Form 1: Renewable Technologies

Company Name: Applicable Utility Service Area: Tampa Electric Company Hillsborough/Polk Counties

Renewat	ole Technologies
Solar	Photovoltaic (PV)
Landfill Gas	Methane Combustion
Municipal Solid Waste	Biogenic
	Non-Biogenic
Hydrogen, renewable	Fuel Cells
	Combustion
Waste Heat	Sulfuric Acid Manufacturing

Form 2: Conventional Technologies

Company Name: Applicable Utility Service Area: Tampa Electric Company Hillsborough/Polk Counties

Conventio	nal Technologies						
Natural Gas	Combustion Turbine						
	Combined Cycle						
Coal	Integrated Gasified Combined Cycle						
	Supercritical Pulverized Coal						
Fluidized Bed							
Nuclear	Steam Generation						

Form 3: Renewable Technologies

Company Name: Tampa Electric Company

		Energy Resource														
		Solar			Wind			Hydroelectric			Geothermal			Oce	an Energy	
	Photovoltaic (PV)	Photoelectrochemical (H2)	Thermal Electric Plant	Inland	Coastal	Offshore	Dam (Incremental)	Diversion (Run of the River)	Pumped Storage	Dry Steam	Flash	Binary	Wave Action	Tidal change	Thermal Gradients	Ocean Currents
Typical Unit Annual Capacity Rating (MW)	0.25	unknown	100	50 to 100	same as offshore	100 to 300	1 to 160	< 50	30 to 1,500	not viable ⁽¹⁾	not viable $^{(1)}$	not viable ⁽¹⁾	10	unknown	10	unknown
Earliest Commercial In-Service Date (Years)	2008	unknown	2008	2008	same as offshore	unknown	2008	2008	2008	not viable ⁽¹⁾	not viable $^{(1)}$	not viable ⁽¹⁾	> 10 years	unknown	> 10 years	unknown
Typical Construction & Permitting Time (Years)	18 to 24 months	unknown	unknown	24 to 36 months	same as offshore	unknown	4 to 8 years	unknown	unknown	not viable ⁽¹⁾	not viable $^{(1)}$	not viable ⁽¹⁾	unknown	unknown	unknown	unknown
Useful Life of Unit (Years)	20	unknown	20	20	same as offshore	20	30	30	30	not viable ⁽¹⁾	not viable $^{(1)}$	not viable ⁽¹⁾	unknown	unknown	unknown	unknown
Fuel Type	solar	unknown	solar	wind	same as offshore	wind	water	water	water	not viable ⁽¹⁾	not viable ⁽¹⁾	not viable ⁽¹⁾	water	unknown	water	unknown

Energy Resource

	Biomass - Direct Combustion		on	В	iomass - Conve	rsion to Liquid		Biomas	s - Conversion t	o Gas	Landfill Gas	Municipal S	Solid Waste	Hydrogen,	renewable	Waste Heat
	Plant Matter	Animal Waste	Vegetable Oil	Biodiesel / Renewable Diesel	Ethanol - Cellulosic	Ethanol - Non- Cellulosic	Pyrolysis	Anaerobic Digester	Gasification	Renewable Natural Gas	Methane Combustion	Biogenic	Non-Biogenic	Fuel Cells	Combustion	Sulfuric Acid Manufacturing ⁽³⁾⁽⁴⁾
Typical Unit Annual Capacity Rating (MW)	35	unknown	unknown	not viable ⁽²⁾	not viable ⁽²⁾	not viable ⁽²⁾	unknown	0.15	35	unknown	2 to 10	unknown	50	0.25	unknown	248
Earliest Commercial In-Service Date (Years)	2008	unknown	unknown	not viable ⁽²⁾	not viable ⁽²⁾	not viable ⁽²⁾	unknown	2008	2008	unknown	2008	unknown	2008	2008	unknown	2008
Typical Construction & Permitting Time (Years)	48 to 54 months	unknown	unknown	not viable ⁽²⁾	not viable ⁽²⁾	not viable ⁽²⁾	unknown	24 to 36 months	72 months	unknown	24 to 36 months	unknown	60 to 72 months	unknown	unknown	6
Useful Life of Unit (Years)	20	unknown	unknown	not viable ⁽²⁾	not viable ⁽²⁾	not viable ⁽²⁾	unknown	15	20	unknown	15	unknown	20	3 to 5	unknown	30
Fuel Type	wood waste	unknown	unknown	not viable ⁽²⁾	not viable ⁽²⁾	not viable ⁽²⁾	unknown	dairy-farm manure	wood waste	unknown	methane	unknown	Municipal solid waste	natural gas	unknown	waste steam

