Company Name: Applicable Utility Service Area: | Rea | ene | sis | Power | LLC | |-----|-----|-----|-------|-----| | AII | 0 | Flo | rida | , | | Renewab | le Technologies | | |--------------------------------|------------------------------|--------| | Solar | Photovoltaic (PV) | | | | Photoelectrochemical (H2) | | | | Thermal Electric Plant | | | Wind | Inland | | | | Coastal | | | | Offshore | | | Hydroelectric | Dam (Incremental) | | | | Diversion (Run of the River) | | | | Pumped Storage | | | Geothermal | Dry Steam | | | | Flash | | | | Binary | \neg | | Ocean Energy | Wave Action | | | | Tidal Change | | | | Thermal Gradients (OTEC) | | | | Ocean Currents | | | Biomass - Direct Combustion | Plant Matter | | | | Animal Waste | | | | Vegetable Oil | | | Biomass - Conversion to Liquid | Biodiesel / Renewable Diesel | | | | Ethanol - Cellulosic | | | | Ethanol - Non-Cellulosic | | | | Pyrolysis | | | Biomass - Conversion to Gas | Anaerobic Digester | | | | Gasification | | | | Renewable Natural Gas | | | Landfill Gas | Methane Combustion | | | Municipal Solid Waste | Biogenic | | | | Non-Biogenic | | | Hydrogen, renewable | Fuel Cells | | | | Combustion | - | | Waste Heat | Sulfuric Acid Manufacturing | | | Other | Other | | STEP Solar Thermal Energy Program | | 0 | | |---------------|-----------|-----------| | Company Name: | Regenesis | Yower LLC | | | (,) | A (1) | Applicable Utility Service Area: Florida - All | Conventional Technologies | | | |---------------------------|--|--| | Natural Gas | Combustion Turbine Combined Cycle | | | Coal | Integrated Gasified Combined Cycle Supercritical Pulverized Coal | | | Nuclear | Steam Generation | | | Other | Other | | Company Name: Regenesis Power LLC Energy Resource: | Typical Unit Annual | Copacity 2 35 112 196 265 | |-------------------------|---| | Capacity Rating | 1 | | (MW) | Copacity 2 35 112 196 265 | | Earliest Commercial In- | | | Service Date | | | (Year) | 2008 | | Typical Construction & | | | Permitting Time | | | (Years) | 1 day | | Useful Life of Unit | , | | 000101 2110 01 01111 | 76 400 66 | | (Years) | 25 years | | Fuel Type | Solar | ## Assumptions: - Each system in the generation portfolio is Z.Zkw. - In a five year build out there would be a total capacity of 265 MW with capacity added each year. | IVI O Dut | a i oiiii | | | | CONTRACTOR OF THE PARTY | THE PERSON NAMED IN COLUMN TO PE | obligate for the section of sect | |-----------|------------------------------------|-----|----------|------|---|--|--| | Compan | y Name: | Re | gene | 518 | Power | LLC | | | Energy F | Resource: | 9 | Slar | - | | | trans sals | | Lifeigy | Kesourse. | ~ | <u> </u> | Year | | | Jedy Kore | | | Contribution to Summer | 08 | 09 | 10 | 11 | 12 | is the Camalation | | | Peak Demand
(MW) | 0 | 6 | 50 | 36 | 48* | tyear 2012 is the camulative total | | | Contribution to Winter Peak | | | | | | | | | Demand
(MW) | 1 | 11 | 36 | 62 | 84* | | | | Average Annual Heat Rate | | | - | | | | | | (BTU/kWh) | | | NA | | | | | | Equivalent Availability Factor (%) | | | 99 | | | | | | Average Annual Generation | 08 | 09 | 10 | 11 | 12 | | | | (MWH) | 333 | 47,6 | 1526 | 26736 | 361,108 | | | | Resulting Capacity Factor (%) | , | ^ | 1 20 | % | appropriate from the control of the | | | Company Name:
Energy Resource: | | Regenesis Power, LL
Solar | |-----------------------------------|-----------------------------------|------------------------------| | | Carbon Dioxide (CO ₂) | d | | | (lb/kWh) | 9 | | ates | Sulfur Dioxide (SO ₂) | 6 | | n R | (lb/kWh) | \mathcal{Q} | | Emission Rates | Nitrogen Oxide (NO _X) | , | | Em | (lb/kWh) | oxdot | | | Mercury (Hg) | | | | (lb/kWh) | \bigcirc | | | Water Usage | | | | (gal/kwh) | <i>Ψ</i> | Company Name: Regenesis Power LLC Energy Resource: Solar | | First Year of Commercial
Operation
(Year) | 2008 | |----------------------|--|--------| | Installed
Capital | Cost ⁽¹⁾
(\$/kw) | \$1600 | | | Escalation Rate
(%) | NA | | Fixed O & M | Cost ⁽¹⁾
(\$/kw-year) | NA | | Fixed (| Escalation Rate
(%) | NA | | Variable O & M | Cost ⁽¹⁾
(\$/kwh) | \$0.05 | | | Escalation Rate
(%) | 3% | | Energy | Cost ⁽¹⁾
(\$/kwh) | Ø. | | | Escalation Rate
(%) | Ø | | | Levelized Cost ⁽²⁾
- Life of Unit
(cents/kwh) | N 6¢ | ⁽¹⁾ Expressed in year dollars associated with the first year of commercial operations > Fuel Should be here-answer is \$ for Solar ⁽²⁾ Cumulative Present Value Total Revenue Requirements levelized over the life of the unit expressed in year dollars associated with the first year of commercial operation