

Driven by the Sun – PV is (way)Cheaper than Gasoline Brief Information and Opinions

Florida PSC Workshop on Electric Vehicle Charging Stations – 6 Sep 2012

Robert M. Reedy, PE Director, Solar Systems Research Division Florida Solar Energy Center +1.321.638.1470 reedy@fsec.ucf.edu

A Research Institute of the University of Central Florida

"Game Changers" The New Electric Cars

- 80% of VMT is less than 40 miles per day
- 26% of Florida vehicles are small cars
- 4,000 kWh/yr for 12,000 miles
- If all small cars electric
 - 1.4 billion gallons of gasoline saved per year
 - \$2.6 billion net cost savings per year if PV electric
 - 15 TWh (billion kWh) additional energy needs per year (4 MORE LARGE POWER PLANTS)!

Nissan Leaf (all electric)

Chevy Volt (plug-in hybrids)

Total Cost of Electric Car ~ Cost of Gasoline Car at the end of 5 years

2

Residential Electricity is Equivalent to \$0.97 Per Gallon Gasoline

	Fuel Efficiency	Fuel Price	Cost per Mile	Cost per 12,000 Miles
Gasoline Car	25 mpg	\$3.25 per gal	13¢ per mile	\$1,560
Electric Car	3 miles per kWh	11.6 ¢/kWh (\$0.97 per gal equiv.)	3.9¢ per mile	\$464

Costs of PV modules are dropping below the power law experience curves

Sources: (CdTe) First Solar Earnings Presentation, SEC Filings; (c-Si) Navigant, Bloomberg NEF, NREL internal cost models

Installed Price of PV

National Weighted Average System Prices, 2010 –Q1 2012

Residential Photovoltaic Power is Equivalent to \$1.08 Per Gallon Gasoline

Future Price of Gasoline?

Year

Price of Gasoline?

LIGHT-DUTY VEHICLE FUEL ECONOMY STANDARDS, 1955-2025

PV: \$1.08 a gallon today, & less than a \$1 a gallon tomorrow --

"Back of the Envelope" Numbers All Small Cars PV Electric by 2030:

Annual Florida Gasoline use Florida on-road vehicles Florida Small Cars (26.3%) **Displaced Gasoline (16.7%) Displaced Gasoline Cost (\$3.25 /gal) PV Electricity (4 Power Plants)** PV Capital Cost (\$2.9 Wp-dc installed) **PV Job-Years (manuf. & install.)** PV Electricity Cost (\$0.13 /kWh) **Cost Savings Displaced OPEC oil imports**

8.4 billion gal/y 14.3 million 3.76 million 1.4 billion gal/y \$4.6 billion/y 15.0 TWh/y \$20.4 billion 238,000 \$1.96 billion/y \$2.63 billion/y **67** %

Submitted for your consideration:

Florida will drive PV powered electric cars!

- Many Factors point to growing demand for EVs
- Previous speakers confirmed trend
- Florida's electric grid will be impacted
- Residential PV equates to \$1.08/eq gal

So where does the PV go?

Sidebar re: Future Grid-Also on The Way

- Back-to-Back DC links inserted in major AC ties
- New major Transmission is DC
- Widely dispersed DG (primarily solar)
- Reactive power control via Inverters
- Ancillary services via Inverters
- Improved System Stability
- Resistance to Fault Induced Delayed Voltage Recovery (FIDVR)

Behold: The "asynchronization" of the Grid...14

Where?

