		24.0	1.0	-	24.0		-
6.0	25.0	-	-	-	23.0	1.0	-	23.0	-	-
6.0 6.0	25.0 25.0	1.0 2.0	-		23.0 23.0	1.0 2.0	-	23.0 23.0		-
6.0	25.0	3.0			23.0	2.0		23.0		-
6.0	25.0	4.0	-		23.0	2.0		23.0		_
6.0	25.0	5.0	117.0	49.0	23.0	2.0	39.6	22.2	33.9	28.2
6.0	25.0	6.0	374.0	121.0	24.0	2.0	195.1	28.2	143.2	135.1
6.0	25.0	7.0	552.0	157.0	26.0	2.0	401.2	37.2	304.9	292.6
6.0	25.0	8.0	663.0	176.0	27.0	2.0	609.8	45.1	460.3	443.0
6.0	25.0	9.0	730.0	187.0	27.0	2.0	786.1	50.8	581.6	559.8
6.0	25.0	10.0	441.0	389.0	28.0	2.0	799.5	52.8	586.9	564.9
6.0	25.0	11.0	785.0	193.0	28.0	2.0	964.7	57.4	691.0	664.6
6.0	25.0	12.0	768.0	202.0	29.0	2.0	950.1	58.5	676.2	650.4
6.0	25.0	13.0	765.0	185.0	29.0	2.0	877.0	56.5	630.6	606.7
6.0	25.0	14.0	742.0	165.0	29.0	1.0	741.6	56.7	530.3	510.5
6.0	25.0	15.0	692.0	143.0	29.0	1.0	558.0	50.4	406.5	391.0
6.0 6.0	25.0 25.0	16.0 17.0	600.0 432.0	117.0 81.0	28.0 27.0	1.0 1.0	347.0 140.7	41.6 32.2	250.8 92.6	240.0 85.7
6.0	25.0	18.0	107.0	25.0	26.0	1.0	19.3	25.3	16.3	10.9
6.0	25.0	19.0	-	-	25.0	1.0	-	25.0	-	-
6.0	25.0	20.0	_	_	25.0	1.0	_	25.0	_	_
6.0	25.0	21.0	_	-	24.0	1.0	_	24.0	_	_
6.0	25.0	22.0	_	-	24.0	2.0	_	24.0	_	_
6.0	25.0	23.0	-	-	23.0	2.0	-	23.0	_	_
6.0	26.0	-	-		23.0	2.0	-	23.0	_	-
6.0	26.0	1.0	-		22.0	2.0	-	22.0	-	-
6.0	26.0	2.0	-	-	22.0	2.0	-	22.0	-	-
6.0	26.0	3.0	-	-	21.0	1.0	-	21.0	-	-
6.0	26.0	4.0			21.0	1.0		21.0		
6.0	26.0	5.0	232.0	43.0	22.0	1.0	33.0	20.6	28.5	22.9
6.0	26.0	6.0	191.0	125.0	23.0	1.0	157.5	26.6	122.2	114.6
6.0 6.0	26.0	7.0 8.0	36.0 330.0	203.0 292.0	24.0 25.0	1.0 1.0	208.0	30.3 41.6	170.4 385.7	161.7 370.9
6.0	26.0 26.0	9.0	805.0	140.0	26.0	1.0	499.2 799.3	53.8	581.9	560.0
6.0	26.0	10.0	827.0	150.0	27.0	1.0	914.8	59.7	646.5	622.0
6.0	26.0	11.0	406.0	427.0	27.0	1.0	824.7	57.6	590.2	568.0
6.0	26.0	12.0	345.0	453.0	28.0	_	787.2	63.0	546.2	525.7
6.0	26.0	13.0	319.0	429.0	28.0	-	712.8	60.4	501.8	483.0
6.0	26.0	14.0	718.0	180.0	28.0	-	739.2	60.8	516.9	497.5
6.0	26.0	15.0	665.0	156.0	28.0	-	555.0	54.8	395.0	379.9
6.0	26.0	16.0	575.0	125.0	28.0	-	345.3	46.1	244.7	234.1
6.0	26.0	17.0	420.0	84.0	27.0	1.0	141.8	32.2	94.1	87.2
6.0	26.0	18.0	111.0	25.0	26.0	1.0	19.3	25.3	16.3	10.9
6.0	26.0	19.0 20.0	-	- -	25.0 25.0	-		25.0 25.0	-	-
6.0 6.0	26.0 26.0	21.0	-		25.0			25.0		-
6.0	26.0	22.0	-		25.0			25.0		-
6.0	26.0	23.0	_		25.0	_	_	25.0	_	_
6.0	27.0	-	_	_	25.0	<u>-</u>	_	25.0	_	_
6.0	27.0	1.0	-	-	24.0	-	-	24.0	-	-
6.0	27.0	2.0	-	<u>-</u>	24.0	-	-	24.0	-	-
6.0	27.0	3.0	-	-	24.0	-	-	24.0	-	-
6.0	27.0	4.0	-	-	24.0	-	-	24.0	-	-
6.0	27.0	5.0	278.0	37.0	24.0	-	28.5	21.5	24.5	18.9
6.0	27.0	6.0	529.0	80.0	26.0	-	192.6	32.6	130.3	122.5
6.0	27.0	7.0	323.0	203.0	27.0	-	339.0	41.6	255.7	244.8
6.0	27.0	8.0	305.0	303.0	28.0	-	493.3	49.7	365.6	351.4
6.0 6.0	27.0 27.0	9.0 10.0	440.0 470.0	330.0 385.0	28.0 29.0	1.0	687.5 822.4	57.6 58.3	490.7 586.0	472.3 564.0
6.0	27.0	11.0	470.0 457.0	425.0	29.0	1.0	822.4 876.3	60.5	616.8	593.5
6.0	27.0	12.0	462.0	351.0	29.0	1.0	805.1	58.7	572.6	551.1
6.0	27.0	13.0	557.0	338.0	28.0	1.0	842.4	58.5	599.2	576.7
6.0	27.0	14.0	248.0	380.0	28.0	1.0	565.0	50.2	420.0	404.0
6.0	27.0	15.0	174.0	299.0	27.0	1.0	391.3	42.1	301.9	289.6
6.0	27.0	16.0	91.0	197.0	27.0	1.0	220.4	35.2	174.2	165.4
6.0	27.0	17.0	72.0	103.0	26.0	1.0	105.9	29.1	84.0	77.2

6.0	27.0	18.0	_	20.0	26.0	1.0	19.0	25.1	16.0	10.6
6.0	27.0	19.0		-	26.0	1.0	-	26.0	-	-
			-				-		-	-
6.0	27.0	20.0	-	-	25.0	1.0	-	25.0	-	-
6.0	27.0	21.0	-	-	25.0	1.0	-	25.0	-	-
6.0	27.0	22.0	-	-	25.0	1.0	-	25.0	-	-
6.0	27.0	23.0	-	-	25.0	1.0	-	25.0	-	-
6.0	28.0	_	-	-	25.0	1.0	_	25.0	_	_
6.0	28.0	1.0	_	_	25.0	1.0	_	25.0	_	_
6.0	28.0	2.0			25.0	1.0		25.0		_
			_							-
6.0	28.0	3.0	-	-	25.0	1.0	-	25.0	-	-
6.0	28.0	4.0	-	•	25.0	-		25.0	-	-
6.0	28.0	5.0	-	15.0	25.0	-	14.2	21.9	12.2	6.9
6.0	28.0	6.0	-	74.0	26.0	1.0	70.1	26.3	58.9	52.6
6.0	28.0	7.0	21.0	190.0	27.0	1.0	188.8	32.1	153.6	145.3
6.0	28.0	8.0	37.0	281.0	27.0	1.0	293.1	36.5	233.9	223.6
6.0	28.0	9.0	150.0	409.0	27.0	1.0	521.2	44.8	399.0	383.8
6.0	28.0	10.0	25.0	355.0	27.0	1.0	368.6	41.1	288.0	276.1
6.0	28.0	11.0	129.0	498.0	27.0	1.0	619.6	48.4	466.0	448.4
6.0	28.0	12.0	192.0	496.0	26.0	1.0	677.1	50.6	503.3	484.4
6.0	28.0	13.0	225.0	453.0	26.0	2.0	648.0	46.3	492.6	474.1
6.0	28.0	14.0	17.0	276.0	26.0	2.0	276.7	35.4	222.2	212.2
6.0	28.0	15.0	4.0	182.0	26.0	2.0	175.3	30.8	144.1	136.0
6.0	28.0	16.0	13.0	164.0	25.0	1.0	159.6	29.7	131.5	123.7
6.0	28.0	17.0	10.0	94.0	25.0	1.0	89.0	27.0	74.0	67.4
6.0	28.0	18.0	-	16.0	25.0	1.0	15.2	23.8	12.9	7.5
6.0	28.0	19.0	-	<u>-</u>	25.0	1.0		25.0	_	-
6.0	28.0	20.0	-	-	25.0	1.0	-	25.0	_	_
6.0	28.0	21.0	_	_	25.0	1.0	_	25.0	_	_
			_		25.0					-
6.0	28.0	22.0	-	-		1.0	-	25.0	-	-
6.0	28.0	23.0	-	-	25.0	1.0		25.0	-	-
6.0	29.0	-	-	-	25.0	1.0	-	25.0	-	-
6.0	29.0	1.0	-	-	25.0	2.0	_	25.0	_	_
6.0	29.0	2.0	_	_	25.0	2.0		25.0	_	_
6.0	29.0	3.0			24.0	1.0	_	24.0		_
6.0	29.0	4.0	-	-	24.0	1.0	.1.	24.0	-	-
6.0	29.0	5.0	-	16.0	25.0	1.0	15.1	23.1	12.9	7.6
6.0	29.0	6.0	-	36.0	25.0	1.0	34.1	23.9	29.0	23.3
6.0	29.0	7.0	-	50.0	25.0	1.0	47.5	24.6	40.2	34.3
6.0	29.0	8.0	_	86.0	25.0	1.0	81.9	25.9	68.9	62.4
6.0	29.0	9.0	1.0	145.0	25.0	2.0	139.1	27.7	116.0	108.6
6.0	29.0	10.0	4.0	158.0	26.0	2.0	154.8	29.5	128.0	120.3
6.0	29.0	11.0	19.0	334.0	26.0	2.0	339.9	35.2	273.5	262.1
6.0	29.0	12.0	64.0	458.0	26.0	2.0	510.4	41.0	398.9	383.7
6.0	29.0	13.0	24.0	343.0	26.0	2.0	354.9	37.1	282.8	271.1
6.0	29.0	14.0	9.0	216.0	26.0	2.0	213.1	32.2	173.9	165.1
6.0	29.0	15.0	86.0	291.0	26.0	2.0	329.3	35.1	263.8	252.7
6.0	29.0	16.0	107.0	199.0	25.0	2.0	229.3	31.6	184.1	175.0
6.0	29.0	17.0	172.0	102.0	25.0	1.0	119.5	28.6	90.3	83.4
6.0	29.0	18.0	24.0	23.0	24.0	1.0	20.6	23.1	17.6	12.1
6.0	29.0	19.0	-	-	24.0	1.0	-	24.0	-	-
6.0	29.0	20.0	-	-	24.0	1.0	-	24.0	_	-
6.0	29.0	21.0	_	<u>-</u>	24.0	1.0	<u>-</u>	24.0	_	_
6.0	29.0	22.0	_	_	24.0	1.0	_	24.0	_	_
6.0	29.0	23.0			24.0	1.0		24.0		
			_							-
6.0	30.0		-	-	24.0	1.0	-	24.0	-	-
6.0	30.0	1.0	-	-	24.0	1.0	-	24.0	-	-
6.0	30.0	2.0	-	-	24.0	1.0	-	24.0	-	-
6.0	30.0	3.0	-	-	24.0	1.0	-	24.0	-	-
6.0	30.0	4.0	-	-	24.0	-	-	24.0	-	-
6.0	30.0	5.0	281.0	36.0	25.0	_	27.8	22.5	23.7	18.2
6.0	30.0	6.0	568.0	70.0	26.0	1.0	190.4	30.8	127.6	119.9
6.0	30.0	7.0	698.0	93.0	27.0	1.0	405.9	40.4	299.7	287.5
6.0	30.0	8.0	46.0	290.0	27.0	1.0	307.5	38.3	243.1	232.5
6.0	30.0	9.0	813.0	120.0	27.0	1.0	782.5	53.2	571.2	549.8
6.0	30.0	10.0	841.0	126.0	28.0	1.0	904.5	60.3	637.2	613.1
6.0	30.0	11.0	247.0	492.0	28.0	1.0	733.9	55.7	530.6	510.7
6.0	30.0	12.0	440.0	420.0	28.0	2.0	851.4	54.1	621.1	597.6
6.0	30.0	13.0	596.0	267.0	28.0	2.0	809.9	53.4	592.6	570.3
6.0	30.0	14.0	798.0	122.0	28.0	1.0	743.1	55.5	534.9	514.8
6.0	30.0	15.0	676.0	154.0	28.0	1.0	561.8	49.5	411.5	514.8 395.8
										393.8
6.0	30.0	16.0	657.0	93.0	27.0	1.0	348.7	40.6	251.8	241.0
6.0	30.0	17.0	235.0	97.0	26.0	1.0	125.6	30.6	91.1	84.2
6.0	30.0	18.0	87.0	24.0	28.0	1.0	20.1	27.3	16.8	11.4
6.0	30.0	19.0	-	<u>-</u>	27.0	1.0	-	27.0	-	_
6.0	30.0	20.0	-	-	26.0	1.0	-	26.0	_	-
6.0	30.0	21.0	_	<u>-</u>	26.0	1.0	<u>-</u>	26.0	_	_
6.0	30.0	22.0	_	_	26.0	1.0	_	26.0	_	_
				-			-		•	
6.0	30.0	23.0	-		26.0	1.0	-	26.0	-	-
7.0	1.0	-	-	-	26.0	1.0	-	26.0	-	-
7.0	1.0	1.0	-	-	25.0	1.0	-	25.0	-	-
7.0	1.0	2.0	-	-	25.0	1.0	-	25.0	-	-

7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	1.0	86.0 471.0 443.0 713.0 156.0 322.0 428.0 819.0 751.0 688.0 584.0 412.0 103.0 - - - - - - - - - - - - -	42.0 96.0 176.0 148.0 409.0 445.0 426.0 164.0 163.0 159.0 145.0 123.0 86.0 25.0	25.0 25.0 26.0 27.0 28.0 30.0 31.0 32.0 33.0 33.0 31.0 30.0 29.0 28.0 27.0 27.0 27.0 27.0 26.0 26.0 26.0 28.0 29.0 30.0 29.0 27.0 28.0 28.0 29.0 30.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 28.0 28.0 28.0 29.0 30.0 29.0 31.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 28.0 28.0 28.0 29.0 30.0 29.0 28.0 28.0 28.0 29.0 31.0 30.0 29.0 27.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 29.0 30.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	36.0 191.8 367.9 613.0 526.1 740.7 849.6 964.3 886.0 745.8 560.8 349.3 143.9 20.9 31.6 169.7 402.7 611.6 769.1 894.6 956.7 940.9 861.9 721.3 536.3 74.1 142.3 20.9	25.0 25.0 24.9 32.0 40.1 51.1 50.6 57.9 62.2 67.0 60.6 55.6 49.0 39.8 33.2 27.5 28.0 27.0 27.0 27.0 27.0 26.0 26.0 26.0 26.0 26.0 26.0 26.1 33.2 41.1 49.1 55.2 59.2 61.3 61.1 59.0 53.9 47.2 31.9 30.9 30.9 40.0	30.4 132.9 277.0 447.6 390.6 529.1 592.4 653.9 622.6 536.8 411.8 255.7 95.7 17.5 - - - - - - - - - - - - -	24.8 125.1 1265.5 430.7 375.6 509.2 570.1 629.1 516.7 396.2 244.8 88.7 12.1
7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	3.0 12.0 3.0 13.0 3.0 14.0 3.0 15.0 3.0 16.0 3.0 17.0 3.0 18.0 3.0 19.0 3.0 20.0	787.0 776.0 747.0 700.0 608.0 446.0 132.0	186.0 178.0 163.0 142.0 117.0 81.0 25.0	33.0 33.0 33.0 33.0 32.0 31.0 29.0 28.0 27.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	955.7 883.7 747.7 566.1 353.9 145.5 19.3	73.7 71.4 66.8 60.0 50.4 39.5 29.3 28.0 27.0	622.7 583.2 505.2 391.5 244.8 92.4 16.0	599.2 561.2 486.3 376.5 234.2 85.4 10.6

1	7.0	4.0	12.0	817.0	167.0	33.0	_	966.6	74.1	628.2	604.5
10	7.0	4.0	13.0	791.0	167.0	33.0		887.0	65.3	607.0	584.2
1-10											
Total Continue											
10											
To 4.6 70.0 - - - 72.0 10 - - 72.0 - - - - - - - - -											
70											
Total Color Colo				-	-			-		-	-
20					1			Ī			
To So 20				-	-			-		-	-
To So So So So So So So				-	-			-		-	-
70				-	-			-		-	
To	7.0	5.0	4.0	-	-	27.0	2.0		27.0	-	-
To So To So To So To So S											
70											
70											365.4
70											
70											
70											
70											
To So To So To So To So S							3.0				345.0
To So 180 TZO ZSO T. ZSO T. T. T. T. T. T. T. T											
To So 190 To To 280 20 To 280 To To To To To To To T											
7.0 5.0 21.0 - - 28.0 2.0 - 28.0 -	7.0	5.0	19.0			28.0	2.0		28.0		
To To To To To To To To					-					-	-
7.0 6.0 - - - 27.0 2.0 - 27.0 - <				-	-			-		-	_
70 60 1.0 - - 27.0 2.0 - 27.0 - <				-	-			-		-	-
7.0 6.0 2.0 - - 27.0 2.0 - 27.0 -				Ī	<u> </u>					-	
7.0 6.0 4.0 - - 27.0 20 - 27.0 -				-	-			-		-	-
7.0 6.0 5.0 101.0 37.0 27.0 2.0 39.4 22.1 22.6 20.0 7.0 6.0 6.0 7.0 6.0 27.0 2.0 60.8 27.3 50.8 44.7 7.0 6.0 8.0 119.0 319.0 28.0 2.0 60.8 27.3 50.8 44.7 7.0 6.0 9.0 14.0 266.0 28.0 2.0 265.6 36.0 212.8 203.0 7.0 6.0 10.0 - 58.0 28.0 3.0 106.2 28.5 46.7 40.7 7.0 6.0 11.0 - 110.0 28.0 3.0 106.2 28.5 87.1 80.2 7.0 6.0 11.0 3.0 400.0 28.0 3.0 40.8 38.3 355.7 22.2 7.0 6.0 12.0 3.0 3.0 3.1 38.4 38.1 22.5 9.7 4.4<				-	-			•		-	-
7.0 6.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 8.0 119.0 319.0 28.0 2.0 384.9 38.1 303.9 291.7 7.0 6.0 9.0 14.0 286.0 28.0 2.0 384.9 38.1 303.9 291.7 7.0 6.0 10.0 - 550.0 28.0 3.0 563.3 22.9 46.7 40.7 7.0 6.0 12.0 32.2 401.0 28.0 3.0 423.6 38.2 355.7 322.5 7.0 6.0 14.0 186.0 390.0 22.0 3.0 423.8 38.2 355.7 322.5 7.0 6.0 14.0 18.0 <t< td=""><td></td><td></td><td></td><td>101.0</td><td>37.0</td><td></td><td></td><td>30.4</td><td></td><td>25.6</td><td>20.0</td></t<>				101.0	37.0			30.4		25.6	20.0
70 60 80 119.0 319.0 28.0 20 384.9 38.1 303.9 291.7 70 60 90 14.0 266.0 28.0 20 266.6 36.0 212.8 203.0 70 60 110.0 - 59.0 28.0 30.0 165.2 295.8 87.1 80.2 70 60 112.0 32.0 401.0 28.0 30.0 423.6 38.2 355.7 322.5 70 6.0 140.0 186.0 390.0 22.0 30.0 423.6 38.2 355.7 322.5 70 6.0 140.0 186.0 390.0 28.0 20.0 30.0 525.3 39.6 412.7 397.1 70 6.0 160.0 160.0 166.0 28.0 20.0 10.0 164.7 31.8 134.2 128.2 70 6.0 160.0 160.0 160.0 28.0 10.0 <th< td=""><td>7.0</td><td>6.0</td><td>6.0</td><td>-</td><td>77.0</td><td>27.0</td><td>2.0</td><td>72.8</td><td>27.5</td><td>60.8</td><td>54.5</td></th<>	7.0	6.0	6.0	-	77.0	27.0	2.0	72.8	27.5	60.8	54.5
70 60 90 140 2660 220 20 2856 300 2128 2030 70 60 110 - 590 220 30 1653 229 467 407 70 60 110 - 1100 220 30 1052 225 871 802 70 60 120 320 4010 220 30 4236 382 2357 3225 70 60 140 1860 3990 220 30 5253 366 4127 3971 70 60 150 730 2870 20 20 3184 361 2540 2431 70 60 150 730 2870 250 10 1647 318 3142 263 70 60 150 150 730 2870 250 10 1144 351 240 20 70											
7.0 6.0 11.0 - 110.0 28.0 3.0 105.2 29.5 87.1 80.2 7.0 6.0 12.0 32.0 401.0 28.0 30.0 423.6 38.2 33.7 22.5 7.0 6.0 13.0 186.0 309.0 26.0 30.0 525.3 39.6 412.7 397.1 7.0 6.0 15.0 73.0 287.0 26.0 20.0 318.4 36.1 224.0 243.1 7.0 6.0 15.0 73.0 287.0 26.0 20.0 318.4 36.1 224.0 243.1 7.0 6.0 15.0 17.0 88.0 25.0 1.0 11.4 235.5 9.7 4.4 7.0 6.0 18.0 - 12.0 25.0 1.0 - 25.0 - - - - - - - - - - - - - - - </td <td></td>											
70 60 120 32.0 401.0 28.0 30 423.6 38.2 335.7 322.5 70 60 14.0 188.0 390.0 26.0 30 525.3 39.6 412.7 397.1 70 60 14.0 188.0 280.0 20 318.4 36.1 254.0 243.1 70 60 160 180.0 188.0 260.0 10 164.7 31.8 134.2 126.3 70 60 160 180.0 188.0 260 10 164.7 31.8 134.2 126.3 70 60 180.0 - 120.0 250.0 10 114.4 23.5 9.7 4.4 70 60 180.0 - 120.0 250.0 10 114.4 23.5 9.7 4.4 70 60 20.0 - - 250.0 10 - 250.0 - - <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>											
7.0 6.0 13.0 18.0 399.0 27.0 3.0 312.6 55.3 251.3 240.5 7.0 6.0 14.0 186.0 390.0 26.0 2.0 318.4 36.1 254.0 243.1 7.0 6.0 15.0 73.0 287.0 26.0 2.0 318.4 36.1 254.0 243.1 7.0 6.0 15.0 73.0 26.0 25.0 1.0 164.7 31.8 134.2 126.3 7.0 6.0 110.0 - 25.0 1.0 11.4 23.5 9.7 4.4 7.0 6.0 190.0 - 12.0 25.0 1.0 11.4 23.5 9.7 4.4 7.0 6.0 190.0 - - 25.0 1.0 - 25.0 - - - - - - - - - - - - - - - - <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
70 6.0 15.0 73.0 287.0 26.0 2.0 318.4 36.1 254.0 243.1 70 6.0 16.0 16.0 168.0 25.0 1.0 79.5 26.7 66.6 60.3 7.0 6.0 110.0 - 25.0 1.0 11.4 23.5 9.7 4.4 7.0 6.0 19.0 - - 25.0 1.0 - 25.0 - - 4.4 7.0 6.0 19.0 - - - 25.0 1.0 - 25.0 - <td>7.0</td> <td>6.0</td> <td></td> <td>18.0</td> <td>309.0</td> <td>27.0</td> <td>3.0</td> <td>312.6</td> <td>35.3</td> <td>251.3</td> <td>240.5</td>	7.0	6.0		18.0	309.0	27.0	3.0	312.6	35.3	251.3	240.5
7.0 6.0 16.0 16.0 16.0 168.0 26.0 1.0 19.4 31.8 134.2 126.3 7.0 6.0 17.0 - 85.0 25.0 1.0 11.4 23.5 9.7 4.4 7.0 6.0 18.0 - 12.0 25.0 1.0 11.4 23.5 9.7 4.4 7.0 6.0 19.0 - - 25.0 1.0 - 25.0 - - 4.4 7.0 6.0 20.0 - - 25.0 1.0 - 25.0 - <td></td>											
7.0 6.0 17.0 - 85.0 25.0 1.0 79.5 26.7 66.6 60.3 7.0 6.0 19.0 - - 25.0 1.0 11.4 23.5 9.7 4.4 7.0 6.0 19.0 - - 25.0 1.0 - 25.0 - - 7.0 6.0 20.0 - - 25.0 1.0 - 25.0 - - - 7.0 6.0 21.0 - - 25.0 1.0 - 25.0 -											
7.0 6.0 19.0 - - 25.0 1.0 - 25.0 -	7.0	6.0	17.0		85.0	25.0	1.0	79.5	26.7	66.6	60.3
7.0 6.0 20.0 - - 25.0 1.0 - 25.0 -				Ī							
7.0 6.0 22.0 - - 25.0 1.0 - 25.0 -				-	-			-		-	
7.0 6.0 23.0 - - 25.0 1.0 - 25.0 -				-	-			-		-	-
7.0 7.0 - - - 25.0 2.0 - 25.0 - <					- -			-		-	-
7.0 7.0 2.0 - - 25.0 2.0 - 25.0 -	7.0	7.0	-	-	-	25.0	2.0	-	25.0	-	-
7.0 7.0 4.0 - - 25.0 1.0 - 25.0 -					-			·		-	
7.0 7.0 4.0 - - 25.0 1.0 - 25.0 -				-	-	25.0		-	25.0	-	-
7.0 7.0 6.0 222.0 117.0 26.0 1.0 155.2 29.6 116.9 109.4 7.0 7.0 7.0 374.0 191.0 27.0 2.0 348.5 36.4 268.3 257.1 7.0 7.0 8.0 5.0 188.0 28.0 2.0 182.1 33.3 147.8 139.7 7.0 7.0 9.0 9.0 216.0 28.0 3.0 213.6 32.9 173.8 165.0 7.0 7.0 10.0 - 119.0 28.0 3.0 113.7 30.3 93.7 86.7 7.0 7.0 11.0 13.0 266.0 28.0 3.0 268.3 34.1 217.0 207.1 7.0 7.0 12.0 361.0 443.0 28.0 3.0 268.3 34.1 217.0 207.1 7.0 7.0 13.0 415.0 384.0 28.0 3.0 762.7 49.2 <td< td=""><td></td><td></td><td></td><td>-</td><td></td><td>25.0</td><td></td><td></td><td>25.0</td><td></td><td></td></td<>				-		25.0			25.0		
7.0 7.0 374.0 191.0 27.0 2.0 348.5 36.4 268.3 257.1 7.0 7.0 8.0 5.0 188.0 28.0 2.0 182.1 33.3 147.8 139.7 7.0 7.0 9.0 9.0 216.0 28.0 3.0 213.6 32.9 173.8 165.0 7.0 7.0 10.0 - 119.0 28.0 3.0 113.7 30.3 93.7 86.7 7.0 7.0 11.0 13.0 266.0 28.0 3.0 268.3 34.1 217.0 207.1 7.0 7.0 11.0 13.0 266.0 28.0 3.0 268.3 34.1 217.0 207.1 7.0 7.0 13.0 415.0 384.0 28.0 3.0 762.7 49.2 570.8 549.3 7.0 7.0 14.0 204.0 388.0 28.0 3.0 537.7 43.4 414.3 <				222.0		25.0 26.0	1.0 1.0		23.7 29.6		21.3 109.4
7.0 7.0 9.0 9.0 216.0 28.0 3.0 213.6 32.9 173.8 165.0 7.0 7.0 10.0 - 119.0 28.0 3.0 113.7 30.3 93.7 86.7 7.0 7.0 11.0 13.0 266.0 28.0 3.0 268.3 34.1 217.0 207.1 7.0 7.0 12.0 361.0 443.0 28.0 4.0 795.8 46.7 603.7 581.0 7.0 7.0 13.0 415.0 384.0 28.0 3.0 762.7 49.2 570.8 549.3 7.0 7.0 14.0 204.0 388.0 28.0 3.0 537.7 43.4 414.3 398.6 7.0 7.0 15.0 348.0 270.0 28.0 3.0 473.4 41.0 365.6 351.4 7.0 7.0 16.0 515.0 138.0 27.0 2.0 337.1 37.5	7.0	7.0	7.0	374.0	191.0	27.0	2.0	348.5	36.4	268.3	257.1
7.0 7.0 10.0 - 119.0 28.0 3.0 113.7 30.3 93.7 86.7 7.0 7.0 11.0 13.0 266.0 28.0 3.0 268.3 34.1 217.0 207.1 7.0 7.0 12.0 361.0 443.0 28.0 4.0 795.8 46.7 603.7 581.0 7.0 7.0 13.0 415.0 384.0 28.0 3.0 762.7 49.2 570.8 549.3 7.0 7.0 14.0 204.0 388.0 28.0 3.0 537.7 43.4 414.3 398.6 7.0 7.0 15.0 348.0 270.0 28.0 3.0 473.4 410.0 365.6 351.4 7.0 7.0 16.0 515.0 138.0 27.0 2.0 337.1 37.5 251.5 240.7 7.0 7.0 17.0 257.0 106.0 27.0 2.0 138.1 30.9 100.1 93.0 7.0 7.0 18.0 27.0 23.0									33.3		139.7
7.0 7.0 11.0 13.0 266.0 28.0 3.0 268.3 34.1 217.0 207.1 7.0 7.0 7.0 12.0 361.0 443.0 28.0 4.0 795.8 46.7 603.7 581.0 7.0 7.0 13.0 415.0 384.0 28.0 3.0 762.7 49.2 570.8 549.3 7.0 7.0 14.0 204.0 388.0 28.0 3.0 537.7 43.4 414.3 398.6 7.0 7.0 15.0 348.0 270.0 28.0 3.0 473.4 41.0 365.6 351.4 7.0 7.0 16.0 515.0 138.0 27.0 2.0 337.1 37.5 251.5 240.7 7.0 7.0 17.0 257.0 106.0 27.0 2.0 138.1 30.9 100.1 93.0 7.0 7.0 18.0 27.0 23.0 26.0 2.0 20.6 25.4 17.4 11.9 7.0 7.0 19.0 -											86.7
7.0 7.0 13.0 415.0 384.0 28.0 3.0 762.7 49.2 570.8 549.3 7.0 7.0 14.0 204.0 388.0 28.0 3.0 537.7 43.4 414.3 398.6 7.0 7.0 15.0 348.0 270.0 28.0 3.0 473.4 41.0 365.6 351.4 7.0 7.0 16.0 515.0 138.0 27.0 2.0 337.1 37.5 251.5 240.7 7.0 7.0 17.0 257.0 106.0 27.0 2.0 138.1 30.9 100.1 93.0 7.0 7.0 18.0 27.0 23.0 26.0 2.0 20.6 25.4 17.4 11.9 7.0 7.0 19.0 - - 26.0 1.0 - 26.0 - - - - -	7.0	7.0	11.0		266.0	28.0	3.0	268.3	34.1	217.0	207.1
7.0 7.0 15.0 348.0 270.0 28.0 3.0 473.4 41.0 365.6 351.4 7.0 7.0 16.0 515.0 138.0 27.0 2.0 337.1 37.5 251.5 240.7 7.0 7.0 17.0 257.0 106.0 27.0 2.0 138.1 30.9 100.1 93.0 7.0 7.0 18.0 27.0 23.0 26.0 2.0 20.6 25.4 17.4 11.9 7.0 7.0 19.0 - - 26.0 1.0 - 26.0 - -											581.0 549.3
7.0 7.0 15.0 348.0 270.0 28.0 3.0 473.4 41.0 365.6 351.4 7.0 7.0 16.0 515.0 138.0 27.0 2.0 337.1 37.5 251.5 240.7 7.0 7.0 17.0 257.0 106.0 27.0 2.0 138.1 30.9 100.1 93.0 7.0 7.0 18.0 27.0 23.0 26.0 2.0 20.6 25.4 17.4 11.9 7.0 7.0 19.0 - - 26.0 1.0 - 26.0 - -	7.0	7.0	14.0	204.0	388.0	28.0	3.0	537.7	43.4	414.3	398.6
7.0 7.0 17.0 257.0 106.0 27.0 2.0 138.1 30.9 100.1 93.0 7.0 7.0 18.0 27.0 23.0 26.0 2.0 20.6 25.4 17.4 11.9 7.0 7.0 19.0 - - 26.0 1.0 - 26.0 - -											351.4
7.0 7.0 18.0 27.0 23.0 26.0 2.0 20.6 25.4 17.4 11.9 7.0 7.0 19.0 - - 26.0 1.0 - 26.0 - -											240.7 93.0
	7.0	7.0	18.0	27.0	23.0	26.0	2.0	20.6	25.4	17.4	11.9
20.0 1.0 20.0 - 20.0											
	1.0		20.0	-	-	20.0	1.0	- -	20.0	•	-

7.0 9.0 20.0 - - 25.0 1.0 - 25.0 -	7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	7.0 21.0 7.0 22.0 7.0 23.0 8.0 - 8.0 2.0 8.0 3.0 8.0 4.0 8.0 5.0 8.0 6.0 8.0 7.0 8.0 10.0 8.0 11.0 8.0 12.0 8.0 15.0 8.0 10.0 8.0 12.0 8.0 12.0 8.0 12.0 8.0 14.0 8.0 15.0 8.0 14.0 9.0 15.0 8.0 15.0 8.0 16.0 8.0 17.0 9.0 10.0 9.0 10.0 9.0 2.0 9.0 2.0 9.0 3.0 9.0 4.0 9.0 5.0 9.0 7.0 9.0 8.0 9.0 10.0 9.0 11.0 9.0 12.0 9.0 10.0 9.0 11.0 9.0 12.0 9.0 10.0 9.0 11.0 9.0 12.0 9.0 10.0 9.0 10.0 9.0 11.0 9.0 12.0 9.0 10.0 9.0 11.0 9.0 12.0 9.0 10.0 9.0 11.0	12.0 126.0 288.0 213.0 474.0 306.0 394.0 226.0 298.0 263.0 262.0 347.0 363.0 74.0 - - - - - - - - - - - - - - - - - - -	36.0 122.0 205.0 316.0 315.0 443.0 430.0 491.0 436.0 378.0 289.0 180.0 93.0 24.0 	26.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 26.0 26.0 27.0 28.0 29.0 30.0 30.0 30.0 29.0 29.0 28.0 25.0 25.0 26.0 26.0 27.0 28.0 27.0 26.0 26.0 27.0 28.0 27.0 28.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29	1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2	32.5 139.3 32.5 139.3 323.3 442.8 700.5 725.0 818.3 707.3 704.3 577.8 439.6 308.9 143.7 20.1 - - - - - - - - - - - - - - - - - - -	26.0 25.0 25.0 25.0 25.0 25.0 25.0 24.0 28.5 35.6 40.9 48.8 51.4 55.1 52.4 51.9 47.3 42.9 37.5 31.0 25.4 26.0 25.0 25.0 25.0 25.0 26.0 26.0 27.0 28.0 28.0 29.0 29.0 20.0	27.6 109.2 251.5 344.0 524.4 536.4 593.8 520.8 519.7 436.0 336.9 234.5 99.1 17.0 - - - - 24.3 127.1 296.2 438.5 541.5 609.2 637.2 368.2 370.7 112.5 103.2 15.6	22.0 101.9 240.7 330.5 504.8 516.3 571.4 501.3 500.3 419.5 323.7 224.1 11.6
7.0 9.0 15.0 454.0 235.0 30.0 - 507.6 51.2 370.7 356.4 7.0 9.0 16.0 2.0 150.0 29.0 - 142.5 38.9 112.5 105.1 7.0 9.0 17.0 293.0 108.0 28.0 - 146.1 34.1 103.2 96.0 7.0 9.0 18.0 51.0 22.0 27.0 1.0 18.5 26.4 15.6 10.2 7.0 9.0 19.0 - - 26.0 1.0 - 26.0 - - 26.0 1.0 - 26.0 -	7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	9.0 6.0 9.0 7.0 9.0 8.0 9.0 9.0 9.0 10.0 9.0 11.0 9.0 12.0 9.0 13.0	493.0 647.0 733.0 746.0 779.0 791.0 66.0 704.0	86.0 115.0 135.0 171.0 180.0 186.0 460.0 227.0	26.0 27.0 28.0 29.0 30.0 31.0 31.0	1.0	185.3 399.8 611.5 780.4 906.2 967.4 515.5 872.9	30.6 40.1 54.3 62.4 68.4 71.9 57.9 65.8	127.1 296.2 438.5 541.5 609.2 637.2 368.2 595.8	119.4 284.1 421.9 521.2 586.2 613.1 354.0 573.4
7.0 10.0 - <td>7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0</td> <td>9.0 15.0 9.0 16.0 9.0 17.0 9.0 18.0 9.0 20.0 9.0 21.0 9.0 22.0</td> <td>454.0 2.0 293.0 51.0 -</td> <td>235.0 150.0 108.0 22.0</td> <td>30.0 29.0 28.0 27.0 26.0 25.0 25.0 25.0</td> <td>1.0 1.0 1.0 1.0</td> <td>507.6 142.5 146.1 18.5</td> <td>51.2 38.9 34.1 26.4 26.0 25.0 25.0 25.0</td> <td>370.7 112.5 103.2 15.6</td> <td>356.4 105.1 96.0 10.2</td>	7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	9.0 15.0 9.0 16.0 9.0 17.0 9.0 18.0 9.0 20.0 9.0 21.0 9.0 22.0	454.0 2.0 293.0 51.0 -	235.0 150.0 108.0 22.0	30.0 29.0 28.0 27.0 26.0 25.0 25.0 25.0	1.0 1.0 1.0 1.0	507.6 142.5 146.1 18.5	51.2 38.9 34.1 26.4 26.0 25.0 25.0 25.0	370.7 112.5 103.2 15.6	356.4 105.1 96.0 10.2
	7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	10.0 - 10.0 1.0 10.0 2.0 10.0 3.0 10.0 4.0 10.0 5.0 10.0 6.0 10.0 7.0 10.0 8.0	126.0 391.0 555.0 655.0	108.0 148.0 173.0	25.0 25.0 25.0 24.0 24.0 25.0 26.0 27.0 28.0	- - - - - - 1.0 1.0	- - 31.9 182.3 388.9 598.0	25.0 25.0 25.0 24.0 24.0 22.7 32.2 39.8 48.8	128.9 290.7 442.4	21.7 121.1 278.8 425.7
	7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	10.0 19.0 10.0 20.0 10.0 21.0 10.0 22.0 10.0 23.0 11.0 - 11.0 1.0 11.0 2.0 11.0 4.0 11.0 5.0	- - - - - - - - - 201.0	- - - - - - - - - 36.0	26.0 26.0 26.0 25.0 25.0 24.0 24.0 24.0 24.0 24.0	- - - - - 1.0 1.0 1.0	- - - - - - - - - - - - - - - - - - -	26.0 26.0 26.0 25.0 25.0 24.0 24.0 24.0 24.0 22.5	- - - - - - - - 23.8	- - - - - - - - - 18.3

7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	11.0 6.1 11.0 7.1 11.0 8.1 11.0 9.1 11.0 10.1 11.0 11.1 11.0 12.1 11.0 13.1 11.0 14.1 11.0 15.1 11.0 16.1 11.0 17.1 11.0 20.1 11.0 21.1 11.0 22.1 11.0 23.1 12.0 2.1 12.0 3.1 12.0 4.1 12.0 4.1 12.0 4.1 12.0 10.1 12.0 1.1 13.0 1.1 13.0 3.1 13.0 3.1 13.0 6.1 13.0 6.1 13.0 1.1	0 667.0 0 758.0 758.0 0 790.0 0 822.0 0 831.0 0 485.0 0 485.0 0 485.0 0 463.0 0 263.0 0 41.0 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 22.0 0 441.0 0 303.0 0 244.0 0 307.0 0 542.0 0 653.0 0 777.0 0 693.0 0 653.0 0 70.0 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	82.0 106.0 120.0 141.0 1448.0 153.0 410.0 365.0 292.0 231.0 182.0 99.0 23.0	26.0 27.0 28.0 29.0 30.0 30.0 30.0 30.0 30.0 29.0 29.0 28.0 27.0 26.0 26.0 26.0 25.0 25.0 25.0 25.0 26.0 28.0 29.0 31.0 31.0 31.0 31.0 31.0 31.0 31.0 32.0 29.0 29.0 28.0 27.0 26.0 28.0 29.0 26.0 26.0 26.0 26.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	183.8 399.3 612.6 786.6 909.7 908.2 889.9 809.6 680.6 510.1 295.1 133.5 20.6	30.6 40.1 49.3 56.8 62.3 64.6 62.6 59.8 55.5 48.5 55.5 48.5 55.5 48.5 52.6 26.0 26.0 26.0 25.0 25.0 25.0 25.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 25.0 26.0 68.0 63.2 43.1 36.7 70.8 68.0 63.2 43.1 27.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26	125.1 295.3 451.0 563.2 633.5 665.8 619.2 571.9 491.0 377.7 221.5 95.2 17.3	117.5 283.2 434.0 542.1 609.6 640.5 595.8 550.4 472.5 363.2 211.5 88.2 11.9
7.0 7.0	12.0 15.0 12.0 16.0	0 87.0 0 70.0	294.0 199.0	29.0 29.0	1.0	334.2 215.3	43.1 36.7	257.3 169.6	246.4 160.9
7.0	12.0 18.0	0 -	17.0	27.0	1.0	16.1	26.1	13.5	8.2
7.0 7.0	12.0 20.0 12.0 21.0	0 - 0 -		27.0 26.0	1.0 1.0		27.0 26.0	-	-
7.0	12.0 23.0	0 -	- - -	26.0	1.0	-	26.0	-	-
7.0 7.0	13.0 1.0 13.0 2.0	0 - 0 -	- -	26.0 26.0	1.0 1.0	-	26.0 26.0	-	-
7.0	13.0 4.0	0 -	- - 36.0	25.0	1.0	-	25.0	- - 25.0	-
7.0 7.0	13.0 6.0 13.0 7.0	0 322.0 0 489.0	117.0 167.0	27.0 28.0	1.0 1.0	175.3 377.1	31.3 40.3	127.2 282.4	119.5 270.7
7.0	13.0 9.0	0 659.0	216.0	30.0	1.0	756.1	56.7	542.0	521.7
7.0 7.0	13.0 11.0 13.0 12.0	0 14.0 0 34.0	270.0 403.0	31.0 31.0	1.0 1.0	273.3 428.3	43.5 45.6	210.8 326.9	201.1 313.9
7.0 7.0 7.0	13.0 13.0 13.0 14.0 13.0 15.0	0 168.0	343.0 390.0 25.0	31.0 30.0 29.0	1.0 1.0 1.0	356.0 513.0 23.7	44.1 47.8 31.1	273.8 386.3 19.5	262.4 371.5 14.0
7.0 7.0	13.0 16.0 13.0 17.0	0 - 0 -	25.0 37.0	28.0 27.0	2.0 2.0	23.7 35.1	27.0 26.3	19.8 29.5	14.4 23.8
7.0 7.0 7.0	13.0 18.0 13.0 19.0 13.0 20.0	0 -	4.0 - -	27.0 26.0 26.0	2.0 2.0 1.0	3.8 - -	25.4 26.0 26.0	3.2 - -	-
7.0 7.0	13.0 21.0 13.0 22.0	0 - 0 -	- -	26.0 26.0	1.0 1.0	- -	26.0 26.0	-	
7.0 7.0 7.0	13.0 23.0 14.0 - 14.0 1.0	-	- - -	26.0 26.0 26.0	1.0 1.0 1.0	-	26.0 26.0 26.0	- - -	-
7.0 7.0	14.0 2.0 14.0 3.0	0 - 0 -	-	26.0 25.0	1.0 1.0	-	26.0 25.0	-	-
7.0 7.0 7.0	14.0 4.0 14.0 5.0 14.0 6.0	0 -	3.0 110.0	25.0 26.0 27.0	1.0 1.0 1.0	- 2.8 175.3	25.0 23.7 31.1	2.4 125.6	- - 118.0
7.0 7.0 7.0	14.0 7.0 14.0 8.0 14.0 9.0	0 623.0	154.0 182.0	28.0 29.0 30.0	1.0 1.0	379.2 585.9 416.0	40.4 49.3 50.8	283.0 432.4 308.8	271.3 416.0 296.4
7.0 7.0	14.0 9.1 14.0 10.1 14.0 11.1	0 298.0 0 371.0	368.0 443.0 405.0	30.0 30.0 31.0		719.2 773.1	50.8 60.1 64.7	507.4 531.3	488.4 511.4
7.0 7.0 7.0	14.0 12.0 14.0 13.0 14.0 14.0	0 355.0 0 710.0	411.0 215.0 198.0	31.0 31.0 31.0	-	761.0 869.5 735.4	64.7 68.0 64.4	523.1 585.6 504.0	503.5 563.6 485.1
7.0	14.0 14.1	070.0	190.0	31.0	-	733.4	U+.+	304.0	400.1

7.0 7.0	14.0 14.0	15.0 16.0	609.0 501.0	179.0 147.0	30.0 30.0	1.0 1.0	552.1 342.0	51.1 43.3	402.0 248.5	386.6 237.8
7.0	14.0	17.0	363.0	82.0	29.0	1.0	134.6	34.0	90.3	83.4
7.0	14.0	18.0	41.0	21.0	27.0	1.0	18.9	26.3	15.9	10.5
7.0	14.0	19.0	-		27.0	1.0	-	27.0	-	-
7.0	14.0	20.0	-	-	26.0	1.0	-	26.0	-	-
7.0	14.0	21.0	-		26.0	1.0		26.0	-	-
7.0 7.0	14.0 14.0	22.0 23.0	-	-	26.0 26.0	1.0 1.0		26.0 26.0	-	-
7.0	15.0	-	-		26.0	1.0		26.0		-
7.0	15.0	1.0	_	<u>-</u>	26.0	1.0	-	26.0	_	_
7.0	15.0	2.0	-	-	26.0	1.0	-	26.0	-	-
7.0	15.0	3.0	-	-	26.0	1.0	-	26.0	-	-
7.0	15.0	4.0			26.0	1.0		26.0	27.2	.5.1
7.0	15.0	5.0	129.0	36.0	27.0 28.0	1.0	29.6	25.9	24.9	19.3
7.0 7.0	15.0 15.0	6.0 7.0	431.0 602.0	94.0 125.0	29.0		176.6 388.1	34.0 45.4	121.1 280.5	113.5 268.9
7.0	15.0	8.0	701.0	144.0	30.0	_	599.1	55.7	426.4	410.3
7.0	15.0	9.0	260.0	390.0	31.0	-	597.2	58.1	425.4	409.3
7.0	15.0	10.0	783.0	169.0	31.0	-	901.0	68.1	606.9	584.0
7.0	15.0	11.0	792.0	176.0	32.0	-	961.5	72.6	630.6	606.8
7.0	15.0	12.0	763.0	196.0	32.0	1.0	948.4	66.1	646.5	622.0 549.5
7.0 7.0	15.0 15.0	13.0 14.0	577.0 455.0	282.0 306.0	31.0 30.0	1.0 1.0	814.6 664.6	61.2 55.0	570.9 480.8	549.5 462.7
7.0	15.0	15.0	295.0	280.0	30.0	2.0	453.1	44.6	343.9	330.4
7.0	15.0	16.0	406.0	168.0	29.0	2.0	323.9	39.0	242.8	232.2
7.0	15.0	17.0	255.0	93.0	28.0	1.0	127.2	32.6	90.5	83.6
7.0	15.0	18.0	7.0	21.0	27.0	1.0	19.8	26.3	16.6	11.2
7.0	15.0	19.0	-		27.0	1.0		27.0	-	-
7.0	15.0	20.0	-	-	27.0 26.0	1.0	-	27.0 26.0	•	-
7.0 7.0	15.0 15.0	21.0 22.0			26.0	1.0 1.0		26.0	-	
7.0	15.0	23.0	-		26.0	1.0		26.0	-	
7.0	16.0	-	-	-	26.0	1.0	-	26.0	-	-
7.0	16.0	1.0	-	-	26.0	1.0	-	26.0	-	-
7.0	16.0	2.0	-		26.0	1.0		26.0	-	-
7.0	16.0	3.0		-	26.0	1.0	-	26.0	-	-
7.0 7.0	16.0 16.0	4.0 5.0	41.0	31.0	26.0 26.0	1.0 1.0	- 27.2	26.0 24.8	23.0	17.5
7.0	16.0	6.0	427.0	87.0	27.0	1.0	169.2	31.1	116.9	109.4
7.0	16.0	7.0	451.0	166.0	28.0	1.0	359.1	39.7	270.1	258.8
7.0	16.0	8.0	708.0	138.0	28.0	1.0	597.7	48.6	441.9	425.3
7.0	16.0	9.0	212.0	398.0	29.0	1.0	562.3	49.8	419.3	403.4
7.0	16.0	10.0	10.0	223.0	29.0	1.0	222.9	38.4	176.5	167.7
7.0 7.0	16.0 16.0	11.0 12.0	236.0 296.0	490.0 471.0	29.0 29.0	1.0 2.0	720.3 763.8	52.8 52.6	529.1 561.7	509.3 540.6
7.0	16.0	13.0	384.0	397.0	29.0	2.0	747.2	52.3	550.2	529.5
7.0	16.0	14.0	274.0	374.0	28.0	2.0	585.2	46.7	443.0	426.3
7.0	16.0	15.0	254.0	288.0	28.0	2.0	435.9	41.8	336.1	322.8
7.0	16.0	16.0	306.0	180.0	28.0	2.0	294.1	37.0	224.6	214.6
7.0	16.0	17.0	393.0	78.0	27.0	1.0	136.1	31.7	91.0	84.1
7.0 7.0	16.0 16.0	18.0 19.0	71.0	21.0	27.0 27.0	1.0 1.0	17.7	26.3 27.0	14.9	9.5
7.0	16.0	20.0	-		26.0	2.0		26.0	-	
7.0	16.0	21.0	-	-	26.0	2.0	-	26.0	-	-
7.0	16.0	22.0	-	-	26.0	2.0	-	26.0	-	-
7.0	16.0	23.0	-	-	26.0	2.0	-	26.0	-	-
7.0	17.0	-	-	-	26.0	2.0		26.0	-	-
7.0 7.0	17.0 17.0	1.0 2.0			26.0 26.0	2.0 2.0		26.0 26.0	-	Ţ.,
7.0	17.0	3.0	-	- -	26.0	2.0	-	26.0	-	
7.0	17.0	4.0	_	-	26.0	1.0	<u>-</u>	26.0	_	_
7.0	17.0	5.0	-	2.0	26.0	1.0	1.9	23.8	1.6	-
7.0	17.0	6.0	164.0	118.0	26.0	2.0	142.9	28.5	110.2	102.9
7.0	17.0	7.0	243.0	206.0	26.0	2.0	303.9	34.0	239.0	228.5
7.0 7.0	17.0	8.0	32.0	90.0 330.0	27.0 27.0	2.0 2.0	85.7 346.0	29.2 36.1	71.0 277.1	64.5 265.6
7.0	17.0 17.0	9.0 10.0	127.0	462.0	28.0	2.0	575.5	44.9	440.9	424.2
7.0	17.0	11.0	151.0	497.0	28.0	2.0	644.0	47.7	486.1	467.8
7.0	17.0	12.0	289.0	474.0	28.0	2.0	760.4	51.2	563.3	542.2
7.0	17.0	13.0	132.0	454.0	28.0	2.0	569.6	46.3	432.9	542.2 416.5 440.9
7.0	17.0	14.0	311.0	364.0	28.0	2.0	604.9	46.6	458.2	440.9
7.0	17.0	15.0	540.0	201.0	28.0	2.0 2.0	530.5 346.7	44.6	400.3	385.1
7.0 7.0	17.0 17.0	16.0 17.0	564.0 191.0	123.0 97.0	27.0 27.0	2.0	346.7 120.1	38.0 30.4	257.0 88.9	246.1 82.1
7.0	17.0	18.0	-	20.0	26.0	2.0	19.0	25.2	16.0	10.6
7.0	17.0	19.0	-	-	26.0	2.0	<u>-</u>	26.0	-	-
7.0	17.0	20.0	-	-	26.0	2.0	-	26.0	-	-
7.0	17.0	21.0	-	-	26.0	2.0	-	26.0	-	-
7.0 7.0	17.0 17.0	22.0 23.0	-	-	26.0 26.0	2.0 2.0		26.0 26.0	-	-
1.0	17.0	20.0	-	-	20.0	2.0	-	20.0	· ·	_

7.0 18.0 7.0 18.0 7.0 18.0 7.0 18.0 7.0 18.0 7.0 18.0 7.0 18.0 7.0 18.0 7.0 18.0	1.0	- - - - 17.0 114.0 188.0 140.0 396.0 383.0 152.0 406.0 158.0 366.0 191.0 149.0 80.0 21.0	26.0 26.0 25.0 25.0 25.0 25.0 25.0 26.0 27.0 28.0 29.0 30.0 30.0 30.0 29.0 27.0 28.0 27.0 26.0	2.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	16.1 120.3 332.1 602.3 567.3 791.9 977.8 889.6 899.9 600.1 537.0 335.5 135.0	26.0 26.0 25.0 25.0 25.0 23.3 27.2 36.4 47.7 49.0 56.8 64.3 62.9 62.5 53.5 49.0 41.0 31.9 26.3 26.0	13.7 96.9 255.9 447.7 424.8 569.0 673.4 624.8 625.7 438.2 396.0 247.1 90.9	8.4 89.9 244.9 430.8 408.7 547.7 647.8 601.2 602.1 421.7 380.8 236.4 84.0 9.5
7.0 18.0 7.0 18.0 7.0 19.0	21.0		25.0 25.0 24.0 24.0 23.0 22.0 22.0 23.0 25.0 26.0 27.0 27.0 28.0 28.0 29.0 28.0 29.0 28.0 29.0 28.0 29.0 20.0	2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	24.9 2.8 184.4 507.7 637.6 713.6 886.3 677.7 674.8 593.8 446.6 264.2 132.3	25.0 25.0 24.0 24.0 23.0 22.0 22.0 21.5 20.7 29.4 42.8 49.7 52.8 59.4 53.9 58.4 56.6 50.0 42.1 33.9 24.5	2.4 151.9 389.5 475.2 524.1 627.8 494.9 480.4 426.2 329.7 199.1 89.3 13.7	
7.0 19.0 7.0 19.0 7.0 19.0 7.0 19.0 7.0 19.0 7.0 20.0	19.0 - 20.0 - 21.0 - 22.0 - 23.0 1.0 - 1.0 - 3.0 - 3.0 - 4.0 - 5.0 212.0 - 6.0 532.0 - 7.0 687.0 - 8.0 773.0 - 9.0 824.0 - 10.0 853.0 - 11.0 864.0 - 12.0 862.0 - 13.0 33.0 - 14.0 808.0 - 15.0 742.0 - 16.0 631.0 - 17.0 434.0 - 18.0 90.0		25.0 24.0 23.0 22.0 22.0 21.0 21.0 20.0 20.0 21.0 23.0 25.0 26.0 27.0 28.0 29.0 29.0 29.0 28.0 27.0 28.0 29.0 29.0 26.0	1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0		25.0 24.0 23.0 22.0 22.0 21.0 20.0 20.0 20.0 20.0 19.7 26.7 36.2 47.8 55.7 61.4 64.8 71.5 53.1 61.1 57.2 47.0 32.5 25.2		
7.0 20.0 7.0 20.0 7.0 20.0 7.0 20.0	19.0	31.0 91.0 142.0	26.0 25.0 25.0 25.0 24.0 24.0 23.0 23.0 23.0 24.0 25.0 26.0 27.0	1.0 1.0 1.0 1.0 1.0 	23.9 175.2 393.9 611.1	26.0 25.0 25.0 25.0 24.0 24.0 23.0 23.0 23.0 21.5 30.7 42.6 53.3	20.6 121.1 288.5 440.7	

7.0	04.0	0.0	700.0	440.0	20.0		700.0	CO 0	554.4	522.4
7.0 7.0	21.0 21.0	9.0 10.0	790.0 823.0	149.0 155.0	28.0 29.0	-	796.8 926.9	62.0 68.2	554.1 623.8	533.4 600.2
7.0	21.0	11.0	837.0	157.0	30.0	-	983.3	71.6	648.9	624.3
7.0	21.0	12.0	838.0	155.0	30.0	5.2	978.3	71.8	644.9	620.5
7.0 7.0	21.0 21.0	13.0 14.0	820.0 776.0	150.0 146.0	30.0 29.0	1.0 1.0	906.5 763.4	63.1 57.6	628.3 543.8	604.6 523.4
7.0	21.0	15.0	471.0	226.0	29.0	1.0	513.5	49.1	379.2	364.6
7.0	21.0	16.0	436.0	153.0	28.0	1.0	322.9	40.5	239.2	228.8
7.0	21.0	17.0	361.0	90.0	27.0	1.0	141.6	32.0	97.0	90.0
7.0 7.0	21.0 21.0	18.0 19.0	50.0	18.0	26.0 25.0	1.0 1.0	15.3	25.2 25.0	12.9	7.6 -
7.0	21.0	20.0	-	-	25.0	1.0	-	25.0	-	-
7.0	21.0	21.0	-	-	25.0	1.0	-	25.0	-	-
7.0	21.0	22.0	-	-	25.0	1.0	-	25.0	-	-
7.0 7.0	21.0 22.0	23.0	-	-	24.0 24.0	1.0 1.0	-	24.0 24.0	-	-
7.0	22.0	1.0		- -	24.0	1.0		24.0		
7.0	22.0	2.0	-	-	24.0	1.0	-	24.0	-	-
7.0	22.0	3.0	-	-	24.0	1.0	-	24.0	-	-
7.0 7.0	22.0 22.0	4.0 5.0	92.0	31.0	24.0 25.0	1.0 1.0	25.7	24.0 23.6	21.8	16.3
7.0	22.0	6.0	201.0	109.0	26.0	1.0	141.8	29.0	107.0	99.8
7.0	22.0	7.0	401.0	174.0	27.0	1.0	344.6	38.0	262.2	251.1
7.0	22.0	8.0	325.0	286.0	28.0	2.0	490.2	42.4	377.0	362.5
7.0 7.0	22.0 22.0	9.0 10.0	315.0 417.0	373.0 387.0	29.0 29.0	2.0 2.0	627.1 781.8	47.9 52.7	472.1 574.3	454.3 552.8
7.0	22.0	11.0	450.0	418.0	30.0	2.0	872.2	56.7	627.1	603.4
7.0	22.0	12.0	432.0	414.0	30.0	2.0	848.0	56.4	610.7	587.7
7.0	22.0	13.0	35.0	378.0	30.0	2.0	401.7	43.9	309.3	296.8
7.0 7.0	22.0 22.0	14.0 15.0	325.0 592.0	359.0 181.0	29.0 29.0	2.0 2.0	612.9 546.4	47.1 46.1	462.9 408.8	445.5 393.3
7.0	22.0	16.0	461.0	147.0	28.0	2.0	327.3	38.5	244.4	233.8
7.0	22.0	17.0	237.0	91.0	27.0	1.0	122.4	31.4	88.0	81.2
7.0	22.0	18.0	-	17.0	26.0	1.0	16.1	25.1	13.6	8.3
7.0 7.0	22.0 22.0	19.0 20.0		-	26.0 25.0	1.0 1.0		26.0 25.0	-	-
7.0	22.0	21.0	_	- -	25.0	1.0	- -	25.0	<u>-</u>	_
7.0	22.0	22.0	-	-	25.0	1.0	-	25.0	-	-
7.0	22.0	23.0	-	-	25.0	1.0	-	25.0	-	-
7.0 7.0	23.0 23.0	- 1.0	-		25.0 25.0	2.0 2.0	Ī	25.0 25.0	-	-
7.0	23.0	2.0		<u> -</u>	25.0	1.0	<u> -</u>	25.0		
7.0	23.0	3.0	-	-	25.0	1.0	-	25.0	-	-
7.0	23.0	4.0	-	-	25.0	1.0	- 10	25.0	-	-
7.0 7.0	23.0 23.0	5.0 6.0	-	2.0 27.0	26.0 26.0	1.0 1.0	1.9 25.6	23.8 24.6	1.6 21.7	- 16.2
7.0	23.0	7.0	107.0	209.0	27.0	2.0	246.1	32.8	197.3	187.9
7.0	23.0	8.0	18.0	237.0	27.0	2.0	237.5	33.5	192.4	183.2
7.0	23.0	9.0	466.0	311.0	28.0	2.0	693.7	47.8	522.1	502.6 400.0
7.0 7.0	23.0 23.0	10.0 11.0	106.0 192.0	454.0 495.0	28.0 29.0	2.0 2.0	544.1 684.5	45.4 49.7	415.8 511.2	492.1
7.0	23.0	12.0	180.0	493.0	29.0	2.0	669.4	49.8	499.6	480.9
7.0	23.0	13.0	49.0	403.0	28.0	2.0	439.4	42.3	341.1	327.7
7.0 7.0	23.0 23.0	14.0 15.0	105.0 308.0	380.0 275.0	28.0 28.0	2.0 2.0	452.0 458.2	41.7 41.9	351.7 352.7	337.9 338.9
7.0	23.0	16.0	135.0	195.0	28.0	1.0	239.4	37.3	186.3	177.2
7.0	23.0	17.0	-	29.0	27.0	1.0	27.5	27.4	23.0	17.4
7.0	23.0	18.0	-	2.0	26.0	1.0	1.9	23.9	1.6	-
7.0 7.0	23.0 23.0	19.0 20.0	-	Ī	26.0 26.0	1.0 1.0		26.0 26.0		-
7.0	23.0	21.0	_	- -	26.0	1.0	- -	26.0	<u>-</u>	_
7.0	23.0	22.0	-	-	25.0	1.0	-	25.0	-	-
7.0	23.0	23.0	-	-	25.0	1.0	-	25.0	-	-
7.0 7.0	24.0 24.0	- 1.0	-	-	25.0 24.0	1.0 1.0		25.0 24.0	-	-
7.0	24.0	2.0	-	- -	24.0	-	- -	24.0	-	-
7.0	24.0	3.0	-	-	24.0	-	-	24.0	-	-
7.0	24.0	4.0	-	-	24.0	1.0	-	24.0	- 20.5	-
7.0 7.0	24.0 24.0	5.0 6.0	57.0 441.0	27.0 88.0	24.0 25.0	1.0 1.0	23.9 171.3	22.4 29.1	20.5 119.0	15.0 111.5
7.0	24.0	7.0	400.0	173.0	27.0	1.0	343.3	38.1	261.0	249.9
7.0	24.0	8.0	718.0	139.0	28.0	1.0	606.1	48.8	447.7	430.8
7.0	24.0	9.0	281.0	381.0	29.0	-	608.0	56.6	436.6	420.1
7.0 7.0	24.0 24.0	10.0 11.0	261.0 99.0	425.0 482.0	30.0 31.0	-	670.8 573.5	59.7 57.8	474.2 409.9	456.4 394.3
7.0	24.0	12.0	106.0	458.0	31.0	-	555.6	56.5	399.9	384.6
7.0	24.0	13.0	762.0	184.0	31.0	1.0	889.1	61.5	621.7	598.2
7.0	24.0	14.0	723.0 651.0	174.0 150.0	30.0	1.0	752.0 561.6	58.1 51.5	534.3	514.3 392.4
7.0 7.0	24.0 24.0	15.0 16.0	651.0 539.0	159.0 133.0	30.0 29.0	1.0 1.0	561.6 345.4	51.5 42.5	407.9 251.0	240.2
7.0	24.0	17.0	348.0	90.0	28.0	1.0	139.3	33.1	95.3	88.3

7.0	24.0	18.0	40.0	17.0	26.0	1.0	14.5	25.1	12.2	6.9
7.0	24.0	19.0	-	-	26.0	1.0	-	26.0	-	-
7.0	24.0	20.0	-	-	26.0	1.0	-	26.0	-	-
7.0	24.0	21.0	-	-	25.0	1.0	-	25.0	-	-
7.0	24.0	22.0	-	-	25.0	1.0	-	25.0	-	-
7.0	24.0	23.0	-	-	25.0	1.0	-	25.0	-	-
7.0	25.0	-	-	-	25.0	1.0	-	25.0	-	-
7.0	25.0	1.0	-	-	25.0	1.0	-	25.0	-	-
7.0	25.0	2.0	-		25.0	1.0		25.0	-	-
7.0	25.0	3.0	-		24.0	1.0	-	24.0	-	-
7.0	25.0	4.0	-		24.0	1.0	-	24.0	-	-
7.0	25.0	5.0	79.0	29.0	25.0	1.0	24.1	23.6	20.5	15.0
7.0	25.0	6.0	385.0	97.0	25.0	1.0	168.1	29.0	119.3	111.8
7.0	25.0	7.0	180.0	208.0	26.0	_	277.2	37.8	215.1	205.2
7.0	25.0	8.0	88.0	301.0	27.0	_	346.6	42.7	267.6	256.4
7.0	25.0	9.0	23.0	303.0	28.0	_	309.2	42.9	239.3	228.8
7.0	25.0	10.0	35.0	381.0	29.0	_	406.0	47.2	307.2	294.8
7.0	25.0	11.0	357.0	444.0	29.0	_	803.3	61.8	561.2	540.2
7.0	25.0	12.0	313.0	464.0	29.0	_	777.9	63.5	538.2	518.0
7.0	25.0	13.0	450.0	369.0	29.0	1.0	789.0	57.7	563.9	542.7
7.0	25.0	14.0	317.0	359.0	29.0	1.0	607.6	52.2	446.8	429.9
7.0	25.0	15.0	542.0	212.0	28.0	1.0	544.6	48.3	403.4	388.0
7.0	25.0	16.0	417.0	173.0	28.0	1.0	334.4	41.1	248.1	237.4
		17.0	227.0		27.0		136.5		99.8	92.7
7.0 7.0	25.0 25.0	18.0	11.0	109.0	26.0	1.0 1.0		31.9 25.0		4.4
7.0		19.0		12.0	26.0	1.0	11.5	26.0	9.7	
	25.0	20.0	-		25.0		-			-
7.0	25.0		-			1.0	-	25.0	-	-
7.0	25.0	21.0	-	-	25.0	1.0	-	25.0	-	-
7.0	25.0	22.0	-	-	25.0	1.0	-	25.0	-	-
7.0	25.0	23.0	-	-	25.0	1.0	-	25.0	-	-
7.0	26.0	-	-		25.0	1.0		25.0	-	-
7.0	26.0	1.0	-	-	25.0	1.0	-	25.0	-	-
7.0	26.0	2.0	-	-	25.0	1.0	-	25.0	-	-
7.0	26.0	3.0	-	-	25.0	1.0	-	25.0	-	-
7.0	26.0	4.0	-	-	25.0	1.0	-	25.0	-	-
7.0	26.0	5.0	53.0	29.0	25.0	1.0	25.5	23.6	21.7	16.2
7.0	26.0	6.0	353.0	104.0	26.0	1.0	167.9	30.0	120.2	112.6
7.0	26.0	7.0	545.0	144.0	27.0	1.0	379.1	39.3	283.6	271.9
7.0	26.0	8.0	658.0	167.0	28.0	1.0	595.5	48.7	440.7	424.1
7.0	26.0	9.0	184.0	396.0	29.0	1.0	540.1	49.0	404.3	388.9
7.0	26.0	10.0	763.0	189.0	29.0	1.0	907.6	60.1	639.9	615.7
7.0	26.0	11.0	779.0	193.0	30.0	1.0	972.3	64.7	668.3	642.8
7.0	26.0	12.0	754.0	209.0	30.0	1.0	959.3	64.6	659.7	634.6
7.0	26.0	13.0	727.0	207.0	30.0	2.0	884.2	57.7	631.8	607.9
7.0	26.0	14.0	678.0	199.0	29.0	2.0	742.2	52.6	543.5	523.2
7.0	26.0	15.0	623.0	171.0	29.0	2.0	556.6	46.9	414.5	398.8
7.0	26.0	16.0	_	139.0	28.0	2.0	131.6	32.7	107.2	99.9
7.0	26.0	17.0	282.0	85.0	27.0	2.0	123.7	29.6	87.6	80.7
7.0	26.0	18.0		14.0	26.0	2.0	13.3	25.1	11.2	5.9
7.0	26.0	19.0	_	-	26.0	2.0	-	26.0	-	-
7.0	26.0	20.0	_	_	26.0	2.0	_	26.0	_	_
7.0	26.0	21.0	_	_	26.0	2.0	_	26.0	_	_
7.0	26.0	22.0	_	_	26.0	2.0	_	26.0	_	_
7.0	26.0	23.0	_	_	25.0	2.0	_	25.0		_
7.0	27.0	-	_	_	25.0	1.0	_	25.0		_
7.0	27.0	1.0	_	_	25.0	1.0	_	25.0	_	_
7.0	27.0	2.0	-		25.0	1.0		25.0	-	
7.0	27.0	3.0		- -	25.0	1.0		25.0		
7.0	27.0	4.0		- -	25.0	1.0		25.0		-
7.0	27.0	5.0	73.0	27.0	25.0	1.0	22.5	23.5	19.2	13.7
7.0	27.0	6.0	376.0	96.0	26.0	1.0	165.1	29.9	116.8	109.3
7.0	27.0	7.0	205.0	208.0	27.0	1.0	288.3	36.2	225.0	214.9
				152.0						
7.0 7.0	27.0 27.0	8.0 9.0	677.0 755.0	158.0	28.0 29.0	1.0 1.0	593.3 779.7	48.1 56.5	440.2 559.3	423.5 538.3
7.0	27.0			162.0	30.0		911.2	62.3	634.6	610.6
		10.0	795.0			1.0				610.0
7.0 7.0	27.0 27.0	11.0 12.0	814.0 822.0	163.0 157.0	30.0 31.0	1.0 2.0	977.7 975.4	64.9 61.2	671.3 684.0	645.8 657.9
										037.9
7.0	27.0	13.0	808.0	151.0	30.0	2.0	900.0	58.2 49.6	641.4 443.9	617.1 427.2
7.0	27.0	14.0	293.0	365.0 353.0	30.0	2.0	595.2			353.6
7.0	27.0	15.0	386.0	252.0	29.0	2.0	484.7	44.3	367.8	353.6
7.0	27.0	16.0	276.0	179.0	28.0	2.0	282.3	36.9	216.3	206.4
7.0	27.0	17.0	414.0	76.0	27.0	1.0	137.0	31.6	90.7	83.8
7.0	27.0	18.0	-	18.0	26.0	1.0	17.1	25.2	14.4	9.0
7.0	27.0	19.0	-	-	26.0	1.0	-	26.0	-	-
7.0	27.0	20.0	-	-	26.0	1.0	-	26.0	•	-
7.0	27.0	21.0	-	-	26.0	1.0	-	26.0	-	-
7.0	27.0	22.0	-	-	25.0	1.0	-	25.0	•	-
7.0	27.0	23.0	-	-	25.0	1.0	-	25.0	-	-
7.0	28.0	- 1.0	-	-	25.0	1.0	-	25.0	•	-
7.0	28.0	1.0	-	-	25.0	1.0	-	25.0	-	-
7.0	28.0	2.0	-	-	25.0	1.0		25.0	-	-

