

Florida Public Service Commission Emerging Technologies to Meet Accelerated Demand Growth

Morgan Scott Vice President, Global Partnerships & Outreach, EPRI

© 2025 Electric Power Research Institute, Inc. All rights reserved

U.S. Grid Growth Continues to JUMP

...and it's still climbing

Source: Canary Media

The BIG (Demand) Picture

Industrial:

From Jan 2021 – May 2024, **534** new or expanded manufacturing facilities accelerating from COVID, CHIPs and IRA legislation.

Reindustrialization by Major Industry¹ Announced Estimated Facilities Load Transportation & Mobility: Battery Materials; EVs; EV Batteries; Chargers; ---34.3% 45.1% Clean Energy: Solar; Wind; Storage; Hydrogen Electrolyzers & Fuel Cells: -11.6% Heat Pumps/HVAC --- 13.4% Heavy Industry: Chemicals, Plastics & 29.2% Fuels; Metals; Materials Recycling **−**40.5% 12.7% Semiconductors & Electronics -0.2% Miscellaneous 1.9%

Electrification:

In 2024 - EV sales increased 15%; electric heat pump sales surpassed gas furnace sales 32%³

Computation:

Data center load could rise from 4.4% of U.S. electricity demand to 12% by 2028.²

Sources: 1. EPRI, 2. Berkeley Lab, 3. IEA

New Data Center Demands Growing

Size of Data Centers Served and New Service Requests (% of 25 Utilities Surveyed)

Key Points From Respondents

- All operating data centers today are less than 500 MW
 - Most < 100 MW</p>
- 60% of respondents have requests for more than500 MW
- □ 48% have single requests for more than 1000 MW

Faster than supply and delivery buildout

The escalating complexity of AI tasks and the expensional growth in usage drive a surge in overall computational demand and electricity consumption, despite efficiency gains.

Evolving a Complex Power System

- Al Hardware Lifecycles are shrinking dramatically.
- Racks that are packaging these new chips are also getting more power dense within this life cycle.
- What was historically 10–15 years, is now just 3–6 years. Notably, GPU utilization rates are so high (60–70%) that these chips often become obsolete in 1-3 years.

Flexible ramp rates, rate structures, and scalable T&D infrastructure are critical to accommodate future growth.

What Can We Do to Meet This Demand Growth?

Urgent Need to Accelerate Emerging Dispatchable Technologies

EPRI Supported Testing of Hydrogen for Power Generation

Hydrogen Testing Objectives

- Operate unit without major modifications
- Measure impacts on CO₂, NOx, CO, and unit performance
- Develop best practices for hydrogen blending
- Provide input on priorities for R&D needs

44%v | GE LM6000

(45 MWe - Aeroderivative)

Executive Summary report

20.9%v | Mitsubishi 501G

(265 MWe – Heavy Frame)

White Paper report

25%v | Wärtsilä RICE

(18 MWe - RICE)

Executive Summary report

38%v | Siemens **SGT6-6000G**

(246 MWe – Heavy Frame)

Press Release

Hydrogen Blending Demonstration Synopsis: EPRI-Affiliated Testing Summary (Report)

Unlocking Extra Transmission Capacity

Advanced Conductors

Dynamic Line Ratings

Advanced Power Flow Controllers

Planning

Operations

Higher Temperature Operation

Lower Sag as Temperature Increases

150 - 210°C

Lab Testing

Lenox 7 DLR **Technologies**

Charlotte

8 Advanced

Conductors

Types

29 Sites @ **6 Utilities**

2 Sites

Lenox/ **Charlotte SmartValve**

1 Sites + **Interest** Group

Technical Basis/Guidance to Select, Specify, Install & Maintain

Ops & Planning

Planning Framework Inform compliance with FERC O1920 & 02023

Implementation and **Operations Playbook** Practical guidelines for operators & engineers to implement and operate GETS

Affinity Group

DOE **Technology Providers Regulators** Etc.

Where Does Flexibility Lie Within a Data Center?

DCFlex Participants

Utilities

ENOWA.

Initial Demonstration Projects

Compute Flexibility, Grid Services

Arizon

Emerald AI, Arizona Public Svc.

Compute Flexibility

- Reducing load by up to 25%
- Matching utility program parameters
- Ramping capabilities
 - Eliminating snap back potential

North Carolina

Google, Duke Energy

Compute Flexibility

- Reducing electric load up to 20%
- Testing signaling and response times/durations
- Addressing various communications protocols

Franc

Schneider Electric, RTE

Ancillary Services to the Grid

- Fast frequency response
- Ride through
- VAR support
- Under frequency load shedding

LLM Refinement with More Relevant Data Increases Performance

Integration Domain-Specific and Proprietary Data

HIGH

