

February 28, 2020

Mr. Daniel Cordell Public Utility Analyst Florida Public Service Commission 2540 Shumard Oak Blvd. Tallahassee, FL 32399-0850

RE: Report for Rule 25-6.0343, F.A.C.

Attached please find Gulf Coast Electric Cooperative's (GCEC) 2019 report for Rule 25-6.0343, F.A.C. due March 1, 2020.

Should you require additional information not included in this report, please let me know.

Respectfully

C. Peyton Gleaton Jr., PE Vice President of Engineering

CC: John Bartley, Chief Executive Officer, GCEC Francis Hinson, Chief Operating Officer, GCEC Michelle Hershel, FECA

(850) 639-2216 Fax (850) 639-5061 (850) 265-3631 Fax (850) 265-3634 (850) 481-1188 Fax (850) 265-1184

Gulf Coast Electric Cooperative, Inc. Report to the Florida Public Service Commission Pursuant to Rule 25-6.0343, F.A.C. Calendar Year 2016

1) Introduction:

Gulf Coast Electric Cooperative, Inc. (GCEC) main office is located within the city limits of Wewahitchka, Gulf County, Florida seventeen miles inland from the Gulf of Mexico. The Cooperative's district offices are located with the communities of Southport, Bay County, Florida and Parker, Bay County, Florida approximately thirteen miles and four miles inland from the Gulf of Mexico respective. The cooperative serves electricity to 19,850 active customers in Gulf, Calhoun, Bay, Walton, Jackson and Washington counties. GCEC's distribution system is composed of both aerial and underground power distribution lines operating at 14.4/24.94kV. GCEC purchases energy from PowerSouth Energy Cooperative in Andalusia, Alabama, and receives power at eight 115kV substations and two 46kV substations.

Main Office: Gulf Coast Electric Cooperative, Inc. 722 West Highway 22 PO Box 220 Wewahitchka, FL 32465 (850) 639-2216

Contacts: C. Peyton Gleaton Jr., PE VP of Engineering Gulf Coast Electric Coop PO Box 8370 Southport, FL 32409 (850) 2665-3631 ext. 3053 pgleaton@gcec.com Francis Hinson Chief Operating Officer Gulf Coast Electric Coop PO Box 8370 Southport, FL 32409 (850) 266-3631 ext. 3052 <u>fhinson@gcec.com</u>

722 W. Highway 22 ~ P.O. Box 220 ~ Wewahitchka, Florida 32465 9434 Highway 77 ~ P.O. Box 8370 ~ Southport, Florida 32409 6243 E. Highway 98 ~ Panama City, Florida 32404 (850) 639-2216 Fax (850) 639-5061 (850) 265-3631 Fax (850) 265-3634 (850) 481-1188 Fax (850) 265-1184

- 2) In calendar year 2019, GCEC served:
 - 18,522 Residential Consumers
 887 Small Commercial Consumers
 11 Large Commercial Consumers
 430 Other Sales to Pubic Authorities
 19,850 Total Active Consumers (Meters)
- 3) Standards of Construction:
 - a. National Electric Safety Code Compliance

Gulf Coast Electric Cooperative, Inc. complies with the National Electric Safety Code (ANSI C-2) [NESC]. As of October 9, 2018, Gulf Coast Electric Cooperative's construction standards comply with the NESC 2017 Edition. For electrical facilities constructed prior to this date are in compliance with and governed by the edition of the NESC in effect at the time of the facilities' initial construction.

Through both internal and external quality controls, Gulf Coast Electric Cooperative ensures that our distribution system is designed, constructed, operated, and maintained in accordance with all applicable provisions of the most current and accepted criteria of the NESC and all applicable and current electrical and safety requirements of any state and local governmental entity.

b. Extreme Wind Loading Standards

At this time, Gulf Coast Electric Cooperative, Inc. facilities are not bound by the extreme loading standards as our system is 99.9% under the 60ft 'extreme wind loading' requirements. The method of construction used by GCEC does, however, meet the 'design to withstand, without conductors, extreme wind loading in Rule 250C applied in any direction on the structure'. GCEC continues to self-audit and evaluate our system to determine any immediate needs for system upgrades and hardening in isolated areas.

"RUS (Rural Utilities Service) electrical standard requirements are in addition to, and not in substitution for or a modification of, the most current and accepted criteria of the NESC and any applicable electrical or safety requirements of any state or local government entity."

c. Flooding and Storm Surges

Gulf Coast Electric Cooperative, Inc. standards policies, guidelines, practices, and processes address the effects of flooding and storm surges on underground facilities and supporting overhead facilities. As required by RUS (Rural Utilities Services), high voltage cables are connected to pad-mounted underground facilities, such as transformers, switchgears, junction boxes, etc., with sealed "dead front" elbow connections rather than exposed, "live front" terminations that could be faulted by flood waters.