70 280 110 4180 4150 290 10 8829 581 5880 57 70 280 120 4120 4140 290 20 8825 5849 604.5 58 70 280 130 580 4130 290 20 8825 5849 604.5 58 70 280 130 580 4130 290 10 30 30 38 445 328 33 70 280 140 480 380 280 20 10 30 30 3 445 328 313 70 280 180 280 170 280 180 270 10 1152 311 888 7 70 280 180 - 120 270 880 270 10 1152 311 888 7 70 290 180 - 120 270 10 1152 311 888 7 70 290 180 - 120 270 10 114 259 96 7 70 290 180 - 120 270 10 114 259 96 7 70 290 180 - 120 270 10 10 114 259 96 7 70 290 180 - 120 270 10 10 114 259 96 7 70 290 180 - 120 270 10 10 114 259 96 7 70 290 180 - 120 270 10 10 114 259 96 7 70 290 180 - 120 270 10 10 114 259 96 7 70 290 180 - 120 270 10 10 114 259 96 7 70 290 180 - 120 270 10 10 114 259 96 7 70 290 20 10 10 - 120 270 10 10 114 259 96 7 70 290 20 10 10 - 120 270 10 10 114 259 96 7 70 290 20 10 10 - 120 270 10 10 114 259 96 7 70 290 20 10 10 - 120 270 10 10 114 259 96 7 70 20 20 20 10 - 120 270 10 10 10 114 259 96 7 70 20 20 20 10 - 120 270 10 10 10 114 259 96 7 70 20 20 20 10 - 120 270 10 10 10 114 259 96 7 70 300 20 10 - 120 270 10 10 10 10 114 259 96 7 70 300 10 - 120 270 10 10 10 10 10 10 10 10 10 10 10 10 10	7.0 2 7.0 2	28.0 19.0 28.0 20.0 28.0 21.0 28.0 22.0 28.0 23.0 29.0 1.0 29.0 3.0 29.0 3.0 29.0 5.0 29.0 6.0 29.0 8.0	573.0 392.0 302.0 446.0 541.0 433.0 318.0 436.0 265.0 57.0 - - - - - - - - - - - - - - - - - - -	2.0 4.0 4.0 127.0 264.0 374.0 376.0 307.0 411.0 424.0 310.0 280.0 183.0 31.0 2.0	25.0 26.0 27.0 27.0 28.0 28.0 28.0 27.0 27.0 27.0 27.0 27.0 26.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 28.0 28.0 28.0 27.0 27.0 28.0 28.0 28.0 27.0 27.0 28.0 28.0 28.0 28.0 27.0 27.0 28.0 28.0 28.0 28.0 27.0 27.0 28.0 28.0 28.0 27.0 27.0 28.0 28.0 27.0 28.0 27.0 27.0 28.0 28.0 28.0 27.0 27.0 28.0 28.0 27.0 27.0 27.0 27.0 28.0 28.0 28.0 28.0 27.0 27.0 27.0 27.0 27.0 28.0 28.0 28.0 28.0 27.0 27.0 27.0 27.0 27.0 28.0 28.0 28.0 28.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 28.0 28.0 28.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 28.0 28.0 28.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 28.0	1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2	1.9 3.8 376.9 513.4 619.7 801.2 856.1 849.7 719.2 658.8 437.7 196.2 29.4 1.9	25.0 25.0 22.6 23.5 41.3 46.0 50.2 56.4 58.9 53.5 49.9 51.5 44.1 23.9 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0	1.6 3.2 278.3 387.1 460.9 577.1 608.1 621.7 536.3 485.9 333.4 156.4 24.7 1.6 - - - - - - 19.3 104.3 229.2 345.9 394.9	266.7 372.2 443.6 555.4 585.2 598.2 516.2 467.7 320.2 148.0 19.1
70	7.0 2 7.0 2	28.0 16.0 28.0 17.0	57.0	183.0 31.0	27.0 26.0	1.0 1.0	196.2 29.4	34.7 26.1	156.4 24.7	148.0 19.1
70	7.0 2 7.0 2	28.0 19.0 28.0 20.0	-		26.0 26.0	1.0 1.0		26.0 26.0		-
70	7.0 2	28.0 22.0	-	- - -	26.0	1.0	- - -	26.0	- - -	
70	7.0 2 7.0 2	29.0 - 29.0 1.0	-	Ē	26.0 26.0	2.0 2.0	<u>.</u>	26.0 26.0	-	-
To 290 60 242.0 100 270 10 111.7 39.1 104.3 9.7	7.0 2 7.0 2	29.0 3.0 29.0 4.0		- - 24.0	26.0 26.0	1.0 1.0	- - - 22.7	26.0 26.0	- - 10.3	- - 13.8
70	7.0 2 7.0 2	29.0 6.0 29.0 7.0	242.0 233.0	100.0 200.0	27.0 27.0	1.0 1.0	141.7 294.7	30.1 36.3	104.3 229.2	97.1 219.0
70	7.0 2 7.0 2	29.0 9.0 29.0 10.0	150.0 324.0	395.0 430.0	28.0 28.0	2.0 1.0	512.3 736.7	43.5 53.8	394.9 538.0	379.8 517.9
7.0 280 15.0 280.0 281.0 281.0 280.0 1.0 435.8 44.5 331.3 31.7 70.2 280.0 160.0 484.0 137.0 280.0 1.0 327.1 40.2 241.3 23.2 27.0 280.0 17.0 270.0 280.0 270.0 1.0 115.2 31.1 83.8 7.0 280.0 270.0 1.0 115.2 31.1 83.8 7.0 280.0 280.0 270.0 1.0 115.2 31.1 83.8 7.0 280.0 280.0 270.0 1.0 1.0 1.0 1.0 2.	7.0 2 7.0 2	29.0 12.0 29.0 13.0	412.0 59.0	414.0 413.0	29.0 29.0	2.0 2.0	832.5 459.7	54.9 44.5	604.5 352.8	575.5 581.7 339.0 288.9
7.0 28.0 18.0 - 12.0 27.0 1.0 11.4 25.9 9.6 - - 27.0 1.0 - 27.0 -	7.0 2 7.0 2	29.0 15.0 29.0 16.0	260.0 484.0	281.0 137.0	29.0 28.0	1.0 1.0	435.8 327.1	44.5 40.2	331.3 241.3	318.2 230.8 77.0
7.0 29.0 21.0 - - 27.0 1.0 - 27.0 -	7.0 2 7.0 2	29.0 18.0 29.0 19.0	-	12.0 -	27.0 27.0	1.0 1.0	11.4	25.9 27.0	9.6 -	4.3
70 300 - - 270 10 - 270 -	7.0 2 7.0 2	29.0 21.0 29.0 22.0	-	- - -	27.0 27.0	1.0 1.0	- -	27.0 27.0	-	-
70 300 30 - - 260 10 - 260 - - - 260 - <t< td=""><td>7.0 3 7.0 3</td><td>30.0 - 30.0 1.0</td><td>- -</td><td>- - -</td><td>27.0 27.0</td><td>1.0 1.0</td><td>- - -</td><td>27.0 27.0</td><td>-</td><td>- - -</td></t<>	7.0 3 7.0 3	30.0 - 30.0 1.0	- -	- - -	27.0 27.0	1.0 1.0	- - -	27.0 27.0	-	- - -
70 30.0 6.0 446.0 80.0 27.0 1.0 164.3 30.9 111.9 10 7.0 30.0 7.0 627.0 188.0 28.0 1.0 382.1 40.4 282.1 27.7 7.0 30.0 8.0 728.0 125.0 29.0 1.0 600.2 49.8 440.9 42.2 7.0 30.0 9.0 348.0 359.0 29.0 1.0 600.2 49.8 440.9 42.2 7.0 30.0 10.0 328.0 434.0 30.0 1.0 643.2 52.3 472.8 45. 7.0 30.0 11.0 426.0 413.0 30.0 1.0 848.5 60.3 598.1 57. 7.0 30.0 11.0 426.0 413.0 30.0 1.0 848.5 60.3 598.1 57. 7.0 30.0 13.0 222.0 447.0 30.0 2.0 696.3 50.4	7.0 3 7.0 3	30.0 3.0 30.0 4.0	-	- - -	26.0 26.0	1.0 1.0	- - - 24.7	26.0 26.0	- - - 40.2	- - - 12.9
7.0 30.0 9.0 348.0 359.0 29.0 1.0 643.2 52.3 472.8 45 7.0 30.0 10.0 326.0 434.0 30.0 1.0 743.1 56.6 534.5 51 7.0 30.0 11.0 426.0 413.0 30.0 1.0 848.5 60.3 598.1 57 7.0 30.0 12.0 272.0 474.0 30.0 2.0 750.1 53.7 548.5 52 7.0 30.0 12.0 272.0 474.0 30.0 2.0 696.3 50.5 482.7 46 7.0 30.0 14.0 522.0 278.0 29.0 2.0 696.3 50.4 516.3 49 7.0 30.0 16.0 522.0 179.0 28.0 1.0 276.7 39.0 210.0 20 7.0 30.0 16.0 262.0 179.0 28.0 1.0 128.7 32.3 <t< td=""><td>7.0 3 7.0 3</td><td>30.0 6.0 30.0 7.0</td><td>446.0 627.0</td><td>80.0 108.0</td><td>27.0 28.0</td><td>1.0 1.0</td><td>164.3 382.1</td><td>30.9 40.4</td><td>111.9 282.1</td><td>104.6 270.4</td></t<>	7.0 3 7.0 3	30.0 6.0 30.0 7.0	446.0 627.0	80.0 108.0	27.0 28.0	1.0 1.0	164.3 382.1	30.9 40.4	111.9 282.1	104.6 270.4
7.0 30.0 12.0 272.0 474.0 30.0 2.0 750.1 53.7 548.5 52 7.0 30.0 13.0 222.0 447.0 30.0 2.0 698.2 50.5 482.7 46 7.0 30.0 14.0 522.0 278.0 29.0 2.0 696.3 50.4 516.3 49 7.0 30.0 15.0 556.0 190.0 29.0 1.0 532.6 49.3 392.1 37 7.0 30.0 16.0 262.0 179.0 28.0 1.0 276.7 39.0 210.0 20 7.0 30.0 18.0 - 14.0 27.0 1.0 128.7 32.3 87.0 8 7.0 30.0 18.0 - 14.0 27.0 1.0 - 27.0 - - - - - - - - - - - - - - -	7.0 3 7.0 3	30.0 9.0 30.0 10.0	348.0 326.0	359.0 434.0	29.0 30.0	1.0 1.0	643.2 743.1	52.3 56.6	472.8 534.5	455.0 514.5 575.6
7.0 30.0 15.0 556.0 190.0 29.0 1.0 532.6 49.3 392.1 37 7.0 30.0 16.0 262.0 179.0 28.0 1.0 276.7 39.0 210.0 20 7.0 30.0 18.0 - 14.0 27.0 1.0 13.3 26.1 11.2	7.0 3 7.0 3	30.0 12.0 30.0 13.0	272.0 222.0	474.0 447.0	30.0 30.0	2.0 2.0	750.1 649.2	53.7 50.5	548.5 482.7	527.9 464.6 496.9
7.0 30.0 18.0 - 14.0 27.0 1.0 13.3 26.1 11.2 12.0 11.2	7.0 3 7.0 3	30.0 15.0 30.0 16.0	556.0 262.0	190.0 179.0	29.0 28.0	1.0 1.0	532.6 276.7	49.3 39.0	392.1 210.0	377.0 200.3
7.0 30.0 21.0 - - 27.0 1.0 - 27.0 -	7.0 3 7.0 3	30.0 18.0 30.0 19.0		14.0	27.0 27.0	1.0 1.0	13.3	26.1 27.0	11.2	80.2 5.8 -
7.0 31.0 - - - 27.0 2.0 - 27.0 - 7.0 31.0 1.0 - - 27.0 2.0 - 27.0 - - 7.0 31.0 2.0 - - 27.0 2.0 - 27.0 - - 7.0 31.0 3.0 - - 27.0 2.0 - 27.0 - - 7.0 31.0 5.0 - 4.0 27.0 2.0 3.8 25.3 3.2 - 7.0 31.0 6.0 71.0 105.0 27.0 2.0 112.0 28.6 89.3 8 7.0 31.0 7.0 - 7.0 28.0 2.0 6.6 26.9 5.6	7.0 3 7.0 3	30.0 21.0 30.0 22.0	-	-	27.0 27.0	1.0 2.0	: :	27.0 27.0	-	-
7.0 31.0 4.0 - - 27.0 2.0 - 27.0 - 7.0 31.0 5.0 - 4.0 27.0 2.0 3.8 25.3 3.2 - 7.0 31.0 6.0 71.0 105.0 27.0 2.0 112.0 28.6 89.3 8. 7.0 31.0 7.0 - 7.0 28.0 2.0 6.6 26.9 5.6	7.0 3 7.0 3	31.0 - 31.0 1.0	-	: :	27.0 27.0	2.0 2.0	- - -	27.0 27.0	-	-
7.0 31.0 7.0 - 7.0 28.0 2.0 6.6 26.9 5.6	7.0 3 7.0 3	31.0 4.0	-	4.0	27.0 27.0	2.0	- - 3.8	27.0 25.3	3.2	-
7.0 31.0 8.0 - 67.0 28.0 2.0 63.7 28.2 53.0 4	7.0 3 7.0 3	31.0 7.0 31.0 8.0	-	7.0 67.0	28.0 28.0	2.0 2.0	6.6 63.7	26.9 28.2	5.6 53.0	82.5 0.4 46.9
7.0 31.0 10.0 462.0 371.0 29.0 2.0 813.1 53.5 594.9 57.	7.0 3	31.0 10.0	462.0	371.0	29.0	2.0	813.1	53.5	594.9	439.2 572.5 425.5

7.0	31.0	12.0	120.0	484.0	28.0	2.0	604.4	46.6	458.8	441.5
7.0	31.0	13.0	181.0	451.0	28.0	1.0	616.0	50.5	458.0	440.7
7.0	31.0	14.0	-	83.0	28.0	1.0	79.1	32.7	64.4	58.0
7.0	31.0	15.0	-	41.0	28.0	1.0	39.0	27.7	32.5	26.8
7.0 7.0	31.0 31.0	16.0 17.0	-	116.0 51.0	27.0 27.0	1.0 1.0	110.0 48.4	29.0 27.2	91.2 40.5	84.3 34.6
7.0	31.0	18.0	4.0	9.0	26.0	-	8.6	23.4	7.3	2.1
7.0	31.0	19.0	-		26.0	-		26.0	-	
7.0	31.0	20.0	-	-	26.0	-	-	26.0	-	-
7.0 7.0	31.0 31.0	21.0 22.0	-	-	26.0 25.0	-	-	26.0 25.0	-	-
7.0	31.0	23.0	-	-	25.0	-	-	25.0	-	-
8.0	1.0	-	-		25.0	1.0	<u>-</u>	25.0	-	-
8.0	1.0	1.0	-	-	25.0	1.0	-	25.0	-	-
8.0 8.0	1.0 1.0	2.0 3.0	-	-	25.0 25.0	1.0 1.0	-	25.0 25.0	-	-
8.0	1.0	4.0		-	26.0	1.0	-	26.0		
8.0	1.0	5.0	31.0	23.0	26.0	1.0	20.6	24.4	17.5	12.0
8.0	1.0	6.0	-	50.0	27.0	1.0	47.4	26.6	39.8	34.0
8.0 8.0	1.0 1.0	7.0 8.0	- 45.0	62.0 274.0	28.0 29.0	-	58.9 293.7	28.3 40.4	49.0 229.7	43.0 219.4
8.0	1.0	9.0	119.0	390.0	30.0		483.1	50.9	358.2	344.3
8.0	1.0	10.0	424.0	380.0	30.0	1.0	787.0	57.2	564.3	543.2
8.0	1.0	11.0	4.0	155.0	30.0	1.0	152.6	38.4	120.8	113.3
8.0 8.0	1.0 1.0	12.0 13.0	16.0 744.0	301.0 184.0	30.0 30.0	1.0 2.0	306.0 876.7	39.8 55.1	240.6 635.6	230.1 611.5
8.0	1.0	14.0	705.0	174.0	30.0	2.0	740.6	53.5	539.7	519.5
8.0	1.0	15.0	632.0	158.0	29.0	1.0	550.1	50.1	402.6	387.2
8.0	1.0	16.0	518.0	130.0	29.0	1.0	333.6	42.1	243.0	232.4
8.0 8.0	1.0 1.0	17.0 18.0	318.0 12.0	85.0 10.0	28.0 28.0	1.0 1.0	128.6 9.4	32.7 27.0	88.4 7.9	81.6 2.6
8.0	1.0	19.0	-	-	27.0	1.0	-	27.0	-	-
8.0	1.0	20.0	-	-	27.0	1.0	-	27.0	-	-
8.0	1.0	21.0	-	-	27.0	1.0	-	27.0	-	-
8.0 8.0	1.0 1.0	22.0 23.0	-	-	27.0 27.0	1.0 1.0	-	27.0 27.0	-	-
8.0	2.0	-	_	- -	27.0	1.0	- -	27.0	_	
8.0	2.0	1.0	-	-	27.0	1.0	-	27.0	-	-
8.0	2.0	2.0	-	-	27.0	1.0	-	27.0	-	-
8.0 8.0	2.0 2.0	3.0 4.0	-	-	27.0 27.0	1.0 1.0	-	27.0 27.0	-	-
8.0	2.0	5.0	24.0	21.0	27.0	1.0	19.0	25.4	16.0	10.6
8.0	2.0	6.0	293.0	106.0	28.0	1.0	157.3	31.6	113.6	106.3
8.0	2.0	7.0	488.0	154.0	29.0	1.0	364.7	40.8	271.8	260.4
8.0 8.0	2.0 2.0	8.0 9.0	605.0 678.0	181.0 197.0	30.0 31.0	1.0 1.0	577.3 760.6	50.0 57.8	424.7 542.1	408.6 521.8
8.0	2.0	10.0	717.0	208.0	31.0	1.0	891.7	62.6	620.1	596.7
8.0	2.0	11.0	736.0	212.0	32.0	1.0	958.2	66.1	653.4	628.6
8.0	2.0	12.0	649.0	273.0	32.0	1.0	929.3	65.5	635.6	611.6
8.0 8.0	2.0 2.0	13.0 14.0	193.0 525.0	449.0 266.0	32.0 32.0	1.0 1.0	625.7 687.8	56.3 56.7	450.8 492.8	433.8 474.4
8.0	2.0	15.0	273.0	275.0	31.0	1.0	438.6	48.2	326.9	313.9
8.0	2.0	16.0	366.0	179.0	30.0	1.0	318.0	41.9	235.8	225.4
8.0	2.0	17.0	166.0	107.0	29.0	1.0	124.1	33.4	92.2	85.3
8.0 8.0	2.0 2.0	18.0 19.0	-	4.0	28.0 28.0	1.0 1.0	3.8	26.7 28.0	3.2	-
8.0	2.0	20.0	-	-	28.0	1.0	-	28.0	-	-
8.0	2.0	21.0	-	-	27.0	1.0	-	27.0	-	-
8.0 8.0	2.0 2.0	22.0 23.0	-	-	27.0 27.0	1.0 1.0	-	27.0 27.0	-	-
8.0	3.0	-	-	-	27.0	1.0	-	27.0	-	-
8.0	3.0	1.0	-	-	27.0	1.0	<u>-</u>	27.0	-	-
8.0	3.0	2.0	-	-	27.0 27.0	1.0	-	27.0	-	-
8.0 8.0	3.0 3.0	3.0	-	-	27.0 27.0	1.0	- -	27.0 27.0	-	-
8.0	3.0	4.0 5.0	7.0	16.0	27.0	1.0 1.0	15.3	25.3	12.9	7.6
8.0	3.0	6.0	199.0	122.0	28.0	1.0	152.9	31.5	115.0	107.6
8.0	3.0	7.0	385.0	190.0	30.0	1.0	352.3	41.4	264.1	253.0
8.0 8.0	3.0 3.0	8.0 9.0	509.0 588.0	230.0 253.0	31.0 31.0	1.0	561.5 742.7	50.4 62.7	412.9 514.9	397.2
8.0	3.0	10.0	638.0	264.0	32.0		874.4	69.0	585.8	495.6 563.8
8.0	3.0	11.0	242.0	482.0	33.0	-	725.7	66.0	495.0	476.4
8.0	3.0	12.0	459.0	407.0	33.0	-	875.1	69.9	583.5	561.6
8.0 8.0	3.0 3.0	13.0 14.0	456.0 575.0	362.0 251.0	33.0 32.0	- 1.0	792.1 712.8	68.1 58.3	533.4 506.2	513.4 487.2
8.0	3.0	15.0	575.0 514.0	251.0	32.0 32.0	1.0	712.8 530.5	52.3	384.9	370.1
8.0	3.0	16.0	375.0	175.0	31.0	1.0	317.7	43.4	233.4	223.1 52.0
8.0	3.0	17.0	-	76.0	30.0	2.0	71.2	31.9	58.2	
8.0 8.0	3.0 3.0	18.0 19.0		2.0	29.0 28.0	2.0 1.0	1.9 -	27.6 28.0	1.6 -	-
8.0	3.0	20.0	-	-	28.0	1.0	- -	28.0	-	-

8.0	3.0	21.0	-	-	28.0	1.0	-	28.0	-	-
8.0 8.0	3.0 3.0	22.0 23.0	-	-	28.0 28.0	1.0 1.0	-	28.0 28.0	-	-
8.0 8.0	4.0 4.0	- 1.0	-	-	27.0 27.0	1.0 1.0		27.0 27.0	-	-
8.0	4.0	2.0	-	-	27.0	1.0	-	27.0	-	-
8.0 8.0	4.0 4.0	3.0 4.0	1	-	27.0 27.0	1.0 1.0	-	27.0 27.0	-	
8.0 8.0	4.0 4.0	5.0 6.0	-	10.0 83.0	27.0 28.0	1.0 1.0	9.5 78.1	25.0 28.7	8.0 64.9	2.7 58.5
8.0	4.0	7.0	23.0	175.0	29.0	1.0	176.0	33.7	141.9	133.9
8.0 8.0	4.0 4.0	8.0 9.0	378.0 239.0	264.0 385.0	30.0 31.0	1.0 1.0	506.5 577.2	46.6 51.7	380.7 425.9	366.1 409.8
8.0 8.0	4.0 4.0	10.0 11.0	219.0 431.0	453.0 369.0	32.0 33.0	-	658.6 813.3	61.0 67.5	462.3 549.9	444.9 529.3
8.0	4.0	12.0	320.0	457.0	33.0	-	783.1	67.5	529.6	509.7
8.0 8.0	4.0 4.0	13.0 14.0	433.0	368.0 59.0	33.0 32.0	- 1.0	777.3 56.2	67.1 37.0	526.6 44.8	506.9 38.8
8.0 8.0	4.0 4.0	15.0 16.0	-	63.0 68.0	31.0 30.0	1.0 1.0	59.9 64.6	31.5 30.6	49.1 53.1	43.0 47.0
8.0	4.0	17.0	-	68.0	29.0	2.0	64.0	29.5	52.9	46.8
8.0 8.0	4.0 4.0	18.0 19.0	-	3.0	28.0 28.0	2.0 1.0	2.8	26.5 28.0	2.4	-
8.0	4.0	20.0	-	-	27.0	1.0	-	27.0	-	-
8.0 8.0	4.0 4.0	21.0 22.0	-	-	27.0 27.0	1.0 1.0	-	27.0 27.0	-	
8.0 8.0	4.0 5.0	23.0	-	-	27.0 27.0	1.0 1.0	-	27.0 27.0	-	-
8.0	5.0	1.0	-	-	27.0	1.0	-	27.0	-	-
8.0 8.0	5.0 5.0	2.0 3.0	-	-	27.0 26.0	1.0 1.0	-	27.0 26.0	-	
8.0 8.0	5.0 5.0	4.0 5.0	-	- 10.0	26.0 26.0	1.0 1.0	- 9.5	26.0 24.0	- 8.0	- 2.8
8.0	5.0	6.0		86.0	26.0	1.0	80.9	26.7	67.8	61.4
8.0 8.0	5.0 5.0	7.0 8.0	106.0	64.0 299.0	27.0 28.0	1.0 1.0	60.8 358.1	27.5 39.0	50.8 281.6	44.7 270.0
8.0 8.0	5.0 5.0	9.0 10.0	323.0 392.0	364.0 368.0	28.0 29.0	1.0 1.0	630.5 747.7	49.7 55.7	470.1 540.5	452.5 520.2
8.0	5.0	11.0	70.0	458.0	29.0	1.0	523.9	49.3	392.1	377.1
8.0 8.0	5.0 5.0	12.0 13.0	735.0 723.0	212.0 201.0	29.0 28.0	1.0 1.0	954.9 879.5	61.5 60.3	668.5 619.4	643.1 596.0
8.0	5.0	14.0	694.0	182.0	28.0	1.0	740.9	55.8	533.2	513.2
8.0 8.0	5.0 5.0	15.0 16.0	678.0 579.0	138.0 110.0	28.0 27.0	1.0 1.0	558.4 339.2	49.4 40.3	409.6 247.4	394.0 236.7
8.0 8.0	5.0 5.0	17.0 18.0	391.0 21.0	71.0 9.0	26.0 26.0	1.0 1.0	126.2 7.8	30.6 24.8	83.5 6.6	76.8 1.4
8.0	5.0	19.0	-	-	26.0	1.0	-	26.0	-	-
8.0 8.0	5.0 5.0	20.0 21.0	-	-	26.0 26.0	1.0 1.0	-	26.0 26.0	-	-
8.0 8.0	5.0 5.0	22.0 23.0	-	-	26.0 26.0	1.0 1.0	-	26.0 26.0	-	-
8.0	6.0	-	-	-	26.0	1.0	-	26.0	-	-
8.0 8.0	6.0 6.0	1.0 2.0	-	-	25.0 25.0	1.0 1.0	-	25.0 25.0	-	
8.0 8.0	6.0 6.0	3.0 4.0	-	-	25.0 25.0	1.0 1.0	-	25.0 25.0	-	-
8.0	6.0	5.0	98.0	20.0	26.0	1.0	15.3	24.2	13.0	7.6
8.0 8.0	6.0 6.0	6.0 7.0	162.0 647.0	100.0 100.0	27.0 28.0	2.0 2.0	125.8 384.3	29.1 38.4	95.8 286.1	88.8 274.4
8.0 8.0	6.0 6.0	8.0 9.0	460.0 500.0	235.0 293.0	29.0 30.0	2.0 2.0	535.9 710.6	44.9 51.4	406.0 524.7	390.5 505.1
8.0	6.0	10.0	826.0	139.0	31.0	2.0	918.0	58.7	652.6	627.9
8.0 8.0	6.0 6.0	11.0 12.0	836.0 825.0	144.0 150.0	31.0 31.0	2.0 2.0	980.3 970.5	61.1 61.0	687.9 681.1	661.6 655.1
8.0 8.0	6.0 6.0	13.0	801.0 757.0	150.0 145.0	31.0 31.0	2.0 2.0	897.1 752.2	59.0 54.9	636.3 543.9	612.2 523.6
8.0	6.0	14.0 15.0	685.0	134.0	30.0	2.0	558.5	48.0	412.8	397.1
8.0 8.0	6.0 6.0	16.0 17.0	320.0 343.0	163.0 77.0	29.0 28.0	2.0 1.0	284.2 123.9	38.3 32.2	214.7 83.5	204.9 76.8
8.0 8.0	6.0 6.0	18.0 19.0	-	-	28.0 28.0	1.0	-	28.0	-	-
8.0	6.0	20.0		-	27.0	1.0 1.0	-	28.0 27.0	-	-
8.0 8.0	6.0 6.0	21.0 22.0	-	-	27.0 27.0	1.0 1.0	-	27.0 27.0	-	-
8.0 8.0	6.0 7.0	23.0	-	-	27.0 27.0	1.0 1.0	-	27.0 27.0	-	-
8.0	7.0	1.0	-	-	27.0	1.0	-	27.0	-	-
8.0 8.0	7.0 7.0	2.0 3.0	-	- -	27.0 26.0	1.0 1.0	-	27.0 26.0	- -	-
8.0 8.0	7.0 7.0	4.0 5.0	- 52.0	- 19.0	26.0 27.0	1.0 1.0	- 16.1	26.0 25.3	- 13.6	- 8.2
0.0	7.0	5.0	J2.U	19.0	21.0	1.0	10.1	20.0	13.0	0.2

8.0 8.0 8.0 8.0 8.0	7.0 6.0 7.0 7.0 7.0 8.0 7.0 9.0 7.0 10.0 7.0 11.0	570.0 677.0 742.0 773.0	87.0 124.0 147.0 160.0 171.0 177.0	28.0 29.0 30.0 31.0 32.0 32.0	2.0 2.0 2.0 2.0 2.0 2.0	157.6 374.5 592.5 777.0 906.9 970.6	31.1 39.2 47.4 54.4 59.6 61.7	109.7 279.4 441.3 564.0 641.5 678.5	102.4 267.8 424.6 542.8 617.2 652.6
8.0 8.0 8.0 8.0 8.0	7.0 12.0 7.0 13.0 7.0 14.0 7.0 15.0 7.0 16.0 7.0 17.0	779.0 758.0 383.0 81.0 327.0	180.0 177.0 330.0 274.0 164.0 81.0	32.0 32.0 32.0 31.0 31.0 30.0	1.0 1.0 1.0 1.0 1.0	962.8 885.1 635.0 314.4 287.7 121.7	66.6 64.3 56.4 43.9 41.1 36.7	654.7 609.5 456.2 241.1 214.1 81.8	629.8 586.5 439.0 230.6 204.3 75.1
8.0 8.0 8.0 8.0 8.0	7.0 18.0 7.0 19.0 7.0 20.0 7.0 21.0 7.0 22.0 7.0 23.0) -) -) -	: - - - -	28.0 28.0 28.0 27.0 27.0 27.0	- - - - -	- - - - -	28.0 28.0 28.0 27.0 27.0 27.0	- - - - -	- - - - -
8.0 8.0 8.0 8.0 8.0	8.0 - 1.0 8.0 1.0 8.0 2.0 8.0 3.0 8.0 4.0 8.0 5.0 8.0 6.0) -) -) -) 31.0	- - - - 16.0 102.0	27.0 27.0 26.0 26.0 26.0 26.0 28.0	- - - - 1.0 1.0	- - - - 14.7	27.0 27.0 26.0 26.0 26.0 24.2 31.5	- - - - 12.5	- - - - - 7.2 103.5
8.0 8.0 8.0 8.0 8.0 8.0	8.0 7.0 8.0 8.0 8.0 9.0 8.0 10.0 8.0 11.0	476.0 589.0 425.0 25.0 12.0	102.0 156.0 189.0 310.0 326.0 243.0 422.0	30.0 31.0 32.0 33.0 33.0 33.0	1.0 1.0 1.0 1.0	153.7 362.8 577.4 667.0 344.2 245.9 810.1	51.5 41.7 50.9 55.8 51.7 45.4 64.8	110.8 269.3 422.8 480.9 254.2 187.9 556.4	258.1 406.8 462.9 243.4 178.7 535.5
8.0 8.0 8.0 8.0 8.0	8.0 13.0 8.0 14.0 8.0 15.0 8.0 16.0 8.0 17.0 8.0 18.0	440.0 203.0 442.0 - - - -	334.0 373.0 227.0 118.0 63.0	33.0 33.0 33.0 32.0 30.0 29.0	- - 1.0 1.0 1.0	752.0 530.6 499.1 112.0 59.4	66.5 58.8 56.2 37.2 30.8 29.0	511.4 376.4 354.8 89.2 48.8	492.2 361.9 341.0 82.3 42.8
8.0 8.0 8.0 8.0 8.0	8.0 19.0 8.0 20.0 8.0 21.0 8.0 22.0 8.0 23.0 9.0 -) -) -) -) -	- - - - - -	28.0 27.0 27.0 27.0 27.0 27.0	1.0 1.0 1.0 1.0 1.0	- - - - -	28.0 27.0 27.0 27.0 27.0 27.0	-	- - - - -
8.0 8.0 8.0 8.0 8.0 8.0	9.0 1.0 9.0 2.0 9.0 3.0 9.0 4.0 9.0 5.0 9.0 6.0 9.0 7.0) -) -) -) -) 91.0	- - - 9.0 113.0 191.0	26.0 26.0 26.0 26.0 27.0 27.0 28.0	1.0 1.0 - - -	- - - - 8.5 123.5 348.0	26.0 26.0 26.0 26.0 23.8 30.1 42.3	- - - 7.2 97.1 260.1	- - - 2.0 90.1 249.0
8.0 8.0 8.0 8.0 8.0	9.0 8.0 9.0 9.0 9.0 10.0 9.0 11.0 9.0 12.0 9.0 13.0	498.0 569.0 621.0 133.0 25.0	232.0 261.0 272.0 485.0 366.0 97.0	29.0 30.0 31.0 31.0 31.0 30.0	- - 1.0 1.0 2.0	558.9 737.2 870.5 622.9 386.8 92.6	53.1 61.6 67.9 55.0 46.2 32.8	405.3 514.4 586.9 452.2 294.3 75.3	389.9 495.2 564.9 435.2 282.3 68.8
8.0 8.0 8.0 8.0 8.0	9.0 14.0 9.0 15.0 9.0 16.0 9.0 17.0 9.0 18.0 9.0 19.0	132.0 232.0 192.0 	369.0 291.0 173.0 93.0	30.0 29.0 28.0 27.0 27.0 26.0	2.0 1.0 1.0 1.0 1.0	448.4 365.5 258.8 114.5	42.1 42.5 37.4 30.7 27.0 26.0	348.0 281.8 198.2 84.3	334.3 270.1 188.8 77.6
8.0 8.0 8.0 8.0 8.0 8.0	9.0 20.0 9.0 21.0 9.0 22.0 9.0 23.0 10.0 1.0 10.0 2.0) -) -) - -		26.0 26.0 26.0 26.0 26.0 26.0 26.0	1.0 1.0 1.0 1.0 1.0 1.0	-	26.0 26.0 26.0 26.0 26.0 26.0 26.0	-	- - - - -
8.0 8.0 8.0 8.0 8.0	10.0 3.0 10.0 4.0 10.0 5.0 10.0 6.0 10.0 7.0 10.0 8.0) -) -) -) 213.0) 353.0	- 16.0 94.0 172.0 153.0	26.0 26.0 26.0 27.0 29.0 30.0	1.0 1.0 1.0 1.0 1.0 1.0	- 15.2 130.8 322.6 592.2	26.0 26.0 24.2 29.6 39.2 50.2	- 12.9 97.0 244.6 434.8	7.5 90.0 234.0 418.3
8.0 8.0 8.0 8.0 8.0	10.0 9.0 10.0 10.0 10.0 11.0 10.0 12.0 10.0 13.0 10.0 14.0	269.0 327.0 821.0 805.0	173.0 440.0 416.0 153.0 148.0 138.0	30.0 31.0 31.0 32.0 32.0 31.0	2.0 2.0 2.0 2.0 2.0 2.0	776.6 701.8 754.1 971.4 899.9 756.3	53.4 53.0 54.2 61.2 60.1 55.0	566.8 514.8 549.8 681.1 634.6 546.5	545.5 495.5 529.2 655.1 610.6 526.0

8.0	10.0	15.0	709.0	123.0	31.0	2.0	561.2	49.0	412.1	396.5
8.0	10.0	16.0	597.0	102.0	30.0	2.0	336.5	40.8	243.7	233.1
8.0	10.0	17.0	390.0	66.0	29.0	2.0	119.2	32.4	77.3	70.7
8.0		18.0	-		28.0	2.0		28.0	-	
	10.0		-	-			-		-	-
8.0	10.0	19.0	-	-	28.0	2.0	-	28.0	-	-
8.0	10.0	20.0	-		28.0	2.0		28.0	-	-
8.0	10.0	21.0	-	-	27.0	2.0	-	27.0	-	-
8.0	10.0	22.0	-		27.0	2.0		27.0	_	_
8.0	10.0	23.0	_	<u>-</u>	27.0	2.0	<u>-</u>	27.0	_	_
8.0	11.0	-	_		27.0	2.0	_	27.0	_	_
8.0	11.0	1.0			27.0	2.0		27.0		
			-				-			-
8.0	11.0	2.0	-	-	27.0	2.0	-	27.0	-	-
8.0	11.0	3.0	-		27.0	2.0		27.0	-	-
8.0	11.0	4.0	-	-	27.0	2.0	-	27.0	-	-
8.0	11.0	5.0	81.0	17.0	27.0	2.0	13.0	25.5	10.9	5.6
8.0	11.0	6.0	478.0	70.0	28.0	2.0	162.7	31.2	108.7	101.4
8.0	11.0	7.0	667.0	96.0	29.0	2.0	390.5	39.7	288.6	276.8
8.0	11.0	8.0	767.0	111.0	30.0	2.0	616.4	48.2	456.8	439.6
	11.0	9.0	502.0	291.0		2.0		52.7	522.9	503.3
8.0					31.0		713.2			
8.0	11.0	10.0	27.0	335.0	32.0	2.0	355.5	44.0	273.6	262.2
8.0	11.0	11.0	378.0	406.0	32.0	2.0	795.3	55.0	577.3	555.6
8.0	11.0	12.0	851.0	138.0	33.0	2.0	986.8	62.7	686.0	659.8
8.0	11.0	13.0	833.0	135.0	33.0	2.0	907.4	61.3	635.5	611.5
8.0	11.0	14.0	794.0	129.0	32.0	2.0	765.3	56.2	549.2	528.6
8.0	11.0	15.0	729.0	117.0	31.0	2.0	567.0	49.2	415.8	400.0
8.0	11.0	16.0	619.0	96.0	30.0	2.0	338.6	40.9	244.5	233.9
8.0		17.0		63.0	29.0	2.0	120.1	32.4	77.0	70.4
	11.0		411.0							
8.0	11.0	18.0	-	-	28.0	2.0	-	28.0	-	-
8.0	11.0	19.0	-	-	28.0	2.0	-	28.0	-	-
8.0	11.0	20.0	-	-	28.0	2.0	-	28.0	-	-
8.0	11.0	21.0	_	<u>-</u>	28.0	2.0	_	28.0	_	_
8.0	11.0	22.0	_	<u>-</u>	28.0	2.0	<u>-</u>	28.0	_	_
8.0	11.0	23.0	_		27.0	2.0		27.0		
8.0	12.0		-		27.0	2.0		27.0		
		-	-						-	-
8.0	12.0	1.0	-	-	27.0	2.0	-	27.0	-	-
8.0	12.0	2.0	-		27.0	1.0		27.0	-	-
8.0	12.0	3.0	-	-	27.0	1.0	-	27.0	-	-
8.0	12.0	4.0	_		27.0	1.0		27.0	_	-
8.0	12.0	5.0	73.0	16.0	27.0	1.0	12.2	25.1	10.3	5.0
8.0	12.0	6.0	461.0	71.0	28.0	2.0	160.4	31.2	107.7	100.5
8.0	12.0	7.0	473.0	146.0	30.0	2.0	353.0	39.6	264.7	253.5
8.0	12.0	8.0	750.0	115.0	31.0	2.0	609.9	48.8	450.5	433.5
8.0	12.0	9.0	806.0	126.0	32.0	2.0	798.2	56.0	574.2	552.7
8.0	12.0	10.0	536.0	292.0	32.0	2.0	811.5	57.1	582.1	560.3
8.0	12.0	11.0	454.0	404.0	33.0	1.0	876.0	64.2	603.8	581.0
8.0	12.0	12.0	843.0	139.0	33.0	1.0	980.3	67.6	662.6	637.4
8.0	12.0	13.0	832.0	131.0	33.0	2.0	902.7	61.1	632.7	608.8
8.0	12.0	14.0	799.0	122.0	33.0	2.0	761.9	57.1	544.2	523.8
8.0	12.0	15.0	727.0	114.0	32.0	2.0	562.4	50.1	410.5	394.8
8.0	12.0	16.0	610.0	96.0	31.0	2.0	334.6	41.8	240.5	230.0
8.0	12.0	17.0	391.0	63.0	30.0	2.0	115.6	33.3	74.1	67.5
8.0	12.0	18.0	-		29.0	2.0		29.0	-	-
8.0	12.0	19.0	-	-	29.0	2.0	-	29.0	-	-
8.0	12.0	20.0	_		28.0	2.0		28.0	_	-
8.0	12.0	21.0	_	<u>-</u>	28.0	1.0	_	28.0	_	_
8.0	12.0	22.0	_	_	28.0	1.0	<u>-</u>	28.0	_	_
8.0	12.0	23.0	_	_	28.0	1.0	_	28.0	_	_
8.0	13.0	-			27.0	1.0		27.0		=
	13.0	1.0	-	· ·	27.0	1.0		27.0	-	-
8.0			-	-			-		-	-
8.0	13.0	2.0	-	-	27.0	1.0	-	27.0	-	-
8.0	13.0	3.0	-	-	27.0	1.0	-	27.0	-	-
8.0	13.0	4.0	-	-	27.0	1.0	-	27.0	-	-
8.0	13.0	5.0	50.0	15.0	27.0	1.0	12.8	25.1	10.8	5.5
8.0	13.0	6.0	419.0	76.0	28.0	1.0	155.8	31.5	105.9	98.7
8.0	13.0	7.0	618.0	106.0	29.0	1.0	379.7	41.3	279.3	267.7
8.0	13.0	8.0	725.0	123.0	30.0	-	602.2	55.8	428.6	412.4
8.0	13.0	9.0	784.0	134.0	31.0	-	788.9	64.5	541.1	520.8
						-				585.1
8.0	13.0	10.0	817.0	141.0	32.0		916.0	70.6	608.0	202.1
8.0	13.0	11.0	830.0	145.0	33.0	1.0	979.6	67.7	661.5	636.4
8.0	13.0	12.0	806.0	161.0	33.0	1.0	973.3	67.8	656.9	631.9
8.0	13.0	13.0	781.0	161.0	32.0	1.0	891.7	64.5	613.2	590.0
8.0	13.0	14.0	738.0	153.0	32.0	1.0	745.1	59.8	524.4	504.7
8.0	13.0	15.0	659.0	141.0	31.0	1.0	548.0	52.0	396.3	381.2
8.0	13.0	16.0	477.0	126.0	30.0	1.0	310.0	42.2	225.1	215.0
8.0	13.0	17.0	27.0	74.0	29.0	1.0	73.0	31.6	58.4	215.0 52.2
8.0	13.0	18.0	-	-	29.0	1.0	-	29.0	-	-
			-	· ·					-	-
8.0	13.0	19.0	-	-	28.0	1.0	-	28.0	-	-
8.0	13.0	20.0	-	-	28.0	1.0	-	28.0	-	-
8.0	13.0	21.0	-	-	28.0	-	-	28.0	-	-
8.0	13.0	22.0	-	-	28.0	-	-	28.0	-	-
8.0	13.0	23.0	-	-	28.0	-	-	28.0	-	-

8.0 8.0	14.0 14.0	- 1.0	-	÷ ÷	27.0 27.0	-	- - -	27.0 27.0	-	-
8.0 8.0	14.0 14.0	2.0 3.0	-	-	27.0 27.0	1	-	27.0 27.0	-	-
8.0 8.0	14.0 14.0	4.0 5.0	-	- 15.0	27.0 27.0	- -	- 14.2	27.0 24.1	- 12.1	6.7
8.0 8.0	14.0 14.0	6.0 7.0	373.0 562.0	83.0 123.0	29.0 30.0	-	153.3 372.2	33.7 45.5	105.2 269.1	98.0 257.8
8.0 8.0	14.0 14.0	8.0 9.0	85.0 725.0	288.0 167.0	30.0 31.0	1	335.6 776.4	46.1 62.4	254.7 539.1	243.8 518.9
8.0	14.0	10.0	237.0	444.0	32.0 33.0	-	671.1	62.7	466.5	449.0 583.2
8.0 8.0	14.0 14.0	11.0 12.0	558.0 242.0	299.0 472.0	32.0	1.0 1.0	876.1 718.6	63.6 58.9	606.0 510.5	491.4
8.0 8.0	14.0 14.0	13.0 14.0	256.0 668.0	429.0 190.0	31.0 31.0	1.0 1.0	674.2 728.9	55.8 57.3	487.1 520.3	468.8 500.8
8.0 8.0	14.0 14.0	15.0 16.0	493.0 243.0	202.0 165.0	30.0 29.0	1.0 1.0	505.1 254.8	49.6 39.1	371.4 192.9	357.1 183.6
8.0 8.0	14.0 14.0	17.0 18.0	7.0	70.0	28.0 28.0	1.0 1.0	66.6	29.9 28.0	54.6	48.5
8.0 8.0	14.0 14.0	19.0 20.0	-	-	28.0 27.0	-	-	28.0 27.0	-	-
8.0	14.0	21.0	-	-	27.0	-	-	27.0	-	-
8.0 8.0	14.0 14.0	22.0 23.0	-	-	27.0 27.0	1.0	-	27.0 27.0	-	-
8.0 8.0	15.0 15.0	- 1.0	-	-	27.0 26.0	-	-	27.0 26.0	- -	-
8.0 8.0	15.0 15.0	2.0 3.0	-	-	26.0 26.0	-	-	26.0 26.0	-	-
8.0 8.0	15.0 15.0	4.0 5.0	-	- 11.0	26.0 27.0	-	- 10.4	26.0 23.9	- 8.8	- 3.6
8.0	15.0	6.0	167.0	98.0	28.0	-	125.9	31.3	94.6	87.7
8.0 8.0	15.0 15.0	7.0 8.0	561.0 672.0	125.0 148.0	30.0 31.0	1.0	374.1 594.4	45.4 51.5	270.9 433.4	259.5 417.0
8.0 8.0	15.0 15.0	9.0 10.0	736.0 770.0	163.0 174.0	32.0 32.0	1.0 1.0	780.0 912.5	59.4 64.2	550.9 628.6	530.3 604.9
8.0 8.0	15.0 15.0	11.0 12.0	785.0 735.0	179.0 212.0	33.0 33.0	1.0 1.0	977.6 960.2	67.7 67.4	660.5 649.5	635.4 624.9
8.0	15.0	13.0	715.0	205.0 192.0	33.0	1.0	879.3	65.0	602.9	580.2 497.0
8.0 8.0	15.0 15.0	14.0 15.0	669.0 590.0	171.0	32.0 31.0	1.0 1.0	731.6 535.2	59.3 51.5	516.4 388.7	373.8
8.0 8.0	15.0 15.0	16.0 17.0	459.0 228.0	137.0 79.0	30.0 29.0	1.0 1.0	312.8 105.5	42.3 32.8	227.7 74.4	217.6 67.9
8.0 8.0	15.0 15.0	18.0 19.0	-	-	28.0 27.0	1.0 1.0	-	28.0 27.0	- -	-
8.0 8.0	15.0 15.0	20.0 21.0	-	-	27.0 27.0	1.0	-	27.0 27.0	-	-
8.0 8.0	15.0 15.0	22.0 23.0	-	-	27.0 26.0	-	-	27.0 26.0	-	-
8.0	16.0	-	-	-	26.0	-	-	26.0	-	-
8.0 8.0	16.0 16.0	1.0 2.0	-	-	26.0 25.0	-	-	26.0 25.0	-	-
8.0 8.0	16.0 16.0	3.0 4.0	-	-	25.0 25.0	- -	-	25.0 25.0	-	-
8.0 8.0	16.0 16.0	5.0 6.0	- 201.0	9.0 91.0	25.0 26.0	1.0 1.0	8.5 126.4	22.9 28.4	7.3 94.5	2.0 87.6
8.0 8.0	16.0 16.0	7.0 8.0	221.0 617.0	194.0 173.0	28.0 29.0	1.0	285.4 584.1	36.9 53.5	221.6 421.8	211.6 405.8
8.0 8.0	16.0 16.0	9.0 10.0	725.0 767.0	169.0 176.0	30.0 31.0	-	779.8 912.3	63.2 69.5	539.1 609.5	518.9 586.5
8.0	16.0	11.0	786.0	178.0	31.0		978.2	72.3	642.9	618.6
8.0 8.0	16.0 16.0	12.0 13.0	767.0 199.0	189.0 436.0	32.0 32.0	1.0	964.2 622.8	73.1 56.4	630.5 448.5	606.6 431.6
8.0 8.0	16.0 16.0	14.0 15.0	207.0 39.0	364.0 242.0	31.0 31.0	1.0 1.0	526.4 258.4	50.7 41.4	390.4 201.0	375.4 191.6
8.0 8.0	16.0 16.0	16.0 17.0	96.0 285.0	171.0 71.0	30.0 29.0	1.0 1.0	200.3 105.9	36.8 32.0	156.7 72.2	148.3 65.7
8.0 8.0	16.0 16.0	18.0 19.0	-	-	28.0 27.0	1.0 1.0	-	28.0 27.0	-	-
8.0	16.0	20.0	-	-	27.0	1.0	-	27.0	-	-
8.0 8.0	16.0 16.0	21.0 22.0	-	-	27.0 27.0	1.0 1.0	-	27.0 27.0	-	-
8.0 8.0	16.0 17.0	23.0	-	-	27.0 26.0	1.0 1.0	-	27.0 26.0	-	-
8.0 8.0	17.0 17.0	1.0 2.0	-	- -	26.0 26.0	1.0 1.0	-	26.0 26.0	- -	-
8.0 8.0	17.0 17.0	3.0 4.0	-	-	26.0 26.0	1.0 1.0	-	26.0 26.0	- -	-
8.0 8.0	17.0	5.0	35.0 384.0	12.0 80.0	26.0 28.0	1.0 1.0	10.3	24.0	8.8 105.7	3.5 98.5
8.0	17.0 17.0	6.0 7.0	595.0	113.0	29.0	1.0	153.2 378.0	31.4 41.2	278.8	267.3
8.0	17.0	8.0	711.0	131.0	30.0	1.0	603.8	50.9	441.5	424.9

8.0	17.0	9.0	408.0	326.0	31.0	1.0	674.1	55.2	487.7	469.4
8.0	17.0	10.0	813.0	150.0	32.0	2.0	929.9	59.8	656.9	631.9
8.0	17.0	11.0	829.0	154.0	32.0	2.0	989.6	62.3	689.5	663.2
8.0	17.0	12.0	819.0	160.0	33.0	2.0	986.6	63.4	683.2	657.1
8.0	17.0	13.0	803.0	153.0	33.0	2.0	904.2	61.2	633.5	609.6
8.0	17.0	14.0	765.0	143.0	32.0	2.0	755.5	55.9	543.0	522.7
8.0	17.0	15.0	677.0	135.0	32.0	2.0	551.1	49.7	403.2	387.8
8.0	17.0	16.0	556.0	108.0	31.0	2.0	322.5	41.4	233.0	222.7
8.0	17.0	17.0	327.0	65.0	29.0	1.0	105.7	32.8	69.7	63.2
8.0	17.0	18.0	-		28.0	1.0		28.0	-	-
8.0	17.0	19.0	-	-	28.0	1.0	-	28.0	-	-
8.0	17.0	20.0	-	-	28.0	1.0	-	28.0	-	-
8.0	17.0	21.0	-	-	27.0	1.0	-	27.0	_	_
8.0	17.0	22.0	_	<u>-</u>	27.0	1.0	<u>-</u>	27.0	_	_
8.0	17.0	23.0	_	<u>-</u>	27.0	1.0	<u>-</u>	27.0	_	_
8.0	18.0	_	_	_	27.0	1.0	<u>-</u>	27.0	<u>-</u>	_
8.0	18.0	1.0	_	<u>-</u>	26.0	1.0	<u>-</u>	26.0	_	_
8.0	18.0	2.0	_	<u>-</u>	26.0	1.0	<u>-</u>	26.0	_	_
8.0	18.0	3.0	_	<u>-</u>	26.0	1.0	<u>-</u>	26.0	-	_
8.0	18.0	4.0	_	_	26.0	1.0	<u>-</u>	26.0	<u>-</u>	_
8.0	18.0	5.0	30.0	11.0	26.0	1.0	9.5	24.0	8.1	2.8
8.0	18.0	6.0	387.0	78.0	28.0	2.0	152.1	30.9	104.9	97.7
8.0	18.0	7.0	592.0	112.0	29.0	2.0	376.1	39.3	280.2	268.6
8.0	18.0	8.0	700.0	132.0	30.0	2.0	598.2	47.6	445.2	428.4
8.0	18.0	9.0	734.0	162.0	31.0	2.0	779.3	54.5	565.6	544.3
8.0	18.0	10.0	762.0	176.0	32.0	2.0	908.9	59.6	642.7	618.4
8.0	18.0	11.0	765.0	189.0	32.0	2.0	969.4	61.7	677.8	651.9
8.0	18.0	12.0	421.0	399.0	32.0	2.0	837.7	58.4	596.7	574.3
8.0	18.0	13.0	597.0	265.0	31.0	2.0	831.5	56.8	597.3	574.8
8.0	18.0	14.0	5.0	189.0	31.0	2.0	184.9	38.5	146.3	138.2
8.0	18.0	15.0	150.0	270.0	30.0	1.0	356.7	41.7	275.8	264.3
				132.0	30.0		307.6		224.8	214.7
8.0 8.0	18.0	16.0 17.0	462.0		29.0	1.0		41.0		
8.0	18.0 18.0	18.0	232.0	65.0	28.0	1.0 1.0	92.3	32.2 28.0	63.7	57.4
8.0	18.0	19.0	-	-	28.0	1.0		28.0	-	-
			-							-
8.0	18.0	20.0	-		27.0 27.0	1.0	-	27.0		-
8.0	18.0	21.0	-			1.0	-	27.0	-	-
8.0	18.0	22.0	-		27.0	1.0	-	27.0	-	-
8.0	18.0	23.0	-	-	27.0	-	-	27.0	-	-
8.0	19.0	-	-	-	27.0	•	-	27.0	-	-
8.0	19.0	1.0	-	-	27.0	-	-	27.0	-	-
8.0	19.0	2.0	-	-	26.0	1.0	-	26.0	-	-
8.0	19.0	3.0	-		26.0	1.0	-	26.0	-	-
8.0	19.0	4.0	-	-	26.0	1.0	-	26.0	-	-
8.0	19.0	5.0	-	11.0	26.0	1.0	10.4	24.0	8.8	3.6
8.0	19.0	6.0	365.0	83.0	28.0	1.0	152.6	31.4	106.2	99.0
8.0	19.0	7.0	574.0	122.0	30.0	1.0	378.5	42.2	278.4	266.8
8.0	19.0	8.0	701.0	139.0	31.0	1.0	606.6	52.0	441.2	424.5
8.0	19.0	9.0	780.0	145.0	32.0	1.0	800.7	60.1	563.3	542.2
8.0	19.0	10.0	341.0	388.0	33.0	1.0	722.1	59.6	510.9	491.7
8.0	19.0	11.0	328.0	451.0	33.0	-	795.7	67.3	538.6	518.5
8.0	19.0	12.0	761.0	200.0	34.0	-	970.2	74.1	630.6	606.7
8.0	19.0	13.0	742.0	192.0	33.0	-	891.2	71.7	587.2	565.1
8.0	19.0	14.0	704.0	175.0	33.0	-	741.2	66.6	501.6	482.8
8.0	19.0	15.0	637.0	151.0	33.0	-	542.1	59.2	376.9	362.4
8.0	19.0	16.0	507.0	120.0	32.0	1.0	312.5	44.3	223.3	213.2
8.0	19.0	17.0	274.0	69.0	31.0	1.0	101.3	34.7	68.2	61.8
8.0	19.0	18.0	-		29.0	1.0		29.0	-	-
8.0	19.0	19.0	-		28.0	1.0	-	28.0	-	-
8.0	19.0	20.0	-	-	28.0	1.0	-	28.0	-	-
8.0	19.0	21.0	-	-	28.0	1.0	-	28.0	-	-
8.0	19.0	22.0	-	-	27.0	1.0	-	27.0	-	-
8.0	19.0	23.0	-		27.0	1.0		27.0	-	-
8.0	20.0	-	-	-	27.0	1.0	-	27.0	-	-
8.0	20.0	1.0	-	-	27.0	1.0	-	27.0	-	-
8.0	20.0	2.0	-	-	27.0	1.0	-	27.0	-	-
8.0	20.0	3.0	-	-	26.0	1.0	-	26.0	-	-
8.0	20.0	4.0	-	-	26.0	1.0	-	26.0	-	-
8.0	20.0	5.0	35.0	10.0	27.0	1.0	8.6	25.0	7.3	2.1
8.0	20.0	6.0	396.0	77.0	28.0	1.0	153.4	31.4	105.2	98.0
8.0	20.0	7.0	600.0	112.0	30.0	1.0	380.5	42.3	279.1	267.6
8.0	20.0	8.0	709.0	133.0	31.0	1.0	606.3	52.0	440.9	424.3
8.0	20.0	9.0	721.0	175.0	32.0	-	785.3	65.3	536.2	516.1
8.0	20.0	10.0	750.0	190.0	33.0	-	912.9	71.4	603.0	580.3 607.0
8.0	20.0	11.0	759.0	200.0	34.0	-	975.4	74.9	630.9	607.0
8.0	20.0	12.0	696.0	241.0	34.0	-	953.1	74.6	617.7	594.4
8.0	20.0	13.0	661.0	241.0	34.0	-	866.7	71.8	570.8	549.4
8.0	20.0	14.0	596.0	232.0	34.0	-	713.2	66.5	483.2	465.0
8.0	20.0	15.0	495.0	210.0	33.0	1.0	512.4 301.3	52.7	370.5	356.2
8.0	20.0	16.0	348.0	163.0 78.0	32.0	1.0	291.3	43.4	213.1	203.4
8.0	20.0	17.0	144.0	78.0	31.0	1.0	91.5	34.2	66.9	60.5

8.0	20.0	18.0	-	-	30.0	1.0	-	30.0	-	-
8.0	20.0	19.0	-	-	30.0	1.0	-	30.0	-	-
8.0	20.0	20.0	-	-	29.0	1.0	-	29.0	-	-
8.0	20.0 20.0	21.0 22.0	-	-	29.0 29.0	1.0 1.0	-	29.0 29.0	-	-
8.0 8.0	20.0	23.0	-		28.0	1.0		28.0		-
8.0	21.0	-			28.0	1.0		28.0	1	1
8.0	21.0	1.0	_	_	28.0	1.0	_	28.0	_	
8.0	21.0	2.0	_	-	28.0	1.0	<u>-</u>	28.0	-	_
8.0	21.0	3.0	_	-	28.0	1.0	-	28.0	_	-
8.0	21.0	4.0	-	-	28.0	1.0	-	28.0	-	-
8.0	21.0	5.0	-	3.0	28.0	1.0	2.8	25.8	2.4	-
8.0	21.0	6.0	-	24.0	29.0	1.0	22.7	27.6	19.0	13.5
8.0	21.0	7.0	-	8.0	29.0	-	7.6	26.2	6.4	1.2
8.0	21.0	8.0	-	20.0	30.0	-	19.0	27.6	15.9	10.5
8.0	21.0	9.0	321.0	355.0	31.0	-	628.3	55.0	455.3	438.2
8.0	21.0	10.0	606.0	281.0	32.0	-	873.4	68.3	587.7	565.6
8.0	21.0	11.0	621.0	293.0	33.0	-	937.3	72.6	614.8	591.6
8.0	21.0	12.0	407.0	401.0	33.0	-	827.1	69.6	552.4	531.7
8.0	21.0	13.0	591.0	282.0	33.0	-	843.1	69.4	563.3	542.1
8.0	21.0	14.0	204.0	357.0	32.0	1.0	517.7	52.5	380.1	365.5
8.0	21.0 21.0	15.0 16.0	-	85.0 114.0	31.0 30.0	1.0	80.8	35.2 32.4	65.0 88.4	58.7 81.6
8.0 8.0	21.0	17.0	-	49.0	29.0	1.0 1.0	108.4 46.3	29.2	38.4	32.5
8.0	21.0	18.0		49.0	28.0	1.0	40.5	28.0	-	-
8.0	21.0	19.0	_	_	28.0	1.0	_	28.0	_	
8.0	21.0	20.0	_	<u>-</u>	27.0	1.0	<u>-</u>	27.0	_	_
8.0	21.0	21.0	_	-	27.0	1.0	<u>-</u>	27.0	_	_
8.0	21.0	22.0	_	-	27.0	1.0	<u>-</u>	27.0	_	_
8.0	21.0	23.0	_	-	27.0	1.0	<u>-</u>	27.0	-	_
8.0	22.0	-	_	-	27.0	_	-	27.0	_	_
8.0	22.0	1.0	-	-	27.0	-	-	27.0	-	-
8.0	22.0	2.0	-	<u>-</u>	27.0	-	-	27.0	-	-
8.0	22.0	3.0	-	-	27.0	-	-	27.0	-	-
8.0	22.0	4.0	-	-	27.0	-	-	27.0	-	-
8.0	22.0	5.0	-	4.0	27.0	-	3.8	23.5	3.2	-
8.0	22.0	6.0	124.0	90.0	28.0	-	110.4	30.4	84.5	77.7
8.0	22.0	7.0	354.0	164.0	29.0	-	319.0	42.0	238.4	228.0
8.0	22.0	8.0	4.0	185.0	30.0	-	179.7	39.5	141.5	133.4
8.0	22.0	9.0	281.0	364.0	31.0	5.2	604.9	55.4	437.5	420.9
8.0	22.0	10.0	57.0	405.0	31.0	1.0	457.2	48.4	343.8	330.3
8.0	22.0	11.0	114.0	445.0	31.0	1.0	568.5	51.2	421.3	405.3
8.0	22.0 22.0	12.0 13.0	119.0 99.0	438.0 419.0	30.0 30.0	1.0 1.0	564.8	50.6 48.8	419.7 381.1	403.8 366.5
8.0 8.0	22.0	14.0	152.0	357.0	30.0	1.0	508.0 477.1	47.5	360.0	346.0
8.0	22.0	15.0	230.0	257.0	29.0	1.0	391.8	43.6	299.1	287.0
8.0	22.0	16.0	79.0	158.0	29.0	1.0	181.2	39.3	140.1	132.2
8.0	22.0	17.0	138.0	67.0	28.0	_	80.4	31.6	59.0	52.8
8.0	22.0	18.0	-	-	28.0	_	-	28.0	-	-
8.0	22.0	19.0	_	-	27.0	_	_	27.0	_	-
8.0	22.0	20.0	-	-	27.0	-	-	27.0	-	-
8.0	22.0	21.0	-	<u>-</u>	27.0	1.0	-	27.0	-	-
8.0	22.0	22.0	-	-	27.0	1.0	-	27.0	-	-
8.0	22.0	23.0	-	-	27.0	1.0	-	27.0	-	-
8.0	23.0	-	-	-	26.0	1.0	-	26.0	-	-
8.0	23.0	1.0	-	-	26.0	1.0	-	26.0	-	-
8.0	23.0	2.0	-	-	26.0	1.0	-	26.0	-	-
8.0	23.0	3.0	-	-	26.0	1.0	-	26.0	-	-
8.0	23.0	4.0	-	- 70	26.0	1.0	-	26.0	- 5.6	- 0.4
8.0 8.0	23.0 23.0	5.0 6.0	296.0	7.0 86.0	26.0 27.0	1.0 1.0	6.6 142.6	23.9 30.0	5.6 102.3	0.4 95.1
8.0 8.0	23.0	6.0 7.0	296.0 183.0	86.0 187.0	27.0	1.0 1.0	142.6 263.8	30.0 36.2	102.3 206.1	95.1 196.5
8.0	23.0	8.0	96.0	285.0	29.0	1.0	342.0	40.7	266.8	
8.0	23.0	9.0	25.0	298.0	30.0	1.0	308.4	41.0	241.0	255.6 230.5
8.0	23.0	10.0	24.0	337.0	30.0	1.0	349.4	42.2	271.4	260.0
8.0	23.0	11.0	84.0	455.0	30.0	1.0	540.2	48.7	405.7	390.2
8.0	23.0	12.0	92.0	455.0	30.0	1.0	547.1	49.9	408.1	392.6
8.0	23.0	13.0	162.0	429.0	30.0	1.0	583.7	51.1	432.5	392.6 416.2
8.0	23.0	14.0	357.0	321.0	30.0	1.0	607.1	52.1	446.5	429.6
8.0	23.0	15.0	582.0	164.0	29.0	2.0	519.8	45.3	389.7	374.7 205.9 56.6
8.0	23.0	16.0	444.0	129.0	29.0	1.0	295.1	40.6	215.7	205.9
8.0	23.0	17.0	210.0	67.0	28.0	1.0	89.2	31.0	62.9	56.6
8.0	23.0	18.0	-	-	28.0	1.0	-	28.0	-	-
8.0	23.0	19.0	-		28.0	1.0	-	28.0	-	-
8.0	23.0	20.0	-	-	27.0	1.0	-	27.0	-	-
8.0	23.0	21.0	-	-	27.0	1.0	-	27.0	-	-
8.0	23.0	22.0	-	-	27.0	1.0	-	27.0	-	-
8.0 8.0	23.0 24.0	23.0	-		27.0 27.0	1.0 1.0	- -	27.0 27.0	-	-
8.0	24.0	1.0		- -	27.0	1.0		27.0	-	
8.0	24.0	2.0	_	<u>-</u>	27.0	1.0	-	27.0	-	_
						*		·-		

8.0	24.0	3.0	_	<u>-</u>	27.0	1.0	<u>-</u>	27.0	-	_
8.0 8.0	24.0 24.0	4.0 5.0	-	- 5.0	27.0 27.0	1.0 1.0	- 4.7	27.0 24.8	- 4.0	-
8.0	24.0	6.0	201.0	85.0	27.0	1.0	122.0	29.2	90.6	83.7
8.0 8.0	24.0 24.0	7.0 8.0	23.0 318.0	165.0 267.0	28.0 29.0	1.0 1.0	167.6 479.0	32.7 44.7	135.9 364.3	128.0 350.2
8.0 8.0	24.0 24.0	9.0 10.0	197.0 459.0	378.0 321.0	30.0 30.0	1.0 1.0	544.2 775.6	49.5 57.1	406.4 556.4	390.9 535.5
8.0	24.0	11.0	110.0	467.0	30.0	1.0	579.0	52.2	426.8	410.6
8.0 8.0	24.0 24.0	12.0 13.0	790.0 774.0	166.0 157.0	30.0 30.0	2.0 2.0	965.6 881.0	58.5 57.6	687.3 629.8	661.1 606.0
8.0	24.0	14.0	54.0	323.0	29.0	2.0	360.7	41.9	280.4	268.8
8.0 8.0	24.0 24.0	15.0 16.0	202.0 17.0	258.0 139.0	28.0 28.0	2.0 2.0	375.9 138.6	39.1 32.1	293.8 112.6	281.8 105.2
8.0	24.0	17.0	-	50.0	27.0	2.0	47.2	27.2	39.4	33.6
8.0 8.0	24.0 24.0	18.0 19.0	-	-	27.0 27.0	2.0 1.0	-	27.0 27.0	-	-
8.0 8.0	24.0 24.0	20.0	-	-	27.0 27.0	1.0	-	27.0	-	-
8.0	24.0	21.0 22.0	-	-	27.0	1.0 1.0	- -	27.0 27.0	-	-
8.0 8.0	24.0 25.0	23.0		-	27.0 27.0	1.0 1.0	-	27.0 27.0		
8.0	25.0	1.0	-	-	26.0	1.0	-	26.0	-	-
8.0 8.0	25.0 25.0	2.0 3.0	-	- -	26.0 26.0	1.0 1.0		26.0 26.0	-	-
8.0	25.0	4.0	-	-	26.0	1.0	-	26.0	-	-
8.0 8.0	25.0 25.0	5.0 6.0	64.0	- 87.0	26.0 27.0	1.0 1.0	95.3	26.0 28.2	- 75.9	69.4
8.0	25.0	7.0	32.0	170.0	27.0	1.0	178.4	31.9	145.0	136.9
8.0 8.0	25.0 25.0	8.0 9.0	751.0 374.0	106.0 336.0	28.0 28.0	-	608.6 655.1	52.6 57.3	440.9 468.7	424.3 451.1
8.0 8.0	25.0 25.0	10.0 11.0	487.0 568.0	349.0 287.0	29.0 29.0	- 1.0	830.9 880.3	64.3 60.7	572.2 619.0	550.7 595.7
8.0	25.0	12.0	313.0	442.0	29.0	1.0	770.7	57.6	551.3	530.7
8.0 8.0	25.0 25.0	13.0 14.0	34.0 23.0	352.0 275.0	29.0 29.0	1.0 1.0	380.7 283.2	44.8 39.4	291.6 223.0	279.7 213.0
8.0	25.0	15.0	489.0	191.0	28.0	1.0	487.9	44.6	367.7	353.4
8.0 8.0	25.0 25.0	16.0 17.0	437.0 60.0	119.0 60.0	28.0 27.0	1.0 1.0	281.5 63.7	38.9 29.0	206.9 49.9	197.2 43.8
8.0	25.0	18.0	-	-	27.0	1.0	-	27.0	-	-
8.0 8.0	25.0 25.0	19.0 20.0	-	-	27.0 27.0	1.0 1.0	- -	27.0 27.0	-	-
8.0 8.0	25.0 25.0	21.0 22.0	-	•	26.0 26.0	1.0 1.0	•	26.0 26.0	-	-
8.0	25.0	23.0	1	-	26.0	1.0	-	26.0	-	1
8.0 8.0	26.0 26.0	- 1.0	-	-	26.0 26.0	1.0 1.0	-	26.0 26.0	-	-
8.0	26.0	2.0	-	-	26.0	1.0	-	26.0	-	-
8.0 8.0	26.0 26.0	3.0 4.0	-	-	26.0 26.0	1.0 1.0	- -	26.0 26.0	-	-
8.0	26.0	5.0	-	-	26.0	1.0	-	26.0	-	-
8.0 8.0	26.0 26.0	6.0 7.0	38.0	3.0 172.0	27.0 28.0	1.0 1.0	2.8 183.1	24.8 32.5	2.4 148.3	140.1
8.0 8.0	26.0 26.0	8.0 9.0	- 177.0	98.0 377.0	28.0 28.0	1.0 1.0	93.3 527.5	30.4 44.9	76.8 403.7	70.2 388.3
8.0	26.0	10.0	39.0	375.0	28.0	1.0	410.5	43.5	316.8	304.1
8.0 8.0	26.0 26.0	11.0 12.0	59.0 261.0	431.0 455.0	28.0 28.0	1.0 1.0	491.3 732.9	45.5 53.6	375.2 536.1	360.7 516.0
8.0	26.0	13.0	508.0	325.0	28.0	1.0	809.6	57.2	580.4	558.6
8.0 8.0	26.0 26.0	14.0 15.0	492.0 601.0	245.0 152.0	28.0 28.0	1.0 1.0	641.5 517.3	52.4 47.6	470.5 382.7	452.8 368.0
8.0	26.0	16.0	569.0	91.0	27.0	1.0	303.5	38.9	219.6	209.6
8.0 8.0	26.0 26.0	17.0 18.0	315.0 -	52.0	27.0 27.0	1.0 1.0	86.9	30.0 27.0	56.3	50.2 -
8.0 8.0	26.0 26.0	19.0 20.0	Ī	-	27.0 27.0	1.0 1.0	-	27.0 27.0		Ī
8.0	26.0	21.0		-	27.0	1.0	-	27.0	-	-
8.0 8.0	26.0 26.0	22.0 23.0	-	-	26.0 26.0	1.0 1.0	- -	26.0 26.0	-	-
8.0	27.0	-	-	-	26.0	-	-	26.0	-	-
8.0 8.0	27.0 27.0	1.0 2.0	-	-	26.0 26.0	-	-	26.0 26.0	-	
8.0 8.0	27.0 27.0	3.0 4.0	-	-	26.0 26.0	-	-	26.0 26.0	-	-
8.0	27.0	5.0	-	-	26.0		-	26.0	-	-
8.0 8.0	27.0 27.0	6.0 7.0	494.0 689.0	55.0 78.0	27.0 28.0	-	154.8 389.2	31.5 44.2	101.3 281.0	94.2 269.4
8.0	27.0	8.0	785.0	93.0	29.0	-	618.6	55.5	441.0	424.3
8.0 8.0	27.0 27.0	9.0 10.0	138.0 141.0	360.0 415.0	30.0 31.0	-	478.3 556.7	53.2 55.9	350.2 402.1	336.5 386.8
8.0	27.0	11.0	864.0	119.0	32.0	-	993.1	71.6	655.2	630.4