Physical A

- Parking Canopies
- Residential Roof
- Commercial Roof
- Institutional Roof

Electrical

- Grid Tie Distributed
- Grid Tie Central Station
- Off Grid (Stand-alone)

Electrical – Grid-Tied Central Station (Large Ground Mount)

Advantages include:

- Can be Lowest Generated Energy Cost
- Monitoring & Control simplified
- > Ownership/Finance simplified
- Clarity of Rate Base issues
- > 88-92% Energy Benefit

Disadvantages include:

- 8-12% EV charging energy lost in T&D
- No mitigation of EV impacts on feeder
- Significant complications and cost to wire the charging stations (particularly parking lots)

Electrical – Grid-Tied Distributed Gen (Roof/Canopy Mount)

- Can be Lowest Delivered Energy Cost
- Highest Energy Yield
- Mitigation of Feeder Impacts
- Benefit to entire system on peak (except "needle" morning peak)
- > PV energy used 100%

- Disadvantages include:
 - Capital Cost highest
 - Control/Monitoring more complex
 - Significant complications and cost to wire the charging stations (particularly parking lots)

Electrical – Off Grid Stand-Alone (Roof/Canopy Mount)

Advantages include:

- Can be Lowest Delivered Energy Cost (to vehicle only)
- DC-DC Converters can be 98-99% efficient
- EV has no impact on feeder during day
- Benefit to entire system on peak (except "needle" morning peak)
- PV Parking canopy needs no external wiring

- Charging rates are variable, very low in bad weather, no nighttime capability
- PV energy utilization dependent on demand
- No grid inverters, therefore no ancillary services (VAR, voltage support, etc) available to utility
- Maximum roof/canopy area per vehicle likely limiting
- More suited for "boost" or "opportunity" charging
- DC charging standard needed in vehicles to realize full benefits

- Better EVs & Lower EV costs drive:
- Better Baseload generation utilization and Lower Baseload costs, driving:
- Lower* Overall rates, driving:
- > Higher EV utilization....

- Lower PV costs drive:
- Lower Peak/Super-Peak generation costs, driving:
- Lower* Overall rates, driving:
- > Higher EV utilization....

- Lower* Overall rates, drive:
- Lower PV costs; driving:
- Utility investment in PV peaking generation (both DG and Central Station), driving:
- Lower PV costs!

Repeat.

Florida Solar Energy Center

Creating Energy Independence Since 1975

A Research Institute of the University of Central Florida

A HUGE Argument for Doing It!

Extra Slides

Sources: "Levelized Cost of Energy Analysis – Version 4.0", Lazard, June 2010; Hudson estimates Notes: Solar PV assumes conventional silicon modules; gas assumes \$4/MMBtu in 2010 and \$5/MMBtu in 2015. Dotted lines include carbon tax of \$30/ton.

Sources: "Levelized Cost of Energy Analysis - Version 4.0", Lazard, June 2010; Hudson estimates

Notes: Solar PV assumes conventional silicon modules; gas assumes \$4/MMBtu in 2010 and \$5/MMBtu in 2015; retail energy for gas and coal incorporate a \$53/MWh cost of transmission and distribution. Dotted lines include carbon tax of \$30/ton.

PV Electrons \$1.08 per Gallon and Cheaper than Coal

	Installed date	Capacity Factor	Electricity Production	Cost per MWh (2015)	Job-Years
500 MW Coal Plant	~2018	0.80	3.5 TWh	\$65- \$150	250
2518 MW PV Plants	~2015	0.17	3.5 TWh	\$105 - \$115	57,900 ¹ / ₂ manufacturing; ¹ / ₂ installation

Deutsche Bank Group DB Climate Change Advisors Repowering America: Creating Jobs

Exhibit 7: Cumulative Job-Years of Full-Time Employment by Sector - 2010-2030

Source: WPK Model, DBCCA Analysis.

The cumulative 7.9 million increase in net job-years is an impressive outcome and is largely driven by CIM jobs required in the plant building phase. Almost 64% (5.1 million) of the job-years created are a result of the CIM that results from the new RE investments, the change from coal to gas fired power plants, and associated infrastructure pipeline and transmission line investments.

Figure 2 Planned Generating Capacity Additions from New Generators by Energy Source, 2012-2015

Sources: EIA, DBCCA analysis, 2012

PV Grid Parity?