Source: Unless otherwise noted, all data is based on Tampa Electric commissioned Black & Veatch Renewable Resources Report (2007)

Notes:

(1) No viable thermal resources in Florida

(2) Technology better suited to transportation sector, not electricity generation

(3) Unit modeled as a typical steam boiler placed in a sulfuric acid plant

(4) Black & Veatch Update to Resources Report - Conventional Technologies (2008).

Form 3: Conventional Technologies

Company Name:

Tampa Electric Company

			Energy Resou	irce		
		Natural Gas		Coal		Nuclear
	Combustion Turbine	Combined Cycle ⁽¹⁾	Integrated Gasified Combined Cycle	Supercritical Pulverized Coal	Fluidized Bed	Steam Generation
Typical Unit Annual Capacity Rating (MW)	177	607	623	785	248	2234
Earliest Commercial In-Service Date (Years)	2008	2008	2008	2008	2008	2008
Typical Construction & Permitting Time (Years)	3	5	6	6	6	8
Useful Life of Unit (Years)	30	30	30	30	30	60
Fuel Type	natural gas	natural gas	coal	coal	coal	uranium

Source:

Black & Veatch Update to Resources Report - Conventional Technologies (2008)

Notes:

(1) Includes duct firing

Form 4: Renewable Technologies

Tampa Electric Company

Company Name:

		Energy Resource														
		Solar			Wind			Hydroelectric			Geothermal			Oce	an Energy	
_	Photovoltaic (PV)	Photoelectrochemical (H2)	Thermal Electric Plant	Inland	Coastal	Offshore	Dam (Incremental)	Diversion (Run of the River)	Pumped Storage	Dry Steam	Flash	Binary	Wave Action	Tidal change	Thermal Gradients	Ocean Currents
Contribution to Summer Peak Demand (MW)	non-firm	unknown	non-firm	non-firm	same as offshore	non-firm	1 to 160	< 50	30 to 1500	not viable ⁽¹⁾	not viable ⁽¹⁾	not viable ⁽¹⁾	non-firm	unknown	non-firm	unknown
Contribution to Winter Peak Demand (MW)	non-firm	unknown	non-firm	non-firm	same as offshore	non-firm	1 to 160	< 50	30 to 1500	not viable ⁽¹⁾	not viable ⁽¹⁾	not viable ⁽¹⁾	non-firm	unknown	non-firm	unknown
Average Annual Heat Rate (BTU/kWh)	N/A	unknown	N/A	N/A	same as offshore	N/A	N/A	N/A	unknown	not viable ⁽¹⁾	not viable ⁽¹⁾	not viable ⁽¹⁾	N/A	unknown	N/A	unknown
Equivalent Availability Factor (%)	> 95%	unknown	> 95%	unknown	same as offshore	unknown	unknown	unknown	unknown	not viable ⁽¹⁾	not viable ⁽¹⁾	not viable ⁽¹⁾	unknown	unknown	unknown	unknown
Average Annual Generation (MWh)	416.1	unknown	131400	82125	same as offshore	630720	352590	219000	837675	not viable ⁽¹⁾	not viable ⁽¹⁾	not viable ⁽¹⁾	35040	unknown	78840	unknown
Resulting Capacity Factor (%)	19	unknown	13 to 17	10 to 15	same as offshore	34 to 38	40 to 60	40 to 60	10 to 15	not viable ⁽¹⁾	not viable ⁽¹⁾	not viable ⁽¹⁾	40	unknown	90	unknown