Gulf Coast Electric Cooperative participated in the Public Utility Research Center's (PURC) study on the conversion of overhead electric facilities to underground and the effectiveness of undergrounding facilities in preventing storm damage and outages. An update of activates from PURC to its Steering Committee regarding Hurricane Hardening is included as an attachment to this report.

d. Safe and Efficient Access of New and Replacement Distribution Facilities

Electrical construction standards, policies, guidelines, practices, and procedures at Gulf Coast Electric Cooperative, Inc. provide for replacement of new and replacement distribution facilities to facilitate safe and efficient access for installation and maintenance. Wherever new facilities are placed (i.e. front, back, or side of property), all facilities are installed so that the GCEC facilities are accessible by its crews and vehicles to ensure proper maintenance/repair is performed as expeditiously and safely as possible. GCEC decides on a case-by-case basis whether existing facilities need to be relocated. If it is determined that facilities need to be relocated, they are placed in the safest, most accessible area available.

e. Attachments by Others

Electrical construction standards, policies, guidelines, practices, and procedures at Gulf Coast Electric Cooperative, Inc. include written safety, pole reliability, pole loading capacity, and engineering standards and procedures for attachments by others to the utility's distribution poles. Routine pole line inspections of 'work-orders' are performed by GCEC's consulting engineer for newly constructed jobs. These inspections encompass all pole line construction criteria. General inspections are currently done on an eight-year cycle.

4) Facilities Inspection:

a. Describe the utility's policies, guidelines, practices, and procedures for inspecting transmission and distribution lines, poles, and structures including, but not limited to, pole inspection cycles and pole selection process.

Gulf Coast Electric Cooperative, Inc. has no transmission lines.

Gulf Coast Electric Cooperative, Inc. conforms to RUS Bulletin 1730B-12 for Pole Inspection and Maintenance, and performs general pole inspections on its distribution lines on an eight-year cycle. Poles that do not pass inspection are changed out to satisfy service and safety reliability and to meet the requirements of the National Electrical Safety Code in effect at the current time. The pole selection process is by substation and distribution feeder.

In accordance with RUS Bulletin 1730-1, Electric System Operation and Maintenance (O&M), GCEC visually inspects underground transformers and other padmount equipment on a four-year cycle for safety compliance and physical condition. Items found out of compliance or in need of maintenance are corrected in the same year. The selection area is determined by substation and feeder density.

GCEC inspects with the PSC, a percentage of new completed pole line construction called for by the PSC. The section process is done by the PSC.

GCEC also inspects a percentage of new pole line construction chosen routinely on its own. The section process is done by random choice.

b. Describe the number and percentage of transmission and distribution inspections planned and completed for 2019.

Gulf Coast Electric Cooperative, Inc. has no transmission lines.

In 2019 as a result of Hurricane Michael, Gulf Coast Electric Cooperative, Inc. began field inventorying and re-mapping its complete electrical distribution system. At the time of this report, approximately 23,798 poles have been inventoried. This number reflects 46.2% of the poles owned by GCEC.

c. Describe the number and percentage of distribution poles failing inspection and the reason for the failure.

Of the 23,798 poles inventoried in 2019, 110 were identified as needing replacement; this constitute a rejection rate of 0.5%. Their reason for failure was mechanical damage.

d. Remedial action taken.

During Hurricane Michael, GCEC replaced over 3,000 wood poles and in 2019, 63 additional storm damaged poles were replaced.

Gulf Coast Electric Cooperative, Inc. has a continually active work order program for maintenance and replacement of its wood poles and structures. The remaining half of GCEC's electrical distribution will be inventoried in 2019, with work orders created to correct any identified system deficiency, including pole replacement if required.

5) Vegetation Management

Gulf Coast Electric Cooperative, Inc. owns and operates approximately 2,165 miles of overhead and 442 miles of underground electrical distribution lines. GCEC strives to clear all of the right-of-way (ROW) on a five-year cycle. Presently, GCEC is on a definitive five-year program. GCEC's line construction specifications are to clear between twenty (20) and thirty (30) foot width, "from ground to sky". GCEC utilizes in-house ROW crews for clear-cut ROW maintenance program.

Estimated ROW clearing costs are approximately \$1,600,000 annually to cut 100% on a four-year program. At this time, it is cost prohibitive for GCEC to cut 100% on a three-year cycle. GCEC cuts on a geographic and substation selective basis to maintain a respectful and systematic program.

GCEC is actively reclaiming all ROW, this includes the removal of all trees that fall in GCEC ROW. This is being accomplished by taking the time to educate property owners on the importance of clear ROW and the instruction as to what trees or plants can be planted around the ROW.

GCEC cut 500 miles of ROW in 2019. GCEC plans to continue on this rotation to keep ROW on a 5-year rotation. We feel that this 5-year rotation along with aggressively reclaiming GCEC ROW will reduce outages and provide better safety and awareness for the public.

GCEC works closely with the Florida DOT and the various county governments regarding vegetation management along road right-of-ways. GCEC also works closely with property owners for danger tree removal and in select cases, for plantings and landscaping.