8.0	27.0	12.0	447.0	381.0	32.0	1.0	848.8	63.3	588.0	565.9
8.0	27.0	13.0	526.0	275.0	31.0	1.0	775.3	59.5	548.5	527.9
8.0	27.0	14.0	711.0	158.0	31.0	1.0	726.0	57.7	516.7	497.3
8.0 8.0	27.0 27.0	15.0 16.0	633.0 496.0	139.0 109.0	30.0 29.0	1.0 1.0	522.4 291.8	50.1 40.5	380.9 211.1	366.3 201.4
8.0	27.0	17.0	241.0	57.0	28.0	1.0	82.3	30.8	56.0	49.8
8.0	27.0	18.0	-	-	28.0	1.0	-	28.0	-	-
8.0	27.0	19.0	-	-	28.0	1.0	-	28.0	-	-
8.0 8.0	27.0 27.0	20.0 21.0	- -	-	27.0 27.0	1.0 1.0		27.0 27.0	-	-
8.0	27.0	22.0	-	- -	27.0	1.0	- -	27.0	_	_
8.0	27.0	23.0	-	-	27.0	1.0	-	27.0	-	-
8.0	28.0	-	-		27.0	1.0	-	27.0	-	-
8.0 8.0	28.0 28.0	1.0 2.0		- -	26.0 26.0	1.0 1.0	-	26.0 26.0	-	
8.0	28.0	3.0	_	-	26.0	1.0	-	26.0	_	_
8.0	28.0	4.0	-	-	26.0	1.0	-	26.0	-	-
8.0 8.0	28.0 28.0	5.0 6.0	360.0	- 75.0	26.0 27.0	1.0 1.0	- 146.3	26.0 30.1	102.0	94.8
8.0	28.0	7.0	280.0	172.0	29.0	-	296.2	41.4	223.5	213.4
8.0	28.0	8.0	684.0	137.0	30.0	-	598.8	55.1	428.5	412.3
8.0	28.0	9.0	747.0	152.0	31.0	-	786.0	64.4	539.7	519.5
8.0 8.0	28.0 28.0	10.0 11.0	784.0 104.0	160.0 461.0	31.0 32.0		918.9 568.1	69.7 60.3	613.0 400.5	589.9 385.2
8.0	28.0	12.0	457.0	379.0	32.0	1.0	857.0	61.6	599.6	577.0
8.0	28.0	13.0	811.0	136.0	32.0	1.0	891.9	64.0	615.1	591.9
8.0	28.0	14.0	770.0	127.0 113.0	32.0	1.0	737.6 532.8	59.5	519.3 384.9	499.9 370.1
8.0 8.0	28.0 28.0	15.0 16.0	697.0 561.0	91.0	31.0 30.0	1.0 1.0	298.7	51.5 41.8	212.7	202.9
8.0	28.0	17.0	292.0	51.0	29.0	1.0	82.1	31.8	53.2	47.0
8.0	28.0	18.0	-	-	29.0	1.0	-	29.0	-	-
8.0 8.0	28.0 28.0	19.0 20.0	-	-	29.0 28.0	1.0 1.0	-	29.0 28.0	-	-
8.0	28.0	21.0		- -	28.0	1.0	- -	28.0	-	
8.0	28.0	22.0	-	-	28.0	1.0	-	28.0	-	-
8.0	28.0	23.0	-		28.0	1.0	-	28.0	-	-
8.0 8.0	29.0 29.0	- 1.0	1	-	28.0 28.0	1.0 1.0		28.0 28.0	-	1
8.0	29.0	2.0	_	-	27.0	1.0	-	27.0	_	_
8.0	29.0	3.0	-	-	27.0	1.0	-	27.0	-	-
8.0 8.0	29.0 29.0	4.0 5.0		-	27.0 27.0	1.0 1.0	Ī	27.0 27.0	-	-
8.0	29.0	6.0	372.0	72.0	28.0	1.0	146.1	31.1	100.7	93.6
8.0	29.0	7.0	582.0	110.0	28.0	1.0	374.8	40.1	278.6	267.0
8.0	29.0	8.0	450.0	228.0	29.0	1.0	534.2	47.7	399.3	384.0
8.0 8.0	29.0 29.0	9.0 10.0	319.0 282.0	350.0 422.0	30.0 31.0	1.0	625.9 706.6	52.4 62.0	460.1 493.3	442.8 474.8
8.0	29.0	11.0	417.0	395.0	32.0	-	839.4	67.7	567.0	545.7
8.0	29.0	12.0	283.0	446.0	32.0	-	746.6	65.5	510.6	491.5
8.0 8.0	29.0 29.0	13.0 14.0	420.0 6.0	351.0 195.0	32.0 32.0	1.0	755.4 191.8	65.3 41.5	517.3 149.5	497.9 141.3
8.0	29.0	15.0	182.0	255.0	31.0	1.0	360.8	42.9	276.7	265.2
8.0	29.0	16.0	394.0	133.0	30.0	1.0	276.9	40.0	203.3	193.8
8.0	29.0	17.0	148.0	61.0	29.0	1.0	74.2	31.4 29.0	53.8	47.7
8.0 8.0	29.0 29.0	18.0 19.0	-	- -	29.0 28.0	1.0 1.0	-	28.0	-	-
8.0	29.0	20.0	-	-	28.0	1.0	-	28.0	-	-
8.0	29.0	21.0	-	-	28.0	1.0	-	28.0	-	-
8.0 8.0	29.0 29.0	22.0 23.0		- -	28.0 28.0	1.0 1.0		28.0 28.0	-	
8.0	30.0	-	-	-	27.0	1.0	-	27.0	-	-
8.0	30.0	1.0	-	-	27.0	1.0	-	27.0	-	-
8.0 8.0	30.0 30.0	2.0 3.0	-	-	27.0 27.0	1.0 1.0	-	27.0 27.0	-	-
8.0	30.0	4.0	-	- -	27.0	1.0	- -	27.0		
8.0	30.0	5.0	-	-	27.0	1.0	-	27.0	-	-
8.0	30.0	6.0	266.0	87.0	27.0	1.0	138.3	29.8	100.4	93.3
8.0 8.0	30.0 30.0	7.0 8.0	499.0 636.0	135.0 157.0	28.0 28.0	-	361.0 588.7	42.9 53.3	266.1 425.8	254.9 409.7
8.0	30.0	9.0	694.0	181.0	29.0	-	775.4	62.1	539.5	519.3
8.0	30.0	10.0	744.0	185.0	30.0	-	907.4	68.4	610.2	587.2
8.0 8.0	30.0 30.0	11.0 12.0	765.0 765.0	186.0 182.0	31.0 31.0		970.9 957.3	72.0 72.0	639.1 630.4	614.9 606.6
8.0	30.0	13.0	746.0	174.0	31.0	-	957.3 871.0	69.2	582.5	560.6
8.0	30.0	14.0	703.0	160.0	31.0	-	720.0	64.0	494.5	475.9
8.0	30.0	15.0	590.0	153.0 118.0	30.0	- 10	508.8	55.0	361.5	347.4
8.0 8.0	30.0 30.0	16.0 17.0	442.0 187.0	118.0 56.0	30.0 29.0	1.0 1.0	278.8 73.6	41.0 31.4	202.0 51.5	192.5 45.4
8.0	30.0	18.0	-	-	28.0	1.0	-	28.0	-	-
8.0	30.0	19.0	-	-	28.0	1.0		28.0	-	-
8.0	30.0	20.0	-	-	27.0	1.0	-	27.0	-	-

8.0	30.0	21.0	-	-	27.0	1.0	-	27.0	-	-
8.0	30.0	22.0	-	-	27.0	1.0	-	27.0	-	-
8.0	30.0	23.0	_	-	26.0	1.0	<u>-</u>	26.0	_	_
8.0	31.0	-	_	<u>-</u>	26.0	1.0	<u>-</u>	26.0	-	_
8.0	31.0	1.0	_		26.0	1.0		26.0	_	_
8.0	31.0	2.0	_		25.0	1.0		25.0		_
8.0			-		25.0			25.0	-	
	31.0	3.0	-	-		1.0	-		-	-
8.0	31.0	4.0	-	-	25.0	1.0		25.0	-	-
8.0	31.0	5.0	-	-	25.0	1.0	-	25.0	-	-
8.0	31.0	6.0	384.0	71.0	25.0	1.0	148.2	28.1	103.3	96.1
8.0	31.0	7.0	162.0	182.0	26.0	1.0	251.8	33.8	199.5	190.0
8.0	31.0	8.0	706.0	132.0	27.0	1.0	609.9	47.5	454.5	437.4
8.0	31.0	9.0	773.0	145.0	28.0	1.0	802.1	56.3	576.3	554.7
8.0	31.0	10.0	816.0	149.0	28.0	1.0	939.1	61.4	657.6	632.6
8.0	31.0	11.0	294.0	447.0	29.0	1.0	763.5	57.7	545.9	525.5
8.0	31.0	12.0	811.0	163.0	30.0		983.2	70.7	652.4	627.7
8.0	31.0	13.0	437.0	325.0	30.0	_	744.7	64.5	512.1	492.9
8.0	31.0	14.0	365.0	306.0	30.0	_	597.3	58.2	424.6	408.5
8.0	31.0	15.0	198.0	245.0	30.0		360.0	48.9	267.3	256.1
8.0	31.0	16.0		10.0	29.0	_	9.5	31.9	7.7	2.5
			-							
8.0	31.0	17.0	114.0	53.0	28.0	-	62.6	27.9	46.7	40.7
8.0	31.0	18.0	-	-	27.0	2.0		27.0	-	-
8.0	31.0	19.0	-		26.0	2.0	-	26.0	-	-
8.0	31.0	20.0	-	-	26.0	2.0	-	26.0	-	-
8.0	31.0	21.0	-	-	26.0	1.0	-	26.0	-	-
8.0	31.0	22.0	-		26.0	1.0		26.0		-
8.0	31.0	23.0	-	-	26.0	1.0	-	26.0	_	-
9.0	1.0	-	_	-	25.0	1.0	-	25.0	_	_
9.0	1.0	1.0	_	_	25.0	1.0		25.0	_	_
9.0	1.0	2.0	_		25.0	1.0		25.0		
9.0	1.0	3.0	-		25.0	1.0		25.0	_	
			-							-
9.0	1.0	4.0	-	-	25.0	1.0		25.0	-	-
9.0	1.0	5.0	-	-	25.0	1.0		25.0	-	-
9.0	1.0	6.0	399.0	66.0	26.0	1.0	146.7	29.1	100.8	93.7
9.0	1.0	7.0	468.0	135.0	27.0	2.0	348.1	36.4	265.6	254.5
9.0	1.0	8.0	205.0	280.0	28.0	2.0	416.3	40.3	324.6	311.7
9.0	1.0	9.0	287.0	355.0	28.0	2.0	606.0	46.0	460.9	443.5
9.0	1.0	10.0	95.0	423.0	29.0	2.0	514.8	45.2	393.8	378.7
9.0	1.0	11.0	151.0	466.0	30.0	3.0	631.2	47.0	478.3	460.4
9.0	1.0	12.0	187.0	459.0	30.0	3.0	657.1	48.0	495.3	476.7
9.0	1.0	13.0	111.0	409.0	30.0	3.0	510.9	44.3	392.4	377.4
9.0	1.0	14.0	130.0	339.0	30.0	3.0	443.2	42.1	343.9	330.4
9.0	1.0	15.0	307.0	227.0	29.0	3.0	409.5	40.0	317.2	304.5
9.0	1.0	16.0	384.0	114.0	28.0	2.0	252.7	35.7	188.5	179.3
9.0	1.0	17.0	217.0	45.0	27.0	2.0	66.1	28.3	44.7	38.8
9.0	1.0	18.0	-		27.0	2.0	-	27.0	-	-
9.0	1.0	19.0	-	-	26.0	2.0	-	26.0	-	-
9.0	1.0	20.0	-	-	26.0	2.0	-	26.0	-	-
9.0	1.0	21.0	-		26.0	2.0	-	26.0	-	-
9.0	1.0	22.0	-		26.0	2.0	-	26.0	-	-
9.0	1.0	23.0	_	-	26.0	2.0	-	26.0	-	-
9.0	2.0	_	_	-	25.0	2.0	<u>-</u>	25.0	_	_
9.0	2.0	1.0	_	_	25.0	2.0		25.0	_	_
9.0	2.0	2.0	_		25.0	2.0		25.0	_	_
9.0	2.0	3.0	_		25.0	2.0		25.0		
9.0	2.0	4.0	-		25.0	1.0		25.0	-	
							•		-	
9.0	2.0	5.0	-	-	25.0	1.0	-	25.0	-	- 00.5
9.0	2.0	6.0	374.0	69.0	26.0	1.0	144.8	29.0	100.6	93.5
9.0	2.0	7.0	587.0	108.0	27.0	1.0	376.9	39.1	281.6	269.9
9.0	2.0	8.0	699.0	131.0	28.0	1.0	605.3	49.0	447.6	430.8
9.0	2.0	9.0	760.0	146.0	29.0	1.0	793.3	57.0	567.9	546.6
9.0	2.0	10.0	791.0	157.0	30.0	1.0	924.4	62.8	642.2	617.9
9.0	2.0	11.0	212.0	462.0	31.0	1.0	688.5	57.3	493.6	475.1
9.0	2.0	12.0	173.0	457.0	31.0	1.0	641.5	54.6	466.5	449.0
9.0	2.0	13.0	784.0	152.0	31.0	1.0	881.6	61.7	615.8	592.6
9.0	2.0	14.0	288.0	322.0	31.0	1.0	554.0	52.9	405.6	390.2
9.0	2.0	15.0	652.0	126.0	31.0	1.0	515.0	50.0	375.0	360.5
9.0	2.0	16.0	499.0	100.0	30.0	1.0	278.7	41.0	199.5	190.1
9.0	2.0	17.0	218.0	47.0	29.0	1.0	67.6	31.2	45.4	39.5
9.0	2.0	18.0	-	47.0	28.0	1.0	-	28.0		-
				-	28.0		-	28.0	-	-
9.0	2.0	19.0	-	-		1.0	-		-	-
9.0	2.0	20.0	-	-	28.0	1.0	-	28.0	-	-
9.0	2.0	21.0	-	-	28.0	1.0	-	28.0	-	-
9.0	2.0	22.0	-	-	28.0	1.0	-	28.0	-	-
9.0	2.0	23.0	-	-	27.0	1.0	-	27.0	-	-
9.0	3.0	-	-	-	27.0	1.0	-	27.0	-	-
9.0	3.0	1.0	-	-	27.0	1.0	-	27.0	-	-
9.0	3.0	2.0	-	-	27.0	-	-	27.0	-	-
9.0	3.0	3.0	-	-	27.0	-	-	27.0	-	-
9.0	3.0	4.0	-	-	26.0	-	-	26.0	-	-
9.0	3.0	5.0	-	-	26.0	-	-	26.0	-	-

9.0 9.0 9.0 9.0 9.0	3.0 6.0 3.0 7.0 3.0 8.0 3.0 9.0 3.0 10.0	231.0 672.0 707.0 740.0	15.0 173.0 140.0 173.0 186.0	27.0 27.0 28.0 28.0 28.0	- 1.0 1.0 1.0	14.2 277.6 597.4 780.1 910.3	24.0 37.2 48.2 55.6 60.4	12.1 214.8 443.8 562.9 640.9	6.7 205.0 427.0 541.8 616.7
9.0 9.0 9.0	3.0 11.0 3.0 12.0 3.0 13.0	752.0 769.0 333.0	193.0 178.0 380.0	28.0 28.0 28.0	1.0 1.0 1.0	965.6 956.6 699.2	62.7 62.6 54.9	671.5 665.3 507.5	645.9 640.0 488.5
9.0 9.0 9.0	3.0 14.0 3.0 15.0 3.0 16.0	357.0 366.0 178.0	302.0 210.0 138.0	28.0 27.0 27.0	1.0 1.0 1.0	586.5 425.9 198.0	50.1 43.3 34.7	435.7 323.5 153.0	419.2 310.6 144.7
9.0 9.0 9.0	3.0 17.0 3.0 18.0 3.0 19.0	70.0 - -	45.0 - -	26.0 26.0 26.0	1.0 1.0 1.0	49.8 - -	26.9 26.0 26.0	38.5 - -	32.6 - -
9.0 9.0 9.0	3.0 20.0 3.0 21.0 3.0 22.0	-	- - -	26.0 26.0 26.0	1.0 1.0 1.0		26.0 26.0 26.0	- - -	-
9.0 9.0 9.0	3.0 23.0 4.0 - 4.0 1.0	-	- - -	26.0 26.0 26.0	1.0 1.0 1.0	- - -	26.0 26.0 26.0	- - -	
9.0 9.0 9.0	4.0 2.0 4.0 3.0 4.0 4.0	-	- - -	26.0 26.0 26.0	1.0 1.0 1.0	-	26.0 26.0 26.0	- - -	-
9.0 9.0 9.0	4.0 5.0 4.0 6.0 4.0 7.0	- 14.0 2.0	- 76.0 140.0	26.0 26.0 27.0	1.0 1.0 1.0	- 75.0 134.8	26.0 26.4 30.2	- 62.2 111.1	- 55.9 103.8
9.0 9.0 9.0	4.0 8.0 4.0 9.0 4.0 10.0	11.0 116.0 205.0	206.0 364.0 429.0	27.0 28.0 27.0	1.0 2.0 2.0	205.5 467.3 635.2	33.1 41.2 46.1	166.9 364.6 483.6	158.3 350.5 465.4
9.0 9.0 9.0	4.0 11.0 4.0 12.0 4.0 13.0	24.0 8.0 1.0	343.0 201.0 153.0	27.0 27.0 27.0	2.0 2.0 2.0	367.6 201.5 147.5	39.0 33.0 30.6	290.1 163.9 121.4	278.2 155.3 113.8
9.0 9.0 9.0	4.0 14.0 4.0 15.0 4.0 16.0	- - -	64.0 10.0 5.0	26.0 26.0 26.0	2.0 2.0 1.0	60.9 9.5 4.7	26.7 24.6 23.8	51.0 8.0 4.0	45.0 2.8
9.0 9.0 9.0	4.0 17.0 4.0 18.0 4.0 19.0	-	1.0	25.0 25.0 25.0	1.0 1.0 1.0	0.9 - -	22.6 25.0 25.0	0.8	-
9.0 9.0 9.0	4.0 20.0 4.0 21.0 4.0 22.0	-	<u>.</u>	25.0 25.0 25.0	1.0 1.0 1.0	<u>.</u>	25.0 25.0 25.0	- -	-
9.0 9.0 9.0	4.0 23.0 5.0 - 5.0 1.0	-	<u>.</u>	25.0 25.0 25.0	1.0 1.0 1.0	<u>.</u>	25.0 25.0 25.0 25.0	- -	-
9.0 9.0 9.0	5.0 2.0 5.0 3.0 5.0 4.0	-	- - -	25.0 25.0 25.0	1.0 1.0 1.0	<u>.</u>	25.0 25.0 25.0	- -	
9.0 9.0 9.0	5.0 5.0 5.0 6.0 5.0 7.0	- 428.0 644.0	- 59.0 88.0	25.0 25.0 26.0	2.0 2.0 2.0	- 148.3 383.5	25.0 27.6 36.4	- 101.3 289.2	94.2 277.3
9.0 9.0 9.0	5.0 8.0 5.0 9.0 5.0 10.0	30.0 299.0 80.0	238.0 347.0 410.0	26.0 27.0 27.0	2.0 2.0 2.0	254.3 609.8 488.4	33.6 44.5 42.4	205.9 467.4 378.8	196.3 449.9 364.2
9.0 9.0 9.0	5.0 11.0 5.0 12.0 5.0 13.0	77.0 464.0 496.0	435.0 362.0 310.0	28.0 28.0 28.0	2.0 1.0 1.0	516.4 848.0 782.5	43.7 57.3 56.9	397.9 607.8 561.7	382.7 584.9 540.6
9.0 9.0 9.0	5.0 14.0 5.0 15.0 5.0 16.0	66.0 124.0 185.0	312.0 236.0 132.0	28.0 28.0 27.0	1.0 1.0 1.0	360.6 307.8 194.0	43.3 39.1 33.8	278.2 241.0 150.0	266.7 230.5 141.8
9.0 9.0 9.0	5.0 17.0 5.0 18.0 5.0 19.0	75.0 -	41.0 - -	26.0 26.0 25.0	1.0 1.0 1.0	46.3 -	26.7 26.0 25.0	35.4 -	29.6
9.0 9.0 9.0	5.0 20.0 5.0 21.0 5.0 22.0	-	=	25.0 25.0 25.0 25.0	1.0 1.0 1.0	Ē	25.0 25.0 25.0 25.0	-	-
9.0 9.0 9.0	5.0 23.0 6.0 - 6.0 1.0	-	-	25.0 25.0 25.0 24.0	1.0 1.0 1.0	Ē	25.0 25.0 25.0 24.0	-	-
9.0 9.0 9.0	6.0 2.0 6.0 3.0 6.0 4.0	-	<u>-</u>	24.0 24.0 24.0	1.0 1.0 1.0	Ē	24.0 24.0 24.0	-	=
9.0 9.0 9.0	6.0 5.0 6.0 6.0 6.0 7.0	- 440.0 653.0	- 60.0 91.0	24.0 25.0 27.0	1.0 1.0 1.0	- 152.1 391.1	24.0 28.2 39.6	- 103.5 290.3	96.4 278.4
9.0 9.0 9.0	6.0 8.0 6.0 9.0 6.0 10.0	246.0 94.0 105.0	269.0 356.0 420.0	28.0 29.0 29.0	1.0 1.0 2.0	439.6 434.2 522.8	43.7 44.7 44.7	336.6 332.6 400.9	323.4 319.5 385.6
9.0 9.0 9.0	6.0 11.0 6.0 12.0 6.0 13.0	861.0 862.0 843.0	133.0 130.0 124.0	29.0 29.0 29.0 29.0	2.0 2.0 1.0	1,004.9 990.2 897.6	58.4 59.8 62.0	715.8 700.0 626.1	688.3 673.2 602.5
9.0	6.0 14.0	802.0	115.0	29.0	1.0	741.5	56.8	529.5	509.7

9.0	6.0	15.0	721.0	103.0	29.0	1.0	526.4	49.4	383.3	368.6
9.0		16.0	586.0	79.0	28.0	1.0	285.6	39.3	202.9	193.4
9.0		17.0	288.0	37.0	27.0	1.0	63.5	29.0	39.8	34.0
9.0		18.0	-	-	26.0	1.0				
			-	-			-	26.0	-	-
9.0		19.0	-	-	25.0	1.0	-	25.0	-	-
9.0		20.0	-	-	25.0	1.0	-	25.0	-	-
9.0	6.0	21.0	-	-	25.0	1.0	-	25.0	-	-
9.0	6.0	22.0	-	_	25.0	1.0	-	25.0	-	-
9.0	6.0	23.0	_	_	25.0	1.0	_	25.0	_	_
9.0	7.0	-			25.0	-		25.0		
			-	-		-	-		-	-
9.0	7.0	1.0	-	-	25.0	-	-	25.0	-	-
9.0	7.0	2.0	-		24.0	-		24.0	-	-
9.0	7.0	3.0	-	-	23.0	1.0	-	23.0	-	-
9.0	7.0	4.0	-	-	23.0	1.0	-	23.0	_	-
9.0	7.0	5.0	_	_	23.0	1.0	_	23.0	_	_
9.0	7.0	6.0	463.0	58.0	24.0	1.0	155.1	27.3	105.3	98.1
					26.0				300.3	288.2
9.0	7.0	7.0	675.0	89.0		2.0	399.4	36.9		
9.0	7.0	8.0	782.0	107.0	27.0	2.0	637.1	45.8	478.6	460.6
9.0	7.0	9.0	833.0	123.0	28.0	1.0	832.1	57.4	594.4	572.1
9.0	7.0	10.0	863.0	131.0	28.0	1.0	960.2	62.1	669.5	644.0
9.0	7.0	11.0	875.0	134.0	29.0	1.0	1,019.8	65.4	698.1	671.4
9.0		12.0	872.0	132.0	29.0	1.0	1,001.6	65.1	686.7	660.5
9.0		13.0	849.0	128.0	29.0	1.0	906.3	62.3	631.0	607.2
9.0		14.0	804.0	119.0	29.0	1.0	746.1	57.0	532.2	512.3
9.0		15.0	725.0	105.0	28.0	1.0	529.5	48.5	387.2	372.4
9.0	7.0	16.0	577.0	81.0	27.0	1.0	283.3	38.3	202.3	192.8
9.0	7.0	17.0	253.0	38.0	26.0	1.0	59.9	27.8	38.8	32.9
9.0		18.0	-	-	25.0	1.0	-	25.0	-	
9.0		19.0	_		25.0	1.0		25.0	_	_
			-	-			-		-	
9.0		20.0	-	-	25.0	1.0	-	25.0	-	-
9.0		21.0	-	-	25.0	1.0	-	25.0	-	-
9.0	7.0	22.0	-	-	25.0	1.0	-	25.0	-	-
9.0	7.0	23.0	_	_	25.0	1.0	_	25.0	_	-
9.0	8.0	-	_	_	25.0	1.0	_	25.0	_	_
9.0	8.0	1.0			25.0	1.0		25.0		
			-	-			-		-	-
9.0	8.0	2.0	-	-	25.0	1.0	-	25.0	-	-
9.0	8.0	3.0	-		24.0	1.0		24.0	-	-
9.0	8.0	4.0	-	-	24.0	1.0	-	24.0	-	-
9.0	8.0	5.0	_	_	24.0	1.0	_	24.0	_	_
9.0	8.0	6.0	420.0	63.0	25.0	1.0	151.6	28.2	104.2	97.0
9.0	8.0	7.0	644.0	97.0	26.0	1.0	394.2	38.7	294.4	282.4
					27.0		630.0			448.4
9.0	8.0	8.0	755.0	117.0		1.0		48.9	465.9	
9.0	8.0	9.0	816.0	130.0	28.0	1.0	825.7	57.1	590.6	568.4
9.0	8.0	10.0	847.0	139.0	29.0	1.0	953.4	62.8	662.1	636.9
9.0	8.0	11.0	856.0	144.0	29.0	1.0	1,010.9	65.1	693.2	666.7
9.0		12.0	882.0	125.0	29.0	1.0	1,003.7	65.1	688.0	661.7
9.0		13.0	856.0	123.0	29.0	1.0	906.5	62.3	631.1	607.3
9.0		14.0	811.0	116.0	29.0	1.0		57.1	532.8	512.8
							747.1			
9.0		15.0	736.0	101.0	28.0	1.0	530.2	48.6		372.6
9.0		16.0	594.0	77.0	27.0	1.0			387.4	
9.0							283.8	38.3	201.9	192.4
	8.0	17.0	270.0	35.0	26.0	1.0	283.8 59.5	27.8		31.9
9.0		17.0 18.0		35.0	26.0 25.0	1.0 1.0			201.9	
	8.0	18.0	270.0		25.0	1.0	59.5	27.8 25.0	201.9 37.7	31.9
9.0	8.0 8.0	18.0 19.0	270.0		25.0 25.0	1.0 1.0	59.5	27.8 25.0 25.0	201.9 37.7	31.9 -
9.0 9.0	8.0 8.0 8.0	18.0 19.0 20.0	270.0		25.0 25.0 25.0	1.0 1.0 1.0	59.5	27.8 25.0 25.0 25.0	201.9 37.7	31.9 -
9.0 9.0 9.0	8.0 8.0 8.0 8.0	18.0 19.0 20.0 21.0	270.0		25.0 25.0 25.0 24.0	1.0 1.0 1.0 1.0	59.5	27.8 25.0 25.0 25.0 24.0	201.9 37.7	31.9 -
9.0 9.0 9.0 9.0	8.0 8.0 8.0 8.0	18.0 19.0 20.0 21.0 22.0	270.0		25.0 25.0 25.0 24.0 24.0	1.0 1.0 1.0 1.0 1.0	59.5	27.8 25.0 25.0 25.0 24.0 24.0	201.9 37.7	31.9 -
9.0 9.0 9.0 9.0 9.0	8.0 8.0 8.0 8.0 8.0	18.0 19.0 20.0 21.0 22.0 23.0	270.0		25.0 25.0 25.0 24.0 24.0 24.0	1.0 1.0 1.0 1.0 1.0 1.0	59.5	27.8 25.0 25.0 25.0 24.0 24.0 24.0	201.9 37.7	31.9 -
9.0 9.0 9.0 9.0 9.0	8.0 8.0 8.0 8.0 8.0 8.0	18.0 19.0 20.0 21.0 22.0 23.0	270.0		25.0 25.0 25.0 24.0 24.0 24.0 25.0	1.0 1.0 1.0 1.0 1.0 1.0	59.5	27.8 25.0 25.0 25.0 24.0 24.0 24.0 25.0	201.9 37.7	31.9 -
9.0 9.0 9.0 9.0 9.0 9.0	8.0 8.0 8.0 8.0 8.0 9.0	18.0 19.0 20.0 21.0 22.0 23.0	270.0		25.0 25.0 25.0 24.0 24.0 24.0 25.0 25.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0	59.5	27.8 25.0 25.0 25.0 24.0 24.0 24.0 25.0 25.0	201.9 37.7	31.9 -
9.0 9.0 9.0 9.0 9.0	8.0 8.0 8.0 8.0 8.0 8.0	18.0 19.0 20.0 21.0 22.0 23.0	270.0		25.0 25.0 25.0 24.0 24.0 24.0 25.0	1.0 1.0 1.0 1.0 1.0 1.0	59.5	27.8 25.0 25.0 25.0 24.0 24.0 24.0 25.0	201.9 37.7	31.9 -
9.0 9.0 9.0 9.0 9.0 9.0	8.0 8.0 8.0 8.0 8.0 9.0	18.0 19.0 20.0 21.0 22.0 23.0	270.0		25.0 25.0 25.0 24.0 24.0 24.0 25.0 25.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	59.5	27.8 25.0 25.0 24.0 24.0 24.0 25.0 25.0 25.0	201.9 37.7	31.9 -
9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	8.0 8.0 8.0 8.0 8.0 9.0 9.0 9.0	18.0 19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0	270.0		25.0 25.0 24.0 24.0 24.0 25.0 25.0 24.0 24.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	59.5	27.8 25.0 25.0 25.0 24.0 24.0 24.0 25.0 25.0 24.0 24.0	201.9 37.7	31.9 -
9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	8.0 8.0 8.0 8.0 8.0 9.0 9.0 9.0 9.0	18.0 19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0	270.0		25.0 25.0 25.0 24.0 24.0 24.0 25.0 25.0 24.0 24.0 24.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	59.5	27.8 25.0 25.0 25.0 24.0 24.0 25.0 25.0 25.0 24.0 24.0	201.9 37.7	31.9 -
9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	8.0 8.0 8.0 8.0 8.0 9.0 9.0 9.0 9.0	18.0 19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0	270.0	- - - - - - - - - - -	25.0 25.0 25.0 24.0 24.0 24.0 25.0 25.0 24.0 24.0 24.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	59.5	27.8 25.0 25.0 24.0 24.0 24.0 25.0 25.0 24.0 24.0 24.0 24.0	201.9 37.7 - - - - - - - - -	31.9
9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	8.0 8.0 8.0 8.0 8.0 9.0 9.0 9.0 9.0 9.0	18.0 19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0	270.0 - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	25.0 25.0 24.0 24.0 24.0 25.0 25.0 24.0 24.0 24.0 24.0 25.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	59.5	27.8 25.0 25.0 24.0 24.0 24.0 25.0 25.0 25.0 24.0 24.0 24.0 24.0 24.0	201.9 37.7 - - - - - - - - - - - - - - - - - -	31.9
9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	8.0 8.0 8.0 8.0 8.0 9.0 9.0 9.0 9.0 9.0 9.0	18.0 19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 2.0 3.0 4.0 5.0 6.0 7.0	270.0	- - - - - - - - - - - - - - - - - - -	25.0 25.0 24.0 24.0 24.0 25.0 25.0 25.0 24.0 24.0 24.0 25.0 26.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	59.5	27.8 25.0 25.0 24.0 24.0 24.0 25.0 25.0 24.0 24.0 24.0 24.0 24.0 28.2 38.7	201.9 37.7 - - - - - - - - - - - - - - - - - -	31.9 - - - - - - - - - - - - - - - - - - -
9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	8.0 8.0 8.0 8.0 8.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	18.0 19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0	270.0	- - - - - - - - - - - - - - - - - - -	25.0 25.0 25.0 24.0 24.0 24.0 25.0 25.0 24.0 24.0 24.0 25.0 25.0 27.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	59.5	27.8 25.0 25.0 24.0 24.0 24.0 25.0 25.0 24.0 24.0 24.0 24.0 28.2 38.7 48.8	201.9 37.7 - - - - - - - - - - - - - - - - - -	31.9 - - - - - - - - - - - - - - - - - - -
9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	8.0 8.0 8.0 8.0 8.0 9.0 9.0 9.0 9.0 9.0 9.0	18.0 19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 2.0 3.0 4.0 5.0 6.0 7.0	270.0	- - - - - - - - - - - - - - - - - - -	25.0 25.0 24.0 24.0 24.0 25.0 25.0 25.0 24.0 24.0 24.0 25.0 26.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	59.5	27.8 25.0 25.0 24.0 24.0 24.0 25.0 25.0 24.0 24.0 24.0 24.0 24.0 28.2 38.7	201.9 37.7 - - - - - - - - - - - - - - - - - -	31.9 - - - - - - - - - - - - - - - - - - -
9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	8.0 8.0 8.0 8.0 8.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	18.0 19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0	270.0	- - - - - - - - - - - - - - - - - - -	25.0 25.0 25.0 24.0 24.0 24.0 25.0 25.0 24.0 24.0 24.0 25.0 25.0 27.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	59.5	27.8 25.0 25.0 24.0 24.0 24.0 25.0 25.0 25.0 24.0 24.0 24.0 24.0 24.0 28.2 38.7 48.8 56.9	201.9 37.7 - - - - - - - - - - - - - - - - - -	31.9 - - - - - - - - - - - - - - - - - - -
9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	8.0 8.0 8.0 8.0 8.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	18.0 19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0	270.0	- - - - - - - - - - - - - - - - - - -	25.0 25.0 24.0 24.0 24.0 25.0 25.0 25.0 24.0 24.0 24.0 26.0 27.0 28.0 29.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	59.5	27.8 25.0 25.0 24.0 24.0 24.0 25.0 25.0 25.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0	201.9 37.7 - - - - - - - - - - - - -	31.9 - - - - - - - - - - - - - - - - - - -
9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	8.0 8.0 8.0 8.0 8.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	18.0 19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0	270.0		25.0 25.0 25.0 24.0 24.0 24.0 25.0 25.0 24.0 24.0 24.0 24.0 25.0 26.0 27.0 28.0 29.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	59.5	27.8 25.0 25.0 24.0 24.0 24.0 25.0 25.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 26.0 26.0 26.0 26.0 27.0 28.2 38.7 48.8 56.9 62.4 64.7	201.9 37.7 - - - - - - - - - - - - -	31.9 - - - - - - - - - - - - - - - - - - -
9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	8.0 8.0 8.0 8.0 8.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9	18.0 19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 11.0 11.0	270.0		25.0 25.0 24.0 24.0 24.0 25.0 25.0 25.0 24.0 24.0 24.0 25.0 26.0 27.0 28.0 29.0 29.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	59.5	27.8 25.0 25.0 24.0 24.0 24.0 25.0 25.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 26.0	201.9 37.7 - - - - - - - - - - - - - - - - - -	31.9 - - - - - - - - - - - - - - - - - - -
9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	8.0 8.0 8.0 8.0 8.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9	18.0 19.0 20.0 21.0 22.0 23.0 - - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0	270.0		25.0 25.0 24.0 24.0 24.0 25.0 25.0 25.0 24.0 24.0 24.0 25.0 26.0 27.0 28.0 29.0 29.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	59.5	27.8 25.0 25.0 24.0 24.0 24.0 25.0 25.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 26.0 26.0 26.0 27.0 28.2 38.7 48.8 56.9 62.4 64.7 65.5 61.7	201.9 37.7 - - - - - - - - - - - - -	31.9 - - - - - - - - - - - - - - - - - - -
9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	8.0 8.0 8.0 8.0 8.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9	18.0 19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 11.0 11.0 12.0 13.0	270.0		25.0 25.0 25.0 24.0 24.0 24.0 25.0 25.0 24.0 24.0 24.0 25.0 26.0 27.0 28.0 29.0 29.0 29.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	59.5	27.8 25.0 25.0 24.0 24.0 24.0 25.0 25.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 26.0 26.0 26.0 26.0 27.0 28.2 38.7 48.8 56.9 62.4 64.7 65.5 61.7 56.2	201.9 37.7 - - - - - - - - 103.6 293.7 464.7 586.2 654.8 687.0 674.1 621.1 516.6	31.9 - - - - - - - - - - - - - - - - - - -
9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	8.0 8.0 8.0 8.0 8.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9	18.0 19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0	270.0		25.0 25.0 24.0 24.0 24.0 25.0 25.0 24.0 24.0 24.0 24.0 25.0 26.0 27.0 28.0 29.0 29.0 29.0 29.0 29.0 29.0 28.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	59.5	27.8 25.0 25.0 24.0 24.0 24.0 25.0 25.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 26.0 26.0 26.0 26.0 27.0 28.2 38.7 48.8 56.9 62.4 64.7 65.5 61.7 56.2 47.7	201.9 37.7 - - - - - - - - - - - - -	31.9 - - - - - - - - - - - - - - - - - - -
9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	8.0 8.0 8.0 8.0 8.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9	18.0 19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 11.0 11.0 12.0 13.0	270.0		25.0 25.0 25.0 24.0 24.0 24.0 25.0 25.0 24.0 24.0 24.0 25.0 26.0 27.0 28.0 29.0 29.0 29.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	59.5	27.8 25.0 25.0 24.0 24.0 24.0 25.0 25.0 25.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 26.0 26.0 27.0 28.2 38.7 48.8 56.9 62.4 64.7 65.5 61.7 56.2 47.7 37.6	201.9 37.7 - - - - - - - - - - - - -	31.9 - - - - - - - - - - - - - - - - - - -
9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	8.0 8.0 8.0 8.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9	18.0 19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0	270.0		25.0 25.0 24.0 24.0 24.0 25.0 25.0 24.0 24.0 24.0 24.0 25.0 26.0 27.0 28.0 29.0 29.0 29.0 29.0 29.0 29.0 28.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	59.5	27.8 25.0 25.0 24.0 24.0 24.0 25.0 25.0 25.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 26.0 26.0 27.0 28.2 38.7 48.8 56.9 62.4 64.7 65.5 61.7 56.2 47.7 37.6	201.9 37.7 - - - - - - - - - - - - -	31.9 - - - - - - - - - - - - - - - - - - -
9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	8.0 8.0 8.0 8.0 8.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9	18.0 19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 17.0 18.0 19.0	270.0		25.0 25.0 24.0 24.0 24.0 25.0 25.0 25.0 24.0 24.0 24.0 25.0 26.0 27.0 28.0 29.0 29.0 29.0 29.0 29.0 28.0 27.0 28.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	59.5	27.8 25.0 25.0 24.0 24.0 24.0 25.0 25.0 24.0 24.0 24.0 24.0 24.0 24.0 26.0 26.9 62.4 64.7 65.5 61.7 65.5 61.7 75.2 47.7 37.6 27.5	201.9 37.7 - - - - - - - - - - - - -	31.9
9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	8.0 8.0 8.0 8.0 8.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9	18.0 19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0	270.0		25.0 25.0 24.0 24.0 24.0 25.0 25.0 25.0 24.0 24.0 24.0 25.0 26.0 27.0 28.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 28.0 27.0 26.0 27.0 26.0 27.0 26.0 27.0 26.0 27.0 26.0 27.0 26.0 27.0 28.0 29.0 20.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	59.5	27.8 25.0 25.0 24.0 24.0 24.0 25.0 25.0 24.0 24.0 24.0 24.0 24.0 28.2 38.7 48.8 56.9 62.4 64.7 65.5 61.7 56.2 47.7 37.6 27.5 26.0	201.9 37.7 - - - - - - - - - - - - -	31.9 - - - - - - - - - - - - - - - - - - -
9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	8.0 8.0 8.0 8.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9	18.0 19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0	270.0		25.0 25.0 24.0 24.0 24.0 25.0 25.0 24.0 24.0 24.0 24.0 24.0 24.0 25.0 26.0 27.0 28.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 26.0 27.0 26.0 27.0 26.0 27.0 26.0 27.0 28.0 29.0 20.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	59.5	27.8 25.0 25.0 24.0 24.0 24.0 25.0 25.0 25.0 25.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 26.0 26.0 27.7 48.8 8 56.9 62.4 64.7 65.5 61.7 56.2 47.7 37.6 27.5 26.0 25.0	201.9 37.7 - - - - - - - - - - - - -	31.9
9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	8.0 8.0 8.0 8.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9	18.0 19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 17.0 18.0 17.0 18.0 19.0 20.0	270.0		25.0 25.0 24.0 24.0 24.0 25.0 25.0 25.0 24.0 24.0 24.0 24.0 25.0 26.0 27.0 28.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 25.0 26.0 27.0 28.0 29.0 26.0 27.0 26.0 27.0 26.0 27.0 26.0 27.0 26.0 27.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	59.5	27.8 25.0 25.0 24.0 24.0 24.0 25.0 25.0 24.0 24.0 24.0 24.0 24.0 24.0 26.0 26.9 62.4 64.7 65.5 61.7 56.2 47.7 37.6 27.5 26.0 25.0	201.9 37.7 - - - - - - - - - - - - -	31.9
9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	8.0 8.0 8.0 8.0 8.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9	18.0 19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0	270.0		25.0 25.0 24.0 24.0 24.0 25.0 25.0 25.0 24.0 24.0 24.0 24.0 25.0 26.0 27.0 28.0 29.0 29.0 29.0 29.0 29.0 29.0 26.0 27.0 28.0 29.0 26.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	59.5	27.8 25.0 25.0 24.0 24.0 24.0 25.0 25.0 25.0 24.0 24.0 24.0 24.0 24.0 24.0 24.7 26.5 61.7 56.2 47.7 37.6 27.5 26.0 25.0 25.0 25.0 25.0	201.9 37.7 - - - - - - - - - - - - -	31.9
9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	8.0 8.0 8.0 8.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9	18.0 19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 20.0 21.0 22.0	270.0		25.0 25.0 24.0 24.0 24.0 25.0 25.0 25.0 24.0 24.0 24.0 24.0 24.0 24.0 25.0 26.0 27.0 28.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 25.0 26.0 27.0 26.0 27.0 28.0 29.0 25.0 26.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	59.5	27.8 25.0 25.0 24.0 24.0 24.0 25.0 25.0 25.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24	201.9 37.7 - - - - - - - - - - - - -	31.9
9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	8.0 8.0 8.0 8.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9	18.0 19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0	270.0		25.0 25.0 24.0 24.0 24.0 25.0 25.0 25.0 24.0 24.0 24.0 24.0 25.0 26.0 27.0 28.0 29.0 29.0 29.0 29.0 29.0 29.0 26.0 27.0 28.0 29.0 26.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	59.5	27.8 25.0 25.0 24.0 24.0 24.0 25.0 25.0 25.0 24.0 24.0 24.0 24.0 24.0 24.0 24.7 26.5 61.7 56.2 47.7 37.6 27.5 26.0 25.0 25.0 25.0 25.0	201.9 37.7 - - - - - - - - - - - - -	31.9

9.0	10.0	_	_	_	25.0	1.0	_	25.0	_	
9.0	10.0	1.0	-	-	25.0	1.0	-	25.0	-	-
9.0 9.0	10.0 10.0	2.0 3.0			26.0 26.0	1.0 1.0	Ī	26.0 26.0	-	1
9.0	10.0	4.0	-	-	26.0	-	-	26.0	-	-
9.0	10.0	5.0	- 270.0	-	26.0	-	-	26.0	-	-
9.0 9.0	10.0 10.0	6.0 7.0	379.0 606.0	63.0 98.0	27.0 28.0	-	142.5 379.1	30.9 43.7	97.5 276.5	90.5 265.0
9.0	10.0	8.0	166.0	270.0	29.0	-	383.6	46.9	289.2	277.4
9.0 9.0	10.0 10.0	9.0 10.0	247.0	353.0 67.0	29.0 30.0	-	575.0 63.8	53.9 37.5	419.3 50.8	403.4 44.7
9.0	10.0	11.0	91.0	436.0	30.0	-	532.9	50.9	395.5	380.4
9.0	10.0	12.0	132.0	440.0	30.0	-	585.6	56.3	422.0	406.0
9.0 9.0	10.0 10.0	13.0 14.0	829.0 783.0	120.0 112.0	29.0 29.0	1.0 1.0	877.2 719.2	59.4 56.1	620.5 515.6	597.1 496.3
9.0	10.0	15.0	130.0	226.0	28.0	1.0	300.9	41.0	233.2	222.9
9.0	10.0	16.0	124.0	125.0	27.0	1.0	165.3	32.7	129.6	121.9
9.0 9.0	10.0 10.0	17.0 18.0	28.0	32.0	27.0 27.0	1.0 1.0	33.1	27.1 27.0	26.4	20.8
9.0	10.0	19.0	-	-	27.0	-	-	27.0	-	-
9.0	10.0	20.0	-	-	26.0	-	-	26.0	-	-
9.0 9.0	10.0 10.0	21.0 22.0	-		26.0 26.0	-	Ī	26.0 26.0	-	
9.0	10.0	23.0	-	-	26.0	-	-	26.0	-	-
9.0	11.0	-	-	-	25.0	1.0	-	25.0	-	-
9.0 9.0	11.0 11.0	1.0 2.0	-	-	25.0 25.0	1.0 1.0	Ī	25.0 25.0	-	-
9.0	11.0	3.0	-	-	25.0	1.0	-	25.0	-	-
9.0	11.0	4.0	-	-	25.0	1.0	-	25.0	-	-
9.0 9.0	11.0 11.0	5.0 6.0	21.0	72.0	25.0 26.0	-	73.7	25.0 26.0	60.9	- 54.7
9.0	11.0	7.0	162.0	172.0	27.0	-	244.9	36.5	191.4	182.2
9.0	11.0	8.0	314.0 205.0	252.0 358.0	28.0 29.0	-	469.4 538.0	48.0	350.9 393.8	337.2 378.7
9.0 9.0	11.0 11.0	9.0 10.0	249.0	414.0	30.0	-	673.2	53.2 59.3	477.0	459.1
9.0	11.0	11.0	159.0	451.0	30.0	-	627.1	58.7	446.0	429.2
9.0 9.0	11.0 11.0	12.0 13.0	115.0 156.0	435.0 396.0	30.0 30.0	-	563.9 548.2	56.3 55.3	406.5 397.2	391.0 382.1
9.0	11.0	14.0	238.0	313.0	30.0	1.0	499.1	48.4	374.2	359.7
9.0	11.0	15.0	399.0	187.0	29.0	-	421.8	49.3	309.6	297.1
9.0 9.0	11.0 11.0	16.0 17.0	277.0 88.0	113.0 32.0	28.0 27.0	-	206.2 39.3	39.6 29.0	151.5 28.7	143.2 23.0
9.0	11.0	18.0	-	-	27.0	-	-	27.0	-	-
9.0	11.0	19.0	-	-	27.0	-	-	27.0	-	-
9.0 9.0	11.0 11.0	20.0 21.0	-	-	26.0 26.0	-	-	26.0 26.0	-	
9.0	11.0	22.0	-	-	25.0	1.0	-	25.0	-	_
9.0	11.0	23.0	-	-	25.0	1.0	-	25.0	-	-
9.0 9.0	12.0 12.0	- 1.0	-	- -	25.0 25.0	1.0 1.0	- -	25.0 25.0	-	_
9.0	12.0	2.0	-	-	24.0	1.0	-	24.0	-	-
9.0 9.0	12.0 12.0	3.0 4.0	-	-	24.0 24.0	1.0 1.0	-	24.0 24.0	-	-
9.0	12.0	5.0	-	- -	24.0	1.0	- -	24.0	-	-
9.0	12.0	6.0	-	44.0	25.0	1.0	41.8	24.1	35.4	29.7
9.0 9.0	12.0 12.0	7.0 8.0	612.0 724.0	95.0 115.0	26.0 27.0	1.0 1.0	379.6 609.9	37.6 48.2	285.4 452.9	273.7 435.9
9.0	12.0	9.0	85.0	346.0	27.0	1.0	418.1	43.2	322.9	310.0
9.0	12.0	10.0	186.0	421.0	28.0	1.0	612.0	49.4	457.7	440.5
9.0 9.0	12.0 12.0	11.0 12.0	34.0 830.0	369.0 136.0	28.0 28.0	1.0 1.0	406.2 961.5	43.8 60.2	312.9 678.1	300.4 652.2
9.0	12.0	13.0	803.0	133.0	28.0	1.0	871.1	60.1	613.9	590.8
9.0	12.0	14.0	751.0	126.0	28.0	1.0	707.3	54.7	510.8	491.6
9.0 9.0	12.0 12.0	15.0 16.0	275.0 501.0	209.0 83.0	27.0 27.0	1.0 1.0	369.3 254.0	42.2 36.3	282.5 183.2	270.8 174.1
9.0	12.0	17.0	168.0	31.0	26.0	1.0	46.3	27.1	31.2	25.6
9.0 9.0	12.0 12.0	18.0 19.0	-	-	26.0 26.0	1.0 2.0	-	26.0 26.0	-	Ē
9.0	12.0	20.0	-	-	26.0	2.0		26.0	-	_
9.0	12.0	21.0	-	-	25.0	2.0	-	25.0	-	-
9.0 9.0	12.0 12.0	22.0 23.0	-	- -	25.0 25.0	2.0 2.0	-	25.0 25.0	-	-
9.0	13.0	-	-	-	25.0	1.0	-	25.0	-	-
9.0	13.0	1.0	-	-	25.0	1.0	•	25.0	-	-
9.0 9.0	13.0 13.0	2.0 3.0	-	- -	25.0 24.0	1.0 1.0	-	25.0 24.0	-	-
9.0	13.0	4.0	-	-	24.0	1.0	-	24.0	-	-
9.0 9.0	13.0 13.0	5.0 6.0	364.0	- 62.0	24.0 25.0	2.0 2.0	139.4	24.0 27.4	97.4	90.4
9.0	13.0	7.0	597.0	97.0	25.0	2.0	375.3	35.1	285.9	274.1
9.0	13.0	8.0	717.0	116.0	26.0	2.0	606.7	43.9	460.7	443.4

0.0	40.0	0.0	524.0	225.0	27.0	2.0	COO 2	40.4	504.4	504.4
9.0 9.0	13.0 13.0	9.0 10.0	531.0 353.0	235.0 388.0	27.0 27.0	2.0 2.0	698.3 745.1	48.4 50.0	524.1 555.4	504.4 534.6
9.0	13.0	11.0	232.0	442.0	28.0	2.0	691.0	49.7	516.1	496.8
9.0	13.0	12.0	250.0	429.0	28.0	2.0	700.1	49.7	522.8	503.2
9.0 9.0	13.0 13.0	13.0 14.0	274.0 230.0	378.0 310.0	28.0 28.0	2.0 2.0	644.0 489.7	48.2 43.6	484.6 376.5	466.4 362.0
9.0	13.0	15.0	721.0	89.0	28.0	2.0	501.8	43.3	375.8	361.3
9.0	13.0	16.0	240.0	111.0	27.0	1.0	191.1	34.9	144.2	136.1
9.0	13.0	17.0	85.0	28.0	26.0	1.0	35.3	26.3	25.9	20.3
9.0 9.0	13.0 13.0	18.0 19.0	-	-	26.0 26.0	1.0 1.0	- -	26.0 26.0	-	-
9.0	13.0	20.0	-	- -	26.0	1.0	-	26.0	-	-
9.0	13.0	21.0	-	-	25.0	2.0	-	25.0	-	-
9.0	13.0	22.0	-	-	25.0	2.0	-	25.0	-	-
9.0	13.0	23.0	-	-	25.0	2.0	-	25.0	-	-
9.0 9.0	14.0 14.0	- 1.0	1		24.0 24.0	2.0 2.0		24.0 24.0		
9.0	14.0	2.0	_	-	24.0	2.0	-	24.0	_	_
9.0	14.0	3.0	-	-	24.0	2.0	-	24.0	-	-
9.0	14.0	4.0	-	-	23.0	1.0	-	23.0	-	-
9.0 9.0	14.0 14.0	5.0 6.0	- 482.0	- 47.0	23.0 24.0	1.0 2.0	- 150.5	23.0 26.7	100.8	93.7
9.0	14.0	7.0	701.0	70.0	25.0	2.0	394.4	35.8	297.6	285.5
9.0	14.0	8.0	803.0	82.0	26.0	2.0	624.8	44.5	472.4	454.7
9.0	14.0	9.0	838.0	101.0	27.0	2.0	810.3	51.6	597.4	574.9
9.0	14.0	10.0	865.0	108.0	28.0	2.0	937.9	56.7	674.1	648.5
9.0 9.0	14.0 14.0	11.0 12.0	873.0 859.0	112.0 118.0	28.0 29.0	2.0 2.0	992.5 969.6	58.6 59.2	706.1 687.6	679.0 661.4
9.0	14.0	13.0	170.0	390.0	29.0	2.0	554.9	47.7	418.6	402.7
9.0	14.0	14.0	776.0	112.0	29.0	2.0	708.7	50.4	523.6	504.0
9.0	14.0	15.0	689.0	98.0	29.0	1.0	492.4	48.1	359.8	345.9
9.0	14.0	16.0	531.0	74.0	28.0	1.0	252.3	38.0	178.8	169.9
9.0	14.0	17.0	182.0	27.0	27.0	1.0	43.9	28.1	28.5	22.9
9.0 9.0	14.0 14.0	18.0 19.0	-	-	26.0 26.0	1.0 1.0	-	26.0 26.0	-	-
9.0	14.0	20.0	_	_	26.0	1.0	<u>-</u>	26.0	_	_
9.0	14.0	21.0	-	-	26.0	1.0	-	26.0	-	-
9.0	14.0	22.0	-	-	26.0	1.0	-	26.0	-	-
9.0	14.0	23.0	-		25.0	1.0	-	25.0	-	-
9.0 9.0	15.0 15.0	1.0	-	-	25.0 25.0	1.0 1.0	-	25.0 25.0	-	-
9.0	15.0	2.0	-	- -	25.0	1.0		25.0	-	-
9.0	15.0	3.0	-	-	24.0	1.0	-	24.0	-	-
9.0	15.0	4.0	-	-	24.0	1.0	-	24.0	-	-
9.0	15.0	5.0	-		24.0	1.0		24.0	-	-
9.0 9.0	15.0 15.0	6.0 7.0	485.0 706.0	46.0 68.0	25.0 27.0	2.0 2.0	150.4 394.9	27.7 37.8	100.1 294.9	93.0 282.8
9.0	15.0	8.0	808.0	80.0	28.0	2.0	626.2	46.5	468.6	451.0
9.0	15.0	9.0	863.0	88.0	29.0	2.0	817.3	53.7	595.6	573.2
9.0	15.0	10.0	891.0	93.0	29.0	2.0	946.3	57.9	675.6	649.9
9.0	15.0	11.0	902.0	95.0	30.0	2.0	1,002.7	60.8	704.6	677.6
9.0 9.0	15.0 15.0	12.0 13.0	882.0 863.0	105.0 100.0	30.0 30.0	2.0 2.0	977.4 881.0	60.4 57.7	688.6 629.2	662.3 605.5
9.0	15.0	14.0	823.0	92.0	30.0	2.0	717.8	52.9	523.1	503.5
9.0	15.0	15.0	760.0	75.0	29.0	1.0	505.4	48.6	367.5	353.3
9.0	15.0	16.0	614.0	58.0	28.0	1.0	261.3	38.4	182.1	173.1
9.0	15.0	17.0	253.0	23.0	27.0	1.0	47.2	28.2	28.1	22.5
9.0 9.0	15.0 15.0	18.0 19.0	-	- -	26.0 26.0	1.0 1.0	Ī	26.0 26.0	-	-
9.0	15.0	20.0	_	-	26.0	1.0	-	26.0	_	_
9.0	15.0	21.0	-	-	26.0	1.0	-	26.0	-	-
9.0	15.0	22.0	-	-	26.0	1.0	-	26.0	-	-
9.0	15.0	23.0	-	-	26.0	1.0	-	26.0	-	-
9.0 9.0	16.0 16.0	- 1.0		- -	25.0 25.0	1.0 1.0		25.0 25.0	-	
9.0	16.0	2.0	-	- -	25.0	1.0	- -	25.0	- -	-
9.0	16.0	3.0	-	-	25.0	1.0	-	25.0	-	-
9.0	16.0	4.0	-	-	25.0	1.0	-	25.0	-	-
9.0	16.0	5.0	- 24.0	-	25.0	1.0	- 72.0	25.0	-	-
9.0 9.0	16.0 16.0	6.0 7.0	34.0 70.0	68.0 162.0	25.0 26.0	1.0 2.0	73.0 191.1	25.3 30.3	59.8 155.5	53.6 147.2
9.0	16.0	8.0	-	80.0	27.0	2.0	76.1	28.4	63.3	57.0
9.0	16.0	9.0	-	65.0	27.0	2.0	61.8	27.4	51.7	45.6
9.0	16.0	10.0	-	136.0	28.0	1.0	130.3	30.9	107.0	99.8
9.0	16.0	11.0	- 11.0	70.0	28.0	1.0	66.7 247.1	29.1	55.3	49.1
9.0 9.0	16.0 16.0	12.0 13.0	11.0 49.0	244.0 343.0	28.0 28.0	1.0 1.0	247.1 389.1	35.2 41.1	198.8 303.8	189.4 291.5
9.0	16.0	14.0	3.0	183.0	27.0	1.0	178.4	33.8	144.5	136.4
9.0	16.0	15.0	552.0	139.0	27.0	1.0	453.6	41.9	343.5	330.1
9.0	16.0	16.0	559.0	64.0	26.0	1.0	248.5	35.6	176.5	167.6
9.0	16.0	17.0	186.0	23.0	26.0	1.0	41.3	26.9	26.3	20.7

9.0	16.0	18.0			26.0	1.0		26.0		
									_	
9.0	16.0	19.0	•	-	26.0	1.0	-	26.0	-	-
9.0	16.0	20.0	-	-	25.0	1.0	-	25.0	-	-
9.0	16.0	21.0	-	<u>-</u>	25.0	1.0	<u>-</u>	25.0	-	-
9.0	16.0	22.0	_		25.0	1.0		25.0	_	_
9.0	16.0	23.0	•	-	25.0	1.0	-	25.0	-	-
9.0	17.0	-	-	-	25.0	1.0	-	25.0	-	-
9.0	17.0	1.0	-	<u>-</u>	25.0	1.0	<u>-</u>	25.0	-	_
9.0	17.0	2.0			25.0	1.0		25.0		
			-							-
9.0	17.0	3.0	-	•	25.0	1.0	-	25.0	-	-
9.0	17.0	4.0	-		25.0	1.0		25.0	-	-
9.0	17.0	5.0	_	_	25.0	1.0		25.0	_	_
				20.0					24.2	
9.0	17.0	6.0	-	39.0	26.0	1.0	37.0	25.0	31.3	25.6
9.0	17.0	7.0	21.0	148.0	26.0	1.0	152.1	29.5	125.2	117.6
9.0	17.0	8.0	171.0	266.0	27.0	1.0	385.2	39.4	301.8	289.6
9.0		9.0			27.0			33.2		124.7
	17.0		2.0	168.0		1.0	163.1		132.5	
9.0	17.0	10.0	10.0	229.0	27.0	1.0	231.0	34.2	186.8	177.6
9.0	17.0	11.0	472.0	350.0	27.0	1.0	852.5	55.0	618.7	595.3
9.0	17.0	12.0	258.0	419.0	27.0	1.0	697.9	53.4	511.0	491.9
9.0	17.0	13.0	306.0	362.0	27.0	1.0	655.4	51.3	485.1	466.9
9.0	17.0	14.0	276.0	293.0	27.0	1.0	512.6	46.5	387.9	373.0
9.0	17.0	15.0	367.0	182.0	26.0	1.0	390.0	40.7	298.9	286.8
9.0	17.0	16.0	320.0	94.0	26.0	1.0	200.3	33.5	149.1	140.9
9.0	17.0	17.0	87.0	22.0	26.0	1.0	30.0	26.1	21.3	15.8
9.0	17.0	18.0	-	-	26.0	<u>-</u>		26.0	-	-
9.0	17.0	19.0	_	_	26.0	_	<u>-</u>	26.0	_	_
9.0	17.0	20.0	-	-	26.0	-		26.0	-	-
9.0	17.0	21.0	-	-	26.0	<u>-</u>		26.0	-	-
9.0	17.0	22.0	_	_	26.0	_		26.0	_	_
						4.0				
9.0	17.0	23.0	-	-	25.0	1.0		25.0	-	-
9.0	18.0	-	-	-	25.0	1.0	-	25.0	-	-
9.0	18.0	1.0	_	_	25.0	1.0		25.0	_	_
9.0		2.0			25.0	-				
	18.0		-			-		25.0	-	-
9.0	18.0	3.0	-	-	25.0	-		25.0	-	-
9.0	18.0	4.0	-		25.0	-		25.0	-	-
9.0	18.0	5.0	_		25.0	1.0		25.0		
				10.0			1150		07.0	
9.0	18.0	6.0	446.0	48.0	26.0	1.0	145.3	29.0	97.3	90.3
9.0	18.0	7.0	110.0	166.0	27.0	1.0	217.3	33.6	173.2	164.4
9.0	18.0	8.0	63.0	251.0	28.0	1.0	292.2	37.7	231.7	221.4
9.0	18.0	9.0	-	151.0	28.0	1.0	144.8	33.0	117.8	110.3
9.0	18.0	10.0	296.0	393.0	28.0	1.0	698.0	50.7	518.4	499.0
9.0	18.0	11.0	280.0	423.0	28.0	2.0	730.0	50.6	542.6	522.3
9.0	18.0	12.0	351.0	396.0	28.0	2.0	764.1	51.7	564.7	543.5
9.0	18.0	13.0	503.0	285.0	28.0	2.0	757.8	51.6	559.7	538.7
9.0	18.0	14.0	239.0	297.0	27.0	2.0	482.1	42.9	371.9	357.6
9.0	18.0	15.0	187.0	207.0	27.0	2.0	312.2	36.8	245.9	235.3
9.0	18.0	16.0	518.0	69.0	26.0	1.0	238.2	34.4	170.6	161.9
9.0	18.0	17.0	127.0	22.0	26.0	1.0	34.5	26.6	23.3	17.8
9.0	18.0	18.0	_	_	26.0	1.0	_	26.0	_	-
9.0	18.0	19.0	_		26.0	1.0		26.0		
9.0	18.0	20.0	-	-	26.0	1.0		26.0	-	-
9.0	18.0	21.0	-	-	26.0	1.0	-	26.0	-	-
9.0	18.0	22.0	_	_	26.0	1.0	_	26.0	_	_
9.0	18.0	23.0			26.0	1.0		26.0		
			-	•			· · · · · · · · · · · · · · · · · · ·			-
9.0	19.0	-	-	•	26.0	1.0	-	26.0	-	-
9.0	19.0	1.0	-	-	26.0	1.0		26.0	-	-
9.0	19.0	2.0	_	_	25.0	1.0	_	25.0	_	_
9.0	19.0	3.0			25.0	1.0		25.0		
			-	-					-	-
9.0	19.0	4.0	-	-	25.0	1.0	-	25.0	-	-
9.0	19.0	5.0	-	-	25.0	1.0	-	25.0	-	-
9.0	19.0	6.0	405.0	53.0	25.0	1.0	142.1	27.8	97.3	90.3
9.0	19.0	7.0	648.0	83.0	25.0	1.0	386.0	37.4	290.0	278.1
9.0	19.0	8.0	771.0	96.0	27.0	1.0	622.1	48.6	460.7	443.4
9.0	19.0	9.0	831.0	108.0	28.0	1.0	811.9	56.7	582.1	560.2
9.0	19.0	10.0	868.0	111.0	29.0	1.0	942.5	62.5	655.9	631.0
9.0	19.0	11.0	120.0	432.0	30.0	-	570.7	58.6	406.0	390.6
9.0	19.0	12.0	213.0	423.0	30.0	-	648.5	58.7	461.1	443.7
9.0	19.0	13.0	844.0	115.0	30.0	-	874.8	66.6	593.8	571.4
9.0	19.0	14.0	796.0	106.0	30.0	_	710.0	62.7	489.7	471.3
9.0	19.0	15.0	705.0	93.0	30.0	-	488.4	54.3	344.4	330.9
9.0	19.0	16.0	529.0	69.0	29.0	-	240.4	42.5	164.9	156.3
9.0	19.0	17.0	131.0	20.0	28.0	_	32.9	30.3	21.4	15.9
9.0	19.0								-	
		18.0	-		27.0	-	-	27.0		-
9.0	19.0	19.0	-	-	27.0	-	-	27.0	-	-
9.0	19.0	20.0	-		27.0	-		27.0	-	-
9.0	19.0	21.0	_		26.0	-	<u>-</u>	26.0	_	_
9.0	19.0	22.0	-	-	26.0	-	-	26.0	-	-
9.0	19.0	23.0	-	-	26.0	-	-	26.0	-	-
9.0	20.0		-		25.0	1.0	<u>-</u>	25.0	-	-
9.0	20.0	1.0	_		25.0	1.0	<u>-</u>	25.0	_	_
9.0	20.0	2.0			24.0	1.0		24.0		
9.0	20.0	2.0	-	-	24.0	1.0		24.0	-	-

9.0	20.0	3.0	-	-	24.0	1.0	-	24.0	_	-
9.0 9.0	20.0 20.0	4.0 5.0	-	- -	24.0 24.0	1.0 1.0	- -	24.0 24.0	-	-
9.0 9.0	20.0 20.0	6.0 7.0	408.0 649.0	54.0 84.0	24.0 26.0	1.0 1.0	144.0 387.8	26.9 38.5	99.2 289.8	92.1 278.0
9.0	20.0	8.0	767.0	100.0	28.0	1.0	623.9	49.6	459.5	442.2
9.0 9.0	20.0 20.0	9.0 10.0	830.0 864.0	110.0 115.0	29.0 30.0	1.0 1.0	813.1 942.6	57.7 63.4	579.8 652.5	558.0 627.7
9.0	20.0	11.0	877.0	117.0	31.0	1.0	998.0	66.5	678.7	652.8
9.0 9.0	20.0 20.0	12.0 13.0	870.0 378.0	117.0 338.0	31.0 31.0	-	973.5 693.2	72.6 63.7	638.5 478.7	614.3 460.7
9.0	20.0	14.0	805.0	102.0	31.0	-	710.7	62.5	490.7	472.3
9.0 9.0	20.0 20.0	15.0 16.0	720.0 548.0	88.0 65.0	30.0 29.0	-	489.2 240.9	54.3 42.6	344.5 164.3	331.0 155.8
9.0 9.0	20.0 20.0	17.0 18.0	-	26.0	28.0 28.0	-	24.7	29.9 28.0	20.4	14.9
9.0	20.0	19.0	-	- -	27.0	-		27.0		-
9.0 9.0	20.0 20.0	20.0 21.0	-	-	27.0 26.0	-	-	27.0 26.0	-	-
9.0	20.0	22.0	-	-	26.0	-	-	26.0	-	-
9.0 9.0	20.0 21.0	23.0	-	- -	25.0 25.0	1.0 1.0	-	25.0 25.0	-	-
9.0	21.0	1.0	-	-	24.0	1.0	-	24.0	-	-
9.0 9.0	21.0 21.0	2.0 3.0	-	- -	24.0 24.0	1.0 1.0	-	24.0 24.0	-	
9.0	21.0	4.0	-	- -	24.0	1.0	-	24.0	-	-
9.0 9.0	21.0 21.0	5.0 6.0	390.0	54.0	24.0 26.0	1.0 1.0	140.5	24.0 28.8	96.3	- 89.3
9.0 9.0	21.0 21.0	7.0 8.0	632.0 750.0	87.0 105.0	27.0 28.0	1.0 1.0	383.6 618.1	39.3 49.4	285.7 455.8	274.0 438.6
9.0	21.0	9.0	817.0	115.0	29.0	2.0	812.2	53.5	592.5	570.2
9.0 9.0	21.0 21.0	10.0 11.0	849.0 859.0	122.0 127.0	30.0 30.0	2.0 2.0	935.4 990.0	58.6 60.5	665.5 697.1	640.2 670.5
9.0	21.0	12.0	849.0	129.0	30.0	1.0	964.7	64.8	662.4	637.2
9.0 9.0	21.0 21.0	13.0 14.0	821.0 768.0	126.0 117.0	30.0 30.0	1.0 1.0	869.0 698.0	61.9 56.3	606.0 499.0	583.2 480.3
9.0	21.0	15.0	527.0	138.0	29.0	1.0	433.5	46.2	320.6	307.9
9.0 9.0	21.0 21.0	16.0 17.0	487.0 95.0	74.0 17.0	28.0 27.0	1.0 1.0	230.1 26.6	36.9 27.3	162.9 18.0	154.4 12.5
9.0	21.0	18.0	-	-	27.0	1.0	-	27.0	-	-
9.0 9.0	21.0 21.0	19.0 20.0	-	-	27.0 27.0	1.0 1.0	-	27.0 27.0	-	-
9.0 9.0	21.0 21.0	21.0 22.0	-	÷	26.0 26.0	1.0 1.0	-	26.0 26.0	-	-
9.0	21.0	23.0	-	- -	26.0	-	-	26.0	-	-
9.0 9.0	22.0 22.0	- 1.0	-		26.0 25.0	-	-	26.0 25.0	-	_
9.0	22.0	2.0	-	-	25.0	1.0	-	25.0	-	-
9.0 9.0	22.0 22.0	3.0 4.0	-	- -	25.0 24.0	1.0 1.0	-	25.0 24.0	-	-
9.0	22.0	5.0	-	-	24.0	1.0	-	24.0	-	-
9.0 9.0	22.0 22.0	6.0 7.0	343.0 585.0	59.0 100.0	25.0 26.0	1.0 1.0	134.8 376.1	27.6 38.0	94.6 282.9	87.6 271.2
9.0	22.0	8.0	708.0	123.0	27.0	1.0	610.6	48.2	453.6	436.5 550.8
9.0 9.0	22.0 22.0	9.0 10.0	776.0 812.0	136.0 143.0	29.0 30.0	1.0	800.4 929.2	57.2 69.2	572.3 621.8	598.3
9.0 9.0	22.0 22.0	11.0 12.0	826.0 874.0	145.0 111.0	30.0 31.0	-	983.4 968.7	71.6 72.4	648.9 636.2	624.3 612.1
9.0	22.0	13.0	255.0	362.0	31.0	-	609.8	61.0	427.7	411.5
9.0 9.0	22.0 22.0	14.0 15.0	802.0 689.0	99.0 93.0	31.0 31.0	<u>-</u>	702.1 475.2	61.7 54.7	486.8 333.8	468.5 320.6
9.0	22.0	16.0	502.0	69.0	30.0	-	228.4	42.9	156.0	147.6
9.0 9.0	22.0 22.0	17.0 18.0	-	20.0	29.0 28.0	-	19.0	30.5 28.0	15.6	10.2
9.0	22.0	19.0	-	-	27.0	1.0	-	27.0	-	-
9.0 9.0	22.0 22.0	20.0 21.0	-		27.0 26.0	1.0 1.0	-	27.0 26.0	-	
9.0 9.0	22.0 22.0	22.0 23.0	-		26.0 25.0	1.0 1.0	-	26.0 25.0	-	
9.0	23.0	-	-	-	25.0	1.0	-	25.0	-	_
9.0 9.0	23.0 23.0	1.0 2.0	-	-	25.0 24.0	1.0 1.0	-	25.0 24.0	-	-
9.0	23.0	3.0	-	-	24.0	1.0	-	24.0	-	-
9.0 9.0	23.0 23.0	4.0 5.0	-	÷ .	24.0 24.0	1.0 1.0	- -	24.0 24.0	-	-
9.0 9.0	23.0 23.0	6.0 7.0	313.0 563.0	61.0 105.0	25.0 27.0	1.0 1.0	130.8 371.5	27.4 38.8	92.9 278.7	85.9 267.2
9.0	23.0	8.0	697.0	126.0	28.0	1.0	606.7	49.0	448.8	267.2 431.9
9.0 9.0	23.0 23.0	9.0 10.0	788.0 823.0	129.0 136.0	29.0 30.0	1.0	802.8 931.6	57.3 69.3	573.8 623.0	552.2 599.5
9.0	23.0	11.0	69.0	401.0	31.0	-	477.4	56.4	343.9	330.4

9.0	23.0	12.0	173.0	418.0	32.0	-	604.9	58.5	430.6	414.3
9.0	23.0	13.0	760.0	154.0	32.0	-	842.4	67.2	569.9	548.5
9.0	23.0	14.0	690.0	146.0	32.0	_	670.6	63.1	461.6	444.2
9.0	23.0	15.0	568.0	129.0	31.0	1.0	446.6	48.4	325.8	312.9
9.0	23.0	16.0	366.0	88.0	30.0	1.0	204.0	38.1	146.2	138.1
9.0	23.0	17.0	-	13.0	29.0	1.0	12.3	28.7	10.2	4.9
				-	27.0	1.0	-		-	
9.0	23.0	18.0	-				-	27.0		-
9.0	23.0	19.0	-	-	27.0	1.0	-	27.0	-	-
9.0	23.0	20.0	-	-	26.0	1.0	-	26.0	-	-
9.0	23.0	21.0	-	-	26.0	1.0	-	26.0	-	-
9.0	23.0	22.0	-	-	26.0	1.0	-	26.0	-	-
9.0	23.0	23.0	-	-	25.0	1.0	-	25.0	-	-
9.0	24.0	_	_	<u>-</u>	25.0	1.0	_	25.0	_	_
9.0	24.0	1.0	_		25.0	1.0	_	25.0		_
9.0	24.0	2.0			24.0	1.0		24.0		
							-		-	
9.0	24.0	3.0	-		24.0	1.0	-	24.0	-	-
9.0	24.0	4.0	-	-	24.0	1.0	-	24.0	-	-
9.0	24.0	5.0	-	-	24.0	1.0	-	24.0	-	-
9.0	24.0	6.0	260.0	64.0	25.0	1.0	122.9	27.1	89.2	82.4
9.0	24.0	7.0	500.0	119.0	26.0	1.0	355.2	37.2	269.6	258.3
9.0	24.0	8.0	638.0	148.0	28.0	1.0	590.7	48.4	438.7	422.2
9.0	24.0	9.0	714.0	165.0	30.0	1.0	782.4	57.5	558.5	537.5
9.0	24.0	10.0	752.0	176.0	31.0	1.0	911.2	69.5	608.8	585.9
						-				
9.0	24.0	11.0	763.0	182.0	32.0	-	958.9	72.6	629.0	605.3
9.0	24.0	12.0	868.0	114.0	32.0	-	963.6	73.0	630.5	606.6
9.0	24.0	13.0	836.0	113.0	32.0	-	858.5	69.8	571.7	550.3
9.0	24.0	14.0	774.0	109.0	32.0	-	689.1	63.8	472.1	454.3
9.0	24.0	15.0	99.0	193.0	31.0	_	245.1	46.4	184.4	175.4
9.0	24.0	16.0	52.0	97.0	30.0	_	111.1	35.9	86.8	80.0
9.0	24.0	17.0	-		29.0			27.7		0.3
				7.0			6.6		5.5	
9.0	24.0	18.0	-		28.0	1.0	-	28.0		-
9.0	24.0	19.0	-	-	27.0	1.0	-	27.0	-	-
9.0	24.0	20.0	-	-	27.0	1.0	-	27.0	-	-
9.0	24.0	21.0	_	<u>-</u>	26.0	1.0	_	26.0	_	_
9.0	24.0	22.0	_		26.0	1.0	_	26.0	_	
9.0	24.0	23.0			26.0	1.0		26.0		
			-	•					-	
9.0	25.0	-	-	-	26.0	1.0	-	26.0	-	-
9.0	25.0	1.0	-	-	26.0	1.0	-	26.0	-	-
9.0	25.0	2.0	-	-	26.0	1.0	-	26.0	-	-
9.0	25.0	3.0	-	-	25.0	1.0	_	25.0	-	_
9.0	25.0	4.0	_		25.0	1.0		25.0	_	_
9.0	25.0	5.0	_		25.0	1.0	_	25.0		
				64.0					00.0	00.0
9.0	25.0	6.0	288.0	61.0	26.0	1.0	126.1	28.3	89.9	83.0
9.0	25.0	7.0	545.0	106.0	27.0	1.0	364.9	38.6	274.3	262.9
9.0	25.0	8.0	685.0	127.0	28.0	-	600.0	53.7	432.8	416.5
9.0	25.0	9.0	759.0	140.0	29.0	-	790.0	62.7	547.8	527.3
9.0	25.0	10.0	797.0	147.0	30.0	_	918.0	68.8	615.7	592.5
9.0	25.0	11.0	807.0	152.0	31.0		969.8	72.0	638.3	614.1
9.0	25.0	12.0	334.0	383.0	31.0		733.0	65.0	502.9	484.1
9.0	25.0	13.0	756.0	152.0	31.0	-	834.2	66.8	565.6	544.4
9.0	25.0	14.0	-	67.0	31.0	-	63.7	41.0	49.8	43.7
9.0	25.0	15.0	-	93.0	30.0	-	88.6	32.5	72.2	65.7
9.0	25.0	16.0	-	42.0	29.0	-	39.8	29.2	33.0	27.3
9.0	25.0	17.0	-	2.0	28.0	-	1.9	25.1	1.6	-
9.0	25.0	18.0	_	<u>-</u>	27.0	_	_	27.0	_	_
9.0	25.0	19.0	_		27.0	_	_	27.0		_
9.0	25.0	20.0			26.0			26.0		
9.0	25.0	21.0	- -	-	26.0		-	26.0		=
			-			-	-		-	-
9.0	25.0	22.0	-	-	26.0	•	-	26.0	-	-
9.0	25.0	23.0	-		26.0	-	-	26.0	-	-
9.0	26.0	-	-	-	25.0	-	-	25.0	-	-
9.0	26.0	1.0	-	-	25.0	-	-	25.0	-	-
9.0	26.0	2.0	-		24.0	-	<u>-</u>	24.0	-	-
9.0	26.0	3.0	_	<u>-</u>	24.0	_	_	24.0	-	_
9.0	26.0	4.0	_	<u> -</u>	24.0	1.0	_	24.0	_	_
9.0	26.0	5.0	- -	-	24.0	-	-	24.0		=
	26.0		310.0	-	24.0 25.0	-	127.9	28.1	90.4	83.5
9.0		6.0		58.0		-				
9.0	26.0	7.0	564.0	101.0	26.0	-	368.6	41.1	273.2	261.8
9.0	26.0	8.0	72.0	245.0	27.0	-	293.9	41.5	228.4	218.3
9.0	26.0	9.0	405.0	293.0	28.0	-	648.4	54.9	470.1	452.4
9.0	26.0	10.0	819.0	134.0	29.0	-	924.1	67.2	625.5	601.9
9.0	26.0	11.0	829.0	138.0	30.0	_	975.5	71.3	644.7	620.3
9.0	26.0	12.0	26.0	322.0	30.0	_	351.1	51.5	259.8	248.8
						-				240.0
9.0	26.0	13.0	34.0	304.0	30.0	•	336.8	46.0	256.5	245.5
9.0	26.0	14.0	-	142.0	30.0	-	136.2	37.9	108.1	100.9
9.0	26.0	15.0	50.0	179.0	29.0	•	204.7	37.6	161.8	153.3
9.0	26.0	16.0	389.0	79.0	28.0	-	199.1	37.0	141.7	133.7
9.0	26.0	17.0	_	9.0	27.0	1.0	8.5	26.4	7.1	1.9
9.0	26.0	18.0	-	-	26.0	1.0	-	26.0	-	-
9.0	26.0	19.0	_	<u>-</u>	25.0	1.0	_	25.0	<u>-</u>	_
9.0	26.0	20.0	-		25.0	-		25.0	-	_
5.0	20.0	20.0	-	-	20.0	-	-	20.0	-	-