		Energy Resource														
	В	iomass - Direct Combusti	on		Biomass - Conv	ersion to Liquid		Biomas	s - Conversion 1	to Gas	Landfill Gas	Municipal	Solid Waste	Hydrogen	, renewable	Waste Heat
	Plant Matter	Animal Waste	Vegetable Oil	Biodiesel / Renewable Diesel	Ethanol - Cellulosic	Ethanol - Non- Cellulosic	Pyrolysis	Anaerobic Digester	Gasification	Renewable Natural Gas	Methane Combustion	Biogenic	Non-Biogenic	Fuel Cells	Combustion	Sulfuric Acid Manufacturing ⁽³⁾⁽⁴⁾
Contribution to Summer Peak Demand (MW)	35	unknown	unknown	not viable ⁽²⁾	not viable ⁽²⁾	not viable ⁽²⁾	unknown	0.15	35	unknown	2 to 10	unknown	50	0.25	unknown	244
Contribution to Winter Peak Demand (MW)	35	unknown	unknown	not viable ⁽²⁾	not viable ⁽²⁾	not viable ⁽²⁾	unknown	0.15	35	unknown	2 to 10	unknown	50	0.25	unknown	248
Average Annual Heat Rate (BTU/kWh)	13,500	unknown	unknown	not viable ⁽²⁾	not viable ⁽²⁾	not viable ⁽²⁾	unknown	10826	10,000 to 11,500	unknown	13,648	unknown	16,000	9,500	unknown	9,163
Equivalent Availability Factor (%)	unknown	unknown	unknown	not viable ⁽²⁾	not viable ⁽²⁾	not viable ⁽²⁾	unknown	unknown	unknown	unknown	unknown	unknown	> 95%	unknown	unknown	90
Average Annual Generation (MWh)	245280	unknown	unknown	not viable ⁽²⁾	not viable ⁽²⁾	not viable ⁽²⁾	unknown	1051.2	214620	unknown	42048	unknown	350400	1752	unknown	192943
Resulting Capacity Factor (%)	70 to 90	unknown	unknown	not viable ⁽²⁾	not viable ⁽²⁾	not viable ⁽²⁾	unknown	70 to 90	60 to 80	unknown	70 to 90	unknown	76 to 85	70 to 90	unknown	90

Source: Unless otherwise noted, all data is based on Tampa Electric commissioned Black & Veatch Renewable Resources Report (2007

Notes:

(1) No viable thermal resources in Florida

(2) Technology better suited to transportation sector, not electricity generation

(3) Unit modeled as a steam boiler placed in a sulfuric acid plant

(4) Black & Veatch Update to Resources Report - Conventional Technologies (2008)

Form 4: Conventional Technologies

Company Name:

Tampa Electric Company

			Energy Resou	irce		
	1	Natural Gas		Coal		Nuclear
	Combustion Turbine	Combined Cycle ⁽¹⁾	Integrated Gasified Combined Cycle	Supercritical Pulverized Coal	Fluidized Bed	Steam Generation
Contribution to Summer Peak Demand (MW)	149	555	589	754	244	2234
Contribution to Winter Peak Demand (MW)	177	607	623	785	248	2234
Average Annual Heat Rate (BTU/kWh)	10,826	7,462	9,137	9,238	9,163	9,788
Equivalent Availability Factor (%)	95	93	88	91	90	94
Average Annual Generation (MWh)	819917	4326126	465626	612307	192943	1833774
Resulting Capacity Factor (%)	30 to 85	85	88	91	90	94