Report on Collaborative Research for Hurricane Hardening

Provided by

The Public Utility Research Center University of Florida

To the

Utility Sponsor Steering Committee

Final Report dated February 2020

I. Introduction

The Florida Public Service Commission (FPSC) issued Order No. PSC-06-00351-PAA-EI on April 25, 2006 (Order 06-0351) directing each investor-owned electric utility (IOU) to establish a plan that increases collaborative research to further the development of storm resilient electric utility infrastructure and technologies that reduce storm restoration costs and outages to customers. This order directed IOUs to solicit participation from municipal electric utilities and rural electric cooperatives in addition to available educational and research organizations. As a means of accomplishing this task, the IOUs joined with the municipal electric utilities and rural electric cooperatives in the state (collectively referred to as the Research Collaboration Partners) to form a Steering Committee of representatives from each utility and entered into a Memorandum of Understanding (MOU) with the University of Florida's Public Utility Research Center (PURC). In 2018 the Research Collaboration MOU was renewed for an initial term of two years, effective January 1, 2019, and will be automatically extended for successive two-year terms.

PURC performs the administration function for research collaboration, including financial management, logistics, production and distribution of documents, and preparation of reports. PURC also coordinates and performs research as agreed upon with the Steering Committee by facilitating the exchange of information from the Research Collaboration Partners with individuals conducting research projects and

facilitating the progress of each research project. The collaborative research has focused on undergrounding, vegetation management, hurricane-wind speeds at granular levels, and improved materials for distribution facilities.

This report provides an update on the activities of the Steering Committee since the previous report dated February 2019.

II. Undergrounding

The collaborative research on undergrounding has been focused on understanding the existing research on the economics and effects of hardening strategies, including undergrounding, so that informed decisions can be made about undergrounding policies and specific undergrounding projects.

The collaborative has refined the computer model developed by Quanta Technologies and there has been a collective effort to learn more about the function and functionality of the computer code. PURC and the Project Sponsors have worked to fill information gaps for model inputs and significant efforts have been invested in the area of forensics data collection.

In addition, PURC has worked with doctoral and master's candidates in the University of Florida Department of Civil and Coastal Engineering to assess some of the interrelationships between wind speed and other environmental factors on utility equipment damage. PURC has also been contacted by engineering researchers at the University of Wisconsin and North Carolina State University with an interest in the model, though no additional relationships have been established. In addition to universities, PURC has been in contact with stakeholders in Puerto Rico in light of PURC Director Mark Jamison's appointment to the Southern States Energy Board Blue Ribbon Task Force on the future of Puerto Rico's energy system. The stakeholders, government and task force are concerned with strategies to make Puerto Rico's system more resilient and are interested in the role that the model could play. Finally, PURC has been contacted by California stakeholders interested in applying the principles of the model to the mitigation of the interactions between the electricity grid and the surrounding vegetation, potentially reducing the risk of wildfires. Despite the outside interest, there are no concrete plans to expand the scope of the model at this time. Every researcher that contacts PURC cites the model as the only non-proprietary model of its kind.

III. Wind Data Collection

The Project Sponsors entered into a wind monitoring agreement with WeatherFlow, Inc., in 2007. Under the agreement, Florida Sponsors agreed to provide WeatherFlow with access to their properties and to allow WeatherFlow to install, maintain and operate portions of their wind monitoring network facilities on utility-owned properties under certain conditions in exchange for access to wind monitoring data generated by WeatherFlow's wind monitoring network in Florida. WeatherFlow's Florida wind monitoring network in cludes 50 permanent wind monitoring stations around the coast of Florida, including one or more stations located on utility-owned property. The wind monitoring agreement expired in early 2012; however, it was renewed in April 2017 and will renew automatically annually on the effective date for an additional one year period, unless terminated by the parties to the agreement.

IV. Public Outreach

We have previously discussed the impact of increasingly severe storms and the increased population and utility infrastructure along the coast on greater interest in storm preparedness. PURC researchers continue to discuss the collaborative effort in Florida with the engineering departments of the state regulators in New York, New Jersey, and Pennsylvania, and regulators in Jamaica, Grenada, Curacao, St. Lucia, the Bahamas, Samoa, and the Philippines. In 2019, stakeholders in Puerto Rico and California also showed interest in the collaborative's efforts. While all of the regulators and policymakers showed great interest in the genesis of the collaborative effort, and the results of that effort, they have not, at this point, shown further interest in participating in the research effort. In 2019, there continued to be considerable interest in Florida's hardening efforts from the popular media in California, in light of continued wildfire problems in the state and their aftermath.

VI. Conclusion

In response to the FPSC's Order 06-0351, IOUs, municipal electric utilities, and rural electric cooperatives joined together and retained PURC to coordinate research on electric infrastructure hardening. The steering committee has taken steps to extend the research collaboration MOU so that the industry will be in a position to focus its research efforts on undergrounding research, granular wind research and vegetation management when significant storm activity affects the state.