9.0	26.0	21.0	_	_	25.0	_	<u>-</u>	25.0	-	_
9.0	26.0	22.0	_	_	25.0	_	<u>-</u>	25.0	-	_
9.0	26.0	23.0	_	_	24.0	_		24.0	_	_
9.0	27.0	-	_		24.0	_		24.0		_
9.0	27.0	1.0			24.0			24.0		
9.0	27.0	2.0			24.0			24.0		
9.0	27.0	3.0	-		23.0			23.0	_	
9.0	27.0		-	-	23.0	-		23.0		-
		4.0	-	-		-				-
9.0	27.0	5.0	-	<u> </u>	23.0	-	-	23.0		-
9.0	27.0	6.0	330.0	55.0	24.0	-	129.3	27.1	90.9	84.0
9.0	27.0	7.0	506.0	108.0	26.0	-	347.1	40.3	259.1	248.1
9.0	27.0	8.0	696.0	120.0	27.0	-	599.9	52.6	435.2	418.7
9.0	27.0	9.0	759.0	136.0	28.0	-	785.3	61.6	547.9	527.4
9.0	27.0	10.0	793.0	146.0	28.0	-	912.1	66.8	619.1	595.7
9.0	27.0	11.0	407.0	361.0	29.0	-	789.1	64.6	542.8	522.4
9.0	27.0	12.0	321.0	383.0	29.0	-	720.2	61.6	503.8	484.9
9.0	27.0	13.0	256.0	351.0	29.0	_	598.4	57.1	428.9	412.7
9.0	27.0	14.0		30.0	29.0	1.0	28.5	31.9	23.3	17.8
9.0	27.0	15.0	_	19.0	28.0	1.0	18.0	26.6	15.1	9.7
9.0	27.0	16.0	_	8.0	27.0	1.0	7.6	25.1	6.4	1.2
9.0	27.0	17.0	_	-	26.0	1.0	-	26.0	-	-
9.0	27.0	18.0	-		26.0				-	
			-	-		1.0	-	26.0		-
9.0	27.0	19.0	•	-	25.0	1.0	-	25.0	-	-
9.0	27.0	20.0	-	-	25.0	1.0	-	25.0	-	-
9.0	27.0	21.0	-	-	25.0	1.0	-	25.0	-	-
9.0	27.0	22.0	-	-	25.0	1.0		25.0	-	-
9.0	27.0	23.0	-	-	25.0	1.0	-	25.0	-	-
9.0	28.0	-	-	-	25.0	1.0	-	25.0	-	-
9.0	28.0	1.0	-	-	25.0	1.0	-	25.0	-	-
9.0	28.0	2.0	-	-	25.0	1.0		25.0	-	-
9.0	28.0	3.0	_	-	24.0	1.0	-	24.0	_	_
9.0	28.0	4.0		_	24.0	1.0	-	24.0	-	_
9.0	28.0	5.0	_	_	24.0	1.0	<u>-</u>	24.0	-	_
9.0	28.0	6.0	80.0	63.0	24.0	1.0	80.8	24.5	64.2	57.9
9.0	28.0	7.0	248.0	148.0	26.0	1.0	267.6	33.9	210.0	200.3
9.0	28.0	8.0	643.0	141.0	27.0	1.0	587.0	46.8	439.5	422.9
9.0		9.0			28.0	1.0				544.1
	28.0		750.0	142.0			783.9	55.7	565.3	
9.0	28.0	10.0	136.0	394.0	29.0	1.0	541.2	50.1	403.4	388.0
9.0	28.0	11.0	357.0	382.0	29.0	1.0	762.5	55.7	551.2	530.6
9.0	28.0	12.0	796.0	152.0	30.0	1.0	937.3	63.0	650.4	625.7
9.0	28.0	13.0	773.0	143.0	29.0	1.0	835.3	59.9	589.2	567.0
9.0	28.0	14.0	723.0	127.0	29.0	2.0	666.9	50.3	492.1	473.6
9.0	28.0	15.0	626.0	105.0	28.0	2.0	445.6	42.4	333.6	320.4
9.0	28.0	16.0	436.0	69.0	27.0	1.0	202.1	35.0	143.3	135.3
9.0	28.0	17.0	-	-	26.0	1.0		26.0	-	-
9.0	28.0	18.0	-	-	26.0	1.0	-	26.0	-	-
9.0	28.0	19.0	_	_	26.0	1.0	-	26.0	_	_
9.0	28.0	20.0	_	_	25.0	1.0	<u>-</u>	25.0	-	_
9.0	28.0	21.0	_	_	25.0	1.0		25.0	_	_
9.0	28.0	22.0	_	_	25.0	1.0		25.0	_	_
9.0	28.0	23.0	_		24.0	1.0		24.0		_
9.0	29.0	-			24.0	1.0		24.0		
9.0	29.0	1.0			23.0	1.0	_	23.0		
9.0	29.0	2.0	-		23.0	1.0			-	-
			-	-	22.0			23.0		-
9.0	29.0	3.0	-	•		1.0		22.0		-
9.0	29.0	4.0	-	-	22.0	1.0	-	22.0	-	-
9.0	29.0	5.0	-	-	22.0	1.0	- 422.5	22.0	-	- 07.0
9.0	29.0	6.0	348.0	54.0	22.0	2.0	132.5	24.1	94.0	87.0
9.0	29.0	7.0	588.0	100.0	24.0	1.0	378.9	36.1	287.8	276.0
9.0	29.0	8.0	708.0	128.0	25.0	1.0	616.3	46.4	462.0	444.7
9.0	29.0	9.0	765.0	149.0	26.0	1.0	806.4	54.6	584.9	562.9
9.0	29.0	10.0	784.0	168.0	27.0	1.0	925.6	60.1	652.9	628.2
9.0	29.0	11.0	776.0	186.0	28.0	1.0	977.1	63.1	677.9	652.0
9.0	29.0	12.0	928.0	95.0	28.0	1.0	993.5	63.8	686.3	660.1
9.0	29.0	13.0	901.0	92.0	28.0	2.0	884.1	55.9	637.2	613.1
9.0	29.0	14.0	849.0	87.0	28.0	2.0	707.2	50.7	520.3	500.8
9.0	29.0	15.0	742.0	79.0	27.0	2.0	475.9	42.5	354.6	340.7
9.0	29.0	16.0	538.0	57.0	26.0	1.0	217.9	34.7	151.5	143.3
9.0	29.0	17.0	-	-	24.0	1.0	-	24.0	-	-
9.0	29.0	18.0	-	-	23.0	2.0	-	23.0	-	-
9.0	29.0	19.0	-	-	22.0	2.0	-	22.0	-	-
9.0	29.0	20.0	_	<u>-</u>	21.0	2.0	-	21.0	_	_
9.0	29.0	21.0	_	_	20.0	2.0	_	20.0	_	_
9.0	29.0	22.0		_	20.0	2.0	_	20.0	_	_
9.0	29.0	23.0	_	_	19.0	2.0	_	19.0	_	_
9.0	30.0	-		_	19.0	2.0	_	19.0	_	_
9.0	30.0	1.0		_	18.0	1.0	_	18.0	_	_
9.0	30.0	2.0			18.0	1.0	- -	18.0		
9.0	30.0	3.0			18.0	1.0	- -	18.0		
9.0	30.0		-		17.0	1.0	-	17.0	-	-
9.0	30.0	4.0 5.0	-		17.0	1.0		17.0	-	-
9.0	30.0	3.0	-		17.0	1.0	-	17.0		-

9.0 9.0 9.0 9.0	30.0 30.0 30.0 30.0	6.0 7.0 8.0 9.0	449.0 705.0 826.0 895.0	47.0 77.0 92.0 98.0	18.0 20.0 22.0 23.0	1.0 1.0 1.0 1.0	148.1 407.7 654.3 850.8	20.8 33.2 44.9 53.3	103.4 312.2 493.7 621.1	96.2 299.6 475.2 597.7
9.0 9.0 9.0	30.0 30.0 30.0	10.0 11.0 12.0	921.0 923.0 922.0	105.0 112.0 108.0	24.0 25.0 25.0	1.0 1.0 1.0	978.7 1,027.9 1,000.4	59.1 62.0 61.5	694.2 717.2 700.2	667.6 689.7 673.4
9.0 9.0 9.0	30.0 30.0 30.0	13.0 14.0 15.0	883.0 814.0 695.0	109.0 106.0 94.0	25.0 25.0 25.0	1.0 1.0 1.0	885.2 704.4 466.6	57.9 51.9 43.4	630.9 515.0 346.5	607.1 495.7 333.0
9.0 9.0	30.0 30.0	16.0 17.0	469.0	66.0	24.0 23.0	1.0 1.0	206.3	32.2 23.0	146.9	138.8
9.0 9.0 9.0	30.0 30.0 30.0	18.0 19.0 20.0	-	-	24.0 23.0 23.0	1.0 1.0 1.0		24.0 23.0 23.0	- -	-
9.0 9.0	30.0 30.0	21.0 22.0	-	-	22.0 22.0	1.0 2.0	-	22.0 22.0	-	-
9.0 10.0 10.0	30.0 1.0 1.0	23.0 - 1.0	- - -	-	21.0 21.0 20.0	2.0 2.0 2.0	- - -	21.0 21.0 20.0	- - -	- - -
10.0 10.0	1.0 1.0	2.0 3.0	-	-	20.0 20.0	2.0 2.0	- -	20.0 20.0	-	-
10.0 10.0 10.0	1.0 1.0 1.0	4.0 5.0 6.0	- - 375.0	- - 52.0	19.0 19.0 19.0	2.0 2.0 2.0	- 137.6	19.0 19.0 21.1	- - 98.2	- - 91.1
10.0 10.0 10.0	1.0 1.0 1.0	7.0 8.0 9.0	659.0 800.0 897.0	87.0 100.0 96.0	21.0 22.0 23.0	2.0 2.0 2.0	397.6 645.5 849.6	31.8 41.2 48.9	307.3 496.6 635.2	294.9 478.0 611.2
10.0 10.0 10.0	1.0 1.0 1.0	10.0 11.0	934.0 948.0	98.0 97.0	24.0 25.0	2.0 2.0	982.3 1,034.6	54.3 57.1	715.4 742.3	687.9 713.6
10.0 10.0 10.0	1.0 1.0 1.0	12.0 13.0 14.0	943.0 920.0 873.0	95.0 90.0 81.0	25.0 25.0 25.0	3.0 3.0 2.0	1,004.6 894.6 713.8	53.1 50.3 48.0	736.4 664.7 532.4	708.0 639.4 512.4
10.0 10.0	1.0 1.0	15.0 16.0	785.0 597.0	68.0 48.0	24.0 23.0	2.0 2.0	482.5 222.0	39.7 30.1	363.5 155.4	349.4 147.0
10.0 10.0 10.0	1.0 1.0 1.0	17.0 18.0 19.0	- - -	- - -	21.0 20.0 20.0	2.0 2.0 2.0	- - -	21.0 20.0 20.0	- - -	- - -
10.0 10.0	1.0 1.0	20.0 21.0	-	-	19.0 18.0	2.0 2.0	- -	19.0 18.0	-	-
10.0 10.0 10.0	1.0 1.0 2.0	22.0 23.0 -	-	-	18.0 17.0 17.0	2.0 2.0 2.0	- - -	18.0 17.0 17.0	- - -	- - -
10.0 10.0 10.0	2.0 2.0 2.0	1.0 2.0 3.0	-	-	17.0 17.0 16.0	2.0 2.0 1.0		17.0 17.0 16.0	-	-
10.0 10.0	2.0 2.0	4.0 5.0	- -	-	16.0 16.0	1.0 1.0	- - -	16.0 16.0	- -	-
10.0 10.0 10.0	2.0 2.0 2.0	6.0 7.0 8.0	189.0 724.0 837.0	54.0 70.0 85.0	18.0 20.0 22.0	1.0 1.0 1.0	97.1 408.3 653.4	18.9 32.9 44.9	74.1 312.6 492.9	67.6 300.0 474.4
10.0 10.0	2.0 2.0	9.0 10.0	895.0 924.0	94.0 100.0	24.0 25.0	1.0	845.2 974.1	54.1 66.3	614.5 662.8	591.3 637.7
10.0 10.0 10.0	2.0 2.0 2.0	11.0 12.0 13.0	932.0 929.0 900.0	103.0 100.0 97.0	25.0 26.0 26.0	- - -	1,024.3 995.1 883.1	68.6 68.9 65.3	687.9 667.0 603.6	661.7 641.7 580.9
10.0 10.0	2.0 2.0	14.0 15.0	847.0 734.0	90.0 81.0	25.0 25.0	1.0 1.0	706.7 468.5 208.8	51.9 43.5 32.3	516.1 346.8	496.8 333.2 138.2
10.0 10.0 10.0	2.0 2.0 2.0	16.0 17.0 18.0	519.0 - -	57.0 - -	24.0 22.0 21.0	1.0 1.0 1.0	- -	22.0 21.0	146.3 - -	
10.0 10.0 10.0	2.0 2.0 2.0	19.0 20.0 21.0	-	<u>.</u>	21.0 20.0 20.0	1.0 1.0 1.0	- - -	21.0 20.0 20.0	-	-
10.0 10.0	2.0 2.0	22.0 23.0	-	-	20.0 20.0	1.0 1.0	- -	20.0 20.0	-	-
10.0 10.0 10.0	3.0 3.0 3.0	1.0 2.0	- - -	-	20.0 20.0 20.0	1.0 1.0 1.0	- - -	20.0 20.0 20.0	- - -	-
10.0 10.0 10.0	3.0 3.0 3.0	3.0 4.0 5.0	-	:	20.0 19.0 19.0	1.0 1.0 1.0		20.0 19.0 19.0	-	-
10.0 10.0	3.0 3.0	6.0 7.0	375.0 642.0	50.0 86.0	21.0 23.0	1.0 1.0	135.9 389.0	23.5 35.5	95.7 295.3	88.7 283.3
10.0 10.0 10.0	3.0 3.0 3.0	8.0 9.0 10.0	767.0 835.0 866.0	106.0 117.0 124.0	24.0 25.0 26.0	1.0 1.0 1.0	629.5 825.1 945.1	45.9 54.3 59.8	472.7 599.2 667.6	454.9 576.7 642.2
10.0 10.0	3.0 3.0	11.0 12.0	873.0 835.0 795.0	129.0 145.0 144.0	26.0 26.0 26.0	1.0 1.0	993.6 960.2 847.6	61.8 61.0	694.3 673.6 605.4	667.7 648.0 582.6
10.0 10.0	3.0 3.0	13.0 14.0	795.0	133.0	26.0	1.0 1.0	668.3	57.5 51.5	489.7	471.3

10.0	3.0	15.0	604.0	113.0	25.0	1.0	435.5	42.2	325.9	312.9
10.0	3.0	16.0	375.0	73.0	24.0	1.0	183.1	31.2	132.7	124.9
10.0	3.0	17.0	_	-	23.0	1.0	-	23.0	_	_
10.0	3.0	18.0	_	<u>-</u>	22.0	1.0	_	22.0	_	_
10.0	3.0	19.0	_	<u>-</u>	22.0	1.0	_	22.0	_	
10.0	3.0	20.0	_		21.0	1.0		21.0	_	_
10.0	3.0	21.0			21.0	1.0		21.0		
10.0	3.0	22.0	-		21.0	1.0		21.0	-	
			-				-		-	-
10.0	3.0	23.0	•		21.0	1.0	-	21.0	-	-
10.0	4.0	5.2	-	-	21.0	1.0	-	21.0	-	-
10.0	4.0	1.0	-		21.0	1.0	-	21.0	-	-
10.0	4.0	2.0	-	-	20.0	1.0	-	20.0	-	-
10.0	4.0	3.0	-	-	20.0	1.0	-	20.0	-	-
10.0	4.0	4.0	-		20.0	1.0	-	20.0	-	-
10.0	4.0	5.0	-	-	20.0	-	-	20.0	-	-
10.0	4.0	6.0	333.0	53.0	21.0	_	129.4	23.9	92.2	85.3
10.0	4.0	7.0	607.0	94.0	23.0	_	381.6	38.7	285.7	273.9
10.0	4.0	8.0	738.0	117.0	24.0	<u>-</u>	623.6	50.8	456.5	439.3
10.0	4.0	9.0	805.0	132.0	25.0	_	815.9	59.9	574.4	552.8
10.0	4.0	10.0	838.0	141.0	26.0		943.3	66.1	642.7	618.4
			850.0	144.0	27.0	-	993.8	69.3	664.8	639.5
10.0	4.0	11.0				-				
10.0	4.0	12.0	861.0	132.0	27.0	-	969.1	68.8	649.9	625.2
10.0	4.0	13.0	830.0	127.0	27.0	-	857.6	65.3	586.3	564.3
10.0	4.0	14.0	767.0	117.0	27.0	-	677.5	58.8	476.7	458.8
10.0	4.0	15.0	623.0	107.0	27.0	-	437.4	49.4	314.8	302.2
10.0	4.0	16.0	389.0	70.0	26.0	-	183.0	36.8	128.3	120.6
10.0	4.0	17.0	-	-	24.0	-	-	24.0	-	-
10.0	4.0	18.0	-		24.0	-		24.0	-	-
10.0	4.0	19.0	_	-	24.0	_	_	24.0	_	_
10.0	4.0	20.0	_	<u>-</u>	24.0	_	_	24.0	_	_
10.0	4.0	21.0	_		23.0	_	_	23.0	_	_
10.0	4.0	22.0	_		23.0	_		23.0	_	_
10.0	4.0	23.0			22.0	1.0		22.0		
10.0	5.0	-	-		22.0	1.0		22.0	-	
			-		21.0	1.0		21.0	-	
10.0	5.0	1.0	-				-		-	-
10.0	5.0	2.0	-	-	21.0	2.0	-	21.0	-	-
10.0	5.0	3.0	-	-	21.0	2.0	-	21.0	-	-
10.0	5.0	4.0	-		21.0	2.0	-	21.0	-	-
10.0	5.0	5.0	-	-	21.0	2.0	-	21.0	-	-
10.0	5.0	6.0	326.0	51.0	22.0	2.0	126.0	23.9	89.7	82.8
10.0	5.0	7.0	598.0	92.0	24.0	2.0	375.4	34.1	287.5	275.7
10.0	5.0	8.0	730.0	113.0	25.0	3.0	613.7	41.1	472.5	454.7
10.0	5.0	9.0	799.0	126.0	26.0	3.0	804.0	47.7	604.7	582.0
10.0	5.0	10.0	837.0	131.0	27.0	3.0	930.6	52.5	684.3	658.2
10.0	5.0	11.0	853.0	132.0	28.0	2.0	982.3	58.3	699.9	673.1
10.0	5.0	12.0	823.0	143.0	28.0	2.0	943.7	57.5	675.4	649.6
10.0	5.0	13.0	182.0	338.0	28.0	2.0	510.6	45.4	389.7	374.8
10.0	5.0				28.0	2.0		47.9	493.3	474.8
		14.0	743.0	119.0			661.2			
10.0	5.0	15.0	635.0	98.0	27.0	2.0	432.6	41.0	324.6	311.7
10.0	5.0	16.0	412.0	63.0	26.0	2.0	181.1	31.6	128.8	121.1
10.0	5.0	17.0	-	-	24.0	2.0	-	24.0	-	-
10.0	5.0	18.0	-	-	24.0	2.0	-	24.0	-	-
10.0	5.0	19.0	-	-	23.0	2.0	-	23.0	-	-
10.0	5.0	20.0	-	-	23.0	2.0	-	23.0	-	-
10.0	5.0	21.0	-	-	23.0	2.0	-	23.0	-	-
10.0	5.0	22.0	-	-	22.0	2.0	-	22.0	-	-
10.0	5.0	23.0	-		22.0	2.0	-	22.0	-	-
10.0	6.0	-	-		22.0	2.0	-	22.0	-	-
10.0	6.0	1.0	-		22.0	2.0		22.0	-	-
10.0	6.0	2.0	-	-	22.0	3.0	-	22.0	-	-
10.0	6.0	3.0	-	-	22.0	3.0	-	22.0	-	-
10.0	6.0	4.0	_	-	22.0	3.0	<u>-</u>	22.0	_	_
10.0	6.0	5.0	_	-		3.0	<u>-</u>	22.0	_	_
10.0	6.0	6.0		38.0	22.0 22.0	3.0	36.2	21.2	31.1	25.4
10.0	6.0	7.0	-	64.0	23.0	3.0	60.8	23.0	51.8	45.7
10.0	6.0	8.0	-	159.0	24.0	3.0	153.7	26.7	128.8	121.1
10.0	6.0	9.0	6.0	203.0	26.0	3.0	201.9	30.4	166.2	141.1 157.6
					20.0		201.9	30.4		137.0
10.0	6.0	10.0	34.0	308.0	27.0	2.0	345.2	36.5	275.8	157.6 264.3 513.6
10.0	6.0	11.0	332.0	354.0	27.0	2.0	706.6	47.6	533.6	513.6
10.0	6.0	12.0	330.0	342.0	28.0	2.0	682.3	49.3	510.6	491.4
10.0	6.0	13.0	18.0	255.0	28.0	2.0	264.7	37.2	210.8	201.0
10.0	6.0	14.0	-	158.0	27.0	2.0	152.5	31.0	125.2	117.5
10.0	6.0	15.0	8.0	140.0	27.0	2.0	140.0	30.1	115.2	107.8
10.0	6.0	16.0	42.0	71.0	26.0	1.0	81.9	27.6	66.4	107.8 60.0
10.0	6.0	17.0	-	-	25.0	1.0	-	25.0	-	-
10.0	6.0	18.0	-	-	25.0	1.0	-	25.0	-	-
10.0	6.0	19.0	-		24.0	1.0		24.0	-	-
10.0	6.0	20.0	-	-	24.0	1.0	-	24.0	-	-
10.0	6.0	21.0	-	-	24.0	2.0	-	24.0	-	-
10.0	6.0	22.0	-	-	24.0	2.0	-	24.0	-	-
10.0	6.0	23.0	-	-	24.0	2.0	-	24.0	-	-

10.0 10.0 10.0	7.0 7.0 7.0	- 1.0 2.0	- - -	- - -	24.0 24.0 23.0	2.0 2.0 2.0	- - -	24.0 24.0 23.0	- - -	- - -
10.0 10.0	7.0 7.0	3.0 4.0	-	-	23.0 23.0	2.0 2.0	-	23.0 23.0	-	-
10.0 10.0	7.0 7.0	5.0 6.0	-	3.0	23.0 23.0	2.0 2.0	2.8	23.0 21.0	2.4	-
10.0 10.0	7.0 7.0	7.0 8.0	-	13.0 18.0	23.0 24.0	2.0 2.0	12.3 17.1	21.3 22.6	10.6 14.6	5.3 9.2
10.0 10.0	7.0 7.0	9.0 10.0	-	53.0 47.0	24.0 24.0	2.0 2.0	50.4 44.7	23.6 23.6	42.9 38.0	36.9 32.2
10.0 10.0	7.0 7.0	11.0 12.0	-	59.0 54.0	25.0 25.0	2.0 2.0	56.2 51.4	25.0 24.9	47.5 43.4	41.5 37.5
10.0 10.0	7.0 7.0	13.0 14.0	4.0 -	192.0 86.0	25.0 24.0	2.0 2.0	189.3 81.8	29.1 25.4	156.8 69.0	148.4 62.5
10.0 10.0	7.0 7.0	15.0 16.0	-	113.0 59.0	24.0 24.0	2.0 2.0	108.8 56.8	25.8 24.3	91.6 48.2	84.7 42.2
10.0 10.0	7.0 7.0	17.0 18.0	-	-	24.0 24.0	2.0 2.0	-	24.0 24.0	-	-
10.0 10.0	7.0 7.0	19.0 20.0	-	<u> </u>	24.0 24.0	2.0 2.0	-	24.0 24.0	-	-
10.0	7.0	21.0	-	-	24.0	2.0 2.0 2.0	-	24.0 24.0 24.0	-	-
10.0 10.0	7.0 7.0	22.0 23.0		-	24.0 24.0	3.0	-	24.0	-	-
10.0 10.0	8.0 8.0	1.0	-	-	24.0 24.0	2.0	-	24.0 24.0	-	-
10.0 10.0	8.0 8.0	2.0 3.0	-	-	24.0 24.0	2.0 2.0	-	24.0 24.0	-	-
10.0 10.0	8.0 8.0	4.0 5.0	-	-	24.0 24.0	2.0 2.0	-	24.0 24.0	-	-
10.0 10.0	8.0 8.0	6.0 7.0	-	37.0 65.0	24.0 25.0	2.0 2.0	35.2 61.7	23.1 25.1	30.1 52.1	24.4 46.0
10.0 10.0	8.0 8.0	8.0 9.0	-	42.0 110.0	25.0 26.0	2.0 2.0	39.9 105.0	24.6 27.5	33.8 87.7	28.0 80.9
10.0 10.0	8.0 8.0	10.0 11.0	809.0 820.0	131.0 135.0	26.0 27.0	2.0 3.0	901.6 949.8	51.1 53.3	667.8 695.8	642.4 669.2
10.0 10.0	8.0 8.0	12.0 13.0	114.0 791.0	378.0 125.0	26.0 26.0	3.0 3.0	496.7 815.5	40.9 47.7	388.2 614.1	373.3 591.0
10.0 10.0	8.0 8.0	14.0 15.0	743.0	110.0 89.0	25.0 25.0	3.0 2.0	646.2	43.4	493.4 320.5	474.9 307.7
10.0	8.0	16.0	645.0 432.0	55.0	24.0	2.0	423.5 176.7	38.7 29.4	125.3	117.7
10.0 10.0	8.0 8.0	17.0 18.0	-	-	22.0 22.0	2.0	-	22.0 22.0	-	-
10.0 10.0	8.0 8.0	19.0 20.0	-	-	21.0 20.0	2.0 2.0	-	21.0 20.0	-	-
10.0 10.0	8.0 8.0	21.0 22.0	-	-	19.0 18.0	2.0 2.0	-	19.0 18.0	-	-
10.0 10.0	8.0 9.0	23.0	-	-	18.0 18.0	2.0 1.0	- -	18.0 18.0	- -	-
10.0 10.0	9.0 9.0	1.0 2.0	-	-	17.0 17.0	1.0 1.0	-	17.0 17.0	-	-
10.0 10.0	9.0 9.0	3.0 4.0	-	-	17.0 17.0	1.0 1.0	-	17.0 17.0	-	-
10.0 10.0	9.0 9.0	5.0 6.0	Ē	- 47.0	17.0 18.0	1.0	- 45.5	17.0 17.2	- 39.9	34.0
10.0 10.0	9.0 9.0	7.0 8.0	4.0 34.0	121.0	19.0 21.0	2.0 2.0 2.0	119.3 235.5	20.8 26.8	102.7 197.0	95.6 187.6
10.0	9.0	9.0	35.0 898.0	211.0 272.0	22.0 23.0	1.0	305.2 946.3	32.2 54.5	249.1	238.3 662.0
10.0 10.0	9.0 9.0	10.0 11.0	912.0	104.0 104.0	24.0	1.0 1.0	995.6	60.0	688.3 702.6	675.7
10.0 10.0	9.0 9.0	12.0 13.0	264.0 74.0	370.0 315.0	25.0 26.0	1.0 1.0	650.1 385.0	50.8 41.4	482.7 300.1	464.6 288.0
10.0 10.0	9.0 9.0	14.0 15.0	244.0 683.0	247.0 82.0	26.0 25.0	1.0 1.0	434.8 433.2	41.5 40.7	337.1 323.8	323.8 311.0
10.0 10.0	9.0 9.0	16.0 17.0	439.0	53.0 -	24.0 22.0	1.0 1.0	175.5 -	30.9 22.0	123.0	115.5 -
10.0 10.0	9.0 9.0	18.0 19.0	-	-	22.0 21.0	1.0 1.0	-	22.0 21.0	-	-
10.0 10.0	9.0 9.0	20.0 21.0	-	-	21.0 20.0	1.0 1.0	-	21.0 20.0	-	-
10.0 10.0	9.0 9.0	22.0 23.0	-	-	20.0 19.0	1.0 1.0	- -	20.0 19.0	- -	-
10.0 10.0	10.0 10.0	- 1.0	-	-	19.0 19.0	1.0 1.0	-	19.0 19.0	-	-
10.0 10.0	10.0 10.0	2.0	-	-	19.0 19.0	1.0 1.0	-	19.0 19.0	- -	-
10.0 10.0	10.0 10.0	4.0 5.0	-	-	18.0 18.0	1.0 1.0	-	18.0 18.0	-	-
10.0 10.0	10.0 10.0	6.0 7.0	393.0 673.0	41.0 71.0	20.0 22.0	1.0 1.0 1.0	131.3 386.1	22.3 34.3	91.3 293.5	84.4 281.6
10.0	10.0	8.0	797.0	87.0	23.0	1.0	625.7	44.8	472.0	454.2

10.0	10.0	9.0	855.0	99.0	24.0	1.0	811.3	52.9	593.5	571.1
10.0	10.0	10.0	888.0	104.0	25.0	1.0	935.9	58.5	665.6	640.3
10.0	10.0	11.0	899.0	106.0	25.0	-	983.7	67.2	666.4	641.0 613.0
10.0 10.0	10.0 10.0	12.0 13.0	863.0 829.0	119.0 115.0	26.0 26.0	-	940.0 833.0	67.0 63.4	637.1 575.3	553.7
10.0	10.0	14.0	763.0	106.0	26.0		650.5	56.8	462.0	444.7
10.0	10.0	15.0	644.0	88.0	26.0	_	419.0	47.6	302.6	290.4
10.0	10.0	16.0	404.0	55.0	25.0	_	167.6	35.0	115.8	108.3
10.0	10.0	17.0	-	-	24.0	-	-	24.0	_	-
10.0	10.0	18.0	-	<u>-</u>	23.0	-		23.0	_	-
10.0	10.0	19.0	-		23.0	1.0		23.0	-	-
10.0	10.0	20.0	-	-	22.0	1.0	-	22.0	-	-
10.0	10.0	21.0	-	-	22.0	1.0	-	22.0	-	-
10.0	10.0	22.0	-	-	22.0	1.0		22.0	-	-
10.0	10.0	23.0	-	-	21.0	2.0		21.0	-	-
10.0	11.0	-	-	-	21.0	2.0	-	21.0	-	-
10.0 10.0	11.0 11.0	1.0 2.0	-	- -	21.0 21.0	2.0 2.0		21.0 21.0	-	-
10.0	11.0	3.0		-	20.0	2.0		20.0	-	
10.0	11.0	4.0			20.0	2.0		20.0		1
10.0	11.0	5.0	_	_	20.0	2.0	_	20.0	_	_
10.0	11.0	6.0	353.0	43.0	21.0	2.0	125.0	22.8	87.8	81.0
10.0	11.0	7.0	643.0	75.0	22.0	3.0	376.8	31.0	291.5	279.6
10.0	11.0	8.0	773.0	91.0	23.0	3.0	613.8	39.1	476.7	458.8
10.0	11.0	9.0	839.0	100.0	24.0	3.0	803.4	45.8	610.3	587.3
10.0	11.0	10.0	874.0	104.0	25.0	2.0	921.7	53.4	674.4	648.7
10.0	11.0	11.0	889.0	103.0	26.0	2.0	969.3	56.1	699.2	672.5
10.0	11.0	12.0	886.0	99.0	27.0	2.0	937.7	56.3	675.2	649.5
10.0	11.0	13.0	160.0	326.0	27.0	2.0	478.8	43.5	369.1	354.8
10.0	11.0	14.0	129.0	249.0	27.0	2.0	350.0	37.9	276.9	265.4
10.0	11.0	15.0	709.0	68.0	26.0	2.0	426.6	38.6	321.3	308.5
10.0	11.0	16.0	465.0	45.0	25.0	2.0	172.0	30.3	119.0	111.5
10.0	11.0	17.0	-	-	24.0	2.0	-	24.0	-	-
10.0	11.0	18.0	-	-	23.0	2.0	-	23.0	-	-
10.0 10.0	11.0 11.0	19.0 20.0	-		23.0 22.0	2.0 2.0		23.0 22.0	-	-
10.0	11.0	21.0	-		22.0	2.0		22.0	-	
10.0	11.0	22.0	- 1		21.0	2.0		21.0		
10.0	11.0	23.0			21.0	3.0		21.0		
10.0	12.0	-		_	21.0	3.0		21.0	_	_
10.0	12.0	1.0	_	_	21.0	3.0	_	21.0	_	_
10.0	12.0	2.0	-	-	20.0	3.0	-	20.0	-	-
10.0	12.0	3.0	-	<u>-</u>	20.0	2.0		20.0	_	-
10.0	12.0	4.0	-	-	20.0	2.0		20.0	-	-
10.0	12.0	5.0	-	-	20.0	2.0	-	20.0	-	-
10.0	12.0	6.0	381.0	39.0	21.0	2.0	126.8	22.8	87.9	81.1
10.0	12.0	7.0	-	56.0	22.0	3.0	53.2	22.1	45.5	39.6
10.0	12.0	8.0	-	59.0	23.0	3.0	56.0	23.0	47.8	41.8
10.0	12.0	9.0	-	73.0	24.0	3.0	69.4	24.4	58.8	52.6
10.0	12.0	10.0	-	85.0	25.0	2.0	80.9	25.9	68.1	61.7
10.0	12.0	11.0	875.0	107.0	25.0	2.0	958.7	51.7	708.3	681.2
10.0 10.0	12.0 12.0	12.0 13.0	847.0	116.0 125.0	26.0 26.0	2.0 2.0	918.4 119.7	54.8 31.9	666.8 97.8	641.4 90.8
10.0	12.0	14.0	754.0	99.0	26.0	2.0	633.3	43.6	482.4	464.3
10.0	12.0	15.0	68.0	151.0	25.0	2.0	185.7	31.7	150.4	142.1
10.0	12.0	16.0	387.0	50.0	24.0	1.0	156.6	28.6	111.0	103.6
10.0	12.0	17.0	-	-	24.0	1.0	-	24.0	-	-
10.0	12.0	18.0	-	-	24.0	2.0	-	24.0	-	_
10.0	12.0	19.0	-	-	23.0	2.0	<u>-</u>	23.0	-	_
10.0	12.0	20.0	-	-	23.0	2.0	-	23.0	-	-
10.0	12.0	21.0	-	-	23.0	2.0	-	23.0	-	-
10.0	12.0	22.0	-	-	23.0	2.0	-	23.0	-	-
10.0	12.0	23.0	-	-	23.0	2.0	-	23.0	-	-
10.0	13.0	-	-	-	22.0	3.0		22.0	•	-
10.0	13.0	1.0	-	-	22.0	3.0	-	22.0	-	-
10.0	13.0	2.0	-	-	22.0	2.0	-	22.0	-	-
10.0	13.0	3.0	-	-	22.0 22.0	2.0 2.0	- -	22.0 22.0	•	-
10.0 10.0	13.0 13.0	4.0 5.0	-	- -	22.0	2.0	- 	22.0	-	-
10.0	13.0	6.0	300.0	43.0	22.0	3.0	113.1	23.3	80.3	73.6
10.0	13.0	7.0	-	62.0	24.0	3.0	58.9	24.3	49.9	43.9
10.0	13.0	8.0	7.0	175.0	25.0	3.0	175.0	28.3	145.5	137.4
10.0	13.0	9.0	27.0	256.0	26.0	3.0	273.6	32.4	223.0	213.0
10.0	13.0	10.0	831.0	120.0	27.0	3.0	903.8	50.2	672.7	647.1
10.0	13.0	11.0	844.0	121.0	27.0	3.0	942.8	53.1	691.3	664.8
10.0	13.0	12.0	835.0	120.0	28.0	2.0	916.6	56.6	659.0	634.0
10.0	13.0	13.0	805.0	114.0	28.0	2.0	806.4	53.5	588.3	566.2
10.0	13.0	14.0	58.0	230.0	28.0	2.0	273.8	38.0	216.7	206.8
10.0	13.0	15.0	628.0	83.0	27.0	1.0	401.6	40.7	299.7	287.6
10.0	13.0	16.0	379.0	50.0	26.0	1.0	153.8	32.0	107.2	100.0
10.0	13.0	17.0	-	-	25.0	1.0	-	25.0	-	-

10.0	13.0	18.0	_	_	25.0	1.0	<u>-</u>	25.0	_	_
10.0	13.0	19.0	_	_	24.0	2.0	_	24.0	_	_
10.0	13.0	20.0	_	_	24.0	3.0		24.0	_	_
10.0	13.0	21.0			23.0	3.0		23.0		
10.0		22.0			23.0	2.0		23.0		_
	13.0		-	-					-	
10.0	13.0	23.0	-	-	23.0	2.0	-	23.0	-	-
10.0	14.0	5.2	-	-	22.0	2.0	-	22.0	-	-
10.0	14.0	1.0	-	-	22.0	2.0	-	22.0	-	-
10.0	14.0	2.0	-	-	22.0	2.0	-	22.0	-	-
10.0	14.0	3.0	-	-	22.0	2.0	-	22.0	-	-
10.0	14.0	4.0	-	<u>-</u>	21.0	2.0	-	21.0	-	-
10.0	14.0	5.0	_	_	21.0	2.0	-	21.0	_	_
10.0	14.0	6.0	306.0	42.0	22.0	2.0	113.3	23.5	80.1	73.4
10.0	14.0	7.0	613.0	76.0	23.0	3.0	363.7	31.6	280.7	269.0
10.0	14.0	8.0	751.0	93.0	25.0	3.0	599.7	40.7	461.9	444.6
10.0	14.0	9.0	820.0	105.0	26.0	3.0	790.5	47.4	595.5	573.1
10.0	14.0	10.0	852.0	113.0	26.0	3.0	907.4	50.9	672.8	647.2
10.0	14.0	11.0	864.0	116.0	27.0	2.0	954.8	56.6	686.9	660.6
						2.0	925.8			639.2
10.0	14.0	12.0	848.0	119.0	28.0			56.9	664.5	
10.0	14.0	13.0	829.0	108.0	28.0	2.0	817.9	53.9	595.5	573.1
10.0	14.0	14.0	780.0	94.0	28.0	1.0	642.0	52.4	466.4	448.9
10.0	14.0	15.0	676.0	75.0	27.0	1.0	414.4	43.3	304.6	292.3
10.0	14.0	16.0	433.0	46.0	26.0	1.0	162.2	32.4	111.2	103.9
10.0	14.0	17.0	-	-	24.0	1.0	-	24.0	-	-
10.0	14.0	18.0	-	-	24.0	1.0	-	24.0	-	-
10.0	14.0	19.0	-	-	23.0	1.0	-	23.0	-	-
10.0	14.0	20.0	-	-	23.0	2.0	<u>-</u>	23.0	-	-
10.0	14.0	21.0	-	-	22.0	2.0	-	22.0	-	-
10.0	14.0	22.0	_	-	22.0	2.0	-	22.0	_	_
10.0	14.0	23.0	_	_	22.0	2.0	_	22.0	_	_
10.0	15.0	-	_	_	21.0	2.0		21.0	_	_
10.0	15.0	1.0			21.0	2.0		21.0		
		2.0	-	-	21.0	2.0		21.0	-	-
10.0	15.0		-	-			-		-	-
10.0	15.0	3.0	-	-	21.0	2.0	-	21.0	-	-
10.0	15.0	4.0	-	-	21.0	2.0	-	21.0	-	-
10.0	15.0	5.0	-	-	21.0	2.0	-	21.0	-	-
10.0	15.0	6.0	343.0	41.0	22.0	2.0	120.8	23.7	84.5	77.7
10.0	15.0	7.0	652.0	74.0	23.0	2.0	378.5	33.1	289.5	277.6
10.0	15.0	8.0	787.0	91.0	24.0	2.0	620.2	42.3	473.6	455.8
10.0	15.0	9.0	863.0	97.0	25.0	2.0	810.3	49.6	603.0	580.3
10.0	15.0	10.0	896.0	102.0	26.0	2.0	934.0	54.7	678.4	652.5
10.0	15.0	11.0	481.0	289.0	26.0	1.0	785.5	55.5	568.3	547.0
10.0	15.0	12.0	890.0	107.0	26.0	1.0	942.7	59.5	666.7	641.4
10.0	15.0	13.0	862.0	101.0	26.0	1.0	830.2	56.9	594.4	572.0
10.0	15.0	14.0	805.0	91.0	26.0	1.0	653.8	51.0	478.6	460.6
10.0	15.0	15.0	695.0	74.0	25.0	1.0	420.9	41.6	311.6	299.1
10.0	15.0	16.0	443.0	45.0	24.0	1.0	162.8	30.4	112.1	104.8
				45.0	22.0					
10.0	15.0	17.0	_		22.0	1.0		22.0	-	-
10.0	15.0	40.0			00.0	_		00.0		
10.0	45.0	18.0	-	-	22.0	-	-	22.0	-	-
10.0	15.0	19.0			22.0	1	-	22.0	-	-
	15.0	19.0 20.0			22.0 22.0	-	-	22.0 22.0		-
10.0	15.0 15.0	19.0 20.0 21.0			22.0 22.0 22.0		- - -	22.0 22.0 22.0		-
10.0	15.0 15.0 15.0	19.0 20.0 21.0 22.0			22.0 22.0 22.0 21.0	-	-	22.0 22.0 22.0 21.0	:	- - - -
10.0 10.0	15.0 15.0	19.0 20.0 21.0			22.0 22.0 22.0 21.0 21.0	-	-	22.0 22.0 22.0 21.0 21.0] :	- - - - -
10.0	15.0 15.0 15.0	19.0 20.0 21.0 22.0			22.0 22.0 22.0 21.0	- - - - - -	-	22.0 22.0 22.0 21.0	: : : :	
10.0 10.0 10.0 10.0	15.0 15.0 15.0 15.0	19.0 20.0 21.0 22.0 23.0 -			22.0 22.0 22.0 21.0 21.0 21.0 21.0	-	-	22.0 22.0 22.0 21.0 21.0 21.0 21.0		
10.0 10.0 10.0	15.0 15.0 15.0 15.0 16.0	19.0 20.0 21.0 22.0 23.0			22.0 22.0 22.0 21.0 21.0 21.0	-	-	22.0 22.0 22.0 21.0 21.0 21.0		
10.0 10.0 10.0 10.0 10.0 10.0	15.0 15.0 15.0 15.0 16.0 16.0 16.0	19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0			22.0 22.0 22.0 21.0 21.0 21.0 21.0 21.0	: : : : : :	-	22.0 22.0 22.0 21.0 21.0 21.0 21.0 21.0		- - - - - - - -
10.0 10.0 10.0 10.0 10.0	15.0 15.0 15.0 15.0 16.0 16.0	19.0 20.0 21.0 22.0 23.0 - 1.0 2.0			22.0 22.0 22.0 21.0 21.0 21.0 21.0 21.0	-	-	22.0 22.0 22.0 21.0 21.0 21.0 21.0 21.0		- - - - - - - - - -
10.0 10.0 10.0 10.0 10.0 10.0	15.0 15.0 15.0 15.0 16.0 16.0 16.0	19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0	- - - - - - - -		22.0 22.0 22.0 21.0 21.0 21.0 21.0 21.0	: : : : : :	-	22.0 22.0 22.0 21.0 21.0 21.0 21.0 21.0		- - - - - - - - - -
10.0 10.0 10.0 10.0 10.0 10.0 10.0	15.0 15.0 15.0 15.0 16.0 16.0 16.0 16.0	19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0	- - - - - - - -		22.0 22.0 22.0 21.0 21.0 21.0 21.0 20.0		-	22.0 22.0 22.0 21.0 21.0 21.0 21.0 21.0	- - - - - - - - - - - - - - - - - - -	
10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	15.0 15.0 15.0 15.0 16.0 16.0 16.0 16.0 16.0 16.0	19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	22.0 22.0 22.0 21.0 21.0 21.0 21.0 21.0	- - - - - - - - 1.0 1.0	- - - - - - - - - 126.3	22.0 22.0 22.0 21.0 21.0 21.0 21.0 20.0 20	- - - - - - - - - - 87.2	- - - - - - - - - - - - - - - - - - -
10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	15.0 15.0 15.0 15.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0	19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0	- - - - - - - - - - 384.0 682.0	- - - - - - - - - - - - - - - - - - -	22.0 22.0 22.0 21.0 21.0 21.0 21.0 20.0 20	- - - - - - 1.0 1.0 1.0	- - - - - - - - 126.3	22.0 22.0 22.0 21.0 21.0 21.0 21.0 20.0 20	- - - - - - - - - - 87.2 291.5	- - - - - - - - - - 80.3
10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	15.0 15.0 15.0 15.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16	19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - 38.0 69.0 85.0	22.0 22.0 22.0 21.0 21.0 21.0 21.0 20.0 20	- - - - - - - 1.0 1.0 1.0 1.0	- - - - - - - - 126.3 386.0 627.0	22.0 22.0 22.0 21.0 21.0 21.0 21.0 20.0 20	- - - - - - - - - 87.2 291.5	- - - - - - - - - 80.3 279.6 452.4
10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	15.0 15.0 15.0 15.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16	19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - 38.0 69.0 85.0	22.0 22.0 22.0 21.0 21.0 21.0 21.0 20.0 20	- - - - - - 1.0 1.0 1.0 1.0 1.0	- - - - - - - - 126.3 386.0 627.0 812.6	22.0 22.0 22.0 21.0 21.0 21.0 21.0 20.0 20	- - - - - - - - - 87.2 291.5 470.1 590.9	- - - - - - - - - 80.3 279.6 452.4 568.7
10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	15.0 15.0 15.0 15.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16	19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0	- - - - - - - - - 384.0 682.0 809.0 870.0 442.0	- - - - - - - - - - - - - - - - - - -	22.0 22.0 22.0 21.0 21.0 21.0 21.0 20.0 20	- - - - - - 1.0 1.0 1.0 1.0 1.0	- - - - - - - 126.3 386.0 627.0 812.6 732.5	22.0 22.0 22.0 21.0 21.0 21.0 21.0 20.0 20	- - - - - - - - - 87.2 291.5 470.1 590.9 536.3	- - - - - - - - - - - - - - - - - - -
10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	15.0 15.0 15.0 15.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16	19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 11.0	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - 38.0 69.0 85.0 95.0 292.0 305.0	22.0 22.0 22.0 21.0 21.0 21.0 21.0 20.0 20		- - - - - - - - 126.3 386.0 627.0 812.6 732.5 769.6	22.0 22.0 22.0 21.0 21.0 21.0 21.0 20.0 20	- - - - - - - - - 87.2 291.5 470.1 590.9 536.3 558.5	
10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	15.0 15.0 15.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16	19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 11.0 12.0		- - - - - - - - - - - 38.0 69.0 85.0 95.0 292.0 305.0 109.0	22.0 22.0 22.0 21.0 21.0 21.0 21.0 20.0 20	- - - - - - 1.0 1.0 1.0 1.0 1.0	126.3 386.0 627.0 812.6 732.5 769.6 938.4	22.0 22.0 22.0 21.0 21.0 21.0 21.0 20.0 20		- - - - - - - - - - - - - - - - - - -
10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	15.0 15.0 15.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16	19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0			22.0 22.0 22.0 21.0 21.0 21.0 21.0 20.0 20		- - - - - - - - 126.3 386.0 627.0 812.6 732.5 769.6 938.4 831.1	22.0 22.0 22.0 21.0 21.0 21.0 21.0 20.0 20		- - - - - - - - - - - - - - - - - - -
10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	15.0 15.0 15.0 15.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16	19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 5.0 6.0 9.0 11.0 12.0 13.0 14.0			22.0 22.0 22.0 21.0 21.0 21.0 21.0 20.0 20	1.0 1.0 1.0 1.0 1.0 1.0	- - - - - - - - 126.3 386.0 627.0 812.6 732.5 769.6 938.4 831.1	22.0 22.0 22.0 21.0 21.0 21.0 21.0 20.0 20		
10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	15.0 15.0 15.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16	19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 5.0 6.0 7.0 8.0 9.0 10.0 12.0 13.0 14.0 15.0			22.0 22.0 22.0 21.0 21.0 21.0 21.0 20.0 20	1.0 1.0 1.0 1.0 1.0 1.0 1.0		22.0 22.0 22.0 21.0 21.0 21.0 21.0 20.0 20		80.3 279.6 452.4 568.7 516.2 537.5 613.4 549.5 337.8 243.8
10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	15.0 15.0 15.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16	19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0			22.0 22.0 22.0 21.0 21.0 21.0 21.0 21.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0	126.3 386.0 627.0 812.6 732.5 769.6 938.4 831.1 478.1 343.4 128.7	22.0 22.0 22.0 21.0 21.0 21.0 21.0 20.0 20	87.2 291.5 470.1 590.9 536.3 558.5 637.5 570.9 351.6 254.7 91.1	80.3 279.6 452.4 568.7 516.2 537.5 613.4 549.5 337.8 243.8 84.2
10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	15.0 15.0 15.0 15.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16	19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 5.0 6.0 9.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0			22.0 22.0 22.0 21.0 21.0 21.0 21.0 21.0			22.0 22.0 22.0 21.0 21.0 21.0 21.0 20.0 20		80.3 279.6 452.4 568.7 516.2 537.5 613.4 549.5 337.8 243.8
10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	15.0 15.0 15.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16	19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 9.0 10.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0			22.0 22.0 22.0 21.0 21.0 21.0 21.0 20.0 20			22.0 22.0 22.0 21.0 21.0 21.0 21.0 20.0 20	87.2 291.5 470.1 590.9 536.3 558.5 637.5 570.9 351.6 254.7 91.1	80.3 279.6 452.4 568.7 516.2 537.5 613.4 549.5 337.8 243.8 84.2
10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	15.0 15.0 15.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16	19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 19.0			22.0 22.0 22.0 21.0 21.0 21.0 21.0 21.0		126.3 386.0 627.0 812.6 732.5 769.6 938.4 831.1 478.1 343.4 128.7	22.0 22.0 22.0 21.0 21.0 21.0 21.0 20.0 20	87.2 291.5 470.1 590.9 536.3 558.5 637.5 570.9 351.6 254.7 91.1	80.3 279.6 452.4 568.7 516.2 537.5 613.4 549.5 337.8 243.8 84.2
10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	15.0 15.0 15.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16	19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 11.0 12.0 14.0 15.0 6.0 17.0 18.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19			22.0 22.0 22.0 21.0 21.0 21.0 21.0 21.0			22.0 22.0 22.0 21.0 21.0 21.0 21.0 20.0 20	87.2 291.5 470.1 590.9 536.3 558.5 637.5 570.9 351.6 254.7 91.1	80.3 279.6 452.4 568.7 516.2 537.5 613.4 549.5 337.8 243.8 84.2
10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	15.0 15.0 15.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16	19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 9.0 10.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0			22.0 22.0 22.0 22.0 21.0 21.0 21.0 21.0			22.0 22.0 22.0 21.0 21.0 21.0 21.0 20.0 20	87.2 291.5 470.1 590.9 536.3 558.5 637.5 570.9 351.6 254.7 91.1	80.3 279.6 452.4 568.7 516.2 537.5 613.4 549.5 337.8 243.8 84.2
10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	15.0 15.0 15.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16	19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 19.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 2			22.0 22.0 22.0 21.0 21.0 21.0 21.0 21.0			22.0 22.0 22.0 21.0 21.0 21.0 21.0 20.0 20	87.2 291.5 470.1 590.9 536.3 558.5 637.5 570.9 351.6 254.7 91.1	80.3 279.6 452.4 568.7 516.2 537.5 613.4 549.5 337.8 243.8 84.2
10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	15.0 15.0 15.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16	19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 11.0 12.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 2			22.0 22.0 22.0 21.0 21.0 21.0 21.0 21.0			22.0 22.0 22.0 21.0 21.0 21.0 21.0 20.0 20	87.2 291.5 470.1 590.9 536.3 558.5 637.5 570.9 351.6 254.7 91.1	80.3 279.6 452.4 568.7 516.2 537.5 613.4 549.5 337.8 243.8 84.2
10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	15.0 15.0 15.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16	19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 15.0 16.0 17.0 18.0 19.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 2			22.0 22.0 22.0 22.0 21.0 21.0 21.0 21.0			22.0 22.0 22.0 21.0 21.0 21.0 21.0 20.0 20	87.2 291.5 470.1 590.9 536.3 558.5 637.5 570.9 351.6 254.7 91.1	80.3 279.6 452.4 568.7 516.2 537.5 613.4 549.5 337.8 243.8 84.2
10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	15.0 15.0 15.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16	19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 2			22.0 22.0 22.0 21.0 21.0 21.0 21.0 21.0			22.0 22.0 22.0 21.0 21.0 21.0 21.0 21.0	87.2 291.5 470.1 590.9 536.3 558.5 637.5 570.9 351.6 254.7 91.1	80.3 279.6 452.4 568.7 516.2 537.5 613.4 549.5 337.8 243.8 84.2
10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	15.0 15.0 15.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16	19.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 15.0 16.0 17.0 18.0 19.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 2			22.0 22.0 22.0 22.0 21.0 21.0 21.0 21.0			22.0 22.0 22.0 21.0 21.0 21.0 21.0 20.0 20	87.2 291.5 470.1 590.9 536.3 558.5 637.5 570.9 351.6 254.7 91.1	80.3 279.6 452.4 568.7 516.2 537.5 613.4 549.5 337.8 243.8 84.2

10.0 10.0	17.0 17.0	3.0 4.0	-	<u>.</u>	21.0 21.0	1.0 1.0	- -	21.0 21.0	-	<u>-</u>
10.0 10.0	17.0 17.0	5.0 6.0	- 337.0	- 36.0	21.0 22.0	1.0 1.0	- 114.5	21.0 23.7	- 79.4	- 72.7
10.0 10.0	17.0 17.0	7.0 8.0	633.0 476.0	72.0 171.0	23.0 24.0	1.0 1.0	367.1 501.8	34.6 41.6	278.7 386.1	267.1 371.3
10.0 10.0	17.0 17.0	9.0 10.0	99.0 187.0	297.0 356.0	25.0 26.0	1.0 1.0	385.8 549.8	39.5 45.3	303.4 420.2	291.1 404.2
10.0 10.0	17.0 17.0	11.0 12.0	528.0 528.0	275.0 262.0	26.0 26.0	1.0 1.0	813.3 782.9	54.5 54.9	591.8 568.4	569.6 547.1
10.0 10.0	17.0 17.0	13.0 14.0	234.0 95.0	306.0 232.0	25.0 25.0	2.0 2.0	517.6 301.4	42.0 34.6	401.8 242.4	386.5 231.8
10.0 10.0	17.0 17.0	15.0 16.0	-	68.0 25.0	24.0 23.0	1.0 1.0	64.6 23.7	26.0 21.8	54.3 20.3	48.2 14.8
10.0 10.0	17.0 17.0	17.0 18.0	-	-	23.0 22.0	1.0 1.0	-	23.0 22.0	-	-
10.0 10.0	17.0 17.0	19.0 20.0	-	- -	21.0 20.0	2.0 2.0	-	21.0 20.0	- -	-
10.0 10.0	17.0 17.0	21.0 22.0	-	-	19.0 18.0	2.0 2.0	-	19.0 18.0	-	-
10.0 10.0	17.0 18.0	23.0	-	-	18.0 17.0	2.0	-	18.0 17.0	-	-
10.0 10.0	18.0 18.0	1.0 2.0	-	-	17.0 16.0	2.0	<u> </u>	17.0 16.0	-	-
10.0 10.0	18.0 18.0	3.0 4.0	-	-	16.0 15.0	2.0	<u> </u>	16.0 15.0	-	-
10.0 10.0	18.0 18.0	5.0 6.0	- 430.0	- 35.0	15.0 15.0	2.0 2.0	- 132.6	15.0 16.9	- 92.6	- 85.7
10.0 10.0	18.0 18.0	7.0 8.0	732.0 858.0	63.0 78.0	17.0 19.0	2.0 2.0 3.0	399.6 649.1	27.8 36.2	312.1 510.7	299.6 491.6
10.0 10.0	18.0 18.0	9.0 10.0	921.0 952.0	86.0 91.0	20.0 22.0	3.0 3.0	840.9 967.7	43.0 48.7	647.8 725.7	623.2 697.8
10.0 10.0 10.0	18.0 18.0	11.0 12.0	961.0 955.0	93.0 90.0	23.0 23.0 23.0	3.0 3.0 3.0	1,013.9 977.3	51.2 50.5	750.8 726.4	721.7 698.4
10.0	18.0	13.0	927.0	86.0	24.0	3.0	860.9	48.4	645.2	620.8
10.0 10.0	18.0 18.0	14.0 15.0	870.0 753.0	77.0 65.0	23.0 22.0	3.0 3.0	672.6 432.8	42.2 34.4	514.7 330.8	495.4 317.7
10.0 10.0	18.0 18.0	16.0 17.0	487.0 -	40.0 -	21.0 19.0	2.0	165.5 -	26.1 19.0	114.3 -	106.9
10.0 10.0	18.0 18.0	18.0 19.0	-	-	18.0 17.0	2.0 2.0	-	18.0 17.0	-	-
10.0 10.0	18.0 18.0	20.0	-	-	17.0 16.0	2.0 2.0	-	17.0 16.0	-	-
10.0 10.0	18.0 18.0	22.0 23.0	-	-	16.0 15.0	2.0	-	16.0 15.0	-	-
10.0 10.0	19.0 19.0	1.0	-	-	15.0 14.0	2.0 2.0	-	15.0 14.0	-	-
10.0 10.0	19.0 19.0	2.0 3.0	-	-	14.0 14.0	2.0 2.0	-	14.0 14.0	-	-
10.0 10.0	19.0 19.0	4.0 5.0	-	-	13.0 13.0	2.0 2.0	-	13.0 13.0	-	-
10.0 10.0	19.0 19.0	6.0 7.0	420.0 708.0	34.0 66.0	14.0 16.0	2.0 2.0	129.4 391.7	15.8 26.6	90.8 307.9	83.9 295.5
10.0 10.0	19.0 19.0	8.0 9.0	824.0 888.0	85.0 95.0	18.0 19.0	2.0 2.0	634.0 823.1	36.9 44.3	497.1 629.8	478.5 606.0
10.0 10.0	19.0 19.0	10.0 11.0	913.0 918.0	103.0 108.0	20.0 21.0	2.0 1.0	944.1 988.3	49.3 57.0	705.7 708.9	678.7 681.7
10.0 10.0	19.0 19.0	12.0 13.0	910.0 878.0	106.0 101.0	22.0 22.0	1.0 1.0	952.1 835.5	57.1 53.4	682.5 609.5	656.4 586.5
10.0 10.0	19.0 19.0	14.0 15.0	816.0 698.0	91.0 74 .0	22.0 21.0	1.0 1.0	653.8 416.4	47.2 37.6	487.7 313.7	469.4 301.1
10.0 10.0	19.0 19.0	16.0 17.0	432.0	42.0 -	20.0 19.0	1.0 1.0	153.7	26.0 19.0	107.1 -	99.9
10.0 10.0	19.0 19.0	18.0 19.0	-	-	18.0 17.0	1.0 2.0	-	18.0 17.0	- -	-
10.0 10.0	19.0 19.0	20.0 21.0	-	-	17.0 17.0	2.0 2.0	-	17.0 17.0	-	-
10.0 10.0	19.0 19.0	22.0 23.0	-	-	16.0 16.0	2.0 2.0	-	16.0 16.0	- -	-
10.0 10.0	20.0 20.0	- 1.0	-	- -	15.0 15.0	2.0 2.0	-	15.0 15.0	- -	-
10.0 10.0	20.0 20.0	2.0 3.0	-	- -	15.0 14.0	2.0 2.0	-	15.0 14.0	- -	-
10.0 10.0	20.0 20.0	4.0 5.0	-	-	14.0 14.0	2.0	- -	14.0 14.0	<u>-</u> -	-
10.0 10.0	20.0 20.0	6.0 7.0	157.0 690.0	38.0 67.0	15.0 17.0	2.0 2.0	78.7 385.3	15.2 27.1	60.9 302.2	54.6 289.9
10.0 10.0	20.0	8.0 9.0	818.0 883.0	84.0 95.0	19.0 20.0	2.0	628.0 817.7	37.7 49.4	490.5 609.2	472.1 586.2
10.0 10.0	20.0 20.0	10.0 11.0	914.0 925.0	101.0 102.0	21.0 22.0	1.0 1.0	941.1 986.3	55.0 57.9	682.2 704.2	656.2 677.2
			120.0	. 52.10			550.5	21.0		02

10.0 10.0	20.0 20.0	12.0 13.0	918.0 888.0	100.0 95.0	22.0 23.0	1.0	950.7 835.0	57.1 60.8	681.6 584.7	655.6 562.7
10.0	20.0	14.0	828.0	85.0	23.0	_	653.3	54.2	469.4	451.7
10.0	20.0	15.0	708.0	70.0	22.0	-	415.2	43.7	302.8	290.6
10.0	20.0	16.0	436.0	40.0	21.0	-	151.8	30.4	103.1	95.9
10.0 10.0	20.0 20.0	17.0 18.0	-	- -	20.0 20.0	-	-	20.0 20.0	-	-
10.0	20.0	19.0	_	- -	19.0	-	-	19.0	-	
10.0	20.0	20.0	-	-	19.0	-	-	19.0	-	-
10.0	20.0	21.0	-	-	18.0	-	-	18.0	-	-
10.0 10.0	20.0	22.0	-	-	18.0 17.0	-	-	18.0	-	-
10.0	20.0 21.0	23.0		- -	16.0			17.0 16.0		
10.0	21.0	1.0	_	-	16.0	1.0	-	16.0	_	_
10.0	21.0	2.0	-	-	15.0	1.0	-	15.0	-	-
10.0	21.0	3.0	-	-	15.0	1.0		15.0	-	-
10.0 10.0	21.0 21.0	4.0 5.0	-	-	15.0 15.0	1.0 1.0	-	15.0 15.0		-
10.0	21.0	6.0	52.0	38.0	16.0	1.0	51.5	15.1	42.7	36.8
10.0	21.0	7.0	677.0	69.0	18.0	1.0	381.2	29.6	295.5	283.5
10.0	21.0	8.0	810.0	86.0	20.0	1.0	624.1	41.8	477.2	459.3
10.0	21.0	9.0	879.0	96.0	21.0	1.0	814.3	50.2	603.9	581.2
10.0 10.0	21.0 21.0	10.0 11.0	917.0 934.0	100.0 100.0	22.0 23.0	1.0	941.0 990.5	55.9 65.6	678.7 676.9	652.9 651.1
10.0	21.0	12.0	934.0	96.0	23.0	-	957.7	64.9	656.9	631.9
10.0	21.0	13.0	908.0	89.0	24.0	-	842.5	62.0	585.9	563.8
10.0	21.0	14.0	853.0	80.0	24.0	-	662.4	55.4	472.4	454.6
10.0	21.0	15.0	738.0	65.0	23.0	-	421.1	44.9	304.5	292.2
10.0	21.0	16.0	467.0	37.0	22.0	-	155.1	31.6	103.6	96.4
10.0 10.0	21.0 21.0	17.0 18.0	-	- -	21.0 20.0	1.0 1.0	- -	21.0 20.0	-	-
10.0	21.0	19.0	_	- -	19.0	1.0	- -	19.0	_	_
10.0	21.0	20.0	-	-	18.0	1.0	-	18.0	-	-
10.0	21.0	21.0	-	-	18.0	1.0	-	18.0	-	-
10.0	21.0	22.0	-	-	17.0	1.0	-	17.0	-	-
10.0 10.0	21.0 22.0	23.0	-	-	17.0 17.0	1.0 1.0	-	17.0 17.0	-	-
10.0	22.0	1.0	_	-	17.0	1.0	-	17.0		
10.0	22.0	2.0	_	-	16.0	1.0	-	16.0	_	_
10.0	22.0	3.0	-	-	16.0	1.0	-	16.0	-	-
10.0	22.0	4.0	-	-	16.0	2.0	-	16.0	-	-
10.0 10.0	22.0 22.0	5.0 6.0	328.0	32.0	16.0 17.0	2.0 2.0	108.6	16.0 18.2	- 76.7	- 70.1
10.0	22.0	7.0	409.0	99.0	17.0	2.0	293.2	26.5	233.9	223.6
10.0	22.0	8.0	803.0	82.0	21.0	2.0	614.1	38.8	476.6	458.7
10.0	22.0	9.0	860.0	95.0	23.0	2.0	801.6	47.4	603.2	580.5
10.0	22.0	10.0	324.0	322.0	24.0	2.0	646.1	44.8	494.9	476.3
10.0 10.0	22.0 22.0	11.0	496.0 588.0	272.0	25.0 25.0	2.0 2.0	775.5	48.8 49.9	581.9 595.2	560.1 572.8
10.0	22.0	12.0 13.0	53.0	231.0 275.0	25.0	2.0	798.4 326.2	36.5	260.5	249.5
10.0	22.0	14.0	550.0	151.0	25.0	2.0	536.5	40.7	414.8	399.0
10.0	22.0	15.0	134.0	135.0	24.0	2.0	204.7	30.8	164.7	156.2
10.0	22.0	16.0	38.0	45.0	23.0	2.0	54.5	23.6	44.4	38.4
10.0 10.0	22.0 22.0	17.0 18.0	-	-	21.0 21.0	2.0 2.0	-	21.0 21.0	-	-
10.0	22.0	19.0		- -	21.0	2.0		21.0		
10.0	22.0	20.0	_	-	21.0	2.0	-	21.0	_	_
10.0	22.0	21.0	-	-	21.0	2.0	-	21.0	-	-
10.0	22.0	22.0	-	-	21.0	2.0	-	21.0	-	-
10.0 10.0	22.0 23.0	23.0	-	- -	20.0 20.0	3.0 3.0	- -	20.0 20.0	-	- -
10.0	23.0	1.0	-	- -	19.0	3.0	- -	19.0	-	
10.0	23.0	2.0	-	-	19.0	3.0	-	19.0	-	-
10.0	23.0	3.0	-	-	19.0	3.0	-	19.0	-	-
10.0	23.0	4.0	-	-	18.0	3.0	-	18.0	-	-
10.0 10.0	23.0 23.0	5.0 6.0	-	33.0	18.0 18.0	3.0 3.0	32.0	18.0 16.9	28.1	22.4
10.0	23.0	7.0	67.0	122.0	19.0	3.0	153.8	21.5	130.1	122.3
10.0	23.0	8.0	272.0	202.0	20.0	3.0	395.1	29.6	323.7	310.8
10.0	23.0	9.0	25.0	239.0	21.0	4.0	255.5	27.0	213.8	204.0
10.0	23.0	10.0	-	143.0	21.0	4.0	137.5	23.6	117.0	109.5
10.0 10.0	23.0 23.0	11.0 12.0	-	68.0 33.0	22.0 22.0	4.0 4.0	64.7 31.4	22.4 21.3	55.3 27.0	49.2 21.4
10.0	23.0	13.0		92.0	21.0	4.0	87.5	21.6	75.1	41.4 68.6
10.0	23.0	14.0	-	21.0	20.0	4.0	19.9	19.1	17.3	68.6 11.9
10.0	23.0	15.0	-	37.0	20.0	4.0	35.1	19.2	30.4	24.8
10.0	23.0	16.0	-	3.0	19.0	4.0	2.8	17.4	2.5	-
10.0 10.0	23.0 23.0	17.0 18.0	-	- -	19.0 19.0	4.0 4.0		19.0 19.0	-	-
10.0	23.0	19.0	-	- -	19.0	4.0	- -	19.0	-	-
10.0	23.0	20.0	-	-	19.0	4.0	-	19.0	-	-