Source:

Black & Veatch Update to Resources Report - Conventional Technologies (2008)

Notes:

(1) Includes duct firing

Form 5: Renewable Technologies

Company Name: Tampa Electric Company

			Energy Resource														
			Solar			Wind			Hydroelectric			Geothermal			Oce	an Energy	
		Photovoltaic (PV)	Photoelectrochemical (H2)	Thermal Electric Plant	Inland	Coastal	Offshore	Dam (Incremental)	Diversion (Run of the River)	Pumped Storage	Dry Steam	Flash	Binary	Wave Action	Tidal change	Thermal Gradients	Ocean Currents
Emission Rates	Carbon Dioxide (CO ₂) (lb/kWh)	n/a	unknown	n/a	n/a	n/a	n/a	n/a	n/a	n/a	not viable ⁽¹⁾	not viable ⁽¹⁾	not viable ⁽¹⁾	n/a	n/a	n/a	n/a
	Sulfur Dioxide (SO ₂) (lb/kWh)	n/a	unknown	n/a	n/a	n/a	n/a	n/a	n/a	n/a	not viable ⁽¹⁾	not viable ⁽¹⁾	not viable ⁽¹⁾	n/a	n/a	n/a	n/a
	Nitrogen Oxide (NOx) (lb/kWh)	n/a	unknown	n/a	n/a	n/a	n/a	n/a	n/a	n/a	not viable ⁽¹⁾	not viable ⁽¹⁾	not viable ⁽¹⁾	n/a	n/a	n/a	n/a
З	Mercury (Hg) (lb/kWh)	n/a	unknown	n/a	n/a	n/a	n/a	n/a	n/a	n/a	not viable ⁽¹⁾	not viable ⁽¹⁾	not viable ⁽¹⁾	n/a	n/a	n/a	n/a
	Water Usage (gal/kWh)	unknown	unknown	unknown	n/a	n/a	n/a	unknown	unknown	unknown	not viable ⁽¹⁾	not viable ⁽¹⁾	not viable ⁽¹⁾	unknown	unknown	unknown	unknown

									Energy Resour	ce							
		В	iomass - Direct Combusti	on	Bi	omass - Convei	rsion to Liquid		Biomas	s - Conversion t	o Gas	Landfill Gas	Municipal S	Solid Waste	Hydrogen,	renewable	Waste Heat
		Plant Matter	Animal Waste	Vegetable Oil	Biodiesel / Renewable Diesel	Ethanol - Cellulosic	Ethanol - Non- Cellulosic	Pyrolysis	Anaerobic Digester	Gasification	Renewable Natural Gas	Methane Combustion	Biogenic	Non-Biogenic	Fuel Cells	Combustion	Sulfuric Acid Manufacturing ⁽³⁾⁽⁴⁾
ŝ	Carbon Dioxide (CO ₂) (lb/kWh)	2970	unknown	unknown	not viable ⁽²⁾	not viable ⁽²⁾	not viable ⁽²⁾	unknown	2458	2200	unknown	3098	unknown	depends on fuel source	n/a	unknown	2253.52
Emission Rates	Sulfur Dioxide (SO ₂) (lb/kWh)	2.025	unknown	unknown	not viable ⁽²⁾	not viable ⁽²⁾	not viable ⁽²⁾	unknown	depends on fuel source	0.50	unknown	depends on fuel source	unknown	3.04	n/a	unknown	1.136
	Nitrogen Oxide (NOx) (lb/kWh)	1.35	unknown	unknown	not viable ⁽²⁾	not viable ⁽²⁾	not viable ⁽²⁾	unknown	2.17	0.25	unknown	2.73	unknown	5.44	n/a	unknown	0.641
	Mercury (Hg) (Ib/kWh)	negligible	unknown	unknown	not viable ⁽²⁾	not viable ⁽²⁾	not viable ⁽²⁾	unknown	negligible	negligible	unknown	negligible	unknown	negligible	n/a	unknown	negligible
	Water Usage (gal/kWh)	unknown	unknown	unknown	not viable ⁽²⁾	not viable ⁽²⁾	not viable ⁽²⁾	unknown	unknown	unknown	unknown	unknown	unknown	unknown	unknown	unknown	unknown

