Composite - RPS Response Sheet - August, 15th Meeting

DOMESTIC HOT WATER - small commercial

			Company Name:		Composite	Solar Coalition
	ш		Applicable Utility Service Area	(if any)	Statewide	
	RC		Energy Resource:	(Individual Type)	Solar DHW	Small Commercial
	D0		Energy Resource Type:	(Category)	Renewable	Solar Hot Water
	0,		Resource Scale	(Unit or Aggregate)	Unit	Unit
			Unit Status	(Existing or Planning)	Planning	Existing
	לצ		Typical Unit Annual Capacity Rating	(MW)	0.003	0.003/80 sq ft
	SCL SCL		Earliest Commercial In-Service Date	(Year)	2009	2008
	LAE		Typical Construction & Permitting Time	(Years)	0.1	0.1
	VAI		Useful Life of Unit	(Years)	30	25
	C C		Fuel Type		Solar Energy	Solar Energy
	E CS		Contribution to Summer Peak Demand	(MW)	0.003	0.0008
	ISTI		Contribution to Winter Peak Demand	(MW)	0.0042	0.0014
	NN R		Average Annual Heat Rate	(BTU/kWh)	n/a	n/a
	ACL		Equivalent Availability Factor	(%)	100	n/a
	AR.		Average Annual Generation	(MWH)	4.34	5.6/80 sq ft
			Resulting Capacity Factor	(%)	17	21
	NT IST	c	Carbon Dioxide (CO ₂)	(lb/kWh)	0	0
	IME FR	ssio ites	Sulfur Dioxide (SO ₂)	(lb/kWh)	0	0
		Emis Ra	Nitrogen Oxide (NO _x)	(lb/kWh)	0	0
		_	Mercury (Hg)	(lb/kWh)	0	0
l	ت ت		Water Usage	(gal/kwh)	0	0
			First Year of Commercial Operation	(Year)	2009	2008
		talle d oital	Cost ⁽¹⁾	(\$/kw)	2000	2134
	¥.	Cal	Escalation Rate	(%)	3	n/a
	PA	Б	Cost ⁽¹⁾	(\$/kw-year)	16	n/a
	DST	Fix	Escalation Rate	(%)	3	n/a
	ö	л- Idi	Cost ⁽¹⁾	(\$/kwh)	n/a	0.014
	Ĕ	& A aria e	Escalation Rate	(%)	-	
	MA	0 >		(70)	n/a	n/a
	ST	Fuel		(\$/KWN)	U	n/a
			Escalation Kate	(%)	n/a	n/a
			Levelized Cost ⁽²⁾ Life of Unit	(70)	6	n/a
			Levenzed Cost ⁻⁷ - Life of Unit	(Cerits/KWII)	5.6	6

FOOTNOTES / ADDITIONAL NOTES

Projected costs are based on the following assumptions:

SOLAR COALITION SPECIAL FOOTNOTES

The residential retrofit solar systems are sold to a homeowner to replace the existing electric water heater.

ney are either an "active" or "passive" solar water heating system with collector installed on the roof at an angle and facing south for maximum sun exposure. The hot water storage capacity is typically 80 gallons with a collector area of 40 ft2 The residential new construction systems are the same as the residential retrofit except they are sold to a home builder to be installed on their new homes.

The small commercialsystems are sold to commercial enterprises such as a laundry, a restaurant or any small commercial enterprise that uses a significant amount of hot water. They are either an "active" or "passive" system with the collectors installed on the building roof, with the collectors the data an angle equal to the latitude of the business and facing south for maximum sun exposure. The hot water storage capacity is 120 gallons or greater with a collector area of

SOLAR COALITION SPECIAL FOOTNOTES

The residential retrofitsolar systems are sold to a homeowner to replace the existing electric water heater.

They are either an "active" or "passive" solar water heating system with collector installed on the roof at an angle and facing south for maximum sun exposure. The not

water storage canacity is twically 80 callons with a collector area of 40 ff2. The residential new construction systems are the same as the residential retrofit except they are sold to a home builder to be installed on their new home The small commercial systems are sold to commercial enterprises such as a laundry, a restaurant or any small commercial enterprise that uses a significant amount of hot water. They are either an "active" or "passive" system with the collectors installe

The emissions offset by Solar Hot Water are significant, and the consumption of water avoided as a result of distributed generation is substantial:

Carbon Dioxide Sulfur Dioxide	lb/kwh lb/kwh	1.42 0.0064
litrous Oxide	lb/kwh	0.0033
Nercury	b/kwh	1.01E-
Nator	aall/kwh	05-1

44 389 -08 0.5 - 1.5 vh

These numbers are from:- Emission Factors and Energy Prices for the Cleaner and Greener Environmental Program Leonardo Academy Inc. April 2004 Edition Table 3 Level average all (total) Generation Electricity Emission Factors