10.0	23.0	21.0	-	-	19.0	4.0	-	19.0	-	-
10.0	23.0	22.0	-	-	20.0	4.0	-	20.0	-	-
10.0	23.0	23.0	-		20.0	4.0	-	20.0	-	-
10.0	24.0	-	-		20.0	4.0	-	20.0	-	-
10.0	24.0	1.0	-	-	20.0	4.0	-	20.0	-	-
10.0	24.0	2.0	_	_	20.0	4.0	-	20.0	_	-
10.0	24.0	3.0	_	<u>-</u>	20.0	3.0	<u>-</u>	20.0	_	_
10.0	24.0	4.0	_	<u>-</u>	20.0	3.0	<u>-</u>	20.0	_	_
10.0	24.0	5.0	_	<u>-</u>	20.0	2.0	<u>-</u>	20.0	_	_
10.0	24.0	6.0	98.0	43.0	20.0	2.0	70.4	20.0	55.5	49.4
10.0	24.0	7.0	466.0	97.0	20.0	2.0	315.2	28.0	248.8	238.1
10.0	24.0	8.0	39.0	195.0	21.0	2.0	224.4	27.3	187.1	178.0
10.0	24.0	9.0	2.0	176.0	21.0	3.0	172.5	24.8	146.0	137.8
10.0	24.0	10.0	11.0	231.0	21.0	3.0	236.1	26.3	198.2	188.8
10.0	24.0	11.0	275.0	348.0	22.0	3.0	641.1	38.4	507.5	488.5
10.0	24.0	12.0	33.0	290.0	22.0	3.0	328.4	31.5	269.1	257.8
10.0	24.0	13.0	149.0	295.0	22.0	3.0	435.6	33.3	353.3	339.6
10.0	24.0	14.0	11.0	175.0	21.0	3.0	178.7	25.7	150.4	142.2
10.0	24.0	15.0	695.0	65.0	21.0	2.0	397.0	31.9	305.9	293.6
10.0	24.0	16.0	414.0	35.0	20.0	2.0	138.8	24.1	96.1	89.1
10.0	24.0	17.0	-	-	18.0	2.0	-	18.0	-	-
10.0	24.0	18.0	-	-	17.0	2.0	-	17.0	-	-
10.0	24.0	19.0	-	-	16.0	2.0	-	16.0	-	-
10.0	24.0	20.0	-	<u>-</u>	16.0	1.0		16.0	-	-
10.0	24.0	21.0	-		15.0	1.0		15.0	-	-
10.0	24.0	22.0	-	-	15.0	1.0	-	15.0	-	-
10.0	24.0	23.0	_	-	15.0	1.0	-	15.0	_	-
10.0	25.0	_	_	<u>-</u>	14.0	1.0	<u>-</u>	14.0	_	_
10.0	25.0	1.0	_	<u>-</u>	14.0	1.0	<u>-</u>	14.0	_	_
10.0	25.0	2.0	_	_	14.0	1.0	_	14.0	_	_
10.0	25.0	3.0	_		14.0	1.0	_	14.0	_	_
10.0	25.0	4.0	_	_	14.0	2.0	_	14.0		
10.0	25.0	5.0	-	-	14.0	2.0	-	14.0	-	
10.0	25.0	6.0	-	24.0	14.0	2.0	22.8	12.3	20.4	14.9
10.0	25.0	7.0	113.0	121.0	16.0	2.0	177.6	19.4	150.5	142.3
10.0	25.0	8.0	849.0	77.0	18.0	2.0	634.3	36.0	498.9	480.2
10.0	25.0	9.0	908.0	88.0	19.0	2.0	822.2	44.3	628.8	605.0
10.0	25.0	10.0	932.0	95.0	20.0	2.0	941.5	49.3	703.9	676.9
10.0	25.0	11.0	936.0	99.0	20.0	2.0	983.2	50.9	729.3	701.2
10.0	25.0	12.0	925.0	97.0	21.0	2.0	943.3	50.9	699.3	672.5
10.0	25.0	13.0	889.0	93.0	21.0	2.0	823.5	47.4	619.9	596.5
10.0	25.0	14.0	823.0	84.0	21.0	1.0	639.9	45.8	480.1	462.1
10.0	25.0	15.0	693.0	67.0	20.0	1.0	398.1	35.9	300.9	288.7
10.0	25.0	16.0	398.0	36.0	19.0	1.0	135.6	24.2	94.1	87.2
10.0	25.0	17.0	-	-	18.0	1.0	-	18.0	-	-
10.0	25.0	18.0	_	-	18.0	1.0	-	18.0	_	-
10.0	25.0	19.0	_	_	17.0	1.0	-	17.0	_	-
10.0	25.0	20.0	_	<u>-</u>	17.0	1.0	<u>-</u>	17.0	_	_
10.0	25.0	21.0	_	<u>-</u>	16.0	1.0	<u>-</u>	16.0	_	_
10.0	25.0	22.0	_	<u>-</u>	15.0	1.0	<u>-</u>	15.0	_	_
10.0	25.0	23.0	_	_	15.0	1.0		15.0	_	_
10.0	26.0		_	_	14.0	1.0		14.0	_	_
10.0	26.0	1.0	_		14.0	1.0	_	14.0	_	_
10.0	26.0	2.0	_		13.0	2.0	_	13.0	_	_
10.0	26.0	3.0			13.0	1.0		13.0		
10.0	26.0	4.0	_	_	13.0	1.0	_	13.0	_	
10.0	26.0	5.0		_	13.0	1.0		13.0	_	
10.0	26.0	6.0	56.0	33.0	14.0	1.0	47.4	12.9	39.2	33.4
10.0	26.0	7.0	313.0	106.0	16.0	1.0	252.4	23.0	205.7	196.1
10.0	26.0	8.0	849.0	75.0	18.0	1.0	630.8	39.4	487.6	469.3
10.0	26.0	9.0	914.0	83.0	19.0	1.0	819.7	48.5	613.0	589.9
10.0	26.0		914.0	89.0	20.0	1.0	942.6	48.5 54.2	686.4	660.2
		10.0								
10.0	26.0	11.0	950.0	91.0	21.0	1.0	985.1	57.0	706.9	679.8
10.0	26.0	12.0	937.0	92.0	22.0	1.0	946.3	56.9	678.8	652.9
10.0	26.0	13.0	907.0	87.0	22.0	1.0	829.2	53.2	605.1	582.3
10.0	26.0	14.0	845.0	78.0	22.0	1.0	645.7	46.9	481.3	463.3
10.0	26.0	15.0	721.0	63.0	21.0	1.0	403.9	37.1	302.8	290.6
10.0	26.0	16.0	421.0	34.0	20.0	1.0	138.1	25.4	94.5	87.5
10.0	26.0	17.0	-	-	20.0	1.0	-	20.0	-	-
10.0	26.0	18.0	-	-	19.0	1.0	-	19.0	-	-
10.0	26.0	19.0	-	-	19.0	1.0	-	19.0	-	-
10.0	26.0	20.0	-	-	18.0	1.0	-	18.0	-	-
		21.0	-	-	18.0	1.0	-	18.0	-	-
10.0	26.0				17.0	1.0	-	17.0	-	_
10.0	26.0 26.0	22.0	-							
10.0 10.0	26.0 26.0 26.0	22.0 23.0	-	-	17.0	1.0		17.0	-	-
10.0 10.0 10.0	26.0 26.0 26.0 27.0	22.0 23.0 -	- - -	- -	17.0 17.0	1.0	-	17.0	-	-
10.0 10.0 10.0 10.0	26.0 26.0 26.0 27.0 27.0	22.0 23.0 - 1.0	-	- - -	17.0 17.0 17.0	1.0 1.0	- - -	17.0 17.0	- - -	-
10.0 10.0 10.0 10.0 10.0	26.0 26.0 26.0 27.0 27.0 27.0	22.0 23.0 - 1.0 2.0	-	: :	17.0 17.0 17.0 17.0	1.0 1.0 2.0		17.0 17.0 17.0	- - -	-
10.0 10.0 10.0 10.0 10.0 10.0	26.0 26.0 27.0 27.0 27.0 27.0	22.0 23.0 - 1.0 2.0 3.0	-		17.0 17.0 17.0 17.0 17.0	1.0 1.0 2.0 2.0		17.0 17.0 17.0 17.0	- - - -	- - - -
10.0 10.0 10.0 10.0 10.0 10.0	26.0 26.0 27.0 27.0 27.0 27.0 27.0 27.0	22.0 23.0 - 1.0 2.0 3.0 4.0			17.0 17.0 17.0 17.0 17.0 16.0	1.0 1.0 2.0 2.0 3.0	- - - - -	17.0 17.0 17.0 17.0 16.0	- - - - -	- - - - - -
10.0 10.0 10.0 10.0 10.0 10.0	26.0 26.0 27.0 27.0 27.0 27.0	22.0 23.0 - 1.0 2.0 3.0			17.0 17.0 17.0 17.0 17.0	1.0 1.0 2.0 2.0	- - - - - -	17.0 17.0 17.0 17.0	- - - - - -	- - - - - -

10.0 10.0	27.0 27.0	6.0 7.0	269.0 423.0	33.0 91.0	15.0 15.0	3.0 4.0	99.1 288.9	15.8 20.9	72.5 235.7	66.0 225.3
10.0 10.0 10.0	27.0 27.0 27.0	8.0 9.0 10.0	856.0 942.0 980.0	77.0 83.0 87.0	15.0 15.0 16.0	4.0 4.0 3.0	636.2 840.0 971.2	30.1 36.0 43.1	514.7 669.5 749.8	495.4 644.0 720.7
10.0 10.0 10.0	27.0 27.0 27.0	11.0 12.0 13.0	993.0 982.0 954.0	88.0 88.0 82.0	16.0 17.0	3.0 3.0 3.0	1,019.2 979.8	44.7 44.8	780.8 749.8	750.3 720.7
10.0 10.0 10.0	27.0 27.0 27.0	14.0 15.0	896.0 433.0	73.0 96.0	17.0 16.0 15.0	3.0 3.0 3.0	859.1 667.8 307.3	41.6 35.3 24.0	666.1 527.7 248.6	640.8 507.9 237.9
10.0 10.0	27.0 27.0	16.0 17.0	457.0 -	33.0 -	14.0 13.0	3.0 3.0	144.4	17.2 13.0	101.7	94.5
10.0 10.0 10.0	27.0 27.0 27.0	18.0 19.0 20.0	-	Ē	12.0 11.0 10.0	3.0 3.0 3.0		12.0 11.0 10.0	-	-
10.0 10.0	27.0 27.0	21.0 22.0	-	1	10.0 9.0	3.0 3.0	<u>.</u>	10.0 9.0	-	-
10.0 10.0 10.0	27.0 28.0 28.0	23.0 - 1.0	-	-	9.0 9.0 8.0	3.0 3.0 3.0	-	9.0 9.0 8.0	- - -	-
10.0 10.0	28.0 28.0	2.0 3.0	-	-	8.0 8.0	3.0 3.0	- - -	8.0 8.0	- - -	-
10.0 10.0	28.0 28.0	4.0 5.0	- - 37.0	- - 24.0	7.0 7.0	3.0 3.0	- - -	7.0 7.0		- - 20.4
10.0 10.0 10.0	28.0 28.0 28.0	6.0 7.0 8.0	469.0 870.0	31.0 83.0 75.0	8.0 9.0 10.0	3.0 3.0 3.0	41.5 299.4 641.4	7.0 15.5 26.8	35.9 249.3 526.9	30.1 238.5 507.2
10.0 10.0	28.0 28.0	9.0 10.0	571.0 964.0	184.0 89.0	11.0 12.0	3.0 3.0	662.2 957.2	29.6 38.3	545.4 757.0	524.9 727.6
10.0 10.0 10.0	28.0 28.0 28.0	11.0 12.0 13.0	975.0 970.0 941.0	90.0 86.0 80.0	13.0 14.0 15.0	3.0 3.0 2.0	1,002.7 964.6 844.3	41.4 41.5 42.4	781.3 750.7 652.0	750.8 721.6 627.2
10.0 10.0	28.0 28.0	14.0 15.0	882.0 761.0	71.0 57.0	15.0 14.0	2.0 2.0	654.7 412.7	36.5 27.6	514.0 323.0	494.8 310.1
10.0 10.0 10.0	28.0 28.0 28.0	16.0 17.0 18.0	459.0 -	31.0	13.0 11.0 10.0	2.0 2.0 2.0	142.1 - -	17.2 11.0 10.0	99.5 - -	92.5 - -
10.0 10.0	28.0 28.0	19.0 20.0	-	- -	10.0 9.0	2.0 2.0	- -	10.0 9.0	-	-
10.0 10.0 10.0	28.0 28.0 28.0	21.0 22.0 23.0	-		9.0 8.0 8.0	2.0 2.0 2.0	- - -	9.0 8.0 8.0	-	
10.0 10.0	29.0 29.0	- 1.0	-	<u>.</u>	7.0 7.0	2.0 2.0	- -	7.0 7.0	-	-
10.0 10.0 10.0	29.0 29.0 29.0	2.0 3.0 4.0	-		7.0 6.0 6.0	1.0 1.0 1.0		7.0 6.0 6.0	- - -	-
10.0 10.0	29.0 29.0	5.0 6.0	- 13.0	- 29.0	6.0 7.0	1.0 1.0	- 31.8	6.0 5.1	- 28.7	23.0
10.0 10.0 10.0	29.0 29.0 29.0	7.0 8.0 9.0	449.0 876.0 939.0	85.0 69.0 77.0	9.0 11.0 12.0	1.0 1.0 1.0	292.5 633.5 827.2	17.3 33.0 42.2	241.8 504.9 638.9	231.3 486.0 614.7
10.0 10.0	29.0 29.0	10.0 11.0	968.0 975.0	81.0 83.0	13.0 14.0	1.0 1.0	949.6 992.6	48.0 50.8	714.5 736.2	687.1 707.8
10.0 10.0 10.0	29.0 29.0 29.0	12.0 13.0 14.0	965.0 936.0 876.0	82.0 78.0 70.0	15.0 15.0 16.0	1.0 1.0 1.0	953.4 836.0 647.9	50.8 47.0 41.4	707.0 630.3 496.3	679.9 606.5 477.7
10.0 10.0	29.0 29.0	15.0 16.0	754.0 448.0	56.0 30.0	15.0 14.0	1.0 1.0	407.1 136.9	31.4 19.3	312.7 94.6	300.1 87.7
10.0 10.0 10.0	29.0 29.0 29.0	17.0 18.0 19.0	-		13.0 12.0 12.0	1.0 1.0 1.0	- - -	13.0 12.0 12.0	-	-
10.0 10.0	29.0 29.0	20.0 21.0	-	- -	12.0 11.0	1.0 1.0	- -	12.0 11.0	-	-
10.0 10.0 10.0	29.0 29.0 30.0	22.0 23.0	-		11.0 10.0 10.0	1.0 1.0 1.0	- - -	11.0 10.0 10.0	-	-
10.0 10.0	30.0 30.0	1.0 2.0	-	- -	9.0 9.0	2.0 2.0	- -	9.0 9.0	-	-
10.0 10.0 10.0	30.0 30.0 30.0	3.0 4.0 5.0	-		9.0 9.0 9.0	2.0 2.0 2.0	- - -	9.0 9.0 9.0	-	-
10.0 10.0	30.0 30.0	6.0 7.0	113.0 461.0	29.0 82.0	10.0 12.0	2.0 2.0	58.1 293.8	10.1 19.2	46.2 240.4	40.2 229.9
10.0 10.0 10.0	30.0 30.0 30.0	8.0 9.0 10.0	864.0 926.0 956.0	69.0 77.0 82.0	14.0 16.0 17.0	2.0 2.0 1.0	624.5 815.2 938.1	32.3 41.2 51.2	499.3 633.0 693.8	480.6 609.1 667.3
10.0 10.0	30.0 30.0	11.0 12.0	964.0 953.0	84.0 83.0	18.0 19.0	1.0 1.0	981.5 941.8	54.1 54.0	715.3 686.2	687.9 660.0
10.0 10.0	30.0 30.0	13.0 14.0	921.0 857.0	79.0 72.0	19.0 20.0	1.0 1.0	823.3 639.8	50.2 44.8	610.2 481.5	587.2 463.5

10.0	30.0	15.0	729.0	58.0	19.0	1.0	396.9	34.9	299.7	287.6
10.0	30.0	16.0	413.0	30.0	18.0	1.0	131.2	23.1	90.0	83.2
10.0 10.0	30.0 30.0	17.0 18.0	-	-	16.0 15.0	1.0 1.0	-	16.0 15.0	-	-
10.0	30.0	19.0	-	- -	15.0	2.0	- -	15.0	-	-
10.0	30.0	20.0	-	-	14.0	2.0	-	14.0	-	-
10.0 10.0	30.0 30.0	21.0 22.0	-	-	14.0 13.0	2.0 2.0	-	14.0 13.0	-	-
10.0	30.0	23.0		-	13.0	2.0	- -	13.0	-	-
10.0	31.0	-	-	-	12.0	2.0	-	12.0	-	-
10.0	31.0 31.0	1.0	-	-	12.0	2.0 2.0	-	12.0 12.0	-	-
10.0 10.0	31.0	2.0 3.0	-	- -	12.0 12.0	2.0	- -	12.0	-	
10.0	31.0	4.0	-	-	12.0	2.0	-	12.0	-	-
10.0	31.0 31.0	5.0	-	-	12.0	2.0	-	12.0	-	-
10.0 10.0	31.0	6.0 7.0	66.0 661.0	29.0 63.0	13.0 14.0	2.0 2.0	48.5 360.3	12.8 23.2	39.7 286.2	33.8 274.5
10.0	31.0	8.0	800.0	82.0	16.0	2.0	601.2	33.9	477.3	459.4
10.0 10.0	31.0 31.0	9.0 10.0	875.0 907.0	90.0 96.0	18.0 19.0	2.0 2.0	788.5 909.1	42.2 47.3	609.0 686.5	586.1 660.3
10.0	31.0	11.0	916.0	99.0	20.0	1.0	952.6	54.9	691.2	664.8
10.0	31.0	12.0	907.0	96.0	20.0	1.0	913.9	54.0	666.1	640.8
10.0 10.0	31.0 31.0	13.0 14.0	872.0 804.0	91.0 82.0	21.0 20.0	1.0 1.0	796.4	51.1 43.9	587.4 465.7	565.3 448.2
10.0	31.0	15.0	669.0	65.0	19.0	1.0	615.7 378.2	34.1	287.3	275.5
10.0	31.0	16.0	345.0	31.0	18.0	1.0	117.6	22.4	82.3	75.6
10.0	31.0	17.0	-	-	17.0	1.0 2.0	-	17.0 15.0	-	
10.0 10.0	31.0 31.0	18.0 19.0	-	- -	15.0 14.0	2.0	- -	14.0	-	
10.0	31.0	20.0	-	-	13.0	2.0	-	13.0	-	-
10.0	31.0	21.0	-	-	13.0	2.0	-	13.0	-	-
10.0 10.0	31.0 31.0	22.0 23.0	-	- -	13.0 12.0	2.0 2.0	- -	13.0 12.0	-	
11.0	1.0	-	-	-	12.0	2.0	-	12.0	-	-
11.0	1.0	1.0 2.0	-	-	11.0	2.0 2.0	-	11.0 11.0	-	-
11.0 11.0	1.0 1.0	3.0	-	- -	11.0 11.0	2.0	- -	11.0	-	
11.0	1.0	4.0	-	-	11.0	2.0	-	11.0	-	-
11.0	1.0	5.0	- 274.0	- 25 0	11.0	2.0	-	11.0	-	- 74.0
11.0 11.0	1.0 1.0	6.0 7.0	374.0 426.0	25.0 85.0	12.0 14.0	2.0 2.0	114.1 281.3	13.8 21.1	80.7 228.5	74.0 218.3
11.0	1.0	8.0	862.0	71.0	15.0	2.0	625.9	33.3	498.0	479.3
11.0	1.0	9.0 10.0	925.0	80.0 237.0	16.0	2.0 2.0	814.2	41.1 40.3	632.2	608.3 546.6
11.0 11.0	1.0 1.0	11.0	514.0 960.0	88.0	17.0 18.0	2.0	725.1 978.1	48.0	567.9 736.4	707.9
11.0	1.0	12.0	947.0	88.0	18.0	2.0	938.0	47.9	706.2	679.1
11.0	1.0	13.0	913.0 846.0	84.0 75.0	19.0	2.0 2.0	818.9	45.4 39.6	622.4 489.0	598.9 470.7
11.0 11.0	1.0 1.0	14.0 15.0	711.0	61.0	19.0 18.0	2.0	633.0 389.9	30.8	300.2	288.1
11.0	1.0	16.0	387.0	30.0	17.0	2.0	126.0	20.6	88.0	81.1
11.0 11.0	1.0 1.0	17.0 18.0	-	-	15.0 15.0	2.0 2.0	- -	15.0 15.0	-	-
11.0	1.0	19.0		-	14.0	2.0	- -	14.0	-	
11.0	1.0	20.0	-	-	14.0	2.0	-	14.0	-	-
11.0 11.0	1.0 1.0	21.0 22.0	1	-	13.0 13.0	2.0 2.0	-	13.0 13.0	-	-
11.0	1.0	23.0	-	-	12.0	2.0	-	12.0	-	-
11.0	2.0		-	-	12.0	2.0	-	12.0	-	-
11.0 11.0	2.0 2.0	1.0 2.0	-	1	12.0 11.0	2.0 2.0		12.0 11.0	-	
11.0	2.0	3.0	-	-	11.0	2.0	-	11.0	-	-
11.0	2.0	4.0	-	-	11.0	1.0	-	11.0	-	-
11.0 11.0	2.0 2.0	5.0 6.0	- 317.0	26.0	11.0 11.0	1.0 1.0	103.5	11.0 13.0	- 74.7	- 68.2
11.0	2.0	7.0	672.0	61.0	13.0	2.0	360.8	22.5	287.1	275.3
11.0	2.0	8.0	811.0	79.0	15.0	1.0	601.8	36.2	472.1	454.3
11.0 11.0	2.0 2.0	9.0 10.0	878.0 909.0	90.0 97.0	16.0 17.0	1.0 1.0	792.3 908.0	44.7 50.2	604.1 675.2	581.4 649.4
11.0	2.0	11.0	918.0	99.0	18.0	1.0	950.4	53.0	696.7	670.0
11.0	2.0	12.0	917.0	93.0	19.0	1.0	915.3	53.1	670.3	644.8
11.0 11.0	2.0 2.0	13.0 14.0	883.0 816.0	88.0 79.0	19.0 19.0	1.0 1.0	798.0 617.0	49.3 43.0	594.1 468.5	571.8 450.9
11.0	2.0	15.0	681.0	62.0	19.0	1.0	378.1	34.1	286.6	274.8
11.0	2.0	16.0	353.0	30.0	18.0	1.0	118.8	22.5	82.9	76.2
11.0 11.0	2.0 2.0	17.0 18.0	-	- -	16.0 16.0	1.0 1.0	-	16.0 16.0	-	-
11.0	2.0	19.0	-	-	16.0	2.0	-	16.0	-	-
11.0 11.0	2.0 2.0	20.0 21.0	-	-	15.0 15.0	2.0 2.0	-	15.0 15.0	-	-
11.0	2.0	22.0	-		14.0	2.0	- -	14.0	- -	
11.0	2.0	23.0	-	-	14.0	2.0	-	14.0	-	-

11.0	3.0	5.2	-	-	13.0	2.0	-	13.0		-
11.0	3.0	1.0	-	-	13.0	1.0	-	13.0	-	-
11.0	3.0	2.0	-	-	13.0	1.0	-	13.0	-	-
11.0 11.0	3.0 3.0	3.0 4.0	-	-	13.0 12.0	1.0 1.0	-	13.0 12.0	-	-
11.0	3.0	5.0			12.0	1.0	- -	12.0		-
11.0	3.0	6.0	300.0	25.0	13.0	2.0	99.1	14.4	71.3	64.8
11.0	3.0	7.0	663.0	61.0	15.0	2.0	356.1	24.3	280.8	269.1
11.0	3.0	8.0	810.0	77.0	17.0	2.0	597.5	34.7	471.9	454.2
11.0	3.0	9.0	881.0	87.0	18.0	2.0	784.5	42.1	606.0	583.2
11.0	3.0	10.0	913.0	93.0	19.0	2.0	905.0	47.2	683.8	657.7
11.0	3.0	11.0	920.0	97.0	20.0	2.0	947.9	49.8	707.0	679.9
11.0	3.0	12.0	907.0	96.0	20.0	2.0	908.0	48.8	680.2	654.2
11.0	3.0	13.0	869.0	92.0	21.0	2.0	794.9	46.5	600.7	578.1
11.0	3.0	14.0	381.0	176.0	21.0	2.0	436.9	35.8	346.2	332.6
11.0	3.0	15.0	428.0	88.0	20.0	1.0	292.2	31.0	227.6	217.4
11.0	3.0	16.0	131.0	32.0	19.0	1.0	67.4	21.0	51.1	45.0
11.0	3.0	17.0	-	-	18.0	1.0	-	18.0	-	-
11.0	3.0	18.0	-	-	18.0	1.0	-	18.0	-	-
11.0	3.0	19.0	-	-	17.0	2.0	-	17.0	-	-
11.0	3.0	20.0	-	-	17.0	2.0	-	17.0	-	-
11.0	3.0	21.0	-	-	17.0	2.0	-	17.0	-	-
11.0	3.0	22.0	-	-	16.0	1.0	-	16.0		-
11.0	3.0	23.0	-	-	16.0	1.0	-	16.0	-	-
11.0	4.0	-	-	-	16.0	1.0	-	16.0	-	-
11.0	4.0	1.0	-	-	15.0	1.0	-	15.0	-	-
11.0	4.0	2.0	-	-	15.0	1.0	-	15.0	-	-
11.0	4.0	3.0	-		15.0	1.0	-	15.0	-	-
11.0	4.0	4.0	-	-	14.0	1.0	-	14.0	-	-
11.0	4.0 4.0	5.0 6.0	284.0	24.0	14.0 15.0	1.0 1.0	94.9	14.0 16.3	- 67.9	61.5
11.0 11.0	4.0	7.0	337.0	91.0	16.0	2.0	249.1	22.0	202.6	193.1
11.0	4.0	8.0	803.0	77.0	18.0	1.0	591.7	38.1	459.5	442.2
11.0	4.0	9.0	475.0	209.0	20.0	1.0	608.6	42.5	469.9	452.2
11.0	4.0	10.0	497.0	240.0	21.0	2.0	710.7	42.9	549.2	528.6
11.0	4.0	11.0	591.0	218.0	22.0	1.0	789.8	50.8	586.0	563.9
11.0	4.0	12.0	601.0	204.0	22.0	1.0	768.5	50.5	570.6	549.2
11.0	4.0	13.0	862.0	93.0	22.0	1.0	788.9	51.1	581.8	560.0
11.0	4.0	14.0	780.0	86.0	22.0	1.0	599.2	45.2	449.7	432.8
11.0	4.0	15.0	346.0	97.0	21.0	1.0	265.9	32.1	207.2	197.6
11.0	4.0	16.0	132.0	31.0	20.0	1.0	70.7	21.9	53.6	47.5
11.0	4.0	17.0	-	<u>-</u>	19.0	1.0	-	19.0	-	-
11.0	4.0	18.0	-	<u>-</u>	18.0	1.0	-	18.0	-	-
11.0	4.0	19.0	-	-	18.0	1.0	-	18.0	-	-
11.0	4.0	20.0	-	-	17.0	1.0	-	17.0	-	-
11.0	4.0	21.0	-	-	17.0	1.0	-	17.0	-	-
11.0	4.0	22.0	-	-	16.0	1.0	-	16.0	-	-
11.0	4.0	23.0	-	-	16.0	2.0	-	16.0	-	-
11.0	5.0	7.2	-	-	15.0	2.0	-	15.0	-	-
11.0	5.0	1.0	-	-	15.0	2.0	-	15.0	-	-
11.0	5.0	2.0	-	-	14.0	2.0	-	14.0	-	-
11.0	5.0	3.0	-	-	14.0	2.0	-	14.0	-	-
11.0	5.0	4.0	-		14.0	2.0	-	14.0	-	-
11.0 11.0	5.0 5.0	5.0 6.0	41.0	24.0	14.0 15.0	2.0 2.0	- 35.1	14.0 14.1	28.9	23.2
11.0	5.0	7.0	357.0	88.0	16.0	2.0	253.8	21.9	206.0	196.4
11.0	5.0	8.0	812.0	78.0	18.0	2.0	596.8	35.2	469.9	452.3
11.0	5.0	9.0	891.0	87.0	19.0	3.0	788.5	40.5	614.0	590.8
11.0	5.0	10.0	460.0	254.0	20.0	2.0	692.9	42.2	537.5	517.4
11.0	5.0	11.0	942.0	95.0	21.0	2.0	961.3	50.3	715.0	687.6
11.0	5.0	12.0	926.0	97.0	21.0	2.0	921.8	50.2	685.4	659.2
11.0	5.0	13.0	886.0	94.0	21.0	2.0	807.0	46.9	608.5	585.5
11.0	5.0	14.0	809.0	85.0	20.0	2.0	615.0	40.0	473.9	456.1
11.0	5.0	15.0	656.0	67.0	19.0	2.0	370.1	31.1	284.6	272.9
11.0	5.0	16.0	301.0	29.0	18.0	2.0	107.1	21.0	76.2	69.6
11.0	5.0	17.0	-	-	16.0	2.0	-	16.0	-	-
11.0	5.0	18.0	-	-	16.0	2.0	-	16.0		-
11.0	5.0	19.0	-	-	15.0	2.0	-	15.0	-	-
11.0	5.0	20.0	-	-	14.0	2.0	-	14.0	-	-
11.0	5.0	21.0	-	-	14.0	2.0	-	14.0	-	-
11.0	5.0	22.0	-	-	13.0	2.0	-	13.0	-	-
11.0	5.0	23.0	-	-	12.0	2.0	-	12.0	-	-
11.0	6.0	1.0	-	-	12.0	2.0 2.0	-	12.0	-	-
11.0 11.0	6.0 6.0	1.0 2.0	-		12.0 11.0	2.0		12.0 11.0	•	-
11.0	6.0	3.0	-	- -	11.0	2.0	- -	11.0	-	-
11.0	6.0	4.0	-	-	11.0	2.0	- -	11.0	-	-
11.0	6.0	5.0	_	- -	11.0	2.0	<u>-</u>	11.0	_	_
11.0	6.0	6.0	64.0	23.0	11.0	2.0	41.8	10.4	34.1	28.4
11.0	6.0	7.0	388.0	83.0	13.0	2.0	260.6	19.1	213.5	203.7
11.0	6.0	8.0	863.0	70.0	15.0	2.0	617.4	32.9	491.3	472.8

11.0	6.0	0.0	E40.0	102.0	17.0	2.0	600.4	26.7	400.4	490.4
11.0 11.0	6.0 6.0	9.0 10.0	540.0 534.0	183.0 222.0	17.0 18.0	2.0 2.0	628.1 720.9	36.7 40.4	499.1 564.2	480.4 543.1
11.0	6.0	11.0	554.0	229.0	19.0	2.0	766.4	43.0	592.2	569.9
11.0	6.0	12.0	656.0	181.0	20.0	2.0	789.4	44.8	604.0	581.2
11.0 11.0	6.0 6.0	13.0 14.0	920.0 852.0	83.0 74.0	20.0 20.0	2.0 1.0	814.1 628.3	45.6 44.4	617.7 473.1	594.4 455.3
11.0	6.0	15.0	713.0	58.0	19.0	1.0	382.4	34.3	288.4	276.6
11.0	6.0	16.0	363.0	26.0	17.0	1.0	117.8	21.5	81.9	75.2
11.0	6.0	17.0	-	-	16.0	2.0	-	16.0	-	-
11.0 11.0	6.0 6.0	18.0 19.0	-	-	16.0 15.0	2.0 2.0	-	16.0 15.0	-	-
11.0	6.0	20.0	-	-	15.0	2.0	-	15.0	-	_
11.0	6.0	21.0	-	-	15.0	2.0	-	15.0	-	-
11.0	6.0	22.0	-	-	14.0	2.0	-	14.0	-	-
11.0	6.0 7.0	23.0	-	-	14.0 14.0	2.0 2.0	-	14.0 14.0	-	-
11.0 11.0	7.0	1.0	-	- -	13.0	2.0	-	13.0	-	-
11.0	7.0	2.0	-	-	13.0	2.0	-	13.0	-	-
11.0	7.0	3.0	-	-	13.0	2.0	-	13.0	-	-
11.0	7.0	4.0	-	-	13.0	2.0 2.0	-	13.0 13.0	-	-
11.0 11.0	7.0 7.0	5.0 6.0	- 272.0	22.0	13.0 14.0	2.0	90.5	15.1	65.0	58.7
11.0	7.0	7.0	649.0	60.0	15.0	2.0	345.0	24.0	271.8	260.5
11.0	7.0	8.0	791.0	81.0	17.0	2.0	584.2	34.3	462.0	444.6
11.0	7.0	9.0	869.0	90.0	19.0	2.0	776.3	42.8	597.4	574.9
11.0 11.0	7.0 7.0	10.0 11.0	895.0 896.0	99.0 105.0	20.0 21.0	2.0 2.0	888.3 927.3	47.6 50.1	669.4 690.4	643.9 664.0
11.0	7.0	12.0	664.0	178.0	22.0	2.0	791.8	47.4	597.5	575.0
11.0	7.0	13.0	643.0	151.0	21.0	2.0	682.2	42.9	525.5	505.8
11.0	7.0	14.0	432.0	155.0	21.0	2.0	452.0	35.8	357.5	343.6
11.0	7.0	15.0	302.0	98.0 29.0	20.0	1.0	247.1	29.5 20.3	195.4 44.7	186.0
11.0 11.0	7.0 7.0	16.0 17.0	101.0	29.0	19.0 18.0	1.0 2.0	58.0	18.0	44.7	38.7
11.0	7.0	18.0	-	-	18.0	2.0	-	18.0	-	-
11.0	7.0	19.0	-	-	18.0	2.0	-	18.0	-	-
11.0	7.0	20.0	-	-	18.0	2.0	-	18.0	-	-
11.0 11.0	7.0 7.0	21.0 22.0	- 1		17.0 17.0	2.0 2.0		17.0 17.0		-
11.0	7.0	23.0	_	- -	16.0	2.0		16.0	_	-
11.0	8.0	-	-	-	16.0	2.0	-	16.0	-	-
11.0	8.0	1.0	-	-	16.0	2.0	-	16.0	-	-
11.0 11.0	8.0 8.0	2.0 3.0	-	-	16.0 16.0	2.0 2.0	-	16.0 16.0	-	-
11.0	8.0	4.0	-	-	15.0	2.0	-	15.0	-	-
11.0	8.0	5.0	-	-	15.0	2.0	-	15.0	-	-
11.0	8.0	6.0	148.0	22.0	16.0	2.0	62.4	16.0	46.8	40.8
11.0	8.0	7.0	-	59.0	17.0	2.0 3.0	56.3	16.8	49.4	43.4
11.0 11.0	8.0 8.0	8.0 9.0	423.0 538.0	150.0 184.0	18.0 20.0	3.0	433.3 625.6	28.2 36.7	354.9 497.1	341.0 478.5
11.0	8.0	10.0	479.0	242.0	21.0	3.0	693.5	40.1	543.7	523.3
11.0	8.0	11.0	522.0	238.0	22.0	3.0	745.5	42.6	577.3	555.6
11.0	8.0	12.0	381.0	275.0	22.0	3.0	637.6	40.0	500.2	481.5
11.0 11.0	8.0 8.0	13.0 14.0	31.0 287.0	228.0 180.0	23.0 23.0	3.0 2.0	259.8 380.6	30.6 33.8	213.6 304.9	203.8 292.6
11.0	8.0	15.0	391.0	87.0	22.0	2.0	273.0	30.1	213.5	203.7
11.0	8.0	16.0	107.0	29.0	21.0	2.0	59.5	22.1	45.3	39.4
11.0	8.0	17.0	-	-	20.0	2.0	-	20.0	-	-
11.0 11.0	8.0 8.0	18.0 19.0	-		20.0 20.0	2.0 2.0		20.0 20.0	-	
11.0	8.0	20.0	-	-	19.0	2.0	-	19.0	-	-
11.0	8.0	21.0	-	-	19.0	2.0	-	19.0	-	-
11.0	8.0	22.0	-	-	19.0	3.0	-	19.0	-	-
11.0 11.0	8.0 9.0	23.0	-	-	19.0 18.0	3.0 3.0		19.0 18.0	-	-
11.0	9.0	1.0	-	-	18.0	3.0	-	18.0	-	-
11.0	9.0	2.0	-	-	18.0	3.0	-	18.0	-	-
11.0	9.0	3.0	-	-	18.0	3.0	-	18.0	-	-
11.0 11.0	9.0 9.0	4.0 5.0	- 1	- -	18.0 18.0	3.0 3.0	- -	18.0 18.0	-	
11.0	9.0	6.0	-	2.0	18.0	3.0	1.9	16.3	1.7	
11.0	9.0	7.0	-	12.0	18.0	4.0	11.4	16.5	10.0	4.7
11.0	9.0	8.0	-	16.0	19.0	4.0	15.2	17.7	13.3	7.9 9.5
11.0	9.0 9.0	9.0 10.0	-	18.0 54.0	19.0 20.0	4.0 4.0	17.1 51.3	17.7 19.7	14.9 44.5	9.5
11.0 11.0	9.0	11.0	-	28.0	20.0	4.0	26.6	19.7	23.1	38.5 17.6 42.5
11.0	9.0	12.0	-	59.0	20.0	4.0	56.1	19.8	48.6	42.5
11.0	9.0	13.0	-	113.0	20.0	4.0	108.3	21.2	93.1	86.2
11.0 11.0	9.0 9.0	14.0 15.0	-	85.0 56.0	20.0 20.0	5.0 5.0	81.0 53.2	20.6 19.9	69.8 46.0	63.4 40.0
11.0	9.0	16.0	-	10.0	20.0	6.0	9.5	19.0	8.2	3.0
11.0	9.0	17.0	-	-	20.0	6.0		20.0	-	-

11.0	9.0	18.0			20.0	6.0		20.0		
11.0	9.0	19.0	-	- -	20.0	7.0		20.0	-	
11.0	9.0	20.0	-	-	20.0	7.0	-	20.0	-	-
11.0 11.0	9.0 9.0	21.0 22.0	-	-	21.0 21.0	6.0 6.0	<u> </u>	21.0 21.0	-	
11.0	9.0	23.0	-	-	22.0	6.0	-	22.0	-	-
11.0	10.0	-	-	-	22.0	6.0	-	22.0	-	-
11.0 11.0	10.0 10.0	1.0 2.0		- -	22.0 22.0	5.0 5.0		22.0 22.0	-	-
11.0	10.0	3.0	-	-	22.0	5.0	-	22.0	-	-
11.0	10.0	4.0	-	-	22.0	5.0	-	22.0	-	-
11.0 11.0	10.0 10.0	5.0 6.0	9.0	18.0	21.0 21.0	4.0 3.0	19.2	21.0 19.7	- 16.2	10.8
11.0	10.0	7.0	281.0	106.0	21.0	3.0	235.5	25.7	189.0	179.8
11.0	10.0	8.0	-	88.0	21.0	2.0	84.1	22.6	71.8	65.3
11.0 11.0	10.0 10.0	9.0 10.0	3.0	38.0 185.0	22.0 22.0	2.0 2.0	36.1 183.1	21.4 25.8	31.0 154.1	25.3 145.8
11.0	10.0	11.0	9.0	213.0	22.0	2.0	217.0	27.5	181.2	172.2
11.0 11.0	10.0 10.0	12.0 13.0	46.0 57.0	277.0 244.0	22.0 21.0	2.0 2.0	328.5 298.1	31.1 29.6	269.6 246.1	258.3 235.5
11.0	10.0	14.0	607.0	120.0	20.0	3.0	524.2	33.5	417.8	402.0
11.0	10.0	15.0	416.0	93.0	19.0	3.0	289.7	27.0	229.9	219.6
11.0 11.0	10.0 10.0	16.0 17.0	92.0	28.0	18.0 17.0	3.0 4.0	55.4	18.7 17.0	43.2	37.3 -
11.0	10.0	18.0	-	-	17.0	4.0		17.0	-	-
11.0	10.0	19.0	-	-	17.0	4.0	-	17.0	-	-
11.0 11.0	10.0 10.0	20.0 21.0	-	-	17.0 17.0	4.0 4.0		17.0 17.0	- -	
11.0	10.0	22.0	-	-	16.0	4.0		16.0	-	_
11.0	10.0	23.0	-	-	16.0	4.0	-	16.0	-	-
11.0 11.0	11.0 11.0	- 1.0	-	-	16.0 16.0	4.0 4.0		16.0 16.0	- -	-
11.0	11.0	2.0	-	-	15.0	4.0		15.0	-	_
11.0	11.0	3.0	-	-	15.0	4.0	-	15.0	-	-
11.0 11.0	11.0 11.0	4.0 5.0	-	-	15.0 15.0	4.0 4.0	<u> </u>	15.0 15.0	-	-
11.0	11.0	6.0	178.0	20.0	15.0	4.0	67.9	15.1	50.2	44.2
11.0	11.0	7.0	82.0	97.0	15.0	4.0	139.1	17.0	119.1	111.6
11.0 11.0	11.0 11.0	8.0 9.0	27.0 33.0	162.0 223.0	16.0 17.0	4.0 4.0	183.6 256.1	19.3 22.3	158.9 219.0	150.4 209.0
11.0	11.0	10.0	19.0	236.0	18.0	4.0	249.8	23.4	212.7	202.9
11.0	11.0	11.0	20.0	249.0	19.0	4.0	264.4	24.7	223.7	213.7
11.0 11.0	11.0 11.0	12.0 13.0	2.0	181.0 135.0	20.0 20.0	4.0 4.0	178.2 130.4	23.6 22.2	151.5 111.6	143.3 104.3
11.0	11.0	14.0	793.0	77.0	20.0	4.0	588.9	33.4	468.2	450.6
11.0	11.0	15.0	- 255.0	74.0	19.0	3.0	71.7	21.3	61.6	55.3
11.0 11.0	11.0 11.0	16.0 17.0	255.0	25.0	18.0 18.0	3.0 3.0	94.2	19.0 18.0	68.2	61.8 -
11.0	11.0	18.0	-	-	17.0	3.0	-	17.0	-	-
11.0 11.0	11.0 11.0	19.0 20.0	-	- -	16.0 16.0	3.0 2.0	-	16.0 16.0	-	
11.0	11.0	21.0	-	-	15.0	2.0		15.0	-	_
11.0	11.0	22.0	-	-	15.0	2.0	-	15.0	-	-
11.0 11.0	11.0 12.0	23.0	-	-	14.0 14.0	2.0 3.0	Ī	14.0 14.0	-	1
11.0	12.0	1.0	-	-	14.0	3.0	-	14.0	-	-
11.0	12.0	2.0	-	-	13.0	3.0	-	13.0	-	-
11.0 11.0	12.0 12.0	3.0 4.0	-	- -	13.0 12.0	2.0 2.0	- -	13.0 12.0	-	
11.0	12.0	5.0	-	-	12.0	2.0	-	12.0	-	-
11.0 11.0	12.0 12.0	6.0 7.0	- 641.0	18.0 60.0	12.0 13.0	2.0 2.0	17.1 336.2	10.6 21.3	15.4 267.1	10.0 255.8
11.0	12.0	8.0	811.0	78.0	15.0	2.0	584.8	32.3	466.1	448.5
11.0	12.0	9.0	905.0	83.0	16.0	2.0	781.0	40.0	608.9	586.0
11.0 11.0	12.0 12.0	10.0 11.0	946.0 961.0	86.0 86.0	17.0 17.0	2.0 2.0	906.8 953.5	45.3 47.1	691.3 720.9	664.9 693.1
11.0	12.0	12.0	955.0	82.0	18.0	2.0	916.3	47.2	691.9	665.4
11.0	12.0	13.0	922.0	78.0	18.0	2.0	800.0	43.8	612.3	589.2
11.0 11.0	12.0 12.0	14.0 15.0	852.0 710.0	69.0 54.0	18.0 17.0	2.0 2.0	615.2 372.1	38.1 29.2	477.6 286.7	459.6 274.9
11.0	12.0	16.0	338.0	23.0	16.0	2.0	110.7	19.1	78.1	71.4
11.0	12.0	17.0	-	-	15.0	2.0	-	15.0	-	-
11.0 11.0	12.0 12.0	18.0 19.0	-	- -	14.0 14.0	2.0 2.0	- -	14.0 14.0	-	-
11.0	12.0	20.0	-	-	13.0	2.0	-	13.0	-	-
11.0 11.0	12.0 12.0	21.0 22.0	-	- -	13.0 12.0	2.0 2.0	Ī	13.0 12.0	-	- -
11.0	12.0	23.0	-	- -	12.0	1.0		12.0	-	-
11.0	13.0	-	-	-	12.0	1.0	-	12.0	-	-
11.0 11.0	13.0 13.0	1.0 2.0	-	- -	11.0 11.0	1.0 1.0		11.0 11.0	-	-
						-				

11.0	13.0	3.0	-	-	11.0	1.0	-	11.0	-	-
11.0 11.0 11.0	13.0 13.0 13.0	4.0 5.0 6.0		- - 19.0	11.0 11.0 11.0	1.0 1.0	- - 18.0	11.0 11.0 9.3	- - 16.3	- - 10.9
11.0 11.0 11.0	13.0 13.0 13.0	7.0 8.0	302.0 847.0	83.0 66.0	13.0 15.0		222.1 591.0	20.4 39.7	181.3 453.4	172.3 436.3
11.0 11.0 11.0	13.0 13.0 13.0	9.0 10.0	922.0 956.0	74.0 78.0	17.0 18.0	- - 1.0	781.3 903.9	51.2 51.0	574.6 668.9	553.0 643.4
11.0	13.0	11.0	965.0	70.0 81.0 79.0	18.0	1.0	949.2	52.9 53.0	695.6	669.0 642.2
11.0 11.0	13.0 13.0	12.0 13.0	956.0 924.0	75.0	19.0 19.0	1.0 1.0	911.8 796.6	49.3	667.6 592.5	570.2
11.0 11.0	13.0 13.0	14.0 15.0	856.0 334.0	67.0 88.0	19.0 18.0	1.0 1.0	614.3 248.6	42.9 28.7	465.2 196.2	447.7 186.9
11.0 11.0	13.0 13.0	16.0 17.0	331.0	23.0	17.0 16.0	1.0 1.0	109.4	20.2 16.0	76.9 -	70.3 -
11.0 11.0	13.0 13.0	18.0 19.0	-	:	16.0 15.0	1.0 1.0	:	16.0 15.0	-	-
11.0 11.0	13.0 13.0	20.0	-	-	15.0 15.0	1.0 1.0		15.0 15.0	-	-
11.0 11.0	13.0 13.0	22.0 23.0	-	-	15.0 15.0	1.0 1.0	-	15.0 15.0	-	-
11.0 11.0	14.0 14.0	1.0	-	-	14.0 14.0	-	-	14.0 14.0	-	
11.0 11.0	14.0 14.0	2.0 3.0	-	-	14.0 13.0	1.0	:	14.0 13.0	-	-
11.0 11.0	14.0 14.0	4.0 5.0	-	-	13.0 13.0	1.0 -	-	13.0 13.0	-	-
11.0 11.0	14.0 14.0	6.0 7.0	230.0 664.0	17.0 55.0	13.0 14.0	-	74.9 335.5	14.7 27.2	53.6 258.1	47.4 247.2
11.0 11.0	14.0 14.0	8.0 9.0	822.0 901.0	73.0 81.0	16.0 17.0	1.0	582.3 771.7	41.3 44.9	443.2 586.7	426.5 564.7
11.0 11.0	14.0 14.0	10.0 11.0	934.0 943.0	87.0 90.0	18.0 19.0	1.0 1.0	893.6 938.2	50.6 53.5	662.6 685.6	637.4 659.4
11.0 11.0	14.0 14.0	12.0 13.0	925.0 889.0	92.0 87.0	19.0 19.0	1.0 1.0	898.7 787.4	52.5 48.9	659.6 586.8	634.6 564.7
11.0 11.0	14.0 14.0	14.0 15.0	814.0 106.0	78.0 102.0	19.0 18.0	1.0 1.0	600.0 156.5	42.4 25.4	455.7 128.7	438.6 121.0
11.0 11.0	14.0 14.0	16.0 17.0	6.0	22.0 -	17.0 17.0	1.0 1.0	22.2	16.2 17.0	19.2 -	13.8 -
11.0 11.0	14.0 14.0	18.0 19.0	-	-	16.0 16.0	1.0 1.0		16.0 16.0	-	-
11.0 11.0	14.0 14.0	20.0 21.0	-	•	15.0 15.0	1.0 1.0	- -	15.0 15.0	-	-
11.0 11.0	14.0 14.0	22.0 23.0	-	-	15.0 15.0	1.0 1.0	-	15.0 15.0	-	-
11.0 11.0	15.0 15.0	- 1.0	-	-	14.0 14.0	1.0	-	14.0 14.0	- -	-
11.0 11.0	15.0 15.0	2.0 3.0	-	-	14.0 13.0	-	-	14.0 13.0	- -	-
11.0 11.0	15.0 15.0	4.0 5.0	-	-	13.0 12.0	1.0 1.0	-	13.0 12.0	- -	-
11.0 11.0	15.0 15.0	6.0 7.0	169.0 291.0	16.0 81.0	12.0 14.0	1.0	60.6 214.6	11.5 21.7	45.0 174.0	39.0 165.2
11.0 11.0	15.0 15.0	8.0 9.0	770.0 851.0	84.0 96.0	16.0 17.0	-	561.9 754.5	39.6 50.1	431.7 558.2	415.4 537.3
11.0 11.0	15.0 15.0	10.0 11.0	890.0 901.0	103.0 106.0	18.0 19.0	-	879.0 924.4	56.4 59.6	631.3 653.1	607.5 628.3
11.0 11.0	15.0 15.0	12.0 13.0	900.0 862.0	100.0 94.0	19.0 19.0	-	891.1 773.6	58.8 54.8	631.8 558.4	607.9 537.5
11.0 11.0	15.0 15.0	14.0 15.0	784.0 624.0	84.0 65.0	19.0 19.0	-	587.3 348.0	47.8 37.8	433.9 258.1	417.5 247.1
11.0 11.0	15.0 15.0	16.0 17.0	241.0	23.0	18.0 17.0	-	89.4	24.0 17.0	63.3	57.0
11.0 11.0	15.0 15.0	18.0 19.0		-	17.0 16.0	-		17.0 16.0	-	
11.0 11.0	15.0 15.0	20.0 21.0	-	-	16.0 15.0	<u>-</u> -	<u>.</u>	16.0 15.0	<u>-</u> -	-
11.0 11.0	15.0 15.0	22.0 23.0	-	-	15.0 15.0	-	· ·	15.0 15.0	-	-
11.0 11.0	16.0 16.0	1.0		-	14.0 14.0	-	-	14.0 14.0	-	-
11.0 11.0	16.0 16.0	2.0	-	-	14.0 13.0	Ī	:	14.0 13.0	-	-
11.0 11.0 11.0	16.0 16.0	4.0 5.0		-	13.0 13.0	-	-	13.0 13.0		-
11.0 11.0 11.0	16.0 16.0	6.0 7.0	122.0 548.0	16.0 67.0	13.0 15.0	-	48.6 302.0	13.2 26.5	36.5 234.6	30.7 224.3
11.0 11.0 11.0	16.0 16.0	8.0 9.0	730.0 816.0	91.0 104.0	16.0 18.0	-	546.8 735.6	39.8 50.3	419.8 543.7	403.9 523.3
11.0 11.0 11.0	16.0 16.0	10.0 11.0	587.0 867.0	190.0 114.0	19.0 19.0	-	719.0 901.9	52.0 57.9	529.4 643.4	509.5 619.0
11.0	10.0	11.0	557.0	114.0	10.0		301.3	01.0	0-10. -1	013.0

11.0 11.0 11.0	16.0 16.0 16.0	12.0 13.0 14.0	825.0 391.0 677.0	124.0 217.0 106.0	20.0 20.0 20.0	- - -	853.0 541.0 547.8	58.4 47.7 45.6	606.3 406.5 410.0	583.5 391.0 394.4
11.0 11.0	16.0 16.0	15.0 16.0	495.0 138.0	80.0 24.0	19.0 18.0	-	308.8 65.8	35.9 22.5	232.8 49.0	222.5 42.9
11.0 11.0	16.0 16.0	17.0 18.0	-	- -	17.0 17.0	1.0 1.0	- -	17.0 17.0	-	-
11.0 11.0	16.0 16.0	19.0 20.0	-	-	17.0 17.0	1.0 1.0	-	17.0 17.0	-	-
11.0	16.0	21.0	-	-	17.0	1.0	- -	17.0	-	-
11.0 11.0	16.0 16.0	22.0 23.0	-	- -	17.0 17.0	1.0 1.0	- -	17.0 17.0	-	-
11.0 11.0	17.0 17.0	- 1.0	-	- -	18.0 18.0	1.0 1.0	<u>-</u> -	18.0 18.0	-	-
11.0 11.0	17.0 17.0	2.0 3.0	-	- -	18.0 18.0	1.0 1.0	- -	18.0 18.0	-	-
11.0 11.0	17.0 17.0	4.0 5.0	-	-	17.0 16.0	2.0	-	17.0 16.0	-	-
11.0	17.0	6.0	-	10.0	14.0	3.0	9.5	12.5	8.5	3.2
11.0 11.0	17.0 17.0	7.0 8.0	43.0 15.0	86.0 148.0	13.0 13.0	3.0 3.0	106.7 155.7	14.0 15.7	93.3 137.0	86.3 129.1
11.0 11.0	17.0 17.0	9.0 10.0	205.0 46.0	240.0 262.0	13.0 13.0	2.0 2.0	413.1 312.5	24.4 22.5	349.0 267.0	335.3 255.8
11.0 11.0	17.0 17.0	11.0 12.0	259.0 536.0	301.0 210.0	13.0 14.0	2.0 2.0	566.6 702.3	29.7 35.8	467.8 562.3	450.2 541.2
11.0 11.0	17.0 17.0	13.0 14.0	353.0 843.0	224.0 70.0	14.0 15.0	2.0	519.8 606.0	31.0 33.7	425.1 480.3	408.9 462.3
11.0	17.0	15.0	428.0	75.0	14.0	1.0	273.1	25.6	216.7	206.9
11.0 11.0	17.0 17.0	16.0 17.0	293.0	21.0	13.0 12.0	1.0 2.0	99.0 -	15.9 12.0	71.4 -	64.9 -
11.0 11.0	17.0 17.0	18.0 19.0	-	- -	12.0 11.0	2.0 2.0	<u>-</u> -	12.0 11.0	-	-
11.0 11.0	17.0 17.0	20.0 21.0	-	- -	11.0 10.0	2.0 2.0	- -	11.0 10.0	-	-
11.0 11.0	17.0 17.0	22.0 23.0	-	-	10.0	1.0 1.0	-	10.0	-	-
11.0	18.0	-	-	-	9.0	1.0	- -	9.0	-	-
11.0 11.0	18.0 18.0	1.0 2.0	-	-	9.0 9.0	1.0 1.0	-	9.0 9.0	-	-
11.0 11.0	18.0 18.0	3.0 4.0	-	-	9.0 8.0	1.0 1.0	-	9.0 8.0	-	-
11.0 11.0	18.0 18.0	5.0 6.0	-	- 12.0	8.0 8.0	1.0 1.0	- 11.4	8.0 6.1	- 10.5	- 5.2
11.0 11.0	18.0 18.0	7.0 8.0	613.0 786.0	55.0 75.0	10.0 11.0	1.0 1.0	312.3 556.3	18.9 30.5	249.4 446.2	238.6 429.4
11.0	18.0	9.0	866.0	86.0	12.0	1.0	748.5	39.3	585.3	563.3
11.0 11.0	18.0 18.0	10.0 11.0	903.0 914.0	92.0 94.0	13.0 14.0	1.0 1.0	865.4 910.0	45.0 47.9	660.7 685.0	635.6 658.8
11.0 11.0	18.0 18.0	12.0 13.0	905.0 869.0	93.0 88.0	14.0 15.0	1.0 1.0	876.5 768.4	47.1 44.5	661.9 585.8	636.8 563.8
11.0 11.0	18.0 18.0	14.0 15.0	793.0 638.0	78.0 60.0	15.0 14.0	1.0 1.0	583.8 347.4	38.0 28.0	453.2 269.6	436.1 258.3
11.0 11.0	18.0 18.0	16.0 17.0	245.0	21.0	13.0 12.0	1.0 1.0	88.3	16.1 12.0	64.5	58.1
11.0	18.0	18.0	-	-	11.0	1.0	- -	11.0	-	-
11.0 11.0	18.0 18.0	19.0 20.0	-	-	11.0 10.0	1.0 1.0	- -	11.0 10.0	-	-
11.0 11.0	18.0 18.0	21.0 22.0	-	-	10.0 10.0	1.0 1.0	- -	10.0 10.0	-	-
11.0 11.0	18.0 19.0	23.0	-	- -	9.0 9.0	1.0 1.0	- -	9.0 9.0	-	-
11.0 11.0	19.0 19.0	1.0 2.0	-	- -	9.0 8.0	1.0 1.0	-	9.0 8.0	-	-
11.0	19.0	3.0	-	-	8.0	1.0	-	8.0	-	-
11.0 11.0	19.0 19.0	4.0 5.0	-	- -	8.0 8.0	1.0 1.0	- 12	8.0 8.0	1	- -
11.0 11.0	19.0 19.0	6.0 7.0	254.0	10.0 79.0	9.0 10.0	1.0 2.0	9.5 190.4	7.0 13.7	8.7 160.0	3.4 151.6
11.0 11.0	19.0 19.0	8.0 9.0	791.0 881.0	74.0 83.0	12.0 13.0	2.0 2.0	556.4 754.2	27.9 36.3	451.7 598.5	434.7 576.0
11.0 11.0	19.0 19.0	10.0 11.0	920.0 930.0	88.0 91.0	14.0 15.0	1.0 1.0	873.1 918.7	46.2 49.1	662.3 687.0	637.2 660.8
11.0	19.0	12.0	919.0	90.0	16.0	1.0	883.3	49.2	659.8	634.7 564.3
11.0 11.0	19.0 19.0	13.0 14.0	879.0 797.0	87.0 78.0	16.0 16.0	1.0 1.0	773.7 585.5	45.6 39.0	586.3 452.1	435.1
11.0 11.0	19.0 19.0	15.0 16.0	629.0 225.0	61.0 21.0	15.0 14.0	1.0 1.0	344.5 83.9	28.9 16.9	266.3 61.4	255.1 55.2
11.0 11.0	19.0 19.0	17.0 18.0	-	-	13.0 12.0	1.0 1.0	-	13.0 12.0	-	-
11.0 11.0	19.0 19.0	19.0 20.0	-	-	12.0 12.0	1.0 1.0	- -	12.0 12.0	-	-
***						-				

11.0 22.0 17.0 16.0 1.0 - 16.0 - 16.0 - 11.0 - 16.0 -	11.0 22.0 18.0		16.0 1.0		16.0 -	2.5 172.5 427.6 564.9 641.5 594.3 639.5 549.7 422.1 131.6 10.6
11.0 22.0 17.0 16.0 1.0 - 16.0 -	11.0 22.0 12.0 11.0 22.0 13.0 11.0 22.0 14.0 11.0 22.0 15.0 11.0 22.0 16.0 11.0 22.0 17.0 11.0 22.0 18.0 11.0 22.0 19.0 11.0 22.0 20.0 11.0 22.0 22.0 11.0 22.0 22.0 11.0 23.0 - 11.0 23.0 1.0 11.0 23.0 2.0 11.0 23.0 3.0	- 100.0 - 82.0 - 119.0 - 54.0 - 7.0	19.0 1.0 19.0 1.0 19.0 1.0 19.0 1.0 18.0 1.0 17.0 1.0 16.0 1.0 16.0 1.0 15.0 1.0 15.0 1.0 15.0 - 14.0 - 14.0 - 14.0 - 14.0 - 14.0 -	95.4 78.0 116.0 51.4 6.6	21.3 82.0 19.9 67.4 21.2 99.8 18.0 44.8 14.8 5.9 16.0 - 16.0 - 15.0 - 15.0 - 15.0 - 14.0 - 14.0 - 14.0 - 14.0 - 14.0 -	75.3 61.0 92.7 38.9

11.0 23.0 6.0 - 11.0 23.0 7.0 - 11.0 23.0 8.0 - 11.0 23.0 9.0 - 11.0 23.0 10.0 4.0 11.0 23.0 11.0 13.0 11.0 23.0 12.0 19.0 11.0 23.0 13.0 52.0 11.0 23.0 14.0 240.0	23.0 42.0 161.0 187.0 221.0 227.0 225.0 168.0	14.0 14.0 15.0 16.0 17.0 17.0 18.0 17.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0	21.8 39.8 157.9 186.9 229.8 241.4 274.6 336.7	14.0 11.9 13.8 19.4 22.4 24.2 25.9 26.1 28.6	19.5 35.4 136.9 159.8 194.9 203.1 230.6 276.5	14.1 29.7 129.0 151.4 185.6 193.6 220.3 265.0
11.0 23.0 15.0 320.0 11.0 23.0 16.0 - 11.0 23.0 17.0 - 11.0 23.0 18.0 - 11.0 23.0 19.0 - 11.0 23.0 20.0 - 11.0 23.0 21.0 - 11.0 23.0 22.0 - 11.0 23.0 22.0 - 11.0 23.0 23.0 - 11.0 24.0	82.0 28.0 - - - - - - -	16.0 16.0 15.0 15.0 14.0 14.0 13.0 13.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	235.5 28.2 - - - - - - -	24.4 16.0 15.0 15.0 14.0 14.0 13.0 13.0	189.4 24.8 - - - - - - -	180.2 19.3 - - - - - - -
11.0 24.0 1.0 - 11.0 24.0 2.0 - 11.0 24.0 3.0 - 11.0 24.0 4.0 - 11.0 24.0 6.0 - 11.0 24.0 7.0 - 11.0 24.0 8.0 421.0 11.0 24.0 9.0 420.0	- - - - - - 70.0 127.0 191.0	13.0 13.0 13.0 13.0 12.0 12.0 13.0 14.0	1.0 1.0 1.0 1.0 1.0 1.0 2.0	- - - - - 69.5 393.8 530.2	13.0 13.0 13.0 13.0 12.0 12.0 12.7 24.4 30.9	62.1 326.8 432.8	55.8 313.8 446.5
11.0 24.0 10.0 598.0 11.0 24.0 11.0 674.0 11.0 24.0 12.0 148.0 11.0 24.0 13.0 255.0 11.0 24.0 14.0 61.0 11.0 24.0 16.0 - 11.0 24.0 17.0 - 11.0 24.0 18.0 - 11.0 24.0 19.0 -	176.0 164.0 285.0 233.0 167.0 93.0 18.0	16.0 17.0 17.0 17.0 17.0 16.0 15.0 15.0	1.0 1.0 1.0 1.0 - - 1.0 1.0	707.2 783.5 436.2 455.1 211.9 178.2 17.1	41.6 45.9 35.1 33.7 29.3 24.2 15.1 15.0 15.0	549.5 595.9 350.7 367.6 174.6 145.8 15.1	528.9 573.5 337.0 353.4 165.8 137.7 9.7
11.0 24.0 20.0 - 11.0 24.0 21.0 - 11.0 24.0 22.0 - 11.0 24.0 23.0 - 11.0 25.0 - 11.0 25.0 1.0 - 11.0 25.0 3.0 - 11.0 25.0 3.0 - 11.0 25.0 3.0 -		15.0 15.0 15.0 15.0 15.0 14.0 14.0 14.0	1.0 1.0 1.0 - - - 1.0 1.0		15.0 15.0 15.0 15.0 15.0 14.0 14.0 14.0		-
11.0 25.0 5.0 - 11.0 25.0 6.0 - 11.0 25.0 7.0 338.0 11.0 25.0 8.0 411.0 11.0 25.0 9.0 680.0 11.0 25.0 10.0 728.0 11.0 25.0 11.0 750.0 11.0 25.0 12.0 507.0 11.0 25.0 13.0 813.0 11.0 25.0 14.0 753.0	- 65.0 128.0 135.0 149.0 153.0 212.0 101.0 85.0	13.0 14.0 15.0 16.0 17.0 18.0 19.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	209.3 388.3 659.0 783.3 835.3 674.5 734.7 566.0	13.0 13.0 19.0 28.0 39.2 45.6 48.9 44.1 46.1 40.1	169.0 316.8 515.5 595.8 625.5 517.7 555.3 434.8	160.3 304.2 496.2 573.4 601.9 498.3 534.5 418.3
11.0 25.0 15.0 610.0 11.0 25.0 16.0 210.0 11.0 25.0 17.0 - 11.0 25.0 18.0 - 11.0 25.0 19.0 - 11.0 25.0 20.0 - 11.0 25.0 21.0 - 11.0 25.0 22.0 - 11.0 25.0 23.0 -	61.0 20.0 - - - - - - -	17.0 16.0 14.0 13.0 13.0 12.0 11.0	1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	336.0 80.1 - - - - - -	30.4 18.7 14.0 13.0 13.0 12.0 12.0 11.0	257.9 58.5 - - - - - - -	246.9 52.3 - - - - - - -
11.0 26.0	- - - - - - - 43.0 59.0 65.0	10.0 10.0 9.0 9.0 9.0 9.0 10.0 12.0 13.0	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	- - - - - - 310.0 557.1 749.3	10.0 10.0 9.0 9.0 9.0 9.0 17.4 28.4 36.1	- - - - - - 245.4 449.1 594.1	- - - - - 234.8 432.2 571.8
11.0 26.0 9.0 959.0 11.0 26.0 10.0 959.0 11.0 26.0 11.0 959.0 11.0 26.0 12.0 942.0 11.0 26.0 13.0 911.0 11.0 26.0 14.0 852.0	71.0 77.0 79.0 75.0 65.0	13.0 14.0 15.0 16.0 15.0 14.0	2.0 2.0 3.0 3.0 3.0	749.3 871.9 915.5 880.3 772.1 600.6	30.1 41.4 44.0 41.0 37.1 31.3	594.1 677.5 702.8 685.7 610.5 481.1	651.7 675.8 659.6 587.5 463.0

11.0 11.0 11.0 11.0	26.0 15.0 26.0 16.0 26.0 17.0 26.0 18.0	721.0 - - -	48.0 33.0 -	13.0 12.0 10.0 10.0	3.0 3.0 2.0 2.0	366.2 34.7 -	23.4 12.3 10.0 10.0	288.7 31.1 -	276.8 25.4 -
11.0 11.0 11.0 11.0	26.0 19.0 26.0 20.0 26.0 21.0 26.0 22.0 26.0 23.0	- - -	: : :	9.0 9.0 8.0 8.0	2.0 2.0 2.0 2.0 2.0	- - -	9.0 9.0 8.0 8.0 7.0	- - -	-
11.0 11.0 11.0 11.0	27.0 - 27.0 1.0 27.0 2.0	- - -		7.0 7.0 7.0 6.0	2.0 2.0 2.0	- - -	7.0 7.0 6.0	- - -	- - -
11.0 11.0 11.0 11.0	27.0 3.0 27.0 4.0 27.0 5.0 27.0 6.0	- - -		6.0 6.0 6.0 6.0	2.0 1.0 1.0 1.0	- - - -	6.0 6.0 6.0 6.0	- - - -	- - -
11.0 11.0 11.0 11.0	27.0 7.0 27.0 8.0 27.0 9.0 27.0 10.0	212.0 834.0 918.0 958.0	71.0 64.0 73.0 77.0	8.0 10.0 11.0 12.0	1.0 1.0 1.0 1.0	162.6 555.3 748.9 876.4	11.2 28.6 38.4 44.4	137.9 447.5 587.3 670.4	130.0 430.6 565.2 644.9
11.0 11.0 11.0	27.0 11.0 27.0 12.0 27.0 13.0	732.0 500.0 347.0	141.0 213.0 214.0	13.0 13.0 14.0	1.0 1.0 1.0	804.0 668.7 501.7	43.7 39.1 33.8	618.2 526.5 404.6	594.9 506.8 389.2
11.0 11.0 11.0 11.0	27.0 14.0 27.0 15.0 27.0 16.0 27.0 17.0	516.0 163.0 - -	120.0 91.0 19.0	13.0 12.0 11.0 11.0	1.0 1.0 1.0 1.0	457.6 174.5 18.0	30.3 19.1 10.0 11.0	370.1 146.3 16.3	355.8 138.2 10.9 -
11.0 11.0 11.0 11.0	27.0 18.0 27.0 19.0 27.0 20.0 27.0 21.0	- - -	: : :	10.0 10.0 10.0 10.0	1.0 1.0 1.0 1.0	- - -	10.0 10.0 10.0 10.0	- - -	- - -
11.0 11.0 11.0 11.0	27.0 22.0 27.0 23.0 28.0 - 28.0 1.0	-		10.0 10.0 10.0 9.0	1.0 1.0 1.0 1.0		10.0 10.0 10.0 9.0	-	- - -
11.0 11.0 11.0	28.0 2.0 28.0 3.0 28.0 4.0	- - -		9.0 9.0 9.0	1.0 1.0 1.0	- - -	9.0 9.0 9.0	- - -	- - -
11.0 11.0 11.0 11.0	28.0 5.0 28.0 6.0 28.0 7.0 28.0 8.0	- - 43.0 11.0	- - 72.0 133.0	9.0 10.0 10.0 12.0	1.0 1.0 1.0 1.0	91.8 138.5	9.0 10.0 10.5 15.0	- 81.1 122.3	- - 74.4 114.7
11.0 11.0 11.0 11.0	28.0 9.0 28.0 10.0 28.0 11.0 28.0 12.0	115.0 477.0 706.0 6.0	222.0 215.0 150.0 195.0	13.0 14.0 15.0 15.0	1.0 1.0 1.0	325.7 643.7 790.9 197.1	23.3 36.4 43.9 30.2	276.6 513.4 607.6 162.5	265.1 494.2 584.7 153.9
11.0 11.0 11.0 11.0	28.0 13.0 28.0 14.0 28.0 15.0 28.0 16.0	372.0 208.0 49.0	208.0 167.0 91.0 29.0	15.0 15.0 14.0 14.0	- - -	513.3 308.7 116.3 29.6	36.7 31.8 20.7 13.3	408.0 249.7 98.7 26.4	392.5 239.0 91.6 20.8
11.0 11.0 11.0 11.0	28.0 17.0 28.0 18.0 28.0 19.0 28.0 20.0	- - -		14.0 14.0 14.0 13.0	1.0 1.0 1.0 1.0		14.0 14.0 14.0 13.0		- - -
11.0 11.0 11.0	28.0 21.0 28.0 22.0 28.0 23.0	- - -	- - -	13.0 12.0 12.0	1.0 1.0 1.0	- - -	13.0 12.0 12.0	- - -	- - -
11.0 11.0 11.0 11.0	29.0 - 1.0 29.0 2.0 29.0 3.0	- - -	: :	11.0 11.0 11.0 11.0	1.0 1.0 1.0 1.0	- - -	11.0 11.0 11.0 11.0	- - -	- - -
11.0 11.0 11.0 11.0	29.0 4.0 29.0 5.0 29.0 6.0 29.0 7.0	- - - 550.0	- - - 48.0	11.0 11.0 12.0 14.0	1.0 - - -	- - - 267.3	11.0 11.0 12.0 23.3	- - - 206.7	- - - 197.0
11.0 11.0 11.0 11.0	29.0 8.0 29.0 9.0 29.0 10.0 29.0 11.0	735.0 817.0 491.0 538.0	70.0 84.0 209.0 207.0	16.0 17.0 18.0 19.0	- - -	502.9 690.7 647.6 705.6	37.8 47.5 48.3 50.9	387.4 516.8 485.9 522.7	372.6 497.5 467.7 503.1
11.0 11.0 11.0 11.0	29.0 12.0 29.0 13.0 29.0 14.0 29.0 15.0	435.0 671.0 673.0 356.0	232.0 125.0 85.0 77.0	20.0 20.0 19.0 18.0	- - -	634.8 657.1 517.0 245.6	49.8 50.1 44.5 32.3	472.8 486.5 388.4 189.6	455.0 468.2 373.5 180.4
11.0 11.0 11.0 11.0	29.0 16.0 29.0 17.0 29.0 18.0 29.0 19.0	- - -	22.0 - - -	17.0 16.0 16.0 16.0	1.0 1.0 1.0 1.0	21.2 - - -	16.9 16.0 16.0 16.0	18.6 - - -	13.1 - - -
11.0 11.0 11.0 11.0	29.0 20.0 29.0 21.0 29.0 22.0 29.0 23.0	- - -	: : :	16.0 16.0 16.0 16.0	1.0 1.0 1.0 1.0	- - - -	16.0 16.0 16.0 16.0	- - - -	- - -