Source: Unless otherwise noted, all data is based on Tampa Electric commissioned Black & Veatch Renewable Resources Report (2007

Notes:

(1) No viable thermal resources in Florida

(2) Technology better suited to transportation sector, not electricity generatior

(3) Unit modeled as a steam boiler placed in a suffuric acid plant
(4) Black & Veatch Update to Resources Report - Conventional Technologies (2008)

Form 5: Conventional Technologies

Company Name:

Tampa Electric Company

				Energy Resou	irce		
		I	Natural Gas		Coal		Nuclear
		Combustion Turbine	Combined Cycle ⁽¹⁾	Integrated Gasified Combined Cycle	Supercritical Pulverized Coal	Fluidized Bed	Steam Generation
S	Carbon Dioxide (CO_2) (Ib/kWh)	1242.81	856.64	1641.64	2253.52	2253.52	0
Emission Rates	Sulfur Dioxide (SO ₂) (lb/kWh)	0.005	0.001	0.155	0.831	1.136	0
	Nitrogen Oxide (NOx) (lb/kWh)	0.079	0.054	0.292	0.647	0.641	0
Η	Mercury (Hg) (lb/kWh)	negligible	negligible	0.0000010	0.0000014	0.0000010	0
	Water Usage (gal/kWh)	unknown	unknown	unknown	unknown	unknown	unknown

Source:

Black & Veatch Update to Resources Report - Conventional Technologies (2008)

Notes:

(1) Includes duct firing

Form 6: Renewable Technologies

Company Name: Tampa Electric Company

		Energy Resource															
			Solar			Wind			Hydroelectric			Geothermal			0	Ocean Energy	
		Photovoltaic (PV)	Photoelectrochemical (H2)	Thermal Electric Plant	Inland	Coastal	Offshore	Dam (Incremental)	Diversion (Run of the River)	Pumped Storage	Dry Steam	Flash	Binary	Wave Action	Tidal change	Thermal Gradients	Ocean Currents
	First Year of Commercial Operation (Year)	2008	unknown	2008	2008	same as offshore	> 2008	2008	2008	2008	not viable ⁽⁴⁾	not viable ⁽⁴⁾	not viable ⁽⁴⁾	> 2018	unknown	> 2018	unknown
alled acity	Cost (\$/kw) ⁽²⁾	8,286	unknown	5,985	1,944	same as offshore	2,864	629 to 3,041	2622 to 4,090	1573 to 2726	not viable ⁽⁴⁾	not viable ⁽⁴⁾	not viable ⁽⁴⁾	4,092	unknown	10486 to 15729	unknown
lnst: Cap	Escalation Rate (%)	2.30	unknown	2.30	2.30	same as offshore	2.30	2.30	2.30	2.30	not viable ⁽⁴⁾	not viable ⁽⁴⁾	not viable ⁽⁴⁾	2.30	unknown	2.30	unknown
ed د M	Cost (\$/kw-year) ⁽²⁾	See Variable O&M	unknown	See Variable O&M	See Variable O&M	same as offshore	See Variable O&M	5.22 to 26.19	5.22 to 26.19	5.22 to 13.61	not viable ⁽⁴⁾	not viable ⁽⁴⁾	not viable ⁽⁴⁾	See Variable O&M	unknown	See Variable O&M	unknown
Fix O 8	Escalation Rate (%)	See Variable O&M	unknown	See Variable O&M	See Variable O&M	same as offshore	See Variable O&M	2.30	2.30	2.30	not viable ⁽⁴⁾	not viable ⁽⁴⁾	not viable ⁽⁴⁾	See Variable O&M	unknown	See Variable O&M	unknown
able & M	Cost (\$/MWh) ⁽²⁾	18.41 ⁽¹⁾	unknown	23.02 ⁽¹⁾	28.03 ⁽¹⁾	same as offshore	20.15 ⁽¹⁾	3.68 to 6.34	5.22 to 6.34	2.15 to 5.22	not viable ⁽⁴⁾	not viable ⁽⁴⁾	not viable ⁽⁴⁾	46.04 to 61.38 ⁽¹⁾	unknown	13.61 to 26.19 ⁽¹⁾	unknown
Vari 0 8	Escalation Rate (%)	2.30	unknown	2.30	2.30	same as offshore	2.30	2.30	2.30	2.30	not viable ⁽⁴⁾	not viable ⁽⁴⁾	not viable ⁽⁴⁾	2.30	unknown	2.30	unknown
ergy	Cost (\$/kwh) ⁽²⁾	n/a	unknown	n/a	n/a	same as offshore	n/a	n/a	n/a	unknown	not viable ⁽⁴⁾	not viable ⁽⁴⁾	not viable ⁽⁴⁾	n/a	unknown	n/a	unknown
Ene	Escalation Rate (%)	n/a	unknown	n/a	n/a	same as offshore	2.30	2.30	2.30	2.30	not viable ⁽⁴⁾	not viable ⁽⁴⁾	not viable ⁽⁴⁾	n/a	unknown	n/a	unknown
	Levelized Cost - Life of Unit (cents/kwh) ⁽²⁾	80.26	unknown	77.94	40.07	same as offshore	17.91	14.26	18.56	39.42	not viable ⁽⁴⁾	not viable ⁽⁴⁾	not viable ⁽⁴⁾	23.75	unknown	22.93	unknown

	Energy Resource																
		Biomass - Direct Combustion			Biomass - Conversion to Liquid			Biomass - Conversion to Gas			Landfill Gas	Municipal Solid Waste		Hydrogen, renewable		Waste Heat	
		Plant Matter	Animal Waste	Vegetable Oil	Biodiesel / Renewable Diesel	Ethanol - Cellulosic	Ethanol - Non- Cellulosic	Pyrolysis	Anaerobic Digester	Gasification	Renewable Natural Gas	Methane Combustion	Biogenic	Non-Biogenic	Fuel Cells	Combustion	Sulfuric Acid Manufacturing ⁽⁶⁾⁽⁷⁾
	First Year of Commercial Operation (Year)	2008	unknown	unknown	not viable ⁽⁵⁾	not viable ⁽⁵⁾	not viable ⁽⁵⁾	unknown	2008	2008	unknown	2008	unknown	2008	2008	unknown	2008
Installed Capacity	Cost (\$/kw) ⁽²⁾	3,197	unknown	unknown	not viable ⁽⁵⁾	not viable ⁽⁵⁾	not viable ⁽⁵⁾	unknown	5,115	8,286	unknown	2,051	unknown	8,286	8,286	unknown	2,659
	Escalation Rate (%)	2.30	unknown	unknown	not viable ⁽⁵⁾	not viable ⁽⁵⁾	not viable ⁽⁵⁾	unknown	2.30	2.30	unknown	2.30	unknown	2.30	2.30	unknown	2.3
Fixed O & M	Cost (\$/kw-year) ⁽²⁾	84.91	unknown	unknown	not viable ⁽⁵⁾	not viable ⁽⁵⁾	not viable ⁽⁵⁾	unknown	See Variable O&M	84.91	unknown	See Variable O&M	unknown	102.30 to 179.03	524.80 to 734.51	unknown	0.04
	Escalation Rate (%)	2.30	unknown	unknown	not viable ⁽⁵⁾	not viable ⁽⁵⁾	not viable ⁽⁵⁾	unknown	See Variable O&M	2.30	unknown	See Variable O&M	unknown	2.30	2.30	unknown	2.3
Variable O & M	Cost (\$/MWh) ⁽²⁾	11.56	unknown	unknown	not viable ⁽⁵⁾	not viable ⁽⁵⁾	not viable ⁽⁵⁾	unknown	17.39 ⁽¹⁾	10.95	unknown	15.73 ⁽¹⁾	unknown	25.58 to 51.15	5.22 to 10.54	unknown	5.35
	Escalation Rate (%)	2.30	unknown	unknown	not viable ⁽⁵⁾	not viable ⁽⁵⁾	not viable ⁽⁵⁾	unknown	2.30	2.30	unknown	2.30	unknown	2.30	2.30	unknown	2.3
Energy	Cost (\$/kwh) ⁽²⁾	0.05	unknown	unknown	not viable ⁽⁵⁾	not viable ⁽⁵⁾	not viable ⁽⁵⁾	unknown	0.11	0.03	unknown	0.14	unknown	0.17	0.09	unknown	0.03
	Escalation Rate (%)	2.30	unknown	unknown	not viable ⁽⁵⁾	not viable ⁽⁵⁾	not viable ⁽⁵⁾	unknown	2.30	2.30	unknown	2.30	unknown	2.30	2.30	unknown	2.3
	Levelized Cost - Life of Unit (cents/kwh) ⁽²⁾⁽³⁾	14.12	unknown	unknown	not viable ⁽⁵⁾	not viable ⁽⁵⁾	not viable ⁽⁵⁾	unknown	25.12	15.94	unknown	20.63	unknown	35.21	35.63	unknown	8.76