11.0	30.0	_	_	_	16.0	1.0	_	16.0	_	_
11.0	30.0	1.0	-	-	16.0	1.0	-	16.0	-	_
11.0	30.0	2.0	-	-	16.0	1.0		16.0	-	-
11.0 11.0	30.0 30.0	3.0 4.0			16.0 17.0	1.0 1.0		16.0 17.0	-	
11.0	30.0	5.0	-	-	17.0	1.0	-	17.0	-	_
11.0	30.0	6.0	-	-	17.0	1.0	450.0	17.0	-	-
11.0 11.0	30.0 30.0	7.0 8.0	206.0 658.0	68.0 82.0	18.0 19.0	1.0 2.0	156.0 474.1	21.1 32.2	126.2 376.0	118.5 361.5
11.0	30.0	9.0	779.0	88.0	20.0	2.0	666.6	40.1	518.0	498.6
11.0	30.0	10.0	121.0	268.0	21.0	2.0	392.6	34.0	317.4	304.8
11.0 11.0	30.0 30.0	11.0 12.0	-	113.0 100.0	21.0 21.0	3.0 3.0	108.2 95.4	23.6 22.2	92.1 81.7	85.1 75.0
11.0	30.0	13.0	-	27.0	21.0	3.0	25.6	20.2	22.1	16.6
11.0	30.0	14.0	1.5.1	100.0	20.0	2.0	96.6	21.0	83.2	76.4
11.0 11.0	30.0 30.0	15.0 16.0	385.0	74.0 23.0	19.0 18.0	2.0 3.0	254.5 22.3	25.2 17.6	202.7 19.5	193.2 14.1
11.0	30.0	17.0	-	-	16.0	4.0	-	16.0	-	-
11.0	30.0	18.0	-	-	8.0	2.0	-	8.0	-	-
11.0 11.0	30.0 30.0	19.0 20.0	-	-	8.0 7.0	2.0 2.0	- -	8.0 7.0	- -	-
11.0	30.0	21.0	-	-	6.0	2.0	-	6.0	-	_
11.0	30.0	22.0	-	-	6.0	2.0	-	6.0	-	-
11.0 12.0	30.0 1.0	23.0		-	5.0 5.0	2.0 2.0		5.0 5.0	-	-
12.0	1.0	1.0	-	-	4.0	2.0	-	4.0	-	_
12.0	1.0	2.0	-	-	4.0	2.0	-	4.0	-	-
12.0 12.0	1.0 1.0	3.0 4.0	-	-	4.0 4.0	2.0	-	4.0 4.0	-	-
12.0	1.0	5.0		-	4.0	1.0 1.0	- -	4.0	-	
12.0	1.0	6.0	-	-	4.0	1.0	-	4.0	-	-
12.0	1.0	7.0	624.0	47.0	6.0	2.0	288.1	12.7	232.2	221.9
12.0 12.0	1.0 1.0	8.0 9.0	819.0 906.0	66.0 77.0	8.0 10.0	1.0 1.0	542.0 737.6	27.0 37.0	439.3 582.0	422.7 560.1
12.0	1.0	10.0	947.0	82.0	12.0	1.0	866.4	44.0	663.9	638.6
12.0	1.0	11.0	961.0	84.0	13.0	1.0	918.2	47.2	693.0	666.5
12.0 12.0	1.0 1.0	12.0 13.0	956.0 923.0	82.0 77.0	14.0 15.0	1.0 1.0	890.1 780.4	47.6 44.9	670.1 592.9	644.6 570.6
12.0	1.0	14.0	852.0	68.0	15.0	1.0	603.3	38.7	465.9	448.4
12.0	1.0	15.0	700.0	52.0	14.0	1.0	362.7	28.7	279.5	267.9
12.0 12.0	1.0 1.0	16.0 17.0	280.0	18.0 -	13.0 12.0	1.0 1.0	95.2 -	16.5 12.0	68.7	62.3
12.0	1.0	18.0	-	-	11.0	1.0	-	11.0	-	_
12.0	1.0	19.0	-	-	10.0	2.0	-	10.0	-	-
12.0	1.0	20.0	-	-	10.0	2.0 2.0	- -	10.0 10.0	-	-
12.0 12.0	1.0 1.0	21.0 22.0		-	10.0 9.0	2.0	- -	9.0	-	
12.0	1.0	23.0	-	-	9.0	1.0	-	9.0	-	-
12.0	2.0	- 1.0	-	-	9.0	1.0	-	9.0 9.0	-	-
12.0 12.0	2.0 2.0	1.0 2.0		-	9.0 9.0	1.0 1.0	- -	9.0	-	
12.0	2.0	3.0	-	-	8.0	1.0	-	8.0	-	-
12.0	2.0	4.0	-	-	8.0	1.0	-	8.0	-	-
12.0 12.0	2.0 2.0	5.0 6.0	-	-	8.0 9.0	1.0 1.0	- -	8.0 9.0	-	-
12.0	2.0	7.0	557.0	51.0	10.0	1.0	269.5	17.2	213.7	203.9
12.0	2.0	8.0	765.0	73.0	12.0	1.0	518.0	29.9	414.2	398.5
12.0 12.0	2.0 2.0	9.0 10.0	859.0 901.0	84.0 91.0	15.0 16.0	1.0 1.0	715.4 844.0	40.8 46.9	553.7 637.1	532.9 613.0
12.0	2.0	11.0	139.0	287.0	17.0	1.0	433.8	35.4	348.4	334.7
12.0	2.0	12.0	684.0	146.0	18.0	1.0	748.1	44.2	573.3	551.8
12.0 12.0	2.0 2.0	13.0 14.0	745.0 783.0	102.0 77.0	18.0 18.0	1.0 1.0	684.6 571.9	43.9 40.0	523.2 439.2	503.6 422.6
12.0	2.0	15.0	632.0	56.0	17.0	1.0	341.1	30.6	261.2	250.1
12.0	2.0	16.0	227.0	17.0	15.0	1.0	81.6	17.8	59.3	53.0
12.0 12.0	2.0 2.0	17.0 18.0	-	-	13.0 13.0	2.0 2.0	-	13.0 13.0	-	-
12.0	2.0	19.0	-	-	12.0	2.0	-	12.0	-	-
12.0	2.0	20.0	-	-	12.0	2.0		12.0	-	-
12.0 12.0	2.0 2.0	21.0 22.0	-	- -	12.0 11.0	2.0 2.0	- -	12.0 11.0	-	-
12.0	2.0	23.0	-	-	11.0	2.0	-	11.0	-	-
12.0	3.0	-	-	-	11.0	2.0	-	11.0	-	-
12.0 12.0	3.0 3.0	1.0 2.0	-		10.0 10.0	2.0 2.0	- -	10.0 10.0	-	-
12.0	3.0	3.0	-	-	10.0	2.0	-	10.0	-	_
12.0	3.0	4.0	-	-	10.0	2.0	-	10.0	-	-
12.0 12.0	3.0 3.0	5.0 6.0	-		10.0 10.0	2.0 2.0	- -	10.0 10.0	-	-
12.0	3.0	7.0	565.0	46.0	12.0	2.0	265.7	18.0	209.2	199.5
12.0	3.0	8.0	747.0	70.0	14.0	2.0	503.2	28.6	404.7	389.3

12.0	3.0	9.0	817.0	88.0	16.0	2.0	688.7	37.0	543.3	522.9
12.0	3.0	10.0	840.0	103.0	18.0	2.0	807.2	43.1	621.5	598.1
12.0	3.0	11.0	845.0	110.0	19.0	2.0	854.0	45.8	649.3	624.7
12.0	3.0	12.0	391.0	239.0	19.0	3.0	594.5	36.3	474.7	456.8
12.0	3.0	13.0	814.0	96.0	19.0	3.0	725.8	38.9	569.1	547.7
12.0	3.0	14.0	583.0	105.0	19.0	2.0	485.2	35.0	383.0	368.3
12.0	3.0	15.0	263.0	84.0	18.0	2.0	209.1	24.7	168.7	160.0
12.0	3.0	16.0	-	19.0	17.0	2.0	18.0	16.3	15.8	10.5
12.0	3.0	17.0	-		16.0	2.0		16.0	-	-
12.0	3.0	18.0	-		16.0	2.0		16.0	-	_
12.0	3.0	19.0	-	-	16.0	2.0	-	16.0	-	-
12.0	3.0	20.0	-	-	16.0	2.0	-	16.0	-	-
12.0	3.0	21.0	_	-	15.0	2.0	-	15.0	_	_
12.0	3.0	22.0	_	-	15.0	2.0	<u>-</u>	15.0	_	_
12.0	3.0	23.0	_	-	15.0	2.0	<u>-</u>	15.0	_	_
12.0	4.0		_	<u>-</u>	15.0	2.0	<u>-</u>	15.0	_	_
12.0	4.0	1.0	_	-	15.0	2.0	<u>-</u>	15.0	_	_
12.0	4.0	2.0	_	-	15.0	2.0	<u>-</u>	15.0	_	_
12.0	4.0	3.0	_	<u>-</u>	14.0	2.0	<u>-</u>	14.0	_	_
12.0	4.0	4.0	_	<u>-</u>	14.0	2.0	<u>-</u>	14.0	_	_
12.0	4.0	5.0	_	_	14.0	2.0	_	14.0	_	_
12.0	4.0	6.0	_		14.0	2.0		14.0	_	_
12.0	4.0	7.0	4.0	63.0	16.0	3.0	64.7	15.8	56.9	50.7
12.0	4.0	8.0	535.0	97.0	17.0	3.0	417.3	26.8	339.9	326.5
12.0	4.0	9.0	763.0	100.0	18.0	3.0	665.6	35.7	528.6	508.8
12.0	4.0	10.0	802.0	113.0	19.0	3.0	786.5	40.7	613.2	590.1
12.0	4.0	11.0	810.0	120.0	20.0	3.0	834.6	43.3	643.1	618.8
12.0	4.0	12.0	799.0	118.0	20.0	3.0	805.8	42.7	622.3	598.8
12.0	4.0	13.0	759.0 759.0	110.0	20.0	3.0	703.9	40.0	548.9	528.4
12.0	4.0	14.0	676.0	95.0	19.0	3.0	530.4	34.1	420.1	404.1
12.0	4.0	15.0	506.0	70.0	18.0	2.0	304.0	27.7	237.8	227.4
12.0	4.0	16.0	-	25.0	17.0	2.0		17.0	21.7	16.2
12.0		17.0		25.0			24.7		-	
12.0	4.0 4.0	18.0	-		17.0 17.0	2.0 2.0	- -	17.0 17.0	-	-
12.0	4.0	19.0	-		17.0	2.0		17.0		-
			-							-
12.0	4.0	20.0	-		17.0	2.0		17.0	-	-
12.0	4.0	21.0	-		17.0	2.0		17.0	-	-
12.0	4.0	22.0	-	-	17.0	2.0	-	17.0	-	-
12.0	4.0	23.0	-	-	17.0	2.0	-	17.0	-	-
12.0	5.0	-	-	-	17.0	2.0	-	17.0	-	-
12.0	5.0	1.0	-	-	17.0	2.0	-	17.0	-	-
12.0	5.0	2.0	-	-	17.0	2.0	-	17.0	-	-
12.0	5.0	3.0	-	-	17.0	2.0	-	17.0	-	-
12.0	5.0	4.0	-	-	17.0	2.0	-	17.0	-	-
12.0	5.0	5.0	-	-	17.0	2.0	-	17.0	-	-
12.0	5.0	6.0	-	-	17.0	2.0	75.0	17.0	-	-
12.0	5.0	7.0	21.0	64.0	18.0	2.0	75.2	18.1	64.8	58.4
12.0	5.0	8.0	-	113.0	19.0	2.0	111.4	20.7	96.1	89.1
12.0	5.0	9.0	-	117.0	21.0	2.0	113.1	23.0	96.5	89.5
12.0	5.0	10.0	-	134.0	22.0	3.0	129.6	24.2	109.9	102.6
12.0	5.0	11.0	-	157.0	22.0	3.0	152.7	24.9	129.1	121.4
12.0	5.0	12.0	23.0	226.0	22.0	3.0	244.4	27.5	204.1	194.5
12.0	5.0	13.0	62.0	221.0	22.0	3.0	278.8	28.7	231.1	220.9
12.0	5.0	14.0	2.0	136.0	21.0	2.0	135.8	24.5	115.1	107.6
12.0	5.0	15.0	-	64.0	20.0	2.0	62.1	20.4	53.6	47.4
12.0	5.0	16.0	-	8.0	20.0	2.0	7.6	18.4	6.6	1.4
12.0	5.0	17.0	-	-	20.0	2.0	-	20.0	-	-
12.0	5.0	18.0	-	-	20.0	2.0	-	20.0	-	-
12.0	5.0	19.0	-	-	20.0	1.0	-	20.0	-	-
12.0	5.0	20.0	-	-	19.0	1.0	-	19.0	-	-
12.0	5.0	21.0	-	-	19.0	1.0	-	19.0	-	-
12.0	5.0	22.0	-	-	19.0	1.0	-	19.0	-	-
12.0	5.0	23.0	-	-	19.0	1.0	-	19.0	-	-
12.0	6.0	- 4.0	-	-	19.0	1.0	-	19.0	-	-
12.0	6.0	1.0	-	-	19.0	1.0	-	19.0	-	-
12.0	6.0	2.0	-	-	19.0	1.0	-	19.0	-	-
12.0	6.0	3.0	-	-	19.0	1.0	-	19.0	•	-
12.0	6.0	4.0	-	-	19.0	1.0	-	19.0	•	-
12.0	6.0	5.0	-	-	19.0	1.0	-	19.0	-	-
12.0	6.0	6.0	-	-	19.0	1.0	- 67.4	19.0	-	-
12.0	6.0	7.0	13.0	62.0	20.0	1.0	67.1	19.8	57.5	51.3
12.0	6.0	8.0	11.0	126.0	21.0	1.0	131.7	23.8	111.7	104.4
12.0	6.0	9.0	3.0	161.0	21.0	1.0	161.1	25.3	135.9	128.0
12.0	6.0	10.0	-	110.0	22.0	1.0	105.4	24.5	89.3	82.4 102.8
12.0	6.0	11.0	-	135.0	22.0	1.0	130.3	25.0	110.1	102.8
12.0	6.0	12.0	-	68.0	22.0	1.0	64.6	22.8	55.2	49.0
12.0	6.0	13.0	69.0	223.0	22.0	1.0	286.4	30.4	235.5	225.1
12.0	6.0	14.0	660.0	90.0	21.0	1.0	515.5	38.7	399.0	383.8 215.1
12.0	6.0	15.0	488.0	66.0	20.0 19.0	1.0	293.0 22.4	31.6	225.1	215.1 13.9
12.0 12.0	6.0 6.0	16.0 17.0	-	23.0	18.0	1.0 1.0		19.3 18.0	19.4	
12.0	0.0	17.0	-		10.0	1.0	-	10.0	-	-

12.0	6.0	18.0	-		17.0	1.0		17.0	-	-
12.0	6.0	19.0	-		17.0	2.0		17.0	-	-
12.0	6.0	20.0	-	-	16.0	2.0	-	16.0	_	_
12.0	6.0	21.0	_	<u>-</u>	15.0	2.0	_	15.0	_	_
12.0	6.0	22.0	_	<u>-</u>	13.0	3.0	<u>-</u>	13.0	_	_
12.0	6.0	23.0	_		13.0	2.0		13.0	_	_
12.0	7.0	-			12.0	2.0		12.0		
12.0	7.0	1.0	-	-	12.0	3.0		12.0	-	-
			-							-
12.0	7.0	2.0	•	-	11.0	3.0	-	11.0	-	-
12.0	7.0	3.0	-	-	11.0	3.0	-	11.0	-	-
12.0	7.0	4.0	-		10.0	3.0	-	10.0	-	-
12.0	7.0	5.0	-	-	10.0	3.0	-	10.0	-	-
12.0	7.0	6.0	-	-	9.0	3.0	-	9.0	-	-
12.0	7.0	7.0	-	39.0	9.0	4.0	37.0	8.0	33.8	28.0
12.0	7.0	8.0	-	28.0	9.0	4.0	26.5	7.9	24.2	18.7
12.0	7.0	9.0	104.0	210.0	9.0	4.0	294.7	14.7	260.2	249.2
12.0	7.0	10.0	53.0	242.0	10.0	4.0	297.4	16.6	260.9	249.9
12.0	7.0	11.0	933.0	92.0	10.0	4.0	897.0	31.6	732.3	704.1
12.0	7.0	12.0	933.0	88.0	11.0	4.0	873.9	33.7	705.6	678.6
12.0	7.0	13.0	899.0	82.0	11.0	4.0	772.0	31.2	628.3	604.6
12.0	7.0	14.0	821.0	73.0	11.0	3.0	591.4	28.1	481.2	463.1
12.0	7.0	15.0	659.0	56.0	10.0	3.0	354.8	20.1	285.7	273.9
12.0	7.0	16.0	237.0	19.0	9.0	3.0	87.8	10.7	66.3	59.9
12.0	7.0	17.0	-		8.0	3.0	-	8.0	-	-
12.0	7.0	18.0	-	-	7.0	3.0	-	7.0	-	-
12.0	7.0	19.0	-	-	6.0	3.0		6.0	-	-
12.0	7.0	20.0	-	-	6.0	3.0	-	6.0	-	-
12.0	7.0	21.0	-	-	5.0	3.0	-	5.0	-	-
12.0	7.0	22.0	-	-	5.0	3.0	-	5.0	-	-
12.0	7.0	23.0	-	-	5.0	2.0	-	5.0	_	_
12.0	8.0	-	_	<u>-</u>	4.0	2.0	_	4.0	_	_
12.0	8.0	1.0	_		4.0	2.0	_	4.0	_	
12.0	8.0	2.0	_		4.0	2.0		4.0		
12.0	8.0	3.0			4.0	2.0		4.0		
			-	-		2.0			-	-
12.0	8.0	4.0	-		4.0		-	4.0		-
12.0	8.0	5.0	-	-	4.0	2.0	-	4.0	-	-
12.0	8.0	6.0			4.0	2.0		4.0	2.5. 2	
12.0	8.0	7.0	532.0	49.0	5.0	2.0	251.3	10.6	204.0	194.4
12.0	8.0	8.0	764.0	71.0	7.0	2.0	505.6	21.7	419.0	403.1
12.0	8.0	9.0	869.0	81.0	8.0	1.0	709.2	34.0	567.4	546.1
12.0	8.0	10.0	919.0	86.0	9.0	1.0	838.3	40.2	654.6	629.8
12.0	8.0	11.0	647.0	163.0	10.0	-	746.8	45.4	569.2	547.8
12.0	8.0	12.0	527.0	197.0	11.0	_	668.9	43.0	515.9	496.6
12.0	8.0	13.0	665.0	124.0	12.0	_	650.0	42.7	500.0	481.2
12.0	8.0	14.0	620.0	96.0	12.0	_	498.7	37.2	389.1	374.2
12.0	8.0	15.0	663.0	43.0	11.0	1.0	340.5	24.3	267.9	256.7
12.0	8.0	16.0	-	28.0	10.0	1.0	28.5	10.7	25.7	20.1
12.0	8.0	17.0								
			-	-	9.0	1.0	-	9.0	-	-
12.0	8.0	18.0	-	-	8.0	1.0	-	8.0	-	-
12.0	8.0	19.0	-	-	8.0	1.0	-	8.0	-	-
12.0	8.0	20.0	-	-	7.0	1.0	-	7.0	-	-
12.0	8.0	21.0	-	-	7.0	1.0	-	7.0	-	-
12.0	8.0	22.0	-	-	7.0	1.0		7.0	-	-
12.0	8.0	23.0	-	-	6.0	1.0	-	6.0	-	-
12.0	9.0	-	-	-	6.0	1.0	-	6.0	-	-
12.0	9.0	1.0	-		6.0	1.0		6.0	-	-
12.0	9.0	2.0	-		6.0	1.0		6.0	-	-
12.0	9.0	3.0	-	-	5.0	1.0		5.0	-	-
12.0		4.0	-	-	5.0	1.0		5.0	-	-
	9.0				5.0	1.0	-	5.0	-	-
12.0	9.0 9.0	5.0	-	-	0.0					
12.0 12.0			-	-	5.0	1.0	-	5.0	-	-
12.0	9.0 9.0	5.0 6.0	-	- - 62.0	5.0	1.0	- 100.9		- 88.3	- 81.5
12.0 12.0	9.0 9.0 9.0	5.0 6.0 7.0	88.0	- - 62.0 67.0	5.0 7.0	1.0 1.0	- 100.9 499.7	7.8	- 88.3 407.0	- 81.5 391.5
12.0 12.0 12.0	9.0 9.0 9.0 9.0	5.0 6.0 7.0 8.0	- 88.0 764.0	67.0	5.0 7.0 9.0	1.0 1.0 1.0	499.7	7.8 25.3	407.0	391.5
12.0 12.0 12.0 12.0	9.0 9.0 9.0 9.0 9.0	5.0 6.0 7.0 8.0 9.0	- 88.0 764.0 594.0	67.0 131.0	5.0 7.0 9.0 11.0	1.0 1.0 1.0 1.0	499.7 576.1	7.8 25.3 32.3	407.0 465.4	391.5 447.9
12.0 12.0 12.0 12.0 12.0	9.0 9.0 9.0 9.0 9.0	5.0 6.0 7.0 8.0 9.0 10.0	88.0 764.0 594.0 656.0	67.0 131.0 145.0	5.0 7.0 9.0 11.0 12.0	1.0 1.0 1.0 1.0 1.0	499.7 576.1 704.4	7.8 25.3 32.3 38.0	407.0 465.4 556.7	391.5 447.9 535.8
12.0 12.0 12.0 12.0 12.0 12.0	9.0 9.0 9.0 9.0 9.0 9.0	5.0 6.0 7.0 8.0 9.0 10.0 11.0	88.0 764.0 594.0 656.0 610.0	67.0 131.0 145.0 174.0	5.0 7.0 9.0 11.0 12.0 13.0	1.0 1.0 1.0 1.0 1.0	499.7 576.1 704.4 727.1	7.8 25.3 32.3 38.0 40.4	407.0 465.4 556.7 568.7	391.5 447.9 535.8
12.0 12.0 12.0 12.0 12.0 12.0 12.0	9.0 9.0 9.0 9.0 9.0 9.0 9.0	5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0	88.0 764.0 594.0 656.0 610.0 83.0	67.0 131.0 145.0 174.0 262.0	5.0 7.0 9.0 11.0 12.0 13.0 14.0	1.0 1.0 1.0 1.0 1.0 1.0	499.7 576.1 704.4 727.1 345.6	7.8 25.3 32.3 38.0 40.4 28.9	407.0 465.4 556.7 568.7 286.5	391.5 447.9 535.8 547.4 274.7
12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0	- 88.0 764.0 594.0 656.0 610.0 83.0 538.0	67.0 131.0 145.0 174.0 262.0 163.0	5.0 7.0 9.0 11.0 12.0 13.0 14.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0	499.7 576.1 704.4 727.1 345.6 595.1	7.8 25.3 32.3 38.0 40.4 28.9 34.9	407.0 465.4 556.7 568.7 286.5 476.5	391.5 447.9 535.8 547.4 274.7
12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0	88.0 764.0 594.0 656.0 610.0 83.0 538.0 286.0	67.0 131.0 145.0 174.0 262.0 163.0 155.0	5.0 7.0 9.0 11.0 12.0 13.0 14.0 14.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0	499.7 576.1 704.4 727.1 345.6 595.1 352.3	7.8 25.3 32.3 38.0 40.4 28.9 34.9 27.3	407.0 465.4 556.7 568.7 286.5 476.5 290.6	391.5 447.9 535.8 547.4 274.7
12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0	88.0 764.0 594.0 656.0 610.0 83.0 538.0 286.0 68.0	67.0 131.0 145.0 174.0 262.0 163.0 156.0 90.0	5.0 7.0 9.0 11.0 12.0 13.0 14.0 14.0 13.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	499.7 576.1 704.4 727.1 345.6 595.1 352.3 124.1	7.8 25.3 32.3 38.0 40.4 28.9 34.9 27.3 16.5	407.0 465.4 556.7 568.7 286.5 476.5 290.6 106.9	391.5 447.9 535.8 547.4 274.7
12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0	88.0 764.0 594.0 656.0 610.0 83.0 538.0 286.0	67.0 131.0 145.0 174.0 262.0 163.0 156.0 90.0	5.0 7.0 9.0 11.0 12.0 13.0 14.0 13.0 12.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	499.7 576.1 704.4 727.1 345.6 595.1 352.3 124.1 14.2	7.8 25.3 32.3 38.0 40.4 28.9 34.9 27.3 16.5 9.5	407.0 465.4 556.7 568.7 286.5 476.5 290.6 106.9 12.9	391.5 447.9 535.8 547.4 274.7 458.6 278.8 99.6 7.5
12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0	88.0 764.0 594.0 656.0 610.0 83.0 538.0 286.0 68.0	67.0 131.0 145.0 174.0 262.0 163.0 156.0 90.0	5.0 7.0 9.0 11.0 12.0 13.0 14.0 13.0 12.0 11.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	499.7 576.1 704.4 727.1 345.6 595.1 352.3 124.1	7.8 25.3 32.3 38.0 40.4 28.9 34.9 27.3 16.5 9.5	407.0 465.4 556.7 568.7 286.5 476.5 290.6 106.9	391.5 447.9 535.8 547.4 274.7
12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0	88.0 764.0 594.0 656.0 610.0 83.0 538.0 286.0 68.0	67.0 131.0 145.0 174.0 262.0 163.0 156.0 90.0	5.0 7.0 9.0 11.0 12.0 13.0 14.0 13.0 12.0 11.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0	499.7 576.1 704.4 727.1 345.6 595.1 352.3 124.1 14.2	7.8 25.3 32.3 38.0 40.4 28.9 34.9 27.3 16.5 9.5 11.0	407.0 465.4 556.7 568.7 286.5 476.5 290.6 106.9 12.9	391.5 447.9 535.8 547.4 274.7 458.6 278.8 99.6 7.5
12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0	88.0 764.0 594.0 656.0 610.0 83.0 538.0 286.0 68.0	67.0 131.0 145.0 174.0 262.0 163.0 156.0 90.0	5.0 7.0 9.0 11.0 12.0 13.0 14.0 14.0 13.0 12.0 11.0 11.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	499.7 576.1 704.4 727.1 345.6 595.1 352.3 124.1 14.2	7.8 25.3 32.3 38.0 40.4 28.9 34.9 27.3 16.5 9.5 11.0 11.0	407.0 465.4 556.7 568.7 286.5 476.5 290.6 106.9 12.9	391.5 447.9 535.8 547.4 274.7 458.6 278.8 99.6 7.5
12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0	88.0 764.0 594.0 656.0 610.0 83.0 538.0 286.0 68.0	67.0 131.0 145.0 174.0 262.0 163.0 156.0 90.0	5.0 7.0 9.0 11.0 12.0 13.0 14.0 13.0 12.0 11.0 11.0 10.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0	499.7 576.1 704.4 727.1 345.6 595.1 352.3 124.1 14.2	7.8 25.3 32.3 38.0 40.4 28.9 34.9 27.3 16.5 9.5 11.0 11.0	407.0 465.4 556.7 568.7 286.5 476.5 290.6 106.9 12.9	391.5 447.9 535.8 547.4 274.7 458.6 278.8 99.6 7.5
12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	5.0 6.0 7.0 8.0 9.0 10.0 11.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0	88.0 764.0 594.0 656.0 610.0 83.0 538.0 286.0 68.0	67.0 131.0 145.0 174.0 262.0 163.0 156.0 90.0	5.0 7.0 9.0 11.0 12.0 13.0 14.0 13.0 12.0 11.0 11.0 10.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0	499.7 576.1 704.4 727.1 345.6 595.1 352.3 124.1 14.2	7.8 25.3 32.3 38.0 40.4 28.9 34.9 27.3 16.5 9.5 11.0 11.0 10.0 9.0	407.0 465.4 556.7 568.7 286.5 476.5 290.6 106.9 12.9	391.5 447.9 535.8 547.4 274.7 458.6 278.8 99.6 7.5
12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0	88.0 764.0 594.0 656.0 610.0 83.0 538.0 286.0 68.0	67.0 131.0 145.0 174.0 262.0 163.0 156.0 90.0	5.0 7.0 9.0 11.0 12.0 13.0 14.0 14.0 12.0 11.0 11.0 10.0 9.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0	499.7 576.1 704.4 727.1 345.6 595.1 352.3 124.1 14.2	7.8 25.3 38.0 40.4 28.9 34.9 27.3 16.5 9.5 11.0 10.0 10.0 9.0	407.0 465.4 556.7 568.7 286.5 476.5 290.6 106.9 12.9	391.5 447.9 535.8 547.4 274.7 458.6 278.8 99.6 7.5
12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	5.0 6.0 7.0 8.0 9.0 10.0 11.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0	88.0 764.0 594.0 656.0 610.0 83.0 538.0 286.0 68.0	67.0 131.0 145.0 174.0 262.0 163.0 156.0 90.0	5.0 7.0 9.0 11.0 12.0 13.0 14.0 13.0 12.0 11.0 11.0 11.0 10.0 9.0 9.0 8.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0	499.7 576.1 704.4 727.1 345.6 595.1 352.3 124.1 14.2	7.8 25.3 32.3 38.0 40.4 28.9 34.9 27.3 16.5 9.5 11.0 11.0 10.0 9.0 9.0 8.0	407.0 465.4 556.7 568.7 286.5 476.5 290.6 106.9 12.9	391.5 447.9 535.8 547.4 274.7 458.6 278.8 99.6 7.5
12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	5.0 6.0 7.0 8.0 9.0 11.0 12.0 13.0 15.0 16.0 17.0 18.0 19.0 21.0 22.0 23.0	88.0 764.0 594.0 656.0 610.0 83.0 538.0 286.0 68.0	67.0 131.0 145.0 174.0 262.0 163.0 156.0 90.0	5.0 7.0 9.0 11.0 12.0 13.0 14.0 14.0 12.0 11.0 11.0 10.0 9.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0	499.7 576.1 704.4 727.1 345.6 595.1 352.3 124.1 14.2	7.8 25.3 38.0 40.4 28.9 34.9 27.3 16.5 9.5 11.0 10.0 10.0 9.0	407.0 465.4 556.7 568.7 286.5 476.5 290.6 106.9 12.9	391.5 447.9 535.8 547.4 274.7 458.6 278.8 99.6 7.5
12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	5.0 6.0 7.0 8.0 9.0 11.0 12.0 13.0 15.0 16.0 17.0 18.0 19.0 21.0 22.0 23.0	88.0 764.0 594.0 656.0 610.0 83.0 538.0 286.0 68.0	67.0 131.0 145.0 174.0 262.0 163.0 156.0 90.0	5.0 7.0 9.0 11.0 12.0 13.0 14.0 13.0 12.0 11.0 11.0 10.0 9.0 9.0 8.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	499.7 576.1 704.4 727.1 345.6 595.1 352.3 124.1 14.2	7.8 25.3 32.3 38.0 40.4 28.9 27.3 16.5 9.5 11.0 11.0 10.0 9.0 9.0 8.0 8.0	407.0 465.4 556.7 568.7 286.5 476.5 290.6 106.9 12.9	391.5 447.9 535.8 547.4 274.7 458.6 278.8 99.6 7.5
12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	5.0 6.0 7.0 8.0 9.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 20.0 21.0 22.0 23.0	88.0 764.0 594.0 656.0 610.0 83.0 538.0 286.0 68.0	67.0 131.0 145.0 174.0 262.0 163.0 156.0 90.0	5.0 7.0 9.0 11.0 12.0 13.0 14.0 13.0 12.0 11.0 11.0 11.0 10.0 9.0 9.0 8.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0	499.7 576.1 704.4 727.1 345.6 595.1 352.3 124.1 14.2	7.8 25.3 32.3 38.0 40.4 28.9 34.9 27.3 16.5 9.5 11.0 11.0 10.0 9.0 9.0 8.0	407.0 465.4 556.7 568.7 286.5 476.5 290.6 106.9 12.9	391.5 447.9 535.8 547.4 274.7 458.6 278.8 99.6 7.5
12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	5.0 6.0 7.0 8.0 9.0 11.0 12.0 13.0 15.0 16.0 17.0 19.0 20.0 21.0 22.0 23.0	88.0 764.0 594.0 656.0 610.0 83.0 538.0 286.0 68.0	67.0 131.0 145.0 174.0 262.0 163.0 156.0 90.0	5.0 7.0 9.0 11.0 12.0 13.0 14.0 14.0 11.0 11.0 11.0 10.0 9.0 9.0 8.0 8.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 3.0	499.7 576.1 704.4 727.1 345.6 595.1 352.3 124.1 14.2	7.8 25.3 32.3 38.0 40.4 28.9 34.9 27.3 16.5 9.5 11.0 10.0 10.0 9.0 8.0 8.0	407.0 465.4 556.7 568.7 286.5 476.5 290.6 106.9 12.9	391.5 447.9 535.8 547.4 274.7 458.6 278.8 99.6 7.5

12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 12.0 13.0 14.0 15.0 16.0 20.0 21.0 22.0 23.0 - 1.0 2.0 3.0 4.0 5.0 6.0 6.0 7.0 8.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9	50.0 77.0 314.0 281.0 175.0 56.0 510.0 695.0 317.0 - - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	8.0 8.0 8.0 8.0 9.0 10.0 11.0 12.0 12.0 12.0 10.0 10.0 9.0 9.0 8.0 8.0 8.0 7.0 7.0 6.0 6.0 6.0 6.0 7.0 7.0 7.0 8.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	81.1 186.2 435.8 504.4 455.7 310.8 582.4 525.4 239.2 29.7 	8.0 8.0 8.0 8.1 12.5 20.8 24.6 23.5 20.4 27.2 26.7 17.7 9.6 10.0 9.0 9.0 8.0 8.0 8.0 7.0 7.0 6.0 6.0 6.0 6.0 6.0 6.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7	71.7 165.0 372.8 426.0 387.3 268.2 484.0 431.0 198.9 26.9 - - - - - - - - - - - - - - - - - - -	65.3 156.5 358.4 409.9 372.5 256.9 465.9 414.7 189.5 21.3
12.0 12.0 12.0 12.0 12.0	10.0 10.0 10.0 10.0 10.0	14.0 15.0 16.0 17.0 18.0	695.0 317.0 - -	79.0 83.0 29.0	12.0 11.0 10.0 10.0 9.0	3.0 3.0 3.0 3.0 3.0	525.4 239.2 29.7 -	26.7 17.7 9.6 10.0 9.0	431.0 198.9 26.9	414.7 189.5 21.3 -
12.0 12.0 12.0 12.0 12.0	10.0 10.0 10.0 10.0 11.0	20.0 21.0 22.0 23.0			8.0 8.0 8.0 7.0 7.0	3.0 3.0 3.0 3.0 3.0	-	8.0 8.0 8.0 7.0 7.0		
12.0 12.0 12.0 12.0 12.0	11.0 11.0 11.0 11.0 11.0	2.0 3.0 4.0 5.0 6.0		-	6.0 6.0 6.0 6.0 7.0	3.0 3.0 3.0 2.0 2.0	-	6.0 6.0 6.0 6.0 7.0	-	-
12.0 12.0	11.0 11.0	8.0 9.0	1.0	117.0 53.0	8.0 9.0	3.0 3.0	116.9 50.3	9.3 8.7	106.0 45.8	98.8 39.8
12.0 12.0 12.0 12.0 12.0 12.0	11.0 11.0 11.0 11.0 11.0 11.0	14.0 15.0 16.0 17.0 18.0 19.0	15.0 - - -	77.0 86.0 12.0 - -	12.0 12.0 11.0 11.0 10.0	2.0 2.0 2.0 2.0 2.0 2.0	73.3 92.7 11.4 - -	13.0 12.9 9.4 11.0 10.0 10.0	65.4 82.3 10.3 - -	59.1 75.6 5.0 - -
12.0 12.0 12.0 12.0 12.0 12.0	11.0 11.0 11.0 11.0 12.0 12.0	20.0 21.0 22.0 23.0 - 1.0	- - - - -	:	10.0 10.0 10.0 10.0 10.0 10.0	2.0 2.0 2.0 2.0 2.0 2.0	: - - - -	10.0 10.0 10.0 10.0 10.0 10.0	1	- - - - -
12.0 12.0 12.0 12.0 12.0 12.0	12.0 12.0 12.0 12.0 12.0 12.0	2.0 3.0 4.0 5.0 6.0 7.0	- - - - - 390.0	- - - - - 51.0	10.0 10.0 9.0 9.0 9.0 10.0	2.0 2.0 2.0 2.0 2.0 2.0	- - - - - 200.7	10.0 10.0 9.0 9.0 9.0 14.0	- - - - - 161.5	- - - - - 153.0
12.0 12.0 12.0 12.0 12.0 12.0	12.0 12.0 12.0 12.0 12.0 12.0	8.0 9.0 10.0 11.0 12.0 13.0	69.0 - 7.0 53.0 187.0 173.0	134.0 136.0 190.0 257.0 269.0 230.0	11.0 12.0 13.0 14.0 15.0	2.0 2.0 2.0 2.0 2.0 1.0	178.4 133.0 193.5 315.6 450.0 381.7	15.3 14.7 17.4 22.5 28.2 30.3	156.2 117.8 169.3 269.7 374.0 313.6	147.8 110.3 160.6 258.4 359.6 301.0
12.0 12.0 12.0 12.0 12.0 12.0 12.0	12.0 12.0 12.0 12.0 12.0 12.0 12.0	14.0 15.0 16.0 17.0 18.0 19.0 20.0	670.0 503.0 - - - -	93.0 68.0 26.0 - -	16.0 15.0 14.0 14.0 14.0 13.0	1.0 1.0 1.0 2.0 2.0 2.0	527.4 304.6 25.9 - -	34.8 27.1 14.4 14.0 14.0 13.0 12.0	416.4 239.6 23.0 - -	400.6 229.1 17.5 - -
12.0 12.0 12.0 12.0 12.0 12.0	12.0 12.0 12.0 12.0 13.0 13.0	21.0 22.0 23.0 - 1.0 2.0			12.0 12.0 11.0 11.0 11.0 11.0	2.0 2.0 2.0 2.0 2.0 2.0	- - - - -	12.0 12.0 11.0 11.0 11.0 11.0		-
12.0 12.0 12.0 12.0 12.0 12.0	13.0 13.0 13.0 13.0 13.0	3.0 4.0 5.0 6.0 7.0 8.0	- - - - -	- - - - 18.0 73.0	11.0 11.0 11.0 11.0 12.0 13.0	2.0 2.0 2.0 2.0 2.0 2.0	- - - 17.0 69.8	11.0 11.0 11.0 11.0 10.1 12.9	- - - 15.4 62.4	- - - - 10.0 56.1
12.0 12.0 12.0	13.0 13.0 13.0	9.0 10.0 11.0	795.0 852.0 877.0	82.0 87.0 87.0	15.0 16.0 17.0	2.0 2.0 1.0	652.3 786.4 839.6	33.1 40.5 48.1	523.7 613.2 630.7	504.1 590.1 606.9

12.0 12.0	13.0 13.0	12.0 13.0	850.0 823.0	93.0 85.0	18.0 19.0	1.0 1.0	815.8 720.0	48.5 46.4	610.9 543.1	587.9 522.7
12.0	13.0	14.0	754.0	73.0	19.0	1.0	553.8	40.5	424.3	408.2
12.0	13.0	15.0	605.0	54.0	18.0	1.0	333.6	31.2	255.7	244.8
12.0	13.0	16.0	220.0	18.0	16.0	1.0	84.1	18.9	61.7	55.4
12.0	13.0	17.0	-	-	15.0	1.0	-	15.0	-	-
12.0 12.0	13.0 13.0	18.0 19.0	1		15.0 14.0	1.0 1.0		15.0 14.0		
12.0	13.0	20.0	_	-	14.0	1.0	<u>-</u>	14.0	_	_
12.0	13.0	21.0	-	-	13.0	2.0	-	13.0	-	-
12.0	13.0	22.0	-	-	13.0	1.0	-	13.0	-	-
12.0	13.0	23.0	-	-	13.0	1.0	-	13.0	-	-
12.0 12.0	14.0 14.0	- 1.0	Ī		13.0 13.0	1.0 2.0		13.0 13.0	-	
12.0	14.0	2.0	_	<u>-</u>	13.0	2.0	<u>-</u>	13.0	_	_
12.0	14.0	3.0	-	-	13.0	2.0	-	13.0	-	-
12.0	14.0	4.0	-	-	13.0	2.0	-	13.0	-	-
12.0 12.0	14.0	5.0 6.0	-	-	13.0	2.0 2.0	-	13.0 13.0	-	-
12.0	14.0 14.0	7.0	439.0	46.0	13.0 15.0	2.0	210.3	19.3	163.7	155.2
12.0	14.0	8.0	670.0	72.0	17.0	2.0	450.5	29.7	359.0	345.1
12.0	14.0	9.0	48.0	191.0	19.0	2.0	233.9	26.2	196.1	186.7
12.0	14.0	10.0	45.0	232.0	20.0	2.0	279.8	27.7	233.3	223.0
12.0 12.0	14.0 14.0	11.0 12.0	58.0 9.0	259.0 198.0	21.0 21.0	2.0 2.0	322.2 203.3	30.2 26.7	265.5 170.4	254.3 161.7
12.0	14.0	13.0	799.0	92.0	21.0	2.0	710.6	41.3	550.4	529.7
12.0	14.0	14.0	721.0	81.0	20.0	2.0	545.8	37.6	424.6	408.5
12.0	14.0	15.0	569.0	60.0	19.0	1.0	325.7	31.9	249.6	238.8
12.0	14.0	16.0	179.0	20.0	18.0	1.0	76.8	20.5	57.1	50.9
12.0 12.0	14.0 14.0	17.0 18.0	-	- -	17.0 17.0	1.0 1.0	- -	17.0 17.0	-	-
12.0	14.0	19.0	-	-	16.0	1.0	-	16.0	-	_
12.0	14.0	20.0	_	-	16.0	1.0	-	16.0	-	_
12.0	14.0	21.0	-	-	16.0	1.0	-	16.0	-	-
12.0	14.0	22.0	-	-	16.0	1.0		16.0	-	-
12.0 12.0	14.0 15.0	23.0	Ī	<u> </u>	16.0 16.0	1.0 1.0		16.0 16.0	-	
12.0	15.0	1.0	_		16.0	1.0		16.0	_	_
12.0	15.0	2.0	-		15.0	1.0	-	15.0	-	-
12.0	15.0	3.0	-	-	15.0	1.0	-	15.0	-	-
12.0	15.0	4.0	-	-	15.0	1.0		15.0	-	-
12.0 12.0	15.0 15.0	5.0 6.0	-	-	15.0 16.0	1.0 1.0	-	15.0 16.0		
12.0	15.0	7.0	392.0	50.0	18.0	1.0	197.8	22.7	152.4	144.1
12.0	15.0	8.0	644.0	79.0	19.0	1.0	443.5	33.7	346.8	333.3
12.0	15.0	9.0	777.0	88.0	20.0	1.0	644.4	42.9	492.7	474.2
12.0	15.0	10.0	827.0	97.0	21.0	1.0	776.4	49.1	579.0	557.2
12.0 12.0	15.0 15.0	11.0 12.0	841.0 818.0	102.0 106.0	22.0 22.0	1.0 1.0	832.3 804.5	52.4 51.9	610.8 591.9	587.8 569.6
12.0	15.0	13.0	768.0	104.0	22.0	1.0	704.7	48.6	525.4	505.7
12.0	15.0	14.0	678.0	93.0	21.0	1.0	534.0	41.7	407.4	391.9
12.0	15.0	15.0	503.0	70.0	20.0	1.0	308.8	32.2	237.3	226.9
12.0 12.0	15.0 15.0	16.0 17.0	122.0	21.0	19.0 18.0	1.0 1.0	62.1	20.9 18.0	47.2	41.2
12.0	15.0	18.0	_		18.0	1.0		18.0	_	_
12.0	15.0	19.0	-		17.0	1.0	-	17.0	-	-
12.0	15.0	20.0	-	-	17.0	1.0	-	17.0	-	-
12.0 12.0	15.0 15.0	21.0 22.0	-	-	17.0 16.0	1.0 1.0	-	17.0 16.0	-	-
12.0	15.0	23.0		- -	16.0	1.0	- -	16.0		
12.0	16.0	-	-	-	16.0	1.0	-	16.0	-	-
12.0	16.0	1.0	-	-	16.0	1.0	-	16.0	-	-
12.0	16.0	2.0	-	-	16.0	1.0	-	16.0	-	-
12.0 12.0	16.0 16.0	3.0 4.0	-	<u> </u>	16.0 16.0	1.0 1.0	- -	16.0 16.0	-	
12.0	16.0	5.0	_		16.0	1.0		16.0	_	_
12.0	16.0	6.0	-	-	16.0	1.0	-	16.0	-	-
12.0	16.0	7.0	448.0	45.0	18.0	1.0	210.5	23.1	160.4	151.9
12.0 12.0	16.0 16.0	8.0 9.0	694.0 804.0	69.0 81.0	19.0 20.0	1.0 1.0	457.3 653.8	34.3 43.2	355.9 498.7	342.1 480.0
12.0	16.0	10.0	859.0	86.0	21.0	1.0	788.0	49.5	586.2	564.2
12.0	16.0	11.0	882.0	87.0	22.0	1.0	842.3	52.8	616.9	593.6
12.0	16.0	12.0	880.0	84.0	22.0	1.0	823.7	52.5	603.8	581.1
12.0	16.0	13.0	843.0	79.0	22.0	-	729.0	55.6 40.3	523.2	503.6 394.2
12.0 12.0	16.0 16.0	14.0 15.0	762.0 568.0	72.0 60.0	22.0 21.0	-	559.6 326.9	49.3 38.7	409.8 242.5	231.9
12.0	16.0	16.0	175.0	20.0	19.0	-	76.4	24.2	56.0	49.8
12.0	16.0	17.0	-	-	18.0	-	-	18.0	-	-
12.0	16.0	18.0	-	-	18.0	-	-	18.0	-	-
12.0 12.0	16.0 16.0	19.0 20.0	-		17.0 17.0	-	- -	17.0 17.0	-	-
	. 5.0	_0.0								

12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	16.0 21.0 16.0 22.0 16.0 23.0 17.0 - 17.0 1.0 17.0 3.0 17.0 4.0 17.0 5.0 17.0 6.0 17.0 7.0	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - 32.0	17.0 17.0 16.0 16.0 15.0 14.0 13.0 13.0 13.0 13.0 13.0	1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 3.0	- - - - - - - - - 30.4 437.1	17.0 17.0 16.0 16.0 15.0 14.0 13.0 13.0 13.0 13.0 11.6 23.3	- - - - - - - - - 27.3	- - - - - - - - 21.7
12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	17.0 9.0 17.0 10.0 17.0 11.0 17.0 12.0 17.0 13.0 17.0 14.0 17.0 15.0 17.0 16.0 17.0 17.0 17.0 18.0 17.0 19.0	777.0 857.0 897.0 908.0 888.0 829.0 692.0 316.0	90.0 92.0 90.0 85.0 78.0 68.0 52.0 19.0	14.0 15.0 16.0 17.0 18.0 17.0 16.0 14.0 12.0 11.0	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	644.5 792.7 857.9 847.8 756.6 596.8 370.4 109.0	33.5 39.6 43.1 44.0 42.3 36.4 28.1 17.0 12.0 11.0	516.2 620.6 661.4 650.2 582.7 466.8 288.0 79.1	496.9 597.1 636.3 625.5 560.8 449.3 276.2 72.5
12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	17.0 20.0 17.0 21.0 17.0 22.0 17.0 23.0 18.0 - 18.0 1.0 18.0 2.0 18.0 3.0 18.0 4.0 18.0 5.0 18.0 6.0	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	10.0 9.0 9.0 8.0 7.0 7.0 7.0 6.0 6.0 8.0	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	- - - - - - - - - - - - - - - - - - -	10.0 9.0 9.0 8.0 7.0 7.0 7.0 6.0 6.0	- - - - - - - - - - - - 188.7	- - - - - - - - - - - - - - - - - - -
12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	18.0 8.0 18.0 9.0 18.0 11.0 18.0 12.0 18.0 13.0 18.0 15.0 18.0 15.0 18.0 15.0 18.0 16.0 18.0 17.0	807.0 907.0 954.0 972.0 967.0 936.0 868.0 723.0 341.0	57.0 66.0 71.0 72.0 71.0 68.0 61.0 48.0	10.0 12.0 13.0 14.0 15.0 16.0 15.0 13.0 12.0	2.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0	498.2 699.5 837.7 898.8 879.7 780.9 609.5 380.6 115.7	24.4 33.5 39.3 42.5 48.0 45.8 39.8 30.3 17.4 12.0 11.0	405.4 559.9 656.9 694.8 660.3 590.6 468.4 292.6 83.5	390.0 538.9 632.0 668.3 635.2 568.4 450.8 280.6 76.8
12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	18.0 19.0 18.0 20.0 18.0 21.0 18.0 22.0 18.0 23.0 19.0 - 19.0 1.0 19.0 2.0 19.0 4.0 19.0 5.0 19.0 6.0		- - - - - - - - - -	11.0 10.0 10.0 10.0 9.0 9.0 9.0 9.0 9.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	- - - - - - - - - - -	11.0 10.0 10.0 10.0 9.0 9.0 9.0 9.0 9.0 9.0		
12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	19.0 7.0 19.0 8.0 19.0 9.0 19.0 10.0 19.0 11.0 19.0 12.0 19.0 13.0 19.0 14.0 19.0 15.0 19.0 16.0 19.0 17.0	131.0 601.0 454.0 70.0 32.0 176.0 253.0 211.0	53.0 75.0 158.0 241.0 238.0 269.0 224.0 166.0 65.0	12.0 14.0 15.0 17.0 18.0 19.0 20.0 19.0 18.0 17.0	1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 1.0 1.0	108.1 412.2 498.7 309.9 276.4 441.2 444.9 312.6 62.9 9.5	13.1 27.1 30.1 26.8 25.9 31.7 33.5 28.6 19.9 15.0	90.5 332.4 407.4 259.4 232.5 360.6 359.5 256.9 54.5 8.4	83.6 319.2 391.9 248.4 222.2 346.6 345.5 246.0 48.3 3.1
12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	19.0 18.0 19.0 19.0 19.0 20.0 19.0 21.0 19.0 22.0 20.0 - 20.0 1.0 20.0 2.0 20.0 3.0 20.0 4.0 20.0 5.0		- - - - - - - - - - - -	17.0 17.0 17.0 17.0 18.0 18.0 18.0 18.0 18.0 18.0	1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	- - - - - - - - - - -	17.0 17.0 17.0 17.0 17.0 18.0 18.0 18.0 18.0 18.0	-	

12.0 12.0	20.0 20.0	6.0 7.0	-	- 19.0	18.0 18.0	2.0 2.0	- 18.0	18.0 16.3	- 15.8	- 10.4
12.0 12.0	20.0	8.0 9.0	-	69.0 104.0	19.0 19.0	2.0	65.9 100.1	19.0 20.3	57.3 86.5	51.1 79.7
12.0 12.0	20.0	10.0 11.0	-	11.0 16.0	20.0	2.0	10.4 15.2	18.6 18.3	9.1 13.2	3.8 7.9
12.0 12.0	20.0	12.0 13.0	24.0	10.0 198.0	21.0 21.0	2.0	9.5 215.7	19.2 25.7	8.2 181.6	3.0 172.6
12.0 12.0	20.0 20.0	14.0 15.0	160.0 149.0	173.0 94.0	21.0 20.0	2.0 2.0	289.7 170.3	28.9 24.6	238.3 139.8	227.9 131.9
12.0 12.0	20.0 20.0	16.0 17.0	102.0 -	24.0 -	20.0 20.0	2.0 2.0	62.2	20.6 20.0	48.4 -	42.4
12.0 12.0	20.0 20.0	18.0 19.0	-	-	20.0 20.0	2.0 2.0	- -	20.0 20.0	-	-
12.0 12.0	20.0 20.0	20.0 21.0	-	-	20.0 20.0	2.0 2.0	-	20.0 20.0	-	-
12.0 12.0	20.0 20.0	22.0 23.0	-	-	20.0 20.0	2.0 2.0	-	20.0 20.0	- -	-
12.0 12.0	21.0 21.0	- 1.0	-	-	20.0 20.0	2.0 2.0	- -	20.0 20.0	-	-
12.0 12.0	21.0 21.0	2.0 3.0	-	-	20.0 20.0	2.0 2.0		20.0 20.0	-	-
12.0 12.0	21.0 21.0	4.0 5.0	-	-	20.0 20.0	2.0	-	20.0 20.0	-	-
12.0 12.0 12.0	21.0	6.0 7.0	259.0	- - 53.0	20.0 20.0 21.0	2.0 2.0 2.0	- - 153.9	20.0	- - 119.7	- - 112.1
12.0	21.0 21.0	8.0	-	93.0	21.0	2.0	91.0	23.7 22.5	77.8	71.2
12.0 12.0	21.0 21.0	9.0 10.0	13.0	148.0 197.0	21.0 22.0	2.0 2.0	145.9 205.9	23.9 27.0	124.0 172.3	116.3 163.5
12.0 12.0	21.0 21.0	11.0 12.0	2.0 217.0	181.0 263.0	22.0 22.0	2.0 1.0	179.5 467.9	26.5 37.4	150.6 371.7	142.4 357.3
12.0 12.0	21.0 21.0	13.0 14.0	775.0 708.0	92.0 79.0	22.0 22.0	1.0 1.0	696.5 541.1	46.6 42.9	525.0 410.4	505.3 394.8
12.0 12.0	21.0 21.0	15.0 16.0	561.0 188.0	60.0 22.0	21.0 20.0	-	328.2 83.6	38.5 25.5	244.4 61.1	233.8 54.8
12.0 12.0	21.0 21.0	17.0 18.0	-	- -	19.0 19.0	-	-	19.0 19.0	- -	-
12.0 12.0	21.0 21.0	19.0 20.0	-	-	18.0 18.0	- 1.0	- -	18.0 18.0	-	-
12.0 12.0	21.0 21.0	21.0 22.0	-	-	18.0 18.0	1.0	-	18.0 18.0	-	-
12.0 12.0	21.0 22.0	23.0	-	-	18.0 18.0	1.0 1.0	-	18.0 18.0	-	-
12.0 12.0	22.0 22.0 22.0	1.0 2.0	-	- -	18.0 19.0	1.0 1.0 1.0	-	18.0 19.0	-	-
12.0	22.0	3.0	-	- -	19.0	1.0	- -	19.0	-	-
12.0 12.0	22.0 22.0	4.0 5.0	-	-	19.0 19.0	1.0 1.0	-	19.0 19.0	-	-
12.0 12.0	22.0 22.0	6.0 7.0	-	8.0	20.0 20.0	2.0 2.0	7.6	20.0 18.1	6.6	1.4
12.0 12.0	22.0 22.0	8.0 9.0	-	24.0 50.0	21.0 21.0	2.0 2.0	22.7 47.5	19.6 20.5	19.7 41.0	14.2 35.1
12.0 12.0	22.0 22.0	10.0 11.0	9.0	190.0 92.0	21.0 21.0	2.0 3.0	195.3 87.5	25.2 22.3	164.8 74.9	156.3 68.3
12.0 12.0	22.0 22.0	12.0 13.0	24.0	224.0 72.0	22.0 21.0	3.0 3.0	243.5 68.4	27.2 21.9	203.5 58.6	194.0 52.4
12.0 12.0	22.0 22.0	14.0 15.0	79.0 -	169.0 3.0	21.0 21.0	2.0 2.0	227.4 2.8	26.3 20.1	190.0 2.5	180.8
12.0 12.0	22.0 22.0	16.0 17.0	-	- -	20.0 19.0	2.0 1.0	-	20.0 19.0	- -	-
12.0 12.0	22.0 22.0	18.0 19.0	-	-	19.0 19.0	1.0 1.0	- -	19.0 19.0	-	-
12.0 12.0	22.0 22.0	20.0 21.0	-	-	18.0 17.0	1.0 1.0	-	18.0 17.0	-	-
12.0 12.0	22.0 22.0	22.0 23.0	-	-	16.0 15.0	2.0	-	16.0 15.0	-	-
12.0 12.0 12.0	23.0 23.0	- 1.0	-	-	13.0 13.0 12.0	2.0 2.0 2.0	-	13.0 13.0 12.0	-	-
12.0	23.0	2.0	-	-	12.0	2.0	-	12.0	-	-
12.0 12.0	23.0 23.0	3.0 4.0	-	- -	12.0 12.0	2.0	- -	12.0 12.0	- -	-
12.0 12.0	23.0 23.0	5.0 6.0	-		12.0 12.0	2.0	- - -	12.0 12.0		-
12.0 12.0	23.0 23.0	7.0 8.0	104.0	3.0 128.0	12.0 13.0	2.0 3.0	2.8 195.7	9.6 16.5	2.6 169.7	161.0
12.0 12.0	23.0 23.0	9.0 10.0	299.0 232.0	189.0 246.0	14.0 15.0	3.0 2.0	418.4 452.7	24.4 28.7	351.9 374.9	338.1 360.4
12.0 12.0	23.0 23.0	11.0 12.0	230.0 217.0	271.0 267.0	16.0 16.0	2.0 2.0	490.4 472.7	31.0 30.6	402.2 388.3	386.8 373.4
12.0 12.0	23.0 23.0	13.0 14.0	13.0 164.0	187.0 171.0	17.0 16.0	2.0 2.0	195.6 290.3	23.2 23.8	166.6 244.6	158.0 234.0

12.0	23.0	15.0	364.0	80.0	15.0	2.0	262.6	22.4	214.0	204.2
12.0	23.0	16.0	112.0	24.0	14.0	2.0	65.3	15.0	51.9	45.9
12.0	23.0	17.0	-	-	14.0	2.0	-	14.0	-	-
12.0	23.0	18.0	-	-	13.0	2.0	-	13.0	-	-
12.0	23.0	19.0	-	-	12.0	3.0	-	12.0	-	-
12.0	23.0	20.0	-	-	12.0	2.0	-	12.0	-	-
12.0	23.0	21.0	-	-	11.0	2.0	-	11.0	-	-
12.0	23.0	22.0	-	-	11.0	2.0	-	11.0	-	-
12.0	23.0	23.0	-	-	11.0	2.0		11.0	-	-
12.0	24.0	-	-	-	10.0	2.0		10.0	-	-
12.0	24.0	1.0	-	-	10.0	2.0		10.0	-	-
12.0	24.0	2.0	-	-	10.0	2.0	-	10.0	-	-
12.0	24.0	3.0	_	-	10.0	2.0	-	10.0	_	-
12.0	24.0	4.0	_	_	10.0	2.0	-	10.0	_	-
12.0	24.0	5.0	_	_	10.0	2.0	<u>-</u>	10.0	_	_
12.0	24.0	6.0	_	_	10.0	2.0	<u>-</u>	10.0	-	_
12.0	24.0	7.0	100.0	50.0	10.0	2.0	89.3	10.4	75.9	69.4
12.0	24.0	8.0	578.0	86.0	11.0	2.0	408.0	21.9	337.1	323.8
12.0	24.0	9.0	719.0	101.0	12.0	2.0	614.7	30.6	499.3	480.6
12.0	24.0	10.0	790.0	107.0	14.0	2.0	753.4	37.4	596.3	573.9
12.0	24.0	11.0	824.0	107.0	15.0	2.0	822.2	40.9	640.8	616.5
12.0	24.0	12.0	830.0	102.0	16.0	2.0	812.0	41.9	629.6	605.8
12.0	24.0	13.0	801.0	95.0	17.0	2.0	721.6	40.2	562.1	541.1
			729.0	83.0		2.0	561.8	35.2	443.1	426.4
12.0 12.0	24.0 24.0	14.0 15.0	575.0	63.0	17.0 16.0	1.0	340.8	29.6		254.5
12.0		16.0			15.0	1.0			265.6	64.3
12.0	24.0		215.0	24.0			93.9	18.3	70.8	
	24.0	17.0	-	-	15.0	1.0	-	15.0	-	-
12.0	24.0	18.0	-	-	15.0	1.0	-	15.0	-	-
12.0	24.0	19.0	-	-	15.0	2.0	-	15.0	-	-
12.0	24.0	20.0	-	-	14.0	2.0	-	14.0	-	-
12.0	24.0	21.0	-	-	14.0	2.0	-	14.0		-
12.0	24.0	22.0	-	-	14.0	2.0	-	14.0		-
12.0	24.0	23.0	-	-	14.0	2.0	-	14.0	-	-
12.0	25.0	-	-	-	14.0	2.0	-	14.0	-	-
12.0	25.0	1.0	-	-	14.0	2.0	-	14.0	-	-
12.0	25.0	2.0	-	-	14.0	1.0	-	14.0	-	-
12.0	25.0	3.0	-	-	13.0	1.0	-	13.0	-	-
12.0	25.0	4.0	-	-	13.0	2.0	-	13.0	-	-
12.0	25.0	5.0	-	-	13.0	2.0		13.0	-	-
12.0	25.0	6.0	-	-	13.0	2.0		13.0	-	-
12.0	25.0	7.0	_	23.0	14.0	2.0	21.8	12.3	19.5	14.1
12.0	25.0	8.0	-	86.0	15.0	1.0	83.6	15.4	73.9	67.3
12.0	25.0	9.0	79.0	194.0	16.0	1.0	258.3	23.5	219.1	209.2
12.0	25.0	10.0	72.0	241.0	17.0	1.0	311.4	27.6	259.7	248.6
12.0	25.0	11.0	271.0	266.0	17.0	1.0	530.1	35.4	425.3	409.2
12.0	25.0	12.0	14.0	210.0	18.0	1.0	220.2	27.1	184.2	175.1
12.0	25.0	13.0	5.0	175.0	19.0	-	176.7	27.1	147.8	139.7
12.0	25.0	14.0	84.0	171.0	19.0	_	233.0	29.1	192.1	182.8
12.0	25.0	15.0	-	68.0	18.0	_	65.9	21.4	56.6	50.5
12.0	25.0	16.0	_	12.0	17.0	_	11.4	14.3	10.1	4.8
12.0	25.0	17.0	_	-	17.0	1.0	-	17.0	-	-
12.0	25.0	18.0			16.0	1.0		16.0		_
12.0	25.0	19.0			16.0	2.0	_	16.0		_
12.0	25.0	20.0			16.0	2.0		16.0		
12.0	25.0	21.0	-		15.0	2.0	- -	15.0		
12.0	25.0	22.0			15.0	2.0		15.0	_	
12.0	25.0	23.0		-	15.0	2.0	-	15.0		-
12.0	26.0 26.0	23.0			15.0	2.0	-	15.0	-	-
12.0	26.0	1.0			14.0	2.0		14.0	-	-
12.0	26.0	2.0			14.0	2.0	-	14.0	-	-
			-			2.0			-	-
12.0	26.0	3.0	-	-	14.0		-	14.0	-	-
12.0	26.0	4.0	-	-	14.0	2.0	-	14.0		-
12.0	26.0	5.0	-	-	13.0	2.0	-	13.0	-	-
12.0	26.0	6.0	-	-	13.0	2.0	400.4	13.0	-	-
12.0	26.0	7.0	318.0	46.0	14.0	2.0	162.1	16.8	127.7	120.0
12.0	26.0	8.0	-	66.0	14.0	3.0	62.9	14.3	55.8	49.6
12.0	26.0	9.0	-	76.0	15.0	3.0	72.2	15.2	63.8	57.5
12.0	26.0	10.0	220.0	247.0	16.0	2.0	444.2	27.9	369.3	355.0
12.0		11.0	91.0	270.0	17.0	2.0	362.4	28.1	301.6	289.3
	26.0		85.0	263.0	18.0	2.0	348.9	28.3	289.9	278.1
12.0	26.0	12.0		110.0	18.0	2.0	105.7	20.8	91.0	84.2
12.0	26.0 26.0	13.0	-				106.9	19.7		
12.0 12.0	26.0 26.0 26.0	13.0 14.0		110.0	18.0	2.0			92.6	85.6
12.0 12.0 12.0	26.0 26.0 26.0 26.0	13.0 14.0 15.0		110.0 13.0	17.0	2.0	12.3	15.6	10.9	5.6
12.0 12.0 12.0 12.0	26.0 26.0 26.0 26.0 26.0	13.0 14.0 15.0 16.0		110.0 13.0 2.0	17.0 17.0	2.0 2.0		15.6 14.8	10.9 1.7	85.6 5.6 -
12.0 12.0 12.0 12.0 12.0	26.0 26.0 26.0 26.0 26.0 26.0	13.0 14.0 15.0 16.0 17.0		110.0 13.0	17.0 17.0 17.0	2.0 2.0 2.0	12.3	15.6 14.8 17.0	10.9	5.6
12.0 12.0 12.0 12.0 12.0 12.0	26.0 26.0 26.0 26.0 26.0 26.0 26.0	13.0 14.0 15.0 16.0 17.0 18.0		110.0 13.0 2.0	17.0 17.0 17.0 17.0	2.0 2.0 2.0 3.0	12.3	15.6 14.8 17.0 17.0	10.9 1.7	5.6
12.0 12.0 12.0 12.0 12.0 12.0 12.0	26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0	13.0 14.0 15.0 16.0 17.0 18.0 19.0		110.0 13.0 2.0	17.0 17.0 17.0 17.0 18.0	2.0 2.0 2.0 3.0 2.0	12.3	15.6 14.8 17.0 17.0 18.0	10.9 1.7	5.6
12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0	13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0		110.0 13.0 2.0	17.0 17.0 17.0 17.0 18.0 18.0	2.0 2.0 2.0 3.0 2.0 2.0	12.3	15.6 14.8 17.0 17.0 18.0 18.0	10.9 1.7	5.6
12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0	13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0		110.0 13.0 2.0	17.0 17.0 17.0 17.0 18.0 18.0 18.0	2.0 2.0 2.0 3.0 2.0 2.0 2.0	12.3	15.6 14.8 17.0 17.0 18.0 18.0	10.9 1.7	5.6
12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0	13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0		110.0 13.0 2.0	17.0 17.0 17.0 17.0 18.0 18.0 18.0	2.0 2.0 2.0 3.0 2.0 2.0 2.0 3.0	12.3	15.6 14.8 17.0 17.0 18.0 18.0 18.0	10.9 1.7	5.6
12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0	13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0		110.0 13.0 2.0	17.0 17.0 17.0 17.0 18.0 18.0 18.0	2.0 2.0 2.0 3.0 2.0 2.0 2.0	12.3	15.6 14.8 17.0 17.0 18.0 18.0	10.9 1.7	5.6

12.0	27.0	5.2	-	-	17.0	4.0		17.0	-	-
12.0	27.0	1.0	-	-	15.0	4.0	-	15.0	-	-
12.0	27.0	2.0	-	-	13.0	4.0	-	13.0	-	-
12.0 12.0	27.0 27.0	3.0 4.0	-		12.0 11.0	4.0 4.0		12.0 11.0		-
12.0	27.0	5.0	-		10.0	4.0		10.0		-
12.0	27.0	6.0	-		10.0	3.0		10.0		-
12.0	27.0	7.0	498.0	39.0	10.0	3.0	210.8	13.8	164.3	155.8
12.0	27.0	8.0	760.0	62.0	10.0	4.0	469.6	20.8	387.7	372.8
12.0	27.0	9.0	873.0	73.0	11.0	3.0	681.3	29.5	555.6	534.8
12.0	27.0	10.0	920.0	80.0	12.0	3.0	817.4	34.8	655.4	630.5
12.0	27.0	11.0	932.0	84.0	13.0	3.0	879.6	37.8	696.4	669.8
12.0	27.0	12.0	921.0	85.0	14.0	3.0	862.7	38.5	680.3	654.4
12.0	27.0	13.0	883.0	82.0	14.0	3.0	771.1	36.1	613.3	590.1
12.0	27.0	14.0	808.0	74.0	14.0	3.0	602.1	31.3	484.0	465.8
12.0	27.0	15.0	654.0	60.0	13.0	2.0	376.3	25.3	299.2	287.0
12.0	27.0	16.0	281.0	26.0	13.0	2.0	113.9	16.1	85.8	79.0
12.0	27.0	17.0	-	-	12.0	2.0	-	12.0	-	-
12.0	27.0	18.0	-	-	11.0	2.0	-	11.0	-	-
12.0	27.0	19.0	-	-	11.0	2.0	-	11.0	-	-
12.0	27.0	20.0	-	-	10.0	2.0	-	10.0	-	-
12.0	27.0	21.0	-	-	9.0	2.0	-	9.0	-	-
12.0	27.0	22.0	-	-	9.0	2.0		9.0	-	-
12.0	27.0	23.0	-		9.0	2.0		9.0		-
12.0	28.0	-	-	-	9.0	2.0	-	9.0	-	-
12.0	28.0	1.0	-	-	9.0	2.0	-	9.0	-	-
12.0	28.0	2.0	-	-	8.0	1.0	-	8.0	-	-
12.0	28.0	3.0	-	-	8.0	1.0	-	8.0	-	-
12.0	28.0	4.0	-	-	8.0	1.0	-	8.0	-	-
12.0	28.0	5.0	-	-	8.0	1.0		8.0 8.0	-	-
12.0	28.0	6.0	165.0	47.0	8.0	1.0	109.7		- 01.4	- 84.5
12.0 12.0	28.0 28.0	7.0 8.0	795.0	55.0	9.0 10.0	1.0 1.0	478.7	10.1 25.6	91.4 385.9	371.1
12.0	28.0	9.0	900.0	65.0	11.0	1.0	685.0	41.5	526.1	506.4
12.0	28.0	10.0	670.0	135.0	12.0		694.2	44.3	530.8	510.9
12.0	28.0	11.0	964.0	75.0	13.0	_	895.9	52.1	658.6	633.6
12.0	28.0	12.0	679.0	147.0	13.0	_	745.1	48.5	558.4	537.5
12.0	28.0	13.0	778.0	96.0	13.0	_	709.3	46.2	536.0	515.9
12.0	28.0	14.0	845.0	69.0	13.0	_	620.8	42.9	471.0	453.3
12.0	28.0	15.0	699.0	56.0	12.0	1.0	391.3	27.8	307.0	294.7
12.0	28.0	16.0	338.0	25.0	12.0	1.0	127.8	16.9	94.8	87.8
12.0	28.0	17.0	-	-	12.0	1.0	-	12.0	_	-
12.0	28.0	18.0	-	-	12.0	1.0	-	12.0	_	-
12.0	28.0	19.0	-	<u>-</u>	11.0	-		11.0	_	-
12.0	28.0	20.0	-	<u>-</u>	11.0	-		11.0	_	-
12.0	28.0	21.0	-		11.0	-		11.0	-	-
12.0	28.0	22.0	-		11.0	-		11.0	-	-
12.0	28.0	23.0	-	-	11.0	-	-	11.0	-	-
12.0	29.0	-	-	-	11.0	-	-	11.0	-	-
12.0	29.0	1.0	-	-	11.0	-		11.0	-	-
12.0	29.0	2.0	-	-	10.0	-		10.0		-
12.0	29.0	3.0	-	-	10.0	-	-	10.0	-	-
12.0	29.0	4.0	-	-	10.0	-	-	10.0	-	-
12.0	29.0	5.0	-	-	10.0	-	-	10.0	-	-
12.0 12.0	29.0 29.0	6.0 7.0	-	- 17.0	10.0 11.0	-	16.1	10.0 7.0	14.8	9.4
12.0	29.0	8.0	708.0	65.0	13.0	-	444.8	30.1	351.4	337.7
12.0	29.0	9.0	828.0	76.0	15.0		653.6	43.8	496.2	477.6
12.0	29.0	10.0	877.0	84.0	16.0	_	793.8	51.1	585.2	563.2
12.0	29.0	11.0	894.0	88.0	17.0	_	853.3	55.0	617.6	594.3
12.0	29.0	12.0	869.0	95.0	17.0	_	839.2	54.9	607.5	584.6
12.0	29.0	13.0	834.0	91.0	18.0	1.0	747.0	46.4	563.8	542.7
12.0	29.0	14.0	766.0	80.0	17.0		585.2	45.7	438.1	421.6
12.0	29.0	15.0	621.0	62.0	16.0	-	366.1	35.6	277.7	266.1
12.0	29.0	16.0	270.0	27.0	15.0	1.0	112.6	19.1	84.1	77.3
12.0	29.0	17.0	-	<u>-</u>	15.0	1.0		15.0	_	-
12.0	29.0	18.0	-	-	15.0	1.0	-	15.0	-	-
12.0	29.0	19.0	-	-	15.0	1.0	-	15.0	-	-
12.0	29.0	20.0	-	-	15.0	1.0	-	15.0	-	-
12.0	29.0	21.0	-	-	15.0	1.0	-	15.0	-	-
12.0	29.0	22.0	-	-	15.0	1.0	-	15.0	-	-
12.0	29.0	23.0	-	-	15.0	1.0	-	15.0	-	-
12.0	30.0	-	-	-	14.0	1.0	-	14.0	-	-
12.0	30.0	1.0	-	-	14.0	1.0	-	14.0	-	-
12.0	30.0	2.0	-	-	14.0	1.0	-	14.0	-	-
12.0 12.0	30.0 30.0	3.0	-	-	14.0 14.0	1.0 1.0	-	14.0 14.0	-	-
12.0	30.0	4.0 5.0	-		14.0	1.0	- -	14.0	-	-
12.0	30.0	6.0		-	14.0	1.0	- -	14.0	-	
12.0	30.0	7.0	105.0	47.0	16.0	1.0	90.9	16.6	75.0	68.4
12.0	30.0	8.0	714.0	62.0	17.0	1.0	443.8	31.1	348.8	335.2
			•	-	-	•				

12.0	30.0	9.0	818.0	76.0	18.0	1.0	646.4	41.0	497.9	479.3
12.0	30.0	10.0	867.0	85.0	19.0	2.0	787.1	43.3	604.6	581.8
12.0	30.0	11.0	170.0	278.0	20.0	2.0	448.7	35.1	360.7	346.7
12.0	30.0	12.0	53.0	252.0	20.0	2.0	309.6	29.5	255.9	245.0
12.0	30.0	13.0	857.0	83.0	20.0	2.0	756.2	42.0	583.9	561.9
12.0	30.0	14.0	790.0	74.0	20.0	2.0	594.9	39.3	460.2	442.9
12.0	30.0	15.0	356.0	87.0	19.0	2.0	271.6	28.1	216.6	206.7
12.0	30.0	16.0	305.0	26.0	17.0	2.0	120.8	19.9	89.1	82.3
12.0	30.0	17.0	-	-	17.0	2.0	-	17.0	-	-
12.0	30.0	18.0	-		17.0	2.0		17.0	<u>-</u>	-
12.0	30.0	19.0	-		16.0	1.0		16.0	<u>-</u>	-
12.0	30.0	20.0	-		16.0	1.0		16.0	<u>-</u>	-
12.0	30.0	21.0	-		16.0	2.0		16.0	<u>-</u>	-
12.0	30.0	22.0	-		16.0	2.0		16.0	<u>-</u>	-
12.0	30.0	23.0	-		16.0	2.0		16.0	<u>-</u>	-
12.0	31.0	-	-		15.0	2.0		15.0	<u>-</u>	-
12.0	31.0	1.0	-	-	15.0	2.0	-	15.0	-	-
12.0	31.0	2.0	-	-	15.0	2.0	-	15.0	-	-
12.0	31.0	3.0	-	-	14.0	1.0	-	14.0	-	-
12.0	31.0	4.0	-	-	14.0	1.0	-	14.0	-	-
12.0	31.0	5.0	-	-	13.0	1.0	-	13.0	-	-
12.0	31.0	6.0	-	-	13.0	1.0	-	13.0	-	-
12.0	31.0	7.0	431.0	39.0	15.0	1.0	187.4	19.2	142.8	134.8
12.0	31.0	8.0	694.0	66.0	17.0	-	439.6	35.6	338.2	324.9
12.0	31.0	9.0	815.0	79.0	18.0	-	647.5	46.4	485.1	466.9
12.0	31.0	10.0	868.0	88.0	19.0	1.0	791.4	47.7	594.2	571.8
12.0	31.0	11.0	888.0	92.0	19.0	1.0	860.0	50.6	637.5	613.4
12.0	31.0	12.0	867.0	98.0	20.0	1.0	842.8	51.3	622.0	598.6
12.0	31.0	13.0	830.0	95.0	19.0	1.0	750.9	47.5	563.8	542.6
12.0	31.0	14.0	753.0	87.0	19.0	1.0	590.2	41.9	450.9	433.9
12.0	31.0	15.0	591.0	70.0	18.0	1.0	363.8	32.5	281.1	269.4
12.0	31.0	16.0	236.0	30.0	16.0	1.0	107.2	19.9	80.8	74.2
12.0	31.0	17.0	-	-	16.0	1.0	-	16.0	-	-
12.0	31.0	18.0	-	=	17.0	-	-	17.0	-	-
12.0	31.0	19.0	-	=	17.0	1.0	-	17.0	-	-
12.0	31.0	20.0	-	=	16.0	1.0	-	16.0	-	-
12.0	31.0	21.0	-	-	16.0	1.0	-	16.0	-	-
12.0	31.0	22.0	-	-	16.0	1.0	-	16.0	-	-
12.0	31.0	23.0	-	-	16.0	1.0	-	16.0	-	-
			1,919,741.0	650,523.0	175,898.0	12,712.0	2,017,348.2	244,444.1	1,506,733.0	1,443,548.1

Totals

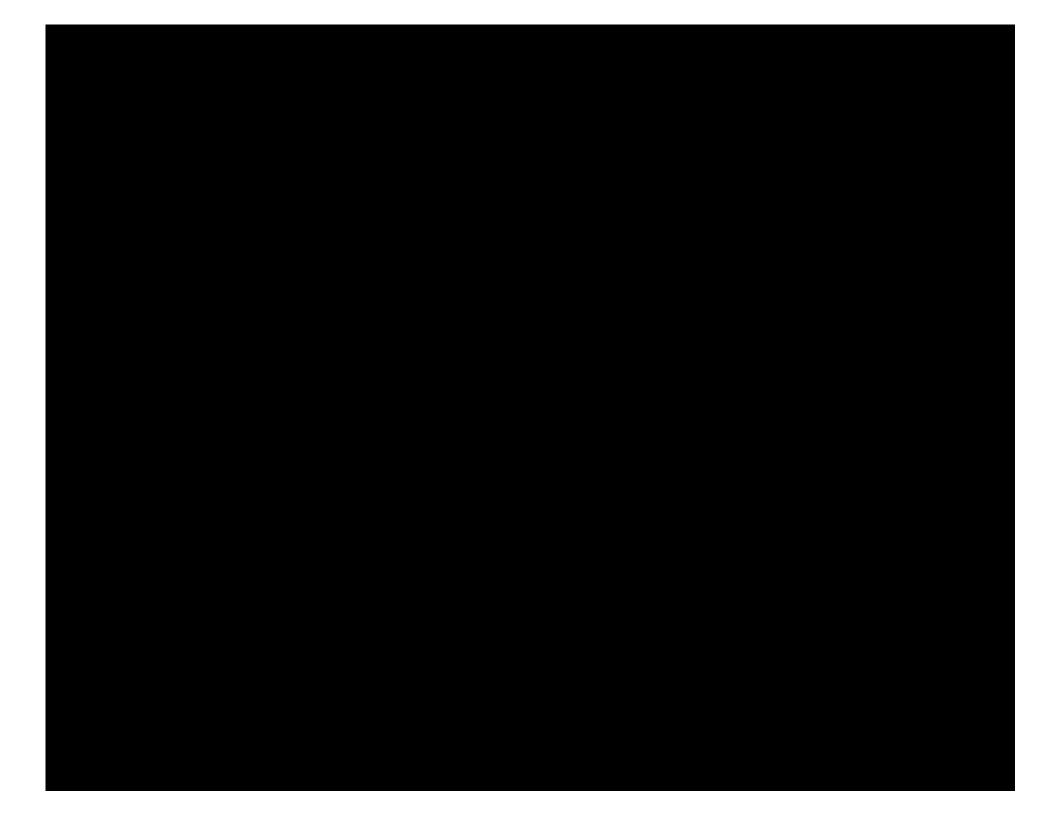
Florida Power & Light Company FPL & GULF 000015 Docket No. 20220000-OT 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 12 Attachment 1 of 1 Tab 14 of 19 PVWatts: Monthly PV Performance Data Requested Location: 1 Energy PI, Pensacola, FL 32520 Location: Lat, Lon: 30.41, -87.22 Lat (deg N): 30.41 Long (deg W): 87.22 12.66666698 Elev (m): DC System Size (kW): Module Type: Standard Array Type: Fixed (roof mount) Array Tilt (deg): Array Azimuth (deg): System Losses: 15.5 Invert Efficiency: DC to AC Size Ratio: 1.2 Average Cost of Electricity Purchased from Utility (\$/kWh): 0.121 16.5 Capacity Factor (%) Month AC System Output(kWh) Solar Radiation (kWh/m^2/day) Plane of Array Irradiance (W/m^2) DC array Output (kWh) Value (\$)

1,444

2,017

1,507

Total


Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 12 Attachment 1 of 1

FPL & GULF 000016 20220000-OT

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 12 Attachment 1 of 1 Tab 16 of 19

FPL & GULF 000017 20220000-OT



Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 12 Attachment 1 of 1 Tab 17 of 19

FPL & GULF 000018 20220000-OT

| The content of the

Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 12 Attachment 1 of 1 Tab 19 of 19

2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050

Report Annual Energy Outlook 2021 Scenario ref2021

Reference case Datekey d113020a

Release Date January 2021

REM000	17. Renewable Energy Consumption by Sector and Source (quadrillion Btu, unless otherwise noted)	e																														Comp Gre 2020-	rowth
	Sector and Source	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049		rcent)
	Marketed Renewable Energy 1/																																
REM000:ca_Residentia	al(· Residential (wood)	0.46	0.45	0.44	0.45	0.45	0.46	0.46	0.45	0.45	0.44	0.44	0.44	0.43	0.42	0.42	0.41	0.40	0.40	0.39	0.38	0.38	0.37	0.37	0.37	0.36	0.36	0.35	0.35	0.35	0.34	0.34	-1.0%
REM000:da_Commerci	ial Commercial (biomass)	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.0%
REM000:ea_Industrial	Industrial 2/	2.43	2.41	2.44	2.45	2.47	2.48	2.49	2.50	2.50	2.51	2.52	2.54	2.55	2.55	2.56	2.57	2.58	2.60	2.61	2.63	2.64	2.66	2.69	2.71	2.74	2.77	2.80	2.83	2.86	2.90		0.6%
	nz Conventional Hydroelectric Power	0.01	0.01	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02		1.8%
	So Municipal Waste 3/	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.16	0.16	0.16	0.16	0.16	0.16	0.17	0.17	0.17	0.17		0.2%
REM000:ea_Biomass		1.35	1.35	1.39	1.40	1.41	1.42	1.43	1.43	1.44	1.44	1.45	1.46	1.47	1.47	1.47	1.47	1.48	1.48	1.49	1.50	1.51	1.52	1.53	1.55	1.57	1.58	1.60	1.62	1.64	1.66		0.7%
REM000:ea_BiomasHe	Biofuels Heat and Coproducts	0.90	0.88	0.87	0.88	0.88	0.89	0.89	0.89	0.89	0.90	0.90	0.91	0.91	0.92	0.92	0.93	0.93	0.94	0.95	0.95	0.96	0.97	0.97	0.98	0.99	1.01	1.01	1.03	1.04	1.05	1.06 0	0.5%
REM000:fa_Transporta	tic Transportation	1.33	1.52	1.54	1.58	1.58	1.59	1.60	1.60	1.61	1.62	1.62	1.62	1.62	1.62	1.62	1.62	1.62	1.62	1.62	1.61	1.61	1.62	1.62	1.62	1.63	1.64	1.65	1.66	1.67	1.68	1.70	0.8%
	Ethanol used in E85 4/	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02 -0	0.2%
REM000:ga Ethanolus	ec Ethanol used in Gasoline Blending	1.01	1.12	1.11	1.11	1.11	1.11	1.11	1.11	1.11	1.11	1.11	1.11	1.11	1.11	1.12	1.12	1.12	1.13	1.13	1.13	1.14	1.14	1.15	1.16	1.16	1.17	1.18	1.18	1.19	1.20	1.21 0	0.6%
REM000:ga_BioDieselE	Biodiesel used in Distillate Blending	0.23	0.27	0.26	0.26	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.27	0.27	0.27	0.27	0.28 0	0.7%
REM000:trans_biobute	Biobutanol	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	nB Liquids from Biomass	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
REM000:gb_GreenLiqu	id Renewable Diesel and Gasoline 5/	0.07	0.11	0.16	0.18	0.19	0.19	0.20	0.20	0.21	0.22	0.22	0.22	0.22	0.22	0.21	0.21	0.21	0.21	0.21	0.20	0.19	0.20	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19 3	3.5%
REM000:ha ElectricPo	Electric Power 6/	6.99	7.65	8.16	9.03	10.06	10.55	10.73	11.06	11.25	11.56	11.97	12.22	12.43	12.66	12.98	13.41	13.66	13.85	14.03	14.11	14.22	14.42	14.54	14.71	14.87	15.13	15.41	15.74	15.94	16.18	16.41	2.9%
	Conventional Hydroelectric Power	2.52	2.47	2.55	2.62	2.56	2.52	2.45	2.43	2.42	2.41	2.41	2.40	2.39	2.38	2.38	2.37	2.37	2.36	2.35	2.34	2.33	2.33	2.32	2.32	2.30	2.30	2.29	2.29	2.28	2.28		0.3%
REM000:ha Geotherm	:	0.14	0.14	0.14	0.15	0.15	0.16	0.16	0.17	0.18	0.20	0.21	0.22	0.23	0.24	0.25	0.26	0.27	0.28	0.29	0.30	0.31	0.32	0.33	0.34	0.34	0.35	0.36	0.37	0.38	0.38		3.4%
REM000:ha MunicipalS		0.29	0.30	0.31	0.31	0.33	0.34	0.35	0.36	0.36	0.37	0.39	0.40	0.40	0.42	0.43	0.44	0.45	0.46	0.47	0.48	0.49	0.50	0.51	0.52	0.52	0.53	0.54	0.56	0.57	0.58	0.58 2	2.3%
REM000:ha Biomass	Biomass	0.20	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20 -0	0.1%
REM000:ha Dedicated	PI Dedicated Plants	0.16	0.16	0.17	0.17	0.17	0.17	0.17	0.17	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16 -0	0.1%
REM000:ha_Cofiring	Cofiring	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04 -0	0.1%
REM000:ha_SolarThen	m: Solar Thermal	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.03	0.02	0.02	0.02	0.02	0.02	0.02	0.02 -0	0.6%
REM000:ha_SolarPhot	ov Solar Photovoltaic	0.74	0.96	1.24	1.38	1.54	1.90	2.27	2.61	2.77	3.05	3.25	3.42	3.63	3.84	4.01	4.21	4.37	4.53	4.71	4.81	4.92	5.10	5.23	5.38	5.52	5.74	6.00	6.27	6.45	6.64	6.81 7	7.7%
REM000:ha_Wind	Wind	3.06	3.54	3.68	4.34	5.24	5.40	5.26	5.26	5.29	5.31	5.50	5.56	5.56	5.56	5.69	5.90	5.97	5.98	5.97	5.95	5.94	5.94	5.92	5.94	5.95	5.98	5.99	6.03	6.04	6.08	6.14 2	2.3%
REM000:ia_TotalMarke	ele Total Marketed Renewable Energy	11.34	12.16	12.72	13.64	14.69	15.21	15.41	15.75	15.94	16.26	16.69	16.95	17.16	17.39	17.70	18.15	18.39	18.59	18.78	18.87	18.99	19.21	19.35	19.54	19.74	20.03	20.34	20.71	20.95	21.24	21.51	2.2%
	Sources of Ethanol																																
REM000:ja FromCorn		1.13	1.25	1.27	1.27	1.28	1.29	1.29	1.29	1.30	1.30	1.30	1.32	1.32	1.33	1.34	1.35	1.36	1.36	1.37	1.38	1.39	1.40	1.41	1.43	1.44	1.46	1.47	1.49	1.51	1.53	1.54 1	1.0%
REM000:ja_FromCellul	os From Cellulose	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 23	3.3%
REM000:ja_Imports	Net Imports	-0.10	-0.11	-0.14	-0.14	-0.15	-0.16	-0.16	-0.16	-0.17	-0.17	-0.18	-0.19	-0.19	-0.20	-0.20	-0.21	-0.21	-0.22	-0.23	-0.23	-0.24	-0.24	-0.25	-0.26	-0.26	-0.27	-0.28	-0.29	-0.30	-0.31	-0.32 4	4.0%
REM000:ja_Total	Total U.S. Supply of Ethanol	1.04	1.14	1.13	1.13	1.13	1.13	1.13	1.13	1.13	1.13	1.13	1.13	1.13	1.13	1.13	1.14	1.14	1.14	1.15	1.15	1.16	1.16	1.17	1.17	1.18	1.19	1.19	1.20	1.21	1.22	1.23	0.6%
	Nonmarketed Renewable Energy 8/																																
	Selected Consumption																																
REM000:la_Residential	Residential	0.28	0.32	0.35	0.38	0.41	0.43	0.46	0.49	0.52	0.55	0.58	0.61	0.64	0.67	0.71	0.74	0.78	0.82	0.85	0.89	0.93	0.97	1.01	1.05	1.09	1.13	1.17	1.21	1.26	1.30		5.4%
	at Solar Hot Water Heating	0.04	0.05	0.05	0.05	0.05	0.04	0.04	0.04	0.04	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05		0.6%
	IIF Geothermal Heat Pumps	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.05	0.05	0.05	0.05	0.05		4.8%
	w Solar Photovoltaic	0.22	0.26	0.29	0.32	0.34	0.36	0.39	0.42	0.45	0.47	0.51	0.54	0.57	0.60	0.63	0.66	0.70	0.73	0.77	0.80	0.84	0.88	0.91	0.95	0.99	1.03	1.07	1.11	1.16	1.20		5.9%
REM000:la_blowWindb	Wind	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 0	0.1%
REM000:ma Commerc	ia Commercial	0.25	0.28	0.30	0.30	0.31	0.32	0.34	0.35	0.37	0.38	0.39	0.41	0.41	0.43	0.43	0.45	0.47	0.48	0.49	0.51	0.52	0.54	0.56	0.56	0.57	0.59	0.60	0.62	0.63	0.63	0.64	3.2%
REM000:ma_Confinero		0.23	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.43	0.43	0.43	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.02	0.03	0.07		0.3%
	tor Solar Photovoltaic	0.17	0.19	0.21	0.22	0.23	0.25	0.26	0.28	0.29	0.30	0.31	0.33	0.33	0.35	0.36	0.38	0.39	0.41	0.42	0.43	0.45	0.46	0.48	0.49	0.50	0.51	0.53	0.54	0.55	0.56		4.2%
REM000:ma_blowWind		0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01		0.2%
-																																	

1/ Includes nonelectric renewable energy groups for which the energy source is bought and sold in the marketplace, although

all transactions may not necessarily be marketed, and renewable energy inputs for electricity entering the marketplace

on the electric power grid. Excludes electricity imports; see Table 2. Actual heat rates used to determine fuel consumption

for all renewable fuels except hydroelectric, geothermal, solar, and wind. Consumption at hydroelectric, geothermal, solar, and

wind facilities is determined by using the average electric power sector net heat rate for fossil fuels. 2/ Includes combined heat and power plants that have a non-regulatory status, and small on-site generating systems

3/ Includes municipal waste, landfill gas, and municipal sewage sludge. All municipal waste is included, although a

portion of the municipal waste stream contains petroleum-derived plastics and other non-renewable sources.

4/ Excludes motor gasoline component of E85.

5/ Renewable feedstocks for the on-site production of diesel and gasoline. 6/ Includes consumption of energy by electricity-only and combined heat and power plants that have a regulatory status.

7/ Includes biogenic municipal waste, landfill gas, and municipal sewage sludge. Incremental growth is assumed to be for

landfill gas facilities.

8/ Includes selected renewable energy consumption data for which the energy is not bought or sold, either

directly or indirectly as an input to marketed energy. The U.S. Energy Information Administration does not

estimate or project total consumption of nonmarketed renewable energy. --= Not applicable.

Btu = British thermal unit.

Note: Totals may not equal sum of components due to independent rounding.

Sources: 2020: U.S. Energy Information Administration (EIA), Short-Term Energy Outlook, October 2020 and EIA,

AEO2021 National Energy Modeling System run ref2021.d113020a. Projections: EIA, AEO2021 National Energy Modeling System run ref2021.d113020a.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 13 Attachment 1 of 1 Tab 1 of 1

	Codes & Standards	FPL customers	Gulf customers	FPL coefficient	Gulf coefficient	FPL MW	Gulf MW	
2021	0.814723962	5,227,485	478,217	-0.887736916	-1.227408423	-3,781	-478	-4,259
2022	0.858159304	5,302,135	479,107	-0.887736916	-1.227408423	-4,039	-505	-4,544
2023	0.881716224	5,374,903	483,974	-0.887736916	-1.227408423	-4,207	-524	-4,731
2024	0.896272339	5,446,315	488,831	-0.887736916	-1.227408423	-4,333	-538	-4,871
2025	0.917233657	5,516,177	493,368	-0.887736916	-1.227408423	-4,492	-555	-5,047
2026	0.937196723	5,585,057	497,732	-0.887736916	-1.227408423	-4,647	-573	-5,219
2027	0.957114967	5,653,463	502,051	-0.887736916	-1.227408423	-4,804	-590	-5,393
2028	0.978997035	5,720,909	506,305	-0.887736916	-1.227408423	-4,972	-608	-5,580
2029	0.978997035	5,787,299	510,479	-0.887736916	-1.227408423	-5,030	-613	-5,643
2030	0.978997035	5,853,136	514,629	-0.887736916	-1.227408423	-5,087	-618	-5,705
2031	1.001379382	5,918,556	518,817	-0.887736916	-1.227408423	-5,261	-638	-5,899

-1,640 <<< incremental reduction to Summer Peak demand from 2021 to 2031

Variable Descriptions

Codes & Standards: Summer Peak kW per customer reduction

FPL customers: the number of FPL legacy customers at the time of the Summer Peak (not the same as the annual average customers shown in TYSP schedule 2.3, column 21) Gulf customers: the number of Gulf legacy customers at the time of the Summer Peak (not the same as the annual average customers shown in TYSP schedule 2.3, column 21)

FPL coefficient: model estimate coefficient for the codes & standard variable on FPL legacy summer peak

Gulf coefficient: model estimate coefficient for the codes & standard variable on Gulf legacy summer peak

FPL MW: the estimated cumulative impact of codes & standards on FPL legacy Summer Peak Gulf MW: the estimated cumulative impact of codes & standards on Gulf legacy Summer Peak

Florida Power & Light Company Docket No. 20220000-OT

Ten-Year Site Plan Staff's Third Data Request Request No. 14

Attachment 1 of 2

Attachment	1 1 01 2										
Tab 1 of 4											
	NEL MWh			Lookup	Customers P			Maximum		Peak/Cust I	
1/3/2010	317,155	15,820	2010	1 2010:1	4,502,130	3.514	49.6	56.1	44.6	3.514	44.6
1/4/2010	353,467	17,559	2010	1 2010:1	4,502,130	3.900	47.8	57.3	39.8	3.900	39.8
1/5/2010	373,992	18,807	2010	1 2010:1	4,502,130	4.177	46.6	54.8	39.3	4.177	39.3
1/6/2010	419,447	21,525	2010	1 2010:1	4,502,130	4.781	44.6	54.8	35.9	4.781	35.9
1/7/2010	395,588	21,021	2010	1 2010:1	4,502,130	4.669	48.5	60.5	39.2	4.669	39.2
1/8/2010	327,238	17,513	2010	1 2010:1	4,502,130	3.890	57.2	70.6	45.9	3.890	45.9
1/9/2010	411,024	22,229	2010	1 2010:1	4,502,130	4.937	43.0	55.2	35.4	4.937	35.4
1/10/2010	507,660	23,514	2010	1 2010:1	4,502,130	5.223	39.3	47.9	33.2	5.223	33.2
1/11/2010	465,143	24,353	2010	1 2010:1	4,502,130	5.409	45.0	58.7	33.4	5.409	33.4
1/12/2010	407,962	22,592	2010	1 2010:1	4,502,130	5.018	49.1	61.2	38.6	5.018	38.6
1/13/2010	371,221	20,587	2010	1 2010:1	4,502,130	4.573	51.9	64.1	41.7	4.573	41.7
2/11/2010	306,429	16,013	2010	2 2010:2	4,510,659	3.550	51.7	61.3	42.2	3.550	42.2
2/14/2010	320,447	16,311	2010	2 2010:2	4,510,659	3.616	50.5	58.8	42.0	3.616	42.0
2/17/2010	314,373	16,518	2010	2 2010:2	4,510,659	3.662	52.7	61.8	44.0	3.662	44.0
2/26/2010	304,868	16,912	2010	2 2010:2	4,510,659	3.749	53.0	64.9	42.5	3.749	42.5
3/4/2010	310,626	15,931	2010	3 2010:3	4,516,712	3.527	53.0	62.2		3.527	45.8
3/5/2010	319,271	17,779	2010	3 2010:3	4,516,712	3.936	52.9	63.1	42.0	3.936	42.0
12/6/2010	272,450	14,671	2010	12 2010:12	4,527,028	3.241	51.9	59.5	44.7	3.241	44.7
12/7/2010	333,454	16,487	2010	12 2010:12	4,527,028	3.642	47.8	57.4	39.7	3.642	39.7
12/8/2010	334,069	18,176	2010	12 2010:12	4,527,028	4.015	51.2	63.0	39.9	4.015	39.9
12/13/2010	313,836	17,331	2010	12 2010:12	4,527,028	3.828	51.6	59.1	41.7	3.828	41.7
12/14/2010	420,336	20,906	2010	12 2010:12	4,527,028	4.618	42.4	52.2	33.5	4.618	33.5
12/15/2010	404,898	21,196	2010	12 2010:12	4,527,028	4.682	47.1	59.6	36.1	4.682	36.1
12/16/2010	331,875	19,341	2010	12 2010:12	4,527,028	4.272	57.7	71.2	42.2	4.272	42.2
12/26/2010	259,636	14,773	2010	12 2010:12	4,527,028	3.263	56.1	66.9	44.8	3.263	44.8
12/27/2010	373,040	18,107	2010	12 2010:12	4,527,028	4.000	45.3	54.0	37.7	4.000	37.7
12/28/2010	390,303	20,344	2010	12 2010:12	4,527,028	4.494	47.4	60.8	36.1	4.494	36.1
12/29/2010	341,410	18,490	2010	12 2010:12	4,527,028	4.084	54.7	67.1	42.0	4.084	42.0
1/13/2011	339,721	17,955	2011	1 2011:1	4,533,029	3.961	50.0	60.8	39.8	3.961	39.8
1/14/2011	306,202	16,698	2011	1 2011:1	4,533,029	3.684	56.1	67.0	44.4	3.684	44.4
1/22/2011	242,549	12,359	2011	1 2011:1	4,533,029	2.726	59.4	65.8	44.7	2.726	44.7
1/23/2011	287,407	14,976	2011	1 2011:1	4,533,029	3.304	53.5	64.6	41.3	3.304	41.3
1/3/2012	290,319	16,202	2012	1 2012:1	4,560,015	3.553	49.2	52.6	41.6	3.553	41.6
1/4/2012	336,750	17,910	2012	1 2012:1	4,560,015	3.928	50.8	63.8	39.0	3.928	39.0
1/5/2012	301,711	16,238	2012	1 2012:1	4,560,015	3.561	55.6	68.0	44.8	3.561	44.8
1/15/2012	273,267	14,078	2012	1 2012:1	4,560,015	3.087	57.4	70.0	44.8	3.087	44.8
2/12/2012	274,358	13,968	2012	2 2012:2	4,565,707	3.059	50.2	57.3	43.8	3.059	43.8
2/13/2012	293,552	16,081	2012	2 2012:2	4,565,707	3.522	57.0	68.6	44.0	3.522	44.0
12/22/2012	255,828	12,413	2012	12 2012:12	4,588,119	2.705	53.5	64.8	45.2	2.705	45.2
12/23/2012	261,438	12,830	2012	12 2012:12	4,588,119	2.796	58.4	70.6	45.9	2.796	45.9
2/17/2013	269,883	13,328	2013	2 2013:2	4,599,265	2.898	50.5	57.8	44.0	2.898	44.0
2/18/2013	289,298	15,087	2013	2 2013:2	4,599,265	3.280	58.1	69.3	44.5	3.280	44.5
3/4/2013	295,290	15,899	2013	3 2013:3	4,605,771	3.452	53.8	66.5	41.8	3.452	41.8
3/27/2013	261,559	13,131	2013	3 2013:3	4,605,771	2.851	55.8	66.5	45.2	2.851	45.2
1/7/2014	307,098	15,946	2014	1 2014:1	4,679,556	3.408	50.1	54.2	45.6	3.408	45.6
1/17/2014	308,387	16,401	2014	1 2014:1	4,679,556	3.505	53.5	64.7	42.6	3.505	42.6
1/19/2014	299,350	15,892	2014	1 2014:1	4,679,556	3.396	55.3	67.6	42.4	3.396	42.4
1/23/2014	319,822	17,491	2014	1 2014:1	4,679,556	3.738	55.4	67.1	42.0	3.738	42.0
2/14/2015	284,553	14,363	2015	2 2015:2	4,753,351	3.022	54.6	65.7	44.6	3.022	44.6
2/19/2015	324,768	16,522	2015	2 2015:2	4,753,351	3.476	51.5	57.8	43.5	3.476	43.5
2/20/2015	356,456	19,732	2015	2 2015:2	4,753,351	4.151	51.2	61.4	38.2	4.151	38.2
1/24/2016	317,903	15,908	2016	1 2016:1	4,810,611	3.307	49.9	58.3	42.4	3.307	42.4
1/25/2016	311,689	16,915	2016	1 2016:1	4,810,611	3.516	59.1	69.9	45.8	3.516	45.8
2/8/2016	301,348	15,987	2016	2 2016:2	4,817,922	3.318	56.6	64.9	45.8	3.318	45.8
2/11/2016	311,560	16,941	2016	2 2016:2	4,817,922	3.516	55.8	67.8	45.2	3.516	45.2
1/8/2017	286,665	14,010	2017	1 2017:1	4,875,931	2.873	53.4	64.5	45.4	2.873	45.4
1/4/2018	369,930	18,483	2018	1 2018:1	4,928,305	3.750	48.5	57.1	39.3	3.750	39.3
1/5/2018	370,232	18,903	2018	1 2018:1	4,928,305	3.836	50.0	59.4	41.3	3.836	41.3
1/18/2018	361,207	18,733	2018	1 2018:1	4,928,305	3.801	48.8	58.2	38.8	3.801	38.8
1/19/2018	337,235	18,491	2018	1 2018:1	4,928,305	3.752	56.5 54.9	68.6	45.4	3.752	45.4
1/21/2019	293,675 292,511	14,907 14,822	2019 2020	1 2019:1 1 2020:1	5,029,142	2.964 2.906	54.9 54.9	66.0 64.1	43.0 45.4	2.964	43.0 45.4
1/21/2020 1/22/2020	341,224	17,461	2020	1 2020:1	5,100,083 5,100,083	3.424	54.9 51.1	64.1 60.8	45.4 39.4	2.906 3.424	45.4 39.4
12/26/2020	341,224	15,349	2020	12 2020:12	5,166,599	2.971	51.1	60.8	43.7	2.971	43.7
1212012020	515,107	10,048	2020	12 2020.12	0,100,000	2.31 1	31.4	00.3	40.7	2.311	40.7

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 14 Attachment 1 of 2 Tab 2 of 4

Year Month		Day I	HR1	HR2	HR3 I	HR4	HR5	HR6 F	IR7	HR8	HR9	HR10	HR11	HR12	HR13	HR14	HR15	HR16 I	HR17	HR18	HR19 H	1R20	HR21 I	HR22 F	1R23 I	HR24		
1989	12	22	61	59	59	58	57	57	58	60	61	66	66	66	64	64	59	58	58	59	59	59	57	58	58	56		
1989	12	23	55	53	53	53	53	53	53	53	53	52	51	50	49	49	47	45	42	40	39	38	37	35	33	33		
1989	12	24	31	30	30	29	30	29	28	30	33	35	38	40	41	42	42	41	39	37	35	35	34	34	33	32 Min	Avg	
1989	12	25	31	30	29	29	30	29	31	35	41	45	49	51	52	54	54	52	49	46	43	42	42	41	39	39	29	45

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 14 Attachment 1 of 2 Tab 3 of 4 SUMMARY OUTPUT

Regression Sta	tistics
Multiple R	0.816759
R Square	0.667096
Adjusted R Square	0.661726
Standard Error	0.363761
Observations	64

ANOVA

	df	SS	MS	F	Significance F
Regression	1	16.43965	16.43965	124.2396049	1.90758E-16
Residual	62	8.203975	0.132322		
Total	63	24.64363			

								January	
	Coefficientstandard Erre t Stat	P-value L	Lower 95%	Upper 95%.	ower 95.0%	Jpper 95.0%	,)	P50	Dec 1989 WX
Intercept	10.0098 0.567257 17.64599	7.40478E-26	8.87587393	11.14373	8.875874	11.14373			
Minimum	-0.150596 0.013511 -11.14628	1.90758E-16	-0.177603431	-0.123588	-0.177603	-0.123588		40.22	29.00
			•						
							Customers	5.243.160	5.243.160

Customers 5,243,160 5,243,160
MW/cust 3.9522 5.6425
Peak MW 20,722 29,585
8,863
42.8%
142.8%

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 14 Attachment 1 of 2

Tab 4 of 4

	2022 TYSP															No DSM	No DSM		
	Preliminary Peak	Wholesale FR W	/holesale non-FR Wh	holesale Total Sol	lar Pl	HEV EDR	DSM	F	inal N	No DSM	Adjustment Factor P	reliminary Peak N	lo DSM		FPL SA	2022 TYSP 19	89 Winter Scenario	MW Change 9	6 Change
2022	19,323	733	355	1,088	-5	14	0	-21	20,400	20,421	1.427704146	28,635	29,000	42.01%	2022	20,421	29,000	8,579	42.0%
2023	19,685	746	365	1,110	-13	32	0	-34	20,780	20,814	1.427704146	29,169	29,553	41.98%	2023	20,814	29,553	8,738	42.0%
2024	19,997	754	384	1,138	-21	55	0	-48	21,120	21,168	1.427704146	29,626	30,043	41.93%	2024	21,168	30,043	8,876	41.9%
2025	20,297	760	287	1,047	-28	84	0	-48	21,352	21,400	1.427704146	30,064	30,407	42.09%	2025	21,400	30,407	9,007	42.1%
2026	20,595	766	284	1,050	-35	124	0	-48	21,685	21,733	1.427704146	30,497	30,869	42.04%	2026	21,733	30,869	9,136	42.0%
2027	20,891	772	194	966	-43	174	0	-48	21,939	21,987	1.427704146	30,928	31,253	42.14%	2027	21,987	31,253	9,265	42.1%
2028	21,189	777	168	945	-52	235	0	-48	22,270	22,318	1.427704146	31,361	31,713	42.10%	2028	22,318	31,713	9,395	42.1%
2029	21,479	783	168	951	-62	310	0	-48	22,629	22,678	1.427704146	31,783	32,199	41.99%	2029	22,678	32,199	9,522	42.0%
2030	21,752	788	154	942	-73	399	0	-48	22,972	23,020	1.427704146	32,180	32,660	41.88%	2030	23,020	32,660	9,640	41.9%
2031	22,063	794	154	948	-86	501	0	-48	23,378	23,426	1.427704146	32,633	33,202	41.73%	2031	23,426	33,202	9,776	41.7%
2032	22,382	800	154	954	-96	618	0	-48	23,810	23,858	1.427704146	33,097	33,773	41.56%	2032	23,858	33,773	9,915	41.6%
2033	22,691	805	154	959	-104	750	0	-48	24,248	24,296	1.427704146	33,545	34,345	41.36%	2033	24,296	34,345	10,049	41.4%
2034	22,995	809	154	964	-112	894	0	-48	24,693	24,741	1.427704146	33,986	34,923	41.15%	2034	24,741	34,923	10,181	41.2%
2035	23,302	813	154	967	-118	1,052	0	-48	25,154	25,202	1.427704146	34,428	35,516	40.92%	2035	25,202	35,516	10,313	40.9%
2036	23,629	817	154	971	-125	1,219	0	-48	25,646	25,694	1.427704146	34,902	36,150	40.69%	2036	25,694	36,150	10,456	40.7%
2037	23,955	822	154	976	-132	1,393	0	-48	26,144	26,192	1.427704146	35,374	36,789	40.46%	2037	26,192	36,789	10,597	40.5%
2038	24,277	826	154	980	-139	1,562	0	-48	26,633	26,681	1.427704146	35,840	37,418	40.24%	2038	26,681	37,418	10,737	40.2%
2039	24,604	830	154	984	-145	1,727	0	-48	27,122	27,170	1.427704146	36,312	38,048	40.04%	2039	27,170	38,048	10,878	40.0%
2040	24,938	834	154	988	-152	1,886	0	-48	27,613	27,661	1.427704146	36,796	38,685	39.85%	2040	27,661	38,685	11,023	39.9%

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan

Staff's Third Data Request

Request No. 14

Attachment 2 of 2

Tab 1 of 4											
	NEL MWh			Nonth Lookup	Customers F		, ,	Maximum		Peak/Cust	
1/1/2010 1/2/2010	29,935 37,305	1,537 1,757	2010 2010	1 2010:1 1 2010:1	428,979 428,979	3.583 4.096	46.9 39.8	53.0 50.0		3.583 4.096	39.0 32.0
1/3/2010	41,878	1,979		1 2010:1	428,979	4.613	35.3	45.0		4.613	28.0
1/4/2010	45,475	2,216		1 2010:1	428,979	5.166	33.6	44.0		5.166	28.0
1/5/2010	49,371	2,475	2010	1 2010:1	428,979	5.770	30.8	41.0		5.770	21.0
1/6/2010	47,705	2,455	2010	1 2010:1	428,979	5.723	33.6	47.0		5.723	25.0
1/7/2010	41,377	2,276		1 2010:1	428,979	5.306	43.4	62.0		5.306	28.0
1/8/2010	47,305	2,296		1 2010:1	428,979	5.352	30.3	36.0		5.352	25.0
1/9/2010	51,579	2,485		1 2010:1	428,979	5.793	28.6	38.0		5.793	20.0
1/10/2010 1/11/2010	51,483 49,055	2,477 2,553		1 2010:1 1 2010:1	428,979 428,979	5.774 5.951	29.8 33.7	40.0 44.0		5.774 5.951	22.0 21.0
1/11/2010	41,846	2,333		1 2010:1	428,979	5.170	42.5	56.0		5.931	32.0
1/13/2010	43,309	2,309		1 2010:1	428,979	5.383	37.3	47.0		5.383	28.0
1/14/2010	39,510	2,090		1 2010:1	428,979	4.872	44.7	55.0		4.872	35.0
1/15/2010	33,864	1,868		1 2010:1	428,979	4.355	51.9	63.0		4.355	40.0
1/18/2010	28,858	1,402	2010	1 2010:1	428,979	3.268	51.2	60.0	45.0	3.268	45.0
1/19/2010	30,106	1,577		1 2010:1	428,979	3.676	51.7			3.676	40.0
1/25/2010	27,223	1,385		1 2010:1	428,979	3.229	53.3	61.0		3.229	46.0
1/26/2010	28,851	1,430		1 2010:1	428,979	3.333	53.2			3.333	43.0
1/27/2010 1/28/2010	31,603 31,355	1,648 1,685		1 2010:1 1 2010:1	428,979 428,979	3.842 3.928	47.2 50.6	60.0 65.0		3.842 3.928	39.0 39.0
1/30/2010	27,589	1,541	2010	1 2010.1	428,979	3.592	47.7	66.0		3.592	36.0
1/31/2010	36,512	1,798		1 2010:1	428,979	4.191	39.8	49.0		4.191	32.0
2/1/2010	36,385	1,830		2 2010:2	429,059	4.265	44.8	54.0		4.265	36.0
2/2/2010	29,837	1,489		2 2010:2	429,059	3.470	52.2	64.0		3.470	42.0
2/3/2010	30,081	1,559	2010	2 2010:2	429,059	3.634	51.5	60.0		3.634	43.0
2/6/2010	29,584	1,556		2 2010:2	429,059	3.627	46.9	54.0		3.627	41.0
2/7/2010	33,987	1,629		2 2010:2	429,059	3.797	40.7	47.0		3.797	36.0
2/8/2010	35,530	1,943		2 2010:2	429,059	4.529	46.0	55.0		4.529	34.0
2/9/2010 2/10/2010	31,148 41,636	1,663 2,143		2 2010:2 2 2010:2	429,059 429,059	3.876 4.995	50.5 38.5	59.0 46.0		3.876 4.995	35.0 30.0
2/10/2010	41,586	1,992		2 2010:2	429,059	4.643	38.4	43.0		4.643	34.0
2/12/2010	44,167	2,131	2010	2 2010:2	429,059	4.967	36.0	38.0		4.967	32.0
2/13/2010	41,084	2,083		2 2010:2	429,059	4.855	40.0	51.0		4.855	29.0
2/14/2010	35,567	1,888		2 2010:2	429,059	4.400	47.0	59.0		4.400	35.0
2/15/2010	34,355	1,759		2 2010:2	429,059	4.100	44.4	55.0		4.100	36.0
2/16/2010	40,905	2,123		2 2010:2	429,059	4.948	37.2	48.0		4.948	27.0
2/17/2010	39,369	2,144		2 2010:2	429,059	4.997	42.5	54.0		4.997	30.0
2/18/2010	37,011	2,059		2 2010:2	429,059	4.799	44.3	58.0		4.799	31.0
2/19/2010 2/20/2010	33,027 30,110	1,802 1,548		2 2010:2 2 2010:2	429,059 429,059	4.200 3.608	48.7 49.7	59.0 63.0		4.200 3.608	37.0 37.0
2/21/2010	28,706	1,348		2 2010:2	429,059	3.212	53.6			3.212	42.0
2/23/2010	28,329	1,408		2 2010:2	429,059	3.282	50.0			3.282	43.0
2/24/2010	35,103	1,819		2 2010:2	429,059	4.240	43.6	49.0		4.240	39.0
2/25/2010	38,813	2,071		2 2010:2	429,059	4.827	41.0	52.0		4.827	31.0
2/26/2010	35,696	2,025		2 2010:2	429,059	4.720	45.1	56.0		4.720	32.0
2/27/2010	31,730	1,497		2 2010:2	429,059	3.489	48.0	56.0		3.489	44.0
2/28/2010 3/1/2010	30,954 30,271	1,558		2 2010:2	429,059	3.631 3.737	51.0	65.0		3.631 3.737	39.0
3/1/2010	34,099	1,604 1,857		3 2010:3 3 2010:3	429,243 429,243	4.326	51.2 44.6			4.326	40.0 42.0
3/3/2010	34,966	1,815		3 2010:3	429,243	4.228	44.9	55.0		4.228	36.0
3/4/2010	35,403	1,934		3 2010:3	429,243	4.506	45.8			4.506	34.0
3/5/2010	33,879	1,905		3 2010:3	429,243	4.438	48.3			4.438	34.0
3/6/2010	31,311	1,600		3 2010:3	429,243	3.727	50.3	64.0		3.727	38.0
3/7/2010	30,391	1,584		3 2010:3	429,243	3.690	51.6			3.690	36.0
3/8/2010	28,458	1,470		3 2010:3	429,243	3.425	56.5			3.425	44.0
3/14/2010	23,788	1,232		3 2010:3	429,243	2.870	58.3			2.870	46.0
3/16/2010 3/17/2010	27,552 28,873	1,387 1,450		3 2010:3 3 2010:3	429,243 429,243	3.231 3.378	53.6 50.7			3.231 3.378	46.0 46.0
3/17/2010	24,581	1,430		3 2010.3	429,243	3.033	53.4	60.0		3.033	45.0
3/22/2010	28,988	1,431		3 2010:3	429,243	3.334	49.0			3.334	40.0
3/23/2010	27,170	1,399		3 2010:3	429,243	3.259	58.3	69.0		3.259	45.0
3/27/2010	24,341	1,159	2010	3 2010:3	429,243	2.700	58.4	66.0	45.0	2.700	45.0
3/30/2010	25,133	1,204		3 2010:3	429,243	2.805	58.3			2.805	46.0
11/5/2010	25,701	1,253		11 2010:11		2.912	51.5			2.912	44.0
11/6/2010	27,160	1,275	2010	11 2010:11	430,218	2.964	49.5	60.0	38.0	2.964	38.0

11/7/2010	27,913	1,327	2010	11 2010:11	430,218	3.084	50.1	62.0	41.0	3.084	41.0
11/8/2010	28,241	1,426	2010	11 2010:11	430,218	3.315	53.4	68.0	39.0	3.315	39.0
					-						
11/9/2010	26,907	1,308	2010	11 2010:11	430,218	3.040	59.3	74.0	44.0	3.040	44.0
11/18/2010	27,078	1,300	2010	11 2010:11	430,218	3.022	58.6	69.0	46.0	3.022	46.0
11/26/2010	25,231	1,231	2010	11 2010:11	430,218	2.861	59.7	75.0	41.0	2.861	41.0
11/27/2010	26.785	1,286	2010	11 2010:11	430,218	2.989	45.0	58.0	34.0	2.989	34.0
11/28/2010	28,149	1,326	2010	11 2010:11	430,218	3.082	49.6	60.0	41.0	3.082	41.0
11/30/2010	26,434	1,311	2010	11 2010:11	430,218	3.047	61.7	76.0	43.0	3.047	43.0
12/1/2010	30,963	1,573	2010	12 2010:12	430,658	3.653	43.6	54.0	37.0	3.653	37.0
12/2/2010	33,013	1,720	2010	12 2010:12	430,658	3.994	46.8	61.0	35.0	3.994	35.0
12/3/2010	30,600	1,640	2010	12 2010:12	430,658	3.808	53.3	66.0	41.0	3.808	41.0
12/5/2010	27,409	1,513	2010	12 2010:12	430,658	3.513	47.3	60.0	38.0	3.513	38.0
12/6/2010	37,112	1,816	2010	12 2010:12	430,658	4.217	38.9	48.0	32.0	4.217	32.0
					-						
12/7/2010	39,360	2,016	2010	12 2010:12	430,658	4.681	39.1	52.0	28.0	4.681	28.0
12/8/2010	42,490	2,019	2010	12 2010:12	430,658	4.688	37.4	43.0	32.0	4.688	32.0
12/9/2010	41,933	2,203	2010	12 2010:12	430,658	5.115	37.7	52.0	27.0	5.115	27.0
12/10/2010	36,476	1,977	2010	12 2010:12	430,658	4.591	46.2	58.0	36.0	4.591	36.0
12/11/2010	30,198	1,499	2010	12 2010:12	430,658	3.481	58.5	69.0	45.0	3.481	45.0
					-						
12/12/2010	29,989	1,788	2010	12 2010:12	430,658	4.152	45.0	57.0	34.0	4.152	34.0
12/13/2010	44,053	2,173	2010	12 2010:12	430,658	5.046	33.5	40.0	28.0	5.046	28.0
12/14/2010	45,936	2,314	2010	12 2010:12	430,658	5.373	34.1	46.0	25.0	5.373	25.0
12/15/2010	38,633	2,007	2010	12 2010:12	430,658	4.660	50.1	61.0	30.0	4.660	30.0
12/18/2010	29.535	1,463	2010	12 2010:12	430,658	3.397	46.6	54.0	42.0	3.397	42.0
12/19/2010	32,766	1,571	2010	12 2010:12	430,658	3.648	43.4	56.0	34.0	3.648	34.0
					,	4.187				4.187	
12/20/2010	35,403	1,803	2010	12 2010:12	430,658		45.5	56.0	35.0		35.0
12/21/2010	31,200	1,492	2010	12 2010:12	430,658	3.464	57.2	66.0	42.0	3.464	42.0
12/23/2010	29,664	1,481	2010	12 2010:12	430,658	3.439	46.5	54.0	40.0	3.439	40.0
12/24/2010	32,059	1,594	2010	12 2010:12	430,658	3.701	45.5	54.0	36.0	3.701	36.0
12/25/2010	31,916	1,558	2010	12 2010:12	430,658	3.618	44.1	50.0	36.0	3.618	36.0
12/26/2010	40,564	1,977	2010	12 2010:12	430,658	4.591	35.6	40.0	30.0	4.591	30.0
	,										
12/27/2010	43,576	2,135	2010	12 2010:12	430,658	4.958	35.2	49.0	27.0	4.958	27.0
12/28/2010	42,276	2,211	2010	12 2010:12	430,658	5.134	38.0	49.0	25.0	5.134	25.0
12/29/2010	37,121	1,971	2010	12 2010:12	430,658	4.577	46.9	58.0	33.0	4.577	33.0
1/2/2011	26,798	1,443	2011	1 2011:1	430,874	3.349	50.0	59.0	39.0	3.349	39.0
1/3/2011	34,490	1,829	2011	1 2011:1	430,874	4.245	45.9	60.0	35.0	4.245	35.0
1/4/2011	30,434	1,480	2011	1 2011:1	430,874	3.435	52.8	61.0	44.0	3.435	44.0
1/6/2011	28,772	1,455	2011	1 2011:1	430,874	3.377	51.0	60.0	44.0	3.377	44.0
1/7/2011	31,136	1,662	2011	1 2011:1	430,874	3.857	53.3	63.0	40.0	3.857	40.0
1/8/2011	28,356	1,403	2011	1 2011:1	430,874	3.256	50.7	59.0	43.0	3.256	43.0
1/9/2011	36,277	1,796	2011	1 2011:1	430,874	4.168	41.5	45.0	39.0	4.168	39.0
1/10/2011	39,202	1,908	2011	1 2011:1	430,874	4.428	40.7	43.0	38.0	4.428	38.0
1/11/2011	39,935	1,981	2011	1 2011:1	430,874	4.598	40.0	47.0	35.0	4.598	35.0
	,				,						
1/12/2011	46,034	2,278	2011	1 2011:1	430,874	5.287	33.8	44.0	27.0	5.287	27.0
1/13/2011	48,890	2,495	2011	1 2011:1	430,874	5.791	32.1	44.0	23.0	5.791	23.0
1/14/2011	44,850	2,425	2011	1 2011:1	430,874	5.628	37.3	52.0	26.0	5.628	26.0
1/15/2011	39,376	2,088	2011	1 2011:1	430,874	4.846	45.0	59.0	30.0	4.846	30.0
1/16/2011	32,529	1,594	2011	1 2011:1	430,874	3.699	50.4	60.0	41.0	3.699	41.0
1/17/2011	31,478	1,480	2011	1 2011:1	430,874	3.435	51.9	61.0	46.0	3.435	46.0
					-						
1/19/2011	27,786	1,378	2011	1 2011:1	430,874	3.198	53.8	62.0	46.0	3.198	46.0
1/20/2011	30,044	1,494	2011	1 2011:1	430,874	3.467	53.0	59.0	45.0	3.467	45.0
1/21/2011	32,497	1,642	2011	1 2011:1	430,874	3.811	44.0	54.0	36.0	3.811	36.0
1/22/2011	39,254	1,973	2011	1 2011:1	430,874	4.579	38.9	51.0	28.0	4.579	28.0
1/23/2011	38,423	2,012	2011	1 2011:1	430,874	4.670	42.2	53.0	31.0	4.670	31.0
1/24/2011	35,177	1,871	2011	1 2011:1	430,874	4.342	50.5	57.0	41.0	4.342	41.0
1/24/2011	30,198	1,506	2011	1 2011:1	430,874	3.495	49.2	59.0	38.0	3.495	38.0
1/27/2011	35,812	1,906	2011	1 2011:1	430,874	4.424	45.0	55.0	33.0	4.424	33.0
1/28/2011	31,077	1,651	2011	1 2011:1	430,874	3.832	55.1	69.0	45.0	3.832	45.0
1/29/2011	27,764	1,377	2011	1 2011:1	430,874	3.196	56.0	68.0	43.0	3.196	43.0
2/2/2011	32,260	1,802	2011	2 2011:2	431,372	4.177	41.9	56.0	37.0	4.177	37.0
2/3/2011	39,648	1,880	2011	2 2011:2	431,372	4.358	39.7	44.0	37.0	4.358	37.0
2/4/2011	36,844	1,681	2011	2 2011:2	431,372	3.897	45.3	48.0	41.0	3.897	41.0
2/5/2011	34,281	1,660	2011	2 2011:2	431,372	3.848	42.0	46.0	35.0	3.848	35.0
2/6/2011	35,322	1,852	2011	2 2011:2	431,372	4.293	44.0	54.0	32.0	4.293	32.0
2/7/2011	33,256	1,616	2011	2 2011:2	431,372	3.746	50.3	61.0	40.0	3.746	40.0
2/8/2011	36,490	1,890	2011	2 2011:2	431,372	4.381	42.6	54.0	31.0	4.381	31.0
2/9/2011	37,651	1,826	2011	2 2011:2	431,372	4.233	45.6	52.0	40.0	4.233	40.0
2/10/2011	39,434	1,963	2011	2 2011:2	431,372	4.551	39.3	44.0	33.0	4.551	33.0
2/11/2011	39,773	2,107	2011	2 2011:2	431,372	4.884	38.8	52.0	30.0	4.884	30.0
2/12/2011	37,163	1,981	2011	2 2011:2	431,372	4.592	43.9	60.0	29.0	4.592	29.0
2/13/2011	33,453	1,779	2011	2 2011:2	431,372	4.124	49.3	62.0	33.0	4.124	33.0
2/14/2011	31,448	1,745	2011	2 2011:2	431,372	4.045	53.8	68.0	39.0	4.045	39.0
2/15/2011	28,222	1,444	2011	2 2011:2	431,372	3.347	56.5	68.0	45.0	3.347	45.0
2/17/2011	27,265	1,412	2011	2 2011:2	431,372	3.273	56.0	66.0	46.0	3.273	46.0
3/6/2011	26,154	1,398	2011	3 2011:3	431,743	3.238	49.1	56.0	40.0	3.238	40.0
3/7/2011	30,444	1,537	2011	3 2011:3	431,743	3.560	47.2	56.0	37.0	3.560	37.0

3/10/2011	26,977	1,358	2011	3 2011:3	431,743	3.145	53.1	61.0	46.0	3.145	46.0
3/11/2011	29,021	1,480	2011	3 2011:3	431,743	3.428	51.7	66.0	38.0	3.428	38.0
3/12/2011	26,802	1,245	2011	3 2011:3	431,743	2.884	56.1	66.0	43.0	2.884	43.0
	,				,						
4/6/2011	26,629	1,280	2011	4 2011:4	432,311	2.961	59.7	69.0	45.0	2.961	45.0
10/20/2011	25,173	1,236	2011	10 2011:10	432,405	2.858	54.7	66.0	44.0	2.858	44.0
10/21/2011	25,032	1,197	2011	10 2011:10	432,405	2.768	57.0	71.0	43.0	2.768	43.0
10/22/2011	24,034	1,129	2011	10 2011:10	432,405	2.611	57.6	71.0	44.0	2.611	44.0
10/30/2011	24,324	1,170	2011	10 2011:10	432,405	2.706	55.8	65.0	46.0	2.706	46.0
10/31/2011	25,225	1,167	2011	10 2011:10	432,405	2.699	58.8	73.0	45.0	2.699	45.0
11/4/2011	25,438	1,212	2011	11 2011:11	432,122	2.805	52.3	63.0	42.0	2.805	42.0
11/10/2011	26,488	1,360	2011	11 2011:11	432,122	3.147	50.3	58.0	46.0	3.147	46.0
11/11/2011	28,237	1,343	2011	11 2011:11	432,122	3.108	50.8	65.0	38.0	3.108	38.0
11/12/2011	27,330	1,309	2011	11 2011:11	432,122	3.029	54.5	66.0	39.0	3.029	39.0
11/17/2011	25,995	1,300	2011	11 2011:11	432,122	3.008	57.2	66.0	46.0	3.008	46.0
11/18/2011	27,223	1,364	2011	11 2011:11	432,122	3.157	52.7	61.0	41.0	3.157	41.0
11/28/2011	27,218	1,470	2011	11 2011:11	432,122	3.402	47.0	52.0	42.0	3.402	42.0
11/29/2011	30,223	1,467	2011	11 2011:11	432,122	3.395	46.9	59.0	37.0	3.395	37.0
11/30/2011	31,613	1,564	2011	11 2011:11	432,122	3.619	45.8	55.0	37.0	3.619	37.0
12/1/2011	33,503	1,771	2011	12 2011:12	432,536	4.094	46.2	62.0	36.0	4.094	36.0
12/2/2011	30,220	1,563	2011	12 2011:12	432,536	3.614	53.1	66.0	41.0	3.614	41.0
12/7/2011	28,600	1,610	2011	12 2011:12	432,536	3.722	46.2	54.0	39.0	3.722	39.0
12/8/2011	33,245	1,661	2011	12 2011:12	432,536	3.840	43.1	53.0	35.0	3.840	35.0
12/9/2011	32,750	1,719	2011	12 2011:12	432,536	3.974	47.5	59.0	37.0	3.974	37.0
12/10/2011	31,376	1,467	2011	12 2011:12	432,536	3.392	48.1	58.0	43.0	3.392	43.0
12/11/2011	33,582	1,556	2011	12 2011:12	432,536	3.597	46.5	52.0	39.0	3.597	39.0
12/17/2011	24,439	1,264	2011	12 2011:12	432,536	2.922	55.1	62.0	45.0	2.922	45.0
12/18/2011	28,532	1,354	2011	12 2011:12	432,536	3.130	50.0	62.0	41.0	3.130	41.0
12/19/2011	29,424	1,462	2011	12 2011:12	432,536	3.380	57.1	66.0	45.0	3.380	45.0
12/28/2011	29,076	1,398	2011	12 2011:12	432,536	3.232	48.8	57.0	41.0	3.232	41.0
12/29/2011	28,407	1,374	2011	12 2011:12	432,536	3.177	54.2	65.0	44.0	3.177	44.0
1/2/2012	28,154	1,498	2012	1 2012:1	432,660	3.462	48.9	57.0	42.0	3.462	42.0
1/3/2012	37,590	1,865	2012	1 2012:1	432,660	4.311	38.5	48.0	31.0	4.311	31.0
1/4/2012	39,515	2,139	2012	1 2012:1	432,660	4.944	44.3	56.0	29.0	4.944	29.0
	,										
1/12/2012	27,381	1,362	2012	1 2012:1	432,660	3.148	55.3	69.0	41.0	3.148	41.0
1/13/2012	34,717	1,776	2012	1 2012:1	432,660	4.105	40.5	50.0	32.0	4.105	32.0
1/14/2012	34,555	1,793	2012	1 2012:1	432,660	4.144	45.9	57.0	32.0	4.144	32.0
1/15/2012	29,637	1,446	2012	1 2012:1	432,660	3.342	50.2	62.0	39.0	3.342	39.0
1/18/2012	25,802	1,358	2012	1 2012:1	432,660	3.139	53.1	64.0	44.0	3.139	44.0
1/19/2012	29,697	1,581	2012	1 2012:1	432,660	3.654	53.8	64.0	41.0	3.654	41.0
1/27/2012	24,423	1,201	2012	1 2012:1	432,660	2.776	56.3	65.0	46.0	2.776	46.0
1/28/2012	25,769	1,222	2012	1 2012:1	432,660	2.824	55.5	67.0	43.0	2.824	43.0
1/29/2012	26,564	1,320	2012	1 2012:1	432,660	3.051	50.3	63.0	41.0	3.051	41.0
1/30/2012	30,478	1,668	2012	1 2012:1	432,660	3.855	51.7	65.0	36.0	3.855	36.0
2/9/2012	27,350	1,346	2012	2 2012:2	433,299	3.106	51.3	61.0	43.0	3.106	43.0
2/11/2012	29,310	1,590	2012	2 2012:2	433,299	3.670	45.3	53.0	33.0	3.670	33.0
2/12/2012	38,505	1,915	2012	2 2012:2	433,299	4.420	37.4	49.0	28.0	4.420	28.0
2/13/2012	36,263	1,917	2012	2 2012:2	433,299	4.424	47.4	60.0	34.0	4.424	34.0
2/20/2012	27,671	1,388	2012	2 2012:2	433,299	3.203	52.8	64.0	42.0	3.203	42.0
3/4/2012	25,561		2012	3 2012:3	433,927	2.894	55.4	65.0	44.0	2.894	44.0
		1,256									
4/24/2012	24,612	1,198	2012	4 2012:4	434,376	2.758	61.0	72.0	45.0	2.758	45.0
10/29/2012	27,404	1,361	2012	10 2012:10	434,750	3.131	52.8	63.0	44.0	3.131	44.0
10/30/2012	28,411	1,384	2012	10 2012:10	434,750	3.183	54.4	67.0	43.0	3.183	43.0
11/7/2012	26,244	1,310	2012	11 2012:11	434,666	3.014	56.2	67.0	46.0	3.014	46.0
11/8/2012	27,083	1,323	2012	11 2012:11	434,666	3.044	53.1	66.0	43.0	3.044	43.0
11/9/2012	27,186	1,319	2012	11 2012:11	434,666	3.035	55.9	69.0	42.0	3.035	42.0
11/13/2012	25,975	1,308	2012	11 2012:11	434,666	3.009	51.7	63.0	43.0	3.009	43.0
11/14/2012	26,760	1,279	2012	11 2012:11	434,666	2.942	53.7	67.0	42.0	2.942	42.0
11/17/2012	26,899		2012	11 2012:11	,	2.850	54.6	66.0	44.0	2.850	44.0
		1,239			434,666						
11/24/2012	25,098	1,265	2012	11 2012:11	434,666	2.910	52.7	62.0	41.0	2.910	41.0
11/25/2012	29,037	1,401	2012	11 2012:11	434,666	3.223	48.2	61.0	35.0	3.223	35.0
11/26/2012	29,025	1,437	2012	11 2012:11	434,666	3.306	57.7	67.0	45.0	3.306	45.0
11/29/2012	29,574	1,457	2012	11 2012:11	434,666	3.352	52.7	64.0	44.0	3.352	44.0
12/11/2012	27,005	1,480	2012	12 2012:12	434,571	3.406	47.3	54.0	44.0	3.406	44.0
12/12/2012	30,996	1,527	2012	12 2012:12	434,571	3.514	46.9	57.0	41.0	3.514	41.0
12/13/2012	31,036	1,553	2012	12 2012:12	434,571	3.574	50.0	64.0	39.0	3.574	39.0
12/14/2012	31,360	1,476	2012	12 2012:12	434,571	3.396	46.6	50.0	43.0	3.396	43.0
12/19/2012	26,886	1,308	2012	12 2012:12	434,571	3.010	61.0	72.0	46.0	3.010	46.0
12/20/2012	25,512	1,265	2012	12 2012:12	434,571	2.911	63.8	73.0	46.0	2.911	46.0
12/21/2012	30,924	1,513	2012	12 2012:12	434,571	3.482	45.6	57.0	38.0	3.482	38.0
12/22/2012	32,474	1,615	2012	12 2012:12	434,571	3.716	45.5	61.0	32.0	3.716	32.0
12/23/2012	30,703	1,455	2012	12 2012:12	434,571	3.348	51.5	63.0	40.0	3.348	40.0
12/26/2012	26,857	1,489	2012	12 2012:12	434,571	3.426	47.4	59.0	38.0	3.426	38.0
12/27/2012	33,473	1,601	2012	12 2012:12	434,571	3.684	41.5	49.0	36.0	3.684	36.0
12/28/2012	31,123	1,492	2012	12 2012:12	434,571	3.433	56.2	68.0	42.0	3.433	42.0
12/29/2012	28,733	1,564	2012	12 2012:12	434,571	3.599	47.1	63.0	37.0	3.599	37.0
1212312012	20,133	1,504	2012	12 2012.12	70 7 ,011	0.033	71.1	00.0	57.0	3.333	31.0

12/30/2012	35,749	1,766	2012	12 2012:12	434,571	4.064	40.9	54.0	31.0	4.064	31.0
12/31/2012	32,248	1,595	2012	12 2012:12	434,571	3.670	51.8	62.0	40.0	3.670	40.0
					•						
1/3/2013	32,116	1,670	2013	1 2013:1	434,846	3.840	43.7	47.0	39.0	3.840	39.0
1/4/2013	34,729	1,739	2013	1 2013:1	434,846	3.999	45.4	57.0	36.0	3.999	36.0
1/5/2013	32,115	1,467	2013	1 2013:1	434,846	3.374	49.4	54.0	44.0	3.374	44.0
1/7/2013	30,662	1,556	2013	1 2013:1	434,846	3.578	51.1	63.0	40.0	3.578	40.0
1/16/2013	26,051	1,325	2013	1 2013:1	434,846	3.047	58.1	71.0	46.0	3.047	46.0
1/17/2013	31,108	1,673	2013	1 2013:1	434,846	3.847	43.8	49.0	39.0	3.847	39.0
1/18/2013	32,513	1,675	2013	1 2013:1	434,846	3.852	47.0	60.0	38.0	3.852	38.0
1/19/2013	29,671	1,444	2013	1 2013:1	434,846	3.321	52.2	63.0	43.0	3.321	43.0
1/20/2013	26,489	1,246	2013	1 2013:1	434,846	2.865	54.4	66.0	43.0	2.865	43.0
1/21/2013	27,426	1,330	2013	1 2013:1	434,846	3.059	56.1	67.0	46.0	3.059	46.0
1/22/2013	29,567	1,488	2013	1 2013:1	434,846	3.422	49.8	61.0	42.0	3.422	42.0
1/23/2013	30,756	1,648	2013	1 2013:1	434,846	3.790	53.0	64.0	40.0	3.790	40.0
	,										
1/30/2013	26,207	1,260	2013	1 2013:1	434,846	2.898	63.9	74.0	45.0	2.898	45.0
1/31/2013	29,169	1,488	2013	1 2013:1	434,846	3.422	48.3	60.0	38.0	3.422	38.0
2/1/2013	30,259	1,466	2013	2 2013:2	435,641	3.365	51.4	63.0	45.0	3.365	45.0
2/2/2013	30,111	1,558	2013	2 2013:2	435,641	3.576	50.8	61.0	38.0	3.576	38.0
2/14/2013	30,570	1,503	2013	2 2013:2	435,641	3.450	47.7	58.0	43.0	3.450	43.0
2/15/2013	30,146	1,634	2013	2 2013:2	435,641	3.751	52.6	65.0	40.0	3.751	40.0
2/16/2013	29,160	1,501	2013	2 2013:2	435,641	3.445	48.6	56.0	38.0	3.445	38.0
2/17/2013	34,406	1,731	2013	2 2013:2	435,641	3.973	42.8	52.0	32.0	3.973	32.0
2/18/2013	32,584	1,631	2013	2 2013:2	435,641	3.744	54.7	64.0	39.0	3.744	39.0
2/19/2013	26,597	1,293	2013	2 2013:2	435,641	2.968	61.3	69.0	45.0	2.968	45.0
2/20/2013	30,899	1,557	2013	2 2013:2	435,641	3.574	48.0	58.0	41.0	3.574	41.0
2/21/2013	30,018	1,518	2013	2 2013:2	435,641	3.485	56.9	65.0	44.0	3.485	44.0
3/1/2013	30,371	1,498	2013	3 2013:3	436,389	3.433	48.3	57.0	41.0	3.433	41.0
	-										
3/2/2013	34,097	1,620	2013	3 2013:3	436,389	3.712	41.8	51.0	34.0	3.712	34.0
3/3/2013	34,421	1,630	2013	3 2013:3	436,389	3.735	42.8	53.0	33.0	3.735	33.0
3/4/2013	32,916	1,840	2013	3 2013:3	436,389	4.216	53.4	64.0	38.0	4.216	38.0
3/6/2013	29,065	1,453	2013	3 2013:3	436,389	3.330	49.8	60.0	43.0	3.330	43.0
3/7/2013	30,798	1,642	2013	3 2013:3	436,389	3.763	49.7	64.0	39.0	3.763	39.0
3/8/2013	28,551	1,539	2013	3 2013:3	436,389	3.527	55.4	72.0	41.0	3.527	41.0
	,										
3/12/2013	28,386	1,446	2013	3 2013:3	436,389	3.314	52.7	65.0	42.0	3.314	42.0
3/13/2013	28,565	1,485	2013	3 2013:3	436,389	3.403	54.9	66.0	42.0	3.403	42.0
3/14/2013	29,701	1,559	2013	3 2013:3	436,389	3.573	51.5	65.0	40.0	3.573	40.0
3/15/2013	28,501	1,513	2013	3 2013:3	436,389	3.467	58.0	70.0	44.0	3.467	44.0
3/20/2013	25,457	1,245	2013	3 2013:3	436,389	2.853	59.1	66.0	46.0	2.853	46.0
3/21/2013	27,088	1,336	2013	3 2013:3	436,389	3.061	54.6	67.0	44.0	3.061	44.0
3/25/2013	26,739	1,338	2013	3 2013:3	436,389	3.066	49.9	62.0	40.0	3.066	40.0
3/26/2013	30,865	1,553	2013	3 2013:3	436,389	3.559	46.4	56.0	37.0	3.559	37.0
3/27/2013	31,401	1,676	2013	3 2013:3	436,389	3.841	48.1	60.0	36.0	3.841	36.0
3/28/2013	29,085	1,549	2013	3 2013:3	436,389	3.550	54.2	67.0	40.0	3.550	40.0
3/29/2013	26,619	1,301	2013	3 2013:3	436,389	2.981	58.2	70.0	45.0	2.981	45.0
11/12/2013	26,038	1,296	2013	11 2013:11	439,250	2.950	59.1	74.0	43.0	2.950	43.0
11/13/2013	30,835	1,504	2013	11 2013:11	439,250	3.424	45.5	57.0	36.0	3.424	36.0
11/14/2013		1,585	2013	11 2013:11		3.608	51.7	63.0	39.0	3.608	39.0
	30,527				439,250						
11/24/2013	26,432	1,353	2013	11 2013:11	439,250	3.080	49.7	57.0	43.0	3.080	43.0
11/25/2013	29,687	1,409	2013	11 2013:11	439,250	3.208	53.1	64.0	45.0	3.208	45.0
11/26/2013	26,925	1,374	2013	11 2013:11	439,250	3.128	57.9	69.0	46.0	3.128	46.0
11/27/2013	32,928	1,653	2013	11 2013:11	439,250	3.763	42.5	49.0	34.0	3.763	34.0
11/28/2013	35,922	1,783	2013	11 2013:11	439,250	4.059	39.5	52.0	29.0	4.059	29.0
11/29/2013	33,481	1,674	2013	11 2013:11	439,250	3.811	45.8	62.0	33.0	3.811	33.0
11/30/2013	30,027	1,474	2013	11 2013:11	439,250	3.356	51.2	67.0	36.0	3.356	36.0
12/1/2013	26,639	1,272	2013	12 2013:12	439,389	2.895	55.3	66.0	46.0	2.895	46.0
12/10/2013	27,923	1,521	2013	12 2013:12	439,389	3.462	50.9	67.0	42.0	3.462	42.0
12/11/2013	30,953	1,566	2013	12 2013:12	439,389	3.564	51.1	64.0	40.0	3.564	40.0
12/12/2013	29,757	1,490	2013	12 2013:12	439,389	3.391	49.8	59.0	41.0	3.391	41.0
12/13/2013	32,067	1,677	2013	12 2013:12	439,389	3.817	49.8	59.0	38.0	3.817	38.0
12/15/2013	29,014	1,610	2013	12 2013:12	439,389	3.664	44.9	57.0	37.0	3.664	37.0
12/16/2013	34,756	1,829	2013	12 2013:12	439,389	4.163	45.0	60.0	34.0	4.163	34.0
12/17/2013	32,533	1,711	2013	12 2013:12	439,389	3.894	51.2	66.0	38.0	3.894	38.0
12/18/2013	30,840	1,527	2013	12 2013:12	439,389	3.475	52.0	65.0	43.0	3.475	43.0
12/19/2013	30,084	1,536	2013	12 2013:12	439,389	3.496	57.1	66.0	46.0	3.496	46.0
12/23/2013	27,008	1,440	2013	12 2013:12	439,389	3.277	50.5	57.0	40.0	3.277	40.0
12/24/2013	33,617	1,664	2013	12 2013:12	439,389	3.787	42.2	54.0	34.0	3.787	34.0
12/25/2013	34,013	1,734	2013	12 2013:12	439,389	3.946	42.5	51.0	33.0	3.946	33.0
12/26/2013	30,599	1,436	2013	12 2013:12	439,389	3.268	48.5	58.0	40.0	3.268	40.0
12/27/2013	29,944	1,391	2013	12 2013:12	439,389	3.166	52.8	62.0	44.0	3.166	44.0
12/29/2013	27,570	1,368	2013	12 2013:12	439,389	3.113	50.2	59.0	44.0	3.113	44.0
12/30/2013	30,636	1,432	2013	12 2013:12	439,389	3.259	50.8	58.0	42.0	3.259	42.0
12/31/2013	31,726	1,648	2013	12 2013:12	439,389	3.751	47.0	52.0	45.0	3.751	45.0
1/1/2014	29,837	1,359	2014	1 2014:1	439,785	3.090	52.3	61.0	45.0	3.090	45.0
1/2/2014	29,861	1,617	2014	1 2014:1	439,785	3.677	51.9	60.0	37.0	3.677	37.0
1/3/2014	43,042	2,110	2014	1 2014:1	439,785	4.798	36.0	45.0	28.0	4.798	28.0
1/3/2014	43,042	۷,۱۱۷	2014	1 2014.1	408,700	4.790	30.0	40.0	∠0.0	4.798	20.0