Source:

rce: Unless otherwise noted, all data is based on Tampa Electric commissioned Black & Veatch Renewable Resources Report (2007)

Notes:

(1) Total O&M (\$/MWh)

(2) 2008 Dollars

(3) Levelized Cost determined utilizing appropriate capacity factor & useful life of unit

(4) No viable thermal resources in Florida

(5) Technology better suited to transportation sector, not electricity generation

(6) Unit modeled as a steam boiler placed in a sulfuric acid plant

(7) Black & Veatch Update to Resources Report - Conventional Technologies (2008)

Form 6: Conventional Technologies

Company Name:

Tampa Electric Company

		Energy Resource									
		1	Natural Gas		Nuclear						
_		Combustion Turbine	Combined Cycle ⁽³⁾	Integrated Gasified Combined Cycle	Supercritical Pulverized Coal	Fluidized Bed	Steam Generation				
	First Year of Commercial Operation (Year)	2008	2008	2008	2008	2008	2008				
Installed Capacity	Cost (\$/kw) ⁽¹⁾	505	736	3,277	2,115	2,659	4,214				
	Escalation Rate (%)	2.3	2.3	2.3	2.3	2.3	2.3				
Fixed O & M	Cost (\$/kw-year) ⁽¹⁾	0.08	0.01	0.03	0.02	0.04	0.04				
	Escalation Rate (%)	2.3	2.3	2.3	2.3	2.3	2.3				
Variable O & M	Cost (\$/MWh) ⁽¹⁾	15.57	3.65	6.02	1.88	5.35	1.94				
	Escalation Rate (%)	2.3	2.3	2.3	2.3	2.3	2.3				
Energy	Cost (\$/kwh) ⁽¹⁾	0.12	0.09	0.03	0.03	0.03	0.01				
	Escalation Rate (%)	2.3	2.3	2.3	2.3	2.3	2.3				
	Levelized Cost - Life of Unit (cents/kwh) ⁽¹⁾⁽²⁾	13.92	10.43	9.76	7.10	8.76	9.66				

Source:

Black & Veatch Update to Resources Report - Conventional Technologies (2008)

Notes:

(1) 2008 Dollars

(2) Levelized Cost determined utilizing appropriate capacity factor

(3) Includes duct firing