1/4/2014	37,869	1,781	2014	1 2014:1	439,785	4.050	47.1	58.0	35.0	4.050	35.0
		2,294	2014	1 2014:1		5.216	34.8	49.0			25.0
1/6/2014	40,949	,			439,785				25.0	5.216	
1/7/2014	56,519	2,694	2014	1 2014:1	439,785	6.126	25.9	33.0	19.0	6.126	19.0
1/8/2014	49,950	2,659	2014	1 2014:1	439,785	6.046	35.1	49.0	22.0	6.046	22.0
1/9/2014	37,856	1,866	2014	1 2014:1	439,785	4.243	47.9	59.0	36.0	4.243	36.0
1/12/2014	28,111	1,367	2014	1 2014:1	439,785	3.108	53.3	64.0	40.0	3.108	40.0
1/15/2014	32,757	1,655	2014	1 2014:1	439,785	3.763	47.6	55.0	36.0	3.763	36.0
	,				,						
1/16/2014	38,757	2,067	2014	1 2014:1	439,785	4.700	41.7	51.0	29.0	4.700	29.0
1/17/2014	32,744	1,559	2014	1 2014:1	439,785	3.545	52.8	63.0	38.0	3.545	38.0
1/18/2014	35,684	1,823	2014	1 2014:1	439,785	4.145	43.8	52.0	31.0	4.145	31.0
1/19/2014	29,645	1,345	2014	1 2014:1	439,785	3.058	53.9	65.0	46.0	3.058	46.0
			2014	1 2014:1	439,785		52.7		41.0	3.754	41.0
1/20/2014	31,375	1,651			,	3.754		67.0			
1/21/2014	30,298	1,599	2014	1 2014:1	439,785	3.636	52.6	61.0	34.0	3.636	34.0
1/22/2014	41,197	2,148	2014	1 2014:1	439,785	4.884	37.8	49.0	28.0	4.884	28.0
1/23/2014	39,392	2,014	2014	1 2014:1	439,785	4.580	44.3	55.0	34.0	4.580	34.0
1/24/2014	43,817	2,058	2014	1 2014:1	439,785	4.680	36.1	40.0	34.0	4.680	34.0
1/25/2014	36,873	1,722	2014	1 2014:1	439,785	3.916	46.2	59.0	36.0	3.916	36.0
1/26/2014	32,542	1,609	2014	1 2014:1	439,785	3.659	49.9	59.0	39.0	3.659	39.0
1/28/2014	41,522	2,272	2014	1 2014:1	439,785	5.166	34.6	47.0	26.0	5.166	26.0
1/29/2014	57,067	2,597	2014	1 2014:1	439,785	5.905	25.3	29.0	23.0	5.905	23.0
1/30/2014	53,324	2,646	2014	1 2014:1	439,785	6.017	31.8	43.0	20.0	6.017	20.0
1/31/2014	42,261	2,368	2014	1 2014:1	439,785	5.384	43.5	57.0	30.0	5.384	30.0
2/5/2014				2 2014:2							
	26,220	1,438	2014		440,436	3.265	55.0	68.0	39.0	3.265	39.0
2/6/2014	40,665	2,050	2014	2 2014:2	440,436	4.654	37.6	40.0	35.0	4.654	35.0
2/7/2014	37,693	2,117	2014	2 2014:2	440,436	4.807	44.9	60.0	32.0	4.807	32.0
2/8/2014	28.556	1,366	2014	2 2014:2	440,436	3.101	51.5	63.0	44.0	3.101	44.0
2/9/2014	27,337	1,340	2014	2 2014:2	440,436	3.042	55.3	68.0	42.0	3.042	42.0
2/12/2014	33,793	1,708	2014	2 2014:2	440,436	3.878	46.7	50.0	42.0	3.878	42.0
2/13/2014	35,072	1,814	2014	2 2014:2	440,436	4.119	46.6	58.0	39.0	4.119	39.0
2/14/2014	32,051	1,771	2014	2 2014:2	440,436	4.021	53.2	62.0	41.0	4.021	41.0
2/15/2014	28,084	1,344	2014	2 2014:2	440,436	3.052	51.5	62.0	44.0	3.052	44.0
2/16/2014	29,030	1,456	2014	2 2014:2	440,436	3.306	54.2	67.0	42.0	3.306	42.0
2/26/2014	27,897	1,574	2014	2 2014:2	440,436	3.574	50.9	65.0	41.0	3.574	41.0
	,				•						
2/27/2014	33,940	1,742	2014	2 2014:2	440,436	3.955	43.9	56.0	35.0	3.955	35.0
2/28/2014	33,559	1,891	2014	2 2014:2	440,436	4.293	48.3	58.0	33.0	4.293	33.0
3/3/2014	26,312	1,436	2014	3 2014:3	441,083	3.256	54.3	69.0	36.0	3.256	36.0
3/4/2014	35,357	1,728	2014	3 2014:3	441,083	3.918	40.7	44.0	36.0	3.918	36.0
3/5/2014	30,995	1,544	2014	3 2014:3	441,083	3.500	52.6	62.0	44.0	3.500	44.0
3/6/2014	30,013	1,536	2014	3 2014:3	441,083	3.482	51.9	56.0	44.0	3.482	44.0
3/7/2014	32,623	1,608	2014	3 2014:3	441,083	3.646	48.0	57.0	43.0	3.646	43.0
3/8/2014	28,725	1,393	2014	3 2014:3	441,083	3.158	54.6	64.0	42.0	3.158	42.0
3/13/2014	28,720	1,520	2014	3 2014:3	441.083	3.446	52.8	66.0	39.0	3.446	39.0
3/14/2014	28,010	1,516	2014	3 2014:3	441,083	3.437	56.7	67.0	43.0	3.437	43.0
						3.405	50.2		41.0	3.405	
3/26/2014	28,914	1,502	2014	3 2014:3	441,083			59.0			41.0
3/30/2014	24,685	1,218	2014	3 2014:3	441,083	2.761	58.0	73.0	46.0	2.761	46.0
3/31/2014	26,164	1,281	2014	3 2014:3	441,083	2.904	59.1	71.0	45.0	2.904	45.0
4/16/2014	27,232	1,380	2014	4 2014:4	441,201	3.128	53.6	67.0	42.0	3.128	42.0
11/1/2014	24.362	1,203	2014	11 2014:11	443,958	2.710	49.6	60.0	40.0	2.710	40.0
11/2/2014	25,949	1,232	2014	11 2014:11	443,958	2.775	50.9	66.0	39.0	2.775	39.0
11/3/2014	26,586	1,294	2014	11 2014:11	443,958	2.915	54.6	66.0	43.0	2.915	43.0
11/10/2014	25,891	1,243	2014	11 2014:11	443,958	2.800	57.2	70.0	42.0	2.800	42.0
11/13/2014	29,062	1,596	2014	11 2014:11	443,958	3.595	43.4	50.0	39.0	3.595	39.0
11/14/2014	33,954	1,671	2014	11 2014:11	443,958	3.764	41.0	51.0	33.0	3.764	33.0
11/15/2014	31,645	1,573	2014	11 2014:11	443,958	3.543	45.0	56.0	32.0	3.543	32.0
11/16/2014	26,908	1,277	2014	11 2014:11	443,958	2.876	63.0	72.0	46.0	2.876	46.0
11/17/2014	27,585	1,510	2014	11 2014:11	443,958	3.401	52.9	71.0	36.0	3.401	36.0
11/18/2014	38,805	1,895	2014	11 2014:11	443,958	4.268	36.1	46.0	29.0	4.268	29.0
11/19/2014	40,452	2,146	2014	11 2014:11	443,958	4.834	39.3	54.0	25.0	4.834	25.0
11/20/2014	34,787	1,941	2014	11 2014:11	443,958	4.372	49.8	65.0	35.0	4.372	35.0
11/21/2014	29,166	1,507	2014	11 2014:11	443,958	3.394	54.7	68.0	41.0	3.394	41.0
11/26/2014	29,662	1,442	2014	11 2014:11	443,958	3.248	52.0	64.0	40.0	3.248	40.0
11/27/2014	27,320	1,299	2014	11 2014:11	443,958	2.926	50.9	59.0	42.0	2.926	42.0
11/28/2014	30,729	1,494	2014	11 2014:11	443,958	3.365	45.2	58.0	36.0	3.365	36.0
11/29/2014	28,586	1,382	2014	11 2014:11	443,958	3.113	53.5	68.0	39.0	3.113	39.0
12/9/2014	29,572	1,481	2014	12 2014:12	444,047	3.335	51.0	64.0	37.0	3.335	37.0
12/10/2014	31,750	1,564	2014	12 2014:12	444,047	3.522	46.3	57.0	38.0	3.522	38.0
12/11/2014	33,100	1,663	2014	12 2014:12	444,047	3.745	47.4	60.0	38.0	3.745	38.0
12/12/2014	31,101	1,615	2014	12 2014:12	444,047	3.637	51.1	63.0	41.0	3.637	41.0
12/13/2014	29,207	1,432	2014	12 2014:12	444,047	3.225	53.3	67.0	43.0	3.225	43.0
12/14/2014	28,741	1,363	2014	12 2014:12	444,047	3.069	52.0	66.0	43.0	3.069	43.0
12/15/2014	29,168	1,508	2014	12 2014:12	444,047	3.396	57.0	69.0	42.0	3.396	42.0
12/17/2014	29,051	1,443	2014	12 2014:12	444,047	3.250	49.6	59.0	40.0	3.250	40.0
12/18/2014	29,839	1,475	2014	12 2014:12	444,047	3.322	51.7	60.0	41.0	3.322	41.0
12/20/2014	29,277	1,376	2014	12 2014:12	444,047	3.099	48.3	51.0	45.0	3.099	45.0
12/25/2014	27,164	1,313	2014	12 2014:12	444,047	2.957	46.3	57.0	38.0	2.957	38.0

12/26/2014	28,083	1,300	2014	12 2014:12	444,047	2.928	54.1	64.0	44.0	2.928	44.0
12/30/2014	26,317	1,382	2014	12 2014:12	444,047	3.112	51.7	56.0	42.0	3.112	42.0
12/31/2014	30,695	1,477	2014	12 2014:12	444,047	3.326	45.5	51.0	41.0	3.326	41.0
1/1/2015	28,485	1,303	2015	1 2015:1	444,593	2.931	50.5	57.0	45.0	2.931	45.0
1/5/2015	30,006	1,525	2015	1 2015:1	444,593	3.430	46.3	55.0	41.0	3.430	41.0
1/6/2015	32,707	1,714	2015	1 2015:1	444,593	3.855	48.2	62.0	38.0	3.855	38.0
	34,619		2015	1 2015:1		3.941	44.0	56.0			29.0
1/7/2015	,	1,752			444,593				29.0	3.941	
1/8/2015	48,336	2,485	2015	1 2015:1	444,593	5.589	28.8	38.0	19.0	5.589	19.0
1/9/2015	44,830	2,127	2015	1 2015:1	444,593	4.784	36.4	41.0	32.0	4.784	32.0
1/10/2015	38,212	1,906	2015	1 2015:1	444,593	4.287	42.0	53.0	33.0	4.287	33.0
1/11/2015	32,214	1,537	2015	1 2015:1	444,593	3.457	49.9	57.0	40.0	3.457	40.0
1/13/2015	26,388	1,398	2015	1 2015:1	444,593	3.144	55.0	62.0	46.0	3.144	46.0
1/14/2015	30,633	1,529	2015	1 2015:1	444,593	3.439	46.3	53.0	43.0	3.439	43.0
1/15/2015	33,484	1,633	2015	1 2015:1	444,593	3.673	45.6	48.0	43.0	3.673	43.0
1/16/2015	33,171	1,688	2015	1 2015:1	444,593	3.797	44.6	57.0	36.0	3.797	36.0
1/17/2015	31,582	1,589	2015	1 2015:1	444,593	3.574	49.9	61.0	38.0	3.574	38.0
1/18/2015	28,037	1,296	2015	1 2015:1	444,593	2.915	53.3	67.0	42.0	2.915	42.0
1/19/2015	31,202	1,678	2015	1 2015:1	444,593	3.774	51.1	64.0	36.0	3.774	36.0
1/20/2015	28,585	1,479	2015	1 2015:1	444,593	3.327	57.6	68.0	44.0	3.327	44.0
1/23/2015	27,049	1,290	2015	1 2015:1	444,593	2.902	52.4	62.0	46.0	2.902	46.0
					,						
1/24/2015	28,980	1,393	2015	1 2015:1	444,593	3.133	47.0	57.0	41.0	3.133	41.0
1/25/2015	30,012	1,543	2015	1 2015:1	444,593	3.471	52.4	62.0	39.0	3.471	39.0
1/26/2015	28,906	1,435	2015	1 2015:1	444,593	3.228	50.1	58.0	43.0	3.228	43.0
1/27/2015	30,247	1,554	2015	1 2015:1	444,593	3.495	54.5	68.0	44.0	3.495	44.0
1/28/2015	30,668	1,619	2015	1 2015:1	444,593	3.642	50.5	64.0	42.0	3.642	42.0
1/29/2015	29,233	1,560	2015	1 2015:1	444,593	3.509	57.9	68.0	45.0	3.509	45.0
1/30/2015	26,397	1,289	2015	1 2015:1	444,593	2.899	53.3	61.0	45.0	2.899	45.0
1/31/2015	29,500	1,498	2015	1 2015:1	444,593	3.369	48.8	57.0	39.0	3.369	39.0
2/2/2015	27,865	1,563	2015	2 2015:2	445,588	3.508	48.3	64.0	35.0	3.508	35.0
2/3/2015	37,347	1,939	2015	2 2015:2	445,588	4.352	41.5	50.0	33.0	4.352	33.0
2/4/2015	34,431	1,694	2015	2 2015:2	445,588	3.802	46.8	48.0	44.0	3.802	44.0
2/5/2015	31,495	1,577	2015	2 2015:2	445,588	3.539	49.7	60.0	41.0	3.539	41.0
2/6/2015	34,096	1,891	2015	2 2015:2	445,588	4.244	43.3	55.0	32.0	4.244	32.0
	,	,									
2/7/2015	30,816	1,637	2015	2 2015:2	445,588	3.674	51.8	64.0	38.0	3.674	38.0
2/10/2015	27,867	1,402	2015	2 2015:2	445,588	3.146	49.3	59.0	41.0	3.146	41.0
2/11/2015	31,623	1,750	2015	2 2015:2	445,588	3.927	48.5	59.0	34.0	3.927	34.0
2/12/2015	29,773	1,478	2015	2 2015:2	445,588	3.317	52.2	64.0	40.0	3.317	40.0
2/13/2015	36,268	1,965	2015	2 2015:2	445,588	4.410	40.8	52.0	30.0	4.410	30.0
					•						
2/14/2015	32,215	1,724	2015	2 2015:2	445,588	3.869	51.6	65.0	37.0	3.869	37.0
2/17/2015	35,480	1,925	2015	2 2015:2	445,588	4.320	37.4	47.0	32.0	4.320	32.0
2/18/2015	40,691	2,150	2015	2 2015:2	445,588	4.825	40.6	52.0	29.0	4.825	29.0
2/19/2015	42,506	2,159	2015	2 2015:2	445,588	4.845	35.7	45.0	28.0	4.845	28.0
2/20/2015	40,590	2,229	2015	2 2015:2	445,588	5.002	44.7	56.0	31.0	5.002	31.0
2/23/2015	26,808	1,500	2015	2 2015:2	445,588	3.366	49.1	63.0	43.0	3.366	43.0
2/24/2015	32,672	1,606	2015	2 2015:2	445,588	3.604	43.7	49.0	40.0	3.604	40.0
2/25/2015	35,318	1,748	2015	2 2015:2	445,588	3.923	43.0	46.0	40.0	3.923	40.0
2/26/2015	37,626	1,805	2015	2 2015:2	445,588	4.051	40.8	46.0	37.0	4.051	37.0
2/27/2015	36,094	1,949	2015	2 2015:2	445,588	4.374	45.2	57.0	34.0	4.374	34.0
	,										
2/28/2015	31,930	1,540	2015	2 2015:2	445,588	3.456	50.4	60.0	40.0	3.456	40.0
3/5/2015	26,854	1,453	2015	3 2015:3	446,114	3.257	54.1	69.0	36.0	3.257	36.0
3/6/2015	35,083	1,914	2015	3 2015:3	446,114	4.290	41.3	53.0	29.0	4.290	29.0
3/7/2015	29,790	1,542	2015	3 2015:3	446,114	3.457	50.1	65.0	38.0	3.457	38.0
3/8/2015	25,873	1,331	2015	3 2015:3	446,114	2.984	56.8	69.0	41.0	2.984	41.0
3/28/2015	23,946	1,136	2015	3 2015:3	446,114	2.546	52.5	63.0	42.0	2.546	42.0
3/29/2015	24,507	1,177	2015	3 2015:3	446,114	2.638	56.3	65.0	44.0	2.638	44.0
11/22/2015	24,791	1,289	2015	11 2015:11	449,004	2.871	50.1	58.0	41.0	2.871	41.0
11/23/2015	29,764	1,450	2015	11 2015:11	449,004	3.229	47.3	61.0	36.0	3.229	36.0
11/24/2015	29,578	1,411	2015	11 2015:11	449,004	3.143	51.9	61.0	43.0	3.143	43.0
12/3/2015	28,026	1,481	2015	12 2015:12	449,471	3.295	48.9	52.0	45.0	3.295	45.0
12/4/2015	28,973	1,451	2015	12 2015:12	449,471	3.228	51.5	63.0	40.0	3.228	40.0
12/5/2015	25,990	1,195	2015	12 2015:12	449,471	2.659	57.7	70.0	46.0	2.659	46.0
12/18/2015	27,208	1,370	2015	12 2015:12	449,471	3.048	49.0	58.0	42.0	3.048	42.0
12/19/2015	30,602	1,462	2015	12 2015:12	449,471	3.253	46.8	57.0	39.0	3.253	39.0
12/20/2015	29,450	1,435	2015	12 2015:12	449,471	3.193	52.8	60.0	41.0	3.193	41.0
1/1/2016	26,605	1,376	2016	1 2016:1	450,031	3.058	48.8	53.0	46.0	3.058	46.0
1/2/2016	30,250	1,452	2016	1 2016:1	450,031	3.226	46.9	50.0	43.0	3.226	43.0
1/3/2016	29,986	1,453	2016	1 2016:1	450,031	3.229	48.0	53.0	44.0	3.229	44.0
1/4/2016	31,657	1,539	2016	1 2016:1	450,031	3.420	46.2	57.0	37.0	3.420	37.0
1/5/2016	35,723	1,804	2016	1 2016:1	450,031	4.009	43.6	54.0	35.0	4.009	35.0
1/6/2016	33,524	1,714	2016	1 2016:1	450,031	3.809	48.5	60.0	39.0	3.809	39.0
1/7/2016	31,312	1,543	2016	1 2016:1	450,031	3.429	50.5	56.0	44.0	3.429	44.0
1/10/2016	29,257		2016	1 2016:1	450,031	3.495	46.7	55.0		3.495	36.0
		1,573							36.0		
1/11/2016	38,142	2,002	2016	1 2016:1	450,031	4.449	39.2	50.0	31.0	4.449	31.0
1/12/2016	36,115	1,925	2016	1 2016:1	450,031	4.277	46.5	61.0	34.0	4.277	34.0
1/13/2016	33,086	1,743	2016	1 2016:1	450,031	3.873	48.8	63.0	38.0	3.873	38.0
	,				, -						

1/14/2016	32,917	1,646	2016	1 2016:1	450,031	3.658	51.3	59.0	41.0	3.658	41.0
1/17/2016	28,273	1,415	2016	1 2016:1	450,031	3.144	48.9	57.0	42.0	3.144	42.0
1/18/2016	33,917	1,689	2016	1 2016:1	450,031	3.753	45.3	56.0	34.0	3.753	34.0
1/19/2016	36,753	1,936	2016	1 2016:1	450,031	4.302	43.3	55.0	32.0	4.302	32.0
1/20/2016	33,434	1,782	2016	1 2016:1	450,031	3.960	57.0	67.0	41.0	3.960	41.0
1/22/2016	30,115	1,723	2016	1 2016:1	450,031	3.829	46.6	62.0	36.0	3.829	36.0
1/23/2016			2016	1 2016:1		4.117	37.9			4.117	
	39,155	1,853			450,031			45.0	34.0		34.0
1/24/2016	39,615	2,043	2016	1 2016:1	450,031	4.540	39.4	50.0	28.0	4.540	28.0
1/25/2016	35,888	1,911	2016	1 2016:1	450,031	4.246	50.6	61.0	36.0	4.246	36.0
1/28/2016	32,808	1,639	2016	1 2016:1	450,031	3.642	46.5	55.0	40.0	3.642	40.0
1/29/2016	32,160	1,731	2016	1 2016:1	450,031	3.846	53.1	67.0	41.0	3.846	41.0
				1 2016:1							
1/30/2016	27,641	1,368	2016		450,031	3.040	57.4	69.0	45.0	3.040	45.0
2/4/2016	28,569	1,478	2016	2 2016:2	450,547	3.280	50.4	58.0	42.0	3.280	42.0
2/5/2016	34,196	1,810	2016	2 2016:2	450,547	4.017	44.3	56.0	35.0	4.017	35.0
2/6/2016	33,115	1,699	2016	2 2016:2	450,547	3.771	46.8	59.0	36.0	3.771	36.0
2/7/2016	32,225	1,620	2016	2 2016:2	450,547	3.596	48.6	61.0	35.0	3.596	35.0
2/8/2016	31,960	1,587	2016	2 2016:2	450,547	3.522	51.6	62.0	42.0	3.522	42.0
2/9/2016	35,757	1,791	2016	2 2016:2	450,547	3.975	45.4	54.0	39.0	3.975	39.0
2/10/2016	38,302	2,005	2016	2 2016:2	450,547	4.450	43.5	54.0	29.0	4.450	29.0
2/11/2016	32,519	1,828	2016	2 2016:2	450,547	4.057	58.1	69.0	39.0	4.057	39.0
2/13/2016	26,835	1,302	2016	2 2016:2	450.547	2.890	51.6	61.0	45.0	2.890	45.0
					, -				40.0	3.378	
2/14/2016	30,040	1,522	2016	2 2016:2	450,547	3.378	50.8	58.0			40.0
2/16/2016	26,153	1,292	2016	2 2016:2	450,547	2.868	56.1	64.0	46.0	2.868	46.0
2/18/2016	27,809	1,439	2016	2 2016:2	450,547	3.194	55.5	68.0	46.0	3.194	46.0
2/25/2016	29,421	1,491	2016	2 2016:2	450,547	3.309	53.6	64.0	43.0	3.309	43.0
2/26/2016	30,047	1,534	2016	2 2016:2	450,547	3.405	50.2	60.0	42.0	3.405	42.0
		,			,						
2/27/2016	29,745	1,506	2016	2 2016:2	450,547	3.343	51.1	62.0	39.0	3.343	39.0
2/28/2016	28,219	1,405	2016	2 2016:2	450,547	3.118	55.1	66.0	40.0	3.118	40.0
3/5/2016	26,415	1,237	2016	3 2016:3	451,226	2.741	57.8	72.0	44.0	2.741	44.0
3/21/2016	28,624	1,450	2016	3 2016:3	451,226	3.213	51.6	63.0	39.0	3.213	39.0
3/22/2016	27,707	1,429	2016	3 2016:3	451,226	3.167	56.9	66.0	42.0	3.167	42.0
11/20/2016	25,615	1,244	2016	11 2016:11	454,888	2.735	51.3	65.0	42.0	2.735	42.0
11/21/2016	28,059	1,373	2016	11 2016:11	454,888	3.018	52.9	70.0	40.0	3.018	40.0
11/22/2016	28,062	1,371	2016	11 2016:11	454,888	3.014	55.0	70.0	41.0	3.014	41.0
11/26/2016	23,668	1,158	2016	11 2016:11	454,888	2.546	56.4	69.0	45.0	2.546	45.0
11/27/2016	25,748	1,221	2016	11 2016:11	454,888	2.684	57.7	69.0	46.0	2.684	46.0
12/8/2016	27,602	1,415	2016	12 2016:12	455,415	3.106	51.2	56.0	44.0	3.106	44.0
12/9/2016	32,396	1,566	2016	12 2016:12	455,415	3.438	43.6	53.0	37.0	3.438	37.0
12/10/2016	33,986	1,665	2016	12 2016:12	455,415	3.656	44.0	56.0	35.0	3.656	35.0
12/11/2016	30,423	1,454	2016	12 2016:12	455,415	3.194	54.1	65.0	40.0	3.194	40.0
12/15/2016	26,169	1,340	2016	12 2016:12	455,415	2.942	52.5	60.0	45.0	2.942	45.0
	•										
12/16/2016	28,585	1,470	2016	12 2016:12	455,415	3.227	55.9	67.0	43.0	3.227	43.0
12/18/2016	25,372	1,248	2016	12 2016:12	455,415	2.739	61.6	79.0	41.0	2.739	41.0
12/19/2016	33,926	1,739	2016	12 2016:12	455,415	3.819	40.8	45.0	37.0	3.819	37.0
12/20/2016	32,247	1,497	2016	12 2016:12	455,415	3.287	47.5	51.0	43.0	3.287	43.0
12/21/2016	28,720	1,386	2016	12 2016:12	455,415	3.044	53.9	66.0	45.0	3.044	45.0
12/30/2016	29,590	1,474	2016	12 2016:12	455,415	3.237	47.0	55.0	41.0	3.237	41.0
1/5/2017	27,529	1,355	2017	1 2017:1	455,852	2.972	55.7	66.0	44.0	2.972	44.0
1/6/2017	29,500	1,581	2017	1 2017:1	455,852	3.468	46.8	60.0	36.0	3.468	36.0
1/7/2017	41,729	2,029	2017	1 2017:1	455,852	4.452	34.1	41.0	28.0	4.452	28.0
1/8/2017	44,681	2,211	2017	1 2017:1	455,852	4.850	36.8	48.0	26.0	4.850	26.0
1/9/2017	39,902	2,142	2017	1 2017:1	455,852	4.700	46.0	55.0	35.0	4.700	35.0
1/24/2017	25,469	1,261	2017	1 2017:1	455,852	2.766	55.9	68.0	44.0	2.766	44.0
1/27/2017	29,129	1,421	2017	1 2017:1	455,852	3.116	47.9	55.0	40.0	3.116	40.0
1/28/2017	30,999	1,466	2017	1 2017:1	455,852	3.216	47.8	52.0	44.0	3.216	44.0
1/29/2017	29,600	1,442	2017	1 2017:1	455,852	3.164	53.2	64.0	43.0	3.164	43.0
1/30/2017	29,404	1,603	2017	1 2017:1	455,852	3.517	54.4	65.0	41.0	3.517	41.0
2/4/2017			2017	2 2017:2	456,260	3.144	49.6	63.0	39.0	3.144	39.0
	28,127	1,435									
2/5/2017	26,773	1,259	2017	2 2017:2	456,260	2.759	57.7	70.0	44.0	2.759	44.0
2/10/2017	26,662	1,378	2017	2 2017:2	456,260	3.020	56.5	65.0	46.0	3.020	46.0
2/16/2017	26,781	1,355	2017	2 2017:2	456,260	2.970	52.5	65.0	41.0	2.970	41.0
2/17/2017	26,531	1,363	2017	2 2017:2	456,260	2.988	57.8	66.0	44.0	2.988	44.0
3/3/2017	26,160	1,313	2017	3 2017:3	457,196	2.872	58.7	71.0	46.0	2.872	46.0
3/14/2017	28,668	1,415	2017	3 2017:3	457,196	3.094	50.7	59.0	44.0	3.094	44.0
3/15/2017	32,989	1,682	2017	3 2017:3	457,196	3.679	45.8	57.0	37.0	3.679	37.0
3/16/2017	32,861	1,791	2017	3 2017:3	457,196	3.918	50.8	63.0	39.0	3.918	39.0
3/17/2017	27,979	1,447	2017	3 2017:3	457,196	3.165	57.8	67.0	46.0	3.165	46.0
10/29/2017	25,364	1,248	2017	10 2017:10	460,564	2.710	50.5	62.0	42.0	2.710	42.0
10/30/2017	26,823	1,341	2017	10 2017:10	460,564	2.911	58.6	72.0	45.0	2.911	45.0
11/19/2017	23,824	1,208	2017	11 2017:11	461,046	2.621	55.5	63.0	46.0	2.621	46.0
11/20/2017	27,962	1,346	2017	11 2017:11	461,046	2.920	49.0	58.0	43.0	2.920	43.0
11/23/2017	25,248	1,243	2017	11 2017:11	461,046	2.697	55.4	69.0	44.0	2.697	44.0
11/24/2017	24,696	1,169	2017	11 2017:11	461,046	2.535	56.5	68.0	46.0	2.535	46.0
11/25/2017	24,545	1,170	2017	11 2017:11	461,046	2.538	56.3	70.0	46.0	2.538	46.0
11/26/2017	25,195	1,222	2017	11 2017:11	461,046	2.650	57.9	71.0	46.0	2.650	46.0

11/28/2017	27,968	1,361	2017	11 2017:11	461,046	2.951	58.8	72.0	46.0	2.951	46.0
12/6/2017	27,778	1,515	2017	12 2017:12	461,806	3.280	49.6	61.0	43.0	3.280	43.0
12/7/2017	33,362	1,653	2017	12 2017:12	461,806	3.579	46.1	51.0	43.0	3.579	43.0
12/8/2017	37,896	1,851	2017	12 2017:12	461,806	4.009	40.5	43.0	36.0	4.009	36.0
12/9/2017	38,259	1,820	2017	12 2017:12	461,806	3.940	39.5	48.0	33.0	3.940	33.0
12/10/2017	36,618	1,841	2017	12 2017:12	461,806	3.988	43.7	55.0	32.0	3.988	32.0
12/11/2017			2017	12 2017:12	461,806		52.2		38.0	4.104	
	34,437	1,895				4.104		65.0			38.0
12/12/2017	29,612	1,442	2017	12 2017:12	461,806	3.123	53.7	63.0	44.0	3.123	44.0
12/13/2017	33,315	1,766	2017	12 2017:12	461,806	3.823	48.1	56.0	37.0	3.823	37.0
12/14/2017	30,473	1,495	2017	12 2017:12	461,806	3.238	54.2	64.0	44.0	3.238	44.0
12/15/2017	31,402	1,568	2017	12 2017:12	461,806	3.394	48.5	52.0	43.0	3.394	43.0
12/16/2017	31,079	1,510	2017	12 2017:12	461,806	3.270	50.2	60.0	41.0	3.270	41.0
12/25/2017	27,832	1,337	2017	12 2017:12	461,806	2.895	45.8	53.0	39.0	2.895	39.0
12/26/2017	31,168	1,549	2017	12 2017:12	461,806	3.354	49.2	60.0	38.0	3.354	38.0
12/27/2017	30,292	1,534	2017	12 2017:12	461,806	3.321	48.5	50.0	46.0	3.321	46.0
12/28/2017	33,929	1,652	2017	12 2017:12	461,806	3.577	45.4	48.0	42.0	3.577	42.0
12/29/2017	32,706	1,570	2017	12 2017:12	461,806	3.400	47.3	59.0	39.0	3.400	39.0
12/30/2017	31,614	1,522	2017	12 2017:12	461,806	3.295	50.8	60.0	39.0	3.295	39.0
12/31/2017	31,985	1,682	2017	12 2017:12	461,806	3.642	45.8	51.0	34.0	3.642	34.0
1/1/2018	46,556	2,215	2018	1 2018:1	462,663	4.787	30.8	38.0	26.0	4.787	26.0
1/2/2018	51,407	2,543	2018	1 2018:1	462,663	5.497	32.8	43.0	23.0	5.497	23.0
1/3/2018	47,392	2,215	2018	1 2018:1	462,663	4.787	36.8	45.0	32.0	4.787	32.0
	•										
1/4/2018	48,369	2,409	2018	1 2018:1	462,663	5.207	36.0	47.0	27.0	5.207	27.0
1/5/2018	46,650	2,422	2018	1 2018:1	462,663	5.236	38.0	52.0	29.0	5.236	29.0
1/6/2018	41,441	2,099	2018	1 2018:1	462,663	4.536	43.9	57.0	33.0	4.536	33.0
1/7/2018	38,490	1,881	2018	1 2018:1	462,663	4.065	47.6	56.0	39.0	4.065	39.0
1/12/2018	26,433	1,444	2018	1 2018:1	462,663	3.120	53.0	67.0	35.0	3.120	35.0
1/13/2018	41,498	2,040	2018	1 2018:1	462,663	4.409	34.5	45.0	29.0	4.409	29.0
1/14/2018	43,642	2,247	2018	1 2018:1	462,663	4.857	38.2	52.0	26.0	4.857	26.0
1/15/2018	38,923	2,058	2018	1 2018:1	462,663	4.448	45.6	59.0	36.0	4.448	36.0
1/16/2018	37,228	1,881	2018	1 2018:1	462,663	4.065	45.3	61.0	33.0	4.065	33.0
1/17/2018	51,166	2,465	2018	1 2018:1	462,663	5.327	28.1	35.0	22.0	5.327	22.0
1/18/2018	52,476	2,809	2018	1 2018:1	462,663	6.070	32.6	47.0	21.0	6.070	21.0
1/19/2018	43,867	2,468	2018	1 2018:1	462,663	5.334	41.5	57.0	27.0	5.334	27.0
1/20/2018	34,253	1,814	2018	1 2018:1	462,663	3.920	51.4	63.0	38.0	3.920	38.0
1/23/2018	26,744	1,343	2018	1 2018:1	462,663	2.903	55.9	67.0	46.0	2.903	46.0
1/24/2018	32,935	1,627	2018	1 2018:1	462,663	3.517	48.5	57.0	41.0	3.517	41.0
1/25/2018	33,260	1,823	2018	1 2018:1	462,663	3.941	51.0	65.0	40.0	3.941	40.0
1/30/2018	34,065	1,729	2018	1 2018:1	462,663	3.737	45.8	55.0	37.0	3.737	37.0
1/31/2018	35,168	1,920	2018	1 2018:1	462,663	4.150	51.8	60.0	39.0	4.150	39.0
2/2/2018	28,847	1,460	2018	2 2018:2	462,641	3.155	53.1	62.0	42.0	3.155	42.0
	•										
2/3/2018	32,173	1,661	2018	2 2018:2	462,641	3.591	48.8	59.0	37.0	3.591	37.0
2/5/2018	26,655	1,374	2018	2 2018:2	462,641	2.970	54.5	66.0	44.0	2.970	44.0
2/8/2018	26,187	1,275	2018	2 2018:2	462,641	2.757	56.0	68.0	46.0	2.757	46.0
3/7/2018	25,228	1,269	2018	3 2018:3	463,441	2.739	53.3	61.0	45.0	2.739	45.0
3/8/2018	27,725	1,390	2018	3 2018:3	463,441	2.999	51.2	62.0	39.0	2.999	39.0
3/9/2018	27,855	1,494	2018	3 2018:3	463,441	3.224	54.3	63.0	39.0	3.224	39.0
3/13/2018	28,658	1,498	2018	3 2018:3	463,441	3.232	51.1	62.0	41.0	3.232	41.0
3/14/2018	28,678	1,505	2018	3 2018:3	463,441	3.246	53.5	66.0	41.0	3.246	41.0
3/15/2018	29,121	1,622	2018	3 2018:3	463,441	3.501	54.8	67.0	39.0	3.501	39.0
3/22/2018	25,856	1,238	2018	3 2018:3	463,441	2.672	56.9	69.0	45.0	2.672	45.0
3/23/2018	26,059	1,265	2018	3 2018:3	463,441	2.729	58.8	69.0	46.0	2.729	46.0
4/8/2018	24,015	1,177	2018	4 2018:4	464,048	2.537	54.6	63.0	46.0	2.537	46.0
4/16/2018	24,903	1,181	2018	4 2018:4	464,048	2.545	57.6	71.0	44.0	2.545	44.0
11/10/2018	23,789	1,156	2018	11 2018:11	463,565	2.494	51.2	60.0	45.0	2.494	45.0
11/11/2018	24,202	1,152	2018	11 2018:11	463,565	2.486	56.4	67.0	45.0	2.486	45.0
11/14/2018	28,762	1,475	2018	11 2018:11	463,565	3.183	45.4	48.0	40.0	3.183	40.0
11/15/2018	33,747	1,641	2018	11 2018:11	463,565	3.539	40.9	50.0	35.0	3.539	35.0
11/16/2018	33,110	1,786	2018	11 2018:11	463,565	3.854	47.6	62.0	35.0	3.854	35.0
11/17/2018	27,871	1,359	2018	11 2018:11	463,565	2.931	54.5	67.0	43.0	2.931	43.0
11/18/2018	25,931	1,192	2018	11 2018:11	463,565	2.571	57.0	70.0	46.0	2.571	46.0
11/20/2018	25,274	1,248	2018	11 2018:11	463,565	2.692	57.0	66.0	46.0	2.692	46.0
11/21/2018	28,360		2018	11 2018:11		2.905	50.2	62.0	42.0	2.905	42.0
		1,347			463,565						
11/22/2018	28,348	1,414	2018	11 2018:11	463,565	3.051	50.9	61.0	44.0	3.051	44.0
11/26/2018	27,599	1,519	2018	11 2018:11	463,565	3.276	50.9	70.0	41.0	3.276	41.0
11/27/2018	34,702	1,752	2018	11 2018:11	463,565	3.779	42.5	53.0	33.0	3.779	33.0
11/28/2018	34,899	1,845	2018	11 2018:11	463,565	3.980	44.9	54.0	35.0	3.980	35.0
11/29/2018	29,786	1,534	2018	11 2018:11	463,565	3.310	60.1	69.0	44.0	3.310	44.0
12/4/2018	27,968	1,413	2018	12 2018:12	462,983	3.052	50.0	60.0	43.0	3.052	43.0
12/5/2018	33,109	1,626	2018	12 2018:12	462,983	3.512	44.5	55.0	38.0	3.512	38.0
12/6/2018	35,068	1,797	2018	12 2018:12	462,983	3.882	44.8	53.0	36.0	3.882	36.0
12/7/2018	31,708	1,621	2018	12 2018:12	462,983	3.502	51.1	59.0	43.0	3.502	43.0
12/9/2018	27,463	1,457	2018	12 2018:12	462,983	3.147	50.8	64.0	44.0	3.147	44.0
12/10/2018	36,422	1,794	2018	12 2018:12	462,983	3.874	42.6	44.0	40.0	3.874	40.0
12/11/2018	34,943	1,704	2018	12 2018:12	462,983	3.680	45.8	57.0	38.0	3.680	38.0

12/12/2018	35,515	1,971	2018	12 2018:12	462,983	4.258	50.2	61.0	34.0	4.258	34.0
12/17/2018	28,479	1,384	2018	12 2018:12	462,983	2.990	54.6	65.0	46.0	2.990	46.0
12/18/2018	29,136	1,500	2018	12 2018:12	462,983	3.240	53.2	65.0	41.0	3.240	41.0
12/21/2018	32,179	1,579	2018	12 2018:12	462,983	3.409	46.5	51.0	41.0	3.409	41.0
12/22/2018	32,070	1,640	2018	12 2018:12	462,983	3.543	47.7	58.0	36.0	3.543	36.0
12/23/2018	27,892	1,314	2018	12 2018:12	462,983	2.839	60.0	72.0	46.0	2.839	46.0
1/6/2019	26,315	1,228	2019	1 2019:1	462,872	2.654	55.5	68.0	44.0	2.654	44.0
1/7/2019	26,891	1,346	2019	1 2019:1	462,872	2.908	57.1	68.0	46.0	2.908	46.0
1/9/2019	26,478	1,368	2019	1 2019:1	462,872	2.955	54.4	61.0	46.0	2.955	46.0
1/10/2019	32,094	1,653	2019	1 2019:1	462,872	3.571	47.7	59.0	38.0	3.571	38.0
1/11/2019	32,040	1,705	2019	1 2019:1	462,872	3.683	48.0	57.0	39.0	3.683	39.0
1/14/2019	33,800	1,737	2019	1 2019:1	462,872	3.752	44.8	49.0	43.0	3.752	43.0
1/15/2019	34,023	1,646	2019	1 2019:1	462,872	3.557	44.8	55.0	40.0	3.557	40.0
		-									
1/16/2019	32,984	1,668	2019	1 2019:1	462,872	3.604	48.4	61.0	41.0	3.604	41.0
1/17/2019	31,293	1,644	2019	1 2019:1	462,872	3.553	53.6	64.0	40.0	3.553	40.0
1/20/2019	33,665	1,691	2019	1 2019:1	462,872	3.653	40.8	46.0	33.0	3.653	33.0
1/21/2019	38,099	1,983	2019	1 2019:1	462,872	4.284	40.8	46.0	33.0	4.284	33.0
1/22/2019	32,660	1,666	2019	1 2019:1	462,872	3.599	44.3	57.0	33.0	3.599	33.0
1/23/2019	25,360	1,250	2019	1 2019:1	462,872	2.701	55.4	64.0	46.0	2.701	46.0
1/24/2019	31,484	1,676	2019	1 2019:1	462,872	3.621	44.5	56.0	38.0	3.621	38.0
1/25/2019	36,162	1,926	2019	1 2019:1	462,872	4.161	44.5	55.0	34.0	4.161	34.0
1/26/2019	34,093	1,783	2019	1 2019:1	462,872	3.852	47.3	59.0	34.0	3.852	34.0
1/27/2019	33,156	1,581	2019	1 2019:1	462,872	3.416	47.8	55.0	40.0	3.416	40.0
1/28/2019	33,578	1,876	2019	1 2019:1	462,872	4.052	50.9	63.0	38.0	4.052	38.0
1/29/2019				1 2019:1		3.905				3.905	
	34,276	1,807	2019		462,872		45.8	53.0	36.0		36.0
1/30/2019	40,874	2,066	2019	1 2019:1	462,872	4.464	41.3	50.0	34.0	4.464	34.0
1/31/2019	35,784	1,872	2019	1 2019:1	462,872	4.044	48.1	57.0	40.0	4.044	40.0
2/1/2019	32,163	1,564	2019	2 2019:2	461,700	3.388	51.5	59.0	46.0	3.388	46.0
2/9/2019	27,722	1,393	2019	2 2019:2	461,700	3.017	52.7	63.0	43.0	3.017	43.0
2/13/2019	27,879	1,435	2019	2 2019:2	461,700	3.108	51.7	64.0	44.0	3.108	44.0
	,										
2/14/2019	28,827	1,524	2019	2 2019:2	461,700	3.301	57.2	67.0	43.0	3.301	43.0
3/4/2019	29,084	1,592	2019	3 2019:3	461,646	3.448	44.2	48.0	40.0	3.448	40.0
3/5/2019	34,217	1,737	2019	3 2019:3	461,646	3.762	43.1	53.0	35.0	3.762	35.0
3/6/2019	35,029	1,885	2019	3 2019:3	461,646	4.083	43.9	57.0	33.0	4.083	33.0
3/7/2019	30,587	1,701	2019	3 2019:3	461,646	3.685	53.2	61.0	39.0	3.685	39.0
3/18/2019	25,754	1,240	2019	3 2019:3	461,646	2.687	57.7	65.0	45.0	2.687	45.0
	,	,									
3/22/2019	24,603	1,177	2019	3 2019:3	461,646	2.548	58.3	73.0	45.0	2.548	45.0
3/23/2019	24,237	1,128	2019	3 2019:3	461,646	2.444	59.6	73.0	46.0	2.444	46.0
4/2/2019	26,540	1,271	2019	4 2019:4	462,659	2.747	59.7	72.0	46.0	2.747	46.0
10/31/2019	28,878	1,508	2019	10 2019:10	467,127	3.228	62.2	79.0	41.0	3.228	41.0
11/1/2019	27,078	1,372	2019	11 2019:11	467,871	2.933	48.6	63.0	38.0	2.933	38.0
11/2/2019	25,392	1,194	2019	11 2019:11	467,871	2.552	54.0	67.0	42.0	2.552	42.0
	,	,									
11/3/2019	25,286	1,194	2019	11 2019:11	467,871	2.552	55.3	67.0	46.0	2.552	46.0
11/10/2019	23,802	1,131	2019	11 2019:11	467,871	2.417	55.6	66.0	46.0	2.417	46.0
11/12/2019	28,116	1,633	2019	11 2019:11	467,871	3.491	46.6	71.0	33.0	3.491	33.0
11/13/2019	36,091	1,951	2019	11 2019:11	467,871	4.170	42.7	55.0	29.0	4.170	29.0
11/14/2019	32,232	1,527	2019	11 2019:11	467,871	3.264	48.0	53.0	44.0	3.264	44.0
11/15/2019	29,858	1,427	2019	11 2019:11	467,871	3.050	50.9	60.0	46.0	3.050	46.0
11/16/2019	27,853	1,343	2019	11 2019:11	467,871	2.871	50.9	63.0	42.0	2.871	42.0
11/17/2019	25,951	1,200	2019	11 2019:11	467,871	2.564	56.1	68.0	45.0	2.564	45.0
11/18/2019	26,262	1,297	2019	11 2019:11	467,871	2.772	55.3	68.0	43.0	2.772	43.0
11/19/2019	26,782	1,372	2019	11 2019:11	467,871	2.933	57.8	71.0	45.0	2.933	45.0
11/24/2019	24,882	1,225	2019	11 2019:11	467,871	2.619	51.7	62.0	43.0	2.619	43.0
11/25/2019	27,380	1,362	2019	11 2019:11	467,871	2.912	53.3	64.0	42.0	2.912	42.0
12/2/2019	27,664	1,439	2019	12 2019:12	468,283	3.074	48.5	54.0	41.0	3.074	41.0
12/3/2019	32,894	1,683	2019	12 2019:12	468,283	3.594	45.9	58.0	35.0	3.594	35.0
12/4/2019	30,335	1,588	2019	12 2019:12	468,283	3.390	53.1	67.0	43.0	3.390	43.0
12/5/2019	28,146	1,461	2019	12 2019:12	468,283	3.120	54.3	66.0	43.0	3.120	43.0
12/12/2019	30,851	1,463	2019	12 2019:12	468,283	3.125	50.1	57.0	44.0	3.125	44.0
12/17/2019	27,611	1,519	2019	12 2019:12	468,283	3.243	57.0	73.0	41.0	3.243	41.0
12/18/2019	35,255	1,776	2019	12 2019:12	468,283	3.792	42.5	52.0	36.0	3.792	36.0
12/19/2019	35,765	1,862	2019	12 2019:12	468,283	3.977	44.0	55.0	35.0	3.977	35.0
12/20/2019	32,193	1,669	2019	12 2019:12	468,283	3.565	52.0	67.0	40.0	3.565	40.0
12/31/2019	27,588	1,323	2019	12 2019:12	468,283	2.826	51.6	63.0	43.0	2.826	43.0
1/1/2020	27,120	1,233	2020	1 2020:1	468,736	2.630	54.0	63.0	45.0	2.630	45.0
1/4/2020	23,949	1,186	2020	1 2020:1	468,736	2.531	58.5	66.0	44.0	2.531	44.0
1/5/2020	28,241	1,388	2020	1 2020:1	468,736	2.962	48.5	59.0	39.0	2.962	39.0
1/6/2020	28,325	1,454	2020	1 2020:1	468,736	3.102	55.4	68.0	44.0	3.102	44.0
1/8/2020	30,267	1,633	2020	1 2020:1	468,736	3.484	50.8	61.0	42.0	3.484	42.0
1/19/2020	25,419	1,350	2020	1 2020:1	468,736	2.881	54.0	68.0	45.0	2.881	45.0
1/20/2020	34,964	1,679	2020	1 2020:1	468,736	3.582	41.1	49.0	36.0	3.582	36.0
1/21/2020	41,943	2,111	2020	1 2020:1	468,736	4.504	36.3	44.0	29.0	4.504	29.0
1/22/2020	39,766	2,119	2020	1 2020:1	468,736	4.543	42.2	52.0	32.0	4.543	32.0
	,										
1/25/2020	28,375	1,420	2020	1 2020:1	468,736	3.029	49.8	61.0	38.0	3.029	38.0
1/26/2020	30,064	1,441	2020	1 2020:1	468,736	3.075	49.2	55.0	43.0	3.075	43.0

1/28/2020	29,400	1,568	2020	1 2020:1	468,736	3.345	53.6	65.0	44.0	3.345	44.0
1/30/2020	29,817	1,562	2020	1 2020:1	468,736	3.332	51.9	60.0	45.0	3.332	45.0
2/1/2020	28,764	1,383	2020	2 2020:2	469,131	2.947	51.3	57.0	44.0	2.947	44.0
2/2/2020	29,231	1,523	2020	2 2020:2	469,131	3.246	53.7	69.0	40.0	3.246	40.0
2/7/2020	31,059	1,670	2020	2 2020:2	469,131	3.559	46.4	58.0	37.0	3.559	37.0
2/8/2020	27,872	1,377	2020	2 2020:2	469,131	2.936	56.7	68.0	42.0	2.936	42.0
2/14/2020	27,284	1,355	2020	2 2020:2	469,131	2.889	52.3	64.0	43.0	2.889	43.0
2/15/2020	27,845	1,403	2020	2 2020:2	469,131	2.991	52.4	64.0	42.0	2.991	42.0
2/21/2020	30,967	1,512	2020	2 2020:2	469,131	3.224	48.2	57.0	41.0	3.224	41.0
2/22/2020	31,778	1,640	2020	2 2020:2	469,131	3.496	47.2	61.0	35.0	3.496	35.0
2/23/2020	28,277	1,432	2020	2 2020:2	469,131	3.052	53.5	64.0	40.0	3.052	40.0
2/26/2020	25,967	1,342	2020	2 2020:2	469,131	2.861	55.0	60.0	46.0	2.861	46.0
2/27/2020	31,985	1,653	2020	2 2020:2	469,131	3.524	46.0	56.0	36.0	3.524	36.0
2/28/2020	31,287	1,768	2020	2 2020:2	469,131	3.768	50.7	63.0	37.0	3.768	37.0
2/29/2020	27,113	1,372	2020	2 2020:2	469,131	2.924	56.5	71.0	44.0	2.924	44.0
3/7/2020	26,050	1,261	2020	3 2020:3	468,642	2.691	51.5	63.0	42.0	2.691	42.0
11/30/2020	27,811	1,479	2020	11 2020:11	473,103	3.126	49.0	57.0	35.0	3.126	35.0
12/1/2020	36,808	1,853	2020	12 2020:12	473,630	3.912	40.9	56.0	30.0	3.912	30.0
12/2/2020	35,723	1,891	2020	12 2020:12	473,630	3.993	48.3	60.0	36.0	3.993	36.0
12/4/2020	27,282	1,274	2020	12 2020:12	473,630	2.690	57.0	69.0	43.0	2.690	43.0
12/5/2020	29,051	1,396	2020	12 2020:12	473,630	2.947	51.0	62.0	41.0	2.947	41.0
12/7/2020	29,952	1,513	2020	12 2020:12	473,630	3.194	49.6	59.0	42.0	3.194	42.0
12/8/2020	33,765	1,750	2020	12 2020:12	473,630	3.695	48.3	61.0	36.0	3.695	36.0
12/10/2020	29,428	1,475	2020	12 2020:12	473,630	3.114	57.7	69.0	46.0	3.114	46.0
12/14/2020	27,524	1,409	2020	12 2020:12	473,630	2.974	55.7	72.0	45.0	2.974	45.0
12/15/2020	29,695	1,510	2020	12 2020:12	473,630	3.187	51.2	61.0	40.0	3.187	40.0
12/16/2020	28,427	1,421	2020	12 2020:12	473,630	3.001	53.1	57.0	46.0	3.001	46.0
12/17/2020	36,825	1,827	2020	12 2020:12	473,630	3.858	41.0	47.0	35.0	3.858	35.0
12/18/2020	38,688	2,068	2020	12 2020:12	473,630	4.367	43.8	58.0	32.0	4.367	32.0
12/19/2020	32,422	1,642	2020	12 2020:12	473,630	3.466	51.5	61.0	41.0	3.466	41.0
12/22/2020	28,196	1,389	2020	12 2020:12	473,630	2.933	55.8	71.0	45.0	2.933	45.0
12/24/2020	28,873	1,594	2020	12 2020:12	473,630	3.365	52.3	69.0	35.0	3.365	35.0
12/25/2020	36,638	1,772	2020	12 2020:12	473,630	3.742	40.4	50.0	33.0	3.742	33.0
12/26/2020	38,329	1,924	2020	12 2020:12	473,630	4.063	40.4	53.0	29.0	4.063	29.0
12/27/2020	35,191	1,837	2020	12 2020:12	473,630	3.879	47.6	60.0	34.0	3.879	34.0
12/28/2020	30,191	1,539	2020	12 2020:12	473,630	3.249	54.2	66.0	44.0	3.249	44.0

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 14 Attachment 2 of 2

Tab 2 of 4

Year Month		Day	HR1	HR2	HR3	HR4	HR5	HR6	HR7	HR8	HR9	HR10	HR11	HR12	HR13	HR14	HR15	HR16	HR17	HR18	HR19	HR20	HR21	HR22	HR23	HR24	Avg	Min	
1989	12	22	33	31	30	29	28	26	25	24	24	24	24	26	24	24	24	24	23	21	20	20	21	19	18	18	24.16667		18
1989	12	23	17	16	15	15	14	14	13	13	15	17	19	20	21	23	24	23	20	19	18	17	16	15	15	14	17.20833		13
1989	12	24	13	13	13	12	12	11	11	14	17	21	25	28	31	34	35	34	31	28	26	24	22	26	27	28	22.33333		11
1989	12	25	28	29	29	29	27	24	27	31	34	38	40	42	44	45	45	44	41	39	36	35	35	34	35	35	35.25		24

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 14 Attachment 2 of 2 Tab 3 of 4 SUMMARY OUTPUT

Regression Sta	atistics
Multiple R	0.873782
R Square	0.763496
Adjusted R Square	0.763158
Standard Error	0.336751
Observations	702

ANOVA

	df	SS	MS	F	Significance F
Regression	1	256.2611	256.2611	2259.777198	2.406E-221
Residual	700	79.38072	0.113401		
Total	701	335.6418			

	Coefficientstandard Er	rc t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%.	Jpper 95.0%	6	P50	1989 Scenario
Intercept	7.733914 0.087806	88.07996	0	7.561520078	7.906308	7.56152	7.906308	_		
Minimum	-0.106381 0.002238	3 -47.53711	2.406E-221	-0.110774637	-0.101987	-0.110775	-0.101987		26.18	11.00
								Customers	476,889	476,889
								MW/cust	4.9494	6.5637
								Peak MW	2,360	3,130
										770
										132.6%

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 14 Attachment 2 of 2 Tab 4 of 4

202	22 TYSP												No DSM	No DSM		
	liminary Peak Solar	PHEV	EDR	DSM	Fi	nal	No DSM	Adjustment Factor Prelim	inary Peak No	DSM		Gulf SA	2022 TYSP		MW Change 9	% Change
2022	2,397	-4	1	0	0	2,394	2,394	1.326167408	3,179	3,176	32.67%	2022	2,394	3,176	782	32.7%
2023	2,390	-5	1	0	0	2,386	2,386	1.326167408	3,169	3,165	32.66%	2023	2,386	3,165	779	32.7%
2024	2,454	-8	2	0	0	2,448	2,448	1.326167408	3,255	3,249	32.70%	2024	2,448	3,249	801	32.7%
2025	2,472	-11	3	0	0	2,464	2,464	1.326167408	3,278	3,271	32.73%	2025	2,464	3,271	806	32.7%
2026	2,487	-13	5	0	0	2,479	2,479	1.326167408	3,299	3,291	32.75%	2026	2,479	3,291	812	32.7%
2027	2,503	-16	7	0	0	2,493	2,493	1.326167408	3,319	3,310	32.73%	2027	2,493	3,310	816	32.7%
2028	2,520	-19	9	0	0	2,510	2,510	1.326167408	3,343	3,333	32.77%	2028	2,510	3,333	823	32.8%
2029	2,538	-23	12	0	0	2,528	2,528	1.326167408	3,366	3,355	32.75%	2029	2,528	3,355	828	32.8%
2030	2,553	-26	16	0	0	2,543	2,543	1.326167408	3,386	3,375	32.74%	2030	2,543	3,375	833	32.7%
2031	2,570	-31	20	0	0	2,559	2,559	1.326167408	3,408	3,397	32.75%	2031	2,559	3,397	838	32.7%
2032	2,586	-34	24	0	0	2,577	2,577	1.326167408	3,430	3,420	32.73%	2032	2,577	3,420	844	32.7%
2033	2,603	-37	30	0	0	2,596	2,596	1.326167408	3,452	3,445	32.70%	2033	2,596	3,445	849	32.7%
2034	2,620	-39	35	0	0	2,616	2,616	1.326167408	3,474	3,470	32.66%	2034	2,616	3,470	854	32.7%
2035	2,636	-42	41	0	0	2,636	2,636	1.326167408	3,496	3,496	32.61%	2035	2,636	3,496	860	32.6%
2036	2,653	-44	48	0	0	2,657	2,657	1.326167408	3,518	3,522	32.55%	2036	2,657	3,522	865	32.6%
2037	2,670	-46	55	0	0	2,678	2,678	1.326167408	3,540	3,548	32.50%	2037	2,678	3,548	870	32.5%
2038	2,686	-49	62	0	0	2,699	2,699	1.326167408	3,563	3,576	32.48%	2038	2,699	3,576	877	32.5%
2039	2,703	-51	68	0	0	2,720	2,720	1.326167408	3,585	3,602	32.42%	2039	2,720	3,602	882	32.4%
2040	2,720	-54	74	0	0	2,741	2,741	1.326167408	3,607	3,628	32.37%	2040	2,741	3,628	887	32.4%

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 22 Attachment 1 of 1 Tab 1 of 3

Case name:

Business As Usual Resource Plan

	ı				1		G . W			1				
			System Fixed Costs				System Va	riable Costs						
	Annual	Generation	Fixed O&M &	Transmission	Total					Total	Total	NPV	NPV	1
	Discount	Capital	Capital Replacement	Interconnection	Fixed	System	Startup	VOM	Emission	Variable	Annual	Total	Cumulative	1
	Factor	Costs	Costs	Costs	Costs	Net Fuel	Costs	Costs	Costs	Costs	Costs	Annual Cost	Total Costs	1
Year	7.38%	(Millions)	(Millions)	(Millions)	(Millions)	(Millions)	(Millions)	(Millions)	(Millions)	(Millions)	(Millions)	(Millions)	(Millions)	Year
1 2022	1.000	0	0	0	0	3,142	106	306	1	3,555	3,555	3,555	3,555	2022
2 2023	0.931	0	0	0	0	2,545	94	303	1	2,943	2,943	2,740	6,295	2023
3 2024	0.867	0	0	0	0	2,203	93	304	1	2,601	2,601	2,256	8,551	2024
4 2025	0.808	0	0	0	0	2,107	96	305	1	2,508	2,508	2,026	10,577	2025
5 2026	0.752	73	2	19	95	2,060	101	310	42	2,513	2,608	1,962	12,539	2026
6 2027	0.700	141	5	38	184	2,054	106	318	67	2,545	2,729	1,911	14,450	2027
7 2028	0.652	222	9	60	291	2,200	117	327	114	2,759	3,049	1,989	16,440	2028
8 2029	0.607	366	18	86	470	2,301	118	335	159	2,912	3,382	2,055	18,494	2029
9 2030	0.566	517	29	112	657	2,396	115	341 349	195	3,047	3,704	2,095	20,589	2030
10 2031 11 2032	0.527	646 809	37 61	136 137	819 1,008	2,476 2,590	117 119	356	231 278	3,173 3,343	3,991 4,351	2,103 2,135	22,692 24,827	2031 2032
12 2032	0.491	774	68	133	975	2,390	125	374	336	3,575	4,550	2,133	26,906	2032
13 2034	0.426	812	72	128	1,012	2,740	123	388	399	3,794	4,806	2,045	28,951	2033
14 2035	0.396	855	92	124	1,070	3,072	127	409	528	4,137	5,207	2,063	31,014	2034
15 2036	0.369	901	108	119	1,128	3,266	140	347	684	4,437	5,565	2,054	33,068	2036
16 2037	0.344	948	118	115	1,181	3,405	138	361	855	4,759	5,940	2,041	35,110	2037
17 2038	0.320	1,035	125	111	1,271	3,584	147	381	1,059	5,170	6,441	2,061	37,171	2038
18 2039	0.298	1,158	155	106	1,420	3,736	154	394	1,288	5,572	6,992	2,084	39,255	2039
19 2040	0.278	1,204	165	102	1,471	3,856	155	406	1,530	5,947	7,419	2,059	41,314	2040
20 2041	0.258	1,169	174	98	1,441	3,961	158	425	1,784	6,328	7,768	2,008	43,322	2041
21 2042	0.241	1,212	191	93	1,497	4,043	164	442	2,055	6,703	8,200	1,974	45,296	2042
22 2043	0.224	1,179	219	90	1,487	4,111	165	457	2,345	7,078	8,566	1,920	47,217	2043
23 2044	0.209	1,229	201	86	1,515	4,207	173	473	2,688	7,541	9,056	1,891	49,107	2044
24 2045	0.194	1,274	249	82	1,606	4,300	173	490	3,067	8,029	9,634	1,873	50,981	2045
25 2046 26 2047	0.181	1,234 1,286	261 279	79 76	1,575 1,641	4,373 4,478	177 181	507 525	3,465 3,724	8,523 8,908	10,097 10,549	1,828 1,779	52,809 54,588	2046 2047
26 2047 27 2048	0.169	1,286	307	74	1,641	4,478	186	546	3,724	9,280	10,549	1,779	56,301	2047
28 2049	0.146	1,249	335	71	1,691	4,649	191	561	4,248	9,649	11,340	1,658	57,959	2049
29 2050	0.136	1,223	356	68	1,648	4,757	197	586	4,565	10,105	11,753	1,601	59,560	2050
30 2051	0.127	1,266	382	65	1,713	4,852	195	604	4,722	10,373	12,086	1,533	61,093	2051
31 2052	0.118	1,422	399	63	1,883	5,008	199	634	4,971	10,812	12,695	1,499	62,592	2052
32 2053	0.110	1,574	447	60	2,081	5,292	207	691	5,460	11,650	13,731	1,510	64,103	2053
33 2054	0.102	1,524	441	57	2,022	5,437	209	726	5,742	12,114	14,136	1,448	65,551	2054
34 2055	0.095	1,584	491	54	2,129	5,526	220	734	5,908	12,388	14,518	1,385	66,936	2055
35 2056	0.089	1,750	520	52	2,322	5,774	227	790	6,370	13,161	15,483	1,375	68,311	2056
36 2057	0.083	1,802	532	49	2,383	5,898	222	819	6,635	13,575	15,958	1,320	69,631	2057
37 2058	0.077	1,745	550	47	2,342	5,969	230	844	6,820	13,862	16,204	1,248	70,880	2058
38 2059	0.072	1,808	570	44	2,423	6,071	235	876	7,061	14,243	16,666	1,196	72,076	2059
39 2060	0.067	1,874	639	42	2,556	6,156	238	904	7,280	14,577	17,133	1,145	73,220	2060
40 2061	0.062	1,803	630	36	2,468	6,234	244	932	7,487	14,897	17,365	1,081	74,301	2061
41 2062	0.058	1,842	647	30	2,519	6,352	246	965	7,752	15,315	17,834	1,034	75,335	2062
42 2063	0.054	2,010	697	24	2,730	6,558	251	1,022	8,211	16,043	18,772	1,013	76,348	2063
43 2064	0.050	2,052	702	16	2,769	6,690	260	1,066	8,554	16,570	19,340	972	77,320	2064
44 2065	0.047	1,957	730	9	2,696	6,786	262	1,103	8,823	16,974	19,670	921	78,240	2065
45 2066	0.044	1,993	789	3	2,784	6,879	273	1,141	9,097	17,389	20,173	879	79,120	2066
46 2067	0.041	2,060	847	2	2,909	6,975	276	1,179	9,379	17,808	20,717	841	79,961	2067
47 2068	0.038	2,007	855	2	2,864	7,068	280	1,219	9,666	18,233	21,097	798	80,758	2068
48 2069 49 2070	0.035	2,078 2,149	883 944	2	2,963 3,095	7,168 7,267	289 295	1,259	9,969	18,685 19,141	21,648 22,236	762 729	81,520 82,249	2069 2070
49 20/0					- ,	.,		1,301	10,278	- ,	,	129	04,249	20/0
	Total NPV =	\$9,027	\$1,668	\$896	\$11,591	\$44,786	\$1,891	\$5,769	\$18,212	\$70,658	82,249			

Tab 2 of 3

Page 2 of 3

Case name:	Recommended Plan (~True Bill Impact, P50 load forecast)
------------	---

	İ		System Fixed Costs				System Va	riable Costs						
	Annual	Generation	Fixed O&M &	Transmission	Total	6.4	64 4	WOM	т	Total	Total	NPV	NPV	1
	Discount Factor	Capital Costs	Capital Replacement Costs	Interconnection Costs	Fixed Costs	System Net Fuel	Startup Costs	VOM Costs	Emission Costs	Variable Costs	Annual Costs	Total Annual Cost	Cumulative Total Costs	1
Year	7.38%	(Millions)	(Millions)	(Millions)	(Millions)	(Millions)	(Millions)	(Millions)	(Millions)	(Millions)	(Millions)	(Millions)	(Millions)	Year
1 2022	1.000	0	0	0	0	3,142	106	306	1	3,555	3,555	3,555	3,555	2022
2 2023	0.931	0	0	0	0	2,544	95	303	1	2,943	2,943	2,741	6,295	2022
3 2024	0.867	0	0	0	0	2,203	93	304	1	2,601	2,601	2,256	8,551	2024
4 2025	0.808	0	0	0	0	2,107	96	305	1	2,509	2,509	2,026	10,578	2025
5 2026	0.752	73	2	19	95	2,060	101	310	42	2,513	2,608	1,962	12,539	2026
6 2027	0.700	175	8	38	221	2,053	102	316	67	2,538	2,759	1,932	14,471	2027
7 2028	0.652	296	14	60	370	2,199	108	323	114	2,744	3,114	2,031	16,503	2028
8 2029	0.607	474	26	86	586	2,298	100	332	158	2,888	3,475	2,111	18,614	2029
9 2030	0.566	608	41	112	761	2,394	97	340	195	3,026	3,787	2,143	20,756	2030
10 2031	0.527	769	52	138	960	2,472	99	346	231	3,147	4,107	2,164	22,920	2031
11 2032	0.491	925	77	140	1,142	2,587	101	352	277	3,317	4,459	2,188	25,108	2032
12 2033	0.457	884	79	135	1,098	2,738	106	371	336	3,550	4,647	2,123	27,232	2033
13 2034	0.426	848	98	130	1,076	2,883	111	389	400	3,783	4,860	2,068	29,300	2034
14 2035	0.396	887	106	126	1,119	3,068	109	409	527	4,114	5,233	2,074	31,373	2035
15 2036	0.369	931	115	121	1,167	3,262	120	347	684	4,412	5,579	2,059	33,432	2036
16 2037 17 2038	0.344	974 1.061	138 133	117 112	1,229 1,306	3,401	118 127	361 381	854	4,734	5,963	2,049 2,065	35,481 37,547	2037 2038
17 2038 18 2039	0.320 0.298	1,061	156	108	1,369	3,580 3,731	134	399	1,058 1,287	5,147 5,551	6,453 6,920	2,063	37,547	2038
19 2040	0.298	1,105	172	104	1,369	3,851	134	410	1,528	5,923	7,349	2,062	41,649	2039
20 2041	0.258	1,192	181	99	1,420	3,958	136	425	1,782	6,301	7,349	2,040	43,658	2040
21 2042	0.238	1,233	186	95	1,514	4.040	144	442	2.054	6,679	8.193	1.972	45,631	2042
22 2043	0.224	1,197	220	91	1,509	4,108	142	456	2,343	7,049	8,558	1,919	47,549	2043
23 2044	0.209	1,244	203	87	1,534	4,203	152	475	2,686	7,516	9,050	1,889	49,439	2044
24 2045	0.194	1,203	240	84	1,527	4,295	153	493	3,065	8,006	9,533	1,853	51,292	2045
25 2046	0.181	1,248	271	81	1,600	4,370	154	507	3,464	8,494	10,094	1,828	53,120	2046
26 2047	0.169	1,201	275	78	1,553	4,473	158	529	3,721	8,881	10,435	1,760	54,879	2047
27 2048	0.157	1,242	298	75	1,615	4,562	163	546	3,980	9,252	10,867	1,706	56,586	2048
28 2049	0.146	1,266	340	72	1,678	4,645	168	562	4,245	9,621	11,299	1,652	58,238	2049
29 2050	0.136	1,207	337	69	1,613	4,755	174	585	4,563	10,078	11,691	1,592	59,830	2050
30 2051	0.127	1,242	383	66	1,691	4,848	172	606	4,719	10,346	12,037	1,527	61,357	2051
31 2052	0.118	1,399	402	64	1,864	5,006	176	632	4,969	10,784	12,648	1,494	62,851	2052
32 2053	0.110	1,552	433	61	2,046	5,289	183	691	5,458	11,622	13,667	1,503	64,354	2053
33 2054	0.102	1,503	438	58	1,999	5,434	185	727	5,740	12,087	14,086	1,443	65,797	2054
34 2055	0.095	1,563	510	55	2,129	5,524	198	735	5,905	12,361	14,490	1,382	67,180	2055
35 2056	0.089	1,730	525	53	2,307	5,772	205	790	6,368	13,135	15,442	1,372	68,551	2056
36 2057	0.083	1,782	554	50	2,386	5,896	199	820	6,633	13,549	15,935	1,318	69,870	2057
37 2058	0.077	1,726	572	48	2,345	5,967	207	843	6,818	13,834	16,180	1,247	71,116	2058
38 2059	0.072	1,790	604	45	2,440	6,070	212	875	7,059	14,216	16,656	1,195	72,311	2059
39 2060	0.067	1,742	642	43	2,427	6,153	215	906	7,278	14,551	16,978	1,135	73,446	2060
40 2061	0.062	1,789	675	37	2,502	6,232	222	932	7,485	14,871	17,373	1,081	74,527	2061
41 2062	0.058	1,830	664	31 24	2,524	6,351	221	966	7,750	15,288	17,812	1,032	75,559	2062
42 2063	0.054	1,998	687		2,709	6,557	226	1,023	8,210	16,016	18,725	1,011	76,570	2063
43 2064	0.050	1,917	717	17	2,651	6,687	237	1,069	8,551	16,544	19,195	965	77,535	2064
44 2065	0.047 0.044	1,951	751	10	2,712	6,784	235 249	1,103	8,822	16,944	19,656	920	78,454 79,332	2065
45 2066		1,986	783		2,771	6,877	-	1,141	9,094	17,360	20,131	877	,	2066
46 2067	0.041	1,922	827	2	2,751	6,973	251 250	1,180	9,377	17,781	20,533	833	80,165	2067
47 2068		2,005	833	2 2	2,839	7,068		1,218	9,666	18,201	21,040	795	80,961	2068
48 2069 49 2070	0.035 0.033	2,077 2,011	890 925	2	2,969 2,938	7,167 7,265	260 268	1,260 1,304	9,966 10,276	18,653 19,113	21,622 22,051	761 723	81,722 82,445	2069 2070
-77 2070	0.000											123	04, 14 3	20/0
	Total NPV =	\$9,353	\$1,745	\$908	\$12,006	\$44,761	\$1,712	\$5,762	\$18,203	\$70,439	82,445			

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 22 Attachment 1 of 1 Tab 3 of 3

ANNUAL BILL IMPACT: Business As Usual Plan*

ANNUAL BILL IMPACT: Recommended Plan*

INCREMENTAL
ANNUAL BILL IMPACT: Recommended Plan

Page 3 of 3

	Year	Fixed Costs Annual Bill Impact (\$/1,000 kWh)	Variable Costs Annual Bill Impact (\$/1,000 kWh)	Total Costs Annual Bill Impact (\$/1,000 kWh)
	2022	0.00	26.00	26.00
	2023	0.00	21.30	21.30
	2024	0.00	18.66	18.66
	2025	0.00	17.83	17.83
	2026	0.67	17.70	18.37
	2027	1.29	17.82	19.11
	2028	2.02	19.12	21.13
	2029	3.22	19.94	23.16
	2030	4.44	20.61	25.06
	2031	5.48	21.22	26.70
10-Y	ear Average	1.71	20.02	21.73
	Levelized	1.76	26.20	27.96

	Year	Fixed Costs Annual Bill Impact (\$/1,000 kWh)	Variable Costs Annual Bill Impact (\$/1,000 kWh)	Total Costs Annual Bill Impact (\$/1,000 kWh)
Г	2022	0.00	26.00	26.00
	2023	0.00	21.30	21.30
	2024	0.00	18.66	18.66
	2025	0.00	17.83	17.83
	2026	0.67	17.70	18.37
	2027	1.54	17.77	19.32
	2028	2.56	19.01	21.58
	2029	4.01	19.77	23.79
	2030	5.15	20.47	25.62
L	2031	6.42	21.05	27.47
10-Y	ear Average	2.04	19.96	21.99
	Levelized	2.10	26.14	28.24

	Year	Fixed Costs Annual Bill Impact (\$/1,000 kWh)	Variable Costs Annual Bill Impact (\$/1,000 kWh)	Total Costs Annual Bill Impact (\$/1,000 kWh)
	2022	0.00	(0.00)	(0.00)
	2023	0.00	0.00	0.00
	2024	0.00	(0.00)	(0.00)
	2025	0.00	0.00	0.00
	2026	0.00	0.00	0.00
	2027	0.26	(0.05)	0.21
	2028	0.55	(0.10)	0.45
	2029	0.80	(0.16)	0.63
	2030	0.70	(0.14)	0.57
	2031	0.94	(0.17)	0.78
10-Year	Average	0.33	(0.06)	0.26
I	evelized	0.34	(0.06)	0.27

^{*}The projected bill impacts were calculated by using the Recommended Plan for severe Winter, but using the Business As Usual P50 load forecast.

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 24 Attachment 1 of 1

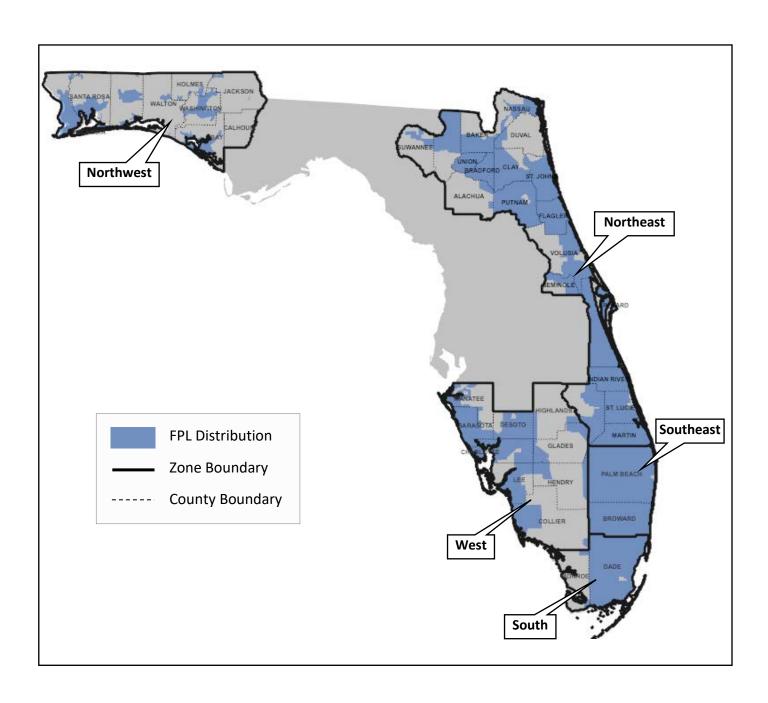
Tab 1 of 1

Solar PV Additions - Nameplate and Firm MW								
	Recommended Plan			Business as Usual Plan				
	Nameplate Solar PV	Firm Summer Solar PV	Firm Winter Solar PV	Nameplate Solar PV	Firm Summer Solar PV	Firm Winter Solar PV		
Year	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)		
2022	447	190	12	447	190	12		
2023	1192	528	17	1192	528	17		
2024	1639	715	45	1639	715	45		
2025	1490	542	88	1490	542	88		
2026	596	178	35	596	178	35		
2027	596	156	35	596	156	35		
2028	745	195	44	745	195	44		
2029	894	190	53	894	190	53		
2030	894	58	53	894	58	53		
2031	969	63	57	969	58	53		

Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan Staff's Third Data Request Request No. 27 Attachment 1 of 2 Page 1 of 1

Florida Counties by FPL As-Available Price Zone

<u>Northwest</u>	<u>Northeast</u>	<u>West</u>
Walton	Duval	Hendry
Escambia	Alachua	Highlands
Bay	Bradford	Glades
Holmes	Nassau	Sarasota
Okaloosa	Columbia	Lee
Washington	Indian River	Desoto
Santa Rosa	Brevard	Collier
Calhoun	Martin	Manatee
Jackson	St. Lucie	Charlotte
	Baker	
	Volusia	Southeast
	Clay	Palm Beach
	Seminole	Broward
	Union	
	St. Johns	South
	Putnam	Dade
	Flagler	Monroe
	Suwannee	
	Okeechobee	


Florida Power & Light Company Docket No. 20220000-OT Ten-Year Site Plan

Staff's Third Data Request

Request No. 27 Attachment 2 of 2 Page 1 of 1

Florida Power & Light

Geographic Zones for As-Available Energy Cost Calculations

